Garmin Mdl Rev 7 Sa01535Wi D Instruction Manual 190 00716 01_04x
2015-05-27
: Garmin Garmin-Mdl-Rev-7-Sa01535Wi-D-Instruction-Manual-720699 garmin-mdl-rev-7-sa01535wi-d-instruction-manual-720699 garmin pdf
Open the PDF directly: View PDF .
Page Count: 340
Download | |
Open PDF In Browser | View PDF |
G1000 / GFC 700 System Maintenance Manual Hawker Beechcraft Model 300/B300 Series King Air Contains Instructions For Continued Airworthiness For STC SA01535WI-D 1013 ALT 1000 2992 40 300 250 60 80 200 100 150 190-00716-01 February 2014 Revision 4 This page intentionally left blank. © Copyright 2012-2014 Garmin Ltd. or its subsidiaries All Rights Reserved Except as expressly provided herein, no part of this manual may be reproduced, copied, transmitted, disseminated, downloaded or stored in any storage medium, for any purpose without the express prior written consent of Garmin. Garmin hereby grants permission to download a single copy of this manual and of any revision to this manual onto a hard drive or other electronic storage medium to be viewed and to print one copy of this manual or of any revision hereto, provided that such electronic or printed copy of this manual or revision must contain the complete text of this copyright notice and provided further that any unauthorized commercial distribution of this manual or any revision hereto is strictly prohibited. Garmin International, Inc. 1200 E. 151st Street Olathe, KS 66062 USA Telephone: 913-397-8200 www.garmin.com Garmin (Europe) Ltd. Liberty House Bulls Copse Road Hounsdown Business Park Southampton, SO40 9RB, UK Phone: +44 (0) 23 8052 4000 Fax: +44 (0) 23 8052 4004 RECORD OF REVISIONS Revision Revision Date Description ECO # 1 5/11/12 Initial release -----2 10/24/12 Add sw v0985.06, Add section 3.36 (BLR winglet) 95300 Update Section 4.1 and 4.11 3 6/4/13 Update for GMU 44 installation in horizontal stab. 103013 4 2/21/14 Update for GRS 7800, GTX 3000, GTS Processor 111858 DOCUMENT PAGINATION Section Table of Contents Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8 Page A Revision 4 Pagination i – viii 1-1 – 1-6 2-1 – 2-24 3-1 – 3-70 4-1 – 4-36 5-1 – 5-92 6-1 – 6-24 7-1 – 7-60 8-1 – 8-16 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 INFORMATION SUBJECT TO EXPORT CONTROL LAWS This document may contain information which is subject to the Export Administration Regulations (“EAR”) issued by the United States Department of Commerce (15 CFR, Chapter VII Subchapter C) and which may not be exported, released or disclosed to foreign nationals inside or outside the United States without first obtaining an export license. The preceding statement is required to be included on any and all reproductions in whole or in part of this manual. WARNING This product, its packaging, and its components contain chemicals known to the State of California to cause cancer, birth defects, or reproductive harm. This Notice is being provided in accordance with California's Proposition 65. If you have any questions or would like additional information, please refer to our web site at www.garmin.com/prop65. CAUTION The GDU lens is coated with a special anti-reflective coating that is very sensitive to skin oils, waxes and abrasive cleaners. CLEANERS CONTAINING AMMONIA WILL HARM THE ANTI-REFLECTIVE COATING. It is very important to clean the lens using a clean, lint-free cloth and an eyeglass lens cleaner that is specified as safe for anti-reflective coatings. IMPORTANT All G1000 screen shots used in this document are current at the time of publication. Screen shots are intended to provide visual reference only. All information depicted in screen shots, including software file names, versions and part numbers, is subject to change and may not be up to date. Page B Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 TABLE OF CONTENTS SECTION PAGE 1 INTRODUCTION ............................................................................................................................ 1-1 1.1 CONTENT, SCOPE, PURPOSE ........................................................................................................ 1-1 1.2 ORGANIZATION............................................................................................................................ 1-3 1.3 DEFINITIONS/ABBREVIATIONS .................................................................................................... 1-4 1.4 PUBLICATIONS ............................................................................................................................. 1-5 1.5 REVISION AND DISTRIBUTION ..................................................................................................... 1-6 2 SYSTEM DESCRIPTION ............................................................................................................... 2-1 2.1 EQUIPMENT DESCRIPTIONS ......................................................................................................... 2-1 2.2 G1000 OPTIONAL INTERFACES .................................................................................................. 2-14 2.3 ELECTRICAL POWER DISTRIBUTION .......................................................................................... 2-15 2.4 ELECTRICAL LOAD UTILIZATION .............................................................................................. 2-18 2.5 PITOT/STATIC SYSTEM .............................................................................................................. 2-22 2.6 SHIELD BLOCK GROUNDS ......................................................................................................... 2-23 2.7 G1000 /GFC700 BLOCK DIAGRAM ........................................................................................... 2-23 3 G1000 CONTROL & OPERATION............................................................................................... 3-1 3.1 GDU 1040A AND GDU 1500 DISPLAYS...................................................................................... 3-1 3.2 GCU 477 - MFD CONTROLLER ................................................................................................... 3-3 3.3 GMC 710 - AFCS CONTROLS...................................................................................................... 3-3 3.4 GMA 1347D AUDIO PANEL ........................................................................................................ 3-4 3.5 G1000 NORMAL MODE................................................................................................................ 3-5 3.6 REVERSIONARY MODE ................................................................................................................ 3-6 3.7 CONFIGURATION MODE OVERVIEW ............................................................................................ 3-7 3.8 G1000 / GFC 700 SOFTWARE INFORMATION ............................................................................ 3-12 3.9 G1000 SOFTWARE/CONFIGURATION PROCEDURE .................................................................... 3-19 3.10 NON-GARMIN TAS/TCAS I TRAFFIC SYSTEM OPTION CONFIGURATION ............................. 3-24 3.11 GTS 820/850 TRAFFIC SYSTEM CONFIGURATION ................................................................. 3-25 3.12 GTS PROCESSOR .................................................................................................................... 3-26 3.13 GTX 33/33D CONFIGURATION .............................................................................................. 3-27 3.14 GTX 3000 CONFIGURATION .................................................................................................. 3-28 3.15 GDL 59 WI-FI DATA LINK OPTION CONFIGURATION ........................................................... 3-29 3.16 GSR 56 SATELLITE RECEIVER WITH GDL 59 WI-FI DATA LINK OPTION CONFIGURATION . 3-30 3.17 GSR 56 SATELLITE RECIEVER STAND-ALONE OPTION CONFIGURATION ............................. 3-31 3.18 GRS 77 AHRS SOFTWARE/CONFIGURATION ........................................................................ 3-32 3.19 GRS 7800 AHRS SOFTWARE/CONFIGURATION .................................................................... 3-33 3.20 GWX 68 SOFTWARE/CONFIGURATION .................................................................................. 3-34 3.21 GWX 70 SOFTWARE/CONFIGURATION .................................................................................. 3-35 3.22 GMU 44 SOFTWARE/CONFIGURATION .................................................................................. 3-36 3.23 TAWS-A SUPPORT CONFIGURATION .................................................................................... 3-37 3.24 TAWS-A VOICE NO CALLOUT OPTION CONFIGURATION..................................................... 3-38 3.25 TAWS-A VOICE CALLOUT OPTION CONFIGURATION........................................................... 3-39 3.26 ADF OPTION CONFIGURATION .............................................................................................. 3-40 3.27 DME OPTION CONFIGURATION ............................................................................................. 3-41 3.28 RAD ALT OPTION CONFIGURATION ..................................................................................... 3-42 3.29 NON-GARMIN TCAS II TRAFFIC SYSTEM OPTION CONFIGURATION .................................... 3-45 3.30 LIGHTNING SYSTEM OPTION CONFIGURATION ..................................................................... 3-46 3.31 LIGHTNING SYSTEM OPTION CONFIGURATION LOAD CONFIRMATION ................................. 3-47 3.32 ESP SUPPORT OPTION CONFIGURATION................................................................................ 3-49 3.33 POTS HANDSET CONFIGURATION ......................................................................................... 3-50 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page i Revision 4 3.34 3.35 3.36 3.37 3.38 3.39 3.40 3.41 3.42 3.43 3.44 3.45 3.46 3.47 3.48 3.49 3.50 3.51 FLIGHT DATA RECORDER OPTION CONFIGURATION ............................................................. 3-51 FLITECHARTS CONFIGURATION............................................................................................. 3-53 OPTIONAL CHARTVIEW ENABLE ........................................................................................... 3-53 STANDARD TAWS-B ENABLE ............................................................................................... 3-54 OPTIONAL TAWS-A ENABLE ................................................................................................ 3-55 SUPPLEMENTAL DATABASE LOADING ................................................................................... 3-56 OPTIONAL SVS/PATHWAYS ENABLE ..................................................................................... 3-57 OPTIONAL ESP ENABLE ......................................................................................................... 3-58 OPTIONAL SEARCH AND RESCUE ENABLE............................................................................. 3-59 OPTIONAL GARMIN TCAS I ENABLE (FROM GTS 825 TO GTS 855) .................................... 3-60 OPTIONAL GARMIN TCAS II ENABLE (FROM GTS 825 TO GTS 8000) ................................ 3-61 AIRCRAFT REGISTRATION NUMBER ENTRY .......................................................................... 3-62 GDL 69 ALTERNATE ANTENNA LOCATION CONFIGURATION ............................................... 3-64 BLR WINGLET OPTION (MODEL 300 ONLY) .......................................................................... 3-65 SPLASH SCREEN LOADING ..................................................................................................... 3-66 NAVIGATION DATABASE LOADING ....................................................................................... 3-67 CONFIGURATION OF NAVIGATION MAP FOR TRAFFIC SYSTEM............................................. 3-69 CLEARING DEFAULT USER SETTINGS .................................................................................... 3-69 4 INSTRUCTIONS FOR CONTINUED AIRWORTHINESS........................................................ 4-1 4.1 AIRWORTHINESS LIMITATIONS ................................................................................................... 4-1 4.2 SERVICING INFORMATION ........................................................................................................... 4-2 4.3 MAINTENANCE INTERVALS ......................................................................................................... 4-4 4.4 VISUAL INSPECTION .................................................................................................................. 4-11 4.5 ELECTRICAL BONDING TEST ..................................................................................................... 4-16 4.6 GRS 77 OR GRS 7800 EARTH MAGNETIC FIELD UPDATES ...................................................... 4-19 4.7 GSA 80 GREASING PROCEDURE ................................................................................................ 4-19 4.8 FLAPS-IN-MOTION DISCRETE INPUT CHECK .............................................................................. 4-20 4.9 GSM 86 SLIP CLUTCH TORQUE CHECK PROCEDURE ................................................................ 4-21 4.10 G1000 REDUNDANT CONNECTION CHECK ............................................................................ 4-23 4.11 ENGINE DATA CHECK ............................................................................................................ 4-26 4.12 TRIM ANNUNCIATOR CHECK ................................................................................................. 4-28 4.13 G1000 MISCOMPARE CHECKS ............................................................................................... 4-30 4.14 GIA COOLING FANS OPERATIONAL CHECK .......................................................................... 4-31 4.15 GDU COOLING FANS OPERATIONAL CHECK ......................................................................... 4-31 4.16 STANDBY BATTERY PERIODIC CHECKS ................................................................................. 4-32 4.17 RUDDER BOOST OPERATIONAL CHECK ................................................................................. 4-35 4.18 EXTERIOR SKIN INSPECTION AROUND ANTENNAS ................................................................ 4-35 5 TROUBLESHOOTING ................................................................................................................... 5-1 5.1 G1000 ALERTING SYSTEM .......................................................................................................... 5-2 5.2 SYSTEM ANNUNCIATIONS ........................................................................................................... 5-5 5.3 300/B300 SPECIFIC ALERTS ...................................................................................................... 5-26 5.4 TAWS TROUBLESHOOTING ....................................................................................................... 5-27 5.5 SYNTHETIC VISION AND PATHWAYS TROUBLESHOOTING ........................................................ 5-28 5.6 GFC 700 AFCS TROUBLESHOOTING ......................................................................................... 5-29 5.7 BACKUP COMMUNICATIONS PATH CHECKS .............................................................................. 5-44 5.8 GDU 104X TROUBLESHOOTING ................................................................................................ 5-45 5.9 GDU 104X ALERTS ................................................................................................................... 5-47 5.10 GIA 63 TROUBLESHOOTING .................................................................................................. 5-55 5.11 GIA ALERT MESSAGES .......................................................................................................... 5-57 5.12 GEA TROUBLESHOOTING ...................................................................................................... 5-64 5.13 GTX TROUBLESHOOTING ...................................................................................................... 5-65 5.14 GDL 69A TROUBLESHOOTING .............................................................................................. 5-66 Page ii Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.15 5.16 5.17 5.18 5.19 5.20 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 6 GRS 77 OR GRS 7800 AND GMU 44 TROUBLESHOOTING .................................................... 5-68 GDC 7400 TROUBLESHOOTING ............................................................................................. 5-74 GWX 68 GWX 70 TROUBLESHOOTING ................................................................................. 5-75 GMC 710 TROUBLESHOOTING .............................................................................................. 5-76 GCU 477 TROUBLESHOOTING ............................................................................................... 5-77 SOFTWARE/CONFIGURATION TROUBLESHOOTING ................................................................ 5-78 MATING/BACKPLATE CONNECTORS ...................................................................................... 5-80 STANDBY ATTITUDE INDICATOR TROUBLESHOOTING .......................................................... 5-87 STANDBY AIRSPEED INDICATOR TROUBLESHOOTING........................................................... 5-87 STANDBY ALTIMETER TROUBLESHOOTING ........................................................................... 5-88 GDL 59 TROUBLESHOOTING ................................................................................................. 5-88 GSR 56 TROUBLESHOOTING .................................................................................................. 5-89 GTS 820/850 TROUBLESHOOTING ......................................................................................... 5-89 GTS TRAFFIC PROCESSOR TROUBLESHOOTING .................................................................... 5-90 EQUIPMENT REMOVAL & INSTALLATION .......................................................................... 6-1 6.1 GDU 1040A AND GDU 1500....................................................................................................... 6-2 6.2 GMA 1347D AUDIO PANEL ........................................................................................................ 6-2 6.3 GIA 63W INTEGRATED AVIONICS UNITS .................................................................................... 6-3 6.4 GEA 71 ENGINE/AIRFRAME UNIT ............................................................................................... 6-3 6.5 GTX 33( ) OR GTX 3000 TRANSPONDER .................................................................................... 6-4 6.6 GDC 7400 AIR DATA COMPUTER ............................................................................................... 6-4 6.7 GTP 59 OAT PROBE .................................................................................................................... 6-5 6.8 GRS 77 OR GRS 7800 AHRS ...................................................................................................... 6-5 6.9 GMU 44 MAGNETOMETER .......................................................................................................... 6-6 6.10 GDL 69A ................................................................................................................................. 6-7 6.11 GSA 80 AND GSA 9000 SERVOS ............................................................................................. 6-7 6.12 GSM 86 AND GSM 9100 SERVO GEARBOX ............................................................................. 6-8 6.13 GCU 477 .................................................................................................................................. 6-9 6.14 GMC 710 ................................................................................................................................. 6-9 6.15 GWX 68 OR GWX 70............................................................................................................... 6-9 6.16 CONFIGURATION MODULES ................................................................................................... 6-10 6.17 GEA 71 BACKSHELL THERMOCOUPLE REMOVAL & REPLACEMENT .................................... 6-13 6.18 GPS/WAAS ANTENNAS ........................................................................................................ 6-14 6.19 DIVERSITY TRANSPONDER ANTENNA.................................................................................... 6-14 6.20 IRIDIUM ANTENNA ................................................................................................................. 6-15 6.21 WI-FI ANTENNA ..................................................................................................................... 6-15 6.22 SIGNAL CONDITIONERS.......................................................................................................... 6-15 6.23 INSTRUMENT PANEL SWITCH/ANNUNCIATOR (PROP SYNCH AND STANDBY BATTERY) ...... 6-16 6.24 EMERGENCY FREQUENCY SWITCH/ANNUNCIATOR............................................................... 6-16 6.25 STANDBY BATTERY ............................................................................................................... 6-17 6.26 STANDBY AIRSPEED INDICATOR............................................................................................ 6-17 6.27 STANDBY ALTIMETER ............................................................................................................ 6-17 6.28 STANDBY ATTITUDE INDICATOR ........................................................................................... 6-18 6.29 GIA COOLING FANS ............................................................................................................... 6-19 6.30 GDU COOLING FANS ............................................................................................................. 6-20 6.31 GTS 820/850 TRAFFIC UNIT .................................................................................................. 6-20 6.32 GPA 65 PA/LNA UNIT .......................................................................................................... 6-21 6.33 GA 58 TRAFFIC ANTENNAS ................................................................................................... 6-22 6.34 GDL 59 WI-FI DATALINK ...................................................................................................... 6-22 6.35 GSR 56 SATELLITE RECEIVER ............................................................................................... 6-23 6.36 GSD 41 DATA CONCENTRATOR ............................................................................................ 6-23 6.37 GTS TRAFFIC PROCESSOR ..................................................................................................... 6-24 6.38 GRA 5500 RADAR ALTIMETER.............................................................................................. 6-24 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air Page iii 190-00716-01 Revision 4 7 G1000 EQUIPMENT CONFIGURATION & TESTING ............................................................. 7-1 7.1 GDU 1040A/1500 MFD & PFD .................................................................................................. 7-1 7.2 GMA 1347D AUDIO PANEL ........................................................................................................ 7-3 7.3 GIA 63W INTEGRATED AVIONICS UNIT...................................................................................... 7-6 7.4 GEA 71 ENGINE/AIRFRAME UNIT ............................................................................................... 7-9 7.5 GTX 33( ) OR GTX 3000 TRANSPONDER .................................................................................. 7-12 7.6 GDC 7400 AIR DATA COMPUTER ............................................................................................. 7-13 7.7 GRS 77 OR GRS 7800 AHRS / GMU 44 MAGNETOMETER....................................................... 7-18 7.8 GDL 69A XM DATA LINK ........................................................................................................ 7-26 7.9 GSA 80/9000 SERVOS ............................................................................................................... 7-26 7.10 GCU 477 FMS CONTROLLER ................................................................................................ 7-27 7.11 GMC 710 AFCS CONTROLLER .............................................................................................. 7-29 7.12 GWX 68 OR GWX 70 WEATHER RADAR.............................................................................. 7-30 7.13 NON-GARMIN TRAFFIC SYSTEM (TAS/TCAS I) FUNCTIONAL CHECK ................................. 7-31 7.14 NON-GARMIN TRAFFIC SYSTEM (TCAS II) FUNCTIONAL CHECK ........................................ 7-32 7.15 LIGHTNING SYSTEM FUNCTIONAL CHECK ............................................................................ 7-33 7.16 TAWS FUNCTIONAL CHECK.................................................................................................. 7-35 7.17 FLITECHARTS FUNCTIONAL CHECK ...................................................................................... 7-38 7.18 CHARTVIEW FUNCTIONAL CHECK ........................................................................................ 7-39 7.19 SAFETAXI FUNCTIONAL CHECK ............................................................................................ 7-40 7.20 DME FUNCTIONAL CHECK .................................................................................................... 7-41 7.21 ADF FUNCTIONAL CHECK ..................................................................................................... 7-42 7.22 GRA 5500 RADAR ALTIMETER FUNCTIONAL CHECK ........................................................... 7-42 7.23 NON-GARMIN RADAR ALTIMETER CHECK ............................................................................ 7-42 7.24 WEIGHT ON WHEELS AND LOW SPEED AWARENESS BAND CHECK ...................................... 7-43 7.25 RVSM CHECKS ...................................................................................................................... 7-44 7.26 ESP FUNCTIONAL CHECK ...................................................................................................... 7-50 7.27 GTS TRAFFIC SYSTEM FUNCTIONAL CHECK ......................................................................... 7-53 7.28 ACTIVATION OF GARMIN CONNEXT ...................................................................................... 7-56 7.29 GDL 59 WI-FI DATA LINK FUNCTIONAL CHECK .................................................................. 7-58 7.30 GSR 56 SATELLITE RECEIVER FUNCTIONAL CHECK ............................................................. 7-59 7.31 SEARCH AND RESCUE FUNCTIONAL CHECK .......................................................................... 7-60 8 SYSTEM RETURN TO SERVICE PROCEDURE ...................................................................... 8-1 8.1 BACKUP PATH SYSTEM TESTING................................................................................................. 8-2 8.2 GFC 700 GROUND CHECKOUT .................................................................................................. 8-10 8.3 MAINTENANCE RECORDS .......................................................................................................... 8-15 Page iv Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 LIST OF ILLUSTRATIONS FIGURE PAGE Figure 2-1 Display Units ............................................................................................................................ 2-2 Figure 2-2, Audio Panel ............................................................................................................................. 2-3 Figure 2-3, AFCS Controller ..................................................................................................................... 2-3 Figure 2-4, FMS Controller ....................................................................................................................... 2-4 Figure 2-5, Transponder............................................................................................................................. 2-4 Figure 2-6, GIA unit .................................................................................................................................. 2-5 Figure 2-7, GEA unit ................................................................................................................................. 2-6 Figure 2-8, Air Data Computer .................................................................................................................. 2-7 Figure 2-9, OAT probe .............................................................................................................................. 2-7 Figure 2-11, Magnetometer ....................................................................................................................... 2-8 Figure 2-12, GDL 69A Datalink ................................................................................................................ 2-9 Figure 2-13, GDL 59 Wi-Fi Datalink ........................................................................................................ 2-9 Figure 2-14, GSR 56 Satellite Receiver ................................................................................................... 2-10 Figure 2-15, GSD 41 Data Concentrator ................................................................................................. 2-10 Figure 2-17, GTS Traffic Processor ......................................................................................................... 2-11 Figure 2-19, GSA 80 / GSM 86 ............................................................................................................... 2-12 Figure 2-20, GSA 9000 / GSM 9100 ....................................................................................................... 2-13 Figure 2-21, GRA 5500 Radar Altimeter................................................................................................. 2-13 Figure 2-22, 300/B300 Electrical Distribution (Post G1000 STC) .......................................................... 2-16 Figure 2-23, G1000 Component Power Sources...................................................................................... 2-17 Figure 2-24, Pitot/Static System (Post G1000 STC)................................................................................ 2-22 Figure 2-25, G1000/GFC 700 Block Diagram......................................................................................... 2-23 Figure 3-1, GDU 1040A Control Interface ................................................................................................ 3-1 Figure 3-2, GDU 1500 Control Interface ................................................................................................... 3-2 Figure 3-3, G1000 Softkeys ....................................................................................................................... 3-2 Figure 3-4, MFD Controls (GCU 477 shown) ........................................................................................... 3-3 Figure 3-5, AFCS Controls (GMC 710 shown) ......................................................................................... 3-3 Figure 3-6, GMA 1347D Controls ............................................................................................................. 3-4 Figure 3-7, Normal Mode .......................................................................................................................... 3-5 Figure 3-8, Automatic Reversion with MFD failure ................................................................................. 3-6 Figure 3-9, Manual Reversion with pilot PFD failure .............................................................................. 3-6 Figure 3-10, SET>ACTV Diagram........................................................................................................... 3-8 Figure 3-11, Loss of Communication ....................................................................................................... 3-9 Figure 3-12, Configuration Status............................................................................................................. 3-9 Figure 3-13, Data Transmission Indicators ............................................................................................... 3-9 Figure 3-14, G1000 LRU Configuration File Storage ............................................................................ 3-17 Figure 3-15, GRS/GDC Configuration Settings Storage ........................................................................ 3-18 Figure 3-16, Software/Configuration Overview ..................................................................................... 3-19 Figure 3-17, Airframe Options ................................................................................................................ 3-21 Figure 3-18, Propeller Options ................................................................................................................ 3-21 Figure 3-19, Configuration/Software Load Page .................................................................................... 3-22 Figure 3-20, Stormscope Configuration Page ......................................................................................... 3-47 Figure 3-21, Stormscope Configuration.................................................................................................. 3-47 Figure 3-22, Supplemental Database Synchronization ............................................................................ 3-56 Figure 3-23, Aircraft Registration ............................................................................................................ 3-62 Figure 3-24, GDL 69 Cable Loss ............................................................................................................. 3-64 Figure 3-25, GDL 69 Cable Loss Configured.......................................................................................... 3-64 Figure 3-26, Navigation Database Synchronization ................................................................................ 3-67 Figure 4-1, GIA I/O Page........................................................................................................................ 4-20 Figure 4-2, Discrete Valid/Invalid Indications ........................................................................................ 4-20 Figure 4-3, GFC Status Page................................................................................................................... 4-21 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page v Revision 4 Figure 4-4, Ambient Temperature Conversion Chart .............................................................................. 4-27 Figure 4-5, Standby Battery ..................................................................................................................... 4-32 Figure 4-6, Power Supply Connection .................................................................................................... 4-34 Figure 4-7, Exterior Skin Inspection Around Antennas.......................................................................... 4-36 Figure 5-1, AUX – System Status Page .................................................................................................... 5-1 Figure 5-2, Alerts & Annunciations .......................................................................................................... 5-2 Figure 5-3, ADVISORY Softkey Annunciation ....................................................................................... 5-2 Figure 5-4, System Annunciations ............................................................................................................ 5-5 Figure 5-5, AFCS Annunciation Field .................................................................................................... 5-29 Figure 5-6, GFC Status Page ................................................................................................................... 5-32 Figure 5-7, Magnetometer Interference Test .......................................................................................... 5-71 Figure 5-8, GIA 63W Backplate Connectors .......................................................................................... 5-80 Figure 5-9, GEA 71 Backplate Connectors ............................................................................................ 5-81 Figure 5-10, GMA 1347D Backplate Connectors................................................................................... 5-81 Figure 5-11, GTX 33/33D Backplate Connectors................................................................................... 5-81 Figure 5-12, GTX 3000 Connector .......................................................................................................... 5-82 Figure 5-13, GDU 1040A/1500 Mating Connector (P10401 or P15001) ............................................... 5-82 Figure 5-14, GRS 77 Mating Connector (P771) ..................................................................................... 5-82 Figure 5-15, GRS 7800 Mating Connector (P78001) .............................................................................. 5-82 Figure 5-16, GDC 7400 Mating Connector (P74001) ............................................................................ 5-83 Figure 5-17, GDL 69A Mating Connector (P69A1) ............................................................................... 5-83 Figure 5-18, GCU 477 Mating Connector (P4751) ................................................................................ 5-83 Figure 5-19, GMC 710 Mating Connector (P7101) ................................................................................ 5-83 Figure 5-20, GWX 68 Mating Connector (P681) ................................................................................... 5-83 Figure 5-21, GWX 70 Backshell Connector (P751) ................................................................................ 5-84 Figure 5-22, GTS 820/850 Mating Connectors ...................................................................................... 5-84 Figure 5-23, GTS Processor Connector (P8001) .................................................................................... 5-84 Figure 5-24, GPA 65 Mating Connector (P651) ..................................................................................... 5-84 Figure 5-25, Signal Conditioner Mating Connector (PVIB1) ................................................................. 5-85 Figure 5-26, GDL 59 Backplate Connector (P591) ................................................................................ 5-85 Figure 5-27, GSR 56 Backplate Connector (P561).................................................................................. 5-85 Figure 5-28, GSD 41 Backplate Connector (P411) ................................................................................. 5-85 Figure 5-29, GSA 9000 Mating Connector (P90001) .............................................................................. 5-85 Figure 5-30, GRA 5500 Connector (P55001) ......................................................................................... 5-86 Figure 6-1, GSA 80 Servo Gear ................................................................................................................. 6-8 Figure 6-2, GSM 9100 O-ring ................................................................................................................... 6-8 Figure 6-3, Configuration Module Installation ....................................................................................... 6-10 Figure 6-4, GRS 7800 Configuration Module Installation ...................................................................... 6-11 Figure 6-5, GEA Backshell Thermocouple............................................................................................. 6-13 Figure 6-5, GIA Cooling Fan Installation ................................................................................................ 6-19 Figure 6-6, GIA Cooling Fan Inlet Duct Identification .......................................................................... 6-20 Figure 7-1, G1000 Normal Mode Check .................................................................................................. 7-2 Figure 7-2, Marker Beacon Symbology .................................................................................................... 7-4 Figure 7-3, AUX – GPS STATUS Page (MFD) ....................................................................................... 7-6 Figure 7-4, Normal Engine Instrument Markings (MFD) ........................................................................ 7-9 Figure 7-5, Aircraft Registration.............................................................................................................. 7-12 Figure 7-6, Engine Run-Up Test Page ..................................................................................................... 7-24 Figure 7-7, Normal Mode AHRS Check ................................................................................................ 7-25 Figure 7-8, Low Speed Awareness Band Symbolization........................................................................ 7-43 Figure 7-9, RVSM Required Avionics .................................................................................................... 7-44 Figure 7-10, RVSM Critical Region ........................................................................................................ 7-45 Figure 7-11, Dial Indicator ...................................................................................................................... 7-47 Figure 7-12, Static Port Measurement ..................................................................................................... 7-47 Page vi Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Figure 7-13, Static Port Measurement locations ...................................................................................... 7-48 Figure 7-14, Static Port Measurement Log .............................................................................................. 7-48 Figure 7-15, GTS 8XX GND TEST softkey............................................................................................ 7-53 Figure 7-16, GSR56 Configuration Page ................................................................................................. 7-59 Figure 7-17, AUX-TELEPHONE page ................................................................................................... 7-59 Figure 8-1, GDU Data Verification (ARINC 429) .................................................................................... 8-7 Figure 8-2, GIA Data Verification (ARINC429/RS-232).......................................................................... 8-8 Figure 8-3, GIA Data Verification (RS-485) ............................................................................................. 8-9 Figure 8-4, Pre-Flight Test ...................................................................................................................... 8-10 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page vii Revision 4 LIST OF TABLES TABLE ................................................................................................................................................ PAGE Table 1-1, G1000 System Software Version ............................................................................................ 1-1 Table 1-2, Required Documents ............................................................................................................... 1-5 Table 1-3, Reference Publications ............................................................................................................ 1-6 Table 2-1, Electrical Loads ..................................................................................................................... 2-18 Table 3-1, Flight Data Recorder Parameters ............................................................................................ 3-51 Table 4-1, Maintenance Intervals.............................................................................................................. 4-4 Table 4-2, Discontinued Maintenance Intervals ..................................................................................... 4-10 Table 4-3, Nose Section Visual Inspection Procedure ............................................................................ 4-11 Table 4-4, Nose Avionics Compartment Visual Inspection Procedure .................................................. 4-11 Table 4-5, Pilot’s Compartment Visual Inspection Procedure................................................................ 4-12 Table 4-6, Instrument Panel G1000 Equipment Visual Inspection Procedure ....................................... 4-12 Table 4-7, Cabin Area Visual Inspection Procedure ............................................................................... 4-14 Table 4-8, Rear Fuselage and Empennage Visual Inspection Procedure ................................................ 4-15 Table 4-9, Lightning Strike Inspection Procedure ................................................................................... 4-16 Table 4-10, Measured Torque ................................................................................................................. 4-22 Table 4-11, Engine Data Check Test Equipment ..................................................................................... 4-26 Table 4-12, ITT Indication Test Points .................................................................................................... 4-26 Table 4-13, Torque Indication Test Points............................................................................................... 4-27 Table 4-14, Standby Battery Required Equipment .................................................................................. 4-32 Table 5-1, SVS Troubleshooting ............................................................................................................. 5-28 Table 5-2, SVS-Related Alert Messages................................................................................................. 5-28 Table 5-3, AFCS Annunciation Troubleshooting ................................................................................... 5-30 Table 5-4, AFCS General Troubleshooting ............................................................................................ 5-31 Table 5-5, Magnetometer Interference Test Sequence ........................................................................... 5-72 Table 6-1, Configuration Module Kit – 011-00979-00 or -03 ................................................................ 6-10 Table 6-2, GRS 7800 Configuration Module Parts.................................................................................. 6-11 Table 6-3, Thermocouple Kit (011-00981-00) ....................................................................................... 6-13 Table 7-1, Fuel Flow Indication Test Equipment .................................................................................... 7-10 Table 7-2, Fuel Flow Test Points ............................................................................................................. 7-10 Table 7-3, Oil Pressure Indication Test Equipment ................................................................................. 7-11 Table 7-4, Oil Pressure Test Points.......................................................................................................... 7-11 Table 7-5, Air Data System Test ............................................................................................................. 7-15 Table 7-6, Vertical Speed Table ............................................................................................................. 7-17 Table 7-7, Required GRS/GMU Calibrations ......................................................................................... 7-19 Table 7-8, In-Flight Altitude Hold Performance Test .............................................................................. 7-49 Page viii Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 1 INTRODUCTION 1.1 Content, Scope, Purpose This document provides Instructions for Continued Airworthiness (ICA) for the Garmin G1000 Integrated Flight Deck including the GFC700 Automatic Flight Control System (AFCS) as installed in the Hawker Beechcraft Model 300/B300 series King Air, under STC SA01535WI-D. This document satisfies the requirements for continued airworthiness as defined by 14 CFR Part 23.1529 and Appendix G. Information in this document is required to maintain the continued airworthiness of the G1000 and GFC700. 1.1.1 Applicability This document applies to all Model 300/B300 series King Air aircraft equipped with the G1000 and GFC700 AFCS systems. Modification of an aircraft by this Supplemental Type Certificate (STC) obligates the aircraft operator to include the maintenance information provided by this document in the operator’s Aircraft Maintenance Manual and the operator’s Aircraft Scheduled Maintenance Program. Aircraft modified by this STC have been shown to qualify for operation in Reduced Vertical Separation Minimum (RVSM) airspace as a group aircraft in accordance with Title 14 of the Code of Federal Regulations (14 CFR) Part 91, Appendix G, “Operations in Reduced Vertical Separation Minimum (RVSM) Airspace”, and Federal Aviation Administration (FAA) Document No. 91-RVSM, Change 2 dated 2/10/2004, “Guidance Material On The Approval Of Operators/Aircraft For RVSM Operations”. This qualification is based on analysis of the configuration and performance of the air data, automatic altitude control, altitude alerting, and altitude reporting systems. These systems must be maintained in accordance with the inspections and tests specified in this document and other current maintenance practices to guarantee continued compliance to RVSM specifications. 1.1.2 Identifying an STC Configuration Table 1-1 lists the G1000 System Software Version numbers approved for this STC. Table 1-1, G1000 System Software Version Aircraft Model G1000 System Software Version Notes 300/B300 Series King Air 0985.04 Initial approval 300/B300 Series King Air 0985.06 Adds Vmca for BLR winglets Updates GDU and GRS software 300/B300 Series King Air 0985.07 Updates and adds various G1000 LRU hardware and software. This STC allows multiple configurations for the King Air series. The correct configuration for a particular aircraft is loaded by choosing the applicable airframe/engine/propeller configuration. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 1-1 Revision 4 IMPORTANT! If the technician is unsure of an aircraft’s STC configuration, perform the following: After acknowledgement of the splash screen, use the FMS knob on the GCU 477 controller to go to the AUX – SYSTEM STATUS page on the MFD. In the AIRFRAME section (upper right corner,) the display shows the current G1000 airframe configuration and system software version number. The airframe configuration is shown in the AIRFRAME field and the system software version number is shown in the following format: ‘SYS SOFTWARE VERSION XXXX.XX’. It correlates to the software image used to load the software to the system: EXAMPLE: System Software Version ‘0985.04’ = Software Image P/N 006-B0985-04 With the PFD in configuration mode (see section 3.7), go to the GDU-AIRFRAME CONFIGURATION page. In the AIRFRAME section (upper right corner), verify the correct configuration for SERIES, ENGINE and PROP. EXAMPLE: For a configuration that loaded “King Air B300 PT6A-60A”, the AIRFRAME section should display: SERIES: ENGINE: PROP: Page 1-2 Revision 4 B300 PT6A-60A HARTZELL 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 1.2 Organization The following outline briefly describes the organization of this manual: Section 2: System Description Provides a complete description of the type design change associated with installing the G1000 integrated cockpit system in the 300/B300 Series King Air. An overview of the G1000 and GFC 700 system interface is also provided. Section 3: G1000 Control & Operation Presents basic control and operation information specifically tailored to maintenance practices. Basic G1000 Configuration Mode operation is also described. Section 4: Instructions for Continued Airworthiness Provides maintenance instructions for continued airworthiness of the G1000 and GFC 700 systems. Section 5: Troubleshooting Provides troubleshooting information to aid in diagnosing and resolving potential problems with the G1000 and GFC 700 systems. Section 6: G1000 Equipment Removal & Replacement Gives instructions for the removal and replacement of G1000 and GFC700 equipment. Section 7: G1000 Equipment Configuration & Testing Gives instructions for loading software, configuring, and testing of G1000 equipment. Section 8: System Return to Service Procedure Specifies return-to-service procedures to be performed upon completion of maintenance of the G1000 system. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 1-3 Revision 4 1.3 Definitions/Abbreviations ADF: Automatic Direction Finder ADTS: Air Data Test Set AFCS: Automatic Flight Control System AFM: Airplane Flight Manual AFMS: Airplane Flight Manual Supplement AHRS: Attitude Heading Reference System CDU: Control Display Unit CFR: Code of Federal Regulations DME: Distance Measuring Equipment EAU: Engine/Airframe Unit ESP Electronic Stability and Protection GPS: Global Positioning System GPWS: Ground Proximity Warning System HSDB: High-Speed Data Bus (Ethernet) IAU: Integrated Avionics Unit ICS: Inter-Com System ITT: Interstage Turbine Temperature LRU: Line Replaceable Unit MFD: Multi-Function Display OAT: Outside Air Temperature PFD: Primary Flight Display RVSM: Reduced Vertical Separation Minimum STBY: Standby STBY ATT: Standby Attitude Indicator STBY ALT: Standby Altimeter STBY A/S: Standby Airspeed Indicator STC: Supplemental Type Certificate TAWS: Terrain Awareness & Warning System WAAS: Wide Area Augmentation System VHF: Very High Frequency 1.3.1 Units of Measure Unless otherwise stated, all units of measure are English units. Page 1-4 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 1.4 Publications The following documents are required by this maintenance manual to perform maintenance. It is the responsibility of the owner / operator to ensure latest versions of these documents are used during operation, servicing or maintenance of the airplane. Table 1-2, Required Documents Part Number Garmin Document 005-00629-00 Master Drawing List, Garmin G1000/GFC 700 in Hawker Beechcraft Model 300/B300 Series King Air 005-00629-02 General Arrangement, G1000/GFC 700, King Air 300/B300 Series 005-00629-40 Main Instrument Panel Installation, King Air 300/B300 005-00629-41 Pedestal Re-Configuration, King Air 300/B300 005-00629-42 GWX Radar Install, King Air 300/B300 005-00629-43 Antenna Install, King Air 300/B300 005-00629-44 Electrical Equipment Install, Nose Bay, King Air 300/B300 005-00629-45 Roll Servo Install, King Air 300/B300 005-00629-46 Yaw & Pitch Servo Install, King Air 300/B300 005-00629-48 Pitch Trim Servo Install, King Air 300/B300 005-00629-49 Magnetometer Install, King Air 300/B300 005-00629-50 OAT Sensor Install, King Air 300/B300 005-00629-52 Optional Equipment Install, Tail Shelf, King Air 300/B300 005-00629-54 Wire Harness Installation, Nose, King Air 300/B300 005-00629-55 Wire Harness Installation, Cabin, King Air 300/B300 005-00629-56 Wire Harness Installation, Tail, King Air 300/B300 005-00629-57 Control Wheel Modification, King Air 300/B300 005-00629-59 Circuit Breaker Panel Modification, King Air 300/B300 005-00629-61 Lighting Modification, King Air 300/B300 005-W0226-00 Wiring Diagram, G1000/GFC 700, King Air 300/B300 Hawker Beechcraft Document 101-590097-9 Super King Air 300 and 300LW Maintenance Manual 101-590097-15 Super King Air 300 and 300LW Wiring Diagram Manual 101-590097-161 Super King Air 300 Airworthiness Limitations Manual 130-590031-7 Super King Air B300 and B300C Electrical Wiring Diagram Manual 130-590031-11 Super King Air B300 and B300C Maintenance Manual 130-590031-197 Super King Air B300 and B300C Avionics Wiring Diagram Manual (Proline 21) 130-590031-211 Super King Air B300 and B300C Airworthiness Limitations Manual 101-590097-13 King Air Series Component Maintenance Manual 98-39006 King Air Structural Inspection and Repair Manual Other Documents 85-292-1-1033 9016182 TP-336 Signal Conditioner Installation Manual (Meggitt Sensing Systems) Mid-Continent Instruments - Installation Manual and Operating Instructions, 4200 Series Attitude Indicator L-3 Avionics Systems – Emergency Power Supply Installation Manual, PS-835 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 1-5 Revision 4 The following publications are recommended to be on hand during the performance of maintenance activities. Table 1-3, Reference Publications Part Number Garmin Document 190-00716-02 Airplane Flight Manual Supplement, G1000/GFC 700, Hawker Beechcraft King Air 300/300LW King Air 190-00716-03 Airplane Flight Manual Supplement, G1000/GFC 700, in Hawker Beechcraft King Air B300/B300C King Air 190-01344-00 G1000 Cockpit Reference Guide for the Beechcraft 300/B300 190-00355-04 GDL 69 Series XM Satellite Radio Activation Instructions 190-00907-00 G1000/G1000H System Maintenance Manual (Standard Piston/Turboprop/Helicopter) 190-00303-72 GSA 8X/GSM85(A) Installation Manual 190-00303-83 GSM 86 Servo Gear Box Installation Manual 190-00303-85 GSA9000/GSM9100 Installation Manual 190-00313-63 GMU 44 Installation Location Magnetic Interference Survey Procedure 190-00313-12 Circular Connector (and Configuration Module) Installation Instructions Generic installation manuals for individual Garmin LRUs are also available through the ‘Dealer Resource Center’ section of the Garmin web site; refer to Section 1.5 for details. 1.5 Revision and Distribution This document is required for maintaining the continued airworthiness of the aircraft. When this document is revised, every page will be revised to indicate current revision level. Garmin Dealers may obtain the latest revision of this document on the Garmin Dealer Resource Center website. Owner/operators may obtain the latest revision of this document from the https://fly.garmin.com/ Support page, or by contacting a Garmin dealer, contacting Garmin Product Support at 913-397-8200, toll free 866-739-5687, or using around the world contact information on https://fly.garmin.com/. A Garmin Service Bulletin describing the revision to this document will be sent to Garmin dealers if the revision is determined to be significant. Page 1-6 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 2 SYSTEM DESCRIPTION 2.1 Equipment Descriptions 2.1.1 GFC 700 Operation The GFC 700 is a fail-passive digital flight control system composed of multiple G1000 LRUs and servos. The following functions are provided by the GFC 700 in this installation: • Flight Director • Autopilot • Pitch Trim • Yaw Damper • Electronic Stability and Protection (optional) Flight Director: The Flight Directors operate within the GIA 63Ws and use data from the G1000 system, including air, attitude and flight data, to calculate commands for display to the pilot and for the Autopilot. Flight director command bars and mode annunciations are sent to the PFDs through a high-speed Ethernet connection for display to the pilot and copilot. The flight directors operate independently of the autopilot and allow the pilot to hand-fly the command bars, if desired. The GMC 710 allows the pilot to switch the active director between flight director #1 (GIA1) and flight director #2 (GIA2). Autopilot: The autopilot operates within one high-speed GSA 80 servo (pitch trim) and three GSA 80 servos (pitch, roll and yaw). Flight director data is processed within the servos and turned into aircraft flight control surface commands. The autopilot cannot operate unless the flight director is engaged. Manual Electric Trim: When the autopilot is not engaged, the pitch trim servo may be used to provide a Manual Electric Pitch Trim (MEPT) function. This allows the pilot or co-pilot to adjust pitch trim from the PITCH TRIM switch on the control wheel in lieu of using the elevator trim wheel. Trim speeds are scheduled to provide easier control over a wide speed or configuration range. The PITCH TRIM switch is split into two halves. The left half arms MEPT. The right half controls direction. Both halves must be actuated at the same time to command the pitch trim servo to operate. If only one half of the PITCH TRIM switch is actuated for more than 3 seconds, a red PTRM message will appear on the PFDs. Yaw Damper: The yaw damper reduces Dutch roll tendencies and coordinates turns. It can operate independently of the autopilot and may be used during normal hand-flight maneuvers. Electronic Stability and Protection: Electronic Stability and Protection (ESP) is an optional function that is intended to assist the pilot in maintaining the airplane in a safe flight condition within the aircraft flight envelope. This envelope is defined by pitch, roll, and airspeed. This feature is only active when in flight and the autopilot is off. There are two versions of the ESP option available: ESP with Angle of Attack (AOA) modes and ESP without Angle of Attack (AOA) modes. The ESP option with AOA modes requires a new lift computer. The ESP option without AOA modes uses the existing lift computer. Underspeed Protection: Underspeed Protection (USP) is available when the optional ESP system is installed and the autopilot is on. It is designed to discourage aircraft operation below minimum established airspeeds. When the aircraft decelerates to stall warning, the autopilot will provide input causing the aircraft to pitch down and G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 2-1 Revision 4 wings to level. The pitch down force will continue until the aircraft reaches a pitch attitude at which IAS equals the IAS at which stall warning turns off, plus two knots. 