Laird Connectivity 44249AJ RF Transceiver Module User Manual
AeroComm Corporation RF Transceiver Module Users Manual
Users Manual
AC4424 2.4 GHz OEM TRANSCEIVERS Specifications Subject to Change User’s Manual Version 2.1 AVENUE 11160 THOMPSON AVENU LENEXA, KS 66219 492--2320 (800) 492 www.aerocomm.com wireless@aerocomm.com wireles s@aerocomm.com DOCUMENT INFORMATION Copyright Information Copyright © 2007 AEROCOMM, Inc. All rights reserved. The information contained in this manual and the accompanying software programs are copyrighted and all rights are reserved by AEROCOMM, Inc. AEROCOMM, Inc. reserves the right to make periodic modifications of this product without obligation to notify any person or entity of such revision. Copying, duplicating, selling, or otherwise distributing any part of this product without the prior consent of an authorized representative of AEROCOMM, Inc. is prohibited. All brands and product names in this publication are registered trademarks or trademarks of their respective holders. This material material is preliminary Information furnished by AEROCOMM in this specification is believed to be accurate. Devices sold by AEROCOMM are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. AEROCOMM makes no warranty, express, statutory, and implied or by description, regarding the information set forth herein. AEROCOMM reserves the right to change specifications at any time and without notice. AEROCOMM’s products are intended for use in normal commercial and industrial applications. Applications requiring unusual environmental requirements such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional testing for such application Limited Warranty, Disclaimer, Limitation of Liability For a period of one (1) year from the date of purchase by the OEM customer, AeroComm warrants the OEM transceiver against defects in materials and workmanship. AeroComm will not honor this warranty (and this warranty will be automatically void) if there has been any (1) tampering, signs of tampering; 2) repair or attempt to repair by anyone other than an AeroComm authorized technician. This warranty does not cover and AeroComm will not be liable for, any damage or failure caused by misuse, abuse, acts of God, accidents, electrical irregularity, or other causes beyond AeroComm’s control, or claim by other than the original purchaser. In no event shall AeroComm be responsible or liable for any damages arising: From the use of product; From the loss of use, revenue or profit of the product; or As a result of any event, circumstance, action, or abuse beyond the control of AeroComm, whether such damages be direct, indirect, consequential, special or otherwise and whether such damages are incurred by the person to whom this warranty extends or third party. If, after inspection, AeroComm determines that there is a defect, AeroComm will repair or replace the OEM transceiver at their discretion. If the product is replaced, it may be a new or refurbished product. 5/8/2007 DOCUMENT INFORMATION INFORMATION Revision Description Version 1.0 Version 1.1 Version 1.2 Version 1.3 Version 1.4 Version 1.5 11/7/2001 – Initial Release Version 10/14/2002 – Not Released 10/18/2002 – Full release of AC4424 specification 11/19/2002 – Made Full-Duplex incompatible with Stream Mode 12/09/2002 – Changed Sub Hop Adjust setting recommendations 1/30/2003 – Removed all references to Commercial and Industrial temperature. All products are now Industrial temperature. Changed Section 4.2.1 EEPROM Byte Read to allow multiple byte reads. 4/30/2004 – Added warranty information. Updated agency compliancy. Added new RSSI plot. Updated Channel Number information. Added configuration flow chart and timing diagrams. Updated approved antenna table. Added AC442410A information. 5/5/2004 – Modified references from Table 9 to Table 11. 5/10/2004 – Changed start-up time to reflect addition of microprocessor supervisor. Updated Auto Config table. Version 1.6 Version 1.7 Version 1.8 Version 1.9 Version 2.0 Version 2.1 5/8/2007 5/10/2005 - Added the following CC Commands; Sync Channel, EEPROM Byte Read/Write and Soft Reset. Added AT Commands. Removed Configuration command documentation (though the firmware will continue to support their usage). Added Auto Destination and Random Backoff. 3/23/2006 - Removed Stream mode, FEC and Frequency Offset documentation. Corrected Random backoff byte. 5/8/2007 – Updated RF channel settings and Table 10. Updated EEPROM parameters section and added descriptions to all fields. Updated the EEPROM byte write command description. TABLE OF CONTENTS 1. OVERVIEW ......................................................................................................................................6 2. AC4424 SPECIFICATIONS.............................................................................................................8 3. SPECIFICATIONS .........................................................................................................................10 3.1 INTERFACE SIGNAL DEFINITIONS .......................................................................................................10 3.2 ELECTRICAL SPECIFICATIONS.............................................................................................................11 3.3 SYSTEM TIMING .................................................................................................................................11 3.3.1 Serial Interface Data Rate.........................................................................................................12 3.3.2 Timing Diagrams.......................................................................................................................13 3.3.3 Maximum Overall System Throughput ......................................................................................15 4. CONFIGURING THE AC4424......................................................................................................15 4.1 EEPROM PARAMETERS ....................................................................................................................15 4.2 CONFIGURING THE AC4424 ..............................................................................................................19 4.3 COMMAND REFERENCE ......................................................................................................................20 4.4 AC4424 AT COMMANDS ...................................................................................................................21 4.4.1 Enter AT Command Mode .........................................................................................................21 4.4.2 Exit AT Command Mode............................................................................................................21 4.5 ON-THE-FLY CONTROL COMMANDS (CC COMMAND MODE) ............................................................22 4.5.1 Status Request............................................................................................................................22 4.5.2 Change Channel with Forced Acquisition Sync ........................................................................23 4.5.3 Server/Client..............................................................................................................................23 4.5.4 Sync Channel .............................................................................................................................24 4.5.5 Power-Down..............................................................................................................................25 4.5.6 Power-Down Wake-Up..............................................................................................................25 4.5.7 Broadcast