STM32L4x6 Advanced ARM® Based 32 Bit MCUs Stm32l476xx Reference Manual
STM32L476%20-%20Reference%20Manual
STM32L4x6%20-%20Reference%20Manual
User Manual:
Open the PDF directly: View PDF
.
Page Count: 1693
| Download | |
| Open PDF In Browser | View PDF |
RM0351
Reference manual
STM32L4x6 advanced ARM®-based 32-bit MCUs
Introduction
This reference manual targets application developers. It provides complete information on
how to use the STM32L4x6 microcontroller memory and peripherals.
The STM32L4x6 is a family of microcontrollers with different memory sizes, packages and
peripherals.
For ordering information, mechanical and electrical device characteristics please refer to the
corresponding datasheets.
For information on the ARM® Cortex®-M4 core, please refer to the Cortex®-M4 Technical
Reference Manual.
Related documents
• Cortex®-M4 Technical Reference Manual, available from: http://infocenter.arm.com
• STM32L476xx, STM32L486xx, STM32L476xx and STM32L486xx datasheet
• Cortex®-M4 programming manual (PM0214)
December 2015
DocID024597 Rev 3
1/1693
www.st.com
1
Contents
RM0351
Contents
1
2
Documentation conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.1
List of abbreviations for registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.2
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.3
Peripheral availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
System and memory overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.1
2.2
3
2/1693
System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.1.1
S0: I-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.1.2
S1: D-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.1.3
S2: S-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.1.4
S3, S4: DMA-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.1.5
BusMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2.2
Memory map and register boundary addresses . . . . . . . . . . . . . . . . . . 67
2.3
Bit banding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.4
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.4.1
SRAM2 Parity check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.4.2
SRAM2 Write protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.4.3
SRAM2 Read protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.4.4
SRAM2 Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.5
Flash memory overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.6
Boot configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Embedded Flash memory (FLASH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2
FLASH main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3
FLASH functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.1
Flash memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.2
Error code correction (ECC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.3
Read access latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.4
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . 83
3.3.5
Flash program and erase operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
DocID024597 Rev 3
RM0351
Contents
3.4
3.5
4
3.3.6
Flash main memory erase sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.7
Flash main memory programming sequences . . . . . . . . . . . . . . . . . . . . 87
3.3.8
Read-while-write (RWW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
FLASH option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.4.1
Option bytes description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.4.2
Option bytes programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
FLASH memory protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.5.1
Read protection (RDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.5.2
Proprietary code readout protection (PCROP) . . . . . . . . . . . . . . . . . . 103
3.5.3
Write protection (WRP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.6
FLASH interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.7
FLASH registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.7.1
Flash access control register (FLASH_ACR) . . . . . . . . . . . . . . . . . . . 106
3.7.2
Flash Power-down key register (FLASH_PDKEYR) . . . . . . . . . . . . . . 107
3.7.3
Flash key register (FLASH_KEYR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.7.4
Flash option key register (FLASH_OPTKEYR) . . . . . . . . . . . . . . . . . . 108
3.7.5
Flash status register (FLASH_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.7.6
Flash control register (FLASH_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.7.7
Flash ECC register (FLASH_ECCR) . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.7.8
Flash option register (FLASH_OPTR) . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.7.9
Flash Bank 1 PCROP Start address register (FLASH_PCROP1SR) . 114
3.7.10
Flash Bank 1 PCROP End address register (FLASH_PCROP1ER) . . 115
3.7.11
Flash Bank 1 WRP area A address register (FLASH_WRP1AR) . . . . 115
3.7.12
Flash Bank 1 WRP area B address register (FLASH_WRP1BR) . . . . 116
3.7.13
Flash Bank 2 PCROP Start address register (FLASH_PCROP2SR) . 116
3.7.14
Flash Bank 2 PCROP End address register (FLASH_PCROP2ER) . . 117
3.7.15
Flash Bank 2 WRP area A address register (FLASH_WRP2AR) . . . . 117
3.7.16
Flash Bank 2 WRP area B address register (FLASH_WRP2BR) . . . . 118
3.7.17
FLASH register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Firewall (FW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.2
Firewall main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.3
Firewall functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.3.1
Firewall AMBA bus snoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.3.2
Functional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
DocID024597 Rev 3
3/1693
43
Contents
RM0351
4.4
5
Firewall segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.3.4
Segment accesses and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.3.5
Firewall initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.3.6
Firewall states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Firewall registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.4.1
Code segment start address (FW_CSSA) . . . . . . . . . . . . . . . . . . . . . . 128
4.4.2
Code segment length (FW_CSL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.4.3
Non-volatile data segment start address (FW_NVDSSA) . . . . . . . . . . 129
4.4.4
Non-volatile data segment length (FW_NVDSL) . . . . . . . . . . . . . . . . . 129
4.4.5
Volatile data segment start address (FW_VDSSA) . . . . . . . . . . . . . . . 130
4.4.6
Volatile data segment length (FW_VDSL) . . . . . . . . . . . . . . . . . . . . . . 130
4.4.7
Configuration register (FW_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.4.8
Firewall register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Power control (PWR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.1
5.2
5.3
4/1693
4.3.3
Power supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.1.1
Independent analog peripherals supply . . . . . . . . . . . . . . . . . . . . . . . . 134
5.1.2
Independent I/O supply rail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.1.3
Independent USB transceivers supply . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.1.4
Independent LCD supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.1.5
Battery backup domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.1.6
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.1.7
Dynamic voltage scaling management . . . . . . . . . . . . . . . . . . . . . . . . 138
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.2.1
Power-on reset (POR) / power-down reset (PDR) / brown-out reset
(BOR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.2.2
Programmable voltage detector (PVD) . . . . . . . . . . . . . . . . . . . . . . . . 139
5.2.3
Peripheral Voltage Monitoring (PVM) . . . . . . . . . . . . . . . . . . . . . . . . . 140
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.3.1
Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.3.2
Low-power run mode (LP run) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.3.3
Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.3.4
Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.5
Low-power sleep mode (LP sleep) . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.6
Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.3.7
Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.3.8
Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
DocID024597 Rev 3
RM0351
Contents
5.4
6
5.3.9
Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.3.10
Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.3.11
Auto-wakeup from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . 160
PWR registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.4.1
Power control register 1 (PWR_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.4.2
Power control register 2 (PWR_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.4.3
Power control register 3 (PWR_CR3) . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.4.4
Power control register 4 (PWR_CR4) . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.4.5
Power status register 1 (PWR_SR1) . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.4.6
Power status register 2 (PWR_SR2) . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.4.7
Power status clear register (PWR_SCR) . . . . . . . . . . . . . . . . . . . . . . . 168
5.4.8
Power Port A pull-up control register (PWR_PUCRA) . . . . . . . . . . . . . 168
5.4.9
Power Port A pull-down control register (PWR_PDCRA) . . . . . . . . . . 169
5.4.10
Power Port B pull-up control register (PWR_PUCRB) . . . . . . . . . . . . . 169
5.4.11
Power Port B pull-down control register (PWR_PDCRB) . . . . . . . . . . 170
5.4.12
Power Port C pull-up control register (PWR_PUCRC) . . . . . . . . . . . . 170
5.4.13
Power Port C pull-down control register (PWR_PDCRC) . . . . . . . . . . 171
5.4.14
Power Port D pull-up control register (PWR_PUCRD) . . . . . . . . . . . . 171
5.4.15
Power Port D pull-down control register (PWR_PDCRD) . . . . . . . . . . 172
5.4.16
Power Port E pull-up control register (PWR_PUCRE) . . . . . . . . . . . . . 172
5.4.17
Power Port E pull-down control register (PWR_PDCRE) . . . . . . . . . . 173
5.4.18
Power Port F pull-up control register (PWR_PUCRF) . . . . . . . . . . . . . 173
5.4.19
Power Port F pull-down control register (PWR_PDCRF) . . . . . . . . . . 173
5.4.20
Power Port G pull-up control register (PWR_PUCRG) . . . . . . . . . . . . 174
5.4.21
Power Port G pull-down control register (PWR_PDCRG) . . . . . . . . . . 174
5.4.22
Power Port H pull-up control register (PWR_PUCRH) . . . . . . . . . . . . 175
5.4.23
Power Port H pull-down control register (PWR_PDCRH) . . . . . . . . . . 175
5.4.24
PWR register map and reset value table . . . . . . . . . . . . . . . . . . . . . . . 177
Reset and clock control (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.1
6.2
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.1.1
Power reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.1.2
System reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.1.3
Backup domain reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.2.1
HSE clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.2.2
HSI16 clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
DocID024597 Rev 3
5/1693
43
Contents
6/1693
RM0351
6.2.3
MSI clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.2.4
PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.2.5
LSE clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.2.6
LSI clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.2.7
System clock (SYSCLK) selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.2.8
Clock source frequency versus voltage scaling . . . . . . . . . . . . . . . . . . 189
6.2.9
Clock security system (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.2.10
Clock security system on LSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.2.11
ADC clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.2.12
RTC clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.2.13
Timer clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.2.14
Watchdog clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.2.15
Clock-out capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.2.16
Internal/external clock measurement with TIM15/TIM16/TIM17 . . . . . 192
6.2.17
Peripheral clock enable register
(RCC_AHBxENR, RCC_APBxENRy) . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.3
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.4
RCC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.4.1
Clock control register (RCC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.4.2
Internal clock sources calibration register (RCC_ICSCR) . . . . . . . . . . 199
6.4.3
Clock configuration register (RCC_CFGR) . . . . . . . . . . . . . . . . . . . . . 200
6.4.4
PLL configuration register (RCC_PLLCFGR) . . . . . . . . . . . . . . . . . . . 203
6.4.5
PLLSAI1 configuration register (RCC_PLLSAI1CFGR) . . . . . . . . . . . 206
6.4.6
PLLSAI2 configuration register (RCC_PLLSAI2CFGR) . . . . . . . . . . . 209
6.4.7
Clock interrupt enable register (RCC_CIER) . . . . . . . . . . . . . . . . . . . . 211
6.4.8
Clock interrupt flag register (RCC_CIFR) . . . . . . . . . . . . . . . . . . . . . . 213
6.4.9
Clock interrupt clear register (RCC_CICR) . . . . . . . . . . . . . . . . . . . . . 215
6.4.10
AHB1 peripheral reset register (RCC_AHB1RSTR) . . . . . . . . . . . . . . 216
6.4.11
AHB2 peripheral reset register (RCC_AHB2RSTR) . . . . . . . . . . . . . . 217
6.4.12
AHB3 peripheral reset register (RCC_AHB3RSTR) . . . . . . . . . . . . . . 218
6.4.13
APB1 peripheral reset register 1 (RCC_APB1RSTR1) . . . . . . . . . . . . 220
6.4.14
APB1 peripheral reset register 2 (RCC_APB1RSTR2) . . . . . . . . . . . . 222
6.4.15
APB2 peripheral reset register (RCC_APB2RSTR) . . . . . . . . . . . . . . 223
6.4.16
AHB1 peripheral clock enable register (RCC_AHB1ENR) . . . . . . . . . 224
6.4.17
AHB2 peripheral clock enable register (RCC_AHB2ENR) . . . . . . . . . 225
6.4.18
AHB3 peripheral clock enable register(RCC_AHB3ENR) . . . . . . . . . . 227
6.4.19
APB1 peripheral clock enable register 1 (RCC_APB1ENR1) . . . . . . . 227
DocID024597 Rev 3
RM0351
7
Contents
6.4.20
APB1 peripheral clock enable register 2 (RCC_APB1ENR2) . . . . . . . 230
6.4.21
APB2 peripheral clock enable register (RCC_APB2ENR) . . . . . . . . . . 232
6.4.22
AHB1 peripheral clocks enable in Sleep and Stop modes register
(RCC_AHB1SMENR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.4.23
AHB2 peripheral clocks enable in Sleep and Stop modes register
(RCC_AHB2SMENR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
6.4.24
AHB3 peripheral clocks enable in Sleep and Stop modes register
(RCC_AHB3SMENR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
6.4.25
APB1 peripheral clocks enable in Sleep and Stop modes register 1
(RCC_APB1SMENR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
6.4.26
APB1 peripheral clocks enable in Sleep and Stop modes register 2
(RCC_APB1SMENR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
6.4.27
APB2 peripheral clocks enable in Sleep and Stop modes register
(RCC_APB2SMENR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
6.4.28
Peripherals independent clock configuration register (RCC_CCIPR) . 243
6.4.29
Backup domain control register (RCC_BDCR) . . . . . . . . . . . . . . . . . . 246
6.4.30
Control/status register (RCC_CSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
6.4.31
RCC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
General-purpose I/Os (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
7.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
7.2
GPIO main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
7.3
GPIO functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
7.4
7.3.1
General-purpose I/O (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
7.3.2
I/O pin alternate function multiplexer and mapping . . . . . . . . . . . . . . . 257
7.3.3
I/O port control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
7.3.4
I/O port data registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
7.3.5
I/O data bitwise handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
7.3.6
GPIO locking mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
7.3.7
I/O alternate function input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
7.3.8
External interrupt/wakeup lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
7.3.9
Input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
7.3.10
Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
7.3.11
Alternate function configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
7.3.12
Analog configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
7.3.13
Using the HSE or LSE oscillator pins as GPIOs . . . . . . . . . . . . . . . . . 263
7.3.14
Using the GPIO pins in the RTC supply domain . . . . . . . . . . . . . . . . . 263
GPIO registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
DocID024597 Rev 3
7/1693
43
Contents
8
9
RM0351
GPIO port mode register (GPIOx_MODER) (x =A..H) . . . . . . . . . . . . . 264
7.4.2
GPIO port output type register (GPIOx_OTYPER) (x = A..H) . . . . . . . 264
7.4.3
GPIO port output speed register (GPIOx_OSPEEDR)
(x = A..H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
7.4.4
GPIO port pull-up/pull-down register (GPIOx_PUPDR)
(x = A..H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
7.4.5
GPIO port input data register (GPIOx_IDR) (x = A..H) . . . . . . . . . . . . 266
7.4.6
GPIO port output data register (GPIOx_ODR) (x = A..H) . . . . . . . . . . 266
7.4.7
GPIO port bit set/reset register (GPIOx_BSRR) (x = A..H) . . . . . . . . . 266
7.4.8
GPIO port configuration lock register (GPIOx_LCKR)
(x = A..H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
7.4.9
GPIO alternate function low register (GPIOx_AFRL)
(x = A..H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
7.4.10
GPIO alternate function high register (GPIOx_AFRH)
(x = A..H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
7.4.11
GPIO port bit reset register (GPIOx_BRR) (x =A..H) . . . . . . . . . . . . . . 269
7.4.12
GPIO port analog switch control register (GPIOx_ASCR)(x = A..H) . . 269
7.4.13
GPIO register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
System configuration controller (SYSCFG) . . . . . . . . . . . . . . . . . . . . 273
8.1
SYSCFG main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
8.2
SYSCFG registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
8.2.1
SYSCFG memory remap register (SYSCFG_MEMRMP) . . . . . . . . . . 273
8.2.2
SYSCFG configuration register 1 (SYSCFG_CFGR1) . . . . . . . . . . . . 274
8.2.3
SYSCFG external interrupt configuration register 1
(SYSCFG_EXTICR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
8.2.4
SYSCFG external interrupt configuration register 2
(SYSCFG_EXTICR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
8.2.5
SYSCFG external interrupt configuration register 3
(SYSCFG_EXTICR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
8.2.6
SYSCFG external interrupt configuration register 4
(SYSCFG_EXTICR4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
8.2.7
SYSCFG SRAM2 control and status register (SYSCFG_SCSR) . . . . 282
8.2.8
SYSCFG configuration register 2 (SYSCFG_CFGR2) . . . . . . . . . . . . 283
8.2.9
SYSCFG SRAM2 write protection register (SYSCFG_SWPR) . . . . . . 283
8.2.10
SYSCFG SRAM2 key register (SYSCFG_SKR) . . . . . . . . . . . . . . . . . 284
8.2.11
SYSCFG register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
9.1
8/1693
7.4.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
DocID024597 Rev 3
RM0351
10
Contents
9.2
Connection summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
9.3
Interconnection details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
9.3.1
From timer (TIM1/TIM2/TIM3/TIM4/TIM5/TIM8/TIM15/TIM16/TIM17) to
timer (TIM1/TIM2/TIM3/TIM4/TIM5/TIM8/TIM15) . . . . . . . . . . . . . . . . 287
9.3.2
From timer (TIM1/TIM2/TIM3/TIM4/TIM6/TIM8/TIM15) and EXTI to ADC
(ADC1/ADC2/ADC3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
9.3.3
From ADC (ADC1/ADC2/ADC3) to timer (TIM1/TIM8) . . . . . . . . . . . . 289
9.3.4
From timer (TIM2/TIM4/TIM5/TIM6/TIM7/TIM8) and EXTI to DAC
(DAC1/DAC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
9.3.5
From timer (TIM1/TIM3/TIM4/TIM6/TIM7/TIM8/TIM16) and EXTI to
DFSDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
9.3.6
From DFSDM to timer (TIM1/TIM8/TIM15/TIM16/TIM17) . . . . . . . . . . 290
9.3.7
From HSE, LSE, LSI, MSI, MCO, RTC to timer
(TIM2/TIM15/TIM16/TIM17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
9.3.8
From RTC, COMP1, COMP2 to low-power timer (LPTIM1/LPTIM2) . . 291
9.3.9
From timer (TIM1/TIM2/TIM3/TIM8/TIM15) to comparators
(COMP1/COMP2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
9.3.10
From ADC (ADC1) to ADC (ADC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
9.3.11
From USB to timer (TIM2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
9.3.12
From internal analog source to ADC (ADC1/ADC2/ADC3) and OPAMP
(OPAMP1/OPAM2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
9.3.13
From comparators (COMP1/COMP2) to timers
(TIM1/TIM2/TIM3/TIM8/TIM15/TIM16/TIM17) . . . . . . . . . . . . . . . . . . . 293
9.3.14
From system errors to timers (TIM1/TIM8/TIM15/TIM16/TIM17) . . . . 293
9.3.15
From timers (TIM16/TIM17) to IRTIM . . . . . . . . . . . . . . . . . . . . . . . . . 294
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . 295
10.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
10.2
DMA main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
10.3
DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
10.4
DMA functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
10.5
10.4.1
DMA transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
10.4.2
Arbiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
10.4.3
DMA channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
10.4.4
Programmable data width, data alignment and endians . . . . . . . . . . . 299
10.4.5
Error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
10.4.6
DMA interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
10.4.7
DMA request mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
DMA registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
DocID024597 Rev 3
9/1693
43
Contents
11
12
10/1693
RM0351
10.5.1
DMA interrupt status register (DMA_ISR) . . . . . . . . . . . . . . . . . . . . . . 307
10.5.2
DMA interrupt flag clear register (DMA_IFCR) . . . . . . . . . . . . . . . . . . 308
10.5.3
DMA channel x configuration register (DMA_CCRx)
(x = 1..7 , where x = channel number) . . . . . . . . . . . . . . . . . . . . . . . . 309
10.5.4
DMA channel x number of data register (DMA_CNDTRx) (x = 1..7,
where x = channel number) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
10.5.5
DMA channel x peripheral address register (DMA_CPARx) (x = 1..7,
where x = channel number) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
10.5.6
DMA channel x memory address register (DMA_CMARx) (x = 1..7,
where x = channel number) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
10.5.7
DMA1 channel selection register (DMA1_CSELR) . . . . . . . . . . . . . . . 313
10.5.8
DMA2 channel selection register (DMA2_CSELR) . . . . . . . . . . . . . . . 315
10.5.9
DMA register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . 319
11.1
NVIC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
11.2
SysTick calibration value register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
11.3
Interrupt and exception vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Extended interrupts and events controller (EXTI) . . . . . . . . . . . . . . . 324
12.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
12.2
EXTI main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
12.3
EXTI functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
12.3.1
EXTI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
12.3.2
Wakeup event management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
12.3.3
Peripherals asynchronous Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 326
12.3.4
Hardware interrupt selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
12.3.5
Hardware event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
12.3.6
Software interrupt/event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
12.4
EXTI interrupt/event line mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
12.5
EXTI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
12.5.1
Interrupt mask register 1 (EXTI_IMR1) . . . . . . . . . . . . . . . . . . . . . . . . 329
12.5.2
Event mask register 1 (EXTI_EMR1) . . . . . . . . . . . . . . . . . . . . . . . . . . 329
12.5.3
Rising trigger selection register 1 (EXTI_RTSR1) . . . . . . . . . . . . . . . . 330
12.5.4
Falling trigger selection register 1 (EXTI_FTSR1) . . . . . . . . . . . . . . . . 330
12.5.5
Software interrupt event register 1 (EXTI_SWIER1) . . . . . . . . . . . . . . 331
12.5.6
Pending register 1 (EXTI_PR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
DocID024597 Rev 3
RM0351
Contents
12.5.7
Interrupt mask register 2 (EXTI_IMR2) . . . . . . . . . . . . . . . . . . . . . . . . 332
12.5.8
Event mask register 2 (EXTI_EMR2) . . . . . . . . . . . . . . . . . . . . . . . . . . 333
12.5.9
Rising trigger selection register 2 (EXTI_RTSR2) . . . . . . . . . . . . . . . . 333
12.5.10 Falling trigger selection register 2 (EXTI_FTSR2) . . . . . . . . . . . . . . . . 334
12.5.11 Software interrupt event register 2 (EXTI_SWIER2) . . . . . . . . . . . . . . 334
12.5.12 Pending register 2 (EXTI_PR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
12.5.13 EXTI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
13
14
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . 337
13.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
13.2
CRC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
13.3
CRC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
13.4
CRC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
13.4.1
Data register (CRC_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
13.4.2
Independent data register (CRC_IDR) . . . . . . . . . . . . . . . . . . . . . . . . 340
13.4.3
Control register (CRC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
13.4.4
Initial CRC value (CRC_INIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
13.4.5
CRC polynomial (CRC_POL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
13.4.6
CRC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . 343
14.1
FMC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
14.2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
14.3
AHB interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
14.3.1
14.4
14.5
14.6
Supported memories and transactions . . . . . . . . . . . . . . . . . . . . . . . . 345
External device address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
14.4.1
NOR/PSRAM address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
14.4.2
NAND Flash memory address mapping . . . . . . . . . . . . . . . . . . . . . . . 348
NOR Flash/PSRAM controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
14.5.1
External memory interface signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
14.5.2
Supported memories and transactions . . . . . . . . . . . . . . . . . . . . . . . . 352
14.5.3
General timing rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
14.5.4
NOR Flash/PSRAM controller asynchronous transactions . . . . . . . . . 354
14.5.5
Synchronous transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
14.5.6
NOR/PSRAM controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
NAND Flash controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
DocID024597 Rev 3
11/1693
43
Contents
RM0351
14.7
15
14.6.1
External memory interface signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
14.6.2
NAND Flash supported memories and transactions . . . . . . . . . . . . . . 388
14.6.3
Timing diagrams for NAND Flash memory . . . . . . . . . . . . . . . . . . . . . 388
14.6.4
NAND Flash operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
14.6.5
NAND Flash prewait functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
14.6.6
Computation of the error correction code (ECC)
in NAND Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
14.6.7
NAND Flashcontroller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
FMC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
Quad-SPI interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
15.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
15.2
QUADSPI main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
15.3
QUADSPI functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
15.3.1
QUADSPI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
15.3.2
QUADSPI Command sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
15.3.3
QUADSPI signal interface protocol modes . . . . . . . . . . . . . . . . . . . . . 403
15.3.4
QUADSPI indirect mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
15.3.5
QUADSPI status flag polling mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
15.3.6
QUADSPI memory-mapped mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
15.3.7
QUADSPI Flash memory configuration . . . . . . . . . . . . . . . . . . . . . . . . 407
15.3.8
QUADSPI delayed data sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
15.3.9
QUADSPI configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
15.3.10 QUADSPI usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
15.3.11 Sending the instruction only once . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
15.3.12 QUADSPI error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
15.3.13 QUADSPI busy bit and abort functionality . . . . . . . . . . . . . . . . . . . . . . 411
15.3.14 nCS behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
12/1693
15.4
QUADSPI interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
15.5
QUADSPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
15.5.1
QUADSPI control register (QUADSPI_CR) . . . . . . . . . . . . . . . . . . . . . 414
15.5.2
QUADSPI device configuration register (QUADSPI_DCR) . . . . . . . . . 416
15.5.3
QUADSPI status register (QUADSPI_SR) . . . . . . . . . . . . . . . . . . . . . 417
15.5.4
QUADSPI flag clear register (QUADSPI_FCR) . . . . . . . . . . . . . . . . . . 418
15.5.5
QUADSPI data length register (QUADSPI_DLR) . . . . . . . . . . . . . . . . 419
15.5.6
QUADSPI communication configuration register (QUADSPI_CCR) . . 419
15.5.7
QUADSPI address register (QUADSPI_AR) . . . . . . . . . . . . . . . . . . . . 421
DocID024597 Rev 3
RM0351
Contents
15.5.8
QUADSPI alternate bytes registers (QUADSPI_ABR) . . . . . . . . . . . . 421
15.5.9
QUADSPI data register (QUADSPI_DR) . . . . . . . . . . . . . . . . . . . . . . . 422
15.5.10 QUADSPI polling status mask register (QUADSPI _PSMKR) . . . . . . . 422
15.5.11 QUADSPI polling status match register (QUADSPI _PSMAR) . . . . . . 423
15.5.12 QUADSPI polling interval register (QUADSPI _PIR) . . . . . . . . . . . . . . 423
15.5.13 QUADSPI low-power timeout register (QUADSPI_LPTR) . . . . . . . . . . 424
15.5.14 QUADSPI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
16
Analog-to-digital converters (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
16.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
16.2
ADC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
16.3
ADC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
16.3.1
ADC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
16.3.2
Pins and internal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
16.3.3
Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
16.3.4
ADC1/2/3 connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
16.3.5
Slave AHB interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
16.3.6
ADC Deep-Power-Down Mode (DEEPPWD) & ADC Voltage Regulator
(ADVREGEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
16.3.7
Single-ended and differential input channels . . . . . . . . . . . . . . . . . . . . 436
16.3.8
Calibration (ADCAL, ADCALDIF, ADCx_CALFACT) . . . . . . . . . . . . . . 437
16.3.9
ADC on-off control (ADEN, ADDIS, ADRDY) . . . . . . . . . . . . . . . . . . . 440
16.3.10 Constraints when writing the ADC control bits . . . . . . . . . . . . . . . . . . . 441
16.3.11 Channel selection (SQRx, JSQRx) . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
16.3.12 Channel-wise programmable sampling time (SMPR1, SMPR2) . . . . . 442
16.3.13 Single conversion mode (CONT=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
16.3.14 Continuous conversion mode (CONT=1) . . . . . . . . . . . . . . . . . . . . . . . 444
16.3.15 Starting conversions (ADSTART, JADSTART) . . . . . . . . . . . . . . . . . . . 445
16.3.16 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
16.3.17 Stopping an ongoing conversion (ADSTP, JADSTP) . . . . . . . . . . . . . . 446
16.3.18 Conversion on external trigger and trigger polarity (EXTSEL, EXTEN,
JEXTSEL, JEXTEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
16.3.19 Injected channel management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
16.3.20 Discontinuous mode (DISCEN, DISCNUM, JDISCEN) . . . . . . . . . . . . 452
16.3.21 Queue of context for injected conversions . . . . . . . . . . . . . . . . . . . . . . 453
16.3.22 Programmable resolution (RES) - fast conversion mode . . . . . . . . . . 461
16.3.23 End of conversion, end of sampling phase (EOC, JEOC, EOSMP) . . 461
DocID024597 Rev 3
13/1693
43
Contents
RM0351
16.3.24 End of conversion sequence (EOS, JEOS) . . . . . . . . . . . . . . . . . . . . . 461
16.3.25 Timing diagrams example (single/continuous modes,
hardware/software triggers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
16.3.26 Data management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
16.3.27 Dynamic low-power features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
16.3.28 Analog window watchdog (AWD1EN, JAWD1EN, AWD1SGL,
AWD1CH, AWD2CH, AWD3CH, AWD_HTx, AWD_LTx, AWDx) . . . . 474
16.3.29 Oversampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
16.3.30 Dual ADC modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
16.3.31 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
16.3.32 VBAT supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
16.3.33 Monitoring the internal voltage reference . . . . . . . . . . . . . . . . . . . . . . 501
16.4
ADC interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
16.5
ADC registers (for each ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
16.5.1
ADC interrupt and status register (ADCx_ISR) . . . . . . . . . . . . . . . . . . 503
16.5.2
ADC interrupt enable register (ADCx_IER) . . . . . . . . . . . . . . . . . . . . . 505
16.5.3
ADC control register (ADCx_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
16.5.4
ADC configuration register (ADCx_CFGR) . . . . . . . . . . . . . . . . . . . . . 510
16.5.5
ADC configuration register 2 (ADCx_CFGR2) . . . . . . . . . . . . . . . . . . . 514
16.5.6
ADC sample time register 1 (ADCx_SMPR1) . . . . . . . . . . . . . . . . . . . 515
16.5.7
ADC sample time register 2 (ADCx_SMPR2) . . . . . . . . . . . . . . . . . . . 517
16.5.8
ADC watchdog threshold register 1 (ADCx_TR1) . . . . . . . . . . . . . . . . 517
16.5.9
ADC watchdog threshold register 2 (ADCx_TR2) . . . . . . . . . . . . . . . . 518
16.5.10 ADC watchdog threshold register 3 (ADCx_TR3) . . . . . . . . . . . . . . . . 519
16.5.11 ADC regular sequence register 1 (ADCx_SQR1) . . . . . . . . . . . . . . . . 520
16.5.12 ADC regular sequence register 2 (ADCx_SQR2) . . . . . . . . . . . . . . . . 521
16.5.13 ADC regular sequence register 3 (ADCx_SQR3) . . . . . . . . . . . . . . . . 522
16.5.14 ADC regular sequence register 4 (ADCx_SQR4) . . . . . . . . . . . . . . . . 523
16.5.15 ADC regular Data Register (ADCx_DR) . . . . . . . . . . . . . . . . . . . . . . . 524
16.5.16 ADC injected sequence register (ADCx_JSQR) . . . . . . . . . . . . . . . . . 525
16.5.17 ADC offset register (ADCx_OFRy) (y=1..4) . . . . . . . . . . . . . . . . . . . . . 527
16.5.18 ADC injected data register (ADCx_JDRy, y= 1..4) . . . . . . . . . . . . . . . . 528
16.5.19 ADC Analog Watchdog 2 Configuration Register (ADCx_AWD2CR) . 528
16.5.20 ADC Analog Watchdog 3 Configuration Register (ADCx_AWD3CR) . 529
16.5.21 ADC Differential Mode Selection Register (ADCx_DIFSEL) . . . . . . . . 529
16.5.22 ADC Calibration Factors (ADCx_CALFACT) . . . . . . . . . . . . . . . . . . . . 530
16.6
14/1693
ADC common registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
DocID024597 Rev 3
RM0351
17
Contents
16.6.1
ADC Common status register (ADCx_CSR) . . . . . . . . . . . . . . . . . . . . 532
16.6.2
ADC common control register (ADCx_CCR) . . . . . . . . . . . . . . . . . . . . 534
16.6.3
ADC common regular data register for dual mode (ADCx_CDR) . . . . 537
16.6.4
ADC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
17.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
17.2
DAC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
17.3
DAC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
17.3.1
DAC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
17.3.2
DAC channel enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
17.3.3
DAC data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
17.3.4
DAC conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
17.3.5
DAC output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
17.3.6
DAC trigger selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
17.3.7
DMA request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
17.3.8
Noise generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
17.3.9
Triangle-wave generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
17.3.10 DAC channel modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
17.3.11 DAC channel buffer calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
17.3.12 Dual DAC channel conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
17.3.13 Simultaneous trigger with different triangle generation . . . . . . . . . . . . 557
17.4
DAC low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
17.5
DAC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
17.5.1
DAC control register (DAC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
17.5.2
DAC software trigger register (DAC_SWTRGR) . . . . . . . . . . . . . . . . . 562
17.5.3
DAC channel1 12-bit right-aligned data holding register
(DAC_DHR12R1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
17.5.4
DAC channel1 12-bit left aligned data holding register
(DAC_DHR12L1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
17.5.5
DAC channel1 8-bit right aligned data holding register
(DAC_DHR8R1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
17.5.6
DAC channel2 12-bit right aligned data holding register
(DAC_DHR12R2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
17.5.7
DAC channel2 12-bit left aligned data holding register
(DAC_DHR12L2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
17.5.8
DAC channel2 8-bit right-aligned data holding register
(DAC_DHR8R2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
DocID024597 Rev 3
15/1693
43
Contents
RM0351
17.5.9
Dual DAC 12-bit right-aligned data holding register
(DAC_DHR12RD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
17.5.10 DUAL DAC 12-bit left aligned data holding register
(DAC_DHR12LD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
17.5.11 DUAL DAC 8-bit right aligned data holding register
(DAC_DHR8RD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
17.5.12 DAC channel1 data output register (DAC_DOR1) . . . . . . . . . . . . . . . . 566
17.5.13 DAC channel2 data output register (DAC_DOR2) . . . . . . . . . . . . . . . . 566
17.5.14 DAC status register (DAC_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
17.5.15 DAC calibration control register (DAC_CCR) . . . . . . . . . . . . . . . . . . . 568
17.5.16 DAC mode control register (DAC_MCR) . . . . . . . . . . . . . . . . . . . . . . . 568
17.5.17 DAC Sample and Hold sample time register 1 (DAC_SHSR1) . . . . . . 569
17.5.18 DAC Sample and Hold sample time register 2 (DAC_SHSR2) . . . . . . 570
17.5.19 DAC Sample and Hold hold time register (DAC_SHHR) . . . . . . . . . . . 570
17.5.20 DAC Sample and Hold refresh time register (DAC_SHRR) . . . . . . . . 571
17.5.21 DAC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
18
19
16/1693
Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . 574
18.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
18.2
VREFBUF functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
18.3
VREFBUF registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
18.3.1
VREFBUF control and status register (VREFBUF_CSR) . . . . . . . . . . 574
18.3.2
VREFBUF calibration control register (VREFBUF_CCR) . . . . . . . . . . 575
18.3.3
VREFBUF register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
Comparator (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
19.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
19.2
COMP main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
19.3
COMP functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
19.3.1
COMP block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
19.3.2
COMP pins and internal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
19.3.3
COMP reset and clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
19.3.4
Comparator LOCK mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
19.3.5
Window comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
19.3.6
Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
19.3.7
Comparator output blanking function . . . . . . . . . . . . . . . . . . . . . . . . . . 581
19.3.8
COMP power and speed modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
DocID024597 Rev 3
RM0351
20
21
Contents
19.4
COMP low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
19.5
COMP interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
19.6
COMP registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
19.6.1
Comparator 1 control and status register (COMP1_CSR) . . . . . . . . . . 584
19.6.2
Comparator 2 control and status register (COMP2_CSR) . . . . . . . . . . 586
19.6.3
COMP register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
Operational amplifiers (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
20.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
20.2
OPAMP main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
20.3
OPAMP functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
20.3.1
OPAMP reset and clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
20.3.2
Initial configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
20.3.3
Signal routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
20.3.4
OPAMP modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
20.3.5
Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
20.4
OPAMP low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
20.5
OPAMP registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
20.5.1
OPAMP1 control/status register (OPAMP1_CSR) . . . . . . . . . . . . . . . . 597
20.5.2
OPAMP1 offset trimming register in normal mode (OPAMP1_OTR) . . 598
20.5.3
OPAMP1 offset trimming register in low-power mode
(OPAMP1_LPOTR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
20.5.4
OPAMP2 control/status register (OPAMP2_CSR) . . . . . . . . . . . . . . . . 599
20.5.5
OPAMP2 offset trimming register in normal mode (OPAMP2_OTR) . . 600
20.5.6
OPAMP2 offset trimming register in low-power mode
(OPAMP2_LPOTR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
20.5.7
OPAMP register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
Digital filter for sigma delta modulators (DFSDM) . . . . . . . . . . . . . . . 603
21.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
21.2
DFSDM main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
21.3
DFSDM functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
21.3.1
DFSDM block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
21.3.2
DFSDM pins and internal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
21.3.3
DFSDM reset and clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
21.3.4
Serial channel transceivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
21.3.5
Configuring the input serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . 616
DocID024597 Rev 3
17/1693
43
Contents
RM0351
21.3.6
Parallel data inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
21.3.7
Channel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
21.3.8
Digital filter configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
21.3.9
Integrator unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
21.3.10 Analog watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
21.3.11 Short-circuit detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
21.3.12 Extremes detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
21.3.13 Data unit block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
21.3.14 Signed data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
21.3.15 Launching conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
21.3.16 Continuous and fast continuous modes . . . . . . . . . . . . . . . . . . . . . . . . 625
21.3.17 Request precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
21.3.18 Power optimization in run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
21.4
DFSDM interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
21.5
DFSDM DMA transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
21.6
DFSDM channel y registers (y=0..7) . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
21.7
21.6.1
DFSDM channel configuration y register (DFSDM_CHCFGyR1)
(y=0..7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
21.6.2
DFSDM channel configuration y register (DFSDM_CHCFGyR2)
(y=0..7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
21.6.3
DFSDM analog watchdog and short-circuit detector register
(DFSDM_AWSCDyR) (y=0..7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
21.6.4
DFSDM channel watchdog filter data register (DFSDM_CHWDATyR)
(y=0..7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
21.6.5
DFSDM channel data input register (DFSDM_CHDATINyR)
(y=0..7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
DFSDMx module registers (x=0..3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
21.7.1
DFSDM control register 1 (DFSDMx_CR1) . . . . . . . . . . . . . . . . . . . . . 634
21.7.2
DFSDM control register 2 (DFSDMx_CR2) . . . . . . . . . . . . . . . . . . . . . 637
21.7.3
DFSDM interrupt and status register (DFSDMx_ISR) . . . . . . . . . . . . . 638
21.7.4
DFSDM interrupt flag clear register (DFSDMx_ICR) . . . . . . . . . . . . . . 640
21.7.5
DFSDM injected channel group selection register
(DFSDMx_JCHGR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
21.7.6
DFSDM filter control register (DFSDMx_FCR) . . . . . . . . . . . . . . . . . . 641
21.7.7
DFSDM data register for injected group (DFSDMx_JDATAR) . . . . . . . 642
21.7.8
DFSDM data register for the regular channel (DFSDMx_RDATAR) . . 643
21.7.9
DFSDM analog watchdog high threshold register
(DFSDMx_AWHTR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
21.7.10 DFSDM analog watchdog low threshold register (DFSDMx_AWLTR) 644
18/1693
DocID024597 Rev 3
RM0351
Contents
21.7.11 DFSDM analog watchdog status register (DFSDMx_AWSR) . . . . . . . 645
21.7.12 DFSDM analog watchdog clear flag register (DFSDMx_AWCFR) . . . 645
21.7.13 DFSDM Extremes detector maximum register (DFSDMx_EXMAX) . . 646
21.7.14 DFSDM Extremes detector minimum register (DFSDMx_EXMIN) . . . 646
21.7.15 DFSDM conversion timer register (DFSDMx_CNVTIMR) . . . . . . . . . . 647
21.8
22
23
DFSDM register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648
Liquid crystal display controller (LCD) . . . . . . . . . . . . . . . . . . . . . . . . 658
22.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658
22.2
LCD main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
22.3
LCD functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
22.3.1
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
22.3.2
Frequency generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
22.3.3
Common driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
22.3.4
Segment driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
22.3.5
Voltage generator and contrast control . . . . . . . . . . . . . . . . . . . . . . . . 669
22.3.6
Double buffer memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
22.3.7
COM and SEG multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
22.3.8
Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
22.4
LCD low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679
22.5
LCD interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679
22.6
LCD registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
22.6.1
LCD control register (LCD_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
22.6.2
LCD frame control register (LCD_FCR) . . . . . . . . . . . . . . . . . . . . . . . . 682
22.6.3
LCD status register (LCD_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
22.6.4
LCD clear register (LCD_CLR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
22.6.5
LCD display memory (LCD_RAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
22.6.6
LCD register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689
Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691
23.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691
23.2
TSC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691
23.3
TSC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692
23.3.1
TSC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692
23.3.2
Surface charge transfer acquisition overview . . . . . . . . . . . . . . . . . . . 692
23.3.3
Reset and clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694
DocID024597 Rev 3
19/1693
43
Contents
RM0351
23.3.4
Charge transfer acquisition sequence . . . . . . . . . . . . . . . . . . . . . . . . . 695
23.3.5
Spread spectrum feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696
23.3.6
Max count error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696
23.3.7
Sampling capacitor I/O and channel I/O mode selection . . . . . . . . . . . 697
23.3.8
Acquisition mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698
23.3.9
I/O hysteresis and analog switch control . . . . . . . . . . . . . . . . . . . . . . . 698
23.4
TSC low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699
23.5
TSC interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699
23.6
TSC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
23.6.1
TSC control register (TSC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
23.6.2
TSC interrupt enable register (TSC_IER) . . . . . . . . . . . . . . . . . . . . . . 702
23.6.3
TSC interrupt clear register (TSC_ICR) . . . . . . . . . . . . . . . . . . . . . . . . 703
23.6.4
TSC interrupt status register (TSC_ISR) . . . . . . . . . . . . . . . . . . . . . . . 704
23.6.5
TSC I/O hysteresis control register (TSC_IOHCR) . . . . . . . . . . . . . . . 704
23.6.6
TSC I/O analog switch control register (TSC_IOASCR) . . . . . . . . . . . 705
23.6.7
TSC I/O sampling control register (TSC_IOSCR) . . . . . . . . . . . . . . . . 705
23.6.8
TSC I/O channel control register (TSC_IOCCRTSC_IOCCR) . . . . . . . 706
23.6.9
TSC I/O group control status register (TSC_IOGCSR) . . . . . . . . . . . . 706
23.6.10 TSC I/O group x counter register (TSC_IOGxCR) (x = 1..8) . . . . . . . . 707
23.6.11 TSC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
24
Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
24.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
24.2
RNG main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
24.3
RNG functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
24.4
25
20/1693
24.3.1
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711
24.3.2
Error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711
RNG registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
24.4.1
RNG control register (RNG_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
24.4.2
RNG status register (RNG_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
24.4.3
RNG data register (RNG_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713
24.4.4
RNG register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714
Advanced encryption standard hardware accelerator (AES) . . . . . . 715
25.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715
25.2
AES main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715
DocID024597 Rev 3
RM0351
Contents
25.3
AES functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716
25.4
Encryption and derivation keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717
25.5
AES chaining algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718
25.5.1
Electronic codebook (ECB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718
25.5.2
Cipher block chaining (CBC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
25.5.3
Counter Mode (CTR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723
25.6
Galois counter mode (GCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724
25.7
AES cipher message authentication code mode (CMAC) . . . . . . . . . . . 727
25.8
Data type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
25.9
Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
25.9.1
Mode 1: encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
25.9.2
Mode 2: key derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
25.9.3
Mode 3: decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
25.9.4
Mode 4: key derivation and decryption . . . . . . . . . . . . . . . . . . . . . . . . 733
25.10 AES DMA interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734
25.11 Error flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735
25.12 Processing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
25.13 AES interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737
25.14 AES registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738
25.14.1 AES control register (AES_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738
25.14.2 AES status register (AES_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740
25.14.3 AES data input register (AES_DINR) . . . . . . . . . . . . . . . . . . . . . . . . . 742
25.14.4 AES data output register (AES_DOUTR) . . . . . . . . . . . . . . . . . . . . . . 742
25.14.5 AES key register 0 (AES_KEYR0) (LSB: key [31:0]) . . . . . . . . . . . . . . 743
25.14.6 AES key register 1 (AES_KEYR1) (key[63:32]) . . . . . . . . . . . . . . . . . . 743
25.14.7 AES key register 2 (AES_KEYR2) (key [95:64]) . . . . . . . . . . . . . . . . . 744
25.14.8 AES key register 3 (AES_KEYR3) (MSB: key[127:96]) . . . . . . . . . . . . 744
25.14.9 AES initialization vector register 0 (AES_IVR0) (LSB: IVR[31:0]) . . . . 744
25.14.10 AES initialization vector register 1 (AES_IVR1) (IVR[63:32]) . . . . . . . 745
25.14.11 AES initialization vector register 2 (AES_IVR2) (IVR[95:64]) . . . . . . . 746
25.14.12 AES initialization vector register 3 (AES_IVR3) (MSB: IVR[127:96]) . 746
25.14.13 AES key register 4 (AES_KEYR4) (key[159:128]) . . . . . . . . . . . . . . . . 746
25.14.14 AES key register 5 (AES_KEYR5) (key[191:160]) . . . . . . . . . . . . . . . . 747
25.14.15 AES key register 6 (AES_KEYR6) (key[223:192]) . . . . . . . . . . . . . . . . 747
25.14.16 AES key register 7 (AES_KEYR7) (MSB: key[255:224]) . . . . . . . . . . . 747
25.14.17 AES Suspend registers (AES_SUSPxR) (x = 0..7) . . . . . . . . . . . . . . . 749
DocID024597 Rev 3
21/1693
43
Contents
RM0351
25.14.18 AES register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749
26
Advanced-control timers (TIM1/TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 752
26.1
TIM1/TIM8 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752
26.2
TIM1/TIM8 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752
26.3
TIM1/TIM8 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754
26.3.1
Time-base unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754
26.3.2
Counter modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756
26.3.3
Repetition counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
26.3.4
External trigger input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
26.3.5
Clock selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771
26.3.6
Capture/compare channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
26.3.7
Input capture mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778
26.3.8
PWM input mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779
26.3.9
Forced output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779
26.3.10 Output compare mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
26.3.11 PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
26.3.12 Asymmetric PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784
26.3.13 Combined PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785
26.3.14 Combined 3-phase PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786
26.3.15 Complementary outputs and dead-time insertion . . . . . . . . . . . . . . . . 787
26.3.16 Using the break function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
26.3.17 Bidirectional break inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
26.3.18 Clearing the OCxREF signal on an external event . . . . . . . . . . . . . . . 795
26.3.19 6-step PWM generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797
26.3.20 One-pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798
26.3.21 Retriggerable one pulse mode (OPM) . . . . . . . . . . . . . . . . . . . . . . . . . 799
26.3.22 Encoder interface mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800
26.3.23 UIF bit remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802
26.3.24 Timer input XOR function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803
26.3.25 Interfacing with Hall sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803
26.3.26 Timer synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806
26.3.27 ADC synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810
26.3.28 DMA burst mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810
26.3.29 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
26.4
TIM1/TIM8 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812
26.4.1
22/1693
TIM1/TIM8 control register 1 (TIMx_CR1) . . . . . . . . . . . . . . . . . . . . . . 812
DocID024597 Rev 3
RM0351
Contents
26.4.2
TIM1/TIM8 control register 2 (TIMx_CR2) . . . . . . . . . . . . . . . . . . . . . . 813
26.4.3
TIM1/TIM8 slave mode control register (TIMx_SMCR) . . . . . . . . . . . . 816
26.4.4
TIM1/TIM8 DMA/interrupt enable register (TIMx_DIER) . . . . . . . . . . . 819
26.4.5
TIM1/TIM8 status register (TIMx_SR) . . . . . . . . . . . . . . . . . . . . . . . . . 820
26.4.6
TIM1/TIM8 event generation register (TIMx_EGR) . . . . . . . . . . . . . . . 822
26.4.7
TIM1/TIM8 capture/compare mode register 1 (TIMx_CCMR1) . . . . . . 823
26.4.8
TIM1/TIM8 capture/compare mode register 2 (TIMx_CCMR2) . . . . . . 828
26.4.9
TIM1/TIM8 capture/compare enable register (TIMx_CCER) . . . . . . . . 829
26.4.10 TIM1/TIM8 counter (TIMx_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833
26.4.11 TIM1/TIM8 prescaler (TIMx_PSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833
26.4.12 TIM1/TIM8 auto-reload register (TIMx_ARR) . . . . . . . . . . . . . . . . . . . 833
26.4.13 TIM1/TIM8 repetition counter register (TIMx_RCR) . . . . . . . . . . . . . . 834
26.4.14 TIM1/TIM8 capture/compare register 1 (TIMx_CCR1) . . . . . . . . . . . . 834
26.4.15 TIM1/TIM8 capture/compare register 2 (TIMx_CCR2) . . . . . . . . . . . . 835
26.4.16 TIM1/TIM8 capture/compare register 3 (TIMx_CCR3) . . . . . . . . . . . . 835
26.4.17 TIM1/TIM8 capture/compare register 4 (TIMx_CCR4) . . . . . . . . . . . . 836
26.4.18 TIM1/TIM8 break and dead-time register (TIMx_BDTR) . . . . . . . . . . . 836
26.4.19 TIM1/TIM8 DMA control register (TIMx_DCR) . . . . . . . . . . . . . . . . . . 840
26.4.20 TIM1/TIM8 DMA address for full transfer (TIMx_DMAR) . . . . . . . . . . . 841
26.4.21 TIM1 option register 1 (TIM1_OR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 841
26.4.22 TIM8 option register 1 (TIM8_OR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 842
26.4.23 TIM1/TIM8 capture/compare mode register 3 (TIMx_CCMR3) . . . . . . 843
26.4.24 TIM1/TIM8 capture/compare register 5 (TIMx_CCR5) . . . . . . . . . . . . 843
26.4.25 TIM1/TIM8 capture/compare register 6 (TIMx_CCR6) . . . . . . . . . . . . 845
26.4.26 TIM1 option register 2 (TIM1_OR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 845
26.4.27 TIM1 option register 3 (TIM1_OR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 847
26.4.28 TIM8 option register 2 (TIM8_OR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 848
26.4.29 TIM8 option register 3 (TIM8_OR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 850
26.4.30 TIM1 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851
26.4.31 TIM8 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854
27
General-purpose timers (TIM2/TIM3/TIM4/TIM5) . . . . . . . . . . . . . . . . . 857
27.1
TIM2/TIM3/TIM4/TIM5 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857
27.2
TIM2/TIM3/TIM4/TIM5 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . 857
27.3
TIM2/TIM3/TIM4/TIM5 functional description . . . . . . . . . . . . . . . . . . . . . 859
27.3.1
Time-base unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859
27.3.2
Counter modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861
DocID024597 Rev 3
23/1693
43
Contents
RM0351
27.3.3
Clock selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871
27.3.4
Capture/compare channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875
27.3.5
Input capture mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877
27.3.6
PWM input mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879
27.3.7
Forced output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880
27.3.8
Output compare mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880
27.3.9
PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881
27.3.10 Asymmetric PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885
27.3.11 Combined PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885
27.3.12 Clearing the OCxREF signal on an external event . . . . . . . . . . . . . . . 886
27.3.13 One-pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888
27.3.14 Retriggerable one pulse mode (OPM) . . . . . . . . . . . . . . . . . . . . . . . . . 889
27.3.15 Encoder interface mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 890
27.3.16 UIF bit remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892
27.3.17 Timer input XOR function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892
27.3.18 Timers and external trigger synchronization . . . . . . . . . . . . . . . . . . . . 893
27.3.19 Timer synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896
27.3.20 DMA burst mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900
27.3.21 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901
27.4
TIM2/TIM3/TIM4/TIM5 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902
27.4.1
TIMx control register 1 (TIMx_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . 902
27.4.2
TIMx control register 2 (TIMx_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . 904
27.4.3
TIMx slave mode control register (TIMx_SMCR) . . . . . . . . . . . . . . . . . 905
27.4.4
TIMx DMA/Interrupt enable register (TIMx_DIER) . . . . . . . . . . . . . . . . 909
27.4.5
TIMx status register (TIMx_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910
27.4.6
TIMx event generation register (TIMx_EGR) . . . . . . . . . . . . . . . . . . . . 912
27.4.7
TIMx capture/compare mode register 1 (TIMx_CCMR1) . . . . . . . . . . . 913
27.4.8
TIMx capture/compare mode register 2 (TIMx_CCMR2) . . . . . . . . . . . 917
27.4.9
TIMx capture/compare enable register (TIMx_CCER) . . . . . . . . . . . . . 918
27.4.10 TIMx counter (TIMx_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920
27.4.11 TIMx prescaler (TIMx_PSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921
27.4.12 TIMx auto-reload register (TIMx_ARR) . . . . . . . . . . . . . . . . . . . . . . . . 921
27.4.13 TIMx capture/compare register 1 (TIMx_CCR1) . . . . . . . . . . . . . . . . . 921
27.4.14 TIMx capture/compare register 2 (TIMx_CCR2) . . . . . . . . . . . . . . . . . 922
27.4.15 TIMx capture/compare register 3 (TIMx_CCR3) . . . . . . . . . . . . . . . . . 922
27.4.16 TIMx capture/compare register 4 (TIMx_CCR4) . . . . . . . . . . . . . . . . . 923
27.4.17 TIMx DMA control register (TIMx_DCR) . . . . . . . . . . . . . . . . . . . . . . . 924
24/1693
DocID024597 Rev 3
RM0351
Contents
27.4.18 TIMx DMA address for full transfer (TIMx_DMAR) . . . . . . . . . . . . . . . 924
27.4.19 TIM2 option register 1 (TIM2_OR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 925
27.4.20 TIM3 option register 1 (TIM3_OR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 925
27.4.21 TIM2 option register 2 (TIM2_OR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 925
27.4.22 TIM3 option register 2 (TIM3_OR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 926
27.4.23 TIMx register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927
28
General-purpose timers (TIM15/16/17) . . . . . . . . . . . . . . . . . . . . . . . . 930
28.1
TIM15/16/17 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930
28.2
TIM15 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930
28.3
TIM16 and TIM17 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931
28.4
TIM15/16/17 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934
28.4.1
Time-base unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934
28.4.2
Counter modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936
28.4.3
Repetition counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940
28.4.4
Clock selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941
28.4.5
Capture/compare channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943
28.4.6
Input capture mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946
28.4.7
PWM input mode (only for TIM15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947
28.4.8
Forced output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948
28.4.9
Output compare mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948
28.4.10 PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949
28.4.11 Combined PWM mode (TIM15 only) . . . . . . . . . . . . . . . . . . . . . . . . . . 950
28.4.12 Complementary outputs and dead-time insertion . . . . . . . . . . . . . . . . 952
28.4.13 Using the break function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954
28.4.14 One-pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958
28.4.15 UIF bit remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 959
28.4.16 Timer input XOR function (TIM15 only) . . . . . . . . . . . . . . . . . . . . . . . . 960
28.4.17 External trigger synchronization (TIM15 only) . . . . . . . . . . . . . . . . . . . 961
28.4.18 Slave mode: Combined reset + trigger mode . . . . . . . . . . . . . . . . . . . 963
28.4.19 DMA burst mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963
28.4.20 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 964
28.5
TIM15 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965
28.5.1
TIM15 control register 1 (TIM15_CR1) . . . . . . . . . . . . . . . . . . . . . . . . 965
28.5.2
TIM15 control register 2 (TIM15_CR2) . . . . . . . . . . . . . . . . . . . . . . . . 966
28.5.3
TIM15 slave mode control register (TIM15_SMCR) . . . . . . . . . . . . . . 968
28.5.4
TIM15 DMA/interrupt enable register (TIM15_DIER) . . . . . . . . . . . . . 969
DocID024597 Rev 3
25/1693
43
Contents
RM0351
28.5.5
TIM15 status register (TIM15_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 970
28.5.6
TIM15 event generation register (TIM15_EGR) . . . . . . . . . . . . . . . . . 972
28.5.7
TIM15 capture/compare mode register 1 (TIM15_CCMR1) . . . . . . . . 973
28.5.8
TIM15 capture/compare enable register (TIM15_CCER) . . . . . . . . . . 976
28.5.9
TIM15 counter (TIM15_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979
28.5.10 TIM15 prescaler (TIM15_PSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979
28.5.11 TIM15 auto-reload register (TIM15_ARR) . . . . . . . . . . . . . . . . . . . . . . 979
28.5.12 TIM15 repetition counter register (TIM15_RCR) . . . . . . . . . . . . . . . . . 980
28.5.13 TIM15 capture/compare register 1 (TIM15_CCR1) . . . . . . . . . . . . . . . 980
28.5.14 TIM15 capture/compare register 2 (TIM15_CCR2) . . . . . . . . . . . . . . . 981
28.5.15 TIM15 break and dead-time register (TIM15_BDTR) . . . . . . . . . . . . . 981
28.5.16 TIM15 DMA control register (TIM15_DCR) . . . . . . . . . . . . . . . . . . . . . 983
28.5.17 TIM15 DMA address for full transfer (TIM15_DMAR) . . . . . . . . . . . . . 983
28.5.18 TIM15 option register 1 (TIM15_OR1) . . . . . . . . . . . . . . . . . . . . . . . . . 984
28.5.19 TIM15 option register 2 (TIM15_OR2) . . . . . . . . . . . . . . . . . . . . . . . . . 984
28.5.20 TIM15 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 986
28.6
TIM16&TIM17 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989
28.6.1
TIM16&TIM17 control register 1 (TIMx_CR1) . . . . . . . . . . . . . . . . . . . 989
28.6.2
TIM16&TIM17 control register 2 (TIMx_CR2) . . . . . . . . . . . . . . . . . . . 990
28.6.3
TIM16&TIM17 DMA/interrupt enable register (TIMx_DIER) . . . . . . . . 991
28.6.4
TIM16&TIM17 status register (TIMx_SR) . . . . . . . . . . . . . . . . . . . . . . 992
28.6.5
TIM16&TIM17 event generation register (TIMx_EGR) . . . . . . . . . . . . 993
28.6.6
TIM16&TIM17 capture/compare mode register 1 (TIMx_CCMR1) . . . 994
28.6.7
TIM16&TIM17 capture/compare enable register (TIMx_CCER) . . . . . 996
28.6.8
TIM16&TIM17 counter (TIMx_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . . 998
28.6.9
TIM16&TIM17 prescaler (TIMx_PSC) . . . . . . . . . . . . . . . . . . . . . . . . . 999
28.6.10 TIM16&TIM17 auto-reload register (TIMx_ARR) . . . . . . . . . . . . . . . . . 999
28.6.11 TIM16&TIM17 repetition counter register (TIMx_RCR) . . . . . . . . . . . 1000
28.6.12 TIM16&TIM17 capture/compare register 1 (TIMx_CCR1) . . . . . . . . . 1000
28.6.13 TIM16&TIM17 break and dead-time register (TIMx_BDTR) . . . . . . . 1001
28.6.14 TIM16&TIM17 DMA control register (TIMx_DCR) . . . . . . . . . . . . . . . 1003
28.6.15 TIM16&TIM17 DMA address for full transfer (TIMx_DMAR) . . . . . . . 1003
28.6.16 TIM16 option register 1 (TIM16_OR1) . . . . . . . . . . . . . . . . . . . . . . . . 1003
28.6.17 TIM16 option register 2 (TIM16_OR2) . . . . . . . . . . . . . . . . . . . . . . . . 1004
28.6.18 TIM17 option register 1 (TIM17_OR1) . . . . . . . . . . . . . . . . . . . . . . . . 1005
28.6.19 TIM17 option register 2 (TIM17_OR2) . . . . . . . . . . . . . . . . . . . . . . . . 1006
28.6.20 TIM16&TIM17 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008
26/1693
DocID024597 Rev 3
RM0351
29
Contents
Basic timers (TIM6/TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010
29.1
TIM6/TIM7 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010
29.2
TIM6/TIM7 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010
29.3
TIM6/TIM7 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1011
29.4
30
29.3.1
Time-base unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1011
29.3.2
Counting mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013
29.3.3
UIF bit remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016
29.3.4
Clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016
29.3.5
Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017
TIM6/TIM7 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017
29.4.1
TIM6/TIM7 control register 1 (TIMx_CR1) . . . . . . . . . . . . . . . . . . . . . 1017
29.4.2
TIM6/TIM7 control register 2 (TIMx_CR2) . . . . . . . . . . . . . . . . . . . . . 1019
29.4.3
TIM6/TIM7 DMA/Interrupt enable register (TIMx_DIER) . . . . . . . . . . 1019
29.4.4
TIM6/TIM7 status register (TIMx_SR) . . . . . . . . . . . . . . . . . . . . . . . . 1020
29.4.5
TIM6/TIM7 event generation register (TIMx_EGR) . . . . . . . . . . . . . . 1020
29.4.6
TIM6/TIM7 counter (TIMx_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020
29.4.7
TIM6/TIM7 prescaler (TIMx_PSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021
29.4.8
TIM6/TIM7 auto-reload register (TIMx_ARR) . . . . . . . . . . . . . . . . . . 1021
29.4.9
TIM6/TIM7 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022
Low-power timer (LPTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023
30.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023
30.2
LPTIM main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023
30.3
LPTIM implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023
30.4
LPTIM functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024
30.4.1
LPTIM block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024
30.4.2
LPTIM reset and clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024
30.4.3
Glitch filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025
30.4.4
Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026
30.4.5
Trigger multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026
30.4.6
Operating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027
30.4.7
Timeout function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028
30.4.8
Waveform generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029
30.4.9
Register update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030
30.4.10 Counter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031
30.4.11 Timer enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031
DocID024597 Rev 3
27/1693
43
Contents
RM0351
30.4.12 Encoder mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031
30.5
LPTIM low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033
30.6
LPTIM interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034
30.7
LPTIM registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035
30.7.1
LPTIM interrupt and status register (LPTIMx_ISR) . . . . . . . . . . . . . . 1035
30.7.2
LPTIM interrupt clear register (LPTIMx_ICR) . . . . . . . . . . . . . . . . . . 1036
30.7.3
LPTIM interrupt enable register (LPTIMx_IER) . . . . . . . . . . . . . . . . . 1037
30.7.4
LPTIM configuration register (LPTIMx_CFGR) . . . . . . . . . . . . . . . . . 1038
30.7.5
LPTIM control register (LPTIMx_CR) . . . . . . . . . . . . . . . . . . . . . . . . 1041
30.7.6
LPTIM compare register (LPTIMx_CMP) . . . . . . . . . . . . . . . . . . . . . . 1042
30.7.7
LPTIM autoreload register (LPTIMx_ARR) . . . . . . . . . . . . . . . . . . . . 1042
30.7.8
LPTIM counter register (LPTIMx_CNT) . . . . . . . . . . . . . . . . . . . . . . . 1043
30.7.9
LPTIM1 option register (LPTIM1_OR) . . . . . . . . . . . . . . . . . . . . . . . . 1043
30.7.10 LPTIM2 option register (LPTIM2_OR) . . . . . . . . . . . . . . . . . . . . . . . . 1043
30.7.11 LPTIM register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045
31
Infrared interface (IRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046
32
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047
32.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047
32.2
IWDG main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047
32.3
IWDG functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047
32.4
28/1693
32.3.1
IWDG block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047
32.3.2
Window option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1048
32.3.3
Hardware watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1048
32.3.4
Low-power freeze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049
32.3.5
Behavior in Stop and Standby modes . . . . . . . . . . . . . . . . . . . . . . . . 1049
32.3.6
Register access protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049
32.3.7
Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049
IWDG registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1050
32.4.1
Key register (IWDG_KR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1050
32.4.2
Prescaler register (IWDG_PR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051
32.4.3
Reload register (IWDG_RLR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052
32.4.4
Status register (IWDG_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1053
32.4.5
Window register (IWDG_WINR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054
32.4.6
IWDG register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055
DocID024597 Rev 3
RM0351
33
Contents
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . 1056
33.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056
33.2
WWDG main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056
33.3
WWDG functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056
33.4
34
33.3.1
Enabling the watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057
33.3.2
Controlling the downcounter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057
33.3.3
Advanced watchdog interrupt feature . . . . . . . . . . . . . . . . . . . . . . . . 1057
33.3.4
How to program the watchdog timeout . . . . . . . . . . . . . . . . . . . . . . . 1058
33.3.5
Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1059
WWDG registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1060
33.4.1
Control register (WWDG_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1060
33.4.2
Configuration register (WWDG_CFR) . . . . . . . . . . . . . . . . . . . . . . . . 1061
33.4.3
Status register (WWDG_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061
33.4.4
WWDG register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062
Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063
34.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063
34.2
RTC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064
34.3
RTC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065
34.3.1
RTC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065
34.3.2
GPIOs controlled by the RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066
34.3.3
Clock and prescalers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067
34.3.4
Real-time clock and calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068
34.3.5
Programmable alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069
34.3.6
Periodic auto-wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069
34.3.7
RTC initialization and configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 1070
34.3.8
Reading the calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071
34.3.9
Resetting the RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072
34.3.10 RTC synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073
34.3.11 RTC reference clock detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073
34.3.12 RTC smooth digital calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074
34.3.13 Time-stamp function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076
34.3.14 Tamper detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077
34.3.15 Calibration clock output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079
34.3.16 Alarm output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079
34.4
RTC low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079
DocID024597 Rev 3
29/1693
43
Contents
RM0351
34.5
RTC interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1080
34.6
RTC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081
34.6.1
RTC time register (RTC_TR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081
34.6.2
RTC date register (RTC_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082
34.6.3
RTC control register (RTC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083
34.6.4
RTC initialization and status register (RTC_ISR) . . . . . . . . . . . . . . . . 1086
34.6.5
RTC prescaler register (RTC_PRER) . . . . . . . . . . . . . . . . . . . . . . . . 1089
34.6.6
RTC wakeup timer register (RTC_WUTR) . . . . . . . . . . . . . . . . . . . . . 1090
34.6.7
RTC alarm A register (RTC_ALRMAR) . . . . . . . . . . . . . . . . . . . . . . . 1091
34.6.8
RTC alarm B register (RTC_ALRMBR) . . . . . . . . . . . . . . . . . . . . . . . 1092
34.6.9
RTC write protection register (RTC_WPR) . . . . . . . . . . . . . . . . . . . . 1093
34.6.10 RTC sub second register (RTC_SSR) . . . . . . . . . . . . . . . . . . . . . . . . 1093
34.6.11 RTC shift control register (RTC_SHIFTR) . . . . . . . . . . . . . . . . . . . . . 1094
34.6.12 RTC timestamp time register (RTC_TSTR) . . . . . . . . . . . . . . . . . . . . 1095
34.6.13 RTC timestamp date register (RTC_TSDR) . . . . . . . . . . . . . . . . . . . 1096
34.6.14 RTC time-stamp sub second register (RTC_TSSSR) . . . . . . . . . . . . 1097
34.6.15 RTC calibration register (RTC_CALR) . . . . . . . . . . . . . . . . . . . . . . . . 1098
34.6.16 RTC tamper configuration register (RTC_TAMPCR) . . . . . . . . . . . . . 1099
34.6.17 RTC alarm A sub second register (RTC_ALRMASSR) . . . . . . . . . . . 1102
34.6.18 RTC alarm B sub second register (RTC_ALRMBSSR) . . . . . . . . . . . 1103
34.6.19 RTC option register (RTC_OR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104
34.6.20 RTC backup registers (RTC_BKPxR) . . . . . . . . . . . . . . . . . . . . . . . . 1104
34.6.21 RTC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105
35
30/1693
Inter-integrated circuit (I2C) interface . . . . . . . . . . . . . . . . . . . . . . . . 1107
35.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1107
35.2
I2C main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1107
35.3
I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1108
35.4
I2C functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1108
35.4.1
I2C block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109
35.4.2
I2C clock requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110
35.4.3
Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110
35.4.4
I2C initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1112
35.4.5
Software reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116
35.4.6
Data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117
35.4.7
I2C slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1119
DocID024597 Rev 3
RM0351
Contents
35.4.8
I2C master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1128
35.4.9
I2C_TIMINGR register configuration examples . . . . . . . . . . . . . . . . . 1140
35.4.10 SMBus specific features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1141
35.4.11 SMBus initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1144
35.4.12 SMBus: I2C_TIMEOUTR register configuration examples . . . . . . . . 1146
35.4.13 SMBus slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147
35.4.14 Wakeup from Stop mode on address match . . . . . . . . . . . . . . . . . . . 1155
35.4.15 Error conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1155
35.4.16 DMA requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1157
35.4.17 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1158
35.5
I2C low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1158
35.6
I2C interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1158
35.7
I2C registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1160
35.7.1
Control register 1 (I2C_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1160
35.7.2
Control register 2 (I2C_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1164
35.7.3
Own address 1 register (I2C_OAR1) . . . . . . . . . . . . . . . . . . . . . . . . . 1167
35.7.4
Own address 2 register (I2C_OAR2) . . . . . . . . . . . . . . . . . . . . . . . . . 1168
35.7.5
Timing register (I2C_TIMINGR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1169
35.7.6
Timeout register (I2C_TIMEOUTR) . . . . . . . . . . . . . . . . . . . . . . . . . . 1170
35.7.7
Interrupt and status register (I2C_ISR) . . . . . . . . . . . . . . . . . . . . . . . 1171
35.7.8
Interrupt clear register (I2C_ICR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1173
35.7.9
PEC register (I2C_PECR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1174
35.7.10 Receive data register (I2C_RXDR) . . . . . . . . . . . . . . . . . . . . . . . . . . 1175
35.7.11 Transmit data register (I2C_TXDR) . . . . . . . . . . . . . . . . . . . . . . . . . . 1175
35.7.12 I2C register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1176
36
Universal synchronous asynchronous receiver
transmitter (USART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1178
36.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1178
36.2
USART main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1178
36.3
USART extended features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1179
36.4
USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1180
36.5
USART functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1180
36.5.1
USART character description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1183
36.5.2
USART transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1185
36.5.3
USART receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187
DocID024597 Rev 3
31/1693
43
Contents
RM0351
36.5.4
USART baud rate generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1194
36.5.5
Tolerance of the USART receiver to clock deviation . . . . . . . . . . . . . 1196
36.5.6
USART auto baud rate detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1197
36.5.7
Multiprocessor communication using USART . . . . . . . . . . . . . . . . . . 1198
36.5.8
Modbus communication using USART . . . . . . . . . . . . . . . . . . . . . . . 1200
36.5.9
USART parity control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1201
36.5.10 USART LIN (local interconnection network) mode . . . . . . . . . . . . . . 1202
36.5.11 USART synchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1204
36.5.12 USART single-wire half-duplex communication . . . . . . . . . . . . . . . . . 1207
36.5.13 USART smartcard mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207
36.5.14 USART IrDA SIR ENDEC block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1212
36.5.15 USART continuous communication in DMA mode . . . . . . . . . . . . . . 1214
36.5.16 RS232 hardware flow control and RS485 driver enable
using USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216
36.5.17 Wakeup from Stop mode using USART . . . . . . . . . . . . . . . . . . . . . . . 1218
36.6
USART low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1220
36.7
USART interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1220
36.8
USART registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1222
36.8.1
Control register 1 (USARTx_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1222
36.8.2
Control register 2 (USARTx_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1225
36.8.3
Control register 3 (USARTx_CR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1229
36.8.4
Baud rate register (USARTx_BRR) . . . . . . . . . . . . . . . . . . . . . . . . . . 1233
36.8.5
Guard time and prescaler register (USARTx_GTPR) . . . . . . . . . . . . 1233
36.8.6
Receiver timeout register (USARTx_RTOR) . . . . . . . . . . . . . . . . . . . 1234
36.8.7
Request register (USARTx_RQR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235
36.8.8
Interrupt and status register (USARTx_ISR) . . . . . . . . . . . . . . . . . . . 1236
36.8.9
Interrupt flag clear register (USARTx_ICR) . . . . . . . . . . . . . . . . . . . . 1241
36.8.10 Receive data register (USARTx_RDR) . . . . . . . . . . . . . . . . . . . . . . . 1242
36.8.11 Transmit data register (USARTx_TDR) . . . . . . . . . . . . . . . . . . . . . . . 1242
36.8.12 USART register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1243
37
32/1693
Low-power universal asynchronous receiver
transmitter (LPUART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1245
37.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1245
37.2
LPUART main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246
37.3
LPUART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246
37.4
LPUART functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1247
DocID024597 Rev 3
RM0351
Contents
37.4.1
LPUART character description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1248
37.4.2
LPUART transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251
37.4.3
LPUART receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1253
37.4.4
LPUART baud rate generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256
37.4.5
Multiprocessor communication using LPUART . . . . . . . . . . . . . . . . . 1257
37.4.6
LPUART parity control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259
37.4.7
Single-wire half-duplex communication using LPUART . . . . . . . . . . . 1260
37.4.8
Continuous communication in DMA mode using LPUART . . . . . . . . 1260
37.4.9
RS232 Hardware flow control and RS485 Driver Enable
using LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1263
37.4.10 Wakeup from Stop mode using LPUART . . . . . . . . . . . . . . . . . . . . . . 1265
37.5
LPUART low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1265
37.6
LPUART interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1266
37.7
LPUART registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1268
37.7.1
Control register 1 (LPUART_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1268
37.7.2
Control register 2 (LPUART_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1271
37.7.3
Control register 3 (LPUART_CR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1273
37.7.4
Baud rate register (LPUART_BRR) . . . . . . . . . . . . . . . . . . . . . . . . . . 1275
37.7.5
Request register (LPUART_RQR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1275
37.7.6
Interrupt & status register (LPUART_ISR) . . . . . . . . . . . . . . . . . . . . . 1276
37.7.7
Interrupt flag clear register (LPUART_ICR) . . . . . . . . . . . . . . . . . . . . 1279
37.7.8
Receive data register (LPUART_RDR) . . . . . . . . . . . . . . . . . . . . . . . 1280
37.7.9
Transmit data register (LPUART_TDR) . . . . . . . . . . . . . . . . . . . . . . . 1280
37.7.10 LPUART register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1282
38
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1283
38.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1283
38.2
SPI main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1283
38.3
SPI implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1283
38.4
SPI functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1284
38.4.1
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1284
38.4.2
Communications between one master and one slave . . . . . . . . . . . . 1285
38.4.3
Standard multi-slave communication . . . . . . . . . . . . . . . . . . . . . . . . . 1287
38.4.4
Multi-master communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1288
38.4.5
Slave select (NSS) pin management . . . . . . . . . . . . . . . . . . . . . . . . . 1289
38.4.6
Communication formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1290
38.4.7
Configuration of SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292
DocID024597 Rev 3
33/1693
43
Contents
RM0351
38.4.8
Procedure for enabling SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1293
38.4.9
Data transmission and reception procedures . . . . . . . . . . . . . . . . . . 1293
38.4.10 SPI status flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1303
38.4.11 SPI error flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1304
38.4.12 NSS pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1305
38.4.13 TI mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1305
38.4.14 CRC calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1306
39
38.5
SPI interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1308
38.6
SPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1309
38.6.1
SPI control register 1 (SPIx_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1309
38.6.2
SPI control register 2 (SPIx_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1311
38.6.3
SPI status register (SPIx_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1314
38.6.4
SPI data register (SPIx_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1315
38.6.5
SPI CRC polynomial register (SPIx_CRCPR) . . . . . . . . . . . . . . . . . . 1315
38.6.6
SPI Rx CRC register (SPIx_RXCRCR) . . . . . . . . . . . . . . . . . . . . . . . 1316
38.6.7
SPI Tx CRC register (SPIx_TXCRCR) . . . . . . . . . . . . . . . . . . . . . . . 1316
38.6.8
SPI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1317
Serial audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1318
39.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1318
39.2
SAI main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319
39.3
SAI functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1320
39.3.1
SAI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1320
39.3.2
Main SAI modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1321
39.3.3
SAI synchronization mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1322
39.3.4
Audio data size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1323
39.3.5
Frame synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1323
39.3.6
Slot configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1326
39.3.7
SAI clock generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1328
39.3.8
Internal FIFOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1330
39.3.9
AC’97 link controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1332
39.3.10 SPDIF output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1334
39.3.11 Specific features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1336
39.3.12 Error flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1341
39.3.13 Disabling the SAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1344
39.3.14 SAI DMA interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1344
34/1693
DocID024597 Rev 3
RM0351
Contents
39.4
SAI interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1345
39.5
SAI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1346
39.5.1
Global configuration register (SAI_GCR) . . . . . . . . . . . . . . . . . . . . . . 1346
39.5.2
Configuration register 1 (SAI_ACR1 / SAI_BCR1) . . . . . . . . . . . . . . 1346
39.5.3
Configuration register 2 (SAI_ACR2 / SAI_BCR2) . . . . . . . . . . . . . . 1350
39.5.4
Frame configuration register (SAI_AFRCR / SAI_BFRCR) . . . . . . . . 1352
39.5.5
Slot register (SAI_ASLOTR / SAI_BSLOTR) . . . . . . . . . . . . . . . . . . . 1354
39.5.6
Interrupt mask register 2 (SAI_AIM / SAI_BIM) . . . . . . . . . . . . . . . . . 1356
39.5.7
Status register (SAI_ASR / SAI_BSR) . . . . . . . . . . . . . . . . . . . . . . . . 1358
39.5.8
Clear flag register (SAI_ACLRFR / SAI_BCLRFR) . . . . . . . . . . . . . . 1360
39.5.9
Data register (SAI_ADR / SAI_BDR) . . . . . . . . . . . . . . . . . . . . . . . . . 1361
39.5.10 SAI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1361
40
Single Wire Protocol Master Interface (SWPMI) . . . . . . . . . . . . . . . . 1363
40.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1363
40.2
SWPMI main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1364
40.3
SWPMI functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1365
40.3.1
SWPMI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1365
40.3.2
SWP initialization and activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1365
40.3.3
SWP bus states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1365
40.3.4
SWPMI_IO (internal transceiver) bypass . . . . . . . . . . . . . . . . . . . . . . 1367
40.3.5
SWPMI Bit rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1367
40.3.6
SWPMI frame handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1367
40.3.7
Transmission procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1368
40.3.8
Reception procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1372
40.3.9
Error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1377
40.3.10 Loopback mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1379
40.4
SWPMI low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1379
40.5
SWPMI interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1379
40.6
SWPMI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1381
40.6.1
SWPMI Configuration/Control register (SWPMI_CR) . . . . . . . . . . . . 1381
40.6.2
SWPMI Bitrate register (SWPMI_BRR) . . . . . . . . . . . . . . . . . . . . . . . 1383
40.6.3
SWPMI Interrupt and Status register (SWPMI_ISR) . . . . . . . . . . . . . 1384
40.6.4
SWPMI Interrupt Flag Clear register (SWPMI_ICR) . . . . . . . . . . . . . 1386
40.6.5
SWPMI Interrupt Enable register (SMPMI_IER) . . . . . . . . . . . . . . . . 1387
40.6.6
SWPMI Receive Frame Length register (SWPMI_RFL) . . . . . . . . . . 1388
DocID024597 Rev 3
35/1693
43
Contents
RM0351
40.6.7
SWPMI Transmit data register (SWPMI_TDR) . . . . . . . . . . . . . . . . . 1389
40.6.8
SWPMI Receive data register (SWPMI_RDR) . . . . . . . . . . . . . . . . . 1390
40.6.9
SWPMI Option register (SWPMI_OR) . . . . . . . . . . . . . . . . . . . . . . . . 1391
40.6.10 SWPMI register map and reset value table . . . . . . . . . . . . . . . . . . . . 1392
41
SD/SDIO/MMC card host interface (SDMMC) . . . . . . . . . . . . . . . . . . 1393
41.1
SDMMC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1393
41.2
SDMMC bus topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1393
41.3
SDMMC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1395
41.4
41.3.1
SDMMC adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1397
41.3.2
SDMMC APB2 interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1408
Card functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1409
41.4.1
Card identification mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1409
41.4.2
Card reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1409
41.4.3
Operating voltage range validation . . . . . . . . . . . . . . . . . . . . . . . . . . 1410
41.4.4
Card identification process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1410
41.4.5
Block write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1411
41.4.6
Block read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1412
41.4.7
Stream access, stream write and stream read
(MultiMediaCard only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1412
41.4.8
Erase: group erase and sector erase . . . . . . . . . . . . . . . . . . . . . . . . 1414
41.4.9
Wide bus selection or deselection . . . . . . . . . . . . . . . . . . . . . . . . . . . 1414
41.4.10 Protection management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1414
41.4.11 Card status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1418
41.4.12 SD status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1420
41.4.13 SD I/O mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1425
41.4.14 Commands and responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1426
41.5
41.6
36/1693
Response formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1429
41.5.1
R1 (normal response command) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1429
41.5.2
R1b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1430
41.5.3
R2 (CID, CSD register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1430
41.5.4
R3 (OCR register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1431
41.5.5
R4 (Fast I/O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1431
41.5.6
R4b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1431
41.5.7
R5 (interrupt request) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1432
41.5.8
R6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1432
SDIO I/O card-specific operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1433
DocID024597 Rev 3
RM0351
Contents
41.6.1
SDIO I/O read wait operation by SDMMC_D2 signalling . . . . . . . . . . 1433
41.6.2
SDIO read wait operation by stopping SDMMC_CK . . . . . . . . . . . . . 1434
41.6.3
SDIO suspend/resume operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1434
41.6.4
SDIO interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1434
41.7
HW flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1434
41.8
SDMMC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1435
41.8.1
SDMMC power control register (SDMMC_POWER) . . . . . . . . . . . . . 1435
41.8.2
SDMMC clock control register (SDMMC_CLKCR) . . . . . . . . . . . . . . 1435
41.8.3
SDMMC argument register (SDMMC_ARG) . . . . . . . . . . . . . . . . . . . 1437
41.8.4
SDMMC command register (SDMMC_CMD) . . . . . . . . . . . . . . . . . . 1437
41.8.5
SDMMC command response register (SDMMC_RESPCMD) . . . . . . 1438
41.8.6
SDMMC response 1..4 register (SDMMC_RESPx) . . . . . . . . . . . . . . 1438
41.8.7
SDMMC data timer register (SDMMC_DTIMER) . . . . . . . . . . . . . . . . 1439
41.8.8
SDMMC data length register (SDMMC_DLEN) . . . . . . . . . . . . . . . . . 1440
41.8.9
SDMMC data control register (SDMMC_DCTRL) . . . . . . . . . . . . . . . 1440
41.8.10 SDMMC data counter register (SDMMC_DCOUNT) . . . . . . . . . . . . . 1442
41.8.11 SDMMC status register (SDMMC_STA) . . . . . . . . . . . . . . . . . . . . . . 1442
41.8.12 SDMMC interrupt clear register (SDMMC_ICR) . . . . . . . . . . . . . . . . 1443
41.8.13 SDMMC mask register (SDMMC_MASK) . . . . . . . . . . . . . . . . . . . . . 1445
41.8.14 SDMMC FIFO counter register (SDMMC_FIFOCNT) . . . . . . . . . . . . 1447
41.8.15 SDMMC data FIFO register (SDMMC_FIFO) . . . . . . . . . . . . . . . . . . 1448
41.8.16 SDMMC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1449
42
Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1451
42.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1451
42.2
bxCAN main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1451
42.3
bxCAN general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1452
42.4
42.5
42.3.1
CAN 2.0B active core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1452
42.3.2
Control, status and configuration registers . . . . . . . . . . . . . . . . . . . . 1452
42.3.3
Tx mailboxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1452
42.3.4
Acceptance filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1453
bxCAN operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1453
42.4.1
Initialization mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1453
42.4.2
Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1453
42.4.3
Sleep mode (low-power) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1454
Test mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1455
DocID024597 Rev 3
37/1693
43
Contents
43
RM0351
Silent mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1455
42.5.2
Loop back mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1456
42.5.3
Loop back combined with silent mode . . . . . . . . . . . . . . . . . . . . . . . . 1456
42.6
Behavior in Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1457
42.7
bxCAN functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1457
42.7.1
Transmission handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1457
42.7.2
Time triggered communication mode . . . . . . . . . . . . . . . . . . . . . . . . . 1459
42.7.3
Reception handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1459
42.7.4
Identifier filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1460
42.7.5
Message storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1464
42.7.6
Error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1466
42.7.7
Bit timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1466
42.8
bxCAN interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1469
42.9
CAN registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1470
42.9.1
Register access protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1470
42.9.2
CAN control and status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1470
42.9.3
CAN mailbox registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1480
42.9.4
CAN filter registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1487
42.9.5
bxCAN register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1491
USB on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . . . . . . . . . . 1495
43.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1495
43.2
USB_OTG main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1495
43.2.1
General features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1495
43.2.2
Host-mode features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1496
43.2.3
Peripheral-mode features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1497
43.3
USB_OTG Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1497
43.4
USB OTG functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1498
43.5
43.6
38/1693
42.5.1
43.4.1
USB OTG block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1498
43.4.2
OTG core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1498
43.4.3
Full-speed OTG PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1499
OTG dual role device (DRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500
43.5.1
ID line detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500
43.5.2
HNP dual role device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500
43.5.3
SRP dual role device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1501
USB peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1501
DocID024597 Rev 3
RM0351
Contents
43.7
43.8
43.9
43.6.1
SRP-capable peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1502
43.6.2
Peripheral states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1502
43.6.3
Peripheral endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1503
USB host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1505
43.7.1
SRP-capable host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1506
43.7.2
USB host states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1506
43.7.3
Host channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1508
43.7.4
Host scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1509
SOF trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1510
43.8.1
Host SOFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1510
43.8.2
Peripheral SOFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1510
Power options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1511
43.10 Dynamic update of the OTG_HFIR register . . . . . . . . . . . . . . . . . . . . . 1512
43.11 USB data FIFOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1512
43.11.1 Peripheral FIFO architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1513
43.11.2 Host FIFO architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1514
43.11.3 FIFO RAM allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1515
43.12 OTG_FS system performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1516
43.13 OTG_FS interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1517
43.14 OTG_FS control and status registers . . . . . . . . . . . . . . . . . . . . . . . . . . 1518
43.14.1 CSR memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1518
43.15 OTG_FS registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1522
43.15.1 OTG control and status register (OTG_GOTGCTL) . . . . . . . . . . . . . 1522
43.15.2 OTG interrupt register (OTG_GOTGINT) . . . . . . . . . . . . . . . . . . . . . 1524
43.15.3 OTG AHB configuration register (OTG_GAHBCFG) . . . . . . . . . . . . . 1526
43.15.4 OTG USB configuration register (OTG_GUSBCFG) . . . . . . . . . . . . . 1526
43.15.5 OTG reset register (OTG_GRSTCTL) . . . . . . . . . . . . . . . . . . . . . . . . 1528
43.15.6 OTG core interrupt register (OTG_GINTSTS) . . . . . . . . . . . . . . . . . . 1530
43.15.7 OTG interrupt mask register (OTG_GINTMSK) . . . . . . . . . . . . . . . . . 1534
43.15.8 OTG_FS Receive status debug read/OTG status read and
pop registers (OTG_GRXSTSR/OTG_GRXSTSP) . . . . . . . . . . . . . . 1537
43.15.9 OTG Receive FIFO size register (OTG_GRXFSIZ) . . . . . . . . . . . . . . 1539
43.15.10 OTG Host non-periodic transmit FIFO size register
(OTG_HNPTXFSIZ)/Endpoint 0 Transmit FIFO size
(OTG_DIEPTXF0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1540
43.15.11 OTG non-periodic transmit FIFO/queue status register
(OTG_HNPTXSTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1541
DocID024597 Rev 3
39/1693
43
Contents
RM0351
43.15.12 OTG general core configuration register (OTG_GCCFG) . . . . . . . . . 1542
43.15.13 OTG core ID register (OTG_CID) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1543
43.15.14 OTG core LPM configuration register (OTG_GLPMCFG) . . . . . . . . . 1544
43.15.15 OTG power down register (OTG_GPWRDN) . . . . . . . . . . . . . . . . . . 1548
43.15.16 OTG ADP timer, control and status register
(OTG_GADPCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1548
43.15.17 OTG Host periodic transmit FIFO size register
(OTG_HPTXFSIZ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1550
43.15.18 OTG device IN endpoint transmit FIFO size register
(OTG_DIEPTXFx) (x = 1..5 , where x is the
FIFO_number) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1551
43.15.19 Host-mode registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1551
43.15.20 OTG Host configuration register (OTG_HCFG) . . . . . . . . . . . . . . . . . 1551
43.15.21 OTG Host frame interval register (OTG_HFIR) . . . . . . . . . . . . . . . . . 1552
43.15.22 OTG Host frame number/frame time remaining register
(OTG_HFNUM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1553
43.15.23 OTG_Host periodic transmit FIFO/queue status register
(OTG_HPTXSTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554
43.15.24 OTG Host all channels interrupt register (OTG_HAINT) . . . . . . . . . . 1555
43.15.25 OTG Host all channels interrupt mask register
(OTG_HAINTMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1555
43.15.26 OTG Host port control and status register (OTG_HPRT) . . . . . . . . . 1556
43.15.27 OTG Host channel-x characteristics register (OTG_HCCHARx)
(x = 0..11, where x = Channel_number) . . . . . . . . . . . . . . . . . . . . . . 1558
43.15.28 OTG Host channel-x interrupt register (OTG_HCINTx)
(x = 0..11, where x = Channel_number) . . . . . . . . . . . . . . . . . . . . . . 1560
43.15.29 OTG Host channel-x interrupt mask register (OTG_HCINTMSKx)
(x = 0..11, where x = Channel_number) . . . . . . . . . . . . . . . . . . . . . . 1561
43.15.30 OTG Host channel-x transfer size register (OTG_HCTSIZx)
(x = 0..11, where x = Channel_number) . . . . . . . . . . . . . . . . . . . . . . 1562
43.15.31 Device-mode registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1563
43.15.32 OTG device configuration register (OTG_DCFG) . . . . . . . . . . . . . . . 1563
43.15.33 OTG device control register (OTG_DCTL) . . . . . . . . . . . . . . . . . . . . 1564
43.15.34 OTG device status register (OTG_DSTS) . . . . . . . . . . . . . . . . . . . . . 1566
43.15.35 OTG device IN endpoint common interrupt mask register
(OTG_DIEPMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1567
43.15.36 OTG device OUT endpoint common interrupt mask register
(OTG_DOEPMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1568
43.15.37 OTG device all endpoints interrupt register (OTG_DAINT) . . . . . . . . 1568
43.15.38 OTG all endpoints interrupt mask register
(OTG_DAINTMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1569
40/1693
DocID024597 Rev 3
RM0351
Contents
43.15.39 OTG device VBUS discharge time register
(OTG_DVBUSDIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1570
43.15.40 OTG device VBUS pulsing time register
(OTG_DVBUSPULSE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1570
43.15.41 OTG device IN endpoint FIFO empty interrupt mask register
(OTG_DIEPEMPMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1571
43.15.42 OTG device control IN endpoint 0 control register
(OTG_DIEPCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1571
43.15.43 OTG device endpoint-x control register (OTG_DIEPCTLx)
(x = 1..5 , where x = Endpoint_number) . . . . . . . . . . . . . . . . . . . . . . 1573
43.15.44 OTG device control OUT endpoint 0 control register
(OTG_DOEPCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1575
43.15.45 OTG device endpoint-x control register (OTG_DOEPCTLx)
(x = 1..5 , where x = Endpoint_number) . . . . . . . . . . . . . . . . . . . . . . 1577
43.15.46 OTG device endpoint-x interrupt register (OTG_DIEPINTx)
(x = 0..5 , where x = Endpoint_number) . . . . . . . . . . . . . . . . . . . . . . 1579
43.15.47 OTG device endpoint-x interrupt register (OTG_DOEPINTx)
(x = 0..5 , where x = Endpoint_number) . . . . . . . . . . . . . . . . . . . . . . 1580
43.15.48 OTG device IN endpoint 0 transfer size register
(OTG_DIEPTSIZ0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1581
43.15.49 OTG device OUT endpoint 0 transfer size register
(OTG_DOEPTSIZ0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1582
43.15.50 OTG device IN endpoint-x transfer size register (OTG_DIEPTSIZx)
(x = 1..5 , where x= Endpoint_number) . . . . . . . . . . . . . . . . . . . . . . . 1583
43.15.51 OTG device IN endpoint transmit FIFO status register
(OTG_DTXFSTSx) (x = 0..5 , where
x = Endpoint_number) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1584
43.15.52 OTG device OUT endpoint-x transfer size register
(OTG_DOEPTSIZx) (x = 1..5 , where
x = Endpoint_number) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1584
43.15.53 OTG power and clock gating control register (OTG_PCGCCTL) . . . 1585
43.15.54 OTG_FS register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1586
43.16 OTG_FS programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1594
43.16.1 Core initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1594
43.16.2 Host initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1595
43.16.3 Device initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1595
43.16.4 Host programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1596
43.16.5
Device programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1616
43.16.6 Worst case response time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1636
43.16.7 OTG programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1638
44
Debug support (DBG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1645
DocID024597 Rev 3
41/1693
43
Contents
RM0351
44.1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1645
44.2
Reference ARM® documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1646
44.3
SWJ debug port (serial wire and JTAG) . . . . . . . . . . . . . . . . . . . . . . . . 1646
44.3.1
44.4
Mechanism to select the JTAG-DP or the SW-DP . . . . . . . . . . . . . . . 1647
Pinout and debug port pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1647
44.4.1
SWJ debug port pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1648
44.4.2
Flexible SWJ-DP pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 1648
44.4.3
Internal pull-up and pull-down on JTAG pins . . . . . . . . . . . . . . . . . . . 1649
44.4.4
Using serial wire and releasing the unused debug pins as GPIOs . . 1650
44.5
STM32L4x6 JTAG TAP connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 1650
44.6
ID codes and locking mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1651
44.6.1
MCU device ID code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1652
44.6.2
Boundary scan TAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1652
44.6.3
Cortex®-M4 TAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1652
44.6.4
Cortex®-M4 JEDEC-106 ID code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1653
44.7
JTAG debug port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1653
44.8
SW debug port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1655
44.9
44.8.1
SW protocol introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1655
44.8.2
SW protocol sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1655
44.8.3
SW-DP state machine (reset, idle states, ID code) . . . . . . . . . . . . . . 1656
44.8.4
DP and AP read/write accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1656
44.8.5
SW-DP registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1657
44.8.6
SW-AP registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1658
AHB-AP (AHB access port) - valid for both JTAG-DP
and SW-DP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1658
44.10 Core debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1659
44.11 Capability of the debugger host to connect under system reset . . . . . 1659
44.12 FPB (Flash patch breakpoint) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1660
44.13 DWT (data watchpoint trigger) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1660
44.14 ITM (instrumentation trace macrocell) . . . . . . . . . . . . . . . . . . . . . . . . . 1661
44.14.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1661
44.14.2 Time stamp packets, synchronization and overflow packets . . . . . . . 1661
44.15 ETM (Embedded trace macrocell) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1663
44.15.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1663
44.15.2 Signal protocol, packet types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1663
44.15.3 Main ETM registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1663
42/1693
DocID024597 Rev 3
RM0351
Contents
44.15.4 Configuration example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1664
44.16 MCU debug component (DBGMCU) . . . . . . . . . . . . . . . . . . . . . . . . . . 1664
44.16.1 Debug support for low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . 1664
44.16.2 Debug support for timers, RTC, watchdog, bxCAN and I2C . . . . . . . 1665
44.16.3 Debug MCU configuration register (DBGMCU_CR) . . . . . . . . . . . . . 1665
44.16.4 Debug MCU APB1 freeze register1(DBGMCU_APB1FZR1) . . . . . . 1667
44.16.5 Debug MCU APB1 freeze register 2 (DBGMCU_APB1FZR2) . . . . . 1669
44.16.6 Debug MCU APB2 freeze register (DBGMCU_APB2FZR) . . . . . . . . 1670
44.17 TPIU (trace port interface unit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1671
44.17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1671
44.17.2 TRACE pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1671
44.17.3 TPUI formatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1673
44.17.4 TPUI frame synchronization packets . . . . . . . . . . . . . . . . . . . . . . . . . 1674
44.17.5 Transmission of the synchronization frame packet . . . . . . . . . . . . . . 1674
44.17.6 Synchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1674
44.17.7 Asynchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1675
44.17.8 TRACECLKIN connection inside the STM32L4x6 . . . . . . . . . . . . . . . 1675
44.17.9 TPIU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1676
44.17.10 Example of configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1677
44.18 DBG register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1678
45
46
Device electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1679
45.1
Unique device ID register (96 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1679
45.2
Flash size data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1680
45.3
Package data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1681
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1688
DocID024597 Rev 3
43/1693
43
List of tables
RM0351
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
44/1693
STM32L4x6 memory map and peripheral register boundary addresses . . . . . . . . . . . . . . 67
SRAM2 organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Boot modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Memory mapping versus boot mode/physical remap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Flash module - 1 MB dual bank organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Flash module - 512 KB dual bank organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Flash module - 256 KB dual bank organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Number of wait states according to CPU clock (HCLK) frequency . . . . . . . . . . . . . . . . . . . 82
Option byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Option byte organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Flash memory read protection status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Access status versus protection level and execution modes . . . . . . . . . . . . . . . . . . . . . . 102
Flash interrupt request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Flash interface - register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Segment accesses according to the Firewall state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Segment granularity and area ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Firewall register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
PVM features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Low-power mode summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Low-power run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Sleep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Low-power sleep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Standby mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
PWR register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Clock source frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
RCC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Port bit configuration table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
GPIO register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
SYSCFG register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
STM32L4x6 peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Programmable data width & endian behavior (when bits PINC = MINC = 1) . . . . . . . . . . 299
DMA interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Summary of the DMA1 requests for each channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Summary of the DMA2 requests for each channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
DMA register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
STM32L4x6 vector table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
EXTI lines connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Extended interrupt/event controller register map and reset values. . . . . . . . . . . . . . . . . . 336
CRC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
NOR/PSRAM bank selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
NOR/PSRAM External memory address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
NAND memory mapping and timing registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
DocID024597 Rev 3
RM0351
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
List of tables
NAND bank selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
Programmable NOR/PSRAM access parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Non-multiplexed I/O NOR Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
16-bit multiplexed I/O NOR Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Non-multiplexed I/Os PSRAM/SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
16-Bit multiplexed I/O PSRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
NOR Flash/PSRAM: example of supported memories and transactions . . . . . . . . . . . . . 352
FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
FMC_BWTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
FMC_BWTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
FMC_BWTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
FMC_BWTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Programmable NAND Flash access parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
8-bit NAND Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
16-bit NAND Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Supported memories and transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
ECC result relevant bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
FMC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
QUADSPI interrupt requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
QUADSPI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
ADC internal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
ADC pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
Configuring the trigger polarity for regular external triggers . . . . . . . . . . . . . . . . . . . . . . . 448
Configuring the trigger polarity for injected external triggers . . . . . . . . . . . . . . . . . . . . . . 448
ADC1, ADC2 and ADC3 - External triggers for regular channels . . . . . . . . . . . . . . . . . . . 449
ADC1, ADC2 and ADC3 - External trigger for injected channels . . . . . . . . . . . . . . . . . . . 450
TSAR timings depending on resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Offset computation versus data resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
Analog watchdog channel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
Analog watchdog 1 comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
Analog watchdog 2 and 3 comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
Maximum output results versus N and M (gray cells indicate truncation). . . . . . . . . . . . . 479
Oversampler operating modes summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
ADC interrupts per each ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
DELAY bits versus ADC resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
ADC global register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
ADC register map and reset values for each ADC (offset=0x000
DocID024597 Rev 3
45/1693
49
List of tables
RM0351
for master ADC, 0x100 for slave ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
Table 101. ADC register map and reset values (master and slave ADC
common registers) offset =0x300) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
Table 102. DAC pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
Table 103. Sample and refresh timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
Table 104. Channel output modes summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
Table 105. Effect of low-power modes on DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
Table 106. DAC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
Table 107. VREFBUF buffer modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
Table 108. VREFBUF register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
Table 109. COMP1 input plus assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
Table 110. COMP1 input minus assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
Table 111. COMP2 input plus assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
Table 112. COMP2 input minus assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
Table 113. Comparator behavior in the low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
Table 114. Interrupt control bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
Table 115. COMP register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
Table 116. Operational amplifier possible connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
Table 117. Operating modes and calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
Table 118. Effect of low-power modes on the OPAMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
Table 119. OPAMP register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
Table 120. DFSDM external pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
Table 121. DFSDM internal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
Table 122. DFSDM triggers connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
Table 123. Filter maximum output resolution (peak data values from filter output)
for some FOSR values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
Table 124. Integrator maximum output resolution (peak data values from integrator
output) for some IOSR values and FOSR = 256 and Sinc3 filter type (largest data) . . . . 620
Table 125. DFSDM interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
Table 126. DFSDM register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648
Table 127. DFSDMx register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
Table 128. Example of frame rate calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
Table 129. Blink frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
Table 130. Remapping capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
Table 131. LCD behavior in low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679
Table 132. LCD interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679
Table 133. LCD register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689
Table 134. Acquisition sequence summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694
Table 135. Spread spectrum deviation versus AHB clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . 696
Table 136. I/O state depending on its mode and IODEF bit value . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
Table 137. Effect of low-power modes on TSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699
Table 138. Interrupt control bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699
Table 139. TSC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
Table 140. RNG register map and reset map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714
Table 141. Processing time (in clock cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
Table 142. Processing time (in clock cycle) for ECB, CBC and CTR . . . . . . . . . . . . . . . . . . . . . . . . . 736
Table 143. Processing time (in clock cycle) for GCM and CMAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
Table 144. AES interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737
Table 145. AES register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749
Table 146. Behavior of timer outputs versus BRK/BRK2 inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794
Table 147. Counting direction versus encoder signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801
Table 148. TIMx internal trigger connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818
46/1693
DocID024597 Rev 3
RM0351
Table 149.
Table 150.
Table 151.
Table 152.
Table 153.
Table 154.
Table 155.
Table 156.
Table 157.
Table 158.
Table 159.
Table 160.
Table 161.
Table 162.
Table 163.
Table 164.
Table 165.
Table 166.
Table 167.
Table 168.
Table 169.
Table 170.
Table 171.
Table 172.
Table 173.
Table 174.
Table 175.
Table 176.
Table 177.
Table 178.
Table 179.
Table 180.
Table 181.
Table 182.
Table 183.
Table 184.
Table 185.
Table 186.
Table 187.
Table 188.
Table 189.
Table 190.
Table 191.
Table 192.
Table 193.
Table 194.
Table 195.
Table 196.
Table 197.
List of tables
Output control bits for complementary OCx and OCxN channels with break feature . . . . 832
TIM1 register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851
TIM8 register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854
Counting direction versus encoder signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 891
TIMx internal trigger connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907
Output control bit for standard OCx channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920
TIM2/TIM3/TIM4/TIM5 register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . 927
TIMx Internal trigger connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 969
Output control bits for complementary OCx and OCxN channels with break feature . . . . 978
TIM15 register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 986
Output control bits for complementary OCx and OCxN channels with break feature . . . . 998
TIM16&TIM17 register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008
TIM6/TIM7 register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022
STM32L4xx LPTIM features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023
Prescaler division ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026
Encoder counting scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032
Effect of low-power modes on the LPTIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033
LPTIM external trigger connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040
LPTIM register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045
IWDG register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055
WWDG register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062
RTC pin PC13 configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066
RTC_OUT mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067
Effect of low-power modes on RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079
Interrupt control bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081
RTC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105
STM32L4x6 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1108
Comparison of analog vs. digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1112
I2C-SMBUS specification data setup and hold times . . . . . . . . . . . . . . . . . . . . . . . . . . . 1115
I2C configuration table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1119
I2C-SMBUS specification clock timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129
Examples of timings settings for fI2CCLK = 8 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1140
Examples of timings settings for fI2CCLK = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . 1140
Examples of timings settings for fI2CCLK = 48 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . 1141
SMBus timeout specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1143
SMBUS with PEC configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
Examples of TIMEOUTA settings for various I2CCLK frequencies
(max tTIMEOUT = 25 ms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146
Examples of TIMEOUTB settings for various I2CCLK frequencies . . . . . . . . . . . . . . . . 1147
Examples of TIMEOUTA settings for various I2CCLK frequencies
(max tIDLE = 50 µs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147
Effect of low-power modes on the I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1158
I2C Interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1159
I2C register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1176
STM32L4x6 USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1180
Noise detection from sampled data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1192
Error calculation for programmed baud rates at fCK = 72MHz in both cases of
oversampling by 16 or by 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195
Tolerance of the USART receiver when BRR [3:0] = 0000. . . . . . . . . . . . . . . . . . . . . . . 1196
Tolerance of the USART receiver when BRR [3:0] is different from 0000 . . . . . . . . . . . 1197
Frame formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1201
Effect of low-power modes on the USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1220
DocID024597 Rev 3
47/1693
49
List of tables
Table 198.
Table 199.
Table 200.
Table 201.
Table 202.
Table 203.
Table 204.
Table 205.
Table 206.
Table 207.
Table 208.
Table 209.
Table 210.
Table 211.
Table 212.
Table 213.
Table 214.
Table 215.
Table 216.
Table 217.
Table 218.
Table 219.
Table 220.
Table 221.
Table 222.
Table 223.
Table 224.
Table 225.
Table 226.
Table 227.
Table 228.
Table 229.
Table 230.
Table 231.
Table 232.
Table 233.
Table 234.
Table 235.
Table 236.
Table 237.
Table 238.
Table 239.
Table 240.
Table 241.
Table 242.
Table 243.
Table 244.
Table 245.
Table 246.
Table 247.
Table 248.
Table 249.
48/1693
RM0351
USART interrupt requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1220
USART register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1243
Error calculation for programmed baudrates at fck = 32,768 KHz . . . . . . . . . . . . . . . . . 1257
Frame formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259
Effect of low-power modes on the LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1265
LPUART interrupt requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1266
LPUART register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1282
STM32L4x6 SPI implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1284
SPI interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1308
SPI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1317
External Synchronization Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1323
Example of possible audio frequency sampling range . . . . . . . . . . . . . . . . . . . . . . . . . . 1329
SOPD pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335
Parity bit calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335
Audio sampling frequency versus symbol rates (SHARK) . . . . . . . . . . . . . . . . . . . . . . . 1336
SAI interrupt sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1345
SAI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1361
Effect of low-power modes on SWPMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1379
Interrupt control bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1380
Buffer modes selection for transmission/reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1382
swpmi register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1392
SDMMC I/O definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1396
Command format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1401
Short response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1402
Long response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1402
Command path status flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1402
Data token format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1405
DPSM flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1406
Transmit FIFO status flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1407
Receive FIFO status flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1407
Card status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1418
SD status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1421
Speed class code field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1422
Performance move field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1422
AU_SIZE field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1423
Maximum AU size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1423
Erase size field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1424
Erase timeout field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1424
Erase offset field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1424
Block-oriented write commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1427
Block-oriented write protection commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1427
Erase commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1428
I/O mode commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1428
Lock card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1428
Application-specific commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1429
R1 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1429
R2 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1430
R3 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1431
R4 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1431
R4b response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1431
R5 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1432
R6 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1433
DocID024597 Rev 3
RM0351
Table 250.
Table 251.
Table 252.
Table 253.
Table 254.
Table 255.
Table 256.
Table 257.
Table 258.
Table 259.
Table 260.
Table 261.
Table 262.
Table 263.
Table 264.
Table 265.
Table 266.
Table 267.
Table 268.
Table 269.
Table 270.
Table 271.
Table 272.
Table 273.
Table 274.
Table 275.
Table 276.
Table 277.
Table 278.
Table 279.
Table 280.
Table 281.
List of tables
Response type and SDMMC_RESPx registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1439
SDMMC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1449
Transmit mailbox mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1465
Receive mailbox mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1465
bxCAN register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1491
USB_OTG Implementation for STM32L4xx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1497
Core global control and status registers (CSRs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1518
Host-mode control and status registers (CSRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519
Device-mode control and status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1520
Data FIFO (DFIFO) access register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1522
Power and clock gating control and status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 1522
TRDT values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1528
Minimum duration for soft disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1565
OTG_FS register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1586
SWJ debug port pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1648
Flexible SWJ-DP pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1648
JTAG debug port data registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1653
32-bit debug port registers addressed through the shifted value A[3:2] . . . . . . . . . . . . . 1654
Packet request (8-bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1655
ACK response (3 bits). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1656
DATA transfer (33 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1656
SW-DP registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1657
Cortex®-M4 AHB-AP registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1658
Core debug registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1659
Main ITM registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1661
Main ETM registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1663
Asynchronous TRACE pin assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1671
Synchronous TRACE pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1672
Flexible TRACE pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1672
Important TPIU registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1676
DBG register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1678
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1688
DocID024597 Rev 3
49/1693
49
List of figures
RM0351
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
50/1693
System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Sequential 16 bits instructions execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Changing the Read protection (RDP) level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
STM32L4x6 firewall connection schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Firewall functional states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Brown-out reset waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
PVD thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Low-power modes possible transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Simplified diagram of the reset circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
HSE/ LSE clock sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Frequency measurement with TIM15 in capture mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Frequency measurement with TIM16 in capture mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Frequency measurement with TIM17 in capture mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Basic structure of an I/O port bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Basic structure of a five-volt tolerant I/O port bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Input floating/pull up/pull down configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Alternate function configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
High impedance-analog configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
DMA block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
DMA1 request mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
DMA2 request mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Configurable interrupt/event block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
External interrupt/event GPIO mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
CRC calculation unit block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
FMC block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
FMC memory banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Mode1 read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Mode1 write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
ModeA read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
ModeA write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Mode2 and mode B read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Mode2 write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
ModeB write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
ModeC read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
ModeC write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
ModeD read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
ModeD write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Muxed read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Muxed write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Asynchronous wait during a read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Asynchronous wait during a write access waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Wait configuration waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Synchronous multiplexed read mode waveforms - NOR, PSRAM (CRAM) . . . . . . . . . . . 374
Synchronous multiplexed write mode waveforms - PSRAM (CRAM). . . . . . . . . . . . . . . . 376
DocID024597 Rev 3
RM0351
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.
List of figures
NAND Flash controller waveforms for common memory access . . . . . . . . . . . . . . . . . . . 389
Access to non ‘CE don’t care’ NAND-Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
QUADSPI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
An example of a read command in quad mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
An example of a DDR command in quad mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
nCS when CKMODE = 0 (T = CLK period). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
nCS when CKMODE = 1 in SDR mode (T = CLK period) . . . . . . . . . . . . . . . . . . . . . . . . 412
nCS when CKMODE = 1 in DDR mode (T = CLK period) . . . . . . . . . . . . . . . . . . . . . . . . 412
nCS when CKMODE = 1 with an abort (T = CLK period) . . . . . . . . . . . . . . . . . . . . . . . . . 412
ADC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
ADC clock scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
ADC1 connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
ADC2 connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
ADC3 connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
ADC calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
Updating the ADC calibration factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Mixing single-ended and differential channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Enabling / Disabling the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
Analog to digital conversion time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
Stopping ongoing regular conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
Stopping ongoing regular and injected conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
Triggers are shared between ADC master and ADC slave . . . . . . . . . . . . . . . . . . . . . . . 449
Injected conversion latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
Example of JSQR queue of context (sequence change) . . . . . . . . . . . . . . . . . . . . . . . . . 455
Example of JSQR queue of context (trigger change) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Example of JSQR queue of context with overflow before conversion . . . . . . . . . . . . . . . 456
Example of JSQR queue of context with overflow during conversion . . . . . . . . . . . . . . . 456
Example of JSQR queue of context with empty queue (case JQM=0). . . . . . . . . . . . . . . 457
Example of JSQR queue of context with empty queue (case JQM=1). . . . . . . . . . . . . . . 457
Flushing JSQR queue of context by setting JADSTP=1 (JQM=0).
Case when JADSTP occurs during an ongoing conversion. . . . . . . . . . . . . . . . . . . . . . . 458
Flushing JSQR queue of context by setting JADSTP=1 (JQM=0).
Case when JADSTP occurs during an ongoing conversion and a new
trigger occurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
Flushing JSQR queue of context by setting JADSTP=1 (JQM=0).
Case when JADSTP occurs outside an ongoing conversion . . . . . . . . . . . . . . . . . . . . . . 459
Flushing JSQR queue of context by setting JADSTP=1 (JQM=1) . . . . . . . . . . . . . . . . . . 459
Flushing JSQR queue of context by setting ADDIS=1 (JQM=0). . . . . . . . . . . . . . . . . . . . 460
Flushing JSQR queue of context by setting ADDIS=1 (JQM=1). . . . . . . . . . . . . . . . . . . . 460
Single conversions of a sequence, software trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
Continuous conversion of a sequence, software trigger . . . . . . . . . . . . . . . . . . . . . . . . . . 462
Single conversions of a sequence, hardware trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
Continuous conversions of a sequence, hardware trigger . . . . . . . . . . . . . . . . . . . . . . . . 463
Right alignment (offset disabled, unsigned value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
Right alignment (offset enabled, signed value). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
Left alignment (offset disabled, unsigned value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
Left alignment (offset enabled, signed value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
Example of overrun (OVR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
AUTODLY=1, regular conversion in continuous mode, software trigger . . . . . . . . . . . . . 470
AUTODLY=1, regular HW conversions interrupted by injected conversions
(DISCEN=0; JDISCEN=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
AUTODLY=1, regular HW conversions interrupted by injected conversions . . . . . . . . . . . . .
DocID024597 Rev 3
51/1693
60
List of figures
Figure 96.
Figure 97.
Figure 98.
Figure 99.
Figure 100.
Figure 101.
Figure 102.
Figure 103.
Figure 104.
Figure 105.
Figure 106.
Figure 107.
Figure 108.
Figure 109.
Figure 110.
Figure 111.
Figure 112.
Figure 113.
Figure 114.
Figure 115.
Figure 116.
Figure 117.
Figure 118.
Figure 119.
Figure 120.
Figure 121.
Figure 122.
Figure 123.
Figure 124.
Figure 125.
Figure 126.
Figure 127.
Figure 128.
Figure 129.
Figure 130.
Figure 131.
Figure 132.
Figure 133.
Figure 134.
Figure 135.
Figure 136.
Figure 137.
Figure 138.
Figure 139.
Figure 140.
Figure 141.
Figure 142.
Figure 143.
Figure 144.
52/1693
RM0351
(DISCEN=1, JDISCEN=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
AUTODLY=1, regular continuous conversions interrupted by injected conversions . . . . 473
AUTODLY=1 in auto- injected mode (JAUTO=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
Analog watchdog’s guarded area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
ADCy_AWDx_OUT signal generation (on all regular channels). . . . . . . . . . . . . . . . . . . . 476
ADCy_AWDx_OUT signal generation (AWDx flag not cleared by SW) . . . . . . . . . . . . . . 477
ADCy_AWDx_OUT signal generation (on a single regular channel) . . . . . . . . . . . . . . . . 477
ADCy_AWDx_OUT signal generation (on all injected channels) . . . . . . . . . . . . . . . . . . . 477
20-bit to 16-bit result truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
Numerical example with 5-bits shift and rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
Triggered regular oversampling mode (TROVS bit = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 480
Regular oversampling modes (4x ratio) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Regular and injected oversampling modes used simultaneously . . . . . . . . . . . . . . . . . . . 482
Triggered regular oversampling with injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
Oversampling in auto-injected mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
Dual ADC block diagram(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
Injected simultaneous mode on 4 channels: dual ADC mode . . . . . . . . . . . . . . . . . . . . . 486
Regular simultaneous mode on 16 channels: dual ADC mode . . . . . . . . . . . . . . . . . . . . 488
Interleaved mode on 1 channel in continuous conversion mode: dual ADC mode. . . . . . 490
Interleaved mode on 1 channel in single conversion mode: dual ADC mode. . . . . . . . . . 490
Interleaved conversion with injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
Alternate trigger: injected group of each ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
Alternate trigger: 4 injected channels (each ADC) in discontinuous mode . . . . . . . . . . . . 493
Alternate + regular simultaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
Case of trigger occurring during injected conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
Interleaved single channel CH0 with injected sequence CH11, CH12 . . . . . . . . . . . . . . . 495
Two Interleaved channels (CH1, CH2) with injected sequence CH11, CH12
- case 1: Master interrupted first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
Two Interleaved channels (CH1, CH2) with injected sequence CH11, CH12
- case 2: Slave interrupted first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
DMA Requests in regular simultaneous mode when MDMA=0b00 . . . . . . . . . . . . . . . . . 496
DMA requests in regular simultaneous mode when MDMA=0b10 . . . . . . . . . . . . . . . . . . 497
DMA requests in interleaved mode when MDMA=0b10 . . . . . . . . . . . . . . . . . . . . . . . . . . 497
Temperature sensor channel block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
VBAT channel block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
VREFINT channel block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
DAC channel block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
Data registers in single DAC channel mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
Data registers in dual DAC channel mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
Timing diagram for conversion with trigger disabled TEN = 0 . . . . . . . . . . . . . . . . . . . . . 545
DAC LFSR register calculation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
DAC conversion (SW trigger enabled) with LFSR wave generation. . . . . . . . . . . . . . . . . 547
DAC triangle wave generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
DAC conversion (SW trigger enabled) with triangle wave generation . . . . . . . . . . . . . . . 548
DAC sample and hold mode phases diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
Comparators block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
Window mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
Comparator hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Comparator output blanking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Standalone mode: external gain setting mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
Follower configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
PGA mode, internal gain setting (x2/x4/x8/x16), inverting input not used . . . . . . . . . . . . 593
DocID024597 Rev 3
RM0351
List of figures
Figure 145. PGA mode, internal gain setting (x2/x4/x8/x16), inverting input used for
filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
Figure 146. Single DFSDM block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
Figure 147. Channel transceiver timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
Figure 148. Clock absence timing diagram for SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
Figure 149. Clock absence timing diagram for Manchester coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
Figure 150. First conversion for Manchester coding (Manchester synchronization) . . . . . . . . . . . . . . 614
Figure 151. DFSDM_CHDATINyR registers operation modes and assignment . . . . . . . . . . . . . . . . . 618
Figure 152. Example: Sinc3 filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
Figure 153. LCD controller block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
Figure 154. 1/3 bias, 1/4 duty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
Figure 155. Static duty case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663
Figure 156. Static duty case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
Figure 157. 1/2 duty, 1/2 bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
Figure 158. 1/3 duty, 1/3 bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666
Figure 159. 1/4 duty, 1/3 bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667
Figure 160. 1/8 duty, 1/4 bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668
Figure 161. VLCD pin for 1/2 1/3 1/4 bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
Figure 162. Deadtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
Figure 163. SEG/COM mux feature example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
Figure 164. Flowchart example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
Figure 165. TSC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692
Figure 166. Surface charge transfer analog I/O group structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
Figure 167. Sampling capacitor voltage variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694
Figure 168. Charge transfer acquisition sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
Figure 169. Spread spectrum variation principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696
Figure 170. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
Figure 171. AES block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716
Figure 172. ECB encryption mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718
Figure 173. ECB decryption mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
Figure 174. CBC mode encryption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
Figure 175. CBC mode decryption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
Figure 176. Example of suspend mode management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722
Figure 177. CTR mode encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723
Figure 178. CTR mode decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723
Figure 179. 32-bit counter + nonce organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724
Figure 180. 128-bit block construction according to the data type. . . . . . . . . . . . . . . . . . . . . . . . . . . . 730
Figure 181. 128-bit block construction according to the data type (continued) . . . . . . . . . . . . . . . . . . 731
Figure 182. Mode 1: encryption with 128-bit key length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
Figure 183. Mode 2: key derivation with 128-bit key length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
Figure 184. Mode 3: decryption with 128-bit key length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
Figure 185. Mode 4: key derivation and decryption with 128-bit key length . . . . . . . . . . . . . . . . . . . . 734
Figure 186. DMA requests and data transfers during Input phase (AES_IN) . . . . . . . . . . . . . . . . . . . 735
Figure 187. DMA requests during Output phase (AES_OUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735
Figure 188. Advanced-control timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
Figure 189. Counter timing diagram with prescaler division change from 1 to 2 . . . . . . . . . . . . . . . . . 755
Figure 190. Counter timing diagram with prescaler division change from 1 to 4 . . . . . . . . . . . . . . . . . 755
Figure 191. Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757
Figure 192. Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757
Figure 193. Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758
Figure 194. Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758
Figure 195. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) . . . . . 759
DocID024597 Rev 3
53/1693
60
List of figures
Figure 196.
Figure 197.
Figure 198.
Figure 199.
Figure 200.
Figure 201.
Figure 202.
Figure 203.
Figure 204.
Figure 205.
Figure 206.
Figure 207.
Figure 208.
Figure 209.
Figure 210.
Figure 211.
Figure 212.
Figure 213.
Figure 214.
Figure 215.
Figure 216.
Figure 217.
Figure 218.
Figure 219.
Figure 220.
Figure 221.
Figure 222.
Figure 223.
Figure 224.
Figure 225.
Figure 226.
Figure 227.
Figure 228.
Figure 229.
Figure 230.
Figure 231.
Figure 232.
Figure 233.
Figure 234.
Figure 235.
Figure 236.
Figure 237.
Figure 238.
Figure 239.
Figure 240.
Figure 241.
Figure 242.
Figure 243.
Figure 244.
Figure 245.
Figure 246.
Figure 247.
54/1693
RM0351
Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) . . . . . . . . 759
Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
Counter timing diagram, update event when repetition counter is not used . . . . . . . . . . . 763
Counter timing diagram, internal clock divided by 1, TIMx_ARR = 0x6 . . . . . . . . . . . . . . 764
Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765
Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 . . . . . . . . . . . . . . 765
Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766
Counter timing diagram, update event with ARPE=1 (counter underflow) . . . . . . . . . . . . 766
Counter timing diagram, Update event with ARPE=1 (counter overflow) . . . . . . . . . . . . . 767
Update rate examples depending on mode and TIMx_RCR register settings . . . . . . . . . 768
External trigger input block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
TIM1 ETR input circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
TIM8 ETR input circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
Control circuit in normal mode, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . 771
TI2 external clock connection example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772
Control circuit in external clock mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
External trigger input block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
Control circuit in external clock mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774
Capture/compare channel (example: channel 1 input stage) . . . . . . . . . . . . . . . . . . . . . . 775
Capture/compare channel 1 main circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776
Output stage of capture/compare channel (channel 1, idem ch. 2 and 3) . . . . . . . . . . . . 776
Output stage of capture/compare channel (channel 4). . . . . . . . . . . . . . . . . . . . . . . . . . . 777
Output stage of capture/compare channel (channel 5, idem ch. 6) . . . . . . . . . . . . . . . . . 777
PWM input mode timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779
Output compare mode, toggle on OC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
Edge-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782
Center-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783
Generation of 2 phase-shifted PWM signals with 50% duty cycle . . . . . . . . . . . . . . . . . . 785
Combined PWM mode on channel 1 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786
3-phase combined PWM signals with multiple trigger pulses per period . . . . . . . . . . . . . 787
Complementary output with dead-time insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788
Dead-time waveforms with delay greater than the negative pulse . . . . . . . . . . . . . . . . . . 788
Dead-time waveforms with delay greater than the positive pulse. . . . . . . . . . . . . . . . . . . 789
Break and Break2 circuitry overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
Various output behavior in response to a break event on BRK (OSSI = 1) . . . . . . . . . . . 793
PWM output state following BRK and BRK2 pins assertion (OSSI=1) . . . . . . . . . . . . . . . 794
PWM output state following BRK assertion (OSSI=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
Output redirection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
Clearing TIMx OCxREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796
6-step generation, COM example (OSSR=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797
Example of one pulse mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798
Retriggerable one pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800
Example of counter operation in encoder interface mode. . . . . . . . . . . . . . . . . . . . . . . . . 801
Example of encoder interface mode with TI1FP1 polarity inverted. . . . . . . . . . . . . . . . . . 802
Measuring time interval between edges on 3 signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803
Example of Hall sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805
Control circuit in reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806
Control circuit in Gated mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807
Control circuit in trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808
DocID024597 Rev 3
RM0351
Figure 248.
Figure 249.
Figure 250.
Figure 251.
Figure 252.
Figure 253.
Figure 254.
Figure 255.
Figure 256.
Figure 257.
Figure 258.
Figure 259.
Figure 260.
Figure 261.
Figure 262.
Figure 263.
Figure 264.
Figure 265.
Figure 266.
Figure 267.
Figure 268.
Figure 269.
Figure 270.
Figure 271.
Figure 272.
Figure 273.
Figure 274.
Figure 275.
Figure 276.
Figure 277.
Figure 278.
Figure 279.
Figure 280.
Figure 281.
Figure 282.
Figure 283.
Figure 284.
Figure 285.
Figure 286.
Figure 287.
Figure 288.
Figure 289.
Figure 290.
Figure 291.
Figure 292.
Figure 293.
Figure 294.
Figure 295.
Figure 296.
Figure 297.
Figure 298.
List of figures
Control circuit in external clock mode 2 + trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . 809
General-purpose timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 858
Counter timing diagram with prescaler division change from 1 to 2 . . . . . . . . . . . . . . . . . 860
Counter timing diagram with prescaler division change from 1 to 4 . . . . . . . . . . . . . . . . . 860
Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861
Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862
Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862
Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863
Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not preloaded). . . . . 863
Counter timing diagram, Update event when ARPE=1 (TIMx_ARR preloaded). . . . . . . . 864
Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865
Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865
Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866
Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866
Counter timing diagram, Update event when repetition counter
is not used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867
Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6 . . . . . . . . . . . . . . . 868
Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869
Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 . . . . . . . . . . . . . . 869
Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 870
Counter timing diagram, Update event with ARPE=1 (counter underflow). . . . . . . . . . . . 870
Counter timing diagram, Update event with ARPE=1 (counter overflow) . . . . . . . . . . . . . 871
Control circuit in normal mode, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . 872
TI2 external clock connection example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872
Control circuit in external clock mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873
External trigger input block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874
Control circuit in external clock mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875
Capture/compare channel (example: channel 1 input stage) . . . . . . . . . . . . . . . . . . . . . . 876
Capture/compare channel 1 main circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876
Output stage of capture/compare channel (channel 1). . . . . . . . . . . . . . . . . . . . . . . . . . . 877
PWM input mode timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879
Output compare mode, toggle on OC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881
Edge-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882
Center-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884
Generation of 2 phase-shifted PWM signals with 50% duty cycle . . . . . . . . . . . . . . . . . . 885
Combined PWM mode on channels 1 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886
Clearing TIMx OCxREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887
Example of one-pulse mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888
Retriggerable one pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 890
Example of counter operation in encoder interface mode . . . . . . . . . . . . . . . . . . . . . . . . 891
Example of encoder interface mode with TI1FP1 polarity inverted . . . . . . . . . . . . . . . . . 892
Control circuit in reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893
Control circuit in gated mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894
Control circuit in trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895
Control circuit in external clock mode 2 + trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . 896
Master/Slave timer example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896
Gating TIM2 with OC1REF of TIM3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897
Gating TIM2 with Enable of TIM3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898
Triggering TIM2 with update of TIM3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899
Triggering TIM2 with Enable of TIM3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899
Triggering TIM3 and TIM2 with TIM3 TI1 input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900
TIM15 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 932
DocID024597 Rev 3
55/1693
60
List of figures
Figure 299.
Figure 300.
Figure 301.
Figure 302.
Figure 303.
Figure 304.
Figure 305.
Figure 306.
Figure 307.
Figure 308.
Figure 309.
Figure 310.
Figure 311.
Figure 312.
Figure 313.
Figure 314.
Figure 315.
Figure 316.
Figure 317.
Figure 318.
Figure 319.
Figure 320.
Figure 321.
Figure 322.
Figure 323.
Figure 324.
Figure 325.
Figure 326.
Figure 327.
Figure 328.
Figure 329.
Figure 330.
Figure 331.
Figure 332.
Figure 333.
Figure 334.
Figure 335.
Figure 336.
Figure 337.
Figure 338.
Figure 339.
Figure 340.
Figure 341.
Figure 342.
Figure 343.
Figure 344.
Figure 345.
56/1693
RM0351
TIM16 and TIM17 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933
Counter timing diagram with prescaler division change from 1 to 2 . . . . . . . . . . . . . . . . . 935
Counter timing diagram with prescaler division change from 1 to 4 . . . . . . . . . . . . . . . . . 935
Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937
Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937
Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938
Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938
Counter timing diagram, update event when ARPE=0 (TIMx_ARR not
preloaded). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939
Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939
Update rate examples depending on mode and TIMx_RCR register settings . . . . . . . . . 941
Control circuit in normal mode, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . 942
TI2 external clock connection example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942
Control circuit in external clock mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943
Capture/compare channel (example: channel 1 input stage) . . . . . . . . . . . . . . . . . . . . . . 944
Capture/compare channel 1 main circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944
Output stage of capture/compare channel (channel 1). . . . . . . . . . . . . . . . . . . . . . . . . . . 945
Output stage of capture/compare channel (channel 2 for TIM15) . . . . . . . . . . . . . . . . . . 945
PWM input mode timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947
Output compare mode, toggle on OC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949
Edge-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 950
Combined PWM mode on channel 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951
Complementary output with dead-time insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952
Dead-time waveforms with delay greater than the negative pulse. . . . . . . . . . . . . . . . . . 953
Dead-time waveforms with delay greater than the positive pulse. . . . . . . . . . . . . . . . . . . 953
Break circuitry overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955
Output behavior in response to a break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957
Example of one pulse mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958
Measuring time interval between edges on 2 signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 960
Control circuit in reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961
Control circuit in gated mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 962
Control circuit in trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963
Basic timer block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010
Counter timing diagram with prescaler division change from 1 to 2 . . . . . . . . . . . . . . . . 1012
Counter timing diagram with prescaler division change from 1 to 4 . . . . . . . . . . . . . . . . 1012
Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013
Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014
Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014
Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015
Counter timing diagram, update event when ARPE = 0 (TIMx_ARR not
preloaded). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015
Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016
Control circuit in normal mode, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . 1017
Low-power timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024
Glitch filter timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025
LPTIM output waveform, Single counting mode configuration . . . . . . . . . . . . . . . . . . . . 1027
LPTIM output waveform, Single counting mode configuration
and Set-once mode activated (WAVE bit is set) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027
LPTIM output waveform, Continuous counting mode configuration . . . . . . . . . . . . . . . . 1028
Waveform generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030
DocID024597 Rev 3
RM0351
Figure 346.
Figure 347.
Figure 348.
Figure 349.
Figure 350.
Figure 351.
Figure 352.
Figure 353.
Figure 354.
Figure 355.
Figure 356.
Figure 357.
Figure 358.
Figure 359.
Figure 360.
Figure 361.
Figure 362.
Figure 363.
Figure 364.
Figure 365.
Figure 366.
Figure 367.
Figure 368.
Figure 369.
Figure 370.
Figure 371.
Figure 372.
Figure 373.
Figure 374.
Figure 375.
Figure 376.
Figure 377.
Figure 378.
Figure 379.
Figure 380.
Figure 381.
Figure 382.
Figure 383.
Figure 384.
Figure 385.
Figure 386.
Figure 387.
Figure 388.
Figure 389.
Figure 390.
Figure 391.
Figure 392.
Figure 393.
Figure 394.
Figure 395.
Figure 396.
Figure 397.
List of figures
Encoder mode counting sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033
IR internal hardware connections with TIM16 and TIM17 . . . . . . . . . . . . . . . . . . . . . . . 1046
Independent watchdog block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047
Watchdog block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057
Window watchdog timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1058
RTC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065
I2C block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109
I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111
Setup and hold timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113
I2C initialization flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116
Data reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117
Data transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118
Slave initialization flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1122
Transfer sequence flowchart for I2C slave transmitter, NOSTRETCH=0. . . . . . . . . . . . 1123
Transfer sequence flowchart for I2C slave transmitter, NOSTRETCH=1. . . . . . . . . . . . 1124
Transfer bus diagrams for I2C slave transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125
Transfer sequence flowchart for slave receiver with NOSTRETCH=0 . . . . . . . . . . . . . . 1126
Transfer sequence flowchart for slave receiver with NOSTRETCH=1 . . . . . . . . . . . . . . 1127
Transfer bus diagrams for I2C slave receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127
Master clock generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129
Master initialization flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131
10-bit address read access with HEAD10R=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131
10-bit address read access with HEAD10R=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1132
Transfer sequence flowchart for I2C master transmitter for N≤255 bytes . . . . . . . . . . . 1133
Transfer sequence flowchart for I2C master transmitter for N>255 bytes . . . . . . . . . . . 1134
Transfer bus diagrams for I2C master transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135
Transfer sequence flowchart for I2C master receiver for N≤255 bytes. . . . . . . . . . . . . . 1137
Transfer sequence flowchart for I2C master receiver for N >255 bytes . . . . . . . . . . . . . 1138
Transfer bus diagrams for I2C master receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1139
Timeout intervals for tLOW:SEXT, tLOW:MEXT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1144
Transfer sequence flowchart for SMBus slave transmitter N bytes + PEC. . . . . . . . . . . 1148
Transfer bus diagrams for SMBus slave transmitter (SBC=1) . . . . . . . . . . . . . . . . . . . . 1148
Transfer sequence flowchart for SMBus slave receiver N Bytes + PEC . . . . . . . . . . . . 1150
Bus transfer diagrams for SMBus slave receiver (SBC=1) . . . . . . . . . . . . . . . . . . . . . . 1151
Bus transfer diagrams for SMBus master transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . 1152
Bus transfer diagrams for SMBus master receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1154
I2C interrupt mapping diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1160
USART block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1182
Word length programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1184
Configurable stop bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186
TC/TXE behavior when transmitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187
Start bit detection when oversampling by 16 or 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188
Data sampling when oversampling by 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1192
Data sampling when oversampling by 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1192
Mute mode using Idle line detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1199
Mute mode using address mark detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200
Break detection in LIN mode (11-bit break length - LBDL bit is set) . . . . . . . . . . . . . . . . 1203
Break detection in LIN mode vs. Framing error detection. . . . . . . . . . . . . . . . . . . . . . . . 1204
USART example of synchronous transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1205
USART data clock timing diagram (M bits = 00). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1205
USART data clock timing diagram (M bits = 01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206
RX data setup/hold time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206
DocID024597 Rev 3
57/1693
60
List of figures
Figure 398.
Figure 399.
Figure 400.
Figure 401.
Figure 402.
Figure 403.
Figure 404.
Figure 405.
Figure 406.
Figure 407.
Figure 408.
Figure 409.
Figure 410.
Figure 411.
Figure 412.
Figure 413.
Figure 414.
Figure 415.
Figure 416.
Figure 417.
Figure 418.
Figure 419.
Figure 420.
Figure 421.
Figure 422.
Figure 423.
Figure 424.
Figure 425.
Figure 426.
Figure 427.
Figure 428.
Figure 429.
Figure 430.
Figure 431.
Figure 432.
Figure 433.
Figure 434.
Figure 435.
Figure 436.
Figure 437.
Figure 438.
Figure 439.
Figure 440.
Figure 441.
Figure 442.
Figure 443.
Figure 444.
Figure 445.
Figure 446.
Figure 447.
58/1693
RM0351
ISO 7816-3 asynchronous protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208
Parity error detection using the 1.5 stop bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1209
IrDA SIR ENDEC- block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1213
IrDA data modulation (3/16) -Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1213
Transmission using DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1215
Reception using DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216
Hardware flow control between 2 USARTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216
RS232 RTS flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217
RS232 CTS flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1218
USART interrupt mapping diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1221
LPUART Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1248
Word length programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1250
Configurable stop bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251
TC/TXE behavior when transmitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1253
Mute mode using Idle line detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1258
Mute mode using address mark detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259
Transmission using DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1261
Reception using DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1262
Hardware flow control between 2 LPUARTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1263
RS232 RTS flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1263
RS232 CTS flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1264
LPUART interrupt mapping diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267
SPI block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1284
Full-duplex single master/ single slave application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1285
Half-duplex single master/ single slave application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286
Simplex single master/single slave application (master in transmit-only/
slave in receive-only mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287
Master and three independent slaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1288
Multi-master application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1289
Hardware/software slave select management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1290
Data clock timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291
Data alignment when data length is not equal to 8-bit or 16-bit . . . . . . . . . . . . . . . . . . . 1292
Packing data in FIFO for transmission and reception . . . . . . . . . . . . . . . . . . . . . . . . . . 1296
Master full duplex communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1299
Slave full duplex communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300
Master full duplex communication with CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1301
Master full duplex communication in packed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302
NSSP pulse generation in Motorola SPI master mode . . . . . . . . . . . . . . . . . . . . . . . . . . 1305
TI mode transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1306
Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1320
Audio frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1323
FS role is start of frame + channel side identification (FSDEF = TRIS = 1) . . . . . . . . . . 1325
FS role is start of frame (FSDEF = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1326
Slot size configuration with FBOFF = 0 in SAI_xSLOTR . . . . . . . . . . . . . . . . . . . . . . . . 1327
First bit offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327
Audio block clock generator overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1328
AC’97 audio frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1332
Example of typical AC’97 configuration on devices featuring at least
2 embedded SAIs (three external AC’97 decoders) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1333
SPDIF format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1334
SAI_xDR register ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335
Data companding hardware in an audio block in the SAI . . . . . . . . . . . . . . . . . . . . . . . . 1338
DocID024597 Rev 3
RM0351
Figure 448.
Figure 449.
Figure 450.
Figure 451.
Figure 452.
Figure 453.
Figure 454.
Figure 455.
Figure 456.
Figure 457.
Figure 458.
Figure 459.
Figure 460.
Figure 461.
Figure 462.
Figure 463.
Figure 464.
Figure 465.
Figure 466.
Figure 467.
Figure 468.
Figure 469.
Figure 470.
Figure 471.
Figure 472.
Figure 473.
Figure 474.
Figure 475.
Figure 476.
Figure 477.
Figure 478.
Figure 479.
Figure 480.
Figure 481.
Figure 482.
Figure 483.
Figure 484.
Figure 485.
Figure 486.
Figure 487.
Figure 488.
Figure 489.
Figure 490.
Figure 491.
Figure 492.
Figure 493.
Figure 494.
Figure 495.
Figure 496.
Figure 497.
Figure 498.
Figure 499.
List of figures
Tristate strategy on SD output line on an inactive slot . . . . . . . . . . . . . . . . . . . . . . . . . . 1340
Tristate on output data line in a protocol like I2S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1341
Overrun detection error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1342
FIFO underrun event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1342
S1 signal coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1363
S2 signal coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1363
SWPMI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1365
SWP bus states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1367
SWP frame structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1368
SWPMI No software buffer mode transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1369
SWPMI No software buffer mode transmission, consecutive frames . . . . . . . . . . . . . . . 1370
SWPMI Multi software buffer mode transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1372
SWPMI No software buffer mode reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1373
SWPMI single software buffer mode reception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1375
SWPMI Multi software buffer mode reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1377
SWPMI single buffer mode reception with CRC error. . . . . . . . . . . . . . . . . . . . . . . . . . . 1378
“No response” and “no data” operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1394
(Multiple) block read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1394
(Multiple) block write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1394
Sequential read operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1395
Sequential write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1395
SDMMC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1395
SDMMC adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1397
Control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1398
SDMMC_CK clock dephasing (BYPASS = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1399
SDMMC adapter command path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1399
Command path state machine (SDMMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1400
SDMMC command transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1401
Data path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1403
Data path state machine (DPSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1404
CAN network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1452
bxCAN operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1455
bxCAN in silent mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1456
bxCAN in loop back mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1456
bxCAN in combined mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1457
Transmit mailbox states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1458
Receive FIFO states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1459
Filter bank scale configuration - register organization . . . . . . . . . . . . . . . . . . . . . . . . . . 1462
Example of filter numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1463
Filtering mechanism - example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1464
CAN error state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1465
Bit timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1467
CAN frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1468
Event flags and interrupt generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1469
Can mailbox registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1481
OTG full-speed block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1498
OTG_FS A-B device connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500
USB_FS peripheral-only connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1502
USB_FS host-only connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1506
SOF connectivity (SOF trigger output to TIM and ITR1 connection) . . . . . . . . . . . . . . . 1510
Updating OTG_HFIR dynamically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1512
Device-mode FIFO address mapping and AHB FIFO access mapping . . . . . . . . . . . . . 1513
DocID024597 Rev 3
59/1693
60
List of figures
Figure 500.
Figure 501.
Figure 502.
Figure 503.
Figure 504.
Figure 505.
Figure 506.
Figure 507.
Figure 508.
Figure 509.
Figure 510.
Figure 511.
Figure 512.
Figure 513.
Figure 514.
Figure 515.
Figure 516.
Figure 517.
Figure 518.
Figure 519.
Figure 520.
Figure 521.
60/1693
RM0351
Host-mode FIFO address mapping and AHB FIFO access mapping . . . . . . . . . . . . . . . 1514
Interrupt hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1517
Transmit FIFO write task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1597
Receive FIFO read task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1598
Normal bulk/control OUT/SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1599
Bulk/control IN transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1603
Normal interrupt OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1606
Normal interrupt IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1610
Isochronous OUT transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1612
Isochronous IN transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1615
Receive FIFO packet read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1620
Processing a SETUP packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1622
Bulk OUT transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1628
TRDT max timing case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1638
A-device SRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1639
B-device SRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1640
A-device HNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1641
B-device HNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1643
Block diagram of STM32 MCU and Cortex®-M4-level debug support . . . . . . . . . . . . . . 1645
SWJ debug port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1647
JTAG TAP connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1651
TPIU block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1671
DocID024597 Rev 3
RM0351
Documentation conventions
1
Documentation conventions
1.1
List of abbreviations for registers
The following abbreviations are used in register descriptions:
read/write (rw)
Software can read and write to these bits.
read-only (r)
Software can only read these bits.
write-only (w)
Software can only write to this bit. Reading the bit returns the reset value.
read/clear
(rc_w1)
Software can read as well as clear this bit by writing 1. Writing ‘0’ has no
effect on the bit value.
read/clear
(rc_w0)
Software can read as well as clear this bit by writing 0. Writing ‘1’ has no
effect on the bit value.
read/clear by
read (rc_r)
Software can read this bit. Reading this bit automatically clears it to ‘0’.
Writing ‘0’ has no effect on the bit value.
read/set (rs)
Software can read as well as set this bit. Writing ‘0’ has no effect on the bit
value.
Reserved (Res.) Reserved bit, must be kept at reset value.
1.2
Glossary
This section gives a brief definition of acronyms and abbreviations used in this document:
1.3
•
Word: data of 32-bit length.
•
Half-word: data of 16-bit length.
•
Byte: data of 8-bit length.
•
IAP (in-application programming): IAP is the ability to re-program the Flash memory
of a microcontroller while the user program is running.
•
ICP (in-circuit programming): ICP is the ability to program the Flash memory of a
microcontroller using the JTAG protocol, the SWD protocol or the bootloader while the
device is mounted on the user application board.
•
Option bytes: product configuration bits stored in the Flash memory.
•
OBL: option byte loader.
•
AHB: advanced high-performance bus.
•
APB: advanced peripheral bus.
Peripheral availability
For peripheral availability and number across all sales types, please refer to the particular
device datasheet.
DocID024597 Rev 3
61/1693
61
System and memory overview
RM0351
2
System and memory overview
2.1
System architecture
The main system consists of 32-bit multilayer AHB bus matrix that interconnects:
•
•
Five masters:
–
Cortex®-M4 with FPU core I-bus
–
Cortex®-M4 with FPU core D-bus
–
Cortex®-M4 with FPU core S-bus
–
DMA1
–
DMA2
Seven slaves:
–
Internal Flash memory on the ICode bus
–
Internal Flash memory on DCode bus
–
Internal SRAM1 (96 KB)
–
Internal SRAM2 (32 KB)
–
AHB1 peripherals including AHB to APB bridges and APB peripherals (connected
to APB1 and APB2)
–
AHB2 peripherals
–
The external memory controllers (FMC and QUADSPI).
The bus matrix provides access from a master to a slave, enabling concurrent access and
efficient operation even when several high-speed peripherals work simultaneously. This
architecture is shown in Figure 1:
62/1693
DocID024597 Rev 3
RM0351
System and memory overview
Figure 1. System architecture
$50
'0$
'0$
6
6
&RUWH[ 0ZLWK)38
6
6
6
0
,&RGH
$&&(/
)/$6+
0%
0
'&RGH
0
65$0
0
65$0
0
$+%
SHULSKHUDOV
0
$+%
SHULSKHUDOV
0
)0&
DQG
48$'63,
%XV0DWUL[6
069
2.1.1
S0: I-bus
This bus connects the instruction bus of the Cortex®-M4 core to the BusMatrix. This bus is
used by the core to fetch instructions. The targets of this bus are the internal Flash memory,
SRAM1, SRAM2 and external memories through FMC or QUADSPI.
2.1.2
S1: D-bus
This bus connects the data bus of the Cortex®-M4 core to the BusMatrix. This bus is used
by the core for literal load and debug access. The targets of this bus are the internal Flash
memory, SRAM1, SRAM2 and external memories through FMC or QUADSPI.
DocID024597 Rev 3
63/1693
64
System and memory overview
2.1.3
RM0351
S2: S-bus
This bus connects the system bus of the Cortex®-M4 core to the BusMatrix. This bus is
used by the core to access data located in a peripheral or SRAM area. The targets of this
bus are the SRAM1, the AHB1 peripherals including the APB1 and APB2 peripherals, the
AHB2 peripherals and the external memories through the FMC or QUADSPI.
2.1.4
S3, S4: DMA-bus
This bus connects the AHB master interface of the DMA to the BusMatrix.The targets of this
bus are the SRAM1 and SRAM2, the AHB1 peripherals including the APB1 and APB2
peripherals, the AHB2 peripherals and the external memories through the FMC or
QUADSPI.
2.1.5
BusMatrix
The BusMatrix manages the access arbitration between Masters. The arbitration uses a
Round Robin algorithm. The BusMatrix is composed of five masters (CPU AHB, System
bus, DCode bus, ICode bus, DMA1 and DMA2 bus) and seven slaves (FLASH, SRAM1,
SRAM2, AHB1 (including APB1 and APB2), AHB2 and FMC/QUADSPI).
AHB/APB bridges
The two AHB/APB bridges provide full synchronous connections between the AHB and the
2 APB buses, allowing flexible selection of the peripheral frequency.
Refer to Section 2.2.2: Memory map and register boundary addresses on page 67 for the
address mapping of the peripherals connected to this bridge.
After each device reset, all peripheral clocks are disabled (except for the SRAM1/2 and
Flash memory interface). Before using a peripheral you have to enable its clock in the
RCC_AHBxENR and the RCC_APBxENR registers.
Note:
64/1693
When a 16- or 8-bit access is performed on an APB register, the access is transformed into
a 32-bit access: the bridge duplicates the 16- or 8-bit data to feed the 32-bit vector.
DocID024597 Rev 3
RM0351
2.2
Memory organization
2.2.1
Introduction
Program memory, data memory, registers and I/O ports are organized within the same linear
4-Gbyte address space.
The bytes are coded in memory in Little Endian format. The lowest numbered byte in a word
is considered the word’s least significant byte and the highest numbered byte the most
significant.
The addressable memory space is divided into 8 main blocks, of 512 Mbyte each.
DocID024597 Rev 3
65/1693
77
RM0351
Figure 2. Memory map
[))))))))
[%)))))))
&RUWH[0
ZLWK)38
,QWHUQDO
3HULSKHUDOV
5HVHUYHG
[$
48$'63,UHJLVWHUV
[$
)0&UHJLVWHUV
[$
[(
[)))))))
5HVHUYHG
[&
$+%
[
[&
5HVHUYHG
[
)0&DQG
48$'63,
UHJLVWHUV
$+%
[
[
[$
48$'63,)ODVK
EDQN
[
)0&EDQN
[
[
5HVHUYHG
$3%
5HVHUYHG
[
$3%
[)))))))
[
5HVHUYHG
[))))
2SWLRQ%\WHV
[
[))))
)0&EDQN
5HVHUYHG
[))))
6\VWHPPHPRU\
[
[)))
[)))
[)))
5HVHUYHG
2SWLRQV%\WHV
5HVHUYHG
[)))
3HULSKHUDOV
[
273DUHD
[)))
6\VWHPPHPRU\
[)))
[
65$0
5HVHUYHG
[
65$0
[
5HVHUYHG
&2'(
[
)ODVKPHPRU\
[
[
[
5HVHUYHG
[
5HVHUYHG
)ODVKV\VWHPPHPRU\
RU65$0GHSHQGLQJRQ
%227FRQILJXUDWLRQ
069
It is forbidden to access QUADSPI Flash bank area before having properly configured and
enabled the QUADSPI peripheral.
66/1693
DocID024597 Rev 3
RM0351
All the memory areas that are not allocated to on-chip memories and peripherals are
considered “Reserved”. For the detailed mapping of available memory and register areas,
please refer to Memory map and register boundary addresses and peripheral sections.
2.2.2
Memory map and register boundary addresses
See the datasheet corresponding to your device for a comprehensive diagram of the
memory map.
The following table gives the boundary addresses of the peripherals available in the
devices.
Table 1. STM32L4x6 memory map and peripheral register boundary addresses
Bus
AHB2
Boundary address
Size (bytes)
Peripheral
Peripheral register map
Section 24.4.4: RNG register
map
0x5006 0800 - 0x5006 0BFF
1 KB
RNG
0x5006 0400 - 0x5006 07FF
1 KB
Reserved
0x5006 0000 - 0x5006 03FF
1 KB
AES
0x5004 0400 - 0x5005 FFFF
127 KB
0x5004 0000 - 0x5004 03FF
1 KB
ADC
Section 16.6.4: ADC register
map
0x5000 0000 - 0x5003 FFFF
16 KB
OTG_FS
Section 43.15.54: OTG_FS
register map
0x4800 2000 - 0x4FFF FFFF
~127 MB
Reserved
0x4800 1C00 - 0x4800 1FFF
1 KB
GPIOH
Section 7.4.13: GPIO register
map
0x4800 1800 - 0x4800 1BFF
1 KB
GPIOG
Section 7.4.13: GPIO register
map
0x4800 1400 - 0x4800 17FF
1 KB
GPIOF
Section 7.4.13: GPIO register
map
0x4800 1000 - 0x4800 13FF
1 KB
GPIOE
Section 7.4.13: GPIO register
map
0x4800 0C00 - 0x4800 0FFF
1 KB
GPIOD
Section 7.4.13: GPIO register
map
0x4800 0800 - 0x4800 0BFF
1 KB
GPIOC
Section 7.4.13: GPIO register
map
0x4800 0400 - 0x4800 07FF
1 KB
GPIOB
Section 7.4.13: GPIO register
map
0x4800 0000 - 0x4800 03FF
1 KB
GPIOA
Section 7.4.13: GPIO register
map
0x4002 4400 - 0x47FF FFFF
~127 MB
Reserved
Reserved
DocID024597 Rev 3
Section 25.14.18: AES register
map
-
-
-
67/1693
77
RM0351
Table 1. STM32L4x6 memory map and peripheral register boundary addresses (continued)
Bus
AHB1
APB2
68/1693
Boundary address
Size (bytes)
Peripheral
Peripheral register map
Section 23.6.11: TSC register
map
0x4002 4000 - 0x4002 43FF
1 KB
TSC
0x4002 3400 - 0x4002 3FFF
1 KB
Reserved
0x4002 3000 - 0x4002 33FF
1 KB
CRC
0x4002 2400 - 0x4002 2FFF
3 KB
Reserved
0x4002 2000 - 0x4002 23FF
1 KB
FLASH
registers
0x4002 1400 - 0x4002 1FFF
3 KB
Reserved
0x4002 1000 - 0x4002 13FF
1 KB
RCC
0x4002 0800 - 0x4002 0FFF
2 KB
Reserved
0x4002 0400 - 0x4002 07FF
1 KB
DMA2
Section 10.5.9: DMA register
map
0x4002 0000 - 0x4002 03FF
1 KB
DMA1
Section 10.5.9: DMA register
map
0x4001 6400 - 0x4001 FFFF
39 KB
Reserved
0x4001 6000 - 0x4000 63FF
1 KB
DFSDM
0x4001 5C00 - 0x4000 5FFF
1 KB
Reserved
0x4001 5800 - 0x4001 5BFF
1 KB
SAI2
Section 39.5.10: SAI register
map
0x4001 5400 - 0x4001 57FF
1 KB
SAI1
Section 39.5.10: SAI register
map
0x4001 4C00 - 0x4000 53FF
2 KB
Reserved
DocID024597 Rev 3
Section 13.4.6: CRC register
map
Section 3.7.17: FLASH register
map
Section 6.4.31: RCC register
map
-
Section 21.8: DFSDM register
map
-
-
RM0351
Table 1. STM32L4x6 memory map and peripheral register boundary addresses (continued)
Bus
Boundary address
Size (bytes)
Peripheral
Peripheral register map
0x4001 4800 - 0x4001 4BFF
1 KB
TIM17
Section 28.6.20: TIM16&TIM17
register map
0x4001 4400 - 0x4001 47FF
1 KB
TIM16
Section 28.6.20: TIM16&TIM17
register map
0x4001 4000 - 0x4001 43FF
1 KB
TIM15
Section 28.6.20: TIM16&TIM17
register map
0x4001 3C00 - 0x4001 3FFF
1 KB
Reserved
0x4001 3800 - 0x4001 3BFF
1 KB
USART1
Section 36.8.12: USART
register map
0x4001 3400 - 0x4001 37FF
1 KB
TIM8
Section 26.4.31: TIM8 register
map
0x4001 3000 - 0x4001 33FF
1 KB
SPI1
Section 38.6.8: SPI register map
0x4001 2C00 - 0x4001 2FFF
1 KB
TIM1
Section 26.4.30: TIM1 register
map
0x4001 2800 - 0x4001 2BFF
1 KB
SDMMC1
Section 41.8.16: SDMMC
register map
0x4001 2000 - 0x4001 27FF
2 KB
Reserved
0x4001 1C00 - 0x4001 1FFF
1 KB
FIREWALL
0x4001 0800- 0x4001 1BFF
5 KB
Reserved
0x4001 0400 - 0x4001 07FF
1 KB
EXTI
Section 12.5.13: EXTI register
map
COMP
Section 19.6.3: COMP register
map
VREFBUF
Section 18.3.3: VREFBUF
register map
SYSCFG
Section 8.2.11: SYSCFG
register map
APB2
0x4001 0200 - 0x4001 03FF
0x4001 0030 - 0x4001 01FF
0x4001 0000 - 0x4001 002F
1 KB
DocID024597 Rev 3
-
Section 4.4.8: Firewall register
map
-
69/1693
77
RM0351
Table 1. STM32L4x6 memory map and peripheral register boundary addresses (continued)
Bus
Boundary address
Size (bytes)
Peripheral
0x4000 9800 - 0x4000 FFFF
26 KB
Reserved
0x4000 9400 - 0x4000 97FF
1 KB
LPTIM2
0x4000 8C00 - 0x4000 93FF
2 KB
Reserved
0x4000 8800 - 0x4000 8BFF
1 KB
SWPMI1
0x4000 8400 - 0x4000 87FF
1 KB
Reserved
0x4000 8000 - 0x4000 83FF
1 KB
LPUART1
Section 37.7.10: LPUART
register map
0x4000 7C00 - 0x4000 7FFF
1 KB
LPTIM1
Section 30.7.11: LPTIM register
map
0x4000 7800 - 0x4000 7BFF
1 KB
OPAMP
Section 20.5.7: OPAMP register
map
0x4000 7400 - 0x4000 77FF
1 KB
DAC1
Section 17.5.21: DAC register
map
0x4000 7000 - 0x4000 73FF
1 KB
PWR
Section 5.4.24: PWR register
map and reset value table
0x4000 6800 - 0x4000 6FFF
1 KB
Reserved
0x4000 6400 - 0x4000 67FF
1 KB
CAN1
0x4000 6000 - 0x4000 63FF
1 KB
Reserved
0x4000 5C00- 0x4000 5FFF
1 KB
I2C3
Section 35.7.12: I2C register
map
0x4000 5800 - 0x4000 5BFF
1 KB
I2C2
Section 35.7.12: I2C register
map
0x4000 5400 - 0x4000 57FF
1 KB
I2C1
Section 35.7.12: I2C register
map
APB1
70/1693
Peripheral register map
DocID024597 Rev 3
Section 30.7.11: LPTIM register
map
Section 40.6.10: SWPMI
register map and reset value
table
-
Section 42.9.5: bxCAN register
map
-
RM0351
Table 1. STM32L4x6 memory map and peripheral register boundary addresses (continued)
Bus
Boundary address
Size (bytes)
Peripheral
0x4000 5000 - 0x4000 53FF
1 KB
UART5
Section 36.8.12: USART
register map
0x4000 4C00 - 0x4000 4FFF
1 KB
UART4
Section 36.8.12: USART
register map
0x4000 4800 - 0x4000 4BFF
1 KB
USART3
Section 36.8.12: USART
register map
0x4000 4400 - 0x4000 47FF
1 KB
USART2
Section 36.8.12: USART
register map
0x4000 4000 - 0x4000 43FF
1 KB
Reserved
0x4000 3C00 - 0x4000 3FFF
1 KB
SPI3
Section 38.6.8: SPI register map
0x4000 3800 - 0x4000 3BFF
1 KB
SPI2
Section 38.6.8: SPI register map
0x4000 3400 - 0x4000 37FF
1 KB
Reserved
0x4000 3000 - 0x4000 33FF
1 KB
IWDG
Section 32.4.6: IWDG register
map
0x4000 2C00 - 0x4000 2FFF
1 KB
WWDG
Section 33.4.4: WWDG register
map
0x4000 2800 - 0x4000 2BFF
1 KB
RTC
Section 34.6.21: RTC register
map
0x4000 2400 - 0x4000 27FF
1 KB
LCD
Section 22.6.6: LCD register
map
0x4000 1800 - 0x4000 2400
3 KB
Reserved
0x4000 1400 - 0x4000 17FF
1 KB
TIM7
Section 29.4.9: TIM6/TIM7
register map
0x4000 1000 - 0x4000 13FF
1 KB
TIM6
Section 29.4.9: TIM6/TIM7
register map
0x4000 0C00- 0x4000 0FFF
1 KB
TIM5
Section 27.4.23: TIMx register
map
0x4000 0800 - 0x4000 0BFF
1 KB
TIM4
Section 27.4.23: TIMx register
map
0x4000 0400 - 0x4000 07FF
1 KB
TIM3
Section 27.4.23: TIMx register
map
0x4000 0000 - 0x4000 03FF
1 KB
TIM2
Section 27.4.23: TIMx register
map
APB1
2.3
Peripheral register map
-
-
-
Bit banding
The Cortex®-M4 memory map includes two bit-band regions. These regions map each word
in an alias region of memory to a bit in a bit-band region of memory. Writing to a word in the
DocID024597 Rev 3
71/1693
77
RM0351
alias region has the same effect as a read-modify-write operation on the targeted bit in the
bit-band region.
In the STM32L4x6 devices both the peripheral registers and the SRAM1 are mapped to a
bit-band region, so that single bit-band write and read operations are allowed. The
operations are only available for Cortex®-M4 accesses, and not from other bus masters
(e.g. DMA).
A mapping formula shows how to reference each word in the alias region to a corresponding
bit in the bit-band region. The mapping formula is:
bit_word_addr = bit_band_base + (byte_offset x 32) + (bit_number × 4)
where:
–
bit_word_addr is the address of the word in the alias memory region that maps to
the targeted bit
–
bit_band_base is the starting address of the alias region
–
byte_offset is the number of the byte in the bit-band region that contains the
targeted bit
–
bit_number is the bit position (0-7) of the targeted bit
Example
The following example shows how to map bit 2 of the byte located at SRAM1 address
0x20000300 to the alias region:
0x22006008 = 0x22000000 + (0x300*32) + (2*4)
Writing to address 0x22006008 has the same effect as a read-modify-write operation on bit
2 of the byte at SRAM1 address 0x20000300.
Reading address 0x22006008 returns the value (0x01 or 0x00) of bit 2 of the byte at SRAM1
address 0x20000300 (0x01: bit set; 0x00: bit reset).
For more information on bit-banding, please refer to the Cortex®-M4 programming manual
(see Related documents on page 1).
2.4
Embedded SRAM
The STM32L4x6 devices feature up to 128 Kbyte SRAM:
• Up to 96 Kbyte SRAM1.
• 32 Kbyte SRAM2.
These SRAM can be accessed as bytes, half-words (16 bits) or full words (32 bits). These
memories can be addressed at maximum system clock frequency without wait state and
thus by both CPU and DMA.
The CPU can access the SRAM1 through the System bus or through the ICode/DCode
buses when boot from SRAM1 is selected or when physical remap is selected
(Section 8.2.1: SYSCFG memory remap register (SYSCFG_MEMRMP) in the SYSCFG
controller). To get the maximum performance on SRAM1 execution, physical remap should
be selected (boot or software selection).
Execution can be performed from SRAM2 with maximum performance without any remap
thanks to access through ICode bus.
72/1693
DocID024597 Rev 3
RM0351
2.4.1
SRAM2 Parity check
The user can enable the SRAM2 parity check using the option bit SRAM2_PE in the user
option byte (refer to Section 3.4.1: Option bytes description).
The data bus width is 36 bits because 4 bits are available for parity check (1 bit per byte) in
order to increase memory robustness, as required for instance by Class B or SIL norms.
The parity bits are computed and stored when writing into the SRAM2. Then, they are
automatically checked when reading. If one bit fails, an NMI is generated. The same error
can also be linked to the BRK_IN Break input of TIM1/TIM8/TIM15/TIM16/TIM17, with the
SPL control bit in the SYSCFG configuration register 2 (SYSCFG_CFGR2). The SRAM2
Parity Error flag (SPF) is available in the SYSCFG configuration register 2
(SYSCFG_CFGR2).
Note:
When enabling the RAM parity check, it is advised to initialize by software the whole RAM
memory at the beginning of the code, to avoid getting parity errors when reading noninitialized locations.
2.4.2
SRAM2 Write protection
The SRAM2 can be write protected with a page granularity of 1 KByte.
Table 2. SRAM2 organization
Page number
Start address
End address
Page 0
0x1000 0000
0x1000 03FF
Page 1
0x1000 0400
0x1000 07FF
Page 2
0x1000 0800
0x1000 0BFF
Page 3
0x1000 0C00
0x1000 0FFF
Page 4
0x1000 1000
0x1000 13FF
Page 5
0x1000 1400
0x1000 17FF
Page 6
0x1000 1800
0x1000 1BFF
Page 7
0x1000 1C00
0x1000 1FFF
Page 8
0x1000 2000
0x1000 23FF
Page 9
0x1000 2400
0x1000 27FF
Page 10
0x1000 2800
0x1000 2BFF
Page 11
0x1000 2C00
0x1000 2FFF
Page 12
0x1000 3000
0x1000 33FF
Page 13
0x1000 3400
0x1000 37FF
Page 14
0x1000 3800
0x1000 3BFF
Page 15
0x1000 3C00
0x1000 3FFF
Page 16
0x1000 4000
0x1000 43FF
Page 17
0x1000 4400
0x1000 47FF
Page 18
0x1000 4800
0x1000 4BFF
Page 19
0x1000 4C00
0x1000 4FFF
DocID024597 Rev 3
73/1693
77
RM0351
Table 2. SRAM2 organization (continued)
Page number
Start address
End address
Page 20
0x1000 5000
0x1000 53FF
Page 21
0x1000 5400
0x1000 57FF
Page 22
0x1000 5800
0x1000 5BFF
Page 23
0x1000 5C00
0x1000 5FFF
Page 24
0x1000 6000
0x1000 63FF
Page 25
0x1000 6400
0x1000 67FF
Page 26
0x1000 6800
0x1000 6BFF
Page 27
0x1000 6C00
0x1000 6FFF
Page 28
0x1000 7000
0x1000 73FF
Page 29
0x1000 7400
0x1000 77FF
Page 30
0x1000 7800
0x1000 7BFF
Page 31
0x1000 7C00
0x1000 7FFF
The write protection can be enabled in SYSCFG SRAM2 write protection register
(SYSCFG_SWPR) in the SYSCFG block. This is a register with write ‘1’ once mechanism,
which means by writing ‘1’ on a bit it will setup the write protection for that page of SRAM
and it can be removed/cleared by a system reset only.
2.4.3
SRAM2 Read protection
The SRAM2 is protected with the Read protection (RDP). Refer to Section 3.5.1: Read
protection (RDP) for more details.
2.4.4
SRAM2 Erase
The SRAM2 can be erased with a system reset using the option bit SRAM2_RST in the user
option byte (refer to Section 3.4.1: Option bytes description).
The SRAM2 erase can also be requested by software by setting the bit SRAM2ER in the
SYSCFG SRAM2 control and status register (SYSCFG_SCSR).
2.5
Flash memory overview
The Flash memory is composed of two distinct physical areas:
•
The main Flash memory block. It contains the application program and user data if
necessary.
•
The information block. It is composed of three parts:
–
Option bytes for hardware and memory protection user configuration.
–
System memory which contains the proprietary boot loader code.
–
OTP (one-time programmable) area
The Flash interface implements instruction access and data access based on the AHB
protocol. It implements a system of instruction prefetch and caches lines that speeds up
74/1693
DocID024597 Rev 3
RM0351
CPU code execution. It also implements the logic necessary to carry out the Flash memory
operations (Program/Erase) controlled through the Flash registers. Refer to Section 3:
Embedded Flash memory (FLASH) for more details.
2.6
Boot configuration
In the STM32L4x6, three different boot modes can be selected through the BOOT0 pin and
nBOOT1 bit in the User option byte, as shown in the following table.
Table 3. Boot modes
Boot mode selection
Boot mode
Aliasing
BOOT1(1)
BOOT0
x
0
Main Flash memory
Main Flash memory is selected as boot area
0
1
System memory
System memory is selected as boot area
1
1
Embedded SRAM1
Embedded SRAM1 is selected as boot area
1. The BOOT1 value is the opposite of the nBOOT1 Option Bit.
The values on both BOOT0 pin and nBOOT1 bit are latched after a reset. It is up to the user
to set nBOOT1 and BOOT0 to select the required boot mode.
The BOOT0 pin and nBOOT1 bit are also re-sampled when exiting from Standby mode.
Consequently they must be kept in the required Boot mode configuration in Standby mode.
After this startup delay has elapsed, the CPU fetches the top-of-stack value from address
0x0000 0000, then starts code execution from the boot memory at 0x0000 0004.
Depending on the selected boot mode, main Flash memory, system memory or SRAM1 is
accessible as follows:
Note:
•
Boot from main Flash memory: the main Flash memory is aliased in the boot memory
space (0x0000 0000), but still accessible from its original memory space
(0x0800 0000). In other words, the Flash memory contents can be accessed starting
from address 0x0000 0000 or 0x0800 0000.
•
Boot from system memory: the system memory is aliased in the boot memory space
(0x0000 0000), but still accessible from its original memory space (0x1FFF 0000).
•
Boot from the embedded SRAM1: the SRAM1 is aliased in the boot memory space
(0x0000 0000), but it is still accessible from its original memory space (0x2000 0000).
When the device boots from SRAM, in the application initialization code, you have to
relocate the vector table in SRAM using the NVIC exception table and the offset register.
When booting from the main Flash memory, the application software can either boot from
bank 1 or from bank 2. By default, boot from bank 1 is selected.
To select boot from Flash memory bank 2, set the BFB2 bit in the user option bytes. When
this bit is set and the boot pins are in the boot from main Flash memory configuration, the
device boots from system memory, and the boot loader jumps to execute the user
application programmed in Flash memory bank 2. For further details, please refer to
AN2606.
DocID024597 Rev 3
75/1693
77
RM0351
Note:
When booting from bank 2, in the application initialization code, you have to relocate the
vector table to bank 2 base address. (0x0808 0000) using the NVIC exception table and
offset register.
Physical remap
Once the boot pins are selected, the application software can modify the memory
accessible in the code area (in this way the code can be executed through the ICode bus in
place of the System bus). This modification is performed by programming the SYSCFG
memory remap register (SYSCFG_MEMRMP) in the SYSCFG controller.
The following memories can thus be remapped:
• Main Flash memory
• System memory
• Embedded SRAM1 (96 KB)
• FSMC bank 1 (NOR/PSRAM 1 and 2)
• Quad SPI memory
•
Table 4. Memory mapping versus boot mode/physical remap
Addresses
0x2000 0000 - 0x2001 7FFF
Boot/remap in Boot/remap in Boot/remap in
main Flash
embedded
system
memory
SRAM 1
memory
Remap in
QUADSPI
SRAM1
SRAM1
SRAM1
SRAM1
System
0x1FFF 0000 - 0x1FFF FFFF memory/OTP/
Options bytes
System
memory/OTP/
Options bytes
System
memory/OTP/
Options bytes
System
memory/OTP/
Options bytes
System
memory/OTP/
Options bytes
0x1000 8000 - 0x1FFE FFFF
Reserved
Reserved
Reserved
Reserved
Reserved
0x1000 0000 - 0x1000 7FFF
SRAM2
SRAM2
SRAM2
SRAM2
SRAM2
0x0810 0000 - 0x0FFF FFFF
Reserved
Reserved
Reserved
Reserved
Reserved
0x0800 0000 - 0x080F FFFF
Flash memory
Flash memory
Flash memory
Flash memory
Flash memory
Reserved
FSMC bank 1
NOR/
PSRAM 2
(128 MB)
Aliased
QUADSPI
bank (128 MB)
Aliased
QUADSPI
bank (128 MB)
Aliased
QUADSPI
bank (128 MB)
Aliased)
0x0400 0000 - 0x07FF FFFF
0x0000 0010 - 0x03FF FFFF
0x0000 0000 - 0x000F FFFF
(1) (2)
76/1693
SRAM1
Remap in
FSMC
Reserved
Reserved
Reserved
Reserved
Reserved
FSMC bank 1
NOR/
PSRAM 1
(128 MB)
Aliased
Flash (1 MB)
Aliased
SRAM1
(96 KB)
Aliased
System
memory
(28 KB)
Aliased
FSMC bank 1
NOR/
PSRAM 1
(128 MB)
Aliased)
DocID024597 Rev 3
RM0351
1. When the FSMC is remapped at address 0x0000 0000, only the first two regions of bank 1 memory controller
(bank 1 NOR/PSRAM 1 and NOR/PSRAM 2) can be remapped. When the QUADSPI is remapped at address
0x0000 0000, only 128 MB are remapped. In remap mode, the CPU can access the external memory via
ICode bus instead of system bus which boosts up the performance.
2. Even when aliased in the boot memory space, the related memory is still accessible at its original memory
space.
Embedded boot loader
The embedded boot loader is located in the System memory, programmed by ST during
production. Refer to AN2606 STM32 microcontroller system memory boot mode.
DocID024597 Rev 3
77/1693
77
Embedded Flash memory (FLASH)
RM0351
3
Embedded Flash memory (FLASH)
3.1
Introduction
The Flash memory interface manages CPU AHB ICode and DCode accesses to the Flash
memory. It implements the erase and program Flash memory operations and the read and
write protection mechanisms.
The Flash memory interface accelerates code execution with a system of instruction
prefetch and cache lines.
3.2
FLASH main features
•
Up to 1 MByte of Flash memory with dual bank architecture supporting read-while-write
capability (RWW)
•
Memory organization: 2 banks (Bank 1 and Bank 2)
–
Main memory: 512 KBytes per bank
–
Information block: 32 KBytes per bank
•
72-bit wide data read (64 bits plus 8 ECC bits)
•
72-bit wide data write (64 bits plus 8 ECC bits)
•
Page erase (2 KBytes), Bank erase and Mass erase (both banks)
Flash memory interface features:
•
Flash memory read operations
•
Flash memory program/erase operations
•
Read protection activated by option (RDP)
•
4 Write protection areas (2 per bank) selected by option (WRP)
•
2 Proprietary code read protection areas (1 per bank) selected by option (PCROP)
•
Prefetch on ICODE
•
Instruction Cache: 32 cache lines of 4 x 64 bits on ICode (1 KB RAM)
•
Data Cache: 8 cache lines of 4 x 64 bits on DCode (256B RAM)
•
Error Code Correction (ECC): 8 bits for 64-bit double-word
•
Option byte loader
•
Low-power mode
3.3
FLASH functional description
3.3.1
Flash memory organization
The Flash memory is organized as 72-bit wide memory cells (64 bits plus 8 ECC bits) that
can be used for storing both code and data constants.
78/1693
DocID024597 Rev 3
RM0351
Embedded Flash memory (FLASH)
The Flash memory is divided in 2 banks. Each bank is organized as follows:
•
A Main memory block containing 256 pages of 2 KBytes. Each page is made of 8 rows
of 256 Bytes.
•
An Information block containing:
–
System memory from which the device boots in System memory boot mode. The
area is reserved for use by STMicroelectronics and contains the boot loader which
is used to reprogram the Flash memory through one of the following interfaces:
USART1, USART2, USART3, USB (DFU), I2C1, I2C2, I2C3, SPI1, SPI2, SPI3. It
is programmed by STMicroelectronics when the device is manufactured, and
protected against spurious write/erase operations. For further details, please refer
to the AN2606 available from www.st.com.
–
1 KByte (128 double word) OTP (one-time programmable) bytes for user data.
The OTP area is available in Bank 1 only. The OTP data cannot be erased and
can be written only once. If only one bit is at 0, the entire double word cannot be
written anymore, even with the value 0x0000 0000 0000 0000.
–
Option bytes for user configuration.
The memory organization is based on a main area and an information block as shown in
Table 5.
Table 5. Flash module - 1 MB dual bank organization
Flash area
Bank 1
Main memory
Bank 2
Flash memory addresses
Size
(bytes)
Name
0x0800 0000 - 0x0800 07FF
2K
Page 0
0x0800 0800 - 0x0800 0FFF
2K
Page 1
0x0800 1000 - 0x0800 17FF
2K
Page 2
0x0800 1800 - 0x0800 1FFF
2K
Page 3
-
-
-
0x0807 F800 - 0x0807 FFFF
2K
Page 255
0x0808 0000 - 0x0808 07FF
2K
Page 256
0x0808 0800 - 0x0808 0FFF
2K
Page 257
0x0808 1000 - 0x0808 17FF
2K
Page 258
0x0808 1800 - 0x0808 1FFF
2K
Page 259
-
-
-
0x080F F800 - 0x080F FFFF
2K
Page 511
DocID024597 Rev 3
79/1693
120
Embedded Flash memory (FLASH)
RM0351
Table 5. Flash module - 1 MB dual bank organization (continued)
Flash memory addresses
Size
(bytes)
Bank 1
0x1FFF 0000 - 0x1FFF 6FFF
28 K
Bank 2
0x1FFF 8000 - 0x1FFF EFFF
28 K
Bank 1
0x1FFF 7000 - 0x1FFF 73FF
1K
Bank 1
0x1FFF 7800 - 0x1FFF 780F
16
Bank 2
0x1FFF F800 - 0x1FFF F80F
16
Flash area
Information block
Name
System memory
OTP area
Option bytes
Table 6. Flash module - 512 KB dual bank organization(1)
Flash memory addresses
Size
(bytes)
Name
0x0800 0000 - 0x0800 07FF
2K
Page 0
0x0800 0800 - 0x0800 0FFF
2K
Page 1
0x0800 1000 - 0x0800 17FF
2K
Page 2
0x0800 1800 - 0x0800 1FFF
2K
Page 3
-
-
-
0x0803 F800 - 0x0803 FFFF
2K
Page 127
0x0804 0000 - 0x0804 07FF
2K
Page 256
0x0804 0800 - 0x0804 0FFF
2K
Page 257
0x0804 1000 - 0x0804 17FF
2K
Page 258
0x0804 1800 - 0x0804 1FFF
2K
Page 259
-
-
-
0x0807 F800 - 0x0807 FFFF
2K
Page 383
Bank 1
0x1FFF 0000 - 0x1FFF 6FFF
28 K
Bank 2
0x1FFF 8000 - 0x1FFF EFFF
28 K
Bank 1
0x1FFF 7000 - 0x1FFF 73FF
1K
Bank 1
0x1FFF 7800 - 0x1FFF 780F
16
Bank 2
0x1FFF F800 - 0x1FFF F80F
16
Flash area
Bank 1
Main memory
Bank 2
Information block
1. For 512 KB devices, option DUALBANK=1
80/1693
DocID024597 Rev 3
System memory
OTP area
Option bytes
RM0351
Embedded Flash memory (FLASH)
Table 7. Flash module - 256 KB dual bank organization(1)
Flash memory addresses
Size
(bytes)
Name
0x0800 0000 - 0x0800 07FF
2K
Page 0
0x0800 0800 - 0x0800 0FFF
2K
Page 1
0x0800 1000 - 0x0800 17FF
2K
Page 2
0x0800 1800 - 0x0800 1FFF
2K
Page 3
-
-
-
0x0801 F800 - 0x0801 FFFF
2K
Page 63
0x0802 0000 - 0x0802 07FF
2K
Page 256
0x0802 0800 - 0x0802 0FFF
2K
Page 257
0x0802 1000 - 0x0802 17FF
2K
Page 258
0x0802 1800 - 0x0802 1FFF
2K
Page 259
-
-
-
0x0803 F800 - 0x0803 FFFF
2K
Page 319
Bank 1
0x1FFF 0000 - 0x1FFF 6FFF
28 K
Bank 2
0x1FFF 8000 - 0x1FFF EFFF
28 K
Bank 1
0x1FFF 7000 - 0x1FFF 73FF
1K
Bank 1
0x1FFF 7800 - 0x1FFF 780F
16
Bank 2
0x1FFF F800 - 0x1FFF F80F
16
Flash area
Bank 1
Main memory
Bank 2
Information block
System memory
OTP area
Option bytes
1. For 256 KB devices, option DUALBANK=1
3.3.2
Error code correction (ECC)
Data in Flash memory are 72-bits words: 8 bits are added per double word (64 bits). The
ECC mechanism supports:
•
One error detection and correction
•
Two errors detection
When one error is detected and corrected, the flag ECCC (ECC correction) is set in Flash
ECC register (FLASH_ECCR). If ECCCIE is set, an interrupt is generated.
When two errors are detected, a flag ECCD (ECC detection) is set in FLASH_ECCR
register. In this case, a NMI is generated.
When an ECC error is detected, the address of the failing double word and its associated
bank are saved in ADDR_ECC[20:0] and BK_ECC in the FLASH_ECCR register.
ADDR_ECC[2:0] are always cleared.
DocID024597 Rev 3
81/1693
120
Embedded Flash memory (FLASH)
RM0351
When ECCC or ECCD is set, ADDR_ECC and BK_ECC are not updated if a new ECC error
occurs. FLASH_ECCR is updated only when ECC flags are cleared.
Note:
For a virgin data: 0xFF FFFF FFFF FFFF FFFF, one error is detected and corrected but 2
errors detection is not supported.
When an ECC error is reported, a new read at the failing address may not generate an ECC
error if the data is still present in the current buffer, even if ECCC and ECCD are cleared.
3.3.3
Read access latency
To correctly read data from Flash memory, the number of wait states (LATENCY) must be
correctly programmed in the Flash access control register (FLASH_ACR) according to the
frequency of the CPU clock (HCLK) and the internal voltage range of the device VCORE.
Refer to Section 5.1.7: Dynamic voltage scaling management. Table 8 shows the
correspondence between wait states and CPU clock frequency.
Table 8. Number of wait states according to CPU clock (HCLK) frequency
HCLK (MHz)
Wait states (WS)
(LATENCY)
VCORE Range 1
VCORE Range 2
0 WS (1 CPU cycles)
≤ 16
≤6
1 WS (2 CPU cycles)
≤ 32
≤ 12
2 WS (3 CPU cycles)
≤ 48
≤ 18
3 WS (4 CPU cycles)
≤ 64
≤ 26
4 WS (5 CPU cycles)
≤ 80
≤ 26
After reset, the CPU clock frequency is 4 MHz and 0 wait state (WS) is configured in the
FLASH_ACR register.
When changing the CPU frequency, the following software sequences must be applied in
order to tune the number of wait states needed to access the Flash memory:
Increasing the CPU frequency:
82/1693
1.
Program the new number of wait states to the LATENCY bits in the Flash access
control register (FLASH_ACR).
2.
Check that the new number of wait states is taken into account to access the Flash
memory by reading the FLASH_ACR register
3.
Modify the CPU clock source by writing the SW bits in the RCC_CFGR register
4.
If needed, modify the CPU clock prescaler by writing the HPRE bits in RCC_CFGR
5.
Check that the new CPU clock source or/and the new CPU clock prescaler value is/are
taken into account by reading the clock source status (SWS bits) or/and the AHB
prescaler value (HPRE bits), respectively, in the RCC_CFGR register.
DocID024597 Rev 3
RM0351
Embedded Flash memory (FLASH)
Decreasing the CPU frequency:
3.3.4
1.
Modify the CPU clock source by writing the SW bits in the RCC_CFGR register
2.
If needed, modify the CPU clock prescaler by writing the HPRE bits in RCC_CFGR
3.
Check that the new CPU clock source or/and the new CPU clock prescaler value is/are
taken into account by reading the clock source status (SWS bits) or/and the AHB
prescaler value (HPRE bits), respectively, in the RCC_CFGR register
4.
Program the new number of wait states to the LATENCY bits in Flash access control
register (FLASH_ACR)
5.
Check that the new number of wait states is used to access the Flash memory by
reading the FLASH_ACR register
Adaptive real-time memory accelerator (ART Accelerator™)
The proprietary Adaptive real-time (ART) memory accelerator is optimized for STM32
industry-standard ARM® Cortex®-M4 with FPU processors. It balances the inherent
performance advantage of the ARM® Cortex®-M4 with FPU over Flash memory
technologies, which normally requires the processor to wait for the Flash memory at higher
operating frequencies.
To release the processor full performance, the accelerator implements an instruction
prefetch queue and branch cache which increases program execution speed from the 64bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the
ART accelerator is equivalent to 0 wait state program execution from Flash memory at a
CPU frequency up to 80 MHz.
Instruction prefetch
The Cortex®-M4 fetches the instruction over the ICode bus and the literal pool
(constant/data) over the DCode bus. The prefetch block aims at increasing the efficiency of
ICode bus accesses.
Each Flash memory read operation provides 64 bits from either two instructions of 32 bits or
four instructions of 16 bits according to the program launched. This 64-bits current
instruction line is saved in a current buffer. So, in case of sequential code, at least two CPU
cycles are needed to execute the previous read instruction line. Prefetch on the ICode bus
can be used to read the next sequential instruction line from the Flash memory while the
current instruction line is being requested by the CPU.
Prefetch is enabled by setting the PRFTEN bit in the Flash access control register
(FLASH_ACR). This feature is useful if at least one wait state is needed to access the Flash
memory.
Figure 3 shows the execution of sequential 16-bit instructions with and without prefetch
when 3 WS are needed to access the Flash memory.
DocID024597 Rev 3
83/1693
120
Embedded Flash memory (FLASH)
RM0351
Figure 3. Sequential 16 bits instructions execution
#
:$,7
)
#
'
(
)
'
(
#
)
'
(
#
)
'
:,7+28735()(7&+
#
(
)
:$,7
#
LQV LQV LQV LQV
IHWFK IHWFK IHWFK IHWFK
5HDGLQV
#
:$,7
#
*LYHVLQV
)
'
(
)
'
(
#
)
'
#
)
LQV LQV LQV LQV
IHWFK IHWFK IHWFK IHWFK
5HDGLQV
*LYHVLQV
'
(
)
'
(
#
)
'
(
#
)
'
(
#
)
'
(
#
)
'
(
#
)
'
#
)
:,7+35()(7&+
LQV LQV LQV LQV LQV LQV LQV LQV
IHWFK IHWFK IHWFK IHWFK IHWFK IHWFK IHWFK IHWFK
5HDGLQV
*LYHVLQV
5HDGLQV
*LYHVLQV
&RUWH[0SLSHOLQH
#
)
'
(
$+%SURWRFRO
#DGGUHVVUHTXHVWHG
))HWFKVWDJH
''HFRGHVWDJH
(([HFXWHVWDJH
5HDGLQV
069
When the code is not sequential (branch), the instruction may not be present in the currently
used instruction line or in the prefetched instruction line. In this case (miss), the penalty in
terms of number of cycles is at least equal to the number of wait states.
84/1693
DocID024597 Rev 3
RM0351
Embedded Flash memory (FLASH)
If a loop is present in the current buffer, no new flash access is performed.
Instruction cache memory (I-Cache)
To limit the time lost due to jumps, it is possible to retain 32 lines of 4*64 bits in an instruction
cache memory.This feature can be enabled by setting the instruction cache enable (ICEN)
bit in the Flash access control register (FLASH_ACR). Each time a miss occurs (requested
data not present in the currently used instruction line, in the prefetched instruction line or in
the instruction cache memory), the line read is copied into the instruction cache memory. If
some data contained in the instruction cache memory are requested by the CPU, they are
provided without inserting any delay. Once all the instruction cache memory lines have been
filled, the LRU (least recently used) policy is used to determine the line to replace in the
instruction memory cache. This feature is particularly useful in case of code containing
loops.
The Instruction cache memory is enable after system reset.
Data cache memory (D-Cache)
Literal pools are fetched from Flash memory through the DCode bus during the execution
stage of the CPU pipeline. Each DCode bus read access fetches 64 bits which are saved in
a current buffer. The CPU pipeline is consequently stalled until the requested literal pool is
provided. To limit the time lost due to literal pools, accesses through the AHB databus
DCode have priority over accesses through the AHB instruction bus ICode.
If some literal pools are frequently used, the data cache memory can be enabled by setting
the data cache enable (DCEN) bit in the Flash access control register (FLASH_ACR). This
feature works like the instruction cache memory, but the retained data size is limited to 8
rows of 4*64 bits.
The Data cache memory is enable after system reset.
Note:
The D-Cache is active only when data is requested by the CPU (not by DMA1 and DMA2).
Data in option bytes block are not cacheable.
3.3.5
Flash program and erase operations
The STM32L4x embedded Flash memory can be programmed using in-circuit programming
or in-application programming.
The in-circuit programming (ICP) method is used to update the entire contents of the
Flash memory, using the JTAG, SWD protocol or the boot loader to load the user application
into the microcontroller. ICP offers quick and efficient design iterations and eliminates
unnecessary package handling or socketing of devices.
In contrast to the ICP method, in-application programming (IAP) can use any
communication interface supported by the microcontroller (I/Os, USB, CAN, UART, I2C, SPI,
etc.) to download programming data into memory. IAP allows the user to re-program the
Flash memory while the application is running. Nevertheless, part of the application has to
have been previously programmed in the Flash memory using ICP.
The contents of the Flash memory are not guaranteed if a device reset occurs during a
Flash memory operation.
An on-going Flash memory operation will not block the CPU as long as the CPU does not
access the same Flash memory bank. Code or data fetches are possible on one bank while
a write/erase operation is performed to the other bank (refer to Section 3.3.8: Read-while-
DocID024597 Rev 3
85/1693
120
Embedded Flash memory (FLASH)
RM0351
write (RWW)).
On the contrary, during a program/erase operation to the Flash memory, any attempt to read
the same Flash memory bank will stall the bus. The read operation will proceed correctly
once the program/erase operation has completed.
Unlocking the Flash memory
After reset, write is not allowed in the Flash control register (FLASH_CR) to protect the
Flash memory against possible unwanted operations due, for example, to electric
disturbances. The following sequence is used to unlock this register:
1.
Write KEY1 = 0x45670123 in the Flash key register (FLASH_KEYR)
2.
Write KEY2 = 0xCDEF89AB in the FLASH_KEYR register.
Any wrong sequence will lock up the FLASH_CR register until the next system reset. In the
case of a wrong key sequence, a bus error is detected and a Hard Fault interrupt is
generated.
The FLASH_CR register can be locked again by software by setting the LOCK bit in the
FLASH_CR register.
Note:
The FLASH_CR register cannot be written when the BSY bit in the Flash status register
(FLASH_SR) is set. Any attempt to write to it with the BSY bit set will cause the AHB bus to
stall until the BSY bit is cleared.
3.3.6
Flash main memory erase sequences
The Flash memory erase operation can be performed at page level, bank level or on the
whole Flash memory (Mass Erase). Mass Erase does not affect the Information block
(system flash, OTP and option bytes).
Page erase
To erase a page (2Kbytes), follow the procedure below:
Note:
1.
Check that no Flash memory operation is ongoing by checking the BSY bit in the Flash
status register (FLASH_SR).
2.
Check and clear all error programming flags due to a previous programming. If not,
PGSERR is set.
3.
Set the PER bit and select the page you wish to erase (PNB) with the associated bank
(BKER) in the Flash control register (FLASH_CR).
4.
Set the STRT bit in the FLASH_CR register.
5.
Wait for the BSY bit to be cleared in the FLASH_SR register.
The internal oscillator HSI16 (16 MHz) is enabled automatically when STRT bit is set, and
disabled automatically when STRT bit is cleared, except if the HSI16 is previously enabled
with HSION in RCC_CR register.
If the page erase is part of write-protected area (by WRP or PCROP), WRPERR is set and
the page erase request is aborted.
Bank 1, Bank 2 or both banks Mass erase
To perform a bank Mass Erase, follow the procedure below:
86/1693
DocID024597 Rev 3
RM0351
Note:
Embedded Flash memory (FLASH)
1.
Check that no Flash memory operation is ongoing by checking the BSY bit in the
FLASH_SR register
2.
Check and clear all error programming flags due to a previous programming. If not,
PGSERR is set.
3.
Set the MER1 bit or/and MER2 (depending on the bank) in the Flash control register
(FLASH_CR). The both banks can be selected in the same operation.
4.
Set the STRT bit in the FLACH_CR register.
5.
Wait for the BSY bit to be cleared in the Flash status register (FLASH_SR).
The internal oscillator HSI16 (16 MHz) is enabled automatically when STRT bit is set, and
disabled automatically when STRT bit is cleared, except if the HSI16 is previously enabled
with HSION in RCC_CR register.
If the bank to erase or if one of the banks to erase contains a write-protected area (by WRP
or PCROP), WRPERR is set and the mass erase request is aborted (for both banks if both
are selected).
3.3.7
Flash main memory programming sequences
The Flash memory is programmed 72 bits at a time (64 bits + 8 bits ECC).
Programming in a previously programmed address is not allowed except if the data to write
is full zero, and any attempt will set PROGERR flag in the Flash status register
(FLASH_SR).
It is only possible to program double word (2 x 32-bit data).
•
Any attempt to write byte or half-word will set SIZERR flag in the FLASH_SR register.
•
Any attempt to write a double word which is not aligned with a double word address will
set PGAERR flag in the FLASH_SR register.
Standard programming
The Flash memory programming sequence in standard mode is as follows:
Note:
1.
Check that no Flash main memory operation is ongoing by checking the BSY bit in the
Flash status register (FLASH_SR).
2.
Check and clear all error programming flags due to a previous programming. If not,
PGSERR is set.
3.
Set the PG bit in the Flash control register (FLASH_CR).
4.
Perform the data write operation at the desired memory address, inside main memory
block or OTP area. Only double word can be programmed.
–
Write a first word in an address aligned with double word
–
Write the second word
5.
Wait until the BSY bit is cleared in the FLASH_SR register.
6.
Check that EOP flag is set in the FLASH_SR register (meaning that the programming
operation has succeed), and clear it by software.
7.
Clear the PG bit in the FLASH_SR register if there no more programming request
anymore.
When the flash interface has received a good sequence (a double word), programming is
automatically launched and BSY bit is set. The internal oscillator HSI16 (16 MHz) is enabled
DocID024597 Rev 3
87/1693
120
Embedded Flash memory (FLASH)
RM0351
automatically when PG bit is set, and disabled automatically when PG bit is cleared, except
if the HSI16 is previously enabled with HSION in RCC_CR register.
If the user needs to program only one word, double word must be completed with the erase
value 0xFFFF FFFF to launch automatically the programming.
ECC is calculated from the double word to program.
Fast programming
This mode allows to program a row (32 double word) and to reduce the page programming
time by eliminating the need for verifying the flash locations before they are programmed
and to avoid rising and falling time of high voltage for each double word. During fast
programming, the CPU clock frequency (HCLK) must be at least 8 MHz.
Only the main memory can be programmed in Fast programming mode.
The Flash main memory programming sequence in standard mode is as follows:
Note:
1.
Perform a mass erase of the bank to program. If not, PGSERR is set.
2.
Check that no Flash main memory operation is ongoing by checking the BSY bit in the
Flash status register (FLASH_SR).
3.
Check and clear all error programming flag due to a previous programming.
4.
Set the FSTPG bit in Flash control register (FLASH_CR).
5.
Write the 32 double words to program a row.
6.
Wait until the BSY bit is cleared in the FLASH_SR register.
7.
Check that EOP flag is set in the FLASH_SR register (meaning that the programming
operation has succeed), and clear it by software.
8.
Clear the FSTPG bit in the FLASH_SR register if there no more programming request
anymore.
If the flash is attempted to be written in Fast programming mode while a read operation is on
going in the same bank, the programming is aborted without any system notification (no
error flag is set).
When the flash interface has received the first double word, programming is automatically
launched. The BSY bit is set when the high voltage is applied for the first double word, and it
is cleared when the last double word has been programmed or in case of error. The internal
oscillator HSI16 (16 MHz) is enabled automatically when FSTPG bit is set, and disabled
automatically when FSTPG bit is cleared, except if the HSI16 is previously enabled with
HSION in RCC_CR register.
The 32 double word must be written successively. The high voltage is kept on the flash for
all the programming. Maximum time between two double words write requests is the time
programming (around 20us). If a second double word arrives after this time programming,
fast programming is interrupted and MISSERR is set.
High voltage mustn’t exceed 8 ms for a full row between 2 erases. This is guaranteed by the
sequence of 32 double words successively written with a clock system greater or equal to
8MHz. An internal time-out counter counts 7ms when Fast programming is set and stops the
programming when time-out is over. In this case the FASTERR bit is set.
If an error occurs, high voltage is stopped and next double word to programmed is not
programmed. Anyway, all previous double words have been properly programmed.
88/1693
DocID024597 Rev 3
RM0351
Embedded Flash memory (FLASH)
Programming errors
Several kind of errors can be detected. In case of error, the Flash operation (programming
or erasing) is aborted.
•
PROGERR: Programming Error
In standard programming: PROGERR is set if the word to write is not previously erased
(except if the value to program is full zero).
•
SIZERR: Size Programming Error
In standard programming or in fast programming: only double word can be
programmed and only 32-bit data can be written. SIZERR is set if a byte or an halfword is written.
•
PGAERR: Alignment Programming error
PGAERR is set if one of the following conditions occurs:
•
–
In standard programming: the first word to be programmed is not aligned with a
double word address, or the second word doesn’t belong to the same double word
address.
–
In fast programming: the data to program doesn’t belong to the same row than the
previous programmed double words, or the address to program in not greater than
the previous one.
PGSERR: Programming Sequence Error
PGSERR is set if one of the following conditions occurs:
•
–
In the standard programming sequence or the fast programming sequence: a data
is written when PG and FSTPG are cleared.
–
In the standard programming sequence or the fast programming sequence:
MER1, MER2, and PER are not cleared when PG or FSTPG is set.
–
In the fast programming sequence: the Mass erase is not performed before setting
FSTPG bit.
–
In the mass erase sequence: PG, FSTPG, and PER are not cleared when MER1
or MER2 is set.
–
In the page erase sequence: PG, FSTPG, MER1 and MER2 are not cleared when
PER is set.
–
PGSERR is set also if PROGERR, SIZERR, PGAERR, WRPERR, MISSERR,
FASTERR or PGSERR is set due to a previous programming error.
WRPERR: Write Protection Error
WRPERR is set if one of the following conditions occurs:
•
–
Attempt to program or erase in a write protected area (WRP) or in a PCROP area.
–
Attempt to perform a bank erase when one page or more is protected by WRP or
PCROP.
–
The debug features are connected or the boot is executed from SRAM or from
System flash when the read protection (RDP) is set to Level 1.
–
Attempt to modify the option bytes when the read protection (RDP) is set to
Level 2.
MISSERR: Fast Programming Data Miss Error
In fast programming: all the data must be written successively. MISSERR is set if the
previous data programmation is finished and the next data to program is not written yet.
•
FASTERR: Fast Programming Error
DocID024597 Rev 3
89/1693
120
Embedded Flash memory (FLASH)
RM0351
In fast programming: FASTERR is set if one of the following conditions occurs:
–
When FSTPG bit is set for more than 7µs which generates a time-out detection.
–
When the row fast programming has been interrupted by a MISSERR, PGAERR,
WRPERR or SIZERR.
If an error occurs during a program or erase operation, one of the following error flags is set
in the FLASH_SR register:
PROGERR, SIZERR, PGAERR, PGSERR, MISSERR (Program error flags),
WRPERR (Protection error flag)
In this case, if the error interrupt enable bit ERRIE is set in the Flash status register
(FLASH_SR), an interrupt is generated and the operation error flag OPERR is set in the
FLASH_SR register.
Note:
If several successive errors are detected (for example, in case of DMA transfer to the Flash
memory), the error flags cannot be cleared until the end of the successive write requests.
Programming and caches
If a Flash memory write access concerns some data in the data cache, the Flash write
access modifies the data in the Flash memory and the data in the cache.
If an erase operation in Flash memory also concerns data in the data or instruction cache,
you have to make sure that these data are rewritten before they are accessed during code
execution. If this cannot be done safely, it is recommended to flush the caches by setting the
DCRST and ICRST bits in the Flash control register (FLASH_CR).
Note:
The I/D cache should be flushed only when it is disabled (I/DCEN = 0).
3.3.8
Read-while-write (RWW)
The Flash memory is divided into two banks allowing read-while-write operations. This
feature allows to perform a read operation from one bank while an erase or program
operation is performed to the other bank.
Note:
Write-while-write operations are not allowed. As an exampled, It is not possible to perform
an erase operation on one bank while programming the other one.
Read from bank 1 while page erasing in bank 2 (or vice versa)
While executing a program code from bank 1, it is possible to perform a page erase
operation on bank 2 (and vice versa). Follow the procedure below:
1.
Check that no Flash memory operation is ongoing by checking the BSY bit in the Flash
status register (FLASH_SR) (BSY is active when erase/program operation is on going
in bank 1 or bank 2).
2.
Set PER bit, PSB to select the page and BKER to select the bank in the Flash control
register (FLASH_CR).
3.
Set the STRT bit in the FLASH_CR register.
4.
Wait for the BSY bit to be cleared (or use the EOP interrupt).
Read from bank 1 while mass erasing bank 2 (or vice versa)
While executing a program code from bank 1, it is possible to perform a mass erase
operation on bank 2 (and vice versa). Follow the procedure below:
90/1693
DocID024597 Rev 3
RM0351
Embedded Flash memory (FLASH)
1.
Check that no Flash memory operation is ongoing by checking the BSY bit in the Flash
status register (FLASH_SR) (BSY is active when erase/program operation is on going
in bank 1 or bank 2).
2.
Set MER1 or MER2 to in the Flash control register (FLASH_CR).
3.
Set the STRT bit in the FLASH_CR register.
4.
Wait for the BSY bit to be cleared (or use the EOP interrupt).
Read from bank 1 while programming bank 2 (or vice versa)
While executing a program code from bank 1, it is possible to perform a program operation
on the bank 2. (and vice versa). Follow the procedure below:
1.
Check that no Flash memory operation is ongoing by checking the BSY bit in the Flash
status register (FLASH_SR) (BSY is active when erase/program operation is on going
on bank 1 or bank 2).
2.
Set the PG bit in the Flash control register (FLASH_CR).
3.
Perform the data write operations at the desired address memory inside the main
memory block or OTP area.
4.
Wait for the BSY bit to be cleared (or use the EOP interrupt).
DocID024597 Rev 3
91/1693
120
Embedded Flash memory (FLASH)
RM0351
3.4
FLASH option bytes
3.4.1
Option bytes description
The option bytes are configured by the end user depending on the application requirements.
As a configuration example, the watchdog may be selected in hardware or software mode
(refer to Section 3.4.2: Option bytes programming).
A double word is split up as follows in the option bytes:
Table 9. Option byte format
63-24
23-16
15 -8
7-0
Complemented Complemented Complemented Complemented
option byte 3
option byte 2
option byte 1
option byte 0
31-24
23-16
15 -8
7-0
Option
byte 3
Option
byte 2
Option
byte 1
Option
byte 0
The organization of these bytes inside the information block is as shown in Table 10: Option
byte organization.
The option bytes can be read from the memory locations listed in Table 10: Option byte
organization or from the Option byte registers:
•
Flash option register (FLASH_OPTR)
•
Flash Bank 1 PCROP Start address register (FLASH_PCROP1SR)
•
Flash Bank 1 PCROP End address register (FLASH_PCROP1ER)
•
Flash Bank 1 WRP area A address register (FLASH_WRP1AR)
•
Flash Bank 1 WRP area B address register (FLASH_WRP1BR)
•
Flash Bank 2 PCROP Start address register (FLASH_PCROP2SR)
•
Flash Bank 2 PCROP End address register (FLASH_PCROP2ER)
•
Flash Bank 2 WRP area A address register (FLASH_WRP2AR)
•
Flash Bank 2 WRP area B address register (FLASH_WRP2BR).
Table 10. Option byte organization
Address
63
[62:56]
1FFF7800
92/1693
Unused
PCROP_RDP
Bank 1
[47:40]
USER OPT
1FFF7808
1FFF7810
[55:48]
Unused
[39:32]
31
[30:24]
RDP
Unused
PCROP1_STRT
PCROP1_END
[23:16]
[15:8]
USER OPT
PCROP_RDP
BANK
Unused
[7:0]
RDP
PCROP1_STRT
PCROP1_END
1FFF7818
Unused
WRP1A
_END
Unused
WRP1A
_STRT
Unused
WRP1A
_
END
Unused
WRP1A
_STRT
1FFF7820
Unused
WRP1B
_END
Unused
WRP1B
_STRT
Unused
WRP1B
_
END
Unused
WRP1B
_STRT
DocID024597 Rev 3
RM0351
Embedded Flash memory (FLASH)
Table 10. Option byte organization (continued)
BANK
Address
63
[62:56]
[55:48]
1FFFF800
[47:40]
[39:32]
31
[30:24]
[23:16]
Unused
[15:8]
[7:0]
Unused
1FFFF808
Unused
PCROP2_STRT
Unused
PCROP2_STRT
1FFFF810
Unused
PCROP2_END
Unused
PCROP2_END
Bank 2
1FFFF818
Unused
WRP2A
_END
Unused
WRP2A
_STRT
Unused
WRP2A
_END
Unused
WRP2A
_STRT
1FFFF820
Unused
WRP2B
_END
Unused
WRP2B
_STRT
Unused
WRP2B
_END
Unused
WRP2B
_STRT
User and read protection option bytes
Flash memory address: 0x1FFF 7800
ST production value: 0xFFEF F8AA
31
30
29
28
27
26
25
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
Res.
nRST_ nRST_ nRST_
SHDW STDBY STOP
r
r
r
Res.
24
23
SRAM2 SRAM2
n
_RST
_PE BOOT1
r
r
r
9
8
7
22
21
Res.
DUAL
BANK
r
r
r
r
r
r
6
5
4
3
2
1
0
r
r
r
BOR_LEV[2:0]
r
r
20
BFB2
19
18
17
16
WWDG IWGD_ IWDG_ IWDG_
_SW STDBY StOP
SW
RDP[7:0]
r
r
r
r
r
r
Bits 31:26 Not used
Bit 25 SRAM2_RST: SRAM2 Erase when system reset
0: SRAM2 erased when a system reset occurs
1: SRAM2 is not erased when a system reset occurs
Bit 24 SRAM2_PE: SRAM2 parity check enable
0: SRAM2 parity check enable
1: SRAM2 parity check disable
Bit 23 nBOOT1: Boot configuration
Together with the BOOT0 pin, this bit selects boot mode from the Flash main
memory, SRAM1 or the System memory. Refer to Section 2.6: Boot
configuration.
Bit 22 Not used
Bit 21 DUALBANK: Dual-Bank on 512 KB or 256 KB Flash memory devices
0: 256 KB/512 KB Single-bank Flash: Contiguous addresses in Bank 1
1: 256 KB/512 KB Dual-bank Flash: Refer to Table 6 and Table 7.
Bit 20 BFB2: Dual-bank boot
0: Dual-bank boot disable
1: Dual-bank boot enable
Bit 19 WWDG_SW: Window watchdog selection
0: Hardware window watchdog
1: Software window watchdog
DocID024597 Rev 3
93/1693
120
Embedded Flash memory (FLASH)
RM0351
Bit 18 IWDG_STDBY: Independent watchdog counter freeze in Standby mode
0: Independent watchdog counter is frozen in Standby mode
1: Independent watchdog counter is running in Standby mode
Bit 17 IWDG_STOP: Independent watchdog counter freeze in Stop mode
0: Independent watchdog counter is frozen in Stop mode
1: Independent watchdog counter is running in Stop mode
Bit 16 IDWG_SW: Independent watchdog selection
0: Hardware independent watchdog
1: Software independent watchdog
Bit 15 Not used
Bit 14 nRST_SHDW
0: Reset generated when entering the Shutdown mode
1: No reset generated when entering the Shutdown mode
Bit 13 nRST_STDBY
0: Reset generated when entering the Standby mode
1: No reset generate when entering the Standby mode
Bit 12 nRST_STOP
0: Reset generated when entering the Stop mode
1: No reset generated when entering the Stop mode
Bit 11 Not used
Bits10:8 BOR_LEV: BOR reset Level
These bits contain the VDD supply level threshold that activates/releases the
reset.
000: BOR Level 0. Reset level threshold is around 1.7 V
001: BOR Level 1. Reset level threshold is around 2.0 V
010: BOR Level 2. Reset level threshold is around 2.2 V
011: BOR Level 3. Reset level threshold is around 2.5 V
100: BOR Level 4. Reset level threshold is around 2.8 V
Bits 7:0 RDP: Read protection level
0xAA: Level 0, read protection not active
0xCC: Level 2, chip read protection active
Others: Level 1, memories read protection active
Bank 1 PCROP Start address option bytes
Flash memory address: 0x1FFF 7808
ST production value: 0xFFFF FFFF
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
PCROP1_STRT[15:0]
r
94/1693
r
r
r
r
r
r
r
r
DocID024597 Rev 3
RM0351
Embedded Flash memory (FLASH)
Bits 31:16 Not used
Bits 15:0 PCROP1_STRT: Bank 1 PCROP area start offset
PCROP1_STRT contains the first double-word of the bank 1 PCROP area.
Bank 1 PCROP End address option bytes
Flash memory address: 0x1FFF 7810
ST production value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
PCROP
_RDP
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
PCROP1_END[15:0]
r
r
Bit 31 PCROP_RDP: PCROP area preserved when RDP level decreased
This bit is set only. It is reset after a full mass erase due to a change of RDP
from Level 1 to Level 0.
0: PCROP area is not erased when the RDP level is decreased from Level 1 to
Level 0.
1: PCROP area is erased when the RDP level is decreased from Level 1 to
Level 0 (full mass erase).
Bits 30:16 Not used
Bits 15:0 PCROP1_END: Bank 1 PCROP area end offset
PCROP1_END contains the last double-word of the bank 1 PCROP area.
Bank 1 WRP Area A address option bytes
Flash memory address: 0x1FFF 7818
ST production value: 0x0000 00FF
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
23
22
21
20
19
18
17
16
WRP1A_END[15:0]
r
r
r
7
6
5
r
r
r
r
r
4
3
2
1
0
r
r
r
WRP1A_STRT[15:0]
r
r
r
r
r
Bits 31:24 Not used
Bits 23:16 WRP1A_END: Bank 1 WRP first area “A” end offset
WRPA1_END contains the last page of the Bank 1 WRP first area.
Bits 15:8 Not used
Bits 7:0 WRP1A_STRT: Bank 1 WRP first area “A” start offset
WRPA1_STRT contains the first page of the Bank 1 WRP first area.
DocID024597 Rev 3
95/1693
120
Embedded Flash memory (FLASH)
RM0351
Bank 1 WRP Area B address option bytes
Flash memory address: 0x1FFF 7820
ST production value: 0x0000 00FF
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
23
22
21
20
19
18
17
16
r
r
r
r
r
r
r
r
7
6
5
4
3
2
1
0
r
r
r
WRP1B_END[15:0]
WRP1B_STRT[15:0]
r
r
r
r
r
Bits 31:24 Not used
Bits 23:16 WRP1B_END: Bank 1 WRP first area “B” end offset
WRPB1_END contains the last page of the Bank 1 WRP second area.
Bits 15:8 Not used
Bits 7:0 WRP1B_STRT: Bank 1 WRP first area “B” start offset
WRPB1_STRT contains the first page of the Bank 1 WRP second area.
Bank 2 PCROP Start address option bytes
Flash memory address: 0x1FFF F808
ST production value: 0xFFFF FFFF
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
PCROP2_STRT[15:0]
r
r
r
r
r
r
r
r
r
Bits 31:16 Not used
Bits 15:0 PCROP2_STRT: Bank 2 PCROP area start offset
PCROP2_STRT contains the first double-word of the bank 2 PCROP area.
Bank 2 PCROP End address option bytes
Flash memory address: 0x1FFF F810
ST production value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
r
r
r
r
r
r
r
PCROP2_END[15:0]
96/1693
r
r
DocID024597 Rev 3
RM0351
Embedded Flash memory (FLASH)
Bits 31:16 Not used
Bits 15:0 PCROP2_END: Bank 2 PCROP area end offset
PCROP2_END contains the last double-word of the bank 2 PCROP area.
Bank 2 WRP Area A address option bytes
Flash memory address: 0x1FFF F818
ST production value: 0x0000 00FF
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
23
22
21
20
19
18
17
16
WRP2A_END[15:0]
r
r
r
r
r
r
r
r
7
6
5
4
3
2
1
0
r
r
r
r
r
r
17
16
WRP2A_STRT[15:0]
r
r
Bits 31:24 Not used
Bits 23:16 WRP2A_END: Bank 2 WRP first area “A” end offset
WRP2A_END contains the last page of the Bank 2 WRP first area.
Bits 15:8 Not used
Bits 7:0 WRP2A_STRT: Bank 2 WRP first area “A” start offset
WRP2A_STRT contains the first page of the Bank 2 WRP first area.
Bank 2 WRP Area B address option bytes
Flash memory address: 0x1FFF F820
ST production value: 0x0000 00FF
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
23
22
21
20
19
18
WRP2B_END[15:0]
r
r
r
r
r
r
r
r
7
6
5
4
3
2
1
0
r
r
r
r
r
r
WRP2B_STRT[15:0]
r
r
Bits 31:24 Not used
Bits 23:16 WRP2B_END: Bank 2 WRP first area “B” end offset
WRP2B_END contains the last page of the Bank 2 WRP second area.
Bits 15:8 Not used
Bits 7:0 WRP2B_STRT: Bank 2 WRP first area “B” start offset
WRP2B_STRT contains the first page of the Bank 2 WRP second area.
3.4.2
Option bytes programming
After reset, the options related bits in the Flash control register (FLASH_CR) are writeprotected. To run any operation on the option bytes page, the option lock bit OPTLOCK in
the Flash control register (FLASH_CR) must be cleared. The following sequence is used to
DocID024597 Rev 3
97/1693
120
Embedded Flash memory (FLASH)
RM0351
unlock this register:
1.
Unlock the FLASH_CR with the LOCK clearing sequence (refer to Unlocking the Flash
memory).
2.
Write OPTKEY1 = 0x08192A3B in the Flash option key register (FLASH_OPTKEYR).
3.
Write OPTKEY2 = 0x4C5D6E7F in the FLASH_OPTKEYR register.
The user options can be protected against unwanted erase/program operations by setting
the OPTLOCK bit by software.
Note:
If LOCK is set by software, OPTLOCK is automatically set too.
Modifying user options
The option bytes are programmed differently from a main memory user address. It is not
possible to modify independently user options of bank 1 or bank 2. The users Options of the
bank 1 are modified first.
To modify the user options value, follow the procedure below:
Note:
1.
Check that no Flash memory operation is on going by checking the BSY bit in the Flash
status register (FLASH_SR).
2.
Clear OPTLOCK option lock bit with the clearing sequence described above.
3.
Write the desired options value in the options registers: Flash option register
(FLASH_OPTR), Flash Bank 1 PCROP Start address register (FLASH_PCROP1SR),
Flash Bank 1 PCROP End address register (FLASH_PCROP1ER), Flash Bank 1 WRP
area A address register (FLASH_WRP1AR), Flash Bank 1 WRP area B address
register (FLASH_WRP1BR), Flash Bank 2 PCROP Start address register
(FLASH_PCROP2SR), Flash Bank 2 PCROP End address register
(FLASH_PCROP2ER), Flash Bank 2 WRP area A address register
(FLASH_WRP2AR), Flash Bank 2 WRP area B address register (FLASH_WRP2BR).
4.
Set the Options Start bit OPTSTRT in the Flash control register (FLASH_CR).
5.
Wait for the BSY bit to be cleared.
Any modification of the value of one option is automatically performed by erasing both user
option bytes pages first (bank 1 and bank 2) and then programming all the option bytes with
the values contained in the flash option registers.
Option byte loading
After the BSY bit is cleared, all new options are updated into the flash but they are not
applied to the system. They will have effect on the system when they are loaded. Option
bytes loading is performed in two cases:
–
when OBL_LAUNCH bit is set in the Flash control register (FLASH_CR).
–
after a power reset (BOR reset or exit from Standby/Shutdown modes).
Option byte loader performs a read of the options block and stores the data into internal
option registers. These internal registers configure the system and cannot be read with by
software. Setting OBL_LAUNCH generates a reset so the option byte loading is performed
under system reset.
Each option bit has also its complement in the same double word. During option loading, a
verification of the option bit and its complement allows to check the loading has correctly
taken place.
98/1693
DocID024597 Rev 3
RM0351
Embedded Flash memory (FLASH)
During option byte loading, the options are read by double word with ECC. If the word and
its complement are matching, the option word/byte is copied into the option register.
If the comparison between the word and its complement fails, a status bit OPTVERR is set.
Mismatch values are forced into the option registers:
–
For USR OPT option, the value of mismatch is all options at ‘1’, except for
BOR_LEV which is “000” (lowest threshold)
–
For WRP option, the value of mismatch is the default value “No protection”
–
For RDP option, the value of mismatch is the default value “Level 1”
–
For PCROP, the value of mismatch is “all memory protected”
On system reset rising, internal option registers are copied into option registers which can
be read and written by software (FLASH_OPTR, FLASH_PCROP1/2SR,
FLASH_PCROP1/2ER, FLASH_WRP1/2AR, FLASH_WRP1/2BR). These registers
are also used to modify options. If these registers are not modified by user, they
reflects the options states of the system. See Section : Modifying user options for more
details.
DocID024597 Rev 3
99/1693
120
Embedded Flash memory (FLASH)
3.5
RM0351
FLASH memory protection
The Flash main memory can be protected against external accesses with the Read
protection (RDP). The pages of the Flash memory can also be protected against unwanted
write due to loss of program counter contexts. The write-protection (WRP) granularity is one
page (2 KBytes). Apart of the flash memory can also be protected against read and write
from third parties (PCROP). The PCROP granularity is double word (64-bit).
3.5.1
Read protection (RDP)
The read protection is activated by setting the RDP option byte and then, by applying a
system reset to reload the new RDP option byte. The read protection protects to the Flash
main memory, the option bytes, the backup registers (RTC_BKPxR in the RTC) and the
SRAM2.
Note:
If the read protection is set while the debugger is still connected through JTAG/SWD, apply
a POR (power-on reset) instead of a system reset.
There are three levels of read protection from no protection (level 0) to maximum protection
or no debug (level 2).
The Flash memory is protected when the RDP option byte and its complement contain the
pair of values shown in Table 11.
Table 11. Flash memory read protection status
RDP byte value
RDP complement value
Read protection level
0xAA
0x55
Level 0
Any value except 0xAA or
0xCC
Any value (not necessarily
complementary) except 0x55 and
0x33
Level 1 (default)
0xCC
0x33
Level 2
The System memory area is read accessible whatever the protection level. It is never
accessible for program/erase operation.
Level 0: no protection
Read, program and erase operations into the Flash main memory area are possible. The
option bytes, the SRAM2 and the backup registers are also accessible by all operations.
100/1693
DocID024597 Rev 3
RM0351
Embedded Flash memory (FLASH)
Level 1: Read protection
This is the default protection level when RDP option byte is erased. It is defined as well
when RDP value is at any value different from 0xAA and 0xCC, or even if the complement is
not correct.
•
User mode: Code executing in user mode (Boot Flash) can access Flash main
memory, option bytes, SRAM2 and backup registers with all operations.
•
Debug, boot RAM and boot loader modes: In debug mode or when code is running
from boot RAM or boot loader, the Flash main memory, the backup registers
(RTC_BKPxR in the RTC) and the SRAM2 are totally inaccessible. In these modes, a
read or write access to the Flash generates a bus error and a Hard Fault interrupt.
Level 2: No debug
In this level, the protection level 1 is guaranteed. In addition, the Cortex®-M4 debug port, the
boot from RAM (boot RAM mode) and the boot from System memory (boot loader mode)
are no more available. In user execution mode (boot FLASH mode), all operations are
allowed on the Flash Main memory. On the contrary, only read operations can be performed
on the option bytes.
Option bytes cannot be programmed nor erased. Thus, the level 2 cannot be removed at all:
it is an irreversible operation. When attempting to modify the options bytes, the protection
error flag WRPERR is set in the Flash_SR register and an interrupt can be generated.
Note:
The debug feature is also disabled under reset.
STMicroelectronics is not able to perform analysis on defective parts on which the level 2
protection has been set.
Changing the Read protection level
It is easy to move from level 0 to level 1 by changing the value of the RDP byte to any value
(except 0xCC). By programming the 0xCC value in the RDP byte, it is possible to go to level
2 either directly from level 0 or from level 1. Once in level 2, it is no more possible to modify
the Read protection level.
When the RDP is reprogrammed to the value 0xAA to move from Level 1 to Level 0, a mass
erase of the Flash main memory is performed if PCROP_RDP is set in the Flash Bank 1
PCROP End address register (FLASH_PCROP1ER). The backup registers (RTC_BKPxR in
the RTC) and the SRAM2 are also erased. The user options except PCROP protection are
set to their previous values copied from FLASH_OPTR, FLASH_WRPxyR (x=1, 2 and y =A
or B). PCROP is disable. The OTP area is not affected by mass erase and remains
unchanged.
If the bit PCROP_RDP is cleared in the FLASH_PCROP1ER, the full mass erase is
replaced by a partial mass erase that is successive page erases in the bank where PCROP
is active, except for the pages protected by PCROP. This is done in order to keep the
PCROP code. If PCROP is active for both banks, both banks are erased by page erases.
Only when both banks are erased, options are re-programmed with their previous values.
This is also true for FLASH_PCROPxSR and FLASH_PCROPxER registers (x=1,2).
Note:
Full Mass Erase or Partial Mass Erase is performed only when Level 1 is active and Level 0
requested. When the protection level is increased (0->1, 1->2, 0->2) there is no mass erase.
To validate the protection level change, the option bytes must be reloaded through the
OBL_LAUNCH bit in Flash control register.
DocID024597 Rev 3
101/1693
120
Embedded Flash memory (FLASH)
RM0351
Figure 4. Changing the Read protection (RDP) level
5'3[$$DQG5'3[&&
2WKHUVRSWLRQVPRGLILHG
/HYHO
5'3[$$
5'3[&&
GHIDXOW
:ULWHRSWLRQV,QFOXGLQJ
5'3 [&&
:ULWHRSWLRQVLQFOXGLQJ
5'3[&&DQG5'3[$$
/HYHO
5'3 [&&
:ULWHRSWLRQVLQFOXGLQJ
5'3 [$$
/HYHO
5'3 [$$
:ULWHRSWLRQVLQFOXGLQJ
5'3 [&&
5'3 [$$
2WKHU V RSWLRQ V PRGLILHG
2SWLRQVZULWH 5'3OHYHOLQFUHDVH LQFOXGHV
2SWLRQVSDJHHUDVH
1HZRSWLRQVSURJUDP
2SWLRQVZULWH 5'3OHYHOGHFUHDVH LQFOXGHV
)XOO0DVVHUDVHRU3DUWLDO0DVVHUDVHWRQRW
HUDVH3&523SDJHVLI3&523B5'3LVFOHDUHG
%DFNXSUHJLVWHUVDQG65$0HUDVH
2SWLRQVSDJHHUDVH
1HZRSWLRQVSURJUDP
2SWLRQVZULWH 5'3OHYHOLGHQWLFDO LQFOXGHV
2SWLRQVSDJHHUDVH
1HZRSWLRQVSURJUDP
069
Table 12. Access status versus protection level and execution modes
Area
Flash main
memory
System
memory (2)
Option bytes
Backup
registers
SRAM2
Protection
level
Debug/ BootFromRam/
BootFromLoader
User execution (BootFromFlash)
Read
Write
Erase
Read
Write
Erase
1
Yes
Yes
Yes
No
No
No(3)
2
Yes
Yes
Yes
N/A(1)
N/A(1)
N/A(1)
1
Yes
No
No
Yes
No
No
2
Yes
No
No
NA(1)
N/A(1)
N/A(1)
1
Yes
Yes(3)
Yes
Yes
Yes(3)
Yes
N/A(1)
N/A(1)
No
No(4)
N/A(1)
N/A(1)
2
Yes
No
No
1
Yes
Yes
N/A
N/A
(1)
No
(1)
2
Yes
Yes
N/A
N/A
1
Yes
Yes
N/A
No
No
No(5)
2
Yes
Yes
N/A
N/A(1)
N/A(1)
N/A(1)
1. When the protection level 2 is active, the Debug port, the boot from RAM and the boot from system memory are disabled.
2. The system memory is only read-accessible, whatever the protection level (0, 1 or 2) and execution mode.
3. The Flash main memory is erased when the RDP option byte is programmed with all level protections disabled (0xAA).
4. The backup registers are erased when RDP changes from level 1 to level 0.
5. The SRAM2 is erased when RDP changes from level 1 to level 0.
102/1693
DocID024597 Rev 3
RM0351
3.5.2
Embedded Flash memory (FLASH)
Proprietary code readout protection (PCROP)
Apart of the flash memory can be protected against read and write from third parties. The
protected area is execute-only: it can only be reached by the STM32 CPU, as an instruction
code, while all other accesses (DMA, debug and CPU data read, write and erase) are
strictly prohibited. One area per bank can be selected, with double word (64-bit) granularity.
An additional option bit (PCROP_RDP) allows to select if the PCROP area is erased or not
when the RDP protection is changed from Level 1 to Level 0 (refer to Changing the Read
protection level).
Each PCROP area is defined by a start page offset and an end page offset related to the
physical Flash bank base address. These offsets are defined in the PCROP address
registers Flash Bank 1 PCROP Start address register (FLASH_PCROP1SR), Flash Bank 1
PCROP End address register (FLASH_PCROP1ER), Flash Bank 2 PCROP Start address
register (FLASH_PCROP2SR), Flash Bank 2 PCROP End address register
(FLASH_PCROP2ER).
The Bank “x” PCROP (x=1,2) area is defined from the address: Bank “x” Base address +
[PCROPx_STRT x 0x8] (included) to the address: Bank “x” Base address +
[(PCROPx_END+1) x 0x8] (excluded). The minimum PCROP area size is two double-words
(128 bits).
For example, to protect by PCROP from the address 0x08062F80 (included) to the address
0x08070004 (included):
•
•
if boot in flash is done in Bank 1, FLASH_PCROP1SR and FLASH_PCROP1ER
registers must be programmed with:
–
PCROP1_STRT = 0xC5F0.
–
PCROP1_END = 0xE000.
If the two banks are swapped, the protection must apply to bank 2, and
FLASH_PCROP2SR and FLASH_PCROP2ER register must be programmed with:
–
PCROP2_STRT = 0xC5F0.
–
PCROP2_END = 0xE000.
Any read access performed through the D-bus to a PCROP protected area will trigger
RDERR flag error.
Any PCROP protected address is also write protected and any write access to one of these
addresses will trigger WRPERR.
Any PCROP area is also erase protected. Consequently, any erase to a page in this zone is
impossible (including the page containing the start address and the end address of this
zone). Moreover, a software mass erase cannot be performed if one zone is PCROP
protected.
For previous example, due to erase by page, all pages from page 0xC5 to 0xE0 are
protected in case of page erase. (All addresses from 0x08062800 to 0x080707FF can’t be
erased).
Deactivation of PCROP can only occurs when the RDP is changing from level 1 to level 0. If
the user options modification tries to clear PCROP or to decrease the PCROP area, the
options programming is launched but PCROP area stays unchanged. On the contrary, it is
possible to increase the PCROP area.
When option bit PCROP_RDP is cleared, when the RDP is changing from level 1 to level 0,
Full Mass Erase is replaced by Partial Mass Erase in order to keep the PCROP area (refer
DocID024597 Rev 3
103/1693
120
Embedded Flash memory (FLASH)
RM0351
to Changing the Read protection level). In this case, PCROP1/2_STRT and
PCROP1/2_END are also not erased.
Note:
It is recommended to align PCROP area with page granularity when using PCROP_RDP, or
to leave free the rest of the page where PCROP zone starts or ends.
3.5.3
Write protection (WRP)
The user area in Flash memory can be protected against unwanted write operations. Two
write-protected (WRP) areas can be defined in each bank, with page (2 KBytes) granularity.
Each area is defined by a start page offset and an end page offset related to the physical
Flash bank base address. These offsets are defined in the WRP address registers: Flash
Bank 1 WRP area A address register (FLASH_WRP1AR), Flash Bank 1 WRP area B
address register (FLASH_WRP1BR), Flash Bank 2 WRP area A address register
(FLASH_WRP2AR), Flash Bank 2 WRP area B address register (FLASH_WRP2BR).
The Bank “x” WRP “y” area (x=1,2 and y=A,B) is defined from the address: Bank “x” Base
address + [WRPxy_STRT x 0x800] (included) to the address: Bank “x” Base address +
[(WRPxy_END+1) x 0x800] (excluded).
For example, to protect by WRP from the address 0x08062800 (included) to the address
0x080707FF (included):
•
if boot in flash is done in Bank 1, FLASH_WRP1AR register must be programmed with:
–
WRP1A_STRT = 0xC5.
–
WRP1A_END = 0xE0.
WRP1B_STRT and WRP1B_END in FLASH_WRP1BR can be used instead (area “B”
in Bank 1).
•
If the two banks are swapped, the protection must apply to bank 2, and
FLASH_WRP2AR register must be programmed with:
–
WRP2A_STRT = 0xC5.
–
WRP2A_END = 0xE0.
WRP2B_STRT and WRP2B_END in FLASH_WRP2BR can be used instead (area “B
in Bank 2).
When WRP is active, it cannot be erased or programmed. Consequently, a software mass
erase cannot be performed if one area is write-protected.
If an erase/program operation to a write-protected part of the Flash memory is attempted,
the write protection error flag (WRPERR) is set in the FLASH_SR register. This flag is also
set for any write access to:
–
OTP area
–
part of the Flash memory that can never be written like the ICP
–
PCROP area.
Note:
When the memory read protection level is selected (RDP level = 1), it is not possible to
program or erase Flash memory if the CPU debug features are connected (JTAG or single
wire) or boot code is being executed from RAM or System flash, even if WRP is not
activated.
Note:
To validate the WRP options, the option bytes must be reloaded through the OBL_LAUNCH
bit in Flash control register.
104/1693
DocID024597 Rev 3
RM0351
3.6
Embedded Flash memory (FLASH)
FLASH interrupts
Table 13. Flash interrupt request
Interrupt event
Event flag
Event flag/interrupt
clearing method
Interrupt enable control
bit
End of operation
EOP(1)
Write EOP=1
EOPIE
Operation error
OPERR(2)
Write OPERR=1
ERRIE
RDERR
Write RDERR=1
RDERRIE
ECCC
Write ECCC=1
ECCCIE
Read error
ECC correction
1. EOP is set only if EOPIE is set.
2. OPERR is set only if ERRIE is set.
DocID024597 Rev 3
105/1693
120
Embedded Flash memory (FLASH)
RM0351
3.7
FLASH registers
3.7.1
Flash access control register (FLASH_ACR)
Address offset: 0x00
Reset value: 0x0000 0600
Access: no wait state, word, half-word and byte access
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
SLEEP
_PD
DCEN
ICEN
PRFTEN
Res.
Res.
Res.
Res.
Res.
rw
rw
rw
RUN_
DCRST ICRST
PD
rw
rw
rw
rw
LATENCY[2:0]
rw
rw
rw
--
Bits 31:15 Reserved, must be kept at reset value.
Bit 14 SLEEP_PD: Flash Power-down mode during Sleep or Low-power sleep mode
This bit determines whether the flash memory is in Power-down mode or Idle
mode when the device is in Sleep or Low-power sleep mode.
0: Flash in Idle mode during Sleep and Low-power sleep modes
1: Flash in Power-down mode during Sleep and Low-power sleep modes
Caution: The flash must not be put in power-down while a program or an erase
operation is on-going.
Bit 13 RUN_PD: Flash Power-down mode during Run or Low-power run mode
This bit is write-protected with FLASH_PDKEYR.
This bit determines whether the flash memory is in Power-down mode or Idle
mode when the device is in Run or Low-power run mode. The flash memory can
be put in power-down mode only when the code is executed from RAM. The
Flash must not be accessed when RUN_PD is set.
0: Flash in Idle mode
1: Flash in Power-down mode
Caution: The flash must not be put in power-down while a program or an erase
operation is on-going.
Bit 12 DCRST: Data cache reset
0: Data cache is not reset
1: Data cache is reset
This bit can be written only when the data cache is disabled.
Bit 11 ICRST: Instruction cache reset
0: Instruction cache is not reset
1: Instruction cache is reset
This bit can be written only when the instruction cache is disabled.
Bit 10 DCEN: Data cache enable
0: Data cache is disabled
1: Data cache is enabled
106/1693
DocID024597 Rev 3
RM0351
Embedded Flash memory (FLASH)
Bit 9 ICEN: Instruction cache enable
0: Instruction cache is disabled
1: Instruction cache is enabled
Bit 8 PRFTEN: Prefetch enable
0: Prefetch disabled
1: Prefetch enabled
Bits 7:3 Reserved, must be kept at reset value.
Bits 2:0 LATENCY[2:0]: Latency
These bits represent the ratio of the SYSCLK (system clock) period to the Flash
access time.
000: Zero wait state
001: One wait state
010: Two wait sates
011: Three wait sates
100: Four wait sates
others: reserved
3.7.2
Flash Power-down key register (FLASH_PDKEYR)
Address offset: 0x04
Reset value: 0x0000 0000
Access: no wait state, word access
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
PDKEYR[31:16]
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
w
w
w
w
w
w
w
w
w
w
w
w
w
w
PDKEYR[15:0]
w
w
Bits 31:0 PDKEYR: Power-down in Run mode Flash key
The following values must be written consecutively to unlock the RUN_PD bit in
FLASH_ACR:
PDKEY1: 0x04152637
PDKEY2: 0xFAFBFCFD
3.7.3
Flash key register (FLASH_KEYR)
Address offset: 0x08
Reset value: 0x0000 0000
Access: no wait state, word access
DocID024597 Rev 3
107/1693
120
Embedded Flash memory (FLASH)
RM0351
31
30
29
28
27
26
25
24
w
w
w
w
w
w
w
w
15
14
13
12
11
10
9
8
23
22
21
20
19
18
17
16
w
w
w
w
w
w
w
w
7
6
5
4
3
2
1
0
w
w
w
w
w
w
w
KEYR[31:16]
KEYR[15:0]
w
w
w
w
w
w
w
w
w
Bits 31:0 KEYR: Flash key
The following values must be written consecutively to unlock the FLACH_CR
register allowing flash programming/erasing operations:
KEY1: 0x45670123
KEY2: 0xCDEF89AB
3.7.4
Flash option key register (FLASH_OPTKEYR)
Address offset: 0x0C
Reset value: 0x0000 0000
Access: no wait state, word access
31
30
29
28
27
26
25
24
w
w
w
w
w
w
w
w
15
14
13
12
11
10
9
8
23
22
21
20
19
18
17
16
w
w
w
w
w
w
w
w
7
6
5
4
3
2
1
0
w
w
w
w
w
w
w
OPTKEYR[31:16]
OPTKEYR[15:0]
w
w
w
w
w
Bits 31:0
3.7.5
w
w
w
w
OPTKEYR: Option byte key
The following values must be written consecutively to unlock the FLACH_OPTR
register allowing option byte programming/erasing operations:
KEY1: 0x08192A3B
KEY2: 0x4C5D6E7F
Flash status register (FLASH_SR)
Address offset: 0x10
Reset value: 0x0000 0000
Access: no wait state, word, half-word and byte access
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
BSY
r
15
14
OPTV
ERR
RD
ERR
rc_w1
rc_w1
108/1693
13
Res.
12
Res.
11
Res.
10
9
8
7
6
5
4
3
Res.
FAST
ERR
MISS
ERR
PGS
ERR
SIZ
ERR
PGA
ERR
WRP
ERR
PROG
ERR
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
DocID024597 Rev 3
2
1
0
Res.
OP
ERR
EOP
rc_w1
rc_w1
RM0351
Embedded Flash memory (FLASH)
-
Bits 31:17 Reserved, must be kept at reset value.
Bit 16 BSY: Busy
This indicates that a Flash operation is in progress. This is set on the beginning
of a Flash operation and reset when the operation finishes or when an error
occurs.
Bit 15 OPTVERR: Option validity error
Set by hardware when the options read may not be the one configured by the
user. If option haven’t been properly loaded, OPTVERR is set again after each
system reset.
Cleared by writing 1.
Bit 14 RDERR: PCROP read error
Set by hardware when an address to be read through the D-bus belongs to a
read protected area of the flash (PCROP protection). An interrupt is generated if
RDERRIE is set in FLASH_CR.
Cleared by writing 1.
Bits 13:10 Reserved, must be kept at reset value.
Bit 9 FASTERR: Fast programming error
Set by hardware when a fast programming sequence (activated by FSTPG) is
interrupted due to an error (alignment, size, write protection or data miss). The
corresponding status bit (PGAERR, SIZERR, WRPERR or MISSERR) is set at
the same time.
Cleared by writing 1.
Bit 8 MISERR: Fast programming data miss error
In Fast programming mode, 32 double words must be sent to flash successively,
and the new data must be sent to the flash logic control before the current data is
fully programmed. MISSERR is set by hardware when the new data is not
present in time.
Cleared by writing 1.
Bit 7 PGSERR: Programming sequence error
Set by hardware when a write access to the Flash memory is performed by the
code while PG or FSTPG have not been set previously. Set also by hardware
when PROGERR, SIZERR, PGAERR, WRPERR, MISSERR or FASTERR is set
due to a previous programming error.
Cleared by writing 1.
Bit 6 SIZERR: Size error
Set by hardware when the size of the access is a byte or half-word during a
program or a fast program sequence. Only double word programming is allowed
(consequently: word access).
Cleared by writing 1.
Bit 5 PGAERR: Programming alignment error
Set by hardware when the data to program cannot be contained in the same 64bit Flash memory row in case of standard programming, or if there is a change of
page during fast programming.
Cleared by writing 1.
Bit 4 WRPERR: Write protection error
Set by hardware when an address to be erased/programmed belongs to a writeprotected part (by WRP, PCROP or RDP level 1) of the Flash memory.
Cleared by writing 1.
DocID024597 Rev 3
109/1693
120
Embedded Flash memory (FLASH)
RM0351
Bit 3 PROGERR: Programming error
Set by hardware when a double-word address to be programmed contains a
value different from '0xFFFF FFFF' before programming, except if the data to
write is '0x0000 0000'.
Cleared by writing 1.
Bit 2 Reserved, must be kept at reset value.
Bit 1 OPERR: Operation error
Set by hardware when a Flash memory operation (program / erase) completes
unsuccessfully.
This bit is set only if error interrupts are enabled (ERRIE = 1).
Cleared by writing ‘1’.
Bit 0 EOP: End of operation
Set by hardware when one or more Flash memory operation (programming /
erase) has been completed successfully.
This bit is set only if the end of operation interrupts are enabled (EOPIE = 1).
Cleared by writing 1.
3.7.6
Flash control register (FLASH_CR)
Address offset: 0x14
Reset value: 0xC000 0000
Access: no wait state when no Flash memory operation is on going, word, half-word and
byte access
31
30
LOCK
OPT
LOCK
29
28
27
26
25
24
Res.
Res.
OBL_
LAUNCH
RD
ERRIE
ERR
IE
EOP
IE
rs
rs
rc_w1
rw
rw
rw
15
14
13
12
11
10
9
8
MER2
Res.
Res.
Res.
BKER
rw
rw
23
22
21
20
19
Res.
Res.
Res.
Res.
Res.
7
6
5
4
3
PNB[7:0]
rw
rw
rw
rw
rw
rw
rw
rw
18
17
16
FSTPG
OPT
STRT
STRT
rw
rs
rs
2
1
0
MER1
PER
PG
rw
rw
rw
Bit 31 LOCK: FLASH_CR Lock
This bit is set only. When set, the FLASH_CR register is locked. It is cleared by
hardware after detecting the unlock sequence.
In case of an unsuccessful unlock operation, this bit remains set until the next
system reset.
Bit 30 OPTLOCK: Options Lock
This bit is set only. When set, all bits concerning user option in FLASH_CR
register and so option page are locked. This bit is cleared by hardware after
detecting the unlock sequence. The LOCK bit must be cleared before doing the
unlock sequence for OPTLOCK bit.
In case of an unsuccessful unlock operation, this bit remains set until the next
reset.
Bits 29:28 Reserved, must be kept at reset value.
110/1693
DocID024597 Rev 3
RM0351
Embedded Flash memory (FLASH)
Bit 27 OBL_LAUNCH: Force the option byte loading
When set to 1, this bit forces the option byte reloading. This bit is cleared only
when the option byte loading is complete. It cannot be written if OPTLOCK is set.
0: Option byte loading complete
1: Option byte loading requested
Bit 26 RDERRIE: PCROP read error interrupt enable
This bit enables the interrupt generation when the RDERR bit in the FLASH_SR
is set to 1.
0: PCROP read error interrupt disabled
1: PCROP read error interrupt enabled
Bit 25 ERRIE: Error interrupt enable
This bit enables the interrupt generation when the OPERR bit in the FLASH_SR
is set to 1.
0: OPERR error interrupt disabled
1: OPERR error interrupt enabled
Bit 24 EOPIE: End of operation interrupt enable
This bit enables the interrupt generation when the EOP bit in the FLASH_SR is
set to 1.
0: EOP Interrupt disabled
1: EOP Interrupt enabled
Bits 23:19 Reserved, must be kept at reset value
Bit 18 FSTPG: Fast programming
0: Fast programming disabled
1: Fast programming enabled
Bit 17 OPTSTRT: Options modification start
This bit triggers an options operation when set.
This bit is set only by software, and is cleared when the BSY bit is cleared in
FLASH_SR.
Bit 16 START: Start
This bit triggers an erase operation when set. If MER1, MER2 and PER bits are
reset and the STRT bit is set, an unpredictable behavior may occur without
generating any error flag. This condition should be forbidden.
This bit is set only by software, and is cleared when the BSY bit is cleared in
FLASH_SR.
Bit 15 MER2: Bank 2 Mass erase
This bit triggers the bank 2 mass erase (all bank 2 user pages) when set.
Bits 14:12 Reserved, must be kept at reset value.
Bit 11 BKER: Page number MSB (Bank selection)
0: Bank 1 is selected for page erase
1: Bank 2 is selected for page erase
DocID024597 Rev 3
111/1693
120
Embedded Flash memory (FLASH)
RM0351
Bits 10:3 PNB[7:0]: Page number selection
These bits select the page to erase:
If BKER = 0:
00000000: page 0
00000001: page 1
...
11111111: page 255
If BKER=1
00000000: page 256
00000001: page 257
...
11111111: page 511
Bit 2 MER1: Bank 1 Mass erase
This bit triggers the bank 1 mass erase (all bank 1 user pages) when set.
Bit 1 PER: Page erase
0: page erase disabled
1: page erase enabled
Bit 0 PG: Programming
0: Flash programming disabled
1: Flash programming enabled
3.7.7
Flash ECC register (FLASH_ECCR)
Address offset: 0x18
Reset value: 0x0000 0000
Access: no wait state when no Flash memory operation is on going, word, half-word and
byte access
31
30
ECCD
ECCC
rc_w1
rc_w1
15
14
29
28
27
26
25
24
ECCC
IE
Res.
Res.
Res.
Res.
Res.
13
12
11
10
9
23
22
21
20
19
BK
_ECC
17
16
Res.
Res.
Res.
r
r
r
r
r
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
rw
8
18
SYSF_
ECC
ADDR_ECC[18:16]
ADDR_ECC[15:0]
r
r
r
r
r
r
r
r
r
Bit 31 ECCD: ECC detection
Set by hardware when two ECC errors have been detected. When this bit is set,
a NMI is generated
Cleared by writing 1.
Bit 30 ECCD: ECC correction
Set by hardware when one ECC error has been detected and corrected. An
interrupt is generated if ECCIE is set.
Cleared by writing 1.
Bits 29:25 Reserved, must be kept at reset value.
112/1693
DocID024597 Rev 3
RM0351
Embedded Flash memory (FLASH)
Bit 24 ECCIE: ECC correction interrupt enable
0: ECCC interrupt disabled
1: ECCC interrupt enabled
Bits 23:21 Reserved, must be kept at reset value.
Bit 20 SYSF_ECC: System Flash ECC fail
This bit indicates that the ECC error correction or double ECC error detection is
located in the System Flash.
Bit 19 BK_ECC: ECC fail bank
This bit indicates which bank is concerned by the ECC error correction or by the
double ECC error detection.
0: bank 1
1: bank 2
Bits 18:0 ADDR_ECC: ECC fail address
This bit indicates which address in the bank is concerned by the ECC error
correction or by the double ECC error detection.
3.7.8
Flash option register (FLASH_OPTR)
Address offset: 0x20
Reset value: 0xFXXX XXXX. The option bits are loaded with values from Flash memory at
reset release.
Access: no wait state when no Flash memory operation is on going, word, half-word and
byte access
31
Res.
15
Res.
30
Res.
14
29
Res.
13
28
Res.
12
nRST_ nRST_ nRST_
SHDW STDBY STOP
rw
rw
rw
27
Res.
11
26
25
Res.
10
Res.
24
23
SRAM2 SRAM2 nBOOT
_RST
_PE
1
rw
rw
rw
9
8
7
22
21
Res.
DUAL
BANK
BFB2
rw
rw
rw
rw
rw
rw
5
4
3
2
1
0
rw
rw
rw
6
BOR_LEV[2:0]
rw
rw
20
19
18
17
16
WWDG IWGD_ IWDG_ IWDG_
_SW STDBY StOP
SW
RDP[7:0]
rw
rw
rw
rw
rw
rw
Bits 31:26 Reserved, must be kept at reset value.
Bit 25 SRAM2_RST: SRAM2 Erase when system reset
0: SRAM2 erased when a system reset occurs
1: SRAM2 is not erased when a system reset occurs
Bit 24 SRAM2_PE: SRAM2 parity check enable
0: SRAM2 parity check enable
1: SRAM2 parity check disable
Bit 23 nBOOT1: Boot configuration
Together with the BOOT0 pin, this bit selects boot mode from the Flash main
memory, SRAM1 or the System memory. Refer to Section 2.6: Boot
configuration.
Bit 22 Reserved, must be kept at reset value.
DocID024597 Rev 3
113/1693
120
Embedded Flash memory (FLASH)
RM0351
Bit 21 DUALBANK: Dual-Bank on 512 KB or 256 KB Flash memory devices
0: 256 KB/512 KB Single-bank Flash: Contiguous addresses in Bank 1
1: 256 KB/512 KB Dual-bank Flash: Refer to Table 6 and Table 7.
Bit 20 BFB2: Dual-bank boot
0: Dual-bank boot disable
1: Dual-bank boot enable
Bit 19 WWDG_SW: Window watchdog selection
0: Hardware window watchdog
1: Software window watchdog
Bit 18 IWDG_STDBY: Independent watchdog counter freeze in Standby mode
0: Independent watchdog counter is frozen in Standby mode
1: Independent watchdog counter is running in Standby mode
Bit 17 IWDG_STOP: Independent watchdog counter freeze in Stop mode
0: Independent watchdog counter is frozen in Stop mode
1: Independent watchdog counter is running in Stop mode
Bit 16 IDWG_SW: Independent watchdog selection
0: Hardware independent watchdog
1: Software independent watchdog
Bit 15 Reserved, must be kept cleared
Bit 14 nRST_SHDW
0: Reset generated when entering the Shutdown mode
1: No reset generated when entering the Shutdown mode
Bit 13 nRST_STDBY
0: Reset generated when entering the Standby mode
1: No reset generate when entering the Standby mode
Bit 12 nRST_STOP
0: Reset generated when entering the Stop mode
1: No reset generated when entering the Stop mode
Bit 11 Reserved, must be kept cleared
Bits10:8 BOR_LEV: BOR reset Level
These bits contain the VDD supply level threshold that activates/releases the
reset.
000: BOR Level 0. Reset level threshold is around 1.7 V
001: BOR Level 1. Reset level threshold is around 2.0 V
010: BOR Level 2. Reset level threshold is around 2.2 V
011: BOR Level 3. Reset level threshold is around 2.5 V
100: BOR Level 4. Reset level threshold is around 2.8 V
Bits 7:0 RDP: Read protection level
0xAA: Level 0, read protection not active
0xCC: Level 2, chip read protection active
Others: Level 1, memories read protection active
3.7.9
Flash Bank 1 PCROP Start address register (FLASH_PCROP1SR)
Address offset: 0x24
Reset value: 0xFFFF XXXX
114/1693
DocID024597 Rev 3
RM0351
Embedded Flash memory (FLASH)
Access: no wait state when no Flash memory operation is on going, word, half-word access
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
PCROP1_STRT[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept cleared
Bits 15:0 PCROP1_STRT: Bank 1 PCROP area start offset
PCROP1_STRT contains the first double-word of the PCROP area.
3.7.10
Flash Bank 1 PCROP End address register (FLASH_PCROP1ER)
Address offset: 0x28
Reset value: 0xX000 XXXX
Access: no wait state when no Flash memory operation is on going, word, half-word access.
PCROP_RDP bit can be accessed with byte access
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
PCROP
_RDP
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rs
15
PCROP1_END[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bit 31 PCROP_RDP: PCROP area preserved when RDP level decreased
This bit is set only. It is reset after a full mass erase due to a change of RDP
from Level 1 to Level 0.
0: PCROP area is not erased when the RDP level is decreased from Level 1 to
Level 0.
1: PCROP area is erased when the RDP level is decreased from Level 1 to
Level 0 (full mass erase).
Bits 30:16 Reserved, must be kept cleared
Bits 15:0 PCROP1_END: Bank 1 PCROP area end offset
PCROP1_END contains the last double-word of the bank 1 PCROP area.
3.7.11
Flash Bank 1 WRP area A address register (FLASH_WRP1AR)
Address offset: 0x2C
Reset value: 0x00XX 00XX
Access: no wait state when no Flash memory operation is on going, word, half-word and
byte access
DocID024597 Rev 3
115/1693
120
Embedded Flash memory (FLASH)
RM0351
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
23
22
21
20
rw
rw
rw
rw
7
6
5
4
19
18
17
16
rw
rw
rw
rw
3
2
1
0
rw
rw
rw
WRP1A_END[7:0]
WRP1A_STRT[7:0]
rw
rw
rw
rw
rw
Bits 31:24 Reserved, must be kept cleared
Bits 23:16 WRP1A_END: Bank 1 WRP first area “A” end offset
WRP1A_END contains the last page of the Bank 1 WRP first area.
Bits 15:8 Reserved, must be kept cleared
Bits 7:0 WRP1A_STRT: Bank 1 WRP first area “A” start offset
WRP1A_STRT contains the first page of the Bank 1 WRP first area.
3.7.12
Flash Bank 1 WRP area B address register (FLASH_WRP1BR)
Address offset: 0x30
Reset value: 0x00XX 00XX
Access: no wait state when no Flash memory operation is on going, word, half-word and
byte access
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
23
22
21
20
19
18
17
16
WRP1B_END[7:0]
rw
rw
rw
rw
rw
rw
rw
rw
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
WRP1B_STRT[7:0]
rw
rw
Bits 31:24 Reserved, must be kept cleared
Bits 23:16 WRP1B_END: Bank 1 WRP second area “B” end offset
WRP1B_END contains the last page of the Bank 1 WRP second area.
Bits 15:8 Reserved, must be kept cleared
Bits 7:0 WRP1B_STRT: Bank 1 WRP second area “B” start offset
WRP1B_STRT contains the first page of the Bank 1 WRP second area.
3.7.13
Flash Bank 2 PCROP Start address register (FLASH_PCROP2SR)
Address offset: 0x44
Reset value: 0xFFFF XXXX
Access: no wait state when no Flash memory operation is on going, word, half-word access
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
116/1693
DocID024597 Rev 3
RM0351
15
Embedded Flash memory (FLASH)
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
PCROP2_STRT[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept cleared
Bits 15:0 PCROP2_STRT: Bank 2 PCROP area start offset
PCROP2_STRT contains the first double-word of the Bank 2 PCROP area.
3.7.14
Flash Bank 2 PCROP End address register (FLASH_PCROP2ER)
Address offset: 0x48
Reset value: 0x0000 XXXX
Access: no wait state when no Flash memory operation is on going, word, half-word access
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
PCROP2_END[15:0]
rw
rw
Bits 31:16 Reserved, must be kept cleared
Bits 15:0 PCROP2_END: Bank 2 PCROP area end offset
PCROP2_END contains the last double-word of the bank 2 PCROP area.
3.7.15
Flash Bank 2 WRP area A address register (FLASH_WRP2AR)
Address offset: 0x4C
Reset value: 0x00XX 00XX
Access: no wait state when no Flash memory operation is on going, word, half-word and
byte access
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
23
22
21
20
19
18
17
16
WRP2A_END[7:0]
rw
rw
rw
rw
rw
rw
rw
rw
7
6
5
4
3
2
1
0
rw
rw
rw
WRP2A_STRT[7:0]
rw
rw
rw
rw
rw
Bits 31:24 Reserved, must be kept cleared
Bits 23:16 WRP2A_END: Bank 2 WRP first area “A” end offset
WRP2A_END contains the last page of the bank 2 WRP first area.
Bits 15:8 Reserved, must be kept cleared
Bits 7:0 WRP2A_STRT: Bank 2 WRP first area “A” start offset
WRP2A_STRT contains the first page of the bank 2 WRP first area.
DocID024597 Rev 3
117/1693
120
Embedded Flash memory (FLASH)
3.7.16
RM0351
Flash Bank 2 WRP area B address register (FLASH_WRP2BR)
Address offset: 0x50
Reset value: 0x00XX 00XX
Access: no wait state when no Flash memory operation is on going, word, half-word and
byte access
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
23
22
21
20
19
18
17
16
WRP2B_END[7:0]
rw
rw
rw
rw
rw
rw
rw
rw
7
6
5
4
3
2
1
0
rw
rw
rw
WRP2B_STRT[7:0]
rw
rw
rw
rw
rw
Bits 31:24 Reserved, must be kept cleared
Bits 23:16 WRP2B_END: Bank 2 WRP second area “B” end offset
WRP2B_END contains the last page of the bank 2 WRP second area.
Bits 15:8 Reserved, must be kept cleared
Bits 7:0 WRP2B_STRT: Bank 2 WRP second area “B” start offset
WRP2B_STRT contains the first page of the bank 2 WRP second area.
118/1693
DocID024597 Rev 3
0x28
FLASH_
PCROP1ER
Reset value
x
IWDG_STOP
IWDG_SW
Res.
nRST_SHDW
nRST_STDBY
nRST_STOP
X
X
X
X
X
X
Res.
Res.
Res.
Res.
SYSF_ECC
BK_ECC
Res.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FLASH_SR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FASTERR
MISERR
PGSERR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FLASH_OPT
KEYR
0
0
0
0
0
0
0
Reset value
DocID024597 Rev 3
DCEN
ICEN
PRFTEN
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
X
0
0
0
0
0
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
0
X
X
X
0
0
0
BOR_
LEV[2:0]
0
X
X
X
0
0
X
X
X
0
0
X
X
X
X
X
X
X
X
X
Res.
Res.
Res.
Res.
Res.
ICRST
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DCRST
0
RUN_PD
0
1
PNB[7:0]
ADDR_ECC[18:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
EOP
0
1
0
0
0
PG
0
0
PER
0
0
Res.
OPERR
0
0
MER1
0
Res.
SLEEP_PD
PDKEYR[31:0]
0
PROGERR
0
WRPERR
0
PGAERR
0
SIZERR
0
Res.
BKER
0
Res.
0
RDERR
MER2
0
Res.
0
Res.
STRT
0
Res.
0
OPTVERR
OPTSTRT
0
Res.
KEYR[31:0]
0
BSY
Res.
FSTPG
Res.
Res.
Res.
0
Res.
Reset value
Res.
IWDG_STBY
X
Res.
Res.
ECCCIE
0
Res.
FLASH_KEYR
0
Res.
WWDG_SW
X
Res.
Res.
0
Res.
Reset value
0
Res.
FLASH_
PDKEYR
Res.
Res.
Res.
BFB2
X
Res.
0
Res.
Res.
Res.
DUALBANK
X
Res.
Res.
Res.
EOPIE
0
Res.
ERRIE
0
Res.
Res.
RDERRIE
0
nBOOT1
SRAM2_PE
X
Res.
Res.
OBL_LAUNCH
Res.
0
Res.
Res.
X
Res.
Res.
Res.
SRAM2_RST
Res.
Reset value
Res.
Res.
FLASH_
PCROP1SR
Res.
0
Res.
0
Res.
OPTLOCK
Reset value
Res.
FLASH_ECCR
Res.
1
Res.
FLASH_OPTR
Res.
1
Res.
0x24
Reset value
Res.
0x20
FLASH_CR
Res.
0x18
Reset value
Res.
Reset value
Res.
0x14
FLASH_ACR
Res.
0x10
Reset value
Res.
0x0C
LOCK
0x08
ECCC
0x04
ECCD
0x00
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res.
Offset
Res.
3.7.17
PCROP_RDP.
RM0351
Embedded Flash memory (FLASH)
FLASH register map
Table 14. Flash interface - register map and reset values
LATENCY
[2:0]
OPTKEYR[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RDP[7:0]
PCROP1_STRT[15:0]
PCROP1_END[15:0]
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
119/1693
120
Embedded Flash memory (FLASH)
RM0351
X
X
X
X
X
X
X
X
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
X
X
X
X
X
X
X
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
X
X
X
X
X
X
X
X
X
X
Res.
Res.
Res.
Res.
Res.
Res.
Res.
X
WRP2B_END[7:0]
X
X
X
DocID024597 Rev 3
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
WRP2A_STRT[7:0]
X
Refer to Section 2.2.2 on page 67 for the register boundary addresses.
120/1693
X
Res.
X
X
Res.
X
X
Res.
X
X
Res.
X
X
PCROP2_END[15:0]
Res.
Res.
Res.
Res.
Res.
X
X
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FLASH_
WRP2BR
Res.
0x50
X
Res.
Reset value
WRP2A_END[7:0]
X
PCROP2_STRT[15:0]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FLASH_
WRP2AR
Res.
0x4C
Res.
Reset value
X
WRP1B_STRT[7:0]
X
X
Res.
FLASH_
PCROP2ER
WRP1A_STRT[7:0]
X
Res.
WRP1B_END[7:0]
Reset value
0x48
Res.
Res.
X
Res.
X
Res.
X
Res.
X
Res.
X
Res.
X
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FLASH_
PCROP2SR
Res.
Reset value
0x44
X
Res.
Res.
Res.
Res.
Res.
Res.
FLASH_
WRP1BR
Res.
0x30
X
Res.
Reset value
WRP1A_END[7:0]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FLASH_
WRP1AR
Res.
0x2C
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 14. Flash interface - register map and reset values (continued)
X
X
X
X
X
X
X
WRP2B_STRT[7:0]
X
X
X
X
X
X
X
X
RM0351
Firewall (FW)
4
Firewall (FW)
4.1
Introduction
The Firewall is made to protect a specific part of code or data into the Non-Volatile Memory,
and/or to protect the Volatile data into the SRAM 1 from the rest of the code executed
outside the protected area.
4.2
Firewall main features
•
•
The code to protect by the Firewall (Code Segment) may be located in:
–
The Flash memory map
–
The SRAM 1 memory, if declared as an executable protected area during the
Firewall configuration step.
The data to protect can be located either
–
in the Flash memory (non-volatile data segment)
–
in the SRAM 1 memory (volatile data segment)
The software can access these protected areas once the Firewall is opened. The Firewall
can be opened or closed using a mechanism based on “call gate” (Refer to Opening the
Firewall).
The start address of each segment and its respective length must be configured before
enabling the Firewall (Refer to Section 4.3.5: Firewall initialization).
Each illegal access into these protected segments (if the Firewall is enabled) generates a
reset which immediately kills the detected intrusion.
Any DMA access to protected segments is forbidden whatever the Firewall state (opened or
closed). It is considered as an illegal access and generates a reset.
DocID024597 Rev 3
121/1693
132
Firewall (FW)
RM0351
4.3
Firewall functional description
4.3.1
Firewall AMBA bus snoop
The Firewall peripheral is snooping the AMBA buses on which the memories (volatile and
non-volatile) are connected. A global architecture view is illustrated in Figure 5.
Figure 5. STM32L4x6 firewall connection schematics
$+%6ODYH
$+%0DVWHU
&257(;0
$+%0DVWHU
'0$
%
8
6
0
$
7
5
,
;
,
1
7
(
5
)
$
&
(
[.%
)/$6+
),5(:$//
65$0
$+%6ODYH
069
4.3.2
Functional requirements
There are several requirements to guaranty the highest security level by the application
code/data which needs to be protected by the Firewall and to avoid unwanted Firewall alarm
(reset generation).
Debug consideration
In debug mode, if the Firewall is opened, the accesses by the debugger to the protected
segments are not blocked. For this reason, the Read out level 2 protection must be active in
conjunction with the Firewall implementation.
If the debug is needed, it is possible to proceed in the following way:
122/1693
•
A dummy code having the same API as the protected code may be developed during
the development phase of the final user code. This dummy code may send back
coherent answers (in terms of function and potentially timing if needed), as the
protected code should do in production phase.
•
In the development phase, the protected code can be given to the customer-end under
NDA agreement and its software can be developed in level 0 protection. The customer-
DocID024597 Rev 3
RM0351
Firewall (FW)
end code needs to embed an IAP located in a write protected segment in order to allow
future code updates when the production parts will be Level 2 ROP.
Write protection
In order to offer a maximum security level, the following points need to be respected:
•
It is mandatory to keep a write protection on the part of the code enabling the Firewall.
This activation code should be located outside the segments protected by the Firewall.
•
The write protection is also mandatory on the code segment protected by the Firewall.
•
The sector including the reset vector must be write-protected.
Interruptions management
The code protected by the Firewall must not be interruptible. It is up to the user code to
disable any interrupt source before executing the code protected by the Firewall. If this
constraint is not respected, if an interruption comes while the protected code is executed
(Firewall opened), the Firewall will be closed as soon as the interrupt subroutine is
executed. When the code returns back to the protected code area, a Firewall alarm will raise
since the “call gate” sequence will not be applied and a reset will be generated.
Concerning the interrupt vectors and the first user sector in the Flash memory:
•
If the first user sector (including the reset vector) is protected by the Firewall, the NVIC
vector should be reprogrammed outside the protected segment.
•
If the first user sector is not protected by the Firewall, the interrupt vectors may be kept
at this location.
There is no interruption generated by the Firewall.
4.3.3
Firewall segments
The Firewall has been designed to protect three different segment areas:
Code segment
This segment is located into the Flash memory. It should contain the code to execute which
requires the Firewall protection. The segment must be reached using the “call gate” entry
sequence to open the Firewall. A system reset is generated if the “call gate” entry sequence
is not respected (refer to Opening the Firewall) and if the Firewall is enabled using the
FWDIS bit in the system configuration register. The length of the segment and the segment
base address must be configured before enabling the Firewall (refer to Section 4.3.5:
Firewall initialization).
Non-volatile data segment
This segment contains non-volatile data used by the protected code which must be
protected by the Firewall. The access to this segment is defined into Section 4.3.4: Segment
accesses and properties. The Firewall must be opened before accessing the data in this
area. The Non-Volatile data segment should be located into the Flash memory. The
segment length and the base address of the segment must be configured before enabling
the Firewall (refer to Section 4.3.5: Firewall initialization).
DocID024597 Rev 3
123/1693
132
Firewall (FW)
RM0351
Volatile data segment
Volatile data used by the protected code located into the code segment must be defined into
the SRAM 1 memory. The access to this segment is defined into the Section 4.3.4: Segment
accesses and properties. Depending on the Volatile data segment configuration, the
Firewall must be opened or not before accessing this segment area. The segment length
and the base address of the segment as well as the segment options must be configured
before enabling the Firewall (refer to Section 4.3.5: Firewall initialization).
The Volatile data segment can also be defined as executable (for the code execution) or
shared using two bit of the Firewall configuration register (bit VDS for the volatile data
sharing option and bit VDE for the volatile data execution capability). For more details, refer
to Table 15.
4.3.4
Segment accesses and properties
All DMA accesses to the protected segments are forbidden, whatever the Firewall state, and
generate a system reset.
Segment access depending on the Firewall state
Each of the three segments has specific properties which are presented in Table 15.
Table 15. Segment accesses according to the Firewall state
Segment
Code segment
Non-volatile data
segment
Volatile data
segment
124/1693
Firewall opened
access allowed
Read and execute
Read and write
Read and Write
Execute if VDE = 1 and
VDS = 0 into the Firewall
configuration register
Firewall closed
access allowed
Firewall disabled
access allowed
No access allowed.
Any access to the segment
(except the “call gate” entry)
generates a system reset
All accesses are allowed
(according to the Flash sector
protection properties in which
the code is located)
No access allowed
All accesses are allowed
(according to the Flash sector
protection properties in which
the code is located)
No access allowed if VDS = 0
and VDE = 0 into the Firewall
configuration register
Read/write/execute accesses
allowed if VDS = 1 (whatever
VDE bit value)
Execute if VDE = 1 and VDS = 0
but with a “call gate” entry to
open the Firewall at first.
All accesses are allowed
DocID024597 Rev 3
RM0351
Firewall (FW)
The Volatile data segment is a bit different from the two others. The segment can be:
•
Shared (VDS bit in the register)
It means that the area and the data located into this segment can be shared between
the protected code and the user code executed in a non-protected area. The access is
allowed whether the Firewall is opened or closed or disabled.
The VDS bit gets priority over the VDE bit, this last bit value being ignored in such a
case. It means that the Volatile data segment can execute parts of code located there
without any need to open the Firewall before executing the code.
•
Execute
The VDE bit is considered as soon as the VDS bit = 0 in the FW_CR register. If the
VDS bit = 1, refer to the description above on the Volatile data segment sharing. If VDS
= 0 and VDE = 1, the Volatile data segment is executable. To avoid a system reset
generation from the Firewall, the “call gate” sequence should be applied on the Volatile
data segment to open the Firewall as an entry point for the code execution.
Segments properties
Each segment has a specific length register to define the segment size to be protected by
the Firewall: CSL register for the Code segment length register, NVDSL for the Non-volatile
data segment length register, and VDSL register for the Volatile data segment length
register. Granularity and area ranges for each of the segments are presented in Table 16.
Table 16. Segment granularity and area ranges
Segment
4.3.5
Granularity
Area range
Code segment
256 bytes
1024 KBytes - 256 Bytes
Non-volatile data segment
256 bytes
1024 KBytes - 256 Bytes
Volatile data segment
64 bytes
96 KBytes - 64 Bytes
Firewall initialization
The initialization phase should take place at the beginning of the user code execution (refer
to the Write protection).
The initialization phase consists of setting up the addresses and the lengths of each
segment which needs to be protected by the Firewall. It must be done before enabling the
Firewall, because the enabling bit can be written once. Thus, when the Firewall is enabled, it
cannot be disabled anymore until the next system reset.
Once the Firewall is enabled, the accesses to the address and length segments are no
longer possible. All write attempts are discarded.
A segment defined with a length equal to 0 is not considered as protected by the Firewall.
As a consequence, there is no reset generation from the Firewall when an access to the
base address of this segment is performed.
After a reset, the Firewall is disabled by default (FWDIS bit in the SYSCFG register is set). It
has to be cleared to enable the Firewall feature.
DocID024597 Rev 3
125/1693
132
Firewall (FW)
RM0351
Below is the initialization procedure to follow:
1.
Configure the RCC to enable the clock to the Firewall module
2.
Configure the RCC to enable the clock of the system configuration registers
3.
Set the base address and length of each segment (CSSA, CSL, NVDSSA, NVDSL,
VDSSA, VDSL registers)
4.
Set the configuration register of the Firewall (FW_CR register)
5.
Enable the Firewall clearing the FWDIS bit in the system configuration register.
The Firewall configuration register (FW_CR register) is the only one which can be managed
in a dynamic way even if the Firewall is enabled:
4.3.6
•
when the Non-Volatile data segment is undefined (meaning the NVDSL register is
equal to 0), the accesses to this register are possible whatever the Firewall state
(opened or closed).
•
when the Non-Volatile data segment is defined (meaning the NVDSL register is
different from 0), the accesses to this register are only possible when the Firewall is
opened.
Firewall states
The Firewall has three different states as shown in Figure 6:
•
Disabled: The FWDIS bit is set by default after the reset. The Firewall is not active.
•
Closed: The Firewall protects the accesses to the three segments (Code, Non-volatile
data, and Volatile data segments).
•
Opened: The Firewall allows access to the protected segments as defined in
Section 4.3.4: Segment accesses and properties.
Figure 6. Firewall functional states
)LUHZDOOGLVDEOH
UHVHW
,OOHJDODFFHVVHVWR
WKHSURWHFWHG
VHJPHQWV
(QDEOHWKHILUHZDOO
):',6
3URWHFWHGFRGHMXPSV
WRDQXQSURWHFWHG
VHJPHQWDQG)3$
µµFDOOJDWH¶¶HQWU\
)LUHZDOO
FORVHG
)LUHZDOO
RSHQHG
&RGHSURWHFWHGMXPSV
WRXQSURWHFWHG
VHJPHQWV
069
126/1693
DocID024597 Rev 3
RM0351
Firewall (FW)
Opening the Firewall
As soon as the Firewall is enabled, it is closed. It means that most of the accesses to the
protected segments are forbidden (refer to Section 4.3.4: Segment accesses and
properties). In order to open the Firewall to interact with the protected segments, it is
mandatory to apply the “call gate” sequence described hereafter.
“call gate” sequence
The “call gate” is composed of 3 words located on the first three 32-bit addresses of the
base address of the code segment and of the Volatile data segment if it is declared as
not shared (VDS = 0) and executable (VDE = 1).
–
1st word: Dummy 32-bit words always closed in order to protect the “call gate”
opening from an access due to a prefetch buffer.
–
2nd and 3rd words: 2 specific 32-bit words called “call gate” and always opened.
To open the Firewall, the code currently executed must jump to the 2nd word of the “call
gate” and execute the code from this point. The 2nd word and 3rd word execution must not
be interrupted by any intermediate instruction fetch; otherwise, the Firewall is not
considered open and comes back to a close state. Then, executing the 3rd word after
receiving the intermediate instruction fetch would generate a system reset as a
consequence.
As soon as the Firewall is opened, the protected segments can be accessed as described in
Section 4.3.4: Segment accesses and properties.
Closing the Firewall
The Firewall is closed immediately after it is enabled (clearing the FWDIS bit in the system
configuration register).
To close the Firewall, the protected code must:
•
Write the correct value in the Firewall Pre Arm Flag into the FW_CR register.
•
Jump to any executable location outside the Firewall segments.
If the Firewall Pre Arm Flag is not set when the protected code jumps to a non protected
segment, a reset is generated. This control bit is an additional protection to avoid an
undesired attempt to close the Firewall with the private information not yet cleaned (see the
note below).
For security reasons, following the application for which the Firewall is used, it is advised to
clean all private information from CPU registers and hardware cells.
DocID024597 Rev 3
127/1693
132
Firewall (FW)
RM0351
4.4
Firewall registers
4.4.1
Code segment start address (FW_CSSA)
Address offset: 0x00
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
23
22
21
20
19
18
17
16
ADD[23:16]
rw
15
14
13
12
11
10
9
8
ADD[15:8]
7
6
5
4
3
2
1
0
Res
Res
Res
Res
Res
Res
Res
Res
rw
Bits 31:24 Reserved, must be kept at reset value.
Bits 23:8 ADD[23:8]: code segment start address
The LSB bits of the start address (bit 7:0) are reserved and forced to 0 in order to allow a
256-byte granularity.
Note: These bits can be written only before enabling the Firewall. Refer to Section 4.3.5:
Firewall initialization.
Bits 7:0 Reserved, must be kept at the reset value.
4.4.2
Code segment length (FW_CSL)
Address offset: 0x04
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
21
20
19
18
17
16
LENG[21:16]
rw
15
14
13
12
11
LENG15:8]
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
Bits 31:22 Reserved, must be kept at the reset value.
Bits 21:8 LENG[21:8]: code segment length
LENG[21:8] selects the size of the code segment expressed in bytes but is a multiple of
256 bytes.
The segment area is defined from {ADD[23:8],0x00} to {ADD[23:8]+LENG[21:8], 0x00} - 0x01
Note: If LENG[21:8] = 0 after enabling the Firewall, this segment is not defined, thus not
protected by the Firewall.
These bits can only be written before enabling the Firewall. Refer to Section 4.3.5:
Firewall initialization.
Bits 7:0 Reserved, must be kept at the reset value.
128/1693
DocID024597 Rev 3
RM0351
Firewall (FW)
4.4.3
Non-volatile data segment start address (FW_NVDSSA)
Address offset: 0x08
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
23
22
21
20
19
18
17
16
ADD[23:16]
rw
15
14
13
12
11
10
9
8
ADD[15:8]
7
6
5
4
3
2
1
0
Res
Res
Res
Res
Res
Res
Res
Res
rw
Bits 31:24 Reserved, must be kept at the reset value.
Bits 23:8 ADD[23:8]: Non-volatile data segment start address
The LSB bits of the start address (bit 7:0) are reserved and forced to 0 in order to allow a
256-byte granularity.
Note: These bits can only be written before enabling the Firewall. Refer to Section 4.3.5:
Firewall initialization.
Bits 7:0 Reserved, must be kept at the reset value.
4.4.4
Non-volatile data segment length (FW_NVDSL)
Address offset: 0x0C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
21
20
19
18
17
16
LENG[21:16]
rw
15
14
13
12
11
LENG[15:8]
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
Bits 31:22 Reserved, must be kept at the reset value.
Bits 21:8 LENG[21:8]: Non-volatile data segment length
LENG[21:8] selects the size of the Non-volatile data segment expressed in bytes but is a
multiple of 256 bytes.
The segment area is defined from {ADD[23:8],0x00} to {ADD[23:8]+LENG[21:8], 0x00} - 0x01
Note: If LENG[21:8] = 0 after enabling the Firewall, this segment is not defined, thus not
protected by the Firewall.
These bits can only be written before enabling the Firewall. Refer to Section 4.3.5:
Firewall initialization.
Bits 7:0 Reserved, must be kept at the reset value.
DocID024597 Rev 3
129/1693
132
Firewall (FW)
4.4.5
RM0351
Volatile data segment start address (FW_VDSSA)
Address offset: 0x10
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
ADD
[16]
rw
15
14
13
12
11
10
9
8
7
6
ADD[15:6]
5
4
3
2
1
0
Res
Res
Res
Res
Res
Res
rw
Bits 31:17 Reserved, must be kept at the reset value.
Bits 16:6 ADD[16:6]: Volatile data segment start address
The LSB bits of the start address (bit 5:0) are reserved and forced to 0 in order to allow a
64-byte granularity.
Note: These bits can only be written before enabling the Firewall. Refer to Section 4.3.5:
Firewall initialization
Bits 5:0 Reserved, must be kept at the reset value.
4.4.6
Volatile data segment length (FW_VDSL)
Address offset: 0x14
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
LENG
[16]
rw
15
14
13
12
11
10
9
8
7
LENG[15:6]
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
rw
Bits 31:17 Reserved, must be kept at the reset value.
Bits 16:6 LENG[16:6]: non volatile data segment length
LENG[16:6] selects the size of the non volatile data segment expressed in bytes but is a
multiple of 64 bytes.
The segment area is defined from {ADD[16:6],0x00} to {ADD[16:6]+LENG[16:6], 0x00} - 0x01
Note: If LENG[16:6] = 0 after enabling the Firewall, this segment is not defined, thus not
protected by the Firewall.
These bits can only be written before enabling the Firewall. Refer to Section 4.3.5:
Firewall initialization.
Bits 5:0 Reserved, must be kept at the reset value.
130/1693
DocID024597 Rev 3
RM0351
Firewall (FW)
4.4.7
Configuration register (FW_CR)
Address offset: 0x20
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
VDE
VDS
FPA
rw
rw
rw
Bits 31:3 Reserved, must be kept at the reset value.
Bit 2 VDE: Volatile data execution
0: Volatile data segment cannot be executed if VDS = 0
1: Volatile data segment is declared executable whatever VDS bit value
When VDS = 1, this bit has no meaning. The Volatile data segment can be executed whatever
the VDE bit value.
If VDS = 1, the code can be executed whatever the Firewall state (opened or closed)
If VDS = 0, the code can only be executed if the Firewall is opened or applying the “call gate”
entry sequence if the Firewall is closed.
Refer to Segment access depending on the Firewall state.
Bit 1 VDS: Volatile data shared
0: Volatile data segment is not shared and cannot be hit by a non protected executable code
when the Firewall is closed. If it is accessed in such a condition, a system reset will be
generated by the Firewall.
1: Volatile data segment is shared with non protected application code. It can be accessed
whatever the Firewall state (opened or closed).
Refer to Segment access depending on the Firewall state.
Bit 0 FPA: Firewall pre arm
0: any code executed outside the protected segment when the Firewall is opened will
generate a system reset.
1: any code executed outside the protected segment will close the Firewall.
Refer to Closing the Firewall.
This register is protected in the same way as the Non-volatile data segment (refer to
Section 4.3.5: Firewall initialization).
DocID024597 Rev 3
131/1693
132
0x20
132/1693
0x18
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
VDE
VDS
FPA
Reset Value
Res.
FW_CR
Res.
Reset Value
Res.
0x1C
Res.
Reset Value
Res.
0
0
0
0
DocID024597 Rev 3
0
0
LENG
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Refer to Section 2.2.2 on page 67 for the register boundary addresses.
Res.
Res.
Res.
0
Res.
0
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
0
Res.
0
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Reset Value
0
0
Res.
ADD
0
Res.
0
0
0
Res.
LENG
0
Res.
ADD
0
Res.
LENG
Res.
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
FW_CSSA
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Register
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
ADD
Res.
Reset Value
0
Res.
0
0
Res.
0
Res.
0
0
Res.
0
0
Res.
0
0
Res.
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
0
Res.
0
Res.
0
Res.
0
0
Res.
0
Res.
0
Res.
0
Res.
0
0
Res.
Reset Value
0
Res.
0
Res.
Reset Value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset Value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset Value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FW_VDSL
Res.
FW_VDSSA
Res.
0x14
FW_NVDSL
Res.
0x10
FW_NVDSSA
Res.
0xC
FW_CSL
Res.
0x8
Res.
0x4
Res.
0x0
Res.
Offset
Res.
4.4.8
Res.
Firewall (FW)
RM0351
Firewall register map
The table below provides the Firewall register map and reset values.
Table 17. Firewall register map and reset values
RM0351
Power control (PWR)
5
Power control (PWR)
5.1
Power supplies
The STM32L4x devices require a 1.71 V to 3.6 V VDD operating voltage supply. Several
independent supplies (VDDA, VDDIO2, VDDUSB, VLCD), can be provided for specific
peripherals:
•
VDD = 1.71 V to 3.6 V
VDD is the external power supply for the I/Os, the internal regulator and the system
analog such as reset, power management and internal clocks. It is provided externally
through VDD pins.
•
VDDA = 1.62 V (ADCs/COMPs) / 1.8 V (DACs/OPAMPs) to 2.4 V (VREFBUF) to 3.6 V
VDDA is the external analog power supply for A/D converters, D/A converters, voltage
reference buffer, operational amplifiers and comparators. The VDDA voltage level is
independent from the VDD voltage and should preferably be connected to VDD when
these peripherals are not used.
•
VDDUSB = 3.0 V to 3.6 V
VDDUSB is the external independent power supply for USB transceivers. The VDDUSB
voltage level is independent from the VDD voltage and should preferably be connected
to VDD when the USB is not used.
•
VDDIO2 = 1.08 V to 3.6 V
VDDIO2 is the external power supply for 14 I/Os (Port G[15:2]). The VDDIO2 voltage level
is independent from the VDD voltage and should preferably be connected to VDD when
PG[15:2] are not used.
•
VLCD = 2.5 V to 3.6 V
The LCD controller can be powered either externally through VLCD pin, or internally
from an internal voltage generated by the embedded step-up converter. VLCD is
multiplexed with PC3 which can be used as GPIO when the LCD is not used.
•
VBAT = 1.55 V to 3.6 V
VBAT is the power supply for RTC, external clock 32 kHz oscillator and backup registers
(through power switch) when VDD is not present.
•
VREF-, VREF+
VREF+ is the input reference voltage for ADCs and DACs. It is also the output of the
internal voltage reference buffer when enabled.
When VDDA < 2 V VREF+ must be equal to VDDA.
When VDDA ≥ 2 V VREF+ must be between 2 V and VDDA.
VREF+ can be grounded when ADC and DAC are not active.
The internal voltage reference buffer supports two output voltages, which are
configured with VRS bit in the VREFBUF_CSR register:
–
VREF+ around 2.048 V. This requires VDDA equal to or higher than 2.4 V.
–
VREF+ around 2.5 V. This requires VDDA equal to or higher than 2.8 V.
VREF- and VREF+ pins are not available on all packages. When not available, they are
bonded to VSSA and VDDA, respectively.
DocID024597 Rev 3
133/1693
178
Power control (PWR)
RM0351
When the VREF+ is double-bonded with VDDA in a package, the internal voltage
reference buffer is not available and must be kept disable (refer to datasheet for
packages pinout description).
VREF- must always be equal to VSSA.
An embedded linear voltage regulator is used to supply the internal digital power VCORE.
VCORE is the power supply for digital peripherals, SRAM1 and SRAM2. The Flash is
supplied by VCORE and VDD.
Figure 7. Power supply overview
9''$GRPDLQ
9''$
966$
[$'FRQYHUWHUV
[FRPSDUDWRUV
['$FRQYHUWHUV
[RSHUDWLRQDODPSOLILHUV
9ROWDJHUHIHUHQFHEXIIHU
9/&'
/&'
9''86%
966
86%WUDQVFHLYHUV
9'',2GRPDLQ
9'',2
9'',2
966
,2ULQJ
3*>@
9''GRPDLQ
9'',2
,2ULQJ
9&25(GRPDLQ
5HVHWEORFN
7HPSVHQVRU
966
9''
[3//+6,06,
&RUH
6WDQGE\FLUFXLWU\
:DNHXSORJLF
,:'*
65$0
65$0
'LJLWDO
SHULSKHUDOV
9ROWDJHUHJXODWRU
/RZYROWDJHGHWHFWRU
9&25(
)ODVKPHPRU\
%DFNXSGRPDLQ
9%$7
/6(FU\VWDO.RVF
%.3UHJLVWHUV
5&&%'&5UHJLVWHU
57&
069
5.1.1
Independent analog peripherals supply
To improve ADC and DAC conversion accuracy and to extend the supply flexibility, the
analog peripherals have an independent power supply which can be separately filtered and
shielded from noise on the PCB.
•
The analog peripherals voltage supply input is available on a separate VDDA pin.
•
An isolated supply ground connection is provided on VSSA pin.
The VDDA supply voltage can be different from VDD. The presence of VDDA must be checked
before enabling any of the analog peripherals supplied by VDDA (A/D converter, D/C
converter, comparators, operational amplifiers, voltage reference buffer).
134/1693
DocID024597 Rev 3
RM0351
Power control (PWR)
The VDDA supply can be monitored by the Peripheral Voltage Monitoring, and compared
with two thresholds (1.65 V for PVM3 or 2.2 V for PVM4), refer to Section 5.2.3: Peripheral
Voltage Monitoring (PVM) for more details.
When a single supply is used, VDDA can be externally connected to VDD through the
external filtering circuit in order to ensure a noise-free VDDA reference voltage.
ADC and DAC reference voltage
To ensure a better accuracy on low-voltage inputs and outputs, the user can connect to
VREF+ a separate reference voltage lower than VDDA. VREF+ is the highest voltage,
represented by the full scale value, for an analog input (ADC) or output (DAC) signal.
VREF+ can be provided either by an external reference of by an internal buffered voltage
reference (VREFBUF).
The internal voltage reference is enabled by setting the ENVR bit in the VREFBUF control
and status register (VREFBUF_CSR). The voltage reference is set to 2.5 V when the VRS
bit is set and to 2.048 V when the VRS bit is cleared. The internal voltage reference can also
provide the voltage to external components through VREF+ pin. Refer to the device
datasheet and to Section 18: Voltage reference buffer (VREFBUF) for further information.
5.1.2
Independent I/O supply rail
Some I/Os from Port G (PG[15:2]) are supplied from a separate supply rail. The power
supply for this rail can range from 1.08 V to 3.6 V and is provided externally through the
VDDIO2 pin. The VDDIO2 voltage level is completely independent from VDD or VDDA. The
VDDIO2 pin is available only for some packages. Refer to the pinout diagrams or tables in the
related device datasheet(s) for I/O list(s).
After reset, the I/Os supplied by VDDIO2 are logically and electrically isolated and therefore
are not available. The isolation must be removed before using any I/O from PG[15:2], by
setting the IOSV bit in the PWR_CR2 register, once the VDDIO2 supply is present.
The VDDIO2 supply is monitored by the Peripheral Voltage Monitoring (PVM2) and compared
with the internal reference voltage (3/4 VREFINT, around 0.9V), refer to Section 5.2.3:
Peripheral Voltage Monitoring (PVM) for more details.
5.1.3
Independent USB transceivers supply
The USB transceivers are supplied from a separate VDDUSB power supply pin. VDDUSB
range is from 3.0 V to 3.6 V and is completely independent from VDD or VDDA.
After reset, the USB features supplied by VDDUSB are logically and electrically isolated and
therefore are not available. The isolation must be removed before using the USB OTG
peripheral, by setting the USV bit in the PWR_CR2 register, once the VDDUSB supply is
present.
The VDDUSB supply is monitored by the Peripheral Voltage Monitoring (PVM1) and
compared with the internal reference voltage (VREFINT, around 1.2 V), refer to Section 5.2.3:
Peripheral Voltage Monitoring (PVM) for more details.
DocID024597 Rev 3
135/1693
178
Power control (PWR)
5.1.4
RM0351
Independent LCD supply
The VLCD pin is provided to control the contrast of the glass LCD. This pin can be used in
two ways:
•
It can receive from an external circuitry the desired maximum voltage that is provided
on segment and common lines to the glass LCD by the microcontroller.
•
It can also be used to connect an external capacitor that is used by the microcontroller
for its voltage step-up converter. This step-up converter is controlled by software to
provide the desired voltage to segment and common lines of the glass LCD.
The voltage provided to segment and common lines defines the contrast of the glass LCD
pixels. This contrast can be reduced when you configure the dead time between frames.
5.1.5
•
When an external power supply is provided to the VLCD pin, it should range from 2.5 V
to 3.6 V. It does not depend on VDD.
•
When the LCD is based on the internal step-up converter, the VLCD pin should be
connected to a capacitor (see the product datasheet for further information).
Battery backup domain
To retain the content of the Backup registers and supply the RTC function when VDD is
turned off, the VBAT pin can be connected to an optional backup voltage supplied by a
battery or by another source.
The VBAT pin powers the RTC unit, the LSE oscillator and the PC13 to PC15 I/Os, allowing
the RTC to operate even when the main power supply is turned off. The switch to the VBAT
supply is controlled by the power-down reset embedded in the Reset block.
Warning:
During tRSTTEMPO (temporization at VDD startup) or after a PDR
has been detected, the power switch between VBAT and VDD
remains connected to VBAT.
During the startup phase, if VDD is established in less than
tRSTTEMPO (refer to the datasheet for the value of tRSTTEMPO)
and VDD > VBAT + 0.6 V, a current may be injected into VBAT
through an internal diode connected between VDD and the
power switch (VBAT).
If the power supply/battery connected to the VBAT pin cannot
support this current injection, it is strongly recommended to
connect an external low-drop diode between this power
supply and the VBAT pin.
If no external battery is used in the application, it is recommended to connect VBAT
externally to VDD with a 100 nF external ceramic decoupling capacitor.
When the backup domain is supplied by VDD (analog switch connected to VDD), the
following pins are available:
136/1693
•
PC13, PC14 and PC15, which can be used as GPIO pins
•
PC13, PC14 and PC15, which can be configured by RTC or LSE (refer to Section 34.3:
RTC functional description on page 1065)
•
PA0/RTC_TAMP2 and PE6/RTC_TAMP3 when they are configured by the RTC as
tamper pins
DocID024597 Rev 3
RM0351
Note:
Power control (PWR)
Due to the fact that the analog switch can transfer only a limited amount of current (3 mA),
the use of GPIO PC13 to PC15 in output mode is restricted: the speed has to be limited to
2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source
(e.g. to drive a LED).
When the backup domain is supplied by VBAT (analog switch connected to VBAT because
VDD is not present), the following functions are available:
•
PC13, PC14 and PC15 can be controlled only by RTC or LSE (refer to Section 34.3:
RTC functional description)
•
PA0/RTC_TAMP2 and PE6/RTC_TAMP3 when they are configured by the RTC as
tamper pins
Backup domain access
After a system reset, the backup domain (RTC registers and backup registers) is protected
against possible unwanted write accesses. To enable access to the backup domain,
proceed as follows:
1.
Enable the power interface clock by setting the PWREN bits in the Section 6.4.19:
APB1 peripheral clock enable register 1 (RCC_APB1ENR1)
2.
Set the DBP bit in the Power control register 1 (PWR_CR1) to enable access to the
backup domain
3.
Select the RTC clock source in the Backup domain control register (RCC_BDCR).
4.
Enable the RTC clock by setting the RTCEN [15] bit in the Backup domain control
register (RCC_BDCR).
VBAT battery charging
When VDD is present, It is possible to charge the external battery on VBAT through an
internal resistance.
The VBAT charging is done either through a 5 kOhm resistor or through a 1.5 kOhm resistor
depending on the VBRS bit value in the PWR_CR4 register.
The battery charging is enabled by setting VBE bit in the PWR_CR4 register. It is
automatically disabled in VBAT mode.
5.1.6
Voltage regulator
Two embedded linear voltage regulators supply all the digital circuitries, except for the
Standby circuitry and the backup domain. The main regulator output voltage (VCORE) can be
programmed by software to two different power ranges (Range 1 and Range 2) in order to
optimize the consumption depending on the system’s maximum operating frequency (refer
to Section 6.2.8: Clock source frequency versus voltage scaling and to Section 3.3.3: Read
access latency.
The voltage regulators are always enabled after a reset. Depending on the application
modes, the VCORE supply is provided either by the main regulator (MR) or by the low-power
regulator (LPR).
•
In Run, Sleep and Stop 0 modes, both regulators are enabled and the main regulator
(MR) supplies full power to the VCORE domain (core, memories and digital peripherals).
•
In low-power run and low-power sleep modes, the main regulator is off and the lowpower regulator (LPR) supplies low power to the VCORE domain, preserving the
DocID024597 Rev 3
137/1693
178
Power control (PWR)
RM0351
contents of the registers and internal SRAM1 and SRAM2.
5.1.7
•
In Stop 1 and Stop 2 modes, the main regulator is off and the low-power regulator
(LPR) supplies low power to the VCORE domain, preserving the contents of the
registers and of internal SRAM1 and SRAM2.
•
In Standby mode with SRAM2 content preserved (RRS bit is set in the PWR_CR3
register), the main regulator (MR) is off and the low-power regulator (LPR) provides the
supply to SRAM2 only. The core and digital peripherals (except Standby circuitry and
backup domain) and SRAM1 are powered off.
•
In Standby mode, both regulators are powered off. The contents of the registers and of
SRAM1 and SRAM2 is lost except for the Standby circuitry and the backup domain.
•
In Shutdown mode, both regulators are powered off. When exiting from Shutdown
mode, a power-on reset is generated. Consequently, the contents of the registers and
SRAM1 and SRAM2 is lost, except for the backup domain.
Dynamic voltage scaling management
The dynamic voltage scaling is a power management technique which consists in
increasing or decreasing the voltage used for the digital peripherals (VCORE), according to
the application performance and power consumption needs.
Dynamic voltage scaling to increase VCORE is known as overvolting. It allows to improve the
device performance.
Dynamic voltage scaling to decrease VCORE is known as undervolting. It is performed to
save power, particularly in laptop and other mobile devices where the energy comes from a
battery and is thus limited.
• Range 1: High-performance range.
The main regulator provides a typical output voltage at 1.2 V. The system clock frequency
can be up to 80 MHz. The Flash access time for read access is minimum, write and erase
operations are possible.
• Range 2: Low-power range.
The main regulator provides a typical output voltage at 1.0 V. The system clock frequency
can be up to 26 MHz.The Flash access time for a read access is increased as compared to
Range 1; write and erase operations are possible.
Voltage scaling is selected through the VOS bit in the PWR_CR1 register.
The sequence to go from Range 1 to Range 2 is:
1.
Reduce the system frequency to a value lower than 26 MHz.
2.
Adjust number of wait states according new frequency target in Range2 (LATENCY bits
in the FLASH_ACR).
3.
Program the VOS bits to “10” in the PWR_CR1 register.
The sequence to go from Range 2 to Range 1 is:
138/1693
1.
Program the VOS bits to “01” in the PWR_CR1 register.
2.
Wait until the VOSF flag is cleared in the PWR_SR2 register.
3.
Adjust number of wait states according new frequency target in Range1 (LATENCY bits
in the FLASH_ACR).
4.
Increase the system frequency.
DocID024597 Rev 3
RM0351
Power control (PWR)
5.2
Power supply supervisor
5.2.1
Power-on reset (POR) / power-down reset (PDR) / brown-out reset
(BOR)
The device has an integrated power-on reset (POR) / power-down reset (PDR), coupled
with a brown-out reset (BOR) circuitry. The BOR is active in all power modes except
Shutdown mode, and cannot be disabled.
Five BOR thresholds can be selected through option bytes.
During power-on, the BOR keeps the device under reset until the supply voltage VDD
reaches the specified VBORx threshold. When VDD drops below the selected threshold, a
device reset is generated. When VDD is above the VBORx upper limit, the device reset is
released and the system can start.
For more details on the brown-out reset thresholds, refer to the electrical characteristics
section in the datasheet.
Figure 8. Brown-out reset waveform
9''
9%25 ULVLQJHGJH
K\VWHUHVLV
9%25 IDOOLQJHGJH
7HPSRUL]DWLRQ
W5677(032
5HVHW
069
1. The reset temporization tRSTTEMPO is present only for the BOR lowest threshold (VBOR0).
5.2.2
Programmable voltage detector (PVD)
You can use the PVD to monitor the VDD power supply by comparing it to a threshold
selected by the PLS[2:0] bits in the Power control register 2 (PWR_CR2).
The PVD is enabled by setting the PVDE bit.
A PVDO flag is available, in the Power status register 2 (PWR_SR2), to indicate if VDD is
higher or lower than the PVD threshold. This event is internally connected to the EXTI line16
and can generate an interrupt if enabled through the EXTI registers. The PVD output
interrupt can be generated when VDD drops below the PVD threshold and/or when VDD
rises above the PVD threshold depending on EXTI line16 rising/falling edge configuration.
As an example, the service routine could perform emergency shutdown tasks.
DocID024597 Rev 3
139/1693
178
Power control (PWR)
RM0351
Figure 9. PVD thresholds
9
''
9WKUHVKROG
39'
P9
K\VWHUHVLV
39'RXWSXW
069
5.2.3
Peripheral Voltage Monitoring (PVM)
Only VDD is monitored by default, as it is the only supply required for all system-related
functions. The other supplies (VDDA, VDDIO2 and VDDUSB) can be independent from VDD
and can be monitored with four Peripheral Voltage Monitoring (PVM).
Each of the four PVMx (x=1, 2, 3, 4) is a comparator between a fixed threshold VPVMx and
the selected power supply. PVMOx flags indicate if the independent power supply is higher
or lower than the PVMx threshold: PVMOx flag is cleared when the supply voltage is above
the PVMx threshold, and is set when the supply voltage is below the PVMx threshold.
Each PVM output is connected to an EXTI line and can generate an interrupt if enabled
through the EXTI registers. The PVMx output interrupt is generated when the independent
power supply drops below the PVMx threshold and/or when it rises above the PVMx
threshold, depending on EXTI line rising/falling edge configuration.
Each PVM can remain active in Stop 0, Stop 1 and Stop 2 modes, and the PVM interrupt
can wake up from the Stop mode.
Table 18. PVM features
PVM
Power supply
PVM threshold
EXTI line
PVM1
VDDUSB
VPVM1 (around 1.2 V)
35
PVM2
VDDIO2
VPVM2 (around 0.9 V)
36
PVM3
VDDA
VPVM3 (around 1.65 V)
37
PVM4
VDDA
VPVM4 (around 2.2 V)
38
The independent supplies (VDDA, VDDIO2 and VDDUSB) are not considered as present by
default, and a logical and electrical isolation is applied to ignore any information coming
from the peripherals supplied by these dedicated supplies.
140/1693
•
If these supplies are shorted externally to VDD, the application should assume they are
available without enabling any Peripheral Voltage Monitoring.
•
If these supplies are independent from VDD, the Peripheral Voltage Monitoring (PVM)
DocID024597 Rev 3
RM0351
Power control (PWR)
can be enabled to confirm whether the supply is present or not.
The following sequence must be done before using the USB_OTG peripheral:
1.
2.
If VDDUSB is independent from VDD:
a)
Enable the PVM1 by setting PVME1 bit in the Power control register 2
(PWR_CR2).
b)
Wait for the PVM1 wakeup time
c)
Wait until PVMO1 bit is cleared in the Power status register 2 (PWR_SR2).
d)
Optional: Disable the PVM1 for consumption saving.
Set the USV bit in the Power control register 2 (PWR_CR2) to remove the VDDUSB
power isolation.
The following sequence must be done before using any I/O from PG[15:2]:
1.
2.
If VDDIO2 is independent from VDD:
a)
Enable the PVM2 by setting PVME2 bit in the Power control register 2
(PWR_CR2).
b)
Wait for the PVM2 wakeup time
c)
Wait until PVMO2 bit is cleared in the Power status register 2 (PWR_SR2).
d)
Optional: Disable the PVM2 for consumption saving.
Set the IOSV bit in the Power control register 2 (PWR_CR2) to remove the VDDIO2
power isolation.
The following sequence must be done before using any of these analog peripherals: analog
to digital converters, digital to analog converters, comparators, operational amplifiers,
voltage reference buffer:
1.
2.
5.3
If VDDA is independent from VDD:
a)
Enable the PVM3 (or PVM4) by setting PVME3 (or PVME4) bit in the Power
control register 2 (PWR_CR2).
b)
Wait for the PVM3 (or PVM4) wakeup time
c)
Wait until PVMO3 (or PVMO4) bit is cleared in the Power status register 2
(PWR_SR2).
d)
Optional: Disable the PVM3 (or PVM4) for consumption saving.
Enable the analog peripheral, which automatically removes the VDDA isolation.
Low-power modes
By default, the microcontroller is in Run mode after a system or a power Reset. Several lowpower modes are available to save power when the CPU does not need to be kept running,
for example when waiting for an external event. It is up to the user to select the mode that
gives the best compromise between low-power consumption, short startup time and
available wakeup sources.
The device features seven low-power modes:
•
Sleep mode: CPU clock off, all peripherals including Cortex®-M4 core peripherals such
as NVIC, SysTick, etc. can run and wake up the CPU when an interrupt or an event
occurs. Refer to Section 5.3.4: Sleep mode.
•
Low-power run mode: This mode is achieved when the system clock frequency is
reduced below 2 MHz. The code is executed from the SRAM or the Flash memory. The
DocID024597 Rev 3
141/1693
178
Power control (PWR)
RM0351
regulator is in low-power mode to minimize the regulator's operating current. Refer to
Section 5.3.2: Low-power run mode (LP run).
•
Low-power sleep mode: This mode is entered from the Low-power run mode: Cortex®M4 is off. Refer to Section 5.3.5: Low-power sleep mode (LP sleep).
•
Stop 0, Stop 1 and Stop 2 modes: SRAM1, SRAM2 and all registers content are
retained. All clocks in the VCORE domain are stopped, the PLL, the MSI, the HSI16 and
the HSE are disabled. The LSI and the LSE can be kept running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
Some peripherals with the wakeup capability can enable the HSI16 RC during the Stop
mode to detect their wakeup condition.
In Stop 2 mode, most of the VCORE domain is put in a lower leakage mode.
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller
wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator
remains ON, which allows the fastest wakeup time but with much higher consumption.
The active peripherals and wakeup sources are the same as in Stop 1 mode.
The system clock, when exiting from Stop 0, Stop 1 or Stop 2 mode, can be either MSI
up to 48 MHz or HSI16, depending on the software configuration.
Refer to Section 5.3.6: Stop 0 mode and Section 5.3.8: Stop 2 mode.
•
Standby mode: VCORE domain is powered off. However, it is possible to preserve the
SRAM2 contents:
–
Standby mode with SRAM2 retention when the bit RRS is set in PWR_CR3
register. In this case, SRAM2 is supplied by the low-power regulator.
–
Standby mode when the bit RRS is cleared in PWR_CR3 register. In this case the
main regulator and the low-power regulator are powered off.
All clocks in the VCORE domain are stopped, the PLL, the MSI, the HSI16 and the HSE
are disabled. The LSI and the LSE can be kept running.
The RTC can remain active (Standby mode with RTC, Standby mode without RTC).
The system clock, when exiting Standby modes, is MSI from 1 MHz up to 8 MHz.
Refer to Section 5.3.9: Standby mode.
•
Shutdown mode: VCORE domain is powered off. All clocks in the VCORE domain are
stopped, the PLL, the MSI, the HSI16, the LSI and the HSE are disabled. The LSE can
be kept running. The system clock, when exiting the Shutdown mode, is MSI at 4 MHz.
In this mode, the supply voltage monitoring is disabled and the product behavior is not
guaranteed in case of a power voltage drop. Refer to Section 5.3.10: Shutdown mode.
In addition, the power consumption in Run mode can be reduced by one of the following
means:
142/1693
•
Slowing down the system clocks
•
Gating the clocks to the APB and AHB peripherals when they are unused.
DocID024597 Rev 3
RM0351
Power control (PWR)
Figure 10. Low-power modes possible transitions
/RZSRZHUVOHHSPRGH
6OHHSPRGH
/RZSRZHUUXQPRGH
6KXWGRZQPRGH
6WRSPRGH
5XQPRGH
6WDQGE\PRGH
6WRSPRGH
6WRSPRGH
069
DocID024597 Rev 3
143/1693
178
Power control (PWR)
RM0351
Table 19. Low-power mode summary
Mode name
Entry
WFI or Return
Sleep
(Sleep-now or from ISR
Sleep-on-exit) WFE
Low-power
run
Low-power
sleep
Stop 0
Stop 1
Stop 2
Wakeup
source(1)
Any interrupt
Wakeup event
Set LPR bit
Clear LPR bit
Set LPR bit +
WFI or Return
from ISR
Any interrupt
Set LPR bit +
WFE
Wakeup event
system clock
Voltage
regulators
MR
LPR
Same as before
entering Sleep
mode
CPU clock OFF
no effect on other clocks ON
or analog clock sources
ON
Same as Lowpower run clock
None
OFF
ON
Same as before
entering Lowpower sleep
mode
OFF
CPU clock OFF
no effect on other clocks
or analog clock sources
OFF
ON
ON
ON
HSI16 when
Any EXTI line
STOPWUCK=1 in
(configured in the RCC_CFGR
LPMS=”001” +
SLEEPDEEP bit EXTI registers)
MSI with the
+ WFI or Return Specific
frequency before
from ISR or WFE peripherals
entering the Stop
events
mode when
LPMS=”010” +
STOPWUCK=0.
SLEEPDEEP bit
+ WFI or Return
All clocks OFF except
LSI and LSE
from ISR or WFE
WKUP pin edge,
RTC event,
external reset in
NRST pin,
IWDG reset
Standby
LPMS=”011” +
Clear RRS bit +
SLEEPDEEP bit
+ WFI or Return
from ISR or WFE
WKUP pin edge,
RTC event,
external reset in
NRST pin,
IWDG reset
Shutdown
LPMS=”1--” +
SLEEPDEEP bit
+ WFI or Return
from ISR or WFE
WKUP pin edge,
RTC event,
external reset in
NRST pin
ON
OFF
MSI from 1 MHz
up to 8 MHz
MSI 4 MHz
1. Refer to Table 20: Functionalities depending on the working mode.
144/1693
Effect on clocks
LPMS=”000” +
SLEEPDEEP bit
+ WFI or Return
from ISR or WFE
LPMS=”011”+
Set RRS bit +
SLEEPDEEP bit
+ WFI or Return
from ISR or WFE
Standby with
SRAM2
Wakeup
DocID024597 Rev 3
All clocks OFF except
LSE
OFF
OFF
OFF
OFF
RM0351
Power control (PWR)
Table 20. Functionalities depending on the working mode(1)
-
-
CPU
Y
-
Y
-
-
-
-
-
-
-
-
-
-
Flash memory (up to 1 MB)
(2)
(2)
(2)
(2)
O
-
-
-
-
-
-
-
-
-
Y
Y(3)
Y
-
Y
-
-
-
-
-
-
(3)
Y
-
Y
-
O
(4)
-
-
-
-
Peripheral
Run
O
Low- LowSleep power power
run
sleep
O
O
-
Wakeup capability
-
Wakeup capability
Standby Shutdown
Wakeup capability
Stop 2
Wakeup capability
Stop 0/1
VBAT
Y
Y(3)
SRAM2 (32 KB)
Y
(3)
Y
FSMC
O
O
O
O
-
-
-
-
-
-
-
-
-
QUADSPI
O
O
O
O
-
-
-
-
-
-
-
-
-
Backup Registers
Y
Y
Y
Y
Y
-
Y
-
Y
-
Y
-
Y
Brown-out reset (BOR)
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
Programmable Voltage
Detector (PVD)
O
O
O
O
O
O
O
O
-
-
-
-
-
Peripheral Voltage Monitor
(PVMx; x=1,2,3,4)
O
O
O
O
O
O
O
O
-
-
-
-
-
DMA
O
O
O
O
-
-
-
-
-
-
-
-
-
-
(5)
-
-
-
-
-
-
SRAM1 (up to 96 KB)
Y
Y
High Speed Internal (HSI16)
O
O
O
O
(5)
High Speed External (HSE)
O
O
O
O
-
-
-
-
-
-
-
-
-
Low Speed Internal (LSI)
O
O
O
O
O
-
O
-
O
-
-
-
-
Low Speed External (LSE)
O
O
O
O
O
-
O
-
O
-
O
-
O
Multi-Speed Internal (MSI)
O
O
O
O
-
-
-
-
-
-
-
-
-
Clock Security System
(CSS)
O
O
O
O
-
-
-
-
-
-
-
-
-
Clock Security System on
LSE
O
O
O
O
O
O
O
O
O
O
-
-
-
RTC / Auto wakeup
O
O
O
O
O
O
O
O
O
O
O
O
O
Number of RTC Tamper
pins
3
3
3
3
3
O
3
O
3
O
3
O
3
LCD
O
O
O
O
O
O
O
O
-
-
-
-
-
O(8)
-
-
-
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USB OTG FS
(8)
O
USARTx (x=1,2,3,4,5)
O
O
O
O
O(6) O(6)
Low-power UART
(LPUART)
O
O
O
O
O(6) O(6) O(6) O(6)
DocID024597 Rev 3
145/1693
178
Power control (PWR)
RM0351
Table 20. Functionalities depending on the working mode(1) (continued)
O
O
O
-
O(7) O(7)
(7)
O
(7)
-
-
-
O
(7)
O
-
(7)
-
Wakeup capability
O
Low- LowSleep power power
run
sleep
Standby Shutdown
Wakeup capability
I2Cx (x=1,2)
Run
Stop 2
Wakeup capability
Peripheral
Wakeup capability
Stop 0/1
-
-
-
-
-
-
-
-
-
VBAT
I2C3
O
O
O
O
O
SPIx (x=1,2,3)
O
O
O
O
-
-
-
-
-
-
-
-
-
CAN
O
O
O
O
-
-
-
-
-
-
-
-
-
SDMMC1
O
O
O
O
-
-
-
-
-
-
-
-
-
SWPMI
O
O
O
O
-
O
-
-
-
-
-
-
-
SAIx (x=1,2)
O
O
O
O
-
-
-
-
-
-
-
-
-
DFSDM
O
O
O
O
-
-
-
-
-
-
-
-
-
ADCx (x=1,2,3)
O
O
O
O
-
-
-
-
-
-
-
-
-
DACx (x=1,2)
O
O
O
O
O
-
-
-
-
-
-
-
-
VREFBUF
O
O
O
O
O
-
-
-
-
-
-
-
-
OPAMPx (x=1,2)
O
O
O
O
O
-
-
-
-
-
-
-
-
COMPx (x=1,2)
O
O
O
O
O
O
O
O
-
-
-
-
-
Temperature sensor
O
O
O
O
-
-
-
-
-
-
-
-
-
Timers (TIMx)
O
O
O
O
-
-
-
-
-
-
-
-
-
Low-power timer 1
(LPTIM1)
O
O
O
O
O
O
O
O
-
-
-
-
-
Low-power timer 2
(LPTIM2)
O
O
O
O
O
O
-
-
-
-
-
-
-
Independent watchdog
(IWDG)
O
O
O
O
O
O
O
O
O
O
-
-
-
Window watchdog (WWDG)
O
O
O
O
-
-
-
-
-
-
-
-
-
SysTick timer
O
O
O
O
-
-
-
-
-
-
-
-
-
Touch sensing controller
(TSC)
O
O
O
O
-
-
-
-
-
-
-
-
-
Random number generator
(RNG)
O(8)
O(8)
-
-
-
-
-
-
-
-
-
-
-
AES hardware accelerator
O
O
O
O
-
-
-
-
-
-
-
-
-
146/1693
DocID024597 Rev 3
RM0351
Power control (PWR)
Table 20. Functionalities depending on the working mode(1) (continued)
O
O
O
O
O
O
O
O
-
-
O
-
-
-
O
O
-
-
-
O
(9)
-
Wakeup capability
GPIOs
Low- LowSleep power power
run
sleep
Wakeup capability
CRC calculation unit
Run
Standby Shutdown
Wakeup capability
Peripheral
Stop 2
Wakeup capability
Stop 0/1
-
-
-
-
5
pin
s
(11)
5
pins
-
(10)
VBAT
(10)
1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not available.
2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.
3. The SRAM clock can be gated on or off.
4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register.
5. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by
the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not
need it anymore.
6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or
received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. Voltage scaling Range 1 only.
9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when
exiting the Shutdown mode.
Debug mode
By default, the debug connection is lost if the application puts the MCU in Stop 0, Stop1,
Stop 2, Standby or Shutdown mode while the debug features are used. This is due to the
fact that the Cortex®-M4 core is no longer clocked.
However, by setting some configuration bits in the DBGMCU_CR register, the software can
be debugged even when using the low-power modes extensively. For more details, refer to
Section 44.16.1: Debug support for low-power modes.
5.3.1
Run mode
Slowing down system clocks
In Run mode, the speed of the system clocks (SYSCLK, HCLK, PCLK) can be reduced by
programming the prescaler registers. These prescalers can also be used to slow down the
peripherals before entering the Sleep mode.
For more details, refer to Section 6.4.3: Clock configuration register (RCC_CFGR).
DocID024597 Rev 3
147/1693
178
Power control (PWR)
RM0351
Peripheral clock gating
In Run mode, the HCLK and PCLK for individual peripherals and memories can be stopped
at any time to reduce the power consumption.
To further reduce the power consumption in Sleep mode, the peripheral clocks can be
disabled prior to executing the WFI or WFE instructions.
The peripheral clock gating is controlled by the RCC_AHBxENR and RCC_APBxENR
registers.
Disabling the peripherals clocks in Sleep mode can be performed automatically by resetting
the corresponding bit in the RCC_AHBxSMENR and RCC_APBxSMENR registers.
5.3.2
Low-power run mode (LP run)
To further reduce the consumption when the system is in Run mode, the regulator can be
configured in low-power mode. In this mode, the system frequency should not exceed
2 MHz.
Please refer to the product datasheet for more details on voltage regulator and peripherals
operating conditions.
I/O states in Low-power run mode
In Low-power run mode, all I/O pins keep the same state as in Run mode.
Entering the Low-power run mode
To enter the Low-power run mode, proceed as follows:
1.
Optional: Jump into the SRAM and power-down the Flash by setting the RUN_PD bit in
the Flash access control register (FLASH_ACR).
2.
Decrease the system clock frequency below 2 MHz.
3.
Force the regulator in low-power mode by setting the LPR bit in the PWR_CR1 register.
Refer to Table 21: Low-power run on how to enter the Low-power run mode.
Exiting the Low-power run mode
To exit the Low-power run mode, proceed as follows:
1.
Force the regulator in main mode by clearing the LPR bit in the PWR_CR1 register.
2.
Wait until REGLPF bit is cleared in the PWR_SR2 register.
3.
Increase the system clock frequency.
Refer to Table 21: Low-power run on how to exit the Low-power run mode.
Table 21. Low-power run
Low-power run mode
Mode entry
148/1693
Description
Decrease the system clock frequency below 2 MHz
LPR = 1
DocID024597 Rev 3
RM0351
Power control (PWR)
Table 21. Low-power run
Low-power run mode
5.3.3
Description
Mode exit
LPR = 0
Wait until REGLPF = 0
Increase the system clock frequency
Wakeup latency
Regulator wakeup time from low-power mode
Low power modes
Entering low power mode
Low power modes are entered by the MCU by executing the WFI (Wait For Interrupt), or
WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit in the Cortex®-M4
System Control register is set on Return from ISR.
Entering Low-power mode through WFI or WFE will be executed only if no interrupt is
pending or no event is pending.
Exiting low power mode
From Sleep modes, and Stop modes the MCU exit low power mode depending on the way
the low power mode was entered:
•
If the WFI instruction or Return from ISR was used to enter the low power mode, any
peripheral interrupt acknowledged by the NVIC can wake up the device.
•
If the WFE instruction is used to enter the low power mode, the MCU exits the low
power mode as soon as an event occurs. The wakeup event can be generated either
by:
–
NVIC IRQ interrupt.
- When SEVONPEND = 0 in the Cortex®-M4 System Control register. By enabling
an interrupt in the peripheral control register and in the NVIC. When the MCU
resumes from WFE, the peripheral interrupt pending bit and the NVIC peripheral
IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be
cleared.
Only NVIC interrupts with sufficient priority will wakeup and interrupt the MCU.
- When SEVONPEND = 1 in the Cortex®-M4 System Control register.
By enabling an interrupt in the peripheral control register and optionally in the
NVIC. When the MCU resumes from WFE, the peripheral interrupt pending bit and
when enabled the NVIC peripheral IRQ channel pending bit (in the NVIC interrupt
clear pending register) have to be cleared.
All NVIC interrupts will wakeup the MCU, even the disabled ones. Only enabled
NVIC interrupts with sufficient priority will wakeup and interrupt the MCU.
–
Event
Configuring a EXTI line in event mode. When the CPU resumes from WFE, it is
not necessary to clear the EXTI peripheral interrupt pending bit or the NVIC IRQ
channel pending bit as the pending bits corresponding to the event line is not set.
It may be necessary to clear the interrupt flag in the peripheral.
From Standby modes, and Shutdown modes the MCU exit low power mode through an
external reset (NRST pin), an IWDG reset, a rising edge on one of the enabled WKUPx pins
DocID024597 Rev 3
149/1693
178
Power control (PWR)
RM0351
or a RTC event occurs (see Figure 351: RTC block diagrams).
After waking up from Standby or Shutdown mode, program execution restarts in the same
way as after a Reset (boot pin sampling, option bytes loading, reset vector is fetched, etc.).
5.3.4
Sleep mode
I/O states in Sleep mode
In Sleep mode, all I/O pins keep the same state as in Run mode.
Entering the Sleep mode
The Sleep mode is entered according Section : Entering low power mode, when the
SLEEPDEEP bit in the Cortex®-M4 System Control register is clear.
Refer to Table 22: Sleep for details on how to enter the Sleep mode.
Exiting the Sleep mode
The Sleep mode is exit according Section : Exiting low power mode.
Refer to Table 22: Sleep for more details on how to exit the Sleep mode.
Table 22. Sleep
Sleep-now mode
Description
WFI (Wait for Interrupt) or WFE (Wait for Event) while:
– SLEEPDEEP = 0
– No interrupt (for WFI) or event (for WFE) is pending
Refer to the Cortex®-M4 System Control register.
Mode entry
On return from ISR while:
– SLEEPDEEP = 0 and
– SLEEPONEXIT = 1
– No interrupt is pending
Refer to the Cortex®-M4 System Control register.
If WFI or return from ISR was used for entry
Interrupt: refer to Table 42: STM32L4x6 vector table
5.3.5
Mode exit
If WFE was used for entry and SEVONPEND = 0:
Wakeup event: refer to Section 12.3.2: Wakeup event management
Wakeup latency
None
If WFE was used for entry and SEVONPEND = 1:
Interrupt even when disabled in NVIC: refer to Table 42: STM32L4x6
vector table or Wakeup event: refer to Section 12.3.2: Wakeup event
management
Low-power sleep mode (LP sleep)
Please refer to the product datasheet for more details on voltage regulator and peripherals
operating conditions.
150/1693
DocID024597 Rev 3
RM0351
Power control (PWR)
I/O states in Low-power sleep mode
In Low-power sleep mode, all I/O pins keep the same state as in Run mode.
Entering the Low-power sleep mode
The Low-power sleep mode is entered from low-power run mode according Section :
Entering low power mode, when the SLEEPDEEP bit in the Cortex®-M4 System Control
register is clear.
Refer to Table 23: Low-power sleep for details on how to enter the Low-power sleep mode.
Exiting the Low-power sleep mode
The low-power Sleep mode is exit according Section : Exiting low power mode. When
exiting the Low-power sleep mode by issuing an interrupt or an event, the MCU is in Lowpower run mode.
Refer to Table 23: Low-power sleep for details on how to exit the Low-power sleep mode.
Table 23. Low-power sleep
Low-power sleep-now
mode
Description
Low-power sleep mode is entered from the Low-power run mode.
WFI (Wait for Interrupt) or WFE (Wait for Event) while:
– SLEEPDEEP = 0
– No interrupt (for WFI) or event (for WFE) is pending
Refer to the Cortex®-M4 System Control register.
Mode entry
Low-power sleep mode is entered from the Low-power run mode.
On return from ISR while:
– SLEEPDEEP = 0 and
– SLEEPONEXIT = 1
– No interrupt is pending
Refer to the Cortex®-M4 System Control register.
If WFI or Return from ISR was used for entry
Interrupt: refer to Table 42: STM32L4x6 vector table
If WFE was used for entry and SEVONPEND = 0:
Wakeup event: refer to Section 12.3.2: Wakeup event management
5.3.6
Mode exit
If WFE was used for entry and SEVONPEND = 1:
Interrupt even when disabled in NVIC: refer to Table 42: STM32L4x6
vector table
Wakeup event: refer to Section 12.3.2: Wakeup event management
After exiting the Low-power sleep mode, the MCU is in Low-power run
mode.
Wakeup latency
None
Stop 0 mode
The Stop 0 mode is based on the Cortex®-M4 deepsleep mode combined with the
peripheral clock gating. The voltage regulator is configured in main regulator mode. In Stop
0 mode, all clocks in the VCORE domain are stopped; the PLL, the MSI, the HSI16 and the
DocID024597 Rev 3
151/1693
178
Power control (PWR)
RM0351
HSE oscillators are disabled. Some peripherals with the wakeup capability (I2Cx (x=1,2,3),
U(S)ARTx(x=1,2...5) and LPUART) can switch on the HSI16 to receive a frame, and switch
off the HSI16 after receiving the frame if it is not a wakeup frame. In this case, the HSI16
clock is propagated only to the peripheral requesting it.
SRAM1, SRAM2 and register contents are preserved.
The BOR is always available in Stop 0 mode. The consumption is increased when
thresholds higher than VBOR0 are used.
I/O states in Stop 0 mode
In the Stop 0 mode, all I/O pins keep the same state as in the Run mode.
Entering the Stop 0 mode
The Stop 0 mode is entered according Section : Entering low power mode, when the
SLEEPDEEP bit in the Cortex®-M4 System Control register is set.
Refer to Table 24: Stop 0 mode for details on how to enter the Stop 0 mode.
If Flash memory programming is ongoing, the Stop 0 mode entry is delayed until the
memory access is finished.
If an access to the APB domain is ongoing, The Stop 0 mode entry is delayed until the APB
access is finished.
In Stop 0 mode, the following features can be selected by programming individual control
bits:
•
Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by
hardware option. Once started, it cannot be stopped except by a Reset. See
Section 32.3: IWDG functional description.
•
real-time clock (RTC): this is configured by the RTCEN bit in the Backup domain
control register (RCC_BDCR)
•
Internal RC oscillator (LSI): this is configured by the LSION bit in the Control/status
register (RCC_CSR).
•
External 32.768 kHz oscillator (LSE): this is configured by the LSEON bit in the Backup
domain control register (RCC_BDCR).
Several peripherals can be used in Stop 0 mode and can add consumption if they are
enabled and clocked by LSI or LSE, or when they request the HSI16 clock: LCD, LPTIM1,
LPTIM2, I2Cx (x=1,2,3) U(S)ARTx(x=1,2...5), LPUART.
The DACx (x=1,2), the OPAMPs and the comparators can be used in Stop 0 mode, the
PVMx (x=1,2,3,4) and the PVD as well. If they are not needed, they must be disabled by
software to save their power consumptions.
The ADCx (x=1,2,3), temperature sensor and VREFBUF buffer can consume power during
the Stop 0 mode, unless they are disabled before entering this mode.
Exiting the Stop 0 mode
The Stop 0 mode is exit according Section : Entering low power mode.
Refer to Table 24: Stop 0 mode for details on how to exit Stop 0 mode.
When exiting Stop 0 mode by issuing an interrupt or a wakeup event, the HSI16 oscillator is
selected as system clock if the bit STOPWUCK is set in Clock configuration register
152/1693
DocID024597 Rev 3
RM0351
Power control (PWR)
(RCC_CFGR). The MSI oscillator is selected as system clock if the bit STOPWUCK is
cleared. The wakeup time is shorter when HSI16 is selected as wakeup system clock. The
MSI selection allows wakeup at higher frequency, up to 48 MHz.
When the voltage regulator operates in low-power mode, an additional startup delay is
incurred when waking up from Stop 0 mode with HSI16. By keeping the internal regulator
ON during Stop 0 mode, the consumption is higher although the startup time is reduced.
When exiting the Stop 0 mode, the MCU is either in Run mode (Range 1 or Range 2
depending on VOS bit in PWR_CR1) or in Low-power run mode if the bit LPR is set in the
PWR_CR1 register.
Table 24. Stop 0 mode
Stop 0 mode
Description
WFI (Wait for Interrupt) or WFE (Wait for Event) while:
– SLEEPDEEP bit is set in Cortex®-M4 System Control register
– No interrupt (for WFI) or event (for WFE) is pending
– LPMS = “000” in PWR_CR1
Mode entry
On Return from ISR while:
– SLEEPDEEP bit is set in Cortex®-M4 System Control register
– SLEEPONEXIT = 1
– No interrupt is pending
– LPMS = “000” in PWR_CR1
Note: To enter Stop 0 mode, all EXTI Line pending bits (in Pending
register 1 (EXTI_PR1)), and the peripheral flags generating wakeup
interrupts must be cleared. Otherwise, the Stop 0 mode entry
procedure is ignored and program execution continues.
Mode exit
If WFI or Return from ISR was used for entry
Any EXTI Line configured in Interrupt mode (the corresponding EXTI
Interrupt vector must be enabled in the NVIC). The interrupt source can
be external interrupts or peripherals with wakeup capability. Refer to
Table 42: STM32L4x6 vector table.
If WFE was used for entry and SEVONPEND = 0:
Any EXTI Line configured in event mode. Refer to Section 12.3.2:
Wakeup event management.
If WFE was used for entry and SEVONPEND = 1:
Any EXTI Line configured in Interrupt mode (even if the corresponding
EXTI Interrupt vector is disabled in the NVIC). The interrupt source can
be external interrupts or peripherals with wakeup capability. Refer
toTable 42: STM32L4x6 vector table.
Wakeup event: refer to Section 12.3.2: Wakeup event management
Wakeup latency
5.3.7
Longest wakeup time between: MSI or HSI16 wakeup time and Flash
wakeup time from Stop 0 mode.
Stop 1 mode
The Stop 1 mode is the same as Stop 0 mode except that the main regulator is OFF, and
only the low-power regulator is ON. Stop 1 mode can be entered from Run mode and from
Low-power run mode.
DocID024597 Rev 3
153/1693
178
Power control (PWR)
RM0351
Refer to Table 25: Stop 1 mode for details on how to enter and exit Stop 1 mode.
Table 25. Stop 1 mode
Stop 1 mode
Description
WFI (Wait for Interrupt) or WFE (Wait for Event) while:
– SLEEPDEEP bit is set in Cortex®-M4 System Control register
– No interrupt (for WFI) or event (for WFE) is pending
– LPMS = “001” in PWR_CR1
Mode entry
On Return from ISR while:
– SLEEPDEEP bit is set in Cortex®-M4 System Control register
– SLEEPONEXIT = 1
– No interrupt is pending
– LPMS = “001” in PWR_CR1
Note: To enter Stop 1 mode, all EXTI Line pending bits (in Pending
register 1 (EXTI_PR1)), and the peripheral flags generating wakeup
interrupts must be cleared. Otherwise, the Stop 1 mode entry
procedure is ignored and program execution continues.
Mode exit
If WFI or Return from ISR was used for entry
Any EXTI Line configured in Interrupt mode (the corresponding EXTI
Interrupt vector must be enabled in the NVIC). The interrupt source can
be external interrupts or peripherals with wakeup capability. Refer to
Table 42: STM32L4x6 vector table.
If WFE was used for entry and SEVONPEND = 0:
Any EXTI Line configured in event mode. Refer to Section 12.3.2:
Wakeup event management.
If WFE was used for entry and SEVONPEND = 1:
Any EXTI Line configured in Interrupt mode (even if the corresponding
EXTI Interrupt vector is disabled in the NVIC). The interrupt source can
be external interrupts or peripherals with wakeup capability. Refer
toTable 42: STM32L4x6 vector table.
Wakeup event: refer to Section 12.3.2: Wakeup event management
Wakeup latency
5.3.8
Longest wakeup time between: MSI or HSI16 wakeup time and regulator
wakeup time from Low-power mode + Flash wakeup time from Stop 1
mode.
Stop 2 mode
The Stop 2 mode is based on the Cortex®-M4 deepsleep mode combined with peripheral
clock gating. In Stop 2 mode, all clocks in the VCORE domain are stopped, the PLL, the MSI,
the HSI16 and the HSE oscillators are disabled. Some peripherals with wakeup capability
(I2C3 and LPUART) can switch on the HSI16 to receive a frame, and switch off the HSI16
after receiving the frame if it is not a wakeup frame. In this case the HSI16 clock is
propagated only to the peripheral requesting it.
SRAM1, SRAM2 and register contents are preserved.
The BOR is always available in Stop 2 mode. The consumption is increased when
thresholds higher than VBOR0 are used.
Note:
154/1693
The comparators outputs, the LPUART outputs and the LPTIM1 outputs are forced to low
speed (OSPEEDy=00) during the Stop 2 mode.
DocID024597 Rev 3
RM0351
Power control (PWR)
I/O states in Stop 2 mode
In the Stop 2 mode, all I/O pins keep the same state as in the Run mode.
Entering Stop 2 mode
The Stop 2 mode is entered according Section : Entering low power mode, when the
SLEEPDEEP bit in the Cortex®-M4 System Control register is set.
Refer to Table 26: Stop 2 mode for details on how to enter the Stop 2 mode.
Stop 2 mode can only be entered from Run mode. It is not possible to enter Stop 2 mode
from the Low-power run mode.
If Flash memory programming is ongoing, the Stop 2 mode entry is delayed until the
memory access is finished.
If an access to the APB domain is ongoing, The Stop 2 mode entry is delayed until the APB
access is finished.
In Stop 2 mode, the following features can be selected by programming individual control
bits:
•
Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by
hardware option. Once started it cannot be stopped except by a Reset. See
Section 32.3: IWDG functional description in Section 32: Independent watchdog
(IWDG).
•
real-time clock (RTC): this is configured by the RTCEN bit in the Backup domain
control register (RCC_BDCR)
•
Internal RC oscillator (LSI): this is configured by the LSION bit in the Control/status
register (RCC_CSR).
•
External 32.768 kHz oscillator (LSE): this is configured by the LSEON bit in the Backup
domain control register (RCC_BDCR).
Several peripherals can be used in Stop 2 mode and can add consumption if they are
enabled and clocked by LSI or LSE, or when they request the HSI16 clock: LCD, LPTIM1,
I2C3, LPUART.
The comparators can be used in Stop 2 mode, the PVMx (x=1,2,3,4) and the PVD as well. If
they are not needed, they must be disabled by software to save their power consumptions.
The ADCx, OPAMPx, DACx, temperature sensor and VREFBUF buffer can consume power
during Stop 2 mode, unless they are disabled before entering this mode.
All the peripherals which cannot be enabled in Stop 2 mode must be either disabled by
clearing the Enable bit in the peripheral itself, or put under reset state by setting the
corresponding bit in the AHB1 peripheral reset register (RCC_AHB1RSTR), AHB2
peripheral reset register (RCC_AHB2RSTR), AHB3 peripheral reset register
(RCC_AHB3RSTR), APB1 peripheral reset register 1 (RCC_APB1RSTR1), APB1
peripheral reset register 2 (RCC_APB1RSTR2), APB2 peripheral reset register
(RCC_APB2RSTR).
Exiting Stop 2 mode
The Stop 2 mode is exit according Section : Exiting low power mode.
Refer to Table 26: Stop 2 mode for details on how to exit Stop 2 mode.
DocID024597 Rev 3
155/1693
178
Power control (PWR)
RM0351
When exiting Stop 2 mode by issuing an interrupt or a wakeup event, the HSI16 oscillator is
selected as system clock if the bit STOPWUCK is set in Clock configuration register
(RCC_CFGR). The MSI oscillator is selected as system clock if the bit STOPWUCK is
cleared. The wakeup time is shorter when HSI16 is selected as wakeup system clock. The
MSI selection allows wakeup at higher frequency, up to 48 MHz.
When exiting the Stop 2 mode, the MCU is in Run mode (Range 1 or Range 2 depending on
VOS bit in PWR_CR1).
Table 26. Stop 2 mode
Stop 2 mode
Description
WFI (Wait for Interrupt) or WFE (Wait for Event) while:
– SLEEPDEEP bit is set in Cortex®-M4 System Control register
– No interrupt (for WFI) or event (for WFE) is pending
– LPMS = “010” in PWR_CR1
Mode entry
On return from ISR while:
– SLEEPDEEP bit is set in Cortex®-M4 System Control register
– SLEEPONEXIT = 1
– No interrupt is pending
– LPMS = “010” in PWR_CR1
Note: To enter Stop 2 mode, all EXTI Line pending bits (in Pending
register 1 (EXTI_PR1)), and the peripheral flags generating wakeup
interrupts must be cleared. Otherwise, the Stop mode entry
procedure is ignored and program execution continues.
Mode exit
If WFI or Return from ISR was used for entry:
Any EXTI Line configured in Interrupt mode (the corresponding EXTI
Interrupt vector must be enabled in the NVIC). The interrupt source can
be external interrupts or peripherals with wakeup capability. Refer to
Table 42: STM32L4x6 vector table.
If WFE was used for entry and SEVONPEND = 0:
Any EXTI Line configured in event mode. Refer to Section 12.3.2:
Wakeup event management.
If WFE was used for entry and SEVONPEND = 1:
Any EXTI Line configured in Interrupt mode (even if the corresponding
EXTI Interrupt vector is disabled in the NVIC). The interrupt source can
be external interrupts or peripherals with wakeup capability. Refer to
Table 42: STM32L4x6 vector table.
Any EXTI Line configured in event mode. Refer to Section 12.3.2:
Wakeup event management.
Wakeup latency
156/1693
Longest wakeup time between: MSI or HSI16 wakeup time and regulator
wakeup time from Low-power mode + Flash wakeup time from Stop 2
mode.
DocID024597 Rev 3
RM0351
5.3.9
Power control (PWR)
Standby mode
The Standby mode allows to achieve the lowest power consumption with BOR. It is based
on the Cortex®-M4 deepsleep mode, with the voltage regulators disabled (except when
SRAM2 content is preserved). The PLL, the HSI16, the MSI and the HSE oscillators are
also switched off.
SRAM1 and register contents are lost except for registers in the Backup domain and
Standby circuitry (see Figure 7). SRAM2 content can be preserved if the bit RRS is set in
the PWR_CR3 register. In this case the Low-power regulator is ON and provides the supply
to SRAM2 only.
The BOR is always available in Standby mode. The consumption is increased when
thresholds higher than VBOR0 are used.
I/O states in Standby mode
In the Standby mode, the I/Os can be configured either with a pull-up (refer to PWR_PUCRx
registers (x=A,B,C,D,E,F,G,H)), or with a pull-down (refer to PWR_PDCRx registers
(x=A,B,C,D,E,F,G,H)), or can be kept in analog state.
The RTC outputs on PC13 are functional in Standby mode. PC14 and PC15 used for LSE
are also functional. 5 wakeup pins (WKUPx, x=1,2...5) and the 3 RTC tampers are available.
Entering Standby mode
The Standby mode is entered according Section : Entering low power mode, when the
SLEEPDEEP bit in the Cortex®-M4 System Control register is set.
Refer to Table 27: Standby mode for details on how to enter Standby mode.
In Standby mode, the following features can be selected by programming individual control
bits:
•
Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by
hardware option. Once started it cannot be stopped except by a reset. See
Section 32.3: IWDG functional description in Section 32: Independent watchdog
(IWDG).
•
real-time clock (RTC): this is configured by the RTCEN bit in the Backup domain
control register (RCC_BDCR)
•
Internal RC oscillator (LSI): this is configured by the LSION bit in the Control/status
register (RCC_CSR).
•
External 32.768 kHz oscillator (LSE): this is configured by the LSEON bit in the Backup
domain control register (RCC_BDCR)
Exiting Standby mode
The Standby mode is exit according Section : Entering low power mode. The SBF status
flag in the Power control register 3 (PWR_CR3) indicates that the MCU was in Standby
mode. All registers are reset after wakeup from Standby except for Power control register 3
(PWR_CR3).
Refer to Table 27: Standby mode for more details on how to exit Standby mode.
DocID024597 Rev 3
157/1693
178
Power control (PWR)
RM0351
Table 27. Standby mode
Standby mode
Description
WFI (Wait for Interrupt) or WFE (Wait for Event) while:
– SLEEPDEEP bit is set in Cortex®-M4 System Control register
– No interrupt (for WFI) or event (for WFE) is pending
– LPMS = “011” in PWR_CR1
– WUFx bits are cleared in power status register 1 (PWR_SR1)
Mode entry
158/1693
On return from ISR while:
– SLEEPDEEP bit is set in Cortex®-M4 System Control register
– SLEEPONEXIT = 1
– No interrupt is pending
– LPMS = “011” in PWR_CR1 and
– WUFx bits are cleared in power status register 1 (PWR_SR1)
– The RTC flag corresponding to the chosen wakeup source (RTC Alarm
A, RTC Alarm B, RTC wakeup, tamper or timestamp flags) is cleared
Mode exit
WKUPx pin edge, RTC event, external Reset in NRST pin, IWDG Reset,
BOR reset
Wakeup latency
Reset phase
DocID024597 Rev 3
RM0351
5.3.10
Power control (PWR)
Shutdown mode
The Shutdown mode allows to achieve the lowest power consumption. It is based on the
deepsleep mode, with the voltage regulator disabled. The VCORE domain is consequently
powered off. The PLL, the HSI16, the MSI, the LSI and the HSE oscillators are also
switched off.
SRAM1, SRAM2 and register contents are lost except for registers in the Backup domain.
The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this
mode, therefore the switch to Backup domain is not supported.
I/O states in Shutdown mode
In the Shutdown mode, the I/Os can be configured either with a pull-up (refer to
PWR_PUCRx registers (x=A,B,C,D,E,F,G,H), or with a pull-down (refer to PWR_PDCRx
registers (x=A,B,C,D,E,F,G,H)), or can be kept in analog state. However this configuration is
lost when exiting the Shutdown mode due to the power-on reset.
The RTC outputs on PC13 are functional in Shutdown mode. PC14 and PC15 used for LSE
are also functional. 5 wakeup pins (WKUPx, x=1,2...5) and the 3 RTC tampers are available.
Entering Shutdown mode
The Shutdown mode is entered according Entering low power mode, when the
SLEEPDEEP bit in the Cortex®-M4 System Control register is set.
Refer to Table 28: Shutdown mode for details on how to enter Shutdown mode.
In Shutdown mode, the following features can be selected by programming individual
control bits:
•
real-time clock (RTC): this is configured by the RTCEN bit in the Backup domain
control register (RCC_BDCR). Caution: in case of VDD power-down the RTC content
will be lost.
•
external 32.768 kHz oscillator (LSE): this is configured by the LSEON bit in the Backup
domain control register (RCC_BDCR)
Exiting Shutdown mode
The Shutdown mode is exit according Section : Exiting low power mode. A power-on reset
occurs when exiting from Shutdown mode. All registers (except for the ones in the Backup
domain) are reset after wakeup from Shutdown.
Refer to Table 28: Shutdown mode for more details on how to exit Shutdown mode.
DocID024597 Rev 3
159/1693
178
Power control (PWR)
RM0351
Table 28. Shutdown mode
Shutdown mode
Description
WFI (Wait for Interrupt) or WFE (Wait for Event) while:
– SLEEPDEEP bit is set in Cortex®-M4 System Control register
– No interrupt (for WFI) or event (for WFE) is pending
– LPMS = “1XX” in PWR_CR1
– WUFx bits are cleared in power status register 1 (PWR_SR1)
Mode entry
5.3.11
On return from ISR while:
– SLEEPDEEP bit is set in Cortex®-M4 System Control register
– SLEEPONEXT = 1
– No interrupt is pending
– LPMS = “1XX” in PWR_CR1 and
– WUFx bits are cleared in power status register 1 (PWR_SR1)
– The RTC flag corresponding to the chosen wakeup source (RTC
Alarm A, RTC Alarm B, RTC wakeup, tamper or timestamp flags) is
cleared
Mode exit
WKUPx pin edge, RTC event, external Reset in NRST pin
Wakeup latency
Reset phase
Auto-wakeup from low-power mode
The RTC can be used to wakeup the MCU from low-power mode without depending on an
external interrupt (Auto-wakeup mode). The RTC provides a programmable time base for
waking up from Stop (0, 1 or 2) or Standby mode at regular intervals. For this purpose, two
of the three alternative RTC clock sources can be selected by programming the
RTCSEL[1:0] bits in the Backup domain control register (RCC_BDCR):
•
Low-power 32.768 kHz external crystal oscillator (LSE OSC)
This clock source provides a precise time base with very low-power consumption.
•
Low-power internal RC Oscillator (LSI)
This clock source has the advantage of saving the cost of the 32.768 kHz crystal. This
internal RC Oscillator is designed to add minimum power consumption.
To wakeup from Stop mode with an RTC alarm event, it is necessary to:
•
Configure the EXTI Line 18 to be sensitive to rising edge
•
Configure the RTC to generate the RTC alarm
To wakeup from Standby mode, there is no need to configure the EXTI Line 18.
To wakeup from Stop mode with an RTC wakeup event, it is necessary to:
•
Configure the EXTI Line 20 to be sensitive to rising edge
•
Configure the RTC to generate the RTC alarm
To wakeup from Standby mode, there is no need to configure the EXTI Line 20.
The LCD Start of frame interrupt can also be used as a periodic wakeup from Stop (0, 1 or 2)
mode. The LCD is not available in Standby mode.
The LCD clock is derived from the RTC clock selected by RTCSEL[1:0].
160/1693
DocID024597 Rev 3
RM0351
Power control (PWR)
5.4
PWR registers
The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).
5.4.1
Power control register 1 (PWR_CR1)
Address offset: 0x00
Reset value: 0x0000 0200. This register is reset after wakeup from Standby mode.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
LPR
Res.
Res.
Res.
DBP
Res.
Res.
Res.
Res.
Res.
rw
VOS[1:0]
rw
rw
rw
LPMS[2:0]
rw
rw
rw
Bits 31:15 Reserved, must be kept at reset value.
Bit 14 LPR: Low-power run
When this bit is set, the regulator is switched from main mode (MR) to low-power mode
(LPR).
Note: Stop 2 mode cannot be entered when LPR bit is set. Stop 1 is entered instead.
Bits 13:11 Reserved, must be kept at reset value.
Bits 10:9 VOS: Voltage scaling range selection
00: Cannot be written (forbidden by hardware)
01: Range 1
10: Range 2
11: Cannot be written (forbidden by hardware)
Bit 8 DBP: Disable backup domain write protection
In reset state, the RTC and backup registers are protected against parasitic write access.
This bit must be set to enable write access to these registers.
0: Access to RTC and Backup registers disabled
1: Access to RTC and Backup registers enabled
Bits 7:3 Reserved, must be kept at reset value.
Bits 2:0 LPMS[2:0]: Low-power mode selection
These bits select the low-power mode entered when CPU enters the deepsleep mode.
000: Stop 0 mode
001: Stop 1 mode
010: Stop 2 mode
011: Standby mode
1xx: Shutdown mode
Note: If LPR bit is set, Stop 2 mode cannot be selected and Stop 1 mode shall be entered
instead of Stop 2.
In Standby mode, SRAM2 can be preserved or not, depending on RRS bit configuration
in PWR_CR3.
DocID024597 Rev 3
161/1693
178
Power control (PWR)
5.4.2
RM0351
Power control register 2 (PWR_CR2)
Address offset: 0x04
Reset value: 0x0000 0000. This register is reset when exiting the Standby mode.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
USV
IOSV
Res.
rw
rw
PVME4 PVME3 PVME2 PVME1
rw
rw
rw
rw
PLS[2:0]
rw
rw
PVDE
rw
rw
Bits 31:11 Reserved, must be kept at reset value.
Bit 10 USV: VDDUSB USB supply valid
This bit is used to validate the VDDUSB supply for electrical and logical isolation purpose.
Setting this bit is mandatory to use the USB OTG_FS peripheral. If VDDUSB is not always
present in the application, the PVM can be used to determine whether this supply is ready or
not.
0: VDDUSB is not present. Logical and electrical isolation is applied to ignore this supply.
1: VDDUSB is valid.
Bit 9 IOSV: VDDIO2 Independent I/Os supply valid
This bit is used to validate the VDDIO2 supply for electrical and logical isolation purpose.
Setting this bit is mandatory to use PG[15:2]. If VDDIO2 is not always present in the
application, the PVM can be used to determine whether this supply is ready or not.
0: VDDIO2 is not present. Logical and electrical isolation is applied to ignore this supply.
1: VDDIO2 is valid.
Bit 8 Reserved, must be kept at reset value.
Bit 7 PVME4: Peripheral voltage monitoring 4 enable: VDDA vs. 2.2V
0: PVM4 (VDDA monitoring vs. 2.2V threshold) disable.
1: PVM4 (VDDA monitoring vs. 2.2V threshold) enable.
Bit 6 PVME3: Peripheral voltage monitoring 3 enable: VDDA vs. 1.62V
0: PVM3 (VDDA monitoring vs. 1.62V threshold) disable.
1: PVM3 (VDDA monitoring vs. 1.62V threshold) enable.
Bit 5 PVME2: Peripheral voltage monitoring 2 enable: VDDIO2 vs. 0.9V
0: PVM2 (VDDIO2 monitoring vs. 0.9V threshold) disable.
1: PVM2 (VDDIO2 monitoring vs. 0.9V threshold) enable.
162/1693
DocID024597 Rev 3
RM0351
Power control (PWR)
Bit 4 PVME1: Peripheral voltage monitoring 1 enable: VDDUSB vs. 1.2V
0: PVM1 (VDDUSB monitoring vs. 1.2V threshold) disable.
1: PVM1 (VDDUSB monitoring vs. 1.2V threshold) enable.
Bits 3:1 PLS[2:0]: Power voltage detector level selection.
These bits select the voltage threshold detected by the power voltage detector:
000: VPVD0 around 2.0 V
001: VPVD1 around 2.2 V
010: VPVD2 around 2.4 V
011: VPVD3 around 2.5 V
100: VPVD4 around 2.6 V
101: VPVD5 around 2.8 V
110: VPVD6 around 2.9 V
111: External input analog voltage PVD_IN (compared internally to VREFINT)
Note: These bits are write-protected when the bit PVDL (PVD Lock) is set in the
SYSCFG_CBR register.
These bits are reset only by a system reset.
Bit 0 PVDE: Power voltage detector enable
0: Power voltage detector disable.
1: Power voltage detector enable.
Note: This bit is write-protected when the bit PVDL (PVD Lock) is set in the SYSCFG_CBR
register.
This bit is reset only by a system reset.
5.4.3
Power control register 3 (PWR_CR3)
Address offset: 0x08
Reset value: 0x0000 8000. This register is not reset when exiting Standby modes and with
the PWRRST bit in the RCC_APB1RSTR1 register.
Access: Additional APB cycles are needed to access this register vs. a standard APB
access (3 for a write and 2 for a read).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
EIWUL
Res.
Res.
Res.
Res.
APC
Res.
RRS
Res.
Res.
Res.
rw
rw
rw
EWUP5 EWUP4 EWUP3 EWUP2 EWUP1
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bit 15 EIWUL: Enable internal wakeup line
0: Internal wakeup line disable.
1: Internal wakeup line enable.
Bits 14:11 Reserved, must be kept at reset value.
DocID024597 Rev 3
163/1693
178
Power control (PWR)
RM0351
Bit 10 APC: Apply pull-up and pull-down configuration
When this bit is set, the I/O pull-up and pull-down configurations defined in the PWR_PUCRx
and PWR_PDCRx registers are applied. When this bit is cleared, the PWR_PUCRx and
PWR_PDCRx registers are not applied to the I/Os.
Bit 9 Reserved, must be kept at reset value.
Bit 8 RRS: SRAM2 retention in Standby mode
0: SRAM2 is powered off in Standby mode (SRAM2 content is lost).
1: SRAM2 is powered by the low-power regulator in Standby mode (SRAM2 content is kept).
Bits 7:5 Reserved, must be kept at reset value.
Bit 4 EWUP5: Enable Wakeup pin WKUP5
When this bit is set, the external wakeup pin WKUP5 is enabled and triggers a wakeup from
Standby or Shutdown event when a rising or a falling edge occurs.The active edge is
configured via the WP5 bit in the PWR_CR4 register.
Bit 3 EWUP4: Enable Wakeup pin WKUP4
When this bit is set, the external wakeup pin WKUP4 is enabled and triggers a wakeup from
Standby or Shutdown event when a rising or a falling edge occurs. The active edge is
configured via the WP4 bit in the PWR_CR4 register.
Bit 2 EWUP3: Enable Wakeup pin WKUP3
When this bit is set, the external wakeup pin WKUP3 is enabled and triggers a wakeup from
Standby or Shutdown event when a rising or a falling edge occurs. The active edge is
configured via the WP3 bit in the PWR_CR4 register.
Bit 1 EWUP2: Enable Wakeup pin WKUP2
When this bit is set, the external wakeup pin WKUP2 is enabled and triggers a wakeup from
Standby or Shutdown event when a rising or a falling edge occurs. The active edge is
configured via the WP2 bit in the PWR_CR4 register.
Bit 0 EWUP1: Enable Wakeup pin WKUP1
When this bit is set, the external wakeup pin WKUP1 is enabled and triggers a wakeup from
Standby or Shutdown event when a rising or a falling edge occurs. The active edge is
configured via the WP1 bit in the PWR_CR4 register.
5.4.4
Power control register 4 (PWR_CR4)
Address offset: 0x0C
Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with
the PWRRST bit in the RCC_APB1RSTR1 register.
Access: Additional APB cycles are needed to access this register vs. a standard APB
access (3 for a write and 2 for a read).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
VBRS
VBE
Res.
Res.
Res.
WP5
WP4
WP3
WP2
WP1
rw
rw
rw
rw
rw
rw
rw
164/1693
DocID024597 Rev 3
RM0351
Power control (PWR)
Bits 31:10 Reserved, must be kept at reset value.
Bit 9 VBRS: VBAT battery charging resistor selection
0: Charge VBAT through a 5 kOhms resistor
1: Charge VBAT through a 1.5 kOhms resistor
Bit 8 VBE: VBAT battery charging enable
0: VBAT battery charging disable
1: VBAT battery charging enable
Bits 7:5 Reserved, must be kept at reset value.
Bit 4 WP5: Wakeup pin WKUP5 polarity
This bit defines the polarity used for an event detection on external wake-up pin, WKUP5
0: Detection on high level (rising edge)
1: Detection on low level (falling edge)
Bit 3 WP4: Wakeup pin WKUP4 polarity
This bit defines the polarity used for an event detection on external wake-up pin, WKUP4
0: Detection on high level (rising edge)
1: Detection on low level (falling edge)
Bit 2 WP3: Wakeup pin WKUP3 polarity
This bit defines the polarity used for an event detection on external wake-up pin, WKUP3
0: Detection on high level (rising edge)
1: Detection on low level (falling edge)
Bit 1 WP2: Wakeup pin WKUP2 polarity
This bit defines the polarity used for an event detection on external wake-up pin, WKUP2
0: Detection on high level (rising edge)
1: Detection on low level (falling edge)
Bit 0 WP1: Wakeup pin WKUP1 polarity
This bit defines the polarity used for an event detection on external wake-up pin, WKUP1
0: Detection on high level (rising edge)
1: Detection on low level (falling edge)
Power status register 1 (PWR_SR1)
5.4.5
Address offset: 0x10
Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with
the PWRRST bit in the RCC_APB1RSTR1 register.
Access: 2 additional APB cycles are needed to read this register vs. a standard APB read.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
WUFI
Res.
Res.
Res.
Res.
Res.
Res.
SBF
Res.
Res.
Res.
WUF5
WUF4
WUF3
WUF2
WUF1
r
r
r
r
r
r
r
DocID024597 Rev 3
165/1693
178
Power control (PWR)
RM0351
Bits 31:16 Reserved, must be kept at reset value.
Bit 15 WUFI: Wakeup flag internal
This bit is set when a wakeup is detected on the internal wakeup line. It is cleared when all
internal wakeup sources are cleared.
Bits 14:9 Reserved, must be kept at reset value.
Bit 8 SBF: Standby flag
This bit is set by hardware when the device enters the Standby mode and is cleared by
setting the CSBF bit in the PWR_SCR register, or by a power-on reset. It is not cleared by the
system reset.
0: The device did not enter the Standby mode
1: The device entered the Standby mode
Bits 7:5 Reserved, must be kept at reset value.
Bit 4 WUF5: Wakeup flag 5
This bit is set when a wakeup event is detected on wakeup pin, WKUP5. It is cleared by
writing ‘1’ in the CWUF5 bit of the PWR_SCR register.
Bit 3 WUF4: Wakeup flag 4
This bit is set when a wakeup event is detected on wakeup pin,WKUP4. It is cleared by
writing ‘1’ in the CWUF4 bit of the PWR_SCR register.
Bit 2 WUF3: Wakeup flag 3
This bit is set when a wakeup event is detected on wakeup pin, WKUP3. It is cleared by
writing ‘1’ in the CWUF3 bit of the PWR_SCR register.
Bit 1 WUF2: Wakeup flag 2
This bit is set when a wakeup event is detected on wakeup pin, WKUP2. It is cleared by
writing ‘1’ in the CWUF2 bit of the PWR_SCR register.
Bit 0 WUF1: Wakeup flag 1
This bit is set when a wakeup event is detected on wakeup pin, WKUP1. It is cleared by
writing ‘1’ in the CWUF1 bit of the PWR_SCR register.
5.4.6
Power status register 2 (PWR_SR2)
Address offset: 0x14
Reset value: 0x0000 0000. This register is partially reset when exiting Standby/Shutdown
modes.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PVMO
4
PVMO
3
PVMO
2
PVMO
1
PVDO
VOSF
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
r
r
r
r
r
r
166/1693
REGLP REGLP
F
S
r
r
DocID024597 Rev 3
RM0351
Power control (PWR)
Bits 31:16 Reserved, must be kept at reset value.
Bit 15 PVMO4: Peripheral voltage monitoring output: VDDA vs. 2.2 V
0: VDDA voltage is above PVM4 threshold (around 2.2 V).
1: VDDA voltage is below PVM4 threshold (around 2.2 V).
Note: PVMO4 is cleared when PVM4 is disabled (PVME4 = 0). After enabling PVM4, the
PVM4 output is valid after the PVM4 wakeup time.
Bit 14 PVMO3: Peripheral voltage monitoring output: VDDA vs. 1.62 V
0: VDDA voltage is above PVM3 threshold (around 1.62 V).
1: VDDA voltage is below PVM3 threshold (around 1.62 V).
Note: PVMO3 is cleared when PVM3 is disabled (PVME3 = 0). After enabling PVM3, the
PVM3 output is valid after the PVM3 wakeup time.
Bit 13 PVMO2: Peripheral voltage monitoring output: VDDIO2 vs. 0.9 V
0: VDDIO2 voltage is above PVM2 threshold (around 0.9 V).
1: VDDIO2 voltage is below PVM2 threshold (around 0.9 V).
Note: PVMO2 is cleared when PVM2 is disabled (PVME2 = 0). After enabling PVM2, the
PVM2 output is valid after the PVM2 wakeup time.
Bit 12 PVMO1: Peripheral voltage monitoring output: VDDUSB vs. 1.2 V
0: VDDUSB voltage is above PVM1 threshold (around 1.2 V).
1: VDDUSB voltage is below PVM1 threshold (around 1.2 V).
Note: PVMO1 is cleared when PVM1 is disabled (PVME1 = 0). After enabling PVM1, the
PVM1 output is valid after the PVM1 wakeup time.
Bit 11 PVDO: Power voltage detector output
0: VDD is above the selected PVD threshold
1: VDD is below the selected PVD threshold
Bit 10 VOSF: Voltage scaling flag
A delay is required for the internal regulator to be ready after the voltage scaling has been
changed. VOSF indicates that the regulator reached the voltage level defined with VOS bits
of the PWR_CR1 register.
0: The regulator is ready in the selected voltage range
1: The regulator output voltage is changing to the required voltage level
Bit 9 REGLPF: Low-power regulator flag
This bit is set by hardware when the MCU is in Low-power run mode. When the MCU exits
from the Low-power run mode, this bit remains at 1 until the regulator is ready in main mode.
A polling on this bit must be done before increasing the product frequency.
This bit is cleared by hardware when the regulator is ready.
0: The regulator is ready in main mode (MR)
1: The regulator is in low-power mode (LPR)
Bit 8 REGLPS: Low-power regulator started
This bit provides the information whether the low-power regulator is ready after a power-on
reset or a Standby/Shutdown. If the Standby mode is entered while REGLPS bit is still
cleared, the wakeup from Standby mode time may be increased.
0: The low-power regulator is not ready
1: The low-power regulator is ready
Bits 7:0 Reserved, must be kept at reset value.
DocID024597 Rev 3
167/1693
178
Power control (PWR)
5.4.7
RM0351
Power status clear register (PWR_SCR)
Address offset: 0x18
Reset value: 0x0000 0000.
Access: 3 additional APB cycles are needed to write this register vs. a standard APB write.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
CSBF
Res.
Res.
Res.
w
CWUF5 CWUF4 CWUF3 CWUF2 CWUF1
w
w
w
w
w
Bits 31:9 Reserved, must be kept at reset value.
Bit 8 CSBF: Clear standby flag
Setting this bit clears the SBF flag in the PWR_SR1 register.
Bits 7:5 Reserved, must be kept at reset value.
Bit 4 CWUF5: Clear wakeup flag 5
Setting this bit clears the WUF5 flag in the PWR_SR1 register.
Bit 3 CWUF4: Clear wakeup flag 4
Setting this bit clears the WUF4 flag in the PWR_SR1 register.
Bit 2 CWUF3: Clear wakeup flag 3
Setting this bit clears the WUF3 flag in the PWR_SR1 register.
Bit 1 CWUF2: Clear wakeup flag 2
Setting this bit clears the WUF2 flag in the PWR_SR1 register.
Bit 0 CWUF1: Clear wakeup flag 1
Setting this bit clears the WUF1 flag in the PWR_SR1 register.
5.4.8
Power Port A pull-up control register (PWR_PUCRA)
Address offset: 0x20.
Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with
PWRRST bit in the RCC_APB1RSTR1 register.
Access: Additional APB cycles are needed to access this register vs. a standard APB
access (3 for a write and 2 for a read).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PU15
Res.
PU13
PU12
PU11
PU10
PU9
PU8
PU7
PU6
PU5
PU4
PU3
PU2
PU1
PU0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
168/1693
DocID024597 Rev 3
RM0351
Power control (PWR)
Bits 31:16 Reserved, must be kept at reset value.
Bit 15 PU15: Port A pull-up bit 15
When set, this bit activates the pull-up on PA[15] when APC bit is set in PWR_CR3 register.
The pull-up is not activated if the corresponding PD15 bit is also set.
Bit 14 Reserved, must be kept at reset value.
Bits 13:0 PUy: Port A pull-up bit y (y=0..13)
When set, this bit activates the pull-up on PA[y] when APC bit is set in PWR_CR3 register.
The pull-up is not activated if the corresponding PDy bit is also set.
5.4.9
Power Port A pull-down control register (PWR_PDCRA)
Address offset: 0x24.
Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with
PWRRST bit in the RCC_APB1RSTR1 register.
Access: Additional APB cycles are needed to access this register vs. a standard APB
access (3 for a write and 2 for a read).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
PD14
Res.
PD12
PD11
PD10
PD9
PD8
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:15 Reserved, must be kept at reset value.
Bit 14 PD14: Port A pull-down bit 14
When set, this bit activates the pull-down on PA[14] when APC bit is set in PWR_CR3
register.
Bit 13 Reserved, must be kept at reset value.
Bits 12:0 PDy: Port A pull-down bit y (y=0..12)
When set, this bit activates the pull-down on PA[y] when APC bit is set in PWR_CR3 register.
5.4.10
Power Port B pull-up control register (PWR_PUCRB)
Address offset: 0x28.
Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with
PWRRST bit in the RCC_APB1RSTR1 register.
Access: Additional APB cycles are needed to access this register vs. a standard APB
access (3 for a write and 2 for a read).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DocID024597 Rev 3
169/1693
178
Power control (PWR)
RM0351
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PU15
PU14
PU13
PU12
PU11
PU10
PU9
PU8
PU7
PU6
PU5
PU4
PU3
PU2
PU1
PU0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 PUy: Port B pull-up bit y (y=0..15)
When set, this bit activates the pull-up on PB[y] when APC bit is set in PWR_CR3 register.
The pull-up is not activated if the corresponding PDy bit is also set.
5.4.11
Power Port B pull-down control register (PWR_PDCRB)
Address offset: 0x2C.
Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with
PWRRST bit in the RCC_APB1RSTR1 register.
Access: Additional APB cycles are needed to access this register vs. a standard APB
access (3 for a write and 2 for a read).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PD7
PD6
PD5
Res.
PD3
PD2
PD1
PD0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:5 PDy: Port B pull-down bit y (y=5..15)
When set, this bit activates the pull-down on PB[y] when APC bit is set in PWR_CR3 register.
Bit 4 Reserved, must be kept at reset value.
Bits 3:0 PDy: Port B pull-down bit y (y=0..3)
When set, this bit activates the pull-down on PB[y] when APC bit is set in PWR_CR3 register.
5.4.12
Power Port C pull-up control register (PWR_PUCRC)
Address offset: 0x30.
Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with
PWRRST bit in the RCC_APB1RSTR1 register.
Access: Additional APB cycles are needed to access this register vs. a standard APB
access (3 for a write and 2 for a read).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
170/1693
DocID024597 Rev 3
RM0351
Power control (PWR)
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PU15
PU14
PU13
PU12
PU11
PU10
PU9
PU8
PU7
PU6
PU5
PU4
PU3
PU2
PU1
PU0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 PUy: Port C pull-up bit y (y=0..15)
When set, this bit activates the pull-up on PC[y] when APC bit is set in PWR_CR3 register.
The pull-up is not activated if the corresponding PDy bit is also set.
5.4.13
Power Port C pull-down control register (PWR_PDCRC)
Address offset: 0x34.
Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with
PWRRST bit in the RCC_APB1RSTR1 register.
Access: Additional APB cycles are needed to access this register vs. a standard APB
access (3 for a write and 2 for a read).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 PDy: Port C pull-down bit y (y=0..15)
When set, this bit activates the pull-down on PC[y] when APC bit is set in PWR_CR3 register.
5.4.14
Power Port D pull-up control register (PWR_PUCRD)
Address offset: 0x38.
Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with
PWRRST bit in the RCC_APB1RSTR1 register.
Access: Additional APB cycles are needed to access this register vs. a standard APB
access (3 for a write and 2 for a read).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PU15
PU14
PU13
PU12
PU11
PU10
PU9
PU8
PU7
PU6
PU5
PU4
PU3
PU2
PU1
PU0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
DocID024597 Rev 3
171/1693
178
Power control (PWR)
RM0351
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 PUy: Port D pull-up bit y (y=0..15)
When set, this bit activates the pull-up on PD[y] when APC bit is set in PWR_CR3 register.
The pull-up is not activated if the corresponding PDy bit is also set.
5.4.15
Power Port D pull-down control register (PWR_PDCRD)
Address offset: 0x3C.
Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with
PWRRST bit in the RCC_APB1RSTR1 register.
Access: Additional APB cycles are needed to access this register vs. a standard APB
access (3 for a write and 2 for a read).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 PDy: Port D pull-down bit y (y=0..15)
When set, this bit activates the pull-down on PD[y] when APC bit is set in PWR_CR3 register.
5.4.16
Power Port E pull-up control register (PWR_PUCRE)
Address offset: 0x20.
Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with
PWRRST bit in the RCC_APB1RSTR1 register.
Access: Additional APB cycles are needed to access this register vs. a standard APB
access (3 for a write and 2 for a read).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PU15
PU14
PU13
PU12
PU11
PU10
PU9
PU8
PU7
PU6
PU5
PU4
PU3
PU2
PU1
PU0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 PUy: Port E pull-up bit y (y=0..15)
When set, this bit activates the pull-up on PE[y] when APC bit is set in PWR_CR3 register.
The pull-up is not activated if the corresponding PDy bit is also set.
172/1693
DocID024597 Rev 3
RM0351
Power control (PWR)
5.4.17
Power Port E pull-down control register (PWR_PDCRE)
Address offset: 0x44.
Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with
PWRRST bit in the RCC_APB1RSTR1 register.
Access: Additional APB cycles are needed to access this register vs. a standard APB
access (3 for a write and 2 for a read).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 PDy: Port E pull-down bit y (y=0..15)
When set, this bit activates the pull-down on PE[y] when APC bit is set in PWR_CR3 register.
5.4.18
Power Port F pull-up control register (PWR_PUCRF)
Address offset: 0x48.
Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with
PWRRST bit in the RCC_APB1RSTR1 register.
Access: Additional APB cycles are needed to access this register vs. a standard APB
access (3 for a write and 2 for a read).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PU15
PU14
PU13
PU12
PU11
PU10
PU9
PU8
PU7
PU6
PU5
PU4
PU3
PU2
PU1
PU0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 PUy: Port F pull-up bit y (y=0..15)
When set, this bit activates the pull-up on PF[y] when APC bit is set in PWR_CR3 register.
The pull-up is not activated if the corresponding PDy bit is also set.
5.4.19
Power Port F pull-down control register (PWR_PDCRF)
Address offset: 0x4C.
Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with
PWRRST bit in the RCC_APB1RSTR1 register.
DocID024597 Rev 3
173/1693
178
Power control (PWR)
RM0351
Access: Additional APB cycles are needed to access this register vs. a standard APB
access (3 for a write and 2 for a read).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 PDy: Port F pull-down bit y (y=0..15)
When set, this bit activates the pull-down on PF[y] when APC bit is set in PWR_CR3 register.
5.4.20
Power Port G pull-up control register (PWR_PUCRG)
Address offset: 0x50.
Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with
PWRRST bit in the RCC_APB1RSTR1 register.
Access: Additional APB cycles are needed to access this register vs. a standard APB
access (3 for a write and 2 for a read).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PU15
PU14
PU13
PU12
PU11
PU10
PU9
PU8
PU7
PU6
PU5
PU4
PU3
PU2
PU1
PU0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 PUy: Port G pull-up bit y (y=0..15)
When set, this bit activates the pull-up on PG[y] when APC bit is set in PWR_CR3 register.
The pull-up is not activated if the corresponding PDy bit is also set.
5.4.21
Power Port G pull-down control register (PWR_PDCRG)
Address offset: 0x54.
Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with
PWRRST bit in the RCC_APB1RSTR1 register.
Access: Additional APB cycles are needed to access this register vs. a standard APB
access (3 for a write and 2 for a read).
174/1693
DocID024597 Rev 3
RM0351
Power control (PWR)
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 PDy: Port G pull-down bit y (y=0..15)
When set, this bit activates the pull-down on PG[y] when APC bit is set in PWR_CR3 register.
5.4.22
Power Port H pull-up control register (PWR_PUCRH)
Address offset: 0x58.
Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with
PWRRST bit in the RCC_APB1RSTR1 register.
Access: Additional APB cycles are needed to access this register vs. a standard APB
access (3 for a write and 2 for a read).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PU1
PU0
rw
rw
Bits 31:2 Reserved, must be kept at reset value.
Bits 1:0 PUy: Port H pull-up bit y (y=0..1)
When set, this bit activates the pull-up on PH[y] when APC bit is set in PWR_CR3 register.
The pull-up is not activated if the corresponding PDy bit is also set.
5.4.23
Power Port H pull-down control register (PWR_PDCRH)
Address offset: 0x5C.
Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with
PWRRST bit in the RCC_APB1RSTR1 register.
Access: Additional APB cycles are needed to access this register vs. a standard APB
access (3 for a write and 2 for a read).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DocID024597 Rev 3
175/1693
178
Power control (PWR)
RM0351
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PD1
PD0
rw
rw
Bits 31:2 Reserved, must be kept at reset value.
Bits 1:0 PDy: Port H pull-down bit y (y=0..1)
When set, this bit activates the pull-down on PH[y] when APC bit is set in PWR_CR3 register.
176/1693
DocID024597 Rev 3
0x040
PWR_PUCRE
DocID024597 Rev 3
PD12
PD11
PD10
PD9
PD8
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PU12
PU11
PU10
PU9
PU8
PU7
PU6
PU5
PU4
PU3
PU2
PU1
PU0
Reset value
PD13
Reset value
PU13
PU13
PU12
PU11
PU10
PU9
PU8
PU7
PU6
PU5
PU4
PU3
PU2
PU1
PU0
Reset value
PU14
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
Reset value
PD14
PU14
PU13
PU12
PU11
PU10
PU9
PU8
PU7
PU6
PU5
PU4
PU3
PU2
PU1
PU0
Reset value
PU14
PU1
PU0
PU1
PU0
0
0
PD0
0
PD1
PU2
0
PD2
PU3
Reset value
Res.
Res.
Res.
Res.
WUF4
WUF3
WUF2
WUF1
0
Res.
0
SBF
0
WUF5
REGLPF
REGLPS
0
Res.
0
0
0
0
0
0
0
0
0
0
0
WP4
WP3
WP2
WP1
0
0
0
0
0
CWUF4
CWUF3
CWUF2
CWUF1
0
WP5
Res.
Res.
IOSV
0
0
Res.
Res.
0
0
0
0
PLS [2:0]
PVDE
0
EWUP1
PVME1
0
EWUP2
PVME2
0
EWUP3
PVME3
0
EWUP4
PVME4
Res.
USV
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
RRS
Res.
APC
Res.
Res.
Res.
Res.
EIWUL
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
EWUP5
0
CWUF5
Res.
Res.
Res.
VBE
Res.
VBRS
Res.
Res.
CSBF
Res.
Res.
Res.
0
Res.
VOSF
0
Res.
Res.
Res.
Res.
0
Res.
PVDO
0
Res.
Reset value
Res.
PVMO1
0
Res.
Res.
Res.
0
Res.
PVMO2
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PD0
PU2
PU4
0
PD3
0
0
Res.
PVMO3
0
Res.
WUFI
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
1
1
Res.
PVMO4
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
0
PD1
PU3
PU5
0
PD4
PU6
0
PD5
PU7
0
PD6
PU8
0
PD7
PU9
0
PD8
PU10
0
PD9
PU11
0
PD10
PU12
0
PD11
0
PD12
PU13
0
Res.
Res.
PU15
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
PD2
PU4
0
Res.
Reset value
PD14
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
Res.
Res.
LPR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DBP
VOS
[1:0]
PD3
PU5
PD5
PU6
PD6
PU7
PD7
PU8
PD8
PU9
PD9
PU10
PD10
PU11
PD11
PU12
PD12
PU13
PD13
PU14
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PU15
PD14
Reset value
PD15
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
PU15
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
PD15
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
PU15
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
PD15
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
PU15
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PWR_PDCRD
Res.
0x03C
PWR_PUCRD
Res.
0x038
PWR_PDCRC
Res.
0x034
PWR_PUCRC
Res.
0x030
PWR_PDCRB
Res.
0x02C
PWR_PUCRB
Res.
0x028
PWR_PDCRA
Res.
0x024
PWR_PUCRA
Res.
0x020
PWR_SCR
Res.
0x018
PWR_SR2
Res.
0x014
PWR_SR1
Res.
0x010
PWR_CR4
Res.
0x00C
PWR_CR3
Res.
0x008
PWR_CR2
Res.
0x004
PWR_CR1
Res.
0x000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res.
Offset
Res.
5.4.24
Res.
RM0351
Power control (PWR)
PWR register map and reset value table
Table 29. PWR register map and reset values
LPMS
[2:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
177/1693
178
0x05C
178/1693
PWR_PDCRH
DocID024597 Rev 3
PD11
PD10
PD9
PD8
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reset value
Reset value
Refer toSection 2.2.2: Memory map and register boundary addresses for the register
boundary addresses.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PU0
PD12
0
0
0
PD0
PD13
0
PU1
PD14
0
PD1
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
PU14
PU13
PU12
PU11
PU10
PU9
PU8
PU7
PU6
PU5
PU4
PU3
PU2
PU1
PU0
Reset value
PU15
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PD15
Reset value
PD15
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PU14
PU13
PU12
PU11
PU10
PU9
PU8
PU7
PU6
PU5
PU4
PU3
PU2
PU1
PU0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PU15
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PD15
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PWR_PUCRH
Res.
0x058
PWR_PDCRG
Res.
0x054
PWR_PUCRG
Res.
0x050
PWR_PDCRF
Res.
0x04C
PWR_PUCRF
Res.
0x048
PWR_PDCRE
Res.
0x044
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res.
Offset
Res.
Power control (PWR)
RM0351
Table 29. PWR register map and reset values (continued)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RM0351
Reset and clock control (RCC)
6
Reset and clock control (RCC)
6.1
Reset
There are three types of reset, defined as system reset, power reset and backup domain
reset.
6.1.1
Power reset
A power reset is generated when one of the following events occurs:
1.
a Brown-out reset (BOR).
2.
when exiting from Standby mode.
3.
when exiting from Shutdown mode.
A Brown-out reset, including power-on or power-down reset (POR/PDR), sets all registers to
their reset values except the Backup domain.
When exiting Standby mode, all registers in the VCORE domain are set to their reset value.
Registers outside the VCORE domain (RTC, WKUP, IWDG, and Standby/Shutdown modes
control) are not impacted.
When exiting Shutdown mode, a Brown-out reset is generated, resetting all registers except
those in the Backup domain.
6.1.2
System reset
A system reset sets all registers to their reset values except the reset flags in the clock
control/status register (RCC_CSR) and the registers in the Backup domain.
A system reset is generated when one of the following events occurs:
1.
A low level on the NRST pin (external reset)
2.
Window watchdog event (WWDG reset)
3.
Independent watchdog event (IWDG reset)
4.
A firewall event (FIREWALL reset)
5.
A software reset (SW reset) (see Software reset)
6.
Low-power mode security reset (see Low-power mode security reset)
7.
Option byte loader reset (see Option byte loader reset)
8.
A Brown-out reset
The reset source can be identified by checking the reset flags in the Control/Status register,
RCC_CSR (see Section 6.4.30: Control/status register (RCC_CSR)).
These sources act on the NRST pin and it is always kept low during the delay phase. The
RESET service routine vector is fixed at address 0x0000_0004 in the memory map.
The system reset signal provided to the device is output on the NRST pin. The pulse
generator guarantees a minimum reset pulse duration of 20 µs for each internal reset
source. In case of an external reset, the reset pulse is generated while the NRST pin is
asserted low.
In case on an internal reset, the internal pull-up RPU is deactivated in order to save the
power consumption through the pull-up resistor.
DocID024597 Rev 3
179/1693
253
Reset and clock control (RCC)
RM0351
Figure 11. Simplified diagram of the reset circuit
sͬs
ZWh
džƚĞƌŶĂů
ƌĞƐĞƚ EZ^d
)LOWHU
3XOVH
JHQHUDWRU
PLQȝV
^LJƐƚĞŵƌĞƐĞƚ
tt'ƌĞƐĞƚ
/t'ƌĞƐĞƚ
&ŝƌĞǁĂůůƌĞƐĞƚ
^ŽĨƚǁĂƌĞƌĞƐĞƚ
>ŽǁͲƉŽǁĞƌŵĂŶĂŐĞƌƌĞƐĞƚ
KƉƚŝŽŶďLJƚĞůŽĂĚĞƌƌĞƐĞƚ
KZƌĞƐĞƚ
069
069
Software reset
The SYSRESETREQ bit in Cortex®-M4 Application Interrupt and Reset Control Register
must be set to force a software reset on the device (refer to the STM32F3xx/F4xx/L4xx
Cortex®-M4 programming manual (PM0214)).
Low-power mode security reset
To prevent that critical applications mistakenly enter a low-power mode, two low-power
mode security resets are available. If enabled in option bytes, the resets are generated in
the following conditions:
1.
Entering Standby mode: this type of reset is enabled by resetting nRST_STDBY bit in
User option Bytes. In this case, whenever a Standby mode entry sequence is
successfully executed, the device is reset instead of entering Standby mode.
2.
Entering Stop mode: this type of reset is enabled by resetting nRST_STOP bit in User
option bytes. In this case, whenever a Stop mode entry sequence is successfully
executed, the device is reset instead of entering Stop mode.
3.
Entering Shutdown mode: this type of reset is enabled by resetting nRST_SHDW bit in
User option bytes. In this case, whenever a Shutdown mode entry sequence is
successfully executed, the device is reset instead of entering Shutdown mode.
For further information on the User Option Bytes, refer to Section 3.4.1: Option bytes
description.
Option byte loader reset
The option byte loader reset is generated when the OBL_LAUNCH bit (bit 27) is set in the
FLASH_CR register. This bit is used to launch the option byte loading by software.
6.1.3
Backup domain reset
The backup domain has two specific resets.
A backup domain reset is generated when one of the following events occurs:
180/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
1.
Software reset, triggered by setting the BDRST bit in the Backup domain control
register (RCC_BDCR).
2.
VDD or VBAT power on, if both supplies have previously been powered off.
A backup domain reset only affects the LSE oscillator, the RTC, the Backup registers and
the RCC Backup domain control register.
6.2
Clocks
Four different clock sources can be used to drive the system clock (SYSCLK):
•
HSI16 (high speed internal)16 MHz RC oscillator clock
•
MSI (multispeed internal) RC oscillator clock
•
HSE oscillator clock, from 4 to 48 MHz
•
PLL clock
The MSI is used as system clock source after startup from Reset, configured at 4 MHz.
The devices have the following additional clock sources:
•
32 kHz low speed internal RC (LSI RC) which drives the independent watchdog and
optionally the RTC used for Auto-wakeup from Stop and Standby modes.
•
32.768 kHz low speed external crystal (LSE crystal) which optionally drives the realtime clock (RTCCLK).
Each clock source can be switched on or off independently when it is not used, to optimize
power consumption.
Several prescalers can be used to configure the AHB frequency, the high speed APB
(APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB, the
APB1 and the APB2 domains is 80 MHz.
DocID024597 Rev 3
181/1693
253
Reset and clock control (RCC)
RM0351
All the peripheral clocks are derived from their bus clock (HCLK, PCLK1 or PCLK2) except:
•
The 48 MHz clock, used for USB OTG FS, SDMMC and RNG. This clock is derived
(selected by software) from one of the three following sources:
–
main PLL VCO (PLL48M1CLK)
–
PLLSAI1 VCO (PLL48M2CLK)
–
MSI clock.
When the MSI clock is auto-trimmed with the LSE, it can be used by the USB OTG FS
device.
•
•
The ADCs clock which is derived (selected by software) from one of the three following
sources:
–
system clock (SYSCLK)
–
PLLSAI1 VCO (PLLADC1CLK)
–
PLLSAI2 VCO (PLLADC2CLK).
The U(S)ARTs clocks which are derived (selected by software) from one of the four
following sources:
–
system clock (SYSCLK)
–
HSI16 clock
–
LSE clock
–
APB1 or APB2 clock (PCLK1 or PCLK2 depending on which APB is mapped the
U(S)ART)
The wakeup from Stop mode is supported only when the clock is HSI16 or LSE.
•
The I2Cs clocks which are derived (selected by software) from one of the three
following sources:
–
system clock (SYSCLK)
–
HSI16 clock
–
APB1 clock (PCLK1)
The wakeup from Stop mode is supported only when the clock is HSI16.
•
•
The SAI1 and SAI2 clocks which are derived (selected by software) from one of the
four following sources:
–
an external clock mapped on SAI1_EXTCLK for SAI1 and SAI2_EXTCLK for
SAI2.
–
PLLSAI1 VCO (PLLSAI1CLK)
–
PLLSAI2 VCO (PLLSAI2CLK)
–
main PLL VCO (PLLSAI3CLK)
The SWPMI1 clock which is derived (selected by software) from one of the two
following sources:
–
HSI16 clock
–
APB1 clock (PCLK1)
The wakeup from Stop mode is supported only when the clock is HSI16.
•
182/1693
The low-power timers (LPTIMx) clock which are derived (selected by software) from
one of the five following sources:
–
LSI clock
–
LSE clock
–
HSI16 clock
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
–
APB1 clock (PCLK1)
–
External clock mapped on LPTIMx_IN1
The functionality in Stop mode (including wakeup) is supported only when the clock is
LSI or LSE, or in external clock mode.
•
The RTC and LCD clock which is derived (selected by software) from one of the three
following sources:
–
LSE clock
–
LSI clock
–
HSE clock divided by 32
The functionality in Stop mode (including wakeup) is supported only when the clock is
LSI or LSE.
•
The IWDG clock which is always the LSI clock.
The RCC feeds the Cortex® System Timer (SysTick) external clock with the AHB clock
(HCLK) divided by 8. The SysTick can work either with this clock or directly with the Cortex®
clock (HCLK), configurable in the SysTick Control and Status Register.
FCLK acts as Cortex®-M4 free-running clock. For more details refer to the STM32F3 and
STM32F4 Series Cortex®-M4 programming manual (PM0214)
DocID024597 Rev 3
183/1693
253
Reset and clock control (RCC)
RM0351
Figure 12. Clock tree
WR,:'*
/6,5&N+]
/6&2
WR57&DQG/&'
26&B287
/6(26&
N+]
26&B,1
/6(
/6,
+6(
0&2
ĺ
WR3:5
6<6&/.
+6,
WR$+%EXVFRUHPHPRU\DQG'0$
&ORFN
VRXUFH
FRQWURO
26&B287
+6(26&
0+]
26&B,1
$+%
35(6&
+6(
&ORFN
GHWHFWRU
+&/.
)&/.&RUWH[IUHHUXQQLQJFORFN
WR&RUWH[V\VWHPWLPHU
06,
+6,
6<6&/.
$3%
35(6&
3&/.
WR$3%SHULSKHUDOV
[RU[
+6,5&
0+]
/6(
+6,
6<6&/.
WR86$57[
;
WR/38$57
+6,
6<6&/.
06,5&
N+]±0+]
WR,&[
[
/6,
/6(
+6,
WR/37,0[
[
+6,
06,
3//
0
3
3//6$,&/.
4
3//0&/.
5
3//&/.
3
3//6$,&/.
4
3//0&/.
5
3//$'&&/.
3
3//6$,&/.
+6,
$3%
35(6&
+6(
WR6:30,
3&/.
WR$3%SHULSKHUDOV
[RU[
WR7,0[
[
/6(
+6,
6<6&/.
3//6$,
06,
4
WR
86$57
0+]FORFNWR86%51*6'00&
6<6&/.
3//6$,
WR$'&
WR6$,
3//$'&&/.
5
WR7,0[
[
6$,B(;7&/.
WR6$,
6$,B(;7&/.
069
1. For full details about the internal and external clock source characteristics, please refer to the “Electrical
184/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
characteristics” section in your device datasheet.
2. The ADC clock can be derived from the AHB clock of the ADC bus interface, divided by a programmable
factor (1, 2 or 4). When the programmable factor is ‘1’, the AHB prescaler must be equal to ‘1’.
6.2.1
HSE clock
The high speed external clock signal (HSE) can be generated from two possible clock
sources:
•
HSE external crystal/ceramic resonator
•
HSE user external clock
The resonator and the load capacitors have to be placed as close as possible to the
oscillator pins in order to minimize output distortion and startup stabilization time. The
loading capacitance values must be adjusted according to the selected oscillator.
Figure 13. HSE/ LSE clock sources
Clock source
External clock
Hardware configuration
OSC_IN
OSC_OUT
GPIO
External
source
OSC_IN OSC_OUT
Crystal/Ceramic
resonators
CL1
DocID024597 Rev 3
Load
capacitors
CL2
185/1693
253
Reset and clock control (RCC)
RM0351
External crystal/ceramic resonator (HSE crystal)
The 4 to 48 MHz external oscillator has the advantage of producing a very accurate rate on
the main clock.
The associated hardware configuration is shown in Figure 13. Refer to the electrical
characteristics section of the datasheet for more details.
The HSERDY flag in the Clock control register (RCC_CR) indicates if the HSE oscillator is
stable or not. At startup, the clock is not released until this bit is set by hardware. An
interrupt can be generated if enabled in the Clock interrupt enable register (RCC_CIER).
The HSE Crystal can be switched on and off using the HSEON bit in the Clock control
register (RCC_CR).
External source (HSE bypass)
In this mode, an external clock source must be provided. It can have a frequency of up to
48 MHz. You select this mode by setting the HSEBYP and HSEON bits in the Clock control
register (RCC_CR). The external clock signal (square, sinus or triangle) with ~40-60 % duty
cycle depending on the frequency (refer to the datasheet) has to drive the OSC_IN pin while
the OSC_OUT pin can be used a GPIO. See Figure 13.
6.2.2
HSI16 clock
The HSI16 clock signal is generated from an internal 16 MHz RC Oscillator.
The HSI16 RC oscillator has the advantage of providing a clock source at low cost (no
external components). It also has a faster startup time than the HSE crystal oscillator
however, even with calibration the frequency is less accurate than an external crystal
oscillator or ceramic resonator.
The HSI16 clock can be selected as system clock after wakeup from Stop modes (Stop 0,
Stop 1 or Stop 2). Refer to Section 6.3: Low-power modes. It can also be used as a backup
clock source (auxiliary clock) if the HSE crystal oscillator fails. Refer to Section 6.2.9: Clock
security system (CSS).
Calibration
RC oscillator frequencies can vary from one chip to another due to manufacturing process
variations, this is why each device is factory calibrated by ST for 1 % accuracy at TA=25°C.
After reset, the factory calibration value is loaded in the HSICAL[7:0] bits in the Internal
clock sources calibration register (RCC_ICSCR).
If the application is subject to voltage or temperature variations this may affect the RC
oscillator speed. You can trim the HSI16 frequency in the application using the
HSITRIM[4:0] bits in the Internal clock sources calibration register (RCC_ICSCR).
For more details on how to measure the HSI16 frequency variation, refer to Section 6.2.16:
Internal/external clock measurement with TIM15/TIM16/TIM17.
The HSIRDY flag in the Clock control register (RCC_CR) indicates if the HSI16 RC is stable
or not. At startup, the HSI16 RC output clock is not released until this bit is set by hardware.
The HSI16 RC can be switched on and off using the HSION bit in the Clock control register
(RCC_CR).
186/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
The HSI16 signal can also be used as a backup source (Auxiliary clock) if the HSE crystal
oscillator fails. Refer to Section 6.2.9: Clock security system (CSS) on page 190.
6.2.3
MSI clock
The MSI clock signal is generated from an internal RC oscillator. Its frequency range can be
adjusted by software by using the MSIRANGE[3:0] bits in the Clock control register
(RCC_CR). Twelve frequency ranges are available: 100 kHz, 200 kHz, 400 kHz, 800 kHz,
1 MHz, 2 MHz, 4 MHz (default value), 8 MHz, 16 MHz, 24 MHz, 32 MHz and 48 MHz.
The MSI clock is used as system clock after restart from Reset, wakeup from Standby and
Shutdown low-power modes. After restart from Reset, the MSI frequency is set to its default
value 4 MHz. Refer to Section 6.3: Low-power modes.
The MSI clock can be selected as system clock after a wakeup from Stop mode (Stop 0,
Stop 1 or Stop 2). Refer to Section 6.3: Low-power modes. It can also be used as a backup
clock source (auxiliary clock) if the HSE crystal oscillator fails. Refer to Section 6.2.9: Clock
security system (CSS).
The MSI RC oscillator has the advantage of providing a low-cost (no external components)
low-power clock source. In addition, when used in PLL-mode with the LSE, it provides a
very accurate clock source which can be used by the USB OTG FS device, and feed the
main PLL to run the system at the maximum speed 80 MHz.
The MSIRDY flag in the Clock control register (RCC_CR) indicates wether the MSI RC is
stable or not. At startup, the MSI RC output clock is not released until this bit is set by
hardware. The MSI RC can be switched on and off by using the MSION bit in the Clock
control register (RCC_CR).
Hardware auto calibration with LSE (PLL-mode)
When a 32.768 kHz external oscillator is present in the application, it is possible to configure
the MSI in a PLL-mode by setting the MSIPLLEN bit in the Clock control register (RCC_CR).
When configured in PLL-mode, the MSI automatically calibrates itself thanks to the LSE.
This mode is available for all MSI frequency ranges. At 48 MHz, the MSI in PLL-mode can
be used for the USB OTG FS device, saving the need of an external high-speed crystal.
Software calibration
The MSI RC oscillator frequency can vary from one chip to another due to manufacturing
process variations, this is why each device is factory calibrated by ST for 1 % accuracy at an
ambient temperature, TA, of 25 °C. After reset, the factory calibration value is loaded in the
MSICAL[7:0] bits in the Internal clock sources calibration register (RCC_ICSCR). If the
application is subject to voltage or temperature variations, this may affect the RC oscillator
speed. You can trim the MSI frequency in the application by using the MSITRIM[7:0] bits in
the RCC_ICSCR register. For more details on how to measure the MSI frequency variation
please refer to Section 6.2.16: Internal/external clock measurement with
TIM15/TIM16/TIM17.
DocID024597 Rev 3
187/1693
253
Reset and clock control (RCC)
6.2.4
RM0351
PLL
The device embeds 3 PLLs: PLL, PLLSAI1, PLLSAI2. Each PLL provides up to three
independent outputs. The internal PLLs can be used to multiply the HSI16, HSE or MSI
output clock frequency. The PLLs input frequency must be between 4 and 16 MHz. The
selected clock source is divided by a programmable factor PLLM from 1 to 8 to provide a
clock frequency in the requested input range. Refer to Figure 12: Clock tree and PLL
configuration register (RCC_PLLCFGR).
The PLLs configuration (selection of the input clock and multiplication factor) must be done
before enabling the PLL. Once the PLL is enabled, these parameters cannot be changed.
To modify the PLL configuration, proceed as follows:
1.
Disable the PLL by setting PLLON to 0 in Clock control register (RCC_CR).
2.
Wait until PLLRDY is cleared. The PLL is now fully stopped.
3.
Change the desired parameter.
4.
Enable the PLL again by setting PLLON to 1.
5.
Enable the desired PLL outputs by configuring PLLPEN, PLLQEN, PLLREN in PLL
configuration register (RCC_PLLCFGR).
An interrupt can be generated when the PLL is ready, if enabled in the Clock interrupt
enable register (RCC_CIER).
The same procedure is applied for changing the configuration of the PLLSAI1 or PLLSAI2:
1.
Disable the PLLSAI1/PLLSAI2 by setting PLLSAI1ON/PLLSAI2ON to 0 in Clock control
register (RCC_CR).
2.
Wait until PLLSAI1RDY/PLLSAI2RDY is cleared. The PLLSAI1/PLLSAI2 is now fully
stopped.
3.
Change the desired parameter.
4.
Enable the PLLSAI1/PLLSAI2 again by setting PLLSAI1ON/PLLSAI2ON to 1.
5.
Enable the desired PLL outputs by configuring PLLSAI1PEN/PLLSAI2PEN,
PLLSAI1QEN/PLLSAI2QEN, PLLSAI1REN/PLLSAI2REN in PLLSAI1 configuration
register (RCC_PLLSAI1CFGR) and PLLSAI2 configuration register
(RCC_PLLSAI2CFGR).
The PLL output frequency must not exceed 80 MHz.
The enable bit of each PLL output clock (PLLPEN, PLLQEN, PLLREN, PLLSAI1PEN,
PLLSAI1QEN, PLLSAI1REN, PLLSAI2PEN and PLLSAI2REN) can be modified at any time
without stopping the corresponding PLL. PLLREN cannot be cleared if PLLCLK is used as
system clock.
6.2.5
LSE clock
The LSE crystal is a 32.768 kHz Low Speed External crystal or ceramic resonator. It has the
advantage of providing a low-power but highly accurate clock source to the real-time clock
peripheral (RTC) for clock/calendar or other timing functions.
The LSE crystal is switched on and off using the LSEON bit in Backup domain control
register (RCC_BDCR). The crystal oscillator driving strength can be changed at runtime
using the LSEDRV[1:0] bits in the Backup domain control register (RCC_BDCR) to obtain
the best compromise between robustness and short start-up time on one side and lowpower-consumption on the other side. The LSE drive can be decreased to the lower drive
188/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
capability (LSEDRV=00) when the LSE is ON. However, once LSEDRV is selected, the
drive capability can not be increased if LSEON=1.
The LSERDY flag in the Backup domain control register (RCC_BDCR) indicates whether
the LSE crystal is stable or not. At startup, the LSE crystal output clock signal is not released
until this bit is set by hardware. An interrupt can be generated if enabled in the Clock
interrupt enable register (RCC_CIER).
External source (LSE bypass)
In this mode, an external clock source must be provided. It can have a frequency of up to
1 MHz. You select this mode by setting the LSEBYP and LSEON bits in the AHB1 peripheral
clocks enable in Sleep and Stop modes register (RCC_AHB1SMENR). The external clock
signal (square, sinus or triangle) with ~50 % duty cycle has to drive the OSC32_IN pin while
the OSC32_OUT pin can be used as GPIO. See Figure 13.
6.2.6
LSI clock
The LSI RC acts as a low-power clock source that can be kept running in Stop and Standby
mode for the independent watchdog (IWDG), RTC and LCD. The clock frequency is 32 kHz.
For more details, refer to the electrical characteristics section of the datasheets.
The LSI RC can be switched on and off using the LSION bit in the Control/status register
(RCC_CSR).
The LSIRDY flag in the Control/status register (RCC_CSR) indicates if the LSI oscillator is
stable or not. At startup, the clock is not released until this bit is set by hardware. An
interrupt can be generated if enabled in the Clock interrupt enable register (RCC_CIER).
6.2.7
System clock (SYSCLK) selection
Four different clock sources can be used to drive the system clock (SYSCLK):
•
MSI oscillator
•
HSI16 oscillator
•
HSE oscillator
•
PLL
The system clock maximum frequency is 80 MHz. After a system reset, the MSI oscillator, at
4 MHz, is selected as system clock. When a clock source is used directly or through the PLL
as a system clock, it is not possible to stop it.
A switch from one clock source to another occurs only if the target clock source is ready
(clock stable after startup delay or PLL locked). If a clock source which is not yet ready is
selected, the switch will occur when the clock source becomes ready. Status bits in the
Internal clock sources calibration register (RCC_ICSCR) indicate which clock(s) is (are)
ready and which clock is currently used as a system clock.
6.2.8
Clock source frequency versus voltage scaling
The following table gives the different clock source frequencies depending on the product
voltage range.
DocID024597 Rev 3
189/1693
253
Reset and clock control (RCC)
RM0351
Table 30. Clock source frequency
Product voltage
range
6.2.9
Clock frequency
MSI
HSI16
HSE
PLL/PLLSAI1/PLLSAI2
Range 1
48 MHz
16 MHz
48 MHz
80 MHz
(VCO max = 344 MHz)
Range 2
24 MHz range
16 MHz
26 MHz
26 MHz
(VCO max = 128 MHz)
Clock security system (CSS)
Clock Security System can be activated by software. In this case, the clock detector is
enabled after the HSE oscillator startup delay, and disabled when this oscillator is stopped.
If a failure is detected on the HSE clock, the HSE oscillator is automatically disabled, a clock
failure event is sent to the break input of the advanced-control timers (TIM1/TIM8 and
TIM15/16/17) and an interrupt is generated to inform the software about the failure (Clock
Security System Interrupt CSSI), allowing the MCU to perform rescue operations. The CSSI
is linked to the Cortex®-M4 NMI (Non-Maskable Interrupt) exception vector.
Note:
Once the CSS is enabled and if the HSE clock fails, the CSS interrupt occurs and a NMI is
automatically generated. The NMI will be executed indefinitely unless the CSS interrupt
pending bit is cleared. As a consequence, in the NMI ISR user must clear the CSS interrupt
by setting the CSSC bit in the Clock interrupt clear register (RCC_CICR).
If the HSE oscillator is used directly or indirectly as the system clock (indirectly means: it is
used as PLL input clock, and the PLL clock is used as system clock), a detected failure
causes a switch of the system clock to the MSI or the HSI16 oscillator depending on the
STOPWUCK configuration in the Clock configuration register (RCC_CFGR), and the
disabling of the HSE oscillator. If the HSE clock (divided or not) is the clock entry of the PLL
used as system clock when the failure occurs, the PLL is disabled too.
6.2.10
Clock security system on LSE
A Clock Security System on LSE can be activated by software writing the LSECSSON bit in
the Control/status register (RCC_CSR). This bit can be disabled only by a hardware reset or
RTC software reset, or after a failure detection on LSE. LSECSSON must be written after
LSE and LSI are enabled (LSEON and LSION enabled) and ready (LSERDY and LSIRDY
set by hardware), and after the RTC clock has been selected by RTCSEL.
The CSS on LSE is working in all modes except VBAT. It is working also under system reset
(excluding power on reset). If a failure is detected on the external 32 kHz oscillator, the LSE
clock is no longer supplied to the RTC but no hardware action is made to the registers. If the
MSI was in PLL-mode, this mode is disabled.
In Standby mode a wakeup is generated. In other modes an interrupt can be sent to wakeup
the software (see Clock interrupt enable register (RCC_CIER), Clock interrupt flag register
(RCC_CIFR), Clock interrupt clear register (RCC_CICR)).
The software MUST then disable the LSECSSON bit, stop the defective 32 kHz oscillator
(disabling LSEON), and change the RTC clock source (no clock or LSI or HSE, with
RTCSEL), or take any required action to secure the application.
190/1693
DocID024597 Rev 3
RM0351
6.2.11
Reset and clock control (RCC)
ADC clock
The ADC clock is derived from the system clock, or from the PLLSAI1 or the PLLSAI2
output. It can reach 80 MHz and can be divided by the following prescalers values:
1,2,4,6,8,10,12,16,32,64,128 or 256 by configuring the ADC123_CCR register. It is
asynchronous to the AHB clock. Alternatively, the ADC clock can be derived from the AHB
clock of the ADC bus interface, divided by a programmable factor (1, 2 or 4). This
programmable factor is configured using the CKMODE bit fields in the ADC123_CCR.
If the programmed factor is ‘1’, the AHB prescaler must be set to ‘1’.
6.2.12
RTC clock
The RTCCLK clock source can be either the HSE/32, LSE or LSI clock. It is selected by
programming the RTCSEL[1:0] bits in the Backup domain control register (RCC_BDCR).
This selection cannot be modified without resetting the Backup domain. The system must
always be configured so as to get a PCLK frequency greater then or equal to the RTCCLK
frequency for a proper operation of the RTC.
The LSE clock is in the Backup domain, whereas the HSE and LSI clocks are not.
Consequently:
•
If LSE is selected as RTC clock:
–
•
If LSI is selected as the RTC clock:
–
•
The RTC state is not guaranteed if the VDD supply is powered off.
If the HSE clock divided by a prescaler is used as the RTC clock:
–
6.2.13
The RTC continues to work even if the VDD supply is switched off, provided the
VBAT supply is maintained.
The RTC state is not guaranteed if the VDD supply is powered off or if the internal
voltage regulator is powered off (removing power from the VCORE domain).
Timer clock
The timer clock frequencies are automatically defined by hardware. There are two cases:
6.2.14
1.
If the APB prescaler equals 1, the timer clock frequencies are set to the same
frequency as that of the APB domain.
2.
Otherwise, they are set to twice (×2) the frequency of the APB domain.
Watchdog clock
If the Independent watchdog (IWDG) is started by either hardware option or software
access, the LSI oscillator is forced ON and cannot be disabled. After the LSI oscillator
temporization, the clock is provided to the IWDG.
DocID024597 Rev 3
191/1693
253
Reset and clock control (RCC)
6.2.15
RM0351
Clock-out capability
•
MCO
The microcontroller clock output (MCO) capability allows the clock to be output onto the
external MCO pin. One of seven clock signals can be selected as the MCO clock.
–
LSI
–
LSE
–
SYSCLK
–
HSI16
–
HSE
–
PLLCLK
–
MSI
The selection is controlled by the MCOSEL[2:0] bits of the Clock configuration register
(RCC_CFGR). The selected clock can be divided with the MCOPRE[2:0] field of the
Clock configuration register (RCC_CFGR).
•
LSCO
Another output (LSCO) allows a low speed clock to be output onto the external LSCO
pin:
–
LSI
–
LSE
This output remains available in Stop (Stop 0, Stop 1 and Stop 2) and Standby modes.
The selection is controlled by the LSCOSEL, and enabled with the LSCOEN in the
Backup domain control register (RCC_BDCR).
The configuration registers of the corresponding GPIO port must be programmed in
alternate function mode.
6.2.16
Internal/external clock measurement with TIM15/TIM16/TIM17
It is possible to indirectly measure the frequency of all on-board clock sources by mean of
the TIM15, TIM16 or TIM17 channel 1 input capture, as represented on Figure 14, Figure 15
and Figure 16.
Figure 14. Frequency measurement with TIM15 in capture mode
7,0
7,B503
*3,2
7,
/6(
069
192/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
The input capture channel of the Timer 15 can be a GPIO line or an internal clock of the
MCU. This selection is performed through the TI1_RMP bit in the TIM15_OR register. The
possibilities are the following ones:
•
TIM15 Channel1 is connected to the GPIO. Refer to the alternate function mapping in
the device datasheets.
•
TIM15 Channel1 is connected to the LSE.
Figure 15. Frequency measurement with TIM16 in capture mode
7,0
7,B503>@
*3,2
7,
/6,
/6(
57&ZDNHXSLQWHUUXSW
069
The input capture channel of the Timer 16 can be a GPIO line or an internal clock of the
MCU. This selection is performed through the TI1_RMP[1:0] bits in the TIM16_OR register.
The possibilities are the following ones:
•
TIM16 Channel1 is connected to the GPIO. Refer to the alternate function mapping in
the device datasheets.
•
TIM16 Channel1 is connected to the LSI clock.
•
TIM16 Channel1 is connected to the LSE clock.
•
TIM16 Channel1 is connected to the RTC wakeup interrupt signal. In this case the RTC
interrupt should be enabled.
Figure 16. Frequency measurement with TIM17 in capture mode
7,0
7,B503>@
*3,2
06,
+6(
0&2
7,
069
DocID024597 Rev 3
193/1693
253
Reset and clock control (RCC)
RM0351
The input capture channel of the Timer 17 can be a GPIO line or an internal clock of the
MCU. This selection is performed through the TI1_RMP[1:0] bits in the TIM17_OR register.
The possibilities are the following ones:
•
TIM17 Channel1 is connected to the GPIO. Refer to the alternate function mapping in
the device datasheets.
•
TIM17 Channel1 is connected to the MSI Clock.
•
TIM17 Channel1 is connected to the HSE/32 Clock.
•
TIM17 Channel1 is connected to the microcontroller clock output (MCO), this selection
is controlled by the MCO[2:0] bits of the Clock configuration register (RCC_CFGR).
Calibration of the HSI16 and the MSI
For TIM15 and TIM16, the primary purpose of connecting the LSE to the channel 1 input
capture is to be able to precisely measure the HSI16 and MSI system clocks (for this, either
the HSI16 or MSI should be used as the system clock source). The number of HSI16 (MSI,
respectively) clock counts between consecutive edges of the LSE signal provides a
measure of the internal clock period. Taking advantage of the high precision of LSE crystals
(typically a few tens of ppm’s), it is possible to determine the internal clock frequency with
the same resolution, and trim the source to compensate for manufacturing-process- and/or
temperature- and voltage-related frequency deviations.
The MSI and HSI16 oscillator both have dedicated user-accessible calibration bits for this
purpose.
The basic concept consists in providing a relative measurement (e.g. the HSI16/LSE ratio):
the precision is therefore closely related to the ratio between the two clock sources. The
higher the ratio is, the better the measurement will be.
If LSE is not available, HSE/32 will be the better option in order to reach the most precise
calibration possible.
It is however not possible to have a good enough resolution when the MSI clock is low
(typically below 1 MHz). In this case, it is advised to:
•
accumulate the results of several captures in a row
•
use the timer’s input capture prescaler (up to 1 capture every 8 periods)
•
use the RTC wakeup interrupt signal (when the RTC is clocked by the LSE) as the
input for the channel1 input capture. This improves the measurement precision. For
this purpose the RTC wakeup interrupt must be enable.
Calibration of the LSI
The calibration of the LSI will follow the same pattern that for the HSI16, but changing the
reference clock. It will be necessary to connect LSI clock to the channel 1 input capture of
the TIM16. Then define the HSE as system clock source, the number of his clock counts
between consecutive edges of the LSI signal provides a measure of the internal low speed
clock period.
The basic concept consists in providing a relative measurement (e.g. the HSE/LSI ratio): the
precision is therefore closely related to the ratio between the two clock sources. The higher
the ratio is, the better the measurement will be.
194/1693
DocID024597 Rev 3
RM0351
6.2.17
Reset and clock control (RCC)
Peripheral clock enable register
(RCC_AHBxENR, RCC_APBxENRy)
Each peripheral clock can be enabled by the xxxxEN bit of the RCC_AHBxENR,
RCC_APBxENRy registers.
When the peripheral clock is not active, the peripheral registers read or write accesses are
not supported.
The enable bit has a synchronization mechanism to create a glitch free clock for the
peripheral. After the enable bit is set, there is a 2 clock cycles delay before the clock be
active.
Caution:
Just after enabling the clock for a peripheral, software must wait for a delay before
accessing the peripheral registers.
6.3
Low-power modes
•
AHB and APB peripheral clocks, including DMA clock, can be disabled by software.
•
Sleep and Low Power Sleep modes stops the CPU clock. The memory interface clocks
(Flash and SRAM1 and SRAM2 interfaces) can be stopped by software during sleep
mode. The AHB to APB bridge clocks are disabled by hardware during Sleep mode
when all the clocks of the peripherals connected to them are disabled.
•
Stop modes (Stop 0, Stop 1 and Stop 2) stops all the clocks in the VCORE domain and
disables the three PLL, the HSI16, the MSI and the HSE oscillators.
All U(S)ARTs, LPUARTs and I2Cs have the capability to enable the HSI16 oscillator
even when the MCU is in Stop mode (if HSI16 is selected as the clock source for that
peripheral).
All U(S)ARTs and LPUARTs can also be driven by the LSE oscillator when the system
is in Stop mode (if LSE is selected as clock source for that peripheral) and the LSE
oscillator is enabled (LSEON). In that case the LSE remains always ON in Stop mode
(they do not have the capability to turn on the LSE oscillator).
•
Standby and Shutdown modes stops all the clocks in the VCORE domain and disables
the PLL, the HSI16, the MSI and the HSE oscillators.
The CPU’s deepsleep mode can be overridden for debugging by setting the DBG_STOP or
DBG_STANDBY bits in the DBGMCU_CR register.
When leaving the Stop modes (Stop 0, Stop 1 or Stop 2), the system clock is either MSI or
HSI16, depending on the software configuration of the STOPWUCK bit in the RCC_CFGR
register. The frequency (range and user trim) of the MSI oscillator is the one configured
before entering Stop mode. The user trim of HSI16 is kept. If the MSI was in PLL-mode
before entering Stop mode, the PLL-mode stabilization time must be waited for after wakeup
even if the LSE was kept ON during the Stop mode.
When leaving the Standby and Shutdown modes, the system clock is MSI. The MSI
frequency at wakeup from Standby mode is configured with the MSISRANGE is the
RCC_CSR register, from 1 to 8 MHz. The MSI frequency at wakeup from Shutdown mode is
4 MHz. The user trim is lost.
If a Flash memory programming operation is on going, Stop, Standby and Shutdown modes
entry is delayed until the Flash memory interface access is finished. If an access to the APB
domain is ongoing, Stop, Standby and Shutdown modes entry is delayed until the APB
access is finished.
DocID024597 Rev 3
195/1693
253
Reset and clock control (RCC)
RM0351
6.4
RCC registers
6.4.1
Clock control register (RCC_CR)
Address offset: 0x00
Reset value: 0x0000 0063. HSEBYP is not affected by reset.
Access: no wait state, word, half-word and byte access
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
PLL
SAI2
RDY
PLL
SAI2
ON
PLL
SAI1
RDY
PLL
SAI1
ON
PLL
RDY
PLLON
Res.
Res.
Res.
Res.
CSS
ON
HSE
BYP
HSE
RDY
HSE
ON
r
rw
r
rw
r
rw
rs
rw
r
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
HSI
ASFS
HSI
RDY
MSI
RDY
MSION
rw
r
r
rw
Res.
Res.
Res.
HSI
HSION
KERON
rw
rw
MSI
MSI
RGSEL PLLEN
MSIRANGE[3:0]
rw
rw
rw
rw
rs
rw
Bits 31:30 Reserved, must be kept at reset value.
Bit 29 PLLSAI2RDY: SAI2 PLL clock ready flag
Set by hardware to indicate that the PLLSAI2 is locked.
0: PLLSAI2 unlocked
1: PLLSAI2 locked
Bit 28 PLLSAI2ON: SAI2 PLL enable
Set and cleared by software to enable PLLSAI2.
Cleared by hardware when entering Stop, Standby or Shutdown mode.
0: PLLSAI2 OFF
1: PLLSAI2 ON
Bit 27 PLLSAI1RDY: SAI1 PLL clock ready flag
Set by hardware to indicate that the PLLSAI1 is locked.
0: PLLSAI1 unlocked
1: PLLSAI1 locked
Bit 26 PLLSAI1ON: SAI1 PLL enable
Set and cleared by software to enable PLLSAI1.
Cleared by hardware when entering Stop, Standby or Shutdown mode.
0: PLLSAI1 OFF
1: PLLSAI1 ON
Bit 25 PLLRDY: Main PLL clock ready flag
Set by hardware to indicate that the main PLL is locked.
0: PLL unlocked
1: PLL locked
Bit 24 PLLON: Main PLL enable
Set and cleared by software to enable the main PLL.
Cleared by hardware when entering Stop, Standby or Shutdown mode. This bit cannot be
reset if the PLL clock is used as the system clock.
0: PLL OFF
1: PLL ON
196/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
Bits 23:20 Reserved, must be kept at reset value.
Bit 19 CSSON: Clock security system enable
Set by software to enable the clock security system. When CSSON is set, the clock detector
is enabled by hardware when the HSE oscillator is ready, and disabled by hardware if a HSE
clock failure is detected. This bit is set only and is cleared by reset.
0: Clock security system OFF (clock detector OFF)
1: Clock security system ON (Clock detector ON if the HSE oscillator is stable, OFF if not).
Bit 18 HSEBYP: HSE crystal oscillator bypass
Set and cleared by software to bypass the oscillator with an external clock. The external
clock must be enabled with the HSEON bit set, to be used by the device. The HSEBYP bit
can be written only if the HSE oscillator is disabled.
0: HSE crystal oscillator not bypassed
1: HSE crystal oscillator bypassed with external clock
Bit 17 HSERDY: HSE clock ready flag
Set by hardware to indicate that the HSE oscillator is stable.
0: HSE oscillator not ready
1: HSE oscillator ready
Note: Once the HSEON bit is cleared, HSERDY goes low after 6 HSE clock cycles.
Bit 16 HSEON: HSE clock enable
Set and cleared by software.
Cleared by hardware to stop the HSE oscillator when entering Stop, Standby or Shutdown
mode. This bit cannot be reset if the HSE oscillator is used directly or indirectly as the system
clock.
0: HSE oscillator OFF
1: HSE oscillator ON
Bits 15:12 Reserved, must be kept at reset value.
Bit 11 HSIASFS: HSI16 automatic start from Stop
Set and cleared by software. When the system wakeup clock is MSI, this bit is used to
wakeup the HSI16 is parallel of the system wakeup.
0: HSI16 oscillator is not enabled by hardware when exiting Stop mode with MSI as wakeup
clock.
1: HSI16 oscillator is enabled by hardware when exiting Stop mode with MSI as wakeup
clock.
Bit 10 HSIRDY: HSI16 clock ready flag
Set by hardware to indicate that HSI16 oscillator is stable. This bit is set only when HSI16 is
enabled by software by setting HSION.
0: HSI16 oscillator not ready
1: HSI16 oscillator ready
Note: Once the HSION bit is cleared, HSIRDY goes low after 6 HSI16 clock cycles.
Bit 9 HSIKERON: HSI16 always enable for peripheral kernels.
Set and cleared by software to force HSI16 ON even in Stop modes. The HSI16 can only
feed USARTs and I2Cs peripherals configured with HSI16 as kernel clock. Keeping the
HSI16 ON in Stop mode allows to avoid slowing down the communication speed because of
the HSI16 startup time. This bit has no effect on HSION value.
0: No effect on HSI16 oscillator.
1: HSI16 oscillator is forced ON even in Stop mode.
DocID024597 Rev 3
197/1693
253
Reset and clock control (RCC)
RM0351
Bit 8 HSION: HSI clock enable
Set and cleared by software.
Cleared by hardware to stop the HSI16 oscillator when entering Stop, Standby or Shutdown
mode.
Set by hardware to force the HSI16 oscillator ON when STOPWUCK=1 or HSIASFS = 1
when leaving Stop modes, or in case of failure of the HSE crystal oscillator.
This bit is set by hardware if the HSI16 is used directly or indirectly as system clock.
0: HSI16 oscillator OFF
1: HSI16 oscillator ON
Bits 7:4 MSIRANGE[3:0]: MSI clock ranges
These bits are configured by software to choose the frequency range of MSI when
MSIRGSEL is set.12 frequency ranges are available:
0000: range 0 around 100 kHz
0001: range 1 around 200 kHz
0010: range 2 around 400 kHz
0011: range 3 around 800 kHz
0100: range 4 around 1M Hz
0101: range 5 around 2 MHz
0110: range 6 around 4 MHz (reset value)
0111: range 7 around 8 MHz
1000: range 8 around 16 MHz
1001: range 9 around 24 MHz
1010: range 10 around 32 MHz
1011: range 11 around 48 MHz
others: not allowed (hardware write protection)
Note: Warning: MSIRANGE can be modified when MSI is OFF (MSION=0) or when MSI is
ready (MSIRDY=1). MSIRANGE must NOT be modified when MSI is ON and NOT
ready (MSION=1 and MSIRDY=0)
Bit 3 MSIRGSEL: MSI clock range selection
Set by software to select the MSI clock range with MSIRANGE[3:0]. Write 0 has no effect.
After a standby or a reset MSIRGSEL is at 0 and the MSI range value is provided by
MSISRANGE in CSR register.
0: MSI Range is provided by MSISRANGE[3:0] in RCC_CSR register
1: MSI Range is provided by MSIRANGE[3:0] in the RCC_CR register
Bit 2 MSIPLLEN: MSI clock PLL enable
Set and cleared by software to enable/ disable the PLL part of the MSI clock source.
MSIPLLEN must be enabled after LSE is enabled (LSEON enabled) and ready (LSERDY set
by hardware).There is a hardware protection to avoid enabling MSIPLLEN if LSE is not
ready.
This bit is cleared by hardware when LSE is disabled (LSEON = 0) or when the Clock
Security System on LSE detects a LSE failure (refer to RCC_CSR register).
0: MSI PLL OFF
1: MSI PLL ON
Bit 1 MSIRDY: MSI clock ready flag
This bit is set by hardware to indicate that the MSI oscillator is stable.
0: MSI oscillator not ready
1: MSI oscillator ready
Note: Once the MSION bit is cleared, MSIRDY goes low after 6 MSI clock cycles.
198/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
Bit 0 MSION: MSI clock enable
This bit is set and cleared by software.
Cleared by hardware to stop the MSI oscillator when entering Stop, Standby or Shutdown
mode.
Set by hardware to force the MSI oscillator ON when exiting Standby or Shutdown mode.
Set by hardware to force the MSI oscillator ON when STOPWUCK=0 when exiting from Stop
modes, or in case of a failure of the HSE oscillator
Set by hardware when used directly or indirectly as system clock.
0: MSI oscillator OFF
1: MSI oscillator ON
6.4.2
Internal clock sources calibration register (RCC_ICSCR)
Address offset: 0x04
Reset value: 0x10XX 00XX where X is factory-programmed.
Access: no wait state, word, half-word and byte access
31
30
29
Res.
Res.
Res.
15
14
13
rw
rw
rw
28
27
26
25
24
23
22
21
HSITRIM[4:0]
20
19
18
17
16
HSICAL[7:0]
rw
rw
rw
rw
rw
r
r
r
r
r
r
r
r
12
11
10
9
8
7
6
5
4
3
2
1
0
rwr
rw
rw
r
r
r
r
r
r
MSITRIM[7:0]
rw
rw
MSICAL[7:0]
r
r
Bits 31:29 Reserved, must be kept at reset value.
Bits 28:24 HSITRIM[4:0]: HSI16 clock trimming
These bits provide an additional user-programmable trimming value that is added to the
HSICAL[7:0] bits. It can be programmed to adjust to variations in voltage and temperature
that influence the frequency of the HSI16.
The default value is 16, which, when added to the HSICAL value, should trim the HSI16 to
16 MHz ± 1 %.
Bits 23:16 HSICAL[7:0]: HSI16 clock calibration
These bits are initialized at startup with the factory-programmed HSI16 calibration trim value.
When HSITRIM is written, HSICAL is updated with the sum of HSITRIM and the factory trim
value.
Bits 15:8 MSITRIM[7:0]: MSI clock trimming
These bits provide an additional user-programmable trimming value that is added to the
MSICAL[7:0] bits. It can be programmed to adjust to variations in voltage and temperature
that influence the frequency of the MSI.
Bits 7:0 MSICAL[7:0]: MSI clock calibration
These bits are initialized at startup with the factory-programmed MSI calibration trim value.
When MSITRIM is written, MSICAL is updated with the sum of MSITRIM and the factory trim
value.
DocID024597 Rev 3
199/1693
253
Reset and clock control (RCC)
6.4.3
RM0351
Clock configuration register (RCC_CFGR)
Address offset: 0x08
Reset value: 0x0000 0000
Access: 0 ≤ wait state ≤ 2, word, half-word and byte access
1 or 2 wait states inserted only if the access occurs during clock source switch.
From 0 to 15 wait states inserted if the access occurs when the APB or AHB prescalers
values update is on going.
31
30
Res.
29
28
MCOPRE[2:0]
rw
rw
rw
15
14
13
12
STOP
WUCK
Res.
rw
27
26
Res.
11
rw
24
rw
rw
rw
10
9
8
PPRE2[2:0]
rw
25
MCOSEL[2:0]
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
7
6
5
4
3
2
1
0
PPRE1[2:0]
rw
rw
rw
HPRE[3:0]
rw
rw
rw
rw
SWS[1:0]
rw
r
r
SW[1:0]
rw
Bit 31 Reserved, must be kept at reset value.
Bits 30:28 MCOPRE[2:0]: Microcontroller clock output prescaler
These bits are set and cleared by software.
It is highly recommended to change this prescaler before MCO output is enabled.
000: MCO is divided by 1
001: MCO is divided by 2
010: MCO is divided by 4
011: MCO is divided by 8
100: MCO is divided by 16
Others: not allowed
Bit 27 Reserved, must be kept at reset value.
Bits 26:24 MCOSEL[2:0]: Microcontroller clock output
Set and cleared by software.
000: MCO output disabled, no clock on MCO
001: SYSCLK system clock selected
010: MSI clock selected.
011: HSI16 clock selected.
100: HSE clock selected
101: Main PLL clock selected
110: LSI clock selected
111: LSE clock selected
Note: This clock output may have some truncated cycles at startup or during MCO clock
source switching.
Bits 23:16 Reserved, must be kept at reset value.
200/1693
DocID024597 Rev 3
rw
RM0351
Reset and clock control (RCC)
Bit 15 STOPWUCK: Wakeup from Stop and CSS backup clock selection
Set and cleared by software to select the system clock used when exiting Stop mode.
The selected clock is also used as emergency clock for the Clock Security System on HSE.
Warning: STOPWUCK must not be modified when the Clock Security System is enabled by
HSECSSON in RCC_CR register and the system clock is HSE (SWS=”10”) or a switch on
HSE is requested (SW=”10”).
0: MSI oscillator selected as wakeup from stop clock and CSS backup clock.
1: HSI16 oscillator selected as wakeup from stop clock and CSS backup clock
Bit 14 Reserved, must be kept at reset value.
Bits 13:11 PPRE2[2:0]: APB high-speed prescaler (APB2)
Set and cleared by software to control the division factor of the APB2 clock (PCLK2).
0xx: HCLK not divided
100: HCLK divided by 2
101: HCLK divided by 4
110: HCLK divided by 8
111: HCLK divided by 16
Bits 10:8 PPRE1[2:0]:APB low-speed prescaler (APB1)
Set and cleared by software to control the division factor of the APB1 clock (PCLK1).
0xx: HCLK not divided
100: HCLK divided by 2
101: HCLK divided by 4
110: HCLK divided by 8
111: HCLK divided by 16
Bits 7:4 HPRE[3:0]: AHB prescaler
Set and cleared by software to control the division factor of the AHB clock.
Caution:
Depending on the device voltage range, the software has to set correctly these
bits to ensure that the system frequency does not exceed the maximum allowed
frequency (for more details please refer to Section 5.1.7: Dynamic voltage
scaling management). After a write operation to these bits and before
decreasing the voltage range, this register must be read to be sure that the new
value has been taken into account.
0xxx: SYSCLK not divided
1000: SYSCLK divided by 2
1001: SYSCLK divided by 4
1010: SYSCLK divided by 8
1011: SYSCLK divided by 16
1100: SYSCLK divided by 64
1101: SYSCLK divided by 128
1110: SYSCLK divided by 256
1111: SYSCLK divided by 512
Bits 3:2 SWS[1:0]: System clock switch status
Set and cleared by hardware to indicate which clock source is used as system clock.
00: MSI oscillator used as system clock
01: HSI16 oscillator used as system clock
10: HSE used as system clock
11: PLL used as system clock
DocID024597 Rev 3
201/1693
253
Reset and clock control (RCC)
RM0351
Bits 1:0 SW[1:0]: System clock switch
Set and cleared by software to select system clock source (SYSCLK).
Configured by HW to force MSI oscillator selection when exiting Standby or Shutdown mode.
Configured by HW to force MSI or HSI16 oscillator selection when exiting Stop mode or in
case of failure of the HSE oscillator, depending on STOPWUCK value.
00: MSI selected as system clock
01: HSI16 selected as system clock
10: HSE selected as system clock
11: PLL selected as system clock
202/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
6.4.4
PLL configuration register (RCC_PLLCFGR)
Address offset: 0x0C
Reset value: 0x0000 1000
Access: no wait state, word, half-word and byte access
This register is used to configure the PLL clock outputs according to the formulas:
• f(VCO clock) = f(PLL clock input) × (PLLN / PLLM)
• f(PLL_P) = f(VCO clock) / PLLP
• f(PLL_Q) = f(VCO clock) / PLLQ
• f(PLL_R) = f(VCO clock) / PLLR
31
Res.
15
30
Res.
14
29
Res.
13
28
Res.
12
Res.
27
Res.
11
26
25
PLLR[1:0]
24
PLL
REN
rw
rw
rw
10
9
8
PLLN[7:0]
rw
rw
rw
rw
23
22
Res.
PLLQ[1:0]
rw
7
6
Res.
rw
rw
rw
21
20
PLL
QEN
rw
rw
5
4
PLLM[2:0]
rw
rw
rw
19
Res.
18
Res.
3
2
Res.
Res.
17
16
PLLP
PLL
PEN
rw
rw
1
0
PLLSRC[1:0]
rw
rw
Bits 31:27 Reserved, must be kept at reset value.
Bits 26:25 PLLR[1:0]: Main PLL division factor for PLLCLK (system clock)
Set and cleared by software to control the frequency of the main PLL output clock PLLCLK.
This output can be selected as system clock. These bits can be written only if PLL is
disabled.
PLLCLK output clock frequency = VCO frequency / PLLR with PLLR = 2, 4, 6, or 8
00: PLLR = 2
01: PLLR = 4
10: PLLR = 6
11: PLLR = 8
Caution:
The software has to set these bits correctly not to exceed 80 MHz on this
domain.
Bit 24 PLLREN: Main PLL PLLCLK output enable
Set and reset by software to enable the PLLCLK output of the main PLL (used as system
clock).
This bit cannot be written when PLLCLK output of the PLL is used as System Clock.
In order to save power, when the PLLCLK output of the PLL is not used, the value of
PLLREN should be 0.
0: PLLCLK output disable
1: PLLCLK output enable
Bit 23 Reserved, must be kept at reset value.
DocID024597 Rev 3
203/1693
253
Reset and clock control (RCC)
RM0351
Bits 22:21 PLLQ[1:0]: Main PLL division factor for PLL48M1CLK (48 MHz clock).
Set and cleared by software to control the frequency of the main PLL output clock
PLL48M1CLK. This output can be selected for USB, RNG, SDMMC (48 MHz clock). These
bits can be written only if PLL is disabled.
PLL48M1CLK output clock frequency = VCO frequency / PLLQ with PLLQ = 2, 4, 6, or 8
00: PLLQ = 2
01: PLLQ = 4
10: PLLQ = 6
11: PLLQ = 8
Caution:
The software has to set these bits correctly not to exceed 80 MHz on this
domain.
Bit 20 PLLQEN: Main PLL PLL48M1CLK output enable
Set and reset by software to enable the PLL48M1CLK output of the main PLL.
In order to save power, when the PLL48M1CLK output of the PLL is not used, the value of
PLLQEN should be 0.
0: PLL48M1CLK output disable
1: PLL48M1CLK output enable
Bits 19:18 Reserved, must be kept at reset value.
Bit 17 PLLP: Main PLL division factor for PLLSAI3CLK (SAI1 and SAI2 clock).
Set and cleared by software to control the frequency of the main PLL output clock
PLLSAI3CLK. This output can be selected for SAI1 or SAI2. These bits can be written only if
PLL is disabled.
PLLSAI3CLK output clock frequency = VCO frequency / PLLP with PLLP =7, or 17
0: PLLP = 7
1: PLLP = 17
Caution:
The software has to set these bits correctly not to exceed 80 MHz on this
domain.
Bit 16 PLLPEN: Main PLL PLLSAI3CLK output enable
Set and reset by software to enable the PLLSAI3CLK output of the main PLL.
In order to save power, when the PLLSAI3CLK output of the PLL is not used, the value of
PLLPEN should be 0.
0: PLLSAI3CLK output disable
1: PLLSAI3CLK output enable
Bit 15 Reserved, must be kept at reset value.
204/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
Bits 14:8 PLLN[6:0]: Main PLL multiplication factor for VCO
Set and cleared by software to control the multiplication factor of the VCO. These bits can be
written only when the PLL is disabled.
VCO output frequency = VCO input frequency x PLLN with 8 =< PLLN =< 86
0000000: PLLN = 0 wrong configuration
0000001: PLLN = 1 wrong configuration
...
0000111: PLLN = 7 wrong configuration
0001000: PLLN = 8
0001001: PLLN = 9
...
1010101: PLLN = 85
1010110: PLLN = 86
1010111: PLLN = 87 wrong configuration
...
1111111: PLLN = 127 wrong configuration
Caution:
The software has to set correctly these bits to assure that the VCO output
frequency is between 64 and 344 MHz.
Bit 7 Reserved, must be kept at reset value.
Bits 6:4 PLLM: Division factor for the main PLL and audio PLL (PLLSAI1 and PLLSAI2) input clock
Set and cleared by software to divide the PLL, PLLSAI1 and PLLSAI2 input clock before the
VCO. These bits can be written only when all PLLs are disabled.
VCO input frequency = PLL input clock frequency / PLLM with 1 <= PLLM <= 8
000: PLLM = 1
001: PLLM = 2
010: PLLM = 3
011: PLLM = 4
100: PLLM = 5
101: PLLM = 6
110: PLLM = 7
111: PLLM = 8
Caution:
The software has to set these bits correctly to ensure that the VCO input
frequency ranges from 4 to 16 MHz.
Bits 3:2 Reserved, must be kept at reset value.
Bits 1:0 PLLSRC: Main PLL, PLLSAI1 and PLLSAI2 entry clock source
Set and cleared by software to select PLL, PLLSAI1 and PLLSAI2 clock source. These bits
can be written only when PLL, PLLSAI1 and PLLSAI2 are disabled.
In order to save power, when no PLL is used, the value of PLLSRC should be 00.
00: No clock sent to PLL, PLLSAI1 and PLLSAI2
01: MSI clock selected as PLL, PLLSAI1 and PLLSAI2 clock entry
10: HSI16 clock selected as PLL, PLLSAI1 and PLLSAI2 clock entry
11: HSE clock selected as PLL, PLLSAI1 and PLLSAI2 clock entry
DocID024597 Rev 3
205/1693
253
Reset and clock control (RCC)
6.4.5
RM0351
PLLSAI1 configuration register (RCC_PLLSAI1CFGR)
Address offset: 0x10
Reset value: 0x0000 1000
Access: no wait state, word, half-word and byte access
This register is used to configure the PLLSAI1 clock outputs according to the formulas:
• f(VCOSAI1 clock) = f(PLL clock input) × (PLLSAI1N / PLLM)
• f(PLLSAI1_P) = f(VCOSAI1 clock) / PLLSAI1P
• f(PLLSAI1_Q) = f(VCOSAI1 clock) / PLLSAI1Q
• f(PLLSAI1_R) = f(VCOSAI1 clock) / PLLSAI1R
31
30
29
28
27
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
Res.
26
25
24
PLLSAI1R[1:0]
PLL
SAI1
REN
rw
rw
rw
10
9
8
PLLSAI1N[6:0]
rw
rw
rw
rw
rw
rw
23
Res.
22
21
PLLSAI1Q[1:0]
20
PLL
SAI1
QEN
19
18
Res.
Res.
17
16
PLL
SAI1P
PLL
SAI1
PEN
rw
rw
rw
rw
rw
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
Bits 31:27 Reserved, must be kept at reset value.
Bits 26:25 PLLSAI1R[1:0]: PLLSAI1 division factor for PLLADC1CLK (ADC clock)
Set and cleared by software to control the frequency of the SAI1PLL output clock
PLLADC1CLK. This output can be selected as ADC clock. These bits can be written only if
SAI1PLL is disabled.
PLLADC1CLK output clock frequency = VCOSAI1 frequency / PLLSAI1R with PLLSAI1R =
2, 4, 6, or 8
00: PLLSAI1R = 2
01: PLLSAI1R = 4
10: PLLSAI1R = 6
11: PLLSAI1R = 8
Bit 24 PLLSAI1REN: PLLSAI1 PLLADC1CLK output enable
Set and reset by software to enable the PLLADC1CLK output of the SAI1PLL (used as clock
for ADC).
In order to save power, when the PLLADC1CLK output of the SAI1PLL is not used, the value
of PLLSAI1REN should be 0.
0: PLLADC1CLK output disable
1: PLLADC1CLK output enable
Bit 23 Reserved, must be kept at reset value.
206/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
Bits 22:21 PLLSAI1Q[1:0]: SAI1PLL division factor for PLL48M2CLK (48 MHz clock)
Set and cleared by software to control the frequency of the SAI1PLL output clock
PLL48M2CLK. This output can be selected for USB, RNG, SDMMC (48 MHz clock). These
bits can be written only if SAI1PLL is disabled.
PLL48M2CLK output clock frequency = VCOSAI1 frequency / PLLQ with PLLQ = 2, 4, 6, or
8
00: PLLQ = 2
01: PLLQ = 4
10: PLLQ = 6
11: PLLQ = 8
Caution:
The software has to set these bits correctly not to exceed 80 MHz on this
domain.
Bit 20 PLLSAI1QEN: SAI1PLL PLL48M2CLK output enable
Set and reset by software to enable the PLL48M2CLK output of the SAI1PLL.
In order to save power, when the PLL48M2CLK output of the SAI1PLL is not used, the value
of PLLSAI1QEN should be 0.
0: PLL48M2CLK output disable
1: PLL48M2CLK output enable
Bits 19:18 Reserved, must be kept at reset value.
Bit 17 PLLSAI1P: SAI1PLL division factor for PLLSAI1CLK (SAI1 or SAI2 clock).
Set and cleared by software to control the frequency of the SAI1PLL output clock
PLLSAI1CLK. This output can be selected for SAI1 or SAI2. These bits can be written only if
SAI1PLL is disabled.
PLLSAI1CLK output clock frequency = VCOSAI1 frequency / PLLSAI1P with PLLSAI1P =7,
or 17
0: PLLSAI1P = 7
1: PLLSAI1P = 17
Bit 16 PLLSAI1PEN: SAI1PLL PLLSAI1CLK output enable
Set and reset by software to enable the PLLSAI1CLK output of the SAI1PLL.
In order to save power, when the PLLSAI1CLK output of the SAI1PLL is not used, the value
of PLLSAI1PEN should be 0.
0: PLLSAI1CLK output disable
1: PLLSAI1CLK output enable
DocID024597 Rev 3
207/1693
253
Reset and clock control (RCC)
RM0351
Bit 15 Reserved, must be kept at reset value.
Bits 14:8 PLLSAI1N[6:0]: SAI1PLL multiplication factor for VCO
Set and cleared by software to control the multiplication factor of the VCO. These bits can be
written only when the SAI1PLL is disabled.
VCOSAI1 output frequency = VCOSAI1 input frequency x PLLSAI1N
with 8 =< PLLSAI1N =< 86
0000000: PLLSAI1N = 0 wrong configuration
0000001: PLLSAI1N = 1 wrong configuration
...
0000111: PLLSAI1N = 7 wrong configuration
0001000: PLLSAI1N = 8
0001001: PLLSAI1N = 9
...
1010101: PLLSAI1N = 85
1010110: PLLSAI1N = 86
1010111: PLLSAI1N = 87 wrong configuration
...
1111111: PLLSAI1N = 127 wrong configuration
Caution:
The software has to set correctly these bits to ensure that the VCO output
frequency is between 64 and 344 MHz.
Bits 7:0 Reserved, must be kept at reset value.
208/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
6.4.6
PLLSAI2 configuration register (RCC_PLLSAI2CFGR)
Address offset: 0x14
Reset value: 0x0000 1000
Access: no wait state, word, half-word and byte access
This register is used to configure the PLLSAI2 clock outputs according to the formulas:
• f(VCOSAI2 clock) = f(PLL clock input) × (PLLSAI2N / PLLM)
• f(PLLSAI2_P) = f(VCOSAI2 clock) / PLLSAI2P
• f(PLLSAI2_R) = f(VCOSAI2 clock) / PLLSAI2R
31
30
29
28
27
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
Res.
26
25
24
PLLSAI2R[1:0]
PLL
SAI2
REN
rw
rw
rw
10
9
8
PLLSAI2N[6:0]
rw
rw
rw
rw
rw
rw
23
22
21
20
19
18
17
16
PLL
SAI2P
PLL
SAI2
PEN
rw
rw
Res.
Res.
Res.
Res.
Res.
Res.
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
Bits 31:27 Reserved, must be kept at reset value.
Bits 26:25 PLLSAI2R[1:0]: PLLSAI2 division factor for PLLADC2CLK (ADC clock)
Set and cleared by software to control the frequency of the SAI2PLL output clock
PLLADC2CLK. This output can be selected as ADC clock. These bits can be written only if
SAI2PLL is disabled.
PLLADC2CLK output clock frequency = VCOSAI2 frequency / PLLSAI2R with PLLSAI2R =
2, 4, 6, or 8
00: PLLSAI2R = 2
01: PLLSAI2R = 4
10: PLLSAI2R = 6
11: PLLSAI2R = 8
Bit 24 PLLSAI2REN: PLLSAI2 PLLADC2CLK output enable
Set and reset by software to enable the PLLADC2CLK output of the SAI2PLL (used as clock
for ADC).
In order to save power, when the PLLADC2CLK output of the SAI2PLL is not used, the value
of PLLSAI2REN should be 0.
0: PLLADC2CLK output disable
1: PLLADC2CLK output enable
Bits 23:18 Reserved, must be kept at reset value.
Bit 17 PLLSAI2P: SAI1PLL division factor for PLLSAI2CLK (SAI1 or SAI2 clock).
Set and cleared by software to control the frequency of the SAI2PLL output clock
PLLSAI2CLK. This output can be selected for SAI1 or SAI2. These bits can be written only if
SAI2PLL is disabled.
PLLSAI2CLK output clock frequency = VCOSAI2 frequency / PLLSAI2P with PLLSAI2P =7,
or 17
0: PLLSAI2P = 7
1: PLLSAI2P = 17
DocID024597 Rev 3
209/1693
253
Reset and clock control (RCC)
RM0351
Bit 16 PLLSAI2PEN: SAI2PLL PLLSAI2CLK output enable
Set and reset by software to enable the PLLSAI2CLK output of the SAI2PLL.
In order to save power, when the PLLSAI2CLK output of the SAI2PLL is not used, the value
of PLLSAI2PEN should be 0.
0: PLLSAI2CLK output disable
1: PLLSAI2CLK output enable
Bit 15 Reserved, must be kept at reset value.
Bits 14:8 PLLSAI2N[6:0]: SAI2PLL multiplication factor for VCO
Set and cleared by software to control the multiplication factor of the VCO. These bits can be
written only when the SAI2PLL is disabled.
VCOSAI2 output frequency = VCOSAI2 input frequency x PLLSAI2N
with 8 =< PLLSAI2N =< 86
0000000: PLLSAI2N = 0 wrong configuration
0000001: PLLSAI2N = 1 wrong configuration
...
0000111: PLLSAI2N = 7 wrong configuration
0001000: PLLSAI2N = 8
0001001: PLLSAI2N = 9
...
1010101: PLLSAI2N = 85
1010110: PLLSAI2N = 86
1010111: PLLSAI2N = 87 wrong configuration
...
1111111: PLLSAI2N = 127 wrong configuration
Caution:
The software has to set correctly these bits to ensure that the VCO output
frequency is between 64 and 344 MHz.
Bits 7:0 Reserved, must be kept at reset value.
210/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
6.4.7
Clock interrupt enable register (RCC_CIER)
Address offset: 0x18
Reset value: 0x0000 0000
Access: no wait state, word, half-word and byte access
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
LSE
CSSIE
Res.
PLL
SAI2
RDYIE
PLL
SAI1
RDYIE
PLL
RDYIE
HSE
RDYIE
HSI
RDYIE
MSI
RDYIE
LSE
RDYIE
LSI
RDYIE
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:10 Reserved, must be kept at reset value.
Bit 9 LSECSSIE: LSE clock security system interrupt enable
Set and cleared by software to enable/disable interrupt caused by the clock security system
on LSE.
0: Clock security interrupt caused by LSE clock failure disabled
1: Clock security interrupt caused by LSE clock failure enabled
Bit 8 Reserved, must be kept at reset value.
Bit 7 PLLSAI2RDYIE: PLLSAI2 ready interrupt enable
Set and cleared by software to enable/disable interrupt caused by PLLSAI2 lock.
0: PLLSAI2 lock interrupt disabled
1: PLLSAI2 lock interrupt enabled
Bit 6 PLLSAI1RDYIE: PLLSAI1 ready interrupt enable
Set and cleared by software to enable/disable interrupt caused by PLSAI1L lock.
0: PLLSAI1 lock interrupt disabled
1: PLLSAI1 lock interrupt enabled
Bit 5 PLLRDYIE: PLL ready interrupt enable
Set and cleared by software to enable/disable interrupt caused by PLL lock.
0: PLL lock interrupt disabled
1: PLL lock interrupt enabled
Bit 4 HSERDYIE: HSE ready interrupt enable
Set and cleared by software to enable/disable interrupt caused by the HSE oscillator
stabilization.
0: HSE ready interrupt disabled
1: HSE ready interrupt enabled
Bit 3 HSIRDYIE: HSI16 ready interrupt enable
Set and cleared by software to enable/disable interrupt caused by the HSI16 oscillator
stabilization.
0: HSI16 ready interrupt disabled
1: HSI16 ready interrupt enabled
DocID024597 Rev 3
211/1693
253
Reset and clock control (RCC)
RM0351
Bit 2 MSIRDYIE: MSI ready interrupt enable
Set and cleared by software to enable/disable interrupt caused by the MSI oscillator
stabilization.
0: MSI ready interrupt disabled
1: MSI ready interrupt enabled
Bit 1 LSERDYIE: LSE ready interrupt enable
Set and cleared by software to enable/disable interrupt caused by the LSE oscillator
stabilization.
0: LSE ready interrupt disabled
1: LSE ready interrupt enabled
Bit 0 LSIRDYIE: LSI ready interrupt enable
Set and cleared by software to enable/disable interrupt caused by the LSI oscillator
stabilization.
0: LSI ready interrupt disabled
1: LSI ready interrupt enabled
212/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
6.4.8
Clock interrupt flag register (RCC_CIFR)
Address offset: 0x1C
Reset value: 0x0000 0000
Access: no wait state, word, half-word and byte access
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
LSE
CSSF
CSSF
PLL
RDYF
HSE
RDYF
HSI
RDYF
MSI
RDYF
LSE
RDYF
LSI
RDYF
r
r
r
r
r
r
r
r
PLLSAI PLLSAI
2RDYF 1RDYF
r
r
Bits 31:10 Reserved, must be kept at reset value.
Bit 9 LSECSSF: LSE Clock security system interrupt flag
Set by hardware when a failure is detected in the LSE oscillator.
Cleared by software setting the LSECSSC bit.
0: No clock security interrupt caused by LSE clock failure
1: Clock security interrupt caused by LSE clock failure
Bit 8 CSSF: Clock security system interrupt flag
Set by hardware when a failure is detected in the HSE oscillator.
Cleared by software setting the CSSC bit.
0: No clock security interrupt caused by HSE clock failure
1: Clock security interrupt caused by HSE clock failure
Bit 7 PLLSAI2RDYF: PLLSAI2 ready interrupt flag
Set by hardware when the PLLSAI2 locks and PLLSAI2RDYDIE is set.
Cleared by software setting the PLLSAI2RDYC bit.
0: No clock ready interrupt caused by PLLSAI2 lock
1: Clock ready interrupt caused by PLLSAI2 lock
Bit 6 PLLSAI1RDYF: PLLSAI1 ready interrupt flag
Set by hardware when the PLLSAI1 locks and PLLSAI1RDYDIE is set.
Cleared by software setting the PLLSAI1RDYC bit.
0: No clock ready interrupt caused by PLLSAI1 lock
1: Clock ready interrupt caused by PLLSAI1 lock
Bit 5 PLLRDYF: PLL ready interrupt flag
Set by hardware when the PLL locks and PLLRDYDIE is set.
Cleared by software setting the PLLRDYC bit.
0: No clock ready interrupt caused by PLL lock
1: Clock ready interrupt caused by PLL lock
Bit 4 HSERDYF: HSE ready interrupt flag
Set by hardware when the HSE clock becomes stable and HSERDYDIE is set.
Cleared by software setting the HSERDYC bit.
0: No clock ready interrupt caused by the HSE oscillator
1: Clock ready interrupt caused by the HSE oscillator
DocID024597 Rev 3
213/1693
253
Reset and clock control (RCC)
RM0351
Bit 3 HSIRDYF: HSI16 ready interrupt flag
Set by hardware when the HSI16 clock becomes stable and HSIRDYDIE is set in a
response to setting the HSION (refer to Clock control register (RCC_CR)). When HSION is
not set but the HSI16 oscillator is enabled by the peripheral through a clock request, this bit
is not set and no interrupt is generated.
Cleared by software setting the HSIRDYC bit.
0: No clock ready interrupt caused by the HSI16 oscillator
1: Clock ready interrupt caused by the HSI16 oscillator
Bit 2 MSIRDYF: MSI ready interrupt flag
Set by hardware when the MSI clock becomes stable and MSIRDYDIE is set.
Cleared by software setting the MSIRDYC bit.
0: No clock ready interrupt caused by the MSI oscillator
1: Clock ready interrupt caused by the MSI oscillator
Bit 1 LSERDYF: LSE ready interrupt flag
Set by hardware when the LSE clock becomes stable and LSERDYDIE is set.
Cleared by software setting the LSERDYC bit.
0: No clock ready interrupt caused by the LSE oscillator
1: Clock ready interrupt caused by the LSE oscillator
Bit 0 LSIRDYF: LSI ready interrupt flag
Set by hardware when the LSI clock becomes stable and LSIRDYDIE is set.
Cleared by software setting the LSIRDYC bit.
0: No clock ready interrupt caused by the LSI oscillator
1: Clock ready interrupt caused by the LSI oscillator
214/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
6.4.9
Clock interrupt clear register (RCC_CICR)
Address offset: 0x20
Reset value: 0x0000 0000
Access: no wait state, word, half-word and byte access
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
LSE
CSSC
CSSC
PLLSAI
2RDYC
PLL
SAI1
RDYC
PLL
RDYC
HSE
RDYC
HSI
RDYC
MSI
RDYC
LSE
RDYC
LSI
RDYC
w
w
w
w
w
w
w
w
w
w
Bits 31:10 Reserved, must be kept at reset value.
Bit 9 LSECSSC: LSE Clock security system interrupt clear
This bit is set by software to clear the LSECSSF flag.
0: No effect
1: Clear LSECSSF flag
Bit 8 CSSC: Clock security system interrupt clear
This bit is set by software to clear the CSSF flag.
0: No effect
1: Clear CSSF flag
Bit 7 PLLSAI2RDYC: PLLSAI2 ready interrupt clear
This bit is set by software to clear the PLLSAI2RDYF flag.
0: No effect
1: Clear PLLSAI2RDYF flag
Bit 6 PLLSAI1RDYC: PLLSAI1 ready interrupt clear
This bit is set by software to clear the PLLSAI1RDYF flag.
0: No effect
1: Clear PLLSAI1RDYF flag
Bit 5 PLLRDYC: PLL ready interrupt clear
This bit is set by software to clear the PLLRDYF flag.
0: No effect
1: Clear PLLRDYF flag
Bit 4 HSERDYC: HSE ready interrupt clear
This bit is set by software to clear the HSERDYF flag.
0: No effect
1: Clear HSERDYF flag
Bit 3 HSIRDYC: HSI16 ready interrupt clear
This bit is set software to clear the HSIRDYF flag.
0: No effect
1: Clear HSIRDYF flag
DocID024597 Rev 3
215/1693
253
Reset and clock control (RCC)
RM0351
Bit 2 MSIRDYC: MSI ready interrupt clear
This bit is set by software to clear the MSIRDYF flag.
0: No effect
1: MSIRDYF cleared
Bit 1 LSERDYC: LSE ready interrupt clear
This bit is set by software to clear the LSERDYF flag.
0: No effect
1: LSERDYF cleared
Bit 0 LSIRDYC: LSI ready interrupt clear
This bit is set by software to clear the LSIRDYF flag.
0: No effect
1: LSIRDYF cleared
6.4.10
AHB1 peripheral reset register (RCC_AHB1RSTR)
Address offset: 0x28
Reset value: 0x00000 0000
Access: no wait state, word, half-word and byte access
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
TSC
RST
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
CRC
RST
Res.
FLASH
RST
Res.
DMA2
RST
DMA1
RST
rw
rw
rw
Res.
Res.
Res.
Res.
rw
Res.
Res.
rw
Res.
Res.
Res.
Bits 31:17 Reserved, must be kept at reset value.
Bit 16 TSCRST: Touch Sensing Controller reset
Set and cleared by software.
0: No effect
1: Reset TSC
Bits 15:13 Reserved, must be kept at reset value.
Bit 12 CRCRST: CRC reset
Set and cleared by software.
0: No effect
1: Reset CRC
Bits 11:9 Reserved, must be kept at reset value.
Bit 8 FLASHRST: Flash memory interface reset
Set and cleared by software. This bit can be activated only when the Flash memory is in
power down mode.
0: No effect
1: Reset Flash memory interface
216/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
Bits 7:2 Reserved, must be kept at reset value.
Bit 1 DMA2RST: DMA2 reset
Set and cleared by software.
0: No effect
1: Reset DMA2
Bit 0 DMA1RST: DMA1 reset
Set and cleared by software.
0: No effect
1: Reset DMA1
6.4.11
AHB2 peripheral reset register (RCC_AHB2RSTR)
Address offset: 0x2C
Reset value: 0x00000 0000
Access: no wait state, word, half-word and byte access
31
30
29
28
27
26
25
24
23
22
21
20
19
18
RNG
RST
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
Res.
ADC
RST
OTGFS
RST
17
16
Res.
AES
RST
rw
Res.
Res.
Res.
Res.
Res.
2
rw
1
0
GPIOH GPIOG GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA
RST
RST
RST
RST
RST
RST
RST
RST
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:19 Reserved, must be kept at reset value.
Bit 18 RNGRST: Random number generator reset
Set and cleared by software.
0: No effect
1: Reset RNG
Bit 17 Reserved, must be kept at reset value.
Bit 16 AESRST: AES hardware accelerator reset
Set and cleared by software.
0: No effect
1: Reset AES
Bits 15:14 Reserved, must be kept at reset value.
Bit 13 ADCRST: ADC reset
Set and cleared by software.
0: No effect
1: Reset ADC interface
Bit 12 OTGFSRST: USB OTG FS reset
Set and cleared by software.
0: No effect
1: Reset USB OTG FS
Bits 11:8 Reserved, must be kept at reset value.
DocID024597 Rev 3
217/1693
253
Reset and clock control (RCC)
RM0351
Bit 7 GPIOHRST: IO port H reset
Set and cleared by software.
0: No effect
1: Reset IO port H
Bit 6 GPIOGRST: IO port G reset
Set and cleared by software.
0: No effect
1: Reset IO port G
Bit 5 GPIOFRST: IO port F reset
Set and cleared by software.
0: No effect
1: Reset IO port F
Bit 4 GPIOERST: IO port E reset
Set and cleared by software.
0: No effect
1: Reset IO port E
Bit 3 GPIODRST: IO port D reset
Set and cleared by software.
0: No effect
1: Reset IO port D
Bit 2 GPIOCRST: IO port C reset
Set and cleared by software.
0: No effect
1: Reset IO port C
Bit 1 GPIOBRST: IO port B reset
Set and cleared by software.
0: No effect
1: Reset IO port B
Bit 0 GPIOARST: IO port A reset
Set and cleared by software.
0: No effect
1: Reset IO port A
6.4.12
AHB3 peripheral reset register (RCC_AHB3RSTR)
Address offset: 0x30
Reset value: 0x00000 0000
Access: no wait state, word, half-word and byte access
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
QSPI
RST
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FMC
RST
rw
218/1693
DocID024597 Rev 3
rw
RM0351
Reset and clock control (RCC)
Bits 31:9 Reserved, must be kept at reset value.
Bit 8 QSPIRST: Quad SPI memory interface reset
Set and cleared by software.
0: No effect
1: Reset QUADSPI
Bits 7:1 Reserved, must be kept at reset value.
Bit 0 FMCRST: Flexible memory controller reset
Set and cleared by software.
0: No effect
1: Reset FMC
DocID024597 Rev 3
219/1693
253
Reset and clock control (RCC)
6.4.13
RM0351
APB1 peripheral reset register 1 (RCC_APB1RSTR1)
Address offset: 0x38
Reset value: 0x0000 0000
Access: no wait state, word, half-word and byte access
31
30
29
LPTIM1 OPAMP DAC1
RST
RST
RST
28
PWR
RST
rw
rw
rw
rw
15
14
13
12
SPI3
RST
SPI2
RST
rw
rw
Res.
Res.
27
26
25
Res.
Res.
CAN1
RST
11
10
9
Res.
LCD
RST
24
23
22
21
Res.
I2C3R
ST
I2C2
RST
I2C1
RST
rw
rw
rw
rw
rw
rw
7
6
5
4
3
2
1
0
Res.
TIM7
RST
TIM6
RST
TIM5
RST
TIM4
RST
TIM3
RST
TIM2
RST
rw
rw
rw
rw
rw
rw
rw
Res.
8
Res.
Res.
rw
Bit 31 LPTIM1RST: Low Power Timer 1 reset
Set and cleared by software.
0: No effect
1: Reset LPTIM1
Bit 30 OPAMPRST: OPAMP interface reset
Set and cleared by software.
0: No effect
1: Reset OPAMP interface
Bit 29 DAC1RST: DAC1 interface reset
Set and cleared by software.
0: No effect
1: Reset DAC1 interface
Bit 28 PWRRST: Power interface reset
Set and cleared by software.
0: No effect
1: Reset PWR
Bits 27:26 Reserved, must be kept at reset value.
Bit 25 CAN1RST: CAN1 reset
Set and reset by software.
0: No effect
1: Resets the CAN1
Bit 24 Reserved, must be kept at reset value
Bit 23 I2C3RST: I2C3 reset
Set and reset by software.
0: No effect
1: Resets I2C3
Bit 22 I2C2RST: I2C2 reset
Set and cleared by software.
0: No effect
1: Reset I2C2
220/1693
DocID024597 Rev 3
20
19
18
17
UART5 UART4 USART3 USART2
RST
RST
RST
RST
16
Res.
rw
RM0351
Reset and clock control (RCC)
Bit 21 I2C1RST: I2C1 reset
Set and cleared by software.
0: No effect
1: Reset I2C1
Bit 20 UART5RST: UART5 reset
Set and cleared by software.
0: No effect
1: Reset UART5
Bit 19 UART4RST: UART4 reset
Set and cleared by software.
0: No effect
1: Reset UART4
Bit 18 USART3RST: USART3 reset
Set and cleared by software.
0: No effect
1: Reset USART3
Bit 17 USART2RST: USART2 reset
Set and cleared by software.
0: No effect
1: Reset USART2
Bit 16 Reserved, must be kept at reset value.
Bit 15 SPI3RST: SPI3 reset
Set and cleared by software.
0: No effect
1: Reset SPI3
Bit 14 SPI2RST: SPI2 reset
Set and cleared by software.
0: No effect
1: Reset SPI2
Bits 13:10 Reserved, must be kept at reset value.
Bit 9 LCDRST: LCD interface reset
Set and cleared by software.
0: No effect
1: Reset LCD
Bits 8:6 Reserved, must be kept at reset value.
Bit 5 TIM7RST: TIM7 timer reset
Set and cleared by software.
0: No effect
1: Reset TIM7
Bit 4 TIM6RST: TIM6 timer reset
Set and cleared by software.
0: No effect
1: Reset TIM6
DocID024597 Rev 3
221/1693
253
Reset and clock control (RCC)
RM0351
Bit 3 TIM5RST: TIM5 timer reset
Set and cleared by software.
0: No effect
1: Reset TIM5
Bit 2 TIM4RST: TIM3 timer reset
Set and cleared by software.
0: No effect
1: Reset TIM3
Bit 1 TIM3RST: TIM3 timer reset
Set and cleared by software.
0: No effect
1: Reset TIM3
Bit 0 TIM2RST: TIM2 timer reset
Set and cleared by software.
0: No effect
1: Reset TIM2
6.4.14
APB1 peripheral reset register 2 (RCC_APB1RSTR2)
Address offset: 0x3C
Reset value: 0x00000 0000
Access: no wait state, word, half-word and byte access
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
SWP
MI1
RST
Res.
LP
UART1
RST
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
LPTIM2
RST
rw
Bits 31:6 Reserved, must be kept at reset value.
Bit 5 LPTIM2RST: Low-power timer 2 reset
Set and cleared by software.
0: No effect
1: Reset LPTIM2
Bits 4:3 Reserved, must be kept at reset value.
Bit 2 SWPMI1RST: Single wire protocol reset
Set and cleared by software.
0: No effect
1: Reset SWPMI1
Bit 1 Reserved, must be kept at reset value.
Bit 0 LPUART1RST: Low-power UART 1 reset
Set and cleared by software.
0: No effect
1: Reset LPUART1
222/1693
DocID024597 Rev 3
Res.
rw
rw
RM0351
Reset and clock control (RCC)
6.4.15
APB2 peripheral reset register (RCC_APB2RSTR)
Address offset: 0x40
Reset value: 0x00000 0000
Access: no wait state, word, half-word and byte access
31
30
29
28
27
26
25
24
DFSDM
RST
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
Res.
USART
1
RST
TIM8
RST
SPI1
RST
TIM1
RST
SDMMC
1
RST
rw
rw
rw
rw
rw
23
22
21
Res.
SAI2
RST
SAI1
RST
rw
rw
6
5
rw
8
Res.
Res.
7
Res.
Res.
Res.
20
19
18
Res.
Res.
TIM17
RST
4
3
Res.
Res.
17
16
TIM16 TIM15R
RST
ST
rw
rw
2
1
0
Res.
SYS
CFG
RST
Res.
rw
rw
Bits 31:25 Reserved, must be kept at reset value.
Bit 24 DFSDMRST: Digital filters for sigma-delta modulators (DFSDM) reset
Set and cleared by software.
0: No effect
1: Reset DFSDM
Bit 23 Reserved, must be kept at reset value.
Bit 22 SAI2RST: Serial audio interface 2 (SAI2) reset
Set and cleared by software.
0: No effect
1: Reset SAI2
Bit 21 SAI1RST: Serial audio interface 1 (SAI1) reset
Set and cleared by software.
0: No effect
1: Reset SAI1
Bits 20:19 Reserved, must be kept at reset value.
Bit 18 TIM17RST: TIM17 timer reset
Set and cleared by software.
0: No effect
1: Reset TIM17 timer
Bit 17 TIM16RST: TIM16 timer reset
Set and cleared by software.
0: No effect
1: Reset TIM16 timer
Bit 16 TIM15RST: TIM15 timer reset
Set and cleared by software.
0: No effect
1: Reset TIM15 timer
Bit 15 Reserved, must be kept at reset value.
DocID024597 Rev 3
223/1693
253
Reset and clock control (RCC)
RM0351
Bit 14 USART1RST: USART1 reset
Set and cleared by software.
0: No effect
1: Reset USART1
Bit 13 TIM8RST: TIM8 timer reset
Set and cleared by software.
0: No effect
1: Reset TIM8 timer
Bit 12 SPI1RST: SPI1 reset
Set and cleared by software.
0: No effect
1: Reset SPI1
Bit 11 TIM1RST: TIM1 timer reset
Set and cleared by software.
0: No effect
1: Reset TIM1 timer
Bit 10 SDMMC1RST: SDMMC reset
Set and cleared by software.
0: No effect
1: Reset SDMMC
Bits 9:1 Reserved, must be kept at reset value.
Bit 0 SYSCFGRST: SYSCFG + COMP + VREFBUF reset
0: No effect
1: Reset SYSCFG + COMP + VREFBUF
6.4.16
AHB1 peripheral clock enable register (RCC_AHB1ENR)
Address offset: 0x48
Reset value: 0x0000 0100
Access: no wait state, word, half-word and byte access
Note:
When the peripheral clock is not active, the peripheral registers read or write access is not
supported.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
TSC
EN
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
CRCEN
Res.
Res.
Res.
FLASH
EN
Res.
Res.
Res.
Res.
Res.
Res.
DMA2
EN
DMA1
EN
rw
rw
rw
rw
224/1693
rw
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
Bits 31:17 Reserved, must be kept at reset value.
Bit 16 TSCEN: Touch Sensing Controller clock enable
Set and cleared by software.
0: TSC clock disable
1: TSC clock enable
Bits 15:13 Reserved, must be kept at reset value.
Bit 12 CRCEN: CRC clock enable
Set and cleared by software.
0: CRC clock disable
1: CRC clock enable
Bits 11:9 Reserved, must be kept at reset value.
Bit 8 FLASHEN: Flash memory interface clock enable
Set and cleared by software. This bit can be disabled only when the Flash is in power down
mode.
0: Flash memory interface clock disable
1: Flash memory interface clock enable
Bits 7:2 Reserved, must be kept at reset value.
Bit 1 DMA2EN: DMA2 clock enable
Set and cleared by software.
0: DMA2 clock disable
1: DMA2 clock enable
Bit 0 DMA1EN: DMA1 clock enable
Set and cleared by software.
0: DMA1 clock disable
1: DMA1 clock enable
6.4.17
AHB2 peripheral clock enable register (RCC_AHB2ENR)
Address offset: 0x4C
Reset value: 0x0000 0000
Access: no wait state, word, half-word and byte access
Note:
31
When the peripheral clock is not active, the peripheral registers read or write access is not
supported.
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RNG
EN
Res.
AESEN
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
rw
Res.
Res.
OTGFS
ADCEN
EN
rw
rw
Res.
Res.
Res.
Res.
2
rw
1
0
GPIOH GPIOG GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA
EN
EN
EN
EN
EN
EN
EN
EN
rw
rw
DocID024597 Rev 3
rw
rw
rw
rw
rw
rw
225/1693
253
Reset and clock control (RCC)
RM0351
Bits 31:19 Reserved, must be kept at reset value.
Bit 18 RNGEN: Random Number Generator clock enable
Set and cleared by software.
0: Random Number Generator clock disabled
1: Random Number Generator clock enabled
Bit 17 Reserved, must be kept at reset value.
Bit 16 AESEN: AES accelerator clock enable
Set and cleared by software.
0: AES clock disabled
1: AES clock enabled
Bits 15:14 Reserved, must be kept at reset value.
Bit 13 ADCEN: ADC clock enable
Set and cleared by software.
0: ADC clock disabled
1: ADC clock enabled
Bit 12 OTGFSEN: OTG full speed clock enable
Set and cleared by software.
0: USB OTG full speed clock disabled
1: USB OTG full speed clock enabled
Bits 11:8 Reserved, must be kept at reset value.
Bit 7 GPIOHEN: IO port H clock enable
Set and cleared by software.
0: IO port H clock disabled
1: IO port H clock enabled
Bit 6 GPIOGEN: IO port G clock enable
Set and cleared by software.
0: IO port G clock disabled
1: IO port G clock enabled
Bit 5 GPIOFEN: IO port F clock enable
Set and cleared by software.
0: IO port F clock disabled
1: IO port F clock enabled
Bit 4 GPIOEEN: IO port E clock enable
Set and cleared by software.
0: IO port E clock disabled
1: IO port E clock enabled
Bit 3 GPIODEN: IO port D clock enable
Set and cleared by software.
0: IO port D clock disabled
1: IO port D clock enabled
226/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
Bit 2 GPIOCEN: IO port C clock enable
Set and cleared by software.
0: IO port C clock disabled
1: IO port C clock enabled
Bit 1 GPIOBEN: IO port B clock enable
Set and cleared by software.
0: IO port B clock disabled
1: IO port B clock enabled
Bit 0 GPIOAEN: IO port A clock enable
Set and cleared by software.
0: IO port A clock disabled
1: IO port A clock enabled
6.4.18
AHB3 peripheral clock enable register(RCC_AHB3ENR)
Address offset: 0x50
Reset value: 0x00000 0000
Access: no wait state, word, half-word and byte access
Note:
When the peripheral clock is not active, the peripheral registers read or write access is not
supported.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
QSPI
EN
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FMC
EN
rw
rw
Bits 31:9 Reserved, must be kept at reset value.
Bit 8 QSPIEN Quad SPI memory interface clock enable
Set and cleared by software.
0: QUADSPI clock disable
1: QUADSPI clock enable
Bits 7:1 Reserved, must be kept at reset value.
Bit 0 FMCEN: Flexible memory controller clock enable
Set and cleared by software.
0: FMC clock disable
1: FMC clock enable
6.4.19
APB1 peripheral clock enable register 1 (RCC_APB1ENR1)
Address: 0x58
Reset value: 0x0000 0000
Access: no wait state, word, half-word and byte access
DocID024597 Rev 3
227/1693
253
Reset and clock control (RCC)
Note:
RM0351
When the peripheral clock is not active, the peripheral registers read or write access is not
supported.
31
30
29
LPTIM1 OPAMP DAC1
EN
EN
EN
rw
28
PWR
EN
27
Res.
rw
rw
rw
13
12
11
Res.
WWD
GEN
15
14
SPI3
EN
SPI2
EN
rw
rw
Res.
26
25
Res.
CAN1
EN
24
23
22
21
20
19
Res.
I2C3
EN
I2C2
EN
I2C1
EN
UART5
EN
UART4
EN
rw
rw
rw
rw
rw
rw
rw
7
6
5
4
3
2
1
Res.
TIM7
EN
TIM6EN
rw
rw
rw
rs
10
9
Res.
LCD
EN
8
Res.
Res.
rw
Bit 31 LPTIM1EN: Low power timer 1 clock enable
Set and cleared by software.
0: LPTIM1 clock disabled
1: LPTIM1 clock enabled
Bit 30 OPAMPEN: OPAMP interface clock enable
Set and cleared by software.
0: OPAMP interface clock disabled
1: OPAMP interface clock enabled
Bit 29 DAC1EN: DAC1 interface clock enable
Set and cleared by software.
0: DAC1 interface clock disabled
1: DAC1 interface clock enabled
Bit 28 PWREN: Power interface clock enable
Set and cleared by software.
0: Power interface clock disabled
1: Power interface clock enabled
Bits 27:26 Reserved, must be kept at reset value.
Bit 25 CAN1EN: CAN1 clock enable
Set and cleared by software.
0: CAN1 clock disabled
1: CAN1 clock enabled
Bit 24 Reserved, must be kept at reset value.
Bit 23 I2C3EN: I2C3 clock enable
Set and cleared by software.
0: I2C3 clock disabled
1: I2C3 clock enabled
Bit 22 I2C2EN: I2C2 clock enable
Set and cleared by software.
0: I2C2 clock disabled
1: I2C2 clock enabled
Bit 21 I2C1EN: I2C1 clock enable
Set and cleared by software.
0: I2C1 clock disabled
1: I2C1 clock enabled
228/1693
DocID024597 Rev 3
18
17
USART3 USART2
EN
EN
TIM5EN TIM4EN TIM3EN
rw
rw
rw
16
Res.
0
TIM2
EN
rw
RM0351
Reset and clock control (RCC)
Bit 20 UART5EN: UART5 clock enable
Set and cleared by software.
0: UART5 clock disabled
1: UART5 clock enabled
Bit 19 UART4EN: UART4 clock enable
Set and cleared by software.
0: UART4 clock disabled
1: UART4 clock enabled
Bit 18 USART3EN: USART3 clock enable
Set and cleared by software.
0: USART3 clock disabled
1: USART3 clock enabled
Bit 17 USART2EN: USART2 clock enable
Set and cleared by software.
0: USART2 clock disabled
1: USART2 clock enabled
Bit 16 Reserved, must be kept at reset value.
Bit 15 SPI3EN: SPI3 clock enable
Set and cleared by software.
0: SPI3 clock disabled
1: SPI3 clock enabled
Bit 14 SPI2EN: SPI2 clock enable
Set and cleared by software.
0: SPI2 clock disabled
1: SPI2 clock enabled
Bits 13:12 Reserved, must be kept at reset value.
Bit 11 WWDGEN: Window watchdog clock enable
Set by software to enable the window watchdog clock. Reset by hardware system reset.
This bit can also be set by hardware if the WWDG_SW option bit is reset.
0: Window watchdog clock disabled
1: Window watchdog clock enabled
Bit 10 Reserved, must be kept at reset value.
Bit 9 LCDEN: LCD clock enable
Set and cleared by software.
0: LCD clock disabled
1: LCD clock enabled
Bits 8:6 Reserved, must be kept at reset value.
Bit 5 TIM7EN: TIM7 timer clock enable
Set and cleared by software.
0: TIM7 clock disabled
1: TIM7 clock enabled
Bit 4 TIM6EN: TIM6 timer clock enable
Set and cleared by software.
0: TIM6 clock disabled
1: TIM6 clock enabled
DocID024597 Rev 3
229/1693
253
Reset and clock control (RCC)
RM0351
Bit 3 TIM5EN: TIM5 timer clock enable
Set and cleared by software.
0: TIM5 clock disabled
1: TIM5 clock enabled
Bit 2 TIM4EN: TIM4 timer clock enable
Set and cleared by software.
0: TIM4 clock disabled
1: TIM4 clock enabled
Bit 1 TIM3EN: TIM3 timer clock enable
Set and cleared by software.
0: TIM3 clock disabled
1: TIM3 clock enabled
Bit 0 TIM2EN: TIM2 timer clock enable
Set and cleared by software.
0: TIM2 clock disabled
1: TIM2 clock enabled
6.4.20
APB1 peripheral clock enable register 2 (RCC_APB1ENR2)
Address offset: 0x5C
Reset value: 0x00000 0000
Access: no wait state, word, half-word and byte access
Note:
When the peripheral clock is not active, the peripheral registers read or write access is not
supported.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
SWP
MI1
EN
Res.
LP
UART1
EN
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
LPTIM2
EN
Res.
rw
Bits 31:6 Reserved, must be kept at reset value.
Bit 5 LPTIM2EN Low power timer 2 clock enable
Set and cleared by software.
0: LPTIM2 clock disable
1: LPTIM2 clock enable
Bits 4:3 Reserved, must be kept at reset value.
230/1693
DocID024597 Rev 3
rw
RM0351
Reset and clock control (RCC)
Bit 2 SWPMI1EN: Single wire protocol clock enable
Set and cleared by software.
0: SWPMI1 clock disable
1: SWPMI1 clock enable
Bit 1 Reserved, must be kept at reset value.
Bit 0 LPUART1EN: Low power UART 1 clock enable
Set and cleared by software.
0: LPUART1 clock disable
1: LPUART1 clock enable
DocID024597 Rev 3
231/1693
253
Reset and clock control (RCC)
6.4.21
RM0351
APB2 peripheral clock enable register (RCC_APB2ENR)
Address: 0x60
Reset value: 0x0000 0000
Access: word, half-word and byte access
Note:
When the peripheral clock is not active, the peripheral registers read or write access is not
supported.
31
30
29
28
27
26
25
24
DFSDM
EN
23
22
21
Res.
SAI2
EN
SAI1
EN
20
19
18
17
16
Res.
Res.
TIM
17EN
TIM16
EN
TIM15
EN
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
USART
1
EN
TIM8
EN
SPI1
EN
TIM1
EN
SDMMC
1
EN
Res.
Res.
FW
EN
Res.
Res.
Res.
Res.
Res.
Res.
SYS
CFGEN
rw
rw
rw
rw
rw
rw
rs
Bits 31:25 Reserved, must be kept at reset value.
Bit 24 DFSDMEN: DFSDM timer clock enable
Set and cleared by software.
0: DFSDM clock disabled
1: DFSDM clock enabled
Bit 23 Reserved, must be kept at reset value.
Bit 22 SAI2EN: SAI2 clock enable
Set and cleared by software.
0: SAI2 clock disabled
1: SAI2 clock enabled
Bit 21 SAI1EN: SAI1 clock enable
Set and cleared by software.
0: SAI1 clock disabled
1: SAI1 clock enabled
Bits 20:19 Reserved, must be kept at reset value.
Bit 18 TIM17EN: TIM17 timer clock enable
Set and cleared by software.
0: TIM17 timer clock disabled
1: TIM17 timer clock enabled
Bit 17 TIM16EN: TIM16 timer clock enable
Set and cleared by software.
0: TIM16 timer clock disabled
1: TIM16 timer clock enabled
Bit 16 TIM15EN: TIM15 timer clock enable
Set and cleared by software.
0: TIM15 timer clock disabled
1: TIM15 timer clock enabled
Bit 15 Reserved, must be kept at reset value.
232/1693
DocID024597 Rev 3
rw
RM0351
Reset and clock control (RCC)
Bit 14 USART1EN: USART1clock enable
Set and cleared by software.
0: USART1clock disabled
1: USART1clock enabled
Bit 13 TIM8EN: TIM8 timer clock enable
Set and cleared by software.
0: TIM8 timer clock disabled
1: TIM8 timer clock enabled
Bit 12 SPI1EN: SPI1 clock enable
Set and cleared by software.
0: SPI1 clock disabled
1: SPI1 clock enabled
Bit 11 TIM1EN: TIM1 timer clock enable
Set and cleared by software.
0: TIM1 timer clock disabled
1: TIM1P timer clock enabled
Bit 10 SDMMC1EN: SDMMC clock enable
Set and cleared by software.
0: SDMMC clock disabled
1: SDMMC clock enabled
Bits 9:8 Reserved, must be kept at reset value.
Bit 7 FWEN: Firewall clock enable
Set by software, reset by hardware. Software can only write 1. A write at 0 has no effect.
0: Firewall clock disabled
1: Firewall clock enabled
Bits 6:1 Reserved, must be kept at reset value.
Bit 0 SYSCFGEN: SYSCFG + COMP + VREFBUF clock enable
Set and cleared by software.
0: SYSCFG + COMP + VREFBUF clock disabled
1: SYSCFG + COMP + VREFBUF clock enabled
6.4.22
AHB1 peripheral clocks enable in Sleep and Stop modes register
(RCC_AHB1SMENR)
Address offset: 0x68
Reset value: 0x0001 1303
Access: no wait state, word, half-word and byte access
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
TSC
SMEN
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
DMA2
SMEN
DMA1
SMEN
rw
rw
rw
Res.
Res.
Res.
CRCSMEN
rw
Res.
Res.
SRAM1 FLASH
SMEN SMEN
rw
Res.
rw
DocID024597 Rev 3
Res.
Res.
Res.
Res.
233/1693
253
Reset and clock control (RCC)
RM0351
Bits 31:17 Reserved, must be kept at reset value.
Bit 16 TSCSMEN: Touch Sensing Controller clocks enable during Sleep and Stop modes
Set and cleared by software.
0: TSC clocks disabled by the clock gating(1) during Sleep and Stop modes
1: TSC clocks enabled by the clock gating(1) during Sleep and Stop modes
Bits 15:13 Reserved, must be kept at reset value.
Bit 12 CRCSMEN: CRC clocks enable during Sleep and Stop modes
Set and cleared by software.
0: CRC clocks disabled by the clock gating(1) during Sleep and Stop modes
1: CRC clocks enabled by the clock gating(1) during Sleep and Stop modes
Bits 11:10 Reserved, must be kept at reset value.
Bit 9 SRAM1SMEN: SRAM1 interface clocks enable during Sleep and Stop modes
Set and cleared by software.
0: SRAM1 interface clocks disabled by the clock gating(1) during Sleep and Stop modes
1: SRAM1 interface clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 8 FLASHSMEN: Flash memory interface clocks enable during Sleep and Stop modes
Set and cleared by software.
0: Flash memory interface clocks disabled by the clock gating(1) during Sleep and Stop
modes
1: Flash memory interface clocks enabled by the clock gating(1) during Sleep and Stop
modes
Bits 7:2 Reserved, must be kept at reset value.
Bit 1 DMA2SMEN: DMA2 clocks enable during Sleep and Stop modes
Set and cleared by software during Sleep mode.
0: DMA2 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: DMA2 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 0 DMA1SMEN: DMA1 clocks enable during Sleep and Stop modes
Set and cleared by software.
0: DMA1 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: DMA1 clocks enabled by the clock gating(1) during Sleep and Stop modes
1. This register only configures the clock gating, not the clock source itself. Most of the peripherals are clocked by a single
clock (AHB or APB clock), which is always disabled in Stop mode. In this case setting the bit has no effect in Stop mode.
6.4.23
AHB2 peripheral clocks enable in Sleep and Stop modes register
(RCC_AHB2SMENR)
Address offset: 0x6C
Reset value: 0x0005 32FF
Access: no wait state, word, half-word and byte access
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
RNG
SMEN
Res.
AES
SMEN
rw
234/1693
DocID024597 Rev 3
rw
RM0351
15
Res.
Reset and clock control (RCC)
14
Res.
13
12
ADC OTGFS
SMEN SMEN
rw
rw
11
Res.
10
9
Res.
SRAM2
SMEN
8
Res.
7
6
5
4
3
2
1
0
GPIOH GPIOG GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA
SMEN SMEN SMEN SMEN SMEN SMEN SMEN SMEN
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:19 Reserved, must be kept at reset value.
Bit 18 RNGSMEN: Random Number Generator clocks enable during Sleep and Stop modes
Set and cleared by software.
0: Random Number Generator clocks disabled by the clock gating(1) during Sleep and Stop
modes
1: Random Number Generator clocks enabled by the clock gating(1) during Sleep and Stop
modes
Bit 17 Reserved, must be kept at reset value.
Bit 16 AESSMEN: AES accelerator clocks enable during Sleep and Stop modes
Set and cleared by software.
0: AES clocks disabled by the clock gating(1) during Sleep and Stop modes
1: AES clocks enabled by the clock gating(1) during Sleep and Stop modes
Bits 15:14 Reserved, must be kept at reset value.
Bit 13 ADCSMEN: ADC clocks enable during Sleep and Stop modes
Set and cleared by software.
0: ADC clocks disabled by the clock gating(1) during Sleep and Stop modes
1: ADC clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 12 OTGFSSMEN: OTG full speed clocks enable during Sleep and Stop modes
Set and cleared by software.
0: USB OTG full speed clocks disabled by the clock gating(1) during Sleep and Stop modes
1: USB OTG full speed clocks enabled by the clock gating(1) during Sleep and Stop modes
Bits 11:10 Reserved, must be kept at reset value.
Bit 9 SRAM2SMEN: SRAM2 interface clocks enable during Sleep and Stop modes
Set and cleared by software.
0: SRAM2 interface clocks disabled by the clock gating(1) during Sleep and Stop modes
1: SRAM2 interface clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 8 Reserved, must be kept at reset value.
Bit 7 GPIOHSMEN: IO port H clocks enable during Sleep and Stop modes
Set and cleared by software.
0: IO port H clocks disabled by the clock gating(1) during Sleep and Stop modes
1: IO port H clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 6 GPIOGSMEN: IO port G clocks enable during Sleep and Stop modes
Set and cleared by software.
0: IO port G clocks disabled by the clock gating(1) during Sleep and Stop modes
1: IO port G clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 5 GPIOFSMEN: IO port F clocks enable during Sleep and Stop modes
Set and cleared by software.
0: IO port F clocks disabled by the clock gating(1) during Sleep and Stop modes
1: IO port F clocks enabled by the clock gating(1) during Sleep and Stop modes
DocID024597 Rev 3
235/1693
253
Reset and clock control (RCC)
RM0351
Bit 4 GPIOESMEN: IO port E clocks enable during Sleep and Stop modes
Set and cleared by software.
0: IO port E clocks disabled by the clock gating(1) during Sleep and Stop modes
1: IO port E clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 3 GPIODSMEN: IO port D clocks enable during Sleep and Stop modes
Set and cleared by software.
0: IO port D clocks disabled by the clock gating(1) during Sleep and Stop modes
1: IO port D clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 2 GPIOCSMEN: IO port C clocks enable during Sleep and Stop modes
Set and cleared by software.
0: IO port C clocks disabled by the clock gating(1) during Sleep and Stop modes
1: IO port C clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 1 GPIOBSMEN: IO port B clocks enable during Sleep and Stop modes
Set and cleared by software.
0: IO port B clocks disabled by the clock gating(1) during Sleep and Stop modes
1: IO port B clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 0 GPIOASMEN: IO port A clocks enable during Sleep and Stop modes
Set and cleared by software.
0: IO port A clocks disabled by the clock gating(1) during Sleep and Stop modes
1: IO port A clocks enabled by the clock gating(1) during Sleep and Stop modes
1. This register only configures the clock gating, not the clock source itself. Most of the peripherals are clocked by a single
clock (AHB or APB clock), which is always disabled in Stop mode. In this case setting the bit has no effect in Stop mode.
6.4.24
AHB3 peripheral clocks enable in Sleep and Stop modes register
(RCC_AHB3SMENR)
Address offset: 0x70
Reset value: 0x00000 0101
Access: no wait state, word, half-word and byte access
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
QSPI
SMEN
Res.
FMC
SMEN
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
Bits 31:9 Reserved, must be kept at reset value.
236/1693
DocID024597 Rev 3
Res.
Res.
Res.
Res.
rw
RM0351
Reset and clock control (RCC)
Bit 8 QSPISMEN Quad SPI memory interface clocks enable during Sleep and Stop modes
Set and cleared by software.
0: QUADSPI clocks disabled by the clock gating(1) during Sleep and Stop modes
1: QUADSPI clocks enabled by the clock gating(1) during Sleep and Stop modes
Bits 7:1 Reserved, must be kept at reset value.
Bit 0 FMCSMEN: Flexible memory controller clocks enable during Sleep and Stop modes
Set and cleared by software.
0: FMC clocks disabled by the clock gating(1) during Sleep and Stop modes
1: FMC clocks enabled by the clock gating(1) during Sleep and Stop modes
1. This register only configures the clock gating, not the clock source itself. Most of the peripherals are clocked by a single
clock (AHB or APB clock), which is always disabled in Stop mode. In this case setting the bit has no effect in Stop mode.
6.4.25
APB1 peripheral clocks enable in Sleep and Stop modes register 1
(RCC_APB1SMENR1)
Address: 0x78
Reset value: 0xF2FE CA3FAccess: no wait state, word, half-word and byte access
31
30
29
28
LPTIM1 OPAMP DAC1 PWR
SMEN SMEN SMEN SMEN
27
26
25
Res.
Res.
CAN1
SMEN
10
9
Res.
LCD
SMEN
rw
rw
rw
rw
15
14
13
12
11
SPI3
SMEN
SPI2
SMEN
Res.
WWDG
SMEN
rw
rw
Res.
24
23
Res.
I2C3
SMEN
rw
rw
8
Res.
22
21
I2C2
I2C1
SMEN SMEN
20
19
UART5
SMEN
UART4
SMEN
18
17
16
USART3 USART2
SMEN
SMEN
Res.
rw
rw
rw
rw
rw
rw
7
6
5
4
3
2
1
0
Res.
TIM7
SMEN
TIM6
SMEN
TIM5
SMEN
TIM4
SMEN
TIM3
SMEN
TIM2
SMEN
rw
rw
rw
rw
rw
rw
Res.
rw
rw
Bit 31 LPTIM1SMEN: Low power timer 1 clocks enable during Sleep and Stop modes
Set and cleared by software.
0: LPTIM1 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: LPTIM1 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 30 OPAMPSMEN: OPAMP interface clocks enable during Sleep and Stop modes
Set and cleared by software.
0: OPAMP interface clocks disabled by the clock gating(1) during Sleep and Stop modes
1: OPAMP interface clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 29 DAC1SMEN: DAC1 interface clocks enable during Sleep and Stop modes
Set and cleared by software.
0: DAC1 interface clocks disabled by the clock gating(1) during Sleep and Stop modes
1: DAC1 interface clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 28 PWRSMEN: Power interface clocks enable during Sleep and Stop modes
Set and cleared by software.
0: Power interface clocks disabled by the clock gating(1) during Sleep and Stop modes
1: Power interface clocks enabled by the clock gating(1) during Sleep and Stop modes
Bits 27:26 Reserved, must be kept at reset value.
DocID024597 Rev 3
237/1693
253
Reset and clock control (RCC)
RM0351
Bit 25 CAN1SMEN: CAN1 clocks enable during Sleep and Stop modes
Set and cleared by software.
0: CAN1 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: CAN1 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 24 Reserved, must be kept at reset value.
Bit 23 I2C3SMEN: I2C3 clocks enable during Sleep and Stop modes
Set and cleared by software.
0: I2C3 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: I2C3 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 22 I2C2SMEN: I2C2 clocks enable during Sleep and Stop modes
Set and cleared by software.
0: I2C2 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: I2C2 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 21 I2C1SMEN: I2C1 clocks enable during Sleep and Stop modes
Set and cleared by software.
0: I2C1 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: I2C1 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 20 UART5SMEN: UART5 clocks enable during Sleep and Stop modes
Set and cleared by software.
0: UART5 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: UART5 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 19 UART4SMEN: UART4 clocks enable during Sleep and Stop modes
Set and cleared by software.
0: UART4 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: UART4 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 18 USART3SMEN: USART3 clocks enable during Sleep and Stop modes
Set and cleared by software.
0: USART3 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: USART3 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 17 USART2SMEN: USART2 clocks enable during Sleep and Stop modes
Set and cleared by software.
0: USART2 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: USART2 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 16 Reserved, must be kept at reset value.
Bit 15 SPI3SMEN: SPI3 clocks enable during Sleep and Stop modes
Set and cleared by software.
0: SPI3 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: SPI3 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 14 SPI2SMEN: SPI2 clocks enable during Sleep and Stop modes
Set and cleared by software.
0: SPI2 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: SPI2 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bits 13:12 Reserved, must be kept at reset value.
238/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
Bit 11 WWDGSMEN: Window watchdog clocks enable during Sleep and Stop modes
Set and cleared by software. This bit is forced to ‘1’ by hardware when the hardware WWDG
option is activated.
0: Window watchdog clocks disabled by the clock gating(1) during Sleep and Stop modes
1: Window watchdog clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 10 Reserved, must be kept at reset value.
Bit 9 LCDSMEN: LCD clocks enable during Sleep and Stop modes
Set and cleared by software.
0: LCD clocks disabled by the clock gating(1) during Sleep and Stop modes
1: LCD clocks enabled by the clock gating(1) during Sleep and Stop modes
Bits 8:6 Reserved, must be kept at reset value.
Bit 5 TIM7SMEN: TIM7 timer clocks enable during Sleep and Stop modes
Set and cleared by software.
0: TIM7 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: TIM7 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 4 TIM6SMEN: TIM6 timer clocks enable during Sleep and Stop modes
Set and cleared by software.
0: TIM6 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: TIM6 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 3 TIM5SMEN: TIM5 timer clocks enable during Sleep and Stop modes
Set and cleared by software.
0: TIM5 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: TIM5 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 2 TIM4SMEN: TIM4 timer clocks enable during Sleep and Stop modes
Set and cleared by software.
0: TIM4 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: TIM4 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 1 TIM3SMEN: TIM3 timer clocks enable during Sleep and Stop modes
Set and cleared by software.
0: TIM3 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: TIM3 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 0 TIM2SMEN: TIM2 timer clocks enable during Sleep and Stop modes
Set and cleared by software.
0: TIM2 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: TIM2 clocks enabled by the clock gating(1) during Sleep and Stop modes
1. This register only configures the clock gating, not the clock source itself. Most of the peripherals are clocked by a single
clock (AHB or APB clock), which is always disabled in Stop mode. In this case setting the bit has no effect in Stop mode.
6.4.26
APB1 peripheral clocks enable in Sleep and Stop modes register 2
(RCC_APB1SMENR2)
Address offset: 0x7C
Reset value: 0x0000 0025
Access: no wait state, word, half-word and byte access
DocID024597 Rev 3
239/1693
253
Reset and clock control (RCC)
RM0351
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
SWP
MI1
SMEN
Res.
LP
UART1
SMEN
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
LPTIM
2SMEN
rw
Res.
rw
Bits 31:6 Reserved, must be kept at reset value.
Bit 5 LPTIM2SMEN Low power timer 2 clocks enable during Sleep and Stop modes
Set and cleared by software.
0: LPTIM2 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: LPTIM2 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bits 4:3 Reserved, must be kept at reset value.
Bit 2 SWPMI1SMEN: Single wire protocol clocks enable during Sleep and Stop modes
Set and cleared by software.
0: SWPMI1 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: SWPMI1 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 1 Reserved, must be kept at reset value.
Bit 0 LPUART1SMEN: Low power UART 1 clocks enable during Sleep and Stop modes
Set and cleared by software.
0: LPUART1 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: LPUART1 clocks enabled by the clock gating(1) during Sleep and Stop modes
1. This register only configures the clock gating, not the clock source itself. Most of the peripherals are clocked by a single
clock (AHB or APB clock), which is always disabled in Stop mode. In this case setting the bit has no effect in Stop mode.
240/1693
DocID024597 Rev 3
rw
RM0351
Reset and clock control (RCC)
6.4.27
APB2 peripheral clocks enable in Sleep and Stop modes register
(RCC_APB2SMENR)
Address: 0x80
Reset value: 0x0167 7C01
Access: word, half-word and byte access
31
30
29
28
27
26
25
24
DFSDM
SMEN
23
22
21
Res.
SAI2
SMEN
SAI1
SMEN
20
19
18
17
16
Res.
Res.
TIM17
SMEN
TIM16
SMEN
TIM15
SMEN
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SYS
CFG
SMEN
rw
Res.
USART TIM8
1
SMEN SMEN
rw
rw
SPI1
SMEN
rw
TIM1 SDMMC
1
SMEN SMEN
rw
rw
rw
Bits 31:25 Reserved, must be kept at reset value.
Bit 24 DFSDMSMEN: DFSDM timer clocks enable during Sleep and Stop modes
Set and cleared by software.
0: DFSDM clocks disabled by the clock gating(1) during Sleep and Stop modes
1: DFSDM clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 23 Reserved, must be kept at reset value.
Bit 22 SAI2SMEN: SAI2 clocks enable during Sleep and Stop modes
Set and cleared by software.
0: SAI2 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: SAI2 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 21 SAI1SMEN: SAI1 clocks enable during Sleep and Stop modes
Set and cleared by software.
0: SAI1 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: SAI1 clocks enabled by the clock gating(1) during Sleep and Stop modes
Bits 20:19 Reserved, must be kept at reset value.
Bit 18 TIM17SMEN: TIM17 timer clocks enable during Sleep and Stop modes
Set and cleared by software.
0: TIM17 timer clocks disabled by the clock gating(1) during Sleep and Stop modes
1: TIM17 timer clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 17 TIM16SMEN: TIM16 timer clocks enable during Sleep and Stop modes
Set and cleared by software.
0: TIM16 timer clocks disabled by the clock gating(1) during Sleep and Stop modes
1: TIM16 timer clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 16 TIM15SMEN: TIM15 timer clocks enable during Sleep and Stop modes
Set and cleared by software.
0: TIM15 timer clocks disabled by the clock gating(1) during Sleep and Stop modes
1: TIM15 timer clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 15 Reserved, must be kept at reset value.
DocID024597 Rev 3
241/1693
253
Reset and clock control (RCC)
RM0351
Bit 14 USART1SMEN: USART1clocks enable during Sleep and Stop modes
Set and cleared by software.
0: USART1clocks disabled by the clock gating(1) during Sleep and Stop modes
1: USART1clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 13 TIM8SMEN: TIM8 timer clocks enable during Sleep and Stop modes
Set and cleared by software.
0: TIM8 timer clocks disabled by the clock gating(1) during Sleep and Stop modes
1: TIM8 timer clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 12 SPI1SMEN: SPI1 clocks enable during Sleep and Stop modes
Set and cleared by software.
0: SPI1 clocks disabled by the clock gating during(1) Sleep and Stop modes
1: SPI1 clocks enabled by the clock gating during(1) Sleep and Stop modes
Bit 11 TIM1SMEN: TIM1 timer clocks enable during Sleep and Stop modes
Set and cleared by software.
0: TIM1 timer clocks disabled by the clock gating(1) during Sleep and Stop modes
1: TIM1P timer clocks enabled by the clock gating(1) during Sleep and Stop modes
Bit 10 SDMMC1SMEN: SDMMC clocks enable during Sleep and Stop modes
Set and cleared by software.
0: SDMMC clocks disabled by the clock gating(1) during Sleep and Stop modes
1: SDMMC clocks enabled by the clock gating(1) during Sleep and Stop modes
Bits 9:1 Reserved, must be kept at reset value.
Bit 0 SYSCFGSMEN: SYSCFG + COMP + VREFBUF clocks enable during Sleep and Stop modes
Set and cleared by software.
0: SYSCFG + COMP + VREFBUF clocks disabled by the clock gating(1) during Sleep and
Stop modes
1: SYSCFG + COMP + VREFBUF clocks enabled by the clock gating(1) during Sleep and
Stop modes
1. This register only configures the clock gating, not the clock source itself. Most of the peripherals are clocked by a single
clock (AHB or APB clock), which is always disabled in Stop mode. In this case setting the bit has no effect in Stop mode.
242/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
6.4.28
Peripherals independent clock configuration register (RCC_CCIPR)
Address: 0x88
Reset value: 0x0000 0000
Access: no wait states, word, half-word and byte access
31
30
DFSDM
SEL
SWP
MI1
SEL
29
28
ADCSEL[1:0]
27
26
CLK48SEL[1:0]
25
24
SAI2SEL[1:0]
23
22
SAI1SEL[1:0]
21
20
LPTIM2SEL[1:0]
19
18
LPTIM1SEL[1:0
17
16
I2C3SEL[1:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
I2C2SEL[1:0]
rw
rw
I2C1SEL[1:0]
rw
LPUART1SEL
[1:0]
rw
rw
rw
UART5SEL
[1:0]
UART4SEL
[1:0]
rw
rw
rw
rw
USART3SEL
[1:0]
rw
rw
USART2SEL
[1:0]
rw
rw
USART1SEL
[1:0]
rw
rw
Bit 31 DFSDMSEL: DFSDM clock source selection
This bit is set and cleared by software to select the DFSDM clock source.
0: PCLK selected as DFSDM clock
1: System clock (SYSCLK) used as DFSDM clock
Bit 30 SWPMI1SEL: SWPMI1 clock source selection
This bit is set and cleared by software to select the SWPMI1 clock source.
0: PCLK selected as SWPMI1 clock
1: HSI16 clock selected as SWPMI1 clock
Bits 29:28 ADCSEL[1:0]: ADCs clock source selection
These bits are set and cleared by software to select the clock source used by the ADC
interface.
00: No clock selected
01: PLLSAI1 “R” clock (PLLADC1CLK) selected as ADCs clock
10: PLLSAI2 “R” clock (PLLADC2CLK) selected as ADCs clock
11: System clock selected as ADCs clock
Bits 27:26 CLK48SEL[1:0]: 48 MHz clock source selection
These bits are set and cleared by software to select the 48 MHz clock source used by USB
OTG FS, RNG and SDMMC.
00: No clock selected
01: PLLSAI1 “Q” clock (PLL48M2CLK) selected as 48 MHz clock
10: PLL “Q” clock (PLL48M1CLK) selected as 48 MHz clock
11: MSI clock selected as 48 MHz clock
Bits 25:24 SAI2SEL[1:0]: SAI2 clock source selection
These bits are set and cleared by software to select the SAI2 clock source.
00: PLLSAI1 “P” clock (PLLSAI1CLK) selected as SAI2 clock
01: PLLSAI2 “P” clock (PLLSAI2CLK) selected as SAI2 clock
10: PLL “P” clock (PLLSAI3CLK) selected as SAI2 clock
11: External input SAI2_EXTCLK selected as SAI2 clock
Caution:
If the selected clock is the external clock, it is not possible to switch to another
clock if the external clock is not present.
DocID024597 Rev 3
243/1693
253
Reset and clock control (RCC)
RM0351
Bits 23:22 SAI1SEL[1:0]: SAI1 clock source selection
These bits are set and cleared by software to select the SAI1 clock source.
00: PLLSAI1 “P” clock (PLLSAI1CLK) selected as SAI1 clock
01: PLLSAI2 “P” clock (PLLSAI2CLK) selected as SAI1 clock
10: PLL “P” clock (PLLSAI3CLK) selected as SAI1 clock
11: External input SAI1_EXTCLK selected as SAI1 clock
Caution:
If the selected clock is the external clock, it is not possible to switch to another
clock if the external clock is not present.
Bits 21:20 LPTIM2SEL[1:0]: Low power timer 2 clock source selection
These bits are set and cleared by software to select the LPTIM2 clock source.
00: PCLK selected as LPTIM2 clock
01: LSI clock selected as LPTIM2 clock
10: HSI16 clock selected as LPTIM2 clock
11: LSE clock selected as LPTIM2 clock
Bits 19:18 LPTIM1SEL[1:0]: Low power timer 1 clock source selection
These bits are set and cleared by software to select the LPTIM1 clock source.
00: PCLK selected as LPTIM1 clock
01: LSI clock selected as LPTIM1 clock
10: HSI16 clock selected as LPTIM1 clock
11: LSE clock selected as LPTIM1 clock
Bits 17:16 I2C3SEL[1:0]: I2C3 clock source selection
These bits are set and cleared by software to select the I2C3 clock source.
00: PCLK selected as I2C3 clock
01: System clock (SYSCLK) selected as I2C3 clock
10: HSI16 clock selected as I2C3 clock
11: reserved
Bits 15:13 I2C2SEL[1:0]: I2C2 clock source selection
These bits are set and cleared by software to select the I2C2 clock source.
00: PCLK selected as I2C2 clock
01: System clock (SYSCLK) selected as I2C2 clock
10: HSI16 clock selected as I2C2 clock
11: reserved
Bits 13:12 I2C1SEL[1:0]: I2C1 clock source selection
These bits are set and cleared by software to select the I2C1 clock source.
00: PCLK selected as I2C1 clock
01: System clock (SYSCLK) selected as I2C1 clock
10: HSI16 clock selected as I2C1 clock
11: reserved
Bits 11:10 LPUART1SEL[1:0]: LPUART1 clock source selection
These bits are set and cleared by software to select the LPUART1 clock source.
00: PCLK selected as LPUART1 clock
01: System clock (SYSCLK) selected as LPUART1 clock
10: HSI16 clock selected as LPUART1 clock
11: LSE clock selected as LPUART1 clock
244/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
Bits 9:8 UART5SEL[1:0]: UART5 clock source selection
These bits are set and cleared by software to select the UART5 clock source.
00: PCLK selected as UART5 clock
01: System clock (SYSCLK) selected as UART5 clock
10: HSI16 clock selected as UART5 clock
11: LSE clock selected as UART5 clock
Bits 7:6 UART4SEL[1:0]: UART4 clock source selection
This bit is set and cleared by software to select the UART4 clock source.
00: PCLK selected as UART4 clock
01: System clock (SYSCLK) selected as UART4 clock
10: HSI16 clock selected as UART4 clock
11: LSE clock selected as UART4 clock
Bits 5:4 USART3SEL[1:0]: USART3 clock source selection
This bit is set and cleared by software to select the USART3 clock source.
00: PCLK selected as USART3 clock
01: System clock (SYSCLK) selected as USART3 clock
10: HSI16 clock selected as USART3 clock
11: LSE clock selected as USART3 clock
Bits 3:2 USART2SEL[1:0]: USART2 clock source selection
This bit is set and cleared by software to select the USART2 clock source.
00: PCLK selected as USART2 clock
01: System clock (SYSCLK) selected as USART2 clock
10: HSI16 clock selected as USART2 clock
11: LSE clock selected as USART2 clock
Bits 1:0 USART1SEL[1:0]: USART1 clock source selection
This bit is set and cleared by software to select the USART1 clock source.
00: PCLK selected as USART1 clock
01: System clock (SYSCLK) selected as USART1 clock
10: HSI16 clock selected as USART1 clock
11: LSE clock selected as USART1 clock
DocID024597 Rev 3
245/1693
253
Reset and clock control (RCC)
6.4.29
RM0351
Backup domain control register (RCC_BDCR)
Address offset: 0x90
Reset value: 0x0000 0000, reset by Backup domain Reset, except LSCOSEL, LSCOEN
and BDRST which are reset only by Backup domain power-on reset.
Access: 0 ≤wait state ≤3, word, half-word and byte access
Wait states are inserted in case of successive accesses to this register.
Note:
The bits of the Backup domain control register (RCC_BDCR) are outside of the VCORE
domain. As a result, after Reset, these bits are write-protected and the DBP bit in the
Section 5.4.1: Power control register 1 (PWR_CR1) has to be set before these can be
modified. Refer to Section 5.1.5: Battery backup domain on page 136 for further
information. These bits (except LSCOSEL, LSCOEN and BDRST) are only reset after a
Backup domain Reset (see Section 6.1.3: Backup domain reset). Any internal or external
Reset will not have any effect on these bits.
31
Res.
30
Res.
15
RTC
EN
14
Res.
rw
29
Res.
13
Res.
28
Res.
12
Res.
27
Res.
11
Res.
26
25
24
23
22
21
20
19
18
17
16
Res.
LSCO
SEL
LSCO
EN
Res.
Res.
Res.
Res.
Res.
Res.
Res.
BDRST
rw
rw
9
8
10
Res.
RTCSEL[1:0]
rw
rw
7
Res.
6
rw
Bits 31:26 Reserved, must be kept at reset value.
Bit 25 LSCOSEL: Low speed clock output selection
Set and cleared by software.
0: LSI clock selected
1: LSE clock selected
Bit 24 LSCOEN: Low speed clock output enable
Set and cleared by software.
0: Low speed clock output (LSCO) disable
1: Low speed clock output (LSCO) enable
Bits 23:17 Reserved, must be kept at reset value.
Bit 16 BDRST: Backup domain software reset
Set and cleared by software.
0: Reset not activated
1: Resets the entire Backup domain
Bit 15 RTCEN: RTC clock enable
Set and cleared by software.
0: RTC clock disabled
1: RTC clock enabled
Bits 14:10 Reserved, must be kept at reset value.
246/1693
5
LSE
LSE
CSSD CSSON
DocID024597 Rev 3
r
rw
4
3
LSEDRV[1:0]
rw
rw
2
1
0
LSE
BYP
LSE
RDY
LSEON
rw
r
rw
RM0351
Reset and clock control (RCC)
Bits 9:8 RTCSEL[1:0]: RTC clock source selection
Set by software to select the clock source for the RTC. Once the RTC clock source has been
selected, it cannot be changed anymore unless the Backup domain is reset, or unless a
failure is detected on LSE (LSECSSD is set). The BDRST bit can be used to reset them.
00: No clock
01: LSE oscillator clock used as RTC clock
10: LSI oscillator clock used as RTC clock
11: HSE oscillator clock divided by 32 used as RTC clock
Bit 7 Reserved, must be kept at reset value.
Bit 6 LSECSSD CSS on LSE failure Detection
Set by hardware to indicate when a failure has been detected by the Clock Security System
on the external 32 kHz oscillator (LSE).
0: No failure detected on LSE (32 kHz oscillator)
1: Failure detected on LSE (32 kHz oscillator)
Bit 5 LSECSSON CSS on LSE enable
Set by software to enable the Clock Security System on LSE (32 kHz oscillator).
LSECSSON must be enabled after the LSE oscillator is enabled (LSEON bit enabled) and
ready (LSERDY flag set by hardware), and after the RTCSEL bit is selected.
Once enabled this bit cannot be disabled, except after a LSE failure detection (LSECSSD
=1). In that case the software MUST disable the LSECSSON bit.
0: CSS on LSE (32 kHz external oscillator) OFF
1: CSS on LSE (32 kHz external oscillator) ON
Bits 4:3 LSEDRV[1:0] LSE oscillator drive capability
Set by software to modulate the LSE oscillator’s drive capability.
00: ‘Xtal mode’ lower driving capability
01: ‘Xtal mode’ medium low driving capability
10: ‘Xtal mode’ medium high driving capability
11: ‘Xtal mode’ higher driving capability
The oscillator is in Xtal mode when it is not in bypass mode.
Bit 2 LSEBYP: LSE oscillator bypass
Set and cleared by software to bypass oscillator in debug mode. This bit can be written only
when the external 32 kHz oscillator is disabled (LSEON=0 and LSERDY=0).
0: LSE oscillator not bypassed
1: LSE oscillator bypassed
Bit 1 LSERDY: LSE oscillator ready
Set and cleared by hardware to indicate when the external 32 kHz oscillator is stable. After
the LSEON bit is cleared, LSERDY goes low after 6 external low-speed oscillator clock
cycles.
0: LSE oscillator not ready
1: LSE oscillator ready
Bit 0 LSEON: LSE oscillator enable
Set and cleared by software.
0: LSE oscillator OFF
1: LSE oscillator ON
DocID024597 Rev 3
247/1693
253
Reset and clock control (RCC)
6.4.30
RM0351
Control/status register (RCC_CSR)
Address: 0x94
Reset value: 0x0C00 0600, reset by system Reset, except reset flags by power Reset only.
Access: 0 ≤ wait state ≤ 3, word, half-word and byte access
Wait states are inserted in case of successive accesses to this register.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
LPWR
RSTF
WWDG
RSTF
IWWG
RSTF
SFT
RSTF
BOR
RSTF
PIN
RSTF
OB L
RSTF
FW
RSTF
RMVF
Res.
Res.
Res.
Res.
Res.
Res.
Res.
r
r
r
r
r
r
r
r
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
LSI
RDY
LSION
r
rw
Res.
Res.
Res.
Res.
MSISRANGE[3:0]
rw
rw
rw
Res.
Res.
Res.
Res.
Res.
rw
Bit 31 LPWRRSTF: Low-power reset flag
Set by hardware when a reset occurs due to illegal Stop, Standby or Shutdown mode entry.
Cleared by writing to the RMVF bit.
0: No illegal mode reset occurred
1: Illegal mode reset occurred
Bit 30 WWDGRSTF: Window watchdog reset flag
Set by hardware when a window watchdog reset occurs.
Cleared by writing to the RMVF bit.
0: No window watchdog reset occurred
1: Window watchdog reset occurred
Bit 29 IWDGRSTF: Independent window watchdog reset flag
Set by hardware when an independent watchdog reset domain occurs.
Cleared by writing to the RMVF bit.
0: No independent watchdog reset occurred
1: Independent watchdog reset occurred
Bit 28 SFTRSTF: Software reset flag
Set by hardware when a software reset occurs.
Cleared by writing to the RMVF bit.
0: No software reset occurred
1: Software reset occurred
Bit 27 BORRSTF: BOR flag
Set by hardware when a BOR occurs.
Cleared by writing to the RMVF bit.
0: No BOR occurred
1: BOR occurred
Bit 26 PINRSTF: Pin reset flag
Set by hardware when a reset from the NRST pin occurs.
Cleared by writing to the RMVF bit.
0: No reset from NRST pin occurred
1: Reset from NRST pin occurred
248/1693
DocID024597 Rev 3
RM0351
Reset and clock control (RCC)
Bit 25 OBLRSTF: Option byte loader reset flag
Set by hardware when a reset from the Option Byte loading occurs.
Cleared by writing to the RMVF bit.
0: No reset from Option Byte loading occurred
1: Reset from Option Byte loading occurred
Bit 24 FWRSTF: Firewall reset flag
Set by hardware when a reset from the firewall occurs.
Cleared by writing to the RMVF bit.
0: No reset from the firewall occurred
1: Reset from the firewall occurred
Bit 23 RMVF: Remove reset flag
Set by software to clear the reset flags.
0: No effect
1: Clear the reset flags
Bits 22:12 Reserved, must be kept at reset value.
Bits 11:8 MSISRANGE[3:1] MSI range after Standby mode
Set by software to chose the MSI frequency at startup. This range is used after exiting
Standby mode until MSIRGSEL is set. After a pad or a power-on reset, the range is always
4 MHz. MSISRANGE can be written only when MSIRGSEL = ‘1’.
0100: Range 4 around 1 MHz
0101: Range 5 around 2 MHz
0101: Range 6 around 4 MHz (reset value)
0111: Range 7 around 8 MHz
others: reserved
Note:
Changing the MSISRANGE does not change the current MSI frequency.
Bits 7:2 Reserved, must be kept at reset value.
Bit 1 LSIRDY: LSI oscillator ready
Set and cleared by hardware to indicate when the LSI oscillator is stable. After the LSION bit
is cleared, LSIRDY goes low after 3 LSI oscillator clock cycles. This bit can be set even if
LSION = 0 if the LSI is requested by the Clock Security System on LSE, by the Independent
Watchdog or by the RTC.
0: LSI oscillator not ready
1: LSI oscillator ready
Bit 0 LSION: LSI oscillator enable
Set and cleared by software.
0: LSI oscillator OFF
1: LSI oscillator ON
DocID024597 Rev 3
249/1693
253
0x20
RCC_CICR
250/1693
DocID024597 Rev 3
PLLSAI1RDYF.
PLLRDYF
HSERDYF
HSIRDYF
MSIRDYF
LSERDYF
LSIRDYF
0
0
0
0
0
0
0
0
0
0
PLLRDYC
HSERDYC
HSIRDYC
MSIRDYC
LSERDYC
LSIRDYC
Reset value
PLLSAI1RDYC
Reset value
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
HSERDYIE
HSIRDYIE
MSIRDYIE
LSERDYIE
LSIRDYIE
0
Res.
x
0
1
1
MSITRIM[7:0]
x
0
0
0
x
x
HPRE[3:0]
0
0
PLLM
[2:0]
MSIPLLEN
MSIRDY
MSION
0
MSIRGSEL
MSIRANGE
[3:0]
x
Res.
HSION
0
Res.
0
Res.
0
PLLRDYIE
0
0
0
PLLSAI1RDYIE
PLLN
[6:0]
Res.
0
Res.
HSIRDY
HSIKERON
HSIASFS
Res.
Res.
Res.
0
Res.
0
Res.
HSEON
Res.
HSEBYP
HSERDY
0
PLLSAI2RDYIE
0
CSSF
0
PLLSAI2RDYF
PPRE1
[2:0]
0
CSSC
PLLSAI2N
[6:0]
0
Res.
PLLSAI1N
[6:0]
0
LSECSSIE.
0
0
PLLSAI2RDYC
1
0
Res.
0
LSECSSF
1
Res.
0
Res.
PPRE2
[2:0]
0
Res.
0
0
Res.
1
Res.
0
0
Res.
0
0
Res.
0
Res.
0
Res.
Res.
0
Res.
0
Res.
Res.
STOPWUCK
HSICAL[7:0]
0
LSECSSC
Reset value
Res.
0
Res.
0
Res.
x
Res.
PLLPEN
PLLSAI1PEN
0
Res.
PLLSAI2PEN
Res.
Res.
0
Res.
0
Res.
Res.
0
Res.
Res.
Res.
CSSON
Res.
Res.
Res.
Res.
0
Res.
Res.
PLLSAI2P
x
Res.
PLLP
PLLSAI1P
0
Res.
Res.
Res.
x
Res.
Res.
0
Res.
Res.
0
0
Res.
x
Res.
Res.
Res.
Res.
Res.
PLLON
0
Res.
Res.
PLLQEN
0
Res.
0
x
Res.
PLL
SAI1Q
[1:0]
0
PLLSAI1QEN
0
Res.
Res.
PLLQ
[1:0]
Res.
0
0
x
Res.
0
0
Res.
PLL
SAI2R
[1:0]
x
Res.
0
Res.
HSITRIM[4:0]
Res.
0
Res.
PLL
SAI1R
[1:0]
Res.
0
x
Res.
MCOSEL
[2:0]
Res.
0
Res.
0
Res.
PLLRDY
0
Res.
PLLR
[1:0]
PLLREN
PLLSAI1ON
0
Res.
0
PLLSAI1REN
PLLSAI2ON
PLLSAI1RDY
PLLSAI2RDY
Res.
Res.
0
Res.
0
PLLSAI2REN
Res.
Res.
Res.
Res.
0
Res.
0
Res.
0
0
Res.
Res.
0
0
Res.
Reset value
Res.
Reset value
Res.
Reset value
0
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
MCOPRE
[2:0]
Res.
RCC_CFGR
Res.
Res.
Res.
0
Res.
Res.
Res.
1
Res.
RCC_CIFR
Res.
Reset value
Res.
0x1C
RCC_CIER
Res.
0x14
RCC_
PLLSAI2
CFGR
0
0
Res.
0x10
RCC_
PLLSAI1
CFGR
Res.
Reset value
Res.
0x18
RCC_PLL
CFGR
Res.
0x0C
Res.
Reset value
Res.
0x08
RCC_ICSCR
Res.
0x00
RCC_CR
Res.
0x04
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res.
Offset
Res.
6.4.31
Res.
Reset and clock control (RCC)
RM0351
RCC register map
The following table gives the RCC register map and the reset values.
Table 31. RCC register map and reset values
0
0
1
1
MSICAL[7:0]
x
SWS
[1:0]
SW
[1:0]
0
0
0
0
x
x
PLL
SRC
[1:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x58
RCC_
APB1ENR1
Reset value
0
0
0
0
I2C1EN
UART5EN
UART4EN
USART3EN
USART2EN
0
0
0
0
0
0
0
DocID024597 Rev 3
0
0
0
TIM5EN
TIM4EN
TIM3EN
TIM2EN
GPIOFEN
GPIOEEN
GPIODEN
GPIOCEN
GPIOBEN
GPIOAEN
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
FMCEN
DMA1EN
1
TIM7RST
TIM6RST
TIM5RST
TIM4RST
TIM3RST
TIM2RST
0
0
0
0
0
Res.
Res.
SWPMI1RST
Res.
LPUART1RST
Res.
Res.
Res.
0
0
0
SYSCFGRST
Res.
Res.
LCDRST
0
LPTIM2RST
Res.
Res.
Res.
Res.
Res.
GPIOHRST
GPIOGRST
GPIOFRST
GPIOERST
GPIODRST
GPIOCRST
GPIOBRST
GPIOARST
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
FMCRST
Res.
Res.
Res.
Res.
0
Res.
QSPIRST
Res.
Res.
Res.
OTGFSRST
Res.
DMA1RST
Res.
Res.
Res.
Res.
Res.
Res.
FLASHRST.
Res.
Res.
CRCRST.
Res.
Res.
Res.
Res.
TSCRST.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DMA2RST
0
DMA2EN
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
TIM6EN
GPIOHEN
GPIOGEN
0
Res.
FLASHEN
Res.
SDMMC1RST
Res.
Res.
0
TIM7EN
0
Res.
Reset value
Res.
0
Res.
Res.
Res.
Res.
Reset value
QSPIEN
Res.
Res.
Res.
ADCRST.
Res.
Res.
Res.
Res.
Res.
AESRST.
Res.
0
Res.
0
Res.
0
Res.
0
LCDEN
TIM1RST
0
CRCEN
Res.
Res.
SPI2RST
Res.
Res.
SPI3RST
Res.
Res.
Res.
RNGRST.
0
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
SPI1RST
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
WWDGEN
OTGFSEN
0
Res.
0
Res.
TIM8RST
0
Res.
Res.
0
ADCEN
Res.
USART1RST
0
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
0
Res.
0
Res.
Reset value
Res.
USART2RST
0
Res.
USART3RST
0
Res.
UART4RST
0
SP3EN
TIM15RST
0
TSCEN.
UART5RST
0
SPI2EN
TIM16RST
0
Res.
I2C1RST
0
AESEN
Res.
TIM17RST
Res.
0
Res.
Res.
Res.
I2C2RST
0
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Reset value
RNGEN
Res.
Res.
SAI1RST
Res.
I2C3RST
Res.
CAN1RST
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
Res.
Res.
Res.
SAI2RST
0
Res.
Res.
DFSDMRST
Res.
0
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PWRRST
Res.
Res.
DAC1RST
Res.
Reset value
Res.
I2C2EN
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
I2C3EN
0
Res.
Res.
Res.
Reset value
Res.
CAN1EN
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
LPTIM1RST
OPAMPRST
0
Res.
Res.
Res.
Res.
0
Res.
RCC_AHB3
ENR
0
Res.
0x50
RCC_AHB2
ENR
PWREN
0x4C
RCC_AHB1
ENR
DAC1EN
0x48
RCC_
APB2RSTR
Res.
RCC_
0x3C APB1RSTR2
Res.
Reset value
Res.
RCC_
0x38 APB1RSTR1
Res.
0x40
RCC_
AHB3RSTR
Res.
0x30
RCC_
AHB2RSTR
Res.
0x2C
RCC_
AHB1RSTR
Res.
0x28
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
LPTIM1EN
Offset
OPAMPEN
RM0351
Reset and clock control (RCC)
Table 31. RCC register map and reset values (continued)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
251/1693
253
0x88
RCC_CCIPR
Reset value
0
0
252/1693
0
0
0
0
0
Reset value
1
0
0
1
1
0
0
0
1
1
1
0
0
0
DocID024597 Rev 3
0
1
0
0
SDMMC1SMEN
1
1
1
0
0
0
0
0
0
0
0
0
0
TIM2SMEN
SWPMI1SMEN
TIM3SMEN
Res.
1
1
1
Res.
1
LPUART1SMEN
TIM5SMEN
1
TIM4SMEN
TIM6SMEN
1
Res.
Res.
Res.
Res.
Res.
GPIOASMEN
Res.
GPIOBSMEN
1
1
1
1
Res.
GPIOESMEN
GPIODSMEN
1
FMCSMEN
GPIOFSMEN
1
GPIOCSMEN
GPIOGSMEN
1
1
0
Res.
1
SYSCFGSMEN
1
Res.
Res.
Res.
Res.
DMA2SMEN
DMA1SMEN
Res.
Res.
Res.
Res.
Res.
0
SYSCFGEN
Res.
0
Res.
Res.
Res.
Res.
Res.
FWEN
0
USART1SEL
USART2SEL
USART3SEL
Reset value
TIM7SMEN
1
LPTIM2SMEN
Res.
Res.
Res.
Reset value
Res.
Res.
GPIOHSMEN
FLASHSMEN
Res.
Res.
1
Res.
QSPISMEN
1
Res.
Res.
CRCSMEN
1
Res.
Res.
SDMMC1EN
Res.
Res.
TIM1EN
Res.
1
Res.
Res.
Reset value
UART4SEL
UART5SEL
1
SRAM1SMEN
1
SRAM2SMEN
Res.
SPI1EN
0
Res.
Res.
TIM8EN
0
LCDSMEN
Res.
USART1EN
0
Res.
Res.
TIM15EN
TSCSMEN.
Res.
TIM16EN
Res.
0
Res.
Res.
Res.
Res.
Res.
OTGFSSMEN
1
WWDGSMEN
Res.
1
Res.
Res.
ADCFSSMEN
Res.
1
Res.
Res.
Res.
AESSMEN
Res.
TIM17EN
Res.
Res.
0
Res.
TIM1SMEN
1
LPUART1SEL
SPI1SMEN
I2C1SEL
1
Res.
SPI2SMEN
1
Res.
Res.
1
Res.
SP3SMEN
1
Res.
Res.
Res.
RNGSMEN
Res.
0
TIM8SMEN
Res.
Res.
Res.
Res.
SAI1EN
Res.
Res.
SAI2EN
Res.
Res.
DFSDMEN
Res.
Res.
0
USART1SMEN
Res.
Res.
Res.
Reset value
I2C2SEL
USART2SMEN
1
Res.
USART3SMEN
1
Res.
UART4SMEN
1
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
TIM15SMEN
UART5SMEN
1
Res.
Res.
Reset value
I2C3SEL
TIM16SMEN
0
TIM17SMEN
LPTIM1SEL
I2C1SMEN
1
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
I2C2SMEN
1
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
I2C3SMEN
Res.
CAN1SMEN
Res.
1
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
LPTIM2SEL
SAI1SMEN
Res.
1
SAI2SMEN
SAI1SEL
Res.
Res.
Reset value
Res.
DFSDMSMEN
Res.
RCC_
APB1SM
ENR2
Res.
1
Res.
1
Res.
PWRSMEN
1
Res.
DAC1SMEN
1
SAI2SEL
CLK48SEL
RCC_
0x80 APB2SMENR
Res.
RCC_
AHB3SMENR
0x70
Res.
RCC_
0x6C AHB2SMENR
Res.
RCC_
AHB1SMENR
0x68
Res.
RCC_
APB2ENR
Res.
0
LPUART1EN
Res.
SWPMI1EN
Res.
Res.
LPTIM2EN
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
RCC_
APB1ENR2
ADCSEL
LPTIM1SMEN
OPAMPSMEN
0x7C
Reset value
Res.
0x78
RCC_
APB1SM
ENR1
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res.
Offset
Res.
0x60
DFSDMSEL
0x5C
SWPMI1SEL
Reset and clock control (RCC)
RM0351
Table 31. RCC register map and reset values (continued)
0
0
1
1
1
1
1
0
0x94
PINRSTF
OBLRSTF
FIREWALLRSTF
RMVF
0
0
0
0
0
0
0
0
0
DocID024597 Rev 3
Res.
0
1
0
MSIS
RANGE[3:0]
1
LSECSSD
LSECSSON
0
0
0
0
Res.
Res.
Res.
Res.
0
LSEBYP
LSERDY
LSEON
0
0
0
Res.
LSION
LSE
DRV
[1:0]
LSIRDY
0
Res.
RTC
SEL
[1:0]
Res.
Res.
Res.
Res.
Res.
Res.
RTCEN
0
Res.
BDRST
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
0
Res.
LSCOEN
Res.
Res.
Res.
Res.
Res.
LSCOSEL
Reset value
Res.
BORRSTF
Reset value
SFTRSTF
RCC_CSR
Res.
RCC_BDCR
IWDGRSTF
0x90
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
LPWRRSTF
Offset
WWDGRSTF
RM0351
Reset and clock control (RCC)
Table 31. RCC register map and reset values (continued)
0
0
253/1693
253
General-purpose I/Os (GPIO)
RM0351
7
General-purpose I/Os (GPIO)
7.1
Introduction
Each general-purpose I/O port has four 32-bit configuration registers (GPIOx_MODER,
GPIOx_OTYPER, GPIOx_OSPEEDR and GPIOx_PUPDR), two 32-bit data registers
(GPIOx_IDR and GPIOx_ODR) and a 32-bit set/reset register (GPIOx_BSRR). In addition
all GPIOs have a 32-bit locking register (GPIOx_LCKR) and two 32-bit alternate function
selection registers (GPIOx_AFRH and GPIOx_AFRL).
7.2
7.3
GPIO main features
•
Output states: push-pull or open drain + pull-up/down
•
Output data from output data register (GPIOx_ODR) or peripheral (alternate function
output)
•
Speed selection for each I/O
•
Input states: floating, pull-up/down, analog
•
Input data to input data register (GPIOx_IDR) or peripheral (alternate function input)
•
Bit set and reset register (GPIOx_ BSRR) for bitwise write access to GPIOx_ODR
•
Locking mechanism (GPIOx_LCKR) provided to freeze the I/O port configurations
•
Analog function
•
Alternate function selection registers
•
Fast toggle capable of changing every two clock cycles
•
Highly flexible pin multiplexing allows the use of I/O pins as GPIOs or as one of several
peripheral functions
GPIO functional description
Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each
port bit of the general-purpose I/O (GPIO) ports can be individually configured by software in
several modes:
•
Input floating
•
Input pull-up
•
Input-pull-down
•
Analog
•
Output open-drain with pull-up or pull-down capability
•
Output push-pull with pull-up or pull-down capability
•
Alternate function push-pull with pull-up or pull-down capability
•
Alternate function open-drain with pull-up or pull-down capability
Each I/O port bit is freely programmable, however the I/O port registers have to be
accessed as 32-bit words, half-words or bytes. The purpose of the GPIOx_BSRR and
GPIOx_BRR registers is to allow atomic read/modify accesses to any of the GPIOx_ODR
registers. In this way, there is no risk of an IRQ occurring between the read and the modify
access.
254/1693
DocID024597 Rev 3
RM0351
General-purpose I/Os (GPIO)
Figure 17 and Figure 18 show the basic structures of a standard and a 5 V tolerant I/O port
bit, respectively. Table 32 gives the possible port bit configurations.
Figure 17. Basic structure of an I/O port bit
$QDORJ
7RRQFKLS
SHULSKHUDO
$OWHUQDWHIXQFWLRQLQSXW
,QSXWGDWDUHJLVWHU
RQRII
9'',2[9'',2[
WULJJHU
RQRII
,2SLQ
2XWSXWGULYHU
9'',2[
RQRII
3026
3URWHFWLRQ
GLRGH
3XOO
GRZQ
966
2XWSXW
FRQWURO
966
1026
5HDGZULWH
)URPRQFKLS
SHULSKHUDO
3URWHFWLRQ
GLRGH
3XOO
XS
,QSXWGULYHU
2XWSXWGDWDUHJLVWHU
:ULWH
%LWVHWUHVHWUHJLVWHUV
5HDG
966
$OWHUQDWHIXQFWLRQRXWSXW
3XVKSXOO
RSHQGUDLQRU
GLVDEOHG
$QDORJ
069
Figure 18. Basic structure of a five-volt tolerant I/O port bit
7RRQFKLS
SHULSKHUDO
,QSXWGDWDUHJLVWHU
$OWHUQDWHIXQFWLRQLQSXW
5HDGZULWH
)URPRQFKLS
SHULSKHUDO
2XWSXWGDWDUHJLVWHU
:ULWH
%LWVHWUHVHWUHJLVWHUV
5HDG
$OWHUQDWHIXQFWLRQRXWSXW
RQRII
9'',2[ 9''B)7
77/6FKPLWW
WULJJHU
RQRII
3XOO
XS
3URWHFWLRQ
GLRGH
,QSXWGULYHU
,2SLQ
2XWSXWGULYHU
9'',2[
RQRII
3026
2XWSXW
FRQWURO
3XOO
GRZQ
966
3URWHFWLRQ
GLRGH
966
1026
966
3XVKSXOO
RSHQGUDLQRU
GLVDEOHG
DLG
1. VDD_FT is a potential specific to five-volt tolerant I/Os and different from VDD.
DocID024597 Rev 3
255/1693
272
General-purpose I/Os (GPIO)
RM0351
Table 32. Port bit configuration table(1)
MODE(i)
[1:0]
01
10
00
11
OTYPER(i)
OSPEED(i)
[1:0]
PUPD(i)
[1:0]
I/O configuration
0
0
0
GP output
PP
0
0
1
GP output
PP + PU
0
1
0
GP output
PP + PD
1
1
Reserved
0
0
GP output
OD
1
0
1
GP output
OD + PU
1
1
0
GP output
OD + PD
1
1
1
Reserved (GP output OD)
0
0
0
AF
PP
0
0
1
AF
PP + PU
0
1
0
AF
PP + PD
1
1
Reserved
0
0
AF
OD
1
0
1
AF
OD + PU
1
1
0
AF
OD + PD
1
1
1
Reserved
0
SPEED
[1:0]
1
0
SPEED
[1:0]
1
x
x
x
0
0
Input
Floating
x
x
x
0
1
Input
PU
x
x
x
1
0
Input
PD
x
x
x
1
1
Reserved (input floating)
x
x
x
0
0
Input/output
x
x
x
0
1
x
x
x
1
0
x
x
x
1
1
Analog
Reserved
1. GP = general-purpose, PP = push-pull, PU = pull-up, PD = pull-down, OD = open-drain, AF = alternate
function.
256/1693
DocID024597 Rev 3
RM0351
7.3.1
General-purpose I/Os (GPIO)
General-purpose I/O (GPIO)
During and just after reset, the alternate functions are not active and most of the I/O ports
are configured in analog mode.
The debug pins are in AF pull-up/pull-down after reset:
•
PA15: JTDI in pull-up
•
PA14: JTCK/SWCLK in pull-down
•
PA13: JTMS/SWDAT in pull-up
•
PB4: NJTRST in pull-up
•
PB3: JTDO in floating stateno pull-up/pull-down
When the pin is configured as output, the value written to the output data register
(GPIOx_ODR) is output on the I/O pin. It is possible to use the output driver in push-pull
mode or open-drain mode (only the low level is driven, high level is HI-Z).
The input data register (GPIOx_IDR) captures the data present on the I/O pin at every AHB
clock cycle.
All GPIO pins have weak internal pull-up and pull-down resistors, which can be activated or
not depending on the value in the GPIOx_PUPDR register.
7.3.2
I/O pin alternate function multiplexer and mapping
The device I/O pins are connected to on-board peripherals/modules through a multiplexer
that allows only one peripheral alternate function (AF) connected to an I/O pin at a time. In
this way, there can be no conflict between peripherals available on the same I/O pin.
Each I/O pin has a multiplexer with up to sixteen alternate function inputs (AF0 to AF15) that
can be configured through the GPIOx_AFRL (for pin 0 to 7) and GPIOx_AFRH (for pin 8 to
15) registers:
•
After reset the multiplexer selection is alternate function 0 (AF0). The I/Os are
configured in alternate function mode through GPIOx_MODER register.
•
The specific alternate function assignments for each pin are detailed in the device
datasheet.
In addition to this flexible I/O multiplexing architecture, each peripheral has alternate
functions mapped onto different I/O pins to optimize the number of peripherals available in
smaller packages.
To use an I/O in a given configuration, the user has to proceed as follows:
•
Debug function: after each device reset these pins are assigned as alternate function
pins immediately usable by the debugger host
•
GPIO: configure the desired I/O as output, input or analog in the GPIOx_MODER
register.
•
Peripheral alternate function:
•
–
Connect the I/O to the desired AFx in one of the GPIOx_AFRL or GPIOx_AFRH
register.
–
Select the type, pull-up/pull-down and output speed via the GPIOx_OTYPER,
GPIOx_PUPDR and GPIOx_OSPEEDER registers, respectively.
–
Configure the desired I/O as an alternate function in the GPIOx_MODER register.
Additional functions:
DocID024597 Rev 3
257/1693
272
General-purpose I/Os (GPIO)
RM0351
–
For the ADC, DAC, OPAMP, and COMP, configure the desired I/O in analog mode
in the GPIOx_MODER register and configure the required function in the ADC,
DAC, OPAMP, and COMP registers. For the ADC, it is necessary to configure the
GPIOx_ASCR register.
–
For the additional functions like RTC, WKUPx and oscillators, configure the
required function in the related RTC, PWR and RCC registers. These functions
have priority over the configuration in the standard GPIO registers.
Please refer to the “Alternate function mapping” table in the device datasheet for the
detailed mapping of the alternate function I/O pins.
7.3.3
I/O port control registers
Each of the GPIO ports has four 32-bit memory-mapped control registers (GPIOx_MODER,
GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR) to configure up to 16 I/Os. The
GPIOx_MODER register is used to select the I/O mode (input, output, AF, analog). The
GPIOx_OTYPER and GPIOx_OSPEEDR registers are used to select the output type (pushpull or open-drain) and speed. The GPIOx_PUPDR register is used to select the pullup/pull-down whatever the I/O direction.
7.3.4
I/O port data registers
Each GPIO has two 16-bit memory-mapped data registers: input and output data registers
(GPIOx_IDR and GPIOx_ODR). GPIOx_ODR stores the data to be output, it is read/write
accessible. The data input through the I/O are stored into the input data register
(GPIOx_IDR), a read-only register.
See Section 7.4.5: GPIO port input data register (GPIOx_IDR) (x = A..H) and Section 7.4.6:
GPIO port output data register (GPIOx_ODR) (x = A..H) for the register descriptions.
7.3.5
I/O data bitwise handling
The bit set reset register (GPIOx_BSRR) is a 32-bit register which allows the application to
set and reset each individual bit in the output data register (GPIOx_ODR). The bit set reset
register has twice the size of GPIOx_ODR.
To each bit in GPIOx_ODR, correspond two control bits in GPIOx_BSRR: BS(i) and BR(i).
When written to 1, bit BS(i) sets the corresponding ODR(i) bit. When written to 1, bit BR(i)
resets the ODR(i) corresponding bit.
Writing any bit to 0 in GPIOx_BSRR does not have any effect on the corresponding bit in
GPIOx_ODR. If there is an attempt to both set and reset a bit in GPIOx_BSRR, the set
action takes priority.
Using the GPIOx_BSRR register to change the values of individual bits in GPIOx_ODR is a
“one-shot” effect that does not lock the GPIOx_ODR bits. The GPIOx_ODR bits can always
be accessed directly. The GPIOx_BSRR register provides a way of performing atomic
bitwise handling.
There is no need for the software to disable interrupts when programming the GPIOx_ODR
at bit level: it is possible to modify one or more bits in a single atomic AHB write access.
258/1693
DocID024597 Rev 3
RM0351
7.3.6
General-purpose I/Os (GPIO)
GPIO locking mechanism
It is possible to freeze the GPIO control registers by applying a specific write sequence to
the GPIOx_LCKR register. The frozen registers are GPIOx_MODER, GPIOx_OTYPER,
GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.
To write the GPIOx_LCKR register, a specific write / read sequence has to be applied. When
the right LOCK sequence is applied to bit 16 in this register, the value of LCKR[15:0] is used
to lock the configuration of the I/Os (during the write sequence the LCKR[15:0] value must
be the same). When the LOCK sequence has been applied to a port bit, the value of the port
bit can no longer be modified until the next MCU reset or peripheral reset. Each
GPIOx_LCKR bit freezes the corresponding bit in the control registers (GPIOx_MODER,
GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.
The LOCK sequence (refer to Section 7.4.8: GPIO port configuration lock register
(GPIOx_LCKR) (x = A..H)) can only be performed using a word (32-bit long) access to the
GPIOx_LCKR register due to the fact that GPIOx_LCKR bit 16 has to be set at the same
time as the [15:0] bits.
For more details please refer to LCKR register description in Section 7.4.8: GPIO port
configuration lock register (GPIOx_LCKR) (x = A..H).
7.3.7
I/O alternate function input/output
Two registers are provided to select one of the alternate function inputs/outputs available for
each I/O. With these registers, the user can connect an alternate function to some other pin
as required by the application.
This means that a number of possible peripheral functions are multiplexed on each GPIO
using the GPIOx_AFRL and GPIOx_AFRH alternate function registers. The application can
thus select any one of the possible functions for each I/O. The AF selection signal being
common to the alternate function input and alternate function output, a single channel is
selected for the alternate function input/output of a given I/O.
To know which functions are multiplexed on each GPIO pin, refer to the device datasheet.
7.3.8
External interrupt/wakeup lines
All ports have external interrupt capability. To use external interrupt lines, the port must be
configured in input mode.Section 12: Extended interrupts and events controller (EXTI) and
to Section 12.3.2: Wakeup event management.
7.3.9
Input configuration
When the I/O port is programmed as input:
•
The output buffer is disabled
•
The Schmitt trigger input is activated
•
The pull-up and pull-down resistors are activated depending on the value in the
GPIOx_PUPDR register
•
The data present on the I/O pin are sampled into the input data register every AHB
clock cycle
•
A read access to the input data register provides the I/O state
Figure 19 shows the input configuration of the I/O port bit.
DocID024597 Rev 3
259/1693
272
General-purpose I/Os (GPIO)
RM0351
,QSXWGDWDUHJLVWHU
Figure 19. Input floating/pull up/pull down configurations
5HDGZULWH
2XWSXWGDWDUHJLVWHU
:ULWH
%LWVHWUHVHWUHJLVWHUV
5HDG
RQ
77/6FKPLWW
WULJJHU
LQSXWGULYHU
9'',2[ 9'',2[
RQRII
SURWHFWLRQ
GLRGH
SXOO
XS
,2SLQ
RQRII
RXWSXWGULYHU
SXOO
GRZQ
966
SURWHFWLRQ
GLRGH
966
069
7.3.10
Output configuration
When the I/O port is programmed as output:
•
The output buffer is enabled:
–
Open drain mode: A “0” in the Output register activates the N-MOS whereas a “1”
in the Output register leaves the port in Hi-Z (the P-MOS is never activated)
–
Push-pull mode: A “0” in the Output register activates the N-MOS whereas a “1” in
the Output register activates the P-MOS
•
The Schmitt trigger input is activated
•
The pull-up and pull-down resistors are activated depending on the value in the
GPIOx_PUPDR register
•
The data present on the I/O pin are sampled into the input data register every AHB
clock cycle
•
A read access to the input data register gets the I/O state
•
A read access to the output data register gets the last written value
Figure 20 shows the output configuration of the I/O port bit.
260/1693
DocID024597 Rev 3
RM0351
General-purpose I/Os (GPIO)
,QSXWGDWDUHJLVWHU
Figure 20. Output configuration
5HDGZULWH
2XWSXWGDWDUHJLVWHU
:ULWH
%LWVHWUHVHWUHJLVWHUV
5HDG
RQ
9'',2[ 9'',2[
77/6FKPLWW
WULJJHU
RQRII
,QSXWGULYHU
SURWHFWLRQ
GLRGH
SXOO
XS
2XWSXWGULYHU
9'',2[
,2SLQ
RQRII
3026
2XWSXW
FRQWURO
SXOO
GRZQ
966
1026
3XVKSXOORU
966
2SHQGUDLQ
SURWHFWLRQ
GLRGH
966
069
7.3.11
Alternate function configuration
When the I/O port is programmed as alternate function:
Note:
•
The output buffer can be configured in open-drain or push-pull mode
•
The output buffer is driven by the signals coming from the peripheral (transmitter
enable and data)
•
The Schmitt trigger input is activated
•
The weak pull-up and pull-down resistors are activated or not depending on the value
in the GPIOx_PUPDR register
•
The data present on the I/O pin are sampled into the input data register every AHB
clock cycle
•
A read access to the input data register gets the I/O state
The alternate function configuration described above is not applied when the selected
alternate function is a LCD function or a SWPMI_IO. In this case, the I/O, programmed as
an alternate function output, is configured as described in the analog configuration.
Figure 21 shows the Alternate function configuration of the I/O port bit.
DocID024597 Rev 3
261/1693
272
General-purpose I/Os (GPIO)
RM0351
Figure 21. Alternate function configuration
$OWHUQDWH IXQFWLRQ LQSXW
%LW VHWUHVHW UHJLVWHUV
5HDG
RQRII
SURWHFWLRQ
GLRGH
3XOO
XS
,QSXW GULYHU
5HDGZULWH
)URP RQFKLS
SHULSKHUDO
9'',2[9'',2[
77/ 6FKPLWW
WULJJHU
2XWSXW GDWD UHJLVWHU
:ULWH
RQ
,QSXW GDWD UHJLVWHU
7R RQFKLS
SHULSKHUDO
,2 SLQ
2XWSXW GULYHU
RQRII
9''
3026
2XWSXW
FRQWURO
SURWHFWLRQ
GLRGH
3XOO
GRZQ
966
966
1026
966
SXVKSXOO RU
RSHQGUDLQ
$OWHUQDWH IXQFWLRQ RXWSXW
06Y9
7.3.12
Analog configuration
When the I/O port is programmed as analog configuration:
•
The output buffer is disabled
•
The Schmitt trigger input is deactivated, providing zero consumption for every analog
value of the I/O pin. The output of the Schmitt trigger is forced to a constant value (0).
•
The weak pull-up and pull-down resistors are disabled by hardware
•
Read access to the input data register gets the value “0”
Figure 22 shows the high-impedance, analog-input configuration of the I/O port bit.
Figure 22. High impedance-analog configuration
,QSXWGDWDUHJLVWHU
$QDORJ
7RRQFKLS
SHULSKHUDO
5HDGZULWH
)URPRQFKLS
SHULSKHUDO
262/1693
2XWSXWGDWDUHJLVWHU
:ULWH
%LWVHWUHVHWUHJLVWHUV
5HDG
RII
9'',2[
77/6FKPLWW
WULJJHU
SURWHFWLRQ
GLRGH
,QSXWGULYHU
,2SLQ
SURWHFWLRQ
GLRGH
966
$QDORJ
069
DocID024597 Rev 3
RM0351
7.3.13
General-purpose I/Os (GPIO)
Using the HSE or LSE oscillator pins as GPIOs
When the HSE or LSE oscillator is switched OFF (default state after reset), the related
oscillator pins can be used as normal GPIOs.
When the HSE or LSE oscillator is switched ON (by setting the HSEON or LSEON bit in the
RCC_CSR register) the oscillator takes control of its associated pins and the GPIO
configuration of these pins has no effect.
When the oscillator is configured in a user external clock mode, only the pin is reserved for
clock input and the OSC_OUT or OSC32_OUT pin can still be used as normal GPIO.
7.3.14
Using the GPIO pins in the RTC supply domain
The PC13/PC14/PC15 GPIO functionality is lost when the core supply domain is powered
off (when the device enters Standby mode). In this case, if their GPIO configuration is not
bypassed by the RTC configuration, these pins are set in an analog input mode.
For details about I/O control by the RTC, refer to Section 34.3: RTC functional description
on page 1065.
DocID024597 Rev 3
263/1693
272
General-purpose I/Os (GPIO)
7.4
RM0351
GPIO registers
This section gives a detailed description of the GPIO registers.
For a summary of register bits, register address offsets and reset values, refer to Table 33.
The peripheral registers can be written in word, half word or byte mode.
7.4.1
GPIO port mode register (GPIOx_MODER) (x =A..H)
Address offset:0x00
Reset values:
31
30
•
0xABFF FFFF for port A
•
0xFFFF FEBF for port B
•
0xFFFF FFFF for ports C..G,
•
0x0000 000F for port H
29
MODE15[1:0]
28
MODE14[1:0]
27
26
MODE13[1:0]
25
24
MODE12[1:0]
23
22
MODE11[1:0]
21
20
MODE10[1:0]
19
18
17
16
MODE9[1:0]
MODE8[1:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
MODE7[1:0]
MODE6[1:0]
MODE5[1:0]
MODE4[1:0]
MODE3[1:0]
MODE2[1:0]
MODE1[1:0]
MODE0[1:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 2y+1:2y MODEy[1:0]: Port x configuration bits (y = 0..15)
These bits are written by software to configure the I/O mode.
00: Input mode
01: General purpose output mode
10: Alternate function mode
11: Analog mode (reset state)
7.4.2
GPIO port output type register (GPIOx_OTYPER) (x = A..H)
Address offset: 0x04
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
OT15
OT14
OT13
OT12
OT11
OT10
OT9
OT8
OT7
OT6
OT5
OT4
OT3
OT2
OT1
OT0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 OTy: Port x configuration bits (y = 0..15)
These bits are written by software to configure the I/O output type.
0: Output push-pull (reset state)
1: Output open-drain
264/1693
DocID024597 Rev 3
RM0351
General-purpose I/Os (GPIO)
7.4.3
GPIO port output speed register (GPIOx_OSPEEDR)
(x = A..H)
Address offset: 0x08
Reset value:
31
•
0x0C00 0000 for port A
•
0x0000 0000 for the other ports
30
29
OSPEED15
[1:0]
28
27
26
25
24
23
22
21
20
19
18
17
16
OSPEED14
[1:0]
OSPEED13
[1:0]
OSPEED12
[1:0]
OSPEED11
[1:0]
OSPEED10
[1:0]
OSPEED9
[1:0]
OSPEED8
[1:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
OSPEED7
[1:0]
OSPEED6
[1:0]
OSPEED5
[1:0]
OSPEED4
[1:0]
OSPEED3
[1:0]
OSPEED2
[1:0]
OSPEED1
[1:0]
OSPEED0
[1:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 2y+1:2y OSPEEDy[1:0]: Port x configuration bits (y = 0..15)
These bits are written by software to configure the I/O output speed.
00: Low speed
01: Medium speed
10: High speed
11: Very high speed
Note: Refer to the device datasheet for the frequency specifications and the power supply
and load conditions for each speed.
7.4.4
GPIO port pull-up/pull-down register (GPIOx_PUPDR)
(x = A..H)
Address offset: 0x0C
Reset values:
31
30
PUPD15[1:0]
rw
rw
15
14
•
0x1210 0000 for port A
•
0x6400 0000 for port B
•
0x0000 0000 for other ports
29
28
PUPD14[1:0]
rw
rw
13
12
27
26
PUPD13[1:0]
rw
rw
11
10
25
24
23
22
21
20
19
18
17
16
PUPD12[1:0]
PUPD11[1:0]
PUPD10[1:0]
PUPD9[1:0]
PUPD8[1:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
9
8
7
6
5
4
3
2
1
0
PUPD7[1:0]
PUPD6[1:0]
PUPD5[1:0]
PUPD4[1:0]
PUPD3[1:0]
PUPD2[1:0]
PUPD1[1:0]
PUPD0[1:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 2y+1:2y PUPDy[1:0]: Port x configuration bits (y = 0..15)
These bits are written by software to configure the I/O pull-up or pull-down
00: No pull-up, pull-down
01: Pull-up
10: Pull-down
11: Reserved
DocID024597 Rev 3
265/1693
272
General-purpose I/Os (GPIO)
7.4.5
RM0351
GPIO port input data register (GPIOx_IDR) (x = A..H)
Address offset: 0x10
Reset value: 0x0000 XXXX (where X means undefined)
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
ID15
ID14
ID13
ID12
ID11
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 IDy: Port input data bit (y = 0..15)
These bits are read-only. They contain the input value of the corresponding I/O port.
7.4.6
GPIO port output data register (GPIOx_ODR) (x = A..H)
Address offset: 0x14
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
OD15
OD14
OD13
OD12
OD11
OD10
OD9
OD8
OD7
OD6
OD5
OD4
OD3
OD2
OD1
OD0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 ODy: Port output data bit (y = 0..15)
These bits can be read and written by software.
Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the
GPIOx_BSRR or GPIOx_BRR registers (x = A..F).
7.4.7
GPIO port bit set/reset register (GPIOx_BSRR) (x = A..H)
Address offset: 0x18
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
BR15
BR14
BR13
BR12
BR11
BR10
BR9
BR8
BR7
BR6
BR5
BR4
BR3
BR2
BR1
BR0
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
BS15
BS14
BS13
BS12
BS11
BS10
BS9
BS8
BS7
BS6
BS5
BS4
BS3
BS2
BS1
BS0
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
266/1693
DocID024597 Rev 3
RM0351
General-purpose I/Os (GPIO)
Bits 31:16 BRy: Port x reset bit y (y = 0..15)
These bits are write-only. A read to these bits returns the value 0x0000.
0: No action on the corresponding ODx bit
1: Resets the corresponding ODx bit
Note: If both BSx and BRx are set, BSx has priority.
Bits 15:0 BSy: Port x set bit y (y= 0..15)
These bits are write-only. A read to these bits returns the value 0x0000.
0: No action on the corresponding ODx bit
1: Sets the corresponding ODx bit
7.4.8
GPIO port configuration lock register (GPIOx_LCKR)
(x = A..H)
This register is used to lock the configuration of the port bits when a correct write sequence
is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the
GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the
LOCK sequence has been applied on a port bit, the value of this port bit can no longer be
modified until the next MCU reset or peripheral reset.
Note:
A specific write sequence is used to write to the GPIOx_LCKR register. Only word access
(32-bit long) is allowed during this locking sequence.
Each lock bit freezes a specific configuration register (control and alternate function
registers).
Address offset: 0x1C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
LCKK
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
LCK15
LCK14
LCK13
LCK12
LCK11
LCK10
LCK9
LCK8
LCK7
LCK6
LCK5
LCK4
LCK3
LCK2
LCK1
LCK0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
DocID024597 Rev 3
267/1693
272
General-purpose I/Os (GPIO)
RM0351
Bits 31:17 Reserved, must be kept at reset value.
Bit 16 LCKK: Lock key
This bit can be read any time. It can only be modified using the lock key write sequence.
0: Port configuration lock key not active
1: Port configuration lock key active. The GPIOx_LCKR register is locked until the next MCU
reset or peripheral reset.
LOCK key write sequence:
WR LCKR[16] = ‘1’ + LCKR[15:0]
WR LCKR[16] = ‘0’ + LCKR[15:0]
WR LCKR[16] = ‘1’ + LCKR[15:0]
RD LCKR
RD LCKR[16] = ‘1’ (this read operation is optional but it confirms that the lock is active)
Note: During the LOCK key write sequence, the value of LCK[15:0] must not change.
Any error in the lock sequence aborts the lock.
After the first lock sequence on any bit of the port, any read access on the LCKK bit will
return ‘1’ until the next MCU reset or peripheral reset.
Bits 15:0 LCKy: Port x lock bit y (y= 0..15)
These bits are read/write but can only be written when the LCKK bit is ‘0.
0: Port configuration not locked
1: Port configuration locked
7.4.9
GPIO alternate function low register (GPIOx_AFRL)
(x = A..H)
Address offset: 0x20
Reset value: 0x0000 0000
31
30
29
28
27
AFSEL7[3:0]
rw
15
rw
rw
rw
rw
14
13
12
11
AFSEL3[3:0]
rw
rw
rw
26
25
24
23
AFSEL6[3:0]
rw
rw
rw
rw
10
9
8
7
AFSEL2[3:0]
rw
rw
rw
rw
22
21
20
19
AFSEL5[3:0]
rw
rw
rw
rw
6
5
4
3
AFSEL1[3:0]
rw
rw
rw
rw
268/1693
1000: AF8
1001: AF9
1010: AF10
1011: AF11
1100: AF12
1101: AF13
1110: AF14
1111: AF15
DocID024597 Rev 3
17
16
rw
rw
rw
2
1
0
AFSEL0[3:0]
rw
rw
Bits 31:0 AFSELy[3:0]: Alternate function selection for port x pin y (y = 0..7)
These bits are written by software to configure alternate function I/Os
AFSELy selection:
0000: AF0
0001: AF1
0010: AF2
0011: AF3
0100: AF4
0101: AF5
0110: AF6
0111: AF7
18
AFSEL4[3:0]
rw
rw
rw
RM0351
General-purpose I/Os (GPIO)
7.4.10
GPIO alternate function high register (GPIOx_AFRH)
(x = A..H)
Address offset: 0x24
Reset value: 0x0000 0000
31
30
29
28
27
AFSEL15[3:0]
26
25
24
23
AFSEL14[3:0]
22
21
20
19
AFSEL13[3:0]
18
17
16
AFSEL12[3:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
AFSEL11[3:0]
rw
rw
rw
AFSEL10[3:0]
rw
rw
rw
rw
AFSEL9[3:0]
rw
rw
rw
rw
AFSEL8[3:0]
rw
rw
rw
rw
rw
Bits 31:0 AFSELy[3:0]: Alternate function selection for port x pin y (y = 8..15)
These bits are written by software to configure alternate function I/Os
AFSELy selection:
0000: AF0
0001: AF1
0010: AF2
0011: AF3
0100: AF4
0101: AF5
0110: AF6
0111: AF7
7.4.11
1000: AF8
1001: AF9
1010: AF10
1011: AF11
1100: AF12
1101: AF13
1110: AF14
1111: AF15
GPIO port bit reset register (GPIOx_BRR) (x =A..H)
Address offset: 0x28
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
BR15
BR14
BR13
BR12
BR11
BR10
BR9
BR8
BR7
BR6
BR5
BR4
BR3
BR2
BR1
BR0
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
Bits 31:16 Reserved
Bits 15:0 BRy: Port x Reset bit y (y= 0..15)
These bits are write-only. A read to these bits returns the value 0x0000
0: No action on the corresponding ODx bit
1: Reset the corresponding ODx bit
7.4.12
GPIO port analog switch control register (GPIOx_ASCR)(x = A..H)
Address offset: 0x2C
Reset value: 0x0000 0000
DocID024597 Rev 3
269/1693
272
General-purpose I/Os (GPIO)
RM0351
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
ASC15
ASC14
ASC13
ASC12
ASC11
ASC10
ASC9
ASC8
ASC7
ASC6
ASC5
ASC4
ASC3
ASC2
ASC1
ASC0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved
Bits 15:0 ASCy: Port x analog switch control y (y= 0..15)
These bits are written by software to configure the analog connection of the IOs
0: Disconnect analog switch to the ADC input (reset state)
1: Connect analog switch to the ADC input
Note: This bis must be set prior to the ADC conversion.
Only the IO which connected to the ADC input are effective. Other IO must be kept
reset value
270/1693
DocID024597 Rev 3
Reset value
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x10
GPIOx_IDR
(where x = A..H)
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0x14
GPIOx_ODR
(where x = A..H)
DocID024597 Rev 3
ID11
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
OD11
OD9
OD8
OD7
OD6
OD5
OD4
OD3
OD2
OD1
OD0
Reset value
x
OD10
Reset value
ID12
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
GPIOx_OTYPER
(where x = A..H)
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
OT1
OT0
MODER0[1:0]
1
MODE0[1:0]
1
0
0
0
0
0
0
0
0
0
0
OSPEED0[1:0]
MODER1[1:0]
1
OSPEED0[1:0]
MODE1[1:0]
1
PUPD0[1:0]
OT2
1
OT3
0
OSPEED1[1:0]
MODER2[1:0]
1
OSPEED1[1:0]
MODE2[1:0]
1
PUPD1[1:0]
OT4
1
OT5
MODER3[1:0]
0
OSPEED2[1:0]
MODE3[1:0]
1
OSPEED2[1:0]
OT6
1
PUPD2[1:0]
OT7
MODER4[1:0]
1
OSPEED3[1:0]
MODE4[1:0]
1
OSPEED3[1:0]
OT8
MODER5[1:0]
MODER6[1:0]
MODER7[1:0]
MODER8[1:0]
MODER9[1:0]
MODER10[1:0]
MODER11[1:0]
MODER12[1:0]
MODER13[1:0]
1
PUPD3[1:0]
OT9
OSPEED4[1:0]
0
OSPEED4[1:0]
MODE5[1:0]
MODE6[1:0]
MODE7[1:0]
MODE8[1:0]
MODE9[1:0]
MODE10[1:0]
MODE11[1:0]
MODE12[1:0]
MODE13[1:0]
1
PUPD4[1:0]
OT11
OT10
OSPEED5[1:0]
0
OSPEED5[1:0]
OT12
0
PUPD5[1:0]
OT13
OSPEED6[1:0]
0
OSPEED6[1:0]
0
PUPD6[1:0]
0
1
1
PUPDR0[1:0]
0
1
1
PUPDR1[1:0]
0
1
1
PUPDR2[1:0]
1
Res.
MODER14[1:0]
1
1
PUPDR3[1:0]
1
Res.
MODE14[1:0]
1
1
PUPDR4[1:0]
1
Res.
1
PUPDR5[1:0]
1
OT14
1
OT15
OSPEED7[1:0]
1
Res.
MODER15[1:0]
1
PUPDR6[1:0]
0
ID13
0
OD12
0
OD13
0
OSPEED7[1:0]
0
PUPD7[1:0]
0
PUPDR7[1:0]
0
OSPEED8[1:0]
OSPEED9[1:0]
OSPEED10[1:0]
OSPEED11[1:0]
OSPEED12[1:0]
OSPEED13[1:0]
OSPEED14[1:0]
Reset value
ID14
1
1
ID15
0
OSPEED8[1:0]
0
PUPD8[1:0]
0
1
OD14
0
0
1
OD15
0
1
PUPDR8[1:0]
0
OSPEED9[1:0]
0
PUPD9[1:0]
0
1
1
Res.
0
0
1
Res.
0
1
PUPDR9[1:0]
0
OSPEED10[1:0]
0
PUPD10[1:0]
0
1
1
Res.
1
0
1
Res.
0
1
PUPDR10[1:0]
0
OSPEED11[1:0]
0
PUPD11[1:0]
0
1
1
Res.
0
1
1
Res.
1
1
PUPDR11[1:0]
0
OSPEED12[1:0]
0
PUPD12[1:0]
1
1
1
Res.
0
0
1
Res.
0
1
PUPDR12[1:0]
0
OSPEED13[1:0]
0
PUPD13[1:0]
OSPEED14[1:0]
0
1
0
Res.
GPIOB_PUPDR
0
0
1
Res.
Reset value
1
PUPDR13[1:0]
GPIOA_PUPDR
0
1
0
Res.
Reset value
1
Res.
0x0C
GPIOx_OSPEEDR
(where x = B..H)
0
PUPD14[1:0]
Reset value
PUPDR14[1:0]
0x0C
GPIOA_OSPEEDR
1
0
Res.
0x08
GPIOx_MODER
(where x = C..H)
MODE15[1:0]
Reset value
1
Res.
0x08
1
Res.
0x04
Reset value
Res.
0x00
GPIOB_MODER
OSPEED15[1:0]
Reset value
OSPEED15[1:0]
0x00
MODE0[1:0]
MODE1[1:0]
MODE2[1:0]
MODE3[1:0]
MODE4[1:0]
MODE5[1:0]
MODE6[1:0]
MODE7[1:0]
MODE8[1:0]
MODE9[1:0]
MODE10[1:0]
MODE11[1:0]
MODE12[1:0]
MODE13[1:0]
MODE14[1:0]
MODE15[1:0]
GPIOA_MODER
PUPD15[1:0]
0x00
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
PUPDR15[1:0]
Offset
Res.
7.4.13
Res.
RM0351
General-purpose I/Os (GPIO)
GPIO register map
The following table gives the GPIO register map and reset values.
Table 33. GPIO register map and reset values
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
271/1693
272
General-purpose I/Os (GPIO)
RM0351
Register
0x18
GPIOx_BSRR
(where x = A..H)
BR15
BR14
BR13
BR12
BR11
BR10
BR9
BR8
BR7
BR6
BR5
BR4
BR3
BR2
BR1
BR0
BS15
BS14
BS13
BS12
BS11
BS10
BS9
BS8
BS7
BS6
BS5
BS4
BS3
BS2
BS1
BS0
Reset value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
GPIOx_LCKR
(where x = A..H)
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
LCKK
LCK15
LCK14
LCK13
LCK12
LCK11
LCK10
LCK9
LCK8
LCK7
LCK6
LCK5
LCK4
LCK3
LCK2
LCK1
LCK0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x1C
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Offset
Res.
Table 33. GPIO register map and reset values (continued)
0x20
GPIOx_AFRL
(where x = A..H)
0x24
GPIOx_AFRH
(where x = A..H)
Reset value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x28
GPIOx_BRR
(where x = A..H)
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
0x2C
GPIOx_ASCR
(where x = A..H)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BR14
BR13
BR12
BR11
BR10
BR9
BR8
BR7
BR6
BR5
BR4
BR3
BR2
BR1
BR0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ASC14
ASC13
ASC12
ASC11
ASC10
ASC9
ASC8
ASC7
ASC6
ASC5
ASC4
ASC3
ASC2
ASC1
ASC0
Reset value
BR15
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Refer to Section 2.2.2 on page 67 for the register boundary addresses.
272/1693
0
AFSEL15[3:0] AFSEL14[3:0] AFSEL13[3:0] AFSEL12[3:0] AFSEL11[3:0] AFSEL10[3:0] AFSEL9[3:0] AFSEL8[3:0]
ASC15
Reset value
AFSEL7[3:0] AFSEL6[3:0] AFSEL5[3:0] AFSEL4[3:0] AFSEL3[3:0] AFSEL2[3:0] AFSEL1[3:0] AFSEL0[3:0]
DocID024597 Rev 3
RM0351
System configuration controller (SYSCFG)
8
System configuration controller (SYSCFG)
8.1
SYSCFG main features
The STM32L4x6 devices feature a set of configuration registers. The main purposes of the
system configuration controller are the following:
•
Remapping memory areas
•
Managing the external interrupt line connection to the GPIOs
•
Managing robustness feature
•
Setting SRAM2 write protection and software erase
•
Configuring FPU interrupts
•
Enabling the firewall
•
Enabling /disabling I2C Fast-mode Plus driving capability on some I/Os and voltage
booster for I/Os analog switches.
8.2
SYSCFG registers
8.2.1
SYSCFG memory remap register (SYSCFG_MEMRMP)
This register is used for specific configurations on memory remap.
Address offset: 0x00
Reset value: 0x0000 000X (X is the memory mode selected by the BOOT0 pin and BOOT1
option bit)
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
Res
Res
Res
Res
Res
Res
FB_
MODE
Res
Res
Res
Res
Res
rw
MEM_MODE
rw
rw
rw
Bits 31:9 Reserved, must be kept at reset value.
DocID024597 Rev 3
273/1693
285
System configuration controller (SYSCFG)
RM0351
Bit 8 FB_MODE: Flash Bank mode selection
0: Flash Bank 1 mapped at 0x0800 0000 (and aliased @0x0000 0000) and Flash Bank 2
mapped at 0x0808 0000 (and aliased at 0x0008 0000)
1: Flash Bank2 mapped at 0x0800 0000 (and aliased @0x0000 0000) and Flash Bank 1
mapped at 0x0808 0000 (and aliased at 0x0008 0000)
Bits 7:3 Reserved, must be kept at reset value.
Bits 2:0 MEM_MODE: Memory mapping selection
These bits control the memory internal mapping at address 0x0000 0000. These bits are
used to select the physical remap by software and so, bypass the BOOT pin and the option
bit setting. After reset these bits take the value selected by BOOT0 pin and BOOT1 option
bit.
000: Main Flash memory mapped at 0x00000000.
001: System Flash memory mapped at 0x00000000.
010: FMC bank 1 (NOR/PSRAM 1 and 2) mapped at 0x00000000.
011: SRAM1 mapped at 0x00000000.
100: Reserved
101: Reserved
110: QUADSPI memory mapped at 0x00000000.
111: Reserved
Note:
When the FSMC is remapped at address 0x0000 0000, only the first two regions of Bank 1
memory controller (Bank1 NOR/PSRAM 1 and NOR/PSRAM 2) can be remapped. In remap
mode, the CPU can access the external memory via ICode bus instead of System bus
which boosts up the performance.
8.2.2
SYSCFG configuration register 1 (SYSCFG_CFGR1)
Address offset: 0x04
Reset value: 0x7C00 0001
31
30
29
28
27
26
FPU_IE[5..0]
25
24
23
Res
Res
Res
22
21
20
19
18
17
16
I2C_
PB8_
FMP
I2C_
PB7_
FMP
I2C_
PB6_
FMP
I2C3_
FMP
I2C2_
FMP
I2C1_
FMP
I2C_
PB9_
FMP
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
Res
Res
Res
Res
Res
Res
BOOST
EN
Res
Res
Res
Res
Res
Res
Res
FWDIS
rw
274/1693
DocID024597 Rev 3
rc_w0
RM0351
System configuration controller (SYSCFG)
Bits 31:26 FPU_IE[5..0]: Floating Point Unit interrupts enable bits
FPU_IE[5]: Inexact interrupt enable
FPU_IE[4]: Input denormal interrupt enable
FPU_IE[3]: Overflow interrupt enable
FPU_IE[2]: underflow interrupt enable
FPU_IE[1]: Divide-by-zero interrupt enable
FPU_IE[0]: Invalid operation interrupt enable
Bits 25:23 Reserved, must be kept at reset value.
Bit 22 I2C3_FMP: I2C3 Fast-mode Plus driving capability activation
This bit enables the Fm+ driving mode on I2C3 pins selected through AF selection bits.
0: Fm+ mode is not enabled on I2C3 pins selected through AF selection bits
1: Fm+ mode is enabled on I2C3 pins selected through AF selection bits.
Bit 21 I2C2_FMP: I2C2 Fast-mode Plus driving capability activation
This bit enables the Fm+ driving mode on I2C2 pins selected through AF selection bits.
0: Fm+ mode is not enabled on I2C2 pins selected through AF selection bits
1: Fm+ mode is enabled on I2C2 pins selected through AF selection bits.
Bit 20 I2C1_FMP: I2C1 Fast-mode Plus driving capability activation
This bit enables the Fm+ driving mode on I2C1 pins selected through AF selection bits.
0: Fm+ mode is not enabled on I2C1 pins selected through AF selection bits
1: Fm+ mode is enabled on I2C1 pins selected through AF selection bits.
Bit 19 I2C_PB9_FMP: Fast-mode Plus (Fm+) driving capability activation on PB9
This bit enables the Fm+ driving mode for PB9.
0: PB9 pin operates in standard mode.
1: Fm+ mode enabled on PB9 pin, and the Speed control is bypassed.
Bit 18 I2C_PB8_FMP: Fast-mode Plus (Fm+) driving capability activation on PB8
This bit enables the Fm+ driving mode for PB8.
0: PB8 pin operates in standard mode.
1: Fm+ mode enabled on PB8 pin, and the Speed control is bypassed.
Bit 17 I2C_PB7_FMP: Fast-mode Plus (Fm+) driving capability activation on PB7
This bit enables the Fm+ driving mode for PB7.
0: PB7 pin operates in standard mode.
1: Fm+ mode enabled on PB7 pin, and the Speed control is bypassed.
Bit 16 I2C_PB6_FMP: Fast-mode Plus (Fm+) driving capability activation on PB6
This bit enables the Fm+ driving mode for PB6.
0: PB6 pin operates in standard mode.
1: Fm+ mode enabled on PB6 pin, and the Speed control is bypassed.
Bits 15:9 Reserved, must be kept at reset value.
DocID024597 Rev 3
275/1693
285
System configuration controller (SYSCFG)
RM0351
Bit 8 BOOSTEN: I/O analog switch voltage booster enable
0: I/O analog switches are supplied by VDDA voltage. This is the recommended configuration
when using the ADC in high VDDA voltage operation.
1: I/O analog switches are supplied by a dedicated voltage booster (supplied by VDD). This is
the recommended configuration when using the ADC in low VDDA voltage operation.
Bits 7:1 Reserved, must be kept at reset value.
Bit 0 FWDIS: Firewall disable
This bit is cleared by software to protect the access to the memory segments according to
the Firewall configuration. Once enabled, the firewall cannot be disabled by software. Only a
system reset set the bit.
0 : Firewall protection enabled
1 : Firewall protection disabled
8.2.3
SYSCFG external interrupt configuration register 1
(SYSCFG_EXTICR1)
Address offset: 0x08
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
EXTI3[2:0]
rw
rw
Res
rw
EXTI2[2:0]
rw
rw
Res
rw
EXTI1[2:0]
rw
rw
Res
rw
EXTI0[2:0]
rw
rw
Bits 31:15 Reserved, must be kept at reset value.
Bits 14:12 EXTI3[2:0]: EXTI 3 configuration bits
These bits are written by software to select the source input for the EXTI3
external interrupt.
000: PA[3] pin
001: PB[3] pin
010: PC[3] pin
011: PD[3] pin
100: PE[3] pin
101: PF[3] pin
110: PG[3] pin
111: Reserved
Bit 11 Reserved, must be kept at reset value.
276/1693
DocID024597 Rev 3
rw
RM0351
System configuration controller (SYSCFG)
Bits 10:8 EXTI2[2:0]: EXTI 2 configuration bits
These bits are written by software to select the source input for the EXTI2
external interrupt.
000: PA[2] pin
001: PB[2] pin
010: PC[2] pin
011: PD[2] pin
100: PE[2] pin
101: PF[2] pin
110: PG[2] pin
111: Reserved
Bit 7 Reserved, must be kept at reset value.
Bits 6:4 EXTI1[2:0]: EXTI 1 configuration bits
These bits are written by software to select the source input for the EXTI1
external interrupt.
000: PA[1] pin
001: PB[1] pin
010: PC[1] pin
011: PD[1] pin
100: PE[1] pin
101: PF[1] pin
110: PG[1] pin
111: PH[1] pin
Bit 3 Reserved, must be kept at reset value.
Bits 2:0 EXTI0[2:0]: EXTI 0 configuration bits
These bits are written by software to select the source input for the EXTI0
external interrupt.
000: PA[0] pin
001: PB[0] pin
010: PC[0] pin
011: PD[0] pin
100: PE[0] pin
101: PF[0] pin
110: PG[0] pin
111: PH[0] pin
DocID024597 Rev 3
277/1693
285
System configuration controller (SYSCFG)
8.2.4
RM0351
SYSCFG external interrupt configuration register 2
(SYSCFG_EXTICR2)
Address offset: 0x0C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
EXTI7[2:0]
rw
rw
Res
rw
EXTI6[2:0]
rw
rw
Res
rw
EXTI5[2:0]
rw
rw
Res
rw
EXTI4[2:0]
rw
rw
Bits 31:15 Reserved, must be kept at reset value.
Bits 14:12 EXTI7[2:0]: EXTI 7 configuration bits
These bits are written by software to select the source input for the EXTI7
external interrupt.
000: PA[7] pin
001: PB[7] pin
010: PC[7] pin
011: PD[7] pin
100: PE[7] pin
101: PF[7] pin
110: PG[7] pin
111: Reserved
Bit 11 Reserved, must be kept at reset value.
Bits 10:8 EXTI6[2:0]: EXTI 6 configuration bits
These bits are written by software to select the source input for the EXTI6
external interrupt.
000: PA[6] pin
001: PB[6] pin
010: PC[6] pin
011: PD[6] pin
100: PE[6] pin
101: PF[6] pin
110: PG[6] pin
111: Reserved
Bit 7 Reserved, must be kept at reset value.
278/1693
DocID024597 Rev 3
rw
RM0351
System configuration controller (SYSCFG)
Bits 6:4 EXTI5[2:0]: EXTI 5 configuration bits
These bits are written by software to select the source input for the EXTI5
external interrupt.
000: PA[5] pin
001: PB[5] pin
010: PC[5] pin
011: PD[5] pin
100: PE[5] pin
101: PF[5] pin
110: PG[5] pin
111: Reserved
Bit 3 Reserved, must be kept at reset value.
Bits 2:0 EXTI4[2:0]: EXTI 4 configuration bits
These bits are written by software to select the source input for the EXTI4
external interrupt.
000: PA[4] pin
001: PB[4] pin
010: PC[4] pin
011: PD[4] pin
100: PE[4] pin
101: PF[4] pin
110: PG[4] pin
111: Reserved
Note:
Some of the I/O pins mentioned in the above register may not be available on small
packages.
8.2.5
SYSCFG external interrupt configuration register 3
(SYSCFG_EXTICR3)
Address offset: 0x10
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
EXTI11[2:0]
rw
rw
Res
rw
EXTI10[2:0]
rw
rw
Res
rw
EXTI9[2:0]
rw
DocID024597 Rev 3
rw
Res
rw
EXTI8[2:0]
rw
rw
rw
279/1693
285
System configuration controller (SYSCFG)
RM0351
Bits 31:15 Reserved, must be kept at reset value.
Bits 14:12 EXTI11[2:0]: EXTI 11 configuration bits
These bits are written by software to select the source input for the EXTI11
external interrupt.
000: PA[11] pin
001: PB[11] pin
010: PC[11] pin
011: PD[11] pin
100: PE[11] pin
101: PF[11] pin
110: PG[11] pin
111: Reserved
Bit 11 Reserved, must be kept at reset value.
Bits 10:8 EXTI10[2:0]: EXTI 10 configuration bits
These bits are written by software to select the source input for the EXTI10
external interrupt.
000: PA[10] pin
001: PB[10] pin
010: PC[10] pin
011: PD[10] pin
100: PE[10] pin
101: PF[10] pin
110: PG[10] pin
111: Reserved
Bit 7 Reserved, must be kept at reset value.
Bits 6:4 EXTI9[2:0]: EXTI 9 configuration bits
These bits are written by software to select the source input for the EXTI9
external interrupt.
000: PA[9] pin
001: PB[9] pin
010: PC[9] pin
011: PD[9] pin
100: PE[9] pin
101: PF[9] pin
110: PG[9] pin
111: Reserved
Bit 3 Reserved, must be kept at reset value.
Bits 2:0 EXTI8[2:0]: EXTI 8 configuration bits
These bits are written by software to select the source input for the EXTI8
external interrupt.
000: PA[8] pin
001: PB[8] pin
010: PC[8] pin
011: PD[8] pin
100: PE[8] pin
101: PF[8] pin
110: PG[8] pin
111: Reserved
Note:
280/1693
Some of the I/O pins mentioned in the above register may not be available on small
packages.
DocID024597 Rev 3
RM0351
System configuration controller (SYSCFG)
8.2.6
SYSCFG external interrupt configuration register 4
(SYSCFG_EXTICR4)
Address offset: 0x14
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
EXTI15[2:0]
rw
rw
Res
rw
EXTI14[2:0]
rw
rw
Res
rw
EXTI13[2:0]
rw
rw
Res
rw
EXTI12[2:0]
rw
rw
rw
Bits 31:15 Reserved, must be kept at reset value.
Bits 14:12 EXTI15[2:0]: EXTI15 configuration bits
These bits are written by software to select the source input for the EXTI15 external
interrupt.
000: PA[15] pin
001: PB[15] pin
010: PC[15] pin
011: PD[15] pin
100: PE[15] pin
101: PF[15] pin
110: PG[15] pin
111: Reserved
Bit 11 Reserved, must be kept at reset value.
Bits 10:8 EXTI14[2:0]: EXTI14 configuration bits
These bits are written by software to select the source input for the EXTI14 external
interrupt.
000: PA[14] pin
001: PB[14] pin
010: PC[14] pin
011: PD[14] pin
100: PE[14] pin
101: PF[14] pin
110: PG[14] pin
111: Reserved
Bit 7 Reserved, must be kept at reset value.
DocID024597 Rev 3
281/1693
285
System configuration controller (SYSCFG)
RM0351
Bits 6:4 EXTI13[2:0]: EXTI13 configuration bits
These bits are written by software to select the source input for the EXTI13 external
interrupt.
000: PA[13] pin
001: PB[13] pin
010: PC[13] pin
011: PD[13] pin
100: PE[13] pin
101: PF[13] pin
110: PG[13] pin
111: Reserved
Bit 3 Reserved, must be kept at reset value.
Bits 2:0 EXTI12[2:0]: EXTI12 configuration bits
These bits are written by software to select the source input for the EXTI12 external
interrupt.
000: PA[12] pin
001: PB[12] pin
010: PC[12] pin
011: PD[12] pin
100: PE[12] pin
101: PF[12] pin
110: PG[12] pin
111: Reserved
Note:
Some of the I/O pins mentioned in the above register may not be available on small
packages.
8.2.7
SYSCFG SRAM2 control and status register (SYSCFG_SCSR)
Address offset: 0x18
System reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
SRAM2 SRAM2
BSY
ER
r
rw
Bits 31:2 Reserved, must be kept at reset value
Bit 1 SRAM2BSY: SRAM2 busy by erase operation
0: No SRAM2 erase operation is on going.
1: SRAM2 erase operation is on going.
Bit 0 SRAM2ER: SRAM2 Erase
Setting this bit starts a hardware SRAM2 erase operation. This bit is
automatically cleared at the end of the SRAM2 erase operation.
Note: This bit is write-protected: setting this bit is possible only after the correct
key sequence is written in the SYSCFG_SKR register.
282/1693
DocID024597 Rev 3
RM0351
System configuration controller (SYSCFG)
8.2.8
SYSCFG configuration register 2 (SYSCFG_CFGR2)
Address offset: 0x1C
System reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
Res
Res
Res
Res
Res
Res
SPF
Res
Res
Res
Res
ECCL
PVDL
SPL
CLL
rs
rs
rs
rs
rc_w1
Bits 31:9 Reserved, must be kept at reset value
Bit 8 SPF: SRAM2 parity error flag
This bit is set by hardware when an SRAM2 parity error is detected. It is cleared
by software by writing ‘1’.
0: No SRAM2 parity error detected
1: SRAM2 parity error detected
Bits 7:4 Reserved, must be kept at reset value
Bit 3 ECCL: ECC Lock
This bit is set by software and cleared only by a system reset. It can be used to
enable and lock the Flash ECC error connection to TIM1/8/15/16/17 Break input.
0: ECC error disconnected from TIM1/8/15/16/17 Break input.
1: ECC error connected to TIM1/8/15/16/17 Break input.
Bit 2 PVDL: PVD lock enable bit
This bit is set by software and cleared only by a system reset. It can be used to
enable and lock the PVD connection to TIM1/8/15/16/17 Break input, as well as
the PVDE and PLS[2:0] in the PWR_CR2 register.
0: PVD interrupt disconnected from TIM1/8/15/16/17 Break input. PVDE and
PLS[2:0] bits can be programmed by the application.
1: PVD interrupt connected to TIM1/8/15/16/17 Break input, PVDE and PLS[2:0]
bits are read only.
Bit 1 SPL: SRAM2 parity lock bit
This bit is set by software and cleared only by a system reset. It can be used to
enable and lock the SRAM2 parity error signal connection to TIM1/8/15/16/17
Break inputs.
0: SRAM2 parity error signal disconnected from TIM1/8/15/16/17 Break inputs
1: SRAM2 parity error signal connected to TIM1/8/15/16/17 Break inputs
Bit 0 CLL: Cortex®-M4 LOCKUP (Hardfault) output enable bit
This bit is set by software and cleared only by a system reset. It can be used to
enable and lock the connection of Cortex®-M4 LOCKUP (Hardfault) output to
TIM1/8/15/16/17 Break input
0: Cortex®-M4 LOCKUP output disconnected from TIM1/8/15/16/17 Break inputs
1: Cortex®-M4 LOCKUP output connected to TIM1/8/15/16/17 Break inputs
8.2.9
SYSCFG SRAM2 write protection register (SYSCFG_SWPR)
Address offset: 0x20
DocID024597 Rev 3
283/1693
285
System configuration controller (SYSCFG)
RM0351
System reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
P31WP P30WP P29WP P28WP P27WP P26WP P25WP P24WP P23WP P22WP P21WP P20WP P19WP P18WP P17WP P16WP
rs
rs
rs
rs
rs
rs
15
14
13
12
11
10
P15WP P14WP P13WP P12WP P11WP P10WP
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
9
8
7
6
5
4
3
2
1
0
P9WP
P8WP
P7WP
P6WP
P5WP
P4WP
P3WP
P2WP
P1WP
P0WP
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
Bits 31:0 PxWP (x= 0 to 31): SRAM2 page x write protection
These bits are set by software and cleared only by a system reset.
0: Write protection of SRAM2 page x is disabled.
1: Write protection of SRAM2 page x is enabled.
8.2.10
SYSCFG SRAM2 key register (SYSCFG_SKR)
Address offset: 0x24
System reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
7
6
5
4
3
2
1
0
w
w
w
15
14
13
12
11
10
9
8
Res
Res
Res
Res
Res
Res
Res
Res
KEY[7:0]
w
w
w
w
w
Bits 31:8 Reserved, must be kept at reset value
Bits 7:0 KEY[7:0]: SRAM2 write protection key for software erase
The following steps are required to unlock the write protection of the SRAM2ER
bit in the SYSCFG_CFGR2 register.
1. Write "0xCA” into Key[7:0]
2. Write "0x53” into Key[7:0]
Writing a wrong key reactivates the write protection.
284/1693
DocID024597 Rev 3
P27WP
P26WP
P25WP
P24WP
P23WP
P22WP
P21WP
P20WP
P19WP
P18WP
P17WP
P16WP
P15WP
P14WP
P13WP
P12WP
P11WP
P10WP
P9WP
P8WP
P7WP
P6WP
P5WP
P4WP
Reset value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SYSCFG_SKR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0x24
SYSCFG_SWPR
Res.
0x20
P28WP
DocID024597 Rev 3
Reset value
0
0
0
0
0
0
CLL
0
SPL
0
0
0
0
0
KEY
0
0
0
0
0
0
0
0
0
0
0
Reset value
SRAM2ER
0
SRAM2BSY
EXTI13
[2:0]
P0WP
Res.
Res.
Res.
I2C_PB8_FMP
I2C_PB7_FMP
I2C_PB6_FMP
x
x
x
Res.
Res.
Res.
FWDIS
Res.
Res.
Res.
Res.
BOOSTEN
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
0
Res.
EXTI9
[2:0]
PVDL
0
0
Res.
EXTI5
[2:0]
Res.
0
Res.
Res.
EXTI1
[2:0]
ECCL
0
0
0
Res.
0
Res.
Res.
I2C_PB9_FMP
0
P1WP
Reset value
0
Res.
EXTI14
[2:0]
Res.
0
0
Res.
EXTI10
[2:0]
Res.
0
Res.
Res.
EXTI6
[2:0]
0
Res.
0
0
0
0
Res.
0
EXTI2
[2:0]
Res.
0
0
0
SPF
0
Res.
EXTI15
[2:0]
0
Res.
EXTI11
[2:0]
Res.
0
Res.
0
0
Res.
0
0
Res.
EXTI7
[2:0]
Res.
EXTI3
[2:0]
Res.
Reset value
Res.
0
0
Res.
Reset value
Res.
0
Res.
Reset value
Res.
Reset value
Res.
I2C1_FMP
0
Res.
I2C2_FMP
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
I2C3_FMP
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
1
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
1
Res.
Res.
Res.
Res.
Res.
FPU_IE[5..0]
P2WP
SYSCFG_CFGR2
1
Res.
SYSCFG_SCSR
1
Res.
SYSCFG_EXTICR4
1
Res.
SYSCFG_EXTICR3
Res.
SYSCFG_EXTICR2
0
Res.
SYSCFG_EXTICR1
Res.
Reset value
P3WP
0x1C
P29WP
0x18
Res.
0x14
Res.
0x10
SYSCFG_CFGR1
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
FB_MODE
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
SYSCFG_
MEMRMP
Res.
0x00
Res.
Register
Res.
Offset
Res.
0x0C
P30WP
0x08
P31WP
0x04
Res.
8.2.11
Res.
RM0351
System configuration controller (SYSCFG)
SYSCFG register map
The following table gives the SYSCFG register map and the reset values.
Table 34. SYSCFG register map and reset values
MEM_
MODE
0
0
0
1
EXTI0
[2:0]
0
0
0
0
EXTI4
[2:0]
0
EXTI8
[2:0]
0
EXTI12
[2:0]
0
0
0
0
0
0
Refer to Section 2.2.2 on page 67 for the register boundary addresses.
285/1693
285
Peripherals interconnect matrix
RM0351
9
Peripherals interconnect matrix
9.1
Introduction
Several peripherals have direct connections between them.
This allows autonomous communication and or synchronization between peripherals,
saving CPU resources thus power supply consumption.
In addition, these hardware connections remove software latency and allow design of
predictable system.
Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power
run and sleep, Stop 0, Stop 1 and Stop 2 modes.
9.2
Connection summary
Table 35. STM32L4x6 peripherals interconnect matrix(1) (2)
TIM1
TIM8
TIM2
TIM3
TIM4
TIM5
TIM6
TIM7
TIM15
TIM16
TIM17
LPTIM1
LPTIM2
ADC1
ADC2
ADC3
DFSDM
OPAMP1
OPAMP2
DAC1
DAC2
COMP1
COMP2
DMA
IRTIM
Destination
TIM1
-
1
1
1
1
-
-
-
1
-
-
-
-
2
2
2
5
-
-
-
-
9
-
-
-
TIM8
-
-
1
-
1
1
-
-
-
-
-
-
-
2
2
2
5
-
-
4
4
-
9
-
-
TIM2
1
1
-
1
1
1
-
-
-
-
-
-
-
2
2
2
-
-
-
4
4
9
-
-
-
TIM3
1
-
1
-
1
1
-
-
1
-
-
-
-
2
2
2
5
-
-
-
-
9
9
-
-
TIM4
1
1
1
1
-
1
-
-
-
-
-
-
-
2
2
2
5
-
-
4
4
-
-
-
-
TIM5
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
4
-
-
-
-
TIM6
-
-
-
-
-
-
-
-
-
-
-
-
-
2
2
2
5
-
-
4
4
-
-
-
-
TIM7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
-
-
4
4
-
-
-
-
TIM15
1
-
-
1
-
-
-
-
-
-
-
-
-
2
2
2
-
-
-
-
-
-
9
-
-
TIM16
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
15
TIM17
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
15
LPTIM1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LPTIM2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ADC1
3
-
-
-
-
-
-
-
-
-
-
-
-
-
10
-
-
-
-
-
-
-
-
-
-
ADC2
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ADC3
3
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DFSDM
6
6
-
-
-
-
-
-
6
6
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
T. Sensor
-
-
-
-
-
-
-
-
-
-
-
-
-
12
-
12
-
-
-
-
-
-
-
-
-
VBAT
-
-
-
-
-
-
-
-
-
-
-
-
-
12
-
12
-
-
-
-
-
-
-
-
-
Source
286/1693
DocID024597 Rev 3
RM0351
Peripherals interconnect matrix
Table 35. STM32L4x6 peripherals interconnect matrix(1) (2) (continued)
ADC3
DFSDM
OPAMP1
OPAMP2
DAC1
DAC2
COMP1
COMP2
DMA
IRTIM
-
-
-
-
-
-
-
-
-
12 12
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
2
2
5
-
-
4
4
-
-
-
-
8
8
-
-
-
-
-
-
-
-
-
-
-
-
ADC1
-
LPTIM2
12 12
LPTIM1
-
TIM17
-
TIM16
-
TIM15
-
TIM7
-
TIM6
-
TIM5
-
TIM4
-
TIM3
-
TIM2
-
TIM8
-
TIM1
Source
ADC2
Destination
VREFINT
-
-
-
-
-
-
-
-
-
-
-
-
-
12
OPAMP1
-
-
-
-
-
-
-
-
-
-
-
-
-
OPAMP2
-
-
-
-
-
-
-
-
-
-
-
-
-
DAC1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
12 12
-
DAC2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
12 12
-
-
HSE
-
-
-
-
-
-
-
-
-
-
7
-
-
-
-
-
-
LSE
-
-
7
-
-
-
-
-
7
7
-
-
-
-
-
-
MSI
-
-
-
-
-
-
-
-
-
-
7
-
-
-
-
LSI
-
-
-
-
-
-
-
-
-
7
-
-
-
-
MCO
-
-
-
-
-
-
-
-
-
-
7
-
-
EXTI
-
-
-
-
-
-
-
-
-
-
-
-
RTC
-
-
-
-
-
-
-
-
-
7
-
12 12
COMP1
13 13 13 13
-
-
-
-
13 13 13 8
8
-
-
-
-
-
-
-
-
-
-
-
-
COMP2
13 13 13 13
-
-
-
-
13 13 13 8
8
-
-
-
-
-
-
-
-
-
-
-
-
14 14 14
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SYST ERR 14 14
USB
-
-
-
-
-
-
-
-
11
-
-
-
-
-
-
-
-
1. Numbers in table are links to corresponding detailed sub-section in Section 9.3: Interconnection details.
2.
The “-” symbol in grayed cells means no interconnect.
9.3
Interconnection details
9.3.1
From timer (TIM1/TIM2/TIM3/TIM4/TIM5/TIM8/TIM15/TIM16/TIM17) to
timer (TIM1/TIM2/TIM3/TIM4/TIM5/TIM8/TIM15)
Purpose
Some of the TIMx timers are linked together internally for timer synchronization or chaining.
When one timer is configured in Master Mode, it can reset, start, stop or clock the counter of
another timer configured in Slave Mode.
A description of the feature is provided in: Section 27.3.19: Timer synchronization.
DocID024597 Rev 3
287/1693
294
Peripherals interconnect matrix
RM0351
The modes of synchronization are detailed in:
•
Section 26.3.26: Timer synchronization for advanced-control timers (TIM1/TIM8)
•
Section 27.3.18: Timers and external trigger synchronization for general-purpose
timers (TIM2/TIM3/TIM4/TIM5)
•
Section 28.4.17: External trigger synchronization (TIM15 only) for general-purpose
timer (TIM15)
Triggering signals
The output (from Master) is on signal TIMx_TRGO (and TIMx_TRGO2 for TIM1/TIM8)
following a configurable timer event.
The input (to slave) is on signals TIMx_ITR0/ITR1/ITR2/ITR3
The input and output signals for TIM1/TIM8 are shown in Figure 188: Advanced-control
timer block diagram.
The possible master/slave connections are given in:
•
Table 148: TIMx internal trigger connection
•
Table 153: TIMx internal trigger connection
•
Table 156: TIMx Internal trigger connection
Active power mode
Run, Sleep, Low-power run, Low-power sleep.
9.3.2
From timer (TIM1/TIM2/TIM3/TIM4/TIM6/TIM8/TIM15) and EXTI to ADC
(ADC1/ADC2/ADC3)
Purpose
General-purpose timers (TIM2/TIM3/TIM4), basic timer (TIM6), advanced-control timers
(TIM1/TIM8), general-purpose timer (TIM15) and EXTI can be used to generate an ADC
triggering event.
TIMx synchronization is described in: Section 26.3.27: ADC synchronization (TIM1/TIM8).
ADC synchronization is described in: Section 16.3.18: Conversion on external trigger and
trigger polarity (EXTSEL, EXTEN, JEXTSEL, JEXTEN).
Triggering signals
The output (from timer) is on signal TIMx_TRGO, TIMx_TRGO2 or TIMx_CCx event.
The input (to ADC) is on signal EXT[15:0], JEXT[15:0].
The connection between timers and ADCs is provided in:
•
Table 88: ADC1, ADC2 and ADC3 - External triggers for regular channels
•
Table 89: ADC1, ADC2 and ADC3 - External trigger for injected channels
Active power mode
Run, Sleep, Low-power run, Low-power sleep.
288/1693
DocID024597 Rev 3
RM0351
9.3.3
Peripherals interconnect matrix
From ADC (ADC1/ADC2/ADC3) to timer (TIM1/TIM8)
Purpose
ADC1/ADC2/ADC3 can provide trigger event through watchdog signals to advanced-control
timers (TIM1/TIM8).
A description of the ADC analog watchdog setting is provided in: Section 16.3.28: Analog
window watchdog (AWD1EN, JAWD1EN, AWD1SGL, AWD1CH, AWD2CH, AWD3CH,
AWD_HTx, AWD_LTx, AWDx).
Trigger settings on the timer are provided in: Section 26.3.4: External trigger input.
Triggering signals
The output (from ADC) is on signals ADCn_AWDx_OUT n = 1, 2, 3 (for ADC1, 2, 3) x = 1, 2,
3 (3 watchdog per ADC) and the input (to timer) on signal TIMx_ETR (external trigger).
Active power mode
Run, Sleep, Low-power run, Low-power sleep.
9.3.4
From timer (TIM2/TIM4/TIM5/TIM6/TIM7/TIM8) and EXTI to DAC
(DAC1/DAC2)
Purpose
General-purpose timers (TIM2/TIM4/TIM5), basic timers (TIM6, TIM7), advanced-control
timers (TIM8) and EXTI can be used as triggering event to start a DAC conversion.
Triggering signals
The output (from timer) is on signal TIMx_TRGO directly connected to corresponding DAC
inputs.
Selection of input triggers on DAC is provided in Section 17.3.6: DAC trigger selection
(single and dual mode).
Active power mode
Run, Sleep, Low-power run, Low-power sleep.
9.3.5
From timer (TIM1/TIM3/TIM4/TIM6/TIM7/TIM8/TIM16) and EXTI to
DFSDM
Purpose
General-purpose timers (TIM3/TIM4), basic timers (TIM6/TIM7), advanced-control timers
(TIM1/TIM8), general-purpose timer (TIM16) and EXTI can be used to generate a triggering
event on DFSDM module (on each possible data block
DFSDM0/DFSDM1/DFSDM2/DFSDM3) and start an ADC conversion.
DFSDM triggered conversion feature is described in: Section 21.3.15: Launching
conversions.
DocID024597 Rev 3
289/1693
294
Peripherals interconnect matrix
RM0351
Triggering signals
The output (from timer) is on signal TIMx_TRGO/TIMx_TRGO2 or TIM16_OC1.
The input (on DFSDM) is on signal DFSDM_INTRG[0:8].
The connection between timers, EXTI and DFSDM is provided in Table 122: DFSDM
triggers connection.
Active power mode
Run, Sleep, Low-power run, Low-power sleep.
9.3.6
From DFSDM to timer (TIM1/TIM8/TIM15/TIM16/TIM17)
Purpose
DFSDM can generate a timer break on advanced-control timers (TIM1/TIM8) and generalpurpose timers (TIM15/TIM16/TIM17) when a watchdog is activated (minimum or maximum
threshold value crossed by analog signal) or when a short-circuit detection is made.
DFSDM watchdog is described in Section 21.3.10: Analog watchdog.
DFSDM short-circuit detection is described in Section 21.3.11: Short-circuit detector.
Timer break is described in:
•
Section 26.3.16: Using the break function (TIM1/TIM8)
•
Section 28.4.13: Using the break function (TIM15/TIM16/TIM17)
Triggering signals
The output (from DFSDM) is on signals DFSDM_BREAK[0:3] directly connected to timer
and ‘Ored’ with other break input signals of the timer.
Active power mode
Run, Sleep, Low-power run, Low-power sleep.
9.3.7
From HSE, LSE, LSI, MSI, MCO, RTC to timer
(TIM2/TIM15/TIM16/TIM17)
Purpose
External clocks (HSE, LSE), internal clocks (LSI, MSI), microcontroller output clock (MCO),
GPIO and RTC wakeup interrupt can be used as input to general-purpose timer
(TIM15/16/17) channel 1.
This allows to calibrate the HSI16/MSI system clocks (with TIM15/TIM16 and LSE) or LSI
(with TIM16 and HSE). This is also used to precisely measure LSI (with TIM16 and HSI16)
or MSI (with TIM17 and HSI16) oscillator frequency.
When Low Speed External (LSE) oscillator is used, no additional hardware connections are
required.
This feature is described in Section 6.2.16: Internal/external clock measurement with
TIM15/TIM16/TIM17.
290/1693
DocID024597 Rev 3
RM0351
Peripherals interconnect matrix
External clock LSE can be used as input to general-purpose timers (TIM2) on TIM2_ETR
pin, see Section 27.4.19: TIM2 option register 1 (TIM2_OR1).
Active power mode
Run, Sleep, Low-power run, Low-power sleep.
9.3.8
From RTC, COMP1, COMP2 to low-power timer (LPTIM1/LPTIM2)
Purpose
RTC alarm A/B, RTC_TAMP1/2/3 input detection, COMP1/2_OUT can be used as trigger to
start LPTIM counters (LPTIM1/2).
Triggering signals
This trigger feature is described in Section 30.4.5: Trigger multiplexer (and following
sections).
The input selection is described in Table 166: LPTIM external trigger connection.
Active power mode
Run, Sleep, Low-power run, Low-power sleep, Stop 0, Stop 1, Stop 2 (LPTIM1 only).
9.3.9
From timer (TIM1/TIM2/TIM3/TIM8/TIM15) to comparators
(COMP1/COMP2)
Purpose
Advanced-control timers (TIM1/TIM8), general-purpose timers (TIM2/TIM3) and generalpurpose timer (TIM15) can be used as blanking window input to COMP1/COMP2
The blanking function is described in Section 19.3.7: Comparator output blanking function.
The blanking sources are given in:
•
Section 19.6.1: Comparator 1 control and status register (COMP1_CSR) bits 20:18
BLANKING[2:0]
•
Section 19.6.2: Comparator 2 control and status register (COMP2_CSR) bits 20:18
BLANKING[2:0]
Triggering signals
Timer output signal TIMx_Ocx are the inputs to blanking source of COMP1/COMP2.
Active power mode
Run, Sleep, Low-power run, Low-power sleep.
9.3.10
From ADC (ADC1) to ADC (ADC2)
Purpose
ADC1 can be used as a “master” to trigger ADC2 “slave” start of conversion.
In dual ADC mode, the converted data of the master and slave ADCs can be read in
parallel.
DocID024597 Rev 3
291/1693
294
Peripherals interconnect matrix
RM0351
A description of dual ADC mode is provided in: Section 16.3.30: Dual ADC modes.
Triggering signals
Internal to the ADCs.
Active power mode
Run, Sleep, Low-power run, Low-power sleep.
9.3.11
From USB to timer (TIM2)
Purpose
USB (OTG_FS SOF) can generate a trigger to general-purpose timer (TIM2).
Connection of USB to TIM2 is described in Table 153: TIMx internal trigger connection.
Triggering signals
Internal signal generated by USB_FS Start Of Frame.
Active power mode
Run, Sleep.
9.3.12
From internal analog source to ADC (ADC1/ADC2/ADC3) and OPAMP
(OPAMP1/OPAM2)
Purpose
Internal temperature sensor (VTS) and VBAT monitoring channel are connected to
ADC1/ADC3 input channels.
Internal reference voltage (VREFINT) is connected to ADC1 input channels.
OPAMP1 and OPAMP2 outputs can be connected to ADC1 or ADC2 input channels through
the GPIO.
DAC1_OUT1 and DAC1_OUT2 outputs can be connected to ADC2 or ADC3 input
channels.
DAC1_OUT1 can be connected to OPAMP1_VINP.
DAC1_OUT2 can be connected to OPAMP2_VINP.
This is according:
•
Section 16.2: ADC main features
•
Section 16.3.11: Channel selection (SQRx, JSQRx)
•
Figure 60: ADC1 connectivity
•
Figure 62: ADC3 connectivity
•
Table 116: Operational amplifier possible connections
Active power mode
Run, Sleep, Low-power run, Low-power sleep.
292/1693
DocID024597 Rev 3
RM0351
9.3.13
Peripherals interconnect matrix
From comparators (COMP1/COMP2) to timers
(TIM1/TIM2/TIM3/TIM8/TIM15/TIM16/TIM17)
Purpose
Comparators (COMP1/COMP2) output values can be connected to timers
(TIM1/TIM2/TIM3/TIM8/TIM15/TIM16/TIM17) input captures or TIMx_ETR signals.
The connection to ETR is described in Section 26.3.4: External trigger input.
Comparators (COMP1/COMP2) output values can also generate break input signals for
timers (TIM1/TIM8) on input pins TIMx_BKIN or TIMx_BKIN2 through GPIO alternate
function selection using open drain connection of IO, see Section 26.3.17: Bidirectional
break inputs.
The possible connections are given in:
•
Section 26.4.21: TIM1 option register 1 (TIM1_OR1)
•
Section 26.4.22: TIM8 option register 1 (TIM8_OR1)
•
Section 26.4.26: TIM1 option register 2 (TIM1_OR2)
•
Section 26.4.28: TIM8 option register 2 (TIM8_OR2)
•
Section 27.4.19: TIM2 option register 1 (TIM2_OR1)
•
Section 27.4.20: TIM3 option register 1 (TIM3_OR1)
•
Section 27.4.21: TIM2 option register 2 (TIM2_OR2)
•
Section 27.4.22: TIM3 option register 2 (TIM3_OR2)
•
Section 28.3: TIM16 and TIM17 main features
Active power mode
Run, Sleep, Low-power run, Low-power sleep.
9.3.14
From system errors to timers (TIM1/TIM8/TIM15/TIM16/TIM17)
Purpose
CSS, CPU hardfault, RAM parity error, FLASH ECC double error detection, PVD can
generate system errors in the form of timer break toward timers
(TIM1/TIM8/TIM15/TIM16/TIM17).
The purpose of the break function is to protect power switches driven by PWM signals
generated by the timers.
List of possible source of break are described in:
•
Section 26.3.16: Using the break function (TIM1/TIM8)
•
Section 28.4.13: Using the break function (TIM15/TIM16/TIM17)
•
Section Figure 298.: TIM15 block diagram
•
Section Figure 299.: TIM16 and TIM17 block diagram
Active power mode
Run, Sleep, Low-power run, Low-power sleep.
DocID024597 Rev 3
293/1693
294
Peripherals interconnect matrix
9.3.15
RM0351
From timers (TIM16/TIM17) to IRTIM
Purpose
General-purpose timer (TIM16/TIM17) output channel TIMx_OC1 are used to generate the
waveform of infrared signal output.
The functionality is described in Section 31: Infrared interface (IRTIM).
Active power mode
Run, Sleep, Low-power run, Low-power sleep.
294/1693
DocID024597 Rev 3
RM0351
Direct memory access controller (DMA)
10
Direct memory access controller (DMA)
10.1
Introduction
Direct memory access (DMA) is used in order to provide high-speed data transfer between
peripherals and memory as well as memory to memory. Data can be quickly moved by DMA
without any CPU actions. This keeps CPU resources free for other operations.
The two DMA controllers have 14 channels in total, each dedicated to managing memory
access requests from one or more peripherals. Each has an arbiter for handling the priority
between DMA requests.
10.2
DMA main features
•
14 independently configurable channels (requests)
•
Each channel is connected to dedicated hardware DMA requests, software trigger is
also supported on each channel. This configuration is done by software.
•
Priorities between requests from channels of one DMA are software programmable (4
levels consisting of very high, high, medium, low) or hardware in case of equality
(request 1 has priority over request 2, etc.)
•
Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data
size.
•
Support for circular buffer management
•
3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error)
logically ORed together in a single interrupt request for each channel
•
Memory-to-memory transfer
•
Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral
transfers
•
Access to Flash, SRAM, APB and AHB peripherals as source and destination
•
Programmable number of data to be transferred: up to 65535
DocID024597 Rev 3
295/1693
318
Direct memory access controller (DMA)
RM0351
The block diagram is shown in the following figure.
Figure 23. DMA block diagram
,EXV
,&RGH
'EXV
'&RGH
)ODVKLQWHUIDFH
&RUWH[0ZLWK)38
6EXV
%XVPDWUL[
65$0
'0$
65$0
)0&DQG4XDG63,
&K
&K
$+%SHULSKHUDOV
ZLWK'0$FDSDELOLW\
'0$
&K
$(6$'&$'&$'&
$+%
&5&
'0$
&K
&K
76&
'0$
5HVHW FORFNFRQWURO 5&&
&K
$3%SHULSKHUDOV
ZLWK'0$FDSDELOLW\
%ULGJH
$3%
')6'06$,6$,7,0
7,07,07,07,0
86$5763,6'00&
$3%SHULSKHUDOV
ZLWK'0$FDSDELOLW\
%ULGJH
$3%
'0$UHTXHVWV
6:30,/38$57'$&
'$&,&,&,&
86$5786$578$57
8$5763,63,7,0
7,07,07,07,07,0
069
10.3
DMA implementation
This manual describes the full set of features implemented in DMA1. DMA2 supports the
same number of channels, and is identical to DMA1.
Table 36. DMA implementation
Feature
Number of DMA channels
296/1693
DocID024597 Rev 3
DMA1
DMA2
7
7
RM0351
10.4
Direct memory access controller (DMA)
DMA functional description
The DMA controller performs direct memory transfer by sharing the system bus with the
Cortex®-M4 core. The DMA request may stop the CPU access to the system bus for some
bus cycles, when the CPU and DMA are targeting the same destination (memory or
peripheral). The bus matrix implements round-robin scheduling, thus ensuring at least half
of the system bus bandwidth (both to memory and peripheral) for the CPU.
10.4.1
DMA transactions
After an event, the peripheral sends a request signal to the DMA Controller. The DMA
controller serves the request depending on the channel priorities. As soon as the DMA
Controller accesses the peripheral, an Acknowledge is sent to the peripheral by the DMA
Controller. The peripheral releases its request as soon as it gets the Acknowledge from the
DMA Controller. Once the request is de-asserted by the peripheral, the DMA Controller
release the Acknowledge. If there are more requests, the peripheral can initiate the next
transaction.
In summary, each DMA transfer consists of three operations:
10.4.2
•
The loading of data from the peripheral data register or a location in memory addressed
through an internal current peripheral/memory address register. The start address used
for the first transfer is the base peripheral/memory address programmed in the
DMA_CPARx or DMA_CMARx register
•
The storage of the data loaded to the peripheral data register or a location in memory
addressed through an internal current peripheral/memory address register. The start
address used for the first transfer is the base peripheral/memory address programmed
in the DMA_CPARx or DMA_CMARx register
•
The post-decrementing of the DMA_CNDTRx register, which contains the number of
transactions that have still to be performed.
Arbiter
The arbiter manages the channel requests based on their priority and launches the
peripheral/memory access sequences.
The priorities are managed in two stages:
•
•
Software: each channel priority can be configured in the DMA_CCRx register. There
are four levels:
–
Very high priority
–
High priority
–
Medium priority
–
Low priority
Hardware: if 2 requests have the same software priority level, the channel with the
lowest number will get priority versus the channel with the highest number. For
example, channel 2 gets priority over channel 4.
DocID024597 Rev 3
297/1693
318
Direct memory access controller (DMA)
10.4.3
RM0351
DMA channels
Each channel can handle DMA transfer between a peripheral register located at a fixed
address and a memory address. The amount of data to be transferred (up to 65535) is
programmable. The register which contains the amount of data items to be transferred is
decremented after each transaction.
Programmable data sizes
Transfer data sizes of the peripheral and memory are fully programmable through the
PSIZE and MSIZE bits in the DMA_CCRx register.
Pointer incrementation
Peripheral and memory pointers can optionally be automatically post-incremented after
each transaction depending on the PINC and MINC bits in the DMA_CCRx register. If
incremented mode is enabled, the address of the next transfer will be the address of the
previous one incremented by 1, 2 or 4 depending on the chosen data size. The first transfer
address is the one programmed in the DMA_CPARx/DMA_CMARx registers. During
transfer operations, these registers keep the initially programmed value. The current
transfer addresses (in the current internal peripheral/memory address register) are not
accessible by software.
If the channel is configured in non-circular mode, no DMA request is served after the last
transfer (that is once the number of data items to be transferred has reached zero). In order
to reload a new number of data items to be transferred into the DMA_CNDTRx register, the
DMA channel must be disabled.
Note:
If a DMA channel is disabled, the DMA registers are not reset. The DMA channel registers
(DMA_CCRx, DMA_CPARx and DMA_CMARx) retain the initial values programmed during
the channel configuration phase.
In circular mode, after the last transfer, the DMA_CNDTRx register is automatically reloaded
with the initially programmed value. The current internal address registers are reloaded with
the base address values from the DMA_CPARx/DMA_CMARx registers.
Channel configuration procedure
The following sequence should be followed to configure a DMA channel x (where x is the
channel number).
1.
Set the peripheral register address in the DMA_CPARx register. The data will be
moved from/ to this address to/ from the memory after the peripheral event.
2.
Set the memory address in the DMA_CMARx register. The data will be written to or
read from this memory after the peripheral event.
3.
Configure the total number of data to be transferred in the DMA_CNDTRx register.
After each peripheral event, this value will be decremented.
4.
Configure the channel priority using the PL[1:0] bits in the DMA_CCRx register
5.
Configure data transfer direction, circular mode, peripheral & memory incremented
mode, peripheral & memory data size, and interrupt after half and/or full transfer in the
DMA_CCRx register
6.
Activate the channel by setting the ENABLE bit in the DMA_CCRx register.
As soon as the channel is enabled, it can serve any DMA request from the peripheral
connected on the channel.
298/1693
DocID024597 Rev 3
RM0351
Direct memory access controller (DMA)
Once half of the bytes are transferred, the half-transfer flag (HTIF) is set and an interrupt is
generated if the Half-Transfer Interrupt Enable bit (HTIE) is set. At the end of the transfer,
the Transfer Complete Flag (TCIF) is set and an interrupt is generated if the Transfer
Complete Interrupt Enable bit (TCIE) is set.
Circular mode
Circular mode is available to handle circular buffers and continuous data flows (e.g. ADC
scan mode). This feature can be enabled using the CIRC bit in the DMA_CCRx register.
When circular mode is activated, the number of data to be transferred is automatically
reloaded with the initial value programmed during the channel configuration phase, and the
DMA requests continue to be served.
Memory-to-memory mode
The DMA channels can also work without being triggered by a request from a peripheral.
This mode is called Memory to Memory mode.
If the MEM2MEM bit in the DMA_CCRx register is set, then the channel initiates transfers
as soon as it is enabled by software by setting the Enable bit (EN) in the DMA_CCRx
register. The transfer stops once the DMA_CNDTRx register reaches zero. Memory to
Memory mode may not be used at the same time as Circular mode.
10.4.4
Programmable data width, data alignment and endians
When PSIZE and MSIZE are not equal, the DMA performs some data alignments as
described in Table 37: Programmable data width & endian behavior (when bits PINC =
MINC = 1).
Table 37. Programmable data width & endian behavior (when bits PINC = MINC = 1)
Number
Source
of data
Destination
port
items to
port width
width
transfer
(NDT)
Source content:
address / data
Transfer operations
Destination
content:
address / data
8
8
4
@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3
1: READ B0[7:0] @0x0 then WRITE B0[7:0] @0x0
2: READ B1[7:0] @0x1 then WRITE B1[7:0] @0x1
3: READ B2[7:0] @0x2 then WRITE B2[7:0] @0x2
4: READ B3[7:0] @0x3 then WRITE B3[7:0] @0x3
@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3
8
16
4
@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3
1: READ B0[7:0] @0x0 then WRITE 00B0[15:0] @0x0
2: READ B1[7:0] @0x1 then WRITE 00B1[15:0] @0x2
3: READ B3[7:0] @0x2 then WRITE 00B2[15:0] @0x4
4: READ B4[7:0] @0x3 then WRITE 00B3[15:0] @0x6
@0x0 / 00B0
@0x2 / 00B1
@0x4 / 00B2
@0x6 / 00B3
8
32
4
@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3
1: READ B0[7:0] @0x0 then WRITE 000000B0[31:0] @0x0
2: READ B1[7:0] @0x1 then WRITE 000000B1[31:0] @0x4
3: READ B3[7:0] @0x2 then WRITE 000000B2[31:0] @0x8
4: READ B4[7:0] @0x3 then WRITE 000000B3[31:0] @0xC
@0x0 / 000000B0
@0x4 / 000000B1
@0x8 / 000000B2
@0xC / 000000B3
16
8
4
@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6
1: READ B1B0[15:0] @0x0 then WRITE B0[7:0] @0x0
2: READ B3B2[15:0] @0x2 then WRITE B2[7:0] @0x1
3: READ B5B4[15:0] @0x4 then WRITE B4[7:0] @0x2
4: READ B7B6[15:0] @0x6 then WRITE B6[7:0] @0x3
@0x0 / B0
@0x1 / B2
@0x2 / B4
@0x3 / B6
16
16
4
@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6
1: READ B1B0[15:0] @0x0 then WRITE B1B0[15:0] @0x0
2: READ B3B2[15:0] @0x2 then WRITE B3B2[15:0] @0x2
3: READ B5B4[15:0] @0x4 then WRITE B5B4[15:0] @0x4
4: READ B7B6[15:0] @0x6 then WRITE B7B6[15:0] @0x6
@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6
16
32
4
@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6
1: READ B1B0[15:0] @0x0 then WRITE 0000B1B0[31:0] @0x0
2: READ B3B2[15:0] @0x2 then WRITE 0000B3B2[31:0] @0x4
3: READ B5B4[15:0] @0x4 then WRITE 0000B5B4[31:0] @0x8
4: READ B7B6[15:0] @0x6 then WRITE 0000B7B6[31:0] @0xC
@0x0 / 0000B1B0
@0x4 / 0000B3B2
@0x8 / 0000B5B4
@0xC / 0000B7B6
DocID024597 Rev 3
299/1693
318
Direct memory access controller (DMA)
RM0351
Table 37. Programmable data width & endian behavior (when bits PINC = MINC = 1) (continued)
Number
Source
of data
Destination
port
items to
port width
width
transfer
(NDT)
Source content:
address / data
Transfer operations
Destination
content:
address / data
32
8
4
@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC
1: READ B3B2B1B0[31:0] @0x0 then WRITE B0[7:0] @0x0
2: READ B7B6B5B4[31:0] @0x4 then WRITE B4[7:0] @0x1
3: READ BBBAB9B8[31:0] @0x8 then WRITE B8[7:0] @0x2
4: READ BFBEBDBC[31:0] @0xC then WRITE BC[7:0] @0x3
@0x0 / B0
@0x1 / B4
@0x2 / B8
@0x3 / BC
32
16
4
@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC
1: READ B3B2B1B0[31:0] @0x0 then WRITE B1B0[15:0] @0x0
2: READ B7B6B5B4[31:0] @0x4 then WRITE B5B4[15:0] @0x2
3: READ BBBAB9B8[31:0] @0x8 then WRITE B9B8[15:0] @0x4
4: READ BFBEBDBC[31:0] @0xC then WRITE BDBC[15:0] @0x6
@0x0 / B1B0
@0x2 / B5B4
@0x4 / B9B8
@0x6 / BDBC
32
32
4
@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC
1: READ B3B2B1B0[31:0] @0x0 then WRITE B3B2B1B0[31:0] @0x0
@0x0 / B3B2B1B0
2: READ B7B6B5B4[31:0] @0x4 then WRITE B7B6B5B4[31:0] @0x4
@0x4 / B7B6B5B4
3: READ BBBAB9B8[31:0] @0x8 then WRITE BBBAB9B8[31:0] @0x8 @0x8 / BBBAB9B8
4: READ BFBEBDBC[31:0] @0xC then WRITE BFBEBDBC[31:0] @0xC @0xC / BFBEBDBC
300/1693
DocID024597 Rev 3
RM0351
Direct memory access controller (DMA)
Addressing an AHB peripheral that does not support byte or halfword
write operations
When the DMA initiates an AHB byte or halfword write operation, the data are duplicated on
the unused lanes of the HWDATA[31:0] bus. So when the used AHB slave peripheral does
not support byte or halfword write operations (when HSIZE is not used by the peripheral)
and does not generate any error, the DMA writes the 32 HWDATA bits as shown in the two
examples below:
•
To write the halfword “0xABCD”, the DMA sets the HWDATA bus to “0xABCDABCD”
with HSIZE = HalfWord
•
To write the byte “0xAB”, the DMA sets the HWDATA bus to “0xABABABAB” with
HSIZE = Byte
Assuming that the AHB/APB bridge is an AHB 32-bit slave peripheral that does not take the
HSIZE data into account, it will transform any AHB byte or halfword operation into a 32-bit
APB operation in the following manner:
•
an AHB byte write operation of the data “0xB0” to 0x0 (or to 0x1, 0x2 or 0x3) will be
converted to an APB word write operation of the data “0xB0B0B0B0” to 0x0
•
an AHB halfword write operation of the data “0xB1B0” to 0x0 (or to 0x2) will be
converted to an APB word write operation of the data “0xB1B0B1B0” to 0x0
For instance, if the user wants to write the APB backup registers (16-bit registers aligned to
a 32-bit address boundary), he must configure the memory source size (MSIZE) to “16-bit”
and the peripheral destination size (PSIZE) to “32-bit”.
10.4.5
Error management
A DMA transfer error can be generated by reading from or writing to a reserved address
space. When a DMA transfer error occurs during a DMA read or a write access, the faulty
channel is automatically disabled through a hardware clear of its EN bit in the corresponding
Channel configuration register (DMA_CCRx). The channel's transfer error interrupt flag
(TEIF) in the DMA_IFR register is set and an interrupt is generated if the transfer error
interrupt enable bit (TEIE) in the DMA_CCRx register is set.
10.4.6
DMA interrupts
An interrupt can be produced on a Half-transfer, Transfer complete or Transfer error for
each DMA channel. Separate interrupt enable bits are available for flexibility.
Table 38. DMA interrupt requests
Interrupt event
Event flag
Enable control bit
Half-transfer
HTIF
HTIE
Transfer complete
TCIF
TCIE
Transfer error
TEIF
TEIE
DocID024597 Rev 3
301/1693
318
Direct memory access controller (DMA)
10.4.7
RM0351
DMA request mapping
DMA controller
The hardware requests from the peripherals (TIM1/2/3/4/5/6/7/8/15/16/17, ADC1/2/3,
DAC1/2, SPI1/2/3, I2C1/2/3, SDMMC1, QUADSPI, SWPMI1, DFSDM, SAI1/2, AES,
USART1/2/3, UART4/5 and LPUART1) are mapped to the DMA1 or DMA2 channels (1 to 7)
through the DMA1/2 channel selection register.
Refer to Figure 24: DMA1 request mapping and Figure 25: DMA2 request mapping.
The peripheral DMA requests can be independently activated/de-activated by programming
the DMA control bit in the registers of the corresponding peripheral.
302/1693
DocID024597 Rev 3
RM0351
Direct memory access controller (DMA)
Figure 24. DMA1 request mapping
3HULSKHUDOUHTXHVWVLJQDOV
$'&7,0B&+7,0B&+7,0B83
7,0B&+
6:WULJJHU 0(00(0ELW
$'&63,B5;86$57B7;,&B7;
7,0B837,0B&+7,0B&+
6:WULJJHU 0(00(0ELW
$'&63,B7;86$57B5;,&B5;
7,0B&+7,0B837,0B&+
7,0B837,0B83'$&7,0B&+
6:WULJJHU 0(00(0ELW
')6'063,B5;86$57B7;
,&B7;7,0B83'$&7,0B&+
7,0B&+7,0B75,*7,0B&20
6:WULJJHU 0(00(0ELW
')6'063,B7;86$57B5;
,&B5;7,0B&+48$'63,
7,0B&+7,0B&+7,0B83
7,0B75,*7,0B&20
6:WULJJHU 0(00(0ELW
')6'06$,B$86$57B5;,&B7;
7,0B&+7,0B837,0B&+
7,0B75,*7,0B83
6:WULJJHU 0(00(0ELW
')6'06$,B%86$57B7;,&B5;
7,0B&+7,0B&+7,0B&+
7,0B837,0B837,0B&+
6:WULJJHU 0(00(0ELW
'0$FKDQQHO
&KDQQHO '0$B5(4
)L[HGKDUGZDUHSULRULW\
+LJKSULRULW\
&6
&KDQQHO '0$B5(4
&6
&KDQQHO '0$B5(4
&6
&KDQQHO '0$B5(4
,QWHUQDO'0$
UHTXHVW
&6
&KDQQHO '0$B5(4
&6
&KDQQHO '0$B5(4
&6
&KDQQHO '0$B5(4
/RZSULRULW\
&6
'0$B&6(/5
069
DocID024597 Rev 3
303/1693
318
Direct memory access controller (DMA)
RM0351
Figure 25. DMA2 request mapping
3HULSKHUDOUHTXHVWVLJQDOV
6$,B$8$57B7;63,B5;
6:30,B5;7,0B&+7,0B75,*
7,0B&20$(6B,17,0B&+7,0B83
6:WULJJHU 0(00(0ELW
6$,B%8$57B5;63,B7;
6:30,B7;7,0B&+7,0B83
$(6B2877,0B&+7,0B75,*
7,0B&20
6:WULJJHU 0(00(0ELW
$'&6$,B$8$57B7;63,B5;
$(6B287
6:WULJJHU 0(00(0ELW
$'&6$,B%7,0B83'$&63,B7;
7,0B&+6'00&
6:WULJJHU 0(00(0ELW
$'&8$57B5;7,0B83'$&
7,0B&+$(6B,16'00&
6:WULJJHU 0(00(0ELW
6$,B$86$57B7;/38$57B7;
,&B5;7,0B&+
6:WULJJHU 0(00(0ELW
6$,B%86$57B5;48$'63,
/38$57B5;,&B7;7,0B&+
'0$FKDQQHO
&KDQQHO '0$B5(4
)L[HGKDUGZDUHSULRULW\
+LJKSULRULW\
&6
&KDQQHO '0$B5(4
&6
&KDQQHO '0$B5(4
&6
&KDQQHO '0$B5(4
,QWHUQDO'0$
UHTXHVW
&6
&KDQQHO '0$B5(4
&6
&KDQQHO '0$B5(4
&6
&KDQQHO '0$B5(4
/RZSULRULW\
6:WULJJHU 0(00(0ELW
&6
'0$B&6(/5
069
304/1693
DocID024597 Rev 3
RM0351
Direct memory access controller (DMA)
Table 39. Summary of the DMA1 requests for each channel
Request.
number
Channel 1
Channel 2
Channel 3
Channel 4
Channel 5
Channel 6
Channel 7
0
ADC1
ADC2
ADC3
DFSDM0
DFSDM1
DFSDM2
DFSDM3
1
-
SPI1_RX
SPI1_TX
SPI2_RX
SPI2_TX
SAI2_A
SAI2_B
2
-
3
-
I2C3_TX
I2C3_RX
I2C2_TX
I2C2_RX
I2C1_TX
I2C1_RX
4
TIM2_CH3
TIM2_UP
TIM16_CH1
TIM16_UP
-
TIM2_CH1
TIM16_CH1
TIM16_UP
TIM2_CH2
TIM2_CH4
5
TIM17_CH1
TIM17_UP
TIM3_CH3
TIM3_CH4
TIM3_UP
TIM7_UP.
DAC2
QUADSPI
TIM3_CH1
TIM3_TRIG
TIM17_CH1
TIM17_UP
6
TIM4_CH1
-
TIM6_UP
DAC1
TIM4_CH2
TIM4_CH3
-
TIM4_UP
TIM1_CH2
TIM1_CH4
TIM1_TRIG
TIM1_COM
TIM15_CH1
TIM15_UP
TIM15_TRIG
TIM15_COM
TIM1_UP
TIM1_CH3
7
-
USART3_TX USART3_RX USART1_TX USART1_RX USART2_RX USART2_TX
TIM1_CH1
DocID024597 Rev 3
305/1693
318
Direct memory access controller (DMA)
RM0351
Table 40. Summary of the DMA2 requests for each channel
Request.
number
Channel 1
Channel 2
Channel 3
Channel 4
Channel 5
Channel 6
Channel 7
0
-
-
ADC1
ADC2
ADC3
-
-
1
SAI1_A
SAI1_B
SAI2_A
SAI2_B
-
SAI1_A
SAI1_B
2
UART5_TX
UART5_RX
UART4_TX
-
UART4_RX
3
SPI3_RX
SPI3_TX
-
TIM6_UP
DAC1
TIM7_UP
DAC2
4
SWPMI_RX
SWPMI_TX
SPI1_RX
SPI1_TX
-
5
TIM5_CH4
TIM5_TRIG
TIM5_COM
TIM5_CH3
TIM5_UP
-
TIM5_CH2
TIM5_CH1
I2C1_RX
I2C1_TX
6
AES_IN
AES_OUT
AES_OUT
-
AES_IN
-
-
7
TIM8_CH3
TIM8_UP
TIM8_CH4
TIM8_TRIG
TIM8_COM
-
SDMMC1
SDMMC1
TIM8_CH1
TIM8_CH2
306/1693
DocID024597 Rev 3
USART1_TX USART1_RX
-
QUADSPI
LPUART_TX LPUART_RX
RM0351
Direct memory access controller (DMA)
10.5
DMA registers
Refer to Section 1.1 on page 61 for a list of abbreviations used in register descriptions.
The peripheral registers can be accessed by bytes (8-bit), half-words (16-bit) or words (32bit).
10.5.1
DMA interrupt status register (DMA_ISR)
Address offset: 0x00
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
TEIF7
HTIF7
TCIF7
GIF7
TEIF6
HTIF6
TCIF6
GIF6
TEIF5
HTIF5
TCIF5
GIF5
r
r
r
r
r
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TEIF4
HTIF4
TCIF4
GIF4
TEIF3
HTIF3
TCIF3
GIF3
TEIF2
HTIF2
TCIF2
GIF2
TEIF1
HTIF1
TCIF1
GIF1
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
Bits 31:28 Reserved, must be kept at reset value.
Bits 27, 23, 19, 15, TEIFx: Channel x transfer error flag (x = 1..7)
11, 7, 3 This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No transfer error (TE) on channel x
1: A transfer error (TE) occurred on channel x
Bits 26, 22, 18, 14, HTIFx: Channel x half transfer flag (x = 1..7)
10, 6, 2 This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No half transfer (HT) event on channel x
1: A half transfer (HT) event occurred on channel x
Bits 25, 21, 17, 13, TCIFx: Channel x transfer complete flag (x = 1..7)
9, 5, 1 This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No transfer complete (TC) event on channel x
1: A transfer complete (TC) event occurred on channel x
Bits 24, 20, 16, 12, GIFx: Channel x global interrupt flag (x = 1..7)
8, 4, 0 This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No TE, HT or TC event on channel x
1: A TE, HT or TC event occurred on channel x
DocID024597 Rev 3
307/1693
318
Direct memory access controller (DMA)
10.5.2
RM0351
DMA interrupt flag clear register (DMA_IFCR)
Address offset: 0x04
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
CHTIF
CTCIF7
7
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
CTEIF
7
w
w
w
w
w
w
w
w
w
w
w
w
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
CTEIF
4
CHTIF
4
CTCIF
4
CGIF4
CTEIF
3
w
w
w
w
w
CHTIF
CTCIF3
3
w
w
CGIF7
CGIF3
w
CTEIF6 CHTIF6 CTCIF6 CGIF6
CTEIF2 CHTIF2 CTCIF2 CGIF2
w
w
w
w
CTEIF5 CHTIF5 CTCIF5
CTEIF1 CHTIF1 CTCIF1
w
Bits 31:28 Reserved, must be kept at reset value.
Bits 27, 23, 19, 15, CTEIFx: Channel x transfer error clear (x = 1..7)
11, 7, 3 This bit is set and cleared by software.
0: No effect
1: Clears the corresponding TEIF flag in the DMA_ISR register
Bits 26, 22, 18, 14, CHTIFx: Channel x half transfer clear (x = 1..7)
10, 6, 2 This bit is set and cleared by software.
0: No effect
1: Clears the corresponding HTIF flag in the DMA_ISR register
Bits 25, 21, 17, 13, CTCIFx: Channel x transfer complete clear (x = 1..7)
9, 5, 1 This bit is set and cleared by software.
0: No effect
1: Clears the corresponding TCIF flag in the DMA_ISR register
Bits 24, 20, 16, 12, CGIFx: Channel x global interrupt clear (x = 1..7)
8, 4, 0 This bit is set and cleared by software.
0: No effect
1: Clears the GIF, TEIF, HTIF and TCIF flags in the DMA_ISR register
308/1693
DocID024597 Rev 3
w
w
CGIF5
CGIF1
w
RM0351
Direct memory access controller (DMA)
10.5.3
DMA channel x configuration register (DMA_CCRx)
(x = 1..7 , where x = channel number)
Address offset: 0x08 + 0d20 × (channel number – 1)
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
MEM2
MEM
MINC
PINC
CIRC
DIR
TEIE
HTIE
TCIE
EN
rw
rw
rw
rw
rw
rw
rw
rw
rw
PL[1:0]
rw
rw
MSIZE[1:0]
PSIZE[1:0]
rw
rw
rw
rw
Bits 31:15 Reserved, must be kept at reset value.
Bit 14 MEM2MEM: Memory to memory mode
This bit is set and cleared by software.
0: Memory to memory mode disabled
1: Memory to memory mode enabled
Bits 13:12 PL[1:0]: Channel priority level
These bits are set and cleared by software.
00: Low
01: Medium
10: High
11: Very high
Bits 11:10 MSIZE[1:0]: Memory size
These bits are set and cleared by software.
00: 8-bits
01: 16-bits
10: 32-bits
11: Reserved
Bits 9:8 PSIZE[1:0]: Peripheral size
These bits are set and cleared by software.
00: 8-bits
01: 16-bits
10: 32-bits
11: Reserved
Bit 7 MINC: Memory increment mode
This bit is set and cleared by software.
0: Memory increment mode disabled
1: Memory increment mode enabled
Bit 6 PINC: Peripheral increment mode
This bit is set and cleared by software.
0: Peripheral increment mode disabled
1: Peripheral increment mode enabled
DocID024597 Rev 3
309/1693
318
Direct memory access controller (DMA)
RM0351
Bit 5 CIRC: Circular mode
This bit is set and cleared by software.
0: Circular mode disabled
1: Circular mode enabled
Bit 4 DIR: Data transfer direction
This bit is set and cleared by software.
0: Read from peripheral
1: Read from memory
Bit 3 TEIE: Transfer error interrupt enable
This bit is set and cleared by software.
0: TE interrupt disabled
1: TE interrupt enabled
Bit 2 HTIE: Half transfer interrupt enable
This bit is set and cleared by software.
0: HT interrupt disabled
1: HT interrupt enabled
Bit 1 TCIE: Transfer complete interrupt enable
This bit is set and cleared by software.
0: TC interrupt disabled
1: TC interrupt enabled
Bit 0 EN: Channel enable
This bit is set and cleared by software.
0: Channel disabled
1: Channel enabled
310/1693
DocID024597 Rev 3
RM0351
Direct memory access controller (DMA)
10.5.4
DMA channel x number of data register (DMA_CNDTRx) (x = 1..7,
where x = channel number)
Address offset: 0x0C + 0d20 × (channel number – 1)
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
NDT[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 NDT[15:0]: Number of data to transfer
Number of data to be transferred (0 up to 65535). This register can only be written when the
channel is disabled. Once the channel is enabled, this register is read-only, indicating the
remaining bytes to be transmitted. This register decrements after each DMA transfer.
Once the transfer is completed, this register can either stay at zero or be reloaded
automatically by the value previously programmed if the channel is configured in auto-reload
mode.
If this register is zero, no transaction can be served whether the channel is enabled or not.
10.5.5
DMA channel x peripheral address register (DMA_CPARx) (x = 1..7,
where x = channel number)
Address offset: 0x10 + 0d20 × (channel number – 1)
Reset value: 0x0000 0000
This register must not be written when the channel is enabled.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
PA [31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
PA [15:0]
rw
Bits 31:0 PA[31:0]: Peripheral address
Base address of the peripheral data register from/to which the data will be read/written.
When PSIZE is 01 (16-bit), the PA[0] bit is ignored. Access is automatically aligned to a halfword address.
When PSIZE is 10 (32-bit), PA[1:0] are ignored. Access is automatically aligned to a word
address.
DocID024597 Rev 3
311/1693
318
Direct memory access controller (DMA)
10.5.6
RM0351
DMA channel x memory address register (DMA_CMARx) (x = 1..7,
where x = channel number)
Address offset: 0x14 + 0d20 × (channel number – 1)
Reset value: 0x0000 0000
This register must not be written when the channel is enabled.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
MA [31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
MA [15:0]
rw
Bits 31:0 MA[31:0]: Memory address
Base address of the memory area from/to which the data will be read/written.
When MSIZE is 01 (16-bit), the MA[0] bit is ignored. Access is automatically aligned to a halfword address.
When MSIZE is 10 (32-bit), MA[1:0] are ignored. Access is automatically aligned to a word
address.
312/1693
DocID024597 Rev 3
RM0351
Direct memory access controller (DMA)
10.5.7
DMA1 channel selection register (DMA1_CSELR)
Address offset: 0xA8 (with respect to DMA1 base address)
Reset value: 0x0000 0000
This register is used to manage the mapping of DMA channels (see Figure 24).
31
30
29
28
Res.
Res.
Res.
Res.
15
14
13
12
27
rw
rw
25
24
23
22
C7S [3:0]
20
19
18
17
16
C5S [3:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
11
10
9
8
7
6
5
4
3
2
1
0
C3S [3:0]
rw
21
C6S [3:0]
rw
C4S [3:0]
rw
26
rw
rw
C2S [3:0]
rw
rw
rw
rw
rw
C1S [3:0]
rw
rw
rw
rw
rw
Bits 31:28 Reserved, must be kept at reset value.
Bits 27:24 C7S[3:0]: DMA channel 7 selection
0000: Channel 7 mapped on DFSDM3
0001: Channel 7 mapped on SAI2_B
0010: Channel 7 mapped on USART2_TX
0011: Channel 7 mapped on I2C1_RX
0100: Channel 7 mapped on TIM2_CH2/TIM2_CH4
0101: Channel 7 mapped on TIM17_CH1/TIM17_UP
0110: Channel 7 mapped on TIM4_UP
0111: Channel 7 mapped on TIM1_CH3
Bits 23:20 C6S[3:0]: DMA channel 6 selection
0000: Channel 6 mapped on DFSDM2
0001: Channel 6 mapped on SAI2_A
0010: Channel 6 mapped on USART2_RX
0011: Channel 6 mapped on I2C1_TX
0100: Channel 6 mapped on TIM16_CH1/TIM16_UP
0101: Channel 6 mapped on TIM3_CH1/TIM3_TRIG
0110: Reserved
0111: Channel 6 mapped on TIM1_UP
others: Reserved
Bits 19:16 C5S[3:0]: DMA channel 5 selection
0000: Channel 5 mapped on DFSDM1
0001: Channel 5 mapped on SPI2_TX
0010: Channel 5 mapped on USART1_RX
0011: Channel 5 mapped on I2C2_RX
0100: Channel 5 mapped on TIM2_CH1
0101: Channel 5 mapped on QUADSPI
0110: Channel 5 mapped on TIM4_CH3
0111: Channel 5 mapped on TIM15_CH1/TIM15_UP/TIM15_TRIG/TIM15_COM
others: Reserved
DocID024597 Rev 3
313/1693
318
Direct memory access controller (DMA)
RM0351
Bits 15:12 C4S[3:0]: DMA channel 4 selection
0000: Channel 4 mapped on DFSDM0
0001: Channel 4 mapped on SPI2_RX
0010: Channel 4 mapped on USART1_TX
0011: Channel 4 mapped on I2C2_TX
0100: Reserved
0101: Channel 4 mapped on TIM7_UP/DAC2
0110: Channel 4 mapped on TIM4_CH2
0111: Channel 4 mapped on TIM1_CH4/TIM1_TRIG/TIM1_COM
others: Reserved
Bits 11:8 C3S[3:0]: DMA channel 3 selection
0000: Channel 3 mapped on ADC3
0001: Channel 3 mapped on SPI1_TX
0010: Channel 3 mapped on USART3_RX
0011: Channel 3 mapped on I2C3_RX
0100: Channel 3 mapped on TIM16_CH1/TIM16_UP
0101: Channel 3 mapped on TIM3_CH4/TIM3_UP
0110: Channel 3 mapped on TIM6_UP/DAC1
0111: Channel 3 mapped on TIM1_CH2
others: Reserved
Bits 7:4 C2S[3:0]: DMA channel 2 selection
0000: Channel 2 mapped on ADC2
0001: Channel 2 mapped on SPI1_RX
0010: Channel 2 mapped on USART3_TX
0011: Channel 2 mapped on I2C3_TX
0100: Channel 2 mapped on TIM2_UP
0101: Channel 2 mapped on TIM3_CH3
0110: Reserved
0111: Channel 2 mapped on TIM1_CH1
others: Reserved
Bits 3:0 C1S[3:0]: DMA channel 1 selection
0000: Channel 1 mapped on ADC1
0001: Reserved
0010: Reserved
0011: Reserved
0100: Channel 1 mapped on TIM2_CH3
0101: Channel 1 mapped on TIM17_CH1/TIM17_UP
0110: Channel 1 mapped on TIM4_CH1
0111: Reserved
others: Reserved
314/1693
DocID024597 Rev 3
RM0351
Direct memory access controller (DMA)
10.5.8
DMA2 channel selection register (DMA2_CSELR)
Address offset: 0xA8 (with respect to DMA2 base address)
Reset value: 0x0000 0000
This register is used to manage the mapping of DMA channels (see Figure 25).
31
30
29
28
Res.
Res.
Res.
Res.
15
14
13
12
27
rw
rw
25
24
23
22
C7S [3:0]
20
19
18
17
16
C5S [3:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
11
10
9
8
7
6
5
4
3
2
1
0
C3S [3:0]
rw
21
C6S [3:0]
rw
C4S [3:0]
rw
26
rw
rw
C2S [3:0]
rw
rw
rw
rw
rw
C1S [3:0]
rw
rw
rw
rw
rw
Bits 31:28 Reserved, must be kept at reset value.
Bits 27:24 C7S[3:0]: DMA channel 7 selection
0000: Reserved
0001: Channel 7 mapped on SAI1_B
0010: Channel 7 mapped on USART1_RX
0011: Channel 7 mapped on QUADSPI
0100: Channel 7 mapped on LPUART_RX
0101: Channel 7 mapped on I2C1_TX
0110: Reserved
0111: Channel 7 mapped on TIM8_CH2
others: Reserved
Bits 23:20 C6S[3:0]: DMA channel 6 selection
0000: Reserved
0001: Channel 6 mapped on SAI1_A
0010: Channel 6 mapped on USART1_TX
0011: Reserved
0100: Channel 6 mapped on LPUART_TX
0101: Channel 6 mapped on I2C1_RX
0110: Reserved
0111: Channel 6 mapped on TIM8_CH1
others: Reserved
Bits 19:16 C5S[3:0]: DMA channel 5 selection
0000: Channel 5 mapped on ADC3
0001: Reserved
0010: Channel 5 mapped on UART4_RX
0011: Channel 5 mapped on TIM7_UP/DAC2
0100: Reserved
0101: Channel 5 mapped on TIM5_CH1
0110: Channel 5 mapped on AES_IN
0111: Channel 5 mapped on SDMMC1
others: Reserved
DocID024597 Rev 3
315/1693
318
Direct memory access controller (DMA)
RM0351
Bits 15:12 C4S[3:0]: DMA channel 4 selection
0000: Channel 4 mapped on ADC2
0001: Channel 4 mapped on SAI2_B
0010: Reserved
0011: Channel 4 mapped on TIM6_UP/DAC1
0100: Channel 4 mapped on SPI1_TX
0101: Channel 4 mapped on TIM5_CH2
0110: Reserved
0111: Channel 4 mapped on SDMMC1
others: Reserved
Bits 11:8 C3S[3:0]: DMA channel 3 selection
0000: Channel 3 mapped on ADC1
0001: Channel 3 mapped on SAI2_A
0010: Channel 3 mapped on UART4_TX
0011: Reserved
0100: Channel 3 mapped on SPI1_RX
0101: Reserved
0110: Channel 3 mapped on AES_OUT
0111: Reserved
others: Reserved
Bits 7:4 C2S[3:0]: DMA channel 2 selection
0000: Reserved
0001: Channel 2 mapped on SAI1_B
0010: Channel 2 mapped on UART5_RX
0011: Channel 2 mapped on SPI3_TX
0100: Channel 2 mapped on SWPMI1_TX
0101: Channel 2 mapped on TIM5_CH3/TIM5_UP
0110: Channel 2 mapped on AES_OUT
0111: Channel 2 mapped on TIM8_CH4/TIM8_TRIG/TIM8_COM
others: Reserved
Bits 3:0 C1S[3:0]: DMA channel 1 selection
0000: Reserved
0001: Channel 1 mapped on SAI1_A
0010: Channel 1 mapped on UART5_TX
0011: Channel 1 mapped on SPI3_RX
0100: Channel 1 mapped on SWPMI1_RX
0101: Channel 1 mapped on TIM5_CH4/TIM5_TRIG/TIM5_COM
0110: Channel 1 mapped on AES_IN
0111: Channel 1 mapped on TIM8_CH3/TIM8_UP
others: Reserved
316/1693
DocID024597 Rev 3
0x48
DMA_CNDTR4
0
0
0
DMA_CPAR3
DMA_CMAR3
0
0
Reset value
0
Reset value
0
0
Reset value
DocID024597 Rev 3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reset value
0
PL
[1:0]
0
0
PA[31:0]
MA[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PL
[1:0]
0
NDT[15:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
EN
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
EN
TCIE
0
TCIE
0
HTIE
0
TEIE
HTIE
0
TEIE
NDT[15:0]
DIR
0
0
EN
MA[31:0]
0
TCIE
PA[31:0]
0
HTIE
0
0
PL
[1:0]
DIR
GIF3
TEIF2
HTIF2
TCIF2
GIF2
TEIF1
HTIF1
TCIF1
GIF1
0
0
0
0
0
0
0
0
0
0
CHTIF7
CTCIF7
CGIF7
CTEIF6
CHTIF6
CTCIF6
CGIF6
CTEIF5
CHTIF5
CTCIF5
0
0
0
0
0
0
0
0
0
0
0
CHTIF3
CTCIF3
CGIF3
CTEIF2
CHTIF2
CTCIF2
CGIF2
CTEIF1
CHTIF1
CTCIF1
CGIF1
0
0
0
0
0
0
0
0
MINC
PSIZE [1:0]
MSIZE [1:0]
CTEIF3
0
0
PINC
CIRC
DIR
TEIE
HTIE
TCIE
EN
0
PINC
TCIF3
0
0
CIRC
HTIF3
0
0
0
TEIE
0
0
DIR
0
0
0
PINC
0
CIRC
GIF4
TEIF3
0
0
PINC
MA[31:0]
0
MINC
TCIF4
0
0
MINC
HTIF4
0
0
CIRC
Reset value
MINC
Reset value
PL
[1:0]
PSIZE [1:0]
GIF5
TEIF4
0
0
PSIZE [1:0]
TCIF5
0
0
MSIZE [1:0]
HTIF5
0
CGIF4
GIF6
TEIF5
0
CTCIF4
TCIF6
0
CHTIF4
HTIF6
0
MEM2MEM
GIF7
TEIF6
0
CTEIF4
TCIF7
0
Res.
HTIF7
0
0
MSIZE [1:0]
0
MEM2MEM
Reset value
MEM2MEM
PA[31:0]
Res.
0
Res.
TEIF7
Res.
Res.
Res.
Res.
0
CTEIF7
Res.
Res.
Res.
Res.
0
CGIF5
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
PSIZE [1:0]
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
MSIZE [1:0]
0
0
MEM2MEM
DMA_CMAR2
Res.
Reset value
Res.
DMA_CPAR2
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
0
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DMA_CMAR1
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DMA_CPAR1
Res.
0
0
0
Res.
0
0
Res.
0
0
0
0
Res.
0
0
0
Res.
0
0
0
Res.
0
0
0
Res.
0
0
0
Res.
0
0
0
Res.
0
0
0
Res.
0
0
0
Res.
0
0
0
0
Res.
0
0
0
0
Res.
0
0
0
Res.
0
0
0
0
Res.
0
0
0
0
Res.
0
0
0
Res.
0
0
0
Res.
0
0
0
0
0
Res.
DMA_CCR4
0
0
0
0
0
Res.
0x44
Reset value
0
0
0
0
Res.
0x3C
Reset value
Res.
Reset value
Res.
0x38
DMA_CNDTR3
Res.
Reset value
Res.
0x34
DMA_CCR3
0
0
0
Res.
0x30
Reset value
0
Res.
0x28
Reset value
0
0
Res.
0x24
DMA_CNDTR2
0
0
Res.
0x20
DMA_CCR2
0
Res.
0x1C
Reset value
Res.
0x14
Reset value
Res.
0x10
DMA_CNDTR1
Res.
0x0C
DMA_CCR1
Res.
0x08
DMA_IFCR
Res.
0x04
DMA_ISR
Res.
0x00
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res.
Offset
Res.
10.5.9
Res.
RM0351
Direct memory access controller (DMA)
DMA register map
The following table gives the DMA register map and the reset values.
Table 41. DMA register map and reset values
0
0
0
0
0
0
0
NDT[15:0]
0
0
0
0
0
0
0
NDT[15:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
317/1693
318
Direct memory access controller (DMA)
RM0351
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DMA_CMAR4
Reset value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MINC
PA[31:0]
0
Res.
Reset value
0
0
0
0
MA[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PINC
CIRC
DIR
TEIE
HTIE
TCIE
EN
PSIZE [1:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CIRC
DIR
TEIE
HTIE
TCIE
EN
PSIZE [1:0]
0
PINC
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MEM2MEM
MINC
0
0
0
PA[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DMA_CMAR6
Reset value
0
Res.
Reset value
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
DMA_CPAR6
PL
[1:0]
NDT[15:0]
0
0
MA[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reset value
Reset value
CIRC
DIR
TEIE
HTIE
TCIE
EN
PSIZE [1:0]
0
PINC
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PA[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DMA_CMAR7
Reset value
0
NDT[15:0]
0
DMA_CPAR7
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DMA_CNDTR7
0
PL
[1:0]
MSIZE [1:0]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DMA_CCR7
Res.
Reserved
Reset value
0
0
MA[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reset value
Res.
Res.
DMA_CSELR
Res.
Reserved
Res.
0x090
0x0A8
0
0
0
Res.
DMA_CNDTR6
0x080
0x08C
0
0
MSIZE [1:0]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DMA_CCR6
0x07C
0x088
0
MA[31:0]
Reset value
0x084
0
0
Reset value
0x078
0
Reserved
0x06C
0x074
0
MINC
0
0x068
0x070
0
MEM2MEM
0
DMA_CMAR5
Reset value
0
NDT[15:0]
0
Res.
0x64
Reset value
0
PA[31:0]
Res.
0x60
0
Res.
Reset value
DMA_CPAR5
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DMA_CNDTR5
Res.
0x5C
0
Res.
Reset value
PL
[1:0]
MSIZE [1:0]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DMA_CCR5
0x58
Res.
Reserved
Res.
0x54
Res.
0x50
DMA_CPAR4
Res.
0x4C
Register
MEM2MEM
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 41. DMA register map and reset values (continued)
C7S[3:0]
0
0
0
C6S[3:0]
0
0
0
0
C5S[3:0]
0
0
0
0
C4S[3:0]
0
0
C3S[3:0]
0
0
C2S[3:0]
Refer to Section 2.2.2 on page 67 for the register boundary addresses.
318/1693
DocID024597 Rev 3
0
0
C1S[3:0]
0
0
0
RM0351
Nested vectored interrupt controller (NVIC)
11
Nested vectored interrupt controller (NVIC)
11.1
NVIC main features
•
82 maskable interrupt channels (not including the sixteen Cortex®-M4 with FPU
interrupt lines)
•
16 programmable priority levels (4 bits of interrupt priority are used)
•
Low-latency exception and interrupt handling
•
Power management control
•
Implementation of System Control Registers
The NVIC and the processor core interface are closely coupled, which enables low latency
interrupt processing and efficient processing of late arriving interrupts.
All interrupts including the core exceptions are managed by the NVIC. For more information
on exceptions and NVIC programming, refer to the PM0214 programming manual for
CortexTM-M4 products.
11.2
SysTick calibration value register
The SysTick calibration value is set to 0x100270F, which gives a reference time base of
1 ms with the SysTick clock set to 10 MHz (max fHCLK/8).
DocID024597 Rev 3
319/1693
336
Nested vectored interrupt controller (NVIC)
11.3
RM0351
Interrupt and exception vectors
Position
Priority
Table 42. STM32L4x6 vector table
Type of
priority
-
-
-
-
-3
fixed
-
-2
-
Acronym
-
Description
Address
Reserved
0x0000 0000
Reset
Reset
0x0000 0004
fixed
NMI
Non maskable interrupt. The RCC Clock
Security System (CSS) is linked to the NMI
vector.
0x0000 0008
-1
fixed
HardFault
All classes of fault
0x0000 000C
-
0
settable
MemManage
Memory management
0x0000 0010
-
1
settable
BusFault
Pre-fetch fault, memory access fault
0x0000 0014
-
2
settable
UsageFault
Undefined instruction or illegal state
0x0000 0018
-
-
-
-
3
settable
SVCall
System service call via SWI instruction
0x0000 002C
-
4
settable
Debug
Monitor
0x0000 0030
-
-
-
Reserved
0x0000 0034
-
5
settable
PendSV
Pendable request for system service
0x0000 0038
-
6
settable
SysTick
System tick timer
0x0000 003C
0
7
settable
WWDG
Window Watchdog interrupt
0x0000 0040
1
8
settable
PVD_PVM
PVD/PVM1/PVM2/PVM3/PVM4 through EXTI
lines 16/35/36/37/38 interrupts
0x0000 0044
2
9
settable
RTC_TAMP_STAMP RTC Tamper or TimeStamp /CSS on LSE
/CSS_LSE
through EXTI line 19 interrupts
3
10
settable
RTC_WKUP
RTC Wakeup timer through EXTI line 20
interrupt
0x0000 004C
4
11
settable
FLASH
Flash global interrupt
0x0000 0050
5
12
settable
RCC
RCC global interrupt
0x0000 005C
6
13
settable
EXTI0
EXTI Line0 interrupt
0x0000 005C
7
14
settable
EXTI1
EXTI Line1 interrupt
0x0000 005C
8
15
settable
EXTI2
EXTI Line2 interrupt
0x0000 0060
9
16
settable
EXTI3
EXTI Line3 interrupt
0x0000 0064
10
17
settable
EXTI4
EXTI Line4 interrupt
0x0000 0068
11
18
settable
DMA1_CH1
DMA1 channel 1 interrupt
0x0000 006C
12
19
settable
DMA1_CH2
DMA1 channel 2 interrupt
0x0000 0070
13
20
settable
DMA1_CH3
DMA1 channel 3 interrupt
0x0000 0074
320/1693
-
-
Reserved
DocID024597 Rev 3
0x0000 001C 0x0000 0028
0x0000 0048
RM0351
Nested vectored interrupt controller (NVIC)
Position
Priority
Table 42. STM32L4x6 vector table (continued)
Type of
priority
14
21
settable
DMA1_CH4
DMA1 channel 4 interrupt
0x0000 0078
15
22
settable
DMA1_CH5
DMA1 channel 5 interrupt
0x0000 007C
16
23
settable
DMA1_CH6
DMA1 channel 6 interrupt
0x0000 0080
17
24
settable
DMA1_CH7
DMA1 channel 7 interrupt
0x0000 0084
18
25
settable
ADC1_2
ADC1 and ADC2 global interrupt
0x0000 0088
19
26
settable
CAN1_TX
CAN1_TX interrupts
0x0000 008C
20
27
settable
CAN1_RX0
CAN1_RX0 interrupts
0x0000 0090
21
28
settable
CAN1_RX1
CAN1_RX1 interrupt
0x0000 0094
22
29
settable
CAN1_SCE
CAN1_SCE interrupt
0x0000 0098
23
30
settable
EXTI9_5
EXTI Line[9:5] interrupts
0x0000 009C
24
31
settable
TIM1_BRK/TIM15
TIM1 Break/TIM15 global interrupts
0x0000 00A0
25
32
settable
TIM1_UP/TIM16
TIM1 Update/TIM16 global interrupts
0x0000 00A4
26
33
settable
TIM1_TRG_COM
/TIM17
TIM1 trigger and commutation/TIM17
interrupts
0x0000 00A8
27
34
settable
TIM1_CC
TIM1 capture compare interrupt
0x0000 00AC
28
35
settable
TIM2
TIM2 global interrupt
0x0000 00B0
29
36
settable
TIM3
TIM3 global interrupt
0x0000 00B4
30
37
settable
TIM4
TIM4 global interrupt
0x0000 00B8
31
38
settable
I2C1_EV
I2C1 event interrupt
0x0000 00BC
32
39
settable
I2C1_ER
I2C1 error interrupt
0x0000 00C0
33
40
settable
I2C2_EV
I2C2 event interrupt
0x0000 00C4
34
41
settable
I2C2_ER
I2C2 error interrupt
0x0000 00C8
35
42
settable
SPI1
SPI1 global interrupt
0x0000 00CC
36
43
settable
SPI2
SPI2 global interrupt
0x0000 00D0
37
44
settable
USART1
USART1 global interrupt
0x0000 00D4
38
45
settable
USART2
USART2 global interrupt
0x0000 00D8
39
46
settable
USART3
USART3 global interrupt
0x0000 00DC
40
47
settable
EXTI15_10
EXTI Line[15:10] interrupts
0x0000 00E0
41
48
settable
RTC_ALARM
RTC alarms through EXTI line 18 interrupts
0x0000 00E4
42
49
settable
DFSDM3
DFSDM3 global interrupt
0x0000 00E8
43
50
settable
TIM8_BRK
TIM8 Break interrupt
0x0000 00EC
44
51
settable
TIM8_UP
TIM8 Update interrupt
0x0000 00F0
45
52
settable
TIM8_TRG_COM
TIM8 trigger and commutation interrupt
0x0000 00F4
Acronym
Description
DocID024597 Rev 3
Address
321/1693
336
Nested vectored interrupt controller (NVIC)
RM0351
Position
Priority
Table 42. STM32L4x6 vector table (continued)
Type of
priority
46
53
settable
TIM1_CC
TIM8 capture compare interrupt
0x0000 00F8
47
54
settable
ADC3
ADC3 global interrupt
0x0000 00FC
48
55
settable
FMC
FMC global interrupt
0x0000 0100
49
56
settable
SDMMC1
SDMMC1 global interrupt
0x0000 0104
50
57
settable
TIM5
TIM5 global interrupt
0x0000 0108
51
58
settable
SPI3
SPI3 global interrupt
0x0000 010C
52
59
settable
UART4
UART4 global interrupt
0x0000 0110
53
60
settable
UART5
UART5 global interrupt
0x0000 0114
54
61
settable
TIM6_DACUNDER
TIM6 global and DAC12 underrun interrupts
0x0000 0118
55
62
settable
TIM7
TIM7 global interrupt
0x0000 011C
56
63
settable
DMA2_CH1
DMA2 channel 1 interrupt
0x0000 0120
57
64
settable
DMA2_CH2
DMA2 channel 2 interrupt
0x0000 0124
58
65
settable
DMA2_CH3
DMA2 channel 3 interrupt
0x0000 0128
59
66
settable
DMA2_CH4
DMA2 channel 4 interrupt
0x0000 012C
60
67
settable
DMA2_CH5
DMA2 channel 5 interrupt
0x0000 0130
61
68
settable
DFSDM0
DFSDM0 global interrupt
0x0000 0134
62
69
settable
DFSDM1
DFSDM1 global interrupt
0x0000 0138
63
70
settable
DFSDM2
DFSDM2 global interrupt
0x0000 013C
64
71
settable
COMP
COMP1/COMP2 through EXTI lines 21/22
interrupts
0x0000 0140
65
72
settable
LPTIM1
LPTIM1 global interrupt
0x0000 0144
66
73
settable
LPTIM2
LPTIM2 global interrupt
0x0000 0148
67
74
settable
OTG_FS
OTG_FS global interrupt
0x0000 014C
68
75
settable
DMA2_CH6
DMA2 channel 6 interrupt
0x0000 0150
69
76
settable
DMA2_CH7
DMA2 channel 7 interrupt
0x0000 0154
70
77
settable
LPUART1
LPUART1 global interrupt
0x0000 0158
71
78
settable
QUADSPI
QUADSPI global interrupt
0x0000 015C
72
79
settable
I2C3_EV
I2C3 event interrupt
0x0000 0160
73
79
settable
I2C3_ER
I2C3 error interrupt
0x0000 0164
74
80
settable
SAI1
SAI1 global interrupt
0x0000 0168
75
74
settable
SAI2
SAI2 global interrupt
0x0000 016C
76
75
settable
SWPMI1
SWPMI1 global interrupt
0x0000 0170
322/1693
Acronym
Description
DocID024597 Rev 3
Address
RM0351
Nested vectored interrupt controller (NVIC)
Position
Priority
Table 42. STM32L4x6 vector table (continued)
Type of
priority
77
76
settable
TSC
TSC global interrupt
0x0000 0174
78
77
settable
LCD
LCD global interrupt
0x0000 0178
79
78
settable
AES
AES global interrupt
0x0000 017C
80
79
settable
RNG
RNG global interrupt
0x0000 0180
81
88
settable
FPU
Floating point interrupt
0x0000 0184
Acronym
Description
DocID024597 Rev 3
Address
323/1693
336
Extended interrupts and events controller (EXTI)
RM0351
12
Extended interrupts and events controller (EXTI)
12.1
Introduction
The EXTI main features are as follows:
•
12.2
Generation of up to 40 event/interrupt requests
–
26 configurable lines
–
14 direct lines
•
Independent mask on each event/interrupt line
•
Configurable rising or falling edge (configurable lines only)
•
Dedicated status bit (configurable lines only)
•
Emulation of event/interrupt requests (configurable lines only)
EXTI main features
The extended interrupts and events controller (EXTI) manages the external and internal
asynchronous events/interrupts and generates the event request to the CPU/Interrupt
Controller and a wake-up request to the Power Controller.
The EXTI allows the management of up to 40 event lines which can wake up from the Stop
0 and Stop 1 modes. Not all events can wake up from the Stop 2 mode (refer to Table 43:
EXTI lines connections).
The lines are either configurable or direct:
•
The lines are configurable: the active edge can be chosen independently, and a status
flag indicates the source of the interrupt. The configurable lines are used by the I/Os
external interrupts, and by few peripherals.
•
The lines are direct: they are used by some peripherals to generate a wakeup from
Stop event or interrupt. The status flag is provided by the peripheral.
Each line can be masked independently for an interrupt or an event generation.
This controller also allows to emulate events or interrupts by software, multiplexed with the
corresponding hardware event line, by writing to a dedicated register.
12.3
EXTI functional description
For the configurable interrupt lines, the interrupt line should be configured and enabled in
order to generate an interrupt. This is done by programming the two trigger registers with
the desired edge detection and by enabling the interrupt request by writing a ‘1’ to the
corresponding bit in the interrupt mask register. When the selected edge occurs on the
interrupt line, an interrupt request is generated. The pending bit corresponding to the
interrupt line is also set. This request is cleared by writing a ‘1’ in the pending register.
For the direct interrupt lines, the interrupt is enabled by default in the interrupt mask register
and there is no corresponding pending bit in the pending register.
To generate an event, the event line should be configured and enabled. This is done by
programming the two trigger registers with the desired edge detection and by enabling the
event request by writing a ‘1’ to the corresponding bit in the event mask register. When the
324/1693
DocID024597 Rev 3
RM0351
Extended interrupts and events controller (EXTI)
selected edge occurs on the event line, an event pulse is generated. The pending bit
corresponding to the event line is not set.
For the configurable lines, an interrupt/event request can also be generated by software by
writing a ‘1’ in the software interrupt/event register.
Note:
The interrupts or events associated to the direct lines are triggered only when the system is
in Stop mode. If the system is still running, no interrupt/event is generated by the EXTI.
12.3.1
EXTI block diagram
The extended interrupt/event block diagram is shown on Figure 26.
Figure 26. Configurable interrupt/event block diagram
$3%EXV
3&/.
3HULSKHUDOLQWHUIDFH
)DOOLQJ
WULJJHU
VHOHFWLRQ
UHJLVWHU
5LVLQJ
WULJJHU
VHOHFWLRQ
UHJLVWHU
6RIWZDUH
LQWHUUXSW
HYHQW
UHJLVWHU
(YHQW
PDVN
UHJLVWHU
,QWHUUXSW
PDVN
UHJLVWHU
3HQGLQJ
UHTXHVW
UHJLVWHU
,QWHUUXSWV
&RQILJXUDEOH
HYHQWV
(GJHGHWHFW
FLUFXLW
(YHQWV
6WRSPRGH
'LUHFWHYHQWV
3JTJOH
FEHF
EFUFDU
:DNHXS
069
12.3.2
Wakeup event management
The STM32L4x6 is able to handle external or internal events in order to wake up the core
(WFE). The wakeup event can be generated either by:
•
enabling an interrupt in the peripheral control register but not in the NVIC, and enabling
the SEVONPEND bit in the CortexTM-M4 System Control register. When the MCU
resumes from WFE, the EXTI peripheral interrupt pending bit and the peripheral NVIC
IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be
cleared
•
or by configuring an EXTI line in event mode. When the CPU resumes from WFE, it is
not necessary to clear the peripheral interrupt pending bit or the NVIC IRQ channel
pending bit as the pending bit corresponding to the event line is not set.
DocID024597 Rev 3
325/1693
336
Extended interrupts and events controller (EXTI)
12.3.3
RM0351
Peripherals asynchronous Interrupts
Some peripherals are able to generate events when the system is in run mode and also
when the system is in Stop mode, allowing to wake up the system from Stop mode.
To accomplish this, the peripheral generates both a synchronized (to the system clock, e.g.
APB clock) and an asynchronous version of the event. This asynchronous event is
connected to an EXTI direct line.
Note:
Few peripherals with wakeup from Stop capability are connected to an EXTI configurable
line. In this case, the EXTI configuration is necessary to allow the wakeup from Stop mode.
12.3.4
Hardware interrupt selection
To configure a line as an interrupt source, use the following procedure:
1.
Configure the corresponding mask bit in the EXTI_IMR register.
2.
Configure the Trigger Selection bits of the Interrupt line (EXTI_RTSR and EXTI_FTSR).
3.
Configure the enable and mask bits that control the NVIC IRQ channel mapped to the
EXTI so that an interrupt coming from one of the EXTI lines can be correctly
acknowledged.
Note:
The direct lines do not require any EXTI configuration.
12.3.5
Hardware event selection
To configure a line as an event source, use the following procedure:
12.3.6
1.
Configure the corresponding mask bit in the EXTI_EMR register.
2.
Configure the Trigger Selection bits of the Event line (EXTI_RTSR and EXTI_FTSR).
Software interrupt/event selection
Any of the configurable lines can be configured as a software interrupt/event line. The
procedure to generate a software interrupt is as follows:
12.4
1.
Configure the corresponding mask bit (EXTI_IMR, EXTI_EMR).
2.
Set the required bit of the software interrupt register (EXTI_SWIER).
EXTI interrupt/event line mapping
In the STM32L4x6, 40 interrupt/event lines are available. The GPIOs are connected to 16
configurable interrupt/event lines (see Figure 27).
326/1693
DocID024597 Rev 3
RM0351
Extended interrupts and events controller (EXTI)
Figure 27. External interrupt/event GPIO mapping
(;7,>@ELWVLQWKH6<6&)*B(;7,&5UHJLVWHU
3$
3%
3&
3'
3(
3)
3*
3+
(;7,
(;7,>@ELWVLQWKH6<6&)*B(;7,&5UHJLVWHU
3$
3%
3&
3'
3(
3)
3*
3+
(;7,
(;7,>@ELWVLQWKH6<6&)*B(;7,&5UHJLVWHU
3$
3%
3&
3'
3(
3)
3*
(;7,
06Y9
The 40 lines are connected as shown in Table 43: EXTI lines connections.
Table 43. EXTI lines connections
EXTI line
Line source(1)
Line type
0-15
GPIO
configurable
16
PVD
configurable
17
OTG_FS wakeup event(2)
direct
18
RTC alarms
configurable
19
RTC tamper or timestamp or
CSS_LSE
configurable
20
RTC wakeup timer
configurable
21
COMP1 output
configurable
22
COMP2 output
configurable
23
I2C1 wakeup(2)
direct
DocID024597 Rev 3
327/1693
336
Extended interrupts and events controller (EXTI)
RM0351
Table 43. EXTI lines connections (continued)
EXTI line
24
25
26
27
28
Line source(1)
Line type
(2)
I2C2 wakeup
I2C3 wakeup
USART1
direct
wakeup(2)
direct
(2)
direct
wakeup(2)
direct
USART2 wakeup
USART3
direct
29
UART4 wakeup(2)
direct
30
UART5 wakeup
(2)
direct
31
LPUART1 wakeup
direct
32
LPTIM1
direct
33
LPTIM2(2)
direct
34
SWPMI1
wakeup(2)
direct
35
PVM1 wakeup
configurable
36
PVM2 wakeup
configurable
37
PVM3 wakeup
configurable
38
PVM4 wakeup
configurable
39
LCD wakeup
direct
1. All the lines can wake up from the Stop 0 and Stop 1 modes. All the lines, except the ones
mentioned above, can wake up from the Stop 2 mode.
2. This line source cannot wake up from the Stop 2 mode.
328/1693
DocID024597 Rev 3
RM0351
Extended interrupts and events controller (EXTI)
12.5
EXTI registers
Refer to Section 1.1 on page 61 for a list of abbreviations used in register descriptions.
The peripheral registers have to be accessed by words (32-bit).
12.5.1
Interrupt mask register 1 (EXTI_IMR1)
Address offset: 0x00
Reset value: 0xFF82 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
IM31
IM30
IM29
IM28
IM27
IM26
IM25
IM24
IM23
IM22
IM21
IM20
IM19
IM18
IM17
IM16
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
IM15
IM14
IM13
IM12
IM11
IM10
IM9
IM8
IM7
IM6
IM5
IM4
IM3
IM2
IM1
IM0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 IMx: Interrupt Mask on line x (x = 31 to 0)
0: Interrupt request from Line x is masked
1: Interrupt request from Line x is not masked
Note:
The reset value for the direct lines (line 17, lines from 23 to 34, line 39) is set to ‘1’ in order
to enable the interrupt by default.
12.5.2
Event mask register 1 (EXTI_EMR1)
Address offset: 0x04
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
EM31
EM30
EM29
EM28
EM27
EM26
EM25
EM24
EM23
EM22
EM21
EM20
EM19
EM18
EM17
EM16
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
EM15
EM14
EM13
EM12
EM11
EM10
EM9
EM8
EM7
EM6
EM5
EM4
EM3
EM2
EM1
EM0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 EMx: Event mask on line x (x = 31 to 0)
0: Event request from line x is masked
1: Event request from line x is not masked
DocID024597 Rev 3
329/1693
336
Extended interrupts and events controller (EXTI)
12.5.3
RM0351
Rising trigger selection register 1 (EXTI_RTSR1)
Address offset: 0x08
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
RT22
RT21
RT20
RT19
RT18
Res.
RT16
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
RT15
RT14
RT13
RT12
RT11
RT10
RT9
RT8
RT7
RT6
RT5
RT4
RT3
RT2
RT1
RT0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:23 Reserved, must be kept at reset value.
Bits 22:18 RTx: Rising trigger event configuration bit of line x (x = 22 to 18)
0: Rising trigger disabled (for Event and Interrupt) for input line
1: Rising trigger enabled (for Event and Interrupt) for input line
Bit 17 Reserved, must be kept at reset value.
Bits 16:0 RTx: Rising trigger event configuration bit of line x (x = 16 to 0)
0: Rising trigger disabled (for Event and Interrupt) for input line
1: Rising trigger enabled (for Event and Interrupt) for input line
Note:
The configurable wakeup lines are edge-triggered. No glitch must be generated on these
lines. If a rising edge on a configurable interrupt line occurs during a write operation in the
EXTI_RTSR register, the pending bit is not set.
Rising and falling edge triggers can be set for the same interrupt line. In this case, both
generate a trigger condition.
12.5.4
Falling trigger selection register 1 (EXTI_FTSR1)
Address offset: 0x0C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FT22
FT21
FT20
FT19
FT18
Res.
FT16
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
FT15
FT14
FT13
FT12
FT11
FT10
FT9
FT8
FT7
FT6
FT5
FT4
FT3
FT2
FT1
FT0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:23 Reserved, must be kept at reset value.
330/1693
DocID024597 Rev 3
RM0351
Extended interrupts and events controller (EXTI)
Bits 22:18 FTx: Falling trigger event configuration bit of line x (x = 22 to 18)
0: Falling trigger disabled (for Event and Interrupt) for input line
1: Falling trigger enabled (for Event and Interrupt) for input line
Bit 17 Reserved, must be kept at reset value.
Bits 16:0 FTx: Falling trigger event configuration bit of line x (x = 16 to 0)
0: Falling trigger disabled (for Event and Interrupt) for input line
1: Falling trigger enabled (for Event and Interrupt) for input line
Note:
The configurable wakeup lines are edge-triggered. No glitch must be generated on these
lines. If a falling edge on a configurable interrupt line occurs during a write operation to the
EXTI_FTSR register, the pending bit is not set.
Rising and falling edge triggers can be set for the same interrupt line. In this case, both
generate a trigger condition.
12.5.5
Software interrupt event register 1 (EXTI_SWIER1)
Address offset: 0x10
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SWI
22
SWI
21
SWI
20
SWI
19
SWI
18
Res.
SWI
16
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
SWI
15
SWI
14
SWI
13
SWI
12
SWI
11
SWI
10
SWI
9
SWI
8
SWI
7
SWI
6
SWI
5
SWI
4
SWI
3
SWI
2
SWI
1
SWI
0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:23 Reserved, must be kept at reset value.
Bits 22: 18 SWIx: Software interrupt on line x (x = 22 o 18)
If the interrupt is enabled on this line in the EXTI_IMR, writing a '1' to this bit
when it is at '0' sets the corresponding pending bit in EXTI_PR resulting in an
interrupt request generation.
This bit is cleared by clearing the corresponding bit in the EXTI_PR register (by
writing a ‘1’ into the bit).
Bit 17 Reserved, must be kept at reset value.
Bits 16:0 SWIx: Software interrupt on line x (x = 16 to 0)
If the interrupt is enabled on this line in the EXTI_IMR, writing a '1' to this bit
when it is at '0' sets the corresponding pending bit in EXTI_PR resulting in an
interrupt request generation.
This bit is cleared by clearing the corresponding bit of EXTI_PR (by writing a ‘1’
into the bit).
DocID024597 Rev 3
331/1693
336
Extended interrupts and events controller (EXTI)
12.5.6
RM0351
Pending register 1 (EXTI_PR1)
Address offset: 0x14
Reset value: undefined
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PIF22
PIF21
PIF20
PIF19
PIF18
Res.
PIF16
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PIF15
PIF14
PIF13
PIF12
PIF11
PIF10
PIF9
PIF8
PIF7
PIF6
PIF5
PIF4
PIF3
PIF2
PIF1
PIF0
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
Bits 31:23 Reserved, must be kept at reset value.
Bits 22:18 PIFx: Pending interrupt flag on line x (x = 22 to 18)
0: No trigger request occurred
1: Selected trigger request occurred
This bit is set when the selected edge event arrives on the interrupt line. This bit
is cleared by writing a ‘1’ to the bit.
Bit 17 Reserved, must be kept at reset value.
Bits 16:0 PIFx: Pending interrupt flag on line x (x = 16 to 0)
0: No trigger request occurred
1: Selected trigger request occurred
This bit is set when the selected edge event arrives on the interrupt line. This bit
is cleared by writing a ‘1’ to the bit.
12.5.7
Interrupt mask register 2 (EXTI_IMR2)
Address offset: 0x20
Reset value: 0x0000 0087
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
IM39
IM38
IM37
IM36
IM35
IM34
IM33
IM32
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:8 Reserved, must be kept at reset value
Bits 7:0 IMx: Interrupt mask on line x (x = 39 to 32)
0: Interrupt request from line x is masked
1: Interrupt request from line x is not masked
Note:
332/1693
The reset value for the direct lines (line 17, lines from 23 to 34, line 39) is set to ‘1’ in order
to enable the interrupt by default.
DocID024597 Rev 3
RM0351
Extended interrupts and events controller (EXTI)
12.5.8
Event mask register 2 (EXTI_EMR2)
Address offset: 0x24
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
EM39
EM38
EM37
EM36
EM35
EM34
EM33
EM32
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:8 Reserved, must be kept at reset value
Bits 7:0 EMx: Event mask on line x (x = 39 to 32)
0: Event request from line x is masked
1: Event request from line x is not masked
12.5.9
Rising trigger selection register 2 (EXTI_RTSR2)
Address offset: 0x28
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
RT38
RT37
RT36
RT35
Res.
Res.
Res.
rw
rw
rw
rw
Bits 31:8 Reserved, must be kept at reset value.
Bits 7:3 RTx: Rising trigger event configuration bit of line x (x = 35 to 38)
0: Rising trigger disabled (for Event and Interrupt) for input line
1: Rising trigger enabled (for Event and Interrupt) for input line
Bits 2:0 Reserved, must be kept at reset value.
Note:
The configurable wakeup lines are edge-triggered. No glitch must be generated on these
lines. If a rising edge on a configurable interrupt line occurs during a write operation to the
EXTI_RTSR register, the pending bit is not set.
Rising and falling edge triggers can be set for the same interrupt line. In this case, both
generate a trigger condition.
DocID024597 Rev 3
333/1693
336
Extended interrupts and events controller (EXTI)
12.5.10
RM0351
Falling trigger selection register 2 (EXTI_FTSR2)
Address offset: 0x2C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FT38
FT37
FT36
FT35
Res.
Res.
Res.
rw
rw
rw
rw
Bits 31:8 Reserved, must be kept at reset value.
Bits 7:3 FTx: Falling trigger event configuration bit of line x (x = 35 to 38)
0: Falling trigger disabled (for Event and Interrupt) for input line
1: Falling trigger enabled (for Event and Interrupt) for input line
Bits 2:0 Reserved, must be kept at reset value.
Note:
The configurable wakeup lines are edge-triggered. No glitch must be generated on these
lines. If a falling edge on a configurable interrupt line occurs during a write operation to the
EXTI_FTSR register, the pending bit is not set.
Rising and falling edge triggers can be set for the same interrupt line. In this case, both
generate a trigger condition.
12.5.11
Software interrupt event register 2 (EXTI_SWIER2)
Address offset: 0x30
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
SWI
38
SWI
37
SWI
36
SWI
35
Res.
Res.
Res.
rw
rw
rw
rw
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Bits 31:8 Reserved, must be kept at reset value.
Bit 7 SWIx: Software interrupt on line x (x = 35 to 38)
If the interrupt is enabled on this line in EXTI_IMR, writing a '1' to this bit when it
is at '0' sets the corresponding pending bit of EXTI_PR resulting in an interrupt
request generation.
This bit is cleared by clearing the corresponding bit of EXTI_PR (by writing a ‘1’
to the bit).
Bits 2:0 Reserved, must be kept at reset value.
334/1693
DocID024597 Rev 3
RM0351
Extended interrupts and events controller (EXTI)
12.5.12
Pending register 2 (EXTI_PR2)
Address offset: 0x34
Reset value: undefined
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PIF38
PIF37
PIF36
PIF35
Res.
Res.
Res.
rc_w1
rc_w1
rc_w1
rc_w1
Bits 31:8 Reserved, must be kept at reset value.
Bit 7 PIFx: Pending interrupt flag on line x (x = 35 to 38)
0: No trigger request occurred
1: Selected trigger request occurred
This bit is set when the selected edge event arrives on the interrupt line. This bit
is cleared by writing a ‘1’ into the bit.
Bits 2:0 Reserved, must be kept at reset value.
DocID024597 Rev 3
335/1693
336
0x34
336/1693
EXTI_PR2
DocID024597 Rev 3
EM32
PIF0
0
0
IM32
EM19
EM18
EM17
EM16
EM15
EM14
EM13
EM12
EM11
EM10
EM9
EM8
EM7
EM6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
EXTI_RTSR1
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
RT11
RT10
RT9
RT8
RT7
RT6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RT0
RT12
0
RT1
RT13
0
RT2
RT14
0
RT3
RT15
0
RT5
RT4
RT16
0
IM0
EM20
0
IM1
EM21
0
EM0
EM22
0
FT0
EM23
0
SWI0
EM24
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res.
EM25
0
0
0
0
0
0
0
Res.
EM26
0
IM2
EM27
0
EM1
EM28
0
FT1
EM29
0
IM3
EM30
0
EM2
EM31
Reset value
EM3
EXTI_EMR1
FT2
0
IM5
IM4
IM6
0
EM5
EM4
IM7
0
FT3
FT6
IM8
0
FT5
FT4
FT7
IM9
0
SWI1
SWI6
FT8
IM11
IM10
0
SWI2
SWI7
FT9
IM12
0
SWI3
SWI8
IM13
0
SWI5
SWI4
SWI9
IM14
0
Res.
PIF1
0
IM33
0
Res.
FT10
IM15
0
Res.
EM33
PIF2
0
Res.
SWI10
FT11
IM16
0
Res.
PIF3
0
IM34
PIF5
PIF4
0
IM35
PIF6
0
Res.
SWI11
FT12
IM17
1
Res.
EM34
PIF7
0
Res.
SWI12
FT13
IM18
0
Res.
PIF8
0
Res.
SWI13
FT14
IM19
0
Res.
EM35
0
RT35
PIF9
0
IM36
PIF10
0
Res.
SWI14
FT15
IM20
0
Res.
FT35
EM36
0
RT36
PIF11
0
IM37
PIF12
0
Res.
SWI15
IM21
0
Res.
SWI35
0
PIF35
FT36
EM37
0
RT37
PIF13
0
IM38
PIF14
0
IM39
PIF15
0
Res.
FT16
IM22
0
Res.
SWI36
0
PIF36
FT37
EM38
0
RT38
EM39
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SWI16
IM23
1
RT18
IM24
1
RT19
IM25
1
RT20
IM26
1
RT21
IM27
1
Res.
SWI37
Reset value
PIF37
Reset value
FT38
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
SWI38
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
PIF38
Reset value
Res.
PIF16
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
FT18
0
Res.
SWI18
FT19
0
Res.
PIF18
0
Res.
SWI19
FT20
0
Res.
PIF19
0
Res.
SWI20
FT21
0
Res.
PIF20
0
Res.
SWI21
0
Res.
PIF21
0
Res.
IM28
1
0
Res.
Res.
Res.
Res.
Res.
IM29
1
RT22
IM30
1
0
Res.
Res.
Res.
Res.
Res.
FT22
Res.
Res.
Res.
Res.
Res.
Res.
Res.
IM31
1
0
Res.
Res.
Res.
Res.
Res.
SWI22
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
0
Res.
Res.
Res.
Res.
Res.
PIF22
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
EXTI_IMR1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
EXTI_SWIER2
Res.
0x30
EXTI_FTSR2
Res.
0x2C
EXTI_RTSR2
Res.
0x28
EXTI_EMR2
Res.
0x24
EXTI_IMR2
Res.
0x20
EXTI_PR1
Res.
0x14
EXTI_SWIER1
Res.
0x10
EXTI_FTSR1
Res.
0x0C
Res.
0x08
Res.
0x04
Res.
0x00
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res.
Offset
Res.
12.5.13
Res.
Extended interrupts and events controller (EXTI)
RM0351
EXTI register map
Table 44 gives the EXTI register map and the reset values.
Table 44. Extended interrupt/event controller register map and reset values
0
1
1
1
1
0
0
0
RM0351
Cyclic redundancy check calculation unit (CRC)
13
Cyclic redundancy check calculation unit (CRC)
13.1
Introduction
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from 8-, 16or 32-bit data word and a generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the functional safety standards, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link
time and stored at a given memory location.
13.2
CRC main features
•
Fully programmable polynomial with programmable size (7, 8, 16, 32 bits).
•
Handles 8-,16-, 32-bit data size
•
Programmable CRC initial value
•
Single input/output 32-bit data register
•
Input buffer to avoid bus stall during calculation
•
CRC computation done in 4 AHB clock cycles (HCLK) for the 32-bit data size
•
General-purpose 8-bit register (can be used for temporary storage)
•
Reversibility option on I/O data
DocID024597 Rev 3
337/1693
342
Cyclic redundancy check calculation unit (CRC)
13.3
RM0351
CRC functional description
Figure 28. CRC calculation unit block diagram
$+%EXV
ELW UHDGDFFHVV
'DWDUHJLVWHU RXWSXW
&5&FRPSXWDWLRQ
ELW ZULWHDFFHVV
'DWDUHJLVWHU LQSXW
069
The CRC calculation unit has a single 32-bit read/write data register (CRC_DR). It is used to
input new data (write access), and holds the result of the previous CRC calculation (read
access).
Each write operation to the data register creates a combination of the previous CRC value
(stored in CRC_DR) and the new one. CRC computation is done on the whole 32-bit data
word or byte by byte depending on the format of the data being written.
The CRC_DR register can be accessed by word, right-aligned half-word and right-aligned
byte. For the other registers only 32-bit access is allowed.
The duration of the computation depends on data width:
•
4 AHB clock cycles for 32-bit
•
2 AHB clock cycles for 16-bit
•
1 AHB clock cycles for 8-bit
An input buffer allows to immediately write a second data without waiting for any wait states
due to the previous CRC calculation.
The data size can be dynamically adjusted to minimize the number of write accesses for a
given number of bytes. For instance, a CRC for 5 bytes can be computed with a word write
followed by a byte write.
The input data can be reversed, to manage the various endianness schemes. The reversing
operation can be performed on 8 bits, 16 bits and 32 bits depending on the REV_IN[1:0] bits
in the CRC_CR register.
For example: input data 0x1A2B3C4D is used for CRC calculation as:
0x58D43CB2 with bit-reversal done by byte
0xD458B23C with bit-reversal done by half-word
0xB23CD458 with bit-reversal done on the full word
The output data can also be reversed by setting the REV_OUT bit in the CRC_CR register.
The operation is done at bit level: for example, output data 0x11223344 is converted into
0x22CC4488.
338/1693
DocID024597 Rev 3
RM0351
Cyclic redundancy check calculation unit (CRC)
The CRC calculator can be initialized to a programmable value using the RESET control bit
in the CRC_CR register (the default value is 0xFFFFFFFF).
The initial CRC value can be programmed with the CRC_INIT register. The CRC_DR
register is automatically initialized upon CRC_INIT register write access.
The CRC_IDR register can be used to hold a temporary value related to CRC calculation. It
is not affected by the RESET bit in the CRC_CR register.
Polynomial programmability
The polynomial coefficients are fully programmable through the CRC_POL register, and the
polynomial size can be configured to be 7, 8, 16 or 32 bits by programming the
POLYSIZE[1:0] bits in the CRC_CR register. Even polynomials are not supported.
If the CRC data is less than 32-bit, its value can be read from the least significant bits of the
CRC_DR register.
To obtain a reliable CRC calculation, the change on-fly of the polynomial value or size can
not be performed during a CRC calculation. As a result, if a CRC calculation is ongoing, the
application must either reset it or perform a CRC_DR read before changing the polynomial.
The default polynomial value is the CRC-32 (Ethernet) polynomial: 0x4C11DB7.
13.4
CRC registers
13.4.1
Data register (CRC_DR)
Address offset: 0x00
Reset value: 0xFFFF FFFF
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
6
5
4
3
2
1
0
DR[31:16]
rw
15
14
13
12
11
10
9
8
7
DR[15:0]
rw
Bits 31:0 DR[31:0]: Data register bits
This register is used to write new data to the CRC calculator.
It holds the previous CRC calculation result when it is read.
If the data size is less than 32 bits, the least significant bits are used to write/read the
correct value.
DocID024597 Rev 3
339/1693
342
Cyclic redundancy check calculation unit (CRC)
13.4.2
RM0351
Independent data register (CRC_IDR)
Address offset: 0x04
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
IDR[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
IDR[15:0]
rw
rw
13.4.3
rw
rw
rw
rw
rw
rw
rw
Control register (CRC_CR)
Bits 31:0 IDR[31:0]: General-purpose 32-bit data register bits
These bits can be used as a temporary storage location for one byte.
This register is not affected by CRC resets generated by the RESET bit in the CRC_CR register
Address offset: 0x08
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
REV_
OUT
Res.
Res.
RESET
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
REV_IN[1:0]
rw
rw
Bits 31:8 Reserved, must be kept cleared.
Bit 7 REV_OUT: Reverse output data
This bit controls the reversal of the bit order of the output data.
0: Bit order not affected
1: Bit-reversed output format
Bits 6:5 REV_IN[1:0]: Reverse input data
These bits control the reversal of the bit order of the input data
00: Bit order not affected
01: Bit reversal done by byte
10: Bit reversal done by half-word
11: Bit reversal done by word
340/1693
DocID024597 Rev 3
POLYSIZE[1:0]
rw
rw
rs
RM0351
Cyclic redundancy check calculation unit (CRC)
Bits 4:3 POLYSIZE[1:0]: Polynomial size
These bits control the size of the polynomial.
00: 32 bit polynomial
01: 16 bit polynomial
10: 8 bit polynomial
11: 7 bit polynomial
Bits 2:1 Reserved, must be kept cleared.
Bit 0 RESET: RESET bit
This bit is set by software to reset the CRC calculation unit and set the data register to the value
stored in the CRC_INIT register. This bit can only be set, it is automatically cleared by hardware
13.4.4
Initial CRC value (CRC_INIT)
Address offset: 0x10
Reset value: 0xFFFF FFFF
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
6
5
4
3
2
1
0
22
21
20
19
18
17
16
6
5
4
3
2
1
0
CRC_INIT[31:16]
rw
15
14
13
12
11
10
9
8
7
CRC_INIT[15:0]
rw
Bits 31:0 CRC_INIT: Programmable initial CRC value
This register is used to write the CRC initial value.
13.4.5
CRC polynomial (CRC_POL)
Address offset: 0x14
Reset value: 0x04C11DB7
31
30
29
28
27
26
25
24
23
POL[31:16]
rw
15
14
13
12
11
10
9
8
7
POL[15:0]
rw
Bits 31:0 POL[31:0]: Programmable polynomial
This register is used to write the coefficients of the polynomial to be used for CRC calculation.
If the polynomial size is less than 32-bits, the least significant bits have to be used to program the
correct value.
DocID024597 Rev 3
341/1693
342
Cyclic redundancy check calculation unit (CRC)
13.4.6
RM0351
CRC register map
Offset
Register
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 45. CRC register map and reset values
CRC_DR
DR[31:0]
1
1
1
1
1
1
1
1
1
1
1
1
1
CRC_IDR
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
Res.
1
RESET
1
Res.
Reset value
REV_OUT
0x00
IDR[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CRC_CR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0x08
Reset value
0x10
CRC_INIT
Reset value
0x14
0
0
0
0
0
1
1
1
1
1
0
CRC_INIT[31:0]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CRC_POL
Polynomial coefficients
Reset value
0x04C11DB7
1
1
1
1
1
Refer to Section 2.2.2 on page 67 for the register boundary addresses.
342/1693
Res.
0
POLYSIZE[1:0]
0
REV_IN[1:0]
Reset value
Res.
0x04
DocID024597 Rev 3
1
1
1
RM0351
14
Flexible static memory controller (FSMC)
Flexible static memory controller (FSMC)
The Flexible static memory controller (FSMC) includes two memory controllers:
•
The NOR/PSRAM memory controller
•
The NAND memory controller
This memory controller is also named Flexible memory controller (FMC).
14.1
FMC main features
The FMC functional block makes the interface with: synchronous and asynchronous static
memories, and NAND flash memory. Its main purposes are:
•
to translate AHB transactions into the appropriate external device protocol
•
to meet the access time requirements of the external memory devices
All external memories share the addresses, data and control signals with the controller.
Each external device is accessed by means of a unique Chip Select. The FMC performs
only one access at a time to an external device.
The main features of the FMC controller are the following:
•
Interface with static-memory mapped devices including:
–
Static random access memory (SRAM)
–
NOR Flash memory/OneNAND Flash memory
–
PSRAM (4 memory banks)
–
NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
•
Burst mode support for faster access to synchronous devices such as NOR Flash
memory, PSRAM)
•
Programmable continuous clock output for asynchronous and synchronous accesses
•
8-,16-bit wide data bus
•
Independent Chip Select control for each memory bank
•
Independent configuration for each memory bank
•
Write enable and byte lane select outputs for use with PSRAM, SRAM devices
•
External asynchronous wait control
•
Write FIFO with 16 x32-bit depth
The Write FIFO is common to all memory controllers and consists of:
•
a Write Data FIFO which stores the AHB data to be written to the memory (up to 32
bits) plus one bit for the AHB transfer (burst or not sequential mode)
•
a Write Address FIFO which stores the AHB address (up to 28 bits) plus the AHB data
size (up to 2 bits). When operating in burst mode, only the start address is stored
except when crossing a page boundary (for PSRAM). In this case, the AHB burst is
broken into two FIFO entries.
At startup the FMC pins must be configured by the user application. The FMC I/O pins which
are not used by the application can be used for other purposes.
DocID024597 Rev 3
343/1693
399
Flexible static memory controller (FSMC)
RM0351
The FMC registers that define the external device type and associated characteristics are
usually set at boot time and do not change until the next reset or power-up. However, the
settings can be changed at any time.
14.2
Block diagram
The FMC consists of the following main blocks:
•
The AHB interface (including the FMC configuration registers)
•
The NOR Flash/PSRAM/SRAM controller
•
The external device interface
The block diagram is shown in the figure below.
Figure 29. FMC block diagram
)0&LQWHUUXSWVWR19,&
)0&B1/ RU1$'9
)0&B&/.
)URPFORFN
FRQWUROOHU
+&/.
125365$0
PHPRU\
FRQWUROOHU
&RQILJXUDWLRQ
UHJLVWHUV
1$1'
PHPRU\
FRQWUROOHU
125365$0
VLJQDOV
)0&B1%/>@
125365$065$0
VKDUHGVLJQDOV
)0&B$>@
)0&B'>@
6KDUHGVLJQDOV
)0&B1(>@
)0&B12(
)0&B1:(
)0&B1:$,7
125365$065$0
VKDUHGVLJQDOV
)0&B1&(
)0&B,17
1$1'VLJQDOV
069
344/1693
DocID024597 Rev 3
RM0351
14.3
Flexible static memory controller (FSMC)
AHB interface
The AHB slave interface allows internal CPUs and other bus master peripherals to access
the external memories.
AHB transactions are translated into the external device protocol. In particular, if the
selected external memory is 16- or 8-bit wide, 32-bit wide transactions on the AHB are split
into consecutive 16- or 8-bit accesses. The FMC Chip Select (FMC_NEx) does not toggle
between the consecutive accesses.
The FMC generates an AHB error in the following conditions:
•
When reading or writing to an FMC bank (Bank 1 to 4) which is not enabled.
•
When reading or writing to the NOR Flash bank while the FACCEN bit is reset in the
FMC_BCRx register.
The effect of an AHB error depends on the AHB master which has attempted the R/W
access:
•
If the access has been attempted by the Cortex®-M4 CPU, a hard fault interrupt is
generated.
•
If the access has been performed by a DMA controller, a DMA transfer error is
generated and the corresponding DMA channel is automatically disabled.
The AHB clock (HCLK) is the reference clock for the FMC.
14.3.1
Supported memories and transactions
General transaction rules
The requested AHB transaction data size can be 8-, 16- or 32-bit wide whereas the
accessed external device has a fixed data width. This may lead to inconsistent transfers.
Therefore, some simple transaction rules must be followed:
•
AHB transaction size and memory data size are equal
There is no issue in this case.
•
AHB transaction size is greater than the memory size:
In this case, the FMC splits the AHB transaction into smaller consecutive memory
accesses to meet the external data width. The FMC Chip Select (FMC_NEx) does not
toggle between the consecutive accesses.
•
AHB transaction size is smaller than the memory size:
The transfer may or not be consistent depending on the type of external device:
–
Accesses to devices that have the byte select feature (SRAM, ROM, PSRAM)
In this case, the FMC allows read/write transactions and accesses the right data
through its byte lanes NBL[1:0].
Bytes to be written are addressed by NBL[1:0].
All memory bytes are read (NBL[1:0] are driven low during read transaction) and
the useless ones are discarded.
–
Accesses to devices that do not have the byte select feature (NOR and NAND
Flash memories)
This situation occurs when a byte access is requested to a 16-bit wide Flash
memory. Since the device cannot be accessed in byte mode (only 16-bit words
can be read/written from/to the Flash memory), Write transactions and Read
DocID024597 Rev 3
345/1693
399
Flexible static memory controller (FSMC)
RM0351
transactions are allowed (the controller reads the entire 16-bit memory word and
uses only the required byte).
Wrap support for NOR Flash/PSRAM
Wrap burst mode for synchronous memories is not supported. The memories must be
configured in linear burst mode of undefined length.
Configuration registers
The FMC can be configured through a set of registers. Refer to Section 14.5.6, for a
detailed description of the NOR Flash/PSRAM controller registers. Refer to Section 14.6.7,
for a detailed description of the NAND Flash registers.
14.4
External device address mapping
From the FMC point of view, the external memory is divided into fixed-size banks of
256 Mbytes each (see Figure 30):
•
•
Bank 1 used to address up to 4 NOR Flash memory or PSRAM devices. This bank is
split into 4 NOR/PSRAM subbanks with 4 dedicated Chip Selects, as follows:
–
Bank 1 - NOR/PSRAM 1
–
Bank 1 - NOR/PSRAM 2
–
Bank 1 - NOR/PSRAM 3
–
Bank 1 - NOR/PSRAM 4
Bank 3 used to address NAND Flash memory devices.The MPU memory attribute for
this space must be reconfigured by software to Device.
For each bank the type of memory to be used can be configured by the user application
through the Configuration register.
346/1693
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
Figure 30. FMC memory banks
ĚĚƌĞƐƐ
^ƵƉƉŽƌƚĞĚŵĞŵŽƌLJƚLJƉĞ
ĂŶŬ
ϬdžϲϬϬϬϬϬϬϬ
EKZͬW^ZDͬ^ZD
ĂŶŬϭ
ϰdžϲϰD
Ϭdžϲ&&&&&&&
ϬdžϳϬϬϬϬϬϬϬ
ZĞƐĞƌǀĞĚ
Ϭdžϳ&&&&&&&
ϬdžϴϬϬϬϬϬϬϬ
ĂŶŬϯ
ϰdžϲϰD
EE&ůĂƐŚŵĞŵŽƌLJ
Ϭdžϴ&&&&&&&
ϬdžϵϬϬϬϬϬϬϬ
ZĞƐĞƌǀĞĚ
D^ϯϰϰϳϱsϭ
Ϭdžϵ&&&&&&&
14.4.1
NOR/PSRAM address mapping
HADDR[27:26] bits are used to select one of the four memory banks as shown in Table 46.
Table 46. NOR/PSRAM bank selection
HADDR[27:26](1)
Selected bank
00
Bank 1 - NOR/PSRAM 1
01
Bank 1 - NOR/PSRAM 2
10
Bank 1 - NOR/PSRAM 3
11
Bank 1 - NOR/PSRAM 4
1. HADDR are internal AHB address lines that are translated to external memory.
The HADDR[25:0] bits contain the external memory address. Since HADDR is a byte
address whereas the memory is addressed at word level, the address actually issued to the
memory varies according to the memory data width, as shown in the following table.
Table 47. NOR/PSRAM External memory address
Memory width(1)
Data address issued to the memory
Maximum memory capacity (bits)
8-bit
HADDR[25:0]
64 Mbytes x 8 = 512 Mbit
16-bit
HADDR[25:1] >> 1
64 Mbytes/2 x 16 = 512 Mbit
DocID024597 Rev 3
347/1693
399
Flexible static memory controller (FSMC)
RM0351
1. In case of a 16-bit external memory width, the FMC will internally use HADDR[25:1] to generate the
address for external memory FMC_A[24:0].
Whatever the external memory width, FMC_A[0] should be connected to external memory address A[0].
14.4.2
NAND Flash memory address mapping
The NAND bank is divided into memory areas as indicated in Table 48.
Table 48. NAND memory mapping and timing registers
Start address
End address
0x8800 0000
0x8BFF FFFF
0x8000 0000
0x83FF FFFF
FMC bank
Bank 3 - NAND Flash
Memory space
Timing register
Attribute
FMC_PATT (0x8C)
Common
FMC_PMEM (0x88)
For NAND Flash memory, the common and attribute memory spaces are subdivided into
three sections (see in Table 49 below) located in the lower 256 Kbytes:
•
Data section (first 64 Kbytes in the common/attribute memory space)
•
Command section (second 64 Kbytes in the common / attribute memory space)
•
Address section (next 128 Kbytes in the common / attribute memory space)
Table 49. NAND bank selection
Section name
HADDR[17:16]
Address range
Address section
1X
0x020000-0x03FFFF
Command section
01
0x010000-0x01FFFF
Data section
00
0x000000-0x0FFFF
The application software uses the 3 sections to access the NAND Flash memory:
•
To sending a command to NAND Flash memory, the software must write the
command value to any memory location in the command section.
•
To specify the NAND Flash address that must be read or written, the software
must write the address value to any memory location in the address section. Since an
address can be 4 or 5 bytes long (depending on the actual memory size), several
consecutive write operations to the address section are required to specify the full
address.
•
To read or write data, the software reads or writes the data from/to any memory
location in the data section.
Since the NAND Flash memory automatically increments addresses, there is no need to
increment the address of the data section to access consecutive memory locations.
348/1693
DocID024597 Rev 3
RM0351
14.5
Flexible static memory controller (FSMC)
NOR Flash/PSRAM controller
The FMC generates the appropriate signal timings to drive the following types of memories:
•
•
•
Asynchronous SRAM and ROM
–
8 bits
–
16 bits
PSRAM (Cellular RAM)
–
Asynchronous mode
–
Burst mode for synchronous accesses
–
Multiplexed or non-multiplexed
NOR Flash memory
–
Asynchronous mode
–
Burst mode for synchronous accesses
–
Multiplexed or non-multiplexed
The FMC outputs a unique Chip Select signal, NE[4:1], per bank. All the other signals
(addresses, data and control) are shared.
The FMC supports a wide range of devices through a programmable timings among which:
•
Programmable wait states (up to 15)
•
Programmable bus turnaround cycles (up to 15)
•
Programmable output enable and write enable delays (up to 15)
•
Independent read and write timings and protocol to support the widest variety of
memories and timings
•
Programmable continuous clock (FMC_CLK) output.
The FMC Clock (FMC_CLK) is a submultiple of the HCLK clock. It can be delivered to the
selected external device either during synchronous accesses only or during asynchronous
and synchronous accesses depending on the CCKEN bit configuration in the FMC_BCR1
register:
•
If the CCLKEN bit is reset, the FMC generates the clock (CLK) only during
synchronous accesses (Read/write transactions).
•
If the CCLKEN bit is set, the FMC generates a continuous clock during asynchronous
and synchronous accesses. To generate the FMC_CLK continuous clock, Bank 1 must
be configured in synchronous mode (see Section 14.5.6: NOR/PSRAM controller
registers). Since the same clock is used for all synchronous memories, when a
continuous output clock is generated and synchronous accesses are performed, the
AHB data size has to be the same as the memory data width (MWID) otherwise the
FMC_CLK frequency will be changed depending on AHB data transaction (refer to
Section 14.5.5: Synchronous transactions for FMC_CLK divider ratio formula).
The size of each bank is fixed and equal to 64 Mbytes. Each bank is configured through
dedicated registers (see Section 14.5.6: NOR/PSRAM controller registers).
The programmable memory parameters include access times (see Table 50) and support
for wait management (for PSRAM and NOR Flash accessed in burst mode).
DocID024597 Rev 3
349/1693
399
Flexible static memory controller (FSMC)
RM0351
Table 50. Programmable NOR/PSRAM access parameters
14.5.1
Parameter
Function
Access mode
Unit
Min.
Max.
Address
setup
Duration of the address
setup phase
Asynchronous
AHB clock cycle
(HCLK)
0
15
Address hold
Duration of the address hold
phase
Asynchronous,
muxed I/Os
AHB clock cycle
(HCLK)
1
15
Data setup
Duration of the data setup
phase
Asynchronous
AHB clock cycle
(HCLK)
1
256
Bust turn
Duration of the bus
turnaround phase
Asynchronous and
AHB clock cycle
synchronous read
(HCLK)
/ write
0
15
Clock divide
ratio
Number of AHB clock cycles
(HCLK) to build one memory
clock cycle (CLK)
Synchronous
AHB clock cycle
(HCLK)
2
16
Data latency
Number of clock cycles to
issue to the memory before
the first data of the burst
Synchronous
Memory clock
cycle (CLK)
2
17
External memory interface signals
Table 51, Table 52 and Table 53 list the signals that are typically used to interface with NOR
Flash memory, SRAM and PSRAM.
Note:
The prefix “N” identifies the signals which are active low.
NOR Flash memory, non-multiplexed I/Os
Table 51. Non-multiplexed I/O NOR Flash memory
FMC signal name
I/O
Function
CLK
O
Clock (for synchronous access)
A[25:0]
O
Address bus
D[15:0]
I/O
Bidirectional data bus
NE[x]
O
Chip Select, x = 1..4
NOE
O
Output enable
NWE
O
Write enable
NL(=NADV)
O
Latch enable (this signal is called address
valid, NADV, by some NOR Flash devices)
NWAIT
I
NOR Flash wait input signal to the FMC
The maximum capacity is 512 Mbits (26 address lines).
350/1693
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
NOR Flash memory, 16-bit multiplexed I/Os
Table 52. 16-bit multiplexed I/O NOR Flash memory
FMC signal name
I/O
Function
CLK
O
Clock (for synchronous access)
A[25:16]
O
Address bus
AD[15:0]
I/O
16-bit multiplexed, bidirectional address/data bus (the 16-bit address
A[15:0] and data D[15:0] are multiplexed on the databus)
NE[x]
O
Chip Select, x = 1..4
NOE
O
Output enable
NWE
O
Write enable
NL(=NADV)
O
Latch enable (this signal is called address valid, NADV, by some NOR
Flash devices)
NWAIT
I
NOR Flash wait input signal to the FMC
The maximum capacity is 512 Mbits.
PSRAM/SRAM, non-multiplexed I/Os
Table 53. Non-multiplexed I/Os PSRAM/SRAM
FMC signal name
I/O
Function
CLK
O
Clock (only for PSRAM synchronous access)
A[25:0]
O
Address bus
D[15:0]
I/O
Data bidirectional bus
NE[x]
O
Chip Select, x = 1..4 (called NCE by PSRAM (Cellular RAM i.e. CRAM))
NOE
O
Output enable
NWE
O
Write enable
NL(= NADV)
O
Address valid only for PSRAM input (memory signal name: NADV)
NWAIT
I
PSRAM wait input signal to the FMC
NBL[1:0]
O
Byte lane output. Byte 0 and Byte 1 control (upper and lower byte enable)
The maximum capacity is 512 Mbits.
PSRAM, 16-bit multiplexed I/Os
Table 54. 16-Bit multiplexed I/O PSRAM
FMC signal name
I/O
Function
CLK
O
Clock (for synchronous access)
A[25:16]
O
Address bus
AD[15:0]
I/O
16-bit multiplexed, bidirectional address/data bus (the 16-bit address
A[15:0] and data D[15:0] are multiplexed on the databus)
DocID024597 Rev 3
351/1693
399
Flexible static memory controller (FSMC)
RM0351
Table 54. 16-Bit multiplexed I/O PSRAM (continued)
FMC signal name
I/O
Function
NE[x]
O
Chip Select, x = 1..4 (called NCE by PSRAM (Cellular RAM i.e. CRAM))
NOE
O
Output enable
NWE
O
Write enable
NL(= NADV)
O
Address valid PSRAM input (memory signal name: NADV)
NWAIT
I
PSRAM wait input signal to the FMC
NBL[1:0]
O
Byte lane output. Byte 0 and Byte 1 control (upper and lower byte enable)
The maximum capacity is 512 Mbits (26 address lines).
14.5.2
Supported memories and transactions
Table 55 below shows an example of the supported devices, access modes and
transactions when the memory data bus is 16-bit wide for NOR Flash memory, PSRAM and
SRAM. The transactions not allowed (or not supported) by the FMC are shown in gray in
this example.
Table 55. NOR Flash/PSRAM: example of supported memories and transactions
Device
NOR Flash
(muxed I/Os
and nonmuxed
I/Os)
352/1693
Mode
R/W
AHB
data
size
Memory
data size
Allowed/
not
allowed
Comments
Asynchronous
R
8
16
Y
-
Asynchronous
W
8
16
N
-
Asynchronous
R
16
16
Y
-
Asynchronous
W
16
16
Y
-
Asynchronous
R
32
16
Y
Split into 2 FMC accesses
Asynchronous
W
32
16
Y
Split into 2 FMC accesses
Asynchronous
page
R
-
16
N
Mode is not supported
Synchronous
R
8
16
N
-
Synchronous
R
16
16
Y
-
Synchronous
R
32
16
Y
-
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
Table 55. NOR Flash/PSRAM: example of supported memories and transactions
Device
PSRAM
(multiplexed
I/Os and nonmultiplexed
I/Os)
SRAM and
ROM
14.5.3
Mode
R/W
AHB
data
size
Memory
data size
Allowed/
not
allowed
Comments
Asynchronous
R
8
16
Y
-
Asynchronous
W
8
16
Y
Use of byte lanes NBL[1:0]
Asynchronous
R
16
16
Y
-
Asynchronous
W
16
16
Y
-
Asynchronous
R
32
16
Y
Split into 2 FMC accesses
Asynchronous
W
32
16
Y
Split into 2 FMC accesses
Asynchronous
page
R
-
16
N
Mode is not supported
Synchronous
R
8
16
N
-
Synchronous
R
16
16
Y
-
Synchronous
R
32
16
Y
-
Synchronous
W
8
16
Y
Use of byte lanes NBL[1:0]
Synchronous
W
16/32
16
Y
-
Asynchronous
R
8 / 16
16
Y
-
Asynchronous
W
8 / 16
16
Y
Use of byte lanes NBL[1:0]
Asynchronous
R
32
16
Y
Split into 2 FMC accesses
Asynchronous
W
32
16
Y
Split into 2 FMC accesses
Use of byte lanes NBL[1:0]
General timing rules
Signals synchronization
•
All controller output signals change on the rising edge of the internal clock (HCLK)
•
In synchronous mode (read or write), all output signals change on the rising edge of
HCLK. Whatever the CLKDIV value, all outputs change as follows:
–
NOEL/NWEL/ NEL/NADVL/ NADVH /NBLL/ Address valid outputs change on the
falling edge of FMC_CLK clock.
–
NOEH/ NWEH / NEH/ NOEH/NBLH/ Address invalid outputs change on the rising
edge of FMC_CLK clock.
DocID024597 Rev 3
353/1693
399
Flexible static memory controller (FSMC)
14.5.4
RM0351
NOR Flash/PSRAM controller asynchronous transactions
Asynchronous static memories (NOR Flash, PSRAM, SRAM)
•
Signals are synchronized by the internal clock HCLK. This clock is not issued to the
memory
•
The FMC always samples the data before de-asserting the NOE signal. This
guarantees that the memory data hold timing constraint is met (minimum Chip Enable
high to data transition is usually 0 ns)
•
If the extended mode is enabled (EXTMOD bit is set in the FMC_BCRx register), up to
four extended modes (A, B, C and D) are available. It is possible to mix A, B, C and D
modes for read and write operations. For example, read operation can be performed in
mode A and write in mode B.
•
If the extended mode is disabled (EXTMOD bit is reset in the FMC_BCRx register), the
FMC can operate in Mode1 or Mode2 as follows:
–
Mode 1 is the default mode when SRAM/PSRAM memory type is selected (MTYP
= 0x0 or 0x01 in the FMC_BCRx register)
–
Mode 2 is the default mode when NOR memory type is selected (MTYP = 0x10 in
the FMC_BCRx register).
Mode 1 - SRAM/PSRAM (CRAM)
The next figures show the read and write transactions for the supported modes followed by
the required configuration of FMC_BCRx, and FMC_BTRx/FMC_BWTRx registers.
Figure 31. Mode1 read access waveforms
0HPRU\WUDQVDFWLRQ
$>@
1%/>@
1([
12(
1:(
+LJK
GDWDGULYHQ
E\PHPRU\
'>@
$''6(7
+&/.F\FOHV
'$7$67
+&/.F\FOHV
069
354/1693
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
Figure 32. Mode1 write access waveforms
0HPRU\WUDQVDFWLRQ
$>@
1%/>@
1([
12(
+&/.
1:(
'>@
GDWDGULYHQE\)0&
$''6(7
'$7$67
+&/.F\FOHV
+&/.F\FOHV
069
The one HCLK cycle at the end of the write transaction helps guarantee the address and
data hold time after the NWE rising edge. Due to the presence of this HCLK cycle, the
DATAST value must be greater than zero (DATAST > 0).
Table 56. FMC_BCRx bit fields
Bit number
Bit name
Value to set
31-21
Reserved
0x000
20
CCLKEN
As needed
19
CBURSTRW
0x0 (no effect in asynchronous mode)
18:16
CPSIZE
0x0 (no effect in asynchronous mode)
15
ASYNCWAIT
14
EXTMOD
0x0
13
WAITEN
0x0 (no effect in asynchronous mode)
12
WREN
11
Reserved
0x0
10
WRAPMOD
0x0
9
WAITPOL
Meaningful only if bit 15 is 1
8
BURSTEN
0x0
7
Reserved
0x1
6
FACCEN
Don’t care
5-4
MWID
As needed
Set to 1 if the memory supports this feature. Otherwise keep at 0.
As needed
DocID024597 Rev 3
355/1693
399
Flexible static memory controller (FSMC)
RM0351
Table 56. FMC_BCRx bit fields (continued)
Bit number
Bit name
Value to set
3-2
MTYP
As needed, exclude 0x2 (NOR Flash memory)
1
MUXE
0x0
0
MBKEN
0x1
Table 57. FMC_BTRx bit fields
356/1693
Bit number
Bit name
Value to set
31:30
Reserved
0x0
29-28
ACCMOD
Don’t care
27-24
DATLAT
Don’t care
23-20
CLKDIV
Don’t care
19-16
BUSTURN
15-8
DATAST
Duration of the second access phase (DATAST+1 HCLK cycles for
write accesses, DATAST HCLK cycles for read accesses).
7-4
ADDHLD
Don’t care
3-0
ADDSET
Duration of the first access phase (ADDSET HCLK cycles).
Minimum value for ADDSET is 0.
Time between NEx high to NEx low (BUSTURN HCLK)
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
Mode A - SRAM/PSRAM (CRAM) OE toggling
Figure 33. ModeA read access waveforms
-EMORY TRANSACTION
!;=
.",;=
.%X
./%
.7%
(IGH
DATA DRIVEN
BY MEMORY
$;=
!$$3%4
(#,+ CYCLES
$!4!34
(#,+ CYCLES
-36
1. NBL[1:0] are driven low during the read access
Figure 34. ModeA write access waveforms
0HPRU\WUDQVDFWLRQ
$>@
1%/>@
1([
12(
+&/.
1:(
'>@
GDWDGULYHQE\)0&
$''6(7
+&/.F\FOHV
'$7$67
+&/.F\FOHV
06Y9
DocID024597 Rev 3
357/1693
399
Flexible static memory controller (FSMC)
RM0351
The differences compared with Mode1 are the toggling of NOE and the independent read
and write timings.
Table 58. FMC_BCRx bit fields
Bit number
Bit name
Value to set
31-21
Reserved
0x000
20
CCLKEN
As needed
19
CBURSTRW
0x0 (no effect in asynchronous mode)
18:16
CPSIZE
0x0 (no effect in asynchronous mode)
15
ASYNCWAIT
14
EXTMOD
0x1
13
WAITEN
0x0 (no effect in asynchronous mode)
12
WREN
As needed
11
WAITCFG
Don’t care
11
Reserved
0x0
9
WAITPOL
Meaningful only if bit 15 is 1
8
BURSTEN
0x0
7
Reserved
0x1
6
FACCEN
Don’t care
5-4
MWID
As needed
3-2
MTYP
As needed, exclude 0x2 (NOR Flash memory)
1
MUXEN
0x0
0
MBKEN
0x1
Set to 1 if the memory supports this feature. Otherwise keep at 0.
Table 59. FMC_BTRx bit fields
358/1693
Bit number
Bit name
Value to set
31:30
Reserved
0x0
29-28
ACCMOD
0x0
27-24
DATLAT
Don’t care
23-20
CLKDIV
Don’t care
19-16
BUSTURN
15-8
DATAST
Duration of the second access phase (DATAST HCLK cycles) for read
accesses.
7-4
ADDHLD
Don’t care
3-0
ADDSET
Duration of the first access phase (ADDSET HCLK cycles) for read
accesses.
Minimum value for ADDSET is 0.
Time between NEx high to NEx low (BUSTURN HCLK)
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
Table 60. FMC_BWTRx bit fields
Bit number
Bit name
Value to set
31:30
Reserved
0x0
29-28
ACCMOD
0x0
27-24
DATLAT
Don’t care
23-20
CLKDIV
Don’t care
19-16
BUSTURN
15-8
DATAST
Duration of the second access phase (DATAST HCLK cycles) for write
accesses.
7-4
ADDHLD
Don’t care
3-0
ADDSET
Duration of the first access phase (ADDSET HCLK cycles) for write
accesses.
Minimum value for ADDSET is 0.
Time between NEx high to NEx low (BUSTURN HCLK)
Mode 2/B - NOR Flash
Figure 35. Mode2 and mode B read access waveforms
0HPRU\WUDQVDFWLRQ
$>@
1$'9
1([
12(
1:(
+LJK
GDWDGULYHQ
E\PHPRU\
'>@
$''6(7
+&/.F\FOHV
'$7$67
+&/.F\FOHV
069
DocID024597 Rev 3
359/1693
399
Flexible static memory controller (FSMC)
RM0351
Figure 36. Mode2 write access waveforms
-EMORY TRANSACTION
!;=
.!$6
.%X
./%
.7%
(IGH
DATA DRIVEN
BY MEMORY
$;=
!$$3%4
(#,+ CYCLES
$!4!34
(#,+ CYCLES
-36
Figure 37. ModeB write access waveforms
0HPRU\WUDQVDFWLRQ
$>@
1$'9
1([
12(
+&/.
1:(
'>@
GDWDGULYHQE\)0&
$''6(7
+&/.F\FOHV
'$7$67
+&/.F\FOHV
069
The differences with Mode1 are the toggling of NWE and the independent read and write
timings when extended mode is set (Mode B).
360/1693
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
Table 61. FMC_BCRx bit fields
Bit number
Bit name
Value to set
31-21
Reserved
0x000
20
CCLKEN
As needed
19
CBURSTRW
0x0 (no effect in asynchronous mode)
18:16
CPSIZE
0x0 (no effect in asynchronous mode)
15
ASYNCWAIT
14
EXTMOD
0x1 for mode B, 0x0 for mode 2
13
WAITEN
0x0 (no effect in asynchronous mode)
12
WREN
As needed
11
WAITCFG
Don’t care
10
Reserved
0x0
9
WAITPOL
Meaningful only if bit 15 is 1
8
BURSTEN
0x0
7
Reserved
0x1
6
FACCEN
0x1
5-4
MWID
As needed
3-2
MTYP
0x2 (NOR Flash memory)
1
MUXEN
0x0
0
MBKEN
0x1
Set to 1 if the memory supports this feature. Otherwise keep at 0.
Table 62. FMC_BTRx bit fields
Bit number
Bit name
Value to set
31-30
Reserved
0x0
29-28
ACCMOD
0x1 if extended mode is set
27-24
DATLAT
Don’t care
23-20
CLKDIV
Don’t care
19-16
BUSTURN
15-8
DATAST
Duration of the access second phase (DATAST HCLK cycles) for
read accesses.
7-4
ADDHLD
Don’t care
3-0
ADDSET
Duration of the access first phase (ADDSET HCLK cycles) for read
accesses. Minimum value for ADDSET is 0.
Time between NEx high to NEx low (BUSTURN HCLK)
DocID024597 Rev 3
361/1693
399
Flexible static memory controller (FSMC)
RM0351
Table 63. FMC_BWTRx bit fields
Note:
Bit number
Bit name
Value to set
31-30
Reserved
0x0
29-28
ACCMOD
0x1 if extended mode is set
27-24
DATLAT
Don’t care
23-20
CLKDIV
Don’t care
19-16
BUSTURN
15-8
DATAST
Duration of the access second phase (DATAST HCLK cycles) for
write accesses.
7-4
ADDHLD
Don’t care
3-0
ADDSET
Duration of the access first phase (ADDSET HCLK cycles) for write
accesses. Minimum value for ADDSET is 0.
Time between NEx high to NEx low (BUSTURN HCLK)
The FMC_BWTRx register is valid only if the extended mode is set (mode B), otherwise its
content is don’t care.
Mode C - NOR Flash - OE toggling
Figure 38. ModeC read access waveforms
-EMORY TRANSACTION
!;=
.!$6
.%X
./%
.7%
(IGH
DATA DRIVEN
BY MEMORY
$;=
!$$3%4
(#,+ CYCLES
$!4!34
(#,+ CYCLES
-36
362/1693
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
Figure 39. ModeC write access waveforms
0HPRU\WUDQVDFWLRQ
$>@
1$'9
1([
12(
+&/.
1:(
GDWDGULYHQE\)0&
'>@
$''6(7
+&/.F\FOHV
'$7$67
+&/.F\FOHV
06Y9
The differences compared with Mode1 are the toggling of NOE and the independent read
and write timings.
Table 64. FMC_BCRx bit fields
Bit number
Bit name
Value to set
31-21
Reserved
0x000
20
CCLKEN
As needed
19
CBURSTRW
0x0 (no effect in asynchronous mode)
18:16
CPSIZE
0x0 (no effect in asynchronous mode)
15
ASYNCWAIT
14
EXTMOD
0x1
13
WAITEN
0x0 (no effect in asynchronous mode)
12
WREN
As needed
11
WAITCFG
Don’t care
10
Reserved
0x0
9
WAITPOL
Meaningful only if bit 15 is 1
8
BURSTEN
0x0
7
Reserved
0x1
6
FACCEN
0x1
5-4
MWID
As needed
3-2
MTYP
0x02 (NOR Flash memory)
Set to 1 if the memory supports this feature. Otherwise keep at 0.
DocID024597 Rev 3
363/1693
399
Flexible static memory controller (FSMC)
RM0351
Table 64. FMC_BCRx bit fields (continued)
Bit number
Bit name
Value to set
1
MUXEN
0x0
0
MBKEN
0x1
Table 65. FMC_BTRx bit fields
Bit number
Bit name
Value to set
31:30
Reserved
0x0
29-28
ACCMOD
0x2
27-24
DATLAT
0x0
23-20
CLKDIV
0x0
19-16
BUSTURN
15-8
DATAST
Duration of the second access phase (DATAST HCLK cycles) for
read accesses.
7-4
ADDHLD
Don’t care
3-0
ADDSET
Duration of the first access phase (ADDSET HCLK cycles) for read
accesses. Minimum value for ADDSET is 0.
Time between NEx high to NEx low (BUSTURN HCLK)
Table 66. FMC_BWTRx bit fields
364/1693
Bit number
Bit name
Value to set
31:30
Reserved
0x0
29-28
ACCMOD
0x2
27-24
DATLAT
Don’t care
23-20
CLKDIV
Don’t care
19-16
BUSTURN
15-8
DATAST
Duration of the second access phase (DATAST HCLK cycles) for
write accesses.
7-4
ADDHLD
Don’t care
3-0
ADDSET
Duration of the first access phase (ADDSET HCLK cycles) for write
accesses. Minimum value for ADDSET is 0.
Time between NEx high to NEx low (BUSTURN HCLK)
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
Mode D - asynchronous access with extended address
Figure 40. ModeD read access waveforms
-EMORY TRANSACTION
!;=
.!$6
.%X
./%
.7%
(IGH
DATA DRIVEN
BY MEMORY
$;=
!$$3%4
(#,+ CYCLES
!$$(,$
(#,+ CYCLES
$!4!34
(#,+ CYCLES
-36
Figure 41. ModeD write access waveforms
0HPRU\WUDQVDFWLRQ
$>@
1$'9
1([
12(
+&/.
1:(
'>@
GDWDGULYHQE\)0&
$''6(7
+&/.F\FOHV
$''+/'
+&/.F\FOHV
DocID024597 Rev 3
'$7$67
+&/.F\FOHV
06Y9
365/1693
399
Flexible static memory controller (FSMC)
RM0351
The differences with Mode1 are the toggling of NOE that goes on toggling after NADV
changes and the independent read and write timings.
Table 67. FMC_BCRx bit fields
Bit number
Bit name
Value to set
31-21
Reserved
0x000
20
CCLKEN
As needed
19
CBURSTRW
0x0 (no effect in asynchronous mode)
18:16
CPSIZE
0x0 (no effect in asynchronous mode)
15
ASYNCWAIT
14
EXTMOD
0x1
13
WAITEN
0x0 (no effect in asynchronous mode)
12
WREN
As needed
11
WAITCFG
Don’t care
10
Reserved
0x0
9
WAITPOL
Meaningful only if bit 15 is 1
8
BURSTEN
0x0
7
Reserved
0x1
6
FACCEN
Set according to memory support
5-4
MWID
As needed
3-2
MTYP
As needed
1
MUXEN
0x0
0
MBKEN
0x1
Set to 1 if the memory supports this feature. Otherwise keep at 0.
Table 68. FMC_BTRx bit fields
366/1693
Bit number
Bit name
Value to set
31:30
Reserved
0x0
29-28
ACCMOD
0x3
27-24
DATLAT
Don’t care
23-20
CLKDIV
Don’t care
19-16
BUSTURN
15-8
DATAST
Duration of the second access phase (DATAST HCLK cycles) for read
accesses.
7-4
ADDHLD
Duration of the middle phase of the read access (ADDHLD HCLK
cycles)
3-0
ADDSET
Duration of the first access phase (ADDSET HCLK cycles) for read
accesses. Minimum value for ADDSET is 1.
Time between NEx high to NEx low (BUSTURN HCLK)
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
Table 69. FMC_BWTRx bit fields
Bit number
Bit name
Value to set
31:30
Reserved
0x0
29-28
ACCMOD
0x3
27-24
DATLAT
Don’t care
23-20
CLKDIV
Don’t care
19-16
BUSTURN
15-8
DATAST
Duration of the second access phase (DATAST + 1 HCLK cycles) for
write accesses.
7-4
ADDHLD
Duration of the middle phase of the write access (ADDHLD HCLK
cycles)
3-0
ADDSET
Duration of the first access phase (ADDSET HCLK cycles) for write
accesses. Minimum value for ADDSET is 1.
Time between NEx high to NEx low (BUSTURN HCLK)
Muxed mode - multiplexed asynchronous access to NOR Flash memory
Figure 42. Muxed read access waveforms
-EMORY TRANSACTION
!;=
.!$6
.%X
./%
.7%
!$;=
(IGH
,OWER ADDRESS
!$$3%4
(#,+ CYCLES
!$$(,$
(#,+ CYCLES
DocID024597 Rev 3
DATA DRIVEN
BY MEMORY
$!4!34
(#,+ CYCLES
AI
367/1693
399
Flexible static memory controller (FSMC)
RM0351
Figure 43. Muxed write access waveforms
0HPRU\WUDQVDFWLRQ
$>@
1$'9
1([
12(
+&/.
1:(
/RZHUDGGUHVV
$'>@
$''6(7
+&/.F\FOHV
GDWDGULYHQE\)0&
$''+/'
+&/.F\FOHV
'$7$67
+&/.F\FOHV
069
The difference with ModeD is the drive of the lower address byte(s) on the data bus.
Table 70. FMC_BCRx bit fields
368/1693
Bit number
Bit name
Value to set
31-21
Reserved
0x000
20
CCLKEN
As needed
19
CBURSTRW
0x0 (no effect in asynchronous mode)
18:16
CPSIZE
0x0 (no effect in asynchronous mode)
15
ASYNCWAIT
14
EXTMOD
0x0
13
WAITEN
0x0 (no effect in asynchronous mode)
12
WREN
As needed
11
WAITCFG
Don’t care
10
Reserved
0x0
9
WAITPOL
Meaningful only if bit 15 is 1
8
BURSTEN
0x0
7
Reserved
0x1
6
FACCEN
0x1
5-4
MWID
As needed
3-2
MTYP
0x2 (NOR Flash memory)
Set to 1 if the memory supports this feature. Otherwise keep at 0.
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
Table 70. FMC_BCRx bit fields (continued)
Bit number
Bit name
Value to set
1
MUXEN
0x1
0
MBKEN
0x1
Table 71. FMC_BTRx bit fields
Bit number
Bit name
Value to set
31:30
Reserved
0x0
29-28
ACCMOD
0x0
27-24
DATLAT
Don’t care
23-20
CLKDIV
Don’t care
19-16
BUSTURN
15-8
DATAST
Duration of the second access phase (DATAST HCLK cycles for read
accesses and DATAST+1 HCLK cycles for write accesses).
7-4
ADDHLD
Duration of the middle phase of the access (ADDHLD HCLK cycles).
3-0
ADDSET
Duration of the first access phase (ADDSET HCLK cycles). Minimum
value for ADDSET is 1.
Time between NEx high to NEx low (BUSTURN HCLK)
WAIT management in asynchronous accesses
If the asynchronous memory asserts the WAIT signal to indicate that it is not yet ready to
accept or to provide data, the ASYNCWAIT bit has to be set in FMC_BCRx register.
If the WAIT signal is active (high or low depending on the WAITPOL bit), the second access
phase (Data setup phase), programmed by the DATAST bits, is extended until WAIT
becomes inactive. Unlike the data setup phase, the first access phases (Address setup and
Address hold phases), programmed by the ADDSET and ADDHLD bits, are not WAIT
sensitive and so they are not prolonged.
The data setup phase must be programmed so that WAIT can be detected 4 HCLK cycles
before the end of the memory transaction. The following cases must be considered:
DocID024597 Rev 3
369/1693
399
Flexible static memory controller (FSMC)
1.
RM0351
The memory asserts the WAIT signal aligned to NOE/NWE which toggles:
DATAST ≥ ( 4 × HCLK ) + max_wait_assertion_time
2.
The memory asserts the WAIT signal aligned to NEx (or NOE/NWE not toggling):
if
max_wait_assertion_time > address_phase + hold_phase
then:
DATAST ≥ ( 4 × HCLK ) + ( max_wait_assertion_time
– address_phase – hold_phase )
otherwise
DATAST ≥ 4 × HCLK
where max_wait_assertion_time is the maximum time taken by the memory to assert
the WAIT signal once NEx/NOE/NWE is low.
Figure 44 and Figure 45 show the number of HCLK clock cycles that are added to the
memory access phase after WAIT is released by the asynchronous memory (independently
of the above cases).
Figure 44. Asynchronous wait during a read access waveforms
0HPRU\WUDQVDFWLRQ
$>@
DGGUHVVSKDVH
GDWDVHWXSSKDVH
1([
.7!)4
DONT CARE
DONT CARE
12(
GDWDGULYHQE\PHPRU\
'>@
+&/.
069
1. NWAIT polarity depends on WAITPOL bit setting in FMC_BCRx register.
370/1693
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
Figure 45. Asynchronous wait during a write access waveforms
0HPRU\WUDQVDFWLRQ
$>@
DGGUHVVSKDVH
GDWDVHWXSSKDVH
1([
1:$,7
GRQ¶WFDUH
GRQ¶WFDUH
+&/.
1:(
'>@
GDWDGULYHQE\)0&
+&/.
06Y9
1. NWAIT polarity depends on WAITPOL bit setting in FMC_BCRx register.
14.5.5
Synchronous transactions
The memory clock, FMC_CLK, is a submultiple of HCLK. It depends on the value of
CLKDIV and the MWID/ AHB data size, following the formula given below:
FMC_CLK divider ratio = max (CLKDIV + 1,MWID ( AHB data size ))
Whatever MWID size: 16 or 8-bit, the FMC_CLK divider ratio is always defined by the
programmed CLKDIV value.
Example:
•
If CLKDIV=1, MWID = 16 bits, AHB data size=8 bits, FMC_CLK=HCLK/2.
NOR Flash memories specify a minimum time from NADV assertion to CLK high. To meet
this constraint, the FMC does not issue the clock to the memory during the first internal
clock cycle of the synchronous access (before NADV assertion). This guarantees that the
rising edge of the memory clock occurs in the middle of the NADV low pulse.
Data latency versus NOR memory latency
The data latency is the number of cycles to wait before sampling the data. The DATLAT
value must be consistent with the latency value specified in the NOR Flash configuration
register. The FMC does not include the clock cycle when NADV is low in the data latency
count.
DocID024597 Rev 3
371/1693
399
Flexible static memory controller (FSMC)
Caution:
RM0351
Some NOR Flash memories include the NADV Low cycle in the data latency count, so that
the exact relation between the NOR Flash latency and the FMC DATLAT parameter can be
either:
•
NOR Flash latency = (DATLAT + 2) CLK clock cycles
•
or NOR Flash latency = (DATLAT + 3) CLK clock cycles
Some recent memories assert NWAIT during the latency phase. In such cases DATLAT can
be set to its minimum value. As a result, the FMC samples the data and waits long enough
to evaluate if the data are valid. Thus the FMC detects when the memory exits latency and
real data are processed.
Other memories do not assert NWAIT during latency. In this case the latency must be set
correctly for both the FMC and the memory, otherwise invalid data are mistaken for good
data, or valid data are lost in the initial phase of the memory access.
Single-burst transfer
When the selected bank is configured in burst mode for synchronous accesses, if for
example an AHB single-burst transaction is requested on 16-bit memories, the FMC
performs a burst transaction of length 1 (if the AHB transfer is 16 bits), or length 2 (if the
AHB transfer is 32 bits) and de-assert the Chip Select signal when the last data is strobed.
Such transfers are not the most efficient in terms of cycles compared to asynchronous read
operations. Nevertheless, a random asynchronous access would first require to re-program
the memory access mode, which would altogether last longer.
Cross boundary page for Cellular RAM 1.5
Cellular RAM 1.5 does not allow burst access to cross the page boundary. The FMC
controller allows to split automatically the burst access when the memory page size is
reached by configuring the CPSIZE bits in the FMC_BCR1 register following the memory
page size.
Wait management
For synchronous NOR Flash memories, NWAIT is evaluated after the programmed latency
period, which corresponds to (DATLAT+2) CLK clock cycles.
If NWAIT is active (low level when WAITPOL = 0, high level when WAITPOL = 1), wait
states are inserted until NWAIT is inactive (high level when WAITPOL = 0, low level when
WAITPOL = 1).
When NWAIT is inactive, the data is considered valid either immediately (bit WAITCFG = 1)
or on the next clock edge (bit WAITCFG = 0).
During wait-state insertion via the NWAIT signal, the controller continues to send clock
pulses to the memory, keeping the Chip Select and output enable signals valid. It does not
consider the data as valid.
In burst mode, there are two timing configurations for the NOR Flash NWAIT signal:
•
The Flash memory asserts the NWAIT signal one data cycle before the wait state
(default after reset).
•
The Flash memory asserts the NWAIT signal during the wait state
The FMC supports both NOR Flash wait state configurations, for each Chip Select, thanks
to the WAITCFG bit in the FMC_BCRx registers (x = 0..3).
372/1693
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
Figure 46. Wait configuration waveforms
0HPRU\WUDQVDFWLRQ EXUVWRIKDOIZRUGV
+&/.
&/.
$>@
DGGU>@
1$'9
1:$,7
:$,7&)*
1:$,7
:$,7&)*
LQVHUWHGZDLWVWDWH
$'>@
DGGU>@
GDWD
GDWD
GDWD
DLF
DocID024597 Rev 3
373/1693
399
Flexible static memory controller (FSMC)
RM0351
Figure 47. Synchronous multiplexed read mode waveforms - NOR, PSRAM (CRAM)
0HPRU\WUDQVDFWLRQ EXUVWRIKDOIZRUGV
+&/.
&/.
$>@
DGGU>@
1([
12(
1:(
+LJK
1$'9
1:$,7
:$,7&)*
'$7/$7
&/.F\FOHV
$'>@
$GGU>@
LQVHUWHGZDLWVWDWH
GDWD
FORFN FORFN
F\FOH
F\FOH
GDWD
GDWD
GDWD
'DWDVWUREHV
'DWDVWUREHV
DLI
1. Byte lane outputs (NBL are not shown; for NOR access, they are held high, and, for PSRAM (CRAM)
access, they are held low.
Table 72. FMC_BCRx bit fields
374/1693
Bit number
Bit name
Value to set
31-21
Reserved
0x000
20
CCLKEN
As needed
19
CBURSTRW
18:16
CPSIZE
15
ASYNCWAIT
0x0
14
EXTMOD
0x0
13
WAITEN
To be set to 1 if the memory supports this feature, to be kept at 0
otherwise
12
WREN
No effect on synchronous read
11
WAITCFG
To be set according to memory
10
Reserved
0x0
9
WAITPOL
To be set according to memory
No effect on synchronous read
0x0 (no effect in asynchronous mode)
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
Table 72. FMC_BCRx bit fields (continued)
Bit number
Bit name
Value to set
8
BURSTEN
0x1
7
Reserved
0x1
6
FACCEN
Set according to memory support (NOR Flash memory)
5-4
MWID
As needed
3-2
MTYP
0x1 or 0x2
1
MUXEN
As needed
0
MBKEN
0x1
Table 73. FMC_BTRx bit fields
Bit number
Bit name
Value to set
31:30
Reserved
0x0
29:28
ACCMOD
0x0
27-24
DATLAT
Data latency
27-24
DATLAT
Data latency
23-20
CLKDIV
0x0 to get CLK = HCLK (Not supported)
0x1 to get CLK = 2 × HCLK
..
19-16
BUSTURN
15-8
DATAST
Don’t care
7-4
ADDHLD
Don’t care
3-0
ADDSET
Don’t care
Time between NEx high to NEx low (BUSTURN HCLK)
DocID024597 Rev 3
375/1693
399
Flexible static memory controller (FSMC)
RM0351
Figure 48. Synchronous multiplexed write mode waveforms - PSRAM (CRAM)
-EMORY TRANSACTION BURST OF HALF WORDS
(#,+
#,+
!;=
ADDR;=
.%X
(I :
./%
.7%
.!$6
.7!)4
7!)4#&'
$!4,!4
#,+ CYCLES
!$;=
!DDR;=
INSERTED WAIT STATE
DATA
DATA
CLOCK CLOCK
AIF
1. The memory must issue NWAIT signal one cycle in advance, accordingly WAITCFG must be programmed
to 0.
2. Byte Lane (NBL) outputs are not shown, they are held low while NEx is active.
Table 74. FMC_BCRx bit fields
Bit number
Bit name
31-21
Reserved
0x000
20
CCLKEN
As needed
19
18:16
15
376/1693
Value to set
CBURSTRW 0x1
CPSIZE
As needed (0x1 for CRAM 1.5)
ASYNCWAIT 0x0
14
EXTMOD
0x0
13
WAITEN
To be set to 1 if the memory supports this feature, to be kept at 0
otherwise.