2.1.2 GDU 1040A PFD (2) & GDU 1500 MFD Two Garmin GDU 1040A displays and one GDU 1500 display are installed in the King Air instrument panel. The GDU 1040A units, 10.4 inch LCD displays with 1024x768 resolution, are configured as PFD 1 and PFD 2; the GDU 1500 unit, a 15 inch LCD display with 1024x768 resolution, is configured as a MFD. All displays provide control and display of nearly all functions of the G1000 integrated cockpit system. The PFD displays are located on either side of the MFD, with the stand-by instruments located between the Pilot’s PFD (PFD 1) and the MFD. GMA 1347D Audio Panels are located outboard of each PFD. Additionally, a GMC 710 AFCS Controller is located in the upper instrument panel, above the MFD, and a GCU 477 is installed in the pedestal. The GCU 477 provides the control interface for the MFD. The GDU 1500 communicates with the GDU 1040A units, GDL 69A datalink, GWX68 or GWX70 weather radar, optional GSD41 data concentrator, optional GDL59 wi-fi datalink and optional GTS 820/850 or GTS Processor traffic through a high-speed data bus (HSDB) Ethernet connection. The GDU 1500 communicates with the GCU 477 via RS-232 digital interface. The GDU 1040A units communicate with each other and the GIA 63W units through a high-speed data bus (HSDB) Ethernet connection. PFD 1 receives primary electrical power from No. 1 Triple Fed Bus and secondary electrical power from Center Bus. PFD 2 receives electrical power from No. 3 Triple Fed Bus. Electrical power to the MFD is provided by No. 2 Triple Fed Bus. The displays will power-up immediately with external or aircraft power or battery operation. All displays are installed in the King Air panel using ¼-turn fasteners. Three CDU cooling fans are also installed behind the panel for PFD and MFD cooling. Figure 2-1 Display Units Page 2-2 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 2.1.3 GMA 1347D Audio Panel (2) The Garmin GMA 1347D Audio Panel integrates NAV/COM digital audio, intercom system and marker beacon controls. The 300/B300 installation includes two GMA 1347D panels. The GMA 1347D panels provide control of all cockpit intercom/mic systems as well as NAV/COM/ILS audio. The units also provide display reversion mode control through a large red button. Warning and alert audio received by the GMA 1347Ds is processed by and received from the GIA 63W Integrated Avionics Units (IAUs). Electrical power to GMA 1 is provided from No. 1 Triple Fed Bus. Electrical power to GMA 2 is provided from Left Gen Avionics Bus. GMA 1 will be powered immediately with external or aircraft power or battery operation. GMA 2 will operate after selecting Avionics Master on. The GMA 1347D units interface with the existing marker beacon antenna, as well as existing mic and phone jacks and oxygen mask mic. Figure 2-2, Audio Panel 2.1.4 GMC 710 AFCS Control Unit The dedicated AFCS controls on the GMC 710 allow crew control interface with the various GFC 700 autopilot / flight director functions. GMC 710 controls are discussed in detail in the G1000/King Air 300/B300 Series Cockpit Reference Guide. The GMC 710 is powered by No. 1 Triple Fed Bus. Figure 2-3, AFCS Controller G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 2-3 Revision 4 2.1.5 GCU 477 FMS Control Unit The GCU 477 functions as the primary control interface to the GDU 1500 MFD. The GCU 477 provides alphanumeric, softkey, and flight planning function keys used to interface with the G1000; the MFD does not possess any knobs or controls other than softkeys. The GCU 477 is powered by No. 3 Triple Fed Bus. The GCU 477 also provides the crew with the added functionality of tuning their receivers via the GCU as well as the PFD. Detailed instructions regarding the controls are discussed in the G1000 Cockpit Reference Guide. Figure 2-4, FMS Controller 2.1.6 Transponder (2) The Garmin GTX 33( ) or GTX 3000 transponders communicates with the on-side GIA 63W through RS232 digital interface. This STC installation allows for installation of two GTX 33 non-diversity transponders, two GTX 33D diversity transponders, or one of each type. This STC installation also allows for installation of two GTX 3000 diversity transponders. Mixing between the GTX 33 and GTX 3000 transponsders is not permissible. Additionally, for TCAS II operations, the GTX 3000 transponder communicates with the GTS Processor through ARINC 429 digital interfaces (transmit and receive). The transponder units are mounted on the upper avionics equipment shelf in the tail section of the airplane. Power is provided by the No. 1 GTX from Triple Fed Avionics Bus. The No. 2 GTX is powered from Left Gen Avionics Bus. All GTX transponders (non-diversity and diversity) interface with a transponder antenna mounted to the bottom of the fuselage. Each diversity transponder (GTX33D and GTX 3000) interfaces to a transponder antenna mounted to the top of the fuselage. GTX 33() GTX 3000 Figure 2-5, Transponder Page 2-4 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 2.1.7 GIA 63W Integrated Avionics Unit (2) Two Garmin GIA 63W Integrated Avionics Units (IAUs) contain the VHF COM/NAV receivers, WAAS GPS receiver, Flight Director, and system integration microprocessors. The GIAs also serve as a communication interface to all other G1000 LRUs in the system. Each GIA 63W communicates directly with the on-side GDU 1040A display using a HSDB Ethernet connection. Both GIAs are located remotely in the nose equipment bay. GIA 1 receives primary electrical power from No. 1 Triple Fed Bus and a secondary electrical power supply from Center Bus. GIA 2 receives electrical power from No. 3 Triple Fed Bus. The GIA 1’s COMM power supply (COMM 1) is provided by No. 1 Triple Fed Bus. GIA 2’s COMM power supply (COMM 2) is provided by Left Gen Avionics Bus. Therefore, both GIAs power-up immediately with external or aircraft power or battery operation, with the exception of COMM 2 operation which will become active after selection of Avionics Master on. Both GIA 63Ws interface to the following equipment: • Existing VOR/LOC/Glideslope Antenna System • Existing VHF COM #1 & #2 Antennas • GA 36 and GA 37 GPS/WAAS Antennas • GMA 1347D, #1 & #2 • GEA 71, #1 & #2 • GDU 1040A, #1 & #2 • GSA 80 • GSA 9000 • GRS 77 or GRS 7800, #1 & #2 • Traffic System (if installed) The GIA 63W #1 interfaces to the following additional equipment: • GDC 7400 #1 • GTX 33( ) or GTX 3000 #1 • DME 42 (if installed) • GSR 56 (if installed per stand-alone configuration) The GIA 63W #2 interfaces to the following additional equipment: • GDC 7400 #2 • GTX 33( ) or GTX 3000 #2 • ADF (if installed) • Stormscope (if installed) • Radar Altimeter (if installed) Figure 2-6, GIA unit G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 2-5 Revision 4 2.1.8 GEA 71 Engine/Airframe Unit (2) The Garmin GEA 71 Engine/Airframe Units provide engine/airframe data to the G1000 system. Data received from transducers/sensors is processed and sent to GIA 63Ws (via RS-485 digital interface), and subsequently to the GDU 1500 MFD. Engine parameters are normally displayed on the MFD. In the event of MFD failure, the engine parameters can be displayed on PFD 1 and/or PFD 2 using display reversion. The GEAs are located behind the instrument panel and is mounted in a vertical orientation. Electrical power to GEA 1 is provided from No. 1 Triple Fed Bus and to GEA 2 from No. 2 Triple Fed Bus. Both GEA units will power-up immediately with external or aircraft power or battery operation. Each GEA interfaces to the following sensors for its onside engine: • Oil Pressure Sensor • Oil Temperature Sensor • Fuel Flow Sensor (via onside Signal Conditioner) • Turbine Speed Sensor (via onside Signal Conditioner) • Propeller Speed Sensor(via onside Signal Conditioner) • Torque Sensor • Interstage Turbine Temperature (ITT) Sensor Figure 2-7, GEA unit Page 2-6 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 2.1.9 GDC 7400 Digital Air Data Computer (2) The Garmin GDC 7400 computers compile information from the pitot/static system and various outside air temperature (OAT) and awareness sensors and provide digital air data computations to the G1000 system. The GDC 7400 communicates with the GIA 63W, GDU 1040A, and GRS 77 using ARINC 429 digital interface. The unit is mounted behind the instrument panel. GDC 1 receives primary electrical power from No. 1 Triple Fed Bus and a secondary power supply from Center Bus. GDC 2 receives power from No. 3 Triple Fed Bus. GDC 1 and GDC 2 connect to existing pitot/static ports. Refer to Figure 2-24 for a schematic of the aircraft’s pitot/static system and its connections to the G1000 STC installed equipment. IMPORTANT! Aircraft modified by this STC are eligible to be approved for RVSM operation. RVSM critical maintenance instructions contained in this document must be followed in order to guarantee performance within RVSM specifications. Figure 2-8, Air Data Computer 2.1.10 OAT Probe (2) The Garmin GTP 59 OAT Probes provide the GDC 7400 with air temperature data. The OAT probes are mounted to the bottom of the fuselage at F.S. 113.5. Figure 2-9, OAT probe G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 2-7 Revision 4 2.1.11 Attitude & Heading Reference System (2) The Garmin GRS 77 or GRS 7800 AHRS units provide attitude and heading information to the G1000 system. The units, mounted in the nose equipment bay, contain advanced tilt sensors, accelerometers, and rate sensors. The unit interfaces with the Garmin Air Data Computers and GMU44 Magnetometer and utilizes GPS signals from the GIA 63Ws. Actual attitude and heading information is sent using ARINC 429 digital interface to both GDU 1040As and GIA 63Ws. The GRS interfaces with and provides power to the GMU 44 Magnetometer. The GRS supplies attitude and heading information directly to the PFDs, MFD, and GIAs. The #2 GRS AHRS units can provide heading data to an approved third party TCAS II device through an ARINC 429 digital interface. Additionally, the GRS 7800 AHRS provides heading with or without the aiding of the GMU 44 magnetometer. When operating without the aid of the magnetometer, the GRS 7800 is functionally similar to that of a Directional Gyro. GRS 1 receives primary electrical power from No. 1 Triple Fed Bus and a secondary power supply from the Center Bus. GRS 2 receives electrical power from No. 3 Triple Fed Bus. GRS 77 GRS 7800 Figure 2-10, AHRS 2.1.12 GMU 44 Magnetometer (2) The GMU 44 provides horizontal and vertical magnetic field information to the GRS AHRS. This allows heading to be calculated and provides assistance during AHRS alignment. The GMU 44 units are mounted in the tailcone or in the horizontal stabilizer. The 011-00870-20 GMU 44 units may only be installed in the horizontal stabilizer. The GMU 44 units were modified to account for low clearance installations and have a 90-degree pig-tail harness versus the straight harness on the 011-08870-10 GMU 44 units. The units receive power directly from the GRS units and communicate with the GRS units via RS-485 digital interface. GMU 44 -00 & -10 Unit GMU 44 -20 Unit Figure 2-11, Magnetometer Page 2-8 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 2.1.13 GDL 69A Datalink The GDL 69A provides the interface to the GWX 68 or GWX 70 weather radar and optional GDL59 wi-fi datalink by acting as a communications hub between the MFD and GWX 68/GWX 70 and GDL 59 via HSDB. The GDL 69A also provides XM Radio weather and music entertainment through means of a dedicated satellite data link. The GDL 69A is mounted behind the instrument panel. Power to the GDL 69A is received from Right Gen Avionics Bus. The GDL 69A sends weather data through the HSDB bus to the MFD, where the data link interface is controlled. Digital audio is sent directly to the GMA 1347D Audio Panel. Optional remote control (GRC 10) and remote control transceiver (GRT 10) may be interfaced with the GDL 69A. Installation of the GRC 10 and GRT 10 is in accordance with Garmin STC SA01487SE or other approved data. Refer to the approved Instructions for Continued Airworthiness information for these units. It is recommended that GRT 10 be powered from the Entertainment Bus. Figure 2-12, GDL 69A Datalink 2.1.14 GDL 59 Wi-Fi Datalink (optional) The GDL 59 provides a POTS (plain old telephone service) phone interface and a high speed data link between the aircraft systems and ground computers while the aircraft is on the ground using the IEEE 802.11g (“Wi-Fi”) protocol. The GDL 59 also provides the interface to an optional GSR 56 satellite datalink, which adds airborne low speed data link and voice communication capability. The GDL 59 unit interfaces to the Garmin Integrated Flight Deck via the GDL69A using HSDB. The GDL 59 is located on the upper avionics equipment shelf in the tail section. The GDL 59 is powered from the Right Gen Avionics Bus. Figure 2-13, GDL 59 Wi-Fi Datalink G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 2-9 Revision 4 2.1.15 GSR 56 Satellite Receiver (optional) The GSR 56 provides airborne low speed data link and voice communication capability to Garmin Integrated Flight Deck installations. The GSR 56 contains a transceiver that operates on the Iridium Satellite network. The GSR 56 interfaces directly to the GDL 59 via an RS-232 interface or may be installed as a stand-alone unit with an interface to GIA #1. The GSR 56 is located on the upper avionics equipment shelf in the tail section. The GSR 56 is powered from Right Gen Avionics Bus. Figure 2-14, GSR 56 Satellite Receiver 2.1.16 GSD 41 Data Concentrator (optional) The GSD 41 interfaces to various airframe discrete outputs to support third party systems such as Flight Data Recorders. The GSD 41 is located on the avionics shelf in the tail area. The GSD 41 is powered from No. 2 Triple Fed Bus. Figure 2-15, GSD 41 Data Concentrator Page 2-10 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 2.1.17 GTS 820/850 Traffic System (optional) The GTS 820/850 is a traffic surveillance system that uses active interrogation of Mode S and Mode C transponders to provide traffic advisories to the pilot. The GTS 820 is a TAS unit; the GTS 850 is a TCAS I unit. The installation includes a top directional antenna (GA 58) paired with a GPA 65 power amplifier / low noise amplifier (PA/LNA) unit and a bottom, unamplified GA 58 antenna. The GTS 820/850 is located in the nose avionics bay on the top, left shelf. The GPA 65 is located in the left sidewall area, just in front of the most forward cabin window. The GTS 820/850 traffic system is powered from Right Gen Avionics Bus. Figure 2-16, GTS 820/850 Traffic System 2.1.18 GTS Traffic Processor The GTS Traffic Processor is a microprocessor-based Line Replaceable Unit that uses active interrogations of Mode S and Mode A/C transponders to provide Traffic Advisories and Resolution Advisories (GTS 8000 only) to the pilot. When installed, the GTS Processor can be configured as TAS (GTS 825), TCAS I (GTS 855), or TCAS II (GTS 8000). The GTS traffic processor is installed in the nose avionics bay. The GTS interfaces to the GA58 traffic antennas which are mounted on the upper and lower fuselage. The GTS traffic processor also interfaces with the GTX 3000 through ARINC 429 digital data lines. The GTS traffic processor is powered from the Right Gen Avionics Bus. Figure 2-17, GTS Traffic Processor G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 2-11 Revision 4 2.1.19 Weather Radar The GWX 68 or optional GWX 70 Airborne Weather Radar provides weather radar data output to the GDU 1500 MFD. The GWX is mounted forward of the forward bulkhead at F.S. 30. Power to the GWX is received from Left Gen Avionics Bus. Data received from the GWX is routed through the GDL 69A data link unit to the MFD via high-speed data bus (Ethernet). Figure 2-18, Weather Radar 2.1.20 GSA 80 Servos and GSM 86 Servo Gearboxes (3) The Garmin GFC 700 AFCS uses GSA 80 high torque servos to control aircraft pitch, pitch trim and roll. The pitch trim variant of the GSA 80 is a high speed servo actuator. The GSA 80 contains a motorcontrol and monitor circuit board, as well as a solenoid and a brushless DC motor. The GSA 80 servo receives serial RS-485 data packets from the GIA 63Ws. The roll servo is located in the forward cabin lower fuselage near the wing front spar. The pitch and pitch trim servos are located in the tail. Power to the servos is received from No. 2 Triple Fed Bus. All servos mount to Garmin GSM 86 Servo Gearboxes. The GSM 86 is responsible for transferring the output torque of the GSA 80 servo actuators to the mechanical flight control surface linkage. Figure 2-19, GSA 80 / GSM 86 Page 2-12 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 2.1.21 GSA 9000 Servo and GSM 9100 Servo Gearbox The Garmin GFC 700 AFCS uses a GSA 9000 servo to control aircraft yaw damper/turn coordination and rudder boost. The GSA 9000 contains a motor-control and monitor circuit board, as well as a solenoid and a brushless DC motor. The GSA 9000 servo receives serial RS-485 data packets from the GIA 63Ws. The GSA 9000 yaw servo is located in the tail. Power to the servo is received from No. 2 Triple Fed Bus. The servo mounts to a Garmin GSM 9100 Servo Gearbox. The GSM 9100 is responsible for transferring the output torque of the GSA 9000 servo actuator to the mechanical flight control surface linkage. Figure 2-20, GSA 9000 / GSM 9100 2.1.22 GRA 5500 Radar Altimeter The GRA 5500 Radar Altimeter is designed to calculate height Above Ground Level (AGL) of the aircraft which is displayed on the PFDs. For King Air installations, the GRA 5500 is configured to output the value height Above Ground Level to the pilot through the GDU. The GRA interfaces to the existing radar altimeter antennas and GIA #2 via the ARINC 429 digital bus. The GRA 5500 is located below the lower avionics equipment shelf in the tail section. The GRA 5500 is powered from the Right Gen Avionics Bus. Figure 2-21, GRA 5500 Radar Altimeter 2.1.23 Garmin G36 and 37 GPS/WAAS Antennas This installation uses one G36 GPS/WAAS antenna and a G37 GPS/WAAS/XM antenna. The antennas are located in the upper, forward cabin. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 2-13 Revision 4 2.1.24 Signal Conditioner (2) Each GEA 71 receives signals from its on-side engine turbine speed sensor, propeller speed sensor and fuel flow sensors via a Meggitt Signal Conditioner, p/n 85-292-4. This unit converts the signals from the engine sensors to a signal usable by the GEA 71. These units are installed behind the instrument panel. Electrical power to the No. 1 Engine Signal Conditioner is provided from No. 1 Triple Fed Bus and to the No. 2 Engine Signal Conditioner from No. 2 Triple Fed Bus. Both signal conditioners will power-up immediately with external or aircraft power or battery operation. 2.1.25 Standby Airspeed Indicator A Standby Airspeed indicator, Aerosonic part number 25030-0184, or Mid-Continent Instruments part number MD25-300 is installed between PFD 1 and the MFD. The standby airspeed indicator does not require electrical power for normal operation except for internal instrument lighting, which is powered from No. 3 Triple Fed Bus and the emergency standby battery. This unit is connected to the right-side pitot/static system. 2.1.26 Standby Altimeter A standby altimeter, Aerosonic part number 16650-1172, or Thommen part number 3A43.22.35F.28.1.FU, is installed between PFD 1 and the MFD. This unit incorporates a vibrator to ensure accurate display altitude information. The vibrator is powered by No. 3 Triple Fed Bus and the emergency standby battery. Internal lighting of this unit is powered from Left Gen Bus and the emergency standby battery. This unit is connected to the right-side static system. 2.1.27 Standby Attitude Indicator The Mid-Continent Model 4200-11 Electric Attitude Indicator is used as the standby attitude indicator. It is powered by No. 3 Triple Fed Bus and the emergency standby battery. Gyro power and internal lighting of this unit is powered from Left Gen Bus and the emergency standby battery. 2.1.28 L-3 PS-835(C or D Model) Emergency Standby Battery In the event of loss of all normal electrical power, the battery is designed to provide 24 Vdc (nominal) emergency power source for the following items: • • • • • standby attitude indicator (operation and internal lighting) standby altimeter (vibrator and internal lighting) standby airspeed indicator (lighting only) pilot side glareshield lighting magnetic compass The aircraft power buss provides a trickle charge to the PS-835 under normal conditions. This battery is installed in the nose avionics bay. It is controlled using the standby battery switch indicator on the instrument panel. 2.2 G1000 Optional Interfaces Optional equipment interfaces include lightning detection, traffic, transponder, radar altimeter, ADF and DME systems. The G1000 also provides a general purpose ARINC bus for use with third party entertainment and cabin equipment. Refer to wiring diagram listed in Table 1-2, for specific interface information. Page 2-14 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 2.3 Electrical Power Distribution This airplane uses a multi-bus system, as detailed below and in Figure 2-22. This Figure shows the system post installation of this STC. Although this STC made several bussing changes to the distribution system, the core electrical generation and distribution system remains unchanged from the basic airplane design. Figure 2-23 shows the power sources for all equipment used by this STC. Each bus used or modified by this installation is described below. Left and Right Generator Buses: The left and right generator buses receive power from their respective left and right generators. The left and right generator buses also support Center Buses and Left Gen and Right Gen Avionics Buses, respectively. Triple Fed Bus: The Triple Fed bus is powered by left and right generator buses and the battery bus. Avionics Buses: The Left Gen Avionics bus is powered from the Left Generator Bus via the Avionics No. 1 relay. The Right Gen Avionics Bus is powered from the Right Generator Bus via the Avionics No. 2 relay. The Triple Fed Avionics Bus is powered from the Triple Fed bus via the Avionics No. 3 relay. All avionics relays are controlled using the Avionics Master Switch. Left and Right Engine Instrument Buses: On serial numbers FL-120, FL-122 through FL-380, FL-382, FM-009 through FM-11, the electrical system includes the L ENG INSTR and R ENG INSTR buses. On all other serial numbers, these two buses are not installed and engine instruments are powered directly from the Triple Fed Buses. Emergency Standby Battery: The Standby Emergency Battery (STBY BATT) system in the King Air 300/B300 is designed to provide uninterrupted DC power to the Standby Attitude indicator (including gyro motor and internal instrument lighting), the Standby Altimeter (including vibrator and internal instrument lighting), standby airspeed indicator internal instrument lighting and internal instrument lighting for the magnetic compass from the L-3 PS-835(C or D Model) Emergency Standby Battery. This standby battery power is independent from the normal electrical system and provides redundant power for the standby instruments in the event that all other electrical power is lost. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 2-15 Revision 4 Figure 2-22, 300/B300 Electrical Distribution (Post G1000 STC) Page 2-16 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Figure 2-23, G1000 Component Power Sources G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 2-17 Revision 4 2.4 Electrical Load Utilization The following chart lists the electrical equipment and their associated loads for each of the standard and optional items installed on the King Air 300 series airplanes with the installation of G1000. The loads specified are used to verify the electrical buses, generating system and batterys are operated within their limits and capacity. For electrical load test procedure and electrical load test report, refer to Garmin documents 190-00716-00 (Post Installation Checkout Procedure King Air 300/B300 Series) and 00500629-22 (Electrical Load Test Report G1000 integrated Avionics System Hawker/Beechcraft Model 300/B300 King Air) respectively. Table 2-1, Electrical Loads Units Used Equipment Ea. Unit (Amps DC) Part Number Notes Battery Bus Left Generator Bus Avionics Left Generator Bus GIA 63W – COM #2 1 GMA 1347D #2 – Audio Panel GTX 33 Transponder #2 or GTX 33D Transponder #2 or GTX 3000 Transponder #2 GWX 68 Weather Radar or GWX 70 Weather Radar 1 1 4.3 A Max See Note 1.75 A 1.6 A 1.6 A 1.6 A 011-01105-20 2A 011-00883-20 2.5 A 011-01768-00 0.3 A – Not Transmitting 4.3 A – Transmitting 011-01257-20 011-00779-30 011-00779-21 011-01997-00 1 Right Generator Bus Avionics Right Generator Fed Avionics Bus GDL 69A Data Link GDL 59 Wi-Fi GTS Processor or GTS 820 Traffic Processor or GTS 850 Traffic Processor GRA 5500 Radio Altimeter GSR 56 Iridium/Iridium Heater 1 1 0.35 A 0.572 A 2.5 A 011-00987-00 011-01746-00 011-02571-00 1.6 A 011-01446-00 1.6 A 0.5A 1.86A 011-01553-00 011-02537-00 011-02268-00 or 011-02268-01 2.5 A Max See Notes 011-00916-10 1 1 1 Center Bus GDU 1040A PFD #1 Page 2-18 Revision 4 1 Secondary power input 1.3A above -15°C 2.5A below -15°C G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Equipment Units Used GRS 77/GMU 44 – AHRS #1 or GRS 7800/GMU 44 – AHRS #1 1 GDC 7400 - ADC #1 1 GIA 63W – NAV #1 1 Ea. Unit (Amps DC) 0.3 A See Note 0.45 A See Note 0.230 A See Note 1.0 A See Note Part Number GRS 77: 011-00868-10 GMU 44: 011-00870-10 011-00870-20 GRS 7800: 011-02278-00 GMU 44: 011-00870-10 011-00870-20 011-02337-00 011-02337-01 011-01105-20 Notes Secondary power input Secondary power input Secondary power input Secondary power input No. 1 Triple-Fed Bus PFD #1 - Cooling Fan 1 0.1 A 305468-00 (Sandia P/N) or 013- 00102-00 (Garmin P/N) 305467-00 (Sandia P/N) or 013-00103-00 Garmin P/N) 011-01105-20 011-01105-20 GIA 63W #1 - Cooling Fan 1 0.4 A GIA 63W – NAV #1 GIA 63W – COM #1 1 1 1.0 A 4.3 A Max See Notes GMC 710 – AFCS Controller 1 1 0.16 A 0.3 A See Note GRS 77/GMU44 –AHRS #1or GRS7800/GMU44 – AHRS #1 1 0.45 A See Note GDC 7400 #1 1 0.230 A GDU 1040A – PFD #1 1 2.5 A Max See Notes GMA 1347D #1 – Audio Panel Meggitt Sig Cond #1 GEA 71 #1 1 1 1 1.75 A .032 A 0.5A 011-01257-20 85-292-4 011-00831-00 GSA 80 – Roll Servo GSA 80 – Pitch Servo GSA 9000 – Yaw Servo 1 1 1 1.61 A 1.61 A 1.80 A GSA 80 – Pitch Trim Servo 1 1.61 A 011-00877-20 011-00877-20 011-02213-00 011-02213-10 011-00877-21 011-01020-10 GRS 77: 011-00868-10 GMU 44: 011-00870-10 011-00870-20 GRS 7800: 011-02278-00 GMU 44: 011-00870-10 011-00870-20 011-02337-00 011-02337-01 011-00916-10 Primary power input Primary power input 0.3 A – Not Transmitting 4.3 A – Transmitting Primary power input Primary power input Primary power input Primary power input 1.3A above -15°C 2.5A below -15°C Primary power input No. 2 Triple-Fed Bus G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 2-19 Revision 4 MFD Cooling Fan Units Used 1 GDU 1500 – MFD 1 GSD 41 GEA 71 #2 1 1 Equipment Ea. Unit (Amps DC) 0.1 A 3.2 A Max See Note 0.5 A 0.5A Part Number 305468-00 (Sandia P/N) or 013-00102-00 (Garmin P/N) 011-01108-10 Notes 2.0 A – Temp above -15°C 3.2 A – Temp below -15°C 011-01457-00 011-00831-00 No.3 Triple Fed Bus GDU 1040A – PFD #2 1 2.5 A Max See Notes 0.3 A Total 011-00916-10 GRS 77/GMU 44 – AHRS #2 or GRS 7800/GMU 44 – AHRS #2 1 GDC 7400 – ADC #2 1 0.230 A GIA 63W – NAV #2 GCU 477 – FMS CTL Standby Battery 1 1 1 1.0 A 0.085 A See Note PFD #2 – Cooling Fan 1 0.1 A GIA #2 – Cooling Fan 1 0.4 A Meggitt Sig Cond #2 1 .032 A GRS 77: 011-00868-10 GMU 44: 011-00870-10 011-00870-20 GRS 7800: 011-02278-00 GMU 44: 011-00870-10 011-00870-20 011-02337-00 011-02337-01 011-01105-20 011-01428-00 501-1228-03 or 501-1228-04 305468-00 (Sandia P/N) or 013-00102-00 (Garmin P/N) 305467-00 (Sandia P/N) or 013-00103-00 (Garmin P/N) 85-292-4 1 1.6 A 1.6 A 1.6 A 011-00779-30 011-00779-21 011-01997-00 Standby Attitude Indicator 1 0.25 A Standby Altimiter 1 See Note 4200-11 (MOD 2) 3A43.22.35F.28. 1.FU (Thommen P/N), or 16650-1172 Aerosonic P/N) 0.45 A Total 1.3A above -15°C 2.5A below -15°C 2.5 A for model PS-835C 5 A for model PS-835D Avionics Bus Triple-Fed GTX 33 Transponder #1 or GTX 33D Transponder #1 or GTX 3000 Transponder #1 Standby Battery Bus .157 A total Page 2-20 Revision 4 Vibrator .030 A Lighting .096 A G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Equipment Standby Airspeed Indicator Units Used 1 Ea. Unit (Amps DC) .050 A .050 A Part Number Notes MD25-300 (MidContinent Inst P/N), or 25030-0184 (Aerosonic Corp P/N) G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 2-21 Revision 4 Page 2-22 Revision 4 L/H PITOT MAST R/H PITOT MAST #2 AIR DATA COMPUTER OAT PROBE #1 AIR DATA COMPUTER FORWARD PRESSURE BULKHEAD DATA BUS OAT PROBE PILOT PFD MFD COPILOT PFD STANDBY ALTIMETER STANDBY AIRSPEED DRAIN DRAIN DRAIN ALTERNATE STATIC SELECTOR VALVE ALTERNATE STATIC PORT BOTTOM TOP BOTTOM TOP AFT PRESSURE BULKHEAD L/H STATIC PORTS R/H STATIC PORTS 2.5 The following schematic shows the pitot-static system as modified by this installation: Pitot/Static System Figure 2-24, Pitot/Static System (Post G1000 STC) G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 2.6 Shield Block Grounds The connectors on Garmin G1000 LRUs utilize the Shield Block grounding system to provide necessary ground reference to wire shielding and/or transducers. The shield block termination method allows multiple grounds to be terminated directly to a block mounted to the connector backshell assembly. Shielding and grounding requirements for all other LRUs and connectors are shown in the respective install drawings. 2.7 G1000 /GFC700 Block Diagram Figure 2-25, G1000/GFC 700 Block Diagram G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 2-23 Revision 4 This page intentionally left blank. Page 2-24 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3 G1000 Control & Operation All control and operation of G1000 equipment as normally used in flight occurs through the PFDs, MFD, GMC 710, GCU 477 and GMA 1347D audio panel. Figure 3-1 through Figure 3-6 identify various interface buttons for these units. 3.1 GDU 1040A and GDU 1500 Displays Figure 3-1 and Figure 3-2 provide identification of the GDU 1040A PFD and GDU 1500 MFD controls. Figure 3-1, GDU 1040A Control Interface G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-1 Revision 4 Figure 3-2, GDU 1500 Control Interface 3.1.1 Softkeys Some pages have commands or selections that are activated by the GDU 1040 softkeys. If a softkey is associated with a command, that command will be displayed directly above the key. A grayed-out softkey shows a command that is unavailable. A softkey that is highlighted shows the current active selection. Figure 3-3, G1000 Softkeys 3.1.2 FMS Knob The FMS knob is the primary control for the G1000 system. Operation is similar to the Garmin 400/500 Series units. To cycle through different configuration screens: To change page groups: Rotate the large FMS knob. To change pages in a group: Rotate the small FMS knob. To activate the cursor for a page, press the small FMS knob directly in, as one would push a regular button. To cycle the cursor through different data fields, rotate the large FMS knob. To change the contents of a highlighted data field, rotate the small FMS knob. This action either brings up an options menu for the particular field, or in some cases allows the operator to enter data for the field. To confirm a selection, press the ENT key. To cancel a selection, press the small FMS knob in again, deactivating the cursor. The CLR key may also be used to cancel a selection or deactivate the cursor. Page 3-2 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.2 GCU 477 - MFD Controller The MFD controls are located on the GCU 477 as show in Figure 3-4. Figure 3-4, MFD Controls (GCU 477 shown) 3.3 GMC 710 - AFCS Controls The dedicated AFCS controls located on the GMC 710 are discussed in detail in the G1000 CRG. The following figure is provided for reference: Figure 3-5, AFCS Controls (GMC 710 shown) G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-3 Revision 4 3.4 GMA 1347D Audio Panel Figure 3-6 provides the audio panel controls. Transmitters Passenger Address Music Marker Beacon Mute Transceiver Audio Telephone Speaker Marker Beacon Signal Sensitivity Transceiver Audio Aircraft Navigation Radio Audio Manual Squelch Intercom System (ICS) ICS VOL SQ (Small Knob) Digital Recording Playback Cabin Intercom Master VOL (Large Knob) Reversionary Mode Figure 3-6, GMA 1347D Controls Page 3-4 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.5 G1000 Normal Mode To start the G1000 system in Normal Mode: 1. With a ground power unit connected to the external power receptacle, set the BAT and EXT PWR switches to ‘ON’. The following G1000 equipment is powered: • PFD displays & MFD display • GRS 77 or GRS 7800 AHRS Units • GDC 7400 Air Data Computers • GIA 63W Integrated Avionics Units • GEA 71 Engine/Airframe Units • GCU 477 FMS Control Unit • GMC 710 Autopilot Control Unit • GSA Servos • GMA 1347D Digital Audio Panel #1 • GSD 41 Data Concentrator (Optional) 2. Set the AVIONICS MASTER switch to ‘ON’. The following G1000 equipment is powered: • GMA 1347D Digital Audio Panel #2 • GDL 69A Datalink Unit • GWX 68 or GWX 70 Weather Radar Unit • GTS 820/850 Traffic System or GTS Traffic Processor (Optional) • GTX 33 or GTX3000 Mode S Transponders (Optional) • GDL 59 / GSR 56 Wi-Fi/Satellite (Optional) • GRA 5500 Radar Altimeter (optional) The G1000 system is now powered in the normal mode. In the normal operating mode, data fields that are invalid have large red X’s through them. A valid field does not display a red X. Allow the displays to initialize for approximately one minute. The GDC 7400s require a longer initialization period than do the other LRUs. During normal operation, this causes the airspeed, altitude, vertical speed, and OAT fields to be invalid during the first ~40-60 seconds of PFD power-up. The PFDs and MFD will function as specified in the G1000 300/B300 Series Cockpit Reference Guide when the system has been correctly installed and configured. Figure 3-7, Normal Mode G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-5 Revision 4 3.6 Reversionary Mode Reversionary mode allows for display of information related to safe flight in the event of a display communication or hardware failure. The pilot’s PFD automatically goes into reversionary mode when communication to the MFD is lost. Manual reversionary mode allows the operator to force the pilot or copilot’s PFD into reversionary mode by pressing the large red button labeled ‘DISPLAY BACKUP’ on the respective GMA 1347D audio panel. NOTE When the ‘DISPLAY BACKUP’ button is pushed to exit reversionary mode, there is a 5second debounce (or the GDU waits for 5 consecutive seconds) and then returns to normal mode if no other input is received. If the ‘DISPLAY BACKUP’ button is pushed again during this 5-second interval, the timer will repeat the count. Figure 3-8, Automatic Reversion with MFD failure Figure 3-9, Manual Reversion with pilot PFD failure Page 3-6 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.7 Configuration Mode Overview Throughout this document, references are made to the PFD1, PFD2 and/or MFD being in configuration mode. The configuration mode exists to provide the avionics technician with a means of configuring, checking, and calibrating various G1000 sub-systems. Troubleshooting and diagnostics information can also be viewed in this mode. To start the G1000 system in configuration mode, follow these steps: 1. Apply external power, then set the BAT, EXT PWR and AVIONICS MASTER PWR switches to ON. 2. Pull the MFD, PFD1 (PRI), PFD1 (SEC) and PFD2 circuit breakers. 3. Press and hold the ENT key on PFD2 (co-pilot) while applying power using the PFD2 circuit breaker. 4. Release the ENT key after ‘INITIALIZING SYSTEM’ appears in the upper left corner of PFD2. 5. Press and hold the far right softkey on the MFD or the ENT key on the GCU 477 MFD controller while applying power using the MFD circuit breaker. 6. Release the softkey after ‘INITIALIZING SYSTEM’ appears in the upper left corner of the MFD. 7. Press and hold the ENT key on PFD1 (pilot) while applying power using the PFD1 (PRI) and PFD1 (SEC) circuit breakers. 8. Release the ENT key after ‘INITIALIZING SYSTEM’ appears in the upper left corner of PFD1. CAUTION: The Configuration Mode contains certain pages and settings that are critical to aircraft operation and safety. These pages are protected and cannot be modified, unless the technician is properly authorized and equipped. However, most protected pages are viewable to allow system awareness for troubleshooting. NOTE If the specific procedure requires an SD card to be in the top slot of the PFD/MFD, this card must be inserted prior to applying power to the PFD/MFD. Any time a card is inserted, the power to the PFD/MFD must be cycled. NOTE For a complete description and breakdown of each Configuration Mode page, refer to the G1000 System Maintenance Manual listed in Table 1-3. 3.7.1 SET>ACTV Configuration Throughout the configuration mode pages, there are SET and ACTIVE columns for input/output settings and other parameters. SET: Refers to a setting or group of settings that reside in PFD Internal Memory and/or the Master Configuration Module. ACTIVE: Refers to an ‘active’ setting or parameter currently being used by the LRU. LRUs store the ‘active’ settings within internal memory. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-7 Revision 4 Data can be manually copied from one column to the other (and consequently from PFD memory to the LRU memory and vice-versa) by using the following two softkeys, when available: • SET>ACTV (read ‘Set to Active’) softkey: Allows the installer to send the information in the SET column (data stored in the master config module) to the ACTV column (data used by LRU). • ACTV>SET (read ‘Active to Set’) softkey: Causes the LRUs current settings to be copied to the master configuration module as SET items. CAUTION: The ACTV>SET softkey must be used with caution! If an improperly configured unit is installed, this softkey causes the wrong configuration to replace the correct aircraft configuration. In the first example shown in Figure 3-10, the SET columns do not match the ACTIVE columns. The inequality between SET and ACTIVE indicates a configuration mismatch. By pressing the SET>ACTV softkey, this copies the SET column to the LRU unit’s configuration memory. The settings then become the ACTIVE settings for the LRU being configured. Figure 3-10, SET>ACTV Diagram Page 3-8 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 When troubleshooting the system, technicians can look for inequalities between SET and ACTIVE columns. Certain problems can be resolved simply by pressing the SET>ACTV softkey, which reloads settings to the specific LRU from the PFD. (Note that this can also be accomplished by reloading the configuration files for the LRU. Section 7 describes this process for each LRU). A blank active column, as shown in Figure 3-11, represents loss of communication between the display and the particular unit. See Section 5 for more details on troubleshooting. Figure 3-11, Loss of Communication 3.7.2 Configuration Prompts When configuration settings are changed, the technician receives on-screen prompts and/or confirmations such as those shown in Figure 3-12. Section 7 shows other prompts encountered during the configuration process. Figure 3-12, Configuration Status 3.7.3 Data Transmission Indicators Several configuration screens utilize an indicator light system to show discrete (ON/OFF) data and/or hardware component status. Unless otherwise noted, the following applies to all such status indicators: • Green Checkmark: Expected data is successfully received and is ON. A green check could also indicate that the parameter/component is working correctly. • Red X: Expected data is not received. A red X could also indicate that a parameter/component is invalid. • White N/A: Expected data is OFF, or no data is expected. Figure 3-13, Data Transmission Indicators G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-9 Revision 4 3.7.4 Configuration Mode Navigation Using the FMS knob as described in Section 3.1.2, a user can navigate through different pages and page groups in the Configuration Mode. For complete description and breakdown of each page, refer to the G1000 System Maintenance Manual listed in Table 1-3. System Page Group 1. System Status 5. System Upload 9. System Data Path Configuration 2. Time Configuration 6. Diagnostics Terminal 10. System Setup 3. Lighting Configuration 7. OEM Diagnostics 11. Manifest Configuration 4. System Audio 8. System Configuration 12. Maintenance Log System Page Group (Aircraft equipped with GDU v13.06 or later) 1. System Status 6. Aircraft Configuration 11. System Data Path Configuration 2. Time Configuration 7. File Manager 12. System Setup 3. Lighting Configuration 8. Diagnostics Terminal 13. Manifest Configuration 4. System Audio 9. OEM Diagnostics 14. Maintenance Log 5. System Upload 10. System Configuration GDU Page Group 1. Serial Configuration 5. Ethernet Test 9. Airframe Configuration 2. CDU Status Page 6. Video Test 10. TAWS Configuration 3. Key Test 4. Diagnostics 7. Alert Configuration 8. DAT Configuration GIA Page Group 1. Serial Configuration 3. GIA I/O Configuration 5. GIA Status Page 2. GIA RS-485 Configuration 4. GIA COM Setup 6. GIA CAN Configuration GSD Page Group * 1. GSD ARINC 429 Configuration 3. GSD I/O Configuration 2. GSD RS-485 Configuration 4. GSD Status Page GEA Page Group 1. Engine Configuration 2. GEA Status Page 3. GEA Configuration GTX Page Group * 1. Serial Configuration 2. Transponder Configuration GTX Page Group (Aircraft equipped with GTX 3000) 1. Transponder Airframe Config 2. Transponder Wiring Config GRS Page Group 1. Inputs Configuration 2. GRS / GMU Calibration ADC Page Group 1. ADC Configuration 2. GDC Configuration GFC Page Group 1. GFC Configuration 2. GFC Status GMA Page (GMA Configuration) Page 3-10 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 GDL Page Group 1. GDL 69 Configuration 3. GDL 59 Configuration * 2. GDL 59 Status * 4. GDL 59 Report Configuration * (SW version 0985.06 and prior) 5. GSR 56 Configuration * RMT Page (Remote Controller Status) GWX Page Group 1. GWX Configuration GTS Page (GTS Configuration) * OTHER Page * (Stormscope) CAL Page Group 1. Fuel Tank Calibration 2. Flaps & Trim Calibration 3. HSCM Calibration 4. DAT Configuration * Appears only if option is installed. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-11 Revision 4 3.8 G1000 / GFC 700 Software Information NOTE The following sections provide a detailed description of loading all G1000 software and configuration files, which may be excessive for individual LRU removal and replacement. If removing and replacing individual LRUs, refer to Section 6 of this manual for the necessary steps. 3.8.1 G1000 Software Image All software and configuration files were certified by Garmin and are considered part of FAA-approved Type Design data. Approved software and hardware definitions for each STC Configuration are defined on the appropriate General Arrangement drawing listed in Table 1-2. G1000 software and configuration files are controlled via the approved software image part number listed on the General Arrangement drawing listed in Table 1-2. This software image is loaded into the G1000 using a software loader card. The installer shall create this software loader card by downloading the approved software image in accordance with section 3.8.2. NOTE Only SanDisk and Toshiba brand SD cards are recommended for use with the G1000 system. NOTE Installers may obtain this software image already on a loader card by ordering Garmin Part number 010-00798-XX directly from Garmin. Reference the General Arrangement drawing listed in Table 1-2 for part number information. IMPORTANT! To satisfy the G1000/GFC700 STC requirements for the 300/B300 series aircraft, it is critical that the technician install correct software image part number when servicing the G1000 system. Approved software image part numbers are defined on the appropriate General Arrangement drawing (see Table 1-2). CAUTION: Be cautious when using software loader cards during maintenance. The G1000 system immediately initializes the card upon power-up. On-screen prompts must be given careful attention in order to avoid potential loss of data. Always read through procedures given in Sections 5, 6 and 7 before attempting to use the software loader cards. Page 3-12 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.8.2 Loader Card Creation The software image is an executable self-extracting file which builds the correct file structure onto an SD card for use loading software to the G1000 and GFC700. To obtain the current file, follow the procedures outlined below. NOTE In order to create a 300/B300 loader card, the individual/facility completing these procedures, must be an authorized King Air 300/B300 service center to gain access to the necessary data via the Garmin website. 1. Go to www.garmin.com and click on the Dealer Resource Center link in the lower portion of the home page. Enter username and password. 2. Click the I Agree button on the confidentiality agreement page. 3. Select Technical Tools then select Software Downloads. 4. In the Keyword(s) filter, enter “0985” and click on the Go button. 5. A screen similar to the one shown below will appear. The numbers shown are for example only. Download symbol 6. Click on the download symbol for the appropriate software version part number based upon the information provided in Garmin GA Drawing 005-00629-02 and save the file to the local hard drive. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-13 Revision 4 7. Double-click the .exe file that was downloaded. The following window will pop-up on the screen. Ensure that there is an empty SD card in the card reader, and then click Setup. NOTE When the extraction begins, the program automatically deletes all current files on the SD card and copies the selected files to it, regardless of the file format on the SD card. Ensure files are not necessary or card is empty before proceeding. Version of card being created Enter SD card Click next once card is inserted Page 3-14 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 8. Ensure the card and correct drive letter is used, and click next. Select drive 9. A window will pop-up onto the screen to indicate file progress. Copy of files to selected drive G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-15 Revision 4 10. Once successfully completed, the following message/window will pop-up. Click Finish to finalize SD card. 3.8.3 Software Files Software files are defined by part number and version number on the General Arrangement drawing. See Table 1-2 for the correct General Arrangement drawing part numbers. Each G1000 / GFC 700 LRU reports the software version it currently contains to the user in two places. • Normal System Mode: The AUX – SYSTEM STATUS page lists each LRU and the reported software version. • Configuration Mode: The SYSTEM STATUS page (SYSTEM page group) reports more detailed LRU information, including software version, part number, and LRU status. Software files are loaded to LRUs from the SYSTEM UPLOAD page in configuration mode. See Section 3.9.2. 3.8.4 Configuration File Descriptions There are configuration files for baseline settings and various options. Configuration files contain preset selections for input/output channels, aircraft-specific settings, and LRU-specific settings. IMPORTANT! Certain software and configuration files are REQUIRED to be re-loaded during maintenance that involves removal and replacement of G1000 equipment. Refer to Section 7 for re-configuration requirements for each G1000 LRU. Pay special attention to the configuration of options for the G1000. Page 3-16 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.8.5 Configuration File Storage The G1000 system is designed to store all configuration settings in various places so that the configuration is retained in the aircraft during maintenance of units. During system configuration, each file is sent directly to the applicable LRU where it is stored in local LRU memory (reference Figure 3-14.) Each file is also stored in the PFD internal memory. The applicable PFD also sends a copy of all configuration files to the ‘Master Configuration module’, located in the connector backshell (see Section 6.16). If the PFD is replaced, the configuration module retains all configuration files in the aircraft. The GRS 77/7800, GMU 44 and GDC 7400 configuration/calibration (reference Figure 3-15) is different than the LRU’s shown in Figure 3-14. G1000 Master Configuration Module (located in PFD backshell connector) GMC 710 Master configuration module contains identical backup configuration files of PFD configuration memory. PFD cross-checks these backup files against files contained with PFD memory. PFD selfconfigures to match master configuration module. Contains ‘ACTIVE’ settings. Uses PFD internal configuration files for backup. RS-232 No. 1 GDU 1040A PFD Contains ‘ACTIVE’ PFD settings. Represents ‘SET’ column for all LRUs. Stores all configuration files in internal memory. Uses master configuration module for backup. GDU 1500 MFD Contains ‘ACTIVE’ MFD settings. The MFD uses PFD internal configuration files for backup. No. 1 GIA 63W No. 2 GIA 63W RS-232 Contains ‘ACTIVE’ settings. Uses PFD internal configuration files for backup. RS-485 Contains ‘ACTIVE’ settings. Uses PFD internal configuration files for backup. No. 1 GTX 33/3000 Contains ‘ACTIVE’ settings. Uses PFD internal configuration files for backup. GMA 1347D Contains ‘ACTIVE’ GMA settings. Uses PFD internal configuration files for backup. RS-232 RS-232 No. 1 GEA 71 No. 2 GDU 1040A PFD Contains ‘ACTIVE’ PFD settings. Represents ‘SET’ column for all LRUs. Stores all configuration files in internal memory. Uses master configuration module for backup. Contains ‘ACTIVE’ settings. Uses PFD internal configuration files for backup. RS-232 RS-485 (ETHERNET) RS-232 GMA 1347D Contains ‘ACTIVE’ GMA settings. Uses PFD internal configuration files for backup. RS-232 HIGH-SPEED DATABUS GCU 477 Contains ‘ACTIVE’ settings. Uses PFD internal configuration files for backup. No. 2 GTX 33/3000 Contains ‘ACTIVE’ settings. Uses PFD internal configuration files for backup. No. 2 GEA 71 Contains ‘ACTIVE’ settings. Uses PFD internal configuration files for backup. RS-485 RS-485 GDL 69A GWX 68/70 Contains ‘ACTIVE’ settings. Uses PFD internal configuration files for backup. Contains ‘ACTIVE’ settings. Uses PFD internal configuration files for backup. Figure 3-14, G1000 LRU Configuration File Storage G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-17 Revision 4 The GRS 77/7800 AHRS and GMU 44 Magnetometer do not have a configuration file. However, the GRS does store calibration data acquired during the post installation checkout, which are characteristic to the specific installation. A copy of this calibration data is stored in the GRS configuration module. While performing maintenance on these units, re-calibration may be required. See Section 7.7.1 for more information on re-calibration criteria. The GDC 7400 air data computer configuration file is loaded directly to GDC 7400 internal memory and there is no configuration module for the GDC 7400. Figure 3-15, GRS/GDC Configuration Settings Storage Page 3-18 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.9 G1000 Software/Configuration Procedure This section summarizes the procedures required to load software and configuration files to the G1000. It is intended to work as a central guide for technicians to use while performing maintenance on the aircraft. In sections of this manual where software is required to be reloaded, these sections will make reference back to this Section for instructions. The technician should use proper judgment regarding the context of maintenance required while following this section. The following diagram depicts an overview of the software/configuration sequence for the G1000 system. This applies mostly to a new G1000 system which has not previously been powered up and is for informative purposes only. Figure 3-16, Software/Configuration Overview G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-19 Revision 4 3.9.1 MFD & PFD Software Load Follow this procedure to load software to either PFD or the MFD. 1. Connect a ground power unit to the external power receptacle and turn on the ground power unit. 2. Set the BAT, EXT PWR and AVIONICS MASTER PWR switches to ON. 3. With the G1000 system powered on, pull the MFD, PFD 1 (PRI), PFD 1 (SEC), and PFD 2 circuit breakers. 4. Insert the software loader card into top card slot in the desired PFD or MFD. See Section 3.8.2 for information on creating or obtaining a software loader card. NOTE If loading software to all displays, it is preferred to load PFD 2 first, followed by the MFD and then PFD 1. 5. Start the PFD or MFD in configuration mode as described in Section 3.7. 6. Press the ENT key or the sofkey labeled ‘YES’ to acknowledge the following prompt (see also note below for MFD): NOTE For the MFD, use the far right soft key on the MFD in lieu of the ENT key where called out in Steps 3 through 6. The ENT key for the MFD is located on the GCU 477 FMS controller and may not function prior to software load. 7. New software is loaded to the PFD or MFD unit and the following screen is displayed: 8. Press the softkey labeled ‘YES’. Note that the splash screen may need to be loaded again after all software and configuration loading is completed. 9. When complete, the display starts in configuration mode displaying the “System Status” page. Do not remove power. 10. Remove the Loader Card from the display and insert it into the top card slot on another display if desired. Repeat Steps 5 through 9 as needed. IMPORTANT! For the rest of the software/configuration procedure, do not operate the MFD or PFD 2 while loading software or configuration files unless specifically instructed to do so. A failed or cancelled load may result. Page 3-20 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.9.2 G1000 System Software Upload The System Upload page allows a technician to load LRU software and system configuration files individually or in an automated sequence. Depending on what maintenance is performed, software and/or configuration files may need to be reloaded to LRUs. Follow the steps below as a guide to use the System Upload page. IMPORTANT! Do not allow power to be removed from the system when loading software. Remove power only when instructed by the following procedure. As a general rule, all displays should be in the same mode (configuration or normal) unless instructed otherwise. 1. Ensure loader card is inserted into top card slot of PFD1 and PFD1 is in configuration mode. On PFD1, select the “System Upload” page using the PFD1 small FMS knob. 2. Activate the cursor and use the PFD1 small FMS knob to highlight the GROUP field. Scroll small FMS knob to select the appropriate airframe (King Air 300 Series PT6A-60A or King Air B300 Series PT6A-60A). Press the PFD1 ENT key to select the configuration. Figure 3-17, Airframe Options 3. Once an airframe type is selected the cursor moves to the ITEM window. Rotate the PFD1 small FMS knob to activate the drop-down menu. Move the cursor to highlight the appropriate propeller configuration for the aircraft and press ENT on PFD1. Figure 3-18, Propeller Options 4. Once the propeller type is selected the cursor moves to the PRODUCT window. Select the software and/or configuration which is to be loaded for each G1000 LRU. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-21 Revision 4 NOTE The PRODUCT window displays information regarding each G1000 LRU. The LRU column depicts the reported software version of the LRU, whereas the CARD VERS column shows the LRU software version stored on the Loader Card. If an inequality between the LRU VERS and CARD VERS columns is detected, the SOFTWARE and CONFIGURATION boxes will be pre-selected (checked) for each LRU reporting a different software version than the one on the card. The following softkeys provide an easy way to select files: CHK ALL: Selects all files, both configuration and software CHK SW: Selects all SW files only. CHK CFG: Selects all configuration files only. CLR ALL: Clears all selections. LOAD: Starts the software loading process. NOTE When loading a new software image or re-loading software to a particular LRU, it may not be necessary to reload all software and configuration files. The technician should be sure of the software requirements and load the appropriate files, including any options. If there is any doubt, the CHK ALL softkey is recommended. Except where specifically noted, the procedures that follow (including subsequent sections) are for 0985.07 and later software versions. Earlier software versions have similar loading procedures and may use slightly different nomenclature. 5. After verifying that the desired software and configuration files are checked, press the LOAD softkey. The G1000 system automatically begins loading software and default configuration files to the selected LRUs in the proper order. Figure 3-19, Configuration/Software Load Page 6. Observe software loading progress and verify software load completes without errors as indicated by the following: • • Green “PASS” or White “N/A” in SOFTWARE and CONFIGURATION columns. “Upload Complete………….COMPLETE” in the summary box. 7. Press PFD1 ENT key to acknowledge the “Upload Complete” box. Page 3-22 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.9.3 Software Load Confirmation Anytime software and configuration loading procedures are accomplished during maintenance, conduct a final software review of the system. 1. Start the G1000 system in Configuration Mode as described in Section 3.7. 2. Press the small FMS knob to activate the cursor on the System Status page of the PFD or MFD. 3. Highlight each of the items in the LRU window by activating the cursor (pushing the FMS knob as required) to verify the software part number and version displayed matches with the information in the General Arrangement drawing listed in Table 1-2. IMPORTANT! It is essential that the software versions be checked and matched against the listed versions in the General Arrangement drawing listed in Table 1-2. Software Configuration is a critical part of the G1000 operation and must be verified before returning an aircraft to service. If any software version and/or part number does not match those specified by the General Arrangement drawing, or if the software is not successfully loaded, DO NOT continue. Troubleshoot and resolve the issue before continuing. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-23 Revision 4 3.10 Non-Garmin TAS/TCAS I Traffic System Option Configuration Follow this procedure to enable a non-Garmin TAS/TCAS I traffic system function for the G1000 system if required. NOTE The G1000 can only be configured for TIS or TAS/TCAS I, but not both. Performing this procedure will automatically disable the TIS function. Coordinate this configuration with section 7.13 “Non-Garmin Traffic System (TAS/TCAS I) Functional Check”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “System Upload” page on PFD1 using the small FMS knob. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Airframe Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - Traffic System Option”. Press ENT key on PFD1. 4. Verify the “King Air - Traffic System Option” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. Page 3-24 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.11 GTS 820/850 Traffic System Configuration Follow this procedure to enable the GTS 820/850 traffic system function for the G1000 system if required. NOTE The G1000 can only be configured for TIS or TAS/TCAS but not both. Performing this procedure will automatically disable the TIS function. Coordinate this configuration with Section 7.27 “GTS Traffic System Functional Check”. NOTE Configuration of the GTS 820/850 TAS/TCAS I will require the GTS system to be configured with the aircraft mode S address. Coordinate this configuration with Section 3.45 “Aircraft Registration Number Entry”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “System Upload” page on PFD1 using the small FMS knob. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Garmin Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - GTS 8XX TAS/TCAS1”. Press ENT key on PFD1. 4. Verify the “King Air - GTS 8XX TAS/TCAS1” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration and Software columns for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-25 Revision 4 3.12 GTS Processor Follow this procedure to enable the GTS Processor traffic system function for the G1000 system if required. NOTE Configuration of the GTS Processor will require the GTS system to be configured with the aircraft mode S address. Coordinate this configuration with Section 3.45 “Aircraft Registration Number Entry”. The default configuration for the GTS system is TAS. See Section 3.43 for TCAS I enable and Section 3.44 for TCAS II enable. Coordinate the GTS Processor (TAS) configuration with Section 7.27 “GTS Traffic System Functional Check”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “System Upload” page on PFD1 using the small FMS knob. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Garmin Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - GTS Processor”. Press ENT key on PFD1. 4. Verify the “King Air - GTS Processor” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration and Software columns for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. Page 3-26 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.13 GTX 33/33D Configuration Do not perform this step if the TCAS II System Option was loaded per Section 3.29. Follow the procedures outlined in this section to load the necessary software and configuration files to enable the GTX33/33D transponders. Coordinate the GTX 33/33D configuration with Section 7.5 “GTX 33( ) or GTX 3000 Transponder”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “System Upload” page using the PFD1 small FMS knob. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Garmin Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - GTX 33ES”. Press ENT key on PFD1. 4. Verify “King Air - GTX 33ES” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration and Software columns for each item loaded • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-27 Revision 4 3.14 GTX 3000 Configuration This STC only certifies the GTX 3000 interfacing with the Garmin TCAS II. The GTX 3000 is compatible with other suppliers TCAS II system but it’s not part of this STC and therefore it cannot be installed with a third-party TCAS II system. Coordinate the GTX 3000 configuration with Section 7.5 “GTX 33( ) or GTX 3000 Transponder”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “System Upload” page using the PFD1 small FMS knob. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Garmin Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - GTX 3000”. Press ENT key on PFD1. 4. Verify “King Air - GTX 3000” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration and Software columns for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. Page 3-28 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.15 GDL 59 Wi-Fi Data Link Option Configuration Follow this procedure to enable the optional GDL 59 Wi-Fi data link function. NOTE If the GDL 59 option is reloaded for any reason, the GSR 56 option must also be reloaded per Section 3.16. Coordinate the GDL 59 configuration with Section 7.29 “GDL 59 Wi-Fi Data Link Functional Check”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Garmin Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - GDL 59”. Press ENT key on PFD1. 4. Verify “King Air - GDL 59” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in Configuration and Software columns for each item loaded • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-29 Revision 4 3.16 GSR 56 Satellite Receiver with GDL 59 Wi-Fi Data Link Option Configuration Follow this procedure to enable the optional GSR 56 Satellite Receiver with GDL 59 Wi-Fi data link function. NOTE If the GSR 56 option is reloaded for any reason and the airplane is configured with a GDL 59, the GDL 59 option must also be reloaded per Section 3.15. Coordinate the GSR 56 configuration with Section 7.30 “GSR 56 Satellite Receiver Functional Check”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Garmin Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air – GSR 56 with GDL 59”. Press ENT key on PFD1. 4. Verify “King Air – GSR 56 with GDL 59” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in Configuration and Software columns for each item loaded • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. Page 3-30 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.17 GSR 56 Satellite Reciever Stand-Alone Option Configuration Follow this procedure to enable the optional GSR 56 satellite receiver function when installed as a standalone option. Stand-alone GSR 56 configurations do not require the GDL 59 Wi-Fi data link software configuration/installation. Coordinate the GSR 56 stand-alone configuration with Section 7.30 “GSR 56 Satellite Receiver Functional Check”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Garmin Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - GSR 56 Stand Alone”. Press ENT key on PFD1. 4. Verify “King Air - GSR 56 Stand Alone” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-31 Revision 4 3.18 GRS 77 AHRS Software/Configuration Follow this procedure to configure the GRS 77 AHRS if installed. Refer to section 3.19 if the GRS 7800 AHRS are installed. Coordinate the GRS 77 configuration with Section 7.7 “GRS 77 or GRS 7800 AHRS / GMU 44 Magnetometer”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Garmin Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - GRS 77”. Press ENT key on PFD1. 4. Verify “King Air – GRS 77” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column and Software column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. Page 3-32 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.19 GRS 7800 AHRS Software/Configuration Follow this procedure to configure the GRS 7800 AHRS if installed. Refer to section 3.18 if the GRS 77 AHRS are installed. Coordinate the GRS 7800 configuration with Section 7.7 “GRS 77 or GRS 7800 AHRS / GMU 44 Magnetometer”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Garmin Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - GRS 7800”. Press ENT key on PFD1. 4. Verify “King Air - GRS 7800” is displayed in the “Item” window. Press “LOAD” softkey 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column and Software column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-33 Revision 4 3.20 GWX 68 Software/Configuration Follow this procedure to configure the GWX 68 Weather Radar if installed. Refer to section 3.21 if the GWX 70 Radar is installed. Coordinate the GWX 68 configuration with Section 7.12 “GWX 68 or GWX 70 Weather Radar”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Garmin Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - GWX 68”. Press ENT key on PFD1. 4. Verify “King Air - GWX 68” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column and Software columns for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. Page 3-34 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.21 GWX 70 Software/Configuration Follow this procedure to configure the GWX 70 Weather Radar if installed. Refer to section 3.20 if the GWX 68 Radar is installed. Coordinate the GWX 70 configuration with Section 7.12 “GWX 68 or GWX 70 Weather Radar”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Garmin Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - GWX 70”. Press ENT key on PFD1. 4. Verify “King Air - GWX 70” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column and Software columns for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-35 Revision 4 3.22 GMU 44 Software/Configuration Follow this procedure to configure the GMU 44 magnetometers. Coordinate the GMU 44 configuration with Section 7.7, “GRS 77 or GRS 7800 AHRS / GMU 44 Magnetometer”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Garmin Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - GMU 44”. Press ENT key on PFD1. 4. Verify “King Air - GMU 44” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration and Software columns for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. Page 3-36 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.23 TAWS-A Support Configuration This section applies only to installations with the TAWS-A option. The procedures outlined in this section must be followed to load the necessary configuration files required to enable TAWS-A gear and flap messages. A TAWS-A enable card is also required for this option (see Section 3.38). 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS to highlight “King Air – Airframe Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - TAWS-A Support”. Press ENT key on PFD1. 4. Verify the “King Air -TAWS-A Support” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-37 Revision 4 3.24 TAWS-A Voice No Callout Option Configuration This section applies only to installations with the TAWS-A option. If TAWS-A voice callouts (400, 300, 200, 100) are not desired, follow the procedures outlined in this section to load the necessary configuration files to disable TAWS-A voice callouts. Coordinate the TAWS-A Voice No Callout Option configuration with Section 7.16 “TAWS Functional Check”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Airframe Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - TAWS-A No Voice Callout Installation Option”. Press ENT key on PFD1. 4. Verify the “King Air - TAWS-A No Voice Callout Installation Option” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. Page 3-38 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.25 TAWS-A Voice Callout Option Configuration This section applies only to installations with the TAWS-A option. This step is necessary only if TAWSA voice callouts (400, 300, 200, 100) have been disabled and are now desired. TAWS-A voice callouts are the default configuration. Follow the procedures outlined in this section to load the necessary configuration files to enable TAWS-A voice callouts. Coordinate the TAWS-A Voice Callout Option configuration with Section 7.16 “TAWS Functional Check”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Airframe Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - TAWS-A Voice Callout Installation Option”. Press ENT key on PFD1. 4. Verify the “King Air - TAWS-A Voice Callout Installation Option” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-39 Revision 4 3.26 ADF Option Configuration This section loads the necessary configuration files for those aircraft equipped with an ADF. Coordinate the ADF configuration with Section 7.21 “ADF Functional Check”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Airframe Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - ADF Option”. Press ENT key on PFD1. 4. Verify the “King Air - ADF Option” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. Page 3-40 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.27 DME Option Configuration This section loads the necessary configuration files for those aircraft equipped with a DME. Coordinate the DME configuration with Section 7.20 “DME Functional Check”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Airframe Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - DME Option”. Press ENT key on PFD1. 4. Verify the “King Air - DME Option” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-41 Revision 4 3.28 RAD ALT Option Configuration This section loads the necessary configuration files for those aircraft equipped with a radar altimeter. When all sub-sections are complete, coordinate the RAD ALT configuration with Section 7.22 “GRA 5500 Radar Altimeter Functional Check”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Airframe Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - RAD ALT Option”. Press ENT key on PFD1. 4. Verify the “King Air - RAD ALT Option” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. 3.28.1 GRA Software Installation 1. Go to www.garmin.com and click on the Dealer Resource Center link in the lower portion of the home page. Enter username and password. 2. Select Technical Tools then select Software Downloads. 3. In the Keyword(s) filter, enter “GRA” and click on the Go button. Page 3-42 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 4. A screen similar to the one shown below will appear. The numbers shown are for example only. 5. Click on the download symbol for the appropriate Sensor and Main software version part numbers based upon the information provided in Garmin GA Drawing 005-00421-03 and save the files to the local hard drive. NOTE A standard USB-A plug to USB-B plug commercial cable (not provided) is required to interface between a personal computer USB-A receptacle and the GRA 5500 USB-B receptacle installed in the wiring harness. 3.28.2 Downloading and Installing the GRA 5500 Retrofit Installation Tool GRA 5500 configuration, calibration, diagnostics, and software upgrades are performed (in retrofit/nonGIFD installations) using a personal computer (installed with Microsoft Windows XP or later) and the GRA 5500 Retrofit Installation Tool, Garmin part number 006-A0451-00. This tool is also used to assist in the diagnosis and resolution of asserts found in the GRA 5500 assert log during the installation process and during post-installation flight operation. The tool is available for download from the Dealer Resource Center portion of the Garmin website (www.garmin.com). See the accompanying “readme” file in the tool’s installation directory for the latest instructions. NOTE A standard USB-A plug to USB-B plug commercial cable (not provided) is required to interface between a personal computer USB-A receptacle and the GRA 5500 USB-B receptacle installed in the wiring harness. Installation 1. Once downloaded, launch the installation file from the directory in which it is stored (or use the web browser’s download shortcuts). 2. The GRA 5500 Retrofit Installation Tool Setup Wizard will begin. 3. Click “Next” as prompted by the setup wizard, and adjust any settings (e.g. installation directory) as needed. 4. The last screen of the setup wizard will show “Installation Complete.” Click the “Close” button to close the setup wizard. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-43 Revision 4 NOTE Depending on the computer’s security settings, Windows may prompt the installer to allow the installation software to make changes to the computer. The installer will need access to install hardware drivers, program files, and shortcuts. The application may be uninstalled at any time through the Windows Control Panel. 3.28.3 GRA 5500 Calibration The following actions must be performed after initial installation of the Garmin GRA 5500: 1. Connect a PC (that has the GRA 5500 Retrofit Installation Tool installed) to the GRA 5500 via a USB cable to the installed USB Pigtail located near the GRA 5500. 2. Start the GRA 5500 Retrofit Installation Tool from the “Start Menu” shortcut, or launch the application from its program folder. 3. Power-up the GRA 5500 by applying aircraft power. 4. The connection status in the lower, right-hand corner of the GRA 5500 Retrofit Installation Tool will transition from “Not Connected,” to “Connecting,” and finally to “Connected” once the GRA 5500 is powered. 5. In the GRA 5500 Retrofit Installation Tool, click on Tools Æ Preferences Æ Advanced Tab Æ Select Allow Airframe Options. 6. Airframe Options window will be visible under the configuration tab. Select Option 1 and Option 2. Note: Aircraft option 1: 4 dB cables Aircraft option 2: NCD curve adjusted for 3 foot installs 7. Click “Save Configuration to Unit” 8. On the Status Tab, click “Initiate Calibration Procedure” 9. Verify that the GRA 5500 Retrofit Installation Tool display a progress dialog during the calibration procedure and automatically close once the calibration procedure is completed. 10. Verify that the information displayed in the status bar indicates “0 ft” and “Normal”. Page 3-44 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.29 Non-Garmin TCAS II Traffic System Option Configuration Follow this procedure to enable a non-Garmin TCAS II traffic system function for the G1000 system if required. Do not accomplish the GTX33/33D configuration procedure per Section 3.13. NOTE The G1000 can only be configured for TIS or TCAS II but not both. Performing this procedure will automatically disable the TIS function. Coordinate this configuration with Section 7.14 “Non-Garmin Traffic System (TCAS II) Functional Check”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “System Upload” page on PFD1 using the small FMS knob. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Airframe Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - TCAS II System Option”. Press ENT key on PFD1. 4. Verify the “King Air - TCAS II System Option” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-45 Revision 4 3.30 Lightning System Option Configuration Follow this procedure to enable the lightning system option (WX-500) for the G1000 system if required. Follow Section 3.31 once the following steps are complete. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “System Upload” page using the PFD1 small FMS knob. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Airframe Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - Lightning System Option”. Press ENT key on PFD1. 4. Verify the “King Air - Lightning System Option” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. Page 3-46 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.31 Lightning System Option Configuration Load Confirmation Coordinate the StormScope configuration with Section 7.15 “ Functional Check”. 1. With PFD1 in configuration mode, use the PFD1 large FMS knob to select OTHER and the Stormscope configuration page. Figure 3-20, Stormscope Configuration Page 2. Activate the cursor to highlight the DATA field. Use the small FMS knob to open the drop down menu then select ‘Config’ and press ENT key on the PFD1. Figure 3-21, Stormscope Configuration G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-47 Revision 4 3. Verify that the DATA window shows the following: Hdg: J3-1 None: J3-2 Hdg Valid Flag Flag Sense J3-4Inhibit Off Line Antenna Bottom Mount J3-3 4. Deactivate the cursor. Jumper Jumper No Fla +invld Open Open NOTE The DATA window is only updated once every five seconds. Page 3-48 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.32 ESP Support Option Configuration This section applies only to installations with the ESP option. The procedures outlined in this section must be followed to load the necessary configuration files required to enable ESP messages and functions. An Enhanced AFCS unlock card is also required for this option (see Section 3.41). Coordinate this configuration with Section 7.26 “ESP Functional Check”. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Airframe Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - ESP Support (no AOA)”. Press ENT key on PFD1. 4. Verify “King Air - ESP Support (no AOA)” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-49 Revision 4 3.33 POTS Handset Configuration Follow this procedure to enable a POTS handset if installed. Note that the GDL 59 wi-fi data link option must be loaded per Section 3.15 prior to loading the POTS handset configuration. 1. 2. 3. 4. Power up the PFD1 in configuration mode. On the PFD1, select GDL page group using the large FMS knob. Using the small FMS knob select the GDL 59 Configuration page. Activate the cursor. Use the large FMS knob to select POTS CONNECTED in the PHONE SETTINGS field. 