Motorola Mc9S12C Family Users Manual

MC9S12GC-Family to the manual 8d979494-7ee8-401a-971b-f65e48ee1509

2015-01-23

: Motorola Motorola-Mc9S12C-Family-Users-Manual-271885 motorola-mc9s12c-family-users-manual-271885 motorola pdf

Open the PDF directly: View PDF PDF.
Page Count: 136

DownloadMotorola Motorola-Mc9S12C-Family-Users-Manual-  Motorola-mc9s12c-family-users-manual
Open PDF In BrowserView PDF
DOCUMENT NUMBER
9S12C128DGV1/D

MC9S12C Family
Device User Guide
V01.05
Covers also
MC9S12GC Family

Original Release Date: 25 JAN 2003
Revised: 11 FEBRUARY 2004

Motorola, Inc.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the
Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges
that Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
©Motorola, Inc., 2002

1

Device User Guide — 9S12C128DGV1/D V01.05

Revision History

Version Revision Effective
Number
Date
Date
00.01

Author

Description of Changes

25.JAN.03 25.JAN.03

Original Version. Based on C32 user guide version 01.12

00.02

07.FEB.03 07.FEB.03

Enhanced PortK description
Part number table revision in preface

00.03

25.FEB.03 25.FEB.03

QFP112 Emulation pinout correction
Enhanced part number explanation in preface
Reduced pseudo STOP current spec. for C64,C96,C128

00.04

15.APR.03 15.APR03

Enhanced PortAD signal description
Corrected VDDR description in 2.4.2
Revised pin leakage in electrical parameters

00.05

05.MAY.03 05.MAY.03

SPI timing parameter table correction
Output drive high value reduced in 3V range
PE[4:2] Pull-Up spec out of reset changed
3V Expansion bus timing parameters not tested in production
Minimum bus frequency specification increased to 0.25MHz.

00.06

21.MAY.03 21.MAY.03

Parameter classification added to Appendix Table C-2.
IOH changed to 4mA for 3V range.

01.00

15.JUL.03

LVR level defined.for C32. Run IDD changed for C32.
Block guide reference table updated
Added PCB layout guide for Pierce oscillator configuration
IOL parameter updated in 3.3V range

01.01

12.AUG.03 12.AUG.03

Updated PARTID listing due to C128 ECO revision

01.02

20.NOV.03 20.NOV.03

Changed DOC number and CPU DOC reference number
Included separate C32 LVI levels
Changed PortM pull up reset state to enabled.

01.03

27.NOV.03 27.NOV.03

Added References to the CAN-less GC-Family
No major revision number increment, since silicon functionality is
not changed.
Added VDDX connection in PCB layout figures 8-1.to 8-6
Added Part ID for 2L45J mask set to Part ID table

01.04

27.JAN.04 27.JAN.04

Table A-4 VDD/VDDPLL min when supplied externally now 2.35V
Reference S12FTS128K1 in Preface (was S12FTS128K)
Reference to CPU Guide corrected to Version2

11.FEB.04 11.FEB.04

Corrected flash sector sizes for C-Family devices with >64K Flash
Corrected Preface Table 0-1 16K part listing to GC16 without CAN
Added PPAGE specifications to memory map diagrams
Added flash timing parameters for 1024 byte sector size

01.05

15.JUL03

2

Device User Guide — 9S12C128DGV1/D V01.05

Table of Contents
Section 1 Introduction
1.1
1.2
1.3
1.4
1.5
1.6
1.7

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Device Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Part ID Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Section 2 Signal Description
2.1
Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2
Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2.1
Pin Initialization for 48 & 52 Pin LQFP bond-out versions . . . . . . . . . . . . . . . . . . 56
2.3
Detailed Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.1
EXTAL, XTAL — Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.2
RESET — External Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.3
TEST / VPP — Test Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.4
XFC — PLL Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.5
BKGD / TAGHI / MODC — Background Debug, Tag High & Mode Pin . . . . . . . 58
2.3.6
PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins . . . . . . . . . . . . . . . . . . . . 58
2.3.7
PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins . . . . . . . . . . . . . . . . . . . . . . 58
2.3.8
PE7 / NOACC / XCLKS — Port E I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.9
PE6 / MODB / IPIPE1 — Port E I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.10 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.11 PE4 / ECLK— Port E I/O Pin [4] / E-Clock Output . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.12 PE3 / LSTRB — Port E I/O Pin [3] / Low-Byte Strobe (LSTRB). . . . . . . . . . . . . . 60
2.3.13 PE2 / R/W — Port E I/O Pin [2] / Read/Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.14 PE1 / IRQ — Port E input Pin [1] / Maskable Interrupt Pin . . . . . . . . . . . . . . . . . 61
2.3.15 PE0 / XIRQ — Port E input Pin [0] / Non Maskable Interrupt Pin . . . . . . . . . . . . 61
2.3.16 PAD[7:0] / AN[7:0] — Port AD I/O Pins [7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.17 PP[7] / KWP[7] — Port P I/O Pin [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.18 PP[6] / KWP[6]/ROMCTL — Port P I/O Pin [6] . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.19 PP[5:0] / KWP[5:0] / PW[5:0] — Port P I/O Pins [5:0] . . . . . . . . . . . . . . . . . . . . . 62
3

Device User Guide — 9S12C128DGV1/D V01.05

2.3.20 PJ[7:6] / KWJ[7:6] — Port J I/O Pins [7:6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.21 PM5 / SCK — Port M I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.22 PM4 / MOSI — Port M I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.23 PM3 / SS — Port M I/O Pin 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.24 PM2 / MISO — Port M I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.25 PM1 / TXCAN — Port M I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.26 PM0 / RXCAN — Port M I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.27 PS[3:2] — Port S I/O Pins [3:2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.28 PS1 / TXD — Port S I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.29 PS0 / RXD — Port S I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.30 PPT[7:5] / IOC[7:5] — Port T I/O Pins [7:5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.31 PT[4:0] / IOC[4:0] / PW[4:0]— Port T I/O Pins [4:0] . . . . . . . . . . . . . . . . . . . . . . . 63
2.4
Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.1
VDDX,VSSX — Power & Ground Pins for I/O Drivers . . . . . . . . . . . . . . . . . . . . . 63
2.4.2
VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator
63
2.4.3
VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Pins . . . . . . . . . . . . . . . . . . 63
2.4.4
VDDA, VSSA — Power Supply Pins for ATD and VREG . . . . . . . . . . . . . . . . . . 64
2.4.5
VRH, VRL — ATD Reference Voltage Input Pins . . . . . . . . . . . . . . . . . . . . . . . . 64
2.4.6
VDDPLL, VSSPLL — Power Supply Pins for PLL . . . . . . . . . . . . . . . . . . . . . . . . 64

Section 3 System Clock Description
Section 4 Modes of Operation
4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Chip Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Unsecuring the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Pseudo Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Section 5 Resets and Interrupts

4

Device User Guide — 9S12C128DGV1/D V01.05

5.1
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2
Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.1
Vector Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3
Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.1
Reset Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.2
Effects of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Section 6 HCS12 Core Block Description
6.1
Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.1
PPAGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.2
BDM alternate clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.3
Extended Address Range Emulation Implications . . . . . . . . . . . . . . . . . . . . . . . . 71

Section 7 Voltage Regulator (VREG) Block Description
7.1
Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.1.1
VREGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.1.2
VDD1, VDD2, VSS1, VSS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Section 8 Recommended Printed Circuit Board Layout
Section 9 Clock Reset Generator (CRG) Block Description
9.1
Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.1.1
XCLKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Section 10 Oscillator (OSC) Block Description
Section 11 Timer (TIM) Block Description
Section 12 Analog to Digital Converter (ATD) Block Description
12.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
12.1.1 VRL (voltage reference low). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Section 13 Serial Communications Interface (SCI) Block Description
Section 14 Serial Peripheral Interface (SPI) Block Description
Section 15 Flash Block Description

5

Device User Guide — 9S12C128DGV1/D V01.05

Section 16 RAM Block Description
Section 17 Pulse Width Modulator (PWM) Block Description
Section 18 MSCAN Block Description
Section 19 Port Integration Module (PIM) Block Description
Appendix A Electrical Characteristics
A.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1.1
Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1.2
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1.3
Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.1.4
Current Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.1.5
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.1.6
ESD Protection and Latch-up Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.1.7
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.1.8
Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.1.9
I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Appendix B Electrical Specifications
B.1
B.2
B.3
B.3.1
B.3.2
B.4
B.4.1
B.4.2
B.4.3
B.4.4
B.4.5
B.5
B.5.1
B.5.2

6

Voltage Regulator Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Chip Power-up and LVI/LVR graphical explanation . . . . . . . . . . . . . . . . . . . . . . . . . 96
Output Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Resistive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Capacitive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
ATD Operating Characteristics In 5V Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
ATD Operating Characteristics In 3.3V Range . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Factors influencing accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
ATD accuracy (5V Range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
ATD accuracy (3.3V Range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
NVM, Flash and EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
NVM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
NVM Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Device User Guide — 9S12C128DGV1/D V01.05

B.6 Reset, Oscillator and PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.6.1
Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.6.2
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
B.6.3
Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.7 MSCAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
B.8 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Appendix C Electrical Specifications
C.1 Master Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
C.2 Slave Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
C.3 External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
C.3.1
General Muxed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Appendix D Package Information
D.1
D.2
D.3
D.4

General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
80-pin QFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
52-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
48-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Appendix E Emulation Information
E.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
E.1.1
PK[2:0] / XADDR[16:14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
E.2 112-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7

Device User Guide — 9S12C128DGV1/D V01.05

8

Device User Guide — 9S12C128DGV1/D V01.05

List of Figures
Figure 0-1
Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 3-1
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure B-1
Figure B-2
Figure B-3
Figure B-4
Figure B-5
Figure C-1
Figure C-2
Figure C-3
Figure C-4
Figure C-5
Figure D-1
Figure D-2

Order Part number Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
MC9S12C-Family Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
MC9S12C128 and MC9S12GC128 User configurable Memory Map . . . . . . 29
MC9S12C96 User Configurable Memory Map . . . . . . . . . . . . . . . . . . . . . . . 30
MC9S12C64 and MC9S12GC64 User Configurable Memory Map. . . . . . . . 31
MC9S12C32 and MC9S12GC32 User Configurable Memory Map. . . . . . . . 32
MC9S12GC16 User Configurable Memory Map . . . . . . . . . . . . . . . . . . . . . . 33
Pin Assignments in 80 QFP for MC9S12C-Family . . . . . . . . . . . . . . . . . . . . 52
Pin assignments in 52 LQFP for MC9S12C-Family. . . . . . . . . . . . . . . . . . . . 53
Pin Assignments in 48 LQFP for MC9S12C-Family . . . . . . . . . . . . . . . . . . . 54
PLL Loop Filter Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Colpitts Oscillator Connections (PE7=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Pierce Oscillator Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
External Clock Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Clock Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Recommended PCB Layout (48 LQFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Recommended PCB Layout (52 LQFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Recommended PCB Layout (80 QFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Recommended PCB Layout for 48 LQFP Pierce Oscillator . . . . . . . . . . . . . 77
Recommended PCB Layout for 52 LQFP Pierce Oscillator . . . . . . . . . . . . . 78
Recommended PCB Layout for 80QFP Pierce Oscillator . . . . . . . . . . . . . . . 79
Voltage Regulator - Chip Power-up and Voltage Drops (not scaled) . . . . . 96
ATD Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Basic PLL functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Jitter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Maximum bus clock jitter approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 114
SPI Master Timing (CPHA=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
SPI Master Timing (CPHA=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
SPI Slave Timing (CPHA=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
SPI Slave Timing (CPHA=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
General External Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
80-pin QFP Mechanical Dimensions (case no. 841B) . . . . . . . . . . . . . . . . 128
52-pin LQFP Mechanical Dimensions (case no. 848D-03) . . . . . . . . . . . . 129

9

Device User Guide — 9S12C128DGV1/D V01.05

Figure D-3 48-pin LQFP Mechanical Dimensions (case no.932-03 ISSUE F) . . . . . . 130
Figure 19-1 Pin Assignments in 112-pin LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 19-2 112-pin LQFP mechanical dimensions (case no. 987)80-pin QFP Mechanical Dimensions (case no. 841B)133

10

Device User Guide — 9S12C128DGV1/D V01.05

List of Tables
Table 0-2 MC9S12C-Family Package Option Summary . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 0-1 List of MC9S12C and MC9S12GC Family members. . . . . . . . . . . . . . . . . . . . 15
Table 0-3 MC9S12C-Family Part Number Coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 0-4 MC9S12GC-Family Part Number Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 0-5 Document References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 1-1 Device Register Map Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
$0000 - $000FMEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface) 34
$0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control) 34
$0018 - $0018 Miscellaneous Peripherals (Device User Guide) 35
$0019 - $0019 VREG3V3 (Voltage Regulator) 35
$0015 - $0016 INT map 1 of 2 (HCS12 Interrupt) 35
$0017 - $0017MMC map 2 of 4 (HCS12 Module Mapping Control) 35
$001A - $001B Miscellaneous Peripherals (Device User Guide) 35
$001C - $001D MMC map 3 of 4 (HCS12 Module Mapping Control, 36
Device User Guide) 36
$001E - $001E MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface) 36
$001F - $001F INT map 2 of 2 (HCS12 Interrupt) 36
$0020 - $002F
DBG (including BKP) map 1 of 1 (HCS12 Debug) 36
$0030 - $0031 MMC map 4 of 4 (HCS12 Module Mapping Control) 37
$0032 - $0033 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface) 37
$0034 - $003F CRG (Clock and Reset Generator) 37
$0040 - $006F TIM (Timer 16 Bit 8 Channels) 38
$0070 - $007F Reserved 40
$0080 - $009F ATD (Analog to Digital Converter 10 Bit 8 Channel) 40
$00A0 - $00C7 Reserved 41
$00D0 - $00D7 Reserved 42
$00C8 - $00CF SCI (Asynchronous Serial Interface) 42
$00D8 - $00DF SPI (Serial Peripheral Interface) 42
$00E0 - $00FF PWM (Pulse Width Modulator) 43
$0100 - $010F Flash Control Register 44
$0110 - $013F Reserved 45
$0140 - $017F CAN (Motorola Scalable CAN - MSCAN) 45
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout. . . . . . . . 46

11

Device User Guide — 9S12C128DGV1/D V01.05

$0180 - $023F Reserved 47
$0240 - $027F PIM (Port Interface Module) 47
$0280 - $03FF Reserved space 50
Table 1-3 Assigned Part ID Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 1-4 Memory size registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 2-1 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 2-2 MC9S12C-Family Power and Ground Connection Summary . . . . . . . . . . . . . 64
Table 4-1 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 4-2 Clock Selection Based on PE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 5-1 Interrupt Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 5-2 Reset Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 6-1 Device Specific Flash PAGE Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 8-1 Recommended External Component Values. . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table A-1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table A-2 ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table A-3 ESD and Latch-Up Protection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table A-4 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table A-5 Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table A-6 5V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table A-7 3.3V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table A-8 Supply Current Characteristics for MC9S12C32 . . . . . . . . . . . . . . . . . . . . . . . 93
Table A-9 Supply Current Characteristics for MC9S12C64,MC9S12C96,MC9S12C128 94
Table B-1 Voltage Regulator Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table B-2 Voltage Regulator - Capacitive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table B-3 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table B-4 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table B-5 ATD Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table B-6 ATD Conversion Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table B-7 ATD Conversion Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table B-8 NVM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table B-9 NVM Reliability Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table B-10 Startup Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table B-11 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table B-12 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table B-13 MSCAN Wake-up Pulse Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table C-1 Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

12

Device User Guide — 9S12C128DGV1/D V01.05

Table C-2
Table C-3
Table C-4
Table C-5

SPI Master Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
SPI Slave Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Expanded Bus Timing Characteristics (5V Range). . . . . . . . . . . . . . . . . . . . 124
Expanded Bus Timing Characteristics (3.3V Range) . . . . . . . . . . . . . . . . . . 125

13

Device User Guide — 9S12C128DGV1/D V01.05

14

Device User Guide — 9S12C128DGV1/D V01.05

Preface
The Device User Guide provides information about the MC9S12C-Family as well the MC9S12GC-Family
devices made up of standard HCS12 blocks and the HCS12 processor core. This document is part of the
customer documentation. A complete set of device manuals also includes the HCS12 Core User Guide and
all the individual Block User Guides of the implemented modules. In an effort to reduce redundancy all
module specific information is located only in the respective Block User Guide. If applicable, special
implementation details of the module are given in the block description sections of this document.
The C-Family and the GC-Family offer an extensive range of package, temperature and speed options.
The members of the GC-Family do not feature a CAN module.
Table 0-1 shows a feature overview of the MC9S12C and MC9S12GC Family members.
Table 0-2 summarizes the package option and size configuration.
Table 0-3 lists the part number coding based on the package, speed and temperature and preliminary die
options for the C-Family.
Table 0-4 lists the part number coding based on the package, speed and temperature and preliminary die
options for the GC-Family.

