Emerson Mvme2500 Users Manual Installation And Use

2015-01-05

: Emerson Emerson-Mvme2500-Users-Manual-165303 emerson-mvme2500-users-manual-165303 emerson pdf

Open the PDF directly: View PDF PDF.
Page Count: 146 [warning: Documents this large are best viewed by clicking the View PDF Link!]

Embedded Computing for
Business-Critical ContinuityTM
MVME2500
Installation and Use
P/N: 6806800L01H
January 2014
© 2014 Emerson
All rights reserved.
Trademarks
Emerson, Business-Critical Continuity, Emerson Network Power and the Emerson Network Power logo are trademarks and service
marks of Emerson Electric Co. © 2014 Emerson Electric Co. All other product or service names are the property of their respective
owners.
Intel® is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
Java and all other Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
Microsoft®, Windows® and Windows Me® are registered trademarks of Microsoft Corporation; and Windows XP is a trademark of
Microsoft Corporation.
PICMG®, CompactPCI®, AdvancedTCA and the PICMG, CompactPCI and AdvancedTCA logos are registered trademarks of the PCI
Industrial Computer Manufacturers Group.
UNIX® is a registered trademark of The Open Group in the United States and other countries.
Notice
While reasonable efforts have been made to assure the accuracy of this document, Emerson assumes no liability resulting from any
omissions in this document, or from the use of the information obtained therein. Emerson reserves the right to revise this document
and to make changes from time to time in the content hereof without obligation of Emerson to notify any person of such revision or
changes.
Electronic versions of this material may be read online, downloaded for personal use, or referenced in another document as a URL to
a Emerson website. The text itself may not be published commercially in print or electronic form, edited, translated, or otherwise
altered without the permission of Emerson,
It is possible that this publication may contain reference to or information about Emerson products (machines and programs),
programming, or services that are not available in your country. Such references or information must not be construed to mean that
Emerson intends to announce such Emerson products, programming, or services in your country.
Limited and Restricted Rights Legend
If the documentation contained herein is supplied, directly or indirectly, to the U.S. Government, the following notice shall apply
unless otherwise agreed to in writing by Emerson.
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in
Technical Data clause at DFARS 252.227-7013 (Nov. 1995) and of the Rights in Noncommercial Computer Software and
Documentation clause at DFARS 252.227-7014 (Jun. 1995).
Contact Address
Emerson Network Power - Embedded Computing
2900 South Diablo Way, Suite 190
Tempe, AZ 85282
USA
Contents
MVME2500 Installation and Use (6806800L01H) 3
About this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Standard Compliances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3 Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5 Product Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2 Hardware Preparation and Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Unpacking and Inspecting the Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Environmental Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 Equipment Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Configuring the Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Installing Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1 Rear Transition Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.2 PMC/XMC Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Installing and Removing the Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7 Completing the Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3 Controls, LEDs, and Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Reset Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Front Panel LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Onboard LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1 Front Panel Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1.1 RJ45 with Integrated Magnetics (J1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1.2 Front Panel Serial Port (J4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Contents
MVME2500 Installation and Use (6806800L01H)
Contents
4
Contents
Contents
3.4.1.3 USB Connector (J5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.1.4 VMEBus P1 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.1.5 VMEBus P2 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.2 Onboard Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2.1 Flash Program Connector (P7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2.2 SATA Connector (J3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2.3 PMC Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.2.4 JTAG Connector (P6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.2.5 COP Connector (P6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.2.6 SD Connector (J2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.2.7 XMC Connector (XJ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.2.8 Miscellaneous P2020 Debug Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5 Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.1 Geographical Address Switch (S1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.2 SMT Configuration Switch (S2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Chipset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.1 e500 Processor Core. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.2 Integrated Memory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.3 PCI Express Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.4 Local Bus Controller (LBC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.5 Secure Digital Hub Controller (SDHC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.6 I2C Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.7 USB Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.8 DUART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.9 DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.10 Enhanced Three-Speed Ethernet Controller (eTSEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.11 General Purpose I/O (GPIO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.12 Security Engine (SEC) 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.13 Common On-Chip Processor (COP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.14 P20x0 Hardware Configuration Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 System Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Contents
MVME2500 Installation and Use (6806800L01H) 5
4.4.1 Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.2 Internal Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.3 Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.4 FPGA Tick Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Ethernet Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6 SPI Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.1 SPI Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.2 SPI Flash Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.3 Firmware Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6.4 Crisis Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.7 Front UART Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.8 Rear UART Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.9 PMC/XMC Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.9.1 PMC Add-on Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.9.2 XMC Add-on Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.10 SATA Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.11 VME Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.11.1 Tsi148 VME Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.12 USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.13 I2C Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.14 Reset/Control FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.15 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.15.1 Onboard Voltage Supply Requirement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.15.2 Power Up Sequencing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.16 Clock Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.17 Reset Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.17.1 Reset Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.18 Thermal Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.19 Real-Time Clock Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.20 Debugging Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.20.1 POST Code Indicator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.20.2 JTAG Chain and Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.20.3 Custom Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.21 Rear Transition Module (RTM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
MVME2500 Installation and Use (6806800L01H)
Contents
6
Contents
Contents
5 Memory Maps and Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Flash Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Linux Devices Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5 Programmable Logic Device (PLD) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.1 PLD Revision Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.2 PLD Year Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.3 PLD Month Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5.4 PLD Day Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5.5 PLD Sequence Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5.6 PLD Power Good Monitor Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.7 PLD LED Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.8 PLD PCI/PMC/XMC Monitor Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.9 PLD U-Boot and TSI Monitor Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.5.10 PLD Boot Bank Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.5.11 PLD Write Protect and I2C Debug Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5.12 PLD Test Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5.13 PLD Test Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5.14 PLD GPIO2 Interrupt Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5.15 PLD Shutdown and Reset Control and Reset Reason Register . . . . . . . . . . . . . . . . . . . . . . 95
5.5.16 PLD Watchdog Timer Refresh Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5.17 PLD Watchdog Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5.18 PLD Watchdog Timer Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 External Timer Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6.1 Prescaler Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6.2 Control Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.6.3 Compare High and Low Word Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
5.6.4 Counter High and Low Word Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6 Boot System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Accessing U-Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 Boot Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.1 Booting from a Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Contents
MVME2500 Installation and Use (6806800L01H) 7
6.3.2 Booting from an Optional SATA Drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.3 Booting from a USB Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
6.3.4 Booting from an SD Card. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.5 Booting VxWorks Through the Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4 Using the Persistent Memory Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.5 MVME2500 Specific U-Boot Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.6 Updating U-Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
7 Programming Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2 Reset Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.3 Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.4 I2C Bus Device Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.5 Ethernet PHY Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
7.6 Other Software Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.6.1 MRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.6.2 Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.6.3 Quad UART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.6.4 LBC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.7 Clock Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.7.1 System Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.7.2 Real Time Clock Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
7.7.3 Local Bus Controller Clock Divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
A Replacing the Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.1 Replacing the Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
B Related Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.1 Emerson Network Power - Embedded Computing Documents . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.2 Manufacturers’ Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
B.3 Related Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
MVME2500 Installation and Use (6806800L01H)
Contents
8
Contents
Contents
Safety Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Sicherheitshinweise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
List of Tables
MVME2500 Installation and Use (6806800L01H) 9
Table 1-1 Key Features of the MVME2500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 1-2 Board Standard Compliances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 1-3 Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 1-4 Available Board Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 1-5 Available Board Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 2-1 Environmental Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 2-2 Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 3-1 Front Panel LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 3-2 Onboard LEDs Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 3-3 Front Panel Tri-Speed Ethernet Connector (J1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 3-4 Front Panel Serial Port (J4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 3-5 USB Connector (J5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 3-6 VMEbus P1 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 3-7 VMEbus P2 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 3-8 Flash Programming Header (P7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 3-9 Custom SATA Connector (J3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 3-10 PMC J11 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 3-11 PMC J12 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 3-12 PMC J13 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 3-13 PMC J14 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 3-14 JTAG Connector (P6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 3-15 COP Header (P10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 3-16 SD Connector (J2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 3-17 XMC Connector (XJ2) Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 3-18 P20x0 Debug Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 3-19 Geographical Address Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 3-20 Geographical Address Switch Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 4-1 Voltage Supply Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 4-2 Thermal Interrupt Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 4-3 POST Code Indicator on the LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 4-4 Transition Module Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 5-1 Physical Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 5-2 Flash Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 5-3 Linux Devices Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 5-4 PLD Revision Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 5-5 PLD Year Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
MVME2500 Installation and Use (6806800L01H)
10
List of Tables
Table 5-6 PLD Month Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 5-7 PLD Day Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 5-8 PLD Sequence Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 5-9 PLD Power Good Monitor Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 5-10 PLD LED Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 5-11 PLD PCI/PMC/XMC Monitor Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
Table 5-12 PLD U-Boot and TSI Monitor Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 5-13 PLD Boot Bank Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 5-14 PLD Write Protect and I2C Debug Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 5-15 PLD Test Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 5-16 PLD Test Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 5-17 PLD GPIO2 Interrupt Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 5-18 PLD Shutdown and Reset Control and Reset Reason Register . . . . . . . . . . . . . . . . . . . . . . 95
Table 5-19 PLD Watchdog Timer Refresh Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
Table 5-20 PLD Watchdog Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
Table 5-21 PLD Watchdog Timer Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
Table 5-22 Prescaler Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 5-23 Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 5-24 Compare High Word Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Table 5-25 Compare Low Word Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Table 5-26 Counter High Word Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Table 5-27 Counter Low Word Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Table 6-1 MVME2500 Specific U-Boot Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Table 7-1 POR Configuration Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
Table 7-2 MVME2500 Interrupt List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
Table 7-3 I2C Bus Device Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
Table 7-4 PHY Types and MII Management Bus Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
Table 7-5 LBC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
Table 7-6 Clock Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
Table 7-7 System Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
Table B-1 Emerson Network Power - Embedded Computing Publications . . . . . . . . . . . . . . . . . .129
Table B-2 Manufacturers’ Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
Table B-3 Related Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
List of Figures
MVME2500 Installation and Use (6806800L01H) 11
Figure 1-1 Serial Number Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 3-1 Component Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 3-2 Front Panel LEDs, Connectors and Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 3-3 Front Panel LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 3-4 Onboard LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 3-5 Geographical Address Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 3-6 SMT Configuration Switch Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 4-1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 4-2 SPI Device Multiplexing Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 4-3 Clock Distribution Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure A-1 Battery Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
MVME2500 Installation and Use (6806800L01H)
12
List of Figures
MVME2500 Installation and Use (6806800L01H) 13
About this Manual
Overview of Contents
This manual is divided into the following chapters and appendices.
-Introduction gives an overview of the features of the product, standard compliances,
mechanical data, and ordering information.
-Hardware Preparation and Installation outlines the installation requirements, hardware
accessories, switch settings, and installation procedures.
-Controls, LEDs, and Connectors describes external interfaces of the board. This includes
connectors and LEDs.
-Functional Description includes a block diagram and functional description of major
components of the product.
-Memory Maps and Registers contains information on system resources including system
control and status registers and external timers.
-Boot System describes the boot loader software.
-Programming Model contains additional programming information for the board.
-Replacing the Battery contains the procedures for replacing the battery.
-Related Documentation provides a listing of related product documentation,
manufacturer’s documents, and industry standard specifications.
-Safety Notes summarizes the safety instructions in the manual.
-Sicherheitshinweise is a German translation of the Safety Notes chapter.
Abbreviations
This document uses the following abbreviations:
Term Definition
CPLD Complex Programmable Logic Device
DDR Double Data Rate
DDR3 Double Data Rate 3
DMI Direct Media Interface
MVME2500 Installation and Use (6806800L01H)
About this Manual
14
About this Manual
DUART Dual UART
EEPROM Erasable Programmable Read-Only Memory
FCC Federal Communications Commission
GB GigaByte
Gbit Gigabit
Gbps Gigabits per second
I/O Input/Output
IEEE Institute of Electrical and Electronics Engineers
LED Light Emitting Diode
MHz Megahertz
MCP Multi-Chip Package
MRAM Magnetoresistive Random Access Memory
OS Operating System
PCB Printed Circuit Board
PCI Peripheral Component Interconnect
PCI-E PCI Express
PCI-X Peripheral Component Interconnect eXtended
PIM PCI Mezzanine Card Input/Output Module
PLD Programmable Logic Device
PMC PCI Mezzanine Card (IEEE P1386.1)
PrPMC Processor PCI Mezzanine Card
RTC Real-Time Clock
RTM Rear Transition Module
SATA Serial AT Attachment
UART Universal Asynchronous Receiver-Transmitter
Term Definition
About this Manual
MVME2500 Installation and Use (6806800L01H) 15
Conventions
The following table describes the conventions used throughout this manual.
USB Universal Serial Bus
VITA VMEbus International Trade Association
VME Versa Module Eurocard
XMC PCI Express Mezzanine Card
Term Definition
Notation Description
0x00000000 Typical notation for hexadecimal numbers (digits are
0 through F), for example used for addresses and
offsets
0b0000 Same for binary numbers (digits are 0 and 1)
bold Used to emphasize a word
Screen Used for on-screen output and code-related
elements or commands in body text
Courier + Bold Used to characterize user input and to separate it
from system output
Reference Used for references and for table and figure
descriptions
File > Exit Notation for selecting a submenu
<text> Notation for variables and keys
[text] Notation for software buttons to click on the screen
and parameter description
... Repeated item for example node 1, node 2, ..., node
12
.
.
.
Omission of information from example/command
that is not necessary at the time being
.. Ranges, for example: 0..4 means one of the integers
0,1,2,3, and 4 (used in registers)
MVME2500 Installation and Use (6806800L01H)
About this Manual
16
About this Manual
| Logical OR
Indicates a hazardous situation which, if not avoided,
could result in death or serious injury
Indicates a hazardous situation which, if not avoided,
may result in minor or moderate injury
Indicates a property damage message
No danger encountered. Pay attention to important
information
Notation Description
About this Manual
MVME2500 Installation and Use (6806800L01H) 17
Summary of Changes
This manual has been revised and replaces all prior editions.
Part Number Publication Date Description
6806800L01A June 2010 First edition
6806800L01B October 2010 -This version includes updates and revisions
for the EA release of the MVME2500.
-Table 1.3. Added mechanical data.
-Table 4-3. Removed the following
commands: brd_reset, irqinfo, mac. Added
soft_reset.
-Table 4-1. Removed: L2 SRAM, L1 for stack
and Boot Page entries.
-Changed all instances of "via" to "through".
-Impelemented editorial changes.
6806800L01C May 2011 -Updated Controls, LEDs, and Connectors by
adding the following.
Board Layout
Front Panel Connectors
Onboard Connectors
-Added Functional Description
-Applied editorial edits
6806800L01D May 2011 -Edited Memory Maps and Registers
-Edited Programming Model
-Edited Figure "Component Layout"
-Edited Figure "Onboard LEDs"
-Added Front Panel Serial Port (J4)
MVME2500 Installation and Use (6806800L01H)
About this Manual
18
About this Manual
6806800L01E July 2011 -Updated Table "Available Board Variants" on
page 22.
-Updated Appendix B, Related
Documentation, on page 129.
6806800L01F August 2011 -Changed title of Section 3.4.1 to Front Panel
Connectors.
-Edited Front Panel Serial Port (J4).
-Updated Figure "Component Layout" on
page 35 to include proper label for XMC
connectors.
-Updated Safety Notes and
Sicherheitshinweise.
6806800L01G January 2013 Updated Standard Compliances on page 21.
6806800L01H January 2014 Added Flash Memory Map on page 82 and
updated SPI Flash Memory on page 67.
Part Number Publication Date Description
Chapter 1
MVME2500 Installation and Use (6806800L01H) 19
Introduction
1.1 Overview
The MVME2500 is a VMEbus board based on the Freescale QorlQ P2010 (single-core) or P2020
(dual-core) processor. It has a 6U form-factor and has an expansion slot for an optional PCI
Mezzanine Card (PMC) or PCI eXpress Mezzanine Card (XMC). It comes with either 1 GB or 2 GB
of DDR3 SDRAM, and is offered with either IEEE 1101.10 compliant or SCANBE ejector handles.
The front panel I/O configuration consists of two RJ45 10/100/1000BASE-T Ethernet ports, a
USB 2.0 port, a Micro DB9 RS-232 serial console port, and a reset/abort switch. It also has an
LED to signal board failure and another LED that can be configured in the LED register.
The rear I/O includes support for VMEbus (Legacy VME, VME 64, VME64x, and 2eSST), rear
PMC/XMC I/O, RTM I/O (through VME P2), two 10/100/1000BASE-T Ethernet, four UART, and
RTM I2C/Presence/Power. See the table below for a summary of the features of the
MVME2500.
Table 1-1 Key Features of the MVME2500
Function Features
Processor -Freescale QorIQ P2010 (single-core) or P2020 (dual-core)
-800 MHz or 1000 MHz core frequency
-512 KB L2 cache
-Three 10/100/1000 Mbps enhanced three-speed Ethernet
controllers (eTSECs)
-Two PCI-E 1.0a x1 interface controllers
-One PCI-E 1.0a x2 interface controller
-USB 2.0 interface
-Enhanced secure digital host controller
-DDR3 memory controller at 800 MT/s
-SPI interface (four chip selects, but only two are used on the
board)
-Enhanced local bus controller
-UART
-Two I2C interfaces
-Programmable interrupt controller
Memory 1 GB or 2 GB DDR3 soldered chip memory without ECC
Introduction
MVME2500 Installation and Use (6806800L01H)
20
Front panel I/O -Micro DB9 RS-232 serial console port
-USB 2.0
-Two RJ45 10/100/1000BASE-T Ethernet
-Reset/Abort switch
-Fail LED and User LED
-PMC/XMC front panel I/O (optional)
Backplane I/O -VME Bus
-RTM I/O (through VME P2)
-PMC/XMC I/O with P4 I/O
-Two 10/100/1000BASE-T Ethernet
-Four UART
-RTM I2C/Presence/Power
Expansion Expansion site 1:
-PMC supporting PCI-X 64/33 interface
-XMC supporting PCI-E 1.0a x2 interface
Expansion site 2:
-SATA drive kit
Boot Flash 16 MB SPI Flash
Persistent Data Storage 512 KB MRAM
User Flash SDHC Socket
I2C Devices -Real-Time Clock
-Board Temperature Sensor
-8 KB VPD EEPROM
-Two 64 KB User EEPROM
CPLD Watchdog, timers, and registers
Boot Firmware U-Boot-based firmware image in 16 MB SPI Flash. This flash is split
into two 8 MB chips.
Table 1-1 Key Features of the MVME2500 (continued)
Function Features
Introduction
MVME2500 Installation and Use (6806800L01H) 21
1.2 Standard Compliances
The product is designed to meet the following standards. Results are pending until testing is
finished.
For Declaration of Conformity, refer MVME2500 Series Declaration of Conformity.
Operating System -Based from BSP provided by Freescale which is based from
standard Linux version 2.6.32-rc3
-Development tool is ltib 9.1.1 (Linux Target Image Builder)
from Freescale
-VxWorks
Table 1-1 Key Features of the MVME2500 (continued)
Function Features
Table 1-2 Board Standard Compliances
Standard Description
EN 60950-1/A11:2009
IEC 60950-1:2005 2nd Edition
CAN/CSA C22.2 No 60950-1
Safety Requirements (legal)
FCC Part 15, Subpart B, Class A (non-
residential)
ICES-003, Class A (non-residential)
EMC Directive 89/336/EEC
EN55022 Class B
EN55024
AS/NZS CISPR 22, Class A
EN300386
EMC requirements (legal) on system level
(predefined Emerson system)
ETSI EN 300 019 series Environmental Requirements
Directive 2011/65/EU Directive on the restriction of the use of certain
hazardous substances in electrical and electronic
equipment (RoHS)
Introduction
MVME2500 Installation and Use (6806800L01H)
22
1.3 Mechanical Data
The following table provides details about the dimensions and weight of the board.
