Emerson Mvme2500 Users Manual Installation And Use

2015-01-05

: Emerson Emerson-Mvme2500-Users-Manual-165303 emerson-mvme2500-users-manual-165303 emerson pdf

Open the PDF directly: View PDF PDF.
Page Count: 146

DownloadEmerson Emerson-Mvme2500-Users-Manual- MVME2500 Installation And Use Manual  Emerson-mvme2500-users-manual
Open PDF In BrowserView PDF
Embedded Computing for
Business-Critical ContinuityTM

MVME2500

Installation and Use
P/N: 6806800L01H
January 2014

©

2014 Emerson

All rights reserved.

Trademarks
Emerson, Business-Critical Continuity, Emerson Network Power and the Emerson Network Power logo are trademarks and service
marks of Emerson Electric Co. © 2014 Emerson Electric Co. All other product or service names are the property of their respective
owners.
Intel® is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
Java™ and all other Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
Microsoft®, Windows® and Windows Me® are registered trademarks of Microsoft Corporation; and Windows XP™ is a trademark of
Microsoft Corporation.
PICMG®, CompactPCI®, AdvancedTCA™ and the PICMG, CompactPCI and AdvancedTCA logos are registered trademarks of the PCI
Industrial Computer Manufacturers Group.
UNIX® is a registered trademark of The Open Group in the United States and other countries.

Notice
While reasonable efforts have been made to assure the accuracy of this document, Emerson assumes no liability resulting from any
omissions in this document, or from the use of the information obtained therein. Emerson reserves the right to revise this document
and to make changes from time to time in the content hereof without obligation of Emerson to notify any person of such revision or
changes.
Electronic versions of this material may be read online, downloaded for personal use, or referenced in another document as a URL to
a Emerson website. The text itself may not be published commercially in print or electronic form, edited, translated, or otherwise
altered without the permission of Emerson,
It is possible that this publication may contain reference to or information about Emerson products (machines and programs),
programming, or services that are not available in your country. Such references or information must not be construed to mean that
Emerson intends to announce such Emerson products, programming, or services in your country.

Limited and Restricted Rights Legend
If the documentation contained herein is supplied, directly or indirectly, to the U.S. Government, the following notice shall apply
unless otherwise agreed to in writing by Emerson.
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in
Technical Data clause at DFARS 252.227-7013 (Nov. 1995) and of the Rights in Noncommercial Computer Software and
Documentation clause at DFARS 252.227-7014 (Jun. 1995).

Contact Address
Emerson Network Power - Embedded Computing
2900 South Diablo Way, Suite 190
Tempe, AZ 85282
USA

Contents

About this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1
1.2
1.3
1.4
1.5

2

Hardware Preparation and Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1
2.2
2.3

2.4
2.5

2.6
2.7
3

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Standard Compliances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Product Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Unpacking and Inspecting the Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Environmental Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 Equipment Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Configuring the Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Installing Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1 Rear Transition Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.2 PMC/XMC Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Installing and Removing the Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Completing the Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Controls, LEDs, and Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1
3.2
3.3

3.4

Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Reset Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Front Panel LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Onboard LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1 Front Panel Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1.1 RJ45 with Integrated Magnetics (J1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1.2 Front Panel Serial Port (J4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

MVME2500 Installation and Use (6806800L01H)

3

Contents
Contents

3.5

4

Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1
4.2

4.3
4.4
4

3.4.1.3 USB Connector (J5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.1.4 VMEBus P1 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.1.5 VMEBus P2 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.2 Onboard Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2.1 Flash Program Connector (P7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2.2 SATA Connector (J3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2.3 PMC Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.2.4 JTAG Connector (P6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.2.5 COP Connector (P6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.2.6 SD Connector (J2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.2.7 XMC Connector (XJ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.2.8 Miscellaneous P2020 Debug Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.1 Geographical Address Switch (S1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.2 SMT Configuration Switch (S2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Chipset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.1 e500 Processor Core. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.2 Integrated Memory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.3 PCI Express Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.4 Local Bus Controller (LBC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.5 Secure Digital Hub Controller (SDHC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.6 I2C Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.7 USB Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.8 DUART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.9 DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.10 Enhanced Three-Speed Ethernet Controller (eTSEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.11 General Purpose I/O (GPIO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.12 Security Engine (SEC) 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.13 Common On-Chip Processor (COP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.14 P20x0 Hardware Configuration Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
System Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
MVME2500 Installation and Use (6806800L01H)

Contents

4.5
4.6

4.7
4.8
4.9

4.10
4.11
4.12
4.13
4.14
4.15

4.16
4.17
4.18
4.19
4.20

4.21

4.4.1 Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.2 Internal Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.3 Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.4 FPGA Tick Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Ethernet Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
SPI Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.1 SPI Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.2 SPI Flash Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.3 Firmware Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6.4 Crisis Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Front UART Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Rear UART Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
PMC/XMC Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.9.1 PMC Add-on Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.9.2 XMC Add-on Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
SATA Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
VME Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.11.1 Tsi148 VME Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
I2C Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Reset/Control FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.15.1 Onboard Voltage Supply Requirement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.15.2 Power Up Sequencing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Clock Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Reset Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.17.1 Reset Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Thermal Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Real-Time Clock Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Debugging Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.20.1 POST Code Indicator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.20.2 JTAG Chain and Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.20.3 Custom Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Rear Transition Module (RTM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

MVME2500 Installation and Use (6806800L01H)

5

Contents
Contents

5

Memory Maps and Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1
5.2
5.3
5.4
5.5

5.6

6

Boot System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1
6.2
6.3

6

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Flash Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Linux Devices Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Programmable Logic Device (PLD) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.1 PLD Revision Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.2 PLD Year Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.3 PLD Month Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5.4 PLD Day Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5.5 PLD Sequence Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5.6 PLD Power Good Monitor Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.7 PLD LED Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.8 PLD PCI/PMC/XMC Monitor Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.9 PLD U-Boot and TSI Monitor Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.5.10 PLD Boot Bank Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.5.11 PLD Write Protect and I2C Debug Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5.12 PLD Test Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5.13 PLD Test Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5.14 PLD GPIO2 Interrupt Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5.15 PLD Shutdown and Reset Control and Reset Reason Register . . . . . . . . . . . . . . . . . . . . . . 95
5.5.16 PLD Watchdog Timer Refresh Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5.17 PLD Watchdog Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5.18 PLD Watchdog Timer Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
External Timer Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6.1 Prescaler Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6.2 Control Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.6.3 Compare High and Low Word Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6.4 Counter High and Low Word Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Accessing U-Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Boot Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.1 Booting from a Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
MVME2500 Installation and Use (6806800L01H)

Contents

6.4
6.5
6.6
7

Programming Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.1
7.2
7.3
7.4
7.5
7.6

7.7

A

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Reset Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
I2C Bus Device Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Ethernet PHY Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Other Software Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.6.1 MRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.6.2 Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.6.3 Quad UART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.6.4 LBC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Clock Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.7.1 System Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.7.2 Real Time Clock Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.7.3 Local Bus Controller Clock Divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Replacing the Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.1

B

6.3.2 Booting from an Optional SATA Drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.3 Booting from a USB Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.4 Booting from an SD Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.5 Booting VxWorks Through the Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Using the Persistent Memory Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
MVME2500 Specific U-Boot Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Updating U-Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Replacing the Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Related Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.1
B.2
B.3

Emerson Network Power - Embedded Computing Documents . . . . . . . . . . . . . . . . . . . . . . . . . 129
Manufacturers’ Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Related Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

MVME2500 Installation and Use (6806800L01H)

7

Contents
Contents

Safety Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Sicherheitshinweise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8

MVME2500 Installation and Use (6806800L01H)

List of Tables

Table 1-1
Table 1-2
Table 1-3
Table 1-4
Table 1-5
Table 2-1
Table 2-2
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 3-10
Table 3-11
Table 3-12
Table 3-13
Table 3-14
Table 3-15
Table 3-16
Table 3-17
Table 3-18
Table 3-19
Table 3-20
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5

Key Features of the MVME2500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Board Standard Compliances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Available Board Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Available Board Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Environmental Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Front Panel LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Onboard LEDs Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Front Panel Tri-Speed Ethernet Connector (J1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Front Panel Serial Port (J4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
USB Connector (J5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
VMEbus P1 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
VMEbus P2 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Flash Programming Header (P7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Custom SATA Connector (J3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
PMC J11 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
PMC J12 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
PMC J13 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
PMC J14 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
JTAG Connector (P6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
COP Header (P10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
SD Connector (J2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
XMC Connector (XJ2) Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
P20x0 Debug Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Geographical Address Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Geographical Address Switch Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Voltage Supply Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Thermal Interrupt Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
POST Code Indicator on the LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Transition Module Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Physical Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Flash Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Linux Devices Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
PLD Revision Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
PLD Year Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

MVME2500 Installation and Use (6806800L01H)

9

List of Tables

Table 5-6
Table 5-7
Table 5-8
Table 5-9
Table 5-10
Table 5-11
Table 5-12
Table 5-13
Table 5-14
Table 5-15
Table 5-16
Table 5-17
Table 5-18
Table 5-19
Table 5-20
Table 5-21
Table 5-22
Table 5-23
Table 5-24
Table 5-25
Table 5-26
Table 5-27
Table 6-1
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5
Table 7-6
Table 7-7
Table B-1
Table B-2
Table B-3

10

PLD Month Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
PLD Day Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
PLD Sequence Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
PLD Power Good Monitor Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
PLD LED Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
PLD PCI/PMC/XMC Monitor Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
PLD U-Boot and TSI Monitor Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
PLD Boot Bank Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
PLD Write Protect and I2C Debug Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
PLD Test Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
PLD Test Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
PLD GPIO2 Interrupt Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
PLD Shutdown and Reset Control and Reset Reason Register . . . . . . . . . . . . . . . . . . . . . . 95
PLD Watchdog Timer Refresh Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
PLD Watchdog Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
PLD Watchdog Timer Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Prescaler Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Compare High Word Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Compare Low Word Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Counter High Word Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Counter Low Word Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
MVME2500 Specific U-Boot Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
POR Configuration Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
MVME2500 Interrupt List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
I2C Bus Device Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
PHY Types and MII Management Bus Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
LBC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
Clock Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
System Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
Emerson Network Power - Embedded Computing Publications . . . . . . . . . . . . . . . . . .129
Manufacturers’ Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
Related Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

MVME2500 Installation and Use (6806800L01H)

List of Figures

Figure 1-1
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 4-1
Figure 4-2
Figure 4-3
Figure A-1

Serial Number Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Component Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Front Panel LEDs, Connectors and Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Front Panel LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Onboard LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Geographical Address Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
SMT Configuration Switch Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
SPI Device Multiplexing Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Clock Distribution Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Battery Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

MVME2500 Installation and Use (6806800L01H)

11

List of Figures

12

MVME2500 Installation and Use (6806800L01H)

About this Manual

Overview of Contents
This manual is divided into the following chapters and appendices.


Introduction gives an overview of the features of the product, standard compliances,
mechanical data, and ordering information.



Hardware Preparation and Installation outlines the installation requirements, hardware
accessories, switch settings, and installation procedures.



Controls, LEDs, and Connectors describes external interfaces of the board. This includes
connectors and LEDs.



Functional Description includes a block diagram and functional description of major
components of the product.



Memory Maps and Registers contains information on system resources including system
control and status registers and external timers.



Boot System describes the boot loader software.



Programming Model contains additional programming information for the board.



Replacing the Battery contains the procedures for replacing the battery.



Related Documentation provides a listing of related product documentation,
manufacturer’s documents, and industry standard specifications.



Safety Notes summarizes the safety instructions in the manual.



Sicherheitshinweise is a German translation of the Safety Notes chapter.

Abbreviations
This document uses the following abbreviations:
Term

Definition

CPLD

Complex Programmable Logic Device

DDR

Double Data Rate

DDR3

Double Data Rate 3

DMI

Direct Media Interface

MVME2500 Installation and Use (6806800L01H)

13

About this Manual
About this Manual

14

Term

Definition

DUART

Dual UART

EEPROM

Erasable Programmable Read-Only Memory

FCC

Federal Communications Commission

GB

GigaByte

Gbit

Gigabit

Gbps

Gigabits per second

I/O

Input/Output

IEEE

Institute of Electrical and Electronics Engineers

LED

Light Emitting Diode

MHz

Megahertz

MCP

Multi-Chip Package

MRAM

Magnetoresistive Random Access Memory

OS

Operating System

PCB

Printed Circuit Board

PCI

Peripheral Component Interconnect

PCI-E

PCI Express

PCI-X

Peripheral Component Interconnect eXtended

PIM

PCI Mezzanine Card Input/Output Module

PLD

Programmable Logic Device

PMC

PCI Mezzanine Card (IEEE P1386.1)

PrPMC

Processor PCI Mezzanine Card

RTC

Real-Time Clock

RTM

Rear Transition Module

SATA

Serial AT Attachment

UART

Universal Asynchronous Receiver-Transmitter

MVME2500 Installation and Use (6806800L01H)

About this Manual

Term

Definition

USB

Universal Serial Bus

VITA

VMEbus International Trade Association

VME

Versa Module Eurocard

XMC

PCI Express Mezzanine Card

Conventions
The following table describes the conventions used throughout this manual.
Notation

Description

0x00000000

Typical notation for hexadecimal numbers (digits are
0 through F), for example used for addresses and
offsets

0b0000

Same for binary numbers (digits are 0 and 1)

bold

Used to emphasize a word

Screen

Used for on-screen output and code-related
elements or commands in body text

Courier + Bold

Used to characterize user input and to separate it
from system output

Reference

Used for references and for table and figure
descriptions

File > Exit

Notation for selecting a submenu



Notation for variables and keys

[text]

Notation for software buttons to click on the screen
and parameter description

...

Repeated item for example node 1, node 2, ..., node
12

.

Omission of information from example/command
that is not necessary at the time being

.
.
..

MVME2500 Installation and Use (6806800L01H)

Ranges, for example: 0..4 means one of the integers
0,1,2,3, and 4 (used in registers)
15

About this Manual
About this Manual

Notation

Description

|

Logical OR
Indicates a hazardous situation which, if not avoided,
could result in death or serious injury

Indicates a hazardous situation which, if not avoided,
may result in minor or moderate injury

Indicates a property damage message

No danger encountered. Pay attention to important
information

16

MVME2500 Installation and Use (6806800L01H)

About this Manual

Summary of Changes
This manual has been revised and replaces all prior editions.
Part Number

Publication Date

Description

6806800L01A

June 2010

First edition

6806800L01B

October 2010



This version includes updates and revisions
for the EA release of the MVME2500.



Table 1.3. Added mechanical data.



Table 4-3. Removed the following
commands: brd_reset, irqinfo, mac. Added
soft_reset.



Table 4-1. Removed: L2 SRAM, L1 for stack
and Boot Page entries.



Changed all instances of "via" to "through".



Impelemented editorial changes.



Updated Controls, LEDs, and Connectors by
adding the following.

6806800L01C

6806800L01D

May 2011

May 2011

MVME2500 Installation and Use (6806800L01H)

–

Board Layout

–

Front Panel Connectors

–

Onboard Connectors



Added Functional Description



Applied editorial edits



Edited Memory Maps and Registers



Edited Programming Model



Edited Figure "Component Layout"



Edited Figure "Onboard LEDs"



Added Front Panel Serial Port (J4)

17

About this Manual
About this Manual

Part Number

Publication Date

Description

6806800L01E

July 2011



Updated Table "Available Board Variants" on
page 22.



Updated Appendix B, Related
Documentation, on page 129.



Changed title of Section 3.4.1 to Front Panel
Connectors.



Edited Front Panel Serial Port (J4).



Updated Figure "Component Layout" on
page 35 to include proper label for XMC
connectors.



Updated Safety Notes and
Sicherheitshinweise.

6806800L01F

18

August 2011

6806800L01G

January 2013

Updated Standard Compliances on page 21.

6806800L01H

January 2014

Added Flash Memory Map on page 82 and
updated SPI Flash Memory on page 67.

MVME2500 Installation and Use (6806800L01H)

Chapter 1

Introduction

1.1

Overview
The MVME2500 is a VMEbus board based on the Freescale QorlQ P2010 (single-core) or P2020
(dual-core) processor. It has a 6U form-factor and has an expansion slot for an optional PCI
Mezzanine Card (PMC) or PCI eXpress Mezzanine Card (XMC). It comes with either 1 GB or 2 GB
of DDR3 SDRAM, and is offered with either IEEE 1101.10 compliant or SCANBE ejector handles.
The front panel I/O configuration consists of two RJ45 10/100/1000BASE-T Ethernet ports, a
USB 2.0 port, a Micro DB9 RS-232 serial console port, and a reset/abort switch. It also has an
LED to signal board failure and another LED that can be configured in the LED register.
The rear I/O includes support for VMEbus (Legacy VME, VME 64, VME64x, and 2eSST), rear
PMC/XMC I/O, RTM I/O (through VME P2), two 10/100/1000BASE-T Ethernet, four UART, and
RTM I2C/Presence/Power. See the table below for a summary of the features of the
MVME2500.
Table 1-1 Key Features of the MVME2500
Function

Features

Processor



Freescale QorIQ P2010 (single-core) or P2020 (dual-core)



800 MHz or 1000 MHz core frequency



512 KB L2 cache



Three 10/100/1000 Mbps enhanced three-speed Ethernet
controllers (eTSECs)



Two PCI-E 1.0a x1 interface controllers



One PCI-E 1.0a x2 interface controller



USB 2.0 interface



Enhanced secure digital host controller



DDR3 memory controller at 800 MT/s



SPI interface (four chip selects, but only two are used on the
board)



Enhanced local bus controller



UART



Two I2C interfaces



Programmable interrupt controller

Memory

1 GB or 2 GB DDR3 soldered chip memory without ECC

MVME2500 Installation and Use (6806800L01H)

19

Introduction

Table 1-1 Key Features of the MVME2500 (continued)
Function

Features

Front panel I/O



Micro DB9 RS-232 serial console port



USB 2.0



Two RJ45 10/100/1000BASE-T Ethernet



Reset/Abort switch



Fail LED and User LED



PMC/XMC front panel I/O (optional)



VME Bus



RTM I/O (through VME P2)



PMC/XMC I/O with P4 I/O



Two 10/100/1000BASE-T Ethernet



Four UART



RTM I2C/Presence/Power

Backplane I/O

Expansion

Expansion site 1:


PMC supporting PCI-X 64/33 interface



XMC supporting PCI-E 1.0a x2 interface

Expansion site 2:


20

SATA drive kit

Boot Flash

16 MB SPI Flash

Persistent Data Storage

512 KB MRAM

User Flash

SDHC Socket

I2C Devices



Real-Time Clock



Board Temperature Sensor



8 KB VPD EEPROM



Two 64 KB User EEPROM

CPLD

Watchdog, timers, and registers

Boot Firmware

U-Boot-based firmware image in 16 MB SPI Flash. This flash is split
into two 8 MB chips.

MVME2500 Installation and Use (6806800L01H)

Introduction

Table 1-1 Key Features of the MVME2500 (continued)

1.2

Function

Features

Operating System



Based from BSP provided by Freescale which is based from
standard Linux version 2.6.32-rc3



Development tool is ltib 9.1.1 (Linux Target Image Builder)
from Freescale



VxWorks

Standard Compliances
The product is designed to meet the following standards. Results are pending until testing is
finished.
Table 1-2 Board Standard Compliances
Standard

Description

EN 60950-1/A11:2009

Safety Requirements (legal)

IEC 60950-1:2005 2nd Edition
CAN/CSA C22.2 No 60950-1
FCC Part 15, Subpart B, Class A (nonresidential)

EMC requirements (legal) on system level
(predefined Emerson system)

ICES-003, Class A (non-residential)
EMC Directive 89/336/EEC
EN55022 Class B
EN55024
AS/NZS CISPR 22, Class A
EN300386
ETSI EN 300 019 series

Environmental Requirements

Directive 2011/65/EU

Directive on the restriction of the use of certain
hazardous substances in electrical and electronic
equipment (RoHS)

For Declaration of Conformity, refer MVME2500 Series Declaration of Conformity.