12
WREN
0x1
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
Table 74. FMC_BCRx bit fields (continued)
Bit number
Bit name
Value to set
11
WAITCFG
0x0
10
Reserved
0x0
9
WAITPOL
to be set according to memory
8
BURSTEN
no effect on synchronous write
7
Reserved
0x1
6
FACCEN
Set according to memory support
5-4
MWID
As needed
3-2
MTYP
0x1
1
MUXEN
As needed
0
MBKEN
0x1
Table 75. FMC_BTRx bit fields
Bit number
Bit name
Value to set
31-30
Reserved
0x0
29:28
ACCMOD
0x0
27-24
DATLAT
Data latency
23-20
CLKDIV
0x0 to get CLK = HCLK (not supported)
0x1 to get CLK = 2 × HCLK
19-16
BUSTURN
15-8
DATAST
Don’t care
7-4
ADDHLD
Don’t care
3-0
ADDSET
Don’t care
Time between NEx high to NEx low (BUSTURN HCLK)
DocID024597 Rev 3
377/1693
399
Flexible static memory controller (FSMC)
14.5.6
RM0351
NOR/PSRAM controller registers
SRAM/NOR-Flash chip-select control registers 1..4 (FMC_BCR1..4)
Address offset: 8 * (x – 1), x = 1...4
Reset value: 0x0000 30DB for Bank1 and 0x0000 30D2 for Bank 2 to 4
This register contains the control information of each memory bank, used for SRAMs,
PSRAM and NOR Flash memories.
31
30
29
28
27
26
25
24
23
22
21
20
19
CCLK
EN
CBURST
RW
rw
rw
rw
rw
4
3
2
1
0
MUX
EN
MBK
EN
rw
rw
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
ASYNC
WAIT
EXT
MOD
WAIT
EN
WREN
WAIT
CFG
Res.
WAIT
POL
BURST
EN
Res.
FACC
EN
rw
rw
rw
rw
rw
rw
rw
rw
MWID
rw
18
rw
16
CPSIZE[2:0]
MTYP[1:0]
rw
17
rw
rw
Bits 31: 21 Reserved, must be kept at reset value
Bit 20 CCLKEN: Continuous Clock Enable.
This bit enables the FMC_CLK clock output to external memory devices.
0: The FMC_CLK is only generated during the synchronous memory access (read/write
transaction). The FMC_CLK clock ratio is specified by the programmed CLKDIV value in the
FMC_BCRx register (default after reset) .
1: The FMC_CLK is generated continuously during asynchronous and synchronous access. The
FMC_CLK clock is activated when the CCLKEN is set.
Note: The CCLKEN bit of the FMC_BCR2..4 registers is don’t care. It is only enabled through the
FMC_BCR1 register. Bank 1 must be configured in synchronous mode to generate the
FMC_CLK continuous clock.
Note: If CCLKEN bit is set, the FMC_CLK clock ratio is specified by CLKDIV value in the
FMC_BTR1 register. CLKDIV in FMC_BWTR1 is don’t care.
Note: If the synchronous mode is used and CCLKEN bit is set, the synchronous memories
connected to other banks than Bank 1 are clocked by the same clock (the CLKDIV value in
the FMC_BTR2..4 and FMC_BWTR2..4 registers for other banks has no effect.)
Bit 19 CBURSTRW: Write burst enable.
For PSRAM (CRAM) operating in burst mode, the bit enables synchronous accesses during write
operations. The enable bit for synchronous read accesses is the BURSTEN bit in the FMC_BCRx
register.
0: Write operations are always performed in asynchronous mode
1: Write operations are performed in synchronous mode.
378/1693
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
Bits 18:16 CPSIZE[2:0]: CRAM page size.
These are used for Cellular RAM 1.5 which does not allow burst access to cross the address
boundaries between pages. When these bits are configured, the FMC controller splits
automatically the burst access when the memory page size is reached (refer to memory datasheet
for page size).
000: No burst split when crossing page boundary (default after reset)
001: 128 bytes
010: 256 bytes
011: 512 bytes
100: 1024 bytes
Others: reserved
Bit 15 ASYNCWAIT: Wait signal during asynchronous transfers
This bit enables/disables the FMC to use the wait signal even during an asynchronous protocol.
0: NWAIT signal is not taken in to account when running an asynchronous protocol (default after
reset)
1: NWAIT signal is taken in to account when running an asynchronous protocol
Bit 14 EXTMOD: Extended mode enable.
This bit enables the FMC to program the write timings for non multiplexed asynchronous accesses
inside the FMC_BWTR register, thus resulting in different timings for read and write operations.
0: values inside FMC_BWTR register are not taken into account (default after reset)
1: values inside FMC_BWTR register are taken into account
Note: When the extended mode is disabled, the FMC can operate in Mode1 or Mode2 as follows:
–
Mode 1 is the default mode when the SRAM/PSRAM memory type is selected (MTYP
=0x0 or 0x01)
–
Mode 2 is the default mode when the NOR memory type is selected (MTYP = 0x10).
Bit 13 WAITEN: Wait enable bit.
This bit enables/disables wait-state insertion via the NWAIT signal when accessing the memory in
synchronous mode.
0: NWAIT signal is disabled (its level not taken into account, no wait state inserted after the
programmed Flash latency period)
1: NWAIT signal is enabled (its level is taken into account after the programmed latency period to
insert wait states if asserted) (default after reset)
Bit 12 WREN: Write enable bit.
This bit indicates whether write operations are enabled/disabled in the bank by the FMC:
0: Write operations are disabled in the bank by the FMC, an AHB error is reported,
1: Write operations are enabled for the bank by the FMC (default after reset).
Bit 11 WAITCFG: Wait timing configuration.
The NWAIT signal indicates whether the data from the memory are valid or if a wait state must be
inserted when accessing the memory in synchronous mode. This configuration bit determines if
NWAIT is asserted by the memory one clock cycle before the wait state or during the wait state:
0: NWAIT signal is active one data cycle before wait state (default after reset),
1: NWAIT signal is active during wait state (not used for PSRAM).
Bit 10 Reserved, must be kept at reset value
Bit 9 WAITPOL: Wait signal polarity bit.
Defines the polarity of the wait signal from memory used for either in synchronous or
asynchronous mode:
0: NWAIT active low (default after reset),
1: NWAIT active high.
DocID024597 Rev 3
379/1693
399
Flexible static memory controller (FSMC)
RM0351
Bit 8 BURSTEN: Burst enable bit.
This bit enables/disables synchronous accesses during read operations. It is valid only for
synchronous memories operating in burst mode:
0: Burst mode disabled (default after reset). Read accesses are performed in asynchronous mode.
1: Burst mode enable. Read accesses are performed in synchronous mode.
Bit 7 Reserved, must be kept at reset value
Bit 6 FACCEN: Flash access enable
Enables NOR Flash memory access operations.
0: Corresponding NOR Flash memory access is disabled
1: Corresponding NOR Flash memory access is enabled (default after reset)
Bits 5:4 MWID[1:0]: Memory data bus width.
Defines the external memory device width, valid for all type of memories.
00: 8 bits
01: 16 bits (default after reset)
10: reserved
11: reserved
Bits 3:2 MTYP[1:0]: Memory type.
Defines the type of external memory attached to the corresponding memory bank:
00: SRAM (default after reset for Bank 2...4)
01: PSRAM (CRAM)
10: NOR Flash/OneNAND Flash (default after reset for Bank 1)
11: reserved
Bit 1 MUXEN: Address/data multiplexing enable bit.
When this bit is set, the address and data values are multiplexed on the data bus, valid only with
NOR and PSRAM memories:
0: Address/Data nonmultiplexed
1: Address/Data multiplexed on databus (default after reset)
Bit 0 MBKEN: Memory bank enable bit.
Enables the memory bank. After reset Bank1 is enabled, all others are disabled. Accessing a
disabled bank causes an ERROR on AHB bus.
0: Corresponding memory bank is disabled
1: Corresponding memory bank is enabled
SRAM/NOR-Flash chip-select timing registers 1..4 (FMC_BTR1..4)
Address offset: 0x04 + 8 * (x – 1), x = 1..4
Reset value: 0x0FFF FFFF
This register contains the control information of each memory bank, used for SRAMs,
PSRAM and NOR Flash memories.If the EXTMOD bit is set in the FMC_BCRx register, then
this register is partitioned for write and read access, that is, 2 registers are available: one to
configure read accesses (this register) and one to configure write accesses (FMC_BWTRx
registers).
380/1693
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
31
30
Res.
Res.
15
14
29
28
27
26
ACCMOD
25
24
23
22
DATLAT
rw
20
19
18
CLKDIV
17
16
BUSTURN
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
13
12
11
10
9
8
7
6
5
4
3
2
1
0
DATAST
rw
21
rw
rw
rw
ADDHLD
rw
rw
rw
rw
rw
rw
ADDSET
rw
rw
rw
rw
rw
Bits 31:30 Reserved, must be kept at reset value
Bits 29:28 ACCMOD[1:0]: Access mode
Specifies the asynchronous access modes as shown in the timing diagrams. These bits are
taken into account only when the EXTMOD bit in the FMC_BCRx register is 1.
00: access mode A
01: access mode B
10: access mode C
11: access mode D
Bits 27:24 DATLAT[3:0]: (see note below bit descriptions): Data latency for synchronous memory
For synchronous access with read/write burst mode enabled (BURSTEN / CBURSTRW bits
set), defines the number of memory clock cycles (+2) to issue to the memory before
reading/writing the first data:
This timing parameter is not expressed in HCLK periods, but in FMC_CLK periods.
For asynchronous access, this value is don't care.
0000: Data latency of 2 CLK clock cycles for first burst access
1111: Data latency of 17 CLK clock cycles for first burst access (default value after reset)
Bits 23:20 CLKDIV[3:0]: Clock divide ratio (for FMC_CLK signal)
Defines the period of FMC_CLK clock output signal, expressed in number of HCLK cycles:
0000: Reserved
0001: FMC_CLK period = 2 × HCLK periods
0010: FMC_CLK period = 3 × HCLK periods
1111: FMC_CLK period = 16 × HCLK periods (default value after reset)
In asynchronous NOR Flash, SRAM or PSRAM accesses, this value is don’t care.
Note: Refer to Section 14.5.5: Synchronous transactions for FMC_CLK divider ratio formula)
DocID024597 Rev 3
381/1693
399
Flexible static memory controller (FSMC)
RM0351
Bits 19:16 BUSTURN[3:0]: Bus turnaround phase duration
These bits are written by software to add a delay at the end of a write-to-read (and read-towrite) transaction. The programmed bus turnaround delay is inserted between an
asynchronous read (muxed or mode D) or write transaction and any other asynchronous
/synchronous read or write to or from a static bank. The bank can be the same or different in
case of read, in case of write the bank can be different except for muxed or mode D.
In some cases, whatever the programmed BUSTRUN values, the bus turnaround delay is fixed
as follows:
• The bus turnaround delay is not inserted between two consecutive asynchronous write
transfers to the same static memory bank except for modes muxed and D.
• There is a bus turnaround delay of 1 FMC clock cycle between:
–Two consecutive asynchronous read transfers to the same static memory bank except for
modes muxed and D.
–An asynchronous read to an asynchronous or synchronous write to any static bank or
dynamic bank except for modes muxed and D.
–An asynchronous (modes 1, 2, A, B or C) read and a read from another static bank.
• There is a bus turnaround delay of 2 FMC clock cycle between:
–Two consecutive synchronous writes (burst or single) to the same bank.
–A synchronous write (burst or single) access and an asynchronous write or read transfer to
or from static memory bank (the bank can be the same or different for the case of read.
–Two consecutive synchronous reads (burst or single) followed by any
synchronous/asynchronous read or write from/to another static memory bank.
• There is a bus turnaround delay of 3 FMC clock cycle between:
–Two consecutive synchronous writes (burst or single) to different static bank.
–A synchronous write (burst or single) access and a synchronous read from the same or a
different bank.
0000: BUSTURN phase duration = 0 HCLK clock cycle added
...
1111: BUSTURN phase duration = 15 x HCLK clock cycles added (default value after reset)
Bits 15:8 DATAST[7:0]: Data-phase duration
These bits are written by software to define the duration of the data phase (refer to Figure 31
to Figure 43), used in asynchronous accesses:
0000 0000: Reserved
0000 0001: DATAST phase duration = 1 × HCLK clock cycles
0000 0010: DATAST phase duration = 2 × HCLK clock cycles
...
1111 1111: DATAST phase duration = 255 × HCLK clock cycles (default value after reset)
For each memory type and access mode data-phase duration, please refer to the respective
figure (Figure 31 to Figure 43).
Example: Mode1, write access, DATAST=1: Data-phase duration= DATAST+1 = 2 HCLK
clock cycles.
Note: In synchronous accesses, this value is don’t care.
382/1693
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
Bits 7:4 ADDHLD[3:0]: Address-hold phase duration
These bits are written by software to define the duration of the address hold phase (refer to
Figure 31 to Figure 43), used in mode D or multiplexed accesses:
0000: Reserved
0001: ADDHLD phase duration =1 × HCLK clock cycle
0010: ADDHLD phase duration = 2 × HCLK clock cycle
...
1111: ADDHLD phase duration = 15 × HCLK clock cycles (default value after reset)
For each access mode address-hold phase duration, please refer to the respective figure
(Figure 31 to Figure 43).
Note: In synchronous accesses, this value is not used, the address hold phase is always 1
memory clock period duration.
Bits 3:0 ADDSET[3:0]: Address setup phase duration
These bits are written by software to define the duration of the address setup phase (refer to
Figure 31 to Figure 43), used in SRAMs, ROMs, asynchronous NOR Flash and PSRAM:
0000: ADDSET phase duration = 0 × HCLK clock cycle
...
1111: ADDSET phase duration = 15 × HCLK clock cycles (default value after reset)
For each access mode address setup phase duration, please refer to the respective figure
(refer to Figure 31 to Figure 43).
Note: In synchronous accesses, this value is don’t care.
In Muxed mode or Mode D, the minimum value for ADDSET is 1.
Note:
PSRAMs (CRAMs) have a variable latency due to internal refresh. Therefore these
memories issue the NWAIT signal during the whole latency phase to prolong the latency as
needed.
With PSRAMs (CRAMs) the filled DATLAT must be set to 0, so that the FMC exits its latency
phase soon and starts sampling NWAIT from memory, then starts to read or write when the
memory is ready.
This method can be used also with the latest generation of synchronous Flash memories
that issue the NWAIT signal, unlike older Flash memories (check the datasheet of the
specific Flash memory being used).
SRAM/NOR-Flash write timing registers 1..4 (FMC_BWTR1..4)
Address offset: 0x104 + 8 * (x – 1), x = 1...4
Reset value: 0x0FFF FFFF
This register contains the control information of each memory bank. It is used for SRAMs,
PSRAMs and NOR Flash memories. When the EXTMOD bit is set in the FMC_BCRx
register, then this register is active for write access.
31
30
Res.
Res.
15
14
29
28
ACCMOD
rw
rw
13
12
27
26
25
24
23
22
21
20
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
11
10
9
8
7
6
5
4
DATAST
rw
rw
rw
rw
rw
19
rw
rw
rw
rw
rw
17
16
BUSTURN
rw
rw
rw
rw
3
2
1
0
ADDHLD
rw
18
ADDSET[3:0]
rw
rw
rw
rw
rw
Bits 31:30 Reserved, must be kept at reset value
DocID024597 Rev 3
383/1693
399
Flexible static memory controller (FSMC)
RM0351
Bits 29:28 ACCMOD[1:0]: Access mode.
Specifies the asynchronous access modes as shown in the next timing diagrams.These bits are
taken into account only when the EXTMOD bit in the FMC_BCRx register is 1.
00: access mode A
01: access mode B
10: access mode C
11: access mode D
Bits 27:20 Reserved, must be kept at reset value
Bits 19:16 BUSTURN[3:0]: Bus turnaround phase duration
The programmed bus turnaround delay is inserted between an asynchronous write transfer and
any other asynchronous /synchronous read or write transfer to or from a static bank. The bank can
be the same or different in case of read, in case of write the bank can be different expect for muxed
or mode D.
In some cases, whatever the programmed BUSTRUN values, the bus turnaround delay is fixed as
follows:
• The bus turnaround delay is not inserted between two consecutive asynchronous write transfers to
the same static memory bank except for modes muxed and D.
• There is a bus turnaround delay of 2 FMC clock cycle between:
–Two consecutive synchronous writes (burst or single) to the same bank.
–A synchronous write (burst or single) transfer and an asynchronous write or read transfer to or
from static memory bank.
• There is a bus turnaround delay of 3 FMC clock cycle between:
–Two consecutive synchronous writes (burst or single) to different static bank.
–A synchronous write (burst or single) transfer and a synchronous read from the same or a
different bank.
0000: BUSTURN phase duration = 0 HCLK clock cycle added
...
1111: BUSTURN phase duration = 15 HCLK clock cycles added (default value after reset)
Bits 15:8 DATAST[7:0]: Data-phase duration.
These bits are written by software to define the duration of the data phase (refer to Figure 31 to
Figure 43), used in asynchronous SRAM, PSRAM and NOR Flash memory accesses:
0000 0000: Reserved
0000 0001: DATAST phase duration = 1 × HCLK clock cycles
0000 0010: DATAST phase duration = 2 × HCLK clock cycles
...
1111 1111: DATAST phase duration = 255 × HCLK clock cycles (default value after reset)
Bits 7:4 ADDHLD[3:0]: Address-hold phase duration.
These bits are written by software to define the duration of the address hold phase (refer to
Figure 40 to Figure 43), used in asynchronous multiplexed accesses:
0000: Reserved
0001: ADDHLD phase duration = 1 × HCLK clock cycle
0010: ADDHLD phase duration = 2 × HCLK clock cycle
...
1111: ADDHLD phase duration = 15 × HCLK clock cycles (default value after reset)
Note: In synchronous NOR Flash accesses, this value is not used, the address hold phase is always
1 Flash clock period duration.
384/1693
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
Bits 3:0 ADDSET[3:0]: Address setup phase duration.
These bits are written by software to define the duration of the address setup phase in HCLK
cycles (refer to Figure 31 to Figure 43), used in asynchronous accesses:
0000: ADDSET phase duration = 0 × HCLK clock cycle
...
1111: ADDSET phase duration = 15 × HCLK clock cycles (default value after reset)
Note: In synchronous accesses, this value is not used, the address setup phase is always 1 Flash
clock period duration. In muxed mode, the minimum ADDSET value is 1.
14.6
NAND Flash controller
The FMC generates the appropriate signal timings to drive the following types of device:
•
8- and 16-bit NAND Flash memories
The NAND bank is configured through dedicated registers (Section 14.6.7). The
programmable memory parameters include access timings (shown in Table 76) and ECC
configuration.
DocID024597 Rev 3
385/1693
399
Flexible static memory controller (FSMC)
RM0351
Table 76. Programmable NAND Flash access parameters
14.6.1
Parameter
Function
Access mode
Unit
Min. Max.
Memory setup
time
Number of clock cycles (HCLK)
required to set up the address
before the command assertion
Read/Write
AHB clock cycle
(HCLK)
1
255
Memory wait
Minimum duration (in HCLK clock
cycles) of the command assertion
Read/Write
AHB clock cycle
(HCLK)
2
255
Memory hold
Number of clock cycles (HCLK)
during which the address must be
held (as well as the data if a write
access is performed) after the
command de-assertion
Read/Write
AHB clock cycle
(HCLK)
1
254
Memory
databus high-Z
Number of clock cycles (HCLK)
during which the data bus is kept
in high-Z state after a write
access has started
Write
AHB clock cycle
(HCLK)
1
255
External memory interface signals
The following tables list the signals that are typically used to interface NAND Flash memory.
Note:
The prefix “N” identifies the signals which are active low.
8-bit NAND Flash memory
t
Table 77. 8-bit NAND Flash
FMC signal name
I/O
Function
A[17]
O
NAND Flash address latch enable (ALE) signal
A[16]
O
NAND Flash command latch enable (CLE) signal
D[7:0]
I/O
8-bit multiplexed, bidirectional address/data bus
NCE
O
Chip Select
NOE(= NRE)
O
Output enable (memory signal name: read enable, NRE)
NWE
O
Write enable
NWAIT/INT
I
NAND Flash ready/busy input signal to the FMC
Theoretically, there is no capacity limitation as the FMC can manage as many address
cycles as needed.
386/1693
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
16-bit NAND Flash memory
Table 78. 16-bit NAND Flash
FMC signal name
I/O
Function
A[17]
O
NAND Flash address latch enable (ALE) signal
A[16]
O
NAND Flash command latch enable (CLE) signal
D[15:0]
I/O
16-bit multiplexed, bidirectional address/data bus
NCE
O
Chip Select
NOE(= NRE)
O
Output enable (memory signal name: read enable, NRE)
NWE
O
Write enable
NWAIT/INT
I
NAND Flash ready/busy input signal to the FMC
Theoretically, there is no capacity limitation as the FMC can manage as many address
cycles as needed.
DocID024597 Rev 3
387/1693
399
Flexible static memory controller (FSMC)
14.6.2
RM0351
NAND Flash supported memories and transactions
Table 79 shows the supported devices, access modes and transactions. Transactions not
allowed (or not supported) by the NAND Flash controller are shown in gray.
Table 79. Supported memories and transactions
Device
NAND 8-bit
NAND 16-bit
14.6.3
AHB
Memory
Allowed/
data size data size not allowed
Mode
R/W
Comments
Asynchronous
R
8
8
Y
-
Asynchronous
W
8
8
Y
-
Asynchronous
R
16
8
Y
Split into 2 FMC accesses
Asynchronous
W
16
8
Y
Split into 2 FMC accesses
Asynchronous
R
32
8
Y
Split into 4 FMC accesses
Asynchronous
W
32
8
Y
Split into 4 FMC accesses
Asynchronous
R
8
16
Y
-
Asynchronous
W
8
16
N
-
Asynchronous
R
16
16
Y
-
Asynchronous
W
16
16
Y
-
Asynchronous
R
32
16
Y
Split into 2 FMC accesses
Asynchronous
W
32
16
Y
Split into 2 FMC accesses
Timing diagrams for NAND Flash memory
The NAND Flash memory bank is managed through a set of registers:
•
Control register: FMC_PCR
•
Interrupt status register: FMC_SR
•
ECC register: FMC_ECCR
•
Timing register for Common memory space: FMC_PMEM
•
Timing register for Attribute memory space: FMC_PATT
Each timing configuration register contains three parameters used to define number of
HCLK cycles for the three phases of any NAND Flash access, plus one parameter that
defines the timing for starting driving the data bus when a write access is performed.
Figure 49 shows the timing parameter definitions for common memory accesses, knowing
that Attribute memory space access timings are similar.
388/1693
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
Figure 49. NAND Flash controller waveforms for common memory access
+&/.
$>@
1&([
+LJK
15(*
1,2:
1,25
1:(
12(
0(0[6(7
0(0[:$,7
0(0[+2/'
0(0[+,=
ZULWHBGDWD
UHDGBGDWD
9DOLG
069
1. NOE remains high (inactive) during write accesses. NWE remains high (inactive) during read accesses.
14.6.4
NAND Flash operations
The command latch enable (CLE) and address latch enable (ALE) signals of the NAND
Flash memory device are driven by address signals from the FMC controller. This means
that to send a command or an address to the NAND Flash memory, the CPU has to perform
a write to a specific address in its memory space.
A typical page read operation from the NAND Flash device requires the following steps:
3.
Program and enable the corresponding memory bank by configuring the FMC_PCR
and FMC_PMEM (and for some devices, FMC_PATT, see Section 14.6.5: NAND Flash
prewait functionality) registers according to the characteristics of the NAND Flash
memory (PWID bits for the data bus width of the NAND Flash, PTYP = 1, PWAITEN =
0 or 1 as needed, see Section 14.4.2: NAND Flash memory address mapping for
timing configuration).
4.
The CPU performs a byte write to the common memory space, with data byte equal to
one Flash command byte (for example 0x00 for Samsung NAND Flash devices). The
LE input of the NAND Flash memory is active during the write strobe (low pulse on
NWE), thus the written byte is interpreted as a command by the NAND Flash memory.
Once the command is latched by the memory device, it does not need to be written
again for the following page read operations.
5.
The CPU can send the start address (STARTAD) for a read operation by writing four
bytes (or three for smaller capacity devices), STARTAD[7:0], STARTAD[16:9],
STARTAD[24:17] and finally STARTAD[25] (for 64 Mb x 8 bit NAND Flash memories) in
the common memory or attribute space. The ALE input of the NAND Flash device is
active during the write strobe (low pulse on NWE), thus the written bytes are
interpreted as the start address for read operations. Using the attribute memory space
makes it possible to use a different timing configuration of the FMC, which can be used
to implement the prewait functionality needed by some NAND Flash memories (see
DocID024597 Rev 3
389/1693
399
Flexible static memory controller (FSMC)
RM0351
details in Section 14.6.5: NAND Flash prewait functionality).
14.6.5
6.
The controller waits for the NAND Flash memory to be ready (R/NB signal high), before
starting a new access to the same or another memory bank. While waiting, the
controller holds the NCE signal active (low).
7.
The CPU can then perform byte read operations from the common memory space to
read the NAND Flash page (data field + Spare field) byte by byte.
8.
The next NAND Flash page can be read without any CPU command or address write
operation. This can be done in three different ways:
–
by simply performing the operation described in step 5
–
a new random address can be accessed by restarting the operation at step 3
–
a new command can be sent to the NAND Flash device by restarting at step 2
NAND Flash prewait functionality
Some NAND Flash devices require that, after writing the last part of the address, the
controller waits for the R/NB signal to go low. (see Figure 50).
Figure 50. Access to non ‘CE don’t care’ NAND-Flash
.#% MUST STAY LOW
.#%
#,%
!,%
.7%
(IGH
./%
T2
)/;=
X
! ! ! ! ! ! !
T7"
2."
AI
1. CPU wrote byte 0x00 at address 0x7001 0000.
2. CPU wrote byte A7~A0 at address 0x7002 0000.
3. CPU wrote byte A16~A9 at address 0x7002 0000.
4. CPU wrote byte A24~A17 at address 0x7002 0000.
5. CPU wrote byte A25 at address 0x7802 0000: FMC performs a write access using FMC_PATT timing
definition, where ATTHOLD ≥ 7 (providing that (7+1) × HCLK = 112 ns > tWB max). This guarantees that
NCE remains low until R/NB goes low and high again (only requested for NAND Flash memories where
NCE is not don’t care).
390/1693
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
When this functionality is required, it can be ensured by programming the MEMHOLD value
to meet the tWB timing. However any CPU read or write access to the NAND Flash memory
has a hold delay of (MEMHOLD + 1) HCLK cycles inserted between the rising edge of the
NWE signal and the next access.
To cope with this timing constraint, the attribute memory space can be used by
programming its timing register with an ATTHOLD value that meets the tWB timing, and by
keeping the MEMHOLD value at its minimum value. The CPU must then use the common
memory space for all NAND Flash read and write accesses, except when writing the last
address byte to the NAND Flash device, where the CPU must write to the attribute memory
space.
14.6.6
Computation of the error correction code (ECC)
in NAND Flash memory
The FMC NAND Card controller includes two error correction code computation hardware
blocks, one per memory bank. They reduce the host CPU workload when processing the
ECC by software.
These two ECC blocks are identical and associated with Bank 2 and Bank 3. As a
consequence, no hardware ECC computation is available for memories connected to Bank
4.
The ECC algorithm implemented in the FMC can perform 1-bit error correction and 2-bit
error detection per 256, 512, 1 024, 2 048, 4 096 or 8 192 bytes read or written from/to the
NAND Flash memory. It is based on the Hamming coding algorithm and consists in
calculating the row and column parity.
The ECC modules monitor the NAND Flash data bus and read/write signals (NCE and
NWE) each time the NAND Flash memory bank is active.
The ECC operates as follows:
•
When accessing NAND Flash memory bank 2 or bank 3, the data present on the
D[15:0] bus is latched and used for ECC computation.
•
When accessing any other address in NAND Flash memory, the ECC logic is idle, and
does not perform any operation. As a result, write operations to define commands or
addresses to the NAND Flash memory are not taken into account for ECC
computation.
Once the desired number of bytes has been read/written from/to the NAND Flash memory
by the host CPU, the FMC_ECCR registers must be read to retrieve the computed value.
Once read, they should be cleared by resetting the ECCEN bit to ‘0’. To compute a new data
block, the ECCEN bit must be set to one in the FMC_PCR registers.
DocID024597 Rev 3
391/1693
399
Flexible static memory controller (FSMC)
RM0351
To perform an ECC computation:
14.6.7
1.
Enable the ECCEN bit in the FMC_PCR register.
2.
Write data to the NAND Flash memory page. While the NAND page is written, the ECC
block computes the ECC value.
3.
Read the ECC value available in the FMC_ECCR register and store it in a variable.
4.
Clear the ECCEN bit and then enable it in the FMC_PCR register before reading back
the written data from the NAND page. While the NAND page is read, the ECC block
computes the ECC value.
5.
Read the new ECC value available in the FMC_ECCR register.
6.
If the two ECC values are the same, no correction is required, otherwise there is an
ECC error and the software correction routine returns information on whether the error
can be corrected or not.
NAND Flashcontroller registers
NAND Flash control registers (FMC_PCR)
Address offset: 0x80
Reset value: 0x0000 0018
31
30
29
28
27
26
25
24
23
22
21
20
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
TAR
rw
rw
10
9
TCLR
rw
rw
rw
rw
8
7
6
Res.
Res.
ECCEN
rw
rw
5
4
PWID
rw
19
18
17
ECCPS
TAR
rw
rw
rw
3
2
1
PTYP PBKEN PWAITEN
rw
rw
rw
rw
Bits 31:20 Reserved, must be kept at reset value
Bits 19:17 ECCPS[2:0]: ECC page size.
Defines the page size for the extended ECC:
000: 256 bytes
001: 512 bytes
010: 1024 bytes
011: 2048 bytes
100: 4096 bytes
101: 8192 bytes
Bits 16:13 TAR[3:0]: ALE to RE delay.
Sets time from ALE low to RE low in number of AHB clock cycles (HCLK).
Time is: t_ar = (TAR + SET + 2) × THCLK where THCLK is the HCLK clock period
0000: 1 HCLK cycle (default)
1111: 16 HCLK cycles
Note: SET is MEMSET or ATTSET according to the addressed space.
392/1693
DocID024597 Rev 3
16
rw
0
Res.
RM0351
Flexible static memory controller (FSMC)
Bits 12:9 TCLR[3:0]: CLE to RE delay.
Sets time from CLE low to RE low in number of AHB clock cycles (HCLK).
Time is t_clr = (TCLR + SET + 2) × THCLK where THCLK is the HCLK clock period
0000: 1 HCLK cycle (default)
1111: 16 HCLK cycles
Note: SET is MEMSET or ATTSET according to the addressed space.
Bits 8:7 Reserved, must be kept at reset value
Bit 6 ECCEN: ECC computation logic enable bit
0: ECC logic is disabled and reset (default after reset),
1: ECC logic is enabled.
Bits 5:4 PWID[1:0]: Data bus width.
Defines the external memory device width.
00: 8 bits
01: 16 bits (default after reset).
10: reserved.
11: reserved.
Bit 3 PTYP: Memory type.
Defines the type of device attached to the corresponding memory bank:
0: Reserved, must be kept at reset value
1: NAND Flash (default after reset)
Bit 2 PBKEN: NAND Flash memory bank enable bit.
Enables the memory bank. Accessing a disabled memory bank causes an ERROR on AHB
bus
0: Corresponding memory bank is disabled (default after reset)
1: Corresponding memory bank is enabled
Bit 1 PWAITEN: Wait feature enable bit.
Enables the Wait feature for the NAND Flash memory bank:
0: disabled
1: enabled
Bit 0 Reserved, must be kept at reset value
FIFO status and interrupt register (FMC_SR)
Address offset: 0x84
Reset value: 0x0000 0040
This register contains information about the FIFO status and interrupt. The FMC features a
FIFO that is used when writing to memories to transfer up to 16 words of data from the AHB.
This is used to quickly write to the FIFO and free the AHB for transactions to peripherals
other than the FMC, while the FMC is draining its FIFO into the memory. One of these
register bits indicates the status of the FIFO, for ECC purposes.
The ECC is calculated while the data are written to the memory. To read the correct ECC,
the software must consequently wait until the FIFO is empty.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DocID024597 Rev 3
393/1693
399
Flexible static memory controller (FSMC)
RM0351
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FEMPT
IFEN
ILEN
IREN
IFS
ILS
IRS
r
rw
rw
rw
rw
rw
rw
Bits 31:7 Reserved, must be kept at reset value
Bit 6 FEMPT: FIFO empty.
Read-only bit that provides the status of the FIFO
0: FIFO not empty
1: FIFO empty
Bit 5 IFEN: Interrupt falling edge detection enable bit
0: Interrupt falling edge detection request disabled
1: Interrupt falling edge detection request enabled
Bit 4 ILEN: Interrupt high-level detection enable bit
0: Interrupt high-level detection request disabled
1: Interrupt high-level detection request enabled
Bit 3 IREN: Interrupt rising edge detection enable bit
0: Interrupt rising edge detection request disabled
1: Interrupt rising edge detection request enabled
Bit 2 IFS: Interrupt falling edge status
The flag is set by hardware and reset by software.
0: No interrupt falling edge occurred
1: Interrupt falling edge occurred
Note: If this bit is written by software to 1 it will be set.
Bit 1 ILS: Interrupt high-level status
The flag is set by hardware and reset by software.
0: No Interrupt high-level occurred
1: Interrupt high-level occurred
Bit 0 IRS: Interrupt rising edge status
The flag is set by hardware and reset by software.
0: No interrupt rising edge occurred
1: Interrupt rising edge occurred
Note: If this bit is written by software to 1 it will be set.
Common memory space timing register 2..4 (FMC_PMEM)
Address offset: Address: 0x88
Reset value: 0xFCFC FCFC
The FMC_PMEM read/write register contains the timing information for NAND Flash
memory bank. This information is used to access either the common memory space of the
NAND Flash for command, address write access and data read/write access.
31
30
29
28
27
26
25
24
23
22
21
MEMHIZx
20
19
18
17
16
MEMHOLDx
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
MEMWAITx
394/1693
rw
rw
MEMSETx
DocID024597 Rev 3
rw
RM0351
Flexible static memory controller (FSMC)
Bits 31:24 MEMHIZ[7:0]: Common memory x data bus Hi-Z time
Defines the number of HCLK clock cycles during which the data bus is kept Hi-Z after the
start of a NAND Flash write access to common memory space on socket. This is only valid
for write transactions:
0000 0000: 1 HCLK cycle
1111 1110: 255 HCLK cycles
1111 1111: reserved.
Bits 23:16 MEMHOLD[7:0]: Common memory hold time
Defines the number of HCLK clock cycles during which the address is held (and data for
write accesses) after the command is deasserted (NWE, NOE), for NAND Flash read or
write access to common memory space on socket x:
0000 0000: reserved.
0000 0001: 1 HCLK cycle
1111 1110: 254 HCLK cycles
1111 1111: reserved.
Bits 15:8 MEMWAIT[7:0]: Common memory wait time
Defines the minimum number of HCLK (+1) clock cycles to assert the command (NWE,
NOE), for NAND Flash read or write access to common memory space on socket. The
duration of command assertion is extended if the wait signal (NWAIT) is active (low) at the
end of the programmed value of HCLK:
0000 0000: reserved
0000 0001: 2HCLK cycles (+ wait cycle introduced by deasserting NWAIT)
1111 1110: 255 HCLK cycles (+ wait cycle introduced by deasserting NWAIT)
1111 1111: reserved.
Bits 7:0 MEMSET[7:0]: Common memory x setup time
Defines the number of HCLK (+1) clock cycles to set up the address before the command
assertion (NWE, NOE), for NAND Flash read or write access to common memory space on
socket x:
0000 0000: 1 HCLK cycle
1111 1110: 255 HCLK cycles
1111 1111: reserved
Attribute memory space timing registers (FMC_PATT)
Address offset: 0x8C
Reset value: 0xFCFC FCFC
The FMC_PATT read/write register contains the timing information for NAND Flash memory
bank. It is used for 8-bit accesses to the attribute memory space of the NAND Flash for the
last address write access if the timing must differ from that of previous accesses (for
Ready/Busy management, refer to Section 14.6.5: NAND Flash prewait functionality).
31
30
29
28
27
26
25
24
23
22
21
ATTHIZ
20
19
18
17
16
ATTHOLD
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
ATTWAIT
rw
rw
rw
rw
rw
ATTSET
rw
rw
rw
rw
rw
DocID024597 Rev 3
rw
rw
rw
395/1693
399
Flexible static memory controller (FSMC)
RM0351
Bits 31:24 ATTHIZ[7:0]: Attribute memory data bus Hi-Z time
Defines the number of HCLK clock cycles during which the data bus is kept in Hi-Z after the
start of a NAND Flash write access to attribute memory space on socket. Only valid for writ
transaction:
0000 0000: 0 HCLK cycle
1111 1110: 255 HCLK cycles
1111 1111: reserved.
Bits 23:16 ATTHOLD[7:0]: Attribute memory hold time
Defines the number of HCLK clock cycles during which the address is held (and data for
write access) after the command deassertion (NWE, NOE), for NAND Flash read or write
access to attribute memory space on socket:
0000 0000: reserved
0000 0001: 1 HCLK cycle
1111 1110: 254 HCLK cycles
1111 1111: reserved.
Bits 15:8 ATTWAIT[7:0]: Attribute memory wait time
Defines the minimum number of HCLK (+1) clock cycles to assert the command (NWE,
NOE), for NAND Flash read or write access to attribute memory space on socket x. The
duration for command assertion is extended if the wait signal (NWAIT) is active (low) at the
end of the programmed value of HCLK:
0000 0000: reserved
0000 0001: 2 HCLK cycles (+ wait cycle introduced by deassertion of NWAIT)
1111 1110: 255 HCLK cycles (+ wait cycle introduced by deasserting NWAIT)
1111 1111: reserved.
Bits 7:0 ATTSET[7:0]: Attribute memory setup time
Defines the number of HCLK (+1) clock cycles to set up address before the command
assertion (NWE, NOE), for NAND Flash read or write access to attribute memory space on
socket:
0000 0000: 1 HCLK cycle
1111 1110: 255 HCLK cycles
1111 1111: reserved.
396/1693
DocID024597 Rev 3
RM0351
Flexible static memory controller (FSMC)
ECC result registers (FMC_ECCR)
Address offset: 0x94
Reset value: 0x0000 0000
This register contain the current error correction code value computed by the ECC
computation modules of the FMC NAND controller. When the CPU reads the data from a
NAND Flash memory page at the correct address (refer to Section 14.6.6: Computation of
the error correction code (ECC) in NAND Flash memory), the data read/written from/to the
NAND Flash memory are processed automatically by the ECC computation module. When
X bytes have been read (according to the ECCPS field in the FMC_PCR registers), the CPU
must read the computed ECC value from the FMC_ECC registers. It then verifies if these
computed parity data are the same as the parity value recorded in the spare area, to
determine whether a page is valid, and, to correct it otherwise. The FMC_ECCR register
should be cleared after being read by setting the ECCEN bit to ‘0’. To compute a new data
block, the ECCEN bit must be set to ’1’.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
ECCx
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
r
ECCx
r
r
r
r
r
r
r
r
Bits 31:0 ECC: ECC result
This field contains the value computed by the ECC computation logic. Table 80 describes
the contents of these bit fields.
Table 80. ECC result relevant bits
ECCPS[2:0]
Page size in bytes
ECC bits
000
256
ECC[21:0]
001
512
ECC[23:0]
010
1024
ECC[25:0]
011
2048
ECC[27:0]
100
4096
ECC[29:0]
101
8192
ECC[31:0]
DocID024597 Rev 3
397/1693
399
Flexible static memory controller (FSMC)
14.7
RM0351
FMC register map
The following table summarizes the FMC registers.
Reset value
398/1693
0
0
WAITCFG
WAITPOL
BURSTEN
1
0
0
0
1
CPSIZE
[2:0]
FACCEN
WAITEN
WREN
WAITCFG
WAITPOL
BURSTEN
0
1
1
0
0
0
1
CPSIZE
[2:0]
EXTMOD
WAITEN
WREN
WAITCFG
WAITPOL
BURSTEN
FACCEN
0
0
1
1
0
0
0
0
0
0
DATLAT[3:0]
CLKDIV[3:0] BUSTURN[3:0]
1
1
1
1
1
1
1
1
1
1
1
1
DATLAT[3:0]
CLKDIV[3:0] BUSTURN[3:0]
1
1
1
1
1
1
1
1
1
1
1
1
DATLAT[3:0]
CLKDIV[3:0] BUSTURN[3:0]
1
1
1
1
1
DATLAT[3:0]
CLKDIV[3:0] BUSTURN[3:0]
1
1
1
1
1
1
1
1
Res.
1
Res.
1
Res.
1
Res.
1
Res.
1
Res.
1
Res.
1
1
1
1
1
1
1
1
1
1
DocID024597 Rev 3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Res.
1
0
MWID MTYP
[1:0] [1:0]
1
0
0
1
0
MWID MTYP
[1:0] [1:0]
1
0
0
0
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ADDHLD[3:0] ADDSET[3:0]
1
1
DATAST[7:0]
1
0
0
ADDHLD[3:0] ADDSET[3:0]
DATAST[7:0]
1
MWID MTYP
[1:0] [1:0]
ADDHLD[3:0] ADDSET[3:0]
DATAST[7:0]
1
1
1
1
ADDHLD[3:0] ADDSET[3:0]
DATAST[7:0]
BUSTURN[3:0]
1
Res.
DATAST[7:0]
Res.
EXTMOD
0
0
Res.
ASYNCWAIT
0
0
MBKEN
WREN
1
MUXEN
FACCEN
WAITEN
0
Res.
EXTMOD
0
0
Res.
ASYNCWAIT
0
0
1
1
MBKEN
CPSIZE
[2:0]
0
0
MUXEN
1
MBKEN
0
MUXEN
BURSTEN
0
MBKEN
WAITPOL
0
MWID MTYP
[1:0] [1:0]
MUXEN
WREN
WAITCFG
1
Res.
WAITEN
1
FACCEN
EXTMOD
0
0
Res.
ASYNCWAIT
0
0
Res.
0
ACCMOD[1:0]
FMC_BWTR1
Res.
0x104
0
Res.
Reset value
0
ACCMOD[1:0]
Res.
FMC_BTR4
0x1C
0
Res.
Reset value
0
ACCMOD[1:0]
Res.
FMC_BTR3
0x14
0
Res.
Reset value
0
ACCMOD[1:0]
Res.
FMC_BTR2
0x0C
0
Res.
Reset value
ACCMOD[1:0]
Res.
FMC_BTR1
0x04
0
Res.
Reset value
0
CPSIZE
[2:0]
ASYNCWAIT
CBURSTRW
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FMC_BCR4
Res.
0
Res.
Reset value
CBURSTRW
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FMC_BCR3
CBURSTRW
CBURSTRW
Res.
CCLKEN
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
Res.
0x18
0
Reset value
Res.
0x10
Res.
FMC_BCR2
0x08
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FMC_BCR1
0x00
Res.
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 81. FMC register map
1
1
1
1
1
1
1
1
ADDHLD[3:0] ADDSET[3:0]
1
1
1
1
1
1
1
1
1
1
RM0351
Flexible static memory controller (FSMC)
1
1
1
0
0
0
Res.
Res.
Res.
TCLR[3:0]
0
0
0
0
0
1
1
1
0
0x88
0x8C
0x94
1
Reset value
MEMHIZx[7:0]
1
1
FMC_PATT
Reset value
1
1
1
1
MEMHOLDx[7:0]
0
0
1
1
ATTHIZ[7:0]
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
FMC_ECCR
Reset value
MEMWAITx[7:0]
0
0
1
1
ATTHOLD[7:0]
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
PWID
[1:0]
0
1
1
0
0
0
0
0
1
0
0
0
0
0
MEMSETx[7:0]
0
0
1
1
ATTWAIT[7:0]
0
1
Res.
1
Reset value
FMC_PMEM
1
PWAITEN
0
1
Res.
0
1
ADDHLD[3:0] ADDSET[3:0]
Res.
0
Res.
TAR[3:0]
1
1
ILS
1
1
IRS
1
1
PTYP
1
1
PBKEN
DATAST[7:0]
1
1
IFS
ECCPS
[2:0]
1
1
ILEN
1
1
1
IREN
1
1
IFEN
1
1
Res.
1
1
ECCEN
1
1
ADDHLD[3:0] ADDSET[3:0]
Res.
1
1
FEMPT
1
1
Res.
1
1
Res.
1
1
Res.
1
DATAST[7:0]
Res.
Res.
Res.
Res.
Res.
1
Res.
Res.
Res.
Res.
Res.
Res.
Res.
1
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
1
ADDHLD[3:0] ADDSET[3:0]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FMC_SR
Res.
0x84
Res.
Reset value
1
BUSTURN[3:0]
1
Res.
0
1
DATAST[7:0]
BUSTURN[3:0]
1
Res.
FMC_PCR
Res.
0x80
0
Res.
Reset value
BUSTURN[3:0]
1
0
Res.
0
Res.
FMC_BWTR4
ACCMOD[1:0]
ACCMOD[1:0]
ACCM
OD[1:0]
Reset value
0x11C
0
Res.
FMC_BWTR3
Res.
0x114
0
Res.
Reset value
Res.
FMC_BWTR2
Res.
0x10C
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 81. FMC register map (continued)
1
1
1
1
ATTSET[7:0]
1
1
1
1
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ECCx[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Refer to Section 2.2.2 on page 67 for the register boundary addresses.
DocID024597 Rev 3
399/1693
399
Quad-SPI interface (QUADSPI)
RM0351
15
Quad-SPI interface (QUADSPI)
15.1
Introduction
The QUADSPI is a specialized communication interface targeting single, dual or quad SPI
Flash memories. It can operate in any of the three following modes:
15.2
•
indirect mode: all the operations are performed using the QUADSPI registers
•
status polling mode: the external Flash memory status register is periodically read and
an interrupt can be generated in case of flag setting
•
memory-mapped mode: the external Flash memory is mapped to the microcontroller
address space and is seen by the system as if it was an internal memory
QUADSPI main features
•
Three functional modes: indirect, status-polling, and memory-mapped
•
SDR and DDR support
•
Fully programmable opcode for both indirect and memory mapped mode
•
Fully programmable frame format for both indirect and memory mapped mode
•
Integrated FIFO for reception and transmission
•
8, 16, and 32-bit data accesses are allowed
•
DMA channel for indirect mode operations
•
Interrupt generation on FIFO threshold, timeout, operation complete, and access error
15.3
QUADSPI functional description
15.3.1
QUADSPI block diagram
Figure 51. QUADSPI block diagram
48$'63,
5HJLVWHUV
FRQWURO
&ORFN
PDQDJHPHQW
$+%
),)2
6KLIWUHJLVWHU
63,)/$6+
&/.
%.B,262
%.B,26,
%.B,2
%.B,2
%.BQ&6
&/.
46,
462
4:3
4+2/'
&6
069
400/1693
DocID024597 Rev 3
RM0351
Quad-SPI interface (QUADSPI)
The QUADSPI uses 6 signals to interface with a Flash memory:
15.3.2
–
CLK - Clock output
–
BK1_IO0/SO - Bidirectional IO in dual/quad modes or serial output in single mode
–
BK1_IO1/SI - Bidirectional IO in dual/quad modes or serial input in single mode
–
BK1_IO2 - Bidirectional IO in quad mode
–
BK1_IO3 - Bidirectional IO in quad mode
–
BK1_nCS - Chip select output (active low)
QUADSPI Command sequence
The QUADSPI communicates with the Flash memory using commands. Each command
can include 5 phases: instruction, address, alternate byte, dummy, data. Any of these
phases can be configured to be skipped, but at least one of the instruction, address,
alternate byte, or data phase must be present.
nCS falls before the start of each command and rises again after each command finishes.
Figure 52. An example of a read command in quad mode
,QVWUXFWLRQ
$GGUHVV
$OW
'XPP\
'DWD
Q&6
6&/.
,2
,2
,2
,2
$
$
$
0
%\WH
,2VZLWFKIURP
RXWSXWWRLQSXW
%\WH
069
Instruction phase
During this phase, an 8-bit instruction, configured in INSTRUCTION field of
QUADSPI_CCR[7:0] register, is sent to the Flash memory, specifying the type of operation
to be performed.
Though most Flash memories can receive instructions only one bit at a time from the
IO0/SO signal (single SPI mode), the instruction phase can optionally send 2 bits at a time
(over IO0/IO1 in dual SPI mode) or 4 bits at a time (over IO0/IO1/IO2/IO3 in quad SPI
mode). This can be configured using the IMODE[1:0] field of QUADSPI_CCR[9:8] register.
When IMODE = 00, the instruction phase is skipped, and the command sequence starts
with the address phase, if present.
Address phase
In the address phase, 1-4 bytes are sent to the Flash memory to indicate the address of the
operation. The number of address bytes to be sent is configured in the ADSIZE[1:0] field of
QUADSPI_CCR[13:12] register. In indirect and automatic-polling modes, the address bytes
to be sent are specified in the ADDRESS[31:0] field of QUADSPI_AR register, while in
memory-mapped mode the address is given directly via the AHB (from the Cortex® or from
a DMA).
DocID024597 Rev 3
401/1693
425
Quad-SPI interface (QUADSPI)
RM0351
The address phase can send 1 bit at a time (over SO in single SPI mode), 2 bits at a time
(over IO0/IO1 in dual SPI mode), or 4 bits at a time (over IO0/IO1/IO2/IO3 in quad SPI
mode). This can be configured using the ADMODE[1:0] field of QUADSPI_CCR[11:10]
register.
When ADMODE = 00, the address phase is skipped, and the command sequence proceeds
directly to the next phase, if any.
Alternate-bytes phase
In the alternate-bytes phase, 1-4 bytes are sent to the Flash memory, generally to control
the mode of operation. The number of alternate bytes to be sent is configured in the
ABSIZE[1:0] field of QUADSPI_CCR[17:16] register. The bytes to be sent are specified in
the QUADSPI_ABR register.
The alternate-bytes phase can send 1 bit at a time (over SO in single SPI mode), 2 bits at a
time (over IO0/IO1 in dual SPI mode), or 4 bits at a time (over IO0/IO1/IO2/IO3 in quad SPI
mode). This can be configured using the ABMODE[1:0] field of QUADSPI_CCR[15:14]
register.
When ABMODE = 00, the alternate-bytes phase is skipped, and the command sequence
proceeds directly to the next phase, if any.
There may be times when only a single nibble needs to be sent during the alternate-byte
phase rather than a full byte, such as when dual-mode is used and only two cycles are used
for the alternate bytes. In this case, firmware can use quad-mode (ABMODE = 11) and send
a byte with bits 7 and 3 of ALTERNATE set to ‘1’ (keeping the IO3 line high), and bits 6 and
2 set to ‘0’ (keeping the IO2 line low). In this case the upper two bits of the nibble to be sent
are placed in bits 4:3 of ALTERNATE while the lower two bits are placed in bits 1 and 0. For
example, if the nibble 2 (0010) is to be sent over IO0/IO1, then ALTERNATE should be set
to 0x8A (1000_1010).
Dummy-cycles phase
In the dummy-cycles phase, 1-31 cycles are given without any data being sent or received,
in order to allow the Flash memory the time to prepare for the data phase when higher clock
frequencies are used. The number of cycles given during this phase is specified in the
DCYC[4:0] field of QUADSPI_CCR[22:18] register. In both SDR and DDR modes, the
duration is specified as a number of full CLK cycles.
When DCYC is zero, the dummy-cycles phase is skipped, and the command sequence
proceeds directly to the data phase, if present.
The operating mode of the dummy-cycles phase is determined by DMODE.
In order to assure enough “turn-around” time for changing the data signals from output
mode to input mode, there must be at least one dummy cycle when using dual or quad
mode to receive data from the Flash memory.
Data phase
During the data phase, any number of bytes can be sent to, or received from the Flash
memory.
In indirect and automatic-polling modes, the number of bytes to be sent/received is specified
in the QUADSPI_DLR register.
402/1693
DocID024597 Rev 3
RM0351
Quad-SPI interface (QUADSPI)
In indirect write mode the data to be sent to the Flash memory must be written to the
QUADSPI_DR register, while in indirect read mode the data received from the Flash
memory is obtained by reading from the QUADSPI_DR register.
In memory-mapped mode, the data which is read is sent back directly over the AHB to the
Cortex or to a DMA.
The data phase can send/receive 1 bit at a time (over SO/SI in single SPI mode), 2 bits at a
time (over IO0/IO1 in dual SPI mode), or 4 bits at a time (over IO0/IO1/IO2/IO3 in quad SPI
mode). This can be configured using the ABMODE[1:0] field of QUADSPI_CCR[15:14]
register.
When DMODE = 00, the data phase is skipped, and the command sequence finishes
immediately by raising nCS. This configuration must only be used in only indirect write
mode.
15.3.3
QUADSPI signal interface protocol modes
Single SPI mode
Legacy SPI mode allows just a single bit to be sent/received serially. In this mode, data is
sent to the Flash memory over the SO signal (whose I/O shared with IO0). Data received
from the Flash memory arrives via SI (whose I/O shared with IO1).
The different phases can each be configured separately to use this single bit mode by
setting the IMODE/ADMODE/ABMODE/DMODE fields (in QUADSPI_CCR) to 01.
In each phase which is configured in single mode:
•
IO0 (SO) is in output mode
•
IO1 (SI) is in input mode (high impedance)
•
IO2 is in output mode and forced to ‘0’ (to deactivate the “write protect” function)
•
IO3 is in output mode and forced to ‘1’ (to deactivate the “hold” function)
This is the case even for the dummy phase if DMODE = 01.
Dual SPI mode
In dual SPI mode, two bits are sent/received simultaneously over the IO0/IO1 signals.
The different phases can each be configured separately to use dual SPI mode by setting the
IMODE/ADMODE/ABMODE/DMODE fields of QUADSPI_CCR register to 10.
In each phase which is configured in dual mode:
•
IO0/IO1 are at high-impedance (input) during the data phase for read operations, and
outputs in all other cases
•
IO2 is in output mode and forced to ‘0’
•
IO3 is in output mode and forced to ‘1’
In the dummy phase when DMODE = 01, IO0/IO1 are always high-impedance.
Quad SPI mode
In quad SPI mode, four bits are sent/received simultaneously over the IO0/IO1/IO2/IO3
signals.
The different phases can each be configured separately to use quad SPI mode by setting
the IMODE/ADMODE/ABMODE/DMODE fields of QUADSPI_CCR register to 11.
DocID024597 Rev 3
403/1693
425
Quad-SPI interface (QUADSPI)
RM0351
In each phase which is configured in quad mode, IO0/IO1/IO2/IO3 are all are at highimpedance (input) during the data phase for read operations, and outputs in all other cases.
In the dummy phase when DMODE = 11, IO0/IO1/IO2/IO3 are all high-impedance.
IO2 and IO3 are used only in Quad SPI mode. If none of the phases are configured to use
Quad SPI mode, then the pins corresponding to IO2 and IO3 can be used for other functions
even while QUADSPI is active.
SDR mode
By default, the DDRM bit (QUADSPI_CCR[31]) is 0 and the QUADSPI operates in single
data rate (SDR) mode.
In SDR mode, when the QUADSPI is driving the IO0/SO, IO1, IO2, IO3 signals, these
signals transition only with the falling edge of CLK.
When receiving data in SDR mode, the QUADSPI assumes that the Flash memories also
send the data using CLK’s falling edge. By default (when SSHIFT = 0), the signals are
sampled using the following (rising) edge of CLK.
DDR mode
When the DDRM bit (QUADSPI_CCR[31]) is set to 1, the QUADSPI operates in double data
rate (DDR) mode.
In DDR mode, when the QUADSPI is driving the IO0/SO, IO1, IO2, IO3 signals in the
address/alternate-byte/data phases, a bit is sent on each of the falling and rising edges of
CLK.
The instruction phase is not affected by DDRM. The instruction is always sent using CLK’s
falling edge.
When receiving data in DDR mode, the QUADSPI assumes that the Flash memories also
send the data using both rising and falling CLK edges. When DDRM = 1, firmware must
clear SSHIFT bit (QUADSPI_CR[4]). Thus, the signals are sampled one half of a CLK cycle
later (on the following, opposite edge).
Figure 53. An example of a DDR command in quad mode
,QVWUXFWLRQ
$GGUHVV
$OW
'XPP\
'DWD
Q&6
6&/.
,2
,2
,2
,2
$$ $ 0
%\WH%\WH
,2VZLWFKIURP
RXWSXWWRLQSXW
15.3.4
069
QUADSPI indirect mode
When in indirect mode, commands are started by writing to QUADSPI registers and data is
transferred by writing or reading the data register, in the same way as for other
communication peripherals.
404/1693
DocID024597 Rev 3
RM0351
Quad-SPI interface (QUADSPI)
When FMODE = 00 (QUADSPI_CCR[27:26]), the QUADSPI is in indirect write mode,
where bytes are sent to the Flash memory during the data phase. Data are provided by
writing to the data register (QUADSPI_DR).
When FMODE = 01, the QUADSPI is in indirect read mode, where bytes are received from
the Flash memory during the data phase. Data are recovered by reading QUADSPI_DR.
The number of bytes to be read/written is specified in the data length register
(QUADSPI_DLR). If QUADSPI_DLR = 0xFFFF_FFFF (all 1’s), then the data length is
considered undefined and the QUADSPI simply continues to transfer data until the end of
Flash memory (as defined by FSIZE) is reached. If no bytes are to be transferred, DMODE
(QUADSPI_CCR[25:24]) should be set to 00.
If QUADSPI_DLR = 0xFFFF_FFFF and FSIZE = 0x1F (max value indicating a 4GB Flash
memory), then in this special case the transfers continue indefinitely, stopping only after an
abort request or after the QUADSPI is disabled. After the last memory address is read (at
address 0xFFFF_FFFF), reading continues with address = 0x0000_0000.
When the programmed number of bytes to be transmitted or received is reached, TCF is set
and an interrupt is generated if TCIE = 1. In the case of undefined number of data, the TCF
is set when the limit of the external SPI memory is reached according to the Flash memory
size defined in the QUADSPI_CR.
Triggering the start of a command
Essentially, a command starts as soon as firmware gives the last information that is
necessary for this command. Depending on the QUADSPI configuration, there are three
different ways to trigger the start of a command in indirect mode. The commands starts
immediately after:
1.
a write is performed to INSTRUCTION[7:0] (QUADSPI_CCR), if no address is
necessary (when ADMODE = 00) and if no data needs to be provided by the firmware
(when FMODE = 01 or DMODE = 00)
2.
a write is performed to ADDRESS[31:0] (QUADSPI_AR), if an address is necessary
(when ADMODE != 00) and if no data needs to be provided by the firmware (when
FMODE = 01 or DMODE = 00)
3.
a write is performed to DATA[31:0] (QUADSPI_DR), if an address is necessary (when
ADMODE != 00) and if data needs to be provided by the firmware (when FMODE = 00
and DMODE != 00)
Writes to the alternate byte register (QUADSPI_ABR) never trigger the communication start.
If alternate bytes are required, they must be programmed before.
As soon as a command is started, the BUSY bit (bit 5 of QUADSPI_SR) is automatically set.
FIFO and data management
In indirect mode, data go through a 16-byte FIFO which is internal to the QUADSPI.
FLEVEL[4:0] (QUADSPI_SR[12:8]) indicates how many bytes are currently being held in
the FIFO.
In indirect write mode (FMODE = 00), firmware adds data to the FIFO when it writes
QUADSPI_DR. Word writes add 4 bytes to the FIFO, halfword writes add 2 bytes, and byte
writes add only 1 byte. If firmware adds too many bytes to the FIFO (more than is indicated
by DL[31:0]), the extra bytes are flushed from the FIFO at the end of the write operation
(when TCF is set).
DocID024597 Rev 3
405/1693
425
Quad-SPI interface (QUADSPI)
RM0351
Byte/halfword accesses to QUADSPI_DR must be done only to the least significant
byte/halfword of the 32-bit register.
FTHRES[3:0] is used to define a FIFO threshold. When the threshold is reached, the FTF
(FIFO threshold flag) is set. In indirect read mode, FTF is set when the number of valid
bytes to be read from the FIFO is above the threshold. FTF is also set if there are data in the
FIFO after the last byte is read from the Flash memory, regardless of the FTHRES setting.
In indirect write mode, FTF is set when the number of empty bytes in the FIFO is above the
threshold.
If FTIE = 1, there is an interrupt when FTF is set. If DMAEN = 1, a DMA transfer is initiated
when FTF is set. FTF is cleared by HW as soon as the threshold condition is no longer true
(after enough data has been transferred by the CPU or DMA).
In indirect read mode when the FIFO becomes full, the QUADSPI temporarily stops reading
bytes from the Flash memory to avoid an overrun. Please note that the reading of the Flash
memory does not restart until 4 bytes become vacant in the FIFO (when FLEVEL ≤ 11).
Thus, when FTHRES ≥ 13, the application must take care to read enough bytes to assure
that the QUADSPI will start retrieving data from the Flash memory again. Otherwise, the
FTF flag will stay at '0' as long as 11 < FLEVEL < FTHRES.
15.3.5
QUADSPI status flag polling mode
In automatic-polling mode, the QUADSPI periodically starts a command to read a defined
number of status bytes (up to 4). The received bytes can be masked to isolate some status
bits and an interrupt can be generated when the selected bits have a defined value.
The accesses to the Flash memory begin in the same way as in indirect read mode: if no
address is required (AMODE = 00), accesses begin as soon as the QUADSPI_CCR is
written. Otherwise, if an address is required, the first access begins when QUADSPI_AR is
written. BUSY goes high at this point and stays high even between the periodic accesses.
The contents of MASK[31:0] (QUADSPI_PSMAR) are used to mask the data from the Flash
memory in automatic-polling mode. If the MASK[n] = 0, then bit n of the result is masked
and not considered. If MASK[n] = 1, and the content of bit[n] is the same as MATCH[n]
(QUADSPI_PSMAR), then there is a match for bit n.
If the polling match mode bit (PMM, QUADSPI_CR[23]) is 0, then “AND” match mode is
activated. This means status match flag (SMF) is set only when there is a match on all of the
unmasked bits.
If PMM = 1, then “OR” match mode is activated. This means SMF is set if there is a match
on any of the unmasked bits.
An interrupt is called when SMF is set if SMIE = 1.
If the automatic-polling-mode-stop (APMS) bit is set, operation stops and BUSY goes to 0
as soon as a match is detected. Otherwise, BUSY stays at ‘1’ and the periodic accesses
continue until there is an abort or the QUADSPI is disabled (EN = 0).
The data register (QUADSPI_DR) contains the latest received status bytes (the FIFO is
deactivated). The content of the data register is not affected by the masking used in the
matching logic. The FTF status bit is set as soon as a new reading of the status is complete,
and FTF is cleared as soon as the data is read.
406/1693
DocID024597 Rev 3
RM0351
15.3.6
Quad-SPI interface (QUADSPI)
QUADSPI memory-mapped mode
When configured in memory-mapped mode, the external SPI device is seen as an internal
memory.
It is forbidden to access QUADSPI Flash bank area before having properly configured and
enabled the QUADSPI peripheral.
No more than 256MB can addressed even if the Flash memory capacity is larger.
If an access is made to an address outside of the range defined by FSIZE but still within the
256MB range, then an AHB error is given. The effect of this error depends on the AHB
master that attempted the access:
•
If it is the Cortex® CPU, a hard fault interrupt is generated
•
If it is a DMA, a DMA transfer error is generated and the corresponding DMA channel is
automatically disabled.
Byte, halfword, and word access types are all supported.
Support for execute in place (XIP) operation is implemented, where the QUADSPI
anticipates the next microcontroller access and load in advance the byte at the following
address. If the subsequent access is indeed made at a continuous address, the access will
be completed faster since the value is already pre-fetched.
By default, the QUADSPI never stops its prefetch operation, keeping the previous read
operation active with nCS maintained low, even if no access to the Flash memory occurs for
a long time. Since Flash memories tend to consume more when nCS is held low, the
application might want to activate the timeout counter (TCEN = 1, QUADSPI_CR[3]) so that
nCS is released after a period of TIMEOUT[15:0] (QUADSPI_LPTR) cycles have elapsed
without any access since when the FIFO becomes full with prefetch data.
BUSY goes high as soon as the first memory-mapped access occurs. Because of the
prefetch operations, BUSY does not fall until there is a timeout, there is an abort, or the
peripheral is disabled.
15.3.7
QUADSPI Flash memory configuration
The device configuration register (QUADSPI_DCR) can be used to specify the
characteristics of the external SPI Flash memory.
The FSIZE[4:0] field defines the size of external memory using the following formula:
Number of bytes in Flash memory = 2[FSIZE+1]
FSIZE+1 is effectively the number of address bits required to address the Flash memory.
The Flash memory capacity can be up to 4GB (addressed using 32 bits) in indirect mode,
but the addressable space in memory-mapped mode is limited to 256MB.
When the QUADSPI executes two commands, one immediately after the other, it raises the
chip select signal (nCS) high between the two commands for only one CLK cycle by default.
If the Flash memory requires more time between commands, the chip select high time
(CSHT) field can be used to specify the minimum number of CLK cycles (up to 8) that nCS
must remain high.
The clock mode (CKMODE) bit indicates the CLK signal logic level in between commands
(when nCS = 1).
DocID024597 Rev 3
407/1693
425
Quad-SPI interface (QUADSPI)
15.3.8
RM0351
QUADSPI delayed data sampling
By default, the QUADSPI samples the data driven by the Flash memory one half of a CLK
cycle after the Flash memory drives the signal.
In case of external signal delays, it may be beneficial to sample the data later. Using the
SSHIFT bit (QUADSPI_CR[4]), the sampling of the data can be shifted by half of a CLK
cycle.
Clock shifting is not supported in DDR mode: the SSHIFT bit must be clear when DDRM bit
is set.
15.3.9
QUADSPI configuration
The QUADSPI configuration is done in two phases:
•
QUADSPI IP configuration
•
QUADSPI Flash memory configuration
Once configured and enabled, the QUADSPI can be used in one of its three operating
modes: indirect mode, status-polling mode, or memory-mapped mode.
QUADSPI IP configuration
The QUADSPI IP is configured using the QUADSPI_CR. The user shall configure the clock
prescaler division factor and the sample shifting settings for the incoming data.
DDR mode can be set through the DDRM bit. Once enabled, the address and the alternate
bytes are sent on both clock edges and the data are sent/received on both clock edges.
Regardless of the DDRM bit setting, instructions are always sent in SDR mode.
The DMA requests are enabled setting the DMAEN bit. In case of interrupt usage, their
respective enable bit can be also set during this phase.
FIFO level for either DMA request generation or interrupt generation is programmed in the
FTHRES bits.
If timeout counter is needed, the TCEN bit can be set and the timeout value programmed in
the QUADSPI_LPTR register.
QUADSPI Flash memory configuration
The parameters related to the targeted external Flash memory are configured through the
QUADSPI_DCR register.The user shall program the Flash memory size in the FSIZE bits,
the Chip Select minimum high time in the CSHT bits, and the functional mode (Mode 0 or
Mode 3) in the MODE bit.
15.3.10
QUADSPI usage
The operating mode is selected using FMODE[1:0] (QUADSPI_CCR[27:26]).
Indirect mode procedure
When FMODE is programmed to 00, indirect write mode is selected and data can be sent to
the Flash memory. With FMODE = 01, indirect read mode is selected where data can be
read from the Flash memory.
When the QUADSPI is used in indirect mode, the frames are constructed in the following
way:
408/1693
DocID024597 Rev 3
RM0351
Quad-SPI interface (QUADSPI)
1.
Specify a number of data bytes to read or write in the QUADSPI_DLR
2.
Specify the frame format, mode and instruction code in the QUADSPI_CCR
3.
Specify optional alternate byte to be sent right after the address phase in the
QUADSPI_ABR
4.
Specify the operating mode in the QUADSPI_CR. If FMODE = 00 (indirect write mode)
and DMAEN = 1, then QUADSPI_AR should be specified before QUADSPI_CR,
because otherwise QUADSPI_DR might be written by the DMA before QUADSPI_AR
is updated (if the DMA controller has already been enabled)
5.
Specify the targeted address in the QUADSPI_AR
6.
Read/Write the data from/to the FIFO through the QUADSPI_DR
When writing the control register (QUADSPI_CR) the user specifies the following settings:
•
The enable bit (EN) set to ‘1’
•
The DMA enable bit (DMAEN) for transferring data to/from RAM
•
Timeout counter enable bit (TCEN)
•
Sample shift setting (SSHIFT)
•
FIFO threshold level (FTRHES) to indicate when the FTF flag should be set
•
Interrupt enables
•
Automatic polling mode parameters: match mode and stop mode (valid when
FMODE = 11)
•
Clock prescaler
When writing the communication configuration register (QUADSPI_CCR) the user specifies
the following parameters:
•
The instruction byte through the INSTRUCTION bits
•
The way the instruction has to be sent through the IMODE bits (1/2/4 lines)
•
The way the address has to be sent through the ADMODE bits (None/1/2/4 lines)
•
The address size (8/16/24/32-bit) through the ADSIZE bits
•
The way the alternate bytes have to be sent through the ABMODE (None/1/2/4 lines)
•
The alternate bytes number (1/2/3/4) through the ABSIZE bits
•
The presence or not of dummy bytes through the DBMODE bit
•
The number of dummy bytes through the DCYC bits
•
The way the data have to be sent/received (None/1/2/4 lines) through the DMODE bits
If neither the address register (QUADSPI_AR) nor the data register (QUADSPI_DR) need to
be updated for a particular command, then the command sequence starts as soon as
QUADSPI_CCR is written. This is the case when both ADMODE and DMODE are 00, or if
just ADMODE = 00 when in indirect read mode (FMODE = 01).
When an address is required (ADMODE is not 00) and the data register does not need to be
written (when FMODE = 01 or DMODE = 00), the command sequence starts as soon as the
address is updated with a write to QUADSPI_AR.
In case of data transmission (FMODE = 00 and DMODE! = 00), the communication start is
triggered by a write in the FIFO through QUADSPI_DR.
Status flag polling mode
The status flag polling mode is enabled setting the FMODE field (QUADSPI_CCR[27:26]) to
10. In this mode, the programmed frame will be sent and the data retrieved periodically.
DocID024597 Rev 3
409/1693
425
Quad-SPI interface (QUADSPI)
RM0351
The maximum amount of data read in each frame is 4 bytes. If more data is requested in
QUADSPI_DLR, it will be ignored and only 4 bytes will be read.
The periodicity is specified in the QUADSPI_PISR register.
Once the status data has been retrieved, it can internally be processed i order to:
•
set the status match flag and generate an interrupt if enabled
•
stop automatically the periodic retrieving of the status bytes
The received value can be masked with the value stored in the QUADSPI_PSMKR and
ORed or ANDed with the value stored in the QUADSPI_PSMAR.
In case of match, the status match flag is set and an interrupt is generated if enabled, and
the QUADSPI can be automatically stopped if the AMPS bit is set.
In any case, the latest retrieved value is available in the QUADSPI_DR.
Memory-mapped mode
In memory-mapped mode, the external Flash memory is seen as internal memory but with
some latency during accesses. Only read operations are allowed to the external Flash
memory in this mode.
Memory-mapped mode is entered by setting the FMODE to 11 in the QUADSPI_CCR
register.
The programmed instruction and frame is sent when an AHB master is accessing the
memory mapped space.
The FIFO is used as a prefetch buffer to anticipate linear reads. Any access to
QUADSPI_DR in this mode returns zero.
The data length register (QUADSPI_DLR) has no meaning in memory-mapped mode.
15.3.11
Sending the instruction only once
Some Flash memories (e.g. Winbound) might provide a mode where an instruction must be
sent only with the first command sequence, while subsequent commands start directly with
the address. One can take advantage of such a feature using the SIOO bit
(QUADSPI_CCR[28]).
SIOO is valid for all functional modes (indirect, automatic polling, and memory-mapped). If
the SIOO bit is set, the instruction is sent only for the first command following a write to
QUADSPI_CCR. Subsequent command sequences skip the instruction phase, until there is
a write to QUADSPI_CCR.
SIOO has no effect when IMODE = 00 (no instruction).
15.3.12
QUADSPI error management
A error can be generated in the following case:
•
410/1693
In indirect mode or status flag polling mode when a wrong address has been
programmed in the QUADSPI_AR (according to the Flash memory size defined by
DocID024597 Rev 3
RM0351
Quad-SPI interface (QUADSPI)
FSIZE[4:0] in the QUADSPI_DCR): this will set the TEF and an interrupt is generated if
enabled.
15.3.13
•
Also in indirect mode, if the address plus the data length exceeds the Flash memory
size, TEF will be set as soon as the access is triggered.
•
In memory-mapped mode, when an out of range access is done by an AHB master or
when the QUADSPI is disabled: this will generate an AHB error as a response to the
faulty AHB request.
•
When an AHB master is accessing the memory mapped space while the memory
mapped mode is disabled: this will generate an AHB error as a response to the faulty
AHB request.
QUADSPI busy bit and abort functionality
Once the QUADSPI starts an operation with the Flash memory, the BUSY bit is
automatically set in the QUADSPI_SR.
In indirect mode, the BUSY bit is reset once the QUADSPI has completed the requested
command sequence and the FIFO is empty.
In automatic-polling mode, BUSY goes low only after the last periodic access is complete,
due to a match when APMS = 1, or due to an abort.
After the first access in memory-mapped mode, BUSY goes low only on a timeout event or
on an abort.
Any operation can be aborted by setting the ABORT bit in the QUADSPI_CR. Once the
abort is completed, the BUSY bit and the ABORT bit are automatically reset, and the FIFO
is flushed.
Note:
Some Flash memories might misbehave if a write operation to a status registers is aborted.
15.3.14
nCS behavior
By default, nCS is high, deselecting the external Flash memory. nCS falls before an
operation begins and rises as soon as it finishes.
When CKMODE = 0 (“mode0”, where CLK stays low when no operation is in progress) nCS
falls one CLK cycle before an operation first rising CLK edge, and nCS rises one CLK cycle
after the operation final rising CLK edge, as shown in Figure 54.
Figure 54. nCS when CKMODE = 0 (T = CLK period)
7
7
Q&6
6&/.
069
When CKMODE=1 (“mode3”, where CLK goes high when no operation is in progress) and
DDRM=0 (SDR mode), nCS still falls one CLK cycle before an operation first rising CLK
edge, and nCS rises one CLK cycle after the operation final rising CLK edge, as shown in
Figure 55.
DocID024597 Rev 3
411/1693
425
Quad-SPI interface (QUADSPI)
RM0351
Figure 55. nCS when CKMODE = 1 in SDR mode (T = CLK period)
7
7
Q&6
6&/.
069
When CKMODE = 1 (“mode3”) and DDRM = 1 (DDR mode), nCS falls one CLK cycle
before an operation first rising CLK edge, and nCS rises one CLK cycle after the operation
final active rising CLK edge, as shown in Figure 56. Because DDR operations must finish
with a falling edge, CLK is low when nCS rises, and CLK rises back up one half of a CLK
cycle afterwards.
Figure 56. nCS when CKMODE = 1 in DDR mode (T = CLK period)
7
7
7
Q&6
6&/.
069
When the FIFO stays full in a read operation or if the FIFO stays empty in a write operation,
the operation stalls and CLK stays low until firmware services the FIFO. If an abort occurs
when an operation is stalled, nCS rises just after the abort is requested and then CLK rises
one half of a CLK cycle later, as shown in Figure 57.
Figure 57. nCS when CKMODE = 1 with an abort (T = CLK period)
7
&ORFNVWDOOHG
7
Q&6
6&/.
$ERUW
069
412/1693
DocID024597 Rev 3
RM0351
15.4
Quad-SPI interface (QUADSPI)
QUADSPI interrupts
An interrupt can be produced on the following events:
•
Timeout
•
Status match
•
FIFO threshold
•
Transfer complete
•
Transfer error
Separate interrupt enable bits are available for flexibility.
Table 82. QUADSPI interrupt requests
Interrupt event
Event flag
Enable control bit
Timeout
TOF
TOIE
Status match
SMF
SMIE
FIFO threshold
FTF
FTIE
Transfer complete
TCF
TCIE
Transfer error
TEF
TEIE
DocID024597 Rev 3
413/1693
425
Quad-SPI interface (QUADSPI)
RM0351
15.5
QUADSPI registers
15.5.1
QUADSPI control register (QUADSPI_CR)
Address offset: 0x0000
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
PRESCALER
23
22
21
20
19
18
17
16
PMM
APMS
Res.
TOIE
SMIE
FTIE
TCIE
TEIE
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SSHIFT
TCEN
rw
rw
FTHRES
rw
rw
rw
rw
DMAEN ABORT
w1s
rw
EN
w1s
Bits 31: 24 PRESCALER[7:0]: Clock prescaler
This field defines the scaler factor for generating CLK based on the AHB clock
(value+1).
0: FCLK = FAHB, AHB clock used directly as QUADSPI CLK (prescaler bypassed)
1: FCLK = FAHB/2
2: FCLK = FAHB/3
...
255: FCLK = FAHB/256
For odd clock division factors, CLK’s duty cycle is not 50%. The clock signal remains
high one cycle longer than it stays low.
This field can be modified only when BUSY = 0.
Bit 23 PMM: Polling match mode
This bit indicates which method should be used for determining a “match” during
automatic polling mode.
0: AND match mode. SMF is set if all the unmasked bits received from the Flash
memory match the corresponding bits in the match register.
1: OR match mode. SMF is set if any one of the unmasked bits received from the Flash
memory matches its corresponding bit in the match register.
This bit can be modified only when BUSY = 0.
Bit 22 APMS: Automatic poll mode stop
This bit determines if automatic polling is stopped after a match.
0: Automatic polling mode is stopped only by abort or by disabling the QUADSPI.
1: Automatic polling mode stops as soon as there is a match.
This bit can be modified only when BUSY = 0.
Bit 21 Reserved, must be kept at reset value.
Bit 20 TOIE: TimeOut interrupt enable
This bit enables the TimeOut interrupt.
0: Interrupt disable
1: Interrupt enabled
Bit 19 SMIE: Status match interrupt enable
This bit enables the status match interrupt.
0: Interrupt disable
1: Interrupt enabled
414/1693
DocID024597 Rev 3
RM0351
Quad-SPI interface (QUADSPI)
Bit 18 FTIE: FIFO threshold interrupt enable
This bit enables the FIFO threshold interrupt.
0: Interrupt disabled
1: Interrupt enabled
Bit 17 TCIE: Transfer complete interrupt enable
This bit enables the transfer complete interrupt.
0: Interrupt disabled
1: Interrupt enabled
Bit 16 TEIE: Transfer error interrupt enable
This bit enables the transfer error interrupt.
0: Interrupt disable
1: Interrupt enabled
Bits 15:12 Reserved, must be kept at reset value.
Bits 11: 8 FTHRES[3:0] FIFO threshold level
Defines, in indirect mode, the threshold number of bytes in the FIFO that will cause the
FIFO threshold flag (FTF, QUADSPI_SR[2]) to be set.
In indirect write mode (FMODE = 00):
0: FTF is set if there are 1 or more free bytes available to be written to in the FIFO
1: FTF is set if there are 2 or more free bytes available to be written to in the FIFO
...
15: FTF is set if there are 16 free bytes available to be written to in the FIFO
In indirect read mode (FMODE = 01):
0: FTF is set if there are 1 or more valid bytes that can be read from the FIFO
1: FTF is set if there are 2 or more valid bytes that can be read from the FIFO
...
15: FTF is set if there are 16 valid bytes that can be read from the FIFO
If DMAEN = 1, then the DMA controller for the corresponding channel must be disabled
before changing the FTHRES value.
Bits 7:5 Reserved, must be kept at reset value.
Bit 4 SSHIFT: Sample shift
By default, the QUADSPI samples data 1/2 of a CLK cycle after the data is driven by the
Flash memory. This bit allows the data is to be sampled later in order to account for
external signal delays.
0: No shift
1: 1/2 cycle shift
Firmware must assure that SSHIFT = 0 when in DDR mode (when DDRM = 1).
This field can be modified only when BUSY = 0.
DocID024597 Rev 3
415/1693
425
Quad-SPI interface (QUADSPI)
RM0351
Bit 3 TCEN: Timeout counter enable
This bit is valid only when memory-mapped mode (FMODE = 11) is selected. Activating
this bit causes the chip select (nCS) to be released (and thus reduces consumption) if
there has not been an access after a certain amount of time, where this time is defined
by TIMEOUT[15:0] (QUADSPI_LPTR).
Enable the timeout counter.
By default, the QUADSPI never stops its prefetch operation, keeping the previous read
operation active with nCS maintained low, even if no access to the Flash memory
occurs for a long time. Since Flash memories tend to consume more when nCS is held
low, the application might want to activate the timeout counter (TCEN = 1,
QUADSPI_CR[3]) so that nCS is released after a period of TIMEOUT[15:0]
(QUADSPI_LPTR) cycles have elapsed without an access since when the FIFO
becomes full with prefetch data.
0: Timeout counter is disabled, and thus the chip select (nCS) remains active
indefinitely after an access in memory-mapped mode.
1: Timeout counter is enabled, and thus the chip select is released in memory-mapped
mode after TIMEOUT[15:0] cycles of Flash memory inactivity.
This bit can be modified only when BUSY = 0.
Bit 2 DMAEN: DMA enable
In indirect mode, DMA can be used to input or output data via the QUADSPI_DR
register. DMA transfers are initiated when the FIFO threshold flag, FTF, is set.
0: DMA is disabled for indirect mode
1: DMA is enabled for indirect mode
Bit 1 ABORT: Abort request
This bit aborts the on-going command sequence. It is automatically reset once the abort
is complete.
This bit stops the current transfer.
In polling mode or memory-mapped mode, this bit also reset the APM bit or the DM bit.
0: No abort requested
1: Abort requested
Bit 0 EN: Enable
Enable the QUADSPI.
0: QUADSPI is disabled
1: QUADSPI is enabled
15.5.2
QUADSPI device configuration register (QUADSPI_DCR)
Address offset: 0x0004
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
Res.
14
Res.
13
Res.
12
Res.
11
10
Res.
8
CSHT
rw
416/1693
9
rw
7
Res.
6
Res.
rw
DocID024597 Rev 3
5
Res.
20
19
18
17
16
rw
FSIZE
rw
rw
rw
rw
4
3
2
1
0
Res.
CKMODE
Res.
Res.
Res.
rw
RM0351
Quad-SPI interface (QUADSPI)
Bits 31: 21 Reserved, must be kept at reset value.
Bits 20: 16 FSIZE[4:0]: Flash memory size
This field defines the size of external memory using the following formula:
Number of bytes in Flash memory = 2[FSIZE+1]
FSIZE+1 is effectively the number of address bits required to address the Flash
memory. The Flash memory capacity can be up to 4GB (addressed using 32 bits) in
indirect mode, but the addressable space in memory-mapped mode is limited to
256MB.
This field can be modified only when BUSY = 0.
Bits 15: 11 Reserved, must be kept at reset value.
Bits 10:8 CSHT[2:0]: Chip select high time
CSHT+1 defines the minimum number of CLK cycles which the chip select (nCS) must
remain high between commands issued to the Flash memory.
0: nCS stays high for at least 1 cycle between Flash memory commands
1: nCS stays high for at least 2 cycles between Flash memory commands
...
7: nCS stays high for at least 8 cycles between Flash memory commands
This field can be modified only when BUSY = 0.
Bits 7: 1 Reserved, must be kept at reset value.
Bit 0 CKMODE: Mode 0 / mode 3
This bit indicates the level that CLK takes between commands (when nCS = 1).
0: CLK must stay low while nCS is high (chip select released). This is referred to as
mode 0.
1: CLK must stay high while nCS is high (chip select released). This is referred to as
mode 3.
This field can be modified only when BUSY = 0.
15.5.3
QUADSPI status register (QUADSPI_SR)
Address offset: 0x0008
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
BUSY
TOF
SMF
FTF
TCF
TEF
r
r
r
r
r
r
FLEVEL[4:0]
r
r
r
r
r
Bits 31:13 Reserved, must be kept at reset value.
Bits 12:8 FLEVEL[4:0]: FIFO level
This field gives the number of valid bytes which are being held in the FIFO. FLEVEL = 0
when the FIFO is empty, and 16 when it is full. In memory-mapped mode and in
automatic status polling mode, FLEVEL is zero.
Bits 7:6 Reserved, must be kept at reset value.
DocID024597 Rev 3
417/1693
425
Quad-SPI interface (QUADSPI)
RM0351
Bit 5 BUSY: Busy
This bit is set when an operation is on going. This bit clears automatically when the
operation with the Flash memory is finished and the FIFO is empty.
Bit 4 TOF: Timeout flag
This bit is set when timeout occurs. It is cleared by writing 1 to CTOF.
Bit 3 SMF: Status match flag
This bit is set in automatic polling mode when the unmasked received data matches the
corresponding bits in the match register (QUADSPI_PSMAR). It is cleared by writing 1
to CSMF.
Bit 2 FTF: FIFO threshold flag
In indirect mode, this bit is set when the FIFO threshold has been reached, or if there is
any data left in the FIFO after reads from the Flash memory are complete. It is cleared
automatically as soon as threshold condition is no longer true.
In automatic polling mode this bit is set every time the status register is read, and the bit
is cleared when the data register is read.
Bit 1 TCF: Transfer complete flag
This bit is set in indirect mode when the programmed number of data has been
transferred or in any mode when the transfer has been aborted.It is cleared by writing 1
to CTCF.
Bit 0 TEF: Transfer error flag
This bit is set in indirect mode when an invalid address is being accessed in indirect
mode. It is cleared by writing 1 to CTEF.
15.5.4
QUADSPI flag clear register (QUADSPI_FCR)
Address offset: 0x000C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
CTOF
CSMF
Res.
CTCF
CTEF
w1o
w1o
w1o
w1o
Bits 31: 4 Reserved, must be kept at reset value.
Bit 4 CTOF: Clear timeout flag
Writing 1 clears the TOF flag in the QUADSPI_SR register
Bit 3 CSMF: Clear status match flag
Writing 1 clears the SMF flag in the QUADSPI_SR register
Bit 2 Reserved, must be kept at reset value.
Bit 1 CTCF: Clear transfer complete flag
Writing 1 clears the TCF flag in the QUADSPI_SR register
Bit 0 CTEF: Clear transfer error flag
Writing 1 clears the TEF flag in the QUADSPI_SR register
418/1693
DocID024597 Rev 3
RM0351
Quad-SPI interface (QUADSPI)
15.5.5
QUADSPI data length register (QUADSPI_DLR)
Address offset: 0x0010
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
DL[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
DL[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 DL[31: 0]: Data length
Number of data to be retrieved (value+1) in indirect and status-polling modes. A value
no greater than 3 (indicating 4 bytes) should be used for status-polling mode.
All 1s in indirect mode means undefined length, where QUADSPI will continue until the
end of memory, as defined by FSIZE.
0x0000_0000: 1 byte is to be transferred
0x0000_0001: 2 bytes are to be transferred
0x0000_0002: 3 bytes are to be transferred
0x0000_0003: 4 bytes are to be transferred
...
0xFFFF_FFFD: 4,294,967,294 (4G-2) bytes are to be transferred
0xFFFF_FFFE: 4,294,967,295 (4G-1) bytes are to be transferred
0xFFFF_FFFF: undefined length -- all bytes until the end of Flash memory (as defined
by FSIZE) are to be transferred. Continue reading indefinitely if FSIZE = 0x1F.
This field has no effect when in memory-mapped mode (FMODE = 10).
This field can be written only when BUSY = 0.
15.5.6
QUADSPI communication configuration register (QUADSPI_CCR)
Address offset: 0x0014
Reset value: 0x0000 0000
31
30
29
28
DDRM
Res.
Res.
SIOO
rw
rw
rw
rw
rw
14
13
12
11
10
9
8
rw
15
ABMODE
rw
rw
ADSIZE
rw
rw
27
26
25
DMODE
FMODE[1:0]
ADMODE
rw
rw
24
23
22
21
Res.
7
rw
19
18
17
DCYC[4:0]
16
ABSIZE
rw
rw
rw
rw
rw
rw
rw
6
5
4
3
2
1
0
rw
rw
rw
IMODE
rw
20
INSTRUCTION[7:0]
rw
rw
DocID024597 Rev 3
rw
rw
rw
419/1693
425
Quad-SPI interface (QUADSPI)
RM0351
Bit 31 DDRM: Double data rate mode
This bit sets the DDR mode for the address, alternate byte and data phase:
0: DDR Mode disabled
1: DDR Mode enabled
This field can be written only when BUSY = 0.
Bits 30:29 Reserved, must be kept at reset value.
Bit 28 SIOO: Send instruction only once mode
See Section 15.3.11: Sending the instruction only once on page 410. This bit has no
effect when IMODE = 00.
0: Send instruction on every transaction
1: Send instruction only for the first command
This field can be written only when BUSY = 0.
Bits 27:26 FMODE[1:0]: Functional mode
This field defines the QUADSPI functional mode of operation.
00: Indirect write mode
01: Indirect read mode
10: Automatic polling mode
11: Memory-mapped mode
If DMAEN = 1 already, then the DMA controller for the corresponding channel must be
disabled before changing the FMODE value.
This field can be written only when BUSY = 0.
Bits 25:24 DMODE[1:0]: Data mode
This field defines the data phase’s mode of operation:
00: No data
01: Data on a single line
10: Data on two lines
11: Data on four lines
This field also determines the dummy phase mode of operation.
This field can be written only when BUSY = 0.
Bit 23 Reserved, must be kept at reset value.
Bits 22:18 DCYC[4:0]: Number of dummy cycles
This field defines the duration of the dummy phase. In both SDR and DDR modes, it
specifies a number of CLK cycles (0-31).
This field can be written only when BUSY = 0.
Bits 17:16 ABSIZE[1:0]: Alternate bytes size
This bit defines alternate bytes size:
00: 8-bit alternate byte
01: 16-bit alternate bytes
10: 24-bit alternate bytes
11: 32-bit alternate bytes
This field can be written only when BUSY = 0.
Bits 15:14 ABMODE[1:0]: Alternate bytes mode
This field defines the alternate-bytes phase mode of operation:
00: No alternate bytes
01: Alternate bytes on a single line
10: Alternate bytes on two lines
11: Alternate bytes on four lines
This field can be written only when BUSY = 0.
420/1693
DocID024597 Rev 3
RM0351
Quad-SPI interface (QUADSPI)
Bits 13:12 ADSIZE[1:0]: Address size
This bit defines address size:
00: 8-bit address
01: 16-bit address
10: 24-bit address
11: 32-bit address
This field can be written only when BUSY = 0.
Bits 11:10 ADMODE[1:0]: Address mode
This field defines the address phase mode of operation:
00: No address
01: Address on a single line
10: Address on two lines
11: Address on four lines
This field can be written only when BUSY = 0.
Bits 9:8 IMODE[1:0]: Instruction mode
This field defines the instruction phase mode of operation:
00: No instruction
01: Instruction on a single line
10: Instruction on two lines
11: Instruction on four lines
This field can be written only when BUSY = 0.
Bits 7: 0 INSTRUCTION[7: 0]: Instruction
Instruction to be send to the external SPI device.
This field can be written only when BUSY = 0.
15.5.7
QUADSPI address register (QUADSPI_AR)
Address offset: 0x0018
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
ADDRESS[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
ADDRESS[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 ADDRESS[31 0]: Address
Address to be send to the external Flash memory
Writes to this field are ignored when BUSY = 0 or when FMODE = 11 (memory-mapped
mode).
15.5.8
QUADSPI alternate bytes registers (QUADSPI_ABR)
Address offset: 0x001C
Reset value: 0x0000 0000
DocID024597 Rev 3
421/1693
425
Quad-SPI interface (QUADSPI)
31
30
29
28
27
26
RM0351
25
24
23
22
21
20
19
18
17
16
ALTERNATE[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
ALTERNATE[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31: 0 ALTERNATE[31: 0]: Alternate Bytes
Optional data to be send to the external SPI device right after the address.
This field can be written only when BUSY = 0.
15.5.9
QUADSPI data register (QUADSPI_DR)
Address offset: 0x0020
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
DATA[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
DATA[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31: 0 DATA[31: 0]: Data
Data to be sent/received to/from the external SPI device.
In indirect write mode, data written to this register is stored on the FIFO before it is sent
to the Flash memory during the data phase. If the FIFO is too full, a write operation is
stalled until the FIFO has enough space to accept the amount of data being written.
In indirect read mode, reading this register gives (via the FIFO) the data which was
received from the Flash memory. If the FIFO does not have as many bytes as requested
by the read operation and if BUSY=1, the read operation is stalled until enough data is
present or until the transfer is complete, whichever happens first.
In automatic polling mode, this register contains the last data read from the Flash
memory (without masking).
Word, halfword, and byte accesses to this register are supported. In indirect write mode,
a byte write adds 1 byte to the FIFO, a halfword write 2, and a word write 4. Similarly, in
indirect read mode, a byte read removes 1 byte from the FIFO, a halfword read 2, and a
word read 4. Accesses in indirect mode must be aligned to the bottom of this register: a
byte read must read DATA[7:0] and a halfword read must read DATA[15:0].
15.5.10
QUADSPI polling status mask register (QUADSPI _PSMKR)
Address offset: 0x0024
Reset value: 0x0000 0000
422/1693
DocID024597 Rev 3
RM0351
31
Quad-SPI interface (QUADSPI)
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
MASK[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
MASK[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31: 0 MASK[31: 0]: Status mask
Mask to be applied to the status bytes received in polling mode.
For bit n:
0: Bit n of the data received in automatic polling mode is masked and its value is not
considered in the matching logic
1: Bit n of the data received in automatic polling mode is unmasked and its value is
considered in the matching logic
This field can be written only when BUSY = 0.
15.5.11
QUADSPI polling status match register (QUADSPI _PSMAR)
Address offset: 0x0028
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
MATCH[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
MATCH[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31: 0 MATCH[31: 0]: Status match
Value to be compared with the masked status register to get a match.
This field can be written only when BUSY = 0.
15.5.12
QUADSPI polling interval register (QUADSPI _PIR)
Address offset: 0x002C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
INTERVAL[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
DocID024597 Rev 3
423/1693
425
Quad-SPI interface (QUADSPI)
RM0351
Bits 31: 16 Reserved, must be kept at reset value.
Bits 15: 0 INTERVAL[15: 0]: Polling interval
Number of CLK cycles between to read during automatic polling phases.
This field can be written only when BUSY = 0.
15.5.13
QUADSPI low-power timeout register (QUADSPI_LPTR)
Address offset: 0x0030
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
TIMEOUT[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31: 16 Reserved, must be kept at reset value.
Bits 15: 0 TIMEOUT[15: 0]: Timeout period
After each access in memory-mapped mode, the QUADSPI prefetches the subsequent
bytes and holds these bytes in the FIFO. This field indicates how many CLK cycles the
QUADSPI waits after the FIFO becomes full until it raises nCS, putting the Flash
memory in a lower-consumption state.
This field can be written only when BUSY = 0.
424/1693
DocID024597 Rev 3
RM0351
Quad-SPI interface (QUADSPI)
15.5.14
QUADSPI register map
0x0018
0x001C
0x0020
0x0024
Reset value
0
0
0
0
0
0
0
0
0
0
TCEN
DMAEN
ABORT
EN
Res.
CKMODE
TCF
TEF
0
0
0
Res.
0
0
0
0
CTEF
FTF
0
CTCF
0
0
0
DCYC[4:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
INSTRUCTION[7:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ADDRESS[31:0]
0
0
0
0
0
0
0
0
ALTERNATE[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DATA[31:0]
QUADSPI_
PSMKR
0
0
0
MASK[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
QUADSPI_
PSMAR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
QUADSPI_PIR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
MATCH[31:0]
Reset value
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
INTERVAL[15:0]
0
Res.
QUADSPI_
LPTR
Res.
SMF
0
CSMF
0
Reset value
0x0030
Res.
Res.
TOF
0
CTOF
BUSY
0
Res.
0
IMODE[1:0]
0
QUADSPI_DR
Reset value
SSHIFT
Res.
Res.
0
ADMODE[1:0]
0
QUADSPI_ABR
Reset value
0
Res.
Res.
Res.
Res.
0
Res.
Res.
0
Res.
Res.
0
ADSIZE[1:0]
0
ABMODE[1:0]
0
Res.
0x002C
0
QUADSPI_AR
Reset value
0x0028
0
ABSIZE[1:0]
0
0
Res.
Reset value
0
DMODE[1:0]
QUADSPI_CCR
0
FMODE[1:0]
0
Res.
0
SIOO
Reset value
Res.
0x0014
0
DL[31:0]
DDRM
0x0010
0
0
Reset value
QUADSPI_DLR
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
QUADSPI_FCR
0
FLEVEL[5:0]
Reset value
0x000C
Res.
Res.
0
Res.
0
Res.
0
CSHT
Res.
0
0
Res.
0
0
Res.
Res.
0
0
Res.
Res.
Res.
Res.
Res.
FSIZE[4:0]
FTHRES
[3:0]
0
Res.
Res.
Res.
0
Res.
Res.
Res.
TEIE
Res.
Res.
0
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
QUADSPI_SR
Res.
Reset value
0x0008
0
Res.
QUADSPI_DCR
0
FTIE
0
TCIE
0
Res.
0
SMIE
0
Res.
0
Res.
0
Res.
0
TOIE
0
PRESCALER[7:0]
Res.
0
QUADSPI_CR
Res.
PMM
APMS
0
Res.
0x0004
Reset value
Res.
0x0000
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 83. QUADSPI register map and reset values
Reset value
0
0
0
0
TIMEOUT[15:0]
0
0
0
0
0
0
0
0
0
0
Refer to Section 2.2.2 for the register boundary addresses.
DocID024597 Rev 3
425/1693
425
Analog-to-digital converters (ADC)
RM0351
16
Analog-to-digital converters (ADC)
16.1
Introduction
This section describes the implementation of up to 3 ADCs
•
ADC1 and ADC2 are tightly coupled and can operate in dual mode (ADC1 is master).
•
ADC3 is controlled independently.
Each ADC consists of a 12-bit successive approximation analog-to-digital converter.
Each ADC has up to 19 multiplexed channels. A/D conversion of the various channels can
be performed in single, continuous, scan or discontinuous mode. The result of the ADC is
stored in a left-aligned or right-aligned 16-bit data register.
The ADCs are mapped on the AHB bus to allow fast data handling.
The analog watchdog features allow the application to detect if the input voltage goes
outside the user-defined high or low thresholds.
A built-in hardware oversampler allows to improve analog performances while off-loading
the related computational burden from the CPU.
An efficient low-power mode is implemented to allow very low consumption at low
frequency.
426/1693
DocID024597 Rev 3
RM0351
16.2
Analog-to-digital converters (ADC)
ADC main features
•
High-performance features
–
Up to 3x ADCs, out of which two of them can operate in dual mode
–
ADC1 is connected to 16 external channels + 3 internal channels
–
ADC2 is connected to 16 external channels + 2 internal channels
–
ADC3 is connected to 12 external channels + 4 internal channels
–
12, 10, 8 or 6-bit configurable resolution
–
ADC conversion time:
Fast channels: 0.188 µs for 12-bit resolution (5.33 Ms/s)
Slow channels: 0.238 µs for 12-bit resolution (4.21 Ms/s)
•
•
•
•
–
ADC conversion time is independent from the AHB bus clock frequency
–
Faster conversion time by lowering resolution: 0.16 µs for 10-bit resolution
–
Can manage Single-ended or differential inputs (programmable per channels)
–
AHB slave bus interface to allow fast data handling
–
Self-calibration
–
Channel-wise programmable sampling time
–
Up to four injected channels (analog inputs assignment to regular or injected
channels is fully configurable)
–
Hardware assistant to prepare the context of the injected channels to allow fast
context switching
–
Data alignment with in-built data coherency
–
Data can be managed by GP-DMA for regular channel conversions
–
4 dedicated data registers for the injected channels
Oversampler
–
16-bit data register
–
Oversampling ratio adjustable from 2 to 256x
–
Programmable data shift up to 8-bit
Low-power features
–
Speed adaptive low-power mode to reduce ADC consumption when operating at
low frequency
–
Allows slow bus frequency application while keeping optimum ADC performance
(0.188 µs conversion time for fast channels can be kept whatever the AHB bus
clock frequency)
–
Provides automatic control to avoid ADC overrun in low AHB bus clock frequency
application (auto-delayed mode)
Each ADC features an external analog input channel
–
Up to 5 fast channels from dedicated GPIO pads
–
Up to 11 slow channels from dedicated GPIO pads
In addition, there are five internal dedicated channels
–
The internal reference voltage (VREFINT), connected to ADC1
–
The internal temperature sensor (VTS), connected to ADC1 and ADC3
–
The VBAT monitoring channel (VBAT/3), connected to ADC1 and ADC3
–
DAC1 and DAC2 internal channels, connected to ADC2 and ADC3
DocID024597 Rev 3
427/1693
540
Analog-to-digital converters (ADC)
•
•
RM0351
Start-of-conversion can be initiated:
–
by software for both regular and injected conversions
–
by hardware triggers with configurable polarity (internal timers events or GPIO
input events) for both regular and injected conversions
Conversion modes
–
Each ADC can convert a single channel or can scan a sequence of channels
–
Single mode converts selected inputs once per trigger
–
Continuous mode converts selected inputs continuously
–
Discontinuous mode
•
Dual ADC mode for ADC1 and 2
•
Interrupt generation at ADC ready, the end of sampling, the end of conversion (regular
or injected), end of sequence conversion (regular or injected), analog watchdog 1, 2 or
3 or overrun events
•
3 analog watchdogs per ADC
•
ADC supply requirements: 1.62 to 3.6 V
•
ADC input range: VREF– ≤ VIN ≤ VREF+
Figure 58 shows the block diagram of one ADC.
428/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
16.3
ADC functional description
16.3.1
ADC block diagram
Figure 58 shows the ADC block diagram and Table 85 gives the ADC pin description.
Figure 58. ADC block diagram
95()
ϭ͘ϲϮƚŽϯ͘ϲs
ͺ:^YZdž
ͺ^YZdž
ĂƵƚŽƉŽǁĞƌͲĚŽǁŶ
-'$7$>@
-'$7$>@
-'$7$>@
-'$7$>@
Eͬ/^
$QDORJ6XSSO\ 9''$
ϭ͘ϲϮsƚŽϯ͘ϲ9
:hdK
KEd
ƐŝŶŐůĞͬĐŽŶƚ
s,17'$&[
s76
s5(),17
s%$7
ͺ/E
ϭϲ͗ϭ
s5()
/ŶƚĞƌƌƵƉƚ
ŽƌƚĞdž
DϰZLWK
)38
/ZY
VODYH
PDVWHU
+%
5'$7$>@
$5($'<
(2603
K
K^
KsZ
:K^
:YKs&
tdž
PDVWHU
D
$+%
ŝŶƚĞƌĨĂĐĞ
DƌĞƋƵĞƐƚ
ŝĂƐΘZĞĨ
>
ƐĞůĨĐĂůŝďƌĂƚŝŽŶ
D&'
DE
2YHUVDPSOHU
s,13>@ ,QSXW
s,11>@ VHOHFWLRQ
VFDQFRQWURO
ĂŶĂůŽŐŝŶƉƵƚ
ĐŚĂŶŶĞůƐ
^DWdžϮ͗Ϭ
ƐĂŵƉůŝŶŐƚŝŵĞ
s,1
^Z
ZKs^D
KEsZd
d
ƐƚĂƌƚ
dZKs^
Ks^^ϯ͗Ϭ
^ƚĂƌƚΘ^ƚŽƉ
ŽŶƚƌŽů
hd>z
ĂƵƚŽĚĞůĂLJĞĚ
Ks^ZϮ͗Ϭ
KsZDK
ŽǀĞƌƌƵŶŵŽĚĞ
6:ƚƌŝŐŐĞƌ
^dW
ƐƚŽƉĐŽŶǀ
:Ks^
>/'E
ůĞĨƚͬƌŝŐŚƚ
ZKs^
Z^ϭ͗Ϭ
ϭϮ͕ϭϬ͕ϴďLƚƐ
KǀĞƌƐĂŵƉůŝŶŐ
ŽƉƚŝŽŶƐ
:K&&^ddžϭϭ͗Ϭ
ydϬ
ydϭ
ydϮ
͘͘͘͘͘͘͘
͘͘͘͘͘͘͘
ydϭϯ
ydϭϰ
ydϭϱ
:K&&^ddžͺ,ϭϭ͗Ϭ
Śͬǁ
ƚƌŝŐŐĞƌ
ydEϭ͗Ϭ
ƚƌŝŐŐĞƌĞŶĂďůĞ
ĂŶĚĞĚŐĞƐĞůĞĐƚŝŽŶ
ydŝŵĂƉƉĞĚDW
SURGXFWOHYHO
/^E
/^Eh͗Ϭ
$QDORJǁĂƚĐŚĚŽŐϭ͕Ϯ͕ϯ
ŝƐĐŽŶƚŝŶƵŽƵƐ
ŵŽĚĞ
tϭ
tϮ
tϯ
yd^>ϯ͗Ϭ
ƚƌŝŐŐĞƌƐĞůĞĐƚŝŽŶ
tϭͺKhd
tϮͺKhd
tϯͺKhd
d/DZƐ
dZ
:
6:ƚƌŝŐŐĞƌ
tϭE
:ydϬ
:ydϭ
:ydϮ
͘͘͘͘͘͘͘
͘͘͘͘͘͘͘
:ydϭϯ
:ydϭϰ
:ydϭϱ
:tϭE
+:
ƚƌŝŐŐĞƌ
:ydEϭ͗Ϭ
ƚƌŝŐŐĞƌĞŶĂďůĞ
ĂŶĚĞĚŐĞƐĞůĞĐƚŝŽŶ
:ydŝŵĂƉƉĞĚDW
SURGXFWOHYHO
tϭ^'>
:/^E
:/^EhDϮ͗Ϭ
:YD
/ŶũĐĞĚŽŶƚĞdžƚ
YƵĞƵĞDŽĚĞ
t,ϭϰ͗Ϭ
>dϭϭϭ͗Ϭ
,dϭϭϭ͗Ϭ
t,Ϯϭϴ͗Ϭ
>dϮϳ͗Ϭ
t,ϯϭϴ͗Ϭ
,dϮϳ͗Ϭ
:yd^>ϯ͗Ϭ
ƚƌŝŐŐĞƌƐĞůĞĐƚŝŽŶ
,dϯϳ͗Ϭ
>dϯϳ͗Ϭ
D^ǀϯϲϬϮϰsϭ
DocID024597 Rev 3
429/1693
540
Analog-to-digital converters (ADC)
16.3.2
RM0351
Pins and internal signals
Table 84. ADC internal signals
Signal
type
Description
Inputs
Up to 16 external trigger inputs for the regular conversions (can
be connected to on-chip timers).
These inputs are shared between the ADC master and the ADC
slave.
JEXT[15:0]
Inputs
Up to 16 external trigger inputs for the injected conversions (can
be connected to on-chip timers).
These inputs are shared between the ADC master and the ADC
slave.
ADC1_AWDx_OUT
ADC2_AWDx_OUT
ADC3_AWDx_OUT
Output
Internal analog watchdog output signal connected to on-chip
timers. (x = Analog watchdog number 1,2,3)
Internal signal name
EXT[15:0]
VTS
Input
Output voltage from internal temperature sensor
VREFINT
Input
Output voltage from internal reference voltage
VBAT
Input
supply
External battery voltage supply
Table 85. ADC pins
Name
Signal type
VREF+
Input, analog reference
positive
The higher/positive reference voltage for the ADC,
1.62 V ≤ VREF+ ≤ VDDA
VDDA
Input, analog supply
Analog power supply equal VDDA:
1.62 V ≤ VDDA ≤ 3.6 V
VREF-
Input, analog reference
negative
The lower/negative reference voltage for the ADC,
VREF- = VSSA
VSSA
Input, analog supply ground
Ground for analog power supply equal to VSS
VINP[18:0]
Positive input analog
channels for each ADC
Connected either to external channels: ADC_INi or
internal channels.
VINN[18:0]
Negative input analog
channels for each ADC
Connected to VREF- or external channels: ADC_INi-1
ADCx_IN16:1 External analog input signals
430/1693
Comments
Up to 16 analog input channels (x = ADC number =
1,2 or 3):
– 5 fast channels
– 11 slow channels
DocID024597 Rev 3
RM0351
16.3.3
Analog-to-digital converters (ADC)
Clocks
Dual clock domain architecture
The dual clock-domain architecture means that the ADCs clock is independent from the
AHB bus clock.
The input clock is the same for the three ADCs and can be selected between two different
clock sources (see Figure 59: ADC clock scheme):
a)
The ADC clock can be a specific clock source, coming from the system clock, the
PLLSAI1 or the PLLSAI2.
It can be configured in the RCC to deliver up to 80 MHz (PLL output). Refer to
RCC Section for more information on how to generate ADC dedicated clock.
To select this scheme, bits CKMODE[1:0] of the ADCx_CCR register must be
reset.
b)
The ADC clock can be derived from the AHB clock of the ADC bus interface,
divided by a programmable factor (1, 2 or 4). In this mode, a programmable divider
factor can be selected (/1, 2 or 4 according to bits CKMODE[1:0]).
To select this scheme, bits CKMODE[1:0] of the ADCx_CCR register must be
different from “00”.
Note:
For option b), a prescaling factor of 1 (CKMODE[1:0]=01) can be used only if the AHB
prescaler is set to 1 (HPRE[3:0] = 0xxx in RCC_CFGR register).
Option a) has the advantage of reaching the maximum ADC clock frequency whatever the
AHB clock scheme selected. The ADC clock can eventually be divided by the following ratio:
1, 2, 4, 6, 8, 12, 16, 32, 64, 128, 256; using the prescaler configured with bits PRESC[3:0] in
the ADCx_CCR register.
Option b) has the advantage of bypassing the clock domain resynchronizations. This can be
useful when the ADC is triggered by a timer and if the application requires that the ADC is
precisely triggered without any uncertainty (otherwise, an uncertainty of the trigger instant is
added by the resynchronizations between the two clock domains).
DocID024597 Rev 3
431/1693
540
Analog-to-digital converters (ADC)
RM0351
Figure 59. ADC clock scheme
5&&
5HVHWDQG
FORFN
FRQWUROOHU
$'&$'&DQG$'&
+&/.
$+%LQWHUIDFH
%LWV&.02'(>@
RI$'&[B&&5
$QDORJ$'&
PDVWHU
RURU
$'&B&.
%LWV35(&>@
RI$'&[B&&5
2WKHUV
$QDORJ$'&
VODYH
$QDORJ$'&
VLQJOH
%LWV&.02'(>@
RI$'&[B&&5
069
Clock ratio constraint between ADC clock and AHB clock
There are generally no constraints to be respected for the ratio between the ADC clock and
the AHB clock except if some injected channels are programmed. In this case, it is
mandatory to respect the following ratio:
432/1693
•
FHCLK >= FADC / 4 if the resolution of all channels are 12-bit or 10-bit
•
FHCLK >= FADC / 3 if there are some channels with resolutions equal to 8-bit (and none
with lower resolutions)
•
FHCLK >= FADC / 2 if there are some channels with resolutions equal to 6-bit
DocID024597 Rev 3
RM0351
16.3.4
Analog-to-digital converters (ADC)
ADC1/2/3 connectivity
ADC1, ADC2 and ADC3 are tightly coupled and share some external channels as described
in the below figures.
Figure 60. ADC1 connectivity
670/[[
$'&
95(),17
966$
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
966$
976
966$
9%$7
966$
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
&KDQQHOVHOHFWLRQ
)DVWFKDQQHO
)DVWFKDQQHO
)DVWFKDQQHO
)DVWFKDQQHO
)DVWFKDQQHO
)DVWFKDQQHO
6ORZFKDQQHO
95()
6ORZFKDQQHO
9,13
6ORZFKDQQHO
6ORZFKDQQHO
9,11
6$5
$'&
6ORZFKDQQHO
95()
6ORZFKDQQHO
6ORZFKDQQHO
6ORZFKDQQHO
6ORZFKDQQHO
6ORZFKDQQHO
6ORZFKDQQHO
6ORZFKDQQHO
6ORZFKDQQHO
069
DocID024597 Rev 3
433/1693
540
Analog-to-digital converters (ADC)
RM0351
Figure 61. ADC2 connectivity
670/[[
$'&
5HVHUYHG
966$
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
966$
'$&LQWHUQDOFKDQQHO
966$
'$&LQWHUQDOFKDQQHO
966$
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
&KDQQHOVHOHFWLRQ
)DVWFKDQQHO
)DVWFKDQQHO
)DVWFKDQQHO
)DVWFKDQQHO
)DVWFKDQQHO
)DVWFKDQQHO
6ORZFKDQQHO
95()
6ORZFKDQQHO
9,13
6ORZFKDQQHO
6ORZFKDQQHO
9,11
6$5
$'&
6ORZFKDQQHO
95()
6ORZFKDQQHO
6ORZFKDQQHO
6ORZFKDQQHO
6ORZFKDQQHO
6ORZFKDQQHO
6ORZFKDQQHO
6ORZFKDQQHO
6ORZFKDQQHO
069
434/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Figure 62. ADC3 connectivity
670/[[
$'&
5HVHUYHG
966$
$'&B,1
$'&B,1
$'&B,1
$'&B,1
966$
966$
966$
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
$'&B,1
966$
'$&LQWHUQDOFKDQQHO
966$
'$&LQWHUQDOFKDQQHO
966$
5HVHUYHG
966$
976
966$
9%$7
966$
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
9,13>@
9,11>@
&KDQQHOVHOHFWLRQ
)DVWFKDQQHO
)DVWFKDQQHO
)DVWFKDQQHO
)DVWFKDQQHO
)DVWFKDQQHO
)DVWFKDQQHO
6ORZFKDQQHO
95()
6ORZFKDQQHO
9,13
6ORZFKDQQHO
6ORZFKDQQHO
9,11
6$5
$'&
6ORZFKDQQHO
95()
6ORZFKDQQHO
6ORZFKDQQHO
6ORZFKDQQHO
6ORZFKDQQHO
6ORZFKDQQHO
6ORZFKDQQHO
6ORZFKDQQHO
6ORZFKDQQHO
069
DocID024597 Rev 3
435/1693
540
Analog-to-digital converters (ADC)
16.3.5
RM0351
Slave AHB interface
The ADCs implement an AHB slave port for control/status register and data access. The
features of the AHB interface are listed below:
•
Word (32-bit) accesses
•
Single cycle response
•
Response to all read/write accesses to the registers with zero wait states.
The AHB slave interface does not support split/retry requests, and never generates AHB
errors.
16.3.6
ADC Deep-Power-Down Mode (DEEPPWD) & ADC Voltage Regulator
(ADVREGEN)
By default, the ADC is in deep-power-down mode where its supply is internally switched off
to reduce the leakage currents (the reset state of bit DEEPPWD is 1 in the ADCx_CR
register).
To start ADC operations, it is first needed to exit deep-power-down mode by setting bit
DEEPPWD=0.
Then, it is mandatory to enable the ADC internal voltage regulator by setting the bit
ADVREGEN=1 into ADCx_CR register. The software must wait for the startup time of the
ADC voltage regulator (TADCVREG_STUP) before launching a calibration or enabling the
ADC. This delay must be implemented by software.
For the startup time of the ADC voltage regulator, please refer to device datasheet for
TADCVREG_STUP parameter.
After ADC operations are complete, the ADC can be disabled (ADEN=0). It is possible to
save power by also disabling the ADC voltage regulator. This is done by writing bit
ADVREGEN=0.
Then, to save more power by reducing the leakage currents, it is also possible to re-enter in
ADC deep-power-down mode by setting bit DEEPPWD=1 into ADCx_CR register. This is
particularly interesting before entering STOP mode.
Note:
Writing DEEPPWD=1 automatically disables the ADC voltage regulator and bit ADVREGEN
is automatically cleared.
Note:
When the internal voltage regulator is disabled (ADVREGEN=0), the internal analog
calibration is kept.
In ADC deep-power-down mode (DEEPPWD=1), the internal analog calibration is lost and it
is necessary to either relaunch a calibration or re-apply the calibration factor which was
previously saved (refer to Section 16.3.8: Calibration (ADCAL, ADCALDIF,
ADCx_CALFACT)).
16.3.7
Single-ended and differential input channels
Channels can be configured to be either single-ended input or differential input by writing
into bits DIFSEL[15:1] in the ADCx_DIFSEL register. This configuration must be written
while the ADC is disabled (ADEN=0). Note that DIFSEL[18:16] are fixed to single ended
channels (internal channels only) and are always read as 0.
In single-ended input mode, the analog voltage to be converted for channel “i” is the
difference between the external voltage ADC_INi (positive input) and VREF- (negative input).
436/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
In differential input mode, the analog voltage to be converted for channel “i” is the difference
between the external voltage ADC_INi (positive input) and ADC_INi+1 (negative input).
When ADC is configured as differential mode, both input should be biased at (VREF+) / 2
voltage.
The input signal are supposed to be differential (common mode voltage should be fixed).
For a complete description of how the input channels are connected for each ADC, refer to
Figure 60: ADC1 connectivity to Figure 62: ADC3 connectivity.
Caution:
When configuring the channel “i” in differential input mode, its negative input voltage is
connected to ADC_INi+1. As a consequence, channel “i+1” is no longer usable in singleended mode or in differential mode and must never be configured to be converted. Some
channels are shared between ADC1/ADC2/ADC3: this can make the channel on the other
ADC unusable. Only exception is interleaved mode for ADC master and the slave.
Example: Configuring ADC1_IN5 in differential input mode will make ADC12_IN6 not
usable: in that case, the channels 6 of both ADC1 and ADC2 must never be converted.
Note:
Channels 16, 17 and 18 of ADC1/ADC2/ADC3 are forced to single-ended configuration
(corresponding bits DIFSEL[i] is always zero), either because connected to a single external
analog input or connected to an internal channel. The ADC channels connected to internal
voltages must be configured in single-ended mode.
16.3.8
Calibration (ADCAL, ADCALDIF, ADCx_CALFACT)
Each ADC provides an automatic calibration procedure which drives all the calibration
sequence including the power-on/off sequence of the ADC. During the procedure, the ADC
calculates a calibration factor which is 7-bit wide and which is applied internally to the ADC
until the next ADC power-off. During the calibration procedure, the application must not use
the ADC and must wait until calibration is complete.
Calibration is preliminary to any ADC operation. It removes the offset error which may vary
from chip to chip due to process or bandgap variation.
The calibration factor to be applied for single-ended input conversions is different from the
factor to be applied for differential input conversions:
•
Write ADCALDIF=0 before launching a calibration which will be applied for singleended input conversions.
•
Write ADCALDIF=1 before launching a calibration which will be applied for differential
input conversions.
The calibration is then initiated by software by setting bit ADCAL=1. Calibration can only be
initiated when the ADC is disabled (when ADEN=0). ADCAL bit stays at 1 during all the
calibration sequence. It is then cleared by hardware as soon the calibration completes. At
this time, the associated calibration factor is stored internally in the analog ADC and also in
the bits CALFACT_S[6:0] or CALFACT_D[6:0] of ADCx_CALFACT register (depending on
single-ended or differential input calibration)
The internal analog calibration is kept if the ADC is disabled (ADEN=0). However, if the ADC
is disabled for extended periods, then it is recommended that a new calibration cycle is run
before re-enabling the ADC.
The internal analog calibration is lost each time the power of the ADC is removed (example,
when the product enters in STANDBY or VBAT mode). In this case, to avoid spending time
recalibrating the ADC, it is possible to re-write the calibration factor into the
DocID024597 Rev 3
437/1693
540
Analog-to-digital converters (ADC)
RM0351
ADCx_CALFACT register without recalibrating, supposing that the software has previously
saved the calibration factor delivered during the previous calibration.
The calibration factor can be written if the ADC is enabled but not converting (ADEN=1 and
ADSTART=0 and JADSTART=0). Then, at the next start of conversion, the calibration factor
will automatically be injected into the analog ADC. This loading is transparent and does not
add any cycle latency to the start of the conversion. It is recommended to recalibrate when
VREF+ voltage changed more than 10%.
Software procedure to calibrate the ADC
1.
Ensure DEEPPWD=0, ADVREGRN=1 and that ADC voltage regulator startup time has
elapsed.
2.
Ensure that ADEN=0.
3.
Select the input mode for this calibration by setting ADCALDIF=0 (Single-ended input)
or ADCALDIF=1 (Differential input).
4.
Set ADCAL=1.
5.
Wait until ADCAL=0.
6.
The calibration factor can be read from ADCx_CALFACT register.
Figure 63. ADC calibration
$'&$/',)
6LQJOHHQGHGLQSXW'LIIHUHQWLDOLQSXW
W&$%
$'&$/
$'&6WDWH
2))
6WDUWXS
[
&$/)$&7B[>@
E\6:
&DOLEUDWH
E\+:
2))
&DOLEUDWLRQIDFWRU
,QGLFDWLYHWLPLQJV
06Y9
Software procedure to re-inject a calibration factor into the ADC
438/1693
1.
Ensure ADEN=1 and ADSTART=0 and JADSTART=0 (ADC enabled and no
conversion is ongoing).
2.
Write CALFACT_S and CALFACT_D with the new calibration factors.
3.
When a conversion is launched, the calibration factor will be injected into the analog
ADC only if the internal analog calibration factor differs from the one stored in bits
CALFACT_S for single-ended input channel or bits CALFACT_D for differential input
channel.
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Figure 64. Updating the ADC calibration factor
5HDG\ QRWFRQYHUWLQJ
$'&VWDWH
&RQYHUWLQJFKDQQHO
6LQJOHHQGHG
5HDG\ &RQYHUWLQJFKDQQHO
6LQJOHHQGHG
8SGDWLQJFDOLEUDWLRQ
,QWHUQDO
FDOLEUDWLRQIDFWRU>@
)
)
6WDUWFRQYHUVLRQ
KDUGZDUHRUVRIZDUH
:5,7($'&B&$/)$&7
&$/)$&7B6>@
E\VZ
)
E\KZ
06Y9
Converting single-ended and differential analog inputs with a single ADC
If the ADC is supposed to convert both differential and single-ended inputs, two calibrations
must be performed, one with ADCALDIF=0 and one with ADCALDIF=1. The procedure is
the following:
1.
Disable the ADC.
2.
Calibrate the ADC in single-ended input mode (with ADCALDIF=0). This updates the
register CALFACT_S[6:0].
3.
Calibrate the ADC in Differential input modes (with ADCALDIF=1). This updates the
register CALFACT_D[6:0].
4.
Enable the ADC, configure the channels and launch the conversions. Each time there
is a switch from a single-ended to a differential inputs channel (and vice-versa), the
calibration will automatically be injected into the analog ADC.
Figure 65. Mixing single-ended and differential channels
7ULJJHUHYHQW
$'&VWDWH
5'< &219&+ 5'< &219&+ 5'< &219&+ 5'<
6LQJOHHQGHG
LQSXWVFKDQQHO
,QWHUQDO
FDOLEUDWLRQIDFWRU>@
)
&$/)$&7B6>@
)
&$/)$&7B'>@
)
'LIIHUHQWLDO
LQSXWVFKDQQHO
)
'LIIHUHQWLDO
LQSXWVFKDQQHO
&219&+
6LQJOHLQSXWV
FKDQQHO
)
06Y9
DocID024597 Rev 3
439/1693
540
Analog-to-digital converters (ADC)
16.3.9
RM0351
ADC on-off control (ADEN, ADDIS, ADRDY)
First of all, follow the procedure explained in Section 16.3.6: ADC Deep-Power-Down Mode
(DEEPPWD) & ADC Voltage Regulator (ADVREGEN)).
Once DEEPPWD=0 and ADVREGRN=1, the ADC can be enabled and the ADC needs a
stabilization time of tSTAB before it starts converting accurately, as shown in Figure 66. Two
control bits enable or disable the ADC:
•
ADEN=1 enables the ADC. The flag ADRDY will be set once the ADC is ready for
operation.
•
ADDIS=1 disables the ADC and disable the ADC. ADEN and ADDIS are then
automatically cleared by hardware as soon as the analog ADC is effectively disabled.
Regular conversion can then start either by setting ADSTART=1 (refer to Section 16.3.18:
Conversion on external trigger and trigger polarity (EXTSEL, EXTEN, JEXTSEL, JEXTEN))
or when an external trigger event occurs, if triggers are enabled.
Injected conversions start by setting JADSTART=1 or when an external injected trigger
event occurs, if injected triggers are enabled.
Software procedure to enable the ADC
Caution:
1.
Clear the ADRDY bit in the ADC_ISR register by writing ‘1’.
2.
Set ADEN=1.
3.
Wait until ADRDY=1 (ADRDY is set after the ADC startup time). This can be done
using the associated interrupt (setting ADRDYIE=1).
4.
Clear the ADRDY bit in the ADC_ISR register by writing ‘1’ (optional).
ADEN bit cannot be set during ADCAL=1 and 4 ADC clock cycle after the ADCAL bit is
cleared by hardware(end of the calibration).
Software procedure to disable the ADC
440/1693
1.
Check that both ADSTART=0 and JADSTART=0 to ensure that no conversion is
ongoing. If required, stop any regular and injected conversion ongoing by setting
ADSTP=1 and JADSTP=1 and then wait until ADSTP=0 and JADSTP=0.
2.
Set ADDIS=1.
3.
If required by the application, wait until ADEN=0, until the analog ADC is effectively
disabled (ADDIS will automatically be reset once ADEN=0).
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Figure 66. Enabling / Disabling the ADC
$'(1
W67$%
$'5'<
$'',6
$'&
VWDW
E\6:
16.3.10
2))
6WDUWXS
5'<
&RQYHUWLQJ&+
E\+:
5'<
5(4
2)
2))
06Y9
Constraints when writing the ADC control bits
The software is allowed to write the RCC control bits to configure and enable the ADC clock
(refer to RCC Section), the control bits DIFSEL in the ADCx_DIFSEL register and the
control bits ADCAL and ADEN in the ADCx_CR register, only if the ADC is disabled (ADEN
must be equal to 0).
The software is then allowed to write the control bits ADSTART, JADSTART and ADDIS of
the ADCx_CR register only if the ADC is enabled and there is no pending request to disable
the ADC (ADEN must be equal to 1 and ADDIS to 0).
For all the other control bits of the ADCx_CFGR, ADCx_SMPRx, ADCx_TRx, ADCx_SQRx,
ADCx_JDRy, ADCx_OFRy, ADCx_OFCHR and ADCx_IER registers:
•
For control bits related to configuration of regular conversions, the software is allowed
to write them only if the ADC is enabled (ADEN=1) and if there is no regular conversion
ongoing (ADSTART must be equal to 0).
•
For control bits related to configuration of injected conversions, the software is allowed
to write them only if the ADC is enabled (ADEN=1) and if there is no injected
conversion ongoing (JADSTART must be equal to 0).
The software is allowed to write the control bits ADSTP or JADSTP of the ADCx_CR
register only if the ADC is enabled and eventually converting and if there is no pending
request to disable the ADC (ADSTART or JADSTART must be equal to 1 and ADDIS to 0).
The software can write the register ADCx_JSQR at any time, when the ADC is enabled
(ADEN=1).
Note:
There is no hardware protection to prevent these forbidden write accesses and ADC
behavior may become in an unknown state. To recover from this situation, the ADC must be
disabled (clear ADEN=0 as well as all the bits of ADCx_CR register).
DocID024597 Rev 3
441/1693
540
Analog-to-digital converters (ADC)
16.3.11
RM0351
Channel selection (SQRx, JSQRx)
There are up to 19 multiplexed channels per ADC:
•
5 fast analog inputs coming from GPIO pads (ADC_IN1..5)
•
Up to 10 slow analog inputs coming from GPIO pads (ADC_IN6..15). Depending on the
products, not all of them are available on GPIO pads.
•
The ADCs are connected to 5 internal analog inputs:
–
the internal reference voltage (VREFINT) is connected to ADC1_IN0.
–
the internal temperature sensor (VTS) is connected to ADC1_IN17 and
ADC3_IN17.
–
the VBAT monitoring channel (VBAT/3) is connected to ADC1_IN18 and
ADC3_IN18.
–
the DAC1 internal channel is connected to ADC2_IN17 and ADC3_IN14.
–
the DAC2 internal channel is connected to ADC2_IN18 and ADC3_IN15.
Note:
To convert one of the internal analog channels, the corresponding analog sources must first
be enabled by programming bits VREFEN, CH17_SEL or CH18_SEL in the ADCx_CCR
registers.
Caution:
Before any conversion of an input channel coming from GPIO pads, it is necessary to
configure the corresponding GPIOx_ASCR register in the GPIO, in addition to the I/O
configuration in analog mode.
It is possible to organize the conversions in two groups: regular and injected. A group
consists of a sequence of conversions that can be done on any channel and in any order.
For instance, it is possible to implement the conversion sequence in the following order:
ADC_IN3, ADC_IN8, ADC_IN2, ADC_IN2, ADC_IN0, ADC_IN2, ADC_IN2, ADC_IN15.
•
A regular group is composed of up to 16 conversions. The regular channels and their
order in the conversion sequence must be selected in the ADCx_SQR registers. The
total number of conversions in the regular group must be written in the L[3:0] bits in the
ADCx_SQR1 register.
•
An injected group is composed of up to 4 conversions. The injected channels and
their order in the conversion sequence must be selected in the ADCx_JSQR register.
The total number of conversions in the injected group must be written in the L[1:0] bits
in the ADCx_JSQR register.
ADCx_SQR registers must not be modified while regular conversions can occur. For this,
the ADC regular conversions must be first stopped by writing ADSTP=1 (refer to
Section 16.3.17: Stopping an ongoing conversion (ADSTP, JADSTP)).
It is possible to modify the ADCx_JSQR registers on-the-fly while injected conversions are
occurring. Refer to Section 16.3.21: Queue of context for injected conversions
16.3.12
Channel-wise programmable sampling time (SMPR1, SMPR2)
Before starting a conversion, the ADC must establish a direct connection between the
voltage source under measurement and the embedded sampling capacitor of the ADC. This
sampling time must be enough for the input voltage source to charge the embedded
capacitor to the input voltage level.
442/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Each channel can be sampled with a different sampling time which is programmable using
the SMP[2:0] bits in the ADCx_SMPR1 and ADCx_SMPR2 registers. It is therefore possible
to select among the following sampling time values:
•
SMP = 000: 2.5 ADC clock cycles
•
SMP = 001: 6.5 ADC clock cycles
•
SMP = 010: 12.5 ADC clock cycles
•
SMP = 011: 24.5 ADC clock cycles
•
SMP = 100: 47.5 ADC clock cycles
•
SMP = 101: 92.5 ADC clock cycles
•
SMP = 110: 247.5 ADC clock cycles
•
SMP = 111: 640.5 ADC clock cycles
The total conversion time is calculated as follows:
TCONV = Sampling time + 12.5 ADC clock cycles
Example:
With FADC_CLK = 80 MHz and a sampling time of 2.5 ADC clock cycles:
TCONV = (2.5 + 12.5) ADC clock cycles = 15 ADC clock cycles = 187.5 ns (for fast
channels)
The ADC notifies the end of the sampling phase by setting the status bit EOSMP (only for
regular conversion).
Constraints on the sampling time for fast and slow channels
For each channel, SMP[2:0] bits must be programmed to respect a minimum sampling time
as specified in the ADC characteristics section of the datasheets.
I/O analog switches voltage booster
The I/O analog switches resistance increases when the VDDA voltage is too low. This
requires to have the sampling time adapted accordingly (cf datasheet for electrical
characteristics). This resistance can be minimized at low VDDA by enabling an internal
voltage booster with BOOSTEN bit in the SYSCFG_CFGR1 register.
16.3.13
Single conversion mode (CONT=0)
In Single conversion mode, the ADC performs once all the conversions of the channels.
This mode is started with the CONT bit at 0 by either:
•
Setting the ADSTART bit in the ADCx_CR register (for a regular channel)
•
Setting the JADSTART bit in the ADCx_CR register (for an injected channel)
•
External hardware trigger event (for a regular or injected channel)
Inside the regular sequence, after each conversion is complete:
•
The converted data are stored into the 16-bit ADCx_DR register
•
The EOC (end of regular conversion) flag is set
•
An interrupt is generated if the EOCIE bit is set
DocID024597 Rev 3
443/1693
540
Analog-to-digital converters (ADC)
RM0351
Inside the injected sequence, after each conversion is complete:
•
The converted data are stored into one of the four 16-bit ADCx_JDRy registers
•
The JEOC (end of injected conversion) flag is set
•
An interrupt is generated if the JEOCIE bit is set
After the regular sequence is complete:
•
The EOS (end of regular sequence) flag is set
•
An interrupt is generated if the EOSIE bit is set
After the injected sequence is complete:
•
The JEOS (end of injected sequence) flag is set
•
An interrupt is generated if the JEOSIE bit is set
Then the ADC stops until a new external regular or injected trigger occurs or until bit
ADSTART or JADSTART is set again.
Note:
To convert a single channel, program a sequence with a length of 1.
16.3.14
Continuous conversion mode (CONT=1)
This mode applies to regular channels only.
In continuous conversion mode, when a software or hardware regular trigger event occurs,
the ADC performs once all the regular conversions of the channels and then automatically
re-starts and continuously converts each conversions of the sequence. This mode is started
with the CONT bit at 1 either by external trigger or by setting the ADSTART bit in the
ADCx_CR register.
Inside the regular sequence, after each conversion is complete:
•
The converted data are stored into the 16-bit ADCx_DR register
•
The EOC (end of conversion) flag is set
•
An interrupt is generated if the EOCIE bit is set
After the sequence of conversions is complete:
•
The EOS (end of sequence) flag is set
•
An interrupt is generated if the EOSIE bit is set
Then, a new sequence restarts immediately and the ADC continuously repeats the
conversion sequence.
Note:
To convert a single channel, program a sequence with a length of 1.
It is not possible to have both discontinuous mode and continuous mode enabled: it is
forbidden to set both DISCEN=1 and CONT=1.
Injected channels cannot be converted continuously. The only exception is when an injected
channel is configured to be converted automatically after regular channels in continuous
mode (using JAUTO bit), refer to Auto-injection mode section).
444/1693
DocID024597 Rev 3
RM0351
16.3.15
Analog-to-digital converters (ADC)
Starting conversions (ADSTART, JADSTART)
Software starts ADC regular conversions by setting ADSTART=1.
When ADSTART is set, the conversion starts:
•
Immediately: if EXTEN = 0x0 (software trigger)
•
At the next active edge of the selected regular hardware trigger: if EXTEN /= 0x0
Software starts ADC injected conversions by setting JADSTART=1.
When JADSTART is set, the conversion starts:
Note:
•
Immediately, if JEXTEN = 0x0 (software trigger)
•
At the next active edge of the selected injected hardware trigger: if JEXTEN /= 0x0
In auto-injection mode (JAUTO=1), use ADSTART bit to start the regular conversions
followed by the auto-injected conversions (JADSTART must be kept cleared).
ADSTART and JADSTART also provide information on whether any ADC operation is
currently ongoing. It is possible to re-configure the ADC while ADSTART=0 and
JADSTART=0 are both true, indicating that the ADC is idle.
ADSTART is cleared by hardware:
•
In single mode with software regular trigger (CONT=0, EXTSEL=0x0)
–
•
In all cases (CONT=x, EXTSEL=x)
–
Note:
at any end of regular conversion sequence (EOS assertion) or at any end of subgroup processing if DISCEN = 1
after execution of the ADSTP procedure asserted by the software.
In continuous mode (CONT=1), ADSTART is not cleared by hardware with the assertion of
EOS because the sequence is automatically relaunched.
When a hardware trigger is selected in single mode (CONT=0 and EXTSEL /=0x00),
ADSTART is not cleared by hardware with the assertion of EOS to help the software which
does not need to reset ADSTART again for the next hardware trigger event. This ensures
that no further hardware triggers are missed.
JADSTART is cleared by hardware:
•
in single mode with software injected trigger (JEXTSEL=0x0)
–
•
in all cases (JEXTSEL=x)
–
16.3.16
at any end of injected conversion sequence (JEOS assertion) or at any end of
sub-group processing if JDISCEN = 1
after execution of the JADSTP procedure asserted by the software.
Timing
The elapsed time between the start of a conversion and the end of conversion is the sum of
the configured sampling time plus the successive approximation time depending on data
resolution:
TCONV= TSMPL + TSAR = [ 2.5 |min + 12.5 |12bit ] x TADC_CLK
TCONV = TSMPL + TSAR = 31.25 ns |min + 156.25 ns |12bit = 187.5 ns (for FADC_CLK = 80 MHz)
DocID024597 Rev 3
445/1693
540
Analog-to-digital converters (ADC)
RM0351
Figure 67. Analog to digital conversion time
$'&VWDWH
5'<
6DPSOLQJ&K 1
$QDORJFKDQQHO
&K 1
&K 1
,QWHUQDO6+
$'67$57
6DPSOLQJ&K 1
&RQYHUWLQJ&K 1
6HW
E\6:
(2603
+ROG$,1 1
W6$5
6DPSOH$,1 1
W603/
6HW
E\+:
&OHDUHG
E\6:
6HW
E\+:
(2&
$'&B'5
6DPSOH$,1 1
'DWD1
&OHDUHG
E\6:
'DWD1
,QGLFDWLYHWLPLQJV
069
1. TSMPL depends on SMP[2:0]
2. TSAR depends on RES[2:0]
16.3.17
Stopping an ongoing conversion (ADSTP, JADSTP)
The software can decide to stop regular conversions ongoing by setting ADSTP=1 and
injected conversions ongoing by setting JADSTP=1.
Stopping conversions will reset the ongoing ADC operation. Then the ADC can be
reconfigured (ex: changing the channel selection or the trigger) ready for a new operation.
Note that it is possible to stop injected conversions while regular conversions are still
operating and vice-versa. This allows, for instance, re-configuration of the injected
conversion sequence and triggers while regular conversions are still operating (and viceversa).
When the ADSTP bit is set by software, any ongoing regular conversion is aborted with
partial result discarded (ADCx_DR register is not updated with the current conversion).
When the JADSTP bit is set by software, any ongoing injected conversion is aborted with
partial result discarded (ADCx_JDRy register is not updated with the current conversion).
The scan sequence is also aborted and reset (meaning that relaunching the ADC would restart a new sequence).
Once this procedure is complete, bits ADSTP/ADSTART (in case of regular conversion), or
JADSTP/JADSTART (in case of injected conversion) are cleared by hardware and the
software must poll ADSTART (or JADSTART) until the bit is reset before assuming the ADC
is completely stopped.
Note:
446/1693
In auto-injection mode (JAUTO=1), setting ADSTP bit aborts both regular and injected
conversions (JADSTP must not be used).
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Figure 68. Stopping ongoing regular conversions
7ULJJHU
7ULJJHU
$'&VWDWH
6DPSOH
&K 1
5'<
&RQYHUW
&K 1
6DPSOH
&K 1
5'<
&
5'<
-$'67$57
&OHDUHG
E\6:
$'67$57
&OHDUHG
E\+:
5(*8/$5&219(56,216RQJRLQJ
VRIWZDUHLVQRWDOORZHGWRFRQILJXUHUHJXODUFRQYHUVLRQVVHOHFWLRQDQGWULJJHUV
&OHDUHG
E\6:
$'673
$'&B'5
&OHDUHG
E\+:
'DWD1
'DWD1
069
Figure 69. Stopping ongoing regular and injected conversions
2EGULAR TRIGGER
$'&VWDWH
2$9
3AMPLE
#H.
)NJECTED TRIGGER
#ONVERT
#H.
2$9
2EGULAR TRIGGER
3AMPLE
#H-
#
2$9 3AMPL
2$9
#LEARED
3ET
*!$34!24 BY 37
BY (7
).*%#4%$ #/.6%23)/.3 ONGOING
SOFTWARE IS NOT ALLOWED TO CONFIGURE INJECTED CONVERSIONS SELECTION AND TRIGGERS
3ET
BY 37
*!$340
!$#?*$2
#LEARED
BY (7
$!4! -
3ET
BY 37
!$34!24
!$340
!$#?$2
#LEARED
BY (7
2%'5,!2 #/.6%23)/.3 ONGOING
SOFTWARE IS NOT ALLOWED TO CONFIGURE REGULAR CONVERSIONS SELECTION AND TRIGGERS
3ET
BY 37
$!4! .
#LEARED
BY (7
$!4! .
069
DocID024597 Rev 3
447/1693
540
Analog-to-digital converters (ADC)
16.3.18
RM0351
Conversion on external trigger and trigger polarity (EXTSEL, EXTEN,
JEXTSEL, JEXTEN)
A conversion or a sequence of conversions can be triggered either by software or by an
external event (e.g. timer capture, input pins). If the EXTEN[1:0] control bits (for a regular
conversion) or JEXTEN[1:0] bits (for an injected conversion) are different from 0b00, then
external events are able to trigger a conversion with the selected polarity.
When the Injected Queue is enabled (bit JQDIS=0), injected software triggers are not
possible.
The regular trigger selection is effective once software has set bit ADSTART=1 and the
injected trigger selection is effective once software has set bit JADSTART=1.
Any hardware triggers which occur while a conversion is ongoing are ignored.
•
If bit ADSTART=0, any regular hardware triggers which occur are ignored.
•
If bit JADSTART=0, any injected hardware triggers which occur are ignored.
Table 86 provides the correspondence between the EXTEN[1:0] and JEXTEN[1:0] values
and the trigger polarity.
Table 86. Configuring the trigger polarity for regular external triggers
EXTEN[1:0]
Note:
Source
00
Hardware Trigger detection disabled, software trigger detection enabled
01
Hardware Trigger with detection on the rising edge
10
Hardware Trigger with detection on the falling edge
11
Hardware Trigger with detection on both the rising and falling edges
The polarity of the regular trigger cannot be changed on-the-fly.
Table 87. Configuring the trigger polarity for injected external triggers
Note:
JEXTEN[1:0]
Source
00
– If JQDIS=1 (Queue disabled): Hardware trigger detection disabled, software
trigger detection enabled
– If JQDIS=0 (Queue enabled), Hardware and software trigger detection disabled
01
Hardware Trigger with detection on the rising edge
10
Hardware Trigger with detection on the falling edge
11
Hardware Trigger with detection on both the rising and falling edges
The polarity of the injected trigger can be anticipated and changed on-the-fly when the
queue is enabled (JQDIS=0). Refer to Section 16.3.21: Queue of context for injected
conversions.
The EXTSEL[3:0] and JEXTSEL[3:0] control bits select which out of 16 possible events can
trigger conversion for the regular and injected groups.
A regular group conversion can be interrupted by an injected trigger.
448/1693
DocID024597 Rev 3
RM0351
Note:
Analog-to-digital converters (ADC)
The regular trigger selection cannot be changed on-the-fly.
The injected trigger selection can be anticipated and changed on-the-fly. Refer to
Section 16.3.21: Queue of context for injected conversions on page 453
Each ADC master shares the same input triggers with its ADC slave as described in
Figure 70.
Figure 70. Triggers are shared between ADC master and ADC slave
$'&0$67(5
5HJXODU
VHTXHQFHU
WULJJHUV
(;7
(;7
([WHUQDOUHJXODUWULJJHU
(;7
(;76(/>@
([WHUQDOLQMHFWHGWULJJHU
-(;76(/>@
$'&6/$9(
([WHUQDOUHJXODUWULJJHU
(;76(/>@
,QMHFWHG
VHTXHQFHU
WULJJHUV
-(;7
-(;7
-(;7
([WHUQDOLQMHFWHGWULJJHU
-(;76(/>@
069
Table 88 to Table 89 give all the possible external triggers of the three ADCs for regular and
injected conversion.
Table 88. ADC1, ADC2 and ADC3 - External triggers for regular channels
Name
Source
Type
EXTSEL[3:0]
EXT0
TIM1_CC1 event
Internal signal from on-chip timers
0000
EXT1
TIM1_CC2 event
Internal signal from on-chip timers
0001
EXT2
TIM1_CC3 event
Internal signal from on-chip timers
0010
EXT3
TIM2_CC2 event
Internal signal from on-chip timers
0011
EXT4
TIM3_TRGO event
Internal signal from on-chip timers
0100
EXT5
TIM4_CC4 event
Internal signal from on-chip timers
0101
EXT6
EXTI line 11
External pin
0110
EXT7
TIM8_TRGO event
Internal signal from on-chip timers
0111
EXT8
TIM8_TRGO2 event
Internal signal from on-chip timers
1000
EXT9
TIM1_TRGO event
Internal signal from on-chip timers
1001
DocID024597 Rev 3
449/1693
540
Analog-to-digital converters (ADC)
RM0351
Table 88. ADC1, ADC2 and ADC3 - External triggers for regular channels (continued)
Name
Source
Type
EXTSEL[3:0]
EXT10
TIM1_TRGO2 event
Internal signal from on-chip timers
1010
EXT11
TIM2_TRGO event
Internal signal from on-chip timers
1011
EXT12
TIM4_TRGO event
Internal signal from on-chip timers
1100
EXT13
TIM6_TRGO event
Internal signal from on-chip timers
1101
EXT14
TIM15_TRGO event
Internal signal from on-chip timers
1110
EXT15
TIM3_CC4 event
Internal signal from on-chip timers
1111
Table 89. ADC1, ADC2 and ADC3 - External trigger for injected channels
Name
Source
Type
JEXTSEL[3..0]
JEXT0
TIM1_TRGO event
Internal signal from on-chip timers
0000
JEXT1
TIM1_CC4 event
Internal signal from on-chip timers
0001
JEXT2
TIM2_TRGO event
Internal signal from on-chip timers
0010
JEXT3
TIM2_CC1 event
Internal signal from on-chip timers
0011
JEXT4
TIM3_CC4 event
Internal signal from on-chip timers
0100
JEXT5
TIM4_TRGO event
Internal signal from on-chip timers
0101
JEXT6
EXTI line 15
External pin
0110
JEXT7
TIM8_CC4 event
Internal signal from on-chip timers
0111
JEXT8
TIM1_TRGO2 event
Internal signal from on-chip timers
1000
JEXT9
TIM8_TRGO event
Internal signal from on-chip timers
1001
JEXT10
TIM8_TRGO2 event
Internal signal from on-chip timers
1010
JEXT11
TIM3_CC3 event
Internal signal from on-chip timers
1011
JEXT12
TIM3_TRGO event
Internal signal from on-chip timers
1100
JEXT13
TIM3_CC1 event
Internal signal from on-chip timers
1101
JEXT14
TIM6_TRGO event
Internal signal from on-chip timers
1110
JEXT15
TIM15_TRGO event
Internal signal from on-chip timers
1111
16.3.19
Injected channel management
Triggered injection mode
To use triggered injection, the JAUTO bit in the ADCx_CFGR register must be cleared.
450/1693
1.
Start the conversion of a group of regular channels either by an external trigger or by
setting the ADSTART bit in the ADCx_CR register.
2.
If an external injected trigger occurs, or if the JADSTART bit in the ADCx_CR register is
set during the conversion of a regular group of channels, the current conversion is
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
reset and the injected channel sequence switches are launched (all the injected
channels are converted once).
Note:
3.
Then, the regular conversion of the regular group of channels is resumed from the last
interrupted regular conversion.
4.
If a regular event occurs during an injected conversion, the injected conversion is not
interrupted but the regular sequence is executed at the end of the injected sequence.
Figure 71 shows the corresponding timing diagram.
When using triggered injection, one must ensure that the interval between trigger events is
longer than the injection sequence. For instance, if the sequence length is 28 ADC clock
cycles (that is two conversions with a sampling time of 1.5 clock periods), the minimum
interval between triggers must be 29 ADC clock cycles.
Auto-injection mode
If the JAUTO bit in the ADCx_CFGR register is set, then the channels in the injected group
are automatically converted after the regular group of channels. This can be used to convert
a sequence of up to 20 conversions programmed in the ADCx_SQR and ADCx_JSQR
registers.
In this mode, the ADSTART bit in the ADCx_CR register must be set to start regular
conversions, followed by injected conversions (JADSTART must be kept cleared). Setting
the ADSTP bit aborts both regular and injected conversions (JADSTP bit must not be used).
In this mode, external trigger on injected channels must be disabled.
If the CONT bit is also set in addition to the JAUTO bit, regular channels followed by injected
channels are continuously converted.
Note:
It is not possible to use both the auto-injected and discontinuous modes simultaneously.
When the DMA is used for exporting regular sequencer’s data in JAUTO mode, it is
necessary to program it in circular mode (CIRC bit set in DMA_CCRx register). If the CIRC
bit is reset (single-shot mode), the JAUTO sequence will be stopped upon DMA Transfer
Complete event.
DocID024597 Rev 3
451/1693
540
Analog-to-digital converters (ADC)
RM0351
Figure 71. Injected conversion latency
!$##,+
,QMHFWLRQHYHQW
5HVHW$'&
PD[ODWHQF\
62&
AIB
1. The maximum latency value can be found in the electrical characteristics of the STM32L4x6 datasheet.
16.3.20
Discontinuous mode (DISCEN, DISCNUM, JDISCEN)
Regular group mode
This mode is enabled by setting the DISCEN bit in the ADCx_CFGR register.
It is used to convert a short sequence (sub-group) of n conversions (n ≤8) that is part of the
sequence of conversions selected in the ADCx_SQR registers. The value of n is specified
by writing to the DISCNUM[2:0] bits in the ADCx_CFGR register.
When an external trigger occurs, it starts the next n conversions selected in the ADCx_SQR
registers until all the conversions in the sequence are done. The total sequence length is
defined by the L[3:0] bits in the ADCx_SQR1 register.
Example:
•
•
452/1693
DISCEN=1, n=3, channels to be converted = 1, 2, 3, 6, 7, 8, 9, 10, 11
–
1st trigger: channels converted are 1, 2, 3 (an EOC event is generated at each
conversion).
–
2nd trigger: channels converted are 6, 7, 8 (an EOC event is generated at each
conversion).
–
3rd trigger: channels converted are 9, 10, 11 (an EOC event is generated at each
conversion) and an EOS event is generated after the conversion of channel 11.
–
4th trigger: channels converted are 1, 2, 3 (an EOC event is generated at each
conversion).
–
...
DISCEN=0, channels to be converted = 1, 2, 3, 6, 7, 8, 9, 10,11
–
1st trigger: the complete sequence is converted: channel 1, then 2, 3, 6, 7, 8, 9, 10
and 11. Each conversion generates an EOC event and the last one also generates
an EOS event.
–
all the next trigger events will relaunch the complete sequence.
DocID024597 Rev 3
RM0351
Note:
Analog-to-digital converters (ADC)
When a regular group is converted in discontinuous mode, no rollover occurs (the last
subgroup of the sequence can have less than n conversions).
When all subgroups are converted, the next trigger starts the conversion of the first
subgroup. In the example above, the 4th trigger reconverts the channels 1, 2 and 3 in the
1st subgroup.
It is not possible to have both discontinuous mode and continuous mode enabled. In this
case (if DISCEN=1, CONT=1), the ADC behaves as if continuous mode was disabled.
Injected group mode
This mode is enabled by setting the JDISCEN bit in the ADCx_CFGR register. It converts
the sequence selected in the ADCx_JSQR register, channel by channel, after an external
injected trigger event. This is equivalent to discontinuous mode for regular channels where
‘n’ is fixed to 1.
When an external trigger occurs, it starts the next channel conversions selected in the
ADCx_JSQR registers until all the conversions in the sequence are done. The total
sequence length is defined by the JL[1:0] bits in the ADCx_JSQR register.
Example:
•
Note:
JDISCEN=1, channels to be converted = 1, 2, 3
–
1st trigger: channel 1 converted (a JEOC event is generated)
–
2nd trigger: channel 2 converted (a JEOC event is generated)
–
3rd trigger: channel 3 converted and a JEOC event + a JEOS event are generated
–
...
When all injected channels have been converted, the next trigger starts the conversion of
the first injected channel. In the example above, the 4th trigger reconverts the 1st injected
channel 1.
It is not possible to use both auto-injected mode and discontinuous mode simultaneously:
the bits DISCEN and JDISCEN must be kept cleared by software when JAUTO is set.
16.3.21
Queue of context for injected conversions
A queue of context is implemented to anticipate up to 2 contexts for the next injected
sequence of conversions. JQDIS bit of ADCx_CFGR register must be reset to enable this
feature. Only hardware-triggered conversions are possible when the context queue is
enabled.
This context consists of:
•
Configuration of the injected triggers (bits JEXTEN[1:0] and JEXTSEL[3:0] in
ADCx_JSQR register)
•
Definition of the injected sequence (bits JSQx[4:0] and JL[1:0] in ADCx_JSQR register)
DocID024597 Rev 3
453/1693
540
Analog-to-digital converters (ADC)
RM0351
All the parameters of the context are defined into a single register ADCx_JSQR and this
register implements a queue of 2 buffers, allowing the bufferization of up to 2 sets of
parameters:
Note:
•
The JSQR register can be written at any moment even when injected conversions are
ongoing.
•
Each data written into the JSQR register is stored into the Queue of context.
•
At the beginning, the Queue is empty and the first write access into the JSQR register
immediately changes the context and the ADC is ready to receive injected triggers.
•
Once an injected sequence is complete, the Queue is consumed and the context
changes according to the next JSQR parameters stored in the Queue. This new
context is applied for the next injected sequence of conversions.
•
A Queue overflow occurs when writing into register JSQR while the Queue is full. This
overflow is signaled by the assertion of the flag JQOVF. When an overflow occurs, the
write access of JSQR register which has created the overflow is ignored and the queue
of context is unchanged. An interrupt can be generated if bit JQOVFIE is set.
•
Two possible behaviors are possible when the Queue becomes empty, depending on
the value of the control bit JQM of register ADCx_CFGR:
If JQM=0, the Queue is empty just after enabling the ADC, but then it can never be
empty during run operations: the Queue always maintains the last active context
and any further valid start of injected sequence will be served according to the last
active context.
–
If JQM=1, the Queue can be empty after the end of an injected sequence or if the
Queue is flushed. When this occurs, there is no more context in the queue and
hardware triggers are disabled. Therefore, any further hardware injected triggers
are ignored until the software re-writes a new injected context into JSQR register.
•
Reading JSQR register returns the current JSQR context which is active at that
moment. When the JSQR context is empty, JSQR is read as 0x0000.
•
The Queue is flushed when stopping injected conversions by setting JADSTP=1 or
when disabling the ADC by setting ADDIS=1:
–
If JQM=0, the Queue is maintained with the last active context.
–
If JQM=1, the Queue becomes empty and triggers are ignored.
When configured in discontinuous mode (bit JDISCEN=1), only the last trigger of the
injected sequence changes the context and consumes the Queue.The 1st trigger only
consumes the queue but others are still valid triggers as shown by the discontinuous mode
example below (length = 3 for both contexts):
•
•
•
•
•
•
454/1693
–
1st trigger, discontinuous. Sequence 1: context 1 consumed, 1st conversion carried out
2nd trigger, disc. Sequence 1: 2nd conversion.
3rd trigger, discontinuous. Sequence 1: 3rd conversion.
4th trigger, discontinuous. Sequence 2: context 2 consumed, 1st conversion carried out.
5th trigger, discontinuous. Sequence 2: 2nd conversion.
6th trigger, discontinuous. Sequence 2: 3rd conversion.
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Behavior when changing the trigger or sequence context
The Figure 72 and Figure 73 show the behavior of the context Queue when changing the
sequence or the triggers.
Figure 72. Example of JSQR queue of context (sequence change)
3
3
3
:ULWH-645
-645TXHXH
(037<
3
$'&-FRQWH[W
UHWXUQHGE\UHDGLQJ-465 (037<
3
33
3
3
33
7ULJJHU
3
5'<
$'&VWDWH
&RQYHUVLRQ
&RQYHUVLRQ
&RQYHUVLRQ
3
5'<
&RQYHUVLRQ
5'<
069
1. Parameters:
P1: sequence of 3 conversions, hardware trigger 1
P2: sequence of 1 conversion, hardware trigger 1
P3: sequence of 4 conversions, hardware trigger 1
Figure 73. Example of JSQR queue of context (trigger change)
3
3
3
:ULWH-645
-645TXHXH
(037<
3
33
3
3
33
,JQRUHG
7ULJJHU
,JQRUHG
7ULJJHU
$'&-FRQWH[W
(037<
UHWXUQHGE\UHDGLQJ-465
$'&VWDWH
3
3
5'<
&RQYHUVLRQ
&RQYHUVLRQ
3
5'<
&RQYHUVLRQ
5'<
069
1. Parameters:
P1: sequence of 2 conversions, hardware trigger 1
P2: sequence of 1 conversion, hardware trigger 2
P3: sequence of 4 conversions, hardware trigger 1
DocID024597 Rev 3
455/1693
540
Analog-to-digital converters (ADC)
RM0351
Queue of context: Behavior when a queue overflow occurs
The Figure 74 and Figure 75 show the behavior of the context Queue if an overflow occurs
before or during a conversion.
Figure 74. Example of JSQR queue of context with overflow before conversion
3
3
3
:ULWH-645
-645
(037<
TXHXH
3
3
!2YHUIORZ
LJQRUHG
33
3
33
&OHDUHGE\6:
-429)
7ULJJHU
7ULJJHU
$'&
-FRQWH[W (037<
3
3
UHWXUQHGE\UHDGLQJ-465
5'<
$'&VWDWH
&RQYHUVLRQ
&RQYHUVLRQ
5'<
&RQYHUVLRQ
-(26
069
1. Parameters:
P1: sequence of 2 conversions, hardware trigger 1
P2: sequence of 1 conversion, hardware trigger 2
P3: sequence of 3 conversions, hardware trigger 1
P4: sequence of 4 conversions, hardware trigger 1
Figure 75. Example of JSQR queue of context with overflow during conversion
3
3
3
:ULWH-645
-645
(037<
TXHXH
3
3
!2YHUIORZ
LJQRUHG
33
3
33
&OHDUHGE\6:
-429)
7ULJJHU
7ULJJHU
$'&
-FRQWH[W (037<
3
3
UHWXUQHGE\UHDGLQJ-465
$'&VWDWH
5'<
&RQYHUVLRQ
&RQYHUVLRQ
5'<
&RQYHUVLRQ
-(26
069
1. Parameters:
P1: sequence of 2 conversions, hardware trigger 1
P2: sequence of 1 conversion, hardware trigger 2
P3: sequence of 3 conversions, hardware trigger 1
P4: sequence of 4 conversions, hardware trigger 1
456/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
It is recommended to manage the queue overflows as described below:
•
After each P context write into JSQR register, flag JQOVF shows if the write has been
ignored or not (an interrupt can be generated).
•
Avoid Queue overflows by writing the third context (P3) only once the flag JEOS of the
previous context P2 has been set. This ensures that the previous context has been
consumed and that the queue is not full.
Queue of context: Behavior when the queue becomes empty
Figure 76 and Figure 77 show the behavior of the context Queue when the Queue becomes
empty in both cases JQM=0 or 1.
Figure 76. Example of JSQR queue of context with empty queue (case JQM=0)
3
7KHTXHXHLVQRWHPSW\
DQGPDLQWDLQV3EHFDXVH-40
3
4XHXHQRWHPSW\
3PDLQWDLQHG
3
:ULWH-645
33
3
(037<
-645TXHXH
3
3
7ULJJHU
$'&-FRQWH[W
UHWXUQHGE\ (037<
UHDGLQJ-465
3
3
&RQYHUVLRQ
5'<
$'&VWDWH
3
&RQYHUVLRQ
5'<
5'<
&RQYHUVLRQ
5'<
&RQYHUVLRQ
5'< &RQY
069
1. Parameters:
P1: sequence of 1 conversion, hardware trigger 1
P2: sequence of 1 conversion, hardware trigger 1
P3: sequence of 1 conversion, hardware trigger 1
Note:
When writing P3, the context changes immediately. However, because of internal
resynchronization, there is a latency and if a trigger occurs just after or before writing P3, it
can happen that the conversion is launched considering the context P2. To avoid this
situation, the user must ensure that there is no ADC trigger happening when writing a new
context that applies immediately.
Figure 77. Example of JSQR queue of context with empty queue (case JQM=1)
3
1UEUE BECOMES EMPTY
AND TRIGGERS ARE IGNORED
BECAUSE *1-
3
3
:ULWH-645
-645
TXHXH
(037<
3
33
3
(037<
)GNORED
)GNORED
7ULJJHU
$'&
3
-FRQWH[W (037<
UHWXUQHGE\UHDGLQJ-465
$'&VWDWH
3
(037<
3
5'<
&RQYHUVLRQ 5'<
&RQYHUVLRQ
(037< [
5'<
3
&RQYHUVLRQ
(037<
5'<
-36
1. Parameters:
P1: sequence of 1 conversion, hardware trigger 1
P2: sequence of 1 conversion, hardware trigger 1
P3: sequence of 1 conversion, hardware trigger 1
DocID024597 Rev 3
457/1693
540
Analog-to-digital converters (ADC)
RM0351
Flushing the queue of context
The figures below show the behavior of the context Queue in various situations when the
queue is flushed.
Figure 78. Flushing JSQR queue of context by setting JADSTP=1 (JQM=0).
Case when JADSTP occurs during an ongoing conversion.
3
3
4XHXHLVIOXVKHGDQGPDLQWDLQV
WKHODVWDFWLYHFRQWH[W
3LVORVW
3
:ULWH-645
-645TXHXH (037<
3
33
3
6HW
E\6:
-$'673
3
5HVHW
E\+:
-$'67$57
5HVHW
E\+:
6HW
E\6:
7ULJJHU
$'&-FRQWH[W (037<
3
3
UHWXUQHGE\UHDGLQJ-645
5'<
$'&VWDWH
&RQYHUVLRQ 5'<
5'<
673
069
1. Parameters:
P1: sequence of 1 conversion, hardware trigger 1
P2: sequence of 1 conversion, hardware trigger 1
P3: sequence of 1 conversion, hardware trigger 1
Figure 79. Flushing JSQR queue of context by setting JADSTP=1 (JQM=0).
Case when JADSTP occurs during an ongoing conversion and a new
trigger occurs.
0
0
7RITE *312
*312
QUEUE
%-049
0
1UEUE IS FLUSHED AND MAINTAINS
THE LAST ACTIVE CONTEXT
0
0 IS LOST
0 0
3ET
BY 37
*!$340
*!$34!24
0
0 0
0
2ESET
BY (7
2ESET
BY (7
3ET
BY 37
4RIGGER
!$# *
%-049 0
CONTEXT
RETURNED BY READING *312
!$# STATE
2$9
0
#ONV 340
!BORTED
2$9
#ONVERSION 2$9 #ONVERSION 2$9
-36
1. Parameters:
P1: sequence of 1 conversion, hardware trigger 1
P2: sequence of 1 conversion, hardware trigger 1
P3: sequence of 1 conversion, hardware trigger 1
458/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Figure 80. Flushing JSQR queue of context by setting JADSTP=1 (JQM=0).
Case when JADSTP occurs outside an ongoing conversion
3
WKHODVWDFWLYHFRQWH[W
3LVORVW
3
:ULWH-645
-645TXHXH (037<
33
3
3
6HW
E\6:
-$'673
3
3
5HVHW
E\+:
-$'67$57
5HVHW
E\+:
6HW
E\6:
7ULJJHU
$'&-FRQWH[W (037< 3
UHWXUQHGE\UHDGLQJ-645
3
5'<
$'&VWDWH
&RQYHUVLRQ 5'<
5'<
673
069
1. Parameters:
P1: sequence of 1 conversion, hardware trigger 1
P2: sequence of 1 conversion, hardware trigger 1
P3: sequence of 1 conversion, hardware trigger 1
Figure 81. Flushing JSQR queue of context by setting JADSTP=1 (JQM=1)
0
1UEUE IS FLUSHED AND
BECOMES EMPTY 0 IS LOST
0
0
7RITE *312
*312 QUEUE
%-049 0
0 0
%-049
%-049
0
%-049
2ESET
BY (7
3ET
BY 37
*!$340
*!$34!24
0
2ESET
BY (7
3ET
BY 37
)GNORED
4RIGGER
!$# * CONTEXT %-049 0
RETURNED BY READING *312
!$# STATE
2$9
%-049 X
#ONV 340
!BORTED
2$9
#ONVERSION
2$9
-36
1. Parameters:
P1: sequence of 1 conversion, hardware trigger 1
P2: sequence of 1 conversion, hardware trigger 1
P3: sequence of 1 conversion, hardware trigger 1
DocID024597 Rev 3
459/1693
540
Analog-to-digital converters (ADC)
RM0351
Figure 82. Flushing JSQR queue of context by setting ADDIS=1 (JQM=0)
1UEUE IS FLUSHED AND MAINTAINS
THE LAST ACTIVE CONTEXT
0 WHICH WAS NOT CONSUMED IS LOST
0 0
*312 QUEUE
0
2ESET
BY (7
3ET
BY 37
!$$)3
0
!$# * CONTEXT
RETURNED BY READING *312
!$# STATE
2$9
2%1 /&&
/&&
-36
1. Parameters:
P1: sequence of 1 conversion, hardware trigger 1
P2: sequence of 1 conversion, hardware trigger 1
P3: sequence of 1 conversion, hardware trigger 1
Figure 83. Flushing JSQR queue of context by setting ADDIS=1 (JQM=1)
1UEUE IS FLUSHED AND BEOMES EMPTY
*312 IS READ AS X
*312 QUEUE
0 0
%-049
3ET
BY 37
!$$)3
0
!$# * CONTEXT
RETURNED BY READING *312
!$# STATE
2$9
2ESET
BY (7
%-049 X
2%1 /&&
/&&
-36
1. Parameters:
P1: sequence of 1 conversion, hardware trigger 1
P2: sequence of 1 conversion, hardware trigger 1
P3: sequence of 1 conversion, hardware trigger 1
Queue of context: Starting the ADC with an empty queue
The following procedure must be followed to start ADC operation with an empty queue, in
case the first context is not known at the time the ADC is initialized. This procedure is only
applicable when JQM bit is reset:
5.
Write a dummy JSQR with JEXTEN not equal to 0 (otherwise triggering a software
conversion)
6.
Set JADSTART
7.
Set JADSTP
8.
Wait until JADSTART is reset
9.
Set JADSTART.
Disabling the queue
It is possible to disable the queue by setting bit JQDIS=1 into the ADCx_CFGR register.
460/1693
DocID024597 Rev 3
RM0351
16.3.22
Analog-to-digital converters (ADC)
Programmable resolution (RES) - fast conversion mode
It is possible to perform faster conversion by reducing the ADC resolution.
The resolution can be configured to be either 12, 10, 8, or 6 bits by programming the control
bits RES[1:0]. Figure 88, Figure 89, Figure 90 and Figure 91 show the conversion result
format with respect to the resolution as well as to the data alignment.
Lower resolution allows faster conversion time for applications where high-data precision is
not required. It reduces the conversion time spent by the successive approximation steps
according to Table 90.
Table 90. TSAR timings depending on resolution
RES
(bits)
16.3.23
TSAR
(ADC clock cycles)
TSAR (ns) at
FADC=80 MHz
TCONV (ADC clock cycles)
(with Sampling Time=
2.5 ADC clock cycles)
TCONV (ns) at
FADC=80 MHz
12
12.5 ADC clock cycles 156.25 ns
15 ADC clock cycles
187.5 ns
10
10.5 ADC clock cycles 131.25 ns
13 ADC clock cycles
162.5 ns
8
8.5 ADC clock cycles
106.25 ns
11 ADC clock cycles
137.5 ns
6
6.5 ADC clock cycles
81.25 ns
9 ADC clock cycles
112.5 ns
End of conversion, end of sampling phase (EOC, JEOC, EOSMP)
The ADC notifies the application for each end of regular conversion (EOC) event and each
injected conversion (JEOC) event.
The ADC sets the EOC flag as soon as a new regular conversion data is available in the
ADCx_DR register. An interrupt can be generated if bit EOCIE is set. EOC flag is cleared by
the software either by writing 1 to it or by reading ADCx_DR.
The ADC sets the JEOC flag as soon as a new injected conversion data is available in one
of the ADCx_JDRy register. An interrupt can be generated if bit JEOCIE is set. JEOC flag is
cleared by the software either by writing 1 to it or by reading the corresponding ADCx_JDRy
register.
The ADC also notifies the end of Sampling phase by setting the status bit EOSMP (for
regular conversions only). EOSMP flag is cleared by software by writing 1 to it. An interrupt
can be generated if bit EOSMPIE is set.
16.3.24
End of conversion sequence (EOS, JEOS)
The ADC notifies the application for each end of regular sequence (EOS) and for each end
of injected sequence (JEOS) event.
The ADC sets the EOS flag as soon as the last data of the regular conversion sequence is
available in the ADCx_DR register. An interrupt can be generated if bit EOSIE is set. EOS
flag is cleared by the software either by writing 1 to it.
The ADC sets the JEOS flag as soon as the last data of the injected conversion sequence is
complete. An interrupt can be generated if bit JEOSIE is set. JEOS flag is cleared by the
software either by writing 1 to it.
DocID024597 Rev 3
461/1693
540
Analog-to-digital converters (ADC)
16.3.25
RM0351
Timing diagrams example (single/continuous modes,
hardware/software triggers)
Figure 84. Single conversions of a sequence, software trigger
$'67$57
(2&
(26
$'&VWDWH
5'<
&+
&+
&+
&+
'
'
'
$'&B'5
E\VZ
5'<
&+
'
&+
&+
&+
5'<
'
'
'
'
E\KZ
,QGLFDWLYHWLPLQJV
069
1. EXTEN=0x0, CONT=0
2. Channels selected = 1,9, 10, 17; AUTDLY=0.
Figure 85. Continuous conversion of a sequence, software trigger
$'67$57
(2&
(26
$'673
$'&VWDWH 5($'<
&+
$'&B'5
E\VZ
&+
&+
&+
&+
&+
'
'
'
'
'
&+
673
5($'<
&+
'
&+
'
,QGLFDWLYHWLPLQJV
E\KZ
-36
1. EXTEN=0x0, CONT=1
2. Channels selected = 1,9, 10, 17; AUTDLY=0.
462/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Figure 86. Single conversions of a sequence, hardware trigger
$'67$57
(2&
(26
75*;
$'&VWDWH
&+
5'<
$'&B'5
E\VZ
E\KZ
&+
&+
&+
'
'
'
WULJJHUHG
5($'<
&+
'
&+
&+
&+
5'<
'
'
'
'
,QGLFDWLYHWLPLQJV
LJQRUHG
069
1. TRGx (over-frequency) is selected as trigger source, EXTEN = 01, CONT = 0
2. Channels selected = 1, 2, 3, 4; AUTDLY=0.
Figure 87. Continuous conversions of a sequence, hardware trigger
$'67$57
(2&
(26
$'673
75*[
$'&
5'<
&+
&+
&+
'
$'&B'5
E\VZ
E\KZ
'
&+
&+
&+
&+
&+
&+
'
'
'
'
'
'
WULJJHUHG
LJQRUHG
6723
5'<
1RWLQVFDOHWLPLQJV
069
1. TRGx is selected as trigger source, EXTEN = 10, CONT = 1
2. Channels selected = 1, 2, 3, 4; AUTDLY=0.
16.3.26
Data management
Data register, data alignment and offset (ADCx_DR, OFFSETy, OFFSETy_CH,
ALIGN)
Data and alignment
At the end of each regular conversion channel (when EOC event occurs), the result of the
converted data is stored into the ADCx_DR data register which is 16 bits wide.
At the end of each injected conversion channel (when JEOC event occurs), the result of the
converted data is stored into the corresponding ADCx_JDRy data register which is 16 bits
wide.
The ALIGN bit in the ADCx_CFGR register selects the alignment of the data stored after
conversion. Data can be right- or left-aligned as shown in Figure 88, Figure 89, Figure 90
and Figure 91.
DocID024597 Rev 3
463/1693
540
Analog-to-digital converters (ADC)
RM0351
Special case: when left-aligned, the data are aligned on a half-word basis except when the
resolution is set to 6-bit. In that case, the data are aligned on a byte basis as shown in
Figure 90 and Figure 91.
Note:
Left-alignment is not supported in oversampling mode. When ROVSE and/or JOVSE bit is
set, the ALIGN bit value is ignored and the ADC only provides right-aligned data.
Offset
An offset y (y=1,2,3,4) can be applied to a channel by setting the bit OFFSETy_EN=1 into
ADCx_OFRy register. The channel to which the offset will be applied is programmed into the
bits OFFSETy_CH[4:0] of ADCx_OFRy register. In this case, the converted value is
decreased by the user-defined offset written in the bits OFFSETy[11:0]. The result may be a
negative value so the read data is signed and the SEXT bit represents the extended sign
value.
Note:
Offset correction is not supported in oversampling mode. When ROVSE and/or JOVSE bit is
set, the value of the OFFSETy_EN bit in ADCx_OFRy register is ignored (considered as
reset).
Table 93 describes how the comparison is performed for all the possible resolutions for
analog watchdog 1.
Table 91. Offset computation versus data resolution
Resolution
(bits
RES[1:0])
Substraction between raw
converted data and offset:
Raw
converted
Data, left
aligned
Result
Comments
Offset
00: 12-bit
DATA[11:0]
OFFSET[11:0]
signed 12-bit
data
-
01: 10-bit
DATA[11:2],00
OFFSET[11:0]
signed 10-bit
data
The user must configure OFFSET[1:0]
to “00”
10: 8-bit
DATA[11:4],00
00
OFFSET[11:0]
signed 8-bit
data
The user must configure OFFSET[3:0]
to “0000”
11: 6-bit
DATA[11:6],00
0000
OFFSET[11:0]
signed 6-bit
data
The user must configure OFFSET[5:0]
to “000000”
When reading data from ADCx_DR (regular channel) or from ADCx_JDRy (injected
channel, y=1,2,3,4) corresponding to the channel “i”:
•
If one of the offsets is enabled (bit OFFSETy_EN=1) for the corresponding channel, the
read data is signed.
•
If none of the four offsets is enabled for this channel, the read data is not signed.
Figure 88, Figure 89, Figure 90 and Figure 91 show alignments for signed and unsigned
data.
464/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Figure 88. Right alignment (offset disabled, unsigned value)
ELWGDWD
ELW
ELW
'
'
'
'
'
'
ELWGDWD
ELW
'
'
'
'
'
'
'
'
'
'
'
'
'
'
ELW
'
'
'
'
'
'
ELW
'
ELW
ELW
ELWGDWD
ELW
ELW
'
ELW
ELWGDWD
ELW
'
'
ELW
'
'
'
'
'
'
069
Figure 89. Right alignment (offset enabled, signed value)
ELWGDWD
ELW
6(;7 6(;7 6(;7 6(;7 '
ELW
'
'
'
ELWGDWD
ELW
'
'
'
'
'
'
'
'
'
ELW
'
'
'
'
'
'
ELW
6(;7 6(;7 6(;7 6(;7 6(;7 6(;7 6(;7 6(;7 '
ELWGDWD
ELW
'
ELW
6(;7 6(;7 6(;7 6(;7 6(;7 6(;7
ELWGDWD
ELW
'
ELW
'
ELW
'
'
'
'
'
'
ELW
6(;7 6(;7 6(;7 6(;7 6(;7 6(;7 6(;7 6(;7 6(;7 6(;7
'
ELW
'
'
'
'
'
'
069
DocID024597 Rev 3
465/1693
540
Analog-to-digital converters (ADC)
RM0351
Figure 90. Left alignment (offset disabled, unsigned value)
ELWGDWD
ELW
'
'
ELW
'
'
'
'
'
'
ELWGDWD
ELW
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
ELW
ELW
ELW
ELW
ELWGDWD
ELW
'
ELW
ELWGDWD
ELW
'
'
ELW
ELW
'
'
'
'
'
069
Figure 91. Left alignment (offset enabled, signed value)
ELWGDWD
ELW
6(;7 '
ELW
'
'
'
'
'
'
ELWGDWD
ELW
6(;7 '
'
ELWGDWD
ELW
'
'
'
'
ELW
'
'
'
'
'
'
ELWGDWD
ELW
6(;7
'
ELW
'
ELW
'
'
ELW
'
'
'
'
'
'
'
ELW
ELW
6(;7 6(;7 6(;7 6(;7 6(;7 6(;7 6(;7 6(;7 6(;7 '
ELW
'
'
'
'
'
069
466/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
ADC overrun (OVR, OVRMOD)
The overrun flag (OVR) notifies of a buffer overrun event, when the regular converted data
was not read (by the CPU or the DMA) before new converted data became available.
The OVR flag is set if the EOC flag is still 1 at the time when a new conversion completes.
An interrupt can be generated if bit OVRIE=1.
When an overrun condition occurs, the ADC is still operating and can continue to convert
unless the software decides to stop and reset the sequence by setting bit ADSTP=1.
OVR flag is cleared by software by writing 1 to it.
It is possible to configure if data is preserved or overwritten when an overrun event occurs
by programming the control bit OVRMOD:
•
OVRMOD=0: The overrun event preserves the data register from being overrun: the
old data is maintained and the new conversion is discarded and lost. If OVR remains at
1, any further conversions will occur but the result data will be also discarded.
•
OVRMOD=1: The data register is overwritten with the last conversion result and the
previous unread data is lost. If OVR remains at 1, any further conversions will operate
normally and the ADCx_DR register will always contain the latest converted data.
Figure 92. Example of overrun (OVR)
$'67$57
(2&
(26
295
$'673
75*[
$'&VWDWH
5'<
&+
&+
&+
&+
&+
$'&B'5UHDGDFFHVV
$'&B'5
29502'
'
'
'
'
$'&B'5
29502'
'
'
'
'
E\VZ
&+
&+
'
'
6723
5'<
2YHUXQ
E\KZ
WULJJHUHG
,QGLFDWLYHWLPLQJV
-36
Note:
There is no overrun detection on the injected channels since there is a dedicated data
register for each of the four injected channels.
Managing a sequence of conversion without using the DMA
If the conversions are slow enough, the conversion sequence can be handled by the
software. In this case the software must use the EOC flag and its associated interrupt to
handle each data. Each time a conversion is complete, EOC is set and the ADCx_DR
register can be read. OVRMOD should be configured to 0 to manage overrun events as an
error.
DocID024597 Rev 3
467/1693
540
Analog-to-digital converters (ADC)
RM0351
Managing conversions without using the DMA and without overrun
It may be useful to let the ADC convert one or more channels without reading the data each
time (if there is an analog watchdog for instance). In this case, the OVRMOD bit must be
configured to 1 and OVR flag should be ignored by the software. An overrun event will not
prevent the ADC from continuing to convert and the ADCx_DR register will always contain
the latest conversion.
Managing conversions using the DMA
Since converted channel values are stored into a unique data register, it is useful to use
DMA for conversion of more than one channel. This avoids the loss of the data already
stored in the ADCx_DR register.
When the DMA mode is enabled (DMAEN bit set to 1 in the ADCx_CFGR register in single
ADC mode or MDMA different from 0b00 in dual ADC mode), a DMA request is generated
after each conversion of a channel. This allows the transfer of the converted data from the
ADCx_DR register to the destination location selected by the software.
Despite this, if an overrun occurs (OVR=1) because the DMA could not serve the DMA
transfer request in time, the ADC stops generating DMA requests and the data
corresponding to the new conversion is not transferred by the DMA. Which means that all
the data transferred to the RAM can be considered as valid.
Depending on the configuration of OVRMOD bit, the data is either preserved or overwritten
(refer to Section : ADC overrun (OVR, OVRMOD)).
The DMA transfer requests are blocked until the software clears the OVR bit.
Two different DMA modes are proposed depending on the application use and are
configured with bit DMACFG of the ADCx_CFGR register in single ADC mode, or with bit
DMACFG of the ADCx_CCR register in dual ADC mode:
•
DMA one shot mode (DMACFG=0).
This mode is suitable when the DMA is programmed to transfer a fixed number of data.
•
DMA circular mode (DMACFG=1)
This mode is suitable when programming the DMA in circular mode.
DMA one shot mode (DMACFG=0)
In this mode, the ADC generates a DMA transfer request each time a new conversion data
is available and stops generating DMA requests once the DMA has reached the last DMA
transfer (when DMA_EOT interrupt occurs - refer to DMA paragraph) even if a conversion
has been started again.
When the DMA transfer is complete (all the transfers configured in the DMA controller have
been done):
468/1693
•
The content of the ADC data register is frozen.
•
Any ongoing conversion is aborted with partial result discarded.
•
No new DMA request is issued to the DMA controller. This avoids generating an
overrun error if there are still conversions which are started.
•
Scan sequence is stopped and reset.
•
The DMA is stopped.
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
DMA circular mode (DMACFG=1)
In this mode, the ADC generates a DMA transfer request each time a new conversion data
is available in the data register, even if the DMA has reached the last DMA transfer. This
allows configuring the DMA in circular mode to handle a continuous analog input data
stream.
16.3.27
Dynamic low-power features
Auto-delayed conversion mode (AUTDLY)
The ADC implements an auto-delayed conversion mode controlled by the AUTDLY
configuration bit. Auto-delayed conversions are useful to simplify the software as well as to
optimize performance of an application clocked at low frequency where there would be risk
of encountering an ADC overrun.
When AUTDLY=1, a new conversion can start only if all the previous data of the same group
has been treated:
•
For a regular conversion: once the ADCx_DR register has been read or if the EOC bit
has been cleared (see Figure 93).
•
For an injected conversion: when the JEOS bit has been cleared (see Figure 94).
This is a way to automatically adapt the speed of the ADC to the speed of the system which
will read the data.
The delay is inserted after each regular conversion (whatever DISCEN=0 or 1) and after
each sequence of injected conversions (whatever JDISCEN=0 or 1).
Note:
There is no delay inserted between each conversions of the injected sequence, except after
the last one.
During a conversion, a hardware trigger event (for the same group of conversions) occurring
during this delay is ignored.
Note:
This is not true for software triggers where it remains possible during this delay to set the
bits ADSTART or JADSTART to re-start a conversion: it is up to the software to read the
data before launching a new conversion.
No delay is inserted between conversions of different groups (a regular conversion followed
by an injected conversion or conversely):
•
If an injected trigger occurs during the automatic delay of a regular conversion, the
injected conversion starts immediately (see Figure 94).
•
Once the injected sequence is complete, the ADC waits for the delay (if not ended) of
the previous regular conversion before launching a new regular conversion (see
Figure 96).
The behavior is slightly different in auto-injected mode (JAUTO=1) where a new regular
conversion can start only when the automatic delay of the previous injected sequence of
conversion has ended (when JEOS has been cleared). This is to ensure that the software
can read all the data of a given sequence before starting a new sequence (see Figure 97).
To stop a conversion in continuous auto-injection mode combined with autodelay mode
(JAUTO=1, CONT=1 and AUTDLY=1), follow the following procedure:
DocID024597 Rev 3
469/1693
540
Analog-to-digital converters (ADC)
RM0351
1.
Wait until JEOS=1 (no more conversions are restarted)
2.
Clear JEOS,
3.
Set ADSTP=1
4.
Read the regular data.
If this procedure is not respected, a new regular sequence can re-start if JEOS is cleared
after ADSTP has been set.
In AUTDLY mode, a hardware regular trigger event is ignored if it occurs during an already
ongoing regular sequence or during the delay that follows the last regular conversion of the
sequence. It is however considered pending if it occurs after this delay, even if it occurs
during an injected sequence of the delay that follows it. The conversion then starts at the
end of the delay of the injected sequence.
In AUTDLY mode, a hardware injected trigger event is ignored if it occurs during an already
ongoing injected sequence or during the delay that follows the last injected conversion of
the sequence.
Figure 93. AUTODLY=1, regular conversion in continuous mode, software trigger
$'67$57
(2&
(26
$'673
$'&B'5UHDGDFFHVV
$'&VWDWH
5'<
&+
'/<
$'&B'5
&+
'
E\VZ
'/<
&+
'
'/<
&+
'
E\KZ
'/<
6723
5'<
'
,QGLFDWLYHWLPLQJV
069
1. AUTDLY=1
2. Regular configuration: EXTEN=0x0 (SW trigger), CONT=1, CHANNELS = 1,2,3
3. Injected configuration DISABLED
470/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Figure 94. AUTODLY=1, regular HW conversions interrupted by injected conversions
(DISCEN=0; JDISCEN=0)
1RWLJQRUHG
RFFXUVGXULQJLQMHFWHGVHTXHQFH
,JQRUHG
5HJXODU
WULJJHU
$'&VWDWH
5'<
&+
'/<
&+
'/<
&+
UHJXODU
UHJXODU
'/< &+
&+
&+
LQMHFWHG
UHJXODU
'/< &+
&+
'/<
'/<
&+
UHJXODU
UHJXODU
LQMHFWHG
'/< &+
'/< &+
(2&
(26
$'&B'5
UHDGDFFHVV
'
$'&B'5
'
'
'
,JQRUHG
,QMHFWHG
WULJJHU
'/< LQM
-(26
'
$'&B-'5
'
$'&B-'5
E\VZ
E\KZ
,QGLFDWLYHWLPLQJV
069
1. AUTDLY=1
2. Regular configuration: EXTEN=0x1 (HW trigger), CONT=0, DISCEN=0, CHANNELS = 1, 2, 3
3. Injected configuration: JEXTEN=0x1 (HW Trigger), JDISCEN=0, CHANNELS = 5,6
DocID024597 Rev 3
471/1693
540
Analog-to-digital converters (ADC)
RM0351
Figure 95. AUTODLY=1, regular HW conversions interrupted by injected conversions
(DISCEN=1, JDISCEN=1)
1RWLJQRUHG
RFFXUVGXULQJLQMHFWHGVHTXHQFH
,JQRUHG
5HJXODU
WULJJHU
$'&
VWDWH
5'<
&+
UHJXODU
&+
'/< 5'< &+ '/< 5'< &+ 5'< &+
'/< 5'< &+ '/< 5'<&+
UHJXODU
UHJXODU
LQMHFWHG
LQMHFWHG UHJXODU
UHJXODU
'/<
&+
'/< &+
'/< &+
'/< &+
(2&
(26
$'&B'5UHDGDFFHVV
$'&B'5
'
'
,JQRUHG
,QMHFWHG
WULJJHU
'
'
,JQRUHG
'/< LQM
-(26
$'&B-'5
'
'
$'&B-'5
E\VZ
,QGLFDWLYHWLPLQJV
E\KZ
069
1. AUTDLY=1
2. Regular configuration: EXTEN=0x1 (HW trigger), CONT=0, DISCEN=1, DISCNUM=1, CHANNELS = 1, 2, 3.
3. Injected configuration: JEXTEN=0x1 (HW Trigger), JDISCEN=1, CHANNELS = 5,6
472/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Figure 96. AUTODLY=1, regular continuous conversions interrupted by injected conversions
$'67$57
$'&
VWDWH 5'<
&+
&+
'/<
UHJXODU
'/<
UHJXODU
&+
&+
LQMHFWHG
LQMHFWHG
'/< &+
'/< &+
'/<
&+
UHJXODU
'/<
&+
UHJXODU
'/< &+
(2&
(26
$'&B'5UHDGDFFHVV
'
$'&B'5
'
'
,JQRUHG
,QMHFWHG
WULJJHU
'/< LQM
-(26
$'&B-'5
'
$'&B-'5
'
E\VZ
E\KZ
,QGLFDWLYHWLPLQJV
069
1. AUTDLY=1
2. Regular configuration: EXTEN=0x0 (SW trigger), CONT=1, DISCEN=0, CHANNELS = 1, 2, 3
3. Injected configuration: JEXTEN=0x1 (HW Trigger), JDISCEN=0, CHANNELS = 5,6
Figure 97. AUTODLY=1 in auto- injected mode (JAUTO=1)
^dZd;ϭͿ
ƐƚĂƚĞ
EŽĚĞůĂLJ
Zz
,ϭ
>z;,ϭͿ
,Ϯ
ƌĞŐƵůĂƌ
ƌĞŐƵůĂƌ
,ϱ
ŝŶũĞĐƚĞĚ
,ϲ
>z;ŝŶũͿ
>z;,ϮͿ
,ϯ
ƌĞŐƵůĂƌ
ŝŶũĞĐƚĞĚ
>z
,ϭ
ƌĞŐƵůĂƌ
K
K^
ͺZƌĞĂĚĂĐĐĞƐƐ
ͺZ
ϭ
Ϯ
ϯ
:K^
ͺ:Zϭ
ϱ
ϲ
ͺ:ZϮ
ďLJƐͬǁ
ďLJŚͬǁ
/ŶĚŝĐĂƚŝǀĞƚŝŵŝŶŐƐ
D^ϯϭϬϮϰsϯ
1. AUTDLY=1
2. Regular configuration: EXTEN=0x0 (SW trigger), CONT=1, DISCEN=0, CHANNELS = 1, 2
3. Injected configuration: JAUTO=1, CHANNELS = 5,6
DocID024597 Rev 3
473/1693
540
Analog-to-digital converters (ADC)
16.3.28
RM0351
Analog window watchdog (AWD1EN, JAWD1EN, AWD1SGL,
AWD1CH, AWD2CH, AWD3CH, AWD_HTx, AWD_LTx, AWDx)
The three AWD analog watchdogs monitor whether some channels remain within a
configured voltage range (window).
Figure 98. Analog watchdog’s guarded area
$QDORJYROWDJH
+LJKHUWKUHVKROG
+75
*XDUGHGDUHD
/RZHUWKUHVKROG
/75
DL
AWDx flag and interrupt
An interrupt can be enabled for each of the 3 analog watchdogs by setting AWDxIE in the
ADCx_IER register (x=1,2,3).
AWDx (x=1,2,3) flag is cleared by software by writing 1 to it.
The ADC conversion result is compared to the lower and higher thresholds before
alignment.
Description of analog watchdog 1
The AWD analog watchdog 1 is enabled by setting the AWD1EN bit in the ADCx_CFGR
register. This watchdog monitors whether either one selected channel or all enabled
channels(1) remain within a configured voltage range (window).
Table 92 shows how the ADCx_CFGR registers should be configured to enable the analog
watchdog on one or more channels.
Table 92. Analog watchdog channel selection
Channels guarded by the analog
watchdog
AWD1SGL bit
AWD1EN bit
JAWD1EN bit
None
x
0
0
All injected channels
0
0
1
All regular channels
0
1
0
All regular and injected channels
0
1
1
1
0
1
1
1
0
1
1
1
(1)
Single
injected channel
Single(1) regular channel
(1)
Single
regular or injected channel
1. Selected by the AWD1CH[4:0] bits. The channels must also be programmed to be converted in the
appropriate regular or injected sequence.
The AWD1 analog watchdog status bit is set if the analog voltage converted by the ADC is
below a lower threshold or above a higher threshold.
474/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
These thresholds are programmed in bits HT1[11:0] and LT1[11:0] of the ADCx_TR1
register for the analog watchdog 1. When converting data with a resolution of less than 12
bits (according to bits RES[1:0]), the LSB of the programmed thresholds must be kept
cleared because the internal comparison is always performed on the full 12-bit raw
converted data (left aligned).
Table 93 describes how the comparison is performed for all the possible resolutions for
analog watchdog 1.
Table 93. Analog watchdog 1 comparison
Resolution
(bit
RES[1:0])
Analog watchdog comparison
between:
Comments
Raw converted data,
(1)
left aligned
Thresholds
00: 12-bit
DATA[11:0]
LT1[11:0] and
HT1[11:0]
-
01: 10-bit
DATA[11:2],00
LT1[11:0] and
HT1[11:0]
User must configure LT1[1:0] and HT1[1:0] to
00
10: 8-bit
DATA[11:4],0000
LT1[11:0] and
HT1[11:0]
User must configure LT1[3:0] and HT1[3:0] to
0000
11: 6-bit
DATA[11:6],0000 LT1[11:0] and
00
HT1[11:0]
User must configure LT1[5:0] and HT1[5:0] to
000000
1. The watchdog comparison is performed on the raw converted data before any alignment calculation and
before applying any offsets (the data which is compared is not signed).
Description of analog watchdog 2 and 3
The second and third analog watchdogs are more flexible and can guard several selected
channels by programming the corresponding bits in AWDCHx[19:0] (x=2,3).
The corresponding watchdog is enabled when any bit of AWDCHx[19:0] (x=2,3) is set.
They are limited to a resolution of 8 bits and only the 8 MSBs of the thresholds can be
programmed into HTx[7:0] and LTx[7:0]. Table 94 describes how the comparison is
performed for all the possible resolutions.
Table 94. Analog watchdog 2 and 3 comparison
Analog watchdog comparison between:
Resolution
(bits RES[1:0])
Raw converted data,
left aligned(1)
Comments
Thresholds
00: 12-bit
DATA[11:4]
LTx[7:0] and HTx[7:0] DATA[3:0] are not relevant for the comparison
01: 10-bit
DATA[11:4]
LTx[7:0] and HTx[7:0] DATA[3:2] are not relevant for the comparison
10: 8-bit
DATA[11:4]
LTx[7:0] and HTx[7:0] -
11: 6-bit
DATA[11:6],00
LTx[7:0] and HTx[7:0] User must configure LTx[1:0] and HTx[1:0] to 00
1. The watchdog comparison is performed on the raw converted data before any alignment calculation and before
applying any offsets (the data which is compared is not signed).
DocID024597 Rev 3
475/1693
540
Analog-to-digital converters (ADC)
RM0351
ADCy_AWDx_OUT signal output generation
Each analog watchdog is associated to an internal hardware signal ADCy_AWDx_OUT
(y=ADC number, x=watchdog number) which is directly connected to the ETR input
(external trigger) of some on-chip timers. Refer to the on-chip timers section to understand
how to select the ADCy_AWDx_OUT signal as ETR.
ADCy_AWDx_OUT is activated when the associated analog watchdog is enabled:
Note:
•
ADCy_AWDx_OUT is set when a guarded conversion is outside the programmed
thresholds.
•
ADCy_AWDx_OUT is reset after the end of the next guarded conversion which is
inside the programmed thresholds (It remains at 1 if the next guarded conversions are
still outside the programmed thresholds).
•
ADCy_AWDx_OUT is also reset when disabling the ADC (when setting ADDIS=1).
Note that stopping regular or injected conversions (setting ADSTP=1 or JADSTP=1)
has no influence on the generation of ADCy_AWDx_OUT.
AWDx flag is set by hardware and reset by software: AWDx flag has no influence on the
generation of ADCy_AWDx_OUT (ex: ADCy_AWDx_OUT can toggle while AWDx flag
remains at 1 if the software did not clear the flag).
Figure 99. ADCy_AWDx_OUT signal generation (on all regular channels)
$'&
67$7(
5'<
&RQYHUVLRQ
LQVLGH
&RQYHUVLRQ
RXWVLGH
&RQYHUVLRQ
LQVLGH
&RQYHUVLRQ &RQYHUVLRQ
RXWVLGH
RXWVLGH
&RQYHUVLRQ
RXWVLGH
&RQYHUVLRQ
LQVLGH
(2&)/$*
$:'[)/$*
FOHDUHG
E\6:
FOHDUHG
E\6:
FOHDUHG
E\6:
FOHDUHG
E\6:
$'&\B$:'[B287
&RQYHUWLQJUHJXODUFKDQQHOV
5HJXODUFKDQQHOVDUHDOOJXDUGHG
069
476/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Figure 100. ADCy_AWDx_OUT signal generation (AWDx flag not cleared by SW)
$'&
67$7(
5'<
&RQYHUVLRQ
&RQYHUVLRQ
LQVLGH
&RQYHUVLRQ
RXWVLGH
LQVLGH
&RQYHUVLRQ &RQYHUVLRQ
RXWVLGH
&RQYHUVLRQ
RXWVLGH
&RQYHUVLRQ
RXWVLGH
LQVLGH
(2&)/$*
QRWFOHDUHG E\6:
$:'[)/$*
$'&\B$:'[B287
&RQYHUWLQJUHJXODUFKDQQHOV
5HJXODUFKDQQHOVDUHDOOJXDUGHG
069
Figure 101. ADCy_AWDx_OUT signal generation (on a single regular channel)
$'&
&RQYHUVLRQ
67$7(
RXWVLGH
&RQYHUVLRQ
&RQYHUVLRQ
&RQYHUVLRQ &RQYHUVLRQ
LQVLGH
&RQYHUVLRQ
RXWVLGH
&RQYHUVLRQ &RQYHUVLRQ
RXWVLGH
(2&)/$*
(26)/$*
FOHDUHG
E\6:
$:'[)/$*
FOHDUHG
E\6:
$'&\B$:'[B287
&RQYHUWLQJUHJXODUFKDQQHOVDQG
2QO\FKDQQHOLVJXDUGHG
069
Figure 102. ADCy_AWDx_OUT signal generation (on all injected channels)
$'&
67$7(
5'<
&RQYHUVLRQ
LQVLGH
&RQYHUVLRQ
RXWVLGH
&RQYHUVLRQ &RQYHUVLRQ
LQVLGH
RXWVLGH
&RQYHUVLRQ
RXWVLGH
&RQYHUVLRQ
RXWVLGH
&RQYHUVLRQ
LQVLGH
-(26)/$*
$:'[)/$*
FOHDUHG
E\6:
FOHDUHG
E\6:
FOHDUHG
E\6:
FOHDUHG
E\6:
$'&\B$:'[B287
&RQYHUWLQJWKHLQMHFWHGFKDQQHOV
$OOLQMHFWHGFKDQQHOVDUHJXDUGHG
069
DocID024597 Rev 3
477/1693
540
Analog-to-digital converters (ADC)
16.3.29
RM0351
Oversampler
The oversampling unit performs data pre-processing to offload the CPU. It is able to handle
multiple conversions and average them into a single data with increased data width, up to
16-bit.
It provides a result with the following form, where N and M can be adjusted:
n = N–1
1
Result = ----- ×
M
∑
Conversion(t n)
n=0
It allows to perform by hardware the following functions: averaging, data rate reduction, SNR
improvement, basic filtering.
The oversampling ratio N is defined using the OVFS[2:0] bits in the ADCx_CFGR2 register,
and can range from 2x to 256x. The division coefficient M consists of a right bit shift up to
8 bits, and is defined using the OVSS[3:0] bits in the ADCx_CFGR2 register.
The summation unit can yield a result up to 20 bits (256x 12-bit results), which is first shifted
right. It is then truncated to the 16 least significant bits, rounded to the nearest value using
the least significant bits left apart by the shifting, before being finally transferred into the
ADCx_DR data register.
Note:
If the intermediary result after the shifting exceeds 16-bit, the result is truncated as is,
without saturation.
Figure 103. 20-bit to 16-bit result truncation
5DZELWGDWD
6KLIWLQJ
7UXQFDWLRQDQGURXQGLQJ
069
The Figure 104 gives a numerical example of the processing, from a raw 20-bit accumulated
data to the final 16-bit result.
Figure 104. Numerical example with 5-bits shift and rounding
5DZELWGDWD
)LQDOUHVXOWDIWHUELWVKLIW
DQGURXQGLQJWRQHDUHVW
%
'
'
%
)
069
The Table 95 below gives the data format for the various N and M combinations, for a raw
conversion data equal to 0xFFF.
478/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Table 95. Maximum output results versus N and M (gray cells indicate truncation)
Over
Max
sampling
Raw data
ratio
No-shift
OVSS =
0000
1-bit
shift
OVSS =
0001
2-bit
shift
OVSS =
0010
3-bit
shift
OVSS =
0011
4-bit
shift
OVSS =
0100
5-bit
shift
OVSS =
0101
6-bit
shift
OVSS =
0110
7-bit
shift
OVSS =
0111
8-bit
shift
OVSS =
1000
2x
0x1FFE
0x1FFE
0x0FFF
0x0800
0x0400
0x0200
0x0100
0x0080
0x0040
0x020
4x
0x3FFC
0x3FFC
0x1FFE
0x0FFF
0x0800
0x0400
0x0200
0x0100
0x0080
0x0040
8x
0x7FF8
0x7FF8
0x3FFC
0x1FFE
0x0FFF
0x0800
0x0400
0x0200
0x0100
0x0080
16x
0xFFF0
0xFFF0
0x7FF8
0x3FFC
0x1FFE
0x0FFF
0x0800
0x0400
0x0200
0x0100
32x
0x1FFE0
0xFFE0
0xFFF0
0x7FF8
0x3FFC
0x1FFE
0x0FFF
0x0800
0x0400
0x0200
64x
0x3FFC0
0xFFC0
0xFFE0
0xFFF0
0x7FF8
0x3FFC 0x1FFE
0x0FFF
0x0800
0x0400
128x
0x7FF80
0xFF80
0xFFC0
0xFFE0
0xFFF0
0x7FF8
0x3FFC
0x1FFE
0x0FFF
0x0800
256x
0xFFF00
0xFF00
0xFF80
0xFFC0
0xFFE0
0xFFF0
0x7FF8
0x3FFC 0x1FFE
0x0FFF
There are no changes for conversion timings in oversampled mode: the sample time is
maintained equal during the whole oversampling sequence. A new data is provided every N
conversions, with an equivalent delay equal to N x TCONV = N x (tSMPL + tSAR). The flags are
set as follow:
•
the end of the sampling phase (EOSMP) is set after each sampling phase
•
the end of conversion (EOC) occurs once every N conversions, when the oversampled
result is available
•
the end of sequence (EOS) occurs once the sequence of oversampled data is
completed (i.e. after N x sequence length conversions total)
Single ADC operating modes support when oversampling
In oversampling mode, most of the ADC operating modes are maintained:
•
Single or continuous mode conversions
•
ADC conversions start either by software or with triggers
•
ADC stop during a conversion (abort)
•
Data read via CPU or DMA with overrun detection
•
Low-power modes (AUTDLY)
•
Programmable resolution: in this case, the reduced conversion values (as per RES[1:0]
bits in ADCx_CFGR1 register) are accumulated, truncated, rounded and shifted in the
same way as 12-bit conversions are
Note:
The alignment mode is not available when working with oversampled data. The ALIGN bit in
ADCx_CFGR1 is ignored and the data are always provided right-aligned.
Note:
Offset correction is not supported in oversampling mode. When ROVSE and/or JOVSE bit is
set, the value of the OFFSETy_EN bit in ADCx_OFRy register is ignored (considered as
reset).
DocID024597 Rev 3
479/1693
540
Analog-to-digital converters (ADC)
RM0351
Analog watchdog
The analog watchdog functionality is maintained (AWDSGL and AWDEN bits), with the
following difference:
Note:
–
the RES[1:0] bits are ignored, comparison is always done on using the full 12-bit
values HT[11:0] and LT[11:0]
–
the comparison is performed on the most significant 12-bit of the 16-bit
oversampled results ADCx_DR[15:4]
Care must be taken when using high shifting values, this will reduce the comparison range.
For instance, if the oversampled result is shifted by 4 bits, thus yielding a 12-bit data rightaligned, the effective analog watchdog comparison can only be performed on 8 bits. The
comparison is done between ADCx_DR[11:4] and HT[0:7] / LT[[0:7], and HT[11:8] / LT[11:8]
must be kept reset.
Triggered mode
The averager can also be used for basic filtering purpose. Although not a very powerful filter
(slow roll-off and limited stop band attenuation), it can be used as a notch filter to reject
constant parasitic frequencies (typically coming from the mains or from a switched mode
power supply). For this purpose, a specific discontinuous mode can be enabled with TROVS
bit in ADCx_CFGR2, to be able to have an oversampling frequency defined by a user and
independent from the conversion time itself.
The Figure 105 below shows how conversions are started in response to triggers during
discontinuous mode.
If the TROVS bit is set, the content of the DISCEN bit is ignored and considered as 1.
Figure 105. Triggered regular oversampling mode (TROVS bit = 1)
&217
',6&(1
75296
7ULJJHU
&K 1
7ULJJHU
&K 1
&K 1
&K 1
&K 1
&K 1
&K 1
&K 1
(2&IODJVHW
&217
',6&(1
75296
7ULJJHU
&K 1
7ULJJHU
&K 1
7ULJJHU
&K 1
7ULJJHU
&K 1
7ULJJHU
&K 1
7ULJJHU
&K 1
7ULJJHU
&K 1
(2&IODJVHW
069
Injected and regular sequencer management when oversampling
In oversampling mode, it is possible to have differentiated behavior for injected and regular
sequencers. The oversampling can be enabled for both sequencers with some limitations if
they have to be used simultaneously (this is related to a unique accumulation unit).
480/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Oversampling regular channels only
The regular oversampling mode bit ROVSM defines how the regular oversampling
sequence is resumed if it is interrupted by injected conversion:
–
in continued mode, the accumulation re-starts from the last valid data (prior to the
conversion abort request due to the injected trigger). This ensures that
oversampling will be completed whatever the injection frequency (providing at
least one regular conversion can be completed between triggers);
–
in resumed mode, the accumulation re-starts from 0 (previous conversions results
are ignored). This mode allows to guarantee that all data used for oversampling
were converted back-to-back within a single timeslot. Care must be taken to have
a injection trigger period above the oversampling period length. If this condition is
not respected, the oversampling cannot be completed and the regular sequencer
will be blocked.
The Figure 106 gives examples for a 4x oversampling ratio.
Figure 106. Regular oversampling modes (4x ratio)
2YHUVDPSOLQJ
VWRSSHG
5HJXODUFKDQQHOV &K 1
&K 1
&K 1
&K 1
&K 0
7ULJJHU
2YHUVDPSOLQJ
FRQWLQXHG
&K 0
$ERUW
,QMHFWHGFKDQQHOV &K -
&K 0
&K 0
&K 0
&K 2
&K 0
&K 0
&K .
-(2&
&RQWLQXHGPRGH5296( -296( 52960 75296 ;
2YHUVDPSOLQJ
DERUWHG
5HJXODUFKDQQHOV &K 1
&K 1
&K 1
&K 1
&K 0
7ULJJHU
2YHUVDPSOLQJ
UHVXPHG
&K 0
$ERUW
,QMHFWHGFKDQQHOV &K -
&K 0
&K 0
&K .
-(2&
5HVXPHGPRGH5296( -296( 52960 75296 ;
069
Oversampling Injected channels only
The Injected oversampling mode bit JOVSE enables oversampling solely for conversions in
the injected sequencer.
Oversampling regular and Injected channels
It is possible to have both ROVSE and JOVSE bits set. In this case, the regular
oversampling mode is forced to resumed mode (ROVSM bit ignored), as represented on
DocID024597 Rev 3
481/1693
540
Analog-to-digital converters (ADC)
RM0351
Figure 107 below.
Figure 107. Regular and injected oversampling modes used simultaneously
2YHUVDPSOLQJ
DERUWHG
5HJXODUFKDQQHOV &K 1
&K 1
&K 1
&K 1
&K 0
2YHUVDPSOLQJ
UHVXPHG
&K 0
$ERUW
7ULJJHU
,QMHFWHGFKDQQHOV &K -
&K 0
&K -
&K -
&K -
&K 0
-(2&
5296( -296( 52960 ;75296
069
Triggered regular oversampling with injected conversions
It is possible to have triggered regular mode with injected conversions. In this case, the
injected mode oversampling mode must be disabled, and the ROVSM bit is ignored
(resumed mode is forced). The JOVSE bit must be reset. The behavior is represented on
Figure 108 below.
Figure 108. Triggered regular oversampling with injection
2YHUVDPSOLQJ
UHVXPHG
7ULJJHU
5HJXODUFKDQQHOV &K 1
7ULJJHU
&K 1
7ULJJHU
7ULJJHU
7ULJJHU
&K 1
$ERUW
,QMHFWHGFKDQQHOV &K -
7ULJJHU
&K 1
&K .
5296( -296( 52960 ;75296
069
Autoinjected mode
It is possible to oversample auto-injected sequences and have all conversions results stored
in registers to save a DMA resource. This mode is available only with both regular and
injected oversampling active: JAUTO = 1, ROVSE = 1 and JOVSE = 1, other combinations
are not supported. The ROVSM bit is ignored in auto-injected mode. The Figure 109 below
shows how the conversions are sequenced.
482/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Figure 109. Oversampling in auto-injected mode
5HJXODUFKDQQHOV 1 1 1 1
1 1 1 1
,QMHFWHGFKDQQHOV , , , , - - - - . . . . / / / /
-$872 5296( -296( 52960 ;75296
069
It is possible to have also the triggered mode enabled, using the TROVS bit. In this case, the
ADC must be configured as following: JAUTO = 1, DISCEN = 0, JDISCEN = 0, ROVSE = 1,
JOVSE = 1 and TROVSE = 1.
Dual ADC modes support when oversampling
It is possible to have oversampling enabled when working in dual ADC configuration, for the
injected simultaneous mode and regular simultaneous mode. In this case, the two ADCs
must be programmed with the very same settings (including oversampling).
All other dual ADC modes are not supported when either regular or injected oversampling is
enabled (ROVSE = 1 or JOVSE = 1).
Combined modes summary
The Table 96 below summarizes all combinations, including modes not supported.
Table 96. Oversampler operating modes summary
Regular Over- Injected Oversampling
sampling
ROVSE
JOVSE
Oversampler
mode
ROVSM
Triggered
Regular mode
0 = continued
TROVS
Comment
1 = resumed
16.3.30
1
0
0
0
Regular continued mode
1
0
0
1
Not supported
1
0
1
0
Regular resumed mode
1
0
1
1
Triggered regular resumed mode
1
1
0
X
Not supported
1
1
1
0
Injected and regular resumed
mode
1
1
1
1
Not supported
0
1
X
X
Injected oversampling
Dual ADC modes
In devices with two ADCs or more, dual ADC modes can be used (see Figure 110):
•
ADC1 and ADC2 can be used together in dual mode (ADC1 is master)
In dual ADC mode the start of conversion is triggered alternately or simultaneously by the
ADCx master to the ADC slave, depending on the mode selected by the bits DUAL[4:0] in
the ADCx_CCR register.
DocID024597 Rev 3
483/1693
540
Analog-to-digital converters (ADC)
RM0351
Four possible modes are implemented:
•
Injected simultaneous mode
•
Regular simultaneous mode
•
Interleaved mode
•
Alternate trigger mode
It is also possible to use these modes combined in the following ways:
•
Injected simultaneous mode + Regular simultaneous mode
•
Regular simultaneous mode + Alternate trigger mode
•
Injected simultaneous mode + Interleaved mode
In dual ADC mode (when bits DUAL[4:0] in ADCx_CCR register are not equal to zero), the
bits CONT, AUTDLY, DISCEN, DISCNUM[2:0], JDISCEN, JQM, JAUTO of the
ADCx_CFGR register are shared between the master and slave ADC: the bits in the slave
ADC are always equal to the corresponding bits of the master ADC.
To start a conversion in dual mode, the user must program the bits EXTEN, EXTSEL,
JEXTEN, JEXTSEL of the master ADC only, to configure a software or hardware trigger,
and a regular or injected trigger. (the bits EXTEN[1:0] and JEXTEN[1:0] of the slave ADC
are don’t care).
In regular simultaneous or interleaved modes: once the user sets bit ADSTART or bit
ADSTP of the master ADC, the corresponding bit of the slave ADC is also automatically
set. However, bit ADSTART or bit ADSTP of the slave ADC is not necessary cleared at the
same time as the master ADC bit.
In injected simultaneous or alternate trigger modes: once the user sets bit JADSTART or bit
JADSTP of the master ADC, the corresponding bit of the slave ADC is also automatically
set. However, bit JADSTART or bit JADSTP of the slave ADC is not necessary cleared at
the same time as the master ADC bit.
In dual ADC mode, the converted data of the master and slave ADC can be read in parallel,
by reading the ADC common data register (ADCx_CDR). The status bits can be also read in
parallel by reading the dual-mode status register (ADCx_CSR).
484/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Figure 110. Dual ADC block diagram(1)
5HJXODUGDWDUHJLVWHU
ELWV
,QMHFWHGGDWDUHJLVWHUV
[ELWV
,QWHUQDODQDORJLQSXWV
$'&[B,1
$GGUHVVGDWDEXV
5HJXODU
FKDQQHOV
$'&[B,1
6ODYH$'&
,QMHFWHG
FKDQQHOV
,QWHUQDOWULJJHUV
5HJXODUGDWDUHJLVWHU
ELWV
$'&[B,1
,QMHFWHGGDWDUHJLVWHUV
[ELWV
,QWHUQDODQDORJLQSXWV
5HJXODU
FKDQQHOV
,QMHFWHG
FKDQQHOV
'XDOPRGH
FRQWURO
6WDUWWULJJHUPX[
UHJXODUJURXS
0DVWHU$'&
6WDUWWULJJHUPX[
LQMHFWHGJURXS
06Y9
1.
External triggers also exist on slave ADC but are not shown for the purposes of this diagram.
2.
The ADC common data register (ADCx_CDR) contains both the master and slave ADC regular converted data.
DocID024597 Rev 3
485/1693
540
Analog-to-digital converters (ADC)
RM0351
Injected simultaneous mode
This mode is selected by programming bits DUAL[4:0]=00101
This mode converts an injected group of channels. The external trigger source comes from
the injected group multiplexer of the master ADC (selected by the JEXTSEL[3:0] bits in the
ADCx_JSQR register).
Note:
Do not convert the same channel on the two ADCs (no overlapping sampling times for the
two ADCs when converting the same channel).
In simultaneous mode, one must convert sequences with the same length or ensure that the
interval between triggers is longer than the longer of the 2 sequences. Otherwise, the ADC
with the shortest sequence may restart while the ADC with the longest sequence is
completing the previous conversions.
Regular conversions can be performed on one or all ADCs. In that case, they are
independent of each other and are interrupted when an injected event occurs. They are
resumed at the end of the injected conversion group.
•
At the end of injected sequence of conversion event (JEOS) on the master ADC, the
converted data is stored into the master ADCx_JDRy registers and a JEOS interrupt is
generated (if enabled)
•
At the end of injected sequence of conversion event (JEOS) on the slave ADC, the
converted data is stored into the slave ADCx_JDRy registers and a JEOS interrupt is
generated (if enabled)
•
If the duration of the master injected sequence is equal to the duration of the slave
injected one (like in Figure 111), it is possible for the software to enable only one of the
two JEOS interrupt (ex: master JEOS) and read both converted data (from master
ADCx_JDRy and slave ADCx_JDRy registers).
Figure 111. Injected simultaneous mode on 4 channels: dual ADC mode
0$67(5$'&
&+
&+
&+
&+
6/$9($'&
&+
&+
&+
&+
7ULJJHU
6DPSOLQJ
(QGRILQMHFWHGVHTXHQFHRQ
0$67(5DQG6/$9($'&
&RQYHUVLRQ
069
If JDISCEN=1, each simultaneous conversion of the injected sequence requires an injected
trigger event to occur.
This mode can be combined with AUTDLY mode:
486/1693
•
Once a simultaneous injected sequence of conversions has ended, a new injected
trigger event is accepted only if both JEOS bits of the master and the slave ADC have
been cleared (delay phase). Any new injected trigger events occurring during the
ongoing injected sequence and the associated delay phase are ignored.
•
Once a regular sequence of conversions of the master ADC has ended, a new regular
trigger event of the master ADC is accepted only if the master data register (ADCx_DR)
has been read. Any new regular trigger events occurring for the master ADC during the
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
ongoing regular sequence and the associated delay phases are ignored.
There is the same behavior for regular sequences occurring on the slave ADC.
Regular simultaneous mode with independent injected
This mode is selected by programming bits DUAL[4:0] = 00110.
This mode is performed on a regular group of channels. The external trigger source comes
from the regular group multiplexer of the master ADC (selected by the EXTSEL[3:0] bits in
the ADCx_CFGR register). A simultaneous trigger is provided to the slave ADC.
In this mode, independent injected conversions are supported. An injection request (either
on master or on the slave) will abort the current simultaneous conversions, which are restarted once the injected conversion is completed.
Note:
Do not convert the same channel on the two ADCs (no overlapping sampling times for the
two ADCs when converting the same channel).
In regular simultaneous mode, one must convert sequences with the same length or ensure
that the interval between triggers is longer than the longer conversion time of the 2
sequences. Otherwise, the ADC with the shortest sequence may restart while the ADC with
the longest sequence is completing the previous conversions.
Software is notified by interrupts when it can read the data:
•
At the end of each conversion event (EOC) on the master ADC, a master EOC interrupt
is generated (if EOCIE is enabled) and software can read the ADCx_DR of the master
ADC.
•
At the end of each conversion event (EOC) on the slave ADC, a slave EOC interrupt is
generated (if EOCIE is enabled) and software can read the ADCx_DR of the slave
ADC.
•
If the duration of the master regular sequence is equal to the duration of the slave one
(like in Figure 112), it is possible for the software to enable only one of the two EOC
interrupt (ex: master EOC) and read both converted data from the Common Data
register (ADCx_CDR).
It is also possible to read the regular data using the DMA. Two methods are possible:
•
•
Using two DMA channels (one for the master and one for the slave). In this case bits
MDMA[1:0] must be kept cleared.
–
Configure the DMA master ADC channel to read ADCx_DR from the master. DMA
requests are generated at each EOC event of the master ADC.
–
Configure the DMA slave ADC channel to read ADCx_DR from the slave. DMA
requests are generated at each EOC event of the slave ADC.
Using MDMA mode, which leaves one DMA channel free for other uses:
–
Configure MDMA[1:0]=0b10 or 0b11 (depending on resolution).
–
A single DMA channel is used (the one of the master). Configure the DMA master
ADC channel to read the common ADC register (ADCx_CDR)
–
A single DMA request is generated each time both master and slave EOC events
have occurred. At that time, the slave ADC converted data is available in the
upper half-word of the ADCx_CDR 32-bit register and the master ADC converted
data is available in the lower half-word of ADCx_CCR register.
–
both EOC flags are cleared when the DMA reads the ADCx_CCR register.
DocID024597 Rev 3
487/1693
540
Analog-to-digital converters (ADC)
Note:
RM0351
In MDMA mode (MDMA[1:0]=0b10 or 0b11), the user must program the same number of
conversions in the master’s sequence as in the slave’s sequence. Otherwise, the remaining
conversions will not generate a DMA request.
Figure 112. Regular simultaneous mode on 16 channels: dual ADC mode
0$67(5$'&
6/$9($'&
&+
&+
&+
&+
&+
&+
&+
&+
&+
&+
7ULJJHU
6DPSOLQJ
(QGRIUHJXODUVHTXHQFHRQ
0$67(5DQG6/$9($'&
&RQYHUVLRQ
DLE
If DISCEN=1 then each “n” simultaneous conversions of the regular sequence require a
regular trigger event to occur (“n” is defined by DISCNUM).
This mode can be combined with AUTDLY mode:
•
Once a simultaneous conversion of the sequence has ended, the next conversion in
the sequence is started only if the common data register, ADCx_CDR (or the regular
data register of the master ADC) has been read (delay phase).
•
Once a simultaneous regular sequence of conversions has ended, a new regular
trigger event is accepted only if the common data register (ADCx_CDR) has been read
(delay phase). Any new regular trigger events occurring during the ongoing regular
sequence and the associated delay phases are ignored.
It is possible to use the DMA to handle data in regular simultaneous mode combined with
AUTDLY mode, assuming that multi-DMA mode is used: bits MDMA must be set to 0b10 or
0b11.
When regular simultaneous mode is combined with AUTDLY mode, it is mandatory for the
user to ensure that:
Note:
•
The number of conversions in the master’s sequence is equal to the number of
conversions in the slave’s.
•
For each simultaneous conversions of the sequence, the length of the conversion of
the slave ADC is inferior to the length of the conversion of the master ADC. Note that
the length of the sequence depends on the number of channels to convert and the
sampling time and the resolution of each channels.
This combination of regular simultaneous mode and AUTDLY mode is restricted to the use
case when only regular channels are programmed: it is forbidden to program injected
channels in this combined mode.
Interleaved mode with independent injected
This mode is selected by programming bits DUAL[4:0] = 00111.
This mode can be started only on a regular group (usually one channel). The external
trigger source comes from the regular channel multiplexer of the master ADC.
After an external trigger occurs:
488/1693
•
The master ADC starts immediately.
•
The slave ADC starts after a delay of several ADC clock cycles after the sampling
phase of the master ADC has complete.
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
The minimum delay which separates 2 conversions in interleaved mode is configured in the
DELAY bits in the ADCx_CCR register. This delay starts to count after the end of the
sampling phase of the master conversion. This way, an ADC cannot start a conversion if the
complementary ADC is still sampling its input (only one ADC can sample the input signal at
a given time).
•
The minimum possible DELAY is 1 to ensure that there is at least one cycle time
between the opening of the analog switch of the master ADC sampling phase and the
closing of the analog switch of the slave ADC sampling phase.
•
The maximum DELAY is equal to the number of cycles corresponding to the selected
resolution. However the user must properly calculate this delay to ensure that an ADC
does not start a conversion while the other ADC is still sampling its input.
If the CONT bit is set on both master and slave ADCs, the selected regular channels of both
ADCs are continuously converted.
Software is notified by interrupts when it can read the data:
Note:
•
At the end of each conversion event (EOC) on the master ADC, a master EOC interrupt
is generated (if EOCIE is enabled) and software can read the ADCx_DR of the master
ADC.
•
At the end of each conversion event (EOC) on the slave ADC, a slave EOC interrupt is
generated (if EOCIE is enabled) and software can read the ADCx_DR of the slave
ADC.
It is possible to enable only the EOC interrupt of the slave and read the common data
register (ADCx_CDR). But in this case, the user must ensure that the duration of the
conversions are compatible to ensure that inside the sequence, a master conversion is
always followed by a slave conversion before a new master conversion restarts.
It is also possible to have the regular data transferred by DMA. In this case, individual DMA
requests on each ADC cannot be used and it is mandatory to use the MDMA mode, as
following:
•
Configure MDMA[1:0]=0b10 or 0b11 (depending on resolution).
•
A single DMA channel is used (the one of the master). Configure the DMA master ADC
channel to read the common ADC register (ADCx_CDR).
•
A single DMA request is generated each time both master and slave EOC events have
occurred. At that time, the slave ADC converted data is available in the upper half-word
of the ADCx_CDR 32-bit register and the master ADC converted data is available in the
lower half-word of ADCx_CCR register.
•
Both EOC flags are cleared when the DMA reads the ADCx_CCR register.
DocID024597 Rev 3
489/1693
540
Analog-to-digital converters (ADC)
RM0351
Figure 113. Interleaved mode on 1 channel in continuous conversion mode: dual ADC
mode
(QGRIFRQYHUVLRQRQPDVWHU$'&
0$67(5$'&
&+
&+
6/$9($'&
7ULJJHU
&+
&+
$'&&/.
F\FOHV
$'&&/. (QGRIFRQYHUVLRQRQVODYH$'&
F\FOHV
6DPSOLQJ
&RQYHUVLRQ
-36
Figure 114. Interleaved mode on 1 channel in single conversion mode: dual ADC
mode
(QGRIFRQYHUVLRQRQPDVWHU$'&
0$67(5$'&
&+
&+
6/$9($'&
7ULJJHU
&+
&+
$'&&/. (QGRIFRQYHUVLRQ
RQVODYH$'&
F\FOHV
6DPSOLQJ
(QGRIFRQYHUVLRQ
RQVODYH$'&
$'&&/.
F\FOHV
&RQYHUVLRQ
069
If DISCEN=1, each “n” simultaneous conversions (“n” is defined by DISCNUM) of the
regular sequence require a regular trigger event to occur.
In this mode, injected conversions are supported. When injection is done (either on master
or on slave), both the master and the slave regular conversions are aborted and the
sequence is re-started from the master (see Figure 115 below).
490/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Figure 115. Interleaved conversion with injection
,QMHFWHGWULJJHU
5HVXPH DOZD\VRQPDVWHU
&+
$'& PDVWHU
&+
$'& VODYH
&+
&+
6DPSOLQJ
&+
UHDG
&'5
/HJHQG
&+
&+
&+
UHDG
&'5
&+
&+
FRQYHUVLRQV
DERUWHG
&+
&+
UHDG
&'5
&+
UHDG
&'5
&RQYHUVLRQ
069
Alternate trigger mode
This mode is selected by programming bits DUAL[4:0] = 01001.
This mode can be started only on an injected group. The source of external trigger comes
from the injected group multiplexer of the master ADC.
This mode is only possible when selecting hardware triggers: JEXTEN must not be 0x0.
Injected discontinuous mode disabled (JDISCEN=0 for both ADC)
1.
When the 1st trigger occurs, all injected master ADC channels in the group are
converted.
2.
When the 2nd trigger occurs, all injected slave ADC channels in the group are
converted.
3.
And so on.
A JEOS interrupt, if enabled, is generated after all injected channels of the master ADC in
the group have been converted.
A JEOS interrupt, if enabled, is generated after all injected channels of the slave ADC in the
group have been converted.
JEOC interrupts, if enabled, can also be generated after each injected conversion.
If another external trigger occurs after all injected channels in the group have been
converted then the alternate trigger process restarts by converting the injected channels of
the master ADC in the group.
DocID024597 Rev 3
491/1693
540
Analog-to-digital converters (ADC)
RM0351
Figure 116. Alternate trigger: injected group of each ADC
-(2&RQ
PDVWHU$'&
VWWULJJHU
-(2&RQ
PDVWHU$'&
-(2&-(26RQ
PDVWHU$'&
0$67(5$'&
6/$9($'&
QGWULJJHU
-(2&RQ
VODYH$'&
UGWULJJHU
-(2&RQ
VODYH$'&
-(2&-(26RQ
VODYH$'&
-(2&RQ
PDVWHU$'&
-(2&RQ
PDVWHU$'&
-(2&-(26RQ
PDVWHU$'&
0$67(5$'&
6/$9($'&
WKWULJJHU
-(2&RQ
VODYH$'&
-(2&RQ
VODYH$'&
-(2&-(26RQ
VODYH$'&
6DPSOLQJ
&RQYHUVLRQ
DLP
Note:
Regular conversions can be enabled on one or all ADCs. In this case the regular
conversions are independent of each other. A regular conversion is interrupted when the
ADC has to perform an injected conversion. It is resumed when the injected conversion is
finished.
The time interval between 2 trigger events must be greater than or equal to 1 ADC clock
period. The minimum time interval between 2 trigger events that start conversions on the
same ADC is the same as in the single ADC mode.
Injected discontinuous mode enabled (JDISCEN=1 for both ADC)
If the injected discontinuous mode is enabled for both master and slave ADCs:
•
When the 1st trigger occurs, the first injected channel of the master ADC is converted.
•
When the 2nd trigger occurs, the first injected channel of the slave ADC is converted.
•
And so on.
A JEOS interrupt, if enabled, is generated after all injected channels of the master ADC in
the group have been converted.
A JEOS interrupt, if enabled, is generated after all injected channels of the slave ADC in the
group have been converted.
JEOC interrupts, if enabled, can also be generated after each injected conversions.
If another external trigger occurs after all injected channels in the group have been
converted then the alternate trigger process restarts.
492/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Figure 117. Alternate trigger: 4 injected channels (each ADC) in discontinuous mode
VWWULJJHU
UGWULJJHU
WKWULJJHU
WKWULJJHU
-(2&-(26RQ
-(2&RQ
-(2&RQ
-(2&RQ
PDVWHU$'&
PDVWHU$'&
PDVWHU$'&
PDVWHU$'&
0$67(5$'&
6/$9($'&
-(2&RQ
PDVWHU$'&
QGWULJJHU
-(2&RQ
PDVWHU$'&
WKWULJJHU
-(2&RQ
PDVWHU$'&
WKWULJJHU
WKWULJJHU
-(2&-(26RQ
PDVWHU$'&
6DPSOLQJ
&RQYHUVLRQ
DL9P
Combined regular/injected simultaneous mode
This mode is selected by programming bits DUAL[4:0] = 00001.
It is possible to interrupt the simultaneous conversion of a regular group to start the
simultaneous conversion of an injected group.
Note:
In combined regular/injected simultaneous mode, one must convert sequences with the
same length or ensure that the interval between triggers is longer than the long conversion
time of the 2 sequences. Otherwise, the ADC with the shortest sequence may restart while
the ADC with the longest sequence is completing the previous conversions.
Combined regular simultaneous + alternate trigger mode
This mode is selected by programming bits DUAL[4:0]=00010.
It is possible to interrupt the simultaneous conversion of a regular group to start the alternate
trigger conversion of an injected group. Figure 118 shows the behavior of an alternate
trigger interrupting a simultaneous regular conversion.
The injected alternate conversion is immediately started after the injected event. If a regular
conversion is already running, in order to ensure synchronization after the injected
conversion, the regular conversion of all (master/slave) ADCs is stopped and resumed
synchronously at the end of the injected conversion.
Note:
In combined regular simultaneous + alternate trigger mode, one must convert sequences
with the same length or ensure that the interval between triggers is longer than the long
conversion time of the 2 sequences. Otherwise, the ADC with the shortest sequence may
restart while the ADC with the longest sequence is completing the previous conversions.
DocID024597 Rev 3
493/1693
540
Analog-to-digital converters (ADC)
RM0351
Figure 118. Alternate + regular simultaneous
VWWULJJHU
$'&0$67(5UHJ
&+
&+
&+
&+
&+
&+
&+
&+
&+
&+
&+
$'&0$67(5LQM
$'&6/$9(UHJ
&+
&+
&+
&+
&+
$'&6/$9(LQM
V\QFKURQRWORVW
QGWULJJHU
DL9P
If a trigger occurs during an injected conversion that has interrupted a regular conversion,
the alternate trigger is served. Figure 119 shows the behavior in this case (note that the 6th
trigger is ignored because the associated alternate conversion is not complete).
Figure 119. Case of trigger occurring during injected conversion
VWWULJJHU
$'&0$67(5UHJ
&+
&+
&+
&+
$'&0$67(5LQM
$'&6/$9(UHJ
$'&6/$9(LQM
UGWULJJHU
&+
&+
&+
&+
&+
&+
&+
&+
WKWULJJHU
&+
&+
&+
QGWULJJHU
&+
&+
&+
&+
&+
&+
&+
&+
WKWULJJHU
WKWULJJHU
LJQRUHG
DL9
Combined injected simultaneous plus interleaved
This mode is selected by programming bits DUAL[4:0]=00011
It is possible to interrupt an interleaved conversion with a simultaneous injected event.
Caution:
494/1693
In this case the interleaved conversion is interrupted immediately and the simultaneous
injected conversion starts. At the end of the injected sequence the interleaved conversion is
resumed. When the interleaved regular conversion resumes, the first regular conversion
which is performed is alway the master’s one. Figure 120, Figure 121 and Figure 122 show
the behavior using an example.
In this mode, it is mandatory to use the Common Data Register to read the regular data with
a single read access. On the contrary, master-slave data coherency is not guaranteed.
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Figure 120. Interleaved single channel CH0 with injected sequence CH11, CH12
$'& PDVWHU
&+
&+
$'& VODYH
&+
&+
&RQYHUVLRQV
DERUWHG
&+
UHDG
&'5
&+
&+
UHDG
&'5
&+
&+
&+
&+
&+
&+
&+
&+
UHDG
&'5
&+
UHDG
&'5
/HJHQG
,QMHFWHGWULJJHU
6DPSOLQJ
5HVXPH
DOZD\VUHVWDUWZLWKWKHPDVWHU
&RQYHUVLRQ
069
Figure 121. Two Interleaved channels (CH1, CH2) with injected sequence CH11, CH12
- case 1: Master interrupted first
$'& PDVWHU
&+
&+
$'& VODYH
&+
&+
&RQYHUVLRQV
DERUWHG
&+
UHDG
&'5
&+
&+
UHDG
&'5
&+
&+
&+
&+
&+
&+
&+
&+
UHDG
&'5
&+
UHDG
&'5
/HJHQG
,QMHFWHGWULJJHU
6DPSOLQJ
5HVXPH
DOZD\VUHVWDUWZLWKWKHPDVWHU
&RQYHUVLRQ
069
Figure 122. Two Interleaved channels (CH1, CH2) with injected sequence CH11, CH12
- case 2: Slave interrupted first
$'& PDVWHU
&+
$'& VODYH
&+
&+
&+
&RQYHUVLRQV
DERUWHG
&+
UHDG
&'5
&+
UHDG
&'5
&+
&+
&+
&+
&+
&+
&+
&+
&+
UHDG
&'5
&+
UHDG
&'5
/HJHQG
,QMHFWHGWULJJHU
6DPSOLQJ
&RQYHUVLRQ
5HVXPH
DOZD\VUHVWDUWZLWKWKHPDVWHU
069
DMA requests in dual ADC mode
In all dual ADC modes, it is possible to use two DMA channels (one for the master, one for
the slave) to transfer the data, like in single mode (refer to Figure 123: DMA Requests in
DocID024597 Rev 3
495/1693
540
Analog-to-digital converters (ADC)
RM0351
regular simultaneous mode when MDMA=0b00).
Figure 123. DMA Requests in regular simultaneous mode when MDMA=0b00
7ULJJHU
$'&0DVWHUUHJXODU
7ULJJHU
&+
&+
$'&0DVWHU(2&
$'&6ODYHUHJXODU
&+
&+
$'&6ODYH(2&
'0$UHTXHVWIURP$'&0DVWHU
'0$UHDGV0DVWHU
$'&B'5
'0$UHDGV0DWHU
$'&B'5
'0$UHTXHVWIURP$'&6ODYH
'0$UHDGV6ODYH
$'&B'5
'0$UHDGV6ODYH
$'&B'5
&RQILJXUDWLRQZKHUHHDFKVHTXHQFHFRQWDLQVRQO\RQHFRQYHUVLRQ
06Y9
In simultaneous regular and interleaved modes, it is also possible to save one DMA channel
and transfer both data using a single DMA channel. For this MDMA bits must be configured
in the ADCx_CCR register:
•
MDMA=0b10: A single DMA request is generated each time both master and slave
EOC events have occurred. At that time, two data items are available and the 32-bit
register ADCx_CDR contains the two half-words representing two ADC-converted data
items. The slave ADC data take the upper half-word and the master ADC data take the
lower half-word.
This mode is used in interleaved mode and in regular simultaneous mode when
resolution is 10-bit or 12-bit.
Example:
Interleaved dual mode: a DMA request is generated each time 2 data items are
available:
1st DMA request: ADCx_CDR[31:0] = SLV_ADCx_DR[15:0] |
MST_ADCx_DR[15:0]
2nd DMA request: ADCx_CDR[31:0] = SLV_ADCx_DR[15:0] |
MST_ADCx_DR[15:0]
496/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Figure 124. DMA requests in regular simultaneous mode when MDMA=0b10
7ULJJHU
7ULJJHU
&+
$'&0DVWHUUHJXODU
7ULJJHU
&+
7ULJJHU
&+
&+
$'&6ODYH(2&
&+
&+
&+
$'&6ODYHUHJXODU
&+
$'&6ODYH(2&
'0$UHTXHVWIURP
$'&0DVWHU
'0$UHTXHVWIURP
$'&6ODYH
&RQILJXUDWLRQZKHUHHDFKVHTXHQFHFRQWDLQVRQO\RQHFRQYHUVLRQ
06Y9
Figure 125. DMA requests in interleaved mode when MDMA=0b10
7ULJJHU
$'&0DVWHUUHJXODU
$'&0DVWHU(2&
$'&6ODYHUHJXODU
7ULJJHU
&+
&+
&+
&+
&+
'HOD\
'HOD\
'HOD\
'HOD\
&+
7ULJJHU
7ULJJHU
7ULJJHU
&+
&+
'HOD\
&+
&+
$'&6ODYH(2&
'0$UHTXHVWIURP
$'&0DVWHU
'0$UHTXHVWIURP
$'&6ODYH
&RQILJXUDWLRQZKHUHHDFKVHTXHQFHFRQWDLQVRQO\RQHFRQYHUVLRQ
06Y9
DocID024597 Rev 3
497/1693
540
Analog-to-digital converters (ADC)
Note:
RM0351
When using MDMA mode, the user must take care to configure properly the duration of the
master and slave conversions so that a DMA request is generated and served for reading
both data (master + slave) before a new conversion is available.
•
MDMA=0b11: This mode is similar to the MDMA=0b10. The only differences are that
on each DMA request (two data items are available), two bytes representing two ADC
converted data items are transferred as a half-word.
This mode is used in interleaved and regular simultaneous mode when resolution is 6bit or when resolution is 8-bit and data is not signed (offsets must be disabled for all the
involved channels).
Example:
Interleaved dual mode: a DMA request is generated each time 2 data items are
available:
1st DMA request: ADCx_CDR[15:0] = SLV_ADCx_DR[7:0] | MST_ADCx_DR[7:0]
2nd DMA request: ADCx_CDR[15:0] = SLV_ADCx_DR[7:0] | MST_ADCx_DR[7:0]
Overrun detection
In dual ADC mode (when DUAL[4:0] is not equal to b00000), if an overrun is detected on
one of the ADCs, the DMA requests are no longer issued to ensure that all the data
transferred to the RAM are valid (this behavior occurs whatever the MDMA configuration). It
may happen that the EOC bit corresponding to one ADC remains set because the data
register of this ADC contains valid data.
DMA one shot mode/ DMA circular mode when MDMA mode is selected
When MDMA mode is selected (0b10 or 0b11), bit DMACFG of the ADCx_CCR register
must also be configured to select between DMA one shot mode and circular mode, as
explained in section Section : Managing conversions using the DMA (bits DMACFG of
master and slave ADCx_CFGR are not relevant).
Stopping the conversions in dual ADC modes
The user must set the control bits ADSTP/JADSTP of the master ADC to stop the
conversions of both ADC in dual ADC mode. The other ADSTP control bit of the slave ADC
has no effect in dual ADC mode.
Once both ADC are effectively stopped, the bits ADSTART/JADSTART of the master and
slave ADCs are both cleared by hardware.
16.3.31
Temperature sensor
The temperature sensor can be used to measure the junction temperature (Tj) of the device.
The temperature sensor is internally connected to the ADC1_IN17 and ADC3_IN17 input
channels which are used to convert the sensor output voltage to a digital value. When not in
use, the sensor can be put in power down mode.
Figure 126 shows the block diagram of connections between the temperature sensor and
the ADC.
The temperature sensor output voltage changes linearly with temperature. The offset of this
line varies from chip to chip due to process variation (up to 45 °C from one chip to another).
The uncalibrated internal temperature sensor is more suited for applications that detect
temperature variations instead of absolute temperatures. To improve the accuracy of the
498/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
temperature sensor measurement, calibration values are stored in system memory for each
device by ST during production.
During the manufacturing process, the calibration data of the temperature sensor and the
internal voltage reference are stored in the system memory area. The user application can
then read them and use them to improve the accuracy of the temperature sensor or the
internal reference. Refer to the STM32L4x6 datasheet for additional information.
Main features
•
Supported temperature range: –40 to 125 °C
•
Precision: ±2 °C
The temperature sensor is internally connected to the ADC1_IN17 and ADC3_IN17 input
channel which is used to convert the sensor’s output voltage to a digital value. Refer to the
electrical characteristics section of the device datasheet for the sampling time value to be
applied when converting the internal temperature sensor.
When not in use, the sensor can be put in power-down mode.
Figure 126 shows the block diagram of the temperature sensor.
Figure 126. Temperature sensor channel block diagram
&RQYHUWHG
GDWD
$'&[
7HPSHUDWXUH
VHQVRU
976
$GGUHVVGDWDEXV
&+6(/FRQWUROELW
$'&LQSXW
06Y9
Note:
The CH17SEL bit must be set to enable the conversion of the temperature sensor voltage
VTS.
Reading the temperature
To use the sensor:
1.
Select the ADC1_IN17 or ADC3_IN17 input channels (with the appropriate sampling
time).
2.
Program with the appropriate sampling time (refer to electrical characteristics section of
the device datasheet).
3.
Set the CH17SEL bit in the ADCx_CCR register to wake up the temperature sensor
from power-down mode.
4.
Start the ADC conversion.
5.
Read the resulting VTS data in the ADC data register.
DocID024597 Rev 3
499/1693
540
Analog-to-digital converters (ADC)
6.
RM0351
Calculate the actual temperature using the following formula:
110 °C – 30 °C
Temperature ( in °C ) = ---------------------------------------------------------- × ( TS_DATA – TS_CAL1 ) + 30 °C
TS_CAL2 – TS_CAL1
Where:
•
TS_CAL2 is the temperature sensor calibration value acquired at 110°C
•
TS_CAL1 is the temperature sensor calibration value acquired at 30°C
•
TS_DATA is the actual temperature sensor output value converted by ADC
Refer to the device datasheet for more information about TS_CAL1 and TS_CAL2
calibration points.
Note:
The sensor has a startup time after waking from power-down mode before it can output VTS
at the correct level. The ADC also has a startup time after power-on, so to minimize the
delay, the ADEN and CH17SEL bits should be set at the same time.
16.3.32
VBAT supply monitoring
The CH18SEL bit in the ADCx_CCR register is used to switch to the battery voltage. As the
VBAT voltage could be higher than VDDA, to ensure the correct operation of the ADC, the
VBAT pin is internally connected to a bridge divider by 3. This bridge is automatically enabled
when CH18_SEL is set, to connect VBAT/3 to the ADC1_IN18 or ADC3_IN18 input
channels. As a consequence, the converted digital value is one third of the VBAT voltage. To
prevent any unwanted consumption on the battery, it is recommended to enable the bridge
divider only when needed, for ADC conversion.
Refer to the electrical characteristics of the device datasheet for the sampling time value to
be applied when converting the VBAT/3 voltage.
Figure 127 shows the block diagram of the VBAT sensing feature.
Figure 127. VBAT channel block diagram
9%$7
$'&[
9%$7
$GGUHVVGDWDEXV
&+6(/FRQWUROELW
$'&LQSXW
06Y9
Note:
500/1693
The CH18_SEL bit must be set to enable the conversion of internal channels ADC1_IN18
and ADC3_IN18 (VBAT/3).
DocID024597 Rev 3
RM0351
16.3.33
Analog-to-digital converters (ADC)
Monitoring the internal voltage reference
It is possible to monitor the internal voltage reference (VREFINT) to have a reference point for
evaluating the ADC VREF+ voltage level.
The internal voltage reference is internally connected to the input channel 0 of the ADC1
(ADC1_IN0).
Refer to the electrical characteristics section of the STM32L4x6 datasheet for the sampling
time value to be applied when converting the internal voltage reference voltage.
Figure 127 shows the block diagram of the VREFINT sensing feature.
Figure 128. VREFINT channel block diagram
$'&B95()(1
FRQWUROELW
,QWHUQDO
SRZHUEORFN
95(),17
$'&
$'&B,1
069
Note:
The VREFEN bit into ADCx_CCR register must be set to enable the conversion of internal
channels ADC1_IN0 (VREFINT).
Calculating the actual VDDA voltage using the internal reference voltage
The VDDA power supply voltage applied to the microcontroller may be subject to variation or
not precisely known. The embedded internal voltage reference (VREFINT) and its calibration
data acquired by the ADC during the manufacturing process at VDDA = 3.3 V can be used to
evaluate the actual VDDA voltage level.
The following formula gives the actual VDDA voltage supplying the device:
VDDA = 3.0 V x VREFINT_CAL / VREFINT_DATA
Where:
•
VREFINT_CAL is the VREFINT calibration value
•
VREFINT_DATA is the actual VREFINT output value converted by ADC
Converting a supply-relative ADC measurement to an absolute voltage value
The ADC is designed to deliver a digital value corresponding to the ratio between the analog
power supply and the voltage applied on the converted channel. For most application use
cases, it is necessary to convert this ratio into a voltage independent of VDDA. For
applications where VDDA is known and ADC converted values are right-aligned you can use
the following formula to get this absolute value:
V DDA
V CHANNELx = ------------------------------------- × ADCx_DATA
FULL_SCALE
For applications where VDDA value is not known, you must use the internal voltage
reference and VDDA can be replaced by the expression provided in Section : Calculating the
DocID024597 Rev 3
501/1693
540
Analog-to-digital converters (ADC)
RM0351
actual VDDA voltage using the internal reference voltage, resulting in the following formula:
3.0 V × VREFINT_CAL × ADCx_DATA
V CHANNELx = -------------------------------------------------------------------------------------------------------VREFINT_DATA × FULL_SCALE
Where:
•
VREFINT_CAL is the VREFINT calibration value
•
ADCx_DATA is the value measured by the ADC on channel x (right-aligned)
•
VREFINT_DATA is the actual VREFINT output value converted by the ADC
•
FULL_SCALE is the maximum digital value of the ADC output. For example with 12-bit
resolution, it will be 212 - 1 = 4095 or with 8-bit resolution, 28 - 1 = 255.
Note:
If ADC measurements are done using an output format other than 12 bit right-aligned, all the
parameters must first be converted to a compatible format before the calculation is done.
16.4
ADC interrupts
For each ADC, an interrupt can be generated:
•
After ADC power-up, when the ADC is ready (flag ADRDY)
•
On the end of any conversion for regular groups (flag EOC)
•
On the end of a sequence of conversion for regular groups (flag EOS)
•
On the end of any conversion for injected groups (flag JEOC)
•
On the end of a sequence of conversion for injected groups (flag JEOS)
•
When an analog watchdog detection occurs (flag AWD1, AWD2 and AWD3)
•
When the end of sampling phase occurs (flag EOSMP)
•
When the data overrun occurs (flag OVR)
•
When the injected sequence context queue overflows (flag JQOVF)
Separate interrupt enable bits are available for flexibility.
Table 97. ADC interrupts per each ADC
Interrupt event
Event flag
Enable control bit
ADRDY
ADRDYIE
End of conversion of a regular group
EOC
EOCIE
End of sequence of conversions of a regular group
EOS
EOSIE
End of conversion of a injected group
JEOC
JEOCIE
End of sequence of conversions of an injected group
JEOS
JEOSIE
Analog watchdog 1 status bit is set
AWD1
AWD1IE
Analog watchdog 2 status bit is set
AWD2
AWD2IE
Analog watchdog 3 status bit is set
AWD3
AWD3IE
EOSMP
EOSMPIE
OVR
OVRIE
JQOVF
JQOVFIE
ADC ready
End of sampling phase
Overrun
Injected context queue overflows
502/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
16.5
ADC registers (for each ADC)
Refer to Section 1.1 on page 61 for a list of abbreviations used in register descriptions.
16.5.1
ADC interrupt and status register (ADCx_ISR)
Address offset: 0x00
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
AWD2
AWD1
JEOS
JEOC
OVR
EOS
EOC
r_w1
r_w1
r_w1
r_w1
r_w1
r_w1
rc_w1
JQOVF AWD3
r_w1
r_w1
EOSMP ADRDY
r_w1
r_w1
Bits 31:11 Reserved, must be kept at reset value.
Bit 10 JQOVF: Injected context queue overflow
This bit is set by hardware when an Overflow of the Injected Queue of Context occurs. It is cleared
by software writing 1 to it. Refer to Section 16.3.21: Queue of context for injected conversions for
more information.
0: No injected context queue overflow occurred (or the flag event was already acknowledged and
cleared by software)
1: Injected context queue overflow has occurred
Bit 9 AWD3: Analog watchdog 3 flag
This bit is set by hardware when the converted voltage crosses the values programmed in the fields
LT3[7:0] and HT3[7:0] of ADCx_TR3 register. It is cleared by software writing 1 to it.
0: No analog watchdog 3 event occurred (or the flag event was already acknowledged and cleared
by software)
1: Analog watchdog 3 event occurred
Bit 8 AWD2: Analog watchdog 2 flag
This bit is set by hardware when the converted voltage crosses the values programmed in the fields
LT2[7:0] and HT2[7:0] of ADCx_TR2 register. It is cleared by software writing 1 to it.
0: No analog watchdog 2 event occurred (or the flag event was already acknowledged and cleared
by software)
1: Analog watchdog 2 event occurred
Bit 7 AWD1: Analog watchdog 1 flag
This bit is set by hardware when the converted voltage crosses the values programmed in the fields
LT1[11:0] and HT1[11:0] of ADCx_TR1 register. It is cleared by software. writing 1 to it.
0: No analog watchdog 1 event occurred (or the flag event was already acknowledged and cleared
by software)
1: Analog watchdog 1 event occurred
Bit 6 JEOS: Injected channel end of sequence flag
This bit is set by hardware at the end of the conversions of all injected channels in the group. It is
cleared by software writing 1 to it.
0: Injected conversion sequence not complete (or the flag event was already acknowledged and
cleared by software)
1: Injected conversions complete
DocID024597 Rev 3
503/1693
540
Analog-to-digital converters (ADC)
RM0351
Bit 5 JEOC: Injected channel end of conversion flag
This bit is set by hardware at the end of each injected conversion of a channel when a new data is
available in the corresponding ADCx_JDRy register. It is cleared by software writing 1 to it or by
reading the corresponding ADCx_JDRy register
0: Injected channel conversion not complete (or the flag event was already acknowledged and
cleared by software)
1: Injected channel conversion complete
Bit 4 OVR: ADC overrun
This bit is set by hardware when an overrun occurs on a regular channel, meaning that a new
conversion has completed while the EOC flag was already set. It is cleared by software writing 1 to
it.
0: No overrun occurred (or the flag event was already acknowledged and cleared by software)
1: Overrun has occurred
Bit 3 EOS: End of regular sequence flag
This bit is set by hardware at the end of the conversions of a regular sequence of channels. It is
cleared by software writing 1 to it.
0: Regular Conversions sequence not complete (or the flag event was already acknowledged and
cleared by software)
1: Regular Conversions sequence complete
Bit 2 EOC: End of conversion flag
This bit is set by hardware at the end of each regular conversion of a channel when a new data is
available in the ADCx_DR register. It is cleared by software writing 1 to it or by reading the
ADCx_DR register
0: Regular channel conversion not complete (or the flag event was already acknowledged and
cleared by software)
1: Regular channel conversion complete
Bit 1 EOSMP: End of sampling flag
This bit is set by hardware during the conversion of any channel (only for regular channels), at the
end of the sampling phase.
0: not at the end of the sampling phase (or the flag event was already acknowledged and cleared by
software)
1: End of sampling phase reached
Bit 0 ADRDY: ADC ready
This bit is set by hardware after the ADC has been enabled (bit ADEN=1) and when the ADC
reaches a state where it is ready to accept conversion requests.
It is cleared by software writing 1 to it.
0: ADC not yet ready to start conversion (or the flag event was already acknowledged and cleared
by software)
1: ADC is ready to start conversion
504/1693
DocID024597 Rev 3
RM0351
16.5.2
Analog-to-digital converters (ADC)
ADC interrupt enable register (ADCx_IER)
Address offset: 0x04
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
JQ
OVFIE
AWD3
IE
AWD2
IE
rw
rw
rw
Res.
Res.
Res.
Res.
AWD1
JEOSIE JEOCIE OVRIE
IE
rw
rw
rw
rw
EOSIE
rw
EOSMP ADRDY
EOCIE
IE
IE
rw
rw
rw
Bits 31:11 Reserved, must be kept at reset value.
Bit 10 JQOVFIE: Injected context queue overflow interrupt enable
This bit is set and cleared by software to enable/disable the Injected Context Queue Overflow
interrupt.
0: Injected Context Queue Overflow interrupt disabled
1: Injected Context Queue Overflow interrupt enabled. An interrupt is generated when the JQOVF bit
is set.
Note: Software is allowed to write this bit only when JADSTART=0 (which ensures that no injected
conversion is ongoing).
Bit 9 AWD3IE: Analog watchdog 3 interrupt enable
This bit is set and cleared by software to enable/disable the analog watchdog 2 interrupt.
0: Analog watchdog 3 interrupt disabled
1: Analog watchdog 3 interrupt enabled
Note: Software is allowed to write this bit only when ADSTART=0 and JADSTART=0 (which ensures
that no conversion is ongoing).
Bit 8 AWD2IE: Analog watchdog 2 interrupt enable
This bit is set and cleared by software to enable/disable the analog watchdog 2 interrupt.
0: Analog watchdog 2 interrupt disabled
1: Analog watchdog 2 interrupt enabled
Note: Software is allowed to write this bit only when ADSTART=0 and JADSTART=0 (which ensures
that no conversion is ongoing).
Bit 7 AWD1IE: Analog watchdog 1 interrupt enable
This bit is set and cleared by software to enable/disable the analog watchdog 1 interrupt.
0: Analog watchdog 1 interrupt disabled
1: Analog watchdog 1 interrupt enabled
Note: Software is allowed to write this bit only when ADSTART=0 and JADSTART=0 (which ensures
that no conversion is ongoing).
Bit 6 JEOSIE: End of injected sequence of conversions interrupt enable
This bit is set and cleared by software to enable/disable the end of injected sequence of conversions
interrupt.
0: JEOS interrupt disabled
1: JEOS interrupt enabled. An interrupt is generated when the JEOS bit is set.
Note: Software is allowed to write this bit only when JADSTART=0 (which ensures that no injected
conversion is ongoing).
DocID024597 Rev 3
505/1693
540
Analog-to-digital converters (ADC)
RM0351
Bit 5 JEOCIE: End of injected conversion interrupt enable
This bit is set and cleared by software to enable/disable the end of an injected conversion interrupt.
0: JEOC interrupt disabled.
1: JEOC interrupt enabled. An interrupt is generated when the JEOC bit is set.
Note: Software is allowed to write this bit only when JADSTART=0 (which ensures that no regular
conversion is ongoing).
Bit 4 OVRIE: Overrun interrupt enable
This bit is set and cleared by software to enable/disable the Overrun interrupt of a regular
conversion.
0: Overrun interrupt disabled
1: Overrun interrupt enabled. An interrupt is generated when the OVR bit is set.
Note: Software is allowed to write this bit only when ADSTART=0 (which ensures that no regular
conversion is ongoing).
Bit 3 EOSIE: End of regular sequence of conversions interrupt enable
This bit is set and cleared by software to enable/disable the end of regular sequence of conversions
interrupt.
0: EOS interrupt disabled
1: EOS interrupt enabled. An interrupt is generated when the EOS bit is set.
Note: Software is allowed to write this bit only when ADSTART=0 (which ensures that no regular
conversion is ongoing).
Bit 2 EOCIE: End of regular conversion interrupt enable
This bit is set and cleared by software to enable/disable the end of a regular conversion interrupt.
0: EOC interrupt disabled.
1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set.
Note: Software is allowed to write this bit only when ADSTART=0 (which ensures that no regular
conversion is ongoing).
Bit 1 EOSMPIE: End of sampling flag interrupt enable for regular conversions
This bit is set and cleared by software to enable/disable the end of the sampling phase interrupt for
regular conversions.
0: EOSMP interrupt disabled.
1: EOSMP interrupt enabled. An interrupt is generated when the EOSMP bit is set.
Note: Software is allowed to write this bit only when ADSTART=0 (which ensures that no regular
conversion is ongoing).
Bit 0 ADRDYIE: ADC ready interrupt enable
This bit is set and cleared by software to enable/disable the ADC Ready interrupt.
0: ADRDY interrupt disabled
1: ADRDY interrupt enabled. An interrupt is generated when the ADRDY bit is set.
Note: Software is allowed to write this bit only when ADSTART=0 and JADSTART=0 (which ensures
that no conversion is ongoing).
506/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
16.5.3
ADC control register (ADCx_CR)
Address offset: 0x08
Reset value: 0x2000 0000
31
30
AD
CAL
ADCA
LDIF
rs
rw
rw
rw
15
14
13
12
Res.
Res.
29
28
DEEP ADVREG
PWD
EN
Res.
Res.
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
11
10
9
8
7
6
5
4
3
2
Res.
JAD
STP
AD
STP
rs
rs
Res.
Res.
Res.
Res.
Res.
JAD
AD
START START
rs
rs
1
0
AD
DIS
AD
EN
rs
rs
Bit 31 ADCAL: ADC calibration
This bit is set by software to start the calibration of the ADC. Program first the bit ADCALDIF to
determine if this calibration applies for single-ended or differential inputs mode.
It is cleared by hardware after calibration is complete.
0: Calibration complete
1: Write 1 to calibrate the ADC. Read at 1 means that a calibration in progress.
Note: Software is allowed to launch a calibration by setting ADCAL only when ADEN=0.
Note: Software is allowed to update the calibration factor by writing ADCx_CALFACT only when
ADEN=1 and ADSTART=0 and JADSTART=0 (ADC enabled and no conversion is ongoing)
Bit 30 ADCALDIF: Differential mode for calibration
This bit is set and cleared by software to configure the single-ended or differential inputs mode for
the calibration.
0: Writing ADCAL will launch a calibration in Single-ended inputs Mode.
1: Writing ADCAL will launch a calibration in Differential inputs Mode.
Note: Software is allowed to write this bit only when the ADC is disabled and is not calibrating
(ADCAL=0, JADSTART=0, JADSTP=0, ADSTART=0, ADSTP=0, ADDIS=0 and ADEN=0).
Bit 29 DEEPPWD: Deep-power-down enable
This bit is set and cleared by software to put the ADC in deep-power-down mode.
0: ADC not in deep-power down
1: ADC in deep-power-down (default reset state)
Note: Software is allowed to write this bit only when the ADC is disabled (ADCAL=0, JADSTART=0,
JADSTP=0, ADSTART=0, ADSTP=0, ADDIS=0 and ADEN=0).
Bit 28 ADVREGEN: ADC voltage regulator enable
This bits is set by software to enable the ADC voltage regulator.
Before performing any operation such as launching a calibration or enabling the ADC, the ADC
voltage regulator must first be enabled and the software must wait for the regulator start-up time.
0: ADC Voltage regulator disabled
1: ADC Voltage regulator enabled.
For more details about the ADC voltage regulator enable and disable sequences, refer to
Section 16.3.6: ADC Deep-Power-Down Mode (DEEPPWD) & ADC Voltage Regulator
(ADVREGEN).
The software can program this bit field only when the ADC is disabled (ADCAL=0, JADSTART=0,
ADSTART=0, ADSTP=0, ADDIS=0 and ADEN=0).
Bits 27:6 Reserved, must be kept at reset value.
DocID024597 Rev 3
507/1693
540
Analog-to-digital converters (ADC)
RM0351
Bit 5 JADSTP: ADC stop of injected conversion command
This bit is set by software to stop and discard an ongoing injected conversion (JADSTP Command).
It is cleared by hardware when the conversion is effectively discarded and the ADC injected
sequence and triggers can be re-configured. The ADC is then ready to accept a new start of injected
conversions (JADSTART command).
0: No ADC stop injected conversion command ongoing
1: Write 1 to stop injected conversions ongoing. Read 1 means that an ADSTP command is in
progress.
Note: Software is allowed to set JADSTP only when JADSTART=1 and ADDIS=0 (ADC is enabled
and eventually converting an injected conversion and there is no pending request to disable the
ADC)
In auto-injection mode (JAUTO=1), setting ADSTP bit aborts both regular and injected
conversions (do not use JADSTP)
Bit 4 ADSTP: ADC stop of regular conversion command
This bit is set by software to stop and discard an ongoing regular conversion (ADSTP Command).
It is cleared by hardware when the conversion is effectively discarded and the ADC regular
sequence and triggers can be re-configured. The ADC is then ready to accept a new start of regular
conversions (ADSTART command).
0: No ADC stop regular conversion command ongoing
1: Write 1 to stop regular conversions ongoing. Read 1 means that an ADSTP command is in
progress.
Note: Software is allowed to set ADSTP only when ADSTART=1 and ADDIS=0 (ADC is enabled and
eventually converting a regular conversion and there is no pending request to disable the
ADC).
In auto-injection mode (JAUTO=1), setting ADSTP bit aborts both regular and injected
conversions (do not use JADSTP).
In dual ADC regular simultaneous mode and interleaved mode, the bit ADSTP of the master
ADC must be used to stop regular conversions. The other ADSTP bit is inactive.
Bit 3 JADSTART: ADC start of injected conversion
This bit is set by software to start ADC conversion of injected channels. Depending on the
configuration bits JEXTEN, a conversion will start immediately (software trigger configuration) or
once an injected hardware trigger event occurs (hardware trigger configuration).
It is cleared by hardware:
– in single conversion mode when software trigger is selected (JEXTSEL=0x0): at the assertion of the
End of Injected Conversion Sequence (JEOS) flag.
– in all cases: after the execution of the JADSTP command, at the same time that JADSTP is cleared
by hardware.
0: No ADC injected conversion is ongoing.
1: Write 1 to start injected conversions. Read 1 means that the ADC is operating and eventually
converting an injected channel.
Note: Software is allowed to set JADSTART only when ADEN=1 and ADDIS=0 (ADC is enabled and
there is no pending request to disable the ADC).
In auto-injection mode (JAUTO=1), regular and auto-injected conversions are started by setting
bit ADSTART (JADSTART must be kept cleared)
508/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Bit 2 ADSTART: ADC start of regular conversion
This bit is set by software to start ADC conversion of regular channels. Depending on the
configuration bits EXTEN, a conversion will start immediately (software trigger configuration) or once
a regular hardware trigger event occurs (hardware trigger configuration).
It is cleared by hardware:
– in single conversion mode when software trigger is selected (EXTSEL=0x0): at the assertion of the
End of Regular Conversion Sequence (EOS) flag.
– in all cases: after the execution of the ADSTP command, at the same time that ADSTP is cleared by
hardware.
0: No ADC regular conversion is ongoing.
1: Write 1 to start regular conversions. Read 1 means that the ADC is operating and eventually
converting a regular channel.
Note: Software is allowed to set ADSTART only when ADEN=1 and ADDIS=0 (ADC is enabled and
there is no pending request to disable the ADC)
In auto-injection mode (JAUTO=1), regular and auto-injected conversions are started by setting
bit ADSTART (JADSTART must be kept cleared)
Bit 1 ADDIS: ADC disable command
This bit is set by software to disable the ADC (ADDIS command) and put it into power-down state
(OFF state).
It is cleared by hardware once the ADC is effectively disabled (ADEN is also cleared by hardware at
this time).
0: no ADDIS command ongoing
1: Write 1 to disable the ADC. Read 1 means that an ADDIS command is in progress.
Note: Software is allowed to set ADDIS only when ADEN=1 and both ADSTART=0 and JADSTART=0
(which ensures that no conversion is ongoing)
Bit 0 ADEN: ADC enable control
This bit is set by software to enable the ADC. The ADC will be effectively ready to operate once the
flag ADRDY has been set.
It is cleared by hardware when the ADC is disabled, after the execution of the ADDIS command.
0: ADC is disabled (OFF state)
1: Write 1 to enable the ADC.
Note: Software is allowed to set ADEN only when all bits of ADCx_CR registers are 0 (ADCAL=0,
JADSTART=0, ADSTART=0, ADSTP=0, ADDIS=0 and ADEN=0) except for bit ADVREGEN
which must be 1 (and the software must have wait for the startup time of the voltage regulator)
DocID024597 Rev 3
509/1693
540
Analog-to-digital converters (ADC)
16.5.4
RM0351
ADC configuration register (ADCx_CFGR)
Address offset: 0x0C
Reset value: 0x8000 0000
31
30
29
JQDIS
28
27
26
25
24
JAWD1
JAUTO
EN
AWD1CH[4:0]
23
22
AWD1 AWD1S
EN
GL
21
20
JQM
JDISC
EN
19
18
17
16
DISC
EN
DISCNUM[2:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
AUT
DLY
CONT
OVR
MOD
Res.
DMA
CFG
DMA
EN
rw
rw
rw
rw
rw
EXTEN[1:0]
rw
rw
EXTSEL[3:0]
rw
rw
rw
ALIGN
rw
rw
RES[1:0]
rw
rw
Bit 31 JQDIS: Injected Queue disable
These bits are set and cleared by software to disable the Injected Queue mechanism :
0: Injected Queue enabled
1: Injected Queue disabled
Note: Software is allowed to write this bit only when ADSTART=0 and JADSTART=0 (which ensures
that no regular nor injected conversion is ongoing).
A set or reset of JQDIS bit causes the injected queue to be flushed and the JSQR register is
cleared.
Bits 30:26 AWD1CH[4:0]: Analog watchdog 1 channel selection
These bits are set and cleared by software. They select the input channel to be guarded by the
analog watchdog.
00000: ADC analog input channel-0 monitored by AWD1 (available on ADC1 only)
00001: ADC analog input channel-1 monitored by AWD1
.....
10010: ADC analog input channel-18 monitored by AWD1
others: reserved, must not be used
Note: The channel selected by AWD1CH must be also selected into the SQRi or JSQRi registers.
Software is allowed to write these bits only when ADSTART=0 and JADSTART=0 (which
ensures that no conversion is ongoing).
Bit 25 JAUTO: Automatic injected group conversion
This bit is set and cleared by software to enable/disable automatic injected group conversion after
regular group conversion.
0: Automatic injected group conversion disabled
1: Automatic injected group conversion enabled
Note: Software is allowed to write this bit only when ADSTART=0 and JADSTART=0 (which ensures
that no regular nor injected conversion is ongoing).
When dual mode is enabled (DUAL bits in ADCx_CCR register are not equal to zero), the bit
JAUTO of the slave ADC is no more writable and its content is equal to the bit JAUTO of the
master ADC.
Bit 24 JAWD1EN: Analog watchdog 1 enable on injected channels
This bit is set and cleared by software
0: Analog watchdog 1 disabled on injected channels
1: Analog watchdog 1 enabled on injected channels
Note: Software is allowed to write this bit only when JADSTART=0 (which ensures that no injected
conversion is ongoing).
510/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Bit 23 AWD1EN: Analog watchdog 1 enable on regular channels
This bit is set and cleared by software
0: Analog watchdog 1 disabled on regular channels
1: Analog watchdog 1 enabled on regular channels
Note: Software is allowed to write this bit only when ADSTART=0 (which ensures that no regular
conversion is ongoing).
Bit 22 AWD1SGL: Enable the watchdog 1 on a single channel or on all channels
This bit is set and cleared by software to enable the analog watchdog on the channel identified by
the AWD1CH[4:0] bits or on all the channels
0: Analog watchdog 1 enabled on all channels
1: Analog watchdog 1 enabled on a single channel
Note: Software is allowed to write these bits only when ADSTART=0 and JADSTART=0 (which
ensures that no conversion is ongoing).
Bit 21 JQM: JSQR queue mode
This bit is set and cleared by software.
It defines how an empty Queue is managed.
0: JSQR Mode 0: The Queue is never empty and maintains the last written configuration into JSQR.
1: JSQR Mode 1: The Queue can be empty and when this occurs, the software and hardware
triggers of the injected sequence are both internally disabled just after the completion of the last valid
injected sequence.
Refer to Section 16.3.21: Queue of context for injected conversions for more information.
Note: Software is allowed to write this bit only when JADSTART=0 (which ensures that no injected
conversion is ongoing).
When dual mode is enabled (DUAL bits in ADCx_CCR register are not equal to zero), the bit
JQM of the slave ADC is no more writable and its content is equal to the bit JQM of the master
ADC.
Bit 20 JDISCEN: Discontinuous mode on injected channels
This bit is set and cleared by software to enable/disable discontinuous mode on the injected
channels of a group.
0: Discontinuous mode on injected channels disabled
1: Discontinuous mode on injected channels enabled
Note: Software is allowed to write this bit only when JADSTART=0 (which ensures that no injected
conversion is ongoing).
It is not possible to use both auto-injected mode and discontinuous mode simultaneously: the
bits DISCEN and JDISCEN must be kept cleared by software when JAUTO is set.
When dual mode is enabled (bits DUAL of ADCx_CCR register are not equal to zero), the bit
JDISCEN of the slave ADC is no more writable and its content is equal to the bit JDISCEN of
the master ADC.
Bits 19:17 DISCNUM[2:0]: Discontinuous mode channel count
These bits are written by software to define the number of regular channels to be converted in
discontinuous mode, after receiving an external trigger.
000: 1 channel
001: 2 channels
...
111: 8 channels
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no regular
conversion is ongoing).
When dual mode is enabled (DUAL bits in ADCx_CCR register are not equal to zero), the bits
DISCNUM[2:0] of the slave ADC are no more writable and their content is equal to the bits
DISCNUM[2:0] of the master ADC.
DocID024597 Rev 3
511/1693
540
Analog-to-digital converters (ADC)
RM0351
Bit 16 DISCEN: Discontinuous mode for regular channels
This bit is set and cleared by software to enable/disable Discontinuous mode for regular channels.
0: Discontinuous mode for regular channels disabled
1: Discontinuous mode for regular channels enabled
Note: It is not possible to have both discontinuous mode and continuous mode enabled: it is forbidden
to set both DISCEN=1 and CONT=1.
It is not possible to use both auto-injected mode and discontinuous mode simultaneously: the
bits DISCEN and JDISCEN must be kept cleared by software when JAUTO is set.
Software is allowed to write this bit only when ADSTART=0 (which ensures that no regular
conversion is ongoing).
When dual mode is enabled (DUAL bits in ADCx_CCR register are not equal to zero), the bit
DISCEN of the slave ADC is no more writable and its content is equal to the bit DISCEN of the
master ADC.
Bit 15 Reserved, must be kept at reset value.
Bit 14 AUTDLY: Delayed conversion mode
This bit is set and cleared by software to enable/disable the Auto Delayed Conversion mode..
0: Auto-delayed conversion mode off
1: Auto-delayed conversion mode on
Note: Software is allowed to write this bit only when ADSTART=0 and JADSTART=0 (which ensures
that no conversion is ongoing).
When dual mode is enabled (DUAL bits in ADCx_CCR register are not equal to zero), the bit
AUTDLY of the slave ADC is no more writable and its content is equal to the bit AUTDLY of the
master ADC.
Bit 13 CONT: Single / continuous conversion mode for regular conversions
This bit is set and cleared by software. If it is set, regular conversion takes place continuously until it
is cleared.
0: Single conversion mode
1: Continuous conversion mode
Note: It is not possible to have both discontinuous mode and continuous mode enabled: it is forbidden
to set both DISCEN=1 and CONT=1.
Software is allowed to write this bit only when ADSTART=0 (which ensures that no regular
conversion is ongoing).
When dual mode is enabled (DUAL bits in ADCx_CCR register are not equal to zero), the bit
CONT of the slave ADC is no more writable and its content is equal to the bit CONT of the
master ADC.
Bit 12 OVRMOD: Overrun Mode
This bit is set and cleared by software and configure the way data overrun is managed.
0: ADCx_DR register is preserved with the old data when an overrun is detected.
1: ADCx_DR register is overwritten with the last conversion result when an overrun is detected.
Note: Software is allowed to write this bit only when ADSTART=0 (which ensures that no regular
conversion is ongoing).
Bits 11:10 EXTEN[1:0]: External trigger enable and polarity selection for regular channels
These bits are set and cleared by software to select the external trigger polarity and enable the
trigger of a regular group.
00: Hardware trigger detection disabled (conversions can be launched by software)
01: Hardware trigger detection on the rising edge
10: Hardware trigger detection on the falling edge
11: Hardware trigger detection on both the rising and falling edges
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no regular
conversion is ongoing).
512/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Bits 9:6 EXTSEL[3:0]: External trigger selection for regular group
These bits select the external event used to trigger the start of conversion of a regular group:
0000: Event 0
0001: Event 1
0010: Event 2
0011: Event 3
0100: Event 4
0101: Event 5
0110: Event 6
0111: Event 7
...
1111: Event 15
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no regular
conversion is ongoing).
Bit 5 ALIGN: Data alignment
This bit is set and cleared by software to select right or left alignment. Refer to Section : Data
register, data alignment and offset (ADCx_DR, OFFSETy, OFFSETy_CH, ALIGN)
0: Right alignment
1: Left alignment
Note: Software is allowed to write this bit only when ADSTART=0 and JADSTART=0 (which ensures
that no conversion is ongoing).
Bits 4:3 RES[1:0]: Data resolution
These bits are written by software to select the resolution of the conversion.
00: 12-bit
01: 10-bit
10: 8-bit
11: 6-bit
Note: Software is allowed to write these bits only when ADSTART=0 and JADSTART=0 (which
ensures that no conversion is ongoing).
Bit 2 Reserved, must be kept at reset value.
Bit 1 DMACFG: Direct memory access configuration
This bit is set and cleared by software to select between two DMA modes of operation and is
effective only when DMAEN=1.
0: DMA One Shot Mode selected
1: DMA Circular Mode selected
For more details, refer to Section : Managing conversions using the DMA
Note: Software is allowed to write this bit only when ADSTART=0 and JADSTART=0 (which ensures
that no conversion is ongoing).
In dual-ADC modes, this bit is not relevant and replaced by control bit DMACFG of the
ADCx_CCR register.
Bit 0 DMAEN: Direct memory access enable
This bit is set and cleared by software to enable the generation of DMA requests. This allows to use
the GP-DMA to manage automatically the converted data. For more details, refer to Section :
Managing conversions using the DMA.
0: DMA disabled
1: DMA enabled
Note: Software is allowed to write this bit only when ADSTART=0 and JADSTART=0 (which ensures
that no conversion is ongoing).
In dual-ADC modes, this bit is not relevant and replaced by control bits MDMA[1:0] of the
ADCx_CCR register.
DocID024597 Rev 3
513/1693
540
Analog-to-digital converters (ADC)
16.5.5
RM0351
ADC configuration register 2 (ADCx_CFGR2)
Address offset: 0x10
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
ROV
SM
TROVS
rw
rw
Res.
Res.
Res.
Res.
OVSS[3:0]
rw
rw
rw
OVSR[2:0]
rw
rw
rw
JOVSE ROVSE
rw
rw
rw
Bits 31:11 Reserved, must be kept at reset value.
Bit 10 ROVSM: Regular Oversampling mode
This bit is set and cleared by software to select the regular oversampling mode.
0: Continued mode: When injected conversions are triggered, the oversampling is temporary
stopped and continued after the injection sequence (oversampling buffer is maintained during
injected sequence)
1: Resumed mode: When injected conversions are triggered, the current oversampling is aborted
and resumed from start after the injection sequence (oversampling buffer is zeroed by injected
sequence start)
Note: Software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion
is ongoing).
Bit 9 TROVS: Triggered Regular Oversampling
This bit is set and cleared by software to enable triggered oversampling
0: All oversampled conversions for a channel are done consecutively following a trigger
1: Each oversampled conversion for a channel needs a new trigger
Note: Software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion
is ongoing).
Bits 8:5 OVSS[3:0]: Oversampling shift
This bitfield is set and cleared by software to define the right shifting applied to the raw oversampling
result.
0000: No shift
0001: Shift 1-bit
0010: Shift 2-bits
0011: Shift 3-bits
0100: Shift 4-bits
0101: Shift 5-bits
0110: Shift 6-bits
0111: Shift 7-bits
1000: Shift 8-bits
Other codes reserved
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
conversion is ongoing).
514/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Bits 4:2 OVSR[2:0]: Oversampling ratio
This bitfield is set and cleared by software to define the oversampling ratio.
000: 2x
001: 4x
010: 8x
011: 16x
100: 32x
101: 64x
110: 128x
111: 256x
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
conversion is ongoing).
Bit 1 JOVSE: Injected Oversampling Enable
This bit is set and cleared by software to enable injected oversampling.
0: Injected Oversampling disabled
1: Injected Oversampling enabled
Note: Software is allowed to write this bit only when ADSTART=0 and JADSTART=0 (which ensures
that no conversion is ongoing)
Bit 0 ROVSE: Regular Oversampling Enable
This bit is set and cleared by software to enable regular oversampling.
0: Regular Oversampling disabled
1: Regular Oversampling enabled
Note: Software is allowed to write this bit only when ADSTART=0 and JADSTART=0 (which ensures
that no conversion is ongoing)
16.5.6
ADC sample time register 1 (ADCx_SMPR1)
Address offset: 0x14
Reset value: 0x0000 0000
31
30
Res.
Res.
15
14
SMP
5_0
rw
29
28
27
25
24
23
SMP8[2:0]
22
21
20
SMP7[2:0]
19
18
SMP6[2:0]
17
16
SMP5[2:1]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
13
12
11
10
9
8
7
6
5
4
3
2
1
0
SMP4[2:0]
rw
26
SMP9[2:0]
rw
SMP3[2:0]
rw
rw
rw
SMP2[2:0]
rw
rw
rw
SMP1[2:0]
rw
DocID024597 Rev 3
rw
rw
SMP0[2:0]
rw
rw
rw
rw
515/1693
540
Analog-to-digital converters (ADC)
RM0351
Bits 31:30 Reserved, must be kept at reset value.
Bits 29:0 SMPx[2:0]: Channel x sampling time selection
These bits are written by software to select the sampling time individually for each channel.
During sample cycles, the channel selection bits must remain unchanged.
000: 2.5 ADC clock cycles
001: 6.5 ADC clock cycles
010: 12.5 ADC clock cycles
011: 24.5 ADC clock cycles
100: 47.5 ADC clock cycles
101: 92.5 ADC clock cycles
110: 247.5 ADC clock cycles
111: 640.5 ADC clock cycles
Note: Software is allowed to write these bits only when ADSTART=0 and JADSTART=0
(which ensures that no conversion is ongoing).
516/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
16.5.7
ADC sample time register 2 (ADCx_SMPR2)
Address offset: 0x18
Reset value: 0x0000 0000
31
30
29
28
27
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
rw
rw
SMP15_0
rw
SMP14[2:0]
rw
rw
26
25
24
23
SMP18[2:0]
22
21
20
SMP17[2:0]
19
18
SMP16[2:0]
17
16
SMP15[2:1]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
SMP13[2:0]
rw
SMP12[2:0]
rw
SMP11[2:0]
rw
SMP10[2:0]
rw
rw
Bits 31:27 Reserved, must be kept at reset value.
Bits 26:0 SMPx[2:0]: Channel x sampling time selection
These bits are written by software to select the sampling time individually for each channel.
During sampling cycles, the channel selection bits must remain unchanged.
000: 2.5 ADC clock cycles
001: 6.5 ADC clock cycles
010: 12.5 ADC clock cycles
011: 24.5 ADC clock cycles
100: 47.5 ADC clock cycles
101: 92.5 ADC clock cycles
110: 247.5 ADC clock cycles
111: 640.5 ADC clock cycles
Note: Software is allowed to write these bits only when ADSTART=0 and JADSTART=0
(which ensures that no conversion is ongoing).
16.5.8
ADC watchdog threshold register 1 (ADCx_TR1)
Address offset: 0x20
Reset value: 0x0FFF 0000
31
30
29
28
Res.
Res.
Res.
Res.
15
14
13
12
Res.
Res.
Res.
Res.
27
26
25
24
23
22
21
20
19
18
17
16
4
3
2
1
0
rw
rw
rw
rw
rw
HT1[11:0]
11
10
9
8
7
6
5
LT1[11:0]
rw
rw
rw
rw
rw
rw
rw
Bits 31:28 Reserved, must be kept at reset value.
DocID024597 Rev 3
517/1693
540
Analog-to-digital converters (ADC)
RM0351
Bits 27:16 HT1[11:0]: Analog watchdog 1 higher threshold
These bits are written by software to define the higher threshold for the analog watchdog 1.
Refer to Section 16.3.28: Analog window watchdog (AWD1EN, JAWD1EN, AWD1SGL, AWD1CH,
AWD2CH, AWD3CH, AWD_HTx, AWD_LTx, AWDx)
Note: Software is allowed to write these bits only when ADSTART=0 and JADSTART=0 (which
ensures that no conversion is ongoing).
Bits 15:12 Reserved, must be kept at reset value.
Bits 11:0 LT1[11:0]: Analog watchdog 1 lower threshold
These bits are written by software to define the lower threshold for the analog watchdog 1.
Refer to Section 16.3.28: Analog window watchdog (AWD1EN, JAWD1EN, AWD1SGL, AWD1CH,
AWD2CH, AWD3CH, AWD_HTx, AWD_LTx, AWDx)
Note: Software is allowed to write these bits only when ADSTART=0 and JADSTART=0 (which
ensures that no conversion is ongoing).
16.5.9
ADC watchdog threshold register 2 (ADCx_TR2)
Address offset: 0x24
Reset value: 0x00FF 0000
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
23
22
21
20
19
18
17
16
HT2[7:0]
rw
rw
rw
rw
rw
rw
rw
rw
7
6
5
4
3
2
1
0
rw
rw
rw
LT2[7:0]
rw
rw
rw
rw
rw
Bits 31:24 Reserved, must be kept at reset value.
Bits 23:16 HT2[7:0]: Analog watchdog 2 higher threshold
These bits are written by software to define the higher threshold for the analog watchdog 2.
Refer to Section 16.3.28: Analog window watchdog (AWD1EN, JAWD1EN, AWD1SGL, AWD1CH,
AWD2CH, AWD3CH, AWD_HTx, AWD_LTx, AWDx)
Note: Software is allowed to write these bits only when ADSTART=0 and JADSTART=0 (which
ensures that no conversion is ongoing).
Bits 15:8 Reserved, must be kept at reset value.
Bits 7:0 LT2[7:0]: Analog watchdog 2 lower threshold
These bits are written by software to define the lower threshold for the analog watchdog 2.
Refer to Section 16.3.28: Analog window watchdog (AWD1EN, JAWD1EN, AWD1SGL, AWD1CH,
AWD2CH, AWD3CH, AWD_HTx, AWD_LTx, AWDx)
Note: Software is allowed to write these bits only when ADSTART=0 and JADSTART=0 (which
ensures that no conversion is ongoing).
518/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
16.5.10
ADC watchdog threshold register 3 (ADCx_TR3)
Address offset: 0x28
Reset value: 0x00FF 0000
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
23
22
21
20
19
18
17
16
HT3[7:0]
rw
rw
rw
rw
rw
rw
rw
rw
7
6
5
4
3
2
1
0
rw
rw
rw
LT3[7:0]
rw
rw
rw
rw
rw
Bits 31:24 Reserved, must be kept at reset value.
Bits 23:16 HT3[7:0]: Analog watchdog 3 higher threshold
These bits are written by software to define the higher threshold for the analog watchdog 3.
Refer to Section 16.3.28: Analog window watchdog (AWD1EN, JAWD1EN, AWD1SGL, AWD1CH,
AWD2CH, AWD3CH, AWD_HTx, AWD_LTx, AWDx)
Note: Software is allowed to write these bits only when ADSTART=0 and JADSTART=0 (which
ensures that no conversion is ongoing).
Bits 15:8 Reserved, must be kept at reset value.
Bits 7:0 LT3[7:0]: Analog watchdog 3 lower threshold
These bits are written by software to define the lower threshold for the analog watchdog 3.
This watchdog compares the 8-bit of LT3 with the 8 MSB of the converted data.
Note: Software is allowed to write these bits only when ADSTART=0 and JADSTART=0 (which
ensures that no conversion is ongoing).
DocID024597 Rev 3
519/1693
540
Analog-to-digital converters (ADC)
16.5.11
RM0351
ADC regular sequence register 1 (ADCx_SQR1)
Address offset: 0x30
Reset value: 0x0000 0000
31
30
29
Res.
Res.
Res.
15
14
13
rw
rw
28
26
25
24
SQ4[4:0]
rw
rw
rw
rw
rw
11
10
9
8
rw
rw
Res.
rw
23
22
21
Res.
12
SQ2[3:0]
rw
27
19
18
rw
rw
rw
rw
rw
7
6
5
4
3
2
Res.
Res.
rw
rw
rw
rw
SQ1[4:0]
rw
20
SQ3[4:0]
17
16
Res.
SQ2[4]
rw
1
0
rw
rw
L[3:0]
Bits 31:29 Reserved, must be kept at reset value.
Bits 28:24 SQ4[4:0]: 4th conversion in regular sequence
These bits are written by software with the channel number (0..18) assigned as the 4th in the
regular conversion sequence.
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
regular conversion is ongoing).
Bit 23 Reserved, must be kept at reset value.
Bits 22:18 SQ3[4:0]: 3rd conversion in regular sequence
These bits are written by software with the channel number (0..18) assigned as the 3rd in the
regular conversion sequence.
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
regular conversion is ongoing).
Bit 17 Reserved, must be kept at reset value.
Bits 16:12 SQ2[4:0]: 2nd conversion in regular sequence
These bits are written by software with the channel number (0..18) assigned as the 2nd in
the regular conversion sequence.
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
regular conversion is ongoing).
Bit 11 Reserved, must be kept at reset value.
Bits 10:6 SQ1[4:0]: 1st conversion in regular sequence
These bits are written by software with the channel number (0..18) assigned as the 1st in the
regular conversion sequence.
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
regular conversion is ongoing).
Bits 5:4 Reserved, must be kept at reset value.
Bits 3:0 L[3:0]: Regular channel sequence length
These bits are written by software to define the total number of conversions in the regular
channel conversion sequence.
0000: 1 conversion
0001: 2 conversions
...
1111: 16 conversions
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
regular conversion is ongoing).
520/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
16.5.12
ADC regular sequence register 2 (ADCx_SQR2)
Address offset: 0x34
Reset value: 0x0000 0000
31
30
29
Res.
Res.
Res.
15
14
13
rw
rw
28
26
25
24
SQ9[4:0]
rw
rw
rw
rw
rw
11
10
9
8
rw
rw
Res.
rw
23
22
21
Res.
12
SQ7[3:0]
rw
27
19
18
rw
rw
rw
rw
rw
7
6
5
4
3
2
rw
rw
rw
rw
SQ6[4:0]
rw
20
SQ8[4:0]
Res.
17
16
Res.
SQ7[4]
rw
1
0
rw
rw
SQ5[4:0]
rw
Bits 31:29 Reserved, must be kept at reset value.
Bits 28:24 SQ9[4:0]: 9th conversion in regular sequence
These bits are written by software with the channel number (0..18) assigned as the 9th in the
regular conversion sequence.
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
regular conversion is ongoing).
Bit 23 Reserved, must be kept at reset value.
Bits 22:18 SQ8[4:0]: 8th conversion in regular sequence
These bits are written by software with the channel number (0..18) assigned as the 8th in the
regular conversion sequence
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
regular conversion is ongoing).
Bit 17 Reserved, must be kept at reset value.
Bits 16:12 SQ7[4:0]: 7th conversion in regular sequence
These bits are written by software with the channel number (0..18) assigned as the 7th in the
regular conversion sequence.
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
regular conversion is ongoing).
Bit 11 Reserved, must be kept at reset value.
Bits 10:6 SQ6[4:0]: 6th conversion in regular sequence
These bits are written by software with the channel number (0..18) assigned as the 6th in the
regular conversion sequence.
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
regular conversion is ongoing).
Bit 5 Reserved, must be kept at reset value.
Bits 4:0 SQ5[4:0]: 5th conversion in regular sequence
These bits are written by software with the channel number (0..18) assigned as the 5th in the
regular conversion sequence.
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
regular conversion is ongoing).
DocID024597 Rev 3
521/1693
540
Analog-to-digital converters (ADC)
16.5.13
RM0351
ADC regular sequence register 3 (ADCx_SQR3)
Address offset: 0x38
Reset value: 0x0000 0000
31
30
29
Res.
Res.
Res.
15
14
13
rw
rw
28
26
25
24
SQ14[4:0]
rw
rw
rw
rw
rw
11
10
9
8
rw
rw
Res.
rw
23
22
21
Res.
12
SQ12[3:0]
rw
27
19
18
rw
rw
rw
rw
rw
7
6
5
4
3
2
rw
rw
rw
rw
SQ11[4:0]
rw
20
SQ13[4:0]
Res.
17
16
Res.
SQ12[4]
rw
1
0
rw
rw
SQ10[4:0]
rw
Bits 31:29 Reserved, must be kept at reset value.
Bits 28:24 SQ14[4:0]: 14th conversion in regular sequence
These bits are written by software with the channel number (0..18) assigned as the 14th in
the regular conversion sequence.
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
regular conversion is ongoing).
Bit 23 Reserved, must be kept at reset value.
Bits 22:18 SQ13[4:0]: 13th conversion in regular sequence
These bits are written by software with the channel number (0..18) assigned as the 13th in
the regular conversion sequence.
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
regular conversion is ongoing).
Bit 17 Reserved, must be kept at reset value.
Bits 16:12 SQ12[4:0]: 12th conversion in regular sequence
These bits are written by software with the channel number (0..18) assigned as the 12th in
the regular conversion sequence.
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
regular conversion is ongoing).
Bit 11 Reserved, must be kept at reset value.
Bits 10:6 SQ11[4:0]: 11th conversion in regular sequence
These bits are written by software with the channel number (0..18) assigned as the 11th in
the regular conversion sequence.
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
regular conversion is ongoing).
Bit 5 Reserved, must be kept at reset value.
Bits 4:0 SQ10[4:0]: 10th conversion in regular sequence
These bits are written by software with the channel number (0..18) assigned as the 10th in
the regular conversion sequence.
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
regular conversion is ongoing).
522/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
16.5.14
ADC regular sequence register 4 (ADCx_SQR4)
Address offset: 0x3C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
rw
rw
rw
rw
rw
rw
rw
rw
SQ16[4:0]
rw
Res.
SQ15[4:0]
rw
Bits 31:11 Reserved, must be kept at reset value.
Bits 10:6 SQ16[4:0]: 16th conversion in regular sequence
These bits are written by software with the channel number (0..18) assigned as the 16th in
the regular conversion sequence.
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
regular conversion is ongoing).
Bit 5 Reserved, must be kept at reset value.
Bits 4:0 SQ15[4:0]: 15th conversion in regular sequence
These bits are written by software with the channel number (0..18) assigned as the 15th in
the regular conversion sequence.
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
regular conversion is ongoing).
DocID024597 Rev 3
523/1693
540
Analog-to-digital converters (ADC)
16.5.15
RM0351
ADC regular Data Register (ADCx_DR)
Address offset: 0x40
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
RDATA[15:0]
r
r
r
r
r
r
r
r
r
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 RDATA[15:0]: Regular Data converted
These bits are read-only. They contain the conversion result from the last converted regular channel.
The data are left- or right-aligned as described in Section 16.3.26: Data management.
524/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
16.5.16
ADC injected sequence register (ADCx_JSQR)
Address offset: 0x4C
Reset value: 0x0000 0000
31
30
29
Res.
15
27
26
rw
rw
rw
rw
rw
13
12
11
10
rw
rw
Res.
rw
25
24
23
Res.
14
JSQ2[1:0]
rw
28
JSQ4[4:0]
21
20
rw
rw
rw
rw
rw
8
7
6
5
4
rw
rw
JEXTEN[1:0]
rw
19
18
Res.
9
JSQ1[4:0]
rw
22
JSQ3[4:0]
3
17
rw
rw
rw
2
1
0
rw
rw
JEXTSEL[3:0]
rw
rw
rw
16
JSQ2[4:2]
JL[1:0]
rw
Bit 31 Reserved, must be kept at reset value.
Bits 30:26 JSQ4[4:0]: 4th conversion in the injected sequence
These bits are written by software with the channel number (0..18) assigned as the 4th in the
injected conversion sequence.
Note: Software is allowed to write these bits at any time, once the ADC is enabled (ADEN=1).
Bit 25 Reserved, must be kept at reset value.
Bits 24:20 JSQ3[4:0]: 3rd conversion in the injected sequence
These bits are written by software with the channel number (0..18) assigned as the 3rd in the
injected conversion sequence.
Note: Software is allowed to write these bits at any time, once the ADC is enabled (ADEN=1).
Bit 19 Reserved, must be kept at reset value.
Bits 18:14 JSQ2[4:0]: 2nd conversion in the injected sequence
These bits are written by software with the channel number (0..18) assigned as the 2nd in
the injected conversion sequence.
Note: Software is allowed to write these bits at any time, once the ADC is enabled (ADEN=1).
Bit 13 Reserved, must be kept at reset value.
Bits 12:8 JSQ1[4:0]: 1st conversion in the injected sequence
These bits are written by software with the channel number (0..18) assigned as the 1st in the
injected conversion sequence.
Note: Software is allowed to write these bits at any time, once the ADC is enabled (ADEN=1).
DocID024597 Rev 3
525/1693
540
Analog-to-digital converters (ADC)
RM0351
Bits 7:6 JEXTEN[1:0]: External Trigger Enable and Polarity Selection for injected channels
These bits are set and cleared by software to select the external trigger polarity and enable
the trigger of an injected group.
00: If JQDIS=0 (queue enabled), Hardware and software trigger detection disabled
00: If JQDIS=1 (queue disabled), Hardware trigger detection disabled (conversions can be
launched by software)
01: Hardware trigger detection on the rising edge
10: Hardware trigger detection on the falling edge
11: Hardware trigger detection on both the rising and falling edges
Note: Software is allowed to write these bits at any time, once the ADC is enabled (ADEN=1).
If JQM=1 and if the Queue of Context becomes empty, the software and hardware
triggers of the injected sequence are both internally disabled (refer to Section 16.3.21:
Queue of context for injected conversions)
Bits 5:2 JEXTSEL[3:0]: External Trigger Selection for injected group
These bits select the external event used to trigger the start of conversion of an injected
group:
0000: Event 0
0001: Event 1
0010: Event 2
0011: Event 3
0100: Event 4
0101: Event 5
0110: Event 6
0111: Event 7
...
1111: Event 15
Note: Software is allowed to write these bits at any time, once the ADC is enabled (ADEN=1).
Bits 1:0 JL[1:0]: Injected channel sequence length
These bits are written by software to define the total number of conversions in the injected
channel conversion sequence.
00: 1 conversion
01: 2 conversions
10: 3 conversions
11: 4 conversions
Note: Software is allowed to write these bits at any time, once the ADC is enabled (ADEN=1).
526/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
16.5.17
ADC offset register (ADCx_OFRy) (y=1..4)
Address offset: 0x60, 0x64, 0x68, 0x6C
Reset value: 0x0000 0000
31
30
OFFSETy
_EN
29
28
27
26
OFFSETy_CH[4:0]
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
Res.
Res.
Res.
Res.
rw
rw
rw
rw
rw
OFFSETy[11:0]
rw
rw
Bit 31 OFFSETy_EN: Offset y Enable
This bit is written by software to enable or disable the offset programmed into bits
OFFSETy[11:0].
Note: Software is allowed to write this bit only when ADSTART=0 and JADSTART=0 (which
ensures that no conversion is ongoing).
Bits 30:26 OFFSETy_CH[4:0]: Channel selection for the Data offset y
These bits are written by software to define the channel to which the offset programmed into
bits OFFSETy[11:0] will apply.
Note: Software is allowed to write these bits only when ADSTART=0 and JADSTART=0
(which ensures that no conversion is ongoing).
Bits 25:12 Reserved, must be kept at reset value.
Bits 11:0 OFFSETy[11:0]: Data offset y for the channel programmed into bits OFFSETy_CH[4:0]
These bits are written by software to define the offset y to be subtracted from the raw
converted data when converting a channel (can be regular or injected). The channel to which
applies the data offset y must be programmed in the bits OFFSETy_CH[4:0]. The conversion
result can be read from in the ADCx_DR (regular conversion) or from in the ADCx_JDRyi
registers (injected conversion).
Note: Software is allowed to write these bits only when ADSTART=0 and JADSTART=0
(which ensures that no conversion is ongoing).
If several offset (OFFSETy) point to the same channel, only the offset with the lowest x
value is considered for the subtraction.
Ex: if OFFSET1_CH[4:0]=4 and OFFSET2_CH[4:0]=4, this is OFFSET1[11:0] which is
subtracted when converting channel 4.
DocID024597 Rev 3
527/1693
540
Analog-to-digital converters (ADC)
16.5.18
RM0351
ADC injected data register (ADCx_JDRy, y= 1..4)
Address offset: 0x80 - 0x8C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
JDATA[15:0]
r
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 JDATA[15:0]: Injected data
These bits are read-only. They contain the conversion result from injected channel y. The
data are left -or right-aligned as described in Section 16.3.26: Data management.
16.5.19
ADC Analog Watchdog 2 Configuration Register (ADCx_AWD2CR)
Address offset: 0xA0
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
AWD2CH[18:16]
AWD2CH[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:19 Reserved, must be kept at reset value.
Bits 18:0 AWD2CH[18:0]: Analog watchdog 2 channel selection
These bits are set and cleared by software. They enable and select the input channels to be guarded
by the analog watchdog 2.
AWD2CH[i] = 0: ADC analog input channel-i is not monitored by AWD2
AWD2CH[i] = 1: ADC analog input channel-i is monitored by AWD2
When AWD2CH[18:0] = 000..0, the analog Watchdog 2 is disabled
Note: The channels selected by AWD2CH must be also selected into the SQRi or JSQRi registers.
Software is allowed to write these bits only when ADSTART=0 and JADSTART=0 (which
ensures that no conversion is ongoing).
528/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
16.5.20
ADC Analog Watchdog 3 Configuration Register (ADCx_AWD3CR)
Address offset: 0xA4
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
AWD3CH[18:16]
AWD3CH[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:19 Reserved, must be kept at reset value.
Bits 18:0 AWD2CH[18:0]: Analog watchdog 2 channel selection
These bits are set and cleared by software. They enable and select the input channels to be guarded
by the analog watchdog 2.
AWD2CH[i] = 0: ADC analog input channel-i is not monitored by AWD2
AWD2CH[i] = 1: ADC analog input channel-i is monitored by AWD2
When AWD2CH[18:0] = 000..0, the analog Watchdog 2 is disabled
Note: The channels selected by AWD2CH must be also selected into the SQRi or JSQRi registers.
Software is allowed to write these bits only when ADSTART=0 and JADSTART=0 (which
ensures that no conversion is ongoing).
16.5.21
ADC Differential Mode Selection Register (ADCx_DIFSEL)
Address offset: 0xB0
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
18
17
16
DIFSEL[18:16]
r
r
r
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
r
DIFSEL[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
DocID024597 Rev 3
529/1693
540
Analog-to-digital converters (ADC)
RM0351
Bits 31:19 Reserved, must be kept at reset value.
Bits 18:16 DIFSEL[18:16]: Differential mode for channels 18 to 16.
These bits are read only. These channels are forced to single-ended input mode (either connected to
a single-ended I/O port or to an internal channel).
Bits 15:1 DIFSEL[15:1]: Differential mode for channels 15 to 1
These bits are set and cleared by software. They allow to select if a channel is configured as single
ended or differential mode.
DIFSEL[i] = 0: ADC analog input channel-i is configured in single ended mode
DIFSEL[i] = 1: ADC analog input channel-i is configured in differential mode
Note: Software is allowed to write these bits only when the ADC is disabled (ADCAL=0,
JADSTART=0, JADSTP=0, ADSTART=0, ADSTP=0, ADDIS=0 and ADEN=0).
It is mandatory to keep cleared ADC1_DIFSEL[15] (connected to an internal single ended
channel)
Bit 0 DIFSEL[0]: Differential mode for channel 0
This bit is read only. This channel is forced to single-ended input mode (connected to an internal
channel).
16.5.22
ADC Calibration Factors (ADCx_CALFACT)
Address offset: 0xB4
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
22
20
19
18
17
16
CALFACT_D[6:0]
rw
rw
rw
rw
rw
rw
rw
6
5
4
3
2
1
0
rw
rw
CALFACT_S[6:0]
rw
Bits 31:23 Reserved, must be kept at reset value.
530/1693
21
DocID024597 Rev 3
rw
rw
rw
rw
RM0351
Analog-to-digital converters (ADC)
Bits 22:16 CALFACT_D[6:0]: Calibration Factors in differential mode
These bits are written by hardware or by software.
Once a differential inputs calibration is complete, they are updated by hardware with the calibration
factors.
Software can write these bits with a new calibration factor. If the new calibration factor is different
from the current one stored into the analog ADC, it will then be applied once a new differential
calibration is launched.
Note: Software is allowed to write these bits only when ADEN=1, ADSTART=0 and JADSTART=0
(ADC is enabled and no calibration is ongoing and no conversion is ongoing).
Bits 15:7 Reserved, must be kept at reset value.
Bits 6:0 CALFACT_S[6:0]: Calibration Factors In Single-Ended mode
These bits are written by hardware or by software.
Once a single-ended inputs calibration is complete, they are updated by hardware with the
calibration factors.
Software can write these bits with a new calibration factor. If the new calibration factor is different
from the current one stored into the analog ADC, it will then be applied once a new single-ended
calibration is launched.
Note: Software is allowed to write these bits only when ADEN=1, ADSTART=0 and JADSTART=0
(ADC is enabled and no calibration is ongoing and no conversion is ongoing).
DocID024597 Rev 3
531/1693
540
Analog-to-digital converters (ADC)
16.6
RM0351
ADC common registers
These registers define the control and status registers common to master and slave ADCs:
16.6.1
ADC Common status register (ADCx_CSR)
Address offset: 0x00 (this offset address is relative to the master ADC base address +
0x300)
Reset value: 0x0000 0000
This register provides an image of the status bits of the different ADCs. Nevertheless it is
read-only and does not allow to clear the different status bits. Instead each status bit must
be cleared by writing 0 to it in the corresponding ADCx_SR register.
31
30
Res. Res.
29
28
27
26
Res.
Res.
Res.
JQOVF_
SLV
25
24
AWD3_ AWD2_
SLV
SLV
23
AWD1_
SLV
22
21
JEOS_ JEOC_
SLV
SLV
20
19
18
17
16
OVR_
SLV
EOS_
SLV
EOC_
SLV
EOSMP_
SLV
ADRDY_
SLV
r
r
r
Slave ADC
r
15
14
Res. Res.
13
12
Res.
Res.
11
10
Res.
JQOVF_
MST
r
r
9
8
r
7
AWD3_ AWD2_
MST
MST
AWD1_
MST
r
r
6
5
JEOS_ JEOC_
MST
MST
r
r
4
3
2
1
0
OVR_
MST
EOS_
MST
EOC_
MST
EOSMP_
MST
ADRDY_
MST
r
r
r
Master ADC
r
r
r
r
r
r
r
r
Bits 31:27 Reserved, must be kept at reset value.
Bit 26 JQOVF_SLV: Injected Context Queue Overflow flag of the slave ADC
This bit is a copy of the JQOVF bit in the corresponding ADCx_ISR register.
Bit 25 AWD3_SLV: Analog watchdog 3 flag of the slave ADC
This bit is a copy of the AWD3 bit in the corresponding ADCx_ISR register.
Bit 24 AWD2_SLV: Analog watchdog 2 flag of the slave ADC
This bit is a copy of the AWD2 bit in the corresponding ADCx_ISR register.
Bit 23 AWD1_SLV: Analog watchdog 1 flag of the slave ADC
This bit is a copy of the AWD1 bit in the corresponding ADCx_ISR register.
Bit 22 JEOS_SLV: End of injected sequence flag of the slave ADC
This bit is a copy of the JEOS bit in the corresponding ADCx_ISR register.
Bit 21 JEOC_SLV: End of injected conversion flag of the slave ADC
This bit is a copy of the JEOC bit in the corresponding ADCx_ISR register.
Bit 20 OVR_SLV: Overrun flag of the slave ADC
This bit is a copy of the OVR bit in the corresponding ADCx_ISR register.
Bit 19 EOS_SLV: End of regular sequence flag of the slave ADC . This bit is a copy of the EOS bit in
the corresponding ADCx_ISR register.
Bit 18 EOC_SLV: End of regular conversion of the slave ADC
This bit is a copy of the EOC bit in the corresponding ADCx_ISR register.
Bit 17 EOSMP_SLV: End of Sampling phase flag of the slave ADC
This bit is a copy of the EOSMP2 bit in the corresponding ADCx_ISR register.
532/1693
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
Bit 16 ADRDY_SLV: Slave ADC ready
This bit is a copy of the ADRDY bit in the corresponding ADCx_ISR register.
Bits 15:11 Reserved, must be kept at reset value.
Bit 10 JQOVF_MST: Injected Context Queue Overflow flag of the master ADC
This bit is a copy of the JQOVF bit in the corresponding ADCx_ISR register.
Bit 9 AWD3_MST: Analog watchdog 3 flag of the master ADC
This bit is a copy of the AWD3 bit in the corresponding ADCx_ISR register.
Bit 8 AWD2_MST: Analog watchdog 2 flag of the master ADC
This bit is a copy of the AWD2 bit in the corresponding ADCx_ISR register.
Bit 7 AWD1_MST: Analog watchdog 1 flag of the master ADC
This bit is a copy of the AWD1 bit in the corresponding ADCx_ISR register.
Bit 6 JEOS_MST: End of injected sequence flag of the master ADC
This bit is a copy of the JEOS bit in the corresponding ADCx_ISR register.
Bit 5 JEOC_MST: End of injected conversion flag of the master ADC
This bit is a copy of the JEOC bit in the corresponding ADCx_ISR register.
Bit 4 OVR_MST: Overrun flag of the master ADC
This bit is a copy of the OVR bit in the corresponding ADCx_ISR register.
Bit 3 EOS_MST: End of regular sequence flag of the master ADC
This bit is a copy of the EOS bit in the corresponding ADCx_ISR register.
Bit 2 EOC_MST: End of regular conversion of the master ADC
This bit is a copy of the EOC bit in the corresponding ADCx_ISR register.
Bit 1 EOSMP_MST: End of Sampling phase flag of the master ADC
This bit is a copy of the EOSMP bit in the corresponding ADCx_ISR register.
Bit 0 ADRDY_MST: Master ADC ready
This bit is a copy of the ADRDY bit in the corresponding ADCx_ISR register.
DocID024597 Rev 3
533/1693
540
Analog-to-digital converters (ADC)
16.6.2
RM0351
ADC common control register (ADCx_CCR)
Address offset: 0x08 (this offset address is relative to the master ADC base address +
0x300)
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
CH18
SEL
CH17
SEL
VREF
EN
rw
rw
rw
rw
rw
rw
rw
rw
rw
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
rw
rw
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
DMA
CFG
Res.
MDMA[1:0]
rw
rw
rw
DELAY[3:0]
rw
rw
rw
rw
21
20
19
18
PRESC[3:0]
17
CKMODE[1:0]
DUAL[4:0]
rw
rw
rw
Bits 31:25 Reserved, must be kept at reset value.
Bit 24 CH18SEL: CH18 selection
This bit is set and cleared by software to control the channel 18 of ADC1 and ADC3
0: VBAT channel disabled.
1: VBAT channel enabled
Note: Software is allowed to write this bit only when the ADCs are disabled (ADCAL=0,
JADSTART=0, ADSTART=0, ADSTP=0, ADDIS=0 and ADEN=0).
Bit 23 CH17SEL: CH17 selection
This bit is set and cleared by software to control the channel 17 of ADC1 and ADC3
0: Temperature sensor channel disabled
1: Temperature sensor channel enabled
Note: Software is allowed to write this bit only when the ADCs are disabled (ADCAL=0,
JADSTART=0, ADSTART=0, ADSTP=0, ADDIS=0 and ADEN=0).
Bit 22 VREFEN: VREFINT enable
This bit is set and cleared by software to enable/disable the VREFINT channel.
0: VREFINT channel disabled
1: VREFINT channel enabled
Note: Software is allowed to write this bit only when the ADCs are disabled (ADCAL=0,
JADSTART=0, ADSTART=0, ADSTP=0, ADDIS=0 and ADEN=0).
534/1693
DocID024597 Rev 3
16
RM0351
Analog-to-digital converters (ADC)
Bits 21:18 PRESC[3:0]: ADC prescaler
These bits are set and cleared by software to select the frequency of the clock to the ADC.
The clock is common for all the ADCs.
0000: input ADC clock not divided
0001: input ADC clock divided by 2
0010: input ADC clock divided by 4
0011: input ADC clock divided by 6
0100: input ADC clock divided by 8
0101: input ADC clock divided by 10
0110: input ADC clock divided by 12
0111: input ADC clock divided by 16
1000: input ADC clock divided by 32
1001: input ADC clock divided by 64
1010: input ADC clock divided by 128
1011: input ADC clock divided by 256
other: reserved
Note: Software is allowed to write these bits only when the ADC is disabled (ADCAL=0,
JADSTART=0, ADSTART=0, ADSTP=0, ADDIS=0 and ADEN=0). The ADC prescaler
value is applied only when CKMODE[1:0] = 0b00.
Bits 17:16 CKMODE[1:0]: ADC clock mode
These bits are set and cleared by software to define the ADC clock scheme (which is
common to both master and slave ADCs):
00: CK_ADCx (x=123) (Asynchronous clock mode), generated at product level (refer to
Section 6: Reset and clock control (RCC))
01: HCLK/1 (Synchronous clock mode). This configuration must be enabled only if the AHB
clock prescaler is set to 1 (HPRE[3:0] = 0xxx in RCC_CFGR register) and if the system clock
has a 50% duty cycle.
10: HCLK/2 (Synchronous clock mode)
11: HCLK/4 (Synchronous clock mode)
In all synchronous clock modes, there is no jitter in the delay from a timer trigger to the start
of a conversion.
Note: Software is allowed to write these bits only when the ADCs are disabled (ADCAL=0,
JADSTART=0, ADSTART=0, ADSTP=0, ADDIS=0 and ADEN=0).
Bits 15:14 MDMA[1:0]: Direct memory access mode for dual ADC mode
This bit-field is set and cleared by software. Refer to the DMA controller section for more
details.
00: MDMA mode disabled
01: reserved
10: MDMA mode enabled for 12 and 10-bit resolution
11: MDMA mode enabled for 8 and 6-bit resolution
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
regular conversion is ongoing).
Bit 13 DMACFG: DMA configuration (for dual ADC mode)
This bit is set and cleared by software to select between two DMA modes of operation and is
effective only when DMAEN=1.
0: DMA One Shot Mode selected
1: DMA Circular Mode selected
For more details, refer to Section : Managing conversions using the DMA
Note: Software is allowed to write these bits only when ADSTART=0 (which ensures that no
regular conversion is ongoing).
Bit 12 Reserved, must be kept at reset value.
DocID024597 Rev 3
535/1693
540
Analog-to-digital converters (ADC)
RM0351
Bits 11:8 DELAY: Delay between 2 sampling phases
These bits are set and cleared by software. These bits are used in dual interleaved modes.
Refer to Table 98 for the value of ADC resolution versus DELAY bits values.
Note: Software is allowed to write these bits only when the ADCs are disabled (ADCAL=0,
JADSTART=0, ADSTART=0, ADSTP=0, ADDIS=0 and ADEN=0).
Bits 7:5 Reserved, must be kept at reset value.
Bits 4:0 DUAL[4:0]: Dual ADC mode selection
These bits are written by software to select the operating mode.
All the ADCs independent:
00000: Independent mode
00001 to 01001: Dual mode, master and slave ADCs working together
00001: Combined regular simultaneous + injected simultaneous mode
00010: Combined regular simultaneous + alternate trigger mode
00011: Combined Interleaved mode + injected simultaneous mode
00100: Reserved
00101: Injected simultaneous mode only
00110: Regular simultaneous mode only
00111: Interleaved mode only
01001: Alternate trigger mode only
All other combinations are reserved and must not be programmed
Note: Software is allowed to write these bits only when the ADCs are disabled (ADCAL=0,
JADSTART=0, ADSTART=0, ADSTP=0, ADDIS=0 and ADEN=0).
Table 98. DELAY bits versus ADC resolution
536/1693
DELAY bits
12-bit resolution
10-bit resolution
8-bit resolution
6-bit resolution
0000
1 * TADC_CLK
1 * TADC_CLK
1 * TADC_CLK
1 * TADC_CLK
0001
2 * TADC_CLK
2 * TADC_CLK
2 * TADC_CLK
2 * TADC_CLK
0010
3 * TADC_CLK
3 * TADC_CLK
3 * TADC_CLK
3 * TADC_CLK
0011
4 * TADC_CLK
4 * TADC_CLK
4 * TADC_CLK
4 * TADC_CLK
0100
5 * TADC_CLK
5 * TADC_CLK
5 * TADC_CLK
5 * TADC_CLK
0101
6 * TADC_CLK
6 * TADC_CLK
6 * TADC_CLK
6 * TADC_CLK
0110
7 * TADC_CLK
7 * TADC_CLK
7 * TADC_CLK
6 * TADC_CLK
0111
8 * TADC_CLK
8 * TADC_CLK
8 * TADC_CLK
6 * TADC_CLK
1000
9 * TADC_CLK
9 * TADC_CLK
8 * TADC_CLK
6 * TADC_CLK
1001
10 * TADC_CLK
10 * TADC_CLK
8 * TADC_CLK
6 * TADC_CLK
1010
11 * TADC_CLK
10 * TADC_CLK
8 * TADC_CLK
6 * TADC_CLK
1011
12 * TADC_CLK
10 * TADC_CLK
8 * TADC_CLK
6 * TADC_CLK
others
12 * TADC_CLK
10 * TADC_CLK
8 * TADC_CLK
6 * TADC_CLK
DocID024597 Rev 3
RM0351
Analog-to-digital converters (ADC)
16.6.3
ADC common regular data register for dual mode (ADCx_CDR)
Address offset: 0x0C (this offset address is relative to the master ADC base address +
0x300)
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RDATA_SLV[15:0]
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
r
r
r
r
r
r
r
RDATA_MST[15:0]
r
r
Bits 31:16 RDATA_SLV[15:0]: Regular data of the slave ADC
In dual mode, these bits contain the regular data of the slave ADC. Refer to Section 16.3.30:
Dual ADC modes.
The data alignment is applied as described in Section : Data register, data alignment and
offset (ADCx_DR, OFFSETy, OFFSETy_CH, ALIGN))
Bits 15:0 RDATA_MST[15:0]: Regular data of the master ADC.
In dual mode, these bits contain the regular data of the master ADC. Refer to
Section 16.3.30: Dual ADC modes.
The data alignment is applied as described in Section : Data register, data alignment and
offset (ADCx_DR, OFFSETy, OFFSETy_CH, ALIGN))
In MDMA=0b11 mode, bits 15:8 contains SLV_ADC_DR[7:0], bits 7:0 contains
MST_ADC_DR[7:0].
16.6.4
ADC register map
The following table summarizes the ADC registers.
Table 99. ADC global register map
Offset
Register
0x000 - 0x0B4
Master ADC1
0x0B8 - 0x0FC
Reserved
0x100 - 0x1B4
Slave ADC2
0x1B8 - 0x1FC
Reserved
0x200 - 0x2B4
Single ADC3
0x2B8 - 0x2FC
Reserved
0x300 - 0x30C
Master and slave ADCs common registers
DocID024597 Rev 3
537/1693
540
Analog-to-digital converters (ADC)
RM0351
AWD3
AWD2
AWD1
JEOS
JEOC
OVR
EOS
EOC
EOSMP
ADRDY
0
0
0
0
0
0
0
0
0
0
0
OVRIE
EOSIE
EOCIE
EOSMPIE
ADRDYIE
0
0
0
0
0
Res.
Res.
Res.
Res.
JADSTP
0
0
0
0
0
538/1693
Reserved
0
0
0
SMP12
[2:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SMP0
[2:0]
0
SMP11
[2:0]
0
0
0
0
SMP10
[2:0]
0
0
0
0
0
0
0
0
0
0
Res.
Res.
1
1
1
1
0
0
0
1
1
1
HT3[[7:0]
1
1
0
0
0
LT2[7:0]
Res.
1
1
HT2[[7:0]
LT1[11:0]
Res.
1
1
0
0
LT3[7:0]
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
0
Res.
0
Res.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SQ10[4:0]
0
0
0
SQ5[4:0]
0
0
SQ16[4:0]
L[3:0]
0
Res.
0
SQ11[4:0]
0
0
0
0
0
SQ15[4:0]
0
0
0
0
0
0
0
0
0
0
regular RDATA[15:0]
0
Res.
DocID024597 Rev 3
0
Res.
0
0
Res.
0
0
SQ6[4:0]
Res.
0
0
Res.
0
0
Res.
0
Res.
0
Res.
0
Res.
0
0
SQ12[4:0]
Res.
0
0
SQ1[4:0]
Res.
Res.
0
Res.
0
0
Res.
0
0
Res.
0
0
Res.
0
0
SQ13[4:0]
0
SQ7[4:0]
Res.
0
0
Res.
0
0
Res.
0
0
Res.
0
0
Res.
0
SQ14[4:0]
0
SQ8[4:0]
Res.
Res.
0
0
Res.
0
SQ2[4:0]
Res.
0
Res.
Res.
Res.
Res.
0
SQ3[4:0]
Reset value
0x440x48
0
0
SMP1
[2:0]
0
Res.
1
1
Res.
0x40
0
0
Reset value
ADCx_DR
0
SMP13
[2:0]
Res.
1
1
Res.
1
1
Res.
1
1
Res.
Res.
1
Res.
Res.
Res.
1
Res.
Res.
Res.
1
Res.
ADCx_SQR4
0
SQ9[4:0]
0
Res.
ADCx_SQR3
0
0
Res.
1
SQ4[4:0]
0
Res.
ADCx_SQR2
0
Res.
1
Res.
Res.
Res.
ADCx_SQR1
0
0
SMP14
[2:0]
0
Res.
0
0
0
SMP2
[2:0]
Res.
0
0
0
SMP3
[2:0]
0
OVSR
[2:0]
OVSS[3:0]
Res.
0
0
SMP15
[2:0]
0
Res.
Reset value
0x3C
0
0
Reserved
Reset value
0x38
0
Res.
1
Res.
Res.
Res.
Res.
Res.
ADCx_TR3
Reset value
0x34
0
0
SMP16
[2:0]
HT1[11:0]
1
Res.
Res.
Res.
Res.
Res.
ADCx_TR2
Res.
0x30
0
Res.
Res.
Res.
ADCx_TR1
Reset value
0x2C
0
0
Res.
Reset value
0x28
0
0
Res.
0
0
SMP17
[2:0]
RES
[1:0]
Res.
0
0
0
Res.
0
Reset value
0x24
0
Reserved
Res.
0x20
0
SMP18
[2:0]
SMP4
[2:0]
0
DMAEN
0
SMP5
[2:0]
Res.
Reset value
0x1C
0
SMP6
[2:0]
Res.
0
SMP7
[2:0]
Res.
0
SMP8
[2:0]
Res.
Res.
Res.
0x18
0
Res.
Reset value
ADCx_SMPR2
Res.
Res.
ADCx_SMPR1
Res.
0x14
SMP9
[2:0]
0
0
DMACFG
TROVS
0
Reset value
EXTSEL
[3:0]
0
0
JOVSE
0
0
ROVSE
0
ROVSM
EXTEN[1:0]
Res.
0
Res.
Res.
OVRMOD
0
Res.
Res.
CONT
0
Res.
Res.
AUTDLY
ADCx_CFGR2
0
Res.
0
Res.
0
Res.
0
DISCNUM
[2:0]
Res.
Res.
0
AWD1CH[4:0]
DISCEN
0
Res.
Res.
0
Res.
Res.
0
Res.
Res.
0
Res.
Res.
JDISCEN
0
Res.
Res.
JQM
0
Res.
Res.
AWD1SGL
0
Res.
Res.
AWD1EN
0
Res.
Res.
JAWD1EN
0
Res.
Res.
JAUTO
0
Res.
Res.
0
Res.
Res.
1
Res.
DEEPPWD
Reset value
Res.
ADVREGEN
ADCx_CFGR
Res.
ADCAL
ADCALDIF
0
JQDIS.
1
Res.
0x0C
0
Reset value
Res.
0x0C
0
ADCx_CR
0x08
ADEN
JEOCIE
0
ADDIS
JEOSIE
0
ADSTART
AWD1IE
0
Res.
AWD2IE
0
ADSTP
AWD3IE
0
Reset value
JADSTART
JQOVFIE
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
ADCx_IER
0x04
Res.
Reset value
ALIGN
Res.
JQOVF
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
ADCx_ISR
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0x00
Register
Res.
Offset
Res.
Table 100. ADC register map and reset values for each ADC (offset=0x000
for master ADC, 0x100 for slave ADC)
0
0
0
0
0
0
0
0
0
0
RM0351
Analog-to-digital converters (ADC)
Reset value
0
0
0
0
0
0
0
0
0
0
0
Res.
Res.
JEXTEN[1:0]
Res.
0
0
0
0
Res.
Res.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
OFFSET3[11:0]
0
0
0
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
0
0
0
0
0
OFFSET4[11:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
JDATA2[15:0]
Res.
Res.
JDATA1[15:0]
0
0
0
0
0
JDATA3[15:0]
0
0
0
0
JDATA4[15:0]
0
0
0
Res.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
0
0
0
0
0
0
Res.
Res.
Res.
0
Res.
Res.
Res.
0
Res.
Res.
Res.
0
Res.
Res.
Res.
0
Res.
Res.
Res.
0
Res.
Res.
Res.
AWD3CH[18:0]
Res.
Res.
Res.
0
Res.
Res.
Res.
0
Res.
Res.
Res.
0
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
AWD2CH[18:0]
0
Res.
Reset value
Res.
ADCx_DIFSEL
Res.
0xB0
Reserved
Res.
Reset value
0xA80xAC
0
OFFSET2[11:0]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
ADCx_AWD3CR
Res.
Reset value
0xA4
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
ADCx_AWD2CR
0
Res.
Res.
Reserved
Res.
0xA0
0
JL[1:0]
OFFSET1[11:0]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
0x8C0x9C
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
ADCx_JDR4
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Reset value
0x8C
0
JEXTSEL
[3:0]
Res.
Res.
ADCx_JDR3
0
0
Res.
OFFSET4_
CH[4:0]
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
OFFSET3_
CH[4:0]
Reset value
0x88
0
0
Reserved
ADCx_JDR2
0
0
Res.
0
Res.
0
0
Res.
Reset value
0
Reset value
0x84
0
0
Res.
ADCx_OFR4
OFFSET2_
CH[4:0]
0
Res.
0
Res.
Reset value
ADCx_JDR1
Res.
Res.
0
JSQ1[4:0]
0
Res.
ADCx_OFR3
0
Res.
0
0
Res.
Reset value
0
Res.
ADCx_OFR2
0
Res.
0
Res.
Reset value
Res.
0x80
0
OFFSET1_
CH[4:0]
Res.
0x700x7C
OFFSET1_EN
0x6C
ADCx_OFR1
OFFSET2_EN
0x68
0
JSQ2[4:0]
Res.
OFFSET3_EN
0x64
0
JSQ3[4:0]
Reserved
OFFSET4_EN
0x60
JSQ4[4:0]
0
Res.
0x500x5C
Res.
ADCx_JSQR
Res.
0x4C
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 100. ADC register map and reset values for each ADC (offset=0x000
for master ADC, 0x100 for slave ADC) (continued)
0
0
0
0
0
0
0
DIFSEL[18:0]
DocID024597 Rev 3
0
0
0
0
539/1693
540
Analog-to-digital converters (ADC)
RM0351
Reset value
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
CALFACT_D[6:0]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
ADCx_CALFACT
Res.
0xB4
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 100. ADC register map and reset values for each ADC (offset=0x000
for master ADC, 0x100 for slave ADC) (continued)
0
CALFACT_S[6:0]
0
0
0
0
0
0
0
ADCx_CDR
Reset value
EOSMP_MST
ADRDY_MST
EOS_MST
0
EOC_MST
AWD1_MST
0
OVR_MST
AWD2_MST
0
0
0
0
0
0
DELAY[3:0]
Res.
Res.
Res.
master ADC1
0
0
0
0
0
0
0
0
Res.
0
DMACFG
VREFEN
0
MDMA[1:0]
CH17SEL
0
PRESC[3:0]
CKMODE[1:0]
CH18SEL
Res.
Res.
Res.
Res.
Res.
ADCx_CCR
Reset value
0x0C
0
0
0
Res.
Res.
0x08
0
Reserved
Res.
0x04
0
JEOC_MST
AWD3_MST
0
slave ADC2
Reset value
JEOS_MST
JQOVF_MST
Res.
0
Res.
0
Res.
ADRDY_SLV
0
Res.
EOSMP_SLV
0
Res.
EOS_SLV
0
EOC_SLV
AWD1_SLV
0
OVR_SLV
AWD2_SLV
0
JEOC_SLV
AWD3_SLV
0
JEOS_SLV
JQOVF_SLV
Res.
Res.
ADCx_CSR
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0x00
Register
Res.
Offset
Res.
Table 101. ADC register map and reset values (master and slave ADC
common registers) offset =0x300)
0
0
RDATA_SLV[15:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DUAL[4:0]
0
0
0
0
0
0
0
0
0
0
RDATA_MST[15:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Refer to Section 2.2.2: Memory map and register boundary addresses for the register
boundary addresses.
540/1693
DocID024597 Rev 3
RM0351
Digital-to-analog converter (DAC)
17
Digital-to-analog converter (DAC)
17.1
Introduction
The DAC module is a 12-bit, voltage output digital-to-analog converter. The DAC can be
configured in 8- or 12-bit mode and may be used in conjunction with the DMA controller. In
12-bit mode, the data could be left- or right-aligned. The DAC has two output channels, each
with its own converter. In dual DAC channel mode, conversions could be done
independently or simultaneously when both channels are grouped together for synchronous
update operations. An input reference pin, VREF+ (shared with others analog peripherals) is
available for better resolution.
The DAC_OUTx pin can be used as general purpose Input/Output (GPIO) when the DAC
output is disconnected from output pad and connected to on chip peripheral. The DAC’s
output buffer can be optionally enabled to allow a high drive output current. An individual
calibration can be applied on each DAC’s output channel. The DAC output channels support
a low power mode; the sample and hold mode.
17.2
DAC main features
The DAC main features are the following (see Figure 129: DAC channel block diagram)
•
Two DAC converters: one output channel each
•
Left or right data alignment in 12-bit mode
•
Synchronized update capability
•
Noise-wave and Triangular-wave generation
•
Dual DAC channel for independent or simultaneous conversions
•
DMA capability for each channel including DMA underrun error detection
•
External triggers for conversion
•
DAC output channel buffered/unbuffered modes
•
buffer offset calibration
•
The DAC_OUTx can be disconnected from output pin
•
Internal pin connection to on chip peripherals
•
Sample and hold mode for low power operation in STOP mode
•
Input voltage reference, VREF+
Figure 129 shows the block diagram of a DAC channel and Table 102 gives the pin
description.
DocID024597 Rev 3
541/1693
573
Digital-to-analog converter (DAC)
RM0351
17.3
DAC functional description
17.3.1
DAC block diagram
Figure 129. DAC channel block diagram
s
sZ&н
KĨĨƐĞƚĐĂůŝďƌĂƚŝŽŶ
^ĂŵƉůĞΘ,ŽůĚZĞŐŝƐƚĞƌƐ
ŽŶƚƌŽůƌĞŐŝƐƚĞƌƐ
ΘůŽŐŝĐŚĂŶŶĞůϭ
KdZ/Dϭϱ͗ϬďŝƚƐ
d^DW>ϭ
d,K>ϭ
d/DϲͺdZ/'
d/DϴͺdZ/'
d/DϳͺdZ/'
d/DϱͺdZ/'
d/DϮͺdZ/'
d/DϰͺdZ/'
yd/ϵͺdZ/'
^tͺdZ/'
DͺZĞƋƵĞƐƚ
dZ/'
dZ&Z^,ϭ
džͺKZϭ
ϭϮͲďŝƚ
ĐŽŶǀĞƌƚĞƌϭ
džͺKhdϭ
d^>ϭϮ͗Ϭ
ďŝƚƐ
ƵĨĨĞƌϭ
DKϭďŝƚƐ
>^/ĐůŽĐŬ
ŽŶƚƌŽůƌĞŐŝƐƚĞƌƐ
ΘůŽŐŝĐŚĂŶŶĞůϮ
d/DϲͺdZ/'
d/DϴͺdZ/'
d/DϳͺdZ/'
d/DϱͺdZ/'
d/DϮͺdZ/'
d/DϰͺdZ/'
yd/ϵͺdZ/'
^tͺdZ/'
KdZ/DϮϱ͗ϬďŝƚƐ
d^DW>Ϯ
KŶͲĐŚŝƉ
WĞƌŝƉŚĞƌĂůƐ
d,K>Ϯ
DͺZĞƋƵĞƐƚ
dZ/'
dZ&Z^,Ϯ
džͺKZϮ
ϭϮͲďŝƚ
ĐŽŶǀĞƌƚĞƌϮ
džͺKhdϮ
d^>ϮϮ͗Ϭ
ďŝƚƐ
KĨĨƐĞƚĐĂůŝďƌĂƚŝŽŶ
^ĂŵƉůĞΘ,ŽůĚZĞŐŝƐƚĞƌƐ
ƵĨĨĞƌϮ
DKϮďŝƚƐ
WϭƵƐ
KŶͲĐŚŝƉ
WĞƌŝƉŚĞƌĂůƐ
s^^
06Y9
1. The output mode controller switch between the normal mode in buffer/unbuffer configuration and the
sample&hold mode
The DAC includes :
542/1693
•
Two output channels
•
The DAC_OUTx can be disconnected from output pin and used as ordinary GPIO
•
The DAC_OUTx can used internal pin connection to on-chip peripherals such as
comparators and OPAMPs.
•
DAC output channel buffered or non buffered
•
Sample and hold block and registers using LSI clock source and operational in STOP
mode for static conversion
DocID024597 Rev 3
RM0351
Digital-to-analog converter (DAC)
Table 102. DAC pins
Name
17.3.2
Signal type
Remarks
VREF+
Input, analog reference
positive
The higher/positive reference voltage for the DAC,
VDDAmin≤ VREF+ ≤ VDDA (refer to datasheet)
VDDA
Input, analog supply
Analog power supply
VSSA
Input, analog supply ground
Ground for analog power supply
DAC_OUTx
Analog output signal
DAC channelx analog output
DAC channel enable
Each DAC channel can be powered on by setting its corresponding ENx bit in the DAC_CR
register. The DAC channel is then enabled after a startup time tWAKEUP.
Note:
The ENx bit enables the analog DAC Channelx only. The DAC Channelx digital interface is
enabled even if the ENx bit is reset.
17.3.3
DAC data format
Depending on the selected configuration mode, the data have to be written into the specified
register as described below:
•
Single DAC channelx, there are three possibilities:
–
8-bit right alignment: the software has to load data into the DAC_DHR8Rx [7:0]
bits (stored into the DHRx[11:4] bits)
–
12-bit left alignment: the software has to load data into the DAC_DHR12Lx [15:4]
bits (stored into the DHRx[11:0] bits)
–
12-bit right alignment: the software has to load data into the DAC_DHR12Rx [11:0]
bits (stored into the DHRx[11:0] bits)
Depending on the loaded DAC_DHRyyyx register, the data written by the user is shifted and
stored into the corresponding DHRx (data holding registerx, which are internal non-memorymapped registers). The DHRx register is then loaded into the DORx register either
automatically, by software trigger or by an external event trigger.
DocID024597 Rev 3
543/1693
573
Digital-to-analog converter (DAC)
RM0351
Figure 130. Data registers in single DAC channel mode
31
24
15
7
0
8-bit right aligned
12-bit left aligned
12-bit right aligned
ai14710
•
Dual DAC channels, there are three possibilities:
–
8-bit right alignment: data for DAC channel1 to be loaded into the DAC_DHR8RD
[7:0] bits (stored into the DHR1[11:4] bits) and data for DAC channel2 to be loaded
into the DAC_DHR8RD [15:8] bits (stored into the DHR2[11:4] bits)
–
12-bit left alignment: data for DAC channel1 to be loaded into the DAC_DHR12LD
[15:4] bits (stored into the DHR1[11:0] bits) and data for DAC channel2 to be
loaded into the DAC_DHR12LD [31:20] bits (stored into the DHR2[11:0] bits)
–
12-bit right alignment: data for DAC channel1 to be loaded into the
DAC_DHR12RD [11:0] bits (stored into the DHR1[11:0] bits) and data for DAC
channel2 to be loaded into the DAC_DHR12RD [27:16] bits (stored into the
DHR2[11:0] bits)
Depending on the loaded DAC_DHRyyyD register, the data written by the user is shifted
and stored into DHR1 and DHR2 (data holding registers, which are internal non-memorymapped registers). The DHR1 and DHR2 registers are then loaded into the DOR1 and
DOR2 registers, respectively, either automatically, by software trigger or by an external
event trigger.
Figure 131. Data registers in dual DAC channel mode
31
24
15
7
0
8-bit right aligned
12-bit left aligned
12-bit right aligned
ai14709
17.3.4
DAC conversion
The DAC_DORx cannot be written directly and any data transfer to the DAC channelx must
be performed by loading the DAC_DHRx register (write to DAC_DHR8Rx, DAC_DHR12Lx,
DAC_DHR12Rx, DAC_DHR8RD, DAC_DHR12RD or DAC_DHR12LD).
Data stored in the DAC_DHRx register are automatically transferred to the DAC_DORx
register after one APB1 clock cycle, if no hardware trigger is selected (TENx bit in DAC_CR
register is reset). However, when a hardware trigger is selected (TENx bit in DAC_CR
register is set) and a trigger occurs, the transfer is performed three APB1 clock cycles later.
When DAC_DORx is loaded with the DAC_DHRx contents, the analog output voltage
becomes available after a time tSETTLING that depends on the power supply voltage and the
analog output load.
544/1693
DocID024597 Rev 3
RM0351
Digital-to-analog converter (DAC)
Figure 132. Timing diagram for conversion with trigger disabled TEN = 0
APB1_CLK
DHR
DOR
0x1AC
0x1AC
Output voltage
available on DAC_OUT pin
tSETTLING
ai14711b
17.3.5
DAC output voltage
Digital inputs are converted to output voltages on a linear conversion between 0 and VREF+.
The analog output voltages on each DAC channel pin are determined by the following
equation:
DOR
DACoutput = V REF × -------------4096
17.3.6
DAC trigger selection
If the TENx control bit is set, conversion can then be triggered by an external event (timer
counter, external interrupt line). The TSELx[2:0] control bits determine which out of 8 possible events will trigger conversion as shown in bits TSEL1[2:0] and TSEL2[2:0] in
Section 17.5.1: DAC control register (DAC_CR).
Each time a DAC interface detects a rising edge on the selected timer TRGO output, or on
the selected external interrupt line 9, the last data stored into the DAC_DHRx register are
transferred into the DAC_DORx register. The DAC_DORx register is updated three APB1
cycles after the trigger occurs.
If the software trigger is selected, the conversion starts once the SWTRIG bit is set.
SWTRIG is reset by hardware once the DAC_DORx register has been loaded with the
DAC_DHRx register contents.
Note:
17.3.7
1
TSELx[2:0] bit cannot be changed when the ENx bit is set.
2
When software trigger is selected, the transfer from the DAC_DHRx register to the
DAC_DORx register takes only one APB clock cycle.
DMA request
Each DAC channel has a DMA capability. Two DMA channels are used to service DAC
channel DMA requests.
A DAC DMA request is generated when an external trigger (but not a software trigger)
occurs while the DMAENx bit is set. The value of the DAC_DHRx register is then transferred
into the DAC_DORx register.
In dual mode, if both DMAENx bits are set, two DMA requests are generated. If only one
DMA request is needed, you should set only the corresponding DMAENx bit. In this way, the
application can manage both DAC channels in dual mode by using one DMA request and a
unique DMA channel.
DocID024597 Rev 3
545/1693
573
Digital-to-analog converter (DAC)
RM0351
DMA underrun
The DAC DMA request is not queued so that if a second external trigger arrives before the
acknowledgement for the first external trigger is received (first request), then no new
request is issued and the DMA channelx underrun flag DMAUDRx in the DAC_SR register
is set, reporting the error condition. The DAC channelx continues to convert old data.
The software should clear the DMAUDRx flag by writing “1”, clear the DMAEN bit of the
used DMA stream and re-initialize both DMA and DAC channelx to restart the transfer
correctly. The software should modify the DAC trigger conversion frequency or lighten the
DMA workload to avoid a new DMA underrun. Finally, the DAC conversion could be
resumed by enabling both DMA data transfer and conversion trigger.
For each DAC channlex, an interrupt is also generated if its corresponding DMAUDRIEx bit
in the DAC_CR register is enabled.
17.3.8
Noise generation
In order to generate a variable-amplitude pseudonoise, an LFSR (linear feedback shift
register) is available. DAC noise generation is selected by setting WAVEx[1:0] to “01”. The
preloaded value in LFSR is 0xAAA. This register is updated three APB1 clock cycles after
each trigger event, following a specific calculation algorithm.
Figure 133. DAC LFSR register calculation algorithm
XOR
X6
X
X4
X0
X
12
11
10
9
8
7
6
5
4
3
2
1
0
12
NOR
ai14713b
The LFSR value, that may be masked partially or totally by means of the MAMPx[3:0] bits in
the DAC_CR register, is added up to the DAC_DHRx contents without overflow and this
value is then stored into the DAC_DORx register.
If LFSR is 0x0000, a ‘1 is injected into it (antilock-up mechanism).
It is possible to reset LFSR wave generation by resetting the WAVEx[1:0] bits.
546/1693
DocID024597 Rev 3
RM0351
Digital-to-analog converter (DAC)
Figure 134. DAC conversion (SW trigger enabled) with LFSR wave generation
APB1_CLK
DHR
0x00
0xD55
0xAAA
DOR
SWTRIG
ai14714
Note:
The DAC trigger must be enabled for noise generation by setting the TENx bit in the
DAC_CR register.
17.3.9
Triangle-wave generation
It is possible to add a small-amplitude triangular waveform on a DC or slowly varying signal.
DAC triangle-wave generation is selected by setting WAVEx[1:0] to “10”. The amplitude is
configured through the MAMPx[3:0] bits in the DAC_CR register. An internal triangle counter
is incremented three APB1 clock cycles after each trigger event. The value of this counter is
then added to the DAC_DHRx register without overflow and the sum is stored into the
DAC_DORx register. The triangle counter is incremented as long as it is less than the
maximum amplitude defined by the MAMPx[3:0] bits. Once the configured amplitude is
reached, the counter is decremented down to 0, then incremented again and so on.
It is possible to reset triangle wave generation by resetting the WAVEx[1:0] bits.
Figure 135. DAC triangle wave generation
N
TIO
TA
EN
EM
CR
)N
N
TIO
TA
EN
EM
CR
$E
-!-0X;= MAX AMPLITUDE
$!#?$(2X BASE VALUE
$!#?$(2X BASE VALUE
AIC
DocID024597 Rev 3
547/1693
573
Digital-to-analog converter (DAC)
RM0351
Figure 136. DAC conversion (SW trigger enabled) with triangle wave generation
APB1_CLK
DHR
0xABE
0xABE
DOR
0xABF
0xAC0
SWTRIG
ai14714
Note:
1
The DAC trigger must be enabled for noise generation by setting the TENx bit in the
DAC_CR register.
2
The MAMPx[3:0] bits must be configured before enabling the DAC, otherwise they cannot
be changed.
17.3.10
DAC channel modes
Each DAC channel can be configured in normal mode or sample and hold mode. The output
buffer can be enabled to allow a high drive capability. Before enabling output buffer, the
voltage offset needs to be calibrated. This calibration is performed at the factory (loaded
after reset) and can be adjusted by software during application operation.
Normal Mode
In normal mode, there are four combinations, by changing the buffer state and by changing
the DAC_OUTx pin interconnections.
To enable the output buffer, the MODEx[2:0] bits in DAC_MCR register should be:
–
000: DAC is connected to the external pin
–
001: DAC is connected to external pin and to on-chip peripherals
To disable the output buffer, the MODEx[2:0] bits in DAC_MCR register should be:
–
010: DAC is connected to the external pin
–
011: DAC is connected to on-chip peripherals
Sample and Hold Mode
In sample and Hold mode, the DAC core converts data on a triggered conversion, then,
holds the converted voltage on a capacitor. When not converting, the DAC cores and buffer
are completely turned off between samples and the DAC output is tri-stated, therefore
reducing the overall power consumption. A new stabilization period (Tstab-BON or Tstab-BOFF
depending on buffer state) is needed before each new conversion.
In this mode, the DAC core and all corresponding logic and registers are driven by the lowspeed clock (LSI : Low Speed Internal oscillator) in addition to the APB bus clock, allowing
to use the DAC channels in deep Low power modes such as STOP mode.
548/1693
DocID024597 Rev 3
RM0351
Digital-to-analog converter (DAC)
The sample/hold mode operations can be divided into 3 phases:
1.
Sample phase: the sample/hold element is charged to the desired voltage. The
charging time depends on capacitor value (internal or external, selected by the user).
The sampling time is configured with the TSAMx[9:0] bits in DAC_SHSRx register.
During the write of the TSAMx[9:0] bits; the BWSTx bit in DAC_SR register is set to 1 to
synchronize between both clocks domains (APB and low speed clock) and allowing the
software to change the value of sample phase during the DAC channel operation
2.
Hold phase: the DAC output channel is tri-stated, the DAC core and the buffer are
turned off, to reduce the current consumption. The hold time is configured with the
THOLDx[9:0] bits in DAC_SHHR register
3.
Refresh phase: the refresh time is configured with the TREFx[7:0] bits in DAC_SHRR
register
The timings for the three phases above are in units of LSI clocks. As example, to configure
a Sample time of 350µs, Hold time of 2ms and Refresh time of 100µs assuming LSI ~32KHz
is selected:
12 cycles are required for sample phase: SAMx[9:0] = 11, 62 cycles are required for hold
phase: THOLDx[9:0] = 62, and 4 cycles are required for refresh period: TREFx[7:0] = 4.
In this example, the power consumption is reduced by almost a factor of 15 versus Normal
modes.
The Formulas to compute the right sample and refresh timings are described in the table
below, the Hold time depends on the leakage current.
Table 103. Sample and refresh timings
Note:
Buffer
State
tsampling (1)(3)
trefresh (2)(3)
Enable
Tstab-BON + (10*RBON*Cload)
Tstab-BON + (RBON*Cload)*ln(2*Nlsb)
Disable
Tstab-BOFF + ( 10*RBOFF*Cload)
Tstab-BOFF + (RBOFF*Cload)*ln(2*Nlsb)
1
In the above formula the settling to the desired code value with ½ LSB or accuracy requires
10 constant time for 12 bits resolution. For 8 bits resolution, the settling time is 7 constant
time.
2
The tolerated voltage drop during the hold phase “Vd” is represented by the number of LSBs
after the capacitor discharging with the output leakage current. The settling back to the
desired value with ½ LSB error accuracy requires ln(2*Nlsb) constant time of the DAC.
3
The parameters “Tstab-BON“,“Tstab-BON“, “RBON” and “RBOFF” are specified in the datasheet
Example of the sample and refresh time calculation with output buffer on
Note:
The values used in the example below are provided as indication only. Please refer to the
product datasheet for product data.
Cload = 100 nF
VDDA = 3.0 V
Sampling phase:
tsampling = 7 μs + (10 * 2000 * 100 * 10-9) = 2.007 ms
(where Tstab-BON = 7 μs, RBON = 2 kΩ)
DocID024597 Rev 3
549/1693
573
Digital-to-analog converter (DAC)
RM0351
Refresh phase:
trefresh = 7 μs + (2000 * 100 * 10-9) * ln(2*10) = 606.1 μs
(where Nlsb = 10 (10 LSB drop during the hold phase)
Hold phase:
Dv = ileak * thold / Cload = 0.0073 V (10 LSB of 12bit at 3 V)
ileak = 150 nA (worst case on the IO leakage on all the temperature range)
thold = 0.0073 * 100 * 10-9 / (150 * 10-9) = 4.867 ms
Figure 137. DAC sample and hold mode phases diagram
Vd
LSI
DAC
ON
ON
ON
Like in normal mode, the sample and hold mode has different configurations.
To enable the output buffer, the MODEx[2:0] bits in DAC_MCR register should be:
–
100: DAC is connected to the external pin
–
101: DAC is connected to external pin and to on chip peripherals
To disabled the output buffer, The MODEx[2:0] bits in DAC_MCR register should be:
–
110: DAC is connected to external pin and to on chip peripherals
–
111: DAC is connected to on chip peripherals
When MODEx[2:0] bits in DAC_MCR register is equal to 111. An internal capacitor “Cloadint“
will hold the voltage output of the DAC Core and then drive it to on-chip peripherals.
All sample and hold phases are interruptible and any change in DAC_DHRx will trigger
immediately a new sample phase.
550/1693
DocID024597 Rev 3
RM0351
Digital-to-analog converter (DAC)
Table 104. Channel output modes summary
MODEx[2:0]
0
0
0
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
17.3.11
Mode
Buffer
Enabled
Normal mode
Disabled
Enabled
Sample & hold
mode
Disabled
Output connections
Connected to external pin
Connected to external pin and to on chip-peripherals (ex, comparators)
Connected to external pin
Connected to on chip peripherals (ex, comparators)
Connected to external pin
Connected to external pin and to on chip peripherals (ex, comparators)
Connected to external pin and to on chip peripherals (ex, comparators)
Connected to on chip peripherals (ex, comparators)
DAC channel buffer calibration
The transfer function for an N-bit digital-to-analog converter (DAC) is
V out = ( ( D ⁄ 2 N – 1 ) × G × V ref ) + V OS
Where Vout is the analog output, D is the digital input, G is the gain, Vref is the nominal fullscale voltage, and Vos is the offset voltage.For an ideal DAC channel, G = 1 and Vos = 0.
Due to output buffer characteristics, the voltage offset may differ from part-to-part and
introduce an absolute offset error on the analog output. To compensate the Vos, a calibration
is required by a trimming technique.
The calibration is only valid when the DAC channelx is operating with buffer enabled
(MODEx[2:0] = 000b or 001b or 100b or 101b). if applied in other modes when the buffer is
off, it has no effect. During the calibration:
•
The buffer output will be disconnected from the pin internal/external connections and
put in tristate mode (HiZ),
•
The buffer will act as a comparator, to sense the middle-code value 0x800 and
compare it to VREF+/2 signal thru an internal bridge, then toggle its output signal to 0
or 1 depending on the comparison result (CAL_FLAGx bit)
Two calibration techniques are provided:
•
Factory trimming (always enabled)
The DAC buffer offset is factory trimmed. The default value of OTRIMx[4:0] bits in
DAC_CCR register is the factory trimming value and it is loaded once DAC digital interface
is reset.
•
User trimming
The user trimming can be done when the operating conditions differs from nominal factory
trimming conditions and in particular when VDD/VDDA voltage, temperature, VREF+ values
change and can be done at any point during application by software.
DocID024597 Rev 3
551/1693
573
Digital-to-analog converter (DAC)
RM0351
Note:
Refer to the datasheet for more details of the Nominal factory trimming conditions
Note:
Also, when VDD/VDDA is removed (exemple the MCU enters in STANDBY or VBAT modes)
the calibration is required.
552/1693
DocID024597 Rev 3
RM0351
Digital-to-analog converter (DAC)
The steps to perform a user trimming calibration are as below:
1.
If the DAC channel is active, Write 0 to ENx bit in DAC_CR to disable the channel.
2.
Select a mode where the buffer is enabled, by writing to DACx_MCR register,
MODEx[2:0] = 000b or 001b or 100b or 101b,
3.
Write DACx_DHR12Rx[11:0] with the middle code: 0x800 value,
4.
Start the DAC channelx calibration, by setting the CENx bit in DACx_CR register to 1,
5.
Apply a trimming algorithm:
a)
Write a code into OTRIMx[4:0] bits, starting by 00000b
b)
Wait for tOFFTRIMmax delay
c)
Check if CAL_FLAGx bit in DACx_SR is set to 1
d)
if CAL_FLAGx is set to 1 the trimming code OTRIMx[4:0] is found and will be used
during operation to compensate the output value, else increment OTRIMx[4:0] and
repeat sub-steps from (a) to (d) again.
The software algorithm may use either a successive approximation or dichotomy techniques
to compute and set the content of OTRIMx[4:0] bits in a faster way,
The commutation/toggle of CAL_FLAGx bit indicates that the offset is correctly
compensated and the corresponding trim code must be kept in the OTRIMx[4:0] bits in
DAC_CCR register.
Note:
1
A tOFFTRIMmax delay must be respected between the write to the OTRIMx[4:0] bits and
the read of the CAL_FLAGx bit in DAC_SR register in order to get a correct value.This
parameter is specified into datasheet electrical characteristics section.
2
If the VDD/VDDA, VREF+ and temperature conditions will not change during the MCU
operation while it enters more often in standby and VBAT mode, the software may store the
OTRIMx[4:0] bits found in the first user calibration in the flash or in back-up registers. then to
load/write them directly when the MCU power is back again thus avoiding to wait for a new
calibration time.
17.3.12
Dual DAC channel conversion
To efficiently use the bus bandwidth in applications that require the two DAC channels at the
same time, three dual registers are implemented: DHR8RD, DHR12RD and DHR12LD. A
unique register access is then required to drive both DAC channels at the same time.
Eleven possible conversion modes are possible using the two DAC channels and these dual
registers. All the conversion modes can nevertheless be obtained using separate DHRx
registers if needed.
All modes are described in the paragraphs below.
Independent trigger without wave generation
To configure the DAC in this conversion mode, the following sequence is required:
•
Set the two DAC channel trigger enable bits TEN1 and TEN2
•
Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits
•
Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)
DocID024597 Rev 3
553/1693
573
Digital-to-analog converter (DAC)
RM0351
When a DAC channel1 trigger arrives, the DHR1 register is transferred into DAC_DOR1
(three APB1 clock cycles later).
When a DAC channel2 trigger arrives, the DHR2 register is transferred into DAC_DOR2
(three APB1 clock cycles later).
Independent trigger with single LFSR generation
To configure the DAC in this conversion mode, the following sequence is required:
•
Set the two DAC channel trigger enable bits TEN1 and TEN2
•
Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits
•
Configure the two DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask
value in the MAMPx[3:0] bits
•
Load the dual DAC channel data into the desired DHR register (DHR12RD, DHR12LD
or DHR8RD)
When a DAC channel1 trigger arrives, the LFSR1 counter, with the same mask, is added to
the DHR1 register and the sum is transferred into DAC_DOR1 (three APB clock cycles
later). Then the LFSR1 counter is updated.
When a DAC channel2 trigger arrives, the LFSR2 counter, with the same mask, is added to
the DHR2 register and the sum is transferred into DAC_DOR2 (three APB clock cycles
later). Then the LFSR2 counter is updated.
Independent trigger with different LFSR generation
To configure the DAC in this conversion mode, the following sequence is required:
•
Set the two DAC channel trigger enable bits TEN1 and TEN2
•
Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits
•
Configure the two DAC channel WAVEx[1:0] bits as “01” and set different LFSR masks
values in the MAMP1[3:0] and MAMP2[3:0] bits
•
Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)
When a DAC channel1 trigger arrives, the LFSR1 counter, with the mask configured by
MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1
(three APB clock cycles later). Then the LFSR1 counter is updated.
When a DAC channel2 trigger arrives, the LFSR2 counter, with the mask configured by
MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2
(three APB clock cycles later). Then the LFSR2 counter is updated.
554/1693
DocID024597 Rev 3
RM0351
Digital-to-analog converter (DAC)
Independent trigger with single triangle generation
To configure the DAC in this conversion mode, the following sequence is required:
•
Set the two DAC channel trigger enable bits TEN1 and TEN2
•
Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits
•
Configure the two DAC channel WAVEx[1:0] bits as “1x” and the same maximum
amplitude value in the MAMPx[3:0] bits
•
Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)
When a DAC channel1 trigger arrives, the DAC channel1 triangle counter, with the same
triangle amplitude, is added to the DHR1 register and the sum is transferred into
DAC_DOR1 (three APB1 clock cycles later). The DAC channel1 triangle counter is then
updated.
When a DAC channel2 trigger arrives, the DAC channel2 triangle counter, with the same
triangle amplitude, is added to the DHR2 register and the sum is transferred into
DAC_DOR2 (three APB1 clock cycles later). The DAC channel2 triangle counter is then
updated.
Independent trigger with different triangle generation
To configure the DAC in this conversion mode, the following sequence is required:
•
Set the two DAC channel trigger enable bits TEN1 and TEN2
•
Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits
•
Configure the two DAC channel WAVEx[1:0] bits as “1x” and set different maximum
amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits
•
Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)
When a DAC channel1 trigger arrives, the DAC channel1 triangle counter, with a triangle
amplitude configured by MAMP1[3:0], is added to the DHR1 register and the sum is
transferred into DAC_DOR1 (three APB1 clock cycles later). The DAC channel1 triangle
counter is then updated.
When a DAC channel2 trigger arrives, the DAC channel2 triangle counter, with a triangle
amplitude configured by MAMP2[3:0], is added to the DHR2 register and the sum is
transferred into DAC_DOR2 (three APB1 clock cycles later). The DAC channel2 triangle
counter is then updated.
Simultaneous software start
To configure the DAC in this conversion mode, the following sequence is required:
•
Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)
In this configuration, one APB1 clock cycle later, the DHR1 and DHR2 registers are
transferred into DAC_DOR1 and DAC_DOR2, respectively.
DocID024597 Rev 3
555/1693
573
Digital-to-analog converter (DAC)
RM0351
Simultaneous trigger without wave generation
To configure the DAC in this conversion mode, the following sequence is required:
•
Set the two DAC channel trigger enable bits TEN1 and TEN2
•
Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits
•
Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)
When a trigger arrives, the DHR1 and DHR2 registers are transferred into DAC_DOR1 and
DAC_DOR2, respectively (after three APB1 clock cycles).
Simultaneous trigger with single LFSR generation
To configure the DAC in this conversion mode, the following sequence is required:
•
Set the two DAC channel trigger enable bits TEN1 and TEN2
•
Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits
•
Configure the two DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask
value in the MAMPx[3:0] bits
•
Load the dual DAC channel data to the desired DHR register (DHR12RD, DHR12LD or
DHR8RD)
When a trigger arrives, the LFSR1 counter, with the same mask, is added to the DHR1
register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The
LFSR1 counter is then updated. At the same time, the LFSR2 counter, with the same mask,
is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1
clock cycles later). The LFSR2 counter is then updated.
Simultaneous trigger with different LFSR generation
To configure the DAC in this conversion mode, the following sequence is required:
•
Set the two DAC channel trigger enable bits TEN1 and TEN2
•
Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits
•
Configure the two DAC channel WAVEx[1:0] bits as “01” and set different LFSR mask
values using the MAMP1[3:0] and MAMP2[3:0] bits
•
Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)
When a trigger arrives, the LFSR1 counter, with the mask configured by MAMP1[3:0], is
added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock
cycles later). The LFSR1 counter is then updated.
At the same time, the LFSR2 counter, with the mask configured by MAMP2[3:0], is added to
the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles
later). The LFSR2 counter is then updated.
556/1693
DocID024597 Rev 3
RM0351
Digital-to-analog converter (DAC)
Simultaneous trigger with single triangle generation
To configure the DAC in this conversion mode, the following sequence is required:
•
Set the two DAC channel trigger enable bits TEN1 and TEN2
•
Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits
•
Configure the two DAC channel WAVEx[1:0] bits as “1x” and the same maximum
amplitude value using the MAMPx[3:0] bits
•
Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)
When a trigger arrives, the DAC channel1 triangle counter, with the same triangle
amplitude, is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three
APB1 clock cycles later). The DAC channel1 triangle counter is then updated.
At the same time, the DAC channel2 triangle counter, with the same triangle amplitude, is
added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock
cycles later). The DAC channel2 triangle counter is then updated.
17.3.13
Simultaneous trigger with different triangle generation
To configure the DAC in this conversion mode, the following sequence is required:
•
Set the two DAC channel trigger enable bits TEN1 and TEN2
•
Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits
•
Configure the two DAC channel WAVEx[1:0] bits as “1x” and set different maximum
amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits
•
Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)
When a trigger arrives, the DAC channel1 triangle counter, with a triangle amplitude
configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into
DAC_DOR1 (three APB clock cycles later). Then the DAC channel1 triangle counter is
updated.
At the same time, the DAC channel2 triangle counter, with a triangle amplitude configured
by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2
(three APB1 clock cycles later). Then the DAC channel2 triangle counter is updated.
17.4
DAC low power modes
Table 105. Effect of low-power modes on DAC
Mode
Description
Sleep
No effect, DAC used with DMA
Low-power run
No effect.
Low-power sleep
No effect. DAC used with DMA.
Stop 0 / Stop 1
DAC remains active with a static value, if sample and hold mode is
selected using LSI clock
Stop 2
The DAC registers content is kept. The DAC must be disabled before
entering Stop 2.
DocID024597 Rev 3
557/1693
573
Digital-to-analog converter (DAC)
RM0351
Table 105. Effect of low-power modes on DAC (continued)
Mode
Standby
Shutdown
558/1693
Description
The DAC peripheral is powered down and must be reinitialized after exiting
Standby or Shutdown mode.
DocID024597 Rev 3
RM0351
Digital-to-analog converter (DAC)
17.5
DAC registers
Refer to Section 1 on page 61 for a list of abbreviations used in register descriptions.
The peripheral registers have to be accessed by words (32-bit).
17.5.1
DAC control register (DAC_CR)
Address offset: 0x00
Reset value: 0x0000 0000
31
30
29
28
Res.
CEN2
DMAU
DRIE2
DMA
EN2
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
CEN1
DMAU
DRIE1
DMA
EN1
TEN1
Res.
EN1
rw
rw
rw
Res.
27
26
25
24
MAMP2[3:0]
rw
rw
22
21
WAVE2[1:0]
MAMP1[3:0]
rw
23
rw
rw
19
TSEL2[2:0]
WAVE1[1:0]
rw
20
TSEL1[2:0]
rw
rw
rw
18
17
16
TEN2
Res.
EN2
rw
rw
rw
Bit 31 Reserved, must be kept at reset value
Bit 30 CEN2: DAC Channel 2 calibration enable
This bit is set and cleared by software to enable/disable DAC channel 2 calibration, it can be
written only if bit EN2=0 into DAC_CR (the calibration mode can be entered/exit only when
the DAC channel is disabled) Otherwise, the write operation is ignored.
0: DAC channel 2 in normal operating mode
1: DAC channel 2 in calibration mode
Bit 29 DMAUDRIE2: DAC channel2 DMA underrun interrupt enable
This bit is set and cleared by software.
0: DAC channel2 DMA underrun interrupt disabled
1: DAC channel2 DMA underrun interrupt enabled
Bit 28 DMAEN2: DAC channel2 DMA enable
This bit is set and cleared by software.
0: DAC channel2 DMA mode disabled
1: DAC channel2 DMA mode enabled
Bits 27:24 MAMP2[3:0]: DAC channel2 mask/amplitude selector
These bits are written by software to select mask in wave generation mode or amplitude in
triangle generation mode.
0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1
0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3
0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7
0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15
0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31
0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63
0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127
0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255
1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511
1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023
1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047
≥ 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095
DocID024597 Rev 3
559/1693
573
Digital-to-analog converter (DAC)
RM0351
Bits 23:22 WAVE2[1:0]: DAC channel2 noise/triangle wave generation enable
These bits are set/reset by software.
00: wave generation disabled
01: Noise wave generation enabled
1x: Triangle wave generation enabled
Note: Only used if bit TEN2 = 1 (DAC channel2 trigger enabled)
Bits 21:19 TSEL2[2:0]: DAC channel2 trigger selection
These bits select the external event used to trigger DAC channel2
000: Timer 6 TRGO event
001: Timer 8 TRGO event
010: Timer 7 TRGO event
011: Timer 5 TRGO event
100: Timer 2 TRGO event
101: Timer 4 TRGO event
110: External line9
111: Software trigger
Note: Only used if bit TEN2 = 1 (DAC channel2 trigger enabled).
Bit 18 TEN2: DAC channel2 trigger enable
This bit is set and cleared by software to enable/disable DAC channel2 trigger
0: DAC channel2 trigger disabled and data written into the DAC_DHRx register are
transferred one APB1 clock cycle later to the DAC_DOR2 register
1: DAC channel2 trigger enabled and data from the DAC_DHRx register are transferred
three APB1 clock cycles later to the DAC_DOR2 register
Note: When software trigger is selected, the transfer from the DAC_DHRx register to the
DAC_DOR2 register takes only one APB1 clock cycle.
Bit 17 Reserved, must be kept at reset value.
Bit 16 EN2: DAC channel2 enable
This bit is set and cleared by software to enable/disable DAC channel2.
0: DAC channel2 disabled
1: DAC channel2 enabled
Bit 15 Reserved, must be kept at reset value.
Bit 14 CEN1: DAC Channel 1 calibration enable
This bit is set and cleared by software to enable/disable DAC channel 1 calibration, it can be
written only if bit EN1=0 into DAC_CR (the calibration mode can be entered/exit only when
the DAC channel is disabled) Otherwise, the write operation is ignored.
0: DAC channel 1 in normal operating mode
1: DAC channel 1 in calibration mode
Bit 13 DMAUDRIE1: DAC channel1 DMA Underrun Interrupt enable
This bit is set and cleared by software.
0: DAC channel1 DMA Underrun Interrupt disabled
1: DAC channel1 DMA Underrun Interrupt enabled
Bit 12 DMAEN1: DAC channel1 DMA enable
This bit is set and cleared by software.
0: DAC channel1 DMA mode disabled
1: DAC channel1 DMA mode enabled
560/1693
DocID024597 Rev 3
RM0351
Digital-to-analog converter (DAC)
Bits 11:8 MAMP1[3:0]: DAC channel1 mask/amplitude selector
These bits are written by software to select mask in wave generation mode or amplitude in
triangle generation mode.
0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1
0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3
0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7
0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15
0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31
0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63
0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127
0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255
1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511
1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023
1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047
≥ 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095
Bits 7:6 WAVE1[1:0]: DAC channel1 noise/triangle wave generation enable
These bits are set and cleared by software.
00: wave generation disabled
01: Noise wave generation enabled
1x: Triangle wave generation enabled
Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled).
Bits 5:3 TSEL1[2:0]: DAC channel1 trigger selection
These bits select the external event used to trigger DAC channel1.
000: Timer 6 TRGO event
001: Timer 8 TRGO event
010: Timer 7 TRGO event
011: Timer 5 TRGO event
100: Timer 2 TRGO event
101: Timer 4 TRGO event
110: External line9
111: Software trigger
Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled).
Bit 2 TEN1: DAC channel1 trigger enable
This bit is set and cleared by software to enable/disable DAC channel1 trigger.
0: DAC channel1 trigger disabled and data written into the DAC_DHRx register are
transferred one APB1 clock cycle later to the DAC_DOR1 register
1: DAC channel1 trigger enabled and data from the DAC_DHRx register are transferred
three APB1 clock cycles later to the DAC_DOR1 register
Note: When software trigger is selected, the transfer from the DAC_DHRx register to the
DAC_DOR1 register takes only one APB1 clock cycle.
Bit 1 Reserved, must be kept at reset value.
Bit 0 EN1: DAC channel1 enable
This bit is set and cleared by software to enable/disable DAC channel1.
0: DAC channel1 disabled
1: DAC channel1 enabled
DocID024597 Rev 3
561/1693
573
Digital-to-analog converter (DAC)
17.5.2
RM0351
DAC software trigger register (DAC_SWTRGR)
Address offset: 0x04
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
1
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SWTRIG2 SWTRIG1
w
w
Bits 31:2 Reserved, must be kept at reset value.
Bit 1 SWTRIG2: DAC channel2 software trigger
This bit is set by software to trigger the DAC in software trigger mode.
0: No trigger
1: Trigger
Note: This bit is cleared by hardware (one APB1 clock cycle later) once the DAC_DHR2
register value has been loaded into the DAC_DOR2 register.
Bit 0 SWTRIG1: DAC channel1 software trigger
This bit is set by software to trigger the DAC in software trigger mode.
0: No trigger
1: Trigger
Note: This bit is cleared by hardware (one APB1 clock cycle later) once the DAC_DHR1
register value has been loaded into the DAC_DOR1 register.
17.5.3
DAC channel1 12-bit right-aligned data holding register
(DAC_DHR12R1)
Address offset: 0x08
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
15
14
13
12
Res.
Res.
Res.
Res.
DACC1DHR[11:0]
rw
rw
rw
rw
rw
rw
rw
Bits 31:12 Reserved, must be kept at reset value.
Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data
These bits are written by software which specifies 12-bit data for DAC channel1.
17.5.4
DAC channel1 12-bit left aligned data holding register
(DAC_DHR12L1)
Address offset: 0x0C
Reset value: 0x0000 0000
562/1693
DocID024597 Rev 3
RM0351
Digital-to-analog converter (DAC)
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
DACC1DHR[11:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
3
2
1
0
Res.
Res.
Res.
Res.
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data
These bits are written by software which specifies 12-bit data for DAC channel1.
Bits 3:0 Reserved, must be kept at reset value.