Table 0-1 List of MC9S12C and MC9S12GC Family members
Flash

RAM

128K

4K

96K

4K

64K

4K

32K

2K

16K

1K

CAN

SCI

SPI

A/D

PWM

Timer

MC9S12C128

Device

1

1

1

8ch

6ch

8ch

MC9S12GC128

—

1

1

8ch

6ch

8ch

MC9S12C96

1

1

1

8ch

6ch

8ch

MC9S12C64

1

1

1

8ch

6ch

8ch

MC9S12GC64

—

1

1

8ch

6ch

8ch

MC9S12C32

1

1

1

8ch

6ch

8ch

MC9S12GC32

—

1

1

8ch

6ch

8ch

MC9S12GC16

—

1

1

8ch

6ch

8ch

Table 0-2 MC9S12C-Family Package Option Summary
Package

Device

Part Number

Mask1
set

Temp.2
Options

Flash

RAM

128K

4K

I/O3,4

48LQFP

MC9S12C128

MC9S12C128

0L09S

M, V, C

52LQFP

MC9S12C128

MC9S12C128

0L09S

M, V, C

80QFP

MC9S12C128

MC9S12C128

0L09S

M, V, C

60

48LQFP

MC9S12C96

MC9S12C96

TBD

M, V, C

31

52LQFP

MC9S12C96

MC9S12C96

TBD

M, V, C

80QFP

MC9S12C96

MC9S12C96

TBD

M, V, C

31

96K

4K

35

35
60

15

Device User Guide — 9S12C128DGV1/D V01.05

Package

Device

48LQFP

Part Number

MC9S12C64

MC9S12C64

Mask1
set

Temp.2
Options

TBD

M, V, C

52LQFP

MC9S12C64

MC9S12C64

TBD

M, V, C

80QFP

MC9S12C64

MC9S12C64

TBD

M, V, C

48LQFP

MC9S12C32

MC9S12C32

1L45J

M, V, C

52LQFP

MC9S12C32

MC9S12C32

1L45J

M, V, C

Flash

RAM

I/O3,4
31

64K

4K

35
60
31

32K

2K

35

80QFP

MC9S12C32

MC9S12C32

1L45J

M, V, C

60

48LQFP

MC9S12GC128

MC9S12GC128

0L09S

M, V, C

31

52LQFP

MC9S12GC128

MC9S12GC128

0L09S

M, V, C

80QFP

MC9S12GC128

MC9S12GC128

0L09S

M, V, C

128K

4K

35
60

48LQFP

MC9S12GC128

MC9S12GC64

TBD

M, V, C

52LQFP

MC9S12GC128

MC9S12GC64

TBD

M, V, C

80QFP

MC9S12GC128

MC9S12GC64

TBD

M, V, C

60

48LQFP

MC9S12GC32

MC9S12GC32

1L45J

M, V, C

31

52LQFP

MC9S12GC32

MC9S12GC32

1L45J

M, V, C

80QFP

MC9S12GC32

MC9S12GC32

1L45J

M, V, C

48LQFP

MC9S12GC16

MC9S12GC16

1L45J

M, V, C

52LQFP

MC9S12GC16

MC9S12GC16

1L45J

M, V, C

80QFP

MC9S12GC16

MC9S12GC16

1L45J

M, V, C

31
64K

4K

32K

2K

35

35
60
31

16K

2K

35
60

NOTES:
1. Maskset dependent errata can be accessed at
http://e-www.motorola.com/wbapp/sps/site/prod_summary.jsp
2. C: TA = 85˚C, f = 25MHz. V: TA=105˚C, f = 25MHz. M: TA= 125˚C, f = 25MHz
3. All C-Family derivatives feature 1 CAN, 1 SCI, 1 SPI, an 8-channel A/D, a 6-channel PWM and an 8
channel timer. The GC-Family members do not have the CAN module
4. I/O is the sum of ports capable to act as digital input or output.

MC9S12 C32 (P)C FU

25
Speed Option
Package Option
Temperature Option
Preliminary Option
Device Title
Controller Family

Temperature Options
C = -40˚C to 85˚C
V = -40˚C to 105˚C
M = -40˚C to 125˚C
Package Options
FU = 80QFP
PB = 52LQFP
FA = 48LQFP
Speed Options
25 = 25MHz bus
16 = 16MHz bus

Figure 0-1 Order Part number Coding
Table 0-3 MC9S12C-Family Part Number Coding
Part Number
MC9S12C128CFA16

16

Mask
set

Temp.

Package

Speed

Description

TBD

-40˚C, 85˚C

48LQFP

16MHz

C128 die

Device User Guide — 9S12C128DGV1/D V01.05
Mask
set

Temp.

Package

Speed

Description

MC9S12C128CPB16

TBD

-40˚C, 85˚C

52LQFP

16MHz

C128 die

MC9S12C128CFU16

TBD

-40˚C, 85˚C

80QFP

16MHz

C128 die

MC9S12C128VFA16

TBD

-40˚C,105˚C

48LQFP

16MHz

C128 die

MC9S12C128VPB16

TBD

-40˚C,105˚C

52LQFP

16MHz

C128 die

MC9S12C128VFU16

TBD

-40˚C, 105˚C

80QFP

16MHz

C128 die

MC9S12C128MFA16

TBD

-40˚C,125˚C

48LQFP

16MHz

C128 die

Part Number

MC9S12C128MPB16

TBD

-40˚C,125˚C

52LQFP

16MHz

C128 die

MC9S12C128MFU16

TBD

-40˚C, 125˚C

80QFP

16MHz

C128 die

MC9S12C128CFA25

TBD

-40˚C, 85˚C

48LQFP

25MHz

C128 die

MC9S12C128CPB25

TBD

-40˚C, 85˚C

52LQFP

25MHz

C128 die

MC9S12C128CFU25

TBD

-40˚C, 85˚C

80QFP

25MHz

C128 die

MC9S12C128VFA25

TBD

-40˚C,105˚C

48LQFP

25MHz

C128 die

MC9S12C128VPB25

TBD

-40˚C,105˚C

52LQFP

25MHz

C128 die

MC9S12C128VFU25

TBD

-40˚C, 105˚C

80QFP

25MHz

C128 die

MC9S12C128MFA25

TBD

-40˚C,125˚C

48LQFP

25MHz

C128 die

MC9S12C128MPB25

TBD

-40˚C,125˚C

52LQFP

25MHz

C128 die

MC9S12C128MFU25

TBD

-40˚C, 125˚C

80QFP

25MHz

C128 die

MC9S12C96PCFA16

0L09S

-40˚C, 85˚C

48LQFP

16MHz

Preliminary C96 using C128 die

MC9S12C96PCPB16

0L09S

-40˚C, 85˚C

52LQFP

16MHz

Preliminary C96 using C128 die

MC9S12C96PCFU16

0L09S

-40˚C, 85˚C

80QFP

16MHz

Preliminary C96 using C128 die

MC9S12C96CFA16

TBD

-40˚C, 85˚C

48LQFP

16MHz

Final C96 using C96 die

MC9S12C96CPB16

TBD

-40˚C, 85˚C

52LQFP

16MHz

Final C96 using C96 die

MC9S12C96CFU16

TBD

-40˚C, 85˚C

80QFP

16MHz

Final C96 using C96 die

MC9S12C96PVFA16

0L09S

-40˚C, 105˚C

48LQFP

16MHz

Preliminary C96 using C128 die

MC9S12C96PVPB16

0L09S

-40˚C, 105˚C

52LQFP

16MHz

Preliminary C96 using C128 die

MC9S12C96PVFU16

0L09S

-40˚C, 105˚C

80QFP

16MHz

Preliminary C96 using C128 die

MC9S12C96VFA16

TBD

-40˚C,105˚C

48LQFP

16MHz

Final C96 using C96 die

MC9S12C96VPB16

TBD

-40˚C,105˚C

52LQFP

16MHz

Final C96 using C96die

TBD

-40˚C, 105˚C

80QFP

16MHz

Final C96 using C96 die

MC9S12C96PMFA16

MC9S12C96VFU16

0L09S

-40˚C, 125˚C

48LQFP

16MHz

Preliminary C96 using C128 die

MC9S12C96PMPB16

0L09S

-40˚C, 125˚C

52LQFP

16MHz

Preliminary C96 using C128 die

MC9S12C96PMFU16

0L09S

-40˚C, 125˚C

80QFP

16MHz

Preliminary C96 using C128 die

MC9S12C96MFA16

TBD

-40˚C,125˚C

48LQFP

16MHz

Final C96 using C96 die

MC9S12C96MPB16

TBD

-40˚C,125˚C

52LQFP

16MHz

Final C96 using C96 die

MC9S12C96MFU16

TBD

-40˚C, 125˚C

80QFP

16MHz

Final C96 using C96 die

MC9S12C96PCFA25

0L09S

-40˚C, 85˚C

48LQFP

25MHz

Preliminary C96 using C128 die

MC9S12C96PCPB25

0L09S

-40˚C, 85˚C

52LQFP

25MHz

Preliminary C96 using C128 die

MC9S12C96PCFU25

0L09S

-40˚C, 85˚C

80QFP

25MHz

Preliminary C96 using C128 die

MC9S12C96CFA25

TBD

-40˚C, 85˚C

48LQFP

25MHz

Final C96 using C96 die

MC9S12C96CPB25

TBD

-40˚C, 85˚C

52LQFP

25MHz

Final C96 using C96 die

MC9S12C96CFU25

TBD

-40˚C, 85˚C

80QFP

25MHz

Final C96 using C96 die

MC9S12C96PVFA25

0L09S

-40˚C, 105˚C

48LQFP

25MHz

Preliminary C96 using C128 die

MC9S12C96PVPB25

0L09S

-40˚C, 105˚C

52LQFP

25MHz

Preliminary C96 using C128 die

MC9S12C96PVFU25

0L09S

-40˚C, 105˚C

80QFP

25MHz

Preliminary C96 using C128 die

17

Device User Guide — 9S12C128DGV1/D V01.05

Part Number

Temp.

Package

Speed

Description

MC9S12C96VFA25

TBD

-40˚C,105˚C

48LQFP

25MHz

Final C96 using C96 die

MC9S12C96VPB25

TBD

-40˚C,105˚C

52LQFP

25MHz

Final C96 using C96 die

MC9S12C96VFU25

TBD

-40˚C, 105˚C

80QFP

25MHz

Final C96 using C96 die

MC9S12C96PMFA25

0L09S

-40˚C, 125˚C

48LQFP

25MHz

Preliminary C96 using C128 die

MC9S12C96PMPB25

0L09S

-40˚C, 125˚C

52LQFP

25MHz

Preliminary C96 using C128 die

MC9S12C96PMFU25

0L09S

-40˚C, 125˚C

80QFP

25MHz

Preliminary C96 using C128 die

MC9S12C96MFA25

TBD

-40˚C,125˚C

48LQFP

25MHz

Final C96 using C96 die

MC9S12C96MPB25

TBD

-40˚C,125˚C

52LQFP

25MHz

Final C96 using C96 die

MC9S12C96MFU25

TBD

-40˚C, 125˚C

80QFP

25MHz

Final C96 using C96 die

MC9S12C64PCFA16

0L09S

-40˚C, 85˚C

48LQFP

16MHz

Preliminary C64 using C128 die

MC9S12C64PCPB16

0L09S

-40˚C, 85˚C

52LQFP

16MHz

Preliminary C64 using C128 die

MC9S12C64PCFU16

0L09S

-40˚C, 85˚C

80QFP

16MHz

Preliminary C64 using C128 die

MC9S12C64CFA16

TBD

-40˚C, 85˚C

48LQFP

16MHz

Final C64 using C64 die

MC9S12C64CPB16

TBD

-40˚C, 85˚C

52LQFP

16MHz

Final C64 using C64 die

MC9S12C64CFU16

TBD

-40˚C, 85˚C

80QFP

16MHz

Final C64 using C64 die

MC9S12C64PVFA16

0L09S

-40˚C, 105˚C

48LQFP

16MHz

Preliminary C64 using C128 die

MC9S12C64PVPB16

0L09S

-40˚C, 105˚C

52LQFP

16MHz

Preliminary C64 using C128 die

MC9S12C64PVFU16

0L09S

-40˚C, 105˚C

80QFP

16MHz

Preliminary C64 using C128 die

MC9S12C64VFA16

TBD

-40˚C,105˚C

48LQFP

16MHz

Final C64 using C64 die

MC9S12C64VPB16

TBD

-40˚C,105˚C

52LQFP

16MHz

Final C64 using C64 die

MC9S12C64VFU16

TBD

-40˚C, 105˚C

80QFP

16MHz

Final C64 using C64 die

MC9S12C64PMFA16

0L09S

-40˚C, 125˚C

48LQFP

16MHz

Preliminary C64 using C128 die

MC9S12C64PMPB16

0L09S

-40˚C, 125˚C

52LQFP

16MHz

Preliminary C64 using C128 die

MC9S12C64PMFU16

0L09S

-40˚C, 125˚C

80QFP

16MHz

Preliminary C64 using C128 die

MC9S12C64MFA16

TBD

-40˚C,125˚C

48LQFP

16MHz

Final C64 using C64 die

MC9S12C64MPB16

TBD

-40˚C,125˚C

52LQFP

16MHz

Final C64 using C64 die

MC9S12C64MFU16

TBD

-40˚C, 125˚C

80QFP

16MHz

Final C64 using C64 die

MC9S12C64PCFA25

0L09S

-40˚C, 85˚C

48LQFP

25MHz

Preliminary C64 using C128 die

MC9S12C64PCPB25

0L09S

-40˚C, 85˚C

52LQFP

25MHz

Preliminary C64 using C128 die

MC9S12C64PCFU25

0L09S

-40˚C, 85˚C

80QFP

25MHz

PreliminaryC64 using C128 die

MC9S12C64CFA25

TBD

-40˚C, 85˚C

48LQFP

25MHz

Final C64 using C64 die

MC9S12C64CPB25

TBD

-40˚C, 85˚C

52LQFP

25MHz

Final C64 using C64 die

MC9S12C64CFU25

TBD

-40˚C, 85˚C

80QFP

25MHz

Final C64 using C64 die

MC9S12C64PVFA25

0L09S

-40˚C, 105˚C

48LQFP

25MHz

Preliminary C64 using C128 die

MC9S12C64PVPB25

0L09S

-40˚C, 105˚C

52LQFP

25MHz

Preliminary C64 using C128 die

MC9S12C64PVFU25

0L09S

-40˚C, 105˚C

80QFP

25MHz

Preliminary C64 using C128 die

MC9S12C64VFA25

TBD

-40˚C,105˚C

48LQFP

25MHz

Final C64 using C64 die

MC9S12C64VPB25

TBD

-40˚C,105˚C

52LQFP

25MHz

Final C64 using C64 die

MC9S12C64VFU25

18

Mask
set

TBD

-40˚C, 105˚C

80QFP

25MHz

Final C64 using C64 die

MC9S12C64PMFA25

0L09S

-40˚C, 125˚C

48LQFP

25MHz

Preliminary C64 using C128 die

MC9S12C64PMPB25

0L09S

-40˚C, 125˚C

52LQFP

25MHz

Preliminary C64 using C128 die

MC9S12C64PMFU25

0L09S

-40˚C, 125˚C

80QFP

25MHz

Preliminary C64 using C128 die

MC9S12C64MFA25

TBD

-40˚C,125˚C

48LQFP

25MHz

Final C64 using C64 die

MC9S12C64MPB25

TBD

-40˚C,125˚C

52LQFP

25MHz

Final C64 using C64 die

Device User Guide — 9S12C128DGV1/D V01.05
Mask
set

Temp.

MC9S12C64MFU25

TBD

MC9S12C32CFA16

1L45J

MC9S12C32CPB16
MC9S12C32CFU16

Part Number

Package

Speed

Description

-40˚C, 125˚C

80QFP

25MHz

Final C64 using C64 die

-40˚C, 85˚C

48LQFP

16MHz

C32 die

1L45J

-40˚C, 85˚C

52LQFP

16MHz

C32 die

1L45J

-40˚C, 85˚C

80QFP

16MHz

C32 die

MC9S12C32VFA16

1L45J

-40˚C,105˚C

48LQFP

16MHz

C32 die

MC9S12C32VPB16

1L45J

-40˚C,105˚C

52LQFP

16MHz

C32 die

MC9S12C32VFU16

1L45J

-40˚C, 105˚C

80QFP

16MHz

C32 die

MC9S12C32MFA16

1L45J

-40˚C,125˚C

48LQFP

16MHz

C32 die

MC9S12C32MPB16

1L45J

-40˚C,125˚C

52LQFP

16MHz

C32 die

MC9S12C32MFU16

1L45J

-40˚C, 125˚C

80QFP

16MHz

C32 die

MC9S12C32CFA25

1L45J

-40˚C, 85˚C

48LQFP

25MHz

C32 die

MC9S12C32CPB25

1L45J

-40˚C, 85˚C

52LQFP

25MHz

C32 die

MC9S12C32CFU25

1L45J

-40˚C, 85˚C

80QFP

25MHz

C32 die

MC9S12C32VFA25

1L45J

-40˚C,105˚C

48LQFP

25MHz

C32 die

MC9S12C32VPB25

1L45J

-40˚C,105˚C

52LQFP

25MHz

C32 die

MC9S12C32VFU25

1L45J

-40˚C, 105˚C

80QFP

25MHz

C32 die

MC9S12C32MFA25

1L45J

-40˚C,125˚C

48LQFP

25MHz

C32 die

MC9S12C32MPB25

1L45J

-40˚C,125˚C

52LQFP

25MHz

C32 die

MC9S12C32MFU25

1L45J

-40˚C, 125˚C

80QFP

25MHz

C32 die

Table 0-4 MC9S12GC-Family Part Number Coding
Part Number

Mask
set

Temp.