MVME2500 Installation and Use (6806800L01H)

21

Introduction

1.3

Mechanical Data
The following table provides details about the dimensions and weight of the board.
Table 1-3 Mechanical Data

1.4

Feature

Value

Height

233.44 mm (9.2 inches)

Depth

160.0 mm (6.3 inches)

Front Panel Height

261.8 mm (10.3 inches)

Width

19.8 mm (0.8 inches)

Max. Component Height

14.8 mm (0.58 inches)

Weight

400 grams (standard variant), 700 grams (ET variants)

Ordering Information
As of the printing date of this manual, this guide supports the models listed below.
Table 1-4 Available Board Variants

22

Order Number

Processor

Speed

Memory

Ejector

MVME2500-0163

QorIQ P2010 (single-core)

800 MHz

1 GB

IEEE

MVME2500-0161

QorIQ P2010 (single-core)

800 MHz

1 GB

SCANBE

MVME2500-0173

QorIQ P2020 (dual-core)

1200 MHz

2 GB

IEEE

MVME2500-0171

QorIQ P2020 (dual-core)

1200 MHz

2 GB

SCANBE

MVME2500ET-0173

QorIQ P2020 (dual-core)

1000 MHz

2 GB

IEEE ENP2

MVME2500ET-0171

QorIQ P2020 (dual-core)

1000 MHz

2 GB

SCANBE ENP2

MVME2500 Installation and Use (6806800L01H)

Introduction

As of the printing date of this manual, the following board accessories are available.
Table 1-5 Available Board Accessories
Order Number

Description

VME-HDMNTKIT

VME HD mounting kit

VME-64GBSSDKIT

VME 64GB SSD and mounting kit

MVME7216E-101

VME RTM (IEEE handle)

MVME7216E-102

VME RTM (SCANBE Handle)

MVME721ET-101

VME RTM Extended Temperature (IEEE handle)

MVME721ET-102

VME RTM Extended Temperature (SCANBE Handle)

SERIAL-MINI-D (30W2400E01A)

Female - to -male micro-mini DB-9 to DB9 adapter cable

MVME2500 Installation and Use (6806800L01H)

23

Introduction

1.5

Product Identification
The following graphics shows the location of the serial number label.
Figure 1-1

24

Serial Number Location

MVME2500 Installation and Use (6806800L01H)

Chapter 2

Hardware Preparation and Installation

2.1

Overview
This chapter provides installation and safety instructions for this product. Installation
instructions for the optional PMC and transition module are also included.
A fully implemented MVME2500 consists of the base board plus:


PCI Mezzanine Card (PMC) or PCI-E Mezzanine Card (XMC) for added versatility



Rear transition module



SATA kit

The following are the things that need to be done before using the board. Be sure to read the
entire chapter, including all caution and warning notes, before you begin.
1. Unpack the hardware. Refer to Unpacking and Inspecting the Board on page 26
2. Configure the hardware by setting jumpers on the board and RTM. Refer to Configuring the
Board on page 29
3. Install the transition module in the chassis. Refer to Rear Transition Module on page 30.
4. Install PMC module (if required). Refer to PMC/XMC Support on page 31.
5. Install XMC span module (if required). Refer to PMC/XMC Support on page 31.
6. Install the board in the chassis. Refer to Installing and Removing the Board on page 32.
7. Attach cables and apply power. Refer to Completing the Installation on page 34.

MVME2500 Installation and Use (6806800L01H)

25

Hardware Preparation and Installation

2.2

Unpacking and Inspecting the Board
Read all notices and cautions prior to unpacking the product.



Damage of Circuits
Electrostatic discharge and incorrect installation and removal can damage circuits or
shorten its life.



Before touching the board or electronic components, make sure that you are working
in an ESD-safe environment.

Shipment Inspection
1. Verify that you have received all items of your shipment.
2. Check for damage and report any damage or differences to customer service.

3. Remove the desiccant bag shipped together with the board and dispose of it according to
your country’s legislation.
The product is thoroughly inspected before shipment. If any damage occurred during
transportation or any items are missing, contact customer service immediately.

2.3

Requirements
Make sure the board meets the requirements specified in the next sections when the board is
operated in your particular system configuration.

26

MVME2500 Installation and Use (6806800L01H)

Hardware Preparation and Installation

2.3.1

Environmental Requirements

Operating temperatures refer to the temperature of the air circulating around the board and
not to the component temperature.

Table 2-1 Environmental Requirements
Characteristics

Commercial Versions

Extended Temperature Versions

Applicable Variants

MVME2500-0163

MVME2500ET-0173

MVME2500-0161

MVME2500ET-0171

MVME2500-0173
MVME2500-0171
Cooling Method

Forced Air 7 CFM1

Forced Air 7 CFM1

Operating
Temperature

0°C to +55°C

-40°C to +71°C

Storage

-40°C to +85°C

-50°C to +100°C

Vibration Sine
(10min/axis)

2 G, 5 to 2000 Hz

10 G, 15 to 2000 Hz

Vibration Random
(1hr/axis)

0.01g2/Hz, 15 to 2000 Hz

0.04g2/Hz, 15 to 2000 Hz (8
GRMS)2

Shock

20g/11 mS

30g/11 mS

Humidity

to 95% RH (non-condensing)

to 100% RH (non-condensing)

1. ft3/min
2. Flat 15-1000Hz, -6db/octave 1000Hz - 2000Hz [MIL-STD 810F Figure 514.5C-17]

MVME2500 Installation and Use (6806800L01H)

27

Hardware Preparation and Installation

Product Damage

2.3.2



High humidity and condensation on the board surface causes short circuits.



Do not operate the board outside the specified environmental limits.



Make sure the board is completely dry and there is no moisture on any surface before
applying power.

Power Requirements
The board uses +5.0 V from the VMEbus backplane. On board power supply generates the
required voltages for the various ICs. The MVME2500 connects the +12 V and -12 V supplies
from the backplane to the PMC sites, while the +3.3 V power supplied to the PMC sites comes
from the +5.0 V backplane power. A maximum of 10 A of +3.3 V power is available to the PMC
sites, however the 90 W +5.0 V limit must be observed as well as any cooling limitations.
The following table provides an estimate of the typical and maximum power required.
Table 2-2 Power Requirements
Board Variant

Maximum (Calculated)

Typical (Measured Operating)

MVME2500-0163

18.5 W

14.8 W

MVME2500-0161

18.5 W

14.8 W

MVME2500-0173

24 W

16.6 W

MVME2500-0171

24 W

16.6 W

MVME2500ET-0173

24 W

16.6 W

MVME2500ET-0171

24 W

16.6 W

The power is measured when the board is in standby (Linux prompt). Power will significantly
increase when adding hard drives or a XMC/PMC card.

28

MVME2500 Installation and Use (6806800L01H)

Hardware Preparation and Installation

The following table shows the power available when the MVME2500 is installed in either a
three row or five row chassis and when PMCs are present.
Chassis Type

Available Power

Power With PMCs

Three Row

70 W maximum

below 70 W

Five Row

90 W maximum

below 90 W

Keep below power limit. Cooling limitations must be considered.

2.3.3

Equipment Requirements
The following are recommended to complete a MVME2500 system:

2.4



VMEbus system enclosure



System console terminal



Operating system (and/or application software)



Transition module and connecting cables

Configuring the Board
The board provides software control over most options. Settings can be modified to fit the
user's specifications. To configure, set the bits in the control register after installing the board
in a system. Make sure that all user-defined switches are properly set before installing a
PMC/XMC module. For more information, see Switches on page 57.

MVME2500 Installation and Use (6806800L01H)

29

Hardware Preparation and Installation

2.5

Installing Accessories

2.5.1

Rear Transition Module
The MVME2500 does not support hot swap. Remove power to the rear slot or system before
installing the module. A PCMI/O Module (PIM) needs to be manually configured and installed
before placing the transition module.

Damage of Circuits


Electrostatic discharge and incorrect installation and removal can damage circuits or
shorten its life.



Before touching the board or electronic components, make sure that you are working
in an ESD-safe environment.

Product Damage


Only use injector handles for board insertion to avoid damage to the front panel and/or
PCB. Deformation of the front panel can cause an electrical short or other board
malfunction.

Board Malfunction


Switches marked as “reserved” might carry production-related functions and can cause
the board to malfunction if their setting is changed.



Do not change settings of switches marked as “reserved”. The setting of switches which
are not marked as “reserved” has to be checked and changed before board installation.

Installation and Removal Procedure
1. Turn OFF all equipment and disconnect the power cable from the AC power source.
2. Remove the chassis cover.
3. Remove the filler panel(s) from the appropriate card slot(s) at the rear of the chassis (if the
chassis has a rear card cage).

30

MVME2500 Installation and Use (6806800L01H)

Hardware Preparation and Installation

4. Install the top and bottom edge of the transition module into the rear guides of the chassis.
5. Ensure that the levers of the two injector/ejectors are in the outward position.
6. Slide the transition module into the chassis until resistance is felt.
7. Move the injector/ejector levers in an inward direction.
8. Verify that the transition module is properly seated and secure it to the chassis using the
two screws adjacent to the injector/ejector levers.
9. Connect the cables to the transition module.
To remove the transition module from the chassis, reverse the procedure and press the red
locking tabs (IEEE handles only) to extract the board.

2.5.2

PMC/XMC Support
Installation Procedure
Read all notices and follow these steps to install a PMC on the baseboard.

Damage of Circuits


Electrostatic discharge and incorrect installation and removal can damage circuits or
shorten its life.



Before touching the board or electronic components, make sure that you are working
in an ESD-safe environment.

Product Damage


Inserting or removing modules with power applied may result in damage to module
components.



Before installing or removing additional devices or modules, read the documentation
that came with the product.

MVME2500 Installation and Use (6806800L01H)

31

Hardware Preparation and Installation

1. Attach an ESD strap to your wrist. Attach the other end of the strap to the chassis as a
ground. Make sure that it is securely fastened throughout the procedure.
2. Remove the PMC/XMC filler plate from the front panel cut-out.
3. Slide the front bezel of the PMC/XMC into the cut-out from behind. The front bezel of the
PMC/XMC module will be flushed with the board when the connectors on the module align
with the mating connectors on the board.
4. Align the mating connectors properly and apply minimal pressure to the PMC/XMC until it
is seated to the board.
5. Insert the four PMC/XMC mounting screws through the mounting holes on the bottom side
of the board, and then thread the four mount points on the PMC/XMC. Tighten the screws.
6. Install the board into the appropriate card slot. Make sure that the board is well seated into
the backplane connectors. Do not damage or bend connector pins.
7. Replace the chassis or system cover.

8. Reconnect the system to the power source and then turn on the system.
When removing the PMC/XMC, hold it by its long side and exert minimal force when pulling
it from the baseboad to prevent pin damage.

2.6

Installing and Removing the Board
This section describes the recommended procedure for installing the board in a chassis. Read
all warnings and instructions before installing the board.
The MVME2500 does not support hot swap. Power off the slot or system and make sure that
the serial ports and switches are properly configured.

32

MVME2500 Installation and Use (6806800L01H)

Hardware Preparation and Installation

Damage of Circuits


Electrostatic discharge and incorrect installation and removal can damage circuits or
shorten its life.



Before touching the board or electronic components, make sure that you are working
in an ESD-safe environment.

Product Damage


Only use injector handles for board insertion to avoid damage to the front panel and/or
PCB. Deformation of the front panel can cause an electrical short or other board
malfunction.

1. Attach an ESD strap to your wrist. Attach the other end of the strap to an electrical ground.
Make sure that it is securely fastened throughout the procedure.
2. Remove VME filler panels from the VME enclosures, as appropriate.
3. Install the top and bottom edge of the board into the guides of the chassis.
4. Ensure that the levers of the two injector/ejectors are in the outward position.
5. Slide the board into the chassis until resistance is felt.
6. Simultaneously move the injector/ejector levers in an inward direction.
7. Verify that the board is properly seated and secure it to the chassis using the two screws
located adjacent to the injector/ejector levers.

8. Connect the appropriate cables to the board.
To remove the board from the chassis, reverse the procedure and press the red locking tabs
(IEEE handles only) to extract the board.

MVME2500 Installation and Use (6806800L01H)

33

Hardware Preparation and Installation

2.7

Completing the Installation
The board is designed to operate as an application-specific computer blade or an intelligent I/O
board/carrier. It can be used in any slot in a VME chassis. Once the board is installed, you are
ready to connect peripherals and apply power to the board.

Product Damage


RJ-45 connectors on modules are either twisted-pair Ethernet (TPE) or E1/T1/J1
network interfaces. Connecting an E1/T1/J1 line to an Ethernet connector may damage
your system.



Make sure that TPE connectors near your working area are clearly marked as network
connectors.



Verify that the length of an electric cable connected to a TPE bushing does not exceed
100 meters.



Make sure the TPE bushing of the system is connected only to safety extra low voltage
circuits (SELV circuits).



If in doubt, ask your system administrator.

The console settings for the MVME2500 are:


Eight bits per character



One stop bit per character



Parity disabled (no parity)



Baud rate of 9600 baud

Verify that hardware is installed and the power/peripheral cables connected are appropriate
for your system configuration.
Replace the chassis or system cover, reconnect the chassis to power source, and turn the
equipment power on.

34

MVME2500 Installation and Use (6806800L01H)

Chapter 3

Controls, LEDs, and Connectors

3.1

Board Layout
The following figure shows the components and connectors on the MVME2500.
Figure 3-1

Component Layout

MVME2500 Installation and Use (6806800L01H)

35

Controls, LEDs, and Connectors

3.2

Front Panel
The following components are found on the MVME2500 front panel.
Figure 3-2

36

Front Panel LEDs, Connectors and Switches

MVME2500 Installation and Use (6806800L01H)

Controls, LEDs, and Connectors

3.2.1

Reset Switch
The MVME2500 has a single push button switch that has both the abort and reset functions.
Pressing the switch for less than three seconds generates an abort interrupt to the P20x0 QorIQ
PIC. Holding it down for more than three seconds will generate a hard reset. The VME SYSRESET
is generated if the MVME2500 is the VMEbus system controller.

3.3

LEDs
The MVME2500 utilizes light emitting diodes (LEDs) to provide a visible status indicator on the
front panel. These LEDs show power failures, power up states, Ethernet link/speed, ethernet
activity, SATA link and activity and PCI-E valid lane status. There are also a few user configurable
LEDs. Each LED description is necessary for troubleshooting and debugging.

3.3.1

Front Panel LEDs
The front panel LEDs are listed below.
Figure 3-3

Front Panel LEDs

MVME2500 Installation and Use (6806800L01H)

37

Controls, LEDs, and Connectors

Table 3-1 Front Panel LEDs
Label

Function

Location

Color

Description

USER 1

User Defined

Front panel

Off

By default

Yellow

User Software Controllable. Refer to
the "User LED Register."

Red

User Software Controllable. Refer to
the "User LED Register."

Off

Normal operation after successful
firmware boot.

Red

One or more on-board power rails
has failed and the board has
shutdown to protect the hardware.
Normal during power up, during
hardware reset (such as a front panel
reset). May be asserted by the BDFAIL
bit in the Tsi148 VSTAT register.

Front panel
Integrated
RJ45 LED

Off

No link

Amber

10/100BASE-T operation

Green

1000 BASE-T operation

FAIL

GENET1
SPEED

TSEC1
Link/Speed

Front panel

GENET1
ACT

TSEC1
Activity

Front panel
Integrated
RJ45 LED

Off

No activity

Blinking Green

Activity proportional to bandwidth
utilization

GENET2
SPEED

TSEC2
Link/Speed

Front panel
Integrated
RJ45 LED
(Left)

Off

No link

Amber

10/100BASE-T operation

Green

1000BASE-T operation

Front panel
Integrated
RJ45 LED

Off

No activity

Blinking Green

Activity proportional to bandwidth
utilization

GENET2
ACT

38

Board Fail

TSEC2
Activity

MVME2500 Installation and Use (6806800L01H)

Controls, LEDs, and Connectors

3.3.2

Onboard LEDs
The onboard LEDs are listed below. To view its location on the board, see Figure 3-1 on page 35.
Figure 3-4

Onboard LEDs

Table 3-2 Onboard LEDs Status

3.4

Label

Function

Color

Description

D9

Power Fail

Red

This indicator is illuminated when one or more of the onboard voltage rails fails.

D33

User Defined

Amber

Controlled by the FPGA. Used for boot-up sequence
indicator.

D34

User Defined

Amber

Controlled by the FPGA. Used for boot-up sequence
indicator.

D35

User Defined

Amber

Controlled by the FPGA. Used for boot-up sequence
indicator.

D36

Early Power Fail

Amber

This indicator is lit when the early 3.3V power supply fails.

D37

User Defined

Amber

Controlled by the FPGA

D38

User Defined

Amber

Controlled by the FPGA

Connectors
This section describes the pin assignments and signals for the connectors on the MVME2500.

MVME2500 Installation and Use (6806800L01H)

39

Controls, LEDs, and Connectors

3.4.1

Front Panel Connectors
The following connectors are found on the outside of the MVME2500. These connectors are
divided between the front panel connectors and the backplane connectors. The front panel
connectors include the J1 and J5 connectors. The backplane connectors include the P1 and P2
connectors.

3.4.1.1

RJ45 with Integrated Magnetics (J1)
The MVME2500 uses an X2 RJ45.
Table 3-3 Front Panel Tri-Speed Ethernet Connector (J1)

40

Pin Name

Signal Description

1A

GND

2A

NC

3A

Port A TRD3 -

4A

Port A TRD3 +

5A

Port A TRD2 -

6A

Port A TRD2 +

7A

Port A TRD1 -

8A

Port A TRD1 +

9A

Port A TRD0 -

10A

Port A TRD0 +

D1A

Port A Green LED1 Anode/ Yellow LED1 Cathode

D2A

Port A Yellow LED1 Anode/ Green LED1 Cathode

D3A

Port A Green LED2 Anode/ Yellow LED2 Cathode

D4A

Port A Yellow LED2 Anode/ Green LED2 Cathode

1B

GND

2B

NC

3B

Port B TRD3 -

4B

Port B TRD3 +

5B

Port B TRD2 MVME2500 Installation and Use (6806800L01H)

Controls, LEDs, and Connectors

Table 3-3 Front Panel Tri-Speed Ethernet Connector (J1) (continued)

3.4.1.2

Pin Name

Signal Description

6B

Port B TRD2 +

7B

Port B TRD1 -

8B

Port B TRD1 +

9B

Port B TRD0 -

10B

Port B TRD0 +

D1B

Port B Green LED1Anode/ Yellow LED1 Cathode

D2B

Port B Yellow LED1 Anode/ Green LED1 Cathode

D3B

Port B Green LED2Anode/ Yellow LED2 Cathode

D4B

Port B Yellow LED2 Anode/ Green LED2 Cathode

Front Panel Serial Port (J4)
There is one front access asynchronous serial port interface that is routed to the micro mini DB9 front panel connector. A male-to-male micro-mini DB9 adapter cable is available under
Emerson part number SERIAL-MINI-D (30-W2400E01A). The pin assignments for these
connectors are as follows:
Table 3-4 Front Panel Serial Port (J4)
Pin

Signal Description

1

NC

2

RX

3

TX

4

NC

5

GND

6

NC

7

RTS

8

CTS

9

NC

MVME2500 Installation and Use (6806800L01H)

41

Controls, LEDs, and Connectors

3.4.1.3

USB Connector (J5)
The MVME2500 uses upright USB receptable mounted in the front panel.
Table 3-5 USB Connector (J5)

3.4.1.4

Pin Name

Signal Description

1

+5 V

2

Data -

3

Data +

4

GND

MTG

Mounting Ground

MTG

Mounting Ground

MTG

Mounting Ground

MTG

Mounting Ground

VMEBus P1 Connector
The VME P1 connector is a 160-pin DIN. The P1 connector provides power and VME signals for
24-bit address and 16-bit data. The pin assignments for the P1 connector is as follows:
Table 3-6 VMEbus P1 Connector

42

Pin

Row A

Row B

Row C

Row D

Row Z

1

DATA 0

BBSY

DATA 8

+5V

NC

2

DATA 1

BCLR

DATA 9

GND

GND

3

DATA 2

ACFAIL

DATA 10

NC

NC

4

DATA 3

BGIN0

DATA 11

NC

GND

5

DATA 4

BGOUT0

DATA 12

NC

NC

6

DATA 5

BGIN1

DATA 13

NC

GND

7

DATA 6

BGOUT1

DATA 14

NC

NC

8

DATA 7

BGIN2

DATA 15

NC

GND

9

GND

BGOUT2

GND

GAP

NC

MVME2500 Installation and Use (6806800L01H)

Controls, LEDs, and Connectors

Table 3-6 VMEbus P1 Connector (continued)
Pin

Row A

Row B

Row C

Row D

Row Z

10

SYSCLK

BGIN3

SYSFAIL

GA0

GND

11

GND

BGOUT3

BERR

GA1

NC

12

DS1

BR0

SYSRESET

+3.3V (not used)