17.5.5
DAC channel1 8-bit right aligned data holding register
(DAC_DHR8R1)
Address offset: 0x10
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
rw
rw
rw
rw
rw
DACC1DHR[7:0]
rw
rw
Bits 31:8 Reserved, must be kept at reset value.
Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data
These bits are written by software which specifies 8-bit data for DAC channel1.
17.5.6
DAC channel2 12-bit right aligned data holding register
(DAC_DHR12R2)
Address offset: 0x14
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
DACC2DHR[11:0]
rw
rw
Bits 31:12 Reserved, must be kept at reset value.
Bits 11:0 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data
These bits are written by software which specifies 12-bit data for DAC channel2.
DocID024597 Rev 3
563/1693
573
Digital-to-analog converter (DAC)
17.5.7
RM0351
DAC channel2 12-bit left aligned data holding register
(DAC_DHR12L2)
Address offset: 0x18
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
DACC2DHR[11:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
3
2
1
0
Res.
Res.
Res.
Res.
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:4 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data
These bits are written by software which specify 12-bit data for DAC channel2.
Bits 3:0 Reserved, must be kept at reset value.
17.5.8
DAC channel2 8-bit right-aligned data holding register
(DAC_DHR8R2)
Address offset: 0x1C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
7
6
5
4
3
2
1
0
rw
rw
rw
15
14
13
12
11
10
9
8
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DACC2DHR[7:0]
rw
rw
rw
rw
rw
Bits 31:8 Reserved, must be kept at reset value.
Bits 7:0 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data
These bits are written by software which specifies 8-bit data for DAC channel2.
17.5.9
Dual DAC 12-bit right-aligned data holding register
(DAC_DHR12RD)
Address offset: 0x20
Reset value: 0x0000 0000
31
30
29
28
Res.
Res.
Res.
Res.
15
14
13
12
Res.
Res.
Res.
Res.
27
26
25
24
23
rw
rw
rw
rw
rw
rw
11
10
9
8
7
6
21
20
19
18
17
16
rw
rw
rw
rw
rw
rw
5
4
3
2
1
0
rw
rw
rw
rw
rw
DACC2DHR[11:0]
DACC1DHR[11:0]
rw
564/1693
22
rw
rw
rw
rw
rw
DocID024597 Rev 3
rw
RM0351
Digital-to-analog converter (DAC)
Bits 31:28 Reserved, must be kept at reset value.
Bits 27:16 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data
These bits are written by software which specifies 12-bit data for DAC channel2.
Bits 15:12 Reserved, must be kept at reset value.
Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data
These bits are written by software which specifies 12-bit data for DAC channel1.
17.5.10
DUAL DAC 12-bit left aligned data holding register
(DAC_DHR12LD)
Address offset: 0x24
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
DACC2DHR[11:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
DACC1DHR[11:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
19
18
17
16
Res.
Res.
Res.
Res.
3
2
1
0
Res.
Res.
Res.
Res.
rw
Bits 31:20 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data
These bits are written by software which specifies 12-bit data for DAC channel2.
Bits 19:16 Reserved, must be kept at reset value.
Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data
These bits are written by software which specifies 12-bit data for DAC channel1.
Bits 3:0 Reserved, must be kept at reset value.
DocID024597 Rev 3
565/1693
573
Digital-to-analog converter (DAC)
17.5.11
RM0351
DUAL DAC 8-bit right aligned data holding register
(DAC_DHR8RD)
Address offset: 0x28
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
DACC2DHR[7:0]
rw
rw
rw
rw
DACC1DHR[7:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:8 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data
These bits are written by software which specifies 8-bit data for DAC channel2.
Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data
These bits are written by software which specifies 8-bit data for DAC channel1.
17.5.12
DAC channel1 data output register (DAC_DOR1)
Address offset: 0x2C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
15
14
13
12
Res.
Res.
Res.
Res.
DACC1DOR[11:0]
r
r
r
r
r
r
r
Bits 31:12 Reserved, must be kept at reset value.
Bits 11:0 DACC1DOR[11:0]: DAC channel1 data output
These bits are read-only, they contain data output for DAC channel1.
17.5.13
DAC channel2 data output register (DAC_DOR2)
Address offset: 0x30
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
15
14
13
12
Res.
Res.
Res.
Res.
DACC2DOR[11:0]
r
566/1693
r
r
r
r
DocID024597 Rev 3
r
r
RM0351
Digital-to-analog converter (DAC)
Bits 31:12 Reserved, must be kept at reset value.
Bits 11:0 DACC2DOR[11:0]: DAC channel2 data output
These bits are read-only, they contain data output for DAC channel2.
17.5.14
DAC status register (DAC_SR)
Address offset: 0x34
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
BWST2
CAL_
FLAG2
DMAU
DR2
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
r
r
rc_w1
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
DMAU
DR1
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
CAL_
BWST1
FLAG1
r
r
rc_w1
Bit 31 BWST2: DAC Channel 2 busy writing sample time flag
This bit is systematically set just after Sample & Hold mode enable and is set each time the
software writes the register DAC_SHSR2 , It is cleared by hardware when the write operation
of DAC_SHSR2 is complete. ( It takes about 3 LSI periods of synchronization).
0:There is no write operation of DAC_SHSR2 ongoing : DAC_SHSR2 can be written
1:There is a write operation of DAC_SHSR2 ongoing : DAC_SHSR2 cannot be written
Bit 30 CAL_FLAG2: DAC Channel 2 calibration offset status
This bit is set and cleared by hardware
0: calibration trimming value is greater than the offset correction value
1: calibration trimming value is lower than the offset correction value
Bit 29 DMAUDR2: DAC channel2 DMA underrun flag
This bit is set by hardware and cleared by software (by writing it to 1).
0: No DMA underrun error condition occurred for DAC channel2
1: DMA underrun error condition occurred for DAC channel2 (the currently selected trigger is
driving DAC channel2 conversion at a frequency higher than the DMA service capability rate)
Bits 28:16 Reserved, must be kept at reset value.
Bit 15 BWST1: DAC Channel 1 busy writing sample time flag
This bit is systematically set just after Sample & Hold mode enable and is set each time the
software writes the register DAC_SHSR1 , It is cleared by hardware when the write operation
of DAC_SHSR1 is complete. ( It takes about 3LSI periods of synchronization).
0:There is no write operation of DAC_SHSR1 ongoing : DAC_SHSR1 can be written
1:There is a write operation of DAC_SHSR1 ongoing : DAC_SHSR1 cannot be written
DocID024597 Rev 3
567/1693
573
Digital-to-analog converter (DAC)
RM0351
Bit 14 CAL_FLAG1: DAC Channel 1 calibration offset status
This bit is set and cleared by hardware
0: calibration trimming value is greater than the offset correction value
1: calibration trimming value is lower than the offset correction value
Bit 13 DMAUDR1: DAC channel1 DMA underrun flag
This bit is set by hardware and cleared by software (by writing it to 1).
0: No DMA underrun error condition occurred for DAC channel1
1: DMA underrun error condition occurred for DAC channel1 (the currently selected trigger is
driving DAC channel1 conversion at a frequency higher than the DMA service capability rate)
Bits 12:0 Reserved, must be kept at reset value.
17.5.15
DAC calibration control register (DAC_CCR)
Address offset: 0x38
Reset value: 0x00XX 00XX
31
30
29
28
27
26
25
24
23
22
21
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
20
19
18
17
16
1
0
17
16
OTRIM2[4:0]
rw
4
3
2
OTRIM1[4:0]
rw
Bits 31:21 Reserved, must be kept at reset value.
Bits 20:16 OTRIM2[4:0]: DAC Channel 2 offset trimming value
Bits 15:5 Reserved, must be kept at reset value.
Bits 4:0 OTRIM1[4:0]: DAC Channel 1 offset trimming value
17.5.16
DAC mode control register (DAC_MCR)
Address offset: 0x3C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
18
MODE2[2:0]
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
2
1
MODE1[2:0]
rw
568/1693
DocID024597 Rev 3
0
RM0351
Digital-to-analog converter (DAC)
Bits 31:19 Reserved, must be kept at reset value.
Bits 18:16 MODE2[2:0]: DAC Channel 2 mode
These bits can be written only when the DAC is disabled and not in the calibration mode
(when bit EN2=0 and bit CEN2 =0 in the DAC_CR register). If EN2=1 or CEN2 =1 the write
operation is ignored.
They can be set and cleared by software to select the DAC Channel 2 mode :
– DAC Channel 2 in normal Mode
000: DAC Channel 2 is connected to external pin with Buffer enabled
001: DAC Channel 2 is connected to external pin and to on chip peripherals with buffer
enabled
010: DAC Channel 2 is connected to external pin with buffer disabled
011: DAC Channel 2 is connected to on chip peripherals with Buffer disabled
– DAC Channel 2 in sample & hold mode
100: DAC Channel 2 is connected to external pin with Buffer enabled
101: DAC Channel 2 is connected to external pin and to on chip peripherals with Buffer
enabled
110: DAC Channel 2 is connected to external pin and to on chip peripherals with Buffer
disabled
111: DAC Channel 2 is connected to on chip peripherals with Buffer disabled
Bits 15:3 Reserved, must be kept at reset value.
Bits 0:2 MODE1[2:0]: DAC Channel 1 mode
These bits can be written only when the DAC is disabled and not in the calibration mode
(when bit EN1=0 and bit CEN1 =0 in the DAC_CR register). If EN1=1 or CEN1 =1 the write
operation is ignored.
They can be set and cleared by software to select the DAC Channel 1 mode :
– DAC Channel 1 in normal Mode
000: DAC Channel 1 is connected to external pin with Buffer enabled
001: DAC Channel 1 is connected to external pin and to on chip peripherals with Buffer
enabled
010: DAC Channel 1 is connected to external pin with Buffer disabled
011: DAC Channel 1 is connected to on chip peripherals with Buffer disabled
– DAC Channel 1 in sample & hold mode
100: DAC Channel 1 is connected to external pin with Buffer enabled
101: DAC Channel 1 is connected to external pin and to on chip peripherals with Buffer
enabled
110: DAC Channel 1 is connected to external pin and to on chip peripherals with Buffer
disabled
111: DAC Channel 1 is connected to on chip peripherals with Buffer disabled
17.5.17
DAC Sample and Hold sample time register 1 (DAC_SHSR1)
Address offset: 0x40
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DocID024597 Rev 3
569/1693
573
Digital-to-analog converter (DAC)
15
14
13
12
11
10
Res.
Res.
Res.
Res.
Res.
Res.
RM0351
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
TSAMPLE1[9:0]
rw
rw
rw
rw
rw
rw
Bits 31:10 Reserved, must be kept at reset value.
Bits 9:0 TSAMPLE1[9:0]: DAC Channel 1 sample Time (only valid in sample & hold mode)
These bits can be written when the DAC channel1 is disabled or also during normal operation.
in the the latter case, the write can be done only when BWSTx of DAC_SR register is low, If
BWSTx=1, the write operation is ignored.
Note:
It represents the number of low-speed (LSI) clocks to perform a sample phase. Sampling
time = (TSAMPLE1[9:0] + 1) x T LSI
17.5.18
DAC Sample and Hold sample time register 2 (DAC_SHSR2)
Address offset: 0x44
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
15
14
13
12
11
10
Res.
Res.
Res.
Res.
Res.
Res.
TSAMPLE2[9:0]
rw
rw
rw
rw
rw
rw
Bits 31:10 Reserved, must be kept at reset value.
Bits 9:0 TSAMPLE2[9:0]: DAC Channel 2 sample Time (only valid in sample & hold mode)
These bits can be written when the DAC channel2 is disabled or also during normal operation.
in the the latter case, the write can be done only when BWSTx of DAC_SR register is low, If
BWSTx=1, the write operation is ignored.
Note:
It represents the number of low-speed (LSI) clocks to perform a sample phase. Sampling
time = (TSAMPLE1[9:0] + 1) x T LSI
17.5.19
DAC Sample and Hold hold time register (DAC_SHHR)
Address offset: 0x48
Reset value: 0x0001 0001
31
30
29
28
27
26
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
Res.
Res.
Res.
Res.
Res.
Res.
25
24
23
22
21
20
19
18
17
16
3
2
1
0
THOLD2[9:0]
rw
9
8
7
6
5
4
THOLD1[9:0]
rw
570/1693
DocID024597 Rev 3
RM0351
Digital-to-analog converter (DAC)
Bits 31:26 Reserved, must be kept at reset value.
Bits 25:16 THOLD2[9:0]: DAC Channel 2 hold time (only valid in sample & hold mode).
Hold time= (THOLD[9:0] ) x T LSI
Bits 15:10 Reserved, must be kept at reset value.
Bits 9:0 THOLD1[9:0]: DAC Channel 1 hold Time (only valid in sample & hold mode)
Hold time= (THOLD[9:0] ) x T LSI
Note:
These bits can be written only when the DAC channel is disabled and in normal operating
mode(when bit ENx=0 and bit CEN2x=0 in the DAC_CR register ). If ENx=1 or CENx=1 the
write operation is ignored.
17.5.20
DAC Sample and Hold refresh time register (DAC_SHRR)
Address offset: 0x4C
Reset value: 0x0001 0001
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
23
22
21
20
19
18
17
16
2
1
0
TREFRESH2[7:0]
rw
7
6
5
4
3
TREFRESH1[7:0]
rw
Bits 31:24 Reserved, must be kept at reset value.
Bits 23:16 TREFRESH2[7:0]: DAC Channel 2 refresh Time (only valid in sample & hold mode)
Refresh time= (TREFRESH[7:0] ) x T LSI
Bits 15:8 Reserved, must be kept at reset value.
Bits 7:0 TREFRESH1[7:0]: DAC Channel 1 refresh Time (only valid in sample & hold mode)
Refresh time= (TREFRESH[7:0] ) x T LSI
Note:
These bits can be written only when the DAC channel is disabled and in normal operating
mode(when bit ENx=0 and bit CEN2x=0 in the DAC_CR register ). If ENx=1 or CENx=1 the
write operation is ignored.
DocID024597 Rev 3
571/1693
573
0x34
572/1693
DAC_SR
Reset value
0
0
0
DocID024597 Rev 3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
Reset value
Res.
0
Res.
0
Res.
Res.
Res.
Res.
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
0
0
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
0
Reset value
0
0
0
0
Reset value
0
0
0
0
0
0
0
0
0
0
0
0
DACC2DHR[7:0]
0
0
0
0
0
0
0
DACC2DHR[11:0]
0
0
0
0
0
0
0
DACC1DHR[11:0]
0
0
0
0
0
0
0
0
0
0
Res.
0
0
Res.
0
0
Res.
0
Res.
0
0
DACC2DHR[11:0]
0
0
0
0
0
0
0
Res.
0
Res.
DACC1DHR[11:0]
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
Res.
0
0
DACC1DHR[11:0]
0
0
0
0
0
0
0
Res.
0
Res.
0
0
Res.
0
Res.
Res.
Res.
0
Res.
Res.
0
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DMAEN1
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
SWTRIG1
Reset value
SWTRIG2
WAVE1[2:0]
0
EN1
Res.
TEN1
TSEL1
[2:0]
Res.
CEN1
DMAUDRIE1
0
Res.
Res.
EN2
Res.
TEN2
0
Res.
Res.
Res.
WAVE2[2:0]
0
MAMP1[3:0]
Res.
0
Res.
Reset value
Res.
0
Res.
0
Res.
0
Res.
0
Res.
Res.
Reset value
Res.
0
Res.
0
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
DMAUDR1
Reset value
CAL_FLAG1
0
Res.
DACC2DHR[11:0]
Res.
Res.
Reset value
Res.
Res.
Reset value
BWST1
Res.
Res.
0
Res.
0
Res.
Res.
0
Res.
Res.
Res.
DMAEN2
0
Res.
Res.
Res.
Res.
Res.
DMAUDRIE2
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
CEN2
0
Res.
Res.
0
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
DAC_
DHR8RD
Res.
0
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
TSEL2
[2:0]
Res.
0
Res.
0
Res.
0
Res.
DACC2DHR[11:0]
Res.
Res.
Res.
0
Res.
Res.
Res.
0
Res.
0
Res.
0
Res.
Res.
0
Res.
0
Res.
Res.
0
Res.
Res.
Res.
Res.
0
MAMP2[3:0]
Res.
Res.
Res.
0
Res.
0
Res.
Res.
0
Res.
0
Res.
Res.
Res.
0
Res.
0
Res.
0
Res.
0
Res.
Res.
Reset value
Res.
DAC_
DHR12LD
Res.
DAC_DOR2
Res.
Reset value
Res.
DAC_DOR1
Res.
DAC_
DHR12RD
Res.
0x30
DAC_
DHR8R2
Res.
0x2C
DAC_
DHR12L2
Res.
0x28
DAC_
DHR12R2
Res.
0x24
DAC_
DHR8R1
Res.
0x20
DMAUDR2
0x1C
DAC_
DHR12L1
Res.
0x18
DAC_
DHR12R1
Res.
0x14
DAC_
SWTRGR
Res.
0x10
Res.
0x0C
Res.
Reset value
Res.
0x08
DAC_CR
Res.
0x04
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res.
17.5.21
Res.
0x00
CAL_FLAG2
Offset
BWST2
Digital-to-analog converter (DAC)
RM0351
DAC register map
Table 106 summarizes the DAC registers.
Table 106. DAC register map
0
0
0
DACC1DHR[11:0]
DACC1DHR[7:0]
DACC2DHR[7:0]
DACC1DHR[7:0]
DACC1DOR[11:0]
0
0
0
0
0
0
DACC2DOR[11:0]
RM0351
Digital-to-analog converter (DAC)
Reset value
0
TREFRESH2[7:0]
0
0
0
0
0
0
0
1
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
Res.
Res.
Res.
Res.
Res.
1
X
X
MODE1
[2:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
THOLD1[9:0]
0
0
Res.
0
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
Res.
0
Res.
0
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DAC_SHRR
Res.
0x4C
Res.
Reset value
THOLD2[9:0]
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DAC_SHHR
Res.
0x48
X
TSAMPLE2[9:0]
0
Res.
Reset value
X
TSAMPLE1[9:0]
0
Res.
DAC_SHSR2
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Reset value
0x44
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
0
OTRIM1[4:0]
X
Res.
X X
MODE2
[2:0]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DAC_SHSR1
Res.
0x40
Res.
Reset value
X
Res.
X
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DAC_MCR
Res.
0x3C
X
Res.
Reset value
OTRIM2[4:0]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DAC_CCR
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0x38
Register
Res.
Offset
Res.
Table 106. DAC register map
0
0
0
0
0
TREFRESH1[7:0]
0
0
0
0
0
0
Refer to Section 2.2.2: Memory map and register boundary addresses for the register
boundary addresses.
DocID024597 Rev 3
573/1693
573
Voltage reference buffer (VREFBUF)
RM0351
18
Voltage reference buffer (VREFBUF)
18.1
Introduction
The STM32L4x6 devices embed a voltage reference buffer which can be used as voltage
reference for ADCs, DACs and also as voltage reference for external components through
the VREF+ pin. When the VREF+ is double-bonded with VDDA in a package, the voltage
reference buffer is not available and must be kept disable (refer to datasheet for packages
pinout description).
18.2
VREFBUF functional description
The internal voltage reference buffer supports two voltages, which are configured with VRS
bit in the VREFBUF_CSR register:
• VREF_OUT1 around 2.048 V. This requires VDDA equal to or higher than 2.4 V.
• VREF_OUT2 around 2.5 V. This requires VDDA equal to or higher than 2.8 V.
The internal voltage reference can be configured in four different modes depending on
ENVR and HIZ bits configuration. These modes are provided in the table below:
Table 107. VREFBUF buffer modes
ENVR
HIZ
0
0
VREFBUF buffer OFF:
– VREF+ pin pulled-down to VSSA.
0
1
External voltage reference mode (default value):
– VREFBUF buffer OFF
– VREF+ pin floating.
1
0
Internal voltage reference mode:
– VREFBUF buffer ON
– VREF+ pin connected to VREFBUF buffer output.
1
Hold mode:
– VREFBUF buffer OFF
– VREF+ pin floating. The voltage is held with the external capacitor
– VRR detection disabled and VRR bit keeps last state.
1
VREFBUF buffer configuration
After enabling the VREFBUF buffer by setting ENVR bit and clearing HIZ bit in the
VREFBUF_CSR register, the user must wait until VRR bit is set, meaning that the voltage
reference output has reached its expected value.
18.3
VREFBUF registers
18.3.1
VREFBUF control and status register (VREFBUF_CSR)
Address offset: 0x00
Reset value: 0x0000 0002
574/1693
DocID024597 Rev 3
RM0351
Voltage reference buffer (VREFBUF)
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
VRR
VRS
HIZ
ENVR
r
rw
rw
rw
Bits 31:4 Reserved, must be kept at reset value.
Bit 3 VRR: Voltage reference buffer ready
0: the voltage reference buffer output is not ready.
1: the voltage reference buffer output reached the requested level.
Bit 2 VRS: Voltage reference scale
This bit selects the value generated by the voltage reference buffer.
0: Voltage reference set to VREF_OUT1 (around 2.048 V).
1: Voltage reference set to VREF_OUT2 (around 2.5 V).
Bit 1 HIZ: High impedance mode
This bit controls the analog switch to connect or not the VREF+ pin.
0: VREF+ pin is internally connected to the voltage reference buffer output.
1: VREF+ pin is high impedance.
Refer to Table 107: VREFBUF buffer modes for modes descriptions depending on ENVR bit
configuration.
Bit 0 ENVR: Voltage reference buffer enable
This bit is used to enable the voltage reference buffer.
0: Internal voltage reference disable.
1: Internal voltage reference enable.
18.3.2
VREFBUF calibration control register (VREFBUF_CCR)
Address offset: 0x04
Reset value: 0x0000 00XX
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
5
4
3
2
1
0
rw
rw
15
14
13
12
11
10
9
8
7
6
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TRIM[5:0]
rw
rw
rw
rw
Bits 31:6 Reserved, must be kept at reset value.
Bits 5:0 TRIM[5:0]: Trimming code
These bits are automatically initialized after reset with the trimming value stored in the Flash
during production test. Writing into these bits allows to tune the internal reference buffer
voltage.
DocID024597 Rev 3
575/1693
576
Voltage reference buffer (VREFBUF)
18.3.3
RM0351
VREFBUF register map
The following table gives the VREFBUF register map and the reset values.
Reset value
DocID024597 Rev 3
Res.
VRS
HIZ
ENVR
Res.
0
0
1
0
TRIM[5:0]
x
Refer to Section 2.2.2 on page 67 for the register boundary addresses.
576/1693
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
VREFBUF_CCR
Res.
0x04
Res.
Reset value
VRR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
VREFBUF_CSR
Res.
0x00
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 108. VREFBUF register map and reset values
x
x
x
x
x
RM0351
Comparator (COMP)
19
Comparator (COMP)
19.1
Introduction
The device embeds two ultra-low power comparators COMP1, and COMP2
The comparators can be used for a variety of functions including:
19.2
•
Wake-up from low-power mode triggered by an analog signal,
•
Analog signal conditioning,
•
Cycle-by-cycle current control loop when combined with a PWM output from a timer.
COMP main features
•
Each comparator has configurable plus and minus inputs used for flexible voltage
selection:
–
Multiplexed I/O pins
–
DAC Channel1 and Channel2
–
Internal reference voltage and three submultiple values (1/4, 1/2, 3/4) provided by
scaler (buffered voltage divider)
•
Programmable hysteresis
•
Programmable speed / consumption
•
The outputs can be redirected to an I/O or to timer inputs for triggering:
–
Break events for fast PWM shutdowns
•
Comparator outputs with blanking source
•
The two comparators can be combined in a window comparator
•
Each comparator has interrupt generation capability with wake-up from Sleep and Stop
modes (through the EXTI controller)
DocID024597 Rev 3
577/1693
588
Comparator (COMP)
RM0351
19.3
COMP functional description
19.3.1
COMP block diagram
The block diagram of the comparators is shown in Figure 138: Comparators block diagram.
Figure 138. Comparators block diagram
*3,2
DOWHUQDWH
IXQFWLRQ
&203[B,136(/
&203[B32/
&203[B,13
&203[B,13,2V
&203[B287
&203[
&203[B
,106(/
&203[B9$/8(
&203[B,10
&203[B,10,2V
:DNHXS(;7,OLQH
LQWHUUXSW
3RODULW\VHOHFWLRQ
7,0(56
'$&B&+
'$&B&+
95(),17
95(),17
95(),17
95(),17
19.3.2
069
COMP pins and internal signals
The I/Os used as comparators inputs must be configured in analog mode in the GPIOs
registers.
The comparator output can be connected to the I/Os using the alternate function channel
given in “Alternate function mapping” table in the datasheet.
The output can also be internally redirected to a variety of timer input for the following
purposes:
•
Emergency shut-down of PWM signals, using BKIN and BKIN2 inputs
•
Cycle-by-cycle current control, using OCREF_CLR inputs
•
Input capture for timing measures
It is possible to have the comparator output simultaneously redirected internally and
externally.
Table 109. COMP1 input plus assignment
COMP1_INP
COMP1_INPSEL
PC5
0
PB2
1
Table 110. COMP1 input minus assignment
COMP1_INM
578/1693
COMP1_INMSEL[2:0]
¼ VREFINT
000
½ VREFINT
001
DocID024597 Rev 3
RM0351
Comparator (COMP)
Table 110. COMP1 input minus assignment (continued)
COMP1_INM
COMP1_INMSEL[2:0]
¾ VREFINT
010
VREFINT
011
DAC Channel1
100
DAC Channel2
101
PB1
110
PC4
111
Table 111. COMP2 input plus assignment
COMP2_INP
COMP2_INPSEL
PB4
0
PB6
1
Table 112. COMP2 input minus assignment
COMP2_INM
19.3.3
COMP2_INMSEL[2:0]
¼ VREFINT
000
½ VREFINT
001
¾ VREFINT
010
VREFINT
011
DAC Channel1
100
DAC Channel2
101
PB3
110
PB7
111
COMP reset and clocks
The COMP clock provided by the clock controller is synchronous with the APB2 clock.
There is no clock enable control bit provided in the RCC controller. Reset and clock enable
bits are common for COMP and SYSCFG.
Note:
Important: The polarity selection logic and the output redirection to the port works
independently from the APB2 clock. This allows the comparator to work even in Stop mode.
19.3.4
Comparator LOCK mechanism
The comparators can be used for safety purposes, such as over-current or thermal
protection. For applications having specific functional safety requirements, it is necessary to
insure that the comparator programming cannot be altered in case of spurious register
access or program counter corruption.
DocID024597 Rev 3
579/1693
588
Comparator (COMP)
RM0351
For this purpose, the comparator control and status registers can be write-protected (readonly).
Once the programming is completed, the COMPxLOCK bit can be set to 1. This causes the
whole register to become read-only, including the COMPxLOCK bit.
The write protection can only be reset by a MCU reset.
19.3.5
Window comparator
The purpose of window comparator is to monitor the analog voltage if it is within specified
voltage range defined by lower and upper threshold.
Two embedded comparators can be utilized to create window comparator. The monitored
analog voltage is connected to the non-inverting (plus) inputs of comparators connected
together and the upper and lower threshold voltages are connected to the inverting (minus)
inputs of the comparators. Two non-inverting inputs can be connected internally together by
enabling WINMODE bit to save one IO for other purpose.
Figure 139. Window mode
&203[B,136(/
&203[B,13
&203[B,13,2V
&203[
&203[B,10
&203[B,106(/
&203[B,10,2V
,QWHUQDOVRXUFHV
&203[B,136(/
:,102'(
&203\B,13
&203\B,13,2V
&203\
&203\B,106(/
&203\B,10
&203\B,10,2V
,QWHUQDOVRXUFHV
069
19.3.6
Hysteresis
The comparator includes a programmable hysteresis to avoid spurious output transitions in
case of noisy signals. The hysteresis can be disabled if it is not needed (for instance when
exiting from low-power mode) to be able to force the hysteresis value using external
components.
580/1693
DocID024597 Rev 3
RM0351
Comparator (COMP)
Figure 140. Comparator hysteresis
).0
).).- 6 HYS T
#/-0?/54
-36
19.3.7
Comparator output blanking function
The purpose of the blanking function is to prevent the current regulation to trip upon short
current spikes at the beginning of the PWM period (typically the recovery current in power
switches anti parallel diodes).It consists of a selection of a blanking window which is a timer
output compare signal. The selection is done by software (refer to the comparator register
description for possible blanking signals). Then, the complementary of the blanking signal is
ANDed with the comparator output to provide the wanted comparator output. See the
example provided in the figure below.
Figure 141. Comparator output blanking
3:0
&XUUHQWOLPLW
&XUUHQW
5DZFRPSRXWSXW
%ODQNLQJZLQGRZ
)LQDOFRPSRXWSXW
&RPSRXW
&RPSRXW WR7,0B%.«
%ODQN
069
DocID024597 Rev 3
581/1693
588
Comparator (COMP)
19.3.8
RM0351
COMP power and speed modes
COMP1 and COMP2 power consumption versus propagation delay can be adjusted to have
the optimum trade-off for a given application.
The bits COMPx_PWR_MODE[1:0] in COMPx_CSR registers can be programmed as
follows:
00: High speed / full power
01 or 10: Medium speed / medium power
11: Low speed / ultra-low-power
19.4
COMP low-power modes
Table 113. Comparator behavior in the low power modes
Mode
Description
Sleep
No effect on the comparators.
Comparator interrupts cause the device to exit the Sleep mode.
Low-power run
No effect.
Low-power sleep
No effect. COMP interrupts cause the device to exit the Low-power sleep mode.
Stop 0
Stop 1
No effect on the comparators.
Comparator interrupts cause the device to exit the Stop mode.
Stop 2
Standby
Shutdown
19.5
The COMP registers are powered down and must be reinitialized after exiting
Standby or Shutdown mode.
COMP interrupts
The comparator outputs are internally connected to the Extended interrupts and events
controller. Each comparator has its own EXTI line and can generate either interrupts or
events. The same mechanism is used to exit from low-power modes.
Refer to Interrupt and events section for more details.
To enable the COMPx interrupt, it is required to follow this sequence:
582/1693
1.
Configure and enable the EXTI line corresponding to the COMPx output event in
interrupt mode and select the rising, falling or both edges sensitivity
2.
Configure and enable the NVIC IRQ channel mapped to the corresponding EXTI lines
3.
Enable the COMPx
DocID024597 Rev 3
RM0351
Comparator (COMP)
Table 114. Interrupt control bits
Interrupt event
Event flag
Enable control
bit
Exit from Sleep
mode
Exit from Stop
modes
Exit from
Standby mode
COMP1 output
VALUE in
COMP1_CSR
through EXTI
yes
yes
N/A
COMP2 output
VALUE in
COMP2_CSR
through EXTI
yes
yes
N/A
DocID024597 Rev 3
583/1693
588
Comparator (COMP)
RM0351
19.6
COMP registers
19.6.1
Comparator 1 control and status register (COMP1_CSR)
The COMP1_CSR is the Comparator 1 control/status register. It contains all the bits /flags
related to comparator1.
Address offset: 0x00
System reset value: 0x0000 0000
31
LOCK
30
VALUE
rs
r
15
14
POLA
RITY
Res.
29
28
27
26
25
24
23
22
21
SCAL
EN
BRG
EN
Res.
20
19
18
BLANKING
Res.
Res.
Res.
Res.
Res.
rw
rw
13
12
11
10
9
8
7
6
Res.
INP
SEL.
INMSEL
PWRMODE
rw
rw
rw
Res.
Res.
Res.
Res.
rw
16
HYST
Res.
Res.
17
rw
5
4
rw
3
2
1
0
Res.
EN
rw
Bit 31 LOCK: COMP1_CSR register lock bit
This bit is set by software and cleared by a hardware system reset. It locks the whole
content of the comparator 1 control register, COMP1_CSR[31:0].
0: COMP1_CSR[31:0] for comparator 1 are read/write
1: COMP1_CSR[31:0] for comparator 1 are read-only
Bit 30 VALUE: Comparator 1 output status bit
This bit is read-only. It reflects the current comparator 1 output taking into account
POLARITY bit effect.
Bits 29:24 Reserved, must be kept at reset value.
Bit 23 SCALEN: Voltage scaler enable bit
This bit is set and cleared by software. This bit enable the outputs of the VREFINT divider
available on the minus input of the Comparator 1.
0: Bandgap scaler disable (if SCALEN bit of COMP2_CSR register is also reset)
1: Bandgap scaler enable
Bit 22 BRGEN: Scaler bridge enable
This bit is set and cleared by software (only if LOCK not set). This bit enable the bridge of
the scaler.
0: Scaler resistor bridge disable (if BRGEN bit of COMP2_CSR register is also reset)
1: Scaler resistor bridge enable
If SCALEN is set and BRGEN is reset, BG voltage reference is available but not 1/4BGAP,
1/2BGAP, 3/4 BGAP. BGAP value is sent instead of 1/4BGAP, 1/2BGAP, 3/4 BGAP.
If SCALEN and BRGEN are set, 1/4 BGAP 1/2BGAP 3/4BGAP and BGAP voltage
references are available.
Bit 21 Reserved, must be kept at reset value
584/1693
DocID024597 Rev 3
RM0351
Comparator (COMP)
Bits 20:18 BLANKING[2:0]: Comparator 1 blanking source selection bits
These bits select which timer output controls the comparator 1 output blanking.
000: No blanking
001: TIM1 OC5 selected as blanking source
010: TIM2 OC3 selected as blanking source
100: TIM3 OC3 selected as blanking source
All other values: reserved
Bits 17:16 HYST[1:0]: Comparator 1 hysteresis selection bits
These bits are set and cleared by software (only if LOCK not set). They select the
Hysteresis voltage of the comparator 1.
00: No hysteresis
01: Low hysteresis
10: Medium hysteresis
11: High hysteresis
Bit 15 POLARITY: Comparator 1 polarity selection bit
This bit is set and cleared by software (only if LOCK not set). It inverts Comparator 1
polarity.
0: Comparator 1 output value not inverted
1: Comparator 1output value inverted
Bits 14:8 Reserved, must be kept at reset value.
Bit 7 INPSEL: Comparator1 input plus selection bit
This bit is set and cleared by software (only if LOCK not set).
0: external IO - PC5
1: PB2
Bits 6:4 INMSEL: Comparator 1 input minus selection bits
These bits are set and cleared by software (only if LOCK not set). They select which input is
connected to the input minus of comparator 1.
000 = 1/4 VREFINT
001 = 1/2 VREFINT
010 = 3/4 VREFINT
011 = VREFINT
100 = DAC Channel1
101 = DAC Channel2
110 = PB1
111 = PC4
Bits 3:2 PWRMODE[1:0]: Power Mode of the comparator 1
These bits are set and cleared by software (only if LOCK not set). They control the
power/speed of the Comparator 1.
00:
High speed
01 or 10: Medium speed
11:
Ultra low power
Bit 1 Reserved, must be kept cleared.
Bit 0 EN: Comparator 1 enable bit
This bit is set and cleared by software (only if LOCK not set). It switches on Comparator1.
0: Comparator 1 switched OFF
1: Comparator 1 switched ON
DocID024597 Rev 3
585/1693
588
Comparator (COMP)
19.6.2
RM0351
Comparator 2 control and status register (COMP2_CSR)
The COMP2_CSR is the Comparator 2 control/status register. It contains all the bits /flags
related to comparator2.
Address offset: 0x04
System reset value: 0x0000 0000
31
LOCK
30
VALUE
rs
r
15
14
POLA
RITY
Res.
rw
29
28
27
26
25
24
23
22
21
SCAL
EN
BRG
EN
Res.
20
19
18
Res.
Res.
Res.
Res.
Res.
Res.
rw
rw
13
12
11
10
9
8
7
6
Res.
WIN
MODE
Res.
INP
SEL.
INMSEL
PWRMODE
rw
rw
rw
Res.
Res.
Res.
rw
17
BLANKING
16
HYST
rw
5
4
rw
3
2
1
0
Res.
EN
rw
Bit 31 LOCK: CSR register lock bit
This bit is set by software and cleared by a hardware system reset. It locks the whole
content of the comparator 2 control register, COMP2_CSR[31:0].
0: COMP2_CSR[31:0] for comparator 2 are read/write
1: COMP2_CSR[31:0] for comparator 2 are read-only
Bit 30 VALUE: Comparator 2 output status bit
This bit is read-only. It reflects the current comparator 2 output taking into account
POLARITY bit effect.
Bits 29:24 Reserved, must be kept at reset value
Bit 23 SCALEN: Voltage scaler enable bit
This bit is set and cleared by software. This bit enable the outputs of the VREFINT divider
available on the minus input of the Comparator 2.
0: Bandgap scaler disable (if SCALEN bit of COMP1_CSR register is also reset)
1: Bandgap scaler enable
Bit 22 BRGEN: Scaler bridge enable
This bit is set and cleared by software (only if LOCK not set). This bit enable the bridge of
the scaler.
0: Scaler resistor bridge disable (if BRGEN bit of COMP1_CSR register is also reset)
1: Scaler resistor bridge enable
If SCALEN is set and BRGEN is reset, BG voltage reference is available but not 1/4BGAP,
1/2BGAP, 3/4 BGAP. BGAP value is sent instead of 1/4BGAP, 1/2BGAP, 3/4 BGAP.
If SCALEN and BRGEN are set, 1/4 BGAP 1/2BGAP 3/4BGAP and BGAP voltage
references are available.
Bit 21 Reserved, must be kept at reset value
Bits 20:18 BLANKING[2:0]: Comparator 2 blanking source selection bits
These bits select which timer output controls the comparator 2 output blanking.
000: No blanking
001: TIM3 OC4 selected as blanking source
010: TIM8 OC5 selected as blanking source
100: TIM15 OC1 selected as blanking source
All other values: reserved
586/1693
DocID024597 Rev 3
RM0351
Comparator (COMP)
Bits 17:16 HYST[1:0]: Comparator 2 hysteresis selection bits
These bits are set and cleared by software (only if LOCK not set). Select the Hysteresis
voltage of the comparator 2.
00: No hysteresis
01: Low hysteresis
10: Medium hysteresis
11: High hysteresis
Bit 15 POLARITY: Comparator 2 polarity selection bit
This bit is set and cleared by software (only if LOCK not set). It inverts Comparator 2
polarity.
0: Comparator 2 output value not inverted
1: Comparator 2output value inverted
Bits 14:10 Reserved, must be kept at reset value.
Bit 9 WINMODE: Windows mode selection bit
This bit is set and cleared by software (only if LOCK not set). This bit selects the window
mode of the comparators. If set, both positive inputs of comparators will be connected
together.
0: Input plus of Comparator 2 is not connected to Comparator 1
1: Input plus of Comparator 2 is connected with input plus of Comparator 1
Bit 8 Reserved, must be kept at reset value.
Bit 7 INPSEL: Comparator 1 input plus selection bit
This bit is set and cleared by software (only if LOCK not set).
0: PB4
1: PB6
Bits 6:4 INMSEL: Comparator 2 input minus selection bits
These bits are set and cleared by software (only if LOCK not set). They select which input is
connected to the input minus of comparator 2.
000 = 1/4 VREFINT
001 = 1/2 VREFINT
010 = 3/4 VREFINT
011 = VREFINT
100 = DAC Channel1
101 = DAC Channel2
110 = PB3
111 = PB7
Bits 3:2 PWRMODE[1:0]: Power Mode of the comparator 2
These bits are set and cleared by software (only if LOCK not set). They control the
power/speed of the Comparator 2.
00:
High speed
01 or 10: Medium speed
11:
Ultra low power
Bit 1 Reserved, must be kept cleared.
Bit 0 EN: Comparator 2 enable bit
This bit is set and cleared by software (only if LOCK not set). It switches oncomparator2.
0: Comparator 2 switched OFF
1: Comparator 2 switched ON
DocID024597 Rev 3
587/1693
588
Comparator (COMP)
19.6.3
RM0351
COMP register map
The following table summarizes the comparator registers.
0
0
0
DocID024597 Rev 3
0
0
0
0
0
0
0
0
Res.
0
EN
Res.
0
PWRMODE
0
EN
PWRMODE
INMSEL
INPSEL
Res.
Res.
WINMODE
0
Refer to Section 2.2.2 on page 67 for the register boundary addresses.
588/1693
0
INMSEL
Res.
INPSEL.
Res.
Res.
Res.
Res.
Res.
Res.
POLARITY.
HYST.
0
0
Res.
0
0
Res.
0
0
Res.
0
POLARITY.
0
Res.
HYST
BLANKING
0
BLANKING
0
Res.
BRGEN.
0
0
Res.
0
BRGEN.
Res.
SCALEN
Res.
Res.
0
SCALEN.
Res.
Res.
0
Res.
0
Res.
Reset value
Res.
COMP2_CSR
Res.
0
Res.
0
Res.
Reset value
Res.
LOCK
VALUE
0x04
COMP1_CSR
LOCK
0x00
Register
VALUE
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 115. COMP register map and reset values
0
RM0351
Operational amplifiers (OPAMP)
20
Operational amplifiers (OPAMP)
20.1
Introduction
The device embeds two operational amplifiers with two inputs and one output each. The
three I/Os can be connected to the external pins, this enables any type of external
interconnections. The operational amplifier can be configured internally as a follower or as
an amplifier with a non-inverting gain ranging from 2 to 16.
The positive input can be connected to the internal DAC.
The output can be connected to the internal ADC.
20.2
20.3
OPAMP main features
•
Rail-to-rail input and output voltage range
•
Low input bias current (down to 1 nA)
•
Low input offset voltage (1.5 mV after calibration, 3 mV with factory calibration)
•
Low-power mode (current consumption reduced to 30 µA instead of 100 µA)
•
Fast wakeup time (10 µs in normal mode, 30 µs in low-power mode)
•
Gain bandwidth of 1.6 MHz
OPAMP functional description
The OPAMP has several modes.
Each OPAMP can be individually enabled, when disabled the output is high-impedance.
When enabled, it can be in calibration mode, all input and output of the OPAMP are then
disconnected, or in functional mode.
There are two functional modes, the low-power mode or the normal mode. In functional
mode the inputs and output of the OPAMP are connected as described in the
Section 20.3.3: Signal routing.
20.3.1
OPAMP reset and clocks
The operational amplifier clock is necessary for accessing the registers. When the
application does not need to have read or write access to those registers, the clock can be
switched off using the peripheral clock enable register (see OPAMPEN bit in Section 6.4.19:
APB1 peripheral clock enable register 1 (RCC_APB1ENR1)).
The bit OPAEN enables and disables the OPAMP operation. The OPAMP registers
configurations should be changed before enabling the OPAEN bit in order to avoid spurious
effects on the output.
When the output of the operational amplifier is no more needed the operational amplifier can
be disabled to save power. All the configurations previously set (including the calibration)
are maintained while OPAMP is disabled.
DocID024597 Rev 3
589/1693
602
Operational amplifiers (OPAMP)
20.3.2
RM0351
Initial configuration
The default configuration of the operational amplifier is a functional mode where the three
IOs are connected to external pins. In the default mode the operational amplifier uses the
factory trimming values. See electrical characteristics section of the datasheet for factory
trimming conditions, usually the temperature is 30 °C and the voltage is 3 V. The trimming
values can be adjusted, see Section 20.3.5: Calibration for changing the trimming values.
The default configuration uses the normal mode, which provides the highest performance.
Bit OPALPM can be set in order to switch the operational amplifier to low-power mode and
reduced performance. Both normal and low-power mode characteristics are defined in the
section “electrical characteristics” of the datasheet. Before utilization, the bit OPA_RANGE
of OPAMP_CSR must be set to 1 if VDDA is above 2.4V, or kept at 0 otherwise.
As soon as the OPAEN bit in OPAMP_CSR register is set, the operational amplifier is
functional. The two input pins and the output pin are connected as defined in Section 20.3.3:
Signal routing and the default connection settings can be changed.
Note:
The inputs and output pins must be configured in analog mode (default state) in the
corresponding GPIOx_MODER register.
20.3.3
Signal routing
The routing for the operational amplifier pins is determined by OPAMP_CSR register.
The connections of the two operational amplifiers (OPAMP1 and OPAMP2) are described in
the table below.
Table 116. Operational amplifier possible connections
Signal
Pin
OPAMP1_VINM
PA1 or dedicated pin(1)
OPAMP1_OUT
or PGA
controlled by bits OPAMODE
and VM_SEL.
OPAMP1_VINP
PA0
DAC1_OUT1
controlled by bit VP_SEL.
ADC1_IN8
ADC2_IN8
The pin is connected when the
OPAMP is enabled. The ADC
input is controlled by ADC.
OPAMP1_VOUT PA3
Internal
comment
OPAMP2_VINM
PA7 or dedicated pin(1)
OPAMP2_OUT
or PGA
controlled by bits OPAMODE
and VM_SEL.
OPAMP2_VINP
PA6
DAC1_OUT2
controlled by bit VP_SEL
ADC1_IN15
ADC2_IN15
The pin is connected when the
OPAMP is enabled. The ADC
input is controlled by ADC.
OPAMP2_VOUT PB0
1. The dedicated pin is only available on BGA132 package. This configuration provides the lowest input bias
current (see datasheet).
590/1693
DocID024597 Rev 3
RM0351
20.3.4
Operational amplifiers (OPAMP)
OPAMP modes
The operational amplifier inputs and outputs are all accessible on terminals. The amplifiers
can be used in multiple configuration environments:
•
Standalone mode (external gain setting mode)
•
Follower configuration mode
•
PGA modes
Note:
The amplifier output pin is directly connected to the output pad to minimize the output
impedance. It cannot be used as a general purpose I/O, even if the amplifier is configured
as a PGA and only connected to the ADC channel.
Note:
The impedance of the signal must be maintained below a level which avoids the input
leakage to create significant artifacts (due to a resistive drop in the source). Please refer to
the electrical characteristics section in the datasheet for further details.
Standalone mode (external gain setting mode)
The procedure to use the OPAMP in standalone mode is presented hereafter.
Starting from the default value of OPAMP_CSR, and the default state of GPIOx_MODER,
configure bit OPA_RANGE according the VDDA voltage. As soon as the OPAEN bit is set,
the two input pins and the output pin are connected to the operational amplifier.
This default configuration uses the factory trimming values and operates in normal mode
(highest performance). The behavior of the OPAMP can be changed as follows:
•
OPALPM can be set to “operational amplifier low-power” mode in order to save power.
•
USERTRIM can be set to modify the trimming values for the input offset.
Figure 142. Standalone mode: external gain setting mode
670
*3,2
'$&B287
$'&
*3,2
069
DocID024597 Rev 3
591/1693
602
Operational amplifiers (OPAMP)
RM0351
Follower configuration mode
The procedure to use the OPAMP in follower mode is presented hereafter.
•
configure OPAMODE bits as “internal follower”
•
configure VP_SEL bits as “GPIO connected to VINP”.
•
As soon as the OPAEN bit is set, the signal on pin OPAMP_VINP is copied to pin
OPAMP_VOUT.
Note:
The pin corresponding to OPAMP_VINM is free for another usage.
Note:
The signal on the operational amplifier output is also seen as an ADC input. As a
consequence, the OPAMP configured in follower mode can be used to perform impedance
adaptation on input signals before feeding them to the ADC input, assuming the input signal
frequency is compatible with the operational amplifier gain bandwidth specification.
Figure 143. Follower configuration
670
*3,2
'$&B287
$'&
*3,2
$OZD\VFRQQHFWHGWR
23$03RXWSXW FDQEH
XVHGGXULQJGHEXJ
069
592/1693
DocID024597 Rev 3
RM0351
Operational amplifiers (OPAMP)
Programmable Gain Amplifier mode
The procedure to use the OPAMP to amplify the amplitude of an input signal is
presented hereafter.
•
configure OPAMODE bits as “internal PGA enabled”,
•
configure PGA_GAIN bits as “internal PGA Gain 2, 4, 8 or 16”,
•
configure VM_SEL bits as “inverting not externally connected”,
•
configure VP_SEL bits as “GPIO connected to VINP”.
As soon as the OPAEN bit is set, the signal on pin OPAMP_VINP is amplified by the
selected gain and visible on pin OPAMP_VOUT.
Note:
To avoid saturation, the input voltage should stay below VDDA divided by the selected gain.
Figure 144. PGA mode, internal gain setting (x2/x4/x8/x16), inverting input not used
670
*3,2
'$&B287
$'&
*3,2
$OZD\VFRQQHFWHGWR
23$03RXWSXW FDQEH
XVHGGXULQJGHEXJ
069
DocID024597 Rev 3
593/1693
602
Operational amplifiers (OPAMP)
RM0351
Programmable Gain Amplifier mode with external filtering
The procedure to use the OPAMP to amplify the amplitude of an input signal, with an
external filtering, is presented hereafter.
•
configure OPAMODE bits as “internal PGA enabled”,
•
configure PGA_GAIN bits as “internal PGA Gain 2, 4, 8 or 16”,
•
configure VM_SEL bits as “GPIO connected to VINM”,
•
configure VP_SEL bits as “GPIO connected to VINP”.
Any external connection on VINP can be used in parallel with the internal PGA, for
example a capacitor can be connected between VOUT and VINM for filtering purpose
(see datasheet for the value of resistors used in the PGA resistor network).
Figure 145. PGA mode, internal gain setting (x2/x4/x8/x16), inverting input used for
filtering
670
*3,2
'$&B287
$'&
*3,2
$OORZVRSWLRQDO
ORZSDVV
ILOWHULQJ
(TXLYDOHQWWR
069
1. The gain depends on the cut-off frequency.
20.3.5
Calibration
At startup, the trimming values are initialized with the preset ‘factory’ trimming value.
Each operational amplifier offset can be trimmed by the user. Specific registers allow to
have different trimming values for normal mode and for low-power mode.
The aim of the calibration is to cancel as much as possible the OPAMP inputs offset voltage.
The calibration circuitry allows to reduce the inputs offset voltage to less than +/-1.5 mV
within stable voltage and temperature conditions.
For each operational amplifier and each mode two trimming values need to be trimmed, one
for N differential pair and one for P differential pair.
There are two registers for trimming the offsets for each operational amplifiers, one for
normal mode (OPAMP_OTR) and one low-power mode (OPAMP_LPOTR). Each register is
composed of five bits for P differential pair trimming and five bits for N differential pair
trimming. These are the ‘user’ values.
594/1693
DocID024597 Rev 3
RM0351
Operational amplifiers (OPAMP)
The user is able to switch from ‘factory’ values to ‘user’ trimmed values using the
USERTRIM bit in the OPAMP_CSR register. This bit is reset at startup and so the ‘factory’
value are applied by default to the OPAMP trimming registers.
User is liable to change the trimming values in calibration or in functional mode.
The offset trimming registers are typically configured after the calibration operation is
initialized by setting bit CALON to 1. When CALON = 1 the inputs of the operational
amplifier are disconnected from the functional environment.
•
Setting CALSEL to 1 initializes the offset calibration for the P differential pair (low
voltage reference used).
•
Resetting CALSEL to 0 initializes the offset calibration for the N differential pair (high
voltage reference used).
When CALON = 1, the bit CALOUT will reflect the influence of the trimming value selected
by CALSEL and OPALPM. When the value of CALOUT switches between two consecutive
trimming values, this means that those two values are the best trimming values. The
CALOUT flag needs up to 1 ms after the trimming value is changed to become steady (see
tOFFTRIMmax delay specification in the electrical characteristics section of the datasheet).
Note:
The closer the trimming value is to the optimum trimming value, the longer it takes to
stabilize (with a maximum stabilization time remaining below 1 ms in any case).
Table 117. Operating modes and calibration
Control bits
Output
Mode
OPAEN
OPALPM
CALON
CALSEL
VOUT
CALOUT
flag
Normal operating
mode
1
0
0
X
analog
0
Low-power mode
1
1
0
X
analog
0
Power down
0
X
X
X
Z
0
Offset cal high for
normal mode
1
0
1
0
analog
X
Offset cal low for
normal mode
1
0
1
1
analog
X
Offset cal high for
low-power mode
1
1
1
0
analog
X
Offset cal low for
low-power mode
1
1
1
1
analog
X
DocID024597 Rev 3
595/1693
602
Operational amplifiers (OPAMP)
RM0351
Calibration procedure
Here are the steps to perform a full calibration of either one of the operational amplifiers:
1.
Select correct OPA_RANGE in OPAMP_CSR, then set the OPAEN bit in OPAMP_CSR
to 1 to enable the operational amplifier.
2.
Set the USERTRIM bit in the OPAMP_CSR register to 1.
3.
Choose a calibration mode (refer to Table 117: Operating modes and calibration). The
steps 3 to 4 will have to be repeated 4 times. For the first iteration select
–
Normal mode, offset cal high (N differential pair)
The above calibration mode correspond to OPALPM=0 and CALSEL=0 in the
OPAMP_CSR register.
4.
Increment TRIMOFFSETN[4:0] in OPAMP_OTR starting from 00000b until CALOUT
changes to 1 in OPAMP_CSR.
Note:
CALOUT will switch from 0 to 1 for offset cal high and from 1 to 0 for offset cal low.
Note:
Between the write to the OPAMP_OTR register and the read of the CALOUT value, make
sure to wait for the tOFFTRIMmax delay specified in the electrical characteristics section of
the datasheet, to get the correct CALOUT value.
The commutation means that the offset is correctly compensated and that the
corresponding trim code must be saved in the OPAMP_OTR register.
Repeat steps 3 to 4 for:
–
Normal_mode and offset cal low
–
Low power mode and offset cal high
–
Low power mode and offset cal low
If a mode is not used it is not necessary to perform the corresponding calibration.
All operational amplifier can be calibrated at the same time.
Note:
During the whole calibration phase the external connection of the operational amplifier
output must not pull up or down currents higher than 500 µA.
During the calibration procedure, it is necessary to set up OPAMODE bits as 00 or 01 (PGA
disable) or 11 (internal follower).
20.4
OPAMP low-power modes
Table 118. Effect of low-power modes on the OPAMP
Mode
596/1693
Description
Sleep
No effect.
Low-power run
No effect.
Low-power sleep
No effect.
Stop 0 / Stop 1
No effect, OPAMP registers content is kept.
Stop 2
OPAMP registers content is kept. OPAMP must be disabled before entering
Stop 2 mode.
DocID024597 Rev 3
RM0351
Operational amplifiers (OPAMP)
Table 118. Effect of low-power modes on the OPAMP
Mode
Description
Standby
The OPAMP registers are powered down and must be re-initialized after
exiting Standby or Shutdown mode.
Shutdown
20.5
OPAMP registers
20.5.1
OPAMP1 control/status register (OPAMP1_CSR)
Address offset: 0x00
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
OPA_
RANGE
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
12
11
10
9
8
7
6
5
4
3
2
Res.
VP_
SEL
rw
15
14
13
CAL
OUT
USER
TRIM
CAL
SEL
CALON
r
rw
rw
rw
rw
VM_SEL
rw
Res.
Res.
rw
PGA_GAIN
OPAMODE
rw
rw
rw
w
1
0
OPA
LPM
OPAEN
rw
rw
Bit 31 OPA_RANGE: Operational amplifier power supply range for stability
All AOP must be in power down to allow AOP-RANGE bit write. It applies to all AOP
embedded in the product.
0: Low range (VDDA < 2.4V)
1: High range (VDDA > 2.4V)
Bits 30:16 Reserved, must be kept at reset value.
Bit 15 CALOUT: Operational amplifier calibration output
During calibration mode offset is trimmed when this signal toggle.
Bit 14 USERTRIM: allows to switch from ‘factory’ AOP offset trimmed values to AOP offset ‘user’
trimmed values
This bit is active for both mode normal and low-power.
0: ‘factory’ trim code used
1: ‘user’ trim code used
Bit 13 CALSEL: Calibration selection
0: NMOS calibration (200mV applied on OPAMP inputs)
1: PMOS calibration (VDDA-200mV applied on OPAMP inputs)
Bit 12 CALON: Calibration mode enabled
0: Normal mode
1: Calibration mode (all switches opened by HW)
Bit 11 Reserved, must be kept at reset value.
Bit 10 VP_SEL: Non inverted input selection
0: GPIO connected to VINP
1: DAC connected to VINP
DocID024597 Rev 3
597/1693
602
Operational amplifiers (OPAMP)
RM0351
Bits 9:8 VM_SEL: Inverting input selection
These bits are used only when OPAMODE = 00, 01 or 10.
00: GPIO connected to VINM (valid also in PGA mode for filtering)
01: Dedicated low leakage input, (available only on BGA132) connected to VINM (valid also
in PGA mode for filtering)
1x: Inverting input not externally connected. These configurations are valid only when
OPAMODE = 10 (PGA mode)
Bits 7:6 Reserved, must be kept at reset value.
Bits 5:4 PGA_GAIN: Operational amplifier Programmable amplifier gain value
00: internal PGA Gain 2
01: internal PGA Gain 4
10: internal PGA Gain 8
11: internal PGA Gain 16
Bits 3:2 OPAMODE: Operational amplifier PGA mode
00: internal PGA disable
01: internal PGA disable
10: internal PGA enable, gain programmed in PGA_GAIN
11: internal follower
Bit 1 OPALPM: Operational amplifier Low Power Mode
The operational amplifier must be disable to change this configuration.
0: operational amplifier in normal mode
1: operational amplifier in low-power mode
Bit 0 OPAEN: Operational amplifier Enable
0: operational amplifier disabled
1: operational amplifier enabled
20.5.2
OPAMP1 offset trimming register in normal mode (OPAMP1_OTR)
Address offset: 0x04
Reset value: 0x0000 XXXX (factory trimmed values)
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
12
11
10
9
8
4
3
2
1
0
rw
rw
15
14
13
Res.
Res.
Res.
TRIMOFFSETP
rw
rw
rw
rw
7
6
5
Res.
Res.
Res.
rw
TRIMOFFSETN
rw
Bits 31:13 Reserved, must be kept at reset value.
Bits 12:8 TRIMOFFSETP[4:0]: Trim for PMOS differential pairs
Bits 7:5 Reserved, must be kept at reset value.
Bits 4:0 TRIMOFFSETN[4:0]: Trim for NMOS differential pairs
20.5.3
OPAMP1 offset trimming register in low-power mode
(OPAMP1_LPOTR)
Address offset: 0x08
598/1693
DocID024597 Rev 3
rw
rw
RM0351
Operational amplifiers (OPAMP)
Reset value: 0x0000 XXXX (factory trimmed values)
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
12
11
10
9
8
4
3
2
1
0
15
14
13
Res.
Res.
Res.
TRIMLPOFFSETP
rw
rw
rw
rw
7
6
5
Res.
Res.
Res.
rw
TRIMLPOFFSETN
rw
rw
rw
rw
rw
Bits 31:13 Reserved, must be kept at reset value.
Bits 12:8 TRIMLPOFFSETP[4:0]: Low-power mode trim for PMOS differential pairs
Bits 7:5 Reserved, must be kept at reset value.
Bits 4:0 TRIMLPOFFSETN[4:0]: Low-power mode trim for NMOS differential pairs
20.5.4
OPAMP2 control/status register (OPAMP2_CSR)
Address offset: 0x10
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
12
11
10
9
8
7
6
5
4
3
2
Res.
VP_
SEL
15
14
13
CAL
OUT
USER
TRIM
CAL
SEL
CALON
r
rw
rw
rw
rw
VM_SEL
rw
Res.
Res.
rw
PGA_GAIN
OPAMODE
rw
rw
rw
w
1
0
OPA
LPM
OPAEN
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bit 15 CALOUT: Operational amplifier calibration output
During calibration mode offset is trimmed when this signal toggle.
Bit 14 USERTRIM: allows to switch from ‘factory’ AOP offset trimmed values to AOP offset ‘user’
trimmed values
This bit is active for both mode normal and low-power.
0: ‘factory’ trim code used
1: ‘user’ trim code used
Bit 13 CALSEL: Calibration selection
0: NMOS calibration (200mV applied on OPAMP inputs)
1: PMOS calibration (VDDA-200mV applied on OPAMP inputs)
Bit 12 CALON: Calibration mode enabled
0: Normal mode
1: Calibration mode (all switches opened by HW)
Bit 11 Reserved, must be kept at reset value.
Bit 10 VP_SEL: Non inverted input selection
0: GPIO connected to VINP
1: DAC connected to VINP
DocID024597 Rev 3
599/1693
602
Operational amplifiers (OPAMP)
RM0351
Bits 9:8 VM_SEL: Inverting input selection
These bits are used only when OPAMODE = 00, 01 or 10.
00: GPIO connected to VINM (valid also in PGA mode for filtering)
01: Dedicated low leakage input, (available only on BGA132) connected to VINM (valid also
in PGA mode for filtering)
1x: Inverting input not externally connected. These configurations are valid only when
OPAMODE = 10 (PGA mode)
Bits 7:6 Reserved, must be kept at reset value.
Bits 5:4 PGA_GAIN: Operational amplifier Programmable amplifier gain value
00: internal PGA Gain 2
01: internal PGA Gain 4
10: internal PGA Gain 8
11: internal PGA Gain 16
Bits 3:2 OPAMODE: Operational amplifier PGA mode
00: internal PGA disable
01: internal PGA disable
10: internal PGA enable, gain programmed in PGA_GAIN
11: internal follower
Bit 1 OPALPM: Operational amplifier Low Power Mode
The operational amplifier must be disable to change this configuration.
0: operational amplifier in normal mode
1: operational amplifier in low-power mode
Bit 0 OPAEN: Operational amplifier Enable
0: operational amplifier disabled
1: operational amplifier enabled
20.5.5
OPAMP2 offset trimming register in normal mode (OPAMP2_OTR)
Address offset: 0x14
Reset value: 0x0000 XXXX (factory trimmed values)
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
12
11
10
9
8
4
3
2
1
0
rw
rw
15
14
13
Res.
Res.
Res.
TRIMOFFSETP
rw
rw
rw
rw
7
6
5
Res.
Res.
Res.
rw
TRIMOFFSETN
rw
Bits 31:13 Reserved, must be kept at reset value.
Bits 12:8 TRIMOFFSETP[4:0]: Trim for PMOS differential pairs
Bits 7:5 Reserved, must be kept at reset value.
Bits 4:0 TRIMOFFSETN[4:0]: Trim for NMOS differential pairs
20.5.6
OPAMP2 offset trimming register in low-power mode
(OPAMP2_LPOTR)
Address offset: 0x18
600/1693
DocID024597 Rev 3
rw
rw
RM0351
Operational amplifiers (OPAMP)
Reset value: 0x0000 XXXX (factory trimmed values)
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
12
11
10
9
8
4
3
2
1
0
15
14
13
Res.
Res.
Res.
TRIMLPOFFSETP
rw
rw
rw
rw
7
6
5
Res.
Res.
Res.
rw
TRIMLPOFFSETN
rw
rw
rw
rw
rw
Bits 31:13 Reserved, must be kept at reset value.
Bits 12:8 TRIMLPOFFSETP[4:0]: Low-power mode trim for PMOS differential pairs
Bits 7:5 Reserved, must be kept at reset value.
Bits 4:0 TRIMLPOFFSETN[4:0]: Low-power mode trim for NMOS differential pairs
DocID024597 Rev 3
601/1693
602
1.
0x18
602/1693
Reset value
(1)
(1)
OPAMP2_
LPOTR
TRIMLP
OFFSETP[4:0]
TRIMLP
OFFSETN[4:0]
Reset value
DocID024597 Rev 3
0
0
0
(1)
0
TRIM
OFFSETP[4:0]
0
0
0
Res.
Res.
Res.
CALSEL
CALON
(1)
0
0
(1)
Factory trimmed values.
Refer to Section 2.2.2: Memory map and register boundary addresses for the register
boundary addresses.
OPAEN
0
OPALPM
OPAMODE
PGA_GAIN
Res.
Res.
VM_SEL
VP_SEL
Res.
USERTRIM
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
CALOUT
0
OPAEN
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
OPALPM
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
OPAMODE
PGA_GAIN
TRIMLP
OFFSETN[4:0]
Res.
Res.
TRIM
OFFSETP[4:0]
Res.
Res.
VM_SEL
TRIMLP
OFFSETP[4:0]
Res.
Res.
Res.
0
Res.
0
VP_SEL
Reset value
0
Res.
0
0
Res.
CALON
OPAMP1_
LPOTR
Res.
Res.
OPA_RANGE
0
Res.
CALSEL
(1)
Res.
Res.
Res.
0
Res.
USERTRIM
(1)
Res.
0
Res.
Res.
Res.
CALOUT
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
OPAMP2_OTR
Res.
OPAMP2_CSR
Res.
0x08
Res.
0
Res.
0x14
Reset value
Res.
0x10
OPAMP1_OTR
Res.
0x04
OPAMP1_CSR
Res.
0x00
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res.
Offset
Res.
20.5.7
Res.
Operational amplifiers (OPAMP)
RM0351
OPAMP register map
Table 119. OPAMP register map and reset values
0
0
TRIM
OFFSETN[4:0]
(1)
TRIM
OFFSETN[4:0]
0
0
RM0351
Digital filter for sigma delta modulators (DFSDM)
21
Digital filter for sigma delta modulators (DFSDM)
21.1
Introduction
Digital filter for sigma delta modulators (DFSDM) is a high-performance module dedicated to
interface external Σ∆ modulators to a microcontroller. It is featuring up to 8 external digital
serial interfaces (channels) and up to 4 digital filters with flexible Sigma Delta stream digital
processing options to offer up to 24-bit final ADC resolution. DFSDM also features optional
parallel data stream input from microcontrollers memory.
An external Σ∆ modulator provides digital data stream of converted analog values from the
external Σ∆ modulator analog input. This digital data stream is sent into a DFSDM input
channel through a serial interface. DFSDM supports several standards to connect various
Σ∆ modulator outputs: SPI interface and Manchester coded 1-wire interface (both with
adjustable parameters). DFSDM module supports the connection of up to 8 multiplexed
input digital serial channels which are shared with up to 4 DFSDM modules. DFSDM
module also supports alternative parallel data inputs from up to 8 internal 16-bit data
channels (from microcontrollers memory).
DFSDM is converting an input data stream into a final digital data word which represents an
analog input value on a Σ∆ modulator analog input. The conversion is based on a
configurable digital process: the digital filtering and decimation of the input serial data
stream.
The conversion speed and resolution are adjustable according to configurable parameters
for digital processing: filter type, filter order, length of filter, integrator length. The maximum
output data resolution is up to 24 bits. There are two conversion modes: single conversion
mode and continuous mode. The data can be automatically stored in a system RAM buffer
through DMA, thus reducing the software overhead.
A flexible timer triggering system can be used to control the start of conversion of DFSDM.
This timing control is capable of triggering simultaneous conversions or inserting a
programmable delay between conversions.
DFSDM features an analog watchdog function. Analog watchdog can be assigned to any of
the input channel data stream or to final output data. Analog watchdog has its own digital
filtering of input data stream to reach the required speed and resolution of watched data.
To detect short-circuit in control applications, there is a short-circuit detector. This block
watches each input channel data stream for occurrence of stable data for a defined time
duration (several 0’s or 1’s in an input data stream).
An extremes detector block watches final output data and stores maximum and minimum
values from the output data values. The extremes values stored can be restarted by
software.
Two power modes are supported: normal mode and stop mode.
DocID024597 Rev 3
603/1693
657
Digital filter for sigma delta modulators (DFSDM)
21.2
DFSDM main features
•
•
•
•
Up to 8 multiplexed input digital serial channels:
–
configurable SPI interface to connect various Σ∆ modulators
–
configurable Manchester coded 1 wire interface support
–
maximum input clock frequency up to 20 MHz (10 MHz for Manchester coded
stream)
–
clock output for Σ∆ modulator(s): 0..20 MHz
Alternative inputs from up to 8 internal digital parallel channels:
–
inputs with up to 16 bit resolution
–
internal sources: memory (CPU/DMA write) data streams
Adjustable digital signal processing:
–
Sincx filter: filter order/type (1..5), oversampling ratio (up to 1..1024)
–
integrator: oversampling ratio (1..256)
Up to 24-bit output data resolution:
–
right bit-shifter on final data (0..31 bits)
•
Signed output data format
•
Automatic data offset correction (offset stored in register by user)
•
Continuous or single conversion
•
Start-of-conversion synchronization with:
–
•
•
software trigger
–
internal timers
–
external events
–
start-of-conversion synchronously with first DFSDM (DFSDM0)
Analog watchdog feature:
–
low value and high value data threshold registers
–
own configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
–
input from output data register or from one or more input digital serial channels
–
continuous monitoring independently from standard conversion
Short-circuit detector to detect saturated analog input values (bottom and top ranges):
–
up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on input data stream
–
monitoring continuously each channel (8 serial channel transceiver outputs)
•
Break generation on analog watchdog event or short-circuit detector event
•
Extremes detector:
–
store minimum and maximum values of output data values
–
refreshed by software
•
DMA may be used to read the conversion data
•
Interrupts: end of conversion, overrun, analog watchdog, short-circuit, channel clock
absence
•
“regular” or “injected” conversions:
–
604/1693
RM0351
“regular” conversions can be requested at any time or even in continuous mode
without having any impact on the timing of “injected” conversions
DocID024597 Rev 3
RM0351
Digital filter for sigma delta modulators (DFSDM)
21.3
DFSDM functional description
21.3.1
DFSDM block diagram
Figure 146. Single DFSDM block diagram
$3%EXV
6DPSOH
6DPSOH
3DUDOOHOLQSXWGDWD
UHJLVWHU
6DPSOH 6DPSOH
&KDQQHOPXOWLSOH[HU
3DUDOOHOLQSXWGDWD
UHJLVWHU
')6'0B(;75*>@
&ORFN
FRQWURO
')6'0B&.287
')6'0B'$7$,1
'DWD
6HULDOWUDQVFHLYHU
0RGH
&ORFN
FRQWURO
FRQWURO
'DWDLQ
2YHUVDPSOLQJ
UDWLR
6LQF[ILOWHU
ZDWFKGRJILOWHUV
ZDWFKGRJFRPSDUDWRUV
V VFRXQWHU
WKUHVKROG
6KRUWFLUFXLW
V VFRXQWHU
GHWHFWRU
WKUHVKROG
,QWHUUXSW
EUHDN
)LOWHU
FRQILJ
,QWHUUXSW
EUHDN
+LJKWKUHVKROG
/RZWKUHVKROG
$QDORJZDWFKGRJ
6KRUWFLUFXLW
GHWHFWRU
)LOWHU
FRQILJ
2YHUVDPSOLQJ
UDWLR
6LQF[ILOWHU
,QWHJUDWRUXQLW
)LOWHU 2YHUVDPSOLQJ
2YHUVDPSOLQJ
RUGHU
UDWLR
UDWLR
&ORFNLQ
6HULDOWUDQVFHLYHU
')6'0B&.,1
&ORFN
)LOWHU
RUGHU
6WDWXV
')6'0B'$7$,1
0RGH
FRQWURO
&RQILJ
')6'0B&.,1
'DWD
&ORFN
+LJKWKUHVKROG
/RZWKUHVKROG
,QWHJUDWRUXQLW
5LJKWELWVKLIW
FRXQW
5LJKWELWVKLIW
&DOLEUDWLRQGDWD
FRXQW
FRUUHFWLRQXQLW
&DOLEUDWLRQGDWD
')6'0GDWD
FRUUHFWLRQXQLW
')6'0GDWD
'DWDRXWSXW
$QDORJZDWFKGRJ
$3%EXV
&RQWUROXQLW
&RQILJXUDWLRQ
UHJLVWHUV
'0$LQWHUUXSWEUHDN
FRQWUROFORFNFRQWURO
0D[LPXPYDOXH
0LQLPXPYDOXH
([WUHPHV
,QWHUUXSWVDQGHYHQWV
GHWHFWRU
HQGRIFRQYHUVLRQ
0D[LPXPYDOXH
DQDORJZDWFKGRJ
0LQLPXPYDOXH
VKRUWFLUFXLWGHWHFWLRQ
([WUHPHV
RYHUUXQ
GHWHFWRU
DocID024597 Rev 3
069
605/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
Note:
This example shows 4 DFSDM interfaces and 8 input channels (max. configuration).
21.3.2
DFSDM pins and internal signals
Table 120. DFSDM external pins
Name
Signal Type
Remarks
VDD
Power supply
Digital power supply 1.65 - 3.6V.
VSS
Power supply
Digital ground power supply.
DFSDM_CKIN[7:0]
Clock input
Clock signal provided from external Σ∆ modulator. FT input.
DFSDM_DATIN[7:0]
Data input
Data signal provided from external Σ∆ modulator. FT input.
DFSDM_CKOUT
Clock output
Clock output to provide clock signal into external Σ∆
modulator.
DFSDM_EXTRG[1:0]
External trigger Input trigger from two EXTI signals to start analog
signal
conversion (from GPIOs: EXTI11, EXTI15).
Table 121. DFSDM internal signals
Name
Signal Type
Remarks
DFSDM_INTRG[8:0]
Internal trigger Input trigger from internal trigger sources to start analog
signal
conversion, see Table 122 for details.
DFSDM_BREAK[3:0]
break signal
output
Break signals event generation from Analog watchdog or
short-circuit detector
DFSDM_DMAREQ[3:0]
DMA request
signal
DMA request signal from each DFSDMx (x=0..3): end of
injected conversion event.
DFSDM_INT[3:0]
Interrupt
request signal
Interrupt signal for each DFSDMx (x=0..3)
Table 122. DFSDM triggers connection
Trigger name
606/1693
Trigger source
DFSDM_INTRG[0]
TIM1_TRGO
DFSDM_INTRG[1]
TIM1_TRGO2
DFSDM_INTRG[2]
TIM8_TRGO
DFSDM_INTRG[3]
TIM8_TRGO2
DFSDM_INTRG[4]
TIM3_TRGO
DFSDM_INTRG[5]
TIM4_TRGO
DFSDM_INTRG[6]
TIM16_OC1
DFSDM_INTRG[7]
TIM6_TRGO
DFSDM_INTRG[8]
TIM7_TRGO
DFSDM_EXTRG[0]
EXTI11
DFSDM_EXTRG[1]
EXTI15
DocID024597 Rev 3
RM0351
21.3.3
Digital filter for sigma delta modulators (DFSDM)
DFSDM reset and clocks
DFSDM on-off control
The DFSDM interface is globally enabled by setting DFSDMEN=1 in the
DFSDM_CHCFG0R1 register. Once DFSDM is globally enabled, all input channels (y=0..7)
and digital filters DFSDMx (x=0..3) start to work if their enable bits are set (channel enable
bit CHEN in DFSDM_CHCFGyR1 and DFSDMx enable bit DFEN in DFSDMx_CR1).
Digital filter x DFSDMx (x=0..3) is enabled by setting DFEN=1 in the DFSDMx_CR1 register.
Once DFSDMx is enabled (DFEN=1), both Sincx digital filter unit and integrator unit are
reinitialized.
By clearing DFEN, any conversion which may be in progress is immediately stopped and
DFSDMx is put into stop mode. All register settings remain unchanged except
DFSDMx_AWSR and DFSDMx_ISR (which are reset).
Channel y (y=0..7) is enabled by setting CHEN=1 in the DFSDM_CHCFGyR1 register.
Once the channel is enabled, it receives serial data from the external Σ∆ modulator or
parallel internal data sources (CPU/DMA wire from memory).
DFSDM must be globally disabled (by DFSDMEN=0 in DFSDM_CHCFG0R1) before
stopping the system clock to enter in the STOP mode of the device.
DFSDM clocks
The internal DFSDM clock fDFSDMCLK, which is used to drive the channel transceivers,
digital processing blocks (digital filter, integrator) and next additional blocks (analog
watchdog, short-circuit detector, extremes detector, control block) is generated by the RCC
block and is derived from the system clock SYSCLK (max. up to fSYSCLK = 80 MHz) or
peripheral clock PCLK2 (see DFSDMSEL bit description in Section 6.4.28: Peripherals
independent clock configuration register (RCC_CCIPR)). The DFSDM clock is automatically
stopped in stop mode (if DFEN = 0 for all DFSDMx, x=0..3).
The DFSDM serial channel transceivers can receive an external serial clock to sample an
external serial data stream. The internal DFSDM clock must be at least 4 times faster than
the external serial clock if standard SPI coding is used, and 6 times faster than the external
serial clock if Manchester coding is used.
DFSDM can provide one external output clock signal to drive external Σ∆ modulator(s) clock
input(s). It is provided on DFSDM_CKOUT pin. This output clock signal must be in the range
0 - 20 MHz and is derived from DFSDM clock or from audio clock (see CKOUTSRC bit in
DFSDM_CHCFG0R1 register) by programmable divider in the range 2 - 256 (CKOUTDIV in
DFSDM_CHCFG0R1 register). Audio clock source is SAI1 clock selected by SAI1SEL[1:0]
field in RCC configuration (see Section 6.4.28: Peripherals independent clock configuration
register (RCC_CCIPR)).
21.3.4
Serial channel transceivers
There are 8 multiplexed serial data channels which can be selected for conversion by each
filter or Analog watchdog or Short-circuit detector. Those serial transceivers receive data
stream from external Σ∆ modulator. Data stream can be sent in SPI format or Manchester
coded format (see SITP[1:0] bits in DFSDM_CHCFGyR1 register).
The channel is enabled for operation by setting CHEN=1 in DFSDM_CHCFGyR1 register.
DocID024597 Rev 3
607/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
Channel inputs selection
Serial inputs (data and clock signals) from DFSDM_DATINy and DFSDM_CKINy pins can
be redirected from the following channel. The serial input channel redirection is set by
CHINSEL bit in DFSDM_CHCFGyR1 register.
Channel redirection can be used to collect audio data from PDM (pulse density modulation)
stereo microphone type. PDM stereo microphone has one data and one clock signal. Data
signal provides information for both left and right audio channel (rising clock edge samples
for left channel and falling clock edge samples for right channel).
Configuration of serial channels for PDM microphone input:
•
PDM microphone signals (data, clock) will be connected to DFSDM input serial channel
y (DFSDM_DATINy, DFSDM_CKINy).
•
Channel y will be configured: CHINSEL = 0 (input from channel y).
•
Channel (y-1) will be configured: CHINSEL = 1 (also input from channel y).
•
Channel y: SITP[1:0] = 0 (rising edge to strobe data) => left audio channel on channel
y.
•
Channel (y-1): SITP[1:0] = 1 (falling edge to strobe data) => right audio channel on
channel y-1.
•
Two DFSDM filters will be assigned to channel y and channel (y-1) (to filter left and
right channels from PDM microphone).
Output clock generation
A clock signal can be provided on DFSDM_CKOUT pin to drive external Σ∆ modulator clock
inputs. The frequency of this DFSDM_CKOUT signal is derived from DFSDM clock or from
audio clock (see CKOUTSRC bit in DFSDM_CHCFG0R1 register) divided by a predivider
(see CKOUTDIV bits in DFSDM_CHCFG0R1 register). If the output clock is stopped, then
DFSDM_CKOUT signal is set to low state (output clock can be stopped by CKOUTDIV=0 in
DFSDM_CHCFGyR1 register or by DFSDMEN=0 in DFSDMx_CHCFG0R1 register). The
output clock stopping is performed:
•
4 system clocks after DFSDMEN is cleared (if CKOUTSRC=0)
•
1 system clock and 3 audio clocks after DFSDMEN is cleared (if CKOUTSRC=1)
Before changing CKOUTSRC the software has to wait for CKOUT being stopped to avoid
glitch on DFSDM_CKOUT pin. The output clock signal frequency must be in the range 0 20 MHz.
SPI data input format operation
In SPI format, the data stream is sent in serial format through data and clock signals. Data
signal is always provided from DFSDM_DATINy pin. A clock signal can be provided
externally from DFSDM_CKINy pin or internally from a signal derived from the
DFSDM_CKOUT signal source.
In case of external clock source selection (SPICKSEL[1:0]=0) data signal (on
DFSDM_DATINy pin) is sampled on rising or falling clock edge (of DFSDM_CKINy pin)
according SITP[1:0] bits setting (in DFSDM_CHCFGyR1 register).
608/1693
DocID024597 Rev 3
RM0351
Digital filter for sigma delta modulators (DFSDM)
Internal clock sources - see SPICKSEL[1:0] in DFSDM_CHCFGyR1 register:
•
•
•
Note:
DFSDM_CKOUT signal:
–
For connection to external Σ∆ modulator which uses directly its clock input (from
DFSDM_CKOUT) to generate its output serial communication clock.
–
Sampling point: on rising/falling edge according SITP[1:0] setting.
DFSDM_CKOUT/2 signal (generated on DFSDM_CKOUT rising edge):
–
For connection to external Σ∆ modulator which divides its clock input (from
DFSDM_CKOUT) by 2 to generate its output serial communication clock (and this
output clock change is active on each clock input rising edge).
–
Sampling point: on each second DFSDM_CKOUT falling edge.
DFSDM_CKOUT/2 signal (generated on DFSDM_CKOUT falling edge):
–
For connection to external Σ∆ modulator which divides its clock input (from
DFSDM_CKOUT) by 2 to generate its output serial communication clock (and this
output clock change is active on each clock input falling edge).
–
Sampling point: on each second DFSDM_CKOUT rising edge.
An internal clock source can only be used when the external Σ∆ modulator uses
DFSDM_CKOUT signal as a clock input (to have synchronous clock and data operation).
Internal clock source usage can save DFSDM_CKINy pin connection (DFSDM_CKINy pins
can be used for other purpose).
The clock source signal frequency must be in the range 0 - 20 MHz for SPI coding and less
than fDFSDMCLK/4.
Manchester coded data input format operation
In Manchester coded format, the data stream is sent in serial format through
DFSDM_DATINy pin only. Decoded data and clock signal are recovered from serial stream
after Manchester decoding. There are two possible settings of Manchester codings (see
SITP[1:0] bits in DFSDM_CHCFGyR1 register):
•
signal rising edge = log 0; signal falling edge = log 1
•
signal rising edge = log 1; signal falling edge = log 0
The recovered clock signal frequency for Manchester coding must be in the range
0 - 10 MHz and less than fDFSDMCLK/6.
To correctly receive Manchester coded data, the CKOUTDIV divider (in
DFSDM_CHCFG0R1 register) must be set with respect to expected Manchester data rate
according formula:
( ( CKOUTDIV + 1 ) × T SYSCLK ) < T Manchester clock < ( 2 × CKOUTDIV × T SYSCLK )
DocID024597 Rev 3
609/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
')6'0B&.,1\
')6'0B'$7,1\
')6'0B&.287
63,&.6(/
WVX
WK
WZO
WZK
WU
WI
WU
WI
6,73
WVX
WK
6,73
63,&.6(/
63,&.6(/
63,&.6(/
WVX
')6'0B'$7,1\
63,WLPLQJ63,&.6(/
63,WLPLQJ63,&.6(/
Figure 147. Channel transceiver timing diagrams
WK
WZO
WZK
6,73
WVX
WK
6,73
')6'0B'$7,1\
0DQFKHVWHUWLPLQJ
6,73
6,73
UHFRYHUHGFORFN
UHFRYHUHGGDWD
069
610/1693
DocID024597 Rev 3
RM0351
Digital filter for sigma delta modulators (DFSDM)
Clock absence detection
Channels serial clock inputs can be checked for clock absence/presence to ensure the
correct operation of conversion and error reporting. Clock absence detection can be
enabled or disabled on each input channel y by bit CKABEN in DFSDMx_CHCFGyR1
register. If enabled, then this clock absence detection is performed continuously on a given
channel. A clock absence flag is set (CKABF[y] = 1) and an interrupt can be invoked (if
CKABIE=1) in case of an input clock error (see CKABF[7:0] in DFSDMx_ISR register and
CKABEN in DFSDMx_CHCFGyR1). After a clock absence flag clearing (by CLRCKABF in
DFSDMx_ICR register), the clock absence flag is refreshed. Clock absence status bit
CKABF[y] is set also by hardware when corresponding channel y is disabled (if CHEN[y] = 0
CKABF[y] is held in set state).
When a clock absence event has occurred, the data conversion (and/or analog watchdog
and short-circuit detector) provides incorrect data. The user should manage this event and
discard given data while a clock absence is reported.
The clock absence feature is available only when the system clock is used for the
DFSDM_CKOUT signal (CKOUTSRC=0 in DFSDM_CHCFG0R1 register).
When the transceiver is not yet synchronized, the clock absence flag is set and cannot be
cleared by CLRCKABF[y] bit (in DFSDMx_ICR register). The software sequence concerning
clock absence detection feature should be:
•
Enable given channel by CHEN = 1
•
Try to clear the clock absence flag (by CLRCKABF = 1) until the clock absence flag is
really cleared (CKABF = 0). At this time, the transceiver is synchronized (signal clock is
valid) and is able to receive data.
•
Enable the clock absence feature CKABEN = 1 and the associated interrupt CKABIE =
1 to detect if the SPI clock is lost or Manchester data edges are missing.
If SPI data format is used, then the clock absence detection is based on the comparison of
an external input clock with an output clock generation (DFSDM_CKOUT signal). The
external input clock signal into the input channel must be changed at least once per 8 signal
periods of DFSDM_CKOUT signal (which is controlled by CKOUTDIV field in
DFSDM_CHCFG0R1 register).
Figure 148. Clock absence timing diagram for SPI
63,FORFNSUHVHQFH
WLPLQJ
PD[SHULRGV
')6'0B&.287
UHVWDUWFRXQWLQJ
')6'0B&.,1\
ODVWFORFNFKDQJH
&.$%)>\@
HUURUUHSRUWHG
069
DocID024597 Rev 3
611/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
If Manchester data format is used, then the clock absence means that the clock recovery is
unable to perform from Manchester coded signal. For a correct clock recovery, it is first
necessary to receive data with 1 to 0 or 0 to 1 transition (see Figure 150 for Manchester
synchronization).
The detection of a clock absence in Manchester coding (after a first successful
synchronization) is based on changes comparison of coded serial data input signal with
output clock generation (DFSDM_CKOUT signal). There must be a voltage level change on
DFSDM_DATINy pin during 2 periods of DFSDM_CKOUT signal (which is controlled by
CKOUTDIV bits in DFSDM_CHCFG0R1 register). This condition also defines the minimum
data rate to be able to correctly recover the Manchester coded data and clock signals.
The maximum data rate of Manchester coded data must be less than the DFSDM_CKOUT
signal.
So to correctly receive Manchester coded data, the CKOUTDIV divider must be set
according the formula:
( ( CKOUTDIV + 1 ) × T SYSCLK ) < T Manchester clock < ( 2 × CKOUTDIV × T SYSCLK )
A clock absence flag is set (CKABF[y] = 1) and an interrupt can be invoked (if CKABIE=1) in
case of an input clock recovery error (see CKABF[7:0] in DFSDMx_ISR register and
CKABEN in DFSDMx_CHCFGyR1). After a clock absence flag clearing (by CLRCKABF in
DFSDMx_ICR register), the clock absence flag is refreshed.
612/1693
DocID024597 Rev 3
RM0351
Digital filter for sigma delta modulators (DFSDM)
Figure 149. Clock absence timing diagram for Manchester coding
PD[SHULRGV
')6'0B&.287
')6'0B'$7,1\
0DQFKHVWHUFORFNSUHVHQFH
WLPLQJ
UHVWDUWFRXQWLQJ
6,73
ODVWGDWDFKDQJH
6,73
UHFRYHUHGFORFN
UHFRYHUHGGDWD
"
"
&.$%)>\@
HUURUUHSRUWHG
069
Manchester/SPI code synchronization
The Manchester coded stream must be synchronized the first time after enabling the
channel (CHEN=1 in DFSDM_CHCFGyR1 register). The synchronization ends when a data
transition from 0 to 1 or from 1 to 0 (to be able to detect valid data edge) is received. The
end of the synchronization can be checked by polling CKABF[y]=0 for a given channel after
it has been cleared by CLRCKABF[y] in DFSDMx_ICR, following the software sequence
detailed hereafter:
CKABF[y] flag is cleared by setting CLRCKABF[y] bit. If channel y is not yet synchronized
the hardware immediately set the CKABF[y] flag. Software is then reading back the
CKABF[y] flag and if it is set then perform again clearing of this flag by setting
CLRCKABF[y] bit. This software sequence (polling of CKABF[y] flag) continues until
CKABF[y] flag is set (signalizing that Manchester stream is synchronized). To be able to
synchronize/receive Manchester coded data the CKOUTDIV divider (in
DFSDM_CHCFG0R1 register) must be set with respect to expected Manchester data rate
according the formula below.
( ( CKOUTDIV + 1 ) × T SYSCLK ) < T Manchester clock < ( 2 × CKOUTDIV × T SYSCLK )
DocID024597 Rev 3
613/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
SPI coded stream is synchronized after first detection of clock input signal (valid
rising/falling edge).
Note:
When the transceiver is not yet synchronized, the clock absence flag is set and cannot be
cleared by CLRCKABF[y] bit (in DFSDMx_ICR register).
')6'0B'$7,1\
0DQFKHVWHUWLPLQJ
Figure 150. First conversion for Manchester coding (Manchester synchronization)
6,73
6,73
UHFRYHUHGFORFN
GDWDIURP
PRGXODWRU
&+(1
UHDOVWDUWRIILUVWFRQYHUVLRQ
ILUVWFRQYHUVLRQ
VWDUWWULJJHU
UHFRYHUHGGDWD
ILUVWGDWDELWWRJJOHHQGRI0DQFKHVWHUV\QFKURQL]DWLRQ
"
"
&.$%)>\@
FOHDULQJRI&.$%)>\@IODJE\VRIWZDUHSROOLQJ
069
External serial clock frequency measurement
The measuring of a channel serial clock input frequency provides a real data rate from an
external Σ∆ modulator, which is important for application purposes.
An external serial clock input frequency can be measured by a timer counting DFSDM
clocks (fDFSDMCLK) during one conversion duration. The counting starts at the first input data
clock after a conversion trigger (regular or injected) and finishes by last input data clock
before conversion ends (end of conversion flag is set). Each conversion duration (time
between first serial sample and last serial sample) is updated in counter CNVCNT[27:0] in
register DFSDMx_CNVTIMR when the conversion finishes (JEOCF=1 or REOCF=1). The
user can then compute the data rate according to the digital filter settings (FORD, FOSR,
IOSR, FAST). The external serial frequency measurement is stopped only if the filter is
614/1693
DocID024597 Rev 3
RM0351
Digital filter for sigma delta modulators (DFSDM)
bypassed (FOSR=0, only integrator is active, CNVCNT[27:0]=0 in DFSDMx_CNVTIMR
register).
In case of parallel data input (Section 21.3.6: Parallel data inputs) the measured frequency
is the average input data rate during one conversion.
Note:
When conversion is interrupted (e.g. by disabling/enabling the selected channel) the
interruption time is also counted in CNVCNT[27:0]. Therefore it is recommended to not
interrupt the conversion for correct conversion duration result.
Conversion times:
injected conversion or regular conversion with FAST = 0 (or first conversion if
FAST=1):
for Sincx filters (x=1..5):
t = CNVCNT/fDFSDMCLK = [FOSR * (IOSR-1 + FORD) + FORD] / fDFSDM_CKIN
for FastSinc filter:
t = CNVCNT/fDFSDMCLK = [FOSR * (IOSR-1 + 4) + 2] / fDFSDM_CKIN
regular conversion with FAST = 1 (except first conversion):
for Sincx and FastSinc filters:
t = CNVCNT/fDFSDMCLK = [FOSR * IOSR] / fDFSDM_CKIN
in case if FOSR = FOSR[9:0]+1 = 1 (filter bypassed, active only integrator):
t = IOSR / fDFSDM_CKIN (... but CNVCNT=0)
where:
•
fDFSDM_CKIN is the channel input clock frequency (on given channel
DFSDM_CKINypin) or input data rate (in case of parallel data input)
•
FOSR is the filter oversampling ratio: FOSR = FOSR[9:0]+1 (see DFSDMx_FCR
register)
•
IOSR is the integrator oversampling ratio: IOSR = IOSR[7:0]+1 (see DFSDMx_FCR
register)
•
FORD is the filter order: FORD = FORD[2:0] (see DFSDMx_FCR register)
Channel offset setting
Each channel has its own offset setting (in register) which is finally subtracted from each
conversion result (injected or regular) from a given channel. The offset is stored as a 24-bit
signed value in OFFSET[23:0] field in DFSDM_CHCFGyR2 register.
Data right bit shift
To have the result aligned to a 24-bit value, each channel defines a number of right bit shifts
which will be applied on each conversion result (injected or regular) from a given channel.
The data bit shift number is stored in DTRBS[4:0] bits in DFSDM_CHCFGyR2 register.
The right bit-shift is rounding the result to nearest integer value. The sign of shifted result is
maintained, in order to have valid 24-bit signed format of result data.
DocID024597 Rev 3
615/1693
657
Digital filter for sigma delta modulators (DFSDM)
21.3.5
RM0351
Configuring the input serial interface
The following parameters must be configured for the input serial interface:
21.3.6
•
Output clock predivider. There is a programmable predivider to generate the output
clock from DFSDM clock (2 - 256). It is defined in DFSDMx_CR1 register.
•
Serial interface type and input clock phase. Selection of SPI or Manchester coding
and sampling edge of input clock. It is defined by SITP [1:0] bits in
DFSDM_CHCFGyR1 register.
•
Input clock source. External source from DFSDM_CKINy pin or internal from
DFSDM_CKOUT pin. It is defined by SPICKSEL[1:0] field in DFSDM_CHCFGyR1
register.
•
Final data right bit-shift. Defines the final data right bit shift to have the result aligned
to a 24-bit value. It is defined by DTRBS[4:0] in DFSDM_CHCFGyR2 register.
•
Channel offset per channel. Defines the analog offset of a given serial channel (offset
of connected external Σ∆ modulator). It is defined by OFFSET[23:0] bits in
DFSDM_CHCFGyR2 register.
•
short-circuit detector and clock absence per channel enable. To enable or disable
the short-circuit detector (by SCDEN bit) and the clock absence monitoring (by
CKABEN bit) on a given serial channel in register DFSDM_CHCFGyR1.
•
Analog watchdog filter and short-circuit detector threshold settings. To configure
channel analog watchdog filter parameters and channel short-circuit detector
parameters. Configurations are defined in DFSDM_AWSCDyR register.
Parallel data inputs
Each input channel provides a register for 16-bit parallel data input (besides serial data
input). Each 16-bit parallel input can be sourced from internal data sources only:
•
direct CPU/DMA writing.
The selection for using serial or parallel data input for a given channel is done by field
DATMPX[1:0] of DFSDM_CHCFGyR1 register. In DATMPX[1:0] is also defined the parallel
data source: direct write by CPU/DMA.
Each channel contains a 32-bit data input register DFSDM_CHDATINyR in which it can be
written a 16-bit data. Data are in 16-bit signed format. Those data can be used as input to
the digital filter which is accepting 16-bit parallel data.
If serial data input is selected (DATMPX[1:0] = 0), the DFSDM_CHDATINyR register is write
protected.
Input from memory (direct CPU/DMA write)
The direct data write into DFSDM_CHDATINyR register by CPU or DMA (DATMPX[1:0]=2)
can be used as data input in order to process digital data streams from memory or
peripherals.
Data can be written by CPU or DMA into DFSDM_CHDATINyR register:
1.
CPU data write:
Input data are written directly by CPU into DFSDM_CHDATINyR register.
2.
DMA data write:
The DMA should be configured in memory-to-memory transfer mode to transfer data
from memory buffer into DFSDM_CHDATINyR register. The destination memory
616/1693
DocID024597 Rev 3
RM0351
Digital filter for sigma delta modulators (DFSDM)
address is the address of DFSDM_CHDATINyR register. Data are transferred at DMA
transfer speed from memory to DFSDM parallel input.
This DMA transfer is different from DMA used to read DFSDM conversion results. Both
DMA can be used at the same time - first DMA (configured as memory-to-memory
transfer) for input data writings and second DMA (configured as peripheral-to-memory
transfer) for data results reading.
The accesses to DFSDM_CHDATINyR can be either 16-bit or 32-bit wide, allowing to load
respectively one or two samples in one write operation. 32-bit input data register
(DFSDM_CHDATINyR) can be filled with one or two 16-bit data samples, depending on the
data packing operation mode defined in field DATPACK[1:0] of DFSDM_CHCFGyR1
register:
1.
Standard mode (DATPACK[1:0]=0):
Only one sample is stored in field INDAT0[15:0] of DFSDM_CHDATINyR register which
is used as input data for channel y. The upper 16 bits (INDAT1[15:0]) are ignored and
write protected. The digital filter must perform one input sampling (from INDAT0[15:0])
to empty data register after it has been filled by CPU/DMA. This mode is used together
with 16-bit CPU/DMA access to DFSDM_CHDATINyR register to load one sample per
write operation.
2.
Interleaved mode (DATPACK[1:0]=1):
DFSDM_CHDATINyR register is used as a two sample buffer. The first sample is
stored in INDAT0[15:0] and the second sample is stored in INDAT1[15:0]. The digital
filter must perform two input samplings from channel y to empty DFSDM_CHDATINyR
register. This mode is used together with 32-bit CPU/DMA access to
DFSDM_CHDATINyR register to load two samples per write operation.
3.
Dual mode (DATPACK[1:0]=2):
Two samples are written into DFSDM_CHDATINyR register. The data INDAT0[15:0] is
for channel y, the data in INDAT1[15:0] is for channel y+1. The data in INDAT1[15:0] is
automatically copied INDAT0[15:0] of the following (y+1) channel data register
DFSDM_CHDATIN[y+1]R). The digital filters must perform two samplings - one from
channel y and one from channel (y+1) - in order to empty DFSDM_CHDATINyR
registers.
Dual mode setting (DATPACK[1:0]=2) is available only on even channel numbers (y =
0, 2, 4, 6). If odd channel (y = 1, 3, 5, 7) is set to Dual mode then both INDAT0[15:0]
and INDAT1[15:0] parts are write protected for this channel. If even channel is set to
Dual mode then the following odd channel must be set into Standard mode
(DATPACK[1:0]=0) for correct cooperation with even channels.
See Figure 151 for DFSDM_CHDATINyR registers data modes and assignments of data
samples to channels.
DocID024597 Rev 3
617/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
Figure 151. DFSDM_CHDATINyR registers operation modes and assignment
6WDQGDUGPRGH
,QWHUOHDYHGPRGH
'XDOPRGH
&K VDPSOH &K VDPSOH
8QXVHG
&K VDPSOH
&K VDPSOH &K VDPSOH
8QXVHG
&K VDPSOH
&K VDPSOH &K VDPSOH
8QXVHG
&K VDPSOH
&K VDPSOH &K VDPSOH
8QXVHG
&K VDPSOH
&K VDPSOH &K VDPSOH
8QXVHG
&K VDPSOH
&K VDPSOH &K VDPSOH
8QXVHG
&K VDPSOH
&K VDPSOH &K VDPSOH
8QXVHG
&K VDPSOH
&K VDPSOH &K VDPSOH
8QXVHG
&K VDPSOH
&K VDPSOH &K VDPSOH
8QXVHG
\
&K VDPSOH
\
&K VDPSOH &K VDPSOH
\
8QXVHG
&K VDPSOH
\
&K VDPSOH &K VDPSOH
\
8QXVHG
&K VDPSOH
\
&K VDPSOH &K VDPSOH
\
8QXVHG
&K VDPSOH
\
069
The write into DFSDM_CHDATINyR register to load one or two samples must be performed
after the selected input channel (channel y) is enabled for data collection (starting
conversion for channel y). Otherwise written data are lost for next processing.
For example: for single conversion and interleaved mode, do not start writing pair of data
samples into DFSDM_CHDATINyR before the single conversion is started (any data
present in the DFSDM_CHDATINyR before starting a conversion is discarded).
21.3.7
Channel selection
There are 8 multiplexed channels which can be selected for conversion using the injected
channel group and/or using the regular channel.
The injected channel group is a selection of any or all of the 8 channels. JCHG[7:0] in the
DFSDMx_JCHGR register selects the channels of the injected group, where JCHG[y]=1
means that channel y is selected.
Injected conversions can operate in scan mode (JSCAN=1) or single mode (JSCAN=0). In
scan mode, each of the selected channels is converted, one after another. The lowest
channel (channel 0, if selected) is converted first, followed immediately by the next higher
channel until all the channels selected by JCHG[7:0] have been converted. In single mode
(JSCAN=0), only one channel from the selected channels is converted, and the channel
selection is moved to the next channel. Writing to JCHG[7:0] if JSCAN=0 resets the channel
selection to the lowest selected channel.
Injected conversions can be launched by software or by a trigger. They are never
interrupted by regular conversions.
The regular channel is a selection of just one of the 8 channels. RCH[2:0] in the
DFSDMx_CR1 register indicates the selected channel.
Regular conversions can be launched only by software (not by a trigger). A sequence of
continuous regular conversions is temporarily interrupted when an injected conversion is
requested.
Performing a conversion on a disabled channel (CHEN=0 in DFSDM_CHCFGyR1 register)
causes that the conversion will never end - because no input data is provided (with no clock
signal). In this case, it is necessary to enable a given channel (CHEN=1 in
DFSDM_CHCFGyR1 register) or to stop the conversion by DFEN=0 in DFSDMx_CR1
register.
618/1693
DocID024597 Rev 3
RM0351
Digital filter configuration
DFSDM contains a Sincx type digital filter implementation. This Sincx filter performs an input
digital data stream filtering, which results in decreasing the output data rate (decimation)
and increasing the output data resolution. The Sincx digital filter is configurable in order to
reach the required output data rates and required output data resolution. The configurable
parameters are:
•
•
Filter order/type: (see FORD[2:0] bits in DFSDMx_FCR register):
–
FastSinc
–
Sinc1
–
Sinc2
–
Sinc3
–
Sinc4
–
Sinc5
Filter oversampling/decimation ratio (see FOSR[9:0] bits in DFSDMx_FCR register):
–
FOSR = 1-1024
–
FOSR = 1-215
–
FOSR = 1-73
- for FastSinc filter and Sincx filter x = FORD = 1..3
- for Sincx filter x = FORD = 4
- for Sincx filter x = FORD = 5
The filter has the following transfer function (impulse response in H domain):
•
x
Sincx filter type:
⎛ 1 – z – FOSR⎞
-⎟
H ( z ) = ⎜ ---------------------------⎝ 1 – z–1 ⎠
FastSinc filter type:
⎛ 1 – z– FOSR⎞
-⎟ ⋅ ( 1 + z –( 2 ⋅
H ( z ) = ⎜ ---------------------------–1
⎝ 1–z
⎠
2
•
FOSR )
)
Figure 152. Example: Sinc3 filter response
*DLQ G%
21.3.8
Digital filter for sigma delta modulators (DFSDM)
1RUPDOL]HGIUHTXHQF\ I,1I'$7$
DocID024597 Rev 3
069
619/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
Table 123. Filter maximum output resolution (peak data values from filter output)
for some FOSR values
FOSR
Sinc1
Sinc2
FastSinc
Sinc3
Sinc4
Sinc5
x
+/- x
+/- x2
+/- 2x2
+/- x3
+/- x4
+/- x5
4
+/- 4
+/- 16
+/- 32
+/- 64
+/- 256
+/- 1024
8
+/- 8
+/- 64
+/- 128
+/- 512
+/- 4096
-
32
+/- 32
+/- 1024
+/- 2048
+/- 32768
+/- 1048576
+/- 33554432
64
+/- 64
+/- 4096
+/- 8192
+/- 262144
+/- 16777216
+/- 1073741824
128
+/- 128
+/- 16384
+/- 32768
+/- 2097152
+/- 268435456
256
+/- 256
+/- 65536
+/- 131072
+/- 16777216
1024
+/- 1024 +/- 1048576
Result can overflow on full scale
input (> 32-bit signed integer)
+/- 2097152 +/- 1073741824
For more information about Sinc filter type properties and usage, it is recommended to study
the theory about digital filters (more resources can be downloaded from internet).
21.3.9
Integrator unit
The integrator performs additional decimation and a resolution increase of data coming from
the digital filter. The integrator simply performs the sum of data from a digital filter for a given
number of data samples from a filter.
The integrator oversampling ratio parameter defines how many data counts will be summed
to one data output from the integrator. IOSR can be set in the range 1-256 (see IOSR[7:0]
bits description in DFSDMx_FCR register).
Table 124. Integrator maximum output resolution (peak data values from integrator
output) for some IOSR values and FOSR = 256 and Sinc3 filter type (largest data)
IOSR
x
21.3.10
Sinc1
Sinc2
FastSinc
+/- FOSR. x +/- FOSR2. x +/- 2.FOSR2. x
Sinc3
Sinc4
Sinc5
+/- FOSR3. x
+/- FOSR4. x
+/- FOSR5. x
4
-
-
-
+/- 67 108 864
-
-
32
-
-
-
+/- 536 870 912
-
-
128
-
-
-
+/- 2 147 483
648
-
-
256
-
-
-
+/- 232
-
-
Analog watchdog
The analog watchdog purpose is to trigger an external signal (break or interrupt) when an
analog signal reaches or crosses given maximum and minimum threshold values. An
interrupt/event/break generation can then be invoked.
Each analog watchdog will supervise serial data receiver outputs (after the analog watchdog
filter on each channel) or data output register (current injected or regular conversion result)
according to AWFSEL bit setting (in DFSDMx_CR1 register). The input channels to be
monitored or not by the analog watchdog x will be selected by AWDCH[7:0] in
DFSDMx_CR2 register.
620/1693
DocID024597 Rev 3
RM0351
Digital filter for sigma delta modulators (DFSDM)
Analog watchdog conversions on input channels are independent from standard
conversions. In this case, the analog watchdog uses its own filters and signal processing on
each input channel independently from the main injected or regular conversions. Analog
watchdog conversions are performed in a continuous mode on the selected input channels
in order to watch channels also when main injected or regular conversions are paused
(RCIP = 0, JCIP = 0).
There are high and low threshold registers which are compared with given data values (set
by AWHT[23:0] bits in DFSDMx_AWHTR register and by AWLT[23:0] bits in
DFSDMx_AWLTR register).
Input data into analog watchdog selection and features:
•
•
from final output data register (AWFSEL=0):
–
high resolution (up to 24-bits)
–
slow response time - not good for fast response (e.g overcurrent)
–
for comparison, final data is taken after offset data correction and bit shifting
–
final data is watched only when main regular or injected conversions are
converted
–
can be used in case of parallel input data source (DATMPX[1:0] ≠ 0 in
DFSDM_CHCFGyR1 register)
from any of serial data receiver outputs (AWFSEL=1):
–
through own analog watchdog Sincx channel filters with configurable
oversampling ratio (1..32) and filter order (1..3) (see AWFOSR[4:0] and
AWFORD[1:0] bits setting in DFSDM_AWSCDyR register)
–
lower resolution (up to 16-bit)
–
fast response time - for applications which require a fast response (e.g
overcurrent, overvoltage detection)
–
data is watched in continuous mode independently from main regular or injected
conversions
In case of input channels monitoring (AWFSEL=1), the data for comparison to threshold is
taken from channels selected by AWDCH[7:0] field (DFSDMx_CR2 register). Each of the
selected channels filter result is compared to one threshold value pair (AWHT[23:0] /
AWLT[23:0]). In this case, only higher 16 bits (AWHT[23:8] / AWLT[23:8]) define the 16-bit
threshold compared with the analog watchdog filter output because data coming from the
analog watchdog filter is up to a 16-bit resolution. Bits AWHT[7:0] / AWLT[7:0] are not taken
into comparison in this case (AWFSEL=1).
Parameters of the analog watchdog filter configuration for each input channel are set in
DFSDM_AWSCDyR register (filter order AWFORD[1:0] and filter oversampling ratio
AWFOSR[4:0]).
Each input channel has its own comparator which compares the analog watchdog data
(from analog watchdog filter) with analog watchdog threshold values (AWHT/AWLT). When
several channels are selected (field AWDCH[7:0] field of DFSDMx_CR2 register), several
comparison requests may be received simultaneously. In this case, the channel request with
the lowest number is managed first and then continuing to higher selected channels. For
each channel, the result can be recorded in a separate flag (fields AWHTF[7:0], AWLTF[7:0]
of DFSDMx_AWSR register). Each channel request is executed in 8 DFSDM clock cycles.
So, the bandwidth from each channel is limited to 8 DFSDM clock cycles (if AWDCH[7:0] =
0xFF). Because the maximum input channel sampling clock frequency is the DFSDM clock
frequency divided by 4, the configuration AWFOSR = 0 (analog watchdog filter is bypassed)
DocID024597 Rev 3
621/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
cannot be used for analog watchdog feature at this input clock speed. Therefore user must
properly configure the number of watched channels and analog watchdog filter parameters
with respect to input sampling clock speed and DFSDM frequency.
Analog watchdog filter data for given channel y is available for reading by firmware on field
WDATA[15:0] in DFSDM_CHWDATyR register. That analog watchdog filter data is
converted continuously (if CHEN=1 in DFSDM_CHCFGyR1 register) with the data rate
given by the analog watchdog filter setting and the channel input clock frequency.
The analog watchdog filter conversion works like a regular Fast Continuous Conversion
without the intergator. The number of serial samples needed for one result from analog
watchdog filter output (at channel input clock frequency fDFSDM_CKIN):
first conversion:
for Sincx filters (x=1..5): number of samples = [FOSR * FORD + FORD + 1]
for FastSinc filter: number of samples = [FOSR * 4 + 2 + 1]
next conversions:
for Sincx and FastSinc filters: number of samples = [FOSR * IOSR]
where:
FOSR ....... filter oversampling ratio: FOSR = AWFOSR[4:0]+1 (see DFSDM_AWSCDyR
register)
FORD ....... the filter order: FORD = AWFORD[1:0] (see DFSDM_AWSCDyR register)
In case of output data register monitoring (AWFSEL=0), the comparison is done after an
offset correction and a right bit shift of final data (see OFFSET[23:0] and DTRBS[4:0] fields
in DFSDM_CHCFGyR2 register). A comparison is performed after each injected or regular
end of conversion for the channels selected by AWDCH[7:0] field (in DFSDMx_CR2
register).
The status of an analog watchdog event is signalized in DFSDMx_AWSR register where a
given event is latched. AWHTF[y]=1 flag signalizes crossing AWHT[23:0] value on channel
y. AWLTF[y]=1 flag signalizes crossing AWLT[23:0] value on channel y. Latched events in
DFSDMx_AWSR register are cleared by writing ‘1’ into the corresponding clearing bit
CLRAWHTF[y] or CLRAWLTF[y] in DFSDMx_AWCFR register.
The global status of an analog watchdog is signalized by the AWDF flag bit in DFSDMx_ISR
register (it is used for the fast detection of an interrupt source). AWDF=1 signalizes that at
least one watchdog occurred (AWHTF[y]=1 or AWLTF[y]=1 for at least one channel). AWDF
bit is cleared when all AWHTF[7:0] and AWLTF[7:0] are cleared.
An analog watchdog event can be assigned to break output signal. There are four break
outputs to be assigned to a high or low threshold crossing event (DFSDM_BREAK[3:0]). The
break signal assignment to a given analog watchdog event is done by BKAWH[3:0] and
BKAWL[3:0] fields in DFSDMx_AWHTR and DFSDMx_AWLTR register.
21.3.11
Short-circuit detector
The purpose of a short-circuit detector is to signalize with a very fast response time if an
analog signal reached saturated values (out of full scale ranges) and remained on this value
given time. This behavior can detect short-circuit or open circuit errors (e.g. overcurrent or
overvoltage). An interrupt/event/break generation can be invoked.
Input data into a short-circuit detector is taken from channel transceiver outputs.
622/1693
DocID024597 Rev 3
RM0351
Digital filter for sigma delta modulators (DFSDM)
There is an upcounting counter on each input channel which is counting consecutive 0’s or
1’s on serial data receiver outputs. A counter is restarted if there is a change in the data
stream received - 1 to 0 or 0 to 1 change of data signal. If this counter reaches a short-circuit
threshold register value (SCDT[7:0] bits in DFSDM_AWSCDyR register), then a short-circuit
event is invoked. Each input channel has its short-circuit detector. Any channel can be
selected to be continuously monitored by setting the SCDEN bit (in DFSDM_CHCFGyR1
register) and it has its own short-circuit detector settings (threshold value in SCDT[7:0] bits,
status bit SCDF[7:0], status clearing bits CLRSCDF[7:0]). Status flag SCDF[y] is cleared
also by hardware when corresponding channel y is disabled (CHEN[y] = 0).
On each channel, a short-circuit detector event can be assigned to break output signal
DFSDM_BREAK[3:0]. There are four break outputs to be assigned to a short-circuit detector
event. The break signal assignment to a given channel short-circuit detector event is done
by BKSCD[3:0] field in DFSDM_AWSCDyR register.
Short circuit detector cannot be used in case of parallel input data channel selection
(DATMPX[1:0] ≠ 0 in DFSDM_CHCFGyR1 register).
Four break outputs are totally available (shared with the analog watchdog function).
21.3.12
Extremes detector
The purpose of an extremes detector is to collect the minimum and maximum values of final
output data words (peak to peak values).
If the output data word is higher than the value stored in the extremes detector maximum
register (EXMAX[23:0] bits in DFSDMx_EXMAX register), then this register is updated with
the current output data word value and the channel from which the data is stored is in
EXMAXCH[2:0] bits (in DFSDMx_EXMAX register) .
If the output data word is lower than the value stored in the extremes detector minimum
register (EXMIN[23:0] bits in DFSDMx_EXMIN register), then this register is updated with
the current output data word value and the channel from which the data is stored is in
EXMINCH[2:0] bits (in DFSDMx_EXMIN register).
The minimum and maximum register values can be refreshed by software (by reading given
DFSDMx_EXMAX or DFSDMx_EXMIN register). After refresh, the extremes detector
minimum data register DFSDMx_EXMIN is filled with 0x7FFFFF (maximum positive value)
and the extremes detector maximum register DFSDMx_EXMAX is filled with 0x800000
(minimum negative value).
The extremes detector performs a comparison after an offset and a bit shift data correction.
For each extremes detector, the input channels to be considered into computing the
extremes value are selected in EXCH[7:0] bits (in DFSDMx_CR2 register).
21.3.13
Data unit block
The data unit block is the last block of the whole processing path: External Σ∆ modulators Serial transceivers - Sinc filter - Integrator - Data unit block.
The output data rate depends on the serial data stream rate, and filter and integrator
settings. The maximum output data rate is:
Datarate samples ⁄ s
f DFSDM_CKIN
= ---------------------------------------------------------------------------------------------------------F OSR ⋅ ( I OSR – 1 + F ORD ) + ( F ORD + 1 )
DocID024597 Rev 3
...FAST = 0, Sincx filter
623/1693
657
Digital filter for sigma delta modulators (DFSDM)
Datarate samples ⁄ s
RM0351
f DFSDM_CKIN
= ----------------------------------------------------------------------------------F OSR ⋅ ( I OSR – 1 + 4 ) + ( 2 + 1 )
...FAST = 0, FastSinc filter
or
Datarate samples ⁄ s
f DFSDM_CKIN
= ----------------------------------F OSR ⋅ I OSR
...FAST = 1
Maximum output data rate in case of parallel data input:
Datarate samples ⁄ s
f DATAIN_RATE
= ---------------------------------------------------------------------------------------------------------F OSR ⋅ ( I OSR – 1 + F ORD ) + ( F ORD + 1 )
...FAST = 0, Sincx filter
or
Datarate samples ⁄ s
f DATAIN_RATE
= ----------------------------------------------------------------------------------F OSR ⋅ ( I OSR – 1 + 4 ) + ( 2 + 1 )
...FAST = 0, FastSinc filter
or
Datarate samples ⁄ s
f DATAIN_RATE
= -----------------------------------F OSR ⋅ I OSR
...FAST=1 or any filter bypass case ( F OSR = 1 )
where: f DATAIN_RATE ...input data rate from CPU/DMA
The final right bit-shift of final data is performed in this module because the final data width
is 24-bit and data coming from the processing path can be up to 32 bits. This right bit-shift is
configurable in the range 0-31 bits for each selected input channel (see DTRBS[4:0] bits in
DFSDM_CHCFGyR2 register). The right bit-shift is rounding the result to nearest integer
value. The sign of shifted result is maintained - to have valid 24-bit signed format of result
data.
At last, an offset correction of the result is performed. The offset correction value
(OFFSET[23:0] stored in register DFSDM_CHCFGyR2) is subtracted from the output data
for a given channel. Data in the OFFSET[23:0] field is set by software by the appropriate
calibration routine.
Due to the fact that all operations in digital processing are performed on 32-bit signed
registers, the following conditions must be fulfilled not to overflow the result:
FOSR FORD . IOSR <= 231 ... for Sincx filters, x = 1..5)
2 . FOSR 2 . IOSR <= 231 ... for FastSinc filter)
Note:
In case of filter and integrator bypass (IOSR[7:0]=0, FOSR[9:0]=0), the input data rate
(fDATAIN_RATE) must be limited to be able to read all output data:
fDATAIN_RATE ≤ fAPB
where fAPB is the bus frequency to which the DFSDM peripheral is connected.
21.3.14
Signed data format
Each DFSDM input serial channel can be connected to one external Σ∆ modulator. An
external Σ∆ modulator can have 2 differential inputs (positive and negative) which can be
used for a differential or single-ended signal measurement.
624/1693
DocID024597 Rev 3
RM0351
Digital filter for sigma delta modulators (DFSDM)
A Σ∆ modulator output is always assumed in a signed format (a data stream of zeros and
ones from a Σ∆ modulator represents values -1 and +1).
Signed data format in registers: Data is in a signed format in registers for final output data,
analog watchdog, extremes detector, offset correction. The msb of output data word
represents the sign of value (two’s complement format).
21.3.15
Launching conversions
Injected conversions can be launched using the following methods:
•
Software: writing ‘1’ to JSWSTART in the DFSDMx_CR1 register.
•
Trigger: JEXTSEL[2:0] selects the trigger signal while JEXTEN activates the trigger
and selects the active edge at the same time (see the DFSDMx_CR1 register).
•
Synchronous with DFSDM0 if JSYNC=1: for DFSDMx (x>0), an injected conversion is
automatically launched when in DFSDM0; the injected conversion is started by
software (JSWSTART=1 in DFSDM0_CR2 register). Each injected conversion in
DFSDMx (x>0) is always executed according to its local configuration settings (JSCAN,
JCHG, etc.).
If the scan conversion is enabled (bit JSCAN=1) then, each time an injected conversion is
triggered, all of the selected channels in the injected group (JCHG[7:0] bits in
DFSDMx_JCHGR register) are converted sequentially, starting with the lowest channel
(channel 0, if selected).
If the scan conversion is disabled (bit JSCAN=0) then, each time an injected conversion is
triggered, only one of the selected channels in the injected group (JCHG[7:0] bits in
DFSDMx_JCHGR register) is converted and the channel selection is then moved to the next
selected channel. Writing to the JCHG[7:0] bits when JSCAN=0 sets the channel selection
to the lowest selected injected channel.
Only one injected conversion can be ongoing at a given time. Thus, any request to launch
an injected conversion is ignored if another request for an injected conversion has already
been issued but not yet completed.
Regular conversions can be launched using the following methods:
•
Software: by writing ‘1’ to RSWSTART in the DFSDMx_CR1 register.
•
Synchronous with DFSDM0 if RSYNC=1: for DFSDMx (x>0), a regular conversion is
automatically launched when in DFSDM0; a regular conversion is started by software
(RSWSTART=1 in DFSDM0_CR2 register). Each regular conversion in DFSDMx (x>0)
is always executed according to its local configuration settings (RCONT, RCH, etc.).
Only one regular conversion can be pending or ongoing at a given time. Thus, any request
to launch a regular conversion is ignored if another request for a regular conversion has
already been issued but not yet completed. A regular conversion can be pending if it was
interrupted by an injected conversion or if it was started while an injected conversion was in
progress. This pending regular conversion is then delayed and is performed when all
injected conversion are finished. Any delayed regular conversion is signalized by RPEND bit
in DFSDMx_RDATAR register.
21.3.16
Continuous and fast continuous modes
Setting RCONT in the DFSDMx_CR1 register causes regular conversions to execute in
continuous mode. RCONT=1 means that the channel selected by RCH[2:0] is converted
repeatedly after ‘1’ is written to RSWSTART.
DocID024597 Rev 3
625/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
The regular conversions executing in continuous mode can be stopped by writing ‘0’ to
RCONT. After clearing RCONT, the on-going conversion is stopped immediately.
In continuous mode, the data rate can be increased by setting the FAST bit in the
DFSDMx_CR1 register. In this case, the filter does not need to be refilled by new fresh data
if converting continuously from one channel because data inside the filter is valid from
previously sampled continuous data. The speed increase depends on the chosen filter
order. The first conversion in fast mode (FAST=1) after starting a continuous conversion by
RSWSTART=1 takes still full time (as when FAST=0), then each subsequent conversion is
finished in shorter intervals.
Conversion time in continuous mode:
if FAST = 0 (or first conversion if FAST=1):
for Sincx filters:
t = CNVCNT/fDFSDMCLK = [FOSR * (IOSR-1 + FORD) + FORD] / fDFSDM_CKIN
for FastSinc filter:
t = CNVCNT/fDFSDMCLK = [FOSR * (IOSR-1 + 4) + 2] / fDFSDM_CKIN
if FAST = 1 (except first conversion):
for Sincx and FastSinc filters:
t = CNVCNT/fDFSDMCLK = [FOSR * IOSR] / fDFSDM_CKIN
in case FOSR = FOSR[9:0]+1 = 1 (filter bypassed, only integrator active):
t = IOSR / fDFSDM_CKIN (... but CNVCNT=0)
Continuous mode is not available for injected conversions. Injected conversions can be
started by timer trigger to emulate the continuous mode with precise timing.
If a regular continuous conversion is in progress (RCONT=1) and if a write access to
DFSDMx_CR1 register requesting regular continuous conversion (RCONT=1) is performed,
then regular continuous conversion is restarted from the next conversion cycle (like new
regular continuous conversion is applied for new channel selection - even if there is no
change in DFSDMx_CR1 register).
21.3.17
Request precedence
An injected conversion has a higher precedence than a regular conversion. A regular
conversion which is already in progress is immediately interrupted by the request of an
injected conversion; this regular conversion is restarted after the injected conversion
finishes.
An injected conversion cannot be launched if another injected conversion is pending or
already in progress: any request to launch an injected conversion (either by JSWSTART or
by a trigger) is ignored as long as bit JCIP is ‘1’ (in the DFSDMx_ISR register).
Similarly, a regular conversion cannot be launched if another regular conversion is pending
or already in progress: any request to launch a regular conversion (using RSWSTART) is
ignored as long as bit RCIP is ‘1’ (in the DFSDMx_ISR register).
However, if an injected conversion is requested while a regular conversion is already in
progress, the regular conversion is immediately stopped and an injected conversion is
launched. The regular conversion is then restarted and this delayed restart is signalized in
bit RPEND.
Injected conversions have precedence over regular conversions in that a injected
conversion can temporarily interrupt a sequence of continuous regular conversions. When
626/1693
DocID024597 Rev 3
RM0351
Digital filter for sigma delta modulators (DFSDM)
the sequence of injected conversions finishes, the continuous regular conversions start
again if RCONT is still set (and RPEND bit will signalize the delayed start on the first regular
conversion result).
Precedence also matters when actions are initiated by the same write to DFSDM, or if
multiple actions are pending at the end of another action. For example, suppose that, while
an injected conversion is in process (JCIP=1), a single write operation to DFSDMx_CR1
writes ‘1’ to RSWSTART, requesting a regular conversion. When the injected sequence
finishes, the precedence dictates that the regular conversion is performed next and its
delayed start is signalized in RPEND bit.
21.3.18
Power optimization in run mode
In order to reduce the consumption, the DFSDM filter and integrator are automatically put
into idle when not used by conversions (RCIP=0, JCIP=0).
21.4
DFSDM interrupts
In order to increase the CPU performance, a set of interrupts related to the CPU event
occurrence has been implemented:
•
•
•
•
•
End of injected conversion interrupt:
–
enabled by JEOCIE bit in DFSDMx_CR2 register
–
indicated in JEOCF bit in DFSDMx_ISR register
–
cleared by reading DFSDMx_JDATAR register (injected data)
–
indication of which channel end of conversion occurred, reported in JDATACH[2:0]
bits in DFSDMx_JDATAR register
End of regular conversion interrupt:
–
enabled by REOCIE bit in DFSDMx_CR2 register
–
indicated in REOCF bit in DFSDMx_ISR register
–
cleared by reading DFSDMx_RDATAR register (regular data)
–
indication of which channel end of conversion occurred, reported in
RDATACH[2:0] bits in DFSDMx_RDATAR register
Data overrun interrupt for injected conversions:
–
occurred when injected converted data were not read from DFSDMx_JDATAR
register (by CPU or DMA) and were overwritten by a new injected conversion
–
enabled by JOVRIE bit in DFSDMx_CR2 register
–
indicated in JOVRF bit in DFSDMx_ISR register
–
cleared by writing ‘1’ into CLRJOVRF bit in DFSDMx_ICR register
Data overrun interrupt for regular conversions:
–
occurred when regular converted data were not read from DFSDMx_RDATAR
register (by CPU or DMA) and were overwritten by a new regular conversion
–
enabled by ROVRIE bit in DFSDMx_CR2 register
–
indicated in ROVRF bit in DFSDMx_ISR register
–
cleared by writing ‘1’ into CLRROVRF bit in DFSDMx_ICR register
Analog watchdog interrupt:
DocID024597 Rev 3
627/1693
657
Digital filter for sigma delta modulators (DFSDM)
•
•
RM0351
–
occurred when converted data (output data or data from analog watchdog filter according to AWFSEL bit setting in DFSDMx_CR1 register) crosses over/under
high/low thresholds in DFSDMx_AWHTR / DFSDMx_AWLTR registers
–
enabled by AWDIE bit in DFSDMx_CR2 register (on selected channels
AWDCH[7:0])
–
indicated in AWDF bit in DFSDMx_ISR register
–
separate indication of high or low analog watchdog threshold error by AWHTF[7:0]
and AWLTF[7:0] fields in DFSDMx_AWSR register
–
cleared by writing ‘1’ into corresponding CLRAWHTF[7:0] or CLRAWLTF[7:0] bits
in DFSDMx_AWCFR register
Short-circuit detector interrupt:
–
occurred when the number of stable data crosses over thresholds in
DFSDM_AWSCDyR register
–
enabled by SCDIE bit in DFSDMx_CR2 register (on channel selected by SCDEN
bi tin DFSDM_CHCFGyR1 register)
–
indicated in SCDF[7:0] bits in DFSDMx_ISR register (which also reports the
channel on which the short-circuit detector event occurred)
–
cleared by writing ‘1’ into the corresponding CLRSCDF[7:0] bit in DFSDMx_ICR
register
Channel clock absence interrupt:
–
occurred when there is clock absence on DFSDM_CKINy pin (see Clock absence
detection in Section 21.3.4: Serial channel transceivers)
–
enabled by CKABIE bit in DFSDMx_CR2 register (on channels selected by
CKABEN bit in DFSDM_CHCFGyR1 register)
–
indicated in CKABF[y] bit in DFSDMx_ISR register
–
cleared by writing ‘1’ into CLRCKABF[y] bit in DFSDMx_ICR register
Table 125. DFSDM interrupt requests
Interrupt event
628/1693
Event flag
Event/Interrupt clearing
method
Interrupt enable
control bit
End of injected conversion
JEOCF
reading DFSDMx_JDATAR
JEOCIE
End of regular conversion
REOCF
reading DFSDMx_RDATAR
REOCIE
Injected data overrun
JOVRF
writing CLRJOVRF = 1
JOVRIE
Regular data overrun
ROVRF
writing CLRROVRF = 1
ROVRIE
Analog watchdog
AWDF,
AWHTF[7:0],
AWLTF[7:0]
writing CLRAWHTF[7:0] = 1
writing CLRAWLTF[7:0] = 1
AWDIE,
(AWDCH[7:0])
short-circuit detector
SCDF[7:0]
writing CLRSCDF[7:0] = 1
SCDIE,
(SCDEN)
Channel clock absence
CKABF[7:0]
writing CLRCKABF[7:0] = 1
CKABIE,
(CKABEN)
DocID024597 Rev 3
RM0351
Digital filter for sigma delta modulators (DFSDM)
21.5
DFSDM DMA transfer
To decrease the CPU intervention, conversions can be transferred into memory using a
DMA transfer. A DMA transfer for injected conversions is enabled by setting bit JDMAEN=1
in DFSDMx_CR1 register. A DMA transfer for regular conversions is enabled by setting bit
RDMAEN=1 in DFSDMx_CR1 register.
Note:
With a DMA transfer, the interrupt flag is automatically cleared at the end of the injected or
regular conversion (JEOCF or REOCF bit in DFSDMx_ISR register) because DMA is
reading DFSDMx_JDATAR or DFSDMx_RDATAR register.
21.6
DFSDM channel y registers (y=0..7)
21.6.1
DFSDM channel configuration y register (DFSDM_CHCFGyR1)
(y=0..7)
This register specifies the parameters used by channel y (y = 0..7).
Address offset: 0x00
Reset value: 0x0000 0000
31
30
DFSDM CKOUT
EN
SRC
rw
rw
15
14
DATPACK[1:0]
rw
rw
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
rw
rw
rw
rw
13
12
11
10
9
8
7
6
5
4
Res.
Res.
Res.
CHIN
SEL
CHEN
CKAB
EN
SCDEN
Res.
rw
rw
rw
rw
DATMPX[1:0]
rw
rw
23
22
21
20
19
18
17
16
rw
rw
rw
rw
3
2
1
0
CKOUTDIV[7:0]
SPICKSEL[1:0]
rw
rw
SITP[1:0]
rw
rw
Bit 31 DFSDMEN: Global enable for DFSDM interface
0: DFSDM interface disabled
1: DFSDM interface enabled
If DFSDM interface is enabled, then it is started to operate according to enabled y channels and
enabled x filters settings (CHEN bit in DFSDM_CHCFGyR1 and DFEN bit in DFSDMx_CR1). Data
cleared by setting DFSDMEN=0:
–all registers DFSDMx_ISR ars set to reset state (x = 0..3)
–all registers DFSDMx_AWSR are set to reset state (x = 0..3)
Note: DFSDMEN is present only in DFSDM_CHCFG0R1 register (channel y=0)
Bit 30 CKOUTSRC: Output serial clock source selection
0: Source for output clock is from system clock
1: Source for output clock is from audio clock
–SAI1 clock selected by SAI1SEL[1:0] field in RCC configuration (see Section 6.4.28: Peripherals
independent clock configuration register (RCC_CCIPR))
This value can be modified only when DFSDMEN=0 (in DFSDM_CHCFG0R1 register).
Note: CKOUTSRC is present only in DFSDM_CHCFG0R1 register (channel y=0)
Bits 29:24 Reserved, must be kept at reset value.
DocID024597 Rev 3
629/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
Bits 23:16 CKOUTDIV[7:0]: Output serial clock divider
0: Output clock generation is disabled (DFSDM_CKOUT signal is set to low state)
1- 255: Defines the division of system clock for the serial clock output for DFSDM_CKOUT signal in
range 2 - 256 (Divider = CKOUTDIV+1).
CKOUTDIV also defines the threshold for a clock absence detection.
This value can only be modified when DFSDMEN=0 (in DFSDM_CHCFG0R1 register).
If DFSDMEN=0 (in DFSDM_CHCFG0R1 register) then DFSDM_CKOUT signal is set to low state
(setting is performed one DFSDM clock cycle after DFSDMEN=0).
Note: CKOUTDIV is present only in DFSDM_CHCFG0R1 register (channel y=0)
Bits 15:14 DATPACK[1:0]: Data packing mode in DFSDM_CHDATINyR register.
0: Standard: input data in DFSDM_CHDATINyR register are stored only in INDAT0[15:0]. To empty
DFSDM_CHDATINyR register one sample must be read by the DFSDM filter from channel y.
1: Interleaved: input data in DFSDM_CHDATINyR register are stored as two samples:
–first sample in INDAT0[15:0] (assigned to channel y)
–second sample INDAT1[15:0] (assigned to channel y)
To empty DFSDM_CHDATINyR register, two samples must be read by the digital filter from
channel y (INDAT0[15:0] part is read as first sample and then INDAT1[15:0] part is read as next
sample).
2: Dual: input data in DFSDM_CHDATINyR register are stored as two samples:
–first sample INDAT0[15:0] (assigned to channel y)
–second sample INDAT1[15:0] (assigned to channel y+1)
To empty DFSDM_CHDATINyR register first sample must be read by the digital filter from channel
y and second sample must be read by another digital filter from channel y+1. Dual mode is
available only on even channel numbers (y = 0, 2, 4, 6), for odd channel numbers (y = 1, 3, 5, 7)
DFSDM_CHDATINyR is write protected. If an even channel is set to dual mode then the following
odd channel must be set into standard mode (DATPACK[1:0]=0) for correct cooperation with even
channel.
3: Reserved
This value can be modified only when CHEN=0 (in DFSDM_CHCFGyR1 register).
Bits 13:12 DATMPX[1:0]: Input data multiplexer for channel y
0: Data to channel y are taken from external serial inputs as 1-bit values. DFSDM_CHDATINyR
register is write protected.
1: Reserved
2: Data to channel y are taken from internal DFSDM_CHDATINyR register by direct CPU/DMA write.
There can be written one or two 16-bit data samples according DATPACK[1:0] bit field setting.
3: Reserved
This value can be modified only when CHEN=0 (in DFSDM_CHCFGyR1 register).
Bits 11:9 Reserved, must be kept at reset value.
Bit 8 CHINSEL: Channel inputs selection
0: Channel inputs are taken from pins of the same channel y.
1: Channel inputs are taken from pins of the following channel (channel (y+1) modulo 8).
This value can be modified only when CHEN=0 (in DFSDM_CHCFGyR1 register).
Bit 7 CHEN: Channel y enable
0: Channel y disabled
1: Channel y enabled
If channel y is enabled, then serial data receiving is started according to the given channel setting.
Bit 6 CKABEN: Clock absence detector enable on channel y
0: Clock absence detector disabled on channel y
1: Clock absence detector enabled on channel y
630/1693
DocID024597 Rev 3
RM0351
Digital filter for sigma delta modulators (DFSDM)
Bit 5 SCDEN: Short-circuit detector enable on channel y
0: Input channel y will not be guarded by the short-circuit detector
1: Input channel y will be continuously guarded by the short-circuit detector
Bit 4 Reserved, must be kept at reset value.
Bits 3:2 SPICKSEL[1:0]: SPI clock select for channel y
0: clock coming from external DFSDM_CKINy input - sampling point according SITP[1:0]
1: clock coming from internal DFSDM_CKOUT output - sampling point according SITP[1:0]
2: clock coming from internal DFSDM_CKOUT - sampling point on each second DFSDM_CKOUT
falling edge.
For connection to external Σ∆ modulator which divides its clock input (from DFSDM_CKOUT) by 2
to generate its output serial communication clock (and this output clock change is active on
each clock input rising edge).
3: clock coming from internal DFSDM_CKOUT output - sampling point on each second
DFSDM_CKOUT rising edge.
For connection to external Σ∆ modulator which divides its clock input (from DFSDM_CKOUT) by 2
to generate its output serial communication clock (and this output clock change is active on each
clock input falling edge).
This value can be modified only when CHEN=0 (in DFSDM_CHCFGyR1 register).
Bits 1:0 SITP[1:0]: Serial interface type for channel y
00: SPI with rising edge to strobe data
01: SPI with falling edge to strobe data
10: Manchester coded input on DFSDM_DATINy pin: rising edge = logic 0, falling edge = logic 1
11: Manchester coded input on DFSDM_DATINy pin: rising edge = logic 1, falling edge = logic 0
This value can only be modified when CHEN=0 (in DFSDM_CHCFGyR1 register).
21.6.2
DFSDM channel configuration y register (DFSDM_CHCFGyR2)
(y=0..7)
This register specifies the parameters used by channel y (y = 0..7).
Address offset: 0x04
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
OFFSET[23:8]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
OFFSET[7:0]
rw
rw
rw
rw
rw
DTRBS[4:0]
rw
rw
rw
rw
rw
DocID024597 Rev 3
rw
rw
rw
631/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
Bits 31:8 OFFSET[23:0]: 24-bit calibration offset for channel y
For channel y, OFFSET is applied to the results of each conversion from this channel.
This value is set by software.
Bits 7:3 DTRBS[4:0]: Data right bit-shift for channel y
0-31: Defines the shift of the data result coming from the integrator - how many bit shifts to the right
will be performed to have final results. Bit-shift is performed before offset correction. The data shift is
rounding the result to nearest integer value. The sign of shifted result is maintained (to have valid
24-bit signed format of result data).
This value can be modified only when CHEN=0 (in DFSDM_CHCFGyR1 register).
Bits 2:0 Reserved, must be kept at reset value.
21.6.3
DFSDM analog watchdog and short-circuit detector register
(DFSDM_AWSCDyR) (y=0..7)
Short-circuit detector and analog watchdog settings for channel y
Address offset: 0x08
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
Res.
Res.
Res.
Res.
BKSCD[3:0]
rw
rw
rw
rw
23
22
AWFORD[1:0]
rw
rw
7
6
21
20
19
Res.
18
17
16
AWFOSR[4:0]
5
rw
rw
rw
rw
rw
4
3
2
1
0
rw
rw
rw
SCDT[7:0]
rw
rw
rw
rw
rw
Bits 31:24 Reserved, must be kept at reset value.
Bits 23:22 AWFORD[1:0]: Analog watchdog Sinc filter order on channel y
0: FastSinc filter type
1: Sinc1 filter type
2: Sinc2 filter type
3: Sinc3 filter type
x
⎛ 1 – z – FOSR⎞
Sincx filter type transfer function:
-⎟
H ( z ) = ⎜ ---------------------------⎝ 1 – z –1 ⎠
2
FastSinc filter type transfer function:
⎛ 1 – z– FOSR⎞
-⎟ ⋅ ( 1 + z –( 2 ⋅
H ( z ) = ⎜ ---------------------------⎝ 1 – z–1 ⎠
FOSR )
)
This bit can be modified only when CHEN=0 (in DFSDM_CHCFGyR1 register).
Bit 21 Reserved, must be kept at reset value.
Bits 20:16 AWFOSR[4:0]: Analog watchdog filter oversampling ratio (decimation rate) on channel y
0 - 31: Defines the length of the Sinc type filter in the range 1 - 32 (AWFOSR + 1). This number is
also the decimation ratio of the analog data rate.
This bit can be modified only when CHEN=0 (in DFSDM_CHCFGyR1 register).
Note: If AWFOSR = 0 then the filter has no effect (filter bypass).
632/1693
DocID024597 Rev 3
RM0351
Digital filter for sigma delta modulators (DFSDM)
Bits 15:12 BKSCD[3:0]: Break signal assignment for short-circuit detector on channel y
BKSCD[i] = 0: Break i signal not assigned to short-circuit detector on channel y
BKSCD[i] = 1: Break i signal assigned to short-circuit detector on channel y
Bits 11:8 Reserved, must be kept at reset value.
Bits 7:0 SCDT[7:0]: short-circuit detector threshold for channel y
These bits are written by software to define the threshold counter for the short-circuit detector. If this
value is reached, then a short-circuit detector event occurs on a given channel.
21.6.4
DFSDM channel watchdog filter data register (DFSDM_CHWDATyR)
(y=0..7)
This register contains the data resulting from the analog watchdog filter associated to the
input channels.
Address offset: 0x0C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
WDATA[15:0]
r
r
r
r
r
r
r
r
r
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 WDATA[15:0]: Input channel y watchdog data
Data converted by the analog watchdog filter for input channel y. This data is continuously converted
(no trigger) for this channel, with a limited resolution (OSR=1...32/sinc order = 1...3).
21.6.5
DFSDM channel data input register (DFSDM_CHDATINyR)
(y=0..7)
This register contains 16-bit input data to be processed by DFSDM filter module.
Address offset: 0x10
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
INDAT1[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
INDAT0[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
DocID024597 Rev 3
633/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
Bits 31:16 INDAT0[15:0]: Input data for channel y or channel y+1
Input parallel channel data to be processed by the digital filter if DATMPX[1:0]=1 or DATMPX[1:0]=2.
Data can be written by CPU/DMA (if DATMPX[1:0]=2).
If DATPACK[1:0]=0 (standard mode)
INDAT0[15:0] is write protected (not used for input sample).
If DATPACK[1:0]=1 (interleaved mode)
Second channel y data sample is stored into INDAT1[15:0]. First channel y data sample is stored
into INDAT0[15:0]. Both samples are read sequentially by DFSDM filter as two channel y data
samples.
If DATPACK[1:0]=2 (dual mode).
For even y channels: sample in INDAT1[15:0] is automatically copied into INDAT0[15:0] of
channel (y+1).
For odd y channels: INDAT1[15:0] is write protected.
See Section 21.3.6: Parallel data inputs for more details.
INDAT0[15:1] is in the16-bit signed format.
Bits 15:0 INDAT0[15:0]: Input data for channel y
Input parallel channel data to be processed by the digital filter if DATMPX[1:0]=1 or DATMPX[1:0]=2.
Data can be written by CPU/DMA (if DATMPX[1:0]=2).
If DATPACK[1:0]=0 (standard mode)
Channel y data sample is stored into INDAT0[15:0].
If DATPACK[1:0]=1 (interleaved mode)
First channel y data sample is stored into INDAT0[15:0]. Second channel y data sample is stored
into INDAT1[15:0]. Both samples are read sequentially by DFSDM filter as two channel y data
samples.
If DATPACK[1:0]=2 (dual mode).
For even y channels: Channel y data sample is stored into INDAT0[15:0].
For odd y channels: INDAT0[15:0] is write protected.
See Section 21.3.6: Parallel data inputs for more details.
INDAT0[15:0] is in the16-bit signed format.
21.7
DFSDMx module registers (x=0..3)
21.7.1
DFSDM control register 1 (DFSDMx_CR1)
Address offset: 0x100 * (x+1), x = 0...3
Reset value: 0x0000 0000
31
30
Res.
AWF
SEL
FAST
rw
rw
14
13
15
Res.
29
JEXTEN[1:0]
rw
634/1693
rw
28
Res.
12
Res.
27
26
Res.
11
25
24
RCH[2:0]
Res.
rw
rw
rw
10
9
8
Res.
JEXTSEL[2:0]
rw
rw
23
22
21
Res.
RDMA
EN
20
Res.
rw
7
Res.
6
5
Res.
JDMA
EN
rw
DocID024597 Rev 3
rw
4
19
17
16
RSW
START
Res.
rw
rw
3
2
1
0
Res.
JSW
START
DFEN
r0w
rw
JSCAN JSYNC
rw
18
RCON
RSYNC
T
rw
r0w
RM0351
Digital filter for sigma delta modulators (DFSDM)
Bit 31 Reserved, must be kept at reset value.
Bit 30 AWFSEL: Analog watchdog fast mode select
0: Analog watchdog on data output value (after the digital filter). The comparison is done after offset
correction and shift
1: Analog watchdog on channel transceivers value (after watchdog filter)
Bit 29 FAST: Fast conversion mode selection for regular conversions
0: Fast conversion mode disabled
1: Fast conversion mode enabled
When converting a regular conversion in continuous mode, having enabled the fast mode causes
each conversion (except the first) to execute faster than in standard mode. This bit has no effect on
conversions which are not continuous.
This bit can be modified only when DFEN=0 (DFSDMx_CR1).
if FAST=0 (or first conversion in continuous mode if FAST=1):
t = [FOSR * (IOSR-1 + FORD) + FORD] / fDFSDM_CKIN..... for Sincx filters
t = [FOSR * (IOSR-1 + 4) + 2] / fDFSDM_CKIN..... for FastSinc filter
if FAST=1 in continuous mode (except first conversion):
t = [FOSR * IOSR] / fDFSDM_CKIN
in case if FOSR = FOSR[9:0]+1 = 1 (filter bypassed, active only integrator):
t = IOSR / fDFSDM_CKIN (... but CNVCNT=0)
where: fDFSDM_CKIN is the channel input clock frequency (on given channel DFSDM_CKINy pin) or
input data rate in case of parallel data input.
Bits 28:27 Reserved, must be kept at reset value.
Bits 26:24 RCH[2:0]: Regular channel selection
0: Channel 0 is selected as the regular channel
1: Channel 1 is selected as the regular channel
...
7: Channel 7 is selected as the regular channel
Writing these bits when RCIP=1 takes effect when the next regular conversion begins. This is
especially useful in continuous mode (when RCONT=1). It also affects regular conversions which
are pending (due to ongoing injected conversion).
Bits 23:22 Reserved, must be kept at reset value.
Bit 21 RDMAEN: DMA channel enabled to read data for the regular conversion
0: The DMA channel is not enabled to read regular data
1: The DMA channel is enabled to read regular data
This bit can be modified only when DFEN=0 (DFSDMx_CR1).
Bit 20 Reserved, must be kept at reset value.
Bit 19 RSYNC: Launch regular conversion synchronously with DFSDM0
0: Do not launch a regular conversion synchronously wi th DFSDM0
1: Launch a regular conversion in this DFSDM at the very moment when a regular conversion is
launched in DFSDM0
This bit can be modified only when DFEN=0 (DFSDMx_CR1).
Bit 18 RCONT: Continuous mode selection for regular conversions
0: The regular channel is converted just once for each conversion request
1: The regular channel is converted repeatedly after each conversion request
Writing ‘0’ to this bit while a continuous regular conversion is already in progress stops the
continuous mode immediately.
DocID024597 Rev 3
635/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
Bit 17 RSWSTART: Software start of a conversion on the regular channel
0: Writing ‘0’ has no effect
1: Writing ‘1’ makes a request to start a conversion on the regular channel and causes RCIP to
become ‘1’. If RCIP=1 already, writing to RSWSTART has no effect. Writing ‘1’ has no effect if
RSYNC=1.
This bit is always read as ‘0’.
Bits 16:15 Reserved, must be kept at reset value.
Bits 14:13 JEXTEN[1:0]: Trigger enable and trigger edge selection for injected conversions
00: Trigger detection is disabled
01: Each rising edge on the selected trigger makes a request to launch an injected conversion
10: Each falling edge on the selected trigger makes a request to launch an injected conversion
11: Both rising edges and falling edges on the selected trigger make requests to launch injected
conversions
This bit can be modified only when DFEN=0 (DFSDMx_CR1).
Bits 12:11 Reserved, must be kept at reset value.
Bits 10:8 JEXTSEL[2:0]: Trigger signal selection for launching injected conversions
0x0-0x7: Trigger inputs selected by the following table.
This bit can be modified only when DFEN=0 (DFSDMx_CR1).
DFSDM0
DFSDM1
0x00
DFSDM_INTRG0
DFSDM_INTRG0
0x01
DFSDM_INTRG1
DFSDM_INTRG1
0x02
DFSDM_INTRG2
DFSDM_INTRG2
0x03
DFSDM_INTRG3
DFSDM_INTRG3
0x04
DFSDM_INTRG5
DFSDM_INTRG5
0x05
DFSDM_INTRG7
DFSDM_INTRG7
0x06
DFSDM_EXTRG0
DFSDM_EXTRG0
0x07
DFSDM_EXTRG1
DFSDM_EXTRG1
Refer to Table 122: DFSDM triggers connection.
DFSDM2
DFSDM_INTRG0
DFSDM_INTRG1
DFSDM_INTRG2
DFSDM_INTRG3
DFSDM_INTRG5
DFSDM_INTRG8
DFSDM_EXTRG0
DFSDM_EXTRG1
DFSDM3
DFSDM_INTRG0
DFSDM_INTRG1
DFSDM_INTRG2
DFSDM_INTRG4
DFSDM_INTRG6
DFSDM_INTRG8
DFSDM_EXTRG0
DFSDM_EXTRG1
Bits 7:6 Reserved, must be kept at reset value.
Bit 5 JDMAEN: DMA channel enabled to read data for the injected channel group
0: The DMA channel is not enabled to read injected data
1: The DMA channel is enabled to read injected data
This bit can be modified only when DFEN=0 (DFSDMx_CR1).
Bit 4 JSCAN: Scanning conversion mode for injected conversions
0: One channel conversion is performed from the injected channel group and next the selected
channel from this group is selected.
1: The series of conversions for the injected group channels is executed, starting over with the
lowest selected channel.
This bit can be modified only when DFEN=0 (DFSDMx_CR1).
Writing JCHG if JSCAN=0 resets the channel selection to the lowest selected channel.
Bit 3 JSYNC: Launch an injected conversion synchronously with the DFSDM0 JSWSTART trigger
0: Do not launch an injected conversion synchronously with DFSDM0
1: Launch an injected conversion in this DFSDM at the very moment when an injected conversion is
launched in DFSDM0 by its JSWSTART trigger
This bit can be modified only when DFEN=0 (DFSDMx_CR1).
636/1693
DocID024597 Rev 3
RM0351
Digital filter for sigma delta modulators (DFSDM)
Bit 2 Reserved, must be kept at reset value.
Bit 1 JSWSTART: Start a conversion of the injected group of channels
0: Writing ‘0’ has no effect.
1: Writing ‘1’ makes a request to convert the channels in the injected conversion group, causing
JCIP to become ‘1’ at the same time. If JCIP=1 already, then writing to JSWSTART has no effect.
Writing ‘1’ has no effect if JSYNC=1.
This bit is always read as ‘0’.
Bit 0 DFEN: DFSDM enable
0: DFSDMx is disabled. All conversions of given DFSDMx are stopped immediately and all DFSDMx
functions are stopped.
1: DFSDMx is enabled. If DFSDMx is enabled, then DFSDM starts operating according to its setting.
Data is cleared by setting DFEN=0:
–register DFSDMx_ISR is set to the reset state
–register DFSDMx_AWSR is set to the reset state
21.7.2
DFSDM control register 2 (DFSDMx_CR2)
Address offset: 0x100 * (x+1) + 0x004, x = 0...3
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
EXCH[7:0]
rw
rw
rw
rw
rw
rw
rw
rw
23
22
21
20
19
18
17
16
AWDCH[7:0]
rw
rw
rw
rw
rw
rw
rw
rw
7
6
5
4
3
2
1
0
Res.
CKAB
IE
ROVR
IE
JOVRI
E
REOC
IE
JEOCI
E
rw
rw
rw
rw
rw
SCDIE AWDIE
rw
rw
Bits 31:24 Reserved, must be kept at reset value.
Bits 23:16 AWDCH[7:0]: Analog watchdog channel selection
These bits select the input channel to be guarded continuously by the analog watchdog
AWDCH[y] = 0: Analog watchdog is disabled on channel y
AWDCH[y] = 1: Analog watchdog is enabled on channel y
Bits 15:8 EXCH[7:0]: Extremes detector channel selection
These bits select the input channels to be taken by the Extremes detector
EXCH[y] = 0: Extremes detector does not accept data from channel y
EXCH[y] = 1: Extremes detector accepts data from channel y
Bit 7 Reserved, must be kept at reset value.
Bit 6 CKABIE: Clock absence interrupt enable
0: Detection of channel input clock absence interrupt is disabled
1: Detection of channel input clock absence interrupt is enabled
Please see the explanation of CKABF[7:0] in DFSDMx_ISR.
Note: CKABIE is present only in DFSDM0_CR2 register (filter x=0)
DocID024597 Rev 3
637/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
Bit 5 SCDIE: Short-circuit detector interrupt enable
0: short-circuit detector interrupt is disabled
1: short-circuit detector interrupt is enabled
Please see the explanation of SCDF[7:0] in DFSDMx_ISR.
Note: SCDIE is present only in DFSDM0_CR2 register (filter x=0)
Bit 4 AWDIE: Analog watchdog interrupt enable
0: Analog watchdog interrupt is disabled
1: Analog watchdog interrupt is enabled
Please see the explanation of AWDF in DFSDMx_ISR.
Bit 3 ROVRIE: Regular data overrun interrupt enable
0: Regular data overrun interrupt is disabled
1: Regular data overrun interrupt is enabled
Please see the explanation of ROVRF in DFSDMx_ISR.
Bit 2 JOVRIE: Injected data overrun interrupt enable
0: Injected data overrun interrupt is disabled
1: Injected data overrun interrupt is enabled
Please see the explanation of JOVRF in DFSDMx_ISR.
Bit 1 REOCIE: Regular end of conversion interrupt enable
0: Regular end of conversion interrupt is disabled
1: Regular end of conversion interrupt is enabled
Please see the explanation of REOCF in DFSDMx_ISR.
Bit 0 JEOCIE: Injected end of conversion interrupt enable
0: Injected end of conversion interrupt is disabled
1: Injected end of conversion interrupt is enabled
Please see the explanation of JEOCF in DFSDMx_ISR.
21.7.3
DFSDM interrupt and status register (DFSDMx_ISR)
Address offset: 0x100 * (x+1) + 0x008, x = 0...3
Reset value: 0x00FF 0000
31
30
29
28
27
26
25
24
23
22
21
SCDF[7:0]
20
19
18
17
16
CKABF[7:0]
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
RCIP
JCIP
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
r
r
638/1693
AWDF ROVRF JOVRF REOCF JEOCF
r
DocID024597 Rev 3
r
r
r
r
RM0351
Digital filter for sigma delta modulators (DFSDM)
Bits 31:24 SCDF[7:0]: short-circuit detector flag
SDCF[y]=0: No short-circuit detector event occurred on channel y
SDCF[y]=1: The short-circuit detector counter reaches, on channel y, the value programmed in the
DFSDM_AWSCDyR registers
This bit is set by hardware. It can be cleared by software using the corresponding CLRSCDF[y] bit in
the DFSDMx_ICR register. SCDF[y] is cleared also by hardware when CHEN[y] = 0 (given channel
is disabled).
Note: SCDF[7:0] is present only in DFSDM0_ISR register (filter x=0)
Bits 23:16 CKABF[7:0]: Clock absence flag
CKABF[y]=0: Clock signal on channel y is present.
CKABF[y]=1: Clock signal on channel y is not present.
Given y bit is set by hardware when clock absence is detected on channel y. It is held at
CKABF[y]=1 state by hardware when CHEN=0 (see DFSDM_CHCFGyR1 register). It is held at
CKABF[y]=1 state by hardware when the transceiver is not yet synchronized.It can be cleared by
software using the corresponding CLRCKABF[y] bit in the DFSDMx_ICR register.
Note: CKABF[7:0] is present only in DFSDM0_ISR register (filter x=0)
Bit 15 Reserved, must be kept at reset value.
Bit 14 RCIP: Regular conversion in progress status
0: No request to convert the regular channel has been issued
1: The conversion of the regular channel is in progress or a request for a regular conversion is
pending
A request to start a regular conversion is ignored when RCIP=1.
Bit 13 JCIP: Injected conversion in progress status
0: No request to convert the injected channel group (neither by software nor by trigger) has been
issued
1: The conversion of the injected channel group is in progress or a request for a injected conversion
is pending, due either to ‘1’ being written to JSWSTART or to a trigger detection
A request to start an injected conversion is ignored when JCIP=1.
Bits 12:5 Reserved, must be kept at reset value.
Bit 4 AWDF: Analog watchdog
0: No Analog watchdog event occurred
1: The analog watchdog block detected voltage which crosses the value programmed in the
DFSDMx_AWLTR or DFSDMx_AWHTR registers.
This bit is set by hardware. It is cleared by software by clearing all source flag bits AWHTF[7:0] and
AWLTF[7:0] in DFSDMx_AWSR register (by writing ‘1’ into the clear bits in DFSDMx_AWCFR
register).
Bit 3 ROVRF: Regular conversion overrun flag
0: No regular conversion overrun has occurred
1: A regular conversion overrun has occurred, which means that a regular conversion finished while
REOCF was already ‘1’. RDATAR is not affected by overruns
This bit is set by hardware. It can be cleared by software using the CLRROVRF bit in the
DFSDMx_ICR register.
DocID024597 Rev 3
639/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
Bit 2 JOVRF: Injected conversion overrun flag
0: No injected conversion overrun has occurred
1: An injected conversion overrun has occurred, which means that an injected conversion finished
while JEOCF was already ‘1’. JDATAR is not affected by overruns
This bit is set by hardware. It can be cleared by software using the CLRJOVRF bit in the
DFSDMx_ICR register.
Bit 1 REOCF: End of regular conversion flag
0: No regular conversion has completed
1: A regular conversion has completed and its data may be read
This bit is set by hardware. It is cleared when the software or DMA reads DFSDMx_RDATAR.
Bit 0 JEOCF: End of injected conversion flag
0: No injected conversion has completed
1: An injected conversion has completed and its data may be read
This bit is set by hardware. It is cleared when the software or DMA reads DFSDMx_JDATAR.
Note:
For each of the flag bits, an interrupt can be enabled by setting the corresponding bit in
DFSDMx_CR2. If an interrupt is called, the flag must be cleared before exiting the interrupt
service routine.
All the bits of DFSDMx_ISR are automatically reset when DFEN=0.
21.7.4
DFSDM interrupt flag clear register (DFSDMx_ICR)
Address offset: 0x100 * (x+1) + 0x00C, x = 0...3
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
CLRSCDF[7:0]
20
19
18
17
16
CLRCKABF[7:0]
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
CLRR
OVRF
CLR J
OVRF
Res.
Res.
rc_w1
rc_w1
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Bits 31:24 CLRSCDF[7:0]: Clear the short-circuit detector flag
CLRSCDF[y]=0: Writing ‘0’ has no effect
CLRSCDF[y]=1: Writing ‘1’ to position y clears the corresponding SCDF[y] bit in the DFSDMx_ISR
register
Note: CLRSCDF[7:0] is present only in DFSDM0_ICR register (filter x=0)
Bits 23:16 CLRCKABF[7:0]: Clear the clock absence flag
CLRCKABF[y]=0: Writing ‘0’ has no effect
CLRCKABF[y]=1: Writing ‘1’ to position y clears the corresponding CKABF[y] bit in the
DFSDMx_ISR register. When the transceiver is not yet synchronized, the clock absence flag is set
and cannot be cleared by CLRCKABF[y].
Note: CLRCKABF[7:0] is present only in DFSDM0_ICR register (filter x=0)
Bits 15:4 Reserved, must be kept at reset value.
640/1693
DocID024597 Rev 3
RM0351
Digital filter for sigma delta modulators (DFSDM)
Bit 3 CLRROVRF: Clear the regular conversion overrun flag
0: Writing ‘0’ has no effect
1: Writing ‘1’ clears the ROVRF bit in the DFSDMx_ISR register
Bit 2 CLRJOVRF: Clear the injected conversion overrun flag
0: Writing ‘0’ has no effect
1: Writing ‘1’ clears the JOVRF bit in the DFSDMx_ISR register
Bits 1:0 Reserved, must be kept at reset value.
Note:
The bits of DFSDMx_ICR are always read as ‘0’.
21.7.5
DFSDM injected channel group selection register
(DFSDMx_JCHGR)
Address offset: 0x100 * (x+1) + 0x010, x = 0...3
Reset value: 0x0000 0001
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
rw
rw
JCHG[7:0]
rw
rw
rw
rw
rw
Bits 31:8 Reserved, must be kept at reset value.
Bits 7:0 JCHG[7:0]: Injected channel group selection
JCHG[y]=0: channel y is not part of the injected group
JCHG[y]=1: channel y is part of the injected group
If JSCAN=1, each of the selected channels is converted, one after another. The lowest channel
(channel 0, if selected) is converted first and the sequence ends at the highest selected channel.
If JSCAN=0, then only one channel is converted from the selected channels, and the channel
selection is moved to the next channel. Writing JCHG, if JSCAN=0, resets the channel selection to
the lowest selected channel.
At least one channel must always be selected for the injected group. Writes causing all JCHG bits to
be zero are ignored.
21.7.6
DFSDM filter control register (DFSDMx_FCR)
Address offset: 0x100 * (x+1) + 0x014, x = 0...3
Reset value: 0x0000 0000
31
30
29
FORD[2:0]
28
27
26
Res.
Res.
Res.
rw
rw
rw
15
14
13
12
11
Res.
Res.
Res.
Res.
Res.
25
24
23
22
21
20
19
18
17
16
FOSR[9:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
rw
rw
rw
IOSR[7:0]
rw
rw
DocID024597 Rev 3
rw
rw
rw
641/1693
657
Digital filter for sigma delta modulators (DFSDM)
Bits 31:29 FORD[2:0]: Sinc filter order
0: FastSinc filter type
1: Sinc1 filter type
2: Sinc2 filter type
3: Sinc3 filter type
4: Sinc4 filter type
5: Sinc5 filter type
6-7: Reserved
Sincx filter type transfer function:
RM0351
⎛ 1 – z –FOSR⎞
-⎟
H ( z ) = ⎜ ---------------------------⎝ 1 – z –1 ⎠
x
2
⎛ 1 – z– FOSR⎞
-⎟ ⋅ ( 1 + z – ( 2 ⋅
H ( z ) = ⎜ ---------------------------⎝ 1 – z–1 ⎠
FastSinc filter type transfer function:
FOSR )
)
This bit can only be modified when DFEN=0 (DFSDMx_CR1).
Bits 28:26 Reserved, must be kept at reset value.
Bits 25:16 FOSR[9:0]: Sinc filter oversampling ratio (decimation rate)
0 - 1023: Defines the length of the Sinc type filter in the range 1 - 1024 (FOSR = FOSR[9:0] +1). This
number is also the decimation ratio of the output data rate from filter.
This bit can only be modified when DFEN=0 (DFSDMx_CR1)
Note: If FOSR = 0, then the filter has no effect (filter bypass).
Bits 15:8 Reserved, must be kept at reset value.
Bits 7:0 IOSR[7:0]: Integrator oversampling ratio (averaging length)
0- 255: The length of the Integrator in the range 1 - 256 (IOSR + 1). Defines how many samples
from Sinc filter will be summed into one output data sample from the integrator. The output data rate
from the integrator will be decreased by this number (additional data decimation ratio).
This bit can only be modified when DFEN=0 (DFSDMx_CR1)
Note: If IOSR = 0, then the Integrator has no effect (Integrator bypass).
21.7.7
DFSDM data register for injected group (DFSDMx_JDATAR)
Address offset: 0x100 * (x+1) + 0x018, x = 0...3
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
JDATA[23:8]
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
JDATA[7:0]
r
642/1693
r
r
r
r
r
r
r
DocID024597 Rev 3
JDATACH[2:0]
r
r
r
RM0351
Digital filter for sigma delta modulators (DFSDM)
Bits 31:8 JDATA[23:0]: Injected group conversion data
When each conversion of a channel in the injected group finishes, its resulting data is stored in this
field. The data is valid when JEOCF=1. Reading this register clears the corresponding JEOCF.
Bits 7:3 Reserved, must be kept at reset value.
Bits 2:0 JDATACH[2:0]: Injected channel most recently converted
When each conversion of a channel in the injected group finishes, JDATACH[2:0] is updated to
indicate which channel was converted. Thus, JDATA[23:0] holds the data that corresponds to the
channel indicated by JDATACH[2:0].
Note:
DMA may be used to read the data from this register. Half-word accesses may be used to
read only the MSBs of conversion data.
Reading this register also clears JEOCF in DFSDMx_ISR. Thus, the firmware must not read
this register if DMA is activated to read data from this register.
21.7.8
DFSDM data register for the regular channel (DFSDMx_RDATAR)
Address offset: 0x100 * (x+1) + 0x01C, x = 0...3
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
7
6
5
4
3
2
1
0
Res.
Res.
Res.
RPEND
Res.
RDATA[23:8]
15
14
13
12
11
10
9
8
RDATA[7:0]
r
r
r
r
r
r
r
r
r
RDATACH[2:0]
r
r
r
Bits 31:8 RDATA[23:0]: Regular channel conversion data
When each regular conversion finishes, its data is stored in this register. The data is valid when
REOCF=1. Reading this register clears the corresponding REOCF.
Bits 7:5 Reserved, must be kept at reset value.
Bit 4 RPEND: Regular channel pending data
Regular data in RDATA[23:0] was delayed due to an injected channel trigger during the conversion
Bit 3 Reserved, must be kept at reset value.
Bits 2:0 RDATACH[2:0]: Regular channel most recently converted
When each regular conversion finishes, RDATACH[2:0] is updated to indicate which channel was
converted (because regular channel selection RCH[2:0] in DFSDMx_CR1 register can be updated
during regular conversion). Thus RDATA[23:0] holds the data that corresponds to the channel
indicated by RDATACH[2:0].
Note:
Half-word accesses may be used to read only the MSBs of conversion data.
Reading this register also clears REOCF in DFSDMx_ISR.
DocID024597 Rev 3
643/1693
657
Digital filter for sigma delta modulators (DFSDM)
21.7.9
RM0351
DFSDM analog watchdog high threshold register
(DFSDMx_AWHTR)
Address offset: 0x100 * (x+1) + 0x020, x = 0...3
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
AWHT[23:8]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
AWHT[7:0]
rw
rw
rw
rw
rw
rw
rw
rw
BKAWH[3:0]
rw
rw
rw
rw
Bits 31:8 AWHT[23:0]: Analog watchdog high threshold
These bits are written by software to define the high threshold for the analog watchdog.
Note: In case channel transceivers monitor (AWFSEL=1), the higher 16 bits (AWHT[23:8]) define the
16-bit threshold as compared with the analog watchdog filter output (because data coming from
the analog watchdog filter are up to a 16-bit resolution). Bits AWHT[7:0] are not taken into
comparison in this case.
Bits 7:4 Reserved, must be kept at reset value.
Bits 3:0 BKAWH[3:0]: Break signal assignment to analog watchdog high threshold event
BKAWH[i] = 0: Break i signal is not assigned to an analog watchdog high threshold event
BKAWH[i] = 1: Break i signal is assigned to an analog watchdog high threshold event
21.7.10
DFSDM analog watchdog low threshold register (DFSDMx_AWLTR)
Address offset: 0x100 * (x+1) + 0x024, x = 0...3
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
AWLT[23:8]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
AWLT[7:0]
rw
644/1693
rw
rw
rw
rw
rw
rw
rw
DocID024597 Rev 3
BKAWL[3:0]
rw
rw
rw
rw
RM0351
Digital filter for sigma delta modulators (DFSDM)
Bits 31:8 AWLT[23:0]: Analog watchdog low threshold
These bits are written by software to define the low threshold for the analog watchdog.
Note: In case channel transceivers monitor (AWFSEL=1), only the higher 16 bits (AWLT[23:8]) define
the 16-bit threshold as compared with the analog watchdog filter output (because data coming
from the analog watchdog filter are up to a 16-bit resolution). Bits AWLT[7:0] are not taken into
comparison in this case.
Bits 7:4 Reserved, must be kept at reset value.
Bits 3:0 BKAWL[3:0]: Break signal assignment to analog watchdog low threshold event
BKAWL[i] = 0: Break i signal is not assigned to an analog watchdog low threshold event
BKAWL[i] = 1: Break i signal is assigned to an analog watchdog low threshold event
21.7.11
DFSDM analog watchdog status register (DFSDMx_AWSR)
Address offset: 0x100 * (x+1) + 0x028, x = 0...3
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
AWHTF[7:0]
r
r
r
r
r
AWLTF[7:0]
r
r
r
r
r
r
r
r
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:8 AWHTF[7:0]: Analog watchdog high threshold flag
AWHTF[y]=1 indicates a high threshold error on channel y. It is set by hardware. It can be cleared by
software using the corresponding CLRAWHTF[y] bit in the DFSDMx_AWCFR register.
Bits 7:0 AWLTF[7:0]: Analog watchdog low threshold flag
AWLTF[y]=1 indicates a low threshold error on channel y. It is set by hardware. It can be cleared by
software using the corresponding CLRAWLTF[y] bit in the DFSDMx_AWCFR register.
Note:
All the bits of DFSDMx_AWSR are automatically reset when DFEN=0.
21.7.12
DFSDM analog watchdog clear flag register (DFSDMx_AWCFR)
Address offset: 0x100 * (x+1) + 0x02C, x = 0...3
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rc_w1
rc_w1
rc_w1
CLRAWHTF[7:0]
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
CLRAWLTF[7:0]
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
DocID024597 Rev 3
rc_w1
rc_w1
rc_w1
645/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:8 CLRAWHTF[7:0]: Clear the analog watchdog high threshold flag
CLRAWHTF[y]=0: Writing ‘0’ has no effect
CLRAWHTF[y]=1: Writing ‘1’ to position y clears the corresponding AWHTF[y] bit in the
DFSDMx_AWSR register
Bits 7:0 CLRAWLTF[7:0]: Clear the analog watchdog low threshold flag
CLRAWLTF[y]=0: Writing ‘0’ has no effect
CLRAWLTF[y]=1: Writing ‘1’ to position y clears the corresponding AWLTF[y] bit in the
DFSDMx_AWSR register
21.7.13
DFSDM Extremes detector maximum register (DFSDMx_EXMAX)
Address offset: 0x100 * (x+1) + 0x030, x = 0...3
Reset value: 0x8000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
EXMAX[23:8]
r1
r0
r0
r0
r0
r0
r0
r0
r0
r0
r0
r0
r0
r0
r0
r0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
EXMAX[7:0]
r0
r0
r0
r0
r0
r0
r0
r0
EXMAXCH[2:0]
r
r
r
Bits 31:8 EXMAX[23:0]: Extremes detector maximum value
These bits are set by hardware and indicate the highest value converted by DFSDM. EXMAX[23:0]
bits are reset to value (0x800000) by reading of this register.
Bits 7:3 Reserved, must be kept at reset value.
Bits 2:0 EXMAXCH[2:0]: Extremes detector maximum data channel.
These bits contains information about the channel on which the data is stored into EXMAX[23:0].
Bits are cleared by reading of this register.
21.7.14
DFSDM Extremes detector minimum register (DFSDMx_EXMIN)
Address offset: 0x100 * (x+1) + 0x034, x = 0...3Reset value: 0x7FFF FF00
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
EXMIN[23:8]
r0
r1
r1
r1
r1
r1
r1
r1
r1
r1
r1
r1
r1
r1
r1
r1
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
EXMIN[7:0]
r1
646/1693
r1
r1
r1
r1
r1
r1
r1
DocID024597 Rev 3
EXMINCH[2:0]
r
r
r
RM0351
Digital filter for sigma delta modulators (DFSDM)
Bits 31:8 EXMIN[23:0]: Extremes detector minimum value
These bits are set by hardware and indicate the lowest value converted by DFSDM. EXMIN[23:0]
bits are reset to value (0x7FFFFF) by reading of this register.
Bits 7:3 Reserved, must be kept at reset value.
Bits 2:0 EXMINCH[2:0]: Extremes detector minimum data channel
These bits contain information about the channel on which the data is stored into EXMIN[23:0]. Bits
are cleared by reading of this register.
21.7.15
DFSDM conversion timer register (DFSDMx_CNVTIMR)
Address offset: 0x100 * (x+1) + 0x038, x = 0...3
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
CNVCNT[27:12]
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
CNVCNT[11:0]
r
r
r
r
r
r
r
r
r
r
r
r
Bits 31:4 CNVCNT[27:0]: 28-bit timer counting conversion time t = CNVCNT[27:0] / fDFSDMCLK
The timer has an input clock from DFSDM clock (system clock fDFSDMCLK). Conversion time
measurement is started on each conversion start and stopped when conversion finishes (interval
between first and last serial sample). Only in case of filter bypass (FOSR[9:0] = 0) is the conversion
time measurement stopped and CNVCNT[27:0] = 0. The counted time is:
if FAST=0 (or first conversion in continuous mode if FAST=1):
t = [FOSR * (IOSR-1 + FORD) + FORD] / fDFSDM_CKIN..... for Sincx filters
t = [FOSR * (IOSR-1 + 4) + 2] / fDFSDM_CKIN..... for FastSinc filter
if FAST=1 in continuous mode (except first conversion):
t = [FOSR * IOSR] / fDFSDM_CKIN
in case if FOSR = FOSR[9:0]+1 = 1 (filter bypassed, active only integrator):
CNVCNT = 0 (counting is stopped, conversion time: t = IOSR / fDFSDM_CKIN)
where: fDFSDM_CKIN is the channel input clock frequency (on given channel DFSDM_CKINy pin) or
input data rate in case of parallel data input (from CPU/DMA write)
Note: When conversion is interrupted (e.g. by disable/enable selected channel) the timer counts also
this interruption time.
Bits 3:0 Reserved, must be kept at reset value.
DocID024597 Rev 3
647/1693
657
Digital filter for sigma delta modulators (DFSDM)
21.8
RM0351
DFSDM register map
The following table summarizes the DFSDM registers.
Register
0x00
DFSDM_
CHCFG0R1
DFSDMEN
reset value
0
0
0
0
0
0
0
648/1693
Res.
Res.
Res.
0
Res.
0
0
0
0
0
0
0
0
0
Res.
0
0
0
0
0
0
0
0
0
0
0
BKSCD[3:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
INDAT0[15:0]
Res.
Res.
0
Res.
Res.
0
WDATA[15:0]
Res.
Res.
0
Res.
Res.
0
Res.
Res.
0
Res.
Res.
0
SCDT[7:0]
Res.
Res.
0
0
Res.
Res.
0
0
Res.
Reserved
0
0
Res.
0
0
0
Res.
0
0
0
Res.
0
Res.
AWFOSR[4:0]
0
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
DTRBS[4:0]
Res.
0
0
SITP[1:0]
Res.
Res.
SPICKSEL
[1:0]
Res.
Res.
0
Res.
Res.
Res.
Res.
CHINSEL
SCDEN
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
0
CHEN
Res.
0
CKABEN
Res.
DATMPX[1:0]
Res.
Res.
Res.
Res.
Res.
DATPACK[1:0]
Res.
Res.
Res.
0
Res.
0
Res.
0
Res.
0
0
Res.
0
0
Res.
0
0
0
Res.
Res.
Res.
0
0
0
Res.
Res.
Res.
0
0
0
Res.
Res.
Res.
0
0
0
Res.
Res.
0
0
0
INDAT1[15:0]
reset value
0
0
0
DFSDM_
CHDATIN1R
0
0
Res.
Res.
Res.
0
0
0
Res.
Res.
Res.
Res.
0
0
0
Res.
Res.
Res.
Res.
0
0
0
Res.
DFSDM_
AWSCD1R
0
0
0
Res.
0
Res.
0
Res.
0
AWFORD[1:0]
0
Res.
0
0
0
Res.
0
0
0
Res.
0
Res.
0
0
SCDT[7:0]
OFFSET[23:0]
reset value
0
WDATA[15:0]
0
DFSDM_
CHCFG1R2
Res.
Res.
Res.
0
SITP[1:0]
Res.
Res.
Res.
Res.
DATMPX[1:0]
0
SPICKSEL
[1:0]
0
0
DFSDM_
CHCFG1R1
Res.
0x34 0x3C
0
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
reset value
0x30
0
INDAT0[15:0]
Reserved
DFSDM_
CHWDAT1R
0
INDAT1[15:0]
reset value
0x2C
0
Res.
0
BKSCD[3:0]
0
DFSDM_
CHDATIN0R
Res.
0x28
0
Res.
0
Res.
Res.
AWFOSR[4:0]
Res.
0
Res.
AWFORD
[1:0]
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DFSDM_
CHWDAT0R
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DFSDM_
AWSCD0R
reset value
0x24
0
0
Res.
0x20
0
0
reset value
0x14 0x1C
0
reset value
reset value
0x10
0
Res.
0
SCDEN
0
CHEN
0
CKABEN
0
CHINSEL
0
DTRBS[4:0]
reset value
0x0C
DATPACK[1:0]
Res.
Res.
Res.
Res.
Res.
Res.
0
OFFSET[23:0]
Res.
0x08
CKOUTDIV[7:0]
DFSDM_
CHCFG0R2
Res.
0x04
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Offset
CKOUTSRC
Table 126. DFSDM register map and reset values
DocID024597 Rev 3
0
0
0
0
0
0
0
0
reset value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
0
0
Res.
0
0
0
reset value
DocID024597 Rev 3
0
0
0
0
0
0
Res.
Res.
Res.
Res.
0
0
0
0
0
0
0
0
BKSCD[3:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
INDAT1[15:0]
0
0
0
0
0
OFFSET[23:0]
0
0
0
Res.
Res.
Res.
Res.
0
SCDT[7:0]
WDATA[15:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DTRBS[4:0]
SCDT[7:0]
WDATA[15:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
DATMPX[1:0]
DATPACK[1:0]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SCDEN
0
SITP[1:0]
SPICKSEL[1:0]
Res.
CHEN
CKABEN
CHINSEL
0
0
0
Res.
Res.
DTRBS[4:0]
Res.
0
0
0
SITP[1:0]
INDAT1[15:0]
0
0
SPICKSEL[1:0]
0
0
0
0
0
Res.
0
Res.
0
Res.
0
Res.
0
0
SCDEN
0
0
Res.
0
Res.
0
CHEN
BKSCD[3:0]
CKABEN
Res.
Res.
0
Res.
0
Res.
Res.
Res.
OFFSET[23:0]
Res.
0
CHINSEL
Res.
Res.
DFSDM_
CHCFG2R1
0
SITP[1:0]
0
Res.
Res.
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0x40
0
SPICKSEL[1:0]
0
0
Res.
0
0
Res.
0
0
0
Res.
AWFOSR[4:0]
0
0
SCDEN
0
Res.
0
Res.
reset value
Res.
0
Res.
0
DATMPX[1:0]
0
DATPACK[1:0]
0
Res.
Res.
Res.
0
Res.
Res.
Res.
0
Res.
Res.
Res.
0
Res.
Res.
Res.
0
Res.
Res.
AWFORD[1:0]
Res.
Register
Res.
Offset
0
Res.
0
0
Res.
0
0
Res.
Res.
Res.
Res.
0
Res.
reset value
0
Res.
Res.
Res.
Res.
Res.
AWFOSR[4:0]
0
0
Res.
0
0
0
0
CHEN
0
0
0
0
CKABEN
0
0
0
Res.
Res.
Res.
Res.
Res.
0
DATMPX[1:0]
0
Res.
Res.
Res.
Res.
reset value
DATPACK[1:0]
0
0
Res.
0
0
0
Res.
Res.
Res.
reset value
0
Res.
DFSDM_
CHCFG3R2
0
0
CHINSEL
Res.
Res.
DFSDM_
AWSCD3R
0
Res.
0
0
Res.
0
0
Res.
0
0
0
Res.
Res.
Res.
0
0
0
Res.
Res.
Res.
DFSDM_
CHDATIN3R
0
Res.
reset value
0
Res.
Res.
Res.
0
Res.
DFSDM_
AWSCD2R
AWFORD[1:0]
Res.
Res.
0
Res.
Res.
Res.
0
Res.
0
Res.
0
Res.
Res.
Res.
0
Res.
Res.
Res.
0
Res.
0
Res.
0
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
0
0
Res.
0
Res.
Res.
Res.
DFSDM_
CHDATIN2R
Res.
0
Res.
Res.
Res.
0
Res.
Res.
Res.
0
0
Res.
0
Res.
Res.
Res.
0
Res.
Res.
Res.
0
0
Res.
reset value
Res.
Res.
0
Res.
Res.
Res.
reset value
0
Res.
Res.
DFSDM_
CHCFG3R1
Res.
reset value
Res.
Res.
DFSDM_
CHCFG4R1
Res.
DFSDM_
CHWDAT3R
0
Res.
Reserved
Res.
DFSDM_
CHCFG2R2
Res.
Res.
0x80
Reserved
Res.
0x74 0x7C
Res.
0x70
Res.
0x6C
Res.
0x68
Res.
0x64
Res.
0x60
Res.
reset value
Res.
0x54 0x5C
DFSDM_
CHWDAT2R
Res.
0x50
Res.
0x4C
Res.
0x48
Res.
0x44
Res.
RM0351
Digital filter for sigma delta modulators (DFSDM)
Table 126. DFSDM register map and reset values (continued)
0
INDAT0[15:0]
0
INDAT0[15:0]
0
0
0
649/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
0
0
0
0
0
650/1693
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
CHINSEL
CHEN
CKABEN
SCDEN
Res.
0
0
0
0
0
0
0
0
BKSCD[3:0]
Res.
Res.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SITP[1:0]
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
CHINSEL
CHEN
CKABEN
SCDEN
Res.
0
0
0
0
0
0
0
0
DTRBS[4:0]
0
0
DocID024597 Rev 3
0
0
0
0
0
0
0
0
0
0
0
0
0
SITP[1:0]
0
0
0
Res.
DATMPX[1:0]
DATPACK[1:0]
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
0
0
Res.
0
0
0
Res.
0
0
0
Res.
0
0
0
Res.
0
0
0
Res.
0
0
0
Res.
0
0
0
OFFSET[23:0]
0
0
SCDT[7:0]
WDATA[15:0]
0
0
0
0
0
DFSDM_
CHCFG6R1
0
0
0
0
Reserved
DFSDM_
CHCFG6R2
0
0
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
0
0
INDAT0[15:0]
Res.
0
0
0
Res.
0
0
Res.
AWFOSR[4:0]
0
0
Res.
Res.
0
Res.
Res.
Res.
0
Res.
Res.
Res.
0
Res.
Res.
Res.
0
Res.
Res.
Res.
0
0
Res.
Res.
0
0
Res.
0
Res.
0
DTRBS[4:0]
Res.
0
Res.
Res.
Res.
0
SPICKSEL[1:0]
Res.
Res.
Res.
DATMPX[1:0]
Res.
Res.
Res.
Res.
DATPACK[1:0]
Res.
Res.
0
Res.
0
Res.
0
0
0
Res.
0
0
0
Res.
0
0
0
Res.
0
0
0
INDAT1[15:0]
0
0
0
0
DFSDM_
CHDATIN5R
0
0
Res.
Res.
Res.
Res.
Res.
Res.
0
0
WDATA[15:0]
0
Res.
Res.
0
0
0
Res.
DFSDM_
AWSCD5R
0
0
0
Res.
0
Res.
0
0
0
Res.
0
Res.
0
0
0
Res.
0
0
0
Res.
0
AWFORD[1:0]
0
0
0
0
Res.
0
0
0
SCDT[7:0]
OFFSET[23:0]
reset value
reset value
0
0
0
reset value
0xC4
0
0
0
Res.
0xC0
0
0
DFSDM_
CHCFG5R2
reset value
0xB4 0xBC
BKSCD[3:0]
0
0
reset value
0xB0
0
0
DFSDM_
CHCFG5R1
DFSDM_
CHWDAT5R
0
0
Reserved
reset value
0xAC
0
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0xA8
0
INDAT0[15:0]
reset value
0xA4
0
0
0
INDAT1[15:0]
Res.
0xA0
0
0
Res.
reset value
0x94 0x9C
0
Res.
0x90
Res.
AWFOSR[4:0]
reset value
DFSDM_
CHDATIN4R
Res.
0
Res.
0
Res.
Res.
0
SPICKSEL[1:0]
0
0
Res.
0
0
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0x8C
DFSDM_
CHWDAT4R
Res.
reset value
0
Res.
DFSDM_
AWSCD4R
0
Res.
0
Res.
0
Res.
0
Res.
0
DTRBS[4:0]
Res.
0
Res.
0
AWFORD[1:0]
0
Res.
0
Res.
reset value
Res.
0x88
OFFSET[23:0]
Res.
DFSDM_
CHCFG4R2
Res.
0x84
Res.
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 126. DFSDM register map and reset values (continued)
RM0351
Digital filter for sigma delta modulators (DFSDM)
0
0
0
0
0
Res.
Res.
Res.
Res.
reset value
0
Res.
Res.
Res.
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
CHINSEL
CHEN
CKABEN
SCDEN
Res.
0
0
0
Res.
Res.
0
0
0
0
0
BKSCD[3:0]
0
0
0
0
0
0
0
0
0
0
0
SITP[1:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
INDAT0[15:0]
Res.
Res.
0
Res.
Res.
0
Res.
Res.
0
Res.
Res.
0
Res.
Res.
0
WDATA[15:0]
Res.
Res.
0
Res.
Res.
0
Res.
Res.
0
Res.
Reserved
0
SCDT[7:0]
Res.
0
0
0
Res.
0
0
0
Res.
0
0
0
Res.
0
0
Res.
0
0
0
Res.
0
0
0
Res.
0
Res.
AWFOSR[4:0]
0
0
Res.
0
Res.
0
Res.
0
Res.
0
DTRBS[4:0]
Res.
0
0
Res.
0
Res.
0
Res.
DATMPX[1:0]
0
SPICKSEL[1:0]
Res.
Res.
Res.
DATPACK[1:0]
Res.
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
0
0
Res.
Res.
Res.
0
0
0
Res.
Res.
Res.
0
0
0
Res.
Res.
Res.
0
0
0
INDAT1[15:0]
reset value
0
0
0
DFSDM_
CHDATIN7R
0
0
Res.
Res.
Res.
0
0
0
Res.
Res.
0
Res.
Res.
Res.
Res.
0
Res.
0xF4 0xFC
0
0
reset value
0xF0
0
0
Res.
Res.
Res.
Res.
0
Res.
DFSDM_
AWSCD7R
0
0
0
Res.
0
0
0
Res.
0
AWFORD[1:0]
0
Res.
0
0
0
Res.
0
0
0
Res.
0
Res.
0
reset value
0xEC
0
OFFSET[23:0]
0
0
WDATA[15:0]
0
reset value
0
0
DFSDM_
CHCFG7R1
DFSDM_
CHCFG7R2
0
0
Reserved
DFSDM_
CHWDAT7R
0
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0xE8
0
INDAT0[15:0]
reset value
0xE4
0
INDAT1[15:0]
Res.
0xE0
0
0
DFSDM_
CHDATIN6R
reset value
0xD4 0xDC
0
SCDT[7:0]
Res.
0xD0
BKSCD[3:0]
Res.
Res.
Res.
0
AWFOSR[4:0]
Res.
AWFORD[1:0]
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0xCC
DFSDM_
CHWDAT6R
Res.
reset value
Res.
Res.
Res.
Res.
DFSDM_
AWSCD6R
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0xC8
Res.
Register
Res.
Offset
Res.
Table 126. DFSDM register map and reset values (continued)
DocID024597 Rev 3
651/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
The following table summarizes the DFSDMx registers.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DFSDM0_
AWSR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DFEN
JEOCIE
Res.
JSW START
REOCIE
JSYNC
JOVRIE
JSCAN
AWDIE
ROVRIE
Res.
JDMAEN
SCDIE
Res.
0
0
0
0
1
0
0
0
0
0
0
RDATA
CH[2:0]
0
0
0
BKAWH[3:0]
0
0
0
0
BKAWL[3:0]
0
0
0
0
0
0
0
0
AWLTF[7:0]
0
0
0
0
CLRAWHTF[7:0]
0
DocID024597 Rev 3
0
0
0
AWHTF[7:0]
0
Res.
0
0
AWLT[23:0]
reset value
Res.
Res.
Res.
0
CKABIE
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
AWHT[23:0]
reset value
652/1693
0
0
Res.
0
reset value
0x12C
0
RDATA[23:0]
DFSDM0_
AWLTR
DFSDM0_
AWCFR
0
0
Res.
0
0
Res.
0
0
Res.
0
JDATA[23:0]
0
Res.
0
0
Res.
0
Res.
Res.
0
0
Res.
0
JEOCF
Res.
0
Res.
Res.
0
REOCF
Res.
0
Res.
Res.
Res.
0
Res.
0x128
0
DFSDM0_
AWHTR
reset value
0x124
0
DFSDM0_
RDATAR
reset value
0x120
0
DFSDM0_
JDATAR
reset value
0x11C
0
0
IOSR[7:0]
Res.
0x118
0
FOSR[9:0]
0
JDATACH [2:0]
Res.
reset value
Res.
DFSDM0_
FCR
Res.
0x114
0
JCHG[7:0]
0
FORD[2:0]
reset value
JOVRF
DFSDM0_
JCHGR
CLR JOVRF
0
AWDF
0
ROVRF
0
Res.
0
0
CLR ROVRF
0
0
Res.
0
0
RPEND
0
0
Res.
0
0
Res.
0
Res.
0
0
Res.
0
0
Res.
0
0
0
Res.
0
0
0
Res.
0
0
0
Res.
0
0
0
Res.
0
0
Res.
reset value
Res.
CLRCKABF[7:0]
0
0
0
Res.
JEXTSEL[2:0]
Res.
Res.
JEXTEN[1:0]
0
Res.
1
0
Res.
1
0
Res.
1
0
Res.
1
0
Res.
1
Res.
CLRSCDF[7:0]
1
0
Res.
1
0
0
Res.
1
0
0
JCIP
0
Res.
Res.
Res.
RDMAEN
Res.
Res.
0
CKABF[7:0]
0
0
Res.
0
Res.
0
0
Res.
0
0
RCIP
0
0
Res.
DFSDM0_
ICR
0
0
Res.
0x110
0
0
EXCH[7:0]
Res.
0x10C
0
SCDF[7:0]
0
0
Res.
reset value
0
AWDCH[7:0]
0
DFSDM0_
ISR
0
Res.
0x108
0
Res.
Res.
reset value
0
RCONT
0
RSW START
0
RSYNC
0
Res.
Res.
RCH[2:0]
Res.
Res.
0
Res.
FAST
DFSDM0_
CR2
0
Res.
0x104
Res.
reset value
Res.
DFSDM0_
CR1
Res.
0x100
AWFSEL
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 127. DFSDMx register map and reset values
0
0
0
0
CLRAWLTF[7:0]
0
0
0
0
0
0
0
0
0x218
reset value
reset value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DFSDM1_
JDATAR
0
0
0
0
0
0
0
0
0
JDATA[23:0]
0
0
DocID024597 Rev 3
0
0
0
0
0
0
0
Res.
Res.
reset value
0
0
0
0
REOCF
JEOCF
0
0
0
0
0
JCHG[7:0]
0
0
IOSR[7:0]
0
0
0
0
0
Res.
0
Res.
JOVRF
0
CLR JOVRF
reset value
ROVRF
0
Res.
Res.
0
Res.
0
Res.
0
DFEN
EXMINCH[2:0]
Res.
Res.
Res.
0
JSW START
Res.
Res.
Res.
0
JEOCIE
Res.
Res.
JSYNC
0
CLR ROVRF
0
Res.
CNVCNT[27:0]
JSCAN
0
AWDF
1
Res.
1
Res.
1
JDMAEN
1
Res.
1
Res.
Res.
1
Res.
Res.
1
Res.
Res.
Res.
1
Res.
Res.
1
Res.
Res.
Res.
1
Res.
EXCH[7:0]
Res.
0
JEXTSEL[2:0] Res.
0
Res.
0
Res.
0
REOCIE
Res.
0
Res.
0
JOVRIE
Res.
0
Res.
0
ROVRIE
0
Res.
0
Res.
0
Res.
Res.
Res.
Res.
0
Res.
0
AWDIE
0
Res.
0
Res.
0
JDATACH[2:0]
Res.
Res.
Res.
0
Res.
0
Res.
Res.
Res.
0
JEXTEN[1:0]
0
Res.
0
Res.
0
0
Res.
0
0
Res.
reset value
Res.
0
JCIP
0
Res.
AWDCH[7:0]
Res.
0
Res.
0
Res.
0
RCIP
0
0
Res.
0
Res.
0
Res.
0
0
Res.
0
Res.
0
Res.
0
Res.
0
0
Res.
0
Res.
0
Res.
0
Res.
Res.
0
Res.
0
RSW START
EXMIN[23:0]
0
Res.
FOSR[9:0]
Res.
Res.
0
Res.
1
Res.
0
Res.
0
RCONT
0
Res.
0
Res.
0
1
Res.
0
Res.
0
RSYNC
DFSDM0_
CNVTIMR
0
Res.
0
Res.
1
Res.
Res.
0
Res.
0
Res.
0
Res.
1
Res.
Res.
RDMAEN
1
0
Res.
0
Res.
Res.
DFSDM0_
EXMIN
Res.
Res.
Res.
Res.
0
Res.
0
Res.
reset value
1
Res.
0
0
Res.
Res.
Res.
0
Res.
Res.
0
Res.
0
Res.
Res.
Res.
0
Res.
1
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
FAST
RCH[2:0]
Res.
Res.
1
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
1
0
Res.
DFSDM1_
FCR
1
0
Res.
DFSDM1_
JCHGR
0
Res.
DFSDM1_
ICR
Res.
DFSDM1_
ISR
EXMAXCH[2:0]
Res.
Res.
Res.
Res.
Res.
EXMAX[23:0]
Res.
0x214
DFSDM1_
CR2
AWFSEL
reset value
0
1
0
Res.
0x210
DFSDM1_
CR1
1
0
Res.
0x20C
Reserved
0
Res.
0x208
0
0
Res.
0x204
reset value
1
Res.
0x200
0
0
Res.
0x13C 0x1FC
Res.
0x138
Res.
reset value
1
Res.
0x134
Res.
reset value
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
DFSDM0_
EXMAX
Res.
0x130
Res.
Register
Res.
Offset
FORD[2:0]
RM0351
Digital filter for sigma delta modulators (DFSDM)
Table 127. DFSDMx register map and reset values (continued)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
653/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DFSDM1_
EXMIN
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
DFSDM1_
CNVTIMR
1
1
0
CLRAWHTF[7:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
Res.
0
0
0
0
0
0
0
0
-
-
-
-
0
0
0
0
0
0
0
0
JEOCF
0
REOCF
0
0
0
0
0
0
Res.
0
Res.
0
JOVRF
0
ROVRF
Res.
Res.
0
CLR JOVRF
Res.
Res.
Res.
0
CLR ROVRF
Res.
Res.
Res.
Res.
0
Res.
0
Res.
0
0
0
AWDF
Res.
JEXTSEL[2:0] Res.
0
Res.
0
0
0
Res.
Res.
0
Res.
0
Res.
Res.
Res.
DocID024597 Rev 3
0
Res.
0
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
-
Res.
-
Res.
reset value
Res.
-
Res.
-
Res.
DFSDM2_
ISR
0
Res.
0
Res.
0
EXCH[7:0]
Res.
0
Res.
0
0
Res.
AWDCH[7:0]
0
Res.
0
Res.
Res.
0
Res.
0
Res.
Res.
0
Res.
0
0
Res.
0
Res.
0
Res.
Res.
0
Res.
0
Res.
Res.
0
Res.
0
Res.
0
RSW START
0
Res.
0
RCONT
0
Res.
0
RSYNC
0
Res.
0
Res.
0
Res.
0
RDMAEN
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
0
0
0
0
0
0
0
0
RCH[2:0]
0
0
0
Res.
0
FAST
0
Res.
Reserved
0
Res.
0
Res.
RPEND
Res.
0
CNVCNT[27:0]
reset value
0
CLRAWLTF[7:0]
EXMIN[23:0]
0
0
Res.
0
0
AWLTF[7:0]
EXMAX[23:0]
1
Res.
0
AWHTF[7:0]
0
Res.
0
EXMAXCH[2:0]
0
BKAWL[3:0]
EXMINCH[2:0]
0
0
Res.
0
0
Res.
0
0
Res.
0
DFSDM1_
EXMAX
0
Res.
0
reset value
654/1693
0
DFEN
0
DFSDM2_
ICR
0
JSW START
0
Res.
0x30C
0
JEOCIE
0
reset value
0x308
0
REOCIE
0
DFSDM2_
CR2
0
Res.
0
reset value
0x304
0
Res.
0
DFSDM2_
CR1
0
AWLT[23:0]
Res.
0x300
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
0
BKAWH[3:0]
JSYNC
0
0
JOVRIE
0
0
ROVRIE
0
Res.
0
0
Res.
0
Res.
0x23C 0x2FC
0
Res.
0
AWFSEL
0x238
0
Res.
0
DFSDM1_
AWSR
reset value
0
JSCAN
0
Res.
0x234
0
AWDIE
0
reset value
reset value
0
Res.
0
reset value
0x230
0
Res.
0
reset value
0x22C
0
AWHT[23:0]
DFSDM1_
AWLTR
DFSDM1_
AWCFR
0
Res.
0
Res.
Res.
0
Res.
0
Res.
0
JDMAEN
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
RDATA
CH[2:0]
Res.
0
Res.
0x228
0
JEXTEN[1:0]
reset value
0x224
0
JCIP
0x220
0
DFSDM1_
AWHTR
RCIP
reset value
RDATA[23:0]
Res.
DFSDM1_
RDATAR
Res.
0x21C
Res.
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 127. DFSDMx register map and reset values (continued)
0
0
RM0351
Digital filter for sigma delta modulators (DFSDM)
Res.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
0
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DFSDM2_
EXMIN
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
Res.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
Res.
Res.
Res.
Res.
Res.
JEXTSEL[2:0] Res.
Res.
Res.
0
0
DocID024597 Rev 3
0
0
Res.
Res.
0
0
JEXTEN[1:0]
Res.
Res.
Res.
0
Res.
0
Res.
Res.
0
Res.
0
RSW START
0
Res.
0
RCONT
0
Res.
0
RSYNC
0
Res.
0
Res.
0
Res.
0
RDMAEN
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
0
0
0
0
Res.
0
0
0
0
EXMAX
CH[2:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RCH[2:0]
0
0
0
Res.
0
Res.
0
Res.
Reserved
0
FAST
0
0
BKAWL[3:0]
0
CNVCNT[27:0]
reset value
0
CLRAWLTF[7:0]
EXMIN[23:0]
DFSDM2_
CNVTIMR
0
Res.
0
0
AWLTF[7:0]
0
0
0
BKAWH[3:0]
0
Res.
0
0
0
0
EXMAX[23:0]
0
Res.
0
CLRAWHTF[7:0]
0
1
0
0
AWHTF[7:0]
0
DFSDM2_
EXMAX
Res.
Res.
Res.
Res.
Res.
Res.
0
AWLT[23:0]
0
reset value
0
Res.
0
0
DFSDM3_
CR1
0
AWHT[23:0]
Res.
0x400
0
EXMINCH[2:0]
0
Res.
0
Res.
0
Res.
0
Res.
0
RDATA
CH[2:0]
DFEN
0
0
JSW START
0
0
Res.
0
0
Res.
0
Res.
0x33C 0x3FC
0
Res.
0
Res.
0x338
0
Res.
0
DFSDM2_
AWSR
reset value
0
Res.
0
AWFSEL
0x334
0
Res.
0
reset value
reset value
0
0
Res.
0
reset value
0x330
0
Res.
0
DFSDM2_
AWLTR
DFSDM2_
AWCFR
0
RDATA[23:0]
reset value
0x32C
0
Res.
0
0
JSYNC
0
RPEND
0
Res.
0
Res.
0
Res.
0
Res.
0
0
Res.
0
1
JSCAN
0
Res.
0
Res.
0
Res.
0
0
Res.
0
0
Res.
0
0
Res.
0
0
Res.
0
JDATA[23:0]
0
Res.
0
Res.
0
0
IOSR[7:0]
Res.
0
0
Res.
0
0
Res.
0
0
Res.
0
0
JDMAEN
0
0
Res.
0
Res.
Res.
Res.
Res.
0
Res.
0x328
0
DFSDM2_
AWHTR
reset value
0x324
0
DFSDM2_
RDATAR
reset value
0x320
0
FOSR[9:0]
DFSDM2_
JDATAR
reset value
0x31C
0
Res.
DFSDM2_
FCR
reset value
0x318
FORD[2:0]
0x314
0
JDATACH[2:0]
reset value
JCHG[7:0]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DFSDM2_
JCHGR
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0x310
Res.
Register
Res.
Offset
Res.
Table 127. DFSDMx register map and reset values (continued)
655/1693
657
Digital filter for sigma delta modulators (DFSDM)
RM0351
JEOCIE
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
656/1693
Res.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DFSDM3_
AWSR
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DocID024597 Rev 3
1
0
0
0
JDATACH[2:0]
0
0
0
0
0
0
RDATA
CH[2:0]
0
0
0
BKAWH[3:0]
0
0
0
0
0
BKAWL[3:0]
0
0
0
0
0
0
0
0
AWLTF[7:0]
0
0
0
0
CLRAWHTF[7:0]
0
0
0
0
CLRAWLTF[7:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
EXMAX[23:0]
1
Res.
0
AWHTF[7:0]
0
DFSDM3_
EXMAX
Res.
Res.
Res.
Res.
Res.
Res.
0
AWLT[23:0]
reset value
reset value
0
AWHT[23:0]
reset value
0x430
0
Res.
0
reset value
0x42C
0
RDATA[23:0]
DFSDM3_
AWLTR
DFSDM3_
AWCFR
0
Res.
0
0
0
0
0
0
0
0
EXMAXCH[2:0]
0
Res.
0
Res.
0
RPEND
0
Res.
0
Res.
0
Res.
0
0
Res.
0
0
Res.
0
0
Res.
0
0
Res.
0
JDATA[23:0]
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
0
Res.
0
0
Res.
0
Res.
Res.
Res.
0
Res.
0x428
0
DFSDM3_
AWHTR
reset value
0x424
0
DFSDM3_
RDATAR
reset value
0x420
0
DFSDM3_
JDATAR
reset value
0x41C
0
0
IOSR[7:0]
Res.
0x418
0
FOSR[9:0]
0
Res.
reset value
Res.
DFSDM3_
FCR
Res.
0x414
0
FORD[2:0]
reset value
0
JCHG[7:0]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0x410
DFSDM3_
JCHGR
Res.
reset value
Res.
JEOCF
JOVRIE
REOCIE
0
Res.
REOCF
ROVRIE
JOVRF
0
ROVRF
0
CLR JOVRF
0
CLR ROVRF
Res.
AWDIE
0
AWDF
Res.
Res.
0
Res.
Res.
0
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DFSDM3_
ICR
Res.
0x40C
Res.
reset value
Res.
0
Res.
0
Res.
Res.
0
Res.
Res.
0
Res.
Res.
0
Res.
Res.
0
Res.
Res.
0
Res.
Res.
0
Res.
0
Res.
0
Res.
0
JCIP
0
Res.
0
Res.
0
RCIP
0
Res.
0
Res.
EXCH[7:0]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DFSDM3_
ISR
Res.
0x408
Res.
reset value
AWDCH[7:0]
Res.
Res.
Res.
Res.
DFSDM3_
CR2
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0x404
Res.
Register
Res.
Offset
Res.
Table 127. DFSDMx register map and reset values (continued)
0
0
0
RM0351
Digital filter for sigma delta modulators (DFSDM)
1
1
1
1
DFSDM3_
CNVTIMR
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
0
Res.
Res.
0
Res.
Res.
0
Res.
Res.
0
Res.
Res.
0
Res.
Reserved
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
CNVCNT[27:0]
reset value
EXMINCH[2:0]
Res.
Res.
0
0
0
Res.
1
Res.
1
Res.
1
Res.
1
Res.
1
Res.
1
Res.
0x43C 0x4FC
1
Res.
0x438
0
Res.
reset value
EXMIN[23:0]
Res.
DFSDM3_
EXMIN
Res.
0x434
Res.
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 127. DFSDMx register map and reset values (continued)
Refer to Section 2.2.2: Memory map and register boundary addresses for the register
boundary addresses.
DocID024597 Rev 3
657/1693
657
Liquid crystal display controller (LCD)
RM0351
22
Liquid crystal display controller (LCD)
22.1
Introduction
The LCD controller is a digital controller/driver for monochrome passive liquid crystal display
(LCD) with up to 8 common terminals and up to 44 segment terminals to drive 176 (44x4) or
320 (40x8) LCD picture elements (pixels). The exact number of terminals depends on the
device pinout as described in the datasheet.
The LCD is made up of several segments (pixels or complete symbols) which can be turned
visible or invisible. Each segment consists of a layer of liquid crystal molecules aligned
between two electrodes. When a voltage greater than a threshold voltage is applied across
the liquid crystal, the segment becomes visible. The segment voltage must be alternated to
avoid an electrophoresis effect in the liquid crystal (which degrades the display). The
waveform across a segment must then be generated so as to avoid having a direct current
(DC).
Glossary
Bias: Number of voltage levels used when driving an LCD. It is defined as 1/(number of
voltage levels used to drive an LCD display - 1).
Boost circuit: Contrast controller circuit
Common: Electrical connection terminal connected to several segments (44 segments).
Duty ratio: Number defined as 1/(number of common terminals on a given LCD display).
Frame: One period of the waveform written to a segment.
Frame rate: Number of frames per second, that is, the number of times the LCD segments
are energized per second.
LCD: (liquid crystal display) a passive display panel with terminals leading directly to a
segment.
Segment: The smallest viewing element (a single bar or dot that is used to help create a
character on an LCD display).
658/1693
DocID024597 Rev 3
RM0351
22.2
Liquid crystal display controller (LCD)
LCD main features
•
Highly flexible frame rate control.
•
Supports Static, 1/2, 1/3, 1/4 and 1/8 duty.
•
Supports Static, 1/2, 1/3 and 1/4 bias.
•
Double buffered memory allows data in LCD_RAM registers to be updated at any time
by the application firmware without affecting the integrity of the data displayed.
–
•
Software selectable LCD output voltage (contrast) from VLCDmin to VLCDmax.
•
No need for external analog components:
•
–
A step-up converter is embedded to generate an internal VLCD voltage higher than
VDD
–
Software selection between external and internal VLCD voltage source. In case of
an external source, the internal boost circuit is disabled to reduce power
consumption
–
A resistive network is embedded to generate intermediate VLCD voltages
–
The structure of the resistive network is configurable by software to adapt the
power consumption to match the capacitive charge required by the LCD panel
–
Integrated voltage output buffers for higher LCD driving capability.
The contrast can be adjusted using two different methods:
–
When using the internal step-up converter, the software can adjust VLCD between
VLCDmin and VLCDmax.
–
Programmable dead time (up to 8 phase periods) between frames.
•
Full support of low-power modes: the LCD controller can be displayed in Sleep, Lowpower run, Low-power sleep and Stop modes or can be fully disabled to reduce power
consumption.
•
Built in phase inversion for reduced power consumption and EMI (electromagnetic
interference).
•
Start of frame interrupt to synchronize the software when updating the LCD data RAM.
•
Blink capability:
•
Note:
LCD data RAM of up to 16 x 32-bit registers which contain pixel information
(active/inactive)
–
Up to 1, 2, 3, 4, 8 or all pixels which can be programmed to blink at a configurable
frequency
–
Software adjustable blink frequency to achieve around 0.5 Hz, 1 Hz, 2 Hz or 4 Hz.
Used LCD segment and common pins should be configured as GPIO alternate
functions and unused segment and common pins can be used for general purpose I/O
or for another peripheral alternate function.
When the LCD relies on the internal step-up converter, the VLCD pin should be connected
to VSS with a capacitor. Its typical value is 1 µF (see CEXT value in the product datasheets
for further information).
DocID024597 Rev 3
659/1693
690
Liquid crystal display controller (LCD)
RM0351
22.3
LCD functional description
22.3.1
General description
The LCD controller has five main blocks (see Figure 153):
Figure 153. LCD controller block diagram
)5(48(1&<*(1(5$725
/&'&/.
ELWSUHVFDOHU
/&'&/.
36>@
/&'
5(*6
/&'&/.
&/2&.08;
FNBSV
',9>@
'LYLGHE\WR
,QWHUUXSW
FNBGLY
&20>@
WR08;
6(*>@
$QDORJ
VZLWFK
DUUUD\
$QDORJ
VZLWFK
DUUD\
6(*
'5,9(5
5($'<
67$7,&
6(*>@
6(*>@
/&'
5(*6
&20
&20>@
6(*>@
'$7$%86
$''5(66%86
&20
'5,9(5
/&'5$0
[ELWV
&20
6(*
6(*
&20
6(*
&20
08;
96(/
6(*
&20
6(*>@
(1
38/6(*(1
+'
92/7$*(
*(1(5$725
6(*
&20
966
9/&'
6(*
&20
9/&'
%,$6>@
&&>@
&2175$67
&21752//(5
$QDORJVWHSXS
FRQYHUWHU
Note:
6(*
9/&'
9/&'
,23RUWV
069
LCDCLK is the same as RTCCLK. Please refer to the RTC/LCD clock description in the
RCC section of this manual.
The frequency generator allows you to achieve various LCD frame rates starting from an
LCD input clock frequency (LCDCLK) which can vary from 32 kHz up to 1 MHz.
3 different clock sources can be used to provide the LCD clock (LCDCLK/RTCCLK):
660/1693
•
32 kHz Low speed external RC (LSE)
•
32 kHz Low speed internal RC (LSI)
•
High speed external (HSE) divided by 32
DocID024597 Rev 3
RM0351
22.3.2
Liquid crystal display controller (LCD)
Frequency generator
This clock source must be stable in order to obtain accurate LCD timing and hence
minimize DC voltage offset across LCD segments. The input clock LCDCLK can be divided
by any value from 1 to 215x 31 (see Section 22.6.2: LCD frame control register (LCD_FCR)
on page 682). The frequency generator consists of a prescaler (16-bit ripple counter) and a
16 to 31 clock divider. The PS[3:0] bits, in the LCD_FCR register, select LCDCLK divided by
2PS[3:0]. If a finer resolution rate is required, the DIV[3:0] bits, in the LCD_FCR register, can
be used to divide the clock further by 16 to 31. In this way you can roughly scale the
frequency, and then fine-tune it by linearly scaling the clock with the counter. The output of
the frequency generator block is fck_div which constitutes the time base for the entire LCD
controller. The ck_div frequency is equivalent to the LCD phase frequency, rather than the
frame frequency (they are equal only in case of static duty). The frame frequency (fframe) is
obtained from fck_div by dividing it by the number of active common terminals (or by
multiplying it for the duty). Thus the relation between the input clock frequency (fLCDCLK) of
the frequency generator and its output clock frequency fck_div is:
f LCDCLK
f ckdiv = -----------------------------------------------PS
2 × 〈 16 + DIV〉
f frame = f ckdiv × duty
This makes the frequency generator very flexible. An example of frame rate calculation is
shown in Table 128.
Table 128. Example of frame rate calculation
LCDCLK
PS[3:0]
DIV[3:0]
Ratio
Duty
fframe
32.768 kHz
3
1
136
1/8
30.12 Hz
32.768 kHz
4
1
272
1/4
30.12 Hz
32.768 kHz
4
6
352
1/3
31.03 Hz
32.768 kHz
5
1
544
1/2
30.12 Hz
32.768 kHz
6
1
1088
static
30.12 Hz
32.768 kHz
1
4
40
1/8
102.40 Hz
32.768 kHz
2
4
80
1/4
102.40 Hz
32.768 kHz
2
11
108
1/3
101.14 Hz
32.768 kHz
3
4
160
1/2
102.40 Hz
32.768 kHz
4
4
320
static
102.40 Hz
1.00 MHz
6
3
1216
1/8
102.80 Hz
1.00 MHz
7
3
2432
1/4
102.80 Hz
1.00 MHz
7
10
3328
1/3
100.16 Hz
1.00 MHz
8
3
4864
1/2
102.80 Hz
1.00 MHz
9
3
9728
static
102.80 Hz
The frame frequency must be selected to be within a range of around ~30 Hz to ~100 Hz
and is a compromise between power consumption and the acceptable refresh rate. In
DocID024597 Rev 3
661/1693
690
Liquid crystal display controller (LCD)
RM0351
addition, a dedicated blink prescaler selects the blink frequency. This frequency is defined
as:
fBLINK = fck_div/2(BLINKF + 3),
with BLINKF[2:0] = 0, 1, 2, ... ,7
The blink frequency achieved is in the range of 0.5 Hz, 1 Hz, 2 Hz or 4 Hz.
22.3.3
Common driver
Common signals are generated by the common driver block (see Figure 153).
COM signal bias
Each COM signal has identical waveforms, but different phases. It has its max amplitude
VLCD or VSS only in the corresponding phase of a frame cycle, while during the other
phases, the signal amplitude is:
•
1/4 VLCD or 3/4 VLCD in case of 1/4 bias
•
1/3 VLCD or 2/3 VLCD in case of 1/3 bias
•
and 1/2 VLCD in case of 1/2 bias.
Selection between 1/2, 1/3 and 1/4 bias mode can be done through the BIAS bits in the
LCD_CR register.
A pixel is activated when both of its corresponding common and segment lines are active
during the same phase, it means when the voltage difference between common and
segment is maximum during this phase. Common signals are phase inverted in order to
reduce EMI. As shown in Figure 154, with phase inversion, there is a mean voltage of 1/2
VLCD at the end of every odd cycle.
Figure 154. 1/3 bias, 1/4 duty
2GGIUDPH
(YHQIUDPH
&RPPRQ
9/&'
9/&'
9/&'
966
&RPDFWLYH
&RPLQDFWLYH &RPLQDFWLYH &RPLQDFWLYH
&RPDFWLYH
&RPLQDFWLYH &RPLQDFWLYH &RPLQDFWLYH
6HJPHQW
9/&'
9/&'
9/&'
966
&RPDFWLYH
&RPDFWLYH
3KDVH
3KDVH
&RPLQDFWLYH &RPLQDFWLYH
3KDVH
3KDVH
&RPDFWLYH
&RPDFWLYH
3KDVH
3KDVH
&RPLQDFWLYH &RPLQDFWLYH
3KDVH
3KDVH
069
In case of 1/2 bias (BIAS = 01) the VLCD pin generates an intermediate voltage equal to 1/2
VLCD on node b for odd and even frames (see Figure 157).
COM signal duty
Depending on the DUTY[2:0] bits in the LCD_CR register, the COM signals are generated
with static duty (see Figure 156), 1/2 duty (see Figure 157), 1/3 duty (see Figure 158), 1/4
duty (see Figure 159) or 1/8 duty (see Figure 160).
662/1693
DocID024597 Rev 3
RM0351
Liquid crystal display controller (LCD)
COM[n] n[0 to 7] is active during phase n in the odd frame, so the COM pin is driven to
VLCD.
During phase n of the even frame the COM pin is driven to VSS.
In the case of 1/3 or 1/4) bias:
•
COM[n] is inactive during phases other than n so the COM pin is driven to 1/3 (1/4)
VLCD during odd frames and to 2/3 (3/4) VLCD during even frames
In the case of 1/2 bias:
•
If COM[n] is inactive during phases other than n, the COM pin is always driven (odd
and even frame) to 1/2 VLCD.
When static duty is selected, the segment lines are not multiplexed, which means that each
segment output corresponds to one pixel. In this way only up to 44 pixels can be driven.
COM[0] is always active while COM[7:1] are not used and are driven to VSS.
When the LCDEN bit in the LCD_CR register is reset, all common lines are pulled down to
VSS and the ENS flag in the LCD_SR register becomes 0. Static duty means that COM[0] is
always active and only two voltage levels are used for the segment and common lines: VLCD
and VSS. A pixel is active if the corresponding SEG line has a voltage opposite to that of the
COM, and inactive when the voltages are equal. In this way the LCD has maximum contrast
(see Figure 155, Figure 156). In the Figure 155 pixel 0 is active while pixel 1 is inactive.
Figure 155. Static duty case 1
2GGIUDPH
(YHQIUDPH
2GGIUDPH
(YHQIUDPH
9/&'
&20
966
9/&'
6(*
966
9/&'
6(*
966
9/&'
&20
6(*
9/&'
9/&'
&20
6(*
9/&'
069
In each frame there is only one phase, this is why fframe is equal to fLCD. If 1/4 duty is
selected there are four phases in a frame in which COM[0] is active during phase 0, COM[1]
is active during phase 1, COM[2] is active during phase 2, and COM[3] is active during
phase 3.
DocID024597 Rev 3
663/1693
690
Liquid crystal display controller (LCD)
RM0351
Figure 156. Static duty case 2
/LTXLGFU\VWDOGLVSOD\
DQGWHUPLQDOFRQQHFWLRQ
9
3,1
&20
9
9
3,1
6(*
9
&20
9
6(*
3,1
6(*
9
6(*
9
6(*
6(*
6(*
6(*
6(*
6(*
&206(*
VHOHFWHGZDYHIRUP
9
9
&206(*
QRQVHOHFWHGZDYHIRUP
9
069
In this mode, the segment terminals are multiplexed and each of them control four pixels. A
pixel is activated only when both of its corresponding SEG and COM lines are active in the
same phase. In case of 1/4 duty, to deactivate pixel 0 connected to COM[0] the SEG[0]
needs to be inactive during the phase 0 when COM[0] is active. To activate pixel 0
connected to COM[1], the SEG[0] needs to be active during phase 1 when COM[1] is active
(see Figure 159). To activate pixels from 0 to 43 connected to COM[0], SEG[0:43] need to
be active during phase 0 when COM[0] is active. These considerations can be extended to
the other pixels.
8 to 1 Mux
When COM[0] is active the common driver block, also drives the 8 to 1 mux shown in
Figure 153 in order to select the content of first two RAM register locations. When COM[7] is
active, the output of the 8 to 1 mux is the content of the last two RAM locations.
664/1693
DocID024597 Rev 3
RM0351
Liquid crystal display controller (LCD)
Figure 157. 1/2 duty, 1/2 bias
/LTXLGFU\VWDOGLVSOD\
DQGWHUPLQDOFRQQHFWLRQ
9
3,1
&20
9
9
9
&20
3,1
&20
9
9
9
&20
3,1
6(*
9
9
3,1
6(*
9
9
&206(*
VHOHFWHGZDYHIRUP
9
9
9
6(*
6(*
6(*
6(*
9
9
&206(*
QRQVHOHFWHGZDYHIRUP
9
9
069
22.3.4
Segment driver
The segment driver block controls the SEG lines according to the pixel data coming from the
8 to 1 mux driven in each phase by the common driver block.
In the case of 1/4 or 1/8 duty
When COM[0] is active, the pixel information (active/inactive) related to the pixel connected
to COM[0] (content of the first two LCD_RAM locations) goes through the 8 to 1 mux.
The SEG[n] pin n [0 to 43] is driven to VSS (indicating pixel n is active when COM[0] is
active) in phase 0 of the odd frame.
The SEG[n] pin is driven to VLCD in phase 0 of the even frame. If pixel n is inactive then the
SEG[n] pin is driven to 2/3 (2/4) VLCD in the odd frame or 1/3 (2/4) VLCD in the even frame
(current inversion in VLCD pad) (see Figure 154).
In case of 1/2 bias, if the pixel is inactive the SEG[n] pin is driven to VLCD in the odd and to
VSS in the even frame.
When the LCD controller is disabled (LCDEN bit cleared in the LCD_CR register) then the
SEG lines are pulled down to VSS.
DocID024597 Rev 3
665/1693
690
Liquid crystal display controller (LCD)
RM0351
Figure 158. 1/3 duty, 1/3 bias
9
3,1
&20
9
9
/LTXLGFU\VWDOGLVSOD\
DQGWHUPLQDOFRQQHFWLRQ
9
9
3,1
&20
9
9
&20
9
9
3,1
&20
&20
9
9
9
&20
9
3,1
6(*
9
9
9
9
3,1
6(*
9
9
9
9
6(*
6(*
9
6(*
9
&206(*
VHOHFWHGZDYHIRUP
9
9
9
9
9
&206(*
QRQVHOHFWHGZDYHIRUP
9
9
IUDPH
069
666/1693
DocID024597 Rev 3
RM0351
Liquid crystal display controller (LCD)
Figure 159. 1/4 duty, 1/3 bias
9
3,1
&20
9
9
/LTXLGFU\VWDOGLVSOD\
DQGWHUPLQDOFRQQHFWLRQ
9
9
3,1
&20
&20
9
9
9
&20
9
3,1
&20
&20
9
9
9
&20
9
3,1
6(*
9
9
9
9
3,1
6(*
9
9
9
9
9
6(*
6(*
9
&206(*
VHOHFWHGZDYHIRUP
9
9
9
9
9
&206(*
QRQVHOHFWHGZDYHIRUP
9
9
IUDPH
069
DocID024597 Rev 3
667/1693
690
Liquid crystal display controller (LCD)
RM0351
Figure 160. 1/8 duty, 1/4 bias
/LTXLGFU\VWDOGLVSOD\
DQGWHUPLQDOFRQQHFWLRQ
9
9
3,1
&20
9
&20
9
9
&20
&20
9
&20
&20
9
3,1
&20
9
&20
9
9
&20
&20
9
9
3,1
&20
9
9
9
9
9
3,1
&20
9
9
6(*
9
9
9
3,1
6(*
9
9
9
9
9
9
9
&206(*
VHOHFWHGZDYHIRUP
9
9
9
9
9
9
9
9
9
&206(*
QRQVHOHFWHGZDYHIRUP
9
9
9
9
9
IUDPH
069
668/1693
DocID024597 Rev 3
RM0351
Liquid crystal display controller (LCD)
Blink
The segment driver also implements a programmable blink feature to allow some pixels to
continuously switch on at a specific frequency. The blink mode can be configured by the
BLINK[1:0] bits in the LCD_FCR register, making possible to blink up to 1, 2, 4, 8 or all
pixels (see Section 22.6.2: LCD frame control register (LCD_FCR)). The blink frequency
can be selected from eight different values using the BLINKF[2:0] bits in the LCD_FCR
register.
Table 129 gives examples of different blink frequencies (as a function of ck_div frequency).
Table 129. Blink frequency
BLINKF[2:0]
bits
22.3.5
ck_div frequency (with LCDCLK frequency of 32.768 kHz)
32 Hz
64 Hz
128 Hz
256 Hz
0
0
0
4.0 Hz
N/A
N/A
N/A
0
0
1
2.0 Hz
4.0 Hz
N/A
N/A
0
1
0
1.0 Hz
2.0 Hz
4.0 Hz
N/A
0
1
1
0.5 Hz
1.0 Hz
2.0 Hz
4.0 Hz
1
0
0
0.25 Hz
0.5 Hz
1.0 Hz
2.0 Hz
1
0
1
N/A
0.25 Hz
0.5 Hz
1.0 Hz
1
1
0
N/A
N/A
0.25 Hz
0.5 Hz
1
1
1
N/A
N/A
N/A
0.25 Hz
Voltage generator and contrast control
LCD supply source
The LCD power supply source may come from either the internal step-up converter or from
an external voltage applied on the VLCD pin. Internal or external voltage source can be
selected using the VSEL bit in the LCD_CR register. In case of external source selected, the
internal boost circuit (step-up converter) is disabled to reduce power consumption.
When the step-up converter is selected as VLCD source, the VLCD value can be chosen
among a wide set of values from VLCDmin to VLCDmax by means of CC[2:0] (Contrast
Control) bits inside LCD_FCR (see Section 22.6.2) register. New values of VLCD takes effect
every beginning of a new frame.
When external power source is selected as VLCD source, the VLCD voltage must be chosen
in the range of VLCDmin to VLCDmax (see datasheets). The contrast can then be controlled by
programming a dead time between frames (see Deadtime on page 672).
A specific software sequence must be performed to configure the LCD depending on the
LCD power supply source to be used. Here we consider the LCD controller is disabled prior
to the configuration sequence.
DocID024597 Rev 3
669/1693
690
Liquid crystal display controller (LCD)
RM0351
In case the internal step-up converter is used (capacitor CEXT on VLCD pin is required):
•
Configure the VLCD pin as alternate function LCD in the GPIO_AFR register.
•
Wait for the external capacitor CEXT to be charged (CEXT connected to the VLCD pin,
approximately 2 ms for CEXT = 1 μF)
•
Set voltage source to internal source by resetting VSEL bit in the LCD_CR register
•
Enable the LCD controller by setting LCDEN bit in the LCD_CR register
In case of LCD external power source is used:
•
Set voltage source to external source by setting VSEL bit in the LCD_CR register
•
Configure the VLCD pin as alternate function LCD in the GPIO_AFR register
•
Enable the LCD controller by setting LCDEN bit in the LCD_CR register
LCD intermediate voltages
The LCD voltage generator generates up to three intermediate voltage levels (1/3 VLCD, 2/3
VLCD or 1/4 VLCD, 2/4 VLCD, 3/4 VLCD) between VSS and VLCD in case of 1/3 (1/4) bias and
only one voltage level (1/2 VLCD) between VSS and VLCD in case of 1/2 bias.
In case of 1/2 bias, one voltage level (1/2 VLCD) is generated and node b voltage is 1/2 VLCD
In case of 1/3 bias, two intermediate voltage levels (1/3 VLCD, 2/3 VLCD) are generated
•
node a is 1/3 VLCD
•
node b is 2/3 VLCD
In case of 1/4 bias, three intermediate voltage levels (1/4 VLCD, 1/2 VLCD and 3/4 VLCD) are
generated
•
node a is 1/4 VLCD
•
node b is 1/2 VLCD
•
node c is 3/4 VLCD
LCD drive selection
1.
High drive and low drive resistive network
Internal resistor networks are used to generate all intermediate voltages (see Figure 161).
Actually, one with low value resistors (RLN) and one with high value resistors (RHN) which
are respectively used to increase the current during transitions and to reduce power
consumption in static state.
The EN switch allows the following rules:
If LCDEN bit in the LCD_CR register is set, the EN switch is closed.
When clearing the LCDEN bit in the LCD_CR register, the EN switch is open at the end of
the even frame in order to avoid a medium voltage level different from 0 considering the
entire frame odd plus even.
The PON[2:0] (Pulse ON duration) bits in the LCD_FCR register configure the time during
which RLN is enabled (see Figure 153) through the HD (high drive) switch when the levels of
the common and segment lines change. A short drive time will lead to lower power
consumption, but displays with high internal resistance may need a longer drive time to
achieve satisfactory contrast.
670/1693
DocID024597 Rev 3
RM0351
Liquid crystal display controller (LCD)
Figure 161. VLCD pin for 1/2 1/3 1/4 bias
+'
(1
9/&'
%8)(1
%8)(1
QRGHF
%8)(1
ELDV
%8)(1
%8)(1
ELDVRUELDV
QRGHE
%8)(1
ELDV
%8)(1
%8)(1
QRGHD
ELDV
%8)(1
5/1
5+1
67$7,&
966
069
1. RLN: Low value resistor network. RHN: High value resistor network.
The RLN divider can be always switched on using the HD bit in the LCD_FCR configuration
register (see Section 22.6.2).
The HD switch follows the rules described below:
•
If the HD bit and the PON[2:0] bits in the LCD_FCR register are reset, then HD switch
is open.
•
If the HD bit in the LCD_FCR register is reset and the PON[2:0] bits in the LCD_FCR
are different from 00 then, the HD switch is closed during the number of pulses defined
in the PON[2:0] bits.
•
If HD bit in the LCD_FCR register is 1 then HD switch is always closed.
Buffered mode
When voltage output buffers are enabled by setting BUFEN bit in the LCD_CR register, LCD
driving capability is improved as buffers prevent the LCD capacitive loads from loading the
resistor bridge unacceptably and interfering with its voltage generation. As a result we
obtain more stable intermediate voltage levels thus improving RMS voltage applied to the
LCD pixels.
DocID024597 Rev 3
671/1693
690
Liquid crystal display controller (LCD)
RM0351
In buffer mode, intermediate voltages are generated by the high value resistor bridge RHN to
reduce power consumption, the low value resistor bridge RLN is automatically disabled
whatever the HD bit or PON bits configuration.
Buffers can be used independently of the VLCD supply source (internal or external) but can
only be enabled or disabled when LCD controller is not activated.
After the LCDEN bit is activated, the RDY bit is set in the LCD_SR register to indicate that
voltage levels are stable and the LCD controller can start to work.
Deadtime
In addition to using the CC[2:0] bits, the contrast can be controlled by programming a dead
time between each frame. During the dead time the COM and SEG values are put to VSS.
The DEAD[2:0] bits in the LCD_FCR register can be used to program a time of up to eight
phase periods. This dead time reduces the contrast without modifying the frame rate.
Figure 162. Deadtime
ŽĚĚĨƌĂŵĞ
ĞǀĞŶĨƌĂŵĞ
ĚĞĂĚƚŝŵĞ
ŽĚĚĨƌĂŵĞ
ĞǀĞŶĨƌĂŵĞ
069
672/1693
DocID024597 Rev 3
RM0351
22.3.6
Liquid crystal display controller (LCD)
Double buffer memory
Using its double buffer memory the LCD controller ensures the coherency of the displayed
information without having to use interrupts to control LCD_RAM modification.
The application software can access the first buffer level (LCD_RAM) through the APB
interface. Once it has modified the LCD_RAM, it sets the UDR flag in the LCD_SR register.
This UDR flag (update display request) requests the updated information to be moved into
the second buffer level (LCD_DISPLAY).
This operation is done synchronously with the frame (at the beginning of the next frame),
until the update is completed, the LCD_RAM is write protected and the UDR flag stays high.
Once the update is completed another flag (UDD - Update Display Done) is set and
generates an interrupt if the UDDIE bit in the LCD_FCR register is set.
The time it takes to update LCD_DISPLAY is, in the worst case, one odd and one even
frame.
The update will not occur (UDR = 1 and UDD = 0) until the display is enabled (LCDEN = 1)
22.3.7
COM and SEG multiplexing
Output pins versus duty modes
The output pins consists of:
•
SEG[43:0]
•
COM[3:0]
Depending on the duty configuration, the COM and SEG output pins may have different
functions:
•
In static, 1/2, 1/3 and 1/4 duty modes there are up to 44 SEG pins and respectively 1, 2,
3 and 4 COM pins
•
In 1/8 duty mode (DUTY[2:0] = 100), COM[7:4] outputs are available on the
SEG[43:40] pins, reducing to the number of available segments to 40.
Remapping capability for small packages
Additionally, it is possible to remap 4 segments by setting the MUX_SEG bit in the LCD_CR
register. This is particularly useful when using smaller device types with fewer external pins.
When MUX_SEG is set, output pins SEG[43:40] have the same function as SEG[31:28].
DocID024597 Rev 3
673/1693
690
Liquid crystal display controller (LCD)
RM0351
Summary of COM and SEG functions versus duty and remap
All the possible ways of multiplexing the COM and SEG functions are described in
Table 130. Figure 163 gives examples showing the signal connections to the external pins.
Table 130. Remapping capability
Configuration bits
DUTY
MUX_SEG
0/1
CSP72
LQFP64
-
LQFP144
BGA132/
LQFP100
40x8
1/8
0/1
28x8
0
-
44x4
1
40x4
1/4
0
28x4
-
1
674/1693
32x4
Output pin
Function
SEG[43:40]/SEG[31:28]/COM[7:4]
COM[7:4]
COM[3:0]
COM[3:0]
SEG[39:0]
SEG[39:0]
SEG[43:40]/SEG[31:28]/COM[7:4]
COM[7:4]
COM[3:0]
COM[3:0]
SEG[27:0]
SEG[27:0]
COM[3:0]
COM[3:0]
SEG[43:40]/SEG[31:28]/COM[7:4]
SEG[43:40]
SEG[39:0]
SEG[39:0]
COM[3:0]
COM[3:0]
SEG[43:40]/SEG[31:28]/COM[7:4]
SEG[31:28]
SEG[39:32]
SEG[39:32]
SEG[31:28]
not used
SEG[27:0]
SEG[27:0]
COM[3:0]
COM[3:0]
SEG[43:40]/SEG[31:28]/COM[7:4]
not used
SEG[27:0]
SEG[27:0]
COM[3:0]
COM[3:0]
SEG[43:40]/SEG[31:28]/COM[7:4]
SEG[31:28]
SEG[27:0]
SEG[27:0]
DocID024597 Rev 3
RM0351
Liquid crystal display controller (LCD)
Table 130. Remapping capability (continued)
Configuration bits
DUTY
MUX_SEG
CSP72
LQFP64
0
LQFP144
BGA132/
LQFP100
44x3
-
1
40x3
1/3
0
28x3
-
1
32x3
0
1/2
44x2
-
1
40x2
Output pin
Function
COM3
not used
COM[2:0]
COM[2:0]
SEG[43:40]/SEG[31:28]/COM[7:4]
SEG[43:40]
SEG[39:0]
SEG[39:0]
COM3
not used
COM[2:0]
COM[2:0]
SEG[43:40]/SEG[31:28]/COM[7:4]
SEG[31:28]
SEG[39:32]
SEG[39:32]
SEG[31:28]
not used
SEG[27:0]
SEG[27:0]
COM3
not used
COM[2:0]
COM[2:0]
SEG[43:40]/SEG[31:28]/COM[7:4]
not used
SEG[31:0]
SEG[31:0]
COM3
not used
COM[2:0]
COM[2:0]
SEG[43:40]/SEG[31:28]/COM[7:4]
SEG[31:28]
SEG[27:0]
SEG[27:0]
COM[3:2]
not used
COM[1:0]
COM[1:0]
SEG[43:40]/SEG[31:28]/COM[7:4]
SEG[43:40]
SEG[39:0]
SEG[39:0]
COM[3:2]
not used
COM[1:0]
COM[1:0]
SEG[43:40]/SEG[31:28]/COM[7:4]
SEG[31:28]
SEG[39:32]
SEG[39:32]
SEG[31:28]
not used
SEG[27:0]
SEG[27:0]
DocID024597 Rev 3
675/1693
690
Liquid crystal display controller (LCD)
RM0351
Table 130. Remapping capability (continued)
Configuration bits
DUTY
MUX_SEG
0
CSP72
LQFP64
LQFP144
BGA132/
LQFP100
28x2
1/2
-
1
32x2
0
44x1
-
1
40x1
STATIC
0
28x1
-
1
676/1693
32x1
Output pin
Function
COM[3:2]
not used
COM[1:0]
COM[1:0]
SEG[43:40]/SEG[31:28]/COM[7:4]
not used
SEG[27:0]
SEG[27:0]
COM[3:2]
not used
COM[1:0]
COM[1:0]
SEG[43:40]/SEG[31:28]/COM[7:4]
SEG[31:28]
SEG[27:0]
SEG[27:0]
COM[3:1]
not used
COM0
COM0
SEG[43:40]/SEG[31:28]/COM[7:4]
SEG[43:40]
SEG[39:0]
SEG[39:0]
COM[3:1]
not used
COM0
COM0
SEG[43:40]/SEG[31:28]/COM[7:4]
SEG[31:28]
SEG[39:32]
SEG[39:32]
SEG[31:28]
not used
SEG[27:0]
SEG[27:0]
COM[3:1]
not used
COM0
COM0
SEG[43:40]/SEG[31:28]/COM[7:4]
not used
SEG[27:0]
SEG[27:0]
COM[3:1]
not used
COM0
COM0
SEG[43:40]/SEG[31:28]/COM[7:4]
SEG[31:28]
SEG[27:0]
SEG[27:0]
DocID024597 Rev 3
RM0351
Liquid crystal display controller (LCD)
Figure 163. SEG/COM mux feature example
/&'&21752//(5
6(*>@
6(*>@
6(*
&20
08;
6(*'5,9(5
6(*B287>@
/&'B6(*>@
3,1
6(*B287>@
/&'B6(*>@
3,1
6(*B287>@
/&'B6(*>@
3,1
&20>@
&20'5,9(5
'87<DQG08;B6(*
/&'&21752//(5
6(*>@
6(*>@
6(*
&20
08;
6(*'5,9(5
&20>@
&20'5,9(5
'87<DQG08;B6(*
/&'&21752//(5
6(*>@
6(*>@
6(*'5,9(5
6(*
&20
08;
&20>@
&20'5,9(5
'87< DQG08;B6(*
069
DocID024597 Rev 3
677/1693
690
Liquid crystal display controller (LCD)
22.3.8
RM0351
Flowchart
Figure 164. Flowchart example
67$57
,1,7
(QDEOHWKH*3,2SRUWFORFNV
&RQILJXUHWKH/&'*3,2SLQVDVDOWHUQDWH
IXQFWLRQV
&RQILJXUH/&'FRQWUROOHUDFFRUGLQJWRWKH
'LVSOD\WREHGULYHQ
/RDGWKHLQLWLDOGDWDWREHGLVSOD\HGLQWR
/&'B5$0DQGVHWWKH8'5ELWLQWKH/&'B65
UHJLVWHU
3URJUDPWKHGHVLUHGIUDPHUDWH 36DQG',9
ELWVLQ/&'B)&5
3URJUDPWKHFRQWUDVW &&ELWVLQ/&'B)&5
UHJLVWHU
%NABLE THE DISPLAY ,#$%. BIT IN ,#$?#2 REGISTER
!DJUST CONTRAST
9ES
&KDQJH36',9&&321
'($'RU+'LQ/&'B)&5
.O
-ODIFY DATA
9ES
5$2
9ES
.O
6HW8'5ELWLQ/&'B65
.O
#HANGE BLINK
0RGLI\WKH/&'B5$0
9ES
&KDQJH%/,1.RU%/,1.)LQ
/&'B)&5
.O
$ISABLE ,#$
9ES
'LVDEOHWKHGLVSOD\ /&'(1ELWLQ/&'B&5UHJLVWHU
.O
%.3
9ES
(1'
069
678/1693
DocID024597 Rev 3
RM0351
22.4
Liquid crystal display controller (LCD)
LCD low-power modes
the LCD controller can be displayed in Stop mode or can be fully disabled to reduce power
consumption.
Table 131. LCD behavior in low-power modes
Mode
Description
Sleep
No effect. LCD interrupt causes the device to exit the Sleep mode.
Low-power run
No effect.
Low-power sleep
No effect. LCD interrupt causes the device to exit the Low-power sleep
mode.
Stop 0
Stop 1
No effect. LCD interrupt causes the device to exit the Stop mode.
Stop 2
Standby
The LCD peripheral is powered down and must be reinitialized after exiting
Standby or Shutdown mode.
Shutdown
22.5
LCD interrupts
The table below gives the list of LCD interrupt requests.
Table 132. LCD interrupt requests
Interrupt event
Event flag
Event flag/Interrupt
clearing method
Interrupt enable
control bit
Start Of Frame (SOF)
SOF
Write SOFC =1
SOFIE
Update Display Done (UDD)
UDD
Write UDDC = 1
UDDIE
Start of frame (SOF)
The LCD start of frame interrupt is executed if the SOFIE (start of frame interrupt enable) bit
is set (see Section 22.6.2: LCD frame control register (LCD_FCR)). SOF is cleared by
writing the SOFC bit to 1 in the LCD_CLR register when executing the corresponding
interrupt handling vector.
Update display done (UDD)
The LCD update display interrupt is executed if the UDDIE (update display done interrupt
enable) bit is set (see Section 22.6.2: LCD frame control register (LCD_FCR)). UDD is
cleared by writing the UDDC bit to 1 in the LCD_CLR register when executing the
corresponding interrupt handling vector.
Depending on the product implementation, all these interrupts events can either share the
same interrupt vector (LCD global interrupt), or be grouped into 2 interrupt vectors (LCD
SOF interrupt and LCD UDD interrupt). Refer to the Table 42: STM32L4x6 vector table for
details.
In order to enable the LCD interrupts, the following sequence is required:
DocID024597 Rev 3
679/1693
690
Liquid crystal display controller (LCD)
680/1693
RM0351
1.
Configure and enable the LCD IRQ channel in the NVIC
2.
Configure the LCD to generate interrupts
DocID024597 Rev 3
RM0351
Liquid crystal display controller (LCD)
22.6
LCD registers
The peripheral registers have to be accessed by words (32-bit).
22.6.1
LCD control register (LCD_CR)
Address offset: 0x00
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
BUFEN
MUX_
SEG
VSEL
LCDEN
rw
rw
rw
rw
Res.
Res.
Res.
Res.
Res.
Res.
Res.
BIAS[1:0]
rw
rw
DUTY[2:0]
rw
rw
rw
Bits 31:9 Reserved, must be kept at reset value
Bit 8 BUFEN: Voltage output buffer enable
This bit is used to enable/disable the voltage output buffer for higher driving capability.
0: Output buffer disabled
1: Output buffer enabled
Bit 7 MUX_SEG: Mux segment enable
This bit is used to enable SEG pin remapping. Four SEG pins can be multiplexed with
SEG[31:28]. See Section 22.3.7.
0: SEG pin multiplexing disabled
1: SEG[31:28] are multiplexed with SEG[43:40]
Bits 6:5 BIAS[1:0]: Bias selector
These bits determine the bias used. Value 11 is forbidden.
00: Bias 1/4
01: Bias 1/2
10: Bias 1/3
11: Reserved
DocID024597 Rev 3
681/1693
690
Liquid crystal display controller (LCD)
RM0351
Bits 4:2 DUTY[2:0]: Duty selection
These bits determine the duty cycle. Values 101, 110 and 111 are forbidden.
000: Static duty
001: 1/2 duty
010: 1/3 duty
011: 1/4 duty
100: 1/8 duty
101: Reserved
110: Reserved
111: Reserved
Bit 1 VSEL: Voltage source selection
The VSEL bit determines the voltage source for the LCD.
0: Internal source (voltage step-up converter)
1: External source (VLCD pin)
Bit 0 LCDEN: LCD controller enable
This bit is set by software to enable the LCD Controller/Driver. It is cleared by software to turn
off the LCD at the beginning of the next frame. When the LCD is disabled all COM and SEG
pins are driven to VSS.
0: LCD Controller disabled
1: LCD Controller enabled
Note:
The VSEL, MUX_SEG, BIAS, DUTY and BUFEN bits are write-protected when the LCD is
enabled (ENS bit in LCD_SR to 1).
22.6.2
LCD frame control register (LCD_FCR)
Address offset: 0x04
Reset value: 0x0000 0000
31
30
29
28
27
26
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
BLINKF[2:0]
rw
682/1693
rw
11
10
25
rw
rw
23
22
20
19
18
DIV[3:0]
17
16
BLINK[1:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
9
8
7
6
5
4
3
2
1
0
UDDIE
Res.
SOFIE
HD
rw
rw
DEAD[2:0]
rw
21
PS[3:0]
CC[2:0]
rw
24
rw
rw
PON[2:0]
rw
rw
DocID024597 Rev 3
rw
rw
rw
RM0351
Liquid crystal display controller (LCD)
Bits 31:26 Reserved, must be kept at reset value
Bits 25:22 PS[3:0]: PS 16-bit prescaler
These bits are written by software to define the division factor of the PS 16-bit prescaler.
ck_ps = LCDCLK/(2). See Section 22.3.2.
0000: ck_ps = LCDCLK
0001: ck_ps = LCDCLK/2
0002: ck_ps = LCDCLK/4
...
1111:ck_ps = LCDCLK/32768
Bits 21:18 DIV[3:0]: DIV clock divider
These bits are written by software to define the division factor of the DIV divider. See
Section 22.3.2.
0000: ck_div = ck_ps/16
0001: ck_div = ck_ps/17
0002: ck_div = ck_ps/18
...
1111:ck_div = ck_ps/31
Bits 17:16 BLINK[1:0]: Blink mode selection
00: Blink disabled
01: Blink enabled on SEG[0], COM[0] (1 pixel)
10: Blink enabled on SEG[0], all COMs (up to 8 pixels depending on the programmed duty)
11: Blink enabled on all SEGs and all COMs (all pixels)
Bits 15:13 BLINKF[2:0]: Blink frequency selection
000: fLCD/8
001: fLCD/16
010: fLCD/32
011: fLCD/64
100: fLCD/128
101: fLCD/256
110: fLCD/512
111: fLCD/1024
Bits 12:10 CC[2:0]: Contrast control
These bits specify one of the VLCD maximum voltages (independent of VDD). It ranges from
2.60 V to 3.51V.
000: VLCD0
001: VLCD1
010: VLCD2
011: VLCD3
100: VLCD4
101: VLCD5
110: VLCD6
111: VLCD7
Refer to the product datasheet for the VLCDx values.
DocID024597 Rev 3
683/1693
690
Liquid crystal display controller (LCD)
RM0351
Bits 9:7 DEAD[2:0]: Dead time duration
These bits are written by software to configure the length of the dead time between frames.
During the dead time the COM and SEG voltage levels are held at 0 V to reduce the contrast
without modifying the frame rate.
000: No dead time
001: 1 phase period dead time
010: 2 phase period dead time
......
111: 7 phase period dead time
Bits 6:4 PON[2:0]: Pulse ON duration
These bits are written by software to define the pulse duration in terms of ck_ps pulses. A short
pulse will lead to lower power consumption, but displays with high internal resistance may
need a longer pulse to achieve satisfactory contrast.
Note that the pulse will never be longer than one half prescaled LCD clock period.
000: 0
001: 1/ck_ps
010: 2/ck_ps
011: 3/ck_ps
100: 4/ck_ps
101: 5/ck_ps
110: 6/ck_ps
111: 7/ck_ps
PON duration example with LCDCLK = 32.768 kHz and PS=0x03:
000: 0 µs
001: 244 µs
010: 488 µs
011: 782 µs
100: 976 µs
101: 1.22 ms
110: 1.46 ms
111: 1.71 ms
Bit 3 UDDIE: Update display done interrupt enable
This bit is set and cleared by software.
0: LCD Update Display Done interrupt disabled
1: LCD Update Display Done interrupt enabled
Bit 2 Reserved, must be kept at reset value
Bit 1 SOFIE: Start of frame interrupt enable
This bit is set and cleared by software.
0: LCD Start of Frame interrupt disabled
1: LCD Start of Frame interrupt enabled
Bit 0 HD: High drive enable
This bit is written by software to enable a low resistance divider. Displays with high internal
resistance may need a longer drive time to achieve satisfactory contrast. This bit is useful in
this case if some additional power consumption can be tolerated.
0: Permanent high drive disabled
1: Permanent high drive enabled. When HD=1, then the PON bits have to be programmed
to 001.
684/1693
DocID024597 Rev 3
RM0351
Note:
Liquid crystal display controller (LCD)
The data in this register can be updated any time, however the new values are applied only
at the beginning of the next frame (except for UDDIE, SOFIE that affect the device behavior
immediately).
The new value of CC[2:0] bits is also applied immediately but its effect on device is delayed
at the beginning of next frame by the voltage generator.
Reading this register obtains the last value written in the register and not the configuration
used to display the current frame.
Note:
When BUFEN bit is set in the LCD_CR register, low resistor divider network is automatically
disabled whatever the HD or PON[2:0] bits configuration.
DocID024597 Rev 3
685/1693
690
Liquid crystal display controller (LCD)
22.6.3
RM0351
LCD status register (LCD_SR)
Address offset: 0x08
Reset value: 0x0000 0020
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FCRSF
RDY
UDD
UDR
SOF
ENS
r
r
r
rs
r
r
Bits 31:6 Reserved, must be kept at reset value
Bit 5 FCRSF: LCD Frame Control Register Synchronization flag
This bit is set by hardware each time the LCD_FCR register is updated in the LCDCLK
domain. It is cleared by hardware when writing to the LCD_FCR register.
0: LCD Frame Control Register not yet synchronized
1: LCD Frame Control Register synchronized
Bit 4 RDY: Ready flag
This bit is set and cleared by hardware. It indicates the status of the step-up converter.
0: Not ready
1: Step-up converter is enabled and ready to provide the correct voltage.
Bit 3 UDD: Update Display Done
This bit is set by hardware. It is cleared by writing 1 to the UDDC bit in the LCD_CLR register.
The bit set has priority over the clear.
0: No event
1: Update Display Request done. A UDD interrupt is generated if the UDDIE bit in the
LCD_FCR register is set.
Note: If the device is in Stop mode (PCLK not provided) UDD will not generate an interrupt
even if UDDIE = 1.
If the display is not enabled the UDD interrupt will never occur.
686/1693
DocID024597 Rev 3
RM0351
Liquid crystal display controller (LCD)
Bit 2 UDR: Update display request
Each time software modifies the LCD_RAM it must set the UDR bit to transfer the updated
data to the second level buffer. The UDR bit stays set until the end of the update and during
this time the LCD_RAM is write protected.
0: No effect
1: Update Display request
Note: When the display is disabled, the update is performed for all LCD_DISPLAY locations.
When the display is enabled, the update is performed only for locations for which
commons are active (depending on DUTY). For example if DUTY = 1/2, only the
LCD_DISPLAY of COM0 and COM1 will be updated.
Note: Writing 0 on this bit or writing 1 when it is already 1 has no effect. This bit can be
cleared by hardware only. It can be cleared only when LCDEN = 1
Bit 1 SOF: Start of frame flag
This bit is set by hardware at the beginning of a new frame, at the same time as the display
data is updated. It is cleared by writing a 1 to the SOFC bit in the LCD_CLR register. The bit
clear has priority over the set.
0: No event
1: Start of Frame event occurred. An LCD Start of Frame Interrupt is generated if the SOFIE
bit is set.
ENS: LCD enabled status
This bit is set and cleared by hardware. It indicates the LCD controller status.
0: LCD Controller disabled.
1: LCD Controller enabled
Note: The ENS bit is set immediately when the LCDEN bit in the LCD_CR goes from 0 to 1.
On deactivation it reflects the real status of LCD so it becomes 0 at the end of the last
displayed frame.
DocID024597 Rev 3
687/1693
690
Liquid crystal display controller (LCD)
22.6.4
RM0351
LCD clear register (LCD_CLR)
Address offset: 0x0C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
UDDC
Res.
SOFC
Res.
w
w
Bits 31:4 Reserved, must be kept at reset value
Bit 3 UDDC: Update display done clear
This bit is written by software to clear the UDD flag in the LCD_SR register.
0: No effect
1: Clear UDD flag
Bit 2 Reserved, must be kept at reset value
Bit 1 SOFC: Start of frame flag clear
This bit is written by software to clear the SOF flag in the LCD_SR register.
0: No effect
1: Clear SOF flag
Bit 0 Reserved, must be kept at reset value
22.6.5
LCD display memory (LCD_RAM)
Address offset: 0x14 to 0x50
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
SEGMENT_DATA[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
SEGMENT_DATA[15:0]
rw
rw
Bits 31:0 SEGMENT_DATA[31:0]
Each bit corresponds to one pixel of the LCD display.
0: Pixel inactive
1: Pixel active
688/1693
DocID024597 Rev 3
0x0C
0x14
0x28
S31
S30
S29
S28
S27
S26
S25
S24
S23
S22
S21
S20
S19
S18
S17
S16
S15
S14
S13
S12
S11
S10
S09
S08
S07
S06
S05
S04
S03
S02
S01
S00
LCD_CLR
LCD_RAM
(COM0)
0x18
0x1C
LCD_RAM
(COM1)
0x20
0x24
LCD_RAM
(COM2)
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FCRSF
RDY
UDD
UDR
SOF
ENS
LCD_SR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
UDDC
Res.
SOFC
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
S43
S42
S41
S40
S39
S38
S37
S36
S35
S34
S33
S32
0x08
S31
S30
S29
S28
S27
S26
S25
S24
S23
S22
S21
S20
S19
S18
S17
S16
S15
S14
S13
S12
S11
S10
S09
S08
S07
S06
S05
S04
S03
S02
S01
S00
0x04
Res.
Res.
Res.
Res.
Res.
Res.
LCD_FCR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
S43
S42
S41
S40
S39
S38
S37
S36
S35
S34
S33
S32
PS[3:0]
DIV[3:0]
Reset value
Reset value
DocID024597 Rev 3
BLINKF[2:0]
BLINK[1:0]
Reset value
CC
[2:0]
DEAD
[2:0]
PON
[2:0]
UDDIE
Res.
SOFIE
HD
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
LCD_CR
BIAS[1:0]
Register
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
BUFEN.
MUX_SEG.
0x00
S31
S30
S29
S28
S27
S26
S25
S24
S23
S22
S21
S20
S19
S18
S17
S16
S15
S14
S13
S12
S11
S10
S09
S08
S07
S06
S05
S04
S03
S02
S01
S00
DUTY
[2:0]
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0
VSEL
LCDEN
22.6.6
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
S43
S42
S41
S40
S39
S38
S37
S36
S35
S34
S33
S32
Offset
RM0351
Liquid crystal display controller (LCD)
LCD register map
The following table summarizes the LCD registers.
Table 133. LCD register map and reset values
0 0 0 0 0 0 0 0
0 0
1 0 0 0 0 0
0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
689/1693
690
0x4C
S31
S30
S29
S28
S27
S26
S25
S24
S23
S22
S21
S20
S19
S18
S17
S16
S15
S14
S13
S12
S11
S10
S09
S08
S07
S06
S05
S04
S03
S02
S01
S00
0x44
S31
S30
S29
S28
S27
S26
S25
S24
S23
S22
S21
S20
S19
S18
S17
S16
S15
S14
S13
S12
S11
S10
S09
S08
S07
S06
S05
S04
S03
S02
S01
S00
0x3C
S31
S30
S29
S28
S27
S26
S25
S24
S23
S22
S21
S20
S19
S18
S17
S16
S15
S14
S13
S12
S11
S10
S09
S08
S07
S06
S05
S04
S03
S02
S01
S00
0x34
S31
S30
S29
S28
S27
S26
S25
S24
S23
S22
S21
S20
S19
S18
S17
S16
S15
S14
S13
S12
S11
S10
S09
S08
S07
S06
S05
S04
S03
S02
S01
S00
LCD_RAM
(COM4)
0x38
LCD_RAM
(COM5)
0x40
LCD_RAM
(COM6)
0x48
LCD_RAM
(COM7)
0x50
690/1693
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
S43
S42
S41
S40
S39
S38
S37
S36
S35
S34
S33
S32
0x30
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
S39
S38
S37
S36
S35
S34
S33
S32
LCD_RAM
(COM3)
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
S39
S38
S37
S36
S35
S34
S33
S32
S31
S30
S29
S28
S27
S26
S25
S24
S23
S22
S21
S20
S19
S18
S17
S16
S15
S14
S13
S12
S11
S10
S09
S08
S07
S06
S05
S04
S03
S02
S01
S00
0x2C
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
S39
S38
S37
S36
S35
S34
S33
S32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
S39
S38
S37
S36
S35
S34
S33
S32
Offset
Liquid crystal display controller (LCD)
RM0351
Table 133. LCD register map and reset values (continued)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Refer to Section 2.2.2 on page 67 for the Register boundary addresses table.
DocID024597 Rev 3
RM0351
Touch sensing controller (TSC)
23
Touch sensing controller (TSC)
23.1
Introduction
The touch sensing controller provides a simple solution for adding capacitive sensing
functionality to any application. Capacitive sensing technology is able to detect finger
presence near an electrode which is protected from direct touch by a dielectric (for example
glass, plastic). The capacitive variation introduced by the finger (or any conductive object) is
measured using a proven implementation based on a surface charge transfer acquisition
principle.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library which is free to use and allows touch sensing functionality to be implemented reliably
in the end application.
23.2
TSC main features
The touch sensing controller has the following main features:
Note:
•
Proven and robust surface charge transfer acquisition principle
•
Supports up to 24 capacitive sensing channels
•
Up to 8 capacitive sensing channels can be acquired in parallel offering a very good
response time
•
Spread spectrum feature to improve system robustness in noisy environments
•
full hardware management of the charge transfer acquisition sequence
•
Programmable charge transfer frequency
•
Programmable sampling capacitor I/O pin
•
Programmable channel I/O pin
•
Programmable max count value to avoid long acquisition when a channel is faulty
•
Dedicated end of acquisition and max count error flags with interrupt capability
•
One sampling capacitor for up to 3 capacitive sensing channels to reduce the system
components
•
Compatible with proximity, touchkey, linear and rotary touch sensor implementation
•
Designed to operate with STMTouch touch sensing firmware library
The number of capacitive sensing channels is dependent on the size of the packages and
subject to IO availability.
DocID024597 Rev 3
691/1693
709
Touch sensing controller (TSC)
RM0351
23.3
TSC functional description
23.3.1
TSC block diagram
The block diagram of the touch sensing controller is shown in Figure 165: TSC block
diagram.
Figure 165. TSC block diagram
39.#
0ULSE GENERATOR
F(#,+
'?)/
#LOCK
PRESCALERS
'?)/
'?)/
3PREAD SPECTRUM
'?)/
'?)/
'?)/
'ROUP COUNTERS
)/ CONTROL
LOGIC
'?)/
'?)/
43#?)/'#2
43#?)/'#2
'X?)/
'X?)/
43#?)/'X#2
'X?)/
'X?)/
-36
23.3.2
Surface charge transfer acquisition overview
The surface charge transfer acquisition is a proven, robust and efficient way to measure a
capacitance. It uses a minimum number of external components to operate with a single
ended electrode type. This acquisition is designed around an analog I/O group which is
composed of four GPIOs (see Figure 166). Several analog I/O groups are available to allow
the acquisition of several capacitive sensing channels simultaneously and to support a
larger number of capacitive sensing channels. Within a same analog I/O group, the
acquisition of the capacitive sensing channels is sequential.
One of the GPIOs is dedicated to the sampling capacitor CS. Only one sampling capacitor
I/O per analog I/O group must be enabled at a time.
692/1693
DocID024597 Rev 3
RM0351
Touch sensing controller (TSC)
The remaining GPIOs are dedicated to the electrodes and are commonly called channels.
For some specific needs (such as proximity detection), it is possible to simultaneously
enable more than one channel per analog I/O group.
Figure 166. Surface charge transfer analog I/O group structure
%LECTRODE
23
'?)/
!NALOG
)/ GROUP
#8
'?)/
#3
%LECTRODE
23
'?)/
23
'?)/
#8
%LECTRODE
#8
-36
Note:
Gx_IOy where x is the analog I/O group number and y the GPIO number within the selected
group.
The surface charge transfer acquisition principle consists of charging an electrode
capacitance (CX) and transferring a part of the accumulated charge into a sampling
capacitor (CS). This sequence is repeated until the voltage across CS reaches a given
threshold (VIH in our case). The number of charge transfers required to reach the threshold
is a direct representation of the size of the electrode capacitance.
The Table 134 details the charge transfer acquisition sequence of the capacitive sensing
channel 1. States 3 to 7 are repeated until the voltage across CS reaches the given
threshold. The same sequence applies to the acquisition of the other channels. The
electrode serial resistor RS improves the ESD immunity of the solution.
DocID024597 Rev 3
693/1693
709
Touch sensing controller (TSC)
RM0351
Table 134. Acquisition sequence summary
State
G1_IO1
(electrode)
G1_IO2
(sampling)
#1
Input floating
with analog
switch closed
Output opendrain low with
analog switch
closed
#2
#3
G1_IO4
(electrode)
State description
Input floating with analog switch Discharge all CX and
CS
closed
Input floating
Output pushpull high
#4
#5
G1_IO3
(electrode)
Dead time
Input floating
Charge CX1
Input floating
Input floating with analog switch
closed
Dead time
Input floating
Charge transfer from
CX1 to CS
#6
Input floating
Dead time
#7
Input floating
Measure CS voltage
The voltage variation over the time on the sampling capacitor CS is detailed below:
Figure 167. Sampling capacitor voltage variation
6#3
6$$
4HRESHOLD 6)(
T
"URST DURATION
-36
23.3.3
Reset and clocks
The TSC clock source is the AHB clock (HCLK). Two programmable prescalers are used to
generate the pulse generator and the spread spectrum internal clocks:
•
The pulse generator clock (PGCLK) is defined using the PGPSC[2:0] bits of the
TSC_CR register
•
The spread spectrum clock (SSCLK) is defined using the SSPSC bit of the TSC_CR
register
The Reset and Clock Controller (RCC) provides dedicated bits to enable the touch sensing
controller clock and to reset this peripheral. For more information, please refer to Section 6:
Reset and clock control (RCC).
694/1693
DocID024597 Rev 3
RM0351
23.3.4
Touch sensing controller (TSC)
Charge transfer acquisition sequence
An example of a charge transfer acquisition sequence is detailed in Figure 168.
Figure 168. Charge transfer acquisition sequence
#HARGE TRANSFER FREQUENCY
#,+?!("
#8 (I:
$EAD TIME STATE
#3 READING STATE
$EAD TIME STATE
0ULSE LOW STATE
CHARGE TRANSFER
FROM #8 TO #3
#3 READING STATE
0ULSE HIGH STATE
CHARGE OF #8
$EAD TIME STATE
$ISCHARGE
#8 AND #3
$EAD TIME STATE
3TATE
$EAD TIME STATE
3PREAD 3PECTRUM STATE
#3 (I:
T
-36
For higher flexibility, the charge transfer frequency is fully configurable. Both the pulse high
state (charge of CX) and the pulse low state (transfer of charge from CX to CS) duration can
be defined using the CTPH[3:0] and CTPL[3:0] bits in the TSC_CR register. The standard
range for the pulse high and low states duration is 500 ns to 2 µs. To ensure a correct
measurement of the electrode capacitance, the pulse high state duration must be set to
ensure that CX is always fully charged.
A dead time where both the sampling capacitor I/O and the channel I/O are in input floating
state is inserted between the pulse high and low states to ensure an optimum charge
transfer acquisition sequence. This state duration is 1 periods of HCLK.
At the end of the pulse high state and if the spread spectrum feature is enabled, a variable
number of periods of the SSCLK clock are added.
The reading of the sampling capacitor I/O, to determine if the voltage across CS has
reached the given threshold, is performed at the end of the pulse low state and its duration
is one period of HCLK.
Note:
The following TSC control register configurations are forbidden:
•
•
•
bits PGPSC are set to "0" and bits CTPL are set to "0"
bits PGPSC are set to "0" and bits CTPL are set to "1"
bits PGPSC are set to "1" and bits CTPL are set to "0"
DocID024597 Rev 3
695/1693
709
Touch sensing controller (TSC)
23.3.5
RM0351
Spread spectrum feature
The spread spectrum feature allows to generate a variation of the charge transfer
frequency. This is done to improve the robustness of the charge transfer acquisition in noisy
environments and also to reduce the induced emission. The maximum frequency variation
is in the range of 10% to 50% of the nominal charge transfer period. For instance, for a
nominal charge transfer frequency of 250 kHz (4 µs), the typical spread spectrum deviation
is 10% (400 ns) which leads to a minimum charge transfer frequency of ~227 kHz.
In practice, the spread spectrum consists of adding a variable number of SSCLK periods to
the pulse high state using the principle shown below:
Figure 169. Spread spectrum variation principle
$EVIATION VALUE
33$
N N
N
.UMBER OF PULSES
-36
The table below details the maximum frequency deviation with different HCLK settings:
Table 135. Spread spectrum deviation versus AHB clock frequency
fHCLK
Spread spectrum step
Maximum spread spectrum deviation
24 MHz
41.6 ns
10666.6 ns
48 MHz
20.8 ns
5333.3 ns
80MHz
12.5 ns
3205.1 ns
The spread spectrum feature can be disabled/enabled using the SSE bit in the TSC_CR
register. The frequency deviation is also configurable to accommodate the device HCLK
clock frequency and the selected charge transfer frequency through the SSPSC and
SSD[6:0] bits in the TSC_CR register.
23.3.6
Max count error
The max count error prevents long acquisition times resulting from a faulty capacitive
sensing channel. It consists of specifying a maximum count value for the analog I/O group
counters. This maximum count value is specified using the MCV[2:0] bits in the TSC_CR
register. As soon as an acquisition group counter reaches this maximum value, the ongoing
acquisition is stopped and the end of acquisition (EOAF bit) and max count error (MCEF bit)
flags are both set. An interrupt can also be generated if the corresponding end of acquisition
(EOAIE bit) or/and max count error (MCEIE bit) interrupt enable bits are set.
696/1693
DocID024597 Rev 3
RM0351
23.3.7
Touch sensing controller (TSC)
Sampling capacitor I/O and channel I/O mode selection
To allow the GPIOs to be controlled by the touch sensing controller, the corresponding
alternate function must be enabled through the standard GPIO registers and the GPIOxAFR
registers.
The GPIOs modes controlled by the TSC are defined using the TSC_IOSCR and
TSC_IOCCR register.
When there is no ongoing acquisition, all the I/Os controlled by the touch sensing controller
are in default state. While an acquisition is ongoing, only unused I/Os (neither defined as
sampling capacitor I/O nor as channel I/O) are in default state. The IODEF bit in the
TSC_CR register defines the configuration of the I/Os which are in default state. The table
below summarizes the configuration of the I/O depending on its mode.
Table 136. I/O state depending on its mode and IODEF bit value
IODEF bit
Acquisition
status
Unused I/O
mode
Electrode I/O
mode
Sampling
capacitor I/O
mode
0
(output push-pull
low)
No
Output push-pull
low
Output push-pull
low
Output push-pull
low
0
(output push-pull
low)
ongoing
Output push-pull
low
-
-
1
(input floating)
No
Input floating
Input floating
Input floating
1
(input floating)
ongoing
Input floating
-
-
Unused I/O mode
An unused I/O corresponds to a GPIO controlled by the TSC peripheral but not defined as
an electrode I/O nor as a sampling capacitor I/O.
Sampling capacitor I/O mode
To allow the control of the sampling capacitor I/O by the TSC peripheral, the corresponding
GPIO must be first set to alternate output open drain mode and then the corresponding
Gx_IOy bit in the TSC_IOSCR register must be set.
Only one sampling capacitor per analog I/O group must be enabled at a time.
Channel I/O mode
To allow the control of the channel I/O by the TSC peripheral, the corresponding GPIO must
be first set to alternate output push-pull mode and the corresponding Gx_IOy bit in the
TSC_IOCCR register must be set.
For proximity detection where a higher equivalent electrode surface is required or to speedup the acquisition process, it is possible to enable and simultaneously acquire several
channels belonging to the same analog I/O group.
DocID024597 Rev 3
697/1693
709
Touch sensing controller (TSC)
RM0351
Note:
During the acquisition phase and even if the TSC peripheral alternate function is not
enabled, as soon as the TSC_IOSCR or TSC_IOCCR bit is set, the corresponding GPIO
analog switch is automatically controlled by the touch sensing controller.
23.3.8
Acquisition mode
The touch sensing controller offers two acquisition modes:
•
Normal acquisition mode: the acquisition starts as soon as the START bit in the
TSC_CR register is set.
•
Synchronized acquisition mode: the acquisition is enabled by setting the START bit in
the TSC_CR register but only starts upon the detection of a falling edge or a rising
edge and high level on the SYNC input pin. This mode is useful for synchronizing the
capacitive sensing channels acquisition with an external signal without additional CPU
load.
The GxE bits in the TSC_IOGCSR registers specify which analog I/O groups are enabled
(corresponding counter is counting). The CS voltage of a disabled analog I/O group is not
monitored and this group does not participate in the triggering of the end of acquisition flag.
However, if the disabled analog I/O group contains some channels, they will be pulsed.
When the CS voltage of an enabled analog I/O group reaches the given threshold, the
corresponding GxS bit of the TSC_IOGCSR register is set. When the acquisition of all
enabled analog I/O groups is complete (all GxS bits of all enabled analog I/O groups are
set), the EOAF flag in the TSC_ISR register is set. An interrupt request is generated if the
EOAIE bit in the TSC_IER register is set.
In the case that a max count error is detected, the ongoing acquisition is stopped and both
the EOAF and MCEF flags in the TSC_ISR register are set. Interrupt requests can be
generated for both events if the corresponding bits (EOAIE and MCEIE bits of the TSCIER
register) are set. Note that when the max count error is detected the remaining GxS bits in
the enabled analog I/O groups are not set.
To clear the interrupt flags, the corresponding EOAIC and MCEIC bits in the TSC_ICR
register must be set.
The analog I/O group counters are cleared when a new acquisition is started. They are
updated with the number of charge transfer cycles generated on the corresponding
channel(s) upon the completion of the acquisition.
23.3.9
I/O hysteresis and analog switch control
In order to offer a higher flexibility, the touch sensing controller also allows to take the control
of the Schmitt trigger hysteresis and analog switch of each Gx_IOy. This control is available
whatever the I/O control mode is (controlled by standard GPIO registers or other
peripherals) assuming that the touch sensing controller is enabled. This may be useful to
perform a different acquisition sequence or for other purposes.
In order to improve the system immunity, the Schmitt trigger hysteresis of the GPIOs
controlled by the TSC must be disabled by resetting the corresponding Gx_IOy bit in the
TSC_IOHCR register.
698/1693
DocID024597 Rev 3
RM0351
23.4
Touch sensing controller (TSC)
TSC low-power modes
Table 137. Effect of low-power modes on TSC
Mode
Description
Sleep
No effect. Peripheral interrupts cause the device to exit Sleep mode.
Low power run
No effect.
Low power sleep No effect. Peripheral interrupts cause the device to exit Low-power sleep mode.
Stop 0 / Stop 1
Stop 2
Standby
Shutdown
23.5
Peripheral registers content is kept.
Powered-down. The peripheral must be reinitialized after exiting Standby or
Shutdown mode.
TSC interrupts
Table 138. Interrupt control bits
Interrupt event
Enable
control bit
Event flag
Clear flag
bit
Exit the
Sleep
mode
Exit the
Stop mode
Exit the
Standby
mode
End of acquisition
EOAIE
EOAIF
EOAIC
yes
no
no
Max count error
MCEIE
MCEIF
MCEIC
yes
no
no
DocID024597 Rev 3
699/1693
709
Touch sensing controller (TSC)
23.6
RM0351
TSC registers
Refer to Section 1.1 on page 61 of the reference manual for a list of abbreviations used in
register descriptions.
The peripheral registers can be accessed by words (32-bit).
23.6.1
TSC control register (TSC_CR)
Address offset: 0x00
Reset value: 0x0000 0000
31
30
29
28
27
CTPH[3:0]
26
25
24
23
22
21
CTPL[3:0]
20
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
rw
PGPSC[2:0]
rw
rw
Res.
rw
Res.
18
17
SSD[6:0]
rw
SSPSC
19
Res.
Res.
MCV[2:0]
rw
rw
rw
16
SSE
rw
rw
rw
rw
4
3
2
1
0
IODEF
SYNC
POL
AM
START
TSCE
rw
rw
rw
rw
rw
Bits 31:28 CTPH[3:0]: Charge transfer pulse high
These bits are set and cleared by software. They define the duration of the high state of the
charge transfer pulse (charge of CX).
0000: 1x tPGCLK
0001: 2x tPGCLK
...
1111: 16x tPGCLK
Note: These bits must not be modified when an acquisition is ongoing.
Bits 27:24 CTPL[3:0]: Charge transfer pulse low
These bits are set and cleared by software. They define the duration of the low state of the
charge transfer pulse (transfer of charge from CX to CS).
0000: 1x tPGCLK
0001: 2x tPGCLK
...
1111: 16x tPGCLK
Note: These bits must not be modified when an acquisition is ongoing.
Note: Some configurations are forbidden. Please refer to the Section 23.3.4: Charge transfer
acquisition sequence for details.
Bits 23:17 SSD[6:0]: Spread spectrum deviation
These bits are set and cleared by software. They define the spread spectrum deviation which
consists in adding a variable number of periods of the SSCLK clock to the charge transfer
pulse high state.
0000000: 1x tSSCLK
0000001: 2x tSSCLK
...
1111111: 128x tSSCLK
Note: These bits must not be modified when an acquisition is ongoing.
700/1693
DocID024597 Rev 3
RM0351
Touch sensing controller (TSC)
Bit 16 SSE: Spread spectrum enable
This bit is set and cleared by software to enable/disable the spread spectrum feature.
0: Spread spectrum disabled
1: Spread spectrum enabled
Note: This bit must not be modified when an acquisition is ongoing.
Bit 15 SSPSC: Spread spectrum prescaler
This bit is set and cleared by software. It selects the AHB clock divider used to generate the
spread spectrum clock (SSCLK).
0: fHCLK
1: fHCLK /2
Note: This bit must not be modified when an acquisition is ongoing.
Bits 14:12 PGPSC[2:0]: pulse generator prescaler
These bits are set and cleared by software.They select the AHB clock divider used to generate
the pulse generator clock (PGCLK).
000: fHCLK
001: fHCLK /2
010: fHCLK /4
011: fHCLK /8
100: fHCLK /16
101: fHCLK /32
110: fHCLK /64
111: fHCLK /128
Note: These bits must not be modified when an acquisition is ongoing.
Note: Some configurations are forbidden. Please refer to the Section 23.3.4: Charge transfer
acquisition sequence for details.
Bits 11:8 Reserved, must be kept at reset value.
Bits 7:5 MCV[2:0]: Max count value
These bits are set and cleared by software. They define the maximum number of charge
transfer pulses that can be generated before a max count error is generated.
000: 255
001: 511
010: 1023
011: 2047
100: 4095
101: 8191
110: 16383
111: reserved
Note: These bits must not be modified when an acquisition is ongoing.
Bit 4 IODEF: I/O Default mode
This bit is set and cleared by software. It defines the configuration of all the TSC I/Os when
there is no ongoing acquisition. When there is an ongoing acquisition, it defines the
configuration of all unused I/Os (not defined as sampling capacitor I/O or as channel I/O).
0: I/Os are forced to output push-pull low
1: I/Os are in input floating
Note: This bit must not be modified when an acquisition is ongoing.
Bit 3 SYNCPOL: Synchronization pin polarity
This bit is set and cleared by software to select the polarity of the synchronization input pin.
0: Falling edge only
1: Rising edge and high level
DocID024597 Rev 3
701/1693
709
Touch sensing controller (TSC)
RM0351
Bit 2 AM: Acquisition mode
This bit is set and cleared by software to select the acquisition mode.
0: Normal acquisition mode (acquisition starts as soon as START bit is set)
1: Synchronized acquisition mode (acquisition starts if START bit is set and when the
selected signal is detected on the SYNC input pin)
Note: This bit must not be modified when an acquisition is ongoing.
Bit 1 START: Start a new acquisition
This bit is set by software to start a new acquisition. It is cleared by hardware as soon as the
acquisition is complete or by software to cancel the ongoing acquisition.
0: Acquisition not started
1: Start a new acquisition
Bit 0 TSCE: Touch sensing controller enable
This bit is set and cleared by software to enable/disable the touch sensing controller.
0: Touch sensing controller disabled
1: Touch sensing controller enabled
Note: When the touch sensing controller is disabled, TSC registers settings have no effect.
23.6.2
TSC interrupt enable register (TSC_IER)
Address offset: 0x04
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
MCEIE
EOAIE
rw
rw
Bits 31:2 Reserved, must be kept at reset value.
Bit 1 MCEIE: Max count error interrupt enable
This bit is set and cleared by software to enable/disable the max count error interrupt.
0: Max count error interrupt disabled
1: Max count error interrupt enabled
Bit 0 EOAIE: End of acquisition interrupt enable
This bit is set and cleared by software to enable/disable the end of acquisition interrupt.
0: End of acquisition interrupt disabled
1: End of acquisition interrupt enabled
702/1693
DocID024597 Rev 3
RM0351
Touch sensing controller (TSC)
23.6.3
TSC interrupt clear register (TSC_ICR)
Address offset: 0x08
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
MCEIC EOAIC
rw
rw
Bits 31:2 Reserved, must be kept at reset value.
Bit 1 MCEIC: Max count error interrupt clear
This bit is set by software to clear the max count error flag and it is cleared by hardware when
the flag is reset. Writing a ‘0’ has no effect.
0: No effect
1: Clears the corresponding MCEF of the TSC_ISR register
Bit 0 EOAIC: End of acquisition interrupt clear
This bit is set by software to clear the end of acquisition flag and it is cleared by hardware
when the flag is reset. Writing a ‘0’ has no effect.
0: No effect
1: Clears the corresponding EOAF of the TSC_ISR register
DocID024597 Rev 3
703/1693
709
Touch sensing controller (TSC)
23.6.4
RM0351
TSC interrupt status register (TSC_ISR)
Address offset: 0x0C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
MCEF
EOAF
rw
rw
Bits 31:2 Reserved, must be kept at reset value.
Bit 1 MCEF: Max count error flag
This bit is set by hardware as soon as an analog I/O group counter reaches the max count
value specified. It is cleared by software writing 1 to the bit MCEIC of the TSC_ICR register.
0: No max count error (MCE) detected
1: Max count error (MCE) detected
Bit 0 EOAF: End of acquisition flag
This bit is set by hardware when the acquisition of all enabled group is complete (all GxS bits
of all enabled analog I/O groups are set or when a max count error is detected). It is cleared by
software writing 1 to the bit EOAIC of the TSC_ICR register.
0: Acquisition is ongoing or not started
1: Acquisition is complete
23.6.5
TSC I/O hysteresis control register (TSC_IOHCR)
Address offset: 0x10
Reset value: 0xFFFF FFFF
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
G8_IO4 G8_IO3 G8_IO2 G8_IO1 G7_IO4 G7_IO3 G7_IO2 G7_IO1 G6_IO4 G6_IO3 G6_IO2 G6_IO1 G5_IO4 G5_IO3 G5_IO2 G5_IO1
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
G4_IO4 G4_IO3 G4_IO2 G4_IO1 G3_IO4 G3_IO3 G3_IO2 G3_IO1 G2_IO4 G2_IO3 G2_IO2 G2_IO1 G1_IO4 G1_IO3 G1_IO2 G1_IO1
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 Gx_IOy: Gx_IOy Schmitt trigger hysteresis mode
These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger
hysteresis.
0: Gx_IOy Schmitt trigger hysteresis disabled
1: Gx_IOy Schmitt trigger hysteresis enabled
Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is
(even if controlled by standard GPIO registers).
704/1693
DocID024597 Rev 3
RM0351
Touch sensing controller (TSC)
23.6.6
TSC I/O analog switch control register (TSC_IOASCR)
Address offset: 0x18
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
G8_IO4 G8_IO3 G8_IO2 G8_IO1 G7_IO4 G7_IO3 G7_IO2 G7_IO1 G6_IO4 G6_IO3 G6_IO2 G6_IO1 G5_IO4 G5_IO3 G5_IO2 G5_IO1
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
G4_IO4 G4_IO3 G4_IO2 G4_IO1 G3_IO4 G3_IO3 G3_IO2 G3_IO1 G2_IO4 G2_IO3 G2_IO2 G2_IO1 G1_IO4 G1_IO3 G1_IO2 G1_IO1
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 Gx_IOy: Gx_IOy analog switch enable
These bits are set and cleared by software to enable/disable the Gx_IOy analog switch.
0: Gx_IOy analog switch disabled (opened)
1: Gx_IOy analog switch enabled (closed)
Note: These bits control the I/O analog switch whatever the I/O control mode is (even if
controlled by standard GPIO registers).
23.6.7
TSC I/O sampling control register (TSC_IOSCR)
Address offset: 0x20
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
G8_IO4 G8_IO3 G8_IO2 G8_IO1 G7_IO4 G7_IO3 G7_IO2 G7_IO1 G6_IO4 G6_IO3 G6_IO2 G6_IO1 G5_IO4 G5_IO3 G5_IO2 G5_IO1
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
G4_IO4 G4_IO3 G4_IO2 G4_IO1 G3_IO4 G3_IO3 G3_IO2 G3_IO1 G2_IO4 G2_IO3 G2_IO2 G2_IO1 G1_IO4 G1_IO3 G1_IO2 G1_IO1
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 Gx_IOy: Gx_IOy sampling mode
These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor
I/O. Only one I/O per analog I/O group must be defined as sampling capacitor.
0: Gx_IOy unused
1: Gx_IOy used as sampling capacitor
Note: These bits must not be modified when an acquisition is ongoing.
During the acquisition phase and even if the TSC peripheral alternate function is not
enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch
is automatically controlled by the touch sensing controller.
DocID024597 Rev 3
705/1693
709
Touch sensing controller (TSC)
23.6.8
RM0351
TSC I/O channel control register (TSC_IOCCRTSC_IOCCR)
Address offset: 0x28
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
G8_IO4 G8_IO3 G8_IO2 G8_IO1 G7_IO4 G7_IO3 G7_IO2 G7_IO1 G6_IO4 G6_IO3 G6_IO2 G6_IO1 G5_IO4 G5_IO3 G5_IO2 G5_IO1
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
G4_IO4 G4_IO3 G4_IO2 G4_IO1 G3_IO4 G3_IO3 G3_IO2 G3_IO1 G2_IO4 G2_IO3 G2_IO2 G2_IO1 G1_IO4 G1_IO3 G1_IO2 G1_IO1
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 Gx_IOy: Gx_IOy channel mode
These bits are set and cleared by software to configure the Gx_IOy as a channel I/O.
0: Gx_IOy unused
1: Gx_IOy used as channel
Note: These bits must not be modified when an acquisition is ongoing.
During the acquisition phase and even if the TSC peripheral alternate function is not
enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch
is automatically controlled by the touch sensing controller.
23.6.9
TSC I/O group control status register (TSC_IOGCSR)
Address offset: 0x30
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
G8S
G7S
G6S
G5S
G4S
G3S
G2S
G1S
r
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
G8E
G7E
G6E
G5E
G4E
G3E
G2E
G1E
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:24 Reserved, must be kept at reset value.
706/1693
DocID024597 Rev 3
RM0351
Touch sensing controller (TSC)
Bits 23:16 GxS: Analog I/O group x status
These bits are set by hardware when the acquisition on the corresponding enabled analog I/O
group x is complete. They are cleared by hardware when a new acquisition is started.
0: Acquisition on analog I/O group x is ongoing or not started
1: Acquisition on analog I/O group x is complete
Note: When a max count error is detected the remaining GxS bits of the enabled analog I/O
groups are not set.
Bits 15:8 Reserved, must be kept at reset value.
Bits 7:0 GxE: Analog I/O group x enable
These bits are set and cleared by software to enable/disable the acquisition (counter is
counting) on the corresponding analog I/O group x.
0: Acquisition on analog I/O group x disabled
1: Acquisition on analog I/O group x enabled
23.6.10
TSC I/O group x counter register (TSC_IOGxCR) (x = 1..8)
Address offset: 0x30 + 0x04 x Analog I/O group number
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
r
r
r
r
r
r
CNT[13:0]
r
r
r
r
r
r
r
r
Bits 31:14 Reserved, must be kept at reset value.
Bits 13:0 CNT[13:0]: Counter value
These bits represent the number of charge transfer cycles generated on the analog I/O group
x to complete its acquisition (voltage across CS has reached the threshold).
23.6.11
TSC register map
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
DocID024597 Rev 3
Res.
TSCE
TSC_IER
0
0
0
0
0
EOAIE
0
AM
0
START
0
Res.
0
MCEIE
0
IODEF
0
SYNCPOL
0
0
0
0
0
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
MCV
[2:0]
Res.
0
Res.
0
Res.
0
SSD[6:0]
Res.
0
CTPL[3:0]
Res.
0
CTPH[3:0]
Res.
0
TSC_CR
Res.
0
Res.
PGPSC[2:0]
SSE
SSPSC
0
Res.
0x0004
Reset value
Res.
0x0000
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 139. TSC register map and reset values
707/1693
709
0x0044
708/1693
TSC_IOG5CR
0
0
0
Reserved
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reset value
Reset value
Reset value
Reset value
Reset value
DocID024597 Rev 3
CNT[13:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CNT[13:0]
0
CNT[13:0]
0
CNT[13:0]
0
CNT[13:0]
0
G1E
0
G2E
0
G3E
0
G4E
0
G5E
0
G6E
G1_IO1
0
G1_IO2
0
G1_IO3
0
G1_IO4
0
G2_IO1
0
G2_IO2
0
G2_IO3
0
G7E
0
G2_IO4
0
G8E
0
G3_IO1
0
Res.
Reset value
G3_IO2
G3_IO1
G2_IO4
G2_IO3
G2_IO2
G2_IO1
G1_IO4
G1_IO3
G1_IO2
G1_IO1
0
G3_IO2
0
Res.
0
G3_IO3
0
G3_IO3
0
Res.
0
G3_IO4
0
G3_IO4
0
Res.
0
G4_IO1
0
G4_IO1
0
Res.
0
G4_IO2
0
G4_IO2
0
Res.
Reset value
G4_IO3
G4_IO2
G4_IO1
G3_IO4
G3_IO3
G3_IO2
G3_IO1
G2_IO4
G2_IO3
G2_IO2
G2_IO1
G1_IO4
G1_IO3
G1_IO2
G1_IO1
0
G4_IO3
0
G4_IO3
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
G4_IO4
0
G4_IO4
0
G4_IO4
0
Res.
0
Res.
0
Res.
Reset value
G5_IO1
G5_IO3
G4_IO4
G4_IO3
G4_IO2
G4_IO1
G3_IO4
G3_IO3
G3_IO2
G3_IO1
G2_IO4
G2_IO3
G2_IO2
G2_IO1
G1_IO4
G1_IO3
G1_IO2
G1_IO1
G5_IO3
G5_IO1
G5_IO4
G5_IO2
G6_IO1
1
G5_IO2
G5_IO4
G6_IO2
1
G5_IO1
G5_IO3
G6_IO1
G6_IO3
1
G5_IO2
G5_IO4
G6_IO2
G6_IO4
1
Res.
G5_IO3
G6_IO1
G6_IO3
G7_IO1
1
Res.
G5_IO4
G6_IO2
G6_IO4
G7_IO2
1
Res.
G6_IO1
G6_IO3
G7_IO1
G7_IO3
1
G5_IO1
G1S
0
Res.
G6_IO2
G6_IO4
G7_IO2
G7_IO4
1
Res.
G6_IO3
G7_IO1
G7_IO3
G8_IO1
1
Res.
G6_IO4
G7_IO2
G7_IO4
G8_IO2
1
Res.
G7_IO1
G7_IO3
G8_IO1
G8_IO3
1
Res.
G2S
0
Res.
G7_IO2
G7_IO4
G8_IO2
G8_IO4
1
G5_IO2
G3S
0
Res.
G7_IO3
G8_IO1
G8_IO3
1
Res.
Res.
G4S
0
Res.
G7_IO4
G8_IO2
TSC_IOASCR
G8_IO4
1
Res.
Res.
G5S
0
Res.
G8_IO1
G8_IO3
Reset value
Res.
Res.
G6S
0
Res.
G8_IO2
TSC_IOSCR
G8_IO4
TSC_IOHCR
Res.
Res.
G7S
0
Res.
0x002C
Res.
Res.
Res.
Res.
G8S
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
G8_IO3
0x0024
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
TSC_IOCCR
G8_IO4
0x001C
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0x0014
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
Res.
Res.
Res.
TSC_IOG4CR
Res.
0x0040
TSC_IOG3CR
Res.
0x003C
TSC_IOG2CR
Res.
0x0038
TSC_IOG1CR
Res.
0x0034
TSC_IOGCSR
Res.
0x0030
Res.
0x0028
Res.
0x0020
Res.
0x0018
Res.
0x0010
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
EOAF
Reset value
EOAIC
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
MCEIC
Reset value
MCEF
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
TSC_ISR
Res.
0x000C
TSC_ICR
Res.
0x0008
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res.
Offset
Res.
Touch sensing controller (TSC)
RM0351
Table 139. TSC register map and reset values (continued)
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Reserved
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reserved
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reserved
RM0351
Touch sensing controller (TSC)
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
TSC_IOG6CR
Res.
0x0048
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 139. TSC register map and reset values (continued)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CNT[13:0]
0
Reset value
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
TSC_IOG8CR
0
CNT[13:0]
0
Reset value
0x0050
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
TSC_IOG7CR
Res.
Reset value
0x004C
CNT[13:0]
0
0
0
0
0
0
0
0
Refer to Section 2.2.2 on page 67 for the register boundary addresses.
DocID024597 Rev 3
709/1693
709
Random number generator (RNG)
RM0351
24
Random number generator (RNG)
24.1
Introduction
The RNG processor is a random number generator, based on a continuous analog noise,
that provides a random 32-bit value to the host when read.
The RNG passed the FIPS PUB 140-2 (2001 October 10) tests with a success ratio of 99%.
24.2
24.3
RNG main features
•
It delivers 32-bit random numbers, produced by an analog generator
•
40 periods of the RNG_CLK clock signal between two consecutive random numbers
•
Monitoring of the RNG entropy to flag abnormal behavior (generation of stable values,
or of a stable sequence of values)
•
It can be disabled to reduce power consumption
RNG functional description
Figure 170 shows the RNG block diagram.
Figure 170. Block diagram
ELW$+%EXV
&RQWUROUHJLVWHU
51*B&5
'DWDUHJLVWHU
51*B'5
/)65
51*B&/.
6WDWXVUHJLVWHU
51*B65
&ORFNFKHFNHUDQG
IDXOWGHWHFWRU
)HHGDOLQHDUIHHGEDFN
VKLIWUHJLVWHU
$QDORJVHHG
$QDORJVHHG
DLE
1. For more details about RNG Clock (RNG_CLK) source, please refer to Section 6: Reset and clock control
(RCC).
The random number generator implements an analog circuit. This circuit generates seeds
that feed a linear feedback shift register (RNG_LFSR) in order to produce 32-bit random
numbers.
The analog circuit is made of several ring oscillators whose outputs are XORed to generate
the seeds. The RNG_LFSR is clocked by a dedicated clock (RNG_CLK) at a constant
frequency, so that the quality of the random number is independent of the HCLK frequency.
The contents of the RNG_LFSR are transferred into the data register (RNG_DR) when a
significant number of seeds have been introduced into the RNG_LFSR.
710/1693
DocID024597 Rev 3
RM0351
Random number generator (RNG)
In parallel, the analog seed and the dedicated RNG_CLK clock are monitored. Status bits (in
the RNG_SR register) indicate when an abnormal sequence occurs on the seed or when
the frequency of the RNG_CLK clock is too low. An interrupt can be generated when an
error is detected.
24.3.1
Operation
To run the RNG, follow the steps below:
1.
Enable the interrupt if needed (to do so, set the IE bit in the RNG_CR register). An
interrupt is generated when a random number is ready or when an error occurs.
2.
Enable the random number generation by setting the RNGEN bit in the RNG_CR
register. This activates the analog part, the RNG_LFSR and the error detector.
3.
At each interrupt, check that no error occurred (the SEIS and CEIS bits should be ‘0’ in
the RNG_SR register) and that a random number is ready (the DRDY bit is ‘1’ in the
RNG_SR register). The contents of the RNG_DR register can then be read.
As required by the FIPS PUB (Federal Information Processing Standard Publication) 140-2,
the first random number generated after setting the RNGEN bit should not be used, but
saved for comparison with the next generated random number. Each subsequent generated
random number has to be compared with the previously generated number. The test fails if
any two compared numbers are equal (continuous random number generator test).
24.3.2
Error management
If the CEIS bit is read as ‘1’ (clock error)
In the case of a clock, the RNG is no more able to generate random numbers because the
RNG_CLK clock is not correct. Check that the clock controller is correctly configured to
provide the RNG clock and clear the CEIS bit. The RNG can work when the CECS bit is ‘0’.
The clock error has no impact on the previously generated random numbers, and the
RNG_DR register contents can be used.
If the SEIS bit is read as ‘1’ (seed error)
In the case of a seed error, the generation of random numbers is interrupted for as long as
the SECS bit is ‘1’. If a number is available in the RNG_DR register, it must not be used
because it may not have enough entropy.
What you should do is clear the SEIS bit, then clear and set the RNGEN bit to reinitialize
and restart the RNG.
DocID024597 Rev 3
711/1693
714
Random number generator (RNG)
24.4
RM0351
RNG registers
The RNG is associated with a control register, a data register and a status register. They
have to be accessed by words (32 bits).
24.4.1
RNG control register (RNG_CR)
Address offset: 0x00
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
IE
RNGEN
Res.
Res.
rw
rw
Bits 31:4 Reserved, must be kept at reset value
Bit 3 IE: Interrupt enable
0: RNG Interrupt is disabled
1: RNG Interrupt is enabled. An interrupt is pending as soon as DRDY=1 or SEIS=1 or
CEIS=1 in the RNG_SR register.
Bit 2 RNGEN: Random number generator enable
0: Random number generator is disabled
1: random Number Generator is enabled.
Bits 1:0 Reserved, must be kept at reset value
24.4.2
RNG status register (RNG_SR)
Address offset: 0x04
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SEIS
CEIS
Res.
Res.
SECS
CECS
DRDY
rc_w0
rc_w0
r
r
r
712/1693
DocID024597 Rev 3
RM0351
Random number generator (RNG)
Bits 31:7 Reserved, must be kept at reset value
Bit 6 SEIS: Seed error interrupt status
This bit is set at the same time as SECS, it is cleared by writing it to 0.
0: No faulty sequence detected
1: One of the following faulty sequences has been detected:
–
More than 64 consecutive bits at the same value (0 or 1)
–
More than 32 consecutive alternations of 0 and 1 (0101010101...01)
An interrupt is pending if IE = 1 in the RNG_CR register.
Bit 5 CEIS: Clock error interrupt status
This bit is set at the same time as CECS, it is cleared by writing it to 0.
0: The RNG_CLK clock was correctly detected
1: The RNG_CLK was not correctly detected (fRNG_CLK< fHCLK/16)
An interrupt is pending if IE = 1 in the RNG_CR register.
Bits 4:3 Reserved, must be kept at reset value
Bit 2 SECS: Seed error current status
0: No faulty sequence has currently been detected. If the SEIS bit is set, this means that a
faulty sequence was detected and the situation has been recovered.
1: One of the following faulty sequences has been detected:
–
More than 64 consecutive bits at the same value (0 or 1)
–
More than 32 consecutive alternations of 0 and 1 (0101010101...01)
Bit 1 CECS: Clock error current status
0: The RNG_CLK clock has been correctly detected. If the CEIS bit is set, this means that a
clock error was detected and the situation has been recovered
1: The RNG_CLK was not correctly detected (fRNG_CLK< fHCLK/16).
Bit 0 DRDY: Data ready
0: The RNG_DR register is not yet valid, no random data is available
1: The RNG_DR register contains valid random data
Note: An interrupt is pending if IE = 1 in the RNG_CR register.
Once the RNG_DR register has been read, this bit returns to 0 until a new valid value is
computed.
24.4.3
RNG data register (RNG_DR)
Address offset: 0x08
Reset value: 0x0000 0000
The RNG_DR register is a read-only register that delivers a 32-bit random value when read.
After being read, this register delivers a new random value after a maximum time of 40
periods of the RNG_CLK clock. The software must check that the DRDY bit is set before
reading the RNDATA value.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RNDATA
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
RNDATA
r
DocID024597 Rev 3
713/1693
714
Random number generator (RNG)
RM0351
Bits 31:0 RNDATA: Random data
32-bit random data.
24.4.4
RNG register map
Table 140 gives the RNG register map and reset values.
Res.
Res.
IE
RNGEN
Res.
SECS
0
Res.
0
Res
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Refer to Section 2.2.2 on page 67 for the register boundary addresses.
714/1693
0
0
0
0
0
RNDATA[31:0]
RNG_DR
Reset value
0
0
Res
0x08
CEIS
Reset value
SEIS
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
RNG_SR
Res.
0x04
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
RNG_CR
Res.
0x00
reset value
Res.
Register name
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 140. RNG register map and reset map
DocID024597 Rev 3
0
0
0
0
RM0351
Advanced encryption standard hardware accelerator (AES)
25
Advanced encryption standard hardware accelerator
(AES)
25.1
Introduction
The AES hardware accelerator can be used to both encipher and decipher data using AES
algorithm. It is a fully compliant implementation of the following standard:
•
The advanced encryption standard (AES) as defined by Federal Information
Processing Standards Publication (FIPS PUB 197, 2001 November 26)
The accelerator encrypts and decrypts 128-bit blocks using either 128-bit or 256-bit key
length. It can also perform key derivation. The encryption or decryption key is stored in an
internal register in order to minimize write operations by the CPU or DMA when processing
several data blocks using the same key.
By default, electronic codebook mode (ECB) is selected. Cipher block chaining (CBC),
counter (CTR) mode, Galois counter (GCM) mode, Galois message authentication code
(GMAC) or cipher message authentication code mode (CMAC) chaining algorithms are also
supported by the hardware.
The AES supports DMA transfer for incoming and for outcoming data (2 DMA channels
required).
25.2
AES main features
•
Encryption/decryption using AES Rijndael Block Cipher algorithm
•
NIST FIPS 197 compliant implementation of AES encryption/decryption algorithm
•
256-bit register for storing the encryption, decryption or derivation key (8x 32-bit
registers)
•
Electronic codebook (ECB), cipher block chaining (CBC), counter mode (CTR), Galois
counter mode (GCM), Galois message authentication code mode (GMAC) and cipher
message authentication code mode (CMAC) supported
•
Key scheduler
•
Key derivation for decryption
•
128-bit data block processing
•
128-bit, 256-bit key length
•
1x32-bit INPUT buffer and 1x32-bit OUTPUT buffer
•
Register access supporting 32-bit data width only
•
One register used as a 128-bit initialization vector when AES is configured in CBC
mode or used as a 32-bit counter initialization when CTR, GCM or CMAC mode is
selected
•
Automatic data flow control with support of direct memory access (DMA) using 2
channels, one for incoming data, and one for outcoming data.
•
Suspend a message if another message with a higher priority needs to be processed
•
Cycles to process for each mode
DocID024597 Rev 3
715/1693
751
Advanced encryption standard hardware accelerator (AES)
25.3
RM0351
AES functional description
Figure 171 shows the block diagram of the AES accelerator.
Figure 171. AES block diagram
$(6B
6835[
$(6B65
$(6B&5
$(6B,95
$(6B',15
$(6B
'2875
$(6B
.(<5[
$(6KDUGZDUHDFFHOHUDWRU
069
The AES accelerator processes data blocks of 128-bits (4 words) using a key with a length
of either 256 bits or 128 bits, and an initialization vector when CBC, CTR, GCM, GMAC or
CMAC chaining mode is selected.
It provides 4 operating modes:
•
Mode 1: encryption using the encryption key stored in the AES_KEYRx registers.
•
Mode 2: key derivation stored internally in the AES_KEYRx registers at the end of the
key derivation processed from the encryption key stored in this register before enabling
the AES. This mode is independent from the AES chaining mode selection.
•
Mode 3: decryption using a given (pre-computed) decryption key stored in the
AES_KEYRx registers.
•
Mode 4: key derivation + decryption using an encryption key stored in the AES_KEYRx
registers (not used when the AES is configured in Counter mode for perform a chaining
algorithm).
The operating mode is selected by programming bits MODE[1:0] into the AES_CR register.
The mode must be changed only when the AES is disabled (bit EN = 0 in the AES_CR
register).
Note:
The AES_KEYRx registers must be stored before enabling the AES.
To select which one of the ECB, CBC, CTR, GCM, GMAC or CMAC mode is going to be
used for the cryptographic solution, it is mandatory to write the bit CHMOD[2:0] of the
AES_CR register and the AES_IVR register when the AES is disabled (bit EN = 0 in the
AES_CR register).
Once enabled (bit EN = 1 in AES_CR register), the AES is in the input phase, waiting for the
software to write the input data words into the AES_DINR (4 words) for the modes 1, 3 or 4.
The data correspond either to the plaintext message or the cipher message. A wait cycle is
automatically inserted between two consecutive writes to the AES_DINR register in order to
send, interleaved with the data, the key to the AES processor.
For mode 2, the key derivation processing is started immediately after the EN bit in the
AES_CR register is set. It requires that the AES_KEYRx registers are loaded with the
encrypted key before enabling the AES. At the end of the key derivation processing
computation complete flag (CCF) in AES_SR register is set. The derivative key is available
716/1693
DocID024597 Rev 3
RM0351
Advanced encryption standard hardware accelerator (AES)
in the AES_KEYRx registers and the AES is disabled by hardware. In this mode, the
AES_KEYRx registers must not be read when AES is enabled and until the CCF flag is set
to 1 by hardware.
The status flag CCF in the AES_SR register is set once the computation phase is complete.
An interrupt can be generated if bit CCFIE = 1 (CCF interrupt enable) in the AES_CR
register. The software can then read back the data from the AES_DOUTR register (for
modes 1, 3, 4) or from the AES_KEYRx registers (if mode 2 is selected).
The flag CCF has no meaning when DMA is used (DMAOUTEN = 1 in the AES_CR
register), because the reading the AES_DOUTR register is managed by DMA automatically
without any software action at the end of the computation phase.
The operation ends with the output phase, during which the software reads successively the
4 output data words from the AES_DOUTR register in mode 1, 3 or 4. In mode 2 (key
derivation mode), the data is automatically stored in the AES_KEYRx registers and the AES
is disabled by hardware. Then, software can select mode 3 (decryption mode) before it
enables the AES to start the decryption using this derivative key.
During the input and output phases, the software must read or write the data bytes
successively (except in mode 2) but the AES is tolerant of any delays occurring between
each read or write operation (example: if servicing another interrupt at this time).
The read error flag (RDERR) and write error flag (WRERR) in the AES_SR register are set
when an unexpected read or write operation is detected. An interrupt can be generated if
the error interrupt enable (ERRIE) bit is set in the AES_CR register. AES is not disabled
after an error detection and continues processing as normal.
It is also possible to use the general purpose DMA to write the input words and to read the
output words (refer to Figure 186 and Figure 187).
The AES can be re-initialized at any moment by resetting the EN bit in the AES_CR register.
Then the AES can be re-started from the beginning by setting EN = 1, waiting for the first
input data byte to be written (except in mode 2 where key derivation processing starts as
soon as the EN bit is set, starting from the value stored in the AES_KEYRx registers).
25.4
Encryption and derivation keys
The AES_KEYRx registers are used to store the encryption or decryption keys. These four
(respectively eight) registers are organized in little-endian configuration: Register
AES_KEYR0 has to be loaded with the 32-bit LSB of the key. Consequently, AES_KEYR3
(respectively AES_KEYR7) has to be loaded with the 32-bit MSB of the 128-bit key
(respectively with the 32-bit MSB of the 256-bit key).
Note:
1
AES_KEYR0 to AES_KEYR3 registers are used when key length equal to 128-bit or 256-bit
is selected.
2
AES_KEYR4 to AES_KEYR7 registers are used only when key length equal to 256-bit is
selected.
The key for encryption or decryption must be stored in these registers when the AES is
disabled (EN = 0 into the AES_CR register). Their endianess are fixed.
In mode 2 (key derivation), the AES_KEYRx needs to be loaded with the encryption key.
Then, the AES has to be enabled. At the end of the computation phase, the derivation key is
stored automatically in the AES_KEYRx registers, overwriting the previous encryption key.
The AES is disabled by hardware when the derivation key is available. If the software needs
DocID024597 Rev 3
717/1693
751
Advanced encryption standard hardware accelerator (AES)
RM0351
to switch the AES to mode 3 (decryption mode), there is no need to write the AES_KEYRx
registers if their content corresponds to the derivation key (previously computed by mode 2).
In mode 4 (key derivation + decryption), the AES_KEYRx registers contain only the
encryption key. The derivation key is calculated internally without any write to these
registers.
25.5
AES chaining algorithms
Five algorithms are supported by the AES hardware and can be selected through the
CHMOD[2:0] bits in the AES_CR register when the AES is disabled (bit EN = 0):
25.5.1
•
Electronic codebook (ECB)
•
Cipher block chaining (CBC)
•
Counter mode (CTR)
•
Galois counter mode (GCM) and Galois message authentication code mode (GMAC)
•
Cipher message authentication code mode (CMAC)
Electronic codebook (ECB)
This is the default mode. This mode does not use the AES_IVR register. There are no
chaining operations. The message is divided into blocks and each block is encrypted
separately.
Figure 172 and Figure 173 describe the principle of the electronic codebook algorithm for
encryption and decryption respectively.
Figure 172. ECB encryption mode
$(6B',15 3ODLQWH[W
'DWDW\SH>@
$(6B.(<5[
'DWDW\SH>@
6:$3
PDQDJHPHQW
%ORFNFLSKHU
(QFU\SWLRQ
6:$3
PDQDJHPHQW
$(6B'2875 &LSKHUWH[W
069
718/1693
DocID024597 Rev 3
RM0351
Advanced encryption standard hardware accelerator (AES)
Figure 173. ECB decryption mode
$(6B ',15 &LSKHUWH[W
'DWDW\SH >@
$(6B.(<5[ .H\
'DWDW\SH >@
6:$3
PDQDJHPHQW
%ORFNFLSKHU
'HFU\SWLRQ
6:$3
PDQDJHPHQW
$(6B '2875 3ODLQWH[W
069
25.5.2
Cipher block chaining (CBC)
In cipher-block chaining (CBC) mode, each block of plain text is XORed with the previous
cipher text block before being encrypted. To make each message unique, an initialization
vector (AES_IVRx) is used during the first block processing.
The initialization vector is XORed after the swapping management block during encryption
mode and before it in decryption mode (refer to Figure 174 and Figure 175).
DocID024597 Rev 3
719/1693
751
Advanced encryption standard hardware accelerator (AES)
RM0351
Figure 174. CBC mode encryption
$(6B ',15 3ODLQWH[W
'DWDW\SH >@
$(6B ',15 3ODLQWH[W
6:$3
PDQDJHPHQW
6:$3
PDQDJHPHQW
'DWDW\SH >@
$(6B ,95[
$(6B.(<5[ .H\
'DWDW\SH >@
%ORFNFLSKHU
(QFU\SWLRQ
$(6B.(<5[ .H\
6:$3
PDQDJHPHQW
%ORFNFLSKHU
(QFU\SWLRQ
6:$3
PDQDJHPHQW
'DWDW\SH >@
$(6B'2875 &LSKHUWH[W
$(6B'2875 &LSKHUWH[W
069
Figure 175. CBC mode decryption
$(6B',15 &LSKHUWH[W
'DWDW\SH>@
$(6B.(<5[ .H\
$(6B',15 &LSKHUWH[W
6:$3
PDQDJHPHQW
%ORFNFLSKHU
'HFU\SWLRQ
'DWDW\SH>@
$(6B.(<5[ .H\
6:$3
PDQDJHPHQW
%ORFNFLSKHU
'HFU\SWLRQ
$(6B,95[
'DWDW\SH>@
6:$3
PDQDJHPHQW
$(6B'2875 3ODLQWH[W
'DWDW\SH>@
6:$3
PDQDJHPHQW
$(6B'2875 3ODLQWH[W
069
Note:
720/1693
When the AES is enabled, reading the AES_IVR returns the value 0x0000 0000.
DocID024597 Rev 3
RM0351
Advanced encryption standard hardware accelerator (AES)
Suspended mode for a given message
It is possible to suspend a message if another message with a higher priority needs to be
processed. After sending this highest priority message, the suspended message may be
resumed in both encryption or decryption mode. This feature is available only when the data
transfer is done by CPU accesses to the AES_DOUTR and AES_DINR registers. It is
advised to not use it when the DMA controller is managing the data transfer.
For correct operation, the message must be suspended at the end of a block processing
(after the fourth read of the AES_DOUTR register and before the next AES_DINR write
access corresponding to the input of the next block to be processed).
The AES should be disabled writing bit EN = 0 in the AES_CR register. The software has to
read the AES_IVRx which contains the latest value to be used for the chaining XOR
operation before message interruption. This value has to be stored for reuse by writing the
AES_IVRx registers as soon as the interrupted message has to be resumed (when AES is
disabled).
Note:
This does not break the chaining operation and the message processing can be resumed as
soon as the AES is enabled again to send the next 128-bit data block.
Note:
This behavior is valid whatever the AES configuration (encryption or decryption mode).
Figure 176 gives an example of a message 1 which is suspended in order to send a higher
priority message 2, shorter than message 1. At the end of the 128-bit block processing, AES
is disabled. The AES_IVR register is read back to store the value to be retrieved later on
when the message is resumed, in order not to break the chaining operation. Then, the AES
is configured to send message 2 and it is enabled to start processing. At the end of
message 2 processing, AES has to be disabled again and the AES_IVRx registers have to
be loaded with the value previously stored when the message 1 was interrupted. Then
software has to restart from the input value corresponding to block 4 as soon as AES is
enabled to resume message 1.
DocID024597 Rev 3
721/1693
751
Advanced encryption standard hardware accelerator (AES)
RM0351
Figure 176. Example of suspend mode management
0HVVDJH
ELWEORFN
ELWEORFN
1HZKLJKHUSULRULW\
PHVVDJHWR
EHSURFHVVHG
0HVVDJH
$(6GLVDEOHG
UHDG$(6B,95DQGVWRUHWKHYDOXH
&RQILJXULQJ$(6IRUQH[WPHVVDJH
$(6HQDEOHG
ELWEORFN
ELWEORFN
ELWEORFN
ELWEORFN
ELWEORFN
ELWEORFN
ELWEORFN
$(6GLVDEOHG
ZULWHWKH$(6B,95ZLWKWKHYDOXHVWRUHG
$(6HQDEOHG
ELWEORFN
069
722/1693
DocID024597 Rev 3
RM0351
25.5.3
Advanced encryption standard hardware accelerator (AES)
Counter Mode (CTR)
In counter mode, a 32-bit counter is used in addition to a nonce value for the XOR operation
with the cipher text or plain text (refer to Figure 177 and Figure 178).
Figure 177. CTR mode encryption
$(6B,95[
1RQFH
$(6B.(<5[ .H\
$(6B,95[
FRXQWHU
1RQFH
$(6B.(<5[ .H\
%ORFNFLSKHU
HQFU\SWLRQ
$(6B',15 3ODLQWH[W
6ZDS
PDQDJHPHQW
FRXQWHU
%ORFNFLSKHU
HQFU\SWLRQ
$(6B',15 3ODLQWH[W
6ZDS
PDQDJHPHQW
'DWDW\SH>@
'DWDW\SH>@
6ZDS
PDQDJHPHQW
'DWDW\SH>@
'DWDW\SH>@
6ZDS
PDQDJHPHQW
$(6B'2875 &LSKHUWH[W
$(6B'2875 &LSKHUWH[W
06
Figure 178. CTR mode decryption
$(6B,95[
1RQFH
$(6B.(<5[ .H\
FRXQWHU
%ORFNFLSKHU
HQFU\SWLRQ
$(6B',15 &LSKHUWH[W
6ZDS
PDQDJHPHQW
'DWDW\SH>@
'DWDW\SH
>@
6ZDS
PDQDJHPHQW
$(6B'2875 3ODLQWH[W
D^ϭϴϵϰϮsϭ
DocID024597 Rev 3
723/1693
751
Advanced encryption standard hardware accelerator (AES)
RM0351
The nonce value and 32-bit counter are accessible through the AES_IVRx register and
organized like below in Figure 179:
Figure 179. 32-bit counter + nonce organization
$(6B,95
$(6B,95
$(6B,95
1RQFH
$(6B,95
ELWFRXQWHU
069
In counter mode, the counter is incremented from the initialized value for each block to be
processed in order to guarantee a unique sequence which is not repeated for a long time. It
is a 32-bit counter, meaning that the nonce message is kept to the initialized value stored
when the AES was disabled. Only the 32-bit LSB of the 128-bit initialization vector register
represents the counter. In contrast to CBC mode (which uses the AES_IVRx registers only
once when processing the first data block), in counter mode, the AES_IVRx registers are
used for processing each data block.
In counter mode, key derivation + decryption mode is not applicable.
Note:
The AES_IVRx register has be written only when the AES is disabled (bit EN = 0) to
guarantee good AES behavior.
Reading it while AES is enabled returns the value 0x00000000.
Reading it while the AES is disabled returns the latest counter value (useful for managing
suspend mode).
In CTR mode, key derivation + decryption serves no purpose. Consequently it is forbidden
to set MODE[1:0] = 11 in the AES_CR register and any attempt to set this configuration is
forced to MODE[1:0] = 10 (which corresponds to CTR mode decryption). This uses the
encryption block of the AES processor to decipher the message as shown in Figure 178.
Suspend mode in CTR mode
Like for the CBC mode, it is possible to interrupt a message, sending a higher priority
message and resume the message which was interrupted. Refer to the Figure 176 and
Section 25.5.2 for more details about the suspend mode capability.
25.6
Galois counter mode (GCM)
GCM allows to encrypt and authenticate the plaintext, generating the corresponding
ciphertext and the TAG (also known as message authentication code or message integrity
check). It is based on AES in counter mode for confidentiality and it uses a multiplier over a
fixed finite field for generating the TAG. It requires an initialization vector at the beginning.
The message to process can be split in 2 different portions:
•
The first that is authenticated only (the header of the message),
•
The second that is authenticated and encrypted (the payload).
The header part must precede the payload and the two portions cannot be mixed. GCM
standard requires to pass at the end of the message a particular 128-bit block composed by
724/1693
DocID024597 Rev 3
RM0351
Advanced encryption standard hardware accelerator (AES)
the size of the header on 64 bits and the size of the payload on 64 bits. During computation
we have to distinguish between the blocks of the header and the blocks of the payload.
•
Header (aka additional authentication data): data which is authenticated but not
•
Payload (aka plaintext / ciphertext): the message itself which is protected.
protected (such as information for routing the packet)
In GCM mode the user must follow 4 phases: GCM Init, GCM header, GCM payload, GCM
final.
•
•
GCM init phase: in this first step, the hash key is calculated and saved internally for
use during the processing of all the blocks.
a)
Make sure that the AES core is disabled by clearing EN (AES_CR).
b)
Select GCM chaining mode by programming CHMOD[1:0] = 011 in AES_CR.
c)
Configure GCMPH[1:0] = 00 in AES_CR to indicate GCM init phase and force
DATATYPE[1:0] = 00 (No swapping) in AES_CR.
d)
Select mode by selecting either MODE[1:0]= 00 for encryption or MODE[1:0] = 10
for decryption in AES_CR register.
e)
Initialize the key registers (128/256 bits) in AES_KEYRx and IV.
f)
Set EN bit in AES_CR register to 1 to start the calculation of the hash key. EN is
automatically reset when the calculation finishes.
g)
Wait until the CCF flag in AES_SR register is set to 1 (or use the corresponding
interrupt) before moving on to the next phase.
h)
Erase the CCF flag by setting CCFC in AES_CR.
GCM header phase: To be performed after the GCM init phase.
i)
Set GCMPH=”01” in AES_CR register to indicate that we are in the header phase
and configure DATATYPE[1:0] (1-bit, 8-bits, 16-bits or 32-bits) in AES_CR
j)
Enable the AES by setting EN bit in AES_CR register.
k)
Write 4 times the header message into AES_DINR register.
l)
Wait until the computation flag CCF in AES_SR register is set to 1 (or use the
corresponding interrupt).
m) Erase CCF by setting the bit CCFC in AES_CR register.
n)
•
Repeat (k), (l), and (m) until each of the header blocks is inserted. Alternatively,
DMA may be used.
GCM payload phase (encryption / decryption): This step is after GCM_header
phase.
o)
Choose the combination 10 of GCMPH in AES_CR register.
p)
Write 4 times the payload message into AES_DINR register.
q)
Wait until the computation flag CCF in AES_SR is set to 1 (or use the
corresponding interrupt).
r)
Erase CCF flag by writing 1 in CCFC bit (AES_CR). This must be done before
inserting the next block.
s)
Read AES_DOUTR 4 times to get the (ciphertext / plaintext). This is compulsory
before starting a new block.
DocID024597 Rev 3
725/1693
751
Advanced encryption standard hardware accelerator (AES)
RM0351
Repeat (p), (q), (r) and (s) until ciphering or deciphering of all the payload blocks.
Alternatively, DMA may be used.
•
GCM Final Phase: In this last step, we generate the authentication tag.
t)
Choose the combination GCMPH[1:0] = 11 in AES_CR.
u)
Write 4 times the input into the AES_DINR register: the input must be composed
of the length of header coded on 64 bits followed with the length of payload coded
on 64 bits.
v)
Wait until the computation flag CCF in AES_SR register is set to 1 (or use the
corresponding interrupt).
w)
Read 4 times the AES_DOUTR register: the output is the “auth tag”.
x)
Clear CCF flag in AES_SR register by setting CCFC bit in AES_CR to 1.
y)
Disable AES processor by setting bit EN in AES_CR to 0.
No need to disable / enable AES processor when moving from header phase to tag phase.
AES can move directly from init to payload or/and to tag (bypassing header phase or/and
payload phase) in this case AES enable step should be added after selecting the next
phase.
AES Galois message authentication code (GMAC)
The AES processor supports also GMAC to authenticate the plaintext based on GCM
algorithm for generating the corresponding TAG.
It is based on a multiplier over a fixed finite field for generating the TAG. It requires an
initialization vector at the beginning.
Actually GMAC is the same as GCM applied on a message composed only by the header,
so all steps and settings are the same except phase 3 will not be used.
Suspend mode in GCM
In GCM algorithm, suspend mode can be performed during header phase and payload
phase. It is advised to not use suspend mode in init phase or tag phase since suspend
mode has no benefit in these phases:
Suspend mode during header phase: the user must respect the following steps:
•
•
726/1693
Before interrupting the current message:
a)
Make sure that CCF flag read from AES_SR is set to 1.
b)
Clear CCF flag in AES_SR register by setting CCFC in AES_CR to 1.
c)
Save AES_SUSPxR registers in the memory.
d)
Disable AES processor by setting EN in AES_CR to 0.
e)
Save the current AES configuration in the memory.
To resume:
f)
Make sure that AES processor is disabled by reading the bit EN in AES_CR.
g)
Write back AES_SUSPxR registers into their corresponding suspend registers.
h)
Re-configure AES with the initial setting values in CR register, IV register and key
registers.
i)
Enable the AES processor by setting EN in AES_CR register.
DocID024597 Rev 3
RM0351
Advanced encryption standard hardware accelerator (AES)
Suspend mode during Payload phase: the user must respect the following steps:
•
Note:
Before interrupting the current message:
a)
Read 4 times the AES_DOUTR register.
b)
Make sure that busy flag is set to 0 (only in encryption mode, not necessary in
decryption mode).
c)
Save AES_SUSPxR registers in the memory.
d)
Save AES initialization vector registers AES_IVx in the memory.
AES_IVx registers are modified during payload phase.
•
e)
Disable AES processor by setting EN i n AES_CR to 0.
f)
Save the current AES configuration in the memory (except AES initialization
vector values)
To resume:
g)
Make sure that AES processor is disabled by reading EN in AES_CR.
h)
Write back AES_SUSPxR registers into their corresponding suspend registers.
i)
Write back AES_IVx registers into their AES initialization vectors.
j)
Re-configure AES with the initial setting values in CR register and key registers.
k)
Enable the AES processor by setting EN bit in AES_CR register.
Suspend mode in GMAC
GMAC is exactly the same as GCM algorithm except: only Header phase can be interrupt.
25.7
AES cipher message authentication code mode
(CMAC)
CMAC allows to authenticate the plaintext, generating the corresponding TAG. The
message is composed only by the header phase and the tag phase. The CCM standard
(RFC 3610 Counter with CBC-MAC (CCM) dated September 2003) defines particular
encoding rules for the first authentication block (called B0 in the standard). In particular, the
first block includes flags, a nonce and the payload length expressed in bytes.
•
a)
Make sure that the AES processor is disabled by clearing EN (AES_CR) and that
AES operating mode is different than mode 2 (key derivation) and mode 4 (key
derivation + decryption)
b)
Select CMAC chaining mode by programming CHMOD bits[2:0] = 100 in
AES_CR.
c)
Initialize key registers (128 / 256 bits) in AES_KEYRx and IV with zero values in
AES_IVRx
CMAC header phase:
DocID024597 Rev 3
727/1693
751
Advanced encryption standard hardware accelerator (AES)
Note:
RM0351
In this stage, no output is provided in AES_DOUTR register.
•
Note:
d)
Set GCMPH=”01” in AES_CR to indicate that we are in the header phase.
e)
Enable the AES by setting EN bit in AES_CR.
f)
Insert B0 for first transfer, and then B for further transfers.
g)
Write 4 times the header message into AES_DINR register.
h)
Wait until the computation flag CCF (AES_SR) is set (or use the corresponding
interrupt).
i)
Erase CCF by setting CCFC in AES_CR.
j)
Repeat (g), (h), and (i) until each of the header blocks is inserted. Alternatively,
DMA may be used.
CMAC Final Phase: in this last step, we generate the authorization tag.
In this stage, The authorization tag of the message is provided in AES_DOUTR register.
k)
Choose the combination GCMPH[1:0] = 11 in AES_CR.
l)
Write 4 times the input into the AES_DIN register: the input must be the 128-bit
value formatted from the original B0 packet.(i.e bits [7:3] of B0 should be forced to
zero value).
m) Wait until computation flag CCF is set in AES_SR.
Note:
n)
Read 4 times the AES_DOUTR: the output is the “auth tag”.
o)
Erase the flag by raising CCFC bit in AES_CR.
p)
Disable AES.
1
The hardware does not manage the formatting operation of the original B0 and B1, the latter
having to contain the header length. This task must be handled by software.
2
No need to disable/enable AES processor when moving from header phase to tag phase.
3
The software should filter the Auth Tag output with tag length to obtain the valid TAG.
Suspend mode in CMAC mode
In CMAC algorithm, suspend mode can be performed only during header phase. It is
advised to not use suspend mode in tag phase since suspend mode has no benefit in this
phase:
728/1693
DocID024597 Rev 3
RM0351
Advanced encryption standard hardware accelerator (AES)
To suspend mode CMAC during header phase, the user must respect the following steps:
•
Before interrupting the current message:
a)
•
25.8
Make sure that CCF flag in AES_SR is set to 1.
b)
Clear CCF flag in AES_SR register by setting CCFC bit to 1 in AES_CR.
c)
Save AES initialization vector registers AES_IVx and AES_SUSPxR registers in
the memory (AES_IVx registers are modified during header phase)
d)
Disable AES processor by setting EN in AES_CR to 0.
e)
Save the current AES configuration values in the memory.
To resume:
f)
Make sure that AES processor is disabled by reading bit EN in AES_CR.
g)
Write back AES_SUSPxR registers into their corresponding suspend registers.
h)
Write back AES_IVx registers into their AES initialization vector registers
i)
Re-configure AES with the initial setting values in CR register and key registers.
j)
Enable the AES processor by setting EN in AES_CR register.
Data type
Data are entered in the AES processor 32 bits at a time (words), by writing them in the
AES_DINR register. AES handles 128-bit data blocks. The AES_DINR or AES_DOUTR
registers must be read or written four times to handle one 128-bit data block with the MSB
first.
The system memory organization is little-endian: whatever the data type (bit, byte, 16-bit
half-word, 32-bit word) used, the less-significant data occupies the lowest address location.
Thus, there must be a bit, byte, or half-word swapping operation to be performed on data to
be written in the AES_DINR from system memory before entering the AES processor, and
the same swapping must be performed for AES data to be read from the AES_DOUTR
register to the system memory, depending on to the kind of data to be encrypted or
decrypted.
The DATATYPE bits in the AES_CR register offer different swap modes to be applied to the
AES_DINR register before sending it to the AES processor and to be applied on the
AES_DOUTR register on the data coming out from the processor (refer to Figure 180).
Note:
The swapping operation concerns only the AES_DOUTR and AES_DINR registers. The
AES_KEYRx and AES_IVRx registers are not sensitive to the swap mode selected. They
have a fixed little-endian configuration (refer to Section 25.4 and Section 25.14).
DocID024597 Rev 3
729/1693
751
Advanced encryption standard hardware accelerator (AES)
RM0351
Figure 180. 128-bit block construction according to the data type
$!4!490% B .O SWAPPING
!%3?$).2 OR !%3?$/542
,3"
-3"
7ORD
7ORD
7ORD
7ORD
,3"
-3"
!%3 PROCESSOR INPUT OR !%3 PROCESSOR OUTPUT
$!4!490% B BIT OR HALF WORD SWAPPING
!%3?$).2 OR !%3?$/542
-3"
7ORD
7ORD
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
,3"
7ORD
7ORD
BIT
BIT
BIT
BIT
BIT
BIT
-3"
BIT
BIT
,3"
!%3 PROCESSOR INPUT OR !%3 PROCESSOR OUTPUT
$!4!490% B BIT OR "YTE SWAPPING
!%3?$).2 OR !%3?$/542
-3"
7ORD
7ORD
BIT BIT BIT BIT
BIT BIT BIT BIT
BIT BIT BIT BIT
BIT BIT BIT BIT
,3"
7ORD
7ORD
BIT BIT BIT BIT
BIT BIT BIT BIT
BIT BIT BIT
BIT BIT BIT
-3"
BIT
BIT
,3"
!%3 PROCESSOR INPUT OR !%3 PROCESSOR OUTPUT
-36
730/1693
DocID024597 Rev 3
RM0351
Advanced encryption standard hardware accelerator (AES)
Figure 181. 128-bit block construction according to the data type (continued)
$!4!490% B "IT SWAPPING
!%3?$).2 OR !%3?$/542
-3"
7/2$
7/2$
BIT BIT BIT
BIT BIT
BIT
BIT
BIT
BIT
,3"
7/2$
7/2$
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
,3"
-3"
!%3 PROCESSOR INPUT OR !%3 PROCESSOR OUTPUT
-36
25.9
Operating modes
25.9.1
Mode 1: encryption
1.
Disable the AES by resetting EN bit in the AES_CR register.
2.
Configure the mode 1 by programming MODE[1:0] = 00 in the AES_CR register and
select which type of chaining mode needs to be performed by programming the
CHMOD[2:0] bits.
3.
Select key length 128-bits or 256-bits via KEYSIZE bits configuration in AES_CR
register.
4.
Write the AES_KEYRx registers (128-bit or 256-bit with encryption key) and the
AES_IVRx registers if CTR, CBC or GCM mode is selected. For ECB mode, the
AES_IVRx register is not used.
5.
Enable the AES by setting the EN bit in the AES_CR register.
6.
Write the AES_DINR register 4 times to input the plain text (MSB first) as shown in
Figure 182: Mode 1: encryption with 128-bit key length.
7.
Wait until the CCF flag is set in the AES_SR register.
8.
Read the AES_DOUTR register 4 times to get the cipher text (MSB first) as shown in
Figure 182: Mode 1: encryption with 128-bit key length.
9.
Repeat steps 6,7,8 to process all the blocks with the same encryption key.
DocID024597 Rev 3
731/1693
751
Advanced encryption standard hardware accelerator (AES)
RM0351
Figure 182. Mode 1: encryption with 128-bit key length
:5
37
:5
37
:5
37
06%
:5
37
:DLWXQWLOIODJ&&)
/6%
5'
&7
5'
&7
5'
&7
5'
&7
06%
,QSXWSKDVH
ZULWHRSHUDWLRQVLQWR
$(6B',1>@
/6%
2XWSXWSKDVH
UHDGRSHUDWLRQVRI
$(6B'287>@
&RPSXWDWLRQSKDVH
37 SODLQWH[W ZRUGV 37«37
&7 F\SKHUWH[W ZRUGV &7«&7
069
25.9.2
Note:
Mode 2: key derivation
1.
Disable the AES by resetting the EN bit in the AES_CR register.
2.
Configure mode 2 by programming MODE[1:0] = 01 in the AES_CR register.
CHMOD[2:0] bits are not significant in this case because this key derivation mode is
independent from the chaining algorithm selected.
3.
Select key length 128-bit or 256-bit via KEYSIZE bits configuration in AES_CR register.
4.
Write the AES_KEYRx registers with the encryption key to obtain the derivative key. A
write to the AES_IVRx has no effect.
5.
Enable the AES by setting the EN bit in the AES_CR register.
6.
Wait until the CCF flag is set in the AES_SR register.
7.
The derivation key is put automatically into the AES_KEYRx registers. Read the
AES_KEYRx registers to obtain the decryption key if needed. The AES is disabled by
hardware. To restart a derivation key calculation, repeat steps 3, 4, 5 and 6.
Figure 183. Mode 2: key derivation with 128-bit key length
:5
(.
06%
:5
(.
:5
(.
:5
(.
:DLWXQWLOIODJ&&)
/6%
,QSXWSKDVH
ZULWHRSHUDWLRQVLQWR
$(6B.(<5[>@
5'
'.
06%
&RPSXWDWLRQSKDVH
(1 LQWR$(6B&5
(. HQFU\SWLRQNH\ ZRUGV (.«(.
'. GHFU\SWLRQNH\ ZRUGV '.«'.
5'
'.
5'
'.
5'
'.
/6%
2XWSXWSKDVH RSWLRQDO
UHDGRSHUDWLRQVRI
$(6B.(<5[>@
ELWGHULYDWLRQNH\
VWRUHGLQWR$(6B.(<5[
069
732/1693
DocID024597 Rev 3
RM0351
25.9.3
Advanced encryption standard hardware accelerator (AES)
Mode 3: decryption
1.
Disable the AES by resetting the EN bit in the AES_CR register.
2.
Configure mode 3 by programming MODE[1:0] = 10 in the AES_CR register and select
which type of chaining mode needs to be performed by programming the CHMOD[2:0]
bits.
3.
Select Key length 128-bit or 256-bit via KEYSIZE bits configuration in AES_CR
register.
4.
Write the AES_KEYRx registers with the decryption key (this step can be bypassed if
the derivation key is already stored in the AES_KEYRx registers using mode 2: key
derivation). Write the AES_IVRx registers if CTR, CBC or GCM mode is selected. For
ECB mode, the AES_IVRx registers are not used.
5.
Enable the AES by setting the EN bit in the AES_CR register.
6.
Write the AES_DINR register 4 times to input the cipher text (MSB first) as shown in
Figure 184: Mode 3: decryption with 128-bit key length.
7.
Wait until the CCF flag is set in the AES_SR register.
8.
Read the AES_DOUTR register 4 times to get the plain text (MSB first) as shown in
Figure 184: Mode 3: decryption with 128-bit key length.
9.
Repeat steps 6, 7, 8 to process all the blocks using the same derivation key stored in
the AES_KEYRx registers.
Figure 184. Mode 3: decryption with 128-bit key length
:5
&7
06%
:5
&7
:5
&7
:5
&7
:DLWXQWLOIODJ&&)
/6%
5'
37
06%
,QSXWSKDVH
ZULWHRSHUDWLRQVLQWR
$(6B',1>@
&RPSXWDWLRQSKDVH
5'
37
5'
37
5'
37
/6%
2XWSXWSKDVH
UHDGRSHUDWLRQVRI
$(6B'287>@
37 SODLQWH[W ZRUGV 37«37
&7 F\SKHUWH[W ZRUGV &7«&7
069
25.9.4
Mode 4: key derivation and decryption
1.
Disable the AES by resetting the EN bit in the AES_CR register.
2.
Configure mode 4 by programming MODE[1:0] = 11 in the AES_CR register. This mode
is forbidden when AES is configured in CTR, GCM, GMAC or CMAC mode. It will be
DocID024597 Rev 3
733/1693
751
Advanced encryption standard hardware accelerator (AES)
RM0351
forced to CTR decryption mode if the software writes MODE[1:0] = 11 and CHMOD[2:0]
= 010.
Note:
3.
Select key length 128-bit or 256-bit via KEYSIZE bits configuration in AES_CR register.
4.
Write the AES_KEYRx register with the encryption key. Write the AES_IVRx register if
the CBC mode is selected.
5.
Enable the AES by setting the EN bit in the AES_CR register.
6.
Write the AES_DINR register 4 times to input the cipher text (MSB first) as shown in
Figure 185: Mode 4: key derivation and decryption with 128-bit key length.
7.
Wait until the CCF flag is set in the AES_SR register.
8.
Read the AES_DOUTR register 4 times to get the plain text (MSB first) as shown in
Figure 185: Mode 4: key derivation and decryption with 128-bit key length.
9.
Repeat steps 6, 7, 8 to process all the blocks with the same encryption key.
The AES_KEYRx registers contain the encryption key during all phases of the processing,
No derivation key is stored in these registers. The derivation key starting from the encryption
key is stored internally in the AES without storing a copy in the AES_KEYRx registers.
Figure 185. Mode 4: key derivation and decryption with 128-bit key length
72
#4
72
#4
72
#4
-3"
72
#4
7!)4 5.4),
FLAG ##&
,3"
).054 0(!3%
72)4% /0%2!4)/.3
).4/ !%3?$).;=
2$
04
-3"
#/-054!4)/. 0(!3%
2$
04
2$
04
,3"
/54054 0(!3%
2%!$ /0%2!4)/.3
/& !%3?$/54;=
04 0,!). 4%84 7ORDS 04 04
#4 #90(%2 4%84 7ORDS #4 #4
25.10
2$
04
-36
AES DMA interface
The AES accelerator provides an interface to connect to the DMA controller.
The DMA must be configured to transfer words.
The AES can be associated with two distinct DMA request channels:
•
A DMA request channel for the inputs: When the DMAINEN bit is set in the AES_CR
register, the AES initiates a DMA request (AES_IN) during the INPUT phase each time
it requires a word to be written to the AES_DINR register. The DMA channel must be
configured in memory-to-peripheral mode with 32-bit data size.
•
A DMA request channel for the outputs: When the DMAOUTEN bit is enabled, the AES
initiates a DMA request (AES_OUT) during the OUTPUT phase each time it requires a
word to be read from the AES_DOUTR register. The DMA channel must be configured
in peripheral-to-memory mode with a data size equal to 32-bit.
Four DMA requests are asserted for each phase, these are described in Figure 186 and
Figure 187.
DMA requests are generated until the AES is disabled. So, after the data output phase at
the end of processing a 128-bit data block, the AES switches automatically to a new data
input phase for the next data block if any.
734/1693
DocID024597 Rev 3
RM0351
Note:
Advanced encryption standard hardware accelerator (AES)
1
For mode 2 (key derivation), access to the AES_KEYRx registers can be done by software
using the CPU. No DMA channel is provided for this purpose. Consequently, the DMAINEN
bit and DMAOUTEN bits in the AES_CR register have no effect during this mode.
2
The CCF flag is not relevant when DMAOUTEN = 1 and software does not need to read it in
this case. This bit may stay high and has to be cleared by software if the application needs
to disable the AES to cancel the DMA management and use CPU access for the data input
or data output phase.
Figure 186. DMA requests and data transfers during Input phase (AES_IN)
-/$% %NCRYPTION -ODE OR $ECRYPTION
$-! 2%15%343
-3"
!%3?$).2
72 4
$-! 2%1
.
$-! 2%1
.§
!%3?$).2
72 4
!%3?$).2
72 4
!%3?$).2
72 4
$-! 2%1
.§
$-! 2%1
.§
-36
Figure 187. DMA requests during Output phase (AES_OUT)
-/$% %NCRYPTION -ODE OR $ECRYPTION
$-! 2%15%343
-3"
!%3?$/542
2$ $
$-! 2%1
.§
!%3?$/542
2$ $
!%3?$/542
2$ $
$-! 2%1
.§
$-! 2%1
.§
!%3?$/542
2$ $
$-! 2%1
.§
$ 0,!). OR #)0(%2 4%84 DEPENDING ON MODE OF OPERATION
7/2$3$ $
-36
25.11
Error flags
The AES read error flag (RDERR) in the AES_SR register is set when an unexpected read
operation is detected during the computation phase or during the input phase.
The AES write error flag (WRERR) in the AES_SR register is set when an unexpected write
operation is detected during the output phase or during the computation phase.
The flags may be cleared setting the respective bit in the AES_CR register (CCFC bit to
clear the CCF flag, ERRC bit to clear the WERR and RDERR flags).
An interrupt can be generated when one of the error flags (WERR or RDERR) is set if the
error interrupt enable (ERRIE) bit in the AES_CR register has been previously set.
If an error is detected, AES is not disabled by hardware and continues processing as
normal.
DocID024597 Rev 3
735/1693
751
Advanced encryption standard hardware accelerator (AES)
25.12
RM0351
Processing time
The following tables summarize the time required to process a 128-bit block for each mode
of operation.
Table 141. Processing time (in clock cycle)
Input phase
Computation
phase
Output
phase
Total
Mode 1: Encryption
8
202
4
214
Mode 2: Key derivation
-
80
-
80
Mode 3: Decryption
8
202
4
214
Mode 4: Key derivation + decryption
8
276
4
288
Mode of operation
Table 142. Processing time (in clock cycle) for ECB, CBC and CTR
Key size
Algorithm
Input
phase
Computation
phase
Output
phase
Total
ECB, CBC, CTR
8
202
4
214
-
-
80
-
80
Mode 3: Decryption
ECB, CBC, CTR
8
202
4
214
Mode 4: Key derivation + decryption
ECB, CBC
8
276
4
288
Mode 1: Encryption
ECB, CBC, CTR
8
286
4
298
-
-
109
-
109
Mode 3: Decryption
ECB, CBC, CTR
8
286
4
298
Mode 4: Key derivation + decryption
ECB, CBC
8
380
4
392
Mode of operation
Mode 1: Encryption
128-bit
256-bit
Mode 2: Key derivation
Mode 2: Key derivation
Table 143. Processing time (in clock cycle) for GCM and CMAC
Algorithm
Init
Phase
Header
phase
Payload
phase
Tag
phase
GCM
215
67
202
202
-
GMAC
215
67
-
202
-
CMAC
-
206
-
202
GCM
299
67
286
286
-
GMAC
299
67
-
286
-
CMAC
-
290
-
286
Key size
Mode of operation
Mode 1: Encryption/
Mode 3: Decryption
128-bit
Mode 1: Encryption/
Mode 3: Decryption
256-bit
Note:
Mode 2 and mode 4 has no meaning when GCM is selected.
Mode operation (mode 1 to mode 4) has no meaning when GMAC/CMAC is used.
736/1693
DocID024597 Rev 3
RM0351
25.13
Advanced encryption standard hardware accelerator (AES)
AES interrupts
Table 144. AES interrupt requests
Event flag
Enable
control bit
Exit from
Wait
CCF
CCFIE
yes
AES read error flag
RDERR
ERRIE
yes
AES write error flag
WRERR
ERRIE
yes
Interrupt event
AES computation completed flag
DocID024597 Rev 3
737/1693
751
Advanced encryption standard hardware accelerator (AES)
25.14
AES registers
25.14.1
AES control register (AES_CR)
RM0351
Address offset: 0x00
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
KEY
SIZE
Res.
CH
MOD
[2]
15
14
13
12
11
10
9
8
7
6
5
4
3
DMA
OUT
EN
DMA
INEN
ERRIE
CCFIE
ERRC
CCFC
rw
rw
rw
rw
rw
rw
rw
Res.
GCMPH[1:0]
rw
rw
CHMOD[1:0]
MODE[1:0]
rw
rw
rw
rw
2
rw
1
DATATYPE[1:0]
rw
rw
0
EN
rw
Bits 31:19 Reserved, must be kept at reset value.
Bit 18 KEYSIZE: Key size selection
0: 128 bit key length
1: 256 bit key length
The operation mode must only be changed if the AES is disabled. Writing these bits while the AES is
enabled is forbidden in order to avoid unpredictable AES behavior.
Bits 17, 15 Reserved, must be kept at reset value.
Bits 14:13 GCMPH[1:0]: Used only for GCM, GMAC and CMAC algorithms and has no effect when other
algorithms are selected
00: GCM init Phase
01: GCM header phase
10: GCM payload phase
11: GCM final phase
Note: GCM init phase and GCM payload phase must not be used when CMAC is selected, else AES
peripheral behavior is not guaranteed.
Bit 12 DMAOUTEN: Enable DMA management of data output phase
0: DMA (during data output phase) disabled
1: DMA (during data output phase) enabled
If the DMAOUTEN bit is set, DMA requests are generated for the output data phase in mode 1, 3 or
4. This bit has no effect in mode 2 (key derivation).
Bit 11 DMAINEN: Enable DMA management of data input phase
0: DMA (during data input phase) disabled
1: DMA (during data input phase) enabled
If the DMAINEN bit is set, DMA requests are generated for the data input phase in mode 1, 3 or 4. This
bit has no action in mode 2 (key derivation).
Bit 10 ERRIE: Error interrupt enable
An interrupt is generated if at least one of the both flags RDERR or WRERR is set.
0: Error interrupt disabled
1: Error interrupt enabled
738/1693
DocID024597 Rev 3
RM0351
Advanced encryption standard hardware accelerator (AES)
Bit 9 CCFIE: CCF flag interrupt enable
An interrupt is generated if the CCF flag is set.
0: CCF interrupt disabled
1: CCF interrupt enabled
Bit 8 ERRC: Error clear
Writing 1 to this bit clears the RDERR and WRERR flags.
This bit is always read low.
Bit 7 CCFC: Computation complete flag clear
Writing 1 to this bit clears the CCF flag.
This bit is always read low.
Bit 16 and CHMOD[2:0]: AES chaining mode
Bits 6:5
000: Electronic codebook (ECB)
001: Cipher block chaining (CBC)
010: Counter mode (CTR)
011: Galois counter mode (GCM) and Galois message authentication code (GMAC)
100: Cipher message authentication code (CMAC)
The AES chaining mode must only be changed while the AES is disabled. Writing these bits while the
AES is enabled is forbidden in order to avoid unpredictable AES behavior.
Bits 4:3 MODE[1:0]: AES operating mode
00: Mode 1: Encryption
01: Mode 2: Key derivation
10: Mode 3: Decryption
11: Mode 4: Key derivation + decryption
The operation mode must only be changed if the AES is disabled. Writing these bits while the AES is
enabled is forbidden in order to avoid unpredictable AES behavior.
Mode 4 is forbidden if CTR mode/GCM mode is selected. It will be forced to mode 3 if the software,
nevertheless, attempts to set mode 4 for this CTR/GCM mode configuration.
Bits 2:1 DATATYPE[1:0]: Data type selection (for data in and data out to/from the cryptographic block)
00: 32-bit data. No swapping.
01: 16-bit data or half-word. In the word, each half-word is swapped. For example, if one of the four
32-bit data written in the AES_DINR register is 0x764356AB, the value given to the
cryptographic block is 0x56AB7643
10: 8-bit data or bytes. In the word, all the bytes are swapped. For example, if one of the four 32-bit
data written in the AES_DINR register is 0x764356AB, the value given to the cryptographic
block is 0xAB564376.
11: Bit data. In the word all the bits are swapped. For example, if one of the four 32-bit data written
in the AES_DINR register is 0x764356AB, the value given to the cryptographic block is
0xD56AC26E
The DATATYPE selection must be changed if the AES is disabled. Writing these bits while the AES is
enabled is forbidden to avoid unpredictable AES behavior.
Bit 0 EN: AES enable
0: AES disable
1: AES enable
The AES can be re-initialized at any moment by resetting this bit: the AES is then ready to start
processing a new block when EN is set.
This bit is cleared by hardware when the AES computation is finished in mode 2 (key derivation)
DocID024597 Rev 3
739/1693
751
Advanced encryption standard hardware accelerator (AES)
25.14.2
RM0351
AES status register (AES_SR)
Address offset: 0x04
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
BUSY
r
WRERR RDERR
r
r
CCF
r
Bits 31:4 Reserved, must be kept at reset value.
Bit 3 Busy: Busy flag
This bit is set and reset by hardware to indicate that higher priority message can interrupt the current
message during GCM payload phase for encryption mode only
0: GCM suspend mode can perform
1: GCM suspend mode cannot perform
Note: This bit has effect only when GCM algorithm is selected.
Note: This flag has no effect when GCM is configured in GCM init phase, GCM header phase, GCM
payload phase (decryption mode) and GCM final phase.
740/1693
DocID024597 Rev 3
RM0351
Advanced encryption standard hardware accelerator (AES)
Bit 2 WRERR: Write error flag
This bit is set by hardware when an unexpected write operation to the AES_DINR register is detected
(during computation or data output phase). An interrupt is generated if the ERRIE bit has been
previously set in the AES_CR register. This flag has no impact on the AES which continues running
even if WERR is set.
It is cleared by software by setting the ERRC bit in the AES_CR register.
0: No write error detected
1: Write error detected
Note: This Flags has no meaning when:
– Key derivation mode is selected
– GCM init phase
Bit 1 RDERR: Read error flag
This bit is set by hardware when an unexpected read operation from the AES_DOUTR register is
detected (during computation or data input phase). An interrupt is generated if the ERRIE bit has been
previously set in the AES_CR register.This flag has no impact on the AES which continues running
even if RDERR is set.
It is cleared by software by setting the ERRC bit i in the AES_CR register.
0: No read error detected
1: Read error detected
Note: This Flags has no meaning when:
– Key derivation mode is selected
– GCM init phase is selected
– GMAC or CMAC header phase is selected
Bit 0 CCF: Computation complete flag
This bit is set by hardware when the computation is complete. An interrupt is generated if the CCFIE
bit has been previously set in the AES_CR register.
It is cleared by software by setting the CCFC bit in the AES_CR register.
0: Computation is not complete
1: Computation complete
Note: This bit is significant only when DMAOUTEN = 0. It may stay high when DMA_EN = 1.
DocID024597 Rev 3
741/1693
751
Advanced encryption standard hardware accelerator (AES)
25.14.3
RM0351
AES data input register (AES_DINR)
Address offset: 0x08
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
DINR[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
DINR[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 DINR[31:0]: Data input register
This register must be written 4 times during the input phase:
– In mode 1 (encryption), 4 words must be written which represent the plain text from MSB to LSB.
– In mode 2 (key derivation), This register is not used because this mode concerns only derivative key
calculation starting from the AES_KEYRx register.
– In mode 3 (decryption) and 4 (Key derivation + decryption), 4 words must be written which represent
the cipher text MSB to LSB.
Note: This register must be accessed with 32-bit data width.
25.14.4
AES data output register (AES_DOUTR)
Address offset: 0x0C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
DOUTR[31:16]
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
DOUTR[15:0]
r
r
r
r
r
r
r
r
r
Bits 31:0 DOUTR[31:0]: Data output register
This register is read only.
Once the CCF flag (computation complete flag) is set, reading this data register 4 times gives access
to the 128-bit output results:
– In mode 1 (encryption), the 4 words read represent the cipher text from MSB to LSB.
– In mode 2 (key derivation), there is no need to read this register because the derivative key is
located in the AES_KEYRx registers.
– In mode 3 (decryption) and mode 4 (key derivation + decryption), the 4 words read represent the
plain text from MSB to LSB.
Note: This register must be accessed with 32-bit data width.
742/1693
DocID024597 Rev 3
RM0351
25.14.5
Advanced encryption standard hardware accelerator (AES)
AES key register 0 (AES_KEYR0) (LSB: key [31:0])
Address offset: 0x10
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
KEYR0[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
KEYR0[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 KEYR0[31:0]: Data output register (LSB key [31:0])
This register must be written before the EN bit in the AES_CR register is set:
In mode 1 (encryption), mode 2 (key derivation) and mode 4 (key derivation + decryption), the value to
be written represents the encryption key from LSB, meaning key [31:0].
In mode 3 (decryption), the value to be written represents the decryption key from LSB, meaning key
[31:0]. When the register is written with the encryption key in this decryption mode, reading it before
the AES is enabled will return the encryption value. Reading it after CCF flag is set will return the
derivation key.
Reading this register while AES is enabled returns an unpredictable value.
Note: This register does not contain the derivation key in mode 4 (derivation key + decryption). It
always contains the encryption key value.
25.14.6
AES key register 1 (AES_KEYR1) (key[63:32])
Address offset: 0x14
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
KEYR1[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
KEYR1[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 KEYR1[31:0]: Data output register (key [63:32])
Refer to the description of AES_KEYR0.
DocID024597 Rev 3
743/1693
751
Advanced encryption standard hardware accelerator (AES)
25.14.7
RM0351
AES key register 2 (AES_KEYR2) (key [95:64])
Address offset: 0x18
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
KEYR2[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
KEYR2[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 KEYR2[31:0]: Data output register (key [95:64])
Refer to the description of AES_KEYR0.
25.14.8
AES key register 3 (AES_KEYR3) (MSB: key[127:96])
Address offset: 0x1C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
KEYR3[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
KEYR3[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 KEYR3[31:0]: Data output register (MSB key [127:96])
Refer to the description of AES_KEYR0.
25.14.9
AES initialization vector register 0 (AES_IVR0) (LSB: IVR[31:0])
Address offset: 0x20
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
IVR0[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
IVR0[15:0]
rw
rw
744/1693
rw
rw
rw
rw
rw
rw
rw
DocID024597 Rev 3
RM0351
Advanced encryption standard hardware accelerator (AES)
Bits 31:0 IVR0[31:0]: initialization vector register (LSB IVR[31:0])
This register must be written before the EN bit in the AES_CR register is set:
The register value has no meaning if:
– The ECB mode (electronic codebook) is selected.
– The CTR or CBC mode is selected in addition with the key derivation.
In CTR mode (counter mode), this register contains the 32-bit counter value.
Reading this register while AES is enabled will return the value 0x00000000.
25.14.10 AES initialization vector register 1 (AES_IVR1) (IVR[63:32])
Address offset: 0x24
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
IVR1[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
IVR1[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 IVR1[31:0]: Initialization vector register (IVR[63:32])
This register must be written before the EN bit in the AES_CR register is set:
The register value has no meaning if:
– The ECB mode (electronic codebook) is selected.
– The CTR or CBC mode is selected in addition with the key derivation or key derivation + decryption
mode.
In CTR mode (counter mode), this register contains the nonce value.
Reading this register while AES is enabled will return the value 0x00000000.
DocID024597 Rev 3
745/1693
751
Advanced encryption standard hardware accelerator (AES)
RM0351
25.14.11 AES initialization vector register 2 (AES_IVR2) (IVR[95:64])
Address offset: 0x28
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
IVR2[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
IVR2[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 IVR2[31:0]: Initialization vector register (IVR[95:64])
This register must be written before the EN bit in the AES_CR register is set:
The register value has no meaning if:
– The ECB mode (electronic codebook) is selected.
– The CTR or CBC mode is selected in addition with the key derivation or key derivation + decryption
mode.
In CTR mode (counter mode), this register contains the nonce value.
Reading this register while AES is enabled will return the value 0x00000000.
25.14.12 AES initialization vector register 3 (AES_IVR3) (MSB: IVR[127:96])
Address offset: 0x2C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
IVR3[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
IVR3[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 IVR3[31:0]: Initialization vector register (MSB IVR[127:96])
This register must be written before the EN bit in the AES_CR register is set:
The register value has no meaning if:
– The ECB mode (electronic codebook) is selected.
– The CTR or CBC mode is selected in addition with the key derivation or key derivation + decryption
mode.
In CTR mode (counter mode), this register contains the nonce value.
Reading this register while AES is enabled will return the value 0x00000000.
25.14.13 AES key register 4 (AES_KEYR4) (key[159:128])
Address offset: 0x30
Reset value: 0x0000 0000
746/1693
DocID024597 Rev 3
RM0351
31
30
Advanced encryption standard hardware accelerator (AES)
29
28
27
26
25
24
23
22
21
20
19
18
17
16
KEYR431:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
KEYR4[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 KEYR4[31:0]: Data output register (key [159:128])
Same description as AES_KEYR0 for the key[159:128].
25.14.14 AES key register 5 (AES_KEYR5) (key[191:160])
Address offset: 0x34
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
KEYR5[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
KEYR5[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 KEYR5[31:0]: Data output register (key [191:160])
Same description as AES_KEYR0 for the key[191:160].
25.14.15 AES key register 6 (AES_KEYR6) (key[223:192])
Address offset: 0x38
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
KEYR631:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
KEYR615:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 KEYR6[31:0]: Data output register (key [223:192])
Same description as AES_KEYR0 for the key[223:192].
25.14.16 AES key register 7 (AES_KEYR7) (MSB: key[255:224])
Address offset: 0x3C
Reset value: 0x0000 0000
DocID024597 Rev 3
747/1693
751
Advanced encryption standard hardware accelerator (AES)
31
30
29
28
27
26
25
24
23
RM0351
22
21
20
19
18
17
16
KEYR731:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
KEYR7[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 KEYR7[31:0]: Data output register (MSB key [255:224])
Same description as AES_KEYR0 for the key[255:224].
Note:
748/1693
The key registers from 4 to 7 are used only when 256-bit key length is selected. These
registers have no effect when 128-bit key length is selected (only key registers from 0 to 3
are used).
DocID024597 Rev 3
RM0351
Advanced encryption standard hardware accelerator (AES)
25.14.17 AES Suspend registers (AES_SUSPxR) (x = 0..7)
Address offset: 0x040 (AES_SUSP0R) to 0x05C (AES_SUSP7R)
Reset value: 0x0000 0000
These registers contain the complete internal register states of the AES processor when the
GCM/GMAC is selected, and are useful when a suspend has to be done because a highpriority task has to use the AES processor while it is already in use by another task.
When such an event occurs, the AES_SUSP0..7R registers (when GCM/GMAC is selected)
have to be read and the read values have to be saved somewhere in the memory space.
Then the AES processor can be used by the preemptive task, and when AES computation is
finished, the saved context can be read from memory and written back into their
corresponding suspend registers.
Note:
1
These registers are used only when GCM/GMAC algorithm mode is selected.
2
These registers can only be read when AES is enabled (Bit [0] set to 1 in AES_CR register), else
reading these registers while AES is disabled will return the value 0x00000000.
31
30
29
28
27
26
25
24
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
23
22
21
20
19
18
17
16
rw
rw
rw
rw
rw
rw
rw
rw
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
AES_SUSPxR
AES_SUSPxR
rw
rw
rw
rw
rw
rw
rw
rw
rw
25.14.18 AES register map
CCFIE
ERRC
CCFC
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
AES_DINR
Reset value
0x000C
0
0
0
0
AES_DINR[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
AES_DOUTR
Reset value
CCF
0
RDERR
0
WRERR
0
Res.
MODE[1:0]
0
BUSY
0
Reset value
0x0008
EN
ERRIE
0
DATATYPE[1:0]
DMAINEN
0
CHMOD[1:0]
DMAOUTEN
0
GCMPH[1:0]
0
Res.
Res.
Res.
0
Res.
Res.
Res.
CHMOD[2]
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
AES_SR
Res.
0x0004
0
Res.
Reset value
KEYSIZE
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
AES_CR
Res.
0x0000
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 145. AES register map
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AES_DOUTR[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DocID024597 Rev 3
0
0
0
749/1693
751
Advanced encryption standard hardware accelerator (AES)
RM0351
Offset
0x0010
Register
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 145. AES register map
AES_KEYR0
AES_KEYR0[31:0]
Reset value
0x0014
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AES_KEYR1[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AES_KEYR2[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AES_KEYR3[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AES_IVR0[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AES_IVR1[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AES_IVR2[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AES_IVR3[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AES_KEYR4[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AES_KEYR5[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AES_KEYR6[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AES_KEYR7[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AES_SUSP0R[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
AES_SUSP1R
Reset value
750/1693
0
AES_SUSP0R
Reset value
0x0044
0
AES_KEYR7
Reset value
0x0040
0
AES_KEYR6
Reset value
0x003C
0
AES_KEYR5
Reset value
0x0038
0
AES_KEYR4
Reset value
0x0034
0
AES_IVR3
Reset value
0x0030
0
AES_IVR2
Reset value
0x002C
0
AES_IVR1
Reset value
0x0028
0
AES_IVR0
Reset value
0x0024
0
AES_KEYR3
Reset value
0x0020
0
AES_KEYR2
Reset value
0x001C
0
AES_KEYR1
Reset value
0x0018
0
0
0
0
0
0
0
AES_SUSP1R[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DocID024597 Rev 3
0
0
0
RM0351
Advanced encryption standard hardware accelerator (AES)
Offset
0x0048
Register
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 145. AES register map
AES_SUSP2R
AES_SUSP2R[31:0]
Reset value
0x004C
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AES_SUSP4R[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AES_SUSP5R[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AES_SUSP6R[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
AES_SUSP7R
Reset value
0
AES_SUSP3R[31:0]
AES_SUSP6R
Reset value
0x005C
0
AES_SUSP5R
Reset value
0x0058
0
AES_SUSP4R
Reset value
0x0054
0
AES_SUSP3R
Reset value
0x0050
0
0
0
0
0
0
0
AES_SUSP7R[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Refer to Section 2.2.2 for the register boundary addresses.
DocID024597 Rev 3
751/1693
751
Advanced-control timers (TIM1/TIM8)
RM0351
26
Advanced-control timers (TIM1/TIM8)
26.1
TIM1/TIM8 introduction
The advanced-control timers (TIM1/TIM8) consist of a 16-bit auto-reload counter driven by a
programmable prescaler.
It may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare, PWM,
complementary PWM with dead-time insertion).
Pulse lengths and waveform periods can be modulated from a few microseconds to several
milliseconds using the timer prescaler and the RCC clock controller prescalers.
The advanced-control (TIM1/TIM8) and general-purpose (TIMx) timers are completely
independent, and do not share any resources. They can be synchronized together as
described in Section 26.3.27.
26.2
TIM1/TIM8 main features
TIM1/TIM8 timer features include:
752/1693
•
16-bit up, down, up/down auto-reload counter.
•
16-bit programmable prescaler allowing dividing (also “on the fly”) the counter clock
frequency either by any factor between 1 and 65536.
•
Up to 6 independent channels for:
–
Input Capture (but channels 5 and 6)
–
Output Compare
–
PWM generation (Edge and Center-aligned Mode)
–
One-pulse mode output
•
Complementary outputs with programmable dead-time
•
Synchronization circuit to control the timer with external signals and to interconnect
several timers together.
•
Repetition counter to update the timer registers only after a given number of cycles of
the counter.
•
2 break inputs to put the timer’s output signals in a safe user selectable configuration.
•
Interrupt/DMA generation on the following events:
–
Update: counter overflow/underflow, counter initialization (by software or
internal/external trigger)
–
Trigger event (counter start, stop, initialization or count by internal/external trigger)
–
Input capture
–
Output compare
•
Supports incremental (quadrature) encoder and Hall-sensor circuitry for positioning
purposes
•
Trigger input for external clock or cycle-by-cycle current management
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Figure 188. Advanced-control timer block diagram
/ŶƚĞƌŶĂůĐůŽĐŬ;<ͺ/EdͿ
<ͺd/DϭϴĨƌŽŵZ
dZ&
dZW
WŽůĂƌŝƚLJƐĞůĞĐƚŝŽŶΘ
ĞĚŐĞĚĞƚĞĐƚŽƌΘƉƌĞƐĐĂůĞƌ
dZ
d/DdžͺdZ
/dZϬ
/dZϭ
/dZϮ
/dZϯ
dƌŝŐŐĞƌ
ĐŽŶƚƌŽůůĞƌ
dZ'K
ƚŽŽƚŚĞƌƚŝŵĞƌƐƚŽͬ
/ŶƉƵƚ
ĨŝůƚĞƌ
d'/
/dZ
dZ
dZ'/
d/ϭ&ͺ
^ůĂǀĞ
ĐŽŶƚƌŽůůĞƌ
ŵŽĚĞ
ZĞƐĞƚ͕ĞŶĂďůĞ͕ƵƉͬĚŽǁŶ͕ĐŽƵŶƚ
ŶĐŽĚĞƌ
/ŶƚĞƌĨĂĐĞ
d/ϭ&Wϭ
d/Ϯ&WϮ
ZWƌĞŐŝƐƚĞƌ
h
h/
ƵƚŽͲƌĞůŽĂĚƌĞŐŝƐƚĞƌ
ZĞƉĞƚŝƚŝŽŶ
ĐŽƵŶƚĞƌ
^ƚŽƉ͕ĐůĞĂƌŽƌƵƉͬĚŽǁŶ
<ͺW^
yKZ
d/ϭ
d/Ddžͺ,ϭ
d/Ϯ
d/Ddžͺ,Ϯ
d/ϯ
d/Ddžͺ,ϯ
d/ϰ
d/Ddžͺ,ϰ
d/ϭ&Wϭ
/ŶƉƵƚĨŝůƚĞƌΘ d/ϭ&WϮ
ĞĚŐĞĚĞƚĞĐƚŽƌ
dZ
d/Ϯ&Wϭ
/ŶƉƵƚĨŝůƚĞƌΘ d/Ϯ&WϮ
ĞĚŐĞĚĞƚĞĐƚŽƌ
dZ
/ŶƉƵƚĨŝůƚĞƌΘ
ĞĚŐĞĚĞƚĞĐƚŽƌ
d/ϯ&Wϯ
d/ϯ&Wϰ
<ͺEd
W^
ƉƌĞƐĐĂůĞƌ
ϭ/ h
/ϭ
WƌĞƐĐĂůĞƌ
/ϭW^
Ϯ/
/Ϯ
WƌĞƐĐĂůĞƌ
/ŶƚĞƌŶĂůƐŽƵƌĐĞƐ
EdĐŽƵŶƚĞƌ
ϭ/
ĂƉƚƵƌĞͬŽŵƉĂƌĞϭƌĞŐŝƐƚĞƌ
d'ƌĞŐŝƐƚĞƌƐ
KϭZ&
d'
d/Ddžͺ,ϭ
KƵƚƉƵƚ
ĐŽŶƚƌŽů
ĂƉƚƵƌĞͬŽŵƉĂƌĞϮƌĞŐŝƐƚĞƌ
Kϭ
d/Ddžͺ,ϭE
KϭE
Ϯ/
h
/ϮW^
d/Ddžͺ,Ϯ
KϮZ&
d'
KƵƚƉƵƚ
ĐŽŶƚƌŽů
KϮ
d/Ddžͺ,ϮE
KϮE
ϯ/ h
/ϯ
WƌĞƐĐĂůĞƌ
/ϯW^
dZ
d/ϰ&Wϯ
/ŶƉƵƚĨŝůƚĞƌΘ
d/ϰ&Wϰ
ĞĚŐĞĚĞƚĞĐƚŽƌ
dZ
нͬͲ
h
ϰ/
/ϰ
WƌĞƐĐĂůĞƌ
/ϰW^
ϯ/
ĂƉƚƵƌĞͬŽŵƉĂƌĞϯƌĞŐŝƐƚĞƌ
d'
ϰ/
h
d/Ddžͺ,ϯ
KϯZ&
KƵƚƉƵƚ
ĐŽŶƚƌŽů
Kϯ
d/Ddžͺ,ϯE
KϯE
ĂƉƚƵƌĞͬŽŵƉĂƌĞϰƌĞŐŝƐƚĞƌ
KϰZ&
KƵƚƉƵƚ Kϰ
ĐŽŶƚƌŽů
ĂƉƚƵƌĞͬŽŵƉĂƌĞϱƌĞŐŝƐƚĞƌ
KϱZ&
KƵƚƉƵƚ Kϱ
ĐŽŶƚƌŽů
ĂƉƚƵƌĞͬŽŵƉĂƌĞϲƌĞŐŝƐƚĞƌ
KϲZ&
KƵƚƉƵƚ Kϲ
ĐŽŶƚƌŽů
d/Ddžͺ,ϰ
^/&
/&
d/Ddžͺ@
7,0[B60&5
(753
I'76
)LOWHU
GRZQFRXQWHU
7RWKH2XWSXWPRGHFRQWUROOHU
7RWKH&.B36&FLUFXLWU\
7RWKH6ODYHPRGHFRQWUROOHU
(7)>@
7,0[B60&5
069
The ETR input comes from multiple sources: input pins (default configuration), comparator
outputs and analog watchdogs. The selection is done with the ETRSEL[2:0] bitfield in the
TIMx_OR2 register and the TIMxOR1[1:0] and TIMxOR1[3:2] bitfields.
Figure 210. TIM1 ETR input circuitry
(75LQSXWVIURP
$)FRQWUROOHU
7,0B25>@
(75OHJDF\PRGH
&203
&203
1&
1&
1&
1&
1&
7,0B25>@
1&
$'&B$:'
$'&B$:'
$'&B$:'
(75LQSXW
7,0B25>@
1&
$'&B$:'
$'&B$:'
$'&B$:'
069
DocID024597 Rev 3
769/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Figure 211. TIM8 ETR input circuitry
(75LQSXWVIURP
$)FRQWUROOHU
7,0B25>@
(75OHJDF\PRGH
&203
&203
1&
1&
1&
1&
1&
7,0B25>@
1&
$'&B$:'
$'&B$:'
$'&B$:'
(75LQSXW
7,0B25>@
1&
$'&B$:'
$'&B$:'
$'&B$:'
069
770/1693
DocID024597 Rev 3
RM0351
26.3.5
Advanced-control timers (TIM1/TIM8)
Clock selection
The counter clock can be provided by the following clock sources:
•
Internal clock (CK_INT)
•
External clock mode1: external input pin
•
External clock mode2: external trigger input ETR
•
Encoder mode
Internal clock source (CK_INT)
If the slave mode controller is disabled (SMS=000), then the CEN, DIR (in the TIMx_CR1
register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed
only by software (except UG which remains cleared automatically). As soon as the CEN bit
is written to 1, the prescaler is clocked by the internal clock CK_INT.
Figure 212 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.
Figure 212. Control circuit in normal mode, internal clock divided by 1
,QWHUQDOFORFN
&(1 &17B(1
8*
&17B,1,7
&RXQWHUFORFN &.B&17 &.B36&
&RXQWHUUHJLVWHU
069
External clock source mode 1
This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at
each rising or falling edge on a selected input.