1.4 Ordering Information
As of the printing date of this manual, this guide supports the models listed below.
Table 1-3 Mechanical Data
Feature Value
Height 233.44 mm (9.2 inches)
Depth 160.0 mm (6.3 inches)
Front Panel Height 261.8 mm (10.3 inches)
Width 19.8 mm (0.8 inches)
Max. Component Height 14.8 mm (0.58 inches)
Weight 400 grams (standard variant), 700 grams (ET variants)
Table 1-4 Available Board Variants
Order Number Processor Speed Memory Ejector
MVME2500-0163 QorIQ P2010 (single-core) 800 MHz 1 GB IEEE
MVME2500-0161 QorIQ P2010 (single-core) 800 MHz 1 GB SCANBE
MVME2500-0173 QorIQ P2020 (dual-core) 1200 MHz 2 GB IEEE
MVME2500-0171 QorIQ P2020 (dual-core) 1200 MHz 2 GB SCANBE
MVME2500ET-0173 QorIQ P2020 (dual-core) 1000 MHz 2 GB IEEE ENP2
MVME2500ET-0171 QorIQ P2020 (dual-core) 1000 MHz 2 GB SCANBE ENP2
Introduction
MVME2500 Installation and Use (6806800L01H) 23
As of the printing date of this manual, the following board accessories are available.
Table 1-5 Available Board Accessories
Order Number Description
VME-HDMNTKIT VME HD mounting kit
VME-64GBSSDKIT VME 64GB SSD and mounting kit
MVME7216E-101 VME RTM (IEEE handle)
MVME7216E-102 VME RTM (SCANBE Handle)
MVME721ET-101 VME RTM Extended Temperature (IEEE handle)
MVME721ET-102 VME RTM Extended Temperature (SCANBE Handle)
SERIAL-MINI-D (30-
W2400E01A)
Female - to -male micro-mini DB-9 to DB9 adapter cable
Introduction
MVME2500 Installation and Use (6806800L01H)
24
1.5 Product Identification
The following graphics shows the location of the serial number label.
Figure 1-1 Serial Number Location
Chapter 2
MVME2500 Installation and Use (6806800L01H) 25
Hardware Preparation and Installation
2.1 Overview
This chapter provides installation and safety instructions for this product. Installation
instructions for the optional PMC and transition module are also included.
A fully implemented MVME2500 consists of the base board plus:
-PCI Mezzanine Card (PMC) or PCI-E Mezzanine Card (XMC) for added versatility
-Rear transition module
-SATA kit
The following are the things that need to be done before using the board. Be sure to read the
entire chapter, including all caution and warning notes, before you begin.
1. Unpack the hardware. Refer to Unpacking and Inspecting the Board on page 26
2. Configure the hardware by setting jumpers on the board and RTM. Refer to Configuring the
Board on page 29
3. Install the transition module in the chassis. Refer to Rear Transition Module on page 30.
4. Install PMC module (if required). Refer to PMC/XMC Support on page 31.
5. Install XMC span module (if required). Refer to PMC/XMC Support on page 31.
6. Install the board in the chassis. Refer to Installing and Removing the Board on page 32.
7. Attach cables and apply power. Refer to Completing the Installation on page 34.
Hardware Preparation and Installation
MVME2500 Installation and Use (6806800L01H)
26
2.2 Unpacking and Inspecting the Board
Read all notices and cautions prior to unpacking the product.
Shipment Inspection
1. Verify that you have received all items of your shipment.
2. Check for damage and report any damage or differences to customer service.
3. Remove the desiccant bag shipped together with the board and dispose of it according to
your country’s legislation.
2.3 Requirements
Make sure the board meets the requirements specified in the next sections when the board is
operated in your particular system configuration.
-Damage of Circuits
Electrostatic discharge and incorrect installation and removal can damage circuits or
shorten its life.
-Before touching the board or electronic components, make sure that you are working
in an ESD-safe environment.
The product is thoroughly inspected before shipment. If any damage occurred during
transportation or any items are missing, contact customer service immediately.
Hardware Preparation and Installation
MVME2500 Installation and Use (6806800L01H) 27
2.3.1 Environmental Requirements
Operating temperatures refer to the temperature of the air circulating around the board and
not to the component temperature.
Table 2-1 Environmental Requirements
Characteristics Commercial Versions Extended Temperature Versions
Applicable Variants MVME2500-0163
MVME2500-0161
MVME2500-0173
MVME2500-0171
MVME2500ET-0173
MVME2500ET-0171
Cooling Method Forced Air 7 CFM1Forced Air 7 CFM1
Operating
Temperature
0°C to +55°C -40°C to +71°C
Storage -40°C to +85°C -50°C to +100°C
Vibration Sine
(10min/axis)
2 G, 5 to 2000 Hz 10 G, 15 to 2000 Hz
Vibration Random
(1hr/axis)
0.01g2/Hz, 15 to 2000 Hz 0.04g2/Hz, 15 to 2000 Hz (8
GRMS)2
Shock 20g/11 mS 30g/11 mS
Humidity to 95% RH (non-condensing) to 100% RH (non-condensing)
1. ft3/min
2. Flat 15-1000Hz, -6db/octave 1000Hz - 2000Hz [MIL-STD 810F Figure 514.5C-17]
Hardware Preparation and Installation
MVME2500 Installation and Use (6806800L01H)
28
2.3.2 Power Requirements
The board uses +5.0 V from the VMEbus backplane. On board power supply generates the
required voltages for the various ICs. The MVME2500 connects the +12 V and -12 V supplies
from the backplane to the PMC sites, while the +3.3 V power supplied to the PMC sites comes
from the +5.0 V backplane power. A maximum of 10 A of +3.3 V power is available to the PMC
sites, however the 90 W +5.0 V limit must be observed as well as any cooling limitations.
The following table provides an estimate of the typical and maximum power required.
Product Damage
-High humidity and condensation on the board surface causes short circuits.
-Do not operate the board outside the specified environmental limits.
-Make sure the board is completely dry and there is no moisture on any surface before
applying power.
Table 2-2 Power Requirements
Board Variant Maximum (Calculated) Typical (Measured Operating)
MVME2500-0163 18.5 W 14.8 W
MVME2500-0161 18.5 W 14.8 W
MVME2500-0173 24 W 16.6 W
MVME2500-0171 24 W 16.6 W
MVME2500ET-0173 24 W 16.6 W
MVME2500ET-0171 24 W 16.6 W
The power is measured when the board is in standby (Linux prompt). Power will significantly
increase when adding hard drives or a XMC/PMC card.
Hardware Preparation and Installation
MVME2500 Installation and Use (6806800L01H) 29
The following table shows the power available when the MVME2500 is installed in either a
three row or five row chassis and when PMCs are present.
2.3.3 Equipment Requirements
The following are recommended to complete a MVME2500 system:
-VMEbus system enclosure
-System console terminal
-Operating system (and/or application software)
-Transition module and connecting cables
2.4 Configuring the Board
The board provides software control over most options. Settings can be modified to fit the
user's specifications. To configure, set the bits in the control register after installing the board
in a system. Make sure that all user-defined switches are properly set before installing a
PMC/XMC module. For more information, see Switches on page 57.
Chassis Type Available Power Power With PMCs
Three Row 70 W maximum below 70 W
Five Row 90 W maximum below 90 W
Keep below power limit. Cooling limitations must be considered.
Hardware Preparation and Installation
MVME2500 Installation and Use (6806800L01H)
30
2.5 Installing Accessories
2.5.1 Rear Transition Module
The MVME2500 does not support hot swap. Remove power to the rear slot or system before
installing the module. A PCMI/O Module (PIM) needs to be manually configured and installed
before placing the transition module.
Installation and Removal Procedure
1. Turn OFF all equipment and disconnect the power cable from the AC power source.
2. Remove the chassis cover.
3. Remove the filler panel(s) from the appropriate card slot(s) at the rear of the chassis (if the
chassis has a rear card cage).
Damage of Circuits
-Electrostatic discharge and incorrect installation and removal can damage circuits or
shorten its life.
-Before touching the board or electronic components, make sure that you are working
in an ESD-safe environment.
Product Damage
-Only use injector handles for board insertion to avoid damage to the front panel and/or
PCB. Deformation of the front panel can cause an electrical short or other board
malfunction.
Board Malfunction
-Switches marked as “reserved” might carry production-related functions and can cause
the board to malfunction if their setting is changed.
-Do not change settings of switches marked as “reserved”. The setting of switches which
are not marked as “reserved” has to be checked and changed before board installation.
Hardware Preparation and Installation
MVME2500 Installation and Use (6806800L01H) 31
4. Install the top and bottom edge of the transition module into the rear guides of the chassis.
5. Ensure that the levers of the two injector/ejectors are in the outward position.
6. Slide the transition module into the chassis until resistance is felt.
7. Move the injector/ejector levers in an inward direction.
8. Verify that the transition module is properly seated and secure it to the chassis using the
two screws adjacent to the injector/ejector levers.
9. Connect the cables to the transition module.
To remove the transition module from the chassis, reverse the procedure and press the red
locking tabs (IEEE handles only) to extract the board.
2.5.2 PMC/XMC Support
Installation Procedure
Read all notices and follow these steps to install a PMC on the baseboard.
Damage of Circuits
-Electrostatic discharge and incorrect installation and removal can damage circuits or
shorten its life.
-Before touching the board or electronic components, make sure that you are working
in an ESD-safe environment.
Product Damage
-Inserting or removing modules with power applied may result in damage to module
components.
-Before installing or removing additional devices or modules, read the documentation
that came with the product.
Hardware Preparation and Installation
MVME2500 Installation and Use (6806800L01H)
32
1. Attach an ESD strap to your wrist. Attach the other end of the strap to the chassis as a
ground. Make sure that it is securely fastened throughout the procedure.
2. Remove the PMC/XMC filler plate from the front panel cut-out.
3. Slide the front bezel of the PMC/XMC into the cut-out from behind. The front bezel of the
PMC/XMC module will be flushed with the board when the connectors on the module align
with the mating connectors on the board.
4. Align the mating connectors properly and apply minimal pressure to the PMC/XMC until it
is seated to the board.
5. Insert the four PMC/XMC mounting screws through the mounting holes on the bottom side
of the board, and then thread the four mount points on the PMC/XMC. Tighten the screws.
6. Install the board into the appropriate card slot. Make sure that the board is well seated into
the backplane connectors. Do not damage or bend connector pins.
7. Replace the chassis or system cover.
8. Reconnect the system to the power source and then turn on the system.
2.6 Installing and Removing the Board
This section describes the recommended procedure for installing the board in a chassis. Read
all warnings and instructions before installing the board.
The MVME2500 does not support hot swap. Power off the slot or system and make sure that
the serial ports and switches are properly configured.
When removing the PMC/XMC, hold it by its long side and exert minimal force when pulling
it from the baseboad to prevent pin damage.
Hardware Preparation and Installation
MVME2500 Installation and Use (6806800L01H) 33
1. Attach an ESD strap to your wrist. Attach the other end of the strap to an electrical ground.
Make sure that it is securely fastened throughout the procedure.
2. Remove VME filler panels from the VME enclosures, as appropriate.
3. Install the top and bottom edge of the board into the guides of the chassis.
4. Ensure that the levers of the two injector/ejectors are in the outward position.
5. Slide the board into the chassis until resistance is felt.
6. Simultaneously move the injector/ejector levers in an inward direction.
7. Verify that the board is properly seated and secure it to the chassis using the two screws
located adjacent to the injector/ejector levers.
8. Connect the appropriate cables to the board.
To remove the board from the chassis, reverse the procedure and press the red locking tabs
(IEEE handles only) to extract the board.
Damage of Circuits
-Electrostatic discharge and incorrect installation and removal can damage circuits or
shorten its life.
-Before touching the board or electronic components, make sure that you are working
in an ESD-safe environment.
Product Damage
-Only use injector handles for board insertion to avoid damage to the front panel and/or
PCB. Deformation of the front panel can cause an electrical short or other board
malfunction.
Hardware Preparation and Installation
MVME2500 Installation and Use (6806800L01H)
34
2.7 Completing the Installation
The board is designed to operate as an application-specific computer blade or an intelligent I/O
board/carrier. It can be used in any slot in a VME chassis. Once the board is installed, you are
ready to connect peripherals and apply power to the board.
The console settings for the MVME2500 are:
-Eight bits per character
-One stop bit per character
-Parity disabled (no parity)
-Baud rate of 9600 baud
Verify that hardware is installed and the power/peripheral cables connected are appropriate
for your system configuration.
Replace the chassis or system cover, reconnect the chassis to power source, and turn the
equipment power on.
Product Damage
-RJ-45 connectors on modules are either twisted-pair Ethernet (TPE) or E1/T1/J1
network interfaces. Connecting an E1/T1/J1 line to an Ethernet connector may damage
your system.
-Make sure that TPE connectors near your working area are clearly marked as network
connectors.
-Verify that the length of an electric cable connected to a TPE bushing does not exceed
100 meters.
-Make sure the TPE bushing of the system is connected only to safety extra low voltage
circuits (SELV circuits).
-If in doubt, ask your system administrator.
Chapter 3
MVME2500 Installation and Use (6806800L01H) 35
Controls, LEDs, and Connectors
3.1 Board Layout
The following figure shows the components and connectors on the MVME2500.
Figure 3-1 Component Layout
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H)
36
3.2 Front Panel
The following components are found on the MVME2500 front panel.
Figure 3-2 Front Panel LEDs, Connectors and Switches
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H) 37
3.2.1 Reset Switch
The MVME2500 has a single push button switch that has both the abort and reset functions.
Pressing the switch for less than three seconds generates an abort interrupt to the P20x0 QorIQ
PIC. Holding it down for more than three seconds will generate a hard reset. The VME SYSRESET
is generated if the MVME2500 is the VMEbus system controller.
3.3 LEDs
The MVME2500 utilizes light emitting diodes (LEDs) to provide a visible status indicator on the
front panel. These LEDs show power failures, power up states, Ethernet link/speed, ethernet
activity, SATA link and activity and PCI-E valid lane status. There are also a few user configurable
LEDs. Each LED description is necessary for troubleshooting and debugging.
3.3.1 Front Panel LEDs
The front panel LEDs are listed below.
Figure 3-3 Front Panel LEDs
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H)
38
Table 3-1 Front Panel LEDs
Label Function Location Color Description
USER 1 User Defined Front panel Off
Yellow
Red
By default
User Software Controllable. Refer to
the "User LED Register."
User Software Controllable. Refer to
the "User LED Register."
FAIL Board Fail Front panel Off
Red
Normal operation after successful
firmware boot.
One or more on-board power rails
has failed and the board has
shutdown to protect the hardware.
Normal during power up, during
hardware reset (such as a front panel
reset). May be asserted by the BDFAIL
bit in the Tsi148 VSTAT register.
GENET1
SPEED
TSEC1
Link/Speed
Front panel
Integrated
RJ45 LED
Off
Amber
Green
No link
10/100BASE-T operation
1000 BASE-T operation
GENET1
ACT
TSEC1
Activity
Front panel
Integrated
RJ45 LED
Off
Blinking Green
No activity
Activity proportional to bandwidth
utilization
GENET2
SPEED
TSEC2
Link/Speed
Front panel
Integrated
RJ45 LED
(Left)
Off
Amber
Green
No link
10/100BASE-T operation
1000BASE-T operation
GENET2
ACT
TSEC2
Activity
Front panel
Integrated
RJ45 LED
Off
Blinking Green
No activity
Activity proportional to bandwidth
utilization
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H) 39
3.3.2 Onboard LEDs
The onboard LEDs are listed below. To view its location on the board, see Figure 3-1 on page 35.
3.4 Connectors
This section describes the pin assignments and signals for the connectors on the MVME2500.
Figure 3-4 Onboard LEDs
Table 3-2 Onboard LEDs Status
Label Function Color Description
D9 Power Fail Red This indicator is illuminated when one or more of the on-
board voltage rails fails.
D33 User Defined Amber Controlled by the FPGA. Used for boot-up sequence
indicator.
D34 User Defined Amber Controlled by the FPGA. Used for boot-up sequence
indicator.
D35 User Defined Amber Controlled by the FPGA. Used for boot-up sequence
indicator.
D36 Early Power Fail Amber This indicator is lit when the early 3.3V power supply fails.
D37 User Defined Amber Controlled by the FPGA
D38 User Defined Amber Controlled by the FPGA
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H)
40
3.4.1 Front Panel Connectors
The following connectors are found on the outside of the MVME2500. These connectors are
divided between the front panel connectors and the backplane connectors. The front panel
connectors include the J1 and J5 connectors. The backplane connectors include the P1 and P2
connectors.
3.4.1.1 RJ45 with Integrated Magnetics (J1)
The MVME2500 uses an X2 RJ45.
Table 3-3 Front Panel Tri-Speed Ethernet Connector (J1)
Pin Name Signal Description
1A GND
2A NC
3A Port A TRD3 -
4A Port A TRD3 +
5A Port A TRD2 -
6A Port A TRD2 +
7A Port A TRD1 -
8A Port A TRD1 +
9A Port A TRD0 -
10A Port A TRD0 +
D1A Port A Green LED1 Anode/ Yellow LED1 Cathode
D2A Port A Yellow LED1 Anode/ Green LED1 Cathode
D3A Port A Green LED2 Anode/ Yellow LED2 Cathode
D4A Port A Yellow LED2 Anode/ Green LED2 Cathode
1B GND
2B NC
3B Port B TRD3 -
4B Port B TRD3 +
5B Port B TRD2 -
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H) 41
3.4.1.2 Front Panel Serial Port (J4)
There is one front access asynchronous serial port interface that is routed to the micro mini DB-
9 front panel connector. A male-to-male micro-mini DB9 adapter cable is available under
Emerson part number SERIAL-MINI-D (30-W2400E01A). The pin assignments for these
connectors are as follows:
6B Port B TRD2 +
7B Port B TRD1 -
8B Port B TRD1 +
9B Port B TRD0 -
10B Port B TRD0 +
D1B Port B Green LED1Anode/ Yellow LED1 Cathode
D2B Port B Yellow LED1 Anode/ Green LED1 Cathode
D3B Port B Green LED2Anode/ Yellow LED2 Cathode
D4B Port B Yellow LED2 Anode/ Green LED2 Cathode
Table 3-3 Front Panel Tri-Speed Ethernet Connector (J1) (continued)
Pin Name Signal Description
Table 3-4 Front Panel Serial Port (J4)
Pin Signal Description
1NC
2RX
3TX
4NC
5GND
6NC
7RTS
8CTS
9NC
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H)
42
3.4.1.3 USB Connector (J5)
The MVME2500 uses upright USB receptable mounted in the front panel.