Package

Speed

Description

MC9S12GC128PCFA25

0L09S

-40˚C, 85˚C

48LQFP

25MHz

Preliminary GC128 using C128 die

MC9S12GC128PCPB25

0L09S

-40˚C, 85˚C

52LQFP

25MHz

Preliminary GC128 using C128 die

MC9S12GC128PCFU25

0L09S

-40˚C, 85˚C

80QFP

25MHz

Preliminary GC128 using C128 die

MC9S12GC128CFA25

TBD

-40˚C, 85˚C

48LQFP

25MHz

Final GC128 using GC128 die

MC9S12GC128CPB25

TBD

-40˚C, 85˚C

52LQFP

25MHz

Final GC128 using GC128 die

MC9S12GC128CFU25

TBD

-40˚C, 85˚C

80QFP

25MHz

Final GC128 using GC128 die

MC9S12GC128PVFA25

0L09S

-40˚C, 105˚C

48LQFP

25MHz

Preliminary GC128 using C128 die

MC9S12GC128PVPB25

0L09S

-40˚C, 105˚C

52LQFP

25MHz

Preliminary GC128 using C128 die

MC9S12GC128PVFU25

0L09S

-40˚C, 105˚C

80QFP

25MHz

Preliminary GC128 using C128 die

MC9S12GC128VFA25

TBD

-40˚C, 105˚C

48LQFP

25MHz

Final GC128 using GC128 die

MC9S12GC128VPB25

TBD

-40˚C, 105˚C

52LQFP

25MHz

Final GC128 using GC128 die

MC9S12GC128VFU25

TBD

-40˚C, 105˚C

80QFP

25MHz

Final GC128 using GC128 die

MC9S12GC128PMFA25

0L09S

-40˚C, 125˚C

48LQFP

25MHz

Preliminary GC128 using C128 die

MC9S12GC128PMPB25

0L09S

-40˚C, 125˚C

52LQFP

25MHz

Preliminary GC128 using C128 die

MC9S12GC128PMFU25

0L09S

-40˚C, 125˚C

80QFP

25MHz

Preliminary GC128 using C128 die

MC9S12GC128MFA25

TBD

-40˚C, 125˚C

48LQFP

25MHz

Final GC128 using GC128 die

MC9S12GC128MPB25

TBD

-40˚C, 125˚C

52LQFP

25MHz

Final GC128 using GC128 die

MC9S12GC128MFU25

TBD

-40˚C, 125˚C

80QFP

25MHz

Final GC128 using GC128 die

MC9S12GC64PCFA25

0L09S

-40˚C, 85˚C

48LQFP

25MHz

Preliminary GC64 using C128 die

MC9S12GC64PCPB25

0L09S

-40˚C, 85˚C

52LQFP

25MHz

Preliminary GC64 using C128 die

MC9S12GC64PCFU25

0L09S

-40˚C, 85˚C

80QFP

25MHz

Preliminary GC64 using C128 die

19

Device User Guide — 9S12C128DGV1/D V01.05
Mask
set

Temp.

Package

Speed

Description

MC9S12GC64CFA25

TBD

-40˚C, 85˚C

48LQFP

25MHz

Final GC64 using GC64 die

MC9S12GC64CPB25

TBD

-40˚C, 85˚C

52LQFP

25MHz

Final GC64 using GC64 die

Part Number

MC9S12GC64CFU25

TBD

-40˚C, 85˚C

80QFP

25MHz

Final GC64 using GC64 die

MC9S12GC64PVFA25

0L09S

-40˚C, 105˚C

48LQFP

25MHz

Preliminary GC64 using C128 die

MC9S12GC64PVPB25

0L09S

-40˚C, 105˚C

52LQFP

25MHz

Preliminary GC64 using C128 die

MC9S12GC64PVFU25

0L09S

-40˚C, 105˚C

80QFP

25MHz

Preliminary GC64 using C128 die

MC9S12GC64VFA25

TBD

-40˚C, 105˚C

48LQFP

25MHz

Final GC64 using GC64 die

MC9S12GC64VPB25

TBD

-40˚C, 105˚C

52LQFP

25MHz

Final GC64 using GC64 die

TBD

-40˚C, 105˚C

80QFP

25MHz

Final GC64 using GC64 die

MC9S12GC64PMFA25

MC9S12GC64VFU25

0L09S

-40˚C, 125˚C

48LQFP

25MHz

Preliminary GC64 using C128 die

MC9S12GC64PMPB25

0L09S

-40˚C, 125˚C

52LQFP

25MHz

Preliminary GC64 using C128 die

MC9S12GC64PMFU25

0L09S

-40˚C, 125˚C

80QFP

25MHz

Preliminary GC64 using C128 die

MC9S12GC64MFA25

TBD

-40˚C, 125˚C

48LQFP

25MHz

Final GC64 using GC64 die

MC9S12GC64MPB25

TBD

-40˚C, 125˚C

52LQFP

25MHz

Final GC64 using GC64 die

MC9S12GC64MFU25

TBD

-40˚C, 125˚C

80QFP

25MHz

Final GC64 using GC64 die

MC9S12GC32PCFA25

1L45J

-40˚C, 85˚C

48LQFP

25MHz

Preliminary GC32 using C32 die

MC9S12GC32PCPB25

1L45J

-40˚C, 85˚C

52LQFP

25MHz

Preliminary GC32 using C32 die

MC9S12GC32PCFU25

1L45J

-40˚C, 85˚C

80QFP

25MHz

Preliminary GC32 using C32 die

MC9S12GC32CFA25

TBD

-40˚C, 85˚C

48LQFP

25MHz

Final GC32 using GC32 die

MC9S12GC32CPB25

TBD

-40˚C, 85˚C

52LQFP

25MHz

Final GC32 using GC32 die

MC9S12GC32CFU25

TBD

-40˚C, 85˚C

80QFP

25MHz

Final GC32 using GC32 die

MC9S12GC32PVFA25

1L45J

-40˚C,105˚C

48LQFP

25MHz

Preliminary GC32 using C32 die

MC9S12GC32PVPB25

1L45J

-40˚C,105˚C

52LQFP

25MHz

Preliminary GC32 using C32 die

MC9S12GC32PVFU25

1L45J

-40˚C, 105˚C

80QFP

25MHz

Preliminary GC32 using C32 die

MC9S12GC32VFA25

TBD

-40˚C,105˚C

48LQFP

25MHz

Final GC32 using GC32 die

MC9S12GC32VPB25

TBD

-40˚C,105˚C

52LQFP

25MHz

Final GC32 using GC32 die

MC9S12GC32VFU25

20

TBD

-40˚C, 105˚C

80QFP

25MHz

Final GC32 using GC32 die

MC9S12GC32PMFA25

1L45J

-40˚C,125˚C

48LQFP

25MHz

Preliminary GC32 using C32 die

MC9S12GC32PMPB25

1L45J

-40˚C,125˚C

52LQFP

25MHz

Preliminary GC32 using C32 die

MC9S12GC32PMFU25

1L45J

-40˚C, 125˚C

80QFP

25MHz

Preliminary GC32 using C32 die

MC9S12GC32MFA25

TBD

-40˚C,125˚C

48LQFP

25MHz

Final GC32 using GC32 die

MC9S12GC32MPB25

TBD

-40˚C,125˚C

52LQFP

25MHz

Final GC32 using GC32 die

MC9S12GC32MFU25

TBD

-40˚C, 125˚C

80QFP

25MHz

Final GC32 using GC32 die

MC9S12GC16PCFA25

1L45J

-40˚C, 85˚C

48LQFP

25MHz

Preliminary GC16 using C32 die

MC9S12GC16PCPB25

1L45J

-40˚C, 85˚C

52LQFP

25MHz

Preliminary GC16 using C32 die

MC9S12GC16PCFU25

1L45J

-40˚C, 85˚C

80QFP

25MHz

Preliminary GC16 using C32 die

MC9S12GC16CFA25

TBD

-40˚C, 85˚C

48LQFP

25MHz

Final GC16 using GC16 die

MC9S12GC16CPB25

TBD

-40˚C, 85˚C

52LQFP

25MHz

Final GC16 using GC16 die

MC9S12GC16CFU25

TBD

-40˚C, 85˚C

80QFP

25MHz

Final GC16 using GC16 die

MC9S12GC16PVFA25

1L45J

-40˚C,105˚C

48LQFP

25MHz

Preliminary GC16 using C32 die

MC9S12GC16PVPB25

1L45J

-40˚C,105˚C

52LQFP

25MHz

Preliminary GC16 using C32 die

MC9S12GC16PVFU25

1L45J

-40˚C, 105˚C

80QFP

25MHz

Preliminary GC16 using C32 die

MC9S12GC16VFA25

TBD

-40˚C,105˚C

48LQFP

25MHz

Final GC16 using GC16 die

MC9S12GC16VPB25

TBD

-40˚C,105˚C

52LQFP

25MHz

Final GC16 using GC16 die

Device User Guide — 9S12C128DGV1/D V01.05

Part Number
MC9S12GC16VFU25

Mask
set

Temp.

Package

Speed

Description

TBD

-40˚C, 105˚C

80QFP

25MHz

Final GC16 using GC16 die

MC9S12GC16PMFA25

1L45J

-40˚C,125˚C

48LQFP

25MHz

Preliminary GC16 using C32 die

MC9S12GC16PMPB25

1L45J

-40˚C,125˚C

52LQFP

25MHz

Preliminary GC16 using C32 die

MC9S12GC16PMFU25

1L45J

-40˚C, 125˚C

80QFP

25MHz

Preliminary GC16 using C32 die

MC9S12GC16MFA25

TBD

-40˚C,125˚C

48LQFP

25MHz

Final GC16 using GC16 die

MC9S12GC16MPB25

TBD

-40˚C,125˚C

52LQFP

25MHz

Final GC16 using GC16 die

MC9S12GC16MFU25

TBD

-40˚C, 125˚C

80QFP

25MHz

Final GC16 using GC16 die

Table 0-5 Document References
User Guide 1

Version

Document Order Number

CPU12 Reference Manual

V02

S12CPUV2/D

HCS12 Debug (DBG) Block Guide

V01

S12DBGV1/D

HCS12 Background Debug (BDM) Block Guide

V04

S12BDMV4/D

HCS12 Module Mapping Control (MMC) Block Guide

V04

S12MMCV4/D

HCS12 Multiplexed External Bus Interface (MEBI) Block Guide

V03

S12MEBIV3/D

HCS12 Interrupt (INT) Block Guide

V01

S12INTV1/D

Analog To Digital Converter: 10 Bit 8 Channel (ATD_10B8C) Block Guide

V02

S12ATD10B8CV2/D

Clock and Reset Generator (CRG) Block Guide

V04

S12CRGV4/D

Serial Communications Interface (SCI) Block Guide

V02

S12SCIV2/D

Serial Peripheral Interface (SPI) Block Guide

V03

S12SPIV3/D

2

V02

S12MSCANV2/D

Motorola Scalable CAN (MSCAN) Block Guide

Pulse Width Modulator: 8 bit, 6 channel (PWM_8B6C) Block Guide

V01

S12PWM8B6V1/D

Timer: 16 bit, 8 channel (TIM_16B8C) Block Guide

V01

S12TIM16B8CV1/D

Voltage Regulator (VREG) Block Guide

V02

S12VREG3V3V2/D

Oscillator (OSC) Block Guide

V02

S12OSCV2/D

Port Integration Module (PIM_9C32) Block Guide

V01

S12C32PIMV1/D

32Kbyte Flash EEPROM (FTS32K) Block Guide

V01

S12FTS32KV1/D

64Kbyte Flash EEPROM (FTS64K) Block Guide

V01

S12FTS64KV1/D

128Kbyte Flash EEPROM (FTS128K1) Block Guide

V01

S12FTS128K1V1/D

NOTES:
1. For the GC16 refer to the 16K flash, for the C32 and GC32 refer to the 32K flash, for the C64 and GC64 the 64K flash, for
the C96 the 96K flash and C128 the 128K flash document.
2. Not available on the GC-Family members

Terminology
Acronyms and Abbreviations
New or invented terms, symbols, and notations

21

Device User Guide — 9S12C128DGV1/D V01.05

22

Device User Guide — 9S12C128DGV1/D V01.05

Section 1 Introduction
1.1 Overview
The MC9S12C-Family and the MC9S12GC-Family is a 48/52/80 pin Flash-based Industrial/Automotive
network control MCU family. Members of the MC9S12C-Family and the MC9S12GC-Family deliver the
power and flexibility of our 16 Bit core (CPU12) family to a whole new range of cost and space sensitive,
general purpose Industrial and Automotive network applications. All MC9S12C-Family and
MC9S12GC-Family members are comprised of standard on-chip peripherals including a 16-bit central
processing unit (CPU12), up to 128K bytes of Flash EEPROM, up to 4K bytes of RAM, an asynchronous
serial communications interface (SCI), a serial peripheral interface (SPI), an 8-channel 16-bit timer
module (TIM), a 6-channel 8-bit Pulse Width Modulator (PWM), an 8-channel, 10-bit analog-to-digital
converter (ADC). The MC9S12C-Family members also feature a CAN 2.0 A, B software compatible
module (MSCAN12). The MC9S12C-Family as well as the MC9S12GC-Family has full 16-bit data paths
throughout. The inclusion of a PLL circuit allows power consumption and performance to be adjusted to
suit operational requirements. In addition to the I/O ports available in each module, up to 10 dedicated I/O
port bits are available with Wake-Up capability from STOP or WAIT mode. The MC9S12C-Family and
the MC9S12GC-Family devices are available in 48, 52 and 80 pin QFP packages, with the 80 Pin version
pin compatible to the HCS12 A, B and D- Family derivatives.

1.2 Features
•

16-bit HCS12 CORE
–

HCS12 CPU
i. Upward compatible with M68HC11 instruction set
ii. Interrupt stacking and programmer’s model identical to M68HC11
iii. Instruction queue
iv. Enhanced indexed addressing

•

–

MMC (memory map and interface)

–

INT (interrupt control)

–

BDM (background debug mode)

–

DBG12 (enhanced debug12 module, including breakpoints and change-of-flow trace buffer)

–

MEBI: Multiplexed Expansion Bus Interface (available only in 80 pin package version)

Wake-up interrupt inputs
–

•

Up to 12-port bits available for wake up interrupt function with digital filtering

Memory options
–

16K or 32KByte Flash EEPROM (erasable in 512-byte sectors)
64K, 96K or 128KByte Flash EEPROM (erasable in 1024-byte sectors)

23

Device User Guide — 9S12C128DGV1/D V01.05

–
•

•

•

•

•

•

24

1K, 2K or 4K Byte RAM

Analog-to-Digital Converters
–

One 8-channel module with 10-bit resolution.

–

External conversion trigger capability

Available on MC9S12C-Family:
One 1M bit per second, CAN 2.0 A, B software compatible module
–

Five receive and three transmit buffers

–

Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit

–

Four separate interrupt channels for Rx, Tx, error and wake-up

–

Low-pass filter wake-up function

–

Loop-back for self test operation

Timer Module (TIM)
–

8-Channel Timer

–

Each Channel Configurable as either Input Capture or Output Compare

–

Simple PWM Mode

–

Modulo Reset of Timer Counter

–

16-Bit Pulse Accumulator

–

External Event Counting

–

Gated Time Accumulation

6 PWM channels
–

Programmable period and duty cycle

–

8-bit 6-channel or 16-bit 3-channel

–

Separate control for each pulse width and duty cycle

–

Center-aligned or left-aligned outputs

–

Programmable clock select logic with a wide range of frequencies

–

Fast emergency shutdown input

Serial interfaces
–

One asynchronous serial communications interface (SCI)

–

One synchronous serial peripheral interface (SPI)

CRG (Clock Reset Generator Module)
–

Windowed COP watchdog,

–

Real time interrupt,

–

Clock monitor,

Device User Guide — 9S12C128DGV1/D V01.05

•

•

•

•

–

Pierce or low current Colpitts oscillator

–

Phase-locked loop clock frequency multiplier

–

Limp home mode in absence of external clock

–

Low power 0.5 to 16 MHz crystal oscillator reference clock

Operating frequency
–

32MHz equivalent to 16MHz Bus Speed for single chip

–

32MHz equivalent to 16MHz Bus Speed in expanded bus modes

–

Option of 9S12C-Family: 50MHz equivalent to 25MHz Bus Speed

–

All 9S12GC-Family Members allow a 50MHz operting frequency.