Mode.........................................................................................................................25 4.5.8 Write Destination Address.........................................................................................................26 4.5.9 Read Destination Address..........................................................................................................26 4.5.10 EEPROM Byte Read..................................................................................................................26 4.5.11 EEPROM Byte Write .................................................................................................................27 4.5.12 Reset ..........................................................................................................................................27 5. THEORY OF OPERATION ..........................................................................................................28 5.1 HARDWARE INTERFACE ......................................................................................................................28 5.1.1 TXD (Transmit Data) and RXD (Receive Data) (pins 2 and 3 respectively) .............................28 5.1.2 Hop Frame (pin 6).....................................................................................................................28 5.1.3 CTS Handshaking (pin 7) ..........................................................................................................28 5.1.4 RTS Handshaking (pin 8) ..........................................................................................................28 5.1.5 9600 Baud/Packet Frame (pin 12).............................................................................................29 5.1.6 RSSI (pin 13)..............................................................................................................................29 5.1.7 Wr_ENA(EEPROM Write Enable) (pin 14) ..............................................................................30 5.1.8 UP_RESET (pin 15)...................................................................................................................31 5.1.9 Command/Data (pin 17)............................................................................................................31 5.1.10 In Range (pin 20).......................................................................................................................31 5.2 SOFTWARE PARAMETERS ...................................................................................................................32 5.2.1 RF Architecture (Server-Client/Peer-to-Peer) ..........................................................................32 5.2.2 RF Mode ....................................................................................................................................32 5.2.3 Random Back Off.......................................................................................................................33 5.2.4 Duplex Mode .............................................................................................................................33 5.2.5 Interface Timeout/RF Packet Size..............................................................................................34 5/8/2007 5.2.6 5.2.7 5.2.8 Serial Interface Baud Rate.........................................................................................................34 Network Topology......................................................................................................................35 Auto Config................................................................................................................................36 6. DIMENSIONS .................................................................................................................................37 7. ORDERING INFORMATION.......................................................................................................39 7.1 7.2 PRODUCT PART NUMBERS..................................................................................................................39 DEVELOPER KIT PART NUMBERS .......................................................................................................39 8. REGULATORY INFORMATION ................................................................................................40 8.1 8.2 8.3 FCC ...................................................................................................................................................40 CE......................................................................................................................................................42 APPROVED ANTENNA LIST .................................................................................................................43 Figures Figure 1 - RSSI Voltage vs. Received Signal Strength ................................................................................ 30 Figure 2 – AC4424 with MMCX ................................................................................................................. 37 Figure 3 – AC4424 with Integral Antenna ................................................................................................... 38 Tables Table 1 – Pin Definitions.............................................................................................................................. 10 Table 2 – DC Input Voltage Characteristics................................................................................................. 11 Table 3 – DC Output Voltage Characteristics .............................................................................................. 11 Table 4 – Timing Parameters........................................................................................................................ 15 Table 5 – Maximum Overall System Throughputs ...................................................................................... 15 Table 6 – EEPROM Parameters ................................................................................................................... 16 Table 7 – RSSI Board Rev History .............................................................................................................. 30 Table 9 – Baud Rate ..................................................................................................................................... 34 Table 10 – US and International RF Channel Number Settings ................................................................... 35 Table 11 – Auto Config Parameters ............................................................................................................. 