5. Use the small FMS knob to select YES and press the ENT key. 6. After GDL 59 is configured, press the ENT key. Page 3-50 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.34 Flight Data Recorder Option Configuration Follow this procedure to enable the optional GSD 41 Data Concentrator function which is required for interfacing to an existing flight data recorder. Table 3-1 provides a list of the parameters output on the ARINC 717 bus of the GSD 41. NOTE Parameters specified in Table 3-1 are contingent upon the current aircraft wiring. Additional parameters are available for configuration. Table 3-1, Flight Data Recorder Parameters Parameter Name Time Radio Altitude Throttle / Power Lever Position Pressure Altitude Glideslope & GPS Vertical Deviation TCAS Indicated Airspeed Localizer & GPS Lateral Deviation Fuel Quantity Heading Marker Beacon Passage Primary Navigation Reference Normal Acceleration VOR / LOC Active Frequency Ice Detection Pitch Attitude DME Distance Engine Warning – Overtemp Roll Attitude Air Ground Sensor Engine Warning – Oil Pressure Low Manual Radio Transmitter Keying Ground Proximity Warning System Engine Warning – Overspeed Engine Thrust / Power Groundspeed Yaw Trim Surface Position Outside Air Temperature Landing Gear Position / Selection Roll Trim Surface Position Autopilot / AFCS Engagement Selected Heading Yaw or Sideslip Angle Longitudinal Acceleration Selected Flight Path Computer Failure – Critical Systems Lateral Acceleration Selected Decision Height Latitude and Longitude EFIS Display Format Drift Angle Wind Vector Multifunction / Engine Alerts Format Autopilot Engagement Barometric Pressure Setting Inner Turbine Temperature (ITT) Selected Vertical Speed Selected Altitude Vertical Speed Comm Active Frequency Selected Airspeed Mach Selected Mach IMPORTANT! A separate approval is required for the installation of a Flight Data Recorder system. This configuration option only allows the G1000 to interface to a Flight Data Recorder system. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-51 Revision 4 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Airframe Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - FDR Option”. Press ENT key on PFD1. 4. Verify “King Air - FDR Option” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in Configuration and Software columns for each item loaded • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. Page 3-52 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.35 FliteCharts Configuration If ChartView has previously been enabled, and is no longer desired, follow the procedures outlined in this section to return the G1000 system to the basic FliteChart functions. If ChartView has not been enabled, the following procedure is not required. Loading of the baseline configuration for the specific airframe is required for enabling FliteChart functions. Reload the baseline configuration and all applicable options as described in Section 3.9. Reloading the baseline configuration disables all previously enabled options. NOTE The G1000 can only be configured for FliteCharts or ChartView but not both. Performing this procedure will automatically disable the ChartView function. Coordinate this configuration with Section 7.17 “FliteCharts Functional Check”. 3.36 Optional ChartView Enable Follow this procedure to activate the ChartView option. A ChartView Enable Card, as specified in 00500629-02 “General Arrangement Drawing, King Air 300/B300” will be required for this procedure. NOTE The required ChartView databases are subscription-based and are to be procured by the installing agency directly from Jeppesen. NOTE The G1000 can only be configured for FliteCharts or ChartView but not both. Performing this procedure will automatically disable the FliteChart option. Coordinate this configuration with Section 7.18 “ChartView Functional Check”. 1. With the ChartView Enable card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “Configuration Files” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - Enable ChartView”. Press ENT key on PFD1. 4. Verify “King Air - Enable ChartView” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. De-activate the cursor. 8. Power down the system and remove the ChartView Enable card from PFD1. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-53 Revision 4 3.37 Standard TAWS-B Enable Follow this procedure to enable the TAWS Class B function. A TAWS-B Enable Card, as specified on General Arrangement Drawing 005-00629-02, will be required for this procedure. NOTE The G1000 has various features that require the use of unlock/enable cards to activate the feature. Throughout this document these cards are generically referred to as ‘enable cards’. In some cases, the actual label on the physical card may say ‘unlock’. If uncertain, the technician should verify the card part number prior to use. Coordinate this configuration with Section 7.16 “TAWS Functional Check”. 1. With the TAWS-B Enable card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “Configuration Files” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - Enable TAWS”. Press ENT key on PFD1. 4. Verify “King Air - Enable TAWS” is displayed in the “Item” window. Press “LOAD”. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. De-activate the cursor. 8. Power down the system and remove the TAWS-B Enable Card from PFD1. Page 3-54 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.38 Optional TAWS-A Enable Follow this procedure to enable the TAWS Class A function. A TAWS-A Enable Card, as specified on General Arrangement Drawing 005-00629-02, will be required for this procedure. NOTE The G1000 has various features that require the use of unlock/enable cards to activate the feature. Throughout this document these cards are generically referred to as ‘enable cards’. In some cases, the actual label on the physical card may say ‘unlock’. If uncertain, the technician should verify the card part number prior to use. Ensure that the TAWS-A Support Configuration has been loaded per Section 3.10. Ensure that the RAD ALT Option Configuration has been loaded per Section 3.28. Coordinate this configuration with Section 7.16 “TAWS Functional Check”. 1. With the TAWS-A Enable card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “Configuration Files” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - Enable TAWS-A”. Press ENT key on PFD1. 4. Verify “King Air - Enable TAWS-A” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. De-activate the cursor. 8. Power down the system and remove the TAWS-A Enable Card from PFD1. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-55 Revision 4 3.39 Supplemental Database Loading 1. Open PFD1, PFD2 and MFD circuit breakers. 2. Remove the SD card containing the supplemental databases from the lower slot of the MFD. Supplemental databases include basemap, Safetaxi, airport terrain, obstacle, airport directory and terrain databases. 3. Download the current supplemental databases to the SD card. 4. Reinsert the SD card containing the current supplemental databases into the lower slot of the MFD. 5. Close PFD1, PFD2 and MFD circuit breakers. 6. The system will synchronize the data to the PFDs as necessary (FliteCharts and ChartView are located only on the MFD and do not require synchronization.) Monitor the synchronization process on the AUX – SYSTEM STATUS page in the SYNC STATUS sub-section within the DATABASE window This sub-section is only present when a sync is occurring or has occurred on the current power cycle. Figure 3-22, Supplemental Database Synchronization 7. If an error occurs during synchronization, one of the following messages will be displayed followed by the affected GDU: Err No Space – SD card does not contain sufficient memory Timeout – system timed-out prior to the database transfer completing Err – displayed for all other errors Note that a power cycle is required to restart synchronization when ‘Err No Space’ or ‘Err’ is shown. 8. When the synchronization is complete, the status is shown as ‘Complete’. 9. Cycle power to PFD1, PFD2 and MFD. 10. The supplemental databases in PFD1, PFD2 and MFD are now updated. 11. On the AUX – SYSTEM STATUS page, press the MFD1 DB softkey. Scroll through all of the databases contained in the MFD and confirm that the correct databases are loaded. 12. Press the MFD1 DB softkey again to toggle to PFD1 DB. Scroll through all of the databases contained in the PFD1 and confirm that the correct databases are loaded. 13. Press the PFD1 DB softkey again to toggle to PFD2 DB. Scroll through all of the databases contained in the PFD2 and confirm that the correct databases are loaded. Page 3-56 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.40 Optional SVS/Pathways Enable Follow this procedure to enable the Synthetic Vision option. A GDU1XXX SVS Enable Card, as specified on General Arrangement Drawing 005-00629-02, will be required for this procedure. NOTE The G1000 has various features that require the use of unlock/enable cards to activate the feature. Throughout this document these cards are generically referred to as ‘enable cards’. In some cases, the actual label on the physical card may say ‘unlock’. If uncertain, the technician should verify the card part number prior to use. NOTE The Garmin Synthetic Vision and Pathways feature requires 9 arc-second high resolution terrain databases to function. Each G1000 display must be equipped with the Terrain/Obstacle/SafeTaxi database card installed in the lower slot. NOTE When the SVS/Pathways option is enabled for the first time the G1000 writes its unique system ID to the physical card and locks the files to this unique ID. This prevents the SVS/Pathways unlock card from ever being used to activate the SVS/Pathway feature in other G1000 systems. The unlock card is tied to the specific aircraft in which it was used for the first time. This card MUST be kept with the aircraft for situations where SVS/Pathways must be re-activated. 1. With the SVS Enable card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “Configuration Files” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - Enable SVS Dual PFD”. Press ENT key on PFD1. 4. Verify “King Air - Enable SVS Dual PFD” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. De-activate the cursor. 8. Power down the system and remove the SVS Enable card from PFD1. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-57 Revision 4 3.41 Optional ESP Enable Follow this procedure to enable the Electronic Stability and Protection (ESP) function. An Enhanced AFCS Unlock Card, as specified on General Arrangement Drawing 005-00629-02, will be required for this procedure. Ensure that the “ESP Support (no AOA)” configuration has been loaded per Section 3.32. NOTE The G1000 has various features that require the use of unlock/enable cards to activate the feature. Throughout this document these cards are generically referred to as ‘enable cards’. In some cases, the actual label on the physical card may say ‘unlock’. If uncertain, the technician should verify the card part number prior to use. Coordinate this configuration with Section 7.26 “ESP Functional Check”. 1. With the Enhanced AFCS Unlock card in the top slot of PFD1 and PFD1 in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD1. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “Enhanced AFCS” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - Enable Enhanced AFCS”. Press ENT key on PFD1. 4. Verify “King Air - Enable Enhanced AFCS” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. De-activate the cursor. 8. Power down the system and remove the Enhanced AFCS Unlock Card from PFD1. Page 3-58 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.42 Optional Search and Rescue Enable Follow this procedure to enable the Search and Rescue (SAR) function. A SAR Enable Card, as specified on the General Arrangement Drawing 005-00629-02, will be required for this procedure. NOTE The G1000 has various features that require the use of unlock/enable cards to activate the feature. Throughout this document these cards are generically referred to as ‘enable cards’. In some cases, the actual label on the physical card may say ‘unlock’. If uncertain, the technician should verify the card part number prior to use. Coordinate this configuration with Section 7.31 “Search and Rescue Functional Check”. 1. With the SAR Enable card in the top slot of PFD in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on PFD. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “Enhanced SAR” and press ENT key on PFD. 3. Rotate the small FMS knob to select “Enhanced Search and Rescue”. Press ENT key on PFD. 4. Verify “Enhanced Search and Rescue” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD to acknowledge upload complete. 7. De-activate the cursor. 8. Power down the system and remove the SAR Enable card from PFD. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-59 Revision 4 3.43 Optional Garmin TCAS I Enable (From GTS 825 to GTS 855) Follow this procedure to enable TCAS I functionality when installing a GTS Processor. A TCAS I Enable Card, as specified on the General Arrangement Drawing 005-00421-03, will be required for this procedure. NOTE The G1000 has various features that require the use of unlock/enable cards to activate the feature. Throughout this document these cards are generically referred to as ‘enable cards’. In some cases, the actual label on the physical card may say ‘unlock’. If uncertain, the technician should verify the card part number prior to use. Coordinate the GTS Processor (TCAS I) configuration with Section 7.27 “GTS Traffic System Functional Check”. 1. With the TCAS I Enable card in the top slot of MFD in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on MFD. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “GTS Processor Enablement” and press ENT key on MFD. 3. Rotate the small FMS knob to select “GTS Processor TAS to TCAS I Enablement”. Press ENT key on MFD. 4. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on MFD to acknowledge upload complete. 7. De-activate the cursor. 8. Power down the system and remove the TCAS I Enable card from MFD. Page 3-60 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.44 Optional Garmin TCAS II Enable (From GTS 825 to GTS 8000) Follow this procedure to enable TCAS II function. A TCAS II Enable Card, as specified on the General Arrangement Drawing 005-00421-03, will be required for this procedure. NOTE The G1000 has various features that require the use of unlock/enable cards to activate the feature. Throughout this document these cards are generically referred to as ‘enable cards’. In some cases, the actual label on the physical card may say ‘unlock’. If uncertain, the technician should verify the card part number prior to use. Coordinate the GTS Processor (TCAS II) configuration with Section 7.27 “GTS Traffic System Functional Check”. 1. With the TCAS II Enable card in the top slot of MFD in configuration mode, select the “SYSTEM UPLOAD” page using the small FMS knob on MFD. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “GTS Processor Enablement” and press ENT key on MFD. 3. Rotate the small FMS knob to select “GTS Processor TAS to TCAS II Enablement”. Press ENT key on MFD. Press “LOAD” softkey. 4. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 5. Press ENT key on MFD to acknowledge upload complete. 6. De-activate the cursor. 7. Power down the system and remove the TCAS II Enable card from MFD. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-61 Revision 4 3.45 Aircraft Registration Number Entry NOTE This section is only applicable to those aircraft that use the GTX 33/33D or GTX 3000 transponder configuration loaded per Sections 3.13 or 3.14, respectively. There are two different procedures in this section, one for G1000 System Software Version 0985.06 (and previous) and one for G1000 System Software Version 0985.07 (and subsequent). 3.45.1 System Software Version 0985.06 and Previous 1. With PFD1 in configuration mode, select the GTX page group, then select the TRANSPONDER CONFIGURATION page on PFD1. 2. The ‘ADDRESS TYPE’ default is ‘US TAIL’. To enter a non-US Mode-S registration number set the ‘ADDRESS TYPE’ field to ‘HEX ID’. 3. Activate the cursor and highlight the ‘MODE S ADDRESS’ field. Use the small/large FMS knobs to enter the US aircraft registration number or other Mode-S registration number. Figure 3-23, Aircraft Registration 4. For US registered aircraft, the ‘FLIGHT ID TYPE’ field should be set to ‘SAME AS TAIL’. For other aircraft, the ‘FLIGHT ID TYPE’ field should be set to ‘CONFIG ENTRY’ or ‘PFD ENTRY’. NOTE The CONFIG ENTRY setting requires the Aircraft Registration/ID number to be entered once in the ‘FLIGHT ID’ field. The PFD ENTRY setting allows the pilot to enter the Aircraft Registration/ID number from the PFD, via the ‘TMR/REF’ softkey. 5. After each configuration setting change, press the ENT key to configure the transponders. 6. Press the ENT key on PFD1 to acknowledge prompt. 7. After completing transponder configuration, deactivate the cursor. Page 3-62 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.45.2 System Software Version 0985.07 and Subsequent 1. With PFD1 in configuration mode, select the AIRCRAFT CONFIGURATION page on PFD1. 2. Activate the cursor to select the “AIRCRAFT REGISTRATION” field and enter the aircraft’s tail number. 3. Rotate the large FMS knob to select the “ICAO ADDRESS” and enter the aircraft’s 24 bit ICAO address. 4. If applicable, rotate the large FMS knob to select the “IATA AIRLINE DESIGNATOR” field and enter the airline’s 2 digit airline designator code. 5. Rotate the large FMS knob to select the “VFR CODE” field and enter the desired code that will become active when the VFR key on the GDU is pressed. 6. Press the “SET GTX1” softkey and acknowledge the PFD1 prompt by pressing the ENT key. 7. Press the “SET GTX2” softkey and acknowledge the PFD1 prompt by pressing the ENT key. 8. Press the “SET GTS” softkey and acknowledge the PFD1 prompt by pressing the ENT key. 9. After completing transponder configuration, deactivate the cursor. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-63 Revision 4 3.46 GDL 69 Alternate Antenna Location Configuration NOTE This section is only applicable to those aircraft that use the alternate location to mount the GPS antennas. See drawing 005-00629-43. 1. With PFD1 in configuration mode, select the GDL69 page. 2. Press the GDU softkeys in the numerical sequence of 12 – 9 – 6 – 3 to activate the cursor: 1 2 3 4 5 6 7 8 9 10 11 12 3. Highlight the CABLE LOSS INCLUDING INLINE ATTENUATORS IS USED (NOMINAL dB) field. 4. Use the small FMS knob to select a value of 6.20, then press the ENT key on PFD1. Figure 3-24, GDL 69 Cable Loss 5. Verify GDL 69 is configured, then press the ENT key on PFD1 to acknowledge. Figure 3-25, GDL 69 Cable Loss Configured Page 3-64 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.47 BLR Winglet Option (model 300 only) Follow this procedure only if BLR Aerospace STC SA01615SE for 300/300LW series winglets is installed on the aircraft. This option changes the airspeed indicator marking for air minimum control speed (Vmca) to 95 KIAS. 1. With the loader card in the top slot of PFD1 and PFD1 in configuration mode, select the “System Upload” page using the PFD1 small FMS knob. 2. Activate cursor and rotate the small FMS knob to display the drop down menu. Rotate the small FMS knob to highlight “King Air – Options” and press ENT key on PFD1. 3. Rotate the small FMS knob to highlight “King Air - BLR winglet STC (model 300 only)”. Press ENT key on PFD1. 4. Verify “King Air - BLR winglet STC (model 300 only)” is displayed in the “Item” window. Press “LOAD” softkey. 5. Monitor load progress. Verify software load completes without errors as indicated by the following: • Green “PASS” in the Configuration column for each item loaded. • “Upload Complete………….COMPLETE” in the summary box. 6. Press ENT key on PFD1 to acknowledge upload complete. 7. Deactivate cursor. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-65 Revision 4 3.48 Splash Screen Loading When all software and configuration has been loaded, the splash screens must be loaded to all display units (PFD1, PFD2 and MFD). 1. If not applied, apply power to the G1000 system. 2. Remove power from PFD1, PFD2 and MFD by opening the PFD1 PRI/SEC, PFD2 and MFD circuit breakers. 3. Insert the software loader card in the upper slot of PFD2. 4. Apply power to PFD2. 5. When prompted to update system files, press the NO softkey. 6. When prompted to update splash screen files, press the YES softkey. 7. Remove the loader card from PFD2 and insert it into the upper slot of the MFD. 8. Apply power to the MFD and repeat steps 5 and 6. 9. Remove the loader card from the MFD and insert it into the upper slot of PFD1. 10. Apply power to PFD1 and repeat steps 5 and 6. 11. Cycle power to the MFD and splash screen will be present. NOTE Any time software and/or configuration is loaded to the system, the splash screens may need to be reloaded to all three display units. Page 3-66 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.49 Navigation Database Loading A new navigation database cycle may be loaded before it is effective. The new database will be stored on the G1000 bottom SD card until it becomes effective. The G1000 will automatically update to use the new database at the first on-ground power-on after its effectivity date. Follow this procedure to load the navigation database: 1. Remove power from the PFD1, PFD2 and MFD. 2. Insert an SD card containing the latest cycle Jeppesen navigation database (data supplied by Jeppesen) into the top slot of the MFD. 3. Apply power to the PFD1, PFD2 and MFD. A prompt similar to the following will be displayed on the MFD: 4. Select the YES softkey to confirm the standby navigation database update. 5. After the database is updated, a prompt similar to the following will be displayed on the MFD: 6. Select the NO softkey to allow the system to use the database when it becomes effective. NOTE If the new database is not yet effective but it is desired to use the new database immediately, select the YES softkey. To eliminate database mismatch errors when selecting the YES softkey, the database must also be loaded on PFD1 and PFD2 individually following the same process. 7. The system will synchronize and automatically update as necessary. Monitor the synchronization process on the AUX – SYSTEM STATUS page in the SYNC STATUS sub-section within the DATABASE window This sub-section is only present when a sync is occurring or has occurred on the current power cycle. Figure 3-26, Navigation Database Synchronization G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-67 Revision 4 8. If an error occurs during synchronization, one of the following messages will be displayed followed by the affected GDU: Err No Space – SD card does not contain sufficient memory Timeout – system timed-out prior to the database transfer completing Err – displayed for all other errors Note that a power cycle is required to restart synchronization when ‘Err No Space’ or ‘Err’ is shown. 9. When the synchronization is complete, the status is shown as ‘Complete’. 10. Cycle power to PFD1, PFD2 and MFD by resetting the PFD1 PRI, PFD1 SEC, PFD2 and MFD circuit breakers. 11. The standby navigation databases in PFD1, PFD2 and MFD are now updated. 12. On the AUX – SYSTEM STATUS page, press the MFD1 DB softkey. Scroll through all of the databases contained in the MFD and confirm that the correct databases are loaded. 13. Press the MFD1 DB softkey again to toggle to PFD1 DB. Scroll through all of the databases contained in the PFD1 and confirm that the correct databases are loaded. 14. Press the PFD1 DB softkey again to toggle to PFD2 DB. Scroll through all of the databases contained in the PFD2 and confirm that the correct databases are loaded. Page 3-68 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3.50 Configuration of Navigation Map for Traffic System 1. With the MFD in normal mode, use the GCU FMS knob to select the Navigation Map page then press GCU MENU key to display the PAGE MENU. 2. Turn the small right knob to select or verify selected ‘Map Setup’ and press the ENT key and verify TRAFFIC is selected ON. 3. Verify the flashing cursor highlights the GROUP field. 4. Turn the GCU small FMS knob to select Traffic and press ENT on GCU. 5. If not already selected, use the GCU FMS knob to make the following selections: • TRAFFIC MODE – ALL TRAFFIC • TRAFFIC SMBL – 300NM • TRAFFIC LBL – 300NM 6. Return to the Map Page by pressing the GCU FMS knob or momentarily pressing and holding the CLR key. Deactivate cursor. 3.51 Clearing Default User Settings 1. Remove power from PFD1, PFD2 and MFD by pulling the PFD1 PRI, PFD1 SEC, PFD2 and MFD circuit breakers. 2. While holding the CLR button on PFD1, reset PFD1 PRI and PFD1 SEC circuit breakers. 3. While holding the CLR button on PFD 2, reset the PFD2 circuit breaker. 4. While holding the second key from the right side of the MFD (beginning on the right side of the MFD, count 2 keys to the left), reset the MFD circuit breaker. 5. When prompted to clear user settings, select the YES softkey on each unit. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 3-69 Revision 4 This page intentionally left blank. Page 3-70 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 4.2 Servicing Information G1000/GFC 700 LRU maintenance is ‘on condition’ only. No component-level overhaul is required for the G1000/GFC 700 installation. 4.2.1 On Condition Servicing ‘On Condition’ replacement and/or servicing should occur when an item exhibits conditions, symptoms, and/or abnormalities defined in Section 1 of this manual. Replacement and/or servicing should be made only after the technician troubleshoots the system to the extent determined necessary by using the guidance in this manual along with common avionics maintenance practices. IMPORTANT! It is impossible to provide guidance for every conceivable failure scenario within the scope of this manual. Every effort has been made to provide comprehensive guidance for possible failures. The information in this document should always be combined with sound aviation maintenance practices and a thorough knowledge of the system. Use sound avionics maintenance practices when working around or on G1000 equipment. The remainder of this document is organized in the following fashion: • Section 4.3 lists maintenance requirements related to the G1000 system. • Section 6 gives instructions regarding the removal and replacement of physical G1000 equipment and parts. • Section 7 gives configuration and testing instructions to be accomplished if G1000 equipment or parts are removed or replaced. • Section 8 specifies system return-to-service procedures. The beginning of Section 6 provides instructions to check the software part number and version of each LRU before removing a unit. Procedures in Section 7 require the same check after LRU replacement and software loading. IMPORTANT! All structural repairs associated with this installation are to be addressed in accordance with the Hawker Beechcraft Structural Inspection and Repair Manual listed in Table 1-2. NOTE After replacing or servicing electrical components near the GMU 44 magnetometers, the Magnetometer Interference Test (reference Section 5) and Magnetometer Calibration Procedure (reference Section 7) must be performed. Page 4-2 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 4.2.2 Required Tools The following tools are needed to perform maintenance tasks on G1000 equipment: • Calibrated Milli-ohm meter, OR • Agilent 34410A Ammeter or equivalent • Fluke 187 Voltmeter or equivalent • Variable DC Power Supply capable of providing 1 amp current • #2 Non-Magnetic Phillips Screwdriver • 3/32” Hex tool • Calibrated digital level (Required for AHRS ‘Procedure A’ Calibration) • Calibrated VHF NAV/COM/ILS ramp tester or equivalent • Calibrated transponder ramp tester or equivalent • Calibrated pitot/static ramp tester • Outdoor line-of-site to GPS satellite signals or GPS indoor repeater • Headset/microphone • Ground Power Unit (Capable of supplying 28 Vdc) • Calibrated Flight Control Cable Tension Meter or equivalent • 2 Amp, 24 V, DC Power Supply • Calibrated torque wrench capable of measuring 0 – 70 in/lbs • Standard sockets & wrenches (3/8”, 9/16”, and 13/16”) • Calibrated digital thermometer suitable for measuring ambient temperature • Laptop with RS232 emulation software • M22885/108T8234 extraction tool • An 0.060” 6-Spline wrench 4.2.3 Special Tools The following tools are needed to perform maintenance tasks on G1000 equipment and/or installation: • Servo Gearbox Slip Clutch Adjustment Tool – Garmin P/N T10-00110-01 • WX-PA portable analyzer kit, Part Number 78-8060-5791-1 (If Stormscope is installed) • Gauging Equipment Tool SPF-4 (A1M-BCH-GE) * • For software loader code 0985.07 – GRA 5500 Sensor and Main Software (If GRA 5500 is installed) – Garmin P/N per GA Drawing 005-00421-03 obtained from www.garmin.com website from instructions in Section 3.28.1 • For software loader code 0985.07 – GRA 5500 Retrofit Tool (If GRA 5500 is installed) – Garmin P/N 006-A0451-00 obtained from www.garmin.com web-site from instructions in Section 3.28.2 * The gauging equipment tool is used for the static port inspection for RVSM compliant aircraft only. This tool is available from Hawker Beechcraft. Any alternate tool authorized in the Super King Air 300 or B300 Maintenance Manual for RVSM static port measurements may be substituted for this tool. Refer to Chapter 34-10-00 of the Super King Air 300 or B300 Maintenance Manual for more details. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 4-3 Revision 4 4.3 Maintenance Intervals Table 4-1 shows systems and items, installed by this STC, which must undergo tests or checks at specific intervals. If the interval is shown to be in flight time as well as calendar months, the first interval reached should be used as the limit. The inspection time tables used for this STC are aligned with the existing maintenance 200 hr phase inspection program used in the current Super King Air 300 or B300 Maintenance Manual. A complete inspection cycle for the King Air 300/B300 is 800 hours or 24 calendar months, divided into the following four phases: Inspection Phase 1: To be performed at 200 hours and every 800 hours thereafter. Inspection Phase 2: To be performed at 400 hours and every 800 hours thereafter. Inspection Phase 3: To be performed at 600 hours and every 800 hours thereafter. Inspection Phase 4: To be performed at 800 hours and every 800 hours thereafter. Those inspections that are based on flight time, calendar elapsed time or cycles shall have specific intervals stated in Table 4-1. IMPORTANT! As allowed in the Super King Air 300 or B300 Maintenance Manual, a tolerance of +/- 20 hours for all phase inspections. Special Inspection Items - Calendar limited inspections have a tolerance of ± 12 days per 12 calendar months. The intention of Garmin is to align this maintenance program as best possible with the existing King Air 300/B300 inspection program. For a complete description of the King Air inspection program, refer to the Super King Air 300 or B300 Maintenance Manual listed in Table 1-2. Table 4-1, Maintenance Intervals Item Description/Procedure Manual Section No. Interval G1000/GFC700 Equipment G1000/GFC700 System Visual Inspections Page 4-4 Revision 4 Complete Visual Inspection of GWX 68 or GWX 70 Equipment and Wiring located in Nose Section (Table 4-3) Complete Visual Inspection of G1000/GFC700 Equipment and Wiring located in Nose Avionics Compartment (Table 4-4) Complete Visual Inspection of G1000/GFC700 Equipment and Wiring located in Pilot’s Compartment (Table 4-5) Complete Visual Inspection of G1000/GFC700 Equipment and Wiring located on and behind Instrument Panel (Table 4-6) Complete Visual Inspection of G1000/GFC700 Equipment and Wiring located in Cabin (Table 4-7) Complete Visual Inspection of G1000/GFC700 Equipment and Wiring located in Rear Fuselage and Empennage (Table 4-8) 4.4 4.4 4.4 4.4 4.4 4.4 Phase 4 Phase 4 Phase 3 Phase 3 Phase 3 Phase 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Manual Section No. Interval GFC700 Periodic Check Verify proper operation of the GFC700 by performing the following: Pre-Flight Test AFCS Switch Checks Autopilot Operation Checks Autopilot Clutch Overpower Check 8.2.1, 8.2.2, 8.2.5 8.2.3 Phase 2 and 4 TAWS Functional Check Periodic TAWS function check 7.16 Phase 4 GDU 1040A PFD (Qty 2) Removal & Replacement 6.1 On Condition GDU 1500 MFD Removal & Replacement 6.1 On Condition Removal & Replacement 6.2 On Condition GMA 1347D Test 7.2.1 Phase 2 and 4 Landing Gear Aural Alert Check 7.2.2 Phase 2 and 4 XM Audio Suppression Check 7.2.3 Phase 2 and 4 Item Description/Procedure GMA 1347D (Qty 2) GIA 63W IAU (Qty 2) 6.3 Removal & Replacement GEA 71 EAU (Qty 2) GTX 33( ) or GTX 3000 Transponder (Qty 2) On Condition 6.4 Removal & Replacement Special Inspection - Perform GTX 33( ) or GTX 3000 test. Removal & Replacement 6.5 On Condition 7.5.2 24 Calendar Months 6.6 On Condition 7.6.1 24 Calendar Months 7.25 24 Calendar Months, On Condition (see note) GDC 7400 (Qty 2) Special Inspection – Perform Air Data Test. RVSM checks GRS 77 or GRS7800 AHRS (Qty 2) Special inspection – for RVSM compliant aircraft only NOTE: These checks required for initial RVSM compliance. These checks also required when: • a static port is removed/installed • the RVSM critical region is repaired or painted Removal & Replacement 6.8 Magnetic variation database update 4.6 GMU 44 Magnetometer (Qty 2) 6.9 GDL 69A 6.10 GWX 68 or GWX70 6.15 GMC 710 Removal & Replacement On Condition 6.14 GCU 477 6.13 GTS 820/850 Traffic Unit 6.31 GPA 65 PA/LNA Unit 6.32 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 4-5 Revision 4 Item Description/Procedure Manual Section No. GTS Traffic Processor 6.37 GRA 5500 6.38 GDL 59 Wi-Fi Datalink Removal & Replacement 6.34 GSR 56 Satellite Receiver 6.35 GSD 41 Data Concentrator 6.36 G1000 Cooling Fan Fail Annunciation Check* For aircraft equipped per MDL 005-0062900 Rev 6 or previous revision and not modified per GarminService Bulletin 1375: Verify the operation of the fan power and fan speed monitoring circuits for GIA1 fan and GIA2 fan Interval On Condition 8.1.4 220 hours max 8.1.4 820 hours max 8.1.4 820 hours max 4.14 220 hours max 4.14 820 hours max 4.15 820 hours max NOTE: See Section 6.29, Figure 6-6, for identification of cooling fan installation applicable for this maintenance interval. G1000 Cooling Fan Fail Annunciation Check For aircraft equipped per MDL 005-0062900 Rev 7 or latest FAA approved revision, or modified per Garmin Service Bulletin 1375: Verify the operation of the fan power and fan speed monitoring circuits for GIA1 fan and GIA2 fan NOTE: See Section 6.29, Figure 6-7, for identification of cooling fan installation applicable for this maintenance interval. G1000 Cooling Fan Fail Annunciation Check Verify the operation of the fan power and fan speed monitoring circuits for PFD1 fan, MFD fan and PFD2 fan and fan fail messages Nose Avionics Compartment Fans Operational Check* For aircraft equipped per MDL 005-0062900 Rev 6 or previous revision and not modified per Garmin Service Bulletin 1375: Functional test of the GIA1 and GIA2 ported fans. Verify airflow from all fan ports NOTE: See Section 6.29, Figure 6-6, for identification of cooling fan installation applicable for this maintenance interval. Nose Avionics Compartment Fans Operational Check Instrument Panel Fans Operational Check For aircraft equipped per MDL 005-0062900 Rev 7 or latest FAA approved revision, or modified per Garmin Service Bulletin 1375: Functional test of the GIA1 and GIA2 ported fans. Verify airflow from all fan ports NOTE: See Section 6.29, Figure 6-7, for identification of cooling fan installation applicable for this maintenance interval. Functional test of the PFD1, MFD and PFD2 cooling fans. Verify airflow from each fan * Denotes Airworthiness Limitation Maintenance Requirement (See Section 4.1) Page 4-6 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Description/Procedure Manual Section No. Interval G1000 Redundant Connection Check* Verify PRI and SEC power sources for PFD 1, GIA 1, GRS 1, GDC 1 Verify secondary paths for AHRS, ADC, engine parameters and GPS data Verify the operation of PFD and MFD Ethernet connections Verify ARINC connection between ADC1 and MFD and between GRS1 and MFD Verify DISPLAY BACKUP button function 4.10 220 hours max Engine Data Check* Verify engine data is available and accurate with GIA 1 or GIA 2 inoperative 4.11 820 hours max Trim Annunciator Check* Verify trim annunciators function properly 4.12 220 hours max G1000 Miscompare Check* Verify AHRS, airspeed and altitude miscompare monitors function properly 4.13 820 hours max G1000 Alerts Check for and troubleshoot any alerts provided in the alert window per the referenced manual section 5.1 On Condition 6.18 On Condition 6.19 On Condition 6.20 On Condition Wi-Fi Antenna 6.21 On Condition GA 58 Traffic Antennas 6.33 On Condition Item GPS/WAAS Antennas Diversity Transponder Antenna Iridium antenna Removal & Replacement Refer to Master Drawing List, listed in Table 1-2, for installation drawings. Flaps-in-motion Discrete Input Check Test the Flaps-in-motion discrete inputs to the G1000 to verify proper operation. 4.8 Phase 1, 2, 3 & 4 GSA 80 and GSA 9000 Servos Removal & Replacement. Refer to Master Drawing List, listed in Table 1-2, for installation drawings. 6.11 On Condition GSM 86 and GSM 9100 Servo Gear Box Removal & Replacement. Refer to the servo install drawings listed in Master Drawing List, listed in Table 1-2. 6.12 On Condition GSM 86 Slip Clutch Torque Check * Verify that the pitch, roll and pitch trim GSM 86 slip clutch torque values are within acceptable limits. 4.9 Special 3,000 hrs max GSM 9100 Servo Gear Box Remove the GSM 9100 yaw servo gear box and send to Garmin for servicing 6.12 Special 20 years max Rudder Boost Operation Check Verify the Rudder Boost operation and annunciation. 4.17 Phase 1, 2, 3 & 4 WOW and Low Speed Awareness Band Check* Verify the integrity of the wiring interface between the landing gear safety switch assembly and the No. 1 and No. 2 GIA inputs and the air ground status logic. 7.24 220 hours max * Denotes Airworthiness Limitation Maintenance Requirement (See Section 4.1) G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 4-7 Revision 4 Item Exterior skin inspection around antennas* Description/Procedure Manual Section No. Interval 4.18 Special 10,000 cycles (initial) 1,000 cycles (repeat) Inspect the exterior skin around antennas for cracks and loose and missing fasteners. G1000 Accessories Configuration Module (Qty 5) 6.16 GEA 71 Backshell Thermocouple (Qty 2) 6.17 GTP 59 OAT Probe (Qty 2) Annunciator/Switch – 6.7 On Condition Removal & Replacement 6.24 Emergency Frequency GIA Cooling Fans (Qty 2) 6.29 GDU Cooling Fans (Qty 3) 6.30 G1000 Lightning Protection Electrical Bonding Test Perform the Phase 3 electrical bonding resistance check of G1000 equipment 4.5.3 Phase 3 Perform the Phase 4 electrical bonding resistance check of G1000 equipment 4.5.4 Phase 4 4.4 On Condition 4.4 (Table 4-9) On Condition Lightning Strike to GTP 59 OAT Probe or Antenna Actual or Suspected Inspect the antenna/probe and surrounding installation per Table 4-9. Lightning Strike To the Aircraft Inspect the GIA Fan discrete output. Page 4-8 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Item Description/Procedure Manual Section No. Interval N/A On Condition Engine/Airframe Sensors ITT Thermocouple Cable (Qty 2) Oil Pressure Sensor (Qty 2) Oil Temperature Sensor (Qty 2) Torque Transmitter (Qty 2) Removal & Replacement: Refer to Super King Air 300 or B300 Maintenance Manual listed in Table 1-2. Fuel Flow Transmitter (Qty 2) Prop Tachometer (Qty 2) Engine Speed Tachometer (Qty 2) Signal Conditioners (Qty 2) 6.22 Removal & Replacement Annunciator/Switch – Prop Sync On Condition 6.23 Other Equipment Removal & Replacement 6.26 On Condition Static pressure system test according to 14 CFR 91.411 and Part 43 Appendix E. N/A 24 Calendar Months Removal & Replacement 6.27 On Condition Test according to 14 CFR 91.411 and Part 43 Appendix E. N/A 24 Calendar Months Removal & Replacement 6.28 On Condition Removal & Replacement 6.25 On Condition Capacity test of standby battery. 4.16.2 12 Calendar Months Standby Battery Charge Check* Verify the standby battery is being charged. 4.16.1 220 hours max or 6 Calendar Months, Standby Instrument Electrical Power Checks* Verify STBY ATT & STBY ALT vibrator operate and STBY ATT, STBY ALT & STBY A/S illumination function on aircraft power and standby battery power (standby compass checked during existing maintenance) 8.1.5 220 hours max Annunciator/Switch – Standby Battery Removal & Replacement 6.23 On Condition Standby Airspeed Indicator Standby Altimeter Standby Attitude Indicator Standby Battery whichever occurs first * Denotes Airworthiness Limitation Maintenance Requirement (See Section 4.1) G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 4-9 Revision 4 4.3.1 Discontinued Maintenance Table 4-2 shows a list of inspections and tests that are listed in the Super King Air 300 or B300 Maintenance Manual, but may be no longer required post incorporation of this STC. It is the responsibility of the installer to ensure that there are no post factory installations that would require these checks to remain. Table 4-2, Discontinued Maintenance Intervals Item AC Inverter (if removed) Description/Procedure Operational Check Manual Interval Phase Inspections Phases 1, 2, 3 & 4 IMPORTANT! For installed equipment not listed in this maintenance manual, use the inspection procedures set forth in Chapter 05 of the Super King Air 300 or B300 Maintenance Manual, or other appropriate maintenance manual, as the requirements set forth by those manuals are still applicable. The requirements set forth by this document take precedence over those set forth by the Super King Air 300 or B300 Maintenance Manual, or other appropriate maintenance manual, in cases where the requirements conflict. Page 4-10 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 4.4 Visual Inspection Perform a visual inspection in accordance with requirements in Table 4-1. Check for corrosion, damage, or other defects for each of the items listed in Table 4-3 through Table 4-8. Replace any damaged parts as required. Inspection may require the temporary removal of a unit or units to gain access to connectors. Follow guidance in Section 6 for equipment removal and replacement. Refer to the Super King Air 300 or B300 Maintenance Manual listed in Table 1-2 for instructions on removing any access panels. NOTE It is recommended that the Phase 3 and Phase 4 electrical bonding checks contained in section 4.5 are conducted after the Phase 3 and 4 visual inspections while access to these zones is still open. Table 4-3, Nose Section Visual Inspection Procedure Item Description/Procedure Initials Gain access via the Radome for the following Inspection: a) Inspect the GWX 68 or GWX 70 unit, mount, and connectors for corrosion or other defects. Check the integrity of the SHIELD BLOCK ground attachments to the harness connector assembly as well as the integrity of the individual shields and their attachment. b) Inspect wire harness for chafing, damage, proper routing of wire bundles and security of attachment in accordance with AC 43.13-1B, Chapter 11, Section 8, Paragraph 11-96 and the Nose Wire Harness Routing drawing, listed in Table 1-2. GWX 68 or GWX 70 Table 4-4, Nose Avionics Compartment Visual Inspection Procedure Item Description/Procedure Initials Gain access via the Nose Equipment Compartment access panel for the following Inspection: a) Inspect the GRS 77 or GRS 7800 units, racks, and connectors for corrosion or other defects. Check the integrity of the SHIELD BLOCK ground attachments to the harness connector assembly as well as the integrity of the individual shields and their attachment. a) Inspect the GIA 63W units, racks, and connectors for corrosion or other defects. Check the integrity of the SHIELD BLOCK ground attachments to the harness connector assembly as well as the integrity of the individual shields and their attachment. GRS 77 or GRS 7800 (Qty 2) GIA 63W (Qty 2) a) Inspect the standby battery, rack and connectors for corrosion, or other defaults. Standby Battery b) Inspect the standby battery fuses and associated bracket for corrosion or other defects. GIA Cooling Fan (Qty 2) a) Inspect remote cooling fans and hoses for dirt accumulation and other damage. Remove excess dirt as required. GTS 820/850 Traffic or GTS Traffic Processor (option) a) Inspect the GTS 820/850 or GTS Traffic Processor unit (if installed), rack and connectors for corrosion or other defects. Check the integrity of the shield block ground attachments to the harness connector assembly as well as the integrity of the individual shields and their attachment. a) Inspect the LMD rack, modules, and terminations for corrosion or other defects. LMD Rack and Modules a) Inspect bulkhead connectors for security of attachment, corrosion or other defects. b) Inspect wire and coax for chafing, damage, proper routing of wire bundles and security of attachment in accordance with AC 43.13-1B, Chapter 11, Section 8, Paragraph 11-96 and the Nose Wire Harness Routing drawing, listed in Table 1-2. . Pay particular attention to possible areas of chaffing such as the middle shelf feedthrough hole, wheel well protrusion etc. c) Inspect Ground blocks for security of attachment, corrosion or other defects. d) Ensure all connectors are securely fastened. Nose Wiring harness G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 4-11 Revision 4 Table 4-5, Pilot’s Compartment Visual Inspection Procedure Item Description/Procedure Initials Inspect that all required placards are installed on the left and right control wheels. Placards must be legible, secure and in good condition. Refer to the Control Wheel Modification drawing listed in Table 1-2. Placards Locate equipment in the aft pedestal for the following inspection. a) Inspect the GCU 477 unit and connector for corrosion or other defects. Check the integrity of the SHIELD BLOCK ground attachments to the harness connector assembly as well as the integrity of the individual shields and their attachment. a) Inspect the ADF control unit and connector for corrosion or other defects. Check the integrity of the SHIELD ground attachments to the harness connector assembly as well as the integrity of the individual shields and their attachment. a) Inspect all visible wire harness for chafing, damage, proper routing of wire bundles and security of attachment in accordance with AC 43.13-1B, Chapter 11, Section 8, Paragraph 11-96 and the Cabin Wire Harness Routing drawing, listed in Table 1-2. a) Inspect the GTP 59 units and connectors for corrosion or other defects. Check the integrity of the SHIELD ground attachments to the harness connector assembly as well as the integrity of the individual shields and their attachment. b) Inspect wire harness for chafing, damage, proper routing of wire bundles and security of attachment in accordance with AC 43.13-1B, Chapter 11, Section 8, Paragraph 11-96 and the Cabin Wire Harness Routing drawing, listed in Table 1-2. GCU 477 ADF control unit (relocated by STC) Pedestal Wiring GTP 59 (Qty 2) Table 4-6, Instrument Panel G1000 Equipment Visual Inspection Procedure Item Description/Procedure Initials Gain access to behind the instrument panel by removing the PFDs and MFD (see below). Gain access to circuit breaker panels by removing the screws which fasten the edgelit overlays to the panels a) GDU 1040A PFD (Qty 2) & GDU 1500 MFD b) Remove the MFD and PFDs as described in Section 6. c) Inspect the mounting surface,and connector for corrosion, heavy oxidation, or other damage. Check the integrity of the SHIELD BLOCK ground attachments to the harness connector assembly as well as the integrity of the individual shields and their attachment. d) Do not reinstall GDUs at this time. GDU cutouts provide access for visual inspections below. a) Inspect all fwd bulkhead connectors for security of attachment b) Inspect all instrument panel wiring and coax for chafing, damage, proper routing of wire bundles and security of attachment in accordance with AC 43.13-1B, Chapter 11, Section 8, Paragraph 11-96 and the Cabin Wire Harness Routing drawing, listed in Table 1-2. Pay particular attention to possible areas of chaffing. c) Inspect all other exposed G1000 / GFC wiring and coax for chafing, damage, proper routing of wire bundles and security of attachment in accordance with AC 43.13-1B, Chapter 11, Section 8, Paragraph 11-96 and the Cabin Wire Harness Routing drawing, listed in Table 1-2. Pay particular attention to possible areas of chaffing. a) Visually inspect each GDC 7400 unit, mount, and connector for corrosion or other defects. Check the integrity of the SHIELD BLOCK ground attachments to the harness connector assembly as well as the integrity of the individual shields and their attachment. b) Visually inspect the pitot/static plumbing and ensure it is secure and in good condition and routed to provide positive moisture drainage. a) Inspect the GEA 71 unit, rack, and connectors for corrosion or other defects. Check the integrity of the SHIELD BLOCK ground attachments to the harness connector assembly as well as the integrity of the individual shields and their attachment. G1000 Wiring harness GDC 7400 Air Data Computer (Qty 2) GEA 71 Engine/ Airframe Unit (Qty 2) Page 4-12 Revision 4 Inspect the PFDs and MFD for any visual damage to the display screens or bezels including buttons and control knobs. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Item Description/Procedure a) Inspect the GMA 1347D unit (including face of unit), rack and connectors for corrosion or other defects. Check the integrity of the SHIELD BLOCK ground attachments to the harness connector assembly as well as the integrity of the individual shields and their attachment. a) Inspect PFD and MFD fans for accumulation of dirt and other damage. Remove excess dirt as required. a) Inspect the GDL 69A unit, rack, and connectors for corrosion or other defects. Check the integrity of the SHIELD BLOCK ground attachments to the harness connector assembly as well as the integrity of the individual shields and their attachment. a) Inspect the GMC 710 unit (including face of the unit), mount, and connectors for corrosion or other defects. Check the integrity of the SHIELD BLOCK ground attachments to the harness connector assembly as well as the integrity of the individual shields and their attachment. a) Inspect the signal conditioner unit, mount, and connectors for corrosion or other defects. a) Inspect the standby attitude indicator unit (including face of unit) and connector for corrosion or other defects. Check the integrity of the harness connector assembly in accordance with AC 43.13-1B, Chapter 11, Section 8, Paragraphs 11-96 and 11-100 and the Cabin Wire Harness Routing drawing, listed in Table 1-2. a) Inspect the standby airspeed indicator unit (including face of unit) and connector for corrosion or other defects. b) Visually inspect the plumbing and harness connector assembly, and ensure it is secure and in good condition. a) Inspect the standby altimeter indicator unit (including face of the unit) and connector for corrosion or other defects. b) Visually inspect the plumbing and harness connector assembly, and ensure it is secure and in good condition. a) Inspect circuit breaker panel wiring and circuit breakers for chafing, damage, other defects and proper routing of wire bundles and security of attachment in accordance with AC 43.13-1B, Chapter 11, Section 8, Paragraph 11-96, the appropriate Circuit Breaker Panel Modification drawing, listed in Table 1-2, and the Cabin Wire Harness Routing drawing, listed in Table 1-2. Pay particular attention to possible areas of chaffing. GMA 1347D (Qty 2) GDU Fans (Qty 3) GDL 69A GMC 710 Signal Conditioners (Qty 2) Standby Attitude Indicator Standby Airspeed Indicator Standby Altimeter Circuit Breaker Panels b) Inspect edgelit overlay panels for damage or defect. c) Reinstall the circuit breaker edgelit overlays to the circuit breaker panels. Initials Reinstall the MFD and PFDs as described in Section 6. Placards Inspect that all required placards are installed. Placards must be legible, secure and in good condition. Refer to the Main Instrument Panel Installation drawing listed in Table 1-2. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 4-13 Revision 4 Table 4-7, Cabin Area Visual Inspection Procedure Item Antennas Description/Procedure Initials Inspect all external antennas for leading edge erosion and condition of base seals (GPS/WAAS, top diversity transponder(s), Iridium, top and bottom GA 58 traffic antennas, if installed) To gain access for the following inspections, remove center aisle floorboards in cabin (FS 207 for 300, FS 221 for B300) a) Inspect all exposed wire harness for chafing, damage, proper routing of wire bundles and security of attachment in accordance with AC 43.13-1B, Chapter 11, Section 8, Paragraph 11-96 and the Cabin Wire Harness Routing drawing, listed in Table 1-2. a) Using a flashlight, inspect the roll servo, servo gearbox, connectors, support structure, and control cables to ensure that no corrosion, chaffing, cracks, or other defects exist. b) For the roll servo gearbox, check that the retaining bolt for the slip clutch cartridge is not damaged or loose. c) Have an assistant manually move the aileron control surfaces from stop to stop and visually observe the servo and control cabling/chain. Ensure there is no binding in the control cabling or chain, and that the capstan/sprocket rotates freely. d) Check the servo control cables in accordance with AC 43.13-1B, Chapter 7, Section 8, Paragraph 7-149 to ensure no fraying, corrosion, or other damage exists. If the condition of any cable is questionable, replace it with a new one. e) Check the tension on the control cables. Refer to the Roll Servo Install drawing, listed in Table 1-2, for cable tension specifications: Cabin Wiring Harness GFC 700 Equipment f) Ensure that each cable is correctly attached to the clamps. g) Follow recommended checks for checking main control cables, following the instructions in Chapter 27, Flight Controls, of the Super King Air 300 or B300 Maintenance Manual. h) Reinstall the access panels if no other maintenance is to be performed. To gain access for the following inspection, remove the left cabin sidewall panel at FS 158 GPA 65 (GTS 820/850 traffic option only) Page 4-14 Revision 4 a) Inspect the GPA 65 PA/LNA unit (if installed), brackets and connectors for corrosion or other defects. Check the integrity of the shield block ground attachments to the harness connector assembly as well as the integrity of the individual shields and their attachment. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Table 4-8, Rear Fuselage and Empennage Visual Inspection Procedure Item Wi-fi Antenna (wi-fi option only) Description/Procedure Initials Inspect the external wi-fi antenna (if installed) for leading edge erosion and condition of base seals. Remove access panel to gain access to the tail area for the following inspections. Refer to the servo installation and equipment tail shelf drawings and the Super King Air 300 or B300 Maintenance Manual, listed in Table 1-2. a) Inspect all exposed wire harness for chafing, damage, proper routing of wire bundles and security of attachment in accordance with AC 43.13-1B, Chapter 11, Section 8, Paragraph 11-96 and the Tail Wire Harness Routing drawing, listed in Table 1-2. Pay particular attention to possible areas of chaffing. b) Verify security of aft bulkhead connectors a) Inspect the GTX 33( ) or GTX 3000 units (if installed) and connectors for corrosion or other defects. Check the integrity of the shield block ground attachments to the harness connector assembly as well as the integrity of the individual shields and their attachment. a) Inspect the GDL 59 unit (if installed) and connectors for corrosion or other defects. Check the integrity of the shield block ground attachments to the harness connector assembly as well as the integrity of the individual shields and their attachment. a) Inspect the GSR 56 unit (if installed) and connectors for corrosion or other defects. Check the integrity of the shield block ground attachments to the harness connector assembly as well as the integrity of the individual shields and their attachment. a) Inspect the GSD 41 unit (if installed) and connectors for corrosion or other defects. Check the integrity of the shield block ground attachments to the harness connector assembly as well as the integrity of the individual shields and their attachment. a) Using a flashlight, inspect the servos, servo gearboxes, attaching hardware, connectors, support structure, and control cables to ensure that no corrosion, chaffing, cracks, or other defects exist. b) For pitch and pitch trim GSM 86 servo gearboxes, check that the retaining bolt for the slip clutch cartridge is not damaged or loose. c) For the GSM 9100 yaw servo mount, verify the two capstan retaining screws, six drive shaft seal screws, and hole plug are tightly secured. If any of these items are missing or loose, remove the GSM 9100 yaw servo gear box and send to a properly rated FAA Approved Repair Station qualified for servicing of this unit. Visually inspect the hydrophobic vent and remove any obstructions if present. d) Have an assistant manually move the control surfaces and elevator trim wheel from stop to stop and visually observe the corresponding servo and control cabling. Ensure there is no binding in the control cabling, and that the capstan rotates freely. e) Check the servo control cables in accordance with AC 43.13-1B, Chapter 7, Section 8, Paragraph 7-149 to ensure no fraying, corrosion, or other damage exists. If the condition of the cable is questionable, replace it with a new one. f) Check the tension on the control cables. Refer to the respective servo installation drawing listed in Table 1-2 for cable tension specifications g) Ensure that each cable is correctly attached to the clamps. h) Follow recommended checks for checking main control cables, following the instructions in Chapter 27, Flight Controls, of the Super King Air 300 or B300 Maintenance Manual, listed in Table 1-2. Tail Wiring Harness GTX 33 ( ) or GTX 3000 (Qty 2) (GTX option only) GDL 59 (wi-fi option only) GSR 56 (iridium option only) GSD 41 (GSD option only) GFC 700 Equipment i) Reinstall the access panel if no other maintenance is to be performed. The GMU 44 units are mounted in the tailcone or the horizontal stabilizer. Refer to Section 6.9 for details on gaining access to the GMU. GMU 44 (Qty 2) GRA 5500 Radar Altimeter a) For each GMU 44, do the following: b) Remove the three Phillips screws holding the GMU to the mounting bracket. Be sure to use a non-magnetic screwdriver to avoid harming the GMU. c) Carefully remove the assembly, taking care not to damage unit or wiring, and inspect the GMU 44 and mounting plate. d) Inspect the mounting hardware and GMU 44 for corrosion or other damage. e) Inspect all exposed GMU wiring and ensure no chaffing, wear, or other damage exists in accordance with AC 43.13-1B, Chapter 11, Section 8, Paragraph 11-96 and the Wire Harness Installation, Tail drawing, listed in Table 1-2. Pay particular attention to possible areas of chaffing. f) a) Reinstall the GMU 44. Inspect the GRA 5500 unit (if installed) and connectors for corrosion or other defects. Check the integrity of the shield block ground attachments to the harness connector assembly as well as the integrity of the individual shields and their attachment. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 4-15 Revision 4 Table 4-9, Lightning Strike Inspection Procedure Item Description/Procedure a) A post lightning strike inspection must be done for a suspected or actual lightning strike to antennas or the OAT probes. Inspect antenna/probe and surrounding installation to ensure that there is no structural damage around the areas where lightning may have attached. If there is visible sign of damage to the probe or antenna, then it should be replaced per section 6. Refer to the Hawker Beechcraft Structural Inspection and Repair Manual listed in Table 1-2 for any aircraft structural repairs. a) A “Magnetometer Interference Test” per Section 5.15.4 and “GRS 77 or GRS 7800 and GMU 44 Magnetic Calibration” per Section 7.7.4 must be performed after a suspected or actual lightning strike. A lightning strike can result in a change in the magnetic properties of steel components in the area of the magnetometers which can cause unacceptable magnetic interference levels. a) Verify the GIA fan DISC out is correctly annunciating when the FAN is not working, by performing tests per section 8.1.4 GTP 59 OAT Probe or Antenna GMU 44 (Qty 2) GIA Fans 4.5 Initials Electrical Bonding Test The following bonding tests are provided for G1000-equipped 300/B300 King Air aircraft as a requirement beyond what is given in the aircraft maintenance manual. The electrical bonding checks are split into two tests, Phase 3 Electrical Bonding Test and Phase 4 Electrical bonding test. This places the bonding test requirement for each G1000 LRU in the same phase as the visual inspection of that zone to minimize access requirements. 4.5.1 Requirements All G1000 equipment must be installed. Gain access for the procedures in Sections 4.5.3 and 4.5.4 as required and in accordance with the Super King Air 300 or B300 Maintenance Manual. It is recommended that these tests are conducted after visual inspection of the zone to minimize access requirements. 4.5.2 Test Equipment A milli-ohm meter and Kelvin probes are recommended for this test. However, a standard voltmeter, power supply with adjustable current limit, and ammeter may be substituted. The following procedure is written using the voltmeter, power supply and ammeter. All test equipment must have valid calibration records. 4.5.3 1. Phase 3 Electrical Bonding Procedure Connect the positive lead of the power supply to the engine compartment grounding bracket (battery negative connection to the airframe). Connect/touch the positive lead of the voltmeter to the same point. NOTE Ensure that the voltmeter and power supply probes do not touch, so as not to induce contact resistance. 2. 3. Touch negative lead of power supply to each of the test points listed while performing Step 3. At each point, configure the power supply to produce 1 amp before measuring voltage. (Use an ammeter to ensure current is within 1 amp ±100 milli-amp at each point). Set the voltmeter to measure milli-volts and null the reading. Measure the voltage from the engine grounding bracket (step 1) to each of the following points and record the voltage. (Perform Step 2 at each point to ensure that 1 amp ±100 milli-amp is present before measuring.) Page 4-16 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Pilot Compartment • • • • • • • • • • • • • • • • • • • Top metal case of PFD 1: __________ milli-volts Top metal case of PFD 2: __________ milli-volts Top metal case of MFD: __________ milli-volts Top metal case of GMA 1347D #1: __________ milli-volts Top metal case of GMA 1347D #2: __________ milli-volts Top metal case of GCU 477: __________ milli-volts Top metal case of GMC 710: __________ milli-volts GEA 71 #1 body: __________ milli-volts GEA 71 #2 body: __________ milli-volts GDC 7400 #1 body: __________ milli-volts GDC 7400 #2 body: __________ milli-volts OAT 1 Probe base nut (inside fuselage): __________ milli-volts OAT 2 Probe base nut (inside fuselage): __________ milli-volts GDL 69A body: __________ milli-volts Engine Signal Conditioner #1 near mounting holes of case: __________ milli-volts Engine Signal Conditioner #2 near mounting holes of case: __________ milli-volts PFD1 Cooling fan metal base: __________ milli-volts PFD2 Cooling fan metal base: __________ milli-volts MFD Cooling fan metal base: __________ milli-volts • Cabin Compartment GSA 80 (Roll) Servo body: __________ milli-volts Ensure that at each PFD or MFD test point, no more than 20 milli-volts (20 mΩ) are present. Ensure that at each other test point, no more than 2.5 milli-volts (2.5 mΩ) are present. In this case, voltage is equivalent to resistance (Ω), given that precisely 1 amp reference current is present. TIP: If 1 amp reference current cannot be maintained, note the difference between the attainable current and 1 amp reference current. Do not allow the reference current to exceed 1.5 amps. Calculate the percentage difference and apply this to the voltage reading to obtain the equivalent resistance. Example: If the measured current is 1.2 amps, (20% high from the target 1 amp current), then the allowable voltage measurement would be 20% high, 2.5 milli-volts would now be 3.0 milli-volts. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 4-17 Revision 4 4.5.4 Phase 4 Electrical Bonding Procedure 1. Connect the positive lead of the power supply to the engine compartment grounding bracket (battery negative connection to the airframe). Connect/touch the positive lead of the voltmeter to the same point. NOTE Ensure that the voltmeter and power supply probes do not touch, so as not to induce contact resistance. 2. Touch negative lead of power supply to each of the test points listed while performing Step 3. At each point, configure the power supply to produce 1 amp before measuring voltage. (Use an ammeter to ensure current is within 1 amp ±100 milli-amp at each point). 3. Set the voltmeter to measure milli-volts and null the reading. Measure the voltage from the engine grounding bracket (step 1) to each of the following points and record the voltage. (Perform Step 2 at each point to ensure that 1 amp ±100 milli-amp is present before measuring) Nose Section • GWX 68/70 body: __________ milli-volts Nose Avionics Compartment • • • • • • GIA 1 top: __________ milli-volts GIA 2 top: __________ milli-volts GRS 77/7800 #1 metal base: __________ milli-volts GRS 77/7800 #2 metal base: __________ milli-volts Standby battery: __________ milli-volts GTS Traffic Unit: __________ milli-volts Rear Fuselage and Empennage • • • • • • • • • • • Page 4-18 Revision 4 GMU 44 #1 metal base: __________ milli-volts GMU 44 #2 metal base: __________ milli-volts GSA 80 (Pitch) Servo body: __________ milli-volts GSA 80 (Pitch Trim) Servo body: __________ milli-volts GSA 9000 (Yaw) Servo body: __________ milli-volts GTX 33/3000 #1 top: __________ milli-volts (if installed) GTX 33/3000 #2 top: __________ milli-volts (if installed) GSR 56 top: __________ milli-volts (if installed) GDL 59 top: __________ milli-volts (if installed) GSD 41 top: __________ milli-volts (if installed) GRA 5500: __________ milli-volts (if installed) G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 TIP: If 1 amp reference current cannot be maintained, note the difference between the attainable current and 1 amp reference current. Do not allow the reference current to exceed 1.5 amps. Calculate the percentage difference and apply this to the voltage reading to obtain the equivalent resistance. Example: If the measured current is 1.2 amps, (20% high from the target 1 amp current), then the allowable voltage measurement would be 20% high, 2.5 milli-volts would now be 3.0 milli-volts. 4.6 GRS 77 or GRS 7800 Earth Magnetic Field Updates The GRS 77 or GRS 7800 utilizes an Earth magnetic field model which is updated once every five years. The update is expected to be available from Garmin in each of the following years: 2010, 2015, and every five years thereafter, as long as the GRS 77 or GRS 7800 remains a Garmin-supported product. The G1000 system alerts the operator that the magnetic field database is out of date by issuing the message “AHRS SERVICE – AHRS Magnetic-field model needs update”. Garmin will distribute update instructions when updates are available. As of this writing, Garmin Service Bulletin #0533 addresses the most recent update to the 2005 database. Service Bulletins may be obtained from www.garmin.com at the ‘Delear Resource Center’ portion of the web site. 4.7 GSA 80 Greasing Procedure The GSA 80 servo greasing procedure is required only when the GSA 80 is removed and reinstalled (pitch, pitch trim and roll axes). Refer to Section 6.11 for details. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 4-19 Revision 4 4.8 Flaps-in-motion Discrete Input Check To perform this check, all G1000 and GFC 700 equipment must be installed and operational. Start PFD1 in Configuration Mode and go to the GIA Page Group and select the GIA I/O Configuration Page using the FMS knob. Perform the following checks: Figure 4-1, GIA I/O Page Invalid Valid Figure 4-2, Discrete Valid/Invalid Indications 1. Verify the DATA indicators of the discrete inputs labeled ‘FLAP EXTEND’ and ‘FLAP RETRACT’ show an invalid condition. 2. Extend the flaps down. While the flaps are traveling down, check that the DATA indicator of the discrete input labeled ‘FLAP EXTEND’ changes to a valid condition. 3. When the flap motion is completed, verify the DATA indicators of the discrete inputs labeled ‘FLAP EXTEND’ and ‘FLAP RETRACT’ show an invalid condition. 4. Retract the flaps up. While the flaps are traveling up, check that the DATA indicator of the discrete input labeled ‘FLAP RETRACT’ changes to a valid condition. 5. When the flap motion is completed, verify the DATA indicators of the discrete inputs labeled ‘FLAP EXTEND’ and ‘FLAP RETRACT’ show an invalid condition. 6. Repeat steps 1 through 5 for GIA2. 7. The flap discrete input check is complete. Page 4-20 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 4.9 GSM 86 Slip Clutch Torque Check Procedure Perform either the Automated Slip Clutch Test Procedure per Section 4.9.1 or the Manual Slip Clutch Test Procedure per Section 4.9.2. To perform the procedure, all G1000 and GFC 700 equipment must be installed and operational. 4.9.1 1. 2. 3. Automated Slip Clutch Test Procedure Power on the sytem with PFD1 in Configuration Mode and with PFD2 and MFD in normal mode. Press the red DISPLAY BACKUP button on the pilot’s GMA audio panel to place the MFD in reversion mode. On PFD1, go to the GFC Page Group and select the GFC STATUS page using the FMS knobs. Figure 4-3, GFC Status Page IMPORTANT! It is highly recommended that the following test be performed at temperatures between 50° F and 120° F. 4. 5. 6. 7. 8. 9. 10. Use the FMS knob to select the desired servo (Pitch, Roll or Pitch Trim). Yaw is not tested. Verify that the PFT status field shows PASSED. Verify that the aircraft control surface to be checked is free to travel throughout its range of motion. Press the TEST SVO softkey on the PFD. Follow prompts to begin the test. IMPORTANT! If the test must be stopped, firmly grasp the aircraft control being moved and press the red AP DISC switch on the aircraft control wheel. If an abnormal disconnect of a servo occurs, reset the AFCS SERVO circuit breaker and repeat the test. When test is completed, verify the CLUTCH TEST PASS message is displayed on the MFD. Repeat steps 3 through 7 for each servo axis (Pitch, Roll and Pitch Trim). If the CLUTCH TEST FAIL message is displayed on the MFD for any axis, repeat the test twice in the failed axis. If the test does not pass, the GSM 86 slip clutch cartridge must be replaced or tested using the Manual Slip Cluch Test Procedure, Section 4.9.2. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 4-21 Revision 4 4.9.2 Manual Slip Clutch Test Procedure This test is an alternative to the automated slip clutch test procedure. IMPORTANT! This adjustment requires the use of the Garmin servo adjustment fixture, P/N T10-00110-01. For detailed operating instructions for the fixture, refer to GSA8X / GSM85(A) Installation Manual, listed in Table 1-3. It is highly recommended that the following test be performed at temperatures between 50° F and 120° F. 1. Remove the GSM 86 servo gearbox as per Section 6.12. 2. Place the GSM 86 servo gearbox on the slip-clutch adjustment fixture and secure with the toggle clamps. Install the fixture cable between the capstan under test and the fixture capstan. Remove the slack in the cable using the tension adjustment knob. Tighten the two wingnuts on bottom of fixture while holding the top thumbscrews. 3. Attach a socket to a calibrated torque wrench of appropriate range and place on top of the fixture capstan. Adjust the wrench support fixture so that it contacts the handle in the appropriate location. 4. Connect a 2 Amp, 24 V, DC power supply to the fixture. 5. Place the solenoid switch to "on" and move the direction switch to the clockwise or counterclockwise position. Allow the clutch to rotate at least one revolution in each direction (note: the capstan itself is fixed.) 6. Observe the torque reading for at least two full revolutions in each direction. Record the minimum and maximum torque values. When finished, remove the fixture cable, and then remove the servo gearbox from the fixture. 7. If the minimum and maximum torque values are within the specified range in Table 4-10, the slip clutch cartridge is acceptable. Reinstall the GSM 86 servo gearbox per Section 6.12. 8. If the minimum and maximum torque values are not within the specified range in Table 4-10, the slip clutch cartridge must be replaced. Axis Direction Min Measured Torque (in-lbs) Max Measured Torque (in-lbs) Min Allowed Torque (in-lbs) Max Allowed Torque (in-lbs) 28 36 115 155 57* 76* CW Pitch CCW Roll CW CCW Pitch Trim CW CCW Table 4-10, Measured Torque * This value valid only with the GSM86 continuous travel servo gearbox (p/n 011-01904-01) Page 4-22 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 4.10 G1000 Redundant Connection Check NOTE Throughout this check prior to the 0985.07 software version, indicators showing “GDC 74” are applicable to the GDC 7400 air data computers. Perform the following steps to verify the following: (A) The primary (PRI) and secondary (SEC) power sources for GIA 1, GRS 1, PFD 1, and GDC 1 (B) The AHRS and ADC data path to PFD (C) PFD and MFD Ethernet connection (includes ARINC connection between ADC and MFD and DISPLAY BACKUP button function) (D) Engine data availability to the displays and GPS data availability to the AHRS with either GIA inoperative (A) PRI and SEC power sources for PFD 1, GIA 1, GRS 1 and GDC 1 check 1. Connect a ground power unit to the external power receptacle and turn on the ground power unit. 2. Set the BAT, EXT PWR and AVIONICS MASTER PWR switches to ON. 3. With the G1000 system in normal mode, pull the following circuit breakers on the right hand circuit breaker panel: • PFD 1 (PRI) • AHRS 1 (PRI) • ADC 1 (PRI) • GIA 1 (PRI) 4. Wait at least 5 seconds, then verify the data on PFD1 remains valid and the following alert messages are not present: • GIA 1 FAIL (or any related message such as COM1, NAV1, XPDR1, GPS1) • AHRS 1 FAIL • ADC 1 FAIL • FAILED DATA PATH 5. Close the circuit breakers listed in step 3. 6. Repeat step 4. 7. Pull the following circuit breakers on the right hand circuit breaker panel: • PFD 1 (SEC) • AHRS 1 (SEC) • ADC 1 (SEC) • GIA 1 (SEC) 8. Wait at least 5 seconds, then repeat step 4. 9. Close the circuit breakers listed in step 7. (B) AHRS and ADC data path check 1. Verify there are no AHRS loss of data messages, such as: • AHRS not receiving any GPS information • AHRS not receiving backup GPS information • AHRS using backup GPS source G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 4-23 Revision 4 2. Place the G1000 in configuration mode. 3. In the GIA page group, go to the GIA RS-232/ARINC 429 CONFIG page. 4. With GIA1 selected in the SELECT UNIT window, verify the RS232 Channel 1 (GDC7400 #1) and RS232 Channel 6 [(GRS77#1) or (GRS7800 #1)] indicators are green. Ref. Section 5.2.1.2. 5. With GIA1 selected in the SELECT UNIT window, verify the ARINC 429 IN2 [(GRS77 #2) or (GRS7800 #2)] and ARINC 429 IN5 (GDC7400 #1) and ARINC 429 IN6 [(GRS77 #1) or (GRS7800 #1)] indicators are green. Ref. Section 5.2.1.2. 6. With GIA2 selected in the SELECT UNIT window, verify the RS232 Channel 1 (GDC7400 #2) and RS232 Channel 6 [(GRS77 #2) or (GRS7800 #2)] indicators are green. Ref. Section 5.2.1.2. 7. With GIA2 selected in the SELECT UNIT window, verify the ARINC 429 IN2 [(GRS77 #1) or (GRS7800 #1)] and ARINC 429 IN5 (GDC7400 #2) and ARINC 429 IN6 [(GRS77#2) or (GRS7800 #2) indicators are green. Ref. Section 5.2.1.2. 8. In the GDU page group, go to the GIA RS-232/ARINC 429 CONFIG page. 9. With PFD1 selected in the SELECT UNIT window, verify the ARINC 429 IN1 [(GRS77#1) or (GRS7800 #1)] and ARINC 429 IN2 (GDC7400 #1) indicators are green. Ref. Section 5.2.1.1. 10. With PFD2 selected in the SELECT UNIT window, verify the ARINC 429 IN1 [(GRS77#2) or (GRS7800 #2)] and ARINC 429 IN2 (GDC7400 #2) indicators are green. Ref. Section 5.2.1.1. 11. Restart the G1000 in normal mode. (C) PFD and MFD Ethernet connection check (includes ARINC connection check between ADC1 and MFD and between GRS1 and MFD, and the DISPLAY BACKUP button check) 1. On the right hand circuit breaker panel, open the MFD circuit breaker: 2. Verify NAV 1, COM 1, NAV 2 and COM 2 remain valid on both PFD 1 and PFD 2. 3. Close the MFD circuit breaker and wait for MFD to initialize. 4. Open the PFD 2 circuit breaker. 5. Press the DISPLAY BACK UP button on the Pilot’s GMA 1347D audio panel. 6. Verify NAV 2 and COM 2 are each replaced by a red X and NAV 1 and COM 1 remain valid on both the MFD and PFD 1. 7. Press the DISPLAY BACK UP button on the Pilot’s GMA 1347D audio panel to return to normal mode. 8. Close the PFD 2 circuit breaker and wait for PFD 2 to initialize. 9. Open the PFD 1 (PRI) and PFD 1 (SEC) circuit breakers. 10. Press the DISPLAY BACK UP button on the Co-pilot’s GMA 1347D audio panel. 11. Verify NAV 1 and COM 1 are each replaced by a red X and NAV 2 and COM 2 remain valid on both the MFD and PFD 2. 12. Verify ADC1 data and GRS1 data can be displayed on the MFD. 13. Press the DISPLAY BACK UP button on the Co-pilot’s GMA 1347D audio panel to return to normal mode. 14. Close the PFD 1 (PRI) and PFD 1 (SEC) circuit breakers and wait for PFD 1 to initialize. (D) Engine data availability to the displays and GPS data availability to the AHRS with either GIA inoperative check 1. Open the GIA1 (PRI) and GIA1 (SEC) circuit breakers. 2. Verify the following: • NAV 1 and COMM1 tuning fields on PFD 1 and PFD 2 are invalid (red X). • L/R engine data remains valid. • XPDR1 is Inoperative. • GMA1 is Inoperative. Page 4-24 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air Revision 4 190-00716-01 3. 4. 5. 6. 7. 8. 9. • • AHRS1 is using backup GPS source. AHRS2 not receiving backup GPS Information. • An amber BOTH ON GPS2 is displayed on PFD 1 and PFD 2. • AHRS and ADC data remain valid on PFD 1 and PFD 2. Close the GIA1 (PRI) and GIA1 (SEC) circuit breakers. Allow system to re-acquire satellites and return to normal display modes. Open GIA2 CB. Verify the following: • NAV2 and COMM2 tuning fields on PFD 1 and PFD 2 are invalid (red X). • L/R engine data remains valid. • XPDR2 is Inoperative. • GMA2 Is Inoperative. • AHRS2 is using backup GPS source. • AHRS1 not receiving backup GPS Information. • An amber BOTH ON GPS1 is displayed on PFD 1 and PFD 2. • AHRS and ADC data remain valid on PFD 1 and PFD 2. Close GIA2 CB. Allow system to re-acquire satellites and return to normal display modes. Open GIA1 primary and secondary CBs and GIA2 CB. Verify the following: • COM1/NAV1 & COM2/NAV2 fields flag invalid. • GPS CDI flags LOI on PFD. • NAV1 & NAV2 CDI loses deviation bar. • XPDR field flags invalid on PFD. • Engine Instrument field flags invalid on MFD. • All AHRS & ADC fields remain valid. • Red AFCS status annunciation given. • If equipped with TAWS, TAWS FAIL annunciation given. • If equipped with ADF and/or DME, ADF/DME windows flag invalid. Restore power to both GIA units. The G1000 Redundant Connections Check is complete. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 4-25 Revision 4 4.11 Engine Data Check Accomplish this section to verify the engine data availability and validity for ITT and torque. Remove the left and right engine cowling (Ref. Super King Air 300 or B300 Maintenance Manual, Chapter 71-1000) to gain access to the engine harness connectors. Required test equipment is provided in Table 4-11. Any product conforming to the specification listed may be used. Test Equipment Requirement Signal Generator 0-10Vdc / 0 – 1k Hz Thermocouple Calibrator K-type, 200 to 1,200°C Table 4-11, Engine Data Check Test Equipment 4.11.1 ITT 1. Remove power from aircraft. 2. Disconnect all thermocouple wires except for the Alumel-Green #10 and Chromel-White #8 leads from the left hand engine thermocouple junction block mounted to the gas generator case. (Ref. Super King Air 300 or B300 Maintenance Manual, Chapter 71-00-00) 3. Connect the Thermocouple Calibrator (or equivalent) across the Alumel-Green #10 and Chromel-White #8 leads of the thermocouple junction block. Make sure the polarity of the Alumel and Chromel leads are strictly observed when making connections. 4. Apply external power to aircraft and start the G1000 in normal mode. 5. Using the Thermocouple Calibrator (or equivalent), inject the DC signals specified in Table 4-12 and verify the indications are within specified tolerances. If the Thermocouple Calibrator is not temperature compensated, use the chart shown in Figure 4-4 to convert the ambient temperature to millivolts and subtract from Table 4-12. 6. 7. 8. 9. Page 4-26 Revision 4 Test Point (degC) DC signal (mV) Indication (degC) 200 8.137 200 +/- 17 400 16.395 400 +/- 17 600 24.902 600 +/- 12 800 33.277 800 +/- 7 1000 41.269 1000 +/- 12 1200 48.828 1200 +/- 17 Table 4-12, ITT Indication Test Points On the right hand circuit breaker panel, open the GIA1 (PRI) and GIA1 (SEC) circuit breakers, and verify the last observed ITT indication remains unchanged. Reset the the GIA1 (PRI) and GIA1 (SEC) circuit breakers. Repeat steps 1 through 5 using the right hand engine thermocouple junction block. Pull the GIA 2 circuit breaker, and verify the last observed ITT indication remains unchanged. Reset the GIA 2 circuit breaker. Remove power from aircraft and reconnect all thermocouple wires to the junction blocks. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Figure 4-4, Ambient Temperature Conversion Chart 4.11.2 Torque 1. 2. 3. 4. 5. 6. 7. 8. 9. Remove power from aircraft. Disconnect the left engine firewall connector J102. Connect the Signal Generator to pins C (HI) and R (LO) of J102. Apply external power to aircraft and start the G1000 in normal mode. Using the Signal Generator, inject DC signals specified in Table 4-13 and verify the indications are within the specified tolerances. Test Point (VDC) Torque Indication (%) 0.000 +/- .02 0 +/- 2 1.035 +/- .02 45 +/- 2 1.725 +/- .02 75 +/- 2 2.300 +/- .02 100 +/- 2 Table 4-13, Torque Indication Test Points On the right hand circuit breaker panel, open the GIA1 (PRI) and GIA1 (SEC) circuit breakers, and verify the last observed torque indication remains unchanged. Reset the the GIA1 (PRI) and GIA1 (SEC) circuit breakers. Repeat steps 1 through 5 using right engine firewall connector J103, pins C (HI) and R (LO). Pull the GIA 2 circuit breaker, and verify the last observed torque indication remains unchanged. Reset the GIA 2 circuit breaker. Remove power from aircraft and reconnect left and right engine firewall connectors. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 4-27 Revision 4 4.12 Trim Annunciator Check This procedure checks the pitch trim (PTRM) annunciation from both GIA 1 and GIA 2 and the mis-trim AFCS status alerts. 1. Ensure the G1000 is in normal mode, autopilot is not engaged, and the mode controller XFR key is selected to the pilot side. 2. Press the left part of the pilot’s pitch-trim switch upwards for approximately 10 seconds and verify that the red PTRM annunciation is displayed on both PFD 1 and PFD 2. 3. Release the switch and wait for the PTRM annunciation to clear. 4. Press the left part of the pilot’s pitch-trim switch downwards for approximately 10 seconds and verify that the red PTRM annunciation is displayed on both PFD 1 and PFD 2. 5. Release the switch and wait for the PTRM annunciation to clear. 6. Repeat Steps 2 through 5 for the right part of the pilot’s pitch-trim switch. 7. Repeat Steps 2 through 6 for the copilot’s pitch-trim switch. 8. Select copilot side by pressing the XFR key on the mode controller (changes active GIA to GIA 2). 9. Repeat Steps 2 through 7 and verify annunciations are displayed on both PFD 1 and PFD 2. 10. Re-select pilot side by pressing XFR key on the mode controller (changes active GIA back to GIA 1). 11. Hold the control yoke in the center position and center the pitch trim wheel. 12. Press the Go Around button on the throttle and engage the autopilot. Apply a forward load on the control yoke. Verify that the pitch trim wheel rotates in the UP direction. 13. Disconnect the autopilot by pressing the AP DISC button. 14. Hold the control yoke in the forward position and center the pitch trim wheel. 15. Engage the autopilot, maintain the control yoke in the forward position and keep the pitch-trim wheel from rotating for approximately five seconds. 16. Quickly release the trim wheel and verify that the red PTRM annunciator is displayed on both PFD 1 and PFD 2. 17. Disengage the autopilot and use the pitch-trim switch (or the pitch-trim wheel) to trim full down. 18. Hold the control yoke in the full forward position. 19. Engage the autopilot, apply firm aft pressure on the control yoke for approximately 10 seconds, allowing the pitch-trim wheel to move freely. Verify that the amber ELE↓ annunciator is displayed on both PFD 1 and PFD 2. 20. Disengage the autopilot and use the pitch-trim switch (or the pitch-trim wheel) to trim full up. 21. Move the control yoke to the full aft position and hold. 22. Press the Go Around button on the throttle and engage the autopilot. Apply firm forward pressure on the control yoke for approximately 10 seconds, allowing the pitch-trim wheel to move freely. Verify that the amber ELE↑ annunciator is displayed on both PFD 1 and PFD 2. 23. Disengage the autopilot. NOTE If the ELE annunciation appears during any of the following steps, reset the trim wheel and repeat the test step. 24. Use the pitch-trim switch (or the pitch-trim wheel) to trim full down. 25. Hold the elevator in the neutral position, press the HDG and ALT buttons on the mode controller and center the heading bug. 26. Engage the autopilot and turn the heading knob to set the heading bug to the right of center. Hold the control yoke centered for approximately 10 seconds. Verify that the amber AIL→ annunciator is displayed on both PFD 1 and PFD 2. Page 4-28 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 27. Turn the heading knob to set the heading bug to the left of center. Hold the control yoke centered for approximately 10 seconds. Verify that the amber ←AIL annunciator is displayed on both PFD 1 and PFD 2. 28. Disengage the autopilot and clear all modes. 29. Ensure the aircraft is on the ground and the nose wheel is approximately straight. 30. Engage the yaw damper and apply firm load on the right rudder pedal for approximately 20 seconds. 31. Verify that the amber ←RUD annunciator is displayed on both PFD 1 and PFD 2. 32. Apply firm load on the left rudder pedal for approximately 20 seconds. 33. Verify that the amber RUD→ annunciator is displayed on both PFD 1 and PFD 2. 34. Disengage autopilot. 35. The Trim Annunciator Check is complete. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 4-29 Revision 4 4.13 G1000 Miscompare Checks This procedure will check the AHRS, airspeed and altitude miscompare monitors. Accomplish the following checks with the aircraft positioned where it can receive GPS signals and magnetic heading. Access to AHRS1 and AHRS2 will be required during this test. 1. Ensure the G1000 is operating in normal mode. 2. Connect a pitot/static test set to the aircraft ADC1 pitot and static ports (Pilot’s side). (Do not connect the pitot/static tester to ADC2 ports at this time.) 3. Set the baro-correction on PFD1 and PFD2 to 29.92. 4. On the AFCS mode controller, press the ALT, HDG, and AP buttons and verify autopilot engages. 5. Slowly increase the pitot/static test set to simulate an ADC1 / ADC2 altitude miscompare of greater than 200 ft., verify the disconnected ADC altitude does not increase, autopilot does not disconnect and amber comparator window text “ALT MISCOMP” is displayed on PFD1 and PFD2. 6. Reduce ADC1 altitude to ambient pressure. 7. Repeat Step 5 with the pitot/static test set connected to the aircraft ADC2 pitot and static ports. 8. Use the pitot/static test set to simulate an airspeed of 40 kts for ADC1 and 55 kts for ADC2. Verify the autopilot does not disconnect and amber comparator window text “IAS MISCOMP” is displayed on PFD 1 and PFD2. 9. Use the pitot/static test set to simulate an airspeed of 55 kts for ADC1 and 40 kts for ADC2. Verify the autopilot does not disconnect and amber comparator window text “IAS MISCOMP” is displayed on PFD 1 and PFD2. 10. Use the pitot/static test set to simulate an airspeed of 85 kts for ADC1 and 95 kts for ADC2. Verify the autopilot does not disconnect and amber comparator window text “IAS MISCOMP” is displayed on PFD 1 and PFD2. 11. Use the pitot/static test set to simulate an airspeed of 95 kts for ADC1 and 85 kts for ADC2. Verify the autopilot does not disconnect and amber comparator window text “IAS MISCOMP” is displayed on PFD 1 and PFD2. 12. Reduce ADC1 and ADC2 airspeeds to 0 kts. 13. Slowly rotate AHRS1 along the lateral (pitch) axis to a pitch attitude of greater than 5 degrees, verify the following: • AHRS2 pitch attitude does not change • An amber “PIT MISCOMP” is annunciated on PFD1 and PFD2 • Autopilot disconnects at approximately 5 deg AHRS1 / AHRS2 miscompare • The autopilot disconnect audio alert (two hi-low tones) sounds • A red flashing AP annunciator on PFD1 and PFD2 • Flight director command bars remain in view with autopilot in HDG and ALT mode 14. Replace AHRS1 to normal attitude and verify that attitude display on PFD1 displays current aircraft attitude. 15. Use the AFCS mode controller to re-engage autopilot. 16. Slowly rotate AHRS1 along the longitudinal (roll) axis to a roll attitude of greater than 5 degrees, verify the following: • • • • • Page 4-30 Revision 4 AHRS2 roll attitude does not change An amber “ROL MISCOMP” is annunciated on PFD1 and PFD2 Autopilot disconnects at approximately 5 deg AHRS1 / AHRS2 miscompare The autopilot disconnect audio alert (two hi-low tones) sounds A red flashing AP annunciator on PFD1 and PFD2 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 • Flight director command bars remain in view with autopilot in HDG and ALT mode 17. Replace AHRS1 to normal attitude and verify that attitude display on PFD1 displays current aircraft attitude. 18. Repeat Steps 13 through 17 for AHRS2. 19. The G1000 Miscompare checks are complete. 4.14 GIA Cooling Fans Operational Check This procedure will verify that airflow is present from the ported avionics cooling fans to the #1 and #2 GIA units. The fan speed monitoring circuits and annunciations are checked by the G1000 Cooling Fan Fail Annunciation Check in Section 8.1.4 and a Visual Inspection of the fans and hoses is accomplished in Section 4.4. This check requires the G1000 to be powered on. 1. Gain access to the nose avionics compartment. 2. Disconnect cooling fan hose from the pilot side GIA and verify airflow is present. 3. Reconnect the cooling fan hose to the GIA and secure using MS3367-5-9 cable tie. 4. Repeat Steps 2 through 3 for the copilot side GIA. 5. The GIA Cooling Fans Operational Check is complete. 4.15 GDU Cooling Fans Operational Check This procedure will verify that airflow is present from the PFD1, MFD and PFD2 cooling fans. The fan speed monitoring circuits and annunciations are checked by the G1000 Cooling Fan Fail Annunciation Check in Section 8.1.4. This check requires the G1000 to be powered on. 1. Remove PFD1 as described in Section 6.1, steps 1 and 2 (Removal). 2. Identify the PFD1 cooling fan and verify airflow is present. 3. Reinstall PFD1 as described in Section 6.1, steps 2 through 4 (Reinstallation). 4. Repeat Steps 1 through 3 for the MFD and PFD2. 5. The GDU Cooling Fans Operational Check is complete. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 4-31 Revision 4 4.16 Standby Battery Periodic Checks 4.16.1 Charge Check Refer to the PS-835 Emergency Power Supply Installation Manual listed in Table 1-2. With the PS-835 battery installed in the aircraft and aircraft power applied, verify all four Battery Voltage LEDs are lit to indicate the battery is being charged (see Figure 4-5). With the PS-835 battery installed in the aircraft and no aircraft power applied, press TEST SWITCH (Figure 4-5, Item 4) into TEST position for 5 seconds. The PS-835 indicates that it is adequately charged when the VOLTAGE LEVEL 24Vdc LED (Figure 4-5, Item 2) illuminates momentarily, AND the 20Vdc LED (Figure 4-5, Item 6) remains lit during the test. If the VOLTAGE LEVEL 24Vdc LED does not, at least momentarily, illuminate while the 20Vdc LED is illuminated, perform the Section 4.16.3 Cell Isolation Test because the battery is incapable of providing adequate power. Table 4-14, Standby Battery Required Equipment DESCRIPTION VENDOR/SPECIFICATION Power Supply 0-30 VDC, 20A capacity DVM Fluke Model 8050A Load Resistor 7Ω +/- 1% 250 watt Stopwatch Capable of measuring to the minute Figure 4-5, Standby Battery Page 4-32 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 4.16.2 Capacity Test NOTE The PS-835 Emergency Power Supply must have completed a full charge prior to any discharge testing. This test is performed with the battery removed from the aircraft. A. B. Press and hold TEST SWITCH (Figure 4-5, Item 4) and observe the OUTPUT VOLTAGE MONITOR LED's. 1) If the 24VDC OUTPUT VOLTAGE MONITOR LED comes on, proceed with Discharge Test procedure. 2) If OUTPUT VOLTAGE MONITOR LED's do not come on, check fuses at bracket next to battery and replace if blown. Perform Cell Isolation Test if no fuses are blown. Discharge Test (Load Resistor) 1) Prepare for test by first constructing an X-Y graph similar to the one shown below. If possible, use pre-printed graph paper to create a record of the discharge period along the X-axis and voltage readings along the Y-axis. 2) Position all INDIVIDUAL CELL DIP SWITCHES (Figure 4-5, Item 5) to the ON position. If the INDIVIDUAL CELL MONITOR LED DS12 is the only LED not illuminated, proceed to the Cell Isolation Test. 3) Connect Digital Voltmeter leads to J1 connector pins 11 (+) and 7 (-). 4) Connect the Load Resistor across J1 connector pins 11 (+) and7 (-) and start timing the discharge period with a stopwatch. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 4-33 Revision 4 5) 6) Monitor and plot voltage values at 10-minute intervals. Note voltage on Digital Voltmeter at 48.0 minutes (PS-835D) or at 20.0 minutes (PS-835C). This voltage must be greater than 20.0 Vdc. a. All INDIVIDUAL CELL MONITOR LED’s (Figure 4-5, Item 1) must remain on. b. Any LED that does go OFF will represent a defective individual cell, which must be replaced. 7) Remove the Load Resistor from J1 connector pins 11 (+) and 7 (-). 8) Position all INDIVIDUAL CELL DIP SWITCHES (Figure 4-5, Item 5) to the OFF position. 9) Compare the voltage vs. time plot created during this test to that of curve identified as typical for the External Load test method on the chart above. If the plot reveals a discharge curve that meets or exceeds the MINIMUM ACCEPTABLE DISCHARGE CURVE, the unit is considered satisfactory. 10) If unit discharge plot is satisfactory and no other failures were revealed, perform the Charging Procedure within 2 hours of completion of the discharge test. Return the unit into service. 4.16.3 Cell Isolation Test NOTE No power should be applied to PS-835 Emergency Power Supply during test. This test is performed with the battery removed from the aircraft. A. Press and hold TEST SWITCH (Figure 4-5, Item 4). If no OUTPUT VOLTAGE MONITOR LED's come on: 1) Position all INDIVIDUAL CELL DIP SWITCHES (Figure 4-5, Item 5) to the ON position. 2) Press and hold TEST SWITCH (Figure 4-5, Item 4) and observe the INDIVIDUAL CELL MONITOR LED's (Figure 4-5, Item 1). a. If all INDIVIDUAL CELL MONITOR LED’s come on except DS12, the unit is damaged and requires repair at an authorized repair station. b. If all INDIVIDUAL CELL MONITOR LED’s are on, a low-battery voltage condition exists. B. Perform the Charging Procedure. 4.16.4 Charging Procedure (Constant-Voltage Charging Method) Locally manufacture a power cable using 16AWG wire and the appropriate mating connector. Include a Diode (15 Adc (min), 50.0 PIV or greater) to prevent battery discharge in case of loss of power from the power source. Using the external power supply apply 30.0 Vdc (10A maximum current limited) to J1 connector pins 11 (+) and 7 (-) and charge the unit for 16 hours. The batteries should reach 80% capacity within 1 hour and full charge at 16 hours. Figure 4-6, Power Supply Connection Page 4-34 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 4.17 Rudder Boost Operational Check 1. Place the RUDDER BOOST switch to the OFF position. For Model 300 aircraft, set the left and right bleed air control switches to the OPEN position. 2. Verify the amber RUD BOOST OFF annunciator on the aircraft’s caution and advisory panel is illuminated. 3. Place the RUDDER BOOST switch to the RUDDER BOOST position. Verify the amber RUD BOOST OFF annunciator on the aircraft caution and advisory panel is extinguished. 4. Pull GIA1 primary and secondary circuit breakers. Verify RUD BOOST OFF annunciator is extinguished. 5. Pull GIA2 circuit breaker. Verify RUD BOOST OFF annunciator illuminates. 6. Reset GIA1 and GIA2 circuit breakers. Verify RUD BOOST OFF annunciator extinguishes. 7. Pull the AFCS SERVO circuit breaker. Verify RUD BOOST OFF annunciator illuminates. 8. Reset AFCS SERVO circuit breaker. Verify RUD BOOST OFF annunciator extinguishes. 9. Press and hold the AP/DISC switch on the pilot’s control wheel and verify RUD BOOST OFF annunciator illuminates. 10. Release the AP/DISC switch and verify the RUD BOOST OFF annunciator extinguishes. 11. Repeat steps 9-10 for the copilot’s control wheel. NOTE Steps 12-15 are only applicable to Model 300 aircraft. 12. Place the L BLEED AIR CONTROL SWITCH in the PNEU & ENVIR OFF position. Verify RUD BOOST OFF annunciator illuminates. 13. Place the L BLEED AIR CONTROL SWITCH in the OPEN position. Verify RUD BOOST OFF annunciator extinguishes. 14. Place the R BLEED AIR CONTROL SWITCH in the PNEU & ENVIR OFF position. Verify RUD BOOST OFF annunciator illuminates. 15. Place the R BLEED AIR CONTROL SWITCH in the OPEN position. Verify RUD BOOST OFF annunciator extinguishes. 4.18 Exterior Skin Inspection Around Antennas Perform a visual inspection of the exterior skin for cracks and loose and missing fasteners in an area at least 1-inch around the following antennas: • GA 36 GPS antenna • GA 37 GPS/XM antenna • GA 58 Traffic Antenna, Upper (if Garmin traffic system is installed) • GA 58 Traffic Antenna, Lower (if Garmin traffic system is installed) • Transponder Antenna, Upper #1 (if Garmin GTX 33D or GTX 3000 transponder is installed) • Transponder Antenna, Upper #2 (if Garmin GTX 33D or GTX 3000 transponder is installed) • Iridium Antenna (if Garmin GSR 56 satellite receiver is installed) • Wi-Fi Antenna (if Garmin GDL 59 wi-fi data link is installed) The antennas do not need to be removed to perform this inspection. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 4-35 Revision 4 Figure 4-7, Exterior Skin Inspection Around Antennas Should damage be detected in any structural component during this inspection, all adjacent structures must be carefully investigated for indications of related damage. All damage must be repaired using data obtained from the Structural Inspection and Repair Manual (SIRM), Beechcraft Repair Design Office (RDO) or other approved sources. Page 4-36 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5 TROUBLESHOOTING This section provides instructions and guidance for G1000 system troubleshooting, as installed in the King Air 300/B300. IMPORTANT! Sections 6, 7 and 8 provide detailed instructions on equipment removal, replacement, configuration, and return-to-service testing. Anytime a G1000 component or LRU is removed, swapped, or replaced, the technician must follow the procedures given in Sections 6, 7 and 8 to ensure proper operation of the system. Troubleshoot the G1000 system by first identifying, then isolating the specific failure to the responsible LRU. There are several indications that the G1000 presents to the pilot or technician, showing overall system condition. A course of action should be determined based on the information presented on the display. This section shows possible scenarios likely to be encountered during normal operation and gives troubleshooting guidance to the technician to resolve problems. Figure 5-1, AUX – System Status Page The AUX – System Status page displays the following information for each LRU and sub-function: • Status: A green check is displayed for properly operating LRUs. A red ‘x’ appears when an internal LRU fault is detected and it has taken itself offline, or if the MFD can not communicate with the LRU. • Serial Number: Each LRU serial number is displayed (functions such as GPS and GS are contained within an LRU; therefore, serial numbers are not shown for these). • Current SW Version Loaded. When troubleshooting, first check to ensure that each LRU status is ‘green’ and that the correct software is loaded in each unit. Additional airframe and database information is also displayed on this page. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-1 Revision 4 5.1 G1000 Alerting System Figure 5-2, Alerts & Annunciations The G1000 Alert System conveys alerts to the pilot using combinations of the following features: Alert Window: The Alert window displays alert text messages. Pressing the ALERTS softkey displays the Alerts window. Pressing the ALERTS softkey again removes the Alerts window from the display. Softkey Annunciation: When the G1000 Alerting System issues an alert, the ALERTS softkey is used as a flashing annunciation to accompany the alert. During the alert, the ALERTS softkey label changes to ADVISORY as shown in Figure 5-3. Pressing the ADVISORY softkey annunciation acknowledges the presence of the alert and displays the advisory message in the Alert Window. Figure 5-3, ADVISORY Softkey Annunciation System Failure Annunciations: Typically, a large red X appears in windows when a failure is detected in the LRU providing the information to the window. Page 5-2 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Aural & Audio Alerts The G1000 system is capable of issuing audio and aural (voice) alerts for various situations. The following alerts are utilized by the G1000: Alert Name Purpose Traffic (voice) Traffic Advisory No Traffic (voice) Traffic Unavailable “Minimums, Minimums” (voice) Minimums Aural Alert Alt Alert (aural) Altitude Alerting Function “Caution Terrain, Caution Terrain” (voice) and TAWS Caution alert: Reduced required terrain clearance “Terrain Ahead, Terrain Ahead” (voice) Or Imminent impact with terrain. “Terrain Terrain, Pull Up Pull Up” (voice) and TAWS Warning alert: Reduced required terrain clearance “Terrain Ahead Pull Up, Terrain Ahead Pull Up” (voice) Or Imminent impact with terrain. “Terrain Terrain” (voice) TAWS Caution alert: GPWS mode 2, Excessive Closure Rate “Too Low Terrain” (voice) TAWS Caution alert: GPWS mode 4A/B/C, Flight into terrain, takeoff or high speed “Too Low Gear” (voice) TAWS Caution alert: GPWS mode 4A/B, Flight into terrain, gear not extended “Too Low Flaps” (voice) TAWS Caution alert: GPWS mode 4B, Flight into terrain, flaps not extended “Sink Rate” (voice) TAWS Caution alert: GPWS mode 1, Excessive Descent Rate “Pull Up” (voice) “Don’t Sink” (voice) or “Too Low Terrain” (voice) “Glide Slope” (voice) or “Glide Path” (voice) TAWS Warning alert: GPWS mode 1 or 2, Excessive Descent Rate Or Excessive Closure Rate TAWS Caution alert: GPWS mode 3, altitude loss after takeoff or go-around TAWS Caution alert: GPWS mode 5, Glide Slope/Path deviation “Five Hundred” (voice) or “Four Hundred” (voice) or “Three Hundred” (voice) or “Two Hundred” (voice) or TAWS voice callout: GPWS mode 6, voice callout as appropriate per altitude “One Hundred” (voice) “Caution Obstacle, Caution Obstacle” (voice) or TAWS Caution alert: Reduced required obstacle clearance “Obstacle Ahead, Obstacle Ahead ” (voice) Or Imminent impact with obstacle. “Obstacle Obstacle Pull Up Pull Up” (voice) or “Obstacle Ahead Pull Up, Obstacle Ahead Pull Up” (voice) TAWS Warning alert: Imminent impact with obstacle. “TAWS System Failure” (voice) TAWS status alert: Terrain failure “TAWS Not Available” (voice) TAWS status alert: Terrain not available “TAWS System Test, OK” (voice)(If passed) or “TAWS System Failure” (voice) (If test failed) “TAWS Available” (voice) TAWS status alert: Terrain self-test TAWS status alert: Terrain available “Vertical Track” (voice) Vertical navigation alerting function *“Climb, Climb” (voice) TCAS II Resolution Advisory: Climb at the rate depicted by the solid green bar on the vertical speed tape on the PFD. *”Descend, Descend” (voice) TCAS II Resolution Advisory: Descend at the rate depicted by the solid green bar on the vertical speed tape on the PFD. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-3 Revision 4 Alert Name Purpose *”Monitor Vertical Speed” (voice) TCAS II Resolution Advisory: Verify vertical speed is out of the solid red bar on the vertical speed tape on the PFD. *”Level Off, Level Off” (voice) TCAS II Resolution Advisory: Reduce vertical speed to zero feet per minute. *”Clear of Conflict” (voice) TCAS II Resolution Advisory: Range is increasing and separation is adequate to reurn to the applicable clearance unless otherwise directed by ATC. *”Climb, Crossing Climb, Climb, Crossing Climb” (voice) TCAS II Resolution Advisory: Climb at the rated depicted by the solid green bar on the vertical speed tape on the PFD. Safe separation is achieved by climbing through the threat’s flight path. *”Descend, Crossing Descend, Descend, Crossing Descend” (voice) TCAS II Resolution Advisory: Descend at the rated depicted by the solid green bar on the vertical speed tape on the PFD. Safe separation is achieved by descending through the threat’s flight path. *”Maintain Vertical Speed, Maintain” (voice) TCAS II Resolution Advisory: Maintain the existing climb or descent rate as depicted by the solid green bar on the vertical speed tape on the PFD. Safe separation is achieved by not altering the existing vertical speed. *”Maintaing Vertical Speed, Crossing Maintain” (voice) TCAS II Resolution Advisory: Maintain the existing climb or descent rate as depicted by the solid green bar on the vertical speed tape on the PFD. Safe separation is achieved by not altering the existing vertical speed and climbing or descending through the threat’s flight path. *”Increase Climb, Increase Climb” (voice) TCAS II Resolution Advisory: Climb at the rate depicted by the solid green bar on the vertical speed tape on the PFD. Received after a “CLIMB” resolution advisory and indicates additional climb rate is required to achieve safe vertical separation from the maneuvering threat aircraft. *”Increase Descent, Increase Descent” (voice) TCAS II Resolution Advisory: Descent at the rate depicted by the solid green bar on the vertical speed tape on the PFD. Received after a “DESCEND” resolution advisory and indicates additional Descent rate is required to achieve safe vertical separation from the maneuvering threat aircraft. *”Climb – Climb Now, Climb – Climb Now” (voice) TCAS II Resolution Advisory: Climb at the rate depicted by the solid green bar on the vertical speed tape on the PFD. Received after a “DESCEND” resolution advisory and indicates a reversal in direction is required to achieve safe vertical separation from the maneuvering threat aircraft. *”Descend – Descend Now, Descend – Descend Now” (voice) TCAS II Resolution Advisory: Descend at the rate depicted by the solid green bar on the vertical speed tape on the PFD. Received after a “CLIMB” resolution advisory and indicates a reversal in direction is required to achieve safe vertical separation from the maneuvering threat aircraft. *These aural alerts are specific to installations with the GTS Processor configured as a GTS 8000 (TCAS II) unit. For installations of other approved TCAS II systems, these alerts and visual indications may be slightly different. For instance, “MONITOR VERTICAL SPEED” in the GTS processor installation is “ADJUST VERTICAL SPEED” for the third-party TCAS II installation. Page 5-4 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.2 System Annunciations If data fields become invalid due to an LRU failure, the PFD/MFD typically annunciates the failure with a large red X, as shown in Figure 5-4. Figure 5-4, System Annunciations 5.2.1 Failed Path Messages The following message indicates there is a data path connected to the GDU (PFD1, PFD1, or MFD) or the GIA 63W (1 or 2) that has failed. FAILED PATH – A data path has failed. The FAILED PATH message is triggered by a timeout of any one digital channel. The channels that are checked are listed on these pages in config mode: 1) GDU RS-232 / ARINC 429 CONFIG (PFD1/2, and MFD) 2) GIA RS-232 / ARINC 429 CONFIG (GIA1 and GIA2) 3) GIA CAN / RS-485 CONFIGURATION (GIA1 and GIA2) IMPORTANT! Once the FAILED PATH message has been triggered, it will remain on the list of messages until the next power cycle. This latching was implemented so that for intermittent failures, the message would remain at the end of the flight (to alert maintenance crew). Also, this keeps the crew from having to acknowledge message repeatedly in the case of intermittent failures. The box next to each channel indicates the current status of the channel per the below: • Red X = data path is known to be failed • Amber question mark (?) = data path status is unknown • Green checkmark (9)= data path is known to be good G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-5 Revision 4 The applicable data paths can be verified by viewing the following configuration mode pages. 5.2.1.1 GDU RS-232 / ARINC 429 CONFIG Page PFD 1 RS-232 Channel LRU Indicator Green CHNL 2 Page 5-6 Revision 4 GMC 710 Status PFD1/GMC 710 data path is functioning correctly. Red PFD1/GMC 710 data path is not functioning correctly. • Verify GMC710 is powered on. o If GMC 710 will not power on, remove unit and verify power and ground are present at the GMC connector. If power or ground is not present, troubleshoot aircraft wiring for faults. If power and ground are present, replace GMC 710. • Load PFD1 and GMC 710 configuration files. • Swap PFD1and PFD2 to confirm if the problem is in the original PFD1. o Replace original PFD1 if box turns green after swapping displays. • Check the PFD1/GMC 710 interconnect wiring for faults. Replace GMC 710 if problem remains. Amber PFD1/GMC 710 data path functionality is unknown. Reload PFD1 configuration file. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 PFD 1 ARINC 429 Channel LRU Indicator Green IN 1 IN 2 GRS 77 or GRS 7800 #1 GDC 7400 #1 Red Status PFD1/GRS 77 or GRS 7800 #1 data path is functioning correctly. PFD1/GRS 77 or GRS 7800 #1 data path is not functioning correctly. • Verify GRS77 or GRS 7800 #1 status is “OK” using the System Status page on the MFD. If it is not, correct condition before proceeding, reference GRS troubleshooting sections. o Swap GRS1 and GRS2 (no reconfiguration required) to confirm if the problem is in the original GRS1. o Replace original GRS1 if box turns green after swapping units. • Load PFD1 configuration file. • Swap PFD1 and PFD2 to confirm if the problem is in the original PFD1. o Replace original PFD1 if box turns green after swapping displays. • Swap GRS1 and GRS2 (no reconfiguration required) to confirm if the problem is in the original GRS1. o Replace original GRS1 if box turns green after swapping units. Check the PFD1/GRS 77 or GRS 7800 #1 interconnect wiring for faults. Amber PFD1/GRS 77 or GRS 7800 #1 data path functionally is unknown. Reload PFD1 configuration file. Green PFD1/GDC 7400 #1 data path is functioning correctly Red Amber PFD1/GDC 7400 #1 data path is not functioning correctly. • Verify GDC 74 #1 status is “OK” using the System Status page on the MFD. If it is not, correct condition before proceeding, reference GDC troubleshooting sections. • Load PFD1 and GDC 7400 #1 configuration files. • Swap PFD1 and PFD2 to confirm if the problem is in the original PFD1. o Replace original PFD1 if box turns green after swapping displays. • Check the PFD1/GDC 7400 #1 interconnect wiring for faults. Replace GDC 7400 #1 if problem remains. PFD1/GDC 7400 #1 data path functionality is unknown. Reload PFD1 configuration file. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-7 Revision 4 PFD 2 RS-232 Channel LRU Indicator Green CHNL 2 Page 5-8 Revision 4 GMC 710 Status PFD2/GMC 710 data path is functioning correctly. Red PFD2/GMC 710 data path is not functioning correctly. • Verify GMC 710 is powered on. o If GMC 710 will not power on, remove unit and verify power and ground are present at the GMC connector. If power or ground is not present, troubleshoot aircraft wiring for faults. If power and ground are present, replace GMC 710. • Load PFD2 and GMC 710 configuration files. • Swap PFD2 and PFD1 to confirm if the problem is in the original PFD2. o Replace original PFD2 if box turns green after swapping displays. • Check the PFD2/GMC 710 interconnect wiring for faults. Replace GMC 710 if problem remains. Amber PFD2/GMC 710 data path functionality is unknown. Reload PFD2 configuration file. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 PFD 2 ARINC 429 Channel LRU Indicator Green IN 1 IN 2 GRS 77 or GRS 7800 #2 GDC 7400 #2 Red Status PFD2/GRS 77 GRS 7800 #2 data path is functioning correctly. PFD2/GRS 77 or GRS 7800 #2 data path is not functioning correctly. • Verify GRS 77 or GRS 7800 #2 status is “OK” using the System Status page on the MFD. If it is not, correct condition before proceeding, reference GRS troubleshooting sections. o Swap GRS1 and GRS2 (no reconfiguration required) to confirm if the problem is in the original GRS1. o Replace original GRS1 if box turns green after swapping units. • Load PFD2 configuration file. • Swap PFD2 and PFD1 to confirm if the problem is in the original PFD2. o Replace original PFD2 if box turns green after swapping displays. • Swap GRS1 and GRS2 (no reconfiguration required) to confirm if the problem is in the original GRS1. o Replace original GRS1 if box turns green after swapping units. • Check the PFD2/GRS 77 or GRS 7800 #2 interconnect wiring for faults. Amber PFD2/GRS 77 or GRS 7800 #2 data path functionality is unknown. Reload PFD2 configuration file. Green PFD2/GDC 7400 #2 data path is functioning correctly. Red Amber PFD2/GDC 7400 #2 data path is not functioning correctly. • Verify GDC 74 #2 status is “OK” using the System Status page on the MFD. If it is not, correct condition before proceeding, reference GDC troubleshooting sections. • Load PFD2 and GDC 7400 #2 configuration files. • Swap PFD2 and PFD1 to confirm if the problem is in the original PFD2. o Replace original PFD2 if box turns green after swapping displays. • Check the PFD2/GDC 7400 #2 interconnect wiring for faults. Replace GDC 7400 #2 if problem remains. PFD2/GDC 7400 #2 data path functionality is unknown. Reload PFD2 configuration file. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-9 Revision 4 MFD1 RS-232 Channel LRU Indicator Green CHNL 1 GCU 477 Red Amber Page 5-10 Revision 4 Status MFD1/GCU 477 data path is functioning correctly. MFD1/GCU 477 data path is not functioning correctly. • Verify GCU 477 is powered on. o If GCU 477 will not power on, remove unit and verify power and ground are present at the GCU connector. If power or ground is not present, troubleshoot aircraft wiring for faults. If power and ground are present, replace GCU 477. • Load MFD1 and GCU 477 configuration files. • Check the MFD1/GCU 477 interconnect wiring for faults. • Replace GCU 477. Replace MFD if problem remains. MFD1/GCU data path functionality is unknown. Reload MFD1 configuration file. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.2.1.2 GIA RS-232 / ARINC 429 CONFIG Page GIA1 RS-232 Channel LRU Indicator Green CHNL 1 CHNL 2 GDC 7400 #1 GRS 77 or GRS 7800 #2 (output only) GTX 33ES or GTX 3000 #1 w/TIS GIA1/GDC 7400 #1 data path is functioning correctly. Red GIA1/GDC 7400 #1 data path is not functioning correctly. • Load GIA1 and GDC 7400 #1 configuration files. • Swap GIA1 and GIA2, reconfigure both GIA’s to their new locations to confirm if the problem is in the original GIA1. o Replace original GIA1 if box turns green after swapping units. • Check the GIA1/GDC 7400 #1 interconnect wiring for faults. Replace GDC 7400 #1 if problem remains. Amber GIA1/GDC 7400 #1 data path functionality is unknown. Reload GIA1 configuration files. White N/A Green CHNL 5 Status Red Amber GIA1/GRS 77 or GRS 7800 #2 output data path is not monitored. A white N/A box is normal. GIA1/GTX 33/3000 #1 data path is functioning correctly. GIA1/GTX 33 or GTX 3000 #1 data path is not functioning correctly. • Load GIA1 and GTX 33 or GTX 3000 #1 configuration files. • Swap GIA1 and GIA2, reconfigure both GIA’s to their new locations to confirm if the problem is in the original GIA1. o Replace original GIA1 if box turns green after swapping units. • Check the GIA1/GTX 33 or GTX 3000 #1 interconnect wiring for faults. Replace GTX 33 or GTX 3000 #1 if problem remains. GIA1/GTX 33 or GTX 3000 #1 data path functionality is unknown. Reload GIA1 configuration files. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-11 Revision 4 GIA1 RS-232 (continued) Channel LRU Indicator Green CHNL 6 CHNL 7 GRS 77 or GRS 7800 #1 GMA 1347D #1 Red GIA1/GRS 77 or GRS 7800 #1 data path is functioning correctly. GIA1/GRS 77 or GRS 7800 #1 data path is not functioning correctly. • Load GIA1 configuration files. • Swap GIA1 and GIA2, reconfigure both GIA’s to their new locations to confirm if the problem is in the original GIA1. o Replace original GIA1 if box turns green after swapping units. • Swap GRS1 and GRS2 (no reconfiguration required) to confirm if the problem is in the original GRS1. o Replace original GRS1 if box turns green after swapping units. Check the GIA1/GRS 77 or GRS 7800 #1 interconnect wiring for faults. Amber GIA1/GRS 77 or GRS 7800 #1 data path functionality is unknown. Reload GIA1 configuration files. Green GIA1/GMA 1347D #1 data path is functioning correctly. Red Amber Page 5-12 Revision 4 Status GIA1/GMA 1347D #1 data path is not functioning correctly. • Load GIA1 and GMA 1347D #1 configuration files. • Swap GMA 1347D #1 and GMA 1347D #2, reconfigure both GMA’s to their new locations, to confirm if the problem is in the original GMA 1347D #1. o Replace original GMA 1347D #1 if box turns green after swapping units. • Swap GIA1 and GIA2, reconfigure both GIA’s to their new locations to confirm if the problem is in the original GIA1. o Replace original GIA1 if box turns green after swapping units. Check the GIA1/GMA 1347D #1 interconnect wiring for faults. GIA1/GMA 1347D #1 data path functionality is unknown. Reload GIA1 configuration files. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 GIA1 ARINC 429 Channel LRU Indicator Green IN 5 IN 6 GDC 7400 #1 GRS 77 or GRS 7800 #1 Status GIA1/GDC 7400 #1 data path is functioning correctly. Red GIA1/GDC 7400 #1 data path is not functioning correctly. • Load GIA1 and GDC 7400 #1 configuration files. • Swap GIA1 and GIA2, reconfigure both GIA’s to their new locations to confirm if the problem is in the original GIA1. o Replace original GIA1 if box turns green after swapping units. • Check the GIA1/GDC 7400 #1 interconnect wiring for faults. Replace GDC 7400 #1 if problem remains. Amber GIA1/GDC 7400 #1 data path functionality is unknown. Reload GIA1 configuration files. Green GIA1/GRS 77 or GRS 7800 #1 data path is functioning correctly. Red Amber GIA1/GRS 77 or GRS 7800 #1 data path is not functioning correctly. • Load GIA1 configuration files. • Swap GIA1 and GIA2, reconfigure both GIA’s to their new locations to confirm if the problem is in the original GIA1. o Replace original GIA1 if box turns green after swapping units. • Swap GRS1 and GRS2 (no reconfiguration required, ref. GRS Configuration and Testing sections) to confirm if the problem is in the original GRS1. o Replace original GRS1 if box turns green after swapping units. Check the GIA1/GRS 77 or GRS 7800 #1 interconnect wiring for faults. GIA1/GRS 77 or GRS 7800 #1 data path functionality is unknown. Reload GIA1 configuration files. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-13 Revision 4 GIA2 RS-232 Channel CHNL 1 LRU Indicator GDC 7400 #2 Green GIA2/GDC 7400 #2 data path is functioning correctly. Red GIA2/GDC 7400 #2 data path is not functioning correctly. • Load GIA2 and GDC 7400 #2 configuration files. • Swap GIA2 and GIA1, reconfigure both GIA’s to their new locations to confirm if the problem is in the original GIA1. o Replace original GIA2 if box turns green after swapping units. • Check the GIA1/GDC 7400 #2 interconnect wiring for faults. Replace GDC 7400 #2 if problem remains. Amber CHNL 2 GRS 77 or GRS 7800 #1 (output only) White N/A Green CHNL 5 Page 5-14 Revision 4 GTX 33ES or GTX 3000 #2 w/TIS Status GIA2/GDC 7400 #2 data path functionality is unknown. Reload GIA2 configuration files. GIA2/GRS 77 or GRS 7800 #1 output data path is not monitored. A white N/A box is normal. GIA2/GTX 33 or GTX 3000 #2 data path is functioning correctly. Red GIA2/GTX 33 or GTX 3000 #2 data path is not functioning correctly. • Load GIA2 and GTX 33 or GTX 3000 #2 configuration files. • Swap GIA2 and GIA1, reconfigure both GIA’s to their new locations to confirm if the problem is in the original GIA1. o Replace original GIA2 if box turns green after swapping units. • Check the GIA2/GTX 33 or GTX 3000 #2 interconnect wiring for faults. Replace GTX 33 or GTX 3000 #2 if problem remains. Amber GIA2/GTX 33 or GTX 3000 #2 data path functionality is unknown. Reload GIA2 configuration files. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 GIA2 RS-232 (continued) Channel LRU Indicator Green CHNL 6 CHNL 7 GRS 77 GRS 7800 #2 GMA 1347D #2 Red Status GIA2/GRS 77 or GRS 7800 #2 data path is functioning correctly. GIA2/GRS 77 or GRS 7800 #2 data path is not functioning correctly. • Load GIA2 configuration files. • Swap GIA2 and GIA1, reconfigure both GIA’s to their new locations to confirm if the problem is in the original GIA1. o Replace original GIA2 if box turns green after swapping units. • Swap GRS2 and GRS1 (no reconfiguration required) to confirm if the problem is in the original GRS2. o Replace original GRS2 if box turns green after swapping units. Check the GIA2/GRS 77 or GRS 7800 #2 interconnect wiring for faults. Amber GIA2/GRS 77 or GRS 7800 #2 data path functionality is unknown. Reload GIA2 configuration files. Green GIA2/GMA 1347D #2 data path is functioning correctly. Red Amber GIA2/GMA 1347D #2 data path is not functioning correctly. • Load GIA2 and GMA 1347D #2 configuration files. • Swap GMA 1347D #2 and GMA 1347D #1, reconfigure both GMA’s to their new locations to confirm if the problem is in the original GMA 1347D #2. o Replace original GMA 1347D #2 if box turns green after swapping units. • Swap GIA2 and GIA1, reconfigure both GIA’s to their new locations to confirm if the problem is in the original GIA2. o Replace original GIA2 if box turns green after swapping units. Check the GIA1/GMA 1347D #2 interconnect wiring for faults. GIA1/GMA 1347D #2 data path functionality is unknown. Reload GIA2 configuration files. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-15 Revision 4 GIA2 ARINC 429 Channel LRU Indicator Green IN 5 IN 6 GDC 7400 #2 GRS 77 or GRS 7800 #2 GIA2/GDC 7400 #2 data path is functioning correctly. Red GIA2/GDC 7400 #2 data path is not functioning correctly. • Load GIA2 and GDC 7400 #2 configuration files. • Swap GIA2 and GIA1, reconfigure both GIA’s to their new locations to confirm if the problem is in the original GIA2. o Replace original GIA2 if box turns green after swapping units. • Check the GIA2/GDC 7400 #2 interconnect wiring for faults. Replace GDC 7400 #2 if problem remains. Amber GIA2/GDC 7400 #2 data path functionality is unknown. Reload GIA2 configuration files. Green GIA2/GRS 77/7800 #2 data path is functioning correctly. Red Amber Page 5-16 Revision 4 Status GIA2/GRS 77 or GRS 7800 #2 data path is not functioning correctly. • Load GIA2 configuration files. • Swap GIA2 and GIA1, reconfigure both GIA’s to their new locations to confirm if the problem is in the original GIA2. o Replace original GIA2 if box turns green after swapping units. • Swap GRS2 and GRS1 (no reconfiguration required) to confirm if the problem is in the original GRS2. o Replace original GRS2 if box turns green after swapping units. Check the GIA2/GRS 77 or GRS 7800 #2 interconnect wiring for faults. GIA2/GRS 77 or GRS 7800 #2 data path functionality is unknown. Reload GIA2 configuration files. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.2.1.3 GIA CAN / RS-485 CONFIGURATION Page GIA1 RS-485 Channel LRU Indicator Green CHNL 1 CHNL 2 CHNL 4 GEA1 GEA2 GFC 700 Red Status GIA1/GEA1 data path is functioning correctly. GIA1/GEA1 data path is not functioning correctly. • Verify GEA1 is powered on using the GEA Status page. • Load GIA1 and GEA1 configuration files. • Swap GIA1 and GIA2, reconfigure both GIA’s to their new locations to confirm if the problem is in the original GIA1. o Replace original GIA1 if box turns green after swapping units. • Swap GEA1 and GEA2, reconfigure both GEA’s to their new locations to confirm if the problem is in the original GEA1. o Replace original GEA1 if box turns green after swapping units. Check the GIA1/GEA1 interconnect wiring for faults. Amber GIA1/GEA1 data path functionality is unknown. Reload GIA1 configuration files. Green GIA1/GEA2 data path is functioning correctly. Red GIA1/GEA2 data path is not functioning correctly. • Verify GEA2 is powered on using the GEA Status page. • Load GIA1 and GEA2 configuration files. • Swap GIA1 and GIA2, reconfigure both GIA’s to their new locations to confirm if the problem is in the original GIA1. o Replace original GIA1 if box turns green after swapping units. • Swap GEA2 and GEA1, reconfigure both GEA’s to their new locations to confirm if the problem is in the original GEA2. o Replace original GEA2 if box turns green after swapping units. Check the GIA1/GEA2 interconnect wiring for faults. Amber GIA1/GEA2 data path functionality is unknown. Reload GIA1 configuration files. Green GIA1/GFC 700 data path is functioning correctly. Red Amber GIA1/GFC 700 data path is not functioning correctly. • Load GIA1 configuration files, GIA Gains file and GSA software and gains file (if LRU and Card versions are different). Reference GFC section for further troubleshooting. GIA1/GFC 700 data path functionality is unknown. Reload GIA1 configuration files. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-17 Revision 4 GIA2 RS-485 Channel LRU Indicator Green CHNL 1 CHNL 2 CHNL 4 Page 5-18 Revision 4 GEA1 GEA2 GFC 700 Status GIA2/GEA1 data path is functioning correctly. Red GIA2/GEA1 data path is not functioning correctly. • Verify GEA1 is powered on using the GEA Status page. • Load GIA2 and GEA1 configuration files. • Swap GIA2 and GIA1, reconfigure both GIA’s to their new locations to confirm if the problem is in the original GIA2. o Replace original GIA2 if box turns green after swapping units. • Swap GEA1 and GEA2, reconfigure both GEA’s to their new locations to confirm if the problem is in the original GEA1. o Replace original GEA1 if box turns green after swapping units. Check the GIA2/GEA1 interconnect wiring for faults. Amber GIA2/GEA1 data path functionality is unknown. Reload GIA2 configuration files. Green GIA2/GEA2 data path is functioning correctly. Red GIA2/GEA2 data path is not functioning correctly. • Verify GEA2 is powered on using the GEA Status page. • Load GIA2 and GEA2 configuration files. • Swap GIA2 and GIA1, reconfigure both GIA’s to their new locations to confirm if the problem is in the original GIA2. o Replace original GIA2 if box turns green after swapping units. • Swap GEA2 and GEA1, reconfigure both GEA’s to their new locations to confirm if the problem is in the original GEA2. o Replace original GEA2 if box turns green after swapping units. Check the GIA2/GEA2 interconnect wiring for faults. Amber GIA2GEA2 data path functionality is unknown. Reload GIA2 configuration files. Green GIA2/GFC 700 data path is functioning correctly. Red GIA2/GFC 700 data path is not functioning correctly. • Load GIA2 configuration files, GIA Gains file and GSA software and gains file (if LRU and Card versions are different). Reference GFC section for further troubleshooting. Amber GIA2/GFC 700 data path functionality is unknown. Reload GIA2 configuration files. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.2.2 System Failure Troubleshooting The following table provides basic troubleshooting guidance for LRU failures. Refer to G1000/GFC 700 Wiring Diagram, listed in Table 1-2, as needed to verify interconnects. Invalid Data Field Associated LRU(s) Low Speed Awareness Band permanently displayed Solution • With aircraft weight on wheels and the G1000 in Configuration Mode, check that the RH GEAR ON GROUND Discrete In indication for GIA2, on GIA I/O CONFIGURATION page is illuminated. • With aircraft weight on wheels and the G1000 in Configuration Mode, check that the LH GEAR ON GROUND Discrete In indication for GIA1, on GIA I/O CONFIGURATION page is illuminated. • If both indications are illuminated Green, switch GIA1 and GIA2, to verify location of problem: 9 If problem is resolved, replace defective unit. 9 If indication is not illuminated, check for wiring faults between the GIAs and aircraft squat switch system. • With aircraft weight on wheels and the G1000 in Configuration Mode, check that the RH GEAR ON GROUND Discrete In indication for GIA2, on GIA I/O CONFIGURATION page is illuminated. • With aircraft weight on wheels and the G1000 in Configuration Mode, check that the LH GEAR ON GROUND Discrete In indication for GIA1, on GIA I/O CONFIGURATION page is illuminated. • If both indications are illuminated Green, switch GIA1 and GIA2, to verify location of problem: 9 If problem is resolved, replace defective unit. 9 If indication is not illuminated, check for wiring faults between the GIAs and aircraft squat switch system. • Check configuration settings for GIA1 and PFD1. • Swap GIA1 and GIA2, to verify location of problem: 9 If problem follows GIA1, replace GIA1. • Check Ethernet interconnect from GIA1 to PFD1. 9 If problem persists, replace PFD. • Check configuration settings for GIA2 and PFD2. • Swap GIA1 and GIA2, to verify location of problem: 9 If problem follows GIA2, replace GIA2. • Check Ethernet interconnect from GIA2 to PFD2. 9 If problem persists, replace PFD. GDU Low Speed Awareness Band permanently inhibited GDU NAV1 & COM1 GIA1 NAV2 & COM2 GIA2 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-19 Revision 4 Invalid Data Field Associated LRU(s) Solution • • GPS LOI GIA1 or GIA2 • • • • XPDR FAIL GTX 33 or GTX 3000 • • • • TAS FAIL AIRSPEED FAIL ALTITUDE FAIL VERT SPEED FAIL • • GDC 7400 • • • • OAT Page 5-20 Revision 4 GTP 59 • • Ensure that a cell phone or a device using cell phone technology is not turned on (even in a monitoring state) in the cabin. Check GPS1 and GPS2 signal strength on AUX page 4. Refer to GIA GPS section if GPS can not acquire a position lock for troubleshooting. Check corresponding GPS antenna and cable for faults. Check Ethernet interconnect between the PFD1 to GIA1 or PFD2 to GIA2 for faults. Swap GIA1 and GIA2, to verify location of problem: 9 If problem follows the GIA, replace the GIA. 9 If problem persists, replace the PFD1 or PFD2. Check GTX 33/33D or GTX 3000 configuration settings for GIA1 and GIA2. Check GTX 33D or GTX 3000 and GIA1 interconnect. Check GTX 33D or GTX 3000 and GIA2 interconnect. Perform a SET>ACTV configuration reset on the GTX Config page for each GTX, and verify the aircraft registration is present. Replace GTX 33/33D or GTX 3000. 9 If problem persists, replace GIA. Inspect GDC 7400 pitot/static plumbing integrity. Inspect pitot/static ports and associated equipment for faults. For TAS failure, also check GTP 59 probe. Check GDC 7400 configuration settings for the PFDs, MFD, GIA1, and GIA2. 9 If PFDs, MFD, and GIA configuration settings are correct, replace the GDC configuration module. 9 If problem persists, replace the GDC 7400. Check OAT probe wiring and connectors for faults. Check GDC config module wiring for damage, replace if any is found. Replace GDC config module Replace GDC 7400 with a known good unit: 9 If problem persists, replace the GTP 59. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Invalid Data Field Associated LRU(s) Solution • • • • ATTITUDE FAIL • GRS 77 or GRS 7800 • • • • Ensure that a cell phone or a device using cell phone technology is not turned on (even in a monitoring state) in the cabin. Cycle GRS 77 or GRS 7800 power to restart initialization. Ensure GRS 77 or GRS 7800 connecter is secure and proper wire harness strain relief is provided. Ensure the GRS 77 or GRS 7800 is fastened down tightly in it’s mounting rack and that the mounting rack is not loose (CAUTION - do not loosen the mounting rack hardware to the airframe shelf or the aircraft will need to be re-leveled and the PITCH/ROLL OFFSET procedure performed). Ensure GPS has acquired at least four satellites, has a 3D navigation solution, and a DOP of less than 5.0. This is particularly important for an ATTITUDE FAIL that appears during ground operation only. Perform an Engine Run-Up Test to check if engine vibration is causing the GRS 77 or GRS 7800 to go offline. Load configuration files to the PFD, MFD, GIA1, and GIA2. Calibrate the GRS 77 or GRS 7800 (Pitch/Roll Offset and Magnetometer Calibration). Replace GRS 77 or GRS 7800. 9 If problem persists replace GRS 77 or GRS7800 configuration module. 9 Contact Garmin Aviation Product Support if condition continues after replacing the GRS 77 or GRS 7800 and config module for additional assistance. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-21 Revision 4 Invalid Data Field Associated LRU(s) Solution • • HDG FAIL GRS 77 or GRS 7800 & GMU 44 • • • • • • • Page 5-22 Revision 4 Ensure metal objects (tool boxes, power carts, etc.) are not interfering with the magnetometer and aircraft is not in hangar, near other buildings, parked over metal drainage culverts or on hard surfaces that may contain steel reinforcements The GMU 44 magnetometers located in the tail cone are vulnerable to magnetized rudder torque tube lower fittings and control rod ends. This magnetism may be caused by an improperly functioning aircraft static discharge system which is dependent on static dischargers (wicks) and electrical bonding of the static dischargers and surrounding structure. The bonding straps on the elevators and rudder should be visually inspected to verify they are not missing, broken or frayed. Refer to the King Air 300 or B300 Series Maintenance Manual, chapter 23-60-00, to verify the following items are within specification: 1. The resistance from the tip to the base of each static discharger 2. The resistance between the base of each static discharger and the surface to which it is attached 3. The resistance between the elevators/rudder and the airplane structure Ensure that a cell phone or a device using cell phone technology is not turned on (even in a monitoring state) in the cabin. Cycle power after moving aircraft away from metal objects to determine if metal objects were the source of the interference. Allow up to five minutes for the heading to reinitialize. Perform a Magnetometer Interference Test to check for interference from onboard electrical system components (e.g. NAV lights). Pay particular attention to any new electrical devices that have been installed since the aircraft was new. Correct any discrepancies that do not allow this test to pass before continuing. Ensure GRS 77 or GRS 7800 and GMU 44 connectors are secure. Check the wiring and any inline connectors between the GRS and GMU for faults. Recalibrate the GMU 44, Load configuration files to the PFD1, PFD2, GIA1, and GIA2 9 If problem persists replace the GMU 44. 9 If problem persists, replace the GRS 77 or GRS 7800. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Invalid Data Field Associated LRU(s) GRS 77 or GRS 7800 & GMU 44 Solution • If this message persists longer than five minutes, perform AHRS calibration procedures as described in Section 7.7.3. • If software was loaded to a new GDU display, be sure that the user settings for the replaced display were cleared. Clear user settings by pressing the CLR key on the replaced display while applying power to it. Acknowledge the on-screen prompt by pressing the ENT key or the right-most softkey. Check for GEA related Alert messages on the PFD. Correct any Alerts concerning software or configuration errors by reloading software or configuration as noted. Verify GEA internal power supply, configuration, and calibration status in configuration mode. 9 The internal power supply, configuration and calibration boxes should be green. If they are red, replace the GEA 71. Verify internal, external, and reference voltages listed in the Main Analog and I/O A Analog boxes are not dashed out (does not include Aircraft Power 1 and 2). 9 If any voltages are dashed out, replace the GEA. Ensure the GEA is online (green checkmark on the AUX – SYSTEM STATUS page). 9 If GEA is not online verify unit is receiving power at the rack connector. 9 Check the GIA/GEA interconnects for faults. 9 Reload configuration files to both GIA’s and the GEA. If problem persists, replace the GEA 71. Engine/Airframe Sensors (All Invalid) • • GEA 71 & GIA 63W • • • G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-23 Revision 4 5.2.3 Engine/Airframe Instrument Failures The following table provides guidance for troubleshooting individual engine/airframe sensor failures. Be sure to also follow previous guidance given for the GEA 71. The technician should troubleshoot to isolate the fault by checking sensor-to-GEA wiring, replacing the suspect sensor, and finally by replacing the GEA 71. Replace one part at a time. Refer to Section 7.4.1 to check for correct operation of the sensors and GEA 71 after any part has been replaced. Refer to G1000/GFC 700 Wiring Diagram and Super King Air 300 or B300 Maintenance Manual (listed in Table 1-2) as needed. Invalid Field Sensor ITT • • • Check thermocouple cable. Replace thermocouple cable. Replace GEA 71. Torque • • • • Check torque transmitter – GEA wiring. Check power input to torque transmitter. Replace torque transmitter. Replace GEA 71. • • • • • • • • • • • • Check prop tachometer – Signal Conditioner wiring. Check Signal Conditioner – GEA wiring. Check power input to Signal Conditioner. Replace prop tachometer sensor. Replace Signal Conditioner. Refer to Section 6.22. Replace GEA 71. Check engine speed tachometer – Signal Conditioner wiring. Check Signal Conditioner – GEA wiring. Check power input to Signal Conditioner. Replace engine speed tachometer sensor. Replace Signal Conditioner. Refer to Section 6.22. Replace GEA 71. Fuel Flow • • • • • Check Signal Conditioner unit wiring. Check power input to Signal Conditioner Replace fuel flow transmitter. Replace Signal Conditioner. Refer to Section 6.22. Replace GEA 71. Oil Pressure • • • Check oil pressure sensor – GEA wiring. Replace oil pressure sensor. Replace GEA 71. Oil Temperature • • • Check oil temperature sensor – GEA wiring. Replace oil temperature sensor. Replace GEA 71. Prop RPM Turbine RPM Page 5-24 Revision 4 Possible Solutions (for applicable engine/system) G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.2.4 ADF/DME Failure A DME or ADF failure is represented by the following red X’s. Refer to G1000/GFC 700 Wiring Diagram and Super King Air 300 or B300 Maintenance Manual (listed in Table 1-2,) as needed. Invalid Field Sensor Solutions • • • ADF • • • • • DME • • Ensure that GIA 63 #2 is properly functioning. Reload the ADF option configurations. Check for proper operation of the ADF receiver. Ensure that the receiver is receiving power. Check ADF – GIA2 interconnect. For other failures of the ADF system, refer to Super King Air 300 or B300 Maintenance Manual, listed in Table 1-2. Ensure that GIA 63 #1 is properly functioning. Reload the DME option configurations. Check for proper operation of the DME receiver. Ensure that the receiver is receiving power. Check DME – GIA1 interconnect. For other failures of the DME system, refer to the Super King Air 300 or B300 Maintenance Manual, listed in Table 1-2. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-25 Revision 4 5.3 300/B300 Specific Alerts The following alerts are configured specifically for the King Air 300/B300 installation: ANNUNCIATION ADVISORY Alerts Message Advisory Solution TAWS GEAR FAULT – Landing Gear detected in the DOWN position • Check the gear down wiring input to the GIAs. Refer to G1000/GFC 700 Wiring Diagram, listed in Table 1-2. TAWS FLAP FAULT – Flaps detected in the LDG position • Check the flap full down wiring input to the GIAs. Refer to G1000/GFC 700 Wiring Diagram, listed in Table 1-2. WOW Invalid • Ensure that the GIA1 (PRI) and (SEC) and GIA2 circuit breakers are closed. Check weight on wheels switch inputs to GIA1 and GIA2. Refer to G1000/GFC 700 Wiring Diagram, listed in Table 1-2, • • WOW Fault • Ensure that the GIA1 (PRI) and (SEC) and GIA2 circuit breakers are closed. Check weight on wheels switch inputs to GIA1 and GIA2. Refer to G1000/GFC 700 Wiring Diagram, listed in Table 1-2. AVN 1 FAN FAIL – Avionics cooling fan #1 is inoperative. AVN 2 FAN FAIL – Avionics cooling fan #2 is inoperative. • Ensure that the PFD/GIA FAN (LEFT and RIGHT) and MFD FAN circuit breakers are closed. PFD 1 FAN FAIL – PFD #1 cooling fan is inoperative. • Check cooling fan wiring. Refer to G1000/GFC 700 Wiring Diagram, listed in Table 1-2, PFD 2 FAN FAIL – PFD #2 cooling fan is inoperative. • Replace cooling fan. Refer to Sections 6.29 and 6.30. MFD FAN FAIL – MFD cooling fan is inoperative. ESP FAIL – ESP is inoperative. Troubleshoot the GFC 700 AFCS. Refer to Section 5.6. ESP OFF – ESP selected off. ESP DEGRADE - ESP IAS mode is inoperative. • Check that the MFD AUX-SYSTEM SETUP 2 page shows “Stability & Protection” status is “ENABLED”. • Ensure ADC1 and ADC2 circuit breakers are closed and units are providing valid airspeed data. • Ensure that the “ESP Support Option” has been installed per Section 3.32. Ensure that the “Enhanced AFCS unlock card” has been installed per Section 3.41. If the ESP option needs to be removed, reload the baseline configuration for the specific airframe and all applicable options as described in Section 3.9. Reloading the baseline configuration disables all previously enabled options. • ESP CONFIG – ESP config error. Config service req’d. • NOTE From this point forward, all message advisory alerts presented are common to all G1000 systems and are not specific to the King Air 300/B300. Messages are grouped according to LRU. Page 5-26 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.4 TAWS Troubleshooting Annunciation Cause Solution • • • A TAWS system failure has occurred. • • If message occurred on the first power up after unlocking TAWS, cycle power to initialize TAWS. Ensure each GDU contains the correct database data card. Ensure the G1000 is configured for TAWS: 9 If the system is not configured for TAWS, reconfigure per Section 3.9.6. Verify GIAs are online. Ensure a database or GDU SW mismatch has not occurred. 