Internal 2.5V Regulator
–

Supports an input voltage range from 2.97V to 5.5V

–

Low power mode capability

–

Includes low voltage reset (LVR) circuitry

–

Includes low voltage interrupt (LVI) circuitry

48-Pin LQFP, 52-Pin LQFP or 80-Pin QFP package
–

Up to 58 I/O lines with 5V input and drive capability (80 pin package)

–

Up to 2 dedicated 5V input only lines (IRQ, XIRQ)

–

5V 8 A/D converter inputs and 5V I/O

Development support
–

Single-wire background debug™ mode (BDM)

–

On-chip hardware breakpoints

–

Enhanced DBG12 debug features

1.3 Modes of Operation
User modes (Expanded modes are only available in the 80 pin package version).
•

•

Normal and Emulation Operating Modes
–

Normal Single-Chip Mode

–

Normal Expanded Wide Mode

–

Normal Expanded Narrow Mode

–

Emulation Expanded Wide Mode

–

Emulation Expanded Narrow Mode

Special Operating Modes

25

Device User Guide — 9S12C128DGV1/D V01.05

•

26

–

Special Single-Chip Mode with active Background Debug Mode

–

Special Test Mode (Motorola use only)

–

Special Peripheral Mode (Motorola use only)

Low power modes
–

Stop Mode

–

Pseudo Stop Mode

–

Wait Mode

Device User Guide — 9S12C128DGV1/D V01.05

1.4 Block Diagram
Figure 1-1 MC9S12C-Family Block Diagram

PLL 2.5V
VDDPLL
VSSPLL

PTAD
PTT

SPI

PJ6
PJ7

PTS

PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0

Internal Logic 2.5V
VDD1,2
VSS1,2

RXD
TXD

MSCAN is not available on the
9S12GC Family Members
MSCAN

PP0
PP1
PP2
PP3
PP4
PP5
PP6
PP7

PS0
PS1
PS2
PS3

PTM

PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0

ADDR7
ADDR6
ADDR5
ADDR4
ADDR3
ADDR2
ADDR1
ADDR0

PTB

DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0

PTA

ADDR15
ADDR14
ADDR13
ADDR12
ADDR11
ADDR10
ADDR9
ADDR8

DDRB

DATA15
DATA14
DATA13
DATA12
DATA11
DATA10
DATA9
DATA8

Multiplexed
Wide Bus

DDRA

SCI

DDRAD
DDRT

TEST/VPP

Multiplexed Address/Data Bus

PTP

PWM
Module

PW0
PW1
PW2
PW3
PW4
PW5

RXCAN
TXCAN
MISO
SS
MOSI
SCK

DDRP

XIRQ
IRQ
System
R/W
Integration
LSTRB/TAGLO
Module
ECLK
(SIM)
MODA/IPIPE0
MODB/IPIPE1
NOACC/XCLKS

PT0
PT1
PT2
PT3
PT4
PT5
PT6
PT7

PTJ

COP Watchdog
Clock Monitor
Periodic Interrupt

PAD0
PAD1
PAD2
PAD3
PAD4
PAD5
PAD6
PAD7

PM0
PM1
PM2
PM3
PM4
PM5

MUX

DDRJ

Timer
Module

Clock and
Reset
Generation
Module

IOC0
IOC1
IOC2
IOC3
IOC4
IOC5
IOC6
IOC7

DDRS

PE0
PE1
PE2
PE3
PE4
PE5
PE6
PE7

PLL

HCS12
CPU

DDRM

XFC
VDDPLL
VSSPLL
EXTAL
XTAL
RESET

1K, 2K, 4K Byte RAM
Background
MODC
Debug12 Module

VDDA
VSSA
VRH
VRL

AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7

16K, 32K, 64K, 96K, 128K Byte Flash

DDRE

BKGD

Voltage Regulator

PTE

VDD2
VSS2
VDD1
VSS1

VDDA
VSSA
VRH
VRL

ATD

Key Int Keypad Interrupt

VSSR
VDDR
VDDX
VSSX

Signals shown in Bold are not available on the 52 or 48 Pin Package
Signals shown in Bold Italic are available in the 52, but not the 48 Pin Package

I/O Driver 5V
VDDX
VSSX

A/D Converter 5V
VDDA
VSSA

VRL is bonded internally to VSSA
for 52 and 48 Pin packages

Voltage Regulator 5V & I/O
VDDR
VSSR

27

Device User Guide — 9S12C128DGV1/D V01.05

1.5 Device Memory Map
Table 1-1 shows the device register map of the MC9S12C-Family after reset. The following figures
(Figure 1-2, Figure 1-2, Figure 1-3 and Figure 1-4) illustrate the full device memory map with flash
and RAM.
Table 1-1 Device Register Map Overview
Address
$000 - $017

Module
CORE (Ports A, B, E, Modes, Inits, Test)

24

$018

Reserved

1

$019

Voltage Regulator (VREG)

1

$01A - $01B

Device ID register

2

$01C - $01F

CORE (MEMSIZ, IRQ, HPRIO)

4

$020 - $02F

CORE (DBG)
(PPAGE1)

16

$030 - $033

CORE

$034 - $03F

Clock and Reset Generator (CRG)

$040 - $06F

Standard Timer Module16-bit 8-channels (TIM)

48

$070 - $07F

Reserved

16

4
12

$080 - $09F

Analog to Digital Convert (ATD)

32

$0A0 - $0C7

Reserved

40

$0C8 - $0CF

Serial Communications Interface (SCI)

8

$0D0 - $0D7

Reserved

8

$0D8 - $0DF

Serial Peripheral Interface (SPI)

$0E0 - $0FF

Pulse Width Modulator 8-bit 6 channels (PWM)

$100 - $10F

Flash Control Register

16

$110 - $13F

Reserved

48

$140 - $17F

Motorola Scalable CAN (MSCAN)2

64

$180 - $23F

Reserved

$240 - $27F

Port Integration Module (PIM)

$280 - $3FF

Reserved

NOTES:
1. External memory paging is not supported on this device (6.1.1 PPAGE).
2. Not available on MC9S12GC-Family Devices

28

Size

8
32

192
64
384

Device User Guide — 9S12C128DGV1/D V01.05

$0000

1K Register Space

$03FF

Mappable to any 2K Boundary

PAGE MAP
$0000
$0400

$0000
16K Fixed Flash EEPROM
$3FFF

$3000

$4000

$3D

$3000

4K Bytes RAM

$3FFF

Mappable to any 4K Boundary

$4000

16K Fixed Flash EEPROM

$3E

$7FFF
$8000

$8000
16K Page Window
8 * 16K Flash EEPROM Pages

EXT

PPAGE

$BFFF
$C000

$C000

$FFFF
$FF00
$FF00
$FFFF

VECTORS

VECTORS

VECTORS

NORMAL
SINGLE CHIP

EXPANDED

SPECIAL
SINGLE CHIP

$FFFF

16K Fixed Flash EEPROM

$3F
BDM
(If Active)

The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space
$0000 - $0FFF: 4K RAM (only 3K visible $0400 - $0FFF)
Flash Erase Sector Size is 1024 Bytes

Figure 1-2 MC9S12C128 and MC9S12GC128 User configurable Memory Map

29

Device User Guide — 9S12C128DGV1/D V01.05

$0000

1K Register Space

$03FF

Mappable to any 2K Boundary

PAGE MAP
$0000
$0400

$0000
16K Fixed Flash EEPROM
$3FFF

$3000

$4000

$3D

$3000

4K Bytes RAM

$3FFF

Mappable to any 4K Boundary

$4000

16K Fixed Flash EEPROM

$3E

$7FFF
$8000

$8000
16K Page Window
6 * 16K Flash EEPROM Pages

EXT

PPAGE

$BFFF
$C000

$C000

$FFFF
$FF00
$FF00
$FFFF

VECTORS

VECTORS

VECTORS

NORMAL
SINGLE CHIP

EXPANDED

SPECIAL
SINGLE CHIP

$FFFF

16K Fixed Flash EEPROM

$3F
BDM
(If Active)

The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space
$0000 - $0FFF: 4K RAM (only 3K visible $0400 - $0FFF)
Flash Erase Sector Size is 1024 Bytes

Figure 1-3 MC9S12C96 User Configurable Memory Map

30

Device User Guide — 9S12C128DGV1/D V01.05

$0000

1K Register Space

$03FF

Mappable to any 2K Boundary

PAGE MAP
$0000
$0400

$0000
16K Fixed Flash EEPROM
$3FFF

$3000

$4000

$3000

4K Bytes RAM

$3FFF

Mappable to any 4K Boundary

$3D

$4000

16K Fixed Flash EEPROM

$3E

$7FFF
$8000

$8000
16K Page Window
4 * 16K Flash EEPROM Pages

EXT

PPAGE

$BFFF
$C000

$C000

$FFFF
$FF00
$FF00
$FFFF

VECTORS

VECTORS

VECTORS

NORMAL
SINGLE CHIP

EXPANDED

SPECIAL
SINGLE CHIP

$FFFF

16K Fixed Flash EEPROM

$3F
BDM
(If Active)

The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space
$0000 - $0FFF: 4K RAM (only 3K visible $0400 - $0FFF)
Flash Erase Sector Size is 1024 Bytes

Figure 1-4 MC9S12C64 and MC9S12GC64 User Configurable Memory Map

31

Device User Guide — 9S12C128DGV1/D V01.05

$0000

1K Register Space

$0000
$0400

$03FF

Mappable to any 2K Boundary

$3800

$3800

2K Bytes RAM

$3FFF

Mappable to any 2K Boundary

PAGE MAP

$4000

$3E

$8000

$8000
16K Page Window
2 * 16K Flash EEPROM Pages

EXT

PPAGE

$BFFF
$C000

$C000

$FFFF
$FF00
$FF00
$FFFF

VECTORS

VECTORS

VECTORS

NORMAL
SINGLE CHIP

EXPANDED

SPECIAL
SINGLE CHIP

$FFFF

16K Fixed Flash EEPROM

$3F
BDM
(If Active)

The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space
$0800 - $0FFF: 2K RAM
Flash Erase Sector Size is 512 Bytes

Figure 1-5 MC9S12C32 and MC9S12GC32 User Configurable Memory Map

32

Device User Guide — 9S12C128DGV1/D V01.05

$0000

1K Register Space

$0000
$0400

$03FF

Mappable to any 2K Boundary

$3800

$3800

2K Bytes RAM

$3FFF

Mappable to any 2K Boundary

PAGE MAP

$4000

$8000

EXT

PPAGE

$C000

$C000

$FFFF
$FF00
$FF00
$FFFF

VECTORS

VECTORS

VECTORS

NORMAL
SINGLE CHIP

EXPANDED

SPECIAL
SINGLE CHIP

$FFFF

16K Fixed Flash EEPROM

$3F
BDM
(If Active)

The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space
$0800 - $0FFF: 2K RAM
Flash Erase Sector Size is 512 Bytes

Figure 1-6 MC9S12GC16 User Configurable Memory Map

1.6 Detailed Register Map
The detailed register map of the MC9S12C Family is listed in address order below.

33

Device User Guide — 9S12C128DGV1/D V01.05

$0000 - $000F
Address

Name

$0000

PORTA

$0001

PORTB

$0002

DDRA

$0003

DDRB

$0004

Reserved

$0005

Reserved

$0006

Reserved

$0007

Reserved

$0008

PORTE

$0009

DDRE

$000A

PEAR

$000B

MODE

$000C

PUCR

$000D

RDRIV

$000E

EBICTL

$000F

Reserved

$0010 - $0014

34

Address

Name

$0010

INITRM

$0011

INITRG

Address

Name

MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface)
Bit 7
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
NOACCE
Write:
Read:
MODC
Write:
Read:
PUPKE
Write:
Read:
RDPK
Write:
Read:
0
Write:
Read:
0
Write:

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

6

5

4

3

2

1

Bit 0

6

5

4

3

2

1

Bit 0

6

5

4

3

2

1

Bit 0

6

5

4

3

2

1

Bit 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

6

5

4

3

2

Bit 1

Bit 0

6

5

4

3

Bit 2

0

0

PIPOE

NECLK

LSTRE

RDWE

0

0

EMK

EME

PUPBE

PUPAE

RDPB

RDPA

0
MODB

MODA

0

0

0

0

0

0

0

0

0

IVIS

0

0

0

0

0

0

0

0

0

0

0

0

0

PUPEE
RDPE

ESTR
0

MMC map 1 of 4 (HCS12 Module Mapping Control)
Bit 7
Read:
RAM15
Write:
Read:
0
Write:
Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

RAM14

RAM13

RAM12

RAM11

REG14

REG13

REG12

REG11

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2
0

Bit 1
0

Bit 0

0

0

0

Bit 2

Bit 1

Bit 0

RAMHAL

Device User Guide — 9S12C128DGV1/D V01.05

$0010 - $0014
Address

MMC map 1 of 4 (HCS12 Module Mapping Control)

Name

$0012

INITEE

$0013

MISC

$0014

Reserved

Read:
Write:
Read:
Write:
Read:
Write:

$0015 - $0016
Address

Name

$0015

ITCR

$0016

ITEST

$0017

Read:
Write:
Read:
Write:

Read:
Write:

$0018 - $0018
Address
$0018

Read:
Write:

$0019 - $0019
Address
$0019

Read:
Write:

$001A - $001B
Address

Name

$001A

PARTIDH

$001B

PARTIDL

Bit 3

Bit 2
0

Bit 1
0

EE15

EE14

EE13

EE12

EE11

0

0

0

0

0

0

0

0

Bit 0

EXSTR1

EXSTR0

ROMHM

ROMON

0

0

0

0

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

WRINT

ADR3

ADR2

ADR1

ADR0

INT8

INT6

INT4

INT2

INT0

EEON

Bit 7
0

Bit 6
0

Bit 5
0

INTE

INTC

INTA

Bit 7
0

Bit 6
0

Bit 5
0

Bit 4
0

Bit 3
0

Bit 2
0

Bit 1
0

Bit 0
0

Bit 7
0

Bit 6
0

Bit 5
0

Bit 4
0

Bit 3
0

Bit 2
0

Bit 1
0

Bit 0
0

Bit 3
0

Bit 2
LVDS

Bit 1

Bit 0

LVIE

LVIF

VREG3V3 (Voltage Regulator)

Name
VREGCTRL

Bit 4

Miscellaneous Peripherals (Device User Guide)

Name
Reserved

Bit 5

MMC map 2 of 4 (HCS12 Module Mapping Control)

Name
Reserved

Bit 6

INT map 1 of 2 (HCS12 Interrupt)

$0017 - $0017
Address

Bit 7

Bit 7
0

Bit 6
0

Bit 5
0

Bit 4
0

Miscellaneous Peripherals (Device User Guide)
Read:
Write:
Read:
Write:

Bit 7
ID15

Bit 6
ID14

Bit 5
ID13

Bit 4
ID12

Bit 3
ID11

Bit 2
ID10

Bit 1
ID9

Bit 0
ID8

ID7

ID6

ID5

ID4

ID3

ID2

ID1

ID0

35

Device User Guide — 9S12C128DGV1/D V01.05

$001C - $001D

Address

Name

$001C

MEMSIZ0

$001D

MEMSIZ1

MMC map 3 of 4 (HCS12 Module Mapping Control,
Device User Guide)
Bit 7
Read: reg_sw0
Write:
Read: rom_sw1
Write:

$001E - $001E
Address
$001E

Read:
Write:

$001F - $001F
Address
$001F

Read:
Write:

$0020 - $002F
Address
$0020
$0021
$0022
$0023
$0024
$0025
$0026
$0027

$0028
$0029
$002A
$002B

36

Name
DBGC1
-

DBGSC
DBGTBH
DBGTBL
DBGCNT
DBGCCX
DBGCCH
DBGCCL
-

DBGC2
BKPCT0

DBGC3
BKPCT1
DBGCAX
BKP0X
DBGCAH
BKP0H

Bit 4
eep_sw0

Bit 3
0

Bit 2
ram_sw2

Bit 1
ram_sw1

Bit 0
ram_sw0

rom_sw0

0

0

0

0

pag_sw1

pag_sw0

Bit 7

Bit 6

IRQE

IRQEN

Bit 5
0

Bit 4
0

Bit 3
0

Bit 2
0

Bit 1
0

Bit 0
0

Bit 0

INT map 2 of 2 (HCS12 Interrupt)

Name
HPRIO

Bit 5
eep_sw1

MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface)

Name
INTCR

Bit 6
0

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

PSEL7

PSEL6

PSEL5

PSEL4

PSEL3

PSEL2

PSEL1

0

DBG (including BKP) map 1 of 1 (HCS12 Debug)
Bit 7
read
DBGEN
write
AF
read
write
read Bit 15
write
read
write
read
write
read
write
read
write
read
write

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

0

DBGBRK

ARM

TRGSEL

BEGIN

CAPMOD

BF

CF

0

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

TBF

0

TRG

CNT

PAGSEL

EXTCMP

Bit 15

14

13

12

11

10

9

Bit 8

Bit 7

6

5

4

3

2

1

Bit 0

RWCEN

RWC

RWBEN

RWB

9

Bit 8

read
BKABEN
FULL
BDM
TAGAB BKCEN
TAGC
write
read
BKAMBH BKAMBL BKBMBH BKBMBL RWAEN
RWA
write
read
PAGSEL
EXTCMP
write
read
write

Bit 0

Bit 15

14

13

12

11

10

Device User Guide — 9S12C128DGV1/D V01.05

$0020 - $002F
Address
$002C
$002D
$002E
$002F

DBG (including BKP) map 1 of 1 (HCS12 Debug)

Name
DBGCAL
BKP0L
DBGCBX
BKP1X
DBGCBH
BKP1H
DBGCBL
BKP1L

read
write
read
write
read
write
read
write

$0030 - $0031
Address

PPAGE

$0031

Reserved

Read:
Write:
Read:
Write:

$0032 - $0033
Address

PORTK1

$0033

DDRK(1)

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Bit 7

6

5

4

3

2

1

Bit 0

PAGSEL

EXTCMP

Bit 15

14

13

12

11

10

9

Bit 8

Bit 7

6

5

4

3

2

1

Bit 0

Bit 7
0

Bit 6
0

0

0

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

PIX5

PIX4

PIX3

PIX2

PIX1

PIX0

0

0

0

0

0

0

MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface)

Name

$0032

Bit 6

MMC map 4 of 4 (HCS12 Module Mapping Control)

Name

$0030

Bit 7

Read:
Write:
Read:
Write:

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Bit 7

6

5

4

3

2

1

Bit 0

Bit 7

6

5

4

3

2

1

Bit 0

NOTES:
1. Only applicable in special emulation-only bond outs, for emulation of extended memory map.