3.4.1.4 VMEBus P1 Connector
The VME P1 connector is a 160-pin DIN. The P1 connector provides power and VME signals for
24-bit address and 16-bit data. The pin assignments for the P1 connector is as follows:
Table 3-5 USB Connector (J5)
Pin Name Signal Description
1 +5 V
2 Data -
3 Data +
4GND
MTG Mounting Ground
MTG Mounting Ground
MTG Mounting Ground
MTG Mounting Ground
Table 3-6 VMEbus P1 Connector
Pin Row A Row B Row C Row D Row Z
1 DATA 0 BBSY DATA 8 +5V NC
2 DATA 1 BCLR DATA 9 GND GND
3 DATA 2 ACFAIL DATA 10 NC NC
4 DATA 3 BGIN0 DATA 11 NC GND
5 DATA 4 BGOUT0 DATA 12 NC NC
6 DATA 5 BGIN1 DATA 13 NC GND
7 DATA 6 BGOUT1 DATA 14 NC NC
8 DATA 7 BGIN2 DATA 15 NC GND
9 GND BGOUT2 GND GAP NC
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H) 43
10 SYSCLK BGIN3 SYSFAIL GA0 GND
11 GND BGOUT3 BERR GA1 NC
12 DS1 BR0 SYSRESET +3.3V (not used) GND
13 DS0 BR1 LWORD GA2 NC
14 WRITE BR2 AM 5 +3.3V (not used) GND
15 GND BR3 ADD 23 GA3 NC
16 DTACK AM 0 ADD 24 +3.3V (not used) GND
17 GND AM 1 ADD 25 GA4 NC
18 AS AM 2 ADD 26 +3.3V (not used) GND
19 GND AM 3 ADD 27 NC NC
20 IACK GND ADD 28 +3.3V (not used) GND
21 IACKIN NC ADD 29 NC NC
22 IACKOUT NC ADD 30 +3.3V (not used) GND
23 AM 4 GND ADD 31 NC NC
24 ADD 7 IRQ7 ADD 32 +3.3V (not used) GND
25 ADD 6 IRQ6 ADD 33 NC NC
26 ADD 5 IRQ5 ADD 34 +3.3V (not used) GND
27 ADD 4 IRQ4 ADD 35 NC NC
28 ADD 3 IRQ3 ADD 36 +3.3V (not used) GND
29 ADD 2 IRQ2 ADD 37 NC NC
30 ADD 1 IRQ1 ADD 38 +3.3V (not used) GND
31 -12V NC +12V +12V
32 +5V +5V +5V +5V
Table 3-6 VMEbus P1 Connector (continued)
Pin Row A Row B Row C Row D Row Z
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H)
44
3.4.1.5 VMEBus P2 Connector
The VME P2 connector is a 160-pin DIN. Row B of the P2 connector provides power to the
MVME2500 and to the upper eight VMEbus address lines and additional 16 VMEbus data lines.
The Z, A, C, and D pin assignments for the P2 connector are the same for both the MVME2500
and MVME7216E/ MVME721E, and are as follows:
Table 3-7 VMEbus P2 Connector
Pin Row A Row B Row C Row D Row Z
1 PMC IO 2 +5V PMC IO 1 GE3_0 + Serial 1 RX
2 PMC IO 4 GND PMC IO 3 GE3_0 - GND
3 PMC IO 6 RETRY PMC IO 5 GND Serial 1 TX
4 PMC IO 8 ADDRESS 24 PMC IO 7 GE3_1 + GND
5 PMC IO 10 ADDRESS 25 PMC IO 9 GE3_1 - Serial 1 CTS
6 PMC IO 12 ADDRESS 26 PMC IO 11 GND GND
7 PMC IO 14 ADDRESS 27 PMC IO 13 GE3_2 + Serial 1 RTS
8 PMC IO 16 ADDRESS 28 PMC IO 15 GE3_2 - GND
9 PMC IO 18 ADDRESS 29 PMC IO 17 GND Serial 2 RX
10 PMC IO 20 ADDRESS 30 PMC IO 19 GE3_3 + GND
11 PMC IO 22 ADDRESS 31 PMC IO 21 GE3_3 - Serial 2 TX
12 PMC IO 24 GND PMC IO 23 GND GND
13 PMC IO 26 +5V PMC IO 25 I2C DATA Serial 2 CTS
14 PMC IO 28 DATA 16 PMC IO 27 I2C CLK GND
15 PMC IO 30 DATA 17 PMC IO 29 GE3_LINK_ LED Serial 2 RTS
16 PMC IO 32 DATA 18 PMC IO 31 GE3_ACT_LED GND
17 PMC IO 34 DATA 19 PMC IO 33 GE4_LINK_LED Serial 3 RX
18 PMC IO 36 DATA 20 PMC IO 35 GE4_A_LED GND
19 PMC IO 38 DATA 21 PMC IO 37 GND Serial 3 TX
20 PMC IO 40 DATA 22 PMC IO 39 GE4_3 - GND
21 PMC IO 42 DATA 23 PMC IO 41 GE4_3 + Serial 3 CTS
22 PMC IO 44 GND PMC IO 43 GND GND
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H) 45
3.4.2 Onboard Connectors
3.4.2.1 Flash Program Connector (P7)
The Flash Program Connector is depopulated in the production version of the MVME2500.
However, each pin is exposed for the 60-pin header connector for the JTAG boundary scan.
23 PMC IO 46 DATA 24 PMC IO 45 GE4_2 - Serial 3 RTS
24 PMC IO 48 DATA 25 PMC IO 47 GE4_2+ GND
25 PMC IO 50 DATA 26 PMC IO 49 GND Serial 4 RX
26 PMC IO 52 DATA 27 PMC IO 51 GE4_1 - GND
27 PMC IO 54 DATA 28 PMC IO 53 GE4_1 + Serial 4 TX
28 PMC IO 56 DATA 29 PMC IO 55 GND GND
29 PMC IO 58 DATA 30 PMC IO 57 GE4_0 - Serial 4 CTS
30 PMC IO 60 DATA 31 PMC IO 59 GE4_0 + GND
31 PMC IO 62 GND PMC IO 61 GND Serial 4 RTS
32 PMC IO 64 +5V PMC IO 63 +5V GND
Table 3-7 VMEbus P2 Connector (continued)
Pin Row A Row B Row C Row D Row Z
Table 3-8 Flash Programming Header (P7)
Pin Signal Description
1 HOLD 1
2 Chip Select 1
3 Chip Select 0
4 Programmer's VCC
5 Master In Slave OUT (MISO)
6 HOLD 0
7 Keying
8 CLOCK
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H)
46
3.4.2.2 SATA Connector (J3)
The onboard customized SATA connector is compatible with the Emerson SATA kit, namely
VME-64GBSSDKIT and IVME7210-MNTKIT.
GND
10 Master OUT Slave IN (MOSI)
Table 3-8 Flash Programming Header (P7) (continued)
Pin Signal Description
Table 3-9 Custom SATA Connector (J3)
Pin Signal Description Pin Signal Description
1 GND 21 GND
2 GND 22 SATA POWER ENABLE
3NC 23NC
4 SATA TX + 24 SATA DETECT
5NC 25NC
6 SATA TX - 26 GND
7 GND 27 NC
8 GND 28 GND
9 GND 29 GND
10 GND 30 GND
11 NC 31 +3.3V
12 SATA RX - 32 +5V
13 NC 33 +3.3V
14 SATA RX + 34 +5V
15 GND 35 +3.3V
16 GND 36 +5V
17 NC 37 +3.3V
18 GND 38 +5V
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H) 47
3.4.2.3 PMC Connectors
The MVME2500 supports only one PMC site. It utilizes J14 to support PMC I/O that goes to the
RTM PMC. The tables below show the pinout detail of J11, J12, J13 and J14. See Figure 3-1 for
the location of the PMC connectors.
19 NC 39 +3.3V
20 GND 40 +5V
Table 3-9 Custom SATA Connector (J3) (continued)
Pin Signal Description Pin Signal Description
Table 3-10 PMC J11 Connector
Pin Signal Description Pin Signal Description
1 JTAG TCK 33 FRAME
2 -12V 34 GND
3 GND 35 GND
4 INT A 36 IRDY
5 INT B 37 DEVSEL
6 INT C 38 +5V
7 PRESENT SIGNAL 39 PCIXCAP
8 +5V 40 LOCK
9INT D 41NC
10 NC 42 NC
11 GND 43 PAR
12 NC 44 GND
13 PCI CLK 45 +3.3V
14 GND 46 AD 15
15 GND 47 AD 12
16 GNT A 48 AD 11
17 REQ A 49 AD 9
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H)
48
18 +5V 50 +5V
19 +3.3V 51 GND
20 AD 31 52 CBE0
21 AD 28 53 AD 6
22 AD 27 54 AD 5
23 AD 25 55 AD 4
24 GND 56 GND
25 GND 57 +3.3V
26 CBE3 58 AD 3
27 AD 22 59 AD 2
28 AD 21 60 AD 1
29 AD 19 61 AD 0
30 +5V 62 +5V
31 +3.3V 63 GND
32 AD 17 64 REQ64
Table 3-11 PMC J12 Connector
Pin Signal Description Pin Signal Description
1 +12V 33 GND
2 JTAG TRST 34 IDSELB
3 JTAG TMS 35 TRDY
4 JTAG TDO 36 +3.3V
5 JTAG TDI 37 GND
6 GND 38 STOP
7 GND 39 PERR
8NC 40GND
9 NC 41 +3.3V
Table 3-10 PMC J11 Connector (continued)
Pin Signal Description Pin Signal Description
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H) 49
10 NC 42 SERR
11 BUSMODE2 (Pulled UP) 43 CBE1
12 +3.3V 44 GND
13 PCI RESET 45 AD 14
14 BUSMODE3 (PULLED DWN) 46 AD 13
15 +3.3V 47 M66EN
16 BUSMODE4 (PULLED DWN) 48 AD 10
17 NC 49 AD 8
18 GND 50 +3.3V
19 AD 30 51 AD 7
20 AD 29 52 REQB
21 GND 53 +3.3V
22 AD 26 54 GNTB
23 AD 24 55 NC
24 +3.3V 56 GND
25 IDSEL 57 NC
26 AD 23 58 EREADY
27 +3.3V 59 GND
28 AD 28 60 RSTOUT
29 AD 18 61 ACK64
30 GND 62 +3.3V
31 AD 16 63 GND
32 CBE2 64 NC
Table 3-12 PMC J13 Connector
Pin Signal Description Pin Signal Description
1NC 33GND
Table 3-11 PMC J12 Connector (continued)
Pin Signal Description Pin Signal Description
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H)
50
2 GND 34 AD48
3 GND 35 AD 47
4 CBE7 36 AD 52
5 CBE6 37 AD 45
6CBE5 38GND
7 CBE4 39 +3.3V
8 GND 40 AD 40
9 +3.3V 41 AD 43
10 PAR64 42 AD 42
11 +3.3V 43 AD 41
12 AD 62 44 GND
13 AD 61 45 GND
14 GND 46 AD 40
15 GND 47 AD 39
16 AD 60 48 AD 38
17 AD 59 49 AD 37
18 AD 58 50 GND
19 AD 57 51 GND
20 GND 52 AD 36
21 +3.3V 53 AD 35
22 AD 56 54 AD 34
23 AD 55 55 AD 33
24 AD 54 56 GND
25 AD 53 57 +3.3V
26 GND 58 AD 32
27 GND 59 NC
28 GND 60 NC
Table 3-12 PMC J13 Connector (continued)
Pin Signal Description Pin Signal Description
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H) 51
29 AD 51 61 NC
30 AD 50 62 GND
31 AD 49 63 GND
32 GND 64 NC
Table 3-13 PMC J14 Connector
Pin Signal Description Pin Signal Description
1 PMC IO 1 33 PMC IO 33
2 PMC IO 2 34 PMC IO 34
3 PMC IO 3 35 PMC IO 35
4 PMC IO 4 36 PMC IO 36
5 PMC IO 5 37 PMC IO 37
6 PMC IO 6 38 PMC IO 38
7 PMC IO 7 39 PMC IO 39
8 PMC IO 8 40 PMC IO 40
9 PMC IO 9 41 PMC IO 41
10 PMC IO 10 42 PMC IO 42
11 PMC IO 11 43 PMC IO 43
12 PMC IO 12 44 PMC IO 44
13 PMC IO 13 45 PMC IO 45
14 PMC IO 14 46 PMC IO 46
15 PMC IO 15 47 PMC IO 47
16 PMC IO 16 48 PMC IO 48
17 PMC IO 17 49 PMC IO 49
18 PMC IO 18 50 PMC IO 50
19 PMC IO 19 51 PMC IO 51
20 PMC IO 20 52 PMC IO 52
Table 3-12 PMC J13 Connector (continued)
Pin Signal Description Pin Signal Description
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H)
52
3.4.2.4 JTAG Connector (P6)
The JTAG Connector can be used in conjunction with the JTAG board and ASSET hardware.
21 PMC IO 21 53 PMC IO 53
22 PMC IO 22 54 PMC IO 54
23 PMC IO 23 55 PMC IO 55
24 PMC IO 24 56 PMC IO 56
25 PMC IO 25 57 PMC IO 57
26 PMC IO 26 58 PMC IO 58
27 PMC IO 27 59 PMC IO 59
28 PMC IO 28 60 PMC IO 60
29 PMC IO 29 61 PMC IO 61
30 PMC IO 30 62 PMC IO 62
31 PMC IO 31 63 PMC IO 63
32 PMC IO 32 64 PMC IO 64
Table 3-13 PMC J14 Connector (continued)
Pin Signal Description Pin Signal Description
Table 3-14 JTAG Connector (P6)
Pin Signal Description Pin Signal Description
1 NC 2 +3.3V FROM +5V
3 SPI HOLD 0 4 SPI CS 0
5 SPI CLK 6 SPI CS 1
7 SPI HOLD 1 8 SPI MOSI
9 SPI MISO 10 GND
11 SPI VCC 12 SCAN 1 TCK
13 SCAN 1 TDI 14 GND
15 SCAN 1 TRST 16 SCAN 1 TDO
17 SCAN 1 TMS 18 +3.3V
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H) 53
19 GPO0 20 NC
21 NC 22 SCAN 2 TMS
23 NC 24 SCAN 2 TDO
25 SCAN 2 TCK 26 +3.3V FROM +5V
27 GND 28 SCAN 2 TDI
29 NC 30 NC
31 SCAN 3 TMS 32 SCAN 3 TCK1
33 SCAN 3 TDO 34 SCAN 3 TCK 2
35 +2.5V 36 SCAN 3 TCK 3
37 SCAN 3 TDI 38 GND
39 SCAN 3 TRST 40 SCAN 3 TCK3
41 SCAN 4 TCK 1 42 SCAN 4 TMS
43 GND 44 SCAN 4 TDO
45 SCAN 4 TCK 2 46 +3.3V
47 GND 48 SCAN 4 TDI
49 SCAN 4 TCK 3 50 SCAN 4 TRST
51 SCAN 5 TMS 52 SCAN 5
53 SCAN 5 TDO 54 GND
55 +3.3V 56 SCAN5 TCK2
57 SCAN 5 TDI 58 GND
59 SCAN 5 TRST 60 NC
Table 3-14 JTAG Connector (P6) (continued)
Pin Signal Description Pin Signal Description
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H)
54
3.4.2.5 COP Connector (P6)
The COP header is used for the CPU debug. The pin assignment is dictated by Freescale and is
compatible with the processor’s debugging tool.
3.4.2.6 SD Connector (J2)
Table 3-15 COP Header (P10)
Pin Signal Description
1 JTAG TDI
2 COP QACK
3 JTAG TDO
4 COP TRST
5 COP RUNSTOP (Pulled UP)
6 COP VDD SENSE
7 JTAG TCK
8 COP CHECK STOP IN
9 JTAG TMS
10 NC
11 P2020 SW RESET
12 COP PRESENT
13 COP HARD RESET
14 KEYING
15 COP CHECK STOP OUT
16 GND
Table 3-16 SD Connector (J2)
Pin Signal Description
1 DATA 3
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H) 55
3.4.2.7 XMC Connector (XJ2)
The MVME2500 has one XMC connector (XJ2) that supports XMC cards with J15 connector. It
can also support XMC cards with J16 connector without encountering any mechanical
interference.
2 COMMAND
3GND
4 VCC (+3.3V)
5 CLOCK
6GND
7 DATA 0
8 DATA 1
9 DATA 2
10 WRITE PROTECT
11 CARD DETECT
12 GND
Table 3-16 SD Connector (J2) (continued)
Pin Signal Description
Table 3-17 XMC Connector (XJ2) Pinout
Pin Row A Row B Row C Row D Row E Row F
1 RX0 + RX0 - +3.3V RX1+ RX1 - +3.3V
2 GND GND JTAG TRST GND GND HRESET
3 NC NC +3.3V NC NC +3.3V
4 GND GND JTAG TCK GND GND MRSTO
(PULLED UP)
5 NC NC +3.3V NC NC +3.3V
6 GND GND JTAG TMS GND GND +12V
7 NC NC +3.3V NC NC +3.3V
8 GND GND JTAG TMS GND GND -12V
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H)
56
3.4.2.8 Miscellaneous P2020 Debug Connectors
9 NC NC NC NC NC +3.3V
10 GND GND JTAG TDO GND GND GA 0
11 TX0 TX0 - BIST (PULLED
UP)
TX1 + TX1 - +3.3V
12 GND GND GA 1 GND GND PRESENT
13 NC NC NC NC NC +3.3V
14 GND GND GA 2 GND GND I2C DATA
15 NC NC NC NC NC +3.3V
16 GND GND MVMRO
(PULLED
DOWN)
GND GND I2C CLOCK
17 NC NC NC NC NC NC
18 GND GND NC GND GND NC
19 CLK + CLK - NC NC ROOT0
(PULLED UP)
NC
Table 3-17 XMC Connector (XJ2) Pinout (continued)
Pin Row A Row B Row C Row D Row E Row F
Table 3-18 P20x0 Debug Header
Pin Signal Description
1 MSRCDI0
2GND
3 MSRCDI1
4MDVAL
5 MSRCDI2
6 TRIG_OUT
7 MSRCDI3
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H) 57
3.5 Switches
These switches control the configuration of the MVME2500.
3.5.1 Geographical Address Switch (S1)
The Tsi148 VMEbus Status Register provides the VMEbus geographical address of the
MVM2500. The switch reflects the inverted states of the geographical address signals.
Applications not using the five row backplane can use the geographical address switch to
assign a geographical address based on the following diagram.
8 TRIG_IN
9 MSRCID4
10 GND
Table 3-18 P20x0 Debug Header (continued)
Pin Signal Description
Board Malfunction
-Switches marked as “reserved” might carry production-related functions and can cause
the board to malfunction if their settings are changed.
-Do not change settings of switches marked as “reserved”. The setting of switches which
are not marked as “reserved” has to be checked and changed before board installation.
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H)
58
Note that this switch is wired in parallel with the geographical address pins on the 5-row
connector. These switches must be in the "OFF" position when installed in a 5-row chassis in
order to get the correct address from the P1 connector. This switch also includes the SCON
control switches.
Figure 3-5 Geographical Address Switch
Table 3-19 Geographical Address Switch
Position Function Default
S1-1 VME SCON Auto1Auto-SCON
S1-2 VME SCON SEL2Non-SCON
S1-3 GAP 1
S1-4 GAP4 1
S1-5 GAP3 1
S1-6 GAP2 1
S1-7 GAP1 1
S1-8 GAP0 1
1. The VME SCON MAN switch is "OFF" to select Auto-SCON mode. The switch is "ON" to select
manual SCON mode whichworks in conjunction with the VME SCON SEL switch.
2. The VME SCON SEL switch is OFF to select non-SCON mode. The switch is ON to select always
SCON mode. This switch is only effective when the VME SCON MAN switch is "ON".
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H) 59
3.5.2 SMT Configuration Switch (S2)
This eight position SMT configuration switch controls the flash bank write-protect, selects the
flash boot image, and controls the safe start ENV settings. The default setting on all switch
positions is "OFF" and is indicated by brackets in Table 3-20.