36 5/8/2007 AC4424 Features Simple 5V TTL level serial interface for fast integration Frequency Hopping Spread Spectrum for security and interference rejection Cost Efficient for high volume applications Low power consumption for battery powered implementations Small size for portable and enclosed applications Very Low latency and high throughput Industrial temperature (-40°C to 80°C) 1. Overview The AC4424 is a member of AeroComm’s ConnexRF OEM transceiver family. It is designed for integration into OEM systems operating under FCC part 15.247 regulations for the 2.4 GHz ISM band. The AC4424 is a cost-effective, high performance, 2.4 GHz frequency hopping spread spectrum transceiver. It provides an asynchronous TTL level serial interface for OEM Host communications. Communications include both system and configuration data. The Host supplies system data for transmission to other Host(s). Configuration data is stored in an onboard EEPROM. All frequency hopping, synchronization, and RF system data transmission/reception is performed by the transceiver. The AC4424 transceivers can be used as a direct serial cable replacement – requiring no special Host software for operation. They also feature a number of On-the-Fly Control Commands providing the OEM Host with a very versatile interface for any situation. AC4424 transceivers operate in a Point-to-Point or Point-to-Multipoint, Client-Server or Peerto-Peer architecture. One transceiver is configured as a Server and there can be one or many Clients. To establish synchronization between transceivers, the Server emits a beacon. Upon detecting a beacon, a Client transceiver informs its Host and a RF link is established. There are two data rates the OEM should be aware of: • Serial Interface Data Rate – All transceivers can be configured to common PC serial port baud rates from 110 bps to 288,000 bps. • Effective Data Transmission Rate – The AC4424 is a highly efficient, low-latency transceiver. The RF baud rate of the AC4424 is fixed at 576kbps and is independent of the serial interface data rate. This document contains information about the hardware and software interface between an AeroComm AC4424 transceiver and an OEM Host. Information includes the theory of operation, specifications, interface definition, configuration information and mechanical drawing. 5/8/2007 The OEM is responsible for ensuring the final product meets all FCC and/or appropriate regulatory agency requirements listed herein before selling any product. 5/8/2007 2. AC4424 Specifications GENERAL Interface Serial Interface Data Rate Power Consumption (typical) Channels (used to create independent networks) Security Interface Buffer Size 20 pin mini-connector PC baud rates from 110 bps to 288,000 bps Duty Cycle (TX=Transmit; RX=Receive) 10%TX 50%TX 100%TX 100%RX Pwr Pwr-Down AC4424-9AJ: 100mA 160mA 235mA 85mA 15mA AC4424-10: 90mA 115mA 140mA 85mA 15mA AC4424-100: 100mA 160mA 235mA 85mA 15mA AC4424-200: 115mA 235mA 385mA 85mA 15mA US/Canada (10mW, 100mW, 200mW): 16 Europe & Japan Low Band(100mW, 9AJ): 20 Europe & Japan High Band(100mW, 9AJ): 20 One byte System ID Input/Output: 256 bytes each RADIO Frequency Band Radio Type Output Power (conducted, no antenna) Effective Isotropic Radiated Power (EIRP with 3dBi gain antenna) Voltage Sensitivity Range (based on 3dBi gain antenna) US/Canada (10mW, 100mW, 200mW): 2.402 – 2.478 GHz Europe & Japan Low Band(100mW, 9AJ): 2.406 – 2.435 GHz Europe & Japan High Band(100mW, 9AJ): 2.444 – 2.472 GHz Frequency Hopping Spread Spectrum AC4424-9AJ: 9mW typical AC4424-10: 10mW typical AC4424-100: 50mW typical AC4424-200: 200mW typical AC4424-9AJ: 9mW typical (integral antenna) AC4424-10: 20mW typical AC4424-100: 100mW typical AC4424-200: 400mW typical 5V nominal ±2%, ±50mV ripple -90dBm typical @ 576kbps AC4424-9AJ: Indoors to 150 ft., Outdoors to 1000 ft. AC4424-10: Indoors to 300 ft., Outdoors to 3000 ft. AC4424-100: Indoors to 400 ft., Outdoors to 6000 ft. AC4424-200: Indoors to 500 ft., Outdoors to 10000 ft. ENVIRONMENTAL Temperature (Operating) Industrial: Temperature (Storage) Humidity (non-condensing) -40°C to 80°C -50°C to +85°C 10% to 90% Dimensions Antenna 1.65” x 2.65” x 0.20” AC4424-9AJ: Integra Antenna AC4424-10: MMCX Jack or Integral Antenna PHYSICAL 5/8/2007 Weight 5/8/2007 AC4424-100: MMCX Jack AC4424-200: MMCX Jack Less than 0.7 ounce 3. Specifications 3.1 INTERFACE SIGNAL DEFINITIONS The AC4424 has a simple interface that allows OEM Host communications with the transceiver. Table 1 – Pin Definitions Definitions, shows the connector pin numbers and associated functions. The I/O direction is with regard to the transceiver. All I/O is 5VDC TTL level signals except for RSSI. All inputs are weakly pulled High and may be left floating during normal operation. Table 1 – Pin Definitions Pin Type Signal Name NC No Connect TXD Transmitted data out of the transceiver RXD Data input to the transceiver NC No Connect GND GND Hop Frame CTS RTS Function Signal Ground HOP FRAME – Active Low when the transceiver is hopping. Clear to Send – Active Low when the transceiver is ready to accept data for transmission. Request to Send – When enabled in EEPROM, active Low when the OEM Host is ready to accept data from the transceiver. NOTE: Keeping RTS High for too long can cause data loss. NC 10 PWR 11 12 No Connect VCC 5V ± 2%, ± 50mV ripple PWR VCC 5V ± 2%, ±50 mV ripple I/O 9600_BAUD/ 9600_BAUD – When pulled logic Low before applying power or resetting the Packet Frame transceiver’s serial interface is forced to a 9600, 8, N, 1 rate. To exit, transceiver must be reset or power-cycled with 9600_Baud logic High. *Note: 9600_BAUD should only be used to recover the radio from an unknown baud rate and should not be used during normal operation. Packet Frame – When programmed in EEPROM, Packet Frame will transition logic Low at the start of a received RF packet and transition logic High at the completion of the packet. 13 RSSI Received Signal Strength Indicator - An analog output giving a relative indication of received signal strength while in Receive Mode. 14 WR_ENA EEPROM Write Enable – When pulled logic Low, it allows the Host to write the on-board EEPROM. Resetting the transceiver with this pin pulled Low may corrupt EEPROM data. 15 UP_RESET RESET – Controlled by the AC4424 for power-on reset if left unconnected. After a Stable power-on (250ms) a 50us logic High pulse will reset the AC4424. Do not power up the transceiver with this pin tied Low. 16 GND GND 17 Command/Dat 18 5/8/2007 NC Signal Ground When logic Low, transceiver interprets Host data as command data. When logic High, transceiver interprets Host data as transmit data. No Connect 10 19 20 NC No Connect IN_RANGE In Range – Active Low when a Client radio is in range of a Server on same Channel with the same System ID. I = Input to the transceiver O = Output from the transceiver 3.2 ELECTRICAL SPECIFICATIONS Table 2 – DC Input Voltage Characteristics Pin Type Name RXD High Min. 0.2Vcc+0.9 High Max. Vcc+0.5 Low Min. -0.5 RTS 0.2Vcc+0.9 Vcc+0.5 -0.5 12 9600_Baud 0.2Vcc+0.9 Vcc+0.5 -0.5 14 15 WR_ENA UP_RESET 0.7Vcc 0.7Vcc Vcc+1 Vcc+0.5 -0.3 -0.5 17 Command/Data 0.2Vcc+0.9 Vcc+0.5 -0.5 Low Max. 0.2Vcc0.1 0.2Vcc0.1 0.2Vcc0.1 0.5 0.2Vcc0.1 0.2Vcc0.1 Unit Table 3 – DC Output Voltage Characteristics Pin Type Name TXD Hop Frame CTS 12 Packet Frame 13 20 RSSI IN_RANGE High Min. Vcc-0.7 @ 30µA Vcc-0.7 @ 30µA Vcc-0.7 @ 30µA Vcc-0.7 @ 30µA See Figure 1 Vcc-0.7 @ 30µA Low Max. 0.4 @ 1.6mA 0.4 @ 1.6mA 0.4 @ 1.6mA 0.4 @ 1.6mA See Figure 1 0.4 @ 1.6mA Unit 3.3 SYSTEM TIMING Care should be taken when selecting transceiver architecture as it can have serious effects on data rates, latency timings, and Overall System Throughput. The importance of these three characteristics will vary from system to system and should be a strong consideration when designing the system. 