DocID024597 Rev 3
771/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Figure 213. TI2 external clock connection example
7,0[B60&5
76>@
RU 7,)
7,)
,75[
7,B('
7,
)LOWHU
(GJH
GHWHFWRU
7,)B5LVLQJ
7,)B)DOOLQJ
7,)3
7,)3
(75)
RU
RU
[[
75*,
(75)
&.B,17
,&)>@
&&3
7,0[B&&05
7,0[B&&(5
LQWHUQDOFORFN
(QFRGHU
PRGH
([WHUQDOFORFN
PRGH
([WHUQDOFORFN
PRGH
&.B36&
,QWHUQDOFORFN
PRGH
(&(
606>@
7,0[B60&5
069
For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:
Note:
1.
Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = ‘01’ in
the TIMx_CCMR1 register.
2.
Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=0000).
3.
Select rising edge polarity by writing CC2P=0 and CC2NP=0 in the TIMx_CCER
register.
4.
Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR
register.
5.
Select TI2 as the trigger input source by writing TS=110 in the TIMx_SMCR register.
6.
Enable the counter by writing CEN=1 in the TIMx_CR1 register.
The capture prescaler is not used for triggering, so the user does not need to configure it.
When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.
The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on TI2 input.
772/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Figure 214. Control circuit in external clock mode 1
7,
&17B(1
&RXQWHUFORFN &.B&17 &.B36&
&RXQWHUUHJLVWHU
7,)
:ULWH7,)
069
External clock source mode 2
This mode is selected by writing ECE=1 in the TIMx_SMCR register.
The counter can count at each rising or falling edge on the external trigger input ETR.
The Figure 215 gives an overview of the external trigger input block.
Figure 215. External trigger input block
RU 7,)
7,)
(75
RU
RU
75*,
(75SLQ
'LYLGHU
(753
I'76
)LOWHU
GRZQFRXQWHU
(75)
&.B,17
(73
(736>@
(7)>@
7,0[B60&5
7,0[B60&5
7,0[B60&5
LQWHUQDOFORFN
(QFRGHU
PRGH
([WHUQDOFORFN
PRGH
([WHUQDOFORFN
PRGH
&.B36&
,QWHUQDOFORFN
PRGH
(&(
606>@
7,0[B60&5
069
For example, to configure the upcounter to count each 2 rising edges on ETR, use the
following procedure:
DocID024597 Rev 3
773/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
1.
As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register.
2.
Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register
3.
Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR
register
4.
Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register.
5.
Enable the counter by writing CEN=1 in the TIMx_CR1 register.
The counter counts once each 2 ETR rising edges.
The delay between the rising edge on ETR and the actual clock of the counter is due to the
resynchronization circuit on the ETRP signal.
Figure 216. Control circuit in external clock mode 2
I &.B,17
&17B(1
(75
(753
(75)
&RXQWHUFORFN
&.B,17 &.B36&
&RXQWHUUHJLVWHU
069
774/1693
DocID024597 Rev 3
RM0351
26.3.6
Advanced-control timers (TIM1/TIM8)
Capture/compare channels
Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), an input stage for capture (with digital filter, multiplexing, and prescaler,
except for channels 5 and 6) and an output stage (with comparator and output control).
Figure 217 to Figure 220 give an overview of one Capture/Compare channel.
The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be
used as trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).
Figure 217. Capture/compare channel (example: channel 1 input stage)
7,)B('
7RWKHVODYHPRGHFRQWUROOHU
7,
I'76
7,)B5LVLQJ
)LOWHU
7,)
GRZQFRXQWHU
(GJH
GHWHFWRU
7,)B)DOOLQJ
7,)3
7,)3
,&)>@
7,0[B&&05
&&3&&13
7,0[B&&(5
7,)B5LVLQJ
IURPFKDQQHO
7,)B)DOOLQJ
IURPFKDQQHO
75&
IURPVODYHPRGH
FRQWUROOHU
,&
,&36
'LYLGHU
&&6>@ ,&36>@
&&(
7,0[B&&05
7,0[B&&(5
069
The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.
DocID024597 Rev 3
775/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Figure 218. Capture/compare channel 1 main circuit
$3%%XV
LIELW
0&8SHULSKHUDOLQWHUIDFH
5HDG&&5/
UHDGBLQBSURJUHVV
ORZ
5HDG&&5+ 6
KLJK
&DSWXUHFRPSDUHSUHORDGUHJLVWHU
5
5
FRPSDUHBWUDQVIHU
FDSWXUHBWUDQVIHU
,QSXW
PRGH
&&6>@
&&6>@
6 ZULWH&&5+
ZULWHBLQBSURJUHVV
2XWSXW
PRGH
&&6>@
&&6>@
2&3(
&DSWXUHFRPSDUHVKDGRZUHJLVWHU
8(9
&RPSDUDWRU
&DSWXUH
,&36
ZULWH&&5/
&&(
&17!&&5
&RXQWHU
IURPWLPH
EDVHXQLW
2&3(
7,0B&&05
&17 &&5
&&*
7,0B(*5
069
Figure 219. Output stage of capture/compare channel (channel 1, idem ch. 2 and 3)
7,0[B60&5
2&&6
1&
(75)
7RWKHPDVWHUPRGH
FRQWUROOHU
µ¶
RFUHIBFOUBLQW
2&5()
&17!&&5 2XWSXW
PRGH
&17 &&5
FRQWUROOHU
2&[5()
2&5()
2&5()&
2&B'7
2XWSXW
VHOHFWRU
'HDGWLPH
JHQHUDWRU
[
&&3
2XWSXW
HQDEOH
FLUFXLW
2&
2XWSXW
HQDEOH
FLUFXLW
2&1
7,0B&&(5
2&1B'7
µ¶
[
&&1( &&( 7,0B&&(5
2&&( 2&0>@
'7*>@
&&1( &&(
&&13
02( 266, 2665
7,0B&&05
7,0B%'75
7,0B&&(5
7,0B&&(5
7,0B%'75
1. OCxREF, where x is the rank of the complementary channel
776/1693
DocID024597 Rev 3
06Y9
RM0351
Advanced-control timers (TIM1/TIM8)
Figure 220. Output stage of capture/compare channel (channel 4)
7,0[B60&5
2&&6
1&
(75)
7RWKHPDVWHU
PRGHFRQWUROOHU
2&5()&
RFUHIBFOUBLQW
&17!&&5
&17 &&5
2&5()
2XWSXW
PRGH
FRQWUROOHU
µ¶
&&(
&&3
2XWSXW
VHOHFWRU
2&5()
7,0B&&(5
7,0B&&(5
7,0B&&05
2&
&&( 7,0B&&(5
02(
2&0>@
2&&(
2XWSXW
HQDEOH
FLUFXLW
266, 7,0B%'75
2,6
7,0B&5
06Y9
Figure 221. Output stage of capture/compare channel (channel 5, idem ch. 6)
7,0[B60&5
2&&6
1&
(75)
7RWKHPDVWHU
PRGHFRQWUROOHU
RFUHIBFOUBLQW
&17!&&5
&17 &&5
µ¶
2XWSXW
PRGH
FRQWUROOHU
2&&(
&&(
&&3
7,0B&&(5
7,0B&&(5
2&5()
2&0>@
2XWSXW
HQDEOH
FLUFXLW
2&
&&( 7,0B&&(5
02(
266, 7,0B%'75
7,0B&&05
2,6
7,0B&5
06Y9
1. Not available externally.
The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register.
In capture mode, captures are actually done in the shadow register, which is copied into the
preload register.
In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.
DocID024597 Rev 3
777/1693
856
Advanced-control timers (TIM1/TIM8)
26.3.7
RM0351
Input capture mode
In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the
value of the counter after a transition detected by the corresponding ICx signal. When a
capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or
a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was
already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be
cleared by software by writing it to ‘0’ or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when you write it to ‘0’.
The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:
•
Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00,
the channel is configured in input and the TIMx_CCR1 register becomes read-only.
•
Program the input filter duration you need with respect to the signal you connect to the
timer (when the input is one of the TIx (ICxF bits in the TIMx_CCMRx register). Let’s
imagine that, when toggling, the input signal is not stable during at must 5 internal clock
cycles. We must program a filter duration longer than these 5 clock cycles. We can
validate a transition on TI1 when 8 consecutive samples with the new level have been
detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in the
TIMx_CCMR1 register.
•
Select the edge of the active transition on the TI1 channel by writing CC1P and CC1NP
bits to 0 in the TIMx_CCER register (rising edge in this case).
•
Program the input prescaler. In our example, we wish the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to ‘00’ in the
TIMx_CCMR1 register).
•
Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register.
•
If needed, enable the related interrupt request by setting the CC1IE bit in the
TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the
TIMx_DIER register.
When an input capture occurs:
•
The TIMx_CCR1 register gets the value of the counter on the active transition.
•
CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.
•
An interrupt is generated depending on the CC1IE bit.
•
A DMA request is generated depending on the CC1DE bit.
In order to handle the overcapture, it is recommended to read the data before the
overcapture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.
Note:
778/1693
IC interrupt and/or DMA requests can be generated by software by setting the
corresponding CCxG bit in the TIMx_EGR register.
DocID024597 Rev 3
RM0351
26.3.8
Advanced-control timers (TIM1/TIM8)
PWM input mode
This mode is a particular case of input capture mode. The procedure is the same except:
•
Two ICx signals are mapped on the same TIx input.
•
These 2 ICx signals are active on edges with opposite polarity.
•
One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.
For example, the user can measure the period (in TIMx_CCR1 register) and the duty cycle
(in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure
(depending on CK_INT frequency and prescaler value):
•
Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1
register (TI1 selected).
•
Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P and CC1NP bits to ‘0’ (active on rising edge).
•
Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1
register (TI1 selected).
•
Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
and CC2NP bits to CC2P/CC2NP=’10’ (active on falling edge).
•
Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register
(TI1FP1 selected).
•
Configure the slave mode controller in reset mode: write the SMS bits to 0100 in the
TIMx_SMCR register.
•
Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER register.
Figure 222. PWM input mode timing
7,
7,0[B&17
7,0[B&&5
7,0[B&&5
,&FDSWXUH
,&FDSWXUH
UHVHWFRXQWHU
,&FDSWXUH
SXOVHZLGWK
PHDVXUHPHQW
,&FDSWXUH
SHULRG
PHDVXUHPHQW
DL
26.3.9
Forced output mode
In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx/OCxN) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.
To force an output compare signal (OCXREF/OCx) to its active level, user just needs to
write 0101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is
DocID024597 Rev 3
779/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity
bit.
For example: CCxP=0 (OCx active high) => OCx is forced to high level.
The OCxREF signal can be forced low by writing the OCxM bits to 0100 in the
TIMx_CCMRx register.
Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still
performed and allows the flag to be set. Interrupt and DMA requests can be sent
accordingly. This is described in the output compare mode section below.
26.3.10
Output compare mode
This function is used to control an output waveform or indicate when a period of time has
elapsed. Channels 1 to 4 can be output, while Channel 5 and 6 are only available inside the
microcontroller (for instance, for compound waveform generation or for ADC triggering).
When a match is found between the capture/compare register and the counter, the output
compare function:
•
Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=0000), be set
active (OCxM=0001), be set inactive (OCxM=0010) or can toggle (OCxM=0011) on
match.
•
Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).
•
Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).
•
Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the
TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request
selection).
The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.
In output compare mode, the update event UEV has no effect on OCxREF and OCx output.
The timing resolution is one count of the counter. Output compare mode can also be used to
output a single pulse (in One Pulse mode).
Procedure
1.
Select the counter clock (internal, external, prescaler).
2.
Write the desired data in the TIMx_ARR and TIMx_CCRx registers.
3.
Set the CCxIE bit if an interrupt request is to be generated.
4.
Select the output mode. For example:
5.
–
Write OCxM = 0011 to toggle OCx output pin when CNT matches CCRx
–
Write OCxPE = 0 to disable preload register
–
Write CCxP = 0 to select active high polarity
–
Write CCxE = 1 to enable the output
Enable the counter by setting the CEN bit in the TIMx_CR1 register.
The TIMx_CCRx register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCxPE=’0’, else TIMx_CCRx
780/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
shadow register is updated only at the next update event UEV). An example is given in
Figure 223.
Figure 223. Output compare mode, toggle on OC1
:ULWH%KLQWKH&&5UHJLVWHU
7,0B&17
7,0B&&5
%
$
%
%
%
$
2&5() 2&
0DWFKGHWHFWHGRQ&&5
,QWHUUXSWJHQHUDWHGLIHQDEOHG
069
26.3.11
PWM mode
Pulse Width Modulation mode allows you to generate a signal with a frequency determined
by the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.
The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing ‘0110’ (PWM mode 1) or ‘0111’ (PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. You must enable the corresponding preload register by setting the
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in
upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register.
As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, you have to initialize all the registers by setting the UG
bit in the TIMx_EGR register.
OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It
can be programmed as active high or active low. OCx output is enabled by a combination of
the CCxE, CCxNE, MOE, OSSI and OSSR bits (TIMx_CCER and TIMx_BDTR registers).
Refer to the TIMx_CCER register description for more details.
In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CCRx ≤TIMx_CNT or TIMx_CNT ≤TIMx_CCRx (depending on the direction
of the counter).
The timer is able to generate PWM in edge-aligned mode or center-aligned mode
depending on the CMS bits in the TIMx_CR1 register.
DocID024597 Rev 3
781/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
PWM edge-aligned mode
•
Upcounting configuration
Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to the
Upcounting mode on page 756.
In the following example, we consider PWM mode 1. The reference PWM signal
OCxREF is high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the
compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR)
then OCxREF is held at ‘1’. If the compare value is 0 then OCxRef is held at ‘0’.
Figure 224 shows some edge-aligned PWM waveforms in an example where
TIMx_ARR=8.
Figure 224. Edge-aligned PWM waveforms (ARR=8)
&RXQWHUUHJLVWHU
&&5[
2&;5()
&&[,)
2&;5()
&&5[
&&[,)
2&;5()
µ¶
&&5[!
&&[,)
2&;5()
µ¶
&&5[
&&[,)
069
•
Downcounting configuration
Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to the
Downcounting mode on page 760
In PWM mode 1, the reference signal OCxRef is low as long as
TIMx_CNT > TIMx_CCRx else it becomes high. If the compare value in TIMx_CCRx is
greater than the auto-reload value in TIMx_ARR, then OCxREF is held at ‘1’. 0% PWM
is not possible in this mode.
PWM center-aligned mode
Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from
‘00’ (all the remaining configurations having the same effect on the OCxRef/OCx signals).
The compare flag is set when the counter counts up, when it counts down or both when it
counts up and down depending on the CMS bits configuration. The direction bit (DIR) in the
TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to
782/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
the Center-aligned mode (up/down counting) on page 763.
Figure 225 shows some center-aligned PWM waveforms in an example where:
•
TIMx_ARR=8,
•
PWM mode is the PWM mode 1,
•
The flag is set when the counter counts down corresponding to the center-aligned
mode 1 selected for CMS=01 in TIMx_CR1 register.
Figure 225. Center-aligned PWM waveforms (ARR=8)
&RXQWHUUHJLVWHU
2&[5()
&&5[
&06
&06
&06
&&[,)
2&[5()
&&5[
&06 RU
&&[,)
2&[5()
µ¶
&&5[
&&[,)
2&[5()
&&5[!
µ¶
&06
&06
&06
&&[,)
2&[5()
&&5[
&&[,)
&06
&06
&06
µ¶
&06
&06
&06
$,E
Hints on using center-aligned mode
•
When starting in center-aligned mode, the current up-down configuration is used. It
means that the counter counts up or down depending on the value written in the DIR bit
DocID024597 Rev 3
783/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the
same time by the software.
•
•
26.3.12
Writing to the counter while running in center-aligned mode is not recommended as it
can lead to unexpected results. In particular:
–
The direction is not updated if you write a value in the counter that is greater than
the auto-reload value (TIMx_CNT>TIMx_ARR). For example, if the counter was
counting up, it continues to count up.
–
The direction is updated if you write 0 or write the TIMx_ARR value in the counter
but no Update Event UEV is generated.
The safest way to use center-aligned mode is to generate an update by software
(setting the UG bit in the TIMx_EGR register) just before starting the counter and not to
write the counter while it is running.
Asymmetric PWM mode
Asymmetric mode allows two center-aligned PWM signals to be generated with a
programmable phase shift. While the frequency is determined by the value of the
TIMx_ARR register, the duty cycle and the phase-shift are determined by a pair of
TIMx_CCRx register. One register controls the PWM during up-counting, the second during
down counting, so that PWM is adjusted every half PWM cycle:
–
OC1REFC (or OC2REFC) is controlled by TIMx_CCR1 and TIMx_CCR2
–
OC3REFC (or OC4REFC) is controlled by TIMx_CCR3 and TIMx_CCR4
Asymmetric PWM mode can be selected independently on two channel (one OCx output
per pair of CCR registers) by writing ‘1110’ (Asymmetric PWM mode 1) or ‘1111’
(Asymmetric PWM mode 2) in the OCxM bits in the TIMx_CCMRx register.
Note:
The OCxM[3:0] bit field is split into two parts for compatibility reasons, the most significant
bit is not contiguous with the 3 least significant ones.
When a given channel is used as asymmetric PWM channel, its complementary channel
can also be used. For instance, if an OC1REFC signal is generated on channel 1
(Asymmetric PWM mode 1), it is possible to output either the OC2REF signal on channel 2,
or an OC2REFC signal resulting from asymmetric PWM mode 1.
Figure 226 represents an example of signals that can be generated using Asymmetric PWM
mode (channels 1 to 4 are configured in Asymmetric PWM mode 1). Together with the
deadtime generator, this allows a full-bridge phase-shifted DC to DC converter to be
controlled.
784/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Figure 226. Generation of 2 phase-shifted PWM signals with 50% duty cycle
&RXQWHUUHJLVWHU
&&5
&&5
&&5
&&5
2&5()&
2&5()&
069
26.3.13
Combined PWM mode
Combined PWM mode allows two edge or center-aligned PWM signals to be generated with
programmable delay and phase shift between respective pulses. While the frequency is
determined by the value of the TIMx_ARR register, the duty cycle and delay are determined
by the two TIMx_CCRx registers. The resulting signals, OCxREFC, are made of an OR or
AND logical combination of two reference PWMs:
–
OC1REFC (or OC2REFC) is controlled by TIMx_CCR1 and TIMx_CCR2
–
OC3REFC (or OC4REFC) is controlled by TIMx_CCR3 and TIMx_CCR4
Combined PWM mode can be selected independently on two channels (one OCx output per
pair of CCR registers) by writing ‘1100’ (Combined PWM mode 1) or ‘1101’ (Combined PWM
mode 2) in the OCxM bits in the TIMx_CCMRx register.
When a given channel is used as combined PWM channel, its complementary channel must
be configured in the opposite PWM mode (for instance, one in Combined PWM mode 1 and
the other in Combined PWM mode 2).
Note:
The OCxM[3:0] bit field is split into two parts for compatibility reasons, the most significant
bit is not contiguous with the 3 least significant ones.
Figure 227 represents an example of signals that can be generated using Asymmetric PWM
mode, obtained with the following configuration:
–
Channel 1 is configured in Combined PWM mode 2,
–
Channel 2 is configured in PWM mode 1,
–
Channel 3 is configured in Combined PWM mode 2,
–
Channel 4 is configured in PWM mode 1.
DocID024597 Rev 3
785/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Figure 227. Combined PWM mode on channel 1 and 3
2&¶
2&¶
2&
2&
2&5()
2&5()
2&5()¶
2&5()¶
2&5()&
2&5()&¶
2&5()& 2&5()$1'2&5()
2&5()&¶ 2&5()¶252&5()¶
069
26.3.14
Combined 3-phase PWM mode
Combined 3-phase PWM mode allows one to three center-aligned PWM signals to be
generated with a single programmable signal ANDed in the middle of the pulses. The
OC5REF signal is used to define the resulting combined signal. The 3-bits GC5C[3:1] in the
TIMx_CCR5 allow selection on which reference signal the OC5REF is combined. The
resulting signals, OCxREFC, are made of an AND logical combination of two reference
PWMs:
–
If GC5C1 is set, OC1REFC is controlled by TIMx_CCR1 and TIMx_CCR5
–
If GC5C2 is set, OC2REFC is controlled by TIMx_CCR2 and TIMx_CCR5
–
If GC5C3 is set, OC3REFC is controlled by TIMx_CCR3 and TIMx_CCR5
Combined 3-phase PWM mode can be selected independently on channels 1 to 3 by setting
at least one of the 3-bits GC5C[3:1].
786/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Figure 228. 3-phase combined PWM signals with multiple trigger pulses per period
2&
$55
2&
2&
2&
2&
2&
&RXQWHU
2&UHI
2&UHI&
*&&>@
2&UHI&
2&UHI&
3UHORDG
$FWLYH
[[[
[[[
2&UHI
2&UHI
75*2
069
The TRGO2 waveform shows how the ADC can be synchronized on given 3-phase PWM
signals. Please refer to Section 26.3.27: ADC synchronization for more details.
26.3.15
Complementary outputs and dead-time insertion
The advanced-control timers (TIM1/TIM8) can output two complementary signals and
manage the switching-off and the switching-on instants of the outputs.
This time is generally known as dead-time and you have to adjust it depending on the
devices you have connected to the outputs and their characteristics (intrinsic delays of levelshifters, delays due to power switches...)
You can select the polarity of the outputs (main output OCx or complementary OCxN)
independently for each output. This is done by writing to the CCxP and CCxNP bits in the
TIMx_CCER register.
The complementary signals OCx and OCxN are activated by a combination of several
control bits: the CCxE and CCxNE bits in the TIMx_CCER register and the MOE, OISx,
OISxN, OSSI and OSSR bits in the TIMx_BDTR and TIMx_CR2 registers. Refer to
Table 149: Output control bits for complementary OCx and OCxN channels with break
feature on page 832 for more details. In particular, the dead-time is activated when
switching to the idle state (MOE falling down to 0).
DocID024597 Rev 3
787/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Dead-time insertion is enabled by setting both CCxE and CCxNE bits, and the MOE bit if the
break circuit is present. There is one 10-bit dead-time generator for each channel. From a
reference waveform OCxREF, it generates 2 outputs OCx and OCxN. If OCx and OCxN are
active high:
•
The OCx output signal is the same as the reference signal except for the rising edge,
which is delayed relative to the reference rising edge.
•
The OCxN output signal is the opposite of the reference signal except for the rising
edge, which is delayed relative to the reference falling edge.
If the delay is greater than the width of the active output (OCx or OCxN) then the
corresponding pulse is not generated.
The following figures show the relationships between the output signals of the dead-time
generator and the reference signal OCxREF. (we suppose CCxP=0, CCxNP=0, MOE=1,
CCxE=1 and CCxNE=1 in these examples)
Figure 229. Complementary output with dead-time insertion
2&[5()
2&[
GHOD\
2&[1
GHOD\
069
Figure 230. Dead-time waveforms with delay greater than the negative pulse
2&[5()
2&[
GHOD\
2&[1
069
788/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Figure 231. Dead-time waveforms with delay greater than the positive pulse
2&[5()
2&[
2&[1
GHOD\
069
The dead-time delay is the same for each of the channels and is programmable with the
DTG bits in the TIMx_BDTR register. Refer to Section 26.4.18: TIM1/TIM8 break and deadtime register (TIMx_BDTR) on page 836 for delay calculation.
Re-directing OCxREF to OCx or OCxN
In output mode (forced, output compare or PWM), OCxREF can be re-directed to the OCx
output or to OCxN output by configuring the CCxE and CCxNE bits in the TIMx_CCER
register.
This allows you to send a specific waveform (such as PWM or static active level) on one
output while the complementary remains at its inactive level. Other alternative possibilities
are to have both outputs at inactive level or both outputs active and complementary with
dead-time.
Note:
When only OCxN is enabled (CCxE=0, CCxNE=1), it is not complemented and becomes
active as soon as OCxREF is high. For example, if CCxNP=0 then OCxN=OCxRef. On the
other hand, when both OCx and OCxN are enabled (CCxE=CCxNE=1) OCx becomes
active when OCxREF is high whereas OCxN is complemented and becomes active when
OCxREF is low.
26.3.16
Using the break function
The purpose of the break function is to protect power switches driven by PWM signals
generated with the TIM1 and TIM8 timers. The two break inputs are usually connected to
fault outputs of power stages and 3-phase inverters. When activated, the break circuitry
shuts down the PWM outputs and forces them to a predefined safe state. A number of
internal MCU events can also be selected to trigger an output shut-down.
The break features two channels. A break channel which gathers both system-level fault
(clock failure, parity error,...) and application fault (from input pins and built-in comparator),
and can force the outputs to a predefined level (either active or inactive) after a deadtime
duration. A break2 channel which only includes application faults and is able to force the
outputs to an inactive state.
DocID024597 Rev 3
789/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
The output enable signal and output levels during break are depending on several control
bits:
–
the MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
software and is reset in case of break or break2 event.
–
the OSSI bit in the TIMx_BDTR register defines whether the timer controls the
output in inactive state or releases the control to the GPIO controller (typically to
have it in Hi-Z mode)
–
the OISx and OISxN bits in the TIMx_CR2 register which are setting the output
shut-down level, either active or inactive. The OCx and OCxN outputs cannot be
set both to active level at a given time, whatever the OISx and OISxN values.
Refer to Table 149: Output control bits for complementary OCx and OCxN
channels with break feature on page 832 for more details.
When exiting from reset, the break circuit is disabled and the MOE bit is low. You can enable
the break functions by setting the BKE and BKE2 bits in the TIMx_BDTR register. The break
input polarities can be selected by configuring the BKP and BKP2 bits in the same register.
BKEx and BKPx can be modified at the same time. When the BKEx and BKPx bits are
written, a delay of 1 APB clock cycle is applied before the writing is effective. Consequently,
it is necessary to wait 1 APB clock period to correctly read back the bit after the write
operation.
Because MOE falling edge can be asynchronous, a resynchronization circuit has been
inserted between the actual signal (acting on the outputs) and the synchronous control bit
(accessed in the TIMx_BDTR register). It results in some delays between the asynchronous
and the synchronous signals. In particular, if you write MOE to 1 whereas it was low, you
must insert a delay (dummy instruction) before reading it correctly. This is because you write
the asynchronous signal and read the synchronous signal.
The break can be generated from multiple sources which can be individually enabled and
with programmable edge sensitivity, using the TIMx_OR2 and TIMx_OR3 registers.
The source for break (BRK) channel is:
•
An external source connected to one of the BKIN pin (as per selection done in the
AFIO controller), with polarity selection and optional digital filtering
•
An internal source:
–
the Cortex®-M4 LOCKUP output
–
the PVD output
–
the SRAM parity error signal
–
a flash ECC error
–
a clock failure event generated by the CSS detector
–
the output from a comparator, with polarity selection and optional digital filtering
–
the analog watchdog output of the DFSDM peripheral
The source for break2 (BRK2) can be:
•
An external source connected to one of the BKIN pin (as per selection done in the
AFIO controller), with polarity selection and optional digital filtering
•
An internal source coming from a comparator output.
Break events can also be generated by software using BG and B2G bits in the TIMx_EGR
register.
790/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
All sources are ORed before entering the timer BRK or BRK2 inputs, as per Figure 232
below.
Figure 232. Break and Break2 circuitry overview
&RUH/RFNXS
39'
/RFNXS/2&.
39'/2&.
6\VWHPEUHDNUHTXHVWV
5$0SDULW\(UURU
(&&(UURU
6%,)IODJ
3DULW\/2&.
(&&/2&.
&66
%.,13
%.,1LQSXWV
IURP$)
FRQWUROOHU
%.,1(
6RIWZDUHEUHDNUHTXHVWV%*
%.&033
%.&03(
&203RXWSXW
%.)>@
%.(
%,)IODJ
%.3
%5.UHTXHVW
)LOWHU
%.&033
%.&03(
&203RXWSXW
$SSOLFDWLRQEUHDNUHTXHVWV
%.')%.[(
')6'0
%5($.RXWSXW
%.,13
%.,1LQSXWV
IURP$)
FRQWUROOHU
%.,1(
6RIWZDUHEUHDNUHTXHVWV%*
%.&033
%.&03(
&203RXWSXW
%.)>@
%.(
%,)IODJ
%.3
%5.UHTXHVW
)LOWHU
%.&033
&203RXWSXW
')6'0
%5($.RXWSXW
%.&03(
$SSOLFDWLRQEUHDNUHTXHVWV
%.')%.[(
069
DocID024597 Rev 3
791/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
When one of the breaks occurs (selected level on one of the break inputs):
Note:
•
The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle state
or even releasing the control to the GPIO controller (selected by the OSSI bit). This
feature is enabled even if the MCU oscillator is off.
•
Each output channel is driven with the level programmed in the OISx bit in the
TIMx_CR2 register as soon as MOE=0. If OSSI=0, the timer releases the output control
(taken over by the GPIO controller), otherwise the enable output remains high.
•
When complementary outputs are used:
–
The outputs are first put in inactive state (depending on the polarity). This is done
asynchronously so that it works even if no clock is provided to the timer.
–
If the timer clock is still present, then the dead-time generator is reactivated in
order to drive the outputs with the level programmed in the OISx and OISxN bits
after a dead-time. Even in this case, OCx and OCxN cannot be driven to their
active level together. Note that because of the resynchronization on MOE, the
dead-time duration is slightly longer than usual (around 2 ck_tim clock cycles).
–
If OSSI=0, the timer releases the output control (taken over by the GPIO controller
which forces a Hi-Z state), otherwise the enable outputs remain or become high as
soon as one of the CCxE or CCxNE bits is high.
•
The break status flag (SBIF, BIF and B2IF bits in the TIMx_SR register) is set. An
interrupt is generated if the BIE bit in the TIMx_DIER register is set. A DMA request
can be sent if the BDE bit in the TIMx_DIER register is set.
•
If the AOE bit in the TIMx_BDTR register is set, the MOE bit is automatically set again
at the next update event (UEV). As an example, this can be used to perform a
regulation. Otherwise, MOE remains low until the application sets it to ‘1’ again. In this
case, it can be used for security and you can connect the break input to an alarm from
power drivers, thermal sensors or any security components.
The break inputs are active on level. Thus, the MOE cannot be set while the break input is
active (neither automatically nor by software). In the meantime, the status flag BIF and B2IF
cannot be cleared.
In addition to the break input and the output management, a write protection has been
implemented inside the break circuit to safeguard the application. It allows to freeze the
configuration of several parameters (dead-time duration, OCx/OCxN polarities and state
when disabled, OCxM configurations, break enable and polarity). The application can
choose from 3 levels of protection selected by the LOCK bits in the TIMx_BDTR register.
Refer to Section 26.4.18: TIM1/TIM8 break and dead-time register (TIMx_BDTR) on
page 836. The LOCK bits can be written only once after an MCU reset.
Figure 233 shows an example of behavior of the outputs in response to a break.
792/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Figure 233. Various output behavior in response to a break event on BRK (OSSI = 1)
%5($. 02(
2&[5()
2&[
2&[1QRWLPSOHPHQWHG&&[3 2,6[
2&[
2&[1QRWLPSOHPHQWHG&&[3 2,6[
2&[
2&[1QRWLPSOHPHQWHG&&[3 2,6[
2&[
2&[1QRWLPSOHPHQWHG&&[3 2,6[
2&[
GHOD\
GHOD\
2&[1
&&[( &&[3 2,6[ &&[1( &&[13 2,6[1
GHOD\
2&[
GHOD\
GHOD\
2&[1
&&[( &&[3 2,6[ &&[1( &&[13 2,6[1
GHOD\
2&[
2&[1
&&[( &&[3 2,6[ &&[1( &&[13 2,6[1
GHOD\
2&[
2&[1
&&[( &&[3 2,6[ &&[1( &&[13 2,6[1
GHOD\
2&[
2&[1
&&[( &&[3 &&[1( &&[13 2,6[ 2,6[1 RU2,6[ 2,6[1
069
DocID024597 Rev 3
793/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
The two break inputs have different behaviors on timer outputs:
–
The BRK input can either disable (inactive state) or force the PWM outputs to a
predefined safe state.
–
BRK2 can only disable (inactive state) the PWM outputs.
The BRK has a higher priority than BRK2 input, as described in Table 146.
Note:
BRK2 must only be used with OSSR = OSSI = 1.
Table 146. Behavior of timer outputs versus BRK/BRK2 inputs
Typical use case
BRK2
Timer outputs
state
Active
Inactive
BRK
OCxN output
(low side switches)
OCx output
(high side switches)
X
– Inactive then
forced output
state (after a
deadtime)
– Outputs disabled
if OSSI = 0
(control taken
over by GPIO
logic)
ON after deadtime
insertion
OFF
Active
Inactive
OFF
OFF
Figure 234 gives an example of OCx and OCxN output behavior in case of active signals on
BRK and BRK2 inputs. In this case, both outputs have active high polarities (CCxP =
CCxNP = 0 in TIMx_CCER register).
Figure 234. PWM output state following BRK and BRK2 pins assertion (OSSI=1)
Z<Ϯ
Z<
Kdž
ĞĂĚƚŝŵĞ
ĞĂĚƚŝŵĞ
/ͬKƐƚĂƚĞ
ĐƚŝǀĞ
/ŶĂĐƚŝǀĞ
/ĚůĞ
D^ϯϰϭϬϲsϭ
794/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Figure 235. PWM output state following BRK assertion (OSSI=0)
Z<
/ͬKƐƚĂƚĞĚĞĨŝŶĞĚďLJƚŚĞ'W/KĐŽŶƚƌŽůůĞƌ;,/ͲͿ
Kdž
ĞĂĚƚŝŵĞ
/ͬKƐƚĂƚĞĚĞĨŝŶĞĚďLJƚŚĞ'W/KĐŽŶƚƌŽůůĞƌ;,/ͲͿ
/ͬKƐƚĂƚĞ
ĐƚŝǀĞ
/ŶĂĐƚŝǀĞ
ŝƐĂďůĞĚ
D^ϯϰϭϬϳsϭ
26.3.17
Bidirectional break inputs
Beside regular digital break inputs and internal break events coming from the comparators,
the timer 1 and 8 are featuring bidirectional break inputs/outputs combining the two sources,
as represented on Figure 236.
The TIMx_BKINy_COMPz pins are combining the COMPz output (to be configured in open
drain) and the Timerx’s TIMx_BKINy input. They allow to have:
- A global break information available for external MCUs or gate drivers shut down inputs,
with a single-pin.
- An internal comparator and multiple external open drain comparators outputs ORed
together and triggering a break event, when the multiple internal and external break inputs
must be merged.
Figure 236. Output redirection
%.,13
7RWKHWLPHUEUHDNLQSXW
DFWLYHKLJK
$),
$)LQSXWHQDEOHG DFWLYHORZ
7,0[B%.,1\B&203]
[ \ 1$]
&203
$)2
$)RXWSXWFRQILJXUHGDVRSHQGUDLQ
069
26.3.18
Clearing the OCxREF signal on an external event
The OCxREF signal of a given channel can be cleared when a high level is applied on the
OCREF_CLR_INPUT (OCxCE enable bit in the corresponding TIMx_CCMRx register
set to 1). OCxREF remains low until the next update event (UEV) occurs. This function can
only be used in Output compare and PWM modes. It does not work in Forced mode.
DocID024597 Rev 3
795/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
OCREF_CLR_INPUT can be selected between the OCREF_CLR input and ETRF (ETR
after the filter) by configuring the OCCS bit in the TIMx_SMCR register.
The OCREF_CLR input is not connected (NC) in this product. The OCCS bit must be set to
work in OCxREF clearing mode.
When ETRF is chosen, ETR must be configured as follows:
1.
The External Trigger Prescaler should be kept off: bits ETPS[1:0] of the TIMx_SMCR
register set to ‘00’.
2.
The external clock mode 2 must be disabled: bit ECE of the TIMx_SMCR register set to
‘0’.
3.
The External Trigger Polarity (ETP) and the External Trigger Filter (ETF) can be
configured according to the user needs.
Figure 237 shows the behavior of the OCxREF signal when the ETRF Input becomes High,
for both values of the enable bit OCxCE. In this example, the timer TIMx is programmed in
PWM mode.
Figure 237. Clearing TIMx OCxREF
&&5[
&RXQWHU &17
(75)
2&[5()
2&[&( µ¶
2&[5()
2&[&( µ¶
2&[5()B&/5
EHFRPHVKLJK
2&[5()B&/5
VWLOOKLJK
069
Note:
796/1693
In case of a PWM with a 100% duty cycle (if CCRx>ARR), then OCxREF is enabled again at
the next counter overflow.
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
26.3.19
6-step PWM generation
When complementary outputs are used on a channel, preload bits are available on the
OCxM, CCxE and CCxNE bits. The preload bits are transferred to the shadow bits at the
COM commutation event. Thus you can program in advance the configuration for the next
step and change the configuration of all the channels at the same time. COM can be
generated by software by setting the COM bit in the TIMx_EGR register or by hardware (on
TRGI rising edge).
A flag is set when the COM event occurs (COMIF bit in the TIMx_SR register), which can
generate an interrupt (if the COMIE bit is set in the TIMx_DIER register) or a DMA request
(if the COMDE bit is set in the TIMx_DIER register).
The Figure 238 describes the behavior of the OCx and OCxN outputs when a COM event
occurs, in 3 different examples of programmed configurations.
Figure 238. 6-step generation, COM example (OSSR=1)
&&5[
&RXQWHU &17
2&[5()
:ULWH&20WR
&20HYHQW
&&[(
ZULWH2&[0WR
&&[1(
2&[0 IRUFHGLQDFWLYH
&&[(
&&[1(
2&[0
2&[
([DPSOH
2&[1
2&[
:ULWH&&[1(WR
DQG2&[0WR
&&[(
&&[1(
2&[0 IRUFHGLQDFWLYH
&&[(
&&[1(
2&[0
([DPSOH
2&[1
ZULWH&&[1(WR
&&[(
DQG2&[0WR
&&[1(
2&[0 IRUFHGLQDFWLYH
&&[(
&&[1(
2&[0
2&[
([DPSOH
2&[1
DL
DocID024597 Rev 3
797/1693
856
Advanced-control timers (TIM1/TIM8)
26.3.20
RM0351
One-pulse mode
One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.
Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output compare mode or PWM mode. You select One-pulse mode
by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically
at the next update event UEV.
A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be:
•
In upcounting: CNT < CCRx ≤ ARR (in particular, 0 < CCRx)
•
In downcounting: CNT > CCRx
Figure 239. Example of one pulse mode.
7,
2&5()
2&
&RXQWHU
7,0B$55
7,0B&&5
W'(/$<
W38/6(
W
069
For example you may want to generate a positive pulse on OC1 with a length of tPULSE and
after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.
Let’s use TI2FP2 as trigger 1:
798/1693
•
Map TI2FP2 to TI2 by writing CC2S=’01’ in the TIMx_CCMR1 register.
•
TI2FP2 must detect a rising edge, write CC2P=’0’ and CC2NP=’0’ in the TIMx_CCER
register.
•
Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=’110’ in
the TIMx_SMCR register.
•
TI2FP2 is used to start the counter by writing SMS to ‘110’ in the TIMx_SMCR register
(trigger mode).
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).
•
The tDELAY is defined by the value written in the TIMx_CCR1 register.
•
The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR1).
•
Let’s say you want to build a waveform with a transition from ‘0’ to ‘1’ when a compare
match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the auto-reload
value. To do this you enable PWM mode 2 by writing OC1M=111 in the TIMx_CCMR1
register. You can optionally enable the preload registers by writing OC1PE=’1’ in the
TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case you have to
write the compare value in the TIMx_CCR1 register, the auto-reload value in the
TIMx_ARR register, generate an update by setting the UG bit and wait for external
trigger event on TI2. CC1P is written to ‘0’ in this example.
In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.
You only want 1 pulse (Single mode), so you write '1 in the OPM bit in the TIMx_CR1
register to stop the counter at the next update event (when the counter rolls over from the
auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0', so the
Repetitive Mode is selected.
Particular case: OCx fast enable:
In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.
If you want to output a waveform with the minimum delay, you can set the OCxFE bit in the
TIMx_CCMRx register. Then OCxRef (and OCx) are forced in response to the stimulus,
without taking in account the comparison. Its new level is the same as if a compare match
had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode.
26.3.21
Retriggerable one pulse mode (OPM)
This mode allows the counter to be started in response to a stimulus and to generate a
pulse with a programmable length, but with the following differences with Non-retriggerable
one pulse mode described in Section 26.3.20:
–
The pulse starts as soon as the trigger occurs (no programmable delay)
–
The pulse is extended if a new trigger occurs before the previous one is completed
The timer must be in Slave mode, with the bits SMS[3:0] = ‘1000’ (Combined Reset + trigger
mode) in the TIMx_SMCR register, and the OCxM[3:0] bits set to ‘1000’ or ‘1001’ for
Retrigerrable OPM mode 1 or 2.
If the timer is configured in Up-counting mode, the corresponding CCRx must be set to 0
(the ARR register sets the pulse length). If the timer is configured in Down-counting mode,
CCRx must be above or equal to ARR.
Note:
The OCxM[3:0] and SMS[3:0] bit fields are split into two parts for compatibility reasons, the
most significant bit are not contiguous with the 3 least significant ones.
This mode must not be used with center-aligned PWM modes. It is mandatory to have
CMS[1:0] = 00 in TIMx_CR1.
DocID024597 Rev 3
799/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Figure 240. Retriggerable one pulse mode
75*,
&RXQWHU
2XWSXW
069
26.3.22
Encoder interface mode
To select Encoder Interface mode write SMS=‘001’ in the TIMx_SMCR register if the
counter is counting on TI2 edges only, SMS=’010’ if it is counting on TI1 edges only and
SMS=’011’ if it is counting on both TI1 and TI2 edges.
Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx_CCER
register. When needed, you can program the input filter as well. CC1NP and CC2NP must
be kept low.
The two inputs TI1 and TI2 are used to interface to an quadrature encoder. Refer to
Table 147. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2
after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted,
TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in
TIMx_CR1 register written to ‘1’). The sequence of transitions of the two inputs is evaluated
and generates count pulses as well as the direction signal. Depending on the sequence the
counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware
accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever
the counter is counting on TI1 only, TI2 only or both TI1 and TI2.
Encoder interface mode acts simply as an external clock with direction selection. This
means that the counter just counts continuously between 0 and the auto-reload value in the
TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So you must
configure TIMx_ARR before starting. in the same way, the capture, compare, prescaler,
repetition counter, trigger output features continue to work as normal. Encoder mode and
External clock mode 2 are not compatible and must not be selected together.
In this mode, the counter is modified automatically following the speed and the direction of
the quadrature encoder and its content, therefore, always represents the encoder’s position.
The count direction correspond to the rotation direction of the connected sensor. The table
summarizes the possible combinations, assuming TI1 and TI2 don’t switch at the same
time.
800/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Table 147. Counting direction versus encoder signals
Active edge
Level on
opposite
signal (TI1FP1
for TI2,
TI2FP2 for
TI1)
TI1FP1 signal
TI2FP2 signal
Rising
Falling
Rising
Falling
Counting on
TI1 only
High
Down
Up
No Count
No Count
Low
Up
Down
No Count
No Count
Counting on
TI2 only
High
No Count
No Count
Up
Down
Low
No Count
No Count
Down
Up
Counting on
TI1 and TI2
High
Down
Up
Up
Down
Low
Up
Down
Down
Up
A quadrature encoder can be connected directly to the MCU without external interface logic.
However, comparators are normally be used to convert the encoder’s differential outputs to
digital signals. This greatly increases noise immunity. The third encoder output which
indicate the mechanical zero position, may be connected to an external interrupt input and
trigger a counter reset.
The Figure 241 gives an example of counter operation, showing count signal generation
and direction control. It also shows how input jitter is compensated where both edges are
selected. This might occur if the sensor is positioned near to one of the switching points. For
this example we assume that the configuration is the following:
•
CC1S=’01’ (TIMx_CCMR1 register, TI1FP1 mapped on TI1).
•
CC2S=’01’ (TIMx_CCMR2 register, TI1FP2 mapped on TI2).
•
CC1P=’0’ and CC1NP=’0’ (TIMx_CCER register, TI1FP1 non-inverted, TI1FP1=TI1).
•
CC2P=’0’ and CC2NP=’0’ (TIMx_CCER register, TI1FP2 non-inverted, TI1FP2= TI2).
•
SMS=’011’ (TIMx_SMCR register, both inputs are active on both rising and falling
edges).
•
CEN=’1’ (TIMx_CR1 register, Counter enabled).
Figure 241. Example of counter operation in encoder interface mode.
IRUZDUG
MLWWHU
EDFNZDUG
MLWWHU
IRUZDUG
7,
7,
&RXQWHU
XS
GRZQ
XS
069
DocID024597 Rev 3
801/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Figure 242 gives an example of counter behavior when TI1FP1 polarity is inverted (same
configuration as above except CC1P=’1’).
Figure 242. Example of encoder interface mode with TI1FP1 polarity inverted.
IRUZDUG
MLWWHU
EDFNZDUG
MLWWHU
IRUZDUG
7,
7,
&RXQWHU
GRZQ
XS
GRZQ
069
The timer, when configured in Encoder Interface mode provides information on the sensor’s
current position. You can obtain dynamic information (speed, acceleration, deceleration) by
measuring the period between two encoder events using a second timer configured in
capture mode. The output of the encoder which indicates the mechanical zero can be used
for this purpose. Depending on the time between two events, the counter can also be read
at regular times. You can do this by latching the counter value into a third input capture
register if available (then the capture signal must be periodic and can be generated by
another timer). when available, it is also possible to read its value through a DMA request.
The IUFREMAP bit in the TIMx_CR1 register forces a continuous copy of the update
interrupt flag (UIF) into the timer counter register’s bit 31 (TIMxCNT[31]). This allows both
the counter value and a potential roll-over condition signaled by the UIFCPY flag to be read
in an atomic way. It eases the calculation of angular speed by avoiding race conditions
caused, for instance, by a processing shared between a background task (counter reading)
and an interrupt (update interrupt).
There is no latency between the UIF and UIFCPY flag assertions.
In 32-bit timer implementations, when the IUFREMAP bit is set, bit 31 of the counter is
overwritten by the UIFCPY flag upon read access (the counter’s most significant bit is only
accessible in write mode).
26.3.23
UIF bit remapping
The IUFREMAP bit in the TIMx_CR1 register forces a continuous copy of the Update
Interrupt Flag UIF into the timer counter register’s bit 31 (TIMxCNT[31]). This allows both
the counter value and a potential roll-over condition signaled by the UIFCPY flag to be read
in an atomic way. In particular cases, it can ease the calculations by avoiding race
conditions, caused for instance by a processing shared between a background task
(counter reading) and an interrupt (Update Interrupt).
There is no latency between the UIF and UIFCPY flags assertion.
802/1693
DocID024597 Rev 3
RM0351
26.3.24
Advanced-control timers (TIM1/TIM8)
Timer input XOR function
The TI1S bit in the TIMx_CR2 register, allows the input filter of channel 1 to be connected to
the output of an XOR gate, combining the two input pins TIMx_CH1 and TIMx_CH2.
The XOR output can be used with all the timer input functions such as trigger or input
capture. It is convenient to measure the interval between edges on two input signals, as per
Figure 243 below.
Figure 243. Measuring time interval between edges on 3 signals
7,
7,
7,
;25
7,0[
&RXQWHU
069
26.3.25
Interfacing with Hall sensors
This is done using the advanced-control timers (TIM1 or TIM8) to generate PWM signals to
drive the motor and another timer TIMx (TIM2, TIM3, TIM4) referred to as “interfacing timer”
in Figure 244. The “interfacing timer” captures the 3 timer input pins (CC1, CC2, CC3)
connected through a XOR to the TI1 input channel (selected by setting the TI1S bit in the
TIMx_CR2 register).
The slave mode controller is configured in reset mode; the slave input is TI1F_ED. Thus,
each time one of the 3 inputs toggles, the counter restarts counting from 0. This creates a
time base triggered by any change on the Hall inputs.
On the “interfacing timer”, capture/compare channel 1 is configured in capture mode,
capture signal is TRC (See Figure 217: Capture/compare channel (example: channel 1
input stage) on page 775). The captured value, which corresponds to the time elapsed
between 2 changes on the inputs, gives information about motor speed.
The “interfacing timer” can be used in output mode to generate a pulse which changes the
configuration of the channels of the advanced-control timer (TIM1 or TIM8) (by triggering a
COM event). The TIM1 timer is used to generate PWM signals to drive the motor. To do this,
the interfacing timer channel must be programmed so that a positive pulse is generated
after a programmed delay (in output compare or PWM mode). This pulse is sent to the
advanced-control timer (TIM1 or TIM8) through the TRGO output.
DocID024597 Rev 3
803/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Example: you want to change the PWM configuration of your advanced-control timer TIM1
after a programmed delay each time a change occurs on the Hall inputs connected to one of
the TIMx timers.
•
Configure 3 timer inputs ORed to the TI1 input channel by writing the TI1S bit in the
TIMx_CR2 register to ‘1’,
•
Program the time base: write the TIMx_ARR to the max value (the counter must be
cleared by the TI1 change. Set the prescaler to get a maximum counter period longer
than the time between 2 changes on the sensors,
•
Program the channel 1 in capture mode (TRC selected): write the CC1S bits in the
TIMx_CCMR1 register to ‘01’. You can also program the digital filter if needed,
•
Program the channel 2 in PWM 2 mode with the desired delay: write the OC2M bits to
‘111’ and the CC2S bits to ‘00’ in the TIMx_CCMR1 register,
•
Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2
register to ‘101’,
In the advanced-control timer TIM1, the right ITR input must be selected as trigger input, the
timer is programmed to generate PWM signals, the capture/compare control signals are
preloaded (CCPC=1 in the TIMx_CR2 register) and the COM event is controlled by the
trigger input (CCUS=1 in the TIMx_CR2 register). The PWM control bits (CCxE, OCxM) are
written after a COM event for the next step (this can be done in an interrupt subroutine
generated by the rising edge of OC2REF).
The Figure 244 describes this example.
804/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Figure 244. Example of Hall sensor interface
7,+
,QWHUIDFLQJWLPHU
7,+
7,+
&RXQWHU &17
&&5
&&5
&$
&$
&
&$
&$%
&
$GYDQFHGFRQWUROWLPHUV 7,0 7,0
75*2 2&5()
&20
2&
2&1
2&
2&1
2&
2&1
:ULWH&&[(&&[1(
DQG2&[0IRUQH[WVWHS
DL
DocID024597 Rev 3
805/1693
856
Advanced-control timers (TIM1/TIM8)
26.3.26
RM0351
Timer synchronization
The TIMx timers are linked together internally for timer synchronization or chaining. They
can be synchronized in several modes: Reset mode, Gated mode, and Trigger mode.
Slave mode: Reset mode
The counter and its prescaler can be reinitialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.
In the following example, the upcounter is cleared in response to a rising edge on TI1 input:
•
Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits
select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write
CC1P=0 and CC1NP=’0’ in TIMx_CCER register to validate the polarity (and detect
rising edges only).
•
Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.
•
Start the counter by writing CEN=1 in the TIMx_CR1 register.
The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA
request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register).
The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.
Figure 245. Control circuit in reset mode
7,
8*
&RXQWHUFORFN FNBFQW FNBSVF
&RXQWHUUHJLVWHU
7,)
069
806/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Slave mode: Gated mode
The counter can be enabled depending on the level of a selected input.
In the following example, the upcounter counts only when TI1 input is low:
•
Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits
select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write
CC1P=1 and CC1NP=’0’ in TIMx_CCER register to validate the polarity (and detect
low level only).
•
Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.
•
Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the
counter doesn’t start if CEN=0, whatever is the trigger input level).
The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts
or stops.
The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.
Figure 246. Control circuit in Gated mode
7,
FQWBHQ
&RXQWHUFORFN FNBFQW FNBSVF
&RXQWHUUHJLVWHU
7,)
:ULWH7,)
069
Slave mode: Trigger mode
The counter can start in response to an event on a selected input.
In the following example, the upcounter starts in response to a rising edge on TI2 input:
•
Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC2F=0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC2S bits are
configured to select the input capture source only, CC2S=01 in TIMx_CCMR1 register.
DocID024597 Rev 3
807/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Write CC2P=1 and CC2NP=0 in TIMx_CCER register to validate the polarity (and
detect low level only).
•
Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI2 as the input source by writing TS=110 in TIMx_SMCR register.
When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.
The delay between the rising edge on TI2 and the actual start of the counter is due to the
resynchronization circuit on TI2 input.
Figure 247. Control circuit in trigger mode
7,
FQWBHQ
&RXQWHUFORFN FNBFQW FNBSVF
&RXQWHUUHJLVWHU
7,)
069
Slave mode: Combined reset + trigger mode
In this case, a rising edge of the selected trigger input (TRGI) reinitializes the counter,
generates an update of the registers, and starts the counter.
This mode is used for one-pulse mode.
Slave mode: external clock mode 2 + trigger mode
The external clock mode 2 can be used in addition to another slave mode (except external
clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock
input, and another input can be selected as trigger input (in reset mode, gated mode or
trigger mode). It is recommended not to select ETR as TRGI through the TS bits of
TIMx_SMCR register.
In the following example, the upcounter is incremented at each rising edge of the ETR
signal as soon as a rising edge of TI1 occurs:
808/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
1.
2.
3.
Configure the external trigger input circuit by programming the TIMx_SMCR register as
follows:
–
ETF = 0000: no filter
–
ETPS=00: prescaler disabled
–
ETP=0: detection of rising edges on ETR and ECE=1 to enable the external clock
mode 2.
Configure the channel 1 as follows, to detect rising edges on TI:
–
IC1F=0000: no filter.
–
The capture prescaler is not used for triggering and does not need to be
configured.
–
CC1S=01in TIMx_CCMR1 register to select only the input capture source
–
CC1P=0 and CC1NP=’0’ in TIMx_CCER register to validate the polarity (and
detect rising edge only).
Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.
A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on
ETR rising edges.
The delay between the rising edge of the ETR signal and the actual reset of the counter is
due to the resynchronization circuit on ETRP input.
Figure 248. Control circuit in external clock mode 2 + trigger mode
7,
&(1&17B(1
(75
&RXQWHUFORFN &.B&17 &.B36&
&RXQWHUUHJLVWHU
7,)
069
Note:
The clock of the slave timer must be enabled prior to receive events from the master timer,
and must not be changed on-the-fly while triggers are received from the master timer.
DocID024597 Rev 3
809/1693
856
Advanced-control timers (TIM1/TIM8)
26.3.27
RM0351
ADC synchronization
The timer can generate an ADC triggering event with various internal signals, such as reset,
enable or compare events. It is also possible to generate a pulse issued by internal edge
detectors, such as:
–
Rising and falling edges of OC4ref
–
Rising edge on OC5ref or falling edge on OC6ref
The triggers are issued on the TRGO2 internal line which is redirected to the ADC. There is
a total of 16 possible events, which can be selected using the MMS2[3:0] bits in the
TIMx_CR2 register.
An example of an application for 3-phase motor drives is given in Figure 228 on page 787.
Note:
The clock of the slave timer must be enabled prior to receive events from the master timer,
and must not be changed on-the-fly while triggers are received from the master timer.
Note:
The clock of the ADC must be enabled prior to receive events from the master timer, and
must not be changed on-the-fly while triggers are received from the timer.
26.3.28
DMA burst mode
The TIMx timers have the capability to generate multiple DMA requests upon a single event.
The main purpose is to be able to re-program part of the timer multiple times without
software overhead, but it can also be used to read several registers in a row, at regular
intervals.
The DMA controller destination is unique and must point to the virtual register TIMx_DMAR.
On a given timer event, the timer launches a sequence of DMA requests (burst). Each write
into the TIMx_DMAR register is actually redirected to one of the timer registers.
The DBL[4:0] bits in the TIMx_DCR register set the DMA burst length. The timer recognizes
a burst transfer when a read or a write access is done to the TIMx_DMAR address), i.e. the
number of transfers (either in half-words or in bytes).
The DBA[4:0] bits in the TIMx_DCR registers define the DMA base address for DMA
transfers (when read/write access are done through the TIMx_DMAR address). DBA is
defined as an offset starting from the address of the TIMx_CR1 register:
Example:
00000: TIMx_CR1
00001: TIMx_CR2
00010: TIMx_SMCR
As an example, the timer DMA burst feature is used to update the contents of the CCRx
registers (x = 2, 3, 4) upon an update event, with the DMA transferring half words into the
CCRx registers.
This is done in the following steps:
810/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
1.
Configure the corresponding DMA channel as follows:
–
DMA channel peripheral address is the DMAR register address
–
DMA channel memory address is the address of the buffer in the RAM containing
the data to be transferred by DMA into CCRx registers.
–
Number of data to transfer = 3 (See note below).
–
Circular mode disabled.
2.
Configure the DCR register by configuring the DBA and DBL bit fields as follows:
DBL = 3 transfers, DBA = 0xE.
3.
Enable the TIMx update DMA request (set the UDE bit in the DIER register).
4.
Enable TIMx
5.
Enable the DMA channel
This example is for the case where every CCRx register to be updated once. If every CCRx
register is to be updated twice for example, the number of data to transfer should be 6. Let's
take the example of a buffer in the RAM containing data1, data2, data3, data4, data5 and
data6. The data is transferred to the CCRx registers as follows: on the first update DMA
request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to
CCR4 and on the second update DMA request, data4 is transferred to CCR2, data5 is
transferred to CCR3 and data6 is transferred to CCR4.
26.3.29
Debug mode
When the microcontroller enters debug mode (Cortex®-M4 core halted), the TIMx counter
either continues to work normally or stops, depending on DBG_TIMx_STOP configuration
bit in DBG module. For more details, refer to Section 44.16.2: Debug support for timers,
RTC, watchdog, bxCAN and I2C.
DocID024597 Rev 3
811/1693
856
Advanced-control timers (TIM1/TIM8)
26.4
RM0351
TIM1/TIM8 registers
Refer to for a list of abbreviations used in register descriptions.
26.4.1
TIM1/TIM8 control register 1 (TIMx_CR1)
Address offset: 0x00
Reset value: 0x0000
15
Res.
14
Res.
13
Res.
12
11
10
Res.
UIFRE
MAP
Res.
rw
9
8
CKD[1:0]
rw
7
6
ARPE
rw
rw
5
CMS[1:0]
rw
rw
4
3
2
1
0
DIR
OPM
URS
UDIS
CEN
rw
rw
rw
rw
rw
Bits 15:12 Reserved, must be kept at reset value.
Bit 11 UIFREMAP: UIF status bit remapping
0: No remapping. UIF status bit is not copied to TIMx_CNT register bit 31.
1: Remapping enabled. UIF status bit is copied to TIMx_CNT register bit 31.
Bit 10 Reserved, must be kept at reset value.
Bits 9:8 CKD[1:0]: Clock division
This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and the
dead-time and sampling clock (tDTS)used by the dead-time generators and the digital filters
(ETR, TIx),
00: tDTS=tCK_INT
01: tDTS=2*tCK_INT
10: tDTS=4*tCK_INT
11: Reserved, do not program this value
Bit 7 ARPE: Auto-reload preload enable
0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered
Bits 6:5 CMS[1:0]: Center-aligned mode selection
00: Edge-aligned mode. The counter counts up or down depending on the direction bit
(DIR).
01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting down.
10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting up.
11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
both when the counter is counting up or down.
Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as
the counter is enabled (CEN=1)
Bit 4 DIR: Direction
0: Counter used as upcounter
1: Counter used as downcounter
Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder
mode.
812/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Bit 3 OPM: One pulse mode
0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the bit CEN)
Bit 2 URS: Update request source
This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generate an update interrupt or DMA request if enabled.
These events can be:
–
Counter overflow/underflow
–
Setting the UG bit
–
Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update interrupt or DMA request if
enabled.
Bit 1 UDIS: Update disable
This bit is set and cleared by software to enable/disable UEV event generation.
0: UEV enabled. The Update (UEV) event is generated by one of the following events:
–
Counter overflow/underflow
–
Setting the UG bit
–
Update generation through the slave mode controller
Buffered registers are then loaded with their preload values.
1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is
set or if a hardware reset is received from the slave mode controller.
Bit 0 CEN: Counter enable
0: Counter disabled
1: Counter enabled
Note: External clock, gated mode and encoder mode can work only if the CEN bit has been
previously set by software. However trigger mode can set the CEN bit automatically by
hardware.
26.4.2
TIM1/TIM8 control register 2 (TIMx_CR2)
Address offset: 0x04
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
23
22
21
20
MMS2[3:0]
rw
rw
6
15
14
13
12
11
10
9
8
7
Res.
OIS4
OIS3N
OIS3
OIS2N
OIS2
OIS1N
OIS1
TI1S
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
5
4
MMS[2:0]
rw
DocID024597 Rev 3
rw
rw
19
18
17
16
Res.
OIS6
Res.
OIS5
rw
rw
3
2
1
0
CCDS
CCUS
Res.
CCPC
rw
rw
rw
813/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Bits 31:24 Reserved, must be kept at reset value.
Bits 23:20 MMS2[3:0]: Master mode selection 2
These bits allow the information to be sent to ADC for synchronization (TRGO2) to be
selected. The combination is as follows:
0000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO2). If
the reset is generated by the trigger input (slave mode controller configured in reset mode),
the signal on TRGO2 is delayed compared to the actual reset.
0001: Enable - the Counter Enable signal CNT_EN is used as trigger output (TRGO2). It is
useful to start several timers at the same time or to control a window in which a slave timer is
enabled. The Counter Enable signal is generated by a logic OR between the CEN control bit
and the trigger input when configured in Gated mode. When the Counter Enable signal is
controlled by the trigger input, there is a delay on TRGO2, except if the Master/Slave mode
is selected (see the MSM bit description in TIMx_SMCR register).
0010: Update - the update event is selected as trigger output (TRGO2). For instance, a
master timer can then be used as a prescaler for a slave timer.
0011: Compare pulse - the trigger output sends a positive pulse when the CC1IF flag is to
be set (even if it was already high), as soon as a capture or compare match occurs
(TRGO2).
0100: Compare - OC1REF signal is used as trigger output (TRGO2)
0101: Compare - OC2REF signal is used as trigger output (TRGO2)
0110: Compare - OC3REF signal is used as trigger output (TRGO2)
0111: Compare - OC4REF signal is used as trigger output (TRGO2)
1000: Compare - OC5REF signal is used as trigger output (TRGO2)
1001: Compare - OC6REF signal is used as trigger output (TRGO2)
1010: Compare Pulse - OC4REF rising or falling edges generate pulses on TRGO2
1011: Compare Pulse - OC6REF rising or falling edges generate pulses on TRGO2
1100: Compare Pulse - OC4REF or OC6REF rising edges generate pulses on TRGO2
1101: Compare Pulse - OC4REF rising or OC6REF falling edges generate pulses on
TRGO2
1110: Compare Pulse - OC5REF or OC6REF rising edges generate pulses on TRGO2
1111: Compare Pulse - OC5REF rising or OC6REF falling edges generate pulses on
TRGO2
Note: The clock of the slave timer or ADC must be enabled prior to receive events from the
master timer, and must not be changed on-the-fly while triggers are received from the
master timer.
Bit 19 Reserved, must be kept at reset value.
Bit 18 OIS6: Output Idle state 6 (OC6 output)
Refer to OIS1 bit
Bit 17 Reserved, must be kept at reset value.
Bit 16 OIS5: Output Idle state 5 (OC5 output)
Refer to OIS1 bit
Bit 15 Reserved, must be kept at reset value.
Bit 14 OIS4: Output Idle state 4 (OC4 output)
Refer to OIS1 bit
Bit 13 OIS3N: Output Idle state 3 (OC3N output)
Refer to OIS1N bit
Bit 12 OIS3: Output Idle state 3 (OC3 output)
Refer to OIS1 bit
814/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Bit 11 OIS2N: Output Idle state 2 (OC2N output)
Refer to OIS1N bit
Bit 10 OIS2: Output Idle state 2 (OC2 output)
Refer to OIS1 bit
Bit 9 OIS1N: Output Idle state 1 (OC1N output)
0: OC1N=0 after a dead-time when MOE=0
1: OC1N=1 after a dead-time when MOE=0
Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BDTR register).
Bit 8 OIS1: Output Idle state 1 (OC1 output)
0: OC1=0 (after a dead-time if OC1N is implemented) when MOE=0
1: OC1=1 (after a dead-time if OC1N is implemented) when MOE=0
Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BDTR register).
Bit 7 TI1S: TI1 selection
0: The TIMx_CH1 pin is connected to TI1 input
1: The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination)
Bits 6:4 MMS[1:0]: Master mode selection
These bits allow to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter Enable signal CNT_EN is used as trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer is
enable. The Counter Enable signal is generated by a logic OR between CEN control bit and
the trigger input when configured in gated mode. When the Counter Enable signal is
controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is
selected (see the MSM bit description in TIMx_SMCR register).
010: Update - The update event is selected as trigger output (TRGO). For instance a master
timer can then be used as a prescaler for a slave timer.
011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to be
set (even if it was already high), as soon as a capture or a compare match occurred.
(TRGO).
100: Compare - OC1REF signal is used as trigger output (TRGO)
101: Compare - OC2REF signal is used as trigger output (TRGO)
110: Compare - OC3REF signal is used as trigger output (TRGO)
111: Compare - OC4REF signal is used as trigger output (TRGO)
Note: The clock of the slave timer or ADC must be enabled prior to receive events from the
master timer, and must not be changed on-the-fly while triggers are received from the
master timer.
Bit 3 CCDS: Capture/compare DMA selection
0: CCx DMA request sent when CCx event occurs
1: CCx DMA requests sent when update event occurs
DocID024597 Rev 3
815/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Bit 2 CCUS: Capture/compare control update selection
0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COMG bit only
1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COMG bit or when an rising edge occurs on TRGI
Note: This bit acts only on channels that have a complementary output.
Bit 1 Reserved, must be kept at reset value.
Bit 0 CCPC: Capture/compare preloaded control
0: CCxE, CCxNE and OCxM bits are not preloaded
1: CCxE, CCxNE and OCxM bits are preloaded, after having been written, they are updated
only when a commutation event (COM) occurs (COMG bit set or rising edge detected on
TRGI, depending on the CCUS bit).
Note: This bit acts only on channels that have a complementary output.
26.4.3
TIM1/TIM8 slave mode control register (TIMx_SMCR)
Address offset: 0x08
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SMS[3]
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
ETP
ECE
rw
rw
rw
ETPS[1:0]
rw
rw
ETF[3:0]
rw
rw
rw
MSM
rw
rw
TS[2:0]
rw
rw
OCCS
rw
rw
0
SMS[2:0]
rw
rw
rw
Bits 31:17 Reserved, must be kept at reset value.
Bit 16 SMS[3]: Slave mode selection - bit 3
Refer to SMS description - bits2:0
Bit 15 ETP: External trigger polarity
This bit selects whether ETR or ETR is used for trigger operations
0: ETR is non-inverted, active at high level or rising edge.
1: ETR is inverted, active at low level or falling edge.
Bit 14 ECE: External clock enable
This bit enables External clock mode 2.
0: External clock mode 2 disabled
1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF
signal.
Note: 1: Setting the ECE bit has the same effect as selecting external clock mode 1 with
TRGI connected to ETRF (SMS=111 and TS=111).
2: It is possible to simultaneously use external clock mode 2 with the following slave
modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be
connected to ETRF in this case (TS bits must not be 111).
3: If external clock mode 1 and external clock mode 2 are enabled at the same time,
the external clock input is ETRF.
816/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Bits 13:12 ETPS[1:0]: External trigger prescaler
External trigger signal ETRP frequency must be at most 1/4 of TIMxCLK frequency. A
prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external
clocks.
00: Prescaler OFF
01: ETRP frequency divided by 2
10: ETRP frequency divided by 4
11: ETRP frequency divided by 8
Bits 11:8 ETF[3:0]: External trigger filter
This bit-field then defines the frequency used to sample ETRP signal and the length of the
digital filter applied to ETRP. The digital filter is made of an event counter in which N
consecutive events are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8
Bit 7 MSM: Master/slave mode
0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect
synchronization between the current timer and its slaves (through TRGO). It is useful if we
want to synchronize several timers on a single external event.
Bits 6:4 TS[2:0]: Trigger selection
This bit-field selects the trigger input to be used to synchronize the counter.
000: Internal Trigger 0 (ITR0)
001: Internal Trigger 1 (ITR1)
010: Internal Trigger 2 (ITR2)
011: Internal Trigger 3 (ITR3)
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2 (TI2FP2)
111: External Trigger input (ETRF)
See Table 148: TIMx internal trigger connection on page 818 for more details on ITRx
meaning for each Timer.
Note: These bits must be changed only when they are not used (e.g. when SMS=000) to
avoid wrong edge detections at the transition.
Bit 3 OCCS: OCREF clear selection
This bit is used to select the OCREF clear source.
0: OCREF_CLR_INT is not connected (reserved configuration)
1: OCREF_CLR_INT is connected to ETRF
DocID024597 Rev 3
817/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Bits 2:0 SMS: Slave mode selection
When external signals are selected the active edge of the trigger signal (TRGI) is linked to the
polarity selected on the external input (see Input Control register and Control Register
description.
0000: Slave mode disabled - if CEN = ‘1’ then the prescaler is clocked directly by the internal
clock.
0001: Encoder mode 1 - Counter counts up/down on TI1FP1 edge depending on TI2FP2
level.
0010: Encoder mode 2 - Counter counts up/down on TI2FP2 edge depending on TI1FP1
level.
0011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges
depending on the level of the other input.
0100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter
and generates an update of the registers.
0101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The
counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of
the counter are controlled.
0110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not
reset). Only the start of the counter is controlled.
0111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.
1000: Combined reset + trigger mode - Rising edge of the selected trigger input (TRGI)
reinitializes the counter, generates an update of the registers and starts the counter.
Codes above 1000: Reserved.
Note: The gated mode must not be used if TI1F_ED is selected as the trigger input
(TS=’100’). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the
gated mode checks the level of the trigger signal.
Note: The clock of the slave timer must be enabled prior to receive events from the master
timer, and must not be changed on-the-fly while triggers are received from the master
timer.
Table 148. TIMx internal trigger connection
818/1693
Slave TIM
ITR0 (TS = 000)
ITR1 (TS = 001)
ITR2 (TS = 010)
ITR3 (TS = 011)
TIM1
TIM15
TIM2
TIM3
TIM4
TIM8
TIM1
TIM2
TIM4
TIM5
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
26.4.4
TIM1/TIM8 DMA/interrupt enable register (TIMx_DIER)
Address offset: 0x0C
Reset value: 0x0000
15
14
Res.
TDE
rw
13
12
11
10
9
COMDE CC4DE CC3DE CC2DE CC1DE
rw
rw
rw
rw
rw
8
7
6
5
4
3
2
1
0
UDE
BIE
TIE
COMIE
CC4IE
CC3IE
CC2IE
CC1IE
UIE
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bit 15 Reserved, must be kept at reset value.
Bit 14 TDE: Trigger DMA request enable
0: Trigger DMA request disabled
1: Trigger DMA request enabled
Bit 13 COMDE: COM DMA request enable
0: COM DMA request disabled
1: COM DMA request enabled
Bit 12 CC4DE: Capture/Compare 4 DMA request enable
0: CC4 DMA request disabled
1: CC4 DMA request enabled
Bit 11 CC3DE: Capture/Compare 3 DMA request enable
0: CC3 DMA request disabled
1: CC3 DMA request enabled
Bit 10 CC2DE: Capture/Compare 2 DMA request enable
0: CC2 DMA request disabled
1: CC2 DMA request enabled
Bit 9 CC1DE: Capture/Compare 1 DMA request enable
0: CC1 DMA request disabled
1: CC1 DMA request enabled
Bit 8 UDE: Update DMA request enable
0: Update DMA request disabled
1: Update DMA request enabled
Bit 7 BIE: Break interrupt enable
0: Break interrupt disabled
1: Break interrupt enabled
Bit 6 TIE: Trigger interrupt enable
0: Trigger interrupt disabled
1: Trigger interrupt enabled
Bit 5 COMIE: COM interrupt enable
0: COM interrupt disabled
1: COM interrupt enabled
Bit 4 CC4IE: Capture/Compare 4 interrupt enable
0: CC4 interrupt disabled
1: CC4 interrupt enabled
Bit 3 CC3IE: Capture/Compare 3 interrupt enable
0: CC3 interrupt disabled
1: CC3 interrupt enabled
DocID024597 Rev 3
819/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Bit 2 CC2IE: Capture/Compare 2 interrupt enable
0: CC2 interrupt disabled
1: CC2 interrupt enabled
Bit 1 CC1IE: Capture/Compare 1 interrupt enable
0: CC1 interrupt disabled
1: CC1 interrupt enabled
Bit 0 UIE: Update interrupt enable
0: Update interrupt disabled
1: Update interrupt enabled
26.4.5
TIM1/TIM8 status register (TIMx_SR)
Address offset: 0x10
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
C6IF
C5IF
rc_w0
rc_w0
15
14
13
Res.
Res.
SBIF
rc_w0
12
11
10
9
CC4OF CC3OF CC2OF CC1OF
rc_w0
rc_w0
rc_w0
rc_w0
8
7
6
5
4
3
2
1
0
B2IF
BIF
TIF
COMIF
CC4IF
CC3IF
CC2IF
CC1IF
UIF
rc_w0
rc_w0
rc_w0
rc_w0
rc_w0
rc_w0
rc_w0
rc_w0
rc_w0
Bits 31:18 Reserved, must be kept at reset value.
Bit 17 CC6IF: Compare 6 interrupt flag
Refer to CC1IF description (Note: Channel 6 can only be configured as output)
Bit 16 CC5IF: Compare 5 interrupt flag
Refer to CC1IF description (Note: Channel 5 can only be configured as output)
Bits 15:14 Reserved, must be kept at reset value.
Bit 13 SBIF: System Break interrupt flag
This flag is set by hardware as soon as the system break input goes active. It can be
cleared by software if the system break input is not active.
This flag must be reset to re-start PWM operation.
0: No break event occurred.
1: An active level has been detected on the system break input. An interrupt is generated if
BIE=1 in the TIMx_DIER register.
Bit 12 CC4OF: Capture/Compare 4 overcapture flag
Refer to CC1OF description
Bit 11 CC3OF: Capture/Compare 3 overcapture flag
Refer to CC1OF description
Bit 10 CC2OF: Capture/Compare 2 overcapture flag
Refer to CC1OF description
Bit 9 CC1OF: Capture/Compare 1 overcapture flag
This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0’.
0: No overcapture has been detected.
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set
820/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Bit 8 B2IF: Break 2 interrupt flag
This flag is set by hardware as soon as the break 2 input goes active. It can be cleared by
software if the break 2 input is not active.
0: No break event occurred.
1: An active level has been detected on the break 2 input. An interrupt is generated if BIE=1
in the TIMx_DIER register.
Bit 7 BIF: Break interrupt flag
This flag is set by hardware as soon as the break input goes active. It can be cleared by
software if the break input is not active.
0: No break event occurred.
1: An active level has been detected on the break input. An interrupt is generated if BIE=1 in
the TIMx_DIER register.
Bit 6 TIF: Trigger interrupt flag
This flag is set by hardware on trigger event (active edge detected on TRGI input when the
slave mode controller is enabled in all modes but gated mode. It is set when the counter starts
or stops when gated mode is selected. It is cleared by software.
0: No trigger event occurred.
1: Trigger interrupt pending.
Bit 5 COMIF: COM interrupt flag
This flag is set by hardware on COM event (when Capture/compare Control bits - CCxE,
CCxNE, OCxM - have been updated). It is cleared by software.
0: No COM event occurred.
1: COM interrupt pending.
Bit 4 CC4IF: Capture/Compare 4 interrupt flag
Refer to CC1IF description
Bit 3 CC3IF: Capture/Compare 3 interrupt flag
Refer to CC1IF description
Bit 2 CC2IF: Capture/Compare 2 interrupt flag
Refer to CC1IF description
Bit 1 CC1IF: Capture/Compare 1 interrupt flag
If channel CC1 is configured as output: This flag is set by hardware when the counter
matches the compare value, with some exception in center-aligned mode (refer to the CMS
bits in the TIMx_CR1 register description). It is cleared by software.
0: No match.
1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF
bit goes high on the counter overflow (in upcounting and up/down-counting modes) or
underflow (in downcounting mode)
If channel CC1 is configured as input: This bit is set by hardware on a capture. It is cleared
by software or by reading the TIMx_CCR1 register.
0: No input capture occurred
1: The counter value has been captured in TIMx_CCR1 register (An edge has been
detected on IC1 which matches the selected polarity)
DocID024597 Rev 3
821/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Bit 0 UIF: Update interrupt flag
This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:
– At overflow or underflow regarding the repetition counter value (update if repetition counter
= 0) and if the UDIS=0 in the TIMx_CR1 register.
– When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0 and
UDIS=0 in the TIMx_CR1 register.
– When CNT is reinitialized by a trigger event (refer to Section 26.4.3: TIM1/TIM8 slave mode
control register (TIMx_SMCR)), if URS=0 and UDIS=0 in the TIMx_CR1 register.
26.4.6
TIM1/TIM8 event generation register (TIMx_EGR)
Address offset: 0x14
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
B2G
BG
TG
COMG
CC4G
CC3G
CC2G
CC1G
UG
w
w
w
w
w
w
w
w
w
Bits 15:9 Reserved, must be kept at reset value.
Bit 8 B2G: Break 2 generation
This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A break 2 event is generated. MOE bit is cleared and B2IF flag is set. Related interrupt
can occur if enabled.
Bit 7 BG: Break generation
This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A break event is generated. MOE bit is cleared and BIF flag is set. Related interrupt or
DMA transfer can occur if enabled.
Bit 6 TG: Trigger generation
This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if
enabled.
Bit 5 COMG: Capture/Compare control update generation
This bit can be set by software, it is automatically cleared by hardware
0: No action
1: When CCPC bit is set, it allows to update CCxE, CCxNE and OCxM bits
Note: This bit acts only on channels having a complementary output.
Bit 4 CC4G: Capture/Compare 4 generation
Refer to CC1G description
Bit 3 CC3G: Capture/Compare 3 generation
Refer to CC1G description
822/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Bit 2 CC2G: Capture/Compare 2 generation
Refer to CC1G description
Bit 1 CC1G: Capture/Compare 1 generation
This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set,
the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the
CC1IF flag was already high.
Bit 0 UG: Update generation
This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: Reinitialize the counter and generates an update of the registers. Note that the prescaler
counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if
the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload
value (TIMx_ARR) if DIR=1 (downcounting).
26.4.7
TIM1/TIM8 capture/compare mode register 1 (TIMx_CCMR1)
Address offset: 0x18
Reset value: 0x0000 0000
The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. So you must take care that the same bit
can have a different meaning for the input stage and for the output stage.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
OC2M[3]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
OC1M[3]
Res.
15
14
OC2
CE
13
12
OC2M[2:0]
IC2F[3:0]
rw
rw
rw
11
10
OC2
PE
OC2
FE
9
Res.
8
CC2S[1:0]
7
6
OC1
CE
rw
rw
4
OC1M[2:0]
IC2PSC[1:0]
rw
5
IC1F[3:0]
rw
rw
rw
rw
rw
3
2
OC1
PE
OC1
FE
1
0
CC1S[1:0]
IC1PSC[1:0]
rw
rw
rw
rw
rw
Output compare mode:
Bits 31:25 Reserved, must be kept at reset value.
Bit 24 OC2M[3]: Output Compare 2 mode - bit 3
Bits 23:17 Reserved, must be kept at reset value.
Bits16 OC1M[3]: Output Compare 1 mode - bit 3
Refer to OC1M description on bits 6:4
DocID024597 Rev 3
823/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Bit 15 OC2CE: Output Compare 2 clear enable
Bits 14:12 OC2M[2:0]: Output Compare 2 mode
Bit 11 OC2PE: Output Compare 2 preload enable
Bit 10 OC2FE: Output Compare 2 fast enable
Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if
an internal trigger input is selected through the TS bit (TIMx_SMCR register)
Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in TIMx_CCER).
Bit 7 OC1CE: Output Compare 1 clear enable
OC1CE: Output Compare 1 Clear Enable
0: OC1Ref is not affected by the ETRF Input
1: OC1Ref is cleared as soon as a High level is detected on ETRF input
824/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Bits 6:4 OC1M: Output Compare 1 mode
These bits define the behavior of the output reference signal OC1REF from which OC1 and
OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends on
CC1P and CC1NP bits.
0000: Frozen - The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing
base).
0001: Set channel 1 to active level on match. OC1REF signal is forced high when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
0010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
0011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1.
0100: Force inactive level - OC1REF is forced low.
0101: Force active level - OC1REF is forced high.
0110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNTTIMx_CCR1 else active (OC1REF=’1’).
0111: PWM mode 2 - In upcounting, channel 1 is inactive as long as
TIMx_CNTTIMx_CCR1 else inactive.
1000: Retrigerrable OPM mode 1 - In up-counting mode, the channel is active until a trigger
event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 1
and the channels becomes active again at the next update. In down-counting mode, the
channel is inactive until a trigger event is detected (on TRGI signal). Then, a comparison is
performed as in PWM mode 1 and the channels becomes inactive again at the next update.
1001: Retrigerrable OPM mode 2 - In up-counting mode, the channel is inactive until a
trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM
mode 2 and the channels becomes inactive again at the next update. In down-counting
mode, the channel is active until a trigger event is detected (on TRGI signal). Then, a
comparison is performed as in PWM mode 1 and the channels becomes active again at the
next update.
1010: Reserved,
1011: Reserved,
1100: Combined PWM mode 1 - OC1REF has the same behavior as in PWM mode 1.
OC1REFC is the logical OR between OC1REF and OC2REF.
1101: Combined PWM mode 2 - OC1REF has the same behavior as in PWM mode 2.
OC1REFC is the logical AND between OC1REF and OC2REF.
1110: Asymmetric PWM mode 1 - OC1REF has the same behavior as in PWM mode 1.
OC1REFC outputs OC1REF when the counter is counting up, OC2REF when it is counting
down.
1111: Asymmetric PWM mode 2 - OC1REF has the same behavior as in PWM mode 2.
OC1REFC outputs OC1REF when the counter is counting up, OC2REF when it is counting
down.
Note: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK
bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in output).
Note: In PWM mode, the OCREF level changes only when the result of the comparison
changes or when the output compare mode switches from “frozen” mode to “PWM”
mode.
Note: On channels having a complementary output, this bit field is preloaded. If the CCPC bit
is set in the TIMx_CR2 register then the OC1M active bits take the new value from the
preloaded bits only when a COM event is generated.
DocID024597 Rev 3
825/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Bit 3 OC1PE: Output Compare 1 preload enable
0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken in account immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded in the active register at each update event.
Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed
(LOCK bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in
output).
2: The PWM mode can be used without validating the preload register only in one
pulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed.
Bit 2 OC1FE: Output Compare 1 fast enable
This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is
ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is
5 clock cycles.
1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is
set to the compare level independently from the result of the comparison. Delay to sample
the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if
the channel is configured in PWM1 or PWM2 mode.
Bits 1:0 CC1S: Capture/Compare 1 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)
Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in TIMx_CCER).
Input capture mode
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:12 IC2F: Input capture 2 filter
Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler
Bits 9:8 CC2S: Capture/Compare 2 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an
internal trigger input is selected through TS bit (TIMx_SMCR register)
Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in TIMx_CCER).
826/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Bits 7:4 IC1F[3:0]: Input capture 1 filter
This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied to
TI1. The digital filter is made of an event counter in which N consecutive events are needed to validate
a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8
Bits 3:2 IC1PSC: Input capture 1 prescaler
This bit-field defines the ratio of the prescaler acting on CC1 input (IC1). The prescaler is reset as soon
as CC1E=’0’ (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events
Bits 1:0 CC1S: Capture/Compare 1 Selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an
internal trigger input is selected through TS bit (TIMx_SMCR register)
Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in TIMx_CCER).
DocID024597 Rev 3
827/1693
856
Advanced-control timers (TIM1/TIM8)
26.4.8
RM0351
TIM1/TIM8 capture/compare mode register 2 (TIMx_CCMR2)
Address offset: 0x1C
Reset value: 0x0000 0000
Refer to the above CCMR1 register description.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
OC4M[3]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
OC3M[3]
Res.
Res.
rw
15
14
OC4
CE
13
12
OC4M[2:0]
IC4F[3:0]
rw
rw
rw
11
10
OC4
PE
OC4
FE
9
rw
8
CC4S[1:0]
7
6
OC3
CE.
rw
rw
4
OC3M[2:0]
IC4PSC[1:0]
rw
5
IC3F[3:0]
rw
rw
rw
rw
rw
3
2
OC3
PE
OC3
FE
1
0
CC3S[1:0]
IC3PSC[1:0]
rw
rw
rw
rw
rw
Output compare mode
Bits 31:25 Reserved, must be kept at reset value.
Bit 24 OC4M[3]: Output Compare 4 mode - bit 3
Bits 23:17 Reserved, must be kept at reset value.
Bit 16 OC3M[3]: Output Compare 3 mode - bit 3
Bit 15 OC4CE: Output compare 4 clear enable
Bits 14:12 OC4M: Output compare 4 mode
Bit 11 OC4PE: Output compare 4 preload enable
Bit 10 OC4FE: Output compare 4 fast enable
Bits 9:8 CC4S: Capture/Compare 4 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)
Note: CC4S bits are writable only when the channel is OFF (CC4E = ‘0’ in TIMx_CCER).
Bit 7 OC3CE: Output compare 3 clear enable
Bits 6:4 OC3M: Output compare 3 mode
Bit 3 OC3PE: Output compare 3 preload enable
Bit 2 OC3FE: Output compare 3 fast enable
Bits 1:0 CC3S: Capture/Compare 3 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)
Note: CC3S bits are writable only when the channel is OFF (CC3E = ‘0’ in TIMx_CCER).
828/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Input capture mode
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:12 IC4F: Input capture 4 filter
Bits 11:10 IC4PSC: Input capture 4 prescaler
Bits 9:8 CC4S: Capture/Compare 4 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)
Note: CC4S bits are writable only when the channel is OFF (CC4E = ‘0’ in TIMx_CCER).
Bits 7:4 IC3F: Input capture 3 filter
Bits 3:2 IC3PSC: Input capture 3 prescaler
Bits 1:0 CC3S: Capture/compare 3 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)
Note: CC3S bits are writable only when the channel is OFF (CC3E = ‘0’ in TIMx_CCER).
26.4.9
TIM1/TIM8 capture/compare enable register (TIMx_CCER)
Address offset: 0x20
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
CC6P
CC6E
Res.
Res.
CC5P
CC5E
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
CC4NP
Res.
CC4P
CC4E
CC3P
CC3E
CC2P
CC2E
CC1P
CC1E
rw
rw
rw
rw
rw
rw
rw
rw
rw
CC3NP CC3NE
rw
rw
CC2NP CC2NE
rw
rw
CC1NP CC1NE
rw
rw
Bits 31:22 Reserved, must be kept at reset value.
Bit 21 CC6P: Capture/Compare 6 output polarity
Refer to CC1P description
Bit 20 CC6E: Capture/Compare 6 output enable
Refer to CC1E description
Bits 19:18 Reserved, must be kept at reset value.
Bit 17 CC5P: Capture/Compare 5 output polarity
Refer to CC1P description
Bit 16 CC5E: Capture/Compare 5 output enable
Refer to CC1E description
DocID024597 Rev 3
829/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Bit 15 CC4NP: Capture/Compare 4 complementary output polarity
Refer to CC1NP description
Bit 14 Reserved, must be kept at reset value.
Bit 13 CC4P: Capture/Compare 4 output polarity
Refer to CC1P description
Bit 12 CC4E: Capture/Compare 4 output enable
Refer to CC1E description
Bit 11 CC3NP: Capture/Compare 3 complementary output polarity
Refer to CC1NP description
Bit 10 CC3NE: Capture/Compare 3 complementary output enable
Refer to CC1NE description
Bit 9 CC3P: Capture/Compare 3 output polarity
Refer to CC1P description
Bit 8 CC3E: Capture/Compare 3 output enable
Refer to CC1E description
Bit 7 CC2NP: Capture/Compare 2 complementary output polarity
Refer to CC1NP description
Bit 6 CC2NE: Capture/Compare 2 complementary output enable
Refer to CC1NE description
Bit 5 CC2P: Capture/Compare 2 output polarity
Refer to CC1P description
Bit 4 CC2E: Capture/Compare 2 output enable
Refer to CC1E description
Bit 3 CC1NP: Capture/Compare 1 complementary output polarity
CC1 channel configured as output:
0: OC1N active high.
1: OC1N active low.
CC1 channel configured as input:
This bit is used in conjunction with CC1P to define the polarity of TI1FP1 and TI2FP1. Refer to
CC1P description.
Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits
in TIMx_BDTR register) and CC1S=”00” (channel configured as output).
Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is
set in the TIMx_CR2 register then the CC1NP active bit takes the new value from the
preloaded bit only when a Commutation event is generated.
Bit 2 CC1NE: Capture/Compare 1 complementary output enable
0: Off - OC1N is not active. OC1N level is then function of MOE, OSSI, OSSR, OIS1, OIS1N
and CC1E bits.
1: On - OC1N signal is output on the corresponding output pin depending on MOE, OSSI,
OSSR, OIS1, OIS1N and CC1E bits.
Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is
set in the TIMx_CR2 register then the CC1NE active bit takes the new value from the
preloaded bit only when a Commutation event is generated.
830/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Bit 1 CC1P: Capture/Compare 1 output polarity
CC1 channel configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel configured as input: CC1NP/CC1P bits select the active polarity of TI1FP1
and TI2FP1 for trigger or capture operations.
00: non-inverted/rising edge. The circuit is sensitive to TIxFP1 rising edge (capture or trigger
operations in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger operation
in gated mode or encoder mode).
01: inverted/falling edge. The circuit is sensitive to TIxFP1 falling edge (capture or trigger
operations in reset, external clock or trigger mode), TIxFP1 is inverted (trigger operation in
gated mode or encoder mode).
10: reserved, do not use this configuration.
11: non-inverted/both edges/ The circuit is sensitive to both TIxFP1 rising and falling edges
(capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is not inverted
(trigger operation in gated mode). This configuration must not be used in encoder mode.
Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits
in TIMx_BDTR register).
Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is
set in the TIMx_CR2 register then the CC1P active bit takes the new value from the
preloaded bit only when a Commutation event is generated.
Bit 0 CC1E: Capture/Compare 1 output enable
CC1 channel configured as output:
0: Off - OC1 is not active. OC1 level is then function of MOE, OSSI, OSSR, OIS1, OIS1N
and CC1NE bits.
1: On - OC1 signal is output on the corresponding output pin depending on MOE, OSSI,
OSSR, OIS1, OIS1N and CC1NE bits.
CC1 channel configured as input: This bit determines if a capture of the counter value can
actually be done into the input capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled.
1: Capture enabled.
Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is
set in the TIMx_CR2 register then the CC1E active bit takes the new value from the
preloaded bit only when a Commutation event is generated.
DocID024597 Rev 3
831/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Table 149. Output control bits for complementary OCx and OCxN channels with break feature
Output states(1)
Control bits
MOE bit OSSI bit OSSR bit CCxE bit CCxNE bit
1
0
0
Output disabled (not driven by the timer: Hi-Z)
OCx=0, OCxN=0
0
0
1
Output disabled (not driven
OCxREF + Polarity
by the timer: Hi-Z)
OCxN = OCxREF xor CCxNP
OCx=0
0
1
0
OCxREF + Polarity
OCx=OCxREF xor CCxP
Output Disabled (not driven by
the timer: Hi-Z)
OCxN=0
X
1
1
OCREF + Polarity + deadtime
Complementary to OCREF (not
OCREF) + Polarity + dead-time
1
0
1
Off-State (output enabled
with inactive state)
OCx=CCxP
OCxREF + Polarity
OCxN = OCxREF x or CCxNP
1
1
0
OCxREF + Polarity
OCx=OCxREF xor CCxP
Off-State (output enabled with
inactive state)
OCxN=CCxNP
X
X
0
0
0
1
1
0
1
1
X
1
OCxN output state
X
0
0
OCx output state
X
Output Disabled (not driven by the timer: Hi-Z)
OCx=CCxP, OCxN=CCxNP
Off-State (output enabled with inactive state)
Asynchronously: OCx=CCxP, OCxN=CCxNP (if BRK or
BRK2 is triggered).
Then (this is valid only if BRK is triggered), if the clock is
present: OCx=OISx and OCxN=OISxN after a dead-time,
assuming that OISx and OISxN do not correspond to OCX
and OCxN both in active state (may cause a short circuit
when driving switches in half-bridge configuration).
Note: BRK2 can only be used if OSSI = OSSR = 1.
1. When both outputs of a channel are not used (control taken over by GPIO), the OISx, OISxN, CCxP and CCxNP bits must
be kept cleared.
Note:
832/1693
The state of the external I/O pins connected to the complementary OCx and OCxN channels
depends on the OCx and OCxN channel state and the GPIO registers.
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
26.4.10
TIM1/TIM8 counter (TIMx_CNT)
Address offset: 0x24
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
UIFCPY
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Re s.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
r
CNT[15:0]
rw
Bit 31 UIFCPY: UIF copy
This bit is a read-only copy of the UIF bit of the TIMx_ISR register. If the UIFREMAP bit in the
TIMxCR1 is reset, bit 31 is reserved and read at 0.
Bits 30:16 Reserved, must be kept at reset value.
Bits 15:0 CNT[15:0]: Counter value
26.4.11
TIM1/TIM8 prescaler (TIMx_PSC)
Address offset: 0x28
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
PSC[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 15:0 PSC[15:0]: Prescaler value
The counter clock frequency (CK_CNT) is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register or through trigger
controller when configured in “reset mode”).
26.4.12
TIM1/TIM8 auto-reload register (TIMx_ARR)
Address offset: 0x2C
Reset value: 0xFFFF
15
14
13
12
11
10
9
8
rw
rw
rw
rw
rw
rw
rw
rw
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
ARR[15:0]
rw
Bits 15:0 ARR[15:0]: Prescaler value
ARR is the value to be loaded in the actual auto-reload register.
Refer to the Section 26.3.1: Time-base unit on page 754 for more details about ARR update
and behavior.
The counter is blocked while the auto-reload value is null.
DocID024597 Rev 3
833/1693
856
Advanced-control timers (TIM1/TIM8)
26.4.13
RM0351
TIM1/TIM8 repetition counter register (TIMx_RCR)
Address offset: 0x30
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
REP[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 15:0 REP[15:0]: Repetition counter value
These bits allow the user to set-up the update rate of the compare registers (i.e. periodic
transfers from preload to active registers) when preload registers are enable, as well as the
update interrupt generation rate, if this interrupt is enable.
Each time the REP_CNT related downcounter reaches zero, an update event is generated
and it restarts counting from REP value. As REP_CNT is reloaded with REP value only at the
repetition update event U_RC, any write to the TIMx_RCR register is not taken in account until
the next repetition update event.
It means in PWM mode (REP+1) corresponds to:
the number of PWM periods in edge-aligned mode
the number of half PWM period in center-aligned mode.
26.4.14
TIM1/TIM8 capture/compare register 1 (TIMx_CCR1)
Address offset: 0x34
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
CCR1[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 15:0 CCR1[15:0]: Capture/Compare 1 value
If channel CC1 is configured as output:: CCR1 is the value to be loaded in the actual
capture/compare 1 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit
OC1PE). Else the preload value is copied in the active capture/compare 1 register when an
update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC1 output.
If channel CC1 is configured as input:: CR1 is the counter value transferred by the last input
capture 1 event (IC1).
834/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
26.4.15
TIM1/TIM8 capture/compare register 2 (TIMx_CCR2)
Address offset: 0x38
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
CCR2[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 15:0 CCR2[15:0]: Capture/Compare 2 value
If channel CC2 is configured as output: CCR2 is the value to be loaded in the actual
capture/compare 2 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit
OC2PE). Else the preload value is copied in the active capture/compare 2 register when an
update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC2 output.
If channel CC2 is configured as input: CCR2 is the counter value transferred by the last
input capture 2 event (IC2).
26.4.16
TIM1/TIM8 capture/compare register 3 (TIMx_CCR3)
Address offset: 0x3C
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
CCR3[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 15:0 CCR3[15:0]: Capture/Compare value
If channel CC3 is configured as output: CCR3 is the value to be loaded in the actual
capture/compare 3 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit
OC3PE). Else the preload value is copied in the active capture/compare 3 register when an
update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC3 output.
If channel CC3 is configured as input: CCR3 is the counter value transferred by the last
input capture 3 event (IC3).
DocID024597 Rev 3
835/1693
856
Advanced-control timers (TIM1/TIM8)
26.4.17
RM0351
TIM1/TIM8 capture/compare register 4 (TIMx_CCR4)
Address offset: 0x40
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
CCR4[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 15:0 CCR4[15:0]: Capture/Compare value
If channel CC4 is configured as output: CCR4 is the value to be loaded in the actual
capture/compare 4 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit
OC4PE). Else the preload value is copied in the active capture/compare 4 register when an
update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC4 output.
If channel CC4 is configured as input: CCR4 is the counter value transferred by the last
input capture 4 event (IC4).
26.4.18
TIM1/TIM8 break and dead-time register (TIMx_BDTR)
Address offset: 0x44
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
R e s.
Res.
Res.
Res.
Res.
Res.
BK2P
BK2E
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
MOE
AOE
BKP
BKE
OSSR
OSSI
rw
rw
rw
rw
rw
rw
Note:
23
22
21
LOCK[1:0]
rw
rw
20
19
BK2F[3:0]
18
17
16
BKF[3:0]
DTG[7:0]
rw
As the bits BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR and DTG[7:0]
can be write-locked depending on the LOCK configuration, it can be necessary to configure
all of them during the first write access to the TIMx_BDTR register.
Bits 31:26 Reserved.
Bit 25 BK2P: Break 2 polarity
0: Break input BRK2 is active low
1: Break input BRK2 is active high
Note: This bit cannot be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.
836/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Bit 24 BK2E: Break 2 enable
This bit enables the complete break 2 protection (including all sources connected to bk_acth
and BKIN sources, as per).
0: Break2 function disabled
1: Break2 function enabled
Note: The BRKIN2 must only be used with OSSR = OSSI = 1.
Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in
TIMx_BDTR register).
Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.
Bits 23:20 BK2F[3:0]: Break 2 filter
This bit-field defines the frequency used to sample BRK2 input and the length of the digital filter
applied to BRK2. The digital filter is made of an event counter in which N consecutive events
are needed to validate a transition on the output:
0000: No filter, BRK2 acts asynchronously
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8
Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in
TIMx_BDTR register).
Bits 19:16 BKF[3:0]: Break filter
This bit-field defines the frequency used to sample BRK input and the length of the digital filter
applied to BRK. The digital filter is made of an event counter in which N consecutive events are
needed to validate a transition on the output:
0000: No filter, BRK acts asynchronously
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8
Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in
TIMx_BDTR register).
DocID024597 Rev 3
837/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Bit 15 MOE: Main output enable
This bit is cleared asynchronously by hardware as soon as one of the break inputs is active
(BRK or BRK2). It is set by software or automatically depending on the AOE bit. It is acting only
on the channels which are configured in output.
0: In response to a break 2 event. OC and OCN outputs are disabled
In response to a break event or if MOE is written to 0: OC and OCN outputs are disabled or
forced to idle state depending on the OSSI bit.
1: OC and OCN outputs are enabled if their respective enable bits are set (CCxE, CCxNE in
TIMx_CCER register).
See OC/OCN enable description for more details (Section 26.4.9: TIM1/TIM8
capture/compare enable register (TIMx_CCER) on page 829).
Bit 14 AOE: Automatic output enable
0: MOE can be set only by software
1: MOE can be set by software or automatically at the next update event (if none of the break
inputs BRK and BRK2 is active)
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
Bit 13 BKP: Break polarity
0: Break input BRK is active low
1: Break input BRK is active high
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.
Bit 12 BKE: Break enable
This bit enables the complete break protection (including all sources connected to bk_acth and
BKIN sources, as per).
0: Break function disabled
1: Break function enabled
Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in
TIMx_BDTR register).
Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.
Bit 11 OSSR: Off-state selection for Run mode
This bit is used when MOE=1 on channels having a complementary output which are
configured as outputs. OSSR is not implemented if no complementary output is implemented in
the timer.
See OC/OCN enable description for more details (Section 26.4.9: TIM1/TIM8 capture/compare
enable register (TIMx_CCER) on page 829).
0: When inactive, OC/OCN outputs are disabled (the timer releases the output control which
is taken over by the GPIO logic, which forces a Hi-Z state).
1: When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1
or CCxNE=1 (the output is still controlled by the timer).
Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK
bits in TIMx_BDTR register).
838/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Bit 10 OSSI: Off-state selection for Idle mode
This bit is used when MOE=0 due to a break event or by a software write, on channels
configured as outputs.
See OC/OCN enable description for more details (Section 26.4.9: TIM1/TIM8 capture/compare
enable register (TIMx_CCER) on page 829).
0: When inactive, OC/OCN outputs are disabled (the timer releases the output control which
is taken over by the GPIO logic and which imposes a Hi-Z state).
1: When inactive, OC/OCN outputs are first forced with their inactive level then forced to their
idle level after the deadtime. The timer maintains its control over the output.
Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK
bits in TIMx_BDTR register).
Bits 9:8 LOCK[1:0]: Lock configuration
These bits offer a write protection against software errors.
00: LOCK OFF - No bit is write protected.
01: LOCK Level 1 = DTG bits in TIMx_BDTR register, OISx and OISxN bits in TIMx_CR2
register and BKE/BKP/AOE bits in TIMx_BDTR register can no longer be written.
10: LOCK Level 2 = LOCK Level 1 + CC Polarity bits (CCxP/CCxNP bits in TIMx_CCER
register, as long as the related channel is configured in output through the CCxS bits) as well
as OSSR and OSSI bits can no longer be written.
11: LOCK Level 3 = LOCK Level 2 + CC Control bits (OCxM and OCxPE bits in
TIMx_CCMRx registers, as long as the related channel is configured in output through the
CCxS bits) can no longer be written.
Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register
has been written, their content is frozen until the next reset.
Bits 7:0 DTG[7:0]: Dead-time generator setup
This bit-field defines the duration of the dead-time inserted between the complementary
outputs. DT correspond to this duration.
DTG[7:5]=0xx => DT=DTG[7:0]x tdtg with tdtg=tDTS.
DTG[7:5]=10x => DT=(64+DTG[5:0])xtdtg with Tdtg=2xtDTS.
DTG[7:5]=110 => DT=(32+DTG[4:0])xtdtg with Tdtg=8xtDTS.
DTG[7:5]=111 => DT=(32+DTG[4:0])xtdtg with Tdtg=16xtDTS.
Example if TDTS=125ns (8MHz), dead-time possible values are:
0 to 15875 ns by 125 ns steps,
16 us to 31750 ns by 250 ns steps,
32 us to 63us by 1 us steps,
64 us to 126 us by 2 us steps
Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BDTR register).
DocID024597 Rev 3
839/1693
856
Advanced-control timers (TIM1/TIM8)
26.4.19
RM0351
TIM1/TIM8 DMA control register (TIMx_DCR)
Address offset: 0x48
Reset value: 0x0000
15
14
13
Res.
Res.
Res.
12
11
10
9
8
DBL[4:0]
rw
rw
rw
rw
7
6
5
Res.
Res.
Res.
rw
4
3
2
1
0
rw
rw
DBA[4:0]
rw
rw
rw
Bits 15:13 Reserved, must be kept at reset value.
Bits 12:8 DBL[4:0]: DMA burst length
This 5-bit vector defines the length of DMA transfers (the timer recognizes a burst transfer
when a read or a write access is done to the TIMx_DMAR address), i.e. the number of
transfers. Transfers can be in half-words or in bytes (see example below).
00000: 1 transfer
00001: 2 transfers
00010: 3 transfers
...
10001: 18 transfers
Example: Let us consider the following transfer: DBL = 7 bytes & DBA = TIM2_CR1.
– If DBL = 7 bytes and DBA = TIM2_CR1 represents the address of the byte to be transferred,
the address of the transfer should be given by the following equation:
(TIMx_CR1 address) + DBA + (DMA index), where DMA index = DBL
In this example, 7 bytes are added to (TIMx_CR1 address) + DBA, which gives us the address
from/to which the data will be copied. In this case, the transfer is done to 7 registers starting
from the following address: (TIMx_CR1 address) + DBA
According to the configuration of the DMA Data Size, several cases may occur:
– If you configure the DMA Data Size in half-words, 16-bit data will be transferred to each of
the 7 registers.
– If you configure the DMA Data Size in bytes, the data will also be transferred to 7 registers:
the first register will contain the first MSB byte, the second register, the first LSB byte and so
on. So with the transfer Timer, you also have to specify the size of data transferred by DMA.
Bits 7:5 Reserved, must be kept at reset value.
Bits 4:0 DBA[4:0]: DMA base address
This 5-bits vector defines the base-address for DMA transfers (when read/write access are
done through the TIMx_DMAR address). DBA is defined as an offset starting from the address
of the TIMx_CR1 register.
Example:
00000: TIMx_CR1,
00001: TIMx_CR2,
00010: TIMx_SMCR,
...
840/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
26.4.20
TIM1/TIM8 DMA address for full transfer (TIMx_DMAR)
Address offset: 0x4C
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
DMAB[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 15:0 DMAB[15:0]: DMA register for burst accesses
A read or write operation to the DMAR register accesses the register located at the address
(TIMx_CR1 address) + (DBA + DMA index) x 4
where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base
address configured in TIMx_DCR register, DMA index is automatically controlled by the DMA
transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR).
26.4.21
TIM1 option register 1 (TIM1_OR1)
Address offset: 0x50
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
TI1_R
MP
rw
ETR_ADC3_RMP
rw
rw
ETR_ADC1_RMP
rw
rw
Bits 31:5 Reserved, must be kept at reset value
Bit 4 TI1_RMP: Input Capture 1 remap
0: TIM1 input capture 1 is connected to I/O
1: TIM1 input capture 1 is connected to COMP1 output.
Bits 3:2 ETR_ADC3_RMP: External trigger remap on ADC3 analog watchdog
00: TIM1_ETR is not connected to ADC3 AWDx. This configuration must be selected when
the ETR comes from the I/O.
01: TIM1_ETR is connected to ADC3 AWD1.
10: TIM1_ETR is connected to ADC3 AWD2.
11: TIM1_ETR is connected to ADC3 AWD3.
Note: ADC3 AWDx sources are ‘ORed’ with the TIM1_ETR input signals. When ADC3 AWDx
is used, it is necessary to make sure that the corresponding TIM1_ETR input pin is not
enabled in the alternate function controller. Refer to Figure 210: TIM1 ETR input
circuitry.
DocID024597 Rev 3
841/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Bits 1:0 ETR_ADC1_RMP: External trigger remap on ADC1 analog watchdog
00 : TIM1_ETR is not connected to ADC1 AWDx. This configuration must be selected when
the ETR comes from the I/O.
01 : TIM1_ETR is connected to ADC1 AWD1.
10 : TIM1_ETR is connected to ADC1 AWD2.
11 : TIM1_ETR is connected to ADC1 AWD3.
Note: ADC1 AWDx sources are ‘ORed’ with the TIM1_ETR input signals. When ADC1 AWDx
is used, it is necessary to make sure that the corresponding TIM1_ETR input pin is not
enabled in the alternate function controller. Refer to Figure 210: TIM1 ETR input
circuitry.
26.4.22
TIM8 option register 1 (TIM8_OR1)
Address offset: 0x50
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
TI1_
RMP
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
ETR_ADC3_RMP
rw
rw
ETR_ADC2_RMP
rw
rw
Bits 31:5 Reserved, must be kept at reset value
Bit 4 TI1_RMP: Input Capture 1 remap
0: TIM8 input capture 1 is connected to I/O
1: TIM8 input capture 1 is connected to COMP2 output.
Bits 3:2 ETR_ADC3_RMP: External trigger remap on ADC3 analog watchdog
00: TIM8_ETR is not connected to ADC3 AWDx. This configuration must be selected when
the ETR comes from the I/O.
01: TIM8_ETR is connected to ADC3 AWD1.
10: TIM8_ETR is connected to ADC3 AWD2.
11: TIM8_ETR is connected to ADC3 AWD3.
Note: ADC3 AWDx sources are ‘ORed’ with the TIM8_ETR input signals. When ADC3 AWDx
is used, it is necessary to make sure that the corresponding TIM8_ETR input pin is not
enabled in the alternate function controller. Refer to Figure 211: TIM8 ETR input
circuitry.
Bits 1:0 ETR_ADC2_RMP: External trigger remap on ADC1 analog watchdog
00 : TIM8_ETR is not connected to ADC2 AWDx. This configuration must be selected when
the ETR comes from the I/O.
01 : TIM8_ETR is connected to ADC2 AWD1.
10 : TIM8_ETR is connected to ADC2 AWD2.
11 : TIM8_ETR is connected to ADC2 AWD3.
Note: ADC2 AWDx sources are ‘ORed’ with the TIM8_ETR input signals. When ADC2 AWDx
is used, it is necessary to make sure that the corresponding TIM8_ETR input pin is not
enabled in the alternate function controller. Refer to Figure 211: TIM8 ETR input
circuitry.
842/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
26.4.23
TIM1/TIM8 capture/compare mode register 3 (TIMx_CCMR3)
Address offset: 0x54
Reset value: 0x0000 0000
Refer to the above CCMR1 register description. Channels 5 and 6 can only be configured in
output.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
OC6M[3]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
OC5M[3]
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
OC5
CE.
Res.
Res.
rw
OC6
CE
rw
OC6M[2:0]
rw
rw
rw
OC6
PE
OC6FE
rw
rw
Res.
rw
OC5M[2:0]
rw
rw
rw
OC5PE OC5FE
rw
rw
rw
Output compare mode
Bits 31:25 Reserved, must be kept at reset value.
Bit 24 OC6M[3]: Output Compare 6 mode - bit 3
Bits 23:17 Reserved, must be kept at reset value.
Bit 16 OC5M[3]: Output Compare 5 mode - bit 3
Bit 15 OC6CE: Output compare 6 clear enable
Bits 14:12 OC6M: Output compare 6 mode
Bit 11 OC6PE: Output compare 6 preload enable
Bit 10 OC6FE: Output compare 6 fast enable
Bits 9:8 Reserved, must be kept at reset value.
Bit 7 OC5CE: Output compare 5 clear enable
Bits 6:4 OC5M: Output compare 5 mode
Bit 3 OC5PE: Output compare 5 preload enable
Bit 2 OC5FE: Output compare 5 fast enable
Bits 1:0 Reserved, must be kept at reset value.
26.4.24
TIM1/TIM8 capture/compare register 5 (TIMx_CCR5)
Address offset: 0x58
Reset value: 0x0000 0000
31
30
29
GC5C3 GC5C2 GC5C1
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
rw
rw
rw
rw
rw
rw
rw
CCR5[15:0]
rw
rw
DocID024597 Rev 3
843/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Bit 31 GC5C3: Group Channel 5 and Channel 3
Distortion on Channel 3 output:
0: No effect of OC5REF on OC3REFC
1: OC3REFC is the logical AND of OC3REFC and OC5REF
This bit can either have immediate effect or be preloaded and taken into account after an
update event (if preload feature is selected in TIMxCCMR2).
Note: it is also possible to apply this distortion on combined PWM signals.
Bit 30 GC5C2: Group Channel 5 and Channel 2
Distortion on Channel 2 output:
0: No effect of OC5REF on OC2REFC
1: OC2REFC is the logical AND of OC2REFC and OC5REF
This bit can either have immediate effect or be preloaded and taken into account after an
update event (if preload feature is selected in TIMxCCMR1).
Note: it is also possible to apply this distortion on combined PWM signals.
Bit 29 GC5C1: Group Channel 5 and Channel 1
Distortion on Channel 1 output:
0: No effect of OC5REF on OC1REFC5
1: OC1REFC is the logical AND of OC1REFC and OC5REF
This bit can either have immediate effect or be preloaded and taken into account after an
update event (if preload feature is selected in TIMxCCMR1).
Note: it is also possible to apply this distortion on combined PWM signals.
Bits 28:16 Reserved, must be kept at reset value.
Bits 15:0 CCR5[15:0]: Capture/Compare 5 value
CCR5 is the value to be loaded in the actual capture/compare 5 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR3 register (bit
OC5PE). Else the preload value is copied in the active capture/compare 5 register when an
update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC5 output.
844/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
26.4.25
TIM1/TIM8 capture/compare register 6 (TIMx_CCR6)
Address offset: 0x5C
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
CCR6[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 15:0 CCR6[15:0]: Capture/Compare 6 value
CCR6 is the value to be loaded in the actual capture/compare 6 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR3 register (bit
OC6PE). Else the preload value is copied in the active capture/compare 6 register when an
update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC6 output.
26.4.26
TIM1 option register 2 (TIM1_OR2)
Address offset: 0x60
Reset value: 0x0000 0001
31
Res.
30
Res.
29
Res.
28
Res.
27
Res.
26
Res.
25
Res.
24
Res.
23
Res.
22
Res.
21
Res.
20
Res.
19
Res.
18
Res.
17
16
Res.
ETR
SEL
[2]
rw
15
14
ETRSEL[1:0]
rw
rw
13
Res.
12
Res.
11
10
9
8
BK
BK
BKDFB
BKINP
CMP2P CMP1P
K0E
rw
rw
rw
7
Res.
6
Res.
rw
5
Res.
4
Res.
3
Res.
2
1
0
BK
BK
BKINE
CMP2E CMP1E
rw
rw
rw
Bits 31:17 Reserved, must be kept at reset value
Bits 16:14 ETRSEL[2:0]: ETR source selection
This bit selects the ETR input source.
000: ETR legacy mode
001: COMP1 output connected to ETR input
010: COMP2 output connected to ETR input
Other codes reserved
Note: These bits can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bits 13:12 Reserved, must be kept at reset value
Bit 11 BKCMP2P: BRK COMP2 input polarity
This bit selects the COMP2 input sensitivity. It must be programmed together with the BKP
polarity bit.
0: COMP2 input is active high
1: COMP2 input is active low
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
DocID024597 Rev 3
845/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Bit 10 BKCMP1P: BRK COMP1 input polarity
This bit selects the COMP1 input sensitivity. It must be programmed together with the BKP
polarity bit.
0: COMP1 input is active high
1: COMP1 input is active low
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bit 9 BKINP: BRK BKIN input polarity
This bit selects the BKIN alternate function input sensitivity. It must be programmed together
with the BKP polarity bit.
0: BKIN input is active high
1: BKIN input is active low
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bit 8 BKDFBK0E: BRK DFSDM_BREAK[0] enable
This bit enables the DFSDM_BREAK[0] for the timer’s BRK input. DFSDM_BREAK[0] output
is ‘ORed’ with the other BRK sources.
0: DFSDM_BREAK[0] input disabled
1: DFSDM_BREAK[0] input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bits 7:3 Reserved, must be kept at reset value
Bit 2 BKCMP2E: BRK COMP2 enable
This bit enables the COMP2 for the timer’s BRK input. COMP2 output is ‘ORed’ with the other
BRK sources.
0: COMP2 input disabled
1: COMP2 input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bit 1 BKCMP1E: BRK COMP1 enable
This bit enables the COMP1 for the timer’s BRK input. COMP1 output is ‘ORed’ with the other
BRK sources.
0: COMP1 input disabled
1: COMP1 input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bit 0 BKINE: BRK BKIN input enable
This bit enables the BKIN alternate function input for the timer’s BRK input. BKIN input is
‘ORed’ with the other BRK sources.
0: BKIN input disabled
1: BKIN input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Note:
846/1693
Refer to Figure 210: TIM1 ETR input circuitry and to Figure 232: Break and Break2 circuitry
overview.
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
26.4.27
TIM1 option register 3 (TIM1_OR3)
Address offset: 0x64
Reset value: 0x0000 0001
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
BK2C
MP2P
BK2C
MP1P
Res.
Res.
Res.
Res.
Res.
rw
rw
BK2IN BK2DFB
P
K1E
rw
rw
BK2CMP BK2CM
2E
P1E
rw
rw
BK2INE
rw
Bits 31:12 Reserved, must be kept at reset value
Bit 11 BK2CMP2P: BRK2 COMP2 input polarity
This bit selects the COMP2 input sensitivity. It must be programmed together with the BKP2
polarity bit.
0: COMP2 input is active low
1: COMP2 input is active high
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bit 10 BK2CMP1P: BRK2 COMP1 input polarity
This bit selects the COMP1 input sensitivity. It must be programmed together with the BKP2
polarity bit.
0: COMP1 input is active low
1: COMP1 input is active high
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bit 9 BK2INP: BRK2 BKIN2 input polarity
This bit selects the BKIN2 alternate function input sensitivity. It must be programmed together
with the BKP2 polarity bit.
0: BKIN2 input is active low
1: BKIN2 input is active high
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bit 8 BK2DFBK1E: BRK2 DFSDM_BREAK[1] enable
This bit enables the DFSDM_BREAK[1] for the timer’s BRK2 input. DFSDM_BREAK[1] output
is ‘ORed’ with the other BRK2 sources.
0: DFSDM_BREAK[1] input disabled
1: DFSDM_BREAK[1] input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bits 7:3 Reserved, must be kept at reset value
Bit 2 BK2CMP2E: BRK2 COMP2 enable
This bit enables the COMP2 for the timer’s BRK2 input. COMP2 output is ‘ORed’ with the
other BRK2 sources.
0: COMP2 input disabled
1: COMP2 input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
DocID024597 Rev 3
847/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
Bit 1 BK2CMP1E: BRK2 COMP1 enable
This bit enables the COMP1 for the timer’s BRK2 input. COMP1 output is ‘ORed’ with the
other BRK2 sources.
0: COMP1 input disabled
1: COMP1 input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bit 0 BK2INE: BRK2 BKIN input enable
This bit enables the BKIN2 alternate function input for the timer’s BRK2 input. BKIN2 input is
‘ORed’ with the other BRK2 sources.
0: BKIN2 input disabled
1: BKIN2 input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Note:
Refer to Figure 232: Break and Break2 circuitry overview.
26.4.28
TIM8 option register 2 (TIM8_OR2)
Address offset: 0x60
Reset value: 0x0000 0001
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
ETRSEL
[2]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
rw
ETRSEL[1:0]
rw
rw
Res.
Res.
BKDFBK
BKCM BKCM
BKINP
2E
P2P
P1P
rw
rw
rw
Res.
Res.
rw
Res.
Res.
Res.
BKCMP2 BKCMP
E
1E
rw
rw
0
BKINE
rw
Bits 31:17 Reserved, must be kept at reset value
Bits 16:14 ETRSEL[2:0]: ETR source selection
This bit selects the ETR input source.
000: ETR legacy mode
001: COMP1 output connected to ETR input
010: COMP2 output connected to ETR input
Other codes reserved
Note: These bits can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bits 13:12 Reserved, must be kept at reset value
Bit 11 BKCMP2P: BRK COMP2 input polarity
This bit selects the COMP2 input sensitivity. It must be programmed together with the BKP
polarity bit.
0: COMP2 input is active high
1: COMP2 input is active low
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
848/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Bit 10 BKCMP1P: BRK COMP1 input polarity
This bit selects the COMP1 input sensitivity. It must be programmed together with the BKP
polarity bit.
0: COMP1 input is active high
1: COMP1 input is active low
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bit 9 BKINP: BRK BKIN input polarity
This bit selects the BKIN alternate function input sensitivity. It must be programmed together
with the BKP polarity bit.
0: BKIN input is active high
1: BKIN input is active low
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bit 8 BKDFBK2E: BRK DFSDM_BREAK[2] enable
This bit enables the DFSDM_BREAK[2] for the timer’s BRK input. DFSDM_BREAK[2] output
is ‘ORed’ with the other BRK sources.
0: DFSDM_BREAK[2] input disabled
1: DFSDM_BREAK[2] input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bits 7:3 Reserved, must be kept at reset value
Bit 2 BKCMP2E: BRK COMP2 enable
This bit enables the COMP2 for the timer’s BRK input. COMP2 output is ‘ORed’ with the other
BRK sources.
0: COMP2 input disabled
1: COMP2 input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bit 1 BKCMP1E: BRK COMP1 enable
This bit enables the COMP1 for the timer’s BRK input. COMP1 output is ‘ORed’ with the other
BRK sources.
0: COMP1 input disabled
1: COMP1 input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bit 0 BKINE: BRK BKIN input enable
This bit enables the BKIN alternate function input for the timer’s BRK input. BKIN input is
‘ORed’ with the other BRK sources.
0: BKIN input disabled
1: BKIN input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Note:
Refer to Figure 211: TIM8 ETR input circuitry and to Figure 232: Break and Break2 circuitry
overview.
DocID024597 Rev 3
849/1693
856
Advanced-control timers (TIM1/TIM8)
26.4.29
RM0351
TIM8 option register 3 (TIM8_OR3)
Address offset: 0x64
Reset value: 0x0000 0001
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
BK2C
MP2P
BK2C
MP1P
Res.
Res.
Res.
Res.
Res.
rw
rw
BK2IN BK2DFB
P
K3E
rw
rw
BK2CMP BK2CM
2E
P1E
rw
rw
BK2INE
rw
Bits 31:12 Reserved, must be kept at reset value
Bit 11 BK2CMP2P: BRK2 COMP2 input polarity
This bit selects the COMP2 input sensitivity. It must be programmed together with the BKP2
polarity bit.
0: COMP2 input is active low
1: COMP2 input is active high
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bit 10 BK2CMP1P: BRK2 COMP1 input polarity
This bit selects the COMP1 input sensitivity. It must be programmed together with the BKP2
polarity bit.
0: COMP1 input is active low
1: COMP1 input is active high
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bit 9 BK2INP: BRK2 BKIN2 input polarity
This bit selects the BKIN2 alternate function input sensitivity. It must be programmed together
with the BKP2 polarity bit.
0: BKIN2 input is active low
1: BKIN2 input is active high
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bit 8 BK2DFBK3E: BRK2 DFSDM_BREAK[3] enable
This bit enables the DFSDM_BREAK[3] for the timer’s BRK2 input. DFSDM_BREAK[3] output
is ‘ORed’ with the other BRK2 sources.
0: DFSDM_BREAK[3] input disabled
1: DFSDM_BREAK[3] input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bits 7:3 Reserved, must be kept at reset value
Bit 2 BK2CMP2E: BRK2 COMP2 enable
This bit enables the COMP2 for the timer’s BRK2 input. COMP2 output is ‘ORed’ with the
other BRK2 sources.
0: COMP2 input disabled
1: COMP2 input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
850/1693
DocID024597 Rev 3
RM0351
Advanced-control timers (TIM1/TIM8)
Bit 1 BK2CMP1E: BRK2 COMP1 enable
This bit enables the COMP1 for the timer’s BRK2 input. COMP1 output is ‘ORed’ with the
other BRK2 sources.
0: COMP1 input disabled
1: COMP1 input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bit 0 BK2INE: BRK2 BKIN input enable
This bit enables the BKIN2 alternate function input for the timer’s BRK2 input. BKIN2 input is
‘ORed’ with the other BRK2 sources.
0: BKIN2 input disabled
1: BKIN2 input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Note:
Refer to Figure 232: Break and Break2 circuitry overview.
26.4.30
TIM1 register map
TIM1 registers are mapped as 16-bit addressable registers as described in the table below:
URS
UDIS
CEN
0
0
0
CCPC
ARPE
0
Res
0
0
CCUS
0
DIR
OIS2
OIS1N
0
OPM
OIS2N
0
0
0
0
MMS
[2:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DocID024597 Rev 3
UIE
UIF
0
0
0
0
0
0
0
0
UG
CC1IE
CC1IF
0
CC1G
CC2IE
CC2IF
0
CC2G
CC3IE
CC3IF
0
CC3G
CC4IE
CC4IF
0
COM
COMIE
COMIF
0
CC4G
TIE
TIF
BIE
0
TG
UDE
0
BIF
0
B2IF
0
BG
CC1DE
0
B2G
CC2DE
0
CC1OF
0
CC2OF
0
Res
0
Res
CC3DE
0
CC3OF
0
Res
CC4DE
0
CC4OF
0
Res
COMDE
0
SBIF
0
Res
TDE
SMS[2:0]
Res
TS[2:0]
0
Res
Res
Reset value
Res
0
Res
C5IF
0
ETF[3:0]
OCCS
0
MSM
ECE
0
ETP
0
Res
ETP
S
[1:0]
0
CCDS
OIS3
TI1S
OIS3N
OIS1
Res
Res
OIS4
Res
0
0
0
0
C6IF
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM1_EGR
Res
0x14
Res
Reset value
0
0
0
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM1_SR
0
0
Reset value
0x10
0
CMS
[1:0]
SMS[3]
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM1_DIER
CKD
[1:0]
Res
Res
Res
0
Reset value
0x0C
OIS5
Res
OIS6
Res
0
Res
0
Res
0
Res
0
Res
Res
Res
Res
Res
Res
Res
TIM1_SMCR
Res
0x08
0
Res
Reset value
MMS2[3:0]
Res
Res
Res
Res
Res
Res
Res
TIM1_CR2
Res
0x04
Res
Reset value
UIFREMAP
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM1_CR1
Res
0x00
Register
Res
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 150. TIM1 register map and reset values
0
0
0
0
0
0
0
0
0
851/1693
856
Advanced-control timers (TIM1/TIM8)
RM0351
852/1693
OC1FE
OC2FE
OC1CE
OC2PE
OC1PE
0
0
0
CC3
S
[1:0]
0
0
CC3P
CC3E
CC2NP
0
0
0
0
0
0
CC1E
CC3NE
0
CC1P
0
CC1NE
0
CC2E
0
CC1NP
0
CC2P
0
CC2NE
0
CC4E
CC3
S
[1:0]
CC3NP
IC3
PSC
[1:0]
CC4P
IC3F[3:0]
OC3FE
0
OC3PE
OC4CE
Res
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CNT[15:0]
0
0
0
0
0
0
0
0
0
PSC[15:0]
0
0
0
0
0
0
0
0
0
ARR[15:0]
1
1
1
1
1
1
1
1
1
REP[15:0]
0
0
0
0
0
0
0
0
0
CCR1[15:0]
0
0
0
0
0
0
0
0
0
CCR2[15:0]
0
0
0
0
0
0
0
0
0
CCR3[15:0]
0
0
0
0
0
0
0
0
0
CCR4[15:0]
0
DocID024597 Rev 3
0
0
0
Res
Res
Res
Res
Res
Reset value
OC3M
[2:0]
0
CC1
S
[1:0]
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM1_CCR4
Res
0x40
0
0
0
0
Res
Reset value
0
0
0
IC1
PSC
[1:0]
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM1_CCR3
Res
0x3C
0
0
0
0
0
Res
Reset value
CC4
S
[1:0]
CC4
S
[1:0]
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM1_CCR2
0
0
0
0
0
Res
Reset value
0x38
0
0
IC1F[3:0]
0
IC4
PSC
[1:0]
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM1_CCR1
0
0
0
0
Res
Reset value
0x34
0
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM1_RCR
0
0
0
0
1
Res
Reset value
0x30
0
0
CC2
S
[1:0]
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM1_ARR
0
0
CC1
S
[1:0]
0
0
Res
Reset value
0x2C
OC4M
[2:0]
0
IC2
PSC
[1:0]
OC1M
[2:0]
Res
CC5E
0
0
0
OC3CE
OC3M[3]
CC5P
0
Res
Res
Res
Res
Res
CC6E
0
Res
CC6P
Res
Res
Res
Res
Res
Res
Res
Res
TIM1_PSC
0
0
IC4F[3:0]
0
Res
0
Res
Reset value
Res
UIFCPY
0x28
TIM1_CNT
Res
0x24
Res
Reset value
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM1_CCER
0
CC2
S
[1:0]
Res
Res
Res
Res
Res
Res
0
Reset value
0x20
0
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
TIM1_CCMR2
Input Capture
mode
Res
Reset value
0x1C
OC4M[3]
Res
Res
Res
Res
Res
Res
TIM1_CCMR2
Output
Compare mode
0
IC2F[3:0]
0
Res
Reset value
0
OC4FE
0
OC2M
[2:0]
OC4PE
OC2CE
Res
OC1M[3]
Res
Res
Res
Res
Res
Res
Res
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
TIM1_CCMR1
Input Capture
mode
Res
Reset value
0x18
OC2M[3]
Res
Res
Res
Res
TIM1_CCMR1
Output
Compare mode
Res
Register
Res
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 150. TIM1 register map and reset values (continued)
0
0
0
0
0
0
0
0
0
0x64
TIM1_OR3
0
0
0
0
0
0
0
TIM1_OR2
ETRSEL
[2:0]
Res
Res
DocID024597 Rev 3
Res
Res
Res
Res
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CCR6[15:0]
0
0
0
0
0
Reset value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BKINE
0
BKCMP1E
0
TI1_RMP
0
DMAB[15:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
BKE
OSSR
OSSI
Res
Res
Res
0
ETR_ADC1_RMP
ETR_ADC3_RMP
Res
0
0
0
1
BK2INE
0
Res
Res
0
BK2CMP1E
Res
0
0
Res
CCR5[15:0]
OC5FE
0
0
OC5PE
0
0
OC5M
[2:0]
Res
0
Res
0
0
BKCMP2E
0
Res
Res
DBL[4:0]
0
BK2CMP2E
0
Res
0
0
Res
OC6M
[2:0]
0
0
Res
0
LOC
K
[1:0]
Res
0
0
0
Res
0
0
Res
0
0
OC5CE
Reset value
BKDFBK0E
0
Res
0
Res
0
BK2DFBK1E
0
Res
0
Res
0
Res
BKP
0
OC6FE
0
Res
AOE
0
OC6PE
0
Res
MOE
0
BKINP
Reset value
0
Res
Reset value
Res
Res
Res
Res
Res
Res
Res
Res
0
BKCMP1P
OC6CE
Res
Res
Res
Res
Res
Res
Res
BK2E
0
BK2INP
OC5M[3]
Res
Res
Res
Res
Res
Res
Res
Res
0
BK2CMP1P
Res
Res
Res
Res
Res
Res
Res
Res
Res
BK2P
Res
Res
Res
0
Res
Res
Res
Res
0
BKCMP2P
Res
Res
Res
Res
Res
Res
Res
Res
OC6M[3]
Res
Res
Res
Res
Res
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
Res
0
BK2CMP2P
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM1_BDTR
BKF[3:0]
Res
0
Res
Reset value
Res
0
Res
Res
0
Res
Res
0
Res
Res
Res
Res
Res
Res
Res
Res
Register
BK2F[3:0]
Res
Res
Res
Res
Res
Res
0
Res
Res
Res
Reset value
Res
0
Res
Res
Res
Reset value
Res
Res
TIM1_CCR6
Res
0
Res
GC5C1
0
Res
0
Res
Reset value
Res
Reset value
Res
TIM1_CCMR3
Output
Compare mode
Res
TIM1_OR1
Res
0x60
TIM1_DMAR
Res
0x5C
TIM1_CCR5
GC5C2
0x58
GC5C3
0x54
Res
0x50
Res
0x4C
TIM1_DCR
Res
0x48
Res
0x44
Res
Offset
Res
RM0351
Advanced-control timers (TIM1/TIM8)
Table 150. TIM1 register map and reset values (continued)
DT[7:0]
0
0
0
DBA[4:0]
0
0
1
Refer to Section 2.2.2 on page 67 for the register boundary addresses.
853/1693
856
0x20
854/1693
TIM8_CCER
0
0
DocID024597 Rev 3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CC3E
CC2NP
CC2NE
CC2P
CC2E
CC1NP
CC1NE
CC1P
CC1E
0
0
CC3P
0
0
CC3NE
Reset value
CC3NP
0
0
0
0
0
0
0
IC2F[3:0]
0
0
OC4M
[2:0]
0
0
IC4F[3:0]
UIF
0
0
0
0
0
UG
UIE
CC1IF
0
CC1G
CC1IE
CC2IF
0
CC2G
OIS2
OIS1N
0
0
ETF[3:0]
0
IC2
PSC
[1:0]
0
CC2
S
[1:0]
0
0
0
0
0
0
0
0
CC4
S
[1:0]
0
0
IC4
PSC
[1:0]
CC4
S
[1:0]
0
0
0
0
0
0
0
0
0
0
Res
UIFREMAP
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
ARPE
DIR
URS
UDIS
CEN
0
0
0
0
CCUS
Res
CCPC
0
OPM
MMS
[2:0]
0
CCDS
0
0
0
0
0
0
0
0
0
0
CC2
S
[1:0]
OC1M
[2:0]
0
0
IC1F[3:0]
0
0
OC3M
[2:0]
0
0
IC3F[3:0]
OC1FE
CC2IE
CC3IF
0
CC3G
OIS2N
0
TI1S
OIS3
0
OIS1
OIS3N
0
MSM
OIS4
Res
OIS5
Res
OIS6
Res
0
0
OC1PE
CC3IE
CC4IF
CC4IE
COMIF
COMIE
TIF
0
COM
BIF
Reset value
B2IF
0
CC1OF
0
CC2OF
0
Res
0
Res
0
CC3OF
0
Res
0
CC4OF
0
Res
0
SBIF
0
Res
0
0
CC4G
0
TIE
0
0
0
TG
0
BIE
0
UDE
0
0
0
BG
0
0
0
B2G
0
0
0
OC1CE
0
CC1DE
0
CC2DE
0
Res
Res
Res
0
0
OC3FE
0
0
0
CMS
[1:0]
OC3PE
0
OC2FE
0
ETP
S
[1:0]
CKD
[1:0]
OC3CE
0
OC2M
[2:0]
OC4FE
0
CC3DE
Reset value
OC2PE
0
CC4DE
0
COMDE
ECE
0
TDE
ETP
0
Res
Res
SMS[3]
0
Res
Res
Res
Res
Res
0
Res
Res
C5IF
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Reset value
OC4PE
Reset value
CC4E
OC2CE
C6IF
Res
Res
0
CC4P
OC1M[3]
Res
Res
Res
0
Res
OC4CE
0
Res
0
OC3M[3]
Res
Res
Res
Res
Res
Res
Res
Reset value
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
CC5E
Res
Res
Res
Res
Reset value
CC5P
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
Res
Res
Res
OC2M[3]
Res
Res
Res
Res
Res
Res
Res
MMS2[3:0]
Res
CC6E
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
Res
Res
OC4M[3]
Res
Res
Res
Res
Res
Res
Res
0
Res
Res
Reset value
Res
Res
Res
Res
Reset value
Res
Res
Res
Res
Res
Res
Res
Reset value
CC6P
Reset value
Res
TIM8_CCMR2
Input Capture
mode
Res
0x1C
Res
TIM8_CCMR2
Output
Compare mode
Res
TIM8_CCMR1
Input Capture
mode
Res
0x18
Res
TIM8_CCMR1
Output
Compare mode
Res
TIM8_EGR
Res
0x14
Res
TIM8_SR
Res
0x10
Res
TIM8_DIER
Res
0x0C
Res
TIM8_SMCR
Res
0x08
Res
TIM8_CR2
Res
0x04
Res
TIM8_CR1
Res
0x00
Res
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res
Offset
Res
26.4.31
Res
Advanced-control timers (TIM1/TIM8)
RM0351
TIM8 register map
TIM8 registers are mapped as 16-bit addressable registers as described in the table below:
Table 151. TIM8 register map and reset values
0
0
TS[2:0]
0
0
IC1
PSC
[1:0]
CC1
S
[1:0]
0
0
0
0
0
0
SMS[2:0]
CC1
S
[1:0]
0
0
0
CC3
S
[1:0]
0
0
IC3
PSC
[1:0]
CC3
S
[1:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RM0351
Advanced-control timers (TIM1/TIM8)
Res
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res
Res
Res
Res
Res
Res
Res
Res
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res
Res
Res
0
0
0
0
0
0
0
0
0
0
DBL[4:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
LOC
K
[1:0]
0
DT[7:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
TI1_RMP
ETR_ADC2_RMP
0
ETR_ADC3_RMP
0
Res
DMAB[15:0]
0
DocID024597 Rev 3
0
DBA[4:0]
Res
Res
Res
Res
Res
Res
Res
Res
Res
1
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
0
Reset value
0
Res
BKP
0
Res
Res
Res
Res
Res
Res
Res
Res
TIM8_OR1
0
Res
AOE
0
Reset value
0x50
0
0
Res
TIM8_DMAR
1
OSSI
MOE
0
BKF[3:0]
Reset value
0x4C
1
BKE
BK2E
0
Res
0
0
BK2F[3:0]
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
1
BK2P
Res
Res
Res
Res
TIM8_DCR
Res
0x48
Res
Reset value
1
Res
Res
Res
Res
Res
Res
TIM8_BDTR
0
CCR4[15:0]
0
Res
Reset value
0x44
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM8_CCR4
0
CCR3[15:0]
0
Res
Reset value
0x40
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM8_CCR3
0
CCR2[15:0]
0
Res
Reset value
0x3C
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM8_CCR2
0
CCR1[15:0]
0
Res
Reset value
0x38
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIMx_CCR1
0
REP[15:0]
0
Res
Reset value
0x34
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM8_RCR
0
ARR[15:0]
1
Res
Reset value
0x30
0
PSC[15:0]
0
Res
TIM8_ARR
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Reset value
0x2C
CNT[15:0]
OSSR
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM8_PSC
Res
0
Res
Reset value
Res
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0x28
TIM8_CNT
UIFCPY
0x24
Register
Res
Offset
Res
Table 151. TIM8 register map and reset values (continued)
0
855/1693
856
0x64
856/1693
TIM8_OR3
ETRSEL
[2:0]
Res
DocID024597 Rev 3
0
0
0
0
0
0
0
0
Res
Res
Res
Res
0
0
0
0
0
0
0
Refer to Section 2.2.2 on page 67 for the register boundary addresses.
OC5M[3]
OC6CE
Res
Res
Res
Res
Res
Res
Res
OC6FE
OC5CE
Res
Res
OC6PE
0
0
0
0
0
0
0
0
BKINE
0
0
0
1
BK2INE
0
BKCMP1E
0
BK2CMP1E
0
BKCMP2E
0
BK2CMP2E
Res
0
Res
CCR6[15:0]
OC5FE
0
0
OC5PE
CCR5[15:0]
0
Res
0
0
OC5M
[2:0]
Res
0
0
Res
0
0
Res
Res
OC6M[3]
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
BKDFBK2E
0
BK2DFBK3E
0
BKINP
0
BK2INP
0
BKCMP1P
0
0
BK2CMP1P
0
0
BKCMP2P
Reset value
OC6M
[2:0]
BK2CMP2P
Res
Res
Res
Res
Res
Res
Res
Res
0
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
TIM8_OR2
Res
Res
Res
Res
Res
Res
Res
0
Res
0
Res
Reset value
Res
0
Res
Res
Res
0
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
Res
Reset value
Res
Res
Res
0
Res
Res
Res
GC5C1
TIM8_CCR6
Res
0
Res
GC5C2
0
Res
Reset value
Res
GC5C3
0
Res
Res
0x60
Reset value
Res
0x5C
TIM8_CCR5
Res
0x58
Res
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0x54
TIM8_CCMR3
Output
Compare mode
Res
Register
Res
Offset
Res
Advanced-control timers (TIM1/TIM8)
RM0351
Table 151. TIM8 register map and reset values (continued)
0
0
1
RM0351
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
27
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
27.1
TIM2/TIM3/TIM4/TIM5 introduction
The general-purpose timers consist of a 16-bit or 32-bit auto-reload counter driven by a
programmable prescaler.
They may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare and PWM).
Pulse lengths and waveform periods can be modulated from a few microseconds to several
milliseconds using the timer prescaler and the RCC clock controller prescalers.
The timers are completely independent, and do not share any resources. They can be
synchronized together as described in Section 27.3.19.
27.2
TIM2/TIM3/TIM4/TIM5 main features
General-purpose TIMx timer features include:
•
16-bit (TIM3, TIM4) or 32-bit (TIM2 and TIM5) up, down, up/down auto-reload counter.
•
16-bit programmable prescaler used to divide (also “on the fly”) the counter clock
frequency by any factor between 1 and 65535.
•
Up to 4 independent channels for:
–
Input capture
–
Output compare
–
PWM generation (Edge- and Center-aligned modes)
–
One-pulse mode output
•
Synchronization circuit to control the timer with external signals and to interconnect
several timers.
•
Interrupt/DMA generation on the following events:
–
Update: counter overflow/underflow, counter initialization (by software or
internal/external trigger)
–
Trigger event (counter start, stop, initialization or count by internal/external trigger)
–
Input capture
–
Output compare
•
Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning
purposes
•
Trigger input for external clock or cycle-by-cycle current management
DocID024597 Rev 3
857/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
RM0351
Figure 249. General-purpose timer block diagram
,QWHUQDOFORFN &.B,17
7,0[&/.IURP5&&
(75)
(75
7,0[B(75
7ULJJHU
FRQWUROOHU
75*2
3RODULW\VHOHFWLRQ HGJH (753
,QSXWILOWHU
GHWHFWRU SUHVFDOHU
,75
,75
,75
,75
WRRWKHUWLPHUV
WR'$&$'&
7*,
,75
75&
75*,
6ODYH
FRQWUROOHU 5HVHWHQDEOHXSFRXQW
PRGH
7,)B('
(QFRGHU
LQWHUIDFH
7,)3
7,)3
8
$XWRUHORDGUHJLVWHU
6WRSFOHDURUXSGRZQ
&.B36&
;25
7,
7,0[B&+
7,
7,0[B&+
,QSXWILOWHU
HGJHGHWHFWRU
,QSXWILOWHU
HGJHGHWHFWRU
7,)3
7,)3
,&
36& &.B&17
SUHVFDOHU
&&, 8
3UHVFDOHU
75&
7,)3
7,)3
75&
,&36
&&,
,&
3UHVFDOHU
7,
7,0[B&+
7,
7,0[B&+
,QSXWILOWHU
HGJHGHWHFWRU
,QSXWILOWHU
HGJHGHWHFWRU
,&
3UHVFDOHU
75&
7,)3
7,)3
&17FRXQWHU
&&,
&DSWXUH&RPSDUHUHJLVWHU
&DSWXUH&RPSDUHUHJLVWHU 2&5()
&DSWXUH&RPSDUHUHJLVWHU
3UHVFDOHU
7,0[B&+
2XWSXW 2&
FRQWURO
7,0[B&+
2&5()
2XWSXW 2&
FRQWURO
7,0[B&+
2XWSXW 2&
FRQWURO
7,0[B&+
&&,
8
,&36
2XWSXW 2&
FRQWURO
&&,
8
,&36
&&,
,&
2&5()
&&,
8
,&36
&&,
7,)3
7,)3
8,
8
&DSWXUH&RPSDUHUHJLVWHU 2&5()
75&
(75)
1RWHV
5HJ
3UHORDGUHJLVWHUVWUDQVIHUUHG
WRDFWLYHUHJLVWHUVRQ8HYHQW
DFFRUGLQJWRFRQWUROELW
(YHQW
,QWHUUXSW '0$RXWSXW
069
858/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
27.3
TIM2/TIM3/TIM4/TIM5 functional description
27.3.1
Time-base unit
The main block of the programmable timer is a 16-bit/32-bit counter with its related autoreload register. The counter can count up, down or both up and down but also down or both
up and down. The counter clock can be divided by a prescaler.
The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.
The time-base unit includes:
•
Counter Register (TIMx_CNT)
•
Prescaler Register (TIMx_PSC):
•
Auto-Reload Register (TIMx_ARR)
The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into the
shadow register permanently or at each update event (UEV), depending on the auto-reload
preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter
reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the
TIMx_CR1 register. It can also be generated by software. The generation of the update
event is described in detail for each configuration.
The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller
description to get more details on counter enabling).
Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN.
Prescaler description
The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit/32-bit register (in the TIMx_PSC
register). It can be changed on the fly as this control register is buffered. The new prescaler
ratio is taken into account at the next update event.
Figure 250 and Figure 251 give some examples of the counter behavior when the prescaler
ratio is changed on the fly:
DocID024597 Rev 3
859/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
RM0351
Figure 250. Counter timing diagram with prescaler division change from 1 to 2
&.B36&
&(1
7LPHUFORFN
&.B&17
&RXQWHUUHJLVWHU
)
)
)
)$ )% )&
8SGDWHHYHQW 8(9
3UHVFDOHUFRQWUROUHJLVWHU
:ULWHDQHZYDOXHLQ7,0[B36&
3UHVFDOHUEXIIHU
3UHVFDOHUFRXQWHU
069
Figure 251. Counter timing diagram with prescaler division change from 1 to 4
&.B36&
&(1
7LPHUFORFN
&.B&17
&RXQWHUUHJLVWHU
)
)
)
)$ )% )&
8SGDWHHYHQW 8(9
3UHVFDOHUFRQWUROUHJLVWHU
:ULWHDQHZYDOXHLQ7,0[B36&
3UHVFDOHUEXIIHU
3UHVFDOHUFRXQWHU
069
860/1693
DocID024597 Rev 3
RM0351
27.3.2
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
Counter modes
Upcounting mode
In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.
An Update event can be generated at each counter overflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller).
The UEV event can be disabled by software by setting the UDIS bit in TIMx_CR1 register.
This is to avoid updating the shadow registers while writing new values in the preload
registers. Then no update event occurs until the UDIS bit has been written to 0. However,
the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate
does not change). In addition, if the URS bit (update request selection) in TIMx_CR1
register is set, setting the UG bit generates an update event UEV but without setting the UIF
flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and
capture interrupts when clearing the counter on the capture event.
When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):
•
The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register)
•
The auto-reload shadow register is updated with the preload value (TIMx_ARR)
The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.
Figure 252. Counter timing diagram, internal clock divided by 1
&.B36&
&17B(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
069
DocID024597 Rev 3
861/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
RM0351
Figure 253. Counter timing diagram, internal clock divided by 2
&.B36&
&17B(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
069
Figure 254. Counter timing diagram, internal clock divided by 4
&.B36&
&17B(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
069
862/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
Figure 255. Counter timing diagram, internal clock divided by N
&.B36&
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
)
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
069
Figure 256. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not
preloaded)
&.B36&
&(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
$XWRUHORDGSUHORDG
UHJLVWHU
))
:ULWHDQHZYDOXHLQ7,0[B$55
069
DocID024597 Rev 3
863/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
RM0351
Figure 257. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR
preloaded)
&.B36&
&(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
)
)
)
)
) )
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
$XWRUHORDGSUHORDG
UHJLVWHU
)
$XWRUHORDGVKDGRZ
UHJLVWHU
)
:ULWHDQHZYDOXHLQ7,0[B$55
069
Downcounting mode
In downcounting mode, the counter counts from the auto-reload value (content of the
TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a
counter underflow event.
An Update event can be generate at each counter underflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller)
The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until UDIS bit has been written to 0.
However, the counter restarts from the current auto-reload value, whereas the counter of the
prescaler restarts from 0 (but the prescale rate doesn’t change).
In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.
When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):
864/1693
•
The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).
•
The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that the auto-reload is updated before the counter is
reloaded, so that the next period is the expected one.
DocID024597 Rev 3
RM0351
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.
Figure 258. Counter timing diagram, internal clock divided by 1
&.B36&
&17B(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
)
&RXQWHUXQGHUIORZ
FQWBXGI
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
069
Figure 259. Counter timing diagram, internal clock divided by 2
&.B36&
&17B(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
&RXQWHUXQGHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
069
DocID024597 Rev 3
865/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
RM0351
Figure 260. Counter timing diagram, internal clock divided by 4
&.B36&
&17B(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
&RXQWHUXQGHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
069
Figure 261. Counter timing diagram, internal clock divided by N
&.B36&
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
)
&RXQWHUXQGHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
069
866/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
Figure 262. Counter timing diagram, Update event when repetition counter
is not used
&.B36&
&(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
)
&RXQWHUXQGHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
$XWRUHORDGSUHORDG
UHJLVWHU
))
:ULWHDQHZYDOXHLQ7,0[B$55
069
Center-aligned mode (up/down counting)
In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register) – 1, generates a counter overflow event, then counts from the autoreload value down to 1 and generates a counter underflow event. Then it restarts counting
from 0.
Center-aligned mode is active when the CMS bits in TIMx_CR1 register are not equal to
'00'. The Output compare interrupt flag of channels configured in output is set when: the
counter counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center
aligned mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3,
CMS = "11").
In this mode, the direction bit (DIR from TIMx_CR1 register) cannot be written. It is updated
by hardware and gives the current direction of the counter.
The update event can be generated at each counter overflow and at each counter underflow
or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event. In this case, the counter restarts counting from
0, as well as the counter of the prescaler.
The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to 0.
However, the counter continues counting up and down, based on the current auto-reload
value.
In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or
DocID024597 Rev 3
867/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
RM0351
DMA request is sent). This is to avoid generating both update and capture interrupt when
clearing the counter on the capture event.
When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):
•
The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).
•
The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that if the update source is a counter overflow, the autoreload is updated before the counter is reloaded, so that the next period is the expected
one (the counter is loaded with the new value).
The following figures show some examples of the counter behavior for different clock
frequencies.
Figure 263. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6
&.B36&
&(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
&RXQWHUXQGHUIORZ
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
069
1. Here, center-aligned mode 1 is used (for more details refer to Section 27.4.1: TIMx control register 1
(TIMx_CR1) on page 902).
868/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
Figure 264. Counter timing diagram, internal clock divided by 2
&.B36&
&17B(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
&RXQWHUXQGHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
069
Figure 265. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36
&.B36&
&17B(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
1RWH+HUHFHQWHUBDOLJQHGPRGHRULVXSGDWHGZLWKDQ8,)RQRYHUIORZ
069
1. Center-aligned mode 2 or 3 is used with an UIF on overflow.
DocID024597 Rev 3
869/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
RM0351
Figure 266. Counter timing diagram, internal clock divided by N
&.B36&
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
)
&RXQWHUXQGHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
069
Figure 267. Counter timing diagram, Update event with ARPE=1 (counter underflow)
&.B36&
&(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
&RXQWHUXQGHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
$XWRUHORDGSUHORDG
UHJLVWHU
)'
:ULWHDQHZYDOXHLQ7,0[B$55
$XWRUHORDGDFWLYH
UHJLVWHU
)'
069
870/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
Figure 268. Counter timing diagram, Update event with ARPE=1 (counter overflow)
&.B36&
&(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
)
)
)
)$ )% )&
)
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
$XWRUHORDGSUHORDG
UHJLVWHU
)'
:ULWHDQHZYDOXHLQ7,0[B$55
$XWRUHORDGDFWLYH
)'
UHJLVWHU
069
27.3.3
Clock selection
The counter clock can be provided by the following clock sources:
•
Internal clock (CK_INT)
•
External clock mode1: external input pin (TIx)
•
External clock mode2: external trigger input (ETR)
•
Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for
example, you can configure Timer 13 to act as a prescaler for Timer 2. Refer to : Using
one timer as prescaler for another timer on page 896 for more details.
Internal clock source (CK_INT)
If the slave mode controller is disabled (SMS=000 in the TIMx_SMCR register), then the
CEN, DIR (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual
control bits and can be changed only by software (except UG which remains cleared
automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal
clock CK_INT.
Figure 269 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.
DocID024597 Rev 3
871/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
RM0351
Figure 269. Control circuit in normal mode, internal clock divided by 1
,QWHUQDOFORFN
&(1 &17B(1
8*
&17B,1,7
&RXQWHUFORFN &.B&17 &.B36&
&RXQWHUUHJLVWHU
069
External clock source mode 1
This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at
each rising or falling edge on a selected input.
Figure 270. TI2 external clock connection example
7,0[B60&5
76>@
RU 7,)
7,)
,75[
7,B('
7,
)LOWHU
(GJH
GHWHFWRU
7,)B5LVLQJ
7,)B)DOOLQJ
7,)3
7,)3
(75)
RU
RU
[[
75*,
(75)
&.B,17
,&)>@
&&3
7,0[B&&05
7,0[B&&(5
LQWHUQDOFORFN
(QFRGHU
PRGH
([WHUQDOFORFN
PRGH
([WHUQDOFORFN
PRGH
&.B36&
,QWHUQDOFORFN
PRGH
(&(
606>@
7,0[B60&5
069
For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:
For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:
872/1693
DocID024597 Rev 3
RM0351
Note:
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
1.
Configure channel 2 to detect rising edges on the TI2 input by writing CC2S= ‘01 in the
TIMx_CCMR1 register.
2.
Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=0000).
The capture prescaler is not used for triggering, so you don’t need to configure it.
3.
Select rising edge polarity by writing CC2P=0 and CC2NP=0 and CC2NP=0 in the
TIMx_CCER register.
4.
Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR
register.
5.
Select TI2 as the input source by writing TS=110 in the TIMx_SMCR register.
6.
Enable the counter by writing CEN=1 in the TIMx_CR1 register.
When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.
The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on TI2 input.
Figure 271. Control circuit in external clock mode 1
7,
&17B(1
&RXQWHUFORFN &.B&17 &.B36&
&RXQWHUUHJLVWHU
7,)
:ULWH7,)
069
External clock source mode 2
This mode is selected by writing ECE=1 in the TIMx_SMCR register.
The counter can count at each rising or falling edge on the external trigger input ETR.
Figure 272 gives an overview of the external trigger input block.
DocID024597 Rev 3
873/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
RM0351
Figure 272. External trigger input block
RU 7,)
7,)
(75
RU
RU
75*,
(75SLQ
'LYLGHU
(753
I'76
)LOWHU
GRZQFRXQWHU
(75)
&.B,17
(73
(736>@
(7)>@
7,0[B60&5
7,0[B60&5
7,0[B60&5
LQWHUQDOFORFN
(QFRGHU
PRGH
([WHUQDOFORFN
PRGH
([WHUQDOFORFN
PRGH
&.B36&
,QWHUQDOFORFN
PRGH
(&(
606>@
7,0[B60&5
069
For example, to configure the upcounter to count each 2 rising edges on ETR, use the
following procedure:
1.
As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register.
2.
Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register
3.
Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR
register
4.
Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register.
5.
Enable the counter by writing CEN=1 in the TIMx_CR1 register.
The counter counts once each 2 ETR rising edges.
The delay between the rising edge on ETR and the actual clock of the counter is due to the
resynchronization circuit on the ETRP signal.
874/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
Figure 273. Control circuit in external clock mode 2
I &.B,17
&17B(1
(75
(753
(75)
&RXQWHUFORFN
&.B,17 &.B36&
&RXQWHUUHJLVWHU
069
27.3.4
Capture/compare channels
Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and
an output stage (with comparator and output control).
The following figure gives an overview of one Capture/Compare channel.
The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be
used as trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).
DocID024597 Rev 3
875/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
RM0351
Figure 274. Capture/compare channel (example: channel 1 input stage)
7,)B('
7RWKHVODYHPRGHFRQWUROOHU
7,)B5LVLQJ
7,
)LOWHU
7,)
GRZQFRXQWHU
I'76
(GJH
GHWHFWRU
7,)B)DOOLQJ
7,)3
7,)3
&&3&&13
,&)>@
75&
7,0[B&&(5
7,0[B&&05
7,)B5LVLQJ
IURPFKDQQHO
7,)B)DOOLQJ
IURPFKDQQHO
,&
IURPVODYHPRGH
FRQWUROOHU
,&36
'LYLGHU
&&6>@ ,&36>@
&&(
7,0[B&&05
7,0[B&&(5
069
The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.
Figure 275. Capture/compare channel 1 main circuit
$3%%XV
5HDG&&5+ 6
5HDG&&5/
KLJK
UHDGBLQBSURJUHVV
&&6>@
,&36
ZULWHBLQBSURJUHVV
,QSXW
PRGH
6 ZULWH&&5+
&DSWXUHFRPSDUHSUHORDGUHJLVWHU
5
5
FRPSDUHBWUDQVIHU
FDSWXUHBWUDQVIHU
&&6>@
ORZ
LIELW
0&8SHULSKHUDOLQWHUIDFH
2XWSXW
PRGH
&17!&&5
&RXQWHU
&&*
&&6>@
8(9
&RPSDUDWRU
&&(
&&6>@
2&3(
&DSWXUHFRPSDUHVKDGRZUHJLVWHU
&DSWXUH
ZULWH&&5/
IURPWLPH
EDVHXQLW
2&3(
7,0[B&&05
&17 &&5
7,0[B(*5
069
876/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
Figure 276. Output stage of capture/compare channel (channel 1)
7,0[B60&5
2&&6
2&5()B&/5
7RWKHPDVWHU
PRGHFRQWUROOHU
(75)
2&5()&
RFUHIBFOUBLQW
2&5()
µ¶
&17!&&5
2XWSXW
PRGH
&17 &&5
FRQWUROOHU
2&5()
2XWSXW
VHOHFWRU
&&(
&&3
7,0[B&&(5
7,0[B&&(5
2XWSXW
HQDEOH
FLUFXLW
&&( 7,0[B&&(5
02(
2&&( 2&0>@
7,0[B&&05
2&
266, 7,0[B%'75
2,6
7,0[B&5
069
The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register.
In capture mode, captures are actually done in the shadow register, which is copied into the
preload register.
In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.
27.3.5
Input capture mode
In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the
value of the counter after a transition detected by the corresponding ICx signal. When a
capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or
a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was
already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be
cleared by software by writing it to 0 or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when you write it to 0.
The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:
1.
Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00,
the channel is configured in input and the TIMx_CCR1 register becomes read-only.
2.
Program the input filter duration you need with respect to the signal you connect to the
timer (when the input is one of the TIx (ICxF bits in the TIMx_CCMRx register). Let’s
imagine that, when toggling, the input signal is not stable during at must 5 internal clock
cycles. We must program a filter duration longer than these 5 clock cycles. We can
validate a transition on TI1 when 8 consecutive samples with the new level have been
DocID024597 Rev 3
877/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
RM0351
detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in the
TIMx_CCMR1 register.
3.
Select the edge of the active transition on the TI1 channel by writing the CC1P and
CC1NP and CC1NP bits to 000 in the TIMx_CCER register (rising edge in this case).
4.
Program the input prescaler. In our example, we wish the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to 00 in the
TIMx_CCMR1 register).
5.
Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register.
6.
If needed, enable the related interrupt request by setting the CC1IE bit in the
TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the
TIMx_DIER register.
When an input capture occurs:
•
The TIMx_CCR1 register gets the value of the counter on the active transition.
•
CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.
•
An interrupt is generated depending on the CC1IE bit.
•
A DMA request is generated depending on the CC1DE bit.
In order to handle the overcapture, it is recommended to read the data before the
overcapture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.
Note:
878/1693
IC interrupt and/or DMA requests can be generated by software by setting the
corresponding CCxG bit in the TIMx_EGR register.
DocID024597 Rev 3
RM0351
27.3.6
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
PWM input mode
This mode is a particular case of input capture mode. The procedure is the same except:
•
Two ICx signals are mapped on the same TIx input.
•
These 2 ICx signals are active on edges with opposite polarity.
•
One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.
For example, you can measure the period (in TIMx_CCR1 register) and the duty cycle (in
TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending
on CK_INT frequency and prescaler value):
1.
Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1
register (TI1 selected).
2.
Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P to ‘0’ and the CC1NP bit to ‘0’ (active on rising edge).
3.
Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1
register (TI1 selected).
4.
Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
bit to ‘1’ and the CC2NP bit to ’0’ (active on falling edge).
5.
Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register
(TI1FP1 selected).
6.
Configure the slave mode controller in reset mode: write the SMS bits to 100 in the
TIMx_SMCR register.
7.
Enable the captures: write the CC1E and CC2E bits to ‘1 in the TIMx_CCER register.
Figure 277. PWM input mode timing
7,
7,0[B&17
7,0[B&&5
7,0[B&&5
,&FDSWXUH
,&FDSWXUH
UHVHWFRXQWHU
,&FDSWXUH
SXOVHZLGWK
PHDVXUHPHQW
,&FDSWXUH
SHULRG
PHDVXUHPHQW
DL
1. The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the fact that only
TI1FP1 and TI2FP2 are connected to the slave mode controller.
DocID024597 Rev 3
879/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
27.3.7
RM0351
Forced output mode
In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.
To force an output compare signal (ocxref/OCx) to its active level, you just need to write 101
in the OCxM bits in the corresponding TIMx_CCMRx register. Thus ocxref is forced high
(OCxREF is always active high) and OCx get opposite value to CCxP polarity bit.
e.g.: CCxP=0 (OCx active high) => OCx is forced to high level.
ocxref signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx
register.
Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still
performed and allows the flag to be set. Interrupt and DMA requests can be sent
accordingly. This is described in the Output Compare Mode section.
27.3.8
Output compare mode
This function is used to control an output waveform or indicating when a period of time has
elapsed.
When a match is found between the capture/compare register and the counter, the output
compare function:
•
Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set
active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.
•
Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).
•
Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).
•
Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the
TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request
selection).
The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.
In output compare mode, the update event UEV has no effect on ocxref and OCx output.
The timing resolution is one count of the counter. Output compare mode can also be used to
output a single pulse (in One-pulse mode).
Procedure
880/1693
1.
Select the counter clock (internal, external, prescaler).
2.
Write the desired data in the TIMx_ARR and TIMx_CCRx registers.
3.
Set the CCxIE and/or CCxDE bits if an interrupt and/or a DMA request is to be
generated.
4.
Select the output mode. For example, you must write OCxM=011, OCxPE=0, CCxP=0
and CCxE=1 to toggle OCx output pin when CNT matches CCRx, CCRx preload is not
used, OCx is enabled and active high.
5.
Enable the counter by setting the CEN bit in the TIMx_CR1 register.
DocID024597 Rev 3
RM0351
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
The TIMx_CCRx register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCxPE=0, else TIMx_CCRx
shadow register is updated only at the next update event UEV). An example is given in
Figure 278.
Figure 278. Output compare mode, toggle on OC1
:ULWH%KLQWKH&&5UHJLVWHU
7,0B&17
7,0B&&5
%
$
%
%
%
$
2&5() 2&
0DWFKGHWHFWHGRQ&&5
,QWHUUXSWJHQHUDWHGLIHQDEOHG
069
27.3.9
PWM mode
Pulse width modulation mode allows you to generate a signal with a frequency determined
by the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.
The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing 110 (PWM mode 1) or ‘111 (PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. You must enable the corresponding preload register by setting the
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in
upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register.
As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, you have to initialize all the registers by setting the UG
bit in the TIMx_EGR register.
OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It
can be programmed as active high or active low. OCx output is enabled by the CCxE bit in
the TIMx_CCER register. Refer to the TIMx_CCERx register description for more details.
In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CCRx≤TIMx_CNT or TIMx_CNT≤TIMx_CCRx (depending on the direction of
the counter). However, to comply with the OCREF_CLR functionality (OCREF can be
DocID024597 Rev 3
881/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
RM0351
cleared by an external event through the ETR signal until the next PWM period), the
OCREF signal is asserted only:
•
When the result of the comparison or
•
When the output compare mode (OCxM bits in TIMx_CCMRx register) switches from
the “frozen” configuration (no comparison, OCxM=‘000) to one of the PWM modes
(OCxM=‘110 or ‘111).
This forces the PWM by software while the timer is running.
The timer is able to generate PWM in edge-aligned mode or center-aligned mode
depending on the CMS bits in the TIMx_CR1 register.
PWM edge-aligned mode
Upcounting configuration
Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to Upcounting
mode on page 861.
In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is
high as long as TIMx_CNT TIMx_CCRx else
it becomes high. If the compare value in TIMx_CCRx is greater than the auto-reload value in
TIMx_ARR, then ocxref is held at ‘1. 0% PWM is not possible in this mode.
PWM center-aligned mode
Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from
‘00 (all the remaining configurations having the same effect on the ocxref/OCx signals). The
compare flag is set when the counter counts up, when it counts down or both when it counts
up and down depending on the CMS bits configuration. The direction bit (DIR) in the
TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to
Center-aligned mode (up/down counting) on page 867.
Figure 280 shows some center-aligned PWM waveforms in an example where:
•
TIMx_ARR=8,
•
PWM mode is the PWM mode 1,
•
The flag is set when the counter counts down corresponding to the center-aligned
mode 1 selected for CMS=01 in TIMx_CR1 register.
DocID024597 Rev 3
883/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
RM0351
Figure 280. Center-aligned PWM waveforms (ARR=8)
&RXQWHUUHJLVWHU
2&[5()
&&5[
&06
&06
&06
&&[,)
2&[5()
&&5[
&06 RU
&&[,)
2&[5()
µ¶
&&5[
&&[,)
2&[5()
&&5[!
µ¶
&06
&06
&06
&&[,)
2&[5()
&&5[
&&[,)
&06
&06
&06
µ¶
&06
&06
&06
$,E
Hints on using center-aligned mode:
•
When starting in center-aligned mode, the current up-down configuration is used. It
means that the counter counts up or down depending on the value written in the DIR bit
in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the
same time by the software.
•
Writing to the counter while running in center-aligned mode is not recommended as it
can lead to unexpected results. In particular:
•
884/1693
–
The direction is not updated if you write a value in the counter that is greater than
the auto-reload value (TIMx_CNT>TIMx_ARR). For example, if the counter was
counting up, it continues to count up.
–
The direction is updated if you write 0 or write the TIMx_ARR value in the counter
but no Update Event UEV is generated.
The safest way to use center-aligned mode is to generate an update by software
(setting the UG bit in the TIMx_EGR register) just before starting the counter and not to
write the counter while it is running.
DocID024597 Rev 3
RM0351
27.3.10
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
Asymmetric PWM mode
Asymmetric mode allows two center-aligned PWM signals to be generated with a
programmable phase shift. While the frequency is determined by the value of the
TIMx_ARR register, the duty cycle and the phase-shift are determined by a pair of
TIMx_CCRx registers. One register controls the PWM during up-counting, the second
during down counting, so that PWM is adjusted every half PWM cycle:
•
OC1REFC (or OC2REFC) is controlled by TIMx_CCR1 and TIMx_CCR2
•
OC3REFC (or OC4REFC) is controlled by TIMx_CCR3 and TIMx_CCR4
Asymmetric PWM mode can be selected independently on two channels (one OCx output
per pair of CCR registers) by writing ‘1110’ (Asymmetric PWM mode 1) or ‘1111’
(Asymmetric PWM mode 2) in the OCxM bits in the TIMx_CCMRx register.
Note:
The OCxM[3:0] bit field is split into two parts for compatibility reasons, the most significant
bit is not contiguous with the 3 least significant ones.
When a given channel is used as asymmetric PWM channel, its secondary channel can also
be used. For instance, if an OC1REFC signal is generated on channel 1 (Asymmetric PWM
mode 1), it is possible to output either the OC2REF signal on channel 2, or an OC2REFC
signal resulting from asymmetric PWM mode 2.
Figure 281 shows an example of signals that can be generated using Asymmetric PWM
mode (channels 1 to 4 are configured in Asymmetric PWM mode 1).
Figure 281. Generation of 2 phase-shifted PWM signals with 50% duty cycle
&RXQWHUUHJLVWHU
&&5
&&5
&&5
&&5
2&5()&
2&5()&
069
27.3.11
Combined PWM mode
Combined PWM mode allows two edge or center-aligned PWM signals to be generated with
programmable delay and phase shift between respective pulses. While the frequency is
determined by the value of the TIMx_ARR register, the duty cycle and delay are determined
by the two TIMx_CCRx registers. The resulting signals, OCxREFC, are made of an OR or
AND logical combination of two reference PWMs:
– OC1REFC (or OC2REFC) is controlled by TIMx_CCR1 and TIMx_CCR2
– OC3REFC (or OC4REFC) is controlled by TIMx_CCR3 and TIMx_CCR4
Combined PWM mode can be selected independently on two channels (one OCx output per
pair of CCR registers) by writing ‘1100’ (Combined PWM mode 1) or ‘1101’ (Combined PWM
mode 2) in the OCxM bits in the TIMx_CCMRx register.
DocID024597 Rev 3
885/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
RM0351
When a given channel is used as combined PWM channel, its secondary channel must be
configured in the opposite PWM mode (for instance, one in Combined PWM mode 1 and the
other in Combined PWM mode 2).
Note:
The OCxM[3:0] bit field is split into two parts for compatibility reasons, the most significant
bit is not contiguous with the 3 least significant ones.
Figure 282 shows an example of signals that can be generated using Asymmetric PWM
mode, obtained with the following configuration:
•
Channel 1 is configured in Combined PWM mode 2,
•
Channel 2 is configured in PWM mode 1,
•
Channel 3 is configured in Combined PWM mode 2,
•
Channel 4 is configured in PWM mode 1
Figure 282. Combined PWM mode on channels 1 and 3
2&¶
2&¶
2&
2&
2&5()
2&5()
2&5()¶
2&5()¶
2&5()&
2&5()&¶
2&5()& 2&5()$1'2&5()
2&5()&¶ 2&5()¶252&5()¶
069
27.3.12
Clearing the OCxREF signal on an external event
The OCxREF signal of a given channel can be cleared when a high level is applied on the
OCREF_CLR_INPUT (OCxCE enable bit in the corresponding TIMx_CCMRx register set to
1). OCxREF remains low until the next update event (UEV) occurs. This function can only
be used in Output compare and PWM modes. It does not work in Forced mode.
OCREF_CLR_INPUT can be selected between the OCREF_CLR input and ETRF (ETR
after the filter) by configuring the OCCS bit in the TIMx_SMCR register.
When ETRF is chosen, ETR must be configured as follows:
886/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
The OCxREF signal for a given channel can be reset by applying a high level on the ETRF
input (OCxCE enable bit set to 1 in the corresponding TIMx_CCMRx register). OCxREF
remains low until the next update event (UEV) occurs.
This function can be used only in the output compare and PWM modes. It does not work in
forced mode.
For example, the OCxREF signal can be connected to the output of a comparator to be
used for current handling. In this case, ETR must be configured as follows:
1.
The external trigger prescaler should be kept off: bits ETPS[1:0] in the TIMx_SMCR
register are cleared to 00.
2.
The external clock mode 2 must be disabled: bit ECE in the TIM1_SMCR register is
cleared to 0.
3.
The external trigger polarity (ETP) and the external trigger filter (ETF) can be
configured according to the application’s needs.
Figure 283 shows the behavior of the OCxREF signal when the ETRF input becomes high,
for both values of the OCxCE enable bit. In this example, the timer TIMx is programmed in
PWM mode.
Figure 283. Clearing TIMx OCxREF
&&5[
&RXQWHU &17
(75)
2&[5()
2&[&( µ¶
2&[5()
2&[&( µ¶
2&[5()B&/5
EHFRPHVKLJK
2&[5()B&/5
VWLOOKLJK
069
Note:
In case of a PWM with a 100% duty cycle (if CCRx>ARR), OCxREF is enabled again at the
next counter overflow.
DocID024597 Rev 3
887/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
27.3.13
RM0351
One-pulse mode
One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.
Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output compare mode or PWM mode. You select One-pulse mode
by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically
at the next update event UEV.
A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be:
•
CNTTIMx_CCR1 else active (OC1REF=1).
0111: PWM mode 2 - In upcounting, channel 1 is inactive as long as
TIMx_CNTTIMx_CCR1 else inactive.
1000: Retriggerable OPM mode 1 - In up-counting mode, the channel is active until a trigger
event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 1
and the channels becomes inactive again at the next update. In down-counting mode, the
channel is inactive until a trigger event is detected (on TRGI signal). Then, a comparison is
performed as in PWM mode 1 and the channels becomes inactive again at the next update.
1001: Retriggerable OPM mode 2 - In up-counting mode, the channel is inactive until a
trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM
mode 2 and the channels becomes inactive again at the next update. In down-counting
mode, the channel is active until a trigger event is detected (on TRGI signal). Then, a
comparison is performed as in PWM mode 1 and the channels becomes active again at the
next update.
1010: Reserved,
1011: Reserved,
1100: Combined PWM mode 1 - OC1REF has the same behavior as in PWM mode 1.
OC1REFC is the logical OR between OC1REF and OC2REF.
1101: Combined PWM mode 2 - OC1REF has the same behavior as in PWM mode 2.
OC1REFC is the logical AND between OC1REF and OC2REF.
1110: Asymmetric PWM mode 1 - OC1REF has the same behavior as in PWM mode 1.
OC1REFC outputs OC1REF when the counter is counting up, OC2REF when it is counting
down.
1111: Asymmetric PWM mode 2 - OC1REF has the same behavior as in PWM mode 2.
OC1REFC outputs OC1REF when the counter is counting up, OC2REF when it is counting
down.
Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed
(LOCK bits in TIMx_BDTR register) and CC1S=00 (the channel is configured in
output).
2: In PWM mode, the OCREF level changes only when the result of the comparison
changes or when the output compare mode switches from “frozen” mode to “PWM”
mode.
914/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
Bit 3 OC1PE: Output compare 1 preload enable
0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken in account immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded in the active register at each update event.
Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed
(LOCK bits in TIMx_BDTR register) and CC1S=00 (the channel is configured in
output).
2: The PWM mode can be used without validating the preload register only in onepulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed.
Bit 2 OC1FE: Output compare 1 fast enable
This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is
ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is
5 clock cycles.
1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC
is set to the compare level independently from the result of the comparison. Delay to sample
the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if
the channel is configured in PWM1 or PWM2 mode.
Bits 1:0 CC1S: Capture/Compare 1 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output.
01: CC1 channel is configured as input, IC1 is mapped on TI1.
10: CC1 channel is configured as input, IC1 is mapped on TI2.
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)
Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).
Input capture mode
Bits 31:16 Reserved, always read as 0.
Bits 15:12 IC2F: Input capture 2 filter
Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler
Bits 9:8 CC2S: Capture/compare 2 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output.
01: CC2 channel is configured as input, IC2 is mapped on TI2.
10: CC2 channel is configured as input, IC2 is mapped on TI1.
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)
Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).
DocID024597 Rev 3
915/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
RM0351
Bits 7:4 IC1F: Input capture 1 filter
This bit-field defines the frequency used to sample TI1 input and the length of the digital filter
applied to TI1. The digital filter is made of an event counter in which N consecutive events are
needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8
Bits 3:2 IC1PSC: Input capture 1 prescaler
This bit-field defines the ratio of the prescaler acting on CC1 input (IC1). The prescaler is reset
as soon as CC1E=0 (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events
Bits 1:0 CC1S: Capture/Compare 1 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)
Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).
916/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
27.4.8
TIMx capture/compare mode register 2 (TIMx_CCMR2)
Address offset: 0x1C
Reset value: 0x0000
Refer to the above CCMR1 register description.
31
Res.
30
Res.
29
Res.
28
Res.
27
Res.
26
Res.
25
24
Res.
OC4M
[3]
23
Res.
22
Res.
21
Res.
20
Res.
19
Res.
18
Res.
17
16
Res.
OC3M
[3]
Res.
Res.
rw
15
14
OC4CE
13
12
OC4M[2:0]
rw
rw
10
OC4PE OC4FE
IC4F[3:0]
rw
11
IC4PSC[1:0]
rw
rw
rw
9
rw
8
CC4S[1:0]
rw
7
6
OC3CE
rw
5
4
OC3M[2:0]
rw
rw
2
OC3PE OC3FE
IC3F[3:0]
rw
3
IC3PSC[1:0]
rw
rw
rw
1
0
CC3S[1:0]
rw
rw
Output compare mode
Bits 31:25 Reserved, always read as 0.
Bit 24 OC4M[3]: Output Compare 2 mode - bit 3
Bits 23:17 Reserved, always read as 0.
Bit 16 OC3M[3]: Output Compare 1 mode - bit 3
Bit 15 OC4CE: Output compare 4 clear enable
Bits 14:12 OC4M: Output compare 4 mode
Refer to OC1M description (bits 6:4 in TIMx_CCMR1 register)
Bit 11 OC4PE: Output compare 4 preload enable
Bit 10 OC4FE: Output compare 4 fast enable
Bits 9:8 CC4S: Capture/Compare 4 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)
Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER).
Bit 7 OC3CE: Output compare 3 clear enable
Bits 6:4 OC3M: Output compare 3 mode
Refer to OC1M description (bits 6:4 in TIMx_CCMR1 register)
DocID024597 Rev 3
917/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
RM0351
Bit 3 OC3PE: Output compare 3 preload enable
Bit 2 OC3FE: Output compare 3 fast enable
Bits 1:0 CC3S: Capture/Compare 3 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)
Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER).
Input capture mode
Bits 31:16 Reserved, always read as 0.
Bits 15:12 IC4F: Input capture 4 filter
Bits 11:10 IC4PSC: Input capture 4 prescaler
Bits 9:8 CC4S: Capture/Compare 4 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)
Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER).
Bits 7:4 IC3F: Input capture 3 filter
Bits 3:2 IC3PSC: Input capture 3 prescaler
Bits 1:0 CC3S: Capture/Compare 3 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)
Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER).
27.4.9
TIMx capture/compare enable register (TIMx_CCER)
Address offset: 0x20
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
CC4NP
Res.
CC4P
CC4E
CC3NP
Res.
CC3P
CC3E
CC2NP
Res.
CC2P
CC2E
CC1NP
Res.
CC1P
CC1E
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
918/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
Bit 15 CC4NP: Capture/Compare 4 output Polarity.
Refer to CC1NP description
Bit 14 Reserved, must be kept at reset value.
Bit 13 CC4P: Capture/Compare 4 output Polarity.
Refer to CC1P description
Bit 12 CC4E: Capture/Compare 4 output enable.
refer to CC1E description
Bit 11 CC3NP: Capture/Compare 3 output Polarity.
Refer to CC1NP description
Bit 10 Reserved, must be kept at reset value.
Bit 9 CC3P: Capture/Compare 3 output Polarity.
Refer to CC1P description
Bit 8 CC3E: Capture/Compare 3 output enable.
Refer to CC1E description
Bit 7 CC2NP: Capture/Compare 2 output Polarity.
Refer to CC1NP description
Bit 6 Reserved, must be kept at reset value.
Bit 5 CC2P: Capture/Compare 2 output Polarity.
refer to CC1P description
Bit 4 CC2E: Capture/Compare 2 output enable.
Refer to CC1E description
Bit 3 CC1NP: Capture/Compare 1 output Polarity.
CC1 channel configured as output: CC1NP must be kept cleared in this case.
CC1 channel configured as input: This bit is used in conjunction with CC1P to define
TI1FP1/TI2FP1 polarity. refer to CC1P description.
DocID024597 Rev 3
919/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
RM0351
Bit 2 Reserved, must be kept at reset value.
Bit 1 CC1P: Capture/Compare 1 output Polarity.
CC1 channel configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel configured as input: CC1NP/CC1P bits select TI1FP1 and TI2FP1 polarity for
trigger or capture operations.
00: noninverted/rising edge
Circuit is sensitive to TIxFP1 rising edge (capture, trigger in reset, external clock or trigger
mode), TIxFP1 is not inverted (trigger in gated mode, encoder mode).
01: inverted/falling edge
Circuit is sensitive to TIxFP1 falling edge (capture, trigger in reset, external clock or trigger
mode), TIxFP1 is inverted (trigger in gated mode, encoder mode).
10: reserved, do not use this configuration.
11: noninverted/both edges
Circuit is sensitive to both TIxFP1 rising and falling edges (capture, trigger in reset, external
clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode). This configuration
must not be used for encoder mode.
Bit 0 CC1E: Capture/Compare 1 output enable.
CC1 channel configured as output:
0: Off - OC1 is not active
1: On - OC1 signal is output on the corresponding output pin
CC1 channel configured as input: This bit determines if a capture of the counter value can
actually be done into the input capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled
1: Capture enabled
Table 154. Output control bit for standard OCx channels
CCxE bit
OCx output state
0
Output Disabled (OCx=0, OCx_EN=0)
1
OCx=OCxREF + Polarity, OCx_EN=1
Note:
The state of the external IO pins connected to the standard OCx channels depends on the
OCx channel state and the GPIO and AFIO registers.
27.4.10
TIMx counter (TIMx_CNT)
Address offset: 0x24
Reset value: 0x0000
31
30
29
28
27
26
25
CNT[31]
or
UIFCPY
24
23
22
21
20
19
18
17
16
CNT[30:16] (depending on timers)
rw or r
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
CNT[15:0]
rw
920/1693
rw
rw
rw
rw
rw
rw
rw
rw
DocID024597 Rev 3
RM0351
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
Bit 31 Value depends on IUFREMAP in TIMx_CR1.
If UIFREMAP = 0
CNT[31]: Most significant bit of counter value (on TIM2 and TIM5)
Reserved on other timers
If UIFREMAP = 1
UIFCPY: UIF Copy
This bit is a read-only copy of the UIF bit of the TIMx_ISR register
Bits 30:16 CNT[30:16]: Most significant part counter value (on TIM2 and TIM5)
Bits 15:0 CNT[15:0]: Least significant part of counter value
27.4.11
TIMx prescaler (TIMx_PSC)
Address offset: 0x28
Reset value: 0x0000
15
14
13
12
11
10
9
8
rw
rw
rw
rw
rw
rw
rw
rw
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
PSC[15:0]
rw
Bits 15:0 PSC[15:0]: Prescaler value
The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded in the active prescaler register at each update event.
27.4.12
TIMx auto-reload register (TIMx_ARR)
Address offset: 0x2C
Reset value: 0xFFFF FFFF
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
ARR[31:16] (depending on timers)
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
ARR[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 ARR[31:16]: High auto-reload value (on TIM2 and TIM5)
Bits 15:0 ARR[15:0]: Low Auto-reload Prescaler value
ARR is the value to be loaded in the actual auto-reload register.
Refer to the Section 27.3.1: Time-base unit on page 859 for more details about ARR update
and behavior.
The counter is blocked while the auto-reload value is null.
27.4.13
TIMx capture/compare register 1 (TIMx_CCR1)
Address offset: 0x34
Reset value: 0x0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
rw
rw
rw
rw
rw
rw
CCR1[31:16] (depending on timers)
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
DocID024597 Rev 3
921/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
15
14
13
12
11
10
9
8
RM0351
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
CCR1[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 CCR1[31:16]: High Capture/Compare 1 value (on TIM2 and TIM5)
Bits 15:0 CCR1[15:0]: Low Capture/Compare 1 value
If channel CC1 is configured as output:
CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit
OC1PE). Else the preload value is copied in the active capture/compare 1 register when an
update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC1 output.
If channel CC1is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1).
27.4.14
TIMx capture/compare register 2 (TIMx_CCR2)
Address offset: 0x38
Reset value: 0x00000000
31
30
29
28
27
26
25
24
23
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
22
21
20
19
18
17
16
rw
rw
rw
rw
rw
rw
rw
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
CCR2[31:16] (depending on timers)
CCR2[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 CCR2[31:16]: High Capture/Compare 2 value (on TIM2 and TIM5)
Bits 15:0 CCR2[15:0]: Low Capture/Compare 2 value
If channel CC2 is configured as output:
CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit
OC2PE). Else the preload value is copied in the active capture/compare 2 register when an
update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC2 output.
If channel CC2 is configured as input:
CCR2 is the counter value transferred by the last input capture 2 event (IC2).
27.4.15
TIMx capture/compare register 3 (TIMx_CCR3)
Address offset: 0x3C
Reset value: 0x0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
rw
rw
rw
rw
rw
rw
CCR3[31:16] (depending on timers)
rw
922/1693
rw
rw
rw
rw
rw
rw
rw
rw
rw
DocID024597 Rev 3
RM0351
15
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
CCR3[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 CCR3[31:16]: High Capture/Compare 3 value (on TIM2 and TIM5)
Bits 15:0 CCR3[15:0]: Low Capture/Compare value
If channel CC3 is configured as output:
CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit
OC3PE). Else the preload value is copied in the active capture/compare 3 register when an
update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC3 output.
If channel CC3is configured as input:
CCR3 is the counter value transferred by the last input capture 3 event (IC3).
27.4.16
TIMx capture/compare register 4 (TIMx_CCR4)
Address offset: 0x40
Reset value: 0x0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
CCR4[31:16] (depending on timers)
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
CCR4[15:0]
rw
rw
Bits 31:16 CCR4[31:16]: High Capture/Compare 4 value (on TIM2 and TIM5)
Bits 15:0 CCR4[15:0]: Low Capture/Compare value
1.
if CC4 channel is configured as output (CC4S bits):
CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2
register (bit OC4PE). Else the preload value is copied in the active capture/compare 4
register when an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC4 output.
2.
if CC4 channel is configured as input (CC4S bits in TIMx_CCMR4 register):
CCR4 is the counter value transferred by the last input capture 4 event (IC4).
DocID024597 Rev 3
923/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
27.4.17
RM0351
TIMx DMA control register (TIMx_DCR)
Address offset: 0x48
Reset value: 0x0000
15
14
13
Res.
Res.
Res.
12
11
10
9
8
DBL[4:0]
rw
rw
rw
rw
7
6
5
Res.
Res.
Res.
rw
4
3
2
1
0
rw
rw
DBA[4:0]
rw
rw
rw
Bits 15:13 Reserved, must be kept at reset value.
Bits 12:8 DBL[4:0]: DMA burst length
This 5-bit vector defines the number of DMA transfers (the timer recognizes a burst transfer
when a read or a write access is done to the TIMx_DMAR address).
00000: 1 transfer,
00001: 2 transfers,
00010: 3 transfers,
...
10001: 18 transfers.
Bits 7:5 Reserved, must be kept at reset value.
Bits 4:0 DBA[4:0]: DMA base address
This 5-bit vector defines the base-address for DMA transfers (when read/write access are done
through the TIMx_DMAR address). DBA is defined as an offset starting from the address of the
TIMx_CR1 register.
Example:
00000: TIMx_CR1
00001: TIMx_CR2
00010: TIMx_SMCR
...
Example: Let us consider the following transfer: DBL = 7 transfers & DBA = TIMx_CR1. In this
case the transfer is done to/from 7 registers starting from the TIMx_CR1 address.
27.4.18
TIMx DMA address for full transfer (TIMx_DMAR)
Address offset: 0x4C
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
DMAB[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 15:0 DMAB[15:0]: DMA register for burst accesses
A read or write operation to the DMAR register accesses the register located at the address
(TIMx_CR1 address) + (DBA + DMA index) x 4
where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base
address configured in TIMx_DCR register, DMA index is automatically controlled by the DMA
transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR).
924/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
27.4.19
TIM2 option register 1 (TIM2_OR1)
Address offset: 0x50
Reset value: 0x0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
ETR1_
RMP
ITR1_
RMP
rw
rw
TI4_RMP[1:0]
rw
rw
Bits 31:4 Reserved, must be kept at reset value.
Bits 3:2 TI4_RMP[1:0]: Input Capture 4 remap
00: TIM2 input capture 4 is connected to I/O
01: TIM2 input capture 4 is connected to COMP1_OUT
10: TIM2 input capture 4 is connected to COMP2_OUT
11: TIM2 input capture 4 is connected to logical OR between COMP1_OUT and
COMP2_OUT
Bit 1 ETR1_RMP: External trigger remap
0: TIM2_ETR is connected to I/O
1: TIM2_ETR is connected to LSE
Bit 0 ITR1_RMP: Internal trigger 1 remap
0: TIM2_ITR1 is connected to TIM8_TRGO
1: TIM2_ITR1 is connected to OTG_FS SOF
27.4.20
TIM3 option register 1 (TIM3_OR1)
Address offset: 0x50
Reset value: 0x0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
1
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
TI1_RMP[1:0]
rw
rw
Bits 31:2 Reserved, must be kept at reset value.
Bits 1:0 TI1_RMP[1:0]: Input Capture 1 remap
00: TIM3 input capture 1 is connected to I/O
01: TIM3 input capture 1 is connected to COMP1_OUT
10: TIM3 input capture 1 is connected to COMP2_OUT
11: TIM3 input capture 1 is connected to logical OR between COMP1_OUT and
COMP2_OUT
27.4.21
TIM2 option register 2 (TIM2_OR2)
Address offset: 0x60
DocID024597 Rev 3
925/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
RM0351
Reset value: 0x0000
31
Res.
30
Res.
29
Res.
28
Res.
27
Res.
26
Res.
25
Res.
24
Res.
23
Res.
22
Res.
21
Res.
20
Res.
19
Res.
18
Res.
17
16
Res.
ETR
SEL2
rw
15
14
ETRSEL[1:0]
rw
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
Bits 31:17 Reserved, must be kept at reset value.
Bits 16:14 ETRSEL[2:0]: ETR source selection
These bits select the ETR input source.
000: ETR legacy mode
001: COMP1 output connected to ETR input
010: COMP2 output connected to ETR input
Other: reserved
Note: These bits can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bits 13:0 Reserved, must be kept at reset value.
27.4.22
TIM3 option register 2 (TIM3_OR2)
Address offset: 0x60
Reset value: 0x0000
31
Res.
30
Res.
29
Res.
28
Res.
27
Res.
26
Res.
25
Res.
24
Res.
23
Res.
22
Res.
21
Res.
20
Res.
19
Res.
18
Res.
17
16
Res.
ETR
SEL2
rw
15
14
ETRSEL[1:0]
rw
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
Bits 31:17 Reserved, must be kept at reset value.
Bits 16:14 ETRSEL[2:0]: ETR source selection
These bits select the ETR input source.
000: ETR legacy mode
001: COMP1 output connected to ETR input
Other: reserved
Note: These bits can not be modified as long as LOCK level 1 has been programmed (LOCK
bits in TIMx_BDTR register).
Bits 13:0 Reserved, must be kept at reset value.
926/1693
DocID024597 Rev 3
0x20
TIMx_CCER
Reset value
DocID024597 Rev 3
0
0
0
OC4M
[2:0]
CC4S
[1:0]
0
0
0
0
0
0
IC4F[3:0]
0
0
0
0
0
0
0
Reset value
0
0
0
OC1M
[2:0]
0
0
0
0
0
IC4
PSC
[1:0]
CC4S
[1:0]
0
0
0
0
0
0
0
0
0
UG
0
CC1G
UIE
UIF
0
CC2G
CC1IE
CC1IF
0
0
0
0
0
0
OC1FE
CC2IE
CC2IF
0
CC3G
CC3IE
CC3IF
0
OC1PE
0
0
0
0
0
0
Res
CC4IE
0
Res
CC4IF
0
Res
TIE
0
TIF
0
TG
MSM
DIR
OPM
URS
UDIS
CEN
0
0
0
0
TI1S
MMS[2:0]
CCDS
Res
Res
Res
ARPE
0
0
0
0
0
0
0
TS[2:0]
0
IC1F[3:0]
0
0
OC3M
[2:0]
0
IC3F[3:0]
Res
Res
UIFREMAP
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
IC1
PSC
[1:0]
CC1S
[1:0]
0
0
0
OC3FE
0
0
0
CC4G
Res
UDE
0
Res
CC1OF
0
Res
Res
CC2OF
0
Res
0
CC3OF
0
Res
0
CC4OF
0
Res
0
Res
Res
0
0
Res
0
0
CMS
[1:0]
OC3PE
CC2S
[1:0]
OC1CE
0
CC1DE
0
CC2DE
0
IC3
PSC
[1:0]
CC3S
[1:0]
0
0
0
0
0
CC1E
CC2S
[1:0]
0
OC2FE
0
CC3DE
0
CC4DE
0
COMDE
0
Res
ECE
0
ETF[3:0]
Res
0
Res
ETP
0
TDE
SMS[3]
Res
Res
Res
Res
Res
Res
Res
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
ETPS
[1:0]
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Reset value
CC1P
0
0
CC1NP
0
0
CC2E
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Reset value
CKD
[1:0]
CC2P
0
IC2
PSC
[1:0]
OC3CE
IC2F[3:0]
Res
0
0
0
CC3E
0
OC2M
[2:0]
OC2PE
0
CC2NP
0
OC4FE
OC2CE
0
OC4PE
OC1M[3]
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Reset value
Res
0
CC3NP
Res
Res
Res
Res
Res
Res
Res
Res
OC2M[3]
Res
Res
Res
Res
Res
Res
Res
Reset value
CC3P
0
CC4E
0
0
CC4P
Reset value
Res
O24CE
Reset value
CC4NP
0
OC3M[3]
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
Res
Res
Res
Res
Res
Res
Res
OC4M[3]
Res
Res
Res
Res
Res
Res
Reset value
Res
Res
Res
Res
Res
Res
Res
Res
Reset value
Res
Res
Res
Res
Res
Res
Reset value
Res
Res
Res
TIMx_CCMR2
Input Capture
mode
Res
0x1C
Res
TIMx_CCMR2
Output
Compare mode
Res
TIMx_CCMR1
Input Capture
mode
Res
TIMx_CCMR1
Output
Compare mode
Res
0x18
TIMx_EGR
Res
0x14
TIMx_SR
Res
0x10
TIMx_DIER
Res
0x0C
TIMx_SMCR
Res
0x08
TIMx_CR2
Res
0x04
TIMx_CR1
Res
0x00
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res
Offset
Res
27.4.23
Res
RM0351
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
TIMx register map
TIMx registers are mapped as described in the table below:
Table 155. TIM2/TIM3/TIM4/TIM5 register map and reset values
SMS[2:0]
0
0
0
CC1S
[1:0]
0
0
0
0
CC3S
[1:0]
0
0
0
0
0
0
0
0
0
0
927/1693
929
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
RM0351
CNT[31] or UIFCPY
Reset value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TIMx_PSC
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
CNT[30:16]
(TIM2 and TIM5 only, reserved on the other timers)
Reset value
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ARR[15:0]
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
CCR1[15:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CCR3[31:16]
(TIM2 and TIM5 only, reserved on the other timers)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CCR4[15:0]
Res
0
0
CCR3[15:0]
CCR4[31:16]
(TIM2 and TIM5 only, reserved on the other timers)
TIMx_CCR4
0
CCR2[15:0]
0
0
0
0
0
0
0
0
0
0
0
DBA[4:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reset value
928/1693
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM3_OR1
Res
0x50
Res
Reset value
0
0
ITR1_RMP
0
ETR1_RMP
0
0
0
Res
0
TI1_RMP[1:0]
0
TI4_RMP[1:0]
0
Res
0
Res
DMAB[15:0]
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Reset value
TIM2_OR1
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
TIMx_DMAR
DBL[4:0]
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIMx_DCR
Res
Reserved
Reset value
0x50
0
Res
0
0x44
0x4C
0
PSC[15:0]
CCR2[31:16]
(TIM2 and TIM5 only, reserved on the other timers)
TIMx_CCR3
Reset value
0x48
0
Res
0
TIMx_CCR2
Reset value
0x40
0
CCR1[31:16]
(TIM2 and TIM5 only, reserved on the other timers)
TIMx_CCR1
Reset value
0x3C
0
Reserved
Reset value
0x38
0
Res
0x30
0x34
0
ARR[31:16]
(TIM2 and TIM5 only, reserved on the other timers)
TIMx_ARR
Reset value
0
0
Res
0x2C
CNT[15:0]
Res
0x28
TIMx_CNT
Res
0x24
Register
Res
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 155. TIM2/TIM3/TIM4/TIM5 register map and reset values (continued)
0
DocID024597 Rev 3
RM0351
General-purpose timers (TIM2/TIM3/TIM4/TIM5)
Reset value
0
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
ETRSEL
[2:0]
Res
TIM3_OR2
Res
0
Res
Reset value
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
ETRSEL
[2:0]
Res
0x60
TIM2_OR2
Res
0x60
Register
Res
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 155. TIM2/TIM3/TIM4/TIM5 register map and reset values (continued)
0
0
Refer to Section 2.2.2: Memory map and register boundary addresses for the register
boundary addresses.
DocID024597 Rev 3
929/1693
929
General-purpose timers (TIM15/16/17)
RM0351
28
General-purpose timers (TIM15/16/17)
28.1
TIM15/16/17 introduction
The TIM15/16/17 timers consist of a 16-bit auto-reload counter driven by a programmable
prescaler.
They may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare, PWM,
complementary PWM with dead-time insertion).
Pulse lengths and waveform periods can be modulated from a few microseconds to several
milliseconds using the timer prescaler and the RCC clock controller prescalers.
The TIM15/16/17 timers are completely independent, and do not share any resources. They
can be synchronized together as described in Section 27.3.19: Timer synchronization on
page 896.
28.2
TIM15 main features
TIM15 includes the following features:
930/1693
•
16-bit auto-reload upcounter
•
16-bit programmable prescaler used to divide (also “on the fly”) the counter clock
frequency by any factor between 1 and 65535
•
Up to 2 independent channels for:
–
Input capture
–
Output compare
–
PWM generation (edge mode)
–
One-pulse mode output
•
Complementary outputs with programmable dead-time (for channel 1 only)
•
Synchronization circuit to control the timer with external signals and to interconnect
several timers together
•
Repetition counter to update the timer registers only after a given number of cycles of
the counter
•
Break input to put the timer’s output signals in the reset state or a known state
•
Interrupt/DMA generation on the following events:
–
Update: counter overflow, counter initialization (by software or internal/external
trigger)
–
Trigger event (counter start, stop, initialization or count by internal/external trigger)
–
Input capture
–
Output compare
–
Break input (interrupt request)
DocID024597 Rev 3
RM0351
28.3
General-purpose timers (TIM15/16/17)
TIM16 and TIM17 main features
The TIM16 and TIM17 timers include the following features:
•
16-bit auto-reload upcounter
•
16-bit programmable prescaler used to divide (also “on the fly”) the counter clock
frequency by any factor between 1 and 65535
•
One channel for:
–
Input capture
–
Output compare
–
PWM generation (edge-aligned mode)
–
One-pulse mode output
•
Complementary outputs with programmable dead-time
•
Repetition counter to update the timer registers only after a given number of cycles of
the counter
•
Break input to put the timer’s output signals in the reset state or a known state
•
Interrupt/DMA generation on the following events:
–
Update: counter overflow
–
Trigger event (counter start, stop, initialization or count by internal/external trigger)
–
Input capture
–
Output compare
–
Break input
DocID024597 Rev 3
931/1693
1009
General-purpose timers (TIM15/16/17)
RM0351
Figure 298. TIM15 block diagram
,QWHUQDOFORFN &.B,17
&.B7,0IURP5&&
,75
,75
,75
,75
7ULJJHU
FRQWUROOHU
7*,
,75
75&
7,)B('
75*,
75*2
WRRWKHUWLPHUV
6ODYH
FRQWUROOHU 5HVHWHQDEOHXSFRXQW
PRGH
7,)3
7,)3
5(3UHJLVWHU
8
8,
$XWRUHORDGUHJLVWHU
5HSHWLWLRQ
FRXQWHU
6WRSFOHDURUXSGRZQ
&.B36&
;25
7,
7,0[B&+
7,0[B&+
7,
,QSXWILOWHU
HGJHGHWHFWRU
,QSXWILOWHU
HGJHGHWHFWRU
,QWHUQDOVRXUFHV
7,)3
7,)3
3UHVFDOHU
75&
7,)3
7,)3
75&
,&36
&&,
,&
3UHVFDOHU
,&36
&17FRXQWHU
&&,
&DSWXUH&RPSDUHUHJLVWHU
'7*UHJLVWHUV
2&5()
'7*
&&,
8
&DSWXUH&RPSDUHUHJLVWHU
2&5()
7,0[B&+
2XWSXW 2&
FRQWURO
7,0[B&+1
2&1
2XWSXW 2& 7,0[B&+
FRQWURO
6%,)
%,)
%UHDNFLUFXLWU\
7,0[B%.,1
,&
&.B&17
36&
SUHVFDOHU
&&, 8
8
%5.UHTXHVW
1RWHV
5HJ
3UHORDGUHJLVWHUVWUDQVIHUUHG
WRDFWLYHUHJLVWHUVRQ8HYHQW
DFFRUGLQJWRFRQWUROELW
(YHQW
,QWHUUXSW '0$RXWSXW
06Y9
1. The internal break event source can be:
A clock failure event generated by CSS. For further information on the CSS, refer to Section 6.2.9: Clock security
system (CSS)
A PVD output
SRAM parity error signal
Cortex®-M4 LOCKUP (Hardfault) output
COMP output
932/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
Figure 299. TIM16 and TIM17 block diagram
,QWHUQDOFORFN &.B,17
&RXQWHU(QDEOH &(1
5(3UHJLVWHU
$XWRUHORDGUHJLVWHU
8
8,
5HSHWLWLRQ
FRXQWHU
6WRSFOHDURUXSGRZQ
&.B36&
7,0[B&+
7,
,QSXWILOWHU
HGJHVHOHFWRU
7,)3
,&
36&
&.B&17
SUHVFDOHU
&,
8
,&36
3UHVFDOHU
&17FRXQWHU
8
'7*UHJLVWHUV
&&,
&DSWXUHFRPSDUHUHJLVWHU
7,0[B&+
2&5()
'7*
2XWSXW 2&
FRQWURO
7,0[B&+1
2&1
,QWHUQDOVRXUFHV
6%,)
%,)
%UHDNFLUFXLWU\
7,0[B%.,1
%5.UHTXHVW
1RWHV
5HJ
3UHORDGUHJLVWHUVWUDQVIHUUHG
WRDFWLYHUHJLVWHUVRQ8HYHQW
DFFRUGLQJWRFRQWUROELW
(YHQW
,QWHUUXSW '0$RXWSXW
06Y9
1. The internal break event source can be:
A clock failure event generated by CSS. For further information on the CSS, refer to Section 6.2.9: Clock security
system (CSS)
A PVD output
SRAM parity error signal
Cortex®-M4 LOCKUP (Hardfault) output
COMP output
DocID024597 Rev 3
933/1693
1009
General-purpose timers (TIM15/16/17)
RM0351
28.4
TIM15/16/17 functional description
28.4.1
Time-base unit
The main block of the programmable advanced-control timer is a 16-bit upcounter with its
related auto-reload register. The counter clock can be divided by a prescaler.
The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.
The time-base unit includes:
•
Counter register (TIMx_CNT)
•
Prescaler register (TIMx_PSC)
•
Auto-reload register (TIMx_ARR)
•
Repetition counter register (TIMx_RCR)
The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into the
shadow register permanently or at each update event (UEV), depending on the auto-reload
preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter
reaches the overflow and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be
generated by software. The generation of the update event is described in detailed for each
configuration.
The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller
description to get more details on counter enabling).
Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1
register.
Prescaler description
The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as this control register is buffered. The new prescaler ratio is
taken into account at the next update event.
Figure 300 and Figure 301 give some examples of the counter behavior when the prescaler
ratio is changed on the fly:
934/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
Figure 300. Counter timing diagram with prescaler division change from 1 to 2
&.B36&
&(1
7LPHUFORFN
&.B&17
&RXQWHUUHJLVWHU
)
)
)
)$ )% )&
8SGDWHHYHQW 8(9
3UHVFDOHUFRQWUROUHJLVWHU
:ULWHDQHZYDOXHLQ7,0[B36&
3UHVFDOHUEXIIHU
3UHVFDOHUFRXQWHU
069
Figure 301. Counter timing diagram with prescaler division change from 1 to 4
&.B36&
&(1
7LPHUFORFN
&.B&17
&RXQWHUUHJLVWHU
)
)
)
)$ )% )&
8SGDWHHYHQW 8(9
3UHVFDOHUFRQWUROUHJLVWHU
:ULWHDQHZYDOXHLQ7,0[B36&
3UHVFDOHUEXIIHU
3UHVFDOHUFRXQWHU
069
DocID024597 Rev 3
935/1693
1009
General-purpose timers (TIM15/16/17)
28.4.2
RM0351
Counter modes
Upcounting mode
In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.
If the repetition counter is used, the update event (UEV) is generated after upcounting is
repeated for the number of times programmed in the repetition counter register
(TIMx_RCR). Else the update event is generated at each counter overflow.
Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event.
The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to 0.
However, the counter restarts from 0, as well as the counter of the prescaler (but the
prescale rate does not change). In addition, if the URS bit (update request selection) in
TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without
setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating
both update and capture interrupts when clearing the counter on the capture event.
When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):
•
The repetition counter is reloaded with the content of TIMx_RCR register,
•
The auto-reload shadow register is updated with the preload value (TIMx_ARR),
•
The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).
The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.
936/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
Figure 302. Counter timing diagram, internal clock divided by 1
&.B36&
&17B(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
069
Figure 303. Counter timing diagram, internal clock divided by 2
&.B36&
&17B(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
069
DocID024597 Rev 3
937/1693
1009
General-purpose timers (TIM15/16/17)
RM0351
Figure 304. Counter timing diagram, internal clock divided by 4
&.B36&
&17B(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
069
Figure 305. Counter timing diagram, internal clock divided by N
&.B36&
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
)
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
069
938/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
Figure 306. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not
preloaded)
&.B36&
&(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
$XWRUHORDGSUHORDG
UHJLVWHU
))
:ULWHDQHZYDOXHLQ7,0[B$55
069
Figure 307. Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded)
&.B36&
&(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
)
)
)
)
) )
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
$XWRUHORDGSUHORDG
UHJLVWHU
)
$XWRUHORDGVKDGRZ
UHJLVWHU
)
:ULWHDQHZYDOXHLQ7,0[B$55
DocID024597 Rev 3
069
939/1693
1009
General-purpose timers (TIM15/16/17)
28.4.3
RM0351
Repetition counter
Section 28.4.1: Time-base unit describes how the update event (UEV) is generated with
respect to the counter overflows. It is actually generated only when the repetition counter
has reached zero. This can be useful when generating PWM signals.
This means that data are transferred from the preload registers to the shadow registers
(TIMx_ARR auto-reload register, TIMx_PSC prescaler register, but also TIMx_CCRx
capture/compare registers in compare mode) every N counter overflows, where N is the
value in the TIMx_RCR repetition counter register.
The repetition counter is decremented at each counter overflow.
The repetition counter is an auto-reload type; the repetition rate is maintained as defined by
the TIMx_RCR register value (refer to Figure 308). When the update event is generated by
software (by setting the UG bit in TIMx_EGR register) or by hardware through the slave
mode controller, it occurs immediately whatever the value of the repetition counter is and the
repetition counter is reloaded with the content of the TIMx_RCR register.
940/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
Figure 308. Update rate examples depending on mode and TIMx_RCR register
settings
(GJHDOLJQHGPRGH
8SFRXQWLQJ
&RXQWHU
7,0[B&17
7,0[B5&5 8(9
7,0[B5&5 8(9
7,0[B5&5 8(9
7,0[B5&5 8(9
7,0[B5&5
DQG
UHV\QFKURQL]DWLRQ8(9
E\6:
8(9
8SGDWH(YHQWSUHORDGUHJLVWHUVWUDQVIHUUHGWRDFWLYHUHJLVWHUV
DQGXSGDWHLQWHUUXSWJHQHUDWHG
069
28.4.4
Clock selection
The counter clock can be provided by the following clock sources:
•
Internal clock (CK_INT)
•
External clock mode1: external input pin
•
Internal trigger inputs (ITRx) (only for TIM15): using one timer as the prescaler for
another timer, for example, you can configure TIM1 to act as a prescaler for TIM15.
Refer to Using one timer as prescaler for another timer on page 896 for more details.
Internal clock source (CK_INT)
If the slave mode controller is disabled (SMS=000), then the CEN (in the TIMx_CR1
register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed
DocID024597 Rev 3
941/1693
1009
General-purpose timers (TIM15/16/17)
RM0351
only by software (except UG which remains cleared automatically). As soon as the CEN bit
is written to 1, the prescaler is clocked by the internal clock CK_INT.
Figure 309 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.
Figure 309. Control circuit in normal mode, internal clock divided by 1
,QWHUQDOFORFN
&(1 &17B(1
8*
&17B,1,7
&RXQWHUFORFN &.B&17 &.B36&
&RXQWHUUHJLVWHU
069
External clock source mode 1
This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at
each rising or falling edge on a selected input.
Figure 310. TI2 external clock connection example
7,0[B60&5
76>@
,75[
7,B('
7,
)LOWHU
(GJH
GHWHFWRU
7,)B5LVLQJ
7,)B)DOOLQJ
7,)3
7,)3
[[
75*,
&&3
7,0[B&&05
7,0[B&&(5
&.B36&
&.B,17
,&)>@
([WHUQDOFORFN
PRGH
LQWHUQDOFORFN
,QWHUQDOFORFN
PRGH
606>@
7,0[B60&5
069
942/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:
Note:
1.
Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = ‘01’ in
the TIMx_CCMR1 register.
2.
Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=0000).
3.
Select rising edge polarity by writing CC2P=0 in the TIMx_CCER register.
4.
Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR
register.
5.
Select TI2 as the trigger input source by writing TS=110 in the TIMx_SMCR register.
6.
Enable the counter by writing CEN=1 in the TIMx_CR1 register.
The capture prescaler is not used for triggering, so you don’t need to configure it.
When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.
The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on TI2 input.
Figure 311. Control circuit in external clock mode 1
7,
&17B(1
&RXQWHUFORFN &.B&17 &.B36&
&RXQWHUUHJLVWHU
7,)
:ULWH7,)
069
28.4.5
Capture/compare channels
Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and
an output stage (with comparator and output control).
Figure 312 to Figure 315 give an overview of one Capture/Compare channel.
The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be
used as trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).
DocID024597 Rev 3
943/1693
1009
General-purpose timers (TIM15/16/17)
RM0351
Figure 312. Capture/compare channel (example: channel 1 input stage)
7,)B('
7RWKHVODYHPRGHFRQWUROOHU
7,)B5LVLQJ
7,
)LOWHU
7,)
GRZQFRXQWHU
I'76
(GJH
GHWHFWRU
7,)B)DOOLQJ
7,)3
7,)3
,&)>@
&&3
7,0[B&&05
7,0[B&&(5
7,)B5LVLQJ
IURPFKDQQHO
7,)B)DOOLQJ
IURPFKDQQHO
,&
75&
IURPVODYHPRGH
FRQWUROOHU
,&36
'LYLGHU
&&6>@ ,&36>@
&&(
7,0[B&&05
7,0[B&&(5
069
The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.
Figure 313. Capture/compare channel 1 main circuit
$3%%XV
5HDG&&5+ 6
5HDG&&5/
KLJK
UHDGBLQBSURJUHVV
&&6>@
,&36
ZULWHBLQBSURJUHVV
,QSXW
PRGH
6 ZULWH&&5+
&DSWXUHFRPSDUHSUHORDGUHJLVWHU
5
5
FRPSDUHBWUDQVIHU
FDSWXUHBWUDQVIHU
&&6>@
ORZ
LIELW
0&8SHULSKHUDOLQWHUIDFH
2XWSXW
PRGH
&17!&&5
&RXQWHU
&&*
&&6>@
8(9
&RPSDUDWRU
&&(
&&6>@
2&3(
&DSWXUHFRPSDUHVKDGRZUHJLVWHU
&DSWXUH
ZULWH&&5/
IURPWLPH
EDVHXQLW
2&3(
7,0B&&05
&17 &&5
7,0B(*5
069
944/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
Figure 314. Output stage of capture/compare channel (channel 1)
7RWKHPDVWHUPRGH
FRQWUROOHU
µ¶
2&5()&
2&5()
&17!&&5 2XWSXW
PRGH
&17 &&5
FRQWUROOHU
2&B'7
'HDGWLPH
JHQHUDWRU
2XWSXW
VHOHFWRU
[
&&3
2XWSXW
HQDEOH
FLUFXLW
2&
2XWSXW
HQDEOH
FLUFXLW
2&1
7,0B&&(5
2&1B'7
µ¶
2&5()
[
&&1( &&( 7,0B&&(5
2&&( 2&0>@
'7*>@
&&1( &&(
&&13
02( 266, 2665
7,0B&&05
7,0B%'75
7,0B&&(5
7,0B&&(5
7,0B%'75
069
Figure 315. Output stage of capture/compare channel (channel 2 for TIM15)
7RWKHPDVWHU
PRGHFRQWUROOHU
2&5()&
2&5()
µ¶
&17!&&5
2XWSXW
PRGH
&17 &&5
FRQWUROOHU
2&5()
2XWSXW
VHOHFWRU
&&(
&&3
7,0B&&(5
7,0B&&(5
2XWSXW
HQDEOH
FLUFXLW
2&
&&( 7,0B&&(5
2&&( 2&0>@
7,0B&&05
069
The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register.
In capture mode, captures are actually done in the shadow register, which is copied into the
preload register.
In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.
DocID024597 Rev 3
945/1693
1009
General-purpose timers (TIM15/16/17)
28.4.6
RM0351
Input capture mode
In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the
value of the counter after a transition detected by the corresponding ICx signal. When a
capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or
a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was
already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be
cleared by software by writing it to ‘0’ or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when you write it to ‘0’.
The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:
1.
Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00,
the channel is configured in input and the TIMx_CCR1 register becomes read-only.
2.
Program the input filter duration you need with respect to the signal you connect to the
timer (when the input is one of the TIx (ICxF bits in the TIMx_CCMRx register). Let’s
imagine that, when toggling, the input signal is not stable during at must 5 internal clock
cycles. We must program a filter duration longer than these 5 clock cycles. We can
validate a transition on TI1 when 8 consecutive samples with the new level have been
detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in the
TIMx_CCMR1 register.
3.
Select the edge of the active transition on the TI1 channel by writing CC1P bit to 0 in
the TIMx_CCER register (rising edge in this case).
4.
Program the input prescaler. In our example, we wish the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to ‘00’ in the
TIMx_CCMR1 register).
5.
Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register.
6.
If needed, enable the related interrupt request by setting the CC1IE bit in the
TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the
TIMx_DIER register.
When an input capture occurs:
•
The TIMx_CCR1 register gets the value of the counter on the active transition.
•
CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.
•
An interrupt is generated depending on the CC1IE bit.
•
A DMA request is generated depending on the CC1DE bit.
In order to handle the overcapture, it is recommended to read the data before the
overcapture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.
Note:
946/1693
IC interrupt and/or DMA requests can be generated by software by setting the
corresponding CCxG bit in the TIMx_EGR register.
DocID024597 Rev 3
RM0351
28.4.7
General-purpose timers (TIM15/16/17)
PWM input mode (only for TIM15)
This mode is a particular case of input capture mode. The procedure is the same except:
•
Two ICx signals are mapped on the same TIx input.
•
These 2 ICx signals are active on edges with opposite polarity.
•
One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.
For example, you can measure the period (in TIMx_CCR1 register) and the duty cycle (in
TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending
on CK_INT frequency and prescaler value):
1.
Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1
register (TI1 selected).
2.
Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P and CC1NP bits to ‘0’ (active on rising edge).
3.
Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1
register (TI1 selected).
4.
Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
and CC2NP bits to ‘1’ (active on falling edge).
5.
Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register
(TI1FP1 selected).
6.
Configure the slave mode controller in reset mode: write the SMS bits to 100 in the
TIMx_SMCR register.
7.
Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER register.
Figure 316. PWM input mode timing
7,
7,0[B&17
7,0[B&&5
7,0[B&&5
,&FDSWXUH
,&FDSWXUH
UHVHWFRXQWHU
,&FDSWXUH
SXOVHZLGWK
PHDVXUHPHQW
,&FDSWXUH
SHULRG
PHDVXUHPHQW
DL
1. The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the fact that only
TI1FP1 and TI2FP2 are connected to the slave mode controller.
DocID024597 Rev 3
947/1693
1009
General-purpose timers (TIM15/16/17)
28.4.8
RM0351
Forced output mode
In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx/OCxN) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.
To force an output compare signal (OCXREF/OCx) to its active level, you just need to write
101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is forced
high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit.
For example: CCxP=0 (OCx active high) => OCx is forced to high level.
The OCxREF signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx
register.
Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still
performed and allows the flag to be set. Interrupt and DMA requests can be sent
accordingly. This is described in the output compare mode section below.
28.4.9
Output compare mode
This function is used to control an output waveform or indicating when a period of time has
elapsed.
When a match is found between the capture/compare register and the counter, the output
compare function:
•
Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set
active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.
•
Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).
•
Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).
•
Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the
TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request
selection).
The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.
In output compare mode, the update event UEV has no effect on OCxREF and OCx output.
The timing resolution is one count of the counter. Output compare mode can also be used to
output a single pulse (in One-pulse mode).
948/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
Procedure
1.
Select the counter clock (internal, external, prescaler).
2.
Write the desired data in the TIMx_ARR and TIMx_CCRx registers.
3.
Set the CCxIE bit if an interrupt request is to be generated.
4.
5.
Select the output mode. For example:
–
Write OCxM = 011 to toggle OCx output pin when CNT matches CCRx
–
Write OCxPE = 0 to disable preload register
–
Write CCxP = 0 to select active high polarity
–
Write CCxE = 1 to enable the output
Enable the counter by setting the CEN bit in the TIMx_CR1 register.
The TIMx_CCRx register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCxPE=’0’, else TIMx_CCRx
shadow register is updated only at the next update event UEV). An example is given in
Figure 316.
Figure 317. Output compare mode, toggle on OC1
:ULWH%KLQWKH&&5UHJLVWHU
7,0B&17
7,0B&&5
%
$
%
%
%
$
2&5() 2&
0DWFKGHWHFWHGRQ&&5
,QWHUUXSWJHQHUDWHGLIHQDEOHG
069
28.4.10
PWM mode
Pulse Width Modulation mode allows you to generate a signal with a frequency determined
by the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.
The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing ‘110’ (PWM mode 1) or ‘111’ (PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. You must enable the corresponding preload register by setting the
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in
upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register.
DocID024597 Rev 3
949/1693
1009
General-purpose timers (TIM15/16/17)
RM0351
As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, you have to initialize all the registers by setting the UG
bit in the TIMx_EGR register.
OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It
can be programmed as active high or active low. OCx output is enabled by a combination of
the CCxE, CCxNE, MOE, OSSI and OSSR bits (TIMx_CCER and TIMx_BDTR registers).
Refer to the TIMx_CCER register description for more details.
In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CCRx ≤TIMx_CNT or TIMx_CNT ≤TIMx_CCRx (depending on the direction
of the counter).
The TIM15/16/17 are capable of upcounting only. Refer to Upcounting mode on page 936.
In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is
high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the compare value in
TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at
‘1’. If the compare value is 0 then OCxRef is held at ‘0’. Figure 318 shows some edgealigned PWM waveforms in an example where TIMx_ARR=8.
Figure 318. Edge-aligned PWM waveforms (ARR=8)
&RXQWHUUHJLVWHU
&&5[
2&;5()
&&[,)
2&;5()
&&5[
&&[,)
2&;5()
µ¶
&&5[!
&&[,)
2&;5()
µ¶
&&5[
&&[,)
069
28.4.11
Combined PWM mode (TIM15 only)
Combined PWM mode allows two edge or center-aligned PWM signals to be generated with
programmable delay and phase shift between respective pulses. While the frequency is
determined by the value of the TIMx_ARR register, the duty cycle and delay are determined
950/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
by the two TIMx_CCRx registers. The resulting signals, OCxREFC, are made of an OR or
AND logical combination of two reference PWMs:
•
OC1REFC (or OC2REFC) is controlled by the TIMx_CCR1 and TIMx_CCR2 registers
Combined PWM mode can be selected independently on two channels (one OCx output per
pair of CCR registers) by writing ‘1100’ (Combined PWM mode 1) or ‘1101’ (Combined PWM
mode 2) in the OCxM bits in the TIMx_CCMRx register.
When a given channel is used as a combined PWM channel, its complementary channel
must be configured in the opposite PWM mode (for instance, one in Combined PWM mode
1 and the other in Combined PWM mode 2).
Note:
The OCxM[3:0] bit field is split into two parts for compatibility reasons, the most significant
bit is not contiguous with the 3 least significant ones.
Figure 319 represents an example of signals that can be generated using Asymmetric PWM
mode, obtained with the following configuration:
•
Channel 1 is configured in Combined PWM mode 2,
•
Channel 2 is configured in PWM mode 1,
Figure 319. Combined PWM mode on channel 1 and 2
2&¶
2&¶
2&
2&
2&5()
2&5()
2&5()¶
2&5()¶
2&5()&
2&5()&¶
2&5()& 2&5()$1'2&5()
2&5()&¶ 2&5()¶252&5()¶
069
DocID024597 Rev 3
951/1693
1009
General-purpose timers (TIM15/16/17)
28.4.12
RM0351
Complementary outputs and dead-time insertion
The TIM15/16/17 general-purpose timers can output one complementary signal and
manage the switching-off and switching-on of the outputs.
This time is generally known as dead-time and you have to adjust it depending on the
devices you have connected to the outputs and their characteristics (intrinsic delays of levelshifters, delays due to power switches...)
You can select the polarity of the outputs (main output OCx or complementary OCxN)
independently for each output. This is done by writing to the CCxP and CCxNP bits in the
TIMx_CCER register.
The complementary signals OCx and OCxN are activated by a combination of several
control bits: the CCxE and CCxNE bits in the TIMx_CCER register and the MOE, OISx,
OISxN, OSSI and OSSR bits in the TIMx_BDTR and TIMx_CR2 registers. Refer to
Table 157: Output control bits for complementary OCx and OCxN channels with break
feature on page 978 for more details. In particular, the dead-time is activated when
switching to the idle state (MOE falling down to 0).
Dead-time insertion is enabled by setting both CCxE and CCxNE bits, and the MOE bit if the
break circuit is present. There is one 10-bit dead-time generator for each channel. From a
reference waveform OCxREF, it generates 2 outputs OCx and OCxN. If OCx and OCxN are
active high:
•
The OCx output signal is the same as the reference signal except for the rising edge,
which is delayed relative to the reference rising edge.
•
The OCxN output signal is the opposite of the reference signal except for the rising
edge, which is delayed relative to the reference falling edge.
If the delay is greater than the width of the active output (OCx or OCxN) then the
corresponding pulse is not generated.
The following figures show the relationships between the output signals of the dead-time
generator and the reference signal OCxREF. (we suppose CCxP=0, CCxNP=0, MOE=1,
CCxE=1 and CCxNE=1 in these examples)
Figure 320. Complementary output with dead-time insertion.
2&[5()
2&[
GHOD\
2&[1
GHOD\
069
952/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
Figure 321. Dead-time waveforms with delay greater than the negative pulse.
2&[5()
2&[
GHOD\
2&[1
069
Figure 322. Dead-time waveforms with delay greater than the positive pulse.
2&[5()
2&[
2&[1
GHOD\
069
The dead-time delay is the same for each of the channels and is programmable with the
DTG bits in the TIMx_BDTR register. Refer to Section 28.5.15: TIM15 break and dead-time
register (TIM15_BDTR) on page 981 for delay calculation.
Re-directing OCxREF to OCx or OCxN
In output mode (forced, output compare or PWM), OCxREF can be re-directed to the OCx
output or to OCxN output by configuring the CCxE and CCxNE bits in the TIMx_CCER
register.
This allows you to send a specific waveform (such as PWM or static active level) on one
output while the complementary remains at its inactive level. Other alternative possibilities
are to have both outputs at inactive level or both outputs active and complementary with
dead-time.
Note:
When only OCxN is enabled (CCxE=0, CCxNE=1), it is not complemented and becomes
active as soon as OCxREF is high. For example, if CCxNP=0 then OCxN=OCxRef. On the
other hand, when both OCx and OCxN are enabled (CCxE=CCxNE=1) OCx becomes
active when OCxREF is high whereas OCxN is complemented and becomes active when
OCxREF is low.
DocID024597 Rev 3
953/1693
1009
General-purpose timers (TIM15/16/17)
28.4.13
RM0351
Using the break function
The purpose of the break function is to protect power switches driven by PWM signals
generated with the TIM15/16/17 timers. The break input is usually connected to fault outputs
of power stages and 3-phase inverters. When activated, the break circuitry shuts down the
PWM outputs and forces them to a predefined safe state.
The break channel gathers both system-level fault (clock failure, parity error,...) and
application fault (from input pins and built-in comparator), and can force the outputs to a
predefined level (either active or inactive) after a deadtime duration.
The output enable signal and output levels during break are depending on several control
bits:
•
the MOE bit in TIMx_BDTR register allows to enable /disable the outputs by software
and is reset in case of break or break2 event.
•
the OSSI bit in the TIMx_BDTR register defines whether the timer controls the output in
inactive state or releases the control to the GPIO controller (typically to have it in Hi-Z
mode)
•
the OISx and OISxN bits in the TIMx_CR2 register which are setting the output shutdown level, either active or inactive. The OCx and OCxN outputs cannot be set both to
active level at a given time, whatever the OISx and OISxN values. Refer to Table 157:
Output control bits for complementary OCx and OCxN channels with break feature on
page 978 for more details.
When exiting from reset, the break circuit is disabled and the MOE bit is low. The break
function is enabled by setting the BKE bit in the TIMx_BDTR register. The break input
polarity can be selected by configuring the BKP bit in the same register. BKE and BKP can
be modified at the same time. When the BKE and BKP bits are written, a delay of 1 APB
clock cycle is applied before the writing is effective. Consequently, it is necessary to wait 1
APB clock period to correctly read back the bit after the write operation.
Because MOE falling edge can be asynchronous, a resynchronization circuit has been
inserted between the actual signal (acting on the outputs) and the synchronous control bit
(accessed in the TIMx_BDTR register). It results in some delays between the asynchronous
and the synchronous signals. In particular, if you write MOE to 1 whereas it was low, you
must insert a delay (dummy instruction) before reading it correctly. This is because you write
the asynchronous signal and read the synchronous signal.
The break can be generated from multiple sources which can be individually enabled and
with programmable edge sensitivity, using the TIMx_OR2 register.
The sources for break (BRK) channel are:
954/1693
•
An external source connected to one of the BKIN pin (as per selection done in the
AFIO controller), with polarity selection and optional digital filtering
•
An internal source:
–
– the Cortex®-M4 LOCKUP output
–
– the PVD output
–
– the SRAM parity error signal
–
– a flash ECC error
–
– a clock failure event generated by the CSS detector
–
– the output from a comparator, with polarity selection and optional digital filtering
–
– the analog watchdog output of the DFSDM peripheral
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
Break events can also be generated by software using BG bit in the TIMx_EGR register.
All sources are ORed before entering the timer BRK inputs, as per Figure 323 below.
Figure 323. Break circuitry overview
&RUH/RFNXS
39'
/RFNXS/2&.
39'/2&.
6\VWHPEUHDNUHTXHVWV
5$0SDULW\(UURU
(&&(UURU
6%,)IODJ
3DULW\/2&.
(&&/2&.
&66
%.,13
%.,1LQSXWV
IURP$)
FRQWUROOHU
%.,1(
6RIWZDUHEUHDNUHTXHVWV%*
%.&033
%.&03(
&203RXWSXW
%.)>@
%.(
%,)IODJ
%.3
%5.UHTXHVW
%.&033
)LOWHU
%.&03(
&203RXWSXW
$SSOLFDWLRQEUHDNUHTXHVWV
%.')%.[(
')6'0
%5($.RXWSXW
06Y9
Note:
An asynchronous (clockless) operation is only guaranteed when the programmable filter is
disabled. If it is enabled, a fail safe clock mode (for example by using the internal PLL and/or
the CSS) must be used to guarantee that break events are handled.
When a break occurs (selected level on the break input):
•
The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle state
or even releasing the control to the AFIO controller (selected by the OSSI bit). This
feature functions even if the MCU oscillator is off.
•
Each output channel is driven with the level programmed in the OISx bit in the
TIMx_CR2 register as soon as MOE=0. If OSSI=0, the timer releases the output control
(taken over by the AFIO controller) else the enable output remains high.
•
When complementary outputs are used:
–
The outputs are first put in reset state inactive state (depending on the polarity).
This is done asynchronously so that it works even if no clock is provided to the
timer.
–
If the timer clock is still present, then the dead-time generator is reactivated in
order to drive the outputs with the level programmed in the OISx and OISxN bits
after a dead-time. Even in this case, OCx and OCxN cannot be driven to their
DocID024597 Rev 3
955/1693
1009
General-purpose timers (TIM15/16/17)
RM0351
active level together. Note that because of the resynchronization on MOE, the
dead-time duration is a bit longer than usual (around 2 ck_tim clock cycles).
–
Note:
If OSSI=0 then the timer releases the enable outputs (taken over by the AFIO
controller which forces a Hi-Z state) else the enable outputs remain or become
high as soon as one of the CCxE or CCxNE bits is high.
•
The break status flag (BIF bit in the TIMx_SR register) is set. An interrupt can be
generated if the BIE bit in the TIMx_DIER register is set. A DMA request can be sent if
the BDE bit in the TIMx_DIER register is set.
•
If the AOE bit in the TIMx_BDTR register is set, the MOE bit is automatically set again
at the next update event UEV. This can be used to perform a regulation, for instance.
Else, MOE remains low until you write it to ‘1’ again. In this case, it can be used for
security and you can connect the break input to an alarm from power drivers, thermal
sensors or any security components.
The break inputs is acting on level. Thus, the MOE cannot be set while the break input is
active (neither automatically nor by software). In the meantime, the status flag BIF cannot
be cleared.
The break can be generated by the BRK input which has a programmable polarity and an
enable bit BKE in the TIMx_BDTR Register.
In addition to the break input and the output management, a write protection has been
implemented inside the break circuit to safeguard the application. It allows you to freeze the
configuration of several parameters (dead-time duration, OCx/OCxN polarities and state
when disabled, OCxM configurations, break enable and polarity). You can choose from 3
levels of protection selected by the LOCK bits in the TIMx_BDTR register. Refer to
Section 28.5.15: TIM15 break and dead-time register (TIM15_BDTR) on page 981. The
LOCK bits can be written only once after an MCU reset.
The Figure 324 shows an example of behavior of the outputs in response to a break.
956/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
Figure 324. Output behavior in response to a break
%5($. 02(
2&[5()
2&[
2&[1QRWLPSOHPHQWHG&&[3 2,6[
2&[
2&[1QRWLPSOHPHQWHG&&[3 2,6[
2&[
2&[1QRWLPSOHPHQWHG&&[3 2,6[
2&[
2&[1QRWLPSOHPHQWHG&&[3 2,6[
2&[
GHOD\
GHOD\
2&[1
&&[( &&[3 2,6[ &&[1( &&[13 2,6[1
GHOD\
2&[
GHOD\
GHOD\
2&[1
&&[( &&[3 2,6[ &&[1( &&[13 2,6[1
GHOD\
2&[
2&[1
&&[( &&[3 2,6[ &&[1( &&[13 2,6[1
GHOD\
2&[
2&[1
&&[( &&[3 2,6[ &&[1( &&[13 2,6[1
GHOD\
2&[
2&[1
&&[( &&[3 &&[1( &&[13 2,6[ 2,6[1 RU2,6[ 2,6[1
069
DocID024597 Rev 3
957/1693
1009
General-purpose timers (TIM15/16/17)
28.4.14
RM0351
One-pulse mode
One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.
Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output compare mode or PWM mode. You select One-pulse mode
by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically
at the next update event UEV.
A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be:
•
CNT < CCRx ≤ ARR (in particular, 0 < CCRx)
Figure 325. Example of one pulse mode.
7,
2&5()
2&
&RXQWHU
7,0B$55
7,0B&&5
W'(/$<
W38/6(
W
069
For example you may want to generate a positive pulse on OC1 with a length of tPULSE and
after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.
Let’s use TI2FP2 as trigger 1:
958/1693
1.
Map TI2FP2 to TI2 by writing CC2S=’01’ in the TIMx_CCMR1 register.
2.
TI2FP2 must detect a rising edge, write CC2P=’0’ and CC2NP=’0’ in the TIMx_CCER
register.
3.
Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=’110’ in
the TIMx_SMCR register.
4.
TI2FP2 is used to start the counter by writing SMS to ‘110’ in the TIMx_SMCR register
(trigger mode).
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).
•
The tDELAY is defined by the value written in the TIMx_CCR1 register.
•
The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR1).
•
Let’s say you want to build a waveform with a transition from ‘0’ to ‘1’ when a compare
match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the auto-reload
value. To do this you enable PWM mode 2 by writing OC1M=111 in the TIMx_CCMR1
register. You can optionally enable the preload registers by writing OC1PE=’1’ in the
TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case you have to
write the compare value in the TIMx_CCR1 register, the auto-reload value in the
TIMx_ARR register, generate an update by setting the UG bit and wait for external
trigger event on TI2. CC1P is written to ‘0’ in this example.
You only want 1 pulse, so you write ‘1’ in the OPM bit in the TIMx_CR1 register to stop the
counter at the next update event (when the counter rolls over from the auto-reload value
back to 0).
Particular case: OCx fast enable
In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.
If you want to output a waveform with the minimum delay, you can set the OCxFE bit in the
TIMx_CCMRx register. Then OCxRef (and OCx) are forced in response to the stimulus,
without taking in account the comparison. Its new level is the same as if a compare match
had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode.
28.4.15
UIF bit remapping
The IUFREMAP bit in the TIMx_CR1 register forces a continuous copy of the Update
Interrupt Flag UIF into bit 31 of the timer counter register (TIMxCNT[31]). This allows to
atomically read both the counter value and a potential roll-over condition signaled by the
UIFCPY flag. In particular cases, it can ease the calculations by avoiding race conditions
caused for instance by a processing shared between a background task (counter reading)
and an interrupt (Update Interrupt).
There is no latency between the assertions of the UIF and UIFCPY flags.
DocID024597 Rev 3
959/1693
1009
General-purpose timers (TIM15/16/17)
28.4.16
RM0351
Timer input XOR function (TIM15 only)
The TI1S bit in the TIMx_CR2 register, allows the input filter of channel 1 to be connected to
the output of a XOR gate, combining the two input pins TIMx_CH1 and TIMx_CH2.
The XOR output can be used with all the timer input functions such as trigger or input
capture. It is useful for measuring the interval between the edges on two input signals, as
shown in Figure 326.
Figure 326. Measuring time interval between edges on 2 signals
7,
7,
7,;257,
&RXQWHU
069
960/1693
DocID024597 Rev 3
RM0351
28.4.17
General-purpose timers (TIM15/16/17)
External trigger synchronization (TIM15 only)
The TIM timers are linked together internally for timer synchronization or chaining.
The TIM15 timer can be synchronized with an external trigger in several modes: Reset
mode, Gated mode and Trigger mode.
Slave mode: Reset mode
The counter and its prescaler can be reinitialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.
In the following example, the upcounter is cleared in response to a rising edge on TI1 input:
1.
Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits
select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write
CC1P=’0’ and CC1NP=’0’ in the TIMx_CCER register to validate the polarity (and
detect rising edges only).
2.
Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.
3.
Start the counter by writing CEN=1 in the TIMx_CR1 register.
The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA
request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register).
The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.
Figure 327. Control circuit in reset mode
7,
8*
&RXQWHUFORFN FNBFQW FNBSVF
&RXQWHUUHJLVWHU
7,)
069
DocID024597 Rev 3
961/1693
1009
General-purpose timers (TIM15/16/17)
RM0351
Slave mode: Gated mode
The counter can be enabled depending on the level of a selected input.
In the following example, the upcounter counts only when TI1 input is low:
1.
Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits
select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write
CC1P=1 and CC1NP = ‘0’ in the TIMx_CCER register to validate the polarity (and
detect low level only).
2.
Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.
3.
Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the
counter doesn’t start if CEN=0, whatever is the trigger input level).
The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts
or stops.
The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.
Figure 328. Control circuit in gated mode
7,
FQWBHQ
&RXQWHUFORFN FNBFQW FNBSVF
&RXQWHUUHJLVWHU
7,)
:ULWH7,)
069
962/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
Slave mode: Trigger mode
The counter can start in response to an event on a selected input.
In the following example, the upcounter starts in response to a rising edge on TI2 input:
1.
Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC2F=0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC2S bits are
configured to select the input capture source only, CC2S=01 in TIMx_CCMR1 register.
Write CC2P=’1’ and CC2NP=’0’ in the TIMx_CCER register to validate the polarity (and
detect low level only).
2.
Configure the timer in trigger mode by writing SMS=110 in the TIMx_SMCR register.
Select TI2 as the input source by writing TS=110 in the TIMx_SMCR register.
When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.
The delay between the rising edge on TI2 and the actual start of the counter is due to the
resynchronization circuit on TI2 input.
Figure 329. Control circuit in trigger mode
7,
FQWBHQ
&RXQWHUFORFN FNBFQW FNBSVF
&RXQWHUUHJLVWHU
7,)
069
28.4.18
Slave mode: Combined reset + trigger mode
In this case, a rising edge of the selected trigger input (TRGI) reinitializes the counter,
generates an update of the registers, and starts the counter.
This mode is used for one-pulse mode.
28.4.19
DMA burst mode
The TIMx timers have the capability to generate multiple DMA requests on a single event.
The main purpose is to be able to re-program several timer registers multiple times without
software overhead, but it can also be used to read several registers in a row, at regular
intervals.
The DMA controller destination is unique and must point to the virtual register TIMx_DMAR.
On a given timer event, the timer launches a sequence of DMA requests (burst). Each write
into the TIMx_DMAR register is actually redirected to one of the timer registers.
DocID024597 Rev 3
963/1693
1009
General-purpose timers (TIM15/16/17)
RM0351
The DBL[4:0] bits in the TIMx_DCR register set the DMA burst length. The timer recognizes
a burst transfer when a read or a write access is done to the TIMx_DMAR address), i.e. the
number of transfers (either in half-words or in bytes).
The DBA[4:0] bits in the TIMx_DCR registers define the DMA base address for DMA
transfers (when read/write access are done through the TIMx_DMAR address). DBA is
defined as an offset starting from the address of the TIMx_CR1 register.
Example:
00000: TIMx_CR1,
00001: TIMx_CR2,
00010: TIMx_SMCR,
For example, the timer DMA burst feature could be used to update the contents of the CCRx
registers (x = 2, 3, 4) on an update event, with the DMA transferring half words into the
CCRx registers.
This is done in the following steps:
1.
Configure the corresponding DMA channel as follows:
–
DMA channel peripheral address is the DMAR register address
–
DMA channel memory address is the address of the buffer in the RAM containing
the data to be transferred by DMA into the CCRx registers.
–
Number of data to transfer = 3 (See note below).
–
Circular mode disabled.
2.
Configure the DCR register by configuring the DBA and DBL bit fields as follows:
DBL = 3 transfers, DBA = 0xE.
3.
Enable the TIMx update DMA request (set the UDE bit in the DIER register).
4.
Enable TIMx
5.
Enable the DMA channel
This example is for the case where every CCRx register is to be updated once. If every
CCRx register is to be updated twice for example, the number of data to transfer should be
6. Let's take the example of a buffer in the RAM containing data1, data2, data3, data4, data5
and data6. The data is transferred to the CCRx registers as follows: on the first update DMA
request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to
CCR4 and on the second update DMA request, data4 is transferred to CCR2, data5 is
transferred to CCR3 and data6 is transferred to CCR4.
28.4.20
Debug mode
When the microcontroller enters debug mode (Cortex®-M4 core halted), the TIMx counter
either continues to work normally or stops, depending on DBG_TIMx_STOP configuration
bit in DBG module. For more details, refer to Section 44.16.2: Debug support for timers,
RTC, watchdog, bxCAN and I2C.
964/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
28.5
TIM15 registers
Refer to Section 1.1 for a list of abbreviations used in register descriptions.
28.5.1
TIM15 control register 1 (TIM15_CR1)
Address offset: 0x00
Reset value: 0x0000
15
Res.
14
Res.
13
Res.
12
11
10
Res.
UIF REMAP
Res.
rw
9
8
CKD[1:0]
rw
7
6
5
4
3
2
1
0
ARPE
Res.
Res.
Res.
OPM
URS
UDIS
CEN
rw
rw
rw
rw
rw
rw
Bits 15:12 Reserved, must be kept at reset value.
Bit 11 UIFREMAP: UIF status bit remapping
0: No remapping. UIF status bit is not copied to TIMx_CNT register bit 31.
1: Remapping enabled. UIF status bit is copied to TIMx_CNT register bit 31.
Bit 10 Reserved, must be kept at reset value.
Bits 9:8 CKD[1:0]: Clock division
This bitfield indicates the division ratio between the timer clock (CK_INT) frequency and the
dead-time and sampling clock (tDTS) used by the dead-time generators and the digital filters
(TIx)
00: tDTS = tCK_INT
01: tDTS = 2*tCK_INT
10: tDTS = 4*tCK_INT
11: Reserved, do not program this value
Bit 7 ARPE: Auto-reload preload enable
0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered
Bits 6:4 Reserved, must be kept at reset value.
Bit 3 OPM: One-pulse mode
0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the bit CEN)
DocID024597 Rev 3
965/1693
1009
General-purpose timers (TIM15/16/17)
RM0351
Bit 2 URS: Update request source
This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generate an update interrupt if enabled. These events can be:
–
Counter overflow/underflow
–
Setting the UG bit
–
Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update interrupt if enabled
Bit 1 UDIS: Update disable
This bit is set and cleared by software to enable/disable UEV event generation.
0: UEV enabled. The Update (UEV) event is generated by one of the following events:
–
Counter overflow/underflow
–
Setting the UG bit
–
Update generation through the slave mode controller
Buffered registers are then loaded with their preload values.
1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is
set or if a hardware reset is received from the slave mode controller.
Bit 0 CEN: Counter enable
0: Counter disabled
1: Counter enabled
Note: External clock and gated mode can work only if the CEN bit has been previously set by
software. However trigger mode can set the CEN bit automatically by hardware.
28.5.2
TIM15 control register 2 (TIM15_CR2)
Address offset: 0x04
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
Res.
Res.
Res.
Res.
Res.
OIS2
OIS1N
OIS1
TI1S
rw
rw
rw
rw
6
5
4
MMS[2:0]
rw
rw
rw
3
2
1
0
CCDS
CCUS
Res.
CCPC
rw
rw
rw
Bits 15:11 Reserved, must be kept at reset value.
Bit 10 OIS2: Output idle state 2 (OC2 output)
0: OC2=0 when MOE=0
1: OC2=1 when MOE=0
Note: This bit cannot be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in the TIMx_BKR register).
Bit 9 OIS1N: Output Idle state 1 (OC1N output)
0: OC1N=0 after a dead-time when MOE=0
1: OC1N=1 after a dead-time when MOE=0
Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BKR register).
Bit 8 OIS1: Output Idle state 1 (OC1 output)
0: OC1=0 (after a dead-time if OC1N is implemented) when MOE=0
1: OC1=1 (after a dead-time if OC1N is implemented) when MOE=0
Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BKR register).
966/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
Bit 7 TI1S: TI1 selection
0: The TIMx_CH1 pin is connected to TI1 input
1: The TIMx_CH1, CH2 pins are connected to the TI1 input (XOR combination)
Bits 6:4 MMS[1:0]: Master mode selection
These bits allow to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter Enable signal CNT_EN is used as trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer is
enable. The Counter Enable signal is generated by a logic OR between CEN control bit and
the trigger input when configured in gated mode. When the Counter Enable signal is
controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is
selected (see the MSM bit description in TIMx_SMCR register).
010: Update - The update event is selected as trigger output (TRGO). For instance a master
timer can then be used as a prescaler for a slave timer.
011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to be
set (even if it was already high), as soon as a capture or a compare match occurred.
(TRGO).
100: Compare - OC1REF signal is used as trigger output (TRGO).
101: Compare - OC2REF signal is used as trigger output (TRGO).
Bit 3 CCDS: Capture/compare DMA selection
0: CCx DMA request sent when CCx event occurs
1: CCx DMA requests sent when update event occurs
Bit 2 CCUS: Capture/compare control update selection
0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COMG bit only.
1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COMG bit or when an rising edge occurs on TRGI.
Note: This bit acts only on channels that have a complementary output.
Bit 1 Reserved, must be kept at reset value.
Bit 0 CCPC: Capture/compare preloaded control
0: CCxE, CCxNE and OCxM bits are not preloaded
1: CCxE, CCxNE and OCxM bits are preloaded, after having been written, they are updated
only when a commutation event (COM) occurs (COMG bit set or rising edge detected on
TRGI, depending on the CCUS bit).
Note: This bit acts only on channels that have a complementary output.
DocID024597 Rev 3
967/1693
1009
General-purpose timers (TIM15/16/17)
28.5.3
RM0351
TIM15 slave mode control register (TIM15_SMCR)
Address offset: 0x08
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SMS[3]
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
MSM
rw
rw
TS[2:0]
rw
rw
Res.
rw
0
SMS[2:0]
rw
rw
rw
Bits 31:17 Reserved, must be kept at reset value.
Bit 16 SMS[3]: Slave mode selection - bit 3
Refer to SMS description - bits 2:0
Bits 15:8 Reserved, must be kept at reset value.
Bit 7 MSM: Master/slave mode
0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect
synchronization between the current timer and its slaves (through TRGO). It is useful if we
want to synchronize several timers on a single external event.
Bits 6:4 TS[2:0]: Trigger selection
This bit field selects the trigger input to be used to synchronize the counter.
000: Internal Trigger 0 (ITR0)
001: Internal Trigger 1 (ITR1)
010: Internal Trigger 2 (ITR2)
011: Internal Trigger 3 (ITR3)
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2 (TI2FP2)
See Table 156: TIMx Internal trigger connection on page 969 for more details on ITRx
meaning for each Timer.
Note: These bits must be changed only when they are not used (e.g. when SMS=000) to
avoid wrong edge detections at the transition.
Bit 3 Reserved, must be kept at reset value.
968/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
Bits 2:0 SMS: Slave mode selection
When external signals are selected the active edge of the trigger signal (TRGI) is linked to the
polarity selected on the external input (see Input Control register and Control Register
description.
0000: Slave mode disabled - if CEN = ‘1’ then the prescaler is clocked directly by the internal
clock.
0001: Reserved
0010: Reserved
0011: Reserved
0100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter
and generates an update of the registers.
0101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The
counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of
the counter are controlled.
0110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not
reset). Only the start of the counter is controlled.
0111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.
1000: Combined reset + trigger mode - Rising edge of the selected trigger input (TRGI)
reinitializes the counter, generates an update of the registers and starts the counter.
Other codes: reserved.
Note: The gated mode must not be used if TI1F_ED is selected as the trigger input
(TS=’100’). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the
gated mode checks the level of the trigger signal.
Note: The clock of the slave timer must be enabled prior to receive events from the master
timer, and must not be changed on-the-fly while triggers are received from the master
timer.
Table 156. TIMx Internal trigger connection
28.5.4
Slave TIM
ITR0 (TS = 000)
ITR1 (TS = 001)
ITR2 (TS = 010)
ITR3 (TS = 011)
TIM15
TIM1
TIM3
TIM16 OC1
TIM17 OC1
TIM15 DMA/interrupt enable register (TIM15_DIER)
Address offset: 0x0C
Reset value: 0x0000
15
Res.
14
13
12
11
TDE
COMD
E
Res.
Res.
rw
rw
10
9
CC2DE CC1DE
rw
rw
8
7
6
5
4
3
2
1
0
UDE
BIE
TIE
COMIE
Res.
Res.
CC2IE
CC1IE
UIE
rw
rw
rw
rw
rw
rw
rw
Bit 15 Reserved, must be kept at reset value.
Bit 14 TDE: Trigger DMA request enable
0: Trigger DMA request disabled
1: Trigger DMA request enabled
Bit 13 COMDE: COM DMA request enable
0: COM DMA request disabled
1: COM DMA request enabled
Bits 12:11 Reserved, must be kept at reset value.
DocID024597 Rev 3
969/1693
1009
General-purpose timers (TIM15/16/17)
RM0351
Bit 10 CC2DE: Capture/Compare 2 DMA request enable
0: CC2 DMA request disabled
1: CC2 DMA request enabled
Bit 9 CC1DE: Capture/Compare 1 DMA request enable
0: CC1 DMA request disabled
1: CC1 DMA request enabled
Bit 8 UDE: Update DMA request enable
0: Update DMA request disabled
1: Update DMA request enabled
Bit 7 BIE: Break interrupt enable
0: Break interrupt disabled
1: Break interrupt enabled
Bit 6 TIE: Trigger interrupt enable
0: Trigger interrupt disabled
1: Trigger interrupt enabled
Bit 5 COMIE: COM interrupt enable
0: COM interrupt disabled
1: COM interrupt enabled
Bits 4:3 Reserved, must be kept at reset value.
Bit 2 CC2IE: Capture/Compare 2 interrupt enable
0: CC2 interrupt disabled
1: CC2 interrupt enabled
Bit 1 CC1IE: Capture/Compare 1 interrupt enable
0: CC1 interrupt disabled
1: CC1 interrupt enabled
Bit 0 UIE: Update interrupt enable
0: Update interrupt disabled
1: Update interrupt enabled
28.5.5
TIM15 status register (TIM15_SR)
Address offset: 0x10
Reset value: 0x0000
15
14
13
12
11
Res.
Res.
Res.
Res.
Res.
10
9
CC2OF CC1OF
rc_w0
rc_w0
8
7
6
5
4
3
2
1
0
Res.
BIF
TIF
COMIF
Res.
Res.
CC2IF
CC1IF
UIF
rc_w0
rc_w0
rc_w0
rc_w0
rc_w0
rc_w0
Bits 15:11 Reserved, must be kept at reset value.
Bit 10 CC2OF: Capture/Compare 2 overcapture flag
Refer to CC1OF description
Bit 9 CC1OF: Capture/Compare 1 overcapture flag
This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0’.
0: No overcapture has been detected
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set
970/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
Bit 8 Reserved, must be kept at reset value.
Bit 7 BIF: Break interrupt flag
This flag is set by hardware as soon as the break input goes active. It can be cleared by
software if the break input is not active.
0: No break event occurred
1: An active level has been detected on the break input
Bit 6 TIF: Trigger interrupt flag
This flag is set by hardware on trigger event (active edge detected on TRGI input when the
slave mode controller is enabled in all modes but gated mode, both edges in case gated mode
is selected). It is set when the counter starts or stops when gated mode is selected. It is
cleared by software.
0: No trigger event occurred
1: Trigger interrupt pending
Bit 5 COMIF: COM interrupt flag
This flag is set by hardware on a COM event (once the capture/compare control bits –CCxE,
CCxNE, OCxM– have been updated). It is cleared by software.
0: No COM event occurred
1: COM interrupt pending
Bits 5:3 Reserved, must be kept at reset value.
Bit 2 CC2IF: Capture/Compare 2 interrupt flag
refer to CC1IF description
Bit 1 CC1IF: Capture/Compare 1 interrupt flag
If channel CC1 is configured as output: This flag is set by hardware when the counter
matches the compare value. It is cleared by software.
0: No match.
1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF
bit goes high on the counter overflow.
If channel CC1 is configured as input: This bit is set by hardware on a capture. It is cleared
by software or by reading the TIMx_CCR1 register.
0: No input capture occurred
1: The counter value has been captured in TIMx_CCR1 register (An edge has been
detected on IC1 which matches the selected polarity)
Bit 0 UIF: Update interrupt flag
This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:
– At overflow regarding the repetition counter value (update if repetition counter = 0) and if the
UDIS=0 in the TIMx_CR1 register.
– When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0 and
UDIS=0 in the TIMx_CR1 register.
– When CNT is reinitialized by a trigger event (refer to Section 28.5.3: TIM15 slave mode
control register (TIM15_SMCR)), if URS=0 and UDIS=0 in the TIMx_CR1 register.
DocID024597 Rev 3
971/1693
1009
General-purpose timers (TIM15/16/17)
28.5.6
RM0351
TIM15 event generation register (TIM15_EGR)
Address offset: 0x14
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
BG
TG
COMG
Res.
Res.
CC2G
CC1G
UG
w
w
rw
w
w
w
Bits 15:8 Reserved, must be kept at reset value.
Bit 7 BG: Break generation
This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A break event is generated. MOE bit is cleared and BIF flag is set. Related interrupt or
DMA transfer can occur if enabled.
Bit 6 TG: Trigger generation
This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if
enabled
Bit 5 COMG: Capture/Compare control update generation
This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: When the CCPC bit is set, it is possible to update the CCxE, CCxNE and OCxM bits
Note: This bit acts only on channels that have a complementary output.
Bits 4:3 Reserved, must be kept at reset value.
Bit 2 CC2G: Capture/Compare 2 generation
Refer to CC1G description
Bit 1 CC1G: Capture/Compare 1 generation
This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set,
the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the
CC1IF flag was already high.
Bit 0 UG: Update generation
This bit can be set by software, it is automatically cleared by hardware.
0: No action.
1: Reinitialize the counter and generates an update of the registers. Note that the prescaler
counter is cleared too (anyway the prescaler ratio is not affected).
972/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
28.5.7
TIM15 capture/compare mode register 1 (TIM15_CCMR1)
Address offset: 0x18
Reset value: 0x0000 0000
The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. So you must take care that the same bit
can have a different meaning for the input stage and for the output stage.
31
Res.
15
30
Res.
14
Res
29
Res.
13
28
Res.
12
OC2M[2:0]
IC2F[3:0]
rw
rw
rw
27
Res.
26
Res.
11
10
OC2
PE
OC2
FE
25
24
Res.
OC2M
[3]
9
23
Res.
22
Res.
rw
rw
Res.
20
Res.
Res.
18
Res.
17
16
Res.
OC1M
[3]
Res.
rw
rw
8
CC2S[1:0]
7
6
Res
5
4
OC1M[2:0]
IC1F[3:0]
rw
19
Res.
IC2PSC[1:0]
rw
21
rw
rw
rw
rw
3
2
OC1
PE
OC1
FE
1
0
CC1S[1:0]
IC1PSC[1:0]
rw
rw
rw
rw
rw
Output compare mode:
Bits 31:25 Reserved, always read as 0
Bit 24 OC2M[3]: Output Compare 2 mode - bit 3
Bits 23:17 Reserved, always read as 0
Bit 16 OC1M[3]: Output Compare 1 mode - bit 3
refer to OC1M description on bits 6:4
Bit 15 Reserved, always read as 0
Bits 14:12 OC2M[2:0]: Output Compare 2 mode
Bit 11 OC2PE: Output Compare 2 preload enable
Bit 10 OC2FE: Output Compare 2 fast enable
Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output.
01: CC2 channel is configured as input, IC2 is mapped on TI2.
10: CC2 channel is configured as input, IC2 is mapped on TI1.
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if
an internal trigger input is selected through the TS bit (TIMx_SMCR register)
Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in TIMx_CCER).
Bit 7 Reserved, always read as 0
DocID024597 Rev 3
973/1693
1009
General-purpose timers (TIM15/16/17)
RM0351
Bits 6:4 OC1M: Output Compare 1 mode
These bits define the behavior of the output reference signal OC1REF from which OC1 and
OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends on
CC1P and CC1NP bits.
0000: Frozen - The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.
0001: Set channel 1 to active level on match. OC1REF signal is forced high when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
0010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
0011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1.
0100: Force inactive level - OC1REF is forced low.
0101: Force active level - OC1REF is forced high.
0110: PWM mode 1 - Channel 1 is active as long as TIMx_CNT DT=DTG[7:0]x tdtg with tdtg=tDTS
DTG[7:5]=10x => DT=(64+DTG[5:0])xtdtg with Tdtg=2xtDTS
DTG[7:5]=110 => DT=(32+DTG[4:0])xtdtg with Tdtg=8xtDTS
DTG[7:5]=111 => DT=(32+DTG[4:0])xtdtg with Tdtg=16xtDTS
Example if TDTS=125ns (8MHz), dead-time possible values are:
0 to 15875 ns by 125 ns steps,
16 µs to 31750 ns by 250 ns steps,
32 µs to 63 µs by 1 µs steps,
64 µs to 126 µs by 2 µs steps
Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BDTR register).
28.5.16
TIM15 DMA control register (TIM15_DCR)
Address offset: 0x48
Reset value: 0x0000
15
14
13
Res
Res
Res
12
11
10
9
8
DBL[4:0]
rw
rw
rw
rw
7
6
5
Res
Res
Res
rw
4
3
2
1
0
rw
rw
DBA[4:0]
rw
rw
rw
Bits 15:13 Reserved, must be kept at reset value.
Bits 12:8 DBL[4:0]: DMA burst length
This 5-bit field defines the length of DMA transfers (the timer recognizes a burst transfer when
a read or a write access is done to the TIMx_DMAR address).
00000: 1 transfer,
00001: 2 transfers,
00010: 3 transfers,
...
10001: 18 transfers.
Bits 7:5 Reserved, must be kept at reset value.
Bits 4:0 DBA[4:0]: DMA base address
This 5-bit field defines the base-address for DMA transfers (when read/write access are done
through the TIMx_DMAR address). DBA is defined as an offset starting from the address of
the TIMx_CR1 register.
Example:
00000: TIMx_CR1,
00001: TIMx_CR2,
00010: TIMx_SMCR,
...
28.5.17
TIM15 DMA address for full transfer (TIM15_DMAR)
Address offset: 0x4C
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
DMAB[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
DocID024597 Rev 3
983/1693
1009
General-purpose timers (TIM15/16/17)
RM0351
Bits 15:0 DMAB[15:0]: DMA register for burst accesses
A read or write operation to the DMAR register accesses the register located at the address
(TIMx_CR1 address) + (DBA + DMA index) x 4
where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base
address configured in TIMx_DCR register, DMA index is automatically controlled by the DMA
transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR).
28.5.18
TIM15 option register 1 (TIM15_OR1)
Address offset: 0x50
Reset value: 0x0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
ENCODER_
MODE[1:0]
rw
rw
0
TI1_
RMP
rw
Bits 31:3 Reserved, must be kept at reset value.
Bits 2:1 ENCODER_MODE[1:0]: Encoder mode
00: No redirection
01:TIM2 IC1 and TIM2 IC2 are connected to TIM15 IC1 and TIM15 IC2 respectively
10:TIM3 IC1 and TIM3 IC2 are connected to TIM15 IC1 and TIM15 IC2 respectively
11:TIM4 IC1 and TIM4 IC2 are connected to TIM15 IC1 and TIM15 IC2 respectively
Bit 0 TI1_RMP: Input capture 1 remap
0: TIM15 input capture 1 is connected to I/O
1: TIM15 input capture 1 is connected to LSE
28.5.19
TIM15 option register 2 (TIM15_OR2)
Address offset: 0x60
Reset value: 0x0000 0001
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
BKCM
P2P
BKCM
P1P
BKINP
BKDF
BK0E
Res.
BKCM
P2E
BKCM
P1E
BKINE
rw
rw
rw
rw
rw
rw
rw
Res
Res
Res
Res
Res
Bits 31:12 Reserved, must be kept at reset value.
984/1693
DocID024597 Rev 3
Res.
Res.
RM0351
General-purpose timers (TIM15/16/17)
Bit 11 BKCMP2P: BRK COMP2 input polarity
This bit selects the COMP2 input sensitivity. It must be programmed together with the BKP
polarity bit.
0: COMP2 input is active low
1: COMP2 input is active high
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
Bit 10 BKCMP1P: BRK COMP1 input polarity
This bit selects the COMP1 input sensitivity. It must be programmed together with the BKP
polarity bit.
0: COMP1 input is active low
1: COMP1 input is active high
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
Bit 9 BKINP: BRK BKIN input polarity
This bit selects the BKIN alternate function input sensitivity. It must be programmed together
with the BKP polarity bit.
0: BKIN input is active low
1: BKIN input is active high
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
Bit 8 BKDFBK0E: BRK DFSDM_BREAK[0] enable
This bit enables the DFSDM_BREAK[0] for the timer’s BRK input. DFSDM_BREAK[0] output
is ‘ORed’ with the other BRK sources.
0: DFSDM_BREAK[0]input disabled
1: DFSDM_BREAK[0]input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
Bits 7:3 Reserved, must be kept at reset value
Bit 2 BKCMP2E: BRK COMP2 enable
This bit enables the COMP2 for the timer’s BRK input. COMP2 output is ‘ORed’ with the other
BRK sources.
0: COMP2 input disabled
1: COMP2 input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
Bit 1 BKCMP1E: BRK COMP1 enable
This bit enables the COMP1 for the timer’s BRK input. COMP1 output is ‘ORed’ with the other
BRK sources.
0: COMP1 input disabled
1: COMP1 input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
DocID024597 Rev 3
985/1693
1009
General-purpose timers (TIM15/16/17)
RM0351
Bit 0 BKINE: BRK BKIN input enable
This bit enables the BKIN alternate function input for the timer’s BRK input. BKIN input is
‘ORed’ with the other BRK sources.
0: BKIN input disabled
1: BKIN input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
28.5.20
TIM15 register map
TIM15 registers are mapped as 16-bit addressable registers as described in the table
below:
Reset value
986/1693
0
0
0
CC2S
[1:0]
0
0
0
IC1F[3:0]
0
0
0
0
OPM
URS
UDIS
CEN
CCUS
Res
CCPC
0
UIF
0
CC1IF
0
CC2IF
UIE
0
CC1IE
0
CC2IE
0
0
0
0
UG
0
SMS[2:0]
0
CC1G
0
0
CC2G
0
0
0
0
0
OC1FE
OC1M
[2:0]
CCDS
Res
Res
Res
0
Res
COMIE
COMIF
COMG
0
0
Res
TI1S
TIF
0
0
IC2
PSC
[1:0]
0
TG
TIE
0
0
0
Res
OIS1
Res
MSM
BIE
0
BIF
UDE
0
0
BG
Res
CC2S
[1:0]
0
Res
0
Res
0
CC1OF
0
CC2OF
CC1DE
0
CC2DE
0
0
OC2FE
0
IC2F[3:0]
0
DocID024597 Rev 3
0
0
0
OC2PE
Res
0
Res
Res
Res
Res
Res
Res
Res
0
Res
Res
Res
Res
Res
Res
Res
OC1M[3]
Res
Res
Res
Res
Res
Res
Res
OC2M[3]
Res
Res
Res
Res
Res
Res
Res
0
Res
TIM15_CCMR1
Input Capture
mode
Res
Reset value
0x18
OC2M
[2:0]
0
0
0
0
TS[2:0]
0
Reset value
TIM15_CCMR1
Output
Compare mode
0
0
Res
OIS2
OIS1N
0
Res
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM15_EGR
0
Res
Res
Res
Res
Res
Res
COMDE
0
Reset value
0x14
0
Res
Res
Res
Res
TDE
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM15_SR
Res
Reset value
0x10
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM15_DIER
0x0C
0
0
Res
Reset value
SMS[3]
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM15_SMCR
0x08
Res
Reset value
MMS[2:0]
0
CC1S
[1:0]
0
0
0
Res
0
OC1PE
0
Res
0
Res
0
Res
ARPE
UIFREMAP
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM15_CR2
0x04
Res
Reset value
CKD
[1:0]
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM15_CR1
0x00
Res
Register
Res
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 158. TIM15 register map and reset values
0
IC1
PSC
[1:0]
CC1S
[1:0]
0
0
0
0
0x50
TIM15_OR1
Reset value
DocID024597 Rev 3
0
0
0
0
0
0
0
0
0
0
0
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
BKE
OSSR
OSSI
0
0
1
1
1
1
1
1
Res
Res
Res
Res
Res
Res
0
0
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
0
0
0
Reset value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reset value
0
0
0
0
0
0
0
0
0
0
0
DBL[4:0]
0
0
0
Res
1
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
0
Res
1
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
UIFCPY or Res.
Res
Res
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
0
1
0
0
0
1
0
0
0
Res
CC2NP
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
CC1E
ARR[15:0]
CC1P
0
CC1NE
PSC[15:0]
CC2E
0
CC1NP
CNT[15:0]
CC2P
0
CCR1[15:0]
CCR2[15:0]
DT[7:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TI1_RMP
BKP
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Reset value
ENCODER_MODE[1:0]
0
Res
Reset value
AOE
Reset value
LOCK
[1:0]
Res
Reset value
MOE
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Reset value
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Reset value
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Reset value
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM15_DMAR
Res
TIM15_DCR
Res
TIM15_BDTR
Res
TIM15_CCR2
Res
0x4C
TIM15_CCR1
Res
0x48
TIM15_RCR
Res
0x44
TIM15_PSC
Res
0x38
0
Res
0x34
TIM15_ARR
Res
0x30
Reset value
Res
0x2C
Res
0x28
TIM15_CNT
Res
0x24
TIM15_CCER
Res
0x20
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res
Offset
Res
RM0351
General-purpose timers (TIM15/16/17)
Table 158. TIM15 register map and reset values (continued)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
REP[7:0]
DBA[4:0]
DMAB[15:0]
0
0
0
0
0
0
0
0
0
0
987/1693
1009
General-purpose timers (TIM15/16/17)
RM0351
Refer to Section 2.2 on page 65 for the register boundary addresses.
988/1693
DocID024597 Rev 3
BKCMP1E
BKINE
Res
BKCMP2E
0
Res
0
Res
BKDFBK0E
0
Res
BKINP
0
Res
BKCMP1P
Res
Res
Res
BKCMP2P
Reset value
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM15_OR2
Res
0x60
Register
Res
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 158. TIM15 register map and reset values (continued)
0
0
1
RM0351
General-purpose timers (TIM15/16/17)
28.6
TIM16&TIM17 registers
Refer to Section 1.1 on page 61 for a list of abbreviations used in register descriptions.
28.6.1
TIM16&TIM17 control register 1 (TIMx_CR1)
Address offset: 0x00
Reset value: 0x0000
15
Res
14
Res
13
Res
12
11
10
Res
UIF
REMAP
Res
rw
9
8
CKD[1:0]
rw
7
6
5
4
3
2
1
0
ARPE
Res
Res
Res
OPM
URS
UDIS
CEN
rw
rw
rw
rw
rw
rw
Bits 15:12 Reserved, must be kept at reset value.
Bit 11 UIFREMAP: UIF status bit remapping
0: No remapping. UIF status bit is not copied to TIMx_CNT register bit 31.
1: Remapping enabled. UIF status bit is copied to TIMx_CNT register bit 31.
Bit 10 Reserved, must be kept at reset value.
Bits 9:8 CKD[1:0]: Clock division
This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and the
dead-time and sampling clock (tDTS)used by the dead-time generators and the digital filters
(TIx),
00: tDTS=tCK_INT
01: tDTS=2*tCK_INT
10: tDTS=4*tCK_INT
11: Reserved, do not program this value
Bit 7 ARPE: Auto-reload preload enable
0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered
Bits 6:4 Reserved, must be kept at reset value.
Bit 3 OPM: One pulse mode
0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the bit CEN)
Bit 2 URS: Update request source
This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generate an update interrupt or DMA request if enabled.
These events can be:
–
Counter overflow/underflow
–
Setting the UG bit
–
Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update interrupt or DMA request if
enabled.
DocID024597 Rev 3
989/1693
1009
General-purpose timers (TIM15/16/17)
RM0351
Bit 1 UDIS: Update disable
This bit is set and cleared by software to enable/disable UEV event generation.
0: UEV enabled. The Update (UEV) event is generated by one of the following events:
–
Counter overflow/underflow
–
Setting the UG bit
–
Update generation through the slave mode controller
Buffered registers are then loaded with their preload values.
1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is
set or if a hardware reset is received from the slave mode controller.
Bit 0 CEN: Counter enable
0: Counter disabled
1: Counter enabled
Note: External clock and gated mode can work only if the CEN bit has been previously set by
software. However trigger mode can set the CEN bit automatically by hardware.
28.6.2
TIM16&TIM17 control register 2 (TIMx_CR2)
Address offset: 0x04
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
Res
Res
Res
Res
Res
OIS1N
OIS1
Res
Res
Res
Res
CCDS
CCUS
Res
CCPC
rw
rw
rw
rw
rw
Bits 15:10 Reserved, must be kept at reset value.
Bit 9 OIS1N: Output Idle state 1 (OC1N output)
0: OC1N=0 after a dead-time when MOE=0
1: OC1N=1 after a dead-time when MOE=0
Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BKR register).
Bit 8 OIS1: Output Idle state 1 (OC1 output)
0: OC1=0 (after a dead-time if OC1N is implemented) when MOE=0
1: OC1=1 (after a dead-time if OC1N is implemented) when MOE=0
Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BKR register).
Bits 7:4 Reserved, must be kept at reset value.
Bit 3 CCDS: Capture/compare DMA selection
0: CCx DMA request sent when CCx event occurs
1: CCx DMA requests sent when update event occurs
Bit 2 CCUS: Capture/compare control update selection
0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COMG bit only.
1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COMG bit or when an rising edge occurs on TRGI.
Note: This bit acts only on channels that have a complementary output.
Bit 1 Reserved, must be kept at reset value.
990/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
Bit 0 CCPC: Capture/compare preloaded control
0: CCxE, CCxNE and OCxM bits are not preloaded
1: CCxE, CCxNE and OCxM bits are preloaded, after having been written, they are updated
only when COM bit is set.
Note: This bit acts only on channels that have a complementary output.
28.6.3
TIM16&TIM17 DMA/interrupt enable register (TIMx_DIER)
Address offset: 0x0C
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
TDE
COMDE
Res
Res
Res
CC1DE
UDE
BIE
Res
COMIE
Res
Res
Res
CC1IE
UIE
rw
rw
rw
rw
rw
rw
rw
rw
Bit 15 Reserved, must be kept at reset value.
Bit 14 TDE: Trigger DMA request enable
0: Trigger DMA request disabled
1: Trigger DMA request enabled
Bit 13 COMDE: COM DMA request enable
0: COM DMA request disabled
1: COM DMA request enabled
Bits 12:10 Reserved, must be kept at reset value.
Bit 9 CC1DE: Capture/Compare 1 DMA request enable
0: CC1 DMA request disabled
1: CC1 DMA request enabled
Bit 8 UDE: Update DMA request enable
0: Update DMA request disabled
1: Update DMA request enabled
Bit 7 BIE: Break interrupt enable
0: Break interrupt disabled
1: Break interrupt enabled
Bit 6 Reserved, must be kept at reset value.
Bit 5 COMIE: COM interrupt enable
0: COM interrupt disabled
1: COM interrupt enabled
Bits 4:2 Reserved, must be kept at reset value.
Bit 1 CC1IE: Capture/Compare 1 interrupt enable
0: CC1 interrupt disabled
1: CC1 interrupt enabled
Bit 0 UIE: Update interrupt enable
0: Update interrupt disabled
1: Update interrupt enabled
DocID024597 Rev 3
991/1693
1009
General-purpose timers (TIM15/16/17)
28.6.4
RM0351
TIM16&TIM17 status register (TIMx_SR)
Address offset: 0x10
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
Res
Res
Res
Res
Res
CC1OF
Res
BIF
Res
COMIF
Res
Res
Res
CC1IF
UIF
rc_w0
rc_w0
rc_w0
rc_w0
rc_w0
Bits 15:10 Reserved, must be kept at reset value.
Bit 9 CC1OF: Capture/Compare 1 overcapture flag
This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0’.
0: No overcapture has been detected
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set
Bit 8 Reserved, must be kept at reset value.
Bit 7 BIF: Break interrupt flag
This flag is set by hardware as soon as the break input goes active. It can be cleared by
software if the break input is not active.
0: No break event occurred
1: An active level has been detected on the break input
Bit 6 Reserved, must be kept at reset value.
Bit 5 COMIF: COM interrupt flag
This flag is set by hardware on a COM event (once the capture/compare control bits –CCxE,
CCxNE, OCxM– have been updated). It is cleared by software.
0: No COM event occurred
1: COM interrupt pending
Bits 4:2 Reserved, must be kept at reset value.
Bit 1 CC1IF: Capture/Compare 1 interrupt flag
If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value. It is cleared by
software.
0: No match.
1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF
bit goes high on the counter overflow
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred
1: The counter value has been captured in TIMx_CCR1 register (An edge has been
detected on IC1 which matches the selected polarity)
992/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
Bit 0 UIF: Update interrupt flag
This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:
–
At overflow regarding the repetition counter value (update if repetition counter = 0)
and if the UDIS=0 in the TIMx_CR1 register.
–
When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if
URS=0 and UDIS=0 in the TIMx_CR1 register.
–
When CNT is reinitialized by a trigger event (refer to Section 28.5.3: TIM15 slave
mode control register (TIM15_SMCR)), if URS=0 and UDIS=0 in the TIMx_CR1
register.
28.6.5
TIM16&TIM17 event generation register (TIMx_EGR)
Address offset: 0x14
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
Res
Res
Res
Res
Res
Res
Res
BG
Res
COMG
Res
Res
Res
CC1G
UG
w
w
w
w
Bits 15:8 Reserved, must be kept at reset value.
Bit 7 BG: Break generation
This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action.
1: A break event is generated. MOE bit is cleared and BIF flag is set. Related interrupt or
DMA transfer can occur if enabled.
Bit 6 Reserved, must be kept at reset value.
Bit 5 COMG: Capture/Compare control update generation
This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: When the CCPC bit is set, it is possible to update the CCxE, CCxNE and OCxM bits
Note: This bit acts only on channels that have a complementary output.
Bits 4:2 Reserved, must be kept at reset value.
Bit 1 CC1G: Capture/Compare 1 generation
This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action.
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set,
the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the
CC1IF flag was already high.
DocID024597 Rev 3
993/1693
1009
General-purpose timers (TIM15/16/17)
RM0351
Bit 0 UG: Update generation
This bit can be set by software, it is automatically cleared by hardware.
0: No action.
1: Reinitialize the counter and generates an update of the registers. Note that the prescaler
counter is cleared too (anyway the prescaler ratio is not affected).
28.6.6
TIM16&TIM17 capture/compare mode register 1 (TIMx_CCMR1)
Address offset: 0x18
Reset value: 0x0000 0000
The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. So you must take care that the same bit
can have a different meaning for the input stage and for the output stage.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
OC1M
[3]
Res
rw
15
14
13
12
11
10
9
8
Res
Res
Res
Res
Res
Res
Res
Res
7
6
Res
4
OC1M[2:0]
rw
Output compare mode:
Bits 31:17 Reserved, always read as 0
Bit 16 OC1M[3]: Output Compare 1 mode (bit 3)
Bits 15:7 Reserved
DocID024597 Rev 3
rw
3
2
OC1PE OC1FE
IC1F[3:0]
rw
994/1693
5
IC1PSC[1:0]
rw
rw
rw
1
0
CC1S[1:0]
rw
rw
RM0351
General-purpose timers (TIM15/16/17)
Bits 6:4 OC1M[2:0]: Output Compare 1 mode (bits 2 to 0)
These bits define the behavior of the output reference signal OC1REF from which OC1 and
OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends
on CC1P and CC1NP bits.
0000: Frozen - The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.
0001: Set channel 1 to active level on match. OC1REF signal is forced high when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
0010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
0011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1.
0100: Force inactive level - OC1REF is forced low.
0101: Force active level - OC1REF is forced high.
0110: PWM mode 1 - Channel 1 is active as long as TIMx_CNT DT=DTG[7:0]x tdtg with tdtg=tDTS
DTG[7:5]=10x => DT=(64+DTG[5:0])xtdtg with Tdtg=2xtDTS
DTG[7:5]=110 => DT=(32+DTG[4:0])xtdtg with Tdtg=8xtDTS
DTG[7:5]=111 => DT=(32+DTG[4:0])xtdtg with Tdtg=16xtDTS
Example if TDTS=125ns (8MHz), dead-time possible values are:
0 to 15875 ns by 125 ns steps,
16 µs to 31750 ns by 250 ns steps,
32 µs to 63 µs by 1 µs steps,
64 µs to 126 µs by 2 µs steps
Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BDTR register).
1002/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
28.6.14
TIM16&TIM17 DMA control register (TIMx_DCR)
Address offset: 0x48
Reset value: 0x0000
15
14
13
Res
Res
Res
12
11
10
9
8
DBL[4:0]
rw
rw
rw
rw
7
6
5
Res
Res
Res
rw
4
3
2
1
0
rw
rw
DBA[4:0]
rw
rw
rw
Bits 15:13 Reserved, must be kept at reset value.
Bits 12:8 DBL[4:0]: DMA burst length
This 5-bit field defines the length of DMA transfers (the timer recognizes a burst transfer when
a read or a write access is done to the TIMx_DMAR address), i.e. the number of transfers.
Transfers can be in half-words or in bytes (see example below).
00000: 1 transfer,
00001: 2 transfers,
00010: 3 transfers,
...
10001: 18 transfers.
Bits 7:5 Reserved, must be kept at reset value.
Bits 4:0 DBA[4:0]: DMA base address
This 5-bit field defines the base-address for DMA transfers (when read/write access are
done through the TIMx_DMAR address). DBA is defined as an offset starting from the
address of the TIMx_CR1 register.
Example:
00000: TIMx_CR1,
00001: TIMx_CR2,
00010: TIMx_SMCR,
...
Example: Let us consider the following transfer: DBL = 7 transfers and DBA = TIMx_CR1. In
this case the transfer is done to/from 7 registers starting from the TIMx_CR1 address.
28.6.15
TIM16&TIM17 DMA address for full transfer (TIMx_DMAR)
Address offset: 0x4C
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
DMAB[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 15:0 DMAB[15:0]: DMA register for burst accesses
A read or write operation to the DMAR register accesses the register located at the address
(TIMx_CR1 address) + (DBA + DMA index) x 4
where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base
address configured in TIMx_DCR register, DMA index is automatically controlled by the
DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR).
28.6.16
TIM16 option register 1 (TIM16_OR1)
Address offset: 0x50
DocID024597 Rev 3
1003/1693
1009
General-purpose timers (TIM15/16/17)
RM0351
Reset value: 0x0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
1
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TI1_RMP[1:0]
rw
rw
Bits 31:2 Reserved, must be kept at reset value.
Bits1:0 TI1_RMP[1:0]: Input capture 1 remap
00: TIM16 input capture 1 is connected to I/O
01: TIM16 input capture 1 is connected to LSI
10: TIM16 input capture 1 is connected to LSE
11: TIM16 input capture 1 is connected to RTC wakeup interrupt
28.6.17
TIM16 option register 2 (TIM16_OR2)
Address offset: 0x60
Reset value: 0x0000 0001
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
BKCM
P2P
BKCM
P1P
BKINP
BKDF
BK1E
Res
BKCM
P2E
BKCM
P1E
BKINE
rw
rw
rw
rw
rw
rw
rw
Res
Res
Res
Res
Res
Res
Res
Bits 31:12 Reserved, must be kept at reset value.
Bit 11 BKCMP2P: BRK COMP2 input polarity
This bit selects the COMP2 input sensitivity. It must be programmed together with the BKP
polarity bit.
0: COMP2 input is active low
1: COMP2 input is active high
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
Bit 10 BKCMP1P: BRK COMP1 input polarity
This bit selects the COMP1 input sensitivity. It must be programmed together with the BKP
polarity bit.
0: COMP1 input is active low
1: COMP1 input is active high
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
1004/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
Bit 9 BKINP: BRK BKIN input polarity
This bit selects the BKIN alternate function input sensitivity. It must be programmed together
with the BKP polarity bit.
0: BKIN input is active low
1: BKIN input is active high
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
Bit 8 BKDFBK1E: BRK DFSDM_BREAK[1] enable
This bit enables the DFSDM_BREAK[1] for the timer’s BRK input. DFSDM_BREAK[1] output
is ‘ORed’ with the other BRK sources.
0: DFSDM_BREAK[1] input disabled
1: DFSDM_BREAK[1] input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
Bits 7:3 Reserved, must be kept at reset value
Bit 2 BKCMP2E: BRK COMP2 enable
This bit enables the COMP2 for the timer’s BRK input. COMP2 output is ‘ORed’ with the other
BRK sources.
0: COMP2 input disabled
1: COMP2 input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
Bit 1 BKCMP1E: BRK COMP1 enable
This bit enables the COMP1 for the timer’s BRK input. COMP1 output is ‘ORed’ with the other
BRK sources.
0: COMP1 input disabled
1: COMP1 input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
Bit 0 BKINE: BRK BKIN input enable
This bit enables the BKIN alternate function input for the timer’s BRK input. BKIN input is
‘ORed’ with the other BRK sources.
0: BKIN input disabled
1: BKIN input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
28.6.18
TIM17 option register 1 (TIM17_OR1)
Address offset: 0x50
Reset value: 0x0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
1
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TI1_RMP[1:0]
rw
DocID024597 Rev 3
rw
1005/1693
1009
General-purpose timers (TIM15/16/17)
RM0351
Bits 31:2 Reserved, must be kept at reset value.
Bits1:0 TI1_RMP[1:0]: Input capture 1 remap
00: TIM17 input capture 1 is connected to I/O
01: TIM17 input capture 1 is connected to MSI
10: TIM17 input capture 1 is connected to HSE/32
11: TIM17 input capture 1 is connected to MCO
28.6.19
TIM17 option register 2 (TIM17_OR2)
Address offset: 0x60
Reset value: 0x0000 0001
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
BKCM
P2P
BKCM
P1P
BKINP
BKDF
BK2E
Res
BKCM
P2E
BKCM
P1E
BKINE
rw
rw
rw
rw
rw
rw
rw
Res
Res
Res
Res
Res
Res
Res
Bits 31:12 Reserved, must be kept at reset value.
Bit 11 BKCMP2P: BRK COMP2 input polarity
This bit selects the COMP2 input sensitivity. It must be programmed together with the BKP
polarity bit.
0: COMP2 input is active low
1: COMP2 input is active high
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
Bit 10 BKCMP1P: BRK COMP1 input polarity
This bit selects the COMP1 input sensitivity. It must be programmed together with the BKP
polarity bit.
0: COMP1 input is active low
1: COMP1 input is active high
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
Bit 9 BKINP: BRK BKIN input polarity
This bit selects the BKIN alternate function input sensitivity. It must be programmed together
with the BKP polarity bit.
0: BKIN input is active low
1: BKIN input is active high
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
1006/1693
DocID024597 Rev 3
RM0351
General-purpose timers (TIM15/16/17)
Bit 8 BKDFBK2E: BRK DFSDM_BREAK[2] enable
This bit enables the DFSDM_BREAK[2] for the timer’s BRK input. DFSDM_BREAK[2] output
is ‘ORed’ with the other BRK sources.
0: DFSDM_BREAK[2] input disabled
1: DFSDM_BREAK[2] input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
Bits 7:3 Reserved, must be kept at reset value
Bit 2 BKCMP2E: BRK COMP2 enable
This bit enables the COMP2 for the timer’s BRK input. COMP2 output is ‘ORed’ with the other
BRK sources.
0: COMP2 input disabled
1: COMP2 input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
Bit 1 BKCMP1E: BRK COMP1 enable
This bit enables the COMP1 for the timer’s BRK input. COMP1 output is ‘ORed’ with the other
BRK sources.
0: COMP1 input disabled
1: COMP1 input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
Bit 0 BKINE: BRK BKIN input enable
This bit enables the BKIN alternate function input for the timer’s BRK input. BKIN input is
‘ORed’ with the other BRK sources.
0: BKIN input disabled
1: BKIN input enabled
Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).
DocID024597 Rev 3
1007/1693
1009
0x24
TIMx_CNT
Reset value
0
1008/1693
DocID024597 Rev 3
0
0
0
0
0
0
0
0
0
0
0
0
IC1F[3:0]
0
0
0
0
0
0
0
Reset value
CNT[15:0]
0
CC1E
0
UIF
Res
Res
Res
0
0
UG
0
CC1IF
Res
Res
Res
COMIF
CC1IE
UIE
Res
Res
Res
COMIE
Res
BIF
0
CC1G
OC1M
[2:0]
OC1FE
0
OC1PE
0
CC1P
0
COMG
0
CC1NE
0
Res
BIE
0
Res
UDE
0
Res
ARPE
OPM
URS
UDIS
CEN
0
0
0
CCUS
Res
CCPC
Res
Res
Res
0
CCDS
Res
Res
Res
Res
Res
OIS1
Res
0
OIS1N
UIFREMAP
0
Res
Res
Res
0
CC1NP
0
Res
Reset value
Res
Reset value
BG
Res
0
Res
Res
Res
CC1DE
0
CC1OF
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
CKD
[1:0]
0
Res
Res
Res
Res
Res
Reset value
Res
Res
Res
Res
COMDE
Res
Reset value
Res
Res
Res
Res
Res
TDE
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Reset value
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
Res
Res
Res
OC1M[3]
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Reset value
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Reset value
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIMx_CCER
Res
TIMx_CCMR1
Input Capture
mode
Res
TIMx_CCMR1
Output
Compare mode
Res
TIMx_EGR
Res
0x14
Res
TIMx_SR
Res
0x10
Res
TIMx_DIER
Res
TIMx_CR2
Res
0x04
Res
0x20
TIMx_CR1
Res
0x00
Res
0x18
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res
Offset
Res
28.6.20
Res
0x0C
UIFCPY or Res.
General-purpose timers (TIM15/16/17)
RM0351
TIM16&TIM17 register map
TIM16&TIM17 registers are mapped as 16-bit addressable registers as described in the
table below:
Table 160. TIM16&TIM17 register map and reset values
0
0
0
0
0
0
0
CC1
S
[1:0]
0
0
0
0
IC1
PSC
[1:0]
CC1
S
[1:0]
0
0
0
0
0
0
0
0
0x60
TIM17_OR2
DocID024597 Rev 3
BKINP
BKDFBK2E
0
0
0
0
0
0
BKINE
DMAB[15:0]
0
0
0
0
0
0
0
0
0
TI1_
RMP
[1:0]
Res
0
Res
0
BKCMP1E
0
Res
0
BKCMP2E
0
0
0
1
Res
DT[7:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reset value
0
0
BKINE
0
Res
CCR1[15:0]
0
0
BKCMP1E
0
0
Res
0
0
Res
DBL[4:0]
0
Res
0
0
BKCMP2E
0
Res
0
Res
0
Res
0
0
Res
0
0
0
Res
0
0
Res
0
Res
Res
Res
Res
Res
Res
Res
1
Res
Reset value
1
Res
1
Res
1
Res
1
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
1
0
Res
1
Res
1
Res
OSSI
1
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
1
Res
OSSR
0
Res
BKE
0
0
Res
BKDFBK1E
0
Res
0
0
Res
BKINP
0
Res
0
0
Res
Reset value
BKCMP1P
0
0
Res
0
0
Res
BKCMP1P
BKP
0
Res
0
Res
AOE
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
0
Res
Reset value
Res
BKCMP2P
Res
Res
0
Res
Res
Res
0
Res
Res
0
0
0
Res
BKCMP2P
Reset value
MOE
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
0
Res
Reset value
LOC
K
[1:0]
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Reset value
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Reset value
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Reset value
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Reset value
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIM17_OR1
Res
0x50
TIM16_OR2
Res
0x60
TIM16_OR1
Res
0x50
TIMx_DMAR
Res
0x4C
TIMx_DCR
Res
0x48
TIMx_BDTR
Res
0x44
TIMx_CCR1
Res
0x34
TIMx_RCR
Res
0x30
TIMx_ARR
Res
0x2C
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
TIMx_PSC
Res
0x28
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res
Offset
Res
RM0351
General-purpose timers (TIM15/16/17)
Table 160. TIM16&TIM17 register map and reset values (continued)
PSC[15:0]
ARR[15:0]
0
0
0
0
0
0
1
1
1
1
1
1
REP[7:0]
DBA[4:0]
Reset value
0
0
TI1_
RMP
[1:0]
0
0
1
Refer to Section 2.2.2: Memory map and register boundary addresses for the register
boundary addresses.
1009/1693
1009
Basic timers (TIM6/TIM7)
RM0351
29
Basic timers (TIM6/TIM7)
29.1
TIM6/TIM7 introduction
The basic timers TIM6 and TIM7 consist of a 16-bit auto-reload counter driven by a
programmable prescaler.
They may be used as generic timers for time-base generation but they are also specifically
used to drive the digital-to-analog converter (DAC). In fact, the timers are internally
connected to the DAC and are able to drive it through their trigger outputs.
The timers are completely independent, and do not share any resources.
29.2
TIM6/TIM7 main features
Basic timer (TIM6/TIM7) features include:
•
16-bit auto-reload upcounter
•
16-bit programmable prescaler used to divide (also “on the fly”) the counter clock
frequency by any factor between 1 and 65535
•
Synchronization circuit to trigger the DAC
•
Interrupt/DMA generation on the update event: counter overflow
Figure 330. Basic timer block diagram
7ULJJHU
FRQWUROOHU
,QWHUQDOFORFN &.B,17
7,0[&/.IURP5&&
&RQWURO
&.B&17
5HVHWHQDEOH&RXQW
8,
6WRSFOHDURUXS
36&
SUHVFDOHU
WR'$&
$XWRUHORDGUHJLVWHU
8
&.B36&
75*2
8
&17FRXQWHU
1RWHV
5HJ
3UHORDGUHJLVWHUVWUDQVIHUUHG
WRDFWLYHUHJLVWHUVRQ8HYHQW
DFFRUGLQJWRFRQWUROELW
(YHQW
,QWHUUXSW '0$RXWSXW
069
1010/1693
DocID024597 Rev 3
RM0351
Basic timers (TIM6/TIM7)
29.3
TIM6/TIM7 functional description
29.3.1
Time-base unit
The main block of the programmable timer is a 16-bit upcounter with its related auto-reload
register. The counter clock can be divided by a prescaler.
The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.
The time-base unit includes:
•
Counter Register (TIMx_CNT)
•
Prescaler Register (TIMx_PSC)
•
Auto-Reload Register (TIMx_ARR)
The auto-reload register is preloaded. The preload register is accessed each time an
attempt is made to write or read the auto-reload register. The contents of the preload
register are transferred into the shadow register permanently or at each update event UEV,
depending on the auto-reload preload enable bit (ARPE) in the TIMx_CR1 register. The
update event is sent when the counter reaches the overflow value and if the UDIS bit equals
0 in the TIMx_CR1 register. It can also be generated by software. The generation of the
update event is described in detail for each configuration.
The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in the TIMx_CR1 register is set.
Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN.
Prescaler description
The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as the TIMx_PSC control register is buffered. The new
prescaler ratio is taken into account at the next update event.
Figure 331 and Figure 332 give some examples of the counter behavior when the prescaler
ratio is changed on the fly.
DocID024597 Rev 3
1011/1693
1022
Basic timers (TIM6/TIM7)
RM0351
Figure 331. Counter timing diagram with prescaler division change from 1 to 2
&.B36&
&(1
7LPHUFORFN
&.B&17
&RXQWHUUHJLVWHU
)
)
)
)$ )% )&
8SGDWHHYHQW 8(9
3UHVFDOHUFRQWUROUHJLVWHU
:ULWHDQHZYDOXHLQ7,0[B36&
3UHVFDOHUEXIIHU
3UHVFDOHUFRXQWHU
069
Figure 332. Counter timing diagram with prescaler division change from 1 to 4
&.B36&
&(1
7LPHUFORFN
&.B&17
&RXQWHUUHJLVWHU
)
)
)
)$ )% )&
8SGDWHHYHQW 8(9
3UHVFDOHUFRQWUROUHJLVWHU
:ULWHDQHZYDOXHLQ7,0[B36&
3UHVFDOHUEXIIHU
3UHVFDOHUFRXQWHU
069
1012/1693
DocID024597 Rev 3
RM0351
29.3.2
Basic timers (TIM6/TIM7)
Counting mode
The counter counts from 0 to the auto-reload value (contents of the TIMx_ARR register),
then restarts from 0 and generates a counter overflow event.
An update event can be generate at each counter overflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller).
The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This avoids updating the shadow registers while writing new values into the preload
registers. In this way, no update event occurs until the UDIS bit has been written to 0,
however, the counter and the prescaler counter both restart from 0 (but the prescale rate
does not change). In addition, if the URS (update request selection) bit in the TIMx_CR1
register is set, setting the UG bit generates an update event UEV, but the UIF flag is not set
(so no interrupt or DMA request is sent).
When an update event occurs, all the registers are updated and the update flag (UIF bit in
the TIMx_SR register) is set (depending on the URS bit):
•
The buffer of the prescaler is reloaded with the preload value (contents of the
TIMx_PSC register)
•
The auto-reload shadow register is updated with the preload value (TIMx_ARR)
The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR = 0x36.
Figure 333. Counter timing diagram, internal clock divided by 1
&.B36&
&17B(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
069
DocID024597 Rev 3
1013/1693
1022
Basic timers (TIM6/TIM7)
RM0351
Figure 334. Counter timing diagram, internal clock divided by 2
&.B36&
&17B(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
069
Figure 335. Counter timing diagram, internal clock divided by 4
&.B36&
&17B(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
069
1014/1693
DocID024597 Rev 3
RM0351
Basic timers (TIM6/TIM7)
Figure 336. Counter timing diagram, internal clock divided by N
&.B36&
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
)
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
069
Figure 337. Counter timing diagram, update event when ARPE = 0 (TIMx_ARR not
preloaded)
&.B36&
&(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
$XWRUHORDGSUHORDG
UHJLVWHU
))
:ULWHDQHZYDOXHLQ7,0[B$55
069
DocID024597 Rev 3
1015/1693
1022
Basic timers (TIM6/TIM7)
RM0351
Figure 338. Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded)
&.B36&
&(1
7LPHUFORFN &.B&17
&RXQWHUUHJLVWHU
)
)
)
)
) )
&RXQWHURYHUIORZ
8SGDWHHYHQW 8(9
8SGDWHLQWHUUXSWIODJ
8,)
$XWRUHORDGSUHORDG
UHJLVWHU
)
$XWRUHORDGVKDGRZ
UHJLVWHU
)
:ULWHDQHZYDOXHLQ7,0[B$55
29.3.3
069
UIF bit remapping
The IUFREMAP bit in the TIMx_CR1 register forces a continuous copy of the Update
Interrupt Flag UIF into the timer counter register’s bit 31 (TIMxCNT[31]). This allows to
atomically read both the counter value and a potential roll-over condition signaled by the
UIFCPY flag. In particular cases, it can ease the calculations by avoiding race conditions
caused for instance by a processing shared between a background task (counter reading)
and an interrupt (Update Interrupt).
There is no latency between the assertions of the UIF and UIFCPY flags.
29.3.4
Clock source
The counter clock is provided by the Internal clock (CK_INT) source.
The CEN (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual
control bits and can be changed only by software (except for UG that remains cleared
automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal
clock CK_INT.
Figure 339 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.
1016/1693
DocID024597 Rev 3
RM0351
Basic timers (TIM6/TIM7)
Figure 339. Control circuit in normal mode, internal clock divided by 1
,QWHUQDOFORFN
&(1 &17B(1
8*
&17B,1,7
&RXQWHUFORFN &.B&17 &.B36&
&RXQWHUUHJLVWHU
069
29.3.5
Debug mode
When the microcontroller enters the debug mode (Cortex®-M4 core - halted), the TIMx
counter either continues to work normally or stops, depending on the DBG_TIMx_STOP
configuration bit in the DBG module. For more details, refer to Section 44.16.2: Debug
support for timers, RTC, watchdog, bxCAN and I2C.
29.4
TIM6/TIM7 registers
Refer to Section 1.1 on page 61 for a list of abbreviations used in register descriptions.
The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).
29.4.1
TIM6/TIM7 control register 1 (TIMx_CR1)
Address offset: 0x00
Reset value: 0x0000
15
Res
14
Res
13
Res
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
UIF
REMAP
Res
Res
Res
ARPE
Res
Res
Res
OPM
URS
UDIS
CEN
rw
rw
rw
rw
rw
rw
Bits 15:12 Reserved, must be kept at reset value.
Bit 11 UIFREMAP: UIF status bit remapping
0: No remapping. UIF status bit is not copied to TIMx_CNT register bit 31.
1: Remapping enabled. UIF status bit is copied to TIMx_CNT register bit 31.
Bits 10:8 Reserved, must be kept at reset value.
DocID024597 Rev 3
1017/1693
1022
Basic timers (TIM6/TIM7)
RM0351
Bit 7 ARPE: Auto-reload preload enable
0: TIMx_ARR register is not buffered.
1: TIMx_ARR register is buffered.
Bits 6:4 Reserved, must be kept at reset value.
Bit 3 OPM: One-pulse mode
0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the CEN bit).
Bit 2 URS: Update request source
This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generates an update interrupt or DMA request if enabled.
These events can be:
–
Counter overflow/underflow
–
Setting the UG bit
–
Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update interrupt or DMA request if
enabled.
Bit 1 UDIS: Update disable
This bit is set and cleared by software to enable/disable UEV event generation.
0: UEV enabled. The Update (UEV) event is generated by one of the following events:
–
Counter overflow/underflow
–
Setting the UG bit
–
Update generation through the slave mode controller
Buffered registers are then loaded with their preload values.
1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC). However the counter and the prescaler are reinitialized if the UG bit is set or if
a hardware reset is received from the slave mode controller.
Bit 0 CEN: Counter enable
0: Counter disabled
1: Counter enabled
Note: Gated mode can work only if the CEN bit has been previously set by software.
However trigger mode can set the CEN bit automatically by hardware.
CEN is cleared automatically in one-pulse mode, when an update event occurs.
1018/1693
DocID024597 Rev 3
RM0351
Basic timers (TIM6/TIM7)
29.4.2
TIM6/TIM7 control register 2 (TIMx_CR2)
Address offset: 0x04
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
Res
Res
Res
Res
Res
Res
Res
Res
Res
6
5
4
MMS[2:0]
rw
rw
3
2
1
0
Res
Res
Res
Res
rw
Bits 15:7 Reserved, must be kept at reset value.
Bits 6:4 MMS: Master mode selection
These bits are used to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as a trigger output (TRGO). If
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter enable signal, CNT_EN, is used as a trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer
is enabled. The Counter Enable signal is generated by a logic OR between CEN control bit
and the trigger input when configured in gated mode.
When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO,
except if the master/slave mode is selected (see the MSM bit description in the TIMx_SMCR
register).
010: Update - The update event is selected as a trigger output (TRGO). For instance a
master timer can then be used as a prescaler for a slave timer.
Note: The clock of the slave timer or ADC must be enabled prior to receive events from the
master timer, and must not be changed on-the-fly while triggers are received from the
master timer.
Bits 3:0 Reserved, must be kept at reset value.
29.4.3
TIM6/TIM7 DMA/Interrupt enable register (TIMx_DIER)
Address offset: 0x0C
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
Res
Res
Res
Res
Res
Res
UDE
Res
Res
Res
Res
Res
Res
Res
UIE
rw
rw
Bits 15:9 Reserved, must be kept at reset value.
Bit 8 UDE: Update DMA request enable
0: Update DMA request disabled.
1: Update DMA request enabled.
Bits 7:1 Reserved, must be kept at reset value.
Bit 0 UIE: Update interrupt enable
0: Update interrupt disabled.
1: Update interrupt enabled.
DocID024597 Rev 3
1019/1693
1022
Basic timers (TIM6/TIM7)
29.4.4
RM0351
TIM6/TIM7 status register (TIMx_SR)
Address offset: 0x10
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
UIF
rc_w0
Bits 15:1 Reserved, must be kept at reset value.
Bit 0 UIF: Update interrupt flag
This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:
– At overflow or underflow regarding the repetition counter value and if UDIS = 0 in the
TIMx_CR1 register.
– When CNT is reinitialized by software using the UG bit in the TIMx_EGR register, if URS = 0
and UDIS = 0 in the TIMx_CR1 register.
29.4.5
TIM6/TIM7 event generation register (TIMx_EGR)
Address offset: 0x14
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
UG
w
Bits 15:1 Reserved, must be kept at reset value.
Bit 0 UG: Update generation
This bit can be set by software, it is automatically cleared by hardware.
0: No action.
1: Re-initializes the timer counter and generates an update of the registers. Note that the
prescaler counter is cleared too (but the prescaler ratio is not affected).
29.4.6
TIM6/TIM7 counter (TIMx_CNT)
Address offset: 0x24
Reset value: 0x0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
UIF
CPY
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
r
15
CNT[15:0]
rw
rw
1020/1693
rw
rw
rw
rw
rw
rw
rw
DocID024597 Rev 3
RM0351
Basic timers (TIM6/TIM7)
Bit 31 UIFCPY: UIF Copy
This bit is a read-only copy of the UIF bit of the TIMx_ISR register. If the UIFREMAP bit in
TIMx_CR1 is reset, bit 31 is reserved and read as 0.
Bits 30:16 Reserved, must be kept at reset value.
Bits 15:0 CNT[15:0]: Counter value
29.4.7
TIM6/TIM7 prescaler (TIMx_PSC)
Address offset: 0x28
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
PSC[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 15:0 PSC[15:0]: Prescaler value
The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded into the active prescaler register at each update event.
29.4.8
TIM6/TIM7 auto-reload register (TIMx_ARR)
Address offset: 0x2C
Reset value: 0xFFFF
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
ARR[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 15:0 ARR[15:0]: Prescaler value
ARR is the value to be loaded into the actual auto-reload register.
Refer to Section 29.3.1: Time-base unit on page 1011 for more details about ARR update and
behavior.
The counter is blocked while the auto-reload value is null.
DocID024597 Rev 3
1021/1693
1022
0x2C
1022/1693
TIMx_ARR
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0x180x20
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Reset value
Reset value
DocID024597 Rev 3
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
Refer to Section 2.2.2: Memory map and register boundary addresses for the register
boundary addresses.
Reset value
Reset value
UIF
Res
Res
0
UG
Res
Res
Res
Res
Res
Res
UIE
URS
UDIS
CEN
OPM
Res
Res
Res
ARPE
Res
Res
Res
UIFREMAP
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
Res
Res
0
Res
0
Res
Reserved
0
Res
MMS
[2:0]
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
Res
Res
Res
Reset value
Res
Res
UDE
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0
Res
Res
Res
Res
Reset value
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Reset value
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
0x08
Res
Res
Res
Res
Res
TIMx_PSC
Res
0
Res
Reset value
Res
TIMx_CNT
Res
TIMx_EGR
Res
0x28
TIMx_SR
Res
0x24
TIMx_DIER
Res
0x14
TIMx_CR2
Res
0x10
TIMx_CR1
Res
0x0C
UIFCPY or Res.
0x04
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res
0x00
Res
Offset
Res
29.4.9
Res
Basic timers (TIM6/TIM7)
RM0351
TIM6/TIM7 register map
TIMx registers are mapped as 16-bit addressable registers as described in the table below:
Table 161. TIM6/TIM7 register map and reset values
0
0
0
0
0
0
Reserved
CNT[15:0]
PSC[15:0]
ARR[15:0]
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
RM0351
Low-power timer (LPTIM)
30
Low-power timer (LPTIM)
30.1
Introduction
The LPTIM is a 16-bit timer that benefits from the ultimate developments in power
consumption reduction. Thanks to its diversity of clock sources, the LPTIM is able to keep
running in all power modes except for Standby mode. Given its capability to run even with
no internal clock source, the LPTIM can be used as a “Pulse Counter” which can be useful
in some applications. Also, the LPTIM capability to wake up the system from low-power
modes, makes it suitable to realize “Timeout functions” with extremely low power
consumption.
The LPTIM introduces a flexible clock scheme that provides the needed functionalities and
performance, while minimizing the power consumption.
30.2
30.3
LPTIM main features
•
16 bit upcounter
•
3-bit prescaler with 8 possible dividing factor (1,2,4,8,16,32,64,128)
•
Selectable clock
–
Internal clock sources: LSE, LSI, HSI16 or APB clock
–
External clock source over ULPTIM input (working with no LP oscillator running,
used by Pulse Counter application)
•
16 bit ARR autoreload register
•
16 bit compare register
•
Continuous/one shot mode
•
Selectable software/hardware input trigger
•
Programmable Digital Glitch filter
•
Configurable output: Pulse, PWM
•
Configurable I/O polarity
•
Encoder mode
LPTIM implementation
Table 162 describes LPTIM implementation on STM32L4xx devices: the full set of features
is implemented in LPTIM1. LPTIM2 supports a smaller set of features, but is otherwise
identical to LPTIM1.
Table 162. STM32L4xx LPTIM features
LPTIM modes/features(1)
Encoder mode
LPTIM1
LPTIM2
X
-
1. X = supported.
DocID024597 Rev 3
1023/1693
1045
Low-power timer (LPTIM)
RM0351
30.4
LPTIM functional description
30.4.1
LPTIM block diagram
Figure 340. Low-power timer block diagram
/37,0
$3%B,7)
.HUQHO
8SGRZQ
(QFRGHU
XSWRH[W
WULJJHU
*OLWFK
ILOWHU
VZ
WULJJHU
5&&
*OLWFK
ILOWHU
,QSXW
*OLWFK
ILOWHU
,QSXW
ELW$55
0X[WULJJHU
$3%FORFN
/6(
/6,
+6,
µ
&/.08;
&2817
02'(
3UHVFDOHU
ELWFRXQWHU
2XW
ELWFRPSDUH
069
30.4.2
LPTIM reset and clocks
The LPTIM can be clocked using several clock sources. It can be clocked using an internal
clock signal which can be chosen among APB, LSI, LSE or HSI16 sources through the
Clock Tree controller (RCC). Also, the LPTIM can be clocked using an external clock signal
injected on its external Input1. When clocked with an external clock source, the LPTIM may
run in one of these two possible configurations:
1024/1693
•
The first configuration is when the LPTIM is clocked by an external signal but in the
same time an internal clock signal is provided to the LPTIM either from APB or any
other embedded oscillator including LSE, LSI and HSI16.
•
The second configuration is when the LPTIM is solely clocked by an external clock
source through its external Input1. This configuration is the one used to realize Timeout
function or Pulse counter function when all the embedded oscillators are turned off
after entering a low-power mode.
DocID024597 Rev 3
RM0351
Low-power timer (LPTIM)
Programming the CKSEL and COUNTMODE bits allows controlling whether the LPTIM will
use an external clock source or an internal one.
When configured to use an external clock source, the CKPOL bits are used to select the
external clock signal active edge. If both edges are configured to be active ones, an internal
clock signal should also be provided (first configuration). In this case, the internal clock
signal frequency should be at least four time higher than the external clock signal frequency.
30.4.3
Glitch filter
The LPTIM inputs, either external or internal, are protected with digital filters that prevent
any glitches and noise perturbations to propagate inside the LPTIM. This is in order to
prevent spurious counts or triggers.
Before activating the digital filters, an internal clock source should first be provided to the
LPTIM. This is necessary to guarantee the proper operation of the filters.
The digital filters are divided into two groups:
Note:
•
The first group of digital filters protects the LPTIM external inputs. The digital filters
sensitivity is controlled by the CKFLT bits
•
The second group of digital filters protects the LPTIM internal trigger inputs. The digital
filters sensitivity is controlled by the TRGFLT bits.
The digital filters sensitivity is controlled by groups. It is not possible to configure each digital
filter sensitivity separately inside the same group.
The filter sensitivity acts on the number of consecutive equal samples that should be
detected on one of the LPTIM inputs to consider a signal level change as a valid transition.
Figure 341 shows an example of glitch filter behavior in case of a 2 consecutive samples
programmed.
Figure 341. Glitch filter timing diagram
&/.08;
,QSXW
)LOWHURXW
FRQVHFXWLYHVDPSOHV
FRQVHFXWLYHVDPSOHV
)LOWHUHG
069
Note:
In case no internal clock signal is provided, the digital filter must be deactivated by setting
the CKFLT and TRGFLT bits to ‘0’. In that case, an external analog filter may be used to
protect the LPTIM external inputs against glitches.
DocID024597 Rev 3
1025/1693
1045
Low-power timer (LPTIM)
30.4.4
RM0351
Prescaler
The LPTIM 16-bit counter is preceded by a configurable power-of-2 prescaler. The prescaler
division ratio is controlled by the PRESC[2:0] 3-bit field. The table below lists all the possible
division ratios:
Table 163. Prescaler division ratios
30.4.5
programming
dividing factor
000
/1
001
/2
010
/4
011
/8
100
/16
101
/32
110
/64
111
/128
Trigger multiplexer
The LPTIM counter may be started either by software or after the detection of an active
edge on one of the 8 trigger inputs.
TRIGEN[1:0] is used to determine the LPTIM trigger source:
•
When TRIGEN[1:0] equals ‘00’, The LPTIM counter is started as soon as one of the
CNTSTRT or the SNGSTRT bits is set by software.
•
The three remaining possible values for the TRIGEN[1:0] are used to configure the
active edge used by the trigger inputs. The LPTIM counter starts as soon as an active
edge is detected.
When TRIGEN[1:0] is different than ‘00’, TRIGSEL[2:0] is used to select which of the 8
trigger inputs is used to start the counter.
The external triggers are considered asynchronous signals for the LPTIM. So after a trigger
detection, a two-counter-clock period latency is needed before the timer starts running due
to the synchronization.
If a new trigger event occurs when the timer is already started it will be ignored (unless
timeout function is enabled).
Note:
1026/1693
The timer must be enabled before setting the SNGSTRT/CNTSTRT bits. Any write on these
bits when the timer is disabled will be discarded by hardware.
DocID024597 Rev 3
RM0351
30.4.6
Low-power timer (LPTIM)
Operating mode
The LPTIM features two operating modes:
•
The Continuous mode: the timer is free running, the timer is started from a trigger event
and never stops until the timer is disabled
•
One shot mode: the timer is started from a trigger event and stops when reaching the
ARR value.
A new trigger event will re-start the timer. Any trigger event occurring after the counter starts
and before the counter reaches ARR will be discarded.
To enable the one shot counting, the SNGSTRT bit must be set.
In case an external trigger is selected, each external trigger event arriving after the
SNGSTRT bit is set, and after the counter register has stopped (contains zero value), will
start the counter for a new One-shot counting cycle as shown in Figure 342.
Figure 342. LPTIM output waveform, Single counting mode configuration
$55
&RPSDUH
3:0
([WHUQDOWULJJHUHYHQW
06Y9
It should be noted that when the WAVE bit-field in the LPTIMx_CFGR register is set, the
Set-once mode is activated. In this case, the counter is only started once following the first
trigger, and any subsequent trigger event is discarded as shown in Figure 342.
Figure 343. LPTIM output waveform, Single counting mode configuration
and Set-once mode activated (WAVE bit is set)
$55
&RPSDUH
'LVFDUGHGWULJJHU
3:0
([WHUQDOWULJJHUHYHQW
06Y9
In case of software start (TRIGEN[1:0] = ‘00’), the SNGSTRT setting will start the counter for
one shot counting.
To enable the continuous counting, the CNTSTRT bit must be set.
DocID024597 Rev 3
1027/1693
1045
Low-power timer (LPTIM)
RM0351
In case an external trigger is selected, an external trigger event arriving after CNTSTRT is
set will start the counter for continuous counting. Any subsequent external trigger event will
be discarded as shown in Figure 344.
In case of software start (TRIGEN[1:0] = ‘00’), setting CNTSTRT will start the counter for
continuous counting.
Figure 344. LPTIM output waveform, Continuous counting mode configuration
'LVFDUGHGWULJJHUV
$55
&RPSDUH
3:0
([WHUQDOWULJJHUHYHQW
06Y9
SNGSTRT and CNTSTRT bits can only be set when the timer is enabled (The ENABLE bit
is set to ‘1’). It is possible to change “on the fly” from One Shot mode to Continuous mode.
If the Continuous mode was previously selected, setting SNGSTRT will switch the LPTIM to
the One Shot mode. The counter (if active) will stop as soon as it reaches ARR.
If the One Shot mode was previously selected, setting CNTSTRT will switch the LPTIM to
the Continuous mode. The counter (if active) will restart as soon as it reaches ARR.
30.4.7
Timeout function
The detection of an active edge on one selected trigger input can be used to reset the
LPTIM counter. This feature is controlled through the TIMOUT bit.
The first trigger event will start the timer, any successive trigger event will reset the counter
and the timer will restart.
A low-power timeout function can be realized. The timeout value corresponds to the
compare value; if no trigger occurs within the expected time frame, the MCU is waked-up by
the compare match event.
1028/1693
DocID024597 Rev 3
RM0351
30.4.8
Low-power timer (LPTIM)
Waveform generation
Two 16-bit registers, the LPTIMx_ARR (autoreload register) and LPTIMx_CMP (Compare
register), are used to generate several different waveforms on LPTIM output
The timer can generate the following waveforms:
•
The PWM mode: the LPTIM output is set as soon as a match occurs between the
LPTIMx_CMP and the LPTIMx_CNT registers. The LPTIM output is reset as soon as a
match occurs between the LPTIMx_ARR and the LPTIMx_CNT registers
•
The One-pulse mode: the output waveform is similar to the one of the PWM mode for
the first pulse, then the output is permanently reset
•
The Set-once mode: the output waveform is similar to the One-pulse mode except that
the output is kept to the last signal level (depends on the output configured polarity).
The above described modes require that the LPTIMx_ARR register value be strictly greater
than the LPTIMx_CMP register value.
The LPTIM output waveform can be configured through the WAVE bit as follow:
•
Resetting the WAVE bit to ‘0’ forces the LPTIM to generate either a PWM waveform or
a One pulse waveform depending on which bit is set: CNTSTRT or SNGSTRT.
•
Setting the WAVE bit to ‘1’ forces the LPTIM to generate a Set-once mode waveform.
The WAVPOL bit controls the LPTIM output polarity. The change takes effect immediately,
so the output default value will change immediately after the polarity is re-configured, even
before the timer is enabled.
Signals with frequencies up to the LPTIM clock frequency divided by 2 can be generated.
Figure 345 below shows the three possible waveforms that can be generated on the LPTIM
output. Also, it shows the effect of the polarity change using the WAVPOL bit.
DocID024597 Rev 3
1029/1693
1045
Low-power timer (LPTIM)
RM0351
Figure 345. Waveform generation
$55
&RPSDUH
3:0
2QHVKRW
3RO
6HWRQFH
3:0
3RO
2QHVKRW
6HWRQFH
069
30.4.9
Register update
The LPTIMx_ARR register and LPTIMx_CMP register are updated immediately after the
APB bus write operation, or at the end of the current period if the timer is already started.
The PRELOAD bit controls how the LPTIMx_ARR and the LPTIMx_CMP registers are
updated:
•
When the PRELOAD bit is reset to ‘0’, the LPTIMx_ARR and the LPTIMx_CMP
registers are immediately updated after any write access.
•
When the PRELOAD bit is set to ‘1’, the LPTIMx_ARR and the LPTIMx_CMP registers
are updated at the end of the current period, if the timer has been already started.
The APB bus and the LPTIM use different clocks, so there is some latency between the
APB write and the moment when these values are available to the counter comparator.
Within this latency period, any additional write into these registers must be avoided.
The ARROK flag and the CMPOK flag in the LPTIMx_ISR register indicate when the write
operation is completed to respectively the LPTIMx_ARR register and the LPTIMx_CMP
register.
After a write to the LPTIMx_ARR register or the LPTIMx_CMP register, a new write
operation to the same register can only be performed when the previous write operation is
completed. Any successive write before respectively the ARROK flag or the CMPOK flag be
set, will lead to unpredictable results.
1030/1693
DocID024597 Rev 3
RM0351
30.4.10
Low-power timer (LPTIM)
Counter mode
The LPTIM counter can be used to count external events on the LPTIM Input1 or it can be
used to count internal clock cycles. The CKSEL and COUNTMODE bits control which
source will be used for updating the counter.
In case the LPTIM is configured to count external events on Input1, the counter can be
updated following a rising edge, falling edge or both edges depending on the value written
to the CKPOL[1:0] bits.
The count modes below can be selected, depending on CKSEL and COUNTMODE values:
•
CKSEL = 0: the LPTIM is clocked by an internal clock source
–
COUNTMODE = 0
When the LPTIM is configured to be clocked by an internal clock source and the
LPTIM counter is configured to be updated by active edges detected on the LPTIM
external Input1, the internal clock provided to the LPTIM must be not be prescaled
(PRESC[2:0] = ‘000’).
–
COUNTMODE = 1
The LPTIM external Input1 is sampled with the internal clock provided to the
LPTIM. Consequently, in order not to miss any event, the frequency of the
changes on the external Input1 signal should never exceed the frequency of the
internal clock provided to the LPTIM.
•
CKSEL = 1: the LPTIM is clocked by an external clock source
COUNTMODE value is don’t care.
In this configuration, the LPTIM has no need for an internal clock source (except if the
glitch filters are enabled). The signal injected on the LPTIM external Input1 is used as
system clock for the LPTIM. This configuration is suitable for operation modes where
no embedded oscillator is enabled.
For this configuration, the LPTIM counter can be updated either on rising edges or
falling edges of the input1 clock signal but not on both rising and falling edges.
Since the signal injected on the LPTIM external Input1 is also used to clock the LPTIM,
there is some initial latency (after the LPTIM is enabled) before the counter is
incremented. More precisely, the first five active edges on the LPTIM external Input1
(after LPTIM is enable) are lost.
30.4.11
Timer enable
The ENABLE bit located in the LPTIMx_CR register is used to enable/disable the LPTIM.
After setting the ENABLE bit, a delay of two counter clock is needed before the LPTIM is
actually enabled.
The LPTIMx_CFGR and LPTIMx_IER registers must be modified only when the LPTIM is
disabled.
30.4.12
Encoder mode
This mode allows handling signals from quadrature encoders used to detect angular
position of rotary elements. Encoder interface mode acts simply as an external clock with
direction selection. This means that the counter just counts continuously between 0 and the
auto-reload value programmed into the LPTIMx_ARR register (0 up to ARR or ARR down to
0 depending on the direction). Therefore you must configure LPTIMx_ARR before starting.
DocID024597 Rev 3
1031/1693
1045
Low-power timer (LPTIM)
RM0351
From the two external input signals, Input1 and Input2, a clock signal is generated to clock
the LPTIM counter. The phase between those two signals determines the counting direction.
The Encoder mode is only available when the LPTIM is clocked by an internal clock source.
The signals frequency on both Input1 and Input2 inputs must not exceed the LPTIM internal
clock frequency divided by 4. This is mandatory in order to guarantee a proper operation of
the LPTIM.
Direction change is signalized by the two Down and Up flags in the LPTIMx_ISR register.
Also, an interrupt can be generated for both direction change events if enabled through the
LPTIMx_IER register.
To activate the Encoder mode the ENC bit has to be set to ‘1’. The LPTIM must first be
configured in Continuous mode.
When Encoder mode is active, the LPTIM counter is modified automatically following the
speed and the direction of the incremental encoder. Therefore, its content always
represents the encoder’s position. The count direction, signaled by the Up and Down flags,
correspond to the rotation direction of the connected sensor.
According to the edge sensitivity configured using the CKPOL[1:0] bits, different counting
scenarios are possible. The following table summarizes the possible combinations,
assuming that Input1 and Input2 do not switch at the same time.
Table 164. Encoder counting scenarios
Active edge
Rising Edge
Falling Edge
Both Edges
Level on opposite
signal (Input1 for
Input2, Input2 for
Input1)
Input1 signal
Input2 signal
Rising
Falling
Rising
Falling
High
Down
No count
Up
No count
Low
Up
No count
Down
No count
High
No count
Up
No count
Down
Low
No count
Down
No count
Up
High
Down
Up
Up
Down
Low
Up
Down
Down
Up
The following figure shows a counting sequence for Encoder mode where both edges
sensitivity is configured.
Caution:
1032/1693
In this mode the LPTIM must be clocked by an internal clock source, so the CKSEL bit must
be maintained to its reset value which is equal to ‘0’. Also, the prescaler division ratio must
be equal to its reset value which is 1 (PRESC[2:0] bits must be ‘000’).
DocID024597 Rev 3
RM0351
Low-power timer (LPTIM)
Figure 346. Encoder mode counting sequence
7
7
&RXQWHU
XS
30.5
GRZQ
XS
069
LPTIM low power modes
Table 165. Effect of low-power modes on the LPTIM
Mode
Description
Sleep
No effect. LPTIM interrupts cause the device to exit Sleep mode.
Low-power run
No effect.
Low-power sleep
No effect. LPTIM interrupts cause the device to exit the Low-power sleep
mode.
Stop 0 / Stop 1
No effect when LPTIM is clocked by LSE or LSI. LPTIM interrupts cause
the device to exit Stop 0 and Stop 1.
Stop 2
No effect on LPTIM1 when LPTIM1 is clocked by LSE or LSI. LPTIM1
interrupts cause the device to exit Stop 2. LPTIM2 registers content is
kept but LPTIM2 must be disabled before entering Stop 2.
Standby
Shutdown
The LPTIM peripheral is powered down and must be reinitialized after
exiting Standby or Shutdown mode.
DocID024597 Rev 3
1033/1693
1045
Low-power timer (LPTIM)
30.6
RM0351
LPTIM interrupts
The following events generate an interrupt/wake-up event, if they are enabled through the
LPTIMx_IER register:
Note:
1034/1693
•
Compare match
•
Auto-reload match (whatever the direction if encoder mode)
•
External trigger event
•
Autoreload register write completed
•
Compare register write completed
•
Direction change (encoder mode), programmable (up / down / both).
if any bit in the LPTIMx_IER register (Interrupt Enable Register) is set after that its
corresponding flag in the LPTIMx_ISR register (Status Register) is set, the interrupt is not
asserted
DocID024597 Rev 3
RM0351
Low-power timer (LPTIM)
30.7
LPTIM registers
30.7.1
LPTIM interrupt and status register (LPTIMx_ISR)
Address offset: 0x00
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
1
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DOWN
UP
ARROK
CMPOK
EXTTRIG
r
r
r
r
r
ARRM CMPM
r
r
Bits 31:7 Reserved, must be kept at reset value.
Bit 6 DOWN: Counter direction change up to down
In Encoder mode, DOWN bit is set by hardware to inform application that the counter direction has
changed from up to down.
Bit 5 UP: Counter direction change down to up
In Encoder mode, UP bit is set by hardware to inform application that the counter direction has
changed from down to up.
Bit 4 ARROK: Autoreload register update OK
ARROK is set by hardware to inform application that the APB bus write operation to the LPTIMx_ARR
register has been successfully completed. If so, a new one can be initiated.
Bit 3 CMPOK: Compare register update OK
CMPOK is set by hardware to inform application that the APB bus write operation to the LPTIMx_CMP
register has been successfully completed. If so, a new one can be initiated.
Bit 2 EXTTRIG: External trigger edge event
EXTTRIG is set by hardware to inform application that a valid edge on the selected external trigger
input has occurred. If the trigger is ignored because the timer has already started, then this flag is not
set.
Bit 1 ARRM: Autoreload match
ARRM is set by hardware to inform application that LPTIMx_CNT register’s value reached the
LPTIMx_ARR register’s value.
Bit 0 CMPM: Compare match
The CMPM bit is set by hardware to inform application that LPTIMx_CNT register value reached the
LPTIMx_CMP register’s value.
DocID024597 Rev 3
1035/1693
1045
Low-power timer (LPTIM)
30.7.2
RM0351
LPTIM interrupt clear register (LPTIMx_ICR)
Address offset: 0x04
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DOWN
CF
UPCF
ARRO
KCF
ARRM
CF
CMPM
CF
w
w
w
w
w
Bits 31:7 Reserved, must be kept at reset value.
Bit 6 DOWNCF: Direction change to down Clear Flag
Writing 1 to this bit clear the DOWN flag in the LPT_ISR register
Bit 5 UPCF: Direction change to UP Clear Flag
Writing 1 to this bit clear the UP flag in the LPT_ISR register
Bit 4 ARROKCF: Autoreload register update OK Clear Flag
Writing 1 to this bit clears the ARROK flag in the LPT_ISR register
Bit 3 CMPOKCF: Compare register update OK Clear Flag
Writing 1 to this bit clears the CMPOK flag in the LPT_ISR register
Bit 2 EXTTRIGCF: External trigger valid edge Clear Flag
Writing 1 to this bit clears the EXTTRIG flag in the LPT_ISR register
Bit 1 ARRMCF: Autoreload match Clear Flag
Writing 1 to this bit clears the ARRM flag in the LPT_ISR register
Bit 0 CMPMCF: compare match Clear Flag
Writing 1 to this bit clears the CMP flag in the LPT_ISR register
1036/1693
DocID024597 Rev 3
CMPO EXTTR
KCF
IGCF
w
w
RM0351
Low-power timer (LPTIM)
30.7.3
LPTIM interrupt enable register (LPTIMx_IER)
Address offset: 0x08
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DOWNI
E
UPIE
ARRO
KIE
rw
rw
rw
CMPO EXTTR ARRMI CMPMI
KIE
IGIE
E
E
rw
rw
rw
rw
Bits 31:7 Reserved, must be kept at reset value.
Bit 6 DOWNIE: Direction change to down Interrupt Enable
0: DOWN interrupt disabled
1: DOWN interrupt enabled
Bit 5 UPIE: Direction change to UP Interrupt Enable
0: UP interrupt disabled
1: UP interrupt enabled
Bit 4 ARROKIE: Autoreload register update OK Interrupt Enable
0: ARROK interrupt disabled
1: ARROK interrupt enabled
Bit 3 CMPOKIE: Compare register update OK Interrupt Enable
0: CMPOK interrupt disabled
1: CMPOK interrupt enabled
Bit 2 EXTTRIGIE: External trigger valid edge Interrupt Enable
0: EXTTRIG interrupt disabled
1: EXTTRIG interrupt enabled
Bit 1 ARRMIE: Autoreload match Interrupt Enable
0: ARRM interrupt disabled
1: ARRM interrupt enabled
Bit 0 CMPMIE: Compare match Interrupt Enable
0: CMPM interrupt disabled
1: CMPM interrupt enabled
Caution: The LPTIMx_IER register must only be modified when the LPTIM is disabled (ENABLE bit is reset to ‘0’)
DocID024597 Rev 3
1037/1693
1045
Low-power timer (LPTIM)
30.7.4
RM0351
LPTIM configuration register (LPTIMx_CFGR)
Address offset: 0x0C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
Res.
TRIGSEL
rw
rw
rw
PRESC
rw
rw
24
ENC
23
22
21
COUNT
PRELOAD WAVPOL
MODE
20
19
WAVE
TIMOUT
18
17
TRIGEN
Res.
rw
rw
rw
rw
rw
rw
rw
rw
8
7
6
5
4
3
2
1
rw
rw
Res.
rw
TRGFLT
rw
rw
Res.
CKFLT
rw
16
CKPOL
0
CKSEL
rw
rw
Bits 31:25 Reserved, must be kept at reset value.
Bit 24 ENC: Encoder mode enable
The ENC bit controls the Encoder mode
0: Encoder mode disabled
1: Encoder mode enabled
Bit 23 COUNTMODE: counter mode enabled
The COUNTMODE bit selects which clock source is used by the LPTIM to clock the counter:
0: the counter is incremented following each internal clock pulse
1: the counter is incremented following each valid clock pulse on the LPTIM external Input1
Bit 22 PRELOAD: Registers update mode
The PRELOAD bit controls the LPTIMx_ARR and the LPTIMx_CMP registers update modality
0: Registers are updated after each APB bus write access
1: Registers are updated at the end of the current LPTIM period
Bit 21 WAVPOL: Waveform shape polarity
The WAVEPOL bit controls the output polarity
0: The LPTIM output reflects the compare results between LPTIMx_ARR and LPTIMx_CMP
registers
1: The LPTIM output reflects the inverse of the compare results between LPTIMx_ARR and
LPTIMx_CMP registers
Bit 20 WAVE: Waveform shape
The WAVE bit controls the output shape
0: Deactivate Set-once mode, PWM / One Pulse waveform (depending on OPMODE bit)
1: Activate the Set-once mode
Bit 19 TIMOUT: Timeout enable
The TIMOUT bit controls the Timeout feature
0: a trigger event arriving when the timer is already started will be ignored
1: A trigger event arriving when the timer is already started will reset and restart the counter
Bits18:17 TRIGEN: Trigger enable and polarity
The TRIGEN bits controls whether the LPTIM counter is started by an external trigger or not. If the
external trigger option is selected, three configurations are possible for the trigger active edge:
00: sw trigger (counting start is initiated by software)
01: rising edge is the active edge
10: falling edge is the active edge
11: both edges are active edges
Bit 16 Reserved, must be kept at reset value.
1038/1693
DocID024597 Rev 3
RM0351
Low-power timer (LPTIM)
Bits 15:13 TRIGSEL: Trigger selector
The TRIGSEL bits select the trigger source that will serve as a trigger event for the LPTIM among the
below 8 available sources:
000: ext_trig0
001: ext_trig1
010: ext_trig2
011: ext_trig3
100: ext_trig4
101: ext_trig5
110: ext_trig6
111: ext_trig7
Bit 12 Reserved, must be kept at reset value.
Bits 11:9 PRESC: Clock prescaler
The PRESC bits configure the prescaler division factor. It can be one among the following division
factors:
000: /1
001: /2
010: /4
011: /8
100: /16
101: /32
110: /64
111: /128
Bit 8 Reserved, must be kept at reset value.
Bits 7:6 TRGFLT: Configurable digital filter for trigger
The TRGFLT value sets the number of consecutive equal samples that should be detected when a
level change occurs on an internal trigger before it is considered as a valid level transition. An internal
clock source must be present to use this feature
00: any trigger active level change is considered as a valid trigger
01: trigger active level change must be stable for at least 2 clock periods before it is considered as
valid trigger.
10: trigger active level change must be stable for at least 4 clock periods before it is considered as
valid trigger.
11: trigger active level change must be stable for at least 8 clock periods before it is considered as
valid trigger.
Bit 5 Reserved, must be kept at reset value.
DocID024597 Rev 3
1039/1693
1045
Low-power timer (LPTIM)
RM0351
Bits 4:3 CKFLT: Configurable digital filter for external clock
The CKFLT value sets the number of consecutive equal samples that should be detected when a level
change occurs on an external clock signal before it is considered as a valid level transition. An internal
clock source must be present to use this feature
00: any external clock signal level change is considered as a valid transition
01: external clock signal level change must be stable for at least 2 clock periods before it is
considered as valid transition.
10: external clock signal level change must be stable for at least 4 clock periods before it is
considered as valid transition.
11: external clock signal level change must be stable for at least 8 clock periods before it is
considered as valid transition.
Bits 2:1 CKPOL: Clock Polarity
If LPTIM is clocked by an external clock source:
When the LPTIM is clocked by an external clock source, CKPOL bits is used to configure the active
edge or edges used by the counter:
00: the rising edge is the active edge used for counting
01: the falling edge is the active edge used for counting
10: both edges are active edges. When both external clock signal’s edges are considered active
ones, the LPTIM must also be clocked by an internal clock source with a frequency equal to at
least four time the external clock frequency.
11: not allowed
If the LPTIM is configured in Encoder mode (ENC bit is set):
00: the encoder sub-mode 1 is active
01: the encoder sub-mode 2 is active
10: the encoder sub-mode 3 is active
Refer to Section 30.4.12: Encoder mode for more details about Encoder mode sub-modes.
Bit 0 CKSEL: Clock selector
The CKSEL bit selects which clock source the LPTIM will use:
0: LPTIM is clocked by internal clock source (APB clock or any of the embedded oscillators)
1: LPTIM is clocked by an external clock source through the LPTIM external Input1
Caution:
The LPTIMx_CFGR register must only be modified when the LPTIM is disabled (ENABLE
bit is reset to ‘0’).
Table 166. LPTIM external trigger connection
1040/1693
TRIGSEL
External trigger
ext_trig0
GPIO
ext_trig1
RTC alarm A
ext_trig2
RTC alarm B
ext_trig3
RTC_TAMP1 input detection
ext_trig4
RTC_TAMP2 input detection
ext_trig5
RTC_TAMP3 input detection
ext_trig6
COMP1_OUT
ext_trig7
COMP2_OUT
DocID024597 Rev 3
RM0351
Low-power timer (LPTIM)
30.7.5
LPTIM control register (LPTIMx_CR)
Address offset: 0x10
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
CNT
STRT
SNG
STRT
ENA
BLE
rw
rw
rw
Bits 31:3 Reserved, must be kept at reset value.
Bit 2 CNTSTRT: Timer start in Continuous mode
This bit is set by software and cleared by hardware.
In case of software start (TRIGEN[1:0] = ‘00’), setting this bit starts the LPTIM in Continuous mode.
If the software start is disabled (TRIGEN[1:0] different than ‘00’), setting this bit starts the timer in
Continuous mode as soon as an external trigger is detected.
If this bit is set when a single pulse mode counting is ongoing, then the timer will not stop at the next
match between the LPTIMx_ARR and LPTIMx_CNT registers and the LPTIM counter keeps
counting in Continuous mode.
This bit can be set only when the LPTIM is enabled. It will be automatically reset by hardware.
Bit 1 SNGSTRT: LPTIM start in Single mode
This bit is set by software and cleared by hardware.
In case of software start (TRIGEN[1:0] = ‘00’), setting this bit starts the LPTIM in single pulse mode.
If the software start is disabled (TRIGEN[1:0] different than ‘00’), setting this bit starts the LPTIM in
single pulse mode as soon as an external trigger is detected.
If this bit is set when the LPTIM is in continuous counting mode, then the LPTIM will stop at the
following match between LPTIMx_ARR and LPTIMx_CNT registers.
This bit can only be set when the LPTIM is enabled. It will be automatically reset by hardware.
Bit 0 ENABLE: LPTIM enable
The ENABLE bit is set and cleared by software.
0:LPTIM is disabled
1:LPTIM is enabled
DocID024597 Rev 3
1041/1693
1045
Low-power timer (LPTIM)
30.7.6
RM0351
LPTIM compare register (LPTIMx_CMP)
Address offset: 0x14
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
CMP[15:0]
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 CMP: Compare value
CMP is the compare value used by the LPTIM.
The LPTIMx_CMP register’s content must only be modified when the LPTIM is enabled (ENABLE bit
is set to ‘1’).
30.7.7
LPTIM autoreload register (LPTIMx_ARR)
Address offset: 0x18
Reset value: 0x0000 0001
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
ARR[15:0]
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 ARR: Auto reload value
ARR is the autoreload value for the LPTIM.
This value must be strictly greater than the CMP[15:0] value.
The LPTIMx_ARR register’s content must only be modified when the LPTIM is enabled (ENABLE bit
is set to ‘1’).
1042/1693
DocID024597 Rev 3
RM0351
Low-power timer (LPTIM)
30.7.8
LPTIM counter register (LPTIMx_CNT)
Address offset: 0x1C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
CNT[15:0]
r
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 CNT: Counter value
When the LPTIM is running with an asynchronous clock, reading the LPTIMx_CNT register may
return unreliable values. So in this case it is necessary to perform two consecutive read accesses
and verify that the two returned values are identical.
It should be noted that for a reliable LPTIM_CNT register read access, two consecutive read
accesses must be performed and compared. A read access can be considered reliable when the
values of the two consecutive read accesses are equal.
30.7.9
LPTIM1 option register (LPTIM1_OR)
Address offset: 0x20
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
OR_1
OR_0
rw
rw
Bits 31:2 Reserved, must be kept at reset value.
Bit 1 OR_1: Option register bit 1
0: LPTIM1 input 2 is connected to I/O
1: LPTIM1 input 2 is connected to COMP2_OUT
Bit 0 OR_0: Option register bit 0
0: LPTIM1 input 1 is connected to I/O
1: LPTIM1 input 1 is connected to COMP1_OUT
30.7.10
LPTIM2 option register (LPTIM2_OR)
Address offset: 0x20
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DocID024597 Rev 3
1043/1693
1045
Low-power timer (LPTIM)
RM0351
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
OR_1
OR_0
rw
rw
Bits 31:2 Reserved, must be kept at reset value.
Bit 1 OR_1: Option register bit 1
0: LPTIM2 input 1 is connected to I/O
1: LPTIM2 input 1 is connected to COMP2_OUT
Bit 0 OR_0: Option register bit 0
0: LPTIM2 input 1 is connected to I/O
1: LPTIM2 input 1 is connected to COMP1_OUT
Note:
1044/1693
When both OR_1 and OR_0 are set, LPTIM2 input 1 is connected to (COMP1_OUT OR
COMP2_OUT).
DocID024597 Rev 3
0x0C
0x10
0x14
0x18
0x1C
0x20
LPTIMx_CFGR
Reset value
LPTIMx_CMP
LPTIMx_ARR
LPTIMx_CNT
DocID024597 Rev 3
0 0 0 0 0 0 0 0
Reset value
Reset value
0 0 0
0 0 0
CKSEL
CKPOL
CKFLT
Res.
TRGFLT
Res.
PRESC
Res.
TRIGSEL
Res.
TRIGEN
Res.
Res.
Res.
Res.
Res.
Res.
Res.
ENC
COUNTMODE
PRELOAD
WAVPOL
WAVE
TIMOUT
Register
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
LPTIMx_ISR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DOWN
UP
ARROK
CMPOK
EXTTRIG
ARRM
CMPM
Reset value
0 0 0 0 0 0 0
LPTIMx_ICR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DOWNCF
UPCF
ARROKCF
CMPOKCF
EXTTRIGCF
ARRMCF
CMPMCF
Reset value
0 0 0 0 0 0 0
LPTIMx_IER
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DOWNIE
UPIE
ARROKIE
CMPOKIE
EXTTRIGIE
ARRMIE
CMPMIE
0x08
LPTIMx_CR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
CNTSTRT
SNGSTRT
ENABLE
0x04
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0x00
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Offset
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
30.7.11
Reset value
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LPTIMx_OR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
OR_1
OR_0
RM0351
Low-power timer (LPTIM)
LPTIM register map
The following table summarizes the LPTIM registers.
Table 167. LPTIM register map and reset values
Reset value
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Reset value
0 0 0
CMP[15:0]
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ARR[15:0]
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
CNT[15:0]
Reset Value
0 0
Refer to Section 2.2.2 on page 67 for the register boundary addresses.
1045/1693
1045
Infrared interface (IRTIM)
31
RM0351
Infrared interface (IRTIM)
An infrared interface (IRTIM) for remote control is available on the device. It can be used
with an infrared LED to perform remote control functions.
It uses internal connections with TIM16 and TIM17 as shown in Figure 347.
To generate the infrared remote control signals, the IR interface must be enabled and TIM16
channel 1 (TIM16_OC1) and TIM17 channel 1 (TIM17_OC1) must be properly configured to
generate correct waveforms.
The infrared receiver can be implemented easily through a basic input capture mode.
Figure 347. IR internal hardware connections with TIM16 and TIM17
7,0B&+
,57,0
,5B287
7,0B&+
069
All standard IR pulse modulation modes can be obtained by programming the two timer
output compare channels.
TIM17 is used to generate the high frequency carrier signal, while TIM16 generates the
modulation envelope.
The infrared function is output on the IR_OUT pin. The activation of this function is done
through the GPIOx_AFRx register by enabling the related alternate function bit.
The high sink LED driver capability (only available on the PB9 pin) can be activated through
the I2C_PB9_FMP bit in the SYSCFG_CFGR1 register and used to sink the high current
needed to directly control an infrared LED.
1046/1693
DocID024597 Rev 3
RM0351
Independent watchdog (IWDG)
32
Independent watchdog (IWDG)
32.1
Introduction
The devices feature an embedded watchdog peripheral which offers a combination of high
safety level, timing accuracy and flexibility of use. The Independent watchdog peripheral
serves to detect and resolve malfunctions due to software failure, and to trigger system
reset when the counter reaches a given timeout value.
The independent watchdog (IWDG) is clocked by its own dedicated low-speed clock (LSI)
and thus stays active even if the main clock fails.
The IWDG is best suited to applications which require the watchdog to run as a totally
independent process outside the main application, but have lower timing accuracy
constraints. For further information on the window watchdog, refer to Section 33 on page
1056.
32.2
IWDG main features
•
Free-running downcounter
•
Clocked from an independent RC oscillator (can operate in Standby and Stop modes)
•
Conditional Reset
–
Reset (if watchdog activated) when the downcounter value becomes less than
0x000
–
Reset (if watchdog activated) if the downcounter is reloaded outside the window
32.3
IWDG functional description
32.3.1
IWDG block diagram
Figure 348 shows the functional blocks of the independent watchdog module.
Figure 348. Independent watchdog block diagram
9&25(
3UHVFDOHUUHJLVWHU
,:'*B35
6WDWXVUHJLVWHU
,:'*B65
5HORDGUHJLVWHU
,:'*B5/5
.H\UHJLVWHU
,:'*B.5
ELWUHORDGYDOXH
/6,
ELW
N+] SUHVFDOHU
ELWGRZQFRXQWHU
,:'*UHVHW
9''YROWDJHGRPDLQ
069
Note:
The watchdog function is implemented in the VCORE voltage domain that is still functional in
Stop and Standby modes.
DocID024597 Rev 3
1047/1693
1055
Independent watchdog (IWDG)
RM0351
When the independent watchdog is started by writing the value 0x0000 CCCC in the Key
register (IWDG_KR), the counter starts counting down from the reset value of 0xFFF. When
it reaches the end of count value (0x000) a reset signal is generated (IWDG reset).
Whenever the key value 0x0000 AAAA is written in the IWDG_KR register, the IWDG_RLR
value is reloaded in the counter and the watchdog reset is prevented.
32.3.2
Window option
The IWDG can also work as a window watchdog by setting the appropriate window in the
IWDG_WINR register.
If the reload operation is performed while the counter is greater than the value stored in the
window register (IWDG_WINR), then a reset is provided.
The default value of the IWDG_WINR is 0x0000 0FFF, so if it is not updated, the window
option is disabled.
As soon as the window value is changed, a reload operation is performed in order to reset
the downcounter to the IWDG_RLR value and ease the cycle number calculation to
generate the next reload.
Configuring the IWDG when the window option is enabled
Note:
1.
Enable the IWDG by writing 0x0000 CCCC in the IWDG_KR register.
2.
Enable register access by writing 0x0000 5555 in the IWDG_KR register.
3.
Write the IWDG prescaler by programming IWDG_PR from 0 to 7.
4.
Write the reload register (IWDG_RLR).
5.
Wait for the registers to be updated (IWDG_SR = 0x0000 0000).
6.
Write to the window register IWDG_WINR. This automatically refreshes the counter
value IWDG_RLR.
Writing the window value allows to refresh the Counter value by the RLR when IWDG_SR is
set to 0x0000 0000.
Configuring the IWDG when the window option is disabled
When the window option it is not used, the IWDG can be configured as follows:
32.3.3
1.
Enable the IWDG by writing 0x0000 CCCC in the IWDG_KR register.
2.
Enable register access by writing 0x0000 5555 in the IWDG_KR register.
3.
Write the IWDG prescaler by programming IWDG_PR from 0 to 7.
4.
Write the reload register (IWDG_RLR).
5.
Wait for the registers to be updated (IWDG_SR = 0x0000 0000).
6.
Refresh the counter value with IWDG_RLR (IWDG_KR = 0x0000 AAAA)
Hardware watchdog
If the “Hardware watchdog” feature is enabled through the device option bits, the watchdog
is automatically enabled at power-on, and generates a reset unless the Key register is
written by the software before the counter reaches end of count or if the downcounter is
reloaded inside the window.
1048/1693
DocID024597 Rev 3
RM0351
32.3.4
Independent watchdog (IWDG)
Low-power freeze
Depending on the IWDG_STOP and IWDG_STBY options configuration, the IWDG can
continue counting or not during the Stop mode and the Standby mode respectively. If the
IWDG is kept running during Stop or Standby modes, it can wake up the device from this
mode. Refer to Section : User and read protection option bytes for more details.
32.3.5
Behavior in Stop and Standby modes
Once running, the IWDG cannot be stopped.
32.3.6
Register access protection
Write access to the IWDG_PR, IWDG_RLR and IWDG_WINR registers is protected. To
modify them, you must first write the code 0x0000 5555 in the IWDG_KR register. A write
access to this register with a different value will break the sequence and register access will
be protected again. This implies that it is the case of the reload operation
(writing 0x0000 AAAA).
A status register is available to indicate that an update of the prescaler or the down-counter
reload value or the window value is on going.
32.3.7
Debug mode
When the microcontroller enters debug mode (core halted), the IWDG counter either
continues to work normally or stops, depending on DBG_IWDG_STOP configuration bit in
DBG module.
DocID024597 Rev 3
1049/1693
1055
Independent watchdog (IWDG)
32.4
RM0351
IWDG registers
Refer to Section 1.1 on page 61 for a list of abbreviations used in register descriptions.
The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).
32.4.1
Key register (IWDG_KR)
Address offset: 0x00
Reset value: 0x0000 0000 (reset by Standby mode)
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
w
w
w
w
w
w
w
KEY[15:0]
w
w
w
w
w
w
w
w
w
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 KEY[15:0]: Key value (write only, read 0x0000)
These bits must be written by software at regular intervals with the key value 0xAAAA,
otherwise the watchdog generates a reset when the counter reaches 0.
Writing the key value 0x5555 to enable access to the IWDG_PR, IWDG_RLR and
IWDG_WINR registers (see Section 32.3.6: Register access protection)
Writing the key value CCCCh starts the watchdog (except if the hardware watchdog option is
selected)
1050/1693
DocID024597 Rev 3
RM0351
Independent watchdog (IWDG)
32.4.2
Prescaler register (IWDG_PR)
Address offset: 0x04
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
2
1
0
15
14
13
12
11
10
9
8
7
6
5
4
3
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PR[2:0]
rw
rw
rw
Bits 31:3 Reserved, must be kept at reset value.
Bits 2:0 PR[2:0]: Prescaler divider
These bits are write access protected see Section 32.3.6: Register access protection. They are
written by software to select the prescaler divider feeding the counter clock. PVU bit of
IWDG_SR must be reset in order to be able to change the prescaler divider.
000: divider /4
001: divider /8
010: divider /16
011: divider /32
100: divider /64
101: divider /128
110: divider /256
111: divider /256
Note: Reading this register returns the prescaler value from the VDD voltage domain. This
value may not be up to date/valid if a write operation to this register is ongoing. For this
reason the value read from this register is valid only when the PVU bit in the IWDG_SR
register is reset.
DocID024597 Rev 3
1051/1693
1055
Independent watchdog (IWDG)
32.4.3
RM0351
Reload register (IWDG_RLR)
Address offset: 0x08
Reset value: 0x0000 0FFF (reset by Standby mode)
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
15
14
13
12
Res.
Res.
Res.
Res.
RL[11:0]
rw
rw
rw
rw
rw
rw
rw
Bits 31:12 Reserved, must be kept at reset value.
Bits11:0 RL[11:0]: Watchdog counter reload value
These bits are write access protected see Section 32.3.6. They are written by software to
define the value to be loaded in the watchdog counter each time the value 0xAAAA is written in
the IWDG_KR register. The watchdog counter counts down from this value. The timeout period
is a function of this value and the clock prescaler. Refer to the datasheet for the timeout
information.
The RVU bit in the IWDG_SR register must be reset in order to be able to change the reload
value.
Note: Reading this register returns the reload value from the VDD voltage domain. This value
may not be up to date/valid if a write operation to this register is ongoing on this
register. For this reason the value read from this register is valid only when the RVU bit
in the IWDG_SR register is reset.
1052/1693
DocID024597 Rev 3
RM0351
Independent watchdog (IWDG)
32.4.4
Status register (IWDG_SR)
Address offset: 0x0C
Reset value: 0x0000 0000 (not reset by Standby mode)
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
WVU
RVU
PVU
r
r
r
Bits 31:3 Reserved, must be kept at reset value.
Bit 2 WVU: Watchdog counter window value update
This bit is set by hardware to indicate that an update of the window value is ongoing. It is reset
by hardware when the reload value update operation is completed in the VDD voltage domain
(takes up to 5 RC 40 kHz cycles).
Window value can be updated only when WVU bit is reset.
This bit is generated only if generic “window” = 1
Bit 1 RVU: Watchdog counter reload value update
This bit is set by hardware to indicate that an update of the reload value is ongoing. It is reset
by hardware when the reload value update operation is completed in the VDD voltage domain
(takes up to 5 RC 40 kHz cycles).
Reload value can be updated only when RVU bit is reset.
Bit 0 PVU: Watchdog prescaler value update
This bit is set by hardware to indicate that an update of the prescaler value is ongoing. It is
reset by hardware when the prescaler update operation is completed in the VDD voltage
domain (takes up to 5 RC 40 kHz cycles).
Prescaler value can be updated only when PVU bit is reset.
Note:
If several reload, prescaler, or window values are used by the application, it is mandatory to
wait until RVU bit is reset before changing the reload value, to wait until PVU bit is reset
before changing the prescaler value, and to wait until WVU bit is reset before changing the
window value. However, after updating the prescaler and/or the reload/window value it is not
necessary to wait until RVU or PVU or WVU is reset before continuing code execution
except in case of low-power mode entry.
DocID024597 Rev 3
1053/1693
1055
Independent watchdog (IWDG)
32.4.5
RM0351
Window register (IWDG_WINR)
Address offset: 0x10
Reset value: 0x0000 0FFF (reset by Standby mode)
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
15
14
13
12
Res.
Res.
Res.
Res.
WIN[11:0]
rw
rw
rw
rw
rw
rw
rw
Bits 31:12 Reserved, must be kept at reset value.
Bits11:0 WIN[11:0]: Watchdog counter window value
These bits are write access protected see Section 32.3.6. These bits contain the high limit of
the window value to be compared to the downcounter.
To prevent a reset, the downcounter must be reloaded when its value is lower than the
window register value and greater than 0x0
The WVU bit in the IWDG_SR register must be reset in order to be able to change the reload
value.
Note: Reading this register returns the reload value from the VDD voltage domain. This value
may not be valid if a write operation to this register is ongoing. For this reason the value
read from this register is valid only when the WVU bit in the IWDG_SR register is reset.
1054/1693
DocID024597 Rev 3
0x0C
0x10
Reset value
DocID024597 Rev 3
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
Reset value
1
1
1
1
1
WIN[11:0]
1
1
1
1
PVU
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
RVU
1
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
WVU
1
Res.
1
Res.
1
Res.
1
Res.
Res.
Res.
1
Res.
Res.
Res.
1
Res.
Res.
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
Res.
Res.
Reset value
Res.
IWDG_WINR
Res.
IWDG_SR
Res.
IWDG_RLR
Res.
0x08
Res.
0x04
IWDG_PR
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
IWDG_KR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Register
Res.
0x00
Res.
Offset
Res.
32.4.6
Res.
RM0351
Independent watchdog (IWDG)
IWDG register map
The following table gives the IWDG register map and reset values.
Table 168. IWDG register map and reset values
KEY[15:0]
0
PR[2:0]
0
0
0
0
0
RL[11:0]
0
0
0
1
1
1
Refer to Section 2.2.2: Memory map and register boundary addresses for the register
boundary addresses.
1055/1693
1055
System window watchdog (WWDG)
RM0351
33
System window watchdog (WWDG)
33.1
Introduction
The system window watchdog (WWDG) is used to detect the occurrence of a software fault,
usually generated by external interference or by unforeseen logical conditions, which
causes the application program to abandon its normal sequence. The watchdog circuit
generates an MCU reset on expiry of a programmed time period, unless the program
refreshes the contents of the downcounter before the T6 bit becomes cleared. An MCU
reset is also generated if the 7-bit downcounter value (in the control register) is refreshed
before the downcounter has reached the window register value. This implies that the
counter must be refreshed in a limited window.
The WWDG clock is prescaled from the APB clock and has a configurable time-window that
can be programmed to detect abnormally late or early application behavior.
The WWDG is best suited for applications which require the watchdog to react within an
accurate timing window.
33.2
WWDG main features
•
Programmable free-running downcounter
•
Conditional reset
•
33.3
–
Reset (if watchdog activated) when the downcounter value becomes less than
0x40
–
Reset (if watchdog activated) if the downcounter is reloaded outside the window
(see Figure 350)
Early wakeup interrupt (EWI): triggered (if enabled and the watchdog activated) when
the downcounter is equal to 0x40.
WWDG functional description
If the watchdog is activated (the WDGA bit is set in the WWDG_CR register) and when the
7-bit downcounter (T[6:0] bits) rolls over from 0x40 to 0x3F (T6 becomes cleared), it initiates
a reset. If the software reloads the counter while the counter is greater than the value stored
in the window register, then a reset is generated.
1056/1693
DocID024597 Rev 3
RM0351
System window watchdog (WWDG)
Figure 349. Watchdog block diagram
5(6(7
:DWFKGRJFRQILJXUDWLRQUHJLVWHU ::'*B&)5
FRPSDUDWRU
ZKHQ
7!:
: : : : : : :
:ULWH::'*B&5
:DWFKGRJFRQWUROUHJLVWHU ::'*B&5
:'*$
3&/.
IURP5&&FORFNFRQWUROOHU
7
7
7 7 7 7 7
ELWGRZQFRXQWHU &17
:'*SUHVFDOHU
:'*7%
06Y9
The application program must write in the WWDG_CR register at regular intervals during
normal operation to prevent an MCU reset. This operation must occur only when the counter
value is lower than the window register value. The value to be stored in the WWDG_CR
register must be between 0xFF and 0xC0.
33.3.1
Enabling the watchdog
The watchdog is always disabled after a reset. It is enabled by setting the WDGA bit in the
WWDG_CR register, then it cannot be disabled again except by a reset.
33.3.2
Controlling the downcounter
This downcounter is free-running, counting down even if the watchdog is disabled. When
the watchdog is enabled, the T6 bit must be set to prevent generating an immediate reset.
The T[5:0] bits contain the number of increments which represents the time delay before the
watchdog produces a reset. The timing varies between a minimum and a maximum value
due to the unknown status of the prescaler when writing to the WWDG_CR register (see
Figure 350). The Configuration register (WWDG_CFR) contains the high limit of the window:
To prevent a reset, the downcounter must be reloaded when its value is lower than the
window register value and greater than 0x3F. Figure 350 describes the window watchdog
process.
Note:
The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is
cleared).
33.3.3
Advanced watchdog interrupt feature
The Early Wakeup Interrupt (EWI) can be used if specific safety operations or data logging
must be performed before the actual reset is generated. The EWI interrupt is enabled by
setting the EWI bit in the WWDG_CFR register. When the downcounter reaches the value
0x40, an EWI interrupt is generated and the corresponding interrupt service routine (ISR)
can be used to trigger specific actions (such as communications or data logging), before
resetting the device.
DocID024597 Rev 3
1057/1693
1062
System window watchdog (WWDG)
RM0351
In some applications, the EWI interrupt can be used to manage a software system check
and/or system recovery/graceful degradation, without generating a WWDG reset. In this
case, the corresponding interrupt service routine (ISR) should reload the WWDG counter to
avoid the WWDG reset, then trigger the required actions.
The EWI interrupt is cleared by writing '0' to the EWIF bit in the WWDG_SR register.
Note:
When the EWI interrupt cannot be served, e.g. due to a system lock in a higher priority task,
the WWDG reset will eventually be generated.
33.3.4
How to program the watchdog timeout
You can use the formula in Figure 350 to calculate the WWDG timeout.
Warning:
When writing to the WWDG_CR register, always write 1 in the
T6 bit to avoid generating an immediate reset.
Figure 350. Window watchdog timing diagram
4;= #.4 DOWNCOUNTER
7;=
X&
2EFRESH NOT ALLOWED 2EFRESH ALLOWED
4IME
4 BIT
2%3%4
AIC
The formula to calculate the timeout value is given by:
WDGTB[1:0]
× ( T [ 5:0 ] + 1 )
t WWDG = t PCLK × 4096 × 2
( ms )
where:
tWWDG: WWDG timeout
tPCLK: APB clock period measured in ms
4096: value corresponding to internal divider
As an example, lets assume APB frequency is equal to 48 MHz, WDGTB[1:0] is set to 3 and
T[5:0] is set to 63:
1058/1693
DocID024597 Rev 3
RM0351
System window watchdog (WWDG)
t
WWDG
3
= 1 ⁄ 48000 × 4096 × 2 × ( 63 + 1 ) = 43.69 ms
Refer to the datasheet for the minimum and maximum values of the tWWDG.
33.3.5
Debug mode
When the microcontroller enters debug mode (Cortex®-M4 core halted), the WWDG counter
either continues to work normally or stops, depending on DBG_WWDG_STOP
configuration bit in DBG module. For more details, refer to Section 44.16.2: Debug support
for timers, RTC, watchdog, bxCAN and I2C.
DocID024597 Rev 3
1059/1693
1062
System window watchdog (WWDG)
33.4
RM0351
WWDG registers
Refer to Section 1.1 on page 61 for a list of abbreviations used in register descriptions.
The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).
33.4.1
Control register (WWDG_CR)
Address offset: 0x00
Reset value: 0x0000 007F
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
WDGA
T[6:0]
rs
rw
Bits 31:8 Reserved, must be kept at reset value.
Bit 7 WDGA: Activation bit
This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the
watchdog can generate a reset.
0: Watchdog disabled
1: Watchdog enabled
Bits 6:0 T[6:0]: 7-bit counter (MSB to LSB)
These bits contain the value of the watchdog counter. It is decremented every (4096 x
2WDGTB[1:0]) PCLK cycles. A reset is produced when it rolls over from 0x40 to 0x3F (T6
becomes cleared).
1060/1693
DocID024597 Rev 3
RM0351
System window watchdog (WWDG)
33.4.2
Configuration register (WWDG_CFR)
Address offset: 0x04
Reset value: 0x0000 007F
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
8
7
6
5
4
3
2
1
0
rw
rw
rw
15
14
13
12
11
10
9
Res.
Res.
Res.
Res.
Res.
Res.
EWI
rs
WDGTB[1:0]
rw
rw
W[6:0]
rw
rw
rw
rw
Bits 31:10 Reserved, must be kept at reset value.
Bit 9 EWI: Early wakeup interrupt
When set, an interrupt occurs whenever the counter reaches the value 0x40. This interrupt is
only cleared by hardware after a reset.
Bits 8:7 WDGTB[1:0]: Timer base
The time base of the prescaler can be modified as follows:
00: CK Counter Clock (PCLK div 4096) div 1
01: CK Counter Clock (PCLK div 4096) div 2
10: CK Counter Clock (PCLK div 4096) div 4
11: CK Counter Clock (PCLK div 4096) div 8
Bits 6:0 W[6:0]: 7-bit window value
These bits contain the window value to be compared to the downcounter.
33.4.3
Status register (WWDG_SR)
Address offset: 0x08
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
EWIF
rc_w0
Bits 31:1 Reserved, must be kept at reset value.
Bit 0 EWIF: Early wakeup interrupt flag
This bit is set by hardware when the counter has reached the value 0x40. It must be cleared by
software by writing ‘0’. A write of ‘1’ has no effect. This bit is also set if the interrupt is not
enabled.
DocID024597 Rev 3
1061/1693
1062
System window watchdog (WWDG)
33.4.4
RM0351
WWDG register map
The following table gives the WWDG register map and reset values.
0
1
1
1
1
1
Res.
Res.
Res.
Res.
1
1
W[6:0]
Reset value
0
Refer to Section 2.2.2: Memory map and register boundary addresses for the register
boundary addresses.
1062/1693
1
Res.
0
1
EWIF
Res.
0
Res.
1
WDGTB0
1
Res.
1
WDGTB1
1
Res.
1
EWI
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
WWDG_SR
Res.
0x08
Res.
Reset value
T[6:0]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
WWDG_CFR
Res.
0x04
0
Res.
Reset value
WDGA
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
WWDG_CR
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0x00
Register
Res.
Offset
Res.
Table 169. WWDG register map and reset values
DocID024597 Rev 3
RM0351
Real-time clock (RTC)
34
Real-time clock (RTC)
34.1
Introduction
The RTC provides an automatic wakeup to manage all low-power modes.
The real-time clock (RTC) is an independent BCD timer/counter. The RTC provides a timeof-day clock/calendar with programmable alarm interrupts.
The RTC includes also a periodic programmable wakeup flag with interrupt capability.
Two 32-bit registers contain the seconds, minutes, hours (12- or 24-hour format), day (day
of week), date (day of month), month, and year, expressed in binary coded decimal format
(BCD). The sub-seconds value is also available in binary format.
Compensations for 28-, 29- (leap year), 30-, and 31-day months are performed
automatically. Daylight saving time compensation can also be performed.
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.
A digital calibration feature is available to compensate for any deviation in crystal oscillator
accuracy.
After Backup domain reset, all RTC registers are protected against possible parasitic write
accesses.
As long as the supply voltage remains in the operating range, the RTC never stops,
regardless of the device status (Run mode, low-power mode or under reset).
DocID024597 Rev 3
1063/1693
1106
Real-time clock (RTC)
34.2
RM0351
RTC main features
The RTC unit main features are the following (see Figure 351: RTC block diagram):
•
Calendar with subseconds, seconds, minutes, hours (12 or 24 format), day (day of
week), date (day of month), month, and year.
•
Daylight saving compensation programmable by software.
•
Programmable alarm with interrupt function. The alarm can be triggered by any
combination of the calendar fields.
•
Automatic wakeup unit generating a periodic flag that triggers an automatic wakeup
interrupt.
•
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
•
Accurate synchronization with an external clock using the subsecond shift feature.
•
Digital calibration circuit (periodic counter correction): 0.95 ppm accuracy, obtained in a
calibration window of several seconds
•
Time-stamp function for event saving
•
Tamper detection event with configurable filter and internal pull-up
•
Maskable interrupts/events:
•
1064/1693
–
Alarm A
–
Alarm B
–
Wakeup interrupt
–
Time-stamp
–
Tamper detection
32 backup registers.
DocID024597 Rev 3
RM0351
Real-time clock (RTC)
34.3
RTC functional description
34.3.1
RTC block diagram
Figure 351. RTC block diagram
Z dͺ dDWϯ
Ă ĐŬƵƉƌĞŐŝƐƚĞƌƐ
ĂŶĚZ dƚĂŵƉĞƌ
ĐŽŶƚƌŽůƌĞŐŝƐƚĞƌƐ
Z dͺ dDWϮ
Z dͺ dDWϭ
dDWdž&
Z dͺd^
dŝŵĞƐƚĂŵƉ
ƌĞŐŝƐƚĞƌƐ
Z dͺZ&/E
d^&
>^;ϯϮ͘ϳϲϴ,njͿ
,^ͬϯϮ
Z d><
>^/
Z dͺ>Z
^ŵŽŽƚŚ
ĐĂůŝď ƌĂƚŝŽŶ
Z dͺWZZ
ƐLJŶĐŚƌŽŶŽƵƐ
ϳͲďŝƚƉƌĞƐĐĂůĞƌ
;ĚĞ ĨĂƵůƚсϭϮϴͿ
ĐŬͺĂƉƌĞ
;ĚĞ ĨĂƵůƚϮϱϲ,njͿ
Z dͺWZZ
^LJŶĐŚƌŽŶŽƵƐ
ϭϱͲďŝƚƉƌĞƐĐĂůĞƌ
;ĚĞ ĨĂƵůƚсϮϱϲͿ
ĐŬͺƐƉƌĞ
;ĚĞ ĨĂƵůƚϭ,njͿ
ĂůĞŶĚĂƌ
^ŚĂĚŽǁƌĞŐŝƐƚĞƌƐ
ZdͺdZ͕
ZdͺZ
^ŚĂĚŽǁƌĞŐŝƐƚĞƌ
Zdͺ^^Z
th<^>ϭ͗Ϭ
WƌĞƐĐĂůĞƌ
ϭ͕Ϯ͕ϰ͕ϴ͕ϭϲ
ϭ,nj
ϱϭϮ,nj
Z dͺ>/
Z dͺ>ZD
KƵƚƉƵƚ
ĐŽŶƚƌŽů
Z dͺKhd
ZdͺthdZ
thd&
ϭϲͲďŝƚǁĂŬĞƵƉ
ĂƵƚŽƌĞůŽĂĚƚŝŵĞƌ
K^>ϭ͗Ϭ
ůĂ ƌŵ
Z dͺ>ZDZ
Z dͺ>ZD^^Z
>Z&
с
ůĂ ƌŵ
Z dͺ>ZDZ
Z dͺ>ZD^^Z
с
>Z&
D^ϯϬϮϭϲsϰ
DocID024597 Rev 3
1065/1693
1106
Real-time clock (RTC)
RM0351
The RTC includes:
•
Two alarms
•
Three tamper events
•
32 x 32-bit backup registers
–
•
•
34.3.2
The backup registers (RTC_BKPxR) are implemented in the RTC domain that
remains powered-on by VBAT when the VDD power is switched off.
Alternate function outputs: RTC_OUT which selects one of the following two outputs:
–
RTC_CALIB: 512 Hz or 1Hz clock output (with an LSE frequency of 32.768 kHz).
This output is enabled by setting the COE bit in the RTC_CR register.