9 If a mismatch has occurred, load correct database/software files or replace the terrain card. TAWS system is currently being tested. N/A – Test will be conducted up to two minutes TAWS system alerting is disabled Enable TAWS system alerting by pressing the INHIBIT softkey on the MAP – TAWS page. • GPS system integrity not high enough to enable TAWS • • A GPWS system failure has occurred. • • • Ensure valid GPS position is received from the AUX – GPS STATUS page. Check GPS antenna & associated coaxial cabling. Troubleshoot GIAs. Verify GIAs are online. Verify radar altimeter input is valid. Verify baro altitude and vertical speed input are valid. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-27 Revision 4 5.5 Synthetic Vision and Pathways Troubleshooting The SVS/Pathways software feature requires the following G1000 sensors/data to be valid: • AHRS • Heading • GPS Position • 9 Arc-Second Terrain Data In the event that one the above items fails or is unavailable, the SVS/Pathways feature is automatically removed from the PFD. The following table describes possible symptoms associated with the SVS/Pathways feature, and provides corresponding actions for troubleshooting: Table 5-1, SVS Troubleshooting Symptom Recommended Action “SYN VIS” softkey does not appear on PFD softkey tier. Follow the steps in Section 3.40 to reactivate the SVS/Pathways feature. Verify that P/N 010-00442-43 terrain datacards are installed in the lower slot of the PFD and MFD. Verify that the alert messages shown in Table 5-2 are not displayed on the PFD Alerts Window. If so, follow the solutions described in Table 5-2. 3D terrain presentation does not appear on PFD. Verify that the G1000 AHRS and heading data are valid on the PFD. Verify that a valid GPS 3D position solution is being received. Troubleshoot these systems in accordance with sections 5.10.4 and 5.15. If a terrain database update has just been performed, allow the system time to initialize and verify the data. When the databases have been verified, the current database cycle and version are reported on the MFD AUX – System Status page. The following table provides SVS/Pathways specific alert messages which may appear in the Alerts Window on the PFD (press the ALERTS softkey on the PFD to view the Alerts Window): Table 5-2, SVS-Related Alert Messages Failure Message Cause Solution SVS – SVS DISABLED: Out of available terrain region. SVS is disabled because the aircraft exceeded the boundaries of the loaded terrain database. Geographical operation limitations are defined in the AFMS listed in Table 1-2. Ensure that operations are within this geographic area. SVS is disabled because a 9 ArcSecond or better database is not currently loaded. Ensure the P/N 010-00330-43 Terrain Cards are installed in the lower slot of each display. If terrain data has been recently updated, ensure that the correct 9 ArcSecond databases were used. SVS – SVS DISABLED: Terrain DB resolution too low Page 5-28 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.6 GFC 700 AFCS Troubleshooting The GFC 700 is a digital Automatic Flight Control System (AFCS) which is integrated into various components of the G1000. This section touches upon key items to note while troubleshooting the GFC 700. Should a problem be encountered during the operation of the GFC 700, the pilot and technician should first evaluate the overall status and condition of the G1000 system at the AUX – System Status page (on MFD). Any alert messages, annunciations, or other abnormal behaviors should be noted in an effort to pinpoint the fault. The object is to locate the fault within a LRU or LRUs in efforts to replace the defective equipment. The GFC 700 AFCS Annunciation field is located above the airspeed tape on the PFD as shown: Figure 5-5, AFCS Annunciation Field G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-29 Revision 4 5.6.1 General Troubleshooting The following annunciations may appear in the AFCS Annunciation field: Table 5-3, AFCS Annunciation Troubleshooting Annunciation Condition Resolution • Confirm AFCS Servos circuit breaker IN • Ensure that the G1000 system is in proper working order. Check specifically for proper operation of the: 9 GIA 63 Integrated Avionics Units 9 GRS 77 AHRS Units 9 GDC 7400 Air Data Computers 9 All GSA 80 Servos Check that no red X’s are present on the MFD and PFD displays. Check that no related alert messages are present on the PFD displays (press the ALERTS softkey). Go to the AUX SYSTEM STATUS page on the MFD and verify that all LRUs have a ‘green’ check (see Section 5). In Configuration mode, review the GFC 700 equipment status, software, and certification gains. Reload software, configuration, and certification gains to the GIAs and GSA servos. Check the GFC Status page for additional GFC 700 system information. Review the fault and assert logs for the GIAs and servos (see Section 5.6.3) Isolate the fault to an LRU. Replace this LRU and confirm the resolution of the annunciation. • • AFCS System Failure • • • • • • Pitch Axis Failure Pitch Trim Axis Failure Yaw Axis Failure Roll Axis Failure AHRS Monitor Failure Elevator Mis-Trim Down Elevator Mis-Trim Up Aileron Mistrim Right Page 5-30 Revision 4 • • • • • Check the AUX – SYSTEM STATUS page to see if the servo is online (green check). Check that the affected servo is receiving power. Check the servo wiring and connector. For pitch trim, check pitch trim switch operation to verify switch contacts are not stuck. If failure condition still exists, remove and replace the affected servo. • If the AHRS inputs have been determined to be “unreasonable” while the AP is engaged, in air, this message will be displayed until AHRS inputs are determined reasonable for 5 seconds. • If elevator mistrim annunciations persist, check the pitch and pitch trim servos for proper operation. Verify that the servo is online at the AUX – SYSTEM STATUS page. Check the servo wiring and connectors. Ensure the servo is receiving power. Check the aircraft control adjustments. If mistrim condition still exists, remove and replace the affected servo. • • • • • Check for possible fuel imbalance. Check aileron control adjustments. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Annunciation Condition Resolution Aileron Mistrim Left • If mistrim condition still exists remove and replace the roll servo. Rudder Mistrim Right • • Check rudder control adjustments. If mistrim condition still exists remove and replace the yaw servo. • • Allow the system to complete pre-flight tests. The preflight test should finish within 2 minutes. If it does not pass, the red ‘PFT’ annunciation is shown. In case of PFT failure, see Section 5.6.4 for additional PFT diagnostics. Rudder Mistrim Left Pre-Flight Test Fails Table 5-4, AFCS General Troubleshooting Condition Resolution • Poor AP Performance (Limited AP Authority) • • • • AP DISC Problems • • Loss of Manual Electric Trim AutoTrim Inoperative Check each servo gearbox slip clutch per Section 4.9. Verify the clutches are not excessively loose and are within torque limits. Check aircraft controls for proper balancing and adjustment per the Super King Air 300 or B300 Maintenance Manual. Check aircraft control cables for proper tension per the Super King Air 300 or B300 Maintenance Manual. For intermittent nuisance disconnects with no AFCS of PFT alert, check A/P disconnect switch and wiring for intermittent faults. If an AFCS or PFT alert is displayed at the time of the disconnect, troubleshoot per Section 5.5. Check the GIA AFCS Fault Logs according to Section 5.6.3. If a Mon Prmtr Invalid message is received, check for valid true airspeed. A faulty GTP 59 OAT probe may cause TAS to become invalid, which will flag the Mon Prmtr Invalid message. Contact Garmin Product Support for assistance • • Check pitch trim servo status. Check MET switch discrete inputs to both GIAs by going to the GIA I/O Configuration page and selecting DISCRETE IN inputs. • Check flap-in-motion discrete inputs to both GIAs for proper operation by going to the GIA I/O Configuration page and selected DISCRETE IN inputs. See Section 4.8. If DATA indicator fails to illuminate or illuminates incorrectly, troubleshoot flap motor & discrete input wiring (refer to G1000/GFC 700 Wiring Diagram, listed in Table 1-2,). • G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-31 Revision 4 5.6.2 GFC Status Page The GFC Status page is presented in configuration mode and gives status information regarding the GFC 700. Figure 5-6, GFC Status Page GIA STATUS AP DISCONNECT: Shows the condition of the AP DISC +28 VDC input to the GIAs and servos, which is required for the Autopilot to operate. A green status indicator shows the AP DISC switch is closed and the GFC 700 is activly receiving 28 volts. A red X indicates the GIAs and servos are no longer receiving the +28 VDC AP DISC power (switch open or other fault). MONITOR/CONTROL BOARD STATUS Shows the condition of various monitor board components. SERVO PROGRAM (1-3): Servo program discretes are used to determine the HW strapping for each GSA to define the servo type. This information can be cross-referenced against the system interconnects to verify proper servo grounding. AP DISCONNECT: Same as GIA Status. PFT: Indicates whether the pre-flight test has passed or failed. HIGH RES & HIGH RNG LOAD CELL CAL: Shows the condition of the high resolution and high range load cells on the monitor board. If box is black, this indicates a corrupt or missing load cell calibration; return the servo to Garmin. DRIVE SERVO Allows the technician to enter a desired RPM at which to manually drive the selected servo. Direction of rotation is controlled by the polarity of the RPM (+ or -). After the speed is entered, the technician may use the ENG CLCH and DRV SRVO softkeys to drive the servo. NOTE Be especially certain that the flight controls are clear and safe to operate before manually driving the servo. Page 5-32 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 SERVO DATA Shows real-time reported data including servo voltage, speed, motor current, load cell torque, and clutch solenoid status. A green box indicates the servo clutch is engaged. 5.6.3 GIA Fault Log Descriptions The section was created to help determine why the GFC 700 has failed the Pre-Flight Test indicated by the red PFT annunciation , it defines the PFT sequence for the servos and the GFC 700 system and then provides troubleshooting information to help resolve failures. There are 16 steps to the GFC 700 PFT. The PFT is performed by both GIA’s at startup, and needs to pass on both GIA’s before the autopilot can be engaged. The PFT is only started if the AHRS has aligned, the GIA’s and servos are configured and the certification gains are valid. If the PFT has not completed after one minute from when the initialization started, the PFT will fail. After the system PFT has passed, it will be performed again if a servo resets, if the autopilot servo breaker is reset or the cross side GIA restarts it. Generally, the PFT failure fault is logged in the GIA Maintenance Log and not in the Servo Maintenance Logs unless the GIA log fault identifies a servo problem. NOTE Thoroughly understanding the operation of the G1000 system in Configuration mode is recommended before starting this procedure. The GFC Status page may be used to check the status of the servos and engage them to aid in troubleshooting To access the GIA and GSA Maintenance Logs, perform the following steps – 1. 2. 3. 4. 5. 6. 7. 8. Start the G1000 in Configuration mode. Use the FMS knob on PFD1 to go to the Diagnostics Terminal page in the System group. This page allows the technician to view maintenance logs associated with the GFC 700. Choose ‘GIA 1’ or ‘GIA 2’ in the LRU window. In the SERVO window, choose ‘NONE’ to view the GIA Maintenance Log, or choose a servo to view their logs. Using the FMS knob, choose ‘VIEW MAINTENANCE LOG’ in the COMMAND window. Press the ENT key. When the Maintenance Log data starts to display in the OUTPUT window, you may see "More...press any key to continue..." at the bottom of the OUTPUT window. This informs you there is more data to display and the system has paused allowing you to view the data before continuing. To see more of the data, reselect the "VIEW MAINTENANCE LOG" in the COMMAND window and press the ENT key. The "...press any key to continue..." function is not active at this time. Scroll through the OUTPUT list by pressing the OUTPUT softkey. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-33 Revision 4 9. The GIA Maintenance Log can record any of the following faults: • FCS Task not started: Bad gains The FCS task has not started because the gains are not present or have been corrupted. Reload the gain files to correct. • FCS Task not started: Gain structure out of range The FCS task has not started because the gains are not compatible with the GIA software. Reload the gain files to correct. • PFT FAIL: Timeout, Pre-flight test has failed because the specified step has not passed in the allotted time. See the GIA pre-flight steps for a description of the possible values for on the failed GIA and corrective actions. • PFT FAIL: Cross GIA Failed, State: Pre-flight test has failed on opposite GIA. specifies the pre-flight test step on selected GIA that was in progress when the pre-flight test failed on the opposite GIA. See the GIA pre-flight steps for a description of the possible values for on the failed GIA and corrective actions. • PFT FAIL: Pre-flight has failed because the step specified has failed. See the GIA pre-flight test steps for a description of the possible values for on the failed GIA and corrective actions. • AHRS MON invalid: The AHRS monitor has detected that the AHRS data is invalid. The possible values for are: a. Mon Prmtr Invalid: The ARINC 429 data used by one of the monitors has not been received. b. Attitude Prmtr Invalid: The ARINC 429 pitch or roll angle has not been received. c. Exceeded Attitude Limits: The pitch or roll angle has exceeded the engagement limits. d. Cross Hdg Accel Fail: Cross heading acceleration monitor failed. e. Vert Accel Fail: Vertical acceleration monitor failed. f. Fltrd Cross Hdg Accel Fail: Filtered cross heading acceleration monitor failed. g. Fltrd Vert Accel Fail: Filtered vertical acceleration monitor failed. h. Roll Accel Fail: Roll acceleration monitor has failed. i. Normal Accel Fail: Normal acceleration has failed. Troubleshoot the GRS 77 or GRS 7800 for the cause of the failure. • Stuck switch invalidated parameter: A MET switch in the specified axis is stuck. Check the MET (trim) switches for proper operation. • PRMTR: MODE: Parameter lost The mode specified by has been disengaged because the parameter specified by has become invalid. The following is a list of some of the possible values for : a. AD TDM Comm Valid: The specified mode has been disengaged because communication with the servos, via the Time Division Multiplexer protocol, has been lost. b. AP Pitch MET not stuck: The specified mode has been disengaged due to a stuck pitch MET switch. Check the MET (trim) switches for proper identification. Page 5-34 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.6.4 GIA Pre-Flight Test Steps PFT step 0: System initialization, verify GFC powered This step is checking to make sure the GFC is powered up. It checks to make sure the GIA AP disconnect input is connected to 28 volts, and makes sure the Servos are up and communicating. If this step fails, make sure the GIA is connected to AP disconnect by using the GFC configuration page. Also make sure all configured Servos are communicating by checking for Servo product data in configuration mode. PFT step 1: System initialization, verify GIA audio is valid. This step is checking to make sure that the GIA audio region has been loaded and configured. If this step fails, load GIA audio region and audio configuration. PFT step 2: System initialization, verify required servos are configured This step is checking to make sure the current Servo configuration matches the Servo configuration specified in the certification gain file. If this step fails, then make sure the Servo configuration on the GFC configuration page matches the Servo configuration specified in the configuration gain (.cgn) file. PFT step 3: System initialization, verify selected side This step is checking to make sure the PFD1 is online and sending the selected AFCS side data over HSDB to GIA1. If this step fails, then make sure the PFD is powered up and there is an Ethernet connection from the PFD to the GIA. PFT step 4: System initialization, verify AHRS monitor This step is checking to make sure the AHRS monitor is valid and not reporting an AHRS failure. NOTE: AHRS monitor will be assumed valid if on the ground. If this step fails, then make sure the AHRS and ADC is powered up and sending valid attitude data to the G1000. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-35 Revision 4 PFT step 5: System initialization, verify servo PFT is complete This step is checking to make sure that all servos have completed their own PFT. This does not check whether the servo PFT passed or failed. It verifies that the servo PFT is no longer in progress. PFT step 6: Verify cross GIA is initialized This step is checking to make sure the other GIA is also on step 6 of its PFT. If this step fails, try cycling power on GIA1, GIA2, and all servos. If PFT still fails at step 6 then you will need to go check the PFT status of the other GIA and see what step it is failing (it should be prior to step 6). NOTE: The PFT status is communicated between GIA1 and GIA2 using HSDB. As a result, both the PFD and MFD must be powered for this state to pass. PFT step 7: Verify servo type This step is checking to make sure the Servos are the correct type (torque and speed). If this step fails, make sure the Servo configuration on the GFC configuration page matches the Servos installed in the aircraft. PFT step 8: Verify servo first certification data This step is checking to make sure the servos have the same certification gains loaded in them as the GIAs have. If this step fails, reload the certification gains in GIA1, GIA2, and all servos. PFT step 9: Verify servo second certification data This step is checking to make sure the servos have the same certification gains loaded in them as the GIAs have. If this step fails, reload the certification gains in GIA1, GIA2, and all servos. PFT step 10: Updating servo RTC This step is setting the system time in the servos to by the same time as the GIA system time. This step should never fail. PFT step 11: Verify servo PFT status This step is checking to make sure the servos have all passed their own PFT. If this step fails, please proceed to servo PFT explanation below. Page 5-36 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 PFT step 12: Verify AP disconnect enabled This step is checking to make sure GIA1, GIA2, and all servos have are connected to a 28 volt AP disconnect. If this step fails, make sure the AP disconnect input to GIA1, GIA2, and all servos is connected and registering 28 volts. Make sure the AP disconnect switch has been installed in the aircraft. Make sure no one is holding the AP disconnect switch down on the yoke. PFT step 13: Verify servo validity This step is checking to make sure all the Servos are up and communicating with valid data to the GIA in TDM mode. If this step fails, then make sure all Servos are turned on and communicating by checking for green boxes on the GFC configuration page. PFT step 14: Verify cross GIA PFT is completed This step is checking to make sure the other GIA is also on step 14 of its PFT. If this step fails, try cycling power on GIA1, GIA2, and all servos. If PFT still fails at step 14 then you will need to go check the PFT status of the other GIA and see what step it is failing. NOTE: The PFT status is communicated between GIA1 and GIA2 using HSDB. As a result, both the PFD and MFD must be powered for this state to pass. PFT step 15: PFT completed The PFT has successfully completed. PFT step 16: PFT failed The PFT has failed. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-37 Revision 4 5.6.4.1 Servo Faults and Troubleshooting Whenever a servo fault occurs, a status message is logged to the corresponding servo control or monitor maintenance log. This information is also accompanied by a time and date stamp. An “RTC DATE” entry is made every time a servo is powered on, it is normally not useful for troubleshooting. The following is a listing of possible faults that could be reported in a GSA fault log. Faults can occur in either the monitor board processor or the control board processor, both of which are contained in the GSA unit. Monitor Processor The monitor processor contains the logs that are found in these processors 2 – Pitch Servo 4 – Roll Servo 6 - Yaw 8 – Pitch Trim Servo There are two main groupings of faults that can occur in the monitor processor: The first grouping of faults can occur during the GSA unit pre-flight test (PFT). If there is a fault during PFT the unit will not be able to transition to normal mode and the only way to clear this state would be to cycle unit power. The second grouping of faults can occur during normal mode. These faults generally cause a disconnect of power to the GSA and report that a fault has occurred to the GIA. The Notes column indicates any actions that can be taken to troubleshoot the problem in the aircraft by the technician. Any faults that are not listed here indicate an internal problem requiring replacement of the servo. If the items in the Notes column check out ok, replace the servo. Page 5-38 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 PFT Faults MONITOR PFT STEP "INTERNAL COMM FAIL" NOTES This can sometimes be a result of a failure on the other internal servo board, check faults on the other processor "UNSW POWER INV" Check unit power "MON SOL PWR ON FAIL" Check unit power and AP Disconnect power "CTL SOL PWR ON FAIL" Check unit power and AP Disconnect power "SOL PWR FAIL" Check unit power and AP Disconnect power "CERT DATA UNINSTALLED" Upload the certification gain file to the Monitor board "STRAP CODE MISMATCH" Check the connector strap inputs to the unit Normal Mode Faults MONITOR FAULT "GIA DIS FAULT" NOTES Check the AP Disconnect power into the unit "HOST DATA DIF" Check the AHRS wiring to the system "HOST DATA INV" Check the AHRS wiring to the system "SVO PWR INV" Check unit power and AP Disconnect power “STRP CODE CHNG” Check the connector strap inputs to the unit “MET STUCK SWTCH” Check the MET switch inputs into the system “MET STATUS DIF” Check the MET switch inputs into the system G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-39 Revision 4 5.6.4.1.1 Control Processor The control processor contains the logs that are found in these processors – 3 – Pitch Servo 5 – Roll Servo 7 - Yaw 9 – Pitch Trim Servo There are two main groupings of faults that can occur in the control processor. The first grouping of faults can occur during the GSA unit pre-flight test (PFT). If there is a fault during PFT the unit will not be able to transition to normal mode and the only way to clear this state would be to cycle unit power. The second grouping of faults can occur during normal mode. These faults generally cause a disconnect of power to the GSA and report that a fault has occurred to the GIA. The Notes column indicates any actions that can be taken to troubleshoot the problem in the aircraft by the technician. Any faults that are not listed here indicate an internal problem requiring replacement of the servo. If the items in the Notes column check out ok, replace the servo. PFT Faults CONTROL PFT STEP NOTES "INT COMM TEST FAIL" This can sometimes be a result of a failure on the other board, check faults on other processor "CTL MOT PWR ON FAIL" Check unit power and AP Disconnect power "MON MOT PWR ON FAIL" Check unit power and AP Disconnect power "HALL 1 FAIL" Check unit power and AP Disconnect power "HALL 2 FAIL" Check unit power and AP Disconnect power "HALL 3 FAIL" Check unit power and AP Disconnect power "HALL 4 FAIL" Check unit power and AP Disconnect power "HALL 5 FAIL" Check unit power and AP Disconnect power "HALL 6 FAIL" Check unit power and AP Disconnect power "CURR OFFST FAIL" Check unit power and AP Disconnect power "SVO TYPE FAIL" Check unit power and AP Disconnect power "CERT DATA UNINSTALLED" Upload the certification gain file to the Control board "STRAP CODE MISMATCH" Check the connector strap inputs to the unit Page 5-40 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Normal Mode Faults CONTROL FAULT "GIA DIS FAULT" NOTES Check the AP Disconnect power into the unit "HOST DATA DIF" Check the AHRS wiring to the system "HOST DATA INV" Check the AHRS wiring to the system "SVO PWR INV" Check unit power and AP Disconnect power “STRP CODE CHNG” Check the connector strap inputs to the unit “MET STUCK SWTCH” Check the MET switch inputs into the system “MET STATUS DIF” Check the MET switch inputs into the system G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-41 Revision 4 5.6.4.2 Downloading GIA and GSA Maintenance Logs If additional assistance is needed troubleshooting autopilot faults, the Maintenance logs can be downloaded to an SD card as a text file (.txt) and emailed to Garmin Aviation Product Support. Please call Garmin Aviation Product Support before you send a Maintenance Log to notify them you are sending it to prevent a delay in response. You may download multiple GIA and GSA Maintenance Logs to the same file, however in your email to Garmin you must furnish the order in which they were downloaded (i.e. GIA1, then GIA2, then SRVO PTCH MON, then SRVO PTCH CTL, etc.). 1. 2. 3. Insert a FAT 32 formatted SD card into the top slot of the PFD before turning on the displays. Power up PFD1, PFD2 and MFD in the configuration mode. On the PFD1 in the System page group, use the small FMS knob to scroll to the Diagnostics Terminal page. 4. Press the LG2CRD softkey at the bottom of the PFD1. Verify that the softkey text grays out. This indicates the recording function is active and all text that is displayed in the OUTPUT window will be saved to the card. 5. Enable the cursor by pressing the FMS knob, select “GIA1” in the LRU drop down menu and then press the ENT key to select it. 6. Skip the SERVO box and move the cursor to the COMMAND box and select “View Maintenance Log” in the drop down menu then press the ENT key. The error log data will be displayed in the OUTPUT box. If you see the “more…press any key to continue” text at the bottom of the screen, you may need to reselect “View Maintenance Log” for GIA data to allow it to continue scrolling down the screen (pressing any key will not continue, disregard the text instruction you to do so). Continue to scroll through all the OUTPUT data until you see the text, “End of Fault Log”. 7. Move the curser back to the LRU box, select “GIA2” in the LRU drop down menu and then press the ENT key to select it. 8. Skip the SERVO box and move the cursor to the COMMAND box and select “View Maintenance Log” in the drop down menu then press the ENT key. The error log data will be displayed in the OUTPUT box. If you see the “more…press any key to continue” text at the bottom of the screen, you may need to reselect “View Maintenance Log” for GIA data to allow it to continue scrolling down the screen (pressing any key will not continue, disregard the text instruction you to do so). Continue to scroll through all the OUTPUT data until you see the text, “End of Fault Log”. 9. If you need to download Servo fault logs (usually done at the request of Garmin Product Support), perform the following steps. Otherwise, skip to step 10. a) In the LRU box, you may select either “GIA1” or “GIA2”. b) In the SERVO box, choose a servo using the FMS knobs. Each servo contains two logs, one in the Monitor (MON) processor and one in the Control (CTL) processor. You must download both for each servo separately. c) In the COMMAND box, select “View Maintenance Log” and press the ENT key. d) The log will appear in the OUTPUT box. It will scroll to the end automatically. When it is complete, repeat steps a-c for the other servos in the aircraft. Be sure to note the order the servos were downloaded in including the Monitor or Control logs to email to Garmin Product Support. Without knowing the order in which the logs were downloaded, Garmin will be unable to process them and will ask for another full download. 10. Press the LG2CRD softkey to turn off the recording function. 11. Wait 1 minute for the system to save the data from the download to the SD card. Page 5-42 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 12. While you are waiting for the data to be saved to the SD card, record the order of the LRU’s and/or Servos were downloaded so that you can provide that information to Garmin to help decipher the order of the error data. 13. Power down the G1000 System and remove the SD card. 14. Insert the SD card in the card reader of a laptop or desktop computer and open the “diag_buf_log.txt” file from the SD card using the WordPad program. Verify that all of the fault logs were downloaded by checking for the “End of Fault Log” message at the end of the GIA data, and that the last servo log entry has the current date. 15. Insert the fault log as an attachment to an email and include the LRU order how the data was downloaded and send to Garmin Aviation Product Support at avionics@Garmin.com. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-43 Revision 4 5.7 Backup Communications Path Checks 5.7.1 Overview The G1000 system architecture is designed with redundant communication ports for several LRUs so that critical information can continue to be displayed in the event of an equipment or wiring failure. Of most importance is flight attitude, heading, and air data information. The GRS 77 and GDC 7400 each have four separate ARINC 429 data lines which are all capable of sending data to the displays. The GEA 71, GTX 33(D), and GMA 1347D each have two redundant serial communication paths for the same purpose. See Figure 2-25for a basic G1000 block diagram depicting this architecture. Several other diagrams are shown later in this section for illustrative purposes. When troubleshooting, refer to the G1000/GFC 700 Wiring Diagram listed in Table 1-2. NOTE Refer to Section 8.1.6 for procedures on checking the status of each configured G1000 / GFC 700 backup data path. 5.7.2 Data Path Failures Failure Message Cause Solutions Determine which data path has failed: See Section 8.1.6. FAILED PATH – A data path has failed. A communications data path status is not being received by the G1000. Check wiring continuity for the failed path. Swap or replace the affected LRU. Page 5-44 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.8 GDU 104X Troubleshooting 5.8.1 GDU 104X Common Problems Symptom Recommended Action • • Display is blank • Display resets • • • Display flickers • • • • • SD card is stuck in GDU • • • • • A button/knob/joystick does not appear to function Ensure that a cell phone or a device using cell phone technology is not turned on (even in a monitoring state) in the cabin. Cycle power. 9 If GDU recovers, observe display for yellow text containing error information at the top of the screen. If message indicates software need to be re-loaded, then re-load software. Otherwise, replace the GDU. Use a bright light to verify LCD is active. 9 Adjust avionics dimmer control full clockwise. 9 Manually turn up backlight on the PFD and load configuration files to the GDU. Ensure slide lock is fully engaged with the locking tabs on the back of the unit. 9 If slide lock is not fully engaged, remove connector and verify the locking tabs on the GDU are perpendicular to the connector. If necessary, straighten them before reseating connector. Ensure GDU is receiving power. If a circuit breaker is tripped, determine source of short before resetting breaker. Ensure circuit breakers have not failed and power wire connections are secure. Swap PFD1 and PFD2. 9 If problem follows unit, replace the display. Please note the position it failed in (PFD1/2). 9 If problem does not follow unit, troubleshoot aircraft wiring for fault. DO NOT insert a screwdriver of any length into the card slot. DO NOT pry against the overlay. DO NOT force the SD Card out. Use a small screwdriver in the groove on the side of the exposed end of the card to help pull out the card. Push the card in further to release the card locking mechanism. Check SD Card for having more than one label. Two or more labels on the card will cause sticking. 9 Remove all but one label. Ensure the SD card is from Toshiba or SanDisk. Use of other SD Cards is not recommended. If card was inserted with the label facing to the right, do not attempt to remove. Return the unit to Garmin for repair. Go to the GDU TEST page in configuration mode and verify button, knob, or joystick operates correctly by observing a change in color from red to green in the button/knob/joystick icon when the button/knob/joystick is pressed. If a button is stuck, the button icon will be green without pressing the button as soon as you turn to the GDU TEST page. 9 If problem is verified, replace GDU. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-45 Revision 4 Symptom Recommended Action • Terrain/Obstacle/Safetaxi does not display • • Display will not track dimmer bus Keyboard will not track dimmer bus Page 5-46 Revision 4 Ensure supplemental data cards are inserted correctly in the lower slots of all three GDU’s. Allow the system to verify the data on the cards for approximately five minutes after power-up. If a database does not activate, reload the problem database onto the SD Card or replace the card. • • Reload GDU configuration files. If display is a PFD, swap PFD1 and PFD2 to see if problem remains with display. 9 Replace display if condition remains with the same unit. 9 If condition remains in original position after swapping displays, check GDU dimmer input to verify voltage is present. • If display is the MFD, check dimmer input to verify voltage is present. 9 Replace MFD if dimmer voltage is present. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.9 GDU 104X Alerts 5.9.1 Software/Configuration Alerts Failure Message Cause SW MISMATCH – GDU software version mismatch. Xtalk is off. The system has found the PFDs and/or MFD software versions do not match. MANIFEST – PFD 1 software mismatch. Communication Halted. MANIFEST – PFD 2 software mismatch. Communication Halted. MANIFEST – MFD1 software mismatch. Communication Halted. The system has detected an incorrect software version loaded in the specified PFD. Solution • The system has detected an incorrect software version loaded in MFD. • CNFG MODULE – PFD 1 configuration module is inoperative. Load correct software version. See Section 3.9 for GDU 1040 Software Loading procedure. The PFD master configuration module has failed. Check master configuration module connector and wiring for damage inside the GDU connector backshell. 9 Replace master configuration module wiring and pins. 9 If problem persists, replace master configuration module. NOTE New Terrain/Obstacle cards, Jeppesen Aviation Database and other optional features (i.e. TAWS unlock card) will need to be replaced if the master configuration module is changed. The G1000 System ID number will change to a new number when installing a new master config module. The old Terrain and other cards will no longer work as they will remain locked to the old System ID number. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-47 Revision 4 Failure Message Cause Solution • • MFD1 CONFIG – MFD1 configuration error. Config service req’d. PFD 1 CONFIG – PFD 1 configuration error. Config service req’d. PFD 2 CONFIG – PFD 2 configuration error. Config service req’d. Page 5-48 Revision 4 A configuration mismatch has occurred between the display and the Master Configuration Module. Reload the display configuration files from SD Loader Card. Reload system configuration files by pressing the UPDT CFG softkey on the Configuration Upload Page in the PFD1 System Page Group to load configuration files into the configuration module. 9 If message persists, check PFD1 config module wiring for faults and replace if necessary. 9 If issue continues, replace PFD1 master configuration module. 9 If problem persists, replace the display. NOTE New Terrain/Obstacle cards, Jeppesen Aviation Database and other optional features (i.e. TAWS unlock card) will need to be replaced if the master configuration module is changed. The G1000 System ID number will change to a new number when installing a new master config module. The old Terrain and other cards will no longer work as they will remain locked to the old System ID number. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.9.2 Database Alerts Failure Message Cause MFD1 DB ERR – MFD1 aviation database error exists. PFD 1 DB ERR – PFD 1 aviation database error exists. The MFD or specified PFD has encountered an error in the Jeppesen aviation database. Solution • • PFD 2 DB ERR – PFD 2 aviation database error exists. MFD1 DB ERR – MFD1 terrain database error exists. The MFD has encountered an error in the terrain database. • • PFD 1 DB ERR – PFD 1 terrain database error exists. PFD 2 DB ERR – PFD 2 terrain database error exists. MFD1 DB ERR – MFD1 obstacle database error exists. The specified PFD has encountered an error in the terrain database. The MFD has encountered an error in the obstacle database. • • • PFD 1 DB ERR – PFD 1 obstacle database error exists. PFD 2 DB ERR – PFD 2 obstacle database error exists. MFD1 DB ERR – MFD1 airport terrain database error exists. The specified PFD has encountered an error in the obstacle database. The MFD has encountered an error in the airport terrain database. • • • PFD 1 DB ERR – PFD 1 airport terrain database error exists. PFD 2 DB ERR – PFD 2 airport terrain database error exists. The specified PFD has encountered an error in the airport terrain database. DB MISMATCH – Aviation database version mismatch. Xtalk is off. The system has found the Jeppesen aviation database cycles in the PFDs and/or MFD do not match. DB MISMATCH – Aviation database type mismatch. Xtalk is off. The system has found the Jeppesen aviation database types in the PFDs and/or MFD do not match (i.e., different regions: Americas, International, Atlantic, etc) • Reload aviation database into the display. Contact Garmin Technical Support for assistance. Confirm supplemental data card is inserted fully. Reload the database or replace the supplemental datacard. Contact Garmin product Support for further assistance if needed. Confirm supplemental data card is inserted fully. Reload the database or replace the supplemental datacard. Contact Garmin product Support for further assistance if needed. Confirm supplemental data card is inserted fully. Reload the database or replace the supplemental datacard. Contact Garmin product Support for further assistance if needed. • Load current aviation database versions to all displays. • Load same type aviation database to all displays. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-49 Revision 4 Failure Message Cause DB MISMATCH – Airport Terrain database version mismatch. Xtalk is off. The PFDs and/or MFD have different Airport Terrain database versions installed. DB MISMATCH – Terrain database version mismatch. The PFDs and/or MFD have different terrain database versions installed. DB MISMATCH – Obstacle database version mismatch. The PFDs and/or MFD have different obstacle database versions installed. DB MISMATCH – Terrain database type mismatch. The PFDs and/or MFD have different terrain database types installed (i.e., different regions: Americas, International, Atlantic, etc). 5.9.3 Solution • • Confirm supplemental data card is inserted fully. Reload the database or replace the supplemental datacard. Cooling Alerts Failure Message Cause MFD1 COOLING – has poor cooling. Reducing power usage. PFD 1 COOLING – has poor cooling. Reducing power usage. Solution • Check cooling fan and wiring for proper operation (if applicable). 9 Replace cooling fan if unable to determine if operating correctly. 9 If problem persists, replace the MFD. • If problem continues contact Garmin Aviation Product Support for assistance. • Check cooling fan and wiring for proper operation (if applicable). 9 Replace cooling fan if unable to determine if operating correctly. 9 If problem persists, replace the PFD1. MFD1 has exceeded its operating temperature range. PFD 1 has exceeded its operating temperature range. • • PFD 2 COOLING – has poor cooling. Reducing power usage. PFD 2 has exceeded its operating temperature range. • Page 5-50 Revision 4 If problem continues contact Garmin Aviation Product Support for assistance. Check cooling fan and wiring for proper operation (if applicable). 9 Replace cooling fan if unable to determine if operating correctly. 9 If problem persists, replace the PFD2. If problem continues contact Garmin Aviation Product Support for assistance. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.9.4 Key Alerts Failure Message Cause Solution MFD1 “key” KEYSTK – key is stuck. The SYSTEM has determined a key is stuck on MFD1. • PFD 1 “key” KEYSTK – key is stuck. The system has determined a key is stuck on the PFD 1. • PFD 2 “key” KEYSTK – key is stuck. 5.9.5 The system has determined a key is stuck on the PFD 2. Go to the GDU TEST page in configuration mode and verify key is stuck (if key is stuck the corresponding indicator will be green). Exercise suspected stuck key and reset GDU TEST page to see if indicator remains green without pressing the key. 9 If problem persists replace the display. Miscellaneous Alerts Failure Message Cause Solution • XTALK ERROR – A flight display cross talk error has occurred. A communication error has occurred between the MFD and/or PFDs. • • • DATA LOST – Pilot stored data lost. Recheck settings. • Pilot stored data has been lost. Ensure a database error has not occurred (identified in the ALERTS window on the PFD). 9 If a database error has occurred, correct error before proceeding. Check display Ethernet interconnect wiring. Replace PFD1 with a known good unit, to verify location of problem: 9 If problem persists, reinstall original PFD1 and replace PFD2. 9 If problem persists, reinstall PFD2 and replace MFD. If the CLR key was held during a power cycle, disregard message. Cycle power to PFD1: 9 Ensure CLR key is not stuck on the GDU TEST page. 9 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 If problem persists, replace PFD1. Page 5-51 Revision 4 Failure Message Cause Solution • • MFD1 SERVICE – needs service. Return unit for repair. The G1000 has determined MFD1 needs service. • • • PFD 1 SERVICE – needs service. Return unit for repair. The G1000 has determined the specified PFD needs service. PFD 2 SERVICE – needs service. Return unit for repair. • PFD 1 VOLTAGE – PFD 1 has low voltage. Reducing power usage. PFD 2 VOLTAGE – PFD 2 has low voltage. Reducing power usage. MFD1 VOLTAGE – MFD1 has low voltage. Reducing power usage. Page 5-52 Revision 4 • The specified PFD supply voltage is low. • The MFD supply voltage is low. • • Ensure the MFD connector is fully seated and locked. If the unit was started in a very dark environment the photocells may not have enough light to initially raise the CCFT level. Go to the GDU STATUS page in configuration mode, ensure CCFT CRNT 1 & 2 levels are above 50. 9 If the CCFT levels are not above 50, apply light to the photocell and observe if the CCFT level rises. 9 If the CCFT level rises, disregard the message. 9 If the CCFT level does not rise, replace the MFD Replace the MFD Ensure the PFD connector is fully seated and locked. If the unit was started in a very dark environment the photocells may not have enough light to initially raise the CCFT level. Go to the GDU STATUS page in configuration mode, ensure CCFT CRNT 1 & 2 levels are above 50. 9 If the CCFT levels are not above 50, apply light to the photocell and observe if the CCFT level rises. 9 If the CCFT level rises, disregard the message. 9 If the CCFT level does not rise, replace the PFD Replace the PFD. Check input voltage to PFD. If input voltage is ok, replace PFD. Check input voltage to MFD. If input voltage is ok, replace MFD. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.9.6 GMA Common Problems Symptom/Failure Message Recommended Action Noise in Audio Most often the cause of the noise is external to the GMA. Try the following to locate the source of the noise before replacing the GMA: • Try a different pair of headsets. Noise cancelling headsets may pick up and/or generate more noise than standard headsets from their own circuitry. • Check for noise with the engine turned off. 9 If the noise is present only when the engine is running, check the generator and/or ignition system as possible sources of noise (see applicable airframe specific maintenance manual). • Check for noise as all electrical equipment is turned on and off (strobes, other radios, etc.). 9 If the noise is identified from one electrical system or component refer to the applicable airframe specific maintenance manual. • Ensure the NAV/COM squelch is not open. • Ensure the ADF and DME audio is not active. • Ensure the marker beacon audio is not active. • Ensure the ICS squelch is not open. 9 Master squelch level can be adjusted on the GMA CONFIGURATION page for higher noise environments. • Replace unit only after all possible external sources of noise are eliminated. Buttons Do Not Work. • Some buttons are disabled in the GMA CONFIGURATION page by default. This is to remove potential sources of audio noise for inputs that are not used. If in doubt as to which buttons should be disabled, reload GMA config files and other config files for optional equipment installed in the aircraft (i.e. ADF, HF, etc.) from the loader card. COM Bleedover • Verify on the GMA CONFIGURATION page that “Disable Split COM” has a green box. Due to the closeness of the COM antennas and high power of the COM transceivers, Split COM operation is not approved. If the box is black (indicating COM ½ button is active), highlight “Disable Split COM” with the cursor and press the ENT key to turn the box green which will deactivate Split COM mode. Speaker Cuts Out • Reduce volume level of the item that caused the speaker to cut out when turned up. A speaker protection circuit disables the speaker output if the volume is too high. If the volume is not sufficient, replace aircraft cabin speaker, reference the Airframe Maintenance Manual. Mic Audio Heard in Speaker • Reduce ICS Volume. GMA XTALK – GMA crosstalk error has occurred. • • • • • Ensure both GMA units are receiving power. Ensure both units are properly configured by verifying there are no GMA alert messages. Check interconnect wiring between the GMA’s for faults. Replace GMA1. If problem persists, reinstall GMA1 and replace GMA2. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-53 Revision 4 5.9.7 GMA Alerts Failure Message GMA1 SERVICE – GMA1 needs service. Return unit for repair. GMA2 SERVICE – GMA2 needs service. Return unit for repair. Cause Solution The system has determined that the specified GMA 1347D needs service. • Replace GMA . • Ensure GMA1 is receiving power. Ensure both GIAs are receiving power. Ensure all GDUs are receiving power. Ensure the GMA/GIA RS-232 data lines are working properly. Ensure the GIA/GDU Ethernet data lines are working properly. GMA1 FAIL – GMA1 in inoperative. • The system has detected a failure in the specified GMA 1347D. GMA2 FAIL – GMA2 in inoperative. • • • Replace GMA1. MANIFEST – GMA1 software mismatch. Communication Halted. The system has detected an incorrect software version loaded in the specified GMA 1347D. MANIFEST – GMA2 software mismatch. Communication Halted. • GMA1 CONFIG – GMA1 configuration error. Config service req’d. GMA2 CONFIG – GMA2 configuration error. Config service req’d. Page 5-54 Revision 4 Load the correct unit software. See Section 3.9 for the Software Loading procedure. Load GMA configuration files, see Section 3.9. • • The system has detected a GMA 1347D configuration mismatch for the specified unit. Replace GMA. If problem persists, replace master configuration module, check config module wiring for faults and replace if necessary. NOTE New Terrain/Obstacle cards, Jeppesen Aviation Database and other optional features (i.e. TAWS unlock card) will need to be replaced if the master configuration module is changed. The G1000 System ID number will change to a new number when installing a new master config module. The old Terrain and other cards will no longer work as they will remain locked to the old System ID number. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.10 GIA 63 Troubleshooting 5.10.1 COM Symptom Recommended Action • Weak COM transmit power Switch GIA1 and GIA2, to verify location of problem: 9 If problem follows unit, replace GIA. 9 • Weak COM receiver Switch GIA1 and GIA2, to verify location of problem: 9 If problem follows unit, replace GIA. 9 • No COM sidetone If problem does not follow unit, check COM antenna and cabling for faults. If problem does not follow unit, check COM antenna and cabling for faults. Switch GIA1 and GIA2, to verify location of problem: 9 If problem follows unit, replace GIA. 9 If problem persists, replace GMA1 with a known good unit. 9 If problem persists, reinstall original GMA1 and replace GMA2. 5.10.2 NAV Symptom Recommended Action • • Weak NAV receiver Set up a NAV/COM Ramp Test Set to radiate a test signal. Switch GIA1 and GIA2, to verify location of problem: 9 If problem follows unit, replace GIA. 9 If problem does not follow unit, check NAV antenna, coupler, and cabling for faults. 5.10.3 G/S Symptom Recommended Action • • Weak G/S receiver Set up a NAV/COM Ramp Test Set to radiate a test signal. Switch GIA1 and GIA2, to verify location of problem: 9 If problem follows unit, replace GIA. 9 If problem does not follow unit, check NAV antenna, coupler, and cabling for faults. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-55 Revision 4 5.10.4 GPS Symptom Recommended Action • • • • Will Not Acquire Satellites • Ensure that a cell phone or a device using cell phone technology is not turned on (even in a monitoring state) in the cabin. Using the MFD AUX – GPS Status page, verify the signal strength bars are not erratic. If so, this indicates outside interference is affecting the GPS receivers. Find and remove the source of interference (i.e. cell phones, FBO datalink antennas, etc.). Check date and time on Date/Time Setup Page. 9 If date and time are incorrect, enter the correct date and time. Switch GIA1 and GIA2, to verify location of problem: 9 If problem follows unit, clear the GPS almanac by performing the following steps – o Using the PFD in config mode, go to the GIA RS232/ARNIC 429 Config Page. o At the top of the screen, select the GIA that can not acquire satellites (GIA1 or GIA2) and press the ENT key. o Press the “CLR NV” softkey at the bottom of the screen. o Select “OK” in the “Clear GIA nonvolatile memory?” pop-up window. o Next reload GIA Audio and Config files from a loader card, see Section 4.3 and on for instructions. Be sure to reload the config files for any optional equipment installed on the aircraft that require the GIA config to be updated. Cycle power on the system and allow it to restart in normal mode. Place the aircraft outside and allow 15-30 minutes for the GPS to acquire a position and download a new almanac. 9 If clearing nonvolatile memory is unsuccessful and the GPS still can not acquire a position, replace the GIA. 9 Page 5-56 Revision 4 If problem does not follow unit, check GPS antenna and cabling. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.11 GIA Alert Messages 5.11.1 COM Alerts Failure Message Cause Solutions COM1 SERVICE – COM1 needs service. Return unit for repair. The system has determined COM1 needs service. • Replace GIA1 according to instructions in Section 6. COM2 SERVICE – COM2 needs service. Return unit for repair. The system has determined COM2 needs service. • Replace GIA2 according to instructions in Section 6. • Press the push-to-talk switch(s) again to cycle its operation. Check push-to-talk switch(s) and wiring. Check GIA1/GMA 1347D #1 interconnect. Switch GIA1 and GIA2, to identify whether the unit or connectors/wiring is at fault (Both GIAs must be configured when swapped; see Section 3.9): 9 If problem follows the unit, replace GIA1. 9 If problem persists replace defective GMA 1347D #1. • • COM1 PTT – COM1 push-to-talk key is stuck. The COM1 external push-to-talk (PTT) switch is stuck in the enabled (or “pressed”) state. • • • • COM2 PTT – COM2 push-to-talk key is stuck. The COM2 external push-to-talk (PTT) switch is stuck in the enabled (or “pressed”) state. • Press the push-to-talk switch(s) again to cycle its operation. Check push-to-talk switch(s) and wiring. Check GIA2/GMA 1347D #2 interconnect. Switch GIA1 and GIA2, to identify whether the unit or connectors/wiring is at fault (Both GIAs must be configured when swapped, see Section 3.9): 9 If problem follows the unit, replace GIA2. 9 If problem persists replace defective GMA 1347D #2. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-57 Revision 4 Failure Message Cause COM1 RMT XFR – COM1 remote transfer key is stuck. COM2 RMT XFR – COM2 remote transfer key is stuck. COM1 TEMP – COM1 over temp. Reducing transmitter power. COM2 TEMP – COM2 over temp. Reducing transmitter power. Page 5-58 Revision 4 Solutions The COM1 external remote transfer switch is stuck in the enabled (or “pressed”) state. Press the COM1 external remote transfer switch again to cycle its operation. Check COM1 external remote transfer switch and wiring. Switch GIA1 and GIA2, to identify whether the unit or connectors/wiring is at fault (Both GIAs must be configured when swapped, see Section 3.9) 9 If problem follows the unit, replace GIA1. 9 If problem persists, continue to troubleshoot remote transfer switch & wiring. The COM2 external remote transfer switch is stuck in the enabled (or “pressed”) state. Press the COM2 external remote transfer switch again to cycle its operation. Check COM2 external remote transfer switch and wiring. Switch GIA1 and GIA2, to identify whether the unit or connectors/wiring is at fault (Both GIAs must be configured when swapped, see Section 3.9): 9 If problem follows the unit, replace GIA2. 9 If problem persists, continue to troubleshoot remote transfer switch & wiring. • The specified COM transceiver is reporting a high temperature condition and is reducing transmit power to prevent damage. • • • Check fan, wiring and air tubing for proper operation (if applicable). Replace cooling fan if unable to determine if operating correctly. Replace GIA. If problem persists contact Garmin Aviation Product Support for assistance. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.11.2 NAV Alerts Failure Message Cause Solution NAV1 SERVICE – NAV1 needs service. Return unit for repair. The system has detected a failure in NAV1 receiver. • Replace GIA1. NAV2 SERVICE – NAV2 needs service. Return unit for repair. The system has detected a failure in NAV2 receiver. • Replace GIA2. NAV1 RMT XFR – NAV1 remote transfer key is stuck. NAV2 RMT XFR – NAV2 remote transfer key is stuck. The NAV1 external remote transfer switch is stuck in the enabled (or “pressed”) state. Press the NAV1 external remote transfer switch again to cycle its operation. Check NAV1 remote transfer switch and wiring. Switch GIA1 and GIA2, to identify whether the unit or connectors/wiring is at fault (Both GIAs must be configured when swapped, see Section 3.9): 9 If problem follows unit, replace GIA1. 9 If problem persists, continue to troubleshoot remote transfer switch & wiring. The NAV2 external remote transfer switch is stuck in the enabled (or “pressed”) state. Press the NAV2 external remote transfer switch again to cycle its operation. Check NAV2 remote transfer switch and wiring. Switch GIA1 and GIA2, to identify whether the unit or connectors/wiring is at fault (Both GIAs must be configured when swapped, see Section 3.9): 9 If problem follows unit, replace GIA1. 9 If problem persists, continue to troubleshoot remote transfer switch & wiring. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-59 Revision 4 5.11.3 Glideslope Alerts Failure Message Cause Solution G/S1 SERVICE – G/S1 needs service. Return unit for repair. The system has detected a failure in G/S1 receiver. • Replace GIA1. G/S2 SERVICE – G/S2 needs service. Return unit for repair. The system has detected a failure in G/S2 receiver. • Replace GIA2. • Switch GIA1 and GIA2 to verify location of problem: 9 If problem follows the unit, replace GIA. G/S1 FAIL – G/S1 is inoperative. The system has detected a failure in G/S1 receiver. 9 If problem does not follow unit, • G/S2 FAIL – G/S2 is inoperative. The system has detected a failure in G/S2 receiver. check G/S1 antenna and cabling. Switch GIA1 and GIA2 to verify location of problem: 9 If problem follows the unit, replace GIA. 9 If problem does not follow unit,. check G/S2 antenna and cabling. 5.11.4 GPS Alerts NOTE Before troubleshooting, ensure that no cell phones or devices using cell phone technology are turned on, even in a monitoring state, in the cabin. Failure Message Cause Solution MANIFEST – GPS1 software mismatch. Communication halted. The system has detected an incorrect software version loaded in GIA1. • MANIFEST – GPS2 software mismatch. Communication halted. The system has detected an incorrect software version loaded in GIA2. Load the correct GPS software. See Section 3.9 for the Software Loading procedure. GPS1 SERVICE – GPS1 needs service. Return unit for repair. The system has detected a failure in GPS1 receiver. GPS2 SERVICE – GPS2 needs service. Return unit for repair. The system has detected a failure in GPS2 receiver. • Replace GIA. GPS1 FAIL – GPS1 is inoperative. The system has detected a failure in GPS1 receiver. • GPS2 FAIL – GPS2 is inoperative. The system has detected a failure in GPS2 receiver. Switch GIA1 and GIA2, to verify location of problem: 9 If problem follows the unit, replace GIA. 9 If problem does not follow the unit, check GPS antenna and cabling. Page 5-60 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Failure Message Cause Solution LOI – GPS integrity lost. Crosscheck with other NAVS. If the primary receiver is a WAAS sensor, the alert indicates that GPS position data has timed out. • GPS NAV LOST – Loss of GPS navigation. Insufficient satellites. There is no GPS position fix available or the system is in dead reckoning mode. GPS NAV LOST – Loss of GPS navigation. Position error. The G1000 has detected an internal position warning has occurred. GPS NAV LOST – Loss of GPS navigation. GPS fail. The G1000 has detected a GPS engine failure. • • Verify the area the aircraft was traveling through did not have loss of GPS coverage. FAA NOTAMs may be issued for periods of outages, or the US Coast Guard website http://www.navcen.uscg.gov/gps/gps notices/default.htm will have notices posted. Using the MFD AUX – GPS Status page, verify the signal strength bars are not erratic. If so, this indicates outside interference is affecting the GPS receivers. Find and remove the source of interference (i.e. cell phones, FBO datalink antennas, etc.). If GPS receivers can not aquire a position lock, troubleshoot per the “Will not acquire satellites” section. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-61 Revision 4 5.11.5 GIA Cooling Alerts Failure Message Cause GIA1 COOLING – GIA1 temperature too low. GIA1 operating temperature is too low. Solution • Allow unit to warm up. GIA2 COOLING – GIA2 temperature too low. GIA2 operating temperature is too low. • Allow unit to warm up. • • GIA1 COOLING – GIA1 over temperature. GIA1 has exceeded its operating temperature range. • • • • GIA2 COOLING – GIA2 over temperature. Page 5-62 Revision 4 GIA2 has exceeded its operating temperature range. • • Check fan, wiring and air tubing for proper operation (if applicable). Replace cooling fan if unable to determine if operating correctly. Replace GIA1. If problem persists contact Garmin Aviation Product Support for assistance. Check fan, wiring and air tubing for proper operation (if applicable). Replace cooling fan if unable to determine if operating correctly. Replace GIA2. If problem persists contact Garmin Aviation Product Support for assistance. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.11.6 GIA Configuration Alerts Failure Message Cause Solution MANIFEST – GIA1 software mismatch. Communication Halted. The system has detected an incorrect software version loaded in GIA1. • MANIFEST – GIA2 software mismatch. Communication Halted. The system has detected an incorrect software version loaded in GIA2. Load the correct software. See Section 3.9 for the Software Loading procedure. • Reload audio configuration files. • Load the configuration files for that GIA. See Section 3.9 for GIA 63 Configuration Loading procedure. If problem persists, replace master configuration module, check config module harness for faults and replace if necessary. GIA1 CONFIG – GIA1 audio config error. Config service req’d. GIA2 CONFIG – GIA2 audio config error. Config service req’d. The GIA’s audio configuration files are incorrect or missing. GIA1 CONFIG – GIA1 configuration error. Config service req’d. • The system has detected a GIA configuration mismatch. If GIAs are not properly configured after being swapped/replaced, this message appears. NOTE • New Terrain/Obstacle cards, Jeppesen Aviation Database and other optional features (i.e. TAWS unlock card) will need to be replaced if the master configuration module is changed. The G1000 System ID number will change to a new number when installing a new master config module. The old Terrain and other cards will no longer work as they will remain locked to the old System ID number. The G1000 has detected a nonWAAS GIA 63. • Replace GIA with a WAAS unit. The G1000 has detected a failure in the specified GIA. • Replace suspect GIA. GIA2 CONFIG – GIA2 configuration error. Config service req’d. HW MISMATCH – GIA hardware mismatch, GIA1 communication halted. HW MISMATCH – GIA hardware mismatch, GIA2 communication halted. GIA1 SERVICE – GIA1 needs service. Return unit for repair. GIA2 SERVICE – GIA2 needs service. Return unit for repair. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-63 Revision 4 5.12 GEA Troubleshooting 5.12.1 GEA Alerts Failure Message Cause MANIFEST – GEA1 software mismatch. Communication halted. The system has detected an incorrect software version loaded in the specified GEA 71. MANIFEST – GEA2 software mismatch. Communication halted. Solution Load the correct software verion. See Section 3.9 for GEA 71 Software Load Procedure. • GEA1 CONFIG – GEA1 configuration error. Config service req’d. • GEA1 CONFIG – GEA2 configuration error. Config service req’d. Page 5-64 Revision 4 The system has detected a configuration mismatch in the specified GEA 71. Load GEA configuration files. See Section 3.9 for GEA 71 Configuration Procedure. If problem persists, replace master configuration module, check config module harness for faults and replace if necessary. NOTE New Terrain/Obstacle cards, Jeppesen Aviation Database and other optional features (i.e. TAWS unlock card) will need to be replaced if the master configuration module is changed. The G1000 System ID number will change to a new number when installing a new master config module. The old Terrain and other cards will no longer work as they will remain locked to the old System ID number. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.13 GTX Troubleshooting 5.13.1 GTX Alerts Failure Message MANIFEST – GTX1 software mismatch. Communication halted. MANIFEST – GTX2 software mismatch. Communication halted. Cause The system has detected an incorrect software version loaded in the specified GTX 33 or GTX 3000. XPDR1 SRVC – XPDR1 needs service. Return unit for repair. XPDR2 SRVC – XPDR2 needs service. Return unit for repair. XPDR1 FAIL – XPDR 1 is inoperative. XPDR2 FAIL – XPDR 2 is inoperative. XPDR1 ADS-B FAIL – XPDR 1 unable to transmit ADS-B message. XPDR 2 ADS-B FAIL – XPDR 2 unable to transmit ADS-B message. • Reload software. See Section 3.9 for the Software Load Procedure. • The system has detected a configuration mismatch for the specified GTX 33 or GTX 3000. Perform a SET>ACTV configuration reset on the GTX Config page and verify the aircraft registration is present. • If error is still present, reload config files from a loader card. 9 If problem persists, replace master configuration module, check config module harness for faults and replace if necessary. NOTE New Terrain/Obstacle cards, Jeppesen Aviation Database and other optional features (i.e. TAWS unlock card) will need to be replaced if the master configuration module is changed. The G1000 System ID number will change to a new number when installing a new master config module. The old Terrain and other cards will no longer work as they will remain locked to the old System ID number. The G1000 has detected a failure in the specified GTX 33 or GTX 3000. • Replace GTX 33 or GTX 3000. • Check wiring between GIA’s and GTX. Replace GTX 33 or GTX 3000. XPDR1 CONFIG – XPDR1 configuration error. Config service req’d. XPDR2 CONFIG – XPDR2 configuration error. Config service req’d. Solutions The specified GTX 33 or GTX 3000 is not responding. The specified GTX 3000 transponder is not able to transmit ADS-B data. • • • Check wiring between GIA’s and GPS antenna. Check wiring between GIA’s and GTX. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-65 Revision 4 5.14 GDL 69A Troubleshooting 5.14.1 GDL 69A Common Problems Symptom Recommended Action No XM audio is heard • • • • No XM weather information is displayed Page 5-66 Revision 4 Ensure the following items are not preventing the audio panel from distributing XM audio (reference applicable G1000 Pilot’s Guide): 9 Verify the XM volume is not muted on the AUX – XM RADIO page on the MFD. 9 Verify the COM squelch is not open. 9 Verify the ICS squelch is not open. 9 Verify the marker beacon tones are not being received. 9 Verify the headphone (if equipped) volume is turned up. Go to the AUX – SYSTEM STATUS page on the MFD and ensure unit is online. 9 If a red X is present, verify the unit is receiving power at the rack connector. Ensure there are no GDL alerts in the alert window. If there is an Alert for software or configuration error or mismatch, reload the file noted in the Alert. Restart the PFD’s and MFD in configuration mode and go to the GDL page. 9 Verify unit is active. 9 Verify the Signal number is “2” or “3”. If it is “0” or “1” check the GDL 69/69A antenna and cabling for faults. 9 Reseat the GDL 69/69A to verify the coax connector is fully seated. 9 If unit is not active, contact XM Customer service to have a refresh signal sent to your unit. You will need to provide them the Audio Radio ID (and Data Radio ID number for XM weather) numbers. Also verify with XM that the correct Weather package (Aviator Lite or Aviator) is on the account, and that no traffic service has been activated against that Radio ID. The unit must be on for approximately one hour after the request for the refresh has been sent to receive the signal. 9 Alternatively, you may also go to XM’s website and enter the radio ID’s to have a refresh signal sent. 9 If there is still problems receiving weather products after performing the above step, call XM and have the account deactivated, and a new account activated to clear out any corrupt account information. 9 Verify there is a good ground connection through the aircraft between the MFD and the GDL69/69A unit. Reference the Aircraft Maintenance Manual for instructions on how to check bonding and ground points. 9 If problem persists, replace the GDL 69/69A. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.14.2 GDL 69A Alerts Failure Message GDL 69 FAIL – GDL 69 has failed. Cause The G1000 has detected a failure in the GDL 69A. GDL69 CONFIG – GDL 69 configuration error. Config service req’d. The G1000 has detected a GDL 69A configuration mismatch. MANIFEST – GDL software mismatch. Communication halted. The system has detected an incorrect software version loaded in the GDL 69A. Solutions • • Replace GDL 69A. Check GDL 69A antenna and cabling. • Check the GDL 69A and MFD interconnect. • Reload configuration file. See Section 3.9 for the Configuration Procedure. • If problem persists, replace master configuration module, check config module harness for faults and replace if necessary. NOTE New Terrain/Obstacle cards, Jeppesen Aviation Database and other optional features (i.e. TAWS unlock card) will need to be replaced if the master configuration module is changed. The G1000 System ID number will change to a new number when installing a new master config module. The old Terrain and other cards will no longer work as they will remain locked to the old System ID number. • Load correct software version. See Section 3.9 for the Software Load Procedure. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-67 Revision 4 5.15 GRS 77 or GRS 7800 and GMU 44 Troubleshooting 5.15.1 AHRS Common Problems Symptom Recommended Action • • AHRS does not complete initialization • • • • • • Attitude appears unstable • • • • Page 5-68 Revision 4 Ensure that a cell phone or a device using cell phone technology is not turned on (even in a monitoring state) in the cabin. Ensure GPS has acquired at least four satellites, has a 3D navigation solution, and a DOP of less than 5.0. This is particularly important if this issue appears during ground operation only. Calibrate the GRS 77 or GRS 7800. Check GRS 77 or GRS 7800 configuration module wiring for damage. Check GRS 77 or GRS 7800 connector for bent pins. 9 If no damage can be found, replace GRS 77 or GRS 7800 configuration module. 