5/8/2007 11 Serial 3.3.1 Seri al Interface Data Rate The Serial Interface Data Rate is programmable by the Host. This is the rate the Host and transceiver communicate over the serial bus. Possible values range from 110 bps to 288,000 bps. The only supported mode is asynchronous – 88-bit, No Parity, 1 Start Bit, and 1 Stop Bit. 5/8/2007 12 3.3.2 Timing Diagrams Addressed Acknowledge Mode with Interface Timeout: Local_RXD Packet Data Wait for Hop Local_RF_TXD RF Packet Remote_RF_TXD RF Acknow ledge Remote_TXD Received Data Interface Timeout Hop Period Hop Time Hop_Frame Addressed Acknowledge Mode with No Interface Timeout: Local_RXD Packet Data Wait for Hop Local_RF_TXD RF Packet Remote_RF_TXD RF Acknow ledge Remote_TXD Received Data Hop Period Hop Time Hop_Frame Broadcast Acknowledge Mode with No Interface Timeout: Local_RXD Packet Data Wait for Hop Local_RF_TXD RF Packet Remote_RF_TXD Remote_TXD Received Data Hop Period Hop Time Hop_Frame 5/8/2007 13 Broadcast Acknowledge M Mode ode with Interface Timeout: Local_RXD Packet Data Wait for Hop Local_RF_TXD RF Packet Remote_RF_TXD Remote_TXD Received Data Interface Timeout Hop Period Hop Time Hop_Frame 5/8/2007 14 Table 4 – Timing Parameters Parameter Typical Time (ms) Hop Time Hop Period 3.3.3 Maximum Overall System Throughput When configured as shown in the table below, an AC4424 transceiver is capable of achieving the listed throughput. However, in the presence of interference or at longer ranges, the transceiver may not be able to meet these specified throughputs. Table 5 – Maximum Overall System Throughputs RF Mode Interface Baud Baud Rate Duplex Direction Throughput (bps) Acknowledge 115,200 Half One way 80k Acknowledge 115,200 Full Both ways 40k 4. Configuring the AC4424 4.1 EEPROM PARAMETERS A Host can program various parameters that are stored in EEPROM and become active after a power-on reset. Table 6 - EEPROM Parameters, Parameters gives the locations and descriptions of the parameters that can be read or written by a Host. Factory default values are also shown. Do not write to any EEPROM addresses other than those listed below. Do not co copy py a transceiver’s EEPROM data to another transceiver. Doing so may cause the transceiver to malfunction. 5/8/2007 15 Table 6 – EEPROM Parameters Parameter Product ID Channel Number Server/Client Mode Baud Rate Low Baud Rate High Control 0 Length EEPROM (Bytes Address 00H 40 Default 40H 00 – 27h 00h 41H 01 – 02h 02h 42H 00 – FFh 05h Description 40 bytes - Product identifier string. Includes revision information for software and hardware. Refer to Table 10 01h = Server 02h = Client Low Byte of the interface baud rate. 43H 45H Transmit Retries 4CH Broadcast Attempts 4DH API Control 56H 5/8/2007 Range 00 – FFh 00h High Byte of the interface baud rate. 00010100 Settings are: b (14h) Bit 7 – AeroComm Use Only Bit 6 – AeroComm Use Only Bit 5 – Sync to Channel 0 = Don't Sync to Channel 1 = Sync to Channel Bit 4 – AeroComm Use Only Bit 3 – Packet Frame 0 = Disable Packet Frame 1 = Use pin 12 as Packet Frame Bit 2 – AeroComm Use Only Bit 1 – RF Delivery 0 = Addressed 1 = Broadcast Bit 0 – AeroComm Use Only 01 - FFh 10h Maximum number of times a packet is sent out when using Addressed packets. 01 – FFh 04h Maximum number of times a packet is sent out when using Broadcast packets. 01000011 Settings are: b = 43h Bit 7 – AeroComm Use Only Bit 6 – RF Architecture 0 = Server-Client 1 = Peer-to-Peer Bit 5 – AeroComm Use Only Bit 4 – Auto Destination 16 0 = Use Destination Address 1 = Automatically set Destination to Server Bit 3 – AeroComm Use Only Bit 2 – RTS Enable 0 = RTS Ignored 1 = Transceiver obeys RTS Bit 1 – Duplex Mode 0 = Half Duplex 1 = Full Duplex Bit 0 – Auto Config 0 = Use EEPROM values 1 = Auto Configure Values Parameter Transmit Retries Length EEPROM (Bytes Address Range 4CH 01 - FFh Broadcast Attempts 4DH API Control 56H Interface Timeout 58H 5/8/2007 Default 10h Description Maximum number of times a packet is sent out when Addressed packets are selected. 01 – FFh 04h Maximum number of times a packet is sent out when Broadcast packets are selected. 01000011 Settings are: b = 43h Bit 7 – AeroComm AeroComm Use Only Bit 6 – RF Architecture 0 = Server-Client 1 = Peer-to-Peer Bit 5 – AeroComm Use Only Bit 4 – Auto Destination 0 = Use Destination Address 1 = Automatically set Destination to Server Bit 3 – AeroComm Use Only Bit 2 – RTS Enable 0 = RTS Ignored 1 = Transceiver obeys RTS Bit 1 – Duplex Mode 0 = Half Duplex 1 = Full Duplex Bit 0 – Auto Config 0 = Use EEPROM values 1 = Auto Configure Values 01 – FFh F0h Specifies a byte gap timeout, used in conjunction with RF Packet Size to determine when a packet coming over the interface is complete (160 us per 17 Sync Channel 5AH 00 – 3Fh 01h RF Packet Size 5BH 01 – 40h 40h CTS On 5CH 01 – FFh C0h CTS On Hysteresis 5DH 01 – FFh 80h Destination ID System ID 70H 76H 00 – FFh 6 Bytes 01h MAC ID 80H Parameter Random Backoff 5/8/2007 Length EEPROM (Bytes Address Range C3h 00 - FFh 6 Bytes Default 00h increment). Used to synchronize the hopping of collocated systems to minimize interference. Used in conjunction with Interface Timeout; specifies the maximum size of an RF packet. CTS will be deasserted (High) when the transmit buffer contains at least this many characters. Once CTS has been deasserted, CTS will be reasserted (Low) when the transmit buffer is contains this many or less characters. Specifies destination for RF packets Similar to network password. Radios must have the same system ID to communicate with each other. Unique IEEE MAC Address Description 00h = Disable Random Backoff 01h = Wait 1-2 packet times, then retry 03h = Wait 1-4 packet times, then retry 07h = Wait 1-8 packet times, then retry 0Fh = Wait 1-16 packet times, then retry 1Fh = Wait 1-32 packet times, then retry 3Fh = Wait 1-64 packet times, then retry 7Fh = Wait 1-128 packet times, then retry FFh = Wait 1-256 packet times, then retry 18 4.2 CONFIGURING THE AC4424 Receive Mode Use AT Commands? No Send “Enter AT” Command (Software Configuration) Send CC Commands? No Take Pin 17 Low (Hardware Configuration) No Exit Command Mode? Send CC Command In AT Command Mode? Send another CC Command? Send “Exit AT” Command No No Take Pin 17 High Receive Mode Resetting the AC4424 at any time will exit Configuration or CC Command mode. 5/8/2007 19 4.3 COMMAND REFERENCE Command Command (All Bytes in Hex) AT Enter Command Mode 41h 54h Exit AT Command Mode CCh 41h 2Bh 2Bh 54h Return (All Bytes in Hex) 2Bh 0Dh CCh 43h 4Fh 4Dh 4Fh 0Dh CCh 44h 41h 54h Status Request CCh 00h 00h CCh Firmware Version Change Channel with Forced Acquisition CCh 02h New Channel CCh New Channel Server/Client CCh 03h 00h – Server in Normal Operation 01h – Client in Normal Operation 02h – Server in Acquisition Sync 03h – Client in Acquisition Sync CCh Firmware Version 00h: Server In Range 01h: Client In Range 02h: Server Out of Range 03h: Client Out of Range 00h – Server in Normal Operation 01h – Client in Normal Operation 02h – Server in Acquisition Sync 03h – Client in Acquisition Sync Sync Channel CCh 05h New Sync Channel CCh New Sync Channel Power-Down CCh 06h CCh Channel Power-Down Wake-Up CCh 07h CCh Channel Broadcast Mode CCh 08h 00h: Addressed 01h: Broadcast CCh 00h or 01h Write Destination Address CCh 10h Byte 4 of destination’s MAC CCh Byte 4 of destination’s MAC Byte 5 of destination’s MAC Byte 6 of destination’s MAC Read Destination Address CCh 11h CCh Byte 4 of destination’s MAC Byte 5 of destination’s MAC Byte 6 of destination’s MAC EEPROM Byte Read CCh C0h Start Address Length (01h – 80h) CCh Start Address Length Data at Addresses EEPROM Byte Write CCh C1h Address Address Length (01h) Soft Reset CCh FFh 5/8/2007 Byte 6 of destination’s MAC Byte 5 of destination’s MAC Length (01h) Data to be Written Last byte of Data Written 20 4.4 AC4424 AT COMMANDS The AT Command mode implemented in the AC4424 creates a virtual version of the Command/Data pin. The “Enter AT Command Mode” Command asserts this virtual pin Low (to signify Command Mode) and the “Exit AT Command Mode” Command asserts this virtual pin High (to signify Data). Once this pin has been asserted Low, all On-the-Fly CC Commands documented in the manual are supported. When in AT Command Mode, the user cannot send or receive RF packets. However, an ambiguity of approximately 10ms exists where, if the “Enter AT Command Mode” command has been sent to the transceiver at the same time an RF packet is being received, the RF packet could be sent to the OEM Host before the “Enter AT Command Mode” command response is sent to the OEM Host. NOTE: The RF packet size must be set to a minimum of 6 bytes in order to enter Command mode us using ing the Enter AT Command mode command. 