$0034 - $003F
Address

Name

$0034

SYNR

$0035

REFDV

$0036

CTFLG
TEST ONLY

$0037

CRGFLG

$0038

CRGINT

$0039

CLKSEL

$003A

PLLCTL

CRG (Clock and Reset Generator)
Bit 7
Read:
0
Write:
Read:
0
Write:
Read: TOUT7
Write:
Read:
RTIF
Write:
Read:
RTIE
Write:
Read:
PLLSEL
Write:
Read:
CME
Write:

Bit 6
0

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

SYN5

SYN4

SYN3

SYN2

SYN1

SYN0

0

0

0

REFDV3

REFDV2

REFDV1

REFDV0

TOUT6

TOUT5

TOUT4

TOUT3

TOUT2

TOUT1

TOUT0

LOCK

TRACK

0

0

PLLWAI

CWAI

RTIWAI

COPWAI

PRE

PCE

SCME

PROF

0

LOCKIF

0

0

PSTP

SYSWAI

ROAWAI

PLLON

AUTO

ACQ

LOCKIE

0

SCMIF
SCMIE

SCM
0

37

Device User Guide — 9S12C128DGV1/D V01.05

$0034 - $003F
Address

Name

$003B

RTICTL

$003C

COPCTL

$003D
$003E
$003F

FORBYP
TEST ONLY
CTCTL
TEST ONLY
ARMCOP

CRG (Clock and Reset Generator)
Bit 7
Read:
0
Write:
Read:
WCOP
Write:
Read:
RTIBYP
Write:
Read: TCTL7
Write:
Read:
0
Write:
Bit 7

$0040 - $006F
Address

38

TIOS

$0041

CFORC

$0042

OC7M

$0043

OC7D

$0044

TCNT (hi)

$0045

TCNT (lo)

$0046

TSCR1

$0047

TTOV

$0048

TCTL1

$0049

TCTL2

$004A

TCTL3

$004B

TCTL4

$004C

TIE

$004D

TSCR2

$004E

TFLG1

$004F

TFLG2

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

RTR6

RTR5

RTR4

RTR3

RTR2

RTR1

RTR0

0

0

0

CR2

CR1

CR0

RSBCK
COPBYP

0

PLLBYP

0

0

FCM

0

TCTL6

TCTL5

TCTL4

TCLT3

TCTL2

TCTL1

TCTL0

0
6

0
5

0
4

0
3

0
2

0
1

0
Bit 0

TIM (Timer 16 Bit 8 Channels)

Name

$0040

Bit 6

Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

IOS7

IOS6

IOS5

IOS4

IOS3

IOS2

IOS1

IOS0

0
FOC7

0
FOC6

0
FOC5

0
FOC4

0
FOC3

0
FOC2

0
FOC1

0
FOC0

OC7M7

OC7M6

OC7M5

OC7M4

OC7M3

OC7M2

OC7M1

OC7M0

OC7D7

OC7D6

OC7D5

OC7D4

OC7D3

OC7D2

OC7D1

OC7D0

Bit 15

14

13

12

11

10

9

Bit 8

Bit 7

6

5

4

3

2

1

Bit 0

TEN

TSWAI

TSFRZ

TFFCA

0

0

0

0

TOV7

TOV6

TOV5

TOV4

TOV3

TOV2

TOV1

TOV0

OM7

OL7

OM6

OL6

OM5

OL5

OM4

OL4

OM3

OL3

OM2

OL2

OM1

OL1

OM0

OL0

EDG7B

EDG7A

EDG6B

EDG6A

EDG5B

EDG5A

EDG4B

EDG4A

EDG3B

EDG3A

EDG2B

EDG2A

EDG1B

EDG1A

EDG0B

EDG0A

C7I

C6I

C5I

C4I

C3I

C2I

C1I

C0I

0

0

0

TCRE

PR2

PR1

PR0

C6F

C5F

C4F

C3F

C2F

C1F

C0F

0

0

0

0

0

0

0

TOI
C7F
TOF

Device User Guide — 9S12C128DGV1/D V01.05
Address

Name

$0050

TC0 (hi)

$0051

TC0 (lo)

$0052

TC1 (hi)

$0053

TC1 (lo)

$0054

TC2 (hi)

$0055

TC2 (lo)

$0056

TC3 (hi)

$0057

TC3 (lo)

$0058

TC4 (hi)

$0059

TC4 (lo)

$005A

TC5 (hi)

$005B

TC5 (lo)

$005C

TC6 (hi)

$005D

TC6 (lo)

$005E

TC7 (hi)

$005F

TC7 (lo)

$0060

PACTL

$0061

PAFLG

$0062

PACNT (hi)

$0063

PACNT (lo)

$0064

Reserved

$0065

Reserved

$0066

Reserved

$0067

Reserved

Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Bit 15

14

13

12

11

10

9

Bit 8

Bit 7

6

5

4

3

2

1

Bit 0

Bit 15

14

13

12

11

10

9

Bit 8

Bit 7

6

5

4

3

2

1

Bit 0

Bit 15

14

13

12

11

10

9

Bit 8

Bit 7

6

5

4

3

2

1

Bit 0

Bit 15

14

13

12

11

10

9

Bit 8

Bit 7

6

5

4

3

2

1

Bit 0

Bit 15

14

13

12

11

10

9

Bit 8

Bit 7

6

5

4

3

2

1

Bit 0

Bit 15

14

13

12

11

10

9

Bit 8

Bit 7

6

5

4

3

2

1

Bit 0

Bit 15

14

13

12

11

10

9

Bit 8

Bit 7

6

5

4

3

2

1

Bit 0

Bit 15

14

13

12

11

10

9

Bit 8

Bit 7

6

5

4

3

2

1

Bit 0

PAEN

PAMOD

PEDGE

CLK1

CLK0

PAOVI

PAI

0

0

0

0

0

0

PAOVF

PAIF

Bit 15

14

13

12

11

10

9

Bit 8

Bit 7

6

5

4

3

2

1

Bit 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

39

Device User Guide — 9S12C128DGV1/D V01.05
Address

Name

$0068

Reserved

$0069

Reserved

$006A

Reserved

$006B

Reserved

$006C

Reserved

$006D

Reserved

$006E

Reserved

$006F

Reserved

Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:

$0070 - $007F
$0070
- $007F

Reserved

40

ATDCTL0

$0081

ATDCTL1

$0082

ATDCTL2

$0083

ATDCTL3

$0084

ATDCTL4

$0085

ATDCTL5

$0086

ATDSTAT0

$0087

Reserved

$0088

ATDTEST0

$0089

ATDTEST1

$008A

Reserved

Bit 5
0

Bit 4
0

Bit 3
0

Bit 2
0

Bit 1
0

Bit 0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

ATD (Analog to Digital Converter 10 Bit 8 Channel)

Name

$0080

Bit 6
0

Reserved
Read:
Write:

$0080 - $009F
Address

Bit 7
0

Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:

Bit 7
0

Bit 6
0

Bit 5
0

Bit 4
0

Bit 3
0

Bit 2
0

Bit 1
0

Bit 0
0

0

0

0

0

0

0

0

0

ADPU

AFFC

AWAI

ETRIGLE

ETRIGP

ETRIG

ASCIE

S8C

S4C

S2C

S1C

FIFO

FRZ1

FRZ0

SRES8

SMP1

SMP0

PRS4

PRS3

PRS2

PRS1

PRS0

DJM

DSGN

SCAN

MULT

CC

CB

CA

ETORF

FIFOR

0

CC2

CC1

CC0

0

SCF

0

0

ASCIF

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

SC
0

Device User Guide — 9S12C128DGV1/D V01.05

$0080 - $009F
Address

ATD (Analog to Digital Converter 10 Bit 8 Channel)

Name

$008B

ATDSTAT1

$008C

Reserved

$008D

ATDDIEN

$008E

Reserved

$008F

PORTAD0

$0090

ATDDR0H

$0091

ATDDR0L

$0092

ATDDR1H

$0093

ATDDR1L

$0094

ATDDR2H

$0095

ATDDR2L

$0096

ATDDR3H

$0097

ATDDR3L

$0098

ATDDR4H

$0099

ATDDR4L

$009A

ATDDR5H

$009B

ATDDR5L

$009C

ATDDR6H

$009D

ATDDR6L

$009E

ATDDR7H

$009F

ATDDR7L

Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:

$00A0 - $00C7
$00A0
- $00C7

Reserved

Bit 7
CCF7

Bit 6
CCF6

Bit 5
CCF5

Bit 4
CCF4

Bit 3
CCF3

Bit 2
CCF2

Bit 1
CCF1

Bit 0
CCF0

0

0

0

0

0

0

0

0

Bit 7

6

5

4

3

2

1

Bit 0

0

0

0

0

0

0

0

0

Bit7

6

5

4

3

2

1

BIT 0

Bit15

14

13

12

11

10

9

Bit8

Bit7

Bit6

0

0

0

0

0

0

Bit15

14

13

12

11

10

9

Bit8

Bit7

Bit6

0

0

0

0

0

0

Bit15

14

13

12

11

10

9

Bit8

Bit7

Bit6

0

0

0

0

0

0

Bit15

14

13

12

11

10

9

Bit8

Bit7

Bit6

0

0

0

0

0

0

Bit15

14

13

12

11

10

9

Bit8

Bit7

Bit6

0

0

0

0

0

0

Bit15

14

13

12

11

10

9

Bit8

Bit7

Bit6

0

0

0

0

0

0

Bit15

14

13

12

11

10

9

Bit8

Bit7

Bit6

0

0

0

0

0

0

Bit15

14

13

12

11

10

9

Bit8

Bit7

Bit6

0

0

0

0

0

0

0

0

0

0

0

0

Reserved
Read:
Write:

0

0

41

Device User Guide — 9S12C128DGV1/D V01.05

$00C8 - $00CF
Address

Name

$00C8

SCIBDH

$00C9

SCIBDL

$00CA

SCICR1

$00CB

SCICR2

$00CC

SCISR1

$00CD

SCISR2

$00CE

SCIDRH

$00CF

SCIDRL

SCI (Asynchronous Serial Interface)
Bit 7
0
Read:
Write:
Read:
SBR7
Write:
Read:
LOOPS
Write:
Read:
TIE
Write:
Read: TDRE
Write:
Read:
0
Write:
Read:
R8
Write:
Read:
R7
Write:
T7

$00D0 - $00D7
$00D0
- $00D7

Reserved

42

Name

$00D8

SPICR1

$00D9

SPICR2

$00DA

SPIBR

$00DB

SPISR

$00DC

Reserved

$00DD

SPIDR

$00DE

Reserved

$00DF

Reserved

Bit 5

0

0

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

SBR12

SBR11

SBR10

SBR9

SBR8

SBR6

SBR5

SBR4

SBR3

SBR2

SBR1

SBR0

SCISWAI

RSRC

M

WAKE

ILT

PE

PT

TCIE

RIE

ILIE

TE

RE

RWU

SBK

TC

RDRF

IDLE

OR

NF

FE

PF

0

0

0

0

BRK13

TXDIR

0

0

0

0

0

0

R6
T6

R5
T5

R4
T4

R3
T3

R2
T2

R1
T1

R0
T0

0

0

0

0

0

0

0

T8

RAF

Reserved
Read:
Write:

$00D8 - $00DF
Address

Bit 6

0

SPI (Serial Peripheral Interface)
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

SPIE

SPE

SPTIE

MSTR

CPOL

CPHA

SSOE

LSBFE

0

0

0

SPISWAI

SPC0

SPPR2

SPPR1

SPPR0

SPR2

SPR1

SPR0

SPIF

0

SPTEF

MODF

0

0

0

0

0

0

0

0

0

0

0

0

Bit7

6

5

4

3

2

1

Bit0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

MODFEN BIDIROE
0

0

Device User Guide — 9S12C128DGV1/D V01.05

$00E0 - $00FF
Address

PWM (Pulse Width Modulator)

Name

$00E0

PWME

$00E1

PWMPOL

$00E2

PWMCLK

$00E3

PWMPRCLK

$00E4

PWMCAE

$00E5

PWMCTL

$00E6

PWMTST
Test Only

$00E7

PWMPRSC

$00E8

PWMSCLA

$00E9

PWMSCLB

$00EA

PWMSCNTA

$00EB

PWMSCNTB

$00EC

PWMCNT0

$00ED

PWMCNT1

$00EE

PWMCNT2

$00EF

PWMCNT3

$00F0

PWMCNT4

$00F1

PWMCNT5

$00F2

PWMPER0

$00F3

PWMPER1

$00F4

PWMPER2

$00F5

PWMPER3

$00F6

PWMPER4

Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:

Bit 7
0

Bit 6
0

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

PWME5

PWME4

PWME3

PWME2

PWME1

PWME0

0

0

PPOL5

PPOL4

PPOL3

PPOL2

PPOL1

PPOL0

0

0

PCLK5

PCLK4

PCLK3

PCLK2

PCLK1

PCLK0

PCKB1

PCKB0

PCKA2

PCKA1

PCKA0

CAE5

CAE4

CAE3

CAE2

CAE1

CAE0

CON45

CON23

CON01

PSWAI

PFRZ

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Bit 7

6

5

4

3

2

1

Bit 0

Bit 7

6

5

4

3

2

1

Bit 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Bit 7
0
Bit 7
0
Bit 7
0
Bit 7
0
Bit 7
0
Bit 7
0

6
0
6
0
6
0
6
0
6
0
6
0

5
0
5
0
5
0
5
0
5
0
5
0

4
0
4
0
4
0
4
0
4
0
4
0

3
0
3
0
3
0
3
0
3
0
3
0

2
0
2
0
2
0
2
0
2
0
2
0

1
0
1
0
1
0
1
0
1
0
1
0

Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0

Bit 7

6

5

4

3

2

1

Bit 0

Bit 7

6

5

4

3

2

1

Bit 0

Bit 7

6

5

4

3

2

1

Bit 0

Bit 7

6

5

4

3

2

1

Bit 0

Bit 7

6

5

4

3

2

1

Bit 0

0
0
0

PCKB2
0

0

43

Device User Guide — 9S12C128DGV1/D V01.05
Address

Name

$00F7

PWMPER5

$00F8

PWMDTY0

$00F9

PWMDTY1

$00FA

PWMDTY2

$00FB

PWMDTY3

$00FC

PWMDTY4

$00FD

PWMDTY5

$00FE

Reserved

$00FF

Reserved

$0100 - $010F
Address

Name

$0100

FCLKDIV

$0101

FSEC

$0102

FTSTMOD

$0103

FCNFG

$0104

FPROT

$0105

FSTAT

$0106

FCMD

$0107
$0108
$0109
$010A
$010B

44

Reserved for
Factory Test
Reserved for
Factory Test
Reserved for
Factory Test
Reserved for
Factory Test
Reserved for
Factory Test

Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Bit 7

6

5

4

3

2

1

Bit 0

Bit 7

6

5

4

3

2

1

Bit 0

Bit 7

6

5

4

3

2

1

Bit 0

Bit 7

6

5

4

3

2

1

Bit 0

Bit 7

6

5

4

3

2

1

Bit 0

Bit 7

6

5

4

3

2

1

Bit 0

Bit 7

6

5

4

3

2

1

Bit 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Flash Control Register
Bit 7
Read: FDIVLD
Write:
Read: KEYEN1
Write:
Read:
0
Write:
Read:
CBEIE
Write:
Read:
FPOPEN
Write:
Read:
CBEIF
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