–
RTC_ALARM: This output is enabled by configuring the OSEL[1:0] bits in the
RTC_CR register which select the Alarm A, Alarm B or Wakeup outputs.
Alternate function inputs:
–
RTC_TS: timestamp event
–
RTC_TAMP1: tamper1 event detection
–
RTC_TAMP2: tamper2 event detection
–
RTC_TAMP3: tamper3 event detection
–
RTC_REFIN: 50 or 60 Hz reference clock input
GPIOs controlled by the RTC
RTC_OUT, RTC_TS and RTC_TAMP1 are mapped on the same pin (PC13). PC13 pin
configuration is controlled by the RTC, whatever the PC13 GPIO configuration. The RTC
functions mapped on PC13 are available in all low-power modes and in VBAT mode.
The output mechanism follows the priority order shown in Table 170.
Table 170. RTC pin PC13 configuration(1)
OSEL[1:0]
bits
PC13 Pin
configuration (RTC_ALARM
and function
output
enable)
COE bit
(RTC_CALIB
output
enable)
RTC_OUT
_RMP
bit
01 or 10 or 11
Don’t care
RTC_ALARM
output PP
01 or 10 or 11
Don’t care
RTC_CALIB
output PP
00
1
0
00
0
Don’t care
00
1
01 or 10 or 11
0
00
0
00
1
01 or 10 or 11
0
RTC_TAMP1
input floating
RTC_TS and
RTC_TAMP1
input floating
1066/1693
TAMP1E bit
(RTC_TAMP1
input
enable)
(RTC_TS
input
enable)
0
Don’t care
Don’t care
1
Don’t care
Don’t care
Don’t care
Don’t care
Don’t care
Don’t care
1
0
Don’t care
1
1
0
RTC_ALARM
output OD
TSE bit
RTC_ALARM
_TYPE
bit
1
0
1
1
Don’t care
1
DocID024597 Rev 3
RM0351
Real-time clock (RTC)
Table 170. RTC pin PC13 configuration(1) (continued)
OSEL[1:0]
bits
PC13 Pin
configuration (RTC_ALARM
and function
output
enable)
RTC_TS input
floating
Wakeup pin or
Standard
GPIO
COE bit
(RTC_CALIB
output
enable)
RTC_OUT
00
0
Don’t care
00
1
01 or 10 or 11
0
00
0
00
1
01 or 10 or 11
0
_RMP
bit
TSE bit
RTC_ALARM
_TYPE
bit
TAMP1E bit
(RTC_TAMP1
input
enable)
(RTC_TS
input
enable)
Don’t care
0
1
Don’t care
0
0
1
Don’t care
1
1. OD: open drain; PP: push-pull.
In addition, it is possible to remap RTC_OUT on PB2 pin thanks to RTC_OUT_RMP bit. In
this case it is mandatory to configure PB2 GPIO registers as alternate function with the
correct type. The remap functions are shown in Table 171.
Table 171. RTC_OUT mapping
OSEL[1:0] bits
34.3.3
(RTC_ALARM
output enable)
COE bit
(RTC_CALIB
output enable)
00
0
00
1
01 or 10 or 11
RTC_OUT_RMP
bit
RTC_OUT on
PC13
RTC_OUT on
PB2
-
-
RTC_CALIB
-
Don’t care
RTC_ALARM
-
00
0
-
-
00
1
-
RTC_CALIB
01 or 10 or 11
0
-
RTC_ALARM
01 or 10 or 11
1
RTC_ALARM
RTC_CALIB
0
1
Clock and prescalers
The RTC clock source (RTCCLK) is selected through the clock controller among the LSE
clock, the LSI oscillator clock, and the HSE clock. For more information on the RTC clock
source configuration, refer to Section 6: Reset and clock control (RCC).
A programmable prescaler stage generates a 1 Hz clock which is used to update the
calendar. To minimize power consumption, the prescaler is split into 2 programmable
prescalers (see Figure 351: RTC block diagram):
•
A 7-bit asynchronous prescaler configured through the PREDIV_A bits of the
RTC_PRER register.
•
A 15-bit synchronous prescaler configured through the PREDIV_S bits of the
RTC_PRER register.
DocID024597 Rev 3
1067/1693
1106
Real-time clock (RTC)
Note:
RM0351
When both prescalers are used, it is recommended to configure the asynchronous prescaler
to a high value to minimize consumption.
The asynchronous prescaler division factor is set to 128, and the synchronous division
factor to 256, to obtain an internal clock frequency of 1 Hz (ck_spre) with an LSE frequency
of 32.768 kHz.
The minimum division factor is 1 and the maximum division factor is 222.
This corresponds to a maximum input frequency of around 4 MHz.
fck_apre is given by the following formula:
f RTCCLK
f CK_APRE = --------------------------------------PREDIV_A + 1
The ck_apre clock is used to clock the binary RTC_SSR subseconds downcounter. When it
reaches 0, RTC_SSR is reloaded with the content of PREDIV_S.
fck_spre is given by the following formula:
f RTCCLK
f CK_SPRE = ----------------------------------------------------------------------------------------------( PREDIV_S + 1 ) × ( PREDIV_A + 1 )
The ck_spre clock can be used either to update the calendar or as timebase for the 16-bit
wakeup auto-reload timer. To obtain short timeout periods, the 16-bit wakeup auto-reload
timer can also run with the RTCCLK divided by the programmable 4-bit asynchronous
prescaler (see Section 34.3.6: Periodic auto-wakeup for details).
34.3.4
Real-time clock and calendar
The RTC calendar time and date registers are accessed through shadow registers which
are synchronized with PCLK (APB clock). They can also be accessed directly in order to
avoid waiting for the synchronization duration.
•
RTC_SSR for the subseconds
•
RTC_TR for the time
•
RTC_DR for the date
Every two RTCCLK periods, the current calendar value is copied into the shadow registers,
and the RSF bit of RTC_ISR register is set (see Section 34.6.4: RTC initialization and status
register (RTC_ISR)). The copy is not performed in Stop and Standby mode. When exiting
these modes, the shadow registers are updated after up to 2 RTCCLK periods.
When the application reads the calendar registers, it accesses the content of the shadow
registers. It is possible to make a direct access to the calendar registers by setting the
BYPSHAD control bit in the RTC_CR register. By default, this bit is cleared, and the user
accesses the shadow registers.
When reading the RTC_SSR, RTC_TR or RTC_DR registers in BYPSHAD=0 mode, the
frequency of the APB clock (fAPB) must be at least 7 times the frequency of the RTC clock
(fRTCCLK).
The shadow registers are reset by system reset.
1068/1693
DocID024597 Rev 3
RM0351
34.3.5
Real-time clock (RTC)
Programmable alarms
The RTC unit provides programmable alarm: Alarm A and Alarm B. The description below is
given for Alarm A, but can be translated in the same way for Alarm B.
The programmable alarm function is enabled through the ALRAE bit in the RTC_CR
register. The ALRAF is set to 1 if the calendar subseconds, seconds, minutes, hours, date
or day match the values programmed in the alarm registers RTC_ALRMASSR and
RTC_ALRMAR. Each calendar field can be independently selected through the MSKx bits
of the RTC_ALRMAR register, and through the MASKSSx bits of the RTC_ALRMASSR
register. The alarm interrupt is enabled through the ALRAIE bit in the RTC_CR register.
Caution:
If the seconds field is selected (MSK1 bit reset in RTC_ALRMAR), the synchronous
prescaler division factor set in the RTC_PRER register must be at least 3 to ensure correct
behavior.
Alarm A and Alarm B (if enabled by bits OSEL[1:0] in RTC_CR register) can be routed to the
RTC_ALARM output. RTC_ALARM output polarity can be configured through bit POL the
RTC_CR register.
34.3.6
Periodic auto-wakeup
The periodic wakeup flag is generated by a 16-bit programmable auto-reload down-counter.
The wakeup timer range can be extended to 17 bits.
The wakeup function is enabled through the WUTE bit in the RTC_CR register.
The wakeup timer clock input can be:
•
RTC clock (RTCCLK) divided by 2, 4, 8, or 16.
When RTCCLK is LSE(32.768kHz), this allows to configure the wakeup interrupt period
from 122 µs to 32 s, with a resolution down to 61 µs.
•
ck_spre (usually 1 Hz internal clock)
When ck_spre frequency is 1Hz, this allows to achieve a wakeup time from 1 s to
around 36 hours with one-second resolution. This large programmable time range is
divided in 2 parts:
–
from 1s to 18 hours when WUCKSEL [2:1] = 10
–
and from around 18h to 36h when WUCKSEL[2:1] = 11. In this last case 216 is
added to the 16-bit counter current value.When the initialization sequence is
complete (see Programming the wakeup timer on page 1071), the timer starts
counting down.When the wakeup function is enabled, the down-counting remains
active in low-power modes. In addition, when it reaches 0, the WUTF flag is set in
the RTC_ISR register, and the wakeup counter is automatically reloaded with its
reload value (RTC_WUTR register value).
The WUTF flag must then be cleared by software.
When the periodic wakeup interrupt is enabled by setting the WUTIE bit in the RTC_CR2
register, it can exit the device from low-power modes.
The periodic wakeup flag can be routed to the RTC_ALARM output provided it has been
enabled through bits OSEL[1:0] of RTC_CR register. RTC_ALARM output polarity can be
configured through the POL bit in the RTC_CR register.
System reset, as well as low-power modes (Sleep, Stop and Standby) have no influence on
the wakeup timer.
DocID024597 Rev 3
1069/1693
1106
Real-time clock (RTC)
34.3.7
RM0351
RTC initialization and configuration
RTC register access
The RTC registers are 32-bit registers. The APB interface introduces 2 wait-states in RTC
register accesses except on read accesses to calendar shadow registers when
BYPSHAD=0.
RTC register write protection
After system reset, the RTC registers are protected against parasitic write access by
clearing the DBP bit in the PWR_CR1 register (refer to the power control section). DBP bit
must be set in order to enable RTC registers write access.
After Backup domain reset, all the RTC registers are write-protected. Writing to the RTC
registers is enabled by writing a key into the Write Protection register, RTC_WPR.
The following steps are required to unlock the write protection on all the RTC registers
except for RTC_TAMPCR, RTC_BKPxR, RTC_OR and RTC_ISR[13:8].
1.
Write ‘0xCA’ into the RTC_WPR register.
2.
Write ‘0x53’ into the RTC_WPR register.
Writing a wrong key reactivates the write protection.
The protection mechanism is not affected by system reset.
Calendar initialization and configuration
To program the initial time and date calendar values, including the time format and the
prescaler configuration, the following sequence is required:
1.
Set INIT bit to 1 in the RTC_ISR register to enter initialization mode. In this mode, the
calendar counter is stopped and its value can be updated.
2.
Poll INITF bit of in the RTC_ISR register. The initialization phase mode is entered when
INITF is set to 1. It takes around 2 RTCCLK clock cycles (due to clock synchronization).
3.
To generate a 1 Hz clock for the calendar counter, program both the prescaler factors in
RTC_PRER register.
4.
Load the initial time and date values in the shadow registers (RTC_TR and RTC_DR),
and configure the time format (12 or 24 hours) through the FMT bit in the RTC_CR
register.
5.
Exit the initialization mode by clearing the INIT bit. The actual calendar counter value is
then automatically loaded and the counting restarts after 4 RTCCLK clock cycles.
When the initialization sequence is complete, the calendar starts counting.
Note:
After a system reset, the application can read the INITS flag in the RTC_ISR register to
check if the calendar has been initialized or not. If this flag equals 0, the calendar has not
been initialized since the year field is set at its Backup domain reset default value (0x00).
To read the calendar after initialization, the software must first check that the RSF flag is set
in the RTC_ISR register.
1070/1693
DocID024597 Rev 3
RM0351
Real-time clock (RTC)
Daylight saving time
The daylight saving time management is performed through bits SUB1H, ADD1H, and BKP
of the RTC_CR register.
Using SUB1H or ADD1H, the software can subtract or add one hour to the calendar in one
single operation without going through the initialization procedure.
In addition, the software can use the BKP bit to memorize this operation.
Programming the alarm
A similar procedure must be followed to program or update the programmable alarms. The
procedure below is given for Alarm A but can be translated in the same way for Alarm B.
Note:
1.
Clear ALRAE in RTC_CR to disable Alarm A.
2.
Program the Alarm A registers (RTC_ALRMASSR/RTC_ALRMAR).
3.
Set ALRAE in the RTC_CR register to enable Alarm A again.
Each change of the RTC_CR register is taken into account after around 2 RTCCLK clock
cycles due to clock synchronization.
Programming the wakeup timer
The following sequence is required to configure or change the wakeup timer auto-reload
value (WUT[15:0] in RTC_WUTR):
34.3.8
1.
Clear WUTE in RTC_CR to disable the wakeup timer.
2.
Poll WUTWF until it is set in RTC_ISR to make sure the access to wakeup auto-reload
counter and to WUCKSEL[2:0] bits is allowed. It takes around 2 RTCCLK clock cycles
(due to clock synchronization).
3.
Program the wakeup auto-reload value WUT[15:0], and the wakeup clock selection
(WUCKSEL[2:0] bits in RTC_CR). Set WUTE in RTC_CR to enable the timer again.
The wakeup timer restarts down-counting. The WUTWF bit is cleared up to 2 RTCCLK
clock cycles after WUTE is cleared, due to clock synchronization.
Reading the calendar
When BYPSHAD control bit is cleared in the RTC_CR register
To read the RTC calendar registers (RTC_SSR, RTC_TR and RTC_DR) properly, the APB
clock frequency (fPCLK) must be equal to or greater than seven times the RTC clock
frequency (fRTCCLK). This ensures a secure behavior of the synchronization mechanism.
If the APB clock frequency is less than seven times the RTC clock frequency, the software
must read the calendar time and date registers twice. If the second read of the RTC_TR
gives the same result as the first read, this ensures that the data is correct. Otherwise a third
read access must be done. In any case the APB clock frequency must never be lower than
the RTC clock frequency.
The RSF bit is set in RTC_ISR register each time the calendar registers are copied into the
RTC_SSR, RTC_TR and RTC_DR shadow registers. The copy is performed every two
RTCCLK cycles. To ensure consistency between the 3 values, reading either RTC_SSR or
RTC_TR locks the values in the higher-order calendar shadow registers until RTC_DR is
read. In case the software makes read accesses to the calendar in a time interval smaller
than 2 RTCCLK periods: RSF must be cleared by software after the first calendar read, and
DocID024597 Rev 3
1071/1693
1106
Real-time clock (RTC)
RM0351
then the software must wait until RSF is set before reading again the RTC_SSR, RTC_TR
and RTC_DR registers.
After waking up from low-power mode (Stop or Standby), RSF must be cleared by software.
The software must then wait until it is set again before reading the RTC_SSR, RTC_TR and
RTC_DR registers.
The RSF bit must be cleared after wakeup and not before entering low-power mode.
After a system reset, the software must wait until RSF is set before reading the RTC_SSR,
RTC_TR and RTC_DR registers. Indeed, a system reset resets the shadow registers to
their default values.
After an initialization (refer to Calendar initialization and configuration on page 1070): the
software must wait until RSF is set before reading the RTC_SSR, RTC_TR and RTC_DR
registers.
After synchronization (refer to Section 34.3.10: RTC synchronization): the software must
wait until RSF is set before reading the RTC_SSR, RTC_TR and RTC_DR registers.
When the BYPSHAD control bit is set in the RTC_CR register (bypass shadow
registers)
Reading the calendar registers gives the values from the calendar counters directly, thus
eliminating the need to wait for the RSF bit to be set. This is especially useful after exiting
from low-power modes (STOP or Standby), since the shadow registers are not updated
during these modes.
When the BYPSHAD bit is set to 1, the results of the different registers might not be
coherent with each other if an RTCCLK edge occurs between two read accesses to the
registers. Additionally, the value of one of the registers may be incorrect if an RTCCLK edge
occurs during the read operation. The software must read all the registers twice, and then
compare the results to confirm that the data is coherent and correct. Alternatively, the
software can just compare the two results of the least-significant calendar register.
Note:
While BYPSHAD=1, instructions which read the calendar registers require one extra APB
cycle to complete.
34.3.9
Resetting the RTC
The calendar shadow registers (RTC_SSR, RTC_TR and RTC_DR) and some bits of the
RTC status register (RTC_ISR) are reset to their default values by all available system reset
sources.
On the contrary, the following registers are reset to their default values by a Backup domain
reset and are not affected by a system reset: the RTC current calendar registers, the RTC
control register (RTC_CR), the prescaler register (RTC_PRER), the RTC calibration register
(RTC_CALR), the RTC shift register (RTC_SHIFTR), the RTC timestamp registers
(RTC_TSSSR, RTC_TSTR and RTC_TSDR), the RTC tamper and alternate function
configuration register (RTC_TAMPCR), the RTC backup registers (RTC_BKPxR), the
wakeup timer register (RTC_WUTR), the Alarm A and Alarm B registers
(RTC_ALRMASSR/RTC_ALRMAR and RTC_ALRMBSSR/RTC_ALRMBR), and the Option
register (RTC_OR).
1072/1693
DocID024597 Rev 3
RM0351
Real-time clock (RTC)
In addition, the RTC keeps on running under system reset if the reset source is different
from the Backup domain reset one. When a Backup domain reset occurs, the RTC is
stopped and all the RTC registers are set to their reset values.
34.3.10
RTC synchronization
The RTC can be synchronized to a remote clock with a high degree of precision. After
reading the sub-second field (RTC_SSR or RTC_TSSSR), a calculation can be made of the
precise offset between the times being maintained by the remote clock and the RTC. The
RTC can then be adjusted to eliminate this offset by “shifting” its clock by a fraction of a
second using RTC_SHIFTR.
RTC_SSR contains the value of the synchronous prescaler counter. This allows one to
calculate the exact time being maintained by the RTC down to a resolution of
1 / (PREDIV_S + 1) seconds. As a consequence, the resolution can be improved by
increasing the synchronous prescaler value (PREDIV_S[14:0]. The maximum resolution
allowed (30.52 μs with a 32768 Hz clock) is obtained with PREDIV_S set to 0x7FFF.
However, increasing PREDIV_S means that PREDIV_A must be decreased in order to
maintain the synchronous prescaler output at 1 Hz. In this way, the frequency of the
asynchronous prescaler output increases, which may increase the RTC dynamic
consumption.
The RTC can be finely adjusted using the RTC shift control register (RTC_SHIFTR). Writing
to RTC_SHIFTR can shift (either delay or advance) the clock by up to a second with a
resolution of 1 / (PREDIV_S + 1) seconds. The shift operation consists of adding the
SUBFS[14:0] value to the synchronous prescaler counter SS[15:0]: this will delay the clock.
If at the same time the ADD1S bit is set, this results in adding one second and at the same
time subtracting a fraction of second, so this will advance the clock.
Caution:
Before initiating a shift operation, the user must check that SS[15] = 0 in order to ensure that
no overflow will occur.
As soon as a shift operation is initiated by a write to the RTC_SHIFTR register, the SHPF
flag is set by hardware to indicate that a shift operation is pending. This bit is cleared by
hardware as soon as the shift operation has completed.
Caution:
This synchronization feature is not compatible with the reference clock detection feature:
firmware must not write to RTC_SHIFTR when REFCKON=1.
34.3.11
RTC reference clock detection
The update of the RTC calendar can be synchronized to a reference clock, RTC_REFIN,
which is usually the mains frequency (50 or 60 Hz). The precision of the RTC_REFIN
reference clock should be higher than the 32.768 kHz LSE clock. When the RTC_REFIN
detection is enabled (REFCKON bit of RTC_CR set to 1), the calendar is still clocked by the
LSE, and RTC_REFIN is used to compensate for the imprecision of the calendar update
frequency (1 Hz).
Each 1 Hz clock edge is compared to the nearest RTC_REFIN clock edge (if one is found
within a given time window). In most cases, the two clock edges are properly aligned. When
the 1 Hz clock becomes misaligned due to the imprecision of the LSE clock, the RTC shifts
the 1 Hz clock a bit so that future 1 Hz clock edges are aligned. Thanks to this mechanism,
the calendar becomes as precise as the reference clock.
DocID024597 Rev 3
1073/1693
1106
Real-time clock (RTC)
RM0351
The RTC detects if the reference clock source is present by using the 256 Hz clock
(ck_apre) generated from the 32.768 kHz quartz. The detection is performed during a time
window around each of the calendar updates (every 1 s). The window equals 7 ck_apre
periods when detecting the first reference clock edge. A smaller window of 3 ck_apre
periods is used for subsequent calendar updates.
Each time the reference clock is detected in the window, the asynchronous prescaler which
outputs the ck_apre clock is forced to reload. This has no effect when the reference clock
and the 1 Hz clock are aligned because the prescaler is being reloaded at the same
moment. When the clocks are not aligned, the reload shifts future 1 Hz clock edges a little
for them to be aligned with the reference clock.
If the reference clock halts (no reference clock edge occurred during the 3 ck_apre window),
the calendar is updated continuously based solely on the LSE clock. The RTC then waits for
the reference clock using a large 7 ck_apre period detection window centered on the
ck_spre edge.
When the RTC_REFIN detection is enabled, PREDIV_A and PREDIV_S must be set to their
default values:
•
PREDIV_A = 0x007F
•
PREVID_S = 0x00FF
Note:
RTC_REFIN clock detection is not available in Standby mode.
34.3.12
RTC smooth digital calibration
The RTC frequency can be digitally calibrated with a resolution of about 0.954 ppm with a
range from -487.1 ppm to +488.5 ppm. The correction of the frequency is performed using
series of small adjustments (adding and/or subtracting individual RTCCLK pulses). These
adjustments are fairly well distributed so that the RTC is well calibrated even when observed
over short durations of time.
The smooth digital calibration is performed during a cycle of about 220 RTCCLK pulses, or
32 seconds when the input frequency is 32768 Hz. This cycle is maintained by a 20-bit
counter, cal_cnt[19:0], clocked by RTCCLK.
The smooth calibration register (RTC_CALR) specifies the number of RTCCLK clock cycles
to be masked during the 32-second cycle:
•
Setting the bit CALM[0] to 1 causes exactly one pulse to be masked during the 32-
second cycle.
Note:
•
Setting CALM[1] to 1 causes two additional cycles to be masked
•
Setting CALM[2] to 1 causes four additional cycles to be masked
•
and so on up to CALM[8] set to 1 which causes 256 clocks to be masked.
CALM[8:0] (RTC_CALR) specifies the number of RTCCLK pulses to be masked during the
32-second cycle. Setting the bit CALM[0] to ‘1’ causes exactly one pulse to be masked
during the 32-second cycle at the moment when cal_cnt[19:0] is 0x80000; CALM[1]=1
causes two other cycles to be masked (when cal_cnt is 0x40000 and 0xC0000); CALM[2]=1
causes four other cycles to be masked (cal_cnt = 0x20000/0x60000/0xA0000/ 0xE0000);
and so on up to CALM[8]=1 which causes 256 clocks to be masked (cal_cnt = 0xXX800).
While CALM allows the RTC frequency to be reduced by up to 487.1 ppm with fine
resolution, the bit CALP can be used to increase the frequency by 488.5 ppm. Setting CALP
1074/1693
DocID024597 Rev 3
RM0351
Real-time clock (RTC)
to ‘1’ effectively inserts an extra RTCCLK pulse every 211 RTCCLK cycles, which means
that 512 clocks are added during every 32-second cycle.
Using CALM together with CALP, an offset ranging from -511 to +512 RTCCLK cycles can
be added during the 32-second cycle, which translates to a calibration range of -487.1 ppm
to +488.5 ppm with a resolution of about 0.954 ppm.
The formula to calculate the effective calibrated frequency (FCAL) given the input frequency
(FRTCCLK) is as follows:
FCAL = FRTCCLK x [1 + (CALP x 512 - CALM) / (220 + CALM - CALP x 512)]
Calibration when PREDIV_A<3
The CALP bit can not be set to 1 when the asynchronous prescaler value (PREDIV_A bits in
RTC_PRER register) is less than 3. If CALP was already set to 1 and PREDIV_A bits are
set to a value less than 3, CALP is ignored and the calibration operates as if CALP was
equal to 0.
To perform a calibration with PREDIV_A less than 3, the synchronous prescaler value
(PREDIV_S) should be reduced so that each second is accelerated by 8 RTCCLK clock
cycles, which is equivalent to adding 256 clock cycles every 32 seconds. As a result,
between 255 and 256 clock pulses (corresponding to a calibration range from 243.3 to
244.1 ppm) can effectively be added during each 32-second cycle using only the CALM bits.
With a nominal RTCCLK frequency of 32768 Hz, when PREDIV_A equals 1 (division factor
of 2), PREDIV_S should be set to 16379 rather than 16383 (4 less). The only other
interesting case is when PREDIV_A equals 0, PREDIV_S should be set to 32759 rather
than 32767 (8 less).
If PREDIV_S is reduced in this way, the formula given the effective frequency of the
calibrated input clock is as follows:
FCAL = FRTCCLK x [1 + (256 - CALM) / (220 + CALM - 256)]
In this case, CALM[7:0] equals 0x100 (the midpoint of the CALM range) is the correct
setting if RTCCLK is exactly 32768.00 Hz.
Verifying the RTC calibration
RTC precision is ensured by measuring the precise frequency of RTCCLK and calculating
the correct CALM value and CALP values. An optional 1 Hz output is provided to allow
applications to measure and verify the RTC precision.
Measuring the precise frequency of the RTC over a limited interval can result in a
measurement error of up to 2 RTCCLK clock cycles over the measurement period,
depending on how the digital calibration cycle is aligned with the measurement period.
However, this measurement error can be eliminated if the measurement period is the same
length as the calibration cycle period. In this case, the only error observed is the error due to
the resolution of the digital calibration.
•
By default, the calibration cycle period is 32 seconds.
Using this mode and measuring the accuracy of the 1 Hz output over exactly 32 seconds
guarantees that the measure is within 0.477 ppm (0.5 RTCCLK cycles over 32 seconds, due
to the limitation of the calibration resolution).
•
CALW16 bit of the RTC_CALR register can be set to 1 to force a 16- second calibration
cycle period.
DocID024597 Rev 3
1075/1693
1106
Real-time clock (RTC)
RM0351
In this case, the RTC precision can be measured during 16 seconds with a maximum error
of 0.954 ppm (0.5 RTCCLK cycles over 16 seconds). However, since the calibration
resolution is reduced, the long term RTC precision is also reduced to 0.954 ppm: CALM[0]
bit is stuck at 0 when CALW16 is set to 1.
•
CALW8 bit of the RTC_CALR register can be set to 1 to force a 8- second calibration
cycle period.
In this case, the RTC precision can be measured during 8 seconds with a maximum error of
1.907 ppm (0.5 RTCCLK cycles over 8s). The long term RTC precision is also reduced to
1.907 ppm: CALM[1:0] bits are stuck at 00 when CALW8 is set to 1.
Re-calibration on-the-fly
The calibration register (RTC_CALR) can be updated on-the-fly while RTC_ISR/INITF=0, by
using the follow process:
34.3.13
1.
Poll the RTC_ISR/RECALPF (re-calibration pending flag).
2.
If it is set to 0, write a new value to RTC_CALR, if necessary. RECALPF is then
automatically set to 1
3.
Within three ck_apre cycles after the write operation to RTC_CALR, the new calibration
settings take effect.
Time-stamp function
Time-stamp is enabled by setting the TSE or ITSE bits of RTC_CR register to 1.
When TSE is set:
The calendar is saved in the time-stamp registers (RTC_TSSSR, RTC_TSTR, RTC_TSDR)
when a time-stamp event is detected on the RTC_TS pin.
When ITSE is set:
The calendar is saved in the time-stamp registers (RTC_TSSSR, RTC_TSTR, RTC_TSDR)
when an internal time-stamp event is detected. The internal timestamp event is generated
by the switch to the VBAT supply.
When a time-stamp event occurs, due to internal or external event, the time-stamp flag bit
(TSF) in RTC_ISR register is set. In case the event is internal, the ITSF flag is also set in
RTC_ISR register.
By setting the TSIE bit in the RTC_CR register, an interrupt is generated when a time-stamp
event occurs.
If a new time-stamp event is detected while the time-stamp flag (TSF) is already set, the
time-stamp overflow flag (TSOVF) flag is set and the time-stamp registers (RTC_TSTR and
RTC_TSDR) maintain the results of the previous event.
Note:
TSF is set 2 ck_apre cycles after the time-stamp event occurs due to synchronization
process.
There is no delay in the setting of TSOVF. This means that if two time-stamp events are
close together, TSOVF can be seen as '1' while TSF is still '0'. As a consequence, it is
recommended to poll TSOVF only after TSF has been set.
Caution:
1076/1693
If a time-stamp event occurs immediately after the TSF bit is supposed to be cleared, then
both TSF and TSOVF bits are set.To avoid masking a time-stamp event occurring at the
DocID024597 Rev 3
RM0351
Real-time clock (RTC)
same moment, the application must not write ‘0’ into TSF bit unless it has already read it to
‘1’.
Optionally, a tamper event can cause a time-stamp to be recorded. See the description of
the TAMPTS control bit in Section 34.6.16: RTC tamper configuration register
(RTC_TAMPCR).
34.3.14
Tamper detection
The RTC_TAMPx input events can be configured either for edge detection, or for level
detection with filtering.
The tamper detection can be configured for the following purposes:
•
erase the RTC backup registers (default configuration)
•
generate an interrupt, capable to wakeup from Stop and Standby modes
•
generate a hardware trigger for the low-power timers
RTC backup registers
The backup registers (RTC_BKPxR) are not reset by system reset or when the device
wakes up from Standby mode.
The backup registers are reset when a tamper detection event occurs (see Section 34.6.20:
RTC backup registers (RTC_BKPxR) and Tamper detection initialization on page 1077, or
when the readout protection of the flash is changed from level 1 to level 0) except if the
TAMPxNOERASE bit is set, or if TAMPxMF is set in the RTC_TAMPCR register.
Tamper detection initialization
Each input can be enabled by setting the corresponding TAMPxE bits to 1 in the
RTC_TAMPCR register.
Each RTC_TAMPx tamper detection input is associated with a flag TAMPxF in the RTC_ISR
register.
When TAMPxMF is cleared:
The TAMPxF flag is asserted after the tamper event on the pin, with the latency provided
below:
•
3 ck_apre cycles when TAMPFLT differs from 0x0 (Level detection with filtering)
•
3 ck_apre cycles when TAMPTS=1 (Timestamp on tamper event)
•
No latency when TAMPFLT=0x0 (Edge detection) and TAMPTS=0
A new tamper occurring on the same pin during this period and as long as TAMPxF is set
cannot be detected.
When TAMPxMF is set:
A new tamper occurring on the same pin cannot be detected during the latency described
above and 2.5 ck_rtc additional cycles.
By setting the TAMPIE bit in the RTC_TAMPCR register, an interrupt is generated when a
tamper detection event occurs (when TAMPxF is set). Setting TAMPIE is not allowed when
one or more TAMPxMF is set.
DocID024597 Rev 3
1077/1693
1106
Real-time clock (RTC)
RM0351
When TAMPIE is cleared, each tamper pin event interrupt can be individually enabled by
setting the corresponding TAMPxIE bit in the RTC_TAMPCR register. Setting TAMPxIE is
not allowed when the corresponding TAMPxMF is set.
Trigger output generation on tamper event
The tamper event detection can be used as trigger input by the low-power timers.
When TAMPxMF bit in cleared in RTC_TAMPCR register, the TAMPxF flag must be cleared
by software in order to allow a new tamper detection on the same pin.
When TAMPxMF bit is set, the TAMPxF flag is masked, and kept cleared in RTC_ISR
register. This configuration allows to trig automatically the low-power timers in Stop mode,
without requiring the system wakeup to perform the TAMPxF clearing. In this case, the
backup registers are not cleared.
Timestamp on tamper event
With TAMPTS set to ‘1’, any tamper event causes a timestamp to occur. In this case, either
the TSF bit or the TSOVF bit are set in RTC_ISR, in the same manner as if a normal
timestamp event occurs. The affected tamper flag register TAMPxF is set at the same time
that TSF or TSOVF is set.
Edge detection on tamper inputs
If the TAMPFLT bits are “00”, the RTC_TAMPx pins generate tamper detection events when
either a rising edge or a falling edge is observed depending on the corresponding
TAMPxTRG bit. The internal pull-up resistors on the RTC_TAMPx inputs are deactivated
when edge detection is selected.
Caution:
When using the edge detection, it is recommended to check by software the tamper pin
level just after enabling the tamper detection (by reading the GPIO registers), and before
writing sensitive values in the backup registers, to ensure that an active edge did not occur
before enabling the tamper event detection.
When TAMPFLT="00" and TAMPxTRG = 0 (rising edge detection), a tamper event may be
detected by hardware if the tamper input is already at high level before enabling the tamper
detection.
After a tamper event has been detected and cleared, the RTC_TAMPx alternate function
should be disabled and then re-enabled (TAMPxE set to 1) before re-programming the
backup registers (RTC_BKPxR). This prevents the application from writing to the backup
registers while the RTC_TAMPx input value still indicates a tamper detection. This is
equivalent to a level detection on the RTC_TAMPx alternate function input.
Note:
Tamper detection is still active when VDD power is switched off. To avoid unwanted resetting
of the backup registers, the pin to which the RTC_TAMPx alternate function is mapped
should be externally tied to the correct level.
Level detection with filtering on RTC_TAMPx inputs
Level detection with filtering is performed by setting TAMPFLT to a non-zero value. A tamper
detection event is generated when either 2, 4, or 8 (depending on TAMPFLT) consecutive
samples are observed at the level designated by the TAMPxTRG bits.
The RTC_TAMPx inputs are precharged through the I/O internal pull-up resistance before
its state is sampled, unless disabled by setting TAMPPUDIS to 1,The duration of the
1078/1693
DocID024597 Rev 3
RM0351
Real-time clock (RTC)
precharge is determined by the TAMPPRCH bits, allowing for larger capacitances on the
RTC_TAMPx inputs.
The trade-off between tamper detection latency and power consumption through the pull-up
can be optimized by using TAMPFREQ to determine the frequency of the sampling for level
detection.
Note:
Refer to the datasheets for the electrical characteristics of the pull-up resistors.
34.3.15
Calibration clock output
When the COE bit is set to 1 in the RTC_CR register, a reference clock is provided on the
RTC_CALIB device output.
If the COSEL bit in the RTC_CR register is reset and PREDIV_A = 0x7F, the RTC_CALIB
frequency is fRTCCLK/64. This corresponds to a calibration output at 512 Hz for an RTCCLK
frequency at 32.768 kHz. The RTC_CALIB duty cycle is irregular: there is a light jitter on
falling edges. It is therefore recommended to use rising edges.
When COSEL is set and “PREDIV_S+1” is a non-zero multiple of 256 (i.e: PREDIV_S[7:0] =
0xFF), the RTC_CALIB frequency is fRTCCLK/(256 * (PREDIV_A+1)). This corresponds to a
calibration output at 1 Hz for prescaler default values (PREDIV_A = Ox7F, PREDIV_S =
0xFF), with an RTCCLK frequency at 32.768 kHz.
Note:
When the RTC_CALIB or RTC_ALARM output is selected, the RTC_OUT pin is
automatically configured in output alternate function.
34.3.16
Alarm output
The OSEL[1:0] control bits in the RTC_CR register are used to activate the alarm alternate
function output RTC_ALARM, and to select the function which is output. These functions
reflect the contents of the corresponding flags in the RTC_ISR register.
The polarity of the output is determined by the POL control bit in RTC_CR so that the
opposite of the selected flag bit is output when POL is set to 1.
Alarm alternate function output
The RTC_ALARM pin can be configured in output open drain or output push-pull using the
control bit RTC_ALARM_TYPE in the RTC_OR register.
Note:
Once the RTC_ALARM output is enabled, it has priority over RTC_CALIB (COE bit is don't
care and must be kept cleared).
When the RTC_CALIB or RTC_ALARM output is selected, the RTC_OUT pin is
automatically configured in output alternate function.
34.4
RTC low-power modes
Table 172. Effect of low-power modes on RTC
Mode
Description
Sleep
No effect
RTC interrupts cause the device to exit the Sleep mode.
Low-power run
No effect.
DocID024597 Rev 3
1079/1693
1106
Real-time clock (RTC)
RM0351
Table 172. Effect of low-power modes on RTC
Mode
Description
Low-power sleep No effect. RTC interrupts cause the device to exit the Low-power sleep mode.
Stop 0
Stop 1
Peripheral registers content is kept.
Stop 2
34.5
Standby
The RTC remains active when the RTC clock source is LSE or LSI. RTC alarm,
RTC tamper event, RTC timestamp event, and RTC Wakeup cause the device to
exit the Standby mode.
Shutdown
The RTC remains active when the RTC clock source is LSE. RTC alarm, RTC
tamper event, RTC timestamp event, and RTC Wakeup cause the device to exit
the Shutdown mode.
RTC interrupts
All RTC interrupts are connected to the EXTI controller. Refer to Section 12: Extended
interrupts and events controller (EXTI).
To enable the RTC Alarm interrupt, the following sequence is required:
1.
Configure and enable the EXTI line corresponding to the RTC Alarm event in interrupt
mode and select the rising edge sensitivity.
2.
Configure and enable the RTC_ALARM IRQ channel in the NVIC.
3.
Configure the RTC to generate RTC alarms.
To enable the RTC Tamper interrupt, the following sequence is required:
1.
Configure and enable the EXTI line corresponding to the RTC Tamper event in interrupt
mode and select the rising edge sensitivity.
2.
Configure and Enable the RTC_TAMP_STAMP IRQ channel in the NVIC.
3.
Configure the RTC to detect the RTC tamper event.
To enable the RTC TimeStamp interrupt, the following sequence is required:
1.
Configure and enable the EXTI line corresponding to the RTC TimeStamp event in
interrupt mode and select the rising edge sensitivity.
2.
Configure and Enable the RTC_TAMP_STAMP IRQ channel in the NVIC.
3.
Configure the RTC to detect the RTC time-stamp event.
To enable the Wakeup timer interrupt, the following sequence is required:
1080/1693
1.
Configure and enable the EXTI line corresponding to the Wakeup timer even in
interrupt mode and select the rising edge sensitivity.
2.
Configure and Enable the RTC_WKUP IRQ channel in the NVIC.
3.
Configure the RTC to detect the RTC Wakeup timer event.
DocID024597 Rev 3
RM0351
Real-time clock (RTC)
Table 173. Interrupt control bits
Interrupt event
Event flag
Enable
control
bit
Exit from
Sleep
mode
Exit from
Stop
mode
Exit from
Standby
mode
Alarm A
ALRAF
ALRAIE
yes
yes(1)
yes(1)
Alarm B
ALRBF
ALRBIE
yes
yes(1)
yes(1)
RTC_TS input (timestamp)
TSF
TSIE
yes
yes(1)
yes(1)
RTC_TAMP1 input detection
TAMP1F
TAMPIE
yes
yes(1)
yes(1)
RTC_TAMP2 input detection
TAMP2F
TAMPIE
yes
yes(1)
yes(1)
RTC_TAMP3 input detection
TAMP3F
TAMPIE
yes
yes(1)
yes(1)
Wakeup timer interrupt
WUTF
WUTIE
yes
yes(1)
yes(1)
1. Wakeup from STOP and Standby modes is possible only when the RTC clock source is LSE or LSI.
34.6
RTC registers
Refer to Section 1.1 on page 61 of the reference manual for a list of abbreviations used in
register descriptions.
The peripheral registers can be accessed by words (32-bit).
34.6.1
RTC time register (RTC_TR)
The RTC_TR is the calendar time shadow register. This register must be written in
initialization mode only. Refer to Calendar initialization and configuration on page 1070 and
Reading the calendar on page 1071.
This register is write protected. The write access procedure is described in RTC register
write protection on page 1070.
Address offset: 0x00
Backup domain reset value: 0x0000 0000
System reset: 0x0000 0000 when BYPSHAD = 0. Not affected when BYPSHAD = 1.
31
30
29
28
27
26
25
24
23
22
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PM
rw
15
14
Res.
13
12
11
MNT[2:0]
rw
rw
10
9
8
MNU[3:0]
rw
rw
rw
7
6
Res.
rw
rw
21
20
19
18
HT[1:0]
16
HU[3:0]
rw
rw
rw
rw
rw
rw
5
4
3
2
1
0
rw
rw
ST[2:0]
rw
17
rw
SU[3:0]
rw
rw
rw
Bits 31-23 Reserved, must be kept at reset value
Bit 22 PM: AM/PM notation
0: AM or 24-hour format
1: PM
Bits 21:20 HT[1:0]: Hour tens in BCD format
DocID024597 Rev 3
1081/1693
1106
Real-time clock (RTC)
RM0351
Bits 19:16 HU[3:0]: Hour units in BCD format
Bit 15 Reserved, must be kept at reset value.
Bits 14:12 MNT[2:0]: Minute tens in BCD format
Bits 11:8 MNU[3:0]: Minute units in BCD format
Bit 7 Reserved, must be kept at reset value.
Bits 6:4 ST[2:0]: Second tens in BCD format
Bits 3:0 SU[3:0]: Second units in BCD format
34.6.2
RTC date register (RTC_DR)
The RTC_DR is the calendar date shadow register. This register must be written in
initialization mode only. Refer to Calendar initialization and configuration on page 1070 and
Reading the calendar on page 1071.
This register is write protected. The write access procedure is described in RTC register
write protection on page 1070.
Address offset: 0x04
Backup domain reset value: 0x0000 2101
System reset: 0x0000 2101 when BYPSHAD = 0. Not affected when BYPSHAD = 1.
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
WDU[2:0]
rw
rw
12
11
MT
rw
rw
10
9
rw
22
rw
rw
7
6
Res.
Res.
rw
rw
Bits 31:24 Reserved, must be kept at reset value
Bits 23:20 YT[3:0]: Year tens in BCD format
Bits 19:16 YU[3:0]: Year units in BCD format
Bits 15:13 WDU[2:0]: Week day units
000: forbidden
001: Monday
...
111: Sunday
Bit 12 MT: Month tens in BCD format
Bits 11:8 MU: Month units in BCD format
Bits 7:6 Reserved, must be kept at reset value.
Bits 5:4 DT[1:0]: Date tens in BCD format
Bits 3:0 DU[3:0]: Date units in BCD format
1082/1693
21
20
19
18
rw
rw
rw
rw
rw
rw
5
4
3
2
1
0
rw
rw
YT[3:0]
8
MU[3:0]
rw
23
DocID024597 Rev 3
17
16
YU[3:0]
DT[1:0]
rw
rw
DU[3:0]
rw
rw
RM0351
Real-time clock (RTC)
34.6.3
RTC control register (RTC_CR)
Address offset: 0x08
Backup domain reset value: 0x0000 0000
System reset: not affected
31
30
29
28
27
26
25
24
23
Res.
Res.
Res.
Res.
Res.
Res.
Res.
ITSE
COE
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
TSIE
rw
WUTIE ALRBIE ALRAIE
rw
rw
rw
TSE
WUTE
rw
rw
ALRBE ALRAE
rw
Res.
rw
22
21
20
19
18
POL
COSEL
BKP
rw
rw
rw
rw
w
w
5
4
3
2
1
0
OSEL[1:0]
FMT
rw
BYPS
REFCKON TSEDGE
HAD
rw
rw
rw
17
16
SUB1H ADD1H
WUCKSEL[2:0]
rw
rw
rw
Bits 31:25 Reserved, must be kept at reset value.
Bit 24 ITSE: timestamp on internal event enable
0: internal event timestamp disabled
1: internal event timestamp enabled
Bit 23 COE: Calibration output enable
This bit enables the RTC_CALIB output
0: Calibration output disabled
1: Calibration output enabled
Bits 22:21 OSEL[1:0]: Output selection
These bits are used to select the flag to be routed to RTC_ALARM output
00: Output disabled
01: Alarm A output enabled
10: Alarm B output enabled
11: Wakeup output enabled
Bit 20 POL: Output polarity
This bit is used to configure the polarity of RTC_ALARM output
0: The pin is high when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0])
1: The pin is low when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0]).
Bit 19 COSEL: Calibration output selection
When COE=1, this bit selects which signal is output on RTC_CALIB.
0: Calibration output is 512 Hz
1: Calibration output is 1 Hz
These frequencies are valid for RTCCLK at 32.768 kHz and prescalers at their default values
(PREDIV_A=127 and PREDIV_S=255). Refer to Section 34.3.15: Calibration clock output
Bit 18 BKP: Backup
This bit can be written by the user to memorize whether the daylight saving time change has
been performed or not.
Bit 17 SUB1H: Subtract 1 hour (winter time change)
When this bit is set outside initialization mode, 1 hour is subtracted to the calendar time if the
current hour is not 0. This bit is always read as 0.
Setting this bit has no effect when current hour is 0.
0: No effect
1: Subtracts 1 hour to the current time. This can be used for winter time change.
DocID024597 Rev 3
1083/1693
1106
Real-time clock (RTC)
RM0351
Bit 16 ADD1H: Add 1 hour (summer time change)
When this bit is set outside initialization mode, 1 hour is added to the calendar time. This bit is
always read as 0.
0: No effect
1: Adds 1 hour to the current time. This can be used for summer time change
Bit 15 TSIE: Time-stamp interrupt enable
0: Time-stamp Interrupt disable
1: Time-stamp Interrupt enable
Bit 14 WUTIE: Wakeup timer interrupt enable
0: Wakeup timer interrupt disabled
1: Wakeup timer interrupt enabled
Bit 13 ALRBIE: Alarm B interrupt enable
0: Alarm B Interrupt disable
1: Alarm B Interrupt enable
Bit 12 ALRAIE: Alarm A interrupt enable
0: Alarm A interrupt disabled
1: Alarm A interrupt enabled
Bit 11 TSE: timestamp enable
0: timestamp disable
1: timestamp enable
Bit 10 WUTE: Wakeup timer enable
0: Wakeup timer disabled
1: Wakeup timer enabled
Bit 9 ALRBE: Alarm B enable
0: Alarm B disabled
1: Alarm B enabled
Bit 8 ALRAE: Alarm A enable
0: Alarm A disabled
1: Alarm A enabled
Bit 7 Reserved, must be kept at reset value.
Bit 6 FMT: Hour format
0: 24 hour/day format
1: AM/PM hour format
Bit 5 BYPSHAD: Bypass the shadow registers
0: Calendar values (when reading from RTC_SSR, RTC_TR, and RTC_DR) are taken from
the shadow registers, which are updated once every two RTCCLK cycles.
1: Calendar values (when reading from RTC_SSR, RTC_TR, and RTC_DR) are taken
directly from the calendar counters.
Note: If the frequency of the APB clock is less than seven times the frequency of RTCCLK,
BYPSHAD must be set to ‘1’.
1084/1693
DocID024597 Rev 3
RM0351
Real-time clock (RTC)
Bit 4 REFCKON: RTC_REFIN reference clock detection enable (50 or 60 Hz)
0: RTC_REFIN detection disabled
1: RTC_REFIN detection enabled
Note: PREDIV_S must be 0x00FF.
Bit 3 TSEDGE: Time-stamp event active edge
0: RTC_TS input rising edge generates a time-stamp event
1: RTC_TS input falling edge generates a time-stamp event
TSE must be reset when TSEDGE is changed to avoid unwanted TSF setting.
Bits 2:0 WUCKSEL[2:0]: Wakeup clock selection
000: RTC/16 clock is selected
001: RTC/8 clock is selected
010: RTC/4 clock is selected
011: RTC/2 clock is selected
10x: ck_spre (usually 1 Hz) clock is selected
11x: ck_spre (usually 1 Hz) clock is selected and 216 is added to the WUT counter value
(see note below)
Note:
Bits 7, 6 and 4 of this register can be written in initialization mode only (RTC_ISR/INITF = 1).
WUT = Wakeup unit counter value. WUT = (0x0000 to 0xFFFF) + 0x10000 added when
WUCKSEL[2:1 = 11].
Bits 2 to 0 of this register can be written only when RTC_CR WUTE bit = 0 and RTC_ISR
WUTWF bit = 1.
It is recommended not to change the hour during the calendar hour increment as it could
mask the incrementation of the calendar hour.
ADD1H and SUB1H changes are effective in the next second.
This register is write protected. The write access procedure is described in RTC register
write protection on page 1070.
DocID024597 Rev 3
1085/1693
1106
Real-time clock (RTC)
34.6.4
RM0351
RTC initialization and status register (RTC_ISR)
This register is write protected (except for RTC_ISR[13:8] bits). The write access procedure
is described in RTC register write protection on page 1070.
Address offset: 0x0C
Backup domain reset value: 0x0000 0007
System reset: not affected except INIT, INITF, and RSF bits which are cleared to ‘0’
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
ITSF
RECALPF
15
14
13
12
11
10
9
8
7
6
5
4
3
2
INIT
INITF
RSF
INITS
rw
r
rc_w0
r
TAMP3F TAMP2F TAMP1F TSOVF
rc_w0
rc_w0
rc_w0
rc_w0
TSF
rc_w0
WUTF ALRBF ALRAF
rc_w0
rc_w0
rc_w0
SHPF WUTWF
r
r
rc_w0
r
1
0
ALRB
WF
ALRAWF
r
r
Bits 31:18 Reserved, must be kept at reset value
Bit 17 ITSF: Internal tTime-stamp flag
This flag is set by hardware when a time-stamp on the internal event occurs.
This flag is cleared by software by writing 0, and must be cleared together with TSF bit by
writing 0 in both bits.
Bit 16 RECALPF: Recalibration pending Flag
The RECALPF status flag is automatically set to ‘1’ when software writes to the RTC_CALR
register, indicating that the RTC_CALR register is blocked. When the new calibration settings
are taken into account, this bit returns to ‘0’. Refer to Re-calibration on-the-fly.
Bit 15 TAMP3F: RTC_TAMP3 detection flag
This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP3
input.
It is cleared by software writing 0
Bit 14 TAMP2F: RTC_TAMP2 detection flag
This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP2
input.
It is cleared by software writing 0
Bit 13 TAMP1F: RTC_TAMP1 detection flag
This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP1
input.
It is cleared by software writing 0
Bit 12 TSOVF: Time-stamp overflow flag
This flag is set by hardware when a time-stamp event occurs while TSF is already set.
This flag is cleared by software by writing 0. It is recommended to check and then clear
TSOVF only after clearing the TSF bit. Otherwise, an overflow might not be noticed if a timestamp event occurs immediately before the TSF bit is cleared.
Bit 11 TSF: Time-stamp flag
This flag is set by hardware when a time-stamp event occurs.
This flag is cleared by software by writing 0. If ITSF flag is set, TSF must be cleared together
with ITSF by writing 0 in both bits.
1086/1693
DocID024597 Rev 3
RM0351
Real-time clock (RTC)
Bit 10 WUTF: Wakeup timer flag
This flag is set by hardware when the wakeup auto-reload counter reaches 0.
This flag is cleared by software by writing 0.
This flag must be cleared by software at least 1.5 RTCCLK periods before WUTF is set to 1
again.
Bit 9 ALRBF: Alarm B flag
This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the
Alarm B register (RTC_ALRMBR).
This flag is cleared by software by writing 0.
Bit 8 ALRAF: Alarm A flag
This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the
Alarm A register (RTC_ALRMAR).
This flag is cleared by software by writing 0.
Bit 7 INIT: Initialization mode
0: Free running mode
1: Initialization mode used to program time and date register (RTC_TR and RTC_DR), and
prescaler register (RTC_PRER). Counters are stopped and start counting from the new
value when INIT is reset.
Bit 6 INITF: Initialization flag
When this bit is set to 1, the RTC is in initialization state, and the time, date and prescaler
registers can be updated.
0: Calendar registers update is not allowed
1: Calendar registers update is allowed
Bit 5 RSF: Registers synchronization flag
This bit is set by hardware each time the calendar registers are copied into the shadow
registers (RTC_SSRx, RTC_TRx and RTC_DRx). This bit is cleared by hardware in
initialization mode, while a shift operation is pending (SHPF=1), or when in bypass shadow
register mode (BYPSHAD=1). This bit can also be cleared by software.
It is cleared either by software or by hardware in initialization mode.
0: Calendar shadow registers not yet synchronized
1: Calendar shadow registers synchronized
Bit 4 INITS: Initialization status flag
This bit is set by hardware when the calendar year field is different from 0 (Backup domain
reset state).
0: Calendar has not been initialized
1: Calendar has been initialized
Bit 3 SHPF: Shift operation pending
0: No shift operation is pending
1: A shift operation is pending
This flag is set by hardware as soon as a shift operation is initiated by a write to the
RTC_SHIFTR register. It is cleared by hardware when the corresponding shift operation has
been executed. Writing to the SHPF bit has no effect.
DocID024597 Rev 3
1087/1693
1106
Real-time clock (RTC)
RM0351
Bit 2 WUTWF: Wakeup timer write flag
This bit is set by hardware up to 2 RTCCLK cycles after the WUTE bit has been set to 0 in
RTC_CR, and is cleared up to 2 RTCCLK cycles after the WUTE bit has been set to 1. The
wakeup timer values can be changed when WUTE bit is cleared and WUTWF is set.
0: Wakeup timer configuration update not allowed
1: Wakeup timer configuration update allowed
Bit 1 ALRBWF: Alarm B write flag
This bit is set by hardware when Alarm B values can be changed, after the ALRBE bit has
been set to 0 in RTC_CR.
It is cleared by hardware in initialization mode.
0: Alarm B update not allowed
1: Alarm B update allowed
Bit 0 ALRAWF: Alarm A write flag
This bit is set by hardware when Alarm A values can be changed, after the ALRAE bit has
been set to 0 in RTC_CR.
It is cleared by hardware in initialization mode.
0: Alarm A update not allowed
1: Alarm A update allowed
Note:
1088/1693
The bits ALRAF, ALRBF, WUTF and TSF are cleared 2 APB clock cycles after programming
them to 0.
DocID024597 Rev 3
RM0351
Real-time clock (RTC)
34.6.5
RTC prescaler register (RTC_PRER)
This register must be written in initialization mode only. The initialization must be performed
in two separate write accesses. Refer to Calendar initialization and configuration on
page 1070.
This register is write protected. The write access procedure is described in RTC register
write protection on page 1070.
Address offset: 0x10
Backup domain reset value: 0x007F 00FF
System reset: not affected
31
30
29
28
27
26
25
24
23
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
rw
rw
rw
rw
rw
rw
rw
Res.
22
21
20
19
18
17
16
PREDIV_A[6:0]
rw
rw
rw
rw
rw
rw
rw
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
PREDIV_S[14:0]
rw
Bits 31:23 Reserved, must be kept at reset value
Bits 22:16 PREDIV_A[6:0]: Asynchronous prescaler factor
This is the asynchronous division factor:
ck_apre frequency = RTCCLK frequency/(PREDIV_A+1)
Bit 15 Reserved, must be kept at reset value.
Bits 14:0 PREDIV_S[14:0]: Synchronous prescaler factor
This is the synchronous division factor:
ck_spre frequency = ck_apre frequency/(PREDIV_S+1)
DocID024597 Rev 3
1089/1693
1106
Real-time clock (RTC)
34.6.6
RM0351
RTC wakeup timer register (RTC_WUTR)
This register can be written only when WUTWF is set to 1 in RTC_ISR.
This register is write protected. The write access procedure is described in RTC register
write protection on page 1070.
Address offset: 0x14
Backup domain reset value: 0x0000 FFFF
System reset: not affected
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
WUT[15:0]
rw
Bits 31:16 Reserved, must be kept at reset value
Bits 15:0 WUT[15:0]: Wakeup auto-reload value bits
When the wakeup timer is enabled (WUTE set to 1), the WUTF flag is set every (WUT[15:0]
+ 1) ck_wut cycles. The ck_wut period is selected through WUCKSEL[2:0] bits of the
RTC_CR register
When WUCKSEL[2] = 1, the wakeup timer becomes 17-bits and WUCKSEL[1] effectively
becomes WUT[16] the most-significant bit to be reloaded into the timer.
The first assertion of WUTF occurs (WUT+1) ck_wut cycles after WUTE is set. Setting
WUT[15:0] to 0x0000 with WUCKSEL[2:0] =011 (RTCCLK/2) is forbidden.
1090/1693
DocID024597 Rev 3
RM0351
Real-time clock (RTC)
34.6.7
RTC alarm A register (RTC_ALRMAR)
This register can be written only when ALRAWF is set to 1 in RTC_ISR, or in initialization
mode.
This register is write protected. The write access procedure is described in RTC register
write protection on page 1070.
Address offset: 0x1C
Backup domain reset value: 0x0000 0000
System reset: not affected
31
30
MSK4
WDSEL
29
28
27
DT[1:0]
26
25
24
DU[3:0]
23
22
MSK3
PM
21
20
19
18
HT[1:0]
17
16
HU[3:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
MSK2
rw
MNT[2:0]
rw
rw
MNU[3:0]
rw
rw
rw
MSK1
rw
rw
rw
ST[2:0]
rw
rw
SU[3:0]
rw
rw
rw
Bit 31 MSK4: Alarm A date mask
0: Alarm A set if the date/day match
1: Date/day don’t care in Alarm A comparison
Bit 30 WDSEL: Week day selection
0: DU[3:0] represents the date units
1: DU[3:0] represents the week day. DT[1:0] is don’t care.
Bits 29:28 DT[1:0]: Date tens in BCD format.
Bits 27:24 DU[3:0]: Date units or day in BCD format.
Bit 23 MSK3: Alarm A hours mask
0: Alarm A set if the hours match
1: Hours don’t care in Alarm A comparison
Bit 22 PM: AM/PM notation
0: AM or 24-hour format
1: PM
Bits 21:20 HT[1:0]: Hour tens in BCD format.
Bits 19:16 HU[3:0]: Hour units in BCD format.
Bit 15 MSK2: Alarm A minutes mask
0: Alarm A set if the minutes match
1: Minutes don’t care in Alarm A comparison
Bits 14:12 MNT[2:0]: Minute tens in BCD format.
Bits 11:8 MNU[3:0]: Minute units in BCD format.
Bit 7 MSK1: Alarm A seconds mask
0: Alarm A set if the seconds match
1: Seconds don’t care in Alarm A comparison
Bits 6:4 ST[2:0]: Second tens in BCD format.
Bits 3:0 SU[3:0]: Second units in BCD format.
DocID024597 Rev 3
1091/1693
1106
Real-time clock (RTC)
34.6.8
RM0351
RTC alarm B register (RTC_ALRMBR)
This register can be written only when ALRBWF is set to 1 in RTC_ISR, or in initialization
mode.
This register is write protected. The write access procedure is described in RTC register
write protection on page 1070.
Address offset: 0x20
Backup domain reset value: 0x0000 0000
System reset: not affected
31
30
MSK4
WDSEL
29
28
27
DT[1:0]
26
25
24
DU[3:0]
23
22
MSK3
PM
21
20
19
18
HT[1:0]
17
16
HU[3:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
MSK2
rw
MNT[2:0]
rw
rw
MNU[3:0]
rw
rw
rw
rw
MSK1
rw
rw
ST[2:0]
rw
rw
Bit 31 MSK4: Alarm B date mask
0: Alarm B set if the date and day match
1: Date and day don’t care in Alarm B comparison
Bit 30 WDSEL: Week day selection
0: DU[3:0] represents the date units
1: DU[3:0] represents the week day. DT[1:0] is don’t care.
Bits 29:28 DT[1:0]: Date tens in BCD format
Bits 27:24 DU[3:0]: Date units or day in BCD format
Bit 23 MSK3: Alarm B hours mask
0: Alarm B set if the hours match
1: Hours don’t care in Alarm B comparison
Bit 22 PM: AM/PM notation
0: AM or 24-hour format
1: PM
Bits 21:20 HT[1:0]: Hour tens in BCD format
Bits 19:16 HU[3:0]: Hour units in BCD format
Bit 15 MSK2: Alarm B minutes mask
0: Alarm B set if the minutes match
1: Minutes don’t care in Alarm B comparison
Bits 14:12 MNT[2:0]: Minute tens in BCD format
Bits 11:8 MNU[3:0]: Minute units in BCD format
Bit 7 MSK1: Alarm B seconds mask
0: Alarm B set if the seconds match
1: Seconds don’t care in Alarm B comparison
Bits 6:4 ST[2:0]: Second tens in BCD format
Bits 3:0 SU[3:0]: Second units in BCD format
1092/1693
DocID024597 Rev 3
SU[3:0]
rw
rw
rw
RM0351
Real-time clock (RTC)
34.6.9
RTC write protection register (RTC_WPR)
Address offset: 0x24
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
7
6
5
4
3
2
1
0
w
w
w
w
15
14
13
12
11
10
9
8
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
KEY
w
w
w
w
Bits 31:8 Reserved, must be kept at reset value.
Bits 7:0 KEY: Write protection key
This byte is written by software.
Reading this byte always returns 0x00.
Refer to RTC register write protection for a description of how to unlock RTC register write
protection.
34.6.10
RTC sub second register (RTC_SSR)
Address offset: 0x28
Backup domain reset value: 0x0000 0000
System reset: 0x0000 0000 when BYPSHAD = 0. Not affected when BYPSHAD = 1.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
SS[15:0]
r
r
r
r
r
r
r
r
r
Bits31:16 Reserved, must be kept at reset value
Bits 15:0 SS: Sub second value
SS[15:0] is the value in the synchronous prescaler counter. The fraction of a second is given by
the formula below:
Second fraction = (PREDIV_S - SS) / (PREDIV_S + 1)
Note: SS can be larger than PREDIV_S only after a shift operation. In that case, the correct
time/date is one second less than as indicated by RTC_TR/RTC_DR.
DocID024597 Rev 3
1093/1693
1106
Real-time clock (RTC)
34.6.11
RM0351
RTC shift control register (RTC_SHIFTR)
This register is write protected. The write access procedure is described in RTC register
write protection on page 1070.
Address offset: 0x2C
Backup domain reset value: 0x0000 0000
System reset: not affected
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
ADD1S
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
w
w
w
w
w
w
w
w
15
Res.
SUBFS[14:0]
w
w
w
w
w
w
w
w
Bit 31 ADD1S: Add one second
0: No effect
1: Add one second to the clock/calendar
This bit is write only and is always read as zero. Writing to this bit has no effect when a shift
operation is pending (when SHPF=1, in RTC_ISR).
This function is intended to be used with SUBFS (see description below) in order to effectively
add a fraction of a second to the clock in an atomic operation.
Bits 30:15 Reserved, must be kept at reset value
Bits 14:0 SUBFS: Subtract a fraction of a second
These bits are write only and is always read as zero. Writing to this bit has no effect when a
shift operation is pending (when SHPF=1, in RTC_ISR).
The value which is written to SUBFS is added to the synchronous prescaler counter. Since this
counter counts down, this operation effectively subtracts from (delays) the clock by:
Delay (seconds) = SUBFS / (PREDIV_S + 1)
A fraction of a second can effectively be added to the clock (advancing the clock) when the
ADD1S function is used in conjunction with SUBFS, effectively advancing the clock by:
Advance (seconds) = (1 - (SUBFS / (PREDIV_S + 1))).
Note: Writing to SUBFS causes RSF to be cleared. Software can then wait until RSF=1 to be
sure that the shadow registers have been updated with the shifted time.
1094/1693
DocID024597 Rev 3
RM0351
Real-time clock (RTC)
34.6.12
RTC timestamp time register (RTC_TSTR)
The content of this register is valid only when TSF is set to 1 in RTC_ISR. It is cleared when
TSF bit is reset.
Address offset: 0x30
Backup domain reset value: 0x0000 0000
System reset: not affected
31
30
29
28
27
26
25
24
23
22
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PM
r
15
14
Res.
13
12
11
MNT[2:0]
r
r
10
9
8
MNU[3:0]
r
r
r
r
7
6
Res.
r
21
20
19
18
HT[1:0]
r
r
r
r
5
4
3
2
ST[2:0]
r
r
17
16
HU[3:0]
r
r
1
0
r
r
SU[3:0]
r
r
r
Bits 31:23 Reserved, must be kept at reset value
Bit 22 PM: AM/PM notation
0: AM or 24-hour format
1: PM
Bits 21:20 HT[1:0]: Hour tens in BCD format.
Bits 19:16 HU[3:0]: Hour units in BCD format.
Bit 15 Reserved, must be kept at reset value
Bits 14:12 MNT[2:0]: Minute tens in BCD format.
Bits 11:8 MNU[3:0]: Minute units in BCD format.
Bit 7 Reserved, must be kept at reset value
Bits 6:4 ST[2:0]: Second tens in BCD format.
Bits 3:0 SU[3:0]: Second units in BCD format.
DocID024597 Rev 3
1095/1693
1106
Real-time clock (RTC)
34.6.13
RM0351
RTC timestamp date register (RTC_TSDR)
The content of this register is valid only when TSF is set to 1 in RTC_ISR. It is cleared when
TSF bit is reset.
Address offset: 0x34
Backup domain reset value: 0x0000 0000
System reset: not affected
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
r
r
15
WDU[1:0]
r
r
MT
r
r
MU[3:0]
r
r
r
r
Bits 31:16 Reserved, must be kept at reset value
Bits 15:13 WDU[1:0]: Week day units
Bit 12 MT: Month tens in BCD format
Bits 11:8 MU[3:0]: Month units in BCD format
Bits 7:6 Reserved, must be kept at reset value
Bits 5:4 DT[1:0]: Date tens in BCD format
Bits 3:0 DU[3:0]: Date units in BCD format
1096/1693
DocID024597 Rev 3
DT[1:0]
r
DU[3:0]
r
r
r
RM0351
Real-time clock (RTC)
34.6.14
RTC time-stamp sub second register (RTC_TSSSR)
The content of this register is valid only when RTC_ISR/TSF is set. It is cleared when the
RTC_ISR/TSF bit is reset.
Address offset: 0x38
Backup domain reset value: 0x0000 0000
System reset: not affected
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
SS[15:0]
r
r
r
r
r
r
r
r
r
Bits 31:16 Reserved, must be kept at reset value
Bits 15:0 SS: Sub second value
SS[15:0] is the value of the synchronous prescaler counter when the timestamp event
occurred.
DocID024597 Rev 3
1097/1693
1106
Real-time clock (RTC)
34.6.15
RM0351
RTC calibration register (RTC_CALR)
This register is write protected. The write access procedure is described in RTC register
write protection on page 1070.
Address offset: 0x3C
Backup domain reset value: 0x0000 0000
System reset: not affected
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
CALP
CALW8
CALW
16
Res.
Res.
Res.
Res.
rw
rw
rw
rw
rw
rw
rw
CALM[8:0]
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value
Bit 15 CALP: Increase frequency of RTC by 488.5 ppm
0: No RTCCLK pulses are added.
1: One RTCCLK pulse is effectively inserted every 211 pulses (frequency increased by
488.5 ppm).
This feature is intended to be used in conjunction with CALM, which lowers the frequency of
the calendar with a fine resolution. if the input frequency is 32768 Hz, the number of RTCCLK
pulses added during a 32-second window is calculated as follows: (512 * CALP) - CALM.
Refer to Section 34.3.12: RTC smooth digital calibration.
Bit 14 CALW8: Use an 8-second calibration cycle period
When CALW8 is set to ‘1’, the 8-second calibration cycle period is selected.
Note: CALM[1:0] are stuck at “00” when CALW8=’1’. Refer to Section 34.3.12: RTC smooth
digital calibration.
Bit 13 CALW16: Use a 16-second calibration cycle period
When CALW16 is set to ‘1’, the 16-second calibration cycle period is selected.This bit must
not be set to ‘1’ if CALW8=1.
Note: CALM[0] is stuck at ‘0’ when CALW16=’1’. Refer to Section 34.3.12: RTC smooth
digital calibration.
Bits 12:9 Reserved, must be kept at reset value
Bits 8:0 CALM[8:0]: Calibration minus
The frequency of the calendar is reduced by masking CALM out of 220 RTCCLK pulses (32
seconds if the input frequency is 32768 Hz). This decreases the frequency of the calendar
with a resolution of 0.9537 ppm.
To increase the frequency of the calendar, this feature should be used in conjunction with
CALP. See Section 34.3.12: RTC smooth digital calibration on page 1074.
1098/1693
DocID024597 Rev 3
RM0351
Real-time clock (RTC)
34.6.16
RTC tamper configuration register (RTC_TAMPCR)
Address offset: 0x40
Backup domain reset value: 0x0000 0000
System reset: not affected
31
30
29
28
27
26
25
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
TAMP
PUDIS
rw
TAMPPRCH
[1:0]
rw
rw
TAMPFLT[1:0]
rw
rw
24
rw
22
21
20
19
18
17
16
rw
rw
rw
rw
rw
rw
rw
rw
rw
8
7
6
5
4
3
2
1
0
TAMPFREQ[2:0]
rw
23
TAMP3
TAMP2
TAMP1
TAMP3
TAMP3 TAMP2
TAMP2 TAMP1
TAMP1
NO
NO
NO
MF
IE
MF
IE
MF
IE
ERASE
ERASE
ERASE
TAMP
TS
rw
rw
TAMP3 TAMP3 TAMP2 TAMP2
TRG
E
TRG
E
rw
rw
rw
rw
TAMPI
E
rw
TAMP1 TAMP1
TRG
E
rw
rw
Bits 31:25 Reserved, must be kept at reset value.
Bit 24 TAMP3MF: Tamper 3 mask flag
0: Tamper 3 event generates a trigger event and TAMP3F must be cleared by software to
allow next tamper event detection.
1: Tamper 3 event generates a trigger event. TAMP3F is masked and internally cleared by
hardware. The backup registers are not erased.
Note: The Tamper 3 interrupt must not be enabled when TAMP3MF is set.
Bit 23 TAMP3NOERASE: Tamper 3 no erase
0: Tamper 3 event erases the backup registers.
1: Tamper 3 event does not erase the backup registers.
Bit 22 TAMP3IE: Tamper 3 interrupt enable
0: Tamper 3 interrupt is disabled if TAMPIE = 0.
1: Tamper 3 interrupt enabled.
Bit 21 TAMP2MF: Tamper 2 mask flag
0: Tamper 2 event generates a trigger event and TAMP2F must be cleared by software to
allow next tamper event detection.
1: Tamper 2 event generates a trigger event. TAMP2F is masked and internally cleared by
hardware. The backup registers are not erased.
Note: The Tamper 2 interrupt must not be enabled when TAMP2MF is set.
Bit 20 TAMP2NOERASE: Tamper 2 no erase
0: Tamper 2 event erases the backup registers.
1: Tamper 2 event does not erase the backup registers.
Bit 19 TAMP2IE: Tamper 2 interrupt enable
0: Tamper 2 interrupt is disabled if TAMPIE = 0.
1: Tamper 2 interrupt enabled.
Bit 18 TAMP1MF: Tamper 1 mask flag
0: Tamper 1 event generates a trigger event and TAMP1F must be cleared by software to
allow next tamper event detection.
1: Tamper 1 event generates a trigger event. TAMP1F is masked and internally cleared by
hardware.The backup registers are not erased.
Note: The Tamper 1 interrupt must not be enabled when TAMP1MF is set.
DocID024597 Rev 3
1099/1693
1106
Real-time clock (RTC)
RM0351
Bit 17 TAMP1NOERASE: Tamper 1 no erase
0: Tamper 1 event erases the backup registers.
1: Tamper 1 event does not erase the backup registers.
Bit 16 TAMP1IE: Tamper 1 interrupt enable
0: Tamper 1 interrupt is disabled if TAMPIE = 0.
1: Tamper 1 interrupt enabled.
Bit 15 TAMPPUDIS: RTC_TAMPx pull-up disable
This bit determines if each of the RTC_TAMPx pins are precharged before each sample.
0: Precharge RTC_TAMPx pins before sampling (enable internal pull-up)
1: Disable precharge of RTC_TAMPx pins.
Bits 14:13 TAMPPRCH[1:0]: RTC_TAMPx precharge duration
These bit determines the duration of time during which the pull-up/is activated before each
sample. TAMPPRCH is valid for each of the RTC_TAMPx inputs.
0x0: 1 RTCCLK cycle
0x1: 2 RTCCLK cycles
0x2: 4 RTCCLK cycles
0x3: 8 RTCCLK cycles
Bits 12:11 TAMPFLT[1:0]: RTC_TAMPx filter count
These bits determines the number of consecutive samples at the specified level (TAMP*TRG)
needed to activate a Tamper event. TAMPFLT is valid for each of the RTC_TAMPx inputs.
0x0: Tamper event is activated on edge of RTC_TAMPx input transitions to the active level
(no internal pull-up on RTC_TAMPx input).
0x1: Tamper event is activated after 2 consecutive samples at the active level.
0x2: Tamper event is activated after 4 consecutive samples at the active level.
0x3: Tamper event is activated after 8 consecutive samples at the active level.
Bits 10:8 TAMPFREQ[2:0]: Tamper sampling frequency
Determines the frequency at which each of the RTC_TAMPx inputs are sampled.
0x0: RTCCLK / 32768 (1 Hz when RTCCLK = 32768 Hz)
0x1: RTCCLK / 16384 (2 Hz when RTCCLK = 32768 Hz)
0x2: RTCCLK / 8192 (4 Hz when RTCCLK = 32768 Hz)
0x3: RTCCLK / 4096 (8 Hz when RTCCLK = 32768 Hz)
0x4: RTCCLK / 2048 (16 Hz when RTCCLK = 32768 Hz)
0x5: RTCCLK / 1024 (32 Hz when RTCCLK = 32768 Hz)
0x6: RTCCLK / 512 (64 Hz when RTCCLK = 32768 Hz)
0x7: RTCCLK / 256 (128 Hz when RTCCLK = 32768 Hz)
Bit 7 TAMPTS: Activate timestamp on tamper detection event
0: Tamper detection event does not cause a timestamp to be saved
1: Save timestamp on tamper detection event
TAMPTS is valid even if TSE=0 in the RTC_CR register.
Bit 6 TAMP3TRG: Active level for RTC_TAMP3 input
if TAMPFLT ≠ 00:
0: RTC_TAMP3 input staying low triggers a tamper detection event.
1: RTC_TAMP3 input staying high triggers a tamper detection event.
if TAMPFLT = 00:
0: RTC_TAMP3 input rising edge triggers a tamper detection event.
1: RTC_TAMP3 input falling edge triggers a tamper detection event.
1100/1693
DocID024597 Rev 3
RM0351
Real-time clock (RTC)
Bit 5 TAMP3E: RTC_TAMP3 detection enable
0: RTC_TAMP3 input detection disabled
1: RTC_TAMP3 input detection enabled
Bit 4 TAMP2TRG: Active level for RTC_TAMP2 input
if TAMPFLT != 00:
0: RTC_TAMP2 input staying low triggers a tamper detection event.
1: RTC_TAMP2 input staying high triggers a tamper detection event.
if TAMPFLT = 00:
0: RTC_TAMP2 input rising edge triggers a tamper detection event.
1: RTC_TAMP2 input falling edge triggers a tamper detection event.
Bit 3 TAMP2E: RTC_TAMP2 input detection enable
0: RTC_TAMP2 detection disabled
1: RTC_TAMP2 detection enabled
Bit 2 TAMPIE: Tamper interrupt enable
0: Tamper interrupt disabled
1: Tamper interrupt enabled.
Note: This bit enables the interrupt for all tamper pins events, whatever TAMPxIE level. If this
bit is cleared, each tamper event interrupt can be individually enabled by setting
TAMPxIE.
Bit 1 TAMP1TRG: Active level for RTC_TAMP1 input
If TAMPFLT != 00
0: RTC_TAMP1 input staying low triggers a tamper detection event.
1: RTC_TAMP1 input staying high triggers a tamper detection event.
if TAMPFLT = 00:
0: RTC_TAMP1 input rising edge triggers a tamper detection event.
1: RTC_TAMP1 input falling edge triggers a tamper detection event.
Bit 0 TAMP1E: RTC_TAMP1 input detection enable
0: RTC_TAMP1 detection disabled
1: RTC_TAMP1 detection enabled
Caution:
When TAMPFLT = 0, TAMP1E must be reset when TAMP1TRG is changed to avoid
spuriously setting TAMP1F.
DocID024597 Rev 3
1101/1693
1106
Real-time clock (RTC)
34.6.17
RM0351
RTC alarm A sub second register (RTC_ALRMASSR)
This register can be written only when ALRAE is reset in RTC_CR register, or in initialization
mode.
This register is write protected. The write access procedure is described in RTC register
write protection on page 1070
Address offset: 0x44
Backup domain reset value: 0x0000 0000
System reset: not affected
31
30
29
28
Res.
Res.
Res.
Res.
27
26
25
24
rw
rw
rw
rw
15
14
13
12
11
10
9
8
rw
rw
rw
rw
rw
rw
rw
MASKSS[3:0]
Res.
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
7
6
5
4
3
2
1
0
rw
rw
rw
rw
w
rw
rw
SS[14:0]
rw
Bits 31:28 Reserved, must be kept at reset value.
Bits 27:24 MASKSS[3:0]: Mask the most-significant bits starting at this bit
0: No comparison on sub seconds for Alarm A. The alarm is set when the seconds unit is
incremented (assuming that the rest of the fields match).
1: SS[14:1] are don’t care in Alarm A comparison. Only SS[0] is compared.
2: SS[14:2] are don’t care in Alarm A comparison. Only SS[1:0] are compared.
3: SS[14:3] are don’t care in Alarm A comparison. Only SS[2:0] are compared.
...
12: SS[14:12] are don’t care in Alarm A comparison. SS[11:0] are compared.
13: SS[14:13] are don’t care in Alarm A comparison. SS[12:0] are compared.
14: SS[14] is don’t care in Alarm A comparison. SS[13:0] are compared.
15: All 15 SS bits are compared and must match to activate alarm.
The overflow bits of the synchronous counter (bits 15) is never compared. This bit can be
different from 0 only after a shift operation.
Bits23:15 Reserved, must be kept at reset value.
Bits 14:0 SS[14:0]: Sub seconds value
This value is compared with the contents of the synchronous prescaler counter to determine if
Alarm A is to be activated. Only bits 0 up MASKSS-1 are compared.
1102/1693
DocID024597 Rev 3
RM0351
Real-time clock (RTC)
34.6.18
RTC alarm B sub second register (RTC_ALRMBSSR)
This register can be written only when ALRBE is reset in RTC_CR register, or in initialization
mode.
This register is write protected.The write access procedure is described in Section : RTC
register write protection.
Address offset: 0x48
Backup domain reset value: 0x0000 0000
System reset: not affected
31
30
29
28
Res.
Res.
Res.
Res.
27
26
25
24
rw
rw
rw
rw
15
14
13
12
11
10
9
8
rw
rw
rw
rw
rw
rw
rw
MASKSS[3:0]
Res.
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
7
6
5
4
3
2
1
0
rw
rw
rw
rw
w
rw
rw
SS[14:0]
rw
Bits 31:28 Reserved, must be kept at reset value.
Bits 27:24 MASKSS[3:0]: Mask the most-significant bits starting at this bit
0x0: No comparison on sub seconds for Alarm B. The alarm is set when the seconds unit is
incremented (assuming that the rest of the fields match).
0x1: SS[14:1] are don’t care in Alarm B comparison. Only SS[0] is compared.
0x2: SS[14:2] are don’t care in Alarm B comparison. Only SS[1:0] are compared.
0x3: SS[14:3] are don’t care in Alarm B comparison. Only SS[2:0] are compared.
...
0xC: SS[14:12] are don’t care in Alarm B comparison. SS[11:0] are compared.
0xD: SS[14:13] are don’t care in Alarm B comparison. SS[12:0] are compared.
0xE: SS[14] is don’t care in Alarm B comparison. SS[13:0] are compared.
0xF: All 15 SS bits are compared and must match to activate alarm.
The overflow bits of the synchronous counter (bits 15) is never compared. This bit can be
different from 0 only after a shift operation.
Bits 23:15
Reserved, must be kept at reset value.
Bits 14:0 SS[14:0]: Sub seconds value
This value is compared with the contents of the synchronous prescaler counter to determine
if Alarm B is to be activated. Only bits 0 up to MASKSS-1 are compared.
DocID024597 Rev 3
1103/1693
1106
Real-time clock (RTC)
34.6.19
RM0351
RTC option register (RTC_OR)
Address offset: 0x4C
Backup domain reset value: 0x0000 0000
System reset: not affected
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
RTC_
OUT_
RMP
RTC_
ALARM
_TYPE
rw
rw
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Bits 31:2 Reserved, must be kept at reset value.
Bit 1 RTC_OUT_RMP: RTC_OUT remap
Setting this bit allows to remap the RTC outputs on PB14 as follows:
RTC_OUT_RMP = ‘0’:
If OSEL/= “00” : RTC_ALARM is output on PC13
If OSEL= “00” and COE = ‘1’ : RTC_CALIB is output on PC13
RTC_OUT_RMP = ‘1’:
If OSEL /= “00” and COE = ‘0’ : RTC_ALARM is output on PB14
If OSEL = “00” and COE = ‘1’: RTC_CALIB is output on PB14
If OSEL /= “00” and COE = ‘1’: RTC_CALIB is output on PB14 and RTC_ALARM is output on
PC13.
Bit 0 RTC_ALARM_TYPE: RTC_ALARM output type on PC13
This bit is set and cleared by software
0: RTC_ALARM, when mapped on PC13, is open-drain output
1: RTC_ALARM, when mapped on PC13, is push-pull output
34.6.20
RTC backup registers (RTC_BKPxR)
Address offset: 0x50 to 0xCC
Backup domain reset value: 0x0000 0000
System reset: not affected
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
BKP[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
w
rw
rw
BKP[15:0]
1104/1693
rw
DocID024597 Rev 3
RM0351
Real-time clock (RTC)
Bits 31:0 BKP[31:0]
The application can write or read data to and from these registers.
They are powered-on by VBAT when VDD is switched off, so that they are not reset by
System reset, and their contents remain valid when the device operates in low-power mode.
This register is reset on a tamper detection event, as long as TAMPxF=1. or when the Flash
readout protection is disabled.
34.6.21
RTC register map
Res.
0
0
0
0
0
1
1
1
1
1
1
1
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
0
0
0
0
0
0
PM
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RTC_WPR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
DU[3:0]
0
0
0
0
0
HT
[1:0]
0
0
0
0
HU[3:0]
MNT[2:0]
0
0
0
MNU[3:0]
0
MNT[2:0]
0
0
0
MNU[3:0]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Reset value
Res.
RTC_SHIFTR
Res.
0
ADD1S
Reset value
0x2C
0
0
0
0
0
WUCKS
EL[2:0]
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
1
ST[2:0]
0
0
0
SU[3:0]
0
ST[2:0]
0
0
0
0
0
0
SU[3:0]
0
0
0
0
KEY
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SUBFS[14:0]
0
DocID024597 Rev 3
1
SS[15:0]
Res.
RTC_SSR
0
0
Res.
Reset value
0x28
0
MSK2
DT
[1:0]
0
HU[3:0]
MSK2
0
0
MSK1
MSK3
Reset value
0
MSK2
RTC_ALRMBR
0
PM
0
MSK3
0
Res.
1
Res.
1
Res.
1
MSK4
1
WDSEL
1
MSK4
1
WDSEL
1
Reset value
HT
[1:0]
1
WUT[15:0]
RTC_ALRMAR
DU[3:0]
0
PREDIV_S[14:0]
1
DT
[1:0]
0
ALRAWF
0
0
ALRBWF
ALRAF
0
0
TSEDGE
WUTF
ALRBF
0
0
SHPF
TSF
0
DU[3:0]
WUT WF
0
0
BYPSHAD
0
0
REFCKON
0
0
RSF
0
0
INITS
ALRAE
0
0
DT
[1:0]
Res.
Res.
WUTE
ALRBE
0
0
FMT
TSE
0
Res.
ALRAIE
0
PREDIV_A[6:0]
0
SU[3:0]
INITF
ALRBIE
0
ST[2:0]
INIT
Res.
0
TSOVF
1
TAMP1F
0
TSIE
0
WUTIE
0
.TAMP2F
Res.
0
MU[3:0]
Res.
0x24
1
0
Res.
0x20
0
0
0
Reset value
0x1C
0
0
ADD1H
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
RTC_WUTR
Res.
0x14
Res.
Reset value
WDU[2:0]
0
TAMP3F
0
0
RECALPF
0
0
0
BKP
0
0
0
SUB1H
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
RTC_PRER
0
0
Reset value
0x10
0
MNU[3:0]
Res.
0
Res.
POL
COE
0
Res.
OSE
L
[1:0]
0
COSEL
0
Res.
0
0
MNT[2:0]
MT
0
YU[3:0]
ITSE
Res.
Res.
Res.
Res.
Res.
RTC_ISR
Res.
0x0C
Res.
Reset value
0
Res.
Res.
Res.
Res.
Res.
Res.
RTC_CR
Res.
0x08
0
HU[3:0]
YT[3:0]
0
Res.
Reset value
HT
[1:0]
ITSF
Res.
Res.
Res.
Res.
Res.
Res.
RTC_DR
Res.
0x04
0
Res.
Reset value
PM
Res.
Res.
Res.
Res.
Res.
Res.
Res.
RTC_TR
Res.
0x00
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 174. RTC register map and reset values
0
0
0
0
0
0
0
0
1105/1693
1106
0x50
to 0xCC
0x4C
RTC_ OR
Reset value
Reset value
1106/1693
0
0
0
0
0
0
Reset value
0
0
0
0
0
0
0
0
MASKSS
[3:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RTC_BKP0R
0
to
RTC_BKP31R
0
TAMP2NOERASE
TAMP2IE
TAMP1MF
TAMP1NOERASE
TAMP1IE
TAMPPUDIS
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
DocID024597 Rev 3
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
WDU[1:0]
0
0
0
0
0
0
0
0
0
0
0
0
MT
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MU[3:0]
0
0
0
0
0
0
0
0
0
0
Refer to Section 2.2.2 on page 67 for the register boundary addresses.
0
SS[14:0]
SS[14:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res.
0
Res.
0
TAMP1E
0
.TAMPIE
0
TAMP1TRG
0
.TAMP2E
0
TAMP3E
0
TAMP2-TRG
0
Res.
0
TAMPTS
0
Res.
0
TAMP3-TRG
0
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
TAMPFREQ[2:0]
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
TAMPFLT[1:0]
0
CALW16
Reset value
0
CALW8
Reset value
CALP
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
TAMPPRCH[1:0]
TAMP3IE
TAMP2MF
TAMP3NOERASE
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
0
Res.
0
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
Reset value
MASKSS
[3:0]
TAMP3MF
Reset value
Res.
Res.
Res.
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
HT[1:0]
PM
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
RTC_TSTR
MNT[2:0]
Res.
Res.
MNU[3:0]
ST[2:0]
0
0
0
0
0
0
0
0
DT
[1:0]
0
Reset value
RTC_ALARM_TYPE
RTC_
ALRMBSSR
Res.
Register
HU[3:0]
RTC_OUT_RMP
0x48
RTC_
ALRMASSR
Res.
0x44
RTC_TAMPCR
Res.
0x40
RTC_ CALR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0x3C
RTC_TSSSR
Res.
0x38
RTC_TSDR
Res.
0x34
Res.
0x30
Res.
Offset
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Real-time clock (RTC)
RM0351
Table 174. RTC register map and reset values (continued)
SU[3:0]
0
0
DU[3:0]
SS[15:0]
0
0
0
0
0
0
0
0
0
0
0
0
CALM[8:0]
0
0
0
0
0
0
0
0
0
0
BKP[31:0]
BKP[31:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RM0351
Inter-integrated circuit (I2C) interface
35
Inter-integrated circuit (I2C) interface
35.1
Introduction
The I2C (inter-integrated circuit) bus interface handles communications between the
microcontroller and the serial I2C bus. It provides multimaster capability, and controls all I2C
bus-specific sequencing, protocol, arbitration and timing. It supports Standard-mode (Sm),
Fast-mode (Fm) and Fast-mode Plus (Fm+).
It is also SMBus (system management bus) and PMBus (power management bus)
compatible.
DMA can be used to reduce CPU overload.
35.2
I2C main features
•
I2C bus specification rev03 compatibility:
–
Slave and master modes
–
Multimaster capability
–
Standard-mode (up to 100 kHz)
–
Fast-mode (up to 400 kHz)
–
Fast-mode Plus (up to 1 MHz)
–
7-bit and 10-bit addressing mode
–
Multiple 7-bit slave addresses (2 addresses, 1 with configurable mask)
–
All 7-bit addresses acknowledge mode
–
General call
–
Programmable setup and hold times
–
Easy to use event management
–
Optional clock stretching
–
Software reset
•
1-byte buffer with DMA capability
•
Programmable analog and digital noise filters
DocID024597 Rev 3
1107/1693
1177
Inter-integrated circuit (I2C) interface
RM0351
The following additional features are also available depending on the product
implementation (see Section 35.3: I2C implementation):
•
SMBus specification rev 2.0 compatibility:
–
35.3
Hardware PEC (Packet Error Checking) generation and verification with ACK
control
–
Command and data acknowledge control
–
Address resolution protocol (ARP) support
–
Host and Device support
–
SMBus alert
–
Timeouts and idle condition detection
•
PMBus rev 1.1 standard compatibility
•
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming
•
Wakeup from Stop mode on address match.
I2C implementation
This manual describes the full set of features implemented in I2C peripheral. In the
STM32L4x6 devices I2C1, I2C2 and I2C3 implement the full set of features as shown in the
following table, with the restriction than only I2C3 can wake up from Stop 2 mode.
Table 175. STM32L4x6 I2C implementation
I2C features(1)
I2C1
I2C2
I2C3
7-bit addressing mode
X
X
X
10-bit addressing mode
X
X
X
Standard-mode (up to 100 kbit/s)
X
X
X
Fast-mode (up to 400 kbit/s)
X
X
X
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)
X
X
X
Independent clock
X
X
X
SMBus
X
X
X
Wakeup from Stop 0 mode
X
X
X
Wakeup from Stop 1 mode
X
X
X
Wakeup from Stop 2 mode
-
-
X
1. X = supported.
35.4
I2C functional description
In addition to receiving and transmitting data, this interface converts it from serial to parallel
format and vice versa. The interrupts are enabled or disabled by software. The interface is
connected to the I2C bus by a data pin (SDA) and by a clock pin (SCL). It can be connected
with a standard (up to 100 kHz), Fast-mode (up to 400 kHz) or Fast-mode Plus (up to
1 MHz) I2C bus.
1108/1693
DocID024597 Rev 3
RM0351
Inter-integrated circuit (I2C) interface
This interface can also be connected to a SMBus with the data pin (SDA) and clock pin
(SCL).
If SMBus feature is supported: the additional optional SMBus Alert pin (SMBA) is also
available.
35.4.1
I2C block diagram
The block diagram of the I2C interface is shown in Figure 352.
Figure 352. I2C block diagram
6<6&/.
$3%
,&&/.
)URPV\VWHPFRQILJXUDWLRQ
FRQWUROOHU 6<6&)*
)0GULYH
+6,
'DWDFRQWURO
6KLIWUHJLVWHU
5&&B,&[6:
IURPUHVHWDQG
FORFN
FRQWUROOHU
'LJLWDO
QRLVH
ILOWHU
:83(1
$QDORJ
QRLVH
ILOWHU
*3,2
ORJLF
,&[B6'$
60%86
3(&
JHQHUDWLRQ
FKHFN
:DNHXS
RQ
DGGUHVV
PDWFK
)URPV\VWHPFRQILJXUDWLRQ
FRQWUROOHU 6<6&)*
)0GULYH
&ORFNFRQWURO
0DVWHUFORFN
JHQHUDWLRQ
6ODYHFORFN
VWUHWFKLQJ
'LJLWDO
QRLVH
ILOWHU
$QDORJ
QRLVH
ILOWHU
*3,2
ORJLF
,&[B6&/
60%XV
7LPHRXW
FKHFN
60%XV$OHUW
FRQWURO
VWDWXV
3&/.
,&[B60%$
5HJLVWHUV
$3%EXV
069
DocID024597 Rev 3
1109/1693
1177
Inter-integrated circuit (I2C) interface
RM0351
The I2C is clocked by an independent clock source which allows to the I2C to operate
independently from the PCLK frequency.
This independent clock source can be selected for either of the following three clock
sources:
•
PCLK1: APB1 clock (default value)
•
HSI16: internal 16 MHz RC oscillator
•
SYSCLK: system clock
Refer to Section 6: Reset and clock control (RCC) for more details.
I2C I/Os support 20 mA output current drive for Fast-mode Plus operation. This is enabled
by setting the driving capability control bits for SCL and SDA in Section 8.2.3: SYSCFG
external interrupt configuration register 1 (SYSCFG_EXTICR1)
35.4.2
I2C clock requirements
The I2C kernel is clocked by I2CCLK.
The I2CCLK period tI2CCLK must respect the following conditions:
tI2CCLK < (tLOW - tfilters ) / 4 and tI2CCLK < tHIGH
with:
tLOW: SCL low time and tHIGH : SCL high time
tfilters: when enabled, sum of the delays brought by the analog filter and by the digital filter.
Analog filter delay is maximum 260 ns. Digital filter delay is DNF x tI2CCLK.
The PCLK clock period tPCLK must respect the following condition:
tPCLK < 4/3 tSCL
with tSCL: SCL period
Caution:
When the I2C kernel is clocked by PCLK. PCLK must respect the conditions for tI2CCLK.
35.4.3
Mode selection
The interface can operate in one of the four following modes:
•
Slave transmitter
•
Slave receiver
•
Master transmitter
•
Master receiver
By default, it operates in slave mode. The interface automatically switches from slave to
master when it generates a START condition, and from master to slave if an arbitration loss
or a STOP generation occurs, allowing multimaster capability.
Communication flow
In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A
serial data transfer always begins with a START condition and ends with a STOP condition.
Both START and STOP conditions are generated in master mode by software.
1110/1693
DocID024597 Rev 3
RM0351
Inter-integrated circuit (I2C) interface
In Slave mode, the interface is capable of recognizing its own addresses (7 or 10-bit), and
the General Call address. The General Call address detection can be enabled or disabled
by software. The reserved SMBus addresses can also be enabled by software.
Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the
START condition contain the address (one in 7-bit mode, two in 10-bit mode). The address
is always transmitted in Master mode.
A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must
send an acknowledge bit to the transmitter. Refer to the following figure.
Figure 353. I2C bus protocol
6'$
06%
$&.
6&/
6WDUW
FRQGLWLRQ
6WRS
FRQGLWLRQ
069
Acknowledge can be enabled or disabled by software. The I2C interface addresses can be
selected by software.
DocID024597 Rev 3
1111/1693
1177
Inter-integrated circuit (I2C) interface
35.4.4
RM0351
I2C initialization
Enabling and disabling the peripheral
The I2C peripheral clock must be configured and enabled in the clock controller (refer to
Section 6: Reset and clock control (RCC)).
Then the I2C can be enabled by setting the PE bit in the I2C_CR1 register.
When the I2C is disabled (PE=0), the I2C performs a software reset. Refer to
Section 35.4.5: Software reset for more details.
Noise filters
Before enabling the I2C peripheral by setting the PE bit in I2C_CR1 register, the user must
configure the noise filters, if needed. By default, an analog noise filter is present on the SDA
and SCL inputs. This analog filter is compliant with the I2C specification which requires the
suppression of spikes with a pulse width up to 50 ns in Fast-mode and Fast-mode Plus. The
user can disable this analog filter by setting the ANFOFF bit, and/or select a digital filter by
configuring the DNF[3:0] bit in the I2C_CR1 register.
When the digital filter is enabled, the level of the SCL or the SDA line is internally changed
only if it remains stable for more than DNF x I2CCLK periods. This allows to suppress
spikes with a programmable length of 1 to 15 I2CCLK periods.
Table 176. Comparison of analog vs. digital filters
Pulse width of
suppressed spikes
Benefits
Drawbacks
Caution:
1112/1693
Analog filter
Digital filter
≥ 50 ns
Programmable length from 1 to 15 I2C peripheral
clocks
Available in Stop mode
– Programmable length: extra filtering capability
vs. standard requirements
– Stable length
Variation vs. temperature,
voltage, process
Wakeup from Stop mode on address match is not
available when digital filter is enabled
Changing the filter configuration is not allowed when the I2C is enabled.
DocID024597 Rev 3
RM0351
Inter-integrated circuit (I2C) interface
I2C timings
The timings must be configured in order to guarantee a correct data hold and setup time,
used in master and slave modes. This is done by programming the PRESC[3:0],
SCLDEL[3:0] and SDADEL[3:0] bits in the I2C_TIMINGR register.
Figure 354. Setup and hold timings
d,K>d/D
6&/IDOOLQJHGJHLQWHUQDO
GHWHFWLRQ
W6<1& 6'$'(/6&/VWUHWFKHGORZE\WKH,&
6'$RXWSXWGHOD\
6&/
6'$
W+''$7
'DWDKROGWLPHLQFDVHRIWUDQVPLVVLRQWKHGDWDLVVHQWRQ6'$RXWSXWDIWHU
WKH6'$'(/GHOD\LILWLVDOUHDG\DYDLODEOHLQ,&B7;'5
d^dhWd/D
6&/'(/
6&/VWUHWFKHGORZE\WKH,&
6&/
6'$
W6867$
'DWDVHWXSWLPHLQFDVHRIWUDQVPLVVLRQWKH6&/'(/FRXQWHUVWDUWV
ZKHQWKHGDWDLVVHQWRQ6'$RXWSXW
06Y9
•
When the SCL falling edge is internally detected, a delay is inserted before sending
SDA output. This delay is tSDADEL = SDADEL x tPRESC + tI2CCLK where tPRESC = (PRESC+1)
x tI2CCLK.
TSDADEL impacts the hold time tHD;DAT.
The total SDA output delay is:
tSYNC1 + {[SDADEL x (PRESC+1) + 1] x tI2CCLK }
DocID024597 Rev 3
1113/1693
1177
Inter-integrated circuit (I2C) interface
RM0351
tSYNC1 duration depends on these parameters:
–
SCL falling slope
–
When enabled, input delay brought by the analog filter: tAF(min) < tAF < tAF(max) ns.
–
When enabled, input delay brought by the digital filter: tDNF = DNF x tI2CCLK
–
Delay due to SCL synchronization to I2CCLK clock (2 to 3 I2CCLK periods)
In order to bridge the undefined region of the SCL falling edge, the user must program
SDADEL in such a way that:
{tf (max) +tHD;DAT (min) -tAF(min) - [(DNF +3) x tI2CCLK]} / {(PRESC +1) x tI2CCLK } ≤ SDADEL
SDADEL ≤ {tHD;DAT (max) -tAF(max) - [(DNF+4) x tI2CCLK]} / {(PRESC +1) x tI2CCLK }
Note:
tAF(min) / tAF(max) are part of the equation only when the analog filter is enabled. Refer to
device datasheet for tAF values.
The maximum tHD;DAT could be 3.45 µs, 0.9 µs and 0.45 µs for Standard-mode, Fast-mode
and Fast-mode Plus, but must be less than the maximum of tVD;DAT by a transition time.
This maximum must only be met if the device does not stretch the LOW period (tLOW) of the
SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before
it releases the clock.
The SDA rising edge is usually the worst case, so in this case the previous equation
becomes:
SDADEL ≤ {tVD;DAT (max) -tr (max) -260 ns - [(DNF+4) x tI2CCLK]} / {(PRESC +1) x tI2CCLK }.
Note:
This condition can be violated when NOSTRETCH=0, because the device stretches SCL
low to guarantee the set-up time, according to the SCLDEL value.
Refer to Table 177: I2C-SMBUS specification data setup and hold times for tf, tr, tHD;DAT and
tVD;DAT standard values.
•
After tSDADEL delay, or after sending SDA output in case the slave had to stretch the
clock because the data was not yet written in I2C_TXDR register, SCL line is kept at
low level during the setup time. This setup time is tSCLDEL = (SCLDEL+1) x tPRESC where
tPRESC = (PRESC+1) x tI2CCLK.
tSCLDEL impacts the setup time tSU;DAT .
In order to bridge the undefined region of the SDA transition (rising edge usually worst
case), the user must program SCLDEL in such a way that:
{[tr (max) + tSU;DAT (min)] / [(PRESC+1)] x tI2CCLK]} - 1 <= SCLDEL
Refer to Table 177: I2C-SMBUS specification data setup and hold times for tr and tSU;DAT
standard values.
The SDA and SCL transition time values to be used are the ones in the application. Using
the maximum values from the standard increases the constraints for the SDADEL and
SCLDEL calculation, but ensures the feature whatever the application.
Note:
1114/1693
At every clock pulse, after SCL falling edge detection, the I2C master or slave stretches SCL
low during at least [(SDADEL+SCLDEL+1) x (PRESC+1) + 1] x tI2CCLK, in both transmission
and reception modes. In transmission mode, in case the data is not yet written in I2C_TXDR
when SDADEL counter is finished, the I2C keeps on stretching SCL low until the next data
is written. Then new data MSB is sent on SDA output, and SCLDEL counter starts,
continuing stretching SCL low to guarantee the data setup time.
DocID024597 Rev 3
RM0351
Inter-integrated circuit (I2C) interface
If NOSTRETCH=1 in slave mode, the SCL is not stretched. Consequently the SDADEL
must be programmed in such a way to guarantee also a sufficient setup time.
Table 177. I2C-SMBUS specification data setup and hold times
Symbol
Parameter
Standard-mode
(Sm)
Fast-mode
(Fm)
Fast-mode Plus
(Fm+)
SMBUS
Unit
Min.
Max
Min.
Max
Min.
Max
Min.
Max
tHD;DAT
Data hold time
0
-
0
-
0
-
0.3
-
tVD;DAT
Data valid time
-
3.45
-
0.9
-
0.45
-
-
tSU;DAT
Data setup time
250
-
100
50
µs
250
tr
Rise time of both SDA
and SCL signals
-
1000
300
-
120
-
1000
tf
Fall time of both SDA
and SCL signals
-
300
300
-
120
-
300
ns
Additionally, in master mode, the SCL clock high and low levels must be configured by
programming the PRESC[3:0], SCLH[7:0] and SCLL[7:0] bits in the I2C_TIMINGR register.
•
When the SCL falling edge is internally detected, a delay is inserted before releasing
the SCL output. This delay is tSCLL = (SCLL+1) x tPRESC where tPRESC = (PRESC+1) x
tI2CCLK.
tSCLL impacts the SCL low time tLOW .
•
When the SCL rising edge is internally detected, a delay is inserted before forcing the
SCL output to low level. This delay is tSCLH = (SCLH+1) x tPRESC where tPRESC =
(PRESC+1) x tI2CCLK. tSCLH impacts the SCL high time tHIGH .
Refer to I2C master initialization for more details.
Caution:
Changing the timing configuration is not allowed when the I2C is enabled.
The I2C slave NOSTRETCH mode must also be configured before enabling the peripheral.
Refer to I2C slave initialization for more details.
Caution:
Changing the NOSTRETCH configuration is not allowed when the I2C is enabled.
DocID024597 Rev 3
1115/1693
1177
Inter-integrated circuit (I2C) interface
RM0351
Figure 355. I2C initialization flowchart
,QLWLDOVHWWLQJV
&OHDU3(ELWLQ,&B&5
&RQILJXUH$1)2))DQG'1)>@LQ,&B&5
&RQILJXUH35(6&>@
6'$'(/>@6&/'(/>@6&/+>@
6&//>@LQ,&B7,0,1*5
&RQILJXUH12675(7&+LQ,&B&5
6HW3(ELWLQ,&B&5
(QG
D^ϭϵϴϰϳsϮ
35.4.5
Software reset
A software reset can be performed by clearing the PE bit in the I2C_CR1 register. In that
case I2C lines SCL and SDA are released. Internal states machines are reset and
communication control bits, as well as status bits come back to their reset value. The
configuration registers are not impacted.
Here is the list of impacted register bits:
1.
I2C_CR2 register: START, STOP, NACK
2.
I2C_ISR register: BUSY, TXE, TXIS, RXNE, ADDR, NACKF, TCR, TC, STOPF, BERR,
ARLO, OVR
and in addition when the SMBus feature is supported:
1.
I2C_CR2 register: PECBYTE
2.
I2C_ISR register: PECERR, TIMEOUT, ALERT
PE must be kept low during at least 3 APB clock cycles in order to perform the software
reset. This is ensured by writing the following software sequence: - Write PE=0 - Check
PE=0 - Write PE=1.
1116/1693
DocID024597 Rev 3
RM0351
35.4.6
Inter-integrated circuit (I2C) interface
Data transfer
The data transfer is managed through transmit and receive data registers and a shift
register.
Reception
The SDA input fills the shift register. After the 8th SCL pulse (when the complete data byte is
received), the shift register is copied into I2C_RXDR register if it is empty (RXNE=0). If
RXNE=1, meaning that the previous received data byte has not yet been read, the SCL line
is stretched low until I2C_RXDR is read. The stretch is inserted between the 8th and 9th
SCL pulse (before the Acknowledge pulse).
Figure 356. Data reception
!#+ PULSE
!#+ PULSE
LEGEND
3#,
3HIFT REGISTER
3#,
STRETCH
XX
DATA
XX
DATA
XX
28.%
RD DATA RD DATA
)#?28$2
DATA
DATA
DATA
-36
DocID024597 Rev 3
1117/1693
1177
Inter-integrated circuit (I2C) interface
RM0351
Transmission
If the I2C_TXDR register is not empty (TXE=0), its content is copied into the shift register
after the 9th SCL pulse (the Acknowledge pulse). Then the shift register content is shifted
out on SDA line. If TXE=1, meaning that no data is written yet in I2C_TXDR, SCL line is
stretched low until I2C_TXDR is written. The stretch is done after the 9th SCL pulse.
Figure 357. Data transmission
!#+ PULSE
!#+ PULSE
LEGEND
XX
XX
DATA
3HIFT REGISTER
DATA
3#,
3#,
STRETCH
XX
48%
WR DATA
)#?48$2
DATA
WR DATA
DATA
DATA
-36
Hardware transfer management
The I2C has a byte counter embedded in hardware in order to manage byte transfer and to
close the communication in various modes such as:
–
NACK, STOP and ReSTART generation in master mode
–
ACK control in slave receiver mode
–
PEC generation/checking when SMBus feature is supported
The byte counter is always used in master mode. By default it is disabled in slave mode, but
it can be enabled by software by setting the SBC (Slave Byte Control) bit in the I2C_CR2
register.
The number of bytes to be transferred is programmed in the NBYTES[7:0] bit field in the
I2C_CR2 register. If the number of bytes to be transferred (NBYTES) is greater than 255, or
if a receiver wants to control the acknowledge value of a received data byte, the reload
mode must be selected by setting the RELOAD bit in the I2C_CR2 register. In this mode,
TCR flag is set when the number of bytes programmed in NBYTES has been transferred,
and an interrupt is generated if TCIE is set. SCL is stretched as long as TCR flag is set. TCR
is cleared by software when NBYTES is written to a non-zero value.
When the NBYTES counter is reloaded with the last number of bytes, RELOAD bit must be
cleared.
1118/1693
DocID024597 Rev 3
RM0351
Inter-integrated circuit (I2C) interface
When RELOAD=0 in master mode, the counter can be used in 2 modes:
Caution:
•
Automatic end mode (AUTOEND = ‘1’ in the I2C_CR2 register). In this mode, the
master automatically sends a STOP condition once the number of bytes programmed
in the NBYTES[7:0] bit field has been transferred.
•
Software end mode (AUTOEND = ‘0’ in the I2C_CR2 register). In this mode, software
action is expected once the number of bytes programmed in the NBYTES[7:0] bit field
has been transferred; the TC flag is set and an interrupt is generated if the TCIE bit is
set. The SCL signal is stretched as long as the TC flag is set. The TC flag is cleared by
software when the START or STOP bit is set in the I2C_CR2 register. This mode must
be used when the master wants to send a RESTART condition.
The AUTOEND bit has no effect when the RELOAD bit is set.
Table 178. I2C configuration table
35.4.7
Function
SBC bit
RELOAD bit
AUTOEND bit
Master Tx/Rx NBYTES + STOP
x
0
1
Master Tx/Rx + NBYTES + RESTART
x
0
0
Slave Tx/Rx
all received bytes ACKed
0
x
x
Slave Rx with ACK control
1
1
x
I2C slave mode
I2C slave initialization
In order to work in slave mode, the user must enable at least one slave address. Two
registers I2C_OAR1 and I2C_OAR2 are available in order to program the slave own
addresses OA1 and OA2.
•
OA1 can be configured either in 7-bit mode (by default) or in 10-bit addressing mode by
setting the OA1MODE bit in the I2C_OAR1 register.
OA1 is enabled by setting the OA1EN bit in the I2C_OAR1 register.
•
If additional slave addresses are required, the 2nd slave address OA2 can be
configured. Up to 7 OA2 LSB can be masked by configuring the OA2MSK[2:0] bits in
the I2C_OAR2 register. Therefore for OA2MSK configured from 1 to 6, only OA2[7:2],
OA2[7:3], OA2[7:4], OA2[7:5], OA2[7:6] or OA2[7] are compared with the received
address. As soon as OA2MSK is not equal to 0, the address comparator for OA2
excludes the I2C reserved addresses (0000 XXX and 1111 XXX), which are not
acknowledged. If OA2MSK=7, all received 7-bit addresses are acknowledged (except
reserved addresses). OA2 is always a 7-bit address.
These reserved addresses can be acknowledged if they are enabled by the specific
enable bit, if they are programmed in the I2C_OAR1 or I2C_OAR2 register with
OA2MSK=0.
OA2 is enabled by setting the OA2EN bit in the I2C_OAR2 register.
•
The General Call address is enabled by setting the GCEN bit in the I2C_CR1 register.
When the I2C is selected by one of its enabled addresses, the ADDR interrupt status flag is
set, and an interrupt is generated if the ADDRIE bit is set.
DocID024597 Rev 3
1119/1693
1177
Inter-integrated circuit (I2C) interface
RM0351
By default, the slave uses its clock stretching capability, which means that it stretches the
SCL signal at low level when needed, in order to perform software actions. If the master
does not support clock stretching, the I2C must be configured with NOSTRETCH=1 in the
I2C_CR1 register.
After receiving an ADDR interrupt, if several addresses are enabled the user must read the
ADDCODE[6:0] bits in the I2C_ISR register in order to check which address matched. DIR
flag must also be checked in order to know the transfer direction.
Slave clock stretching (NOSTRETCH = 0)
In default mode, the I2C slave stretches the SCL clock in the following situations:
•
When the ADDR flag is set: the received address matches with one of the enabled
slave addresses. This stretch is released when the ADDR flag is cleared by software
setting the ADDRCF bit.
•
In transmission, if the previous data transmission is completed and no new data is
written in I2C_TXDR register, or if the first data byte is not written when the ADDR flag
is cleared (TXE=1). This stretch is released when the data is written to the I2C_TXDR
register.
•
In reception when the I2C_RXDR register is not read yet and a new data reception is
completed. This stretch is released when I2C_RXDR is read.
•
When TCR = 1 in Slave Byte Control mode, reload mode (SBC=1 and RELOAD=1),
meaning that the last data byte has been transferred. This stretch is released when
then TCR is cleared by writing a non-zero value in the NBYTES[7:0] field.
•
After SCL falling edge detection, the I2C stretches SCL low during
[(SDADEL+SCLDEL+1) x (PRESC+1) + 1] x tI2CCLK.
Slave without clock stretching (NOSTRETCH = 1)
When NOSTRETCH = 1 in the I2C_CR1 register, the I2C slave does not stretch the SCL
signal.
1120/1693
•
The SCL clock is not stretched while the ADDR flag is set.
•
In transmission, the data must be written in the I2C_TXDR register before the first SCL
pulse corresponding to its transfer occurs. If not, an underrun occurs, the OVR flag is
set in the I2C_ISR register and an interrupt is generated if the ERRIE bit is set in the
I2C_CR1 register. The OVR flag is also set when the first data transmission starts and
the STOPF bit is still set (has not been cleared). Therefore, if the user clears the
STOPF flag of the previous transfer only after writing the first data to be transmitted in
the next transfer, he ensures that the OVR status is provided, even for the first data to
be transmitted.
•
In reception, the data must be read from the I2C_RXDR register before the 9th SCL
pulse (ACK pulse) of the next data byte occurs. If not an overrun occurs, the OVR flag
is set in the I2C_ISR register and an interrupt is generated if the ERRIE bit is set in the
I2C_CR1 register.
DocID024597 Rev 3
RM0351
Inter-integrated circuit (I2C) interface
Slave Byte Control Mode
In order to allow byte ACK control in slave reception mode, Slave Byte Control mode must
be enabled by setting the SBC bit in the I2C_CR1 register. This is required to be compliant
with SMBus standards.
Reload mode must be selected in order to allow byte ACK control in slave reception mode
(RELOAD=1). To get control of each byte, NBYTES must be initialized to 0x1 in the ADDR
interrupt subroutine, and reloaded to 0x1 after each received byte. When the byte is
received, the TCR bit is set, stretching the SCL signal low between the 8th and 9th SCL
pulses. The user can read the data from the I2C_RXDR register, and then decide to
acknowledge it or not by configuring the ACK bit in the I2C_CR2 register. The SCL stretch is
released by programming NBYTES to a non-zero value: the acknowledge or notacknowledge is sent and next byte can be received.
NBYTES can be loaded with a value greater than 0x1, and in this case, the reception flow is
continuous during NBYTES data reception.
Note:
The SBC bit must be configured when the I2C is disabled, or when the slave is not
addressed, or when ADDR=1.
The RELOAD bit value can be changed when ADDR=1, or when TCR=1.
Caution:
Slave Byte Control mode is not compatible with NOSTRETCH mode. Setting SBC when
NOSTRETCH=1 is not allowed.
DocID024597 Rev 3
1121/1693
1177
Inter-integrated circuit (I2C) interface
RM0351
Figure 358. Slave initialization flowchart
6ODYH
LQLWLDOL]DWLRQ
,QLWLDOVHWWLQJV
&OHDU^2$(12$(1`LQ,&B&5
&RQILJXUH^2$>@2$02'(2$(1
2$>@2$06.>@2$(1*&(1`
&RQILJXUH6%&LQ,&B&5
(QDEOHLQWHUUXSWVDQGRU
'0$LQ,&B&5
(QG
6%&PXVWEHVHWWRVXSSRUW60%XVIHDWXUHV
D^ϭϵϴϱϬsϮ
Slave transmitter
A transmit interrupt status (TXIS) is generated when the I2C_TXDR register becomes
empty. An interrupt is generated if the TXIE bit is set in the I2C_CR1 register.
The TXIS bit is cleared when the I2C_TXDR register is written with the next data byte to be
transmitted.
When a NACK is received, the NACKF bit is set in the I2C_ISR register and an interrupt is
generated if the NACKIE bit is set in the I2C_CR1 register. The slave automatically releases
the SCL and SDA lines in order to let the master perform a STOP or a RESTART condition.
The TXIS bit is not set when a NACK is received.
When a STOP is received and the STOPIE bit is set in the I2C_CR1 register, the STOPF
flag is set in the I2C_ISR register and an interrupt is generated. In most applications, the
SBC bit is usually programmed to ‘0’. In this case, If TXE = 0 when the slave address is
received (ADDR=1), the user can choose either to send the content of the I2C_TXDR
register as the first data byte, or to flush the I2C_TXDR register by setting the TXE bit in
order to program a new data byte.
In Slave Byte Control mode (SBC=1), the number of bytes to be transmitted must be
programmed in NBYTES in the address match interrupt subroutine (ADDR=1). In this case,
1122/1693
DocID024597 Rev 3
RM0351
Inter-integrated circuit (I2C) interface
the number of TXIS events during the transfer corresponds to the value programmed in
NBYTES.
Caution:
When NOSTRETCH=1, the SCL clock is not stretched while the ADDR flag is set, so the
user cannot flush the I2C_TXDR register content in the ADDR subroutine, in order to
program the first data byte. The first data byte to be sent must be previously programmed in
the I2C_TXDR register:
•
This data can be the data written in the last TXIS event of the previous transmission
message.
•
If this data byte is not the one to be sent, the I2C_TXDR register can be flushed by
setting the TXE bit in order to program a new data byte. The STOPF bit must be
cleared only after these actions, in order to guarantee that they are executed before the
first data transmission starts, following the address acknowledge.
If STOPF is still set when the first data transmission starts, an underrun error will be
generated (the OVR flag is set).
If a TXIS event is needed, (Transmit Interrupt or Transmit DMA request), the user must
set the TXIS bit in addition to the TXE bit, in order to generate a TXIS event.
Figure 359. Transfer sequence flowchart for I2C slave transmitter, NOSTRETCH=0
6ODYH
WUDQVPLVVLRQ
6ODYHLQLWLDOL]DWLRQ
1R
,&B,65$''5
"
255 bytes
0DVWHU
WUDQVPLVVLRQ
0DVWHULQLWLDOL]DWLRQ
1%<7(6 [))1 1
5(/2$'
&RQILJXUHVODYHDGGUHVV
6HW,&B&567$57
1R
1R
,&B,657;,6
,&B,651$&.)
"
"
255 bytes
0DVWHUUHFHSWLRQ
0DVWHULQLWLDOL]DWLRQ
1%<7(6 [))1 1
5(/2$'
&RQILJXUHVODYHDGGUHVV
6HW,&B&567$57
,&B,655;1(
"
1R
@
5(
I&.
1RWH
7UDQVPLWWHU
UDWHFRQWUROOHU
5HFHLYHUUDWH
FRQWUROOHU
&RQYHQWLRQDOEDXGUDWHJHQHUDWRU
069
1. For details on coding USARTDIV in the USARTx_BRR register, please refer to Section 36.5.4: USART
baud rate generation.
2. fCK can be fLSE, fHSI, fPCLK, fSYS.
1182/1693
DocID024597 Rev 3
RM0351
36.5.1
Universal synchronous asynchronous receiver transmitter (USART)
USART character description
The word length can be selected as being either 7 or 8 or 9 bits by programming the M[1:0]
bits in the USARTx_CR1 register (see Figure 384).
Note:
•
7-bit character length: M[1:0] = 10
•
8-bit character length: M[1:0] = 00
•
9-bit character length: M[1:0] = 01
In 7-bit data length mode, the Smartcard mode, LIN master mode and Autobaudrate (0x7F
and 0x55 frames detection) are not supported. 7-bit mode is supported only on some
USARTs.
In default configuration, the signal (TX or RX) is in low state during the start bit. It is in high
state during the stop bit.
These values can be inverted, separately for each signal, through polarity configuration
control.
An Idle character is interpreted as an entire frame of “1”s. (The number of “1” ‘s will include
the number of stop bits).
A Break character is interpreted on receiving “0”s for a frame period. At the end of the
break frame, the transmitter inserts 2 stop bits.
Transmission and reception are driven by a common baud rate generator, the clock for each
is generated when the enable bit is set respectively for the transmitter and receiver.
The details of each block is given below.
DocID024597 Rev 3
1183/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Figure 384. Word length programming
ELWZRUGOHQJWK 0 6WRSELW
3RVVLEOH
3DULW\
ELW
'DWDIUDPH
6WDUW
ELW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
6WRS
ELW
1H[W
6WDUW
ELW
&ORFN
6WDUW
ELW
,GOHIUDPH
6WRS
ELW
6WRS
ELW
6WRS
ELW
6WRS
ELW
6WDUW
ELW
6WRS
ELW
6WDUW
ELW
%UHDNIUDPH
6WDUW
ELW
ELWZRUGOHQJWK 0 6WRSELW
3RVVLEOH
3DULW\
ELW
'DWDIUDPH
6WDUW
ELW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
6WRS
ELW
1H[W
6WDUW
ELW
&ORFN
6WDUW
ELW
,GOHIUDPH
%UHDNIUDPH
ELWZRUGOHQJWK 0 6WRSELW
3RVVLEOH
3DULW\
ELW
'DWDIUDPH
6WDUW
ELW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
6WRS
ELW
1H[W
6WDUW
ELW
&ORFN
,GOHIUDPH
%UHDNIUDPH
6WDUW
ELW
6WRS
ELW
/%&/ELWFRQWUROVODVWGDWDFORFNSXOVH
069
1184/1693
DocID024597 Rev 3
RM0351
36.5.2
Universal synchronous asynchronous receiver transmitter (USART)
USART transmitter
The transmitter can send data words of either 7, 8 or 9 bits depending on the M bits status.
The Transmit Enable bit (TE) must be set in order to activate the transmitter function. The
data in the transmit shift register is output on the TX pin and the corresponding clock pulses
are output on the CK pin.
Character transmission
During an USART transmission, data shifts out least significant bit first (default
configuration) on the TX pin. In this mode, the USARTx_TDR register consists of a buffer
(TDR) between the internal bus and the transmit shift register (see Figure 383).
Every character is preceded by a start bit which is a logic level low for one bit period. The
character is terminated by a configurable number of stop bits.
The following stop bits are supported by USART: 0.5, 1, 1.5 and 2 stop bits.
Note:
The TE bit must be set before writing the data to be transmitted to the USARTx_TDR.
The TE bit should not be reset during transmission of data. Resetting the TE bit during the
transmission will corrupt the data on the TX pin as the baud rate counters will get frozen.
The current data being transmitted will be lost.
An idle frame will be sent after the TE bit is enabled.
Configurable stop bits
The number of stop bits to be transmitted with every character can be programmed in
Control register 2, bits 13,12.
•
1 stop bit: This is the default value of number of stop bits.
•
2 stop bits: This will be supported by normal USART, single-wire and modem modes.
•
1.5 stop bits: To be used in Smartcard mode.
•
0.5 stop bit: To be used when receiving data in Smartcard mode.
An idle frame transmission will include the stop bits.
A break transmission will be 10 low bits (when M[1:0] = 00) or 11 low bits (when M[1:0] = 01)
or 9 low bits (when M[1:0] = 10) followed by 2 stop bits (see Figure 385). It is not possible to
transmit long breaks (break of length greater than 9/10/11 low bits).
DocID024597 Rev 3
1185/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Figure 385. Configurable stop bits
ELWGDWD6WRSELW
3RVVLEOH
SDULW\ELW
'DWDIUDPH
6WDUWELW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
6WRS
ELW
1H[W 1H[WGDWDIUDPH
VWDUW
ELW
&/2&.
/%&/ELWFRQWUROVODVWGDWDFORFNSXOVH
ELWGDWD6WRSELWV
3RVVLEOH
SDULW\ELW
'DWDIUDPH
6WDUWELW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
6WRS
ELWV
1H[W
VWDUW
ELW
1H[WGDWDIUDPH
ELWGDWD6WRSELWV
3RVVLEOH
SDULW\ELW
'DWDIUDPH
6WDUWELW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
6WRS
ELWV
1H[W
VWDUW
ELW
1H[WGDWDIUDPH
06Y9
Character transmission procedure
1.
Program the M bits in USARTx_CR1 to define the word length.
2.
Select the desired baud rate using the USARTx_BRR register.
3.
Program the number of stop bits in USARTx_CR2.
4.
Enable the USART by writing the UE bit in USARTx_CR1 register to 1.
5.
Select DMA enable (DMAT) in USARTx_CR3 if multibuffer communication is to take
place. Configure the DMA register as explained in multibuffer communication.
6.
Set the TE bit in USARTx_CR1 to send an idle frame as first transmission.
7.
Write the data to send in the USARTx_TDR register (this clears the TXE bit). Repeat
this for each data to be transmitted in case of single buffer.
8.
After writing the last data into the USARTx_TDR register, wait until TC=1. This
indicates that the transmission of the last frame is complete. This is required for
instance when the USART is disabled or enters the Halt mode to avoid corrupting the
last transmission.
Single byte communication
Clearing the TXE bit is always performed by a write to the transmit data register.
The TXE bit is set by hardware and it indicates:
•
The data has been moved from the USARTx_TDR register to the shift register and the
data transmission has started.
•
The USARTx_TDR register is empty.
•
The next data can be written in the USARTx_TDR register without overwriting the
previous data.
This flag generates an interrupt if the TXEIE bit is set.
When a transmission is taking place, a write instruction to the USARTx_TDR register stores
the data in the TDR register; next, the data is copied in the shift register at the end of the
currently ongoing transmission.
1186/1693
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
When no transmission is taking place, a write instruction to the USARTx_TDR register
places the data in the shift register, the data transmission starts, and the TXE bit is set.
If a frame is transmitted (after the stop bit) and the TXE bit is set, the TC bit goes high. An
interrupt is generated if the TCIE bit is set in the USARTx_CR1 register.
After writing the last data in the USARTx_TDR register, it is mandatory to wait for TC=1
before disabling the USART or causing the microcontroller to enter the low-power mode
(see Figure 386: TC/TXE behavior when transmitting).
Figure 386. TC/TXE behavior when transmitting
)DLE PREAMBLE
&RAME
&RAME
&RAME
48 LINE
SET BY HARDWARE
CLEARED BY SOFTWARE
48% FLAG
53!24?$2
SET BY HARDWARE
CLEARED BY SOFTWARE
&
&
SET BY HARDWARE
&
SET
BY HARDWARE
4# FLAG
SOFTWARE
ENABLES THE
53!24
SOFTWARE WAITS UNTIL 48%
AND WRITES & INTO $2
SOFTWARE WAITS UNTIL 48%
AND WRITES & INTO $2
4# IS NOT SET
BECAUSE 48%
SOFTWARE WAITS UNTIL 48%
AND WRITES & INTO $2
4# IS NOT SET
BECAUSE 48%
4# IS SET BECAUSE
48%
SOFTWARE WAITS UNTIL 4#
AIB
Break characters
Setting the SBKRQ bit transmits a break character. The break frame length depends on the
M bits (see Figure 384).
If a ‘1’ is written to the SBKRQ bit, a break character is sent on the TX line after completing
the current character transmission. The SBKF bit is set by the write operation and it is reset
by hardware when the break character is completed (during the stop bits after the break
character). The USART inserts a logic 1 signal (STOP) for the duration of 2 bits at the end of
the break frame to guarantee the recognition of the start bit of the next frame.
In the case the application needs to send the break character following all previously
inserted data, including the ones not yet transmitted, the software should wait for the TXE
flag assertion before setting the SBKRQ bit.
Idle characters
Setting the TE bit drives the USART to send an idle frame before the first data frame.
36.5.3
USART receiver
The USART can receive data words of either 7, 8 or 9 bits depending on the M bits in the
USARTx_CR1 register.
DocID024597 Rev 3
1187/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Start bit detection
The start bit detection sequence is the same when oversampling by 16 or by 8.
In the USART, the start bit is detected when a specific sequence of samples is recognized.
This sequence is: 1 1 1 0 X 0 X 0X 0X 0 X 0X 0.
Figure 387. Start bit detection when oversampling by 16 or 8
28 STATE
)DLE
3TART BIT
28 LINE
)DEAL
SAMPLE
CLOCK
8
8
SAMPLED VALUES
2EAL
SAMPLE
CLOCK
8
8
8
8
8
8
8
8
/NE BIT TIME
#ONDITIONS
TO VALIDATE
THE START BIT
&ALLING EDGE
DETECTION
Note:
8
8
!T LEAST BITS
OUT OF AT
8
!T LEAST BITS
OUT OF AT
8
8
8
8
AI
If the sequence is not complete, the start bit detection aborts and the receiver returns to the
idle state (no flag is set), where it waits for a falling edge.
The start bit is confirmed (RXNE flag set, interrupt generated if RXNEIE=1) if the 3 sampled
bits are at 0 (first sampling on the 3rd, 5th and 7th bits finds the 3 bits at 0 and second
sampling on the 8th, 9th and 10th bits also finds the 3 bits at 0).
The start bit is validated (RXNE flag set, interrupt generated if RXNEIE=1) but the NF noise
flag is set if,
a. for both samplings, 2 out of the 3 sampled bits are at 0 (sampling on the 3rd, 5th and 7th
bits and sampling on the 8th, 9th and 10th bits)
or
b. for one of the samplings (sampling on the 3rd, 5th and 7th bits or sampling on the 8th, 9th
and 10th bits), 2 out of the 3 bits are found at 0.
If neither conditions a. or b. are met, the start detection aborts and the receiver returns to the
idle state (no flag is set).
1188/1693
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
Character reception
During an USART reception, data shifts in least significant bit first (default configuration)
through the RX pin. In this mode, the USARTx_RDR register consists of a buffer (RDR)
between the internal bus and the receive shift register.
Character reception procedure
1.
Program the M bits in USARTx_CR1 to define the word length.
2.
Select the desired baud rate using the baud rate register USARTx_BRR
3.
Program the number of stop bits in USARTx_CR2.
4.
Enable the USART by writing the UE bit in USARTx_CR1 register to 1.
5.
Select DMA enable (DMAR) in USARTx_CR3 if multibuffer communication is to take
place. Configure the DMA register as explained in multibuffer communication.
6.
Set the RE bit USARTx_CR1. This enables the receiver which begins searching for a
start bit.
When a character is received:
•
The RXNE bit is set to indicate that the content of the shift register is transferred to the
RDR. In other words, data has been received and can be read (as well as its
associated error flags).
•
An interrupt is generated if the RXNEIE bit is set.
•
The error flags can be set if a frame error, noise or an overrun error has been detected
during reception. PE flag can also be set with RXNE.
•
In multibuffer, RXNE is set after every byte received and is cleared by the DMA read of
the Receive data Register.
•
In single buffer mode, clearing the RXNE bit is performed by a software read to the
USARTx_RDR register. The RXNE flag can also be cleared by writing 1 to the RXFRQ
in the USARTx_RQR register. The RXNE bit must be cleared before the end of the
reception of the next character to avoid an overrun error.
Break character
When a break character is received, the USART handles it as a framing error.
Idle character
When an idle frame is detected, there is the same procedure as for a received data
character plus an interrupt if the IDLEIE bit is set.
DocID024597 Rev 3
1189/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Overrun error
An overrun error occurs when a character is received when RXNE has not been reset. Data
can not be transferred from the shift register to the RDR register until the RXNE bit is
cleared.
The RXNE flag is set after every byte received. An overrun error occurs if RXNE flag is set
when the next data is received or the previous DMA request has not been serviced. When
an overrun error occurs:
Note:
•
The ORE bit is set.
•
The RDR content will not be lost. The previous data is available when a read to
USARTx_RDR is performed.
•
The shift register will be overwritten. After that point, any data received during overrun
is lost.
•
An interrupt is generated if either the RXNEIE bit is set or EIE bit is set.
•
The ORE bit is reset by setting the ORECF bit in the ICR register.
The ORE bit, when set, indicates that at least 1 data has been lost. There are two
possibilities:
- if RXNE=1, then the last valid data is stored in the receive register RDR and can be read,
- if RXNE=0, then it means that the last valid data has already been read and thus there is
nothing to be read in the RDR. This case can occur when the last valid data is read in the
RDR at the same time as the new (and lost) data is received.
Selecting the clock source and the proper oversampling method
The choice of the clock source is done through the Clock Control system (see Section Reset
and clock control (RCC))). The clock source must be chosen before enabling the USART
(by setting the UE bit).
The choice of the clock source must be done according to two criteria:
•
Possible use of the USART in low-power mode
•
Communication speed.
The clock source frequency is fCK.
When the dual clock domain with the wakeup from Stop mode is supported, the clock
source can be one of the following sources: PCLK (default), LSE, HSI16 or SYSCLK.
Otherwise, the USART clock source is PCLK.
Choosing LSE or HSI16 as clock source may allow the USART to receive data while the
MCU is in low-power mode. Depending on the received data and wakeup mode selection,
the USART wakes up the MCU, when needed, in order to transfer the received data by
software reading the USARTx_RDR register or by DMA.
For the other clock sources, the system must be active in order to allow USART
communication.
The communication speed range (specially the maximum communication speed) is also
determined by the clock source.
The receiver implements different user-configurable oversampling techniques for data
recovery by discriminating between valid incoming data and noise. This allows a trade-off
between the maximum communication speed and noise/clock inaccuracy immunity.
1190/1693
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
The oversampling method can be selected by programming the OVER8 bit in the
USARTx_CR1 register and can be either 16 or 8 times the baud rate clock (Figure 388 and
Figure 389).
Depending on the application:
•
Select oversampling by 8 (OVER8=1) to achieve higher speed (up to fCK/8). In this
case the maximum receiver tolerance to clock deviation is reduced (refer to
Section 36.5.5: Tolerance of the USART receiver to clock deviation on page 1196)
•
Select oversampling by 16 (OVER8=0) to increase the tolerance of the receiver to
clock deviations. In this case, the maximum speed is limited to maximum fCK/16 where
fCK is the clock source frequency.
Programming the ONEBIT bit in the USARTx_CR3 register selects the method used to
evaluate the logic level. There are two options:
•
The majority vote of the three samples in the center of the received bit. In this case,
when the 3 samples used for the majority vote are not equal, the NF bit is set
•
A single sample in the center of the received bit
Depending on the application:
–
select the three samples’ majority vote method (ONEBIT=0) when operating in a
noisy environment and reject the data when a noise is detected (refer to
Figure 192) because this indicates that a glitch occurred during the sampling.
–
select the single sample method (ONEBIT=1) when the line is noise-free to
increase the receiver’s tolerance to clock deviations (see Section 36.5.5:
Tolerance of the USART receiver to clock deviation on page 1196). In this case the
NF bit will never be set.
When noise is detected in a frame:
•
The NF bit is set at the rising edge of the RXNE bit.
•
The invalid data is transferred from the Shift register to the USARTx_RDR register.
•
No interrupt is generated in case of single byte communication. However this bit rises
at the same time as the RXNE bit which itself generates an interrupt. In case of
multibuffer communication an interrupt will be issued if the EIE bit is set in the
USARTx_CR3 register.
The NF bit is reset by setting NFCF bit in ICR register.
Note:
Oversampling by 8 is not available in LIN, smartcard and IrDA modes. In those modes, the
OVER8 bit is forced to ‘0’ by hardware.
DocID024597 Rev 3
1191/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Figure 388. Data sampling when oversampling by 16
5;OLQH
VDPSOHGYDOXHV
6DPSOHFORFN
2QHELWWLPH
06Y9
Figure 389. Data sampling when oversampling by 8
5;OLQH
VDPSOHGYDOXHV
6DPSOH
FORFN [
2QHELWWLPH
06Y9
Table 192. Noise detection from sampled data
1192/1693
Sampled value
NE status
Received bit value
000
0
0
001
1
0
010
1
0
011
1
1
100
1
0
101
1
1
110
1
1
111
0
1
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
Framing error
A framing error is detected when:
The stop bit is not recognized on reception at the expected time, following either a desynchronization or excessive noise.
When the framing error is detected:
•
The FE bit is set by hardware
•
The invalid data is transferred from the Shift register to the USARTx_RDR register.
•
No interrupt is generated in case of single byte communication. However this bit rises
at the same time as the RXNE bit which itself generates an interrupt. In case of
multibuffer communication an interrupt will be issued if the EIE bit is set in the
USARTx_CR3 register.
The FE bit is reset by writing 1 to the FECF in the USARTx_ICR register.
Configurable stop bits during reception
The number of stop bits to be received can be configured through the control bits of Control
Register 2 - it can be either 1 or 2 in normal mode and 0.5 or 1.5 in Smartcard mode.
•
0.5 stop bit (reception in Smartcard mode): No sampling is done for 0.5 stop bit. As
a consequence, no framing error and no break frame can be detected when 0.5 stop bit
is selected.
•
1 stop bit: Sampling for 1 stop Bit is done on the 8th, 9th and 10th samples.
•
1.5 stop bits (Smartcard mode): When transmitting in Smartcard mode, the device
must check that the data is correctly sent. Thus the receiver block must be enabled (RE
=1 in the USARTx_CR1 register) and the stop bit is checked to test if the smartcard has
detected a parity error. In the event of a parity error, the smartcard forces the data
signal low during the sampling - NACK signal-, which is flagged as a framing error.
Then, the FE flag is set with the RXNE at the end of the 1.5 stop bits. Sampling for 1.5
stop bits is done on the 16th, 17th and 18th samples (1 baud clock period after the
beginning of the stop bit). The 1.5 stop bits can be decomposed into 2 parts: one 0.5
baud clock period during which nothing happens, followed by 1 normal stop bit period
during which sampling occurs halfway through. Refer to Section 36.5.13: USART
smartcard mode on page 1207 for more details.
•
2 stop bits: Sampling for 2 stop bits is done on the 8th, 9th and 10th samples of the
first stop bit. If a framing error is detected during the first stop bit the framing error flag
will be set. The second stop bit is not checked for framing error. The RXNE flag will be
set at the end of the first stop bit.
DocID024597 Rev 3
1193/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
36.5.4
RM0351
USART baud rate generation
The baud rate for the receiver and transmitter (Rx and Tx) are both set to the same value as
programmed in the USARTx_BRR register.
Equation 1: Baud rate for standard USART (SPI mode included) (OVER8 = 0 or 1)
In case of oversampling by 16, the equation is:
f CK
Tx/Rx baud = -------------------------------USARTDIV
In case of oversampling by 8, the equation is:
2 × f CK
Tx/Rx baud = -------------------------------USARTDIV
Equation 2: Baud rate in smartcard, LIN and IrDA modes (OVER8 = 0)
In smartcard, LIN and IrDA modes, only Oversampling by 16 is supported:
f CK
Tx/Rx baud = -------------------------------USARTDIV
USARTDIV is an unsigned fixed point number that is coded on the USARTx_BRR register.
Note:
•
When OVER8 = 0, BRR = USARTDIV.
•
When OVER8 = 1
–
BRR[2:0] = USARTDIV[3:0] shifted 1 bit to the right.
–
BRR[3] must be kept cleared.
–
BRR[15:4] = USARTDIV[15:4]
The baud counters are updated to the new value in the baud registers after a write operation
to USARTx_BRR. Hence the baud rate register value should not be changed during
communication.
In case of oversampling by 16 or 8, USARTDIV must be greater than or equal to 16d.
How to derive USARTDIV from USARTx_BRR register values
Example 1
To obtain 9600 baud with fCK = 8 MHz.
•
In case of oversampling by 16:
USARTDIV = 8 000 000/9600
BRR = USARTDIV = 833d = 0341h
•
In case of oversampling by 8:
USARTDIV = 2 * 8 000 000/9600
USARTDIV = 1666,66 (1667d = 683h)
BRR[3:0] = 3h << 1 = 1h
BRR = 0x681
1194/1693
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
Example 2
To obtain 921.6 Kbaud with fCK = 48 MHz.
•
In case of oversampling by 16:
USARTDIV = 48 000 000/921 600
BRR = USARTDIV = 52d = 34h
•
In case of oversampling by 8:
USARTDIV = 2 * 48 000 000/921 600
USARTDIV = 104 (104d = 68h)
BRR[3:0] = USARTDIV[3:0] >> 1 = 8h >> 1 = 4h
BRR = 0x64
Table 193. Error calculation for programmed baud rates at fCK = 72MHz in both cases of
oversampling by 16 or by 8(1)
Baud rate
Oversampling by 16 (OVER8 = 0)
Oversampling by 8 (OVER8 = 1)
S.No
Desired
Actual
BRR
% Error =
(Calculated Desired)B.Rate /
Desired B.Rate
1
2.4 KBps
2.4 KBps
0x7530
0
2.4 KBps
0xEA60
0
2
9.6 KBps
9.6 KBps
0x1D4C
0
9.6 KBps
0x3A94
0
3
19.2 KBps
19.2 KBps
0xEA6
0
19.2 KBps
0x1D46
0
4
38.4 KBps
38.4 KBps
0x753
0
38.4 KBps
0xEA3
0
5
57.6 KBps
57.6 KBps
0x4E2
0
57.6 KBps
0x9C2
0
6
115.2 KBps
115.2 KBps
0x271
0
115.2 KBps
0x4E1
0
7
230.4 KBps
230.03KBps
0x139
0.16
230.4 KBps
0x270
0
8
460.8 KBps
461.54KBps
0x9C
0.16
460.06KBps
0x134
0.16
9
921.6 KBps
923.08KBps
0x4E
0.16
923.07KBps
0x96
0.16
10
2 MBps
2 MBps
0x24
0
2 MBps
0x44
0
11
3 MBps
3 MBps
0x18
0
3 MBps
0x30
0
12
4MBps
4MBps
0x12
0
4MBps
0x22
0
13
5MBps
N.A
N.A
N.A
4965.51KBps
0x16
0.69
14
6MBps
N.A
N.A
N.A
6MBps
0x14
0
15
7MBps
N.A
N.A
N.A
6857.14KBps
0x12
2
16
9MBps
N.A
N.A
N.A
9MBps
0x10
0
Actual
BRR
% Error
1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.
DocID024597 Rev 3
1195/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
36.5.5
RM0351
Tolerance of the USART receiver to clock deviation
The asynchronous receiver of the USART works correctly only if the total clock system
deviation is less than the tolerance of the USART receiver. The causes which contribute to
the total deviation are:
•
DTRA: Deviation due to the transmitter error (which also includes the deviation of the
transmitter’s local oscillator)
•
DQUANT: Error due to the baud rate quantization of the receiver
•
DREC: Deviation of the receiver’s local oscillator
•
DTCL: Deviation due to the transmission line (generally due to the transceivers which
can introduce an asymmetry between the low-to-high transition timing and the high-tolow transition timing)
DTRA + DQUANT + DREC + DTCL + DWU < USART receiver′ s tolerance
where
DWU is the error due to sampling point deviation when the wakeup from Stop mode is
used.
when M[1:0] = 01:
t WUSTOP
DWU = ------------------------11 × Tbit
when M[1:0] = 00:
t WUSTOP
DWU = ------------------------10 × Tbit
when M[1:0] = 10:
t WUSTOP
DWU = -----------------------9 × Tbit
tWUSTOP is the wakeup time from Stop mode, which is specified in the product
datasheet.
The USART receiver can receive data correctly at up to the maximum tolerated deviation
specified in Table 194 and Table 194 depending on the following choices:
•
9-, 10- or 11-bit character length defined by the M bits in the USARTx_CR1 register
•
Oversampling by 8 or 16 defined by the OVER8 bit in the USARTx_CR1 register
•
Bits BRR[3:0] of USARTx_BRR register are equal to or different from 0000.
•
Use of 1 bit or 3 bits to sample the data, depending on the value of the ONEBIT bit in
the USARTx_CR3 register.
Table 194. Tolerance of the USART receiver when BRR [3:0] = 0000
OVER8 bit = 0
OVER8 bit = 1
M bits
1196/1693
ONEBIT=0
ONEBIT=1
ONEBIT=0
ONEBIT=1
00
3.75%
4.375%
2.50%
3.75%
01
3.41%
3.97%
2.27%
3.41%
10
4.16%
4.86%
2.77%
4.16%
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
Table 195. Tolerance of the USART receiver when BRR [3:0] is different from 0000
OVER8 bit = 0
OVER8 bit = 1
M bits
ONEBIT=0
ONEBIT=1
ONEBIT=0
ONEBIT=1
00
3.33%
3.88%
2%
3%
01
3.03%
3.53%
1.82%
2.73%
10
3.7%
4.31%
2.22%
3.33%
Note:
The data specified in Table 194 and Table 195 may slightly differ in the special case when
the received frames contain some Idle frames of exactly 10-bit durations when M bits = 00
(11-bit durations when M bits =01 or 9- bit durations when M bits = 10).
36.5.6
USART auto baud rate detection
The USART is able to detect and automatically set the USARTx_BRR register value based
on the reception of one character. Automatic baud rate detection is useful under two
circumstances:
•
The communication speed of the system is not known in advance
•
The system is using a relatively low accuracy clock source and this mechanism allows
the correct baud rate to be obtained without measuring the clock deviation.
The clock source frequency must be compatible with the expected communication speed
(when oversampling by 16, the baud rate is between fCK/65535 and fCK/16. when
oversampling by 8, the baudrate is between fCK/65535 and fCK/8).
Before activating the auto baud rate detection, the auto baud rate detection mode must be
chosen. There are various modes based on different character patterns.
They can be chosen through the ABRMOD[1:0] field in the USARTx_CR2 register. In these
auto baud rate modes, the baud rate is measured several times during the synchronization
data reception and each measurement is compared to the previous one.
These modes are:
•
Mode 0: Any character starting with a bit at 1. In this case the USART measures the
duration of the Start bit (falling edge to rising edge).
•
Mode 1: Any character starting with a 10xx bit pattern. In this case, the USART
measures the duration of the Start and of the 1st data bit. The measurement is done
falling edge to falling edge, ensuring better accuracy in the case of slow signal slopes.
•
Mode 2: A 0x7F character frame (it may be a 0x7F character in LSB first mode or a
0xFE in MSB first mode). In this case, the baudrate is updated first at the end of the
start bit (BRs), then at the end of bit 6 (based on the measurement done from falling
edge to falling edge: BR6). Bit 0 to bit 6 are sampled at BRs while further bits of the
character are sampled at BR6.
•
Mode 3: A 0x55 character frame. In this case, the baudrate is updated first at the end
of the start bit (BRs), then at the end of bit 0 (based on the measurement done from
falling edge to falling edge: BR0), and finally at the end of bit 6 (BR6). Bit 0 is sampled
DocID024597 Rev 3
1197/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
at BRs, bit 1 to bit 6 are sampled at BR0, and further bits of the character are sampled
at BR6.
In parallel, another check is performed for each intermediate transition of RX line. An
error is generated if the transitions on RX are not sufficiently synchronized with the
receiver (the receiver being based on the baud rate calculated on bit 0).
Prior to activating auto baud rate detection, the USARTx_BRR register must be initialized by
writing a non-zero baud rate value.
The automatic baud rate detection is activated by setting the ABREN bit in the
USARTx_CR2 register. The USART will then wait for the first character on the RX line. The
auto baud rate operation completion is indicated by the setting of the ABRF flag in the
USARTx_ISR register. If the line is noisy, the correct baud rate detection cannot be
guaranteed. In this case the BRR value may be corrupted and the ABRE error flag will be
set. This also happens if the communication speed is not compatible with the automatic
baud rate detection range (bit duration not between 16 and 65536 clock periods
(oversampling by 16) and not between 8 and 65536 clock periods (oversampling by 8)).
The RXNE interrupt will signal the end of the operation.
At any later time, the auto baud rate detection may be relaunched by resetting the ABRF
flag (by writing a 0).
Note:
If the USART is disabled (UE=0) during an auto baud rate operation, the BRR value may be
corrupted.
36.5.7
Multiprocessor communication using USART
In multiprocessor communication, the following bits are to be kept cleared:
•
LINEN bit in the USART_CR2 register,
•
HDSEL, IREN and SCEN bits in the USART_CR3 register.
It is possible to perform multiprocessor communication with the USART (with several
USARTs connected in a network). For instance one of the USARTs can be the master, its TX
output connected to the RX inputs of the other USARTs. The others are slaves, their
respective TX outputs are logically ANDed together and connected to the RX input of the
master.
In multiprocessor configurations it is often desirable that only the intended message
recipient should actively receive the full message contents, thus reducing redundant USART
service overhead for all non addressed receivers.
The non addressed devices may be placed in mute mode by means of the muting function.
In order to use the mute mode feature, the MME bit must be set in the USARTx_CR1
register.
In mute mode:
1198/1693
•
None of the reception status bits can be set.
•
All the receive interrupts are inhibited.
•
The RWU bit in USARTx_ISR register is set to 1. RWU can be controlled automatically
by hardware or by software, through the MMRQ bit in the USARTx_RQR register,
under certain conditions.
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
The USART can enter or exit from mute mode using one of two methods, depending on the
WAKE bit in the USARTx_CR1 register:
•
Idle Line detection if the WAKE bit is reset,
•
Address Mark detection if the WAKE bit is set.
Idle line detection (WAKE=0)
The USART enters mute mode when the MMRQ bit is written to 1 and the RWU is
automatically set.
It wakes up when an Idle frame is detected. Then the RWU bit is cleared by hardware but
the IDLE bit is not set in the USARTx_ISR register. An example of mute mode behavior
using Idle line detection is given in Figure 390.
Figure 390. Mute mode using Idle line detection
5;1(
'DWD 'DWD 'DWD 'DWD
5;
0XWHPRGH
5:8
0054ZULWWHQWR
,'/(
5;1(
'DWD 'DWD
1RUPDOPRGH
,GOHIUDPHGHWHFWHG
06Y9
Note:
If the MMRQ is set while the IDLE character has already elapsed, mute mode will not be
entered (RWU is not set).
If the USART is activated while the line is IDLE, the idle state is detected after the duration
of one IDLE frame (not only after the reception of one character frame).
4-bit/7-bit address mark detection (WAKE=1)
In this mode, bytes are recognized as addresses if their MSB is a ‘1’ otherwise they are
considered as data. In an address byte, the address of the targeted receiver is put in the 4
or 7 LSBs. The choice of 7 or 4-bit address detection is done using the ADDM7 bit. This 4bit/7-bit word is compared by the receiver with its own address which is programmed in the
ADD bits in the USARTx_CR2 register.
Note:
In 7-bit and 9-bit data modes, address detection is done on 6-bit and 8-bit addresses
(ADD[5:0] and ADD[7:0]) respectively.
The USART enters mute mode when an address character is received which does not
match its programmed address. In this case, the RWU bit is set by hardware. The RXNE
flag is not set for this address byte and no interrupt or DMA request is issued when the
USART enters mute mode.
The USART also enters mute mode when the MMRQ bit is written to 1. The RWU bit is also
automatically set in this case.
DocID024597 Rev 3
1199/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
The USART exits from mute mode when an address character is received which matches
the programmed address. Then the RWU bit is cleared and subsequent bytes are received
normally. The RXNE bit is set for the address character since the RWU bit has been
cleared.
An example of mute mode behavior using address mark detection is given in Figure 391.
Figure 391. Mute mode using address mark detection
,QWKLVH[DPSOHWKHFXUUHQWDGGUHVVRIWKHUHFHLYHULV
SURJUDPPHGLQWKH86$57B&5UHJLVWHU
5;1(
,'/(
5;
$GGU 'DWD 'DWD
5:8
,'/(
5;1(
$GGU 'DWD 'DWD $GGU 'DWD
0XWHPRGH
1RUPDOPRGH
0DWFKLQJDGGUHVV
0054ZULWWHQWR
5;1(ZDVFOHDUHG
5;1(
0XWHPRGH
1RQPDWFKLQJDGGUHVV
1RQPDWFKLQJDGGUHVV
06Y9
36.5.8
Modbus communication using USART
The USART offers basic support for the implementation of Modbus/RTU and Modbus/ASCII
protocols. Modbus/RTU is a half duplex, block transfer protocol. The control part of the
protocol (address recognition, block integrity control and command interpretation) must be
implemented in software.
The USART offers basic support for the end of the block detection, without software
overhead or other resources.
Modbus/RTU
In this mode, the end of one block is recognized by a “silence” (idle line) for more than 2
character times. This function is implemented through the programmable timeout function.
The timeout function and interrupt must be activated, through the RTOEN bit in the
USARTx_CR2 register and the RTOIE in the USARTx_CR1 register. The value
corresponding to a timeout of 2 character times (for example 22 x bit duration) must be
programmed in the RTO register. when the receive line is idle for this duration, after the last
stop bit is received, an interrupt is generated, informing the software that the current block
reception is completed.
Modbus/ASCII
In this mode, the end of a block is recognized by a specific (CR/LF) character sequence.
The USART manages this mechanism using the character match function.
By programming the LF ASCII code in the ADD[7:0] field and by activating the character
match interrupt (CMIE=1), the software is informed when a LF has been received and can
check the CR/LF in the DMA buffer.
1200/1693
DocID024597 Rev 3
RM0351
36.5.9
Universal synchronous asynchronous receiver transmitter (USART)
USART parity control
Parity control (generation of parity bit in transmission and parity checking in reception) can
be enabled by setting the PCE bit in the USARTx_CR1 register. Depending on the frame
length defined by the M bits, the possible USART frame formats are as listed in Table 196.
Table 196. Frame formats
M bits
PCE bit
USART frame(1)
00
0
| SB | 8-bit data | STB |
00
1
| SB | 7-bit data | PB | STB |
01
0
| SB | 9-bit data | STB |
01
1
| SB | 8-bit data | PB | STB |
10
0
| SB | 7-bit data | STB |
10
1
| SB | 6-bit data | PB | STB |
1. Legends: SB: start bit, STB: stop bit, PB: parity bit. In the data register, the PB is always taking the MSB
position (9th, 8th or 7th, depending on the M bits value).
Even parity
The parity bit is calculated to obtain an even number of “1s” inside the frame of the 6, 7 or 8
LSB bits (depending on M bits values) and the parity bit.
As an example, if data=00110101, and 4 bits are set, then the parity bit will be 0 if even
parity is selected (PS bit in USARTx_CR1 = 0).
Odd parity
The parity bit is calculated to obtain an odd number of “1s” inside the frame made of the 6, 7
or 8 LSB bits (depending on M bits values) and the parity bit.
As an example, if data=00110101 and 4 bits set, then the parity bit will be 1 if odd parity is
selected (PS bit in USARTx_CR1 = 1).
Parity checking in reception
If the parity check fails, the PE flag is set in the USARTx_ISR register and an interrupt is
generated if PEIE is set in the USARTx_CR1 register. The PE flag is cleared by software
writing 1 to the PECF in the USARTx_ICR register.
Parity generation in transmission
If the PCE bit is set in USARTx_CR1, then the MSB bit of the data written in the data
register is transmitted but is changed by the parity bit (even number of “1s” if even parity is
selected (PS=0) or an odd number of “1s” if odd parity is selected (PS=1)).
DocID024597 Rev 3
1201/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
36.5.10
RM0351
USART LIN (local interconnection network) mode
This section is relevant only when LIN mode is supported. Please refer to Section 36.4:
USART implementation on page 1180.
The LIN mode is selected by setting the LINEN bit in the USARTx_CR2 register. In LIN
mode, the following bits must be kept cleared:
•
CLKEN in the USARTx_CR2 register,
•
STOP[1:0], SCEN, HDSEL and IREN in the USARTx_CR3 register.
LIN transmission
The procedure explained in Section 36.5.2: USART transmitter has to be applied for LIN
Master transmission. It must be the same as for normal USART transmission with the
following differences:
•
Clear the M bits to configure 8-bit word length.
•
Set the LINEN bit to enter LIN mode. In this case, setting the SBKRQ bit sends 13 ‘0’
bits as a break character. Then 2 bits of value ‘1’ are sent to allow the next start
detection.
LIN reception
When LIN mode is enabled, the break detection circuit is activated. The detection is totally
independent from the normal USART receiver. A break can be detected whenever it occurs,
during Idle state or during a frame.
When the receiver is enabled (RE=1 in USARTx_CR1), the circuit looks at the RX input for a
start signal. The method for detecting start bits is the same when searching break
characters or data. After a start bit has been detected, the circuit samples the next bits
exactly like for the data (on the 8th, 9th and 10th samples). If 10 (when the LBDL = 0 in
USARTx_CR2) or 11 (when LBDL=1 in USARTx_CR2) consecutive bits are detected as ‘0,
and are followed by a delimiter character, the LBDF flag is set in USARTx_ISR. If the LBDIE
bit=1, an interrupt is generated. Before validating the break, the delimiter is checked for as it
signifies that the RX line has returned to a high level.
If a ‘1’ is sampled before the 10 or 11 have occurred, the break detection circuit cancels the
current detection and searches for a start bit again.
If the LIN mode is disabled (LINEN=0), the receiver continues working as normal USART,
without taking into account the break detection.
If the LIN mode is enabled (LINEN=1), as soon as a framing error occurs (i.e. stop bit
detected at ‘0’, which will be the case for any break frame), the receiver stops until the break
detection circuit receives either a ‘1’, if the break word was not complete, or a delimiter
character if a break has been detected.
The behavior of the break detector state machine and the break flag is shown on the
Figure 392: Break detection in LIN mode (11-bit break length - LBDL bit is set) on
page 1203.
Examples of break frames are given on Figure 393: Break detection in LIN mode vs.
Framing error detection on page 1204.
1202/1693
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
Figure 392. Break detection in LIN mode (11-bit break length - LBDL bit is set)
&DVHEUHDNVLJQDOQRWORQJHQRXJK !EUHDNGLVFDUGHG/%')LVQRWVHW
%UHDNIUDPH
5;OLQH
&DSWXUHVWUREH
%UHDNVWDWH
PDFKLQH
,GOH
%LW %LW %LW %LW
5HDGVDPSOHV
%LW %LW %LW
%LW %LW %LW %LW
,GOH
&DVHEUHDNVLJQDOMXVWORQJHQRXJK !EUHDNGHWHFWHG/%')LVVHW
%UHDNIUDPH
5;OLQH
'HOLPLWHULVLPPHGLDWH
&DSWXUHVWUREH
%UHDNVWDWH
PDFKLQH
,GOH
%LW %LW %LW %LW
5HDGVDPSOHV
%LW %LW %LW
%LW %LW %LW %
,GOH
/%')
&DVHEUHDNVLJQDOORQJHQRXJK !EUHDNGHWHFWHG/%')LVVHW
%UHDNIUDPH
5;OLQH
&DSWXUHVWUREH
%UHDNVWDWH
,GOH
PDFKLQH
5HDGVDPSOHV
%LW %LW %LW %LW
%LW %LW %LW
%LW %LW %LW %LW ZDLWGHOLPLWHU ,GOH
/%')
06Y9
DocID024597 Rev 3
1203/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Figure 393. Break detection in LIN mode vs. Framing error detection
&DVHEUHDNRFFXUULQJDIWHUDQ,GOH
5;OLQH
GDWD
,'/(
%5($.
GDWDWLPH
GDWD [
GDWD KHDGHU
GDWDWLPH
5;1()(
/%')
&DVHEUHDNRFFXUULQJZKLOHGDWDLVEHLQJUHFHLYHG
5;OLQH
GDWD
GDWD
%5($.
GDWDWLPH
GDWD [
GDWD KHDGHU
GDWDWLPH
5;1()(
/%')
06Y9
36.5.11
USART synchronous mode
The synchronous mode is selected by writing the CLKEN bit in the USARTx_CR2 register to
1. In synchronous mode, the following bits must be kept cleared:
•
LINEN bit in the USARTx_CR2 register,
•
SCEN, HDSEL and IREN bits in the USARTx_CR3 register.
In this mode, the USART can be used to control bidirectional synchronous serial
communications in master mode. The CK pin is the output of the USART transmitter clock.
No clock pulses are sent to the CK pin during start bit and stop bit. Depending on the state
of the LBCL bit in the USARTx_CR2 register, clock pulses are, or are not, generated during
the last valid data bit (address mark). The CPOL bit in the USARTx_CR2 register is used to
select the clock polarity, and the CPHA bit in the USARTx_CR2 register is used to select the
phase of the external clock (see Figure 394, Figure 395 and Figure 396).
During the Idle state, preamble and send break, the external CK clock is not activated.
In synchronous mode the USART transmitter works exactly like in asynchronous mode. But
as CK is synchronized with TX (according to CPOL and CPHA), the data on TX is
synchronous.
In this mode the USART receiver works in a different manner compared to the
asynchronous mode. If RE=1, the data is sampled on CK (rising or falling edge, depending
on CPOL and CPHA), without any oversampling. A setup and a hold time must be
respected (which depends on the baud rate: 1/16 bit duration).
Note:
1204/1693
The CK pin works in conjunction with the TX pin. Thus, the clock is provided only if the
transmitter is enabled (TE=1) and data is being transmitted (the data register USARTx_TDR
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
written). This means that it is not possible to receive synchronous data without transmitting
data.
The LBCL, CPOL and CPHA bits have to be selected when the USART is disabled (UE=0)
to ensure that the clock pulses function correctly.
Figure 394. USART example of synchronous transmission
5;
7;
'DWDRXW
'DWDLQ
6\QFKURQRXVGHYLFH
HJVODYH63,
86$57
&ORFN
&.
06Y9
Figure 395. USART data clock timing diagram (M bits = 00)
,GOHRUSUHFHGLQJ
6WDUW
WUDQVPLVVLRQ
,GOHRUQH[W
6WRS WUDQVPLVVLRQ
0ELWV
&ORFN &32/ &3+$
&ORFN &32/ &3+$
&ORFN &32/ &3+$
&ORFN &32/ &3+$
'DWDRQ7;
IURPPDVWHU
6WDUW
'DWDRQ5;
IURPVODYH
/6%
06% 6WRS
06%
/6%
&DSWXUHVWUREH
/%&/ELWFRQWUROVODVWGDWDSXOVH
06Y9
DocID024597 Rev 3
1205/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Figure 396. USART data clock timing diagram (M bits = 01)
,GOHRU
SUHFHGLQJ 6WDUW
WUDQVPLVVLRQ
6WRS
0ELWV GDWDELWV
,GOHRUQH[W
WUDQVPLVVLRQ
&ORFN &32/
&3+$
&ORFN &32/
&3+$
&ORFN &32/
&3+$
&ORFN &32/
&3+$
'DWDRQ7;
IURPPDVWHU
6WDUW /6%
'DWDRQ5;
IURPVODYH
06%
/6%
&DSWXUH
VWUREH
6WRS
06%
/%&/ELWFRQWUROVODVWGDWDSXOVH
06Y9
Figure 397. RX data setup/hold time
&.
FDSWXUHVWUREHRQ&.ULVLQJ
HGJHLQWKLVH[DPSOH
'DWDRQ5; IURPVODYH
9DOLG'$7$ELW
W6(783
W+2/'
W6(783 W+2/'ELWWLPH
06Y9
Note:
1206/1693
The function of CK is different in Smartcard mode. Refer to Section 36.5.13: USART
smartcard mode for more details.
DocID024597 Rev 3
RM0351
36.5.12
Universal synchronous asynchronous receiver transmitter (USART)
USART single-wire half-duplex communication
Single-wire half-duplex mode is selected by setting the HDSEL bit in the USARTx_CR3
register. In this mode, the following bits must be kept cleared:
•
LINEN and CLKEN bits in the USARTx_CR2 register,
•
SCEN and IREN bits in the USARTx_CR3 register.
The USART can be configured to follow a single-wire half-duplex protocol where the TX and
RX lines are internally connected. The selection between half- and full-duplex
communication is made with a control bit HDSEL in USARTx_CR3.
As soon as HDSEL is written to 1:
•
The TX and RX lines are internally connected
•
The RX pin is no longer used
•
The TX pin is always released when no data is transmitted. Thus, it acts as a standard
I/O in idle or in reception. It means that the I/O must be configured so that TX is
configured as alternate function open-drain with an external pull-up.
Apart from this, the communication protocol is similar to normal USART mode. Any conflicts
on the line must be managed by software (by the use of a centralized arbiter, for instance).
In particular, the transmission is never blocked by hardware and continues as soon as data
is written in the data register while the TE bit is set.
36.5.13
USART smartcard mode
This section is relevant only when Smartcard mode is supported. Please refer to
Section 36.4: USART implementation on page 1180.
Smartcard mode is selected by setting the SCEN bit in the USARTx_CR3 register. In
Smartcard mode, the following bits must be kept cleared:
•
LINEN bit in the USARTx_CR2 register,
•
HDSEL and IREN bits in the USARTx_CR3 register.
Moreover, the CLKEN bit may be set in order to provide a clock to the smartcard.
The smartcard interface is designed to support asynchronous protocol for smartcards as
defined in the ISO 7816-3 standard. Both T=0 (character mode) and T=1 (block mode) are
supported.
The USART should be configured as:
•
8 bits plus parity: where word length is set to 8 bits and PCE=1 in the USARTx_CR1
register
•
1.5 stop bits: where STOP=11 in the USARTx_CR2 register. It is also possible to
choose 0.5 stop bit for receiving.
In T=0 (character) mode, the parity error is indicated at the end of each character during the
guard time period.
Figure 398 shows examples of what can be seen on the data line with and without parity
error.
DocID024597 Rev 3
1207/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Figure 398. ISO 7816-3 asynchronous protocol
:LWKRXW3DULW\HUURU
6
*XDUGWLPH
S
6WDUWELW
:LWK3DULW\HUURU
6
*XDUGWLPH
6WDUWELW
S
/LQHSXOOHGORZE\UHFHLYHU
GXULQJVWRSLQFDVHRISDULW\HUURU
06Y9
When connected to a smartcard, the TX output of the USART drives a bidirectional line that
is also driven by the smartcard. The TX pin must be configured as open drain.
Smartcard mode implements a single wire half duplex communication protocol.
1208/1693
•
Transmission of data from the transmit shift register is guaranteed to be delayed by a
minimum of 1/2 baud clock. In normal operation a full transmit shift register starts
shifting on the next baud clock edge. In Smartcard mode this transmission is further
delayed by a guaranteed 1/2 baud clock.
•
In transmission, if the smartcard detects a parity error, it signals this condition to the
USART by driving the line low (NACK). This NACK signal (pulling transmit line low for 1
baud clock) causes a framing error on the transmitter side (configured with 1.5 stop
bits). The USART can handle automatic re-sending of data according to the protocol.
The number of retries is programmed in the SCARCNT bit field. If the USART
continues receiving the NACK after the programmed number of retries, it stops
transmitting and signals the error as a framing error. The TXE bit can be set using the
TXFRQ bit in the USARTx_RQR register.
•
Smartcard auto-retry in transmission: a delay of 2.5 baud periods is inserted between
the NACK detection by the USART and the start bit of the repeated character. The TC
bit is set immediately at the end of reception of the last repeated character (no guardtime). If the software wants to repeat it again, it must insure the minimum 2 baud
periods required by the standard.
•
If a parity error is detected during reception of a frame programmed with a 1.5 stop bits
period, the transmit line is pulled low for a baud clock period after the completion of the
receive frame. This is to indicate to the smartcard that the data transmitted to the
USART has not been correctly received. A parity error is NACKed by the receiver if the
NACK control bit is set, otherwise a NACK is not transmitted (to be used in T=1 mode).
If the received character is erroneous, the RXNE/receive DMA request is not activated.
According to the protocol specification, the smartcard must resend the same character.
If the received character is still erroneous after the maximum number of retries
specified in the SCARCNT bit field, the USART stops transmitting the NACK and
signals the error as a parity error.
•
Smartcard auto-retry in reception: the BUSY flag remains set if the USART NACKs the
card but the card doesn’t repeat the character.
•
In transmission, the USART inserts the Guard Time (as programmed in the Guard Time
register) between two successive characters. As the Guard Time is measured after the
stop bit of the previous character, the GT[7:0] register must be programmed to the
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
desired CGT (Character Guard Time, as defined by the 7816-3 specification) minus 12
(the duration of one character).
Note:
•
The assertion of the TC flag can be delayed by programming the Guard Time register.
In normal operation, TC is asserted when the transmit shift register is empty and no
further transmit requests are outstanding. In Smartcard mode an empty transmit shift
register triggers the Guard Time counter to count up to the programmed value in the
Guard Time register. TC is forced low during this time. When the Guard Time counter
reaches the programmed value TC is asserted high.
•
The de-assertion of TC flag is unaffected by Smartcard mode.
•
If a framing error is detected on the transmitter end (due to a NACK from the receiver),
the NACK is not detected as a start bit by the receive block of the transmitter.
According to the ISO protocol, the duration of the received NACK can be 1 or 2 baud
clock periods.
•
On the receiver side, if a parity error is detected and a NACK is transmitted the receiver
does not detect the NACK as a start bit.
A break character is not significant in Smartcard mode. A 0x00 data with a framing error is
treated as data and not as a break.
No Idle frame is transmitted when toggling the TE bit. The Idle frame (as defined for the
other configurations) is not defined by the ISO protocol.
Figure 399 details how the NACK signal is sampled by the USART. In this example the
USART is transmitting data and is configured with 1.5 stop bits. The receiver part of the
USART is enabled in order to check the integrity of the data and the NACK signal.
Figure 399. Parity error detection using the 1.5 stop bits
%LW
3DULW\ELW
ELWWLPH
6WRSELW
ELWWLPH
6DPSOLQJDW
6DPSOLQJDW
WKWKWK
WKWKWK
ELWWLPH
6DPSOLQJDW
6DPSOLQJDW
WKWKWK
WKWKWK
06Y9
The USART can provide a clock to the smartcard through the CK output. In Smartcard
mode, CK is not associated to the communication but is simply derived from the internal
peripheral input clock through a 5-bit prescaler. The division ratio is configured in the
prescaler register USARTx_. CK frequency can be programmed from fCK/2 to fCK/62, where
fCK is the peripheral input clock.
DocID024597 Rev 3
1209/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Block mode (T=1)
In T=1 (block) mode, the parity error transmission is deactivated, by clearing the NACK bit in
the UART_CR3 register.
When requesting a read from the smartcard, in block mode, the software must enable the
receiver Timeout feature by setting the RTOEN bit in the USART_CR2 register and program
the RTO bits field in the RTOR register to the BWT (block wait time) - 11 value. If no answer
is received from the card before the expiration of this period, the RTOF flag will be set and a
timeout interrupt will be generated (if RTOIE bit in the USART_CR1 register is set). If the
first character is received before the expiration of the period, it is signaled by the RXNE
interrupt.
Note:
The RXNE interrupt must be enabled even when using the USART in DMA mode to read
from the smartcard in block mode. In parallel, the DMA must be enabled only after the first
received byte.
After the reception of the first character (RXNE interrupt), the RTO bit fields in the RTOR
register must be programmed to the CWT (character wait time) - 11 value, in order to allow
the automatic check of the maximum wait time between two consecutive characters. This
time is expressed in baudtime units. If the smartcard doesn’t send a new character in less
than the CWT period after the end of the previous character, the USART signals this to the
software through the RTOF flag and interrupt (when RTOIE bit is set).
Note:
The RTO counter starts counting:
- From the end of the stop bit in case STOP = 00.
- From the end of the second stop bit in case of STOP = 10.
- 1 bit duration after the beginning of the STOP bit in case STOP = 11.
- From the beginning of the STOP bit in case STOP = 01.
As in the smartcard protocol definition, the BWT/CWT values are defined from the beginning
(start bit) of the last character. The RTO register must be programmed to BWT -11 or CWT 11, respectively, taking into account the length of the last character itself.
A block length counter is used to count all the characters received by the USART. This
counter is reset when the USART is transmitting (TXE=0). The length of the block is
communicated by the smartcard in the third byte of the block (prologue field). This value
must be programmed to the BLEN field in the USARTx_RTOR register. when using DMA
mode, before the start of the block, this register field must be programmed to the minimum
value (0x0). with this value, an interrupt is generated after the 4th received character. The
software must read the LEN field (third byte), its value must be read from the receive buffer.
In interrupt driven receive mode, the length of the block may be checked by software or by
programming the BLEN value. However, before the start of the block, the maximum value of
BLEN (0xFF) may be programmed. The real value will be programmed after the reception of
the third character.
If the block is using the LRC longitudinal redundancy check (1 epilogue byte), the
BLEN=LEN. If the block is using the CRC mechanism (2 epilogue bytes), BLEN=LEN+1
must be programmed. The total block length (including prologue, epilogue and information
fields) equals BLEN+4. The end of the block is signaled to the software through the EOBF
flag and interrupt (when EOBIE bit is set).
In case of an error in the block length, the end of the block is signaled by the RTO interrupt
(Character wait Time overflow).
1210/1693
DocID024597 Rev 3
RM0351
Note:
Universal synchronous asynchronous receiver transmitter (USART)
The error checking code (LRC/CRC) must be computed/verified by software.
Direct and inverse convention
The smartcard protocol defines two conventions: direct and inverse.
The direct convention is defined as: LSB first, logical bit value of 1 corresponds to a H state
of the line and parity is even. In order to use this convention, the following control bits must
be programmed: MSBFIRST=0, DATAINV=0 (default values).
The inverse convention is defined as: MSB first, logical bit value 1 corresponds to an L state
on the signal line and parity is even. In order to use this convention, the following control bits
must be programmed: MSBFIRST=1, DATAINV=1.
Note:
When logical data values are inverted (0=H, 1=L), the parity bit is also inverted in the same
way.
In order to recognize the card convention, the card sends the initial character, TS, as the
first character of the ATR (Answer To Reset) frame. The two possible patterns for the TS
are: LHHL LLL LLH and LHHL HHH LLH.
•
(H) LHHL LLL LLH sets up the inverse convention: state L encodes value 1 and
moment 2 conveys the most significant bit (MSB first). when decoded by inverse
convention, the conveyed byte is equal to '3F'.
•
(H) LHHL HHH LLH sets up the direct convention: state H encodes value 1 and
moment 2 conveys the least significant bit (LSB first). when decoded by direct
convention, the conveyed byte is equal to '3B'.
Character parity is correct when there is an even number of bits set to 1 in the nine
moments 2 to 10.
As the USART does not know which convention is used by the card, it needs to be able to
recognize either pattern and act accordingly. The pattern recognition is not done in
hardware, but through a software sequence. Moreover, supposing that the USART is
configured in direct convention (default) and the card answers with the inverse convention,
TS = LHHL LLL LLH => the USART received character will be ‘03’ and the parity will be odd.
Therefore, two methods are available for TS pattern recognition:
Method 1
The USART is programmed in standard Smartcard mode/direct convention. In this case, the
TS pattern reception generates a parity error interrupt and error signal to the card.
•
The parity error interrupt informs the software that the card didn’t answer correctly in
direct convention. Software then reprograms the USART for inverse convention
•
In response to the error signal, the card retries the same TS character, and it will be
correctly received this time, by the reprogrammed USART
Alternatively, in answer to the parity error interrupt, the software may decide to reprogram
the USART and to also generate a new reset command to the card, then wait again for the
TS.
Method 2
The USART is programmed in 9-bit/no-parity mode, no bit inversion. In this mode it receives
any of the two TS patterns as:
(H) LHHL LLL LLH = 0x103 -> inverse convention to be chosen
(H) LHHL HHH LLH = 0x13B -> direct convention to be chosen
DocID024597 Rev 3
1211/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
The software checks the received character against these two patterns and, if any of them
match, then programs the USART accordingly for the next character reception.
If none of the two is recognized, a card reset may be generated in order to restart the
negotiation.
36.5.14
USART IrDA SIR ENDEC block
This section is relevant only when IrDA mode is supported. Please refer to Section 36.4:
USART implementation on page 1180.
IrDA mode is selected by setting the IREN bit in the USARTx_CR3 register. In IrDA mode,
the following bits must be kept cleared:
•
LINEN, STOP and CLKEN bits in the USARTx_CR2 register,
•
SCEN and HDSEL bits in the USARTx_CR3 register.
The IrDA SIR physical layer specifies use of a Return to Zero, Inverted (RZI) modulation
scheme that represents logic 0 as an infrared light pulse (see Figure 400).
The SIR Transmit encoder modulates the Non Return to Zero (NRZ) transmit bit stream
output from USART. The output pulse stream is transmitted to an external output driver and
infrared LED. USART supports only bit rates up to 115.2 Kbps for the SIR ENDEC. In
normal mode the transmitted pulse width is specified as 3/16 of a bit period.
The SIR receive decoder demodulates the return-to-zero bit stream from the infrared
detector and outputs the received NRZ serial bit stream to the USART. The decoder input is
normally high (marking state) in the Idle state. The transmit encoder output has the opposite
polarity to the decoder input. A start bit is detected when the decoder input is low.
1212/1693
•
IrDA is a half duplex communication protocol. If the Transmitter is busy (when the
USART is sending data to the IrDA encoder), any data on the IrDA receive line is
ignored by the IrDA decoder and if the Receiver is busy (when the USART is receiving
decoded data from the IrDA decoder), data on the TX from the USART to IrDA is not
encoded. while receiving data, transmission should be avoided as the data to be
transmitted could be corrupted.
•
A 0 is transmitted as a high pulse and a 1 is transmitted as a 0. The width of the pulse
is specified as 3/16th of the selected bit period in normal mode (see Figure 401).
•
The SIR decoder converts the IrDA compliant receive signal into a bit stream for
USART.
•
The SIR receive logic interprets a high state as a logic one and low pulses as logic
zeros.
•
The transmit encoder output has the opposite polarity to the decoder input. The SIR
output is in low state when Idle.
•
The IrDA specification requires the acceptance of pulses greater than 1.41 µs. The
acceptable pulse width is programmable. Glitch detection logic on the receiver end
filters out pulses of width less than 2 PSC periods (PSC is the prescaler value
programmed in the USARTx_GTPR). Pulses of width less than 1 PSC period are
always rejected, but those of width greater than one and less than two periods may be
accepted or rejected, those greater than 2 periods will be accepted as a pulse. The
IrDA encoder/decoder doesn’t work when PSC=0.
•
The receiver can communicate with a low-power transmitter.
•
In IrDA mode, the STOP bits in the USARTx_CR2 register must be configured to “1
stop bit”.
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
IrDA low-power mode
Transmitter
In low-power mode the pulse width is not maintained at 3/16 of the bit period. Instead, the
width of the pulse is 3 times the low-power baud rate which can be a minimum of 1.42 MHz.
Generally, this value is 1.8432 MHz (1.42 MHz < PSC< 2.12 MHz). A low-power mode
programmable divisor divides the system clock to achieve this value.
Receiver
Receiving in low-power mode is similar to receiving in normal mode. For glitch detection the
USART should discard pulses of duration shorter than 1 PSC period. A valid low is accepted
only if its duration is greater than 2 periods of the IrDA low-power Baud clock (PSC value in
the USARTx_GTPR).
Note:
A pulse of width less than two and greater than one PSC period(s) may or may not be
rejected.
The receiver set up time should be managed by software. The IrDA physical layer
specification specifies a minimum of 10 ms delay between transmission and reception (IrDA
is a half duplex protocol).
Figure 400. IrDA SIR ENDEC- block diagram
6,5(1
7;
25
86$57
5;
86$57B7;
6,5
7UDQVPLW
(QFRGHU
,U'$B287
6,5
5HFHLYH
'(FRGHU
,U'$B,1
86$57B5;
06Y9
Figure 401. IrDA data modulation (3/16) -Normal Mode
7;
6WDUW
ELW
6WRS
ELW
,U'$B287
%LWSHULRG
,U'$B,1
5;
06Y9
DocID024597 Rev 3
1213/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
36.5.15
RM0351
USART continuous communication in DMA mode
The USART is capable of performing continuous communication using the DMA. The DMA
requests for Rx buffer and Tx buffer are generated independently.
Note:
Please refer to Section 36.4: USART implementation on page 1180 to determine if the DMA
mode is supported. If DMA is not supported, use the USART as explained in Section 36.5.2:
USART transmitter or Section 36.5.3: USART receiver. To perform continuous
communication, the user can clear the TXE/ RXNE flags In the USARTx_ISR register.
Transmission using DMA
DMA mode can be enabled for transmission by setting DMAT bit in the USARTx_CR3
register. Data is loaded from a SRAM area configured using the DMA peripheral (refer to
Section 10: Direct memory access controller (DMA) on page 295) to the USARTx_TDR
register whenever the TXE bit is set. To map a DMA channel for USART transmission, use
the following procedure (x denotes the channel number):
1.
Write the USARTx_TDR register address in the DMA control register to configure it as
the destination of the transfer. The data is moved to this address from memory after
each TXE event.
2.
Write the memory address in the DMA control register to configure it as the source of
the transfer. The data is loaded into the USARTx_TDR register from this memory area
after each TXE event.
3.
Configure the total number of bytes to be transferred to the DMA control register.
4.
Configure the channel priority in the DMA register
5.
Configure DMA interrupt generation after half/ full transfer as required by the
application.
6.
Clear the TC flag in the USARTx_ISR register by setting the TCCF bit in the
USARTx_ICR register.
7.
Activate the channel in the DMA register.
When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector.
In transmission mode, once the DMA has written all the data to be transmitted (the TCIF flag
is set in the DMA_ISR register), the TC flag can be monitored to make sure that the USART
communication is complete. This is required to avoid corrupting the last transmission before
disabling the USART or entering Stop mode. Software must wait until TC=1. The TC flag
remains cleared during all data transfers and it is set by hardware at the end of transmission
of the last frame.
1214/1693
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
Figure 402. Transmission using DMA
,GOHSUHDPEOH
)UDPH
)UDPH
)UDPH
7;OLQH
6HWE\KDUGZDUH
FOHDUHGE\'0$UHDG
6HWE\KDUGZDUH
FOHDUHGE\'0$UHDG
7;(IODJ
6HWE\KDUGZDUH
,JQRUHGE\WKH'0$EHFDXVH
WKHWUDQVIHULVFRPSOHWH
'0$UHTXHVW
)
86$57B7'5
)
)
7&IODJ
6HWE\
KDUGZDUH
'0$ZULWHV
86$57B7'5
'0$7&,)IODJ
WUDQVIHU
FRPSOHWH
6HWE\KDUGZDUH
6RIWZDUH
FRQILJXUHV'0$ '0$ZULWHV '0$ZULWHV '0$ZULWHV
)LQWR
)LQWR
)LQWR
WRVHQGGDWD
EORFNVDQG 86$57B7'5 86$57B7'5 86$57B7'5
HQDEOHV86$57
&OHDUHG
E\
VRIWZDUH
7KH'0$
WUDQVIHULV
FRPSOHWH
7&,) LQ
'0$B,65
6RIWZDUHZDLWVXQWLO7&
AIB
Reception using DMA
DMA mode can be enabled for reception by setting the DMAR bit in USARTx_CR3 register.
Data is loaded from the USARTx_RDR register to a SRAM area configured using the DMA
peripheral (refer to Section 10: Direct memory access controller (DMA) on page 295)
whenever a data byte is received. To map a DMA channel for USART reception, use the
following procedure:
1.
Write the USARTx_RDR register address in the DMA control register to configure it as
the source of the transfer. The data is moved from this address to the memory after
each RXNE event.
2.
Write the memory address in the DMA control register to configure it as the destination
of the transfer. The data is loaded from USARTx_RDR to this memory area after each
RXNE event.
3.
Configure the total number of bytes to be transferred to the DMA control register.
4.
Configure the channel priority in the DMA control register
5.
Configure interrupt generation after half/ full transfer as required by the application.
6.
Activate the channel in the DMA control register.
When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector.
DocID024597 Rev 3
1215/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Figure 403. Reception using DMA
)UDPH
)UDPH
)UDPH
7;OLQH
6HWE\KDUGZDUH
FOHDUHGE\'0$UHDG
5;1(IODJ
'0$UHTXHVW
)
)
86$57B7'5
)
'0$UHDGV
86$57B7'5
'0$7&,)IODJ
WUDQVIHUFRPSOHWH
6RIWZDUHFRQILJXUHVWKH
'0$WRUHFHLYHGDWD
EORFNVDQGHQDEOHV
WKH86$57
&OHDUHG
E\
VRIWZDUH
6HWE\KDUGZDUH
'0$UHDGV)
IURP86$57B7'5
'0$UHDGV)
IURP86$57B7'5
7KH'0$WUDQVIHU
'0$UHDGV)
LVFRPSOHWH
IURP86$57B7'5 7&,) LQ
'0$B,65
DLE
Error flagging and interrupt generation in multibuffer communication
In multibuffer communication if any error occurs during the transaction the error flag is
asserted after the current byte. An interrupt is generated if the interrupt enable flag is set.
For framing error, overrun error and noise flag which are asserted with RXNE in single byte
reception, there is a separate error flag interrupt enable bit (EIE bit in the USARTx_CR3
register), which, if set, enables an interrupt after the current byte if any of these errors occur.
36.5.16
RS232 hardware flow control and RS485 driver enable
using USART
It is possible to control the serial data flow between 2 devices by using the CTS input and
the RTS output. The Figure 404 shows how to connect 2 devices in this mode:
Figure 404. Hardware flow control between 2 USARTs
86$57
86$57
7;
7;FLUFXLW
&76
5;
5;
576
5;FLUFXLW
7;
5;FLUFXLW
7;FLUFXLW
576
&76
06Y9
1216/1693
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
RS232 RTS and CTS flow control can be enabled independently by writing the RTSE and
CTSE bits respectively to 1 (in the USARTx_CR3 register).
RS232 RTS flow control
If the RTS flow control is enabled (RTSE=1), then RTS is asserted (tied low) as long as the
USART receiver is ready to receive a new data. When the receive register is full, RTS is deasserted, indicating that the transmission is expected to stop at the end of the current frame.
Figure 405 shows an example of communication with RTS flow control enabled.
Figure 405. RS232 RTS flow control
5;
6WDUW
ELW
'DWD
6WRS
6WDUW
,GOH
ELW
ELW
'DWD
6WRS
ELW
576
5;1(
5;1(
'DWDUHDG
'DWDFDQQRZEHWUDQVPLWWHG
06Y9
RS232 CTS flow control
If the CTS flow control is enabled (CTSE=1), then the transmitter checks the CTS input
before transmitting the next frame. If CTS is asserted (tied low), then the next data is
transmitted (assuming that data is to be transmitted, in other words, if TXE=0), else the
transmission does not occur. when CTS is de-asserted during a transmission, the current
transmission is completed before the transmitter stops.
When CTSE=1, the CTSIF status bit is automatically set by hardware as soon as the CTS
input toggles. It indicates when the receiver becomes ready or not ready for communication.
An interrupt is generated if the CTSIE bit in the USARTx_CR3 register is set. Figure 406
shows an example of communication with CTS flow control enabled.
DocID024597 Rev 3
1217/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Figure 406. RS232 CTS flow control
&76
&76
&76
7UDQVPLWGDWDUHJLVWHU
7'5
'DWD
7;
'DWD
HPSW\
6WRS 6WDUW
ELW ELW
HPSW\
'DWD
6WRS
6WDUW
,GOH
ELW
ELW
'DWD
:ULWLQJGDWDLQ7'5
'DWD
7UDQVPLVVLRQRI'DWDLV
GHOD\HGXQWLO&76
06Y9
Note:
For correct behavior, CTS must be asserted at least 3 USART clock source periods before
the end of the current character. In addition it should be noted that the CTSCF flag may not
be set for pulses shorter than 2 x PCLK periods.
RS485 Driver Enable
The driver enable feature is enabled by setting bit DEM in the USARTx_CR3 control
register. This allows the user to activate the external transceiver control, through the DE
(Driver Enable) signal. The assertion time is the time between the activation of the DE signal
and the beginning of the START bit. It is programmed using the DEAT [4:0] bit fields in the
USARTx_CR1 control register. The de-assertion time is the time between the end of the last
stop bit, in a transmitted message, and the de-activation of the DE signal. It is programmed
using the DEDT [4:0] bit fields in the USARTx_CR1 control register. The polarity of the DE
signal can be configured using the DEP bit in the USARTx_CR3 control register.
In USART, the DEAT and DEDT are expressed in sample time units (1/8 or 1/16 bit duration,
depending on the oversampling rate).
36.5.17
Wakeup from Stop mode using USART
The USART is able to wake up the MCU from Stop mode when the UESM bit is set and the
USART clock is set to HSI16 or LSE (refer to Section Reset and clock control (RCC)).
The MCU wakeup from Stop mode can be done using the standard RXNE interrupt. In this
case, the RXNEIE bit must be set before entering Stop mode.
Alternatively, a specific interrupt may be selected through the WUS bit fields.
In order to be able to wake up the MCU from Stop mode, the UESM bit in the USARTx_CR1
control register must be set prior to entering Stop mode.
When the wakeup event is detected, the WUF flag is set by hardware and a wakeup
interrupt is generated if the WUFIE bit is set.
1218/1693
DocID024597 Rev 3
RM0351
Note:
Universal synchronous asynchronous receiver transmitter (USART)
Before entering Stop mode, the user must ensure that the USART is not performing a
transfer. BUSY flag cannot ensure that Stop mode is never entered during a running
reception.
The WUF flag is set when a wakeup event is detected, independently of whether the MCU is
in Stop or in an active mode.
When entering Stop mode just after having initialized and enabled the receiver, the REACK
bit must be checked to ensure the USART is actually enabled.
When DMA is used for reception, it must be disabled before entering Stop mode and reenabled upon exit from Stop mode.
The wakeup from Stop mode feature is not available for all modes. For example it doesn’t
work in SPI mode because the SPI operates in master mode only.
Using Mute mode with Stop mode
If the USART is put into Mute mode before entering Stop mode:
•
Wakeup from Mute mode on idle detection must not be used, because idle detection
cannot work in Stop mode.
•
If the wakeup from Mute mode on address match is used, then the source of wake-up
from Stop mode must also be the address match. If the RXNE flag is set when entering
the Stop mode, the interface will remain in mute mode upon address match and wake
up from Stop.
•
If the USART is configured to wake up the MCU from Stop mode on START bit
detection, the WUF flag is set, but the RXNE flag is not set.
Determining the maximum USART baudrate allowing to wakeup correctly
from stop mode when the USART clock source is the HSI clock
The maximum baudrate allowing to wakeup correctly from stop mode depends on:
•
the parameter tWUSTOP (wakeup time from Stop mode) provided in the device
datasheet
•
the USART receiver tolerance provided in the Section 36.5.5: Tolerance of the USART
receiver to clock deviation.
Let's take this example: OVER8 = 0, M bits = 01, ONEBIT = 0, BRR [3:0] = 0000
In these conditions, according to Table 194: Tolerance of the USART receiver when BRR
[3:0] = 0000, the USART receiver tolerance is 3.41 %.
DTRA + DQUANT + DREC + DTCL + DWU < USART receiver's tolerance
DWU max = tWUSTOP / (11 x Tbit Min)
Tbit Min = tWUSTOP / (11 x DWU max)
If we consider an ideal case where the parameters DTRA, DQUANT, DREC and DTCL are
at 0%, the DWU max is 3.41 %. In reality, we need to consider at least the HSI inaccuracy.
Let's consider the HSI inaccuracy = 1 %, tWUSTOP = 3 μs (values provided as example, for
correct values, please refer to the device datasheet).
DWU max = 3.41 % - 1 % = 2.41 %
Tbit min = 3 μs / (11 ₓ 2.41 %) = 11.32 μs
In these conditions, the maximum baudrate allowing to wakeup correctly from stop mode is
1/11.32 μs = 88.36 Kbaud.
DocID024597 Rev 3
1219/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
36.6
RM0351
USART low-power modes
Table 197. Effect of low-power modes on the USART
Mode
Description
Sleep
No effect. USART interrupt causes the device to exit Sleep mode.
Low-power run
No effect.
Low-power sleep
No effect. USART interrupt causes the device to exit Low-power sleep
mode.
Stop 0 / Stop 1
The USART registers content is kept. The USART is able to wake up the
MCU from Stop 0 and Stop 1 modes when the UESM bit is set and the
USART clock is set to HSI16 or LSE.
The MCU wakeup from Stop 0 and Stop 1 modes can be done using either
a standard RXNE or a WUF interrupt.
Stop 2
The USART registers content is kept. The USART must either be disabled
or put in reset state.
Standby
The USART is powered down and must be reinitialized when the device
has exited from Standby or Shutdown mode.
Shutdown
36.7
USART interrupts
Table 198. USART interrupt requests
Interrupt event
Transmit data register empty
CTS interrupt
Transmission Complete
Receive data register not empty (data ready to be read)
Enable Control
bit
TXE
TXEIE
CTSIF
CTSIE
TC
TCIE
RXNE
RXNEIE
Overrun error detected
ORE
Idle line detected
IDLE
IDLEIE
PE
PEIE
LBDF
LBDIE
NF or ORE or FE
EIE
Character match
CMF
CMIE
Receiver timeout
RTOF
RTOIE
End of Block
EOBF
EOBIE
Parity error
LIN break
Noise Flag, Overrun error and Framing Error in multibuffer
communication.
(1)
Wakeup from Stop mode
WUF
1. The WUF interrupt is active only in Stop mode.
1220/1693
Event flag
DocID024597 Rev 3
WUFIE
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
The USART interrupt events are connected to the same interrupt vector (see Figure 407).
•
During transmission: Transmission Complete, Clear to Send, Transmit data Register
empty or Framing error (in Smartcard mode) interrupt.
•
During reception: Idle Line detection, Overrun error, Receive data register not empty,
Parity error, LIN break detection, Noise Flag, Framing Error, Character match, etc.
These events generate an interrupt if the corresponding Enable Control Bit is set.
Figure 407. USART interrupt mapping diagram
7&
7&,(
7;(
7;(,(
&76,)
&76,(
,'/(
,'/(,(
86$57
LQWHUUXSW
5;1(,(
25(
5;1(,(
5;1(
3(
3(,(
/%')
/%',(
)(
1)
25(
(,(
&0)
&0,(
572)
572,(
(2%)
(2%,(
:8)
:8),(
06Y9
DocID024597 Rev 3
1221/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
36.8
RM0351
USART registers
Refer to Section 1.1 on page 61 for a list of abbreviations used in register descriptions.
36.8.1
Control register 1 (USARTx_CR1)
Address offset: 0x00
Reset value: 0x0000
31
30
29
28
27
26
Res.
Res.
Res.
M1
EOBIE
RTOIE
rw
rw
rw
25
24
23
22
21
20
19
DEAT[4:0]
rw
rw
rw
18
17
16
rw
rw
DEDT[4:0]
rw
15
14
13
12
11
10
9
8
7
6
OVER8
CMIE
MME
M0
WAKE
PCE
PS
PEIE
TXEIE
TCIE
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
5
4
RXNEIE IDLEIE
rw
rw
rw
rw
3
2
1
0
TE
RE
UESM
UE
rw
rw
rw
rw
Bits 31:29 Reserved, must be kept at reset value
Bit 28 M1: Word length
This bit, with bit 12 (M0), determines the word length. It is set or cleared by software.
M[1:0] = 00: 1 Start bit, 8 data bits, n stop bits
M[1:0] = 01: 1 Start bit, 9 data bits, n stop bits
M[1:0] = 10: 1 Start bit, 7 data bits, n stop bits
This bit can only be written when the USART is disabled (UE=0).
Note: In 7-bit data length mode, the Smartcard mode, LIN master mode and Autobaudrate
(0x7F and 0x55 frames detection) are not supported.
Bit 27 EOBIE: End of Block interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: A USART interrupt is generated when the EOBF flag is set in the USARTx_ISR register
Note: If the USART does not support Smartcard mode, this bit is reserved and forced by
hardware to ‘0’. Please refer to Section 36.4: USART implementation on page 1180.
Bit 26 RTOIE: Receiver timeout interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated when the RTOF bit is set in the USARTx_ISR register.
Note: If the USART does not support the Receiver timeout feature, this bit is reserved and
forced by hardware to ‘0’. Section 36.4: USART implementation on page 1180.
Bits 25:21 DEAT[4:0]: Driver Enable assertion time
This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and
the beginning of the start bit. It is expressed in sample time units (1/8 or 1/16 bit duration,
depending on the oversampling rate).
This bit field can only be written when the USART is disabled (UE=0).
Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept
cleared. Please refer to Section 36.4: USART implementation on page 1180.
1222/1693
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
Bits 20:16 DEDT[4:0]: Driver Enable de-assertion time
This 5-bit value defines the time between the end of the last stop bit, in a transmitted
message, and the de-activation of the DE (Driver Enable) signal. It is expressed in sample
time units (1/8 or 1/16 bit duration, depending on the oversampling rate).
If the USARTx_TDR register is written during the DEDT time, the new data is transmitted
only when the DEDT and DEAT times have both elapsed.
This bit field can only be written when the USART is disabled (UE=0).
Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept
cleared. Please refer to Section 36.4: USART implementation on page 1180.
Bit 15 OVER8: Oversampling mode
0: Oversampling by 16
1: Oversampling by 8
This bit can only be written when the USART is disabled (UE=0).
Note: In LIN, IrDA and modes, this bit must be kept cleared.
Bit 14 CMIE: Character match interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: A USART interrupt is generated when the CMF bit is set in the USARTx_ISR register.
Bit 13 MME: Mute mode enable
This bit activates the mute mode function of the USART. when set, the USART can switch
between the active and mute modes, as defined by the WAKE bit. It is set and cleared by
software.
0: Receiver in active mode permanently
1: Receiver can switch between mute mode and active mode.
Bit 12 M0: Word length
This bit, with bit 28 (M1), determines the word length. It is set or cleared by software. See Bit
28 (M1) description.
This bit can only be written when the USART is disabled (UE=0).
Bit 11 WAKE: Receiver wakeup method
This bit determines the USART wakeup method from Mute mode. It is set or cleared by
software.
0: Idle line
1: Address mark
This bit field can only be written when the USART is disabled (UE=0).
Bit 10 PCE: Parity control enable
This bit selects the hardware parity control (generation and detection). When the parity
control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit
if M=0) and parity is checked on the received data. This bit is set and cleared by software.
Once it is set, PCE is active after the current byte (in reception and in transmission).
0: Parity control disabled
1: Parity control enabled
This bit field can only be written when the USART is disabled (UE=0).
Bit 9 PS: Parity selection
This bit selects the odd or even parity when the parity generation/detection is enabled (PCE
bit set). It is set and cleared by software. The parity will be selected after the current byte.
0: Even parity
1: Odd parity
This bit field can only be written when the USART is disabled (UE=0).
DocID024597 Rev 3
1223/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Bit 8 PEIE: PE interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: A USART interrupt is generated whenever PE=1 in the USARTx_ISR register
Bit 7 TXEIE: interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: A USART interrupt is generated whenever TXE=1 in the USARTx_ISR register
Bit 6 TCIE: Transmission complete interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: A USART interrupt is generated whenever TC=1 in the USARTx_ISR register
Bit 5 RXNEIE: RXNE interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: A USART interrupt is generated whenever ORE=1 or RXNE=1 in the USARTx_ISR
register
Bit 4 IDLEIE: IDLE interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: A USART interrupt is generated whenever IDLE=1 in the USARTx_ISR register
Bit 3 TE: Transmitter enable
This bit enables the transmitter. It is set and cleared by software.
0: Transmitter is disabled
1: Transmitter is enabled
Note: During transmission, a “0” pulse on the TE bit (“0” followed by “1”) sends a preamble
(idle line) after the current word, except in Smartcard mode. In order to generate an idle
character, the TE must not be immediately written to 1. In order to ensure the required
duration, the software can poll the TEACK bit in the USARTx_ISR register.
In Smartcard mode, when TE is set there is a 1 bit-time delay before the transmission
starts.
1224/1693
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
Bit 2 RE: Receiver enable
This bit enables the receiver. It is set and cleared by software.
0: Receiver is disabled
1: Receiver is enabled and begins searching for a start bit
Bit 1 UESM: USART enable in Stop mode
When this bit is cleared, the USART is not able to wake up the MCU from Stop mode.
When this bit is set, the USART is able to wake up the MCU from Stop mode, provided that
the USART clock selection is HSI16 or LSE in the RCC.
This bit is set and cleared by software.
0: USART not able to wake up the MCU from Stop mode.
1: USART able to wake up the MCU from Stop mode. When this function is active, the clock
source for the USART must be HSI16 or LSE (see Section Reset and clock control
(RCC).
Note: It is recommended to set the UESM bit just before entering Stop mode and clear it on
exit from Stop mode.
If the USART does not support the wakeup from Stop feature, this bit is reserved and
forced by hardware to ‘0’. Please refer to Section 36.4: USART implementation on
page 1180.
Bit 0 UE: USART enable
When this bit is cleared, the USART prescalers and outputs are stopped immediately, and
current operations are discarded. The configuration of the USART is kept, but all the status
flags, in the USARTx_ISR are set to their default values. This bit is set and cleared by
software.
0: USART prescaler and outputs disabled, low-power mode
1: USART enabled
Note: In order to go into low-power mode without generating errors on the line, the TE bit
must be reset before and the software must wait for the TC bit in the USARTx_ISR to
be set before resetting the UE bit.
The DMA requests are also reset when UE = 0 so the DMA channel must be disabled
before resetting the UE bit.
36.8.2
Control register 2 (USARTx_CR2)
Address offset: 0x04
Reset value: 0x0000
31
30
29
28
27
ADD[7:4]
26
25
24
ADD[3:0]
23
RTOEN
22
21
ABRMOD[1:0]
20
19
18
17
MSBFI
ABREN
DATAINV TXINV
RST
16
RXINV
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
SWAP
LINEN
CLKEN
CPOL
CPHA
LBCL
Res.
LBDIE
LBDL
ADDM7
Res.
Res.
Res.
Res.
rw
rw
rw
rw
rw
rw
rw
rw
rw
STOP[1:0]
rw
rw
DocID024597 Rev 3
1225/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Bits 31:28 ADD[7:4]: Address of the USART node
This bit-field gives the address of the USART node or a character code to be recognized.
This is used in multiprocessor communication during Mute mode or Stop mode, for wakeup with 7bit address mark detection. The MSB of the character sent by the transmitter should be equal to 1.
It may also be used for character detection during normal reception, Mute mode inactive (for
example, end of block detection in ModBus protocol). In this case, the whole received character (8bit) is compared to the ADD[7:0] value and CMF flag is set on match.
This bit field can only be written when reception is disabled (RE = 0) or the USART is disabled
(UE=0)
Bits 27:24 ADD[3:0]: Address of the USART node
This bit-field gives the address of the USART node or a character code to be recognized.
This is used in multiprocessor communication during Mute mode or Stop mode, for wakeup with
address mark detection.
This bit field can only be written when reception is disabled (RE = 0) or the USART is disabled
(UE=0)
Bit 23 RTOEN: Receiver timeout enable
This bit is set and cleared by software.
0: Receiver timeout feature disabled.
1: Receiver timeout feature enabled.
When this feature is enabled, the RTOF flag in the USARTx_ISR register is set if the RX line is idle
(no reception) for the duration programmed in the RTOR (receiver timeout register).
Note: If the USART does not support the Receiver timeout feature, this bit is reserved and forced by
hardware to ‘0’. Please refer to Section 36.4: USART implementation on page 1180.
Bits 22:21 ABRMOD[1:0]: Auto baud rate mode
These bits are set and cleared by software.
00: Measurement of the start bit is used to detect the baud rate.
01: Falling edge to falling edge measurement. (the received frame must start with a single bit = 1 ->
Frame = Start10xxxxxx)
10: 0x7F frame detection.
11: 0x55 frame detection
This bit field can only be written when ABREN = 0 or the USART is disabled (UE=0).
Note: If DATAINV=1 and/or MSBFIRST=1 the patterns must be the same on the line, for example
0xAA for MSBFIRST)
If the USART does not support the auto baud rate feature, this bit is reserved and forced by
hardware to ‘0’. Please refer to Section 36.4: USART implementation on page 1180.
Bit 20 ABREN: Auto baud rate enable
This bit is set and cleared by software.
0: Auto baud rate detection is disabled.
1: Auto baud rate detection is enabled.
Note: If the USART does not support the auto baud rate feature, this bit is reserved and forced by
hardware to ‘0’. Please refer to Section 36.4: USART implementation on page 1180.
Bit 19 MSBFIRST: Most significant bit first
This bit is set and cleared by software.
0: data is transmitted/received with data bit 0 first, following the start bit.
1: data is transmitted/received with the MSB (bit 7/8/9) first, following the start bit.
This bit field can only be written when the USART is disabled (UE=0).
1226/1693
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
Bit 18 DATAINV: Binary data inversion
This bit is set and cleared by software.
0: Logical data from the data register are send/received in positive/direct logic. (1=H, 0=L)
1: Logical data from the data register are send/received in negative/inverse logic. (1=L, 0=H). The
parity bit is also inverted.
This bit field can only be written when the USART is disabled (UE=0).
Bit 17 TXINV: TX pin active level inversion
This bit is set and cleared by software.
0: TX pin signal works using the standard logic levels (VDD =1/idle, Gnd=0/mark)
1: TX pin signal values are inverted. (VDD =0/mark, Gnd=1/idle).
This allows the use of an external inverter on the TX line.
This bit field can only be written when the USART is disabled (UE=0).
Bit 16 RXINV: RX pin active level inversion
This bit is set and cleared by software.
0: RX pin signal works using the standard logic levels (VDD =1/idle, Gnd=0/mark)
1: RX pin signal values are inverted. (VDD =0/mark, Gnd=1/idle).
This allows the use of an external inverter on the RX line.
This bit field can only be written when the USART is disabled (UE=0).
Bit 15 SWAP: Swap TX/RX pins
This bit is set and cleared by software.
0: TX/RX pins are used as defined in standard pinout
1: The TX and RX pins functions are swapped. This allows to work in the case of a cross-wired
connection to another USART.
This bit field can only be written when the USART is disabled (UE=0).
Bit 14 LINEN: LIN mode enable
This bit is set and cleared by software.
0: LIN mode disabled
1: LIN mode enabled
The LIN mode enables the capability to send LIN Sync Breaks (13 low bits) using the SBKRQ bit in
the USARTx_RQR register, and to detect LIN Sync breaks.
This bit field can only be written when the USART is disabled (UE=0).
Note: If the USART does not support LIN mode, this bit is reserved and forced by hardware to ‘0’.
Please refer to Section 36.4: USART implementation on page 1180.
Bits 13:12 STOP[1:0]: STOP bits
These bits are used for programming the stop bits.
00: 1 stop bit
01: 0.5 stop bit
10: 2 stop bits
11: 1.5 stop bits
This bit field can only be written when the USART is disabled (UE=0).
Bit 11 CLKEN: Clock enable
This bit allows the user to enable the CK pin.
0: CK pin disabled
1: CK pin enabled
This bit can only be written when the USART is disabled (UE=0).
Note: If neither synchronous mode nor Smartcard mode is supported, this bit is reserved and forced
by hardware to ‘0’. Please refer to Section 36.4: USART implementation on page 1180.
DocID024597 Rev 3
1227/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Note: In order to provide correctly the CK clock to the Smartcard, the steps below must be
respected:
- UE = 0
- SCEN = 1
- GTPR configuration
- CLKEN= 1
- UE = 1
Bit 10 CPOL: Clock polarity
This bit allows the user to select the polarity of the clock output on the CK pin in synchronous mode.
It works in conjunction with the CPHA bit to produce the desired clock/data relationship
0: Steady low value on CK pin outside transmission window
1: Steady high value on CK pin outside transmission window
This bit can only be written when the USART is disabled (UE=0).
Note: If synchronous mode is not supported, this bit is reserved and forced by hardware to ‘0’.
Please refer to Section 36.4: USART implementation on page 1180.
Bit 9 CPHA: Clock phase
This bit is used to select the phase of the clock output on the CK pin in synchronous mode. It works
in conjunction with the CPOL bit to produce the desired clock/data relationship (see Figure 395 and
Figure 396)
0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge
This bit can only be written when the USART is disabled (UE=0).
Note: If synchronous mode is not supported, this bit is reserved and forced by hardware to ‘0’.
Please refer to Section 36.4: USART implementation on page 1180.
Bit 8 LBCL: Last bit clock pulse
This bit is used to select whether the clock pulse associated with the last data bit transmitted (MSB)
has to be output on the CK pin in synchronous mode.
0: The clock pulse of the last data bit is not output to the CK pin
1: The clock pulse of the last data bit is output to the CK pin
Caution: The last bit is the 7th or 8th or 9th data bit transmitted depending on the 7 or 8 or 9 bit
format selected by the M bits in the USARTx_CR1 register.
This bit can only be written when the USART is disabled (UE=0).
Note: If synchronous mode is not supported, this bit is reserved and forced by hardware to ‘0’.
Please refer to Section 36.4: USART implementation on page 1180.
Bit 7 Reserved, must be kept at reset value.
Bit 6 LBDIE: LIN break detection interrupt enable
Break interrupt mask (break detection using break delimiter).
0: Interrupt is inhibited
1: An interrupt is generated whenever LBDF=1 in the USARTx_ISR register
Note: If LIN mode is not supported, this bit is reserved and forced by hardware to ‘0’. Please refer to
Section 36.4: USART implementation on page 1180.
1228/1693
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
Bit 5 LBDL: LIN break detection length
This bit is for selection between 11 bit or 10 bit break detection.
0: 10-bit break detection
1: 11-bit break detection
This bit can only be written when the USART is disabled (UE=0).
Note: If LIN mode is not supported, this bit is reserved and forced by hardware to ‘0’. Please refer to
Section 36.4: USART implementation on page 1180.
Bit 4 ADDM7:7-bit Address Detection/4-bit Address Detection
This bit is for selection between 4-bit address detection or 7-bit address detection.
0: 4-bit address detection
1: 7-bit address detection (in 8-bit data mode)
This bit can only be written when the USART is disabled (UE=0)
Note: In 7-bit and 9-bit data modes, the address detection is done on 6-bit and 8-bit address
(ADD[5:0] and ADD[7:0]) respectively.
Bits 3:0 Reserved, must be kept at reset value.
Note:
The 3 bits (CPOL, CPHA, LBCL) should not be written while the transmitter is enabled.
36.8.3
Control register 3 (USARTx_CR3)
Address offset: 0x08
Reset value: 0x0000
31
30
29
28
27
26
25
24
23
22
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
WUFIE
15
14
21
20
19
WUS
18
17
SCARCNT2:0]
16
Res.
rw
rw
rw
rw
rw
rw
13
12
11
10
9
8
7
6
5
4
3
2
1
0
ONE
BIT
CTSIE
CTSE
RTSE
DMAT
DMAR
SCEN
NACK
HDSEL
IRLP
IREN
EIE
rw
rw
rw
rw
rw
rw
v
v
rw
rw
rw
rw
DEP
DEM
DDRE
OVR
DIS
rw
rw
rw
rw
Bits 31:24 Reserved, must be kept at reset value.
Bit 23 Reserved, must be kept at reset value.
Bit 22 WUFIE: Wakeup from Stop mode interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever WUF=1 in the USARTx_ISR register
Note: WUFIE must be set before entering in Stop mode.
The WUF interrupt is active only in Stop mode.
If the USART does not support the wakeup from Stop feature, this bit is reserved and
forced by hardware to ‘0’.
DocID024597 Rev 3
1229/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Bits 21:20 WUS[1:0]: Wakeup from Stop mode interrupt flag selection
This bit-field specify the event which activates the WUF (wakeup from Stop mode flag).
00: WUF active on address match (as defined by ADD[7:0] and ADDM7)
01:Reserved.
10: WuF active on Start bit detection
11: WUF active on RXNE.
This bit field can only be written when the USART is disabled (UE=0).
Note: If the USART does not support the wakeup from Stop feature, this bit is reserved and
forced by hardware to ‘0’.
Bits 19:17 SCARCNT[2:0]: Smartcard auto-retry count
This bit-field specifies the number of retries in transmit and receive, in Smartcard mode.
In transmission mode, it specifies the number of automatic retransmission retries, before
generating a transmission error (FE bit set).
In reception mode, it specifies the number or erroneous reception trials, before generating a
reception error (RXNE and PE bits set).
This bit field must be programmed only when the USART is disabled (UE=0).
When the USART is enabled (UE=1), this bit field may only be written to 0x0, in order to stop
retransmission.
0x0: retransmission disabled - No automatic retransmission in transmit mode.
0x1 to 0x7: number of automatic retransmission attempts (before signaling error)
Note: If Smartcard mode is not supported, this bit is reserved and forced by hardware to ‘0’.
Please refer to Section 36.4: USART implementation on page 1180.
Bit 16 Reserved, must be kept at reset value.
Bit 15 DEP: Driver enable polarity selection
0: DE signal is active high.
1: DE signal is active low.
This bit can only be written when the USART is disabled (UE=0).
Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept
cleared. Please refer to Section 36.4: USART implementation on page 1180.
Bit 14 DEM: Driver enable mode
This bit allows the user to activate the external transceiver control, through the DE signal.
0: DE function is disabled.
1: DE function is enabled. The DE signal is output on the RTS pin.
This bit can only be written when the USART is disabled (UE=0).
Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept
cleared. Section 36.4: USART implementation on page 1180.
Bit 13 DDRE: DMA Disable on Reception Error
0: DMA is not disabled in case of reception error. The corresponding error flag is set but
RXNE is kept 0 preventing from overrun. As a consequence, the DMA request is not
asserted, so the erroneous data is not transferred (no DMA request), but next correct
received data will be transferred (used for Smartcard mode).
1: DMA is disabled following a reception error. The corresponding error flag is set, as well as
RXNE. The DMA request is masked until the error flag is cleared. This means that the
software must first disable the DMA request (DMAR = 0) or clear RXNE before clearing the
error flag.
This bit can only be written when the USART is disabled (UE=0).
Note: The reception errors are: parity error, framing error or noise error.
1230/1693
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
Bit 12 OVRDIS: Overrun Disable
This bit is used to disable the receive overrun detection.
0: Overrun Error Flag, ORE, is set when received data is not read before receiving new data.
1: Overrun functionality is disabled. If new data is received while the RXNE flag is still set
the ORE flag is not set and the new received data overwrites the previous content of the
USARTx_RDR register.
This bit can only be written when the USART is disabled (UE=0).
Note: This control bit allows checking the communication flow without reading the data.
Bit 11 ONEBIT: One sample bit method enable
This bit allows the user to select the sample method. When the one sample bit method is
selected the noise detection flag (NF) is disabled.
0: Three sample bit method
1: One sample bit method
This bit can only be written when the USART is disabled (UE=0).
Note: ONEBIT feature applies only to data bits, It does not apply to Start bit.
Bit 10 CTSIE: CTS interrupt enable
0: Interrupt is inhibited
1: An interrupt is generated whenever CTSIF=1 in the USARTx_ISR register
Note: If the hardware flow control feature is not supported, this bit is reserved and forced by
hardware to ‘0’. Please refer to Section 36.4: USART implementation on page 1180.
Bit 9 CTSE: CTS enable
0: CTS hardware flow control disabled
1: CTS mode enabled, data is only transmitted when the CTS input is asserted (tied to 0). If
the CTS input is de-asserted while data is being transmitted, then the transmission is
completed before stopping. If data is written into the data register while CTS is de-asserted,
the transmission is postponed until CTS is asserted.
This bit can only be written when the USART is disabled (UE=0)
Note: If the hardware flow control feature is not supported, this bit is reserved and forced by
hardware to ‘0’. Please refer to Section 36.4: USART implementation on page 1180.
Bit 8 RTSE: RTS enable
0: RTS hardware flow control disabled
1: RTS output enabled, data is only requested when there is space in the receive buffer. The
transmission of data is expected to cease after the current character has been transmitted.
The RTS output is asserted (pulled to 0) when data can be received.
This bit can only be written when the USART is disabled (UE=0).
Note: If the hardware flow control feature is not supported, this bit is reserved and forced by
hardware to ‘0’. Please refer to Section 36.4: USART implementation on page 1180.
Bit 7 DMAT: DMA enable transmitter
This bit is set/reset by software
1: DMA mode is enabled for transmission
0: DMA mode is disabled for transmission
Bit 6 DMAR: DMA enable receiver
This bit is set/reset by software
1: DMA mode is enabled for reception
0: DMA mode is disabled for reception
DocID024597 Rev 3
1231/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Bit 5 SCEN: Smartcard mode enable
This bit is used for enabling Smartcard mode.
0: Smartcard Mode disabled
1: Smartcard Mode enabled
This bit field can only be written when the USART is disabled (UE=0).
Note: If the USART does not support Smartcard mode, this bit is reserved and forced by
hardware to ‘0’. Please refer to Section 36.4: USART implementation on page 1180.
Bit 4 NACK: Smartcard NACK enable
0: NACK transmission in case of parity error is disabled
1: NACK transmission during parity error is enabled
This bit field can only be written when the USART is disabled (UE=0).
Note: If the USART does not support Smartcard mode, this bit is reserved and forced by
hardware to ‘0’. Please refer to Section 36.4: USART implementation on page 1180.
Bit 3 HDSEL: Half-duplex selection
Selection of Single-wire Half-duplex mode
0: Half duplex mode is not selected
1: Half duplex mode is selected
This bit can only be written when the USART is disabled (UE=0).
Bit 2 IRLP: IrDA low-power
This bit is used for selecting between normal and low-power IrDA modes
0: Normal mode
1: Low-power mode
This bit can only be written when the USART is disabled (UE=0).
Note: If IrDA mode is not supported, this bit is reserved and forced by hardware to ‘0’. Please
refer to Section 36.4: USART implementation on page 1180.
Bit 1 IREN: IrDA mode enable
This bit is set and cleared by software.
0: IrDA disabled
1: IrDA enabled
This bit can only be written when the USART is disabled (UE=0).
Note: If IrDA mode is not supported, this bit is reserved and forced by hardware to ‘0’. Please
refer to Section 36.4: USART implementation on page 1180.
Bit 0 EIE: Error interrupt enable
Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing
error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USARTx_ISR register).
0: Interrupt is inhibited
1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USARTx_ISR register.
1232/1693
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
36.8.4
Baud rate register (USARTx_BRR)
This register can only be written when the USART is disabled (UE=0). It may be
automatically updated by hardware in auto baud rate detection mode.
Address offset: 0x0C
Reset value: 0x0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
BRR[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:4 BRR[15:4]
BRR[15:4] = USARTDIV[15:4]
Bits 3:0 BRR[3:0]
When OVER8 = 0, BRR[3:0] = USARTDIV[3:0].
When OVER8 = 1:
BRR[2:0] = USARTDIV[3:0] shifted 1 bit to the right.
BRR[3] must be kept cleared.
36.8.5
Guard time and prescaler register (USARTx_GTPR)
Address offset: 0x10
Reset value: 0x0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
GT[7:0]
PSC[7:0]
rw
rw
DocID024597 Rev 3
1233/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Bits 31:16 Reserved, must be kept at reset value
Bits 15:8 GT[7:0]: Guard time value
This bit-field is used to program the Guard time value in terms of number of baud clock
periods.
This is used in Smartcard mode. The Transmission Complete flag is set after this guard time
value.
This bit field can only be written when the USART is disabled (UE=0).
Note: If Smartcard mode is not supported, this bit is reserved and forced by hardware to ‘0’.
Please refer to Section 36.4: USART implementation on page 1180.
Bits 7:0 PSC[7:0]: Prescaler value
In IrDA Low-power and normal IrDA mode:
PSC[7:0] = IrDA Normal and Low-Power Baud Rate
Used for programming the prescaler for dividing the USART source clock to achieve the lowpower frequency:
The source clock is divided by the value given in the register (8 significant bits):
00000000: Reserved - do not program this value
00000001: divides the source clock by 1
00000010: divides the source clock by 2
...
In Smartcard mode:
PSC[4:0]: Prescaler value
Used for programming the prescaler for dividing the USART source clock to provide the
Smartcard clock.
The value given in the register (5 significant bits) is multiplied by 2 to give the division factor
of the source clock frequency:
00000: Reserved - do not program this value
00001: divides the source clock by 2
00010: divides the source clock by 4
00011: divides the source clock by 6
...
This bit field can only be written when the USART is disabled (UE=0).
Note: Bits [7:5] must be kept cleared if Smartcard mode is used.
This bit field is reserved and forced by hardware to ‘0’ when the Smartcard and IrDA
modes are not supported. Please refer to Section 36.4: USART implementation on
page 1180.
36.8.6
Receiver timeout register (USARTx_RTOR)
Address offset: 0x14
Reset value: 0x0000
31
30
29
28
27
26
25
24
23
22
21
BLEN[7:0]
20
19
18
17
16
RTO[23:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
RTO[15:0]
1234/1693
rw
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
Bits 31:24 BLEN[7:0]: Block Length
This bit-field gives the Block length in Smartcard T=1 Reception. Its value equals the number
of information characters + the length of the Epilogue Field (1-LEC/2-CRC) - 1.
Examples:
BLEN = 0 -> 0 information characters + LEC
BLEN = 1 -> 0 information characters + CRC
BLEN = 255 -> 254 information characters + CRC (total 256 characters))
In Smartcard mode, the Block length counter is reset when TXE=0.
This bit-field can be used also in other modes. In this case, the Block length counter is reset
when RE=0 (receiver disabled) and/or when the EOBCF bit is written to 1.
Note: This value can be programmed after the start of the block reception (using the data
from the LEN character in the Prologue Field). It must be programmed only once per
received block.
Bits 23:0 RTO[23:0]: Receiver timeout value
This bit-field gives the Receiver timeout value in terms of number of bit duration.
In standard mode, the RTOF flag is set if, after the last received character, no new start bit is
detected for more than the RTO value.
In Smartcard mode, this value is used to implement the CWT and BWT. See Smartcard
section for more details.
In this case, the timeout measurement is done starting from the Start Bit of the last received
character.
Note: This value must only be programmed once per received character.
Note:
RTOR can be written on the fly. If the new value is lower than or equal to the counter, the
RTOF flag is set.
This register is reserved and forced by hardware to “0x00000000” when the Receiver
timeout feature is not supported. Please refer to Section 36.4: USART implementation on
page 1180.
36.8.7
Request register (USARTx_RQR)
Address offset: 0x18
Reset value: 0x0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
4
3
2
1
0
15
14
13
12
11
10
9
8
7
6
5
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
TXFRQ RXFRQ MMRQ SBKRQ ABRRQ
w
DocID024597 Rev 3
w
w
w
w
1235/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Bits 31:5 Reserved, must be kept at reset value
Bit 4 TXFRQ: Transmit data flush request
Writing 1 to this bit sets the TXE flag.
This allows to discard the transmit data. This bit must be used only in Smartcard mode,
when data has not been sent due to errors (NACK) and the FE flag is active in the
USARTx_ISR register.
If the USART does not support Smartcard mode, this bit is reserved and forced by hardware
to ‘0’. Please refer to Section 36.4: USART implementation on page 1180.
Bit 3 RXFRQ: Receive data flush request
Writing 1 to this bit clears the RXNE flag.
This allows to discard the received data without reading it, and avoid an overrun condition.
Bit 2 MMRQ: Mute mode request
Writing 1 to this bit puts the USART in mute mode and sets the RWU flag.
Bit 1 SBKRQ: Send break request
Writing 1 to this bit sets the SBKF flag and request to send a BREAK on the line, as soon as
the transmit machine is available.
Note: In the case the application needs to send the break character following all previously
inserted data, including the ones not yet transmitted, the software should wait for the
TXE flag assertion before setting the SBKRQ bit.
Bit 0 ABRRQ: Auto baud rate request
Writing 1 to this bit resets the ABRF flag in the USARTx_ISR and request an automatic baud
rate measurement on the next received data frame.
Note: If the USART does not support the auto baud rate feature, this bit is reserved and
forced by hardware to ‘0’. Please refer to Section 36.4: USART implementation on
page 1180.
36.8.8
Interrupt and status register (USARTx_ISR)
Address offset: 0x1C
Reset value: 0x0200 00C0
31
30
29
28
27
26
25
24
23
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
22
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
ABRF
ABRE
Res.
EOBF
RTOF
CTS
CTSIF
LBDF
TXE
TC
RXNE
IDLE
ORE
NF
FE
PE
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
Bits 31:25 Reserved, must be kept at reset value.
Bits 24:23 Reserved, must be kept at reset value.
1236/1693
21
REACK TEACK
DocID024597 Rev 3
20
19
18
17
16
WUF
RWU
SBKF
CMF
BUSY
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
Bit 22 REACK: Receive enable acknowledge flag
This bit is set/reset by hardware, when the Receive Enable value is taken into account by
the USART.
When the wakeup from Stop mode is supported, the REACK flag can be used to verify that
the USART is ready for reception before entering Stop mode.
Bit 21 TEACK: Transmit enable acknowledge flag
This bit is set/reset by hardware, when the Transmit Enable value is taken into account by
the USART.
It can be used when an idle frame request is generated by writing TE=0, followed by TE=1
in the USARTx_CR1 register, in order to respect the TE=0 minimum period.
Bit 20 WUF: Wakeup from Stop mode flag
This bit is set by hardware, when a wakeup event is detected. The event is defined by the
WUS bit field. It is cleared by software, writing a 1 to the WUCF in the USARTx_ICR register.
An interrupt is generated if WUFIE=1 in the USARTx_CR3 register.
Note: When UESM is cleared, WUF flag is also cleared.
The WUF interrupt is active only in Stop mode.
If the USART does not support the wakeup from Stop feature, this bit is reserved and
forced by hardware to ‘0’.
Bit 19 RWU: Receiver wakeup from Mute mode
This bit indicates if the USART is in mute mode. It is cleared/set by hardware when a
wakeup/mute sequence is recognized. The mute mode control sequence (address or IDLE)
is selected by the WAKE bit in the USARTx_CR1 register.
When wakeup on IDLE mode is selected, this bit can only be set by software, writing 1 to the
MMRQ bit in the USARTx_RQR register.
0: Receiver in active mode
1: Receiver in mute mode
Bit 18 SBKF: Send break flag
This bit indicates that a send break character was requested. It is set by software, by writing
1 to the SBKRQ bit in the USARTx_RQR register. It is automatically reset by hardware
during the stop bit of break transmission.
0: No break character is transmitted
1: Break character will be transmitted
Bit 17 CMF: Character match flag
This bit is set by hardware, when the character defined by ADD[7:0] is received. It is cleared
by software, writing 1 to the CMCF in the USARTx_ICR register.
An interrupt is generated if CMIE=1in the USARTx_CR1 register.
0: No Character match detected
1: Character Match detected
Bit 16 BUSY: Busy flag
This bit is set and reset by hardware. It is active when a communication is ongoing on the
RX line (successful start bit detected). It is reset at the end of the reception (successful or
not).
0: USART is idle (no reception)
1: Reception on going
DocID024597 Rev 3
1237/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Bit 15 ABRF: Auto baud rate flag
This bit is set by hardware when the automatic baud rate has been set (RXNE will also be
set, generating an interrupt if RXNEIE = 1) or when the auto baud rate operation was
completed without success (ABRE=1) (ABRE, RXNE and FE are also set in this case)
It is cleared by software, in order to request a new auto baud rate detection, by writing 1 to
the ABRRQ in the USARTx_RQR register.
Note: If the USART does not support the auto baud rate feature, this bit is reserved and
forced by hardware to ‘0’.
Bit 14 ABRE: Auto baud rate error
This bit is set by hardware if the baud rate measurement failed (baud rate out of range or
character comparison failed)
It is cleared by software, by writing 1 to the ABRRQ bit in the USARTx_CR3 register.
Note: If the USART does not support the auto baud rate feature, this bit is reserved and
forced by hardware to ‘0’.
Bit 13 Reserved, must be kept at reset value.
Bit 12 EOBF: End of block flag
This bit is set by hardware when a complete block has been received (for example T=1
Smartcard mode). The detection is done when the number of received bytes (from the start
of the block, including the prologue) is equal or greater than BLEN + 4.
An interrupt is generated if the EOBIE=1 in the USARTx_CR2 register.
It is cleared by software, writing 1 to the EOBCF in the USARTx_ICR register.
0: End of Block not reached
1: End of Block (number of characters) reached
Note: If Smartcard mode is not supported, this bit is reserved and forced by hardware to ‘0’.
Please refer to Section 36.4: USART implementation on page 1180.
Bit 11 RTOF: Receiver timeout
This bit is set by hardware when the timeout value, programmed in the RTOR register has
lapsed, without any communication. It is cleared by software, writing 1 to the RTOCF bit in
the USARTx_ICR register.
An interrupt is generated if RTOIE=1 in the USARTx_CR1 register.
In Smartcard mode, the timeout corresponds to the CWT or BWT timings.
0: Timeout value not reached
1: Timeout value reached without any data reception
Note: If a time equal to the value programmed in RTOR register separates 2 characters,
RTOF is not set. If this time exceeds this value + 2 sample times (2/16 or 2/8,
depending on the oversampling method), RTOF flag is set.
The counter counts even if RE = 0 but RTOF is set only when RE = 1. If the timeout has
already elapsed when RE is set, then RTOF will be set.
If the USART does not support the Receiver timeout feature, this bit is reserved and
forced by hardware to ‘0’.
Bit 10 CTS: CTS flag
This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin.
0: CTS line set
1: CTS line reset
Note: If the hardware flow control feature is not supported, this bit is reserved and forced by
hardware to ‘0’.
1238/1693
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
Bit 9 CTSIF: CTS interrupt flag
This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by
software, by writing 1 to the CTSCF bit in the USARTx_ICR register.
An interrupt is generated if CTSIE=1 in the USARTx_CR3 register.
0: No change occurred on the CTS status line
1: A change occurred on the CTS status line
Note: If the hardware flow control feature is not supported, this bit is reserved and forced by
hardware to ‘0’.
Bit 8 LBDF: LIN break detection flag
This bit is set by hardware when the LIN break is detected. It is cleared by software, by
writing 1 to the LBDCF in the USARTx_ICR.
An interrupt is generated if LBDIE = 1 in the USARTx_CR2 register.
0: LIN Break not detected
1: LIN break detected
Note: If the USART does not support LIN mode, this bit is reserved and forced by hardware
to ‘0’. Please refer to Section 36.4: USART implementation on page 1180.
Bit 7 TXE: Transmit data register empty
This bit is set by hardware when the content of the USARTx_TDR register has been
transferred into the shift register. It is cleared by a write to the USARTx_TDR register.
The TXE flag can also be cleared by writing 1 to the TXFRQ in the USARTx_RQR register,
in order to discard the data (only in smartcard T=0 mode, in case of transmission failure).
An interrupt is generated if the TXEIE bit =1 in the USARTx_CR1 register.
0: data is not transferred to the shift register
1: data is transferred to the shift register)
Note: This bit is used during single buffer transmission.
Bit 6 TC: Transmission complete
This bit is set by hardware if the transmission of a frame containing data is complete and if
TXE is set. An interrupt is generated if TCIE=1 in the USARTx_CR1 register. It is cleared by
software, writing 1 to the TCCF in the USARTx_ICR register or by a write to the
USARTx_TDR register.
An interrupt is generated if TCIE=1 in the USARTx_CR1 register.
0: Transmission is not complete
1: Transmission is complete
Note: If TE bit is reset and no transmission is on going, the TC bit will be set immediately.
Bit 5 RXNE: Read data register not empty
This bit is set by hardware when the content of the RDR shift register has been transferred
to the USARTx_RDR register. It is cleared by a read to the USARTx_RDR register. The
RXNE flag can also be cleared by writing 1 to the RXFRQ in the USARTx_RQR register.
An interrupt is generated if RXNEIE=1 in the USARTx_CR1 register.
0: data is not received
1: Received data is ready to be read.
DocID024597 Rev 3
1239/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Bit 4 IDLE: Idle line detected
This bit is set by hardware when an Idle Line is detected. An interrupt is generated if
IDLEIE=1 in the USARTx_CR1 register. It is cleared by software, writing 1 to the IDLECF in
the USARTx_ICR register.
0: No Idle line is detected
1: Idle line is detected
Note: The IDLE bit will not be set again until the RXNE bit has been set (i.e. a new idle line
occurs).
If mute mode is enabled (MME=1), IDLE is set if the USART is not mute (RWU=0),
whatever the mute mode selected by the WAKE bit. If RWU=1, IDLE is not set.
Bit 3 ORE: Overrun error
This bit is set by hardware when the data currently being received in the shift register is
ready to be transferred into the RDR register while RXNE=1. It is cleared by a software,
writing 1 to the ORECF, in the USARTx_ICR register.
An interrupt is generated if RXNEIE=1 or EIE = 1 in the USARTx_CR1 register.
0: No overrun error
1: Overrun error is detected
Note: When this bit is set, the RDR register content is not lost but the shift register is
overwritten. An interrupt is generated if the ORE flag is set during multibuffer
communication if the EIE bit is set.
This bit is permanently forced to 0 (no overrun detection) when the OVRDIS bit is set in
the USARTx_CR3 register.
Bit 2 NF: START bit Noise detection flag
This bit is set by hardware when noise is detected on a received frame. It is cleared by
software, writing 1 to the NFCF bit in the USARTx_ICR register.
0: No noise is detected
1: Noise is detected
Note: This bit does not generate an interrupt as it appears at the same time as the RXNE bit
which itself generates an interrupt. An interrupt is generated when the NF flag is set
during multibuffer communication if the EIE bit is set.
Note: When the line is noise-free, the NF flag can be disabled by programming the ONEBIT
bit to 1 to increase the USART tolerance to deviations (Refer to Section 36.5.5:
Tolerance of the USART receiver to clock deviation on page 1196).
Bit 1 FE: Framing error
This bit is set by hardware when a de-synchronization, excessive noise or a break character
is detected. It is cleared by software, writing 1 to the FECF bit in the USARTx_ICR register.
In Smartcard mode, in transmission, this bit is set when the maximum number of transmit
attempts is reached without success (the card NACKs the data frame).
An interrupt is generated if EIE = 1 in the USARTx_CR1 register.
0: No Framing error is detected
1: Framing error or break character is detected
Bit 0 PE: Parity error
This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by
software, writing 1 to the PECF in the USARTx_ICR register.
An interrupt is generated if PEIE = 1 in the USARTx_CR1 register.
0: No parity error
1: Parity error
1240/1693
DocID024597 Rev 3
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
36.8.9
Interrupt flag clear register (USARTx_ICR)
Address offset: 0x20
Reset value: 0x0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
WUCF
Res.
Res.
CMCF
Res.
15
14
13
12
11
10
9
8
7
6
5
3
2
Res.
Res.
Res.
TCCF
Res.
rc_w1
EOBCF RTOCF
rc_w1
rc_w1
Res.
CTSCF LBDCF
rc_w1
Res.
rc_w1
rc_w1
rc_w1
4
IDLECF ORECF
rc_w1
rc_w1
1
0
NCF
FECF
PECF
rc_w1
rc_w1
rc_w1
Bits 31:21 Reserved, must be kept at reset value.
Bit 20 WUCF: Wakeup from Stop mode clear flag
Writing 1 to this bit clears the WUF flag in the USARTx_ISR register.
Note: If the USART does not support the wakeup from Stop feature, this bit is reserved and
forced by hardware to ‘0’.
Bits 19:18 Reserved, must be kept at reset value.
Bit 17 CMCF: Character match clear flag
Writing 1 to this bit clears the CMF flag in the USARTx_ISR register.
Bits 16:13 Reserved, must be kept at reset value.
Bit 12 EOBCF: End of block clear flag
Writing 1 to this bit clears the EOBF flag in the USARTx_ISR register.
Note: If the USART does not support Smartcard mode, this bit is reserved and forced by
hardware to ‘0’. Please refer to Section 36.4: USART implementation on page 1180.
Bit 11 RTOCF: Receiver timeout clear flag
Writing 1 to this bit clears the RTOF flag in the USARTx_ISR register.
Note: If the USART does not support the Receiver timeout feature, this bit is reserved and
forced by hardware to ‘0’. Please refer to Section 36.4: USART implementation on
page 1180.
Bit 10 Reserved, must be kept at reset value.
Bit 9 CTSCF: CTS clear flag
Writing 1 to this bit clears the CTSIF flag in the USARTx_ISR register.
Note: If the hardware flow control feature is not supported, this bit is reserved and forced by
hardware to ‘0’. Please refer to Section 36.4: USART implementation on page 1180.
Bit 8 LBDCF: LIN break detection clear flag
Writing 1 to this bit clears the LBDF flag in the USARTx_ISR register.
Note: If LIN mode is not supported, this bit is reserved and forced by hardware to ‘0’. Please
refer to Section 36.4: USART implementation on page 1180.
Bit 7 Reserved, must be kept at reset value.
Bit 6 TCCF: Transmission complete clear flag
Writing 1 to this bit clears the TC flag in the USARTx_ISR register.
Bit 5 Reserved, must be kept at reset value.
Bit 4 IDLECF: Idle line detected clear flag
Writing 1 to this bit clears the IDLE flag in the USARTx_ISR register.
DocID024597 Rev 3
1241/1693
1282
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Bit 3 ORECF: Overrun error clear flag
Writing 1 to this bit clears the ORE flag in the USARTx_ISR register.
Bit 2 NCF: Noise detected clear flag
Writing 1 to this bit clears the NF flag in the USARTx_ISR register.
Bit 1 FECF: Framing error clear flag
Writing 1 to this bit clears the FE flag in the USARTx_ISR register.
Bit 0 PECF: Parity error clear flag
Writing 1 to this bit clears the PE flag in the USARTx_ISR register.
36.8.10
Receive data register (USARTx_RDR)
Address offset: 0x24
Reset value: Undefined
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
8
7
6
5
4
3
2
1
0
r
r
r
r
15
14
13
12
11
10
9
Res.
Res.
Res.
Res.
Res.
Res.
Res.
RDR[8:0]
r
r
r
r
r
Bits 31:9 Reserved, must be kept at reset value.
Bits 8:0 RDR[8:0]: Receive data value
Contains the received data character.
The RDR register provides the parallel interface between the input shift register and the
internal bus (see Figure 383).
When receiving with the parity enabled, the value read in the MSB bit is the received parity
bit.
36.8.11
Transmit data register (USARTx_TDR)
Address offset: 0x28
Reset value: Undefined
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
15
14
13
12
11
10
9
Res.
Res.
Res.
Res.
Res.
Res.
Res.
TDR[8:0]
rw
1242/1693
rw
rw
DocID024597 Rev 3
rw
rw
RM0351
Universal synchronous asynchronous receiver transmitter (USART)
Bits 31:9 Reserved, must be kept at reset value.
Bits 8:0 TDR[8:0]: Transmit data value
Contains the data character to be transmitted.
The TDR register provides the parallel interface between the internal bus and the output
shift register (see Figure 383).
When transmitting with the parity enabled (PCE bit set to 1 in the USARTx_CR1 register),
the value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect
because it is replaced by the parity.
Note: This register must be written only when TXE=1.
36.8.12
USART register map
The table below gives the USART register map and reset values.
UE
Res.
EIE
UESM
Res.
IREN
TE
Res.
IRLP
RE
IDLEIE
Res.
NACK
HDSEL
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRR[15:0]
0
0
0
Res.
Res.
ADDM7
TCIE
RXNEIE
0
0
0
SCEN
0
LBDL
TXEIE
Res.
0
LBDIE
0
0
0
DMAT
0
0
0
0
DMAR
RTSE
PS
CTSE
0
0
Res.
PEIE
LBCL
CTSIE
0
0
Res.
PCE
CPOL
CPHA
ONEBIT
0
0
Res.
M0
0
0
Res.
WAKE
CLKEN
0
OVRDIS
MME
0
DEM
CMIE
LINEN
0
DDRE
DEDT0
OVER8
SWAP
0
DEP
DEDT1
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
0
0
0
0
0
0
GT[7:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reset value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
USARTx_RQR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
TXFRQ
RXFRQ
MMRQ
SBKRQ
ABRRQ
RTO[23:0]
Res.
BLEN[7:0]
0
PSC[7:0]
Res.
USARTx_RTOR
0
0
Reset value
0x14
0
0
0
Res.
USARTx_GTPR
0
0
Reset value
0x10
0
RXINV
0
0
Res.
DEDT2
0
0
TXINV
DEDT3
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
USARTx_BRR
0x0C
Res.
Reset value
0
Res.
USARTx_CR3
0x08
DATAINV
0
SCARCNT2:0]
0
Res.
0
0
STOP
[1:0]
Res.
0
0
MSBFIRST
DEAT0
DEDT4
0
0
WUS
0
0
Res.
0
0
ABREN
DEAT1
0
ADD[3:0]
0
Res.
0
ADD[7:4]
0
ABRMOD0
DEAT2
ABRMOD1
0
USARTx_CR2
0x04
0
Res.
Reset value
WUFIE
DEAT3
RTOEN
0
Res.
0
Res.
RTOIE
DEAT4
0
Res.
0
Res.
M1
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
Reset value
EOBIE
Res.
USARTx_CR1
0x00
Res.
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 199. USART register map and reset values
0
0
0
0
0
0x18
Reset value
DocID024597 Rev 3
1243/1693
1282
0x28
USARTx_TDR
1244/1693
Reset value
DocID024597 Rev 3
CTS
CTSIF
LBDF
TXE
TC
RXNE
IDLE
ORE
NF
FE
PE
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
Res.
CMCF
Res.
Res.
Res.
Res.
CTSCF
LBDCF
Res.
TCCF
Res.
IDLECF
0
0
0
RTOCF
Res.
Res.
Res.
EOBCF
0
Res.
RTOF
0
0
Res.
Res.
EOBF
0
Reset value
Refer to Section 2.2 on page 65 for the register boundary addresses.
TDR[8:0]
X X X X X X
PECF
X X X X X X
FECF
RDR[8:0]
NCF
0
ORECF
Res.
ABRF
ABRE
0
Res.
CMF
BUSY
0
Res.
Res.
Res.
Res.
Res.
SBKF
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
WUF
Res.
RWU
0
Res.
Res.
TEACK
0
WUCF
Res.
Res.
Res.
Res.
Res.
Res.
Res.
REACK
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
USARTx_RDR
Res.
0x24
Res.
USARTx_ICR
Res.
0x20
Res.
USARTx_ISR
Res.
0x1C
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res.
Offset
Res.
Universal synchronous asynchronous receiver transmitter (USART)
RM0351
Table 199. USART register map and reset values (continued)
0
0
0
0
X
X
X
X
X
X
RM0351
Low-power universal asynchronous receiver transmitter (LPUART)
37
Low-power universal asynchronous receiver
transmitter (LPUART)
37.1
Introduction
The low-power universal asynchronous receiver transmitted (LPUART) is an UART which
allows full-duplex UART communications with a limited power consumption. Only
32.768 kHz LSE clock is required to allow UART communications up to 9600 baud/s. Higher
baud rates can be reached when the LPUART is clocked by clock sources different from the
LSE clock.
Even when the microcontroller is in Stop mode, the LPUART can wait for an incoming UART
frame while having an extremely low energy consumption. The LPUART includes all
necessary hardware support to make asynchronous serial communications possible with
minimum power consumption.
It supports half-duplex single wire communications and modem operations (CTS/RTS).
It also supports multiprocessor communications.
DMA (direct memory access) can be used for data transmission/reception.
DocID024597 Rev 3
1245/1693
1282
Low-power universal asynchronous receiver transmitter (LPUART)
37.2
LPUART main features
•
Full-duplex asynchronous communications
•
NRZ standard format (mark/space)
•
Programmable baud rate from 300 baud/s to 9600 baud/s using a 32.768 kHz clock
source. Higher baud rates can be achieved by using a higher frequency clock source
•
Dual clock domain allowing
–
UART functionality and wakeup from Stop mode
–
Convenient baud rate programming independent from the PCLK reprogramming
•
Programmable data word length (7 or 8 or 9 bits)
•
Programmable data order with MSB-first or LSB-first shifting
•
Configurable stop bits (1 or 2 stop bits)
•
Single-wire half-duplex communications
•
Continuous communications using DMA
•
Received/transmitted bytes are buffered in reserved SRAM using centralized DMA.
•
Separate enable bits for transmitter and receiver
•
Separate signal polarity control for transmission and reception
•
Swappable Tx/Rx pin configuration
•
Hardware flow control for modem and RS-485 transceiver
•
Transfer detection flags:
•
•
–
Receive buffer full
–
Transmit buffer empty
–
Busy and end of transmission flags
Parity control:
–
Transmits parity bit
–
Checks parity of received data byte
Four error detection flags:
–
Overrun error
–
Noise detection
–
Frame error
–
Parity error
•
Fourteen interrupt sources with flags
•
Multiprocessor communications
The LPUART enters mute mode if the address does not match.
•
37.3
Wakeup from mute mode (by idle line detection or address mark detection)
LPUART implementation
The STM32L4x6 devices embed one LPUART. Refer to Section 36.4: USART
implementation for LPUART supported features.
1246/1693
RM0351
DocID024597 Rev 3
RM0351
37.4
Low-power universal asynchronous receiver transmitter (LPUART)
LPUART functional description
Any LPUART bidirectional communication requires a minimum of two pins: Receive data In
(RX) and Transmit data Out (TX):
•
RX: Receive data Input.
This is the serial data input.
•
TX: Transmit data Output.
When the transmitter is disabled, the output pin returns to its I/O port configuration.
When the transmitter is enabled and nothing is to be transmitted, the TX pin is at high
level. In single-wire mode, this I/O is used to transmit and receive the data.
Through these pins, serial data is transmitted and received in normal LPUART mode as
frames comprising:
•
An Idle Line prior to transmission or reception
•
A start bit
•
A data word (7 or 8 or 9 bits) least significant bit first
•
1, 2 stop bits indicating that the frame is complete
•
The LPUART interface uses a baud rate generator
•
A status register (LPUART_ISR)
•
Receive and transmit data registers (LPUART_RDR, LPUART_TDR)
•
A baud rate register (LPUART_BRR)
Refer to Section 37.7: LPUART registers for the definitions of each bit.
The following pins are required in RS232 Hardware flow control mode:
•
CTS: Clear To Send blocks the data transmission at the end of the current transfer
when high
•
RTS: Request to send indicates that the LPUART is ready to receive data (when low).
The following pin is required in RS485 Hardware control mode:
•
Note:
DE: Driver Enable activates the transmission mode of the external transceiver.
DE and RTS share the same pin.
DocID024597 Rev 3
1247/1693
1282
Low-power universal asynchronous receiver transmitter (LPUART)
RM0351
Figure 408. LPUART Block diagram
3:'$7$
35'$7$
:ULWH
5HDG
&38RU'0$
'5 GDWDUHJLVWHU
&38RU'0$
7UDQVPLWGDWDUHJLVWHU
7'5
5HFHLYHGDWDUHJLVWHU
5'5
7;
7UDQVPLWVKLIWUHJLVWHU
5;
5HFHLYHVKLIWUHJLVWHU
/38$57B*735UHJLVWHU
*7
36&
/38$57[B&5UHJLVWHU
/38$57[B&5UHJLVWHU
576
'(
&76
&.FRQWURO
/38$57[B&5UHJLVWHU
/38$57[B&5UHJLVWHU
+DUGZDUH
IORZ
FRQWUROOHU
7UDQVPLW
FRQWURO
&.
:DNHXS
XQLW
5HFHLYHU
FRQWURO
/38$57[B&5UHJLVWHU
5HFHLYHU
FORFN
/38$57[B,65UHJLVWHU
/38$57
LQWHUUXSW
FRQWURO
/38$57[B%55UHJLVWHU
d
7UDQVPLWWHU
FORFN
/38$57',9
I&. I/6(I+6,
I3&/.RUI6<6
7UDQVPLWWHU
UDWHFRQWUROOHU
%55>@
Z
5HFHLYHUUDWH
FRQWUROOHU
&RQYHQWLRQDOEDXGUDWHJHQHUDWRU
/38$57',9 %%5>@
37.4.1
06Y9
LPUART character description
Word length may be selected as being either 7 or 8 or 9 bits by programming the M[1:0] bits
in the LPUART_CR1 register (see Figure 409).
•
7-bit character length: M[1:0] = 10
•
8-bit character length: M[1:0] = 00
•
9-bit character length: M[1:0] = 01
In default configuration, the signal (TX or RX) is in low state during the start bit. It is in high
state during the stop bit.
These values can be inverted, separately for each signal, through polarity configuration
control.
1248/1693
DocID024597 Rev 3
RM0351
Low-power universal asynchronous receiver transmitter (LPUART)
An Idle character is interpreted as an entire frame of “1”s. (The number of “1” ‘s will include
the number of stop bits).
A Break character is interpreted on receiving “0”s for a frame period. At the end of the
break frame, the transmitter inserts 2 stop bits.
Transmission and reception are driven by a common baud rate generator, the clock for each
is generated when the enable bit is set respectively for the transmitter and receiver.
The details of each block is given below.
DocID024597 Rev 3
1249/1693
1282
Low-power universal asynchronous receiver transmitter (LPUART)
RM0351
Figure 409. Word length programming
ELWZRUGOHQJWK 0 6WRSELW
3RVVLEOH
3DULW\
ELW
'DWDIUDPH
6WDUW
ELW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
6WRS
ELW
1H[W
6WDUW
ELW
&ORFN
6WDUW
ELW
,GOHIUDPH
6WRS
ELW
6WRS
ELW
6WRS
ELW
6WRS
ELW
6WDUW
ELW
6WRS
ELW
6WDUW
ELW
%UHDNIUDPH
6WDUW
ELW
ELWZRUGOHQJWK 0 6WRSELW
3RVVLEOH
3DULW\
ELW
'DWDIUDPH
6WDUW
ELW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
6WRS
ELW
1H[W
6WDUW
ELW
&ORFN
6WDUW
ELW
,GOHIUDPH
%UHDNIUDPH
ELWZRUGOHQJWK 0 6WRSELW
3RVVLEOH
3DULW\
ELW
'DWDIUDPH
6WDUW
ELW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
6WRS
ELW
1H[W
6WDUW
ELW
&ORFN
,GOHIUDPH
%UHDNIUDPH
6WDUW
ELW
6WRS
ELW
/%&/ELWFRQWUROVODVWGDWDFORFNSXOVH
069
1250/1693
DocID024597 Rev 3
RM0351
37.4.2
Low-power universal asynchronous receiver transmitter (LPUART)
LPUART transmitter
The transmitter can send data words of either 7 or 8 or 9 bits depending on the M bits status.
The Transmit Enable bit (TE) must be set in order to activate the transmitter function. The
data in the transmit shift register is output on the TX pin.
Character transmission
During an LPUART transmission, data shifts out least significant bit first (default
configuration) on the TX pin. In this mode, the LPUART_TDR register consists of a buffer
(TDR) between the internal bus and the transmit shift register (see Figure 383).
Every character is preceded by a start bit which is a logic level low for one bit period. The
character is terminated by a configurable number of stop bits.
The following stop bits are supported by LPUART: 1 and 2 stop bits.
Note:
The TE bit must be set before writing the data to be transmitted to the LPUART_TDR.
The TE bit should not be reset during transmission of data. Resetting the TE bit during the
transmission will corrupt the data on the TX pin as the baud rate counters will get frozen.
The current data being transmitted will be lost.
An idle frame will be sent after the TE bit is enabled.
Configurable stop bits
The number of stop bits to be transmitted with every character can be programmed in
Control register 2, bits 13,12.
•
1 stop bit: This is the default value of number of stop bits.
•
2 stop bits: This will be supported by normal LPUART, single-wire and modem modes.
An idle frame transmission will include the stop bits.
A break transmission will be 10 low bits (when M[1:0] = 00) or 11 low bits (when M[1:0] = 01)
or 9 low bits (when M[1:0] = 10) followed by 2 stop bits. It is not possible to transmit long
breaks (break of length greater than 9/10/11 low bits).
Figure 410. Configurable stop bits
ELW:RUGOHQJWK 0>@ ELWLVUHVHW
D 6WRSELW
3RVVLEOH
SDULW\ELW
'DWDIUDPH
6WDUWELW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
%LW
6WRS
ELW
1H[W 1H[WGDWDIUDPH
VWDUW
ELW
&/2&.
/%&/ELWFRQWUROVODVWGDWDFORFNSXOVH
E 6WRSELWV
3RVVLEOH
SDULW\ELW
'DWDIUDPH
6WDUWELW
%LW
%LW
%LW
%LW
%LW
%LW
DocID024597 Rev 3
%LW
%LW
6WRS
ELWV
1H[W
VWDUW
ELW
1H[WGDWDIUDPH
069
1251/1693
1282
Low-power universal asynchronous receiver transmitter (LPUART)
RM0351
Character transmission procedure
1.
Program the M bits in LPUART_CR1 to define the word length.
2.
Select the desired baud rate using the LPUART_BRR register.
3.
Program the number of stop bits in LPUART_CR2.
4.
Enable the LPUART by writing the UE bit in LPUART_CR1 register to 1.
5.
Select DMA enable (DMAT) in LPUART_CR3 if multibuffer Communication is to take
place. Configure the DMA register as explained in multibuffer communication.
6.
Set the TE bit in LPUART_CR1 to send an idle frame as first transmission.
7.
Write the data to send in the LPUART_TDR register (this clears the TXE bit). Repeat
this for each data to be transmitted in case of single buffer.
8.
After writing the last data into the LPUART_TDR register, wait until TC=1. This
indicates that the transmission of the last frame is complete. This is required for
instance when the LPUART is disabled or enters the Halt mode to avoid corrupting the
last transmission.
Single byte communication
Clearing the TXE bit is always performed by a write to the transmit data register.
The TXE bit is set by hardware and it indicates:
•
The data has been moved from the LPUART_TDR register to the shift register and the
data transmission has started.
•
The LPUART_TDR register is empty.
•
The next data can be written in the LPUART_TDR register without overwriting the
previous data.
This flag generates an interrupt if the TXEIE bit is set.
When a transmission is taking place, a write instruction to the LPUART_TDR register stores
the data in the TDR register; next, the data is copied in the shift register at the end of the
currently ongoing transmission.
When no transmission is taking place, a write instruction to the LPUART_TDR register
places the data in the shift register, the data transmission starts, and the TXE bit is set.
If a frame is transmitted (after the stop bit) and the TXE bit is set, the TC bit goes high. An
interrupt is generated if the TCIE bit is set in the LPUART_CR1 register.
After writing the last data in the LPUART_TDR register, it is mandatory to wait for TC=1
before disabling the LPUART or causing the microcontroller to enter the low-power mode
(see Figure 386: TC/TXE behavior when transmitting).
1252/1693
DocID024597 Rev 3
RM0351
Low-power universal asynchronous receiver transmitter (LPUART)
Figure 411. TC/TXE behavior when transmitting
)UDPH
)UDPH
)UDPH
,GOHSUHDPEOH
7;OLQH
7;(IODJ
/38$57B'5
6HWE\KDUGZDUH
FOHDUHGE\VRIWZDUH
6HWE\KDUGZDUH
FOHDUHGE\VRIWZDUH
)
)
)
6HWE\KDUGZDUH
6HWE\KDUGZDUH
7&IODJ
6RIWZDUH
HQDEOHVWKH
/38$57
6RIWZDUHZDLWVXQWLO7;(
DQGZULWHV)LQWR'5
6RIWZDUHZDLWVXQWLO7;(
DQGZULWHV)LQWR'5
7&LVQRWVHW
EHFDXVH7;(
6RIWZDUHZDLWVXQWLO
7;( DQGZULWHV
)LQWR'5
7&LVQRWVHW
EHFDXVH7;(
7&LVVHW
EHFDXVH7;(
6RIWZDUHZDLWVXQWLO7&
06Y9
Break characters
Setting the SBKRQ bit transmits a break character. The break frame length depends on the
M bits (see Figure 409).
If a ‘1’ is written to the SBKRQ bit, a break character is sent on the TX line after completing
the current character transmission. The SBKF bit is set by the write operation and it is reset
by hardware when the break character is completed (during the stop bits after the break
character). The LPUART inserts a logic 1 signal (STOP) for the duration of 2 bits at the end
of the break frame to guarantee the recognition of the start bit of the next frame.
In the case the application needs to send the break character following all previously
inserted data, including the ones not yet transmitted, the software should wait for the TXE
flag assertion before setting the SBKRQ bit.
Idle characters
Setting the TE bit drives the LPUART to send an idle frame before the first data frame.
37.4.3
LPUART receiver
The LPUART can receive data words of either 7 or 8 or 9 bits depending on the M bits in the
LPUART_CR1 register.
Start bit detection
In LPUART, for START bit detection, a falling edge should be detected first on the Rx line,
then a sample is taken in the middle of the start bit to confirm that it is still ‘0’. If the start
sample is at ‘1’, then the noise error flag (NF) is set, then the START bit is discarded and the
receiver waits for a new START bit. Else, the receiver continues to sample all incoming bits
normally.
DocID024597 Rev 3
1253/1693
1282
Low-power universal asynchronous receiver transmitter (LPUART)
RM0351
Character reception
During an LPUART reception, data shifts in least significant bit first (default configuration)
through the RX pin. In this mode, the LPUART_RDR register consists of a buffer (RDR)
between the internal bus and the received shift register.
Character reception procedure
1.
Program the M bits in LPUART_CR1 to define the word length.
2.
Select the desired baud rate using the baud rate register LPUART_BRR
3.
Program the number of stop bits in LPUART_CR2.
4.
Enable the LPUART by writing the UE bit in LPUART_CR1 register to 1.
5.
Select DMA enable (DMAR) in LPUART_CR3 if multibuffer communication is to take
place. Configure the DMA register as explained in multibuffer communication.
6.
Set the RE bit LPUART_CR1. This enables the receiver which begins searching for a
start bit.
When a character is received
•
The RXNE bit is set. It indicates that the content of the shift register is transferred to the
RDR. In other words, data has been received and can be read (as well as its
associated error flags).
•
An interrupt is generated if the RXNEIE bit is set.
•
The error flags can be set if a frame error, noise or an overrun error has been detected
during reception. PE flag can also be set with RXNE.
•
In multibuffer, RXNE is set after every byte received and is cleared by the DMA read of
the Receive data Register.
•
In single buffer mode, clearing the RXNE bit is performed by a software read to the
LPUART_RDR register. The RXNE flag can also be cleared by writing 1 to the RXFRQ
in the LPUART_RQR register. The RXNE bit must be cleared before the end of the
reception of the next character to avoid an overrun error.
Break character
When a break character is received, the LPUART handles it as a framing error.
Idle character
When an idle frame is detected, there is the same procedure as for a received data
character plus an interrupt if the IDLEIE bit is set.
1254/1693
DocID024597 Rev 3
RM0351
Low-power universal asynchronous receiver transmitter (LPUART)
Overrun error
An overrun error occurs when a character is received when RXNE has not been reset. Data
can not be transferred from the shift register to the RDR register until the RXNE bit is
cleared.
The RXNE flag is set after every byte received. An overrun error occurs if RXNE flag is set
when the next data is received or the previous DMA request has not been serviced. When
an overrun error occurs:
Note:
•
The ORE bit is set.
•
The RDR content will not be lost. The previous data is available when a read to
LPUART_RDR is performed.
•
The shift register will be overwritten. After that point, any data received during overrun
is lost.
•
An interrupt is generated if either the RXNEIE bit is set or EIE bit is set.
•
The ORE bit is reset by setting the ORECF bit in the ICR register.
The ORE bit, when set, indicates that at least 1 data has been lost. There are two
possibilities:
- if RXNE=1, then the last valid data is stored in the receive register RDR and can be read,
- if RXNE=0, then it means that the last valid data has already been read and thus there is
nothing to be read in the RDR. This case can occur when the last valid data is read in the
RDR at the same time as the new (and lost) data is received.
Selecting the clock source
The choice of the clock source is done through the Reset and Clock Control system (RCC).
The clock source must be chosen before enabling the LPUART (by setting the UE bit).
The choice of the clock source must be done according to two criteria:
•
Possible use of the LPUART in low-power mode
•
Communication speed.
The clock source frequency is fCK.
When the dual clock domain and the wakeup from Stop mode features are supported, the
clock source can be one of the following sources: fPCLK (default), fLSE, fHSI or fSYS.
Otherwise, the LPUART clock source is fPCLK .
Choosing fLSE, fHSI as clock source may allow the LPUART to receive data while the MCU is
in low-power mode. Depending on the received data and wakeup mode selection, the
LPUART wakes up the MCU, when needed, in order to transfer the received data by
software reading the LPUART_RDR register or by DMA.
For the other clock sources, the system must be active in order to allow LPUART
communication.
The communication speed range (specially the maximum communication speed) is also
determined by the clock source.
The receiver samples each incoming baud as close as possible to the middle of the baudperiod. Only a single sample is taken of each of the incoming bauds.
Note:
There is no noise detection for data.
DocID024597 Rev 3
1255/1693
1282
Low-power universal asynchronous receiver transmitter (LPUART)
RM0351
Framing error
A framing error is detected when:
The stop bit is not recognized on reception at the expected time, following either a desynchronization or excessive noise.
When the framing error is detected:
•
The FE bit is set by hardware
•
The invalid data is transferred from the Shift register to the LPUART_RDR register.
•
No interrupt is generated in case of single byte communication. However this bit rises
at the same time as the RXNE bit which itself generates an interrupt. In case of
multibuffer communication an interrupt will be issued if the EIE bit is set in the
LPUART_CR3 register.
The FE bit is reset by writing 1 to the FECF in the LPUART_ICR register.
Configurable stop bits during reception
The number of stop bits to be received can be configured through the control bits of Control
Register 2 - it can be either 1 or 2 in normal mode.
37.4.4
•
1 stop bit: Sampling for 1 stop Bit is done on the 8th, 9th and 10th samples.
•
2 stop bits: Sampling for the 2 stop bits is done in the middle of the second stop bit.
The RXNE and FE flags are set just after this sample i.e. during the second stop bit.
The first stop bit is not checked for framing error.
LPUART baud rate generation
The baud rate for the receiver and transmitter (Rx and Tx) are both set to the same value as
programmed in the LPUART_BRR register.
The baud rate for the receiver and transmitter (Rx and Tx) are both set to the same value as
programmed in the LPUART_BRR register.
256 × f CK
Tx/Rx baud = -----------------------------------LPUARTDIV
LPUARTDIV is coded on the LPUART_BRR register.
Note:
The baud counters are updated to the new value in the baud registers after a write operation
to LPUART_BRR. Hence the baud rate register value should not be changed during
communication.
It is forbidden to write values less than 0x300 in the LPUART_BRR register.
fck must be in the range [3 x baudrate, 4096 x baudrate].
The maximum baudrate that can be reached when the LPUART clock source is the LSE, is
9600 baud. Higher baudrates can be reached when the LPUART is clocked by clock
sources different than the LSE clock. For example, if the USART clock source is the system
clock (maximum is 80 MHz), the maximum baudrate that can be reached is 26 Mbaud.
1256/1693
DocID024597 Rev 3
RM0351
Low-power universal asynchronous receiver transmitter (LPUART)
Table 200. Error calculation for programmed baudrates at fck = 32,768 KHz
fCK = 32,768 KHz
Baud rate
S.No
Desired
Actual
Value programmed in the baud
rate register
% Error = (Calculated - Desired)
B.rate / Desired B.rate
1
300 Bps
300 Bps
0x6D3A
0
2
600 Bps
600 Bps
0x369D
0
3
1200 Bps
1200.087 Bps
0x1B4E
0.007
4
2400 Bps
2400.17 Bps
0xDA7
0.007
5
4800 Bps
4801.72 Bps
0x6D3
0.035
6
9600 Bps
9608.94 Bps
0x369
0.093
37.4.5
Multiprocessor communication using LPUART
It is possible to perform multiprocessor communication with the LPUART (with several
LPUARTs connected in a network). For instance one of the LPUARTs can be the master, its
TX output connected to the RX inputs of the other LPUARTs. The others are slaves, their
respective TX outputs are logically ANDed together and connected to the RX input of the
master.
In multiprocessor configurations it is often desirable that only the intended message
recipient should actively receive the full message contents, thus reducing redundant
LPUART service overhead for all non addressed receivers.
The non addressed devices may be placed in mute mode by means of the muting function.
In order to use the mute mode feature, the MME bit must be set in the LPUART_CR1
register.
In mute mode:
•
None of the reception status bits can be set.
•
All the receive interrupts are inhibited.
•
The RWU bit in LPUART_ISR register is set to 1. RWU can be controlled automatically
by hardware or by software, through the MMRQ bit in the LPUART_RQR register,
under certain conditions.
The LPUART can enter or exit from mute mode using one of two methods, depending on
the WAKE bit in the LPUART_CR1 register:
•
Idle Line detection if the WAKE bit is reset,
•
Address Mark detection if the WAKE bit is set.
Idle line detection (WAKE=0)
The LPUART enters mute mode when the MMRQ bit is written to 1 and the RWU is
automatically set.
It wakes up when an Idle frame is detected. Then the RWU bit is cleared by hardware but
the IDLE bit is not set in the LPUART_ISR register. An example of mute mode behavior
using Idle line detection is given in Figure 390.
DocID024597 Rev 3
1257/1693
1282
Low-power universal asynchronous receiver transmitter (LPUART)
RM0351
Figure 412. Mute mode using Idle line detection
5;1(
'DWD 'DWD 'DWD 'DWD
5;
0XWHPRGH
5:8
0054ZULWWHQWR
,'/(
5;1(
'DWD 'DWD
1RUPDOPRGH
,GOHIUDPHGHWHFWHG
06Y9
Note:
If the MMRQ is set while the IDLE character has already elapsed, mute mode will not be
entered (RWU is not set).
If the LPUART is activated while the line is IDLE, the idle state is detected after the duration
of one IDLE frame (not only after the reception of one character frame).
4-bit/7-bit address mark detection (WAKE=1)
In this mode, bytes are recognized as addresses if their MSB is a ‘1’ otherwise they are
considered as data. In an address byte, the address of the targeted receiver is put in the 4
or 7 LSBs. The choice of 7 or 4 bit address detection is done using the ADDM7 bit. This 4bit/7-bit word is compared by the receiver with its own address which is programmed in the
ADD bits in the LPUART_CR2 register.
Note:
In 7-bit and 9-bit data modes, address detection is done on 6-bit and 8-bit addresses
(ADD[5:0] and ADD[7:0]) respectively.
The LPUART enters mute mode when an address character is received which does not
match its programmed address. In this case, the RWU bit is set by hardware. The RXNE
flag is not set for this address byte and no interrupt or DMA request is issued when the
LPUART enters mute mode.
The LPUART also enters mute mode when the MMRQ bit is written to 1. The RWU bit is
also automatically set in this case.
The LPUART exits from mute mode when an address character is received which matches
the programmed address. Then the RWU bit is cleared and subsequent bytes are received
normally. The RXNE bit is set for the address character since the RWU bit has been
cleared.
An example of mute mode behavior using address mark detection is given in Figure 391.
1258/1693
DocID024597 Rev 3
RM0351
Low-power universal asynchronous receiver transmitter (LPUART)
Figure 413. Mute mode using address mark detection
,QWKLVH[DPSOHWKHFXUUHQWDGGUHVVRIWKHUHFHLYHULV
SURJUDPPHGLQWKH/38$57B&5UHJLVWHU
5;1(
,'/(
5;
$GGU 'DWD 'DWD
5:8
,'/(
5;1(
$GGU 'DWD 'DWD $GGU 'DWD
0XWHPRGH
1RUPDOPRGH
0DWFKLQJDGGUHVV
0054ZULWWHQWR
5;1(ZDVFOHDUHG
5;1(
0XWHPRGH
1RQPDWFKLQJDGGUHVV
1RQPDWFKLQJDGGUHVV
06Y9
37.4.6
LPUART parity control
Parity control (generation of parity bit in transmission and parity checking in reception) can
be enabled by setting the PCE bit in the LPUART_CR1 register. Depending on the frame
length defined by the M bits, the possible LPUART frame formats are as listed in Table 196.
Table 201. Frame formats
M bits
PCE bit
LPUART frame(1)
00
0
| SB | 8-bit data | STB |
00
1
| SB | 7-bit data | PB | STB |
01
0
| SB | 9-bit data | STB |
01
1
| SB | 8-bit data | PB | STB |
10
0
| SB | 7-bit data | STB |
10
1
| SB | 6-bit data | PB | STB |
1. Legends: SB: start bit, STB: stop bit, PB: parity bit.
2. In the data register, the PB is always taking the MSB position (9th, 8th or 7th, depending on the M bits
value).
Even parity
The parity bit is calculated to obtain an even number of “1s” inside the frame which is made
of the 6, 7 or 8 LSB bits (depending on M bits values) and the parity bit.
As an example, if data=00110101, and 4 bits are set, then the parity bit will be 0 if even
parity is selected (PS bit in LPUART_CR1 = 0).
Odd parity
The parity bit is calculated to obtain an odd number of “1s” inside the frame made of the 6, 7
or 8 LSB bits (depending on M bits values) and the parity bit.
As an example, if data=00110101 and 4 bits set, then the parity bit will be 1 if odd parity is
selected (PS bit in LPUART_CR1 = 1).
DocID024597 Rev 3
1259/1693
1282
Low-power universal asynchronous receiver transmitter (LPUART)
RM0351
Parity checking in reception
If the parity check fails, the PE flag is set in the LPUART_ISR register and an interrupt is
generated if PEIE is set in the LPUART_CR1 register. The PE flag is cleared by software
writing 1 to the PECF in the LPUART_ICR register.
Parity generation in transmission
If the PCE bit is set in LPUARTx_CR1, then the MSB bit of the data written in the data
register is transmitted but is changed by the parity bit (even number of “1s” if even parity is
selected (PS=0) or an odd number of “1s” if odd parity is selected (PS=1)).
37.4.7
Single-wire half-duplex communication using LPUART
Single-wire half-duplex mode is selected by setting the HDSEL bit in the LPUART_CR3
register. In this mode, the following bits must be kept cleared:
•
LINEN and CLKEN bits in the LPUART_CR2 register,
•
SCEN and IREN bits in the LPUART_CR3 register.
The LPUART can be configured to follow a single-wire half-duplex protocol where the TX
and RX lines are internally connected. The selection between half- and full-duplex
communication is made with a control bit HDSEL in LPUART_CR3.
As soon as HDSEL is written to 1:
•
The TX and RX lines are internally connected
•
The RX pin is no longer used
•
The TX pin is always released when no data is transmitted. Thus, it acts as a standard
I/O in idle or in reception. It means that the I/O must be configured so that TX is
configured as alternate function open-drain with an external pull-up.
Apart from this, the communication protocol is similar to normal LPUART mode. Any
conflicts on the line must be managed by software (by the use of a centralized arbiter, for
instance). In particular, the transmission is never blocked by hardware and continues as
soon as data is written in the data register while the TE bit is set.
Note:
In LPUART, in the case of 1-stop bit configuration, the RXNE flag is set in the middle of the
stop bit.
37.4.8
Continuous communication in DMA mode using LPUART
The LPUART is capable of performing continuous communication using the DMA. The DMA
requests for Rx buffer and Tx buffer are generated independently.
Note:
Use the LPUART as explained in Section 37.4.3. To perform continuous communication,
you can clear the TXE/ RXNE flags In the LPUART_ISR register.
Transmission using DMA
DMA mode can be enabled for transmission by setting DMAT bit in the LPUART_CR3
register. Data is loaded from a SRAM area configured using the DMA peripheral (refer to
Section 10: Direct memory access controller (DMA) on page 295) to the LPUART_TDR
register whenever the TXE bit is set. To map a DMA channel for LPUART transmission, use
the following procedure (x denotes the channel number):
1260/1693
DocID024597 Rev 3
RM0351
Low-power universal asynchronous receiver transmitter (LPUART)
1.
Write the LPUART_TDR register address in the DMA control register to configure it as
the destination of the transfer. The data is moved to this address from memory after
each TXE event.
2.
Write the memory address in the DMA control register to configure it as the source of
the transfer. The data is loaded into the LPUART_TDR register from this memory area
after each TXE event.
3.
Configure the total number of bytes to be transferred to the DMA control register.
4.
Configure the channel priority in the DMA register
5.
Configure DMA interrupt generation after half/ full transfer as required by the
application.
6.
Clear the TC flag in the LPUART_ISR register by setting the TCCF bit in the
LPUART_ICR register.
7.
Activate the channel in the DMA register.
When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector.
In transmission mode, once the DMA has written all the data to be transmitted (the TCIF flag
is set in the DMA_ISR register), the TC flag can be monitored to make sure that the
LPUART communication is complete. This is required to avoid corrupting the last
transmission before disabling the LPUART or entering Stop mode. Software must wait until
TC=1. The TC flag remains cleared during all data transfers and it is set by hardware at the
end of transmission of the last frame.
Figure 414. Transmission using DMA
,GOHSUHDPEOH
)UDPH
)UDPH
)UDPH
7;OLQH
6HWE\KDUGZDUHFOHDUHGE\
'0$UHDG
6HWE\KDUGZDUHFOHDUHG
E\'0$UHDG
7;(IODJ
6HWE\KDUGZDUH
,JQRUHGE\WKH'0$EHFDXVHWKHWUDQVIHU
LVFRPSOHWH
'0$UHTXHVW
D
/38$57B7'5
)
)
)
7&IODJ
6HWE\KDUGZDUH
'0$ZULWHV
/38$57B7'5
&OHDUHGE\VRIWZDUH
'0$7&,)IODJ WUDQVIHUFRPSOHWH
6RIWZDUH
FRQILJXUHV
'0$WRVHQG
GDWDEORFNV
DQGHQDEOHV
/38$57
6HWE\KDUGZDUH
'0$ZULWHV)
'0$ZULWHV) '0$ZULWHV)
LQWR
LQWR
LQWR
/38$57B7'5 /38$57B7'5 /38$57B7'5
7KH'0$
WUDQVIHULV
FRPSOHWH
7&,) LQ
'0$B,65
6RIWZDUHZDLWVXQWLO7&
06Y9
DocID024597 Rev 3
1261/1693
1282
Low-power universal asynchronous receiver transmitter (LPUART)
RM0351
Reception using DMA
DMA mode can be enabled for reception by setting the DMAR bit in LPUART_CR3 register.
Data is loaded from the LPUART_RDR register to a SRAM area configured using the DMA
peripheral (refer Section 10: Direct memory access controller (DMA) on page 295)
whenever a data byte is received. To map a DMA channel for LPUART reception, use the
following procedure:
1.
Write the LPUART_RDR register address in the DMA control register to configure it as
the source of the transfer. The data is moved from this address to the memory after
each RXNE event.
2.
Write the memory address in the DMA control register to configure it as the destination
of the transfer. The data is loaded from LPUART_RDR to this memory area after each
RXNE event.
3.
Configure the total number of bytes to be transferred to the DMA control register.
4.
Configure the channel priority in the DMA control register
5.
Configure interrupt generation after half/ full transfer as required by the application.
6.
Activate the channel in the DMA control register.
When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector.
Figure 415. Reception using DMA
)UDPH
)UDPH
)UDPH
7;OLQH
6HWE\KDUGZDUHFOHDUHGE\
'0$UHDG
5;1(IODJ
'0$UHTXHVW
)
)
/38$57B7'5
)
'0$UHDGV
/38$57B7'5
'0$7&,)IODJ
WUDQVIHUFRPSOHWH
6RIWZDUHFRQILJXUHV
WKH'0$WRUHFHLYH
GDWDEORFNVDQGHQDEOHV
WKH/38$57
6HWE\KDUGZDUH
'0$UHDGV
)IURP
/38$57B7'5
'0$UHDGV)
)URP
/38$57B7'5
'0$UHDGV)
IURP
/38$57B7'5
&OHDUHGE\
VRIWZDUH
7KH'0$
WUDQVIHULV
FRPSOHWH
7&,) LQ
'0$B,65
06Y9
Error flagging and interrupt generation in multibuffer communication
In multibuffer communication if any error occurs during the transaction the error flag is
asserted after the current byte. An interrupt is generated if the interrupt enable flag is set.
For framing error, overrun error and noise flag which are asserted with RXNE in single byte
reception, there is a separate error flag interrupt enable bit (EIE bit in the LPUART_CR3
register), which, if set, enables an interrupt after the current byte if any of these errors occur.
1262/1693
DocID024597 Rev 3
RM0351
37.4.9
Low-power universal asynchronous receiver transmitter (LPUART)
RS232 Hardware flow control and RS485 Driver Enable
using LPUART
It is possible to control the serial data flow between 2 devices by using the CTS input and
the RTS output. The Figure 404 shows how to connect 2 devices in this mode:
Figure 416. Hardware flow control between 2 LPUARTs
/38$57
/38$57
7;
7;FLUFXLW
5;
&76
576
5;
5;FLUFXLW
5;FLUFXLW
7;
7;FLUFXLW
576
&76
06Y9
RS232 RTS and CTS flow control can be enabled independently by writing the RTSE and
CTSE bits respectively to 1 (in the LPUART_CR3 register).
RS232 RTS flow control
If the RTS flow control is enabled (RTSE=1), then RTS is asserted (tied low) as long as the
LPUART receiver is ready to receive a new data. when the receive register is full, RTS is deasserted, indicating that the transmission is expected to stop at the end of the current frame.
Figure 405 shows an example of communication with RTS flow control enabled.
Figure 417. RS232 RTS flow control
5;
6WDUW
ELW
'DWD
6WRS
6WDUW
,GOH
ELW
ELW
'DWD
6WRS
ELW
576
5;1(
5;1(
'DWDUHDG
'DWDFDQQRZEHWUDQVPLWWHG
06Y9
RS232 CTS flow control
If the CTS flow control is enabled (CTSE=1), then the transmitter checks the CTS input
before transmitting the next frame. If CTS is asserted (tied low), then the next data is
transmitted (assuming that data is to be transmitted, in other words, if TXE=0), else the
DocID024597 Rev 3
1263/1693
1282
Low-power universal asynchronous receiver transmitter (LPUART)
RM0351
transmission does not occur. When CTS is de-asserted during a transmission, the current
transmission is completed before the transmitter stops.
When CTSE=1, the CTSIF status bit is automatically set by hardware as soon as the CTS
input toggles. It indicates when the receiver becomes ready or not ready for communication.
An interrupt is generated if the CTSIE bit in the LPUART_CR3 register is set. Figure 406
shows an example of communication with CTS flow control enabled.
Figure 418. RS232 CTS flow control
&76
&76
&76
7UDQVPLWGDWDUHJLVWHU
7'5
'DWD
7;
'DWD
HPSW\
6WRS 6WDUW
ELW ELW
HPSW\
'DWD
'DWD
:ULWLQJGDWDLQ7'5
6WRS
6WDUW
,GOH
ELW
ELW
'DWD
7UDQVPLVVLRQRI'DWDLV
GHOD\HGXQWLO&76
06Y9
Note:
For correct behavior, CTS must be asserted at least 3 LPUART clock source periods before
the end of the current character. In addition it should be noted that the CTSCF flag may not
be set for pulses shorter than 2 x PCLK periods.
RS485 Driver Enable
The driver enable feature is enabled by setting bit DEM in the LPUART_CR3 control
register. This allows the user to activate the external transceiver control, through the DE
(Driver Enable) signal. The assertion time is the time between the activation of the DE signal
and the beginning of the START bit. It is programmed using the DEAT [4:0] bit fields in the
LPUART_CR1 control register. The de-assertion time is the time between the end of the last
stop bit, in a transmitted message, and the de-activation of the DE signal. It is programmed
using the DEDT [4:0] bit fields in the LPUART_CR1 control register. The polarity of the DE
signal can be configured using the DEP bit in the LPUART_CR3 control register.
In LPUART, the DEAT and DEDT are expressed in USART clock source (fCK) cycles:
•
•
The Driver enable assertion time =
–
(1 + (DEAT x P)) x fCK , if P <> 0
–
(1 + DEAT) x fCK , if P = 0
The Driver enable de-assertion time =
–
(1 + (DEDT x P)) x fCK , if P <> 0
–
(1 + DEDT) x fCK , if P = 0
With P = BRR[14:11]
1264/1693
DocID024597 Rev 3
RM0351
37.4.10
Low-power universal asynchronous receiver transmitter (LPUART)
Wakeup from Stop mode using LPUART
The LPUART is able to wake up the MCU from Stop mode when the UESM bit is set and the
LPUART clock is set to HSI16 or LSE (refer to the Reset and clock control (RCC) section.
The MCU wakeup from Stop mode can be done using the standard RXNE interrupt. In this
case, the RXNEIE bit must be set before entering Stop mode.
Alternatively, a specific interrupt may be selected through the WUS bit fields.
In order to be able to wake up the MCU from Stop mode, the UESM bit in the LPUART_CR1
control register must be set prior to entering Stop mode.
When the wakeup event is detected, the WUF flag is set by hardware and a wakeup
interrupt is generated if the WUFIE bit is set.
Note:
Before entering Stop mode, the user must ensure that the LPUART is not performing a
transfer. BUSY flag cannot ensure that Stop mode is never entered during a running
reception.
The WUF flag is set when a wakeup event is detected, independently of whether the MCU is
in Stop or in an active mode.
When entering Stop mode just after having initialized and enabled the receiver, the REACK
bit must be checked to ensure the LPUART is actually enabled.
When DMA is used for reception, it must be disabled before entering Stop mode and reenabled upon exit from Stop mode.
The wakeup from Stop mode feature is not available for all modes. For example it doesn’t
work in SPI mode because the SPI operates in master mode only.
Using Mute mode with Stop mode
If the LPUART is put into Mute mode before entering Stop mode:
37.5
•
Wakeup from Mute mode on idle detection must not be used, because idle detection
cannot work in Stop mode.
•
If the wakeup from Mute mode on address match is used, then the source of wake-up
from Stop mode must also be the address match. If the RXNE flag is set when entering
the Stop mode, the interface will remain in mute mode upon address match and wake
up from Stop.
•
If the LPUART is configured to wake up the MCU from Stop mode on START bit
detection, the WUF flag is set, but the RXNE flag is not set.
LPUART low-power mode
Table 202. Effect of low-power modes on the LPUART
Mode
Description
Sleep
No effect.
Low-power run
No effect.
Low-power sleep
No effect. USART interrupt causes the device to exit Low-power sleep
mode.
DocID024597 Rev 3
1265/1693
1282
Low-power universal asynchronous receiver transmitter (LPUART)
RM0351
Table 202. Effect of low-power modes on the LPUART (continued)
Mode
Description
The LPUART registers content is kept. The LPUART is able to wake up
the MCU from Stop 0, Stop 1 and Stop 2 modes when the UESM bit is set
Stop 0, Stop 1 and Stop 2 and the LPUART clock is set to HSI16 or LSE.
The MCU wakeup from Stop 0, Stop 1 and 2 modes can be done using
either the standard RXNE or the WUF interrupt.
Standby
The LPUART is powered down and must be reinitialized when the device
has exited from Standby or Shutdown mode.
Shutdown
37.6
LPUART interrupts
Table 203. LPUART interrupt requests
Interrupt event
Transmit data register empty
CTS interrupt
Transmission Complete
Receive data register not empty (data ready to be read)
Event flag
Enable
Control bit
TXE
TXEIE
CTSIF
CTSIE
TC
TCIE
RXNE
RXNEIE
Overrun error detected
ORE
Idle line detected
IDLE
IDLEIE
PE
PEIE
NF or ORE or FE
EIE
CMF
CMIE
Parity error
Noise Flag, Overrun error and Framing Error in multibuffer
communication.
Character match
Wakeup from Stop mode
WUF
(1)
WUFIE
1. The wUF interrupt is active only in Stop mode.
The LPUART interrupt events are connected to the same interrupt vector (see Figure 407).
•
During transmission: Transmission Complete, Clear to Send, Transmit data Register
empty or Framing error interrupt.
•
During reception: Idle Line detection, Overrun error, Receive data register not empty,
Parity error, Noise Flag, Framing Error, Character match, etc.
These events generate an interrupt if the corresponding Enable Control Bit is set.
1266/1693
DocID024597 Rev 3
RM0351
Low-power universal asynchronous receiver transmitter (LPUART)
Figure 419. LPUART interrupt mapping diagram
7&
7&,(
7;(
7;(,(
&76,)
&76,(
,'/(
,'/(,(
/38$57
LQWHUUXSW
5;1(,(
25(
5;1(,(
5;1(
3(
3(,(
/%')
/%',(
)(
1)
25(
&0)
&0,(
(,(
:8)
:8),(
069
DocID024597 Rev 3
1267/1693
1282
Low-power universal asynchronous receiver transmitter (LPUART)
37.7
RM0351
LPUART registers
Refer to Section 1.1 on page 61 for a list of abbreviations used in register descriptions.
37.7.1
Control register 1 (LPUART_CR1)
Address offset: 0x00
Reset value: 0x0000
31
30
29
28
27
26
Res.
Res.
Res.
M1
Res.
Res.
rw
25
24
23
22
21
20
19
DEAT[4:0]
rw
rw
rw
18
17
16
rw
rw
DEDT[4:0]
rw
15
14
13
12
11
10
9
8
7
6
Res.
CMIE
MME
M0
WAKE
PCE
PS
PEIE
TXEIE
TCIE
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
5
4
RXNEIE IDLEIE
rw
rw
rw
rw
3
2
1
0
TE
RE
UESM
UE
rw
rw
rw
rw
Bits 31:29 Reserved, must be kept at reset value
Bit 28 M1: Word length
This bit, with bit 12 (M0) determines the word length. It is set or cleared by software.
M[1:0] = 00: 1 Start bit, 8 data bits, n stop bits
M[1:0] = 01: 1 Start bit, 9 data bits, n stop bits
M[1:0] = 10: 1 Start bit, 7 data bits, n stop bits
This bit can only be written when the LPUART is disabled (UE=0).
Note: In 7-bit data length mode, the Smartcard mode, LIN master mode and Autobaudrate
(0x7F and 0x55 frames detection) are not supported.
Bit 27 Reserved, must be kept at reset value
Bit 26 Reserved, must be kept at reset value
Bits 25:21 DEAT[4:0]: Driver Enable assertion time
This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and
the beginning of the start bit. It is expressed in UCLK (USART clock) clock cycles. For more
details, refer to RS485 Driver Enable paragraph.
This bit field can only be written when the LPUART is disabled (UE=0).
Bits 20:16 DEDT[4:0]: Driver Enable de-assertion time
This 5-bit value defines the time between the end of the last stop bit, in a transmitted
message, and the de-activation of the DE (Driver Enable) signal. It is expressed in UCLK
(USART clock) clock cycles. For more details, refer to RS485 Driver Enable paragraph.
If the LPUART_TDR register is written during the DEDT time, the new data is transmitted
only when the DEDT and DEAT times have both elapsed.
This bit field can only be written when the LPUART is disabled (UE=0).
Bit 15 Reserved, must be kept at reset value
Bit 14 CMIE: Character match interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: A LPUART interrupt is generated when the CMF bit is set in the LPUART_ISR register.
1268/1693
DocID024597 Rev 3
RM0351
Low-power universal asynchronous receiver transmitter (LPUART)
Bit 13 MME: Mute mode enable
This bit activates the mute mode function of the LPUART. When set, the LPUART can switch
between the active and mute modes, as defined by the WAKE bit. It is set and cleared by
software.
0: Receiver in active mode permanently
1: Receiver can switch between mute mode and active mode.
Bit 12 M0: Word length
This bit, with bit 28 (M1) determines the word length. It is set or cleared by software. See Bit
28 (M1) description.
This bit can only be written when the LPUART is disabled (UE=0).
Bit 11 WAKE: Receiver wakeup method
This bit determines the LPUART wakeup method from Mute mode. It is set or cleared by
software.
0: Idle line
1: Address mark
This bit field can only be written when the LPUART is disabled (UE=0).
Bit 10 PCE: Parity control enable
This bit selects the hardware parity control (generation and detection). When the parity
control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit
if M=0) and parity is checked on the received data. This bit is set and cleared by software.
Once it is set, PCE is active after the current byte (in reception and in transmission).
0: Parity control disabled
1: Parity control enabled
This bit field can only be written when the LPUART is disabled (UE=0).
Bit 9 PS: Parity selection
This bit selects the odd or even parity when the parity generation/detection is enabled (PCE
bit set). It is set and cleared by software. The parity will be selected after the current byte.
0: Even parity
1: Odd parity
This bit field can only be written when the LPUART is disabled (UE=0).
Bit 8 PEIE: PE interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An LPUART interrupt is generated whenever PE=1 in the LPUART_ISR register
Bit 7 TXEIE: interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An LPUART interrupt is generated whenever TXE=1 in the LPUART_ISR register
Bit 6 TCIE: Transmission complete interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An LPUART interrupt is generated whenever TC=1 in the LPUART_ISR register
Bit 5 RXNEIE: RXNE interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An LPUART interrupt is generated whenever ORE=1 or RXNE=1 in the LPUART_ISR
register
DocID024597 Rev 3
1269/1693
1282
Low-power universal asynchronous receiver transmitter (LPUART)
RM0351
Bit 4 IDLEIE: IDLE interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An LPUART interrupt is generated whenever IDLE=1 in the LPUART_ISR register
Bit 3 TE: Transmitter enable
This bit enables the transmitter. It is set and cleared by software.
0: Transmitter is disabled
1: Transmitter is enabled
Note: During transmission, a “0” pulse on the TE bit (“0” followed by “1”) sends a preamble
(idle line) after the current word. In order to generate an idle character, the TE must not
be immediately written to 1. In order to ensure the required duration, the software can
poll the TEACK bit in the LPUART_ISR register.
When TE is set there is a 1 bit-time delay before the transmission starts.
Bit 2 RE: Receiver enable
This bit enables the receiver. It is set and cleared by software.
0: Receiver is disabled
1: Receiver is enabled and begins searching for a start bit
Bit 1 UESM: LPUART enable in Stop mode
When this bit is cleared, the LPUART is not able to wake up the MCU from Stop mode.
When this bit is set, the LPUART is able to wake up the MCU from Stop mode, provided that
the LPUART clock selection is HSI or LSE in the RCC.
This bit is set and cleared by software.
0: LPUART not able to wake up the MCU from Stop mode.
1: LPUART able to wake up the MCU from Stop mode. When this function is active, the
clock source for the LPUART must be HSI or LSE (see Section Reset and clock control
(RCC)).
Note: It is recommended to set the UESM bit just before entering Stop mode and clear it on
exit from Stop mode.
Bit 0 UE: LPUART enable
When this bit is cleared, the LPUART prescalers and outputs are stopped immediately, and
current operations are discarded. The configuration of the LPUART is kept, but all the status
flags, in the LPUART_ISR are reset. This bit is set and cleared by software.
0: LPUART prescaler and outputs disabled, low-power mode
1: LPUART enabled
Note: In order to go into low-power mode without generating errors on the line, the TE bit
must be reset before and the software must wait for the TC bit in the LPUART_ISR to
be set before resetting the UE bit.
The DMA requests are also reset when UE = 0 so the DMA channel must be disabled
before resetting the UE bit.
1270/1693
DocID024597 Rev 3
RM0351
Low-power universal asynchronous receiver transmitter (LPUART)
37.7.2
Control register 2 (LPUART_CR2)
Address offset: 0x04
Reset value: 0x0000
31
30
29
28
27
ADD[7:4]
26
25
24
ADD[3:0]
23
22
21
20
Res.
Res.
Res.
Res.
19
18
17
MSBFI
DATAINV TXINV
RST
16
RXINV
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
SWAP
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
ADDM7
Res.
Res.
Res.
Res.
rw
STOP[1:0]
rw
rw
rw
Bits 31:28 ADD[7:4]: Address of the LPUART node
This bit-field gives the address of the LPUART node or a character code to be recognized.
This is used in multiprocessor communication during Mute mode or Stop mode, for wakeup with 7bit address mark detection. The MSB of the character sent by the transmitter should be equal to 1.
It may also be used for character detection during normal reception, Mute mode inactive (for
example, end of block detection in Modbus protocol). In this case, the whole received character (8bit) is compared to the ADD[7:0] value and CMF flag is set on match.
This bit field can only be written when reception is disabled (RE = 0) or the LPUART is disabled
(UE=0)
Bits 27:24 ADD[3:0]: Address of the LPUART node
This bit-field gives the address of the LPUART node or a character code to be recognized.
This is used in multiprocessor communication during Mute mode or Stop mode, for wakeup with
address mark detection.
This bit field can only be written when reception is disabled (RE = 0) or the LPUART is disabled
(UE=0)
Bits 23:20 Reserved, must be kept at reset value
Bit 19 MSBFIRST: Most significant bit first
This bit is set and cleared by software.
0: data is transmitted/received with data bit 0 first, following the start bit.
1: data is transmitted/received with the MSB (bit 7/8/9) first, following the start bit.
This bit field can only be written when the LPUART is disabled (UE=0).
Bit 18 DATAINV: Binary data inversion
This bit is set and cleared by software.
0: Logical data from the data register are send/received in positive/direct logic. (1=H, 0=L)
1: Logical data from the data register are send/received in negative/inverse logic. (1=L, 0=H). The
parity bit is also inverted.
This bit field can only be written when the LPUART is disabled (UE=0).
Bit 17 TXINV: TX pin active level inversion
This bit is set and cleared by software.
0: TX pin signal works using the standard logic levels (VDD =1/idle, Gnd=0/mark)
1: TX pin signal values are inverted. (VDD =0/mark, Gnd=1/idle).
This allows the use of an external inverter on the TX line.
This bit field can only be written when the LPUART is disabled (UE=0).
DocID024597 Rev 3
1271/1693
1282
Low-power universal asynchronous receiver transmitter (LPUART)
RM0351
Bit 16 RXINV: RX pin active level inversion
This bit is set and cleared by software.
0: RX pin signal works using the standard logic levels (VDD =1/idle, Gnd=0/mark)
1: RX pin signal values are inverted. ((VDD =0/mark, Gnd=1/idle).
This allows the use of an external inverter on the RX line.
This bit field can only be written when the LPUART is disabled (UE=0).
Bit 15 SWAP: Swap TX/RX pins
This bit is set and cleared by software.
0: TX/RX pins are used as defined in standard pinout
1: The TX and RX pins functions are swapped. This allows to work in the case of a cross-wired
connection to another UART.
This bit field can only be written when the LPUART is disabled (UE=0).
Bit 14 Reserved, must be kept at reset value
Bits 13:12 STOP[1:0]: STOP bits
These bits are used for programming the stop bits.
00: 1 stop bit
01: Reserved.
10: 2 stop bits
11: Reserved
This bit field can only be written when the LPUART is disabled (UE=0).
Bits 11:5 Reserved, must be kept at reset value
Bit 4 ADDM7:7-bit Address Detection/4-bit Address Detection
This bit is for selection between 4-bit address detection or 7-bit address detection.
0: 4-bit address detection
1: 7-bit address detection (in 8-bit data mode)
This bit can only be written when the LPUART is disabled (UE=0)
Note: In 7-bit and 9-bit data modes, the address detection is done on 6-bit and 8-bit address
(ADD[5:0] and ADD[7:0]) respectively.
Bits 3:0 Reserved, must be kept at reset value.
1272/1693
DocID024597 Rev 3
RM0351
Low-power universal asynchronous receiver transmitter (LPUART)
37.7.3
Control register 3 (LPUART_CR3)
Address offset: 0x08
Reset value: 0x0000
31
30
29
28
27
26
25
24
23
22
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
WUFIE
21
20
19
18
17
16
Res.
Res.
Res.
Res.
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
DEP
DEM
DDRE
OVR
DIS
Res.
CTSIE
CTSE
RTSE
DMAT
DMAR
Res.
Res.
HD
SEL
Res.
Res.
EIE
rw
rw
rw
rw
rw
rw
rw
rw
rw
WUS[2:0]
rw
rw
Bits 31:23 Reserved, must be kept at reset value.
Bit 22 WUFIE: Wakeup from Stop mode interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An LPUART interrupt is generated whenever WUF=1 in the LPUART_ISR register
Note: WUFIE must be set before entering in Stop mode.
The WUF interrupt is active only in Stop mode.
If the LPUART does not support the wakeup from Stop feature, this bit is reserved and
forced by hardware to ‘0’.
Bits 21:20 WUS[1:0]: Wakeup from Stop mode interrupt flag selection
This bit-field specify the event which activates the WUF (wakeup from Stop mode flag).
00: WUF active on address match (as defined by ADD[7:0] and ADDM7)
01:Reserved.
10: WUF active on Start bit detection
11: WUF active on RXNE.
This bit field can only be written when the LPUART is disabled (UE=0).
Note: If the LPUART does not support the wakeup from Stop feature, this bit is reserved and
forced by hardware to ‘0’.
Bits 19:16 Reserved, must be kept at reset value.
Bit 15 DEP: Driver enable polarity selection
0: DE signal is active high.
1: DE signal is active low.
This bit can only be written when the LPUART is disabled (UE=0).
Bit 14 DEM: Driver enable mode
This bit allows the user to activate the external transceiver control, through the DE signal.
0: DE function is disabled.
1: DE function is enabled. The DE signal is output on the RTS pin.
This bit can only be written when the LPUART is disabled (UE=0).
DocID024597 Rev 3
1273/1693
1282
Low-power universal asynchronous receiver transmitter (LPUART)
RM0351
Bit 13 DDRE: DMA Disable on Reception Error
0: DMA is not disabled in case of reception error. The corresponding error flag is set but
RXNE is kept 0 preventing from overrun. As a consequence, the DMA request is not
asserted, so the erroneous data is not transferred (no DMA request), but next correct
received data will be transferred.
1: DMA is disabled following a reception error. The corresponding error flag is set, as well
as RXNE. The DMA request is masked until the error flag is cleared. This means that the
software must first disable the DMA request (DMAR = 0) or clear RXNE before clearing the
error flag.
This bit can only be written when the LPUART is disabled (UE=0).
Note: The reception errors are: parity error, framing error or noise error.
Bit 12 OVRDIS: Overrun Disable
This bit is used to disable the receive overrun detection.
0: Overrun Error Flag, ORE, is set when received data is not read before receiving new
data.
1: Overrun functionality is disabled. If new data is received while the RXNE flag is still set
the ORE flag is not set and the new received data overwrites the previous content of the
LPUART_RDR register.
This bit can only be written when the LPUART is disabled (UE=0).
Note: This control bit allows checking the communication flow without reading the data.
Bit 11 Reserved, must be kept at reset value.
Bit 10 CTSIE: CTS interrupt enable
0: Interrupt is inhibited
1: An interrupt is generated whenever CTSIF=1 in the LPUART_ISR register
Bit 9 CTSE: CTS enable
0: CTS hardware flow control disabled
1: CTS mode enabled, data is only transmitted when the CTS input is asserted (tied to 0). If
the CTS input is de-asserted while data is being transmitted, then the transmission is
completed before stopping. If data is written into the data register while CTS is de-asserted,
the transmission is postponed until CTS is asserted.
This bit can only be written when the LPUART is disabled (UE=0)
Bit 8 RTSE: RTS enable
0: RTS hardware flow control disabled
1: RTS output enabled, data is only requested when there is space in the receive buffer. The
transmission of data is expected to cease after the current character has been transmitted.
The RTS output is asserted (pulled to 0) when data can be received.
This bit can only be written when the LPUART is disabled (UE=0).
Bit 7 DMAT: DMA enable transmitter
This bit is set/reset by software
1: DMA mode is enabled for transmission
0: DMA mode is disabled for transmission
Bit 6 DMAR: DMA enable receiver
This bit is set/reset by software
1: DMA mode is enabled for reception
0: DMA mode is disabled for reception
Bits 5:4 Reserved, must be kept at reset value.
1274/1693
DocID024597 Rev 3
RM0351
Low-power universal asynchronous receiver transmitter (LPUART)
Bit 3 HDSEL: Half-duplex selection
Selection of Single-wire Half-duplex mode
0: Half duplex mode is not selected
1: Half duplex mode is selected
This bit can only be written when the LPUART is disabled (UE=0).
Bits 2:1 Reserved, must be kept at reset value.
Bit 0 EIE: Error interrupt enable
Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing
error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the LPUART_ISR register).
0: Interrupt is inhibited
1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the LPUART_ISR register.
37.7.4
Baud rate register (LPUART_BRR)
This register can only be written when the LPUART is disabled (UE=0).
Address offset: 0x0C
Reset value: 0x0000
31
30
29
28
27
26
25
24
23
22
21
20
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
19
18
rw
rw
17
16
BRR[19:16]
rw
rw
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
7
BRR[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:20 Reserved, must be kept at reset value.
Bits 19:0 BRR[19:0]
Note:
It is forbidden to write values less than 0x300 in the LPUART_BRR register.
Provided that LPUARTx_BRR must be > = 0x300 and LPUART_BRR is 20-bit, a care
should be taken when generating high baudrates using high fck values. fck must be in the
range [3 x baudrate,.4096 x baudrate].
37.7.5
Request register (LPUART_RQR)
Address offset: 0x18
Reset value: 0x0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
3
2
1
15
14
13
12
11
10
9
8
7
6
5
4
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
RXFRQ MMRQ SBKRQ
w
DocID024597 Rev 3
w
0
Res.
w
1275/1693
1282
Low-power universal asynchronous receiver transmitter (LPUART)
RM0351
Bits 31:4 Reserved, must be kept at reset value
Bit 3 RXFRQ: Receive data flush request
Writing 1 to this bit clears the RXNE flag.
This allows to discard the received data without reading it, and avoid an overrun condition.
Bit 2 MMRQ: Mute mode request
Writing 1 to this bit puts the LPUART in mute mode and resets the RWU flag.
Bit 1 SBKRQ: Send break request
Writing 1 to this bit sets the SBKF flag and request to send a BREAK on the line, as soon as
the transmit machine is available.
Note: In the case the application needs to send the break character following all previously
inserted data, including the ones not yet transmitted, the software should wait for the
TXE flag assertion before setting the SBKRQ bit.
Bit 0 Reserved, must be kept at reset value
37.7.6
Interrupt & status register (LPUART_ISR)
Address offset: 0x1C
Reset value: 0x00C0
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
TE
ACK
WUF
RWU
SBKF
CMF
BUSY
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
RE
ACK
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
CTS
CTSIF
Res.
TXE
TC
RXNE
IDLE
ORE
NF
FE
PE
r
r
r
r
r
r
r
r
r
r
Bits 31:23 Reserved, must be kept at reset value.
Bit 22 REACK: Receive enable acknowledge flag
This bit is set/reset by hardware, when the Receive Enable value is taken into account by
the LPUART.
It can be used to verify that the LPUART is ready for reception before entering Stop mode.
Note: If the LPUART does not support the wakeup from Stop feature, this bit is reserved and
forced by hardware to ‘0’.
Bit 21 TEACK: Transmit enable acknowledge flag
This bit is set/reset by hardware, when the Transmit Enable value is taken into account by
the LPUART.
It can be used when an idle frame request is generated by writing TE=0, followed by TE=1
in the LPUART_CR1 register, in order to respect the TE=0 minimum period.
Bit 20 WUF: Wakeup from Stop mode flag
This bit is set by hardware, when a wakeup event is detected. The event is defined by the
WUS bit field. It is cleared by software, writing a 1 to the WUCF in the LPUART_ICR register.
An interrupt is generated if WUFIE=1 in the LPUART_CR3 register.
Note: When UESM is cleared, WUF flag is also cleared.
The WUF interrupt is active only in Stop mode.
If the LPUART does not support the wakeup from Stop feature, this bit is reserved and
forced by hardware to ‘0’.
1276/1693
DocID024597 Rev 3
RM0351
Low-power universal asynchronous receiver transmitter (LPUART)
Bit 19 RWU: Receiver wakeup from Mute mode
This bit indicates if the LPUART is in mute mode. It is cleared/set by hardware when a
wakeup/mute sequence is recognized. The mute mode control sequence (address or IDLE)
is selected by the WAKE bit in the LPUART_CR1 register.
When wakeup on IDLE mode is selected, this bit can only be set by software, writing 1 to the
MMRQ bit in the LPUART_RQR register.
0: Receiver in active mode
1: Receiver in mute mode
Note: If the LPUART does not support the wakeup from Stop feature, this bit is reserved and
forced by hardware to ‘0’.
Bit 18 SBKF: Send break flag
This bit indicates that a send break character was requested. It is set by software, by writing
1 to the SBKRQ bit in the LPUART_CR3 register. It is automatically reset by hardware
during the stop bit of break transmission.
0: No break character is transmitted
1: Break character will be transmitted
Bit 17 CMF: Character match flag
This bit is set by hardware, when the character defined by ADD[7:0] is received. It is cleared
by software, writing 1 to the CMCF in the LPUART_ICR register.
An interrupt is generated if CMIE=1in the LPUART_CR1 register.
0: No Character match detected
1: Character Match detected
Bit 16 BUSY: Busy flag
This bit is set and reset by hardware. It is active when a communication is ongoing on the
RX line (successful start bit detected). It is reset at the end of the reception (successful or
not).
0: LPUART is idle (no reception)
1: Reception on going
Bits 15:11 Reserved, must be kept at reset value.
Bit 10 CTS: CTS flag
This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin.
0: CTS line set
1: CTS line reset
Note: If the hardware flow control feature is not supported, this bit is reserved and forced by
hardware to ‘0’.
Bit 9 CTSIF: CTS interrupt flag
This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by
software, by writing 1 to the CTSCF bit in the LPUART_ICR register.
An interrupt is generated if CTSIE=1 in the LPUART_CR3 register.
0: No change occurred on the CTS status line
1: A change occurred on the CTS status line
Note: If the hardware flow control feature is not supported, this bit is reserved and forced by
hardware to ‘0’.
Bit 8 Reserved, must be kept at reset value.
DocID024597 Rev 3
1277/1693
1282
Low-power universal asynchronous receiver transmitter (LPUART)
RM0351
Bit 7 TXE: Transmit data register empty
This bit is set by hardware when the content of the LPUART_TDR register has been
transferred into the shift register. It is cleared by a write to the LPUART_TDR register.
An interrupt is generated if the TXEIE bit =1 in the LPUART_CR1 register.
0: data is not transferred to the shift register
1: data is transferred to the shift register)
Note: This bit is used during single buffer transmission.
Bit 6 TC: Transmission complete
This bit is set by hardware if the transmission of a frame containing data is complete and if
TXE is set. An interrupt is generated if TCIE=1 in the LPUART_CR1 register. It is cleared by
software, writing 1 to the TCCF in the LPUART_ICR register or by a write to the
LPUART_TDR register.
An interrupt is generated if TCIE=1 in the LPUART_CR1 register.
0: Transmission is not complete
1: Transmission is complete
Note: If TE bit is reset and no transmission is on going, the TC bit will be set immediately.
Bit 5 RXNE: Read data register not empty
This bit is set by hardware when the content of the RDR shift register has been transferred
to the LPUART_RDR register. It is cleared by a read to the LPUART_RDR register. The
RXNE flag can also be cleared by writing 1 to the RXFRQ in the LPUART_RQR register.
An interrupt is generated if RXNEIE=1 in the LPUART_CR1 register.
0: data is not received
1: Received data is ready to be read.
Bit 4 IDLE: Idle line detected
This bit is set by hardware when an Idle Line is detected. An interrupt is generated if
IDLEIE=1 in the LPUART_CR1 register. It is cleared by software, writing 1 to the IDLECF in
the LPUART_ICR register.
0: No Idle line is detected
1: Idle line is detected
Note: The IDLE bit will not be set again until the RXNE bit has been set (i.e. a new idle line
occurs).
If mute mode is enabled (MME=1), IDLE is set if the LPUART is not mute (RWU=0),
whatever the mute mode selected by the WAKE bit. If RWU=1, IDLE is not set.
Bit 3 ORE: Overrun error
This bit is set by hardware when the data currently being received in the shift register is
ready to be transferred into the RDR register while RXNE=1. It is cleared by a software,
writing 1 to the ORECF, in the LPUART_ICR register.
An interrupt is generated if RXNEIE=1 or EIE = 1 in the LPUART_CR1 register.
0: No overrun error
1: Overrun error is detected
Note: When this bit is set, the RDR register content is not lost but the shift register is
overwritten. An interrupt is generated if the ORE flag is set during multibuffer
communication if the EIE bit is set.
This bit is permanently forced to 0 (no overrun detection) when the OVRDIS bit is set in
the LPUART_CR3 register.
1278/1693
DocID024597 Rev 3
RM0351
Low-power universal asynchronous receiver transmitter (LPUART)
Bit 2 NF: START bit Noise detection flag
This bit is set by hardware when noise is detected on the START bit of a received frame. It is
cleared by software, writing 1 to the NFCF bit in the LPUART_ICR register.
0: No noise is detected
1: Noise is detected
Note: This bit does not generate an interrupt as it appears at the same time as the RXNE bit
which itself generates an interrupt. An interrupt is generated when the NF flag is set
during multibuffer communication if the EIE bit is set.
Bit 1 FE: Framing error
This bit is set by hardware when a de-synchronization, excessive noise or a break character
is detected. It is cleared by software, writing 1 to the FECF bit in the LPUART_ICR register.
An interrupt is generated if EIE = 1 in the LPUART_CR1 register.
0: No Framing error is detected
1: Framing error or break character is detected
Bit 0 PE: Parity error
This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by
software, writing 1 to the PECF in the LPUART_ICR register.
An interrupt is generated if PEIE = 1 in the LPUART_CR1 register.
0: No parity error
1: Parity error
37.7.7
Interrupt flag clear register (LPUART_ICR)
Address offset: 0x20
Reset value: 0x0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
WUCF
Res.
Res.
CMCF
Res.
w
15
14
13
12
11
10
9
8
7
6
5
Res.
Res.
Res.
Res.
Res.
Res.
CTSCF
Res.
Res.
TCCF
Res.
w
w
4
w
3
IDLECF ORECF
w
w
2
1
0
NCF
FECF
PECF
w
w
w
Bits 31:21 Reserved, must be kept at reset value.
Bit 20 WUCF: Wakeup from Stop mode clear flag
Writing 1 to this bit clears the WUF flag in the LPUART_ISR register.
Note: If the LPUART does not support the wakeup from Stop feature, this bit is reserved and
forced by hardware to ‘0’.
Bits 19:18 Reserved, must be kept at reset value.
Bit 17 CMCF: Character match clear flag
Writing 1 to this bit clears the CMF flag in the LPUART_ISR register.
Bits 16:10 Reserved, must be kept at reset value.
Bit 9 CTSCF: CTS clear flag
Writing 1 to this bit clears the CTSIF flag in the LPUART_ISR register.
Bits 8:7 Reserved, must be kept at reset value.
DocID024597 Rev 3
1279/1693
1282
Low-power universal asynchronous receiver transmitter (LPUART)
RM0351
Bit 6 TCCF: Transmission complete clear flag
Writing 1 to this bit clears the TC flag in the LPUART_ISR register.
Bit 5 Reserved, must be kept at reset value.
Bit 4 IDLECF: Idle line detected clear flag
Writing 1 to this bit clears the IDLE flag in the LPUART_ISR register.
Bit 3 ORECF: Overrun error clear flag
Writing 1 to this bit clears the ORE flag in the LPUART_ISR register.
Bit 2 NCF: Noise detected clear flag
Writing 1 to this bit clears the NF flag in the LPUART_ISR register.
Bit 1 FECF: Framing error clear flag
Writing 1 to this bit clears the FE flag in the LPUART_ISR register.
Bit 0 PECF: Parity error clear flag
Writing 1 to this bit clears the PE flag in the LPUART_ISR register.
37.7.8
Receive data register (LPUART_RDR)
Address offset: 0x24
Reset value: Undefined
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
8
7
6
5
4
3
2
1
0
r
r
r
r
15
14
13
12
11
10
9
Res.
Res.
Res.
Res.
Res.
Res.
Res.
RDR[8:0]
r
r
r
r
r
Bits 31:9 Reserved, must be kept at reset value.
Bits 8:0 RDR[8:0]: Receive data value
Contains the received data character.
The RDR register provides the parallel interface between the input shift register and the
internal bus (see Figure 383).
When receiving with the parity enabled, the value read in the MSB bit is the received parity
bit.
37.7.9
Transmit data register (LPUART_TDR)
Address offset: 0x28
Reset value: Undefined
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
15
14
13
12
11
10
9
Res.
Res.
Res.
Res.
Res.
Res.
Res.
TDR[8:0]
rw
1280/1693
rw
rw
DocID024597 Rev 3
rw
rw
RM0351
Low-power universal asynchronous receiver transmitter (LPUART)
Bits 31:9 Reserved, must be kept at reset value.
Bits 8:0 TDR[8:0]: Transmit data value
Contains the data character to be transmitted.
The TDR register provides the parallel interface between the internal bus and the output
shift register (see Figure 383).
When transmitting with the parity enabled (PCE bit set to 1 in the LPUART_CR1 register),
the value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect
because it is replaced by the parity.
Note: This register must be written only when TXE=1.
DocID024597 Rev 3
1281/1693
1282
0x28
LPUART_
TDR
1282/1693
Reset value
DocID024597 Rev 3
0
Res.
Res.
Reset value
Res.
X
X
Refer to Section 2.2.2 on page 67 for the register boundary addresses.
0
X
X
X
X
FE
PE
X
X
0
0
0
0
0
X
X
0
0
0
0
0
0
0
0
0
0
RDR[8:0]
TDR[8:0]
0
0
0
0
X
X
X
X
X
X
X
X
Res.
SBKRQ
Reset value
FECF
UE
ADDM7
UESM
Res.
Res.
Res.
Res.
Res.
EIE
Res.
TE
Res.
RE
Res.
Res.
0
Res.
0
Res.
0
MMRQ
IDLEIE
0
Res.
TCIE
RXNEIE
0
PECF
NF
0
Res.
TXEIE
0
HDSEL
PS
PEIE
0
RXFRQ
Res.
PCE
0
NCF
0
Res.
DMAT
DMAR
0
Res.
0
Res.
RTSE
0
ORE
0
Res.
CTSE
M
WAKE
0
Res.
MME
0
ORECF
0
Res.
CTSIE
0
IDLE
Res.
0
Res.
0
Res.
TC
1
Res.
0
Res.
0
RXNE
TXE
1
TCCF
Res.
0
Res.
CTS
CTSIF
0
CTSCF
0
Res.
0
Res.
0
Res.
DDRE
OVRDIS
0
Res.
0
Res.
Reserved
0
Res.
0
Res.
Res.
Res.
STOP
[1:0]
Res.
Res.
Res.
Res.
Res.
CMIE
0
Res.
Res.
Res.
0
DEM
0
Res.
Res.
Res.
Reset value
Res.
DEDT0
SWAP
DEP
0
Res.
Res.
0
Res.
Res.
0
Res.
DEDT1
RXINV
0
Res.
Res.
Res.
0
Res.
DEDT2
TXINV
0
Res.
Res.
BUSY
0
Res.
Res.
DATAINV
0
MSBFIRST
0
Res.
0
Res.
DEDT3
DEAT0
DEDT4
0
Res.
Res.
0
Res.
CMF
0
CMCF
0x100x14
Res.
0
Res.
0
Res.
0
Res.
DEAT1
0
Res.
DEAT2
0
Res.
RWU
SBKF
0
Res.
0
Res.
Res.
DEAT3
0
Res.
Res.
0
Res.
Res.
Res.
0
Res.
WUF
0
WUCF
Res.
WUFIE
Res.
Res.
WUS
[1:0]
Res.
Res.
Res.
Res.
DEAT4
0
Res.
TEACK
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
M1
Res.
Res.
Res.
0
Res.
Res.
Res.
Reset value
Res.
Res.
REACK
Res.
Res.
0
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
ADD[3:0]
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
0
Res.
LPUART_
RDR
ADD[7:4]
Res.
0x24
Res.
LPUART_ICR
0
Res.
0x20
Res.
LPUART_ISR
0
Res.
0x1C
Res.
LPUART_
RQR
Res.
Reset value
Res.
0x18
Res.
LPUART_
BRR
0
Res.
0x0C
Res.
LPUART_
CR3
Res.
0x08
0
Res.
Reset value
Res.
0x04
LPUART_
CR2
Res.
LPUART_
CR1
Res.
0x00
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res.
Offset
Res.
37.7.10
Res.
Low-power universal asynchronous receiver transmitter (LPUART)
RM0351
LPUART register map
The table below gives the LPUART register map and reset values.
Table 204. LPUART register map and reset values
0
0
0
0
0
BRR[19:0]
0
RM0351
Serial peripheral interface (SPI)
38
Serial peripheral interface (SPI)
38.1
Introduction
The SPI interface can be used to communicate with external devices using the SPI protocol.
SPI mode is selectable by software. SPI Motorola mode is selected by default after a device
reset.
The serial peripheral interface (SPI) protocol supports half-duplex, full-duplex and simplex
synchronous, serial communication with external devices. The interface can be configured
as master and in this case it provides the communication clock (SCK) to the external slave
device. The interface is also capable of operating in multimaster configuration.
38.2
38.3
SPI main features
•
Master or slave operation
•
Full-duplex synchronous transfers on three lines
•
Half-duplex synchronous transfer on two lines (with bidirectional data line)
•
Simplex synchronous transfers on two lines (with unidirectional data line)
•
4-bit to 16-bit data size selection
•
Multimaster mode capability
•
8 master mode baud rate prescalers up to fPCLK/2.
•
Slave mode frequency up to fPCLK/2.
•
NSS management by hardware or software for both master and slave: dynamic change
of master/slave operations
•
Programmable clock polarity and phase
•
Programmable data order with MSB-first or LSB-first shifting
•
Dedicated transmission and reception flags with interrupt capability
•
SPI bus busy status flag
•
SPI Motorola support
•
Hardware CRC feature for reliable communication:
–
CRC value can be transmitted as last byte in Tx mode
–
Automatic CRC error checking for last received byte
•
Master mode fault, overrun flags with interrupt capability
•
CRC Error flag
•
Two 32-bit embedded Rx and Tx FIFOs with DMA capability
•
SPI TI mode support
SPI implementation
This manual describes the full set of features implemented in SPI1, SPI2 and SPI3.
DocID024597 Rev 3
1283/1685
1317
Serial peripheral interface (SPI)
RM0351
Table 205. STM32L4x6 SPI implementation
SPI Features
(1)
SPI1
SPI2
SPI3
Hardware CRC calculation
X
X
X
Rx/Tx FIFO
X
X
X
NSS pulse mode
X
X
X
TI mode
X
X
X
1. X = supported.
38.4
SPI functional description
38.4.1
General description
The SPI allows synchronous, serial communication between the MCU and external devices.
Application software can manage the communication by polling the status flag or using
dedicated SPI interrupt. The main elements of SPI and their interactions are shown in the
following block diagram Figure 420.
Figure 420. SPI block diagram
$GGUHVVDQGGDWDEXV
5HDG
5[
),)2
&5&FRQWUROOHU
026,
0,62
6KLIWUHJLVWHU
5;21/<
&32/
&3+$
'6>@
7[
),)2
:ULWH
%,',2(
6&.
%DXGUDWH
JHQHUDWRU
&5&(1
&5&1(;7
&5&/
&RPPXQLFDWLRQ
FRQWUROOHU
%5>@
,QWHUQDO166
166
ORJLF
166
069
1284/1685
DocID024597 Rev 3
RM0351
Serial peripheral interface (SPI)
Four I/O pins are dedicated to SPI communication with external devices.
•
MISO: Master In / Slave Out data. In the general case, this pin is used to transmit data
in slave mode and receive data in master mode.
•
MOSI: Master Out / Slave In data. In the general case, this pin is used to transmit data
in master mode and receive data in slave mode.
•
SCK: Serial Clock output pin for SPI masters and input pin for SPI slaves.
•
NSS: Slave select pin. Depending on the SPI and NSS settings, this pin can be used to
either:
–
select an individual slave device for communication
–
synchronize the data frame or
–
detect a conflict between multiple masters
See Section 38.4.4: Multi-master communication for details.
The SPI bus allows the communication between one master device and one or more slave
devices. The bus consists of at least two wires - one for the clock signal and the other for
synchronous data transfer. Other signals can be added depending on the data exchange
between SPI nodes and their slave select signal management.
38.4.2
Communications between one master and one slave
The SPI allows the MCU to communicate using different configurations, depending on the
device targeted and the application requirements. These configurations use 2 or 3 wires
(with software NSS management) or 3 or 4 wires (with hardware NSS management).
Communication is always initiated by the master.
Full-duplex communication
By default, the SPI is configured for full-duplex communication. In this configuration, the
shift registers of the master and slave are linked using two unidirectional lines between the
MOSI and the MISO pins. During SPI communication, data is shifted synchronously on the
SCK clock edges provided by the master. The master transmits the data to be sent to the
slave via the MOSI line and receives data from the slave via the MISO line. When the data
frame transfer is complete (all the bits are shifted) the information between the master and
slave is exchanged.
Figure 421. Full-duplex single master/ single slave application
5[VKLIWUHJLVWHU
7[VKLIWUHJLVWHU
63,FORFN
JHQHUDWRU
0,62
0,62
026,
026,
6&.
6&.
166
166
0DVWHU
7[VKLIWUHJLVWHU
5[VKLIWUHJLVWHU
6ODYH
06Y9
1. The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the
pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and
slave. For more details see Section 38.4.5: Slave select (NSS) pin management.
DocID024597 Rev 3
1285/1685
1317
Serial peripheral interface (SPI)
RM0351
Half-duplex communication
The SPI can communicate in half-duplex mode by setting the BIDIMODE bit in the
SPIx_CR1 register. In this configuration, one single cross connection line is used to link the
shift registers of the master and slave together. During this communication, the data is
synchronously shifted between the shift registers on the SCK clock edge in the transfer
direction selected reciprocally by both master and slave with the BDIOE bit in their
SPIx_CR1 registers. In this configuration, the master’s MISO pin and the slave’s MOSI pin
are free for other application uses and act as GPIOs.
Figure 422. Half-duplex single master/ single slave application
5[VKLIWUHJLVWHU
7[VKLIWUHJLVWHU
63,FORFN
JHQHUDWRU
0,62
026,
0,62
Nȍ
5[VKLIWUHJLVWHU
6&.
6&.
166
026,
7[VKLIWUHJLVWHU
0DVWHU
166
6ODYH
06Y9
1. The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the
pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and
slave. For more details see Section 38.4.5: Slave select (NSS) pin management.
2. In this configuration, the master’s MISO pin and the slave’s MOSI pin can be used as GPIOs.
3. A critical situation can happen when communication direction is changed not synchronously between two
nodes working at bidirectionnal mode and new transmitter accesses the common data line while former
transmitter still keeps an opposite value on the line (the value depends on SPI configuration and
communication data). Both nodes then fight while providing opposite output levels on the common line
temporary till next node changes its direction settings correspondingly, too. It is suggested to insert a serial
resistance between MISO and MOSI pins at this mode to protect the outputs and limit the current blowing
between them at this situation.
Simplex communications
The SPI can communicate in simplex mode by setting the SPI in transmit-only or in receiveonly using the RXONLY bit in the SPIx_CR2 register. In this configuration, only one line is
used for the transfer between the shift registers of the master and slave. The remaining
MISO and MOSI pins pair is not used for communication and can be used as standard
GPIOs.
1286/1685
•
Transmit-only mode (RXONLY=0): The configuration settings are the same as for fullduplex. The application has to ignore the information captured on the unused input pin.
This pin can be used as a standard GPIO.
•
Receive-only mode (RXONLY=1): The application can disable the SPI output function
by setting the RXONLY bit. In slave configuration, the MISO output is disabled and the
pin can be used as a GPIO. The slave continues to receive data from the MOSI pin
while its slave select signal is active (see 38.4.4: Multi-master communication).
Received data events appear depending on the data buffer configuration. In the master
configuration, the MOSI output is disabled and the pin can be used as a GPIO. The
clock signal is generated continuously as long as the SPI is enabled. The only way to
stop the clock is to clear the RXONLY bit or the SPE bit and wait until the incoming
pattern from the MISO pin is finished and fills the data buffer structure, depending on its
configuration.
DocID024597 Rev 3
RM0351
Serial peripheral interface (SPI)
Figure 423. Simplex single master/single slave application (master in transmit-only/
slave in receive-only mode)
5[VKLIWUHJLVWHU
7[VKLIWUHJLVWHU
63,FORFN
JHQHUDWRU
0,62
0,62
026,
026,
6&.
6&.
166
166
0DVWHU
7[VKLIWUHJLVWHU
5[VKLIWUHJLVWHU
^ůĂǀĞ
06Y9
1. The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the
pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and
slave. For more details see Section 38.4.5: Slave select (NSS) pin management.
2. An accidental input information is captured at the input of transmitter Rx shift register. All the events
associated with the transmitter receive flow must be ignored in standard transmit only mode (e.g. OVF
flag).
3. In this configuration, both the MISO pins can be used as GPIOs.
Note:
Any simplex communication can be alternatively replaced by a variant of the half duplex
communication with a constant setting of the transaction direction (bidirectional mode is
enabled while BDIO bit is not changed).
38.4.3
Standard multi-slave communication
In a configuration with two or more independent slaves, the master uses GPIO pins to
manage the chip select lines for each slave (see Figure 424.). The master must select one
of the slaves individually by pulling low the GPIO connected to the slave NSS input. When
this is done, a standard master and dedicated slave communication is established.
DocID024597 Rev 3
1287/1685
1317
Serial peripheral interface (SPI)
RM0351
Figure 424. Master and three independent slaves
166
5[VKLIWUHJLVWHU
7[VKLIWUHJLVWHU
63,FORFN
JHQHUDWRU
0DVWHU
0,62
0,62
026,
026,
6&.
6&.
,2
166
7[VKLIWUHJLVWHU
5[VKLIWUHJLVWHU
6ODYH
,2
,2
0,62
026,
7[VKLIWUHJLVWHU
5[VKLIWUHJLVWHU
6&.
166
6ODYH
0,62
026,
7[VKLIWUHJLVWHU
5[VKLIWUHJLVWHU
6&.
166
6ODYH
06Y9
1. NSS pin is not used on master side at this configuration. It has to be managed internally (SSM=1, SSI=1) to
prevent any MODF error.
2. As MISO pins of the slaves are connected together, all slaves must have the GPIO configuration of their
MISO pin set as alternate function open-drain (see Section 7.3.7: I/O alternate function input/output on
page 259.
38.4.4
Multi-master communication
Unless SPI bus is not designed for a multi-master capability primarily, the user can use build
in feature which detects a potential conflict between two nodes trying to master the bus at
the same time. For this detection, NSS pin is used configured at hardware input mode.
The connection of more than two SPI nodes working at this mode is impossible as only one
node can apply its output on a common data line at time.
When nodes are non active, both stay at slave mode by default. Once one node wants to
overtake control on the bus, it switches itself into master mode and applies active level on
the slave select input of the other node via dedicated GPIO pin. After the session is
1288/1685
DocID024597 Rev 3
RM0351
Serial peripheral interface (SPI)
completed, the active slave select signal is released and the node mastering the bus
temporary returns back to passive slave mode waiting for next session start.
If potentially both nodes raised their mastering request at the same time a bus conflict event
appears (see mode fault MODF event). Then the user can apply some simple arbitration
process (e.g. to postpone next attempt by predefined different time-outs applied at both
nodes).
Figure 425. Multi-master application
5[ 7[ VKLIWUHJLVWHU
7[ 5[ VKLIWUHJLVWHU
63,FORFN
JHQHUDWRU
0DVWHU
6ODYH
0,62
0,62
026,
026,
6&.
6&.
*3,2
166
166
*3,2
5[ 7[ VKLIWUHJLVWHU
7[ 5[ VKLIWUHJLVWHU
63,FORFN
JHQHUDWRU
DĂƐƚĞƌ
;^ůĂǀĞͿ
06Y9
1. The NSS pin is configured at hardware input mode at both nodes. Its active level enables the MISO line
output control as the passive node is configured as a slave.
38.4.5
Slave select (NSS) pin management
In slave mode, the NSS works as a standard “chip select” input and lets the slave
communicate with the master. In master mode, NSS can be used either as output or input.
As an input it can prevent multimaster bus collision, and as an output it can drive a slave
select signal of a single slave.
Hardware or software slave select management can be set using the SSM bit in the
SPIx_CR1 register:
•
Software NSS management (SSM = 1): in this configuration, slave select information
is driven internally by the SSI bit value in register SPIx_CR1. The external NSS pin is
free for other application uses.
•
Hardware NSS management (SSM = 0): in this case, there are two possible
configurations. The configuration used depends on the NSS output configuration
(SSOE bit in register SPIx_CR1).
–
NSS output enable (SSM=0,SSOE = 1): this configuration is only used when the
MCU is set as master. The NSS pin is managed by the hardware. The NSS signal
is driven low as soon as the SPI is enabled in master mode (SPE=1), and is kept
low until the SPI is disabled (SPE =0). A pulse can be generated between
continuous communications if NSS pulse mode is activated (NSSP=1). The SPI
cannot work in multimaster configuration with this NSS setting.
–
NSS output disable (SSM=0, SSOE = 0): if the microcontroller is acting as the
master on the bus, this configuration allows multimaster capability. If the NSS pin
is pulled low in this mode, the SPI enters master mode fault state and the device is
automatically reconfigured in slave mode. In slave mode, the NSS pin works as a
standard “chip select” input and the slave is selected while NSS line is at low level.
DocID024597 Rev 3
1289/1685
1317
Serial peripheral interface (SPI)
RM0351
Figure 426. Hardware/software slave select management
66,FRQWUROELW
660FRQWUROELW
166
,QS
0DVWHU
PRGH
6ODYHPRGH
9GG
2.
1RQDFWLYH
9VV
&RQIOLFW
$FWLYH
166,QSXW
166
SLQ
*3,2
ORJLF
166
2XWSXW
&RQWURO
1662XWSXW
XVHGLQ0DVWHUPRGHDQG166
+:PDQDJHPHQWRQO\
662(FRQWUROELW
166H[WHUQDOORJLF
166LQWHUQDOORJLF
06Y9
38.4.6
Communication formats
During SPI communication, receive and transmit operations are performed simultaneously.
The serial clock (SCK) synchronizes the shifting and sampling of the information on the data
lines. The communication format depends on the clock phase, the clock polarity and the
data frame format. To be able to communicate together, the master and slaves devices must
follow the same communication format.
Clock phase and polarity controls
Four possible timing relationships may be chosen by software, using the CPOL and CPHA
bits in the SPIx_CR1 register. The CPOL (clock polarity) bit controls the idle state value of
the clock when no data is being transferred. This bit affects both master and slave modes. If
CPOL is reset, the SCK pin has a low-level idle state. If CPOL is set, the SCK pin has a
high-level idle state.
If the CPHA bit is set, the second edge on the SCK pin captures the first data bit transacted
(falling edge if the CPOL bit is reset, rising edge if the CPOL bit is set). Data are latched on
each occurrence of this clock transition type. If the CPHA bit is reset, the first edge on the
SCK pin captures the first data bit transacted (falling edge if the CPOL bit is set, rising edge
if the CPOL bit is reset). Data are latched on each occurrence of this clock transition type.
The combination of CPOL (clock polarity) and CPHA (clock phase) bits selects the data
capture clock edge.
1290/1685
DocID024597 Rev 3
RM0351
Serial peripheral interface (SPI)
Figure 427, shows an SPI full-duplex transfer with the four combinations of the CPHA and
CPOL bits.
Note:
Prior to changing the CPOL/CPHA bits the SPI must be disabled by resetting the SPE bit.
The idle state of SCK must correspond to the polarity selected in the SPIx_CR1 register (by
pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0).
Figure 427. Data clock timing diagram
&3+$
&32/
&32/
026,
06%LW
0,62
06%LW
/6%LW
/6%LW
166 WRVODYH
&DSWXUHVWUREH
&3+$
&32/
&32/
026,
0,62
/6%LW
06%LW
06%LW
/6%LW
166 WRVODYH
&DSWXUHVWUREH
DLH
1. The order of data bits depends on LSBFIRST bit setting.
Data frame format
The SPI shift register can be set up to shift out MSB-first or LSB-first, depending on the
value of the LSBFIRST bit. The data frame size is chosen by using the DS bits. It can be set
from 4-bit up to 16-bit length and the setting applies for both transmission and reception.
Whatever the selected data frame size, read access to the FIFO must be aligned with the
FRXTH level. When the SPIx_DR register is accessed, data frames are always right-aligned
into either a byte (if the data fits into a byte) or a half-word (see Figure 428). During
communication, only bits within the data frame are clocked and transferred.
DocID024597 Rev 3
1291/1685
1317
Serial peripheral interface (SPI)
RM0351
Figure 428. Data alignment when data length is not equal to 8-bit or 16-bit
'6 ELWVGDWDLVULJKWDOLJQHGRQE\WH
([DPSOH'6 ELW
;;;
'DWDIUDPH
5;
;;
7;
'DWDIUDPH
'6!ELWVGDWDLVULJKWDOLJQHGRQELW
([DPSOH'6 ELW
'DWDIUDPH
7;
'DWDIUDPH
5;
069
Note:
The minimum data length is 4 bits. If a data length of less than 4 bits is selected, it is forced
to an 8-bit data frame size.
38.4.7
Configuration of SPI
The configuration procedure is almost the same for master and slave. For specific mode
setups, follow the dedicated sections. When a standard communication is to be initialized,
perform these steps:
1.
2.
3.
1292/1685
Write proper GPIO registers: Configure GPIO for MOSI, MISO and SCK pins.
Write to the SPI_CR1 register:
a)
Configure the serial clock baud rate using the BR[2:0] bits (Note: 4).
b)
Configure the CPOL and CPHA bits combination to define one of the four
relationships between the data transfer and the serial clock (CPHA must be
cleared in NSSP mode). (Note: 2).
c)
Select simplex or half-duplex mode by configuring RXONLY or BIDIMODE and
BIDIOE (RXONLY and BIDIMODE can't be set at the same time).
d)
Configure the LSBFIRST bit to define the frame format (Note: 2).
e)
Configure the CRCL and CRCEN bits if CRC is needed (while SCK clock signal is
at idle state).
f)
Configure SSM and SSI (Note: 2 & 3).
g)
Configure the MSTR bit (in multimaster NSS configuration, avoid conflict state on
NSS if master is configured to prevent MODF error).
Write to SPI_CR2 register:
a)
Configure the DS[3:0] bits to select the data length for the transfer.
b)
Configure SSOE (Note: 1 & 2 & 3).
c)
Set the FRF bit if the TI protocol is required (keep NSSP bit cleared in TI mode).
d)
Set the NSSP bit if the NSS pulse mode between two data units is required (keep
CHPA and TI bits cleared in NSSP mode).
e)
Configure the FRXTH bit. The RXFIFO threshold must be aligned to the read
access size for the SPIx_DR register.
f)
Initialize LDMA_TX and LDMA_RX bits if DMA is used in packed mode.
4.
Write to SPI_CRCPR register: Configure the CRC polynomial if needed.
5.
Write proper DMA registers: Configure DMA streams dedicated for SPI Tx and Rx in
DMA registers if the DMA streams are used.
DocID024597 Rev 3
RM0351
Note:
Serial peripheral interface (SPI)
(1) Step is not required in slave mode.
(2) Step is not required in TI mode.
(3) Step is not required in NSSP mode.
(4) The step is not required in slave mode except slave working at TI mode
38.4.8
Procedure for enabling SPI
It is recommended to enable the SPI slave before the master sends the clock. If not,
undesired data transmission might occur. The data register of the slave must already
contain data to be sent before starting communication with the master (either on the first
edge of the communication clock, or before the end of the ongoing communication if the
clock signal is continuous). The SCK signal must be settled at an idle state level
corresponding to the selected polarity before the SPI slave is enabled.
The master at full duplex (or in any transmit-only mode) starts to communicate when the SPI
is enabled and TXFIFO is not empty, or with the next write to TXFIFO.
In any master receive only mode (RXONLY=1 or BIDIMODE=1 & BIDIOE=0), master starts
to communicate and the clock starts running immediately after SPI is enabled.
For handling DMA, follow the dedicated section.
38.4.9
Data transmission and reception procedures
RXFIFO and TXFIFO
All SPI data transactions pass through the 32-bit embedded FIFOs. This enables the SPI to
work in a continuous flow, and prevents overruns when the data frame size is short. Each
direction has its own FIFO called TXFIFO and RXFIFO. These FIFOs are used in all SPI
modes except for receiver-only mode (slave or master) with CRC calculation enabled (see
Section 38.4.14: CRC calculation).
The handling of FIFOs depends on the data exchange mode (duplex, simplex), data frame
format (number of bits in the frame), access size performed on the FIFO data registers (8-bit
or 16-bit), and whether or not data packing is used when accessing the FIFOs (see
Section 38.4.13: TI mode).
A read access to the SPIx_DR register returns the oldest value stored in RXFIFO that has
not been read yet. A write access to the SPIx_DR stores the written data in the TXFIFO at
the end of a send queue. The read access must be always aligned with the RXFIFO
threshold configured by the FRXTH bit in SPIx_CR2 register. FTLVL[1:0] and FRLVL[1:0]
bits indicate the current occupancy level of both FIFOs.
A read access to the SPIx_DR register must be managed by the RXNE event. This event is
triggered when data is stored in RXFIFO and the threshold (defined by FRXTH bit) is
reached. When RXNE is cleared, RXFIFO is considered to be empty. In a similar way, write
access of a data frame to be transmitted is managed by the TXE event. This event is
triggered when the TXFIFO level is less than or equal to half of its capacity. Otherwise TXE
is cleared and the TXFIFO is considered as full. In this way, RXFIFO can store up to four
data frames, whereas TXFIFO can only store up to three when the data frame format is not
greater than 8 bits. This difference prevents possible corruption of 3x 8-bit data frames
already stored in the TXFIFO when software tries to write more data in 16-bit mode into
DocID024597 Rev 3
1293/1685
1317
Serial peripheral interface (SPI)
RM0351
TXFIFO. Both TXE and RXNE events can be polled or handled by interrupts. See
Figure 430 through Figure 433.
Another way to manage the data exchange is to use DMA (see Section 10.2: DMA main
features).
If the next data is received when the RXFIFO is full, an overrun event occurs (see
description of OVR flag at Section 38.4.10: SPI status flags). An overrun event can be
polled or handled by an interrupt.
The BSY bit being set indicates ongoing transaction of a current data frame. When the clock
signal runs continuously, the BSY flag stays set between data frames at master but
becomes low for a minimum duration of one SPI clock at slave between each data frame
transfer.
Sequence handling
A few data frames can be passed at single sequence to complete a message. When
transmission is enabled, a sequence begins and continues while any data is present in the
TXFIFO of the master. The clock signal is provided continuously by the master until TXFIFO
becomes empty, then it stops waiting for additional data.
In receive-only modes, half duplex (BIDIMODE=1, BIDIOE=0) or simplex (BIDIMODE=0,
RXONLY=1) the master starts the sequence immediately when both SPI is enabled and
receive-only mode is activated. The clock signal is provided by the master and it does not
stop until either SPI or receive-only mode is disabled by the master. The master receives
data frames continuously up to this moment.
While the master can provide all the transactions in continuous mode (SCK signal is
continuous) it has to respect slave capability to handle data flow and its content at anytime.
When necessary, the master must slow down the communication and provide either a
slower clock or separate frames or data sessions with sufficient delays. Be aware there is no
underflow error signal for master or slave in SPI mode, and data from the slave is always
transacted and processed by the master even if the slave could not prepare it correctly in
time. It is preferable for the slave to use DMA, especially when data frames are shorter and
bus rate is high.
Each sequence must be encased by the NSS pulse in parallel with the multislave system to
select just one of the slaves for communication. In a single slave system it is not necessary
to control the slave with NSS, but it is often better to provide the pulse here too, to
synchronize the slave with the beginning of each data sequence. NSS can be managed by
both software and hardware (see Section 38.4.4: Multi-master communication).
When the BSY bit is set it signifies an ongoing data frame transaction. When the dedicated
frame transaction is finished, the RXNE flag is raised. The last bit is just sampled and the
complete data frame is stored in the RXFIFO.
Procedure for disabling the SPI
When SPI is disabled, it is mandatory to follow the disable procedures described in this
paragraph. It is important to do this before the system enters a low-power mode when the
peripheral clock is stopped. Ongoing transactions can be corrupted in this case. In some
modes the disable procedure is the only way to stop continuous communication running.
Master in full duplex or transmit only mode can finish any transaction when it stops providing
data for transmission. In this case, the clock stops after the last data transaction. Special
care must be taken in packing mode when an odd number of data frames are transacted to
1294/1685
DocID024597 Rev 3
RM0351
Serial peripheral interface (SPI)
prevent some dummy byte exchange (refer to Data packing section). Before the SPI is
disabled in these modes, the user must follow standard disable procedure. When the SPI is
disabled at the master transmitter while a frame transaction is ongoing or next data frame is
stored in TXFIFO, the SPI behavior is not guaranteed.
When the master is in any receive only mode, the only way to stop the continuous clock is to
disable the peripheral by SPE=0. This must occur in specific time window within last data
frame transaction just between the sampling time of its first bit and before its last bit transfer
starts (in order to receive a complete number of expected data frames and to prevent any
additional “dummy” data reading after the last valid data frame). Specific procedure must be
followed when disabling SPI in this mode.
Data received but not read remains stored in RXFIFO when the SPI is disabled, and must
be processed the next time the SPI is enabled, before starting a new sequence. To prevent
having unread data, ensure that RXFIFO is empty when disabling the SPI, by using the
correct disabling procedure, or by initializing all the SPI registers with a software reset via
the control of a specific register dedicated to peripheral reset (see the SPIiRST bits in the
RCC_APBiRSTR registers).
Standard disable procedure is based on pulling BSY status together with FTLVL[1:0] to
check if a transmission session is fully completed. This check can be done in specific cases,
too, when it is necessary to identify the end of ongoing transactions, for example:
•
When NSS signal is managed by software and master has to provide proper end of
NSS pulse for slave, or
•
When transactions’ streams from DMA or FIFO are completed while the last data frame
or CRC frame transaction is still ongoing in the peripheral bus.
The correct disable procedure is (except when receive only mode is used):
1.
Wait until FTLVL[1:0] = 00 (no more data to transmit).
2.
Wait until BSY=0 (the last data frame is processed).
3.
Disable the SPI (SPE=0).
4.
Read data until FRLVL[1:0] = 00 (read all the received data).
The correct disable procedure for certain receive only modes is:
Note:
1.
Interrupt the receive flow by disabling SPI (SPE=0) in the specific time window while
the last data frame is ongoing.
2.
Wait until BSY=0 (the last data frame is processed).
3.
Read data until FRLVL[1:0] = 00 (read all the received data).
If packing mode is used and an odd number of data frames with a format less than or equal
to 8 bits (fitting into one byte) has to be received, FRXTH must be set when FRLVL[1:0] =
01, in order to generate the RXNE event to read the last odd data frame and to keep good
FIFO pointer alignment.
Data packing
When the data frame size fits into one byte (less than or equal to 8 bits), data packing is
used automatically when any read or write 16-bit access is performed on the SPIx_DR
register. The double data frame pattern is handled in parallel in this case. At first, the SPI
operates using the pattern stored in the LSB of the accessed word, then with the other half
stored in the MSB. Figure 429 provides an example of data packing mode sequence
handling. Two data frames are sent after the single 16-bit access the SPIx_DR register of
the transmitter. This sequence can generate just one RXNE event in the receiver if the
DocID024597 Rev 3
1295/1685
1317
Serial peripheral interface (SPI)
RM0351
RXFIFO threshold is set to 16 bits (FRXTH=0). The receiver then has to access both data
frames by a single 16-bit read of SPIx_DR as a response to this single RXNE event. The
RxFIFO threshold setting and the following read access must be always kept aligned at the
receiver side, as data can be lost if it is not in line.
A specific problem appears if an odd number of such “fit into one byte” data frames must be
handled. On the transmitter side, writing the last data frame of any odd sequence with an 8bit access to SPIx_DR is enough. The receiver has to change the Rx_FIFO threshold level
for the last data frame received in the odd sequence of frames in order to generate the
RXNE event.
Figure 429. Packing data in FIFO for transmission and reception
166
6&.
7;),)2
63,[B'5
[$
[ [$
[
5;),)2
026,
[$
63,IVP
VKLIW
ELWDFFHVVZKHQZULWHWRGDWDUHJLVWHU
63,B'5 [$ZKHQ7[(
[$
[
63,IVP
VKLIW
63,[B'5
[
[ [$
ELWDFFHVVZKHQUHDGIURPGDWDUHJLVWHU
63,B'5 [$ZKHQ5[1(
069
Communication using DMA (direct memory addressing)
To operate at its maximum speed and to facilitate the data register read/write process
required to avoid overrun, the SPI features a DMA capability, which implements a simple
request/acknowledge protocol.
A DMA access is requested when the TXE or RXNE enable bit in the SPIx_CR2 register is
set. Separate requests must be issued to the Tx and Rx buffers.
•
In transmission, a DMA request is issued each time TXE is set to 1. The DMA then
writes to the SPIx_DR register.
•
In reception, a DMA request is issued each time RXNE is set to 1. The DMA then reads
the SPIx_DR register.
See Figure 430 through Figure 433.
When the SPI is used only to transmit data, it is possible to enable only the SPI Tx DMA
channel. In this case, the OVR flag is set because the data received is not read. When the
SPI is used only to receive data, it is possible to enable only the SPI Rx DMA channel.
In transmission mode, when the DMA has written all the data to be transmitted (the TCIF
flag is set in the DMA_ISR register), the BSY flag can be monitored to ensure that the SPI
communication is complete. This is required to avoid corrupting the last transmission before
disabling the SPI or entering the Stop mode. The software must first wait until
FTLVL[1:0]=00 and then until BSY=0.
When starting communication using DMA, to prevent DMA channel management raising
error events, these steps must be followed in order:
1296/1685
DocID024597 Rev 3
RM0351
Serial peripheral interface (SPI)
1.
Enable DMA Rx buffer in the RXDMAEN bit in the SPI_CR2 register, if DMA Rx is
used.
2.
Enable DMA streams for Tx and Rx in DMA registers, if the streams are used.
3.
Enable DMA Tx buffer in the TXDMAEN bit in the SPI_CR2 register, if DMA Tx is used.
4.
Enable the SPI by setting the SPE bit.
To close communication it is mandatory to follow these steps in order:
1.
Disable DMA streams for Tx and Rx in the DMA registers, if the streams are used.
2.
Disable the SPI by following the SPI disable procedure.
3.
Disable DMA Tx and Rx buffers by clearing the TXDMAEN and RXDMAEN bits in the
SPI_CR2 register, if DMA Tx and/or DMA Rx are used.
Packing with DMA
If the transfers are managed by DMA (TXDMAEN and RXDMAEN set in the SPIx_CR2
register) packing mode is enabled/disabled automatically depending on the PSIZE value
configured for SPI TX and the SPI RX DMA channel. If the DMA channel PSIZE value is
equal to 16-bit and SPI data size is less than or equal to 8-bit, then packing mode is
enabled. The DMA then automatically manages the write operations to the SPIx_DR
register.
If data packing mode is used and the number of data to transfer is not a multiple of two, the
LDMA_TX/LDMA_RX bits must be set. The SPI then considers only one data for the
transmission or reception to serve the last DMA transfer (for more details refer to Data
packing on page 1295.)
DocID024597 Rev 3
1297/1685
1317
Serial peripheral interface (SPI)
RM0351
Communication diagrams
Some typical timing schemes are explained in this section. These schemes are valid no
matter if the SPI events are handled by pulling, interrupts or DMA. For simplicity, the
LSBFIRST=0, CPOL=0 and CPHA=1 setting is used as a common assumption here. No
complete configuration of DMA streams is provided.
The following numbered notes are common for Figure 430 on page 1299 through
Figure 433 on page 1302.
1298/1685
1.
The slave starts to control MISO line as NSS is active and SPI is enabled, and is
disconnected from the line when one of them is released. Sufficient time must be
provided for the slave to prepare data dedicated to the master in advance before its
transaction starts.
At the master, the SPI peripheral takes control at MOSI and SCK signals (occasionally
at NSS signal as well) only if SPI is enabled. If SPI is disabled the SPI peripheral is
disconnected from GPIO logic, so the levels at these lines depends on GPIO setting
exclusively.
2.
At the master, BSY stays active between frames if the communication (clock signal) is
continuous. At the slave, BSY signal always goes down for at least one clock cycle
between data frames.
3.
The TXE signal is cleared only if TXFIFO is full.
4.
The DMA arbitration process starts just after the TXDMAEN bit is set. The TXE
interrupt is generated just after the TXEIE is set. As the TXE signal is at an active level,
data transfers to TxFIFO start, until TxFIFO becomes full or the DMA transfer
completes.
5.
If all the data to be sent can fit into TxFIFO, the DMA Tx TCIF flag can be raised even
before communication on the SPI bus starts. This flag always rises before the SPI
transaction is completed.
6.
The CRC value for a package is calculated continuously frame by frame in the
SPIx_TxCRCR and SPIx_RxCRCR registers. The CRC information is processed after
the entire data package has completed, either automatically by DMA (Tx channel must
be set to the number of data frames to be processed) or by SW (the user must handle
CRCNEXT bit during the last data frame processing).
While the CRC value calculated in SPIx_TxCRCR is simply sent out by transmitter,
received CRC information is loaded into RxFIFO and then compared with the
SPIx_RxCRCR register content (CRC error flag can be raised here if any difference).
This is why the user must take care to flush this information from the FIFO, either by
software reading out all the stored content of RxFIFO, or by DMA when the proper
number of data frames is preset for Rx channel (number of data frames + number of
CRC frames) (see the settings at the example assumption).
7.
In data packed mode, TxE and RxNE events are paired and each read/write access to
the FIFO is 16 bits wide until the number of data frames are even. If the TxFIFO is ¾
full FTLVL status stays at FIFO full level. That is why the last odd data frame cannot be
stored before the TxFIFO becomes ½ full. This frame is stored into TxFIFO with an 8bit access either by software or automatically by DMA when LDMA_TX control is set.
8.
To receive the last odd data frame in packed mode, the Rx threshold must be changed
to 8-bit when the last data frame is processed, either by software setting FRXTH=1 or
automatically by a DMA internal signal when LDMA_RX is set.
DocID024597 Rev 3
RM0351
Serial peripheral interface (SPI)
Figure 430. Master full duplex communication
166
6&.
%6<
026,
'7[
06%
'7[
06%
'7[
06%
63(
7;(
(QDEOH7[5['0$RULQWHUUXSWV
'7[
)7/9/
'7[
'7[
'0$RUVRIWZDUHFRQWURODW7[HYHQWV
'5[
0,62
/6%
'5[
/6%
'5[
/6%
5;1(
'0$RUVRIWZDUHFRQWURODW5[HYHQWV
)5/9/
'0$7[7,&)
'5[
'5[
'5[
'0$5[7,&)
06Y9
Assumptions for master full duplex communication example:
•
Data size > 8 bit
If DMA is used:
•
Number of Tx frames transacted by DMA is set to 3
•
Number of Rx frames transacted by DMA is set to 3
See also : Communication diagrams on page 1298 for details about common assumptions
and notes.
DocID024597 Rev 3
1299/1685
1317
Serial peripheral interface (SPI)
RM0351
Figure 431. Slave full duplex communication
166
6&.
%6<
06%
'7[
06%
0,62
06%
'7[
'7[
63(
7;(
(QDEOH7[5['0$RULQWHUUXSWV
'7[
)7/9/
'7[
'7[
'5[
026,
'0$RUVRIWZDUHFRQWURODW7[HYHQWV
/6%
'5[
/6%
'5[
/6%
5;1(
'0$RUVRIWZDUHFRQWURODW5[HYHQWV
)5/9/
'0$7[7,&)
'5[
'5[
'5[
'0$5[7,&)
06Y9
Assumptions for slave full duplex communication example:
•
Data size > 8 bit
If DMA is used:
•
Number of Tx frames transacted by DMA is set to 3
•
Number of Rx frames transacted by DMA is set to 3
See also : Communication diagrams on page 1298 for details about common assumptions
and notes.
1300/1685
DocID024597 Rev 3
RM0351
Serial peripheral interface (SPI)
Figure 432. Master full duplex communication with CRC
166
6&.
%6<
026,
'7[
06%
'7[
06%
&5&
06%
63(
7;(
(QDEOH7[5['0$RULQWHUUXSWV
'7[
)7/9/
'7[
'0$RUVRIWZDUHFRQWURODW7[HYHQWV
'5[
0,62
/6%
'5[
/6%
&5&
/6%
5;1(
'0$RUVRIWZDUHFRQWURODW5[HYHQWV
)5/9/
'0$7[7,&)
'5[
'5[
'5[
'0$5[7,&)
06Y9
Assumptions for master full duplex communication with CRC example:
•
Data size = 16 bit
•
CRC enabled
If DMA is used:
•
Number of Tx frames transacted by DMA is set to 2
•
Number of Rx frames transacted by DMA is set to 3
See also : Communication diagrams on page 1298 for details about common assumptions
and notes.
DocID024597 Rev 3
1301/1685
1317
Serial peripheral interface (SPI)
RM0351
Figure 433. Master full duplex communication in packed mode
166
6&.
%6<
'7[
026,
'7[
'7[
63(
7;(
(QDEOH7[5['0$RULQWHUUXSWV
'7[
'7[
'7[
'0$RUVRIWZDUHFRQWURODW7[HYHQWV
)7/9/
0,62
'5[
'5[
'5[
5;1(
'0$RUVRIWZDUHFRQWURODW5[HYHQWV
'5[
'5[
)57+;
'5[
)5/9/
'0$7[7,&)
'0$5[7,&)
06Y9
Assumptions for master full duplex communication in packed mode example:
•
Data size = 5 bit
•
Read/write FIFO is performed mostly by 16-bit access
•
FRXTH=0
If DMA is used:
•
Number of Tx frames to be transacted by DMA is set to 3
•
Number of Rx frames to be transacted by DMA is set to 3
•
PSIZE for both Tx and Rx DMA channel is set to 16-bit
•
LDMA_TX=1 and LDMA_RX=1
See also : Communication diagrams on page 1298 for details about common assumptions
and notes.
1302/1685
DocID024597 Rev 3
RM0351
38.4.10
Serial peripheral interface (SPI)
SPI status flags
Three status flags are provided for the application to completely monitor the state of the SPI
bus.
Tx buffer empty flag (TXE)
The TXE flag is set when transmission TXFIFO has enough space to store data to send.
TXE flag is linked to the TXFIFO level. The flag goes high and stays high until the TXFIFO
level is lower or equal to 1/2 of the FIFO depth. An interrupt can be generated if the TXEIE
bit in the SPIx_CR2 register is set. The bit is cleared automatically when the TXFIFO level
becomes greater than 1/2.
Rx buffer not empty (RXNE)
The RXNE flag is set depending on the FRXTH bit value in the SPIx_CR2 register:
•
If FRXTH is set, RXNE goes high and stays high until the RXFIFO level is greater or
equal to 1/4 (8-bit).
•
If FRXTH is cleared, RXNE goes high and stays high until the RXFIFO level is greater
than or equal to 1/2 (16-bit).
An interrupt can be generated if the RXNEIE bit in the SPIx_CR2 register is set.
The RXNE is cleared by hardware automatically when the above conditions are no longer
true.
Busy flag (BSY)
The BSY flag is set and cleared by hardware (writing to this flag has no effect).
When BSY is set, it indicates that a data transfer is in progress on the SPI (the SPI bus is
busy).
The BSY flag can be used in certain modes to detect the end of a transfer so that the
software can disable the SPI or its peripheral clock before entering a low-power mode which
does not provide a clock for the peripheral. This avoids corrupting the last transfer.
The BSY flag is also useful for preventing write collisions in a multimaster system.
The BSY flag is cleared under any one of the following conditions:
Note:
•
When the SPI is correctly disabled
•
When a fault is detected in Master mode (MODF bit set to 1)
•
In Master mode, when it finishes a data transmission and no new data is ready to be
sent
•
In Slave mode, when the BSY flag is set to '0' for at least one SPI clock cycle between
each data transfer.
When the next transmission can be handled immediately by the master (e.g. if the master is
in Receive-only mode or its Transmit FIFO is not empty), communication is continuous and
the BSY flag remains set to '1' between transfers on the master side. Although this is not the
case with a slave, it is recommended to use always the TXE and RXNE flags (instead of the
BSY flags) to handle data transmission or reception operations.
DocID024597 Rev 3
1303/1685
1317
Serial peripheral interface (SPI)
38.4.11
RM0351
SPI error flags
An SPI interrupt is generated if one of the following error flags is set and interrupt is enabled
by setting the ERRIE bit.
Overrun flag (OVR)
An overrun condition occurs when data is received by a master or slave and the RXFIFO
has not enough space to store this received data. This can happen if the software or the
DMA did not have enough time to read the previously received data (stored in the RXFIFO)
or when space for data storage is limited e.g. the RXFIFO is not available when CRC is
enabled in receive only mode so in this case the reception buffer is limited into a single data
frame buffer (see Section 38.4.14: CRC calculation).
When an overrun condition occurs, the newly received value does not overwrite the
previous one in the RXFIFO. The newly received value is discarded and all data transmitted
subsequently is lost. Clearing the OVR bit is done by a read access to the SPI_DR register
followed by a read access to the SPI_SR register.
Mode fault (MODF)
Mode fault occurs when the master device has its internal NSS signal (NSS pin in NSS
hardware mode, or SSI bit in NSS software mode) pulled low. This automatically sets the
MODF bit. Master mode fault affects the SPI interface in the following ways:
•
The MODF bit is set and an SPI interrupt is generated if the ERRIE bit is set.
•
The SPE bit is cleared. This blocks all output from the device and disables the SPI
interface.
•
The MSTR bit is cleared, thus forcing the device into slave mode.
Use the following software sequence to clear the MODF bit:
1.
Make a read or write access to the SPIx_SR register while the MODF bit is set.
2.
Then write to the SPIx_CR1 register.
To avoid any multiple slave conflicts in a system comprising several MCUs, the NSS pin
must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits can
be restored to their original state after this clearing sequence. As a security, hardware does
not allow the SPE and MSTR bits to be set while the MODF bit is set. In a slave device the
MODF bit cannot be set except as the result of a previous multimaster conflict.
CRC error (CRCERR)
This flag is used to verify the validity of the value received when the CRCEN bit in the
SPIx_CR1 register is set. The CRCERR flag in the SPIx_SR register is set if the value
received in the shift register does not match the receiver SPIx_RXCRCR value. The flag is
cleared by the software.
TI mode frame format error (FRE)
A TI mode frame format error is detected when an NSS pulse occurs during an ongoing
communication when the SPI is operating in slave mode and configured to conform to the TI
mode protocol. When this error occurs, the FRE flag is set in the SPIx_SR register. The SPI
is not disabled when an error occurs, the NSS pulse is ignored, and the SPI waits for the
next NSS pulse before starting a new transfer. The data may be corrupted since the error
detection may result in the loss of two data bytes.
1304/1685
DocID024597 Rev 3
RM0351
Serial peripheral interface (SPI)
The FRE flag is cleared when SPIx_SR register is read. If the ERRIE bit is set, an interrupt
is generated on the NSS error detection. In this case, the SPI should be disabled because
data consistency is no longer guaranteed and communications should be reinitiated by the
master when the slave SPI is enabled again.
38.4.12
NSS pulse mode
This mode is activated by the NSSP bit in the SPIx_CR2 register and it takes effect only if
the SPI interface is configured as Motorola SPI master (FRF=0) with capture on the first
edge (SPIx_CR1 CPHA = 0, CPOL setting is ignored). When activated, an NSS pulse is
generated between two consecutive data frame transfers when NSS stays at high level for
the duration of one clock period at least. This mode allows the slave to latch data. NSSP
pulse mode is designed for applications with a single master-slave pair.
Figure 434 illustrates NSS pin management when NSSP pulse mode is enabled.
Figure 434. NSSP pulse generation in Motorola SPI master mode
-ASTER CONTINUOUS TRANSFER #0/, #0(! .330
SAMPLING
SAMPLING SAMPLING
SAMPLING
SAMPLING SAMPLING
.33
OUTPUT
3#+
OUTPUT
-/3)
OUTPUT
-3"
-)3/
INPUT $/.4#!2%
-3"
,3"
,3"
$/.4#!2%
T3#+
T3#+
T3#+
ELWVWRELWV
-3"
,3"
-3"
,3"
T3#+
$/.4#!2%
T3#+
ELWVWRELWV
-36
Note:
Similar behavior is encountered when CPOL = 0. In this case the sampling edge is the rising
edge of SCK, and NSS assertion and deassertion refer to this sampling edge.
38.4.13
TI mode
TI protocol in master mode
The SPI interface is compatible with the TI protocol. The FRF bit of the SPIx_CR2 register
can be used to configure the SPI to be compliant with this protocol.
The clock polarity and phase are forced to conform to the TI protocol requirements whatever
the values set in the SPIx_CR1 register. NSS management is also specific to the TI protocol
which makes the configuration of NSS management through the SPIx_CR1 and SPIx_CR2
registers (SSM, SSI, SSOE) impossible in this case.
In slave mode, the SPI baud rate prescaler is used to control the moment when the MISO
pin state changes to HiZ when the current transaction finishes (see Figure 435). Any baud
rate can be used, making it possible to determine this moment with optimal flexibility.
However, the baud rate is generally set to the external master clock baud rate. The delay for
the MISO signal to become HiZ (trelease) depends on internal resynchronization and on the
DocID024597 Rev 3
1305/1685
1317
Serial peripheral interface (SPI)
RM0351
baud rate value set in through the BR[2:0] bits in the SPIx_CR1 register. It is given by the
formula:
t baud_rate
t baud_rate
--------------------- + 4 × t pclk < t release < --------------------- + 6 × t pclk
2
2
If the slave detects a misplaced NSS pulse during a data frame transaction the TIFRE flag is
set.
If the data size is equal to 4-bits or 5-bits, the master in full-duplex mode or transmit-only
mode uses a protocol with one more dummy data bit added after LSB. TI NSS pulse is
generated above this dummy bit clock cycle instead of the LSB in each period.
This feature is not available for Motorola SPI communications (FRF bit set to 0).
Figure 435: TI mode transfer shows the SPI communication waveforms when TI mode is
selected.
Figure 435. TI mode transfer
G
M
PL
ER
IN
T 2%,%!3%
SA
IN
G
GG
PL
TR I
M
SA
IN
ER
GG
PL
TR I
M
SA
TRI
GG
ER
G
.33
3#+
-/3)
-)3/
$/.4#!2%
OR
-3"
,3"
-3"
,3"
-3"
,3"
-3"
,3"
&2!-%
&2!-%
-36
38.4.14
CRC calculation
Two separate CRC calculators are implemented in order to check the reliability of
transmitted and received data. The SPI offers CRC8 or CRC16 calculation independently of
the frame data length, which can be fixed to 8-bit or 16-bit. For all the other data frame
lengths, no CRC is available.
CRC principle
CRC calculation is enabled by setting the CRCEN bit in the SPIx_CR1 register before the
SPI is enabled (SPE = 1). The CRC value is calculated using an odd programmable
polynomial on each bit. The calculation is processed on the sampling clock edge defined by
the CPHA and CPOL bits in the SPIx_CR1 register. The calculated CRC value is checked
automatically at the end of the data block as well as for transfer managed by CPU or by the
DMA. When a mismatch is detected between the CRC calculated internally on the received
data and the CRC sent by the transmitter, a CRCERR flag is set to indicate a data corruption
error. The right procedure for handling the CRC calculation depends on the SPI
configuration and the chosen transfer management.
1306/1685
DocID024597 Rev 3
RM0351
Note:
Serial peripheral interface (SPI)
The polynomial value should only be odd. No even values are supported.
CRC transfer managed by CPU
Communication starts and continues normally until the last data frame has to be sent or
received in the SPIx_DR register. Then CRCNEXT bit has to be set in the SPIx_CR1
register to indicate that the CRC frame transaction will follow after the transaction of the
currently processed data frame. The CRCNEXT bit must be set before the end of the last
data frame transaction. CRC calculation is frozen during CRC transaction.
The received CRC is stored in the RXFIFO like a data byte or word. That is why in CRC
mode only, the reception buffer has to be considered as a single 16-bit buffer used to
receive only one data frame at a time.
A CRC-format transaction usually takes one more data frame to communicate at the end of
data sequence. However, when setting an 8-bit data frame checked by 16-bit CRC, two
more frames are necessary to send the complete CRC.
When the last CRC data is received, an automatic check is performed comparing the
received value and the value in the SPIx_RXCRC register. Software has to check the
CRCERR flag in the SPIx_SR register to determine if the data transfers were corrupted or
not. Software clears the CRCERR flag by writing '0' to it.
After the CRC reception, the CRC value is stored in the RXFIFO and must be read in the
SPIx_DR register in order to clear the RXNE flag.
CRC transfer managed by DMA
When SPI communication is enabled with CRC communication and DMA mode, the
transmission and reception of the CRC at the end of communication is automatic (with the
exception of reading CRC data in receive only mode). The CRCNEXT bit does not have to
be handled by the software. The counter for the SPI transmission DMA channel has to be
set to the number of data frames to transmit excluding the CRC frame. On the receiver side,
the received CRC value is handled automatically by DMA at the end of the transaction but
user must take care to flush out received CRC information from RXFIFO as it is always
loaded into it. In full duplex mode, the counter of the reception DMA channel can be set to
the number of data frames to receive including the CRC, which means, for example, in the
specific case of an 8-bit data frame checked by 16-bit CRC:
DMA_RX = Numb_of_data + 2
In receive only mode, the DMA reception channel counter should contain only the amount of
data transferred, excluding the CRC calculation. Then based on the complete transfer from
DMA, all the CRC values must be read back by software from FIFO as it works as a single
buffer in this mode.
At the end of the data and CRC transfers, the CRCERR flag in the SPIx_SR register is set if
corruption occurred during the transfer.