4.4.1 Enter AT Command Mode Prior to sending the “Enter AT Command Mode” command to the transceiver, the OEM Host must ensure that the RF transmit buffer of the transceiver is empty (if the buffer is not empty, the ”Enter AT Command Mode” command will be interpreted as packet data and will be transmitted out over the RF). This can be accomplished by waiting up to one second between the last transmit packet and the AT Command. The OEM Host must also ensure that the RF Packet Packet Size for the transceiver is set to a minimum of six. The Enter AT Command mode command is as follows: OEM Host Command: 41h 54h 2Bh 2Bh 2Bh 0Dh Transceiver Response: CCh 43h 4Fh 4Dh 4.4.2 Exit AT Command Mode To exit AT Command Mode, the OEM Host should send the following command to the transceiver: OEM Host Command: CCh 5/8/2007 41h 54h 4Fh 0Dh 21 Transceiver Response: CCh 44h 41h 54h 4.5 ON-THE-FLY CONTROL COMMANDS (CC COMMAND MODE) The AC4424 transceiver contains static memory that holds many of the parameters that control the transceiver operation. Using the “CC” command set allows many of these parameters to be changed during system operation. Because the memory these commands affect is static, when the transceiver is reset, these parameters will revert back to the settings stored in the EEPROM. While in CC Command mode using pin 17 (Command/Data), the RF interface of the transceiver is still active. Therefore, it can receive packets from remote transceivers while in CC Command mode and forward these to the OEM Host. While in CC Command mode using AT Commands, the RF interface of the transceiver is active, but packets sent from other transceivers will not be received. The transceiver uses Interface Timeout/RF Packet Size to determine when a CC Command is complete. Therefore, there should be no delay between each character as it is sent from the OEM Host to the transceiver or the transceiver will not recognize the command. If the OEM Host has sent a CC Command to the transceiver and an RF packet is received by the transceiver, the transceiver will send the CC Command response to the OEM Host before sending the packet. However, if an RF packet is received before the Interface Timeout expires on a CC Command, the transceiver will send the packet to the OEM Host before sending the CC Command response. When an invalid command is sent, the radio scans the command to see if it has a valid command followed by bytes not associated with the command, in which case the radio discards the invalid bytes and accepts the command. In all other cases, the radio returns the first byte of the invalid command back to the user and discards the rest. The EEPROM parameters and a Command Reference are available in Section 4, Configuring the AC4424, AC4424 of this manual. 4.5.1 Status Request The Host issues this command to request the status of the transceiver. Host Command: Byte 1 = CCh Byte 2 = 00h Byte 3 = 00h Transceiver Response: Byte 1 = CCh Byte 2 = Firmware version number Byte 3 = Data1 5/8/2007 22 Where: Data1 = 00 for 01 for 02 for 03 for Server in Normal Operation Client in Normal Operation Server in Acquisition Sync Client in Acquisition Sync 4.5.2 Change Channel with Forced Acquisition Sync The Host issues this command to change the channel of the transceiver and force the transceiver to actively begin synchronization. Host Command: Byte 1 = CCh Byte 2 = 02h Byte 3 = RF Channel Number (Hexadecimal) Transceiver Response: Byte 1 = CCh Byte 2 = RF Channel Number (Hexadecimal) 4.5.3 Server/Client The Host issues this command to change the mode (Server or Client) of the transceiver and can force the transceiver to actively begin synchronization. Host Command: Byte 1 = CCh Byte 2 = 03h Byte 3 = Data1 Where: Data1 = 00 for 01 for 02 for 03 for Server in Normal Operation Client in Normal Operation Server in Acquisition Sync Client in Acquisition Sync Transceiver Response: Byte 1 = CCh Byte 2 = Firmware Version Number Byte 3 = Data1 Where: Data1 = Data1 from Host Command 5/8/2007 23 4.5.4 Sync Channel The Sync Channel command can be sent to a Server that already has Sync-to-Channel enabled. This will change the Server’s Sync Channel setting. Host Command: Byte 1 = CCh Byte 2 = 05h Byte 3 = New Channel to Synchronize to Transceiver Response: Byte 1 = CCh Byte 2 = New Channel to Synchronize to 5/8/2007 24 Power--Down 4.5.5 Power After the Host issues the power-down command to the transceiver, the transceiver will deassert the In_Range line after entering power-down. A Client transceiver in power-down will remain in sync with a Server for a minimum of 2 minutes. To maintain synchronization with the Server, this Client transceiver should re-sync to the Server at least once every 2 minutes. This re-sync is accomplished by issuing the PowerPower-Down WakeWake-Up Command and waiting for the In Range line to go active. Once this occurs, the Client transceiver is in sync with the Server and can be put back into power-down. Host Command: Byte 1 = CCh Byte 2 = 06h Transceiver Response: Byte 1 = CCh Byte 2 = RF Channel Number (Hexadecimal) 4.5.6 PowerPower-Down WakeWake-Up The Power-Down Wake-Up Command is issued by the Host to bring the transceiver out of power-down mode. Host Command: Byte 1 = CCh Byte 2 = 07h Transceiver Response: Byte 1 = CCh Byte 2 = RF Channel Number (Hexadecimal) 4.5.7 Broadcast Mode The Host issues this command to change the transceiver operation between Addressed Mode Mode and Broadcast Mode. Mode If addressed mode is selected the transceiver will send all packets to the radio designated by the Destination Address programmed in the transceiver. Host Command: Byte 1 = CCh Byte 2 = 08h Byte 3 = 00 for addressed mode, 01 for broadcast mode Transceiver Response: Byte 1 = CCh Byte 2 = 00 for addressed mode, 01 for broadcast mode 5/8/2007 25 4.5.8 Write Destination Address The Host issues this command to the transceiver to change the Destination Address. This is a very powerful command that provides the OEM Host with a means for ad-hoc networking. Only the three Least Significant Bytes of the MAC Address are used for packet delivery. Host Command: Byte 1 = CCh Byte 2 = 10h Bytes 3 – 5 = 00 – FFh corresponding to the three LSB’s of the destination MAC Address Transceiver Response: Byte 1 = CCh Bytes 2 – 4= 00 – FFh corresponding to the three LSB’s of the destination MAC Address 4.5.9 Read Destination Address The Host issues this command to the transceiver to read the Destination Address. This is a very very powerful command that provides the OEM Host with a means for ad-hoc networking. Only the three Least Significant Bytes of the MAC Address are used for packet delivery. Host Command: Byte 1 = CCh Byte 2 = 11h Transceiver Response: Byte 1 = CCh Bytes 2 – 4= 00 – FFh corresponding to the three LSB’s of the destination MAC Address 4.5.10 EEPROM Byte Read Upon receiving this command, a transceiver will respond with the desired data from the address requested by the OEM Host. OEM Host Command: Byte 1 = CCh Byte 2 = C0h Byte 3 = Start Address Byte 4 = Length (01 - 80h) Transceiver Response: 5/8/2007 26 Byte Byte Byte Byte 1 = CCh 2 = Start Address 3 = Length 4…n = Data at requested addresses 4.5.11 EEPROM Byte Write Upon receiving this command, a transceiver will write the data byte to the address specified but will not echo it back to the OEM Host until the EEPROM write cycle is complete. The write can take as long as 10ms to complete. Following the write cycle, a transceiver will transmit the data byte to the OEM Host. Multiple byte EEPROM writes are not allowed. Caution: The maximum number of write cycles that can be performed is 100,000. OEM Host Command: Byte 1 = CCh Byte 2 = C1h Byte 3 = Address Byte 4 = Length (01h) Byte 5…n = Data to store at Address Transceiver Respo Response: nse: Byte 1 = Address Byte 2 = Length (01h) Byte 3 = Last byte of data byte written by this command 4.5.12 Reset The OEM Host issues this command to perform a soft reset of the transceiver (same effect as using the Reset pin). Any transceiver settings modified by CC Commands (excluding EEPROM writes) will be overwritten by values stored in the EEPROM. OEM Host Command: Byte 1 = CCh Byte 2 = FFh Transceiver Response: Byte 1 = CCh Byte 2 = FFh 5/8/2007 27 5. Theory of Operation 5.1 HARDWARE INTERFACE Below is a description of all hardware pins used to control the AC4424. 