GND

13

DS0

BR1

LWORD

GA2

NC

14

WRITE

BR2

AM 5

+3.3V (not used)

GND

15

GND

BR3

ADD 23

GA3

NC

16

DTACK

AM 0

ADD 24

+3.3V (not used)

GND

17

GND

AM 1

ADD 25

GA4

NC

18

AS

AM 2

ADD 26

+3.3V (not used)

GND

19

GND

AM 3

ADD 27

NC

NC

20

IACK

GND

ADD 28

+3.3V (not used)

GND

21

IACKIN

NC

ADD 29

NC

NC

22

IACKOUT

NC

ADD 30

+3.3V (not used)

GND

23

AM 4

GND

ADD 31

NC

NC

24

ADD 7

IRQ7

ADD 32

+3.3V (not used)

GND

25

ADD 6

IRQ6

ADD 33

NC

NC

26

ADD 5

IRQ5

ADD 34

+3.3V (not used)

GND

27

ADD 4

IRQ4

ADD 35

NC

NC

28

ADD 3

IRQ3

ADD 36

+3.3V (not used)

GND

29

ADD 2

IRQ2

ADD 37

NC

NC

30

ADD 1

IRQ1

ADD 38

+3.3V (not used)

GND

31

-12V

NC

+12V

+12V

32

+5V

+5V

+5V

+5V

MVME2500 Installation and Use (6806800L01H)

43

Controls, LEDs, and Connectors

3.4.1.5

VMEBus P2 Connector
The VME P2 connector is a 160-pin DIN. Row B of the P2 connector provides power to the
MVME2500 and to the upper eight VMEbus address lines and additional 16 VMEbus data lines.
The Z, A, C, and D pin assignments for the P2 connector are the same for both the MVME2500
and MVME7216E/ MVME721E, and are as follows:
Table 3-7 VMEbus P2 Connector

44

Pin

Row A

Row B

Row C

Row D

Row Z

1

PMC IO 2

+5V

PMC IO 1

GE3_0 +

Serial 1 RX

2

PMC IO 4

GND

PMC IO 3

GE3_0 -

GND

3

PMC IO 6

RETRY

PMC IO 5

GND

Serial 1 TX

4

PMC IO 8

ADDRESS 24

PMC IO 7

GE3_1 +

GND

5

PMC IO 10

ADDRESS 25

PMC IO 9

GE3_1 -

Serial 1 CTS

6

PMC IO 12

ADDRESS 26

PMC IO 11

GND

GND

7

PMC IO 14

ADDRESS 27

PMC IO 13

GE3_2 +

Serial 1 RTS

8

PMC IO 16

ADDRESS 28

PMC IO 15

GE3_2 -

GND

9

PMC IO 18

ADDRESS 29

PMC IO 17

GND

Serial 2 RX

10

PMC IO 20

ADDRESS 30

PMC IO 19

GE3_3 +

GND

11

PMC IO 22

ADDRESS 31

PMC IO 21

GE3_3 -

Serial 2 TX

12

PMC IO 24

GND

PMC IO 23

GND

GND

13

PMC IO 26

+5V

PMC IO 25

I2C DATA

Serial 2 CTS

14

PMC IO 28

DATA 16

PMC IO 27

I2C CLK

GND

15

PMC IO 30

DATA 17

PMC IO 29

GE3_LINK_ LED

Serial 2 RTS

16

PMC IO 32

DATA 18

PMC IO 31

GE3_ACT_LED

GND

17

PMC IO 34

DATA 19

PMC IO 33

GE4_LINK_LED

Serial 3 RX

18

PMC IO 36

DATA 20

PMC IO 35

GE4_A_LED

GND

19

PMC IO 38

DATA 21

PMC IO 37

GND

Serial 3 TX

20

PMC IO 40

DATA 22

PMC IO 39

GE4_3 -

GND

21

PMC IO 42

DATA 23

PMC IO 41

GE4_3 +

Serial 3 CTS

22

PMC IO 44

GND

PMC IO 43

GND

GND

MVME2500 Installation and Use (6806800L01H)

Controls, LEDs, and Connectors

Table 3-7 VMEbus P2 Connector (continued)
Pin

Row A

Row B

Row C

Row D

Row Z

23

PMC IO 46

DATA 24

PMC IO 45

GE4_2 -

Serial 3 RTS

24

PMC IO 48

DATA 25

PMC IO 47

GE4_2+

GND

25

PMC IO 50

DATA 26

PMC IO 49

GND

Serial 4 RX

26

PMC IO 52

DATA 27

PMC IO 51

GE4_1 -

GND

27

PMC IO 54

DATA 28

PMC IO 53

GE4_1 +

Serial 4 TX

28

PMC IO 56

DATA 29

PMC IO 55

GND

GND

29

PMC IO 58

DATA 30

PMC IO 57

GE4_0 -

Serial 4 CTS

30

PMC IO 60

DATA 31

PMC IO 59

GE4_0 +

GND

31

PMC IO 62

GND

PMC IO 61

GND

Serial 4 RTS

32

PMC IO 64

+5V

PMC IO 63

+5V

GND

3.4.2

Onboard Connectors

3.4.2.1

Flash Program Connector (P7)
The Flash Program Connector is depopulated in the production version of the MVME2500.
However, each pin is exposed for the 60-pin header connector for the JTAG boundary scan.
Table 3-8 Flash Programming Header (P7)
Pin

Signal Description

1

HOLD 1

2

Chip Select 1

3

Chip Select 0

4

Programmer's VCC

5

Master In Slave OUT (MISO)

6

HOLD 0

7

Keying

8

CLOCK

MVME2500 Installation and Use (6806800L01H)

45

Controls, LEDs, and Connectors

Table 3-8 Flash Programming Header (P7) (continued)
Pin

Signal Description
GND

10

3.4.2.2

Master OUT Slave IN (MOSI)

SATA Connector (J3)
The onboard customized SATA connector is compatible with the Emerson SATA kit, namely
VME-64GBSSDKIT and IVME7210-MNTKIT.
Table 3-9 Custom SATA Connector (J3)

46

Pin

Signal Description

Pin

Signal Description

1

GND

21

GND

2

GND

22

SATA POWER ENABLE

3

NC

23

NC

4

SATA TX +

24

SATA DETECT

5

NC

25

NC

6

SATA TX -

26

GND

7

GND

27

NC

8

GND

28

GND

9

GND

29

GND

10

GND

30

GND

11

NC

31

+3.3V

12

SATA RX -

32

+5V

13

NC

33

+3.3V

14

SATA RX +

34

+5V

15

GND

35

+3.3V

16

GND

36

+5V

17

NC

37

+3.3V

18

GND

38

+5V

MVME2500 Installation and Use (6806800L01H)

Controls, LEDs, and Connectors

Table 3-9 Custom SATA Connector (J3) (continued)

3.4.2.3

Pin

Signal Description

Pin

Signal Description

19

NC

39

+3.3V

20

GND

40

+5V

PMC Connectors
The MVME2500 supports only one PMC site. It utilizes J14 to support PMC I/O that goes to the
RTM PMC. The tables below show the pinout detail of J11, J12, J13 and J14. See Figure 3-1 for
the location of the PMC connectors.
Table 3-10 PMC J11 Connector
Pin

Signal Description

Pin

Signal Description

1

JTAG TCK

33

FRAME

2

-12V

34

GND

3

GND

35

GND

4

INT A

36

IRDY

5

INT B

37

DEVSEL

6

INT C

38

+5V

7

PRESENT SIGNAL

39

PCIXCAP

8

+5V

40

LOCK

9

INT D

41

NC

10

NC

42

NC

11

GND

43

PAR

12

NC

44

GND

13

PCI CLK

45

+3.3V

14

GND

46

AD 15

15

GND

47

AD 12

16

GNT A

48

AD 11

17

REQ A

49

AD 9

MVME2500 Installation and Use (6806800L01H)

47

Controls, LEDs, and Connectors

Table 3-10 PMC J11 Connector (continued)
Pin

Signal Description

Pin

Signal Description

18

+5V

50

+5V

19

+3.3V

51

GND

20

AD 31

52

CBE0

21

AD 28

53

AD 6

22

AD 27

54

AD 5

23

AD 25

55

AD 4

24

GND

56

GND

25

GND

57

+3.3V

26

CBE3

58

AD 3

27

AD 22

59

AD 2

28

AD 21

60

AD 1

29

AD 19

61

AD 0

30

+5V

62

+5V

31

+3.3V

63

GND

32

AD 17

64

REQ64

Table 3-11 PMC J12 Connector

48

Pin

Signal Description

Pin

Signal Description

1

+12V

33

GND

2

JTAG TRST

34

IDSELB

3

JTAG TMS

35

TRDY

4

JTAG TDO

36

+3.3V

5

JTAG TDI

37

GND

6

GND

38

STOP

7

GND

39

PERR

8

NC

40

GND

9

NC

41

+3.3V
MVME2500 Installation and Use (6806800L01H)

Controls, LEDs, and Connectors

Table 3-11 PMC J12 Connector (continued)
Pin

Signal Description

Pin

Signal Description

10

NC

42

SERR

11

BUSMODE2 (Pulled UP)

43

CBE1

12

+3.3V

44

GND

13

PCI RESET

45

AD 14

14

BUSMODE3 (PULLED DWN)

46

AD 13

15

+3.3V

47

M66EN

16

BUSMODE4 (PULLED DWN)

48

AD 10

17

NC

49

AD 8

18

GND

50

+3.3V

19

AD 30

51

AD 7

20

AD 29

52

REQB

21

GND

53

+3.3V

22

AD 26

54

GNTB

23

AD 24

55

NC

24

+3.3V

56

GND

25

IDSEL

57

NC

26

AD 23

58

EREADY

27

+3.3V

59

GND

28

AD 28

60

RSTOUT

29

AD 18

61

ACK64

30

GND

62

+3.3V

31

AD 16

63

GND

32

CBE2

64

NC

Table 3-12 PMC J13 Connector
Pin

Signal Description

Pin

Signal Description

1

NC

33

GND

MVME2500 Installation and Use (6806800L01H)

49

Controls, LEDs, and Connectors

Table 3-12 PMC J13 Connector (continued)

50

Pin

Signal Description

Pin

Signal Description

2

GND

34

AD48

3

GND

35

AD 47

4

CBE7

36

AD 52

5

CBE6

37

AD 45

6

CBE5

38

GND

7

CBE4

39

+3.3V

8

GND

40

AD 40

9

+3.3V

41

AD 43

10

PAR64

42

AD 42

11

+3.3V

43

AD 41

12

AD 62

44

GND

13

AD 61

45

GND

14

GND

46

AD 40

15

GND

47

AD 39

16

AD 60

48

AD 38

17

AD 59

49

AD 37

18

AD 58

50

GND

19

AD 57

51

GND

20

GND

52

AD 36

21

+3.3V

53

AD 35

22

AD 56

54

AD 34

23

AD 55

55

AD 33

24

AD 54

56

GND

25

AD 53

57

+3.3V

26

GND

58

AD 32

27

GND

59

NC

28

GND

60

NC

MVME2500 Installation and Use (6806800L01H)

Controls, LEDs, and Connectors

Table 3-12 PMC J13 Connector (continued)
Pin

Signal Description

Pin

Signal Description

29

AD 51

61

NC

30

AD 50

62

GND

31

AD 49

63

GND

32

GND

64

NC

Table 3-13 PMC J14 Connector
Pin

Signal Description

Pin

Signal Description

1

PMC IO 1

33

PMC IO 33

2

PMC IO 2

34

PMC IO 34

3

PMC IO 3

35

PMC IO 35

4

PMC IO 4

36

PMC IO 36

5

PMC IO 5

37

PMC IO 37

6

PMC IO 6

38

PMC IO 38

7

PMC IO 7

39

PMC IO 39

8

PMC IO 8

40

PMC IO 40

9

PMC IO 9

41

PMC IO 41

10

PMC IO 10

42

PMC IO 42

11

PMC IO 11

43

PMC IO 43

12

PMC IO 12

44

PMC IO 44

13

PMC IO 13

45

PMC IO 45

14

PMC IO 14

46

PMC IO 46

15

PMC IO 15

47

PMC IO 47

16

PMC IO 16

48

PMC IO 48

17

PMC IO 17

49

PMC IO 49

18

PMC IO 18

50

PMC IO 50

19

PMC IO 19

51

PMC IO 51

20

PMC IO 20

52

PMC IO 52

MVME2500 Installation and Use (6806800L01H)

51

Controls, LEDs, and Connectors

Table 3-13 PMC J14 Connector (continued)

3.4.2.4

Pin

Signal Description

Pin

Signal Description

21

PMC IO 21

53

PMC IO 53

22

PMC IO 22

54

PMC IO 54

23

PMC IO 23

55

PMC IO 55

24

PMC IO 24

56

PMC IO 56

25

PMC IO 25

57

PMC IO 57

26

PMC IO 26

58

PMC IO 58

27

PMC IO 27

59

PMC IO 59

28

PMC IO 28

60

PMC IO 60

29

PMC IO 29

61

PMC IO 61

30

PMC IO 30

62

PMC IO 62

31

PMC IO 31

63

PMC IO 63

32

PMC IO 32

64

PMC IO 64

JTAG Connector (P6)
The JTAG Connector can be used in conjunction with the JTAG board and ASSET hardware.
Table 3-14 JTAG Connector (P6)

52

Pin

Signal Description

Pin

Signal Description

1

NC

2

+3.3V FROM +5V

3

SPI HOLD 0

4

SPI CS 0

5

SPI CLK

6

SPI CS 1

7

SPI HOLD 1

8

SPI MOSI

9

SPI MISO

10

GND

11

SPI VCC

12

SCAN 1 TCK

13

SCAN 1 TDI

14

GND

15

SCAN 1 TRST

16

SCAN 1 TDO

17

SCAN 1 TMS

18

+3.3V
MVME2500 Installation and Use (6806800L01H)

Controls, LEDs, and Connectors

Table 3-14 JTAG Connector (P6) (continued)
Pin

Signal Description

Pin

Signal Description

19

GPO0

20

NC

21

NC

22

SCAN 2 TMS

23

NC

24

SCAN 2 TDO

25

SCAN 2 TCK

26

+3.3V FROM +5V

27

GND

28

SCAN 2 TDI

29

NC

30

NC

31

SCAN 3 TMS

32

SCAN 3 TCK1

33

SCAN 3 TDO

34

SCAN 3 TCK 2

35

+2.5V

36

SCAN 3 TCK 3

37

SCAN 3 TDI

38

GND

39

SCAN 3 TRST

40

SCAN 3 TCK3

41

SCAN 4 TCK 1

42

SCAN 4 TMS

43

GND

44

SCAN 4 TDO

45

SCAN 4 TCK 2

46

+3.3V

47

GND

48

SCAN 4 TDI

49

SCAN 4 TCK 3

50

SCAN 4 TRST

51

SCAN 5 TMS

52

SCAN 5

53

SCAN 5 TDO

54

GND

55

+3.3V

56

SCAN5 TCK2

57

SCAN 5 TDI

58

GND

59

SCAN 5 TRST

60

NC

MVME2500 Installation and Use (6806800L01H)

53

Controls, LEDs, and Connectors

3.4.2.5

COP Connector (P6)
The COP header is used for the CPU debug. The pin assignment is dictated by Freescale and is
compatible with the processor’s debugging tool.
Table 3-15 COP Header (P10)

3.4.2.6

Pin

Signal Description

1

JTAG TDI

2

COP QACK

3

JTAG TDO

4

COP TRST

5

COP RUNSTOP (Pulled UP)

6

COP VDD SENSE

7

JTAG TCK

8

COP CHECK STOP IN

9

JTAG TMS

10

NC

11

P2020 SW RESET

12

COP PRESENT

13

COP HARD RESET

14

KEYING

15

COP CHECK STOP OUT

16

GND

SD Connector (J2)

Table 3-16 SD Connector (J2)

54

Pin

Signal Description

1

DATA 3

MVME2500 Installation and Use (6806800L01H)

Controls, LEDs, and Connectors

Table 3-16 SD Connector (J2) (continued)

3.4.2.7

Pin

Signal Description

2

COMMAND

3

GND

4

VCC (+3.3V)

5

CLOCK

6

GND

7

DATA 0

8

DATA 1

9

DATA 2

10

WRITE PROTECT

11

CARD DETECT

12

GND

XMC Connector (XJ2)
The MVME2500 has one XMC connector (XJ2) that supports XMC cards with J15 connector. It
can also support XMC cards with J16 connector without encountering any mechanical
interference.

Table 3-17 XMC Connector (XJ2) Pinout
Pin

Row A

Row B

Row C

Row D

Row E

Row F

1

RX0 +

RX0 -

+3.3V

RX1+

RX1 -

+3.3V

2

GND

GND

JTAG TRST

GND

GND

HRESET

3

NC

NC

+3.3V

NC

NC

+3.3V

4

GND

GND

JTAG TCK

GND

GND

MRSTO
(PULLED UP)

5

NC

NC

+3.3V

NC

NC

+3.3V

6

GND

GND

JTAG TMS

GND

GND

+12V

7

NC

NC

+3.3V

NC

NC

+3.3V

8

GND

GND

JTAG TMS

GND

GND

-12V

MVME2500 Installation and Use (6806800L01H)

55

Controls, LEDs, and Connectors

Table 3-17 XMC Connector (XJ2) Pinout (continued)
Pin

Row A

Row B

Row C

Row D

Row E

Row F

9

NC

NC

NC

NC

NC

+3.3V

10

GND

GND

JTAG TDO

GND

GND

GA 0

11

TX0

TX0 -

BIST (PULLED
UP)

TX1 +

TX1 -

+3.3V

12

GND

GND

GA 1

GND

GND

PRESENT

13

NC

NC

NC

NC

NC

+3.3V

14

GND

GND

GA 2

GND

GND

I2C DATA

15

NC

NC

NC

NC

NC

+3.3V

16

GND

GND

MVMRO
(PULLED
DOWN)

GND

GND

I2C CLOCK

17

NC

NC

NC

NC

NC

NC

18

GND

GND

NC

GND

GND

NC

19

CLK +

CLK -

NC

NC

ROOT0
(PULLED UP)

NC

3.4.2.8

Miscellaneous P2020 Debug Connectors

Table 3-18 P20x0 Debug Header

56

Pin

Signal Description

1

MSRCDI0

2

GND

3

MSRCDI1

4

MDVAL

5

MSRCDI2

6

TRIG_OUT

7

MSRCDI3

MVME2500 Installation and Use (6806800L01H)

Controls, LEDs, and Connectors

Table 3-18 P20x0 Debug Header (continued)

3.5

Pin

Signal Description

8

TRIG_IN

9

MSRCID4

10

GND

Switches
These switches control the configuration of the MVME2500.

Board Malfunction

3.5.1



Switches marked as “reserved” might carry production-related functions and can cause
the board to malfunction if their settings are changed.



Do not change settings of switches marked as “reserved”. The setting of switches which
are not marked as “reserved” has to be checked and changed before board installation.

Geographical Address Switch (S1)
The Tsi148 VMEbus Status Register provides the VMEbus geographical address of the
MVM2500. The switch reflects the inverted states of the geographical address signals.
Applications not using the five row backplane can use the geographical address switch to
assign a geographical address based on the following diagram.

MVME2500 Installation and Use (6806800L01H)

57

Controls, LEDs, and Connectors

Note that this switch is wired in parallel with the geographical address pins on the 5-row
connector. These switches must be in the "OFF" position when installed in a 5-row chassis in
order to get the correct address from the P1 connector. This switch also includes the SCON
control switches.
Figure 3-5

Geographical Address Switch

Table 3-19 Geographical Address Switch
Position

Function

Default

S1-1

VME SCON Auto1
2

Auto-SCON
Non-SCON

S1-2

VME SCON SEL

S1-3

GAP

1

S1-4

GAP4

1

S1-5

GAP3

1

S1-6

GAP2

1

S1-7

GAP1

1

S1-8

GAP0

1

1. The VME SCON MAN switch is "OFF" to select Auto-SCON mode. The switch is "ON" to select
manual SCON mode whichworks in conjunction with the VME SCON SEL switch.
2. The VME SCON SEL switch is OFF to select non-SCON mode. The switch is ON to select always
SCON mode. This switch is only effective when the VME SCON MAN switch is "ON".