9 If problem persists, replace the GRS 77 or GRS 7800. Ensure that a cell phone or a device using cell phone technology is not turned on (even in a monitoring state) in the cabin. Ensure the four GRS 77 or GRS 7800 mounting screws are tight. Finger tight is not sufficient, a screwdriver must be used to verify. Ensure mounting rack and airframe shelf are secure and all hardware and brackets are present (CAUTION - do not loosen the mounting rack hardware to the airframe shelf or the aircraft will need to be re-leveled and the PITCH/ROLL OFFSET procedure performed). Ensure GRS 77 or GRS 7800 connector is securely fastened and proper strain relief is provided. Remove GRS 77 or GRS 7800 connector and verify there are no bent pins. Replace the GRS 77 or GRS 7800. Contact Garmin for further troubleshooting if required. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.15.2 GRS Alerts Failure Message MANIFEST – GRS1 software mismatch. Communication halted. MANIFEST – GRS2 software mismatch. Communication halted. AHRS1 SERVICE – AHRS1 magnetic-field model needs update. AHRS2 SERVICE – AHRS2 magnetic-field model needs update. GEO LIMITS – AHRS1 too far north/south, no magnetic compass. GEO LIMITS – AHRS2 too far north/south, no magnetic compass. AHRS1 TAS – AHRS1 not receiving airspeed. AHRS2 TAS – AHRS2 not receiving airspeed. Cause Solutions The system has detected an incorrect software version loaded in the specified GRS 77 or GRS 7800. • Load correct software version. See Section 3.9 for the Software Load Procedure. • Load updated AHRS magnetic field file. See Section 4.6. • Operate the aircraft only within the limits as specified in the G1000/GFC 700, King Air 300/B300 AFMS, listed in Table 1-3 • Check GRS/GDC interconnect for faults. Replace the GDC 7400 If problem persists, replace the GRS 77 or GRs 7800. The AHRS magnetic field model should be updated for the specified unit. Appears on ground only. No magnetic compass information available due to being too far north or south. The specified GRS 77 or GRS 7800 is not receiving airspeed from the GDC 7400. AHRS1 GPS – AHRS1 not receiving backup GPS information. The GRS 77 or GRS 7800 #1 is not receiving backup GPS information from either GIA 63. AHRS1 GPS – AHRS1 operating exclusively in no-GPS mode. The GRS 77 or GRS 7800 #1 is operating in the absence of GPS. AHRS1 GPS – AHRS1 not receiving any GPS information. The GRS 77 or GRS 7800 #1 is not receiving GPS data from the GPS receivers. AHRS1 GPS – AHRS1 using backup GPS source. The GRS 77 or GRS 7800 #1 is using the backup GPS data path. • • • • • • AHRS2 GPS – AHRS2 not receiving backup GPS information. The GRS 77 or GRS 7800 #2 is not receiving backup GPS information from either GIA 63. AHRS2 GPS – AHRS2 operating exclusively in no-GPS mode. The GRS 77 or GRS 7800 #2 is operating in the absence of GPS. AHRS2 GPS – AHRS2 not receiving any GPS information. The GRS 77 or GRS 7800 #2 is not receiving GPS data from the GPS receivers. AHRS2 GPS – AHRS2 using backup GPS source. The GRS 77 or GRS 7800 #2 is using the backup GPS data path. • • • • AHRS MAG DB – AHRS magnetic model database version mismatch. The G1000 has detected a magnetic model database version mismatch. • Ensure that a cell phone or a device using cell phone technology is not turned on (even in a monitoring state) in the cabin. Check GPS status for GIA 1 and 2 on MFD - AUX GPS STATUS page. If one or both GPS receivers cannot acquire a position lock, see GPS troubleshooting section Troubleshoot GIA1/2 –GRS1 wiring for faults (ref. Failed Path troubleshooting section). Replace the GRS 77 or GRS 7800 #1. Ensure that a cell phone or a device using cell phone technology is not turned on (even in a monitoring state) in the cabin. Check GPS status for GIA 1 and 2 on MFD - AUX GPS STATUS page. If one or both GPS receivers cannot acquire a position lock, see GPS troubleshooting section Troubleshoot GIA1/2 –GRS2 wiring for faults (ref. Failed Path troubleshooting section). Replace the GRS 77 or GRS 7800 #2 Load AHRS magnetic model field in both GRS units. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-69 Revision 4 Failure Message Cause Solutions • If flying near large radio towers or other sources of possible electromagnetic interference, the condition should correct itself as the aircraft leaves the area. If problem persists, run magnetic interference check in Section 5.15.4 to check for magnetic interference in the aircraft. MAG VAR WARN – Large magnetic variance. Verify all course angles. Magnetic variance value from GMU 44 is not accurate. PIT MISCOMP Difference in the pitch sensors is greater than 5 degrees. Perform Calibration Procedure A1: GRS 77 or GRS 7800 Pitch/Roll Offset Calibration (reference Section 7). ROL MISCOMP Difference in the roll sensors is greater than 6 degrees. Perform Calibration Procedure A1: GRS 77 or GRS 7800 Pitch/Roll Offset Calibration (reference Section 7). • 5.15.3 GMU Alerts Failure Message Cause MANIFEST – GMU1 software mismatch. Communication halted. The system has detected an incorrect software version loaded in the specified GMU 44. MANIFEST – GMU2 software mismatch. Communication halted. HDG FAULT – AHRS1 magnetometer fault has occurred HDG FAULT – AHRS2 magnetometer fault has occurred. HDG MISCOMP Page 5-70 Revision 4 Solutions Load the correct software version. See Section 3.9 for the Software Load Procedure. • A fault has occurred in the specified magnetometer; heading will be flagged invalid. Check GMU 44/GRS 77 or GRS 7800 interconnect for faults. 9 Replace GMU 44. 9 If problem persists, replace GRS 77 or GRS 7800. Difference in the heading sensors is greater than 6 degrees. Perform Calibration Procedure E: Magnetometer Interference Test (reference Section 5) and Procedure B: GRS 77 or GRS 7800 and GMU 44 Magnetometer Calibration (reference Section 7). G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.15.4 Calibration Procedure E: Magnetometer Interference Test A magnetometer interference test is available for troubleshooting and/or verifying a magnetically ‘clean’ installation of the GMU 44. This test exercises various devices on the aircraft that could potentially affect the magnetic field as measured by the GMU 44. NOTE This test is used to validate that no electronic device or magnetized components produce a magnetic field sufficient to interfere with the operation of the GMU 44 magnetometer. It is highly recommended that this test be performed after installation or maintenance of electrical components on the aircraft and/or for troubleshooting the GMU 44. Figure 5-7, Magnetometer Interference Test 1. Initiate the AHRS magnetometer interference test procedure by performing the following steps: 2. On PFD1, enter Configuration Mode and go to GRS/GMU Calibration page as shown in Figure 5-7. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-71 Revision 4 3. This page is protected and requires a keystroke password to perform this test. Press the following softkeys in sequence: (as counted from left to right on lower bezel of MFD) • • • • softkey 9 softkey 10 softkey 11 softkey 12 4. Select MAG INTERFERENCE TEST and press the PFD1 ENT key. 5. Follow the checklist items displayed on the PFD1, and press the ENT key as each one is completed or confirmed. NOTE rd The 3 item on the checklist instructs the operator to “prepare a detailed test sequence with precise start and stop times for exercising all electronic devices”. The list of relevant devices are given in Table 5-5. Begin test with flaps retracted, flight controls in a neutral position, all lights selected OFF. Elapsed Time since Start of Test (min:secs) 0:00 0:05 0:10 0:20 0:30 0:40 0:50 1:00 1:20 1:40 1:50 2:00 2:10 2:20 2:30 2:40 2:50 3:00 3:10 3:20 3:30 3:40 3:50 4:00 Action Test begins Tail Flood lights on Tail Flood lights off Navigation lights on Navigation lights off Landing lights on Landing lights off Taxi lights on Taxi lights off Strobes on Strobes off Recognition lights on Recognition lights off Beacon on Beacon off Rudder full left Rudder full right Rudder Trim full left Rudder Trim full right Elevator full nose UP Elevator full nose DN Manual electric elevator trim full nose UP Manual electric elevator trim full nose DN End of test Table 5-5, Magnetometer Interference Test Sequence Page 5-72 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 6. When the CALIBRATE field is blinking, press the ENT key to begin the procedure, and have a stopwatch ready to begin recording the elapsed time. NOTE It is important that the “time equals zero” moment corresponds with the moment the PFD first displays the blinking TEST COMPLETE? Message. 7. The operator should carry out the actions called for in the prepared test sequence. NOTE It is important that all actions are carried out in the order and at the precise elapsed time as specified in the prepared test sequence. 8. When the operator has completed the actions specified in the test sequence, press the ENTER button to indicate that the process is complete. When this is done, the TEST COMPLETE field stops blinking. 9. PFD1 informs the operator if the installation has passed or failed the magnetometer interference test. If the test passes, no further action is required for this test. If the test fails, the installation should be considered unreliable until the source of magnetic interference is identified and remedied. When the magnetometer interference test fails, record the three magnetometer maximum deviation values and their corresponding timestamps. Reference the appropriate installation manual for the GRS 77 (190-00303-10) and GRS 7800 (190-01091-00) for acceptable magnetic interference limits. Compare the corresponding timestamps with the prepared test sequence to identify which action produced the problem. Contact Garmin for assistance in resolving the problem. NOTE Three common reasons for a failed magnetometer interference test are: 1) rudder bellcrank or other structure has become magnetized, 2) new equipment is installed in close proximity to the GMU 44 magnetometer, and 3) an existing or new electronic device has become grounded through the aircraft structure instead of via the proper ground wire in a twisted shielded pair. 10. Press the ENT key on the PFD to conclude this procedure. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-73 Revision 4 5.16 GDC 7400 Troubleshooting 5.16.1 Air Data Common Problems Symptom Recommended Action • Altitude is different than standby altimeter Perform a pitot/static leak and accuracy check per Section 7.6 of this manual. • Determine which instrument is outside limits and replace. Note: The GDC 7400 software for the 300/B300 contains error correction at 19,000 feet and above. The standby altimeter does not contain any correction. 5.16.2 GDC 7400 Alerts Failure Message MANIFEST – GDC1 software mismatch Communication halted. MANIFEST – GDC2 software mismatch Communication halted. Page 5-74 Revision 4 Cause Solutions The system has detected an incorrect software version loaded in the specified GDC 7400. • Load correct software version. See Section 3.9 for the Software Load Procedure. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.17 GWX 68 GWX 70 Troubleshooting 5.17.1 GWX 68 GWX 70 Alerts and Problems WARNING: Before energizing the equipment, be sure microwave radiation safety precautions including both fuel and personnel safety considerations have been observed. These include clearing all personnel to an area beyond the maximum permissible exposure level (MPEL) boundary. The MPEL for the GWX 68 is 11 feet. Failure Message Cause Solutions • Load GWX configuration files, • Replace GWX. • If problem persists, replace master configuration module, check config module wiring for faults and replace if necessary. NOTE GWX CONFIG – GWX configuration error. Configuration service required. The G1000 has detected a GWX 68 or GWX 70 configuration mismatch. GWX FAIL – GWX is inoperative. The G1000 has detected a failure in the GWX 68 or GWX 70. New Terrain/Obstacle cards, Jeppesen Aviation Database and other optional features (i.e. TAWS unlock card) will need to be replaced if the master configuration module is changed. The G1000 System ID number will change to a new number when installing a new master config module. The old Terrain and other cards will no longer work as they will remain locked to the old System ID number. • • Check Ethernet connection between the GWX and GDL69A for faults. Replace the GWX 68 or GWX 70 GWX SERVICE – Needs service. Return unit for repair. The G1000 has detected a failure in GWX 68 or GWX 70. • Replace the GWX 68 or GWX 70. MANIFEST – GWX software mismatch. Communication halted. The system has detected an incorrect software version loaded in the GWX 68 or GWX 70. • Load correct software version. See Section 3.9 for the Software Load Procedure. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-75 Revision 4 5.18 GMC 710 Troubleshooting 5.18.1 GMC 710 Alerts and Problems Failure Message Cause Solutions • • • Load GMC configuration files. Replace GMC. If problem persists, replace master configuration module, check config module wiring for faults and replace if necessary. NOTE GMC CNFG – GMC Config error. Config service req’d. The G1000 has detected a GMC 710 configuration mismatch. GMC FAIL – GMC is inoperative. The G1000 has detected a failure in the GMC 710. MANIFEST – GMC software mismatch. Communication halted. Page 5-76 Revision 4 The system has detected an incorrect software version loaded in the GMC 710. New Terrain/Obstacle cards, Jeppesen Aviation Database and other optional features (i.e. TAWS unlock card) will need to be replaced if the master configuration module is changed. The G1000 System ID number will change to a new number when installing a new master config module. The old Terrain and other cards will no longer work as they will remain locked to the old System ID number. • • • Check wiring for faults (ref Failed Path troubleshooting section 5.7). Replace the GMC 710. Load the correct software version. See Section 3.9 for the Software Load Procedure. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.19 GCU 477 Troubleshooting 5.19.1 GCU 477 Alerts and Problems Failure Message Cause Solutions • • • Load GCU configuration files. Replace GCU. If problem persists, replace master configuration module, check config module wiring for faults and replace if necessary. NOTE GCU CNFG – GCU Config error. Config service req’d. The G1000 has detected a GCU 477 configuration mismatch. GCU FAIL – GCU is inoperative. The G1000 has detected a failure in the GCU 477. MANIFEST – GCU software mismatch. Communication halted. The system has detected an incorrect software version loaded in GCU 477. New Terrain/Obstacle cards, Jeppesen Aviation Database and other optional features (i.e. TAWS unlock card) will need to be replaced if the master configuration module is changed. The G1000 System ID number will change to a new number when installing a new master config module. The old Terrain and other cards will no longer work as they will remain locked to the old System ID number. • • • Check wiring for faults (ref Failed Path troubleshooting section). Replace the GCU 477. Load the correct software version. See Section 3.9 for the Software Load Procedure. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-77 Revision 4 5.20 Software/Configuration Troubleshooting Problem Solutions MFD or PFD displays do not power up: • • • • Software file load fails: • • • • • Configuration file load fails: • • • • GIA1 and/or GIA2 to ‘LRU’ data path not working • Software File Mismatch Alert appears in lower right corner of PFD when started in normal mode: • • • • • After being in configuration mode, the PFD displays a red AFCS annunciation and cycling of the transponder field between valid and invalid states. Page 5-78 Revision 4 • Ensure that the criteria listed in Section 5.20.1 are fulfilled for the applicable situation. Ensure power is present at display backshell connector. Troubleshoot per the “Blank Display” GDU section. Ensure that criteria listed in Section 5.20.1 are fulfilled for the applicable situation. Ensure that LRU is reporting data on System Status page (LRU is ‘ONLINE’). Check data path wiring as needed. Retry software file load or try using a different card. Ensure that the MFD is not touched during the loading process. Ensure that LRU part number is compatible with software version and Card Loader. Refer to the General Arrangement Drawing and to Section 3.8 of this document. Replace LRU. Ensure that the criteria listed in Section 5.20.1 are fulfilled for the applicable situation. Ensure that LRU is reporting data on System Status page (LRU is ‘ONLINE’). Check data path wiring as needed. Retry configuration file load or try using a different card. Ensure that the MFD is not touched during the loading process. Ensure that LRU part number is compatible with Card Loader. Refer to the General Arrangement Drawing and to Section 3.8 of this document. Replace LRU. Ensure that the criteria listed in Section 5.20.1 are fulfilled for the applicable situation. Ensure GIA1 and GIA2 are configured correctly. Check wiring, connectors & pins as needed. Ensure that proper software file part number and version were loaded to LRU. Refer to the General Arrangement Drawing and to Section 5.20.1. Check and ensure that correct Card Loader was used during load process. Refer to the General Arrangement Drawing. Reload software to LRU. With the G1000 system powered on, open the MFD, PFD 1 (PRI), PFD 1 (SEC), and PFD 2 circuit breakers for approximately 30 seconds, then close the circuit breakers. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.20.1 System Communication Hierarchy The following criteria must be satisfied to be able to perform the desired operation: Desired Operation Criteria for Success Load Software to MFD or PFD Displays • • • Load AIRFRAME, SYSTEM, MFD1, PFD 1, PFD 2 and MANIFEST configuration files to MFD and PFDs • Load Software/Configuration files to GIA 63Ws • • • • • • Load Software/Configuration files to: - GMA 1347D - GDC 7400 - GEA 71 - GRS 77 or GRS 7800 (software only) - GMU 44 (software only) - GTX 33 or GTX 3000 • • • • • • SW Loader Card must be inserted in top slot for each display to be loaded. CLR & ENT keys must be held during power up of display. Power on only one display at a time during software loading. SW Loader Card must be inserted in top slot of PFD 1. PFD 1 and MFD must be powered on. PFD 1 and MFD must have correct software. SW Loader Card must be inserted in top slot of PFD 1. G1000 system must be powered on. PFD and MFD must have correct software. PFD 1 and MFD must be successfully configured with AIRFRAME, SYSTEM, MANIFEST, MFD1, PFD 1 and PFD 2 configuration files. SW Loader Card must be inserted into PFD 1 top slot. G1000 must be powered on. PFD 1 and MFD must have correct software and configuration settings. GIA 63Ws must have correct software. GIA 63Ws must be successfully configured with GIA1 and GIA2 configuration files. Data path from GIA1 to each LRU must be operational. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-79 Revision 4 5.21 Mating/Backplate Connectors The following figures depict the mating/backplate connectors as viewed with the LRU removed. COM ANTENNA CONNECTOR COOLING PORT COM BOARD CONNECTOR (P601) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2223 24 25 26 2728 2930 31 32 3334 35 3637 3839 40 41 42 43 44 MAIN DISCRETE CONNECTOR (P604) MAIN SERIAL CONNECTOR (P603) GPS ANTENNA CONNECTOR I/O CONNECTOR #2 (P606) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 I/O CONNECTOR #1 (P605) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 G/S ANTENNA CONNECTOR VOR/ILS CONNECTOR (P602 NAV ANTENNA CONNECTOR Figure 5-8, GIA 63W Backplate Connectors Page 5-80 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 P712 1 2 3 4 5 6 7 8 P711 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 Figure 5-9, GEA 71 Backplate Connectors P13472 P13471 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 Figure 5-10, GMA 1347D Backplate Connectors COOLING PORT P331 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2728 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 5657 58 59 60 61 62 TOP ANTENNA CONNECTOR BOTTOM ANTENNA CONNECTOR Figure 5-11, GTX 33/33D Backplate Connectors G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-81 Revision 4 (P3301) (P3302) Figure 5-12, GTX 3000 Connector Figure 5-13, GDU 1040A/1500 Mating Connector (P10401 or P15001) Figure 5-14, GRS 77 Mating Connector (P771) Figure 5-15, GRS 7800 Mating Connector (P78001) Page 5-82 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Figure 5-16, GDC 7400 Mating Connector (P74001) Figure 5-17, GDL 69A Mating Connector (P69A1) Figure 5-18, GCU 477 Mating Connector (P4751) Figure 5-19, GMC 710 Mating Connector (P7101) Figure 5-20, GWX 68 Mating Connector (P681) G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-83 Revision 4 Figure 5-21, GWX 70 Backshell Connector (P751) 60 40 61 21 1 62 41 42 22 2 63 43 23 3 64 44 24 4 65 45 25 5 66 46 26 6 67 47 27 7 68 48 28 8 69 49 29 9 30 10 70 50 71 72 51 52 31 11 32 12 73 53 33 13 74 54 34 14 75 55 35 15 76 56 36 16 77 37 17 78 58 57 38 18 59 39 19 20 (P8001 and P8002) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 (P8003) Figure 5-22, GTS 820/850 Mating Connectors (Rear View) Figure 5-23, GTS Processor Connector (P8001) Figure 5-24, GPA 65 Mating Connector (P651) (Rear View) Page 5-84 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Figure 5-25, Signal Conditioner Mating Connector (PVIB1) (Rear View) 60 40 61 62 21 1 22 2 63 43 41 42 23 64 44 24 3 65 45 25 4 5 66 46 26 67 47 27 6 68 48 28 7 69 49 30 29 8 9 70 50 71 31 10 72 51 52 11 32 12 73 53 33 13 74 54 34 14 75 55 35 15 76 56 36 16 77 37 17 78 58 57 38 18 59 39 19 20 Figure 5-26, GDL 59 Backplate Connector (P591) (Rear View) 15 14 30 13 29 44 12 28 43 11 27 42 10 26 41 9 8 25 40 7 24 39 6 23 38 5 22 37 4 3 21 20 36 35 2 19 34 1 18 33 17 32 16 31 Figure 5-27, GSR 56 Backplate Connector (P561) (Rear View) 60 40 61 41 42 21 1 62 22 2 63 43 23 3 64 44 24 4 65 45 25 5 66 46 26 6 67 47 27 7 68 48 28 8 69 49 29 9 30 10 70 50 71 72 51 52 31 11 32 12 73 53 33 13 74 54 34 14 75 55 35 15 76 56 36 16 77 58 57 37 17 78 38 18 59 39 19 20 Figure 5-28, GSD 41 Backplate Connector (P411) (Rear View) Figure 5-29, GSA 9000 Mating Connector (P90001) (Rear View) G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-85 Revision 4 Figure 5-30, GRA 5500 Connector (P55001) Page 5-86 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.22 Standby Attitude Indicator Troubleshooting Symptom Recommended Action • • • Perform the Standby Instrument Electrical Power Checks in Section 8.1.5. Remove the unit per Section 6.28 and inspect the electrical connector. Check to ensure appropriate electrical power is being supplied to the instrument. • If input electrical power is not adequate, troubleshoot the wiring harness. • If input power is appropriate, the unit must be removed and serviced by a qualified service facility See Section 6.28 for removal instructions. Contact the manufacturer to find a qualified service facility • The unit must be removed and serviced by a qualified service facility. See Section 6.28 for removal instructions. Contact the manufacturer to find a qualified service facility. Warning flag pops into view, indicating that the gyro motor is not receiving sufficient power to operate Unit fails to perform to specifications 5.23 Standby Airspeed Indicator Troubleshooting Symptom Recommended Action • • • Airspeed Indicator lighting is inoperative or malfunctioning • Airspeed displayed is incorrect Perform the Standby Instrument Electrical Power Checks in Section 8.1.5. Remove standby airspeed indicator per Section 6.26 and inspect the electrical connector. Check that electrical power is being appropriately supplied to the instrument. • If the input electrical power is not adequate, troubleshoot the wiring harness. • If the input electrical power is appropriate, replace the standby airspeed indicator or contact the manufacturer for further troubleshooting. Using a pitot-static ramp tester, check airspeed displayed on standby altimeter against airspeed display from ADC2. • If the airspeeds are the same, inspect the pitot/static ports and associated equipment for faults. • If the airspeeds are different, replace the standby altimeter or contact the manufacturer for further troubleshooting. See Section 6.26 for removal instructions. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-87 Revision 4 5.24 Standby Altimeter Troubleshooting Symptom Recommended Action Altimeter lighting is inoperative or malfunctioning • • • Altimeter Vibrator is inoperative or malfunctioning or fail flag is displayed • Altitude displayed is incorrect 5.25 9 9 Perform the Standby Instrument Electrical Power Checks in Section 8.1.5. Remove standby altimeter per Section 6.27 and inspect the electrical connector. Check that electrical power is being appropriately supplied to the instrument. • If the input electrical power is not adequate, troubleshoot the wiring harness. • If the input electrical power is appropriate, replace the standby altimeter or contact the manufacturer for further troubleshooting. Using a pitot-static ramp tester, check altitude displayed on standby altimeter (Note that PFD2 has error correction above 19,000 ft. and will not be the same as the non-corrected standby altimeter.) Inspect the pitot/static ports and associated equipment for faults. Replace the standby altimeter or contact the manufacturer for further troubleshooting. See Section 6.27 for removal instructions. GDL 59 Troubleshooting Symptom No communication with GDL 59 No or low-quality wi-fi signal Connects to wi-fi but cannot send report data Page 5-88 Revision 4 Recommended Action • Check power wiring and pin out of GDL 59 unit. • Ensure GDL 59 configuration option has been loaded. • Verify that a wi-fi network is configured and available. • Ensure the wi-fi antenna is within range of a wi-fi network. • Remove any obstacles between the aircraft wi-fi antenna and the wi-fi network hub that may be blocking the signal. • • Check the wi-fi antenna cable and connectors. Verify antenna ground plane is adequate. • Activate Garmin Connext (reference Section 7.28). Note that a replacement GDL 59 unit must be registered again, even if the MFD already shows REGISTERED. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5.26 GSR 56 Troubleshooting Symptom Recommended Action No communication with GSR 56 No or low-quality Iridium signal • Check power wiring and pin out of GSR 56 unit. • Ensure GSR 56 configuration option has been loaded. • Ensure the Iridium antenna has an unobstructed view of satellite constellation. • • Check the Iridium antenna cable and connectors. Verify antenna ground plane is adequate. No audio output • Check wiring from GSR 56 toGDL 59 or from GSR 56 to GIA #1 (standalone), as applicable to the installation. • Verify subscription with Garmin Connext (reference Section 7.28). Unable to make a phone call • Verify signal quality is adequate • Verify communication between GSR 56 and the display/control device • Verify subscription with Garmin Connext (reference Section 7.28). 5.27 GTS 820/850 Troubleshooting Problem Unit does not power up – Data failed message Cause Improper wiring; circuit breaker open Improper configuration Traffic Display erroneously indicates TA at own ship position Suppression bus I/O fault No Audio alerts Improper wiring; Volume not set correctly Calibration Fault Factory calibration invalid Configuration Fault Both internal and external configuration checks failed Solution Ensure power is properly wired to the GTS 820/850 and the TRFC circuit breaker is closed Verify that the GTS 820/850 is configured correctly for the desired display Check the mutual suppression line to ensure it is connected to the correct pins at the GTS 820/850 as well as the installed transponder. Ensure there are no fractures in the wire, and that the suppression line is functioning properly. Ensure the audio is properly wired from the GTS 820/850 and volume is not set too low If the unit fails to go into operate mode then return to Garmin for service Verify the configuration FPGA Fault Internal Fault Verify wiring to the configuration module and replace if necessary Return to Garmin for service ROM Fault Internal Fault Return to Garmin for service Execution Fault Internal Fault Return to Garmin for service Electrical Fault Internal Fault Return to Garmin for service Whisper Shout Fault Internal Fault Return to Garmin for service Transmit Power Fault Internal voltages are out of tolerance Check power connections to the GPA 65 to verify that they are not connected to ground or each other. Ensure that power and ground connections to the GPA 65 are connected in their proper place. Verify input voltage and if it continues return to Garmin for service. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-89 Revision 4 Problem Cause Solution 1030 MHz Fault Internal Fault Return to Garmin for service 1090 MHz Fault Internal Fault Return to Garmin for service PA/LNA Fault Antenna connections or internal fault Receiver Fault Antenna connections or internal fault Transmitter Fault Antenna connections or internal fault Baro Altitude Fault Baro Altimeter is not powered on or improper wiring. Improper configuration settings Ensure all antenna connections are correct otherwise return to Garmin for service Ensure all antenna connections are correct otherwise return to Garmin for service Ensure all antenna connections are correct otherwise return to Garmin for service Verify that the baro altimeter has power and is properly wired. Verify the configuration correct Temperature Fault Fan is not operating, Poor ventilation at the mounting location Broken wire, improper configuration TCAS Equipage Fault Radio Altitude Fault Radar Altimeter is not powered on or improper wiring. Improper configuration settings Red ‘X’ on a data port on the configuration page Improper wiring; wrong port or speed selected 5.28 Verify the fan is running and the unit is getting adequate ventilation. Verify configuration settings on the transponder and the GTS. Ensure proper wiring between the transponder and the GTS Verify that the radar altimeter has power and is properly wired. Verify the configuration is correct. Ensure the port is properly wired to the GTS 820/850 and the correct settings are selected on the configuration page. GTS Traffic Processor Troubleshooting Symptom Recommended Action • Ensure power is properly wired to the GTS Traffic Processor and the TRFC circuit breaker is closed Unit does not power up – Data failed message • Verify that the GTS Traffic Processor is configured correctly for the desired display. Traffic Display erroneously indicates TA at own ship position • Check the mutual suppression line to ensure it is connected to the correct pins at the GTS Processor as well as the installed transponder. Ensure there are no fractures in the wire, and that the suppression line is functioning properly. Calibration Data Fault • Return unit to Garmin for service Configuration Data Fault • Both internal and external configuration checks failed. • Download the assert log and send to Garmin for diagnosis FPGA Fault • If upload of FPGA image was recently attempted, retry the upload. Otherwise return unit to Garmin for service. ROM Fault • If upload of audio image or IGRF magnetic field image was recently attempted, retry the upload. Otherwise return unit to Garmin for service. Execution Fault • Cycle power and retry self test. • Download the assert log and send to Garmin for diagnosis. • Return unit to Garmin for service if fault persists. Electrical Fault • Check aircraft power supply • Download the assert log and send to Garmin for diagnosis. • Return unit to Garmin for service if fault persists. Page 5-90 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Whisper Shout Fault • Check cable loss configuration, antenna installation and all cable connections and retry self test. • Return unit to Garmin for service if fault persists. Transmit Power Fault • Check aircraft power supply • Return unit to Garmin for service if fault persists 1030 MHz Fault • Cycle power and retry self test • Return unit to Garmin for service if fault persists 1090 MHz Fault • Cycle power and retry self test • Return unit to Garmin for service if fault persists Receiver Cal Fault • Check antenna installation and all cable connections and retry self test. Ensure that self test occurs in area free of buildings and large objects that can reflect signals. • Download the assert log and use Assert Log Diagnosis Tool or send to Garmin for diagnosis. • Return unit to Garmin for service if fault persists Transmitter Cal Fault • Check antenna installation and all cable connections and retry self test. Ensure that selft test occurs in area free of buildings and large objects that can reflect signals. • Download the assert log and use Assert Log Diagnosis Tool or send to Garmin for diagnosis. • Return unit to Garmin for service if fault persists Baro Altitude Fault • Check wiring to source of barometric altitude and ensure that source is operating. Temperature Fault • Download the assert log and send to Garmin for diagnosis TCAS Equipage Fault • Check wiring to TCAS Equuipage data source and ensure that source is operating Radio Altitude Fault • Check wiring to source of radio altitude and ensure that source is operating Display Fault • Check the HSDB connection between the GTS Processor and the display • Verify the display is operational. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 5-91 Revision 4 This page intentionally left blank. Page 5-92 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 6 Equipment Removal & Installation This section describes how to remove and replace equipment in the King Air 300/B300 associated with this STC. After removal and replacement, LRUs must be configured and tested as described in Section 7. CAUTION: When removing and/or replacing any G1000 component, always ensure that aircraft power is off. Unplug any auxiliary power supplies. Before performing maintenance, it is required that the technician verify the LRU software part number and version number matches the software configuration listed in the General Arrangement drawing, listed in Table 1-2. NOTE After installation or maintenance of electrical components near the GMU 44 magnetometers (either tail or horizontal stabilizer locations), perform the Calibration Procedure E: Magnetometer Interference Test (reference Section 5) and Procedure B: GRS 77 or GRS 7800 and GMU 44 magnetic Calibration (reference Section 7). To check an LRU software part number and/or version, follow the procedure defined in Section 3.9.3. If a faulty LRU is not reporting its software version and part number, check aircraft maintenance logs for last software version loaded and verify against the General Arrangement drawing. The Software Manifest page may also be used to check part numbers and versions. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 6-1 Revision 4 6.1 GDU 1040A and GDU 1500 Removal: 1. Using a 3/32” hex tool, rotate all four ¼-turn fasteners counter-clockwise until they reach their stops. 2. Carefully remove the display from the panel. 3. While supporting the display, disconnect the connector. Reinstallation: 1. Visually inspect the connector and pins for signs of damage. Repair any damage. While supporting the display, connect the connector to the rear of the unit. 2. Carefully insert the display into the panel cutout, ensuring that all 4 ¼-turn fasteners align with the corresponding holes. 3. Seat the display in the panel cutout. Do not use excessive force while inserting the display. 4. Once seated, rotate all four ¼-turn fasteners clockwise to lock the display to the panel. 5. Configure and test the MFD and/or PFD according to Section 7.1. 6.2 GMA 1347D Audio Panel Removal: 1. Using a 3/32” hex tool, turn the hex nut counter-clockwise until the GMA 1347D is unlocked from its location. 2. Carefully remove the GMA 1347D from its rack. Reinstallation: 1. Visually inspect the connectors to ensure there are no bent or damaged pins. Repair any damage. 2. Gently insert the GMA 1347D into the rack until the locking tab engages the rack. 3. Begin to turn the hex nut clockwise. This draws the unit into the rack until seated. Do not overtighten the nut. 4. Configure and test the GMA 1347D according to Section 7.2. Page 6-2 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 6.3 GIA 63W Integrated Avionics Units Removal: 1. Gain access to the forward avionics compartment in the nose of the aircraft. 2. Unlock the GIA 63W handle by loosening the Phillips screw on the handle. 3. Pull the handle upward to unlock the GIA 63W. Gently remove the unit from the rack. Reinstallation: 1. Visually inspect the connectors to ensure there are no bent or damaged pins. Repair any damage. 2. Gently insert the GIA 63W into its rack. The handle should engage the dogleg track. 3. Press down on the GIA 63W handle to lock the unit into the rack. 4. Lock the handle to the GIA 63W body using the Philips screw. 5. Configure and test the GIA 63W(s) according to Section 7.3. 6.4 GEA 71 Engine/Airframe Unit Removal: 1. Gain access by removing the appropriate GDU 1040A display unit (see Section 6.1.) 2. Unlock the GEA 71 handle by unscrewing the Phillips screw. 3. Firmly grasp the GEA 71 handle and pull it up vertically. This unlocks the unit from the rack. 4. Gently remove the GEA 71 from its rack. Reinstallation: 1. Visually inspect the connectors to ensure there are no bent or damaged pins. Repair any damage. 2. Gently insert the GEA 71 into the rack. The handle should engage the dogleg track. 3. Press down on the handle to lock the unit into place. 4. Lock the handle to the GEA 71 body using the Philips screw. 5. Configure and test the GEA 71 according to Section 7.4. 6. Reinstall the GDU 1040A display unit. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 6-3 Revision 4 6.5 GTX 33( ) or GTX 3000 Transponder GTX 33() Removal: 1. Gain access to the avionics shelf in the tail area. 2. Unlock the GTX 33( ) handle by loosening the Phillips screw on the handle. 3. Pull the handle upward to unlock the GTX 33( ). Gently remove the unit from the rack. GTX 33() Reinstallation: 1. Visually inspect the connectors to ensure there are no bent or damaged pins. Repair any damage. 2. Gently insert the GTX 33( ) into its rack. The handle should engage the dogleg track. 3. Press down on the GTX 33( ) handle to lock the unit into the rack. 4. Lock the handle to the GTX 33( ) body using the Philips screw. 5. Configure and test the GTX 33( ) according to Section 7.5. GTX 3000 Removal: 1. Gain access to the avionics shelf in the tail area. 2. Pull back on the lockdown mechanism and simultaneously turn counterclockwise until free. 3. Disengage the lockdown mechanism collar from the GTX 3000 hook and gently slide the GTX 3000 from the mounting rack. GTX 3000 Reinstallation: 1. Visually inspect the connectors to ensure there are no bent or damaged pins. Repair any damage. 2. Place the GTX 3000 on the mounting rack. 3. Slide the GTX 3000 back until the foot is fully engaged with the mounting rack. 4. Lift the lockdown mechanism collar in plance on the GTX 3000 hook and hand turn lockdown mechanism knobs clockwise until the GTX 3000 is secure. 5. Configure and test the GTX 3000 according to Section 7.5. 6.6 GDC 7400 Air Data Computer Removal: 1. Gain access by removing the appropriate GDU 1040A display unit (see Section 6.1.) 2. Disconnect the pitot/static plumbing from the rear of the unit. Disconnect the single connector. 3. Loosen each thumbscrew on the hold-down clamp and remove the clamp. 4. Carefully remove the unit from its mount. Reinstallation: 1. Inspect the connector and pins for damage. Inspect the pitot/static plumbing for damage. Repair any damage. 2. Place the unit in the mounting tray. Position the locking clamp and fasten using the thumbscrews. 3. Connect the backshell assembly and pitot/static plumbing to the unit. 4. Configure and test the GDC 7400 according to Section 7.6. 5. Reinstall the GDU 1040A display unit. Page 6-4 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 6.7 GTP 59 OAT Probe Removal: 1. Using a deep-socket to hold the probe in place on the outside of the aircraft, loosen the GTP 59 mounting nut and remove the GTP 59. Reinstallation: 1. Installation is the reverse of removal. 2. No configuration is required for the GTP 59. Test according to Section 7.6.3. 6.8 GRS 77 or GRS 7800 AHRS GRS 77 Removal: 1. Gain access to the forward avionics compartment in the nose of the aircraft. 2. Disconnect the AHRS connector. 3. Loosen the four Phillips thumbscrews with a screwdriver until they are free from the rack. 4. Gently lift the GRS 77 from the mounting rack. (If the mounting rack is removed, the GRS 77 must be re-calibrated. Do not loosen mounting bolts. See Section 7.7) GRS 77 Reinstallation: 1. Visually inspect the connectors to ensure there are no bent or damaged pins. Repair any damage. 2. Place the GRS 77 on the mounting plate, ensuring the orientation is correct. 3. Fasten the unit to the plate using the Phillips thumbscrews. 4. Connect the connector to the GRS 77. 5. Calibrate and test the GRS 77 according to Section 7.7. GRS 7800 Removal: 1. Gain access to the forward avionics compartment in the nose of the aircraft. 2. Disconnect the AHRS connector. 3. Pull back on the lockdown mechanisms and simultaneously turn counterclockwise until free. 4. Disengage the lockdown mechanism collars from the GRS 7800 hooks and gently slide the GRS 7800 from the mounting rack. (If the mounting rack is removed, the GRS 7800 must be recalibrated. Do not loosen mounting bolts. See Section 7.7) GRS 7800 Reinstallation: 1. Visually inspect the connectors to ensure there are no bent or damaged pins. Repair any damage. 2. Place the GRS 7800 on the mounting rack, ensuring the orientation is correct. 3. Slide the GRS 7800 back until the feet are fully engaged with the mounting rack. 4. Lift the lockdown mechanism collars in place on the GRS 7800 hooks and hand turn lockdown mechanism knobs clockwise until the GRS 7800 is secure. 5. Connect the connector to the GRS 7800. 6. Calibrate and test the GRS 7800 according to Section 7.7. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 6-5 Revision 4 6.9 GMU 44 Magnetometer NOTE The GMU 44 magnetometers may be located in the tailcone or in the horizontal stabilizer. Always use a non-magnetic Phillips screwdriver when removing or installing all screws near the magnetometers. Reference the “Magnetometer Install” and “Wire Harness Installation, Tail” drawings listed in Table 1-2 for more details. For Tailcone Location: Removal: 1. Disconnect electrical wiring harnesses and remove the tailcone. 2. Remove three screws connecting the unit to the aircraft mounting bracket. 3. Remove the cable tie attaching the magnetometer pigtail harness to the shelf. Reinstallation: 1. Visually inspect the connectors to ensure there are no bent or damaged pins. Repair any damage. 2. Fasten the GMU to the aircraft mounting bracket. 3. Attach the magnetometer pigtail harness to the shelf with a cable tie 4. Reinstall tailcone and connect the electrical wiring harnesses. 5. Calibrate and test the GMU 44 according to Section 7.7. For Horizontal Stabilizer Location (left or right side): Removal: 1. Remove inspection access panel (second from inboard) from lower side of the horizontal stabilizer to gain access to the GMU electrical wiring harness. 2. Disconnect GMU pigtail harness from the electrical wiring harness. 3. Remove the screws and flux valve access cover from the upper side of horizontal stabilizer. 4. Mark the orientation of the GMU adapter plate assembly to the flux valve mounting dish. 5. Remove three screws/washers connecting the GMU adapter plate assembly to the flux valve mounting dish. 6. Remove three screws connecting the GMU to the GMU adapter plate assembly. 7. If the unit is to be replaced, remove cable ties attaching the phenolic wire guard to the unit and retain the wire guard and grommet from the pigtail harness. Reinstallation: 1. Visually inspect the connectors to ensure there are no bent or damaged pins. Repair any damage. 2. Reinstall the three screws attaching the GMU to the GMU adapter plate assembly. 3. If a new GMU is installed, use two MS3367-7-1 cable ties through the retained phenolic wire guard to secure the guard and connector harness to the GMU. 4. Ensure the MS35489-4 grommet is installed on the unit pigtail harness and secured in the slot in the aft side of the GMU adapter plate assembly. 5. Use the orientation marks on the GMU adapter plate assembly to align the adapter plate assembly to the flux mounting dish and reinstall the three screws/washers attaching the adapter plate. 6. Ensure there is a gap of at least 0.2 inch between the unit pigtail harness and the flux valve access cover. Page 6-6 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7. Reinstall the screws and flux valve access cover on the upper side of horizontal stabilizer. 8. Connect the GMU pigtail harness to the electrical wiring harness. 9. Reinstall the inspection access panel (second from inboard) on the lower side of the horizontal stabilizer. 10. Calibrate and test the GMU 44 according to Section 7.7. 6.10 GDL 69A Removal: 1. Gain access by removing the right side GDU 1040A display unit (see Section 6.1.) 2. Unlock the GDL 69A handle by loosening the Phillips screw on the handle. 3. Pull the handle upward to unlock the GDL 69A. Gently remove the unit from the rack. Reinstallation: 1. Visually inspect the connectors to ensure there are no bent or damaged pins. Repair any damage. 2. Gently insert the GDL 69A into its rack. The handle should engage the dogleg track. 3. Press down on the GDL 69A handle to lock the unit into the rack. 4. Lock the handle to the GDL 69A body using the Philips screw. 5. Configure and test the GDL 69A according to Section 7.8. 6.11 GSA 80 and GSA 9000 Servos Removal: 1. Gain access to the desired servo(s). 2. Disconnect the servo harness connector. 3. Use a socket or open-wrench to loosen and remove the servo attachment bolts. 4. Carefully remove the servo and place a protective cover on the output gear. 5. Place a protective cover over the GSM 86 or GSM 9100 servo gearbox. Reinstallation: 1. For GSA 80 servos only, perform the following steps: a) Inspect the servo output gear for abnormal wear. b) Using a lint-free cloth, remove excess grease build-up from the servo output gear (see Figure 6-1.) IMPORTANT! It is not necessary to remove all of the grease from the output gear, only the excess grease. DO NOT USE SOLVENTS TO CLEAN THE OUTPUT GEAR! c) Using a brush or other applicator, apply a thin coat of Aeroshell 33MS (Lithium-complex based) grease to the servo output gear (see Figure 6-1.) G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 6-7 Revision 4 Figure 6-1, GSA 80 Servo Gear Figure 6-2, GSM 9100 O-ring 2. For GSA 9000 yaw servo only, install a new o-ring p/n AS568-043 on the GSM 9100 servo gearbox (see Figure 6-2.) 3. Carefully place the servo onto the servo gearbox, ensuring proper orientation and alignment. 4. Fasten the servo to the servo gearbox using the existing hardware. Follow the installation instructions provided in the respective servo installation drawing(s) listed in Table 1-2. 5. Inspect the harness connectors and check that no pins are bent or otherwise damaged. Connect the harness and secure it appropriately. 6. If no further maintenance is required, continue to Section 7.9. 6.12 GSM 86 and GSM 9100 Servo Gearbox Removal: 1. Remove the desired servo(s) per Section 6.11. 2. For the Roll, Pitch and Yaw Servos: remove the servo bridle cables from the control cable clamps. For the Pitch-Trim Servo: disconnect the servo cable at the forward turnbuckle and aft terminal. 3. Use a socket or open-wrench to loosen and remove the servo attachment bolts. 4. Carefully remove the servo gearbox(es). 5. Remove the cable retention pins and ring (or cover) and then remove the servo cable from the capstan. Reinstallation: 1. Ensure cable retention pins are oriented correctly. Follow the installation instructions provided in the respective servo installation drawing(s) listed in Table 1-2. 2. If no other maintenance is to be performed, reinstall the servo(s) per Section 6.11. Page 6-8 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 6.13 GCU 477 Removal: 1. Use a 3/32” hex drive tool to turn each of the four locking sockets ¼ turn counterclockwise until they reach their stops. 2. Disconnect backshell assembly from unit. Reinstallation: 1. Inspect connector(s) for damaged pins. 2. Connect backshell assembly to unit. 3. Hold unit flush with the pedestal, ensuring locking stud alignment marks are in the vertical position. 4. Use a 3/32” hex drive tool to turn each of the four locking sockets ¼ turn clockwise. This may require applying a small amount of forward pressure to engage the ¼ turn sockets. 5. Configure and test the GCU 477 according to Section 7.10. 6.14 GMC 710 Removal: 1. Use a 3/32” hex drive tool to turn each of the four locking sockets ¼ turn counterclockwise until they reach their stops. 2. Disconnect backshell assembly from unit. Reinstallation: 1. Inspect connector(s) for damaged pins. 2. Connect backshell assembly to unit. 3. Hold unit flush with the mounting bracket, ensuring locking stud alignment marks are in the vertical position. 4. Use a 3/32” hex drive tool to turn each of the four locking sockets ¼ turn clockwise. This may require applying a small amount of forward pressure to engage the ¼ turn sockets. 5. Configure and test the GMC 710 according to Section 7.11. 6.15 GWX 68 or GWX 70 Removal: 1. Gain access by removing nose radome. 2. Disconnect backshell assembly from unit. 3. Use a 3/16” hex drive tool to remove each of the four mounting screws. Reinstallation: 1. Inspect connector for damaged pins. 2. Hold unit flush with the radar mount. 3. Use a 3/16” hex drive tool to tighten each of the four mounting screws. 4. Connect backshell assembly to unit. 5. Configure and test the GWX 68 or GWX 70 according to Section 7.12.1. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 6-9 Revision 4 6.16 Configuration Modules 6.16.1 Configuration Module Removal & Replacement Configuration modules (reference Figure 6-3 and Table 6-1, Item 1 shown below) are located in the following LRU harness connector backshells (Item 6): GDU 1040A PFD, GRS 77 AHRS and the GEA 71 Engine/Airframe Unit. Additionally, the GRS 7800 has a different configuration module that is located in the GRS 7800 connector backshell. Refer to Section 6.16.2 for the GRS 7800 configuration module removal and replacement instructions. Refer to the Master Drawing List, listed in Table 1-2, for specific installation drawings. Figure 6-3, Configuration Module Installation Table 6-1, Configuration Module Kit – 011-00979-00 or -03 Item 1 2 3 4 Description Qty Needed Configuration Module PCB Board Assembly w/EEPROM & Temp Sensor Spacer, Config Module Cable, 4-Conductor Harness Pins, #22 AWG (HD) 1 1 1 5 Garmin Part Number 012-00605-00 or -02 213-00043-00 325-00122-00 336-00021-00 Removal: 1. Disconnect connector from LRU. 2. Remove 2 screws (8) from cover (7) and remove cover. 3. Unplug connector from configuration module (1). 4. Remove configuration module. Installation: 1. Inspect connector for damaged pins (4). 2. Place configuration module (1) in position. 3. Insert connector into configuration module (1). 4. Assembly of the connector is the reverse of disassembly. 5. Continue to Section 6.16.3. Page 6-10 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 6.16.2 GRS 7800 Configuration Module Removal & Replacement The GRS 7800 configuration module is located on the LRU harness connector strain relief. Refer to the Master Drawing List, listed in Table 1-2, for specific installation drawings. X 2 S L A N I M R E T G N I R , S R E H S A W X 4 Figure 6-4, GRS 7800 Configuration Module Installation Table 6-2, GRS 7800 Configuration Module Parts Item Description Qty Needed Part Number Vendor 4 5 Configuration Module, Circular Connector Socket, Contact 1 4 011-02582-00 M39029/56-348 Garmin Best Source Removal: 1. Disconnect connector (1) from LRU. 2. Remove 2 screws (3), washers, ring terminals and configuration module (4) from strain relief (2). 3. Disconnect the strain relief (2) from the connector (1). 4. Remove the 4 configuration module contact pins from the connector (1). 5. Remove the configuration module (4). Installation: 1. Inspect connector (1) for damaged pins. 2. Install 4 contact pins (5) on the new configuration module (4) wires. 3. Install the 4 configuration module contact pins (5) into the connector (1). 4. Assembly of the connector and strain relief is the reverse of the disassembly. 5. Continue to Section 6.16.3. 6.16.3 Configuration Module Checkout If a GRS 77 or GRS 7800 AHRS Configuration Module is replaced: All three GRS 77 or GRS 7800 and GMU 44 calibration procedures must be performed. Proceed to Section 7.7.3. If a GEA 71 Configuration Module is replaced: Proceed to Section 7.4.1. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 6-11 Revision 4 If only the Master Configuration Module is replaced: NOTE New Terrain/Obstacle cards, Jeppesen Aviation Database and other optional features (i.e. TAWS unlock card) will need to be replaced if the master configuration module is changed. The G1000 System ID number will change to a new number when installing a new master config module. The old Terrain and other cards will no longer work as they will remain locked to the old System ID number. 1. 2. 3. Start the G1000 system in configuration mode. Go to the Configuration Upload Page on PFD 1. Press the UPDT CFG softkey and press ENT. If both PFD 1 and Master Configuration Module are replaced: NOTE New Terrain/Obstacle cards, Jeppesen Aviation Database and other optional features (i.e. TAWS unlock card) will need to be replaced if the master configuration module is changed. The G1000 System ID number will change to a new number when installing a new master config module. The old Terrain and other cards will no longer work as they will remain locked to the old System ID number. 1. 2. 3. 4. 5. The entire G1000 system must be re-configured. Insert the correct G1000 software loader card into PFD 1. Start the G1000 in configuration mode. Go to the System Upload Page on PFD 1. See Section 3.9 for instructions on how to use the System Upload page. Check all configuration files and reload them. After reloading configuration files, examine the G1000 installation for any installed configuration options. Options are listed in Section 3.9. Load optional files as necessary. Continue to Section 8 and conduct the return to service checkout. Page 6-12 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 6.17 GEA 71 Backshell Thermocouple Removal & Replacement The GEA 71 has a K-Type thermocouple (Item 1 shown below) installed in its backshell, in addition to the configuration module. The thermocouple is used in conjunction with the configuration module temperature sensor to compensate for temperature probe errors resulting from the dissimilar metals at the pin contacts. Figure 6-5, GEA Backshell Thermocouple Table 6-3, Thermocouple Kit (011-00981-00) Item # Description Qty. Needed Garmin Part Number 1 3” Thermocouple, K type 1 925-L0000-00 2 Pins #22 AWG 2 336-00021-00 3 Screw 1 211-60234-08 Removal: 1. Remove GEA 71 per Section 6.4. 2. Remove GEA connector backplate. 3. Remove connector assembly J711 from the backplate. 4. Remove screws, item 7, and cover, item 6, from the backshell, item 5. 5. Unscrew thermocouple from boss on backshell. Extract the thermocouple pins from the connector. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 6-13 Revision 4 Replacement: 1. Crimp pins, item 2, onto each of the thermocouple wires, item 1. Ensure that pre-stripped wire length is 1/8” prior to crimping. 2. Insert newly crimped pins and wires into the appropriate connector housing location, item 4, as specified by King Air 300/B300 Wiring Diagram, listed in Table 1-2. 3. Place thermocouple body, item 1, onto the backshell boss, item 5. Place the thermocouple as shown in Figure 6-5 so that the wires exit towards the bottom of the backshell. 4. Fasten thermocouple tightly to backshell using the provided screw, item 3. 5. Fasten cover, item 6, to backshell using screws, item 7. 6. Continue to Section 7.4.1 and verify that the ITT indications are valid on the MFD. 6.18 GPS/WAAS Antennas Removal: 1. Gain access to the antenna coaxial cable connector by removing the cabin interior ceiling panel. Refer to the Antenna Install drawing listed in Table 1-2. 2. Disconnect the antenna coaxial cable. 3. Remove the antenna mounting screws. 4. Remove antenna. Reinstallation: 1. Install antenna using retained mounting screws. 2. Connect the antenna coaxial cable. 3. Fillet seal around antenna. Refer to the Antenna Install drawing listed in Table 1-2. 4. Reinstall cabin interior ceiling panel. 5. Proceed to Section 7.3.1 GPS Signal Acquisition for testing. 6.19 Diversity Transponder Antenna Removal: 1. Gain access to the antenna coaxial cable connector and mounting hardware by removing the cabin interior ceiling panel. Refer to the Antenna Install drawing listed in Table 1-2. 2. 3. 4. Disconnect the antenna coaxial cable. Remove the two nuts and washers securing the antenna. Remove antenna. Reinstallation: 1. Install antenna using retained hardware. 2. Connect the antenna coaxial cable. 3. Fillet seal around antenna. Refer to the Antenna Install drawing listed in Table 1-2. 4. Reinstall cabin interior ceiling panel. 5. Test the GTX 33D or GTX 3000 according to Section 7.5.2. Page 6-14 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 6.20 Iridium Antenna Removal: 1. Gain access to the antenna coaxial cable connector by removing the aft cabin ceiling panel. Refer to the Antenna Install drawing listed in Table 1-2. 2. Disconnect the antenna coaxial cable. 3. Remove the antenna mounting screws. 4. Remove antenna. Reinstallation: 1. Install antenna using retained mounting screws. 2. Connect the antenna coaxial cable. 3. Fillet seal around antenna. Refer to the Antenna Install drawing listed in Table 1-2. 4. Reinstall the aft cabin ceiling panel. 5. Test the GSR 56 according to Section 7.30. 6.21 Wi-Fi Antenna Removal: 1. Gain access to the antenna coaxial cable connector by opening the tail access door behind the aft pressure bulkhead. Refer to the Antenna Install drawing listed in Table 1-2. 2. Disconnect the antenna coaxial cable. 3. Remove the antenna mounting screws. 4. Remove antenna. Reinstallation: 1. Install antenna using retained mounting screws. 2. Connect the antenna coaxial cable. 3. Fillet seal around antenna. Refer to the Antenna Install drawing listed in Table 1-2. 4. Secure the tail access door. 5. Test the GDL 59 according to Section 7.29. 6.22 Signal Conditioners Removal: 1. For Signal Conditioner No. 1, remove PFD1 from the instrument panel as per Section 6.1. For Signal Conditioner No. 2, remove PFD2 from the instrument panel as per Section 6.1. 2. Remove 3 top screws from Signal Conditioner rack. 3. Slide mounting tray out from rack and disconnect the unit connector. If needed, remove MFD as per Section 6.1 to access the Signal Conditioner connector. 4. Remove the four mounting bolts and remove the Signal Conditioner unit. 5. If planning to reinstall the same unit, it is not necessary to disconnect the ground strap from the unit ground stud. If replacing with a new unit, disconnect the ground strap from the removed unit and retain the ground strap and associated hardware for reinstallation on the new unit. Reinstallation: 1. Reinstallation of the Signal Conditioners is the reverse of the removal. Reference the Main Instrument Panel Installation drawing, listed in Table 1-2, for more details. 2. Test the signal conditioners according to Section 7.4.1. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 6-15 Revision 4 6.23 Instrument Panel Switch/Annunciator (Prop Synch and Standby Battery) Removal: 1. Remove MFD from the instrument panel as per Section 6.1. 2. Using a M22885/108T8234 extraction tool, disconnect connector from the back of the switch. 3. Pull the pushbutton cap fully out of the switch body and allow the cap to rotate 90° where it is held by the retaining element. 4. While holding the retaining sleeve (back side of the instrument panel), loosen the two screws inside the switch body until the switch is free to come out. 5. Remove the mounting sleeve and switch from the instrument panel. Reinstallation: 1. Reinstallation of the Prop Synch and Standby Battery switches is the reverse of the removal. Reference the Main Instrument Panel Installation drawing, listed in Table 1-2, for more details. 2. Press and hold the cockpit annunciator “Press To Test” switch located to the left of the annunciator panel, and verify the following: • For the Standby Battery Switch/Annunciator: legends illuminate and reflect “STANDBY BATTERY” in white, “ARM” in green, and “ON” in amber. • For the Prop Synch Switch/Annunciator: legends illuminates and reflect “PROP SYNC” in white, and “ON” in green. 3. Release cockpit annunciator “Press To Test” switch. 4. If further maintenance is not required, proceed to Section 8. 6.24 Emergency Frequency Switch/Annunciator Removal: 1. Remove the switch plate from the pedestal using a screw driver to loosen the quarter turn fasteners. 2. Using a M22885/108T8234 extraction tool, disconnect connector from the back of the switch. 3. Pull the pushbutton cap fully out of the switch body and allow the cap to rotate 90° where it is held by the retaining element. 4. While holding the retaining sleeve (back side of the switch plate), loosen the two screws inside the switch body until the switch is free to come out. 5. Remove the mounting sleeve and switch from the switch plate. Reinstallation: 1. Reinstallation of the Emergency Frequency switch/annunciator is the reverse of the removal. Reference the Pedestal Re-Configuration drawing, listed in Table 1-2, for more details. 2. Press and hold the cockpit annunciator “Press To Test” switch located to the left of the annunciator panel, and verify the following: • legends illuminate and reflect “EMERG FREQ” in white and “121.5” in white. 3. Release cockpit annunciator “Press To Test” switch. 4. If further maintenance is not required, proceed to Section 8. Page 6-16 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 6.25 Standby Battery Removal: 1. Gain access to the forward avionics compartment in the nose of the aircraft. 2. Unscrew the knurled hold-down nut to allow it to move free of the unit. 3. Remove the battery from the rack. Reinstallation: 1. Install the standby battery in accordance with the Electrical Equipment Install, Nose Bay drawing (refer to Master Drawing List, listed in Table 1-2, for specific drawing number). Refer to the Super King Air 300 or B300 Maintenance Manual, listed in Table 1-2, for access requirements as needed. 2. If further maintenance is not required, proceed to Section 8. 6.26 Standby Airspeed Indicator Removal: 1. Remove MFD per Section 6.1. 2. Disconnect pitot-static plumbing from the back of the standby airspeed indicator. Take necessary precautions to prevent foreign object debris from entering the pitot-static lines during maintenance. 3. Disconnect the electrical connector from the standby airspeed indicator. 4. Use a Phillips screwdriver to remove the attachment screws from the front of the standby airspeed indicator. 5. Remove the standby airspeed indicator. Reinstallation: 1. Reinstallation of the standby airspeed indicator is the reverse of the removal. Reference the Main Instrument Panel Installation drawing, listed in Table 1-2, for more details. 2. If further maintenance is not required, proceed to Section 8. 6.27 Standby Altimeter Removal: 1. Remove MFD per Section 6.1. 2. Disconnect pitot-static plumbing from the back of the standby altimeter. Take necessary precautions to prevent foreign object debris from entering the pitot-static lines during maintenance. 3. Disconnect the electrical connector from the standby altimeter. 4. Use a Phillips screwdriver to remove the attachment screws from the front of the standby altimeter. 5. Remove the standby altimeter. Reinstallation: 1. Reinstallation of the standby altimeter is the reverse of the removal. Reference the Main Instrument Panel Installation drawing, listed in Table 1-2, for more details. 2. If further maintenance is not required, proceed to Section 8. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 6-17 Revision 4 6.28 Standby Attitude Indicator Ensure the standby attitude indicator gyro is not spinning—this may take 10 minutes or longer after the unit has been turned off. This unit is very delicate; handle with care. Refer to the 4200 Series Attitude Indicator Installation Manual, listed in Table 1-2, for more handling instructions. Removal: 1. Remove MFD per Section 6.1. 2. Disconnect the electrical connector of the standby attitude indicator. 3. Use a 0.060” 6-Spline wrench to remove the knob from the front of the standby attitude indicator. 4. Use a Phillips screwdriver to remove the three attachment screws from the front of the standby attitude indicator. 5. Remove the standby attitude indicator. Reinstallation: 1. Ensure the lighting control voltage switches on rear of unit are set for 28V. 28V 2. Reinstallation of the standby attitude indicator is the reverse of the removal. Reference the Main Instrument Panel Installation drawing, listed in Table 1-2, for more details. 3. If further maintenance is not required, proceed to Section 8. Page 6-18 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 6.29 GIA Cooling Fans Removal: 1. Gain access into the nose avionics equipment bay. 2. Disconnect the cooling fan hoses from the cooling fan. Take necessary precautions to prevent any foreign debris from entering the fan hoses during maintenance. 3. Disconnect the electrical connector of the cooling fan. 4. Use a Phillips screwdriver to remove the attachment screws (and duct if installed) from the cooling fan. 5. Remove the cooling fan. COOLING FAN COOLING FAN HOSE (TYP) NOSE WHEEL WELL HOUSING VIEW OF LEFT SIDE NOSE AVIONICS BAY (NOT ALL ITEMS SHOWN FOR CLARITY) Figure 6-6, GIA Cooling Fan Installation Configuration applicable to MDL 005-00629-00 Rev. 6 or previous FAA-approved revision G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 6-19 Revision 4 COOLING FAN COOLING FAN HOSE (TYP) FAN INLET DUCT (IF INSTALLED) P/N 115-00580-02 NOSE WHEEL WELL HOUSING VIEW OF LEFT SIDE NOSE AVIONICS BAY (NOT ALL ITEMS SHOWN FOR CLARITY) Figure 6-7, GIA Cooling Fan Inlet Duct Identification Configuration applicable to MDL 005-00629-00 Rev. 7 or later FAA-approved revision, or modified per Garmin Service Bulletin 1375 Reinstallation: 1. Reinstallation of the avionics cooling fan is the reverse of the removal. Reference the Electrical Equipment Install, Nose Bay drawing, listed in Table 1-2, for more details. 2. If further maintenance is not required, proceed to Section 8. 6.30 GDU Cooling Fans Removal: 1. Remove the display associated with the cooling fan, per Section 6.1. 2. Disconnect the electrical connector of the cooling fan. 3. Use a Phillips screwdriver to remove the attachment screws from the cooling fan. 4. Remove the cooling fan. Reinstallation: 1. Reinstallation of the Sandia GDU cooling fan is the reverse of the removal. Reference the Main Instrument Panel Installation drawing, listed in Table 1-2, for more details. 2. If further maintenance is not required, proceed to Section 8. 6.31 GTS 820/850 Traffic Unit CAUTION: After any maintenance or modification is made to the GTS 820/850 TAS/TCAS cables such as replacing a connector or entire cable, be sure to adhere to all of the specifications and limitations such as minimum and maximum cable attenuation, attenuation balance between cables, phase matching etc. Page 6-20 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Removal: 1. Gain access to the left forward avionics compartment in the nose of the aircraft. 2. Disconnect the eight coax “quick-lock” connectors. 3. Disconnect the three electrical connectors. 4. Unlock the unit from the rack by loosening the ratcheting latch mechanism. 5. Remove the unit from the rack. Reinstallation: 1. Visually inspect the connectors to ensure there are no bent or damaged pins. Repair any damage. 2. Insert the unit into the installation rack. 3. Lock the unit into the rack by using the ratcheting latch mechanism. 4. Reconnect the eight coax “quick-lock” connectors and the three electrical connectors. 5. Close access to the left forward avionics compartment. 6. Configure the GTS 820/850 per Section 3.11 and test per Section 7.27. 6.32 GPA 65 PA/LNA Unit Removal: 1. Remove cabin interior to access FS 158 at WL 119 on the left side of the fuselage. Reference the Antenna Install drawing listed in Table 1-2 for more details. 2. Disconnect the eight coax “quick-lock” connectors. 3. Disconnect the electrical connector. 4. Remove the four mounting screws that hold the unit to the installation brackets. Reinstallation: 1. Visually inspect the connectors to ensure there are no bent or damaged pins. Repair any damage. 2. Reattach the unit to the mounting brackets reusing existing hardware. 3. Connect the eight coax connectors. Note the color coded bands which match the mating connectors on the unit. 4. Reconnect the electrical connector pigtail. 5. Ensure that all connectors (coax and electrical) are locked in place. 6. Reinstall cabin interior. 7. No configuration is required for the GPA 65. Test the GTS 820/850 per Section 7.27. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 6-21 Revision 4 6.33 GA 58 Traffic Antennas Removal: 1. Gain access to the antenna coaxial cable connectors by removing the cabin interior ceiling panel. Refer to the Antenna Install drawing listed in Table 1-2. 2. Disconnect the four coaxial cable connectors. 3. Remove the antenna mounting screws. 4. Remove antenna. Reinstallation: 1. Install antenna using retained mounting screws. 2. Connect the four coaxial cable connectors. Note the color coded bands which match the mating connectors. 3. Fillet seal around antenna. Refer to the Antenna Install drawing listed in Table 1-2. 4. Reinstall cabin interior ceiling panel. 5. Test the GTS 820/850 or GTS Processor according to Section 7.27. 6.34 GDL 59 Wi-Fi Datalink Removal: 1. Gain access to the avionics shelf in the tail area. 2. Remove the Philips head screw which holds the locking lever down. 3. Lift the locking lever up to unlock the unit from the mounting rack. 4. Remove the unit from the mounting rack. Reinstallation: 1. Visually inspect the connectors to ensure there are no bent or damaged pins. Repair any damage. 2. Insert the unit into the installation rack. CAUTION: Do not use excessive force when inserting the GDL 59 into the rack. This may cause damage to occur to the connectors, unit, and/or unit rack. If heavy resistance is felt during installation, stop! Remove the GDL 59 and identify the source of resistance. The rear plate is designed to float in the unit rack. Check to ensure the rear plate is not bound by the connector harness. 3. Lock the GDL 59 in place using the lever-locking handle. Fasten the handle to the GDL 59 body using the provided Phillips screw. CAUTION: Start the handle screw into the hole carefully to avoid crossthreading. Do not apply torque in excess of 14 in-lbs to the handle screw. The application of torque exceeding 14 in-lbs to this screw will damage the LRU case and/or retaining hardware. 4. If new unit is installed, register with Garmin Connext per Section 7.28. 