PRDIV8

FDIV5

FDIV4

FDIV3

FDIV2

FDIV1

FDIV0

KEYEN0

NV5

NV4

NV3

NV2

SEC1

SEC0

0

0

WRALL

0

0

0

CCIE

KEYACC

0

0

0

NV6

FPHDIS

FPHS1

FPHS0

FPLDIS

PVIOL

ACCERR

CCIF

0

BLANK

0

BKSEL1

BKSEL0

FPLS1

FPLS0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

CMDB6

CMDB5

0

CMDB2

0

CMDB0

Device User Guide — 9S12C128DGV1/D V01.05

$0100 - $010F
Address

Flash Control Register

Name

$010C

Reserved

$010D

Reserved

$010E

Reserved

$010F

Reserved

Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:

$0110 - $013F
$0110
- $003F

Reserved

Name

$0140

CANCTL0

$0141

CANCTL1

$0142

CANBTR0

$0143

CANBTR1

$0144

CANRFLG

$0145

CANRIER

$0146

CANTFLG

$0147

CANTIER

$0148

CANTARQ

$0149

CANTAAK

$014A

CANTBSEL

$014B

CANIDAC

$014C

Reserved

$014D

Reserved

Bit 6
0

Bit 5
0

Bit 4
0

Bit 3
0

Bit 2
0

Bit 1
0

Bit 0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Bit 3

Bit 2

Bit 1

Bit 0

TIME

WUPE

SLPRQ

INITRQ

SLPAK

INITAK

Reserved
Read:
Write:

0

CAN (Motorola Scalable CAN - MSCAN)1

$0140 - $017F
Address

Bit 7
0

Bit 7
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:

RXFRM

Bit 6
RXACT

Bit 5
CSWAI

Bit 4
SYNCH

0

CANE

CLKSRC

LOOPB

LISTEN

WUPM

SJW1

SJW0

BRP5

BRP4

BRP3

BRP2

BRP1

BRP0

SAMP

TSEG22

TSEG21

TSEG20

TSEG13

TSEG12

TSEG11

TSEG10

WUPIF

CSCIF

RSTAT1

RSTAT0

TSTAT1

TSTAT0

OVRIF

RXF

WUPIE

CSCIE

OVRIE

RXFIE

0

0

0

0

0

TXE2

TXE1

TXE0

0

0

0

0

0

TXEIE2

TXEIE1

TXEIE0

0

0

0

0

0

ABTRQ2

ABTRQ1

ABTRQ0

0

0

0

0

0

ABTAK2

ABTAK1

ABTAK0

0

0

0

0

0

TX2

TX1

TX0

0

0

IDAM1

IDAM0

0

IDHIT2

IDHIT1

IDHIT0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

RSTATE1 RSTATE0 TSTATE1 TSTATE0

45

Device User Guide — 9S12C128DGV1/D V01.05

CAN (Motorola Scalable CAN - MSCAN)1

$0140 - $017F
Address

Name

$014E

CANRXERR

$014F

CANTXERR

$0150 $0153
$0154 $0157
$0158 $015B
$015C $015F
$0160 $016F
$0170 $017F

CANIDAR0 CANIDAR3
CANIDMR0 CANIDMR3
CANIDAR4 CANIDAR7
CANIDMR4 CANIDMR7
CANRXFG
CANTXFG

Bit 7
Read: RXERR7
Write:
Read: TXERR7
Write:
Read:
AC7
Write:
Read:
AM7
Write:
Read:
AC7
Write:
Read:
AM7
Write:
Read:
Write:
Read:
Write:

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

RXERR6

RXERR5

RXERR4

RXERR3

RXERR2

RXERR1

RXERR0

TXERR6

TXERR5

TXERR4

TXERR3

TXERR2

TXERR1

TXERR0

AC6

AC5

AC4

AC3

AC2

AC1

AC0

AM6

AM5

AM4

AM3

AM2

AM1

AM0

AC6

AC5

AC4

AC3

AC2

AC1

AC0

AM6

AM5

AM4

AM3

AM2

AM1

AM0

FOREGROUND RECEIVE BUFFER see Table 1-2
FOREGROUND TRANSMIT BUFFER see Table 1-2

NOTES:
1. Not available on the MC9S12GC-Family members. Those memory locations should not be accessed.

Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout
Address
$xxx0

$xxx1

$xxx2

$xxx3
$xxx4$xxxB
$xxxC
$xxxD
$xxxE
$xxxF

$xx10

46

Name
Extended ID
Standard ID
CANxRIDR0
Extended ID
Standard ID
CANxRIDR1
Extended ID
Standard ID
CANxRIDR2
Extended ID
Standard ID
CANxRIDR3
CANxRDSR0 CANxRDSR7

Read:
Read:
Write:
Read:
Read:
Write:
Read:
Read:
Write:
Read:
Read:
Write:
Read:
Write:
Read:
CANRxDLR
Write:
Read:
Reserved
Write:
Read:
CANxRTSRH
Write:
Read:
CANxRTSRL
Write:
Extended ID Read:
CANxTIDR0 Write:
Standard ID Read:
Write:

Bit 7
ID28
ID10

Bit 6
ID27
ID9

Bit 5
ID26
ID8

Bit 4
ID25
ID7

Bit 3
ID24
ID6

Bit 2
ID23
ID5

Bit 1
ID22
ID4

Bit 0
ID21
ID3

ID20
ID2

ID19
ID1

ID18
ID0

SRR=1
RTR

IDE=1
IDE=0

ID17

ID16

ID15

ID14

ID13

ID12

ID11

ID10

ID9

ID8

ID7

ID6

ID5

ID4

ID3

ID2

ID1

ID0

RTR

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0

DLC3

DLC2

DLC1

DLC0

TSR15

TSR14

TSR13

TSR12

TSR11

TSR10

TSR9

TSR8

TSR7

TSR6

TSR5

TSR4

TSR3

TSR2

TSR1

TSR0

ID28

ID27

ID26

ID25

ID24

ID23

ID22

ID21

ID10

ID9

ID8

ID7

ID6

ID5

ID4

ID3

Device User Guide — 9S12C128DGV1/D V01.05
Address
$xx11

$xx12

$xx13

Name
Extended ID
CANxTIDR1
Standard ID
Extended ID
CANxTIDR2
Standard ID
Extended ID
CANxTIDR3
Standard ID

$xx14$xx1B

CANxTDSR0 CANxTDSR7

$xx1C

CANxTDLR

$xx1D

CONxTTBPR

$xx1E

CANxTTSRH

$xx1F

CANxTTSRL

Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:

$0180 - $023F
$0180
- $023F

Reserved

PTT

$0241

PTIT

$0242

DDRT

$0243

RDRT

$0244

PERT

$0245

PPST

$0246

Reserved

$0247

MODRR

$0248

PTS

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

ID20

ID19

ID18

SRR=1

IDE=1

ID17

ID16

ID15

ID2

ID1

ID0

RTR

IDE=0

ID14

ID13

ID12

ID11

ID10

ID9

ID8

ID7

ID6

ID5

ID4

ID3

ID2

ID1

ID0

RTR

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0

DLC3

DLC2

DLC1

DLC0

PRIO7

PRIO6

PRIO5

PRIO4

PRIO3

PRIO2

PRIO1

PRIO0

TSR15

TSR14

TSR13

TSR12

TSR11

TSR10

TSR9

TSR8

TSR7

TSR6

TSR5

TSR4

TSR3

TSR2

TSR1

TSR0

0

0

0

0

0

0

Reserved
Read:
Write:

$0240 - $027F

$0240

Bit 7

0

0

PIM (Port Interface Module)
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:

PTT7

PTT6

PTT5

PTT4

PTT3

PTT2

PTT1

PTT0

PTIT7

PTIT6

PTIT5

PTIT4

PTIT3

PTIT2

PTIT1

PTIT0

DDRT7

DDRT7

DDRT5

DDRT4

DDRT3

DDRT2

DDRT1

DDRT0

RDRT7

RDRT6

RDRT5

RDRT4

RDRT3

RDRT2

RDRT1

RDRT0

PERT7

PERT6

PERT5

PERT4

PERT3

PERT2

PERT1

PERT0

PPST7

PPST6

PPST5

PPST4

PPST3

PPST2

PPST1

PPST0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

MODRR4 MODRR3 MODRR2 MODRR1 MODRR0

0

PTS3

PTS2

PTS1

PTS0

47

Device User Guide — 9S12C128DGV1/D V01.05

48

$0249

PTIS

$024A

DDRS

$024B

RDRS

$024C

PERS

$024D

PPSS

$024E

WOMS

$024F

Reserved

$0250

PTM

$0251

PTIM

$0252

DDRM

$0253

RDRM

$0254

PERM

$0255

PPSM

$0256

WOMM

$0257

Reserved

$0258

PTP

$0259

PTIP

$025A

DDRP

$025B

RDRP

$025C

PERP

$025D

PPSP

$025E

PIEP

$025F

PIFP

$0260

Reserved

Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
PTP7
Write:
Read: PTIP7
Write:
Read:
DDRP7
Write:
Read:
RDRP7
Write:
Read:
PERP7
Write:
Read:
PPSP7
Write:
Read:
PIEP7
Write:
Read:
PIFP7
Write:
Read:
0
Write:

0

0

0

PTIS3

PTIS2

PTIS1

PTIS0

0

0

0

DDRS3

DDRS2

DDRS1

DDRS0

0

0

0

RDRS3

RDRS2

RDRS1

RDRS0

0

0

0

PERS3

PERS2

PERS1

PERS0

0

0

0

PPSS3

PPSS2

PPSS1

PPSS0

0

0

0

WOMS3

WOMS2

WOMS1

WOMS0

0

0

0

0

0

0

0

PTM5

PTM4

PTM3

PTM2

PTM1

PTM0

PTIM5

PTIM4

PTIM3

PTIM2

PTIM1

PTIM0

DDRM5

DDRM4

DDRM3

DDRM2

DDRM1

DDRM0

RDRM5

RDRM4

RDRM3

RDRM2

RDRM1

RDRM0

PERM5

PERM4

PERM3

PERM2

PERM1

PERM0

PPSM5

PPSM4

PPSM3

PPSM2

PPSM1

PPSM0

WOMM5

WOMM4

WOMM3

WOMM2

WOMM1

WOMM0

0

0

0

0

0

0

0

PTP6

PTP5

PTP4

PTP3

PTP2

PTP1

PTP0

PTIP6

PTIP5

PTIP4

PTIP3

PTIP2

PTIP1

PTIP0

DDRP7

DDRP5

DDRP4

DDRP3

DDRP2

DDRP1

DDRP0

RDRP6

RDRP5

RDRP4

RDRP3

RDRP2

RDRP1

RDRP0

PERP6

PERP5

PERP4

PERP3

PERP2

PERP1

PERP0

PPSP6

PPSP5

PPSP4

PPSP3

PPSP2

PPSP1

PPSS0

PIEP6

PIEP5

PIEP4

PIEP3

PIEP2

PIEP1

PIEP0

PIFP6

PIFP5

PIFP4

PIFP3

PIFP2

PIFP1

PIFP0

0

0

0

0

0

0

0

0
0
0
0
0
0
0

Device User Guide — 9S12C128DGV1/D V01.05

$0261

Reserved

$0262

Reserved

$0263

Reserved

$0264

Reserved

$0265

Reserved

$0266

Reserved

$0267

Reserved

$0268

PTJ

$0269

PTIJ

$026A

DDRJ

$026B

RDRJ

$026C

PERJ

$026D

PPSJ

$026E

PIEJ

$026F

PIFJ

$0270

PTAD

$0271

PTIAD

$0272

DDRAD

$0273

RDRAD

$0274

PERAD

$0275

PPSAD

$0276$027F

Reserved

Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

PTJ7

PTJ6

0

0

0

0

0

0

PTIJ7

PTIJ6

0

0

0

0

0

0

DDRJ7

DDRJ7

0

0

0

0

0

0

RDRJ7

RDRJ6

0

0

0

0

0

0

PERJ7

PERJ6

0

0

0

0

0

0

PPSJ7

PPSJ6

0

0

0

0

0

0

PIEJ7

PIEJ6

0

0

0

0

0

0

PIFJ7

PIFJ6

0

0

0

0

0

0

PTAD7

PTAD6

PTAD5

PTAD4

PTAD3

PTAD2

PTAD1

PTAD0

PTIAD7

PTIAD6

PTIAD5

PTIAD4

PTIAD3

PTIAD2

PTIAD1

PTIJ7

DDRAD7 DDRAD6 DDRAD5 DDRAD4 DDRAD3 DDRAD2 DDRAD1 DDRAD0
RDRAD7 RDRAD6 RDRAD5 RDRAD4 RDRAD3 RDRAD2 RDRAD1 RDRAD0

Read:
PERAD7 PERAD6 PERAD5 PERAD4 PERAD3 PERAD2 PERAD1 PERAD0
Write:

Read:
PPSAD7 PPSAD6 PPSAD5 PPSAD4 PPSAD3 PPSAD2 PPSAD1 PPSAD0
Write:
Read:
0
0
0
0
0
0
0
0
Write:

49

Device User Guide — 9S12C128DGV1/D V01.05

$0280 - $03FF

Reserved space

Address
Name
Read:
$0280
Reserved
- $2FF
Write:
Read:
$0300 Unimplemented
$03FF
Write:

Bit 7
0

Bit 6
0

Bit 5
0

Bit 4
0

Bit 3
0

Bit 2
0

Bit 1
0

Bit 0
0

0

0

0

0

0

0

0

0

1.7 Part ID Assignments
The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses $001A and $001B after
reset). The read-only value is a unique part ID for each revision of the chip. Table 1-3 shows the assigned
part ID numbers.
Table 1-3 Assigned Part ID Numbers
Device

Mask Set Number

MC9S12C32
MC9S12C32
MC9S12C32
MC9S12C64
MC9S12C96
MC9S12C128
MC9S12C128
MC9S12GC16
MC9S12GC32
MC9S12GC64
MC9S12GC128

0L45J
1L45J
2L45J
TBD
TBD
0L09S
1L09S
TBD
TBD
TBD
TBD

Part ID1
$3300
$3300
$3302
TBD
TBD
$3100
$3101
TBD
TBD
TBD
TBD

NOTES:
1. The coding is as follows:
Bit 15-12: Major family identifier
Bit 11-8: Minor family identifier
Bit 7-4: Major mask set revision number including FAB transfers
Bit 3-0: Minor - non full - mask set revision

The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses $001C
and $001D after reset). Table 1-4 shows the read-only values of these registers. Refer to Module Mapping
and Control (MMC) Block Guide for further details.
Table 1-4 Memory size registers
Device
MC9S12GC16

50

Register name
MEMSIZ0
MEMSIZ1

Value
$00
$80

Device User Guide — 9S12C128DGV1/D V01.05

Table 1-4 Memory size registers
Device
MC9S12C32, MC9S12GC32
MC9S12C64, MC9S12GC64
MC9S12C96
MC9S12C128, MC9S12GC128

Register name
MEMSIZ0
MEMSIZ1
MEMSIZ0
MEMSIZ1
MEMSIZ0
MEMSIZ1
MEMSIZ0
MEMSIZ1

Value
$00
$80
$01
$C0
$01
$C0
$01
$C0

51

Device User Guide — 9S12C128DGV1/D V01.05

Section 2 Signal Description

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

MC9S12C-Family
MC9S12GC-Family

60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41

VRH
VDDA
PAD07/AN07
PAD06/AN06
PAD05/AN05
PAD04/AN04
PAD03/AN03
PAD02/AN02
PAD01/AN01
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8

ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
XCLKS/NOACC/PE7
MODB/IPIPE1/PE6
MODA/IPIPE0/PE5
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST/VPP
LSTRB/TAGLO/PE3
R/W/PE2
IRQ/PE1
XIRQ/PE0

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

PW3/KWP3/PP3
PW2/KWP2/PP2
PW1/KWP1/PP1
PW0/KWP0/PP0
PW0/IOC0/PT0
PW1/IOC1/PT1
PW2/IOC2/PT2
PW3/IOC3/PT3
VDD1
VSS1
PW4/IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4

80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61

PP4/KWP4/PW4
PP5/KWP5/PW5
PP7/KWP7
VDDX
VSSX
PM0/RXCAN
PM1/TXCAN
PM2/MISO
PM3/SS
PM4/MOSI
PM5/SCK
PJ6/KWJ6
PJ7/KWJ7
PP6/KWP6/ROMCTL
PS3
PS2
PS1/TXD
PS0/RXD
VSSA
VRL

2.1 Device Pinout

Signals shown in Bold are not available on the 52 or 48 Pin Package
Signals shown in Bold Italic are available in the 52, but not the 48 Pin Package