Figure 3-6 SMT Configuration Switch Position
Table 3-20 Geographical Address Switch Settings
SW2 DEFAULT Signal Name Description Notes
1 OFF (Normal Env) NORMAL_ENV Safe Start ("ON"= Use
normal ENV, "OFF"= Use
safe ENV)
2 OFF (Flash Block A) BOOT_BLOCK_A Boot Block B Select
3 OFF (WP Disabled) FLASH_WP_N SPI Flash Write-Protect
4 OFF (PMC) PMC_XMC_SEL XMC or PMC selection
switch
Will select if XMC card or
PMC card is used
5 OFF (133 MHz) PMC_133 PCI frequency selection
Controls, LEDs, and Connectors
MVME2500 Installation and Use (6806800L01H)
60
6 OFF (WP Enabled) MASTER_WP_DISA
BLED
Write-Protect Disable
switch
For I2C write-protect only.
7 OFF (Front) GBE_MUX_SEL User Defined switch that
will select if the GBE PHY
will function on the front
panel or on the Back
PLANE
8 OFF (CPU Reset
Deasserted)
Reserved Should be "OFF" for normal
operation.
Table 3-20 Geographical Address Switch Settings (continued)
SW2 DEFAULT Signal Name Description Notes
Chapter 4
MVME2500 Installation and Use (6806800L01H) 61
Functional Description
4.1 Block Diagram
The MVME2500 block diagram is illustrated in Figure 4-1. All variants provide front panel
access to one serial port via a micro-mini DB-9 connector, two 10/100/1000 Ethernet port
(one is configurable to be routed on the front panel or to the rear panel) through a ganged RJ45
connector and one Type A USB Port. It includes Board Fail LED indicator, user-defined LED
indicator and a ABORT/RESET switch.
4.2 Chipset
The MVME2500 utilizes the QorIQ P20x0 integrated processor. It offers an excellent
combination of protocol and interface support including dual high performance CPU cores, a
large L2 cache, a DDR2/DDR3 memory controller, three enhanced three-speed Ethernet
controllers, two Serial RapidIO interfaces with a messaging unit, a secure digital interface, a
USB 2.0 interface and three PCI express controllers.
Figure 4-1 Block Diagram
Functional Description
MVME2500 Installation and Use (6806800L01H)
62
This section describes the protocol and interfaces provided in the QorIQ P20x0 integrated and
is utilized by the MVME2500.
4.2.1 e500 Processor Core
The QorIQ integrated processors offer dual high performance e500v2 core (P2020) and a
single e500v2 core (P2010). It operates from 800 MHz up to 1.2GHz core frequency. The e500
processor core is a low-power implementation of the family of reduced instruction set
computing (RISC) embedded processor that implement the Book E definition of the PowerPC
architecture. The e500 is a 32-bit implementation of the Book E architecture using the lower
words of 64-bit general-purpose registers (GPRs) while E500v2 uses 36 bit physical addressing
and some improvement from the previous version.
4.2.2 Integrated Memory Controller
A fully programmable DDR SDRAM controller supports most JEDEC standard DDR2 and DDR3
memories available. Unbuffered registered DIMMs are also supported. A built-in error checking
and correction (ECC) ensures very low bit-error rates for reliable high-frequency operation.
Though ECC is not implemented on MVME2500, the board includes a place holder for
additional chips for ECC whenever it is needed in the future.
The memory controller supports the following:
-16 GB of memory
-Asynchronous clocking from platform clock, with programmable settings that meets all
the SDRAM timing parameters.
-Up to four physical banks; each bank can be independently addressed to 64 Mbit to 4 Gbit
memory devices (depending on the internal device configuration with x8/x16/x32 data
ports).
-Chip set interleaving and partial array self-refresh.
-Data mask signal and read-modify-write for sub-double-word writes when ECC is enabled.
-Double-bit error detection and single-bit error correction ECC, 8-bit check work across 64-
bit data.
-Address parity for registered DIMMs.
Functional Description
MVME2500 Installation and Use (6806800L01H) 63
-Automatic DRAM initialization sequence or software-controlled initialization sequence
and automatic DRAM data initialization.
-Write leveling for DDR3 memories and supports up to eight posted refreshes.
4.2.3 PCI Express Interface
The PCI Express interface is compatible with the PCI Express Base Specification Rev. 1.0a. The
PCI Express controller connects the internal platform to a 2.5 GHz serial interface. The P20x0
has the options for up to three PCI-E interfaces with up to x4 link width. The PCI-E controller can
be configured to operate as either PCI-E root complex (RC) or as an endpoint (EP) device.
4.2.4 Local Bus Controller (LBC)
The main component of the enhanced LBC is the memory controller that provides a 16-bit
interface to various types of memory devices and peripherals. The memory controller is
responsible for controlling eight memory banks shared by the following: a general purpose
chip select machine (GPCM); a flash controller machine (FCM) and user programmable
machines (UPMs).
4.2.5 Secure Digital Hub Controller (SDHC)
The SDHC/eSDHC provides an interface between the host system and the memory cards such
as the MMC and SD. It is compatible with the SD Host Controller Standard Specification Ver. 2.0
and supports the following: SD, miniSD, SD Combo, MMC+ and RS-MMC card.
4.2.6 I2C Interface
The MVME2500 uses only one of the two independent I2C buses on the processor. For more
information, see I2C Devices, on page 73.
4.2.7 USB Interface
The P20x0 implements a USB 2.0 compliant serial interface engine. For more information, see
USB, on page 73.
Functional Description
MVME2500 Installation and Use (6806800L01H)
64
4.2.8 DUART
The chipset provides two universal asynchronous receiver/transmitter (UART), each of which
acts independently of the other. Each UART is clocked by the CCB clock and is compatible with
PC16522D. As a full-duplex interface, it provides a 16-byte FIFO for both transmitter and
receiver mode.
4.2.9 DMA Controller
The DMA controller transfers blocks of data between the various interfaces and functional
blocks of P20x0 that are independent of the e500 cores. The P20x0 DMA controller has three
high-speed DMA channels, all of which capable of complex data movement and advanced
transaction chaining.
4.2.10 Enhanced Three-Speed Ethernet Controller (eTSEC)
The eTSEC controller of the device communicates to the 10 Mbps, 100 Mbps, and 1 Gbps
Ethernet/IEE 802.3 networks, as well as to devices with generic 8 to 16-bit FIFO ports. The
MVME2500 uses the eTSEC using the RGMII interface.
4.2.11 General Purpose I/O (GPIO)
The P20x0 has a total of sixteen I/O ports. Four of these ports are used alternately used as
external input interrupt. All sixteen ports have open drain capabitilies.
4.2.12 Security Engine (SEC) 3.1
The integrated security engine of the P20x0 is designed to off-load intensive security functions
like key generation and exchange, authenticaion and bulk encryption from the processor core.
It includes eight different execution units where data flows in and out of an EU.
The P20x0 processor provides a Serial Rapid I/O interface. However, this interface is not
utilized by the MVME2500.
Functional Description
MVME2500 Installation and Use (6806800L01H) 65
4.2.13 Common On-Chip Processor (COP)
The COP is the debug interface of the QorIQ P20x0 Processor. It allows a remote computer
system to access and control the internal operation of the processor. The COP interface
connects primarily through the JTAG and has additional status monitoring signals. The COP has
additional features like breakpoints, watch points, register and memory
examination/modification and other standard debugging features.
4.2.14 P20x0 Hardware Configuration Pins
A series of strapping pins are required to initialize the P20x0. These pins are samples during the
assertion of HRESET and return to their assigned function after HRESET is deasserted.
4.3 System Memory
The processor integrated memory controller supports both DDR2 and DDR3 memory devices.
It has one channel and can be configured for up to four memory banks with x8, x16 and x32
devices. Using 4 GB devices allows support of up to 16 GB of memory. ECC is not supported.
The MVME2500 has a total of eight board variants, half of which has soldered 2 GB memory,
while the remaining half has 16 GB memeory. The x8 or 1 Gbit device forms 2 GB and 1 GB
memory capacity. A total of 16 devices for 2 GB and eight devices are used to form 16 GB.
MVME2500 supports ENP1 and ENP2 operating environment. The ENP1 environment uses
Samsung for all variants including the commercial grade devices, while the ENP2 variants use
Micron.
4.4 Timers
There are various timer functions implemented in the MVME2500 platform:
4.4.1 Real Time Clock
This operates on a 3.3 V supply monitoring and battery control function (MAX6364PUT29), a
32.768 KHz clock generator (DS32KHZS) and an RTC with alarm (DS1375T).
Functional Description
MVME2500 Installation and Use (6806800L01H)
66
See Real-Time Clock Battery, on page 77 for more information on the real time clock back-up
battery.
4.4.2 Internal Timer
The processor's internal timer is composed of eight global timers divided into two groups of
four timers each. Each time has four individual configuration registers and they cannot be
cascaded together.
4.4.3 Watchdog Timer
The onboard FPGA provides programmable 16-bit watchdog timers. It has a 1 ms resolution
and generates a board reset when the counter expires. Interrupt is generated to the processor
when this occurs. Default value is 60 seconds.
4.4.4 FPGA Tick Timer
The MVME2500 supports three independent 32-bit timers that are implemented on the FPGA
to provide fully programmable registers for the timers.
4.5 Ethernet Interfaces
The MVME2500 has three eTSEC controllers. Each one supports RGII, GMII, and SGMII interface
to the external PHY. All controllers can only be untilized when using the RGMII interface. Using
the GMII allows only up to two usable controllers.
MVME2500 provides two 10/100/1000 Ethernet interfaces on the front panel and another two
are routed to the RTM through the backplane connector. Due to controller limitations, one
controller is designed to be routed to the front panel or to the RTM. This setting is possible by
using a third party gigabit Ethernet LAN switch with a single enable switch such as PERICOM’s
P13L301D. The routing direction can be configured through the on-board dip switch.
Each Ethernet controller has a single dedicated Broadcom BCM54616S with integrated MAC
and PHY. The registers of the PHY can be accessed through the processor’s two-wire Ethernet
management interface.The front panel RJ45 connector has integrated speed and and activity
status indicator LEDs. Isolation transformers are provided onboard for each port.
Functional Description
MVME2500 Installation and Use (6806800L01H) 67
4.6 SPI Bus Interface
The enhanced serial peripheral interface (eSPI) allows the device to exchange data with
peripheral devices such as EEPROMs, RTC, Flash and the like. The eSPI is a full-duplex
synchronous, character-oriented channel that supports a simple interface such as receive,
transmit, clock and chip selects. The eSPI receiver and transmitter each have a FIFO of 32 Bytes.
P20x0 supports up to four chip selects and RapidS full clock cycle operation. It can operate both
full-duplex and half duplex. It works with a range of 4-bit to 16-bit data characters and is a
single-master environment. MVME2500 is configured such that the eSPI can operate up to 200
MHz clock rate and can support booting process.The firmware boot flash resides in the P20x0
eSPI bus interface.
4.6.1 SPI Flash Memory
The MVME2500 has two 8 MB onboard serial flash. Both contain the ENV variables and the U-
Boot firmware image, which is about 513 KB in size. Both SPI flash contain the same
programming for firmware redundancy and crisis recovery. The SPI flash can be programmed
through the JTAG interface or through an onboard SPI flash programming header.
For information on U-boot and ENV Variables location see, Flash Memory Map, Table 5-2 on
page 82.
4.6.2 SPI Flash Programming
The MVME2500 has three headers: a 10-pin header for SPI Flash programming, an 80-pin
header for the JTAG connectivity and a 20-pin JTAG header for ASSET hardware connectivity.
The following options are used to program the onboard flash:
-Using onboard SPI header - The MVME2500 uses the 10-pin header with a Dual SPI Flash in-
circuit programming configuration. The pin connection is compatible with DediProg SPI
Unversal Pin Header.
-Using 60-pin external JTAG header - An external JTAG board with a JTAG multiplexer is
compatible with the MVME2500 and can be attached using an external cable. It can be
used to update the boot loader in the field. Using this method, programming can be done
through the JTAG interface or by using the dedicated SPI Flash programming header on the
JTAG board.
Functional Description
MVME2500 Installation and Use (6806800L01H)
68
-Factory Pre-Programming - Programming the SPI Flash usually takes a while. Ideally, the
SPI Flash should be pre-programmed in the factory before shipment.
-ICT Programming - This programming is done on exposed test points using a bed of nails
tester.
4.6.3 Firmware Redundancy
The MVME2500 uses two physically separate boot devices to provide boot firmware
redundancy. Although the P20x0 provides four SPI Bus chip-selects, the P20x0 is only capable
of booting from the SPI Device controlled by Chip Select 0. External SPI multiplexing logic is
implemented on the MVME2500 to accomodate this chipset limitation.
The board power should be switched on before programming. The switch S2-8 should also be
powered on to successfully detect the SPI Flash chip.
Functional Description
MVME2500 Installation and Use (6806800L01H) 69
The MVME2500 FPGA controls the chip select to SPI devices A and B. The FPGA chip select
control is based on the Switch Bank (S2-2).
At power-up, the selection of the SPI boot device is strictly based upon the Switch Bank (S2-2)
setting. Depending on the S2-2 setting, SPI_SEL0 is routed to one of two SPI devices. The
selected SPI device must contain a boot image. Once the boot image is copied into memory
and executed, the FPGA will wait and once the P20x0 will write on one bit of the FPGA
watchdog register, the FPGA will then pass through the SPI chip select from the P20x0 to SPI
device chip selects. The software can now perform read/write processes on any SPI device,
including copying from one SPI device to another.
With this flexible approach to firmware redundancy, one should always be able to recover from
a corrupt active firmware image, as long as a healthy firmware image is maintained in single
bootable SPI Device.
Figure 4-2 SPI Device Multiplexing Logic
Functional Description
MVME2500 Installation and Use (6806800L01H)
70
The MVME2500 supports automatic switch over. If booting one device is not successful, the
watchdog will trigger the board reset and it will automatically boot on the other device.
4.6.4 Crisis Recovery
The MVME2500 provides an independent boot firmware recovery mechanism for the
operating system. The firmware recovery can be performed without leaving the firmware
environment.
During crisis recovery, the healthy boot image contained in SPI Device B is copied to SPI Device
A, replacing the corrupt boot image contained in SPI Device A.
Crisis recovery is performed as follows:
1. Power off the board.
2. Set Switch S2-2 to "ON" to point to SPI Device B (crisis image).
3. Power on the board.
4. Press "h" on the keyboard to go to the U-Boot prompt.
5. Type "moninit fru" to copy the crisis image to SPI Device A.
6. Once the U-Boot prompt is visible, power off the board.
7. Set the S2-3 back to "OFF" to point to the SPI Device A.
8. Power on the board to boot from the newly recovered image on the SPI Device A.
4.7 Front UART Control
The MVME2500 utilizes one of the two UART functions provided in the male micro-mini DB-9
front panel. A male-to-male micro-mini DB-9 to DB9 adapter cable is available under Emerson
Part Number SERIAL-MINI-D (30-W2400E01A) and is approximately 12 inches in length.
The board will automatically switch over if one of the devices is corrupted.
Functional Description
MVME2500 Installation and Use (6806800L01H) 71
Only 115200 bps and 9600 bps are supported. The default baud rate on the front panel serial
is 9600 kbps.
4.8 Rear UART Control
The MVME2500 utilizes the Exar ST16C554 quad UART (QUART) to provide four additional
ports to the RTM. These devices feature 16 bytes of transmit and receive first-in first-out (FIFO)
with selectable receive FIFO trigger levels and data rates of up to 1.5 Mbps. Each UART has a set
of registers that provide the user with operating status and control. The QUART are 8-bit
devices connected to the processor through the local bus controller using LBC chipset CS1,
CS2, CS3 and CS4.
These four serial interfaces are routed to P2 I/O for RTM accessibility. There are a total of five
serial ports available on the MVME2500.
4.9 PMC/XMC Sites
The MVME2500 hosts only one PMC/XMC site and accepts either a PMC or an XMC add-on
card. Only an XMC or a PMC may be populated at any given time as both occupy the same
physical space on the PCB. Combination PMC/XM cards are not supported by the MVME2500.
The site provides a rear PMC I/O.
The PMC site is fully compliant with the following:
1. VITA 39 –PCI-X for PMC
2. VITA 35-2000 for PMC P4 to VME P2 Connection
3. PCI Rev 2.2 for PCI Local Bus Specification.
4. PCI-X PT 2.0 for PCI-X Protocol Addendum to the PCI Local Bus Specs.
5. IEEE Standard P1386-2001 for Standard for Common Mezzanine Card Family
6. IEEE Standard P1386.1-2001 for Standard Physical and Environmental Layer for PCI
Mezzanine Card.
7. VITA 42 for XMC
8. VITA 42.3 , PCIe for XMC
Functional Description
MVME2500 Installation and Use (6806800L01H)
72
PMC/XMC sites are keyed for 3.3V PMC signaling. PMC and XMC add-on cards must have a hole
in the 3.3 V PMC keying position in order to be populated on the MVME2500. The XMC
specification accommodates this since it is expected that carrier cards will host both XMC and
PMC capable add-on cards.
MVME2500 utilizes the P20x0 x2 link PCI Express interface. It is designed such that the same
PCI-E interface is used for either PMC or XMC through Pericom’s PI2PCIE2412. It is PCI-E Gen2
compliant with four differential channel input and 2:1 MUX switch with single enable. The
enable pin is controlled by FPGA through onboard switch.
The onboard switch S2-4 determines the direction of the PCI-E MUX switch. The default setting
"OFF" routes the differential lines to the PMC. Otherwise, it is routed to the XMC connector.
4.9.1 PMC Add-on Card
The MVME2500 PMC interface utilizes IDT’s TSI384 as the PCie/PCI-X bridge. It can support up
to 8.5 Gbps (64 bits x 133 Mhz). The onboard switch S2-7 configures the TSI384 to run on
either 100 Mhz or 133 Mhz, with 133 Mhz as default.
The MVME2500 supports multi-function PMCs and processor PMCs (PrPMCs). The PMC site
has two IDSELs, two REQ/GNT pairs, and EREADY to support PrPMC as defined by VITA39.
4.9.2 XMC Add-on Card
The x2 links the PCI-E Gen 1 and is directly routed to the P15 XM connector through Pericom
MUX Switch. The onboard switch S2-4 should be set to "ON".
XMC add-on cards are required to operate at +5V or +12V (from carrier to XMC). The
MVME2500 provides +5V to the XMC VPWR (Variable Power) pins. The MVME2500 does not
provide +12V to the XMC VPWR pins. Voltage tolerances for VPWR and all carrier supplied
voltage (+3.3 V, +12 V, -12 V) are defined by the base XMC standard.
4.10 SATA Interface
The MVME2500 supports an optional 2.5" SATA HDD. The connector interface is compatible
with the Emerson SATAMNKIT, which contains the following: one SSD/HDD, one SATA board,
screws and a mounting guide. The SATA connector can support a horizontal mounted
SSD/HDD.
Functional Description
MVME2500 Installation and Use (6806800L01H) 73
The MVME2500 uses Marvell's 88SE6121B2-NAA2C000 SATA controller and supports up to 1.5
Gbps (SATA Gen 1). For status indicators, it has an onboard green LED, D12 and D13 for SATA
link and SATA activity status respectively.
4.11 VME Support
The MVME2500 can operate in either System Controller (SCON) mode or non-SCON mode, as
determined by the the switch setting of S1-1 and S1-2.