58

MVME2500 Installation and Use (6806800L01H)

Controls, LEDs, and Connectors

3.5.2

SMT Configuration Switch (S2)
This eight position SMT configuration switch controls the flash bank write-protect, selects the
flash boot image, and controls the safe start ENV settings. The default setting on all switch
positions is "OFF" and is indicated by brackets in Table 3-20.
Figure 3-6

SMT Configuration Switch Position

Table 3-20 Geographical Address Switch Settings
SW2

DEFAULT

Signal Name

Description

1

OFF (Normal Env)

NORMAL_ENV

Safe Start ("ON"= Use
normal ENV, "OFF"= Use
safe ENV)

2

OFF (Flash Block A)

BOOT_BLOCK_A

Boot Block B Select

3

OFF (WP Disabled)

FLASH_WP_N

SPI Flash Write-Protect

4

OFF (PMC)

PMC_XMC_SEL

XMC or PMC selection
switch

5

OFF (133 MHz)

PMC_133

PCI frequency selection

MVME2500 Installation and Use (6806800L01H)

Notes

Will select if XMC card or
PMC card is used

59

Controls, LEDs, and Connectors

Table 3-20 Geographical Address Switch Settings (continued)
SW2

DEFAULT

Signal Name

Description

Notes

6

OFF (WP Enabled)

MASTER_WP_DISA
BLED

Write-Protect Disable
switch

For I2C write-protect only.

7

OFF (Front)

GBE_MUX_SEL

User Defined switch that
will select if the GBE PHY
will function on the front
panel or on the Back
PLANE

8

OFF (CPU Reset
Deasserted)

Reserved

60

Should be "OFF" for normal
operation.

MVME2500 Installation and Use (6806800L01H)

Chapter 4

Functional Description

4.1

Block Diagram
The MVME2500 block diagram is illustrated in Figure 4-1. All variants provide front panel
access to one serial port via a micro-mini DB-9 connector, two 10/100/1000 Ethernet port
(one is configurable to be routed on the front panel or to the rear panel) through a ganged RJ45
connector and one Type A USB Port. It includes Board Fail LED indicator, user-defined LED
indicator and a ABORT/RESET switch.
Figure 4-1

4.2

Block Diagram

Chipset
The MVME2500 utilizes the QorIQ P20x0 integrated processor. It offers an excellent
combination of protocol and interface support including dual high performance CPU cores, a
large L2 cache, a DDR2/DDR3 memory controller, three enhanced three-speed Ethernet
controllers, two Serial RapidIO interfaces with a messaging unit, a secure digital interface, a
USB 2.0 interface and three PCI express controllers.

MVME2500 Installation and Use (6806800L01H)

61

Functional Description

This section describes the protocol and interfaces provided in the QorIQ P20x0 integrated and
is utilized by the MVME2500.

4.2.1

e500 Processor Core
The QorIQ integrated processors offer dual high performance e500v2 core (P2020) and a
single e500v2 core (P2010). It operates from 800 MHz up to 1.2GHz core frequency. The e500
processor core is a low-power implementation of the family of reduced instruction set
computing (RISC) embedded processor that implement the Book E definition of the PowerPC
architecture. The e500 is a 32-bit implementation of the Book E architecture using the lower
words of 64-bit general-purpose registers (GPRs) while E500v2 uses 36 bit physical addressing
and some improvement from the previous version.

4.2.2

Integrated Memory Controller
A fully programmable DDR SDRAM controller supports most JEDEC standard DDR2 and DDR3
memories available. Unbuffered registered DIMMs are also supported. A built-in error checking
and correction (ECC) ensures very low bit-error rates for reliable high-frequency operation.
Though ECC is not implemented on MVME2500, the board includes a place holder for
additional chips for ECC whenever it is needed in the future.
The memory controller supports the following:

62



16 GB of memory



Asynchronous clocking from platform clock, with programmable settings that meets all
the SDRAM timing parameters.



Up to four physical banks; each bank can be independently addressed to 64 Mbit to 4 Gbit
memory devices (depending on the internal device configuration with x8/x16/x32 data
ports).



Chip set interleaving and partial array self-refresh.



Data mask signal and read-modify-write for sub-double-word writes when ECC is enabled.



Double-bit error detection and single-bit error correction ECC, 8-bit check work across 64bit data.



Address parity for registered DIMMs.

MVME2500 Installation and Use (6806800L01H)

Functional Description

4.2.3



Automatic DRAM initialization sequence or software-controlled initialization sequence
and automatic DRAM data initialization.



Write leveling for DDR3 memories and supports up to eight posted refreshes.

PCI Express Interface
The PCI Express interface is compatible with the PCI Express Base Specification Rev. 1.0a. The
PCI Express controller connects the internal platform to a 2.5 GHz serial interface. The P20x0
has the options for up to three PCI-E interfaces with up to x4 link width. The PCI-E controller can
be configured to operate as either PCI-E root complex (RC) or as an endpoint (EP) device.

4.2.4

Local Bus Controller (LBC)
The main component of the enhanced LBC is the memory controller that provides a 16-bit
interface to various types of memory devices and peripherals. The memory controller is
responsible for controlling eight memory banks shared by the following: a general purpose
chip select machine (GPCM); a flash controller machine (FCM) and user programmable
machines (UPMs).

4.2.5

Secure Digital Hub Controller (SDHC)
The SDHC/eSDHC provides an interface between the host system and the memory cards such
as the MMC and SD. It is compatible with the SD Host Controller Standard Specification Ver. 2.0
and supports the following: SD, miniSD, SD Combo, MMC+ and RS-MMC card.

4.2.6

I2C Interface
The MVME2500 uses only one of the two independent I2C buses on the processor. For more
information, see I2C Devices, on page 73.

4.2.7

USB Interface
The P20x0 implements a USB 2.0 compliant serial interface engine. For more information, see
USB, on page 73.

MVME2500 Installation and Use (6806800L01H)

63

Functional Description

4.2.8

DUART
The chipset provides two universal asynchronous receiver/transmitter (UART), each of which
acts independently of the other. Each UART is clocked by the CCB clock and is compatible with
PC16522D. As a full-duplex interface, it provides a 16-byte FIFO for both transmitter and
receiver mode.

4.2.9

DMA Controller
The DMA controller transfers blocks of data between the various interfaces and functional
blocks of P20x0 that are independent of the e500 cores. The P20x0 DMA controller has three
high-speed DMA channels, all of which capable of complex data movement and advanced
transaction chaining.

4.2.10 Enhanced Three-Speed Ethernet Controller (eTSEC)
The eTSEC controller of the device communicates to the 10 Mbps, 100 Mbps, and 1 Gbps
Ethernet/IEE 802.3 networks, as well as to devices with generic 8 to 16-bit FIFO ports. The
MVME2500 uses the eTSEC using the RGMII interface.

4.2.11 General Purpose I/O (GPIO)
The P20x0 has a total of sixteen I/O ports. Four of these ports are used alternately used as
external input interrupt. All sixteen ports have open drain capabitilies.
The P20x0 processor provides a Serial Rapid I/O interface. However, this interface is not
utilized by the MVME2500.

4.2.12 Security Engine (SEC) 3.1
The integrated security engine of the P20x0 is designed to off-load intensive security functions
like key generation and exchange, authenticaion and bulk encryption from the processor core.
It includes eight different execution units where data flows in and out of an EU.
64

MVME2500 Installation and Use (6806800L01H)

Functional Description

4.2.13 Common On-Chip Processor (COP)
The COP is the debug interface of the QorIQ P20x0 Processor. It allows a remote computer
system to access and control the internal operation of the processor. The COP interface
connects primarily through the JTAG and has additional status monitoring signals. The COP has
additional features like breakpoints, watch points, register and memory
examination/modification and other standard debugging features.

4.2.14 P20x0 Hardware Configuration Pins
A series of strapping pins are required to initialize the P20x0. These pins are samples during the
assertion of HRESET and return to their assigned function after HRESET is deasserted.

4.3

System Memory
The processor integrated memory controller supports both DDR2 and DDR3 memory devices.
It has one channel and can be configured for up to four memory banks with x8, x16 and x32
devices. Using 4 GB devices allows support of up to 16 GB of memory. ECC is not supported.
The MVME2500 has a total of eight board variants, half of which has soldered 2 GB memory,
while the remaining half has 16 GB memeory. The x8 or 1 Gbit device forms 2 GB and 1 GB
memory capacity. A total of 16 devices for 2 GB and eight devices are used to form 16 GB.
MVME2500 supports ENP1 and ENP2 operating environment. The ENP1 environment uses
Samsung for all variants including the commercial grade devices, while the ENP2 variants use
Micron.

4.4

Timers
There are various timer functions implemented in the MVME2500 platform:

4.4.1

Real Time Clock
This operates on a 3.3 V supply monitoring and battery control function (MAX6364PUT29), a
32.768 KHz clock generator (DS32KHZS) and an RTC with alarm (DS1375T).

MVME2500 Installation and Use (6806800L01H)

65

Functional Description

See Real-Time Clock Battery, on page 77 for more information on the real time clock back-up
battery.

4.4.2

Internal Timer
The processor's internal timer is composed of eight global timers divided into two groups of
four timers each. Each time has four individual configuration registers and they cannot be
cascaded together.

4.4.3

Watchdog Timer
The onboard FPGA provides programmable 16-bit watchdog timers. It has a 1 ms resolution
and generates a board reset when the counter expires. Interrupt is generated to the processor
when this occurs. Default value is 60 seconds.

4.4.4

FPGA Tick Timer
The MVME2500 supports three independent 32-bit timers that are implemented on the FPGA
to provide fully programmable registers for the timers.

4.5

Ethernet Interfaces
The MVME2500 has three eTSEC controllers. Each one supports RGII, GMII, and SGMII interface
to the external PHY. All controllers can only be untilized when using the RGMII interface. Using
the GMII allows only up to two usable controllers.
MVME2500 provides two 10/100/1000 Ethernet interfaces on the front panel and another two
are routed to the RTM through the backplane connector. Due to controller limitations, one
controller is designed to be routed to the front panel or to the RTM. This setting is possible by
using a third party gigabit Ethernet LAN switch with a single enable switch such as PERICOM’s
P13L301D. The routing direction can be configured through the on-board dip switch.
Each Ethernet controller has a single dedicated Broadcom BCM54616S with integrated MAC
and PHY. The registers of the PHY can be accessed through the processor’s two-wire Ethernet
management interface.The front panel RJ45 connector has integrated speed and and activity
status indicator LEDs. Isolation transformers are provided onboard for each port.

66

MVME2500 Installation and Use (6806800L01H)

Functional Description

4.6

SPI Bus Interface
The enhanced serial peripheral interface (eSPI) allows the device to exchange data with
peripheral devices such as EEPROMs, RTC, Flash and the like. The eSPI is a full-duplex
synchronous, character-oriented channel that supports a simple interface such as receive,
transmit, clock and chip selects. The eSPI receiver and transmitter each have a FIFO of 32 Bytes.
P20x0 supports up to four chip selects and RapidS full clock cycle operation. It can operate both
full-duplex and half duplex. It works with a range of 4-bit to 16-bit data characters and is a
single-master environment. MVME2500 is configured such that the eSPI can operate up to 200
MHz clock rate and can support booting process.The firmware boot flash resides in the P20x0
eSPI bus interface.

4.6.1

SPI Flash Memory
The MVME2500 has two 8 MB onboard serial flash. Both contain the ENV variables and the UBoot firmware image, which is about 513 KB in size. Both SPI flash contain the same
programming for firmware redundancy and crisis recovery. The SPI flash can be programmed
through the JTAG interface or through an onboard SPI flash programming header.
For information on U-boot and ENV Variables location see, Flash Memory Map, Table 5-2 on
page 82.

4.6.2

SPI Flash Programming
The MVME2500 has three headers: a 10-pin header for SPI Flash programming, an 80-pin
header for the JTAG connectivity and a 20-pin JTAG header for ASSET hardware connectivity.
The following options are used to program the onboard flash:


Using onboard SPI header - The MVME2500 uses the 10-pin header with a Dual SPI Flash incircuit programming configuration. The pin connection is compatible with DediProg SPI
Unversal Pin Header.



Using 60-pin external JTAG header - An external JTAG board with a JTAG multiplexer is
compatible with the MVME2500 and can be attached using an external cable. It can be
used to update the boot loader in the field. Using this method, programming can be done
through the JTAG interface or by using the dedicated SPI Flash programming header on the
JTAG board.

MVME2500 Installation and Use (6806800L01H)

67

Functional Description



Factory Pre-Programming - Programming the SPI Flash usually takes a while. Ideally, the
SPI Flash should be pre-programmed in the factory before shipment.



ICT Programming - This programming is done on exposed test points using a bed of nails
tester.

The board power should be switched on before programming. The switch S2-8 should also be
powered on to successfully detect the SPI Flash chip.

4.6.3

Firmware Redundancy
The MVME2500 uses two physically separate boot devices to provide boot firmware
redundancy. Although the P20x0 provides four SPI Bus chip-selects, the P20x0 is only capable
of booting from the SPI Device controlled by Chip Select 0. External SPI multiplexing logic is
implemented on the MVME2500 to accomodate this chipset limitation.

68

MVME2500 Installation and Use (6806800L01H)

Functional Description

The MVME2500 FPGA controls the chip select to SPI devices A and B. The FPGA chip select
control is based on the Switch Bank (S2-2).
Figure 4-2

SPI Device Multiplexing Logic

At power-up, the selection of the SPI boot device is strictly based upon the Switch Bank (S2-2)
setting. Depending on the S2-2 setting, SPI_SEL0 is routed to one of two SPI devices. The
selected SPI device must contain a boot image. Once the boot image is copied into memory
and executed, the FPGA will wait and once the P20x0 will write on one bit of the FPGA
watchdog register, the FPGA will then pass through the SPI chip select from the P20x0 to SPI
device chip selects. The software can now perform read/write processes on any SPI device,
including copying from one SPI device to another.
With this flexible approach to firmware redundancy, one should always be able to recover from
a corrupt active firmware image, as long as a healthy firmware image is maintained in single
bootable SPI Device.

MVME2500 Installation and Use (6806800L01H)

69

Functional Description

The MVME2500 supports automatic switch over. If booting one device is not successful, the
watchdog will trigger the board reset and it will automatically boot on the other device.

4.6.4

Crisis Recovery
The MVME2500 provides an independent boot firmware recovery mechanism for the
operating system. The firmware recovery can be performed without leaving the firmware
environment.
During crisis recovery, the healthy boot image contained in SPI Device B is copied to SPI Device
A, replacing the corrupt boot image contained in SPI Device A.
Crisis recovery is performed as follows:
1. Power off the board.
2. Set Switch S2-2 to "ON" to point to SPI Device B (crisis image).
3. Power on the board.
4. Press "h" on the keyboard to go to the U-Boot prompt.
5. Type "moninit fru" to copy the crisis image to SPI Device A.
6. Once the U-Boot prompt is visible, power off the board.
7. Set the S2-3 back to "OFF" to point to the SPI Device A.
8. Power on the board to boot from the newly recovered image on the SPI Device A.
The board will automatically switch over if one of the devices is corrupted.

4.7

Front UART Control
The MVME2500 utilizes one of the two UART functions provided in the male micro-mini DB-9
front panel. A male-to-male micro-mini DB-9 to DB9 adapter cable is available under Emerson
Part Number SERIAL-MINI-D (30-W2400E01A) and is approximately 12 inches in length.

70

MVME2500 Installation and Use (6806800L01H)

Functional Description

Only 115200 bps and 9600 bps are supported. The default baud rate on the front panel serial
is 9600 kbps.

4.8

Rear UART Control
The MVME2500 utilizes the Exar ST16C554 quad UART (QUART) to provide four additional
ports to the RTM. These devices feature 16 bytes of transmit and receive first-in first-out (FIFO)
with selectable receive FIFO trigger levels and data rates of up to 1.5 Mbps. Each UART has a set
of registers that provide the user with operating status and control. The QUART are 8-bit
devices connected to the processor through the local bus controller using LBC chipset CS1,
CS2, CS3 and CS4.
These four serial interfaces are routed to P2 I/O for RTM accessibility. There are a total of five
serial ports available on the MVME2500.

4.9

PMC/XMC Sites
The MVME2500 hosts only one PMC/XMC site and accepts either a PMC or an XMC add-on
card. Only an XMC or a PMC may be populated at any given time as both occupy the same
physical space on the PCB. Combination PMC/XM cards are not supported by the MVME2500.
The site provides a rear PMC I/O.
The PMC site is fully compliant with the following:
1. VITA 39 –PCI-X for PMC
2. VITA 35-2000 for PMC P4 to VME P2 Connection
3. PCI Rev 2.2 for PCI Local Bus Specification.
4. PCI-X PT 2.0 for PCI-X Protocol Addendum to the PCI Local Bus Specs.
5. IEEE Standard P1386-2001 for Standard for Common Mezzanine Card Family
6. IEEE Standard P1386.1-2001 for Standard Physical and Environmental Layer for PCI
Mezzanine Card.
7. VITA 42 for XMC
8. VITA 42.3 , PCIe for XMC

MVME2500 Installation and Use (6806800L01H)

71

Functional Description

PMC/XMC sites are keyed for 3.3V PMC signaling. PMC and XMC add-on cards must have a hole
in the 3.3 V PMC keying position in order to be populated on the MVME2500. The XMC
specification accommodates this since it is expected that carrier cards will host both XMC and
PMC capable add-on cards.
MVME2500 utilizes the P20x0 x2 link PCI Express interface. It is designed such that the same
PCI-E interface is used for either PMC or XMC through Pericom’s PI2PCIE2412. It is PCI-E Gen2
compliant with four differential channel input and 2:1 MUX switch with single enable. The
enable pin is controlled by FPGA through onboard switch.
The onboard switch S2-4 determines the direction of the PCI-E MUX switch. The default setting
"OFF" routes the differential lines to the PMC. Otherwise, it is routed to the XMC connector.

4.9.1

PMC Add-on Card
The MVME2500 PMC interface utilizes IDT’s TSI384 as the PCie/PCI-X bridge. It can support up
to 8.5 Gbps (64 bits x 133 Mhz). The onboard switch S2-7 configures the TSI384 to run on
either 100 Mhz or 133 Mhz, with 133 Mhz as default.
The MVME2500 supports multi-function PMCs and processor PMCs (PrPMCs). The PMC site
has two IDSELs, two REQ/GNT pairs, and EREADY to support PrPMC as defined by VITA39.

4.9.2

XMC Add-on Card
The x2 links the PCI-E Gen 1 and is directly routed to the P15 XM connector through Pericom
MUX Switch. The onboard switch S2-4 should be set to "ON".
XMC add-on cards are required to operate at +5V or +12V (from carrier to XMC). The
MVME2500 provides +5V to the XMC VPWR (Variable Power) pins. The MVME2500 does not
provide +12V to the XMC VPWR pins. Voltage tolerances for VPWR and all carrier supplied
voltage (+3.3 V, +12 V, -12 V) are defined by the base XMC standard.

4.10

SATA Interface
The MVME2500 supports an optional 2.5" SATA HDD. The connector interface is compatible
with the Emerson SATAMNKIT, which contains the following: one SSD/HDD, one SATA board,
screws and a mounting guide. The SATA connector can support a horizontal mounted
SSD/HDD.

72

MVME2500 Installation and Use (6806800L01H)

Functional Description

The MVME2500 uses Marvell's 88SE6121B2-NAA2C000 SATA controller and supports up to 1.5
Gbps (SATA Gen 1). For status indicators, it has an onboard green LED, D12 and D13 for SATA
link and SATA activity status respectively.

4.11

VME Support
The MVME2500 can operate in either System Controller (SCON) mode or non-SCON mode, as
determined by the the switch setting of S1-1 and S1-2.
The P20x0 x1 link is used for the VME backplane connectivity through the Tsi384 (PCI-E/PCI-X)
and Tsi148 (PCI-X/VMEBus) bridges.
See VMEBus P1 Connector, on page 42 and VMEBus P2 Connector, on page 44 for more
information.

4.11.1 Tsi148 VME Controller
The VMEbus interface for the MVME2500 is provided by the Tsi148 VMEbus controller. The
Tsi148 provides the required VME, VME extensions, and 2eSST functions. TI
SN74VMEH22501transceivers are used to buffer the VME signals between the Tsi148 and the
VME backplane. Refer to the Tsi148 user's manual for additional details and/or programming
information.