If packing mode is used, the LDMA_RX bit needs managing if the number of data is odd.
Resetting the SPIx_TXCRC and SPIx_RXCRC values
The SPIx_TXCRC and SPIx_RXCRC values are cleared automatically when new data is
sampled after a CRC phase. This allows the use of DMA circular mode (not available in
receive-only mode) in order to transfer data without any interruption, (several data blocks
covered by intermediate CRC checking phases).
DocID024597 Rev 3
1307/1685
1317
Serial peripheral interface (SPI)
RM0351
If the SPI is disabled during a communication the following sequence must be followed:
1.
Disable the SPI
2.
Clear the CRCEN bit
3.
Enable the CRCEN bit
4.
Enable the SPI
Note:
When the SPI is in slave mode, the CRC calculator is sensitive to the SCK slave input clock
as soon as the CRCEN bit is set, and this is the case whatever the value of the SPE bit. In
order to avoid any wrong CRC calculation, the software must enable CRC calculation only
when the clock is stable (in steady state). When the SPI interface is configured as a slave,
the NSS internal signal needs to be kept low between the data phase and the CRC phase.
38.5
SPI interrupts
During SPI communication an interrupts can be generated by the following events:
•
Transmit TXFIFO ready to be loaded
•
Data received in Receive RXFIFO
•
Master mode fault
•
Overrun error
•
TI frame format error
•
CRC protocol error
Interrupts can be enabled and disabled separately.
Table 206. SPI interrupt requests
Interrupt event
Event flag
Enable Control bit
TXE
TXEIE
Data received in RXFIFO
RXNE
RXNEIE
Master Mode fault event
MODF
Transmit TXFIFO ready to be loaded
Overrun error
OVR
TI frame format error
FRE
CRC protocol error
1308/1685
CRCERR
DocID024597 Rev 3
ERRIE
RM0351
Serial peripheral interface (SPI)
38.6
SPI registers
The peripheral registers can be accessed by half-words (16-bit) or words (32-bit). SPI_DR
in addition by can be accessed by 8-bit access.
38.6.1
SPI control register 1 (SPIx_CR1)
Address offset: 0x00
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
BIDI
MODE
BIDI
OE
CRC
EN
CRC
NEXT
CRCL
RX
ONLY
SSM
SSI
LSB
FIRST
SPE
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
5
4
3
BR [2:0]
rw
rw
rw
2
1
0
MSTR
CPOL
CPHA
rw
rw
rw
Bit 15 BIDIMODE: Bidirectional data mode enable. This bit enables half-duplex communication using
common single bidirectional data line. Keep RXONLY bit clear when bidirectional mode is
active.
0: 2-line unidirectional data mode selected
1: 1-line bidirectional data mode selected
Bit 14 BIDIOE: Output enable in bidirectional mode
This bit combined with the BIDIMODE bit selects the direction of transfer in bidirectional mode
0: Output disabled (receive-only mode)
1: Output enabled (transmit-only mode)
Note: In master mode, the MOSI pin is used and in slave mode, the MISO pin is used.
Bit 13 CRCEN: Hardware CRC calculation enable
0: CRC calculation disabled
1: CRC calculation Enabled
Note: This bit should be written only when SPI is disabled (SPE = ‘0’) for correct operation.
Bit 12 CRCNEXT: Transmit CRC next
0: Next transmit value is from Tx buffer
1: Next transmit value is from Tx CRC register
Note: This bit has to be written as soon as the last data is written in the SPIx_DR register.
Bit 11 CRCL: CRC length
This bit is set and cleared by software to select the CRC length.
0: 8-bit CRC length
1: 16-bit CRC length
Note: This bit should be written only when SPI is disabled (SPE = ‘0’) for correct operation.
DocID024597 Rev 3
1309/1685
1317
Serial peripheral interface (SPI)
RM0351
Bit 10 RXONLY: Receive only mode enabled.
This bit enables simplex communication using a single unidirectional line to receive data
exclusively. Keep BIDIMODE bit clear when receive only mode is active.This bit is also useful
in a multislave system in which this particular slave is not accessed, the output from the
accessed slave is not corrupted.
0: Full duplex (Transmit and receive)
1: Output disabled (Receive-only mode)
Bit 9 SSM: Software slave management
When the SSM bit is set, the NSS pin input is replaced with the value from the SSI bit.
0: Software slave management disabled
1: Software slave management enabled
Note: This bit is not used in SPI TI mode.
Bit 8 SSI: Internal slave select
This bit has an effect only when the SSM bit is set. The value of this bit is forced onto the NSS
pin and the I/O value of the NSS pin is ignored.
Note: This bit is not used in SPI TI mode.
Bit 7 LSBFIRST: Frame format
0: data is transmitted / received with the MSB first
1: data is transmitted / received with the LSB first
Note: 1. This bit should not be changed when communication is ongoing.
2. This bit is not used in SPI TI mode.
Bit 6 SPE: SPI enable
0: Peripheral disabled
1: Peripheral enabled
Note: When disabling the SPI, follow the procedure described in Procedure for disabling the
SPI on page 1294.
Bits 5:3 BR[2:0]: Baud rate control
000: fPCLK/2
001: fPCLK/4
010: fPCLK/8
011: fPCLK/16
100: fPCLK/32
101: fPCLK/64
110: fPCLK/128
111: fPCLK/256
Note: These bits should not be changed when communication is ongoing.
1310/1685
DocID024597 Rev 3
RM0351
Serial peripheral interface (SPI)
Bit 2 MSTR: Master selection
0: Slave configuration
1: Master configuration
Note: This bit should not be changed when communication is ongoing.
Bit1 CPOL: Clock polarity
0: CK to 0 when idle
1: CK to 1 when idle
Note: This bit should not be changed when communication is ongoing.
This bit is not used in SPI TI mode.
Bit 0 CPHA: Clock phase
0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge
Note: This bit should not be changed when communication is ongoing.
This bit is not used in SPI TI mode.
38.6.2
SPI control register 2 (SPIx_CR2)
Address offset: 0x04
Reset value: 0x0700
15
14
13
12
Res.
LDMA
_TX
LDMA
_RX
FRXT
H
rw
rw
rw
11
10
9
8
DS [3:0]
rw
rw
rw
7
6
5
TXEIE RXNEIE ERRIE
rw
rw
rw
rw
4
3
2
FRF
NSSP
SSOE
rw
rw
rw
1
0
TXDMAEN RXDMAEN
rw
rw
Bit 15 Reserved, must be kept at reset value.
Bit 14 LDMA_TX: Last DMA transfer for transmission
This bit is used in data packing mode, to define if the total number of data to transmit by DMA
is odd or even. It has significance only if the TXDMAEN bit in the SPIx_CR2 register is set and
if packing mode is used (data length =< 8-bit and write access to SPIx_DR is 16-bit wide). It
has to be written when the SPI is disabled (SPE = 0 in the SPIx_CR1 register).
0: Number of data to transfer is even
1: Number of data to transfer is odd
Note: Refer to Procedure for disabling the SPI on page 1294 if the CRCEN bit is set.
Bit 13 LDMA_RX: Last DMA transfer for reception
This bit is used in data packing mode, to define if the total number of data to receive by DMA is
odd or even. It has significance only if the RXDMAEN bit in the SPIx_CR2 register is set and if
packing mode is used (data length =< 8-bit and write access to SPIx_DR is 16-bit wide). It has
to be written when the SPI is disabled (SPE = 0 in the SPIx_CR1 register).
0: Number of data to transfer is even
1: Number of data to transfer is odd
Note: Refer to Procedure for disabling the SPI on page 1294 if the CRCEN bit is set.
Bit 12 FRXTH: FIFO reception threshold
This bit is used to set the threshold of the RXFIFO that triggers an RXNE event
0: RXNE event is generated if the FIFO level is greater than or equal to 1/2 (16-bit)
1: RXNE event is generated if the FIFO level is greater than or equal to 1/4 (8-bit)
DocID024597 Rev 3
1311/1685
1317
Serial peripheral interface (SPI)
RM0351
Bits 11:8 DS [3:0]: Data size
These bits configure the data length for SPI transfers:
0000: Not used
0001: Not used
0010: Not used
0011: 4-bit
0100: 5-bit
0101: 6-bit
0110: 7-bit
0111: 8-bit
1000: 9-bit
1001: 10-bit
1010: 11-bit
1011: 12-bit
1100: 13-bit
1101: 14-bit
1110: 15-bit
1111: 16-bit
If software attempts to write one of the “Not used” values, they are forced to the value “0111”(8bit).
Bit 7 TXEIE: Tx buffer empty interrupt enable
0: TXE interrupt masked
1: TXE interrupt not masked. Used to generate an interrupt request when the TXE flag is set.
Bit 6 RXNEIE: RX buffer not empty interrupt enable
0: RXNE interrupt masked
1: RXNE interrupt not masked. Used to generate an interrupt request when the RXNE flag is
set.
Bit 5 ERRIE: Error interrupt enable
This bit controls the generation of an interrupt when an error condition occurs (CRCERR,
OVR, MODF in SPI mode, FRE at TI mode).
0: Error interrupt is masked
1: Error interrupt is enabled
Bit 4 FRF: Frame format
0: SPI Motorola mode
1 SPI TI mode
Note: This bit must be written only when the SPI is disabled (SPE=0).
Bit 3 NSSP: NSS pulse management
This bit is used in master mode only. it allow the SPI to generate an NSS pulse between two
consecutive data when doing continuous transfers. In the case of a single data transfer, it
forces the NSS pin high level after the transfer.
It has no meaning if CPHA = ’1’, or FRF = ’1’.
0: No NSS pulse
1: NSS pulse generated
Note: 1. This bit must be written only when the SPI is disabled (SPE=0).
2. This bit is not used in SPI TI mode.
1312/1685
DocID024597 Rev 3
RM0351
Serial peripheral interface (SPI)
Bit 2 SSOE: SS output enable
0: SS output is disabled in master mode and the SPI interface can work in multimaster
configuration
1: SS output is enabled in master mode and when the SPI interface is enabled. The SPI
interface cannot work in a multimaster environment.
Note: This bit is not used in SPI TI mode.
Bit 1 TXDMAEN: Tx buffer DMA enable
When this bit is set, a DMA request is generated whenever the TXE flag is set.
0: Tx buffer DMA disabled
1: Tx buffer DMA enabled
Bit 0 RXDMAEN: Rx buffer DMA enable
When this bit is set, a DMA request is generated whenever the RXNE flag is set.
0: Rx buffer DMA disabled
1: Rx buffer DMA enabled
DocID024597 Rev 3
1313/1685
1317
Serial peripheral interface (SPI)
38.6.3
RM0351
SPI status register (SPIx_SR)
Address offset: 0x08
Reset value: 0x0002
15
Res.
14
Res.
13
Res.
12
11
10
9
FTLVL[1:0]
FRLVL[2:0]
r
r
r
r
8
7
6
5
4
3
2
1
0
Res.
Res.
TXE
RXNE
r
r
FRE
BSY
OVR
MODF
CRC
ERR
r
r
r
r
rc_w0
Bits 15:13 Reserved, must be kept at reset value.
Bits 12:11 FTLVL[1:0]: FIFO Transmission Level
These bits are set and cleared by hardware.
00: FIFO empty
01: 1/4 FIFO
10: 1/2 FIFO
11: FIFO full (considered as FULL when the FIFO threshold is greater than 1/2)
Bits 10:9 FRLVL[1:0]: FIFO reception level
These bits are set and cleared by hardware.
00: FIFO empty
01: 1/4 FIFO
10: 1/2 FIFO
11: FIFO full
Note: These bits are not used in SPI receive-only mode while CRC calculation is enabled.
Bit 8 FRE: Frame format error
This flag is used for SPI in TI slave mode. Refer to Section 38.4.11: SPI error flags.
This flag is set by hardware and reset when SPIx_SR is read by software.
0: No frame format error
1: A frame format error occurred
Bit 7 BSY: Busy flag
0: SPI not busy
1: SPI is busy in communication or Tx buffer is not empty
This flag is set and cleared by hardware.
Note: The BSY flag must be used with caution: refer to Section 38.4.10: SPI status flags and
Procedure for disabling the SPI on page 1294.
Bit 6 OVR: Overrun flag
0: No overrun occurred
1: Overrun occurred
This flag is set by hardware and reset by a software sequence.
Bit 5 MODF: Mode fault
0: No mode fault occurred
1: Mode fault occurred
This flag is set by hardware and reset by a software sequence. Refer to Section : Mode fault
(MODF) on page 1304 for the software sequence.
Bit 4 CRCERR: CRC error flag
0: CRC value received matches the SPIx_RXCRCR value
1: CRC value received does not match the SPIx_RXCRCR value
This flag is set by hardware and cleared by software writing 0.
1314/1685
DocID024597 Rev 3
RM0351
Serial peripheral interface (SPI)
Bits 3:2 Reserved, must be kept at reset value.
Bit 1 TXE: Transmit buffer empty
0: Tx buffer not empty
1: Tx buffer empty
Bit 0 RXNE: Receive buffer not empty
0: Rx buffer empty
1: Rx buffer not empty
38.6.4
SPI data register (SPIx_DR)
Address offset: 0x0C
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
DR[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 15:0 DR[15:0]: Data register
Data received or to be transmitted
The data register serves as an interface between the Rx and Tx FIFOs. When the data
register is read, RxFIFO is accessed while the write to data register accesses TxFIFO (See
Section 38.4.9: Data transmission and reception procedures).
Note: Data is always right-aligned. Unused bits are ignored when writing to the register, and
read as zero when the register is read. The Rx threshold setting must always
correspond with the read access currently used.
38.6.5
SPI CRC polynomial register (SPIx_CRCPR)
Address offset: 0x10
Reset value: 0x0007
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
CRCPOLY[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 15:0 CRCPOLY[15:0]: CRC polynomial register
This register contains the polynomial for the CRC calculation.
The CRC polynomial (0007h) is the reset value of this register. Another polynomial can be
configured as required.
Note: The polynomial value should be odd only. No even value is supported.
DocID024597 Rev 3
1315/1685
1317
Serial peripheral interface (SPI)
38.6.6
RM0351
SPI Rx CRC register (SPIx_RXCRCR)
Address offset: 0x14
Reset value: 0x0000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
RxCRC[15:0]
r
r
r
r
r
r
r
r
r
Bits 15:0 RXCRC[15:0]: Rx CRC register
When CRC calculation is enabled, the RxCRC[15:0] bits contain the computed CRC value of
the subsequently received bytes. This register is reset when the CRCEN bit in SPIx_CR1
register is written to 1. The CRC is calculated serially using the polynomial programmed in the
SPIx_CRCPR register.
Only the 8 LSB bits are considered when the data frame format is set to be 8-bit data (CRCL
bit in the SPIx_CR1 is cleared). CRC calculation is done based on any CRC8 standard.
The entire 16-bits of this register are considered when a 16-bit data frame format is selected
(CRCL bit in the SPIx_CR1 register is set). CRC calculation is done based on any CRC16
standard.
A read to this register when the BSY Flag is set could return an incorrect value.
38.6.7
SPI Tx CRC register (SPIx_TXCRCR)
Address offset: 0x18
Reset value: 0x0000
15
14
13
12
11
10
9
r
r
r
r
r
r
r
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
TxCRC[15:0]
r
r
Bits 15:0 TxCRC[15:0]: Tx CRC register
When CRC calculation is enabled, the TxCRC[7:0] bits contain the computed CRC value of
the subsequently transmitted bytes. This register is reset when the CRCEN bit of SPIx_CR1 is
written to 1. The CRC is calculated serially using the polynomial programmed in the
SPIx_CRCPR register.
Only the 8 LSB bits are considered when the data frame format is set to be 8-bit data (CRCL
bit in the SPIx_CR1 is cleared). CRC calculation is done based on any CRC8 standard.
The entire 16-bits of this register are considered when a 16-bit data frame format is selected
(CRCL bit in the SPIx_CR1 register is set). CRC calculation is done based on any CRC16
standard.
A read to this register when the BSY flag is set could return an incorrect value.
1316/1685
DocID024597 Rev 3
0x18
SPIx_TXCRCR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SPIx_RXCRCR
Res.
0x14
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SPIx_CRCPR
Res.
0x10
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SPIx_DR
Res.
0x0C
Reset value
Reset value
Reset value
Reset value
DocID024597 Rev 3
0
0
0
0
FRXTH
0
0
Reset value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RXDMAEN
0
0
0
0
DR[15:0]
0
CRCPOLY[15:0]
0
RxCRC[15:0]
0
TxCRC[15:0]
0
RXNE
SSOE
TXDMAEN
0
TXE
0
Res.
FRF
NSSP
0
Res.
0
CRCERR
0
OVR
1
MODF
ERRIE
0
RXNEIE
1
TXEIE
DS[3:0]
BSY
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CPOL
0
CPHA
0
BR [2:0]
MSTR
SSI
LSBFIRST
0
SPE
SSM
0
FRE
CRCNEXT
0
CRCL
BIDIOE
CRCEN
0
RXONLY
BIDIMODE
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
FRLVL[1:0]
FTLVL[1:0]
LDMA_TX
LDMA_RX
0
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SPIx_SR
Res.
0x08
SPIx_CR2
Res.
0x04
SPIx_CR1
Res.
0x00
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res.
Offset
Res.
38.6.8
Res.
RM0351
Serial peripheral interface (SPI)
SPI register map
Table 207 shows the SPI register map and reset values.
Table 207. SPI register map and reset values
0
0
0
0
0
0
0
0
0
0
Refer to Section 2.2.2 on page 67 for the register boundary addresses.
1317/1685
1317
Serial audio interface (SAI)
RM0351
39
Serial audio interface (SAI)
39.1
Introduction
The SAI interface (Serial Audio Interface) offers a wide set of audio protocols due to its
flexibility and wide range of configurations. Many stereo or mono audio applications may be
targeted. I2S standards, LSB or MSB-justified, PCM/DSP, TDM, and AC’97 protocols may
be addressed for example. SPDIF output is offered when the audio block is configured as a
transmitter.
To bring this level of flexibility and reconfigurability, the SAI contains two independent audio
sub-blocks. Each block has it own clock generator and I/O line controller.
The SAI can work in master or slave configuration. The audio sub-blocks can be either
receiver or transmitter and can work synchronously or not (with respect to the other one).
The SAI can be connected with other SAIs to work synchronously.
1318/1693
DocID024597 Rev 3
RM0351
39.2
Serial audio interface (SAI)
SAI main features
•
Two independent audio sub-blocks which can be transmitters or receivers with their
respective FIFO.
•
8-word integrated FIFOs for each audio sub-block.
•
Synchronous or asynchronous mode between the audio sub-blocks.
•
Possible synchronization between multiple SAIs.
•
Master or slave configuration independent for both audio sub-blocks.
•
Clock generator for each audio block to target independent audio frequency sampling
when both audio sub-blocks are configured in master mode.
•
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.
•
Audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97
•
SPDIF output available if required.
•
Up to 16 slots available with configurable size.
•
Number of bits by frame can be configurable.
•
Frame synchronization active level configurable (offset, bit length, level).
•
First active bit position in the slot is configurable.
•
LSB first or MSB first for data transfer.
•
Mute mode.
•
Stereo/Mono audio frame capability.
•
Communication clock strobing edge configurable (SCK).
•
Error flags with associated interrupts if enabled respectively.
•
•
–
Overrun and underrun detection,
–
Anticipated frame synchronization signal detection in slave mode,
–
Late frame synchronization signal detection in slave mode,
–
Codec not ready for the AC’97 mode in reception.
Interruption sources when enabled:
–
Errors,
–
FIFO requests.
2-channel DMA interface.
DocID024597 Rev 3
1319/1693
1362
Serial audio interface (SAI)
RM0351
39.3
SAI functional description
39.3.1
SAI block diagram
The SAI block diagram is shown in Figure 436.
Figure 436. Functional block diagram
$3%EXV
$XGLREORFN$
),)2FWUO
),)2
6$,B&.B$
&ORFNJHQHUDWRU
$XGLREORFN$
&RQILJXUDWLRQ
DQGVWDWXV
UHJLVWHUV
)60
ELWVKLIWUHJLVWHU
$XGLREORFN%
),)2FWUO
),)2
6$,B&.B%
&ORFNJHQHUDWRU
$XGLREORFN%
6$,B%&5
6\QFKUR
FWUORXW
&RQILJXUDWLRQ
DQGVWDWXV
UHJLVWHUV
LQWB)6
LQWB6&.
)6B$
6&.B$
6'B$
0&/.B$
)6B%
6&.B%
6'B%
0&/.B%
)60
ELWVKLIWUHJLVWHU
$3%,QWHUIDFH
$3%EXV
6$,[B)6
6$,[B6&.
)URPRWKHU6$,%ORFNV
6$,B$&5
6$,B*&5
,2/LQH0DQDJHPHQW
$3%,QWHUIDFH
6\QFKUR
LQ
6$,
069
The SAI is mainly composed of two audio sub-blocks with their own clock generator. Each
audio block integrates a 32-bit shift register controlled by their own functional state machine.
Data are stored or read from the dedicated FIFO. FIFO may be accessed by the CPU, or by
DMA in order to leave the CPU free during the communication. Each audio block is
independent. They can be synchronous with each other.
An I/O line controller manages a set of 4 dedicated pins (SD, SCK, FS, MCLK) for a given
audio block in the SAI. Some of these pins can be shared if the two sub-blocks are declared
as synchronous to leave some free to be used as general purpose I/Os. The MCLK pin can
be output, or not, depending on the application, the decoder requirement and whether the
audio block is configured as the master.
If one SAI is configured to operate synchronously with another one, even more I/Os can be
freed (except for pins SD_x).
The functional state machine can be configured to address a wide range of audio protocols.
Some registers are present to set-up the desired protocols (audio frame waveform
generator).
1320/1693
DocID024597 Rev 3
RM0351
Serial audio interface (SAI)
The audio sub-block can be a transmitter or receiver, in master or slave mode. The master
mode means the SCK_x bit clock and the frame synchronization signal are generated from
the SAI, whereas in slave mode, they come from another external or internal master. There
is a particular case for which the FS signal direction is not directly linked to the master or
slave mode definition. In AC’97 protocol, it will be an SAI output even if the SAI (link
controller) is set-up to consume the SCK clock (and so to be in Slave mode).
Note:
For ease of reading of this section, the notation SAI_x refers to SAI_A or SAI_B, where ‘x’
represents the SAI A or B sub-block.
39.3.2
Main SAI modes
Each audio sub-block of the SAI can be configured to be master or slave via MODE bits in
the SAI_xCR1 register of the selected audio block.
Master mode
In master mode, the SAI delivers the timing signals to the external connected device:
•
The bit clock and the frame synchronization are output on pin SCK_x and FS_x,
respectively.
•
If needed, the SAI can also generate a master clock on MCLK_x pin.
Both SCK_x, FS_x and MCLK_x are configured as outputs.
Slave mode
The SAI expects to receive timing signals from an external device.
•
If the SAI sub-block is configured in asynchronous mode, then SCK_x and FS_x pins
are configured as inputs.
•
If the SAI sub-block is configured to operate synchronously with another SAI interface
or with the second audio sub-block, the corresponding SCK_x and FS_x pins are left
free to be used as general purpose I/Os.
In slave mode, MCLK_x pin is not used and can be assigned to another function.
It is recommended to enable the slave device before enabling the master.
Configuring and enabling SAI modes
Each audio sub-block can be independently defined as a transmitter or receiver through the
MODE bit in the SAI_xCR1 register of the corresponding audio block. As a result, SAIx_SD
pin will be respectively configured as an output or an input.
Two master audio blocks in the same SAI can be configured with two different MCLK and
SCK clock frequencies. In this case they have to be configured in asynchronous mode.
Each of the audio blocks in the SAI are enabled by bit SAIXEN in the SAI_xCR1 register. As
soon as this bit is active, the transmitter or the receiver is sensitive to the activity on the
clock line, data line and synchronization line in slave mode.
In master TX mode, enabling the audio block immediately generates the bit clock for the
external slaves even if there is no data in the FIFO, However FS signal generation is
conditioned by the presence of data in the FIFO. After the FIFO receives the first data to
transmit, this data is output to external slaves. If there is no data to transmit in the FIFO, 0
values are then sent in the audio frame with an underrun flag generation.
DocID024597 Rev 3
1321/1693
1362
Serial audio interface (SAI)
RM0351
In slave mode, the audio frame starts when the audio block is enabled and when a start of
frame is detected.
In Slave TX mode, no underrun event is possible on the first frame after the audio block is
enabled, because the mandatory operating sequence in this case is:
39.3.3
1.
Write into the SAI_xDR (by software or by DMA).
2.
Wait until the FIFO threshold (FLH) flag is different from 000b (FIFO empty).
3.
Enable the audio block in slave transmitter mode.
SAI synchronization mode
There are two levels of synchronization, either at audio sub-block level or at SAI level.
Internal synchronization
An audio sub-block can be configured to operate synchronously with the second audio subblock in the same SAI. In this case, the bit clock and the frame synchronization signals are
shared to reduce the number of external pins used for the communication. The audio block
configured in synchronous mode sees its own SCK_x, FS_x, and MCLK_x pins released
back as GPIOs while the audio block configured in asynchronous mode is the one for which
FS_x and SCK_x ad MCLK_x I/O pins are relevant (if the audio block is considered as
master).
Typically, the audio block in synchronous mode can be used to configure the SAI in full
duplex mode. One of the two audio blocks can be configured as a master and the other as
slave, or both as slaves with one asynchronous block (corresponding SYNCEN[1:0] bits set
to 00 in SAI_xCR1) and one synchronous block (corresponding SYNCEN[1:0] bits set to 01
in the SAI_xCR1).
Note:
Due to internal resynchronization stages, PCLK APB frequency must be higher than twice
the bit rate clock frequency.
External synchronization
The audio sub-blocks can also be configured to operate synchronously with another SAI.
This can be done as follow:
Note:
1.
The SAI, which is configured as the source from which the other SAI is synchronized,
has to define which of its audio sub-block is supposed to provide the FS and SCK
signals to other SAI. This is done by programming SYNCOUT[1:0] bits.
2.
The SAI which shall receive the synchronization signals has to select which SAI will
provide the synchronization by setting the proper value on SYNCIN[1:0] bits. For each
of the two SAI audio sub-blocks, the user must then specify if it operates synchronously
with the other SAI via the SYNCEN bit.
SYNCIN[1:0] and SYNCOUT[1:0] bits are located into the SAI_GCR register, and SYNCEN
bits into SAI_xCR1 register.
If both audio sub-blocks in a given SAI need to be synchronized with another SAI, it is
possible to choose one of the following configurations:
1322/1693
•
Configure each audio block to be synchronous with another SAI block through the
SYNCEN[1:0] bits.
•
Configure one audio block to be synchronous with another SAI through the
SYNCEN[1:0] bits. The other audio block is then configured as synchronous with the
second SAI audio block through SYNCEN[1:0] bits.
DocID024597 Rev 3
RM0351
Serial audio interface (SAI)
The following table shows how to select the proper synchronization signal depending on the
SAI block used. For example SAI2 can select the synchronization from SAI1 by setting SAI2
SYNCIN to 0. If SAI1 wants to select the synchronization coming from SAI2, SAI1 SYNCIN
must be set to 1. Positions noted as ‘res’ shall not be used.
Table 208. External Synchronization Selection
Block instance
39.3.4
SYNCIN= 3
SYNCIN= 2
SYNCIN= 1
SYNCIN= 0
SAI1
res
res
SAI2 sync
res
SAI2
res
res
res
SAI1 sync
Audio data size
The audio frame can target different data sizes by configuring bit DS[2:0] in the SAI_xCR1
register. The data sizes may be 8, 10, 16, 20, 24 or 32 bits. During the transfer, either the
MSB or the LSB of the data are sent first, depending on the configuration of bit LSBFIRST in
the SAI_xCR1 register.
39.3.5
Frame synchronization
The FS signal acts as the Frame synchronization signal in the audio frame (start of frame).
The shape of this signal is completely configurable in order to target the different audio
protocols with their own specificities concerning this Frame synchronization behavior. This
reconfigurability is done using register SAI_xFRCR. Figure 437 illustrates this flexibility.
Figure 437. Audio frame
)6/HQJWKXSWRELWV
)6DFWLYHXSWRELWV
)6
6&.
6'
)62))
6'
)62))
7KHIDOOLQJHGJHFDQRFFXULQWRWKLVDUHD
6ORW
6ORW
6ORW
6ORW
6ORW
6ORW
6ORW
6ORW
6ORW
6ORW
«
«
6ORW
6ORW
06Y9
In AC’97 mode or in SPDIF mode (bit PRTCFG[1:0] = 10 or PRTCFG[1:0] = 01 in the
SAI_xCR1 register), the frame synchronization shape is forced to match the AC’97 protocol.
The SAI_xFRCR register value is ignored.
Each audio block is independent and consequently each one requires a specific
configuration.
DocID024597 Rev 3
1323/1693
1362
Serial audio interface (SAI)
RM0351
Frame length
•
Master mode
The audio frame length can be configured to up to 256 bit clock cycles, by setting
FRL[7:0] field in the SAI_xFRCR register.
If the frame length is greater than the number of declared slots for the frame, the
remaining bits to transmit will be extended to 0 or the SD line will be released to HI-z
depending the state of bit TRIS in the SAI_xCR2 register (refer to Section : FS signal
role). In reception mode, the remaining bit is ignored.
If bit NODIV is cleared, (FRL+1) must be equal to a power of 2, from 8 to 256, to ensure
that an audio frame contains an integer number of MCLK pulses per bit clock cycle.
If bit NODIV is set, the (FRL+1) field can take any value from 8 to 256. Refer to
Section 39.3.7: SAI clock generator”.
•
Slave mode
The audio frame length is mainly used to specify to the slave the number of bit clock
cycles per audio frame sent by the external master. It is used mainly to detect from the
master any anticipated or late occurrence of the Frame synchronization signal during
an on-going audio frame. In this case an error will be generated. For more details refer
to Section 39.3.12: Error flags.
In slave mode, there are no constraints on the FRL[7:0] configuration in the
SAI_xFRCR register.
The number of bits in the frame is equal to FRL[7:0] + 1.
The minimum number of bits to transfer in an audio frame is 8.
Frame synchronization polarity
FSPOL bit in the SAI_xFRCR register sets the active polarity of the FS pin from which a
frame is started. The start of frame is edge sensitive.
In slave mode, the audio block waits for a valid frame to start transmitting or receiving. Start
of frame is synchronized to this signal. It is effective only if the start of frame is not detected
during an ongoing communication and assimilated to an anticipated start of frame (refer to
Section 39.3.12: Error flags).
In master mode, the frame synchronization is sent continuously each time an audio frame is
complete until the SAIXEN bit in the SAI_xCR1 register is cleared. If no data are present in
the FIFO at the end of the previous audio frame, an underrun condition will be managed as
described in Section 39.3.12: Error flags), but the audio communication flow will not be
interrupted.
Frame synchronization active level length
The FSALL[6:0] bits of the SAI_xFRCR register allow configuring the length of the active
level of the Frame synchronization signal. The length can be set from 1 to 128 bit clock
cycles.
As an example, the active length can be half of the frame length in I2S, LSB or MSB-justified
modes, or one-bit wide for PCM/DSP or TDM mode.
Frame synchronization offset
Depending on the audio protocol targeted in the application, the Frame synchronization
signal can be asserted when transmitting the last bit or the first bit of the audio frame (this is
1324/1693
DocID024597 Rev 3
RM0351
Serial audio interface (SAI)
the case in I2S standard protocol and in MSB-justified protocol, respectively). FSOFF bit in
the SAI_xFRCR register allows to choose one of the two configurations.
FS signal role
The FS signal can have a different meaning depending on the FS function. FSDEF bit in the
SAI_xFRCR register selects which meaning it will have:
•
0: start of frame, like for instance the PCM/DSP, TDM, AC’97, audio protocols,
•
1: start of frame and channel side identification within the audio frame like for the I2S,
the MSB or LSB-justified protocols.
When the FS signal is considered as a start of frame and channel side identification within
the frame, the number of declared slots must be considered to be half the number for the left
channel and half the number for the right channel. If the number of bit clock cycles on half
audio frame is greater than the number of slots dedicated to a channel side, and TRIS = 0, 0
is sent for transmission for the remaining bit clock cycles in the SAI_xCR2 register.
Otherwise if TRIS = 1, the SD line is released to HI-Z. In reception mode, the remaining bit
clock cycles are not considered until the channel side changes.
Figure 438. FS role is start of frame + channel side identification (FSDEF = TRIS = 1)
1XPEHURIVORWVQRWDOLJQHGZLWKWKHDXGLRIUDPH
$XGLRIUDPH
+DOIRIIUDPH
)6
VFN
VORW
6ORW21
6ORW2)) 6ORW21
6ORW21 6ORW2)) 6ORW21
1XPEHURIVORWVDOLJQHGZLWKWKHDXGLRIUDPH
$XGLRIUDPH
+DOIRIIUDPH
)6
VFN
VORW
6ORW
6ORW
6ORW
6ORW
6ORW
6ORW
069
1. The frame length should be even.
If FSDEF bit in SAI_xFRCR is kept clear, so FS signal is equivalent to a start of frame, and if
the number of slots defined in NBSLOT[3:0] in SAI_xSLOTR multiplied by the number of bits
by slot configured in SLOTSZ[1:0] in SAI_xSLOTR is less than the frame size (bit FRL[7:0]
in the SAI_xFRCR register), then:
DocID024597 Rev 3
1325/1693
1362
Serial audio interface (SAI)
RM0351
•
if TRIS = 0 in the SAI_xCR2 register, the remaining bit after the last slot will be forced to
0 until the end of frame in case of transmitter,
•
if TRIS = 1, the line will be released to HI-Z during the transfer of these remaining bits.
In reception mode, these bits are discarded.
Figure 439. FS role is start of frame (FSDEF = 0)
$XGLRIUDPH
VFN
VORW
6ORW
6ORW
6ORW
6ORWQ
'DWD DIWHUVORWQLI75,6
6'RXWSXWUHOHDVHG +,= DIWHUVORWQLI75,6
069
The FS signal is not used when the audio block in transmitter mode is configured to get the
SPDIF output on the SD line. The corresponding FS I/O will be released and left free for
other purposes.
39.3.6
Slot configuration
The slot is the basic element in the audio frame. The number of slots in the audio frame is
equal to NBSLOT[3:0] + 1.
The maximum number of slots per audio frame is fixed at 16.
For AC’97 protocol or SPDIF (when bit PRTCFG[1:0] = 10 or PRTCFG[1:0] = 01), the
number of slots is automatically set to target the protocol specification, and the value of
NBSLOT[3:0] is ignored.
Each slot can be defined as a valid slot, or not, by setting SLOTEN[15:0] bits of the
SAI_xSLOTR register.
When a invalid slot is transferred, the SD data line is either forced to 0 or released to HI-z
depending on TRIS bit configuration (refer to Section : Output data line management on an
inactive slot) in transmitter mode. In receiver mode, the received value from the end of this
slot is ignored. Consequently, there will be no FIFO access and so no request to read or
write the FIFO linked to this inactive slot status.
The slot size is also configurable as shown in Figure 440. The size of the slots is selected by
setting SLOTSZ[1:0] bits in the SAI_xSLOTR register. The size is applied identically for
each slot in an audio frame.
1326/1693
DocID024597 Rev 3
RM0351
Serial audio interface (SAI)
Figure 440. Slot size configuration with FBOFF = 0 in SAI_xSLOTR
$XGLREORFNLVUHFHLYHU
$XGLREORFNLVWUDQVPLWWHU
6ORWVL]H GDWDVL]H
6ORWVL]H GDWDVL]H
VORW[
GDWDVL]H
VORW[
GDWDVL]H
GDWDVL]H
GDWDVL]H
VORW[
GDWDVL]H
VORW[
GDWDVL]H
ELW
ELW
VORW[
;;
GDWDVL]H
VORW[
GDWDVL]H
;;;;
ELW
ELW
;GRQ¶WFDUH
069
It is possible to choose the position of the first data bit to transfer within the slots. This offset
is configured by FBOFF[4:0] bits in the SAI_xSLOTR register. 0 values will be injected in
transmitter mode from the beginning of the slot until this offset position is reached. In
reception, the bit in the offset phase is ignored. This feature targets the LSB justified
protocol (if the offset is equal to the slot size minus the data size).
Figure 441. First bit offset
$XGLREORFNLVWUDQVPLWWHU
$XGLREORFNLVUHFHLYHU
6ORWVL]H GDWDVL]H
6ORWVL]H GDWDVL]H
VORW[
VORW[
GDWDVL]H
GDWDVL]H
GDWDVL]H
GDWDVL]H
)%2))
)%2))
VORW[
;;
GDWDVL]H
VORW[
ELW
GDWDVL]H
;;
ELW
)%2)) 6/276='6
)%2)) 6/276='6
VORW[
GDWDVL]H
VORW[
;;;;
GDWDVL]H
ELW
;GRQ¶WFDUH
ELW
069
It is mandatory to respect the following conditions to avoid bad SAI behavior:
FBOFF ≤(SLOTSZ - DS),
DS ≤SLOTSZ,
NBSLOT x SLOTSZ ≤FRL (frame length),
The number of slots must be even when bit FSDEF in the SAI_xFRCR register is set.
In AC’97 and SPDIF protocol (bit PRTCFG[1:0] = 10 or PRTCFG[1:0] = 01), the slot size is
automatically set as defined in Section 39.3.9: AC’97 link controller.
DocID024597 Rev 3
1327/1693
1362
Serial audio interface (SAI)
RM0351
Refer to Section 39.3.9: AC’97 link controller for details on clock generator programming in
AC’97 mode and to Section 39.3.10: SPDIF output for details on clock generator
programming in SPDIF mode.
39.3.7
SAI clock generator
Each audio block has its own clock generator that makes these two blocks completely
independent. There is no difference in terms of functionality between these two clock
generators.
When the audio block is configured as Master, the clock generator provides the
communication clock (the bit clock) and the master clock for external decoders.
When the audio block is defined as slave, the clock generator is OFF.
Figure 442 illustrates the architecture of the audio block clock generator.
Figure 442. Audio block clock generator overview
12',9
0&.',9>@
0&/.B[
6$,B&.B[
0DVWHUFORFN
GLYLGHU
)5/>@
12',9
12',9
%LWFORFNGLYLGHU
6&.B[
06Y9
Note:
If NODIV is set to 1, the MCLK_x signal will be set at 0 level if this pin is configured as the
SAI pin in GPIO peripherals.
The clock source for the clock generator comes from the product clock controller. The
SAI_CK_x clock is equivalent to the master clock which can be divided for the external
decoders using bit MCKDIV[3:0]:
MCLK_x = SAI_CK_x / (MCKDIV[3:0] * 2), if MCKDIV[3:0] is not equal to 0000.
MCLK_x = SAI_CK_x, if MCKDIV[3:0] is equal to 0000.
MCLK_x signal is used only in TDM.
The division must be even in order to keep 50% on the Duty cycle on the MCLK output and
on the SCK_x clock. If bit MCKDIV[3:0] = 0000, division by one is applied to obtain MCLK_x
equal to SAI_CK_x.
In the SAI, the single ratio MCLK/FS = 256 is considered. Mostly, three frequency ranges
will be encountered as illustrated in Table 209.
1328/1693
DocID024597 Rev 3
RM0351
Serial audio interface (SAI)
Table 209. Example of possible audio frequency sampling range
Input SAI_CK_x clock
frequency
192 kHz x 256
44.1 kHz x 256
SAI_CK_x = MCLK(1)
Most usual audio frequency
sampling achievable
MCKDIV[3:0]
192 kHz
MCKDIV[3:0] = 0000
96 kHz
MCKDIV[3:0] = 0001
48 kHz
MCKDIV[3:0] = 0010
16 kHz
MCKDIV[3:0] = 0110
8 kHz
MCKDIV[3:0] = 1100
44.1 kHz
MCKDIV[3:0] = 0000
22.05 kHz
MCKDIV[3:0] = 0001
11.025 kHz
MCKDIV[3:0] = 0010
MCLK
MCKDIV[3:0] = 0000
1. This may happen when the product clock controller selects an external clock source, instead of PLL clock.
The master clock can be generated externally on an I/O pad for external decoders if the
corresponding audio block is declared as master with bit NODIV = 0 in the SAI_xCR1
register. In slave, the value set in this last bit is ignored since the clock generator is OFF,
and the MCLK_x I/O pin is released for use as a general purpose I/O.
The bit clock is derived from the master clock. The bit clock divider sets the divider factor
between the bit clock (SCK_x) and the master clock (MCLK_x) following the formula:
SCK_x = MCLK x (FRL[7:0] +1) / 256
where:
256 is the fixed ratio between MCLK and the audio frequency sampling.
FRL[7:0] is the number of bit clock cycles- 1 in the audio frame, configured in the
SAI_xFRCR register.
In master mode it is mandatory that (FRL[7:0] +1) is equal to a number with a power of 2
(refer to Section 39.3.5: Frame synchronization) to obtain an even integer number of
MCLK_x pulses by bit clock cycle. The 50% duty cycle is guaranteed on the bit clock
(SCK_x).
The SAI_CK_x clock can also be equal to the bit clock frequency. In this case, NODIV bit in
the SAI_xCR1 register should be set and the value inside the MCKDIV divider and the bit
clock divider will be ignored. In this case, the number of bits per frame is fully configurable
without the need to be equal to a power of two.
The bit clock strobing edge on SCK can be configured by bit CKSTR in the SAI_xCR1
register.
Refer to Section 39.3.10: SPDIF output for details on clock generator programming in
SPDIF mode.
DocID024597 Rev 3
1329/1693
1362
Serial audio interface (SAI)
39.3.8
RM0351
Internal FIFOs
Each audio block in the SAI has its own FIFO. Depending if the block is defined to be a
transmitter or a receiver, the FIFO can be written or read, respectively. There is therefore
only one FIFO request linked to FREQ bit in the SAI_xSR register.
An interrupt is generated if FREQIE bit is enabled in the SAI_xIM register. This depends on:
•
FIFO threshold setting (FLTH bits in SAI_xCR2)
•
Communication direction (transmitter or receiver). Refer to Section : Interrupt
generation in transmitter mode and Section : Interrupt generation in reception mode.
Interrupt generation in transmitter mode
The interrupt generation depends on the FIFO configuration in transmitter mode:
• When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO empty
(FTH[2:0] set to 000b), an interrupt is generated (FREQ bit set by hardware to 1 in
SAI_xSR register) if no data are available in SAI_xDR register (FLTH[2:0] bits in SAI_xSR
is less than 001b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware
when the FIFO is no more empty (FLTH[2:0] bits in SAI_xSR are different from 000b) i.e
one or more data are stored in the FIFO.
• When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO quarter full
(FTH[2:0] set to 001b), an interrupt is generated (FREQ bit set by hardware to 1 in
SAI_xSR register) if less than a quarter of the FIFO contains data (FLTH[2:0] bits in
SAI_xSR are less than 010b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by
hardware when at least a quarter of the FIFO contains data (FLTH[2:0] bits in SAI_xSR
are higher or equal to 010b).
• When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO half full
(FTH[2:0] set to 010b), an interrupt is generated (FREQ bit set by hardware to 1 in
SAI_xSR register) if less than half of the FIFO contains data (FLTH[2:0] bits in SAI_xSR
are less than 011b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware
when at least half of the FIFO contains data (FLTH[2:0] bits in SAI_xSR are higher or
equal to 011b).
• When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO three quarter
(FTH[2:0] set to 011b), an interrupt is generated (FREQ bit is set by hardware to 1 in
SAI_xSR register) if less than three quarters of the FIFO contain data (FLTH[2:0] bits in
SAI_xSR are less than 100b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by
hardware when at least three quarters of the FIFO contain data (FLTH[2:0] bits in
SAI_xSR are higher or equal to 100b).
• When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO full (FTH[2:0]
set to 100b), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_xSR
register) if the FIFO is not full (FLTH[2:0] bits in SAI_xSR is less than 101b). This Interrupt
(FREQ bit in SAI_xSR register) is cleared by hardware when the FIFO is full (FLTH[2:0]
bits in SAI_xSR is equal to 101b value).
Interrupt generation in reception mode
The interrupt generation depends on the FIFO configuration in reception mode:
• When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO empty
(FTH[2:0] set to 000b), an interrupt is generated (FREQ bit is set by hardware to 1 in
SAI_xSR register) if at least one data is available in SAI_xDR register(FLTH[2:0] bits in
SAI_xSR is higher or equal to 001b). This Interrupt (FREQ bit in SAI_xSR register) is
1330/1693
DocID024597 Rev 3
RM0351
Serial audio interface (SAI)
cleared by hardware when the FIFO becomes empty (FLTH[2:0] bits in SAI_xSR is equal
to 000b) i.e no data are stored in FIFO.
• When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO quarter fully
(FTH[2:0] set to 001b), an interrupt is generated (FREQ bit is set by hardware to 1 in
SAI_xSR register) if at less one quarter of the FIFO data locations are available
(FLTH[2:0] bits in SAI_xSR is higher or equal to 010b). This Interrupt (FREQ bit in
SAI_xSR register) is cleared by hardware when less than a quarter of the FIFO data
locations become available (FLTH[2:0] bits in SAI_xSR is less than 010b).
• When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO half fully
(FTH[2:0] set to 010b value), an interrupt is generated (FREQ bit is set by hardware to 1
in SAI_xSR register) if at least half of the FIFO data locations are available (FLTH[2:0] bits
in SAI_xSR is higher or equal to 011b). This Interrupt (FREQ bit in SAI_xSR register) is
cleared by hardware when less than half of the FIFO data locations become available
(FLTH[2:0] bits in SAI_xSR is less than 011b).
• When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO three quarter
full(FTH[2:0] set to 011b value), an interrupt is generated (FREQ bit is set by hardware to
1 in SAI_xSR register) if at least three quarters of the FIFO data locations are available
(FLTH[2:0] bits in SAI_xSR is higher or equal to 100b). This Interrupt (FREQ bit in
SAI_xSR register) is cleared by hardware when the FIFO has less than three quarters of
the FIFO data locations avalable(FLTH[2:0] bits in SAI_xSR is less than 100b).
• When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO full(FTH[2:0]
set to 100b), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_xSR
register) if the FIFO is full (FLTH[2:0] bits in SAI_xSR is equal to 101b). This Interrupt
(FREQ bit in SAI_xSR register) is cleared by hardware when the FIFO is not full
(FLTH[2:0] bits in SAI_xSR is less than 101b).
Like interrupt generation, the SAI can use the DMA if DMAEN bit in the SAI_xCR1 register is
set. The FREQ bit assertion mechanism is the same as the interruption generation
mechanism described above for FREQIE.
Each FIFO is an 8-word FIFO. Each read or write operation from/to the FIFO targets one
word FIFO location whatever the access size. Each FIFO word contains one audio slot.
FIFO pointers are incremented by one word after each access to the SAI_xDR register.
Data should be right aligned when it is written in the SAI_xDR.
Data received will be right aligned in the SAI_xDR.
The FIFO pointers can be reinitialized when the SAI is disabled by setting bit FFLUSH in the
SAI_xCR2 register. If FFLUSH is set when the SAI is enabled the data present in the FIFO
will be lost automatically.
DocID024597 Rev 3
1331/1693
1362
Serial audio interface (SAI)
39.3.9
RM0351
AC’97 link controller
The SAI is able to work as an AC’97 link controller. In this protocol:
•
The slot number and the slot size are fixed.
•
The frame synchronization signal is perfectly defined and has a fixed shape.
To select this protocol, set PRTCFG[1:0] bits in the SAI_xCR1 register to 10. When AC’97
mode is selected, only data sizes of 16 or 20 bits can be used, otherwise the SAI behavior is
not guaranteed.
•
NBSLOT[3:0] and SLOTSZ[1:0] bits are consequently ignored.
•
The number of slots is fixed to 13 slots. The first one is 16-bit wide and all the others
are 20-bit wide (data slots).
•
FBOFF[4:0] bits in the SAI_xSLOTR register are ignored.
•
The SAI_xFRCR register is ignored.
•
The MCLK is not used.
The FS signal from the block defined as asynchronous is configured automatically as an
output, since the AC’97 controller link drives the FS signal whatever the master or slave
configuration.
Figure 443 shows an AC’97 audio frame structure.
Figure 443. AC’97 audio frame
)6
6',
7DJ
6'2
7DJ
&0' &0'
3&0
3&0
/,1(
3&0
3&0
3&0
$''5 '$7$ /)5217 5)5217 '$& &(17(5 /6855 56855
67$786 67$786 3&0 3&0
$''5 '$7$ /()7 5,*+7
/,1(
$'&
3&0
0,&
565
9'
565
9'
3&0
/)(
/,1(
'$&
+6(7
'$&
,2
&75/
565
/9'
/,1(
$'&
+6(7
,2
67$786
069
Note:
In AC’97 protocol, bit 2 of the tag is reserved (always 0), so bit 2 of the TAG is forced to 0
level whatever the value written in the SAI FIFO.
For more details about tag representation, refer to the AC’97 protocol standard.
One SAI can be used to target an AC’97 point-to-point communication.
Using two SAIs (for devices featuring two embedded SAIs) allows controlling three external
AC’97 decoders as illustrated in Figure 444.
In SAI1, the audio block A must be declared as asynchronous master transmitter whereas
the audio block B is defined to be slave receiver and internally synchronous to the audio
block A.
The SAI2 is configured for audio block A and B both synchronous with the external SAI1 in
slave receiver mode.
1332/1693
DocID024597 Rev 3
RM0351
Serial audio interface (SAI)
Figure 444. Example of typical AC’97 configuration on devices featuring at least
2 embedded SAIs (three external AC’97 decoders)
$&¶/LQN&RQWUROOHU
%LWFORFNSURYLGHU
$XGLREORFN$
3ULPDU\FRGHF
0DVWHU
6'$
),)2
%ORFN%
V\QFKURQRXVZLWK
EORFN$
7UDQVPLWWHU
)6$
6&/.$
&ORFN
JHQHUDWRU
6GDWDBRXW
6\QF
%LWBFON
6GDWDBLQ
6ODYH
6'%
),)2
5HFHLYHU
)6%
6&/.%
6HFRQGDU\FRGHF
$XGLREORFN%
6GDWDBRXW
6\QF
%LWBFON
6$,
$XGLREORFN$
6ODYH
6GDWDBLQ
6'$
),)2
6\QFKURQRXVZLWK
RWKHU6$,FORFNV
5HFHLYHU
)6$
6&/.$
6HFRQGDU\FRGHF
&ORFN
JHQHUDWRU
6ODYH
),)2
5HFHLYHU
6'%
)6%
6&/.%
6GDWDBRXW
6\QF
%LWBFON
6GDWDBLQ
$XGLREORFN%
6$,
06Y9
In receiver mode, the SAI acting as an AC’97 link controller requires no FIFO request and so
no data storage in the FIFO when the Codec ready bit in the slot 0 is decoded low. If bit
CNRDYIE is enabled in the SAI_xIM register, flag CNRDY will be set in the SAI_xSR
register and an interrupt is generated. This flag is dedicated to the AC’97 protocol.
Clock generator programming in AC’97 mode
In AC’97 mode, the frame length is fixed at 256 bits, and its frequency shall be set to 48 kHz.
The formulas given in Section 39.3.7: SAI clock generator shall be used with FRL = 255,
order to generate the proper frame rate (FFS_x).
DocID024597 Rev 3
1333/1693
1362
Serial audio interface (SAI)
39.3.10
RM0351
SPDIF output
The SPDIF interface is available in transmitter mode only. It supports the audio IEC60958.
To select SPDIF mode, set PRTCFG[1:0] bit to 01 in the SAI_xCR1 register.
For SPDIF protocol:
•
Only SD data line is enabled.
•
FS, SCK, MCLK I/Os pins are left free.
•
MODE[1] bit is forced to 0 to select the master mode in order to enable the clock
generator of the SAI and manage the data rate on the SD line.
•
The data size is forced to 24 bits. The value set in DS[2:0] bits in the SAI_xCR1 register
is ignored.
•
The clock generator must be configured to define the symbol-rate, knowing that the bit
clock should be twice the symbol-rate. The data is coded in Manchester protocol.
•
The SAI_xFRCR and SAI_xSLOTR registers are ignored. The SAI is configured
internally to match the SPDIF protocol requirements as shown in Figure 445.
Figure 445. SPDIF format
"LOCK .
"LOCK .
&RAME
&RAME
&RAME
&RAME
6XEIUDPH
% &KDQQHO$ : &KDQQHO% 0 &KDQQHO$ : &KDQQHO%
623'
3/0$ " - 7
'' ''
0 &KDQQHO$ : &KDQQHO% %
'' ' '' 93
BIT DATA
8
&KDQQHO$ : &KDQQHO%
&6
3TATUS BIT
#HANNEL
-36
A SPDIF block contains 192 frames. Each frame is composed of two 32-bit sub-frames,
generally one for the left channel and one for the right channel. Each sub-frame is
composed of a SOPD pattern (4-bit) to specify if the sub-frame is the start of a block (and so
is identifying a channel A) or if it is identifying a channel A somewhere in the block, or if it is
referring to channel B (see Table 210). The next 28 bits of channel information are
composed of 24 bits data + 4 status bits.
1334/1693
DocID024597 Rev 3
RM0351
Serial audio interface (SAI)
Table 210. SOPD pattern
Preamble coding
SOPD
Description
last bit is 0
last bit is 1
B
11101000
00010111
Channel A data at the start of block
W
11100100
00011011
Channel B data somewhere in the block
M
11100010
00011101
Channel A data
The data stored in SAI_xDR has to be filled as follows:
•
SAI_xDR[26:24] contain the Channel status, User and Validity bits.
•
SAI_xDR[23:0] contain the 24-bit data for the considered channel.
If the data size is 20 bits, then data shall be mapped on SAI_xDR[23:4].
If the data size is 16 bits, then data shall be mapped on SAI_xDR[23:8].
SAI_xDR[23] always represents the MSB.
Figure 446. SAI_xDR register ordering
6$,B['5>@
&6 8
9 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
'DWD>@
6WDWXV
ELWV
06Y9
Note:
The transfer is performed always with LSB first.
The SAI first sends the adequate preamble for each sub-frame in a block. The SAI_xDR is
then sent on the SD line (manchester coded). The SAI ends the sub-frame by transferring
the Parity bit calculated as described in Table 211.
Table 211. Parity bit calculation
SAI_xDR[26:0]
Parity bit P value transferred
odd number of 0
0
odd number of 1
1
The underrun is the only error flag available in the SAI_xSR register for SPDIF mode since
the SAI can only operate in transmitter mode. As a result, the following sequence should be
DocID024597 Rev 3
1335/1693
1362
Serial audio interface (SAI)
RM0351
executed to recover from an underrun error detected via the underrun interrupt or the
underrun status bit:
1.
Disable the DMA stream (via the DMA peripheral) if the DMA is used.
2.
Disable the SAI and check that the peripheral is physically disabled by polling the
SAIXEN bit in SAI_xCR1 register.
3.
Clear the COVRUNDR flag in the SAI_xCLRFR register.
4.
Flush the FIFO by setting the FFLUSH bit in SAI_xCR2.
The software needs to point to the address of the future data corresponding to a start of
new block (data for preamble B). If the DMA is used, the DMA source base address
pointer should be updated accordingly.
5.
Enable again the DMA stream (DMA peripheral) if the DMA used to manage data
transfers according to the new source base address.
6.
Enable again the SAI by setting SAIXEN bit in SAI_xCR1 register.
Clock generator programming in SPDIF generator mode
For the SPDIF generator, the SAI shall provide a bit clock equal to the symbol-rate. The
table hereafter shows usual examples of symbol rates with respect to the audio sampling
rate.
Table 212. Audio sampling frequency versus symbol rates (SHARK)
Audio Sampling Frequencies (FS)
Symbol-rate
44.1 kHz
2.8224 MHz
48 kHz
3.072 MHz
96 kHz
6.144 MHz
192 kHz
12.288 MHz
More generally, the relationship between the audio sampling rate (FS) and the bit-clock rate
(FSCK_X) is given by the formula:
F SAI_CK_x
F S = ------------------------64
39.3.11
Specific features
The SAI interface embeds specific features which can be useful depending on the audio
protocol selected. These functions are accessible through specific bits of the SAI_xCR2
register.
Mute mode
The mute mode can be used when the audio sub-block is a transmitter or a receiver.
Audio sub-block in transmission mode
In transmitter mode, the mute mode can be selected at anytime. The mute mode is active
for entire audio frames. The MUTE bit in the SAI_xCR2 register enables the mute mode
when it is set during an ongoing frame.
1336/1693
DocID024597 Rev 3
RM0351
Serial audio interface (SAI)
The mute mode bit is strobed only at the end of the frame. If it is set at this time, the mute
mode is active at the beginning of the new audio frame and for a complete frame, until the
next end of frame. The bit is then strobed to determine if the next frame will still be a mute
frame.
If the number of slots set through NBSLOT[3:0] bits in the SAI_xSLOTR register is lower
than or equal to 2, it is possible to specify if the value sent in mute mode is 0 or if it is the last
value of each slot. The selection is done via MUTEVAL bit in the SAI_xCR2 register.
If the number of slots set in NBSLOT[3:0] bits in the SAI_xSLOTR register is greater than 2,
MUTEVAL bit in the SAI_xCR2 is meaningless as 0 values are sent on each bit on each
slot.
The FIFO pointers are still incremented in mute mode. This means that data present in the
FIFO and for which the mute mode is requested are discarded.
Audio sub-block in reception mode
In reception mode, it is possible to detect a mute mode sent from the external transmitter
when all the declared and valid slots of the audio frame receive 0 for a given consecutive
number of audio frames (MUTECNT[5:0] bits in the SAI_xCR2 register).
When the number of MUTE frames is detected, the MUTEDET flag in the SAI_xSR register
is set and an interrupt can be generated if MUTEDETIE bit is set in SAI_xCR2.
The mute frame counter is cleared when the audio sub-block is disabled or when a valid slot
receives at least one data in an audio frame. The interrupt is generated just once, when the
counter reaches the value specified in MUTECNT[5:0] bits. The interrupt event is then
reinitialized when the counter is cleared.
Note:
The mute mode is not available for SPDIF audio blocks.
Mono/stereo mode
In transmitter mode, the mono mode can be addressed, without any data pre-processing in
memory, assuming the number of slots is equal to 2 (NBSLOT[3:0] = 0001 in SAI_xSLOTR).
In this case, the access time to and from the FIFO will be reduced by 2 since the data for
slot 0 is duplicated into data slot 1.
To enable the mono mode,
1.
Set MONO bit to 1 in the SAI_xCR1 register.
2.
Set NBSLOT to 1 and SLOTEN to 3 in SAI_xSLOTR.
In reception mode, the MONO bit can be set and is meaningful only if the number of slots is
equal to 2 as in transmitter mode. When it is set, only slot 0 data will be stored in the FIFO.
The data belonging to slot 1 will be discarded since, in this case, it is supposed to be the
same as the previous slot. If the data flow in reception mode is a real stereo audio flow with
a distinct and different left and right data, the MONO bit is meaningless. The conversion
from the output stereo file to the equivalent mono file is done by software.
Companding mode
Telecommunication applications can require to process the data to be transmitted or
received using a data companding algorithm.
Depending on the COMP[1:0] bits in the SAI_xCR2 register (used only when TDM mode is
selected), the application software can choose to process or not the data before sending it
on SD serial output line (compression) or to expand the data after the reception on SD serial
DocID024597 Rev 3
1337/1693
1362
Serial audio interface (SAI)
RM0351
input line (expansion) as illustrated in Figure 447. The two companding modes supported
are the µ-Law and the A-Law log which are a part of the CCITT G.711 recommendation.
The companding standard used in the United States and Japan is the µ-Law. It supports 14
bits of dynamic range (COMP[1:0] = 10 in the SAI_xCR2 register).
The European companding standard is A-Law and supports 13 bits of dynamic range
(COMP[1:0] = 11 in the SAI_xCR2 register).
Both µ-Law or A-Law companding standard can be computed based on 1’s complement or
2’s complement representation depending on the CPL bit setting in the SAI_xCR2 register.
In µ-Law and A-Law standards, data are coded as 8 bits with MSB alignment. Companded
data are always 8-bit wide. For this reason, DS[2:0] bits in the SAI_xCR1 register will be
forced to 010 when the SAI audio block is enabled (bit SAIXEN = 1 in the SAI_xCR1
register) and when one of these two companding modes selected through the COMP[1:0]
bits.
If no companding processing is required, COMP[1:0] bits should be kept clear.
Figure 447. Data companding hardware in an audio block in the SAI
5HFHLYHUPRGH ELW02'(>@ LQ6$,B[&5
&203>@
),)2
6'
H[SDQG
ELWVKLIWUHJLVWHU
7UDQVPLWWHUPRGH ELW02'(>@ LQ6$,B[&5
),)2
FRPSUHVV
6'
ELWVKLIWUHJLVWHU
&203>@
069
1. Not applicable when AC’97 or SPDIF are selected.
Expansion and compression mode are automatically selected through the SAI_xCR2:
•
If the SAI audio block is configured to be a transmitter, and if the COMP[1] bit is set in
the SAI_xCR2 register, the compression mode will be applied.
•
If the SAI audio block is declared as a receiver, the expansion algorithm will be applied.
Output data line management on an inactive slot
In transmitter mode, it is possible to choose the behavior of the SD line output when an
inactive slot is sent on the data line (via TRIS bit).
1338/1693
•
Either the SAI forces 0 on the SD output line when an inactive slot is transmitted, or
•
The line is released in HI-z state at the end of the last bit of data transferred, to release
the line for other transmitters connected to this node.
DocID024597 Rev 3
RM0351
Serial audio interface (SAI)
It is important to note that the two transmitters cannot attempt to drive the same SD output
pin simultaneously, which could result in a short circuit. To ensure a gap between
transmissions, if the data is lower than 32-bit, the data can be extended to 32-bit by setting
bit SLOTSZ[1:0] = 10 in the SAI_xSLOTR register. The SD output pin will then be tri-stated
at the end of the LSB of the active slot (during the padding to 0 phase to extend the data to
32-bit) if the following slot is declared inactive.
In addition, if the number of slots multiplied by the slot size is lower than the frame length,
the SD output line will be tri-stated when the padding to 0 is done to complete the audio
frame.
Figure 448 illustrates these behaviors.
DocID024597 Rev 3
1339/1693
1362
Serial audio interface (SAI)
RM0351
Figure 448. Tristate strategy on SD output line on an inactive slot
%LW75,6 LQWKH6$,B[&5DQGIUDPHOHQJWK QXPEHURIVORWV
$XGLRIUDPH
SCK
6ORWVL]H GDWDVL]H
3LOT /.
VORW
6' RXWSXW
3LOT /&&
3LOT /&&
$ATA
3LOT /.
$ATA
/.
/.
3LOT N /.
$ATA M
6ORWVL]H!GDWDVL]H
VORW
3LOT /.
6' RXWSXW
VORW
3LOT /&&
3LOT /&&
$ATA
$ATA
3LOT /.
3LOT /.
3LOT /&&
3LOT /&&
6' RXWSXW
3LOT /.
$ATA
/.
/.
/.
/.
3LOT N /.
$ATA M
3LOT N /.
$ATA M
%LW75,6 LQWKH6$,B[&5DQGIUDPHOHQJWK!QXPEHURIVORWV
$XGLRIUDPH
SCK
6ORWVL]H GDWDVL]H
VORW
6' RXWSXW
3LOT /.
3LOT /&&
3LOT /&&
$ATA
/.
3LOT N /.
$ATA M
6ORWVL]H!GDWDVL]H
VORW
6' RXWSXW
VORW
6' RXWSXW
3LOT /.
3LOT /&&
3LOT /&&
$ATA
3LOT /.
/.
3LOT /&&
3LOT /&&
/.
3LOT N /.
$ATA M
/.
$ATA M
069
When the selected audio protocol uses the FS signal as a start of frame and a channel side
identification (bit FSDEF = 1 in the SAI_xFRCR register), the tristate mode is managed
according to Figure 449 (where bit TRIS in the SAI_xCR1 register = 1, and FSDEF=1, and
half frame length is higher than number of slots/2, and NBSLOT=6).
1340/1693
DocID024597 Rev 3
RM0351
Serial audio interface (SAI)
Figure 449. Tristate on output data line in a protocol like I2S
SCK
6ORWVL]H GDWDVL]H
VORW
3LOT /.
6' RXWSXW
3LOT /&&
$ATA
3LOT /.
3LOT /.
$ATA
$ATA
3LOT /&&
3LOT /.
$ATA
6ORWVL]H!GDWDVL]H
3LOT /.
VORW
6' RXWSXW
3LOT /&&
$ATA
3LOT /.
VORW
6' RXWSXW
$ATA
3LOT /.
$ATA
3LOT /&&
3LOT /.
3LOT /.
3LOT /&&
$ATA
3LOT /.
$ATA
3LOT /.
$ATA
3LOT /&&
3LOT /.
$ATA M
069
If the TRIS bit in the SAI_xCR2 register is cleared, all the High impedance states on the SD
output line on Figure 448 and Figure 449 are replaced by a drive with a value of 0.
39.3.12
Error flags
The SAI implements the following error flags:
•
FIFO overrun/underrun
•
Anticipated frame synchronization detection
•
Late frame synchronization detection
•
Codec not ready (AC’97 exclusively)
•
Wrong clock configuration in master mode.
FIFO overrun/underrun (OVRUDR)
The FIFO overrun/underrun bit is called OVRUDR in the SAI_xSR register.
The overrun or underrun errors share the same bit since an audio block can be either
receiver or transmitter and each audio block in a given SAI has its own SAI_xSR register.
Overrun
When the audio block is configured as receiver, an overrun condition may appear if data are
received in an audio frame when the FIFO is full and not able to store the received data. In
this case, the received data are lost, the flag OVRUDR in the SAI_xSR register is set and an
interrupt is generated if OVRUDRIE bit is set in the SAI_xIM register. The slot number, from
which the overrun occurs, is stored internally. No more data will be stored into the FIFO until
it becomes free to store new data. When the FIFO has at least one data free, the SAI audio
block receiver will store new data (from new audio frame) from the slot number which was
stored internally when the overrun condition was detected. This avoids data slot dealignment in the destination memory (refer to Figure 450).
DocID024597 Rev 3
1341/1693
1362
Serial audio interface (SAI)
RM0351
The OVRUDR flag is cleared when COVRUDR bit is set in the SAI_xCLRFR register.
Figure 450. Overrun detection error
([DPSOH),)2RYHUUXQRQ6ORW
$XGLRIUDPH
$XGLRIUDPH
VFN
GDWD
6ORW21 6ORW21 3LOT /. 6ORW21
6ORW21
21
6ORWQ21
),)2IXOO
'DWDVWRUHGDJDLQLQ),)2
5HFHLYHGGDWDGLVFDUGHG
2958'5
&2958'5
069
Underrun
An underrun may occur when the audio block in the SAI is a transmitter and the FIFO is
empty when data need to be transmitted. If an underrun is detected, the slot number for
which the event occurs is stored and MUTE value (00) is sent until the FIFO is ready to
transmit the data corresponding to the slot for which the underrun was detected (refer to
Figure 451). This avoids desynchronization between the memory pointer and the slot in the
audio frame.
The underrun event sets the OVRUDR flag in the SAI_xSR register and an interrupt is
generated if the OVRUDRIE bit is set in the SAI_xIM register. To clear this flag, set
COVRUDR bit in the SAI_xCLRFR register.
The underrun event can occur when the audio sub-block is configured as master or slave.
Figure 451. FIFO underrun event
([DPSOH),)2XQGHUUXQRQ6ORW
$XGLRIUDPH
$XGLRIUDPH
VFN
3LOT SIZE DATA SIZE
GDWD
6' RXWSXW
6ORW21
087(
087(
087(
6ORW21
21
6ORW21
),)2HPSW\
29581'
29581'
-36
1342/1693
DocID024597 Rev 3
RM0351
Serial audio interface (SAI)
Anticipated frame synchronization detection (AFSDET)
The AFSDET flag is used only in slave mode. It is never asserted in master mode. It
indicates that a frame synchronization (FS) has been detected earlier than expected since
the frame length, the frame polarity, the frame offset are defined and known.
Anticipated frame detection sets the AFSDET flag in the SAI_xSR register.
This detection has no effect on the current audio frame which is not sensitive to the
anticipated FS. This means that “parasitic” events on signal FS are flagged without any
perturbation of the current audio frame.
An interrupt is generated if the AFSDETIE bit is set in the SAI_xIM register. To clear the
AFSDET flag, CAFSDET bit must be set in the SAI_xCLRFR register.
To resynchronize with the master after an anticipated frame detection error, four steps are
required:
Note:
1.
Disable the SAI block by resetting SAIXEN bit in SAI_xCR1 register. To make sure the
SAI is disabled, read back the SAIXEN bit and check it is set to 0.
2.
Flush the FIFO via FFLUS bit in SAI_xCR2 register.
3.
Enable again the SAI peripheral (SAIXEN bit set to 1).
4.
The SAI block will wait for the assertion on FS to restart the synchronization with
master.
The SAIXEN flag is not asserted in AC’97 mode since the SAI audio block acts as a link
controller and generates the FS signal even when declared as slave. It has no meaning in
SPDIF mode since the FS signal is not used.
Late frame synchronization detection
The LFSDET flag in the SAI_xSR register can be set only when the SAI audio block
operates as a slave. The frame length, the frame polarity and the frame offset configuration
are known in register SAI_xFRCR.
If the external master does not send the FS signal at the expecting time thus generating the
signal too late, the LFSDET flag is set and an interrupt is generated if LFSDETIE bit is set in
the SAI_xIM register.
The LFSDET flag is cleared when CLFSDET bit is set in the SAI_xCLRFR register.
The late frame synchronization detection flag is set when the corresponding error is
detected. The SAI needs to be resynchronized with the master (see sequence described in
Section : Anticipated frame synchronization detection (AFSDET)).
In a noisy environment, glitches on the SCK clock may be wrongly detected by the audio
block state machine and shift the SAI data at a wrong frame position. This event can be
detected by the SAI and reported as a late frame synchronization detection error.
There is no corruption if the external master is not managing the audio data frame transfer in
continuous mode, which should not be the case in most applications. In this case, the
LFSDET flag will be set.
Note:
The LFSDET flag is not asserted in AC’97 mode since the SAI audio block acts as a link
controller and generates the FS signal even when declared as slave. It has no meaning in
SPDIF mode since the signal FS is not used by the protocol.
DocID024597 Rev 3
1343/1693
1362
Serial audio interface (SAI)
RM0351
Codec not ready (CNRDY AC’97)
The CNRDY flag in the SAI_xSR register is relevant only if the SAI audio block is configured
to operate in AC’97 mode (PRTCFG[1:0] = 10 in the SAI_xCR1 register). If CNRDYIE bit is
set in the SAI_xIM register, an interrupt is generated when the CNRDY flag is set.
CNRDY is asserted when the Codec is not ready to communicate during the reception of
the TAG 0 (slot0) of the AC’97 audio frame. In this case, no data will be automatically stored
into the FIFO since the Codec is not ready, until the TAG 0 indicates that the Codec is ready.
All the active slots defined in the SAI_xSLOTR register will be captured when the Codec is
ready.
To clear CNRDY flag, CCNRDY bit must be set in the SAI_xCLRFR register.
Wrong clock configuration in master mode (with NODIV = 0)
When the audio block operates as a master (MODE[1] = 0) and NODIV bit is equal to 0, the
WCKCFG flag is set as soon as the SAI is enabled if the following conditions are met:
•
(FRL+1) is not a power of 2, and
•
(FRL+1) is not between 8 and 256.
MODE, NODIV, and SAIXEN bits belong to SAI_xCR1 register and FRL to SAI_xFRCR
register.
If WCKCFGIE bit is set, an interrupt is generated when WCKCFG flag is set in the SAI_xSR
register. To clear this flag, set CWCKCFG bit in the SAI_xCLRFR register.
When WCKCFG bit is set, the audio block is automatically disabled, thus performing a
hardware clear of SAIXEN bit.
39.3.13
Disabling the SAI
The SAI audio block can be disabled at any moment by clearing SAIXEN bit in the
SAI_xCR1 register. All the already started frames are automatically completed before the
SAI is stops working. SAIXEN bit remains High until the SAI is completely switched-off at the
end of the current audio frame transfer.
If an audio block in the SAI operates synchronously with the other one, the one which is the
master must be disabled first.
39.3.14
SAI DMA interface
To free the CPU and to optimize bus bandwidth, each SAI audio block has an independent
DMA interface to read/write from/to the SAI_xDR register (to access the internal FIFO).
There is one DMA channel per audio sub-block supporting basic DMA request/acknowledge
protocol.
To configure the audio sub-block for DMA transfer, set DMAEN bit in the SAI_xCR1 register.
The DMA request is managed directly by the FIFO controller depending on the FIFO
threshold level (for more details refer to Section 39.3.8: Internal FIFOs). DMA transfer
direction is linked to the SAI audio sub-block configuration:
1344/1693
•
If the audio block operates as a transmitter, the audio block FIFO controller outputs a
DMA request to load the FIFO with data written in the SAI_xDR register.
•
If the audio block is operates as a receiver, the DMA request is related to read
operations from the SAI_xDR register.
DocID024597 Rev 3
RM0351
Serial audio interface (SAI)
Follow the sequence below to configure the SAI interface in DMA mode:
1.
Configure SAI and FIFO threshold levels to specify when the DMA request will be
launched.
2.
Configure SAI DMA channel.
3.
Enable the DMA.
4.
Enable the SAI interface.
Note:
Before configuring the SAI block, the SAI DMA channel must be disabled.
39.4
SAI interrupts
The SAI supports 7 interrupt sources as shown in Table 213.
Table 213. SAI interrupt sources
Interrupt
source
Interrupt
group
Audio block mode
Interrupt enable
Interrupt clear
Depends on:
FREQ
FREQ
– FIFO threshold setting (FLTH bits in
SAI_xCR2)
FREQIE in SAI_xIM – Communication direction (transmitter
register
or receiver)
Master or slave
Receiver or transmitter
For more details refer to
Section 39.3.8: Internal FIFOs
OVRUDR
ERROR
Master or slave
Receiver or transmitter
OVRUDRIE in
SAI_xIM register
COVRUDR = 1 in SAI_xCLRFR register
AFSDET
ERROR
Slave
(not used in AC’97 mode
and SPDIF mode)
AFSDETIE in
SAI_xIM register
CAFSDET = 1 in SAI_xCLRFR register
LFSDET
ERROR
Slave
(not used in AC’97 mode
and SPDIF mode)
LFSDETIE in
SAI_xIM register
CLFSDET = 1 in SAI_xCLRFR register
CNRDY
ERROR
Slave
(only in AC’97 mode)
CNRDYIE in
SAI_xIM register
CCNRDY = 1 in SAI_xCLRFR register
MUTEDET
MUTE
Master or slave
Receiver mode only
MUTEDETIE in
SAI_xIM register
CMUTEDET = 1 in SAI_xCLRFR
register
WCKCFG
ERROR
Master with NODIV = 0 in
SAI_xCR1 register
WCKCFGIE in
SAI_xIM register
CWCKCFG = 1 in SAI_xCLRFR register
Follow the sequence below to enable an interrupt:
1.
Disable SAI interrupt.
2.
Configure SAI.
3.
Configure SAI interrupt source.
4.
Enable SAI.
DocID024597 Rev 3
1345/1693
1362
Serial audio interface (SAI)
RM0351
39.5
SAI registers
39.5.1
Global configuration register (SAI_GCR)
Address offset: 0x00
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SYNCOUT[1:0]
rw
rw
SYNCIN[1:0]
rw
rw
Bits 31:6 Reserved, always read as 0.
Bits 5:4 SYNCOUT[1:0]: Synchronization outputs
These bits are set and cleared by software.
00: No synchronization output signals. SYNCOUT[1:0] should be configured as No synchronization
output signals when audio block is configured as SPDIF
01: Block A used for further synchronization for others SAI
10: Block B used for further synchronization for others SAI
11: Reserved. These bits must be set when both audio block (A and B) are disabled.
Bits 3:2 Reserved, always read as 0.
Bits 1:0 SYNCIN[1:0]: Synchronization inputs
These bits are set and cleared by software.
Please refer to for information on how to program this field.
These bits must be set when both audio blocks (A and B) are disabled.
They are meaningful if one of the two audio block is defined to operate in synchronous mode with an
external SAI (SYNCEN[1:0] = 01 in SAI_ACR1 or in SAI_BCR1 registers).
39.5.2
Configuration register 1 (SAI_ACR1 / SAI_BCR1)
Address offset: Block A: 0x004
Address offset: Block B: 0x024
Reset value: 0x0000 0040
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
Res.
Res.
OUTD
MONO
RIV
rw
1346/1693
rw
SYNCEN[1:0]
rw
rw
23
rw
21
20
MCKDIV[3:0]
19
NODIV
rw
rw
rw
rw
rw
7
6
5
4
3
CKSTR LSBFIRST
rw
22
DS[2:0]
rw
rw
DocID024597 Rev 3
Res.
rw
18
Res.
2
17
16
DMAEN
SAIX
EN
rw
rw
1
0
PRTCFG[1:0]
MODE[1:0]
rw
rw
rw
rw
RM0351
Serial audio interface (SAI)
Bits 31:24 Reserved, always read as 0.
Bits 23:20 MCKDIV[3:0]: Master clock divider.
These bits are set and cleared by software. These bits are meaningless when the audio block
operates in slave mode. They have to be configured when the audio block is disabled.
0000: Divides by 1 the master clock input.
Others: the master clock frequency is calculated accordingly to the following formula:
F SAI_CK_x
F SCK_x = ----------------------------------MCKDIV × 2
Bit 19 NODIV: No divider.
This bit is set and cleared by software.
0: Master clock generator is enabled
1: No divider used in the clock generator (in this case Master Clock Divider bit has no effect)
Bit 18 Reserved, always read as 0.
Bit 17 DMAEN: DMA enable.
This bit is set and cleared by software.
0: DMA disabled
1: DMA enabled
Note: Since the audio block defaults to operate as a transmitter after reset, the MODE[1:0] bits must
be configured before setting DMAEN to avoid a DMA request in receiver mode.
Bit 16 SAIXEN: Audio block enable where x is A or B.
This bit is set by software.
To switch off the audio block, the application software must program this bit to 0 and poll the bit till it
reads back 0, meaning that the block is completely disabled. Before setting this bit to 1, check that it
is set to 0, otherwise the enable command will not be taken into account.
This bit allows to control the state of SAIx audio block. If it is disabled when an audio frame transfer
is ongoing, the ongoing transfer completes and the cell is fully disabled at the end of this audio frame
transfer.
0: SAIx audio block disabled
1: SAIx audio block enabled.
Note: When SAIx block is configured in master mode, the kernel clock must be present on the input of
SAIx before setting SAIXEN bit.
Bits 15:14 Reserved, always read as 0.
Bit 13 OUTDRIV: Output drive.
This bit is set and cleared by software.
0: Audio block output driven when SAIXEN is set
1: Audio block output driven immediately after the setting of this bit.
Note: This bit has to be set before enabling the audio block and after the audio block configuration.
Bit 12 MONO: Mono mode.
This bit is set and cleared by software. It is meaningful only when the number of slots is equal to 2.
When the mono mode is selected, slot 0 data are duplicated on slot 1 when the audio block operates
as a transmitter. In reception mode, the slot1 is discarded and only the data received from slot 0 are
stored. Refer to Section : Mono/stereo mode for more details.
0: Stereo mode
1: Mono mode.
DocID024597 Rev 3
1347/1693
1362
Serial audio interface (SAI)
RM0351
Bits 11:10 SYNCEN[1:0]: Synchronization enable.
These bits are set and cleared by software. They must be configured when the audio sub-block is
disabled.
00: audio sub-block in asynchronous mode.
01: audio sub-block is synchronous with the other internal audio sub-block. In this case, the audio
sub-block must be configured in slave mode
10: audio sub-block is synchronous with an external SAI embedded peripheral. In this case the
audio sub-block should be configured in Slave mode.
11: Reserved
Note: The audio sub-block should be configured as asynchronous when SPDIF mode is enabled.
Bit 9 CKSTR: Clock strobing edge.
This bit is set and cleared by software. It must be configured when the audio block is disabled. This
bit has no meaning in SPDIF audio protocol.
0: Signals generated by the SAI change on SCK rising edge, while signals received by the SAI are
sampled on the SCK falling edge.
1: Signals generated by the SAI change on SCK falling edge, while signals received by the SAI are
sampled on the SCK rising edge.
Bit 8 LSBFIRST: Least significant bit first.
This bit is set and cleared by software. It must be configured when the audio block is disabled. This
bit has no meaning in AC’97 audio protocol since AC’97 data are always transferred with the MSB
first. This bit has no meaning in SPDIF audio protocol since in SPDIF data are always transferred
with LSB first.
0: Data are transferred with MSB first
1: Data are transferred with LSB first
Bits 7:5 DS[2:0]: Data size.
These bits are set and cleared by software. These bits are ignored when the SPDIF protocols are
selected (bit PRTCFG[1:0]), because the frame and the data size are fixed in such case. When the
companding mode is selected through COMP[1:0] bits, DS[1:0] are ignored since the data size is
fixed to 8 bits by the algorithm.
These bits must be configured when the audio block is disabled.
000: Reserved
001: Reserved
010: 8 bits
011: 10 bits
100: 16 bits
101: 20 bits
110: 24 bits
111: 32 bits
1348/1693
DocID024597 Rev 3
RM0351
Serial audio interface (SAI)
Bit 4 Reserved, always read as 0.
Bits 3:2 PRTCFG[1:0]: Protocol configuration.
These bits are set and cleared by software. These bits have to be configured when the audio block is
disabled.
00: Free protocol. Free protocol allows to use the powerful configuration of the audio block to
address a specific audio protocol (such as I2S, LSB/MSB justified, TDM, PCM/DSP...) by setting
most of the configuration register bits as well as frame configuration register.
01: SPDIF protocol
10: AC’97 protocol
11: Reserved
Bits 1:0 MODE[1:0]: SAIx audio block mode.
These bits are set and cleared by software. They must be configured when SAIx audio block is
disabled.
00: Master transmitter
01: Master receiver
10: Slave transmitter
11: Slave receiver
Note: When the audio block is configured in SPDIF mode, the master transmitter mode is forced
(MODE[1:0] = 00). In Master transmitter mode, the audio block starts generating the FS and the
clocks immediately.
DocID024597 Rev 3
1349/1693
1362
Serial audio interface (SAI)
39.5.3
RM0351
Configuration register 2 (SAI_ACR2 / SAI_BCR2)
Address offset: Block A: 0x008
Address offset: Block B: 0x028
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
MUTE
VAL
MUTE
TRIS
FFLUS
H
rw
rw
rw
w
COMP[1:0]
rw
rw
CPL
rw
MUTECNT[5:0]
rw
rw
rw
rw
rw
rw
FTH
rw
rw
rw
Bits 31:16 Reserved, always read as 0
Bits 15:14 COMP[1:0]: Companding mode.
These bits are set and cleared by software. The µ-Law and the A-Law log are a part of the CCITT
G.711 recommendation, the type of complement that will be used depends on CPL bit.
The data expansion or data compression are determined by the state of bit MODE[0].
The data compression is applied if the audio block is configured as a transmitter.
The data expansion is automatically applied when the audio block is configured as a receiver.
Refer to Section : Companding mode for more details.
00: No companding algorithm
01: Reserved.
10: µ-Law algorithm
11: A-Law algorithm
Note: Companding mode is applicable only when TDM is selected.
Bit 13 CPL: Complement bit.
This bit is set and cleared by software.
It defines the type of complement to be used for companding mode
0: 1’s complement representation.
1: 2’s complement representation.
Note: This bit has effect only when the companding mode is µ-Law algorithm or A-Law algorithm.
Bits 12:7 MUTECNT[5:0]: Mute counter.
These bits are set and cleared by software. They are used only in reception mode.
The value set in these bits is compared to the number of consecutive mute frames detected in
reception. When the number of mute frames is equal to this value, the flag MUTEDET will be set and
an interrupt will be generated if bit MUTEDETIE is set.
Refer to Section : Mute mode for more details.
1350/1693
DocID024597 Rev 3
RM0351
Serial audio interface (SAI)
Bit 6 MUTEVAL: Mute value.
This bit is set and cleared by software.It must be written before enabling the audio block: SAIXEN.
This bit is meaningful only when the audio block operates as a transmitter, the number of slots is
lower or equal to 2 and the MUTE bit is set.
If more slots are declared, the bit value sent during the transmission in mute mode is equal to 0,
whatever the value of MUTEVAL.
if the number of slot is lower or equal to 2 and MUTEVAL = 1, the MUTE value transmitted for each
slot is the one sent during the previous frame.
Refer to Section : Mute mode for more details.
0: Bit value 0 is sent during the mute mode.
1: Last values are sent during the mute mode.
Note: This bit is meaningless and should not be used for SPDIF audio blocks.
Bit 5 MUTE: Mute.
This bit is set and cleared by software. It is meaningful only when the audio block operates as a
transmitter. The MUTE value is linked to value of MUTEVAL if the number of slots is lower or equal
to 2, or equal to 0 if it is greater than 2.
Refer to Section : Mute mode for more details.
0: No mute mode.
1: Mute mode enabled.
Note: This bit is meaningless and should not be used for SPDIF audio blocks.
Bit 4 TRIS: Tristate management on data line.
This bit is set and cleared by software. It is meaningful only if the audio block is configured as a
transmitter. This bit is not used when the audio block is configured in SPDIF mode. It should be
configured when SAI is disabled.
Refer to Section : Output data line management on an inactive slot for more details.
0: SD output line is still driven by the SAI when a slot is inactive.
1: SD output line is released (HI-Z) at the end of the last data bit of the last active slot if the next one
is inactive.
Bit 3 FFLUSH: FIFO flush.
This bit is set by software. It is always read as 0. This bit should be configured when the SAI is
disabled.
0: No FIFO flush.
1: FIFO flush. Programming this bit to 1 triggers the FIFO Flush. All the internal FIFO pointers (read
and write) are cleared. In this case data still present in the FIFO are lost (no more transmission or
received data lost). Before flushing SAI, DMA stream/interruption must be disabled
Bits 2:0 FTH: FIFO threshold.
This bit is set and cleared by software.
000: FIFO empty
001: ¼ FIFO
010: ½ FIFO
011: ¾ FIFO
100: FIFO full
101: Reserved
110: Reserved
111: Reserved
DocID024597 Rev 3
1351/1693
1362
Serial audio interface (SAI)
39.5.4
RM0351
Frame configuration register (SAI_AFRCR / SAI_BFRCR)
Address offset: Block A: 0x00C
Address offset: Block B: 0x02C
Reset value: 0x0000 0007
Note:
This register has no meaning in AC’97 and SPDIF audio protocol
31
30
29
28
27
26
25
24
23
22
21
20
19
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
rw
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
Res.
FSALL[6:0]
rw
rw
rw
rw
rw
18
17
16
FSOFF FSPOL FSDEF
FRL[7:0]
rw
rw
rw
rw
rw
rw
Bits 31:19 Reserved, always read as 0.
Bit 18 FSOFF: Frame synchronization offset.
This bit is set and cleared by software. It is meaningless and is not used in AC’97 or SPDIF audio
block configuration. This bit must be configured when the audio block is disabled.
0: FS is asserted on the first bit of the slot 0.
1: FS is asserted one bit before the first bit of the slot 0.
Bit 17 FSPOL: Frame synchronization polarity.
This bit is set and cleared by software. It is used to configure the level of the start of frame on the FS
signal. It is meaningless and is not used in AC’97 or SPDIF audio block configuration.
This bit must be configured when the audio block is disabled.
0: FS is active low (falling edge)
1: FS is active high (rising edge)
Bit 16 FSDEF: Frame synchronization definition.
This bit is set and cleared by software.
0: FS signal is a start frame signal
1: FS signal is a start of frame signal + channel side identification
When the bit is set, the number of slots defined in the SAI_xSLOTR register has to be even. It
means that half of this number of slots will be dedicated to the left channel and the other slots for the
right channel (e.g: this bit has to be set for I2S or MSB/LSB-justified protocols...).
This bit is meaningless and is not used in AC’97 or SPDIF audio block configuration. It must be
configured when the audio block is disabled.
1352/1693
DocID024597 Rev 3
RM0351
Serial audio interface (SAI)
Bit 15 Reserved, always read as 0.
Bits 14:8 FSALL[6:0]: Frame synchronization active level length.
These bits are set and cleared by software. They specify the length in number of bit clock
(SCK) + 1 (FSALL[6:0] + 1) of the active level of the FS signal in the audio frame
These bits are meaningless and are not used in AC’97 or SPDIF audio block configuration.
They must be configured when the audio block is disabled.
Bits 7:0 FRL[7:0]: Frame length.
These bits are set and cleared by software. They define the audio frame length expressed in number
of SCK clock cycles: the number of bits in the frame is equal to FRL[7:0] + 1.
The minimum number of bits to transfer in an audio frame must be equal to 8, otherwise the audio
block will behaves in an unexpected way. This is the case when the data size is 8 bits and only one
slot 0 is defined in NBSLOT[4:0] of SAI_xSLOTR register (NBSLOT[3:0] = 0000).
In master mode, if the master clock (available on MCLK_x pin) is used, the frame length should be
aligned with a number equal to a power of 2, ranging from 8 to 256. When the master clock is not
used (NODIV = 1), it is recommended to program the frame length to an value ranging from 8 to 256.
These bits are meaningless and are not used in AC’97 or SPDIF audio block configuration.
DocID024597 Rev 3
1353/1693
1362
Serial audio interface (SAI)
39.5.5
RM0351
Slot register (SAI_ASLOTR / SAI_BSLOTR)
Address offset: Block A: 0x010
Address offset: Block B: 0x030
Reset value: 0x0000 0000
Note:
This register has no meaning in AC’97 and SPDIF audio protocol
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
SLOTEN[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
rw
rw
NBSLOT[3:0]
rw
rw
rw
SLOTSZ[1:0]
rw
rw
rw
Res.
FBOFF[4:0]
rw
rw
rw
Bits 31:16 SLOTEN[15:0]: Slot enable.
These bits are set and cleared by software.
Each SLOTEN bit corresponds to a slot position from 0 to 15 (maximum 16 slots).
0: Inactive slot.
1: Active slot.
The slot must be enabled when the audio block is disabled.
They are ignored in AC’97 or SPDIF mode.
Bits 15:12 Reserved, always read as 0.
Bits 11:8 NBSLOT[3:0]: Number of slots in an audio frame.
These bits are set and cleared by software.
The value set in this bitfield represents the number of slots + 1 in the audio frame (including the
number of inactive slots). The maximum number of slots is 16.
The number of slots should be even if FSDEF bit in the SAI_xFRCR register is set.
The number of slots must be configured when the audio block is disabled.
They are ignored in AC’97 or SPDIF mode.
1354/1693
DocID024597 Rev 3
RM0351
Serial audio interface (SAI)
Bits 7:6 SLOTSZ[1:0]: Slot size
This bits is set and cleared by software.
The slot size must be higher or equal to the data size. If this condition is not respected, the behavior
of the SAI will be undetermined.
Refer to Section : Output data line management on an inactive slot for information on how to drive
SD line.
These bits must be set when the audio block is disabled.
They are ignored in AC’97 or SPDIF mode.
00: The slot size is equivalent to the data size (specified in DS[3:0] in the SAI_xCR1 register).
01: 16-bit
10: 32-bit
11: Reserved
Bit 1 Reserved, always read as 0.
Bits 4:0 FBOFF[4:0]: First bit offset
These bits are set and cleared by software.
The value set in this bitfield defines the position of the first data transfer bit in the slot. It represents
an offset value. In transmission mode, the bits outside the data field are forced to 0. In reception
mode, the extra received bits are discarded.
These bits must be set when the audio block is disabled.
They are ignored in AC’97 or SPDIF mode.
DocID024597 Rev 3
1355/1693
1362
Serial audio interface (SAI)
39.5.6
RM0351
Interrupt mask register 2 (SAI_AIM / SAI_BIM)
Address offset: block A: 0x014
Address offset: block B: 0x034
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
LFSDET AFSDET CNRDY FREQ WCKCFG MUTEDET OVRUDR
IE
IE
IE
IE
IE
IE
IE
rw
rw
rw
rw
rw
rw
rw
Bits 31:7 Reserved, always read as 0.
Bit 6 LFSDETIE: Late frame synchronization detection interrupt enable.
This bit is set and cleared by software.
0: Interrupt is disabled
1: Interrupt is enabled
When this bit is set, an interrupt will be generated if the LFSDET bit is set in the SAI_xSR register.
This bit is meaningless in AC’97, SPDIF mode or when the audio block operates as a master.
Bit 5 AFSDETIE: Anticipated frame synchronization detection interrupt enable.
This bit is set and cleared by software.
0: Interrupt is disabled
1: Interrupt is enabled
When this bit is set, an interrupt will be generated if the AFSDET bit in the SAI_xSR register is set.
This bit is meaningless in AC’97, SPDIF mode or when the audio block operates as a master.
Bit 4 CNRDYIE: Codec not ready interrupt enable (AC’97).
This bit is set and cleared by software.
0: Interrupt is disabled
1: Interrupt is enabled
When the interrupt is enabled, the audio block detects in the slot 0 (tag0) of the AC’97 frame if the
Codec connected to this line is ready or not. If it is not ready, the CNRDY flag in the SAI_xSR
register is set and an interruption i generated.
This bit has a meaning only if the AC’97 mode is selected through PRTCFG[1:0] bits and the audio
block is operates as a receiver.
Bit 3 FREQIE: FIFO request interrupt enable.
This bit is set and cleared by software.
0: Interrupt is disabled
1: Interrupt is enabled
When this bit is set, an interrupt is generated if the FREQ bit in the SAI_xSR register is set.
Since the audio block defaults to operate as a transmitter after reset, the MODE bit must be
configured before setting FREQIE to avoid a parasitic interruption in receiver mode,
1356/1693
DocID024597 Rev 3
RM0351
Serial audio interface (SAI)
Bit 2 WCKCFGIE: Wrong clock configuration interrupt enable.
This bit is set and cleared by software.
0: Interrupt is disabled
1: Interrupt is enabled
This bit is taken into account only if the audio block is configured as a master (MODE[1] = 0) and
NODIV = 0.
It generates an interrupt if the WCKCFG flag in the SAI_xSR register is set.
Note: This bit is used only in TDM mode and is meaningless in other modes.
Bit 1 MUTEDETIE: Mute detection interrupt enable.
This bit is set and cleared by software.
0: Interrupt is disabled
1: Interrupt is enabled
When this bit is set, an interrupt is generated if the MUTEDET bit in the SAI_xSR register is set.
This bit has a meaning only if the audio block is configured in receiver mode.
Bit 0 OVRUDRIE: Overrun/underrun interrupt enable.
This bit is set and cleared by software.
0: Interrupt is disabled
1: Interrupt is enabled
When this bit is set, an interrupt is generated if the OVRUDR bit in the SAI_xSR register is set.
DocID024597 Rev 3
1357/1693
1362
Serial audio interface (SAI)
39.5.7
RM0351
Status register (SAI_ASR / SAI_BSR)
Address offset: block A: 0x018
Address offset: block B: 0x038
Reset value: 0x0000 0008
31
30
29
28
27
26
25
24
23
22
21
20
19
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res. LFSDET AFSDET CNRDY
r
r
r
FREQ
r
18
17
FLTH
r
r
r
2
1
0
WCKCFG MUTEDET OVRUDR
r
r
Bits 31:19 Reserved, always read as 0.
Bits 18:16 FLTH: FIFO level threshold.
This bit is read only. The FIFO level threshold flag is managed only by hardware and its setting
depends on SAI block configuration (transmitter or receiver mode).
If the SAI block is configured as transmitter:
000: FIFO empty
001: FIFO <= ¼ but not empty
010: ¼ < FIFO <= ½
011: ½ < FIFO <= ¾
100: ¾ < FIFO but not full
101: FIFO full
If SAI block is configured as receiver:
000: FIFO empty
001: FIFO < ¼ but not empty
010: ¼ <= FIFO < ½
011: ½ =< FIFO < ¾
100: ¾ =< FIFO but not full
101: FIFO full
Bits 15:7 Reserved, always read as 0.
Bit 6 LFSDET: Late frame synchronization detection.
This bit is read only.
0: No error.
1: Frame synchronization signal is not present at the right time.
This flag can be set only if the audio block is configured in slave mode.
It is not used in AC’97 or SPDIF mode.
It can generate an interrupt if LFSDETIE bit is set in the SAI_xIM register.
This flag is cleared when the software sets bit CLFSDET in SAI_xCLRFR register
Bit 5 AFSDET: Anticipated frame synchronization detection.
This bit is read only.
0: No error.
1: Frame synchronization signal is detected earlier than expected.
This flag can be set only if the audio block is configured in slave mode.
It is not used in AC’97 or SPDIF mode.
It can generate an interrupt if AFSDETIE bit is set in SAI_xIM register.
This flag is cleared when the software sets CAFSDET bit in SAI_xCLRFR register.
1358/1693
DocID024597 Rev 3
16
r
RM0351
Serial audio interface (SAI)
Bit 4 CNRDY: Codec not ready.
This bit is read only.
0: External AC’97 Codec is ready
1: External AC’97 Codec is not ready
This bit is used only when the AC’97 audio protocol is selected in the SAI_xCR1 register and
configured in receiver mode.
It can generate an interrupt if CNRDYIE bit is set in SAI_xIM register.
This flag is cleared when the software sets CCNRDY bit in SAI_xCLRFR register.
Bit 3 FREQ: FIFO request.
This bit is read only.
0: No FIFO request.
1: FIFO request to read or to write the SAI_xDR.
The request depends on the audio block configuration:
– If the block is configured in transmission mode, the FIFO request is related to a write request
operation in the SAI_xDR.
– If the block configured in reception, the FIFO request related to a read request operation from the
SAI_xDR.
This flag can generate an interrupt if FREQIE bit is set in SAI_xIM register.
Bit 2 WCKCFG: Wrong clock configuration flag.
This bit is read only.
0: Clock configuration is correct
1: Clock configuration does not respect the rule concerning the frame length specification defined in
Section 39.3.5: Frame synchronization (configuration of FRL[7:0] bit in the SAI_xFRCR register)
This bit is used only when the audio block operates in master mode (MODE[1] = 0) and NODIV = 0.
It can generate an interrupt if WCKCFGIE bit is set in SAI_xIM register.
This flag is cleared when the software sets CWCKCFG bit in SAI_xCLRFR register.
Bit 1 MUTEDET: Mute detection.
This bit is read only.
0: No MUTE detection on the SD input line
1: MUTE value detected on the SD input line (0 value) for a specified number of consecutive audio
frame
This flag is set if consecutive 0 values are received in each slot of a given audio frame and for a
consecutive number of audio frames (set in the MUTECNT bit in the SAI_xCR2 register).
It can generate an interrupt if MUTEDETIE bit is set in SAI_xIM register.
This flag is cleared when the software sets bit CMUTEDET in the SAI_xCLRFR register.
Bit 0 OVRUDR: Overrun / underrun.
This bit is read only.
0: No overrun/underrun error.
1: Overrun/underrun error detection.
The overrun and underrun conditions can occur only when the audio block is configured as a
receiver and a transmitter, respectively.
It can generate an interrupt if OVRUDRIE bit is set in SAI_xIM register.
This flag is cleared when the software sets COVRUDR bit in SAI_xCLRFR register.
DocID024597 Rev 3
1359/1693
1362
Serial audio interface (SAI)
39.5.8
RM0351
Clear flag register (SAI_ACLRFR / SAI_BCLRFR)
Address offset: block A: 0x01C
Address offset: block B: 0x03C
Reset value: 0x0000 0000
31
Res.
15
Res.
30
29
28
27
26
Res. Res. Res. Res. Res.
14
13
12
11
10
Res. Res. Res. Res. Res.
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
CCNRDY
Res.
CWCKCFG
CLFSDET CAFSDET
w
w
w
w
CMUTE COVRUD
DET
R
w
w
Bits 31:7 Reserved, always read as 0.
Bit 6 CLFSDET: Clear late frame synchronization detection flag.
This bit is write only.
Programming this bit to 1 clears the LFSDET flag in the SAI_xSR register.
This bit is not used in AC’97 or SPDIF mode
Reading this bit always returns the value 0.
Bit 5 .CAFSDET: Clear anticipated frame synchronization detection flag.
This bit is write only.
Programming this bit to 1 clears the AFSDET flag in the SAI_xSR register.
It is not used in AC’97 or SPDIF mode.
Reading this bit always returns the value 0.
Bit 4 CCNRDY: Clear Codec not ready flag.
This bit is write only.
Programming this bit to 1 clears the CNRDY flag in the SAI_xSR register.
This bit is used only when the AC’97 audio protocol is selected in the SAI_xCR1 register.
Reading this bit always returns the value 0.
Bit 3 Reserved, always read as 0.
Bit 2 CWCKCFG: Clear wrong clock configuration flag.
This bit is write only.
Programming this bit to 1 clears the WCKCFG flag in the SAI_xSR register.
This bit is used only when the audio block is set as master (MODE[1] = 0) and NODIV = 0 in the
SAI_xCR1 register.
Reading this bit always returns the value 0.
Bit 1 CMUTEDET: Mute detection flag.
This bit is write only.
Programming this bit to 1 clears the MUTEDET flag in the SAI_xSR register.
Reading this bit always returns the value 0.
Bit 0 COVRUDR: Clear overrun / underrun.
This bit is write only.
Programming this bit to 1 clears the OVRUDR flag in the SAI_xSR register.
Reading this bit always returns the value 0.
1360/1693
DocID024597 Rev 3
RM0351
Serial audio interface (SAI)
39.5.9
Data register (SAI_ADR / SAI_BDR)
Address offset: block A: 0x020
Address offset: block B: 0x040
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
DATA[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
DATA[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 DATA[31:0]: Data
A write to this register loads the FIFO provided the FIFO is not full.
A read from this register empties the FIFO if the FIFO is not empty.
39.5.10
SAI register map
The following table summarizes the SAI registers.
FSDEF
0
0
0
DocID024597 Rev 3
0
0
0
0
0
0
0
0
0
SYNCIN[1:0]
Reserved
Reserved.
0
0
0
0
0
MODE[1:0]
0
0
0
0
FTH
0
FSALL[6:0]
0
PRTCFG[1:0]
1
FFLUS
0
MUTECN[5:0]
0
Reserved
0
TRIS
LSBFIRST
0
DS[2:0]
CKSTR
0
0
MUTE
0
0
0
MUTE VAL
0
SYNCEN[1:0]
MONO
0
CPL
OUTDRIV
Reserved
0
Reserved
FSPOL
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
FSOFF
Reset value
Reserved
SAI_xFRCR
Reserved
0x000C or
0x002C
0
Reserved
Reset value
Reserved
Reserved
0
COMP[1:0]
Reserved
SAIXEN
Reserved
0
Reserved
0
DMAEN
0
Reserved
0
Reserved
0
Reserved
NODIV
MCJDIV[3:0]
0
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
SAI_xCR2
Reserved
0x0008 or
0x0028
Reserved
Reset value
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
SAI_xCR1
Reserved
0x0004
or
0x0024
0
Reserved
Reset value
SYNCOUT[1:0]
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
SAI_GCR
0x0000
Reserved
Register
and reset
value
Reserved
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 214. SAI register map and reset values
0
0
0
1
1
1
FRL[7:0]
0
0
0
0
0
0
0
1361/1693
1362
0x001C or
0x003C
0x0020 or
0x0040
1362/1693
SAI_xCLRFR
Reset value
0
0
0
0
0
0
0
0
0
0
0
0
0
SAI_xDR
0
0
DocID024597 Rev 3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
OVRUDR
0
MUTEDET
0
0
0
1
0
0
0
OVRUDR
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
FREQIE
MUTEDET
OVRUDRIE
Reserved
WCKCFG
Reserved
CNRDYIE
Reserved
AFSDETIE
Reserved
LFSDET
Reserved
Reserved
Reserved
Reserved
0
MUTEDET
Reserved
0
FREQ
Reserved
0
WCKCFG
Reserved
0
Reserved
Reserved
0
WCKCFG
Reserved
0
CNRDY
CNRDY
DATA[31:0]
CAFSDET
Reset value
LFSDET
Reserved
Reset value
AFSDET
0
Reserved
SAI_xIM
Reserved
0
Reserved
0
Reserved
0
Reserved
0
Reserved
0
Reserved
0
Reserved
0
Reserved
0
Reserved
0
Reserved
0
Reserved
0
Reserved
0
Reserved
0
Reserved
0
Reserved
Reserved
0
LFSDET
0
Reserved
FLVL[2:0]
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
0
Reserved
Reserved
SLOTSZ[1:0}
NBSLOT[3:0]
Reserved
Reserved
Reserved
Reserved
SLOTEN[15:0]
Reserved
0
Reserved
Reset value
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reset value
Reserved
SAI_xSLOTR
Reserved
Reserved
Reserved
Reserved
SAI_xSR
Reserved
0x0018 or
0x0038
Reserved
0x0014 or
0x0034
Reserved
0x0010 or
0x0030
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
and reset
value
Reserved
Offset
Reserved
Serial audio interface (SAI)
RM0351
Table 214. SAI register map and reset values (continued)
FBOFF[4:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Refer to Section 2.2.2: Memory map and register boundary addresses for the register
boundary addresses.
RM0351
Single Wire Protocol Master Interface (SWPMI)
40
Single Wire Protocol Master Interface (SWPMI)
40.1
Introduction
The Single Wire Protocol Master Interface (SWPMI) is the master interface corresponding to
the Contactless front-end (CLF) defined in the ETSI TS 102 613 technical specification.
The principle of the Single wire protocol (SWP) is based on the transmission of digital
information in full duplex mode:
•
S1 signal (from Master to Slave) is transmitted by a digital modulation (L or H) in the
voltage domain (refer to Figure 452: S1 signal coding),
•
S2 signal (from Slave to Master) is transmitted by a digital modulation (L or H) in the
current domain (refer to Figure 453: S2 signal coding).
Figure 452. S1 signal coding
7
7
9
/RJLFDO
W
9
7
/RJLFDO DQGLGOHELW
W
069
Figure 453. S2 signal coding
s
d
ϯͬϰd
s
^ϭ
ϭͬϰd
^ϭ
ƚ
/
/
^Ϯ
>ŽŐŝĐĂůϭ
ϭͬϰd
^Ϯ
>ŽŐŝĐĂůϭ
ƚ
s
ƚ
d
ϯͬϰd
s
^ϭ
ϭͬϰd
^ϭ
ƚ
ƚ
/
^Ϯ
ƚ
/
>ŽŐŝĐĂůϬ
^Ϯ
ƚ
>ŽŐŝĐĂůϬ
ƚ
D^ϯϯϯϰϯsϭ
DocID024597 Rev 3
1363/1685
1392
Single Wire Protocol Master Interface (SWPMI)
40.2
RM0351
SWPMI main features
The SWPMI module main features are the following (see Figure 40.3.3: SWP bus states):
1364/1685
•
Full-duplex communication mode
•
Automatic SWP bus state management
•
Automatic handling of Start of frame (SOF)
•
Automatic handling of End of frame (EOF)
•
Automatic handling of stuffing bits
•
Automatic CRC-16 calculation and generation in transmission
•
Automatic CRC-16 calculation and checking in reception
•
32-bit Transmit data register
•
32-bit Receive data register
•
Multi software buffer mode for efficient DMA implementation and multi frame buffering
•
Configurable bit-rate up to 2 Mbit/s
•
Configurable interrupts
•
CRC error, underrun, overrun flags
•
Frame reception and transmission complete flags
•
Slave resume detection flag
•
Loopback mode for test purpose
•
Embedded SWPMI_IO transceiver compliant with ETSI TS 102 613 technical
specification
•
Dedicated mode to output SWPMI_RX, SWPMI_TX and SWPMI_SUSPEND signals
on GPIOs, in case of external transceiver connection
DocID024597 Rev 3
RM0351
Single Wire Protocol Master Interface (SWPMI)
40.3
SWPMI functional description
40.3.1
SWPMI block diagram
Figure 454. SWPMI block diagram
ELW$3%EXV
3&/.
,QWHUUXSW
'0$UHTXHVWV
+6,
&RQWURO6WDWXV
UHJLVWHUV
6:30,B5'5
6:30,B7'5
6:3&/.
6:30,FRUH
3&/.
6:30,B6863(1'
6:30,B5;
6:30,B7;
6:30,
*3,2
*3,2
*3,2
6:30,B,2
6:3EXV
069
Refer to the bit SWPMI1SEL in Section 6.4.28: Peripherals independent clock configuration
register (RCC_CCIPR) to select the SWPCLK (SWPMI core clock source).
Note:
In order to support the exit from Stop mode by a RESUME by slave, it is mandatory to select
HSI16 for SWPCLK. If this feature is not required, PCLK1 can be selected, and SWPMI
must be disabled before entering the Stop mode.
40.3.2
SWP initialization and activation
The initialization and activation will set the SWPMI_IO state from low to high. The procedure
is the following:
40.3.3
1.
configure the SWP_CLASS bit in SWPMI_OR register according to the VDD voltage
(3 V or 1.8 V),
2.
configure SWPMI_IO as alternate function (refer to Section 7: General-purpose I/Os
(GPIO)) to enable the SWPMI_IO transceiver,
3.
wait for at least 20 microseconds,
4.
set SWPACT bit in SWPMI_CR register to ACTIVATE the SWP i.e. to move from
DEACTIVATED to SUSPENDED.
SWP bus states
The SWP bus can have the following states: DEACTIVATED, SUSPENDED, ACTIVATED.
DocID024597 Rev 3
1365/1685
1392
Single Wire Protocol Master Interface (SWPMI)
RM0351
Several transitions are possible:
•
ACTIVATE: transition from DEACTIVATED to SUSPENDED state,
•
SUSPEND: transition from ACTIVATED to SUSPENDED state,
•
RESUME by master: transition from SUSPENDED to ACTIVATED state initiated by the
master,
•
RESUME by slave: transition from SUSPENDED to ACTIVATED state initiated by the
slave,
•
DEACTIVATE: transition from SUSPENDED to DEACTIVATED state.
ACTIVATE
During and just after reset, the SWPMI_IO is configured in analog mode. Refer to
Section 40.3.2: SWP initialization and activation to activate the SWP bus.
SUSPEND
The SWP bus stays in the ACTIVATED state as long as there is a communication with the
slave, either in transmission or in reception. The SWP bus switches back to the
SUSPENDED state as soon as there is no more transmission or reception activity, after 7
idle bits.
RESUME by master
Once the SWPMI is enabled, the user can request a SWPMI frame transmission. The
SWPMI first sends a transition sequence and 8 idle bits (RESUME by master) before
starting the frame transmission. The SWP moves from the SUSPENDED to ACTIVATED
state after the RESUME by master (refer to Figure 455: SWP bus states).
RESUME by slave
Once the SWPMI is enabled, the SWP can also move from the SUSPENDED to
ACTIVATED state if the SWPMI receives a RESUME from the slave. The RESUME by slave
sets the SRF flag in the SWPMI_ISR register.
DEACTIVATE
Deactivate request
If no more communication is required, and if SWP is in the SUSPENDED mode, the user
can request to switch the SWP to the DEACTIVATED mode by disabling the SWPMI
peripheral. The software must set DEACT bit in the SWPMI_CR register in order to request
the DEACTIVATED mode. If no RESUME by slave is detected by SWPMI, the DEACTF flag
is set in the SWPMI_ISR register and the SWPACT bit is cleared in the SWPMI_ICR
register. In case a RESUME by slave is detected by the SWPMI while the software is setting
DEACT bit, the SRF flag is set in the SWPMI_ISR register, DEACTF is kept cleared,
SWPACT is kept set and DEACT bit is cleared.
In order to activate SWP again, the software must clear DEACT bit in the SWPMI_CR
register before setting SWPACT bit.
Deactivate
In order to switch the SWP to the DEACTIVATED mode immediately, ignoring any possible
incoming RESUME by slave, the user must clear SWPACT bit in the SWPMI_CR register.
1366/1685
DocID024597 Rev 3
RM0351
Note:
Single Wire Protocol Master Interface (SWPMI)
In order to further reduce current consumption once SWPACT bit is cleared, configure the
SWPMI_IO port as output push pull low in GPIO controller (refer to Section 7: Generalpurpose I/Os (GPIO)).
Figure 455. SWP bus states
6
$&7,9$7(' PDVWHU(2)
6XVSHQGVHTXHQFH LGOHELWV
6863(1'('
6
'($&7,9$7('
6863(1'('
6
6863(1'('
5(680(E\PDVWHU LGOHELWV
$&7,9$7(' PDVWHU62)
WUDQVLWLRQVHTXHQFH
6
5(680(
E\VODYH
6
WUDQVLWLRQVHTXHQFH
6863(1'('
$&7,9$7(' VODYH62)
069
40.3.4
SWPMI_IO (internal transceiver) bypass
A SWPMI_IO (transceiver), compliant with ETSI TS 102 613 technical specification, is
embedded in the microcontroller. Nevertheless, this is possible to bypass it by setting
SWP_TBYP bit in SWPMI_OR register. In this case, the SWPMI_IO is disabled and the
SWPMI_RX, SWPMI_TX and SWPMI_SUSPEND signals are available as alternate
functions on three GPIOs (refer to “Pinouts and pin description” in product datasheet). This
configuration is selected to connect an external transceiver.
40.3.5
SWPMI Bit rate
The bit rate must be set in the SWPMI_BRR register, according to the following formula:
FSWP = FSWPCLK / ((BR[5:0]+1)x4)
Note:
The maximum bitrate is 2 Mbit/s.
40.3.6
SWPMI frame handling
The SWP frame is composed of a Start of frame (SOF), a Payload from 1 to 30 bytes, a 16bit CRC and an End of frame (EOF) (Refer to Figure 456: SWP frame structure).
DocID024597 Rev 3
1367/1685
1392
Single Wire Protocol Master Interface (SWPMI)
RM0351
Figure 456. SWP frame structure
62) (K E
62)
'
(2) )K E
'
'
͘͘͘
&5& E\WHV
(2)
3$2$' XSWRE\WHV
069
The SWPMI embeds one 32-bit data register for transmission (SWPMI_TDR), and one 32bit data register for reception (SWPMI_RDR).
In transmission, the SOF insertion, the CRC calculation and insertion, and the EOF
insertion are managed automatically by the SWPMI. The user only has to provide the
Payload content and size. A frame transmission starts as soon as data is written into the
SWPMI_TDR register. Dedicated flags indicate an empty transmit data register and a
complete frame transmission event.
In reception, the SOF deletion, the CRC calculation and checking, and the EOF deletion are
managed automatically by the SWPMI. The user only has to read the Payload content and
size. Dedicated flags indicate a full receive data register, a complete frame reception and
possibly CRC error events.
The stuffing bits insertion (in transmission) and stuffing bits deletion (in reception) are
managed automatically by the SWPMI core. These operations are transparent for the user.
40.3.7
Transmission procedure
Before starting any frame transmission, the user must activate the SWP. Refer to
Section 40.3.2: SWP initialization and activation.
There are several possible software implementations for a frame transmission: No software
buffer mode, Single software buffer mode, and Multi software buffer mode.
The software buffer usage requires the use of a DMA channel to transfer data from the
software buffer in the RAM memory to the transmit data register in the SWPMI peripheral.
No software buffer mode
This mode does not require the use of DMA. The SWP frame transmission handling is done
by polling status flags in the main loop or inside the SWPMI interrupt routine. There is a 32bit transmit data register (SWPMI_TDR) in the SWPMI, thus writing to this register will
trigger the transmission of up to 4 bytes.
The No software buffer mode is selected by clearing TXDMA bit in the SWPMI_CR register.
The frame transmission is started by the first write to the SWPMI_TDR register. The low
significant byte of the first 32-bit word (bits [7:0])written into the SWPMI_TDR register)
indicates the number of data bytes in the payload, and the 3 other bytes of this word must
contain the first 3 bytes of the payload (bits [15:8] contain the first byte of the payload, bits
[23:16] the second byte and bits [31:24] the third byte). Then, the following writes to the
SWPMI_TDR register will only contain the following payload data bytes, up to 4 for each
write.
1368/1685
DocID024597 Rev 3
RM0351
Note:
Single Wire Protocol Master Interface (SWPMI)
The low significant byte of the first 32-bit word written into the SWPMI_TDR register is
coding the number of data bytes in the payload. This number could be from 1 to 30. Any
other value in the low significant byte will be ignored and the transmission will not start.
Writing to the SWPMI_TDR register will induce the following actions:
•
Send the transition sequence and 8 idle bits (RESUME by master) if the SWP bus state
is SUPENDED (this will not happen if the SWP bus state is already ACTIVATED),
•
Send a Start of frame (SOF),
•
Send the payload according to the SWPMI_TRD register content. If the number of
bytes in the payload is greater than 3, the SWPMI_TDR needs to be refilled by
software, each time the TXE flag in the SWPMI_ISR register is set, and as long as the
TXBEF flag is not set in the SWPMI_ISR register,
•
Send the 16-bit CRC, automatically calculated by the SWPMI core,
•
Send an End of frame (EOF).
The TXE flag is cleared automatically when the software is writing to the SWPMI_TDR
register.
Once the complete frame is sent, provided that no other frame transmission has been
requested (i.e. SWPMI_TDR has not been written again after the TXBEF flag setting), TCF
and SUSP flags are set in the SWPMI_ISR register 7 idle bits after the EOF transmission,
and an interrupt is generated if TCIE bit is set in the SWPMI_IER register (refer to
Figure 457: SWPMI No software buffer mode transmission).
Figure 457. SWPMI No software buffer mode transmission
62)
6:3RXWSXW
'
'''
,QWHUQDOEXIIHU
6:30,B7'5
'
''
'
'
'
'
''''
''''
'
'
&5&
(2)
[[['
[[['
VHWE\+:FOHDUHGE\6:
7&)
VHWE\+:FOHDUHGE\6:RU'0$
7;(
VHWE\+:FOHDUHGE\6:
7;%()
VHWE\+:
6863
6:ZULWHV'
''
LQ6:30,B7'5
'
6:ZULWHV
''''
LQ6:30,B7'5
6:ZULWHV
[[['
LQ6:30,B7'5
069
If another frame transmission is requested before the end of the EOF transmission, the TCF
flag is not set and the frame will be consecutive to the previous one, with only one idle bit in
between (refer to Figure 458: SWPMI No software buffer mode transmission, consecutive
frames).
DocID024597 Rev 3
1369/1685
1392
Single Wire Protocol Master Interface (SWPMI)
RM0351
Figure 458. SWPMI No software buffer mode transmission, consecutive frames
6:3RXWSXW
62)
,QWHUQDOEXIIHU
6:30,B7'5
'
'
'
'''
''
'
'
'
'
'
'
''''
(2) 62)
[[['
'''
[[['
''''
&5&
'
'
'
'
'''
''''
''''
''''
7&)
VHWE\+:FOHDUHGE\6:RU'0$
7;(
VHWE\+:FOHDUHGE\6:
7;%()
6:ZULWHV
6:ZULWHV
6:30,B7'5 6:30,B7'5
6:ZULWHV
6:30,B7'5
6:ZULWHV
6:30,B7'5
6:ZULWHV
6:30,B7'5
6:ZULWHV
6:30,B7'5
6:ZULWHV
6:30,B7'5
069
Single software buffer mode
This mode allows to transmit a complete SWP frame without a CPU intervention, using the
DMA. The DMA will refill the 32-bit SWPMI_TDR register, and the software can poll the end
of the frame transmission using the SWPMI_TXBEF flag.
The Single software buffer mode is selected by setting TXDMA bit and clearing TXMODE bit
in the SWPMI_CR register.
The DMA channel or stream must be configured in following mode (refer to DMA section):
•
memory to memory mode disabled,
•
memory increment mode enabled,
•
memory size set to 32-bit,
•
peripheral size set to 32-bit,
•
peripheral increment mode disabled,
•
circular mode disabled,
•
data transfer direction set to read from memory.
•
the number of words to be transfered must be set according to the SWP frame length,
•
the source address is the SWP frame buffer in RAM,
•
the destination address is the SWPMI_TDR register.
Then the user must:
1.
Set TXDMA bit in the SWPMI_CR register,
2.
Set TXBEIE bit in the SWPMI_IER register,
3.
Fill the buffer in the RAM memory (with the number of data bytes in the payload on the
least significant byte of the first word),
4.
Enable stream or channel in DMA module to start DMA transfer and frame
transmission.
A DMA request is issued by SWPMI when TXE flag in SWPMI_ISR is set. The TXE flag is
cleared automatically when the DMA is writing to the SWPMI_TDR register.
In the SWPMI interrupt routine, the user must check TXBEF bit in the SWPMI_ISR register.
If it is set, and if another frame needs to be transmitted, the user must:
1370/1685
DocID024597 Rev 3
RM0351
Single Wire Protocol Master Interface (SWPMI)
1.
Disable stream or channel in DMA module
2.
Update the buffer in the RAM memory with the content of the next frame to be sent
3.
Configure the total number of words to be transferred in DMA module
4.
Enable stream or channel in DMA module to start next frame transmission
5.
Set CTXBEF bit in the SWPMI_ICR register to clear the TXBEF flag
Multi software buffer mode
This mode allows to work with several frame buffers in the RAM memory, in order to ensure
a continuous transmission, keeping a very low CPU load, and allowing more latency for
buffer update by software thanks to the DMA. The software can check the DMA counters at
any time and update SWP frames accordingly in the RAM memory.
The Multi software buffer mode must be used in combination with DMA in circular mode.
Each transmission buffer in the RAM memory must have a fixed length of eight 32-bit words,
whatever the number of bytes in the SWP frame payload. The transmission buffers in the
RAM memory must be filled by the software, keeping an offset of 8 between two consecutive
ones. The first data byte of the buffer is the number of bytes of the frame payload. See the
buffer example in Figure 459: SWPMI Multi software buffer mode transmission
The Multi software buffer mode is selected by setting both TXDMA and TXMODE bits in
SWPMI_CR register.
For example, in order to work with 4 transmission buffers, the user must configure the DMA
as follows:
The DMA channel or stream must be configured in following mode (refer to DMA section):
•
memory to memory mode disabled,
•
memory increment mode enabled,
•
memory size set to 32-bit,
•
peripheral size set to 32-bit,
•
peripheral increment mode disabled,
•
circular mode enabled,
•
data transfer direction set to read from memory,
•
the number of words to be transfered must be set to 32 (8 words per buffer),
•
the source address is the buffer1 in RAM,
•
the destination address is the SWPMI_TDR register.
Then, the user must:
1.
Set TXDMA in the SWPMI_CR register
2.
Set TXBEIE in the SWPMI_IER register
3.
Fill buffer1, buffer2, buffer3 and buffer4 in the RAM memory (with the number of data
bytes in the payload on the least significant byte of the first word)
4.
Enable stream or channel in DMA module to start DMA.
In the SWPMI interrupt routine, the user must check TXBEF bit in the SWPMI_ISR register.
If it is set, the user must set CTXBEF bit in SWPMI_ICR register to clear TXBEF flag and the
user can update buffer1 in the RAM memory.
In the next SWPMI interrupt routine occurrence, the user will update buffer2, and so on.
DocID024597 Rev 3
1371/1685
1392
Single Wire Protocol Master Interface (SWPMI)
RM0351
The Software can also read the DMA counter (number of data to transfer) in the DMA
registers in order to retrieve the frame which has already been transferred from the RAM
memory and transmitted. For example, if the software works with 4 transmission buffers, and
if the DMA counter equals 17, it means that two buffers are ready for updating in the RAM
area. This is useful in case several frames are sent before the software can handle the
SWPMI interrupt. If this happens, the software will have to update several buffers.
When there are no more frames to transmit, the user must disable the circular mode in the
DMA module. The transmission will stop at the end of the buffer4 transmission.
If the transmission needs to stop before (for example at the end of buffer2), the user must
set the low significant byte of the first word to 0 in buffer3 and buffer4.
TXDMA bit in the SWPMI_CR register will be cleared by hardware as soon as the number of
data bytes in the payload is read as 0 in the least significant byte of the first word.
Figure 459. SWPMI Multi software buffer mode transmission
ELWZRUG
'0$B&0$5
'
'
'
'
'
'
7)/
'
'
)UDPH7)/
'
'
'
'
'
'
7)/
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
7)/
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
7)/
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
)UDPH7)/
)UDPH7)/
)UDPH7)/
5$0
40.3.8
069
Reception procedure
Before starting any frame reception, the user must activate the SWP (refer to
Section 40.3.2: SWP initialization and activation.
Once SWPACT bit is set in the SWPMI_CR register, a RESUME from slave state sets the
SRF flag in the SWPMI_ISR register and automatically enables the SWPMI for the frame
reception.
1372/1685
DocID024597 Rev 3
RM0351
Single Wire Protocol Master Interface (SWPMI)
If the SWP bus is already in the ACTIVATED state (for example because a frame
transmission is ongoing), the SWPMI core does not need any RESUME by slave state, and
the reception can take place immediately.
There are several possible software implementations for a frame reception:
•
No software buffer mode,
•
Single software buffer mode,
•
Multi software buffer mode.
The software buffer usage requires the use of a DMA channel to transfer data from the
receive data register in the SWPMI peripheral to the software buffer in the RAM memory.
No software buffer mode
This mode does not require the use of DMA. The SWP frame reception handling is done by
polling status flags in the main loop or inside the SWPMI interrupt routine. There is a 32-bit
receive data register (SWPMI_RDR) in the SWPMI, allowing to receive up to 4 bytes before
reading this register.
The No software buffer mode is selected by resetting RXDMA bit in the SWPMI_CR register.
Once a Start of frame (SOF) is received, the following bytes (payload) are stored in the
SWPMI_RDR register. Once the SWPMI_RDR is full, the RXNE flag is set in SWPMI_ISR
and an interrupt is generated if RIE bit is set in SWPMI_IER register. The user can read the
SWPMI_RDR register and the RXNE flag is cleared automatically when the software is
reading the SWPMI_RDR register.
Once the complete frame has been received, including the CRC and the End of frame
(EOF), both RXNE and RXBFF flags are set in the SWPMI_ISR register. The user must
read the last byte(s) of the payload in the SWPMI_RDR register and set CRXBFF flag in
SWPMI_ICR in order to clear the RXBFF flag. The number of data bytes in the payload is
available in the SWPMI_RFL register. Again, the RXNE flag is reset automatically when the
software is reading the SWPMI_RDR register (refer to Figure 460: SWPMI No software
buffer mode reception).
Reading the SWPMI_RDR register while RXNE is cleared will return 0.
Figure 460. SWPMI No software buffer mode reception
6:3
LQSXW
62)
,QWHUQDOEXIIHU
'
'
'
'
'
[[[[
'
'
'
'
''''
'
'
&5&
(2)
''''
''''
[[''
'' [[''
''
dž
G
VHWE\+:FOHDUHGE\6:
5;1(
VHWE\+:FOHDUHGE\6:RU'0$
5;%))
VHWE\+:FOHDUHGE\6:
6863(1'
'
''''
6:30,B5)/
7&)
'
''''
[[[[
6:30,B5'5
'
VHWE\+:
6:UHDGV
6:30,B5'5
6:UHDGV
6:30,B5'5
6:UHDGV
6:30,B5'5
6:UHDGV
6:30,B5'5
DQG6:,B5)/
069
DocID024597 Rev 3
1373/1685
1392
Single Wire Protocol Master Interface (SWPMI)
RM0351
Single software buffer mode
This mode allows to receive a complete SWP frame without any CPU intervention using the
DMA. The DMA transfers received data from the 32-bit SWPMI_RDR register to the RAM
memory, and the software can poll the end of the frame reception using the SWPMI_RBFF
flag.
The Single software buffer mode is selected by setting RXDMA bit and clearing RXMODE
bit in the SWPMI_CR register.
The DMA must be configured as follows:
The DMA channel or stream must be configured in following mode (refer to DMA section):
•
memory to memory mode disabled,
•
memory increment mode enabled,
•
memory size set to 32-bit,
•
peripheral size set to 32-bit,
•
peripheral increment mode disabled,
•
circular mode disabled,
•
data transfer direction set to read from peripheral,
•
the number of words to be transfered must be set to 8,
•
the source address is the SWPMI_RDR register,
•
the destination address is the SWP frame buffer in RAM.
Then the user must:
1.
Set RXDMA bit in the SWPMI_CR register
2.
Set RXBFIE bit in the SWPMI_IER register
3.
Enable stream or channel in DMA module.
A DMA request is issued by SWPMI when RXNE flag is set in SWPMI_ISR. The RXNE flag
is cleared automatically when the DMA is reading the SWPMI_RDR register.
In the SWPMI interrupt routine, the user must check RXBFF bit in the SWPMI_ISR register.
If it is set, the user must:
1.
1374/1685
Disable stream or channel in DMA module
2.
Read the number of bytes in the received frame payload in the SWPMI_RFL register
3.
Read the frame payload in the RAM buffer
4.
Enable stream or channel in DMA module
5.
Set CRXBFF bit in the SWPMI_ICR register to clear RXBFF flag (refer to Figure 461:
SWPMI single software buffer mode reception).
DocID024597 Rev 3
RM0351
Single Wire Protocol Master Interface (SWPMI)
Figure 461. SWPMI single software buffer mode reception
^tW
ŝŶƉƵƚ
^K&
/ŶƚĞƌŶĂůďƵĨĨĞƌ
Ϭ
ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϯͲϮͲϭͲϬ
džͲdžͲdžͲdž
džͲdžͲdžͲdž
^tWD/ͺZZ
ϳ
ϴ
ϵ
ϭϬ
ϭϭ
ϳͲϲͲϱͲϰ
ϯͲϮͲϭͲϬ
ϭϮ
ϭϯ
Z
ϭϭͲϭϬͲϵͲϴ
ϳͲϲͲϱͲϰ
džͲdžͲϭϯͲϭϮ
ϭϭͲϭϬͲϵͲ
ϴ
dž
^tWD/ͺZ&>
K&
džͲdžͲϭϯͲϭϮ
ϭϰĚ
ƐĞƚďLJ,t͕ĐůĞĂƌĞĚďLJ^t
d&
ƐĞƚďLJ,t͕ĐůĞĂƌĞĚďLJD
ZyE
ƐĞƚďLJ,t͕ĐůĞĂƌĞĚďLJ^t
Zy&&
ƐĞƚďLJ,t
^h^WE
DƚƌĂŶƐĨĞƌƐĚĂƚĂĨƌŽŵ
^tWD/ͺZZƚŽZD
DƚƌĂŶƐĨĞƌƐĚĂƚĂĨƌŽŵ
^tWD/ͺZZƚŽZD
DƚƌĂŶƐĨĞƌƐĚĂƚĂĨƌŽŵ
^tWD/ͺZZƚŽZD
DƚƌĂŶƐĨĞƌƐĚĂƚĂĨƌŽŵ
^tWD/ͺZZƚŽZD
ϯͲϮͲϭͲϬ
ϳͲϲͲϱͲϰ
ϭϭͲϭϬͲϵͲϴ
džͲdžͲϭϯͲϭϮ
ZD
D^ϯϯϯϱϭsϭ
Multi software buffer mode
This mode allows to work with several frame buffers in the RAM memory, in order to ensure
a continuous reception, keeping a very low CPU load, using the DMA. The frame payloads
are stored in the RAM memory, together with the frame status flags. The software can check
the DMA counters and status flags at any time to handle the received SWP frames in the
RAM memory.
The Multi software buffer mode must be used in combination with the DMA in circular mode.
The Multi software buffer mode is selected by setting both RXDMA and RXMODE bits in
SWPMI_CR register.
DocID024597 Rev 3
1375/1685
1392
Single Wire Protocol Master Interface (SWPMI)
RM0351
In order to work with n reception buffers in RAM, the DMA channel or stream must be
configured in following mode (refer to DMA section):
•
memory to memory mode disabled,
•
memory increment mode enabled,
•
memory size set to 32-bit,
•
peripheral size set to 32-bit,
•
peripheral increment mode disabled,
•
circular mode enabled,
•
data transfer direction set to read from peripheral,
•
the number of words to be transfered must be set to 8 x n (8 words per buffer),
•
the source address is the SWPMI_TDR register,
•
the destination address is the buffer1 address in RAM
Then the user must:
1.
Set RXDMA in the SWPMI_CR register
2.
Set RXBFIE in the SWPMI_IER register
3.
Enable stream or channel in the DMA module.
In the SWPMI interrupt routine, the user must check RXBFF in the SWPMI_ISR register. If it
is set, the user must set CRXBFF bit in the SWPMI_ICR register to clear RXBFF flag and
the user can read the first frame payload received in the first buffer (at the RAM address set
in DMA2_CMAR1).
The number of data bytes in the payload is available in bits [23:16] of the last 8th word.
In the next SWPMI interrupt routine occurrence, the user will read the second frame
received in the second buffer (address set in DMA2_CMAR1 + 8), and so on (refer to
Figure 462: SWPMI Multi software buffer mode reception).
In case the application software cannot ensure to handle the SMPMI interrupt before the
next frame reception, each buffer status is available in the most significant byte of the 8th
buffer word:
•
The CRC error flag (equivalent to RXBERF flag in the SWPMI_ISR register) is
available in bit 24 of the 8th word. Refer to Section 40.3.9: Error management for an
CRC error description.
•
The receive overrun flag (equivalent to RXOVRF flag in the SWPMI_ISR register) is
available in bit 25 of the 8th word. Refer to Section 40.3.9: Error management for an
overrun error description.
•
The receive buffer full flag (equivalent to RXBFF flag in the SWPMI_ISR register) is
available in bit 26 of the 8th word.
In case of a CRC error, both RXBFF and RXBERF flags are set, thus bit 24 and bit 26 are
set.
In case of an overrun, an overrun flag is set, thus bit 25 is set. The receive buffer full flag is
set only in case of an overrun during the last word reception; then, both bit 25 and bit 26 are
set for the current and the next frame reception.
The software can also read the DMA counter (number of data to transfer) in the DMA
registers in order to retrieve the frame which has already been received and transferred into
the RAM memory through DMA. For example, if the software works with 4 reception buffers,
1376/1685
DocID024597 Rev 3
RM0351
Single Wire Protocol Master Interface (SWPMI)
and if the DMA counter equals 17, it means that two buffers are ready for reading in the
RAM area.
In Multi software buffer reception mode, if the software is reading bits 24, 25 and 26 of the
8th word, it does not need to clear RXBERF, RXOVRF and RXBFF flags after each frame
reception.
Figure 462. SWPMI Multi software buffer mode reception
^tW
ŝŶƉƵƚ
^K&
Ϭ
ϭ
^tWD/ͺZZ
džͲdžͲdžͲdž
^tWD/ͺZZ
džͲdžͲdžͲdž
Ϯ
ϯ
ϰ
ϱ
ϲ
ϯͲϮͲϭͲϬ
ϳ
ϴ
ϵ
ϭϬ ϭϭ
ϳͲϲͲϱͲϰ
ϯͲϮͲϭͲϬ
ϭϮ
ϭϯ
Z
ϭϭͲϭϬͲϵͲϴ
ϳͲϲͲϱͲϰ
dž
^tWD/ͺZ&>
K& ^K&
ϭϭͲϭϬͲ
ϵͲϴ
Ϭ
džͲdžͲϭϯͲϭϮ
džͲdžͲϭϯͲϭϮ
ϭϰĚ
d&
ZyE
ƐĞƚďLJ,t͕ĐůĞĂƌĞĚďLJD
Zy&&
ƐĞƚďLJ,t͕ĐůĞĂƌĞĚďLJ^t
^h^WE
ƐĞƚďLJ,t
DƚƌĂŶƐĨĞƌƐĚĂƚĂ
ĨƌŽŵ^tWD/ͺZZ
ƚŽZD
DƚƌĂŶƐĨĞƌƐĚĂƚĂ
ĨƌŽŵ^tWD/ͺZZƚŽ
ZD
DƚƌĂŶƐĨĞƌƐĚĂƚĂ
ĨƌŽŵ^tWD/ͺZZ
ƚŽZD
&ƌĂŵĞϭ
&ƌĂŵĞϮ
&ƌĂŵĞϯ
&ƌĂŵĞϰ
DƚƌĂŶƐĨĞƌƐĚĂƚĂ
ĨƌŽŵ^tWD/ͺZZƚŽ
ZD
ϯͲϮͲϭͲϬ
ϳͲϲͲϱͲϰ
ϭϭͲϭϬͲϵͲϴ
džͲdžͲϭϯͲϭϮ
džͲdžͲdžͲdž
džͲdžͲdžͲdž
džͲdžͲdžͲdž
džͲϭϰͲdžͲdž
ϯͲϮͲϭͲϬ
ϳͲϲͲϱͲϰ
džͲdžͲdžͲdž
džͲdžͲdžͲdž
džͲdžͲdžͲdž
džͲdžͲdžͲdž
džͲdžͲdžͲdž
džͲϴͲdžͲdž
ϯͲϮͲϭͲϬ
ϳͲϲͲϱͲϰ
ϭϭͲϭϬͲϵͲϴ
ϭϱͲϭϰͲϭϯͲϭϮ
ϭϵͲϭϴͲϭϳͲϭϲ
džͲdžͲdžͲϮϬ
džͲdžͲdžͲdž
džͲϮϭͲdžͲdž
ϯͲϮͲϭͲϬ
ϳͲϲͲϱͲϰ
ϭϭͲϭϬͲϵͲϴ
ϭϱͲϭϰͲϭϯͲϭϮ
ϭϵͲϭϴͲϭϳͲϭϲ
ϮϯͲϮϮͲϮϭͲϮϬ
ϮϳͲϮϲͲϮϱͲϮϰ
džͲϮϵͲdžͲϮϴ
ZD
D^ϯϯϯϱϮsϭ
40.3.9
Error management
Underrun during payload transmission
During the transmission of the frame payload, a transmit underrun is indicated by the
TXUNRF flag in the SWPMI_ISR register. An interrupt is generated if TXBUNREIE bit is set
in the SWPMI_IER register.
If a transmit underrun occurs, the SWPMI stops the payload transmission and sends a
corrupted CRC (the first bit of the first CRC byte sent is inverted), followed by an EOF. If
DMA is used, TXDMA bit in the SWPMI_CR register is automatically cleared.
DocID024597 Rev 3
1377/1685
1392
Single Wire Protocol Master Interface (SWPMI)
RM0351
Any further write to the SWPMI_TDR register while TXUNRF is set will be ignored. The user
must set CTXUNRF bit in the SWPMI_ICR register to clear TXUNRF flag.
Overrun during payload reception
During the reception of the frame payload, a receive overrun is indicated by RXOVRF flag in
the SWPMI_ISR register. If a receive overrun occurs, the SWPMI does not update
SWPMI_RDR with the incoming data. The incoming data will be lost.
The reception carries on up to the EOF and, if the overrun condition disappears, the RXBFF
flag is set. When RXBFF flag is set, the user can check the RXOVRF flag. The user must set
CRXOVRF bit in the SWPMI_ICR register to clear RXBOVRF flag.
If the user wants to detect the overrun immediately, RXBOVREIE bit in the SWPMI_IER
register can be set in order to generate an interrupt as soon as the overrun occurs.
The RXOVRF flag is set at the same time as the RXNE flag, two SWPMI_RDR reads after
the overrun event occurred. It indicates that at least one received byte was lost, and the
loaded word in SWPMI_RDR contains the bytes received just before the overrun.
In Multi software buffer mode, if RXOVRF flag is set for the last word of the received frame,
then the overrun bit (bit 25 of the 8th word) is set for both the current and the next frame.
CRC error during payload reception
Once the two CRC bytes have been received, if the CRC is wrong, the RXBERF flag in the
SWPMI_ISR register is set after the EOF reception. An interrupt is generated if RXBEIE bit
in the SWPMI_IER register is set (refer toFigure 463: SWPMI single buffer mode reception
with CRC error).The user must set CRXBERF bit in SWPMI_ICR to clear RXBERF flag.
Figure 463. SWPMI single buffer mode reception with CRC error
^tW
ŝŶƉƵƚ
^K&
^tWD/ͺZZ
Ϭ
ϭ
Ϯ
ϯ
ϰ
ϱ
džͲdžͲdžͲdž
ϲ
ϳ
ϴ
ϯͲϮͲϭͲϬ
ϵ
ϭϬ
ϳͲϲͲϱͲϰ
ϭϭ
ϭϮ
ϭϯ
ϭϭͲϭϬͲϵͲϴ
dž
^tWD/ͺZ&>
Z
K&
džͲdžͲϭϯͲϭϮ
ϭϰĚ
VHWE\+:FOHDUHGE\6:
d&
VHWE\+:FOHDUHGE\6:RU'0$
ZyE
Zy&&
VHWE\+:FOHDUHGE\6:
VHWE\+:
^h^WE
VHWE\+:FOHDUHGE\6:
ZyZ&
^tƌĞĂĚƐ
^tWD/ͺZZ
^tƌĞĂĚƐ
^tWD/ͺZZ
^tƌĞĂĚƐ
^tWD/ͺZZ
^tĚĞƚĞĐƚƐĞƌƌŽƌ
ǁŝƚŚZyZ&ĨůĂŐ
069
Missing or corrupted stuffing bit during payload reception
When a stuffing bit is missing or is corrupted in the payload, RXBERF and RXBFF flags are
set in SWPMI_ISR after the EOF reception.
1378/1685
DocID024597 Rev 3
RM0351
Single Wire Protocol Master Interface (SWPMI)
Corrupted EOF reception
Once an SOF has been received, the SWPMI accumulates the received bytes until the
reception of an EOF (ignoring any possible SOF). Once an EOF has been received, the
SWPMI is ready to start a new frame reception and waits for an SOF.
In case of a corrupted EOF, RXBERF and RXBFF flags will bet set in the SWPMI_ISR
register after the next EOF reception.
Note:
In case of a corrupted EOF reception, the payload reception carries on, thus the number of
bytes in the payload might get the value 31 if the number of received bytes is greater than
30. The number of bytes in the payload is read in the SWPMI_RFL register or in bits [23:16]
of the 8th word of the buffer in the RAM memory, depending on the operating mode.
40.3.10
Loopback mode
The loopback mode can be used for test purposes. The user must set LPBK bit in the
SWPMI_CR register in order to enable the loopback mode.
When the loopback mode is enabled, SWPMI_TX and SWPMI_RX signals are connected
together. As a consequence, all frames sent by the SWPMI will be received back.
40.4
SWPMI low-power modes
Table 215. Effect of low-power modes on SWPMI
Mode
Sleep
No effect. SWPMI interrupts cause the device to exit the Sleep mode.
Low-power run
No effect.
Low-power sleep
No effect. SWPMI interrupts cause the device to exit the Low-power sleep
mode.
Stop 0 / Stop 1
SWPMI registers content is kept. A RESUME from SUSPENDED mode issued
by the slave can wake up the device from Stop 0 and Stop 1 modes if the
SWPCLK is HSI16 (refer to Section 40.3.1: SWPMI block diagram).
Stop 2
SWPMI registers content is kept. SWPMI must be disabled before entering
Stop 2.
Standby
Shutdown
40.5
Description
The SWPMI peripheral is powered down and must be reinitialized after exiting
Standby or Shutdown mode.
SWPMI interrupts
All SWPMI interrupts are connected to the NVIC.
To enable the SWPMI interrupt, the following sequence is required:
1.
Configure and enable the SWPMI interrupt channel in the NVIC
2.
Configure the SWPMI to generate SWPMI interrupts (refer to the SWPMI_IER
register).
DocID024597 Rev 3
1379/1685
1392
Single Wire Protocol Master Interface (SWPMI)
RM0351
Table 216. Interrupt control bits
Event flag
Enable
control bit
Exit the
Sleep
mode
Exit the
Stop
mode
Exit the
Standby
mode
Receive buffer full
RXBFF
RXBFIE
yes
no
no
Transmit buffer empty
TXBEF
TXBEIE
yes
no
no
Receive buffer error (CRC error)
RXBERF
RXBEIE
yes
no
no
Receive buffer overrun
RXOVRF
RXBOVEREIE
yes
no
no
Transmit buffer underrun
TXUNRF
TXBUNREIE
yes
no
no
RXNE
RIE
yes
no
no
Transmit data register full
TXE
TIE
yes
no
no
Transfer complete flag
TCF
TCIE
yes
no
no
Interrupt event
Receive data register not empty
Slave resume flag
SRF
SRIE
1. If HSI16 is selected for SWPCLK.
1380/1685
DocID024597 Rev 3
yes
yes
(1)
no
RM0351
Single Wire Protocol Master Interface (SWPMI)
40.6
SWPMI registers
Refer to section 1.1 of the reference manual for a list of abbreviations used in register
descriptions.
The peripheral registers can be accessed by words (32-bit).
40.6.1
SWPMI Configuration/Control register (SWPMI_CR)
Address offset: 0x00
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
SWP
ACT
LPBK
rw
rw
Res.
Res.
Res.
Res.
Res.
DEACT
Res.
Res.
Res.
rw
TXMOD RXMO
TXDMA RXDMA
E
DE
rw
rw
rw
rw
Bits 31:11 Reserved, must be kept at reset value
Bit 10 DEACT: Single wire protocol master interface deactivate
This bit is used to request the SWP DEACTIVATED state. Setting this bit has the same effect
as clearing the SWPACT, except that a possible incoming RESUME by slave will keep the
SWP in the ACTIVATED state.
Bits 9:6 Reserved, must be kept at reset value
Bit 5 SWPACT: Single wire protocol master interface activate
This bit is used to activate the SWP bus (refer to Section 40.3.2: SWP initialization and
activation).
0: SWPMI_IO is pulled down to ground, SWP bus is switched to DEACTIVATED state
1: SWPMI_IO is released, SWP bus is switched to SUSPENDED state
To be able to set SWPACT bit, DEACT bit must be have been cleared previously.
Bit 4 LPBK: Loopback mode enable
This bit is used to enable the loopback mode
0: Loopback mode is disabled
1: Loopback mode is enabled
Note: This bit cannot be written while SWPACT bit is set.
Bit 3 TXMODE: Transmission buffering mode
This bit is used to choose the transmission buffering mode. This bit is relevant only when
TXDMA bit is set (refer to Table 217: Buffer modes selection for transmission/reception).
0: SWPMI is configured in Single software buffer mode for transmission
1: SWPMI is configured in Multi software buffer mode for transmission.
Note: This bit cannot be written while SWPACT bit is set.
DocID024597 Rev 3
1381/1685
1392
Single Wire Protocol Master Interface (SWPMI)
RM0351
Bit 2 RXMODE: Reception buffering mode
This bit is used to choose the reception buffering mode. This bit is relevant only when
TXDMA bit is set (refer to Table 217: Buffer modes selection for transmission/reception).
0: SWPMI is configured in Single software buffer mode for reception
1: SWPMI is configured in Multi software buffer mode for reception.
Note: This bit cannot be written while SWPACT bit is set.
Bit 1 TXDMA: Transmission DMA enable
This bit is used to enable the DMA mode in transmission
0: DMA is disabled for transmission
1: DMA is enabled for transmission
Note: TXDMA is automatically cleared if the payload size of the transmitted frame is given as
0x00 (in the least significant byte of TDR for the first word of a frame). TXDMA is also
automatically cleared on underrun events (when TXUNRF flag is set in the SWP_ISR
register)
Bit 0 RXDMA: Reception DMA enable
This bit is used to enable the DMA mode in reception
0: DMA is disabled for reception
1: DMA is enabled for reception
Table 217. Buffer modes selection for transmission/reception
Buffer mode
1382/1685
No software buffer
Single software buffer
Multi software buffer
RXMODE/TXMODE
x
0
1
RXDMA/TXDMA
0
1
1
DocID024597 Rev 3
RM0351
Single Wire Protocol Master Interface (SWPMI)
40.6.2
SWPMI Bitrate register (SWPMI_BRR)
Address offset: 0x04
Reset value: 0x0000 0001
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
rw
rw
BR[5:0]
rw
rw
rw
Bits 31:6 Reserved, must be kept at reset value
Bits 5:0 BR[5:0]: Bitrate prescaler
This field must be programmed to set SWP bus bitrate, taking into account the FSWPCLK
programmed in the RCC (Reset and Clock Control), according to the following formula:
FSWP= FSWPCLK / ((BR[5:0]+1)x4)
Note: The programmed bitrate must stay within the following range: from 100 kbit/s up to
2 Mbit/s.
BR[5:0] cannot be written while SWPACT bit is set in the SWPMI_CR register.
DocID024597 Rev 3
1383/1685
1392
Single Wire Protocol Master Interface (SWPMI)
40.6.3
RM0351
SWPMI Interrupt and Status register (SWPMI_ISR)
Address offset: 0x0C
Reset value: 0x0000 02C2
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
DEACT
F
SUSP
SRF
TCF
TXE
RXNE
r
r
r
r
r
r
Res.
Res.
Res.
Res.
TXUNR RXOVR RXBER
TXBEF RXBFF
F
F
F
r
r
r
r
r
Bits 31:11 Reserved, must be kept at reset value
Bit 10 DEACTF: DEACTIVATED flag
This bit is a status flag, acknowledging the request to enter the DEACTIVATED mode.
0: SWP bus is in ACTIVATED or SUSPENDED state
1: SWP bus is in DEACTIVATED state
If a RESUME by slave state is detected by the SWPMI while DEACT bit is set by software,
the SRF flag will be set, DEACTF will not be set and SWP will move in ACTIVATED state.
Bit 9 SUSP: SUSPEND flag
This bit is a status flag, reporting the SWP bus state
0: SWP bus is in ACTIVATED state
1: SWP bus is in SUSPENDED or DEACTIVATED state
Bit 8 SRF: Slave resume flag
This bit is set by hardware to indicate a RESUME by slave detection. It is cleared by software,
writing 1 to CSRF bit in the SWPMI_ICR register.
0: No Resume by slave state detected
1: A Resume by slave state has been detected during the SWP bus SUSPENDED state
Bit 7 TCF: Transfer complete flag
This flag is set by hardware as soon as both transmission and reception are completed and
SWP is switched to the SUSPENDED state. It is cleared by software, writing 1 to CTCF bit in
the SWPMI_ICR register.
0: Transmission or reception is not completed
1: Both transmission and reception are completed and SWP is switched to the SUSPENDED
state
Bit 6 TXE: Transmit data register empty
This flag indicates the transmit data register status
0: Data written in transmit data register SWPMI_TDR is not transmitted yet
1: Data written in transmit data register SWPMI_TDR has been transmitted and
SWPMI_TDR can be written to again
Bit 5 RXNE: Receive data register not empty
This flag indicates the receive data register status
0: Data is not received in the SWPMI_RDR register
1: Received data is ready to be read in the SWPMI_RDR register
1384/1685
DocID024597 Rev 3
RM0351
Single Wire Protocol Master Interface (SWPMI)
Bit 4 TXUNRF: Transmit underrun error flag
This flag is set by hardware to indicate an underrun during the payload transmission i.e.
SWPMI_TDR has not been written in time by the software or the DMA. It is cleared by
software, writing 1 to the CTXUNRF bit in the SWPMI_ICR register.
0: No underrun error in transmission
1: Underrun error in transmission detected
Bit 3 RXOVRF: Receive overrun error flag
This flag is set by hardware to indicate an overrun during the payload reception, i.e.
SWPMI_RDR has not be read in time by the software or the DMA. It is cleared by software,
writing 1 to CRXOVRF bit in the SWPMI_ICR register.
0: No overrun in reception
1: Overrun in reception detected
Bit 2 RXBERF: Receive CRC error flag
This flag is set by hardware to indicate a CRC error in the received frame. It is set
synchronously with RXBFF flag. It is cleared by software, writing 1 to CRXBERF bit in the
SWPMI_ICR register.
0: No CRC error in reception
1: CRC error in reception detected
Bit 1 TXBEF: Transmit buffer empty flag
This flag is set by hardware to indicate that no more SWPMI_TDR update is required to
complete the current frame transmission. It is cleared by software, writing 1 to CTXBEF bit in
the SWPMI_ICR register.
0: Frame transmission buffer no yet emptied
1: Frame transmission buffer has been emptied
Bit 0 RXBFF: Receive buffer full flag
This flag is set by hardware when the final word for the frame under reception is available in
SWPMI_RDR. It is cleared by software, writing 1 to CRXBFF bit in the SWPMI_ICR register.
0: The last word of the frame under reception has not yet arrived in SWPMI_RDR
1: The last word of the frame under reception has arrived in SWPMI_RDR
DocID024597 Rev 3
1385/1685
1392
Single Wire Protocol Master Interface (SWPMI)
40.6.4
RM0351
SWPMI Interrupt Flag Clear register (SWPMI_ICR)
Address offset: 0x10
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
CSRF
CTCF
rc_w1
rc_w1
Res.
Res.
CTXUN CRXOV CRXBE CTXBE CRXBF
RF
RF
RF
F
F
rc_w1
rc_w1
rc_w1
Bits 31:9 Reserved, must be kept at reset value
Bit 8 CSRF: Clear slave resume flag
Writing 1 to this bit clears the SRF flag in the SWPMI_ISR register
Writing 0 to this bit does not have any effect
Bit 7 CTCF: Clear transfer complete flag
Writing 1 to this bit clears the TCF flag in the SWPMI_ISR register
Writing 0 to this bit does not have any effect
Bits 6:5 Reserved, must be kept at reset value
Bit 4 CTXUNRF: Clear transmit underrun error flag
Writing 1 to this bit clears the TXUNRF flag in the SWPMI_ISR register
Writing 0 to this bit does not have any effect
Bit 3 CRXOVRF: Clear receive overrun error flag
Writing 1 to this bit clears the RXBOCREF flag in the SWPMI_ISR register
Writing 0 to this bit does not have any effect
Bit 2 CRXBERF: Clear receive CRC error flag
Writing 1 to this bit clears the RXBERF flag in the SWPMI_ISR register
Writing 0 to this bit does not have any effect
Bit 1 CTXBEF: Clear transmit buffer empty flag
Writing 1 to this bit clears the TXBEF flag in the SWPMI_ISR register
Writing 0 to this bit does not have any effect
Bit 0 CRXBFF: Clear receive buffer full flag
Writing 1 to this bit clears the RXBFF flag in the SWPMI_ISR register
Writing 0 to this bit does not have any effect
1386/1685
DocID024597 Rev 3
rc_w1
rc_w1
RM0351
Single Wire Protocol Master Interface (SWPMI)
40.6.5
SWPMI Interrupt Enable register (SMPMI_IER)
Address offset: 0x14
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SRIE
TCIE
TIE
RIE
rw
rw
rw
rw
TXUNR RXOVR RXBEI TXBERI
RXBFIE
EIE
EIE
E
E
rw
rw
rw
rw
rw
Bits 31:9 Reserved, must be kept at reset value
Bit 8 SRIE: Slave resume interrupt enable
0: Interrupt is inhibited
1: An SWPMI interrupt is generated whenever SRF flag is set in the SWPMI_ISR register
Bit 7 TCIE: Transmit complete interrupt enable
0: Interrupt is inhibited
1: An SWPMI interrupt is generated whenever TCF flag is set in the SWPMI_ISR register
Bit 6 TIE: Transmit interrupt enable
0: Interrupt is inhibited
1: An SWPMI interrupt is generated whenever TXE flag is set in the SWPMI_ISR register
Bit 5 RIE: Receive interrupt enable
0: Interrupt is inhibited
1: An SWPMI interrupt is generated whenever RXNE flag is set in the SWPMI_ISR register
Bit 4 TXUNRIE: Transmit underrun error interrupt enable
0: Interrupt is inhibited
1: An SWPMI interrupt is generated whenever TXBUNRF flag is set in the SWPMI_ISR
register
Bit 3 RXOVRIE: Receive overrun error interrupt enable
0: Interrupt is inhibited
1: An SWPMI interrupt is generated whenever RXBOVRF flag is set in the SWPMI_ISR
register
Bit 2 RXBERIE: Receive CRC error interrupt enable
0: Interrupt is inhibited
1: An SWPMI interrupt is generated whenever RXBERF flag is set in the SWPMI_ISR
register
Bit 1 TXBEIE: Transmit buffer empty interrupt enable
0: Interrupt is inhibited
1: An SWPMI interrupt is generated whenever TXBEF flag is set in the SWPMI_ISR register
Bit 0 RXBFIE: Receive buffer full interrupt enable
0: Interrupt is inhibited
1: An SWPMI interrupt is generated whenever RXBFF flag is set in the SWPMI_ISR register
DocID024597 Rev 3
1387/1685
1392
Single Wire Protocol Master Interface (SWPMI)
40.6.6
RM0351
SWPMI Receive Frame Length register (SWPMI_RFL)
Address offset: 0x18
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
r
r
RFL[4:0]
r
r
r
Bits 31:5 Reserved, must be kept at reset value
Bits 4:0 RFL[4:0]: Receive frame length
RFL[4:0] is the number of data bytes in the payload of the received frame. The two least
significant bits RFL[1:0] give the number of relevant bytes for the last SWPMI_RDR register
read.
1388/1685
DocID024597 Rev 3
RM0351
Single Wire Protocol Master Interface (SWPMI)
40.6.7
SWPMI Transmit data register (SWPMI_TDR)
Address offset: 0x1C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
TD[31:16]
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
w
w
w
w
w
w
w
TD[15:0]
w
w
w
w
w
w
w
w
w
Bits 31:0 TD[31:0]: Transmit data
Contains the data to be transmitted.
Writing to this register triggers the SOF transmission or the next payload data transmission,
and clears the TXE flag.
DocID024597 Rev 3
1389/1685
1392
Single Wire Protocol Master Interface (SWPMI)
40.6.8
RM0351
SWPMI Receive data register (SWPMI_RDR)
Address offset: 0x20
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RD[31:16]
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
RD[15:0]
r
r
r
r
r
r
r
r
r
Bits 31:0 RD[31:0]: received data
Contains the received data
Reading this register is clearing the RXNE flag.
1390/1685
DocID024597 Rev 3
RM0351
Single Wire Protocol Master Interface (SWPMI)
40.6.9
SWPMI Option register (SWPMI_OR)
Address offset: 0x24
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
SWP_
CLASS
SWP_
TBYP
rw
rw
Bits 31:2 Reserved, must be kept at reset value
Bit 1 SWP_CLASS: SWP class selection
This bit is used to select the SWP class (refer to Section 40.3.2: SWP initialization and
activation).
0: Class C: SWPMI_IO uses directly VDD voltage to operate in class C.
This configuration must be selected when VDD is in the range [1.62 V to 1.98 V]
1: Class B: SWPMI_IO uses an internal voltage regulator to operate in class B.
This configuration must be selected when VDD is in the range [2.70 V to 3.30 V]
Bit 0 SWP_TBYP: SWP transceiver bypass
This bit is used to bypass the internal transceiver (SWPMI_IO), and connect an external
transceiver.
0: Internal transceiver is enabled. The external interface for SWPMI is SWPMI_IO
(SWPMI_RX, SWPMI_TX and SWPMI_SUSPEND signals are not available on GPIOs)
1: Internal transceiver is disabled. SWPMI_RX, SWPMI_TX and SWPMI_SUSPEND signals
are available as alternate function on GPIOs. This configuration is selected to connect an
external transceiver
DocID024597 Rev 3
1391/1685
1392
1392/1685
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SWPMI_OR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SWPMI_RDR
Reset value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RD[31:0]
0
Reset value
DocID024597 Rev 3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SWP_ TBYP
0
Res.
SWPMI_TDR
Res.
0
Res.
SWPMI_RFL
Res.
CTXUNRF
CRXBERF
CTXBEF
CRXBFF
0
0
0
RXBERIE
TXBEIE
RXBFIE
0
CRXOVRF
0
0
TXUNRIE
0
0
RXOVRIE
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DEACTF
SUSP.
SRF
TCF
TXE.
RXNE.
TXUNRF
RXOVRF
RXBERF
TXBEF
RXBFF
Reset value
RIE
TIE
Res.
CTCF
0
TCIE
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DEACT
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Reset value
LPBK
RXMODE
TXDMA
RXDMA
0
TXMODE
SWPACT
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
CSRF
Reset value
0
SRIE
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SWPMI_IER
SWP_ CLASS
0
Res.
0x24
Reset value
Res.
0x1C
Res.
0x18
Res.
0x14
Res.
SWPMI_ICR
Res.
Reset value
Res.
Reset value
Res.
SWPMI_ISR
Res.
0x10
Res.
0x0C
Res.
RESERVED
Res.
SWPMI_BRR
Res.
0x08
Res.
0x20
SWPMI_CR
Res.
0x00
Res.
0x04
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register name
reset value
Res.
Offset
Res.
40.6.10
Res.
Single Wire Protocol Master Interface (SWPMI)
RM0351
SWPMI register map and reset value table
Table 218. SWPMI register map and reset values
Register size
0
0
0
0
0
BRR[5:0]
0
0
0
0
1
0
1
0
1
1
0
0
0
0
1
0
0
0
RFL[4:0]
0
0
0
0
TD[31:0]
0
0
0
0
0
0
0
RM0351
SD/SDIO/MMC card host interface (SDMMC)
41
SD/SDIO/MMC card host interface (SDMMC)
41.1
SDMMC main features
The SD/SDIO MMC card host interface (SDMMC) provides an interface between the APB2
peripheral bus and MultiMediaCards (MMCs), SD memory cards and SDIO cards.
The MultiMediaCard system specifications are available through the MultiMediaCard
Association website, published by the MMCA technical committee.
SD memory card and SD I/O card system specifications are available through the SD card
Association website.
The SDMMC features include the following:
Note:
•
Full compliance with MultiMediaCard System Specification Version 4.2. Card support
for three different databus modes: 1-bit (default), 4-bit and 8-bit
•
Full compatibility with previous versions of MultiMediaCards (forward compatibility)
•
Full compliance with SD Memory Card Specifications Version 2.0
•
Full compliance with SD I/O Card Specification Version 2.0: card support for two
different databus modes: 1-bit (default) and 4-bit
•
Data transfer up to 50 MHz for the 8 bit mode
•
Data and command output enable signals to control external bidirectional drivers.
1
The SDMMC does not have an SPI-compatible communication mode.
2
The SD memory card protocol is a superset of the MultiMediaCard protocol as defined in the
MultiMediaCard system specification V2.11. Several commands required for SD memory
devices are not supported by either SD I/O-only cards or the I/O portion of combo cards.
Some of these commands have no use in SD I/O devices, such as erase commands, and
thus are not supported in the SDIO protocol. In addition, several commands are different
between SD memory cards and SD I/O cards and thus are not supported in the SDIO
protocol. For details refer to SD I/O card Specification Version 1.0.
The MultiMediaCard/SD bus connects cards to the controller.
The current version of the SDMMC supports only one SD/SDIO/MMC4.2 card at any one
time and a stack of MMC4.1 or previous.
41.2
SDMMC bus topology
Communication over the bus is based on command and data transfers.
The basic transaction on the MultiMediaCard/SD/SD I/O bus is the command/response
transaction. These types of bus transaction transfer their information directly within the
command or response structure. In addition, some operations have a data token.
Data transfers to/from SD/SDIO memory cards are done in data blocks. Data transfers
to/from MMC are done data blocks or streams.
DocID024597 Rev 3
1393/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
RM0351
Figure 464. “No response” and “no data” operations
)URPKRVWWRFDUG V
6'00&B&0'
)URPKRVWWRFDUG
&RPPDQG
&RPPDQG
)URPFDUGWRKRVW
5HVSRQVH
6'00&B'
2SHUDWLRQ QRUHVSRQVH
2SHUDWLRQ QRGDWD
DLE
Figure 465. (Multiple) block read operation
)URPKRVWWRFDUG )URPFDUGWRKRVW
GDWDIURPFDUGWRKRVW
6'00&B&0'
&RPPDQG
6WRSFRPPDQG
VWRSVGDWDWUDQVIHU
5HVSRQVH
6'00&B'
&RPPDQG
'DWDEORFN FUF
'DWDEORFN FUF
5HVSRQVH
'DWDEORFN FUF
%ORFNUHDGRSHUDWLRQ
'DWDVWRSRSHUDWLRQ
0XOWLSOHEORFNUHDGRSHUDWLRQ
DLE
Figure 466. (Multiple) block write operation
)URPKRVWWRFDUG )URPFDUGWRKRVW
GDWDIURPKRVWWRFDUG
6'00&B&0'
6'00&B'
&RPPDQG
6WRSFRPPDQG
VWRSVGDWDWUDQVIHU
5HVSRQVH
&RPPDQG
'DWDEORFN FUF
%XV\
%ORFNZULWHRSHUDWLRQ
'DWDEORFN FUF
5HVSRQVH
%XV\
'DWDVWRSRSHUDWLRQ
0XOWLSOHEORFNZULWHRSHUDWLRQ
DLE
Note:
1394/1693
The SDMMC will not send any data as long as the Busy signal is asserted (SDMMC_D0
pulled low).
DocID024597 Rev 3
RM0351
SD/SDIO/MMC card host interface (SDMMC)
Figure 467. Sequential read operation
)URPKRVWWR
)URPFDUGWRKRVW
FDUG V
6WRSFRPPDQG
VWRSVGDWDWUDQVIHU
'DWDIURPFDUGWRKRVW
6'00&B&0'
&RPPDQG
5HVSRQVH
&RPPDQG
5HVSRQVH
'DWDVWUHDP
6'00&B'
'DWDVWRSRSHUDWLRQ
'DWDWUDQVIHURSHUDWLRQ
DLE
Figure 468. Sequential write operation
)URPKRVWWR
FDUG V
)URPFDUGWRKRVW
6WRSFRPPDQG
VWRSVGDWDWUDQVIHU
'DWDIURPKRVWWRFDUG
6'00&B&0'
&RPPDQG
5HVSRQVH
&RPPDQG
5HVSRQVH
'DWDVWUHDP
6'00&B'
'DWDVWRSRSHUDWLRQ
'DWDWUDQVIHURSHUDWLRQ
DLE
41.3
SDMMC functional description
The SDMMC consists of two parts:
•
The SDMMC adapter block provides all functions specific to the MMC/SD/SD I/O card
such as the clock generation unit, command and data transfer.
•
The APB2 interface accesses the SDMMC adapter registers, and generates interrupt
and DMA request signals.
Figure 469. SDMMC block diagram
6'00&
6'00&B&.
,QWHUUXSWVDQG
'0$UHTXHVW
6'00&B&0'
$3%
LQWHUIDFH
6'00&
DGDSWHU
3&/.
6'00&&/.
6'00&B'>@
$3%EXV
DocID024597 Rev 3
DLE
1395/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
RM0351
By default SDMMC_D0 is used for data transfer. After initialization, the host can change the
databus width.
If a MultiMediaCard is connected to the bus, SDMMC_D0, SDMMC_D[3:0] or
SDMMC_D[7:0] can be used for data transfer. MMC V3.31 or previous, supports only 1 bit of
data so only SDMMC_D0 can be used.
If an SD or SD I/O card is connected to the bus, data transfer can be configured by the host
to use SDMMC_D0 or SDMMC_D[3:0]. All data lines are operating in push-pull mode.
SDMMC_CMD has two operational modes:
•
Open-drain for initialization (only for MMCV3.31 or previous)
•
Push-pull for command transfer (SD/SD I/O card MMC4.2 use push-pull drivers also for
initialization)
SDMMC_CK is the clock to the card: one bit is transferred on both command and data lines
with each clock cycle.
The SDMMC uses two clock signals:
•
SDMMC adapter clock SDMMCCLK = 50 MHz)
•
APB2 bus clock (PCLK2)
PCLK2 and SDMMC_CK clock frequencies must respect the following condition:
Frequenc ( PCLK2 ) > ( ( 3xWidth ) ⁄ 32 ) × Frequency ( SDMMC_CK )
The signals shown in Table 219 are used on the MultiMediaCard/SD/SD I/O card bus.
Table 219. SDMMC I/O definitions
Pin
1396/1693
Direction
Description
SDMMC_CK
Output
MultiMediaCard/SD/SDIO card clock. This pin is the clock from
host to card.
SDMMC_CMD
Bidirectional
MultiMediaCard/SD/SDIO card command. This pin is the
bidirectional command/response signal.
SDMMC_D[7:0]
Bidirectional
MultiMediaCard/SD/SDIO card data. These pins are the
bidirectional databus.
DocID024597 Rev 3
RM0351
41.3.1
SD/SDIO/MMC card host interface (SDMMC)
SDMMC adapter
Figure 470 shows a simplified block diagram of an SDMMC adapter.
Figure 470. SDMMC adapter
6'00&DGDSWHU
$GDSWHU
UHJLVWHUV
7R$3%
LQWHUIDFH
),)2
3&/.
6'00&B&.
&RPPDQG
SDWK
6'00&B&0'
'DWDSDWK
6'00&B'>@
&DUGEXV
&RQWUROXQLW
6'00&&/.
DLE
The SDMMC adapter is a multimedia/secure digital memory card bus master that provides
an interface to a multimedia card stack or to a secure digital memory card. It consists of five
subunits:
Note:
•
Adapter register block
•
Control unit
•
Command path
•
Data path
•
Data FIFO
The adapter registers and FIFO use the APB2 bus clock domain (PCLK2). The control unit,
command path and data path use the SDMMC adapter clock domain (SDMMCCLK).
Adapter register block
The adapter register block contains all system registers. This block also generates the
signals that clear the static flags in the multimedia card. The clear signals are generated
when 1 is written into the corresponding bit location in the SDMMC Clear register.
Control unit
The control unit contains the power management functions and the clock divider for the
memory card clock.
There are three power phases:
•
power-off
•
power-up
•
power-on
DocID024597 Rev 3
1397/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
RM0351
Figure 471. Control unit
&RQWUROXQLW
3RZHUPDQDJHPHQW
$GDSWHU
UHJLVWHUV
&ORFNPDQDJHPHQW
6'00&B&.
7RFRPPDQGDQGGDWDSDWK
DLE
The control unit is illustrated in Figure 471. It consists of a power management subunit and
a clock management subunit.
The power management subunit disables the card bus output signals during the power-off
and power-up phases.
The clock management subunit generates and controls the SDMMC_CK signal. The
SDMMC_CK output can use either the clock divide or the clock bypass mode. The clock
output is inactive:
•
after reset
•
during the power-off or power-up phases
•
if the power saving mode is enabled and the card bus is in the Idle state (eight clock
periods after both the command and data path subunits enter the Idle phase)
The clock management subunit controls SDMMC_CK dephasing. When not in bypass mode
the SDMMC command and data output are generated on the SDMMCCLK falling edge
succeeding the rising edge of SDMMC_CK. (SDMMC_CK rising edge occurs on
SDMMCCLK rising edge) when SDMMC_CLKCR[13] bit is reset (NEGEDGE = 0). When
SDMMC_CLKCR[13] bit is set (NEGEDGE = 1) SDMMC command and data changed on
the SDMMC_CK falling edge.
When SDMMC_CLKCR[10] is set (BYPASS = 1), SDMMC_CK rising edge occurs on
SDMMCCLK rising edge. The data and the command change on SDMMCCLK falling edge
whatever NEGEDGE value.
The data and command responses are latched using SDMMC_CK rising edge.
1398/1693
DocID024597 Rev 3
RM0351
SD/SDIO/MMC card host interface (SDMMC)
Figure 472. SDMMC_CK clock dephasing (BYPASS = 0)
6'00&&/.
6'00&B&.
&0''DWD
RXWSXW
1(*('*(
1(*('*(
06Y9
Command path
The command path unit sends commands to and receives responses from the cards.
Figure 473. SDMMC adapter command path
7RFRQWUROXQLW
6WDWXV
IODJ
&RQWURO
ORJLF
&RPPDQG
WLPHU
$GDSWHUUHJLVWHUV
6'00&B&0'LQ
&0'
$UJXPHQW
&5&
&0'
7R$3%LQWHUIDFH
6'00&B&0'RXW
6KLIW
UHJLVWHU
5HVSRQVH
UHJLVWHUV
DLE
•
Command path state machine (CPSM)
–
When the command register is written to and the enable bit is set, command
transfer starts. When the command has been sent, the command path state
machine (CPSM) sets the status flags and enters the Idle state if a response is not
required. If a response is required, it waits for the response (see Figure 474 on
page 1400). When the response is received, the received CRC code and the
internally generated code are compared, and the appropriate status flags are set.
DocID024597 Rev 3
1399/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
RM0351
Figure 474. Command path state machine (SDMMC)
2QUHVHW
&360HQDEOHGDQG
SHQGLQJFRPPDQG
,GOH
&360GLVDEOHG
3HQG
5HVSRQVHUHFHLYHGRU
GLVDEOHGRUFRPPDQG
&5&IDLOHG
(QDEOHGDQG
FRPPDQGVWDUW
&360GLVDEOHG
RUQRUHVSRQVH
/DVWGDWD
6HQG
&360GLVDEOHGRU
FRPPDQGWLPHRXW
5HFHLYH
5HVSRQVH
VWDUWHG
:DLWIRUUHVSRQVH
:DLW
069
When the Wait state is entered, the command timer starts running. If the timeout is reached
before the CPSM moves to the Receive state, the timeout flag is set and the Idle state is
entered.
Note:
The command timeout has a fixed value of 64 SDMMC_CK clock periods.
If the interrupt bit is set in the command register, the timer is disabled and the CPSM waits
for an interrupt request from one of the cards. If a pending bit is set in the command register,
the CPSM enters the Pend state, and waits for a CmdPend signal from the data path
subunit. When CmdPend is detected, the CPSM moves to the Send state. This enables the
data counter to trigger the stop command transmission.
Note:
1400/1693
The CPSM remains in the Idle state for at least eight SDMMC_CK periods to meet the NCC
and NRC timing constraints. NCC is the minimum delay between two host commands, and
NRC is the minimum delay between the host command and the card response.
DocID024597 Rev 3
RM0351
SD/SDIO/MMC card host interface (SDMMC)
Figure 475. SDMMC command transfer
DWOHDVW6'00&B&.
F\FOHV
6'00&B&.
&RPPDQG
&RPPDQG
5HVSRQVH
6WDWH
,GOH
6HQG
:DLW
5HFHLYH
,GOH
6HQG
6'00&B&0'
+L=
&RQWUROOHUGULYHV
+L=
&DUGGULYHV
+L=
&RQWUROOHUGULYHV
DLE
•
Command format
–
Command: a command is a token that starts an operation. Command are sent
from the host either to a single card (addressed command) or to all connected
cards (broadcast command are available for MMC V3.31 or previous). Commands
are transferred serially on the CMD line. All commands have a fixed length of 48
bits. The general format for a command token for MultiMediaCards, SD-Memory
cards and SDIO-Cards is shown in Table 220.
The command path operates in a half-duplex mode, so that commands and
responses can either be sent or received. If the CPSM is not in the Send state, the
SDMMC_CMD output is in the Hi-Z state, as shown in Figure 475 on page 1401.
Data on SDMMC_CMD are synchronous with the rising edge of SDMMC_CK.
Table 220 shows the command format.
Table 220. Command format
Bit position
Width
Value
Description
47
1
0
Start bit
46
1
1
Transmission bit
[45:40]
6
-
Command index
[39:8]
32
-
Argument
[7:1]
7
-
CRC7
0
1
1
End bit
–
Response: a response is a token that is sent from an addressed card (or
synchronously from all connected cards for MMC V3.31 or previous), to the host
as an answer to a previously received command. Responses are transferred
serially on the CMD line.
The SDMMC supports two response types. Both use CRC error checking:
Note:
•
48 bit short response
•
136 bit long response
If the response does not contain a CRC (CMD1 response), the device driver must ignore the
CRC failed status.
DocID024597 Rev 3
1401/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
RM0351
Table 221. Short response format
Bit position
Width
Value
Description
47
1
0
Start bit
46
1
0
Transmission bit
[45:40]
6
-
Command index
[39:8]
32
-
Argument
[7:1]
7
-
CRC7(or 1111111)
0
1
1
End bit
Table 222. Long response format
Bit position
Width
Value
Description
135
1
0
Start bit
134
1
0
Transmission bit
[133:128]
6
111111
Reserved
[127:1]
127
-
CID or CSD (including internal CRC7)
0
1
1
End bit
The command register contains the command index (six bits sent to a card) and the
command type. These determine whether the command requires a response, and whether
the response is 48 or 136 bits long (see Section 41.8.4 on page 1437). The command path
implements the status flags shown in Table 223:
Table 223. Command path status flags
Flag
Description
CMDREND
Set if response CRC is OK.
CCRCFAIL
Set if response CRC fails.
CMDSENT
Set when command (that does not require response) is sent
CTIMEOUT
Response timeout.
CMDACT
Command transfer in progress.
The CRC generator calculates the CRC checksum for all bits before the CRC code. This
includes the start bit, transmitter bit, command index, and command argument (or card
status). The CRC checksum is calculated for the first 120 bits of CID or CSD for the long
response format. Note that the start bit, transmitter bit and the six reserved bits are not used
in the CRC calculation.
The CRC checksum is a 7-bit value:
CRC[6:0] = Remainder [(M(x) * x7) / G(x)]
G(x) = x7 + x3 + 1
M(x) = (start bit) * x39 + ... + (last bit before CRC) * x0, or
M(x) = (start bit) * x119 + ... + (last bit before CRC) * x0
1402/1693
DocID024597 Rev 3
RM0351
SD/SDIO/MMC card host interface (SDMMC)
Data path
The data path subunit transfers data to and from cards. Figure 476 shows a block diagram
of the data path.
Figure 476. Data path
'DWDSDWK
7RFRQWUROXQLW
6WDWXV
IODJ
&RQWURO
ORJLF
'DWD
WLPHU
'DWD),)2
6'00&B'LQ>@
7UDQVPLW
&5&
6'00&B'RXW>@
6KLIW
UHJLVWHU
5HFHLYH
DLE
The card databus width can be programmed using the clock control register. If the 4-bit wide
bus mode is enabled, data is transferred at four bits per clock cycle over all four data signals
(SDMMC_D[3:0]). If the 8-bit wide bus mode is enabled, data is transferred at eight bits per
clock cycle over all eight data signals (SDMMC_D[7:0]). If the wide bus mode is not
enabled, only one bit per clock cycle is transferred over SDMMC_D0.
Depending on the transfer direction (send or receive), the data path state machine (DPSM)
moves to the Wait_S or Wait_R state when it is enabled:
•
Send: the DPSM moves to the Wait_S state. If there is data in the transmit FIFO, the
DPSM moves to the Send state, and the data path subunit starts sending data to a
card.
•
Receive: the DPSM moves to the Wait_R state and waits for a start bit. When it
receives a start bit, the DPSM moves to the Receive state, and the data path subunit
starts receiving data from a card.
Data path state machine (DPSM)
The DPSM operates at SDMMC_CK frequency. Data on the card bus signals is
synchronous to the rising edge of SDMMC_CK. The DPSM has six states, as shown in
Figure 477: Data path state machine (DPSM).
DocID024597 Rev 3
1403/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
RM0351
Figure 477. Data path state machine (DPSM)
/N RESET
$03- DISABLED
2EAD 7AIT
$03- ENABLED AND
2EAD 7AIT 3TARTED
AND 3$ )/ MODE ENABLED
$ISABLED OR &)&/ UNDERRUN OR
END OF DATA OR #2# FAIL
)DLE
$ISABLED OR #2# FAIL
OR TIMEOUT
%NABLE AND NOT SEND
2EAD7AIT 3TOP
$ISABLED OR
END OF DATA
$ISABLED OR
2X &)&/ EMPTY OR TIMEOUT OR
START BIT ERROR
"USY
.OT BUSY
%NABLE AND SEND
7AIT?2
$ATA RECEIVED AND
2EAD 7AIT 3TARTED AND
3$ )/ MODE ENABLED
%ND OF PACKET
7AIT?3
%ND OF PACKET OR
END OF DATA OR
&)&/ OVERRUN
$ISABLED OR #2# FAIL
3TART BIT
$ATA READY
3END
2ECEIVE
AIB
•
Idle: the data path is inactive, and the SDMMC_D[7:0] outputs are in Hi-Z. When the
data control register is written and the enable bit is set, the DPSM loads the data
counter with a new value and, depending on the data direction bit, moves to either the
Wait_S or the Wait_R state.
•
Wait_R: if the data counter equals zero, the DPSM moves to the Idle state when the
receive FIFO is empty. If the data counter is not zero, the DPSM waits for a start bit on
SDMMC_D. The DPSM moves to the Receive state if it receives a start bit before a
timeout, and loads the data block counter. If it reaches a timeout before it detects a
start bit, it moves to the Idle state and sets the timeout status flag.
•
Receive: serial data received from a card is packed in bytes and written to the data
FIFO. Depending on the transfer mode bit in the data control register, the data transfer
mode can be either block or stream:
–
In block mode, when the data block counter reaches zero, the DPSM waits until it
receives the CRC code. If the received code matches the internally generated
CRC code, the DPSM moves to the Wait_R state. If not, the CRC fail status flag is
set and the DPSM moves to the Idle state.
–
In stream mode, the DPSM receives data while the data counter is not zero. When
the counter is zero, the remaining data in the shift register is written to the data
FIFO, and the DPSM moves to the Wait_R state.
If a FIFO overrun error occurs, the DPSM sets the FIFO error flag and moves to the
Idle state:
•
1404/1693
Wait_S: the DPSM moves to the Idle state if the data counter is zero. If not, it waits until
the data FIFO empty flag is deasserted, and moves to the Send state.
DocID024597 Rev 3
RM0351
Note:
SD/SDIO/MMC card host interface (SDMMC)
The DPSM remains in the Wait_S state for at least two clock periods to meet the NWR timing
requirements, where NWR is the number of clock cycles between the reception of the card
response and the start of the data transfer from the host.
•
Send: the DPSM starts sending data to a card. Depending on the transfer mode bit in
the data control register, the data transfer mode can be either block or stream:
–
In block mode, when the data block counter reaches zero, the DPSM sends an
internally generated CRC code and end bit, and moves to the Busy state.
–
In stream mode, the DPSM sends data to a card while the enable bit is high and
the data counter is not zero. It then moves to the Idle state.
If a FIFO underrun error occurs, the DPSM sets the FIFO error flag and moves to the
Idle state.
•
Busy: the DPSM waits for the CRC status flag:
–
If it does not receive a positive CRC status, it moves to the Idle state and sets the
CRC fail status flag.
–
If it receives a positive CRC status, it moves to the Wait_S state if SDMMC_D0 is
not low (the card is not busy).
If a timeout occurs while the DPSM is in the Busy state, it sets the data timeout flag and
moves to the Idle state.
The data timer is enabled when the DPSM is in the Wait_R or Busy state, and
generates the data timeout error:
•
–
When transmitting data, the timeout occurs if the DPSM stays in the Busy state for
longer than the programmed timeout period
–
When receiving data, the timeout occurs if the end of the data is not true, and if the
DPSM stays in the Wait_R state for longer than the programmed timeout period.
Data: data can be transferred from the card to the host or vice versa. Data is
transferred via the data lines. They are stored in a FIFO of 32 words, each word is 32
bits wide.
Table 224. Data token format
Description
Start bit
Data
CRC16
End bit
Block Data
0
-
yes
1
Stream Data
0
-
no
1
DocID024597 Rev 3
1405/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
RM0351
DPSM Flags
The status of the data path subunit transfer is reported by several status flags
Table 225. DPSM flags
Flag
Description
DBCKEND
Set to high when data block send/receive CRC check is passed.
In SDIO multibyte transfer mode this flag is set at the end of the transfer (a
multibyte transfer is considered as a single block transfer by the host).
DATAEND
Set to high when SDMMC_DCOUNT register decrements and reaches 0.
DATAEND indicates the end of a transfer on SDMMC data line.
DTIMEOUT
Set to high when data timeout period is reached.
When data timer reaches zero while DPSM is in Wait_R or Busy state, timeout is
set. DTIMEOUT can be set after DATAEND if DPSM remains in busy state for
longer than the programmed period.
DCRCFAIL
Set to high when data block send/receive CRC check fails.
Data FIFO
The data FIFO (first-in-first-out) subunit is a data buffer with a transmit and receive unit.
The FIFO contains a 32-bit wide, 32-word deep data buffer, and transmit and receive logic.
Because the data FIFO operates in the APB2 clock domain (PCLK2), all signals from the
subunits in the SDMMC clock domain (SDMMCCLK) are resynchronized.
Depending on the TXACT and RXACT flags, the FIFO can be disabled, transmit enabled, or
receive enabled. TXACT and RXACT are driven by the data path subunit and are mutually
exclusive:
•
–
The transmit FIFO refers to the transmit logic and data buffer when TXACT is
asserted
–
The receive FIFO refers to the receive logic and data buffer when RXACT is
asserted
Transmit FIFO:
Data can be written to the transmit FIFO through the APB2 interface when the SDMMC
is enabled for transmission.
The transmit FIFO is accessible via 32 sequential addresses. The transmit FIFO
contains a data output register that holds the data word pointed to by the read pointer.
When the data path subunit has loaded its shift register, it increments the read pointer
and drives new data out.
If the transmit FIFO is disabled, all status flags are deasserted. The data path subunit
asserts TXACT when it transmits data.
1406/1693
DocID024597 Rev 3
RM0351
SD/SDIO/MMC card host interface (SDMMC)
Table 226. Transmit FIFO status flags
Flag
Description
TXFIFOF
Set to high when all 32 transmit FIFO words contain valid data.
TXFIFOE
Set to high when the transmit FIFO does not contain valid data.
TXFIFOHE
Set to high when 8 or more transmit FIFO words are empty. This flag can be used
as a DMA request.
TXDAVL
Set to high when the transmit FIFO contains valid data. This flag is the inverse of
the TXFIFOE flag.
TXUNDERR
Set to high when an underrun error occurs. This flag is cleared by writing to the
SDMMC Clear register.
Note: In case of TXUNDERR, and DMA is used to fill SDMMC FIFO, user
software should disable DMA stream, and then write DMAEN bit in
SDMMC_DCTRL with ‘0’ (to disable DMA request generation).
•
Receive FIFO
When the data path subunit receives a word of data, it drives the data on the write
databus. The write pointer is incremented after the write operation completes. On the
read side, the contents of the FIFO word pointed to by the current value of the read
pointer is driven onto the read databus. If the receive FIFO is disabled, all status flags
are deasserted, and the read and write pointers are reset. The data path subunit
asserts RXACT when it receives data. Table 227 lists the receive FIFO status flags.
The receive FIFO is accessible via 32 sequential addresses.
Table 227. Receive FIFO status flags
Flag
Description
RXFIFOF
Set to high when all 32 receive FIFO words contain valid data
RXFIFOE
Set to high when the receive FIFO does not contain valid data.
RXFIFOHF
Set to high when 8 or more receive FIFO words contain valid data. This flag can be
used as a DMA request.
RXDAVL
Set to high when the receive FIFO is not empty. This flag is the inverse of the
RXFIFOE flag.
RXOVERR
Set to high when an overrun error occurs. This flag is cleared by writing to the
SDMMC Clear register.
Note: In case of RXOVERR, and DMA is used to read SDMMC FIFO, user
software should disable DMA stream, and then write DMAEN bit in
SDMMC_DCTRL with ‘0’ (to disable DMA request generation).
DocID024597 Rev 3
1407/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
41.3.2
RM0351
SDMMC APB2 interface
The APB2 interface generates the interrupt and DMA requests, and accesses the SDMMC
adapter registers and the data FIFO. It consists of a data path, register decoder, and
interrupt/DMA logic.
SDMMC interrupts
The interrupt logic generates an interrupt request signal that is asserted when at least one
of the selected status flags is high. A mask register is provided to allow selection of the
conditions that will generate an interrupt. A status flag generates the interrupt request if a
corresponding mask flag is set.
SDMMC/DMA interface
SDMMC APB interface controls all subunit to perform transfers between the host and card
Example of read procedure using DMA
Send CMD17 (READ_BLOCK) as follows:
Note:
1408/1693
a)
Program the SDMMC data length register (SDMMC data timer register should be
already programmed before the card identification process)
b)
Program DMA channel (please refer to DMA configuration for SDMMC controller)
c)
Program the SDMMC data control register: DTEN with ‘1’ (SDMMC card host
enabled to send data); DTDIR with ‘1’ (from card to controller); DTMODE with ‘0’
(block data transfer); DMAEN with ‘1’ (DMA enabled); DBLOCKSIZE with 0x9
(512 bytes). Other fields are don’t care.
d)
Program the SDMMC argument register with the address location of the card from
where data is to be transferred
e)
Program the SDMMC command register: CmdIndex with 17(READ_BLOCK);
WaitResp with ‘1’ (SDMMC card host waits for a response); CPSMEN with ‘1’
(SDMMC card host enabled to send a command). Other fields are at their reset
value.
f)
Wait for SDMMC_STA[6] = CMDREND interrupt, (CMDREND is set if there is no
error on command path).
g)
Wait for SDMMC_STA[10] = DBCKEND, (DBCKEND is set in case of no errors
until the CRC check is passed)
h)
Wait until the FIFO is empty, when FIFO is empty the SDMMC_STA[5] =
RXOVERR value has to be check to guarantee that read succeeded
When FIFO overrun error occurs with last 1-4 bytes, it may happens that RXOVERR flag is
set 2 APB clock cycles after DATAEND flag is set. To guarantee success of read operation
RXOVERR must be cheked after FIFO is empty.
DocID024597 Rev 3
RM0351
SD/SDIO/MMC card host interface (SDMMC)
Example of write procedure using DMA
Send CMD24 (WRITE_BLOCK) as follows:
a)
Program the SDMMC data length register (SDMMC data timer register should be
already programmed before the card identification process)
b)
Program DMA channel (please refer to DMA configuration for SDMMC controller)
c)
Program the SDMMC argument register with the address location of the card from
where data is to be transferred
d)
Program the SDMMC command register: CmdIndex with 24(WRITE_BLOCK);
WaitResp with ‘1’ (SDMMC card host waits for a response); CPSMEN with ‘1’
(SDMMC card host enabled to send a command). Other fields are at their reset
value.
e)
Wait for SDMMC_STA[6] = CMDREND interrupt, then Program the SDMMC data
control register: DTEN with ‘1’ (SDMMC card host enabled to send data); DTDIR
with ‘0’ (from controller to card); DTMODE with ‘0’ (block data transfer); DMAEN
with ‘1’ (DMA enabled); DBLOCKSIZE with 0x9 (512 bytes). Other fields are don’t
care.
f)
Wait for SDMMC_STA[10] = DBCKEND, (DBCKEND is set in case of no errors)
DMA configuration for SDMMC controller
a)
Enable DMA2 controller and clear any pending interrupts
b)
Program the DMA2_Channel4 (or DMA2_Channel5) source address register with
the memory location base address and DMA2_Channel4 (or DMA2_Channel5)
destination address register with the SDMMC_FIFO register address
c)
Program DMA2_Channel4 (or DMA2_Channel5) control register (memory
increment, not peripheral increment, peripheral and source width is word size)
d)
Enable DMA2_Channel4 (or DMA2_Channel5)
41.4
Card functional description
41.4.1
Card identification mode
While in card identification mode the host resets all cards, validates the operation voltage
range, identifies cards and sets a relative card address (RCA) for each card on the bus. All
data communications in the card identification mode use the command line (CMD) only.
41.4.2
Card reset
The GO_IDLE_STATE command (CMD0) is the software reset command and it puts the
MultiMediaCard and SD memory in the Idle state. The IO_RW_DIRECT command (CMD52)
resets the SD I/O card. After power-up or CMD0, all cards output bus drivers are in the highimpedance state and the cards are initialized with a default relative card address
(RCA=0x0001) and with a default driver stage register setting (lowest speed, highest driving
current capability).
DocID024597 Rev 3
1409/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
41.4.3
RM0351
Operating voltage range validation
All cards can communicate with the SDMMC card host using any operating voltage within
the specification range. The supported minimum and maximum VDD values are defined in
the operation conditions register (OCR) on the card.
Cards that store the card identification number (CID) and card specific data (CSD) in the
payload memory are able to communicate this information only under data-transfer VDD
conditions. When the SDMMC card host module and the card have incompatible VDD
ranges, the card is not able to complete the identification cycle and cannot send CSD data.
For this purpose, the special commands, SEND_OP_COND (CMD1), SD_APP_OP_COND
(ACMD41 for SD Memory), and IO_SEND_OP_COND (CMD5 for SD I/O), are designed to
provide a mechanism to identify and reject cards that do not match the VDD range desired
by the SDMMC card host. The SDMMC card host sends the required VDD voltage window
as the operand of these commands. Cards that cannot perform data transfer in the specified
range disconnect from the bus and go to the inactive state.
By using these commands without including the voltage range as the operand, the SDMMC
card host can query each card and determine the common voltage range before placing outof-range cards in the inactive state. This query is used when the SDMMC card host is able
to select a common voltage range or when the user requires notification that cards are not
usable.
41.4.4
Card identification process
The card identification process differs for MultiMediaCards and SD cards. For
MultiMediaCard cards, the identification process starts at clock rate Fod. The SDMMC_CMD
line output drivers are open-drain and allow parallel card operation during this process. The
registration process is accomplished as follows:
1.
The bus is activated.
2.
The SDMMC card host broadcasts SEND_OP_COND (CMD1) to receive operation
conditions.
3.
The response is the wired AND operation of the operation condition registers from all
cards.
4.
Incompatible cards are placed in the inactive state.
5.
The SDMMC card host broadcasts ALL_SEND_CID (CMD2) to all active cards.
6.
The active cards simultaneously send their CID numbers serially. Cards with outgoing
CID bits that do not match the bits on the command line stop transmitting and must wait
for the next identification cycle. One card successfully transmits a full CID to the
SDMMC card host and enters the Identification state.
7.
The SDMMC card host issues SET_RELATIVE_ADDR (CMD3) to that card. This new
address is called the relative card address (RCA); it is shorter than the CID and
addresses the card. The assigned card changes to the Standby state, it does not react
to further identification cycles, and its output switches from open-drain to push-pull.
8.
The SDMMC card host repeats steps 5 through 7 until it receives a timeout condition.
For the SD card, the identification process starts at clock rate Fod, and the SDMMC_CMD
line output drives are push-pull drivers instead of open-drain. The registration process is
accomplished as follows:
1410/1693
DocID024597 Rev 3
RM0351
SD/SDIO/MMC card host interface (SDMMC)
1.
The bus is activated.
2.
The SDMMC card host broadcasts SD_APP_OP_COND (ACMD41).
3.
The cards respond with the contents of their operation condition registers.
4.
The incompatible cards are placed in the inactive state.
5.
The SDMMC card host broadcasts ALL_SEND_CID (CMD2) to all active cards.
6.
The cards send back their unique card identification numbers (CIDs) and enter the
Identification state.
7.
The SDMMC card host issues SET_RELATIVE_ADDR (CMD3) to an active card with
an address. This new address is called the relative card address (RCA); it is shorter
than the CID and addresses the card. The assigned card changes to the Standby state.
The SDMMC card host can reissue this command to change the RCA. The RCA of the
card is the last assigned value.
8.
The SDMMC card host repeats steps 5 through 7 with all active cards.
For the SD I/O card, the registration process is accomplished as follows:
1.
41.4.5
The bus is activated.
2.
The SDMMC card host sends IO_SEND_OP_COND (CMD5).
3.
The cards respond with the contents of their operation condition registers.
4.
The incompatible cards are set to the inactive state.
5.
The SDMMC card host issues SET_RELATIVE_ADDR (CMD3) to an active card with an
address. This new address is called the relative card address (RCA); it is shorter than
the CID and addresses the card. The assigned card changes to the Standby state. The
SDMMC card host can reissue this command to change the RCA. The RCA of the card
is the last assigned value.
Block write
During block write (CMD24 - 27) one or more blocks of data are transferred from the host to
the card with a CRC appended to the end of each block by the host. A card supporting block
write is always able to accept a block of data defined by WRITE_BL_LEN. If the CRC fails,
the card indicates the failure on the SDMMC_D line and the transferred data are discarded
and not written, and all further transmitted blocks (in multiple block write mode) are ignored.
If the host uses partial blocks whose accumulated length is not block aligned and, block
misalignment is not allowed (CSD parameter WRITE_BLK_MISALIGN is not set), the card
will detect the block misalignment error before the beginning of the first misaligned block.
(ADDRESS_ERROR error bit is set in the status register). The write operation will also be
aborted if the host tries to write over a write-protected area. In this case, however, the card
will set the WP_VIOLATION bit.
Programming of the CID and CSD registers does not require a previous block length setting.
The transferred data is also CRC protected. If a part of the CSD or CID register is stored in
ROM, then this unchangeable part must match the corresponding part of the receive buffer.
If this match fails, then the card reports an error and does not change any register contents.
Some cards may require long and unpredictable times to write a block of data. After
receiving a block of data and completing the CRC check, the card begins writing and holds
the SDMMC_D line low if its write buffer is full and unable to accept new data from a new
WRITE_BLOCK command. The host may poll the status of the card with a SEND_STATUS
command (CMD13) at any time, and the card will respond with its status. The
READY_FOR_DATA status bit indicates whether the card can accept new data or whether
the write process is still in progress. The host may deselect the card by issuing CMD7 (to
DocID024597 Rev 3
1411/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
RM0351
select a different card), which will place the card in the Disconnect state and release the
SDMMC_D line(s) without interrupting the write operation. When reselecting the card, it will
reactivate busy indication by pulling SDMMC_D to low if programming is still in progress and
the write buffer is unavailable.
41.4.6
Block read
In Block read mode the basic unit of data transfer is a block whose maximum size is defined
in the CSD (READ_BL_LEN). If READ_BL_PARTIAL is set, smaller blocks whose start and
end addresses are entirely contained within one physical block (as defined by
READ_BL_LEN) may also be transmitted. A CRC is appended to the end of each block,
ensuring data transfer integrity. CMD17 (READ_SINGLE_BLOCK) initiates a block read and
after completing the transfer, the card returns to the Transfer state.
CMD18 (READ_MULTIPLE_BLOCK) starts a transfer of several consecutive blocks.
The host can abort reading at any time, within a multiple block operation, regardless of its
type. Transaction abort is done by sending the stop transmission command.
If the card detects an error (for example, out of range, address misalignment or internal
error) during a multiple block read operation (both types) it stops the data transmission and
remains in the data state. The host must than abort the operation by sending the stop
transmission command. The read error is reported in the response to the stop transmission
command.
If the host sends a stop transmission command after the card transmits the last block of a
multiple block operation with a predefined number of blocks, it is responded to as an illegal
command, since the card is no longer in the data state. If the host uses partial blocks whose
accumulated length is not block-aligned and block misalignment is not allowed, the card
detects a block misalignment error condition at the beginning of the first misaligned block
(ADDRESS_ERROR error bit is set in the status register).
41.4.7
Stream access, stream write and stream read
(MultiMediaCard only)
In stream mode, data is transferred in bytes and no CRC is appended at the end of each
block.
Stream write (MultiMediaCard only)
WRITE_DAT_UNTIL_STOP (CMD20) starts the data transfer from the SDMMC card host to
the card, beginning at the specified address and continuing until the SDMMC card host
issues a stop command. When partial blocks are allowed (CSD parameter
WRITE_BL_PARTIAL is set), the data stream can start and stop at any address within the
card address space, otherwise it can only start and stop at block boundaries. Because the
amount of data to be transferred is not determined in advance, a CRC cannot be used.
When the end of the memory range is reached while sending data and no stop command is
sent by the SDMMC card host, any additional transferred data are discarded.
1412/1693
DocID024597 Rev 3
RM0351
SD/SDIO/MMC card host interface (SDMMC)
The maximum clock frequency for a stream write operation is given by the following
equation fields of the card-specific data register:
8 × 2 writebllen ) ( – NSAC ))
Maximumspeed = MIN (TRANSPEED,(------------------------------------------------------------------------TAAC × R2WFACTOR
•
Maximumspeed = maximum write frequency
•
TRANSPEED = maximum data transfer rate
•
writebllen = maximum write data block length
•
NSAC = data read access time 2 in CLK cycles
•
TAAC = data read access time 1
•
R2WFACTOR = write speed factor
If the host attempts to use a higher frequency, the card may not be able to process the data
and stop programming, set the OVERRUN error bit in the status register, and while ignoring
all further data transfer, wait (in the receive data state) for a stop command. The write
operation is also aborted if the host tries to write over a write-protected area. In this case,
however, the card sets the WP_VIOLATION bit.
Stream read (MultiMediaCard only)
READ_DAT_UNTIL_STOP (CMD11) controls a stream-oriented data transfer.
This command instructs the card to send its data, starting at a specified address, until the
SDMMC card host sends STOP_TRANSMISSION (CMD12). The stop command has an
execution delay due to the serial command transmission and the data transfer stops after
the end bit of the stop command. When the end of the memory range is reached while
sending data and no stop command is sent by the SDMMC card host, any subsequent data
sent are considered undefined.
The maximum clock frequency for a stream read operation is given by the following
equation and uses fields of the card specific data register.
( 8 × 2 readbllen ) ( – NSAC ))
Maximumspeed = MIN (TRANSPEED,-----------------------------------------------------------------------TAAC × R2WFACTOR
•
Maximumspeed = maximum read frequency
•
TRANSPEED = maximum data transfer rate
•
readbllen = maximum read data block length
•
writebllen = maximum write data block length
•
NSAC = data read access time 2 in CLK cycles
•
TAAC = data read access time 1
•
R2WFACTOR = write speed factor
If the host attempts to use a higher frequency, the card is not able to sustain data transfer. If
this happens, the card sets the UNDERRUN error bit in the status register, aborts the
transmission and waits in the data state for a stop command.
DocID024597 Rev 3
1413/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
41.4.8
RM0351
Erase: group erase and sector erase
The erasable unit of the MultiMediaCard is the erase group. The erase group is measured in
write blocks, which are the basic writable units of the card. The size of the erase group is a
card-specific parameter and defined in the CSD.
The host can erase a contiguous range of Erase Groups. Starting the erase process is a
three-step sequence.
First the host defines the start address of the range using the ERASE_GROUP_START
(CMD35) command, next it defines the last address of the range using the
ERASE_GROUP_END (CMD36) command and, finally, it starts the erase process by issuing
the ERASE (CMD38) command. The address field in the erase commands is an Erase
Group address in byte units. The card ignores all LSBs below the Erase Group size,
effectively rounding the address down to the Erase Group boundary.
If an erase command is received out of sequence, the card sets the ERASE_SEQ_ERROR
bit in the status register and resets the whole sequence.
If an out-of-sequence (neither of the erase commands, except SEND_STATUS) command
received, the card sets the ERASE_RESET status bit in the status register, resets the erase
sequence and executes the last command.
If the erase range includes write protected blocks, they are left intact and only nonprotected
blocks are erased. The WP_ERASE_SKIP status bit in the status register is set.
The card indicates that an erase is in progress by holding SDMMC_D low. The actual erase
time may be quite long, and the host may issue CMD7 to deselect the card.
41.4.9
Wide bus selection or deselection
Wide bus (4-bit bus width) operation mode is selected or deselected using
SET_BUS_WIDTH (ACMD6). The default bus width after power-up or GO_IDLE_STATE
(CMD0) is 1 bit. SET_BUS_WIDTH (ACMD6) is only valid in a transfer state, which means
that the bus width can be changed only after a card is selected by
SELECT/DESELECT_CARD (CMD7).
41.4.10
Protection management
Three write protection methods for the cards are supported in the SDMMC card host
module:
1.
internal card write protection (card responsibility)
2.
mechanical write protection switch (SDMMC card host module responsibility only)
3.
password-protected card lock operation
Internal card write protection
Card data can be protected against write and erase. By setting the permanent or temporary
write-protect bits in the CSD, the entire card can be permanently write-protected by the
manufacturer or content provider. For cards that support write protection of groups of
sectors by setting the WP_GRP_ENABLE bit in the CSD, portions of the data can be
protected, and the write protection can be changed by the application. The write protection
is in units of WP_GRP_SIZE sectors as specified in the CSD. The SET_WRITE_PROT and
CLR_WRITE_PROT commands control the protection of the addressed group. The
SEND_WRITE_PROT command is similar to a single block read command. The card sends
1414/1693
DocID024597 Rev 3
RM0351
SD/SDIO/MMC card host interface (SDMMC)
a data block containing 32 write protection bits (representing 32 write protect groups starting
at the specified address) followed by 16 CRC bits. The address field in the write protect
commands is a group address in byte units.
The card ignores all LSBs below the group size.
Mechanical write protect switch
A mechanical sliding tab on the side of the card allows the user to set or clear the write
protection on a card. When the sliding tab is positioned with the window open, the card is
write-protected, and when the window is closed, the card contents can be changed. A
matched switch on the socket side indicates to the SDMMC card host module that the card
is write-protected. The SDMMC card host module is responsible for protecting the card. The
position of the write protect switch is unknown to the internal circuitry of the card.
Password protect
The password protection feature enables the SDMMC card host module to lock and unlock
a card with a password. The password is stored in the 128-bit PWD register and its size is
set in the 8-bit PWD_LEN register. These registers are nonvolatile so that a power cycle
does not erase them. Locked cards respond to and execute certain commands. This means
that the SDMMC card host module is allowed to reset, initialize, select, and query for status,
however it is not allowed to access data on the card. When the password is set (as indicated
by a nonzero value of PWD_LEN), the card is locked automatically after power-up. As with
the CSD and CID register write commands, the lock/unlock commands are available in the
transfer state only. In this state, the command does not include an address argument and
the card must be selected before using it. The card lock/unlock commands have the
structure and bus transaction types of a regular single-block write command. The
transferred data block includes all of the required information for the command (the
password setting mode, the PWD itself, and card lock/unlock). The command data block
size is defined by the SDMMC card host module before it sends the card lock/unlock
command, and has the structure shown in Table 241.
The bit settings are as follows:
•
ERASE: setting it forces an erase operation. All other bits must be zero, and only the
command byte is sent
•
LOCK_UNLOCK: setting it locks the card. LOCK_UNLOCK can be set simultaneously
with SET_PWD, however not with CLR_PWD
•
CLR_PWD: setting it clears the password data
•
SET_PWD: setting it saves the password data to memory
•
PWD_LEN: it defines the length of the password in bytes
•
PWD: the password (new or currently used, depending on the command)
The following sections list the command sequences to set/reset a password, lock/unlock the
card, and force an erase.
Setting the password
1.
Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected.
2.
Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit card
lock/unlock mode, the 8-bit PWD_LEN, and the number of bytes of the new password.
DocID024597 Rev 3
1415/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
RM0351
When a password replacement is done, the block size must take into account that both
the old and the new passwords are sent with the command.
3.
Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line
including the 16-bit CRC. The data block indicates the mode (SET_PWD = 1), the
length (PWD_LEN), and the password (PWD) itself. When a password replacement is
done, the length value (PWD_LEN) includes the length of both passwords, the old and
the new one, and the PWD field includes the old password (currently used) followed by
the new password.
4.
When the password is matched, the new password and its size are saved into the PWD
and PWD_LEN fields, respectively. When the old password sent does not correspond
(in size and/or content) to the expected password, the LOCK_UNLOCK_FAILED error
bit is set in the card status register, and the password is not changed.
The password length field (PWD_LEN) indicates whether a password is currently set. When
this field is nonzero, there is a password set and the card locks itself after power-up. It is
possible to lock the card immediately in the current power session by setting the
LOCK_UNLOCK bit (while setting the password) or sending an additional command for card
locking.
Resetting the password
1.
Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected.
2.
Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit card
lock/unlock mode, the 8-bit PWD_LEN, and the number of bytes in the currently used
password.
3.
Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line
including the 16-bit CRC. The data block indicates the mode (CLR_PWD = 1), the
length (PWD_LEN) and the password (PWD) itself. The LOCK_UNLOCK bit is ignored.
4.
When the password is matched, the PWD field is cleared and PWD_LEN is set to 0.
When the password sent does not correspond (in size and/or content) to the expected
password, the LOCK_UNLOCK_FAILED error bit is set in the card status register, and
the password is not changed.
Locking a card
1.
Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected.
2.
Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit card
lock/unlock mode (byte 0 in Table 241), the 8-bit PWD_LEN, and the number of bytes
of the current password.
3.
Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line
including the 16-bit CRC. The data block indicates the mode (LOCK_UNLOCK = 1), the
length (PWD_LEN), and the password (PWD) itself.
4.
When the password is matched, the card is locked and the CARD_IS_LOCKED status
bit is set in the card status register. When the password sent does not correspond (in
size and/or content) to the expected password, the LOCK_UNLOCK_FAILED error bit
is set in the card status register, and the lock fails.
It is possible to set the password and to lock the card in the same sequence. In this case,
the SDMMC card host module performs all the required steps for setting the password (see
Setting the password on page 1415), however it is necessary to set the LOCK_UNLOCK bit
in Step 3 when the new password command is sent.
1416/1693
DocID024597 Rev 3
RM0351
SD/SDIO/MMC card host interface (SDMMC)
When the password is previously set (PWD_LEN is not 0), the card is locked automatically
after power on reset. An attempt to lock a locked card or to lock a card that does not have a
password fails and the LOCK_UNLOCK_FAILED error bit is set in the card status register.
Unlocking the card
1.
Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected.
2.
Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit
cardlock/unlock mode (byte 0 in Table 241), the 8-bit PWD_LEN, and the number of
bytes of the current password.
3.
Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line
including the 16-bit CRC. The data block indicates the mode (LOCK_UNLOCK = 0), the
length (PWD_LEN), and the password (PWD) itself.
4.
When the password is matched, the card is unlocked and the CARD_IS_LOCKED
status bit is cleared in the card status register. When the password sent is not correct in
size and/or content and does not correspond to the expected password, the
LOCK_UNLOCK_FAILED error bit is set in the card status register, and the card
remains locked.
The unlocking function is only valid for the current power session. When the PWD field is not
clear, the card is locked automatically on the next power-up.
An attempt to unlock an unlocked card fails and the LOCK_UNLOCK_FAILED error bit is set
in the card status register.
Forcing erase
If the user has forgotten the password (PWD content), it is possible to access the card after
clearing all the data on the card. This forced erase operation erases all card data and all
password data.
1.
Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected.
2.
Set the block length (SET_BLOCKLEN, CMD16) to 1 byte. Only the 8-bit card
lock/unlock byte (byte 0 in Table 241) is sent.
3.
Send LOCK/UNLOCK (CMD42) with the appropriate data byte on the data line including
the 16-bit CRC. The data block indicates the mode (ERASE = 1). All other bits must be
zero.
4.
When the ERASE bit is the only bit set in the data field, all card contents are erased,
including the PWD and PWD_LEN fields, and the card is no longer locked. When any
other bits are set, the LOCK_UNLOCK_FAILED error bit is set in the card status
register and the card retains all of its data, and remains locked.
An attempt to use a force erase on an unlocked card fails and the LOCK_UNLOCK_FAILED
error bit is set in the card status register.
DocID024597 Rev 3
1417/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
41.4.11
RM0351
Card status register
The response format R1 contains a 32-bit field named card status. This field is intended to
transmit the card status information (which may be stored in a local status register) to the
host. If not specified otherwise, the status entries are always related to the previously issued
command.
Table 228 defines the different entries of the status. The type and clear condition fields in
the table are abbreviated as follows:
Type:
•
E: error bit
•
S: status bit
•
R: detected and set for the actual command response
•
X: detected and set during command execution. The SDMMC card host must poll the
card by issuing the status command to read these bits.
Clear condition:
•
A: according to the card current state
•
B: always related to the previous command. Reception of a valid command clears it
(with a delay of one command)
•
C: clear by read
Table 228. Card status
Bits
31
30
29
Identifier
ADDRESS_
OUT_OF_RANGE
ADDRESS_MISALIGN
BLOCK_LEN_ERROR
1418/1693
Type
ERX
Value
Description
Clear
condition
’0’= no error
’1’= error
The command address argument was out
of the allowed range for this card.
A multiple block or stream read/write
C
operation is (although started in a valid
address) attempting to read or write
beyond the card capacity.
’0’= no error
’1’= error
The commands address argument (in
accordance with the currently set block
length) positions the first data block
misaligned to the card physical blocks.
A multiple block read/write operation
(although started with a valid
address/block-length combination) is
attempting to read or write a data block
which is not aligned with the physical
blocks of the card.
’0’= no error
’1’= error
Either the argument of a
SET_BLOCKLEN command exceeds the
maximum value allowed for the card, or
the previously defined block length is
illegal for the current command (e.g. the C
host issues a write command, the current
block length is smaller than the maximum
allowed value for the card and it is not
allowed to write partial blocks)
DocID024597 Rev 3
C
RM0351
SD/SDIO/MMC card host interface (SDMMC)
Table 228. Card status (continued)
Bits
Identifier
Type
Value
Description
Clear
condition
’0’= no error
’1’= error
An error in the sequence of erase
commands occurred.
C
EX
’0’= no error
’1’= error
An invalid selection of erase groups for
erase occurred.
C
WP_VIOLATION
EX
’0’= no error
’1’= error
Attempt to program a write-protected
block.
25
CARD_IS_LOCKED
SR
‘0’ = card
unlocked
‘1’ = card locked
When set, signals that the card is locked
by the host
A
24
LOCK_UNLOCK_
FAILED
EX
’0’= no error
’1’= error
Set when a sequence or password error
has been detected in lock/unlock card
command
C
23
COM_CRC_ERROR
ER
’0’= no error
’1’= error
The CRC check of the previous command
B
failed.
22
ILLEGAL_COMMAND
ER
’0’= no error
’1’= error
Command not legal for the card state
B
21
CARD_ECC_FAILED
EX
’0’= success
’1’= failure
Card internal ECC was applied but failed
to correct the data.
C
20
CC_ERROR
ER
’0’= no error
’1’= error
(Undefined by the standard) A card error
occurred, which is not related to the host
command.
C
EX
’0’= no error
’1’= error
(Undefined by the standard) A generic
card error related to the (and detected
during) execution of the last host
command (e.g. read or write failures).
C
Can be either of the following errors:
– The CID register has already been
written and cannot be overwritten
– The read-only section of the CSD does
C
not match the card contents
– An attempt to reverse the copy (set as
original) or permanent WP
(unprotected) bits was made
28
ERASE_SEQ_ERROR
27
ERASE_PARAM
26
19
ERROR
18
Reserved
17
Reserved
16
CID/CSD_OVERWRITE
EX
’0’= no error ‘1’=
error
15
WP_ERASE_SKIP
EX
’0’= not protected Set when only partial address space
’1’= protected
was erased due to existing write
14
CARD_ECC_DISABLED S X
’0’= enabled
’1’= disabled
C
C
The command has been executed without
A
using the internal ECC.
DocID024597 Rev 3
1419/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
RM0351
Table 228. Card status (continued)
Bits
Identifier
Type
Value
Description
Clear
condition
ERASE_RESET
’0’= cleared
’1’= set
An erase sequence was cleared before
executing because an out of erase
sequence command was received
(commands other than CMD35, CMD36,
CMD38 or CMD13)
12:9
CURRENT_STATE
SR
0 = Idle
1 = Ready
2 = Ident
3 = Stby
4 = Tran
5 = Data
6 = Rcv
7 = Prg
8 = Dis
9 = Btst
10-15 = reserved
The state of the card when receiving the
command. If the command execution
causes a state change, it will be visible to
B
the host in the response on the next
command. The four bits are interpreted as
a binary number between 0 and 15.
8
READY_FOR_DATA
SR
’0’= not ready
‘1’ = ready
Corresponds to buffer empty signalling on
the bus
7
SWITCH_ERROR
EX
’0’= no error
’1’= switch error
If set, the card did not switch to the
expected mode as requested by the
SWITCH command
B
6
Reserved
5
APP_CMD
SR
‘0’ = Disabled
‘1’ = Enabled
The card will expect ACMD, or an
indication that the command has been
interpreted as ACMD
C
4
Reserved for SD I/O Card
3
AKE_SEQ_ERROR
ER
’0’= no error
’1’= error
Error in the sequence of the
authentication process
C
2
Reserved for application specific commands
13
1
0
C
Reserved for manufacturer test mode
41.4.12
SD status register
The SD status contains status bits that are related to the SD memory card proprietary
features and may be used for future application-specific usage. The size of the SD Status is
one data block of 512 bits. The contents of this register are transmitted to the SDMMC card
host if ACMD13 is sent (CMD55 followed with CMD13). ACMD13 can be sent to a card in
transfer state only (card is selected).
Table 229 defines the different entries of the SD status register. The type and clear condition
fields in the table are abbreviated as follows:
1420/1693
DocID024597 Rev 3
RM0351
SD/SDIO/MMC card host interface (SDMMC)
Type:
•
E: error bit
•
S: status bit
•
R: detected and set for the actual command response
•
X: detected and set during command execution. The SDMMC card Host must poll the
card by issuing the status command to read these bits
Clear condition:
•
A: according to the card current state
•
B: always related to the previous command. Reception of a valid command clears it
(with a delay of one command)
•
C: clear by read
Table 229. SD status
Bits
Identifier
Type
Value
Description
Clear
condition
511: 510 DAT_BUS_WIDTH S R
’00’= 1 (default)
‘01’= reserved
‘10’= 4 bit width
‘11’= reserved
Shows the currently defined
databus width that was
defined by
SET_BUS_WIDTH
command
A
509
’0’= Not in the mode
’1’= In Secured Mode
Card is in Secured Mode of
operation (refer to the “SD
Security Specification”).
A
’00xxh’= SD Memory Cards as
defined in Physical Spec Ver1.012.00 (’x’= don’t care). The
following cards are currently
defined:
’0000’= Regular SD RD/WR Card.
’0001’= SD ROM Card
In the future, the 8 LSBs will
be used to define different
variations of an SD memory
card (each bit will define
different SD types). The 8
A
MSBs will be used to define
SD Cards that do not comply
with current SD physical
layer specification.
Size of protected area (See
below)
(See below)
A
Speed Class of the card (See
below)
(See below)
A
SECURED_MODE S R
508: 496 Reserved
495: 480 SD_CARD_TYPE
479: 448
SR
SIZE_OF_PROTE
SR
CT ED_AREA
447: 440 SPEED_CLASS
SR
439: 432
PERFORMANCE_
SR
MOVE
Performance of move indicated by
1 [MB/s] step.
(See below)
(See below)
A
431:428
AU_SIZE
SR
Size of AU
(See below)
(See below)
A
427:424
Reserved
423:408
ERASE_SIZE
SR
Number of AUs to be erased at a
time
(See below)
A
DocID024597 Rev 3
1421/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
RM0351
Table 229. SD status (continued)
Bits
Identifier
Type
Value
Description
Clear
condition
407:402
ERASE_TIMEOUT S R
Timeout value for erasing areas
specified by
UNIT_OF_ERASE_AU
(See below)
A
401:400
ERASE_OFFSET
Fixed offset value added to erase
(See below)
time.
A
399:312
Reserved
311:0
Reserved for Manufacturer
SR
SIZE_OF_PROTECTED_AREA
Setting this field differs between standard- and high-capacity cards. In the case of a
standard-capacity card, the capacity of protected area is calculated as follows:
Protected area = SIZE_OF_PROTECTED_AREA_* MULT * BLOCK_LEN.
SIZE_OF_PROTECTED_AREA is specified by the unit in MULT*BLOCK_LEN.
In the case of a high-capacity card, the capacity of protected area is specified in this field:
Protected area = SIZE_OF_PROTECTED_AREA
SIZE_OF_PROTECTED_AREA is specified by the unit in bytes.
SPEED_CLASS
This 8-bit field indicates the speed class and the value can be calculated by PW/2 (where
PW is the write performance).
Table 230. Speed class code field
SPEED_CLASS
Value definition
00h
Class 0
01h
Class 2
02h
Class 4
03h
Class 6
04h – FFh
Reserved
PERFORMANCE_MOVE
This 8-bit field indicates Pm (performance move) and the value can be set by 1 [MB/sec]
steps. If the card does not move used RUs (recording units), Pm should be considered as
infinity. Setting the field to FFh means infinity.
Table 231. Performance move field
PERFORMANCE_MOVE
1422/1693
Value definition
00h
Not defined
01h
1 [MB/sec]
DocID024597 Rev 3
RM0351
SD/SDIO/MMC card host interface (SDMMC)
Table 231. Performance move field (continued)
PERFORMANCE_MOVE
Value definition
02h
02h 2 [MB/sec]
---------
---------
FEh
254 [MB/sec]
FFh
Infinity
AU_SIZE
This 4-bit field indicates the AU size and the value can be selected in the power of 2 base
from 16 KB.
Table 232. AU_SIZE field
AU_SIZE
Value definition
00h
Not defined
01h
16 KB
02h
32 KB
03h
64 KB
04h
128 KB
05h
256 KB
06h
512 KB
07h
1 MB
08h
2 MB
09h
4 MB
Ah – Fh
Reserved
The maximum AU size, which depends on the card capacity, is defined in Table 233. The
card can be set to any AU size between RU size and maximum AU size.
Table 233. Maximum AU size
Capacity
16 MB-64 MB
128 MB-256 MB
512 MB
1 GB-32 GB
Maximum AU Size
512 KB
1 MB
2 MB
4 MB
ERASE_SIZE
This 16-bit field indicates NERASE. When NERASE numbers of AUs are erased, the timeout
value is specified by ERASE_TIMEOUT (Refer to ERASE_TIMEOUT). The host should
determine the proper number of AUs to be erased in one operation so that the host can
show the progress of the erase operation. If this field is set to 0, the erase timeout
calculation is not supported.
DocID024597 Rev 3
1423/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
RM0351
Table 234. Erase size field
ERASE_SIZE
Value definition
0000h
Erase timeout calculation is not supported.
0001h
1 AU
0002h
2 AU
0003h
3 AU
---------
---------
FFFFh
65535 AU
ERASE_TIMEOUT
This 6-bit field indicates TERASE and the value indicates the erase timeout from offset when
multiple AUs are being erased as specified by ERASE_SIZE. The range of
ERASE_TIMEOUT can be defined as up to 63 seconds and the card manufacturer can
choose any combination of ERASE_SIZE and ERASE_TIMEOUT depending on the
implementation. Determining ERASE_TIMEOUT determines the ERASE_SIZE.
Table 235. Erase timeout field
ERASE_TIMEOUT
Value definition
00
Erase timeout calculation is not supported.
01
1 [sec]
02
2 [sec]
03
3 [sec]
---------
---------
63
63 [sec]
ERASE_OFFSET
This 2-bit field indicates TOFFSET and one of four values can be selected. This field is
meaningless if the ERASE_SIZE and ERASE_TIMEOUT fields are set to 0.
Table 236. Erase offset field
ERASE_OFFSET
1424/1693
Value definition
0h
0 [sec]
1h
1 [sec]
2h
2 [sec]
3h
3 [sec]
DocID024597 Rev 3
RM0351
41.4.13
SD/SDIO/MMC card host interface (SDMMC)
SD I/O mode
SD I/O interrupts
To allow the SD I/O card to interrupt the MultiMediaCard/SD module, an interrupt function is
available on a pin on the SD interface. Pin 8, used as SDMMC_D1 when operating in the 4bit SD mode, signals the cards interrupt to the MultiMediaCard/SD module. The use of the
interrupt is optional for each card or function within a card. The SD I/O interrupt is levelsensitive, which means that the interrupt line must be held active (low) until it is either
recognized and acted upon by the MultiMediaCard/SD module or deasserted due to the end
of the interrupt period. After the MultiMediaCard/SD module has serviced the interrupt, the
interrupt status bit is cleared via an I/O write to the appropriate bit in the SD I/O card’s
internal registers. The interrupt output of all SD I/O cards is active low and the application
must provide pull-up resistors externally on all data lines (SDMMC_D[3:0]). The
MultiMediaCard/SD module samples the level of pin 8 (SDMMC_D/IRQ) into the interrupt
detector only during the interrupt period. At all other times, the MultiMediaCard/SD module
ignores this value.
The interrupt period is applicable for both memory and I/O operations. The definition of the
interrupt period for operations with single blocks is different from the definition for multipleblock data transfers.
SD I/O suspend and resume
Within a multifunction SD I/O or a card with both I/O and memory functions, there are
multiple devices (I/O and memory) that share access to the MMC/SD bus. To share access
to the MMC/SD module among multiple devices, SD I/O and combo cards optionally
implement the concept of suspend/resume. When a card supports suspend/resume, the
MMC/SD module can temporarily halt a data transfer operation to one function or memory
(suspend) to free the bus for a higher-priority transfer to a different function or memory. After
this higher-priority transfer is complete, the original transfer is resumed (restarted) where it
left off. Support of suspend/resume is optional on a per-card basis. To perform the
suspend/resume operation on the MMC/SD bus, the MMC/SD module performs the
following steps:
1.
Determines the function currently using the SDMMC_D [3:0] line(s)
2.
Requests the lower-priority or slower transaction to suspend
3.
Waits for the transaction suspension to complete
4.
Begins the higher-priority transaction
5.
Waits for the completion of the higher priority transaction
6.
Restores the suspended transaction
SD I/O ReadWait
The optional ReadWait (RW) operation is defined only for the SD 1-bit and 4-bit modes. The
ReadWait operation allows the MMC/SD module to signal a card that it is reading multiple
registers (IO_RW_EXTENDED, CMD53) to temporarily stall the data transfer while allowing
the MMC/SD module to send commands to any function within the SD I/O device. To
determine when a card supports the ReadWait protocol, the MMC/SD module must test
capability bits in the internal card registers. The timing for ReadWait is based on the
interrupt period.
DocID024597 Rev 3
1425/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
41.4.14
RM0351
Commands and responses
Application-specific and general commands
The SDMMC card host module system is designed to provide a standard interface for a
variety of applications types. In this environment, there is a need for specific
customer/application features. To implement these features, two types of generic
commands are defined in the standard: application-specific commands (ACMD) and general
commands (GEN_CMD).
When the card receives the APP_CMD (CMD55) command, the card expects the next
command to be an application-specific command. ACMDs have the same structure as
regular MultiMediaCard commands and can have the same CMD number. The card
recognizes it as ACMD because it appears after APP_CMD (CMD55). When the command
immediately following the APP_CMD (CMD55) is not a defined application-specific
command, the standard command is used. For example, when the card has a definition for
SD_STATUS (ACMD13), and receives CMD13 immediately following APP_CMD (CMD55),
this is interpreted as SD_STATUS (ACMD13). However, when the card receives CMD7
immediately following APP_CMD (CMD55) and the card does not have a definition for
ACMD7, this is interpreted as the standard (SELECT/DESELECT_CARD) CMD7.
To use one of the manufacturer-specific ACMDs the SD card Host must perform the
following steps:
1.
Send APP_CMD (CMD55)
The card responds to the MultiMediaCard/SD module, indicating that the APP_CMD bit
is set and an ACMD is now expected.
2.
Send the required ACMD
The card responds to the MultiMediaCard/SD module, indicating that the APP_CMD bit
is set and that the accepted command is interpreted as an ACMD. When a nonACMD
is sent, it is handled by the card as a normal MultiMediaCard command and the
APP_CMD bit in the card status register stays clear.
When an invalid command is sent (neither ACMD nor CMD) it is handled as a standard
MultiMediaCard illegal command error.
The bus transaction for a GEN_CMD is the same as the single-block read or write
commands (WRITE_BLOCK, CMD24 or READ_SINGLE_BLOCK,CMD17). In this case, the
argument denotes the direction of the data transfer rather than the address, and the data
block has vendor-specific format and meaning.
The card must be selected (in transfer state) before sending GEN_CMD (CMD56). The data
block size is defined by SET_BLOCKLEN (CMD16). The response to GEN_CMD (CMD56)
is in R1b format.
Command types
Both application-specific and general commands are divided into the four following types:
1426/1693
•
broadcast command (BC): sent to all cards; no responses returned.
•
broadcast command with response (BCR): sent to all cards; responses received
from all cards simultaneously.
•
addressed (point-to-point) command (AC): sent to the card that is selected; does
not include a data transfer on the SDMMC_D line(s).
•
addressed (point-to-point) data transfer command (ADTC): sent to the card that is
selected; includes a data transfer on the SDMMC_D line(s).
DocID024597 Rev 3
RM0351
SD/SDIO/MMC card host interface (SDMMC)
Command formats
See Table 220 on page 1401 for command formats.
Commands for the MultiMediaCard/SD module
Table 237. Block-oriented write commands
CMD
index
Type
Argument
Response
format
Abbreviation
Description
CMD23 ac
[31:16] set to 0
[15:0] number R1
of blocks
SET_BLOCK_COUNT
Defines the number of blocks which
are going to be transferred in the
multiple-block read or write command
that follows.
CMD24 adtc
[31:0] data
address
R1
WRITE_BLOCK
Writes a block of the size selected by
the SET_BLOCKLEN command.
CMD25 adtc
[31:0] data
address
R1
Continuously writes blocks of data
until a STOP_TRANSMISSION
WRITE_MULTIPLE_BLOCK
follows or the requested number of
blocks has been received.
CMD26 adtc
[31:0] stuff bits R1
PROGRAM_CID
Programming of the card identification
register. This command must be
issued only once per card. The card
contains hardware to prevent this
operation after the first programming.
Normally this command is reserved
for manufacturer.
CMD27 adtc
[31:0] stuff bits R1
PROGRAM_CSD
Programming of the programmable
bits of the CSD.
Table 238. Block-oriented write protection commands
CMD
index
Type
Argument
Response
format
Abbreviation
Description
CMD28 ac
[31:0] data
address
R1b
SET_WRITE_PROT
If the card has write protection features,
this command sets the write protection bit
of the addressed group. The properties of
write protection are coded in the cardspecific data (WP_GRP_SIZE).
CMD29 ac
[31:0] data
address
R1b
CLR_WRITE_PROT
If the card provides write protection
features, this command clears the write
protection bit of the addressed group.
CMD30 adtc
[31:0] write
protect data
address
SEND_WRITE_PROT
If the card provides write protection
features, this command asks the card to
send the status of the write protection
bits.
R1
CMD31 Reserved
DocID024597 Rev 3
1427/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
RM0351
Table 239. Erase commands
CMD
index
Type
Response
format
Argument
Abbreviation
Description
CMD32
Reserved. These command indexes cannot be used in order to maintain backward compatibility with older
...
versions of the MultiMediaCard.
CMD34
CMD35 ac
[31:0] data address R1
Sets the address of the first erase
ERASE_GROUP_START group within a range to be selected
for erase.
CMD36 ac
[31:0] data address R1
ERASE_GROUP_END
CMD37
Sets the address of the last erase
group within a continuous range to be
selected for erase.
Reserved. This command index cannot be used in order to maintain backward compatibility with older
versions of the MultiMediaCards
CMD38 ac
[31:0] stuff bits
R1
Erases all previously selected write
blocks.
ERASE
Table 240. I/O mode commands
CMD
index
Type
Response
format
Argument
Abbreviation
Description
Used to write and read 8-bit (register) data
fields. The command addresses a card and a
register and provides the data for writing if
the write flag is set. The R4 response
contains data read from the addressed
register. This command accesses
application-dependent registers that are not
defined in the MultiMediaCard standard.
CMD39 ac
[31:16] RCA
[15:15] register
write flag
[14:8] register
address
[7:0] register data
R4
FAST_IO
CMD40 bcr
[31:0] stuff bits
R5
GO_IRQ_STATE Places the system in the interrupt mode.
CMD41 Reserved
Table 241. Lock card
CMD
index
Type
CMD42 adtc
Argument
[31:0] stuff bits
Response
format
R1b
Abbreviation
LOCK_UNLOCK
CMD43
...
Reserved
CMD54
1428/1693
DocID024597 Rev 3
Description
Sets/resets the password or locks/unlocks
the card. The size of the data block is set
by the SET_BLOCK_LEN command.
RM0351
SD/SDIO/MMC card host interface (SDMMC)
Table 242. Application-specific commands
CMD
index
CMD55
Type
Argument
[31:16] RCA
[15:0] stuff bits
ac
Response
format
R1
adtc
CMD57
...
CMD59
Reserved.
CMD60
...
CMD63
Reserved for manufacturer.
41.5
APP_CMD
[31:1] stuff bits
[0]: RD/WR
CMD56
Abbreviation
-
Description
Indicates to the card that the next command
bits is an application specific command rather
than a standard command
Used either to transfer a data block to the card
or to get a data block from the card for general
purpose/application-specific commands. The
size of the data block shall be set by the
SET_BLOCK_LEN command.
-
Response formats
All responses are sent via the SDMMC command line SDMMC_CMD. The response
transmission always starts with the left bit of the bit string corresponding to the response
code word. The code length depends on the response type.
A response always starts with a start bit (always 0), followed by the bit indicating the
direction of transmission (card = 0). A value denoted by x in the tables below indicates a
variable entry. All responses, except for the R3 response type, are protected by a CRC.
Every command code word is terminated by the end bit (always 1).
There are five types of responses. Their formats are defined as follows:
41.5.1
R1 (normal response command)
Code length = 48 bits. The 45:40 bits indicate the index of the command to be responded to,
this value being interpreted as a binary-coded number (between 0 and 63). The status of the
card is coded in 32 bits.
Table 243. R1 response
Bit position
Width (bits
Value
Description
47
1
0
Start bit
46
1
0
Transmission bit
[45:40]
6
X
Command index
[39:8]
32
X
Card status
[7:1]
7
X
CRC7
0
1
1
End bit
DocID024597 Rev 3
1429/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
41.5.2
RM0351
R1b
It is identical to R1 with an optional busy signal transmitted on the data line. The card may
become busy after receiving these commands based on its state prior to the command
reception.
41.5.3
R2 (CID, CSD register)
Code length = 136 bits. The contents of the CID register are sent as a response to the
CMD2 and CMD10 commands. The contents of the CSD register are sent as a response to
CMD9. Only the bits [127...1] of the CID and CSD are transferred, the reserved bit [0] of
these registers is replaced by the end bit of the response. The card indicates that an erase
is in progress by holding SDMMC_D0 low. The actual erase time may be quite long, and the
host may issue CMD7 to deselect the card.
Table 244. R2 response
Bit position
1430/1693
Width (bits
Value
Description
135
1
0
Start bit
134
1
0
Transmission bit
[133:128]
6
‘111111’
Command index
[127:1]
127
X
Card status
0
1
1
End bit
DocID024597 Rev 3
RM0351
41.5.4
SD/SDIO/MMC card host interface (SDMMC)
R3 (OCR register)
Code length: 48 bits. The contents of the OCR register are sent as a response to CMD1.
The level coding is as follows: restricted voltage windows = low, card busy = low.
Table 245. R3 response
Bit position
41.5.5
Width (bits
Value
Description
47
1
0
Start bit
46
1
0
Transmission bit
[45:40]
6
‘111111’
Reserved
[39:8]
32
X
OCR register
[7:1]
7
‘1111111’
Reserved
0
1
1
End bit
R4 (Fast I/O)
Code length: 48 bits. The argument field contains the RCA of the addressed card, the
register address to be read out or written to, and its content.
Table 246. R4 response
Bit position
Value
Description
47
1
0
Start bit
46
1
0
Transmission bit
[45:40]
6
‘100111’
CMD39
[31:16]
16
X
RCA
[15:8]
8
X
register address
[7:0]
8
X
read register contents
[7:1]
7
X
CRC7
0
1
1
End bit
[39:8] Argument field
41.5.6
Width (bits
R4b
For SD I/O only: an SDIO card receiving the CMD5 will respond with a unique SDIO
response R4. The format is:
Table 247. R4b response
Bit position
Width (bits
Value
Description
47
1
0
Start bit
46
1
0
Transmission bit
[45:40]
6
X
Reserved
DocID024597 Rev 3
1431/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
RM0351
Table 247. R4b response (continued)
Bit position
Width (bits
Value
Description
39
16
X
Card is ready
[38:36]
3
X
Number of I/O functions
35
1
X
Present memory
[34:32]
3
X
Stuff bits
[31:8]
24
X
I/O ORC
[7:1]
7
X
Reserved
0
1
1
End bit
[39:8] Argument field
Once an SD I/O card has received a CMD5, the I/O portion of that card is enabled to
respond normally to all further commands. This I/O enable of the function within the I/O card
will remain set until a reset, power cycle or CMD52 with write to I/O reset is received by the
card. Note that an SD memory-only card may respond to a CMD5. The proper response for
a memory-only card would be Present memory = 1 and Number of I/O functions = 0. A
memory-only card built to meet the SD Memory Card specification version 1.0 would detect
the CMD5 as an illegal command and not respond. The I/O aware host will send CMD5. If
the card responds with response R4, the host determines the card’s configuration based on
the data contained within the R4 response.
41.5.7
R5 (interrupt request)
Only for MultiMediaCard. Code length: 48 bits. If the response is generated by the host, the
RCA field in the argument will be 0x0.
Table 248. R5 response
Bit position
Width (bits
Value
47
1
0
Start bit
46
1
0
Transmission bit
[45:40]
6
‘101000’
CMD40
[31:16]
16
X
RCA [31:16] of winning
card or of the host
[15:0]
16
X
Not defined. May be used
for IRQ data
[7:1]
7
X
CRC7
0
1
1
End bit
[39:8] Argument field
41.5.8
Description
R6
Only for SD I/O. The normal response to CMD3 by a memory device. It is shown in
Table 249.
1432/1693
DocID024597 Rev 3
RM0351
SD/SDIO/MMC card host interface (SDMMC)
Table 249. R6 response
Bit position
Width (bits)
Value
Description
47
1
0
Start bit
46
1
0
Transmission bit
[45:40]
6
‘101000’
CMD40
[31:16]
16
X
RCA [31:16] of winning card or of the host
[15:0]
16
X
Not defined. May be used for IRQ data
[7:1]
7
X
CRC7
0
1
1
End bit
[39:8] Argument
field
The card [23:8] status bits are changed when CMD3 is sent to an I/O-only card. In this case,
the 16 bits of response are the SD I/O-only values:
41.6
•
Bit [15] COM_CRC_ERROR
•
Bit [14] ILLEGAL_COMMAND
•
Bit [13] ERROR
•
Bits [12:0] Reserved
SDIO I/O card-specific operations
The following features are SD I/O-specific operations:
•
SDIO read wait operation by SDMMC_D2 signalling
•
SDIO read wait operation by stopping the clock
•
SDIO suspend/resume operation (write and read suspend)
•
SDIO interrupts
The SDMMC supports these operations only if the SDMMC_DCTRL[11] bit is set, except for
read suspend that does not need specific hardware implementation.
41.6.1
SDIO I/O read wait operation by SDMMC_D2 signalling
It is possible to start the readwait interval before the first block is received: when the data
path is enabled (SDMMC_DCTRL[0] bit set), the SDIO-specific operation is enabled
(SDMMC_DCTRL[11] bit set), read wait starts (SDMMC_DCTRL[10] =0 and
SDMMC_DCTRL[8] =1) and data direction is from card to SDMMC (SDMMC_DCTRL[1] =
1), the DPSM directly moves from Idle to Readwait. In Readwait the DPSM drives
SDMMC_D2 to 0 after 2 SDMMC_CK clock cycles. In this state, when you set the RWSTOP
bit (SDMMC_DCTRL[9]), the DPSM remains in Wait for two more SDMMC_CK clock cycles
to drive SDMMC_D2 to 1 for one clock cycle (in accordance with SDIO specification). The
DPSM then starts waiting again until it receives data from the card. The DPSM will not start
a readwait interval while receiving a block even if read wait start is set: the readwait interval
will start after the CRC is received. The RWSTOP bit has to be cleared to start a new read
wait operation. During the readwait interval, the SDMMC can detect SDIO interrupts on
SDMMC_D1.
DocID024597 Rev 3
1433/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
41.6.2
RM0351
SDIO read wait operation by stopping SDMMC_CK
If the SDIO card does not support the previous read wait method, the SDMMC can perform
a read wait by stopping SDMMC_CK (SDMMC_DCTRL is set just like in the method
presented in Section 41.6.1, but SDMMC_DCTRL[10] =1): DSPM stops the clock two
SDMMC_CK cycles after the end bit of the current received block and starts the clock again
after the read wait start bit is set.
As SDMMC_CK is stopped, any command can be issued to the card. During a read/wait
interval, the SDMMC can detect SDIO interrupts on SDMMC_D1.
41.6.3
SDIO suspend/resume operation
While sending data to the card, the SDMMC can suspend the write operation. the
SDMMC_CMD[11] bit is set and indicates to the CPSM that the current command is a
suspend command. The CPSM analyzes the response and when the ACK is received from
the card (suspend accepted), it acknowledges the DPSM that goes Idle after receiving the
CRC token of the current block.
The hardware does not save the number of the remaining block to be sent to complete the
suspended operation (resume).
The write operation can be suspended by software, just by disabling the DPSM
(SDMMC_DCTRL[0] =0) when the ACK of the suspend command is received from the card.
The DPSM enters then the Idle state.
To suspend a read: the DPSM waits in the Wait_r state as the function to be suspended
sends a complete packet just before stopping the data transaction. The application
continues reading RxFIFO until the FIF0 is empty, and the DPSM goes Idle automatically.
41.6.4
SDIO interrupts
SDIO interrupts are detected on the SDMMC_D1 line once the SDMMC_DCTRL[11] bit is
set.
When SDIO interrupt is detected, SDMMC_STA[22] (SDIOIT) bit is set. This static bit can be
cleared with clear bit SDMMC_ICR[22] (SDIOITC). An interrupt can be generated when
SDIOIT status bit is set. Separated interrupt enable SDMMC_MASK[22] bit (SDIOITE) is
available to enable and disable interrupt request.
When SD card interrupt occurs (SDMMC_STA[22] bit set), host software follows below
steps to handle it.
1.
Disable SDIOIT interrupt signaling by clearing SDIOITE bit (SDMMC_MASK[22] = ‘0’),
2.
Serve card interrupt request, and clear the source of interrupt on the SD card,
3.
Clear SDIOIT bit by writing ‘1’ to SDIOITC bit (SDMMC_ICR[22] = ‘1’),
4.
Enable SDIOIT interrupt signaling by writing ‘1’ to SDIOITE bit (SDMMC_MASK[22] =
‘1’).
Steps 2 to 4can be executed out of the SDIO interrupt service routine.
41.7
HW flow control
The HW flow control functionality is used to avoid FIFO underrun (TX mode) and overrun
(RX mode) errors.
1434/1693
DocID024597 Rev 3
RM0351
SD/SDIO/MMC card host interface (SDMMC)
The behavior is to stop SDMMC_CK and freeze SDMMC state machines. The data transfer
is stalled while the FIFO is unable to transmit or receive data. Only state machines clocked
by SDMMCCLK are frozen, the APB2 interface is still alive. The FIFO can thus be filled or
emptied even if flow control is activated.
To enable HW flow control, the SDMMC_CLKCR[14] register bit must be set to 1. After reset
Flow Control is disabled.
41.8
SDMMC registers
The device communicates to the system via 32-bit-wide control registers accessible via
APB2.
41.8.1
SDMMC power control register (SDMMC_POWER)
Address offset: 0x00
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
1
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PWRCTRL
rw
rw
Bits 31:2 Reserved, must be kept at reset value.
[1:0] PWRCTRL: Power supply control bits.
These bits are used to define the current functional state of the card clock:
00: Power-off: the clock to card is stopped.
01: Reserved
10: Reserved power-up
11: Power-on: the card is clocked.
Note:
At least seven PCLK2 clock periods are needed between two write accesses to this register.
Note:
After a data write, data cannot be written to this register for three SDMMCCLK clock periods
plus two PCLK2 clock periods.
41.8.2
SDMMC clock control register (SDMMC_CLKCR)
Address offset: 0x04
Reset value: 0x0000 0000
The SDMMC_CLKCR register controls the SDMMC_CK output clock.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DocID024597 Rev 3
1435/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
15
14
13
Res.
HWFC
_EN
NEGE
DGE
rw
rw
12
11
WID
BUS
rw
10
9
RM0351
8
7
6
5
BYPAS PWRS
CLKEN
S
AV
rw
rw
rw
rw
4
3
2
1
0
rw
rw
rw
CLKDIV
rw
rw
rw
rw
rw
Bits 31:15 Reserved, must be kept at reset value.
Bit 14 HWFC_EN: HW Flow Control enable
0b: HW Flow Control is disabled
1b: HW Flow Control is enabled
When HW Flow Control is enabled, the meaning of the TXFIFOE and RXFIFOF interrupt
signals, please see SDMMC Status register definition in Section 41.8.11.
Bit 13 NEGEDGE: SDMMC_CK dephasing selection bit
0b: Command and Data changed on the SDMMCCLK falling edge succeeding the rising
edge of SDMMC_CK. (SDMMC_CK rising edge occurs on SDMMCCLK rising edge).
1b: Command and Data changed on the SDMMC_CK falling edge.
When BYPASS is active, the data and the command change on SDMMCCLK falling edge
whatever NEGEDGE value.
Bits 12:11 WIDBUS: Wide bus mode enable bit
00: Default bus mode: SDMMC_D0 used
01: 4-wide bus mode: SDMMC_D[3:0] used
10: 8-wide bus mode: SDMMC_D[7:0] used
Bit 10 BYPASS: Clock divider bypass enable bit
0: Disable bypass: SDMMCCLK is divided according to the CLKDIV value before driving the
SDMMC_CK output signal.
1: Enable bypass: SDMMCCLK directly drives the SDMMC_CK output signal.
Bit 9 PWRSAV: Power saving configuration bit
For power saving, the SDMMC_CK clock output can be disabled when the bus is idle by
setting PWRSAV:
0: SDMMC_CK clock is always enabled
1: SDMMC_CK is only enabled when the bus is active
Bit 8 CLKEN: Clock enable bit
0: SDMMC_CK is disabled
1: SDMMC_CK is enabled
Bits 7:0 CLKDIV: Clock divide factor
This field defines the divide factor between the input clock (SDMMCCLK) and the output
clock (SDMMC_CK): SDMMC_CK frequency = SDMMCCLK / [CLKDIV + 2].
Note:
1
While the SD/SDIO card or MultiMediaCard is in identification mode, the SDMMC_CK
frequency must be less than 400 kHz.
2
The clock frequency can be changed to the maximum card bus frequency when relative
card addresses are assigned to all cards.
3
After a data write, data cannot be written to this register for three SDMMCCLK clock periods
plus two PCLK2 clock periods. SDMMC_CK can also be stopped during the read wait
interval for SD I/O cards: in this case the SDMMC_CLKCR register does not control
SDMMC_CK.
1436/1693
DocID024597 Rev 3
RM0351
SD/SDIO/MMC card host interface (SDMMC)
41.8.3
SDMMC argument register (SDMMC_ARG)
Address offset: 0x08
Reset value: 0x0000 0000
The SDMMC_ARG register contains a 32-bit command argument, which is sent to a card as
part of a command message.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
CMDARG[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
CMDARG[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 CMDARG: Command argument
Command argument sent to a card as part of a command message. If a command contains
an argument, it must be loaded into this register before writing a command to the command
register.
41.8.4
SDMMC command register (SDMMC_CMD)
Address offset: 0x0C
Reset value: 0x0000 0000
The SDMMC_CMD register contains the command index and command type bits. The
command index is sent to a card as part of a command message. The command type bits
control the command path state machine (CPSM).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
SDIO
Suspend
CPSM
EN
WAIT
PEND
WAIT
INT
rw
rw
rw
rw
rw
rw
Res.
Res.
Res.
WAITRESP
rw
rw
CMDINDEX
rw
rw
rw
rw
Bits 31:12 Reserved, must be kept at reset value.
Bit 11 SDIOSuspend: SD I/O suspend command
If this bit is set, the command to be sent is a suspend command (to be used only with SDIO
card).
Bit 10 CPSMEN: Command path state machine (CPSM) Enable bit
If this bit is set, the CPSM is enabled.
Bit 9 WAITPEND: CPSM Waits for ends of data transfer (CmdPend internal signal).
If this bit is set, the CPSM waits for the end of data transfer before it starts sending a
command. This feature is available only with Stream data transfer mode
SDMMC_DCTRL[2] = 1.
DocID024597 Rev 3
1437/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
RM0351
Bit 8 WAITINT: CPSM waits for interrupt request
If this bit is set, the CPSM disables command timeout and waits for an interrupt request.
Bits 7:6 WAITRESP: Wait for response bits
They are used to configure whether the CPSM is to wait for a response, and if yes, which
kind of response.
00: No response, expect CMDSENT flag
01: Short response, expect CMDREND or CCRCFAIL flag
10: No response, expect CMDSENT flag
11: Long response, expect CMDREND or CCRCFAIL flag
Bits 5:0 CMDINDEX: Command index
The command index is sent to the card as part of a command message.
Note:
1
After a data write, data cannot be written to this register for three SDMMCCLK clock periods
plus two PCLK2 clock periods.
2
MultiMediaCards can send two kinds of response: short responses, 48 bits long, or long
responses,136 bits long. SD card and SD I/O card can send only short responses, the
argument can vary according to the type of response: the software will distinguish the type
of response according to the sent command.
41.8.5
SDMMC command response register (SDMMC_RESPCMD)
Address offset: 0x10
Reset value: 0x0000 0000
The SDMMC_RESPCMD register contains the command index field of the last command
response received. If the command response transmission does not contain the command
index field (long or OCR response), the RESPCMD field is unknown, although it must
contain 111111b (the value of the reserved field from the response).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
5
4
3
2
1
0
r
r
15
14
13
12
11
10
9
8
7
6
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
RESPCMD
r
r
r
r
Bits 31:6 Reserved, must be kept at reset value.
Bits 5:0 RESPCMD: Response command index
Read-only bit field. Contains the command index of the last command response received.
41.8.6
SDMMC response 1..4 register (SDMMC_RESPx)
Address offset: (0x10 + (4 × x)); x = 1..4
Reset value: 0x0000 0000
The SDMMC_RESP1/2/3/4 registers contain the status of a card, which is part of the
received response.
1438/1693
DocID024597 Rev 3
RM0351
SD/SDIO/MMC card host interface (SDMMC)
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
CARDSTATUSx[31:16]
CARDSTATUSx[15:0]
r
r
r
r
r
r
r
r
r
Bits 31:0 CARDSTATUSx: see Table 250.
The Card Status size is 32 or 127 bits, depending on the response type.
Table 250. Response type and SDMMC_RESPx registers
Register
Short response
Long response
SDMMC_RESP1
Card Status[31:0]
Card Status [127:96]
SDMMC_RESP2
Unused
Card Status [95:64]
SDMMC_RESP3
Unused
Card Status [63:32]
SDMMC_RESP4
Unused
Card Status [31:1]0b
The most significant bit of the card status is received first. The SDMMC_RESP4 register
LSB is always 0b.
41.8.7
SDMMC data timer register (SDMMC_DTIMER)
Address offset: 0x24
Reset value: 0x0000 0000
The SDMMC_DTIMER register contains the data timeout period, in card bus clock periods.
A counter loads the value from the SDMMC_DTIMER register, and starts decrementing
when the data path state machine (DPSM) enters the Wait_R or Busy state. If the timer
reaches 0 while the DPSM is in either of these states, the timeout status flag is set.
31
30
29
28
27
26
25
24
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
23
22
21
20
19
18
17
16
rw
rw
rw
rw
rw
rw
rw
rw
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
DATATIME[31:16]
DATATIME[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 DATATIME: Data timeout period
Data timeout period expressed in card bus clock periods.
Note:
A data transfer must be written to the data timer register and the data length register before
being written to the data control register.
DocID024597 Rev 3
1439/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
41.8.8
RM0351
SDMMC data length register (SDMMC_DLEN)
Address offset: 0x28
Reset value: 0x0000 0000
The SDMMC_DLEN register contains the number of data bytes to be transferred. The value
is loaded into the data counter when data transfer starts.
31
30
29
28
27
26
25
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
rw
rw
rw
rw
rw
rw
rw
24
23
22
21
20
19
18
17
16
DATALENGTH[24:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
DATALENGTH[15:0]
rw
rw
Bits 31:25 Reserved, must be kept at reset value.
Bits 24:0 DATALENGTH: Data length value
Number of data bytes to be transferred.
Note:
For a block data transfer, the value in the data length register must be a multiple of the block
size (see SDMMC_DCTRL). A data transfer must be written to the data timer register and
the data length register before being written to the data control register.
For an SDMMC multibyte transfer the value in the data length register must be between 1
and 512.
41.8.9
SDMMC data control register (SDMMC_DCTRL)
Address offset: 0x2C
Reset value: 0x0000 0000
The SDMMC_DCTRL register control the data path state machine (DPSM).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
SDIO
EN
RW
MOD
RW
STOP
RW
START
DMA
EN
DT
MODE
DTDIR
DTEN
rw
rw
rw
rw
rw
rw
rw
rw
DBLOCKSIZE
rw
rw
rw
rw
Bits 31:12 Reserved, must be kept at reset value.
Bit 11 SDIOEN: SD I/O enable functions
If this bit is set, the DPSM performs an SD I/O-card-specific operation.
Bit 10 RWMOD: Read wait mode
0: Read Wait control stopping SDMMC_D2
1: Read Wait control using SDMMC_CK
1440/1693
DocID024597 Rev 3
RM0351
SD/SDIO/MMC card host interface (SDMMC)
Bit 9 RWSTOP: Read wait stop
0: Read wait in progress if RWSTART bit is set
1: Enable for read wait stop if RWSTART bit is set
Bit 8 RWSTART: Read wait start
If this bit is set, read wait operation starts.
Bits 7:4 DBLOCKSIZE: Data block size
Define the data block length when the block data transfer mode is selected:
0000: (0 decimal) lock length = 20 = 1 byte
0001: (1 decimal) lock length = 21 = 2 bytes
0010: (2 decimal) lock length = 22 = 4 bytes
0011: (3 decimal) lock length = 23 = 8 bytes
0100: (4 decimal) lock length = 24 = 16 bytes
0101: (5 decimal) lock length = 25 = 32 bytes
0110: (6 decimal) lock length = 26 = 64 bytes
0111: (7 decimal) lock length = 27 = 128 bytes
1000: (8 decimal) lock length = 28 = 256 bytes
1001: (9 decimal) lock length = 29 = 512 bytes
1010: (10 decimal) lock length = 210 = 1024 bytes
1011: (11 decimal) lock length = 211 = 2048 bytes
1100: (12 decimal) lock length = 212 = 4096 bytes
1101: (13 decimal) lock length = 213 = 8192 bytes
1110: (14 decimal) lock length = 214 = 16384 bytes
1111: (15 decimal) reserved
Bit 3 DMAEN: DMA enable bit
0: DMA disabled.
1: DMA enabled.
Bit 2 DTMODE: Data transfer mode selection 1: Stream or SDIO multibyte data transfer.
0: Block data transfer
1: Stream or SDIO multibyte data transfer
Bit 1 DTDIR: Data transfer direction selection
0: From controller to card.
1: From card to controller.
[0] DTEN: Data transfer enabled bit
Data transfer starts if 1b is written to the DTEN bit. Depending on the direction bit, DTDIR,
the DPSM moves to the Wait_S, Wait_R state or Readwait if RW Start is set immediately at
the beginning of the transfer. It is not necessary to clear the enable bit after the end of a data
transfer but the SDMMC_DCTRL must be updated to enable a new data transfer
Note:
After a data write, data cannot be written to this register for three SDMMCCLK (48 MHz)
clock periods plus two PCLK2 clock periods.
The meaning of the DTMODE bit changes according to the value of the SDIOEN bit. When
SDIOEN=0 and DTMODE=1, the MultiMediaCard stream mode is enabled, and when
SDIOEN=1 and DTMODE=1, the peripheral enables an SDIO multibyte transfer.
DocID024597 Rev 3
1441/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
41.8.10
RM0351
SDMMC data counter register (SDMMC_DCOUNT)
Address offset: 0x30
Reset value: 0x0000 0000
The SDMMC_DCOUNT register loads the value from the data length register (see
SDMMC_DLEN) when the DPSM moves from the Idle state to the Wait_R or Wait_S state.
As data is transferred, the counter decrements the value until it reaches 0. The DPSM then
moves to the Idle state and the data status end flag, DATAEND, is set.
31
30
29
28
27
26
25
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
r
r
r
r
r
r
r
24
23
22
21
20
19
18
17
16
DATACOUNT[24:16]
r
r
r
r
r
r
r
r
r
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
DATACOUNT[15:0]
r
r
Bits 31:25 Reserved, must be kept at reset value.
Bits 24:0 DATACOUNT: Data count value
When this bit is read, the number of remaining data bytes to be transferred is returned. Write
has no effect.
Note:
This register should be read only when the data transfer is complete.
41.8.11
SDMMC status register (SDMMC_STA)
Address offset: 0x34
Reset value: 0x0000 0000
The SDMMC_STA register is a read-only register. It contains two types of flag:
•
Static flags (bits [23:22,10:0]): these bits remain asserted until they are cleared by
writing to the SDMMC Interrupt Clear register (see SDMMC_ICR)
•
Dynamic flags (bits [21:11]): these bits change state depending on the state of the
underlying logic (for example, FIFO full and empty flags are asserted and deasserted
as data while written to the FIFO)
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SDIOIT
RXD
AVL
TXD
AVL
RX
FIFOE
TX
FIFOE
RX
FIFOF
TX
FIFOF
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
RX
FIFO
HF
TX
FIFO
HE
CMD
ACT
DBCK
END
Res.
DATA
END
CMDS
ENT
DCRC
FAIL
CCRC
FAIL
r
r
r
r
r
r
r
r
RXACT TXACT
r
r
CMDR
RX
TXUND DTIME CTIME
END OVERR ERR
OUT
OUT
Bits 31:23 Reserved, must be kept at reset value.
Bit 22 SDIOIT: SDIO interrupt received
Bit 21 RXDAVL: Data available in receive FIFO
1442/1693
DocID024597 Rev 3
r
r
r
r
r
RM0351
SD/SDIO/MMC card host interface (SDMMC)
Bit 20 TXDAVL: Data available in transmit FIFO
Bit 19 RXFIFOE: Receive FIFO empty
Bit 18 TXFIFOE: Transmit FIFO empty
When HW Flow Control is enabled, TXFIFOE signals becomes activated when the FIFO
contains 2 words.
Bit 17 RXFIFOF: Receive FIFO full
When HW Flow Control is enabled, RXFIFOF signals becomes activated 2 words before the
FIFO is full.
Bit 16 TXFIFOF: Transmit FIFO full
Bit 15 RXFIFOHF: Receive FIFO half full: there are at least 8 words in the FIFO
Bit 14 TXFIFOHE: Transmit FIFO half empty: at least 8 words can be written into the FIFO
Bit 13 RXACT: Data receive in progress
Bit 12 TXACT: Data transmit in progress
Bit 11 CMDACT: Command transfer in progress
Bit 10 DBCKEND: Data block sent/received (CRC check passed)
Bit 9 Reserved, must be kept at reset value.
Bit 8 DATAEND: Data end (data counter, SDIDCOUNT, is zero)
Bit 7 CMDSENT: Command sent (no response required)
Bit 6 CMDREND: Command response received (CRC check passed)
Bit 5 RXOVERR: Received FIFO overrun error
Note: If DMA is used to read SDMMC FIFO (DMAEN bit is set in SDMMC_DCTRL register),
user software should disable DMA stream, and then write with ‘0’ (to disable DMA
request generation).
Bit 4 TXUNDERR: Transmit FIFO underrun error
Note: If DMA is used to fill SDMMC FIFO (DMAEN bit is set in SDMMC_DCTRL register),
user software should disable DMA stream, and then write DMAEN with ‘0’ (to disable
DMA request generation).
Bit 3 DTIMEOUT: Data timeout
Bit 2 CTIMEOUT: Command response timeout
The Command TimeOut period has a fixed value of 64 SDMMC_CK clock periods.
Bit 1 DCRCFAIL: Data block sent/received (CRC check failed)
Bit 0 CCRCFAIL: Command response received (CRC check failed)
41.8.12
SDMMC interrupt clear register (SDMMC_ICR)
Address offset: 0x38
Reset value: 0x0000 0000
The SDMMC_ICR register is a write-only register. Writing a bit with 1b clears the
corresponding bit in the SDMMC_STA Status register.
DocID024597 Rev 3
1443/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
RM0351
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SDIO
ITC
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
5
4
3
2
1
0
DCRC
FAILC
CCRC
FAILC
rw
rw
rw
Res.
Res.
Res.
Res.
Res.
DBCK
ENDC
rw
Res.
6
CMD
DATA
CMD
REND
ENDC SENTC
C
rw
rw
rw
Bits 31:23 Reserved, must be kept at reset value.
Bit 22 SDIOITC: SDIOIT flag clear bit
Set by software to clear the SDIOIT flag.
0: SDIOIT not cleared
1: SDIOIT cleared
Bits 21:11 Reserved, must be kept at reset value.
Bit 10 DBCKENDC: DBCKEND flag clear bit
Set by software to clear the DBCKEND flag.
0: DBCKEND not cleared
1: DBCKEND cleared
Bit 9 Reserved, must be kept at reset value.
Bit 8 DATAENDC: DATAEND flag clear bit
Set by software to clear the DATAEND flag.
0: DATAEND not cleared
1: DATAEND cleared
Bit 7 CMDSENTC: CMDSENT flag clear bit
Set by software to clear the CMDSENT flag.
0: CMDSENT not cleared
1: CMDSENT cleared
Bit 6 CMDRENDC: CMDREND flag clear bit
Set by software to clear the CMDREND flag.
0: CMDREND not cleared
1: CMDREND cleared
Bit 5 RXOVERRC: RXOVERR flag clear bit
Set by software to clear the RXOVERR flag.
0: RXOVERR not cleared
1: RXOVERR cleared
Bit 4 TXUNDERRC: TXUNDERR flag clear bit
Set by software to clear TXUNDERR flag.
0: TXUNDERR not cleared
1: TXUNDERR cleared
Bit 3 DTIMEOUTC: DTIMEOUT flag clear bit
Set by software to clear the DTIMEOUT flag.
0: DTIMEOUT not cleared
1: DTIMEOUT cleared
1444/1693
DocID024597 Rev 3
RX
TX
DTIME CTIME
OVERR UNDERR
OUTC OUTC
C
C
rw
rw
rw
rw
RM0351
SD/SDIO/MMC card host interface (SDMMC)
Bit 2 CTIMEOUTC: CTIMEOUT flag clear bit
Set by software to clear the CTIMEOUT flag.
0: CTIMEOUT not cleared
1: CTIMEOUT cleared
Bit 1 DCRCFAILC: DCRCFAIL flag clear bit
Set by software to clear the DCRCFAIL flag.
0: DCRCFAIL not cleared
1: DCRCFAIL cleared
Bit 0 CCRCFAILC: CCRCFAIL flag clear bit
Set by software to clear the CCRCFAIL flag.
0: CCRCFAIL not cleared
1: CCRCFAIL cleared
41.8.13
SDMMC mask register (SDMMC_MASK)
Address offset: 0x3C
Reset value: 0x0000 0000
The interrupt mask register determines which status flags generate an interrupt request by
setting the corresponding bit to 1b.
31
30
29
28
27
26
25
24
23
22
20
19
18
17
16
TX
FIFO
EIE
RX
FIFO
FIE
TX
FIFO
FIE
SDIO
ITIE
RXD
AVLIE
TXD
AVLIE
RX
FIFO
EIE
rw
rw
rw
rw
rw
rw
rw
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
RX
FIFO
HFIE
TX
FIFO
HEIE
RX
ACTIE
TX
ACTIE
CMD
ACTIE
DBCK
ENDIE
DATA
ENDIE
CMD
SENT
IE
CMD
REND
IE
rw
rw
rw
rw
rw
rw
rw
rw
rw
Res.
21
RX
TX
DTIME CTIME DCRC
OVERR UNDERR
OUTIE OUTIE FAILIE
IE
IE
rw
rw
rw
rw
rw
CCRC
FAILIE
rw
Bits 31:23 Reserved, must be kept at reset value.
Bit 22 SDIOITIE: SDIO mode interrupt received interrupt enable
Set and cleared by software to enable/disable the interrupt generated when receiving the
SDIO mode interrupt.
0: SDIO Mode Interrupt Received interrupt disabled
1: SDIO Mode Interrupt Received interrupt enabled
Bit 21 RXDAVLIE: Data available in Rx FIFO interrupt enable
Set and cleared by software to enable/disable the interrupt generated by the presence of
data available in Rx FIFO.
0: Data available in Rx FIFO interrupt disabled
1: Data available in Rx FIFO interrupt enabled
Bit 20 TXDAVLIE: Data available in Tx FIFO interrupt enable
Set and cleared by software to enable/disable the interrupt generated by the presence of
data available in Tx FIFO.
0: Data available in Tx FIFO interrupt disabled
1: Data available in Tx FIFO interrupt enabled
DocID024597 Rev 3
1445/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
RM0351
Bit 19 RXFIFOEIE: Rx FIFO empty interrupt enable
Set and cleared by software to enable/disable interrupt caused by Rx FIFO empty.
0: Rx FIFO empty interrupt disabled
1: Rx FIFO empty interrupt enabled
Bit 18 TXFIFOEIE: Tx FIFO empty interrupt enable
Set and cleared by software to enable/disable interrupt caused by Tx FIFO empty.
0: Tx FIFO empty interrupt disabled
1: Tx FIFO empty interrupt enabled
Bit 17 RXFIFOFIE: Rx FIFO full interrupt enable
Set and cleared by software to enable/disable interrupt caused by Rx FIFO full.
0: Rx FIFO full interrupt disabled
1: Rx FIFO full interrupt enabled
Bit 16 TXFIFOFIE: Tx FIFO full interrupt enable
Set and cleared by software to enable/disable interrupt caused by Tx FIFO full.
0: Tx FIFO full interrupt disabled
1: Tx FIFO full interrupt enabled
Bit 15 RXFIFOHFIE: Rx FIFO half full interrupt enable
Set and cleared by software to enable/disable interrupt caused by Rx FIFO half full.
0: Rx FIFO half full interrupt disabled
1: Rx FIFO half full interrupt enabled
Bit 14 TXFIFOHEIE: Tx FIFO half empty interrupt enable
Set and cleared by software to enable/disable interrupt caused by Tx FIFO half empty.
0: Tx FIFO half empty interrupt disabled
1: Tx FIFO half empty interrupt enabled
Bit 13 RXACTIE: Data receive acting interrupt enable
Set and cleared by software to enable/disable interrupt caused by data being received (data
receive acting).
0: Data receive acting interrupt disabled
1: Data receive acting interrupt enabled
Bit 12 TXACTIE: Data transmit acting interrupt enable
Set and cleared by software to enable/disable interrupt caused by data being transferred
(data transmit acting).
0: Data transmit acting interrupt disabled
1: Data transmit acting interrupt enabled
Bit 11 CMDACTIE: Command acting interrupt enable
Set and cleared by software to enable/disable interrupt caused by a command being
transferred (command acting).
0: Command acting interrupt disabled
1: Command acting interrupt enabled
Bit 10 DBCKENDIE: Data block end interrupt enable
Set and cleared by software to enable/disable interrupt caused by data block end.
0: Data block end interrupt disabled
1: Data block end interrupt enabled
Bit 9 Reserved, must be kept at reset value.
1446/1693
DocID024597 Rev 3
RM0351
SD/SDIO/MMC card host interface (SDMMC)
Bit 8 DATAENDIE: Data end interrupt enable
Set and cleared by software to enable/disable interrupt caused by data end.
0: Data end interrupt disabled
1: Data end interrupt enabled
Bit 7 CMDSENTIE: Command sent interrupt enable
Set and cleared by software to enable/disable interrupt caused by sending command.
0: Command sent interrupt disabled
1: Command sent interrupt enabled
Bit 6 CMDRENDIE: Command response received interrupt enable
Set and cleared by software to enable/disable interrupt caused by receiving command
response.
0: Command response received interrupt disabled
1: command Response Received interrupt enabled
Bit 5 RXOVERRIE: Rx FIFO overrun error interrupt enable
Set and cleared by software to enable/disable interrupt caused by Rx FIFO overrun error.
0: Rx FIFO overrun error interrupt disabled
1: Rx FIFO overrun error interrupt enabled
Bit 4 TXUNDERRIE: Tx FIFO underrun error interrupt enable
Set and cleared by software to enable/disable interrupt caused by Tx FIFO underrun error.
0: Tx FIFO underrun error interrupt disabled
1: Tx FIFO underrun error interrupt enabled
Bit 3 DTIMEOUTIE: Data timeout interrupt enable
Set and cleared by software to enable/disable interrupt caused by data timeout.
0: Data timeout interrupt disabled
1: Data timeout interrupt enabled
Bit 2 CTIMEOUTIE: Command timeout interrupt enable
Set and cleared by software to enable/disable interrupt caused by command timeout.
0: Command timeout interrupt disabled
1: Command timeout interrupt enabled
Bit 1 DCRCFAILIE: Data CRC fail interrupt enable
Set and cleared by software to enable/disable interrupt caused by data CRC failure.
0: Data CRC fail interrupt disabled
1: Data CRC fail interrupt enabled
Bit 0 CCRCFAILIE: Command CRC fail interrupt enable
Set and cleared by software to enable/disable interrupt caused by command CRC failure.
0: Command CRC fail interrupt disabled
1: Command CRC fail interrupt enabled
41.8.14
SDMMC FIFO counter register (SDMMC_FIFOCNT)
Address offset: 0x48
Reset value: 0x0000 0000
The SDMMC_FIFOCNT register contains the remaining number of words to be written to or
read from the FIFO. The FIFO counter loads the value from the data length register (see
SDMMC_DLEN) when the data transfer enable bit, DTEN, is set in the data control register
(SDMMC_DCTRL register) and the DPSM is at the Idle state. If the data length is not wordaligned (multiple of 4), the remaining 1 to 3 bytes are regarded as a word.
DocID024597 Rev 3
1447/1693
1450
SD/SDIO/MMC card host interface (SDMMC)
RM0351
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
23
22
21
20
r
r
r
r
7
6
5
r
r
19
18
17
16
r
r
r
r
4
3
2
1
0
r
r
r
r
r
FIFOCOUNT[23:16]
FIFOCOUNT[15:0]
r
r
r
r
r
r
r
r
r
Bits 31:24 Reserved, must be kept at reset value.
Bits 23:0 FIFOCOUNT: Remaining number of words to be written to or read from the FIFO.
41.8.15
SDMMC data FIFO register (SDMMC_FIFO)
Address offset: 0x80
Reset value: 0x0000 0000
The receive and transmit FIFOs can be read or written as 32-bit wide registers. The FIFOs
contain 32 entries on 32 sequential addresses. This allows the CPU to use its load and store
multiple operands to read from/write to the FIFO.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
FIF0Data[31:16]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
FIF0Data[15:0]
rw
rw
bits 31:0 FIFOData: Receive and transmit FIFO data
The FIFO data occupies 32 entries of 32-bit words, from address:
SDMMC base + 0x080 to SDMMC base + 0xFC.
1448/1693
DocID024597 Rev 3
RM0351
41.8.16
SD/SDIO/MMC card host interface (SDMMC)
SDMMC register map
The following table summarizes the SDMMC registers.
PWRSAV
CLKEN
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SDMMC_CMD
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0x10
SDMMC_
RESPCMD
Res.
Reset value
0
0
0
0
0
WAITRESP
CMDINDEX
0
Res.
0
Res.
0
WAITINT
0
Res.
0
WAITPEND
0
Res.
0
CPSMEN
0
Res.
0
SDIOSuspend
0
Res.
Reset value
0x0C
CLKDIV
BYPASS
0
WIDBUS
0
CMDARG
SDMMC_ARG
0x08
Reset value
SDMMC_
RESP1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DTEN
0
DTDIR
0
DTMODE
0
DMAEN
0
DBLOCKSIZE
DATALENGTH
RWSTART
Res.
Res.
0
RWSTOP
Res.
Res.
0
Res.
Res.
Res.
0
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
SDMMC_
DLEN
Res.
DATATIME
Reset value
SDMMC_
DCOUNT
0
0
Reset value
0x30
0
CARDSTATUS4
SDMMC_
DTIMER
SDMMC_
DCTRL
0
CARDSTATUS3
Reset value
0x2C
0
CARDSTATUS2
Res.
0x28
0
SDMMC_
RESP4
Reset value
0x24
0
Res.
0x20
0
SDMMC_
RESP3
Reset value
0
RWMOD
Reset value
0x1C
0
SDMMC_
RESP2
Res.
0x18
0
SDIOEN
Reset value
RESPCMD
CARDSTATUS1
Res.
0x14
0
NEGEDGE
Reset value
0
HWFC_EN
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SDMMC_
CLKCR
Res.
Reset value
0x04
PWRCTRL
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SDMMC_
POWER
Res.
0x00
Res.
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 251. SDMMC register map
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DATACOUNT
0
0
0
0
0
0
0
0
0
DocID024597 Rev 3
0
0
0
0
0
1449/1693
1450
0x80
0x48
SDMMC_
FIFOCNT
Reset value
1450/1693
0
0
0
0
0
0
0
Res.
Res.
Res.
SDMMC_
MASK
Res.
0x3C
Res.
Reset value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SDMMC_FIFO
0
0
0
0
RXACTIE
TXACTIE
CMDACTIE
DBCKENDIE
0
0
0
0
0
0
0
0
0
0
0
DocID024597 Rev 3
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DBCKENDC
DATAENDC
CMDSENTC
CMDRENDC
RXOVERRC
TXUNDERRC
DTIMEOUTC
CTIMEOUTC
DCRCFAILC
CCRCFAILC
0
CCRCFAILIE
0
DCRCFAILIE
0
CTIMEOUTIE
DBCKEND
0
DTIMEOUTIE
TXACT
CMDACT
0
RXOVERRIE
RXACT
0
TXUNDERRIE
TXFIFOHE
0
CMDSENTIE
TXFIFOF
RXFIFOHF
0
CMDRENDIE
TXFIFOE
RXFIFOF
0
DATAEND
CMDSENT
CMDREND
RXOVERR
TXUNDERR
DTIMEOUT
CTIMEOUT
DCRCFAIL
CCRCFAIL
Res.
TXDAVL
RXFIFOE
0
DATAENDIE
RXDAVL
0
Res.
SDIOIT
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
TXFIFOHEIE
0
TXFIFOFIE
0
RXFIFOHFIE
TXFIFOEIE
RXFIFOEIE
0
RXFIFOFIE
TXDAVLIE
Reset value
RXDAVLIE
Reset value
0
SDIOITC
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
SDIOITIE
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SDMMC_ICR
Res.
0x38
Res.
SDMMC_STA
Res.
0x34
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res.
Offset
Res.
SD/SDIO/MMC card host interface (SDMMC)
RM0351
Table 251. SDMMC register map (continued)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FIFOCOUNT
FIF0Data
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Refer to Section 2.2.2: Memory map and register boundary addresses for the register
boundary addresses.
RM0351
Controller area network (bxCAN)
42
Controller area network (bxCAN)
42.1
Introduction
The Basic Extended CAN peripheral, named bxCAN, interfaces the CAN network. It
supports the CAN protocols version 2.0A and B. It has been designed to manage a high
number of incoming messages efficiently with a minimum CPU load. It also meets the
priority requirements for transmit messages.
For safety-critical applications, the CAN controller provides all hardware functions for
supporting the CAN Time Triggered Communication option.
42.2
bxCAN main features
•
Supports CAN protocol version 2.0 A, B Active
•
Bit rates up to 1 Mbit/s
•
Supports the Time Triggered Communication option
Transmission
•
Three transmit mailboxes
•
Configurable transmit priority
•
Time Stamp on SOF transmission
Reception
•
Two receive FIFOs with three stages
•
Scalable filter banks:
–
14 filter banks
•
Identifier list feature
•
Configurable FIFO overrun
•
Time Stamp on SOF reception
Time-triggered communication option
•
Disable automatic retransmission mode
•
16-bit free running timer
•
Time Stamp sent in last two data bytes
Management
•
Maskable interrupts
•
Software-efficient mailbox mapping at a unique address space
DocID024597 Rev 3
1451/1693
1494
Controller area network (bxCAN)
42.3
RM0351
bxCAN general description
In today’s CAN applications, the number of nodes in a network is increasing and often
several networks are linked together via gateways. Typically the number of messages in the
system (and thus to be handled by each node) has significantly increased. In addition to the
application messages, Network Management and Diagnostic messages have been
introduced.
•
An enhanced filtering mechanism is required to handle each type of message.
Furthermore, application tasks require more CPU time, therefore real-time constraints
caused by message reception have to be reduced.
•
A receive FIFO scheme allows the CPU to be dedicated to application tasks for a long
time period without losing messages.
The standard HLP (Higher Layer Protocol) based on standard CAN drivers requires an
efficient interface to the CAN controller.
0&8
$SSOLFDWLRQ
&$1
&RQWUROOHU
&$1
&$1
5;
7;
&$1
7UDQVFHLYHU
&$1
&$1
+LJK
/RZ
&$1QRGHQ
&$1QRGH
&$1QRGH
Figure 478. CAN network topology
&$1%XV
069
42.3.1
CAN 2.0B active core
The bxCAN module handles the transmission and the reception of CAN messages fully
autonomously. Standard identifiers (11-bit) and extended identifiers (29-bit) are fully
supported by hardware.
42.3.2
Control, status and configuration registers
The application uses these registers to:
42.3.3
•
Configure CAN parameters, e.g. baud rate
•
Request transmissions
•
Handle receptions
•
Manage interrupts
•
Get diagnostic information
Tx mailboxes
Three transmit mailboxes are provided to the software for setting up messages. The
transmission Scheduler decides which mailbox has to be transmitted first.
1452/1693
DocID024597 Rev 3
RM0351
42.3.4
Controller area network (bxCAN)
Acceptance filters
The bxCAN provides 14 scalable/configurable identifier filter banks for selecting the
incoming messages the software needs and discarding the others.
Receive FIFO
Two receive FIFOs are used by hardware to store the incoming messages. Three complete
messages can be stored in each FIFO. The FIFOs are managed completely by hardware.
42.4
bxCAN operating modes
bxCAN has three main operating modes: initialization, normal and Sleep. After a
hardware reset, bxCAN is in Sleep mode to reduce power consumption and an internal pullup is active on CANTX. The software requests bxCAN to enter initialization or Sleep mode
by setting the INRQ or SLEEP bits in the CAN_MCR register. Once the mode has been
entered, bxCAN confirms it by setting the INAK or SLAK bits in the CAN_MSR register and
the internal pull-up is disabled. When neither INAK nor SLAK are set, bxCAN is in normal
mode. Before entering normal mode bxCAN always has to synchronize on the CAN bus.
To synchronize, bxCAN waits until the CAN bus is idle, this means 11 consecutive recessive
bits have been monitored on CANRX.
42.4.1
Initialization mode
The software initialization can be done while the hardware is in Initialization mode. To enter
this mode the software sets the INRQ bit in the CAN_MCR register and waits until the
hardware has confirmed the request by setting the INAK bit in the CAN_MSR register.
To leave Initialization mode, the software clears the INQR bit. bxCAN has left Initialization
mode once the INAK bit has been cleared by hardware.
While in Initialization Mode, all message transfers to and from the CAN bus are stopped and
the status of the CAN bus output CANTX is recessive (high).
Entering Initialization Mode does not change any of the configuration registers.
To initialize the CAN Controller, software has to set up the Bit Timing (CAN_BTR) and CAN
options (CAN_MCR) registers.
To initialize the registers associated with the CAN filter banks (mode, scale, FIFO
assignment, activation and filter values), software has to set the FINIT bit (CAN_FMR). Filter
initialization also can be done outside the initialization mode.
Note:
When FINIT=1, CAN reception is deactivated.
The filter values also can be modified by deactivating the associated filter activation bits (in
the CAN_FA1R register).
If a filter bank is not used, it is recommended to leave it non active (leave the corresponding
FACT bit cleared).
42.4.2
Normal mode
Once the initialization is complete, the software must request the hardware to enter Normal
mode to be able to synchronize on the CAN bus and start reception and transmission.
DocID024597 Rev 3
1453/1693
1494
Controller area network (bxCAN)
RM0351
The request to enter Normal mode is issued by clearing the INRQ bit in the CAN_MCR
register. The bxCAN enters Normal mode and is ready to take part in bus activities when it
has synchronized with the data transfer on the CAN bus. This is done by waiting for the
occurrence of a sequence of 11 consecutive recessive bits (Bus Idle state). The switch to
Normal mode is confirmed by the hardware by clearing the INAK bit in the CAN_MSR
register.
The initialization of the filter values is independent from Initialization Mode but must be done
while the filter is not active (corresponding FACTx bit cleared). The filter scale and mode
configuration must be configured before entering Normal Mode.
42.4.3
Sleep mode (low-power)
To reduce power consumption, bxCAN has a low-power mode called Sleep mode. This
mode is entered on software request by setting the SLEEP bit in the CAN_MCR register. In
this mode, the bxCAN clock is stopped, however software can still access the bxCAN
mailboxes.
If software requests entry to initialization mode by setting the INRQ bit while bxCAN is in
Sleep mode, it must also clear the SLEEP bit.
bxCAN can be woken up (exit Sleep mode) either by software clearing the SLEEP bit or on
detection of CAN bus activity.
On CAN bus activity detection, hardware automatically performs the wakeup sequence by
clearing the SLEEP bit if the AWUM bit in the CAN_MCR register is set. If the AWUM bit is
cleared, software has to clear the SLEEP bit when a wakeup interrupt occurs, in order to exit
from Sleep mode.
Note:
If the wakeup interrupt is enabled (WKUIE bit set in CAN_IER register) a wakeup interrupt
will be generated on detection of CAN bus activity, even if the bxCAN automatically
performs the wakeup sequence.
After the SLEEP bit has been cleared, Sleep mode is exited once bxCAN has synchronized
with the CAN bus, refer to Figure 479: bxCAN operating modes. The Sleep mode is exited
once the SLAK bit has been cleared by hardware.
1454/1693
DocID024597 Rev 3
RM0351
Controller area network (bxCAN)
Figure 479. bxCAN operating modes
5HVHW
6OHHS
6/$.
,1$.
6/
4
((
5
,1
1
6<
/(
6
1RUPDO
((
.
(3
3
,1
6/
&
5
3
,1
$&
(3
&
4
$
(
6/
4
$
5
.
&
,154$&.
6/$.
,1$.
,1546<1&6/((3
.
,QLWLDOL]DWLRQ
6/$.
,1$.
DL
1. ACK = The wait state during which hardware confirms a request by setting the INAK or SLAK bits in the
CAN_MSR register
2. SYNC = The state during which bxCAN waits until the CAN bus is idle, meaning 11 consecutive recessive
bits have been monitored on CANRX
42.5
Test mode
Test mode can be selected by the SILM and LBKM bits in the CAN_BTR register. These bits
must be configured while bxCAN is in Initialization mode. Once test mode has been
selected, the INRQ bit in the CAN_MCR register must be reset to enter Normal mode.
42.5.1
Silent mode
The bxCAN can be put in Silent mode by setting the SILM bit in the CAN_BTR register.
In Silent mode, the bxCAN is able to receive valid data frames and valid remote frames, but
it sends only recessive bits on the CAN bus and it cannot start a transmission. If the bxCAN
has to send a dominant bit (ACK bit, overload flag, active error flag), the bit is rerouted
internally so that the CAN Core monitors this dominant bit, although the CAN bus may
remain in recessive state. Silent mode can be used to analyze the traffic on a CAN bus
without affecting it by the transmission of dominant bits (Acknowledge Bits, Error Frames).
DocID024597 Rev 3
1455/1693
1494
Controller area network (bxCAN)
RM0351
Figure 480. bxCAN in silent mode
E[&$1
7;
5;
&$17;
&$15;
069
42.5.2
Loop back mode
The bxCAN can be set in Loop Back Mode by setting the LBKM bit in the CAN_BTR
register. In Loop Back Mode, the bxCAN treats its own transmitted messages as received
messages and stores them (if they pass acceptance filtering) in a Receive mailbox.
Figure 481. bxCAN in loop back mode
BX#!.
48
28
#!.48 #!.28
-36
This mode is provided for self-test functions. To be independent of external events, the CAN
Core ignores acknowledge errors (no dominant bit sampled in the acknowledge slot of a
data / remote frame) in Loop Back Mode. In this mode, the bxCAN performs an internal
feedback from its Tx output to its Rx input. The actual value of the CANRX input pin is
disregarded by the bxCAN. The transmitted messages can be monitored on the CANTX pin.
42.5.3
Loop back combined with silent mode
It is also possible to combine Loop Back mode and Silent mode by setting the LBKM and
SILM bits in the CAN_BTR register. This mode can be used for a “Hot Selftest”, meaning the
bxCAN can be tested like in Loop Back mode but without affecting a running CAN system
connected to the CANTX and CANRX pins. In this mode, the CANRX pin is disconnected
from the bxCAN and the CANTX pin is held recessive.
1456/1693
DocID024597 Rev 3
RM0351
Controller area network (bxCAN)
Figure 482. bxCAN in combined mode
E[&$1
7;
5;
&$17; &$15;
069
42.6
Behavior in Debug mode
When the microcontroller enters the debug mode (Cortex®-M4 core halted), the bxCAN
continues to work normally or stops, depending on:
•
the DBF bit in CAN_MCR. For more details, refer to Section 42.9.2: CAN control and
status registers.
42.7
bxCAN functional description
42.7.1
Transmission handling
In order to transmit a message, the application must select one empty transmit mailbox, set
up the identifier, the data length code (DLC) and the data before requesting the transmission
by setting the corresponding TXRQ bit in the CAN_TIxR register. Once the mailbox has left
empty state, the software no longer has write access to the mailbox registers. Immediately
after the TXRQ bit has been set, the mailbox enters pending state and waits to become the
highest priority mailbox, see Transmit Priority. As soon as the mailbox has the highest
priority it will be scheduled for transmission. The transmission of the message of the
scheduled mailbox will start (enter transmit state) when the CAN bus becomes idle. Once
the mailbox has been successfully transmitted, it will become empty again. The hardware
indicates a successful transmission by setting the RQCP and TXOK bits in the CAN_TSR
register.
If the transmission fails, the cause is indicated by the ALST bit in the CAN_TSR register in
case of an Arbitration Lost, and/or the TERR bit, in case of transmission error detection.
Transmit priority
By identifier
When more than one transmit mailbox is pending, the transmission order is given by the
identifier of the message stored in the mailbox. The message with the lowest identifier value
has the highest priority according to the arbitration of the CAN protocol. If the identifier
values are equal, the lower mailbox number will be scheduled first.
By transmit request order
DocID024597 Rev 3
1457/1693
1494
Controller area network (bxCAN)
RM0351
The transmit mailboxes can be configured as a transmit FIFO by setting the TXFP bit in the
CAN_MCR register. In this mode the priority order is given by the transmit request order.
This mode is very useful for segmented transmission.
Abort
A transmission request can be aborted by the user setting the ABRQ bit in the CAN_TSR
register. In pending or scheduled state, the mailbox is aborted immediately. An abort
request while the mailbox is in transmit state can have two results. If the mailbox is
transmitted successfully the mailbox becomes empty with the TXOK bit set in the
CAN_TSR register. If the transmission fails, the mailbox becomes scheduled, the
transmission is aborted and becomes empty with TXOK cleared. In all cases the mailbox
will become empty again at least at the end of the current transmission.
Non automatic retransmission mode
This mode has been implemented in order to fulfill the requirement of the Time Triggered
Communication option of the CAN standard. To configure the hardware in this mode the
NART bit in the CAN_MCR register must be set.
In this mode, each transmission is started only once. If the first attempt fails, due to an
arbitration loss or an error, the hardware will not automatically restart the message
transmission.
At the end of the first transmission attempt, the hardware considers the request as
completed and sets the RQCP bit in the CAN_TSR register. The result of the transmission is
indicated in the CAN_TSR register by the TXOK, ALST and TERR bits.
Figure 483. Transmit mailbox states
%-049
21#08
48/+8
4-%
4821
0%.$).'
21#0
48/+
4-%
!"21
-AILBOX HAS
HIGHEST PRIORITY
-AILBOX DOES NOT
HAVE HIGHEST PRIORITY
%-049
21#0
48/+
4-%
#!. "US )$,%
4RANSMIT FAILED .!24
%-049
21#0
48/+
4-%
3#(%$5,%$
21#0
48/+
4-%
!"21
42!.3-)4
21#0
48/+
4-%
4RANSMIT FAILED .!24
4RANSMIT SUCCEEDED
-36
1458/1693
DocID024597 Rev 3
RM0351
42.7.2
Controller area network (bxCAN)
Time triggered communication mode
In this mode, the internal counter of the CAN hardware is activated and used to generate the
Time Stamp value stored in the CAN_RDTxR/CAN_TDTxR registers, respectively (for Rx
and Tx mailboxes). The internal counter is incremented each CAN bit time (refer to
Section 42.7.7: Bit timing). The internal counter is captured on the sample point of the Start
Of Frame bit in both reception and transmission.
42.7.3
Reception handling
For the reception of CAN messages, three mailboxes organized as a FIFO are provided. In
order to save CPU load, simplify the software and guarantee data consistency, the FIFO is
managed completely by hardware. The application accesses the messages stored in the
FIFO through the FIFO output mailbox.
Valid message
A received message is considered as valid when it has been received correctly according to
the CAN protocol (no error until the last but one bit of the EOF field) and It passed through
the identifier filtering successfully, see Section 42.7.4: Identifier filtering.
Figure 484. Receive FIFO states
%-049
&-0X
&/62
6ALID -ESSAGE
2ECEIVED
2ELEASE
-AILBOX
0%.$).'?
&0-X
&/62
2ELEASE
-AILBOX
2&/-
6ALID -ESSAGE
2ECEIVED
0%.$).'?
&0-X
&/62
2ELEASE
-AILBOX
2&/-
6ALID -ESSAGE
2ECEIVED
0%.$).'?
&0-X
&/62
6ALID -ESSAGE
2ECEIVED
2ELEASE
-AILBOX
2&/-
/6%225.
&0-X
&/62
6ALID -ESSAGE
2ECEIVED
-36
DocID024597 Rev 3
1459/1693
1494
Controller area network (bxCAN)
RM0351
FIFO management
Starting from the empty state, the first valid message received is stored in the FIFO which
becomes pending_1. The hardware signals the event setting the FMP[1:0] bits in the
CAN_RFR register to the value 01b. The message is available in the FIFO output mailbox.
The software reads out the mailbox content and releases it by setting the RFOM bit in the
CAN_RFR register. The FIFO becomes empty again. If a new valid message has been
received in the meantime, the FIFO stays in pending_1 state and the new message is
available in the output mailbox.
If the application does not release the mailbox, the next valid message will be stored in the
FIFO which enters pending_2 state (FMP[1:0] = 10b). The storage process is repeated for
the next valid message putting the FIFO into pending_3 state (FMP[1:0] = 11b). At this
point, the software must release the output mailbox by setting the RFOM bit, so that a
mailbox is free to store the next valid message. Otherwise the next valid message received
will cause a loss of message.
Refer also to Section 42.7.5: Message storage
Overrun
Once the FIFO is in pending_3 state (i.e. the three mailboxes are full) the next valid
message reception will lead to an overrun and a message will be lost. The hardware
signals the overrun condition by setting the FOVR bit in the CAN_RFR register. Which
message is lost depends on the configuration of the FIFO:
•
If the FIFO lock function is disabled (RFLM bit in the CAN_MCR register cleared) the
last message stored in the FIFO will be overwritten by the new incoming message. In
this case the latest messages will be always available to the application.
•
If the FIFO lock function is enabled (RFLM bit in the CAN_MCR register set) the most
recent message will be discarded and the software will have the three oldest messages
in the FIFO available.
Reception related interrupts
Once a message has been stored in the FIFO, the FMP[1:0] bits are updated and an
interrupt request is generated if the FMPIE bit in the CAN_IER register is set.
When the FIFO becomes full (i.e. a third message is stored) the FULL bit in the CAN_RFR
register is set and an interrupt is generated if the FFIE bit in the CAN_IER register is set.
On overrun condition, the FOVR bit is set and an interrupt is generated if the FOVIE bit in
the CAN_IER register is set.
42.7.4
Identifier filtering
In the CAN protocol the identifier of a message is not associated with the address of a node
but related to the content of the message. Consequently a transmitter broadcasts its
message to all receivers. On message reception a receiver node decides - depending on
the identifier value - whether the software needs the message or not. If the message is
needed, it is copied into the SRAM. If not, the message must be discarded without
intervention by the software.
To fulfill this requirement, the bxCAN Controller provides 28 configurable and scalable filter
banks (27-0) to the application. In other devices the bxCAN Controller provides 14
1460/1693
DocID024597 Rev 3
RM0351
Controller area network (bxCAN)
configurable and scalable filter banks (13-0) to the application in order to receive only the
messages the software needs. This hardware filtering saves CPU resources which would be
otherwise needed to perform filtering by software. Each filter bank x consists of two 32-bit
registers, CAN_FxR0 and CAN_FxR1.
Scalable width
To optimize and adapt the filters to the application needs, each filter bank can be scaled
independently. Depending on the filter scale a filter bank provides:
•
One 32-bit filter for the STDID[10:0], EXTID[17:0], IDE and RTR bits.
•
Two 16-bit filters for the STDID[10:0], RTR, IDE and EXTID[17:15] bits.
Refer to Figure 485.
Furthermore, the filters can be configured in mask mode or in identifier list mode.
Mask mode
In mask mode the identifier registers are associated with mask registers specifying which
bits of the identifier are handled as “must match” or as “don’t care”.
Identifier list mode
In identifier list mode, the mask registers are used as identifier registers. Thus instead of
defining an identifier and a mask, two identifiers are specified, doubling the number of single
identifiers. All bits of the incoming identifier must match the bits specified in the filter
registers.
Filter bank scale and mode configuration
The filter banks are configured by means of the corresponding CAN_FMR register. To
configure a filter bank it must be deactivated by clearing the FACT bit in the CAN_FAR
register. The filter scale is configured by means of the corresponding FSCx bit in the
CAN_FS1R register, refer to Figure 485. The identifier list or identifier mask mode for the
corresponding Mask/Identifier registers is configured by means of the FBMx bits in the
CAN_FMR register.
To filter a group of identifiers, configure the Mask/Identifier registers in mask mode.
To select single identifiers, configure the Mask/Identifier registers in identifier list mode.
Filters not used by the application should be left deactivated.
Each filter within a filter bank is numbered (called the Filter Number) from 0 to a maximum
dependent on the mode and the scale of each of the filter banks.
Concerning the filter configuration, refer to Figure 485.
DocID024597 Rev 3
1461/1693
1494
Controller area network (bxCAN)
RM0351
&"-X
&"-X
&3#X
Figure 485. Filter bank scale configuration - register organization
&ILTER
.UM
/NE "IT &ILTER )DENTIFIER -ASK
)$
#!.?&X2;=
#!.?&X2;=
#!.?&X2;=
#!.?&X2;=
-ASK
#!.?&X2;=
#!.?&X2;=
#!.?&X2;=
#!.?&X2;=
-APPING
34)$;=
34)$;=
%8)$;=
%8)$;=
%8)$;=
N
)$% 242
4WO "IT &ILTERS )DENTIFIER ,IST
)$
#!.?&X2;=
#!.?&X2;=
#!.?&X2;=
#!.?&X2;=
)$
#!.?&X2;=
#!.?&X2;=
#!.?&X2;=
#!.?&X2;=
-APPING
34)$;=
34)$;=
%8)$;=
%8)$;=
%8)$;=
N
N
)$% 242
&"-X
4WO "IT &ILTERS )DENTIFIER -ASK
)$
-ASK
)$
-APPING
)$
)$
)$
)$
34)$;=
N
#!.?&X2;=
N
#!.?&X2;=
34)$;= 242 )$% %8)$;=
#!.?&X2;=
#!.?&X2;=
#!.?&X2;=
#!.?&X2;=
34)$;=
#!.?&X2;=
#!.?&X2;=
N
N
#!.?&X2;=
N
N
#!.?&X2;=
34)$;= 242 )$% %8)$;=
&ILTER "ANK -ODE
-APPING
&ILTER "ANK 3CALE
#ONFIG "ITS
#!.?&X2;=
#!.?&X2;=
#!.?&X2;=
#!.?&X2;=
&OUR "IT &ILTERS )DENTIFIER ,IST
&"-X
&3#X
-ASK
#!.?&X2;=
#!.?&X2;=
X FILTER BANK NUMBER
)$)DENTIFIER
4HESE BITS ARE LOCATED IN THE #!.?&32 REGISTER
4HESE BITS ARE LOCATED IN THE #!.?&-2 REGISTER
069
Filter match index
Once a message has been received in the FIFO it is available to the application. Typically,
application data is copied into SRAM locations. To copy the data to the right location the
application has to identify the data by means of the identifier. To avoid this, and to ease the
access to the SRAM locations, the CAN controller provides a Filter Match Index.
This index is stored in the mailbox together with the message according to the filter priority
rules. Thus each received message has its associated filter match index.
The Filter Match index can be used in two ways:
•
Compare the Filter Match index with a list of expected values.
•
Use the Filter Match Index as an index on an array to access the data destination
location.
For non masked filters, the software no longer has to compare the identifier.
If the filter is masked the software reduces the comparison to the masked bits only.
The index value of the filter number does not take into account the activation state of the
filter banks. In addition, two independent numbering schemes are used, one for each FIFO.
Refer to Figure 486 for an example.
1462/1693
DocID024597 Rev 3
RM0351
Controller area network (bxCAN)
Figure 486. Example of filter numbering
)LOWHU
%DQN
),)2
)LOWHU
1XP
)LOWHU
%DQN
),)2
)LOWHU
1XP
,'/LVW ELW
,'0DVN ELW
,'0DVN ELW
,'/LVW ELW
,'/LVW ELW
'HDFWLYDWHG
,'/LVW ELW
'HDFWLYDWHG
,'/LVW ELW
,'0DVN ELW
,'0DVN ELW
'HDFWLYDWHG
,'/LVW ELW
,'/LVW ELW
,'/LVW ELW
,'0DVN ELW
,'0DVN ELW
,' ,GHQWLILHU
069
Filter priority rules
Depending on the filter combination it may occur that an identifier passes successfully
through several filters. In this case the filter match value stored in the receive mailbox is
chosen according to the following priority rules:
•
A 32-bit filter takes priority over a 16-bit filter.
•
For filters of equal scale, priority is given to the Identifier List mode over the Identifier
Mask mode
•
For filters of equal scale and mode, priority is given by the filter number (the lower the
number, the higher the priority).
DocID024597 Rev 3
1463/1693
1494
Controller area network (bxCAN)
RM0351
Figure 487. Filtering mechanism - example
([DPSOHRIILOWHUEDQNVLQELW8QLGHQWLILHGPRGHDQG
WKHUHPDLQLQJLQELW,GHQWLILHU0DVNPRGH
0HVVDJH5HFHLYHG
,GHQWLILHU
&WUO
'DWD
,GHQWLILHU 0DVN
,GHQWLILHU/LVW
)LOWHUEDQN
1XP
,GHQWLILHU
,GHQWLILHU
,GHQWLILHU
,GHQWLILHU
,GHQWLILHU
0DVN
,GHQWLILHU
0DVN
5HFHLYH),)2
,GHQWLILHU0DWFK
0HVVDJH
6WRUHG
)0,
)LOWHUQXPEHUVWRUHGLQWKH
)LOWHU0DWFK,QGH[ILHOG
ZLWKLQWKH&$1B5'7[5
UHJLVWHU
1R0DWFK
)RXQG
0HVVDJH'LVFDUGHG
069
The example above shows the filtering principle of the bxCAN. On reception of a message,
the identifier is compared first with the filters configured in identifier list mode. If there is a
match, the message is stored in the associated FIFO and the index of the matching filter is
stored in the Filter Match Index. As shown in the example, the identifier matches with
Identifier #2 thus the message content and FMI 2 is stored in the FIFO.
If there is no match, the incoming identifier is then compared with the filters configured in
mask mode.
If the identifier does not match any of the identifiers configured in the filters, the message is
discarded by hardware without disturbing the software.
42.7.5
Message storage
The interface between the software and the hardware for the CAN messages is
implemented by means of mailboxes. A mailbox contains all information related to a
message; identifier, data, control, status and time stamp information.
Transmit mailbox
The software sets up the message to be transmitted in an empty transmit mailbox. The
status of the transmission is indicated by hardware in the CAN_TSR register.
1464/1693
DocID024597 Rev 3
RM0351
Controller area network (bxCAN)
Table 252. Transmit mailbox mapping
Offset to transmit mailbox base address
Register name
0
CAN_TIxR
4
CAN_TDTxR
8
CAN_TDLxR
12
CAN_TDHxR
Receive mailbox
When a message has been received, it is available to the software in the FIFO output
mailbox. Once the software has handled the message (e.g. read it) the software must
release the FIFO output mailbox by means of the RFOM bit in the CAN_RFR register to
make the next incoming message available. The filter match index is stored in the MFMI
field of the CAN_RDTxR register. The 16-bit time stamp value is stored in the TIME[15:0]
field of CAN_RDTxR.
Table 253. Receive mailbox mapping
Offset to receive mailbox base
address (bytes)
Register name
0
CAN_RIxR
4
CAN_RDTxR
8
CAN_RDLxR
12
CAN_RDHxR
Figure 488. CAN error state diagram
:KHQ7(&RU5(&!
(55253$66,9(
(5525$&7,9(
:KHQ7(&DQG5(&
:KHQ UHFHVVLYHELWVRFFXU
:KHQ7(&!
%862))
DL
DocID024597 Rev 3
1465/1693
1494
Controller area network (bxCAN)
42.7.6
RM0351
Error management
The error management as described in the CAN protocol is handled entirely by hardware
using a Transmit Error Counter (TEC value, in CAN_ESR register) and a Receive Error
Counter (REC value, in the CAN_ESR register), which get incremented or decremented
according to the error condition. For detailed information about TEC and REC management,
please refer to the CAN standard.
Both of them may be read by software to determine the stability of the network.
Furthermore, the CAN hardware provides detailed information on the current error status in
CAN_ESR register. By means of the CAN_IER register (ERRIE bit, etc.), the software can
configure the interrupt generation on error detection in a very flexible way.
Bus-Off recovery
The Bus-Off state is reached when TEC is greater than 255, this state is indicated by BOFF
bit in CAN_ESR register. In Bus-Off state, the bxCAN is no longer able to transmit and
receive messages.
Depending on the ABOM bit in the CAN_MCR register bxCAN will recover from Bus-Off
(become error active again) either automatically or on software request. But in both cases
the bxCAN has to wait at least for the recovery sequence specified in the CAN standard
(128 occurrences of 11 consecutive recessive bits monitored on CANRX).
If ABOM is set, the bxCAN will start the recovering sequence automatically after it has
entered Bus-Off state.
If ABOM is cleared, the software must initiate the recovering sequence by requesting
bxCAN to enter and to leave initialization mode.
Note:
In initialization mode, bxCAN does not monitor the CANRX signal, therefore it cannot
complete the recovery sequence. To recover, bxCAN must be in normal mode.
42.7.7
Bit timing
The bit timing logic monitors the serial bus-line and performs sampling and adjustment of
the sample point by synchronizing on the start-bit edge and resynchronizing on the following
edges.
Its operation may be explained simply by splitting nominal bit time into three segments as
follows:
•
Synchronization segment (SYNC_SEG): a bit change is expected to occur within this
time segment. It has a fixed length of one time quantum (1 x tq).
•
Bit segment 1 (BS1): defines the location of the sample point. It includes the
PROP_SEG and PHASE_SEG1 of the CAN standard. Its duration is programmable
between 1 and 16 time quanta but may be automatically lengthened to compensate for
positive phase drifts due to differences in the frequency of the various nodes of the
network.
•
Bit segment 2 (BS2): defines the location of the transmit point. It represents the
PHASE_SEG2 of the CAN standard. Its duration is programmable between 1 and 8
time quanta but may also be automatically shortened to compensate for negative
phase drifts.
The resynchronization Jump Width (SJW) defines an upper bound to the amount of
lengthening or shortening of the bit segments. It is programmable between 1 and 4 time
quanta.
1466/1693
DocID024597 Rev 3
RM0351
Controller area network (bxCAN)
A valid edge is defined as the first transition in a bit time from dominant to recessive bus
level provided the controller itself does not send a recessive bit.
If a valid edge is detected in BS1 instead of SYNC_SEG, BS1 is extended by up to SJW so
that the sample point is delayed.
Conversely, if a valid edge is detected in BS2 instead of SYNC_SEG, BS2 is shortened by
up to SJW so that the transmit point is moved earlier.
As a safeguard against programming errors, the configuration of the Bit Timing Register
(CAN_BTR) is only possible while the device is in Standby mode.
Note:
For a detailed description of the CAN bit timing and resynchronization mechanism, please
refer to the ISO 11898 standard.
Figure 489. Bit timing
120,1$/%,77,0(
6<1&B6(*
[WT
%DXG5DWH
%,76(*0(17 %6
%,76(*0(17 %6
W%6
1RPLQDO%LW7LPH
W%6
6$03/(32,17
75$160,732,17
1RPLQDO%LW7LPH [W TW%6W%6
ZLWK
W%6 WT[ 76>@
W%6 WT[ 76>@
WT %53>@ [W3&/.
ZKHUHWTUHIHUVWRWKHWLPHTXDQWXP
W3&/. WLPHSHULRGRIWKH$3%FORFN
%53>@76>@76>@DUHGHILQHGLQWKH&$1B%75UHJLVWHU
DocID024597 Rev 3
069
1467/1693
1494
Controller area network (bxCAN)
RM0351
Figure 490. CAN frames
,QWHU)UDPH6SDFH
RU2YHUORDG)UDPH
'DWD)UDPH 6WDQGDUG,GHQWLILHU
,QWHU)UDPH6SDFH
$UELWUDWLRQ)LHOG
,'
'/&
$&.)LHOG
&5&)LHOG
1
$&.
,QWHU)UDPH6SDFH
RU2YHUORDG)UDPH
'DWD)UDPH ([WHQGHG,GHQWLILHU
1
,QWHU)UDPH6SDFH
$UELWUDWLRQ)LHOG
$UELWUDWLRQ)LHOG
&WUO)LHOG 'DWD)LHOG
1
$UELWUDWLRQ)LHOG
5HPRWH)UDPH
&5&)LHOG
&WUO)LHOG
'/&
(QGRI)UDPHRU
(UURU'HOLPLWHURU
2YHUORDG'HOLPLWHU
$&.
$&.
(2)
'DWD)UDPHRU
5HPRWH)UDPH
%XV,GOH
,QWHU)UDPH6SDFH
RU(UURU)UDPH
2YHUORDG)UDPH
2YHUORDG 2YHUORDG
(FKR
)ODJ
$&.)LHOG
(UURU
'HOLPLWHU
,QWHU)UDPH6SDFH
6XVSHQG
,QWHUPLVVLRQ
7UDQVPLVVLRQ
(2)
,QWHU)UDPH6SDFH
RU2YHUORDG)UDPH
(UURU)UDPH
)ODJ(FKR
,QWHU)UDPH6SDFH
RU2YHUORDG)UDPH
&5&
575
,'(
U
62)
,'
(UURU
)ODJ
&5&
575
U
U
655
,'(
,QWHU)UDPH6SDFH
'DWD)UDPHRU
5HPRWH)UDPH
&5&)LHOG $&.)LHOG
'/&
62)
,'
$Q\)UDPH
(2)
&5&
575
,'(
U
62)
1
'DWD)LHOG
&WUO)LHOG
2YHUORDG
'HOLPLWHU
1RWHV
1
62) 6WDUW2I)UDPH
,' ,GHQWLILHU
575 5HPRWH7UDQVPLVVLRQ5HTXHVW
,'( ,GHQWLILHU([WHQVLRQ%LW
U 5HVHUYHG%LW
'/& 'DWD/HQJWK&RGH
&5& &\FOLF5HGXQGDQF\&RGH
(UURUIODJGRPLQDQWELWVLIQRGHLVHUURU
DFWLYHHOVHUHFHVVLYHELWV
6XVSHQGWUDQVPLVVLRQDSSOLHVWRHUURU
SDVVLYHQRGHVRQO\
(2) (QGRI)UDPH
$&. $FNQRZOHGJHELW
&WUO &RQWURO
DL
1468/1693
DocID024597 Rev 3
RM0351
42.8
Controller area network (bxCAN)
bxCAN interrupts
Four interrupt vectors are dedicated to bxCAN. Each interrupt source can be independently
enabled or disabled by means of the CAN Interrupt Enable Register (CAN_IER).
Figure 491. Event flags and interrupt generation
&$1B,(5
54&3
54&3
54&3
&$1B765
70(,(
75$160,7
,17(55837
)03,(
)03
)),(
&$1B5)5
)8//
),)2
,17(55837
)29,(
)295
)03,(
),)2
,17(55837
)03
)),(
&$1B5)5
)8//
)29,(
)295
(55,(
(:*,(
(:*)
(39,(
&$1B(65
(39)
%2),(
%2))
(55,(
67$786&+$1*(
(5525
,17(55837
&$1B065
/(&,(
/(&
:.8,(
:.8,
&$1B065
6/.,(
6/$.,
069
•
•
The transmit interrupt can be generated by the following events:
–
Transmit mailbox 0 becomes empty, RQCP0 bit in the CAN_TSR register set.
–
Transmit mailbox 1 becomes empty, RQCP1 bit in the CAN_TSR register set.
–
Transmit mailbox 2 becomes empty, RQCP2 bit in the CAN_TSR register set.
The FIFO 0 interrupt can be generated by the following events:
–
Reception of a new message, FMP0 bits in the CAN_RF0R register are not ‘00’.
–
FIFO0 full condition, FULL0 bit in the CAN_RF0R register set.
–
FIFO0 overrun condition, FOVR0 bit in the CAN_RF0R register set.
DocID024597 Rev 3
1469/1693
1494
Controller area network (bxCAN)
•
The FIFO 1 interrupt can be generated by the following events:
•
42.9
RM0351
–
Reception of a new message, FMP1 bits in the CAN_RF1R register are not ‘00’.
–
FIFO1 full condition, FULL1 bit in the CAN_RF1R register set.
–
FIFO1 overrun condition, FOVR1 bit in the CAN_RF1R register set.
The error and status change interrupt can be generated by the following events:
–
Error condition, for more details on error conditions please refer to the CAN Error
Status register (CAN_ESR).
–
Wakeup condition, SOF monitored on the CAN Rx signal.
–
Entry into Sleep mode.
CAN registers
The peripheral registers have to be accessed by words (32 bits).
42.9.1
Register access protection
Erroneous access to certain configuration registers can cause the hardware to temporarily
disturb the whole CAN network. Therefore the CAN_BTR register can be modified by
software only while the CAN hardware is in initialization mode.
Although the transmission of incorrect data will not cause problems at the CAN network
level, it can severely disturb the application. A transmit mailbox can be only modified by
software while it is in empty state, refer to Figure 483: Transmit mailbox states.
The filter values can be modified either deactivating the associated filter banks or by setting
the FINIT bit. Moreover, the modification of the filter configuration (scale, mode and FIFO
assignment) in CAN_FMxR, CAN_FSxR and CAN_FFAR registers can only be done when
the filter initialization mode is set (FINIT=1) in the CAN_FMR register.
42.9.2
CAN control and status registers
Refer to Section 1.1 for a list of abbreviations used in register descriptions.
CAN master control register (CAN_MCR)
Address offset: 0x00
Reset value: 0x0001 0002
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DBF
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
RESET
Res.
Res.
Res.
Res.
Res.
Res.
Res.
TTCM
ABOM
AWUM
NART
RFLM
TXFP
SLEEP
INRQ
rw
rw
rw
rw
rw
rw
rw
rw
rs
1470/1693
DocID024597 Rev 3
RM0351
Controller area network (bxCAN)
Bits 31:17 Reserved, must be kept at reset value.
Bit 16 DBF: Debug freeze
0: CAN working during debug
1: CAN reception/transmission frozen during debug. Reception FIFOs can still be
accessed/controlled normally.
Bit 15 RESET: bxCAN software master reset
0: Normal operation.
1: Force a master reset of the bxCAN -> Sleep mode activated after reset (FMP bits and
CAN_MCR register are initialized to the reset values). This bit is automatically reset to 0.
Bits 14:8 Reserved, must be kept at reset value.
Bit 7 TTCM: Time triggered communication mode
0: Time Triggered Communication mode disabled.
1: Time Triggered Communication mode enabled
Note: For more information on Time Triggered Communication mode, please refer to
Section 42.7.2: Time triggered communication mode.
Bit 6 ABOM: Automatic bus-off management
This bit controls the behavior of the CAN hardware on leaving the Bus-Off state.
0: The Bus-Off state is left on software request, once 128 occurrences of 11 recessive bits
have been monitored and the software has first set and cleared the INRQ bit of the
CAN_MCR register.
1: The Bus-Off state is left automatically by hardware once 128 occurrences of 11 recessive
bits have been monitored.
For detailed information on the Bus-Off state please refer to Section 42.7.6: Error
management.
Bit 5 AWUM: Automatic wakeup mode
This bit controls the behavior of the CAN hardware on message reception during Sleep
mode.
0: The Sleep mode is left on software request by clearing the SLEEP bit of the CAN_MCR
register.
1: The Sleep mode is left automatically by hardware on CAN message detection.
The SLEEP bit of the CAN_MCR register and the SLAK bit of the CAN_MSR register are
cleared by hardware.
Bit 4 NART: No automatic retransmission
0: The CAN hardware will automatically retransmit the message until it has been
successfully transmitted according to the CAN standard.
1: A message will be transmitted only once, independently of the transmission result
(successful, error or arbitration lost).
Bit 3 RFLM: Receive FIFO locked mode
0: Receive FIFO not locked on overrun. Once a receive FIFO is full the next incoming
message will overwrite the previous one.
1: Receive FIFO locked against overrun. Once a receive FIFO is full the next incoming
message will be discarded.
DocID024597 Rev 3
1471/1693
1494
Controller area network (bxCAN)
RM0351
Bit 2 TXFP: Transmit FIFO priority
This bit controls the transmission order when several mailboxes are pending at the same
time.
0: Priority driven by the identifier of the message
1: Priority driven by the request order (chronologically)
Bit 1 SLEEP: Sleep mode request
This bit is set by software to request the CAN hardware to enter the Sleep mode. Sleep
mode will be entered as soon as the current CAN activity (transmission or reception of a
CAN frame) has been completed.
This bit is cleared by software to exit Sleep mode.
This bit is cleared by hardware when the AWUM bit is set and a SOF bit is detected on the
CAN Rx signal.
This bit is set after reset - CAN starts in Sleep mode.
Bit 0 INRQ: Initialization request
The software clears this bit to switch the hardware into normal mode. Once 11 consecutive
recessive bits have been monitored on the Rx signal the CAN hardware is synchronized and
ready for transmission and reception. Hardware signals this event by clearing the INAK bit in
the CAN_MSR register.
Software sets this bit to request the CAN hardware to enter initialization mode. Once
software has set the INRQ bit, the CAN hardware waits until the current CAN activity
(transmission or reception) is completed before entering the initialization mode. Hardware
signals this event by setting the INAK bit in the CAN_MSR register.
CAN master status register (CAN_MSR)
Address offset: 0x04
Reset value: 0x0000 0C02
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
RX
SAMP
RXM
TXM
Res.
Res.
Res.
SLAKI
WKUI
ERRI
SLAK
INAK
r
r
r
r
rc_w1
rc_w1
rc_w1
r
r
Bits 31:12 Reserved, must be kept at reset value.
Bit 11 RX: CAN Rx signal
Monitors the actual value of the CAN_RX Pin.
Bit 10 SAMP: Last sample point
The value of RX on the last sample point (current received bit value).
Bit 9 RXM: Receive mode
The CAN hardware is currently receiver.
Bit 8 TXM: Transmit mode
The CAN hardware is currently transmitter.
Bits 7:5 Reserved, must be kept at reset value.
1472/1693
DocID024597 Rev 3
RM0351
Controller area network (bxCAN)
Bit 4 SLAKI: Sleep acknowledge interrupt
When SLKIE=1, this bit is set by hardware to signal that the bxCAN has entered Sleep
Mode. When set, this bit generates a status change interrupt if the SLKIE bit in the
CAN_IER register is set.
This bit is cleared by software or by hardware, when SLAK is cleared.
Note: When SLKIE=0, no polling on SLAKI is possible. In this case the SLAK bit can be
polled.
Bit 3 WKUI: Wakeup interrupt
This bit is set by hardware to signal that a SOF bit has been detected while the CAN
hardware was in Sleep mode. Setting this bit generates a status change interrupt if the
WKUIE bit in the CAN_IER register is set.
This bit is cleared by software.
Bit 2 ERRI: Error interrupt
This bit is set by hardware when a bit of the CAN_ESR has been set on error detection and
the corresponding interrupt in the CAN_IER is enabled. Setting this bit generates a status
change interrupt if the ERRIE bit in the CAN_IER register is set.
This bit is cleared by software.
Bit 1 SLAK: Sleep acknowledge
This bit is set by hardware and indicates to the software that the CAN hardware is now in
Sleep mode. This bit acknowledges the Sleep mode request from the software (set SLEEP
bit in CAN_MCR register).
This bit is cleared by hardware when the CAN hardware has left Sleep mode (to be
synchronized on the CAN bus). To be synchronized the hardware has to monitor a
sequence of 11 consecutive recessive bits on the CAN RX signal.
Note: The process of leaving Sleep mode is triggered when the SLEEP bit in the CAN_MCR
register is cleared. Please refer to the AWUM bit of the CAN_MCR register description
for detailed information for clearing SLEEP bit
Bit 0 INAK: Initialization acknowledge
This bit is set by hardware and indicates to the software that the CAN hardware is now in
initialization mode. This bit acknowledges the initialization request from the software (set
INRQ bit in CAN_MCR register).
This bit is cleared by hardware when the CAN hardware has left the initialization mode (to
be synchronized on the CAN bus). To be synchronized the hardware has to monitor a
sequence of 11 consecutive recessive bits on the CAN RX signal.
CAN transmit status register (CAN_TSR)
Address offset: 0x08
Reset value: 0x1C00 0000
31
30
29
28
27
26
LOW2
LOW1
LOW0
TME2
TME1
TME0
r
r
r
r
r
r
25
CODE[1:0]
r
15
14
13
12
11
10
9
ABRQ1
Res.
Res.
Res.
TERR1
ALST1
TXOK1
rc_w1
rc_w1
rc_w1
rs
24
23
22
21
20
19
18
17
16
ABRQ2
Res.
Res.
Res.
TERR2
ALST2
TXOK2
RQCP2
rc_w1
rc_w1
rc_w1
rc_w1
r
rs
8
7
RQCP1 ABRQ0
rc_w1
rs
DocID024597 Rev 3
6
5
4
3
2
1
0
Res.
Res.
Res.
TERR0
ALST0
TXOK0
RQCP0
rc_w1
rc_w1
rc_w1
rc_w1
1473/1693
1494
Controller area network (bxCAN)
RM0351
Bit 31 LOW2: Lowest priority flag for mailbox 2
This bit is set by hardware when more than one mailbox are pending for transmission and
mailbox 2 has the lowest priority.
Bit 30 LOW1: Lowest priority flag for mailbox 1
This bit is set by hardware when more than one mailbox are pending for transmission and
mailbox 1 has the lowest priority.
Bit 29 LOW0: Lowest priority flag for mailbox 0
This bit is set by hardware when more than one mailbox are pending for transmission and
mailbox 0 has the lowest priority.
Note: The LOW[2:0] bits are set to zero when only one mailbox is pending.
Bit 28 TME2: Transmit mailbox 2 empty
This bit is set by hardware when no transmit request is pending for mailbox 2.
Bit 27 TME1: Transmit mailbox 1 empty
This bit is set by hardware when no transmit request is pending for mailbox 1.
Bit 26 TME0: Transmit mailbox 0 empty
This bit is set by hardware when no transmit request is pending for mailbox 0.
Bits 25:24 CODE[1:0]: Mailbox code
In case at least one transmit mailbox is free, the code value is equal to the number of the
next transmit mailbox free.
In case all transmit mailboxes are pending, the code value is equal to the number of the
transmit mailbox with the lowest priority.
Bit 23 ABRQ2: Abort request for mailbox 2
Set by software to abort the transmission request for the corresponding mailbox.
Cleared by hardware when the mailbox becomes empty.
Setting this bit has no effect when the mailbox is not pending for transmission.
Bits 22:20 Reserved, must be kept at reset value.
Bit 19 TERR2: Transmission error of mailbox 2
This bit is set when the previous TX failed due to an error.
Bit 18 ALST2: Arbitration lost for mailbox 2
This bit is set when the previous TX failed due to an arbitration lost.
Bit 17 TXOK2: Transmission OK of mailbox 2
The hardware updates this bit after each transmission attempt.
0: The previous transmission failed
1: The previous transmission was successful
This bit is set by hardware when the transmission request on mailbox 2 has been completed
successfully. Please refer to Figure 483.
Bit 16 RQCP2: Request completed mailbox2
Set by hardware when the last request (transmit or abort) has been performed.
Cleared by software writing a “1” or by hardware on transmission request (TXRQ2 set in
CAN_TMID2R register).
Clearing this bit clears all the status bits (TXOK2, ALST2 and TERR2) for Mailbox 2.
Bit 15 ABRQ1: Abort request for mailbox 1
Set by software to abort the transmission request for the corresponding mailbox.
Cleared by hardware when the mailbox becomes empty.
Setting this bit has no effect when the mailbox is not pending for transmission.
Bits 14:12 Reserved, must be kept at reset value.
1474/1693
DocID024597 Rev 3
RM0351
Controller area network (bxCAN)
Bit 11 TERR1: Transmission error of mailbox1
This bit is set when the previous TX failed due to an error.
Bit 10 ALST1: Arbitration lost for mailbox1
This bit is set when the previous TX failed due to an arbitration lost.
Bit 9 TXOK1: Transmission OK of mailbox1
The hardware updates this bit after each transmission attempt.
0: The previous transmission failed
1: The previous transmission was successful
This bit is set by hardware when the transmission request on mailbox 1 has been completed
successfully. Please refer to Figure 483
Bit 8 RQCP1: Request completed mailbox1
Set by hardware when the last request (transmit or abort) has been performed.
Cleared by software writing a “1” or by hardware on transmission request (TXRQ1 set in
CAN_TI1R register).
Clearing this bit clears all the status bits (TXOK1, ALST1 and TERR1) for Mailbox 1.
Bit 7 ABRQ0: Abort request for mailbox0
Set by software to abort the transmission request for the corresponding mailbox.
Cleared by hardware when the mailbox becomes empty.
Setting this bit has no effect when the mailbox is not pending for transmission.
Bits 6:4 Reserved, must be kept at reset value.
Bit 3 TERR0: Transmission error of mailbox0
This bit is set when the previous TX failed due to an error.
Bit 2 ALST0: Arbitration lost for mailbox0
This bit is set when the previous TX failed due to an arbitration lost.
Bit 1 TXOK0: Transmission OK of mailbox0
The hardware updates this bit after each transmission attempt.
0: The previous transmission failed
1: The previous transmission was successful
This bit is set by hardware when the transmission request on mailbox 1 has been completed
successfully. Please refer to Figure 483
Bit 0 RQCP0: Request completed mailbox0
Set by hardware when the last request (transmit or abort) has been performed.
Cleared by software writing a “1” or by hardware on transmission request (TXRQ0 set in
CAN_TI0R register).
Clearing this bit clears all the status bits (TXOK0, ALST0 and TERR0) for Mailbox 0.
CAN receive FIFO 0 register (CAN_RF0R)
Address offset: 0x0C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FULL0
Res.
RFOM0 FOVR0
rs
DocID024597 Rev 3
rc_w1
rc_w1
FMP0[1:0]
r
r
1475/1693
1494
Controller area network (bxCAN)
RM0351
Bits 31:6 Reserved, must be kept at reset value.
Bit 5 RFOM0: Release FIFO 0 output mailbox
Set by software to release the output mailbox of the FIFO. The output mailbox can only be
released when at least one message is pending in the FIFO. Setting this bit when the FIFO
is empty has no effect. If at least two messages are pending in the FIFO, the software has to
release the output mailbox to access the next message.
Cleared by hardware when the output mailbox has been released.
Bit 4 FOVR0: FIFO 0 overrun
This bit is set by hardware when a new message has been received and passed the filter
while the FIFO was full.
This bit is cleared by software.
Bit 3 FULL0: FIFO 0 full
Set by hardware when three messages are stored in the FIFO.
This bit is cleared by software.
Bit 2 Reserved, must be kept at reset value.
Bits 1:0 FMP0[1:0]: FIFO 0 message pending
These bits indicate how many messages are pending in the receive FIFO.
FMP is increased each time the hardware stores a new message in to the FIFO. FMP is
decreased each time the software releases the output mailbox by setting the RFOM0 bit.
CAN receive FIFO 1 register (CAN_RF1R)
Address offset: 0x10
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FULL1
Res.
RFOM1 FOVR1
rs
rc_w1
rc_w1
FMP1[1:0]
r
r
Bits 31:6 Reserved, must be kept at reset value.
Bit 5 RFOM1: Release FIFO 1 output mailbox
Set by software to release the output mailbox of the FIFO. The output mailbox can only be
released when at least one message is pending in the FIFO. Setting this bit when the FIFO
is empty has no effect. If at least two messages are pending in the FIFO, the software has to
release the output mailbox to access the next message.
Cleared by hardware when the output mailbox has been released.
Bit 4 FOVR1: FIFO 1 overrun
This bit is set by hardware when a new message has been received and passed the filter
while the FIFO was full.
This bit is cleared by software.
1476/1693
DocID024597 Rev 3
RM0351
Controller area network (bxCAN)
Bit 3 FULL1: FIFO 1 full
Set by hardware when three messages are stored in the FIFO.
This bit is cleared by software.
Bit 2 Reserved, must be kept at reset value.
Bits 1:0 FMP1[1:0]: FIFO 1 message pending
These bits indicate how many messages are pending in the receive FIFO1.
FMP1 is increased each time the hardware stores a new message in to the FIFO1. FMP is
decreased each time the software releases the output mailbox by setting the RFOM1 bit.
CAN interrupt enable register (CAN_IER)
Address offset: 0x14
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SLKIE
WKUIE
rw
rw
15
ERRIE
rw
14
Res.
13
Res.
12
11
10
9
8
Res.
LEC
IE
BOF
IE
EPV
IE
EWG
IE
rw
rw
rw
rw
7
6
5
4
3
2
1
0
Res.
FOV
IE1
FF
IE1
FMP
IE1
FOV
IE0
FF
IE0
FMP
IE0
TME
IE
rw
rw
rw
rw
rw
rw
rw
Bits 31:18 Reserved, must be kept at reset value.
Bit 17 SLKIE: Sleep interrupt enable
0: No interrupt when SLAKI bit is set.
1: Interrupt generated when SLAKI bit is set.
Bit 16 WKUIE: Wakeup interrupt enable
0: No interrupt when WKUI is set.
1: Interrupt generated when WKUI bit is set.
Bit 15 ERRIE: Error interrupt enable
0: No interrupt will be generated when an error condition is pending in the CAN_ESR.
1: An interrupt will be generation when an error condition is pending in the CAN_ESR.
Bits 14:12 Reserved, must be kept at reset value.
Bit 11 LECIE: Last error code interrupt enable
0: ERRI bit will not be set when the error code in LEC[2:0] is set by hardware on error
detection.
1: ERRI bit will be set when the error code in LEC[2:0] is set by hardware on error detection.
Bit 10 BOFIE: Bus-off interrupt enable
0: ERRI bit will not be set when BOFF is set.
1: ERRI bit will be set when BOFF is set.
Bit 9 EPVIE: Error passive interrupt enable
0: ERRI bit will not be set when EPVF is set.
1: ERRI bit will be set when EPVF is set.
DocID024597 Rev 3
1477/1693
1494
Controller area network (bxCAN)
RM0351
Bit 8 EWGIE: Error warning interrupt enable
0: ERRI bit will not be set when EWGF is set.
1: ERRI bit will be set when EWGF is set.
Bit 7 Reserved, must be kept at reset value.
Bit 6 FOVIE1: FIFO overrun interrupt enable
0: No interrupt when FOVR is set.
1: Interrupt generation when FOVR is set.
Bit 5 FFIE1: FIFO full interrupt enable
0: No interrupt when FULL bit is set.
1: Interrupt generated when FULL bit is set.
Bit 4 FMPIE1: FIFO message pending interrupt enable
0: No interrupt generated when state of FMP[1:0] bits are not 00b.
1: Interrupt generated when state of FMP[1:0] bits are not 00b.
Bit 3 FOVIE0: FIFO overrun interrupt enable
0: No interrupt when FOVR bit is set.
1: Interrupt generated when FOVR bit is set.
Bit 2 FFIE0: FIFO full interrupt enable
0: No interrupt when FULL bit is set.
1: Interrupt generated when FULL bit is set.
Bit 1 FMPIE0: FIFO message pending interrupt enable
0: No interrupt generated when state of FMP[1:0] bits are not 00b.
1: Interrupt generated when state of FMP[1:0] bits are not 00b.
Bit 0 TMEIE: Transmit mailbox empty interrupt enable
0: No interrupt when RQCPx bit is set.
1: Interrupt generated when RQCPx bit is set.
Note: Refer to Section 42.8: bxCAN interrupts.
CAN error status register (CAN_ESR)
Address offset: 0x18
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
REC[7:0]
r
r
r
r
r
19
18
17
16
r
r
r
TEC[7:0]
r
r
r
r
r
6
15
14
13
12
11
10
9
8
7
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
r
r
5
4
LEC[2:0]
rw
1478/1693
20
DocID024597 Rev 3
rw
rw
r
3
2
1
0
Res.
BOFF
EPVF
EWGF
r
r
r
RM0351
Controller area network (bxCAN)
Bits 31:24 REC[7:0]: Receive error counter
The implementing part of the fault confinement mechanism of the CAN protocol. In case of
an error during reception, this counter is incremented by 1 or by 8 depending on the error
condition as defined by the CAN standard. After every successful reception the counter is
decremented by 1 or reset to 120 if its value was higher than 128. When the counter value
exceeds 127, the CAN controller enters the error passive state.
Bits 23:16 TEC[7:0]: Least significant byte of the 9-bit transmit error counter
The implementing part of the fault confinement mechanism of the CAN protocol.
Bits 15:7 Reserved, must be kept at reset value.
Bits 6:4 LEC[2:0]: Last error code
This field is set by hardware and holds a code which indicates the error condition of the last
error detected on the CAN bus. If a message has been transferred (reception or
transmission) without error, this field will be cleared to ‘0’.
The LEC[2:0] bits can be set to value 0b111 by software. They are updated by hardware to
indicate the current communication status.
000: No Error
001: Stuff Error
010: Form Error
011: Acknowledgment Error
100: Bit recessive Error
101: Bit dominant Error
110: CRC Error
111: Set by software
Bit 3 Reserved, must be kept at reset value.
Bit 2 BOFF: Bus-off flag
This bit is set by hardware when it enters the bus-off state. The bus-off state is entered on
TEC overflow, greater than 255, refer to Section 42.7.6 on page 1466.
Bit 1 EPVF: Error passive flag
This bit is set by hardware when the Error Passive limit has been reached (Receive Error
Counter or Transmit Error Counter>127).
Bit 0 EWGF: Error warning flag
This bit is set by hardware when the warning limit has been reached
(Receive Error Counter or Transmit Error Counter≥96).
CAN bit timing register (CAN_BTR)
Address offset: 0x1C
Reset value: 0x0123 0000
This register can only be accessed by the software when the CAN hardware is in
initialization mode.
31
30
29
28
27
26
SILM
LBKM
Res.
Res.
Res.
Res.
rw
rw
15
14
13
12
11
10
Res.
Res.
Res.
Res.
Res.
Res.
25
24
SJW[1:0]
rw
rw
9
8
23
22
Res.
7
21
20
19
18
TS2[2:0]
17
16
TS1[3:0]
rw
rw
rw
rw
rw
rw
rw
6
5
4
3
2
1
0
rw
rw
rw
rw
BRP[9:0]
rw
rw
rw
DocID024597 Rev 3
rw
rw
rw
1479/1693
1494
Controller area network (bxCAN)
RM0351
Bit 31 SILM: Silent mode (debug)
0: Normal operation
1: Silent Mode
Bit 30 LBKM: Loop back mode (debug)
0: Loop Back Mode disabled
1: Loop Back Mode enabled
Bits 29:26 Reserved, must be kept at reset value.
Bits 25:24 SJW[1:0]: Resynchronization jump width
These bits define the maximum number of time quanta the CAN hardware is allowed to
lengthen or shorten a bit to perform the resynchronization.
tRJW = tq x (SJW[1:0] + 1)
Bit 23 Reserved, must be kept at reset value.
Bits 22:20 TS2[2:0]: Time segment 2
These bits define the number of time quanta in Time Segment 2.
tBS2 = tq x (TS2[2:0] + 1)
Bits 19:16 TS1[3:0]: Time segment 1
These bits define the number of time quanta in Time Segment 1
tBS1 = tq x (TS1[3:0] + 1)
For more information on bit timing, please refer to Section 42.7.7: Bit timing on page 1466.
Bits 15:10 Reserved, must be kept at reset value.
Bits 9:0 BRP[9:0]: Baud rate prescaler
These bits define the length of a time quanta.
tq = (BRP[9:0]+1) x tPCLK
42.9.3
CAN mailbox registers
This section describes the registers of the transmit and receive mailboxes. Refer to
Section 42.7.5: Message storage on page 1464 for detailed register mapping.
Transmit and receive mailboxes have the same registers except:
•
The FMI field in the CAN_RDTxR register.
•
A receive mailbox is always write protected.
•
A transmit mailbox is write-enabled only while empty, corresponding TME bit in the
CAN_TSR register set.
There are 3 TX Mailboxes and 2 RX Mailboxes. Each RX Mailbox allows access to a 3 level
depth FIFO, the access being offered only to the oldest received message in the FIFO.
Each mailbox consist of 4 registers.
1480/1693
DocID024597 Rev 3
RM0351
Controller area network (bxCAN)
Figure 492. Can mailbox registers
&$1B5,5
&$1B5,5
&$1B7,5
&$1B7,5
&$1B7,5
&$1B5'75
&$1B5'75
&$1B7'75
&$1B7'75
&$1B7'75
&$1B5/5
&$1B5/5
&$1B7'/5
&$1B7'/5
&$1B7'/5
&$1B5+5
&$1B5+5
&$1B7'+5
&$1B7'+5
&$1B7'+5
),)2
),)2
7KUHH7;PDLOER[HV
069
CAN TX mailbox identifier register (CAN_TIxR) (x = 0..2)
Address offsets: 0x180, 0x190, 0x1A0
Reset value: 0xXXXX XXXX (except bit 0, TXRQ = 0)
All TX registers are write protected when the mailbox is pending transmission (TMEx reset).
This register also implements the TX request control (bit 0) - reset value 0.
31
30
29
28
27
26
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
25
24
23
22
21
20
19
rw
rw
rw
rw
rw
rw
rw
9
8
7
6
5
4
3
STID[10:0]/EXID[28:18]
rw
rw
rw
rw
rw
rw
17
16
rw
rw
rw
2
1
0
IDE
RTR
TXRQ
rw
rw
rw
EXID[17:13]
EXID[12:0]
rw
18
rw
rw
rw
rw
rw
rw
Bits 31:21 STID[10:0]/EXID[28:18]: Standard identifier or extended identifier
The standard identifier or the MSBs of the extended identifier (depending on the IDE bit
value).
Bit 20:3 EXID[17:0]: Extended identifier
The LSBs of the extended identifier.
Bit 2 IDE: Identifier extension
This bit defines the identifier type of message in the mailbox.
0: Standard identifier.
1: Extended identifier.
Bit 1 RTR: Remote transmission request
0: Data frame
1: Remote frame
Bit 0 TXRQ: Transmit mailbox request
Set by software to request the transmission for the corresponding mailbox.
Cleared by hardware when the mailbox becomes empty.
DocID024597 Rev 3
1481/1693
1494
Controller area network (bxCAN)
RM0351
CAN mailbox data length control and time stamp register
(CAN_TDTxR) (x = 0..2)
All bits of this register are write protected when the mailbox is not in empty state.
Address offsets: 0x184, 0x194, 0x1A4
Reset value: 0xXXXX XXXX
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
TIME[15:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
rw
DLC[3:0]
rw
rw
Bits 31:16 TIME[15:0]: Message time stamp
This field contains the 16-bit timer value captured at the SOF transmission.
Bits 15:9 Reserved, must be kept at reset value.
Bit 8 TGT: Transmit global time
This bit is active only when the hardware is in the Time Trigger Communication mode,
TTCM bit of the CAN_MCR register is set.
0: Time stamp TIME[15:0] is not sent.
1: Time stamp TIME[15:0] value is sent in the last two data bytes of the 8-byte message:
TIME[7:0] in data byte 7 and TIME[15:8] in data byte 6, replacing the data written in
CAN_TDHxR[31:16] register (DATA6[7:0] and DATA7[7:0]). DLC must be programmed as 8
in order these two bytes to be sent over the CAN bus.
Bits 7:4 Reserved, must be kept at reset value.
Bits 3:0 DLC[3:0]: Data length code
This field defines the number of data bytes a data frame contains or a remote frame request.
A message can contain from 0 to 8 data bytes, depending on the value in the DLC field.
1482/1693
DocID024597 Rev 3
RM0351
Controller area network (bxCAN)
CAN mailbox data low register (CAN_TDLxR) (x = 0..2)
All bits of this register are write protected when the mailbox is not in empty state.
Address offsets: 0x188, 0x198, 0x1A8
Reset value: 0xXXXX XXXX
31
30
29
28
27
26
25
24
23
22
21
DATA3[7:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
DATA1[7:0]
rw
rw
rw
rw
19
18
17
16
DATA2[7:0]
rw
rw
20
rw
rw
rw
rw
rw
4
3
2
1
0
rw
rw
rw
18
17
16
DATA0[7:0]
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:24 DATA3[7:0]: Data byte 3
Data byte 3 of the message.
Bits 23:16 DATA2[7:0]: Data byte 2
Data byte 2 of the message.
Bits 15:8 DATA1[7:0]: Data byte 1
Data byte 1 of the message.
Bits 7:0 DATA0[7:0]: Data byte 0
Data byte 0 of the message.
A message can contain from 0 to 8 data bytes and starts with byte 0.
CAN mailbox data high register (CAN_TDHxR) (x = 0..2)
All bits of this register are write protected when the mailbox is not in empty state.
Address offsets: 0x18C, 0x19C, 0x1AC
Reset value: 0xXXXX XXXX
31
30
29
28
27
26
25
24
23
22
21
DATA7[7:0]
20
19
DATA6[7:0]
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
DATA5[7:0]
rw
DATA4[7:0]
DocID024597 Rev 3
rw
1483/1693
1494
Controller area network (bxCAN)
RM0351
Bits 31:24 DATA7[7:0]: Data byte 7
Data byte 7 of the message.
Note: If TGT of this message and TTCM are active, DATA7 and DATA6 will be replaced by
the TIME stamp value.
Bits 23:16 DATA6[7:0]: Data byte 6
Data byte 6 of the message.
Bits 15:8 DATA5[7:0]: Data byte 5
Data byte 5 of the message.
Bits 7:0 DATA4[7:0]: Data byte 4
Data byte 4 of the message.
CAN receive FIFO mailbox identifier register (CAN_RIxR) (x = 0..1)
Address offsets: 0x1B0, 0x1C0
Reset value: 0xXXXX XXXX
All RX registers are write protected.
31
30
29
28
27
26
25
24
23
22
21
20
19
STID[10:0]/EXID[28:18]
r
r
r
r
r
r
15
14
13
12
11
10
r
r
r
r
r
r
r
r
r
r
r
r
9
8
7
6
5
4
3
r
17
16
r
r
EXID[17:13]
EXID[12:0]
r
18
r
r
r
r
r
r
r
2
1
0
IDE
RTR
Res
r
r
Bits 31:21 STID[10:0]/EXID[28:18]: Standard identifier or extended identifier
The standard identifier or the MSBs of the extended identifier (depending on the IDE bit
value).
Bits 20:3 EXID[17:0]: Extended identifier
The LSBs of the extended identifier.
Bit 2 IDE: Identifier extension
This bit defines the identifier type of message in the mailbox.
0: Standard identifier.
1: Extended identifier.
Bit 1 RTR: Remote transmission request
0: Data frame
1: Remote frame
Bit 0 Reserved, must be kept at reset value.
1484/1693
DocID024597 Rev 3
RM0351
Controller area network (bxCAN)
CAN receive FIFO mailbox data length control and time stamp register
(CAN_RDTxR) (x = 0..1)
Address offsets: 0x1B4, 0x1C4
Reset value: 0xXXXX XXXX
All RX registers are write protected.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
TIME[15:0]
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
r
r
r
r
r
r
r
r
r
FMI[7:0]
r
DLC[3:0]
r
r
Bits 31:16 TIME[15:0]: Message time stamp
This field contains the 16-bit timer value captured at the SOF detection.
Bits 15:8 FMI[7:0]: Filter match index
This register contains the index of the filter the message stored in the mailbox passed
through. For more details on identifier filtering please refer to Section 42.7.4: Identifier
filtering on page 1460 - Filter Match Index paragraph.
Bits 7:4 Reserved, must be kept at reset value.
Bits 3:0 DLC[3:0]: Data length code
This field defines the number of data bytes a data frame contains (0 to 8). It is 0 in the case
of a remote frame request.
DocID024597 Rev 3
1485/1693
1494
Controller area network (bxCAN)
RM0351
CAN receive FIFO mailbox data low register (CAN_RDLxR) (x = 0..1)
All bits of this register are write protected when the mailbox is not in empty state.
Address offsets: 0x1B8, 0x1C8
Reset value: 0xXXXX XXXX
All RX registers are write protected.
31
30
29
28
r
r
r
r
15
14
13
12
27
26
25
24
23
22
21
r
r
r
r
r
r
r
r
11
10
9
8
7
6
5
4
DATA3[7:0]
r
r
r
r
19
18
17
16
r
r
r
r
3
2
1
0
r
r
r
18
17
16
DATA2[7:0]
DATA1[7:0]
r
20
DATA0[7:0]
r
r
r
r
r
r
r
r
Bits 31:24 DATA3[7:0]: Data Byte 3
Data byte 3 of the message.
Bits 23:16 DATA2[7:0]: Data Byte 2
Data byte 2 of the message.
Bits 15:8 DATA1[7:0]: Data Byte 1
Data byte 1 of the message.
Bits 7:0 DATA0[7:0]: Data Byte 0
Data byte 0 of the message.
A message can contain from 0 to 8 data bytes and starts with byte 0.
CAN receive FIFO mailbox data high register (CAN_RDHxR) (x = 0..1)
Address offsets: 0x1BC, 0x1CC
Reset value: 0xXXXX XXXX
All RX registers are write protected.
31
30
29
28
r
r
r
r
15
14
13
12
27
26
25
24
23
22
21
r
r
r
r
r
r
r
r
r
r
r
r
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
DATA7[7:0]
r
r
r
r
DATA4[7:0]
r
r
r
r
Bits 31:24 DATA7[7:0]: Data Byte 7
Data byte 3 of the message.
1486/1693
19
DATA6[7:0]
DATA5[7:0]
r
20
DocID024597 Rev 3
r
r
r
r
RM0351
Controller area network (bxCAN)
Bits 23:16 DATA6[7:0]: Data Byte 6
Data byte 2 of the message.
Bits 15:8 DATA5[7:0]: Data Byte 5
Data byte 1 of the message.
Bits 7:0 DATA4[7:0]: Data Byte 4
Data byte 0 of the message.
42.9.4
CAN filter registers
CAN filter master register (CAN_FMR)
Address offset: 0x200
Reset value: 0x2A1C 0E01
All bits of this register are set and cleared by software.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FINIT
rw
Bits 31:1 Reserved, must be kept at reset value.
Bit 0 FINIT: Filter initialization mode
Initialization mode for filter banks
0: Active filters mode.
1: Initialization mode for the filters.
DocID024597 Rev 3
1487/1693
1494
Controller area network (bxCAN)
RM0351
CAN filter mode register (CAN_FM1R)
Address offset: 0x204
Reset value: 0x0000 0000
This register can be written only when the filter initialization mode is set (FINIT=1) in the
CAN_FMR register.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
13
12
11
10
15
14
Res.
Res.
FBM13 FBM12 FBM11 FBM10
rw
Note:
rw
rw
rw
9
8
7
6
5
4
3
2
1
0
FBM9
FBM8
FBM7
FBM6
FBM5
FBM4
FBM3
FBM2
FBM1
FBM0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Please refer to Figure 485: Filter bank scale configuration - register organization on
page 1462
Bits 31:14 Reserved, must be kept at reset value.
Bits 13:0 FBMx: Filter mode
Mode of the registers of Filter x.
0: Two 32-bit registers of filter bank x are in Identifier Mask mode.
1: Two 32-bit registers of filter bank x are in Identifier List mode.
Note: Bits 27:14 are available in connectivity line devices only and are reserved otherwise.
CAN filter scale register (CAN_FS1R)
Address offset: 0x20C
Reset value: 0x0000 0000
This register can be written only when the filter initialization mode is set (FINIT=1) in the
CAN_FMR register.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
Res
FSC13
FSC12
FSC11
FSC10
FSC9
FSC8
FSC7
FSC6
FSC5
FSC4
FSC3
FSC2
FSC1
FSC0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:14 Reserved, must be kept at reset value.
Bits 13:0 FSCx: Filter scale configuration
These bits define the scale configuration of Filters 13-0.
0: Dual 16-bit scale configuration
1: Single 32-bit scale configuration
Note: Bits 27:14 are available in connectivity line devices only and are reserved otherwise.
Note:
1488/1693
Please refer to Figure 485: Filter bank scale configuration - register organization on
page 1462.
DocID024597 Rev 3
RM0351
Controller area network (bxCAN)
CAN filter FIFO assignment register (CAN_FFA1R)
Address offset: 0x214
Reset value: 0x0000 0000
This register can be written only when the filter initialization mode is set (FINIT=1) in the
CAN_FMR register.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
Res
FFA13
FFA12
FFA11
FFA10
FFA9
FFA8
FFA7
FFA6
FFA5
FFA4
FFA3
FFA2
FFA1
FFA0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:14 Reserved, must be kept at reset value.
Bits 13:0 FFAx: Filter FIFO assignment for filter x
The message passing through this filter will be stored in the specified FIFO.
0: Filter assigned to FIFO 0
1: Filter assigned to FIFO 1
Note: Bits 27:14 are available in connectivity line devices only and are reserved otherwise.
CAN filter activation register (CAN_FA1R)
Address offset: 0x21C
Reset value: 0x0000 0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
Res
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res
FACT1
3
FACT1
2
FACT1
1
FACT1
0
FACT9
FACT8
FACT7
FACT6
FACT5
FACT4
FACT3
FACT2
FACT1
FACT0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
Res
Bits 31:14 Reserved, must be kept at reset value.
Bits 13:0 FACTx: Filter active
The software sets this bit to activate Filter x. To modify the Filter x registers (CAN_FxR[0:7]),
the FACTx bit must be cleared or the FINIT bit of the CAN_FMR register must be set.
0: Filter x is not active
1: Filter x is active
Note: Bits 27:14 are available in connectivity line devices only and are reserved otherwise.
DocID024597 Rev 3
1489/1693
1494
Controller area network (bxCAN)
RM0351
Filter bank i register x (CAN_FiRx) (i = 0..13, x = 1, 2)
Address offsets: 0x240 to 0x2AC
Reset value: 0xXXXX XXXX
There are 14 filter banks, i= 0 to 13. Each filter bank i is composed of two 32-bit registers,
CAN_FiR[2:1].
This register can only be modified when the FACTx bit of the CAN_FAxR register is cleared
or when the FINIT bit of the CAN_FMR register is set.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
FB31
FB30
FB29
FB28
FB27
FB26
FB25
FB24
FB23
FB22
FB21
FB20
FB19
FB18
FB17
FB16
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
FB15
FB14
FB13
FB12
FB11
FB10
FB9
FB8
FB7
FB6
FB5
FB4
FB3
FB2
FB1
FB0
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
In all configurations:
Bits 31:0 FB[31:0]: Filter bits
Identifier
Each bit of the register specifies the level of the corresponding bit of the expected identifier.
0: Dominant bit is expected
1: Recessive bit is expected
Mask
Each bit of the register specifies whether the bit of the associated identifier register must
match with the corresponding bit of the expected identifier or not.
0: Don’t care, the bit is not used for the comparison
1: Must match, the bit of the incoming identifier must have the same level has specified in
the corresponding identifier register of the filter.
Note:
Depending on the scale and mode configuration of the filter the function of each register can
differ. For the filter mapping, functions description and mask registers association, refer to
Section 42.7.4: Identifier filtering on page 1460.
A Mask/Identifier register in mask mode has the same bit mapping as in identifier list
mode.
For the register mapping/addresses of the filter banks please refer to the Table 254 on
page 1491.
1490/1693
DocID024597 Rev 3
0x180
0
0
0
CAN_BTR
Reset value
0
0
CAN_TI0R
Reset value
x
x
x
x
x
x
0
Res.
x
x
x
1
0
0
0
1
1
Res.
Res.
x
x
x
x
x
x
STID[10:0]/EXID[28:18]
x
DocID024597 Rev 3
x
x
x
x
x
0
TMEIE
0
0
0
0
EWGF
0
EPVF
0
BOFF
FMP1[1:0]
Res.
RQCP0
INRQ
INAK
0
0
0
0
0
FMP0[1:0]
TXFP
SLEEP
ERRI
1
ALST0
SLAK
NART
RFLM
WKUI
0
SLAKI
1
Res.
0
0
TXOK0
FULL0
ABOM
AWUM
0
Res.
Res.
Res.
0
Res.
TXM
Res.
0
0
Res.
FOVR0
Res.
RXM
Res.
TTCM
SAMP
Res.
Res.
Res.
0
Res.
RX
Res.
Res.
Res.
DBF
RESET
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
TERR0
RFOM0
0
Res.
0
FFIE0
FULL1
0
FMPIE0
FOVR1
0
FOVIE0
0
FMPIE1
0
Res.
ABRQ0
Res.
Res.
RQCP1
Res.
Res.
TXOK1
Res.
0
0
0
0
x
x
x
x
x
x
x
Res.
0
0
TXRQ
0
Res.
Res.
Reset value
Res.
0
Res.
Reset value
RFOM1
ALST1
0
FFIE1
TERR1
Res.
Res.
0
Res.
Res.
Res.
0
FOVIE1
ABRQ1
Res.
0
LEC[2:0]
Res.
Res.
RQCP2
Res.
0
Res.
0
Res.
EWGIE
0
Res.
Res.
TXOK2
Res.
Res.
ALST2
Res.
Res.
TERR2
Res.
Res.
Res.
Res.
Res.
Res.
ABRQ2
Res.
0
IDE
0
Res.
EPVIE
0
Res.
Res.
Res.
CODE[1:0]
0
Res.
BOFIE
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
1
Res.
LECIE
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
1
RTR
0
Res.
x
0
Res.
EXID[17:0]
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
Res.
TME[2:0]
0
Res.
Res.
Reset value
Res.
TS1[3:0]
Res.
Res.
Res.
0
Res.
ERRIE
Res.
WKUIE
0
Res.
Res.
Res.
LOW[2:0]
0
Res.
0
Res.
Res.
0
Res.
0
0
Res.
TS2[2:0]
0
0
Res.
0
Res.
TEC[7:0]
SLKIE
Reset value
1
Res.
0
Res.
Res.
Reset value
Res.
0
Res.
REC[7:0]
Res.
CAN_RF0R
Res.
0
Res.
0
Res.
0
Res.
1
Res.
1
Res.
1
Res.
0
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
0
Res.
0
Res.
Res.
CAN_ESR
Res.
CAN_IER
SJW[1:0]
0
Res.
0x0200x17F
0
Res.
0x01C
0
Res.
Reset value
Res.
0x018
CAN_RF1R
Res.
0x014
CAN_TSR
Res.
0x010
CAN_MSR
Res.
0x00C
CAN_MCR
Res.
0x008
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Register
Res.
0x004
SILM
0x000
LBKM
Offset
Res.
42.9.5
Res.
RM0351
Controller area network (bxCAN)
bxCAN register map
Refer to Section 2.2.2 on page 67 for the register boundary addresses.
Table 254. bxCAN register map and reset values
0
0
0
0
0
0
0
BRP[9:0]
x
x
0
1491/1693
1494
Controller area network (bxCAN)
RM0351
x
0x1B0
1492/1693
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
DATA7[7:0]
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
DATA7[7:0]
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Res.
Res.
Res.
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
DocID024597 Rev 3
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
DATA0[7:0]
x
x
x
x
x
x
x
x
DATA4[7:0]
x
x
x
x
x
x
x
x
x
x
x
x
x
x
EXID[17:0]
x
x
DLC[3:0]
x
DATA5[7:0]
x
x
DATA4[7:0]
DATA1[7:0]
x
x
x
DATA0[7:0]
DATA5[7:0]
x
x
DLC[3:0]
x
DATA1[7:0]
STID[10:0]/EXID[28:18]
x
TGT
x
DATA6[7:0]
x
Res.
x
DATA2[7:0]
x
Res.
x
EXID[17:0]
DATA3[7:0]
x
Res.
x
x
TIME[15:0]
x
x
x
Res.
x
x
Res.
x
x
Res.
x
x
Res.
x
x
TGT
x
x
Res.
x
x
Res.
x
x
x
Res.
x
x
x
STID[10:0]/EXID[28:18]
x
x
x
DATA4[7:0]
x
DATA6[7:0]
x
x
x
Res.
x
DATA2[7:0]
x
x
x
EXID[17:0]
DATA3[7:0]
x
Res.
DATA5[7:0]
TIME[15:0]
x
x
Res.
x
x
Res.
x
x
Res.
x
x
TGT
x
x
Res.
x
x
Res.
x
x
Res.
x
x
x
DATA0[7:0]
Res.
x
Res.
DATA1[7:0]
DATA6[7:0]
x
Res.
Res.
DATA2[7:0]
x
Res.
x
CAN_RI0R
Reset value
x
TXRQ
x
x
TXRQ
x
x
Res.
x
x
IDE
x
x
RTR
x
x
IDE
x
x
STID[10:0]/EXID[28:18]
CAN_TDH2R
Reset value
x
RTR
x
CAN_TDL2R
Reset value
x
IDE
x
CAN_TDT2R
Reset value
x
Res.
Reset value
x
DLC[3:0]
RTR
x
CAN_TI2R
0x1A0
0x1AC
x
DATA7[7:0]
CAN_TDH1R
Reset value
0x1A8
x
CAN_TDL1R
Reset value
0x1A4
x
CAN_TDT1R
Reset value
0x19C
x
Res.
Reset value
0x198
x
CAN_TI1R
0x190
x
DATA3[7:0]
CAN_TDH0R
Reset value
0x194
x
CAN_TDL0R
Reset value
0x18C
x
Res.
0x188
TIME[15:0]
Res.
Reset value
Res.
CAN_TDT0R
Res.
0x184
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 254. bxCAN register map and reset values (continued)
RM0351
Controller area network (bxCAN)
0x1C4
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
DATA2[7:0]
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Res.
Res.
Res.
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Reset value
x
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
CAN_FMR
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FINIT
DATA4[7:0]
Res.
x
x
Res.
x
x
Res.
x
x
Res.
x
x
Res.
x
x
Res.
x
x
Res.
x
x
DATA0[7:0]
DATA5[7:0]
x
DLC[3:0]
Res.
x
x
x
Res.
x
x
x
Res.
x
x
x
Res.
x
x
x
Res.
x
x
x
DATA4[7:0]
Res.
x
x
x
x
Res.
x
x
x
DATA0[7:0]
DATA1[7:0]
DATA6[7:0]
x
x
x
Res.
x
x
x
Res.
x
x
x
Res.
x
x
Res.
x
x
Res.
DATA7[7:0]
x
x
FMI[7:0]
DATA2[7:0]
x
x
EXID[17:0]
DATA3[7:0]
x
x
x
TIME[15:0]
x
x
DATA5[7:0]
STID[10:0]/EXID[28:18]
x
x
DATA1[7:0]
DATA6[7:0]
x
x
Res.
x
DATA7[7:0]
CAN_RDH1R
0x1D00x1FF
0x200
x
CAN_RDL1R
Reset value
0x1CC
x
CAN_RDT1R
Reset value
0x1C8
x
CAN_RI1R
Reset value
x
IDE
0x1C0
x
DATA3[7:0]
CAN_RDH0R
Reset value
x
RTR
CAN_RDL0R
Reset value
0x1BC
x
DLC[3:0]
Res.
0x1B8
x
FMI[7:0]
Res.
Reset value
TIME[15:0]
Res.
CAN_RDT0R
Res.
0x1B4
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 254. bxCAN register map and reset values (continued)
x
x
x
x
x
x
x
x
Res.
Res.
Res.
Res.
Res.
Res.
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
0
0
0
0
FSC[13:0]
0
0
0
0
0
0
FFA[13:0]
0
DocID024597 Rev 3
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Reset value
0
Res.
Res.
Res.
Res.
CAN_FFA1R
Res.
0x214
Res.
0x210
Res.
Reset value
0
Res.
Res.
CAN_FS1R
Res.
0x20C
Res.
0x208
Res.
Reset value
FBM[13:0]
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
CAN_FM1R
Res.
0x204
1
Res.
Reset value
0
0
0
0
0
0
0
0
1493/1693
1494
Controller area network (bxCAN)
RM0351
0x244
0x248
0x24C
.
.
.
.
0x318
0x31C
1494/1693
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
FB[31:0]
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
FB[31:0]
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
FB[31:0]
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
.
.
.
.
CAN_F27R1
FB[31:0]
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
CAN_F27R2
Reset value
0
x
x
.
.
.
.
Reset value
0
x
x
CAN_F1R2
Reset value
0
x
x
CAN_F1R1
Reset value
0
FB[31:0]
CAN_F0R2
Reset value
0
x
CAN_F0R1
Reset value
0
Res.
0x240
0
Res.
0x2240x23F
0
Res.
0x220
0
FACT[13:0]
Res.
Reset value
Res.
Res.
Res.
CAN_FA1R
Res.
0x21C
Res.
0x218
Res.
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 254. bxCAN register map and reset values (continued)
x
x
FB[31:0]
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
DocID024597 Rev 3
x
RM0351
USB on-the-go full-speed (OTG_FS)
43
USB on-the-go full-speed (OTG_FS)
43.1
Introduction
Portions Copyright (c) 2004, 2005 Synopsys, Inc. All rights reserved. Used with permission.
This section presents the architecture and the programming model of the OTG_FS
controller.
The following acronyms are used throughout the section:
FS
Full-speed
LS
Low-speed
MAC
Media access controller
OTG
On-the-go
PFC
Packet FIFO controller
PHY
Physical layer
USB
Universal serial bus
UTMI
USB 2.0 Transceiver Macrocell interface (UTMI)
References are made to the following documents:
•
USB On-The-Go Supplement, Revision 1.3
•
USB On-The-Go Supplement, Revision 2.0
•
Universal Serial Bus Revision 2.0 Specification
•
USB 2.0 Link Power Management Addendum Engineering Change Notice to the USB
2.0 specification, July 16, 2007
•
Errata for USB 2.0 ECN: Link Power Management (LPM) - 7/2007
•
Battery Charging Specification, Revision 1.2
The USB OTG is a dual-role device (DRD) controller that supports both device and host
functions and is fully compliant with the On-The-Go Supplement to the USB 2.0
Specification. It can also be configured as a host-only or device-only controller, fully
compliant with the USB 2.0 Specification. In host mode, the OTG_FS supports full-speed
(FS, 12 Mbits/s) and low-speed (LS, 1.5 Mbits/s) transfers whereas in device mode, it only
supports full-speed (FS, 12 Mbits/s) transfers. The USB OTG supports both HNP and SRP.
The only external device required is a charge pump for VBUS in OTG mode.
43.2
USB_OTG main features
The main features can be divided into three categories: general, host-mode and devicemode features.
43.2.1
General features
The OTG_FS interface general features are the following:
•
It is USB-IF certified to the Universal Serial Bus Specification Rev 2.0
DocID024597 Rev 3
1495/1693
1644
USB on-the-go full-speed (OTG_FS)
•
•
•
43.2.2
RM0351
It includes full support (PHY) for the optional On-The-Go (OTG) protocol detailed in the
On-The-Go Supplement Rev 1.3 specification
–
Integrated support for A-B Device Identification (ID line)
–
Integrated support for host Negotiation Protocol (HNP) and Session Request
Protocol (SRP)
–
It allows host to turn VBUS off to conserve battery power in OTG applications
–
It supports OTG monitoring of VBUS levels with internal comparators
–
It supports dynamic host-peripheral switch of role
It is software-configurable to operate as:
–
SRP capable USB FS Peripheral (B-device)
–
SRP capable USB FS/LS host (A-device)
–
USB On-The-Go Full-Speed Dual Role device
It supports FS SOF and LS Keep-alives with
–
SOF pulse PAD connectivity
–
SOF pulse internal connection to timer (TIMx)
–
Configurable framing period
–
Configurable end of frame interrupt
•
It includes power saving features such as system stop during USB Suspend, switch-off
of clock domains internal to the digital core, PHY and DFIFO power management
•
It features a dedicated RAM of 1.25 Kbytes with advanced FIFO control:
–
Configurable partitioning of RAM space into different FIFOs for flexible and
efficient use of RAM
–
Each FIFO can hold multiple packets
–
Dynamic memory allocation
–
Configurable FIFO sizes that are not powers of 2 to allow the use of contiguous
memory locations
•
It guarantees max USB bandwidth for up to one frame (1 ms) without system
intervention
•
It supports charging port detection as described in Battery Charging Specification
Revision 1.2
•
It supports Attach Detection Protocol (ADP)
Host-mode features
The OTG_FS interface main features and requirements in host-mode are the following:
•
External charge pump for VBUS voltage generation.
•
Up to 12 host channels (pipes): each channel is dynamically reconfigurable to allocate
any type of USB transfer.
•
Built-in hardware scheduler holding:
•
1496/1693
–
Up to 12 interrupt plus isochronous transfer requests in the periodic hardware
queue
–
Up to 12 control plus bulk transfer requests in the non-periodic hardware queue
Management of a shared Rx FIFO, a periodic Tx FIFO and a nonperiodic Tx FIFO for
efficient usage of the USB data RAM.
DocID024597 Rev 3
RM0351
43.2.3
USB on-the-go full-speed (OTG_FS)
Peripheral-mode features
The OTG_FS interface main features in peripheral-mode are the following:
43.3
•
1 bidirectional control endpoint0
•
5 IN endpoints (EPs) configurable to support Bulk, Interrupt or Isochronous transfers
•
5 OUT endpoints configurable to support Bulk, Interrupt or Isochronous transfers
•
Management of a shared Rx FIFO and a Tx-OUT FIFO for efficient usage of the USB
data RAM
•
Management of up to 6 dedicated Tx-IN FIFOs (one for each active IN EP) to put less
load on the application
•
Support for the soft disconnect feature.