The P20x0 x1 link is used for the VME backplane connectivity through the Tsi384 (PCI-E/PCI-X)
and Tsi148 (PCI-X/VMEBus) bridges.
See VMEBus P1 Connector, on page 42 and VMEBus P2 Connector, on page 44 for more
information.
4.11.1 Tsi148 VME Controller
The VMEbus interface for the MVME2500 is provided by the Tsi148 VMEbus controller. The
Tsi148 provides the required VME, VME extensions, and 2eSST functions. TI
SN74VMEH22501transceivers are used to buffer the VME signals between the Tsi148 and the
VME backplane. Refer to the Tsi148 user's manual for additional details and/or programming
information.
4.12 USB
The MVME2500 processor implements a dual-role (DR) USB 2.0 compliant serial interface
engine. DC power to the front panel USB port is supplied using a USB power switch which
provides soft-start, current limiting, over current detection, and power enable for port 1.
4.13 I2C Devices
The MVME2500 utilizes one of the two I2C ports provided by the board's processor. The I2C bus
is a two-wire , serial data (SDA) and serial clock (SCL), synchronous, multi-master bi-directional
serial bus that allows data exchance between this device and other devices such as VPD, SPD,
EEPROM, RTC, temperature sensor, RTM, XMC and IDT clocking.
Functional Description
MVME2500 Installation and Use (6806800L01H)
74
The RTM I2C address can be configured by the user and should not contain duplicate addresses
to avoid conflict. For more information, see I2C Bus Device Addressing, on page 118.
4.14 Reset/Control FPGA
The FPGA provides the following functions:
-Power control and fault detection
-Reset sequence and reset management
-Status and control registers
-Miscellaneous control logic
-Watchdog timer
-32-bit Tick Timer
-Clock generator
-Switch decoder and LED controller
4.15 Power Management
The MVME2500 backplane is utilized to derive +3.3V, +2.5V, +1.8V, +1.5V, +1.2V, +1.05V
voltage rail. Each voltage rail is controlled by the FPGA through an enable pin of the regulator,
while the output is monitored through power good signal. If a voltage rail fails. the FPGA will
disable each supply. To restart the system, the chassis power switch must be powercycled.
4.15.1 Onboard Voltage Supply Requirement
The onboard power supply is considered to be out of regulation if the output voltage level is
below the minimum required power or goes beyond the maximum.
Table 4-1 Voltage Supply Requirement
Voltage Rail
Voltage Rail Requirement
Minimum Maximum
+3.3 V 3.15 V 3.45 V
Functional Description
MVME2500 Installation and Use (6806800L01H) 75
4.15.2 Power Up Sequencing Requirements
The power up sequence describes the voltage rail power up timing, which is designed to
support all the chip supply voltage sequencing requirement.
+2.5 V 2.375 V 2.625 V
+1.8 V 1.7 V 1.9 V
+1.5 V 1.425 V 1.575 V
+1.2 V 1.14 V 1.26 V
+1.2 V_SW 1.14 V 1.26 V
+1.05 V 1.0 V 1.1 V
Table 4-1 Voltage Supply Requirement
Voltage Rail
Voltage Rail Requirement
Minimum Maximum
Functional Description
MVME2500 Installation and Use (6806800L01H)
76
4.16 Clock Structure
A total of three IDT chips, a discrete oscillator and crystal to support all the clock requirements
of MVME2500.
4.17 Reset Structure
MVME2500 reset will initiate after the power up sequence if the 1.5 V power supply is "GOOD".
When the board is at "ready" state, the reset logic will monitor the reset sources and implement
the necessary reset function.
Figure 4-3 Clock Distribution Diagram
Functional Description
MVME2500 Installation and Use (6806800L01H) 77
4.17.1 Reset Sequence
The timing of the reset sequence supports each chip reset requirements with respect to the
power supply.
4.18 Thermal Management
The MVME2500 utilizes two on-board temperature sensors: one for the board and the other for
the CPU temperature sensor. The board temperature sensor is located near the dual RJ45
connector near the front panel. The CPU temperature sensor is located near the P2020 CPU.
The MVME2500 thermal management support will interrupt the process only to show the
current board and CPU temperature. This interrupt is routed directly to one of the processor’s
IRQ4.
The table below shows the low and high threshold temperature in order for the interrupt to be
asserted.
4.19 Real-Time Clock Battery
A back-up battery based on the CR2325 specification is provided. It helps support the RTC
hold-up requirements that maintain the correct date and time for at least two hours after the
backplane power is switched off.
Table 4-2 Thermal Interrupt Threshold
Board Variant Board Temperature Limit
Board
Temperature Limit
CPU Temperature
Limit
Low High Low High
Standard Variant 0°C to +55°C 0°C 70°C 0°C 90°C
Extended Temperature
Variant
-55°C to +71°C -40°C 90°C -40°C 100°C
Functional Description
MVME2500 Installation and Use (6806800L01H)
78
4.20 Debugging Support
The following information shows the details of Emerson debugging support as applied to the
MVME2500.
4.20.1 POST Code Indicator
The following table shows the LED status of the POST Codes. For the location of the POST Code
LEDs, see Onboard LEDs, on page 39.
Logic 1 means LED is "ON", Logic 2 means LED is "OFF"
4.20.2 JTAG Chain and Board
The MVME2500 is designed to work with separate JTAG board rather than with an onboard
JTAG multiplexer. The chip can support up to a 6-scan port and the board’s boundary scan
requires the following to function: ASSET hardware, JTAG board and JTAG cable. The
MVME2500 provides a 60-pin header that can connect to the JTAG board using a custom cable.
Table 4-3 POST Code Indicator on the LED
Sequence D33 D32 D35 Description
1 000U-boot has been copied from SPI flash to CPU cache.
2 010Serial console has been initialized, some text is visible
on the terminal.
3 0 1 1 DDR has been initialized using SPD parameters,
Execution is still in the cache.
4 100Execution has been relocated to RAM.
5 101PCI has been initialized.
6 110POST routines are finished.
7 111Additional SW routines are finished.
8 000U-boot prompt is visible on the terminal, can start
loading OS image from USB, Ethernet, SATA SSD, SD.
Functional Description
MVME2500 Installation and Use (6806800L01H) 79
The JTAG board provides three different connectors for the ASSET hardware, flash
programming and the MVME2500 JTAG connector. The board is equipped with TTL buffers to
help improve the signal quality as it traverses over the wires.
4.20.3 Custom Debugging
Custom debugging makes use of the common on-chip processor. Refer to Common On-Chip
Processor (COP), on page 65 for details.
4.21 Rear Transition Module (RTM)
The MVME2500 is compatible with the MVME721x RTM.
The MVME721X RTM is for I/O routing through the rear of a compact VMEbus chassis. It
connects directly to the VME backplane in chassis with an 80 mm deep rear transition area. The
MVME721X RTM is designed for use with the MVME7100, MVME2500, iVME7210, and MVME
4100. It has the following features:
For more information, refer to the MVME721x RTM Installation and Use. See Appendix B,
Related Documentation, on page 129 for details on how to obtain and download the document.
Table 4-4 Transition Module Features
Function Features
I/O -One five-row P2 backplane connector for serial and Ethernet I/O passed from the
SBC
-Four RJ-45 connectors for rear panel I/O: four asynchronous serial channels
-Two RJ-45 connectors with integrated LEDs for rear panel I/O: two 10/100/1000
Ethernet channels
-One PIM site with rear panel I/O
Functional Description
MVME2500 Installation and Use (6806800L01H)
80
Chapter 5
MVME2500 Installation and Use (6806800L01H) 81
Memory Maps and Registers
5.1 Overview
System resources including system control and status registers, external timers, and the
QUART are mapped into 16 MB address range accessible from the MVME2500 local bus
through the P20x0 QorIQ LBC.
5.2 Memory Map
The following table shows the physical address map of the MVME2500.
Table 5-1 Physical Address Map
Device Name Start Address End Address Size
DDR 0x0000_0000 0x7fff_ffff 2 GB
PCIE 3 Mem 0x8000_0000 0x9fff_ffff 512 MB
PCIE 2 Mem 0xa000_0000 0xbfff_ffff 512 MB
PCIE 1 Mem 0xc000_0000 0xdfff_ffff 512 MB
PCIE 3 IO 0xffc0_0000 0xffc0_ffff 64 KB
PCIE 2 IO 0xffc1_0000 0xffc1_ffff 64 KB
PCIE 1 IO 0xffc2_0000 0xffc2_ffff 64 KB
UART0 0xffc4_0000 0xffc4_ffff 64 KB
UART1 0xffc5_0000 0xffc5_ffff 64 KB
UART2 0xffc6_0000 0xffc6_ffff 64 KB
UART3 0xffc7_0000 0xffc7_ffff 64 KB
Timer 0xffc8_0000 0xffc8_ffff 64 KB
FPGA 0xffdf_0000 0xffdf_0fff 4 KB
CCSR 0xffe0_0000 0xffef_ffff 1 MB
MRAM 0xfff0_0000 0xfff7_ffff 512 KB
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H)
82
5.3 Flash Memory Map
The table below lists the memory range designated to U-boot and ENV variables.
5.4 Linux Devices Memory Map
The table below lists the memory ranges designated to different devices in Linux.
Table 5-2 Flash Memory Map
Description Memory Area
U-boot 0x00000000 0x0008ffff
Reserved 0x00090000 0x0009ffff
ENV Variables 0x00100000 0x0011ffff
Available Flash 0x00120000 0x007fffff
Table 5-3 Linux Devices Memory Map
Device Memory Range Memory Area Size
Ram Mem 0x00000000 0x7fffffff 2 GB
PCIE3 Mem 0x80000000 0x9fffffff 512 MB
PCIE2 Mem 0xa0000000 0xbfffffff 512 MB
PCIE1 Mem 0xc0000000 0xdfffffff 512 MB
MRAM 0xfff00000 0xfff7ffff 512 KB
PCIE3 IO 0xffc00000 0xffc0fff 64 KB
PCIE2 IO 0xffc10000 0xffc1ffff 64 KB
PCIE1 IO 0xffc20000 0xffc2ffff 64 KB
QUART0 0xffc40000 0xffc4ffff 64 KB
QUART1 0xffc50000 0xffc5ffff 64 KB
QUART2 0xffc60000 0xffc6ffff 64 KB
QUART3 0xffc70000 0xffc7ffff 64 KB
Timer 0xffc80000 0xffc8ffff 64 KB
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H) 83
FPGA 0xffdf0000 0xffdf0fff 4 KB
ecm local access window CCSR 0xffe00000 0xffe00ffff 4 KB
ecm (Error Correction Module) CCSR 0xffe01000 0xffe01fff 4 KB
Memory Controller CCSR 0xffe02000 0xffe02fff 4 KB
I2C1 CCSR 0xffe03000 0xffe030ff 256 B
I2C2 CCSR 0xffe03100 0xffe031ff 256 B
UART0 CCSR 0xffe04500 0xffe045ff 256 B
UART1CCSR 0xffe04600 0xffe046ff 256 B
ELBC CCSR 0xffe05000 0xffe05fff 4 KB
SPI CCSR 0xffe07000 0xffe07fff 4 KB
PCIE3 CCSR 0xffe08000 0xffe08fff 4 KB
PCIE2 CCSR 0xffe09000 0xffe09fff 4 KB
PCIE1CCSR 0xffe0a000 0xffe0afff 4 KB
DMA2 CCSR 0xffe0c100 0xffe0c303 516 B
GPIO CCSR 0xffe0fc00 0xffe0fcff 256 B
L2 Cache CCSR 0xffe20000 0xffe20fff 4 KB
DMA1 CCSR 0xffe21100 0xffe21303 516 B
USB CCSR 0xffe22000 0xffe22fff 4 KB
ETSEC1 CCSR 0xffe24000 0xffe24fff 4 KB
ETSEC2 CCSR 0xffe25000 0xffe25fff 4 KB
ETSEC3 CCSR 0xffe26000 0xffe26fff 4 KB
SDHCI CCSR 0xffe2e000 0xffe2efff 4 KB
Crypto CCSR 0xffe30000 0xffe3ffff 64 KB
msi CCSR 0xffe41600 0xffe4167f 128 B
mpic CCSR 0xffe40000 0xffe7ffff 256 KB
Global Utilities CCSR 0xffee0000 0xffee0fff 4 KB
L2 Cache Mem 0xf0f80000 0xf0ffffff 512 KB
Table 5-3 Linux Devices Memory Map
Device Memory Range Memory Area Size
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H)
84
5.5 Programmable Logic Device (PLD) Registers
5.5.1 PLD Revision Register
The MVME2500 provides a PLD revision register that can be read by the system software to
determine the current version of the timers/registers PLD.
5.5.2 PLD Year Register
The MVME2500 PLD provides an 8-bit register which contains the build year of the
timers/registers PLD.
Table 5-4 PLD Revision Register
REG PLD Revision Register - 0xFFDF0000
Bit 76543210
Field PLD Rev
OPER R
RESET 03
Field Description
PLD_REV 8-bit field containing the current timer/register PLD revision. The
revision number starts at 01.
Table 5-5 PLD Year Register
REG PLD Year Register - 0xFFDF0004
Bit 76543210
Field PLD Rev
OPER R
RESET 0A
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H) 85
5.5.3 PLD Month Register
The MVME2500 PLD provides an 8-bit register which contains the build month of the
timers/registers PLD.
5.5.4 PLD Day Register
MVME2500 PLD provides an 8-bit register which contains the build day of the timers/registers
PLD.
5.5.5 PLD Sequence Register
The MVME2500 PLD provides an 8-bit register which contains the sequence of the PLD which
is in synchrony with the PCB version.
Table 5-6 PLD Month Register
REG PLD Year Register - 0xFFDF0005
Bit 76543210
Field PLD Rev
OPER R
RESET 0A
Table 5-7 PLD Day Register
REG PLD Revision Register - 0xFFDF0006
Bit 76543210
Field PLD Rev
OPER R
RESET 0E
Table 5-8 PLD Sequence Register
REG PLD Revision Register - 0xFFDF0007
Bit 76543210
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H)
86
5.5.6 PLD Power Good Monitor Register
The MVME2500 PLD provides an 8-bit register which indicates the instantaneous status of the
supply’s power good signals.
Bit 76543210
Field PLD Rev
OPER R
RESET 02
Table 5-8 PLD Sequence Register
REG PLD Revision Register - 0xFFDF0007
Table 5-9 PLD Power Good Monitor Register
REG PLD PWRDG_MNTR - 0xFFDF0012
Bit76543210
Field RSVD PWR_V
1P05_P
WRGD
PWR_V
1P2_PW
RGD
PWR_V
1P8_PW
RGD
PWR_V
3P3_PW
RGD
PWR_V
2P5_PW
RGD
PWR_V
1P2_SW
_PWRG
D
PWR_V
1P5_PW
RGD
OPER R
RESET00000000
Field Description
PWR_V1P05_PWRGD 1.05V Core supply power good indicator
PWR_V1P2_PWRGD 1.2V Supply power good indicator
PWR_V1P8_PWRGD 1.8V Supply power good indicator
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H) 87
5.5.7 PLD LED Control Register
The MVME2500 PLD provides an 8-bit register which controls the eight LEDs.
1 - LED on
0 - LED off
For more information on LEDs, refer to Table "Front Panel LEDs" on page 38 and Table "Onboard
LEDs Status" on page 39.
PWR_V3P3_PWRGD 3.3V Supply power good indicator
PWR_V2P5_PWRGD 2.5V Supply power good indicator
PWR_V1P2_SW_PWRG
D
1.2V SW Supply power good indicator
PWR_V1P5_PWRGD 1.5V Supply power good indicator
1 - Supply Good and Stable
0 - Otherwise
Table 5-10 PLD LED Control Register
REG PLD LED_CTRL - 0xFFDF001C
Bit76543210
Field D1 D35 D34 D33 D38 D37 D2 Red D2
Yellow
OPER R/W
RESET10000000
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H)
88
5.5.8 PLD PCI/PMC/XMC Monitor Register
The MVME2500 PLD provides an 8-bit register which indicates the status of the PCI/PMC/XMC
interface signals.
Table 5-11 PLD PCI/PMC/XMC Monitor Register
REG PLD PCI_PMC_XMC_MNTR - 0xFFDF001D
Bit76543210
Field RSVD RSVD RSVD PMC_X
MC_SEL
PMC1_E
READY
PMC1P_
N
XMCP1_
N
PCI1_PC
IXCAP
OPER R
RESET000XXXXX
Field Description
PMC_XMC_SEL XMC or PMC Selection Switch
1 - XMC
0 - PMC
PMC1_EREADY Indicates that the PrPMC module is installed in PMC
site.
1 - PrPMC is ready for enumeration or no PrPMC is
installed.
0 - PrPMC is not ready for enumeration.
PMC1P_N PMC Presence Indicator
1 - PMC is not present
0 - PMC is present
XMCP1_N XMC Presence Indicator
1 - XMC is not present
0 - XMC is present
PCI1_PCIXCAP PCI Capability Indicator
1 - PCI-X capable
0 - PCI capable
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H) 89
5.5.9 PLD U-Boot and TSI Monitor Register
The MVME2500 PLD provides an 8-bit register which indicates the status of the U-Boot's
normal environment switch and TSI interface signals.
5.5.10 PLD Boot Bank Register
The MVME2500 PLD provides an 8-bit register which is used to declare successful U-Boot
loading, indicating the SPI boot bank priority and actual SPI bank it booted from.
Table 5-12 PLD U-Boot and TSI Monitor Register
REG PLD PCI_PMC_XMC_MNTR - 0xFFDF001F
Bit765432 1 0
Field RSVD RSVD RSVD RSVD RSVD BDFAIL_N NORMAL_ENV SCON
OPER R
RESET00000X X X
Field Description
BDFAIL_N TSI148 BDFAIL_N Pin out
1 - No TSI Fail
0 - TSI Fail
NORMAL_ENV Normal Environment Switch Indicator
1 - Use safe ENV
0 - Use normal ENV
SCON System Controller Indicator
1 - System Controller
0 - Non-system Controller
Table 5-13 PLD Boot Bank Register
REG PLD Boot Bank - 0xFFDF0050
Bit76543210
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H)
90
Field SPI_GOODReg
(write 0xA4 into this reg to indicate successful loading of the U-
Boot.
BOOT_B
LOCK_A
BOOT_S
PI
OPER R/W R R
RESET000000X0
Field Description
BOOT_BLOCK_A Boot Block Manual Selector Switch
1 - SPI0
0 - SPI1
BOOT_SPI Actual Boot Bank
1 - SP1
0 - SPI0
Table 5-13 PLD Boot Bank Register
REG PLD Boot Bank - 0xFFDF0050
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H) 91
5.5.11 PLD Write Protect and I2C Debug Register
The MVME2500 PLD provides an 8-bit register which is used to indicate the status of I2C and
SPI write-protect manual switches and is used to control the SPI write-enable. I2C debug ports
are also provided in this register which can be used in controlling the bus’ status.