4.12

USB
The MVME2500 processor implements a dual-role (DR) USB 2.0 compliant serial interface
engine. DC power to the front panel USB port is supplied using a USB power switch which
provides soft-start, current limiting, over current detection, and power enable for port 1.

4.13

I2C Devices
The MVME2500 utilizes one of the two I2C ports provided by the board's processor. The I2C bus
is a two-wire , serial data (SDA) and serial clock (SCL), synchronous, multi-master bi-directional
serial bus that allows data exchance between this device and other devices such as VPD, SPD,
EEPROM, RTC, temperature sensor, RTM, XMC and IDT clocking.

MVME2500 Installation and Use (6806800L01H)

73

Functional Description

The RTM I2C address can be configured by the user and should not contain duplicate addresses
to avoid conflict. For more information, see I2C Bus Device Addressing, on page 118.

4.14

Reset/Control FPGA
The FPGA provides the following functions:

4.15



Power control and fault detection



Reset sequence and reset management



Status and control registers



Miscellaneous control logic



Watchdog timer



32-bit Tick Timer



Clock generator



Switch decoder and LED controller

Power Management
The MVME2500 backplane is utilized to derive +3.3V, +2.5V, +1.8V, +1.5V, +1.2V, +1.05V
voltage rail. Each voltage rail is controlled by the FPGA through an enable pin of the regulator,
while the output is monitored through power good signal. If a voltage rail fails. the FPGA will
disable each supply. To restart the system, the chassis power switch must be powercycled.

4.15.1 Onboard Voltage Supply Requirement
The onboard power supply is considered to be out of regulation if the output voltage level is
below the minimum required power or goes beyond the maximum.
Table 4-1 Voltage Supply Requirement
Voltage Rail Requirement

74

Voltage Rail

Minimum

Maximum

+3.3 V

3.15 V

3.45 V
MVME2500 Installation and Use (6806800L01H)

Functional Description

Table 4-1 Voltage Supply Requirement
Voltage Rail Requirement
Voltage Rail

Minimum

Maximum

+2.5 V

2.375 V

2.625 V

+1.8 V

1.7 V

1.9 V

+1.5 V

1.425 V

1.575 V

+1.2 V

1.14 V

1.26 V

+1.2 V_SW

1.14 V

1.26 V

+1.05 V

1.0 V

1.1 V

4.15.2 Power Up Sequencing Requirements
The power up sequence describes the voltage rail power up timing, which is designed to
support all the chip supply voltage sequencing requirement.

MVME2500 Installation and Use (6806800L01H)

75

Functional Description

4.16

Clock Structure
A total of three IDT chips, a discrete oscillator and crystal to support all the clock requirements
of MVME2500.
Figure 4-3

4.17

Clock Distribution Diagram

Reset Structure
MVME2500 reset will initiate after the power up sequence if the 1.5 V power supply is "GOOD".
When the board is at "ready" state, the reset logic will monitor the reset sources and implement
the necessary reset function.

76

MVME2500 Installation and Use (6806800L01H)

Functional Description

4.17.1 Reset Sequence
The timing of the reset sequence supports each chip reset requirements with respect to the
power supply.

4.18

Thermal Management
The MVME2500 utilizes two on-board temperature sensors: one for the board and the other for
the CPU temperature sensor. The board temperature sensor is located near the dual RJ45
connector near the front panel. The CPU temperature sensor is located near the P2020 CPU.
The MVME2500 thermal management support will interrupt the process only to show the
current board and CPU temperature. This interrupt is routed directly to one of the processor’s
IRQ4.
The table below shows the low and high threshold temperature in order for the interrupt to be
asserted.
Table 4-2 Thermal Interrupt Threshold

4.19

Board
Temperature Limit

CPU Temperature
Limit

Board Variant

Board Temperature Limit

Low

High

Low

High

Standard Variant

0°C to +55°C

0°C

70°C

0°C

90°C

Extended Temperature
Variant

-55°C to +71°C

-40°C

90°C

-40°C

100°C

Real-Time Clock Battery
A back-up battery based on the CR2325 specification is provided. It helps support the RTC
hold-up requirements that maintain the correct date and time for at least two hours after the
backplane power is switched off.

MVME2500 Installation and Use (6806800L01H)

77

Functional Description

4.20

Debugging Support
The following information shows the details of Emerson debugging support as applied to the
MVME2500.

4.20.1 POST Code Indicator
The following table shows the LED status of the POST Codes. For the location of the POST Code
LEDs, see Onboard LEDs, on page 39.
Logic 1 means LED is "ON", Logic 2 means LED is "OFF"
Table 4-3 POST Code Indicator on the LED
Sequence

D33

D32

D35

Description

1

0

0

0

U-boot has been copied from SPI flash to CPU cache.

2

0

1

0

Serial console has been initialized, some text is visible
on the terminal.

3

0

1

1

DDR has been initialized using SPD parameters,
Execution is still in the cache.

4

1

0

0

Execution has been relocated to RAM.

5

1

0

1

PCI has been initialized.

6

1

1

0

POST routines are finished.

7

1

1

1

Additional SW routines are finished.

8

0

0

0

U-boot prompt is visible on the terminal, can start
loading OS image from USB, Ethernet, SATA SSD, SD.

4.20.2 JTAG Chain and Board
The MVME2500 is designed to work with separate JTAG board rather than with an onboard
JTAG multiplexer. The chip can support up to a 6-scan port and the board’s boundary scan
requires the following to function: ASSET hardware, JTAG board and JTAG cable. The
MVME2500 provides a 60-pin header that can connect to the JTAG board using a custom cable.

78

MVME2500 Installation and Use (6806800L01H)

Functional Description

The JTAG board provides three different connectors for the ASSET hardware, flash
programming and the MVME2500 JTAG connector. The board is equipped with TTL buffers to
help improve the signal quality as it traverses over the wires.

4.20.3 Custom Debugging
Custom debugging makes use of the common on-chip processor. Refer to Common On-Chip
Processor (COP), on page 65 for details.

4.21

Rear Transition Module (RTM)
The MVME2500 is compatible with the MVME721x RTM.
The MVME721X RTM is for I/O routing through the rear of a compact VMEbus chassis. It
connects directly to the VME backplane in chassis with an 80 mm deep rear transition area. The
MVME721X RTM is designed for use with the MVME7100, MVME2500, iVME7210, and MVME
4100. It has the following features:
Table 4-4 Transition Module Features
Function

Features

I/O



One five-row P2 backplane connector for serial and Ethernet I/O passed from the
SBC



Four RJ-45 connectors for rear panel I/O: four asynchronous serial channels



Two RJ-45 connectors with integrated LEDs for rear panel I/O: two 10/100/1000
Ethernet channels



One PIM site with rear panel I/O

For more information, refer to the MVME721x RTM Installation and Use. See Appendix B,
Related Documentation, on page 129 for details on how to obtain and download the document.

MVME2500 Installation and Use (6806800L01H)

79

Functional Description

80

MVME2500 Installation and Use (6806800L01H)

Chapter 5

Memory Maps and Registers

5.1

Overview
System resources including system control and status registers, external timers, and the
QUART are mapped into 16 MB address range accessible from the MVME2500 local bus
through the P20x0 QorIQ LBC.

5.2

Memory Map
The following table shows the physical address map of the MVME2500.
Table 5-1 Physical Address Map
Device Name

Start Address

End Address

Size

DDR

0x0000_0000

0x7fff_ffff

2 GB

PCIE 3 Mem

0x8000_0000

0x9fff_ffff

512 MB

PCIE 2 Mem

0xa000_0000

0xbfff_ffff

512 MB

PCIE 1 Mem

0xc000_0000

0xdfff_ffff

512 MB

PCIE 3 IO

0xffc0_0000

0xffc0_ffff

64 KB

PCIE 2 IO

0xffc1_0000

0xffc1_ffff

64 KB

PCIE 1 IO

0xffc2_0000

0xffc2_ffff

64 KB

UART0

0xffc4_0000

0xffc4_ffff

64 KB

UART1

0xffc5_0000

0xffc5_ffff

64 KB

UART2

0xffc6_0000

0xffc6_ffff

64 KB

UART3

0xffc7_0000

0xffc7_ffff

64 KB

Timer

0xffc8_0000

0xffc8_ffff

64 KB

FPGA

0xffdf_0000

0xffdf_0fff

4 KB

CCSR

0xffe0_0000

0xffef_ffff

1 MB

MRAM

0xfff0_0000

0xfff7_ffff

512 KB

MVME2500 Installation and Use (6806800L01H)

81

Memory Maps and Registers

5.3

Flash Memory Map
The table below lists the memory range designated to U-boot and ENV variables.
Table 5-2 Flash Memory Map

5.4

Description

Memory Area

U-boot

0x00000000 0x0008ffff

Reserved

0x00090000 0x0009ffff

ENV Variables

0x00100000 0x0011ffff

Available Flash

0x00120000 0x007fffff

Linux Devices Memory Map
The table below lists the memory ranges designated to different devices in Linux.
Table 5-3 Linux Devices Memory Map

82

Device Memory Range

Memory Area

Size

Ram Mem

0x00000000 0x7fffffff

2 GB

PCIE3 Mem

0x80000000 0x9fffffff

512 MB

PCIE2 Mem

0xa0000000 0xbfffffff

512 MB

PCIE1 Mem

0xc0000000 0xdfffffff

512 MB

MRAM

0xfff00000 0xfff7ffff

512 KB

PCIE3 IO

0xffc00000 0xffc0fff

64 KB

PCIE2 IO

0xffc10000 0xffc1ffff

64 KB

PCIE1 IO

0xffc20000 0xffc2ffff

64 KB

QUART0

0xffc40000 0xffc4ffff

64 KB

QUART1

0xffc50000 0xffc5ffff

64 KB

QUART2

0xffc60000 0xffc6ffff

64 KB

QUART3

0xffc70000 0xffc7ffff

64 KB

Timer

0xffc80000 0xffc8ffff

64 KB

MVME2500 Installation and Use (6806800L01H)

Memory Maps and Registers

Table 5-3 Linux Devices Memory Map
Device Memory Range

Memory Area

Size

FPGA

0xffdf0000 0xffdf0fff

4 KB

ecm local access window CCSR

0xffe00000 0xffe00ffff

4 KB

ecm (Error Correction Module) CCSR

0xffe01000 0xffe01fff

4 KB

Memory Controller CCSR

0xffe02000 0xffe02fff

4 KB

I2C1 CCSR

0xffe03000 0xffe030ff

256 B

I2C2 CCSR

0xffe03100 0xffe031ff

256 B

UART0 CCSR

0xffe04500 0xffe045ff

256 B

UART1CCSR

0xffe04600 0xffe046ff

256 B

ELBC CCSR

0xffe05000 0xffe05fff

4 KB

SPI CCSR

0xffe07000 0xffe07fff

4 KB

PCIE3 CCSR

0xffe08000 0xffe08fff

4 KB

PCIE2 CCSR

0xffe09000 0xffe09fff

4 KB

PCIE1CCSR

0xffe0a000 0xffe0afff

4 KB

DMA2 CCSR

0xffe0c100 0xffe0c303

516 B

GPIO CCSR

0xffe0fc00 0xffe0fcff

256 B

L2 Cache CCSR

0xffe20000 0xffe20fff

4 KB

DMA1 CCSR

0xffe21100 0xffe21303

516 B

USB CCSR

0xffe22000 0xffe22fff

4 KB

ETSEC1 CCSR

0xffe24000 0xffe24fff

4 KB

ETSEC2 CCSR

0xffe25000 0xffe25fff

4 KB

ETSEC3 CCSR

0xffe26000 0xffe26fff

4 KB

SDHCI CCSR

0xffe2e000 0xffe2efff

4 KB

Crypto CCSR

0xffe30000 0xffe3ffff

64 KB

msi CCSR

0xffe41600 0xffe4167f

128 B

mpic CCSR

0xffe40000 0xffe7ffff

256 KB

Global Utilities CCSR

0xffee0000 0xffee0fff

4 KB

L2 Cache Mem

0xf0f80000 0xf0ffffff

512 KB

MVME2500 Installation and Use (6806800L01H)

83

Memory Maps and Registers

5.5

Programmable Logic Device (PLD) Registers

5.5.1

PLD Revision Register
The MVME2500 provides a PLD revision register that can be read by the system software to
determine the current version of the timers/registers PLD.
Table 5-4 PLD Revision Register
REG

PLD Revision Register - 0xFFDF0000

Bit

7

Field

PLD Rev

OPER

R

RESET

03

6

5

4

3

2

1

0

Field Description
PLD_REV

5.5.2

8-bit field containing the current timer/register PLD revision. The
revision number starts at 01.

PLD Year Register
The MVME2500 PLD provides an 8-bit register which contains the build year of the
timers/registers PLD.
Table 5-5 PLD Year Register

84

REG

PLD Year Register - 0xFFDF0004

Bit

7

Field

PLD Rev

OPER

R

RESET

0A

6

5

4

3

2

1

0

MVME2500 Installation and Use (6806800L01H)

Memory Maps and Registers

5.5.3

PLD Month Register
The MVME2500 PLD provides an 8-bit register which contains the build month of the
timers/registers PLD.
Table 5-6 PLD Month Register

5.5.4

REG

PLD Year Register - 0xFFDF0005

Bit

7

Field

PLD Rev

OPER

R

RESET

0A

6

5

4

3

2

1

0

PLD Day Register
MVME2500 PLD provides an 8-bit register which contains the build day of the timers/registers
PLD.
Table 5-7 PLD Day Register

5.5.5

REG

PLD Revision Register - 0xFFDF0006

Bit

7

Field

PLD Rev

OPER

R

RESET

0E

6

5

4

3

2

1

0

PLD Sequence Register
The MVME2500 PLD provides an 8-bit register which contains the sequence of the PLD which
is in synchrony with the PCB version.
Table 5-8 PLD Sequence Register
REG

PLD Revision Register - 0xFFDF0007

Bit

7

6

5

MVME2500 Installation and Use (6806800L01H)

4

3

2

1

0
85

Memory Maps and Registers

Table 5-8 PLD Sequence Register

5.5.6

REG

PLD Revision Register - 0xFFDF0007

Bit

7

Field

PLD Rev

OPER

R

RESET

02

6

5

4

3

2

1

0

PLD Power Good Monitor Register
The MVME2500 PLD provides an 8-bit register which indicates the instantaneous status of the
supply’s power good signals.
Table 5-9 PLD Power Good Monitor Register
REG

PLD PWRDG_MNTR - 0xFFDF0012

Bit

7

6

5

4

3

2

1

0

Field

RSVD

PWR_V
1P05_P
WRGD

PWR_V
1P2_PW
RGD

PWR_V
1P8_PW
RGD

PWR_V
3P3_PW
RGD

PWR_V
2P5_PW
RGD

PWR_V
1P2_SW
_PWRG
D

PWR_V
1P5_PW
RGD

OPER

R

RESET

0

0

0

0

0

0

0

0

Field Description

86

PWR_V1P05_PWRGD

1.05V Core supply power good indicator

PWR_V1P2_PWRGD

1.2V Supply power good indicator

PWR_V1P8_PWRGD

1.8V Supply power good indicator

MVME2500 Installation and Use (6806800L01H)

Memory Maps and Registers

5.5.7

PWR_V3P3_PWRGD

3.3V Supply power good indicator

PWR_V2P5_PWRGD

2.5V Supply power good indicator

PWR_V1P2_SW_PWRG
D

1.2V SW Supply power good indicator

PWR_V1P5_PWRGD

1.5V Supply power good indicator
1 - Supply Good and Stable
0 - Otherwise

PLD LED Control Register
The MVME2500 PLD provides an 8-bit register which controls the eight LEDs.
Table 5-10 PLD LED Control Register
REG

PLD LED_CTRL - 0xFFDF001C

Bit

7

6

5

4

3

2

1

0

Field

D1

D35

D34

D33

D38

D37

D2 Red

D2
Yellow

OPER

R/W

RESET

1

0

0

0

0

0

0

0

1 - LED on
0 - LED off
For more information on LEDs, refer to Table "Front Panel LEDs" on page 38 and Table "Onboard
LEDs Status" on page 39.

MVME2500 Installation and Use (6806800L01H)

87

Memory Maps and Registers

5.5.8

PLD PCI/PMC/XMC Monitor Register
The MVME2500 PLD provides an 8-bit register which indicates the status of the PCI/PMC/XMC
interface signals.
Table 5-11 PLD PCI/PMC/XMC Monitor Register
REG

PLD PCI_PMC_XMC_MNTR - 0xFFDF001D

Bit

7

6

5

4

3

2

1

0

Field

RSVD

RSVD

RSVD

PMC_X
MC_SEL

PMC1_E
READY

PMC1P_
N

XMCP1_
N

PCI1_PC
IXCAP

OPER

R

RESET

0

0

0

X

X

X

X

X

Field Description

88

PMC_XMC_SEL

XMC or PMC Selection Switch
1 - XMC
0 - PMC

PMC1_EREADY

Indicates that the PrPMC module is installed in PMC
site.
1 - PrPMC is ready for enumeration or no PrPMC is
installed.
0 - PrPMC is not ready for enumeration.

PMC1P_N

PMC Presence Indicator
1 - PMC is not present
0 - PMC is present

XMCP1_N

XMC Presence Indicator
1 - XMC is not present
0 - XMC is present

PCI1_PCIXCAP

PCI Capability Indicator
1 - PCI-X capable
0 - PCI capable

MVME2500 Installation and Use (6806800L01H)

Memory Maps and Registers

5.5.9

PLD U-Boot and TSI Monitor Register
The MVME2500 PLD provides an 8-bit register which indicates the status of the U-Boot's
normal environment switch and TSI interface signals.

Table 5-12 PLD U-Boot and TSI Monitor Register
REG

PLD PCI_PMC_XMC_MNTR - 0xFFDF001F

Bit

7

6

5

4

3

2

1

0

Field

RSVD

RSVD

RSVD

RSVD

RSVD

BDFAIL_N

NORMAL_ENV

SCON

OPER

R

RESET

0

0

0

0

0

X

X

X

Field Description
BDFAIL_N

TSI148 BDFAIL_N Pin out
1 - No TSI Fail
0 - TSI Fail

NORMAL_ENV

Normal Environment Switch Indicator
1 - Use safe ENV
0 - Use normal ENV

SCON

System Controller Indicator
1 - System Controller
0 - Non-system Controller

5.5.10 PLD Boot Bank Register
The MVME2500 PLD provides an 8-bit register which is used to declare successful U-Boot
loading, indicating the SPI boot bank priority and actual SPI bank it booted from.
Table 5-13 PLD Boot Bank Register
REG

PLD Boot Bank - 0xFFDF0050

Bit

7

6

MVME2500 Installation and Use (6806800L01H)

5

4

3

2

1

0

89

Memory Maps and Registers

Table 5-13 PLD Boot Bank Register
REG

PLD Boot Bank - 0xFFDF0050

Field

SPI_GOODReg
(write 0xA4 into this reg to indicate successful loading of the UBoot.

OPER

R/W

RESET

0

0

0

0

0

0

BOOT_B
LOCK_A

BOOT_S
PI

R

R

X

0

Field Description

90

BOOT_BLOCK_A

Boot Block Manual Selector Switch
1 - SPI0
0 - SPI1

BOOT_SPI

Actual Boot Bank
1 - SP1
0 - SPI0

MVME2500 Installation and Use (6806800L01H)

Memory Maps and Registers

5.5.11 PLD Write Protect and I2C Debug Register
The MVME2500 PLD provides an 8-bit register which is used to indicate the status of I2C and
SPI write-protect manual switches and is used to control the SPI write-enable. I2C debug ports
are also provided in this register which can be used in controlling the bus’ status.
Table 5-14 PLD Write Protect and I2C Debug Register
REG

PLD Write Protect I2C Debug- 0xFFDF0054

Bit

7

6

5

4

3

2

1

0

Field

RSVD

MASTER
_WP_DI
SABLED

FLASH_
WP_N

I2C_DEB
UG_EN

SERIAL_
FLASH_
WP

RSVD

I2C_1_
D

I2C_1_C

OPER

R

R

R

R/W

R/W

R

R/W

R/W

RESET

0

1

0

0

1

0

1

1

Field Description
MASTER_WP_DISABLED

I2C devices manual switch write-protect status
1 - Write-protect enabled
0 - Write-protect disabled

FLASH_WP_N

SPI devices manual switch write-protect status
1 - Write-protect disabled
0 - Write-protect enabled

MVME2500 Installation and Use (6806800L01H)

91

Memory Maps and Registers

I2C_DEBUG_EN

I2C debug ports (I2C_1_D and I2C_1_C) enable
1 - Drive Enabled
0 - Drive Disabled

SERIAL_FLASH_WP

SPI devices write-protect register
1 - Write-protect enabled
0 - Write-protect disabled

I2C_1_D

I2C debug port-Data
I2C_DEBUG_EN=0
HiZ - Tri-Stated
I2C_DEBUG_EN-1
1 - Driven High
0 - Driven Low

I2C_1_C

I2C debug port-Clock
I2C_DEBUG_EN=0
HiZ - Tri-Stated
I2C_DEBUG_EN-1
1 - Driven High
0 - Driven Low

When SERIAL_FLASH_WP is set to "Low", this port will automatically read as low due to "AND"
connection between the two ports.

