FineTurbo_User_manual User Manual FINETurbo
2013-12-19
: Ensight Usermanual-Fineturbo UserManual-FINETurbo Numeca Misc
Open the PDF directly: View PDF
Page Count: 351 [warning: Documents this large are best viewed by clicking the View PDF Link!]
- CHAPTER 1: Getting Started
- CHAPTER 2: Graphical User Interface
- 2-1 Overview
- 2-2 Project Selection
- 2-3 Main Menu Bar
- 2-4 Icon Bar
- 2-5 Computation Management
- 2-6 Graphical Area Management
- 2-7 Profile Management
- CHAPTER 3: Fluid Model
- CHAPTER 4: Flow Model
- 4-1 Overview
- 4-2 Mathematical Model
- 4-2.1 Euler
- 4-2.2 Laminar Navier-Stokes
- 4-2.3 Turbulent Navier-Stokes
- 4-2.4 Expert Parameters for Turbulence Modelling
- 4-2.5 Best Practice for Turbulence Modelling
- 4-2.5.1 Introduction to Turbulence
- 4-2.5.2 First Step: Choosing a Turbulence Model.
- 4-2.5.3 Second Step: Generating an Appropriate Grid.
- 4-2.5.4 Defining Initial & Boundary Conditions
- 4-2.5.5 Setting Expert Parameters to Procure Convergence
- a) Cut-off (Clipping) of Minimum k Value
- b) Minimizing Artificial Dissipation in the Boundary Layer
- c) Wall Function for the k-e Turbulence Model
- d) Full Multigrid k-e / Baldwin-Lomax & v2-f / Baldwin-Lomax Switch
- e) Cut-off (clipping) of Maximum Turbulence Production/Destruction Value
- f) Cut-off (clipping) of Maximum Turbulent Viscosity Ratio (mt /m)
- 4-2.6 Laminar-Transition Model
- 4-2.7 Gravity Forces
- 4-2.8 Low Speed Flow (Preconditioning)
- 4-3 Characteristic & Reference Values
- CHAPTER 5: Boundary Conditions
- 5-1 Overview
- 5-2 Boundary Conditions in the FINE™/Turbo GUI
- 5-3 Expert Parameters
- 5-3.1 Imposing Velocity Angles of Relative Flow
- 5-3.2 Inlet Mass Flow Boundary Condition
- 5-3.3 Outlet Mass Flow Boundary Condition
- 5-3.4 Outlet Averaged Mach Number Boundary Condition
- 5-3.5 Control of backflows
- 5-3.6 Torque and Force
- 5-3.7 Euler or Navier-Stokes Wall for Viscous Flow
- 5-3.8 Pressure Condition at Solid Wall
- 5-4 Best Practice for Imposing Boundary Conditions
- CHAPTER 6: Numerical Scheme
- 6-1 Overview
- 6-2 Numerical Model
- 6-3 Time Configuration
- 6-3.1 Interface for Unsteady Computation
- 6-3.2 Expert Parameters for Unsteady Computations
- 6-3.3 Best Practice on Time Accurate Computations
- CHAPTER 7: Physical Models
- 7-1 Overview
- 7-2 Fluid-Particle Interaction
- 7-3 Fluid-Structure
- 7-4 Passive Tracers
- 7-5 Porous Media Model
- 7-6 Cavitation Model
- CHAPTER 8: Dedicated Turbomachinery Models
- 8-1 Overview
- 8-2 Rotating Blocks
- 8-3 Rotor/Stator Interaction
- 8-4 Harmonic Method
- 8-5 Clocking
- 8-6 Cooling/Bleed
- 8-6.1 Introduction
- 8-6.2 Cooling/Bleed Model in the FINE™/Turbo GUI
- 8-6.3 Expert Parameters
- 8-6.4 Cooling/Bleed Data File: ’.cooling-holes’
- 8-6.4.1 Injection file format
- a) The header
- b) Multiple injector format
- c) Injector name
- d) Injection geometry Type
- e) Injection physical Type
- f) Locations patches
- g) Location patch index
- h) Anchor point location
- i) Cooling direction (not for Bleed)
- j) Anchor point location and cooling direction (for points type only)
- k) Mass flow
- l) Number of holes on a line
- m) Cooling/Bleed size
- n) Physical Properties
- 8-6.4.2 Examples
- 8-6.4.1 Injection file format
- 8-7 Rigid Motion
- 8-8 Aeroacoustics
- 8-9 Laminar-Transition Model
- 8-10 Performance Curve
- 8-11 SubProject Management
- CHAPTER 9: Initial Solution
- CHAPTER 10: Output
- CHAPTER 11: Task Manager
- 11-1 Overview
- 11-2 Getting Started
- 11-3 The Task Manager Interface
- 11-4 Parallel Computations
- 11-5 Task Management in Batch
- 11-5.1 Launch IGG™ in Batch
- 11-5.2 Launch AutoGrid™ in Batch
- 11-5.3 Launch FINE™ in Batch
- 11-5.3.1 How to Launch FINE™ on UNIX
- a) Create a ".run" file
- b) Set-up a parallel computation using MPI
- c) Set-up a parallel computation using SGE
- d) Set-up a parallel computation using PBS
- e) Set-up a parallel computation using LSF
- f) Set-up a parallel partitioned computation using MPI
- g) Set-up a parallel partitioned computation using SGE
- h) Set-up a parallel partitioned computation using PBS
- i) Set-up a parallel partitioned computation using LSF
- 11-5.3.2 How to Launch FINE™ on Windows
- 11-5.3.1 How to Launch FINE™ on UNIX
- 11-5.4 Launch the flow solver in Sequential Mode in Batch
- 11-5.5 Launch the flow solver in Parallel Mode in Batch
- 11-5.5.1 How to Launch the flow solver in Parallel using MPI on UNIX
- 11-5.5.2 How to Launch the flow solver in Parallel using MPI on Windows
- 11-5.5.3 How to Launch the flow solver in Parallel using SGE on UNIX
- 11-5.5.4 How to Launch the flow solver in Parallel using PBS on UNIX
- 11-5.5.5 How to Launch the flow solver in Parallel using LSF on UNIX
- 11-5.6 Launch CFView™ in Batch
- 11-6 Limitations
- CHAPTER 12: Computation Steering & Monitoring
- APPENDIX A: File Formats
- A-1 Overview
- A-2 Files Produced by IGG™
- A-3 Files Produced by the FINE™/Turbo GUI
- A-4 Files Produced by the FINE™/Turbo solver
- A-4.1 The Binary Solution File: ’project_computation.cgns’
- A-4.2 The Global Solution File: ’project_computation.mf’
- A-4.3 The Global Solution File: ’project_computation.xmf’
- A-4.4 The Residual File: ’project_computation.res’
- A-4.5 The LOG File: ’project_computation.log’
- A-4.6 The STD file: ’project_computation.std’
- A-4.7 The Wall File: ’project_computation.wall’
- A-4.8 The AQSI File: ’project_computation.aqsi’
- A-4.9 The ADF File: ’project.adf’
- A-4.10 The Plot3D Files
- A-4.11 The Meridional File: ’project_computation.me.cfv’
- A-5 Files Used as Data Profile
- A-6 Resource Files
- APPENDIX B: List of Expert Parameters
- APPENDIX C: Characteristics of Thermodynamic Tables
- APPENDIX D: TabGen