Table 5-14 PLD Write Protect and I2C Debug Register
REG PLD Write Protect I2C Debug- 0xFFDF0054
Bit76543210
Field RSVD MASTER
_WP_DI
SABLED
FLASH_
WP_N
I2C_DEB
UG_EN
SERIAL_
FLASH_
WP
RSVD I2C_1_
D
I2C_1_C
OPER R R R R/W R/W R R/W R/W
RESET01001011
Field Description
MASTER_WP_DISABLED I2C devices manual switch write-protect status
1 - Write-protect enabled
0 - Write-protect disabled
FLASH_WP_N SPI devices manual switch write-protect status
1 - Write-protect disabled
0 - Write-protect enabled
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H)
92
I2C_DEBUG_EN I2C debug ports (I2C_1_D and I2C_1_C) enable
1 - Drive Enabled
0 - Drive Disabled
SERIAL_FLASH_WP SPI devices write-protect register
1 - Write-protect enabled
0 - Write-protect disabled
I2C_1_D I2C debug port-Data
I2C_DEBUG_EN=0
HiZ - Tri-Stated
I2C_DEBUG_EN-1
1 - Driven High
0 - Driven Low
I2C_1_C I2C debug port-Clock
I2C_DEBUG_EN=0
HiZ - Tri-Stated
I2C_DEBUG_EN-1
1 - Driven High
0 - Driven Low
When SERIAL_FLASH_WP is set to "Low", this port will automatically read as low due to "AND"
connection between the two ports.
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H) 93
5.5.12 PLD Test Register 1
The MVME2500 PLD provides an 8-bit general purpose read/write register which can be used
by the software for PLD testing or general status bit storage.
5.5.13 PLD Test Register 2
The MVME2500 PLD provides an 8-bit general purpose read/write register which can be used
by the software for PLD testing or general status bit storage.
Table 5-15 PLD Test Register 1
REG PLD Test Register 1- 0xFFDF0080
Bit76543210
Field TEST_REG1
OPER R/W
RESET 00
Field Description
TEST_REG1 General purpose 8-bit R/W field
Table 5-16 PLD Test Register 2
REG PLD Test Register 2- 0xFFDF0081
Bit76543210
Field TEST_REG2
OPER R/W
RESET 00
Field Description
TEST_REG2 General purpose 8-bit R/W field
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H)
94
5.5.14 PLD GPIO2 Interrupt Register
The Abort switch, Tick Timer 0, 1 and 2 interrupts are ORed together. The MVME2500 provides
an interrupt register that the system software reads to determine which device the interrupt
originated from. GPIO2 will be driven "low" if any of the interrupts asserts.
Table 5-17 PLD GPIO2 Interrupt Register
REG PLD Write Protect I2C Debug- 0xFFDF0095
Bit 765432 1 0
Field RSVD RSVD RSVD RSVD NMI TICK0_INT TICK1_INT TICK2_INT
OPER R
RESET000000 0 0
Field Description
NMI Abort switch interrupt if pressed less than three seconds.
1 - Interrupt enabled
0 - No Interrupt
TICK0_INT Tick Timer 0 interrupt
1 - Interrupt enabled
0 - No Interrupt
TICK1_INT Tick Timer 1 interrupt
1 - Interrupt enabled
0 - No Interrupt
TICK2_INT Tick Timer 2 interrupt
1 - Interrupt enabled
0 - No Interrupt
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H) 95
5.5.15 PLD Shutdown and Reset Control and Reset Reason Register
The MVME2500 provides an 8-bit register to execute the shutdown and reset commands. The
board's reset reason is also included in this register.
Table 5-18 PLD Shutdown and Reset Control and Reset Reason Register
REG PLD Shutdown and Reset Reason- 0xFFDF00FF
Bit7654 3 210
Field AUTO_SH
DN_MASK
Shutdown Soft_RST Clear_Cause CPU_RESET WD_TIME
OUT
LRSTO Sft_RST
OPER R/W W W W R
RESET0000 X XXX
Field Description
AUTO_SHDN_MASK Automatic Shutdown Mask
1 - Auto Shutdown Mask Enable
0 - Auto Shutdown Mask Disable
Note: Automatic shutdown is generated after 1 second whenever a power good signal de-
asserts.
Shutdown Board Shutdown Register
1 - Shutdown Enable
0 - Shutdown Disable
Note: If a board entered the shutdown state (by writing a '1' in this register), the chassis' power
needs to be cycled to power up the board again.
Soft_RST Board Soft Reset (self clearing)
1 - Execute soft reset
0 - No reset
Clear_Cause Clear Reset Reason (self clearing)
1 - Clear Reason
0 - None
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H)
96
5.5.16 PLD Watchdog Timer Refresh Register
The MVME2500 provides a watchdog timer refresh register.
CPU_RESET CPU_HRESET_REQ_L Reset Reason
1 - Reset is due to CPU_HRESET_REQ_L signal
0 -None
WD_TIMEOUT Watchdog Timeout Reset Reason
1 - Reset is due to watchdog timing out
0 - None
LRSTO TSI LRSTO Reset Reason
1 - Reset is due to LRSTO signal
0 - None
Sft_RST Soft Reset - Reset Reason
1 - Reset is due to Soft_RST register being set, or the front
panel switch being pressed more than three
0 - None
Table 5-19 PLD Watchdog Timer Refresh Register
REG PLD Watch Dog Timer Load - 0xFFC80600
Bit 15 14 13 12 11 10 9 8 76543210
Field RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD Refresh
OPER R
RESET 0000
Field Description
Refresh Counter Refresh. When the pattern 0x00DB is written, the watchdog counter
will be reset to zero.
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H) 97
5.5.17 PLD Watchdog Control Register
The MVME2500 provides a watchdog control register.
5.5.18 PLD Watchdog Timer Count Register
The MVME2500 provides a watchdog timer count register.
Table 5-20 PLD Watchdog Control Register
REG PLD Watch Dog Timer Load - 0xFFC80604
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field Watchdog_EN RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD
OPER R/W R
RESET 0000
Field Description
EN Enable. If cleared, the watchdog timer is disabled. If set, the watchdog timer is
enabled.
Table 5-21 PLD Watchdog Timer Count Register
REG PLD Watchdog Timer Count - 0xffc80606
Bit 15:0
Field Count
OPER R/W
RESET 0xEA60 (60secs)
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H)
98
5.6 External Timer Registers
The MVME2500 provides a set of tick timer registers to access the three external timers
implemented in the timers/registers PLD. These registers are 32-bit and are word writable. The
following sections describe the timer prescaler and control registers.
5.6.1 Prescaler Register
The prescaler adjust value is determined by this formula:
Prescaler Adjust = 256-(CLKIN/CLKOUT)
CLKIN is the input clock source in MHz, and CLKOUT is the desired output clock reference in
MHz.
The prescaler provides the clock required by each of the three times. The tick timers require a
1 MHz clock input. The input clock to the prescaler is 25 MHz. The default value is set for
0x00E7, which gives a 1 MHz reference clock for a 25 MHz input clock source.
Field Description
Count Count. These bits define the watchdog timer count value. When the
watchdog counter is enabled, it will count up from zero (reset value) with a 1
ms resolution until it reaches the COUNT value set by this register. Watchdog
will generate a soft reset signal if it bites.
Setting this register to 0xEA60 or 60,000 counts will provide a watchdog
timeout of 60 seconds.
Table 5-22 Prescaler Register
REG Prescaler Register - 0xFFC80100
Bit 15 14 13 12 11 10 9 8 76543210
Field RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD Prescaler Register (8-bits)
OPER R/W
RESET 0x00e7
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H) 99
5.6.2 Control Registers
Table 5-23 Control Registers
REG
Tick Timer 0 Control Register - 0xFFC80202
Tick Timer 1 Control Register - 0xFFC80302
Tick Timer 2 Control Register - 0xFFC80402
Bit 15 14 13 12 11 10 9 8 76543210
Field RSVD RSVD RSVD RSVD RSVD INTS CINT ENINT OVF RSVD COVF COC ENC
OPER R/W
RESET 0x0000
Field Description
ENC Enable counter. When the bit is set, the counter increments. When the bit is
cleared, the counter does not increment.
COC Clear Counter on Compare. When the bit is set, the counter is reset to 0 when
it compares with the compare register. When the bit is cleared the counter is
not reset.
COVF Clear Overflow Bits. The overflow counter is cleared when a 1 is written to this
bit.
OVF Overflow Bits are the output of the overflow counter. It increments each time
the tick timer sends an interrupt to the local bus interrupter. The overflow
counter can be cleared by writing a 1 to the COVF bit.
ENINT Enable Interrupt. When the bit is set, the interrupt is enabled. When the bit is
cleared, the interrupt is not enabled.
CINT Clear Interrupt.
INTS Interrupt Status.
RSVD Reserved for future implementation.
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H)
100
5.6.3 Compare High and Low Word Registers
The tick timer counter is compared to the Compare Register. When the values are equal, the
tick timer interrupt is asserted and the overflow counter increments. If the clear-on-compare
mode is enable, the counter is also cleared. For periodic interrupts, this equation should be
used to calculate the compare value for a specific period (T):
Compare register value=T (us)
When programming the tick timer for periodic interrupt, the counter should be cleared to zero
by software and then enabled. If the counter does not initially start at zero, the time to the first
interrupt may be longer or shorter than expected. Note that the rollover time for the counter
is 71.6 minutes.
Since the processor is 16-bits and the tick timer is 32-bits, the compare register was split in half.
Accessing the whole register will require two transactions.
Table 5-24 Compare High Word Registers
REG
Tick Timer 0 Compare Value High Word - 0xFFC80204
Tick Timer 1 Compare Value High Word - 0xFFC80304
Tick Timer 2 Compare Value High Word - 0xFFC80404
Bit 1514131211109876543210
Field TickTimer Compare Value High Word (16-bits)
OPER R/W
RESET 0x0000
Table 5-25 Compare Low Word Registers
REG
Tick Timer 0 Compare Value Low Word - 0xFFC80206
Tick Timer 1 Compare Value Low Word - 0xFFC80306
Tick Timer 2 Compare Value Low Word - 0xFFC80406
Bit 1514131211109876543210
Field TickTimer Compare Value Low Word (16-bits)
OPER R/W
RESET 0x0000
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H) 101
5.6.4 Counter High and Low Word Registers
When enabled, the tick timer counter register increments every microsecond. Software may
read or write the counter at any time.
Table 5-26 Counter High Word Registers
REG
Tick Timer 0 Counter Value High Word - 0xFFC80208
Tick Timer 1 Counter Value High Word - 0xFFC80308
Tick Timer 2 Counter Value High Word - 0xFFC80408
Bit 1514131211109876543210
Field TickTimer Counter Value High Word (16-bits)
OPER R/W
RESET 0x0000
Table 5-27 Counter Low Word Registers
REG
Tick Timer 0 Counter Value Low Word - 0xFFC8020A
Tick Timer 1 Counter Value Low Word - 0xFFC8030A
Tick Timer 2 Counter Value Low Word - 0xFFC8040A
Bit 1514131211109876543210
Field TickTimer Counter Value Low Word (16-bits)
OPER R/W
RESET 0x0000
Memory Maps and Registers
MVME2500 Installation and Use (6806800L01H)
102
Chapter 6
MVME2500 Installation and Use (6806800L01H) 103
Boot System
6.1 Overview
The MVME2500 uses Das U-Boot, a boot loader software based on the GNU Public License. It
boots the blade and is the first software to be executed after the system is powered on.
Its main functions are:
-Initialize the hardware
-Pass boot parameters to the Linux kernel
-Start the Linux kernel
-Update Linux kernel and U-Boot images
This section describes U-Boot features and procedures that are specific to the MVME2500. For
general information on U-Boot, see http://www.denx.de/wiki/UBoot/WebHome.
6.2 Accessing U-Boot
1. Connect the board to a computer with a serial interface connector and a terminal emulation
software running on it. The serial connector of the board is found on the face plate.
2. Configure the terminal software to use the access parameters that are specified in U-Boot.
By default, the access parameters are as follows:
-Baud rate: 9600
-PC ANSI
-8 data bits
-No parity
-1 stop bit
3. Boot the MVME2500.
4. When prompted, press the "h" key.
These serial access parameters are the default values. These can be changed from within the
U-Boot. For details, refer to the U-Boot documentation.
Boot System
MVME2500 Installation and Use (6806800L01H)
104
U-Boot aborts the boot sequence and enters into a command line interface mode.
6.3 Boot Options
6.3.1 Booting from a Network
In this mode, U-Boot downloads and boots the Linux kernel from an external TFTP server and
mounts a root file system located on a network server.
1. Make sure that the kernel, dtb, and ramdisk are accessible to the board from the
TFTP server.
2. Configure U-Boot environment variables:
setenv ipaddr <IP address of MVME2500>
setenv serverip <IP address of TFTP server>
setenv gatewayip <gateway IP>
setenv netmask <netmask>
setenv bootargs 'root=/dev/ram rw console=ttyS0,9600n8
ramdisk_size=700000 cache-sram-size=0x10000'
saveenv
3. Transfer the files through the TFTP from the server to the local memory.
tftp 1000000 <kernel_image>
tftp 2000000 <ramdisk>
tftp C00000 <kernel dtb>
4. Boot the Linux from the memory.
bootm 1000000 2000000 c00000
Enter the command setenv bootdelay -1; saveenv to disable the U-Boot auto-boot
feature and let the U-Boot directly enter the command line interface after the next
reboot/power up.
Boot System
MVME2500 Installation and Use (6806800L01H) 105
6.3.2 Booting from an Optional SATA Drive
1. Make sure that the kernel, dtb, and ramdisk are saved in the SATA drive with ext2
partition.
2. Configure U-Boot environment variable:
setenv File_uImage <kernel_image>
setenv File_dtp <kernel dtb>
setenv File_ramdisk <ramdisk>
saveenv
3. Copy the files from the SATA drive to the memory:
# option: scsi - interface, 0:1 - device 0 partition 1
ext2load scsi 0:1 1000000 $File_uImage
ext2load scsi 0:1 2000000 $File_ramdisk
ext2load scsi 0:1 c00000 $File_dtp
4. Boot the Linux in memory.
bootm 1000000 2000000 c00000
6.3.3 Booting from a USB Drive
1. Make sure that the kernel, dtb, and ramdisk are saved in the USB drive with FAT
partition.
2. Configure the U-Boot environment variable:
setenv File_uImage <kernel_image>
setenv File_dtp <kernel dtb>
setenv File_ramdisk <ramdisk>
saveenv
3. Initialize USB drive:
usb start
4. Load the files from the USB drive to the memory:
# option: usb - interface, 0:1 - device 0 partition 1
fatload usb 0:1 1000000 $File_uImage
fatload usb 0:1 2000000 $File_ramdisk
fatload usb 0:1 c00000 $File_dtb
5. Boot the Linux in memory:
bootm 1000000 2000000 c00000
Boot System
MVME2500 Installation and Use (6806800L01H)
106
6.3.4 Booting from an SD Card
1. Make sure that the kernel, dtb, and ramdisk are saved in the SD card with FAT
partition.
2. Configure the U-Boot environment variable:
setenv File_uImage <kernel_image>
setenv File_dtp <kernel dtb>
setenv File_ramdisk <ramdisk>
saveenv
3. Initialize SD card:
mmcinfo
4. Load the files from the SD card to the memory:
# option: mmc - interface, 0:1 - device 0 partition 1
fatload mmc 0:1 1000000 $File_uImage
fatload mmc 0:1 2000000 $File_ramdisk
fatload mmc 0:1 c00000 $File_dtp
5. Boot the Linux in memory:
bootm 1000000 2000000 c00000
6.3.5 Booting VxWorks Through the Network
In this mode, the U-Boot downloads and boots VxWorks from an external TFTP server.
1. Make sure that the VxWorks image is accessible by the board from the TFTP server.
2. Configure U-Boot environment variables:
setenv ipaddr <IP address of MVME2500>
setenv serverip <IP address of TFTP server>
setenv gatewayip <gateway IP>
setenv netmask <netmask>
setenv vxboot 'tftpboot $vxbootfile && setenv bootargs
$vxbootargs && bootvx'
setenv vxbootfile <VxWorks_image>
setenv vxbootargs 'motetsec(0,0)<IP address of TFTP
server>:VxWorks h=<IP address of TFTP server> e=<IP address of
MVME2500>:ffffff00 b=<unused IP> u=vxworks pw=vxworks f=0x80'
saveenv
Boot System
MVME2500 Installation and Use (6806800L01H) 107
3. TFTP the files from the server to local memory, then boot:
run vxboot
6.4 Using the Persistent Memory Feature
Persistent memory means that the RAM's memory is not deleted during a reset. Power cycling,
or by temporarily removing the power and then powering up the blade again, will delete the
memory content. Persistent memory feature is enabled by default.
This feature can be useful in many situations, including:
-Analyzing kernel logs after a Linux kernel panic
-Defining a particular memory region for the persistent storage of application specific data
Analyzing Kernel Log Files after a Kernel Panic
When a board that is running the Linux OS indicates a kernel panic, issue a reset (through the
face plate button, for example) to analyze the cause, then subsequently analyze kernel log files.
The persistent memory feature keeps the log files available in the memory.
To analyze the kernel log files:
1. Issue a reset.
2. Connect to U-Boot. For more information, see Accessing U-Boot on page 103.
3. Enter the following command to obtain memory addresses of the kernel log
files:.locate_kernel_log (1)
The memory addresses of any found kernel log files will be displayed.
4. Enter the following command to display the kernel logfile at any of these memory
addresses: .printf (<memory address>)
The persistent memory is useful in application-specific data storage. The standard U-Boot
variable pram can be used to reserve a memory region at the end of the physical memory to
prevent it from being overwritten. U-Boot reports less memory to the Linux kernel through the
mem parameter, indicating that the operating system should not use it either.
For more information, see the U-Boot documentation.
Boot System
MVME2500 Installation and Use (6806800L01H)
108
6.5 MVME2500 Specific U-Boot Commands
Table 6-1 MVME2500 Specific U-Boot Commands
Command Description
base Print or set address offset
bdinfo Print board info structure
boot Boot default, i.e., run 'bootcmd'
bootd Boot default, i.e., run 'bootcmd'
bootelf Boot from an ELF image in memory
bootm Boot application image from memory
bootp Boot image through network using BOOTP/TFTP protocol
bootvx Boot VxWorks from an ELF image
cmp Memory compare
coninfo Print console devices and information
cp Memory copy
cpu Multiprocessor CPU boot manipulation and release
crc32 Checksum calculation
date Get/set/reset date & time
diags Runs POST diags
echo Echo args to console
exit Exit script
ext2load Load binary file from a Ext2 file system
ext2ls List files in a directory (default /)
fatinfo Print information about file system
fatload Load binary file from a DOS file system
fatls List files in a directory (default /)
fdt Flattened device tree utility commands
go Start application at address 'addr'
Boot System
MVME2500 Installation and Use (6806800L01H) 109
help Print online help
i2c I2C sub-system
iminfo Print header information for application image
imxtract Extract a part of a multi-image
interrupts Enable or disable interrupts
itest Return true/false on integer compare
loadb Load binary file over serial line (kermit mode)
loads Load S-Record file over serial line
loady Load binary file over serial line (ymodem mode)
loop Infinite loop on address range
md Memory display
memmap Displays memory map
mii MII utility commands
mm Memory modify (auto-incrementing address)
mmc MMC sub system
mmcinfo Display MMC info
moninit Reset nvram, serial#, and write monitor to SPI flash
mtest Simple RAM read/write test
mw Memory write (fill)
nfs Boot image through network using NFS protocol
nm Memory modify (constant address)
pci List and access PCI Configuration Space
pci_info Show information about devices on PCI bus
ping Send ICMP ECHO_REQUEST to network host
printenv Print environment variables
rarpboot Boot image through network using RARP/TFTP protocol
reset Perform RESET of the CPU
Table 6-1 MVME2500 Specific U-Boot Commands (continued)
Command Description
Boot System
MVME2500 Installation and Use (6806800L01H)
110
6.6 Updating U-Boot
To update the U-Boot, place the image in the RAM (address 0x1000000 in this example) before
copying it to the SPI flash.