5. Configure the GDL 59 per Section 3.15 and 3.16. Test the GDL 59 per Section 7.29. Page 6-22 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 6.35 GSR 56 Satellite Receiver Removal: 1. Gain access to the avionics shelf in the tail area. 2. Unlock the unit from the rack by loosening the ratcheting latch mechanism. 3. Remove the unit from the rack. Reinstallation: 1. Visually inspect the connectors to ensure there are no bent or damaged pins. Repair any damage. 2. Insert the unit into the installation rack. CAUTION: Do not use excessive force when inserting the GSR 56 into the rack. This may cause damage to occur to the connectors, unit, and/or unit rack. If heavy resistance is felt during installation, stop! Remove the GSR 56 and identify the source of resistance. 3. Lock the unit into the rack by using the ratcheting latch mechanism. 4. If new unit is installed, register with Garmin Connext per Section 7.28. 5. Configure the GSR 56 per Section 3.17 if installed in the stand-alone configuration. Test the GSR 56 according to Section 7.30. 6.36 GSD 41 Data Concentrator Removal: 1. Gain access to the avionics shelf in the tail area. 2. Unlock the unit from the rack by loosening the ratcheting latch mechanism. 3. Remove the unit from the rack. Reinstallation: 1. Visually inspect the connectors to ensure there are no bent or damaged pins. Repair any damage. 2. Insert the unit into the installation rack. CAUTION: Do not use excessive force when inserting the GSD 41 into the rack. This may cause damage to occur to the connectors, unit, and/or unit rack. If heavy resistance is felt during installation, stop! Remove the GSD 41 and identify the source of resistance. 3. Lock the unit into the rack by using the ratcheting latch mechanism. 4. Configure the GSD 41 according to Section 3.34. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 6-23 Revision 4 6.37 GTS Traffic Processor Removal: 1. Gain access to the left forward avionics compartment in the nose of the aircraft. 2. Disconnect the eight coaxial cable connectors. 3. Disconnect the three electrical connectors. 4. Unlock the unit from the rack by loosening the ratcheting latch mechanisms. 5. Remove the unit from the rack. Reinstallation: 1. Visually inspect the connectors to ensure there are no bent or damaged pins. Repair any damage. 2. Insert the unit into the installation rack. 3. Lock the unit into the rack by using the ratcheting latch mechanisms. 6. Connect the eight coaxial cable connectors. Note the color coded bands which match the mating connectors. 4. Connect the three electrical connectors. 5. Configure the GTS Processor per Section 3.12 and test per Section 7.27. 6.38 GRA 5500 Radar Altimeter Removal: 1. Gain access to the avionics shelf in the tail area. 2. Disconnect the electrical connector. 3. Disconnect the two coaxial cable connectors, making note of which cable is Transmit (Tx) and which cable is Receive (Rx.) 4. Pull back on the lockdown mechanism and simultaneously turn counterclockwise until free. 5. Disengage the lockdown mechanism collar from the GRA 5500 hook and slide the GRA 5500 forward to remove the unit from the rack. Reinstallation: 1. Visually inspect the connectors to ensure there are no bent or damaged pins. Repair any damage. 2. Place the unit on the mounting rack ensuring the GRA 5500 rear feet are aligned in the mounting rack slots. 3. Slide the GRA 5500 back until the feet are fully engaged with the mounting rack. 4. Lift the lockdown mechanism collar in place on the GRA 5500 hook and hand turn the lockdown mechanism knob clockwise until the GRA 5500 is secure and cannot reasonably be ratcheted any tighter by hand. 5. Connect the electrical connector. 7. Connect the two coaxial cable connectors. 6. Configure the GRA 5500 according to Section 3.26 and test per Section 7.22. Page 6-24 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7 G1000 Equipment Configuration & Testing This section provides procedures to be followed after a piece of G1000 equipment is replaced. At the beginning of each LRU section, instructions are given to guide the technician for various removal/replacement scenarios. These instructions define necessary procedures to be followed for situations where original equipment was reinstalled as well as for situations where new equipment (new serial number) is installed. CAUTION Remove Supplemental Database Cards from the lower slot of all displays before loading software into any unit. Not removing the cards may corrupt them. Replacing corrupted database cards are not covered under warranty. NOTE Garmin recommends the use of SanDisk or Toshiba brand SD cards to load G1000 software and configuration files. If another brand of card is used, and software loading problems occur, replace the card with a SanDisk or Toshiba brand card and reattempt the software load. WARNING Connect a ground power unit to the aircraft for software loading. Do not rely on only the aircraft batteries to prevent loss of power during the software loading process. DO NOT ALLOW POWER TO BE REMOVED FROM THE SYSTEM WHEN LOADING SOFTWARE! Remove power only when told to do so by the following procedure. As a general rule all displays should be in the same mode (configuration or normal), unless instructed differently. 7.1 GDU 1040A/1500 MFD & PFD Original Display Reinstalled If the removed display(s) are re-installed in their original positions, no software or configuration loading is required. This does not include units that were returned for repair as their software and configuration files are deleted during the repair testing process. Continue to the PFD/MFD Test procedure. Original PFD Displays Installed in Opposite Locations for Troubleshooting If the PFD 1 and PFD 2 are installed in opposite positions, no software or configuration loading is required. Continue to the PFD/MFD Test procedure. New Repair or Exchange Display(s) Installed If a new, repaired or exchange GDU 1040A or GDU 1500 is installed, the correct software and configuration files must be loaded to the unit. See Section 3.9. If ChartView or TAWS were previously installed, these must be reactivated. See Sections 3.36 and 3.37, respectively. If any other options were previously installed, these must also be reactivated per Section 3.9. Then continue to the PFD/MFD Test procedure. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-1 Revision 4 7.1.1 PFD/MFD Test 1. Allow displays to initialize for ~1 minute. 2. Check that all COM/NAV display fields are valid in the top corners of both PFDs. 3. Check that attitude, heading, altitude, airspeed, vertical speed and OAT fields are valid within 2 minutes of power up on both PFDs. 4. Press the SENSOR softkey on each PFD and switch between ADC1 and ADC2. Verify that data from both GDC 7400s is valid on both displays. 5. Press the SENSOR softkey on each PFD and switch between AHRS1 and AHRS2. Verify that data from both GRS 77s is valid on both displays. 6. Check that the engine instrument fields are valid on the MFD. Figure 7-1, G1000 Normal Mode Check 7. Push the red DISPLAY BACKUP button on the pilot-side GMA 1347D. Verify that the pilot-side PFD and MFD displays enter reversion mode. MFD should have valid altitude, airspeed, vertical speed, COMM1, COMM2, NAV1, NAV2 and engine instruments. 8. De-activate pilot-side reversion mode by pushing the DISPLAY BACKUP button. Verify PFD 1 and MFD return to normal display modes. 9. Repeat Step 1 using GMA2. Ensure that PFD 2 and MFD enter reversion mode and MFD displays valid altitude, airspeed, vertical speed, COMM1, COMM2, NAV1, NAV2 and engine instruments. 10. De-activate co-pilot’s side reversion mode by pushing the DISPLAY BACKUP button. Verify PFD 2 and MFD return to normal display modes. 11. Select the TAWS page on the MFD. 12. Verify that the title at the top of the page reads “MAP – TAWS-B” or “MAP-TAWS-A”. If TAWS has not been enabled, the title will read “MAP – TERRAIN PROXIMITY” or “MAP – TERRAIN”. 13. Press the MENU button and select “Test TAWS” from the pop-up menu. 14. After the TAWS test has completed, verify that “TAWS System Test Okay” is heard over the cockpit speaker. 15. If no other service is to be performed, perform final return-to-service test as specified in Section 8. Page 7-2 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7.2 GMA 1347D Audio Panel Original GMA 1347D Reinstalled No software/configuration loading or testing is required if the removed GMA 1347D is re-installed. This does not include units that were returned for repair as their software and configuration files are deleted during the repair testing process. Continue to the final return-to-service checks in Section 8. Original GMA 1347D Installed in Opposite Locations for Troubleshooting If the original GMA #1 and GMA #2 are installed in opposite locations, configuration loading is required. See Section 3.9, and then continue to the GMA 1347D Test (Section 7.2.1). New, Repaired or Exchange GMA 1347D Installed If a new, repaired or exchanged GMA 1347D is installed, the correct software and configuration files must be loaded to the unit. See Section 3.9, and then continue to the GMA 1347D Test (Section 7.2.1). 7.2.1 GMA 1347D Test Except for marker beacon operation, an in-aircraft checkout may be performed in the aircraft with known good microphone, headset, and speaker. Intercom System (ICS) Check 1. Ensure that the MAN SQ key is off (no light). 2. Adjust GMA1 and GMA2 ICS volume to a comfortable level. 3. Plug in a headset at each COCKPIT ICS position. One at a time, plug a headset into each left and right CABIN ICS jack location (if installed)(one headset on right, one headset on left). 4. Verify the following: • Two-way communication between each CABIN ICS jack position. • CABIN ICS position cannot hear the pilot and copilot. • CABIN ICS positions cannot be heard by the pilot or copilot. 5. On GMA1 select COM1 MIC and AUDIO. 6. Ensure INTR COM is deselected on GMA1 or GMA2. Verify an active (green) COM1 frequency is displayed on both PFDs. 7. On GMA1 or 2 select PA and verify the PA select annunciator is illuminated on GMA1 and GMA2. Verify COM1 active frequency is displayed white. 8. Initiate passenger address using pilot’s headset boom mic by keying the pilot’s PTT. Verify the following: • Clear PA audio can be heard over cabin speaker and CABIN ICS headsets • PA selected annunciator on GMA1 flashes ~ once per second during PA address. 9. Repeat Step 8 using pilot hand mic. 10. Initiate passenger address using copilot’s headset boom mic by keying the copilot’s PTT. Verify the following: • Clear PA audio can be heard over cabin speaker and CABIN ICS headsets • PA selected annunciator on GMA1 flashes ~ once per second during PA address. 11. Repeat Step 10 using copilot hand mic. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-3 Revision 4 Transceiver Operational Check Perform a ramp test radio check by exercising the installed transceivers, microphone, microphone key and audio over the headphones and speaker. Verify that communications are clear and PTT operation is correct for each pilot position. 1. On the pilot’s audio panel, select the audio source corresponding to each installed avionics unit (i.e. NAV1, NAV2, COM1, COM2, ADF and DME) and check for audio over the pilot’s headset. 2. Press the SPKR key on pilot’s audio panel and verify that the selected audio is heard over the pilot’s speaker. 3. On the copilot’s audio panel, select the audio source corresponding to each installed avionics unit (i.e. NAV1, NAV2, COM1, COM2, ADF and DME) and check for audio over the copilot’s headset. 4. Press the SPKR key on copilot’s audio panel and verify that the selected audio is heard over the copilot’s speaker. Failsafe Operation Check – GMA 1347D #1 1. Turn the GMA 1347D #1 off by pulling the AUDIO NO 1 circuit breaker. This directs all COM 1 phone audio, MIC audio and MIC key to the pilot’s position. 2. Check the failsafe operation by exercising the COM 1 boom mic, hand mic, microphone key and audio over the headphones. All volume control for the COM audio should be through the PFD volume control. Verify proper operation of COM 1 using the failsafe operation. 3. Close the AUDIO NO 1 circuit breaker to continue testing. Failsafe Operation Check – GMA 1347D #2 1. Turn the GMA 1347D #2 off by pulling the AUDIO NO 2 circuit breaker. This directs all COM 2 phone audio, MIC audio and MIC key to the co-pilot’s position. 2. Check the failsafe operation by exercising the COM 2 boom mic, hand mic, microphone key and audio over the headphones. All volume control for the COM audio should be through the PFD volume control. Verify proper operation of COM 2 using the failsafe operation. 3. Close the AUDIO NO 2 circuit breaker to continue testing. Marker Beacon Test Figure 7-2, Marker Beacon Symbology 1. Using a ramp tester, simulate the outer marker, middle marker and inner marker signals by following the test equipment manufacturer’s instructions. Verify that each marker audio signal is present over the pilot and co-pilot headphones and speaker. 2. Verify that the outer, middle, and inner annunciations appear on PFD 1 and PFD 2 when the corresponding signal is applied. Marker beacon annunciations appear at the upper left corner of the altitude indicator on the PFD (Figure 7-2). Operate the MKR MUTE key on the #1 and #2 GMA 1347D and ensure that the audio signal is muted. If no other service is to be performed, continue to the return-to-service checks in Section 8. Page 7-4 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7.2.2 Landing Gear Aural Alert Check This check should be conducted in conjunction with the Phase 2 and Phase 4 Landing Gear Retraction, Warning Horn check, in the existing King Air Maintenance Program. NOTE This procedure is applicable only to aircraft equipped with a tone generator as part of the aircraft audio system. Refer to the appropriate aircraft wiring diagrams to determine if a tone generator is installed. This check can be accomplished in conjunction with the Weight on Wheels and Low Speed Awareness Band Test in Section 7.24. 1. Conduct the Landing Gear Retraction, Warning Horn check as stated in the Super King Air 300 or B300 Maintenance Manual, listed in Table 1-2. 2. Verify that the aural tone is played through the G1000 audio system and through both cockpit speakers. 7.2.3 XM Audio Suppression Check This procedure is applicable only to aircraft that have XM radio subscriptions. WARNING The following steps require movement of the landing gear. Ensure aircraft is safe for the operation of the landing gear before proceeding. 1. Jack aircraft to allow operation of landing gear (reference Super King Air 300 or B300 Maintenance Manual Chapter 7-00-00). 2. Ensure both left and right throttles are at IDLE position. 3. While monitoring pilot and copilot XM audio, retract landing gear to the full up and locked position and verify the following: 4. 5. 6. 7. 8. 9. • landing gear warning horn is active • XM audio is muted in the pilot and co-pilot stations Increase both left and right throttles forward of IDLE position (towards takeoff position) and verify the following: • landing gear warning horn is not active • XM audio can be heard (For aircraft not equipped with a tone generator, deselect mute softkey or adjust XM volume to restore XM audio) Extend landing gear to the full down and locked position and return both throttles to idle position. Remove aircraft from jacks. Ensure STALL WARN circuit breaker is closed. While monitoring pilot and copilot XM audio, press the STALL WARN TEST switch and verify the following: • Stall warning tone is active • XM audio is muted in the pilot and co-pilot stations Release the STALL WARN TEST switch and verify the following: • Stall warning tone is not active. • XM audio can be heard (For aircraft not equipped with a tone generator, deselect mute softkey or adjust XM volume to restore XM audio.) G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-5 Revision 4 7.3 GIA 63W Integrated Avionics Unit Original GIA 63W(s) Reinstalled No software or configuration loading is required if the removed GIA is re-installed in its original position (GIA1 and GIA2 in their original racks). This does not include units that were returned for repair as their software and configuration files are deleted during the repair testing process. Continue to the return-toservice checks in Section 8. Original GIA 63Ws Swapped for Troubleshooting No software loading is required if the originally installed GIA units are re-installed in opposite positions (GIA1 and GIA2 in opposite unit racks). However, configuration loading is required. See Section 3.9, and then continue to the GIA 63W Test (Section 7.3.1). New, Repaired or Exchange GIA 63W(s) Installed If a new, repaired or exchange GIA 63 is installed, the correct software and configuration files must be loaded to the unit. See Section 3.9, and then continue to the GIA 63W Test (Section 7.3.1). 7.3.1 GIA 63W Test GPS Signal Acquisition Figure 7-3, AUX – GPS STATUS Page (MFD) The GIA 63W units should normally acquire a GPS navigation solution within 5 to 10 minutes of startup, provided the aircraft is outside (or indoors with a GPS repeater). Select the GPS STATUS page on the MFD (4th page in AUX group). Two softkeys on the bottom of the display allow the user to toggle between GPS 1 and GPS 2. Verify that both receivers show 3D DIFF NAV on the MFD. Continue to the VHF COM Interference test. NOTE It may be necessary to temporarily disable or move away from GPS repeaters while testing, as repeaters may adversely affect GPS receiver performance. Page 7-6 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 VHF COM Interference Test This test must be conducted outside. Use of a GPS repeater inside a hangar may result in a failed test. This procedure assumes that the system is currently set to 25 kHz COM channel spacing. Once the signal acquisition test has been completed successfully, perform the following steps: 1. On the MFD, monitor GPS signal strength bars on the AUX – GPS STATUS page. 2. On the PFD, ensure that the CDI is set to GPS. If it is not, press the ‘CDI’ softkey until GPS ENR is displayed. 3. Verify that the GPS “INTEG” flag is out of view. 4. Select 121.150 MHz on the No. 1 COM transceiver. 5. Transmit for a period of 35 seconds while monitoring GPS 1 signal strength levels. 6. During the transmit period, verify that the GPS “INTEG” flag does not come into view on the PFD and verify that GPS 1 does not lose a 3-D navigation solution on the MFD. 7. Repeat steps 5 and 6 and re-transmit while monitoring GPS 2 signal levels on the MFD. 8. Repeat steps 4 through 7 for each of the following frequencies: • 121.175 MHz • 121.200 MHz • 131.250 MHz • 131.275 MHz • 131.300 MHz 9. Repeat steps 4 through 8 for the No. 2 COM transceiver (GIA2). 10. On the MFD, select the AUX – SYSTEM SETUP page. 11. Under the COM CONFIG field, change the COM channel spacing from 25 kHz to 8.33 kHz. 12. Go back to the AUX – GPS STATUS page. 13. Select 121.185 MHz on the No. 1 COM transceiver. 14. Transmit for a period of 35 seconds while monitoring GPS 1 signal strength levels. 15. During the transmit period, verify that the GPS “INTEG” flag does not come into view on the PFD and verify that GPS 1 does not lose a 3-D navigation solution on the MFD. 16. Repeat steps 14 and 15 and re-transmit while monitoring GPS 2 signal levels on the MFD. 17. Repeat steps 14 through 16 for each of the following frequencies: • 121.190 MHz • 130.285 MHz • 131.290 Mhz 18. Repeat steps 14 through 17 for the No. 2 COM transceiver (GIA2). 19. On the MFD, select the AUX – SYSTEM SETUP page and change the COM channel spacing back to 25 kHz. Continue to the VOR/LOC/GS Test. VOR/LOC/GS Test Check the VOR, ILS, and Glideslope functions with ramp test equipment. Operate the equipment according to the test equipment manufacturer’s instructions. Adjust the RF signal to a level adequate to perform the test. Select the appropriate HSI source by using the CDI softkey. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-7 Revision 4 NOTE The PFD HSI does not show a course deviation bar unless a valid VHF NAV frequency is tuned. GFC 700 VOR/LOC/GS Test 1. Ensure FD is coupled to PFD1 as indicated by a left pointing arrow next to the AFCS mode controller XFR button. 2. Simulate a VOR signal on a radial equivalent to the aircraft heading. Tune the NAV 1 and NAV 2 receivers to the simulation frequency. 3. Set the HSI on PFD1 to VOR1 by pressing the CDI soft key until VOR1 is selected. Set the HSI on PFD2 to VOR2 by pressing the CDI soft key until VOR2 is selected. Rotate CRS1 and CRS2 knobs to set VOR1 and VOR2 course pointers to aircraft heading. (CDI Synchronization must be set to OFF on the AUX-SYSTEM SETUP 1 page on the MFD.) 4. Verify full scale deflection of VOR1 and VOR2 CDI by varying CRS1 and CRS2 selected course at least 10° left and right. Reset course pointers to aircraft heading. 5. Engage the autopilot and press the NAV key on the AFCS mode controller. Using the CRS1 knob alter course by 10° to the right. Verify the flight director and aircraft controls respond by flying to the VOR course. Repeat to the left. 6. Couple FD to PFD2 by pressing the XFR button on the AFCS mode controller. Verify FD is coupled right as indicated by a right pointing arrow on the AFCS mode controller next to the XFR button. Repeat step 5 using CRS2 knob while coupled to PFD2. 7. Set CRS1 and CRS2 course pointers to aircraft heading. 8. Simulate a Localizer/Glideslope signal. Tune this signal on NAV 1 and NAV 2 receiver. Set the PFD1 HSI to LOC1 and PFD2 HSI to LOC2 by pressing CDI soft key until LOC1 and LOC2 is selected. Use the test equipment to center the deviation bars (localizer and glideslope) on PFD1 and PFD2. 9. Press the APR key on the AFCS mode controller. Verify that the LOC and PIT annunciations are green and ALTS and GS are white on PFD1 and PFD2. Apply right/left and up/down localizer/glideslope signals using the test equipment. Verify that the Flight Director and flight controls respond appropriately. 10. Couple FD to PFD1 by pressing the XFR button on the AFCS mode controller. Verify FD is coupled to PFD1 as indicated by a left pointing arrow on the AFCS mode controller next to the XFR button. 11. Repeat step 9 while coupled to PFD1. If no other service is to be performed, continue to the return-to-service checks in Section 8. Page 7-8 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7.4 GEA 71 Engine/Airframe Unit Original GEA 71 Reinstalled No software or configuration loading is required if the removed GEA 71 is re-installed. This does not include units that were returned for repair as their software and configuration files are deleted during the repair testing process. Continue to the return-to-service checks in Section 8. Original GEA 71 Installed in Opposite Locations for Troubleshooting No software loading is required if the original GEA units are installed in opposite locations (GEA #1 and GEA #2 in opposite unit racks). Continue to the GEA 71 Test (Section 7.4.1). New, Repaired or Exchange GEA 71 Installed If a new, repaired or exchange GEA 71 is installed, the correct software and configuration files must be loaded to the unit. See Section 3.9, and then continue to the GEA 71 Test (Section 7.4.1). 7.4.1 GEA 71 Test On the MFD (normal mode), check the indication for each of the sensor or monitor inputs with the aircraft engines off. In general, verify all engine and system instruments show valid static normal values and markings, with no red Xs or erratic indications. Reference Figure 7-4 for normal engine instrument markings (figure may not reflect actual aircraft installation). If necessary, reference Sections 7.4.2, 7.4.3 and 7.4.4 for additional tests to verify instrument readings. Figure 7-4, Normal Engine Instrument Markings (MFD) If no other service is to be performed, continue to the return-to-service checks in Section 8. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-9 Revision 4 7.4.2 GEA Engine Indication Checks Perform engine indicating systems checks for the following left and right engine indications: Reference Hawker Beechcraft King Air 300/300LW or B300/B300C Maintenance Manual, Chapter 77-00-00, “Engine Indicating – Maintenance Practices”. • • • • 7.4.3 ITT N1 N2 Torque GEA Fuel Flow Indication Functional Check The test tools and equipment listed in Table 7-1 are provided for reference only and are not specifically required. Any product conforming to the specification listed may be used. It is the responsibility of the technician or mechanic to determine the applicable specification prior to testing. Table 7-1, Fuel Flow Indication Test Equipment Name Requirement Decade Box 0-1k ohms Signal Generator 0-10Vdc / 0 – 1k Hz The following steps are required to be completed on both engines as necessary. 1. Remove the engine cowling (Ref. Hawker Beechcraft King Air 300/300LW or B300/B300C Maintenance Manual, Chapter 71-10-00) to gain access to the engine MT5 fuel flow transmitter connector (P6). 2. Disconnect the P6 connector from the fuel flow transmitter. 3. Connect the Decade Box, set to a resistance of 1000 ± 10 Ω, to pins C and D of the P6 connector. 4. Connect the Signal Generator to pins A (+) and B (-) of the P6 connector. 5. Apply external power to aircraft. 6. Set the BAT, EXT PWR and AVIONICS MASTER PWR switches to ON. 7. Inject a 25 mV P-P signal with the signal generator and simulate the frequencies specified in the table below. 8. Observe MFD in normal mode and verify fuel flow indications match those values listed in Table 7-2. Table 7-2, Fuel Flow Test Points Test Point (Hz) Page 7-10 Revision 4 Indication (PPH) 0 0±2 140 100 ± 10 561 400 ± 10 841 600 ± 10 1122 800 ± 10 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7.4.4 GEA Oil Pressure Indication Functional Check The test tools and equipment listed in Table 7-3 are provided for reference only and are not specifically required. Any product conforming to the specification listed may be used. It is the responsibility of the technician or mechanic to determine the applicable specification prior to testing. Table 7-3, Oil Pressure Indication Test Equipment Name DC Power Supply Requirement 0-10Vdc The following steps are required to be completed on both engines as necessary. 1. Remove the engine cowling (Ref. Hawker Beechcraft King Air 300/300LW or B300/B300C Maintenance Manual, Chapter 71-10-00) to gain access to the engine Oil Pressure Transmitter connector (P12). 2. Disconnect the P12 connector from the Oil Pressure Transmitter. 3. Connect the DC Power Supply to pins A (-) and B (+) of the P12 connector. 4. Apply external power to aircraft. 5. Set the BAT, EXT PWR and AVIONICS MASTER PWR switches to ON. 6. Set the DC Power Supply to output the voltages specified in the table below. 7. Observe MFD in normal mode and verify Oil Pressure indications match those values listed in Table 7-4. Table 7-4, Oil Pressure Test Points Test Point (VDC) Indication (PSI) 0 0±4 1.25 50 ± 4 2.50 100 ± 4 3.75 150 ± 4 5.00 200 ± 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-11 Revision 4 7.5 GTX 33( ) or GTX 3000 Transponder Original GTX 33( )or GTX 3000 is Reinstalled No software or configuration loading is required if the removed GTX 33 or GTX 3000 is re-installed. This does not include units that were returned for repair as their software and configuration files are deleted during the repair testing process. Continue to GTX 33 or GTX 3000 Test (Section 7.5.2). Original GTX 33( ) or GTX 3000 Installed in Opposite Locations for Troubleshooting No software loading is required if the original GTX #1 and GTX #2 are installed in opposite locations. Continue to Transponder Configuration (Section 7.5.1). New, Repaired or Exchange GTX 33( ) or GTX 3000 is Installed If a new, repaired or exchange GTX 33( ) or GTX 3000 is installed, the correct software and configuration files must be loaded to the unit per Section 3.9. Continue to Transponder Configuration (Section 7.5.1). 7.5.1 1. 2. 3. 4. Transponder Configuration If not applied, apply power to the G1000 system. With PFD1 in configuration mode, select the GTX page group, then select the TRANSPONDER CONFIGURATION page on PFD1. The ‘ADDRESS TYPE’ default is ‘US TAIL’. To enter a non-US Mode-S registration number set the ‘ADDRESS TYPE’ field to ‘HEX ID’. Activate the cursor and highlight the ‘MODE S ADDRESS’ field. Use the small/large FMS knobs to enter the US aircraft registration number or other Mode-S registration number. Figure 7-5, Aircraft Registration 5. For US registered aircraft, the ‘FLIGHT ID TYPE’ field should be set to ‘SAME AS TAIL’. For other aircraft, the ‘FLIGHT ID TYPE’ field should be set to ‘CONFIG ENTRY’ or ‘PFD ENTRY’. NOTE The CONFIG ENTRY setting requires the Aircraft Registration/ID number to be entered once in the ‘FLIGHT ID’ field. The PFD ENTRY setting allows the pilot to enter the Aircraft Registration/ID number from the PFD, via the ‘TMR/REF’ softkey. 6. After each configuration setting change, press the ENT key to configure the transponders. 7. Press the ENT key on PFD1 to acknowledge prompt. 8. After completing transponder configuration, deactivate the cursor. Page 7-12 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air Revision 4 190-00716-01 7.5.2 GTX 33( ) or GTX 3000 Test Operation of the GTX 33 or GTX 33D or GTX 3000 Mode-S transponder is accomplished using PFD 1, PFD 2 or the MFD. Refer to G1000 in King Air 300/B300 Cockpit Reference Guide, listed in Table 1-2, for basic operation. The integrated transponder/altitude reporting system must be verified in accordance with Title 14 of the Code of Federal Regulations (14 CFR) §§ 91.411 and 91.413, every 24 calendar months, or any time the transponder is removed. This test requires the use of a Mode S ramp generator. Specific instructions for operating the ramp tester are contained in the applicable operator's manual. Refer to 14 CFR Part 43 Appendices E and F for testing criteria. Note that for GTX 33D or GTX 3000 units, the aircraft must be put on jacks to simulate an in-air condition in order to test the Mode S diversity transmission channel isolation. If no other service is to be performed, continue to the return-to-service checks in Section 8. 7.6 GDC 7400 Air Data Computer Original GDC 7400 is Reinstalled No software or configuration loading is required if the removed GDC 7400 is re-installed. This does not include units that were returned for repair as their software and configuration files are deleted during the repair testing process. Continue to GDC 7400 Test (Section 7.6.1). Original GDC 7400 Installed in Opposite Locations for Troubleshooting No software loading is required if the original GDC #1 and GDC #2 are installed in opposite locations. Continue to GDC 7400 Test (Section 7.6.1). New, Repaired or Exchange GDC 7400 is Installed If a new, repaired or exchange GDC 7400 is installed, the correct software and configuration files must be loaded to the unit. See Section 3.9, and then continue to GDC 7400 Test (Section 7.6.1). New GDC 7400 Configuration Module is Installed The correct configuration files must be loaded if the GDC 7400 configuration module has been replaced. See Section 3.9, and then continue to GDC 7400 Test (Section 7.6.1). G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-13 Revision 4 7.6.1 Air Data Test (GDC 7400) The G1000 system must be maintained in accordance with the G1000 System Maintenance Manual listed in Table 1-3 and appropriate regulations. When the GDC 7400 is tested in accordance with 14 CFR Part 43, Appendix E, note the following exceptions: • For paragraph (b)(1)(i) Scale Error, use Table 7-5 of this section instead of Appendix E, Table I • Do not perform paragraph (b)(1)(iv) Friction • Do not perform paragraph (b)(1)(vi) Barametric Scale Error The following Air Data Test is to be performed in addition to or in conjunction with any other regulated tests. This test must be performed on both pilot and copilot systems with a calibrated Air Data Test Set (ADTS) with a combined accuracy/repeatability specification of less than ±20 feet for the test altitude range. 1. Connect the pitot/static tester to the aircraft left and right pitot and static ports. Note that the standby altimeter and airspeed indicator are connected to the copilot side pitot and static lines. 2. Perform pitot static system leak check of each system as described in the Super King Air 300 or B300 Maintenance Manual, 34-00-00, with the following changes: a. For the pitot leak check, set the air data test unit to an indicated airspeed of 200 knots with the static system vented to ambient pressure conditions (ground). Pitot leak rate is not to exceed 1 knot in 1 minute. b. For the static leak check, set the air data test set to 30,000 feet and an indicated airspeed of 120 knots. Static leak rate is not to exceed 300 feet in 1 minute. 3. Verify that the PFD1 altimeter baro setting is set to 29.92 in Hg (1013.25 mb). 4. Start PFD1 in configuration mode and navigate to the GRS page. The values for altitude and airspeed are shown on the AHRS/AIR DATA INPUT table as B ALT and IAS for both AIR DATA 1 and AIR DATA 2. 5. Simulate the altitudes and airspeeds for each condition shown in Table 7-5. Wait for ADTS to report that target values have been achieved. 6. On Table 7-5, record the altitude (B ALT) displayed on PFD1 for AIR DATA 1 and AIR DATA 2 for each condition. 7. On Table 7-5, record the airspeed (IAS) displayed on PFD1 for AIR DATA 1 and AIR DATA 2 for each condition. 8. Verify that the indicated altitudes and airspeeds are within allowable tolerances. 9. File the results with the aircraft maintenance records. If either the pilot or copilot air data system does not meet the tolerances specified, have maintenance checks performed on the air data system or the pitot/static system. Page 7-14 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Table 7-5, Air Data System Test Test Point Altitude (FT) Airspeed (KIAS) AIR DATA 1 AIR DATA 2 Nominal Altitude ALT AS 0 0 0 99 0 132 0 198 0 50 1000 50 2000 80 4000 80 8000 260 8000 10000 120 10000 11000 120 11000 13000 150 13000 14000 150 14000 16000 180 16000 18000 210 18000 19000 138 18983 19000 162 18971 19000 185 18958 19000 209 18947 19000 233 18947 19000 242 18947 0 0 0 1000 2000 4000 8000 8000 AIR DATA 1 AIR DATA 2 Tolerance Tolerance Tolerance Tolerance Actual Actual Actual Actual +/-20 +/-20 +/-2 +/-2 +/-20 +/-20 +/-2 +/-2 +/-20 +/-20 +/-2 +/-2 +/-20 +/-20 +/-2 +/-2 +/-20 +/-20 +/-2 +/-2 +/-25 +/-25 +/-2 +/-2 +/-25 +/-25 +/-2 +/-2 +/-30 +/-30 +/-2 +/-2 +/-30 +/-30 +/-2 +/-2 +/-30 +/-30 +/-2 +/-2 +/-35 +/-35 +/-2 +/-2 +/-40 +/-40 +/-2 +/-2 +/-40 +/-40 +/-2 +/-2 +/-45 +/-45 +/-2 +/-2 +/-45 +/-45 +/-2 +/-2 +/-47 +/-47 +/-2 +/-2 +/-47 +/-47 +/-2 +/-2 +/-47 +/-47 +/-2 +/-2 +/-47 +/-47 +/-2 +/-2 +/-47 +/-47 +/-2 +/-2 +/-47 +/-47 +/-2 +/-2 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-15 Revision 4 Air Data System Test (Continued) Test Point ALT AS 29000 Altitude (FT) Nominal Altitude 111 28999 29000 130 28982 29000 150 28967 29000 169 28953 188 28937 196 28928 212 28925 97 35016 114 34996 130 34978 147 34961 164 34946 171 34939 29000 29000 29000 35000 35000 35000 35000 35000 35000 35000 185 34925 Aircraft S/N: _____________________ ADTS Make: _______________________ Model: _______________________ S/N: _______________________ Cal. Date: _______________________ Airspeed (KTS) AIR DATA 1 AIR DATA 2 AIR DATA 1 AIR DATA 2 Tolerance Tolerance Tolerance Tolerance Actual +/-72 Actual +/-72 Actual +/-2 Actual +/-2 +/-72 +/-72 +/-2 +/-2 +/-72 +/-72 +/-2 +/-2 +/-72 +/-72 +/-2 +/-2 +/-72 +/-72 +/-2 +/-2 +/-72 +/-72 +/-2 +/-2 +/-72 +/-72 +/-2 +/-2 +/-87 +/-87 +/-2 +/-2 +/-87 +/-87 +/-2 +/-2 +/-87 +/-87 +/-2 +/-2 +/-87 +/-87 +/-2 +/-2 +/-87 +/-87 +/-2 +/-2 +/-87 +/-87 +/-2 +/-2 +/-87 +/-87 +/-2 +/-2 Date: __________________ Operator: ___________________ ADC1 Model: GDC 7400 P/N: 011-02337-____ S/N: ___________________ Cal. Date: ________________ ADC2 Model: GDC 7400 P/N: 011-02337-____ S/N: ___________________ Cal. Date: ________________ Leak Check Static System at 30,000 ft, 300 kts (pass if <300 ft in 1 min) Pilot: _____________ Feet/Min Copilot: ___________ Feet/Min Leak Check Pitot System at 200 kts (pass if <1 KIAS in 1 min) Pilot: _____________ KIAS/Min Copilot: ___________ KIAS/Min Page 7-16 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7.6.2 Static Port Vertical Speed (Rate of Climb) Test 1. Command ADTS to change the altitude at the rates shown in the table below. 2. Wait for ADTS to report that target rates have been achieved. 3. Verify that the Rate of Climb reported by the Vertical Speed field on PFD1 and PFD2 are within the tolerances specified in Table 7-6: Table 7-6, Vertical Speed Table Vertical Speed, feet/minute 2000 1000 500 200 0 -200 -500 -1000 -2000 7.6.3 Allowed tolerance, ±feet/minute 100 50 45 45 N/A (No VS Display) 45 45 50 100 OAT Probe Check 1. 2. Ensure on-side sensors for PFD1 and PFD2. Ensure the outside air temperature (OAT) probes and a calibrated thermometer stabilize at ambient temperature. 3. Verify that the OAT measurement shown on PFD1 and PFD2, in degrees Celsius, indicate within 2 °C of the ambient temperature as measured by the calibrated thermometer. If no other service is to be performed, continue to the return-to-service checks in Section 8. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-17 Revision 4 7.7 GRS 77 or GRS 7800 AHRS / GMU 44 Magnetometer Original GRS is Reinstalled If the original GRS is reinstalled, then no software loading is required. This does not include units that were returned for repair as their software and configuration files are deleted during the repair testing process. If the GRS rack was not removed or loosened, continue to the GRS/GMU Test (Section 7.7.6). If the GRS rack was removed or loosened, continue to the GRS/GMU Calibration Procedures (Section 7.7.1). Original GRS is Installed in Opposite Location for Troubleshooting If the original GRS #1 and GRS #2 are installed in opposite locations (GRS #1 and GRS #2 in opposite unit racks), no software loading is required. If the GRS rack(s) was not removed or loosened, continue to the GRS/GMU Test (Section 7.7.6). If the GRS rack(s) was removed or loosened, continue to the GRS/GMU Calibration Procedures (Section 7.7.1). New, Repaired or Exchange GRS is Installed If a new, repaired or exchange GRS is installed, then software must be loaded. Continue to Section 3.9 for software loading, then proceed as follows: If the GRS rack(s) was not removed or loosened, continue to the GRS/GMU Test (Section 7.7.6). If the GRS rack(s) was removed or loosened, continue to the GRS/GMU Calibration Procedures (Section 7.7.1). New GRS Configuration Module is Installed If the GRS configuration module is replaced, no software loading is required. Continue to the GRS/GMU Calibration Procedures (Section 7.7.1). Original GMU 44 is Reinstalled If the original GMU 44 is reinstalled, then no software loading is required. This does not include units that were returned for repair as their software and configuration files are deleted during the repair testing process. Continue to the GRS/GMU Test (Section 7.7.6). Original GMU 44 is Installed in Opposite Location for Troubleshooting If the original GMU #1 and GMU #2 are installed in opposite locations (GMU #1 and GMU #2 in opposite unit racks), no software loading is required. However, performing the Magnetometer Calibration Procedure is required. Continue to the GRS/GMU Magnetic Calibration (Section 7.7.4). New, Repaired or Exchange GMU 44 is Installed If a new, repaired or exchange GMU 44 is installed, then software must be loaded. Continue to Section 3.9 for software loading, then continue to the GRS/GMU Calibration Procedures (Section 7.7.1). Page 7-18 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7.7.1 GRS/GMU Calibration Procedures GRS/GMU Recalibration Criteria The following calibration procedures are provided for the GRS and GMU 44: • Pitch/Roll Offset: (Procedure A1, PROVIDED IN SECTION 7.7.2) • Magnetometer Calibration: (Procedure B, PROVIDED IN SECTION 7.7.4) • Engine Run-Up Vibration Test: (Procedure D, PROVIDED IN SECTION 7.7.5) • Magnetometer Interference Test: (Procedure E, PROVIDED IN SECTION 5.15.4) Follow the steps given for each procedure on-screen at the GRS/GMU CALIBRATION page. Note that the CALIBRATE command cannot be selected and activated until the installer acknowledges all required steps have been carried out by pressing the ENT key on each step. Table 7-7, Required GRS/GMU Calibrations Condition Procedure A1: GRS 77 or GRS 7800 Pitch/Roll Offset None Required. Continue to GRS/GMU Test section. Either GMU 44 was removed and reinstalled. (no change in serial number) GMU 44 was replaced with new unit. (New serial number) X GRS AHRS was removed and/or replaced. The mounting tray was NOT removed and the mounting tray bolts were NOT loosened. GRS AHRS was removed and/or replaced. The mounting tray WAS removed and/or mounting tray bolts WERE loosened. GRS AHRS Configuration Module was replaced. Calibrations Required Procedure B: Procedure D: GRS/GMU Engine Run-up Magnetic Vibration Calibration Test None Required. Continue to GRS/GMU Test section. X X X X X X G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-19 Revision 4 7.7.2 Procedure A1: GRS 77 or GRS 7800 Pitch/Roll Offset Calibration This procedure must be performed for both GRS units installed in the aircraft. This first procedure must be carried out with the engine off. 1. 2. 3. Level the aircraft to within ±0.25° of zero pitch and zero roll using a digital level. (Follow instructions in Super King Air 300 or B300 Maintenance Manual, listed in Table 1-2, for leveling) Start PFD #1 in Configuration mode. Go to the GRS Page Group and select the GRS/GMU Calibration page at the PFD. This page is protected and the following softkey password must be entered at the PFD to continue: • 9 • 10 • 11 • 12 (Far Right softkey) 4. 5. Ensure that the No. 1 GRS is selected in the SELECT GRS UNIT window on the PFD. Activate the cursor and highlight the SELECT PROCEDURE window and select PITCH/ROLL OFFSET. 6. Press the ENT key. 7. Use the cursor to highlight the BEFORE CALIBRATION window. 8. Follow the checklist items displayed on the PFD and press the ENT key as each step is completed or confirmed. 9. When the CALIBRATE field is blinking, press the ENT button to begin the procedure. 10. After several seconds, a new checklist appears in the lower half of the PFD. Press the ENT key as each step is confirmed. When the CONFIRM AIRCRAFT IS LEVEL field is blinking, press the ENT key to continue. 11. The result of the pitch/roll offset compensation is displayed on the PFD. If successful, the AHRS records the required pitch and roll offsets, informs the operator of a successful conclusion and returns to normal operation. 12. Press the ENT key on the PFD to conclude this procedure for GRS #1. Page 7-20 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 13. Repeat steps 1 through 12 for GRS #2 with PFD #2. 7.7.3 Compass Rose Evaluation of Magnetic Disturbances for Magnetometer Calibration Procedure (Optional) NOTE The Magnetometer Calibration Procedure that follows in Section 7.7.4 (Calibration Procedure B) must be carried out at a site that is determined to be free of magnetic disturbances. If it is unsure whether the site is ‘clean’, the technician should verify that the site is ‘clean’ by following the guidance provided in Section 7.7.3. The technician may skip Section 7.7.3 if the site condition is acceptable. Typically, a compass rose is an acceptable location to perform the magnetometer calibration procedure. However, because not all compass roses are well maintained, even an existing compass rose should be regularly evaluated using the method described here to determine if it is free of magnetic disturbances. If evaluation of an existing compass rose indicates that magnetic disturbances are present, then an alternative location must be found to perform the Magnetometer Calibration Procedure. A G1000-equipped airplane that has completed the pitch/roll offset compensation procedure (Procedure A-1, Section 7.7.2) can be used to evaluate a candidate site for magnetic disturbances and determine whether it is a suitable location to perform the magnetometer calibration procedure. The magnetometer calibration procedure itself contains the logic to simultaneously survey the location for magnetic cleanliness while it is computing the magnetometer calibration parameters. In order to evaluate a candidate site, the Magnetometer Calibration Procedure must be performed twice: once turning clockwise around the site, and once turning counter-clockwise. Both times, the procedure should be conducted as described in Section 7.7.4 of this document, with the exception of the direction of turns around the site. NOTE Although Section 7.7.4 indicates that the Magnetometer Calibration Procedure should be performed by making a series of clockwise turns around the site, the procedure can also be performed by making counterclockwise turns for the purpose of evaluating the site for magnetic disturbances. If the PFD displays the “CALIBRATION SUCCESSFUL / SITE IS CLEAN” message upon completion of the Magnetometer Calibration Procedure in each clockwise and counter-clockwise direction, then the candidate site is sufficiently free of magnetic disturbances and is acceptable for performing the Magnetometer Calibration Procedure. It is important to obtain successful result in both the clockwise and counter-clockwise directions to ensure that the magnetometer sweeps over a large enough area at the candidate site. If the PFD displays either the “MAG FIELD AT SITE NOT UNIFORM” or “MAG FIELD AT SITE DIFFERS FROM IGRF MODEL” message upon completion of the Magnetometer Calibration Procedure in either of the two directions, then the site contains magnetic disturbances that are too large. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-21 Revision 4 7.7.4 Procedure B: GRS 77 or GRS 7800 and GMU 44 Magnetic Calibration 2. NOTE Procedure A-1 (Section 7.7.2) must first be successfully accomplished before performing Procedure B, only for situations where the GRS was replaced with a new unit. Start the aircraft engine following the procedures referenced in the appropriate King Air AFM or AFMS as shown in the General Arrangement drawing, listed in Table 1-2. After aircraft engine startup, taxi the aircraft to a properly calibrated compass rose. 3. At the compass rose, align the aircraft to a heading of magnetic north (±5°). 1. CAUTION Calibration Procedure B must be carried out on a compass rose in order to guarantee measurements free of environmental magnetic disturbances. Attempting to carry out this maneuver on a typical ramp area may not yield a successful calibration. The accuracy of the AHRS cannot be guaranteed if this calibration is not performed on a magnetically clean compass rose or equivalent. If the compass rose condition is not known, it is recommended that the technician follow the guidance in Section 7.7.3. NOTE This procedure provides instructions for calibrating both GRS AHRS separately. It is acceptable to calibrate both GRS AHRS simultaneously by putting both PFD 1 and PFD 2 in configuration mode and following the procedure below, using PFD 1 to calibrate GRS #1 and PFD 2 to calibrate GRS #2. 4. Restart the PFD #1 in configuration mode. 5. Go to the GRS Page Group on the PFD. 6. Select the GRS/GMU Calibration page and enter the following softkey password: • 9 • 10 • 11 • 12 (far right softkey) 7. Use the FMS small knob to highlight GRS #1for calibration and press ENT key. The SELECT PROCEDURE field is not blinking. 8. Using the FMS small knob, select MAGNETOMETER. Press the ENT button. 9. Use the cursor to highlight the BEFORE CALIBRATION window. 10. Follow the checklist items displayed on the PFD and press the ENT key as each one is completed or confirmed. When the CALIBRATE field is blinking, press the ENT key to begin the procedure. 11. The PFD display advises the operator when to turn the aircraft, when to stop, and when to turn again. 12. Upon instruction to turn, taxi the aircraft in a right turn. After approximately 25° to 30° of turn from the last heading, the PFD display advises the operator to stop the aircraft. Page 7-22 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 NOTE Due to the difficulties in executing smooth, accurate turns the PFD may incorrectly interpret a station and instruct to “HOLD POSITION” prior to full completion of a 30° turn. If this scenario is encountered, it is best for the operator to ignore the “HOLD POSITION” command and instead use outside references to complete the approximate 30° turn. Instead of using the PFD instruction to turn as a real-time indication of when to turn, simply judge the 30° (±5°) turn increments of the aircraft by using the compass rose radials. Dwelling at these 30° increments for the time recommended by the PFD should result in successful calibration. 13. The PFD guides the operator to dwell at multiple headings around a complete circle. NOTE Due to high winds or excessive airframe vibration, the operator may encounter a condition where the PFD restarts the 18-second countdown without full completion of the previous countdown. If this is encountered more than once for a given station, the operator should begin turning to the next station (approximately 30°). A minimum of 2 successful stations per quadrant is required, where a successful station is a full 18-second countdown followed by instruction to move. Ensure that at least 2 stations per quadrant are completed. Thus, it may sometimes be required to dwell at a station after a countdown restart. A maximum of 30 stations is allowed for the entire calibration procedure. If too many countdown restarts are encountered, the calibration will fail with the message, “TOO MANY STATIONS.” 14. Repeat the turn-and-stop process until the PFD advises that a successful calibration is complete. The GRS AHRS then enters its normal operational mode. Press the ENT button on the PFD to conclude this procedure. 15. Repeat steps 4 through 14 for PFD #2 and GRS #2. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-23 Revision 4 7.7.5 Procedure D: Engine Run-Up Vibration Procedure NOTE Calibration Procedure D is performed in order to guarantee that the AHRS mounting is sufficiently rigid and insensitive to vibration. This procedure must be performed for both GRS units installed in the aircraft. Calibration Procedures A1 and B (Sections 7.7.2 and 7.7.4 respectively) are not required prior to this procedure. Figure 7-6, Engine Run-Up Test Page 1. Restart the PFD #1 in configuration mode. 2. Use the FMS small knob to highlight GRS #1 for calibration and press the ENT key. The SELECT PROCEDURE field is not blinking. 3. Initiate the AHRS engine run-up vibration test procedure by performing the following steps: a) Select the ENGINE RUN-UP TEST procedure and press the ENT key. b) Follow the checklist items displayed on the PFD, and press the ENT key as each one is completed or confirmed. When the CALIBRATE field is blinking, press the ENT key to begin the procedure. 4. The PFD display instructs the operator to gradually increase power from idle to full throttle and back to idle over a period of 2-4 minutes. 5. When the operator has completed the engine run-up and the engine is back to an idle setting, press the ENT key to indicate that the process is complete. When this is done, the TEST COMPLETE field stops blinking. 6. The PFD informs the operator if the installation has passed or failed the vibration test. If the test fails, the specific measurements causing the failure are identified and associated numeric values are displayed on the PFD. Page 7-24 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 NOTE Should a failure occur, the technician may perform the Engine Run-up test up to 3 times successively before corrective action must be taken. If the test does not pass after three attempts, then the installation should not be considered reliable until the source of the vibration problem is identified and remedied. In the event of repeated failure of the engine run-up test, record the values that are reported to be out of range for future reference. The following are potential causes for failure of the engine run-up test: a) Vibration motion of GRS and/or GMU44 caused by neighboring equipment and/or supports. b) Mounting screws and other hardware for GRS and/or GMU44 not firmly attached. c) GRS connector not firmly attached to unit. d) Cabling leading to GRS or GMU44 not firmly secured to supporting structure. e) An engine / propeller that is significantly out of balance. 7. Press the ENT key on the PFD to conclude this procedure 8. Repeats steps 1 through 7 for PFD #2 and GRS #2 and proceed to Section 7.7.6. 7.7.6 GRS/GMU Test The aircraft can now be taxied back and the engine can be shut down for final testing. Restart the displays in normal mode to conduct final system checks. When the PFDs power up in normal mode, the AHRS attitude and heading information displayed should become valid within 1 minute of power-up, as shown in Figure 7-7 (provided both GPS receivers have a valid position; if GPS is unavailable, AHRS initialization may take as long as 2 minutes). Figure 7-7, Normal Mode AHRS Check If no other service is to be performed, continue to the return-to-service checks in Section 8. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-25 Revision 4 7.8 GDL 69A XM Data Link Original GDL 69A is Reinstalled No software or configuration loading is required if the removed GDL 69A is re-installed. This does not include units that were returned for repair as their software and configuration files are deleted during the repair testing process. Continue to the GDL 69A Test (Section 7.8.1). New, Repaired or Exchange GDL 69A is Installed If a new, repaired or exchange GDL 69A is installed, the correct software and configuration files must be loaded to the unit, then the XM Satellite Radio subscription must be reactivated. See Section 3.9 and the XM Activation Instructions listed in Table 1-2. Then continue to the GDL 69A Test (Section 7.8.1). 7.8.1 GDL 69A Test If an XM Satellite Radio subscription has already been activated for the GDL 69A, then power up the G1000 and go to the AUX – XM INFORMATION page and verify that the GDL 69A is working properly. Refer to the Cockpit Reference Guide, listed in Table 1-2, for details on XM Radio weather and music operation. If the GDL 69A is replaced (new unit), the owner must re-activate the subscription, using the new GDL 69A’s Radio ID number(s). Refer to the GDL 69A/69A XM Satellite Radio Activation Instructions, listed in Table 1-3, for details on the activation process. As a final operations check, make sure there are no MANIFEST errors shown on the PFD for the GDL 69A. If no other service is to be performed, continue to the return-to-service checks in Section 8. 7.9 GSA 80/9000 Servos Original Servo(s) Reinstalled No software loading is required if the removed servo(s) is re-installed. This does not include units that were returned for repair as their software and configuration files are deleted during the repair testing process. Continue to the return-to-service checks in Section 8. New, Repaired or Exchange Servo(s) Installed If a new, repaired or exchange servo is installed, the correct software files and certification gains must be loaded to the unit. See Section 3.9 and then continue to the return-to-service checks in Section 8. NOTE Refer to the appropriate servo installation drawing listed in Table 1-2. If no other service is to be performed, continue to the return-to-service checks in Section 8. Page 7-26 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7.10 GCU 477 FMS Controller Original GCU 477 Reinstalled No software or configuration loading is required if the removed GCU 477 is re-installed. This does not include units that were returned for repair as their software and configuration files are deleted during the repair testing process. Continue to the GCU 477 Test (Section 7.10.1). New, Repaired or Exchange GCU 477 Installed If a new, repaired or exchange GCU 477 is installed, the correct software and configuration files must be loaded to the unit. See Section 3.9 and then continue to the GCU 477 Test (Section 7.10.1). 7.10.1 GCU 477 Test Perform the following key and knob presses and knob rotations on the GCU 477, and verify the actions on the MFD. 1. Rotate the large FMS knob and verify that the page groups change. 2. Rotate the small FMS knob and verify that the pages change within the page groups. 3. Use the large FMS knob to display the MAP page group and the small FMS knob to display the NAVIGATION MAP page. 4. Rotate the RANGE knob to the right and verify the map display zooms out. 5. Rotate the RANGE knob to the left and verify the map display zooms in. 6. Press the RANGE knob to get the pointer on the map display. 7. Move the RANGE knob to the left and verify the pointer moves to the left. 8. Move the pointer up, right and down and verify that the pointer moves accordingly. 9. Press the RANGE knob to stop displaying the pointer. 10. Press the left and right arrowheads of the SOFTKEY SELECT keys. Verify softkeys highlighting on the MFD changes. 11. Press the SEL key to select one of the softkeys. 12. Press the key to display the DIRECT TO page. 13. Use the keypad to type KIXD and verify KIXD is displayed on the MFD. 14. Press the SPC key to add a space and then the BACK key to delete the space. 15. Press the CLR key to clear the field. 16. Type K34 and then press the ENTER key twice. Verify that the flight path to K34 is displayed on the map. 17. Press the FPL key to open the ACTIVE FLIGHT PLAN page. Press the FPL key again to close it. 18. Press the PROC key to open the PROCEDURES page. Press the PROC key again to close it. 19. Press the MENU key to open the MENU page. Press the MENU key again to close it. 20. Press the COMM keyuntil 1 is lit. Verify the tuning box is present around the COMM 1 frequency on PFD1. 21. Using GCU477 keypad, enter in a frequency of 123.450. Verify COMM1 frequency changes as entered. 22. Press the COMM keyuntil 2 is lit. Verify the tuning box is present around the COMM 2 frequency on PFD1. 23. Using GCU477 keypad, enter in a frequency of 123.450. Verify COMM2 frequency changes as entered. 24. Press the NAV key until 1 is lit. Verify the tuning box is present around the NAV 1 frequency on PFD1. 25. Using GCU477 keypad, enter in a frequency of 108.00. Verify NAV1 frequency changes as entered. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-27 Revision 4 26. Press the NAV key until 2 is lit. Verify the tuning box is present around the NAV 2 frequency on PFD1. 27. Using GCU477 keypad, enter in a frequency of 108.00. Verify NAV1 frequency changes as entered. 28. Press the XPDR key until the light to the left of the button is lit. Verify a flashing box appears in the XPDR 1 code window. 29. Using GCU477 keypad, enter in a code of 1234. Verify XPDR1 shows a code of 1234 in the window. 30. Press the XPDR key until the light to the right of the button is lit. Verify a flashing box appears in the XPDR 2 code window. 31. Using GCU477 keypad, enter in a code of 1234. Verify XPDR2 shows a code of 1234 in the window. If no other service is to be performed, continue to the return-to-service checks in Section 8. Page 7-28 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7.11 GMC 710 AFCS Controller Original GMC 710 Reinstalled No software or configuration loading is required if the removed GMC 710 is re-installed. This does not include units that were returned for repair as their software and configuration files are deleted during the repair testing process. Continue to the GMC 710 Test (Section 7.11.1). New, Repaired or Exchange GMC 710 Installed If a new, repaired or exchange GMC 710 is installed, the correct software and configuration files must be loaded to the unit. See Section 3.9 and then continue to the GMC 710 Test (Section 7.11.1). 7.11.1 GMC 710 Test Perform a basic operational check on the GMC 710. The following knob, wheel and key presses and rotations are to be performed on the GMC 710. 1. Ensure the G1000 is operating in normal mode and the autopilot is operational. 2. Press the FD key a few times; verify the Flight Director display on PFD1 toggles on and off. Leave the flight director displayed. 3. Press the XFR key and verify the white-illuminated arrowhead points in the opposite direction. Verify the green arrow displayed at the top of PFD 1 also points in the same direction. 4. Rotate the ALT SEL knob and verify the altitude bug, displayed on PFD 1 altitude tape, moves. 5. Rotate the UP/DN wheel and verify the flight director moves in the vertical direction. 6. Press the HDG key and verify the white illumination appears next to the key. Rotate the HDG knob and verify the heading bug, displayed on PFD 1 compass card, moves and the flight director follows. 7. Press the HDG knob and verify the heading bug centers. 8. Press the YD key and verify the white illumination appears next to the key. 9. Press the VS key and verify the white illumination appears next to the key. 10. Press the FLC key and verify the white illumination appears next to the key. If no other service is to be performed, continue to the return-to-service checks in Section 8. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-29 Revision 4 7.12 GWX 68 or GWX 70 Weather Radar Original GWX 68 or GWX 70 Reinstalled No software or configuration loading is required if the removed GWX 68 or GWX 70 is re-installed. This does not include units that were returned for repair as their software and configuration files are deleted during the repair testing process. Continue to the GWX 68 or GWX 70 Test (Section 7.12.1). New, Repaired or Exchange GWX 68 or GWX 70 Installed If a new, repaired or exchange GWX 68 or GWX 70 is installed, the correct software and configuration files must be loaded to the unit. See Section 3.9 and then continue to the GWX 68 or GWX 70 Test (Section 7.12.1). 7.12.1 GWX 68 or GWX 70 Test Operation of the GWX 68 or GWX 70 Weather Radar is accomplished using the MFD/GCU 477. Refer to G1000 300/B300 King Air Cockpit Reference Guide, listed in Table 1-2, for basic operation. NOTE Before energizing the equipment, be sure microwave radiation safety precautions including both fuel and personnel safety considerations have been observed. These include clearing all personnel to an area beyond the maximum permissible exposure level (MPEL) boundary. The MPEL for the GWX 68 is 11 feet and the GWX 70 is 10 feet. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. On the GCU, turn the large FMS knob to select the Map Page Group then turn the small FMS knob to select the Weather Radar page. Select the MODE softkey. Select the STANDBY softkey to initiate the one minute warm-up period. Verify the radar enters the standby mode after the warm-up is complete. Select the MODE softkey. Select the WEATHER softkey. After reading the CAUTION statement, turn the large FMS knob to select YES. Press the GCU ENT key. Select the STAB ON softkey to activate antenna stabilization or select the STAB OFF softkey to deactivate. Verify the current stabilization condition is shown in the upper right of the weather radar display. Select the BACK softkey. Select the VERTICAL softkey. Select the TILT softkey to activate the cursor in the TILT field. On the GCU, turn the small FMS knob to select the desired antenna tilt angle. Press the GCU ENT key. Press the GCU FMS knob to remove the cursor. Select the GAIN softkey to activate the cursor in the GAIN field. On the GCU, turn the small FMS knob to adjust the gain for the desirable level. Verify the gain setting is visible in the gain field as a movable horizontal bar in a flashing box and the line pointer is a reference depicting the calibrated position. Press the FMS knob to remove the cursor. On the GCU, select the GAIN softkey again to recalibrate the gain. Verify ‘CALIBRATED’ is displayed in the GAIN field. Select the MODE softkey. Select the OFF softkey. Page 7-30 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7.13 Non-Garmin Traffic System (TAS/TCAS I) Functional Check 1. Select the TRAFFIC MAP page on the MFD. 2. Verify that the STANDBY, OPERATE, TEST and ALT MODE soft keys are available on the bottom of the MFD. NOTE If the correct softkeys are not displayed, the G1000 has not been properly configured for the traffic system. Reference Section 3.10, “Non-Garmin TAS/TCAS I Traffic System Option Configuration” to enable the traffic system. 3. Verify that FAIL is not displayed in the upper left corner of the traffic map. 4. Verify that NO DATA is not displayed in the center of the traffic map over the aircraft symbol. 5. Press the OPERATE soft key and verify that OPERATING is displayed in the upper left corner of the traffic map. 6. Press the STANDBY soft key and verify that STANDBY is displayed in the upper left corner of the traffic map. 7. Press the TEST soft key and verify that TEST is displayed in the upper left corner of the traffic map and a traffic test pattern is displayed. Upon completion of the test, verify that “TAS SYSTEM TEST OK” is heard over the cockpit speaker. NOTE This annunciated traffic system test message may vary. 8. Open the TRFC circuit breaker on the avionics circuit breaker panel. On the MFD, verify that “NO DATA” is displayed after several seconds. 9. Close the TRFC circuit breaker on the avionics circuit breaker panel and verify that “NO DATA” is removed after several seconds. If no other service is to be performed, continue to the return-to-service checks in Section 8. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-31 Revision 4 7.14 Non-Garmin Traffic System (TCAS II) Functional Check 1. Select the TRAFFIC MAP page on the MFD. 2. Verify that the REL, ABS, TFC STBY, TA ONLY, TA/RA, TEST and ALT RNG softkeys are available on the bottom of the MFD. NOTE If the correct softkeys are not displayed, the G1000 has not been properly configured for the traffic system. Reference section 3.29 “TCAS II Traffic System Option Configuration” to enable the traffic system. 3. Verify that FAIL is not displayed in the upper left corner of the traffic map. 4. Verify that NO DATA is not displayed in the center of the traffic map over the aircraft symbol. 5. Press the TFC STBY softkey and verify that STANDBY is displayed in the upper left corner of the traffic map. 6. Press the TA ONLY softkey and verify that TA ONLY is displayed in the upper left corner of the traffic map. 7. Press the TEST softkey and verify that the traffic system enters a self-test. Upon successful completion of the test, verify that “TCAS SYSTEM TEST OK” is heard over the cockpit speaker. 8. Open the TRFC circuit breaker on the copilot circuit breaker panel. On the MFD, verify that “NO DATA” is displayed after several seconds. 9. Close the TRFC circuit breaker on the copilot circuit breaker panel and verify that “NO DATA” is removed after several seconds. Page 7-32 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7.15 Lightning System Functional Check Reference Section 3.30 for configuring the optional Stormscope. This procedure assumes familiarity with the set-up and operation of the WX-PA portable analyzer kit. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. Apply power to the WX-500 and verify that no failed test messages appear. If fault messages do appear, refer to the WX-500 Installation Manual for troubleshooting. Following successful power up, verify the following modes: • Access to both 3600 and 1200 weather view modes. • All available ranges can be displayed. • Access to the cell mode and strike mode. • Strike counter is displayed in all weather modes and ranges. Key COM1 and COM2 several times on different frequencies representing the lower, mid and upper portion of the VHF COM frequency band. Verify keying of COM1 or COM2 does not cause strike data to appear on the MFD. Operate DME, XPDR 1, XPDR 2 and weather radar. Verify these systems do not cause strike data to appear on the MFD. Connect the WX-PA cable to the WX-PA antenna. Position the WX-PA antenna on the WX-500 antenna. Ensure the connection is tight. If necessary, use tape to secure the WX-PA antenna. Ensure the “FORWARD” arrows are aligned and the WXPA antenna suction cups are positioned forward of center along the longitudinal axis. Secure the WX-PA cable to the aircraft with the attached suction cup and route the cable to the cockpit. Connect the remaining cable end to the WX-PA. Power up the WX-PA and verify the WX-500 is in the weather mapping mode (i.e. 3600 weather view at the 200 NM range. Set the WX-500 to STRIKE mode; 100 NM range (or next highest available range). Select the Continuous Out mode displayed on the WX-PA menu and press MENU/ENTER. Select the bottom mount antenna configuration on the WX-PA keyboard (“A” key). Select a cardinal bearing and a range of 120 NM. Use the F1 and F2 keys to adjust range and F3 and F4 keys to adjust heading. NOTE The WX-500 will plot data at one-half the range selected on the WX-PA. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-33 Revision 4 15. Press MENU/ENTER to start the test. 16. Observe the MFD to ensure the proper positioning of the strikes, based on range and azimuth settings on the WX-PA. Change the cardinal bearings and verify correct test strikes. Verify the strikes are within 10 degrees of the selected azimuth and plot at 60NM (1/2 120 NM). 17. Verify after 20 seconds of operation the strike counter reads 580 +/-40. 18. After testing for all ranges and bearings indicated, press 2ND then MENU/ENTER to return to the main menu. 19. Select Circular Pattern mode on the WX-PA mode menu and press MENU/ENTER. 20. Select bottom mount antenna configuration on the WX-PA keyboard (“A” key). NOTE The MFD should be set at 100 NM (or next highest available range) on the 360 degree weather screen and in strike mode. 21. Use the F1 and F2 keys to select 120 NM range and press MENU/ENTER to start the test. Verify the WX-500 plots discharge points at approximately 60 NM. 22. Observe the MFD to ensure the proper positioning of the test strikes. Verify the strikes are within 10 degrees of the 30 degree azimuth increment and within 12 NM of 60 NM, 23. When complete, set WX-PA for 55 NM, set the MFD for 50 NM (or the next highest available range) and repeat test. 24. On the MFD, verify the sensor plots points just outside of 25 NM and the strikes are within 10 degrees of the 30 degree azimuth and within 5 NM of 27.5 NM. 25. Repeat above setting the MFD for 25 NM (or the next highest available range) and the WX-PA for 15 NM. 26. On the MFD, verify the positioning of test strikes are within 10 degrees of azimuth and within 2 NM of 7.5 NM. 27. Restart the G1000 in configuration mode by opening the PFD and MFD circuit breakers. While holding the ENT keys on the PFDs and MFD, restore power by closing the PFDs and MFD circuit breakers. 28. Select the OTHER page group on the MFD. The STORMSCOPE page is shown by default. If no other service is to be performed, continue to the return-to-service checks in Section 8. Page 7-34 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7.16 TAWS Functional Check 7.16.1 Functional Check for TAWS-B 1. 2. With the G1000 in Normal Mode, use the GCU FMS knob to select the MAP group and TAWS page on the MFD. Verify that the title at the top of the page reads “MAP – TAWS-B”. NOTE If TAWS has not been enabled, the title will read “MAP – TERRAIN PROXIMITY” or “MAP – TERRAIN”. Refer to section 3.37 for TAWS Configuration for configuring TAWS. 3. Press the GCU MENU button and select “Test TAWS System” from the pop-up menu. Verify TAWS test annunciation is displayed on the MFD and both PFDs. 4. After the TAWS test has completed, verify that “TAWS System Test Okay” is heard over the cockpit speaker (if selected) and the headsets. 