92

MVME2500 Installation and Use (6806800L01H)

Memory Maps and Registers

5.5.12 PLD Test Register 1
The MVME2500 PLD provides an 8-bit general purpose read/write register which can be used
by the software for PLD testing or general status bit storage.
Table 5-15 PLD Test Register 1
REG

PLD Test Register 1- 0xFFDF0080

Bit

7

Field

TEST_REG1

OPER

R/W

RESET

00

6

5

4

3

2

1

0

Field Description
TEST_REG1

General purpose 8-bit R/W field

5.5.13 PLD Test Register 2
The MVME2500 PLD provides an 8-bit general purpose read/write register which can be used
by the software for PLD testing or general status bit storage.
Table 5-16 PLD Test Register 2
REG

PLD Test Register 2- 0xFFDF0081

Bit

7

Field

TEST_REG2

OPER

R/W

RESET

00

6

5

4

3

2

1

0

Field Description
TEST_REG2

General purpose 8-bit R/W field

MVME2500 Installation and Use (6806800L01H)

93

Memory Maps and Registers

5.5.14 PLD GPIO2 Interrupt Register
The Abort switch, Tick Timer 0, 1 and 2 interrupts are ORed together. The MVME2500 provides
an interrupt register that the system software reads to determine which device the interrupt
originated from. GPIO2 will be driven "low" if any of the interrupts asserts.
Table 5-17 PLD GPIO2 Interrupt Register
REG

PLD Write Protect I2C Debug- 0xFFDF0095

Bit

7

6

5

4

3

2

1

0

Field

RSVD

RSVD

RSVD

RSVD

NMI

TICK0_INT

TICK1_INT

TICK2_INT

OPER

R

RESET

0

0

0

0

0

0

0

0

Field Description

94

NMI

Abort switch interrupt if pressed less than three seconds.
1 - Interrupt enabled
0 - No Interrupt

TICK0_INT

Tick Timer 0 interrupt
1 - Interrupt enabled
0 - No Interrupt

TICK1_INT

Tick Timer 1 interrupt
1 - Interrupt enabled
0 - No Interrupt

TICK2_INT

Tick Timer 2 interrupt
1 - Interrupt enabled
0 - No Interrupt

MVME2500 Installation and Use (6806800L01H)

Memory Maps and Registers

5.5.15 PLD Shutdown and Reset Control and Reset Reason Register
The MVME2500 provides an 8-bit register to execute the shutdown and reset commands. The
board's reset reason is also included in this register.
Table 5-18 PLD Shutdown and Reset Control and Reset Reason Register
REG

PLD Shutdown and Reset Reason- 0xFFDF00FF

Bit

7

6

5

4

3

2

1

0

Field

AUTO_SH
DN_MASK

Shutdown

Soft_RST

Clear_Cause

CPU_RESET

WD_TIME
OUT

LRSTO

Sft_RST

OPER

R/W

W

W

W

R

RESET

0

0

0

0

X

X

X

X

Field Description
AUTO_SHDN_MASK

Automatic Shutdown Mask
1 - Auto Shutdown Mask Enable
0 - Auto Shutdown Mask Disable

Note: Automatic shutdown is generated after 1 second whenever a power good signal deasserts.
Shutdown

Board Shutdown Register
1 - Shutdown Enable
0 - Shutdown Disable

Note: If a board entered the shutdown state (by writing a '1' in this register), the chassis' power
needs to be cycled to power up the board again.
Soft_RST

Board Soft Reset (self clearing)
1 - Execute soft reset
0 - No reset

Clear_Cause

Clear Reset Reason (self clearing)
1 - Clear Reason
0 - None

MVME2500 Installation and Use (6806800L01H)

95

Memory Maps and Registers

CPU_RESET

CPU_HRESET_REQ_L Reset Reason
1 - Reset is due to CPU_HRESET_REQ_L signal
0 -None

WD_TIMEOUT

Watchdog Timeout Reset Reason
1 - Reset is due to watchdog timing out
0 - None

LRSTO

TSI LRSTO Reset Reason
1 - Reset is due to LRSTO signal
0 - None

Sft_RST

Soft Reset - Reset Reason
1 - Reset is due to Soft_RST register being set, or the front
panel switch being pressed more than three
0 - None

5.5.16 PLD Watchdog Timer Refresh Register
The MVME2500 provides a watchdog timer refresh register.
Table 5-19 PLD Watchdog Timer Refresh Register
REG

PLD Watch Dog Timer Load - 0xFFC80600

Bit

15

14

13

12

11

10

9

8

7

Field

RSVD

RSVD

RSVD

RSVD

RSVD

RSVD

RSVD

RSVD

Refresh

OPER

R

RESET

0000

6

5

4

3

2

1

0

Field Description
Refresh

96

Counter Refresh. When the pattern 0x00DB is written, the watchdog counter
will be reset to zero.

MVME2500 Installation and Use (6806800L01H)

Memory Maps and Registers

5.5.17 PLD Watchdog Control Register
The MVME2500 provides a watchdog control register.
Table 5-20 PLD Watchdog Control Register
REG

PLD Watch Dog Timer Load - 0xFFC80604

Bit

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Field

Watchdog_EN

RSVD

RSVD

RSVD

RSVD

RSVD

RSVD

RSVD

RSVD

RSVD

RSVD

RSVD

RSVD

RSVD

RSVD

RSVD

OPER

R/W

R

RESET

0000

Field Description
EN

Enable. If cleared, the watchdog timer is disabled. If set, the watchdog timer is
enabled.

5.5.18 PLD Watchdog Timer Count Register
The MVME2500 provides a watchdog timer count register.
Table 5-21 PLD Watchdog Timer Count Register
REG

PLD Watchdog Timer Count - 0xffc80606

Bit

15:0

Field

Count

OPER

R/W

RESET

0xEA60 (60secs)

MVME2500 Installation and Use (6806800L01H)

97

Memory Maps and Registers

Field Description
Count

5.6

Count. These bits define the watchdog timer count value. When the
watchdog counter is enabled, it will count up from zero (reset value) with a 1
ms resolution until it reaches the COUNT value set by this register. Watchdog
will generate a soft reset signal if it bites.
Setting this register to 0xEA60 or 60,000 counts will provide a watchdog
timeout of 60 seconds.

External Timer Registers
The MVME2500 provides a set of tick timer registers to access the three external timers
implemented in the timers/registers PLD. These registers are 32-bit and are word writable. The
following sections describe the timer prescaler and control registers.

5.6.1

Prescaler Register
The prescaler adjust value is determined by this formula:
Prescaler Adjust = 256-(CLKIN/CLKOUT)
CLKIN is the input clock source in MHz, and CLKOUT is the desired output clock reference in
MHz.

Table 5-22 Prescaler Register
REG

Prescaler Register - 0xFFC80100

Bit

15

14

13

12

11

10

9

8

7

Field

RSVD

RSVD

RSVD

RSVD

RSVD

RSVD

RSVD

RSVD

Prescaler Register (8-bits)

OPER

R/W

RESET

0x00e7

6

5

4

3

2

1

0

The prescaler provides the clock required by each of the three times. The tick timers require a
1 MHz clock input. The input clock to the prescaler is 25 MHz. The default value is set for
0x00E7, which gives a 1 MHz reference clock for a 25 MHz input clock source.

98

MVME2500 Installation and Use (6806800L01H)

Memory Maps and Registers

5.6.2

Control Registers

Table 5-23 Control Registers
Tick Timer 0 Control Register - 0xFFC80202
Tick Timer 1 Control Register - 0xFFC80302
REG

Tick Timer 2 Control Register - 0xFFC80402

Bit

15

14

13

12

11

10

9

8

7

Field

RSVD

RSVD

RSVD

RSVD

RSVD

INTS

CINT

ENINT

OVF

OPER

R/W

RESET

0x0000

6

5

4

3

2

1

0

RSVD

COVF

COC

ENC

Field Description
ENC

Enable counter. When the bit is set, the counter increments. When the bit is
cleared, the counter does not increment.

COC

Clear Counter on Compare. When the bit is set, the counter is reset to 0 when
it compares with the compare register. When the bit is cleared the counter is
not reset.

COVF

Clear Overflow Bits. The overflow counter is cleared when a 1 is written to this
bit.

OVF

Overflow Bits are the output of the overflow counter. It increments each time
the tick timer sends an interrupt to the local bus interrupter. The overflow
counter can be cleared by writing a 1 to the COVF bit.

ENINT

Enable Interrupt. When the bit is set, the interrupt is enabled. When the bit is
cleared, the interrupt is not enabled.

CINT

Clear Interrupt.

INTS

Interrupt Status.

RSVD

Reserved for future implementation.

MVME2500 Installation and Use (6806800L01H)

99

Memory Maps and Registers

5.6.3

Compare High and Low Word Registers
The tick timer counter is compared to the Compare Register. When the values are equal, the
tick timer interrupt is asserted and the overflow counter increments. If the clear-on-compare
mode is enable, the counter is also cleared. For periodic interrupts, this equation should be
used to calculate the compare value for a specific period (T):
Compare register value=T (us)
When programming the tick timer for periodic interrupt, the counter should be cleared to zero
by software and then enabled. If the counter does not initially start at zero, the time to the first
interrupt may be longer or shorter than expected. Note that the rollover time for the counter
is 71.6 minutes.
Since the processor is 16-bits and the tick timer is 32-bits, the compare register was split in half.
Accessing the whole register will require two transactions.

Table 5-24 Compare High Word Registers
Tick Timer 0 Compare Value High Word - 0xFFC80204
Tick Timer 1 Compare Value High Word - 0xFFC80304
REG

Tick Timer 2 Compare Value High Word - 0xFFC80404

Bit

15

Field

TickTimer Compare Value High Word (16-bits)

OPER

R/W

RESET

0x0000

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

6

5

4

3

2

1

0

Table 5-25 Compare Low Word Registers
Tick Timer 0 Compare Value Low Word - 0xFFC80206
Tick Timer 1 Compare Value Low Word - 0xFFC80306
REG

Tick Timer 2 Compare Value Low Word - 0xFFC80406

Bit

15

Field

TickTimer Compare Value Low Word (16-bits)

OPER

R/W

RESET

0x0000

100

14

13

12

11

10

9

8

7

MVME2500 Installation and Use (6806800L01H)

Memory Maps and Registers

5.6.4

Counter High and Low Word Registers
When enabled, the tick timer counter register increments every microsecond. Software may
read or write the counter at any time.

Table 5-26 Counter High Word Registers
Tick Timer 0 Counter Value High Word - 0xFFC80208
Tick Timer 1 Counter Value High Word - 0xFFC80308
REG

Tick Timer 2 Counter Value High Word - 0xFFC80408

Bit

15

Field

TickTimer Counter Value High Word (16-bits)

OPER

R/W

RESET

0x0000

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

6

5

4

3

2

1

0

Table 5-27 Counter Low Word Registers
Tick Timer 0 Counter Value Low Word - 0xFFC8020A
Tick Timer 1 Counter Value Low Word - 0xFFC8030A
REG

Tick Timer 2 Counter Value Low Word - 0xFFC8040A

Bit

15

Field

TickTimer Counter Value Low Word (16-bits)

OPER

R/W

RESET

0x0000

14

13

12

11

10

MVME2500 Installation and Use (6806800L01H)

9

8

7

101

Memory Maps and Registers

102

MVME2500 Installation and Use (6806800L01H)

Chapter 6

Boot System

6.1

Overview
The MVME2500 uses Das U-Boot, a boot loader software based on the GNU Public License. It
boots the blade and is the first software to be executed after the system is powered on.
Its main functions are:


Initialize the hardware



Pass boot parameters to the Linux kernel



Start the Linux kernel



Update Linux kernel and U-Boot images

This section describes U-Boot features and procedures that are specific to the MVME2500. For
general information on U-Boot, see http://www.denx.de/wiki/UBoot/WebHome.

6.2

Accessing U-Boot
1. Connect the board to a computer with a serial interface connector and a terminal emulation
software running on it. The serial connector of the board is found on the face plate.
2. Configure the terminal software to use the access parameters that are specified in U-Boot.
By default, the access parameters are as follows:


Baud rate: 9600



PC ANSI



8 data bits



No parity



1 stop bit

These serial access parameters are the default values. These can be changed from within the
U-Boot. For details, refer to the U-Boot documentation.

3. Boot the MVME2500.
4. When prompted, press the "h" key.
MVME2500 Installation and Use (6806800L01H)

103

Boot System

U-Boot aborts the boot sequence and enters into a command line interface mode.
Enter the command setenv bootdelay -1; saveenv to disable the U-Boot auto-boot
feature and let the U-Boot directly enter the command line interface after the next
reboot/power up.

6.3

Boot Options

6.3.1

Booting from a Network
In this mode, U-Boot downloads and boots the Linux kernel from an external TFTP server and
mounts a root file system located on a network server.

1. Make sure that the kernel, dtb, and ramdisk are accessible to the board from the
TFTP server.

2. Configure U-Boot environment variables:
setenv ipaddr 
setenv serverip 
setenv gatewayip 
setenv netmask 
setenv bootargs 'root=/dev/ram rw console=ttyS0,9600n8
ramdisk_size=700000 cache-sram-size=0x10000'
saveenv
3. Transfer the files through the TFTP from the server to the local memory.

tftp 1000000 
tftp 2000000 
tftp C00000 
4. Boot the Linux from the memory.
bootm 1000000 2000000 c00000

104

MVME2500 Installation and Use (6806800L01H)

Boot System

6.3.2

Booting from an Optional SATA Drive
1. Make sure that the kernel, dtb, and ramdisk are saved in the SATA drive with ext2
partition.
2. Configure U-Boot environment variable:
setenv File_uImage 
setenv File_dtp 
setenv File_ramdisk 
saveenv
3. Copy the files from the SATA drive to the memory:
# option: scsi - interface, 0:1 - device 0 partition 1
ext2load scsi 0:1 1000000 $File_uImage
ext2load scsi 0:1 2000000 $File_ramdisk
ext2load scsi 0:1 c00000 $File_dtp
4. Boot the Linux in memory.
bootm 1000000 2000000 c00000

6.3.3

Booting from a USB Drive
1. Make sure that the kernel, dtb, and ramdisk are saved in the USB drive with FAT
partition.
2. Configure the U-Boot environment variable:
setenv File_uImage 
setenv File_dtp 
setenv File_ramdisk 
saveenv

3. Initialize USB drive:
usb start
4. Load the files from the USB drive to the memory:

# option: usb - interface, 0:1 - device 0 partition 1
fatload usb 0:1 1000000 $File_uImage
fatload usb 0:1 2000000 $File_ramdisk
fatload usb 0:1 c00000 $File_dtb
5. Boot the Linux in memory:
bootm 1000000 2000000 c00000
MVME2500 Installation and Use (6806800L01H)

105

Boot System

6.3.4

Booting from an SD Card
1. Make sure that the kernel, dtb, and ramdisk are saved in the SD card with FAT
partition.
2. Configure the U-Boot environment variable:
setenv File_uImage 
setenv File_dtp 
setenv File_ramdisk 
saveenv

3. Initialize SD card:
mmcinfo
4. Load the files from the SD card to the memory:

# option: mmc - interface, 0:1 - device 0 partition 1
fatload mmc 0:1 1000000 $File_uImage
fatload mmc 0:1 2000000 $File_ramdisk
fatload mmc 0:1 c00000 $File_dtp
5. Boot the Linux in memory:
bootm 1000000 2000000 c00000

6.3.5

Booting VxWorks Through the Network
In this mode, the U-Boot downloads and boots VxWorks from an external TFTP server.

1. Make sure that the VxWorks image is accessible by the board from the TFTP server.
2. Configure U-Boot environment variables:
setenv ipaddr 
setenv serverip 
setenv gatewayip 
setenv netmask 
setenv vxboot 'tftpboot $vxbootfile && setenv bootargs
$vxbootargs && bootvx'
setenv vxbootfile 
setenv vxbootargs 'motetsec(0,0):VxWorks h= e=:ffffff00 b= u=vxworks pw=vxworks f=0x80'
saveenv
106

MVME2500 Installation and Use (6806800L01H)

Boot System

3. TFTP the files from the server to local memory, then boot:

run vxboot

6.4

Using the Persistent Memory Feature
Persistent memory means that the RAM's memory is not deleted during a reset. Power cycling,
or by temporarily removing the power and then powering up the blade again, will delete the
memory content. Persistent memory feature is enabled by default.
This feature can be useful in many situations, including:


Analyzing kernel logs after a Linux kernel panic



Defining a particular memory region for the persistent storage of application specific data

Analyzing Kernel Log Files after a Kernel Panic
When a board that is running the Linux OS indicates a kernel panic, issue a reset (through the
face plate button, for example) to analyze the cause, then subsequently analyze kernel log files.
The persistent memory feature keeps the log files available in the memory.
To analyze the kernel log files:
1. Issue a reset.
2. Connect to U-Boot. For more information, see Accessing U-Boot on page 103.
3. Enter the following command to obtain memory addresses of the kernel log
files:.locate_kernel_log (1)
The memory addresses of any found kernel log files will be displayed.
4. Enter the following command to display the kernel logfile at any of these memory
addresses: .printf ()
The persistent memory is useful in application-specific data storage. The standard U-Boot
variable pram can be used to reserve a memory region at the end of the physical memory to
prevent it from being overwritten. U-Boot reports less memory to the Linux kernel through the
mem parameter, indicating that the operating system should not use it either.
For more information, see the U-Boot documentation.

MVME2500 Installation and Use (6806800L01H)

107

Boot System

6.5

MVME2500 Specific U-Boot Commands
Table 6-1 MVME2500 Specific U-Boot Commands

108

Command

Description

base

Print or set address offset

bdinfo

Print board info structure

boot

Boot default, i.e., run 'bootcmd'

bootd

Boot default, i.e., run 'bootcmd'

bootelf

Boot from an ELF image in memory

bootm

Boot application image from memory

bootp

Boot image through network using BOOTP/TFTP protocol

bootvx

Boot VxWorks from an ELF image

cmp

Memory compare

coninfo

Print console devices and information

cp

Memory copy

cpu

Multiprocessor CPU boot manipulation and release

crc32

Checksum calculation

date

Get/set/reset date & time

diags

Runs POST diags

echo

Echo args to console

exit

Exit script

ext2load

Load binary file from a Ext2 file system

ext2ls

List files in a directory (default /)

fatinfo

Print information about file system

fatload

Load binary file from a DOS file system

fatls

List files in a directory (default /)

fdt

Flattened device tree utility commands

go

Start application at address 'addr'
MVME2500 Installation and Use (6806800L01H)

Boot System

Table 6-1 MVME2500 Specific U-Boot Commands (continued)
Command

Description

help

Print online help

i2c

I2C sub-system

iminfo

Print header information for application image

imxtract

Extract a part of a multi-image

interrupts

Enable or disable interrupts

itest

Return true/false on integer compare

loadb

Load binary file over serial line (kermit mode)

loads

Load S-Record file over serial line

loady

Load binary file over serial line (ymodem mode)

loop

Infinite loop on address range

md

Memory display

memmap

Displays memory map

mii

MII utility commands

mm

Memory modify (auto-incrementing address)

mmc

MMC sub system

mmcinfo

Display MMC info

moninit

Reset nvram, serial#, and write monitor to SPI flash

mtest

Simple RAM read/write test

mw

Memory write (fill)

nfs

Boot image through network using NFS protocol

nm

Memory modify (constant address)

pci

List and access PCI Configuration Space

pci_info

Show information about devices on PCI bus

ping

Send ICMP ECHO_REQUEST to network host

printenv

Print environment variables

rarpboot

Boot image through network using RARP/TFTP protocol

reset

Perform RESET of the CPU

MVME2500 Installation and Use (6806800L01H)

109

Boot System

Table 6-1 MVME2500 Specific U-Boot Commands (continued)

6.6

Command

Description

run

Run commands in an environment variable

saveenv

Save environment variables to persistent storage

script

Run a ';' delimited, ';;' terminated list of commands

scsi

SCSI sub-system

scsiboot

Boot from SCSI device

setenv

Set environment variables

setexpr

Set environment variable as the result of eval expression

sf

SPI flash sub-system

showvar

Print local hushshell variables

sleep

Delay execution for some time

soft_reset

Soft reset the board

source

Run script from memory

test

Minimal test like /bin/sh

tftpboot

Boot image through network using TFTP protocol

tsi148

Initialize and configure Tundra Tsi148

usb

USB sub-system

usbboot

Boot from USB device

version

Print monitor version

Updating U-Boot
To update the U-Boot, place the image in the RAM (address 0x1000000 in this example) before
copying it to the SPI flash.
The following procedure will replace the image in SPI bank 0:
1. Disable SPI write-protect in FPGA register PLD Write Protect and I2C Debug Register.