The following procedure will replace the image in SPI bank 0:
1. Disable SPI write-protect in FPGA register PLD Write Protect and I2C Debug Register.
2. Ensure FLASH_WP_N in SMT Configuration Switch (S2) is in the "OFF" position.
3. Select SPI flash # 0:
run Run commands in an environment variable
saveenv Save environment variables to persistent storage
script Run a ';' delimited, ';;' terminated list of commands
scsi SCSI sub-system
scsiboot Boot from SCSI device
setenv Set environment variables
setexpr Set environment variable as the result of eval expression
sf SPI flash sub-system
showvar Print local hushshell variables
sleep Delay execution for some time
soft_reset Soft reset the board
source Run script from memory
test Minimal test like /bin/sh
tftpboot Boot image through network using TFTP protocol
tsi148 Initialize and configure Tundra Tsi148
usb USB sub-system
usbboot Boot from USB device
version Print monitor version
Table 6-1 MVME2500 Specific U-Boot Commands (continued)
Command Description
Boot System
MVME2500 Installation and Use (6806800L01H) 111
sf probe 0
4. Erase 0x90000 bytes starting at SPI address 0:
sf erase 0 0x90000
5. Write 0x90000 bytes from RAM address 0x1000000 starting at SPI address 0:
sf write 0x1000000 0 0x90000
To replace the image in SPI bank 1, replace step 2 with Select SPI flash # 1:
sf probe 1
Boot System
MVME2500 Installation and Use (6806800L01H)
112
Chapter 7
MVME2500 Installation and Use (6806800L01H) 113
Programming Model
7.1 Overview
This chapter includes additional programming information for the MVME2500.
7.2 Reset Configuration
The MVME2500 supports the power-on reset (POR) pin sampling method for processor reset
configuration. Each option and the corresponding default setting are described in the
following table.
Table 7-1 POR Configuration Settings
CONFIG CONFIG PINS CONFIG SELECTION REMARKS
1 CCB Config LA[29:31] 000 41: CCB CLOCK-400 MHz
2 DDR PLL Config TSEC_1588_CLK_O
UT
TSEC_1588_PULSE_
OUT1
TSEC_1588_PULSE_
OUT2
001 8:1 DDR PLL-800 MHz DDR rate is twice the
value of the DDR
controller frequency,
which is then divided by
two through the
software.
3 Core 0 PLL LBCTL, LALE
LGPL2/LOE/LFRE
110 3:1 CORE CLOCK PLL
(1200 MHz)
For 1200 MHz board
configuration
100 2:1 CORE CLOCK PLL (800
MHz)
For 800 MHz board
configuration
4 Core 1 PLL LWE0, UART_SOUT1 110 3:1 CORE CLOCK PLL
(1200 MHz)
For 1200 MHz board
configuration
100 2:1 CORE CLOCK PLL (800
MHz)
For 800 MHz board
configuration
5CPU Boot
Config
LA27, LA16 10 e500 core 0 is allowed to
boot without waiting for
configuration by an
external master, while
e500 core 1 is prevented
from booting until
configured by an external
master or the other core.
Programming Model
MVME2500 Installation and Use (6806800L01H)
114
6 Boot Sequence LGPL3/LFWP, LGPL5 11 CFG_BOOT_SEQ[1:0] =
BOOT SEQUENCE
DISABLED
7 Memory Debug
Config
DMA2_DACK0 1 Debug information from
the DDR SDRAM
controller is driven on the
MSPCID and MDVAL signs
(default)
8 DDR Debug
Config
DMA2_DDONE0 1 Debug information is not
driven on ECC pins. ECC
function in their normal
mode (default).
9 ELBCECC Enable
Config
MSRCID0 0 Default operation: eLBC
ECC checking is disabled
10 Platform Speed LA23 1 CFG_PLAT_SPEED:1=CCB
CLOCK > = 333 MHz
11 CORE 0 Speed LA24 1 CFG_CORE0_SPEED:1=C
ORE FREQ>= 1000 MHz
For 1200 MHz board
configuration
12 0 CFG_CORE0_SPEED:0=C
ORE FREQ<=1000 MHz
For 800 MHz board
configuration
13 CORE 1 Speed LA26 1 CFG_CORE1_SPEED:1=C
ORE FREQ>=1000 MHz
For 1200 MHz board
configuration
14 0 CFG_CORE1_SPEED:0=C
ORE FREQ<=1000 MHz
For 800 MHz board
configuration
15 DDR Controller
Speed
LA26 1 CFG_DDR_SPEED:1=DDR
FREQ>= 500 MHz
16 Engineering use LA[22:20]
UART_SOUT[0],
TRIG_OUT,
MSRCID[1],
MSRCID[4],
DMA1_DDONE_B[0]
111111
11
Default (for future use)
17 SerDes Ref
Clock Config
TSEC_1588_ALARM
_OUT1
1 SerDes expects a 100
MHz reference clock
frequency (default).
Table 7-1 POR Configuration Settings (continued)
CONFIG CONFIG PINS CONFIG SELECTION REMARKS
Programming Model
MVME2500 Installation and Use (6806800L01H) 115
18 ETSEC2 SGMII
Mode
LGPL1 1 eTSEC2 Ethernet
interface operates in
standard parallel
interface mode and uses
the TSEC_2’pins
(default).
19 ETSEC3 SGMMI
Mode
TSEC_1588_ALARM
_OUT2
1 eTSEC3 Ethernet
interface operates in
standard parallel
interface mode and uses
the TSEC_3’pins
(default).
20 ETSEC1 and
ETSEC2 Width
EC_MDC 0 eTSEC1 and eTSEC2
Ethernet interfaces
operate in reduced pin
mode (either RTBI, RGMI,
RMII or 8-bit FIFO mode).
21 ETSEC1
Protocol
TSEC1_TXD0,
TSEC1_TXD7
10 The eTSEC2 controller
operates using the GMII
protocol (or RGMII, if
configured in reduced
mode) if its not
configured to operate in
SGMII mode.
22 ETSEC2
Protocol
TSEC2_TXD0,
TSEC2_TXD7
10 The eTSEC2 controller
operates using the GMII
protocol (or RGMII, if
configured in reduced
mode) if its not
configured to operate in
SGMII mode.
23 ETSEC3
Protocol
UART_RTS0,
UART_RTS1
10 The eTSEC3 controller
operates using the RGMII
protocol if not configured
to operate in SGMII
mode.
Table 7-1 POR Configuration Settings (continued)
CONFIG CONFIG PINS CONFIG SELECTION REMARKS
Programming Model
MVME2500 Installation and Use (6806800L01H)
116
24 BOOT ROM
Location
TSEC1_TXD[6:4],
TSEC1_TX_ER
011X On-chip boot ROM-SPI
configuration (x=0),
SDHC (x=1)
25 Host/Agent
Config
LWE1/LBS1,
LA[18:19]
111 The processor acts as the
host/root complex for all
PCI-E/Serial Rapid IO
interfaces (default).
26 I/O Port Select TSEC1_TXD[3:1],
TSEC2_TX_ER
0010 PCI-E 1 (x1) (2.5 Gbps) -
SerDes lane 0
PCI-E 2 (x1) (2.5 Gbps) -
SerDes lane 2
PCI-E 3 (x2) (2.5 Gbps) -
SerDes lane 2-3
27 DDR SDRAM
TYPE
TSEC2_TXD1 1 DDR31.5 V. CKE low at
reset (default)
28 SerDes PLL Time
Out Enable
TRIG_OUT 1 Disable PLL lock time-out
counter. The power-on-
reset sequence waits
indefinitely for the SerDes
PLL to lock (default).
29 System Speed LA[28] 1 SYSCLOCK is above 66
MHz
30 SDHC Card
Detect Polarity
TSEC2_TXD_5 1 Not Inverted
31 RAPID System
Size
Default RapidIO is not used
Table 7-1 POR Configuration Settings (continued)
CONFIG CONFIG PINS CONFIG SELECTION REMARKS
Programming Model
MVME2500 Installation and Use (6806800L01H) 117
7.3 Interrupt Controller
The MVME2500 uses the MPC8548E integrated programmable interrupt controller (PIC) to
manage locally generated interrupts. Currently defined external interrupting devices and
interrupt assignments, along with corresponding edge/levels and polarities, are shown in the
following table.
Table 7-2 MVME2500 Interrupt List
Interrupt Line
Interrupt Usage
(Schematic) Interface to CPU Description
IRQ0 None Reserved for VME interrupt
IRQ1 QUART_IRQ1 LBC RTB Quart Interrupt
IRQ2 QUART_IRQ2 LBC RTB Quart Interrupt
IRQ3 QUART_IRQ3 LBC RTB Quart Interrupt
IRQ4 Temperature
Interrupt
I2C Two onboard Thermal Sensors:
one is for CPU temp and the
other is for board temp
IRQ5 Ethernet 1 Management I2C Ethernet interrupt is handled by
PHY/ Connected for flexibility
IRQ6 Ethernet 3 Management I2C Ethernet interrupt is handled by
PHY/ Connected for flexibility
IRQ7/ GPIO0 Ethernet 2 Management I2C Ethernet interrupt is handled by
PHY/ Connected for flexibility
IRQ8/ GPIO1 RTC (Real Time
Clock)
12C
IRQ9/ GPIO2 FPGA Interrupt LBC NMI and 3 Tick Timer Interrupts
IRQ10// GPIO3 FPGA Interrupt LBC Power Interruption
IRQ11// GPIO4 QUART_IRQ0 LBC RTB Quart Interrupt
Programming Model
MVME2500 Installation and Use (6806800L01H)
118
7.4 I2C Bus Device Addressing
The following table contains the I2C devices used for the MVME2500 and its assigned device
address.
1. This is a dual address serial EEPROM.
2. The RTM Bus address can be manually changed through the S1 Switch on RTM. The default
switch configuration will set the address to 0x55. Make sure that the address is unique to
the RTM Bus address when setting the switch.
3. The address of the XMC EEPROM is configured through Geographic Address resistor on
board.
7.5 Ethernet PHY Address
The assigned Ethernet PHY on the MII management bus is shown in the following table.
Table 7-3 I2C Bus Device Addressing
I2C Bus Address Device Function Size Notes
0x50 SPD 256 x 8
0x4C ADT 7461 Temperature Sensor N/A
0x68 DS 1375 real-time clock N/A
0x54 VPD 8192 x 8 1
0x52 User configuration 65536 x 8 1
0x53 User configuration 65536 x 8 1
0x55 RTM EEPROM 8192 X 8 1, 2
0x56 XMC EEPROM N/A 3
Table 7-4 PHY Types and MII Management Bus Address
Ethernet Port Function / Location PHY Types
PHY MIIM
Address
TSEC1 Gigabit Ethernet port routed to front panel BCM54616 1
Programming Model
MVME2500 Installation and Use (6806800L01H) 119
7.6 Other Software Considerations
This section provides programming information in relation to various board components.
7.6.1 MRAM
The MVME2500 provides 512 K bytes of fast, non-volatile storage in the form of
Magnetoresistive Random Access Memory (MRAM). The MRAM is directly accessible by
software using processor load and store instructions similar to the DRAM. The difference is that
the MRAM retains its contents even if the board is power cycled. The MRAM is accessed through
the LBC.
7.6.2 Real Time Clock
The MVME2500 provides a battery backed-up DS1375 Real Time Clock (RTC) chip. The RTC
chip provides time keeping and alarm interrupts. It is an I2C device and is accessed through the
I2C bus address at 0x68.
7.6.3 Quad UART
The MVME2500 console RS232 port is driven by the UART built into the P20x0 QorIQ chip.
Additionally, the MVME2500 has a Quad UART chip which provides four additional 16550
compatible UART. These additional UART are internally accessed through the LBC bus. The
Quad UART chip clock input (which is internally divided to generate the baud rate) is 1.8432
MHz. The four UART physically connect to RS232 DB9 serial ports through the RTM.
TSEC2 Gigabit Ethernet port routed to front or back panel,
set by GBE_MUX_SEL in S2
BCM54616 7
TSEC3 Gigabit Ethernet port routed to back panel BCM54616 3
Table 7-4 PHY Types and MII Management Bus Address
Ethernet Port Function / Location PHY Types
PHY MIIM
Address
Programming Model
MVME2500 Installation and Use (6806800L01H)
120
7.6.4 LBC Timing Parameters
The following table defines the timing parameters for the devices on the local bus.
Table 7-5 LBC Timing Parameters
0123456
MRAM UART 0 UART 1 UART 2 UART 3 FPGA Timers
BCTLD0000000
CSNT1111111
ACS10101010101010
XACS0000000
SCY 0011 0011 0011 0011 0011 0011 0011
SETA0000000
TRLX 0000000
EHTR 0000000
EAD0000000
Field Description
BCTLD Buffer control disable.
0 - LBCTL is asserted upon access to the current memory bank.
CSNT Chip Select negation time.
1 - LCSn and LWE are negated one quarter of the bus clock cycle earlier
ACS Address to chip-select setup.
10 - LCSn is outputted one quarter bus clock cycle after the address lines.
XACS Extra Address to chip-select setup
0 - Address to chip-select setup is determined by ORx[ACS]
SCY Cycle length in bus clocks
0011 - Three bus clock cycle wait state
Programming Model
MVME2500 Installation and Use (6806800L01H) 121
7.7 Clock Distribution
The clock function generates and distributes all of the clocks required for system operation.
The ICS9FG108 is used to generate all the required PCI-E clocks. The 25 MHz clocks for the
Ethernet PHY and SATA bridge are supplied by ICS83905. Most of the QorIQ P2020 clocks are
generated by ICS840S07I chip. Additional clocks required by individual devices are generated
near the devices using individual oscillators. The following table lists the clocks required on the
MVME2500 along with the frequency and source.
SETA External address termination
0 - Access is terminated internally by the memory controller unless the
external device asserts LGTA earlier to terminate the access.
TRLX Timing Relaxed
0 - Normal timing is generated by the GPCM.
EHTR Extended hold time on read accesses.
0 - The memory controller generates normal timing. No additional cycles
are inserted
EAD External address latch delay
0 - No additional bus clock cycles (LALE asserted for one bus clock cycle
only)
Table 7-6 Clock Distribution
Device Clock Signal Frequency Clock Tree Source VIO
QorIQ P20x0 CPU_SYSCLK 100MHz ICS840S07I +3.3V
QorIQ P20x0 CPU_DDR_CLK 100MHz ICS840S07I +3.3V
QorIQ P20x0 CLK_PCI_BR3 133Mhz ICS840S07I +3.3V
QorIQ P20x0 EC_GTX_CLK125 125Mhz ICS840S07I +3.3V
ICS840S07I CLK_25MHZ_ICS840S07 25Mhz ICS83905AGILF +3.3V
88SE6121 CLK_88SE6121_25MHZ 25Mhz ICS83905AGILF +3.3V
ICS9FG108 CLK_25MHZ_ICS9FG108 25Mhz ICS83905AGILF +3.3V
BCM54616S BP_PHY_25MHZ_CLK 25Mhz ICS83905AGILF +3.3V
BCM54616S FP_PHY_25MHZ_CLK 25Mhz ICS83905AGILF +3.3V
Programming Model
MVME2500 Installation and Use (6806800L01H)
122
7.7.1 System Clock
The system and DDR clock is driven by ICS840S07I. The following table defines the clock
frequency.
BCM54616S SW_25MHZ_CLK 25Mhz ICS83905AGILF +3.3V
XMC CLK_XMC1 100MHz ICS9FG108 DIFF
QorIQ P20x0 SD_REF_CLK 100MHz ICS9FG109 DIFF
TSI384 CLK_PCIEC1 100MHz ICS9FG110 DIFF
TSI384 CLK_PCIEC3 100MHz ICS9FG111 DIFF
88SE6121 CLK_88SE6121_PCIE_100MH
Z
100MHz ICS9FG112 DIFF
FPGA CLK_CPLD 1.8432MHz Oscillator +3.3V
USB CLK_USB_1_24MHZ 24MHz Oscillator +3.3V
QorIQ P20x0 CPU_RTC 1MHz FPGA +3.3V
PMC CLK_PMC1 33/66/100/133M
hz
TSI384 +3.3V
TSI148 CLK_PCI_BR3 133Mhz ICS840S07I +3.3V
RTC CLK_32K 32.768KHz DS32KHz +3.3V
FPGA CPU_LCK0 25MHz QorIQ P20x0 +3.3V
QUART CLK_QUART 1.8432MHz FPGA +3.3V
ICS83905 CLK_25MHZ_ICS9FG108 25Mhz ICS83905AGILF +3.3V
Table 7-6 Clock Distribution (continued)
Device Clock Signal Frequency Clock Tree Source VIO
Table 7-7 System Clock
SYSCLK CORE CCB Clock (Platform) DDR3 LBC
100MHz 800/1200 MHz 400 MHz 400MHz 25MHz
Programming Model
MVME2500 Installation and Use (6806800L01H) 123
7.7.2 Real Time Clock Input
The RTC clock input is driven by a 1 MHz clock generated by the FPGA. This provides a fixed
clock reference for the QorIQ P20x0 PIC timers which the software can use as a known time
reference.
7.7.3 Local Bus Controller Clock Divisor
The local bus controller (LBC) clock output is connected to the FPGA for LBC bus transaction. It
is also the source of 1 MHz (CPU_RTC) and FPGA tick timers.
Programming Model
MVME2500 Installation and Use (6806800L01H)
124
Appendix A
MVME2500 Installation and Use (6806800L01H) 125
AReplacing the Battery
A.1 Replacing the Battery
The figure below shows the location of the board battery.
Figure A-1 Battery Location
Replacing the Battery
MVME2500 Installation and Use (6806800L01H)
126
The battery provides seven years of data retention, summing up all periods of actual data use.
Emerson therefore assumes that there is usually no need to replace the battery except, for
example, in case of long-term spare part handling.
Board/System Damage
-Incorrect replacement of lithium batteries can result in a hazardous explosion.
-When replacing the on-board lithium battery, make sure that the new and the old
battery are exactly the same battery models.
-If the respective battery model is not available, contact your local Emerson sales
representative for the availability of alternative, officially approved battery models.
Data Loss
-Replacing the battery can result in loss of time settings. Backup power prevents the loss
of data during replacement.
-Quickly replacing the battery may save time settings.
Data Loss
-If the battery has low or insufficient power the RTC is initialized.
-Replace the battery before seven years of actual battery use have elapsed.
PCB and Battery Holder Damage
-Removing the battery with a screw driver may damage the PCB or the battery holder. To
prevent damage, do not use a screw driver to remove the battery from its holder.
Replacing the Battery
MVME2500 Installation and Use (6806800L01H) 127
Replacement Procedure
To replace the battery, proceed as follows:
1. Remove the old battery.
2. Install the new battery with the plus sign (+) facing up.
3. Dispose of the old battery according to your country’s legislation and in an environmentally
safe way.
Replacing the Battery
MVME2500 Installation and Use (6806800L01H)
128
Appendix B
MVME2500 Installation and Use (6806800L01H) 129
BRelated Documentation
B.1 Emerson Network Power - Embedded
Computing Documents
The publications listed below are referenced in this manual. You can obtain electronic copies of
Emerson Network Power - Embedded Computing publications by contacting your local
Emerson sales office. For released products, you can also visit our Web site for the latest copies
of our product documentation.
1. Go to www.Emerson.com/EmbeddedComputing.The Emerson Embedded Computing
website opens.