5. Press the GCU MENU button again and select “Inhibit TAWS” from the pop-up menu and press ENT on the GCU. Verify “TAWS INH” is displayed on PFD 1 and PFD 2. 6. Press the GCU MENU button again and select “Enable TAWS” from the pop-up menu and press ENT on the GCU. Verify the “TAWS INH” annunciation on the PFDs has extinguished. 7. With a GPS position acquired, shield or disconnect the GPS antennas to remove the GPS signal. Verify “LOI” shows on the MFD and the “TAWS N/A” and “LOI” annunciations show on the PFDs. 8. Reconnect or remove the shield from the GPS antennas, and verify the MFD “LOI” indication and PFD “TAWS N/A” and “LOI” annunciations are removed once the GPS satellites are acquired. 9. Pull PFD1 PRI and PFD1 SEC circuit breakers. Re-power PFD1 in configuration mode, and use the PFD1 FMS knob to select the Audio Alert Configuration page. 10. Ensure cockpit speaker is selected ON. Use the PFD1 FMS knob to highlight each of the following messages then select PLAY. Verify each of the following audio messages are played: • • • • • • • • • • • • • Too Low Terrain Sink Rate Pull Up Don’t Sink Five Hundred Caution, Terrain (2X) Terrain (2X), Pull Up (2X) Caution, Obstacle (2X) Obstacle (2X), Pull Up (2X) Terrain Ahead (2X) Terrain Ahead, Pull Up (2X) Obstacle Ahead (2X) Obstacle Ahead, Pull Up (2X) 11. Pull the PFD1 PRI and PFD1 SEC circuit breakers, and re-power PFD1 in normal operating mode. If no other service is to be performed, continue to the return-to-service checks in Section 8. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-35 Revision 4 7.16.2 Functional Check for TAWS-A 1. With the G1000 in Normal Mode, use the GCU FMS knob to select the MAP group and TAWS page on the MFD. 2. Verify that the title at the top of the page reads “MAP – TAWS-A”. NOTE If TAWS has not been enabled, the title will read “MAP – TERRAIN PROXIMITY” or “MAP – TERRAIN”. Refer to section 3.37 for TAWS Configuration for configuring TAWS. 3. Press the GCU MENU button and select “Test TAWS System” from the pop-up menu. Verify TAWS test annunciation is displayed on the MFD and both PFDs. 4. After the TAWS test has completed, verify that “TAWS System Test Okay” is heard over the cockpit speaker (if selected) and the headsets. 5. Press the GCU MENU button again and select “Inhibit TAWS” from the pop-up menu and press ENT on the GCU. Verify “TAWS INH” is displayed on PFD 1 and PFD 2. 6. Press the GCU MENU button again and select “Enable TAWS” from the pop-up menu and press ENT on the GCU. Verify the “TAWS INH” annunciation on the PFDs has extinguished. 7. Press the GCU MENU button again and select “Inhibit GPWS” from the pop-up menu and press ENT on the GCU. Verify “GPWS INH” is displayed on PFD 1 and PFD 2. 8. Press the GCU MENU button again and select “Enable GPWS” from the pop-up menu and press ENT on the GCU. Verify the “GPWS INH” annunciation on the PFDs has extinguished. 9. Press the GCU MENU button again and select “Flap Override” from the pop-up menu and press ENT on the GCU. Verify “FLAP OVR” is displayed on PFD 1 and PFD 2. 10. Press the GCU MENU button again and select “Disable Flap Override” from the pop-up menu and press ENT on the GCU. Verify the “FLAP OVR” annunciation on the PFDs has extinguished. 11. With a GPS position acquired, shield or disconnect the GPS antennas to remove the GPS signal. Verify “LOI” shows on the MFD and the “TAWS N/A” and “LOI” annunciations show on the PFDs. 12. Reconnect or remove the shield from the GPS antennas and verify the MFD “LOI” indication and PFD “TAWS N/A” and “LOI” annunciations are removed once the GPS satellites are acquired. 13. Pull the RADIO ALTM circuit breaker. Verify “GPWS FAIL” is displayed on PFD1 and PFD2. 14. Reset the RADIO ALTM circuit breaker. Verify “GPWS FAIL” annunciations are removed. 15. Pull PFD1 PRI and PFD1 SEC circuit breakers. Re-power PFD1 in configuration mode, and use the PFD1 FMS knob to select the Audio Alert Configuration page. Page 7-36 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 16. Ensure cockpit speaker is selected ON. Use the PFD1 FMS knob to highlight each of the following messages then select PLAY. Verify each of the following audio messages are played: • Too Low, Terrain • Terrain Ahead (2X) • Too Low, Flaps • Terrain Ahead, Pull Up (2X) • Too Low, Gear • Obstacle Ahead (2X) • Sink Rate • Obstacle Ahead, Pull Up (2X) • Pull Up • Five Hundred • Don’t Sink • Four Hundred • Caution, Terrain (2X) • Three Hundred • Terrain (2X), Pull Up (2X) • Two Hundred • Terrain (2X) • One Hundred • Caution, Obstacle (2X) • Glide Slope • Obstacle (2X), Pull Up (2X) • Glide Path 17. Pull the PFD1 PRI and PFD1 SEC circuit breakers, and re-power PFD1 in normal operating mode. NOTE The following steps require the movement of the flaps and landing gear. This portion of the check can be accomplished in conjunction with the Landing Gear Aural Alert and XM Audio Suppression Test in Section 7.2.2. 18. Place the airplane on jacks (Ref. Super King Air 300 or B300 Maintenance Manual Chapter 7-00-00) with the wheels clear of the ground. 19. Ensure all equipment and personnel are clear of the flaps and landing gear. Place the flaps and landing gear in the full down positions. 20. Using an air data test set connected to the pilot side pitot/static system, set an airspeed of at least 190 kts as displayed on PFD1. 21. After an alert advisory appears, press the softkey directly below the flashing ADVISORY. 22. Verify the “TAWS FLAP FAULT – Flaps detected in the LDG position” and “TAWS GEAR FAULT – Landing Gear detected in the DOWN position” messages are present. 23. Press the ALERTS softkey to close the alerts window. 24. Place the flaps and landing gear in the full up positions. 25. Press the ALERTS softkey again to open the alerts window. 26. Verify the “TAWS FLAP FAULT – Flaps detected in the LDG position” and “TAWS GEAR FAULT – Landing Gear detected in the DOWN position” messages not present. 27. Return air data test set to GROUND. 28. Place the landing gear in the down position and remove the aircraft from the jacks. If no other service is to be performed, continue to the return-to-service checks in Section 8. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-37 Revision 4 7.17 FliteCharts Functional Check Reference Section 3.35, FliteCharts Configuration, for configuring FliteCharts. NOTE This test is not required if ChartView is enabled. 1. 2. 3. 4. 5. 6. 7. With the G1000 in Normal Mode, use the GCU FMS knob to select ‘AUX – System Status’ page, then select MFD1 DB softkey. Use the small FMS knob to scroll to CHART. Verify “FliteCharts” is displayed in blue text adjacent to “CHART”. Verify the FliteCharts database cycle number is displayed in blue text and the FliteCharts database is current. Deactivate the cursor and use the GCU large FMS knob to select the Navigation Map Page then press the SHW CHRT softkey. Verify the airport chart is displayed and the following softkeys are displayed (some softkeys may be grayed out): • CHRT OPT • CHRT • INFO-1 • DP • STAR • APR • WX • NOTAM • GO BACK Press the CHRT OPT softkey and verify the following softkeys are displayed (some softkeys may be grayed out): • ALL • HEADER • PLAN • PROFILE • MINIMUMS • FIT WDTH • FULL SCN • BACK If no other service is to be performed, continue to the return-to-service checks in Section 8. Page 7-38 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7.18 ChartView Functional Check ChartView must be enabled using a ChartView Enable Card, as specified in the General Arrangement Drawing listed in Table 1-2, and a current ChartView database. Reference section 3.36, “ChartView Configuration” for enabling procedures. NOTE The required ChartView databases are subscription-based and are to be procured by the aircraft owner directly from Jeppesen. 1. With the G1000 in Normal Mode, use the GCU FMS knob to select ‘AUX – System Status’ page, then select MFD1 DB softkey. 2. Use the small FMS knob to scroll to CHART. 3. Verify “ChartView” is displayed in blue text adjacent to CHART. 4. Verify the ChartView database cycle number is displayed in blue text and the ChartView database is current. 5. Deactivate the cursor and use the large GCU FMS knob to select the Navigation Map Page then press the SHW CHRT softkey. 6. Verify the airport chart is displayed and the following softkeys are displayed(some softkeys may be grayed out): • CHRT OPT • APR • CHRT • WX • INFO-1 • NOTAM • DP • GO BACK • STAR 7. Press CHRT OPT softkey and verify the following softkeys are displayed (some softkeys may be grayed out): • ALL • HEADER • PLAN • PROFILE • MINIMUMS • FIT WDTH • FULL SCN • BACK If no other service is to be performed, continue to the return-to-service checks in Section 8. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-39 Revision 4 7.19 SafeTaxi Functional Check The maximum map ranges for enhanced detail are configurable by the flight crew. When zoomed in close enough to show the airport detail, the map reveals runways with numbers, taxiways with identifying letters/numbers, and airport landmarks including ramps, buildings, control towers, and other prominent features. Resolution is greater at lower map ranges. When the aircraft location is within the screen boundary, including within SafeTaxi ranges, an airplane symbol is shown on any of the navigation map views for enhanced position awareness. Any map page that displays the navigation view can also show the SafeTaxi airport layout, within the maximum configured range. The following is a list of pages where the SafeTaxi feature can be seen: • Navigation Map Page • Inset map • Weather Datalink Page • Airport Information Page • Intersection Information Page • NDB Information Page • VOR Information Page • User Waypoint Information Page • Trip Planning Page • Nearest Pages 1. Use the FMS knob on the GCU to select the AUX – System Status page and select DBASE softkey. Use the small FMS knob to scroll to CHART category and verify “FliteCharts” is displayed in blue text adjacent to “CHART”. 2. Verify the FliteCharts database ‘REGION’, ‘CYCLE’ number, ‘EFFECTIVE’, ‘EXPIRES’, and ‘DISABLES’ dates of the subscription appear in blue text. 3. Use the FMS knob on the GCU to select MAP - Navigation Map page. 4. On the GCU, press MENU. With Map Setup highlighted, press ENT on the GCU. Rotate the small GCU FMS knob to select the Aviation group and press the ENT key on GCU. 5. Turn the GCU large FMS Knob to scroll through the Aviation Group options to ‘SAFETAXI’. 6. Turn the GCU small FMS Knob to display the range of distances. 7. Turn the GCU FMS Knob to select 5000ft as the distance for maximum SafeTaxi display range, and then press the GCU ENT key to complete the selection. 8. Using the GCU range knob, select a range of 5000ft or less. Verify SafeTaxi display represents the current aircraft location and the airport layout. If no other service is to be performed, continue to the return-to-service checks in Section 8. Page 7-40 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7.20 DME Functional Check This check verifies that the DME-to-G1000 interface operates correctly. NOTE Support for a single Collins DME-42 system is provided as an option in the G1000. If the DME option is selected, the DME channel one audio level must be adjusted by the procedure contained within Collins DME-42 Transceiver Repair Manual 523-0772458, Maintenance Section 523-0772460-006118, to adjust DME channel one audio level. Recommended nominal DME audio output level is 4.46 Vpp + 0.10 Vpp. Procedure must be accomplished by an approved repair station. 1. If DME is not displayed, press the PFD softkeys on PFD1 and PFD2, then press the DME softkey. Verify the DME window is displayed next to the PFD1 and PFD2 HSI. 2. On PFD1 and PFD2, press the BACK softkey then select DME softkeys. Verify the DME TUNING screen is displayed. 3. On PFD1 and PFD2, use the large FMS knob to select the NAV1, NAV2 and HOLD modes in the DME field. Verify that the NAV1, NAV2 and HOLD modes can be selected by turning the small FMS knob. 4. Set NAV1 and NAV2 frequencies to 108.00 and 117.00 respectively. 5. On PFD1 and PFD2, select the DME NAV1 mode. Verify that the DME window display is set to the NAV1 frequency of 108.00. 6. On PFD1 and PFD2, select the DME NAV2 mode by pressing the ENT softkey. Verify that the DME window display is set to the NAV2 frequency of 117.00. 7. On PFD1 and PFD2, select the DME HOLD mode by using the FMS knob. Verify that the last selected NAV frequency of 117.00 remains the same when the NAV2 frequency is changed. Deselect DME HOLD. 8. On the NAV Test Set, set up a DME test and note the nav frequency. Tune NAV 1 to the test set frequency and set PFD1 and PFD2 DME MODE to NAV1. Set NAV 2 to a frequency other than the test set frequency. 9. Verify that the DME distance on PFD1 and PFD2 match the test set. 10. Select, or verify selected, DME and SPKR buttons on GMA1 and GMA2 audio panels to select the DME audio and select speaker to ON. Verify that the DME audio can be heard over the cockpit speakers. 11. On PFD1 and PFD2, set the DME mode to NAV2 and verify that the DME distance is dashed out. 12. Tune NAV 2 to the test set frequency. Set NAV 1 to a frequency other than the test set frequency. 13. Verify that the DME distance on PFD1 and PFD2 match the test set. If no other service is to be performed, continue to the return-to-service checks in Section 8. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-41 Revision 4 7.21 ADF Functional Check This check verifies that the ADF / G1000 interface operates correctly. 1. Press the PFD softkey on PFD1 and PFD2. Toggle the BRG1 and BRG2 softkey until the ADF bearing is shown on PFD1 and PFD2. 2. Verify that the ADF window is not invalid (no red ‘X’). 3. Using the ADF control head select a known valid local ADF. Verify that the ADF bearing pointer moves towards a bearing and stabilizes. 4. Select ADF and SPKR on GMA1 and GMA2. Using the ADF control head, select, ANT mode. Verify that the audio from the station tuned can be heard on the pilots and copilots headset and cockpit speaker. 5. Increment the ADF volume control from full low to full high. Verify the volume increases and decreases appropriately over pilots and copilots headset and cockpit speaker. If no other service is to be performed, continue to the return-to-service checks in Section 8. 7.22 GRA 5500 Radar Altimeter Functional Check This check verifies that the G1000/radar altimeter interface is operates correctly. 1. Navigate to the AUX – SYSTEM STATUS page on the MFD. 2. Press the RA TEST softkey and verify that the “RA TEST” annunciation is displayed on both PFDs. 3. Verify 40 feet is displayed in the RA display window on both PFDs. 4. Press the RA TEST softkey again. Verify the RA readout window decreases to 0 feet on PFD1 and PFD2. 5. Pull the RADIO ALTM circuit breaker. Verify on PFD 1 and PFD 2 that an RA FAIL message is displayed. 6. Reset the RADIO ALTM circuit breaker. If no other service is to be performed, continue to the return-to-service checks in Section 8. 7.23 Non-Garmin Radar Altimeter Check This check verifies that the G1000 / radar altimeter interface is operates correctly. NOTE This check only verifies the data output from the G1000 equipment. Any equipment/wiring added that is not part of the installation data will need separate testing and verification not covered as part of this document. 1. 2. 3. 4. Navigate to the AUX – SYSTEM STATUS page on the MFD. Press the RA TEST softkey and verify that “RA TEST” annunciation is displayed on both PFDs. Verify 50 feet is displayed in the RA display window on both PFDs. Press the RA TEST softkey again. Verify the RA readout window displays 2500 feet and decreases to 0 feet on PFD1 and PFD 2. 5. Pull the RADIO ALTM circuit breaker. Verify on PFD 1 and PFD 2 that an RA FAIL message is displayed. 6. Reset the RADIO ALTM circuit breaker. If no other service is to be performed, continue to the return-to-service checks in Section 8. Page 7-42 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7.24 Weight on Wheels and Low Speed Awareness Band Check This procedure will verify that the GDU air ground status uses valid Weight on Wheels (WOW) inputs. 1. Ensure aircraft is positioned with weight on wheels. 2. Apply external power to the aircraft. Set BAT, EXT PWR and AVIONICS MASTER PWR switches to ON and wait for all aircraft and avionics systems to complete their initialization and begin operating normally. 3. Verify there are no WOW INVALID or WOW FAULT messages. Refer to Section 5.3 to troubleshoot messages. 4. Verify the Low Speed Awareness band (red band) is NOT displayed on the PFD1 and PFD2 airspeed tapes (see Figure 7-8.) NOTE This portion of the check can be accomplished in conjunction with the Landing Gear Aural Alert and XM Audio Suppression Test in Section 7.2.2. 5. Place the airplane on jacks (Ref. Super King Air 300 or B300 Maintenance Manual Chapter 7-00-00) with the wheels clear of the ground. 6. Verify there are no WOW INVALID or WOW FAULT messages. Refer to Section 5.3 to troubleshoot messages. 7. Verify the Low Speed Awareness band (red band) appears at the low end of the Air Speed Tape on the PFD1 and PFD2 (see Figure 7-8.) 8. Remove airplane from jacks. If no other service is to be performed, continue to the return-to-service checks in Section 8. Figure 7-8, Low Speed Awareness Band Symbolization G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-43 Revision 4 7.25 RVSM Checks The following are required initial and continued airworthiness checks to verify proper configuration for operation in RVSM airspace. RVSM operations are prohibited until the all of the RVSM checks are completed successfully. Any changes to the aircraft external configuration, such as the installation of additional antennas, probes, fairings or radomes along the sides of the airplane, that may impact the air data system or aircraft performance may also invalidate the RVSM certification for this aircraft. 7.25.1 RVSM Required Avionics Check With the PFD in configuration mode, select the System Status page using the small FMS knob. Press the small FMS knob to activate the cursor. Highlight each of the following items in the LRU window and verify that the required software part number and version matches the information in the General Arrangement drawing listed in Table 1-2. By visual inspection of the units, verify hardware part number matches the information in the General Arrangement drawing listed in Table 1-2. Record the results in Figure 7-9. HARDWARE DESCRIPTION ITEM 1 2 GIA 63W IAU #1 GIA 63W IAU #2 SOFTWARE PART NUMBER OK DESCRIPTION PART NUMBER VER OK SYSTEM STATUS REPORT MAIN SUB-SYSTEM GIA1 AUDIO GIA1 AUDIO GPS/WAAS ENGINE GPS1 COMMUNICATION COM1 NAVIGATION NAV1 NAV FPGA NAV1 FPGA CERTIFICATION GAINS GFC CERT GIA 1 MAIN SUB-SYSTEM GIA2 AUDIO GIA2 AUDIO GPS/WAAS ENGINE GPS2 COMMUNICATION COM2 NAVIGATION NAV2 NAV FPGA NAV2 FPGA CERTIFICATION GAINS GFC CERT GIA 2 SYSTEM PFD1 FPGA PFD1 FPGA 3 GDU 1040A PFD 4 GDU 1040A PFD 5 GDU 1500 MFD 6 GDC 7400 AIR DATA COMPUTER SYSTEM GDC1 FPGA GDC1 FPGA 7 GDC 7400 AIR DATA COMPUTER SYSTEM GDC2 FPGA GDC2 FPGA SYSTEM PFD2 FPGA PFD2 FPGA SYSTEM MFD1 FPGA MFD FPGA 8 * GTX 33 /33D/3000 TRANSPONDER (IF INSTALLED) GTX 33 SYSTEM GTX1 9 * GTX 33/33D/3000 TRANSPONDER (IF INSTALLED) GTX 33 SYSTEM GTX2 Figure 7-9, RVSM Required Avionics * Any other transponder that meets or exceeds the requirements of TSO-C74c (Mode C) or TSO-C112 (Class 2a; Mode S) may be installed. Page 7-44 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7.25.2 RVSM Critical Region Visual Inspection The RVSM critical region is a 24 x 24 inch area around the static ports on both sides of the airplane. The corners of the RVSM critical region are to be marked on the aircraft with placards or paint of a contrasting color (see Figure 7-10.) The RVSM critical region must meet the following visual inspection criteria: 1. The fuselage skin must be free from damage. All skin repairs within the RVSM critical region must be flush (no external doublers except as noted below). If any damage is found, the area must be repaired. Locations of existing protruding head rivets in frames and skin laps are acceptable. 2. The paint (including stripes) must be uniform and smooth. Remove any paint blisters or flaking and sand smooth. Any decals or placards must be flush with no peeling edges. 3. The static ports must be free from any corrosion, elongation of holes, deformation or obstructions. If any damage is found, replace the static port. 4. The oxygen servicing door on the right hand side must close approximately flush with the fuselage skin and be free from damage or deformation. For model 300 only, the ELT access hole cover on the right hand side must be in place. AFT CORNER MARKING - TYPICAL (USE CONTRASTING COLOR) 12 INCHES STATIC PORTS ELT ACCESS HOLE (RH SIDE ONLY) OXYGEN SERVICING DOOR (RH SIDE ONLY) 12 INCHES 10 INCHES 14 INCHES AFT Figure 7-10, RVSM Critical Region G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-45 Revision 4 Note that Model B300/B300C aircraft with installation of the Sierra Nevada Corporation (SNC) Aircraft Survivability System (ASE) include a large external doubler and cover plate which are within the RVSM critical region as shown in Figure 7-10. These items are installed by SNC drawing number 01211012, B300 Aft ASE Provisions Installation. For these aircraft, the RVSM critical region must meet the following additional visual inspection criteria: The fillet seal around the perimeter of the external doubler must be smooth and uniform. The protruding head screws must be installed tightly against the cover plate. The cover plate must fit smoothly against the external doubler. AFT EXTERNAL DOUBLER COVER PLATE STATIC PORTS OXYGEN SERVICING DOOR (RH SIDE ONLY) AFT Figure 7-10, RVSM Critical Region (modified) 7.25.3 RVSM Static Port Height Inspection The Gauging Assembly p/n SPF-4 (A1M-BCH-GE) is available from Hawker Beechcraft. Any alternate tool authorized in the Super King Air 300 or B300 Maintenance Manual for RVSM static port measurements may be substituted for this tool. Initialize the tool as follows: 1. Make sure the dial indicator reads negative when the plunger is pressed and positive when the plunger is free. 2. Place the gauging assembly on a flat surface (gauge block or equivalent.) 3. Ensure the smaller needle is at approximately (.1). 4. Rotate the dial indicator to set the large needle at (0) as shown in Figure 7-11. Page 7-46 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 DIAL INDICATOR Figure 7-11, Dial Indicator The static port measurements are obtained at four locations on each static port as shown in Figure 7-13. These measurements are used to find an AVERAGE and ANGLE for each of the four static ports. The AVERAGE is calculated by adding the four measurements and dividing the total by 4. The ANGLE is calculated by subtracting the minimum measurement from the maximum measurement. The calculated AVERAGE and ANGLE for each static port must fall within the ranges shown in Figure 7-14. Perform the static port measurement as follows: 1. Wipe the surface of static ports clean with isopropyl alcohol. 2. Place the gauging assembly onto the static port surface as shown in Figure 7-12. DIAL INDICATOR GAGING ASSEMBLY STATIC PORT FUSELAGE SKIN Figure 7-12, Static Port Measurement NOTE The dial indicator shows 0.100 inch when completely flush. Therefore subtract the readings from 0.100 inch to determine the actual static port height. This should be completed before making any calculations. 3. For each static port, measure the static port height at the A, B, C and D locations as shown in Figure 7-13. Record the measurements in the measurement log, Figure 7-14. 4. Calculate the AVERAGE for each static port using the measurements by adding the four measurements and dividing the total by 4. Record the AVERAGE in the measurement log, Figure 7-14. 5. Ensure the AVERAGE for each static port is within tolerance (+0.045 to +0.085 inch.) If it is not, remove and reinstall the static ports as necessary to meet the tolerance. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-47 Revision 4 6. Calculate the ANGLE for each static port by subtracting the smallest of the A, B, C or D measurements from the largest of the A, B, C or D measurements. Record the ANGLE in the measurement log, Figure 7-14. 7. Ensure the ANGLE for each static port is within tolerance (0.000 to +0.026 inch.) If it is not, remove and reinstall the static ports as necessary to meet the tolerance. A B D C Figure 7-13, Static Port Measurement locations A B C D AVERAGE ANGLE (A+B+C+D)/4 Largest - Smallest UPPER LEFT LOWER LEFT UPPER RIGHT LOWER RIGHT Aircraft s/n: Date: Figure 7-14, Static Port Measurement Log 7.25.4 RVSM Air Data System Check Perform the Air Data Test per Section 7.6.1 If either the pilot or copilot air data system does not meet the tolerances specified, have maintenance checks performed on the air data system or the pitot/static system. IMPORTANT! RVSM operations are prohibited until the air data system meets all test conditions. Page 7-48 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7.25.5 RVSM In-Flight Altitude Hold Check RVSM operation requires that the autopilot system accurately maintain the acquired altitude during nonturbulent, non-gust cruise conditions. The autopilot must be maintained in accordance with the G1000 System Maintenance Manual listed in Table 1-3. The autopilot must be shown to meet the performance specification of the following in-flight altitude hold test. 1. Verify the following conditions (normal RVSM cruise flight): • Altitude FL290 to FL350 • Altimeter setting 29.92 in Hg (1013 HPA) • Autopilot altitude hold engaged • Non-turbulent, non-gust conditions 2. Record the data from the primary cockpit displays as specified by Table 7-8 every 5 minutes for a minimum flight segment of 30 minutes in length. The maximum altitude deviation shown on the display throughout the test should not exceed ±65 feet. If the aircraft fails to hold altitude to this tolerance, repeat the test ensuring that the airspeed remains constant and the air remains stable during the entire test. If the test still fails, have maintenance checks performed on the GFC 700 system, then repeat the test. RVSM operations are prohibited until the autopilot is capable of maintaining altitude within ±65 feet of the selected cruise altitude. Aircraft s/n: Date: Enroute To: Pilot: Time (hr:min) Pilot Altitude (ft) Copilot Airspeed (kt) Altitude (ft) Airspeed (kt) 0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 0:55 1:00 Table 7-8, In-Flight Altitude Hold Performance Test G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-49 Revision 4 7.26 ESP Functional Check NOTE This procedure is required only for aircraft with the optional Electronic Stability and Protection (ESP) feature. 1. Apply power to the aircraft and avionics systems by setting the BAT, EXT PWR and AVIONICS MASTER PWR switches to ON. Ensure G1000 system and components are powered and operating normally. 2. Verify the DISPLAY BACKUP button on the audio panel is pushed in so that the GDUs will not operate in reversionary mode. 3. Verify no AHRS, ADC, Autopilot, PFD, AFCS Mode Controller, GCU alert messages or monitor flags (HDG MISCOMP etc) are present on PFD1 or PFD2. 4. On initial power up verify that the MFD splash screen includes the following graphic: 5. On the GMC 710 couple the Flight Director to the left side by pressing the XFR button. The arrow that is illuminated indicates which side is coupled. No flight director modes should be active at this time. 6. On the GCU, rotate the inner FMS knob to activate the AUX – SYSTEM SETUP page on the MFD. 7. On the MFD AUX – SYSTEM SETUP page press the SETUP 2 softkey. 8. Verify that on the MFD SETUP 2 page there is a window for Stability & Protection and the status is “ENABLED”. 9. Verify on PFD 1 and PFD 2 that there are no “ESP FAIL”, “ESP OFF”, or “ESP DEGRADE” alert messages. 10. Cover both GPS1 and GPS2 antennas. 11. Verify on PFD 1 and PFD 2 the ESP Roll Indices are displayed at 45° on the roll indicator on the Attitude Display. Page 7-50 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 12. On the GCU, press the inner FMS knob to activate the cursor then rotate the outer FMS knob to select the Stability & Protection window on the MFD. 13. Rotate the inner FMS knob to change the status to “DISABLED”. 14. Verify that on the MFD SETUP 2 page Stability & Protection window that the status is “DISABLED”. 15. Verify on PFD 1 and PFD 2 the ESP Roll Indices are not displayed at 45° on the roll indicator on the Attitude Display. 16. Verify on PFD 1 and PFD 2 that there is an “ESP OFF” alert message. 17. Remove the cover from both GPS1 and GPS2 antennas. 18. Remove power to the aircraft and avionics systems by placing the aircraft AVIONICS MASTER PWR and EXP PWR switches to OFF. 19. Wait ~ 1 minute before re-applying aircraft power. 20. Apply power to the aircraft and avionics systems by setting the BAT, EXT PWR and AVIONICS MASTER PWR switches to ON. 21. During power up and GPS satellite acquisition, verify on PFD1 and PFD2 the ESP Roll Indices are displayed at 45° on the roll indicator on the Attitude Display. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-51 Revision 4 22. Once AFCS PFT is complete and GPS has acquired satellites, verify on PFD1 and PFD2 the ESP Roll Indices are not displayed at 45° on the roll indicator on the Attitude Display. 23. On the GCU, rotate the inner FMS knob to activate the AUX – SYSTEM SETUP page. 24. On the MFD AUX – SYSTEM SETUP page press the SETUP 2 softkey. 25. Verify that on the MFD SETUP 2 page there is a window for Stability & Protection and the status is “ENABLED”. 26. Verify on PFD 1 and PFD 2 that there are no “ESP FAIL” or “ESP OFF” alert messages. 27. On the GMC 710, couple the Flight Director to the right side by pressing the XFR button. The arrow that is illuminated indicates which side is coupled. No flight director modes should be active at this time. NOTE On power up the coupled side will default to the left side. Each time power is reapplied couple back to the right side and continue test steps. 28. Repeat step 1 thru 27 while coupled to right side. 29. Remove power to the aircraft and avionics systems by setting the aircraft AVIONICS MASTER PWR, EXT PWR and BAT switches to OFF. 30. Wait ~ 1 minute before re-applying power for further testing as required. Page 7-52 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7.27 GTS Traffic System Functional Check This section is applicable to the GTS 820/825 (TAS), GTS 850/855 (TCAS I), and GTS 8000 (TCAS II) traffic systems. Perform the following tests to verify GTS 820/850 or GTS Processor operational and surveillance functions. Use a ramp tester such as a TIC TR220 or equivalent to perform the tests. To perform these tests for the GTS 820/825/850/855 (GTS 8XX) traffic systems,, the aircraft must be on the ground, the Radar Altimeter circuit breaker (if installed) must be opened prior to GTS 8XX unit power on, remain open throughout testing, and the GTS XXX must be in Ground Test mode. For those tests with the GTS 8000 TCAS II configuration, the Radar Altimeter circuit breaker (if installed) must be engaged throughout these tests. On the MAP-TRAFFIC MAP page of the MFD, press the softkey sequence: 3, 4, 4, 3. The GND TEST softkey will appear. Press the GND TEST softkey to activate Ground Test mode. This simulates the GTS 8XX to be airborne at 50,000 feet with a magnetic heading of 0 degrees. To exit the Ground Test mode, press the GND TEST softkey again. To perform these tests for the GTS 8000 traffic system, the aircraft must be in a simulated ‘in-air’ condition. To accomplish this, place the aircraft on jacks or actuate the weight on wheels switches on both L/H and R/H main landing gear. Figure 7-15, GTS 8XX GND TEST softkey 7.27.1 Antenna Verification The following test assures the antennas and coaxial cables are properly connected. The GTS 8XX must be in Ground Test mode. 1. On the MAP-TRAFFIC MAP page of the MFD, press the OPERATE softkey (for GTS 8XX) or press TA ONLY softkey (for GTS 8000). A self test of the antenna circuit is initialized. If the MFD displays FAILURE at the upper left corner of the traffic display area, it will be necessary to recheck the coaxial connections. If MFD displays OPERATE (for GTS 8XX) or TA ONLY (for GTS 8000) without indicating a fault, proceed to the next step of antenna verification. 2. Ensure that the transmitter or receiver (TX/RX) that you are testing is significantly closer to the ramp tester than another operating RX/TX, or erroneous and inaccurate results may occur. All four quadrants (0, 90, 180 and 270 degrees) will be similarly tested to verify bearing of simulated intruder supplied via the ramp tester are correctly displayed on the MAP-TRAFFIC MAP page of the MFD. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-53 Revision 4 3. Set up a stationary intruder by selecting the following on the ramp tester: • Intruder type: ATCRBS. • Intruder Start Distance: 2 nm • Intruder Start Altitude (GTS 8XX): 50,000 ft • Intruder Start Altitude (GTS 8000): Local field elevation • Vertical Speed: 0 fpm • Velocity: 0 kts (on some ramp testers, a velocity greater than 0 kts is required and a stationary intruder is created by not starting the scenario.) 4. Position ramp tester at 0 degrees. 5. Initiate the intruder scenario and verify a target is annunciated on the MAP-TRAFFIC MAP page of the MFD at the correct bearing of approximately 0 degree azimuth at 2 NM and co-altitude (read as 00 above a filled diamond indicating proximate traffic). 6. On the ramp tester, toggle intruder traffic to standby or off. 7. Reposition ramp tester and reengage the same intruder scenario for 90, 180 and 270 degrees. 8. Verify a target is annunciated on the MAP-TRAFFIC MAP page of the MFD at the same bearing as the ramp tester. 9. If the bearing is not as anticipated or multiple targets are displayed during tests, verify the following: • • • Coax cable connectors are properly secured at the bulkhead adapter fittings, GA58 antennas, GTS unit and GPA 65 unit Connections are made to the proper channels and color-coded heat shrink is the same color on both ends of coax cables Connectors are correctly installed on coax cables If no other service is to be performed, continue to the return-to-service checks in Section 8. 7.27.2 Ramp Test The following test provides a scenario that will converge and intercept the GTS to assure proper operational and surveillance functions. The GTS 8XX must be in Ground Test mode. 1. On the MAP-TRAFFIC MAP page of the MFD, press the OPERATE softkey (for GTS 8XX) or TA/RA softkey (for GTS 8000). 2. For GTS 8000 only, change BARO setting to 29.92 in-Hg on PFD1 and PFD2. 3. Position ramp tester at 90 degrees. 4. Select the following on the ramp tester: • Intruder type: ATCRBS. • Intruder Start Distance: 15 nm • Intruder Start Altitude (GTS 8XX): 50,300 ft • Intruder Start Altitude (GTS 8000): 300 ft above PFD1/PFD2 displayed altitude • Vertical Speed: 0 fpm • Velocity: 600 kts Page 7-54 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 5. Initiate the intruder scenario and observe the following: • Traffic should be acquired at approximately 10 NM at 90 degree bearing and co-altitude. Observe intruder closes on own aircraft at a rate of 0.1 NM/sec. Verify that only a single target is displayed in the expected quadrant. • The intruder should transition from Other Traffic (displayed as an open diamond with +03 displayed above), to proximate traffic (displayed as a filled white diamond with +03 displayed above), to a Traffic Advisory (TA) alarm (yellow filled circle with +03 displayed above.) • For GTS 8000 installations, the following applies: The intruder should transition from a Traffic Advisory (displayed as a solid yellow circle with +03 displayed above), to a Resolution Advisory (RA) alarm (red filled square with +03 displayed above). Additionally, a Resolution Advisory is displayed on the vertical speed tape of PFD1 and PFD2 indicating guidance to the crew (solid red bar with vertical speeds to avoid and solid green bar with suggested vertical speeds). An audible Resolution Advisory (i.e. “DESCEND DESCEND”) is heard over cockpit speakers and headphones. NOTE The aural TA annunciations are muted if the gear is extended (and the Radar Altimeter indicates below 400 feet). For GTS 8000, to generate the DESCEND resolution advisory, the WOW actuators must be in set in air position and the Radar Altimeter must be set to greater than 2,000 ft (e.g. disconnect receive antenna coaxial cable from the GRA 5500). At the end of these tests, engage the Radar Altimeter circuit breaker (if installed) if disengaged at the beginning of this section. If no other service is to be performed, continue to the return-to-service checks in Section 8. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-55 Revision 4 7.28 Activation of Garmin Connext In order to activate the optional GDL 59 wi-fi datalink and optional GSR 56 satellite receiver for Garmin Connext, contact Garmin Product Support at one of the following numbers (M-F, 7:00 a.m. to 7:00 p.m. Central Standard Time, - Central USA): • 1.866.739.5687 (toll free in USA) • +1.913.440.1135 (worldwide) Have the following information ready prior to calling: • If activating services for a GDL 59-only installation o Aircraft tail number, serial number, manufacturer, and model o G1000 system ID number • If activating services for a GDL 59 and GSR 56 installation o Aircraft tail number, serial number, manufacturer, and model o GSR 56 unit serial number o G1000 system ID number o Name of aircraft owner and contact information o Credit card information Garmin Connext will provide additional information for activation of data services. To obtain the G1000 system ID number and GSR 56 unit serial number, accomplish the following: 1. Turn the large FMS knob on the MFD to select the AUX page group. 2. Turn the small FMS knob to select the SYSTEM STATUS page. Record the SYSTEM ID number shown in the AIRFRAME field. This number is unique for each G1000 system. SYSTEM ID Number Location Page 7-56 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 3. Use the large FMS knob to scroll the cursor to GSR1 (if GSR 56 is installed). Record the GSR 56 serial number shown in the LRU INFO field. For previously activated systems, if the GSR 56 satellite receiver unit is replaced, the new unit serial number must be registered with Garmin Connext. Contact Garmin Product Support and follow the activation procedure as described previously in this section. For previously activated systems, if the GDL 59 wi-fi datalink unit is replaced, the system must be registered again. This can be accomplished by entering the same passcode received during the intial activation process as described in the following steps: 1. Connect to an available network (reference Section 7.29 for details.) 2. Using the large FMS knob, select the AUX page group on the MFD. Using the small FMS knob, select the AUX-REPORT STATUS page. 3. Press the MENU key on the GCU to display the PAGE MENU window. 4. With the “Register With GFDS” option highlighted, press the ENT key on the GCU to display the GARMIN FLIGHT DATA SERVICE REGISTRATION window. 5. Using the keypad on the GCU, enter the access code (provided by Garmin Product Support during the initial activation of the system) in the NEW REGISTRATION - ACCESS CODE field and press the ENT key on the GCU. NOTE The replacement GDL 59 unit must be registered again, even if the MFD already shows REGISTERED in the STATUS window. 6. With the REGISTER field highlighted, press the ENT key on the GCU. 7. Verify that the STATUS field indicates REGISTERED and that the data displayed in the CURRENT REGISTRATION field matches the aircraft information. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-57 Revision 4 7.29 GDL 59 Wi-Fi Data Link Functional Check This check verifies GDL 59 Wi-Fi Data Link interface is configured and is functional. This check requires an operating and available wireless network to be within range of the aircraft. NOTE This check only verifies the data output from the G1000 equipment. Any equipment/wiring added that is not part of the installation data will need separate testing and verification not covered as part of this document. 1. Start the G1000 System in Normal Mode. 2. Using the large FMS knob, select the AUX page group on the MFD. Using the small FMS knob, select the AUX-REPORT STATUS page. 3. Press the WI-FI softkey on the MFD to select the AUX – WI-FI SETUP page. 4. Press the AVAIL softkey on the MFD to display the available WI-FI networks. 5. Press the FMS knob on the GCU to activate the cursor and rotate the small FMS knob to highlight the desired network in the AVAILABLE NETWORKS field. 6. Press the CONNECT softkey on the MFD to connect to the network. (Skip to step 12 if the selected network is a non-secure network.) 7. If the selected network is a secure network, enter the passcode in the ENTER PASSPHRASE field in the WPA SECURITY SETTINGS pop-up window. 8. Press the ENT key on the GCU to accept the passcode, then press the ENT key on the GCU again. 9. When the SAVE SETTINGS pop-up window is displayed, press the ENT key on the GCU keypad to select SAVE CONNECTION. 10. Enter the appropriate airport identifier in the SELECT AN AIRPORT TO ASSOCIATE WITH THE CONNECTION field, then press the ENT key on the GCU to accept the identifier. 11. With the CONNECT button highlighted, press the ENT key on the GCU to connect to the network. 12. Press the ENT key on the GCU if the verification window “Are you sure you want to connect?” is displayed. 13. Verify that the CONNECTION STATUS field on the AUX – WI-FI SETUP page on the MFD indicates CONNECTED. If no other service is to be performed, continue to the return-to-service checks in Section 8. Page 7-58 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 7.30 GSR 56 Satellite Receiver Functional Check 1. Power up the PFD1 in configuration mode. 2. On the PFD1, select GDL page group using the large FMS knob. 3. Using the small FMS knob select the GSR56 Configuration page. Verify the page can be displayed and information is available. 4. 5. 6. 7. 8. 9. 10. 11. 12. Figure 7-16, GSR56 Configuration Page Restart the G1000 System in Normal Mode. Using the large FMS knob, select the AUX page group on the MFD. Using the small FMS knob, select the AUX-TELEPHONE page. Ensure the system is showing Iridium signal strength (best if aircraft is outside). Press TEL button on the pilot’s GMA. Press the DIAL softkey on the MFD. Enter the test phone number in the ENTER PHONE NUMBER field using the GCU keypad. Press the ENT key on the GCU keypad to accept the phone number. Press the ENT key on the GCU keypad to initiate the dialing sequence. When call is complete, press the HANGUP softkey on the AUX – TELEPHONE page on the MFD to end the call. Figure 7-17, AUX-TELEPHONE page If no other service is to be performed, continue to the return-to-service checks in Section 8. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 7-59 Revision 4 7.31 Search and Rescue Functional Check 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. On the MFD, press the “FPL” key to display the Active Flight Plan Menu. Press the “MENU” key to display the PAGE MENU Options. Scroll through the choices with the FMS knob and select “Search and Rescue”. Press “ENT” key to complete the selection and view the SAR flight plan menus. From the Search and Rescue Menu, turn the large and small FMS knobs to enter the starting waypoint. Press ENT key to complete the selection and move to the next option, “PATTERN” type. Use the FMS knob to move to the PATTERN type and select “PARALLEL”. With the FMS knob scroll through the options and change the fields as desired, or leave the default entries. Press ENT key with the “ACTIVATE SAR?” field highlighted, to complete and activate the flight plan. Verify the parallel track search pattern is on the Navigation Map page. If no other service is to be performed, continue to the return-to-service checks in Section 8. Page 7-60 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 8 System Return to Service Procedure After reinstalling any G1000 LRU, verify the correct LRU software part numbers and versions against the numbers listed on the General Arrangement drawing listed in Table 1-2. To check an LRU software part number and/or version, follow the procedure defined in Section 3.9.3. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 8-1 Revision 4 8.1 Backup Path System Testing This final checkout tests various secondary communications paths to ensure that the paths function correctly. Perform the following steps and verify the results of each test. Before starting, create a simple Direct-To flight plan to an airport or other waypoint that is greater than 31 NM from the present aircraft position. Verify that the phase of flight displayed on the GPS CDI is ENR. 8.1.1 GPS Failure Test Step Single GPS Failure Condition: 1. Ensure GPS satellites are acquired. 2. Place a shroud over the GPS antenna for GIA 1 to prevent signal reception. Verify loss of signal on MFD AUX page 4. 3. Check for desired results. 4. Remove shroud from the GIA 1 GPS antenna and allow system to re-acquire satellites. 5. Place a shroud over the GPS antenna for GIA 2 to prevent signal reception. Verify loss of signal on MFD AUX page 4. 6. Check for desired results. 7. Remove shroud from the GIA 2 GPS antenna. Dual GPS Failure Condition: 1. Ensure GPS satellites are acquired. 2. Cover both GPS antennas. Verify loss of signal on MFD AUX page 4. 3. Check for desired results. 4. Remove shrouds from GPS antennas. 5. Allow both receivers to re-acquire satellite signals before continuing. Desired Result For each of the single GPS failure conditions, the following shall remain valid on the PFD throughout the procedure: • Attitude and Heading from AHRS. • Airspeed, Altitude, Vertical Speed, and OAT from Air Data Computer. • GPS Course Deviation Indicator For a GIA1 GPS Failure, an amber BOTH ON GPS2 is displayed on PFD 1 and PFD 2. For a GIA2 GPS Failure, an amber BOTH ON GPS1 is displayed on PFD 1 and PFD 2. For a dual GPS failure condition, the following shall occur: • GPS CDI flags LOI on both PFDs. • Attitude and Heading remain valid from both AHRS on both PFDs. • Airspeed, Altitude, Vertical Speed and OAT remain valid from both Air Data Computers on both PFDs. • LOI appears on MFD Map. • TAWS N/A aural alert & annunciation given. When GPS satellites are re-acquired, verify that the INTEG OK annunciation is given on the HSI in white for a brief period of time then disappears. After ~10 seconds of stable GPS position reacquisition, verify the TAWS AVAILABLE aural alert is given. Verify that the system returns to normal navigation mode (GPS CDI restored, LOI annunciation removed, & GPS data magenta). Page 8-2 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 8.1.2 GIA Failure Test Step Desired Result GIA 1 Failure Condition: 1. Ensure GPS satellites are acquired. 2. Open GIA1 primary and secondary CBs. 3. Verify desired results. 4. Close GIA1 primary and secondary CBs. Allow system to re-acquire satellites and return to normal display modes. For a GIA 1 failure condition, the following shall occur: GIA 2 Failure Condition: 1. Open GIA 2 CB. 2. Verify desired results. 3. Close GIA 2 CB. Allow system to reacquire satellites and return to normal display modes. Dual GIA Failure Condition: 1. Open GIA1 primary and secondary CBs and GIA 2 CB. 2. Check for desired results. 3. Restore power to both GIA units. • NAV 1 and COMM1 tuning fields on PFD1 and PFD2 are invalid (red X). • L/R engine data remains valid • XPDR1 is Inoperative. • GMA1 Is Inoperative. • AHRS1 is using backup GPS source. • AHRS2 not receiving backup GPS Information. • An amber BOTH ON GPS2 is displayed on PFD1 and PFD2. • AHRS and ADC data remain valid on PFD1 and PFD2. For a GIA 2 failure condition, the following shall occur: • NAV2 and COMM2 tuning fields on PFD1 and PFD2 are invalid (red X). • L/R engine data remains valid. • XPDR2 is Inoperative. • GMA2 Is Inoperative. • AHRS2 is using backup GPS source. • AHRS1 not receiving backup GPS Information. • An amber BOTH ON GPS1 is displayed on PFD1 and PFD2. • AHRS and ADC data remain valid on PFD1 and PFD2. For a dual GIA failure, the following shall occur: • COM1/NAV1 & COM2/NAV2 fields flag invalid. • GPS CDI flags LOI on PFD • NAV1 & NAV2 CDI loses deviation bar. • XPDR field flags invalid on PFD. • Engine Instrument field flags invalid on MFD. • All AHRS & ADC fields remain valid. • Red AFCS status annunciation given. • TAWS FAIL annunciation given. • ADF/DME windows flag invalid.* *If equipped. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 8-3 Revision 4 8.1.3 Display Failure Test Step Desired Result MFD Failure Condition: 1. Open MFD CB. 2. Verify desired results. 3. Close MFD CB. For an MFD failure condition, the following shall occur: PFD2 Display Failure Condition: 1. Open PFD 2 CB. 2. Verify desired results. 3. Close PFD 2 CB. PFD1 Display Failure Condition: 1. Open PFD 1 PRI and PFD1 SEC circuit breakers. 2. Verify desired results. 3. Close PFD 1 PRI and PFD1 SEC circuit breakers. Page 8-4 Revision 4 • MFD goes blank. • All PFD1 and PFD2 primary flight information is retained. • The COM 1/2 and NAV 1/2 tuning fields remain valid and can be tuned by rotating the tuning knobs on PFD1 and PFD2. • XPDR 1/2 fields remain valid and XPDRs can adjusted via PFD softkeys. For a PFD2 failure condition, the following shall occur: • PFD2 goes blank. • PFD1 and MFD remain in normal display formats. The following illuminate on PFD1: • HDG NO COMP illuminates on PFD1 • ROLL NO COMP illuminates on PFD1 • PIT NO COMP illuminates on PFD1 • IAS NO COMP illuminates on PFD1 • ALT NO COMP illuminates on PFD1 • GMA2 Fail – GMA2 is inoperative. • XPDR2 Fail – XPDR2 is Inoperative. For a PFD1 failure condition, the following shall occur: • PFD1 goes blank. • PFD2 and MFD remain in normal display formats. The following illuminate on PFD2: • HDG NO COMP illuminates on PFD2 • ROLL NO COMP illuminates on PFD2 • PIT NO COMP illuminates on PFD2 • IAS NO COMP illuminates on PFD2 • ALT NO COMP illuminates on PFD2 • GMA1 Fail – GMA1 is inoperative. • XPDR1 Fail – XPDR1 is Inoperative. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 8.1.4 G1000 Cooling Fan Fail Annunciation Check Do the following to verify the cooling fans and annunciations are functioning properly Step Desired Result Cooling Fan Failure Conditions: 1. Ensure the G1000 is in normal mode and verify that there are no fan related alert messages displayed in the PFD1 or PFD2 Alerts Window. 2. Pull the following cooling fan circuit breakers: a) PFD/GIA FANS LEFT b) PFD/GIA FANS RIGHT c) MFD FAN For the cooling fan failure conditions, after a 30second delay verify that the following alert messages are displayed: • AVN FAN 1 FAIL – Avionics cooling fan #1 is inoperative • AVN FAN 2 FAIL – Avionics cooling fan #2 is inoperative • PFD 1 FAN FAIL – PFD #1 cooling fan is inoperative • PFD 2 FAN FAIL – PFD #2 cooling fan is inoperative • MFD FAN FAIL – MFD cooling fan is inoperative Fan Failure reset and acknowledgement: 1. Reset all cooling fan circuit breakers. 2. Acknowledge alerts by pressing the ALERTS softkey on PFD1. Verify the above alerts extinguish. 8.1.5 Standby Instrument Electrical Power Checks This section tests the standby electrical power for the standby attitude indicator, the standby altimeter and the standby airspeed indicator. (The magnetic compass is tested in each Phase inspection during the cockpit lights check in the Super King Air 300 or B300 Maintenance Manual, listed in Table 1-2.) Step Desired Result 1. Remove or ensure external aircraft power is removed. Set main battery switch to OFF. 2. Ensure the STBY ATT and STBY ALTM circuit breakers are closed. 3. Ensure the MASTER PANEL LIGHTS rocker switch in the overhead panel is in the ON position. 4. Ensure the STBY INSTR knob is turned to full bright. Verify the STANDBY BATTERY annunciator/switch is not illuminated G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 8-5 Revision 4 Step Desired Result 5. Select (depress) the STANDBY BATTERY switch. Verify the following: • STBY Attitude indicator motor is energized as indicated by the indicator motor and the absence of OFF flag. • STBY altimeter vibrator is active as indicated by vibrator noise and absence of flag. • STBY attitude, STBY Altimeter, STBY Airspeed indicators are illuminated full bright. • Amber “ON” is annunciated full bright on the STANDBY BATTERY switch. • White STANDBY BATTERY legend on the standby battery switch is illuminated full bright. 6. Activate aircraft power by selecting the “on” position of the BATTERY switch. Verify the following: • “ON” annunciation should extinguish on the STANDBY BATTERY switch. • “ARM” should be fully illuminated (green) on the STANDBY BATTERY switch. • The STBY attitude, STBY altimeter and STBY airspeed instrument lighting reverts to the aircraft settings. • The STBY attitude OFF flag not present and STBY altimeter vibrator remains active. • White STANDBY BATTERY legend on the standby battery switch remains illuminated. 7. Deselect the STANDBY BATTERY switch Verify the following: • “ARM” annunciation extinguishes on the STANDBY BATTERY switch. • STBY attitude OFF flag not present and STBY altimeter vibrator remains active. • White STANDBY BATTERY legend on the standby battery switch remains illuminated. 8. Remove aircraft power by selecting the battery switch to “OFF” position. Verify the following: • The STBY Attitude OFF flag is in view is deactivated (the sound of the motor may be present as the gyro spools down). • The STBY altimeter vibrator is deactivated. • The STBY attitude, STBY altimeter, STBY airspeed and magnetic compass are no longer illuminated. • White STANDBY BATTERY legend on the standby battery switch extinguishes. Page 8-6 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 8.1.6 G1000 Backup Path Test 1. 2. 3. 4. With the G1000 in configuration mode, go to the GDU Page Group on PFD1. On PFD1, activate the cursor and select PFD1 in the SELECT UNIT field and press ENT. Observe the GRS 77 or GRS 7800 and GDC 74 DATA indicators in the ARINC 429 window. Verify both indicators are GREEN, indicating the channels are receiving data as shown below: 5. 6. 7. 8. 9. 10. 11. Figure 8-1, GDU Data Verification (ARINC 429) On PFD1, activate the cursor and select PFD2 in the SELECT UNIT field and press the ENT key. Repeat Steps 5 and 6. On PFD1, activate the cursor and select MFD1 in the SELECT UNIT field and press the ENT key. Repeat Steps 5 and 6. On PFD1, go to the GIA Page Group. Go to the RS-232 / ARINC 429 CONFIG page. Verify that GIA1 is selected in the SELECT UNIT field. Observe the data indicators for all configured RS-232 and ARINC 429 channels (except GIA DEBUG), including the GRS 77 or GRS 7800 and GDC 74 ARINC 429 channels. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 8-7 Revision 4 12. Verify all DATA indicators are GREEN, indicating the channels are receiving data as shown in the following image: Figure 8-2, GIA Data Verification (ARINC429/RS-232) 13. Activate the cursor and select GIA2 in the SELECT UNIT field, and then press the ENT key. 14. Repeat Steps 13 and 14. Page 8-8 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 15. 16. 17. 18. On PFD1, go to the CAN / RS-485 CONFIGURATION page in the GIA Page Group. Verify that GIA1 is selected in the SELECT UNIT field. Observe the data indicators for all configured RS-485 channels. Verify all DATA indicators are GREEN, indicating the channels are receiving data as shown: Figure 8-3, GIA Data Verification (RS-485) 19. Activate the cursor and select GIA2 in the SELECT UNIT field, and then press the ENT key. 20. Repeat Steps 18 and 19. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 8-9 Revision 4 8.2 GFC 700 Ground Checkout The following procedures verify the proper operation of the GFC 700 AFCS, after maintenance has been performed. The technician performing these checks should be thoroughly familiar with the G1000 and GFC 700. Information on the installation and operation of the GFC 700 can be found by referring to Sections 6.11, 6.14 and the G1000 in King Air 300/B300 Cockpit Reference Guide, listed in Table 1-2. NOTE In the sections that follow, an Autopilot disconnect should be accompanied by an aural alert (two-second tone) unless otherwise specified. 8.2.1 Pre-Flight Test 1. If selected ON, set the AVIONICS MASTER PWR and EXT PWR switches to OFF. After 30 seconds set the EXP PWR and AVIONICS MASTER PWR switches to ON. Verify the GFC 700 begins an automatic pre-flight test after AHRS and ADC parameters become valid. 2. Verify that a white ‘PFT’ annunciation is displayed on PFD1 and PFD2, as shown in Figure 8-4. Figure 8-4, Pre-Flight Test NOTE A momentarily red annunciation displayed before PFT starts is acceptable. 3. Upon successful completion of the test, an aural alert will sound and the annunciation will clear. The aural alert is generated by either GIA 63W #1 or GIA 63W #2, alternately, with each system powerup. Thus, the PFT sequence must be run twice to verify both GIA units are providing the correct aural alert. NOTE If the ‘PFT’ annunciation turns red, the test has failed. Return to Section 1 for troubleshooting. 4. Repeat Steps 1 - 3 to test the PFT aural alert for the other GIA 63W. Continue to Section 8.2.2. Page 8-10 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 8.2.2 AFCS Switch Checks Verify that the AFCS system buttons and switches are operating correctly by performing the following: 1. Actuate both sections of the PITCH TRIM (NOSE UP/NOSE DN) switch to activate Manual Electric Pitch Trim (MEPT). Verify the trim clutch engages and the trim wheel drives in the requested direction. Check operation in both the up and down direction. 2. Press the AP/YD DISC TRIM INTRPT switch and hold while actuating the manual electric trim switch. Verify trim does not run and the trim wheel rotates freely when moved manually. Release the AP/YD DISC TRIM INTRPT button and PITCH TRIM switch. 3. Engage the autopilot by pressing the AP key on AFCS mode controller. Press and hold the left section of the manual electric trim switch. Verify the Autopilot disengages normally with an aural alert and the trim wheel rotates freely when moved manually. 4. Engage the autopilot again by pressing the AP key on the AFCS mode controller. Verify the pitch and roll clutches engage and resist movement of the control wheel. Press and hold the CWS switch and verify the control wheel moves freely when moved manually. Verify the green ‘AP’ at the top of PFD1 and PFD2 is replaced by a white ‘CWS’. 5. Release the CWS switch and press the ‘XFR’ key on the AFCS mode controller. Verify the clutches are engaged and resist movement of the control wheel. Press and hold the CWS switch and verify the control wheel moves freely when moved manually. Verify the green ‘AP’ at the top of PFD1 and PFD2 is replaced by a white ‘CWS’. 6. Release the CWS switch and press the AP/YD DISC TRIM INTRPT switch on the pilots control wheel. Verify the autopilot disengages with a flashing amber ‘AP’ annunciation on PFD1 and PFD2, accompanied by an aural alert. Verify that the control wheel is free in pitch and roll axes. 7. Engage the autopilot again by pressing the ‘AP’ key on the AFCS mode controller. Open AFCS SERVOS circuit breaker. Verify the autopilot disconnects and the abnormal disconnect is provided, consisting of a continuous aural alert and a flashing red/white ‘AP’ annunciation. Verify no AFCS annunciations (e.g. AFCS, PFT, Mistrim) remain on PFD1 or PFD2. Press the AP/YD DISC TRIM INTRPT switch to cancel the abnormal alert. Close the AFCS SERVOS circuit breaker to restore power to the system and wait for completion of the pre-flight test sequence. 8. Engage the autopilot again by pressing the ‘AP’ key on the AFCS mode controller. Ensure the autopilot is coupled to GIA1 by verifying the arrowhead next to the ‘XFR’ key on the AFCS mode controller is pointing to the pilot’s side. If the arrowhead points to the copilot’s side, press the ‘XFR’ key. Open GIA1 primary and secondary circuit breakers. Verify the autopilot disconnects with a continuous aural alert and a flashing red/white ‘AP’ annunciation. Press the AP/YD DISC TRIM INTRPT switch to cancel the alert and annunciation. Close the GIA1 primary and secondary circuit breakers and wait for completion of the pre-flight test sequence. 9. Press the ‘XFR’ key on the AFCS mode controller and engage the autopilot by pressing the ‘AP’ key on the AFCS Mode Controller. Press the AP/YD DISC TRIM INTRPT switch on the pilot side to disconnect the autopilot; verify the flashing amber ‘AP’ alert is displayed on PFD1 and PFD2. 10. Press the GO AROUND button on the left throttle. Verify ‘TO’ is annunciated on PFD1 and PFD2 for both PITCH and ROLL modes and the command bars should be at 10 degrees nose up and wingslevel. 11. Press the Flight Director (FD) key on the AFCS mode controller to deactivate the GA mode. Press the AP key to engage the autopilot. Press the CWS button for a minimum of 5 seconds and release; verifying there is no residual force on the control stick for the pitch axis. 12. Disengage the autopilot by pressing the AP/YD DISC TRIM INTRPT switch on the co-pilot’s control wheel. Engage VS mode by pressing the VS key on the AFCS mode controller. Verify PFD1 and PFD2 display ‘VS’ in green and indicates a pitch reference of ‘0 FPM’. 13. Press the FLC key on the AFCS mode controller and verify that ‘FLC’ is annunciated on PFD1 and PFD2 in green with a reference of 100 KTS. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 8-11 Revision 4 14. Press the ALT key on the AFCS mode controller and verify that the ‘ALT’ annunciation is displayed in green on PFD1 and PFD2 with an altitude reference equal to the aircraft altitude (within the nearest 20 feet). 15. Press the FD key and verify that the mode annunciations and command bars are removed from the display. 8.2.3 Autopilot Clutch Overpower Check NOTE The GFC 700 uses electronic torque limiting as well as mechanical slip clutches to limit the maximum servo effort. When the system is on the ground, the electronic torque limiting is removed, allowing manual checks of the slip-clutch settings. 1. Engage the Autopilot by pressing the AP key on the AFCS mode controller. 2. Manually overpower the autopilot clutches in pitch and roll. If the Autopilot clutches cannot be overpowered, check the GSM 86 clutch cartridge. Refer to the servo installation drawing (listed in Table 1-2) as applicable. 3. Actuate and hold PITCH TRIM switch in either the NOSE UP or NOSE DOWN direction to disconnect the autopilot. While the trim is running, restrain the aircraft pitch trim wheel and verify that the trim clutch can be overpowered. If it cannot be overpowered, check the GSM 86 clutch cartridge. Refer to the pitch trim servo installation drawing listed in Table 1-2. 4. Engage the autopilot by pressing the AP key on the AFCS mode controller. Actuate and hold the manual electric trim switch in either the up or down direction to disconnect the autopilot. Verify that the trim wheel moves smoothly in both directions throughout the entire trim range during manual electric trim operation. If the trim wheel hesitates, this may indicate that the pitch trim clutch is slipping and proper clutch setting or clutch cartridge and cable tension should be verified. Refer to the Super King Air 300 or B300 Maintenance Manual and Pitch Trim Servo Install drawing, listed in Table 1-2, for clutch settings and cable tensions. If both clutch setting and cable tension are within tolerance, check the aircraft pitch trim system for excessive friction. Refer to the Super King Air 300 or B300 Maintenance Manual listed in Table 1-2. 8.2.4 Manual Electric Pitch Trim Speed Check 1. Run MANUAL ELECTRIC PITCH TRIM in one direction until it runs against the mechanical stop. 2. Run the trim in the opposite direction, and using a stop watch or equivalent device, time the trim speed to the opposite mechanical stop. Verify the elapsed time for full travel measures 13 ± 3 seconds. Page 8-12 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 8.2.5 Autopilot Operation Checks 1. Engage the Autopilot by pressing the AP key on the AFCS mode controller. Push the HDG knob to synchronize the heading bug to the current aircraft heading. Select HDG mode by pressing the HDG key on the AFCS mode controller. Verify the command bars are level and the control wheel is stationary. (There may be some roll motion in the yoke if the aircraft not perfectly level.) 2. Turn the HDG knob to the left and right and check that the command bars move in the correct direction and the control wheel follows the command bars. 3. Push and hold the CWS button and pull the control wheel to the center of the pitch control range. Release the CWS button. Verify the autopilot clutches re-engage and hold the wheel stationary. 4. Holding the control wheel lightly, rotate the NOSE UP/DN wheel on the AFCS mode controller two clicks UP to increase the pitch reference. Verify the command bars move up 1 degree and the control wheel begins moving aft. (In some aircraft, the down spring may require manual assistance to get aft control stick movement). 5. While holding the control wheel firmly, press and hold the CWS button to re-synchronize the pitch reference. Re-center the control wheel to wings level and mid-range elevator travel. Release the CWS button and check that servo clutches re-engage before releasing the control wheel. 6. Rotate the NOSE UP/DN wheel on the AFCS mode controller two clicks DOWN to decrease the pitch reference. Verify the command bars move down 1 degree and the control wheel begins moving forward. Hold the controls and press CWS to re-center the command bars and stop control wheel movement. 7. With the Autopilot still engaged and the CWS button pressed, move the control wheel to its aft limit. Release the CWS button and apply continuous forward pressure, slowly moving the control wheel. After a brief delay, verify the trim wheel begins moving in a trim up direction. 8. Grip the control wheel and press the CWS button. Verify trim motion stops. Move the control wheel to the forward limit and release the CWS button. Slowly move the control wheel aft. After a brief delay, verify the trim wheel begins to trim down. Relieve pressure on the wheel and verify the trim motion stops. Check that the trim wheel is free to turn. Hold the control wheel and press the AP/YD DISC TRIM INTRPT switch to disconnect the autopilot. G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Page 8-13 Revision 4 8.2.6 VOR/LOC/GS Test Perform the following test using ramp test equipment. Operate the equipment according to the test equipment manufacturer’s instructions. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. NOTE The PFD HSI does not show a course deviation bar unless a valid VHF NAV frequency is tuned. Ensure FD is coupled to PFD1 as indicated by a left pointing arrow next to the XFR button. Simulate a VOR signal on a radial equivalent to the aircraft heading. Tune the NAV 1 and NAV 2 receivers to the simulation frequency. Set the HSI on PFD1 to VOR1 by pressing the CDI soft key until VOR1 is selected. Set the HSI on PFD2 to VOR2 by pressing the CDI soft key until VOR2 is selected. Rotate CRS1 and CRS2 knobs to set VOR1 and VOR2 course pointers to aircraft heading. (CDI Synchronization must be set to OFF on the AUX-SYSTEM SETUP 1 page on the MFD.) Verify full scale deflection of VOR1 and VOR2 CDI by varying the selected course at least 10° left and right. Reset course pointers to aircraft heading. Engage the autopilot and press the NAV key on the AFCS mode controller. Using the CRS1 knob alter course by 10° to the right. Verify the flight director and aircraft controls respond by flying to the VOR course. Repeat to the left. Couple FD to PFD2 by pressing the XFR button on the AFCS mode controller. Verify FD is coupled right as indicated by a right pointing arrow on the AFCS mode controller next to the XFR button. Repeat step 5 using CRS2 knob while coupled to PFD2. Set CRS1 and CRS2 course pointers to aircraft heading. Simulate a Localizer/Glideslope signal. Tune this signal on NAV 1 and NAV 2 receiver. Set the PFD1 HSI to LOC1 and PFD2 HSI to LOC2 by pressing CDI soft key until LOC1 and LOC2 is selected. Use the test equipment to center the deviation bars (localizer and glideslope) on PFD1 and PFD2. Press the APR key on the AFCS mode controller. Verify that the LOC and GS annunciations are green on PFD1 and PFD2. Apply right/left and up/down localizer/glideslope signals using the test equipment. Verify that the Flight Director and flight controls respond appropriately. Couple FD to PFD1 by pressing the XFR button on the AFCS mode controller. Verify FD is coupled to PFD1 as indicated by a left pointing arrow on the AFCS mode controller next to the XFR button. Repeat step 9 while coupled to PFD1. Page 8-14 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 8.3 Maintenance Records This Post-Installation Configuration Log should be completed during the initial installation and maintained with the aircraft permanent records. Record the following information: • Part number of the G1000 software loader card used to perform software loading or software updates. • Record part and serial numbers of any LRU which was replaced. • Record any database updates which were performed during maintenance. • Any other applicable information related to the maintenance work performed on the aircraft. Post-Installation Configuration Log Date: Aircraft Model: Aircraft Make: Aircraft Registration: Aircraft Serial #: Engine: Prop: Unit/Option G1000 Loader Card Version: Installed/Enabled? (check if installed or configured) Unit/Option ADF Option GSR 56 with GDL 59 DME Option GDL59 ESP Support (no AoA) GMU 44 FDR Option GRS77 RAD ALT Option *(Non-Garmin) GRS7800 TCAS II System Option *(Non-Garmin) GSR 56 Stand Alone Traffic System Option *(Non-Garmin) GTS 820/850 BLR Winglet STC (model 300 only) GTS Processor (circle one) (825/855/8000) Lightning System Option GTX 3000 TAWS-A Support GTX 33ES TAWS-A Voice No Callout Installation Option GWX 68 TAWS-A Voice Callout Installation Option GWX 70 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01 Installed/Enabled? (check if installed or configured) Page 8-15 Revision 4 This page intentionally left blank. Page 8-16 Revision 4 G1000 / GFC 700 System Maintenance Manual - 300/B300 Series King Air 190-00716-01
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.6 Linearized : No Author : mastpa Create Date : 2014:02:27 16:12:33-06:00 Modify Date : 2014:03:04 13:35:27-06:00 Type : Info XMP Toolkit : Adobe XMP Core 5.2-c001 63.139439, 2010/09/27-13:37:26 Format : application/pdf Creator : mastpa Title : Microsoft Word - 190-00716-01_04.docx Creator Tool : PScript5.dll Version 5.2.2 Metadata Date : 2014:03:04 13:35:27-06:00 Producer : Acrobat Distiller 8.1.0 (Windows) Document ID : uuid:e9d792d4-ba06-4972-a242-934d462b3ade Instance ID : uuid:11de5a99-2919-41ab-bcaf-b40f1e7ed868 Page Count : 340EXIF Metadata provided by EXIF.tools