5.1.1 TXD (Transmit Data) and RXD (Receive Data) (pins 2 and 3 respectively) The AC4424 accepts 5V TTL level asynchronous serial data in the RXD pin and interprets that data as either Command Data or Transmit Data. Data is sent from the transceiver to the OEM Host via the TXD pin. The data must be of the format 8-N-1 (8 data bits, No Parity bits, One stop bit). 5.1.2 Hop Frame (pin 6) The AC4424 is a frequency hopping spread spectrum radio. Frequency hopping allows the system to hop around interference in order to provide a better wireless link. Hop Frame transitions logic Low at the start of a hop and transitions logic High at the completion of a hop. The OEM Host is not required to monitor Hop Frame. 5.1.3 CTS Handshaking (pin (pin 7) The AC4424 has an interface buffer size of 256 bytes. If the buffer fills up and more bytes are sent to the transceiver before the buffer can be emptied, data corruption will occur. The transceiver prevents this corruption by asserting CTS High as the buffer fills up and taking CTS Low as the buffer is emptied. CTS On in conjunction with CTS On Hysteresis control the operation of CTS. CTS On specifies the amount of bytes that must be in the buffer for CTS to be disabled (High). Even while CTS is disabled, the OEM Host can still send data to the transceiver, but it should do so carefully. Once CTS is disabled, it will remain disabled until the buffer is reduced to the size specified by CTS On Hysteresis. The following equation should always be used for setting CTS On, CTS On Hysteresis and RF Packet Size: Size CTS On – CTS On Hysteresis = RF Packet Size 5.1.4 RTS Handshaking (pin 8) With RTS Mode disabled, the transceiver will send any received packet to the OEM Host as soon as the packet is received. However, some OEM Hosts are not able to accept data from the transceiver all of the time. With RTS Mode Enabled, the OEM Host can keep the transceiver from sending it a packet by disabling RTS (logic High). Once RTS is enabled (logic Low), the transceiver can send packets to the OEM Host as they are received. Note: 5/8/2007 28 Leaving RTS disabled for too long can cause data loss once the transceiver’s receive buffer fills up. 5.1.5 9600 Baud/Packet Frame (pin 12) 9600_BAUD – When pulled logic Low before applying power or resetting, the transceiver’s serial interface is forced to a 9600, 8-N-1 (8 data bits, No parity, 1 stop bit) rate. To exit, transceiver must be reset or power-cycled with 9600_Baud logic High. 9600_BAUD should only be used to recover the radio from an unknown baud rate and should not be used during normal operation. When 9600_BAUD is pulled logic Low, Broadcast Mode is disabled. Packet Frame – When enabled in EEPROM, Packet Frame will transition logic Low at the start of a received RF packet and transition logic High at the completion of the packet. 5.1.6 RSSI (pin 13) Received Signal Strength Indicator is used by the Host as an indication of instantaneous signal strength at the receiver. The Host must calibrate RSSI without a RF signal being presented to the receiver. Calibration is accomplished by following the steps listed below to find a minimum and maximum voltage value. 1) Power up only one Client (no Server) transceiver in the coverage area. 2) Measure the RSSI signal to obtain the minimum value with no other signal present. 3) Power up a Server. Make sure the two transceivers are in close proximity and measure the Client’s peak RSSI once the Client reports In Range to obtain a maximum value at full signal strength. Figure 1 shows approximate RSSI performance. There are two versions of receivers used by the AC4424. As of January of 2003 forward, only the new revision receiver will be shipped. The RSSI pin of the former revision requires the Host to provide a 27k pull-down to ground. A table of board revision history is provided below. No R RSSI SSI pullpull-down should be used with the new revision. 5/8/2007 29 Figure 1 - RSSI Voltage vs. Received Signal Strength Voltage (V) -95 -90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 Input Pow er (dBm ) New Revision Old Revision Table 7 – RSSI Board Rev History Radio Type Old RSSI Board Number New RSSI Board Number AC4424-10 0050-00025 0050-00036 AC4424-10A N/A 0050-00029 AC4424-100 N/A 0050-00037 or 0050-00075 AC4424-200 0050-00030 0050-00045 5.1.7 Wr_ENA(EEPROM Write Enable) (pin 14) Wr_ENA is a direct connection to the Write Enable line on the EEPROM. When logic Low, the EEPROM’s contents may be changed. When logic High, the EEPROM is protected from accidental and intentional modification. It is recommended that this line only be Low when an EEPROM write is desired to prevent unintentional corruption of the EEPROM. 5/8/2007 30 UP_RESET 5.1.8 UP_RESE T (pin 15) UP_RESET provides a direct connection to the reset pin on the AC4424 microprocessor. To guarantee a valid power-up reset, this pin should never be tied Low on power-up. For a valid power-on reset, reset must be High for a minimum of 50us. Command/Data 5.1.9 Comm and/Data (pin 17) When logic High, transceiver interprets Host data as transmit data to be sent to other transceivers and their Hosts. When logic Low, transceiver interprets Host data as command data (see Section 4, Configuring the AC4424). AC4424) 20) 5.1.10 In Range (pin 2 0) The IN_RANGE pin at the connector will be driven logic Low when a Client is in range of a Server on the same RF Channel and System ID. ID If a Client cannot hear a Server for 5s, it will drive the IN_RANGE pin logic High and enter a search mode looking for a Server. As soon as it detects a Server, the IN_RANGE pin will be driven logic Low. A Server Host can determine which Clients are in range by the Server’s Host software polling a Client’s Host. 5/8/2007 31 5.2 SOFTWARE PARAMETERS Below is a description of all software parameters used to control the AC4424. (Server--Client/Peer Client/Peer--to to--Peer) 5.2.1 RF Architecture (Server The Server controls the system timing by sending out regular beacons (transparent to the transceiver Host), which contain system timing information. This timing information synchronizes the Client radios to the Server. Each network should consist of only one Server. There should never be two Servers on the same RF Channel Number in the same coverage area, as the interference between the two Servers will severely hinder RF communications. In Server-Client architecture, the Server communicates with the Clients and the Clients only communicate with the Server. Enabling PeerPeer-toto-Peer Mode will allow all radios on the network to communicate with each other. Note: All transc transceivers eivers on the same network must have the same setting for PeerPeer-toto-Peer and there must still be one, and only one, Server present in a PeerPeer-toto-Peer network. 