2. Click on Technical Documentation link.
3. Click on Search Our Technical Documentation Archive link.
4. In the Search box, type the publication number of the manual you are looking for.
Table B-1 Emerson Network Power - Embedded Computing Publications
Document Title Publication Number
MVME2500 Release Notes 6806800L02B
MVME2500 Quick Start Guide 6806800L03A
MVME2500 Safety Notes 6806800L13A
MVME7216 RTM Installation and Use 6806800M42C
MVME7216 RTM Quick Start Guide 6806800M53A
MVME7216 RTM Safety Notes 6806800M54A
Related Documentation
MVME2500 Installation and Use (6806800L01H)
130
B.2 Manufacturers’ Documents
For additional information, refer to the following table for manufacturers’ data sheets or user
manuals. As an additional help, a source for the listed document is provided. Please note that
while these sources have been verified, the information is subject to change without notice.
B.3 Related Specifications
For additional information, refer to the following table for related specifications. As an
additional help, a source for the listed document is provided. Please note that, while these
sources have been verified, the information is subject to change without notice.
Table B-2 Manufacturers’ Publications
Company Document
Freescale Freescale Semiconductor, QorIQ™ P2020 Integrated Processor Reference
Manual, Rev. 0
Tund ra
Semiconductor
Corporation
Tsi148™ PCI/X-to-VME Bus Bridge User Manual, March 2009
Table B-3 Related Specifications
Organization Document
American National
Standards Institute
(ANSI)
VITA Standards
Organization
ANSI/VITA 1.0-1994 (R2002), VME64 Standard
ANSI/VITA 1.1-1997 (R2003), VME64x Extensions
ANSI/VITA 1.5-2003, VME 2eSST
ANSI/VITA 35-2000, Pin Assignments for PMC P4 Connector
ANSI/VITA 39-2003, PCI-X for PMC and Processor PMC
VITA Standards
Organization
XMC - High Speed, Switched Interconnect Protocols on PMC VITA 42.0 -
2005
XMC General Purpose I/O Standard VITA 42.10
XMC PCI Express Protocol Layer Standard VITA 42.3 - 2006
Related Documentation
MVME2500 Installation and Use (6806800L01H) 131
IEEE IEEE 802.3 LAN/MAN CSMA/CD Access Method IEEE 802.3-2005
IEEE Standard for a Common Mezzanine Card (CMC) Family IEEE Std
1386-2001
IEEE Standard Physical and Environmental Layers for PCI Mezzanine Cards
(PMC) IEEE Std 1386.1-2001
IEEE Standard Test Access Port and Boundary-Scan Architecture IEEE Std
1149.1-2001
Low Pin Count Interface Specification (LPC) Revision 1.1
Peripheral Component
Interconnect Special
Interest Group
(PCI-SIG)
PCI Express Base Specification Revision 2.0
PCI Local Bus Specification PCI Rev 3.0
PCI-X Electrical and Mechanical Addendum to the PCI Local Bus
Specification (PCI-X EM) Revision 2.0a
PCI-X Protocol Addendum to the PCI Local Bus Specification (PCI-X PT)
Revision 2.0a
Serial ATA International
Organization
(SATA-IO)
Serial ATA (SATA) Specification Revision 2.6
Serial ATA II: Extensions to Serial ATA 1.0 Revision 1.0
Trusted Computing
Group (TCG)
TPM Specification 1.2, Level 2 Revision 103 Version 1.2
USB Implementers
Forum (USB-IF)
Universal Serial Bus Specification (USB) Revision 2.0
Table B-3 Related Specifications
Organization Document
Related Documentation
MVME2500 Installation and Use (6806800L01H)
132
MVME2500 Installation and Use (6806800L01H) 133
Safety Notes
This section provides warnings that precede potentially dangerous procedures throughout
this manual. Instructions contained in the warnings must be followed during all phases of
operation, service, and repair of this equipment. You should also employ all other safety
precautions necessary for the operation of the equipment in your operating environment.
Failure to comply with these precautions or with specific warnings elsewhere in this manual
could result in personal injury or damage to the equipment.
Emerson intends to provide all necessary information to install and handle the product in this
manual. Because of the complexity of this product and its various uses, we do not guarantee
that the given information is complete. If you need additional information, ask your Emerson
representative.
This product is a Safety Extra Low Voltage (SELV) device designed to meet the EN60950-1
requirements for Information Technology Equipment. The use of the product in any other
application may require safety evaluation specific to that application.
Only personnel trained by Emerson or persons qualified in electronics or electrical engineering
are authorized to install, remove or maintain the product.
The information given in this manual is meant to complete the knowledge of a specialist and
must not be used as replacement for qualified personnel.
Keep away from live circuits inside the equipment. Operating personnel must not remove
equipment covers. Only Factory Authorized Service Personnel or other qualified service
personnel may remove equipment covers for internal subassembly or component replacement
or any internal adjustment.
Do not install substitute parts or perform any unauthorized modification of the equipment or
the warranty may be voided. Contact your local Emerson representative for service and repair
to make sure that all safety features are maintained.
EMC (Results pending testing)
This equipment has been tested and found to comply with the limits for a Class A digital device,
pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable
protection against harmful interference when the equipment is operated in a commercial
environment. This equipment generates, uses, and can radiate radio frequency energy and, if
not installed and used in accordance with the instruction manual, may cause harmful
interference to radio communications.
MVME2500 Installation and Use (6806800L01H)
Safety Notes
134
Operation of this equipment in a residential area is likely to cause harmful interference in which
case the user will be required to correct the interference at his own expense. Changes or
modifications not expressly approved by Emerson Network Power could void the user's
authority to operate the equipment. Board products are tested in a representative system to
show compliance with the above mentioned requirements. A proper installation in a
compliant system will maintain the required performance. Use only shielded cables when
connecting peripherals to assure that appropriate radio frequency emissions compliance is
maintained.
Operation
Product Damage
High humidity and condensation on the board surface causes short circuits.
Do not operate the board outside the specified environmental limits.
Make sure the board is completely dry and there is no moisture on any surface before applying
power.
Damage of Circuits
Electrostatic discharge and incorrect installation and removal can damage circuits or shorten
its life.
Before touching the board or electronic components, make sure that you are working in an
ESD-safe environment.
Board Malfunction
Switches marked as “reserved” might carry production-related functions and can cause the
board to malfunction if their setting is changed.
Do not change settings of switches marked as “reserved”. The setting of switches which are
not marked as “reserved” has to be checked and changed before board installation.
Installation
Data Loss
Powering down or removing a board before the operating system or other software running
on the board has been properly shut down may cause corruption of data or file systems.
Safety Notes
MVME2500 Installation and Use (6806800L01H) 135
Make sure all software is completely shut down before removing power from the board or
removing the board from the chassis.
Product Damage
Only use injector handles for board insertion to avoid damage to the front panel and/or PCB.
Deformation of the front panel can cause an electrical short or other board malfunction.
Product Damage
Inserting or removing modules with power applied may result in damage to module
components.
Before installing or removing additional devices or modules, read the documentation that
came with the product.
Cabling and Connectors
Product Damage
RJ-45 connectors on modules are either twisted-pair Ethernet (TPE) or E1/T1/J1 network
interfaces. Connecting an E1/T1/J1 line to an Ethernet connector may damage your system.
-Make sure that TPE connectors near your working area are clearly marked as network
connectors.
-Verify that the length of an electric cable connected to a TPE bushing does not exceed 100
meters.
-Make sure the TPE bushing of the system is connected only to safety extra low voltage
circuits (SELV circuits).
If in doubt, ask your system administrator.
MVME2500 Installation and Use (6806800L01H)
Safety Notes
136
Battery
Board/System Damage
Incorrect exchange of lithium batteries can result in a hazardous explosion.
When exchanging the on-board lithium battery, make sure that the new and the old
battery are exactly the same battery models.
If the respective battery model is not available, contact your local Emerson sales
representative for the availability of alternative, officially approved battery models.
Data Loss
Exchanging the battery can result in loss of time settings. Backup power prevents the loss of
data during exchange.
Quickly replacing the battery may save time settings.
Data Loss
If the battery has low or insufficient power the RTC is initialized.
Exchange the battery before seven years of actual battery use have elapsed.
PCB and Battery Holder Damage
Removing the battery with a screw driver may damage the PCB or the battery holder. To
prevent damage, do not use a screw driver to remove the battery from its holder.
MVME2500 Installation and Use (6806800L01H) 137
Sicherheitshinweise
Dieses Kapitel enthält Hinweise, die potentiell gefährlichen Prozeduren innerhalb dieses
Handbuchs vorrangestellt sind. Beachten Sie unbedingt in allen Phasen des Betriebs, der
Wartung und der Reparatur des Systems die Anweisungen, die diesen Hinweisen enthalten
sind. Sie sollten außerdem alle anderen Vorsichtsmaßnahmen treffen, die für den Betrieb des
Produktes innerhalb Ihrer Betriebsumgebung notwendig sind. Wenn Sie diese
Vorsichtsmaßnahmen oder Sicherheitshinweise, die an anderer Stelle diese Handbuchs
enthalten sind, nicht beachten, kann das Verletzungen oder Schäden am Produkt zur Folge
haben.
Emerson ist darauf bedacht, alle notwendigen Informationen zum Einbau und zum Umgang
mit dem Produkt in diesem Handbuch bereit zu stellen. Da es sich jedoch um ein komplexes
Produkt mit vielfältigen Einsatzmöglichkeiten handelt, können wir die Vollständigkeit der im
Handbuch enthaltenen Informationen nicht garantieren. Falls Sie weitere Informationen
benötigen sollten, wenden Sie sich bitte an die für Sie zuständige Geschäftsstelle von Emerson.
Das Produkt wurde entwickelt, um die Sicherheitsanforderungen für SELV Geräte nach der
Norm EN 60950-1 für informationstechnische Einrichtungen zu erfüllen. Die Verwendung des
Produkts in einer anderen Anwendung erfordert eine Sicherheitsüberprüfung für diese
spezifische Anwendung.
Einbau, Wartung und Betrieb dürfen nur von durch Emerson ausgebildetem oder im Bereich
Elektronik oder Elektrotechnik qualifiziertem Personal durchgeführt werden. Die in diesem
Handbuch enthaltenen Informationen dienen ausschließlich dazu, das Wissen von
Fachpersonal zu ergänzen, können dieses jedoch nicht ersetzen.
Halten Sie sich von stromführenden Leitungen innerhalb des Produktes fern. Entfernen Sie auf
keinen Fall Abdeckungen am Produkt. Nur werksseitig zugelassenes Wartungspersonal oder
anderweitig qualifiziertes Wartungspersonal darf Abdeckungen entfernen, um Komponenten
zu ersetzen oder andere Anpassungen vorzunehmen.
Installieren Sie keine Ersatzteile oder führen Sie keine unerlaubten Veränderungen am Produkt
durch, sonst verfällt die Garantie. Wenden Sie sich für Wartung oder Reparatur bitte an die für
Sie zuständige Geschäftsstelle von Emerson. So stellen Sie sicher, dass alle
sicherheitsrelevanten Aspekte beachtet werden.
MVME2500 Installation and Use (6806800L01H)
Sicherheitshinweise
138
EMV
Das Produkt wurde in einem Emerson Standardsystem getestet. Es erfüllt die für digitale
Geräte der Klasse A gültigen Grenzwerte in einem solchen System gemäß den FCC-Richtlinien
Abschnitt 15 bzw. EN 55022 Klasse A. Diese Grenzwerte sollen einen angemessenen Schutz
vor Störstrahlung beim Betrieb des Produktes in Gewerbe- sowie Industriegebieten
gewährleisten.
Das Produkt arbeitet im Hochfrequenzbereich und erzeugt Störstrahlung. Bei
unsachgemäßem Einbau und anderem als in diesem Handbuch beschriebenen Betrieb können
Störungen im Hochfrequenzbereich auftreten.
Wird das Produkt in einem Wohngebiet betrieben, so kann dies mit grosser Wahrscheinlichkeit
zu starken Störungen führen, welche dann auf Kosten des Produktanwenders beseitigt werden
müssen. Änderungen oder Modifikationen am Produkt, welche ohne ausdrückliche
Genehmigung von Emerson Network Power durchgeführt werden, können dazu führen, dass
der Anwender die Genehmigung zum Betrieb des Produktes verliert. Boardprodukte werden
in einem repräsentativen System getestet, um zu zeigen, dass das Board den oben
aufgeführten EMV-Richtlinien entspricht. Eine ordnungsgemässe Installation in einem System,
welches die EMV-Richtlinien erfüllt, stellt sicher, dass das Produkt gemäss den EMV-Richtlinien
betrieben wird. Verwenden Sie nur abgeschirmte Kabel zum Anschluss von Zusatzmodulen. So
ist sichergestellt, dass sich die Aussendung von Hochfrequenzstrahlung im Rahmen der
erlaubten Grenzwerte bewegt.
Warnung! Dies ist eine Einrichtung der Klasse A. Diese Einrichtung kann im Wohnbereich
Funkstörungen verursachen. In diesem Fall kann vom Betreiber verlangt werden,
angemessene Maßnahmen durchzuführen.
Betrieb
1 Beschädigung des Produktes
Hohe Luftfeuchtigkeit und Kondensat auf der Oberfläche des Produktes können zu
Kurzschlüssen führen.
Betreiben Sie das Produkt nur innerhalb der angegebenen Grenzwerte für die
relative Luftfeuchtigkeit und Temperatur. Stellen Sie vor dem Einschalten des
Stroms sicher, dass sich auf dem Produkt kein Kondensat befindet.
Sicherheitshinweise
MVME2500 Installation and Use (6806800L01H) 139
Beschädigung von Schaltkreisen
Elektrostatische Entladung und unsachgemäßer Ein- und Ausbau des Produktes kann
Schaltkreise beschädigen oder ihre Lebensdauer verkürzen.
Bevor Sie das Produkt oder elektronische Komponenten berühren, vergewissern Sie
sich, daß Sie in einem ESD-geschützten Bereich arbeiten.
Fehlfunktion des Produktes
Schalter, die mit 'Reserved' gekennzeichnet sind, können mit produktionsrelevanten
Funktionen belegt sein. Das Ändern dieser Schalter kann im normalen Betrieb Störungen
auslösen.
Verstellen Sie nur solche Schalter, die nicht mit 'Reserved' gekennzeichnet sind.
Prüfen und ggf. ändern Sie die Einstellungen der nicht mit 'Reserved'
gekennzeichneten Schalter, bevor Sie das Produkt installieren.
Installation
Datenverlust
Das Herunterfahren oder die Deinstallation eines Boards bevor das Betriebssystem oder
andere auf dem Board laufende Software ordnungsmemäss beendet wurde, kann zu
partiellem Datenverlust sowie zu Schäden am Filesystem führen.
Stellen Sie sicher, dass sämtliche Software auf dem Board ordnungsgemäss
beendet wurde, bevor Sie das Board herunterfahren oder das Board aus dem
Chassis entfernen.
Beschädigung des Produktes
Fehlerhafte Installation des Produktes kann zu einer Beschädigung des Produktes führen.
Verwenden Sie die Handles, um das Produkt zu installieren/deinstallieren. Auf diese
Weise vermeiden Sie, dass das Face Plate oder die Platine deformiert oder zerstört
wird.
Beschädigung des Produktes und von Zusatzmodulen
Fehlerhafte Installation von Zusatzmodulen, kann zur Beschädigung des Produktes und der
Zusatzmodule führen.
Lesen Sie daher vor der Installation von Zusatzmodulen die zugehörige
Dokumentation.
MVME2500 Installation and Use (6806800L01H)
Sicherheitshinweise
140
Kabel und Stecker
Beschädigung des Produktes
Bei den RJ-45-Steckern, die sich an dem Produkt befinden, handelt es sich entweder um
Twisted-Pair-Ethernet (TPE) oder um E1/T1/J1-Stecker. Beachten Sie, dass ein versehentliches
Anschließen einer E1/T1/J1-Leitung an einen TPE-Stecker das Produkt zerstören kann.
-Kennzeichnen Sie deshalb TPE-Anschlüsse in der Nähe Ihres Arbeitsplatzes deutlich als
Netzwerkanschlüsse.
-Stellen Sie sicher, dass die Länge eines mit Ihrem Produkt verbundenen TPE-Kabels 100 m
nicht überschreitet.
-Das Produkt darf über die TPE-Stecker nur mit einem Sicherheits-Kleinspannungs-
Stromkreis (SELV) verbunden werden.
Bei Fragen wenden Sie sich an Ihren Systemverwalter.
Batterie
Beschädigung des Blades
Ein unsachgemäßer Einbau der Batterie kann gefährliche Explosionen und
Beschädigungen des Blades zur Folge haben.
Verwenden Sie deshalb nur den Batterietyp, der auch bereits eingesetzt wurde und
befolgen Sie die Installationsanleitung.
Datenverlust
Wenn Sie die Batterie austauschen, können die Zeiteinstellungen verloren gehen. Eine
Backupversorgung verhindert den Datenverlust während des Austauschs.
Wenn Sie die Batterie schnell austauschen, bleiben die Zeiteinstellungen möglicherweise
erhalten.
Sicherheitshinweise
MVME2500 Installation and Use (6806800L01H) 141
Datenverlust
Wenn die Batterie wenig oder unzureichend mit Spannung versorgt wird, wird der RTC
initialisiert.
Tauschen Sie die Batterie aus, bevor sieben Jahre tatsächlicher Nutzung vergangen sind.
Schäden an der Platine oder dem Batteriehalter
Wenn Sie die Batterie mit einem Schraubendreher entfernen, können die Platine oder der
Batteriehalter beschädigt werden.
Um Schäden zu vermeiden, sollten Sie keinen Schraubendreher zum Ausbau der Batterie
verwenden.
Umweltschutz
Entsorgen Sie alte Batterien und/oder Blades/Systemkomponenten/RTMs stets gemäß der in
Ihrem Land gültigen Gesetzgebung, wenn möglich immer umweltfreundlich.
MVME2500 Installation and Use (6806800L01H)
Sicherheitshinweise
142
MVME2500 Installation and Use (6806800L01H) 143
A
abbreviations 13
accessories 30
B
block diagram 61
board accessories 23
board configuration 29
C
chipset 61
conventions 15
D
disposal 26
disposal of product 21
E
environmental requirements 27
I
installating and removing the board 32
installation 31
M
memory
system memory 65
P
PMC 31
PMC/PrPMC 31
product 21
related standards 21
R
related
data sheets 130
documents 129
specifications 130
replacing the battery 125
S
standard compliances 21
T
timers 65
FPGA tick timer 66
internal timer 66
real time clock 65
watchdog timer 66
Index
Index
MVME2500 Installation and Use (6806800L01H)
144
HOW TO REACH LITERATURE AND TECHNICAL SUPPORT:
For literature, training, and technical assistance and support programs, visit
www.emersonnetworkpower.com/embeddedcomputing
Emerson, Business-Critical Continuity, Emerson Network Power and the Emerson Network Power logo are trademarks and service marks of Emerson Electric Co.
All other product or service names are the property of their respective owners.
© 2014 Emerson Electric Co.
Emerson Network Power.
The global leader in enabling Business-Critical Continuity
AC Power Systems
Connectivity
DC Power Systems
Embedded Computing
Embedded Power
Integrated Cabinet Solutions
Outside Plant
Power Switching & Control
Precision Cooling
Services
Site Monitoring
Surge & Signal Protection
www.emersonnetworkpower.com/embeddedcomput-
ing

Navigation menu