Figure 2-1 Pin Assignments in 80 QFP for MC9S12C-Family

52

PP5/KWP5/PW5

VDDX

VSSX

PM0/RXCAN

PM1/TXCAN

PM2/MISO

PM3/SS

PM4/MOSI

PM5/SCK

PS1/TXD

PS0/RXD
VSSA

51

50

49

48

47

46

45

44

43

42

41

40

PP4/KWP4/PW4
52

Device User Guide — 9S12C128DGV1/D V01.05

VRH

2

38

VDDA

PW1/IOC1/PT1

3

37

PW2/IOC2/PT2

4

36

PW3/IOC3/PT3

5

35

PAD07/AN07
PAD06/AN06
PAD05/AN05

VDD1

6

34

PAD04/AN04

VSS1

7

33

PAD03/AN03

PW4/IOC4/PT4

8

32

PAD02/AN02

IOC5/PT5

9

31

PAD01/AN01

IOC6/PT6

10

30

PAD00/AN00

IOC7/PT7

11

29

PA2

MODC/BKGD

12

28

PA1

PB4

13

27

PA0

15

16

17

18

19

20

21

22

23

24

ECLK/PE4

VSSR

VDDR

RESET

VDDPLL

XFC

VSSPLL

EXTAL

XTAL

TEST/VPP
IRQ/PE1
XIRQ/PE0

25

14

MC9S12C-Family
MC9S12GC-Family

XCLKS/PE7

1

26

39

PW3/KWP3/PP3
PW0/IOC0/PT0

* Signals shown in Bold italic are not available on the 48 Pin Package

Figure 2-2 Pin assignments in 52 LQFP for MC9S12C-Family

53

VSSX

PM0/RXCAN

PM1/TXCAN

PM2/MISO

PM3/SS

PM4/MOSI

PM5/SCK

PS1/TXD

PS0/RXD
VSSA

46

45

44

43

42

41

40

39

38

37

VDDX

PW1/IOC1/PT1

47

1

PP5/KWP5/PW5
PW0/IOC0/PT0

48

Device User Guide — 9S12C128DGV1/D V01.05

VRH

2

35

VDDA

PW2/IOC2/PT2

3

34

PW3/IOC3/PT3

4

33

VDD1

5

32

PAD07/AN07
PAD06/AN06
PAD05/AN05

VSS1

6

31

PAD04/AN04

PW4/IOC4/PT4

7

30

PAD03/AN03

IOC5/PT5

8

29

PAD02/AN02

IOC6/PT6

9

28

PAD01/AN01

IOC7/PT7

10

27

PAD00/AN00

MODC/BKGD

11

26

PA0

PB4

12

25

XIRQ/PE0

17

18

19

20

21

RESET

VDDPLL

XFC

VSSPLL

EXTAL

23

16
VDDR

TEST/VPP
IRQ/PE1

15
VSSR

22

14
ECLK/PE4

XTAL

13

XCLKS/PE7

MC9S12C-Family
MC9S12GC-Family

24

36

Figure 2-3 Pin Assignments in 48 LQFP for MC9S12C-Family

54

Device User Guide — 9S12C128DGV1/D V01.05

2.2 Signal Properties Summary
Table 2-1 Signal Properties
Pin Name Pin Name Pin Name Power
Function 1 Function 2 Function 3 Domain

Internal Pull
Resistor
CTRL

Description

Reset
State

EXTAL

—

—

VDDPLL

NA

NA

XTAL

—

—

VDDPLL

NA

NA

Oscillator pins

RESET

—

—

VDDX

None

None

External reset pin

XFC

—

—

VDDPLL

NA

NA

PLL loop filter pin

TEST

VPP

—

VSSX

NA

NA

Test pin only

BKGD

MODC

TAGHI

VDDX

Up

Up

Background debug, mode pin, tag signal high

PE7

NOACC

XCLKS

VDDX

PUCR

Up

Port E I/O pin, access, clock select
Port E I/O pin and pipe status

PE6

IPIPE1

MODB

VDDX

While RESET
pin is low: Down

PE5

IPIPE0

MODA

VDDX

While RESET
pin is low: Down

Port E I/O pin and pipe status

PE4

ECLK

—

VDDX

PUCR

Mode
Dep1

Port E I/O pin, bus clock output

PE3

LSTRB

TAGLO

VDDX

PUCR

Mode
Dep(1)

Port E I/O pin, low strobe, tag signal low

PE2

R/W

—

VDDX

PUCR

Mode
Dep(1)

Port E I/O pin, R/W in expanded modes

PE1

IRQ

—

VDDX

PUCR

Up

Port E input, external interrupt pin

PE0

XIRQ

—

VDDX

PUCR

Up

Port E input, non-maskable interrupt pin

PA[7:3]

ADDR[15:1/
DATA[15:1]

—

VDDX

PUCR

Disabled Port A I/O pin & multiplexed address/data

PA[2:1]

ADDR[10:9/
DATA[10:9]

—

VDDX

PUCR

Disabled Port A I/O pin & multiplexed address/data

PA[0]

ADDR[8]/
DATA[8]

—

VDDX

PUCR

Disabled Port A I/O pin & multiplexed address/data

PB[7:5]

ADDR[7:5]/
DATA[7:5]

—

VDDX

PUCR

Disabled Port B I/O pin & multiplexed address/data

PB[4]

ADDR[4]/
DATA[4]

—

VDDX

PUCR

Disabled Port B I/O pin & multiplexed address/data

PB[3:0]

ADDR[3:0]/
DATA[3:0]

—

VDDX

PUCR

Disabled Port B I/O pin & multiplexed address/data

PAD[7:0]

AN[7:0]

—

VDDA

PP[7]

KWP[7]

—

VDDX

PERP/
PPSP

Disabled Port P I/O Pins and keypad wake-up

PP[6]

KWP[6]

ROMCTL

VDDX

PERP/
PPSP

Disabled

PP[5]

KWP[5]

PW5

VDDX

PERP/
PPSP

Disabled Port P I/O Pin, keypad wake-up, PW5 output

PP[4:3]

KWP[4:3]

PW[4:3]

VDDX

PERP/
PPSP

Disabled Port P I/O Pin, keypad wake-up, PWM output

PERAD/P
Disabled Port AD I/O pins and ATD inputs
PSAD

Port P I/O Pins, keypad wake-up and ROMON
enable.

55

Device User Guide — 9S12C128DGV1/D V01.05

Pin Name Pin Name Pin Name Power
Function 1 Function 2 Function 3 Domain

Internal Pull
Resistor
CTRL

Description

Reset
State

PP[2:0]

KWP[2:0]

PW[2:0]

VDDX

PERP/
PPSP

Disabled Port P I/O Pins, keypad wake-up, PWM outputs

PJ[7:6]

KWJ[7:6]

—

VDDX

PERJ/
PPSJ

Disabled Port J I/O Pins and keypad wake-up

PM5

SCK

—

VDDX

PERM/
PPSM

Up

Port M I/O Pin and SPI SCK signal

PM4

MOSI

—

VDDX

PERM/
PPSM

Up

Port M I/O Pin and SPI MOSI signal

PM3

SS

—

VDDX

PERM/
PPSM

Up

Port M I/O Pin and SPI SS signal

PM2

MISO

—

VDDX

PERM/
PPSM

Up

Port M I/O Pin and SPI MISO signal

PM1

TXCAN

—

VDDX

PERM/
PPSM

Up

Port M I/O Pin and CAN transmit signal2

PM0

RXCAN

—

VDDX

PERM/
PPSM

Up

Port M I/O Pin and CAN receive signal2

PS[3:2]

—

—

VDDX

PERS/
PPSS

Up

Port S I/O Pins

PS1

TXD

—

VDDX

PERS/
PPSS

Up

Port S I/O Pin and SCI transmit signal

PS0

RXD

—

VDDX

PERS/
PPSS

Up

Port S I/O Pin and SCI receive signal

PT[7:5]

IOC[7:5]

—

VDDX

PERT/
PPST

Disabled Port T I/O Pins shared with timer (TIM)

PT[4:0]

IOC[4:0]

PW[4:0]

VDDX

PERT/
PPST

Disabled Port T I/O Pins shared with timer and PWM

NOTES:
1. The PortE output buffer enable signal control at reset is determined by the PEAR register and is mode dependent. E.g. in
special test mode RDWE=LSTRE=1 which enables the PE[3:2] output buffers and disables the pull-ups. Refer to S12_MEBI
user guide for PEAR register details.
2. CAN functionality is not available on the MC9S12GC-Family members

2.2.1 Pin Initialization for 48 & 52 Pin LQFP bond-out versions
Not Bonded Pins If the port pins are not bonded out in the chosen package the user should initialize the
registers to be inputs with enabled pull resistance to avoid excess current consumption. This applies to the
following pins:
(48LQFP): Port A[7:1], Port B[7:5], Port B[3:0], PortE[6,5,3,2], Port P[7:6], PortP[4:0], Port J[7:6],
PortS[3:2]
(52LQFP): Port A[7:3], Port B[7:5], Port B[3:0], PortE[6,5,3,2], Port P[7:6], PortP[2:0], Port J[7:6],
PortS[3:2]

56

Device User Guide — 9S12C128DGV1/D V01.05

2.3 Detailed Signal Descriptions
2.3.1 EXTAL, XTAL — Oscillator Pins
EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived
from the EXTAL input frequency. XTAL is the crystal output.

2.3.2 RESET — External Reset Pin
RESET is an active low bidirectional control signal that acts as an input to initialize the MCU to a known
start-up state. It also acts as an open-drain output to indicate that an internal failure has been detected in
either the clock monitor or COP watchdog circuit. External circuitry connected to the RESET pin should
not include a large capacitance that would interfere with the ability of this signal to rise to a valid logic one
within 32 ECLK cycles after the low drive is released. Upon detection of any reset, an internal circuit
drives the RESET pin low and a clocked reset sequence controls when the MCU can begin normal
processing.

2.3.3 TEST / VPP — Test Pin
This pin is reserved for test and must be tied to VSS in all applications.

2.3.4 XFC — PLL Loop Filter Pin
Dedicated pin used to create the PLL loop filter. See CRG BUG for more detailed information.PLL loop
filter. Please ask your Motorola representative for the interactive application note to compute PLL loop
filter elements. Any current leakage on this pin must be avoided.
XFC
R0
MCU

CP

CS
VDDPLL

VDDPLL

Figure 2-4 PLL Loop Filter Connections

57

Device User Guide — 9S12C128DGV1/D V01.05

2.3.5 BKGD / TAGHI / MODC — Background Debug, Tag High & Mode Pin
The BKGD / TAGHI / MODC pin is used as a pseudo-open-drain pin for the background debug
communication. In MCU expanded modes of operation when instruction tagging is on, an input low on
this pin during the falling edge of E-clock tags the high half of the instruction word being read into the
instruction queue. It is also used as a MCU operating mode select pin at the rising edge during reset, when
the state of this pin is latched to the MODC bit.

2.3.6 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins
PA7-PA0 are general purpose input or output pins,. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus. PA[7:1] pins are not available in the 48 package
version. PA[7:3] are not available in the 52 pin package version.

2.3.7 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins
PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus. PB[7:5] and PB[3:0] pins are not available in the
48 nor 52 pin package version.

2.3.8 PE7 / NOACC / XCLKS — Port E I/O Pin 7
PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC
signal, when enabled, is used to indicate that the current bus cycle is an unused or “free” cycle. This signal
will assert when the CPU is not using the bus.The XCLKS is an input signal which controls whether a
crystal in combination with the internal Colpitts (low power) oscillator is used or whether Pierce
oscillator/external clock circuitry is used. The state of this pin is latched at the rising edge of RESET. If
the input is a logic low the EXTAL pin is configured for an external clock drive or a Pierce Oscillator. If
input is a logic high a Colpitts oscillator circuit is configured on EXTAL and XTAL. Since this pin is an
input with a pull-up device during reset, if the pin is left floating, the default configuration is a Colpitts
oscillator circuit on EXTAL and XTAL.

58

Device User Guide — 9S12C128DGV1/D V01.05

EXTAL
CDC *
C1

MCU

Crystal or
ceramic resonator

XTAL
C2
VSSPLL
* Due to the nature of a translated ground Colpitts oscillator a
DC voltage bias is applied to the crystal
.Please contact the crystal manufacturer for crystal DC

Figure 2-5 Colpitts Oscillator Connections (PE7=1)

EXTAL

C1
MCU

Crystal or
ceramic resonator

RB

XTAL

RS*

C2

VSSPLL

* Rs can be zero (shorted) when use with higher frequency crystals.
Refer to manufacturer’s data.

Figure 2-6 Pierce Oscillator Connections (PE7=0)

EXTAL

MCU

XTAL

CMOS-COMPATIBLE
EXTERNAL OSCILLATOR
(VDDPLL-Level)

not connected

Figure 2-7 External Clock Connections (PE7=0)

59

Device User Guide — 9S12C128DGV1/D V01.05

2.3.9 PE6 / MODB / IPIPE1 — Port E I/O Pin 6
PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE1}. This pin is an input with a pull-down device which is only
active when RESET is low. PE[6] is not available in the 48 / 52 pin package versions.

2.3.10 PE5 / MODA / IPIPE0 — Port E I/O Pin 5
PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE0}. This pin is an input with a pull-down device which is only
active when RESET is low. This pin is not available in the 48 / 52 pin package versions.

2.3.11 PE4 / ECLK— Port E I/O Pin [4] / E-Clock Output
ECLK is the output connection for the internal bus clock. It is used to demultiplex the address and data in
expanded modes and is used as a timing reference. ECLK frequency is equal to 1/2 the crystal frequency
out of reset. The ECLK pin is initially configured as ECLK output with stretch in all expanded modes. The
E clock output function depends upon the settings of the NECLK bit in the PEAR register, the IVIS bit in
the MODE register and the ESTR bit in the EBICTL register. All clocks, including the E clock, are halted
when the MCU is in STOP mode. It is possible to configure the MCU to interface to slow external
memory. ECLK can be stretched for such accesses. Reference the MISC register (EXSTR[1:0] bits) for
more information. In normal expanded narrow mode, the E clock is available for use in external select
decode logic or as a constant speed clock for use in the external application system. Alternatively PE4 can
be used as a general purpose input or output pin.

2.3.12 PE3 / LSTRB — Port E I/O Pin [3] / Low-Byte Strobe (LSTRB)
In all modes this pin can be used as a general-purpose I/O and is an input with an active pull-up out of
reset. If the strobe function is required, it should be enabled by setting the LSTRE bit in the PEAR register.
This signal is used in write operations. Therefore external low byte writes will not be possible until this
function is enabled. This pin is also used as TAGLO in Special Expanded modes and is multiplexed with
the LSTRB function. This pin is not available in the 48 / 52 pin package versions.

2.3.13 PE2 / R/W — Port E I/O Pin [2] / Read/Write
In all modes this pin can be used as a general-purpose I/O and is an input with an active pull-up out of
reset. If the read/write function is required it should be enabled by setting the RDWE bit in the PEAR
register. External writes will not be possible until enabled. This pin is not available in the 48 / 52 pin
package versions.

60

Device User Guide — 9S12C128DGV1/D V01.05

2.3.14 PE1 / IRQ — Port E input Pin [1] / Maskable Interrupt Pin
The IRQ input provides a means of applying asynchronous interrupt requests to the MCU. Either falling
edge-sensitive triggering or level-sensitive triggering is program selectable (INTCR register). IRQ is
always enabled and configured to level-sensitive triggering out of reset. It can be disabled by clearing
IRQEN bit (INTCR register). When the MCU is reset the IRQ function is masked in the condition code
register. This pin is always an input and can always be read. There is an active pull-up on this pin while in
reset and immediately out of reset. The pull-up can be turned off by clearing PUPEE in the PUCR register.

2.3.15 PE0 / XIRQ — Port E input Pin [0] / Non Maskable Interrupt Pin
The XIRQ input provides a means of requesting a non maskable interrupt after reset initialization. During
reset, the X bit in the condition code register (CCR) is set and any interrupt is masked until MCU software
enables it. Because the XIRQ input is level sensitive, it can be connected to a multiple-source wired-OR
network. This pin is always an input and can always be read. There is an active pull-up on this pin while
in reset and immediately out of reset. The pull-up can be turned off by clearing PUPEE in the PUCR
register.

2.3.16 PAD[7:0] / AN[7:0] — Port AD I/O Pins [7:0]
PAD7-PAD0 are general purpose I/O pins and also analog inputs for the analog to digital converter. In
order to use a PAD pin as a standard I/O, the corresponding ATDDIEN register bit must be set. These bits
are cleared out of reset to configure the PAD pins for A/D operation.
When the A/D converter is active in multi-channel mode, port inputs are scanned and converted
irrespective of PortAD configuration. Thus PortAD pins that are configured as digital inputs or digital
outputs are also converted in the A/D conversion sequence.

2.3.17 PP[7] / KWP[7] — Port P I/O Pin [7]
PP7 is a general purpose input or output pin, shared with the keypad interrupt function. When configured
as an input, it can generate interrupts causing the MCU to exit STOP or WAIT mode. This pin is not
available in the 48 / 52 pin package versions.