5.2.2 RF Mode Acknowledge Mode In Addressed Acknowledge Mode, the RF packet is sent out to the receiver designated by the Destination Address. Address Transmit Retries are used to increase the odds of successful delivery to the intended receiver. Transparent to the OEM Host, the sending transceiver will send the RF packet to the intended receiver. If the receiver receives the packet free of errors, it will tell the sender. If the sender does not receive this acknowledge, it will assume the packet was never received and retry the packet. This will go on until the packet is successfully received or the transmitter exhausts all of its retries. The received packet will only be sent to the OEM Host if and when it is received free of errors. In Broadcast Acknowledge Mode, the RF packet is broadcast out to all eligible receivers on the network. In order to increase the odds of successful delivery, Broadcast Attempts are used to increase the odds of successful delivery to the intended receiver(s). Transparent to the OEM Host, the sending transceiver will send the RF packet to the intended receiver. If the receiver detects a packet error, it will throw out the packet. This will go on until the packet is successfully received or the transmitter exhausts all of its attempts. Once the receiver successfully receives the packet it will send the packet to the OEM Host. It will throw out any duplicates caused by further Broadcast Attempts. The received packet will only be sent to the OEM Host if it is received free of errors. 5/8/2007 32 5.2.3 Random Back Off Random Back Off – If multiple AC4424 transceivers try to send packets out over the RF at the exact same time, the packets will collide and will not be received by the intended receiver. In fact, if after a collision occurs, both transceivers retry at the same time, the retry will also fail. To avoid further collisions, a transceiver can be programmed to wait a random number of packet times (hops) before resending its data. The amount of randomness is controlled by this parameter and this feature is not valid in broadcast mode. Keep in mind that selecting a larger value for Random Back Off will increase the overall latency of the AC4424. The latency calculation becomes: Worst Case Latency = 8ms Hop * # of retries * Maximum Random Value [multiply by 16ms if using Full Duplex mode] Latency is a very important consideration when using a wireless device. The AC4424 has a 256 byte interface buffer. If, due to latency, the radio cannot send the data out over the RF as fast as data is coming into the radio over the serial interface, the buffer will eventually fill up. If data continues coming into the radio once the buffer is full, the buffer will overflow and the new incoming data will be lost. It is strongly recommended that the radio host monitor the CTS pin to avoid this situation. The transceiver asserts this pin high as the buffer is filling to signal the OEM Host to stop sending data. The transceiver will take CTS Low once the buffer becomes less full. Random Backoff Settings: • 00h – Wait 1 packet time, then retry (Random Back Off is disabled) • 01h – Wait 1 – 2 packet times, then retry • 03h – Wait 1 – 4 packet times, then retry • 07h – Wait 1 – 8 packet times, then retry • 0Fh – Wait 1 – 16 packet times, then retry • 1Fh – Wait 1 – 32 packet times, then retry • 3Fh – Wait 1 – 64 packet times, then retry • 7Fh – Wait 1 – 128 packet times, then retry • FFh – Wait 1 – 256 packet times, then retry 5.2.55.2.4 5.2.55.2.4 Duplex Mode In Half Duplex mode, the AC4424 will send a packet out over the RF when it can. This can cause packets sent at the same time by a Server and a Client to collide with each other over the RF. To prevent this, Full Duplex Mode can be enabled. This mode restricts Clients to transmitting on odd numbered frequency “bins” and the Server to transmitting on even 5/8/2007 33 AC4424 Specifications frequency bins. Though the RF hardware is still technically half duplex, it makes the radio seem full duplex. This can cause overall throughputs to be cut in half. Note: All transceivers on the same network must have the same setting for Full Duplex. 5.2.65.2.5 5.2.6 5.2.5 Interface Timeout/RF Packet Size Interface timeout, in conjunction with RF Packet Size, Size determines when a buffer of data will be sent out over the RF as a complete RF packet based on whichever condition occurs first. Interface Timeout – Interface Timeout specifies a maximum byte gap in between consecutive bytes. When that byte gap is exceeded, the bytes in the transmit buffer are sent out over the RF as a complete packet. Interface timeout is adjustable in 160uS decrements. The actual timeout created by Interface Timeout is equal to the 2's complement of Interface Timeout times 160uS. The default value for Interface Timeout is F0H or 2.56ms. RF Packet Size – When the amount of bytes in the transceiver transmit buffer equals RF Packet Size, those bytes are sent out as a complete RF packet. 5.2.75.2.6 5.2.7 5.2.6 Serial Interface Baud Rate This two-byte value determines the baud rate used for communicating over the serial interface to a transceiver. Table 9 - Baud Rate lists values for some common baud rates. Baud rates below 110 baud are not supported. For a baud rate to be valid, the calculated baud rate must be within ±3% of the OEM Host baud rate. If the 9600_BAUD pin (Pin 12) is pulled logic Low at reset, the baud rate will be forced to 9,600. 9,600. For Baud Rate values other than those shown in Table 9 - Baud Rate, Rate the following equation can be used: BAUD = (18.432E+06/(32*desired (18.432E+06/(32*desired baud rate)) BaudH= High 8 bits of BAUD (base16) BaudL = Low 8 bits of BAUD (base16) Table 8 – Baud Rate Baud Rate 288,00 192,00 115,20 57,600 38,400 28,800 19,200 5/8/2007 BaudL (42h) 02h BaudH (43h) 00h Minimum Interface Timeout (58h) FFh 03h 00h FFh 05h 00h FEh 0Ah 0Fh 14h 1Eh 00h 00h 00h 00h FDh FCh FBh F9h 34 AC4424 Specifications 14,400 9,600 4800 2400 1200 300 110 28h 3Ch 78h F0h E0h 80h 74h 00h 00h 00h 00h 01h 07h 14h F7h F2h E5h CBh 97h 01h 01h 5.2.85.2.7 5.2.8 5.2.7 Network Topology RF Channel Number – RF Channel Number provides a physical separation between co-located networks. The AC4424 is a spread spectrum frequency hopping radio with a fixed hopping sequence. Without synchronizing the different networks to each other, different channel numbers could possibly interfere with each other and create “cross-talk.” To avoid cross-talk interference, co-located networks should use SyncSync-toto-Channel. Channel A Server radio with Sync-toChannel enabled will synchronize its frequency hop timing to a system located on the RF Channel specified by Sync Channel. Channel The only requirement is that Sync Channel be numerically less than RF Channel. Therefore, every co-located network will be synchronizing to the network with the lowest RF Channel. Three Channel sets are provided for the AC4424 (refer to Table 10 below). CoCo-located networks must use the same Channel Channel Set. Table 9 – US and International RF Channel Number Settings Channel RF Channel Number Frequency Range Set Range (40h) 00h – 0Fh 00h – 13h 14h – 27h 2402 – 2478MHz 2406 – 2435MHz 2444 – 2472MHz Countries 10mW, 200mW: US,Canada 100mW, 9AJ: Europe,France,US,Canada 100mW, 9AJ: Europe,US,Canada Note: The AC4424-100 & AC4424-9AJ are CE approved for use in Europe. The AC4424-10 and AC4424-200 are not CE approved and cannot be used in Europe. System ID – System ID is similar to a password character or network number and makes network eavesdropping more difficult. A receiving radio will not go in range of or communicate with another radio on a different System ID. 5/8/2007 35 AC4424 Specifications 5.2.95.2.8 5.2.9 5.2.8 Auto Config The AC4424 has several variables that control its RF performance and vary by RF Mode and RF Architecture Architecture. Enabling Auto Config will bypass the value for these variables stored in EEPROM and use predetermined values for the given Interface Baud Rate. Auto Config has been optimized for 115,200 baud Acknowledge Mode and all lower baud rates. It should only be disabled with recommendation from AeroComm. Below is a list containing some of the variables affected by Auto Config and their respective values: Table 10 – Auto Config Parameters Description2 RF Packet Size CTS On CTS Hysteresis EEPROM Address 47 48 4E 50 51 52 53 54 55 57 59 5B 5C 5D 5E 5F Default 60 FD E4 50 40 C0 80 0E Acknowledge Mode 60 FD E4 50 40 C0 80 0E Parameters without a Description are undocumented protocol parameters and should only be modified to a value other than shown in this table when recommended by AeroComm. 