2. Ensure FLASH_WP_N in SMT Configuration Switch (S2) is in the "OFF" position.
3. Select SPI flash # 0:
110

MVME2500 Installation and Use (6806800L01H)

Boot System

sf probe 0
4. Erase 0x90000 bytes starting at SPI address 0:

sf erase 0 0x90000
5. Write 0x90000 bytes from RAM address 0x1000000 starting at SPI address 0:

sf write 0x1000000 0 0x90000
To replace the image in SPI bank 1, replace step 2 with Select SPI flash # 1:
sf probe 1

MVME2500 Installation and Use (6806800L01H)

111

Boot System

112

MVME2500 Installation and Use (6806800L01H)

Chapter 7

Programming Model

7.1

Overview
This chapter includes additional programming information for the MVME2500.

7.2

Reset Configuration
The MVME2500 supports the power-on reset (POR) pin sampling method for processor reset
configuration. Each option and the corresponding default setting are described in the
following table.

Table 7-1 POR Configuration Settings
CONFIG

CONFIG PINS

CONFIG

SELECTION

1

CCB Config

LA[29:31]

000

41: CCB CLOCK-400 MHz

2

DDR PLL Config

TSEC_1588_CLK_O
UT

001

8:1 DDR PLL-800 MHz

DDR rate is twice the
value of the DDR
controller frequency,
which is then divided by
two through the
software.

110

3:1 CORE CLOCK PLL
(1200 MHz)

For 1200 MHz board
configuration

100

2:1 CORE CLOCK PLL (800
MHz)

For 800 MHz board
configuration

110

3:1 CORE CLOCK PLL
(1200 MHz)

For 1200 MHz board
configuration

100

2:1 CORE CLOCK PLL (800
MHz)

For 800 MHz board
configuration

10

e500 core 0 is allowed to
boot without waiting for
configuration by an
external master, while
e500 core 1 is prevented
from booting until
configured by an external
master or the other core.

TSEC_1588_PULSE_
OUT1
TSEC_1588_PULSE_
OUT2
3

Core 0 PLL

LBCTL, LALE
LGPL2/LOE/LFRE

4

5

Core 1 PLL

CPU Boot
Config

LWE0, UART_SOUT1

LA27, LA16

MVME2500 Installation and Use (6806800L01H)

REMARKS

113

Programming Model

Table 7-1 POR Configuration Settings (continued)
CONFIG

CONFIG PINS

CONFIG

SELECTION

6

Boot Sequence

LGPL3/LFWP, LGPL5

11

CFG_BOOT_SEQ[1:0] =
BOOT SEQUENCE
DISABLED

7

Memory Debug
Config

DMA2_DACK0

1

Debug information from
the DDR SDRAM
controller is driven on the
MSPCID and MDVAL signs
(default)

8

DDR Debug
Config

DMA2_DDONE0

1

Debug information is not
driven on ECC pins. ECC
function in their normal
mode (default).

9

ELBCECC Enable
Config

MSRCID0

0

Default operation: eLBC
ECC checking is disabled

10

Platform Speed

LA23

1

CFG_PLAT_SPEED:1=CCB
CLOCK > = 333 MHz

11

CORE 0 Speed

LA24

1

CFG_CORE0_SPEED:1=C
ORE FREQ>= 1000 MHz

For 1200 MHz board
configuration

0

CFG_CORE0_SPEED:0=C
ORE FREQ<=1000 MHz

For 800 MHz board
configuration

1

CFG_CORE1_SPEED:1=C
ORE FREQ>=1000 MHz

For 1200 MHz board
configuration

0

CFG_CORE1_SPEED:0=C
ORE FREQ<=1000 MHz

For 800 MHz board
configuration

12
13

CORE 1 Speed

LA26

14
15

DDR Controller
Speed

LA26

1

CFG_DDR_SPEED:1=DDR
FREQ>= 500 MHz

16

Engineering use

LA[22:20]
UART_SOUT[0],
TRIG_OUT,
MSRCID[1],
MSRCID[4],
DMA1_DDONE_B[0]

111111
11

Default (for future use)

17

SerDes Ref
Clock Config

TSEC_1588_ALARM
_OUT1

1

SerDes expects a 100
MHz reference clock
frequency (default).

114

REMARKS

MVME2500 Installation and Use (6806800L01H)

Programming Model

Table 7-1 POR Configuration Settings (continued)
CONFIG

CONFIG PINS

CONFIG

SELECTION

18

ETSEC2 SGMII
Mode

LGPL1

1

eTSEC2 Ethernet
interface operates in
standard parallel
interface mode and uses
the TSEC_2’pins
(default).

19

ETSEC3 SGMMI
Mode

TSEC_1588_ALARM
_OUT2

1

eTSEC3 Ethernet
interface operates in
standard parallel
interface mode and uses
the TSEC_3’pins
(default).

20

ETSEC1 and
ETSEC2 Width

EC_MDC

0

eTSEC1 and eTSEC2
Ethernet interfaces
operate in reduced pin
mode (either RTBI, RGMI,
RMII or 8-bit FIFO mode).

21

ETSEC1
Protocol

TSEC1_TXD0,
TSEC1_TXD7

10

The eTSEC2 controller
operates using the GMII
protocol (or RGMII, if
configured in reduced
mode) if its not
configured to operate in
SGMII mode.

22

ETSEC2
Protocol

TSEC2_TXD0,
TSEC2_TXD7

10

The eTSEC2 controller
operates using the GMII
protocol (or RGMII, if
configured in reduced
mode) if its not
configured to operate in
SGMII mode.

23

ETSEC3
Protocol

UART_RTS0,
UART_RTS1

10

The eTSEC3 controller
operates using the RGMII
protocol if not configured
to operate in SGMII
mode.

MVME2500 Installation and Use (6806800L01H)

REMARKS

115

Programming Model

Table 7-1 POR Configuration Settings (continued)
CONFIG

CONFIG PINS

CONFIG

SELECTION

24

BOOT ROM
Location

TSEC1_TXD[6:4],
TSEC1_TX_ER

011X

On-chip boot ROM-SPI
configuration (x=0),
SDHC (x=1)

25

Host/Agent
Config

LWE1/LBS1,
LA[18:19]

111

The processor acts as the
host/root complex for all
PCI-E/Serial Rapid IO
interfaces (default).

26

I/O Port Select

TSEC1_TXD[3:1],
TSEC2_TX_ER

0010

PCI-E 1 (x1) (2.5 Gbps) SerDes lane 0

REMARKS

PCI-E 2 (x1) (2.5 Gbps) SerDes lane 2
PCI-E 3 (x2) (2.5 Gbps) SerDes lane 2-3
27

DDR SDRAM
TYPE

TSEC2_TXD1

1

DDR31.5 V. CKE low at
reset (default)

28

SerDes PLL Time
Out Enable

TRIG_OUT

1

Disable PLL lock time-out
counter. The power-onreset sequence waits
indefinitely for the SerDes
PLL to lock (default).

29

System Speed

LA[28]

1

SYSCLOCK is above 66
MHz

30

SDHC Card
Detect Polarity

TSEC2_TXD_5

1

Not Inverted

31

RAPID System
Size

116

Default

RapidIO is not used

MVME2500 Installation and Use (6806800L01H)

Programming Model

7.3

Interrupt Controller
The MVME2500 uses the MPC8548E integrated programmable interrupt controller (PIC) to
manage locally generated interrupts. Currently defined external interrupting devices and
interrupt assignments, along with corresponding edge/levels and polarities, are shown in the
following table.
Table 7-2 MVME2500 Interrupt List
Interrupt Line

Interrupt Usage
(Schematic)

IRQ0

None

IRQ1

QUART_IRQ1

LBC

RTB Quart Interrupt

IRQ2

QUART_IRQ2

LBC

RTB Quart Interrupt

IRQ3

QUART_IRQ3

LBC

RTB Quart Interrupt

IRQ4

Temperature
Interrupt

I2C

Two onboard Thermal Sensors:
one is for CPU temp and the
other is for board temp

IRQ5

Ethernet 1

Management I2C

Ethernet interrupt is handled by
PHY/ Connected for flexibility

IRQ6

Ethernet 3

Management I2C

Ethernet interrupt is handled by
PHY/ Connected for flexibility

IRQ7/ GPIO0

Ethernet 2

Management I2C

Ethernet interrupt is handled by
PHY/ Connected for flexibility

IRQ8/ GPIO1

RTC (Real Time
Clock)

12C

IRQ9/ GPIO2

FPGA Interrupt

LBC

NMI and 3 Tick Timer Interrupts

IRQ10// GPIO3

FPGA Interrupt

LBC

Power Interruption

IRQ11// GPIO4

QUART_IRQ0

LBC

RTB Quart Interrupt

MVME2500 Installation and Use (6806800L01H)

Interface to CPU

Description
Reserved for VME interrupt

117

Programming Model

7.4

I2C Bus Device Addressing
The following table contains the I2C devices used for the MVME2500 and its assigned device
address.
Table 7-3 I2C Bus Device Addressing
I2C Bus Address

Device Function

Size

Notes

0x50

SPD

256 x 8

0x4C

ADT 7461 Temperature Sensor

N/A

0x68

DS 1375 real-time clock

N/A

0x54

VPD

8192 x 8

1

0x52

User configuration

65536 x 8

1

0x53

User configuration

65536 x 8

1

0x55

RTM EEPROM

8192 X 8

1, 2

0x56

XMC EEPROM

N/A

3

1. This is a dual address serial EEPROM.
2. The RTM Bus address can be manually changed through the S1 Switch on RTM. The default
switch configuration will set the address to 0x55. Make sure that the address is unique to
the RTM Bus address when setting the switch.
3. The address of the XMC EEPROM is configured through Geographic Address resistor on
board.

7.5

Ethernet PHY Address
The assigned Ethernet PHY on the MII management bus is shown in the following table.
Table 7-4 PHY Types and MII Management Bus Address

118

Ethernet Port

Function / Location

PHY Types

PHY MIIM
Address

TSEC1

Gigabit Ethernet port routed to front panel

BCM54616

1

MVME2500 Installation and Use (6806800L01H)

Programming Model

Table 7-4 PHY Types and MII Management Bus Address

7.6

Ethernet Port

Function / Location

PHY Types

PHY MIIM
Address

TSEC2

Gigabit Ethernet port routed to front or back panel,
set by GBE_MUX_SEL in S2

BCM54616

7

TSEC3

Gigabit Ethernet port routed to back panel

BCM54616

3

Other Software Considerations
This section provides programming information in relation to various board components.

7.6.1

MRAM
The MVME2500 provides 512 K bytes of fast, non-volatile storage in the form of
Magnetoresistive Random Access Memory (MRAM). The MRAM is directly accessible by
software using processor load and store instructions similar to the DRAM. The difference is that
the MRAM retains its contents even if the board is power cycled. The MRAM is accessed through
the LBC.

7.6.2

Real Time Clock
The MVME2500 provides a battery backed-up DS1375 Real Time Clock (RTC) chip. The RTC
chip provides time keeping and alarm interrupts. It is an I2C device and is accessed through the
I2C bus address at 0x68.

7.6.3

Quad UART
The MVME2500 console RS232 port is driven by the UART built into the P20x0 QorIQ chip.
Additionally, the MVME2500 has a Quad UART chip which provides four additional 16550
compatible UART. These additional UART are internally accessed through the LBC bus. The
Quad UART chip clock input (which is internally divided to generate the baud rate) is 1.8432
MHz. The four UART physically connect to RS232 DB9 serial ports through the RTM.

MVME2500 Installation and Use (6806800L01H)

119

Programming Model

7.6.4

LBC Timing Parameters
The following table defines the timing parameters for the devices on the local bus.
Table 7-5 LBC Timing Parameters
0

1

2

3

4

5

6

MRAM

UART 0

UART 1

UART 2

UART 3

FPGA

Timers

BCTLD

0

0

0

0

0

0

0

CSNT

1

1

1

1

1

1

1

ACS

10

10

10

10

10

10

10

XACS

0

0

0

0

0

0

0

SCY

0011

0011

0011

0011

0011

0011

0011

SETA

0

0

0

0

0

0

0

TRLX

0

0

0

0

0

0

0

EHTR

0

0

0

0

0

0

0

EAD

0

0

0

0

0

0

0

Field Description
BCTLD

Buffer control disable.
0 - LBCTL is asserted upon access to the current memory bank.

CSNT

Chip Select negation time.
1 - LCSn and LWE are negated one quarter of the bus clock cycle earlier

ACS

Address to chip-select setup.
10 - LCSn is outputted one quarter bus clock cycle after the address lines.

XACS

Extra Address to chip-select setup
0 - Address to chip-select setup is determined by ORx[ACS]

SCY

Cycle length in bus clocks
0011 - Three bus clock cycle wait state

120

MVME2500 Installation and Use (6806800L01H)

Programming Model

SETA

External address termination
0 - Access is terminated internally by the memory controller unless the
external device asserts LGTA earlier to terminate the access.

TRLX

Timing Relaxed
0 - Normal timing is generated by the GPCM.

EHTR

Extended hold time on read accesses.
0 - The memory controller generates normal timing. No additional cycles
are inserted

EAD

External address latch delay
0 - No additional bus clock cycles (LALE asserted for one bus clock cycle
only)

7.7

Clock Distribution
The clock function generates and distributes all of the clocks required for system operation.
The ICS9FG108 is used to generate all the required PCI-E clocks. The 25 MHz clocks for the
Ethernet PHY and SATA bridge are supplied by ICS83905. Most of the QorIQ P2020 clocks are
generated by ICS840S07I chip. Additional clocks required by individual devices are generated
near the devices using individual oscillators. The following table lists the clocks required on the
MVME2500 along with the frequency and source.

Table 7-6 Clock Distribution
Device

Clock Signal

Frequency

Clock Tree Source

VIO

QorIQ P20x0

CPU_SYSCLK

100MHz

ICS840S07I

+3.3V

QorIQ P20x0

CPU_DDR_CLK

100MHz

ICS840S07I

+3.3V

QorIQ P20x0

CLK_PCI_BR3

133Mhz

ICS840S07I

+3.3V

QorIQ P20x0

EC_GTX_CLK125

125Mhz

ICS840S07I

+3.3V

ICS840S07I

CLK_25MHZ_ICS840S07

25Mhz

ICS83905AGILF

+3.3V

88SE6121

CLK_88SE6121_25MHZ

25Mhz

ICS83905AGILF

+3.3V

ICS9FG108

CLK_25MHZ_ICS9FG108

25Mhz

ICS83905AGILF

+3.3V

BCM54616S

BP_PHY_25MHZ_CLK

25Mhz

ICS83905AGILF

+3.3V

BCM54616S

FP_PHY_25MHZ_CLK

25Mhz

ICS83905AGILF

+3.3V

MVME2500 Installation and Use (6806800L01H)

121

Programming Model

Table 7-6 Clock Distribution (continued)
Device

Clock Signal

Frequency

Clock Tree Source

VIO

BCM54616S

SW_25MHZ_CLK

25Mhz

ICS83905AGILF

+3.3V

XMC

CLK_XMC1

100MHz

ICS9FG108

DIFF

QorIQ P20x0

SD_REF_CLK

100MHz

ICS9FG109

DIFF

TSI384

CLK_PCIEC1

100MHz

ICS9FG110

DIFF

TSI384

CLK_PCIEC3

100MHz

ICS9FG111

DIFF

88SE6121

CLK_88SE6121_PCIE_100MH
Z

100MHz

ICS9FG112

DIFF

FPGA

CLK_CPLD

1.8432MHz

Oscillator

+3.3V

USB

CLK_USB_1_24MHZ

24MHz

Oscillator

+3.3V

QorIQ P20x0

CPU_RTC

1MHz

FPGA

+3.3V

PMC

CLK_PMC1

33/66/100/133M
hz

TSI384

+3.3V

TSI148

CLK_PCI_BR3

133Mhz

ICS840S07I

+3.3V

RTC

CLK_32K

32.768KHz

DS32KHz

+3.3V

FPGA

CPU_LCK0

25MHz

QorIQ P20x0

+3.3V

QUART

CLK_QUART

1.8432MHz

FPGA

+3.3V

ICS83905

CLK_25MHZ_ICS9FG108

25Mhz

ICS83905AGILF

+3.3V

7.7.1

System Clock
The system and DDR clock is driven by ICS840S07I. The following table defines the clock
frequency.
Table 7-7 System Clock

122

SYSCLK

CORE

CCB Clock (Platform)

DDR3

LBC

100MHz

800/1200 MHz

400 MHz

400MHz

25MHz

MVME2500 Installation and Use (6806800L01H)

Programming Model

7.7.2

Real Time Clock Input
The RTC clock input is driven by a 1 MHz clock generated by the FPGA. This provides a fixed
clock reference for the QorIQ P20x0 PIC timers which the software can use as a known time
reference.

7.7.3

Local Bus Controller Clock Divisor
The local bus controller (LBC) clock output is connected to the FPGA for LBC bus transaction. It
is also the source of 1 MHz (CPU_RTC) and FPGA tick timers.

MVME2500 Installation and Use (6806800L01H)

123

Programming Model

124

MVME2500 Installation and Use (6806800L01H)

Appendix A
A

Replacing the Battery

A.1

Replacing the Battery
The figure below shows the location of the board battery.
Figure A-1

Battery Location

MVME2500 Installation and Use (6806800L01H)

125

Replacing the Battery

The battery provides seven years of data retention, summing up all periods of actual data use.
Emerson therefore assumes that there is usually no need to replace the battery except, for
example, in case of long-term spare part handling.

Board/System Damage


Incorrect replacement of lithium batteries can result in a hazardous explosion.



When replacing the on-board lithium battery, make sure that the new and the old
battery are exactly the same battery models.



If the respective battery model is not available, contact your local Emerson sales
representative for the availability of alternative, officially approved battery models.

Data Loss


Replacing the battery can result in loss of time settings. Backup power prevents the loss
of data during replacement.



Quickly replacing the battery may save time settings.

Data Loss


If the battery has low or insufficient power the RTC is initialized.



Replace the battery before seven years of actual battery use have elapsed.

PCB and Battery Holder Damage


126

Removing the battery with a screw driver may damage the PCB or the battery holder. To
prevent damage, do not use a screw driver to remove the battery from its holder.

MVME2500 Installation and Use (6806800L01H)

Replacing the Battery

Replacement Procedure
To replace the battery, proceed as follows:
1. Remove the old battery.
2. Install the new battery with the plus sign (+) facing up.