USB_OTG Implementation
Table 255. USB_OTG Implementation for STM32L4xx(1)
USB features
OTG_FS
Device bidirectional endpoints (including EP0)
6
Host mode channels
12
Size of dedicated SRAM
1.2 KB
USB 2.0 Link Power Management (LPM) support
X
OTG revision supported
1.3 & 2.0
Attach Detection Protocol (ADP) support
X
Battery Charging Detection (BCD) support
X
1. “X” = supported
DocID024597 Rev 3
1497/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
43.4
USB OTG functional description
43.4.1
USB OTG block diagram
Figure 493. OTG full-speed block diagram
!(" 0ERIPHERAL
#ORTEX CORE
0OWER
#LOCK
#42,
53" SUSPEND
53"
/4' &3
#ORE
3YSTEM CLOCK
DOMAIN
54-)&3
/4'
&3
0(9
$0
$)$
53" CLOCK
DOMAIN
2!- BUS
53" #LOCK AT -(Z
53" )NTERRUPT
6"53
5NIVERSAL SERIAL BUS
+BYTES
53" DATA
&)&/S
-36
43.4.2
OTG core
The USB OTG receives the 48 MHz ±0.25% clock from the reset and clock controller
(RCC), via an external quartz. The USB clock is used for driving the 48 MHz domain at fullspeed (12 Mbit/s) and must be enabled prior to configuring the OTG core.
The CPU reads and writes from/to the OTG core registers through the AHB peripheral bus.
It is informed of USB events through the single USB OTG interrupt line described in
Section 43.13: OTG_FS interrupts.
The CPU submits data over the USB by writing 32-bit words to dedicated OTG locations
(push registers). The data are then automatically stored into Tx-data FIFOs configured
within the USB data RAM. There is one Tx FIFO push register for each in-endpoint
(peripheral mode) or out-channel (host mode).
The CPU receives the data from the USB by reading 32-bit words from dedicated OTG
addresses (pop registers). The data are then automatically retrieved from a shared Rx FIFO
configured within the 1.25 KB USB data RAM. There is one Rx FIFO pop register for each
out-endpoint or in-channel.
1498/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
The USB protocol layer is driven by the serial interface engine (SIE) and serialized over the
USB by the transceiver module within the on-chip physical layer (PHY).
43.4.3
Full-speed OTG PHY
The embedded full-speed OTG PHY is controlled by the OTG FS core and conveys USB
control & data signals through the full-speed subset of the UTMI+ Bus (UTMIFS). It provides
the physical support to USB connectivity.
The full-speed OTG PHY includes the following components:
Caution:
•
FS/LS transceiver module used by both host and device. It directly drives transmission
and reception on the single-ended USB lines.
•
integrated ID pull-up resistor used to sample the ID line for A/B device identification.
•
DP/DM integrated pull-up and pull-down resistors controlled by the OTG_FS core
depending on the current role of the device. As a peripheral, it enables the DP pull-up
resistor to signal full-speed peripheral connections as soon as VBUS is sensed to be at
a valid level (B-session valid). In host mode, pull-down resistors are enabled on both
DP/DM. Pull-up and pull-down resistors are dynamically switched when the device’s
role is changed via the host negotiation protocol (HNP).
•
Pull-up/pull-down resistor ECN circuit. The DP pull-up consists of 2 resistors controlled
separately from the OTG_FS as per the resistor Engineering Change Notice applied to
USB Rev2.0. The dynamic trimming of the DP pull-up strength allows for better noise
rejection and Tx/Rx signal quality.
•
VBUS sensing comparators with hysteresis used to detect VBUS Valid, A-B Session
Valid and session-end voltage thresholds. They are used to drive the session request
protocol (SRP), detect valid startup and end-of-session conditions, and constantly
monitor the VBUS supply during USB operations.
•
VBUS pulsing method circuit used to charge/discharge VBUS through resistors during
the SRP (weak drive).
To guarantee a correct operation for the USB OTG FS peripheral, the AHB frequency should
be higher than 14.2 MHz.
DocID024597 Rev 3
1499/1693
1644
USB on-the-go full-speed (OTG_FS)
43.5
RM0351
OTG dual role device (DRD)
Figure 494. OTG_FS A-B device connection
9''
9WR9''
9ROWDJH
UHJXODWRU
9''
*3,2,54
(1
67036675
93ZU
&XUUHQWOLPLWHGSRZHU
2YHUFXUUHQW GLVWULEXWLRQVZLWFK
9%86
'0
26&B,1
'3
,'
26&B287
966
86%PLFUR$%FRQQHFWRU
*3,2
06Y9
1. External voltage regulator only needed when building a VBUS powered device.
2. STMPS2141STR needed only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
43.5.1
ID line detection
The host or peripheral (the default) role is assumed depending on the ID input pin. The ID
line status is determined on plugging in the USB, depending on which side of the USB cable
is connected to the micro-AB receptacle.
43.5.2
•
If the B-side of the USB cable is connected with a floating ID wire, the integrated pullup resistor detects a high ID level and the default Peripheral role is confirmed. In this
configuration the OTG_FS complies with the standard FSM described by section 6.8.2:
On-The-Go B-device of the On-The-Go Specification Rev1.3 supplement to the
USB2.0.
•
If the A-side of the USB cable is connected with a grounded ID, the OTG_FS issues an
ID line status change interrupt (CIDSCHG bit in OTG_GINTSTS) for host software
initialization, and automatically switches to the host role. In this configuration the
OTG_FS complies with the standard FSM described by section 6.8.1: On-The-Go Adevice of the On-The-Go Specification Rev1.3 supplement to the USB2.0.
HNP dual role device
The HNP capable bit in the Global USB configuration register (HNPCAP bit in OTG_
GUSBCFG) enables the OTG_FS core to dynamically change its role from A-host to Aperipheral and vice-versa, or from B-Peripheral to B-host and vice-versa according to the
host negotiation protocol (HNP). The current device status can be read by the combined
values of the Connector ID Status bit in the Global OTG control and status register (CIDSTS
bit in OTG_GOTGCTL) and the current mode of operation bit in the global interrupt and
status register (CMOD bit in OTG_GINTSTS).
1500/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
The HNP program model is described in detail in Section 43.16: OTG_FS programming
model.
43.5.3
SRP dual role device
The SRP capable bit in the global USB configuration register (SRPCAP bit in
OTG_GUSBCFG) enables the OTG_FS core to switch off the generation of VBUS for the Adevice to save power. Note that the A-device is always in charge of driving VBUS regardless
of the host or peripheral role of the OTG_FS.
the SRP A/B-device program model is described in detail in Section 43.16: OTG_FS
programming model.
43.6
USB peripheral
This section gives the functional description of the OTG_FS in the USB peripheral mode.
The OTG_FS works as an USB peripheral in the following circumstances:
•
OTG B-Peripheral
–
•
OTG A-Peripheral
–
•
If the ID line is present, functional and connected to the B-side of the USB cable,
and the HNP-capable bit in the Global USB Configuration register (HNPCAP bit in
OTG_GUSBCFG) is cleared (see On-The-Go Rev1.3 par. 6.8.3).
Peripheral only (see Figure 495: USB_FS peripheral-only connection)
–
Note:
OTG A-device state after the HNP switches the OTG_FS to its peripheral role
B-device
–
•
OTG B-device default state if B-side of USB cable is plugged in
The force device mode bit (FDMOD) in the Section 43.15.4: OTG USB
configuration register (OTG_GUSBCFG) is set to 1, forcing the OTG_FS core to
work as an USB peripheral-only (see On-The-Go Rev1.3 par. 6.8.3). In this case,
the ID line is ignored even if present on the USB connector.
To build a bus-powered device implementation in case of the B-device or peripheral-only
configuration, an external regulator has to be added that generates the VDD chip-supply
from VBUS.
DocID024597 Rev 3
1501/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Figure 495. USB_FS peripheral-only connection
9''
9WR9''
9ROWDJH
UHJXODWRU
9''
(1
*3,2
9%86
'0
26&B,1
'3
,'
26&B287
966
86%PLFUR$%FRQQHFWRU
*3,2,54
67036675
93ZU
&XUUHQWOLPLWHGSRZHU
2YHUFXUUHQW GLVWULEXWLRQVZLWFK
06Y9
1. Use a regulator to build a bus-powered device.
43.6.1
SRP-capable peripheral
The SRP capable bit in the Global USB configuration register (SRPCAP bit in
OTG_GUSBCFG) enables the OTG_FS to support the session request protocol (SRP). In
this way, it allows the remote A-device to save power by switching off VBUS while the USB
session is suspended.
The SRP peripheral mode program model is described in detail in the B-device session
request protocol section.
43.6.2
Peripheral states
Powered state
The VBUS input detects the B-Session valid voltage by which the USB peripheral is allowed
to enter the powered state (see USB2.0 par9.1). The OTG_FS then automatically connects
the DP pull-up resistor to signal full-speed device connection to the host and generates the
session request interrupt (SRQINT bit in OTG_GINTSTS) to notify the powered state.
The VBUS input also ensures that valid VBUS levels are supplied by the host during USB
operations. If a drop in VBUS below B-session valid happens to be detected (for instance
because of a power disturbance or if the host port has been switched off), the OTG_FS
automatically disconnects and the session end detected (SEDET bit in OTG_GOTGINT)
interrupt is generated to notify that the OTG_FS has exited the powered state.
In the powered state, the OTG_FS expects to receive some reset signaling from the host.
No other USB operation is possible. When a reset signaling is received the reset detected
interrupt (USBRST in OTG_GINTSTS) is generated. When the reset signaling is complete,
the enumeration done interrupt (ENUMDNE bit in OTG_GINTSTS) is generated and the
OTG_FS enters the Default state.
1502/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Soft disconnect
The powered state can be exited by software with the soft disconnect feature. The DP pullup resistor is removed by setting the soft disconnect bit in the device control register (SDIS
bit in OTG_DCTL), causing a device disconnect detection interrupt on the host side even
though the USB cable was not really removed from the host port.
Default state
In the Default state the OTG_FS expects to receive a SET_ADDRESS command from the
host. No other USB operation is possible. When a valid SET_ADDRESS command is
decoded on the USB, the application writes the corresponding number into the device
address field in the device configuration register (DAD bit in OTG_DCFG). The OTG_FS
then enters the address state and is ready to answer host transactions at the configured
USB address.
Suspended state
The OTG_FS peripheral constantly monitors the USB activity. After counting 3 ms of USB
idleness, the early suspend interrupt (ESUSP bit in OTG_GINTSTS) is issued, and
confirmed 3 ms later, if appropriate, by the suspend interrupt (USBSUSP bit in
OTG_GINTSTS). The device suspend bit is then automatically set in the device status
register (SUSPSTS bit in OTG_DSTS) and the OTG_FS enters the suspended state.
The suspended state may optionally be exited by the device itself. In this case the
application sets the remote wakeup signaling bit in the device control register (RWUSIG bit
in OTG_DCTL) and clears it after 1 to 15 ms.
When a resume signaling is detected from the host, the resume interrupt (WKUPINT bit in
OTG_GINTSTS) is generated and the device suspend bit is automatically cleared.
43.6.3
Peripheral endpoints
The OTG_FS core instantiates the following USB endpoints:
•
•
Control endpoint 0:
–
Bidirectional and handles control messages only
–
Separate set of registers to handle in and out transactions
–
Proper control (OTG_DIEPCTL0/OTG_DOEPCTL0), transfer configuration
(OTG_DIEPTSIZ0/OTG_DOEPTSIZ0), and status-interrupt
(OTG_DIEPINT0/)OTG_DOEPINT0) registers. The available set of bits inside the
control and transfer size registers slightly differs from that of other endpoints
5 IN endpoints
–
Each of them can be configured to support the isochronous, bulk or interrupt
transfer type
–
Each of them has proper control (OTG_DIEPCTLx), transfer configuration
(OTG_DIEPTSIZx), and status-interrupt (OTG_DIEPINTx) registers
–
The Device IN endpoints common interrupt mask register (OTG_DIEPMSK) is
available to enable/disable a single kind of endpoint interrupt source on all of the
IN endpoints (EP0 included)
–
Support for incomplete isochronous IN transfer interrupt (IISOIXFR bit in
OTG_GINTSTS), asserted when there is at least one isochronous IN endpoint on
DocID024597 Rev 3
1503/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
which the transfer is not completed in the current frame. This interrupt is asserted
along with the end of periodic frame interrupt (OTG_GINTSTS/EOPF).
•
5 OUT endpoints
–
Each of them can be configured to support the isochronous, bulk or interrupt
transfer type
–
Each of them has a proper control (OTG_DOEPCTLx), transfer configuration
(OTG_DOEPTSIZx) and status-interrupt (OTG_DOEPINTx) register
–
Device Out endpoints common interrupt mask register (OTG_DOEPMSK) is
available to enable/disable a single kind of endpoint interrupt source on all of the
OUT endpoints (EP0 included)
–
Support for incomplete isochronous OUT transfer interrupt (INCOMPISOOUT bit
in OTG_GINTSTS), asserted when there is at least one isochronous OUT
endpoint on which the transfer is not completed in the current frame. This interrupt
is asserted along with the end of periodic frame interrupt (OTG_GINTSTS/EOPF).
Endpoint control
•
The following endpoint controls are available to the application through the device
endpoint-x IN/OUT control register (OTG_DIEPCTLx/OTG_DOEPCTLx):
–
Endpoint enable/disable
–
Endpoint activate in current configuration
–
Program USB transfer type (isochronous, bulk, interrupt)
–
Program supported packet size
–
Program Tx FIFO number associated with the IN endpoint
–
Program the expected or transmitted data0/data1 PID (bulk/interrupt only)
–
Program the even/odd frame during which the transaction is received or
transmitted (isochronous only)
–
Optionally program the NAK bit to always negative-acknowledge the host
regardless of the FIFO status
–
Optionally program the STALL bit to always stall host tokens to that endpoint
–
Optionally program the SNOOP mode for OUT endpoint not to check the CRC
field of received data
Endpoint transfer
The device endpoint-x transfer size registers (OTG_DIEPTSIZx/OTG_DOEPTSIZx) allow
the application to program the transfer size parameters and read the transfer status.
Programming must be done before setting the endpoint enable bit in the endpoint control
register. Once the endpoint is enabled, these fields are read-only as the OTG_FS core
updates them with the current transfer status.
The following transfer parameters can be programmed:
•
Transfer size in bytes
•
Number of packets that constitute the overall transfer size
Endpoint status/interrupt
The device endpoint-x interrupt registers (OTG_DIEPINTx/OTG_DOPEPINTx) indicate the
status of an endpoint with respect to USB- and AHB-related events. The application must
read these registers when the OUT endpoint interrupt bit or the IN endpoint interrupt bit in
1504/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
the core interrupt register (OEPINT bit in OTG_GINTSTS or IEPINT bit in OTG_GINTSTS,
respectively) is set. Before the application can read these registers, it must first read the
device all endpoints interrupt (OTG_DAINT) register to get the exact endpoint number for
the device endpoint-x interrupt register. The application must clear the appropriate bit in this
register to clear the corresponding bits in the OTG_DAINT and OTG_GINTSTS registers
The peripheral core provides the following status checks and interrupt generation:
43.7
•
Transfer completed interrupt, indicating that data transfer was completed on both the
application (AHB) and USB sides
•
Setup stage has been done (control-out only)
•
Associated transmit FIFO is half or completely empty (in endpoints)
•
NAK acknowledge has been transmitted to the host (isochronous-in only)
•
IN token received when Tx FIFO was empty (bulk-in/interrupt-in only)
•
Out token received when endpoint was not yet enabled
•
Babble error condition has been detected
•
Endpoint disable by application is effective
•
Endpoint NAK by application is effective (isochronous-in only)
•
More than 3 back-to-back setup packets were received (control-out only)
•
Timeout condition detected (control-in only)
•
Isochronous out packet has been dropped, without generating an interrupt
USB host
This section gives the functional description of the OTG_FS in the USB host mode. The
OTG_FS works as a USB host in the following circumstances:
•
OTG A-host
–
•
OTG B-host
•
A-device
–
–
•
OTG B-device after HNP switching to the host role
If the ID line is present, functional and connected to the A-side of the USB cable,
and the HNP-capable bit is cleared in the Global USB Configuration register
(HNPCAP bit in OTG_GUSBCFG). Integrated pull-down resistors are
automatically set on the DP/DM lines.
Host only
–
Note:
OTG A-device default state when the A-side of the USB cable is plugged in
The force host mode bit in the 43.15.4 global USB configuration register (FHMOD
bit in OTG_GUSBCFG) forces the OTG_FS core to work as a USB host-only. In
this case, the ID line is ignored even if present on the USB connector. Integrated
pull-down resistors are automatically set on the DP/DM lines.
On-chip 5 V VBUS generation is not supported. For this reason, a charge pump or, if 5 V are
available on the application board, a basic power switch must be added externally to drive
the 5 V VBUS line. The external charge pump can be driven by any GPIO output. This is
required for the OTG A-host, A-device and host-only configurations.
DocID024597 Rev 3
1505/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Figure 496. USB_FS host-only connection
9''
*3,2,54
67036675
93ZU
&XUUHQWOLPLWHG
SRZHUGLVWULEXWLRQ
2YHUFXUUHQW
VZLWFK
9%86
'0
26&B,1
'3
966
26&B287
86%6WG$FRQQHFWRU
*3,2
(1
06Y9
1. STMPS2141STR needed only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
2. VDD range is between 2 V and 3.6 V.
43.7.1
SRP-capable host
SRP support is available through the SRP capable bit in the global USB configuration
register (SRPCAP bit in OTG_GUSBCFG). With the SRP feature enabled, the host can
save power by switching off the VBUS power while the USB session is suspended.
The SRP host mode program model is described in detail in the A-device session request
protocol) section.
43.7.2
USB host states
Host port power
On-chip 5 V VBUS generation is not supported. For this reason, a charge pump or, if 5 V are
available on the application board, a basic power switch, must be added externally to drive
the 5 V VBUS line. The external charge pump can be driven by any GPIO output. When the
application decides to power on VBUS using the chosen GPIO, it must also set the port
power bit in the host port control and status register (PPWR bit in OTG_HPRT).
VBUS valid
When HNP or SRP is enabled the VBUS sensing pin should be connected to VBUS. The
VBUS input ensures that valid VBUS levels are supplied by the charge pump during USB
operations. Any unforeseen VBUS voltage drop below the VBUS valid threshold (4.25 V)
leads to an OTG interrupt triggered by the session end detected bit (SEDET bit in
OTG_GOTGINT). The application is then required to remove the VBUS power and clear the
port power bit.
When HNP and SRP are both disabled, the VBUS sensing pin does not need to be
connected to VBUS and it can be used as GPIO.
The charge pump overcurrent flag can also be used to prevent electrical damage. Connect
the overcurrent flag output from the charge pump to any GPIO input and configure it to
generate a port interrupt on the active level. The overcurrent ISR must promptly disable the
VBUS generation and clear the port power bit.
1506/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Host detection of a peripheral connection
If SRP or HNP are enabled, even if USB peripherals or B-devices can be attached at any
time, the OTG_FS will not detect any bus connection until VBUS is no longer sensed at a
valid level (5 V). When VBUS is at a valid level and a remote B-device is attached, the
OTG_FS core issues a host port interrupt triggered by the device connected bit in the host
port control and status register (PCDET bit in OTG_HPRT).
When HNP and SRP are both disabled, USB peripherals or B-device are detected as soon
as they are connected. The OTG_FS core issues a host port interrupt triggered by the
device connected bit in the host port control and status (PCDET bit in OTG_HPRT).
Host detection of peripheral a disconnection
The peripheral disconnection event triggers the disconnect detected interrupt (DISCINT bit
in OTG_GINTSTS).
Host enumeration
After detecting a peripheral connection the host must start the enumeration process by
sending USB reset and configuration commands to the new peripheral.
Before starting to drive a USB reset, the application waits for the OTG interrupt triggered by
the debounce done bit (DBCDNE bit in OTG_GOTGINT), which indicates that the bus is
stable again after the electrical debounce caused by the attachment of a pull-up resistor on
DP (FS) or DM (LS).
The application drives a USB reset signaling (single-ended zero) over the USB by keeping
the port reset bit set in the host port control and status register (PRST bit in OTG_HPRT) for
a minimum of 10 ms and a maximum of 20 ms. The application takes care of the timing
count and then of clearing the port reset bit.
Once the USB reset sequence has completed, the host port interrupt is triggered by the port
enable/disable change bit (PENCHNG bit in OTG_HPRT). This informs the application that
the speed of the enumerated peripheral can be read from the port speed field in the host
port control and status register (PSPD bit in OTG_HPRT) and that the host is starting to
drive SOFs (FS) or Keep alives (LS). The host is now ready to complete the peripheral
enumeration by sending peripheral configuration commands.
Host suspend
The application decides to suspend the USB activity by setting the port suspend bit in the
host port control and status register (PSUSP bit in OTG_HPRT). The OTG_FS core stops
sending SOFs and enters the suspended state.
The suspended state can be optionally exited on the remote device’s initiative (remote
wakeup). In this case the remote wakeup interrupt (WKUPINT bit in OTG_GINTSTS) is
generated upon detection of a remote wakeup signaling, the port resume bit in the host port
control and status register (PRES bit in OTG_HPRT) self-sets, and resume signaling is
automatically driven over the USB. The application must time the resume window and then
clear the port resume bit to exit the suspended state and restart the SOF.
If the suspended state is exited on the host initiative, the application must set the port
resume bit to start resume signaling on the host port, time the resume window and finally
clear the port resume bit.
DocID024597 Rev 3
1507/1693
1644
USB on-the-go full-speed (OTG_FS)
43.7.3
RM0351
Host channels
The OTG_FS core instantiates 12 host channels. Each host channel supports an USB host
transfer (USB pipe). The host is not able to support more than 12 transfer requests at the
same time. If more than 12 transfer requests are pending from the application, the host
controller driver (HCD) must re-allocate channels when they become available from
previous duty, that is, after receiving the transfer completed and channel halted interrupts.
Each host channel can be configured to support in/out and any type of periodic/nonperiodic
transaction. Each host channel makes us of proper control (OTG_HCCHARx), transfer
configuration (OTG_HCTSIZx) and status/interrupt (OTG_HCINTx) registers with
associated mask (OTG_HCINTMSKx) registers.
Host channel control
•
The following host channel controls are available to the application through the host
channel-x characteristics register (OTG_HCCHARx):
–
Channel enable/disable
–
Program the FS/LS speed of target USB peripheral
–
Program the address of target USB peripheral
–
Program the endpoint number of target USB peripheral
–
Program the transfer IN/OUT direction
–
Program the USB transfer type (control, bulk, interrupt, isochronous)
–
Program the maximum packet size (MPS)
–
Program the periodic transfer to be executed during odd/even frames
Host channel transfer
The host channel transfer size registers (OTG_HCTSIZx) allow the application to program
the transfer size parameters, and read the transfer status. Programming must be done
before setting the channel enable bit in the host channel characteristics register. Once the
endpoint is enabled the packet count field is read-only as the OTG_FS core updates it
according to the current transfer status.
•
The following transfer parameters can be programmed:
–
transfer size in bytes
–
number of packets making up the overall transfer size
–
initial data PID
Host channel status/interrupt
The host channel-x interrupt register (OTG_HCINTx) indicates the status of an endpoint
with respect to USB- and AHB-related events. The application must read these register
when the host channels interrupt bit in the core interrupt register (HCINT bit in
OTG_GINTSTS) is set. Before the application can read these registers, it must first read the
host all channels interrupt (OTG_HAINT) register to get the exact channel number for the
host channel-x interrupt register. The application must clear the appropriate bit in this
register to clear the corresponding bits in the OTG_HAINT and OTG_GINTSTS registers.
1508/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
The mask bits for each interrupt source of each channel are also available in the
OTG_HCINTMSKx register.
•
43.7.4
The host core provides the following status checks and interrupt generation:
–
Transfer completed interrupt, indicating that the data transfer is complete on both
the application (AHB) and USB sides
–
Channel has stopped due to transfer completed, USB transaction error or disable
command from the application
–
Associated transmit FIFO is half or completely empty (IN endpoints)
–
ACK response received
–
NAK response received
–
STALL response received
–
USB transaction error due to CRC failure, timeout, bit stuff error, false EOP
–
Babble error
–
frame overrun
–
data toggle error
Host scheduler
The host core features a built-in hardware scheduler which is able to autonomously re-order
and manage the USB transaction requests posted by the application. At the beginning of
each frame the host executes the periodic (isochronous and interrupt) transactions first,
followed by the nonperiodic (control and bulk) transactions to achieve the higher level of
priority granted to the isochronous and interrupt transfer types by the USB specification.
The host processes the USB transactions through request queues (one for periodic and one
for nonperiodic). Each request queue can hold up to 8 entries. Each entry represents a
pending transaction request from the application, and holds the IN or OUT channel number
along with other information to perform a transaction on the USB. The order in which the
requests are written to the queue determines the sequence of the transactions on the USB
interface.
At the beginning of each frame, the host processes the periodic request queue first, followed
by the nonperiodic request queue. The host issues an incomplete periodic transfer interrupt
(IPXFR bit in OTG_GINTSTS) if an isochronous or interrupt transaction scheduled for the
current frame is still pending at the end of the current frame. The OTG_FS core is fully
responsible for the management of the periodic and nonperiodic request queues.The
periodic transmit FIFO and queue status register (OTG_HPTXSTS) and nonperiodic
transmit FIFO and queue status register (OTG_HNPTXSTS) are read-only registers which
can be used by the application to read the status of each request queue. They contain:
•
The number of free entries currently available in the periodic (nonperiodic) request
queue (8 max)
•
Free space currently available in the periodic (nonperiodic) Tx FIFO (out-transactions)
•
IN/OUT token, host channel number and other status information.
As request queues can hold a maximum of 8 entries each, the application can push to
schedule host transactions in advance with respect to the moment they physically reach the
SB for a maximum of 8 pending periodic transactions plus 8 pending nonperiodic
transactions.
To post a transaction request to the host scheduler (queue) the application must check that
there is at least 1 entry available in the periodic (nonperiodic) request queue by reading the
DocID024597 Rev 3
1509/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
PTXQSAV bits in the OTG_HNPTXSTS register or NPTQXSAV bits in the
OTG_HNPTXSTS register.
43.8
SOF trigger
Figure 497. SOF connectivity (SOF trigger output to TIM and ITR1 connection)
62)SXOVHRXWSXWWR
H[WHUQDODXGLRFRQWURO
9%86
,75
62)SXOVH
'
'
7,0
62)JHQ
,'
86%PLFUR$%FRQQHFWRU
670
966
06Y9
The OTG_FS core provides means to monitor, track and configure SOF framing in the host
and peripheral, as well as an SOF pulse output connectivity feature.
Such utilities are especially useful for adaptive audio clock generation techniques, where
the audio peripheral needs to synchronize to the isochronous stream provided by the PC, or
the host needs to trim its framing rate according to the requirements of the audio peripheral.
43.8.1
Host SOFs
In host mode the number of PHY clocks occurring between the generation of two
consecutive SOF (FS) or Keep-alive (LS) tokens is programmable in the host frame interval
register (HFIR), thus providing application control over the SOF framing period. An interrupt
is generated at any start of frame (SOF bit in OTG_GINTSTS). The current frame number
and the time remaining until the next SOF are tracked in the host frame number register
(HFNUM).
An SOF pulse signal, generated at any SOF starting token and with a width of 12 system
clock cycles, can be made available externally on the SOF pin using the SOFOUTEN bit in
the global control and configuration register. The SOF pulse is also internally connected to
the input trigger of the timer.
43.8.2
Peripheral SOFs
In device mode, the start of frame interrupt is generated each time an SOF token is received
on the USB (SOF bit in OTG_GINTSTS). The corresponding frame number can be read
from the device status register (FNSOF bit in OTG_DSTS). An SOF pulse signal with a
width of 12 system clock cycles is also generated and can be made available externally on
the SOF pin by using the SOF output enable bit in the global control and configuration
register (SOFOUTEN bit in OTG_GCCFG). The SOF pulse signal is also internally
1510/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
connected to the TIM2 input trigger, so that the input capture feature, the output compare
feature and the timer can be triggered by the SOF pulse. The TIM2 connection is enabled
through the ITR1_RMP bits of the TIM2 option register (TIM2_OR).
The end of periodic frame interrupt (OTG_GINTSTS/EOPF) is used to notify the application
when 80%, 85%, 90% or 95% of the time frame interval elapsed depending on the periodic
frame interval field in the device configuration register (PFIVL bit in OTG_DCFG). This
feature can be used to determine if all of the isochronous traffic for that frame is complete.
43.9
Power options
The power consumption of the OTG PHY is controlled by two bits in the general core
configuration register:
•
PHY power down (OTG_GCCFG/PWRDWN)
It switches on/off the full-speed transceiver module of the PHY. It must be preliminarily
set to allow any USB operation.
•
VBUS detection enable (OTG_GCCFG/VBDEN)
It switches on/off the VBUS sensing comparators associated with OTG operations.
Power reduction techniques are available while in the USB suspended state, when the USB
session is not yet valid or the device is disconnected.
•
Stop PHY clock (STPPCLK bit in OTG_PCGCCTL)
When setting the stop PHY clock bit in the clock gating control register, most of the
48 MHz clock domain internal to the OTG full-speed core is switched off by clock
gating. The dynamic power consumption due to the USB clock switching activity is cut
even if the 48 MHz clock input is kept running by the application
Most of the transceiver is also disabled, and only the part in charge of detecting the
asynchronous resume or remote wakeup event is kept alive.
•
Gate HCLK (GATEHCLK bit in OTG_PCGCCTL)
When setting the Gate HCLK bit in the clock gating control register, most of the system
clock domain internal to the OTG_FS core is switched off by clock gating. Only the
register read and write interface is kept alive. The dynamic power consumption due to
the USB clock switching activity is cut even if the system clock is kept running by the
application for other purposes.
•
USB system stop
When the OTG_FS is in the USB suspended state, the application may decide to
drastically reduce the overall power consumption by a complete shut down of all the
clock sources in the system. USB System Stop is activated by first setting the Stop
PHY clock bit and then configuring the system deep sleep mode in the power control
system module (PWR).
The OTG_FS core automatically reactivates both system and USB clocks by
asynchronous detection of remote wakeup (as an host) or resume (as a device)
signaling on the USB.
To save dynamic power, the USB data FIFO is clocked only when accessed by the OTG_FS
core.
DocID024597 Rev 3
1511/1693
1644
USB on-the-go full-speed (OTG_FS)
43.10
RM0351
Dynamic update of the OTG_HFIR register
The USB core embeds a dynamic trimming capability of SOF framing period in host mode
allowing to synchronize an external device with the SOF frames.
When the OTG_HFIR register is changed within a current SOF frame, the SOF period
correction is applied in the next frame as described in Figure 498.
Figure 498. Updating OTG_HFIR dynamically
KůĚKd'ͺ,/&ZǀĂůƵĞ
сϰϬϬƉĞƌŝŽĚƐ
Kd'ͺ,/&ZǀĂůƵĞ
сϰϱϬƉĞƌŝŽĚƐн,/&ZǁƌŝƚĞůĂƚĞŶĐLJ
EĞǁKd'ͺ,/&ZǀĂůƵĞ
сϰϱϬƉĞƌŝŽĚƐ
^K&
ƌĞůŽĂĚ
>ĂƚĞŶĐLJ
͙
͙
͙
͙
ϭ
Ϭ
ϰϱϬ
ϰϰϵ
ϰϱϬ
ϭ
Ϭ
ϰϱϬ
ϰϰϵ
&ƌĂŵĞ
ƚŝŵĞƌ
ϰϬϬ
ϰϱϬ
ϰϰϵ
ǀĂůƵĞ
ϭ
Ϭ
ϰϬϬ
ϯϵϵ
Kd'ͺ,&/Z
ǁƌŝƚĞ
ϭ
Ϭ
ϰϬϬ
ϯϵϵ
Kd'ͺ,&/Z
͙
ĂŝϭϴϰϰϬ
43.11
USB data FIFOs
The USB system features 1.25 Kbyte of dedicated RAM with a sophisticated FIFO control
mechanism. The packet FIFO controller module in the OTG_FS core organizes RAM space
into Tx FIFOs into which the application pushes the data to be temporarily stored before the
USB transmission, and into a single Rx FIFO where the data received from the USB are
temporarily stored before retrieval (popped) by the application. The number of instructed
FIFOs and how these are organized inside the RAM depends on the device’s role. In
peripheral mode an additional Tx FIFO is instructed for each active IN endpoint. Any FIFO
size is software configured to better meet the application requirements.
1512/1693
DocID024597 Rev 3
RM0351
43.11.1
USB on-the-go full-speed (OTG_FS)
Peripheral FIFO architecture
Figure 499. Device-mode FIFO address mapping and AHB FIFO access mapping
6LQJOHGDWD
),)2
,1HQGSRLQW7[),)2[
'),)2SXVKDFFHVV
IURP$+%
'HGLFDWHG7[
),)2[FRQWURO
RSWLRQDO
0$&SRS
,1HQGSRLQW7[),)2
'),)2SXVKDFFHVV
IURP$+%
7[),)2[
SDFNHW
27*B',(37;)[>@
27*B',(37;)[>@
'HGLFDWHG7[
),)2FRQWURO
RSWLRQDO
7[),)2
SDFNHW
27*B',(37;)>@
27*B',(37;)>@
0$&SRS
,1HQGSRLQW7[),)2
'),)2SXVKDFFHVV
IURP$+%
'HGLFDWHG7[
),)2FRQWURO
RSWLRQDO
7[),)2
SDFNHW
27*B',(37;)>@
27*B',(37;)>@
0$&SRS
$Q\287HQGSRLQW
'),)2SRSDFFHVV
IURP$+%
'HGLFDWHG7[
),)2FRQWURO
RSWLRQDO
5[SDFNHWV
0$&SXVK
27*B*5;)6,=>@
$ 5[VWDUWDGGUHVVIL[HG
WR
06Y9
Peripheral Rx FIFO
The OTG peripheral uses a single receive FIFO that receives the data directed to all OUT
endpoints. Received packets are stacked back-to-back until free space is available in the Rx
FIFO. The status of the received packet (which contains the OUT endpoint destination
number, the byte count, the data PID and the validity of the received data) is also stored by
the core on top of the data payload. When no more space is available, host transactions are
NACKed and an interrupt is received on the addressed endpoint. The size of the receive
FIFO is configured in the receive FIFO Size register (OTG_GRXFSIZ).
The single receive FIFO architecture makes it more efficient for the USB peripheral to fill in
the receive RAM buffer:
•
All OUT endpoints share the same RAM buffer (shared FIFO)
•
The OTG_FS core can fill in the receive FIFO up to the limit for any host sequence of
OUT tokens
The application keeps receiving the Rx FIFO non-empty interrupt (RXFLVL bit in
OTG_GINTSTS) as long as there is at least one packet available for download. It reads the
packet information from the receive status read and pop register (OTG_GRXSTSP) and
finally pops data off the receive FIFO by reading from the endpoint-related pop address.
DocID024597 Rev 3
1513/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Peripheral Tx FIFOs
The core has a dedicated FIFO for each IN endpoint. The application configures FIFO sizes
by writing the endpoint 0 transmit FIFO size register (OTG_DIEPTXF0) for IN endpoint0 and
the device IN endpoint transmit FIFOx registers (OTG_DIEPTXFx) for IN endpoint-x.
43.11.2
Host FIFO architecture
Figure 500. Host-mode FIFO address mapping and AHB FIFO access mapping
6LQJOHGDWD
),)2
$Q\SHULRGLFFKDQQHO
'),)2SXVKDFFHVV
IURP$+%
3HULRGLF7[),)2
FRQWURO RSWLRQDO
3HULRGLF7[
SDFNHWV
27*B+37;)6,=>@
27*B+37;)6,=>@
0$&SRS
$Q\QRQSHULRGLF
FKDQQHO'),)2SXVK
DFFHVVIURP$+%
1RQSHULRGLF7[
),)2FRQWURO
1RQSHULRGLF
7[SDFNHWV
27*B+137;)6,=>@
27*B+137;)6,=>@
0$&SRS
5[SDFNHWV
$Q\FKDQQHO'),)2SRS
DFFHVVIURP$+%
27*B*5;)6,=>@
5[),)2FRQWURO
5[VWDUWDGGUHVVIL[HGWR
$
0$&SXVK
06Y9
Host Rx FIFO
The host uses one receiver FIFO for all periodic and nonperiodic transactions. The FIFO is
used as a receive buffer to hold the received data (payload of the received packet) from the
USB until it is transferred to the system memory. Packets received from any remote IN
endpoint are stacked back-to-back until free space is available. The status of each received
packet with the host channel destination, byte count, data PID and validity of the received
data are also stored into the FIFO. The size of the receive FIFO is configured in the receive
FIFO size register (OTG_GRXFSIZ).
The single receive FIFO architecture makes it highly efficient for the USB host to fill in the
receive data buffer:
•
All IN configured host channels share the same RAM buffer (shared FIFO)
•
The OTG_FS core can fill in the receive FIFO up to the limit for any sequence of IN
tokens driven by the host software
The application receives the Rx FIFO not-empty interrupt as long as there is at least one
packet available for download. It reads the packet information from the receive status read
and pop register and finally pops the data off the receive FIFO.
1514/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Host Tx FIFOs
The host uses one transmit FIFO for all non-periodic (control and bulk) OUT transactions
and one transmit FIFO for all periodic (isochronous and interrupt) OUT transactions. FIFOs
are used as transmit buffers to hold the data (payload of the transmit packet) to be
transmitted over the USB. The size of the periodic (nonperiodic) Tx FIFO is configured in the
host periodic (nonperiodic) transmit FIFO size OTG_HPTXFSIZ / OTG_HNPTXFSIZ)
register.
The two Tx FIFO implementation derives from the higher priority granted to the periodic type
of traffic over the USB frame. At the beginning of each frame, the built-in host scheduler
processes the periodic request queue first, followed by the nonperiodic request queue.
The two transmit FIFO architecture provides the USB host with separate optimization for
periodic and nonperiodic transmit data buffer management:
•
All host channels configured to support periodic (nonperiodic) transactions in the OUT
direction share the same RAM buffer (shared FIFOs)
•
The OTG_FS core can fill in the periodic (nonperiodic) transmit FIFO up to the limit for
any sequence of OUT tokens driven by the host software
The OTG_FS core issues the periodic Tx FIFO empty interrupt (PTXFE bit in
OTG_GINTSTS) as long as the periodic Tx FIFO is half or completely empty, depending on
the value of the periodic Tx FIFO empty level bit in the AHB configuration register
(PTXFELVL bit in OTG_GAHBCFG). The application can push the transmission data in
advance as long as free space is available in both the periodic Tx FIFO and the periodic
request queue. The host periodic transmit FIFO and queue status register
(OTG_HPTXSTS) can be read to know how much space is available in both.
OTG_FS core issues the non periodic Tx FIFO empty interrupt (NPTXFE bit in
OTG_GINTSTS) as long as the nonperiodic Tx FIFO is half or completely empty depending
on the non periodic Tx FIFO empty level bit in the AHB configuration register (TXFELVL bit
in OTG_GAHBCFG). The application can push the transmission data as long as free space
is available in both the nonperiodic Tx FIFO and nonperiodic request queue. The host
nonperiodic transmit FIFO and queue status register (OTG_HNPTXSTS) can be read to
know how much space is available in both.
43.11.3
FIFO RAM allocation
Device mode
Receive FIFO RAM allocation: the application should allocate RAM for SETUP Packets:
10 locations must be reserved in the receive FIFO to receive SETUP packets on control
endpoint. The core does not use these locations, which are reserved for SETUP packets, to
write any other data. One location is to be allocated for Global OUT NAK. Status information
is written to the FIFO along with each received packet. Therefore, a minimum space of
(Largest Packet Size / 4) + 1 must be allocated to receive packets. If multiple isochronous
endpoints are enabled, then at least two (Largest Packet Size / 4) + 1 spaces must be
allocated to receive back-to-back packets. Typically, two (Largest Packet Size / 4) + 1
spaces are recommended so that when the previous packet is being transferred to the CPU,
the USB can receive the subsequent packet.
Along with the last packet for each endpoint, transfer complete status information is also
pushed to the FIFO. Typically, one location for each OUT endpoint is recommended.
DocID024597 Rev 3
1515/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Transmit FIFO RAM allocation: the minimum RAM space required for each IN Endpoint
Transmit FIFO is the maximum packet size for that particular IN endpoint.
Note:
More space allocated in the transmit IN Endpoint FIFO results in better performance on the
USB.
Host mode
Receive FIFO RAM allocation:
Status information is written to the FIFO along with each received packet. Therefore, a
minimum space of (Largest Packet Size / 4) + 1 must be allocated to receive packets. If
multiple isochronous channels are enabled, then at least two (Largest Packet Size / 4) + 1
spaces must be allocated to receive back-to-back packets. Typically, two (Largest Packet
Size / 4) + 1 spaces are recommended so that when the previous packet is being
transferred to the CPU, the USB can receive the subsequent packet.
Along with the last packet in the host channel, transfer complete status information is also
pushed to the FIFO. So one location must be allocated for this.
Transmit FIFO RAM allocation:
The minimum amount of RAM required for the host Non-periodic Transmit FIFO is the
largest maximum packet size among all supported non-periodic OUT channels.
Typically, two Largest Packet Sizes worth of space is recommended, so that when the
current packet is under transfer to the USB, the CPU can get the next packet.
The minimum amount of RAM required for host periodic Transmit FIFO is the largest
maximum packet size out of all the supported periodic OUT channels. If there is at least one
Isochronous OUT endpoint, then the space must be at least two times the maximum packet
size of that channel.
Note:
More space allocated in the Transmit Non-periodic FIFO results in better performance on
the USB.
43.12
OTG_FS system performance
Best USB and system performance is achieved owing to the large RAM buffers, the highly
configurable FIFO sizes, the quick 32-bit FIFO access through AHB push/pop registers and,
especially, the advanced FIFO control mechanism. Indeed, this mechanism allows the
OTG_FS to fill in the available RAM space at best regardless of the current USB sequence.
With these features:
•
•
1516/1693
The application gains good margins to calibrate its intervention in order to optimize the
CPU bandwidth usage:
–
It can accumulate large amounts of transmission data in advance compared to
when they are effectively sent over the USB
–
It benefits of a large time margin to download data from the single receive FIFO
The USB Core is able to maintain its full operating rate, that is to provide maximum fullspeed bandwidth with a great margin of autonomy versus application intervention:
–
It has a large reserve of transmission data at its disposal to autonomously manage
the sending of data over the USB
–
It has a lot of empty space available in the receive buffer to autonomously fill it in
with the data coming from the USB
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
As the OTG_FS core is able to fill in the 1.25 Kbyte RAM buffer very efficiently, and as
1.25 Kbyte of transmit/receive data is more than enough to cover a full speed frame, the
USB system is able to withstand the maximum full-speed data rate for up to one USB frame
(1 ms) without any CPU intervention.
43.13
OTG_FS interrupts
When the OTG_FS controller is operating in one mode, either device or host, the application
must not access registers from the other mode. If an illegal access occurs, a mode
mismatch interrupt is generated and reflected in the Core interrupt register (MMIS bit in the
OTG_GINTSTS register). When the core switches from one mode to the other, the registers
in the new mode of operation must be reprogrammed as they would be after a power-on
reset.
Figure 501 shows the interrupt hierarchy.
Figure 501. Interrupt hierarchy
/2
ENDP?MULTI?PROC?INTRPT
!.$
)NTERRUPT
/2
ENDP?INTERRUPT;=
'LOBAL INTERRUPT
MASK "IT
!(" CONFIGURATION
REGISTER
!.$
#ORE INTERRUPT MASK
REGISTER
#ORE INTERRUPT
REGISTER
$EVICE ALL ENDPOINTS
INTERRUPT REGISTER
/54 ENDPOINTS ). ENDPOINTS
)NTERRUPT
SOURCES
$EVICE )./54 ENDPOINT
INTERRUPT REGISTERS TO
/4'
INTERRUPT
REGISTER
$EVICE ALL ENDPOINTS
INTERRUPT MASK REGISTER
$EVICE )./54
ENDPOINTS COMMON
INTERRUPT MASK REGISTER
$EVICE EACH ENDPOINT
INTERRUPT REGISTER
%0/54
%0).
$EVICE EACH ENDPOINT
INTERRUPT MASK REGISTER
$EVICE EACH )./54 ENDPOINT
INTERRUPT MASK REGISTER
(OST PORT CONTROL AND STATUS
REGISTER
(OST ALL CHANNELS INTERRUPT
REGISTER
(OST CHANNELS INTERRUPT
REGISTERS TO
(OST ALL CHANNELS
INTERRUPT MASK REGISTER
(OST CHANNELS INTERRUPT
MASK REGISTERS TO
-3V6
1. The core interrupt register bits are shown in OTG core interrupt register (OTG_GINTSTS) on page 1530.
DocID024597 Rev 3
1517/1693
1644
USB on-the-go full-speed (OTG_FS)
43.14
RM0351
OTG_FS control and status registers
By reading from and writing to the control and status registers (CSRs) through the AHB
slave interface, the application controls the OTG_FS controller. These registers are 32 bits
wide, and the addresses are 32-bit block aligned. The OTG_FS registers must be accessed
by words (32 bits).
CSRs are classified as follows:
•
Core global registers
•
Host-mode registers
•
Host global registers
•
Host port CSRs
•
Host channel-specific registers
•
Device-mode registers
•
Device global registers
•
Device endpoint-specific registers
•
Power and clock-gating registers
•
Data FIFO (DFIFO) access registers
Only the Core global, Power and clock-gating, Data FIFO access, and host port control and
status registers can be accessed in both host and device modes. When the OTG_FS
controller is operating in one mode, either device or host, the application must not access
registers from the other mode. If an illegal access occurs, a mode mismatch interrupt is
generated and reflected in the Core interrupt register (MMIS bit in the OTG_GINTSTS
register). When the core switches from one mode to the other, the registers in the new mode
of operation must be reprogrammed as they would be after a power-on reset.
43.14.1
CSR memory map
The host and device mode registers occupy different addresses. All registers are
implemented in the AHB clock domain.
Global CSR map
These registers are available in both host and device modes.
Table 256. Core global control and status registers (CSRs)
Acronym
Address
offset
Register name
OTG_GOTGCTL
0x000
OTG control and status register (OTG_GOTGCTL) on page 1522
OTG_GOTGINT
0x004
OTG interrupt register (OTG_GOTGINT) on page 1524
OTG_GAHBCFG
0x008
OTG AHB configuration register (OTG_GAHBCFG) on page 1526
OTG_GUSBCFG
0x00C
OTG USB configuration register (OTG_GUSBCFG) on page 1526
OTG_GRSTCTL
0x010
OTG reset register (OTG_GRSTCTL) on page 1528
OTG_GINTSTS
0x014
OTG core interrupt register (OTG_GINTSTS) on page 1530
OTG_GINTMSK
0x018
OTG interrupt mask register (OTG_GINTMSK) on page 1534
1518/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Table 256. Core global control and status registers (CSRs) (continued)
Acronym
Address
offset
Register name
OTG_GRXSTSR
0x01C
OTG_GRXSTSP
0x020
OTG_FS Receive status debug read/OTG status read and pop registers
(OTG_GRXSTSR/OTG_GRXSTSP) on page 1537
OTG_GRXFSIZ
0x024
OTG Receive FIFO size register (OTG_GRXFSIZ) on page 1539
OTG_HNPTXFSIZ/
OTG_DIEPTXF0(1)
0x028
OTG Host non-periodic transmit FIFO size register
(OTG_HNPTXFSIZ)/Endpoint 0 Transmit FIFO size (OTG_DIEPTXF0)
OTG_HNPTXSTS
0x02C
OTG non-periodic transmit FIFO/queue status register (OTG_HNPTXSTS)
on page 1541
OTG_GCCFG
0x038
OTG general core configuration register (OTG_GCCFG) on page 1542
OTG_CID
0x03C
OTG core ID register (OTG_CID) on page 1543
OTG_GPWRDN
0x058
OTG power down register (OTG_GPWRDN) on page 1548
OTG_GADPCTL
0x060
OTG ADP timer, control and status register (OTG_GADPCTL) on page 1548
OTG_HPTXFSIZ
0x100
OTG Host periodic transmit FIFO size register (OTG_HPTXFSIZ) on
page 1550
OTG_DIEPTXFx
0x104
0x124
...
0x184
OTG device IN endpoint transmit FIFO size register (OTG_DIEPTXFx)
(x = 1..5 , where x is the FIFO_number) on page 1551
1. The general rule is to use OTG_HNPTXFSIZ for host mode and OTG_DIEPTXF0 for device mode.
Host-mode CSR map
These registers must be programmed every time the core changes to host mode.
Table 257. Host-mode control and status registers (CSRs)
Acronym
Offset
address
Register name
OTG_HCFG
0x400
OTG Host configuration register (OTG_HCFG) on page 1551
OTG_HFIR
0x404
OTG Host frame interval register (OTG_HFIR) on page 1552
OTG_HFNUM
0x408
OTG Host frame number/frame time remaining register (OTG_HFNUM) on
page 1553
OTG_HPTXSTS
0x410
OTG_Host periodic transmit FIFO/queue status register (OTG_HPTXSTS)
on page 1554
OTG_HAINT
0x414
OTG Host all channels interrupt register (OTG_HAINT) on page 1555
OTG_HAINTMSK
0x418
OTG Host all channels interrupt mask register (OTG_HAINTMSK) on
page 1555
OTG_HPRT
0x440
OTG Host port control and status register (OTG_HPRT) on page 1556
DocID024597 Rev 3
1519/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Table 257. Host-mode control and status registers (CSRs) (continued)
Acronym
Offset
address
Register name
OTG_HCCHARx
0x500
0x520
...
0x660
OTG Host channel-x characteristics register (OTG_HCCHARx) (x = 0..11,
where x = Channel_number) on page 1558
OTG_HCINTx
0x508
0x528
....
0x668
OTG Host channel-x interrupt register (OTG_HCINTx) (x = 0..11, where
x = Channel_number) on page 1560
OTG_HCINTMSKx
0x50C
0x52C
....
0x66C
OTG Host channel-x interrupt mask register (OTG_HCINTMSKx)
(x = 0..11, where x = Channel_number) on page 1561
OTG_HCTSIZx
0x510
0x530
....
0x670
OTG Host channel-x transfer size register (OTG_HCTSIZx) (x = 0..11,
where x = Channel_number) on page 1562
Device-mode CSR map
These registers must be programmed every time the core changes to device mode.
Table 258. Device-mode control and status registers
Acronym
Offset
address
Register name
OTG_DCFG
0x800
OTG device configuration register (OTG_DCFG) on page 1563
OTG_DCTL
0x804
OTG device control register (OTG_DCTL) on page 1564
OTG_DSTS
0x808
OTG device status register (OTG_DSTS) on page 1566
OTG_DIEPMSK
0x810
OTG device IN endpoint common interrupt mask register
(OTG_DIEPMSK) on page 1567
OTG_DOEPMSK
0x814
OTG device OUT endpoint common interrupt mask register
(OTG_DOEPMSK) on page 1568
OTG_DAINT
0x818
OTG device all endpoints interrupt register (OTG_DAINT) on
page 1568
OTG_DAINTMSK
0x81C
OTG all endpoints interrupt mask register (OTG_DAINTMSK) on
page 1569
OTG_DVBUSDIS
0x828
OTG device VBUS discharge time register (OTG_DVBUSDIS) on
page 1570
OTG_DVBUSPULSE
0x82C
OTG device VBUS pulsing time register (OTG_DVBUSPULSE) on
page 1570
1520/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Table 258. Device-mode control and status registers (continued)
Acronym
Offset
address
Register name
OTG_DIEPEMPMSK
0x834
OTG device IN endpoint FIFO empty interrupt mask register
(OTG_DIEPEMPMSK) on page 1571
OTG_DIEPCTL0
0x900
OTG device control IN endpoint 0 control register (OTG_DIEPCTL0) on
page 1571
OTG_DIEPCTLx
0x920
0x940
...
0x9A0
OTG device endpoint-x control register (OTG_DIEPCTLx) (x = 1..5 ,
where x = Endpoint_number) on page 1573
OTG_DIEPINTx
0x908
0x928
....
0x9A8
OTG device endpoint-x interrupt register (OTG_DIEPINTx) (x = 0..5 ,
where x = Endpoint_number) on page 1579
OTG_DIEPTSIZ0
0x910
OTG device IN endpoint 0 transfer size register (OTG_DIEPTSIZ0) on
page 1581
OTG_DTXFSTSx
0x918
0x938
....
0x9B8
OTG device IN endpoint transmit FIFO status register
(OTG_DTXFSTSx) (x = 0..5 , where x = Endpoint_number) on
page 1584
OTG_DIEPTSIZx
0x930
0x950
...
0x9B0
OTG device IN endpoint-x transfer size register (OTG_DIEPTSIZx)
(x = 1..5 , where x= Endpoint_number) on page 1583
OTG_DOEPCTL0
0xB00
OTG device control OUT endpoint 0 control register
(OTG_DOEPCTL0) on page 1575
OTG_DOEPCTLx
0xB20
0xB40
...
0xBA0
OTG device endpoint-x control register (OTG_DOEPCTLx) (x = 1..5 ,
where x = Endpoint_number) on page 1577
OTG_DOEPINTx
0xB08
0xB28
...
0xBA8
OTG device endpoint-x interrupt register (OTG_DOEPINTx) (x = 0..5 ,
where x = Endpoint_number) on page 1580
OTG_DOEPTSIZ0
0xB10
OTG device OUT endpoint 0 transfer size register (OTG_DOEPTSIZ0)
on page 1582
OTG_DOEPTSIZx
0xB30
0xB50
...
0xBB0
OTG device OUT endpoint-x transfer size register (OTG_DOEPTSIZx)
(x = 1..5 , where x = Endpoint_number) on page 1584
DocID024597 Rev 3
1521/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Data FIFO (DFIFO) access register map
These registers, available in both host and device modes, are used to read or write the FIFO
space for a specific endpoint or a channel, in a given direction. If a host channel is of type
IN, the FIFO can only be read on the channel. Similarly, if a host channel is of type OUT, the
FIFO can only be written on the channel.
Table 259. Data FIFO (DFIFO) access register map
FIFO access register section
Address range
Access
Device IN Endpoint 0/Host OUT Channel 0: DFIFO Write Access
Device OUT Endpoint 0/Host IN Channel 0: DFIFO Read Access
0x1000–0x1FFC
w
r
Device IN Endpoint 1/Host OUT Channel 1: DFIFO Write Access
Device OUT Endpoint 1/Host IN Channel 1: DFIFO Read Access
0x2000–0x2FFC
w
r
...
...
...
Device IN Endpoint x(1)/Host OUT Channel x(1): DFIFO Write Access
0xX000–0xXFFC
Device OUT Endpoint x(1)/Host IN Channel x(1): DFIFO Read Access
w
r
1. Where x is 5 in device mode and 11 in host mode.
Power and clock gating CSR map
There is a single register for power and clock gating. It is available in both host and device
modes.
Table 260. Power and clock gating control and status registers
Register name
Acronym
Power and clock gating control register
PCGCR
Reserved
43.15
Offset address: 0xE00–0xFFF
0xE00-0xE04
-
0xE05–0xFFF
OTG_FS registers
These registers are available in both host and device modes, and do not need to be
reprogrammed when switching between these modes.
Bit values in the register descriptions are expressed in binary unless otherwise specified.
43.15.1
OTG control and status register (OTG_GOTGCTL)
Address offset: 0x000
Reset value: 0x0001 0000
The OTG_GOTGCTL register controls the behavior and reflects the status of the OTG
function of the core.
1522/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
31
30
29
28
27
26
25
24
23
22
21
20
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
OTG
VER
15
Res.
14
Res.
13
Res.
12
EHEN
rw
11
10
DHNP HSHNP
EN
EN
rw
rw
9
8
HNP
RQ
HNG
SCS
rw
r
7
Res.
6
Res.
5
Res.
19
18
BSVLD ASVLD
17
16
DBCT
CID
STS
r
rw
r
r
r
4
3
2
1
0
SRQ
SRQ
SCS
rw
r
Res.
Res.
Res.
Bits 31:21 Reserved, must be kept at reset value.
Bit 20 OTGVER: OTG version
Selects the OTG revision.
0:OTG Version 1.3. In this version the core supports Data line pulsing and VBUS pulsing for
SRP.
1:OTG Version 2.0. In this version the core supports only Data line pulsing for SRP.
Bit 19 BSVLD: B-session valid
Indicates the device mode transceiver status.
0: B-session is not valid.
1: B-session is valid.
In OTG mode, you can use this bit to determine if the device is connected or disconnected.
Note: Only accessible in device mode.
Bit 18 ASVLD: A-session valid
Indicates the host mode transceiver status.
0: A-session is not valid
1: A-session is valid
Note: Only accessible in host mode.
Bit 17 DBCT: Long/short debounce time
Indicates the debounce time of a detected connection.
0: Long debounce time, used for physical connections (100 ms + 2.5 µs)
1: Short debounce time, used for soft connections (2.5 µs)
Note: Only accessible in host mode.
Bit 16 CIDSTS: Connector ID status
Indicates the connector ID status on a connect event.
0: The OTG_FS controller is in A-device mode
1: The OTG_FS controller is in B-device mode
Note: Accessible in both device and host modes.
Bits 15:13 Reserved, must be kept at reset value.
Bit 12 EHEN: Embedded host enable
It is used to select between OTG A device state machine and embedded Host state machine.
0: OTG A device state machine is selected
1: Embedded host state machine is selected
DocID024597 Rev 3
1523/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bit 11 DHNPEN: Device HNP enabled
The application sets this bit when it successfully receives a SetFeature.SetHNPEnable
command from the connected USB host.
0: HNP is not enabled in the application
1: HNP is enabled in the application
Note: Only accessible in device mode.
Bit 10 HSHNPEN: host set HNP enable
The application sets this bit when it has successfully enabled HNP (using the
SetFeature.SetHNPEnable command) on the connected device.
0: Host Set HNP is not enabled
1: Host Set HNP is enabled
Note: Only accessible in host mode.
Bit 9 HNPRQ: HNP request
The application sets this bit to initiate an HNP request to the connected USB host. The
application can clear this bit by writing a 0 when the host negotiation success status change
bit in the OTG_GOTGINT register (HNSSCHG bit in OTG_GOTGINT) is set. The core clears
this bit when the HNSSCHG bit is cleared.
0: No HNP request
1: HNP request
Note: Only accessible in device mode.
Bit 8 HNGSCS: Host negotiation success
The core sets this bit when host negotiation is successful. The core clears this bit when the
HNP Request (HNPRQ) bit in this register is set.
0: Host negotiation failure
1: Host negotiation success
Note: Only accessible in device mode.
Bits 2:7 Reserved, must be kept at reset value.
Bit 1 SRQ: Session request
The application sets this bit to initiate a session request on the USB. The application can
clear this bit by writing a 0 when the host negotiation success status change bit in the
OTG_GOTGINT register (HNSSCHG bit in OTG_GOTGINT) is set. The core clears this bit
when the HNSSCHG bit is cleared.
If you use the USB 1.1 full-speed serial transceiver interface to initiate the session request,
the application must wait until VBUS discharges to 0.2 V, after the B-Session Valid bit in this
register (BSVLD bit in OTG_GOTGCTL) is cleared. This discharge time varies between
different PHYs and can be obtained from the PHY vendor.
0: No session request
1: Session request
Note: Only accessible in device mode.
Bit 0 SRQSCS: Session request success
The core sets this bit when a session request initiation is successful.
0: Session request failure
1: Session request success
Note: Only accessible in device mode.
43.15.2
OTG interrupt register (OTG_GOTGINT)
Address offset: 0x04
Reset value: 0x0000 0000
1524/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
The application reads this register whenever there is an OTG interrupt and clears the bits in
this register to clear the OTG interrupt.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
ID
CHNG
DBC
DNE
ADTO
CHG
HNG
DET
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rc_w1
rc_w1
rc_w1
rc_w1
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
HNSS
CHG
SRSS
CHG
Res.
Res.
Res.
Res.
Res.
SEDET
Res.
Res.
rc_w1
rc_w1
Res.
Res.
Res.
Res.
Res.
rc_w1
Bits 31:21 Reserved, must be kept at reset value.
Bit 20 IDCHNG:
This bit when set indicates that there is a change in the value of the ID input pin.
Bit 19 DBCDNE: Debounce done
The core sets this bit when the debounce is completed after the device connect. The
application can start driving USB reset after seeing this interrupt. This bit is only valid when
the HNP Capable or SRP Capable bit is set in the OTG_GUSBCFG register (HNPCAP bit or
SRPCAP bit in OTG_GUSBCFG, respectively).
Note: Only accessible in host mode.
Bit 18 ADTOCHG: A-device timeout change
The core sets this bit to indicate that the A-device has timed out while waiting for the B-device
to connect.
Note: Accessible in both device and host modes.
Bit 17 HNGDET: Host negotiation detected
The core sets this bit when it detects a host negotiation request on the USB.
Note: Accessible in both device and host modes.
Bits 16:10 Reserved, must be kept at reset value.
Bit 9 HNSSCHG: Host negotiation success status change
The core sets this bit on the success or failure of a USB host negotiation request. The
application must read the host negotiation success bit of the OTG_GOTGCTL register
(HNGSCS bit in OTG_GOTGCTL) to check for success or failure.
Note: Accessible in both device and host modes.
Bits 7:3 Reserved, must be kept at reset value.
Bit 8 SRSSCHG: Session request success status change
The core sets this bit on the success or failure of a session request. The application must
read the session request success bit in the OTG_GOTGCTL register (SRQSCS bit in
OTG_GOTGCTL) to check for success or failure.
Note: Accessible in both device and host modes.
Bit 2 SEDET: Session end detected
The core sets this bit to indicate that the level of the voltage on VBUS is no longer valid for a
B-Peripheral session when VBUS < 0.8 V.
Note: Accessible in both device and host modes.
Bits 1:0 Reserved, must be kept at reset value.
DocID024597 Rev 3
1525/1693
1644
USB on-the-go full-speed (OTG_FS)
43.15.3
RM0351
OTG AHB configuration register (OTG_GAHBCFG)
Address offset: 0x008
Reset value: 0x0000 0000
This register can be used to configure the core after power-on or a change in mode. This
register mainly contains AHB system-related configuration parameters. Do not change this
register after the initial programming. The application must program this register before
starting any transactions on either the AHB or the USB.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
PTXFE
LVL
TXFE
LVL
Res.
GINT
MSK
rw
rw
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
Bits 31:20 Reserved, must be kept at reset value.
Bit 8 PTXFELVL: Periodic Tx FIFO empty level
Indicates when the periodic Tx FIFO empty interrupt bit in the OTG_GINTSTS register
(PTXFE bit in OTG_GINTSTS) is triggered.
0: PTXFE (in OTG_GINTSTS) interrupt indicates that the Periodic Tx FIFO is half empty
1: PTXFE (in OTG_GINTSTS) interrupt indicates that the Periodic Tx FIFO is completely
empty
Note: Only accessible in host mode.
Bit 7 TXFELVL: Tx FIFO empty level
In device mode, this bit indicates when IN endpoint Transmit FIFO empty interrupt (TXFE in
OTG_DIEPINTx) is triggered:
0:The TXFE (in OTG_DIEPINTx) interrupt indicates that the IN Endpoint Tx FIFO is half
empty
1:The TXFE (in OTG_DIEPINTx) interrupt indicates that the IN Endpoint Tx FIFO is
completely empty
In host mode, this bit indicates when the nonperiodic Tx FIFO empty interrupt (NPTXFE bit in
OTG_GINTSTS) is triggered:
0:The NPTXFE (in OTG_GINTSTS) interrupt indicates that the nonperiodic Tx FIFO is half
empty
1:The NPTXFE (in OTG_GINTSTS) interrupt indicates that the nonperiodic Tx FIFO is
completely empty
Bits 6:1 Reserved, must be kept at reset value for USB OTG FS.
Bit 0 GINTMSK: Global interrupt mask
The application uses this bit to mask or unmask the interrupt line assertion to itself.
Irrespective of this bit’s setting, the interrupt status registers are updated by the core.
0: Mask the interrupt assertion to the application.
1: Unmask the interrupt assertion to the application.
Note: Accessible in both device and host modes.
43.15.4
OTG USB configuration register (OTG_GUSBCFG)
Address offset: 0x00C
1526/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Reset value: 0x0000 1440
This register can be used to configure the core after power-on or a changing to host mode
or device mode. It contains USB and USB-PHY related configuration parameters. The
application must program this register before starting any transactions on either the AHB or
the USB. Do not make changes to this register after the initial programming.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
FD
MOD
FH
MOD
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
rw
14
13
12
11
10
7
6
5
4
3
2
1
0
Res.
PHY
SEL
Res.
Res.
Res.
15
Res.
Res.
9
8
TRDT
HNP
CAP
SRP
CAP
rw
rw
rw
r
TOCAL
rw
Bit 31 Reserved, must be kept at reset value.
Bit 30 FDMOD: Force device mode
Writing a 1 to this bit, forces the core to device mode irrespective of the OTG_ID input pin.
0: Normal mode
1: Force device mode
After setting the force bit, the application must wait at least 25 ms before the change takes
effect.
Note: Accessible in both device and host modes.
Bit 29 FHMOD: Force host mode
Writing a 1 to this bit, forces the core to host mode irrespective of the OTG_ID input pin.
0: Normal mode
1: Force host mode
After setting the force bit, the application must wait at least 25 ms before the change takes
effect.
Note: Accessible in both device and host modes.
Bits 28:24 Reserved, must be kept at reset value.
Bits 25:15 Reserved, must be kept at reset value for USB OTG FS
Bit 14 Reserved, must be kept at reset value.
Bits 13:10 TRDT: USB turnaround time
These bits allows to set the turnaround time in PHY clocks. They must be configured
according to Table 261: TRDT values, depending on the application AHB frequency. Higher
TRDT values allow stretching the USB response time to IN tokens in order to compensate for
longer AHB read access latency to the Data FIFO.
Note: Only accessible in device mode.
Bit 9 HNPCAP: HNP-capable
The application uses this bit to control the OTG_FS controller’s HNP capabilities.
0: HNP capability is not enabled.
1: HNP capability is enabled.
Note: Accessible in both device and host modes.
DocID024597 Rev 3
1527/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bit 8 SRPCAP: SRP-capable
The application uses this bit to control the OTG_FS controller’s SRP capabilities. If the core
operates as a non-SRP-capable
B-device, it cannot request the connected A-device (host) to activate VBUS and start a
session.
0: SRP capability is not enabled.
1: SRP capability is enabled.
Note: Accessible in both device and host modes.
Bit 7 Reserved, must be kept at reset value.
Bit 6 PHYSEL: Full Speed serial transceiver select
This bit is always 1 with read-only access.
Bits5:3 Reserved, must be kept at reset value.
Bits 2:0 TOCAL: FS timeout calibration
The number of PHY clocks that the application programs in this field is added to the fullspeed interpacket timeout duration in the core to account for any additional delays
introduced by the PHY. This can be required, because the delay introduced by the PHY in
generating the line state condition can vary from one PHY to another.
The USB standard timeout value for full-speed operation is 16 to 18 (inclusive) bit times. The
application must program this field based on the speed of enumeration. The number of bit
times added per PHY clock is 0.25 bit times.
Table 261. TRDT values
AHB frequency range (MHz)
TRDT minimum value
43.15.5
Min
Max
14.2
15
0xF
15
16
0xE
16
17.2
0xD
17.2
18.5
0xC
18.5
20
0xB
20
21.8
0xA
21.8
24
0x9
24
27.5
0x8
27.5
32
0x7
32
-
0x6
OTG reset register (OTG_GRSTCTL)
Address offset: 0x10
Reset value: 0x8000 0000
The application uses this register to reset various hardware features inside the core.
1528/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
AHB
IDL
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
14
13
12
11
10
9
8
7
6
r
15
Res.
Res.
Res.
Res.
Res.
5
4
3
2
1
0
TXFNUM
TXF
FLSH
RXF
FLSH
Res.
FCRST
Res.
CSRST
rw
rs
rs
rs
rs
Bit 31 AHBIDL: AHB master idle
Indicates that the AHB master state machine is in the Idle condition.
Note: Accessible in both device and host modes.
Bits 30:11 Reserved, must be kept at reset value for USB OTG FS
Bits 10:6 TXFNUM: Tx FIFO number
This is the FIFO number that must be flushed using the Tx FIFO Flush bit. This field must not
be changed until the core clears the Tx FIFO Flush bit.
00000:
–
Non-periodic Tx FIFO flush in host mode
–
Tx FIFO 0 flush in device mode
00001:
–
Periodic Tx FIFO flush in host mode
–
Tx FIFO 1 flush in device mode
00010: Tx FIFO 2 flush in device mode
...
01111: Tx FIFO 15 flush in device mode
10000: Flush all the transmit FIFOs in device or host mode.
Note: Accessible in both device and host modes.
Bit 5 TXFFLSH: Tx FIFO flush
This bit selectively flushes a single or all transmit FIFOs, but cannot do so if the core is in the
midst of a transaction.
The application must write this bit only after checking that the core is neither writing to the Tx
FIFO nor reading from the Tx FIFO. Verify using these registers:
Read—NAK Effective Interrupt ensures the core is not reading from the FIFO
Write—AHBIDL bit in OTG_GRSTCTL ensures the core is not writing anything to the FIFO.
Flushing is normally recommended when FIFOs are reconfigured. FIFO flushing is also
recommended during device endpoint disable. The application must wait until the core clears
this bit before performing any operations. This bit takes eight clocks to clear, using the slower
clock of phy_clk or hclk.
Note: Accessible in both device and host modes.
Bit 4 RXFFLSH: Rx FIFO flush
The application can flush the entire Rx FIFO using this bit, but must first ensure that the core
is not in the middle of a transaction.
The application must only write to this bit after checking that the core is neither reading from
the Rx FIFO nor writing to the Rx FIFO.
The application must wait until the bit is cleared before performing any other operations. This
bit requires 8 clocks (slowest of PHY or AHB clock) to clear.
Note: Accessible in both device and host modes.
Bit 3 Reserved, must be kept at reset value.
DocID024597 Rev 3
1529/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bit 2 FCRST: Host frame counter reset
The application writes this bit to reset the frame number counter inside the core. When the
frame counter is reset, the subsequent SOF sent out by the core has a frame number of 0.
When application writes '1' to the bit, it might not be able to read back the value as it will get
cleared by the core in a few clock cycles.
Note: Only accessible in host mode.
Bit 1 Reserved, must be kept at reset value.
Bit 0 CSRST: Core soft reset
Resets the HCLK and PHY clock domains as follows:
Clears the interrupts and all the CSR register bits except for the following bits:
– GATEHCLK bit in OTG_PCGCCTL
– STPPCLK bit in OTG_PCGCCTL
– FSLSPCS bits in OTG_HCFG
– DSPD bit in OTG_DCFG
– SDIS bit in OTG_DCTL
– OTG_GCCFG register
– OTG_GPWRDN register
– OTG_GADPCTL register
All module state machines (except for the AHB slave unit) are reset to the Idle state, and all
the transmit FIFOs and the receive FIFO are flushed.
Any transactions on the AHB Master are terminated as soon as possible, after completing the
last data phase of an AHB transfer. Any transactions on the USB are terminated immediately.
When ADP feature is enabled, the power management module is not reset by the core soft
reset.
The application can write to this bit any time it wants to reset the core. This is a self-clearing
bit and the core clears this bit after all the necessary logic is reset in the core, which can take
several clocks, depending on the current state of the core. Once this bit has been cleared,
the software must wait at least 3 PHY clocks before accessing the PHY domain
(synchronization delay). The software must also check that bit 31 in this register is set to 1
(AHB Master is Idle) before starting any operation.
Typically, the software reset is used during software development and also when you
dynamically change the PHY selection bits in the above listed USB configuration registers.
When you change the PHY, the corresponding clock for the PHY is selected and used in the
PHY domain. Once a new clock is selected, the PHY domain has to be reset for proper
operation.
Note: Accessible in both device and host modes.
43.15.6
OTG core interrupt register (OTG_GINTSTS)
Address offset: 0x014
Reset value: 0x1400 0020
This register interrupts the application for system-level events in the current mode (device
mode or host mode).
Some of the bits in this register are valid only in host mode, while others are valid in device
mode only. This register also indicates the current mode. To clear the interrupt status bits of
the rc_w1 type, the application must write 1 into the bit.
The FIFO status interrupts are read-only; once software reads from or writes to the FIFO
while servicing these interrupts, FIFO interrupt conditions are cleared automatically.
1530/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
The application must clear the OTG_GINTSTS register at initialization before unmasking
the interrupt bit to avoid any interrupts generated prior to initialization.
31
30
29
28
27
26
WKUP
INT
SRQ
INT
DISC
INT
CIDS
CHG
LPM
INT
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
r
15
14
13
12
11
10
25
ISOO
DRP
ENUM
DNE
USB
RST
USB
SUSP
ESUSP
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
23
22
21
20
19
18
17
16
Res.
IPXFR/
IN
COMP
ISO
OUT
IISOI
XFR
OEP
INT
IEPINT
Res.
Res.
HPRT
INT
RST
DET
r
r
rc_w1
rc_w1
rc_w1
r
r
9
8
7
6
5
4
3
2
1
0
Res.
GO
NAK
EFF
GI
NAK
EFF
NPTXF
E
RXF
LVL
SOF
OTG
INT
MMIS
CMOD
r
r
r
r
rc_w1
r
rc_w1
r
PTXFE HCINT
EOPF
24
Res.
Bit 31 WKUPINT: Resume/remote wakeup detected interrupt
Wakeup interrupt during suspend(L2) or LPM(L1) state.
– During suspend(L2):
In device mode, this interrupt is asserted when a resume is detected on the USB. In host
mode, this interrupt is asserted when a remote wakeup is detected on the USB.
– During LPM(L1):
This interrupt is asserted for either Host Initiated Resume or Device Initiated Remote
Wakeup on USB.
Note: Accessible in both device and host modes.
Bit 30 SRQINT: Session request/new session detected interrupt
In host mode, this interrupt is asserted when a session request is detected from the device.
In device mode, this interrupt is asserted when VBUS is in the valid range for a B-peripheral
device. Accessible in both device and host modes.
Bit 29 DISCINT: Disconnect detected interrupt
Asserted when a device disconnect is detected.
Note: Only accessible in host mode.
Bit 28 CIDSCHG: Connector ID status change
The core sets this bit when there is a change in connector ID status.
Note: Accessible in both device and host modes.
Bit 27 LPMINT: LPM interrupt
In device mode, this interrupt is asserted when the device receives an LPM transaction and
responds with a non-ERRORed response.
In host mode, this interrupt is asserted when the device responds to an LPM transaction with
a non-ERRORed response or when the host core has completed LPM transactions for the
programmed number of times (RETRYCNT bit in OTG_GLPMCFG).
This field is valid only if the LPMCAP bit in OTG_GLPMCFG is set to 1.
Bit 26 PTXFE: Periodic Tx FIFO empty
Asserted when the periodic transmit FIFO is either half or completely empty and there is
space for at least one entry to be written in the periodic request queue. The half or
completely empty status is determined by the periodic Tx FIFO empty level bit in the
OTG_GAHBCFG register (PTXFELVL bit in OTG_GAHBCFG).
Note: Only accessible in host mode.
DocID024597 Rev 3
1531/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bit 25 HCINT: Host channels interrupt
The core sets this bit to indicate that an interrupt is pending on one of the channels of the
core (in host mode). The application must read the OTG_HAINT register to determine the
exact number of the channel on which the interrupt occurred, and then read the
corresponding OTG_HCINTx register to determine the exact cause of the interrupt. The
application must clear the appropriate status bit in the OTG_HCINTx register to clear this bit.
Note: Only accessible in host mode.
Bit 24 HPRTINT: Host port interrupt
The core sets this bit to indicate a change in port status of one of the OTG_FS controller
ports in host mode. The application must read the OTG_HPRT register to determine the
exact event that caused this interrupt. The application must clear the appropriate status bit in
the OTG_HPRT register to clear this bit.
Note: Only accessible in host mode.
Bit 23 RSTDET: Reset detected interrupt
In device mode, this interrupt is asserted when a reset is detected on the USB in partial
power-down mode when the device is in suspend.
Note: Only accessible in device mode.
Bit 22 Reserved, must be kept at reset value for USB OTG FS.
Bit 21
IPXFR: Incomplete periodic transfer
In host mode, the core sets this interrupt bit when there are incomplete periodic transactions
still pending, which are scheduled for the current frame.
INCOMPISOOUT: Incomplete isochronous OUT transfer
In device mode, the core sets this interrupt to indicate that there is at least one isochronous
OUT endpoint on which the transfer is not completed in the current frame. This interrupt is
asserted along with the End of periodic frame interrupt (EOPF) bit in this register.
Bit 20 IISOIXFR: Incomplete isochronous IN transfer
The core sets this interrupt to indicate that there is at least one isochronous IN endpoint on
which the transfer is not completed in the current frame. This interrupt is asserted along with
the End of periodic frame interrupt (EOPF) bit in this register.
Note: Only accessible in device mode.
Bit 19 OEPINT: OUT endpoint interrupt
The core sets this bit to indicate that an interrupt is pending on one of the OUT endpoints of
the core (in device mode). The application must read the OTG_DAINT register to determine
the exact number of the OUT endpoint on which the interrupt occurred, and then read the
corresponding OTG_DOEPINTx register to determine the exact cause of the interrupt. The
application must clear the appropriate status bit in the corresponding OTG_DOEPINTx
register to clear this bit.
Note: Only accessible in device mode.
Bit 18 IEPINT: IN endpoint interrupt
The core sets this bit to indicate that an interrupt is pending on one of the IN endpoints of the
core (in device mode). The application must read the OTG_DAINT register to determine the
exact number of the IN endpoint on which the interrupt occurred, and then read the
corresponding OTG_DIEPINTx register to determine the exact cause of the interrupt. The
application must clear the appropriate status bit in the corresponding OTG_DIEPINTx
register to clear this bit.
Note: Only accessible in device mode.
Bits 17:16 Reserved, must be kept at reset value.
1532/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Bit 15 EOPF: End of periodic frame interrupt
Indicates that the period specified in the periodic frame interval field of the OTG_DCFG
register (PFIVL bit in OTG_DCFG) has been reached in the current frame.
Note: Only accessible in device mode.
Bit 14 ISOODRP: Isochronous OUT packet dropped interrupt
The core sets this bit when it fails to write an isochronous OUT packet into the Rx FIFO
because the Rx FIFO does not have enough space to accommodate a maximum size
packet for the isochronous OUT endpoint.
Note: Only accessible in device mode.
Bit 13 ENUMDNE: Enumeration done
The core sets this bit to indicate that speed enumeration is complete. The application must
read the OTG_DSTS register to obtain the enumerated speed.
Note: Only accessible in device mode.
Bit 12 USBRST: USB reset
The core sets this bit to indicate that a reset is detected on the USB.
Note: Only accessible in device mode.
Bit 11 USBSUSP: USB suspend
The core sets this bit to indicate that a suspend was detected on the USB. The core enters
the Suspended state when there is no activity on the data lines for an extended period of
time.
Note: Only accessible in device mode.
Bit 10 ESUSP: Early suspend
The core sets this bit to indicate that an Idle state has been detected on the USB for 3 ms.
Note: Only accessible in device mode.
Bits 9:8 Reserved, must be kept at reset value.
Bit 7 GONAKEFF: Global OUT NAK effective
Indicates that the Set global OUT NAK bit in the OTG_DCTL register (SGONAK bit in
OTG_DCTL), set by the application, has taken effect in the core. This bit can be cleared by
writing the Clear global OUT NAK bit in the OTG_DCTL register (CGONAK bit in
OTG_DCTL).
Note: Only accessible in device mode.
Bit 6 GINAKEFF: Global IN non-periodic NAK effective
Indicates that the Set global non-periodic IN NAK bit in the OTG_DCTL register (SGINAK bit
in OTG_DCTL), set by the application, has taken effect in the core. That is, the core has
sampled the Global IN NAK bit set by the application. This bit can be cleared by clearing the
Clear global non-periodic IN NAK bit in the OTG_DCTL register (CGINAK bit in
OTG_DCTL).
This interrupt does not necessarily mean that a NAK handshake is sent out on the USB. The
STALL bit takes precedence over the NAK bit.
Note: Only accessible in device mode.
Bit 5 NPTXFE: Non-periodic Tx FIFO empty
This interrupt is asserted when the non-periodic Tx FIFO is either half or completely empty,
and there is space for at least one entry to be written to the non-periodic transmit request
queue. The half or completely empty status is determined by the non-periodic Tx FIFO
empty level bit in the OTG_GAHBCFG register (TXFELVL bit in OTG_GAHBCFG).
Note: Accessible in host mode only.
DocID024597 Rev 3
1533/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bit 4 RXFLVL: Rx FIFO non-empty
Indicates that there is at least one packet pending to be read from the Rx FIFO.
Note: Accessible in both host and device modes.
Bit 3 SOF: Start of frame
In host mode, the core sets this bit to indicate that an SOF (FS), or Keep-Alive (LS) is
transmitted on the USB. The application must write a 1 to this bit to clear the interrupt.
In device mode, in the core sets this bit to indicate that an SOF token has been received on
the USB. The application can read the OTG_DSTS register to get the current frame number.
This interrupt is seen only when the core is operating in FS.
Note: Note: This register may return '1' if read immediately after power on reset. If the register
bit reads '1' immediately after power on reset it does not indicate that an SOF has been
sent (in case of host mode) or SOF has been received (in case of device mode). The
read value of this interrupt is valid only after a valid connection between host and
device is established. If the bit is set after power on reset the application can clear the
bit.
Note: Accessible in both host and device modes.
Bit 2 OTGINT: OTG interrupt
The core sets this bit to indicate an OTG protocol event. The application must read the OTG
Interrupt Status (OTG_GOTGINT) register to determine the exact event that caused this
interrupt. The application must clear the appropriate status bit in the OTG_GOTGINT
register to clear this bit.
Note: Accessible in both host and device modes.
Bit 1 MMIS: Mode mismatch interrupt
The core sets this bit when the application is trying to access:
– A host mode register, when the core is operating in device mode
– A device mode register, when the core is operating in host mode
The register access is completed on the AHB with an OKAY response, but is ignored by the
core internally and does not affect the operation of the core.
Note: Accessible in both host and device modes.
Bit 0 CMOD: Current mode of operation
Indicates the current mode.
0: Device mode
1: Host mode
Note: Accessible in both host and device modes.
43.15.7
OTG interrupt mask register (OTG_GINTMSK)
Address offset: 0x018
Reset value: 0x0000 0000
This register works with the Core interrupt register to interrupt the application. When an
interrupt bit is masked, the interrupt associated with that bit is not generated. However, the
Core Interrupt (OTG_GINTSTS) register bit corresponding to that interrupt is still set.
31
30
WUIM
SRQIM
rw
rw
1534/1693
29
28
DISCIN CIDSC
T
HGM
rw
rw
27
26
LPMIN PTXFE
TM
M
rw
rw
25
24
23
22
21
20
HCIM
PRTIM
RSTDE
TM
Res.
IPXFR
M/IISO
OXFR
M
IISOIX
FRM
rw
r
rw
rw
rw
DocID024597 Rev 3
19
18
OEPIN
IEPINT
T
rw
rw
17
16
Res.
Res.
RM0351
USB on-the-go full-speed (OTG_FS)
15
14
EOPF
M
ISOOD
RPM
rw
rw
13
12
11
10
ENUM USBRS USBSU ESUSP
DNEM
T
SPM
M
rw
rw
rw
9
8
Res.
Res.
rw
7
6
5
4
GONA GINAK NPTXF RXFLV
KEFFM EFFM
EM
LM
rw
rw
rw
rw
3
SOFM
rw
2
1
OTGIN
MMISM
T
rw
0
Res.
rw
Bit 31 WUIM: Resume/remote wakeup detected interrupt mask
0: Masked interrupt
1: Unmasked interrupt
Note: Accessible in both host and device modes.
Bit 30 SRQIM: Session request/new session detected interrupt mask
0: Masked interrupt
1: Unmasked interrupt
Note: Accessible in both host and device modes.
Bit 29 DISCINT: Disconnect detected interrupt mask
0: Masked interrupt
1: Unmasked interrupt
Note: Only accessible in device mode.
Bit 28 CIDSCHGM: Connector ID status change mask
0: Masked interrupt
1: Unmasked interrupt
Note: Accessible in both host and device modes.
Bit 27 LPMINTM: LPM interrupt mask
0: Masked interrupt
1: Unmasked interrupt
Note: Accessible in both host and device modes.
Bit 26 PTXFEM: Periodic Tx FIFO empty mask
0: Masked interrupt
1: Unmasked interrupt
Note: Only accessible in host mode.
Bit 25 HCIM: Host channels interrupt mask
0: Masked interrupt
1: Unmasked interrupt
Note: Only accessible in host mode.
Bit 24 PRTIM: Host port interrupt mask
0: Masked interrupt
1: Unmasked interrupt
Note: Only accessible in host mode.
Bit 23 RSTDETM: Reset detected interrupt mask
0: Masked interrupt
1: Unmasked interrupt
Note: Only accessible in device mode.
Bit 22 Reserved, must be kept at reset value for USB OTG FS.
DocID024597 Rev 3
1535/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bit 21 IPXFRM: Incomplete periodic transfer mask
0: Masked interrupt
1: Unmasked interrupt
Note: Only accessible in host mode.
IISOOXFRM: Incomplete isochronous OUT transfer mask
0: Masked interrupt
1: Unmasked interrupt
Note: Only accessible in device mode.
Bit 20 IISOIXFRM: Incomplete isochronous IN transfer mask
0: Masked interrupt
1: Unmasked interrupt
Note: Only accessible in device mode.
Bit 19 OEPINT: OUT endpoints interrupt mask
0: Masked interrupt
1: Unmasked interrupt
Note: Only accessible in device mode.
Bit 18 IEPINT: IN endpoints interrupt mask
0: Masked interrupt
1: Unmasked interrupt
Note: Only accessible in device mode.
Bits 17:16 Reserved, must be kept at reset value.
Bit 15 EOPFM: End of periodic frame interrupt mask
0: Masked interrupt
1: Unmasked interrupt
Note: Only accessible in device mode.
Bit 14 ISOODRPM: Isochronous OUT packet dropped interrupt mask
0: Masked interrupt
1: Unmasked interrupt
Note: Only accessible in device mode.
Bit 13 ENUMDNEM: Enumeration done mask
0: Masked interrupt
1: Unmasked interrupt
Note: Only accessible in device mode.
Bit 12 USBRST: USB reset mask
0: Masked interrupt
1: Unmasked interrupt
Note: Only accessible in device mode.
Bit 11 USBSUSPM: USB suspend mask
0: Masked interrupt
1: Unmasked interrupt
Note: Only accessible in device mode.
Bit 10 ESUSPM: Early suspend mask
0: Masked interrupt
1: Unmasked interrupt
Note: Only accessible in device mode.
1536/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Bits 9:8 Reserved, must be kept at reset value.
Bit 7 GONAKEFFM: Global OUT NAK effective mask
0: Masked interrupt
1: Unmasked interrupt
Note: Only accessible in device mode.
Bit 6 GINAKEFFM: Global non-periodic IN NAK effective mask
0: Masked interrupt
1: Unmasked interrupt
Note: Only accessible in device mode.
Bit 5 NPTXFEM: Non-periodic Tx FIFO empty mask
0: Masked interrupt
1: Unmasked interrupt
Note: Only accessible in Host mode.
Bit 4 RXFLVLM: Receive FIFO non-empty mask
0: Masked interrupt
1: Unmasked interrupt
Note: Accessible in both device and host modes.
Bit 3 SOFM: Start of frame mask
0: Masked interrupt
1: Unmasked interrupt
Note: Accessible in both device and host modes.
Bit 2 OTGINT: OTG interrupt mask
0: Masked interrupt
1: Unmasked interrupt
Note: Accessible in both device and host modes.
Bit 1 MMISM: Mode mismatch interrupt mask
0: Masked interrupt
1: Unmasked interrupt
Note: Accessible in both device and host modes.
Bit 0 Reserved, must be kept at reset value.
43.15.8
OTG_FS Receive status debug read/OTG status read and
pop registers (OTG_GRXSTSR/OTG_GRXSTSP)
Address offset for Read: 0x01C
Address offset for Pop: 0x020
Reset value: 0x0000 0000
A read to the Receive status debug read register returns the contents of the top of the
Receive FIFO. A read to the Receive status read and pop register additionally pops the top
data entry out of the Rx FIFO.
The receive status contents must be interpreted differently in host and device modes. The
core ignores the receive status pop/read when the receive FIFO is empty and returns a
value of 0x0000 0000. The application must only pop the Receive Status FIFO when the
Receive FIFO non-empty bit of the Core interrupt register (RXFLVL bit in OTG_GINTSTS) is
asserted.
DocID024597 Rev 3
1537/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Host mode:
31
30
29
28
27
26
25
24
23
22
21
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
DPID
r
9
8
7
6
5
20
19
18
PKTSTS
r
r
r
r
r
DPID
r
r
r
r
4
3
2
1
0
CHNUM
r
r
r
r
r
r
r
Bits 31:21 Reserved, must be kept at reset value.
Bits 20:17 PKTSTS: Packet status
Indicates the status of the received packet
0010: IN data packet received
0011: IN transfer completed (triggers an interrupt)
0101: Data toggle error (triggers an interrupt)
0111: Channel halted (triggers an interrupt)
Others: Reserved
Bits 16:15 DPID: Data PID
Indicates the Data PID of the received packet
00: DATA0
10: DATA1
Bits 14:4 BCNT: Byte count
Indicates the byte count of the received IN data packet.
Bits 3:0 CHNUM: Channel number
Indicates the channel number to which the current received packet belongs.
1538/1693
16
r
BCNT
r
17
DocID024597 Rev 3
r
r
RM0351
USB on-the-go full-speed (OTG_FS)
Device mode:
31
30
29
28
27
26
25
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
DPID
9
24
23
22
21
20
FRMNUM
19
18
PKTSTS
r
r
r
r
r
r
16
DPID
r
r
r
r
r
r
r
r
r
8
7
6
5
4
3
2
1
0
BCNT
r
17
EPNUM
r
r
r
r
r
r
r
r
r
Bits 31:25 Reserved, must be kept at reset value.
Bits 24:21 FRMNUM: Frame number
This is the least significant 4 bits of the frame number in which the packet is received on the
USB. This field is supported only when isochronous OUT endpoints are supported.
Bits 20:17 PKTSTS: Packet status
Indicates the status of the received packet
0001: Global OUT NAK (triggers an interrupt)
0010: OUT data packet received
0011: OUT transfer completed (triggers an interrupt)
0100: SETUP transaction completed (triggers an interrupt)
0110: SETUP data packet received
Others: Reserved
Bits 16:15 DPID: Data PID
Indicates the Data PID of the received OUT data packet
00: DATA0
10: DATA1
Bits 14:4 BCNT: Byte count
Indicates the byte count of the received data packet.
Bits 3:0 EPNUM: Endpoint number
Indicates the endpoint number to which the current received packet belongs.
43.15.9
OTG Receive FIFO size register (OTG_GRXFSIZ)
Address offset: 0x024
Reset value: 0x0000 0200
The application can program the RAM size that must be allocated to the Rx FIFO.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rw
RXFD
rw
rw
rw
rw
rw
rw
rw
rw
DocID024597 Rev 3
1539/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 RXFD: Rx FIFO depth
This value is in terms of 32-bit words.
Minimum value is 16
Programmed values must respect the available FIFO memory allocation and must not
exceed the power-on value.
43.15.10 OTG Host non-periodic transmit FIFO size register
(OTG_HNPTXFSIZ)/Endpoint 0 Transmit FIFO size
(OTG_DIEPTXF0)
Address offset: 0x028
Reset value: 0x0200 0200
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
NPTXFD/TX0FD
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
NPTXFSA/TX0FSA
rw
rw
rw
rw
rw
rw
rw
rw
rw
Host mode
Bits 31:16 NPTXFD: Non-periodic Tx FIFO depth
This value is in terms of 32-bit words.
Minimum value is 16
Programmed values must respect the available FIFO memory allocation and must not
exceed the power-on value.
Bits 15:0 NPTXFSA: Non-periodic transmit RAM start address
This field configures the memory start address for non-periodic transmit FIFO RAM.
Device mode
Bits 31:16 TX0FD: Endpoint 0 Tx FIFO depth
This value is in terms of 32-bit words.
Minimum value is 16
Programmed values must respect the available FIFO memory allocation and must not
exceed the power-on value.
Bits 15:0 TX0FSA: Endpoint 0 transmit RAM start address
This field configures the memory start address for the endpoint 0 transmit FIFO RAM.
1540/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
43.15.11 OTG non-periodic transmit FIFO/queue status register
(OTG_HNPTXSTS)
Address offset: 0x02C
Reset value: 0x0008 0200
Note:
In Device mode, this register is not valid.
This read-only register contains the free space information for the non-periodic Tx FIFO and
the non-periodic transmit request queue.
31
30
29
28
Res.
15
27
26
25
24
23
22
21
NPTXQTOP
20
19
18
17
16
NPTQXSAV
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
NPTXFSAV
r
r
r
r
r
r
r
r
r
Bit 31 Reserved, must be kept at reset value.
Bits 30:24 NPTXQTOP: Top of the non-periodic transmit request queue
Entry in the non-periodic Tx request queue that is currently being processed by the MAC.
Bits 30:27: Channel/endpoint number
Bits 26:25:
00: IN/OUT token
01: Zero-length transmit packet (device IN/host OUT)
11: Channel halt command
Bit 24: Terminate (last entry for selected channel/endpoint)
Bits 23:16 NPTQXSAV: Non-periodic transmit request queue space available
Indicates the amount of free space available in the non-periodic transmit request queue.
This queue holds both IN and OUT requests.
0: Non-periodic transmit request queue is full
1: 1 location available
2: locations available
n: n locations available (0 ≤ n ≤ 8)
Others: Reserved
Bits 15:0 NPTXFSAV: Non-periodic Tx FIFO space available
Indicates the amount of free space available in the non-periodic Tx FIFO.
Values are in terms of 32-bit words.
0: Non-periodic Tx FIFO is full
1: 1 word available
2: 2 words available
n: n words available (where 0 ≤ n ≤ 512)
Others: Reserved
DocID024597 Rev 3
1541/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
43.15.12 OTG general core configuration register (OTG_GCCFG)
Address offset: 0x038
Reset value: 0x0000 0000
31
Res.
15
Res.
30
Res.
14
Res.
29
Res.
13
Res.
28
Res.
12
Res.
27
Res.
11
Res.
26
Res.
10
Res.
25
Res.
9
24
Res.
23
Res.
8
Res.
Res.
22
Res.
7
Res.
6
Res.
21
20
19
18
17
16
BCDEN
PWR
DWN
VBDEN
SDEN
PDEN
DCD
EN
rw
rw
rw
rw
rw
rw
5
4
3
2
1
0
Res.
PS2
DET
SDET
PDET
DCDET
rw
rw
rw
rw
Res.
Bits 31:22 Reserved, must be kept at reset value.
Bit 21 VBDEN: USB VBUS detection enable
Enables VBUS sensing comparators to detect VBUS valid levels on the VBUS PAD for USB
host and device operation. If HNP and/or SRP support is enabled, VBUS comparators are
automatically enabled independently of VBDEN value.
0 = VBUS Detection Disabled
1 = VBUS Detection Enabled
Bit 20 SDEN: Secondary detection (SD) mode enable
This bit is set by the software to put the BCD into SD mode. Only one detection mode (DCD,
PD, SD or OFF) should be selected to work correctly
Bit 19 PDEN: Primary detection (PD) mode enable
This bit is set by the software to put the BCD into PD mode. Only one detection mode (DCD,
PD, SD or OFF) should be selected to work correctly.
Bit 18 DCDEN: Data contact detection (DCD) mode enable
This bit is set by the software to put the BCD into DCD mode. Only one detection mode
(DCD, PD, SD or OFF) should be selected to work correctly.
Bit 17 BCDEN: Battery charging detector (BCD) enable
This bit is set by the software to enable the BCD support within the USB device. When
enabled, the USB PHY is fully controlled by BCD and cannot be used for normal
communication. Once the BCD discovery is finished, the BCD should be placed in OFF
mode by clearing this bit to ‘0’ in order to allow the normal USB operation.
Bit 16 PWRDWN: Power down control
Used to activate the transceiver in transmission/reception. When reset, the transceiver is
kept in power-down. When set, the BCD function must be off (BCDEN=0).
0 = USB FS transceiver disabled
1 = USB FS transceiver enabled
Bits 15:4 Reserved, must be kept at reset value.
1542/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Bit 3 PS2DET: DM pull-up detection status
This bit is active only during PD and gives the result of comparison between DM voltage
level and VLGC threshold. In normal situation, the DM level should be below this threshold.
If it is above, it means that the DM is externally pulled high. This can be caused by
connection to a PS2 port (which pulls-up both DP and DM lines) or to some proprietary
charger not following the BCD specification.
0: Normal port detected (connected to SDP, CDP or DCP)
1: PS2 port or proprietary charger detected
Bit 2 SDET: Secondary detection (SD) status
This bit gives the result of SD.
0: CDP detected
1: DCP detected
Bit 1 PDET: Primary detection (PD) status
This bit gives the result of PD.
0: no BCD support detected (connected to SDP or proprietary device).
1: BCD support detected (connected to CDP or DCP).
Bit 0 DCDET: Data contact detection (DCD) status
This bit gives the result of DCD.
0: data lines contact not detected
1: data lines contact detected
43.15.13 OTG core ID register (OTG_CID)
Address offset: 0x03C
Reset value:0x0000 2000
This is a read only register containing the Product ID.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
PRODUCT_ID
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
PRODUCT_ID
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:0 PRODUCT_ID: Product ID field
Application-programmable ID field.
DocID024597 Rev 3
1543/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
43.15.14 OTG core LPM configuration register (OTG_GLPMCFG)
Address offset: 0x54
Reset value: 0x0000 0000
31
Res.
15
30
Res.
14
SLP
STS
r
29
28
Res.
EN
BESL
13
LPMRSP
r
r
27
26
25
24
LPMRCNTSTS
rw
r
r
r
rs
12
11
10
9
8
L1DS
EN
rw
BESLTHRS
rw
rw
23
SND
LPM
rw
rw
22
21
20
19
LPMRCNT
rw
18
rw
rw
rw
rw
5
4
3
2
7
6
REM
WAKE
rw
rw/r
BESL
rw/r
rw/r
rw/r
rw/r
16
L1RSM
OK
LPMCHIDX
rw
L1SS
EN
17
rw
r
1
0
LPM
ACK
LPM
EN
rw
rw
Bits 31:29 Reserved, must be kept at reset value.
Bit 28 ENBESL: Enable best effort service latency
This bit enables the BESL feature as defined in the LPM errata:
0:The core works as described in the following document:
USB 2.0 Link Power Management Addendum Engineering Change Notice to the USB 2.0
specification, July 16, 2007
1:The core works as described in the LPM Errata:
Errata for USB 2.0 ECN: Link Power Management (LPM) - 7/2007
Note: Only the updated behavior (described in LPM Errata) is considered in this document
and so the ENBESL bit should be set to '1' by application SW.
Bits 27:25 LPMRCNTSTS: LPM retry count status
Number of LPM host retries still remaining to be transmitted for the current LPM sequence.
Note: Accessible only in host mode.
Bit 24 SNDLPM: Send LPM transaction
When the application software sets this bit, an LPM transaction containing two tokens, EXT
and LPM is sent. The hardware clears this bit once a valid response (STALL, NYET, or
ACK) is received from the device or the core has finished transmitting the programmed
number of LPM retries.
Note: This bit must be set only when the host is connected to a local port.
Note: Accessible only in host mode.
Bits 23:21 LPMRCNT: LPM retry count
When the device gives an ERROR response, this is the number of additional LPM retries
that the host performs until a valid device response (STALL, NYET, or ACK) is received.
Note: Accessible only in host mode.
Bits 20:17 LPMCHIDX: LPM Channel Index
The channel number on which the LPM transaction has to be applied while sending an LPM
transaction to the local device. Based on the LPM channel index, the core automatically
inserts the device address and endpoint number programmed in the corresponding channel
into the LPM transaction.
Note: Accessible only in host mode.
1544/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Bit 16 L1RSMOK: Sleep State Resume OK
Indicates that the device or host can start resume from Sleep state. This bit is valid in LPM
sleep (L1) state. It is set in sleep mode after a delay of 50 μs (TL1Residency).
This bit is reset when SLPSTS is 0.
1: The application or host can start resume from Sleep state
0: The application or host cannot start resume from Sleep state
Bit 15 SLPSTS: Port sleep status
Device mode:
This bit is set as long as a Sleep condition is present on the USB bus. The core enters the
Sleep state when an ACK response is sent to an LPM transaction and the TL1TokenRetry
timer has expired. To stop the PHY clock, the application must set the STPPCLK bit in
OTG_PCGCCTL, which asserts the PHY Suspend input signal.
The application must rely on SLPSTS and not ACK in LPMRSP to confirm transition into
sleep.
The core comes out of sleep:
– When there is any activity on the USB linestate
– When the application writes to the RWUSIG bit in OTG_DCTL or when the application
resets or soft-disconnects the device.
Host mode:
The host transitions to Sleep (L1) state as a side-effect of a successful LPM transaction by the
core to the local port with ACK response from the device. The read value of this bit reflects the
current Sleep status of the port.
The core clears this bit after:
– The core detects a remote L1 Wakeup signal,
– The application sets the PRST bit or the PRES bit in the OTG_HPRT register, or
– The application sets the L1Resume/ Remote Wakeup Detected Interrupt bit or Disconnect
Detected Interrupt bit in the Core Interrupt register (WKUPINT or DISCINT bit in
OTG_GINTSTS, respectively).
0: Core not in L1
1: Core in L1
Bits 14:13 LPMRST: LPM response
Device mode:
The response of the core to LPM transaction received is reflected in these two bits.
Host mode:
Handshake response received from local device for LPM transaction
11: ACK
10: NYET
01: STALL
00: ERROR (No handshake response)
Bit 12 L1DSEN: L1 deep sleep enable
Enables suspending the PHY in L1 Sleep mode. For maximum power saving during L1 Sleep
mode, this bit should be set to '1' by application SW in all the cases.
DocID024597 Rev 3
1545/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bits11:8 BESLTHRS: BESL threshold
Device mode:
The core puts the PHY into deep low-power mode in L1 when BESL value is greater than or
equal to the value defined in this field BESL_Thres[3:0].
Host mode:
The core puts the PHY into deep low-power mode in L1. BESLTHRS[3:0] specifies the time for
which resume signaling is to be reflected by host (TL1HubDrvResume2) on the USB bus when it
detects device initiated resume.
BESLTHRS must not be programmed with a value greater than 1100b in host mode, because
this exceeds maximum TL1HubDrvResume2.
Thres[3:0]Host mode resume signaling time (μs)
0000:75
0001:100
0010:150
0011:250
0100:350
0101:450
0110:950
All other values:reserved
Bit 7 L1SSEN: L1 Shallow Sleep enable
Enables suspending the PHY in L1 Sleep mode. For maximum power saving during L1 Sleep
mode, this bit should be set to '1' by application SW in all the cases.
Bit 6 REMWAKE: bRemoteWake value
Host mode:
The value of remote wake up to be sent in the wIndex field of LPM transaction.
Device mode (read-only):
This field is updated with the received LPM token bRemoteWake bmAttribute when an ACK,
NYET, or STALL response is sent to an LPM transaction.
1546/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Bits 5:2 BESL: Best effort service latency
Host mode:
The value of BESL to be sent in an LPM transaction. This value is also used to initiate
resume for a duration TL1HubDrvResume1 for host initiated resume.
Device mode (read-only):
This field is updated with the received LPM token BESL bmAttribute when an ACK, NYET,
or STALL response is sent to an LPM transaction.
BESL[3:0]TBESL (μs)
0000:125
0001:150
0010:200
0011:300
0100:400
0101:500
0110:1000
0111:2000
1000:3000
1001:4000
1010:5000
1011:6000
1100:7000
1101:8000
1110:9000
1111:10000
Bit 1 LPMACK: LPM token acknowledge enable
Handshake response to LPM token pre-programmed by device application software.
1:ACK
Even though ACK is pre-programmed, the core Device responds with ACK only on
successful LPM transaction. The LPM transaction is successful if:
– No PID/CRC5 Errors in either EXT token or LPM token (else ERROR)
– Valid bLinkState = 0001B (L1) received in LPM transaction (else STALL)
– No data pending in transmit queue (else NYET).
0:NYET
The pre-programmed software bit is over-ridden for response to LPM token when:
– The received bLinkState is not L1 (STALL response), or
– An error is detected in either of the LPM token packets because of corruption (ERROR
response).
Note: Accessible only in device mode.
Bit 0 LPMEN: LPM support enable
The application uses this bit to control the OTG_FS core LPM capabilities.
If the core operates as a non-LPM-capable host, it cannot request the connected device or
hub to activate LPM mode.
If the core operates as a non-LPM-capable device, it cannot respond to any LPM
transactions.
0: LPM capability is not enabled
1: LPM capability is enabled
DocID024597 Rev 3
1547/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
43.15.15 OTG power down register (OTG_GPWRDN)
Address offset: 0x058
Reset value: 0x0000 0010
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
ADPIF
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
ADPM
EN
rc_w1
rw
Bits 31:24 Reserved, must be kept at reset value.
Bit 23 ADPIF: ADP interrupt flag
This bit is set whenever there is an ADP event
Bits 22:1 Reserved, must be kept at reset value.
Bit 0 ADPMEN: ADP module enable
This bit enables or disables the ADP logic.
0: Disable ADP module
1: Enable ADP module
43.15.16 OTG ADP timer, control and status register
(OTG_GADPCTL)
Address offset: 0x060
Reset value: 0x0000 0000
The OTG_GADPCTL register must be accessed as follows:
31
30
•
In order to read from the OTG_GADPCTL register, program AR=0b01 and keep polling
till AR=0b00. The core updates the other fields of this register and makes AR=0b00.
Read values of this register are valid only when AR=0b00.
•
In order to write to the OTG_GADPCTL register, program AR=0b10 along with the
values for the other fields and keep polling till AR=0b00. When AR becomes 0b00, it
means that the programmed value has taken effect inside the core.
29
Res.
Res.
Res.
15
14
13
28
27
26
ADP
TOIM
AR
25
24
ADP
ADP
SNSIM PRBIM
rw
rw
rw
rw
rw
12
11
10
9
8
23
22
ADP
TOIF
ADP
SNSIF
rc_w1 rc_w1 rc_w1
7
6
RTIM
r
r
1548/1693
r
r
r
21
20
19
18
17
16
ADP
RST
ENA
SNS
ENA
PRB
RTIM
rw
rs
rw
rw
r
4
3
2
1
0
ADP
ADPEN
PRBIF
5
PRBPER
r
r
r
r
DocID024597 Rev 3
r
rw
rw
PRBDELTA
PRBDSCHG
rw
rw
rw
rw
RM0351
USB on-the-go full-speed (OTG_FS)
Bits 31:29 Reserved, must be kept at reset value.
Bits 28:27 AR: Access request
This bitfield define the requested access mode to the OTG_GADPCTL register:
00 Read / Write valid (updated by the core)
01 Read request
10 Write request
11 Reserved
Bit 26 ADPTOIM: ADP timeout interrupt mask
When this bit is set, it unmasks the interrupt from ADPTOIF.
Bit 25 ADPSNSIM: ADP sense interrupt mask
When this bit is set, it unmasks the interrupt from ADPSNSIF.
Bit 24 ADPPRBIM: ADP probe interrupt mask
When this bit is set, it unmasks the interrupt from ADPPRBIF.
Bit 23 ADPTOIF: ADP timeout interrupt flag
This bit is relevant only for an ADP probe. When this bit is set, it means that the ramp
time has completed (RTIM has reached its terminal value of 0x7FF). This is a debug
feature that allows the application to read the ramp time after each cycle.
Bit 22: ADPSNSIF: ADP sense interrupt flag
When this bit is set, it means that the VBUS voltage is greater than VADPSNS value or that
VADPSNS is reached.
Bit 21 ADPPRBIF: ADP probe interrupt flag
When this bit is set, it means that the VBUS voltage is greater than VADPPRB or that
VADPPRB is reached.
Bit 20 ADPEN: ADP enable
When set, the core performs either ADP probing or sensing based on ENAPRB or
ENASNS.
Bit 19 ADPRST: ADP reset
When set, ADP controller is reset. This bit is auto-cleared after the reset procedure is
complete in the ADP controller.
Bit 18 ENASNS: Enable sense
When programmed to 1, the core performs a sense operation.
Bit 17 ENAPRB: Enable probe
When programmed to 1, the core performs a probe operation.
Bits 16:6 RTIM: Ramp time
These bits capture the latest time it took for VBUS to ramp from VADPSINK to VADPPRB. The
bits are defined in units of 32 kHz clock cycles as follow:
000: 1 cycle
001: 2 cycles
002: 3 cycles
...
7FF: 2048 cycles
A time of 1024 cycles at 32 kHz corresponds to a time of 32 ms.
DocID024597 Rev 3
1549/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bits 5:4 PRBPER: Probe period
These bits sets the TADPPRD as follow:
00: 0.625 to 0.925 sec (typical 0.775 sec)
01: 1.25 to 1.85 sec (typical 1.55 sec)
10: 1.9 to 2.6 sec (typical 2.275 sec)
11: Reserved
Bits 3:2 PRBDELTA: Probe delta
These bits set the resolution for RTIM value. The bits are defined in units of 32 kHz clock
cycles as follow:
00: 1 cycle
01: 2 cycles
10: 3 cycles
11: 4 cycles
For example if this value is chosen to be 01, it means that RTIM increments for every two
32 kHz clock cycles.
Bits 1:0 PRBDSCHG: Probe discharge
These bits set the times for TADP_DSCHG. These bits are defined as follow:
00: 4 ms
01: 8 ms
10: 16 ms
11: 32 ms
43.15.17 OTG Host periodic transmit FIFO size register
(OTG_HPTXFSIZ)
Address offset: 0x100
Reset value: 0x0200 0400
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
PTXFSIZ
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rw
PTXSA
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 PTXFD: Host periodic Tx FIFO depth
This value is in terms of 32-bit words.
Minimum value is 16
Bits 15:0 PTXSA: Host periodic Tx FIFO start address
This field configures the memory start address for periodic transmit FIFO RAM.
1550/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
43.15.18 OTG device IN endpoint transmit FIFO size register
(OTG_DIEPTXFx) (x = 1..5 , where x is the
FIFO_number)
Address offset: 0x104 + (FIFO_number – 1) × 0x04
Reset values:
FIFO_number = 5 : 0x0200 0200 + (5
31
30
29
28
27
26
25
24
* 0x200)
23
22
21
20
19
18
17
16
INEPTXFD
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
INEPTXSA
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 INEPTXFD: IN endpoint Tx FIFO depth
This value is in terms of 32-bit words.
Minimum value is 16
Bits 15:0 INEPTXSA: IN endpoint FIFOx transmit RAM start address
This field contains the memory start address for IN endpoint transmit FIFOx. The address
must be aligned with a 32-bit memory location.
43.15.19 Host-mode registers
Bit values in the register descriptions are expressed in binary unless otherwise specified.
Host-mode registers affect the operation of the core in the host mode. Host mode registers
must not be accessed in device mode, as the results are undefined. Host mode registers
can be categorized as follows:
43.15.20 OTG Host configuration register (OTG_HCFG)
Address offset: 0x400
Reset value: 0x0000 0000
This register configures the core after power-on. Do not make changes to this register after
initializing the host.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FSLSS
r
DocID024597 Rev 3
FSLSPCS
rw
rw
1551/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bits 31:3 Reserved, must be kept at reset value.
Bit 2 FSLSS: FS- and LS-only support
The application uses this bit to control the core’s enumeration speed. Using this bit, the
application can make the core enumerate as an FS host, even if the connected device
supports HS traffic. Do not make changes to this field after initial programming.
1: FS/LS-only, even if the connected device can support HS (read-only)
Bits 1:0 FSLSPCS: FS/LS PHY clock select
When the core is in FS host mode
01: PHY clock is running at 48 MHz
Others: Reserved
When the core is in LS host mode
00: Reserved
01: Select 48 MHz PHY clock frequency
10: Select 6 MHz PHY clock frequency
11: Reserved
Note: The FSLSPCS must be set on a connection event according to the speed of the
connected device (after changing this bit, a software reset must be performed).
43.15.21 OTG Host frame interval register (OTG_HFIR)
Address offset: 0x404
Reset value: 0x0000 EA60
This register stores the frame interval information for the current speed to which the
OTG_FS controller has enumerated.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RLD
CTRL
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rw
rw
FRIVL
rw
rw
1552/1693
rw
rw
rw
rw
rw
rw
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Bits 31:17 Reserved, must be kept at reset value.
Bit 16 RLDCTRL: Reload control
This bit allows dynamic reloading of the HFIR register during run time.
0: The HFIR cannot be reloaded dynamically
1: The HFIR can be dynamically reloaded during runtime.
This bit needs to be programmed during initial configuration and its value must not be
changed during runtime.
Bits 15:0 FRIVL: Frame interval for USB OTG FS
The value that the application programs to this field, specifies the interval between two
consecutive SOFs (FS) or Keep-Alive tokens (LS). This field contains the number of PHY
clocks that constitute the required frame interval. The application can write a value to this
register only after the Port enable bit of the host port control and status register (PENA bit in
OTG_HPRT) has been set. If no value is programmed, the core calculates the value based
on the PHY clock specified in the FS/LS PHY Clock Select field of the host configuration
register (FSLSPCS in OTG_HCFG). Do not change the value of this field after the initial
configuration, unless the RLDCTRL bit is set. In such case, the FRIVL is reloaded with each
SOF event.
43.15.22 OTG Host frame number/frame time remaining register
(OTG_HFNUM)
Address offset: 0x408
Reset value: 0x0000 3FFF
This register indicates the current frame number. It also indicates the time remaining (in
terms of the number of PHY clocks) in the current frame.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
FTREM
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
FRNUM
r
r
r
r
r
r
r
r
r
Bits 31:16 FTREM: Frame time remaining
Indicates the amount of time remaining in the current frame, in terms of PHY clocks. This
field decrements on each PHY clock. When it reaches zero, this field is reloaded with the
value in the Frame interval register and a new SOF is transmitted on the USB.
Bits 15:0 FRNUM: Frame number
This field increments when a new SOF is transmitted on the USB, and is cleared to 0 when
it reaches 0x3FFF.
DocID024597 Rev 3
1553/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
43.15.23 OTG_Host periodic transmit FIFO/queue status register
(OTG_HPTXSTS)
Address offset: 0x410
Reset value: 0x0008 0100
This read-only register contains the free space information for the periodic Tx FIFO and the
periodic transmit request queue.
31
30
29
28
27
26
25
24
23
22
21
PTXQTOP
20
19
18
17
16
PTXQSAV
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
PTXFSAVL
r
r
r
r
r
r
r
r
r
Bits 31:24 PTXQTOP: Top of the periodic transmit request queue
This indicates the entry in the periodic Tx request queue that is currently being processed by
the MAC.
This register is used for debugging.
Bit 31: Odd/Even frame
0: send in even frame
1: send in odd frame
Bits 30:27: Channel/endpoint number
Bits 26:25: Type
00: IN/OUT
01: Zero-length packet
11: Disable channel command
Bit 24: Terminate (last entry for the selected channel/endpoint)
Bits 23:16 PTXQSAV: Periodic transmit request queue space available
Indicates the number of free locations available to be written in the periodic transmit request
queue. This queue holds both IN and OUT requests.
00: Periodic transmit request queue is full
01: 1 location available
10: 2 locations available
bxn: n locations available (0 ≤ n ≤ 8)
Others: Reserved
Bits 15:0 PTXFSAVL: Periodic transmit data FIFO space available
Indicates the number of free locations available to be written to in the periodic Tx FIFO.
Values are in terms of 32-bit words
0000: Periodic Tx FIFO is full
0001: 1 word available
0010: 2 words available
bxn: n words available (where 0 ≤ n ≤ PTXFD)
Others: Reserved
1554/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
43.15.24 OTG Host all channels interrupt register (OTG_HAINT)
Address offset: 0x414
Reset value: 0x0000 000
When a significant event occurs on a channel, the host all channels interrupt register
interrupts the application using the host channels interrupt bit of the Core interrupt register
(HCINT bit in OTG_GINTSTS). This is shown in Figure 501. There is one interrupt bit per
channel, up to a maximum of 16 bits. Bits in this register are set and cleared when the
application sets and clears bits in the corresponding host channel-x interrupt register.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
r
HAINT
r
r
r
r
r
r
r
r
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 HAINT: Channel interrupts
One bit per channel: Bit 0 for Channel 0, bit 15 for Channel 15
43.15.25 OTG Host all channels interrupt mask register
(OTG_HAINTMSK)
Address offset: 0x418
Reset value: 0x0000 0000
The host all channel interrupt mask register works with the host all channel interrupt register
to interrupt the application when an event occurs on a channel. There is one interrupt mask
bit per channel, up to a maximum of 16 bits.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
HAINTM
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 HAINTM: Channel interrupt mask
0: Masked interrupt
1: Unmasked interrupt
One bit per channel: Bit 0 for channel 0, bit 15 for channel 15
DocID024597 Rev 3
1555/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
43.15.26 OTG Host port control and status register (OTG_HPRT)
Address offset: 0x440
Reset value: 0x0000 0000
This register is available only in host mode. Currently, the OTG host supports only one port.
A single register holds USB port-related information such as USB reset, enable, suspend,
resume, connect status, and test mode for each port. It is shown in Figure 501. The rc_w1
bits in this register can trigger an interrupt to the application through the host port interrupt
bit of the core interrupt register (HPRTINT bit in OTG_GINTSTS). On a Port Interrupt, the
application must read this register and clear the bit that caused the interrupt. For the rc_w1
bits, the application must write a 1 to the bit to clear the interrupt.
31
30
29
28
27
26
25
24
23
22
21
20
19
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
r
r
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
PRST
PSUSP
PRES
POC
CHNG
POCA
PEN
CHNG
PENA
rw
rs
rw
rc_w1
r
rc_w1
rc_w1
PTCTL
rw
rw
PPWR
rw
rw
PLSTS
r
r
18
17
PSPD
16
PTCTL
PCDET PCSTS
rc_w1
r
Bits 31:19 Reserved, must be kept at reset value.
Bits 18:17 PSPD: Port speed
Indicates the speed of the device attached to this port.
01: Full speed
10: Low speed
11: Reserved
Bits 16:13 PTCTL: Port test control
The application writes a nonzero value to this field to put the port into a Test mode, and the
corresponding pattern is signaled on the port.
0000: Test mode disabled
0001: Test_J mode
0010: Test_K mode
0011: Test_SE0_NAK mode
0100: Test_Packet mode
0101: Test_Force_Enable
Others: Reserved
Bit 12 PPWR: Port power
The application uses this field to control power to this port, and the core clears this bit on an
overcurrent condition.
0: Power off
1: Power on
Bits 11:10 PLSTS: Port line status
Indicates the current logic level USB data lines
Bit 10: Logic level of OTG_FS_DP
Bit 11: Logic level of OTG_FS_DM
Bit 9 Reserved, must be kept at reset value.
1556/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Bit 8 PRST: Port reset
When the application sets this bit, a reset sequence is started on this port. The application
must time the reset period and clear this bit after the reset sequence is complete.
0: Port not in reset
1: Port in reset
The application must leave this bit set for a minimum duration of at least 10 ms to start a
reset on the port. The application can leave it set for another 10 ms in addition to the
required minimum duration, before clearing the bit, even though there is no maximum limit
set by the USB standard.
High speed: 50 ms
Full speed/Low speed: 10 ms
Bit 7 PSUSP: Port suspend
The application sets this bit to put this port in Suspend mode. The core only stops sending
SOFs when this is set. To stop the PHY clock, the application must set the Port clock stop
bit, which asserts the suspend input pin of the PHY.
The read value of this bit reflects the current suspend status of the port. This bit is cleared
by the core after a remote wakeup signal is detected or the application sets the Port reset bit
or Port resume bit in this register or the Resume/remote wakeup detected interrupt bit or
Disconnect detected interrupt bit in the Core interrupt register (WKUINT or DISCINT in
OTG_GINTSTS, respectively).
0: Port not in Suspend mode
1: Port in Suspend mode
Bit 6 PRES: Port resume
The application sets this bit to drive resume signaling on the port. The core continues to
drive the resume signal until the application clears this bit.
If the core detects a USB remote wakeup sequence, as indicated by the Port
resume/remote wakeup detected interrupt bit of the Core interrupt register (WKUINT bit in
OTG_GINTSTS), the core starts driving resume signaling without application intervention
and clears this bit when it detects a disconnect condition. The read value of this bit indicates
whether the core is currently driving resume signaling.
0: No resume driven
1: Resume driven
When LPM is enabled and the core is in L1 state, the behavior of this bit is as follow:
1. The application sets this bit to drive resume signaling on the port.
2. The core continues to drive the resume signal until a pre-determined time specified in
BESLTHRS[3:0] field of OTG_GLPMCFG register.
3. If the core detects a USB remote wakeup sequence, as indicated by the Port
L1Resume/Remote L1Wakeup Detected Interrupt bit of the core Interrupt register
(WKUPINT in OTG_GINTSTS), the core starts driving resume signaling without application
intervention and clears this bit at the end of resume.This bit can be set or cleared by both
the core and the application. This bit is cleared by the core even if there is no device
connected to the host.
Bit 5 POCCHNG: Port overcurrent change
The core sets this bit when the status of the Port overcurrent active bit (bit 4) in this register
changes.
Bit 4 POCA: Port overcurrent active
Indicates the overcurrent condition of the port.
0: No overcurrent condition
1: Overcurrent condition
Bit 3 PENCHNG: Port enable/disable change
The core sets this bit when the status of the Port enable bit 2 in this register changes.
DocID024597 Rev 3
1557/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bit 2 PENA: Port enable
A port is enabled only by the core after a reset sequence, and is disabled by an overcurrent
condition, a disconnect condition, or by the application clearing this bit. The application
cannot set this bit by a register write. It can only clear it to disable the port. This bit does not
trigger any interrupt to the application.
0: Port disabled
1: Port enabled
Bit 1 PCDET: Port connect detected
The core sets this bit when a device connection is detected to trigger an interrupt to the
application using the host port interrupt bit in the Core interrupt register (HPRTINT bit in
OTG_GINTSTS). The application must write a 1 to this bit to clear the interrupt.
Bit 0 PCSTS: Port connect status
0: No device is attached to the port
1: A device is attached to the port
43.15.27 OTG Host channel-x characteristics register (OTG_HCCHARx)
(x = 0..11, where x = Channel_number)
Address offset: 0x500 + (Channel_number × 0x20)
Reset value: 0x0000 0000
31
30
CHENA CHDIS
29
28
27
26
ODD
FRM
25
24
23
22
21
DAD
20
19
MCNT
18
EPTYP
17
16
LSDEV
Res.
rs
rs
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
EPDIR
rw
EPNUM
rw
rw
rw
MPSIZ
rw
rw
rw
rw
rw
rw
rw
Bit 31 CHENA: Channel enable
This field is set by the application and cleared by the OTG host.
0: Channel disabled
1: Channel enabled
Bit 30 CHDIS: Channel disable
The application sets this bit to stop transmitting/receiving data on a channel, even before
the transfer for that channel is complete. The application must wait for the Channel disabled
interrupt before treating the channel as disabled.
Bit 29 ODDFRM: Odd frame
This field is set (reset) by the application to indicate that the OTG host must perform a
transfer in an odd frame. This field is applicable for only periodic (isochronous and interrupt)
transactions.
0: Even frame
1: Odd frame
Bits 28:22 DAD: Device address
This field selects the specific device serving as the data source or sink.
1558/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Bits 21:20 MCNT: Multicount
This field indicates to the host the number of transactions that must be executed per frame
for this periodic endpoint. For non-periodic transfers, this field is not used
00: Reserved. This field yields undefined results
01: 1 transaction
10: 2 transactions per frame to be issued for this endpoint
11: 3 transactions per frame to be issued for this endpoint
Note: This field must be set to at least 01.
Bits 19:18 EPTYP: Endpoint type
Indicates the transfer type selected.
00: Control
01: Isochronous
10: Bulk
11: Interrupt
Bit 17 LSDEV: Low-speed device
This field is set by the application to indicate that this channel is communicating to a lowspeed device.
Bit 16 Reserved, must be kept at reset value.
Bit 15 EPDIR: Endpoint direction
Indicates whether the transaction is IN or OUT.
0: OUT
1: IN
Bits 14:11 EPNUM: Endpoint number
Indicates the endpoint number on the device serving as the data source or sink.
Bits 10:0 MPSIZ: Maximum packet size
Indicates the maximum packet size of the associated endpoint.
DocID024597 Rev 3
1559/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
43.15.28 OTG Host channel-x interrupt register (OTG_HCINTx)
(x = 0..11, where x = Channel_number)
Address offset: 0x508 + (Channel_number × 0x20)
Reset value: 0x0000 0000
This register indicates the status of a channel with respect to USB- and AHB-related events.
It is shown in Figure 501. The application must read this register when the host channels
interrupt bit in the Core interrupt register (HCINT bit in OTG_GINTSTS) is set. Before the
application can read this register, it must first read the host all channels interrupt
(OTG_HAINT) register to get the exact channel number for the host channel-x interrupt
register. The application must clear the appropriate bit in this register to clear the
corresponding bits in the OTG_HAINT and OTG_GINTSTS registers.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
DTERR
FRM
OR
Res.
ACK
NAK
STALL
Res.
CHH
XFRC
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
rc_w1
BBERR TXERR
rc_w1
rc_w1
Bits 31:11 Reserved, must be kept at reset value.
Bit 10 DTERR: Data toggle error
Bit 9 FRMOR: Frame overrun
Bit 8 BBERR: Babble error
Bit 7 TXERR: Transaction error
Indicates one of the following errors occurred on the USB.
CRC check failure
Timeout
Bit stuff error
False EOP
Bit 6 Reserved, must be kept at reset value for USB OTG FS.
Bit 5 ACK: ACK response received/transmitted interrupt
Bit 4 NAK: NAK response received interrupt
Bit 3 STALL: STALL response received interrupt
Bit 2 Reserved, must be kept at reset value for USB OTG FS.
Bit 1 CHH: Channel halted
Indicates the transfer completed abnormally either because of any USB transaction error or
in response to disable request by the application.
Bit 0 XFRC: Transfer completed
Transfer completed normally without any errors.
1560/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
43.15.29 OTG Host channel-x interrupt mask register (OTG_HCINTMSKx)
(x = 0..11, where x = Channel_number)
Address offset: 0x50C + (Channel_number × 0x20)
Reset value: 0x0000 0000
This register reflects the mask for each channel status described in the previous section.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
DTERR
M
FRM
ORM
Res.
ACKM
NAKM
STALL
M
Res.
CHHM
XFRC
M
rw
rw
rw
rw
rw
rw
rw
BBERR TXERR
M
M
rw
rw
Bits 31:11 Reserved, must be kept at reset value.
Bit 10 DTERRM: Data toggle error mask
0: Masked interrupt
1: Unmasked interrupt
Bit 9 FRMORM: Frame overrun mask
0: Masked interrupt
1: Unmasked interrupt
Bit 8 BBERRM: Babble error mask
0: Masked interrupt
1: Unmasked interrupt
Bit 7 TXERRM: Transaction error mask
0: Masked interrupt
1: Unmasked interrupt
Bit 6 Reserved, must be kept at reset value for USB OTG FS.
Bit 5 ACKM: ACK response received/transmitted interrupt mask
0: Masked interrupt
1: Unmasked interrupt
Bit 4 NAKM: NAK response received interrupt mask
0: Masked interrupt
1: Unmasked interrupt
Bit 3 STALLM: STALL response received interrupt mask
0: Masked interrupt
1: Unmasked interrupt
DocID024597 Rev 3
1561/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bit 2 Reserved, must be kept at reset value for USB OTG FS
Bit 1 CHHM: Channel halted mask
0: Masked interrupt
1: Unmasked interrupt
Bit 0 XFRCM: Transfer completed mask
0: Masked interrupt
1: Unmasked interrupt
43.15.30 OTG Host channel-x transfer size register (OTG_HCTSIZx)
(x = 0..11, where x = Channel_number)
Address offset: 0x510 + (Channel_number × 0x20)
Reset value: 0x0000 0000
31
30
Res.
15
29
28
27
26
25
DPID
24
23
22
21
20
19
18
PKTCNT
17
16
XFRSIZ
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
XFRSIZ
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bit 31 Reserved, must be kept at reset value.
Bits 30:29 DPID: Data PID
The application programs this field with the type of PID to use for the initial transaction. The
host maintains this field for the rest of the transfer.
00: DATA0
10: DATA1
11: SETUP (control) / reserved (non-control)
Bits 28:19 PKTCNT: Packet count
This field is programmed by the application with the expected number of packets to be
transmitted (OUT) or received (IN).
The host decrements this count on every successful transmission or reception of an OUT/IN
packet. Once this count reaches zero, the application is interrupted to indicate normal
completion.
Bits 18:0 XFRSIZ: Transfer size
For an OUT, this field is the number of data bytes the host sends during the transfer.
For an IN, this field is the buffer size that the application has reserved for the transfer. The
application is expected to program this field as an integer multiple of the maximum packet
size for IN transactions (periodic and non-periodic).
1562/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
43.15.31 Device-mode registers
These registers must be programmed every time the core changes to device mode.
43.15.32 OTG device configuration register (OTG_DCFG)
Address offset: 0x800
Reset value: 0x0220 0000
This register configures the core in device mode after power-on or after certain control
commands or enumeration. Do not make changes to this register after initial programming.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
NZLSO
HSK
Res.
Res.
Res.
PFIVL
rw
DAD
rw
rw
rw
rw
rw
rw
rw
rw
rw
DSPD
rw
rw
Bits 31:13 Reserved, must be kept at reset value for USB OTG FS
Bits 12:11 PFIVL: Periodic frame interval
Indicates the time within a frame at which the application must be notified using the end of
periodic frame interrupt. This can be used to determine if all the isochronous traffic for that
frame is complete.
00: 80% of the frame interval
01: 85% of the frame interval
10: 90% of the frame interval
11: 95% of the frame interval
Bits 10:4 DAD: Device address
The application must program this field after every SetAddress control command.
Bit 3 Reserved, must be kept at reset value.
Bit 2 NZLSOHSK: Non-zero-length status OUT handshake
The application can use this field to select the handshake the core sends on receiving a
nonzero-length data packet during the OUT transaction of a control transfer’s Status stage.
1:Send a STALL handshake on a nonzero-length status OUT transaction and do not send
the received OUT packet to the application.
0:Send the received OUT packet to the application (zero-length or nonzero-length) and send
a handshake based on the NAK and STALL bits for the endpoint in the Device endpoint
control register.
DocID024597 Rev 3
1563/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bits 1:0 DSPD: Device speed
Indicates the speed at which the application requires the core to enumerate, or the
maximum speed the application can support. However, the actual bus speed is determined
only after the chirp sequence is completed, and is based on the speed of the USB host to
which the core is connected.
00: Reserved
01: Reserved
10: Reserved
11: Full speed (USB 1.1 transceiver clock is 48 MHz)
43.15.33 OTG device control register (OTG_DCTL)
Address offset: 0x804
Reset value: 0x0000 0002
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
DS
BESL
RJCT
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
PO
PRG
DNE
CGO
NAK
SGO
NAK
CGI
NAK
SGI
NAK
GON
STS
GIN
STS
SDIS
RWU
SIG
rw
w
w
w
w
r
r
rw
rw
rw
Res.
Res.
Res.
TCTL
rw
rw
rw
Bits 31:19 Reserved, must be kept at reset value.
Bit 18 DSBESLRJCT: Deep sleep BESL reject
Core rejects LPM request with BESL value greater than BESL threshold programmed.
NYET response is sent for LPM tokens with BESL value greater than BESL threshold. By
default, the deep sleep BESL reject feature is disabled.
Bits 17:12 Reserved, must be kept at reset value.
Bit 11 POPRGDNE: Power-on programming done
The application uses this bit to indicate that register programming is completed after a
wakeup from power down mode.
Bit 10 CGONAK: Clear global OUT NAK
A write to this field clears the Global OUT NAK.
Bit 9 SGONAK: Set global OUT NAK
A write to this field sets the Global OUT NAK.
The application uses this bit to send a NAK handshake on all OUT endpoints.
The application must set the this bit only after making sure that the Global OUT NAK
effective bit in the Core interrupt register (GONAKEFF bit in OTG_GINTSTS) is cleared.
Bit 8 CGINAK: Clear global IN NAK
A write to this field clears the Global IN NAK.
Bit 7 SGINAK: Set global IN NAK
A write to this field sets the Global non-periodic IN NAK.The application uses this bit to send
a NAK handshake on all non-periodic IN endpoints.
The application must set this bit only after making sure that the Global IN NAK effective bit
in the Core interrupt register (GINAKEFF bit in OTG_GINTSTS) is cleared.
1564/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Bits 6:4 TCTL: Test control
000: Test mode disabled
001: Test_J mode
010: Test_K mode
011: Test_SE0_NAK mode
100: Test_Packet mode
101: Test_Force_Enable
Others: Reserved
Bit 3 GONSTS: Global OUT NAK status
0:A handshake is sent based on the FIFO Status and the NAK and STALL bit settings.
1:No data is written to the Rx FIFO, irrespective of space availability. Sends a NAK
handshake on all packets, except on SETUP transactions. All isochronous OUT packets are
dropped.
Bit 2 GINSTS: Global IN NAK status
0:A handshake is sent out based on the data availability in the transmit FIFO.
1:A NAK handshake is sent out on all non-periodic IN endpoints, irrespective of the data
availability in the transmit FIFO.
Bit 1 SDIS: Soft disconnect
The application uses this bit to signal the USB OTG core to perform a soft disconnect. As
long as this bit is set, the host does not see that the device is connected, and the device
does not receive signals on the USB. The core stays in the disconnected state until the
application clears this bit.
0:Normal operation. When this bit is cleared after a soft disconnect, the core generates a
device connect event to the USB host. When the device is reconnected, the USB host
restarts device enumeration.
1:The core generates a device disconnect event to the USB host.
Bit 0 RWUSIG: Remote wakeup signaling
When the application sets this bit, the core initiates remote signaling to wake up the USB
host. The application must set this bit to instruct the core to exit the Suspend state. As
specified in the USB 2.0 specification, the application must clear this bit 1 ms to 15 ms after
setting it.
If LPM is enabled and the core is in the L1 (sleep) state, when the application sets this bit,
the core initiates L1 remote signaling to wake up the USB host. The application must set
this bit to instruct the core to exit the sleep state. As specified in the LPM specification, the
hardware automatically clears this bit 50 µs (TL1DevDrvResume) after being set by the
application. The application must not set this bit when bRemoteWake from the previous
LPM transaction is zero (refer to REMWAKE bit in GLPMCFG register).
Table 262 contains the minimum duration (according to device state) for which the Soft
disconnect (SDIS) bit must be set for the USB host to detect a device disconnect. To
accommodate clock jitter, it is recommended that the application add some extra delay to
the specified minimum duration.
Table 262. Minimum duration for soft disconnect
Operating speed
Device state
Minimum duration
Full speed
Suspended
1 ms + 2.5 µs
Full speed
Idle
2.5 µs
Full speed
Not Idle or Suspended (Performing transactions)
2.5 µs
DocID024597 Rev 3
1565/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
43.15.34 OTG device status register (OTG_DSTS)
Address offset: 0x808
Reset value: 0x0000 0010
This register indicates the status of the core with respect to USB-related events. It must be
read on interrupts from the device all interrupts (OTG_DAINT) register.
31
30
29
28
27
26
25
24
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
r
r
r
r
r
21
20
19
18
17
16
r
FNSOF
r
r
r
r
r
r
r
7
6
5
4
3
2
1
Res.
r
22
DEVLNSTS
8
FNSOF
r
23
Res.
r
Res.
Res.
EERR
r
ENUMSPD
r
0
SUSP
STS
r
r
Bits 31:24 Reserved, must be kept at reset value.
Bits 23:22 DEVLNSTS: Device line status
Indicates the current logic level USB data lines.
Bit [23]: Logic level of D+
Bit [22]: Logic level of DBits 21:8 FNSOF: Frame number of the received SOF
Bits 7:4 Reserved, must be kept at reset value.
Bit 3 EERR: Erratic error
The core sets this bit to report any erratic errors.
Due to erratic errors, the OTG_FS controller goes into Suspended state and an interrupt is
generated to the application with Early suspend bit of the OTG_GINTSTS register (ESUSP
bit in OTG_GINTSTS). If the early suspend is asserted due to an erratic error, the application
can only perform a soft disconnect recover.
Bits 2:1 ENUMSPD: Enumerated speed
Indicates the speed at which the OTG_FS controller has come up after speed detection
through a chirp sequence.
01: Reserved
10: Reserved
11: Full speed (PHY clock is running at 48 MHz)
Others: reserved
Bit 0 SUSPSTS: Suspend status
In device mode, this bit is set as long as a Suspend condition is detected on the USB. The
core enters the Suspended state when there is no activity on the USB data lines for a period
of 3 ms. The core comes out of the suspend:
– When there is an activity on the USB data lines
– When the application writes to the Remote wakeup signaling bit in the OTG_DCTL register
(RWUSIG bit in OTG_DCTL).
1566/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
43.15.35 OTG device IN endpoint common interrupt mask register
(OTG_DIEPMSK)
Address offset: 0x810
Reset value: 0x0000 0000
This register works with each of the OTG_DIEPINTx registers for all endpoints to generate
an interrupt per IN endpoint. The IN endpoint interrupt for a specific status in the
OTG_DIEPINTx register can be masked by writing to the corresponding bit in this register.
Status bits are masked by default.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
NAKM
Res.
Res.
Res.
Res.
Res.
Res.
INEPN
EM
TOM
Res.
EPDM
XFRC
M
rw
rw
rw
rw
INEPN ITTXFE
MM
MSK
rw
rw
rw
Bits 31:14 Reserved, must be kept at reset value.
Bits 13 NAKM: NAK interrupt mask
0: Masked interrupt
1: Unmasked interrupt
Bits 12:7 Reserved, must be kept at reset value for USB OTG FS.
Bit 6 INEPNEM: IN endpoint NAK effective mask
0: Masked interrupt
1: Unmasked interrupt
Bit 5 INEPNMM: IN token received with EP mismatch mask
0: Masked interrupt
1: Unmasked interrupt
Bit 4 ITTXFEMSK: IN token received when Tx FIFO empty mask
0: Masked interrupt
1: Unmasked interrupt
Bit 3 TOM: Timeout condition mask (Non-isochronous endpoints)
0: Masked interrupt
1: Unmasked interrupt
Bit 2 Reserved, must be kept at reset value.
Bit 1 EPDM: Endpoint disabled interrupt mask
0: Masked interrupt
1: Unmasked interrupt
Bit 0 XFRCM: Transfer completed interrupt mask
0: Masked interrupt
1: Unmasked interrupt
DocID024597 Rev 3
1567/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
43.15.36 OTG device OUT endpoint common interrupt mask register
(OTG_DOEPMSK)
Address offset: 0x814
Reset value: 0x0000 0000
This register works with each of the OTG_DOEPINTx registers for all endpoints to generate
an interrupt per OUT endpoint. The OUT endpoint interrupt for a specific status in the
OTG_DOEPINTx register can be masked by writing into the corresponding bit in this
register. Status bits are masked by default.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
EPDM
XFRC
M
rw
rw
OTEPD STUPM
M
rw
rw
Bits 31:5 Reserved, must be kept at reset value for USB OTG FS.
Bit 6 Reserved, must be kept at reset value for USB OTG FS.
Bit 4 OTEPDM: OUT token received when endpoint disabled mask. Applies to control OUT
endpoints only.
0: Masked interrupt
1: Unmasked interrupt
Bit 3 STUPM: STUPM: SETUP phase done mask. Applies to control endpoints only.
0: Masked interrupt
1: Unmasked interrupt
Bit 2 Reserved, must be kept at reset value.
Bit 1 EPDM: Endpoint disabled interrupt mask
0: Masked interrupt
1: Unmasked interrupt
Bit 0 XFRCM: Transfer completed interrupt mask
0: Masked interrupt
1: Unmasked interrupt
43.15.37 OTG device all endpoints interrupt register (OTG_DAINT)
Address offset: 0x818
Reset value: 0x0000 0000
When a significant event occurs on an endpoint, a OTG_DAINT register interrupts the
application using the Device OUT endpoints interrupt bit or Device IN endpoints interrupt bit
of the OTG_GINTSTS register (OEPINT or IEPINT in OTG_GINTSTS, respectively). There
is one interrupt bit per endpoint, up to a maximum of 16 bits for OUT endpoints and 16 bits
for IN endpoints. For a bidirectional endpoint, the corresponding IN and OUT interrupt bits
1568/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
are used. Bits in this register are set and cleared when the application sets and clears bits in
the corresponding Device Endpoint-x interrupt register (OTG_DIEPINTx/OTG_DOEPINTx).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
OEPINT
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
r
IEPINT
r
r
r
r
r
r
r
r
Bits 31:16 OEPINT: OUT endpoint interrupt bits
One bit per OUT endpoint:
Bit 16 for OUT endpoint 0, bit 18 for OUT endpoint 3.
Bits 15:0 IEPINT: IN endpoint interrupt bits
One bit per IN endpoint:
Bit 0 for IN endpoint 0, bit 3 for endpoint 3.
43.15.38 OTG all endpoints interrupt mask register
(OTG_DAINTMSK)
Address offset: 0x81C
Reset value: 0x0000 0000
The OTG_DAINTMSK register works with the Device endpoint interrupt register to interrupt
the application when an event occurs on a device endpoint. However, the OTG_DAINT
register bit corresponding to that interrupt is still set.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
OEPM
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
rw
IEPM
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 OEPM: OUT EP interrupt mask bits
One per OUT endpoint:
Bit 16 for OUT EP 0, bit 18 for OUT EP 3
0: Masked interrupt
1: Unmasked interrupt
Bits 15:0 IEPM: IN EP interrupt mask bits
One bit per IN endpoint:
Bit 0 for IN EP 0, bit 3 for IN EP 3
0: Masked interrupt
1: Unmasked interrupt
DocID024597 Rev 3
1569/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
43.15.39 OTG device VBUS discharge time register
(OTG_DVBUSDIS)
Address offset: 0x0828
Reset value: 0x0000 17D7
This register specifies the VBUS discharge time after VBUS pulsing during SRP.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
VBUSDT
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 VBUSDT: Device VBUS discharge time
Specifies the VBUS discharge time after VBUS pulsing during SRP. This value equals:
VBUS discharge time in PHY clocks / 1 024
Depending on your VBUS load, this value may need adjusting.
43.15.40 OTG device VBUS pulsing time register
(OTG_DVBUSPULSE)
Address offset: 0x082C
Reset value: 0x0000 05B8
This register specifies the VBUS pulsing time during SRP.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
DVBUSP
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:12 Reserved, must be kept at reset value.
Bits 11:0 DVBUSP: Device VBUS pulsing time
Specifies the VBUS pulsing time during SRP. This value equals:
VBUS pulsing time in PHY clocks / 1 024
1570/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
43.15.41 OTG device IN endpoint FIFO empty interrupt mask register
(OTG_DIEPEMPMSK)
Address offset: 0x834
Reset value: 0x0000 0000
This register is used to control the IN endpoint FIFO empty interrupt generation
(TXFE_OTG_DIEPINTx).
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
INEPTXFEM
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bits 31:16 Reserved, must be kept at reset value.
Bits 15:0 INEPTXFEM: IN EP Tx FIFO empty interrupt mask bits
These bits act as mask bits for OTG_DIEPINTx.
TXFE interrupt one bit per IN endpoint:
Bit 0 for IN endpoint 0, bit 3 for IN endpoint 3
0: Masked interrupt
1: Unmasked interrupt
43.15.42 OTG device control IN endpoint 0 control register
(OTG_DIEPCTL0)
Address offset: 0x900
Reset value: 0x0000 0000
This section describes the OTG_DIEPCTL0 register for USB_OTG FS. Nonzero control
endpoints use registers for endpoints 1–3.
31
30
EPENA EPDIS
29
28
27
26
25
24
23
22
Res.
Res.
SNAK
CNAK
w
w
rw
rw
rw
rw
rs
TXFNUM
21
20
STALL
Res.
rs
rs
15
14
13
12
11
10
9
8
7
6
5
USBA
EP
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
r
19
18
EPTYP
17
16
NAK
STS
Res.
r
r
r
4
3
2
1
Res.
Res.
Res.
MPSIZ
rw
DocID024597 Rev 3
0
rw
1571/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bit 31 EPENA: Endpoint enable
The application sets this bit to start transmitting data on the endpoint 0.
The core clears this bit before setting any of the following interrupts on this endpoint:
– Endpoint disabled
– Transfer completed
Bit 30 EPDIS: Endpoint disable
The application sets this bit to stop transmitting data on an endpoint, even before the
transfer for that endpoint is complete. The application must wait for the Endpoint disabled
interrupt before treating the endpoint as disabled. The core clears this bit before setting the
Endpoint disabled interrupt. The application must set this bit only if Endpoint enable is
already set for this endpoint.
Bits 29:28 Reserved, must be kept at reset value.
Bit 27 SNAK: Set NAK
A write to this bit sets the NAK bit for the endpoint.
Using this bit, the application can control the transmission of NAK handshakes on an
endpoint. The core can also set this bit for an endpoint after a SETUP packet is received on
that endpoint.
Bit 26 CNAK: Clear NAK
A write to this bit clears the NAK bit for the endpoint.
Bits 25:22 TXFNUM: Tx FIFO number
This value is set to the FIFO number that is assigned to IN endpoint 0.
Bit 21 STALL: STALL handshake
The application can only set this bit, and the core clears it when a SETUP token is received
for this endpoint. If a NAK bit, a Global IN NAK or Global OUT NAK is set along with this bit,
the STALL bit takes priority.
Bit 20 Reserved, must be kept at reset value.
Bits 19:18 EPTYP: Endpoint type
Hardcoded to ‘00’ for control.
Bit 17 NAKSTS: NAK status
Indicates the following:
0: The core is transmitting non-NAK handshakes based on the FIFO status
1: The core is transmitting NAK handshakes on this endpoint.
When this bit is set, either by the application or core, the core stops transmitting data, even
if there are data available in the Tx FIFO. Irrespective of this bit’s setting, the core always
responds to SETUP data packets with an ACK handshake.
Bit 16 Reserved, must be kept at reset value.
1572/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Bit 15 USBAEP: USB active endpoint
This bit is always set to 1, indicating that control endpoint 0 is always active in all
configurations and interfaces.
Bits 14:2 Reserved, must be kept at reset value.
Bits 1:0 MPSIZ: Maximum packet size
The application must program this field with the maximum packet size for the current logical
endpoint.
00: 64 bytes
01: 32 bytes
10: 16 bytes
11: 8 bytes
43.15.43 OTG device endpoint-x control register (OTG_DIEPCTLx)
(x = 1..5 , where x = Endpoint_number)
Address offset: 0x900 + (Endpoint_number × 0x20)
Reset value: 0x0000 0000
The application uses this register to control the behavior of each logical endpoint other than
endpoint 0.
31
30
EPENA EPDIS
29
28
27
26
SODD
FRM
SD0
PID/
SEVN
FRM
SNAK
CNAK
25
24
23
22
TXFNUM
21
20
STALL
Res.
rs
rs
w
w
w
w
rw
rw
rw
rw
rw/rs
15
14
13
12
11
10
9
8
7
6
5
USBA
EP
Res.
Res.
Res.
Res.
rw
19
18
EPTYP
17
16
NAK
STS
EO
NUM/
DPID
rw
rw
r
r
4
3
2
1
0
rw
rw
rw
rw
rw
MPSIZ
rw
rw
rw
rw
rw
rw
Bit 31 EPENA: Endpoint enable
The application sets this bit to start transmitting data on an endpoint.
The core clears this bit before setting any of the following interrupts on this endpoint:
– SETUP phase done
– Endpoint disabled
– Transfer completed
Bit 30 EPDIS: Endpoint disable
The application sets this bit to stop transmitting/receiving data on an endpoint, even before
the transfer for that endpoint is complete. The application must wait for the Endpoint
disabled interrupt before treating the endpoint as disabled. The core clears this bit before
setting the Endpoint disabled interrupt. The application must set this bit only if Endpoint
enable is already set for this endpoint.
Bit 29 SODDFRM: Set odd frame
Applies to isochronous IN and OUT endpoints only.
Writing to this field sets the Even/Odd frame (EONUM) field to odd frame.
DocID024597 Rev 3
1573/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bit 28 SD0PID: Set DATA0 PID
Applies to interrupt/bulk IN endpoints only.
Writing to this field sets the endpoint data PID (DPID) field in this register to DATA0.
SEVNFRM: Set even frame
Applies to isochronous IN endpoints only.
Writing to this field sets the Even/Odd frame (EONUM) field to even frame.
Bit 27 SNAK: Set NAK
A write to this bit sets the NAK bit for the endpoint.
Using this bit, the application can control the transmission of NAK handshakes on an
endpoint. The core can also set this bit for OUT endpoints on a Transfer completed interrupt,
or after a SETUP is received on the endpoint.
Bit 26 CNAK: Clear NAK
A write to this bit clears the NAK bit for the endpoint.
Bits 25:22 TXFNUM: Tx FIFO number
These bits specify the FIFO number associated with this endpoint. Each active IN endpoint
must be programmed to a separate FIFO number.
This field is valid only for IN endpoints.
Bit 21 STALL: STALL handshake
Applies to non-control, non-isochronous IN endpoints only (access type is rw).
The application sets this bit to stall all tokens from the USB host to this endpoint. If a NAK
bit, Global IN NAK, or Global OUT NAK is set along with this bit, the STALL bit takes priority.
Only the application can clear this bit, never the core.
Applies to control endpoints only (access type is rs).
The application can only set this bit, and the core clears it, when a SETUP token is received
for this endpoint. If a NAK bit, Global IN NAK, or Global OUT NAK is set along with this bit,
the STALL bit takes priority. Irrespective of this bit’s setting, the core always responds to
SETUP data packets with an ACK handshake.
Bit 20 Reserved, must be kept at reset value.
Bits 19:18 EPTYP: Endpoint type
This is the transfer type supported by this logical endpoint.
00: Control
01: Isochronous
10: Bulk
11: Interrupt
Bit 17 NAKSTS: NAK status
It indicates the following:
0: The core is transmitting non-NAK handshakes based on the FIFO status.
1: The core is transmitting NAK handshakes on this endpoint.
When either the application or the core sets this bit:
For non-isochronous IN endpoints: The core stops transmitting any data on an IN endpoint,
even if there are data available in the Tx FIFO.
For isochronous IN endpoints: The core sends out a zero-length data packet, even if there
are data available in the Tx FIFO.
Irrespective of this bit’s setting, the core always responds to SETUP data packets with an
ACK handshake.
1574/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Bit 16 EONUM: Even/odd frame
Applies to isochronous IN endpoints only.
Indicates the frame number in which the core transmits/receives isochronous data for this
endpoint. The application must program the even/odd frame number in which it intends to
transmit/receive isochronous data for this endpoint using the SEVNFRM and SODDFRM
fields in this register.
0: Even frame
1: Odd frame
DPID: Endpoint data PID
Applies to interrupt/bulk IN endpoints only.
Contains the PID of the packet to be received or transmitted on this endpoint. The
application must program the PID of the first packet to be received or transmitted on this
endpoint, after the endpoint is activated. The application uses the SD0PID register field to
program either DATA0 or DATA1 PID.
0: DATA0
1: DATA1
Bit 15 USBAEP: USB active endpoint
Indicates whether this endpoint is active in the current configuration and interface. The core
clears this bit for all endpoints (other than EP 0) after detecting a USB reset. After receiving
the SetConfiguration and SetInterface commands, the application must program endpoint
registers accordingly and set this bit.
Bits 14:11 Reserved, must be kept at reset value.
Bits 10:0 MPSIZ: Maximum packet size
The application must program this field with the maximum packet size for the current logical
endpoint. This value is in bytes.
43.15.44 OTG device control OUT endpoint 0 control register
(OTG_DOEPCTL0)
Address offset: 0xB00
Reset value: 0x0000 8000
This section describes the OTG_DOEPCTL0 register. Nonzero control endpoints use
registers for endpoints 1–3.
31
30
EPENA EPDIS
29
28
27
Res.
Res.
SNAK
26
CNAK
25
24
23
22
Res.
Res.
Res.
Res.
21
20
STALL
SNPM
19
18
EPTYP
17
16
NAK
STS
Res.
w
r
w
w
rs
rw
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
USBA
EP
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
r
MPSIZ
r
DocID024597 Rev 3
0
r
1575/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bit 31 EPENA: Endpoint enable
The application sets this bit to start transmitting data on endpoint 0.
The core clears this bit before setting any of the following interrupts on this endpoint:
– SETUP phase done
– Endpoint disabled
– Transfer completed
Bit 30 EPDIS: Endpoint disable
The application cannot disable control OUT endpoint 0.
Bits 29:28 Reserved, must be kept at reset value.
Bit 27 SNAK: Set NAK
A write to this bit sets the NAK bit for the endpoint.
Using this bit, the application can control the transmission of NAK handshakes on an
endpoint. The core can also set this bit on a Transfer completed interrupt, or after a SETUP
is received on the endpoint.
Bit 26 CNAK: Clear NAK
A write to this bit clears the NAK bit for the endpoint.
Bits 25:22 Reserved, must be kept at reset value.
Bit 21 STALL: STALL handshake
The application can only set this bit, and the core clears it, when a SETUP token is received
for this endpoint. If a NAK bit or Global OUT NAK is set along with this bit, the STALL bit
takes priority. Irrespective of this bit’s setting, the core always responds to SETUP data
packets with an ACK handshake.
Bit 20 SNPM: Snoop mode
This bit configures the endpoint to Snoop mode. In Snoop mode, the core does not check
the correctness of OUT packets before transferring them to application memory.
Bits 19:18 EPTYP: Endpoint type
Hardcoded to 2’b00 for control.
Bit 17 NAKSTS: NAK status
Indicates the following:
0: The core is transmitting non-NAK handshakes based on the FIFO status.
1: The core is transmitting NAK handshakes on this endpoint.
When either the application or the core sets this bit, the core stops receiving data, even if
there is space in the Rx FIFO to accommodate the incoming packet. Irrespective of this bit’s
setting, the core always responds to SETUP data packets with an ACK handshake.
Bit 16 Reserved, must be kept at reset value.
Bit 15 USBAEP: USB active endpoint
This bit is always set to 1, indicating that a control endpoint 0 is always active in all
configurations and interfaces.
Bits 14:2 Reserved, must be kept at reset value.
Bits 1:0 MPSIZ: Maximum packet size
The maximum packet size for control OUT endpoint 0 is the same as what is programmed in
control IN endpoint 0.
00: 64 bytes
01: 32 bytes
10: 16 bytes
11: 8 bytes
1576/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
43.15.45 OTG device endpoint-x control register (OTG_DOEPCTLx)
(x = 1..5 , where x = Endpoint_number)
Address offset for OUT endpoints: 0xB00 + (Endpoint_number × 0x20)
Reset value: 0x0000 0000
The application uses this register to control the behavior of each logical endpoint other than
endpoint 0.
31
30
EPENA EPDIS
29
28
27
26
25
24
23
22
21
20
SD1
PID/
SODD
FRM
SD0
PID/
SEVN
FRM
SNAK
CNAK
Res.
Res.
Res.
Res.
STALL
SNPM
rw/rs
rw
rw
5
4
rw
rs
rs
w
w
w
w
15
14
13
12
11
10
USBA
EP
Res.
Res.
Res.
Res.
rw
9
8
7
6
19
18
17
16
NAK
STS
EO
NUM/
DPID
rw
r
r
3
2
1
0
rw
rw
rw
rw
EPTYP
MPSIZ
rw
rw
rw
rw
rw
rw
Bit 31 EPENA: Endpoint enable
Applies to IN and OUT endpoints.
The application sets this bit to start transmitting data on an endpoint.
The core clears this bit before setting any of the following interrupts on this endpoint:
– SETUP phase done
– Endpoint disabled
– Transfer completed
Bit 30 EPDIS: Endpoint disable
The application sets this bit to stop transmitting/receiving data on an endpoint, even before
the transfer for that endpoint is complete. The application must wait for the Endpoint
disabled interrupt before treating the endpoint as disabled. The core clears this bit before
setting the Endpoint disabled interrupt. The application must set this bit only if Endpoint
enable is already set for this endpoint.
Bit 29 SD1PID: Set DATA1 PID
Applies to interrupt/bulk IN and OUT endpoints only. Writing to this field sets the endpoint
data PID (DPID) field in this register to DATA1.
SODDFRM: Set odd frame
Applies to isochronous IN and OUT endpoints only. Writing to this field sets the Even/Odd
frame (EONUM) field to odd frame.
Bit 28 SD0PID: Set DATA0 PID
Applies to interrupt/bulk OUT endpoints only.
Writing to this field sets the endpoint data PID (DPID) field in this register to DATA0.
SEVNFRM: Set even frame
Applies to isochronous OUT endpoints only.
Writing to this field sets the Even/Odd frame (EONUM) field to even frame.
Bit 27 SNAK: Set NAK
A write to this bit sets the NAK bit for the endpoint.
Using this bit, the application can control the transmission of NAK handshakes on an
endpoint. The core can also set this bit for OUT endpoints on a Transfer Completed
interrupt, or after a SETUP is received on the endpoint.
DocID024597 Rev 3
1577/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bit 26 CNAK: Clear NAK
A write to this bit clears the NAK bit for the endpoint.
Bits 25:22 Reserved, must be kept at reset value.
Bit 21 STALL: STALL handshake
Applies to non-control, non-isochronous OUT endpoints only (access type is rw).
The application sets this bit to stall all tokens from the USB host to this endpoint. If a NAK
bit, Global IN NAK, or Global OUT NAK is set along with this bit, the STALL bit takes
priority. Only the application can clear this bit, never the core.
Applies to control endpoints only (access type is rs).
The application can only set this bit, and the core clears it, when a SETUP token is received
for this endpoint. If a NAK bit, Global IN NAK, or Global OUT NAK is set along with this bit,
the STALL bit takes priority. Irrespective of this bit’s setting, the core always responds to
SETUP data packets with an ACK handshake.
Bit 20 SNPM: Snoop mode
This bit configures the endpoint to Snoop mode. In Snoop mode, the core does not check
the correctness of OUT packets before transferring them to application memory.
Bits 19:18 EPTYP: Endpoint type
This is the transfer type supported by this logical endpoint.
00: Control
01: Isochronous
10: Bulk
11: Interrupt
Bit 17 NAKSTS: NAK status
Indicates the following:
0: The core is transmitting non-NAK handshakes based on the FIFO status.
1: The core is transmitting NAK handshakes on this endpoint.
When either the application or the core sets this bit:
The core stops receiving any data on an OUT endpoint, even if there is space in the Rx
FIFO to accommodate the incoming packet.
Irrespective of this bit’s setting, the core always responds to SETUP data packets with an
ACK handshake.
Bit 16 EONUM: Even/odd frame
Applies to isochronous IN and OUT endpoints only.
Indicates the frame number in which the core transmits/receives isochronous data for this
endpoint. The application must program the even/odd frame number in which it intends to
transmit/receive isochronous data for this endpoint using the SEVNFRM and SODDFRM
fields in this register.
0: Even frame
1: Odd frame
DPID: Endpoint data PID
Applies to interrupt/bulk OUT endpoints only.
Contains the PID of the packet to be received or transmitted on this endpoint. The
application must program the PID of the first packet to be received or transmitted on this
endpoint, after the endpoint is activated. The application uses the SD0PID register field to
program either DATA0 or DATA1 PID.
0: DATA0
1: DATA1
1578/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Bit 15 USBAEP: USB active endpoint
Indicates whether this endpoint is active in the current configuration and interface. The core
clears this bit for all endpoints (other than EP 0) after detecting a USB reset. After receiving
the SetConfiguration and SetInterface commands, the application must program endpoint
registers accordingly and set this bit.
Bits 14:11 Reserved, must be kept at reset value.
Bits 10:0 MPSIZ: Maximum packet size
The application must program this field with the maximum packet size for the current logical
endpoint. This value is in bytes.
43.15.46 OTG device endpoint-x interrupt register (OTG_DIEPINTx)
(x = 0..5 , where x = Endpoint_number)
Address offset: 0x908 + (Endpoint_number × 0x20)
Reset value: 0x0000 0080
This register indicates the status of an endpoint with respect to USB- and AHB-related
events. It is shown in Figure 501. The application must read this register when the IN
endpoints interrupt bit of the Core interrupt register (IEPINT in OTG_GINTSTS) is set.
Before the application can read this register, it must first read the device all endpoints
interrupt (OTG_DAINT) register to get the exact endpoint number for the Device endpoint-x
interrupt register. The application must clear the appropriate bit in this register to clear the
corresponding bits in the OTG_DAINT and OTG_GINTSTS registers.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
TXFE
INEP
NE
Res.
EP
DISD
XFRC
r
rc_w1/
rw
rc_w1
rc_w1
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
ITTXFE
TOC
rc_w1
rc_w1
Bits 31:8 Reserved, must be kept at reset value.
Bit 7 TXFE: Transmit FIFO empty
This interrupt is asserted when the Tx FIFO for this endpoint is either half or completely
empty. The half or completely empty status is determined by the Tx FIFO Empty Level bit in
the OTG_GAHBCFG register (TXFELVL bit in OTG_GAHBCFG).
Bit 6 INEPNE: IN endpoint NAK effective
This bit can be cleared when the application clears the IN endpoint NAK by writing to the
CNAK bit in OTG_DIEPCTLx.
This interrupt indicates that the core has sampled the NAK bit set (either by the application
or by the core). The interrupt indicates that the IN endpoint NAK bit set by the application
has taken effect in the core.
This interrupt does not guarantee that a NAK handshake is sent on the USB. A STALL bit
takes priority over a NAK bit.
Bit 5 Reserved, must be kept at reset value.
DocID024597 Rev 3
1579/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bit 4 ITTXFE: IN token received when Tx FIFO is empty
Applies to non-periodic IN endpoints only.
Indicates that an IN token was received when the associated Tx FIFO (periodic/nonperiodic) was empty. This interrupt is asserted on the endpoint for which the IN token was
received.
Bit 3 TOC: Timeout condition
Applies only to Control IN endpoints.
Indicates that the core has detected a timeout condition on the USB for the last IN token on
this endpoint.
Bit 2 Reserved, must be kept at reset value.
Bit 1 EPDISD: Endpoint disabled interrupt
This bit indicates that the endpoint is disabled per the application’s request.
Bit 0 XFRC: Transfer completed interrupt
This field indicates that the programmed transfer is complete on the AHB as well as on the
USB, for this endpoint.
43.15.47 OTG device endpoint-x interrupt register (OTG_DOEPINTx)
(x = 0..5 , where x = Endpoint_number)
Address offset: 0xB08 + (Endpoint_number × 0x20)
Reset value: 0x0000 0080
This register indicates the status of an endpoint with respect to USB- and AHB-related
events. It is shown in Figure 501. The application must read this register when the OUT
Endpoints Interrupt bit of the OTG_GINTSTS register (OEPINT bit in OTG_GINTSTS) is
set. Before the application can read this register, it must first read the OTG_DAINT register
to get the exact endpoint number for the OTG_DOEPINTx register. The application must
clear the appropriate bit in this register to clear the corresponding bits in the OTG_DAINT
and OTG_GINTSTS registers.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
B2B
STUP
Res.
OTEP
DIS
STUP
Res.
EP
DISD
XFRC
rc_w1
rc_w1
rc_w1
rc_w1
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rc_w1/
rw
Bits 31:7 Reserved, must be kept at reset value.
Bit 6 B2BSTUP: Back-to-back SETUP packets received
Applies to control OUT endpoint only.
This bit indicates that the core has received more than three back-to-back SETUP packets
for this particular endpoint.
Bit 5 Reserved, must be kept at reset value.
1580/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Bit 4 OTEPDIS: OUT token received when endpoint disabled
Applies only to control OUT endpoints.
Indicates that an OUT token was received when the endpoint was not yet enabled. This
interrupt is asserted on the endpoint for which the OUT token was received.
Bit 3 STUP: SETUP phase done
Applies to control OUT endpoint only.
Indicates that the SETUP phase for the control endpoint is complete and no more back-toback SETUP packets were received for the current control transfer. On this interrupt, the
application can decode the received SETUP data packet.
Bit 2 Reserved, must be kept at reset value.
Bit 1 EPDISD: Endpoint disabled interrupt
This bit indicates that the endpoint is disabled per the application’s request.
Bit 0 XFRC: Transfer completed interrupt
This field indicates that the programmed transfer is complete on the AHB as well as on the
USB, for this endpoint.
43.15.48 OTG device IN endpoint 0 transfer size register
(OTG_DIEPTSIZ0)
Address offset: 0x910
Reset value: 0x0000 0000
The application must modify this register before enabling endpoint 0. Once endpoint 0 is
enabled using the endpoint enable bit in the device control endpoint 0 control registers
(EPENA in OTG_DIEPCTL0), the core modifies this register. The application can only read
this register once the core has cleared the Endpoint enable bit.
Nonzero endpoints use the registers for endpoints 1–3.
31
30
29
28
27
26
25
24
23
22
21
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
6
5
20
19
PKTCNT
rw
rw
4
3
18
17
16
Res.
Res.
Res.
2
1
0
rw
rw
rw
XFRSIZ
rw
rw
rw
rw
Bits 31:21 Reserved, must be kept at reset value.
DocID024597 Rev 3
1581/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bits 20:19 PKTCNT: Packet count
Indicates the total number of USB packets that constitute the Transfer Size amount of data
for endpoint 0.
This field is decremented every time a packet (maximum size or short packet) is read from
the Tx FIFO.
Bits 18:7 Reserved, must be kept at reset value.
Bits 6:0 XFRSIZ: Transfer size
Indicates the transfer size in bytes for endpoint 0. The core interrupts the application only
after it has exhausted the transfer size amount of data. The transfer size can be set to the
maximum packet size of the endpoint, to be interrupted at the end of each packet.
The core decrements this field every time a packet from the external memory is written to
the Tx FIFO.
43.15.49 OTG device OUT endpoint 0 transfer size register
(OTG_DOEPTSIZ0)
Address offset: 0xB10
Reset value: 0x0000 0000
The application must modify this register before enabling endpoint 0. Once endpoint 0 is
enabled using the Endpoint enable bit in the OTG_DOEPCTL0 registers (EPENA bit in
OTG_DOEPCTL0), the core modifies this register. The application can only read this
register once the core has cleared the Endpoint enable bit.
31
Res.
30
29
STUPCNT
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
PKTCNT
Nonzero endpoints use the registers for endpoints 1–5 .
Res.
Res.
Res.
2
1
0
rw
rw
rw
rw
rw
rw
15
14
13
12
11
10
9
8
7
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
6
5
4
3
XFRSIZ
rw
rw
rw
rw
Bit 31 Reserved, must be kept at reset value.
Bits 30:29 STUPCNT: SETUP packet count
This field specifies the number of back-to-back SETUP data packets the endpoint can
receive.
01: 1 packet
10: 2 packets
11: 3 packets
Bits 28:20 Reserved, must be kept at reset value.
1582/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Bit 19 PKTCNT: Packet count
This field is decremented to zero after a packet is written into the Rx FIFO.
Bits 18:7 Reserved, must be kept at reset value.
Bits 6:0 XFRSIZ: Transfer size
Indicates the transfer size in bytes for endpoint 0. The core interrupts the application only
after it has exhausted the transfer size amount of data. The transfer size can be set to the
maximum packet size of the endpoint, to be interrupted at the end of each packet.
The core decrements this field every time a packet is read from the Rx FIFO and written to
the external memory.
43.15.50 OTG device IN endpoint-x transfer size register (OTG_DIEPTSIZx)
(x = 1..5 , where x= Endpoint_number)
Address offset: 0x910 + (Endpoint_number × 0x20)
Reset value: 0x0000 0000
The application must modify this register before enabling the endpoint. Once the endpoint is
enabled using the Endpoint enable bit in the OTG_DIEPCTLx registers (EPENA bit in
OTG_DIEPCTLx), the core modifies this register. The application can only read this register
once the core has cleared the Endpoint enable bit.
31
30
Res.
15
29
28
27
26
25
MCNT
24
23
22
21
20
19
18
PKTCNT
17
16
XFRSIZ
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
XFRSIZ
rw
rw
rw
rw
rw
rw
rw
rw
rw
Bit 31 Reserved, must be kept at reset value.
Bits 30:29 MCNT: Multi count
For periodic IN endpoints, this field indicates the number of packets that must be transmitted
per frame on the USB. The core uses this field to calculate the data PID for isochronous IN
endpoints.
01: 1 packet
10: 2 packets
11: 3 packets
Bit 28:19 PKTCNT: Packet count
Indicates the total number of USB packets that constitute the Transfer Size amount of data
for this endpoint.
This field is decremented every time a packet (maximum size or short packet) is read from
the Tx FIFO.
Bits 18:0 XFRSIZ: Transfer size
This field contains the transfer size in bytes for the current endpoint. The core only interrupts
the application after it has exhausted the transfer size amount of data. The transfer size can
be set to the maximum packet size of the endpoint, to be interrupted at the end of each
packet.
The core decrements this field every time a packet from the external memory is written to the
Tx FIFO.
DocID024597 Rev 3
1583/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
43.15.51 OTG device IN endpoint transmit FIFO status register
(OTG_DTXFSTSx) (x = 0..5 , where
x = Endpoint_number)
Address offset for IN endpoints: 0x918 + (Endpoint_number × 0x20) This read-only register
contains the free space information for the Device IN endpoint Tx FIFO.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
INEPTFSAV
r
r
r
r
r
r
r
r
r
31:16 Reserved, must be kept at reset value.
15:0 INEPTFSAV: IN endpoint Tx FIFO space available
Indicates the amount of free space available in the Endpoint Tx FIFO.
Values are in terms of 32-bit words:
0x0: Endpoint Tx FIFO is full
0x1: 1 word available
0x2: 2 words available
0xn: n words available
Others: Reserved
43.15.52 OTG device OUT endpoint-x transfer size register
(OTG_DOEPTSIZx) (x = 1..5 , where
x = Endpoint_number)
Address offset: 0xB10 + (Endpoint_number × 0x20)
Reset value: 0x0000 0000
The application must modify this register before enabling the endpoint. Once the endpoint is
enabled using Endpoint Enable bit of the OTG_DOEPCTLx registers (EPENA bit in
OTG_DOEPCTLx), the core modifies this register. The application can only read this
register once the core has cleared the Endpoint enable bit.
31
Res.
15
30
29
28
27
26
25
RXDPID/
STUPCNT
24
23
22
21
20
19
18
PKTCNT
17
16
XFRSIZ
r/rw
r/rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
rw
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
rw
rw
rw
rw
rw
rw
rw
XFRSIZ
rw
rw
1584/1693
rw
rw
rw
rw
rw
rw
rw
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Bit 31 Reserved, must be kept at reset value.
Bits 30:29 RXDPID: Received data PID
Applies to isochronous OUT endpoints only.
This is the data PID received in the last packet for this endpoint.
00: DATA0
10: DATA1
STUPCNT: SETUP packet count
Applies to control OUT Endpoints only.
This field specifies the number of back-to-back SETUP data packets the endpoint can
receive.
01: 1 packet
10: 2 packets
11: 3 packets
Bit 28:19 PKTCNT: Packet count
Indicates the total number of USB packets that constitute the Transfer Size amount of data
for this endpoint.
This field is decremented every time a packet (maximum size or short packet) is written to
the Rx FIFO.
Bits 18:0 XFRSIZ: Transfer size
This field contains the transfer size in bytes for the current endpoint. The core only interrupts
the application after it has exhausted the transfer size amount of data. The transfer size can
be set to the maximum packet size of the endpoint, to be interrupted at the end of each
packet.
The core decrements this field every time a packet is read from the Rx FIFO and written to
the external memory.
43.15.53 OTG power and clock gating control register (OTG_PCGCCTL)
Address offset: 0xE00
Reset value: 0x0000 0000
This register is available in host and device modes.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SUSP
PHY
SLEEP
ENL1
GTG
PHY
SUSP
Res.
Res.
GATE
HCLK
STPP
CLK
r
r
r/w
r
rw
rw
Bit 31:8 Reserved, must be kept at reset value.
Bit 7 SUSP: Deep Sleep
This bit indicates that the PHY is in Deep Sleep when in L1 state.
Bit 6 PHYSLEEP: PHY in Sleep
This bit indicates that the PHY is in the Sleep state.
DocID024597 Rev 3
1585/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Bit 5 ENL1GTG: Enable Sleep clock gating
When this bit is set, core internal clock gating is enabled in Sleep state if the core cannot
assert utmi_l1_suspend_n. When this bit is not set, the PHY clock is not gated in Sleep
state.
Bit 4 PHYSUSP: PHY Suspended
Indicates that the PHY has been Suspended. This bit is updated once the PHY is
Suspended after the application has set the STPPCLK bit.
Bits 3:2 Reserved, must be kept at reset value.
Bit 1 GATEHCLK: Gate HCLK
The application sets this bit to gate HCLK to modules other than the AHB Slave and Master
and wakeup logic when the USB is suspended or the session is not valid. The application
clears this bit when the USB is resumed or a new session starts.
Bit 0 STPPCLK: Stop PHY clock
The application sets this bit to stop the PHY clock when the USB is suspended, the session
is not valid, or the device is disconnected. The application clears this bit when the USB is
resumed or a new session starts.
43.15.54 OTG_FS register map
The table below gives the USB OTG register map and reset values.
SRQ
SRQSCS
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SEDET
0
0
0
0
1586/1693
0
Res.
Res.
Res.
Res.
Res.
0
Res.
0
0
0
CSRST
0
0
Res.
0
Res.
Res.
1
TOCAL
FCRST
0
Res.
Res.
PHYSEL
0
TXFNUM
0
DocID024597 Rev 3
0
0
RXFFLSH
Res.
1
0
TXFFLSH
0
SRPCAP
1
HNPCAP
0
Res.
TRDT
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FHMOD
1
0
Res.
Reset value
0x010
0
Res.
Res.
OTG_
GRSTCTL
AHBIDL
Reset value
FDMOD
OTG_
GUSBCFG
0x00C
Res.
Reset value
Res.
VBVALOEN
0
GINTMSK
AVALOEN
VBVALOVAL
0
Res.
BVALOEN
AVALOVAL
0
Res.
BVALOVAL
0
TXFELVL
HNPRQ
HNGSCS
0
SRSSCHG
0
HNSSCHG
0
Res.
0
PTXFELVL
DHNPEN
HSHNPEN
0
Res.
0
Res.
Res.
EHEN
0
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
0
Res.
0
Res.
DBCT
CIDSTS
Res.
0
Res.
ASVLD
HNGDET
0
Res.
BSVLD
1
DBCDNE
0
ADTOCHG
0
Res.
0
Res.
OTGVER
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
OTG_
GAHBCFG
0x008
Res.
Reset value
0
IDCHNG
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
OTG_
GOTGINT
0x004
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
OTG_
GOTGCTL
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0x000
Res.
Register
Res.
Offset
Res.
Table 263. OTG_FS register map and reset values
0
0
0
RM0351
USB on-the-go full-speed (OTG_FS)
Register
0x014
OTG_
GINTSTS
WKUINT
SRQINT
Reset value
0
0
OTG_
GINTMSK
WUIM
SRQIM
DISCINT
CIDSCHGM
LPMINTM
Reset value
0
0
0
0
0
OTG_
GRXSTSR
(host mode)
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
0
0
Res.
Res.
Res.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
0
0
0
0
0
0
0
GINAKEFF
NPTXFE
RXFLVL
SOF
OTGINT
MMIS
CMOD
GONAKEFFM
GINAKEFFM
NPTXFEM
RXFLVLM
SOFM
OTGINT
MMISM
Res.
Res.
GONAKEFF
0
0
0
0
0
0
0
0
BCNT
0
0
0
0
0
0
CHNUM
0
0
0
0
0
0
BCNT
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CHNUM
0
0
0
0
0
0
BCNT
0
0
EPNUM
BCNT
0
0
0
EPNUM
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RXFD
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
Res.
Res.
Res.
Res.
VBDEN
SDEN
PDEN
DCDEN
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
NPTXFSAV
Res.
0
0
Res.
0
0
Res.
0
0
Res.
0
1
Res.
0
Res.
NPTQXSAV
Res.
NPTXQTOP
0
0
0
PDET
0
0
DCDET
1
0
Res.
0
0
Res.
0
1
PWRDWN
0
Res.
ESUSP
ESUSPM
0
Res.
USBRST
USBSUSP
USBRST
USBSUSPM
0
Res.
ISOODRP
ENUMDNE
ISOODRPM
0
0
BCDEN
0
Res.
Res.
Res.
0
OTG_CID
Reset value
0
0
NPTXFSA/TX0FSA
Res.
0
OTG_
HNPTXSTS
Reset value
0x03C
0
NPTXFD/TX0FD
Reset value
OTG_
GCCFG
0
0
OTG_
HNPTXFSIZ/
OTG_
DIEPTXF0
Reset value
0x038
0
DPID
Res.
PKTSTS
Res.
0x02C
0
DPID
Reset value
0x028
0
ENUMDNEM
Res.
0
Res.
FRMNUM
0
0
DPID
PKTSTS
0
0
Res.
Res.
Res.
Res.
Res.
Res.
0
0
SDET
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
OTG_
GRXFSIZ
0
0
Reset value
0
0
DPID
PKTSTS
Res.
Res.
Res.
Res.
FRMNUM
Reset value
OTG_
GRXSTSPR
(Device mode)
PKTSTS
EOPF
0
0
EOPFM
0
Res.
IEPINT
IEPINT
0
Res.
OEPINT
OEPINT
0
Res.
IISOIXFR
IISOIXFRM
Res.
0
PS2DET
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
OTG_
GRXSTSR
(host mode)
0x024
0
0
Res.
OTG_
GRXSTSR
(Device mode)
Reset value
0x020
IPXFR/INCOMPISOOUT
0
0
IPXFRM/IISOOXFRM
0
0
Res.
RSTDET
RSTDETM
0
Res.
PRTIM
0
0 1
Res.
HCINT
HPRTINT
0
PTXFE
0
HCIM
LPMINT
0
PTXFEM
DISCINT
CIDSCHG
0 1
Reset value
Res.
0x01C
Res.
0x018
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Offset
Res.
Table 263. OTG_FS register map and reset values (continued)
0
0
0
0
0
0
0
0
PRODUCT_ID
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DocID024597 Rev 3
0
0
1
0
0
0
0
0
0
0
0
0
1587/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
ADPSNSIF
ADPPRBIF
ADPEN
ADPRST
ENASNS
ENAPRB
0
ADPTOIF
0
ADPPRBIM
AR
ADPSNSIM
Reset value
0
0
0
0
0
0
0
0
0
0
OTG_
HPTXFSIZ
Reset value
0x104
Reset value
0
0
0
0
0
0
Reset value
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
INEPTXSA
0
0
0
0
0
0
0
0
0
0
0
1
INEPTXFD
0
0
PTXSA
0
0
0
0
0
0
0
INEPTXSA
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
.
.
.
.
Reset value
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
OTG_
HCFG
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
FSLSS
INEPTXSA
Res.
INEPTXFD
Res.
OTG_
DIEPTXF5
0
Res.
0x204
0
PRB
DS
CHG
Res.
.
.
.
.
1
PRB
DEL
TA
Res.
.
.
.
.
0
INEPTXFD
OTG_
DIEPTXF2
0x108
0
PTXFSIZ
OTG_
DIEPTXF1
PRB
PER
RTIM
0x400
Reset value
0
OTG_
HFNUM
0x408
Reset value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
1
1
0
1
0
1
0
1
1
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HAINTM
0
DocID024597 Rev 3
0
HAINT
0
Reset value
1588/1693
0
PTXFSAVL
OTG_
HAINT
OTG_
HAINTMSK
1
PTXQSAV
Res.
PTXQTOP
0
Reset value
0x418
0
FRNUM
Reset value
0x414
0
FRIVL
FTREM
OTG_
HPTXSTS
0x410
RLDCTRL
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
OTG_
HFIR
0x404
Res.
Reset value
FSLSPCS
0x100
0
0
ADPTOIM
Res.
0x060
Res.
OTG_
GADPCTL
0
0
Res.
Reset value
BESL
LPMEN
0
BESLTHRS
LPMACK
0
Res.
0
LPM
RSP
Res.
L1SSEN
REMWAKE
0
Res.
0
LPMCHIDX
ADPMEN
SLPSTS
0
Res.
0
LPM
RCNT
L1DSEN
L1RSMOK
0
SNDLPM
0
ADPIF
0
Res.
LPMR
CNTSTS
Res.
Res.
Res.
Res.
OTG_
GPWRDN
0x058
Res.
Reset value
ENBESL
OTG_
GLPMCFG
Res.
0x054
Res.
Register
Res.
Offset
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 263. OTG_FS register map and reset values (continued)
0
0
0
0
0
0
0
0
.
.
.
.
.
.
.
.
0x660
OTG_
HCCHAR11
CHENA
CHDIS
ODDFRM
.
.
.
.
0
Reset value
0
0
0
0
0
0
0
0
0
DPID
0
0
0
0
0
0
0
DAD
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
OTG_
HCINT1
Res.
Res.
Res.
Res.
0
0
.
.
.
.
DocID024597 Rev 3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reset value
Reset value
PKTCNT
0
0
Res.
0
0
0
0
0
0
0
0
0
0
0
0
EPNUM
0
0
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
DTERR
FRMOR
BBERR
TXERR
Res.
0
0
0
0
XFRSIZ
0
0
0
0
0
0
0
XFRSIZ
.
.
.
.
MPSIZ
0
0
0
0
0
0
0
0
0
PSPD
Res.
PCSTS
POCA
PENCHNG
PENA
PRES
PSUSP
POCCHNG
PRST
Res.
PLSTS
PPWR
PCDET
XFRC
Res.
EPDIR
LSDEV
MPSIZ
0
0
0
0
0
0
Res.
0
CHH
0
0
0
0
0
0
Res.
0
MPSIZ
0
0
0
0
0
XFRCM
0
NAK
0
STALL
0
ACK
0
XFRCM
Res.
EPTYP
0
CHHM
0
NAKM
Res.
Res.
Res.
0
0
0
0
0
0
Res.
0
STALLM
Res.
MCNT
0
Res.
0
ACKM
Res.
Res.
Res.
0
CHHM
XFRC
0
CHH
0
NAK
0
STALL
EPNUM
NAKM
0
Res.
Res.
EPNUM
STALLM
0
TXERRM
Res.
Res.
0
ACK
0
BBERRM
Res.
Res.
Res.
Res.
Res.
Res.
0
ACKM
0
FRMORM
Res.
0
Res.
TXERR
0
TXERRM
0
BBERR
PKTCNT
FRMOR
0
DTERRM
Res.
0
Res.
Reset value
BBERRM
0
Res.
Res.
0
FRMORM
0
Res.
Res.
0
DTERR
0
Res.
Res.
0
DTERRM
0
Res.
OTG_
HCINT0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
EPDIR
0
Res.
0
Res.
LSDEV
EPTYP
MCNT
0
Res.
0
0
Res.
0
Res.
0
Res.
0
Res.
Res.
Res.
PTCTL
Res.
0
Res.
0
Res.
0
0
Res.
0
Res.
0
Res.
0
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
0
Res.
ODDFRM
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
DAD
0
Res.
0
Res.
0
Res.
0
Res.
Reset value
0
Res.
CHDIS
0
Res.
0
EPDIR
Reset value
Res.
ODDFRM
Reset value
Res.
CHENA
Reset value
Res.
Reset value
LSDEV
OTG_
HCTSIZ1
Res.
OTG_
HCCHAR0
DAD
EPTYP
0x530
OTG_
HCINTMSK1
DPID
MCNT
0x52C
OTG_
HCCHAR1
Res.
0x528
OTG_
HCINTMSK0
0
Res.
Reset value
Res.
0x520
OTG_
HCTSIZ0
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
OTG_
HPRT
Res.
0x50C
CHDIS
0x510
CHENA
0x508
Res.
0x500
Res.
0x440
Res.
Register
Res.
Offset
Res.
RM0351
USB on-the-go full-speed (OTG_FS)
Table 263. OTG_FS register map and reset values (continued)
0
0
0
0
0
0
0
0
.
.
.
.
1589/1693
1644
0x81C
0x814
OTG_
DOEPMSK
0x818
Reset value
Reset value
1590/1693
0
0
0
0
0
0
0
0
0
0
0
0
OTG_
DAINT
OTG_
DAINTMSK
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DocID024597 Rev 3
0
0
0
0
0
0
0
0
Res.
0
0
0
0
OEPINT
0
0
0
OEPM
0
0
0
0
0
Reset value
EPDM
XFRCM
SDIS
RWUSIG
0
0
0
0
0
0
0
0
0
DSPD
XFRCM
Res.
NAKM
STALLM
0
0
0
0
XFRC
0
0
0
1
0
SUSPSTS
0
CHHM
XFRSIZ
0
Res.
.
.
.
.
CHH
0
NZLSOHSK
0
XFRCM
GINSTS
0
ENUMSPD
NAK
STALL
Res.
ACKM
0
Res.
GONSTS
0
Res.
TXERRM
0
EPDM
0
EERR
BBERRM
Res.
FRMORM
0
0
0
0
Res.
TOM
0
0
ACK
0
ITTXFEMSK
0
0
STUPM
0
0
OTEPDM
0
0
TCTL
0
Res.
0
Res.
DTERRM
Res.
Res.
0
INEPNMM
0
TXERR
0
Res.
Res.
0
Res.
0
Res.
DAD
0
BBERR
0
FRMOR
0
DTERR
0
Res.
Res.
0
INEPNEM
SGINAK
FNSOF
0
Res.
0
CGINAK
PFIVL
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
0
SGONAK
0
0
Res.
0
Res.
0
CGONAK
0
0
Res.
0
Res.
0
POPRGDNE
Reset value
Res.
0
Res.
Res.
0
Res.
.
.
.
.
0
Res.
Res.
PKTCNT
Res.
Reset value
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
0
NAKM
0
Res.
0
Res.
Res.
Res.
Reset value
Res.
0
Res.
DEV
LN
STS
Res.
0
Res.
Res.
Res.
Res.
Res.
0
Res.
0
Res.
Res.
DSBESLRJCT
Res.
Res.
0
Res.
0
Res.
Reset value
0
Res.
0
Res.
Res.
Res.
Res.
0
Res.
0
Res.
Res.
Res.
Res.
0
Res.
0
Res.
Res.
Res.
Res.
0
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DPID
Res.
OTG_
DIEPMSK
0
Res.
0x810
0
Res.
OTG_
DSTS
Res.
0x808
0
Res.
OTG_
DCTL
Res.
0x804
Res.
OTG_
DCFG
Res.
0x800
Res.
OTG_
HCINT11
0
Res.
0x728
0
Res.
.
.
.
.
Res.
Reset value
Res.
.
.
.
.
Res.
OTG_
HCTSIZ11
Res.
0x670
Res.
.
.
.
.
Res.
.
.
.
.
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
OTG_
HCINTMSK11
Res.
0x66C
Res.
Register
Res.
Offset
Res.
USB on-the-go full-speed (OTG_FS)
RM0351
Table 263. OTG_FS register map and reset values (continued)
0
0
0
0
0
0
0
IEPINT
IEPM
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.
.
.
.
OTG_
DIEPCTL2
SNAK
CNAK
0x940
SD0PID/SEVNFRM
Reset value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
0
0
0
0
OTG_
DIEPINT1
Res.
TXFNUM
TXFNUM
0
0
0
0
.
.
.
.
0
0
DocID024597 Rev 3
Reset value
0
0
0
0
0
PKTCNT
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res.
0
1
0
Reset value
0
0
0
Res.
0
0
0
0
0
XFRSIZ
1
0
0
0
INEPTFSAV
0
0
0
0
0
0
0
0
0
MPSIZ
0
0
XFRC
0
EPDISD
1
TOC
0
0
0
0
0
1
Res.
Res.
Res.
Res.
Res.
MPSIZ
0
XFRC
0
EPDISD
Res.
ITTXFE
0
Res.
1
Res.
0
Res.
1
TOC
0
INEPNE
Reset value
TXFE
1
Res.
0
Res.
1
ITTXFE
1
Res.
0
Res.
0
Res.
0
Res.
1
INEPNE
0
Res.
0
Res.
1
Res.
0
Res.
Res.
Res.
Res.
1
TXFE
0
Res.
0
Res.
0
Res.
Res.
0
Res.
0
Res.
Res.
0
USBAEP
Res.
Res.
0
0
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
NAKSTS
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
1
Res.
Res.
EPTYP
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
STALL
0
0
Res.
0
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
0
Res.
Reset value
Res.
USBAEP
0
Res.
Res.
0
Res.
Res.
Res.
0
Res.
Res.
Res.
0
Res.
EONUM/DPID
0
Res.
0
Res.
PKT
CNT
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
NAKSTS
0
Res.
EPTYP
0
Res.
0
Res.
Reset value
Res.
Res.
0
Res.
Res.
Res.
0
Res.
STALL
Res.
Res.
0
Res.
0
Res.
0
Res.
Res.
Res.
0
Res.
0
Res.
Res.
Res.
CNAK
0
Res.
0
Res.
0
Res.
Res.
Res.
SNAK
0
Res.
Res.
Res.
Reset value
Res.
0
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
Reset value
Res.
0
Res.
CNAK
0
Res.
Res.
Res.
Res.
Res.
Reset value
USBAEP
0
Res.
SNAK
0
Res.
Res.
Res.
EPDIS
OTG_
DIEPINT0
0
EONUM/DPID
0
Res.
SD0PID/SEVNFRM
0
Res.
EPENA
0
NAKSTS
0
Res.
SODDFRM/SD1PID
Reset value
Res.
Res.
Res.
0
EPTYP
0
Res.
MCNT
Res.
Reset value
TXFNUM
Res.
OTG_
DTXFSTS1
Res.
Reset value
Res.
OTG_
DIEPTSIZ1
Res.
OTG_
DTXFSTS0
Res.
OTG_
DIEPCTL0
STALL
0x938
SODDFRM
0x930
EPDIS
0x928
OTG_
DIEPCTL1
EPENA
0x920
Res.
0x918
Res.
0x910
OTG_
DIEPTSIZ0
Res.
0x908
OTG_DIE
PEMPMSK
Res.
0x900
OTG_DVB
USPULSE
Res.
0x834
EPDIS
0x82C
EPENA
Register
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0x828
OTG_
DVBUSDIS
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Offset
Res.
RM0351
USB on-the-go full-speed (OTG_FS)
Table 263. OTG_FS register map and reset values (continued)
VBUSDT
DVBUSP
INEPTXFEM
1
0
1
0
1
1
1
0
1
1
1
0
0
0
0
0
0
0
0
0
XFRSIZ
INEPTFSAV
0
0
0
0
0
0
0
0
0
0
0
0
MPSIZ
0
0
0
0
0
0
0
0
0
.
.
.
.
0
0
0
0
1591/1693
1644
SNAK
CNAK
1592/1693
Reset value
0
0
0
0
0
0
0
0
0
0
DocID024597 Rev 3
0
0
0
0
0
Reset value
0
0
0
0
0
0
0
0
0
0
0
0
1
MPSIZ
0
XFRC
0
EPDISD
0
Res.
TOC
0
XFRC
0
Res.
0
EPDISD
0
Res.
0
ITTXFE
0
Res.
INEPNE
0
0
Res.
0
Res.
Res.
1
STUP
0
Res.
0
OTEPDIS
0
Res.
0
TXFE
Res.
0
Res.
0
B2BSTUP
0
Res.
1
Reserved
0
Res.
Reset value
Res.
0
Res.
USBAEP
Res.
Res.
Res.
Res.
NAKSTS
EPTYP
Res.
EONUM/DPID
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
Res.
Res.
Res.
.
.
.
.
0
Res.
0
Res.
0
Res.
0
Res.
PKTCNT
Res.
Res.
0
Res.
0
Res.
Res.
Res.
0
Res.
0
Res.
Res.
0
Res.
0
Res.
Res.
0
USBAEP
0
Res.
0
Res.
0
Res.
Res.
0
NAKSTS
Res.
Res.
STALL
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
0
Res.
Reset value
Res.
0
Res.
Res.
Res.
Res.
Res.
0
Res.
USBAEP
0
Res.
0
Res.
0
Res.
SNPM
0
EPTYP
STALL
0
Res.
Res.
Res.
Res.
0
NAKSTS
0
Res.
Res.
Res.
SNAK
CNAK
0
EONUM/DPID
0
Res.
0
EPTYP
0
Res.
Res.
Res.
0
PKTCNT
Res.
0
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
0
0
Res.
0
0
0
SNPM
0
Res.
SODDFRM
SD0PID/SEVNFRM
0
TXFNUM
STALL
0
Res.
Res.
EPDIS
0
0
Res.
0
SNAK
0
CNAK
0
Res.
0
Res.
OTG_
DOEPINT0
Res.
EPENA
Reset value
0
Res.
0
Res.
0
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
OTG_
DIEPCTL5
0
Res.
Reset value
Res.
Res.
0x9A0
0
Res.
OTG_
DOEPTSIZ0
Res.
Register
0
Res.
Reset value
Res.
OTG_
DIEPTSIZ5
Res.
0x9B0
Res.
.
.
.
.
Res.
.
.
.
.
Res.
OTG_
DTXFSTS5
Res.
0x9B8
MCNT
.
.
.
.
Res.
.
.
.
.
Res.
OTG_
DIEPINT5
Res.
0x9A8
Res.
EPDIS
.
.
.
.
STUPCNT
EPENA
Reset value
Res.
0xB08
OTG_
DOEPCTL0
Res.
.
.
.
.
Res.
Offset
0
Res.
OTG_
DOEPCTL1
SD0PID/SEVNFRM
0xB20
SODDFRM
0xB10
EPDIS
0xB00
EPENA
USB on-the-go full-speed (OTG_FS)
RM0351
Table 263. OTG_FS register map and reset values (continued)
MPSIZ
.
.
.
.
0
0
INEPTFSAV
.
.
.
.
XFRSIZ
0
0
0
0
0
0
0
0
0
0
0
0
0
0
XFRSIZ
MPSIZ
0
0
0
0
0
0
0
0
RM0351
USB on-the-go full-speed (OTG_FS)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res.
0
0
0
XFRC
Res.
EPDISD
STUP
Res.
OTEPDIS
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res.
0
Res.
0
B2BSTUP
0
Reserved
0
Res.
0
Res.
0
MPSIZ
0
XFRC
0
EPDISD
STUP
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
OTEPDIS
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
SUSP
PHYSLEEP
ENL1GTG
PHYSUSP
Res.
Res.
GATEHCLK
STPPCLK
XFRSIZ
Res.
PKTCNT
Res.
OTG_
PCGCCTL
Res.
Reset value
0xE00
0
.
.
.
.
Res.
OTG_
DOEPTSIZ5
0
Res.
0
EONUM/DPID
0
NAKSTS
SNPM
0
EPTYP
STALL
0
Res.
0
Res.
0
Res.
0
RXDPID/
STUPCNT
0xBB0
0
Res.
.
.
.
.
B2BSTUP
Res.
0
Reset value
.
.
.
.
0
XFRSIZ
Res.
0
0
.
.
.
.
Res.
OTG_
DOEPINT5
0
0
.
.
.
.
Res.
0xBA8
0
Res.
0
0
CNAK
0
.
.
.
.
0
PKTCNT
SNAK
Reset value
.
.
.
.
0
SODDFRM
OTG_
DOEPCTL5
0
0
SD0PID/SEVNFRM
0xBA0
EPDIS
0
.
.
.
.
EPENA
Reset value
0
Res.
OTG_
DOEPTSIZ2
.
.
.
.
0
0
XFRSIZ
Res.
0
PKTCNT
USBAEP
Res.
Reset value
Res.
0xB50
OTG_
DOEPTSIZ1
RXDPID/
STUPCNT
0xB30
RXDPID/
STUPCNT
Reset value
Reserved
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
OTG_
DOEPINT1
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0xB28
Res.
Register
Res.
Offset
Res.
Table 263. OTG_FS register map and reset values (continued)
0
0
0
0
0
0
Reset value
Refer to Section 2.2.2: Memory map and register boundary addresses for the register
boundary addresses.
DocID024597 Rev 3
1593/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
43.16
OTG_FS programming model
43.16.1
Core initialization
The application must perform the core initialization sequence. If the cable is connected
during power-up, the current mode of operation bit in the OTG_GINTSTS (CMOD bit in
OTG_GINTSTS) reflects the mode. The OTG_FS controller enters host mode when an “A”
plug is connected or device mode when a “B” plug is connected.
This section explains the initialization of the OTG_FS controller after power-on. The
application must follow the initialization sequence irrespective of host or device mode
operation. All core global registers are initialized according to the core’s configuration:
1.
2.
3.
Program the following fields in the OTG_GAHBCFG register:
–
Global interrupt mask bit GINTMSK = 1
–
Rx FIFO non-empty (RXFLVL bit in OTG_GINTSTS)
–
Periodic Tx FIFO empty level
Program the following fields in the OTG_GUSBCFG register:
–
HNP capable bit
–
SRP capable bit
–
OTG_FS timeout calibration field
–
USB turnaround time field
The software must unmask the following bits in the OTG_GINTMSK register:
OTG interrupt mask
Mode mismatch interrupt mask
4.
1594/1693
The software can read the CMOD bit in OTG_GINTSTS to determine whether the
OTG_FS controller is operating in host or device mode.
DocID024597 Rev 3
RM0351
43.16.2
USB on-the-go full-speed (OTG_FS)
Host initialization
To initialize the core as host, the application must perform the following steps:
1.
Program the HPRTINT in the OTG_GINTMSK register to unmask
2.
Program the OTG_HCFG register to select full-speed host
3.
Program the PPWR bit in OTG_HPRT to 1. This drives VBUS on the USB.
4.
Wait for the PCDET interrupt in OTG_HPRT0. This indicates that a device is
connecting to the port.
5.
Program the PRST bit in OTG_HPRT to 1. This starts the reset process.
6.
Wait at least 10 ms for the reset process to complete.
7.
Program the PRST bit in OTG_HPRT to 0.
8.
Wait for the PENCHNG interrupt in OTG_HPRT.
9.
Read the PSPD bit in OTG_HPRT to get the enumerated speed.
10. Program the HFIR register with a value corresponding to the selected PHY clock 1
11. Program the FSLSPCS field in the OTG_HCFG register following the speed of the
device detected in step 9. If FSLSPCS has been changed a port reset must be
performed.
12. Program the OTG_GRXFSIZ register to select the size of the receive FIFO.
13. Program the OTG_HNPTXFSIZ register to select the size and the start address of the
Non-periodic transmit FIFO for non-periodic transactions.
14. Program the OTG_HPTXFSIZ register to select the size and start address of the
periodic transmit FIFO for periodic transactions.
To communicate with devices, the system software must initialize and enable at least one
channel.
43.16.3
Device initialization
The application must perform the following steps to initialize the core as a device on powerup or after a mode change from host to device.
1.
2.
Program the following fields in the OTG_DCFG register:
–
Device speed
–
Non-zero-length status OUT handshake
Program the OTG_GINTMSK register to unmask the following interrupts:
–
USB reset
–
Enumeration done
–
Early suspend
–
USB suspend
–
SOF
3.
Program the VBUSBSEN bit in the OTG_GCCFG register to enable VBUS sensing in
“B” device mode and supply the 5 volts across the pull-up resistor on the DP line.
4.
Wait for the USBRST interrupt in OTG_GINTSTS. It indicates that a reset has been
detected on the USB that lasts for about 10 ms on receiving this interrupt.
Wait for the ENUMDNE interrupt in OTG_GINTSTS. This interrupt indicates the end of reset
on the USB. On receiving this interrupt, the application must read the OTG_DSTS register
to determine the enumeration speed and perform the steps listed in Endpoint initialization on
DocID024597 Rev 3
1595/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
enumeration completion on page 1617.
At this point, the device is ready to accept SOF packets and perform control transfers on
control endpoint 0.
43.16.4
Host programming model
Channel initialization
The application must initialize one or more channels before it can communicate with
connected devices. To initialize and enable a channel, the application must perform the
following steps:
1.
Program the OTG_GINTMSK register to unmask the following:
2.
Channel interrupt
–
Non-periodic transmit FIFO empty for OUT transactions (applicable when
operating in pipelined transaction-level with the packet count field programmed
with more than one).
–
Non-periodic transmit FIFO half-empty for OUT transactions (applicable when
operating in pipelined transaction-level with the packet count field programmed
with more than one).
3.
Program the OTG_HAINTMSK register to unmask the selected channels’ interrupts.
4.
Program the OTG_HCINTMSK register to unmask the transaction-related interrupts of
interest given in the host channel interrupt register.
5.
Program the selected channel’s OTG_HCTSIZx register with the total transfer size, in
bytes, and the expected number of packets, including short packets. The application
must program the PID field with the initial data PID (to be used on the first OUT
transaction or to be expected from the first IN transaction).
6.
Program the OTG_HCCHARx register of the selected channel with the device’s
endpoint characteristics, such as type, speed, direction, and so forth. (The channel can
be enabled by setting the channel enable bit to 1 only when the application is ready to
transmit or receive any packet).
Halting a channel
The application can disable any channel by programming the OTG_HCCHARx register with
the CHDIS and CHENA bits set to 1. This enables the OTG_FS host to flush the posted
requests (if any) and generates a channel halted interrupt. The application must wait for the
CHH interrupt in OTG_HCINTx before reallocating the channel for other transactions. The
OTG_FS host does not interrupt the transaction that has already been started on the USB.
Before disabling a channel, the application must ensure that there is at least one free space
available in the non-periodic request queue (when disabling a non-periodic channel) or the
periodic request queue (when disabling a periodic channel). The application can simply
flush the posted requests when the Request queue is full (before disabling the channel), by
programming the OTG_HCCHARx register with the CHDIS bit set to 1, and the CHENA bit
cleared to 0.
The application is expected to disable a channel on any of the following conditions:
1596/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
1.
When an STALL, TXERR, BBERR or DTERR interrupt in OTG_HCINTx is received for
an IN or OUT channel. The application must be able to receive other interrupts
(DTERR, Nak, Data, TXERR) for the same channel before receiving the halt.
2.
When a DISCINT (Disconnect Device) interrupt in OTG_GINTSTS is received. (The
application is expected to disable all enabled channels).
3.
When the application aborts a transfer before normal completion.
Operational model
The application must initialize a channel before communicating to the connected device.
This section explains the sequence of operation to be performed for different types of USB
transactions.
•
Writing the transmit FIFO
The OTG_FS host automatically writes an entry (OUT request) to the periodic/nonperiodic request queue, along with the last DWORD write of a packet. The application
must ensure that at least one free space is available in the periodic/non-periodic
request queue before starting to write to the transmit FIFO. The application must
always write to the transmit FIFO in DWORDs. If the packet size is non-DWORD
aligned, the application must use padding. The OTG_FS host determines the actual
packet size based on the programmed maximum packet size and transfer size.
Figure 502. Transmit FIFO write task
^ƚĂƌƚ
5HDG27*B+37;67627*B+137;676
UHJLVWHUVIRUDYDLODEOH),)2DQGTXHXH
VSDFHV
:DLWIRU137;)(37;)(LQWHUUXSWLQ
27*B*,17676
1R
ϭDW^
Žƌ>W^&/&KƐƉĂĐĞ
ĂǀĂŝůĂďůĞ͍
ZRUGBFQWB@
UGBU[ILIR UGBGDWD(3180
ZRUGBFQW
ZRUGBFQW
%&17>@
%&17>@_%&17>@
DLE
SETUP transactions
This section describes how the core handles SETUP packets and the application’s
sequence for handling SETUP transactions.
1620/1693
•
Application requirements
1.
To receive a SETUP packet, the STUPCNT field (OTG_DOEPTSIZx) in a control OUT
endpoint must be programmed to a non-zero value. When the application programs the
STUPCNT field to a non-zero value, the core receives SETUP packets and writes them
to the receive FIFO, irrespective of the NAK status and EPENA bit setting in
OTG_DOEPCTLx. The STUPCNT field is decremented every time the control endpoint
receives a SETUP packet. If the STUPCNT field is not programmed to a proper value
before receiving a SETUP packet, the core still receives the SETUP packet and
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
decrements the STUPCNT field, but the application may not be able to determine the
correct number of SETUP packets received in the Setup stage of a control transfer.
–
2.
STUPCNT = 3 in OTG_DOEPTSIZx
The application must always allocate some extra space in the Receive data FIFO, to be
able to receive up to three SETUP packets on a control endpoint.
–
The space to be reserved is 10 Words. Three Words are required for the first
SETUP packet, 1 Word is required for the Setup stage done Word and 6 Words
are required to store two extra SETUP packets among all control endpoints.
–
3 Words per SETUP packet are required to store 8 bytes of SETUP data and 4
bytes of SETUP status (Setup packet pattern). The core reserves this space in the
receive data.
–
FIFO to write SETUP data only, and never uses this space for data packets.
3.
The application must read the 2 Words of the SETUP packet from the receive FIFO.
4.
The application must read and discard the Setup stage done Word from the receive
FIFO.
•
Internal data flow
1.
When a SETUP packet is received, the core writes the received data to the receive
FIFO, without checking for available space in the receive FIFO and irrespective of the
endpoint’s NAK and STALL bit settings.
–
2.
The core internally sets the IN NAK and OUT NAK bits for the control IN/OUT
endpoints on which the SETUP packet was received.
For every SETUP packet received on the USB, 3 Words of data are written to the
receive FIFO, and the STUPCNT field is decremented by 1.
–
The first Word contains control information used internally by the core
–
The second Word contains the first 4 bytes of the SETUP command
–
The third Word contains the last 4 bytes of the SETUP command
3.
When the Setup stage changes to a Data IN/OUT stage, the core writes an entry
(Setup stage done Word) to the receive FIFO, indicating the completion of the Setup
stage.
4.
On the AHB side, SETUP packets are emptied by the application.
5.
When the application pops the Setup stage done Word from the receive FIFO, the core
interrupts the application with an STUP interrupt (OTG_DOEPINTx), indicating it can
process the received SETUP packet.
6.
The core clears the endpoint enable bit for control OUT endpoints.
•
Application programming sequence
1.
Program the OTG_DOEPTSIZx register.
–
STUPCNT = 3
2.
Wait for the RXFLVL interrupt (OTG_GINTSTS) and empty the data packets from the
receive FIFO.
3.
Assertion of the STUP interrupt (OTG_DOEPINTx) marks a successful completion of
the SETUP Data Transfer.
–
On this interrupt, the application must read the OTG_DOEPTSIZx register to
determine the number of SETUP packets received and process the last received
SETUP packet.
DocID024597 Rev 3
1621/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Figure 511. Processing a SETUP packet
:DLWIRU673LQ27*B'2(3,17[
UHPBVXSFQW
UGBUHJ 27*B'2(376,=[
VHWXSBFPG> PHP>± UHPBVXSFQW@
VHWXSBFPG>@ PHP>± UHPBVXSFQW@
)LQGVHWXSFPGW\SH
5HDG
FWUOBUGZUVWDJH
:ULWH
VWDJH
VHWXSBQSBLQBSNW
'DWD,1SKDVH
VHWXSBQSBLQBSNW
6WDWXV,1SKDVH
UFYBRXWBSNW
'DWD287SKDVH
06Y9
•
Handling more than three back-to-back SETUP packets
Per the USB 2.0 specification, normally, during a SETUP packet error, a host does not send
more than three back-to-back SETUP packets to the same endpoint. However, the USB 2.0
specification does not limit the number of back-to-back SETUP packets a host can send to
the same endpoint. When this condition occurs, the OTG_FS controller generates an
interrupt (B2BSTUP in OTG_DOEPINTx).
•
Setting the global OUT NAK
Internal data flow:
1.
When the application sets the Global OUT NAK (SGONAK bit in OTG_DCTL), the core
stops writing data, except SETUP packets, to the receive FIFO. Irrespective of the
space availability in the receive FIFO, non-isochronous OUT tokens receive a NAK
handshake response, and the core ignores isochronous OUT data packets
2.
The core writes the Global OUT NAK pattern to the receive FIFO. The application must
reserve enough receive FIFO space to write this data pattern.
3.
When the application pops the Global OUT NAK pattern Word from the receive FIFO,
the core sets the GONAKEFF interrupt (OTG_GINTSTS).
4.
Once the application detects this interrupt, it can assume that the core is in Global OUT
NAK mode. The application can clear this interrupt by clearing the SGONAK bit in
OTG_DCTL.
Application programming sequence:
1622/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
1.
To stop receiving any kind of data in the receive FIFO, the application must set the
Global OUT NAK bit by programming the following field:
–
SGONAK = 1 in OTG_DCTL
2.
Wait for the assertion of the GONAKEFF interrupt in OTG_GINTSTS. When asserted,
this interrupt indicates that the core has stopped receiving any type of data except
SETUP packets.
3.
The application can receive valid OUT packets after it has set SGONAK in OTG_DCTL
and before the core asserts the GONAKEFF interrupt (OTG_GINTSTS).
4.
The application can temporarily mask this interrupt by writing to the GONAKEFFM bit in
the OTG_GINTMSK register.
–
5.
Whenever the application is ready to exit the Global OUT NAK mode, it must clear the
SGONAK bit in OTG_DCTL. This also clears the GONAKEFF interrupt
(OTG_GINTSTS).
–
6.
CGONAK = 1 in OTG_DCTL
If the application has masked this interrupt earlier, it must be unmasked as follows:
–
•
GONAKEFFM = 0 in the OTG_GINTMSK register
GONAKEFFM = 1 in OTG_GINTMSK
Disabling an OUT endpoint
The application must use this sequence to disable an OUT endpoint that it has enabled.
Application programming sequence:
1.
Before disabling any OUT endpoint, the application must enable Global OUT NAK
mode in the core.
–
SGONAK = 1 in OTG_DCTL
2.
Wait for the GONAKEFF interrupt (OTG_GINTSTS)
3.
Disable the required OUT endpoint by programming the following fields:
4.
5.
–
EPDIS = 1 in OTG_DOEPCTLx
–
SNAK = 1 in OTG_DOEPCTLx
Wait for the EPDISD interrupt (OTG_DOEPINTx), which indicates that the OUT
endpoint is completely disabled. When the EPDISD interrupt is asserted, the core also
clears the following bits:
–
EPDIS = 0 in OTG_DOEPCTLx
–
EPENA = 0 in OTG_DOEPCTLx
The application must clear the Global OUT NAK bit to start receiving data from other
non-disabled OUT endpoints.
–
•
SGONAK = 0 in OTG_DCTL
Generic non-isochronous OUT data transfers
This section describes a regular non-isochronous OUT data transfer (control, bulk, or
interrupt).
Application requirements:
DocID024597 Rev 3
1623/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
1.
Before setting up an OUT transfer, the application must allocate a buffer in the memory
to accommodate all data to be received as part of the OUT transfer.
2.
For OUT transfers, the transfer size field in the endpoint’s transfer size register must be
a multiple of the maximum packet size of the endpoint, adjusted to the Word boundary.
3.
–
transfer size[EPNUM] = n × (MPSIZ[EPNUM] + 4 – (MPSIZ[EPNUM] mod 4))
–
packet count[EPNUM] = n
–
n>0
On any OUT endpoint interrupt, the application must read the endpoint’s transfer size
register to calculate the size of the payload in the memory. The received payload size
can be less than the programmed transfer size.
–
Payload size in memory = application programmed initial transfer size – core
updated final transfer size
–
Number of USB packets in which this payload was received = application
programmed initial packet count – core updated final packet count
Internal data flow:
1.
The application must set the transfer size and packet count fields in the endpointspecific registers, clear the NAK bit, and enable the endpoint to receive the data.
2.
Once the NAK bit is cleared, the core starts receiving data and writes it to the receive
FIFO, as long as there is space in the receive FIFO. For every data packet received on
the USB, the data packet and its status are written to the receive FIFO. Every packet
(maximum packet size or short packet) written to the receive FIFO decrements the
packet count field for that endpoint by 1.
3.
1624/1693
–
OUT data packets received with bad data CRC are flushed from the receive FIFO
automatically.
–
After sending an ACK for the packet on the USB, the core discards nonisochronous OUT data packets that the host, which cannot detect the ACK, resends. The application does not detect multiple back-to-back data OUT packets
on the same endpoint with the same data PID. In this case the packet count is not
decremented.
–
If there is no space in the receive FIFO, isochronous or non-isochronous data
packets are ignored and not written to the receive FIFO. Additionally, nonisochronous OUT tokens receive a NAK handshake reply.
–
In all the above three cases, the packet count is not decremented because no data
are written to the receive FIFO.
When the packet count becomes 0 or when a short packet is received on the endpoint,
the NAK bit for that endpoint is set. Once the NAK bit is set, the isochronous or non-
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
isochronous data packets are ignored and not written to the receive FIFO, and nonisochronous OUT tokens receive a NAK handshake reply.
4.
After the data are written to the receive FIFO, the application reads the data from the
receive FIFO and writes it to external memory, one packet at a time per endpoint.
5.
At the end of every packet write on the AHB to external memory, the transfer size for
the endpoint is decremented by the size of the written packet.
6.
The OUT data transfer completed pattern for an OUT endpoint is written to the receive
FIFO on one of the following conditions:
7.
–
The transfer size is 0 and the packet count is 0
–
The last OUT data packet written to the receive FIFO is a short packet
(0 ≤ packet size < maximum packet size)
When either the application pops this entry (OUT data transfer completed), a transfer
completed interrupt is generated for the endpoint and the endpoint enable is cleared.
Application programming sequence:
1.
Program the OTG_DOEPTSIZx register for the transfer size and the corresponding
packet count.
2.
Program the OTG_DOEPCTLx register with the endpoint characteristics, and set the
EPENA and CNAK bits.
3.
–
EPENA = 1 in OTG_DOEPCTLx
–
CNAK = 1 in OTG_DOEPCTLx
Wait for the RXFLVL interrupt (in OTG_GINTSTS) and empty the data packets from the
receive FIFO.
–
This step can be repeated many times, depending on the transfer size.
4.
Asserting the XFRC interrupt (OTG_DOEPINTx) marks a successful completion of the
non-isochronous OUT data transfer.
5.
Read the OTG_DOEPTSIZx register to determine the size of the received data
payload.
•
Generic isochronous OUT data transfer
This section describes a regular isochronous OUT data transfer.
Application requirements:
1.
All the application requirements for non-isochronous OUT data transfers also apply to
isochronous OUT data transfers.
2.
For isochronous OUT data transfers, the transfer size and packet count fields must
always be set to the number of maximum-packet-size packets that can be received in a
single frame and no more. Isochronous OUT data transfers cannot span more than 1
frame.
3.
The application must read all isochronous OUT data packets from the receive FIFO
(data and status) before the end of the periodic frame (EOPF interrupt in
OTG_GINTSTS).
4.
To receive data in the following frame, an isochronous OUT endpoint must be enabled
after the EOPF (OTG_GINTSTS) and before the SOF (OTG_GINTSTS).
Internal data flow:
DocID024597 Rev 3
1625/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
1.
The internal data flow for isochronous OUT endpoints is the same as that for nonisochronous OUT endpoints, but for a few differences.
2.
When an isochronous OUT endpoint is enabled by setting the Endpoint Enable and
clearing the NAK bits, the Even/Odd frame bit must also be set appropriately. The core
receives data on an isochronous OUT endpoint in a particular frame only if the
following condition is met:
–
3.
EONUM (in OTG_DOEPCTLx) = FNSOF[0] (in OTG_DSTS)
When the application completely reads an isochronous OUT data packet (data and
status) from the receive FIFO, the core updates the RXDPID field in OTG_DOEPTSIZx
with the data PID of the last isochronous OUT data packet read from the receive FIFO.
Application programming sequence:
1.
Program the OTG_DOEPTSIZx register for the transfer size and the corresponding
packet count
2.
Program the OTG_DOEPCTLx register with the endpoint characteristics and set the
Endpoint Enable, ClearNAK, and Even/Odd frame bits.
3.
–
EPENA = 1
–
CNAK = 1
–
EONUM = (0: Even/1: Odd)
Wait for the RXFLVL interrupt (in OTG_GINTSTS) and empty the data packets from the
receive FIFO
–
This step can be repeated many times, depending on the transfer size.
4.
The assertion of the XFRC interrupt (in OTG_DOEPINTx) marks the completion of the
isochronous OUT data transfer. This interrupt does not necessarily mean that the data
in memory are good.
5.
This interrupt cannot always be detected for isochronous OUT transfers. Instead, the
application can detect the INCOMPISOOUT interrupt in OTG_GINTSTS.
6.
Read the OTG_DOEPTSIZx register to determine the size of the received transfer and
to determine the validity of the data received in the frame. The application must treat
the data received in memory as valid only if one of the following conditions is met:
–
RXDPID = DATA0 (in OTG_DOEPTSIZx) and the number of USB packets in
which this payload was received = 1
–
RXDPID = DATA1 (in OTG_DOEPTSIZx) and the number of USB packets in
which this payload was received = 2
The number of USB packets in which this payload was received =
Application programmed initial packet count – Core updated final packet count
The application can discard invalid data packets.
•
Incomplete isochronous OUT data transfers
This section describes the application programming sequence when isochronous OUT data
packets are dropped inside the core.
Internal data flow:
1.
1626/1693
For isochronous OUT endpoints, the XFRC interrupt (in OTG_DOEPINTx) may not
always be asserted. If the core drops isochronous OUT data packets, the application
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
could fail to detect the XFRC interrupt (OTG_DOEPINTx) under the following
circumstances:
2.
–
When the receive FIFO cannot accommodate the complete ISO OUT data packet,
the core drops the received ISO OUT data
–
When the isochronous OUT data packet is received with CRC errors
–
When the isochronous OUT token received by the core is corrupted
–
When the application is very slow in reading the data from the receive FIFO
When the core detects an end of periodic frame before transfer completion to all
isochronous OUT endpoints, it asserts the incomplete Isochronous OUT data interrupt
(INCOMPISOOUT in OTG_GINTSTS), indicating that an XFRC interrupt (in
OTG_DOEPINTx) is not asserted on at least one of the isochronous OUT endpoints. At
this point, the endpoint with the incomplete transfer remains enabled, but no active
transfers remain in progress on this endpoint on the USB.
Application programming sequence:
1.
Asserting the INCOMPISOOUT interrupt (OTG_GINTSTS) indicates that in the current
frame, at least one isochronous OUT endpoint has an incomplete transfer.
2.
If this occurs because isochronous OUT data is not completely emptied from the
endpoint, the application must ensure that the application empties all isochronous OUT
data (data and status) from the receive FIFO before proceeding.
–
3.
When all data are emptied from the receive FIFO, the application can detect the
XFRC interrupt (OTG_DOEPINTx). In this case, the application must re-enable
the endpoint to receive isochronous OUT data in the next frame.
When it receives an INCOMPISOOUT interrupt (in OTG_GINTSTS), the application
must read the control registers of all isochronous OUT endpoints (OTG_DOEPCTLx) to
determine which endpoints had an incomplete transfer in the current microframe. An
endpoint transfer is incomplete if both the following conditions are met:
–
EONUM bit (in OTG_DOEPCTLx) = FNSOF[0] (in OTG_DSTS)
–
EPENA = 1 (in OTG_DOEPCTLx)
4.
The previous step must be performed before the SOF interrupt (in OTG_GINTSTS) is
detected, to ensure that the current frame number is not changed.
5.
For isochronous OUT endpoints with incomplete transfers, the application must discard
the data in the memory and disable the endpoint by setting the EPDIS bit in
OTG_DOEPCTLx.
6.
Wait for the EPDISD interrupt (in OTG_DOEPINTx) and enable the endpoint to receive
new data in the next frame.
–
•
Because the core can take some time to disable the endpoint, the application may
not be able to receive the data in the next frame after receiving bad isochronous
data.
Stalling a non-isochronous OUT endpoint
This section describes how the application can stall a non-isochronous endpoint.
DocID024597 Rev 3
1627/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
1.
Put the core in the Global OUT NAK mode.
2.
Disable the required endpoint
–
When disabling the endpoint, instead of setting the SNAK bit in OTG_DOEPCTL,
set STALL = 1 (in OTG_DOEPCTL).
The STALL bit always takes precedence over the NAK bit.
3.
When the application is ready to end the STALL handshake for the endpoint, the
STALL bit (in OTG_DOEPCTLx) must be cleared.
4.
If the application is setting or clearing a STALL for an endpoint due to a
SetFeature.Endpoint Halt or ClearFeature.Endpoint Halt command, the STALL bit must
be set or cleared before the application sets up the Status stage transfer on the control
endpoint.
Examples
This section describes and depicts some fundamental transfer types and scenarios.
•
Bulk OUT transaction
Figure 512 depicts the reception of a single Bulk OUT Data packet from the USB to the AHB
and describes the events involved in the process.
Figure 512. Bulk OUT transaction
+RVW
86%
'HYLFH
$SSOLFDWLRQ
LQLW BRXWBHS
;)56,=
3.7&17
E\WHV
:UBUHJ 27*B'2(376,=[
2 87
:UBUHJ 27*B'2(3&7/[
(3(1$
&1 $.
E\WHV
[DFWB
$& .
5;)/9/ LLQWU
(3&7/[
1$.
3.7&1
7
27*B'2
;)56,=
U
28 7
1$ .
LGOH XQWLO LQWU
UFYBRXW BSNW
;)
LQW U 5&
2Q QHZ [IHU
RU 5[),)2
QRWHP SW\
LGOH XQWLO LQWU
069
After a SetConfiguration/SetInterface command, the application initializes all OUT endpoints
by setting CNAK = 1 and EPENA = 1 (in OTG_DOEPCTLx), and setting a suitable
XFRSIZ and PKTCNT in the OTG_DOEPTSIZx register.
1628/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
1.
host attempts to send data (OUT token) to an endpoint.
2.
When the core receives the OUT token on the USB, it stores the packet in the Rx FIFO
because space is available there.
3.
After writing the complete packet in the Rx FIFO, the core then asserts the RXFLVL
interrupt (in OTG_GINTSTS).
4.
On receiving the PKTCNT number of USB packets, the core internally sets the NAK bit
for this endpoint to prevent it from receiving any more packets.
5.
The application processes the interrupt and reads the data from the Rx FIFO.
6.
When the application has read all the data (equivalent to XFRSIZ), the core generates
an XFRC interrupt (in OTG_DOEPINTx).
7.
The application processes the interrupt and uses the setting of the XFRC interrupt bit
(in OTG_DOEPINTx) to determine that the intended transfer is complete.
IN data transfers
•
Packet write
This section describes how the application writes data packets to the endpoint FIFO when
dedicated transmit FIFOs are enabled.
1.
2.
The application can either choose the polling or the interrupt mode.
–
In polling mode, the application monitors the status of the endpoint transmit data
FIFO by reading the OTG_DTXFSTSx register, to determine if there is enough
space in the data FIFO.
–
In interrupt mode, the application waits for the TXFE interrupt (in OTG_DIEPINTx)
and then reads the OTG_DTXFSTSx register, to determine if there is enough
space in the data FIFO.
–
To write a single non-zero length data packet, there must be space to write the
entire packet in the data FIFO.
–
To write zero length packet, the application must not look at the FIFO space.
Using one of the above mentioned methods, when the application determines that
there is enough space to write a transmit packet, the application must first write into the
endpoint control register, before writing the data into the data FIFO. Typically, the
application, must do a read modify write on the OTG_DIEPCTLx register to avoid
modifying the contents of the register, except for setting the Endpoint Enable bit.
The application can write multiple packets for the same endpoint into the transmit FIFO, if
space is available. For periodic IN endpoints, the application must write packets only for one
microframe. It can write packets for the next periodic transaction only after getting transfer
complete for the previous transaction.
•
Setting IN endpoint NAK
Internal data flow:
DocID024597 Rev 3
1629/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
1.
When the application sets the IN NAK for a particular endpoint, the core stops
transmitting data on the endpoint, irrespective of data availability in the endpoint’s
transmit FIFO.
2.
Non-isochronous IN tokens receive a NAK handshake reply
–
Isochronous IN tokens receive a zero-data-length packet reply
3.
The core asserts the INEPNE (IN endpoint NAK effective) interrupt in OTG_DIEPINTx
in response to the SNAK bit in OTG_DIEPCTLx.
4.
Once this interrupt is seen by the application, the application can assume that the
endpoint is in IN NAK mode. This interrupt can be cleared by the application by setting
the CNAK bit in OTG_DIEPCTLx.
Application programming sequence:
1.
To stop transmitting any data on a particular IN endpoint, the application must set the
IN NAK bit. To set this bit, the following field must be programmed.
–
SNAK = 1 in OTG_DIEPCTLx
2.
Wait for assertion of the INEPNE interrupt in OTG_DIEPINTx. This interrupt indicates
that the core has stopped transmitting data on the endpoint.
3.
The core can transmit valid IN data on the endpoint after the application has set the
NAK bit, but before the assertion of the NAK Effective interrupt.
4.
The application can mask this interrupt temporarily by writing to the INEPNEM bit in
OTG_DIEPMSK.
–
5.
To exit Endpoint NAK mode, the application must clear the NAK status bit (NAKSTS) in
OTG_DIEPCTLx. This also clears the INEPNE interrupt (in OTG_DIEPINTx).
–
6.
CNAK = 1 in OTG_DIEPCTLx
If the application masked this interrupt earlier, it must be unmasked as follows:
–
•
INEPNEM = 0 in OTG_DIEPMSK
INEPNEM = 1 in OTG_DIEPMSK
IN endpoint disable
Use the following sequence to disable a specific IN endpoint that has been previously
enabled.
Application programming sequence:
1630/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
1.
The application must stop writing data on the AHB for the IN endpoint to be disabled.
2.
The application must set the endpoint in NAK mode.
–
SNAK = 1 in OTG_DIEPCTLx
3.
Wait for the INEPNE interrupt in OTG_DIEPINTx.
4.
Set the following bits in the OTG_DIEPCTLx register for the endpoint that must be
disabled.
5.
–
EPDIS = 1 in OTG_DIEPCTLx
–
SNAK = 1 in OTG_DIEPCTLx
Assertion of the EPDISD interrupt in OTG_DIEPINTx indicates that the core has
completely disabled the specified endpoint. Along with the assertion of the interrupt, the
core also clears the following bits:
–
EPENA = 0 in OTG_DIEPCTLx
–
EPDIS = 0 in OTG_DIEPCTLx
6.
The application must read the OTG_DIEPTSIZx register for the periodic IN EP, to
calculate how much data on the endpoint were transmitted on the USB.
7.
The application must flush the data in the Endpoint transmit FIFO, by setting the
following fields in the OTG_GRSTCTL register:
–
TXFNUM (in OTG_GRSTCTL) = Endpoint transmit FIFO number
–
TXFFLSH in (OTG_GRSTCTL) = 1
The application must poll the OTG_GRSTCTL register, until the TXFFLSH bit is cleared by
the core, which indicates the end of flush operation. To transmit new data on this endpoint,
the application can re-enable the endpoint at a later point.
DocID024597 Rev 3
1631/1693
1644
USB on-the-go full-speed (OTG_FS)
•
RM0351
Generic non-periodic IN data transfers
Application requirements:
1.
Before setting up an IN transfer, the application must ensure that all data to be
transmitted as part of the IN transfer are part of a single buffer.
2.
For IN transfers, the Transfer Size field in the Endpoint Transfer Size register denotes a
payload that constitutes multiple maximum-packet-size packets and a single short
packet. This short packet is transmitted at the end of the transfer.
–
To transmit a few maximum-packet-size packets and a short packet at the end of
the transfer:
Transfer size[EPNUM] = x × MPSIZ[EPNUM] + sp
If (sp > 0), then packet count[EPNUM] = x + 1.
Otherwise, packet count[EPNUM] = x
–
To transmit a single zero-length data packet:
Transfer size[EPNUM] = 0
Packet count[EPNUM] = 1
–
To transmit a few maximum-packet-size packets and a zero-length data packet at
the end of the transfer, the application must split the transfer into two parts. The
first sends maximum-packet-size data packets and the second sends the zerolength data packet alone.
First transfer: transfer size[EPNUM] = x × MPSIZ[epnum]; packet count = n;
Second transfer: transfer size[EPNUM] = 0; packet count = 1;
3.
Once an endpoint is enabled for data transfers, the core updates the Transfer size
register. At the end of the IN transfer, the application must read the Transfer size
register to determine how much data posted in the transmit FIFO have already been
sent on the USB.
4.
Data fetched into transmit FIFO = Application-programmed initial transfer size – coreupdated final transfer size
–
Data transmitted on USB = (application-programmed initial packet count – Core
updated final packet count) × MPSIZ[EPNUM]
–
Data yet to be transmitted on USB = (Application-programmed initial transfer size
– data transmitted on USB)
Internal data flow:
1632/1693
1.
The application must set the transfer size and packet count fields in the endpointspecific registers and enable the endpoint to transmit the data.
2.
The application must also write the required data to the transmit FIFO for the endpoint.
3.
Every time a packet is written into the transmit FIFO by the application, the transfer size
for that endpoint is decremented by the packet size. The data is fetched from the
memory by the application, until the transfer size for the endpoint becomes 0. After
writing the data into the FIFO, the “number of packets in FIFO” count is incremented
(this is a 3-bit count, internally maintained by the core for each IN endpoint transmit
FIFO. The maximum number of packets maintained by the core at any time in an IN
endpoint FIFO is eight). For zero-length packets, a separate flag is set for each FIFO,
without any data in the FIFO.
4.
Once the data are written to the transmit FIFO, the core reads them out upon receiving
an IN token. For every non-isochronous IN data packet transmitted with an ACK
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
handshake, the packet count for the endpoint is decremented by one, until the packet
count is zero. The packet count is not decremented on a timeout.
5.
For zero length packets (indicated by an internal zero length flag), the core sends out a
zero-length packet for the IN token and decrements the packet count field.
6.
If there are no data in the FIFO for a received IN token and the packet count field for
that endpoint is zero, the core generates an “IN token received when Tx FIFO is empty”
(ITTXFE) Interrupt for the endpoint, provided that the endpoint NAK bit is not set. The
core responds with a NAK handshake for non-isochronous endpoints on the USB.
7.
The core internally rewinds the FIFO pointers and no timeout interrupt is generated.
8.
When the transfer size is 0 and the packet count is 0, the transfer complete (XFRC)
interrupt for the endpoint is generated and the endpoint enable is cleared.
Application programming sequence:
1.
Program the OTG_DIEPTSIZx register with the transfer size and corresponding packet
count.
2.
Program the OTG_DIEPCTLx register with the endpoint characteristics and set the
CNAK and EPENA (Endpoint Enable) bits.
3.
When transmitting non-zero length data packet, the application must poll the
OTG_DTXFSTSx register (where x is the FIFO number associated with that endpoint)
to determine whether there is enough space in the data FIFO. The application can
optionally use TXFE (in OTG_DIEPINTx) before writing the data.
•
Generic periodic IN data transfers
This section describes a typical periodic IN data transfer.
Application requirements:
1.
Application requirements 1, 2, 3, and 4 of Generic non-periodic IN data transfers on
page 1632 also apply to periodic IN data transfers, except for a slight modification of
requirement 2.
–
The application can only transmit multiples of maximum-packet-size data packets
or multiples of maximum-packet-size packets, plus a short packet at the end. To
transmit a few maximum-packet-size packets and a short packet at the end of the
transfer, the following conditions must be met:
transfer size[EPNUM] = x × MPSIZ[EPNUM] + sp
(where x is an integer ≥ 0, and 0 ≤ sp < MPSIZ[EPNUM])
If (sp > 0), packet count[EPNUM] = x + 1
Otherwise, packet count[EPNUM] = x;
MCNT[EPNUM] = packet count[EPNUM]
–
The application cannot transmit a zero-length data packet at the end of a transfer.
It can transmit a single zero-length data packet by itself. To transmit a single zerolength data packet:
–
transfer size[EPNUM] = 0
packet count[EPNUM] = 1
MCNT[EPNUM] = packet count[EPNUM]
2.
The application can only schedule data transfers one frame at a time.
–
(MCNT – 1) × MPSIZ ≤ XFERSIZ ≤ MCNT × MPSIZ
–
PKTCNT = MCNT (in OTG_DIEPTSIZx)
DocID024597 Rev 3
1633/1693
1644
USB on-the-go full-speed (OTG_FS)
3.
RM0351
–
If XFERSIZ < MCNT × MPSIZ, the last data packet of the transfer is a short
packet.
–
Note that: MCNT is in OTG_DIEPTSIZx, MPSIZ is in OTG_DIEPCTLx, PKTCNT
is in OTG_DIEPTSIZx and XFERSIZ is in OTG_DIEPTSIZx
The complete data to be transmitted in the frame must be written into the transmit FIFO
by the application, before the IN token is received. Even when 1 Word of the data to be
transmitted per frame is missing in the transmit FIFO when the IN token is received, the
core behaves as when the FIFO is empty. When the transmit FIFO is empty:
–
A zero data length packet would be transmitted on the USB for isochronous IN
endpoints
–
A NAK handshake would be transmitted on the USB for interrupt IN endpoints
Internal data flow:
1.
The application must set the transfer size and packet count fields in the endpointspecific registers and enable the endpoint to transmit the data.
2.
The application must also write the required data to the associated transmit FIFO for
the endpoint.
3.
Every time the application writes a packet to the transmit FIFO, the transfer size for that
endpoint is decremented by the packet size. The data are fetched from application
memory until the transfer size for the endpoint becomes 0.
4.
When an IN token is received for a periodic endpoint, the core transmits the data in the
FIFO, if available. If the complete data payload (complete packet, in dedicated FIFO
mode) for the frame is not present in the FIFO, then the core generates an IN token
received when Tx FIFO empty interrupt for the endpoint.
5.
6.
–
A zero-length data packet is transmitted on the USB for isochronous IN endpoints
–
A NAK handshake is transmitted on the USB for interrupt IN endpoints
The packet count for the endpoint is decremented by 1 under the following conditions:
–
For isochronous endpoints, when a zero- or non-zero-length data packet is
transmitted
–
For interrupt endpoints, when an ACK handshake is transmitted
–
When the transfer size and packet count are both 0, the transfer completed
interrupt for the endpoint is generated and the endpoint enable is cleared.
At the “Periodic frame Interval” (controlled by PFIVL in OTG_DCFG), when the core
finds non-empty any of the isochronous IN endpoint FIFOs scheduled for the current
frame non-empty, the core generates an IISOIXFR interrupt in OTG_GINTSTS.
Application programming sequence:
1634/1693
1.
Program the OTG_DIEPCTLx register with the endpoint characteristics and set the
CNAK and EPENA bits.
2.
Write the data to be transmitted in the next frame to the transmit FIFO.
3.
Asserting the ITTXFE interrupt (in OTG_DIEPINTx) indicates that the application has
not yet written all data to be transmitted to the transmit FIFO.
4.
If the interrupt endpoint is already enabled when this interrupt is detected, ignore the
interrupt. If it is not enabled, enable the endpoint so that the data can be transmitted on
the next IN token attempt.
5.
Asserting the XFRC interrupt (in OTG_DIEPINTx) with no ITTXFE interrupt in
OTG_DIEPINTx indicates the successful completion of an isochronous IN transfer. A
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
read to the OTG_DIEPTSIZx register must give transfer size = 0 and packet count = 0,
indicating all data were transmitted on the USB.
6.
Asserting the XFRC interrupt (in OTG_DIEPINTx), with or without the ITTXFE interrupt
(in OTG_DIEPINTx), indicates the successful completion of an interrupt IN transfer. A
read to the OTG_DIEPTSIZx register must give transfer size = 0 and packet count = 0,
indicating all data were transmitted on the USB.
7.
Asserting the incomplete isochronous IN transfer (IISOIXFR) interrupt in
OTG_GINTSTS with none of the aforementioned interrupts indicates the core did not
receive at least 1 periodic IN token in the current frame.
•
Incomplete isochronous IN data transfers
This section describes what the application must do on an incomplete isochronous IN data
transfer.
Internal data flow:
1.
An isochronous IN transfer is treated as incomplete in one of the following conditions:
a)
The core receives a corrupted isochronous IN token on at least one isochronous
IN endpoint. In this case, the application detects an incomplete isochronous IN
transfer interrupt (IISOIXFR in OTG_GINTSTS).
b)
The application is slow to write the complete data payload to the transmit FIFO
and an IN token is received before the complete data payload is written to the
FIFO. In this case, the application detects an IN token received when Tx FIFO
empty interrupt in OTG_DIEPINTx. The application can ignore this interrupt, as it
eventually results in an incomplete isochronous IN transfer interrupt (IISOIXFR in
OTG_GINTSTS) at the end of periodic frame.
The core transmits a zero-length data packet on the USB in response to the
received IN token.
2.
The application must stop writing the data payload to the transmit FIFO as soon as
possible.
3.
The application must set the NAK bit and the disable bit for the endpoint.
4.
The core disables the endpoint, clears the disable bit, and asserts the Endpoint Disable
interrupt for the endpoint.
Application programming sequence:
1.
The application can ignore the IN token received when Tx FIFO empty interrupt in
OTG_DIEPINTx on any isochronous IN endpoint, as it eventually results in an
incomplete isochronous IN transfer interrupt (in OTG_GINTSTS).
2.
Assertion of the incomplete isochronous IN transfer interrupt (in OTG_GINTSTS)
indicates an incomplete isochronous IN transfer on at least one of the isochronous IN
endpoints.
3.
The application must read the Endpoint Control register for all isochronous IN
endpoints to detect endpoints with incomplete IN data transfers.
4.
The application must stop writing data to the Periodic Transmit FIFOs associated with
these endpoints on the AHB.
5.
6.
Program the following fields in the OTG_DIEPCTLx register to disable the endpoint:
–
SNAK = 1 in OTG_DIEPCTLx
–
EPDIS = 1 in OTG_DIEPCTLx
The assertion of the Endpoint Disabled interrupt in OTG_DIEPINTx indicates that the
DocID024597 Rev 3
1635/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
core has disabled the endpoint.
–
•
At this point, the application must flush the data in the associated transmit FIFO or
overwrite the existing data in the FIFO by enabling the endpoint for a new transfer
in the next microframe. To flush the data, the application must use the
OTG_GRSTCTL register.
Stalling non-isochronous IN endpoints
This section describes how the application can stall a non-isochronous endpoint.
Application programming sequence:
1.
Disable the IN endpoint to be stalled. Set the STALL bit as well.
2.
EPDIS = 1 in OTG_DIEPCTLx, when the endpoint is already enabled
–
STALL = 1 in OTG_DIEPCTLx
–
The STALL bit always takes precedence over the NAK bit
3.
Assertion of the Endpoint Disabled interrupt (in OTG_DIEPINTx) indicates to the
application that the core has disabled the specified endpoint.
4.
The application must flush the non-periodic or periodic transmit FIFO, depending on
the endpoint type. In case of a non-periodic endpoint, the application must re-enable
the other non-periodic endpoints that do not need to be stalled, to transmit data.
5.
Whenever the application is ready to end the STALL handshake for the endpoint, the
STALL bit must be cleared in OTG_DIEPCTLx.
6.
If the application sets or clears a STALL bit for an endpoint due to a
SetFeature.Endpoint Halt command or ClearFeature.Endpoint Halt command, the
STALL bit must be set or cleared before the application sets up the Status stage
transfer on the control endpoint.
Special case: stalling the control OUT endpoint
The core must stall IN/OUT tokens if, during the data stage of a control transfer, the host
sends more IN/OUT tokens than are specified in the SETUP packet. In this case, the
application must enable the ITTXFE interrupt in OTG_DIEPINTx and the OTEPDIS interrupt
in OTG_DOEPINTx during the data stage of the control transfer, after the core has
transferred the amount of data specified in the SETUP packet. Then, when the application
receives this interrupt, it must set the STALL bit in the corresponding endpoint control
register, and clear this interrupt.
43.16.6
Worst case response time
When the OTG_FS controller acts as a device, there is a worst case response time for any
tokens that follow an isochronous OUT. This worst case response time depends on the AHB
clock frequency.
The core registers are in the AHB domain, and the core does not accept another token
before updating these register values. The worst case is for any token following an
isochronous OUT, because for an isochronous transaction, there is no handshake and the
next token could come sooner. This worst case value is 7 PHY clocks when the AHB clock
is the same as the PHY clock. When the AHB clock is faster, this value is smaller.
If this worst case condition occurs, the core responds to bulk/interrupt tokens with a NAK
and drops isochronous and SETUP tokens. The host interprets this as a timeout condition
for SETUP and retries the SETUP packet. For isochronous transfers, the Incomplete
1636/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
isochronous IN transfer interrupt (IISOIXFR) and Incomplete isochronous OUT transfer
interrupt (IISOOXFR) inform the application that isochronous IN/OUT packets were
dropped.
Choosing the value of TRDT in OTG_GUSBCFG
The value in TRDT (OTG_GUSBCFG) is the time it takes for the MAC, in terms of PHY
clocks after it has received an IN token, to get the FIFO status, and thus the first data from
the PFC block. This time involves the synchronization delay between the PHY and AHB
clocks. The worst case delay for this is when the AHB clock is the same as the PHY clock.
In this case, the delay is 5 clocks.
Once the MAC receives an IN token, this information (token received) is synchronized to the
AHB clock by the PFC (the PFC runs on the AHB clock). The PFC then reads the data from
the SPRAM and writes them into the dual clock source buffer. The MAC then reads the data
out of the source buffer (4 deep).
If the AHB is running at a higher frequency than the PHY, the application can use a smaller
value for TRDT (in OTG_GUSBCFG).
Figure 513 has the following signals:
•
tkn_rcvd: Token received information from MAC to PFC
•
dynced_tkn_rcvd: Doubled sync tkn_rcvd, from PCLK to HCLK domain
•
spr_read: Read to SPRAM
•
spr_addr: Address to SPRAM
•
spr_rdata: Read data from SPRAM
•
srcbuf_push: Push to the source buffer
•
srcbuf_rdata: Read data from the source buffer. Data seen by MAC
Please refer to Table 261: TRDT values to calculate the value of TRDT.
DocID024597 Rev 3
1637/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Figure 513. TRDT max timing case
0ns
1
50ns
2
100ns
3
4
150ns
5
6
200ns
7
8
HCLK
PCLK
tkn_rcvd
dsynced_tkn_rcvd
spr_read
spr_addr
A1
D1
spr_rdata
srcbuf_push
srcbuf_rdata
D1
5 Clocks
ai15680
43.16.7
OTG programming model
The OTG_FS controller is an OTG device supporting HNP and SRP. When the core is
connected to an “A” plug, it is referred to as an A-device. When the core is connected to a
“B” plug it is referred to as a B-device. In host mode, the OTG_FS controller turns off VBUS
to conserve power. SRP is a method by which the B-device signals the A-device to turn on
VBUS power. A device must perform both data-line pulsing and VBUS pulsing, but a host can
detect either data-line pulsing or VBUS pulsing for SRP. HNP is a method by which the Bdevice negotiates and switches to host role. In Negotiated mode after HNP, the B-device
suspends the bus and reverts to the device role.
A-device session request protocol
The application must set the SRP-capable bit in the Core USB configuration register. This
enables the OTG_FS controller to detect SRP as an A-device.
1638/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Figure 514. A-device SRP
Suspend
DRV_VBUS
6
1
5
2
VBUS_VALID
VBUS pulsing
A_VALID
3
D+
D-
4
Data line pulsing
7
Connect
Low
ai15681
1. DRV_VBUS = VBUS drive signal to the PHY
VBUS_VALID = VBUS valid signal from PHY
A_VALID = A-peripheral VBUS level signal to PHY
D+ = Data plus line
D- = Data minus line
1.
To save power, the application suspends and turns off port power when the bus is idle
by writing the port suspend and port power bits in the host port control and status
register.
2.
PHY indicates port power off by deasserting the VBUS_VALID signal.
3.
The device must detect SE0 for at least 2 ms to start SRP when VBUS power is off.
4.
To initiate SRP, the device turns on its data line pull-up resistor for 5 to 10 ms. The
OTG_FS controller detects data-line pulsing.
5.
The device drives VBUS above the A-device session valid (2.0 V minimum) for VBUS
pulsing.
The OTG_FS controller interrupts the application on detecting SRP. The Session
request detected bit is set in Global interrupt status register (SRQINT set in
OTG_GINTSTS).
6.
The application must service the Session request detected interrupt and turn on the
port power bit by writing the port power bit in the host port control and status register.
The PHY indicates port power-on by asserting the VBUS_VALID signal.
7.
When the USB is powered, the device connects, completing the SRP process.
B-device session request protocol
The application must set the SRP-capable bit in the Core USB configuration register. This
enables the OTG_FS controller to initiate SRP as a B-device. SRP is a means by which the
OTG_FS controller can request a new session from the host.
DocID024597 Rev 3
1639/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
Figure 515. B-device SRP
Suspend
VBUS_VALID
6
1
2
B_VALID
3
DISCHRG_VBUS
4
SESS_END
5
DP
8
Data line pulsing
DM
Connect
Low
7
VBUS pulsing
CHRG_VBUS
ai15682
1. VBUS_VALID = VBUS valid signal from PHY
B_VALID = B-peripheral valid session to PHY
DISCHRG_VBUS = discharge signal to PHY
SESS_END = session end signal to PHY
CHRG_VBUS = charge VBUS signal to PHY
DP = Data plus line
DM = Data minus line
1.
To save power, the host suspends and turns off port power when the bus is idle.
The OTG_FS controller sets the early suspend bit in the Core interrupt register after 3
ms of bus idleness. Following this, the OTG_FS controller sets the USB suspend bit in
the Core interrupt register.
The OTG_FS controller informs the PHY to discharge VBUS.
2.
The PHY indicates the session’s end to the device. This is the initial condition for SRP.
The OTG_FS controller requires 2 ms of SE0 before initiating SRP.
For a USB 1.1 full-speed serial transceiver, the application must wait until VBUS
discharges to 0.2 V after BSVLD (in OTG_GOTGCTL) is deasserted. This discharge
time can be obtained from the transceiver vendor and varies from one transceiver to
another.
3.
The OTG_FS core informs the PHY to speed up VBUS discharge.
4.
The application initiates SRP by writing the session request bit in the OTG Control and
status register. The OTG_FS controller perform data-line pulsing followed by VBUS
pulsing.
5.
The host detects SRP from either the data-line or VBUS pulsing, and turns on VBUS.
The PHY indicates VBUS power-on to the device.
6.
The OTG_FS controller performs VBUS pulsing.
The host starts a new session by turning on VBUS, indicating SRP success. The
OTG_FS controller interrupts the application by setting the session request success
1640/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
status change bit in the OTG interrupt status register. The application reads the session
request success bit in the OTG control and status register.
7.
When the USB is powered, the OTG_FS controller connects, completing the SRP
process.
A-device host negotiation protocol
HNP switches the USB host role from the A-device to the B-device. The application must set
the HNP-capable bit in the Core USB configuration register to enable the OTG_FS
controller to perform HNP as an A-device.
Figure 516. A-device HNP
1
OTG core
Host
Device
Suspend 2
DP
4
3
Host
6
5
Reset
DM
Traffic
8
7
Connect
Traffic
DPPULLDOWN
DMPULLDOWN
ai15683
1. DPPULLDOWN = signal from core to PHY to enable/disable the pull-down on the DP line inside the PHY.
DMPULLDOWN = signal from core to PHY to enable/disable the pull-down on the DM line inside the PHY.
1.
The OTG_FS controller sends the B-device a SetFeature b_hnp_enable descriptor to
enable HNP support. The B-device’s ACK response indicates that the B-device
supports HNP. The application must set host Set HNP Enable bit in the OTG Control
DocID024597 Rev 3
1641/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
and status register to indicate to the OTG_FS controller that the B-device supports
HNP.
2.
When it has finished using the bus, the application suspends by writing the Port
suspend bit in the host port control and status register.
3.
When the B-device observes a USB suspend, it disconnects, indicating the initial
condition for HNP. The B-device initiates HNP only when it must switch to the host role;
otherwise, the bus continues to be suspended.
The OTG_FS controller sets the host negotiation detected interrupt in the OTG
interrupt status register, indicating the start of HNP.
The OTG_FS controller deasserts the DM pull down and DM pull down in the PHY to
indicate a device role. The PHY enables the OTG_DP pull-up resistor to indicate a
connect for B-device.
The application must read the current mode bit in the OTG Control and status register
to determine device mode operation.
4.
The B-device detects the connection, issues a USB reset, and enumerates the
OTG_FS controller for data traffic.
5.
The B-device continues the host role, initiating traffic, and suspends the bus when
done.
The OTG_FS controller sets the early suspend bit in the Core interrupt register after 3
ms of bus idleness. Following this, the OTG_FS controller sets the USB Suspend bit in
the Core interrupt register.
6.
In Negotiated mode, the OTG_FS controller detects the suspend, disconnects, and
switches back to the host role. The OTG_FS controller asserts the DM pull down and
DM pull down in the PHY to indicate its assumption of the host role.
7.
The OTG_FS controller sets the Connector ID status change interrupt in the OTG
Interrupt Status register. The application must read the connector ID status in the OTG
Control and Status register to determine the OTG_FS controller operation as an Adevice. This indicates the completion of HNP to the application. The application must
read the Current mode bit in the OTG control and status register to determine host
mode operation.
8.
The B-device connects, completing the HNP process.
B-device host negotiation protocol
HNP switches the USB host role from B-device to A-device. The application must set the
HNP-capable bit in the Core USB configuration register to enable the OTG_FS controller to
perform HNP as a B-device.
1642/1693
DocID024597 Rev 3
RM0351
USB on-the-go full-speed (OTG_FS)
Figure 517. B-device HNP
1
OTG core
Device
Host
Suspend 2
DP
4
3
Device
6
5
Reset
DM
Traffic
8
7
Connect
Traffic
DPPULLDOWN
DMPULLDOWN
ai15684
1. DPPULLDOWN = signal from core to PHY to enable/disable the pull-down on the DP line inside the PHY.
DMPULLDOWN = signal from core to PHY to enable/disable the pull-down on the DM line inside the PHY.
1.
The A-device sends the SetFeature b_hnp_enable descriptor to enable HNP support.
The OTG_FS controller’s ACK response indicates that it supports HNP. The application
must set the device HNP enable bit in the OTG Control and status register to indicate
HNP support.
The application sets the HNP request bit in the OTG Control and status register to
indicate to the OTG_FS controller to initiate HNP.
2.
When it has finished using the bus, the A-device suspends by writing the Port suspend
bit in the host port control and status register.
The OTG_FS controller sets the Early suspend bit in the Core interrupt register after 3
ms of bus idleness. Following this, the OTG_FS controller sets the USB suspend bit in
the Core interrupt register.
The OTG_FS controller disconnects and the A-device detects SE0 on the bus,
indicating HNP. The OTG_FS controller asserts the DP pull down and DM pull down in
the PHY to indicate its assumption of the host role.
The A-device responds by activating its OTG_DP pull-up resistor within 3 ms of
detecting SE0. The OTG_FS controller detects this as a connect.
The OTG_FS controller sets the host negotiation success status change interrupt in the
OTG Interrupt status register, indicating the HNP status. The application must read the
host negotiation success bit in the OTG Control and status register to determine host
DocID024597 Rev 3
1643/1693
1644
USB on-the-go full-speed (OTG_FS)
RM0351
negotiation success. The application must read the current Mode bit in the Core
interrupt register (OTG_GINTSTS) to determine host mode operation.
1644/1693
3.
The application sets the reset bit (PRST in OTG_HPRT) and the OTG_FS controller
issues a USB reset and enumerates the A-device for data traffic.
4.
The OTG_FS controller continues the host role of initiating traffic, and when done,
suspends the bus by writing the Port suspend bit in the host port control and status
register.
5.
In Negotiated mode, when the A-device detects a suspend, it disconnects and switches
back to the host role. The OTG_FS controller deasserts the DP pull down and DM pull
down in the PHY to indicate the assumption of the device role.
6.
The application must read the current mode bit in the Core interrupt (OTG_GINTSTS)
register to determine the host mode operation.
7.
The OTG_FS controller connects, completing the HNP process.
DocID024597 Rev 3
RM0351
Debug support (DBG)
44
Debug support (DBG)
44.1
Overview
The STM32L4x6 devices are built around a Cortex®-M4 core which contains hardware
extensions for advanced debugging features. The debug extensions allow the core to be
stopped either on a given instruction fetch (breakpoint) or data access (watchpoint). When
stopped, the core’s internal state and the system’s external state may be examined. Once
examination is complete, the core and the system may be restored and program execution
resumed.
The debug features are used by the debugger host when connecting to and debugging the
STM32L4x6 MCUs.
Two interfaces for debug are available:
•
Serial wire
•
JTAG debug port
Figure 518. Block diagram of STM32 MCU and Cortex®-M4-level debug support
34- -#5 DEBUG SUPPORT
#ORTEX - DEBUG SUPPORT
"US MATRIX
#ORTEX -
#ORE
$#ODE
INTERFACE
$ATA
3YSTEM
INTERFACE
*4-3
37$)/
%XTERNAL PRIVATE
PERIPHERAL BUS 00"
*4$)
*4$/
42!#%37/
.*4234
*4#+
37#,+
"RIDGE
37* $0
%4-
!(" !0
42!#%37/
)NTERNAL PRIVATE
PERIPHERAL BUS 00"
.6)#
4RACE PORT
40)5
42!#%#+
42!#%$;=
$74
&0"
)4-
$"'-#5
-36
Note:
The debug features embedded in the Cortex®-M4 core are a subset of the ARM® CoreSight
Design Kit.
DocID024597 Rev 3
1645/1693
1678
Debug support (DBG)
RM0351
The ARM® Cortex®-M4 core provides integrated on-chip debug support. It is comprised of:
•
SWJ-DP: Serial wire / JTAG debug port
•
AHP-AP: AHB access port
•
ITM: Instrumentation trace macrocell
•
FPB: Flash patch breakpoint
•
DWT: Data watchpoint trigger
•
TPUI: Trace port unit interface (available on larger packages, where the corresponding
pins are mapped)
•
ETM: Embedded Trace Macrocell (available only on STM32L4x6 devices larger
packages, where the corresponding pins are mapped)
It also includes debug features dedicated to the STM32L4x6:
•
Flexible debug pinout assignment
•
MCU debug box (support for low-power modes, control over peripheral clocks, etc.)
Note:
For further information on debug functionality supported by the ARM® Cortex®-M4 core,
refer to the Cortex®-M4-r0p1 Technical Reference Manual and to the CoreSight Design Kitr0p1 TRM (see Section 44.2: Reference ARM® documentation).
44.2
Reference ARM® documentation
•
Cortex®-M4 r0p1 Technical Reference Manual (TRM),
search for “Cortex®-M4 Technical Reference Manual” at http://infocenter.arm.com
44.3
•
ARM® Debug Interface V5
•
ARM® CoreSight Design Kit revision r0p1 Technical Reference Manual
SWJ debug port (serial wire and JTAG)
The STM32L4x6 core integrates the Serial Wire / JTAG Debug Port (SWJ-DP). It is an
ARM® standard CoreSight debug port that combines a JTAG-DP (5-pin) interface and a
SW-DP (2-pin) interface.
•
The JTAG Debug Port (JTAG-DP) provides a 5-pin standard JTAG interface to the
AHP-AP port.
•
The Serial Wire Debug Port (SW-DP) provides a 2-pin (clock + data) interface to the
AHP-AP port.
In the SWJ-DP, the two JTAG pins of the SW-DP are multiplexed with some of the five JTAG
pins of the JTAG-DP.
1646/1693
DocID024597 Rev 3
RM0351
Debug support (DBG)
Figure 519. SWJ debug port
TRACESWO (asynchronous trace)
SWJ-DP
JTDO
JTDI
NJTRST
TDO
TDI
nTRST
TDO
TDI
nTRST
JTAG-DP
TCK
TMS
nPOTRST
SWD/JTAG
select
nPOTRST
DBGRESETn
SWDITMS
JTMS/SWDIO
From
power-on
reset
DBGDI
SWDO
DBGDO
SW-DP
SWDOEN
JTCK/SWCLK
SWCLKTCK
DBGDOEN
DBGCLK
ai17139
Figure 519 shows that the asynchronous TRACE output (TRACESWO) is multiplexed with
TDO. This means that the asynchronous trace can only be used with SW-DP, not JTAG-DP.
44.3.1
Mechanism to select the JTAG-DP or the SW-DP
By default, the JTAG-Debug Port is active.
If the debugger host wants to switch to the SW-DP, it must provide a dedicated JTAG
sequence on TMS/TCK (respectively mapped to SWDIO and SWCLK) which disables the
JTAG-DP and enables the SW-DP. This way it is possible to activate the SWDP using only
the SWCLK and SWDIO pins.
This sequence is:
44.4
1.
Send more than 50 TCK cycles with TMS (SWDIO) =1
2.
Send the 16-bit sequence on TMS (SWDIO) = 0111100111100111 (MSB transmitted
first)
3.
Send more than 50 TCK cycles with TMS (SWDIO) =1
Pinout and debug port pins
The STM32L4x6 MCUs are available in various packages with different numbers of
available pins. As a result, some functionalities (ETM) related to pin availability may differ
between packages.
DocID024597 Rev 3
1647/1693
1678
Debug support (DBG)
44.4.1
RM0351
SWJ debug port pins
Five pins are used as outputs from the STM32L4x6 for the SWJ-DP as alternate functions of
general-purpose I/Os. These pins are available on all packages.
Table 264. SWJ debug port pins
JTAG debug port
SW debug port
SWJ-DP pin name
Type
44.4.2
Description
Type
Debug assignment
Pin
assign
ment
JTMS/SWDIO
I
JTAG Test Mode
Selection
IO
Serial Wire Data
Input/Output
PA13
JTCK/SWCLK
I
JTAG Test Clock
I
Serial Wire Clock
PA14
JTDI
I
JTAG Test Data Input
-
-
PA15
JTDO/TRACESWO
O
JTAG Test Data Output
-
TRACESWO if
asynchronous trace is
enabled
PB3
NJTRST
I
JTAG Test nReset
-
-
PB4
Flexible SWJ-DP pin assignment
After RESET (SYSRESETn or PORESETn), all five pins used for the SWJ-DP are assigned
as dedicated pins immediately usable by the debugger host (note that the trace outputs are
not assigned except if explicitly programmed by the debugger host).
However, the STM32L4x6 MCUs offer the possibility of disabling some or all of the SWJ-DP
ports, and therefore the possibility of releasing the associated pins for general-purpose I/O
(GPIO) usage. For more details on how to disable SWJ-DP port pins, please refer to
Section 7.3.2: I/O pin alternate function multiplexer and mapping.
Table 265. Flexible SWJ-DP pin assignment
SWJ IO pin assigned
Available debug ports
PA13 / PA14 /
PA15 /
JTMS/ JTCK/
JTDI
SWDIO SWCLK
1648/1693
PB4/
NJTRST
X
Full SWJ (JTAG-DP + SW-DP) - Reset State
X
X
X
X
Full SWJ (JTAG-DP + SW-DP) but without NJTRST
X
X
X
X
JTAG-DP disabled and SW-DP enabled
X
X
JTAG-DP disabled and SW-DP disabled
Note:
PB3 /
JTDO
Released
When the APB bridge write buffer is full, it takes one extra APB cycle when writing the
AFIO_MAPR register. This is because the deactivation of the JTAGSW pins is done in two
cycles to guarantee a clean level on the nTRST and TCK input signals of the core.
•
Cycle 1: the JTAGSW input signals to the core are tied to 1 or 0 (to 1 for nTRST, TDI
and TMS, to 0 for TCK)
•
Cycle 2: the GPIO controller takes the control signals of the SWJTAG IO pins (like
controls of direction, pull-up/down, Schmitt trigger activation, etc.).
DocID024597 Rev 3
RM0351
44.4.3
Debug support (DBG)
Internal pull-up and pull-down on JTAG pins
It is necessary to ensure that the JTAG input pins are not floating since they are directly
connected to flip-flops to control the debug mode features. Special care must be taken with
the SWCLK/TCK pin which is directly connected to the clock of some of these flip-flops.
To avoid any uncontrolled IO levels, the device embeds internal pull-ups and pull-downs on
the JTAG input pins:
•
NJTRST: internal pull-up
•
JTDI: internal pull-up
•
JTMS/SWDIO: internal pull-up
•
TCK/SWCLK: internal pull-down
Once a JTAG IO is released by the user software, the GPIO controller takes control again.
The reset states of the GPIO control registers put the I/Os in the equivalent state:
•
NJTRST: input pull-up
•
JTDI: input pull-up
•
JTMS/SWDIO: input pull-up
•
JTCK/SWCLK: input pull-down
•
JTDO: input floating
The software can then use these I/Os as standard GPIOs.
Note:
The JTAG IEEE standard recommends to add pull-ups on TDI, TMS and nTRST but there is
no special recommendation for TCK. However, for JTCK, the device needs an integrated
pull-down.
Having embedded pull-ups and pull-downs removes the need to add external resistors.
DocID024597 Rev 3
1649/1693
1678
Debug support (DBG)
44.4.4
RM0351
Using serial wire and releasing the unused debug pins as GPIOs
To use the serial wire DP to release some GPIOs, the user software must change the GPIO
(PA15, PB3 and PB4) configuration mode in the GPIO_MODER register.This releases
PA15, PB3 and PB4 which now become available as GPIOs.
When debugging, the host performs the following actions:
Note:
•
Under system reset, all SWJ pins are assigned (JTAG-DP + SW-DP).
•
Under system reset, the debugger host sends the JTAG sequence to switch from the
JTAG-DP to the SW-DP.
•
Still under system reset, the debugger sets a breakpoint on vector reset.
•
The system reset is released and the Core halts.
•
All the debug communications from this point are done using the SW-DP. The other
JTAG pins can then be reassigned as GPIOs by the user software.
For user software designs, note that:
To release the debug pins, remember that they will be first configured either in input-pull-up
(nTRST, TMS, TDI) or pull-down (TCK) or output tristate (TDO) for a certain duration after
reset until the instant when the user software releases the pins.
When debug pins (JTAG or SW or TRACE) are mapped, changing the corresponding IO pin
configuration in the IOPORT controller has no effect.
44.5
STM32L4x6 JTAG TAP connection
The STM32L4x6 MCUs integrate two serially connected JTAG TAPs, the boundary scan
TAP (IR is 5-bit wide) and the Cortex®-M4 TAP (IR is 4-bit wide).
To access the TAP of the Cortex®-M4 for debug purposes:
Note:
1650/1693
1.
First, it is necessary to shift the BYPASS instruction of the boundary scan TAP.
2.
Then, for each IR shift, the scan chain contains 9 bits (=5+4) and the unused TAP
instruction must be shifted by using the BYPASS instruction.
3.
For each data shift, the unused TAP, which is in BYPASS mode, adds 1 extra data bit in
the data scan chain.
Important: Once Serial-Wire is selected using the dedicated ARM® JTAG sequence, the
boundary scan TAP is automatically disabled (JTMS forced high).
DocID024597 Rev 3
RM0351
Debug support (DBG)
Figure 520. JTAG TAP connections
34- -#5
.*4234
*4-3
37 $0
3ELECTED
4-3 N4234
*4$)
*4$/
4$)
4$/
"OUNDARY SCAN
4!0
)2 IS BIT WIDE
4-3 N4234
4$)
4$/
#ORTEX - 4!0
)2 IS BIT WIDE
AIC
44.6
ID codes and locking mechanism
There are several ID codes inside the STM32L4x6 MCUs. ST strongly recommends tools
designers to lock their debuggers using the MCU DEVICE ID code located in the external
PPB memory map at address 0xE0042000.
DocID024597 Rev 3
1651/1693
1678
Debug support (DBG)
44.6.1
RM0351
MCU device ID code
The STM32L4x6 MCUs integrate an MCU ID code. This ID identifies the ST MCU partnumber and the die revision. It is part of the DBG_MCU component and is mapped on the
external PPB bus (see Section 44.16 on page 1664). This code is accessible using the
JTAG debug port (4 to 5 pins) or the SW debug port (two pins) or by the user software. It is
even accessible while the MCU is under system reset.
Only the DEV_ID(11:0) should be used for identification by the debugger/programmer tools.
DBGMCU_IDCODE
Address: 0xE004 2000
Only 32-bits access supported. Read-only
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
REV_ID
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
r
r
r
r
r
r
r
r
r
r
r
DEV_ID
r
Bits 31:16 REV_ID[15:0] Revision identifier
This field indicates the revision of the device.
0x1000: Rev 1
0x1001: Rev 2
0x1003: Rev 3
0x1007: Rev 4
Bits 35:12 Reserved, must be kept at reset value.
Bits 11:0 DEV_ID[11:0]: Device identifier
The device ID is: 0x415
44.6.2
Boundary scan TAP
JTAG ID code
The TAP of the STM32L4x6 BSC (boundary scan) integrates a JTAG ID code equal to
0x06415041.
44.6.3
Cortex®-M4 TAP
The TAP of the ARM® Cortex®-M4 integrates a JTAG ID code. This ID code is the ARM®
default one and has not been modified. This code is only accessible by the JTAG Debug
Port.
This code is 0x4BA00477 (corresponds to Cortex®-M4 r0p1, see Section 44.2: Reference
ARM® documentation).
1652/1693
DocID024597 Rev 3
RM0351
44.6.4
Debug support (DBG)
Cortex®-M4 JEDEC-106 ID code
The ARM® Cortex®-M4 integrates a JEDEC-106 ID code. It is located in the 4KB ROM table
mapped on the internal PPB bus at address 0xE00FF000_0xE00FFFFF.
This code is accessible by the JTAG Debug Port (4 to 5 pins) or by the SW Debug Port (two
pins) or by the user software.
44.7
JTAG debug port
A standard JTAG state machine is implemented with a 4-bit instruction register (IR) and five
data registers (for full details, refer to the Cortex®-M4 with FPU r0p1 Technical Reference
Manual (TRM), for references, please see Section 44.2: Reference ARM® documentation).
Table 266. JTAG debug port data registers
IR(3:0)
Data register
Details
1111
BYPASS
[1 bit]
-
1110
IDCODE
[32 bits]
ID CODE
0x3BA00477 (ARM® Cortex®-M4 r0p1-01rel0 ID Code)
DPACC
[35 bits]
Debug port access register
This initiates a debug port and allows access to a debug port register.
– When transferring data IN:
Bits 34:3= DATA[31:0] = 32-bit data to transfer for a write request
Bits 2:1 = A[3:2] = 2-bit address of a debug port register.
Bit 0 = RnW = Read request (1) or write request (0).
– When transferring data OUT:
Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read
request
Bits 2:0 = ACK[2:0] = 3-bit Acknowledge:
010 = OK/FAULT
001 = WAIT
OTHER = reserved
Refer to Table 267 for a description of the A(3:2) bits
1010
DocID024597 Rev 3
1653/1693
1678
Debug support (DBG)
RM0351
Table 266. JTAG debug port data registers (continued)
IR(3:0)
Data register
Details
1011
APACC
[35 bits]
Access port access register
Initiates an access port and allows access to an access port register.
– When transferring data IN:
Bits 34:3 = DATA[31:0] = 32-bit data to shift in for a write request
Bits 2:1 = A[3:2] = 2-bit address (sub-address AP registers).
Bit 0 = RnW= Read request (1) or write request (0).
– When transferring data OUT:
Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read
request
Bits 2:0 = ACK[2:0] = 3-bit Acknowledge:
010 = OK/FAULT
001 = WAIT
OTHER = reserved
There are many AP Registers (see AHB-AP) addressed as the
combination of:
– The shifted value A[3:2]
– The current value of the DP SELECT register
1000
ABORT
[35 bits]
Abort register
– Bits 31:1 = Reserved
– Bit 0 = DAPABORT: write 1 to generate a DAP abort.
Table 267. 32-bit debug port registers addressed through the shifted value A[3:2]
Address A(3:2) value
0x0
00
Reserved, must be kept at reset value.
01
DP CTRL/STAT register. Used to:
– Request a system or debug power-up
– Configure the transfer operation for AP accesses
– Control the pushed compare and pushed verify operations
– Read some status flags (overrun, power-up acknowledges)
0x8
10
DP SELECT register. Used to select the current access port and the
active 4-words register window.
– Bits 31:24: APSEL: select the current AP
– Bits 23:8: reserved
– Bits 7:4: APBANKSEL: select the active 4-words register window on the
current AP
– Bits 3:0: reserved
0xC
11
DP RDBUFF register: Used to allow the debugger to get the final result
after a sequence of operations (without requesting new JTAG-DP
operation)
0x4
1654/1693
Description
DocID024597 Rev 3
RM0351
Debug support (DBG)
44.8
SW debug port
44.8.1
SW protocol introduction
This synchronous serial protocol uses two pins:
•
SWCLK: clock from host to target
•
SWDIO: bidirectional
The protocol allows two banks of registers (DPACC registers and APACC registers) to be
read and written to.
Bits are transferred LSB-first on the wire.
For SWDIO bidirectional management, the line must be pulled-up on the board (100 kΩ
recommended by ARM®).
Each time the direction of SWDIO changes in the protocol, a turnaround time is inserted
where the line is not driven by the host nor the target. By default, this turnaround time is one
bit time, however this can be adjusted by configuring the SWCLK frequency.
44.8.2
SW protocol sequence
Each sequence consist of three phases:
1.
Packet request (8 bits) transmitted by the host
2.
Acknowledge response (3 bits) transmitted by the target
3.
Data transfer phase (33 bits) transmitted by the host or the target
Table 268. Packet request (8-bits)
Bit
Name
Description
0
Start
Must be “1”
1
APnDP
0: DP Access
1: AP Access
2
RnW
0: Write Request
1: Read Request
4:3
A(3:2)
Address field of the DP or AP registers (refer to Table 267)
5
Parity
Single bit parity of preceding bits
6
Stop
0
7
Park
Not driven by the host. Must be read as “1” by the target because of
the pull-up
Refer to the Cortex®-M4 r0p1 TRM for a detailed description of DPACC and APACC
registers.
The packet request is always followed by the turnaround time (default 1 bit) where neither
the host nor target drive the line.
DocID024597 Rev 3
1655/1693
1678
Debug support (DBG)
RM0351
Table 269. ACK response (3 bits)
Bit
0..2
Name
Description
001: FAULT
010: WAIT
100: OK
ACK
The ACK Response must be followed by a turnaround time only if it is a READ transaction
or if a WAIT or FAULT acknowledge has been received.
Table 270. DATA transfer (33 bits)
Bit
0..31
32
Name
Description
WDATA or RDATA Write or Read data
Parity
Single parity of the 32 data bits
The DATA transfer must be followed by a turnaround time only if it is a READ transaction.
44.8.3
SW-DP state machine (reset, idle states, ID code)
The State Machine of the SW-DP has an internal ID code which identifies the SW-DP. It
follows the JEP-106 standard. This ID code is the default ARM® one and is set to
0x1BA01477 (corresponding to Cortex®-M4 r0p1).
Note:
Note that the SW-DP state machine is inactive until the target reads this ID code.
•
The SW-DP state machine is in RESET STATE either after power-on reset, or after the
DP has switched from JTAG to SWD or after the line is high for more than 50 cycles
•
The SW-DP state machine is in IDLE STATE if the line is low for at least two cycles
after RESET state.
•
After RESET state, it is mandatory to first enter into an IDLE state AND to perform a
READ access of the DP-SW ID CODE register. Otherwise, the target will issue a
FAULT acknowledge response on another transactions.
Further details of the SW-DP state machine can be found in the Cortex®-M4 r0p1 TRM and
the CoreSight Design Kit r0p1 TRM.
44.8.4
1656/1693
DP and AP read/write accesses
•
Read accesses to the DP are not posted: the target response can be immediate (if
ACK=OK) or can be delayed (if ACK=WAIT).
•
Read accesses to the AP are posted. This means that the result of the access is
returned on the next transfer. If the next access to be done is NOT an AP access, then
the DP-RDBUFF register must be read to obtain the result.
The READOK flag of the DP-CTRL/STAT register is updated on every AP read access
or RDBUFF read request to know if the AP read access was successful.
•
The SW-DP implements a write buffer (for both DP or AP writes), that enables it to
accept a write operation even when other transactions are still outstanding. If the write
buffer is full, the target acknowledge response is “WAIT”. With the exception of
DocID024597 Rev 3
RM0351
Debug support (DBG)
IDCODE read or CTRL/STAT read or ABORT write which are accepted even if the write
buffer is full.
•
44.8.5
Because of the asynchronous clock domains SWCLK and HCLK, two extra SWCLK
cycles are needed after a write transaction (after the parity bit) to make the write
effective internally. These cycles should be applied while driving the line low (IDLE
state)
This is particularly important when writing the CTRL/STAT for a power-up request. If the
next transaction (requiring a power-up) occurs immediately, it will fail.
SW-DP registers
Access to these registers are initiated when APnDP=0
Table 271. SW-DP registers
A(3:2)
R/W
CTRLSEL bit
of SELECT
register
Register
Notes
00
Read
-
IDCODE
The manufacturer code is not set to ST code
0x2BA01477 (identifies the SW-DP)
00
Write
-
ABORT
-
01
Read/Write
0
DPCTRL/STAT
Purpose is to:
– request a system or debug power-up
– configure the transfer operation for AP
accesses
– control the pushed compare and pushed
verify operations.
– read some status flags (overrun, powerup acknowledges)
01
Read/Write
1
WIRE
CONTROL
Purpose is to configure the physical serial
port protocol (like the duration of the
turnaround time)
10
Read
-
READ
RESEND
Enables recovery of the read data from a
corrupted debugger transfer, without
repeating the original AP transfer.
10
Write
-
SELECT
The purpose is to select the current access
port and the active 4-words register window
READ
BUFFER
This read buffer is useful because AP
accesses are posted (the result of a read AP
request is available on the next AP
transaction).
This read buffer captures data from the AP,
presented as the result of a previous read,
without initiating a new transaction
11
Read/Write
-
DocID024597 Rev 3
1657/1693
1678
Debug support (DBG)
44.8.6
RM0351
SW-AP registers
Access to these registers are initiated when APnDP=1
There are many AP Registers (see AHB-AP) addressed as the combination of:
44.9
•
The shifted value A[3:2]
•
The current value of the DP SELECT register
AHB-AP (AHB access port) - valid for both JTAG-DP
and SW-DP
Features:
•
System access is independent of the processor status.
•
Either SW-DP or JTAG-DP accesses AHB-AP.
•
The AHB-AP is an AHB master into the Bus Matrix. Consequently, it can access all the
data buses (Dcode Bus, System Bus, internal and external PPB bus) but the ICode
bus.
•
Bitband transactions are supported.
•
AHB-AP transactions bypass the FPB.
The address of the 32-bits AHP-AP resisters are 6-bits wide (up to 64 words or 256 bytes)
and consists of:
c)
Bits [7:4] = the bits [7:4] APBANKSEL of the DP SELECT register
d)
Bits [3:2] = the 2 address bits of A(3:2) of the 35-bit packet request for SW-DP.
The AHB-AP of the Cortex®-M4 includes 9 x 32-bits registers:
Table 272. Cortex®-M4 AHB-AP registers
Address
offset
Register name
Notes
0x00
AHB-AP Control and Status
Word
Configures and controls transfers through the AHB
interface (size, hprot, status on current transfer, address
increment type
0x04
AHB-AP Transfer Address
-
0x0C
AHB-AP Data Read/Write
-
0x10
AHB-AP Banked Data 0
0x14
AHB-AP Banked Data 1
0x18
AHB-AP Banked Data 2
0x1C
AHB-AP Banked Data 3
0xF8
AHB-AP Debug ROM Address Base Address of the debug interface
0xFC
AHB-AP ID Register
Directly maps the 4 aligned data words without rewriting
the Transfer Address Register.
-
Refer to the Cortex®-M4 r0p1 TRM for further details.
1658/1693
DocID024597 Rev 3
RM0351
44.10
Debug support (DBG)
Core debug
Core debug is accessed through the core debug registers. Debug access to these registers
is by means of the Advanced High-performance Bus (AHB-AP) port. The processor can
access these registers directly over the internal Private Peripheral Bus (PPB).
It consists of 4 registers:
Table 273. Core debug registers
Note:
Register
Description
DHCSR
The 32-bit Debug Halting Control and Status Register:
This provides status information about the state of the processor enable core debug
halt and step the processor.
DCRSR
The 17-bit Debug Core Register Selector Register:
This selects the processor register to transfer data to or from.
DCRDR
The 32-bit Debug Core Register Data Register:
This holds data for reading and writing registers to and from the processor selected
by the DCRSR (Selector) register.
DEMCR
The 32-bit Debug Exception and Monitor Control Register:
This provides Vector Catching and Debug Monitor Control. This register contains a
bit named TRCENA which enable the use of a TRACE.
Important: these registers are not reset by a system reset. They are only reset by a poweron reset.
Refer to the Cortex®-M4 r0p1 TRM for further details.
To Halt on reset, it is necessary to:
44.11
•
enable the bit0 (VC_CORRESET) of the Debug and Exception Monitor Control
Register
•
enable the bit0 (C_DEBUGEN) of the Debug Halting Control and Status Register.
Capability of the debugger host to connect under system
reset
The STM32L4x6 MCUs’ reset system comprises the following reset sources:
•
POR (power-on reset) which asserts a RESET at each power-up
•
Internal watchdog reset
•
Software reset
•
External reset.
The Cortex®-M4 differentiates the reset of the debug part (generally PORRESETn) and the
other one (SYSRESETn).
This way, it is possible for the debugger to connect under System Reset, programming the
Core Debug Registers to halt the core when fetching the reset vector. Then the host can
release the system reset and the core will immediately halt without having executed any
instructions. In addition, it is possible to program any debug features under System Reset.
DocID024597 Rev 3
1659/1693
1678
Debug support (DBG)
RM0351
Note:
It is highly recommended for the debugger host to connect (set a breakpoint in the reset
vector) under system reset.
44.12
FPB (Flash patch breakpoint)
The FPB unit:
•
implements hardware breakpoints
•
patches code and data from code space to system space. This feature gives the
possibility to correct software bugs located in the Code Memory Space.
The use of a Software Patch or a Hardware Breakpoint is exclusive.
The FPB consists of:
44.13
•
2 literal comparators for matching against literal loads from Code Space and remapping
to a corresponding area in the System Space
•
6 instruction comparators for matching against instruction fetches from Code Space.
They can be used either to remap to a corresponding area in the System Space or to
generate a Breakpoint Instruction to the core.
DWT (data watchpoint trigger)
The DWT unit consists of four comparators. They are configurable as:
•
a hardware watchpoint or
•
a trigger to an ETM or
•
a PC sampler or
•
a data address sampler
The DWT also provides some means to give some profiling informations. For this, some
counters are accessible to give the number of:
1660/1693
•
Clock cycle
•
Folded instructions
•
Load store unit (LSU) operations
•
Sleep cycles
•
CPI (clock per instructions)
•
Interrupt overhead
DocID024597 Rev 3
RM0351
Debug support (DBG)
44.14
ITM (instrumentation trace macrocell)
44.14.1
General description
The ITM is an application-driven trace source that supports printf style debugging to trace
Operating System (OS) and application events, and emits diagnostic system information.
The ITM emits trace information as packets which can be generated as:
•
Software trace. Software can write directly to the ITM stimulus registers to emit
packets.
•
Hardware trace. The DWT generates these packets, and the ITM emits them.
•
Time stamping. Timestamps are emitted relative to packets. The ITM contains a 21-bit
counter to generate the timestamp. The Cortex®-M4 clock or the bit clock rate of the
Serial Wire Viewer (SWV) output clocks the counter.
The packets emitted by the ITM are output to the TPIU (Trace Port Interface Unit). The
formatter of the TPIU adds some extra packets (refer to TPIU) and then output the complete
packets sequence to the debugger host.
The bit TRCEN of the Debug Exception and Monitor Control Register must be enabled
before you program or use the ITM.
44.14.2
Time stamp packets, synchronization and overflow packets
Time stamp packets encode time stamp information, generic control and synchronization. It
uses a 21-bit timestamp counter (with possible prescalers) which is reset at each time
stamp packet emission. This counter can be either clocked by the CPU clock or the SWV
clock.
A synchronization packet consists of 6 bytes equal to 0x80_00_00_00_00_00 which is
emitted to the TPIU as 00 00 00 00 00 80 (LSB emitted first).
A synchronization packet is a timestamp packet control. It is emitted at each DWT trigger.
For this, the DWT must be configured to trigger the ITM: the bit CYCCNTENA (bit0) of the
DWT Control Register must be set. In addition, the bit2 (SYNCENA) of the ITM Trace
Control Register must be set.
Note:
If the SYNENA bit is not set, the DWT generates Synchronization triggers to the TPIU which
will send only TPIU synchronization packets and not ITM synchronization packets.
An overflow packet consists is a special timestamp packets which indicates that data has
been written but the FIFO was full.
Table 274. Main ITM registers
Address
@E0000FB0
Register
ITM lock access
Details
Write 0xC5ACCE55 to unlock Write Access to the other ITM
registers
DocID024597 Rev 3
1661/1693
1678
Debug support (DBG)
RM0351
Table 274. Main ITM registers (continued)
Address
Register
Details
Bits 31-24 = Always 0
Bits 23 = Busy
Bits 22-16 = 7-bits ATB ID which identifies the source of the
trace data
Bits 15-10 = Always 0
Bits 9:8 = TSPrescale = Time Stamp Prescaler
Bits 7-5 = Reserved
@E0000E80
ITM trace control
Bit 4 = SWOENA = Enable SWV behavior (to clock the
timestamp counter by the SWV clock)
Bit 3 = DWTENA: Enable the DWT Stimulus
Bit 2 = SYNCENA: this bit must be to 1 to enable the DWT to
generate synchronization triggers so that the TPIU can then
emit the synchronization packets
Bit 1 = TSENA (Timestamp Enable)
Bit 0 = ITMENA: Global Enable Bit of the ITM
Bit 3: mask to enable tracing ports31:24
@E0000E40
ITM trace privilege
Bit 2: mask to enable tracing ports23:16
Bit 1: mask to enable tracing ports15:8
Bit 0: mask to enable tracing ports7:0
@E0000E00
ITM trace enable
@E0000000- Stimulus port
E000007C
registers 0-31
Each bit enables the corresponding Stimulus port to generate
trace
Write the 32-bits data on the selected Stimulus Port (32
available) to be traced out
Example of configuration
To output a simple value to the TPIU:
1662/1693
•
Configure the TPIU and assign TRACE I/Os by configuring the DBGMCU_CR (refer to
Section 44.17.2: TRACE pin assignment and Section 44.16.3: Debug MCU
configuration register (DBGMCU_CR))
•
Write 0xC5ACCE55 to the ITM Lock Access Register to unlock the write access to the
ITM registers
•
Write 0x00010005 to the ITM Trace Control Register to enable the ITM with
Synchronous enabled and an ATB ID different from 0x00
•
Write 0x1 to the ITM Trace Enable Register to enable the Stimulus Port 0
•
Write 0x1 to the ITM Trace Privilege Register to unmask Stimulus Ports 7:0
•
Write the value to output in the Stimulus Port Register 0: this can be done by software
(using a printf function)
DocID024597 Rev 3
RM0351
Debug support (DBG)
44.15
ETM (Embedded trace macrocell)
44.15.1
General description
The ETM enables the reconstruction of program execution. Data are traced using the Data
Watchpoint and Trace (DWT) component or the Instruction Trace Macrocell (ITM) whereas
instructions are traced using the Embedded Trace Macrocell (ETM).
The ETM transmits information as packets and is triggered by embedded resources. These
resources must be programmed independently and the trigger source is selected using the
Trigger Event Register (0xE0041008). An event could be a simple event (address match
from an address comparator) or a logic equation between 2 events. The trigger source is
one of the four comparators of the DWT module, The following events can be monitored:
•
Clock cycle matching
•
Data address matching
For more informations on the trigger resources refer to Section 44.13: DWT (data
watchpoint trigger).
The packets transmitted by the ETM are output to the TPIU (Trace Port Interface Unit). The
formatter of the TPIU adds some extra packets (refer to Section 44.17: TPIU (trace port
interface unit)) and then outputs the complete packet sequence to the debugger host.
44.15.2
Signal protocol, packet types
This part is described in the section 7 ETMv3 Signal Protocol of the ARM® IHI 0014N
document.
44.15.3
Main ETM registers
For more information on registers refer to the chapter 3 of the ARM® IHI 0014N
specification.
Table 275. Main ETM registers
Address
Register
Details
0xE0041FB0 ETM Lock Access
Write 0xC5ACCE55 to unlock the write access to the
other ETM registers.
0xE0041000 ETM Control
This register controls the general operation of the ETM,
for instance how tracing is enabled.
0xE0041010 ETM Status
This register provides information about the current status
of the trace and trigger logic.
0xE0041008 ETM Trigger Event
This register defines the event that will control trigger.
0xE004101C
ETM Trace Enable
Control
This register defines which comparator is selected.
0xE0041020 ETM Trace Enable Event
This register defines the trace enabling event.
0xE0041024 ETM Trace Start/Stop
This register defines the traces used by the trigger source
to start and stop the trace, respectively.
DocID024597 Rev 3
1663/1693
1678
Debug support (DBG)
44.15.4
RM0351
Configuration example
To output a simple value to the TPIU:
44.16
•
Configure the TPIU and enable the I/IO_TRACEN to assign TRACE I/Os in the
STM32L4x6 debug configuration register
•
Write 0xC5ACCE55 to the ETM Lock Access Register to unlock the write access to the
ITM registers
•
Write 0x00001D1E to the control register (configure the trace)
•
Write 0000406F to the Trigger Event register (define the trigger event)
•
Write 0000006F to the Trace Enable Event register (define an event to start/stop)
•
Write 00000001 to the Trace Start/stop register (enable the trace)
•
Write 0000191E to the ETM Control Register (end of configuration)
MCU debug component (DBGMCU)
The MCU debug component helps the debugger provide support for:
44.16.1
•
Low-power modes
•
Clock control for timers, watchdog, I2C and bxCAN during a breakpoint
•
Control of the trace pins assignment
Debug support for low-power modes
To enter low-power mode, the instruction WFI or WFE must be executed.
The MCU implements several low-power modes which can either deactivate the CPU clock
or reduce the power of the CPU.
The core does not allow FCLK or HCLK to be turned off during a debug session. As these
are required for the debugger connection, during a debug, they must remain active. The
MCU integrates special means to allow the user to debug software in low-power modes.
For this, the debugger host must first set some debug configuration registers to change the
low-power mode behavior:
•
In Sleep mode, DBG_SLEEP bit of DBGMCU_CR register must be previously set by
the debugger. This will feed HCLK with the same clock that is provided to FCLK
(system clock previously configured by the software).
•
In Stop mode, the bit DBG_STOP must be previously set by the debugger. This will
enable the internal RC oscillator clock to feed FCLK and HCLK in Stop mode.
•
In Standby mode, the bit DBG_STANDBY must be previously set by the debugger. This
will keep the regulators on, and enable the internal RC oscillator clock to feed FCLK
and HCLK in Standby mode. A system reset is generated internally so that exiting from
Standby is identical than fetching from reset.
The DBGMCU_CR register can be written by the debugger under system reset. If the
debugger host does not support these features, it is still possible to write this register by
software.
1664/1693
DocID024597 Rev 3
RM0351
Debug support (DBG)
Debug support for timers, RTC, watchdog, bxCAN and I2C
44.16.2
During a breakpoint, it is necessary to choose how the counter of timers,RTC and watchdog
should behave:
•
They can continue to count inside a breakpoint. This is usually required when a PWM is
controlling a motor, for example.
•
They can stop to count inside a breakpoint. This is required for watchdog purposes.
For the bxCAN, the user can choose to block the update of the receive register during a
breakpoint.
For the I2C, the user can choose to block the SMBUS timeout during a breakpoint.
The DBGMCU freeze registers can be written by the debugger under system reset. If the
debugger host does not support these features, it is still possible to write these registers by
software.
44.16.3
Debug MCU configuration register (DBGMCU_CR)
Address: 0xE004 2004
Power-on reset: 0x0000 0000
System reset: not affected
Access: Only 32-bit access supported
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
DBG_
STAND
BY
DBG_
STOP
DBG_
SLEEP
rw
rw
rw
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
TRACE_
MODE
[1:0]
rw
rw
TRACE
_
IOEN
rw
Res..
Bits 31:8 Reserved, must be kept at reset value.
Bits 7:5 TRACE_MODE[1:0] and TRACE_IOEN: Trace pin assignment control
– With TRACE_IOEN=0:
TRACE_MODE=xx: TRACE pins not assigned (default state)
– With TRACE_IOEN=1:
–
TRACE_MODE=00: TRACE pin assignment for Asynchronous Mode
–
TRACE_MODE=01: TRACE pin assignment for Synchronous Mode with a
TRACEDATA size of 1
–
TRACE_MODE=10: TRACE pin assignment for Synchronous Mode with a
TRACEDATA size of 2
–
TRACE_MODE=11: TRACE pin assignment for Synchronous Mode with a
TRACEDATA size of 4
Bits 4:3 Reserved, must be kept at reset value.
DocID024597 Rev 3
1665/1693
1678
Debug support (DBG)
RM0351
Bit 2 DBG_STANDBY: Debug Standby mode
0: (FCLK=Off, HCLK=Off) The whole digital part is unpowered.
From software point of view, exiting from Standby is identical than fetching reset vector
(except a few status bit indicated that the MCU is resuming from Standby)
1: (FCLK=On, HCLK=On) In this case, the digital part is not unpowered and FCLK and
HCLK are provided by the internal RC oscillator which remains active. In addition, the MCU
generate a system reset during Standby mode so that exiting from Standby is identical than
fetching from reset.
Bit 1 DBG_STOP: Debug Stop mode
0: (FCLK=Off, HCLK=Off) In STOP mode, the clock controller disables all clocks (including
HCLK and FCLK). When exiting from STOP mode, the clock configuration is identical to the
one after RESET (CPU clocked by the 8 MHz internal RC oscillator (HSI16)). Consequently,
the software must reprogram the clock controller to enable the PLL, the Xtal, etc.
1: (FCLK=On, HCLK=On) In this case, when entering STOP mode, FCLK and HCLK are
provided by the internal RC oscillator which remains active in STOP mode. When exiting
STOP mode, the software must reprogram the clock controller to enable the PLL, the Xtal,
etc. (in the same way it would do in case of DBG_STOP=0)
Bit 0 DBG_SLEEP: Debug Sleep mode
0: (FCLK=On, HCLK=Off) In Sleep mode, FCLK is clocked by the system clock as
previously configured by the software while HCLK is disabled.
In Sleep mode, the clock controller configuration is not reset and remains in the previously
programmed state. Consequently, when exiting from Sleep mode, the software does not
need to reconfigure the clock controller.
1: (FCLK=On, HCLK=On) In this case, when entering Sleep mode, HCLK is fed by the same
clock that is provided to FCLK (system clock as previously configured by the software).
1666/1693
DocID024597 Rev 3
RM0351
Debug support (DBG)
44.16.4
Debug MCU APB1 freeze register1(DBGMCU_APB1FZR1)
Address: 0xE004 2008
Power on reset (POR): 0x0000 0000
System reset: not affected
Access: Only 32-bit access are supported.
31
LPTIM1_
STOP
30
29
28
27
26
25
DBG_
CAN_
STOP
24
22
21
Res..
Res.
Res.
Res.
Res.
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
Res.
Res.
Res.
DBG_
RTC_
STOP
Res.
Res.
Res.
Res.
rw
Res.
23
rw
DBG_ DBG_
IWDG_ WWDG
STOP _STOP
rw
rw
20
DBG_ DBG_ DBG_
I2C3_ I2C2_ I2C1_ Res.
STOP STOP STOP
rw
4
19
18
17
16
Res.
Res.
Res.
Res.
3
2
1
0
DBG_ DBG_ DBG_
DBG_ DBG_ DBG_
TIM7 TIM6 TIM5
TIM4_ TIM3_ TIM2_
_STO _STO _STO
STOP STOP STOP
P
P
P
rw
rw
rw
rw
rw
rw
Bit 31 DBG_LPTIM1_STOP: LPTIM1 counter stopped when core is halted
0: The counter clock of LPTIM1 is fed even if the core is halted
1: The counter clock of LPTIM1 is stopped when the core is halted
Bits 30:26 Reserved, must be kept at reset value.
Bit 25 DBG_CAN_STOP: bxCAN stopped when core is halted
0: Same behavior as in normal mode
1: The bxCAN receive registers are frozen
Bit 24 Reserved, must be kept at reset value.
Bit 23 DBG_I2C3_STOP: I2C3 SMBUS timeout counter stopped when core is halted
0: Same behavior as in normal mode
1: The I2C3 SMBus timeout is frozen
Bit 22 DBG_I2C2_STOP: I2C2 SMBUS timeout counter stopped when core is halted
0: Same behavior as in normal mode
1: The I2C2 SMBus timeout is frozen
Bit 21 DBG_I2C1_STOP: I2C1 SMBUS timeout counter stopped when core is halted
0: Same behavior as in normal mode
1: The I2C1 SMBus timeout is frozen
Bits 20:13 Reserved, must be kept at reset value.
Bit 12 DBG_IWDG_STOP: Independent watchdog counter stopped when core is halted
0: The independent watchdog counter clock continues even if the core is halted
1: The independent watchdog counter clock is stopped when the core is halted
Bit 11 DBG_WWDG_STOP: Window watchdog counter stopped when core is halted
0: The window watchdog counter clock continues even if the core is halted
1: The window watchdog counter clock is stopped when the core is halted
Bit 10 DBG_RTC_STOP: RTC counter stopped when core is halted
0: The clock of the RTC counter is fed even if the core is halted
1: The clock of the RTC counter is stopped when the core is halted
Bits 9:6 Reserved, must be kept at reset value.
DocID024597 Rev 3
1667/1693
1678
Debug support (DBG)
RM0351
Bit 5 DBG_TIM7_STOP: TIM7 counter stopped when core is halted
0: The counter clock of TIM7 is fed even if the core is halted
1: The counter clock of TIM7 is stopped when the core is halted
Bit 4 DBG_TIM6_STOP: TIM6 counter stopped when core is halted
0: The counter clock of TIM6 is fed even if the core is halted
1: The counter clock of TIM6 is stopped when the core is halted
Bit 3 DBG_TIM5_STOP: TIM5 counter stopped when core is halted
0: The counter clock of TIM5 is fed even if the core is halted
1: The counter clock of TIM5 is stopped when the core is halted
Bit 2 DBG_TIM4_STOP: TIM4 counter stopped when core is halted
0: The counter clock of TIM4 is fed even if the core is halted
1: The counter clock of TIM4 is stopped when the core is halted
Bit 1 DBG_TIM3_STOP: TIM3 counter stopped when core is halted
0: The counter clock of TIM3 is fed even if the core is halted
1: The counter clock of TIM3 is stopped when the core is halted
Bit 0 DBG_TIM2_STOP: TIM2 counter stopped when core is halted
0: The counter clock of TIM2 is fed even if the core is halted
1: The counter clock of TIM2 is stopped when the core is halted
1668/1693
DocID024597 Rev 3
RM0351
Debug support (DBG)
44.16.5
Debug MCU APB1 freeze register 2 (DBGMCU_APB1FZR2)
Address: 0xE004 200C
Power on reset (POR): 0x0000 0000
System reset: not affected
Access: Only 32-bit access are supported.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
DBG_
LPTIM2
_STOP
Res.
Res.
Res.
Res.
Res.
rw
Bits 31:6 Reserved, must be kept at reset value.
Bit 5 DBG_LPTIM2_STOP: LPTIM2 counter stopped when core is halted
0: The counter clock of LPTIM2 is fed even if the core is halted
1: The counter clock of LPTIM2 is stopped when the core is halted
Bits 4:0 Reserved, must be kept at reset value.
DocID024597 Rev 3
1669/1693
1678
Debug support (DBG)
44.16.6
RM0351
Debug MCU APB2 freeze register (DBGMCU_APB2FZR)
Address: 0xE004 2010
Power on reset (POR): 0x0000 0000
System reset: not affected
Access: Only 32-bit access are supported.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
DBG_TI
M17_ST
OP
DBG_TI
M16_ST
OP
DBG_TI
M15_ST
OP
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
rw
rw
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Res.
Res.
DBG_
TIM8_
STOP
Res.
DBG_
TIM1_
STOP
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
rw
rw
Bits 31:19 Reserved, must be kept at reset value.
Bit 18 DBG_TIM17_STOP: TIM17 counter stopped when core is halted
0: The clock of the TIM17 counter is fed even if the core is halted
1: The clock of the TIM17 counter is stopped when the core is halted
Bit 17 DBG_TIM16_STOP: TIM16 counter stopped when core is halted
0: The clock of the TIM16 counter is fed even if the core is halted
1: The clock of the TIM16 counter is stopped when the core is halted
Bit 16 DBG_TIM15_STOP: TIM15 counter stopped when core is halted
0: The clock of the TIM15 counter is fed even if the core is halted
1: The clock of the TIM15 counter is stopped when the core is halted
Bits 15:14 Reserved, must be kept at reset value.
Bit 13 DBG_TIM8_STOP: TIM8 counter stopped when core is halted
0: The clock of the TIM8 counter is fed even if the core is halted
1: The clock of the TIM8 counter is stopped when the core is halted
Bit 12 Reserved, must be kept at reset value.
Bit 11 DBG_TIM1_STOP: TIM1 counter stopped when core is halted
0: The clock of the TIM1 counter is fed even if the core is halted
1: The clock of the TIM1 counter is stopped when the core is halted
Bits 10:0 Reserved, must be kept at reset value.
1670/1693
DocID024597 Rev 3
RM0351
Debug support (DBG)
44.17
TPIU (trace port interface unit)
44.17.1
Introduction
The TPIU acts as a bridge between the on-chip trace data from the ITM and the ETM.
The output data stream encapsulates the trace source ID, that is then captured by a trace
port analyzer (TPA).
The core embeds a simple TPIU, especially designed for low-cost debug (consisting of a
special version of the CoreSight TPIU).
Figure 521. TPIU block diagram
42!#%#,+). DOMAIN
#,+ DOMAIN
40)5
%4-
42!#%#,+).
!SYNCHRONOUS
&)&/
42!#%#+
40)5
FORMATTER
4RACE OUT
SERIALIZER
42!#%$!4!
;=
!SYNCHRONOUS
&)&/
)4-
42!#%37/
%XTERNAL 00" BUS
AI
44.17.2
TRACE pin assignment
•
Asynchronous mode
The asynchronous mode requires 1 extra pin and is available on all packages. It is only
available if using Serial Wire mode (not in JTAG mode).
Table 276. Asynchronous TRACE pin assignment
Trace synchronous mode
TPUI pin name
Type
TRACESWO
•
O
Description
TRACE Asynchronous Data Output
STM32L4x6 pin
assignment
PB3
Synchronous mode
The synchronous mode requires from 2 to 6 extra pins depending on the data trace
size and is only available in the larger packages. In addition it is available in JTAG
mode and in Serial Wire mode and provides better bandwidth output capabilities than
asynchronous trace.
DocID024597 Rev 3
1671/1693
1678
Debug support (DBG)
RM0351
Table 277. Synchronous TRACE pin assignment
Trace synchronous mode
STM32L4x6 pin
assignment
TPUI pin name
Type
Description
TRACECK
O
TRACE Clock
PE2
TRACED[3:0]
O
TRACE Synchronous Data Outputs
Can be 1, 2 or 4.
PE[6:3]
TPUI TRACE pin assignment
By default, these pins are NOT assigned. They can be assigned by setting the
TRACE_IOEN and TRACE_MODE bits in the Debug MCU configuration register
(DBGMCU_CR). This configuration has to be done by the debugger host.
In addition, the number of pins to assign depends on the trace configuration (asynchronous
or synchronous).
•
Asynchronous mode: 1 extra pin is needed
•
Synchronous mode: from 2 to 5 extra pins are needed depending on the size of the
data trace port register (1, 2 or 4) :
–
TRACECK
–
TRACED(0) if port size is configured to 1, 2 or 4
–
TRACED(1) if port size is configured to 2 or 4
–
TRACED(2) if port size is configured to 4
–
TRACED(3) if port size is configured to 4
To assign the TRACE pin, the debugger host must program the bits TRACE_IOEN and
TRACE_MODE[1:0] of the Debug MCU configuration register (DBGMCU_CR). By default
the TRACE pins are not assigned.
This register is mapped on the external PPB and is reset by the PORESET (and not by the
SYSTEM reset). It can be written by the debugger under SYSTEM reset.
Table 278. Flexible TRACE pin assignment
DBGMCU_CR
register
TRACE IO pin assigned
Pins
TRACE assigned for:
TRACE
PB3 / JTDO/
PE2 /
PE3 /
PE4 /
PE5 /
PE6 /
_MODE
_IOEN
TRACESWO TRACECK TRACED[0] TRACED[1] TRACED[2] TRACED[3]
[1:0]
0
XX
No Trace
(default state)
1
00
Asynchronous
TRACESWO
Trace
1672/1693
Released (1)
-
DocID024597 Rev 3
-
Released
(usable as GPIO)
RM0351
Debug support (DBG)
Table 278. Flexible TRACE pin assignment (continued)
DBGMCU_CR
register
TRACE IO pin assigned
Pins
TRACE assigned for:
TRACE
PB3 / JTDO/
PE2 /
PE3 /
PE4 /
PE5 /
PE6 /
_MODE
_IOEN
TRACESWO TRACECK TRACED[0] TRACED[1] TRACED[2] TRACED[3]
[1:0]
1
01
Synchronous
Trace 1 bit
1
10
Synchronous
Trace 2 bit
1
11
Synchronous
Trace 4 bit
TRACECK TRACED[0]
Released (1)
-
TRACECK TRACED[0] TRACED[1]
-
-
-
-
TRACECK TRACED[0] TRACED[1] TRACED[2] TRACED[3]
1. When Serial Wire mode is used, it is released, but when JTAG is used, it is assigned to JTDO.
Note:
By default, the TRACECLKIN input clock of the TPIU is tied to GND. It is assigned to HCLK
two clock cycles after the bit TRACE_IOEN has been set.
The debugger must then program the Trace Mode by writing the PROTOCOL[1:0] bits in the
SPP_R (Selected Pin Protocol) register of the TPIU.
•
PROTOCOL=00: Trace Port Mode (synchronous)
•
PROTOCOL=01 or 10: Serial Wire (Manchester or NRZ) Mode (asynchronous mode).
Default state is 01
It then also configures the TRACE port size by writing the bits [3:0] in the CPSPS_R
(Current Synchronous Port Size Register) of the TPIU:
44.17.3
•
0x1 for 1 pin (default state)
•
0x2 for 2 pins
•
0x8 for 4 pins
TPUI formatter
The formatter protocol outputs data in 16-byte frames:
•
seven bytes of data
•
eight bytes of mixed-use bytes consisting of:
•
Note:
–
1 bit (LSB) to indicate it is a DATA byte (‘0) or an ID byte (‘1).
–
7 bits (MSB) which can be data or change of source ID trace.
one byte of auxiliary bits where each bit corresponds to one of the eight mixed-use
bytes:
–
if the corresponding byte was a data, this bit gives bit0 of the data.
–
if the corresponding byte was an ID change, this bit indicates when that ID change
takes effect.
Refer to the ARM® CoreSight Architecture Specification v1.0 (ARM IHI 0029B) for further
information
DocID024597 Rev 3
1673/1693
1678
Debug support (DBG)
44.17.4
RM0351
TPUI frame synchronization packets
The TPUI can generate two types of synchronization packets:
•
The Frame Synchronization packet (or Full Word Synchronization packet)
It consists of the word: 0x7F_FF_FF_FF (LSB emitted first). This sequence can not
occur at any other time provided that the ID source code 0x7F has not been used.
It is output periodically between frames.
In continuous mode, the TPA must discard all these frames once a synchronization
frame has been found.
•
The Half-Word Synchronization packet
It consists of the half word: 0x7F_FF (LSB emitted first).
It is output periodically between or within frames.
These packets are only generated in continuous mode and enable the TPA to detect
that the TRACE port is in IDLE mode (no TRACE to be captured). When detected by
the TPA, it must be discarded.
44.17.5
Transmission of the synchronization frame packet
There is no Synchronization Counter register implemented in the TPIU of the core.
Consequently, the synchronization trigger can only be generated by the DWT. Refer to the
registers DWT Control Register (bits SYNCTAP[11:10]) and the DWT Current PC Sampler
Cycle Count Register.
The TPUI Frame synchronization packet (0x7F_FF_FF_FF) is emitted:
44.17.6
•
after each TPIU reset release. This reset is synchronously released with the rising
edge of the TRACECLKIN clock. This means that this packet is transmitted when the
TRACE_IOEN bit in the DBGMCU_CFG register is set. In this case, the word
0x7F_FF_FF_FF is not followed by any formatted packet.
•
at each DWT trigger (assuming DWT has been previously configured). Two cases
occur:
–
If the bit SYNENA of the ITM is reset, only the word 0x7F_FF_FF_FF is emitted
without any formatted stream which follows.
–
If the bit SYNENA of the ITM is set, then the ITM synchronization packets will
follow (0x80_00_00_00_00_00), formatted by the TPUI (trace source ID added).
Synchronous mode
The trace data output size can be configured to 4, 2 or 1 pin: TRACED(3:0)
The output clock is output to the debugger (TRACECK)
Here, TRACECLKIN is driven internally and is connected to HCLK only when TRACE is
used.
Note:
In this synchronous mode, it is not required to provide a stable clock frequency.
The TRACE I/Os (including TRACECK) are driven by the rising edge of TRACLKIN (equal
to HCLK). Consequently, the output frequency of TRACECK is equal to HCLK/2.
1674/1693
DocID024597 Rev 3
RM0351
44.17.7
Debug support (DBG)
Asynchronous mode
This is a low cost alternative to output the trace using only 1 pin: this is the asynchronous
output pin TRACESWO. Obviously there is a limited bandwidth.
TRACESWO is multiplexed with JTDO when using the SW-DP pin. This way, this
functionality is available in all STM32L4x6 packages.
This asynchronous mode requires a constant frequency for TRACECLKIN. For the standard
UART (NRZ) capture mechanism, 5% accuracy is needed. The Manchester encoded
version is tolerant up to 10%.
44.17.8
TRACECLKIN connection inside the STM32L4x6
In the STM32L4x6, this TRACECLKIN input is internally connected to HCLK. This means
that when in asynchronous trace mode, the application is restricted to use time frames
where the CPU frequency is stable.
Note:
Important: when using asynchronous trace: it is important to be aware that:
The default clock of the STM32L4x6 MCUs is the internal RC oscillator. Its frequency under
reset is different from the one after reset release. This is because the RC calibration is the
default one under system reset and is updated at each system reset release.
Consequently, the trace port analyzer (TPA) should not enable the trace (with the
TRACE_IOEN bit) under system reset, because a Synchronization Frame Packet will be
issued with a different bit time than trace packets which will be transmitted after reset
release.
DocID024597 Rev 3
1675/1693
1678
Debug support (DBG)
44.17.9
RM0351
TPIU registers
The TPIU APB registers can be read and written only if the bit TRCENA of the Debug
Exception and Monitor Control Register (DEMCR) is set. Otherwise, the registers are read
as zero (the output of this bit enables the PCLK of the TPIU).
Table 279. Important TPIU registers
Address
Register
0xE0040004 Current port size
Allows the trace port size to be selected:
Bit 0: Port size = 1
Bit 1: Port size = 2
Bit 2: Port size = 3, not supported
Bit 3: Port Size = 4
Only 1 bit must be set. By default, the port size is one bit.
(0x00000001)
Selected pin
protocol
Allows the Trace Port Protocol to be selected:
Bit1:0 =
00: Synchronous Trace Port Mode
01: Serial Wire Output - manchester (default value)
10: Serial Wire Output - NRZ
11: reserved
0xE0040304
Formatter and
flush control
Bit 31-9 = always ‘0’
Bit 8 = TrigIn = always ‘1’ to indicate that triggers are indicated
Bit 7-4 = always 0
Bit 3-2 = always 0
Bit 1 = EnFCont. In Synchronous Trace mode
(Select_Pin_Protocol register bit1:0 = 00), this bit is forced to
‘1’: the formatter is automatically enabled in continuous mode.
In asynchronous mode (Select_Pin_Protocol register bit1:0 <>
00), this bit can be written to activate or not the formatter.
Bit 0 = always ‘0’
The resulting default value is 0x102
Note: In synchronous mode, because the TRACECTL pin is not
mapped outside the chip, the formatter is always enabled in
continuous mode; this way the formatter inserts some control
packets to identify the source of the trace packets).
0xE0040300
Formatter and
flush status
Not used in Cortex®-M4, always read as 0x00000008
0xE00400F0
1676/1693
Description
DocID024597 Rev 3
RM0351
Debug support (DBG)
44.17.10 Example of configuration
•
Set the bit TRCENA in the Debug Exception and Monitor Control Register (DEMCR)
•
Write the TPIU Current Port Size Register to the desired value (default is 0x1 for a 1-bit
port size)
•
Write TPIU Formatter and Flush Control Register to 0x102 (default value)
•
Write the TPIU Select Pin Protocol to select the synchronous or asynchronous mode.
Example: 0x2 for asynchronous NRZ mode (UART like)
•
Write the DBGMCU control register to 0x20 (bit IO_TRACEN) to assign TRACE I/Os
for asynchronous mode. A TPIU Synchronous packet is emitted at this time
(FF_FF_FF_7F)
•
Configure the ITM and write the ITM Stimulus register to output a value
DocID024597 Rev 3
1677/1693
1678
0xE004 2010
1.
DBGMCU_
APB2FZR
1678/1693
DBG_TIM15_STOP
0
0
0
DocID024597 Rev 3
0
0
The reset value is product dependent. For more information, refer to Section 44.6.1: MCU device ID code.
Reset value
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
0
Res.
DBG_LPTIM2_STOP
DBG_STOP
DBG_SLEEP
Res.
X
X
X
X
Res.
TRACE_IOEN
0
0
DBG_TIM2_STOP
0
0
DBG_TIM3_STOP
0
DBG_STANDBY
X
DBG_TIM4_STOP
0
DBG_TIM6_STOP
X
DBG_TIM5_STOP
0
DBG_TIM7_STOP
Res.
X
Res.
Res.
TRACE_MODE[1:0]
Res.
X
Res.
0
Res.
Reset value
Res.
Res.
Res.
Res.
Res.
X
Res.
Res.
Res.
X
Res.
Res.
Res.
X
Res.
Res.
Res.
Res.
Res.
X
Res.
Res.
DBG_RTC_STOP
Res.
Res.
DBG_WWDG_STOP
0
Res.
DBG_IWDG_STOP
Res.
0
Res.
Res.
0
Res.
Res.
DBG_TIM1_STOP
Res.
DBG_TIM8_STOP
Res.
X
Res.
X
Res.
Res.
Res.
Res.
X
Res.
Res.
X
Res.
Res.
Res.
Res.
Res.
Res.
X
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
REV_ID
Res.
DBG_TIM16_STOP
Res.
Res.
0
Res.
DBG_I2C1_STOP
0
Res.
Res.
X X X X
Res.
Res.
DBG_I2C2_STOP
0
Res.
0
Res.
Res.
Res.
DBGMCU_CR
DBG_I2C3_STOP
X
Res.
X
Res.
X
Res.
DBG_CAN_STOP
X
Res.
Res.
Res.
Res.
Res.
Res.
X
Res.
Res.
Res.
Res.
Res.
X
DBG_TIM17_STOP
Reset value
Res.
DBGMCU_
APB1FZR2
Res.
0
Res.
X
Res.
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
.
Res.
Reset value
Res.
Reset value(1)
Res.
0xE0042000
DBGMCU_
IDCODE
Res.
DBG_LPTIM1_STOP
Register
Res.
DBGMCU_
APB1FZR1
Res.
0xE0042004
Addr.
Res.
0xE004 2008
44.18
Res.
0xE004 200C
Debug support (DBG)
RM0351
DBG register map
The following table summarizes the Debug registers
Table 280. DBG register map and reset values
DEV_ID
0
0
0
0
RM0351
Device electronic signature
45
Device electronic signature
The device electronic signature is stored in the System memory area of the Flash memory
module, and can be read using the debug interface or by the CPU. It contains factoryprogrammed identification and calibration data that allow the user firmware or other external
devices to automatically match to the characteristics of the STM32L4x6 microcontroller.
45.1
Unique device ID register (96 bits)
The unique device identifier is ideally suited:
•
for use as serial numbers (for example USB string serial numbers or other end
applications)
•
for use as part of the security keys in order to increase the security of code in Flash
memory while using and combining this unique ID with software cryptographic
primitives and protocols before programming the internal Flash memory
•
to activate secure boot processes, etc.
The 96-bit unique device identifier provides a reference number which is unique for any
device and in any context. These bits cannot be altered by the user.
Base address: 0x1FFF 7590
Address offset: 0x00
Read only = 0xXXXX XXXX where X is factory-programmed
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
UID[31:16]
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
UID[15:0]
r
r
r
r
r
r
r
r
r
Bits 31:0 UID[31:0]: X and Y coordinates on the wafer
DocID024597 Rev 3
1679/1693
1681
Device electronic signature
RM0351
Address offset: 0x04
Read only = 0xXXXX XXXX where X is factory-programmed
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
UID[63:48]
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
UID[47:32]
r
r
r
r
r
r
r
r
r
Bits 31:8 UID[63:40]: LOT_NUM[23:0]
Lot number (ASCII encoded)
Bits 7:0 UID[39:32]: WAF_NUM[7:0]
Wafer number (8-bit unsigned number)
Address offset: 0x08
Read only = 0xXXXX XXXX where X is factory-programmed
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
UID[95:80]
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
UID[79:64]
r
r
r
r
r
r
r
r
r
Bits 31:0 UID[95:64]: LOT_NUM[55:24]
Lot number (ASCII encoded)
45.2
Flash size data register
Base address: 0x1FFF 75E0
Address offset: 0x00
Read only = 0xXXXX where X is factory-programmed
15
14
13
12
11
10
9
r
r
r
r
r
r
r
8
7
6
5
4
3
2
1
0
r
r
r
r
r
r
r
FLASH_SIZE
r
r
Bits 15:0 FLASH_SIZE[15:0]: Flash memory size
This bitfield indicates the size of the device Flash memory expressed in Kbytes.
As an example, 0x040 corresponds to 64 Kbytes.
1680/1693
DocID024597 Rev 3
RM0351
Device electronic signature
45.3
Package data register
Base address: 0x1FFF 7500
Address offset: 0x00
Read only = 0xXXXX where X is factory-programmed
15
14
13
12
11
10
9
8
7
6
5
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
Res.
4
3
2
1
0
r
r
PKG[4:0]
r
r
r
Bits 15:5 Reserved, must be kept at reset value
Bits 4:0 PKG[4:0]: Package type
00000: LQFP64
00010: LQFP100
00011: BGA132
00100: LQFP144, WLCSP81 or WLCSP72
Others: reserved
DocID024597 Rev 3
1681/1693
1681
RM0351
DocID024597Index
DocID024597Index
A
ADCx_AWD2CR . . . . . . . . . . . . . . . . . . . . . .528
ADCx_AWD3CR . . . . . . . . . . . . . . . . . . . . . .529
ADCx_CALFACT . . . . . . . . . . . . . . . . . . . . . .530
ADCx_CCR . . . . . . . . . . . . . . . . . . . . . . . . . .534
ADCx_CDR . . . . . . . . . . . . . . . . . . . . . . . . . .537
ADCx_CFGR . . . . . . . . . . . . . . . . . . . . . . . . .510
ADCx_CFGR2 . . . . . . . . . . . . . . . . . . . . . . . .514
ADCx_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . .507
ADCx_CSR . . . . . . . . . . . . . . . . . . . . . . . . . .532
ADCx_DIFSEL . . . . . . . . . . . . . . . . . . . . . . . .529
ADCx_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . .524
ADCx_IER . . . . . . . . . . . . . . . . . . . . . . . . . . .505
ADCx_ISR . . . . . . . . . . . . . . . . . . . . . . . . . . .503
ADCx_JDRy . . . . . . . . . . . . . . . . . . . . . . . . . .528
ADCx_JSQR . . . . . . . . . . . . . . . . . . . . . . . . .525
ADCx_OFRy . . . . . . . . . . . . . . . . . . . . . . . . .527
ADCx_SMPR1 . . . . . . . . . . . . . . . . . . . . . . . .515
ADCx_SMPR2 . . . . . . . . . . . . . . . . . . . . . . . .517
ADCx_SQR1 . . . . . . . . . . . . . . . . . . . . . . . . .520
ADCx_SQR2 . . . . . . . . . . . . . . . . . . . . . . . . .521
ADCx_SQR3 . . . . . . . . . . . . . . . . . . . . . . . . .522
ADCx_SQR4 . . . . . . . . . . . . . . . . . . . . . . . . .523
ADCx_TR1 . . . . . . . . . . . . . . . . . . . . . . . . . . .517
ADCx_TR2 . . . . . . . . . . . . . . . . . . . . . . . . . . .518
ADCx_TR3 . . . . . . . . . . . . . . . . . . . . . . . . . . .519
AES_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .738
AES_DINR . . . . . . . . . . . . . . . . . . . . . . . . . . .742
AES_DOUTR . . . . . . . . . . . . . . . . . . . . . . . . .742
AES_IVR0 . . . . . . . . . . . . . . . . . . . . . . . . . . .744
AES_IVR1 . . . . . . . . . . . . . . . . . . . . . . . . . . .745
AES_IVR2 . . . . . . . . . . . . . . . . . . . . . . . . . . .746
AES_IVR3 . . . . . . . . . . . . . . . . . . . . . . . . . . .746
AES_KEYR0 . . . . . . . . . . . . . . . . . . . . . . . . .743
AES_KEYR1 . . . . . . . . . . . . . . . . . . . . . . . . .743
AES_KEYR2 . . . . . . . . . . . . . . . . . . . . . . . . .744
AES_KEYR3 . . . . . . . . . . . . . . . . . . . . . . . . .744
AES_KEYR4 . . . . . . . . . . . . . . . . . . . . . . . . .746
AES_KEYR5 . . . . . . . . . . . . . . . . . . . . . . . . .747
AES_KEYR6 . . . . . . . . . . . . . . . . . . . . . . . . .747
AES_KEYR7 . . . . . . . . . . . . . . . . . . . . . . . . .747
AES_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .740
AES_SUSPxR . . . . . . . . . . . . . . . . . . . . . . . .749
C
CAN_BTR . . . . . . . . . . . . . . . . . . . . . . . . . .1479
CAN_ESR . . . . . . . . . . . . . . . . . . . . . . . . . .1478
CAN_FA1R . . . . . . . . . . . . . . . . . . . . . . . . . 1489
CAN_FFA1R . . . . . . . . . . . . . . . . . . . . . . . . 1489
CAN_FiRx . . . . . . . . . . . . . . . . . . . . . . . . . . 1490
CAN_FM1R . . . . . . . . . . . . . . . . . . . . . . . . . 1488
CAN_FMR . . . . . . . . . . . . . . . . . . . . . . . . . . 1487
CAN_FS1R . . . . . . . . . . . . . . . . . . . . . . . . . 1488
CAN_IER . . . . . . . . . . . . . . . . . . . . . . . . . . . 1477
CAN_MCR . . . . . . . . . . . . . . . . . . . . . . . . . . 1470
CAN_MSR . . . . . . . . . . . . . . . . . . . . . . . . . . 1472
CAN_RDHxR . . . . . . . . . . . . . . . . . . . . . . . . 1486
CAN_RDLxR . . . . . . . . . . . . . . . . . . . . . . . . 1486
CAN_RDTxR . . . . . . . . . . . . . . . . . . . . . . . . 1485
CAN_RF0R . . . . . . . . . . . . . . . . . . . . . . . . . 1475
CAN_RF1R . . . . . . . . . . . . . . . . . . . . . . . . . 1476
CAN_RIxR . . . . . . . . . . . . . . . . . . . . . . . . . . 1484
CAN_TDHxR . . . . . . . . . . . . . . . . . . . . . . . . 1483
CAN_TDLxR . . . . . . . . . . . . . . . . . . . . . . . . 1483
CAN_TDTxR . . . . . . . . . . . . . . . . . . . . . . . . 1482
CAN_TIxR . . . . . . . . . . . . . . . . . . . . . . . . . . 1481
CAN_TSR . . . . . . . . . . . . . . . . . . . . . . . . . . 1473
COMP1_CSR . . . . . . . . . . . . . . . . . . . . . . . . 584
COMP2_CSR . . . . . . . . . . . . . . . . . . . . . . . . 586
CRC_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
CRC_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
CRC_IDR . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
CRC_INIT . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
CRC_POL . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
D
DAC_CCR . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
DAC_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
DAC_DHR12L1 . . . . . . . . . . . . . . . . . . . . . . . 562
DAC_DHR12L2 . . . . . . . . . . . . . . . . . . . . . . . 564
DAC_DHR12LD . . . . . . . . . . . . . . . . . . . . . . 565
DAC_DHR12R1 . . . . . . . . . . . . . . . . . . . . . . 562
DAC_DHR12R2 . . . . . . . . . . . . . . . . . . . . . . 563
DAC_DHR12RD . . . . . . . . . . . . . . . . . . . . . . 564
DAC_DHR8R1 . . . . . . . . . . . . . . . . . . . . . . . 563
DAC_DHR8R2 . . . . . . . . . . . . . . . . . . . . . . . 564
DAC_DHR8RD . . . . . . . . . . . . . . . . . . . . . . . 566
DAC_DOR1 . . . . . . . . . . . . . . . . . . . . . . . . . . 566
DAC_DOR2 . . . . . . . . . . . . . . . . . . . . . . . . . . 566
DAC_MCR . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
DAC_SHHR . . . . . . . . . . . . . . . . . . . . . . . . . . 570
DAC_SHRR . . . . . . . . . . . . . . . . . . . . . . . . . . 571
DAC_SHSR1 . . . . . . . . . . . . . . . . . . . . . . . . . 569
DAC_SHSR2 . . . . . . . . . . . . . . . . . . . . . . . . . 570
DAC_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
DocID024597 Rev 3
1682/1693
DocID024597Index
RM0351
DAC_SWTRIGR . . . . . . . . . . . . . . . . . . . . . . .562
DBGMCU_APB1FZR1 . . . . . . . . . . . . . . . . .1667
DBGMCU_APB1FZR2 . . . . . . . . . . . . . . . . .1669
DBGMCU_APB2FZR . . . . . . . . . . . . . . . . . .1670
DBGMCU_CR . . . . . . . . . . . . . . . . . . . . . . .1665
DBGMCU_IDCODE . . . . . . . . . . . . . . . . . . .1652
DFSDM_AWSCDyR . . . . . . . . . . . . . . . . . . . .632
DFSDM_CHCFGyR1 . . . . . . . . . . . . . . . . . . .629
DFSDM_CHCFGyR2 . . . . . . . . . . . . . . . . . . .631
DFSDM_CHDATINyR . . . . . . . . . . . . . . . . . .633
DFSDM_CHWDATyR . . . . . . . . . . . . . . . . . .633
DFSDMx_AWCFR . . . . . . . . . . . . . . . . . . . . .645
DFSDMx_AWHTR . . . . . . . . . . . . . . . . . . . . .644
DFSDMx_AWLTR . . . . . . . . . . . . . . . . . . . . .644
DFSDMx_AWSR . . . . . . . . . . . . . . . . . . . . . .645
DFSDMx_CNVTIMR . . . . . . . . . . . . . . . . . . .647
DFSDMx_CR1 . . . . . . . . . . . . . . . . . . . . . . . .634
DFSDMx_CR2 . . . . . . . . . . . . . . . . . . . . . . . .637
DFSDMx_EXMAX . . . . . . . . . . . . . . . . . . . . .646
DFSDMx_EXMIN . . . . . . . . . . . . . . . . . . . . . .646
DFSDMx_FCR . . . . . . . . . . . . . . . . . . . . . . . .641
DFSDMx_ICR . . . . . . . . . . . . . . . . . . . . . . . .640
DFSDMx_ISR . . . . . . . . . . . . . . . . . . . . . . . . .638
DFSDMx_JCHGR . . . . . . . . . . . . . . . . . . . . .641
DFSDMx_JDATAR . . . . . . . . . . . . . . . . . . . . .642
DFSDMx_RDATAR . . . . . . . . . . . . . . . . . . . .643
DMA_CCRx . . . . . . . . . . . . . . . . . . . . . . . . . .309
DMA_CMARx . . . . . . . . . . . . . . . . . . . . . . . . .312
DMA_CNDTRx . . . . . . . . . . . . . . . . . . . . . . . .311
DMA_CPARx . . . . . . . . . . . . . . . . . . . . . . . . .311
DMA_IFCR . . . . . . . . . . . . . . . . . . . . . . . . . . .308
DMA_ISR . . . . . . . . . . . . . . . . . . . . . . . . . . . .307
DMA1_CSELR . . . . . . . . . . . . . . . . . . . . . . . .313
DMA2_CSELR . . . . . . . . . . . . . . . . . . . . . . . .315
E
EXTI_EMR1 . . . . . . . . . . . . . . . . . . . . . . . . . .329
EXTI_EMR2 . . . . . . . . . . . . . . . . . . . . . . . . . .333
EXTI_FTSR1 . . . . . . . . . . . . . . . . . . . . . . . . .330
EXTI_FTSR2 . . . . . . . . . . . . . . . . . . . . . . . . .334
EXTI_IMR1 . . . . . . . . . . . . . . . . . . . . . . . . . . .329
EXTI_IMR2 . . . . . . . . . . . . . . . . . . . . . . . . . . .332
EXTI_PR1 . . . . . . . . . . . . . . . . . . . . . . . . . . .332
EXTI_PR2 . . . . . . . . . . . . . . . . . . . . . . . . . . .335
EXTI_RTSR1 . . . . . . . . . . . . . . . . . . . . . . . . .330
EXTI_RTSR2 . . . . . . . . . . . . . . . . . . . . . . . . .333
EXTI_SWIER1 . . . . . . . . . . . . . . . . . . . . . . . .331
EXTI_SWIER2 . . . . . . . . . . . . . . . . . . . . . . . .334
F
FLASH_ACR . . . . . . . . . . . . . . . . . . . . . . . . .106
1683/1693
FLASH_CR . . . . . . . . . . . . . . . . . . . . . . . . . . 110
FLASH_ECCR . . . . . . . . . . . . . . . . . . . . . . . . 112
FLASH_KEYR . . . . . . . . . . . . . . . . . . . . . . . . 107
FLASH_OPTKEYR . . . . . . . . . . . . . . . . . . . . 108
FLASH_OPTR . . . . . . . . . . . . . . . . . . . . . . . . 113
FLASH_PCROP1ER . . . . . . . . . . . . . . . . . . . 115
FLASH_PCROP1SR . . . . . . . . . . . . . . . . . . . 114
FLASH_PCROP2ER . . . . . . . . . . . . . . . . . . . 117
FLASH_PCROP2SR . . . . . . . . . . . . . . . . . . . 116
FLASH_PDKEYR . . . . . . . . . . . . . . . . . . . . . 107
FLASH_SR . . . . . . . . . . . . . . . . . . . . . . . . . . 108
FLASH_WRP1AR . . . . . . . . . . . . . . . . . . . . . 115
FLASH_WRP1BR . . . . . . . . . . . . . . . . . . . . . 116
FLASH_WRP2AR . . . . . . . . . . . . . . . . . . . . . 117
FLASH_WRP2BR . . . . . . . . . . . . . . . . . . . . . 118
FMC_BCR1..4 . . . . . . . . . . . . . . . . . . . . . . . . 378
FMC_BTR1..4 . . . . . . . . . . . . . . . . . . . . . . . . 380
FMC_BWTR1..4 . . . . . . . . . . . . . . . . . . . . . . 383
FMC_ECCR . . . . . . . . . . . . . . . . . . . . . . . . . 397
FMC_PATT . . . . . . . . . . . . . . . . . . . . . . . . . . 395
FMC_PCR . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
FMC_PMEM . . . . . . . . . . . . . . . . . . . . . . . . . 394
FMC_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
FMPI2C_ISR . . . . . . . . . . . . . . . . . . . . . . . . 1171
FW_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
FW_CSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
FW_CSSA . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
FW_NVDSL . . . . . . . . . . . . . . . . . . . . . . . . . . 129
FW_NVDSSA . . . . . . . . . . . . . . . . . . . . . . . . 129
FW_VDSL . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
FW_VDSSA . . . . . . . . . . . . . . . . . . . . . . . . . . 130
G
GPIOx_AFRH . . . . . . . . . . . . . . . . . . . . . . . . 269
GPIOx_AFRL . . . . . . . . . . . . . . . . . . . . . . . . 268
GPIOx_ASCR . . . . . . . . . . . . . . . . . . . . . . . . 269
GPIOx_BRR . . . . . . . . . . . . . . . . . . . . . . . . . 269
GPIOx_BSRR . . . . . . . . . . . . . . . . . . . . . . . . 266
GPIOx_IDR . . . . . . . . . . . . . . . . . . . . . . . . . . 266
GPIOx_LCKR . . . . . . . . . . . . . . . . . . . . . . . . 267
GPIOx_MODER . . . . . . . . . . . . . . . . . . . . . . 264
GPIOx_ODR . . . . . . . . . . . . . . . . . . . . . . . . . 266
GPIOx_OSPEEDR . . . . . . . . . . . . . . . . . . . . 265
GPIOx_OTYPER . . . . . . . . . . . . . . . . . . . . . . 264
GPIOx_PUPDR . . . . . . . . . . . . . . . . . . . . . . . 265
I
I2C_CR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1160
I2C_CR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1164
I2C_ICR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1173
I2C_ISR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1171
DocID024597 Rev 3
RM0351
DocID024597Index
I2C_OAR1 . . . . . . . . . . . . . . . . . . . . . . . . . .1167
I2C_OAR2 . . . . . . . . . . . . . . . . . . . . . . . . . .1168
I2C_PECR . . . . . . . . . . . . . . . . . . . . . . . . . .1174
I2C_RXDR . . . . . . . . . . . . . . . . . . . . . . . . . .1175
I2C_TIMEOUTR . . . . . . . . . . . . . . . . . . . . . .1170
I2C_TIMINGR . . . . . . . . . . . . . . . . . . . . . . .1169
I2C_TXDR . . . . . . . . . . . . . . . . . . . . . . . . . .1175
I2Cx_CR2 . . . . . . . . . . . . . . . . . . . 128-131, 1164
IWDG_KR . . . . . . . . . . . . . . . . . . . . . . . . . .1050
IWDG_PR . . . . . . . . . . . . . . . . . . . . . . . . . .1051
IWDG_RLR . . . . . . . . . . . . . . . . . . . . . . . . .1052
IWDG_SR . . . . . . . . . . . . . . . . . . . . . . . . . .1053
IWDG_WINR . . . . . . . . . . . . . . . . . . . . . . . .1054
L
LCD_CLR . . . . . . . . . . . . . . . . . . . . . . . . . . . .688
LCD_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .681
LCD_RAM . . . . . . . . . . . . . . . . . . . . . . . . . . .688
LPTIM1_OR . . . . . . . . . . . . . . . . . . . . . . . . .1043
LPTIM2_OR . . . . . . . . . . . . . . . . . . . . . . . . .1043
LPTIMx_ARR . . . . . . . . . . . . . . . . . . . . . . . .1042
LPTIMx_CFGR . . . . . . . . . . . . . . . . . . . . . . .1038
LPTIMx_CMP . . . . . . . . . . . . . . . . . . . . . . . .1042
LPTIMx_CNT . . . . . . . . . . . . . . . . . . . . . . . .1043
LPTIMx_CR . . . . . . . . . . . . . . . . . . . . . . . . .1041
LPTIMx_ICR . . . . . . . . . . . . . . . . . . . . . . . . .1036
LPTIMx_IER . . . . . . . . . . . . . . . . . . . . . . . . .1037
LPTIMx_ISR . . . . . . . . . . . . . . . . . . . . . . . . .1035
LPUART_BRR . . . . . . . . . . . . . . . . . . . . . . .1275
LPUART_CR1 . . . . . . . . . . . . . . . . . . . . . . .1268
LPUART_CR2 . . . . . . . . . . . . . . . . . . . . . . .1271
LPUART_CR3 . . . . . . . . . . . . . . . . . . . . . . .1273
LPUART_ICR . . . . . . . . . . . . . . . . . . . . . . . .1279
LPUART_ISR . . . . . . . . . . . . . . . . . . . . . . . .1276
LPUART_RDR . . . . . . . . . . . . . . . . . . . . . . .1280
LPUART_RQR . . . . . . . . . . . . . . . . . . . . . . .1275
LPUART_TDR . . . . . . . . . . . . . . . . . . . . . . .1280
O
OPAMP1_CSR . . . . . . . . . . . . . . . . . . . . . . . .597
OPAMP1_LPOTR . . . . . . . . . . . . . . . . . . . . .598
OPAMP1_OTR . . . . . . . . . . . . . . . . . . . . . . . .598
OPAMP2_CSR . . . . . . . . . . . . . . . . . . . . . . . .599
OPAMP2_LPOTR . . . . . . . . . . . . . . . . . . . . .600
OPAMP2_OTR . . . . . . . . . . . . . . . . . . . . . . . .600
OTG_CID . . . . . . . . . . . . . . . . . . . . . . . . . . .1543
OTG_DAINT . . . . . . . . . . . . . . . . . . . . . . . . .1568
OTG_DAINTMSK . . . . . . . . . . . . . . . . . . . . .1569
OTG_DCFG . . . . . . . . . . . . . . . . . . . . . . . . .1563
OTG_DCTL . . . . . . . . . . . . . . . . . . . . . . . . .1564
OTG_DIEPCTL0 . . . . . . . . . . . . . . . . . . . . .1571
OTG_DIEPCTLx . . . . . . . . . . . . . . . . . . . . . 1573
OTG_DIEPEMPMSK . . . . . . . . . . . . . . . . . . 1571
OTG_DIEPINTx . . . . . . . . . . . . . . . . . . . . . . 1579
OTG_DIEPMSK . . . . . . . . . . . . . . . . . . . . . 1567
OTG_DIEPTSIZ0 . . . . . . . . . . . . . . . . . . . . 1581
OTG_DIEPTSIZx . . . . . . . . . . . . . . . . . . . . . 1583
OTG_DIEPTXF0 . . . . . . . . . . . . . . . . . . . . . 1540
OTG_DIEPTXFx . . . . . . . . . . . . . . . . . . . . . 1551
OTG_DOEPCTL0 . . . . . . . . . . . . . . . . . . . . 1575
OTG_DOEPCTLx . . . . . . . . . . . . . . . . . . . . 1577
OTG_DOEPINTx . . . . . . . . . . . . . . . . . . . . . 1580
OTG_DOEPMSK . . . . . . . . . . . . . . . . . . . . . 1568
OTG_DOEPTSIZ0 . . . . . . . . . . . . . . . . . . . . 1582
OTG_DOEPTSIZx . . . . . . . . . . . . . . . . . . . . 1584
OTG_DSTS . . . . . . . . . . . . . . . . . . . . . . . . . 1566
OTG_DTXFSTSx . . . . . . . . . . . . . . . . . . . . 1584
OTG_DVBUSDIS . . . . . . . . . . . . . . . . . . . . 1570
OTG_DVBUSPULSE . . . . . . . . . . . . . . . . . 1570
OTG_GADPCTL . . . . . . . . . . . . . . . . . . . . . 1548
OTG_GAHBCFG . . . . . . . . . . . . . . . . . . . . . 1526
OTG_GCCFG . . . . . . . . . . . . . . . . . . . . . . . 1542
OTG_GINTMSK . . . . . . . . . . . . . . . . . . . . . 1534
OTG_GINTSTS . . . . . . . . . . . . . . . . . . . . . . 1530
OTG_GLPMCFG . . . . . . . . . . . . . . . . . . . . . 1544
OTG_GOTGCTL . . . . . . . . . . . . . . . . . . . . . 1522
OTG_GOTGINT . . . . . . . . . . . . . . . . . . . . . 1524
OTG_GPWRDN . . . . . . . . . . . . . . . . . . . . . 1548
OTG_GRSTCTL . . . . . . . . . . . . . . . . . . . . . 1528
OTG_GRXFSIZ . . . . . . . . . . . . . . . . . . . . . . 1539
OTG_GRXSTSP . . . . . . . . . . . . . . . . . . . . . 1537
OTG_GRXSTSR . . . . . . . . . . . . . . . . . . . . . 1537
OTG_GUSBCFG . . . . . . . . . . . . . . . . . . . . . 1526
OTG_HAINT . . . . . . . . . . . . . . . . . . . . . . . . 1555
OTG_HAINTMSK . . . . . . . . . . . . . . . . . . . . 1555
OTG_HCCHARx . . . . . . . . . . . . . . . . . . . . . 1558
OTG_HCFG . . . . . . . . . . . . . . . . . . . . . . . . 1551
OTG_HCINTMSKx . . . . . . . . . . . . . . . . . . . 1561
OTG_HCINTx . . . . . . . . . . . . . . . . . . . . . . . 1560
OTG_HCTSIZx . . . . . . . . . . . . . . . . . . . . . . 1562
OTG_HFIR . . . . . . . . . . . . . . . . . . . . . . . . . 1552
OTG_HFNUM . . . . . . . . . . . . . . . . . . . . . . . 1553
OTG_HNPTXFSIZ . . . . . . . . . . . . . . . . . . . . 1540
OTG_HNPTXSTS . . . . . . . . . . . . . . . . . . . . 1541
OTG_HPRT . . . . . . . . . . . . . . . . . . . . . . . . . 1556
OTG_HPTXFSIZ . . . . . . . . . . . . . . . . . . . . . 1550
OTG_HPTXSTS . . . . . . . . . . . . . . . . . . . . . 1554
OTG_PCGCCTL . . . . . . . . . . . . . . . . . . . . . 1585
P
purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930
PWR_CR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
DocID024597 Rev 3
1684/1693
DocID024597Index
RM0351
PWR_CR2 . . . . . . . . . . . . . . . . . . . . . . . . . . .162
PWR_CR3 . . . . . . . . . . . . . . . . . . . . . . . . . . .163
PWR_CR4 . . . . . . . . . . . . . . . . . . . . . . . . . . .164
PWR_PDCRA . . . . . . . . . . . . . . . . . . . . . . . .169
PWR_PDCRB . . . . . . . . . . . . . . . . . . . . . . . .170
PWR_PDCRC . . . . . . . . . . . . . . . . . . . . . . . .171
PWR_PDCRD . . . . . . . . . . . . . . . . . . . . . . . .172
PWR_PDCRE . . . . . . . . . . . . . . . . . . . . . . . .173
PWR_PDCRF . . . . . . . . . . . . . . . . . . . . . . . .173
PWR_PDCRG . . . . . . . . . . . . . . . . . . . . . . . .174
PWR_PDCRH . . . . . . . . . . . . . . . . . . . . . . . .175
PWR_PUCRA . . . . . . . . . . . . . . . . . . . . . . . .168
PWR_PUCRB . . . . . . . . . . . . . . . . . . . . . . . .169
PWR_PUCRC . . . . . . . . . . . . . . . . . . . . . . . .170
PWR_PUCRD . . . . . . . . . . . . . . . . . . . . . . . .171
PWR_PUCRE . . . . . . . . . . . . . . . . . . . . . . . .172
PWR_PUCRF . . . . . . . . . . . . . . . . . . . . . . . .173
PWR_PUCRG . . . . . . . . . . . . . . . . . . . . . . . .174
PWR_PUCRH . . . . . . . . . . . . . . . . . . . . . . . .175
PWR_SCR . . . . . . . . . . . . . . . . . . . . . . . . . . .168
PWR_SR1 . . . . . . . . . . . . . . . . . . . . . . . . . . .165
PWR_SR2 . . . . . . . . . . . . . . . . . . . . . . . . . . .166
Q
QUADSPI _PIR . . . . . . . . . . . . . . . . . . . . . . .423
QUADSPI _PSMAR . . . . . . . . . . . . . . . . . . . .423
QUADSPI _PSMKR . . . . . . . . . . . . . . . . . . . .422
QUADSPI_ABR . . . . . . . . . . . . . . . . . . . . . . .421
QUADSPI_AR . . . . . . . . . . . . . . . . . . . . . . . .421
QUADSPI_CCR . . . . . . . . . . . . . . . . . . . . . . .419
QUADSPI_CR . . . . . . . . . . . . . . . . . . . . . . . .414
QUADSPI_DCR . . . . . . . . . . . . . . . . . . . . . . .416
QUADSPI_DLR . . . . . . . . . . . . . . . . . . . . . . .419
QUADSPI_DR . . . . . . . . . . . . . . . . . . . . . . . .422
QUADSPI_FCR . . . . . . . . . . . . . . . . . . . . . . .418
QUADSPI_LPTR . . . . . . . . . . . . . . . . . . . . . .424
QUADSPI_SR . . . . . . . . . . . . . . . . . . . . . . . .417
RCC_APB1RSTR2 . . . . . . . . . . . . . . . . . . . . 222
RCC_APB1SMENR1 . . . . . . . . . . . . . . . . . . 237
RCC_APB1SMENR2 . . . . . . . . . . . . . . . . . . 239
RCC_APB2ENR . . . . . . . . . . . . . . . . . . . . . . 232
RCC_APB2RSTR . . . . . . . . . . . . . . . . . . . . . 223
RCC_APB2SMENR . . . . . . . . . . . . . . . . . . . 241
RCC_BDCR . . . . . . . . . . . . . . . . . . . . . . . . . 246
RCC_CCIPR . . . . . . . . . . . . . . . . . . . . . . . . . 243
RCC_CFGR . . . . . . . . . . . . . . . . . . . . . . . . . 200
RCC_CICR . . . . . . . . . . . . . . . . . . . . . . . . . . 215
RCC_CIER . . . . . . . . . . . . . . . . . . . . . . . . . . 211
RCC_CIFR . . . . . . . . . . . . . . . . . . . . . . . . . . 213
RCC_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
RCC_CSR . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
RCC_ICSCR . . . . . . . . . . . . . . . . . . . . . . . . . 199
RCC_PLLCFGR . . . . . . . . . . . . . . . . . . . . . . 203
RCC_PLLSAI1CFGR . . . . . . . . . . . . . . . . . . 206
RCC_PLLSAI2CFGR . . . . . . . . . . . . . . . . . . 209
RNG_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
RNG_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713
RNG_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
RTC_ALRMAR . . . . . . . . . . . . . . . . . . . . . . 1091
RTC_ALRMBR . . . . . . . . . . . . . . . . . . . . . . 1092
RTC_ALRMBSSR . . . . . . . . . . . . . . . . . . . . 1103
RTC_BKPxR . . . . . . . . . . . . . . . . . . . . . . . . 1104
RTC_CALR . . . . . . . . . . . . . . . . . . . . . . . . . 1098
RTC_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083
RTC_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082
RTC_ISR . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086
RTC_OR . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104
RTC_PRER . . . . . . . . . . . . . . . . . . . . . . . . . 1089
RTC_SHIFTR . . . . . . . . . . . . . . . . . . . . . . . 1094
RTC_SSR . . . . . . . . . . . . . . . . . . . . . . . . . . 1093
RTC_TR . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081
RTC_TSDR . . . . . . . . . . . . . . . . . . . . . . . . . 1096
RTC_TSSSR . . . . . . . . . . . . . . . . . . . . . . . . 1097
RTC_TSTR . . . . . . . . . . . . . . . . . . . . . . . . . 1095
RTC_WPR . . . . . . . . . . . . . . . . . . . . . . . . . . 1093
RTC_WUTR . . . . . . . . . . . . . . . . . . . . . . . . 1090
R
RCC_AHB1ENR . . . . . . . . . . . . . . . . . . . . . .224
RCC_AHB1RSTR . . . . . . . . . . . . . . . . . . . . .216
RCC_AHB1SMENR . . . . . . . . . . . . . . . . . . . .233
RCC_AHB2ENR . . . . . . . . . . . . . . . . . . . . . .225
RCC_AHB2RSTR . . . . . . . . . . . . . . . . . . . . .217
RCC_AHB2SMENR . . . . . . . . . . . . . . . . . . . .234
RCC_AHB3ENR . . . . . . . . . . . . . . . . . . . . . .227
RCC_AHB3RSTR . . . . . . . . . . . . . . . . . . . . .218
RCC_AHB3SMENR . . . . . . . . . . . . . . . . . . . .236
RCC_APB1ENR1 . . . . . . . . . . . . . . . . . . . . . .227
RCC_APB1ENR2 . . . . . . . . . . . . . . . . . . . . . .230
RCC_APB1RSTR1 . . . . . . . . . . . . . . . . . . . .220
1685/1693
S
SDMMC_ARG . . . . . . . . . . . . . . . . . . . . . . . 1437
SDMMC_CLKCR . . . . . . . . . . . . . . . . . . . . . 1435
SDMMC_DCOUNT . . . . . . . . . . . . . . . . . . . 1442
SDMMC_DCTRL . . . . . . . . . . . . . . . . . . . . . 1440
SDMMC_DLEN . . . . . . . . . . . . . . . . . . . . . . 1440
SDMMC_DTIMER . . . . . . . . . . . . . . . . . . . . 1439
SDMMC_FIFO . . . . . . . . . . . . . . . . . . . . . . . 1448
SDMMC_ICR . . . . . . . . . . . . . . . . . . . . . . . . 1443
SDMMC_MASK . . . . . . . . . . . . . . . . . . . . . . 1445
SDMMC_POWER . . . . . . . . . . . . . . . . . . . . 1435
DocID024597 Rev 3
RM0351
DocID024597Index
SDMMC_RESPCMD . . . . . . . . . . . . . . . . . .1438
SDMMC_RESPx . . . . . . . . . . . . . . . . . . . . .1438
SDMMC_STA . . . . . . . . . . . . . . . . . . . . . . . .1442
SMPMI_IER . . . . . . . . . . . . . . . . . . . . . . . . .1387
SPIx_CR1 . . . . . . . . . . . . . . . . . . . . . . . . . .1309
SPIx_CR2 . . . . . . . . . . . . . . . . . . . . . . . . . .1311
SPIx_CRCPR . . . . . . . . . . . . . . . . . . . . . . . .1315
SPIx_DR . . . . . . . . . . . . . . . . . . . . . . . . . . .1315
SPIx_RXCRCR . . . . . . . . . . . . . . . . . . . . . .1316
SPIx_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . .1314
SPIx_TXCRCR . . . . . . . . . . . . . . . . . . . . . . .1316
SWPMI_BRR . . . . . . . . . . . . . . . . . . . . . . . .1383
SWPMI_CR . . . . . . . . . . . . . . . . . . . . . . . . .1381
SWPMI_ICR . . . . . . . . . . . . . . . . . . . . . . . . .1386
SWPMI_ISR . . . . . . . . . . . . . . . . . . . . . . . . .1384
SWPMI_OR . . . . . . . . . . . . . . . . . . . . . . . . .1391
SWPMI_RDR . . . . . . . . . . . . . . . . . . . . . . . .1390
SWPMI_RFL . . . . . . . . . . . . . . . . . . . . . . . .1388
SWPMI_TDR . . . . . . . . . . . . . . . . . . . . . . . .1389
SYSCFG_CFGR1 . . . . . . . . . . . . . . . . . . . . .274
SYSCFG_CFGR2 . . . . . . . . . . . . . . . . . . . . .283
SYSCFG_EXTICR1 . . . . . . . . . . . . . . . . . . . .276
SYSCFG_EXTICR2 . . . . . . . . . . . . . . . . . . . .278
SYSCFG_EXTICR3 . . . . . . . . . . . . . . . . . . . .279
SYSCFG_EXTICR4 . . . . . . . . . . . . . . . . . . . .281
SYSCFG_MEMRMP . . . . . . . . . . . . . . . . . . .273
SYSCFG_SCSR . . . . . . . . . . . . . . . . . . . . . .282
SYSCFG_SKR . . . . . . . . . . . . . . . . . . . . . . . .284
SYSCFG_SWPR . . . . . . . . . . . . . . . . . . . . . .283
T
TIM1_OR1 . . . . . . . . . . . . . . . . . . . . . . . . . . .841
TIM1_OR2 . . . . . . . . . . . . . . . . . . . . . . . . . . .845
TIM1_OR3 . . . . . . . . . . . . . . . . . . . . . . . . . . .847
TIM15_ARR . . . . . . . . . . . . . . . . . . . . . . . . . .979
TIM15_BDTR . . . . . . . . . . . . . . . . . . . . . . . . .981
TIM15_CCER . . . . . . . . . . . . . . . . . . . . . . . . .976
TIM15_CCMR1 . . . . . . . . . . . . . . . . . . . . . . .973
TIM15_CCR1 . . . . . . . . . . . . . . . . . . . . . . . . .980
TIM15_CCR2 . . . . . . . . . . . . . . . . . . . . . . . . .981
TIM15_CNT . . . . . . . . . . . . . . . . . . . . . . . . . .979
TIM15_CR1 . . . . . . . . . . . . . . . . . . . . . . . . . .965
TIM15_CR2 . . . . . . . . . . . . . . . . . . . . . . . . . .966
TIM15_DCR . . . . . . . . . . . . . . . . . . . . . . . . . .983
TIM15_DIER . . . . . . . . . . . . . . . . . . . . . . . . .969
TIM15_DMAR . . . . . . . . . . . . . . . . . . . . . . . .983
TIM15_EGR . . . . . . . . . . . . . . . . . . . . . . . . . .972
TIM15_OR1 . . . . . . . . . . . . . . . . . . . . . . . . . .984
TIM15_OR2 . . . . . . . . . . . . . . . . . . . . . . . . . .984
TIM15_PSC . . . . . . . . . . . . . . . . . . . . . . . . . .979
TIM15_RCR . . . . . . . . . . . . . . . . . . . . . . . . . .980
TIM15_SMCR . . . . . . . . . . . . . . . . . . . . . . . . 968
TIM15_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . 970
TIM16_OR1 . . . . . . . . . . . . . . . . . . . . . . . . . 1003
TIM16_OR2 . . . . . . . . . . . . . . . . . . . . . . . . . 1004
TIM17_OR1 . . . . . . . . . . . . . . . . . . . . . . . . . 1005
TIM17_OR2 . . . . . . . . . . . . . . . . . . . . . . . . . 1006
TIM2_OR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 925
TIM2_OR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 925
TIM3_OR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 925
TIM3_OR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 926
TIM8_OR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 842
TIM8_OR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 848
TIM8_OR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 850
TIMx_ARR . . . . . . . . . . . . . . 833, 921, 999, 1021
TIMx_BDTR . . . . . . . . . . . . . . . . . . . . . 836, 1001
TIMx_CCER . . . . . . . . . . . . . . . . . 829, 918, 996
TIMx_CCMR1 . . . . . . . . . . . . . . . . 823, 913, 994
TIMx_CCMR2 . . . . . . . . . . . . . . . . . . . . 828, 917
TIMx_CCMR3 . . . . . . . . . . . . . . . . . . . . . . . . 843
TIMx_CCR1 . . . . . . . . . . . . . . . . . 834, 921, 1000
TIMx_CCR2 . . . . . . . . . . . . . . . . . . . . . . 835, 922
TIMx_CCR3 . . . . . . . . . . . . . . . . . . . . . . 835, 922
TIMx_CCR4 . . . . . . . . . . . . . . . . . . . . . . 836, 923
TIMx_CCR5 . . . . . . . . . . . . . . . . . . . . . . . . . . 843
TIMx_CCR6 . . . . . . . . . . . . . . . . . . . . . . . . . . 845
TIMx_CNT . . . . . . . . . . . . . . 833, 920, 998, 1020
TIMx_CR1 . . . . . . . . . . . . . . 812, 902, 989, 1017
TIMx_CR2 . . . . . . . . . . . . . . 813, 904, 990, 1019
TIMx_DCR . . . . . . . . . . . . . . . . . . 840, 924, 1003
TIMx_DIER . . . . . . . . . . . . . 819, 909, 991, 1019
TIMx_DMAR . . . . . . . . . . . . . . . . 841, 924, 1003
TIMx_EGR . . . . . . . . . . . . . . 822, 912, 993, 1020
TIMx_PSC . . . . . . . . . . . . . . 833, 921, 999, 1021
TIMx_RCR . . . . . . . . . . . . . . . . . . . . . . 834, 1000
TIMx_SMCR . . . . . . . . . . . . . . . . . . . . . 816, 905
TIMx_SR . . . . . . . . . . . . . . . 820, 910, 992, 1020
TSC_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
TSC_ICR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
TSC_IER . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702
TSC_IOASCR . . . . . . . . . . . . . . . . . . . . . . . . 705
TSC_IOCCR . . . . . . . . . . . . . . . . . . . . . . . . . 706
TSC_IOGCSR . . . . . . . . . . . . . . . . . . . . . . . . 706
TSC_IOGxCR . . . . . . . . . . . . . . . . . . . . . . . . 707
TSC_IOHCR . . . . . . . . . . . . . . . . . . . . . . . . . 704
TSC_IOSCR . . . . . . . . . . . . . . . . . . . . . . . . . 705
TSC_ISR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704
U
USART_CR1 . . . . . . . . . . . . . . . . . . . . . . . . 1268
USARTx_BRR . . . . . . . . . . . . . . . . . . . . . . . 1233
USARTx_CR1 . . . . . . . . . . . . . . . . . . . . . . . 1222
DocID024597 Rev 3
1686/1693
DocID024597Index
RM0351
USARTx_CR2 . . . . . . . . . . . . . . . . . . . . . . .1225
USARTx_CR3 . . . . . . . . . . . . . . . . . . . . . . .1229
USARTx_GTPR . . . . . . . . . . . . . . . . . . . . . .1233
USARTx_ICR . . . . . . . . . . . . . . . . . . . . . . . .1241
USARTx_ISR . . . . . . . . . . . . . . . . . . . . . . . .1236
USARTx_RDR . . . . . . . . . . . . . . . . . . . . . . .1242
USARTx_RQR . . . . . . . . . . . . . . . . . . . . . . .1235
USARTx_RTOR . . . . . . . . . . . . . . . . . . . . . .1234
USARTx_TDR . . . . . . . . . . . . . . . . . . . . . . .1242
W
WWDG_CFR . . . . . . . . . . . . . . . . . . . . . . . .1061
WWDG_CR . . . . . . . . . . . . . . . . . . . . . . . . .1060
WWDG_SR . . . . . . . . . . . . . . . . . . . . . . . . .1061
1687/1693
DocID024597 Rev 3
Revision history
46
RM0351
Revision history
Table 281. Document revision history
Date
Revision
28-May-2015
1
Initial release.
2
PWR
Updated Section 5.1: Power supplies.
Updated Section : Entering low power mode.
Updated Table 22: Sleep.
Updated Table 23: Low-power sleep.
Updated Table 24: Stop 0 mode.
Updated Table 26: Stop 2 mode.
Updated Table 27: Standby mode.
Updated Table 28: Shutdown mode.
Renamed bit EIWF into EIWUL in Section 5.4.3: Power
control register 3 (PWR_CR3).
GPIO
Updated OSPEEDy[1:0] definition in Section 7.4.3:
GPIO port output speed register (GPIOx_OSPEEDR) (x
= A..H).
FMC
Updated Section : SRAM/NOR-Flash chip-select timing
registers 1..4 (FMC_BTR1..4).
Updated Section : SRAM/NOR-Flash write timing
registers 1..4 (FMC_BWTR1..4).
ADC
Updated Figure 62: ADC3 connectivity.
Updated Section 16.3.17: Stopping an ongoing
conversion (ADSTP, JADSTP).
Added formula in Bullet.
VREFBUF
Updated Table 107: VREFBUF buffer modes.
DFSDM
Updated clock range in Section : SPI data input format
operation and Section : Manchester coded data input
format operation.
LCD
Updated Section 22.2: LCD main features.
TSC
Updated Table 135: Spread spectrum deviation versus
AHB clock frequency.
Updated Table 137: Effect of low-power modes on TSC.
TIM2/TIM3/TIM4/TIM5
Updated Bullet in Section 27.3.13: One-pulse mode.
15-Oct-2015
1688/1693
Changes
DocID024597 Rev 3
RM0351
Revision history
Table 281. Document revision history (continued)
Date
15-Oct-2015
08-Dec-2015
Revision
Changes
2
(continued)
I2C
Updated Section 35.4.4: I2C initialization, including
Figure 354: Setup and hold timings.
Updated Section 35.7.5: Timing register
(I2C_TIMINGR).
SPI
Updated Figure 421, Figure 422, Figure 423 and
Figure 424.
Notes updated and added below Figure 421,
Figure 422, Figure 423.
Added Section 38.4.4: Multi-master communication.
UART
Updated Note:.
Added Section : Determining the maximum USART
baudrate allowing to wakeup correctly from stop mode
when the USART clock source is the HSI clock.
Removed TXFRQ bit in Table 204: LPUART register
map and reset values.
DEBUG
Updated Section : DBGMCU_IDCODE.
3
In all the document:
– Stop 1 with main regulator becomes Stop 0
– Stop 1 with low-power regulator remains as Stop 1
MEM
Updated SAI1 and SAI2 base address in Table 1:
STM32L4x6 memory map and peripheral register
boundary addresses.
MMAP
Added Table 4: Memory mapping versus boot
mode/physical remap.
FLASH
Added Note: in Section : Fast programming.
PWR
Updated Table 20: Functionalities depending on the
working mode.
RCC
Updated WWDGEN bit description and access mode in
Section 6.4.19: APB1 peripheral clock enable register 1
(RCC_APB1ENR1).
NVIC
Updated Figure 27: External interrupt/event GPIO
mapping.
Updated reset value in Section 12.5.7: Interrupt mask
register 2 (EXTI_IMR2).
DocID024597 Rev 3
1689/1693
1692
Revision history
RM0351
Table 281. Document revision history (continued)
Date
08-Dec-2015
1690/1693
Revision
Changes
3
(continued)
FMC
Updated BUSTURN bit description in Section :
SRAM/NOR-Flash chip-select timing registers 1..4
(FMC_BTR1..4).
ADC
Updated VDDA in Table 85: ADC pins.
DAC
Added Section : Example of the sample and refresh time
calculation with output buffer on.
Updated Table 105: Effect of low-power modes on DAC.
COMP
Updated Table 113: Comparator behavior in the low
power modes.
OPAMP
Updated Table 118: Effect of low-power modes on the
OPAMP.
Added Note.
LCD
Updated Table 131: LCD behavior in low-power modes.
TSC
Added note in Section 23.3.4: Charge transfer
acquisition sequence.
Updated Table 137: Effect of low-power modes on TSC.
Added notes in CTPL and PGPSC bit description in
Section 23.6.1: TSC control register (TSC_CR).
TIM1/TIM8
Updated Section 26.3.21: Retriggerable one pulse mode
(OPM).
Updated SMS bit description in Section 26.4.3:
TIM1/TIM8 slave mode control register (TIMx_SMCR).
Updated reset value to 0xFFFF in Section 26.4.12:
TIM1/TIM8 auto-reload register (TIMx_ARR).
TIM2/TIM3/TIM4/TIM5
Added Section 27.3.14: Retriggerable one pulse mode
(OPM).
Updated SMS bitfield description in Section 27.4.3: TIMx
slave mode control register (TIMx_SMCR).
Updated CC1IF bit description in Section 27.4.5: TIMx
status register (TIMx_SR).
Updated reset value to 0xFFFF in Section 27.4.12: TIMx
auto-reload register (TIMx_ARR).
TIM15/TIM16/TIM17
Updated Section 28.4.17: External trigger
synchronization (TIM15 only).
Removed bit CC2NE from Section 28.5.8: TIM15
capture/compare enable register (TIM15_CCER).
Removed bit TIE from Section 28.6.3: TIM16&TIM17
DMA/interrupt enable register (TIMx_DIER).
DocID024597 Rev 3
RM0351
Revision history
Table 281. Document revision history (continued)
Date
08-Dec-2015
Revision
Changes
3
(continued)
Removed bit TIF from Section 28.6.4: TIM16&TIM17
status register (TIMx_SR).
Removed bit TG from Section 28.6.5: TIM16&TIM17
event generation register (TIMx_EGR).
Updated reset value to 0xFFFF in Section 28.6.10:
TIM16&TIM17 auto-reload register (TIMx_ARR).
TIM6/TIM7
Updated reset value to 0xFFFF in Section 29.4.8:
TIM6/TIM7 auto-reload register (TIMx_ARR).
LPTIM
Added Section 30.5: LPTIM low power modes.
RTC
Updated reference to TAMPTS bit in Section 34.3.13:
Time-stamp function.
Updated Table 172: Effect of low-power modes on RTC.
I2C
Updated Table 188: Effect of low-power modes on the
I2C.
Updated Table 175: STM32L4x6 I2C implementation.
USART
Replaced nCTS by CTS - nRTS by RTS - SCLK by CK.
Replaced "w" by "rc_w1" in Section 36.8.9: Interrupt flag
clear register (USARTx_ICR).
Updated Table 197: Effect of low-power modes on the
USART.
Updated RTOF bit description in Section 36.8.8:
Interrupt and status register (USARTx_ISR).
LPUART
Replaced nCTS by CTS - nRTS by RTS.
Updated Table 202: Effect of low-power modes on the
LPUART.
SWPMI
Updated Table 215: Effect of low-power modes on
SWPMI.
SDMMC
Updated limit from 48 to 50 MHz in Section 41.1:
SDMMC main features, Section 41.3: SDMMC
functional description, Section 41.8.1: SDMMC power
control register (SDMMC_POWER), Section 41.8.2:
SDMMC clock control register (SDMMC_CLKCR) and in
Section 41.8.4: SDMMC command register
(SDMMC_CMD).
USB
Updated Section : Choosing the value of TRDT in
OTG_GUSBCFG.
Updated TRDT bit description in Section 43.15.4: OTG
USB configuration register (OTG_GUSBCFG).
Added Table 261: TRDT values.
DocID024597 Rev 3
1691/1693
1692
Revision history
RM0351
Table 281. Document revision history (continued)
Date
08-Dec-2015
1692/1693
Revision
Changes
3
(continued)
Updated access type of bit PENA in Section 43.15.26:
OTG Host port control and status register (OTG_HPRT).
Changed bit 15 to reserved in Section 43.15.32: OTG
device configuration register (OTG_DCFG).
DEBUG
Updated REV_ID description in Section 44.6.1: MCU
device ID code.
SIGNATURE
Updated UID in Section 45.1: Unique device ID register
(96 bits).
DocID024597 Rev 3
RM0351
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID024597 Rev 3
1693/1693
1693
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No Language : en Page Layout : SinglePage Page Mode : UseNone Page Count : 1693 Creator : C2 v2.1.0.1 build 007 - c2_rendition_config : Techlit_Active Producer : Acrobat Distiller 9.0.0 (Windows) Title : STM32L4x6 advanced ARM®-based 32-bit MCUs Keywords : Technical Literature, 024597, Product Development, Specification, Reference manual, STM32L476JE, STM32L476JG, STM32L476MG, STM32L476QG, STM32L476QE, STM32L476RC, STM32L476RE, STM32L476RG, STM32L476VC, STM32L476VE, STM32L476VG, STM32L476ZE, STM32L476ZG, STM32L486QG, STM32L486RG, STM32L486VG, STM32L486ZG, STM32L486JG, STM32L476ME Modify Date : 2015:12:09 06:30:04+01:00 Subject : - Author : STMICROELECTRONICS Create Date : 2015:12:09 05:32:09ZEXIF Metadata provided by EXIF.tools