5/8/2007 36 AC4424 Specifications 6. Dimensions All AC4424 products measure 1.65”W x 2.65”L. Critical parameters are as follows: • J1 – 20 pin OEM interface connector (Samtec TMM-110-01-L-D-SM, mates with Samtec SMM-110-02-S-D) • MMCX Jack – Antenna connector (Johnson Components P/N 135-3711-822) mates with any manufacturer’s MMCX plug Figure 2 – AC4424 with MMCX 5/8/2007 37 AC4424 Specifications Figure 3 – AC4424 with Integral Antenna 5/8/2007 38 Ordering Information 7. Ordering Information 7.1 PRODUCT PART NUMBERS AC4424AC4424-9AJ: 9AJ AC4424 with 9mW output power, interface data rates to 288Kbps, integral microstrip antenna, -40°C to 80°C AC4424AC4424-10: 10 AC4424 with 10mW output power, interface data rates to 288Kbps, MMCX antenna connector, -40°C to 80°C AC4424AC4424-10A: 10A AC4424 with 10mW output power, interface data rates to 288Kbps, integral microstrip antenna, -40°C to 80°C AC4424AC4424-100: 100 AC4424 with 50mW output power, interface data rates to 288Kbps, MMCX antenna connector, -40°C to 80°C AC4424AC4424-200: 200 AC4424 with 200mW output power, interface data rates to 288Kbps, MMCX antenna connector, -40°C to 80°C 7.2 DEVELOPER KIT PART NUMBERS SDKIncludes (2) AC4424-9AJ transceivers, (2) RS232 Serial Adapter SDK-44244424-9AJ: 9AJ Boards, (2) 6Vdc unregulated power supplies, (2) Serial cables, configuration/testing software, Integration engineering support SDKSDK-44244424-10: 10 Includes (2) AC4424-10 transceivers, (2) RS232 Serial Adapter Boards, (2) 6Vdc unregulated power supplies, (2) Serial cables, (2) S151FL-5-RMM2450S dipole antennas with 5” pigtail and MMCX connector, configuration/testing software, Integration engineering support Includes (2) AC4424-10A transceivers, (2) RS232 Serial Adapter SDKSDK-44244424-10A: 10A Boards, (2) 6Vdc unregulated power supplies, (2) Serial cables, configuration/testing software, Integration engineering support Includes (2) AC4424-100 transceivers, (2) RS232 Serial Adapter SDKSDK-44244424-100: 100 Boards, (2) 6Vdc unregulated power supplies, (2) Serial cables, (2) S151FL5-RMM-2450S dipole antennas with 5” pigtail and MMCX connector, configuration/testing software, Integration engineering support SDKIncludes (2) AC4424-200 transceivers, (2) RS232 Serial Adapter SDK-44244424-200: 200 Boards, (2) 6Vdc unregulated power supplies, (2) Serial cables, (2) S151FL5-RMM-2450S dipole antennas with 5” pigtail and MMCX connector, configuration/testing software, Integration engineering support 5/8/2007 39 Regulatory Information 8. Regulatory Information Agency Identification Numbers Part Number AC4424-9AJ AC4424-10 AC4424-100 AC4424-200 US/FCC KQL-44249AJ KQL-PKLR2400 KQL-AC4424 KQL-PKLR2400200 CAN/IC 2268C-44249AJ CAN2268391158A CAN2268C391190A EUR/EN CE CE CAN2268391180A 8.1 FCC The user is responsible for all labeling and ensuring the module complies with FCC regulations (see 47CFR2 for exact regulations). • The FCC identifier proceeded by “FCC ID:” and the FCC Notice found below must be clearly visible on the outside of the equipment. • The RF Exposure Warning (next page) also must be printed inside the equipment’s user manual. The FCC/IC approval was granted with the module classified as mobile (ie. the antenna is >20 cm from the human body with the exception of hands, wrists, feet, and ankles). The end user needs to ensure that the antenna location complies with this or retest for portable classification (less than 2.5 cm with the same exceptions as mobile) at their own expense. FCC regulations allow the use of any antenna of the same type and of equal or less gain. However the antenna is still required to have a unique antenna connector such as MMCX or reverse SMA. On the following page is a table of antennas available through AeroComm. Any different antenna type or antenna with gain greater than those listed must be tested to comply with FCC Section 15.203 for unique antenna connectors and Section 15.247 for emissions at user’s expense. Caution: Caution Any changes or modifications not expressly approved by AeroComm could void the FCC compliancy of the AC4424. 5/8/2007 40 Regulatory Information FCC Notice WARNING: This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation. FCC Labeling Requirements WARNING: The Original Equipment Manufacturer (OEM) must ensure that FCC labeling requirements are met. This includes a clearly visible label on the outside of the OEM enclosure specifying the appropriate AeroComm FCC identifier for this product as well as the FCC Notice above. FCC RF Exposure AC4424 WARNING: To satisfy FCC RF exposure requirements for mobile type transmitting devices, a separation distance of 20 cm or more should be maintained between the antenna of this device and persons during operation, with exception of hands wrist, feet, and ankles. To ensure compliance, operations at closer distance than this distance is prohibited. The preceding statement must be included as a CAUTION statement in manuals for OEM products to alert users on FCC RF Exposure compliance. 5/8/2007 41 Regulatory Information 8.2 CE The AC4424-100 is a Class 2 transceiver that is harmonized everywhere except France. Therefore, the end product will have to be marked with a “CE(!)” (the ! is encircled). For complete rules and regulations on labeling in Europe refer to the R&TTE Directive Article 12 and Annex VII. And the country or countries that the end user intends to sell product in be notified prior to shipping product. Further information about this regulation can be found in Article 6.4 of the R&TTE Directive. Caution: Caution Any changes or modifications not expressly approved by AeroComm could void the CE compliancy of the AC4424. WARNING: The Original Equipment Manufacturer (OEM) must ensure that CE labeling requirements are met. This includes a clearly visible label on the outside of the OEM enclosure specifying the appropriate CE marking. Further information can be found in the R&TTE Directive Article 12 and Annex VII. CE Labeling Requirements 5/8/2007 42 Regulatory Information ½ Wave Dipole ½ Wave Dipole OmniDirectional OmniDirectional OmniDirectional Mfg. Type 1 WCP-2400-MMCX Centurion 2 WCR-2400-SMRP Centurion 3 MFB24008RPN Maxrad 4 BMMG24000MSMARP12’ Maxrad 5 BMMG24005MSMARP12’ Maxrad AC4424X AC4424X--200 Gain (dBi) AC4424X AC4424X--10 Item Part Number AC4424X AC4424X--100 Europe/France AC4424X AC4424X--100 US/Canada 8.3 APPROVED ANTENNA LIST 6 MP24013TMSMARP12 Maxrad MUF24005M174MSMARP1 7 2 Maxrad Panel OmniDirectional 13 8 MC2400 Patch 2.5 Maxrad 9 NZH2400-MMCX (External) AeroComm Microstrip 10 NZH2400-I (Integral) AeroComm Microstrip 11 S131CL-5-RMM-2450S Nearson ½ Wave Dipole 12 S181FL-5-RMM-2450S Nearson ½ Wave Dipole 13 S191FL-5-RMM-2450S Nearson ½ Wave Dipole 14 S151FL-5-RMM-2450S Nearson Collinear 15 S152AH-2450S Nearson Collinear 16 S171AH-2450S Nearson 17 MLPV1700 18 R380.500.127 Maxrad Radial Larsen Collinear OmniDirectional ¼ Wave Dipole 19 ANT-DB1-RMS-RPS Linx 20 ANT-DB2-916/2.4-RP-SMA Linx Monopole Dual Band Patch 21 ANT-YG12-N Yagi Linx 12 ****AC4424approved pproved for operation with the integral antenna layed out on the ****AC4424-9AJ is only a board. 5/8/2007 43
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No Create Date : 2008:07:08 11:46:53 Producer : Acrobat Distiller 4.05 for Windows Author : ChristaJ Creator : PScript5.dll Version 5.2.2 Title : Microsoft Word - AC4424 User's Manual v2.2 waters edited.doc Modify Date : 2008:07:08 11:46:54+02:00 Page Count : 43 Page Mode : UseNoneEXIF Metadata provided by EXIF.tools