3. Dispose of the old battery according to your country’s legislation and in an environmentally
safe way.

MVME2500 Installation and Use (6806800L01H)

127

Replacing the Battery

128

MVME2500 Installation and Use (6806800L01H)

Appendix B
B

Related Documentation

B.1

Emerson Network Power - Embedded
Computing Documents
The publications listed below are referenced in this manual. You can obtain electronic copies of
Emerson Network Power - Embedded Computing publications by contacting your local
Emerson sales office. For released products, you can also visit our Web site for the latest copies
of our product documentation.
1. Go to www.Emerson.com/EmbeddedComputing.The Emerson Embedded Computing
website opens.
2. Click on Technical Documentation link.
3. Click on Search Our Technical Documentation Archive link.
4. In the Search box, type the publication number of the manual you are looking for.
Table B-1 Emerson Network Power - Embedded Computing Publications
Document Title

Publication Number

MVME2500 Release Notes

6806800L02B

MVME2500 Quick Start Guide

6806800L03A

MVME2500 Safety Notes

6806800L13A

MVME7216 RTM Installation and Use

6806800M42C

MVME7216 RTM Quick Start Guide

6806800M53A

MVME7216 RTM Safety Notes

6806800M54A

MVME2500 Installation and Use (6806800L01H)

129

Related Documentation

B.2

Manufacturers’ Documents
For additional information, refer to the following table for manufacturers’ data sheets or user
manuals. As an additional help, a source for the listed document is provided. Please note that
while these sources have been verified, the information is subject to change without notice.
Table B-2 Manufacturers’ Publications

B.3

Company

Document

Freescale

Freescale Semiconductor, QorIQ™ P2020 Integrated Processor Reference
Manual, Rev. 0

Tundra
Semiconductor
Corporation

Tsi148™ PCI/X-to-VME Bus Bridge User Manual, March 2009

Related Specifications
For additional information, refer to the following table for related specifications. As an
additional help, a source for the listed document is provided. Please note that, while these
sources have been verified, the information is subject to change without notice.
Table B-3 Related Specifications
Organization

Document

American National
Standards Institute

ANSI/VITA 1.0-1994 (R2002), VME64 Standard

(ANSI)
VITA Standards
Organization

ANSI/VITA 1.1-1997 (R2003), VME64x Extensions
ANSI/VITA 1.5-2003, VME 2eSST
ANSI/VITA 35-2000, Pin Assignments for PMC P4 Connector
ANSI/VITA 39-2003, PCI-X for PMC and Processor PMC

VITA Standards
Organization

XMC - High Speed, Switched Interconnect Protocols on PMC VITA 42.0 2005
XMC General Purpose I/O Standard VITA 42.10
XMC PCI Express Protocol Layer Standard VITA 42.3 - 2006

130

MVME2500 Installation and Use (6806800L01H)

Related Documentation

Table B-3 Related Specifications
Organization

Document

IEEE

IEEE 802.3 LAN/MAN CSMA/CD Access Method IEEE 802.3-2005
IEEE Standard for a Common Mezzanine Card (CMC) Family IEEE Std
1386-2001
IEEE Standard Physical and Environmental Layers for PCI Mezzanine Cards
(PMC) IEEE Std 1386.1-2001
IEEE Standard Test Access Port and Boundary-Scan Architecture IEEE Std
1149.1-2001
Low Pin Count Interface Specification (LPC) Revision 1.1

Peripheral Component
Interconnect Special
Interest Group

PCI Express Base Specification Revision 2.0

(PCI-SIG)

PCI-X Electrical and Mechanical Addendum to the PCI Local Bus
Specification (PCI-X EM) Revision 2.0a

PCI Local Bus Specification PCI Rev 3.0

PCI-X Protocol Addendum to the PCI Local Bus Specification (PCI-X PT)
Revision 2.0a
Serial ATA International
Organization
(SATA-IO)

Serial ATA (SATA) Specification Revision 2.6
Serial ATA II: Extensions to Serial ATA 1.0 Revision 1.0

Trusted Computing
Group (TCG)

TPM Specification 1.2, Level 2 Revision 103 Version 1.2

USB Implementers
Forum (USB-IF)

Universal Serial Bus Specification (USB) Revision 2.0

MVME2500 Installation and Use (6806800L01H)

131

Related Documentation

132

MVME2500 Installation and Use (6806800L01H)

Safety Notes

This section provides warnings that precede potentially dangerous procedures throughout
this manual. Instructions contained in the warnings must be followed during all phases of
operation, service, and repair of this equipment. You should also employ all other safety
precautions necessary for the operation of the equipment in your operating environment.
Failure to comply with these precautions or with specific warnings elsewhere in this manual
could result in personal injury or damage to the equipment.
Emerson intends to provide all necessary information to install and handle the product in this
manual. Because of the complexity of this product and its various uses, we do not guarantee
that the given information is complete. If you need additional information, ask your Emerson
representative.
This product is a Safety Extra Low Voltage (SELV) device designed to meet the EN60950-1
requirements for Information Technology Equipment. The use of the product in any other
application may require safety evaluation specific to that application.
Only personnel trained by Emerson or persons qualified in electronics or electrical engineering
are authorized to install, remove or maintain the product.
The information given in this manual is meant to complete the knowledge of a specialist and
must not be used as replacement for qualified personnel.
Keep away from live circuits inside the equipment. Operating personnel must not remove
equipment covers. Only Factory Authorized Service Personnel or other qualified service
personnel may remove equipment covers for internal subassembly or component replacement
or any internal adjustment.
Do not install substitute parts or perform any unauthorized modification of the equipment or
the warranty may be voided. Contact your local Emerson representative for service and repair
to make sure that all safety features are maintained.

EMC (Results pending testing)
This equipment has been tested and found to comply with the limits for a Class A digital device,
pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable
protection against harmful interference when the equipment is operated in a commercial
environment. This equipment generates, uses, and can radiate radio frequency energy and, if
not installed and used in accordance with the instruction manual, may cause harmful
interference to radio communications.

MVME2500 Installation and Use (6806800L01H)

133

Safety Notes

Operation of this equipment in a residential area is likely to cause harmful interference in which
case the user will be required to correct the interference at his own expense. Changes or
modifications not expressly approved by Emerson Network Power could void the user's
authority to operate the equipment. Board products are tested in a representative system to
show compliance with the above mentioned requirements. A proper installation in a
compliant system will maintain the required performance. Use only shielded cables when
connecting peripherals to assure that appropriate radio frequency emissions compliance is
maintained.

Operation
Product Damage
High humidity and condensation on the board surface causes short circuits.
Do not operate the board outside the specified environmental limits.
Make sure the board is completely dry and there is no moisture on any surface before applying
power.

Damage of Circuits
Electrostatic discharge and incorrect installation and removal can damage circuits or shorten
its life.
Before touching the board or electronic components, make sure that you are working in an
ESD-safe environment.

Board Malfunction
Switches marked as “reserved” might carry production-related functions and can cause the
board to malfunction if their setting is changed.
Do not change settings of switches marked as “reserved”. The setting of switches which are
not marked as “reserved” has to be checked and changed before board installation.

Installation
Data Loss
Powering down or removing a board before the operating system or other software running
on the board has been properly shut down may cause corruption of data or file systems.
134

MVME2500 Installation and Use (6806800L01H)

Safety Notes

Make sure all software is completely shut down before removing power from the board or
removing the board from the chassis.

Product Damage
Only use injector handles for board insertion to avoid damage to the front panel and/or PCB.
Deformation of the front panel can cause an electrical short or other board malfunction.

Product Damage
Inserting or removing modules with power applied may result in damage to module
components.
Before installing or removing additional devices or modules, read the documentation that
came with the product.

Cabling and Connectors
Product Damage
RJ-45 connectors on modules are either twisted-pair Ethernet (TPE) or E1/T1/J1 network
interfaces. Connecting an E1/T1/J1 line to an Ethernet connector may damage your system.


Make sure that TPE connectors near your working area are clearly marked as network
connectors.



Verify that the length of an electric cable connected to a TPE bushing does not exceed 100
meters.

Make sure the TPE bushing of the system is connected only to safety extra low voltage
circuits (SELV circuits).
If in doubt, ask your system administrator.


MVME2500 Installation and Use (6806800L01H)

135

Safety Notes

Battery
Board/System Damage
Incorrect exchange of lithium batteries can result in a hazardous explosion.
When exchanging the on-board lithium battery, make sure that the new and the old
battery are exactly the same battery models.
If the respective battery model is not available, contact your local Emerson sales
representative for the availability of alternative, officially approved battery models.

Data Loss
Exchanging the battery can result in loss of time settings. Backup power prevents the loss of
data during exchange.
Quickly replacing the battery may save time settings.

Data Loss
If the battery has low or insufficient power the RTC is initialized.
Exchange the battery before seven years of actual battery use have elapsed.

PCB and Battery Holder Damage
Removing the battery with a screw driver may damage the PCB or the battery holder. To
prevent damage, do not use a screw driver to remove the battery from its holder.

136

MVME2500 Installation and Use (6806800L01H)

Sicherheitshinweise

Dieses Kapitel enthält Hinweise, die potentiell gefährlichen Prozeduren innerhalb dieses
Handbuchs vorrangestellt sind. Beachten Sie unbedingt in allen Phasen des Betriebs, der
Wartung und der Reparatur des Systems die Anweisungen, die diesen Hinweisen enthalten
sind. Sie sollten außerdem alle anderen Vorsichtsmaßnahmen treffen, die für den Betrieb des
Produktes innerhalb Ihrer Betriebsumgebung notwendig sind. Wenn Sie diese
Vorsichtsmaßnahmen oder Sicherheitshinweise, die an anderer Stelle diese Handbuchs
enthalten sind, nicht beachten, kann das Verletzungen oder Schäden am Produkt zur Folge
haben.
Emerson ist darauf bedacht, alle notwendigen Informationen zum Einbau und zum Umgang
mit dem Produkt in diesem Handbuch bereit zu stellen. Da es sich jedoch um ein komplexes
Produkt mit vielfältigen Einsatzmöglichkeiten handelt, können wir die Vollständigkeit der im
Handbuch enthaltenen Informationen nicht garantieren. Falls Sie weitere Informationen
benötigen sollten, wenden Sie sich bitte an die für Sie zuständige Geschäftsstelle von Emerson.
Das Produkt wurde entwickelt, um die Sicherheitsanforderungen für SELV Geräte nach der
Norm EN 60950-1 für informationstechnische Einrichtungen zu erfüllen. Die Verwendung des
Produkts in einer anderen Anwendung erfordert eine Sicherheitsüberprüfung für diese
spezifische Anwendung.
Einbau, Wartung und Betrieb dürfen nur von durch Emerson ausgebildetem oder im Bereich
Elektronik oder Elektrotechnik qualifiziertem Personal durchgeführt werden. Die in diesem
Handbuch enthaltenen Informationen dienen ausschließlich dazu, das Wissen von
Fachpersonal zu ergänzen, können dieses jedoch nicht ersetzen.
Halten Sie sich von stromführenden Leitungen innerhalb des Produktes fern. Entfernen Sie auf
keinen Fall Abdeckungen am Produkt. Nur werksseitig zugelassenes Wartungspersonal oder
anderweitig qualifiziertes Wartungspersonal darf Abdeckungen entfernen, um Komponenten
zu ersetzen oder andere Anpassungen vorzunehmen.
Installieren Sie keine Ersatzteile oder führen Sie keine unerlaubten Veränderungen am Produkt
durch, sonst verfällt die Garantie. Wenden Sie sich für Wartung oder Reparatur bitte an die für
Sie zuständige Geschäftsstelle von Emerson. So stellen Sie sicher, dass alle
sicherheitsrelevanten Aspekte beachtet werden.

MVME2500 Installation and Use (6806800L01H)

137

Sicherheitshinweise

EMV
Das Produkt wurde in einem Emerson Standardsystem getestet. Es erfüllt die für digitale
Geräte der Klasse A gültigen Grenzwerte in einem solchen System gemäß den FCC-Richtlinien
Abschnitt 15 bzw. EN 55022 Klasse A. Diese Grenzwerte sollen einen angemessenen Schutz
vor Störstrahlung beim Betrieb des Produktes in Gewerbe- sowie Industriegebieten
gewährleisten.
Das Produkt arbeitet im Hochfrequenzbereich und erzeugt Störstrahlung. Bei
unsachgemäßem Einbau und anderem als in diesem Handbuch beschriebenen Betrieb können
Störungen im Hochfrequenzbereich auftreten.
Wird das Produkt in einem Wohngebiet betrieben, so kann dies mit grosser Wahrscheinlichkeit
zu starken Störungen führen, welche dann auf Kosten des Produktanwenders beseitigt werden
müssen. Änderungen oder Modifikationen am Produkt, welche ohne ausdrückliche
Genehmigung von Emerson Network Power durchgeführt werden, können dazu führen, dass
der Anwender die Genehmigung zum Betrieb des Produktes verliert. Boardprodukte werden
in einem repräsentativen System getestet, um zu zeigen, dass das Board den oben
aufgeführten EMV-Richtlinien entspricht. Eine ordnungsgemässe Installation in einem System,
welches die EMV-Richtlinien erfüllt, stellt sicher, dass das Produkt gemäss den EMV-Richtlinien
betrieben wird. Verwenden Sie nur abgeschirmte Kabel zum Anschluss von Zusatzmodulen. So
ist sichergestellt, dass sich die Aussendung von Hochfrequenzstrahlung im Rahmen der
erlaubten Grenzwerte bewegt.
Warnung! Dies ist eine Einrichtung der Klasse A. Diese Einrichtung kann im Wohnbereich
Funkstörungen verursachen. In diesem Fall kann vom Betreiber verlangt werden,
angemessene Maßnahmen durchzuführen.

Betrieb
1 Beschädigung des Produktes
Hohe Luftfeuchtigkeit und Kondensat auf der Oberfläche des Produktes können zu
Kurzschlüssen führen.
Betreiben Sie das Produkt nur innerhalb der angegebenen Grenzwerte für die
relative Luftfeuchtigkeit und Temperatur. Stellen Sie vor dem Einschalten des
Stroms sicher, dass sich auf dem Produkt kein Kondensat befindet.

138

MVME2500 Installation and Use (6806800L01H)

Sicherheitshinweise

Beschädigung von Schaltkreisen
Elektrostatische Entladung und unsachgemäßer Ein- und Ausbau des Produktes kann
Schaltkreise beschädigen oder ihre Lebensdauer verkürzen.
Bevor Sie das Produkt oder elektronische Komponenten berühren, vergewissern Sie
sich, daß Sie in einem ESD-geschützten Bereich arbeiten.

Fehlfunktion des Produktes
Schalter, die mit 'Reserved' gekennzeichnet sind, können mit produktionsrelevanten
Funktionen belegt sein. Das Ändern dieser Schalter kann im normalen Betrieb Störungen
auslösen.
Verstellen Sie nur solche Schalter, die nicht mit 'Reserved' gekennzeichnet sind.
Prüfen und ggf. ändern Sie die Einstellungen der nicht mit 'Reserved'
gekennzeichneten Schalter, bevor Sie das Produkt installieren.

Installation
Datenverlust
Das Herunterfahren oder die Deinstallation eines Boards bevor das Betriebssystem oder
andere auf dem Board laufende Software ordnungsmemäss beendet wurde, kann zu
partiellem Datenverlust sowie zu Schäden am Filesystem führen.
Stellen Sie sicher, dass sämtliche Software auf dem Board ordnungsgemäss
beendet wurde, bevor Sie das Board herunterfahren oder das Board aus dem
Chassis entfernen.

Beschädigung des Produktes
Fehlerhafte Installation des Produktes kann zu einer Beschädigung des Produktes führen.
Verwenden Sie die Handles, um das Produkt zu installieren/deinstallieren. Auf diese
Weise vermeiden Sie, dass das Face Plate oder die Platine deformiert oder zerstört
wird.

Beschädigung des Produktes und von Zusatzmodulen
Fehlerhafte Installation von Zusatzmodulen, kann zur Beschädigung des Produktes und der
Zusatzmodule führen.
Lesen Sie daher vor der Installation von Zusatzmodulen die zugehörige
Dokumentation.
MVME2500 Installation and Use (6806800L01H)

139

Sicherheitshinweise

Kabel und Stecker
Beschädigung des Produktes
Bei den RJ-45-Steckern, die sich an dem Produkt befinden, handelt es sich entweder um
Twisted-Pair-Ethernet (TPE) oder um E1/T1/J1-Stecker. Beachten Sie, dass ein versehentliches
Anschließen einer E1/T1/J1-Leitung an einen TPE-Stecker das Produkt zerstören kann.


Kennzeichnen Sie deshalb TPE-Anschlüsse in der Nähe Ihres Arbeitsplatzes deutlich als
Netzwerkanschlüsse.



Stellen Sie sicher, dass die Länge eines mit Ihrem Produkt verbundenen TPE-Kabels 100 m
nicht überschreitet.

Das Produkt darf über die TPE-Stecker nur mit einem Sicherheits-KleinspannungsStromkreis (SELV) verbunden werden.
Bei Fragen wenden Sie sich an Ihren Systemverwalter.


Batterie
Beschädigung des Blades
Ein unsachgemäßer Einbau der Batterie kann gefährliche Explosionen und
Beschädigungen des Blades zur Folge haben.
Verwenden Sie deshalb nur den Batterietyp, der auch bereits eingesetzt wurde und
befolgen Sie die Installationsanleitung.

Datenverlust
Wenn Sie die Batterie austauschen, können die Zeiteinstellungen verloren gehen. Eine
Backupversorgung verhindert den Datenverlust während des Austauschs.
Wenn Sie die Batterie schnell austauschen, bleiben die Zeiteinstellungen möglicherweise
erhalten.

140

MVME2500 Installation and Use (6806800L01H)

Sicherheitshinweise

Datenverlust
Wenn die Batterie wenig oder unzureichend mit Spannung versorgt wird, wird der RTC
initialisiert.
Tauschen Sie die Batterie aus, bevor sieben Jahre tatsächlicher Nutzung vergangen sind.

Schäden an der Platine oder dem Batteriehalter
Wenn Sie die Batterie mit einem Schraubendreher entfernen, können die Platine oder der
Batteriehalter beschädigt werden.
Um Schäden zu vermeiden, sollten Sie keinen Schraubendreher zum Ausbau der Batterie
verwenden.

Umweltschutz
Entsorgen Sie alte Batterien und/oder Blades/Systemkomponenten/RTMs stets gemäß der in
Ihrem Land gültigen Gesetzgebung, wenn möglich immer umweltfreundlich.

MVME2500 Installation and Use (6806800L01H)

141

Sicherheitshinweise

142

MVME2500 Installation and Use (6806800L01H)

Index

A

T

abbreviations 13
accessories 30

timers 65
FPGA tick timer 66
internal timer 66
real time clock 65
watchdog timer 66

B
block diagram 61
board accessories 23
board configuration 29

C
chipset 61
conventions 15

D
disposal 26
disposal of product 21

E
environmental requirements 27

I
installating and removing the board 32
installation 31

M
memory
system memory 65

P
PMC 31
PMC/PrPMC 31
product 21
related standards 21

R
related
data sheets 130
documents 129
specifications 130
replacing the battery 125

S
standard compliances 21

MVME2500 Installation and Use (6806800L01H)

143

Index

144

MVME2500 Installation and Use (6806800L01H)

HOW TO REACH LITERATURE AND TECHNICAL SUPPORT:
For literature, training, and technical assistance and support programs, visit
www.emersonnetworkpower.com/embeddedcomputing

Emerson Network Power.
The global leader in enabling Business-Critical Continuity™
AC Power Systems
Connectivity
DC Power Systems

Embedded Computing
Embedded Power
Integrated Cabinet Solutions

www.emersonnetworkpower.com/embeddedcomputing
Outside Plant
Power Switching & Control
Precision Cooling

Services
Site Monitoring
Surge & Signal Protection

Emerson, Business-Critical Continuity, Emerson Network Power and the Emerson Network Power logo are trademarks and service marks of Emerson Electric Co.
All other product or service names are the property of their respective owners.
© 2014 Emerson Electric Co.



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : No
Author                          : Emerson Network Power Embedded Computing
Create Date                     : 2014:01:23 10:23:05Z
Modify Date                     : 2014:01:27 09:27:33+05:30
Language                        : en
XMP Toolkit                     : Adobe XMP Core 5.4-c005 78.147326, 2012/08/23-13:03:03
Creator Tool                    : FrameMaker 11.0.2
Metadata Date                   : 2014:01:27 09:27:33+05:30
Producer                        : Acrobat Distiller 11.0 (Windows)
Format                          : application/pdf
Title                           : MVME2500 Installation and Use Manual
Creator                         : Emerson Network Power Embedded Computing
Document ID                     : uuid:00cc48eb-c7ab-4087-892c-3d74199e1189
Instance ID                     : uuid:aa411145-e74f-4103-99e5-7a4cb82f7a74
Page Mode                       : UseOutlines
Page Count                      : 146
Warning                         : [Minor] Ignored duplicate Info dictionary
EXIF Metadata provided by EXIF.tools

Navigation menu