2.3.18 PP[6] / KWP[6]/ROMCTL — Port P I/O Pin [6]
PP6 is a general purpose input or output pin, shared with the keypad interrupt function. When configured
as an input, it can generate interrupts causing the MCU to exit STOP or WAIT mode. This pin is not
available in the 48 / 52 pin package versions. During MCU expanded modes of operation, this pin is used
to enable the Flash EEPROM memory in the memory map (ROMCTL). At the rising edge of RESET, the
state of this pin is latched to the ROMON bit.
PP6=1 in emulation modes equates to ROMON =0 (ROM space externally mapped)
PP6=0 in expanded modes equates to ROMON =0 (ROM space externally mapped)

61

Device User Guide — 9S12C128DGV1/D V01.05

2.3.19 PP[5:0] / KWP[5:0] / PW[5:0] — Port P I/O Pins [5:0]
PP[5:0] are general purpose input or output pins, shared with the keypad interrupt function. When
configured as inputs, they can generate interrupts causing the MCU to exit STOP or WAIT mode.
PP[5:0] are also shared with the PWM output signals, PW[5:0]. Pins PP[2:0] are only available in the 80
pin package version. Pins PP[4:3] are not available in the 48 pin package version.

2.3.20 PJ[7:6] / KWJ[7:6] — Port J I/O Pins [7:6]
PJ[7:6] are general purpose input or output pins, shared with the keypad interrupt function. When
configured as inputs, they can generate interrupts causing the MCU to exit STOP or WAIT mode. These
pins are not available in the 48 pin package version nor in the 52 pin package version.

2.3.21 PM5 / SCK — Port M I/O Pin 5
PM5 is a general purpose input or output pin and also the serial clock pin SCK for the Serial Peripheral
Interface (SPI).

2.3.22 PM4 / MOSI — Port M I/O Pin 4
PM4 is a general purpose input or output pin and also the master output (during master mode) or slave
input (during slave mode) pin for the Serial Peripheral Interface (SPI).

2.3.23 PM3 / SS — Port M I/O Pin 3
PM3 is a general purpose input or output pin and also the slave select pin SS for the Serial Peripheral
Interface (SPI).

2.3.24 PM2 / MISO — Port M I/O Pin 2
PM2 is a general purpose input or output pin and also the master input (during master mode) or slave
output (during slave mode) pin for the Serial Peripheral Interface (SPI).

2.3.25 PM1 / TXCAN — Port M I/O Pin 1
PM1 is a general purpose input or output pin and the transmit pin, TXCAN, of the CAN module if
available.

2.3.26 PM0 / RXCAN — Port M I/O Pin 0
PM0 is a general purpose input or output pin and the receive pin, RXCAN, of the CAN module if available.

62

Device User Guide — 9S12C128DGV1/D V01.05

2.3.27 PS[3:2] — Port S I/O Pins [3:2]
PS3 and PS2 are general purpose input or output pins. These pins are not available in the 48 / 52 pin
package versions.

2.3.28 PS1 / TXD — Port S I/O Pin 1
PS1 is a general purpose input or output pin and the transmit pin, TXD, of Serial Communication Interface
(SCI).

2.3.29 PS0 / RXD — Port S I/O Pin 0
PS0 is a general purpose input or output pin and the receive pin, RXD, of Serial Communication Interface
(SCI).

2.3.30 PPT[7:5] / IOC[7:5] — Port T I/O Pins [7:5]
PT7-PT5 are general purpose input or output pins. They can also be configured as the timer system input
capture or output compare pins IOC7-IOC5.

2.3.31 PT[4:0] / IOC[4:0] / PW[4:0]— Port T I/O Pins [4:0]
PT4-PT0 are general purpose input or output pins. They can also be configured as the timer system input
capture or output compare pins IOC4-IOC0 or as the PWM outputs PW[4:0].

2.4 Power Supply Pins
2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers
External power and ground for I/O drivers. Bypass requirements depend on how heavily the MCU pins
are loaded.

2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal
Voltage Regulator
External power and ground for the internal voltage regulator. Connecting VDDR to ground disables the
internal voltage regulator.

2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Pins
Power is supplied to the MCU through VDD and VSS. This 2.5V supply is derived from the internal
voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned
off, if VDDR is tied to ground.

63

Device User Guide — 9S12C128DGV1/D V01.05

2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG
VDDA, VSSA are the power supply and ground input pins for the voltage regulator reference and the
analog to digital converter.

2.4.5 VRH, VRL — ATD Reference Voltage Input Pins
VRH and VRL are the reference voltage input pins for the analog to digital converter.

2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL
Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the
supply voltage to the Oscillator and PLL to be bypassed independently. This 2.5V voltage is generated by
the internal voltage regulator.

Table 2-2 MC9S12C-Family Power and Ground Connection Summary
Mnemonic

Nominal
Voltage

VDD1
VDD2

2.5 V

VSS1
VSS2

0V

VDDR

5.0 V

VSSR

0V

VDDX

5.0 V

VSSX

0V

VDDA

5.0 V

VSSA

0V

VRH

5.0 V

VRL

0V

VDDPLL

2.5 V

VSSPLL

0V

Description
Internal power and ground generated by internal regulator. These also
allow an external source to supply the core VDD/VSS voltages and bypass
the internal voltage regulator.
In the 48 and 52 LQFP packages VDD2 and VSS2 are not available.
External power and ground, supply to internal voltage regulator.

External power and ground, supply to pin drivers.
Operating voltage and ground for the analog-to-digital converters and the
reference for the internal voltage regulator, allows the supply voltage to the
A/D to be bypassed independently.
Reference voltage low for the ATD converter.
In the 48 and 52 LQFP packages VRL is bonded to VSSA.
Provides operating voltage and ground for the Phased-Locked Loop. This
allows the supply voltage to the PLL to be bypassed independently.
Internal power and ground generated by internal regulator.

NOTE:All VSS pins must be connected together in the application. Because fast signal transitions
place high, short-duration current demands on the power supply, use bypass capacitors with
high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements
depend on MCU pin load.

Section 3 System Clock Description

64

Device User Guide — 9S12C128DGV1/D V01.05

The Clock and Reset Generator provides the internal clock signals for the core and all peripheral modules.
Figure 3-1 shows the clock connections from the CRG to all modules. Consult the CRG Block User
Guide for details on clock generation.

S12_CORE
core clock

Flash
RAM
TIM
ATD
PIM

EXTAL

SCI
CRG

bus clock
oscillator clock

SPI
MSCAN
Not on 9S12GC

XTAL
VREG
TPM

Figure 3-1 Clock Connections

Section 4 Modes of Operation
4.1 Overview
Eight possible modes determine the operating configuration of the MC9S12C Family. Each mode has an
associated default memory map and external bus configuration controlled by a further pin.
Three low power modes exist for the device.

4.2 Chip Configuration Summary
The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during
reset. The MODC, MODB, and MODA bits in the MODE register show the current operating mode and
provide limited mode switching during operation. The states of the MODC, MODB, and MODA pins are

65

Device User Guide — 9S12C128DGV1/D V01.05

latched into these bits on the rising edge of the reset signal. The ROMCTL signal allows the setting of the
ROMON bit in the MISC register thus controlling whether the internal Flash is visible in the memory map.
ROMON = 1 mean the Flash is visible in the memory map. The state of the ROMCTL pin is latched into
the ROMON bit in the MISC register on the rising edge of the reset signal.
Table 4-1 Mode Selection
BKGD =
MODC

PE6 =
MODB

PE5 =
MODA

PP6 =
ROMCTL

ROMON
Bit

0

0

0

X

1

0

0

1

0

1

1

0

0

1

0

X

0

0

1

1

0

1

1

0

1

0

0

X

1

0

0

1

1

X

1

0

0

1

1

1

0

1

1

1

0

1

1

1

Mode Description
Special Single Chip, BDM allowed and ACTIVE. BDM is
allowed in all other modes but a serial command is
required to make BDM active.
Emulation Expanded Narrow, BDM allowed
Special Test (Expanded Wide), BDM allowed
Emulation Expanded Wide, BDM allowed
Normal Single Chip, BDM allowed
Normal Expanded Narrow, BDM allowed
Peripheral; BDM allowed but bus operations would cause
bus conflicts (must not be used)
Normal Expanded Wide, BDM allowed

For further explanation on the modes refer to the S12_MEBI block guide.

Table 4-2 Clock Selection Based on PE7
PE7 = XCLKS

Description

1

Colpitts Oscillator selected

0

Pierce Oscillator/external clock selected

4.3 Security
The device will make available a security feature preventing the unauthorized read and write of the
memory contents. This feature allows:
•

Protection of the contents of FLASH,

•

Operation in single-chip mode,

•

Operation from external memory with internal FLASH disabled.

The user must be reminded that part of the security must lie with the user’s code. An extreme example
would be user’s code that dumps the contents of the internal program. This code would defeat the purpose
of security. At the same time the user may also wish to put a back door in the user’s program. An example

66

Device User Guide — 9S12C128DGV1/D V01.05

of this is the user downloads a key through the SCI which allows access to a programming routine that
updates parameters.

4.3.1 Securing the Microcontroller
Once the user has programmed the FLASH, the part can be secured by programming the security bits
located in the FLASH module. These non-volatile bits will keep the part secured through resetting the part
and through powering down the part.
The security byte resides in a portion of the Flash array.
Check the Flash Block User Guide for more details on the security configuration.

4.3.2 Operation of the Secured Microcontroller
4.3.2.1 Normal Single Chip Mode
This will be the most common usage of the secured part. Everything will appear the same as if the part was
not secured with the exception of BDM operation. The BDM operation will be blocked.
4.3.2.2 Executing from External Memory
The user may wish to execute from external space with a secured microcontroller. This is accomplished
by resetting directly into expanded mode. The internal FLASH will be disabled. BDM operations will be
blocked.

4.3.3 Unsecuring the Microcontroller
In order to unsecure the microcontroller, the internal FLASH must be erased. This can be done through an
external program in expanded mode or via a sequence of BDM commands. Unsecuring is also possible via
the Backdoor Key Access. Refer to Flash Block Guide for details.
Once the user has erased the FLASH, the part can be reset into special single chip mode. This invokes a
program that verifies the erasure of the internal FLASH. Once this program completes, the user can erase
and program the FLASH security bits to the unsecured state. This is generally done through the BDM, but
the user could also change to expanded mode (by writing the mode bits through the BDM) and jumping to
an external program (again through BDM commands). Note that if the part goes through a reset before the
security bits are reprogrammed to the unsecure state, the part will be secured again.

4.4 Low Power Modes
The microcontroller features three main low power modes. Consult the respective Block User Guide for
information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of
information about the clock system is the Clock and Reset Generator User Guide (CRG).

67

Device User Guide — 9S12C128DGV1/D V01.05

4.4.1 Stop
Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static
mode. Wake up from this mode can be done via reset or external interrupts.

4.4.2 Pseudo Stop
This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running
and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are
turned off. This mode consumes more current than the full STOP mode, but the wake up time from this
mode is significantly shorter.

4.4.3 Wait
This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute
instructions. The internal CPU signals (address and databus) will be fully static. All peripherals stay active.
For further power consumption reduction the peripherals can individually turn off their local clocks.

4.4.4 Run
Although this is not a low power mode, unused peripheral modules should not be enabled in order to save
power.

Section 5 Resets and Interrupts
5.1 Overview
Consult the Exception Processing section of the CPU12 Reference Manual for information.

5.2 Vectors
5.2.1 Vector Table
Table 5-1 lists interrupt sources and vectors in default order of priority.
Table 5-1 Interrupt Vector Locations
Interrupt Source

CCR
Mask

Local Enable

HPRIO Value
to Elevate

$FFFE, $FFFF

External Reset, Power On Reset or Low
Voltage Reset (see CRG Flags Register
to determine reset source)

None

None

–

$FFFC, $FFFD

Clock Monitor fail reset

None

COPCTL (CME, FCME)

–

$FFFA, $FFFB

COP failure reset

None

COP rate select

–

$FFF8, $FFF9

Unimplemented instruction trap

None

None

–

Vector Address

68

Device User Guide — 9S12C128DGV1/D V01.05
$FFF6, $FFF7

SWI

None

None

–

$FFF4, $FFF5

XIRQ

X-Bit

None

–

$FFF2, $FFF3

IRQ

I-Bit

INTCR (IRQEN)

$F2

$FFF0, $FFF1

Real Time Interrupt

I-Bit

CRGINT (RTIE)

$F0

$FFEE, $FFEF

Standard Timer channel 0

I-Bit

TIE (C0I)

$EE

$FFEC, $FFED

Standard Timer channel 1

I-Bit

TIE (C1I)

$EC

$FFEA, $FFEB

Standard Timer channel 2

I-Bit

TIE (C2I)

$EA

$FFE8, $FFE9

Standard Timer channel 3

I-Bit

TIE (C3I)

$E8

$FFE6, $FFE7

Standard Timer channel 4

I-Bit

TIE (C4I)

$E6

$FFE4, $FFE5

Standard Timer channel 5

I-Bit

TIE (C5I)

$E4

$FFE2, $FFE3

Standard Timer channel 6

I-Bit

TIE (C6I)

$E2

$FFE0, $FFE1

Standard Timer channel 7

I-Bit

TIE (C7I)

$E0

$FFDE, $FFDF

Standard Timer overflow

I-Bit

TMSK2 (TOI)

$DE

$FFDC, $FFDD

Pulse accumulator A overflow

I-Bit

PACTL (PAOVI)

$DC

$FFDA, $FFDB

Pulse accumulator input edge

I-Bit

PACTL (PAI)

$DA

$FFD8, $FFD9

SPI

I-Bit

SPICR1 (SPIE, SPTIE)

$D8

$FFD6, $FFD7

SCI

I-Bit

SCICR2
(TIE, TCIE, RIE, ILIE)

$D6

ATD

I-Bit

ATDCTL2 (ASCIE)

$D2

Port J

I-Bit

PIEP (PIEP7-6)

$CE

$FFD4, $FFD5

Reserved

$FFD2, $FFD3

Reserved

$FFD0, $FFD1
$FFCE, $FFCF
$FFCC, $FFCD

Reserved

$FFCA, $FFCB

Reserved

$FFC8, $FFC9

Reserved

$FFC6, $FFC7

CRG PLL lock

I-Bit

PLLCR (LOCKIE)

$C6

$FFC4, $FFC5

CRG Self Clock Mode

I-Bit

PLLCR (SCMIE)

$C4

I-Bit

FCNFG (CCIE, CBEIE)

$B8

Reserved

$FFBA to $FFC3
$FFB8, $FFB9

FLASH
1

$FFB6, $FFB7

CAN wake-up

I-Bit

CANRIER (WUPIE)

$B6

$FFB4, $FFB5

errors1

I-Bit

CANRIER (CSCIE, OVRIE)

$B4

CAN

receive1

I-Bit

CANRIER (RXFIE)

$B2

CAN

transmit1

I-Bit

CANTIER (TXEIE[2:0])

$B0

$FFB2, $FFB3
$FFB0, $FFB1

CAN

Reserved

$FF90 to $FFAF
$FF8E, $FF8F

Port P

I-Bit

PIEP (PIEP7-0)

$8E

$FF8C, $FF8D
$FF8A, $FF8B

PWM Emergency Shutdown

I-Bit

PWMSDN(PWMIE)

$8C

VREG LVI

I-Bit

CTRL0 (LVIE)

$8A

$FF80 to $FF89

Reserved

NOTES:
1. Not available on MC9S12GC-Family members

5.3 Resets
Resets are a subset of the interrupts featured inTable 5-1. The different sources capable of generating a
system reset are summarized in Table 5-2. When a reset occurs, MCU registers and control bits are

69

Device User Guide — 9S12C128DGV1/D V01.05

changed to known start-up states. Refer to the respective module Block User Guides for register reset
states.

5.3.1 Reset Summary Table
Table 5-2 Reset Summary
Reset

Priority

Source

Vector

Power-on Reset

1

CRG Module

$FFFE, $FFFF

External Reset

1

RESET pin

$FFFE, $FFFF

Low Voltage Reset

1

VREG Module

$FFFE, $FFFF

Clock Monitor Reset

2

CRG Module

$FFFC, $FFFD

COP Watchdog Reset

3

CRG Module

$FFFA, $FFFB

5.3.2 Effects of Reset
When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the
respective module Block User Guides for register reset states. Refer to the HCS12 Multiplexed External
Bus Interface (MEBI) Block Guide for mode dependent pin configuration of port A, B and E out of reset.
Refer to the PIM Block User Guide for reset configurations of all peripheral module ports.
Refer to Figure 1-2 to Figure 1-5 footnotes for locations of the memories depending on the operating
mode after reset.
The RAM array is not automatically initialized out of reset.

NOTE:

For devices assembled in 48-pin or 52-pin LQFP packages all non-bonded out pins
should be configured as outputs after reset in order to avoid current drawn from
floating inputs. Refer to Table 2-1 for affected pins.

Section 6 HCS12 Core Block Description
Consult the individual block guides for information about the HCS12 core modules, i.e. central processing
unit (CPU), interrupt module (INT), module mapping control module (MMC), multiplexed external bus
interface (MEBI), debug12 module (DBG12) and background debug mode module (BDM).
Where the CPU12 Reference Manual refers to cycles this is equivalent to device bus clock periods.

6.1 Device-specific information
6.1.1 PPAGE
External paging is not supported on these devices. In order to access the 16K flash blocks in the address
range $8000-$BFFF the PPAGE register must be loaded with the corresponding value for this range. Refer
to Table 6-1 for device specific page mapping.

70

Device User Guide — 9S12C128DGV1/D V01.05

For all devices Flash Page 3F is visible in the $C000-$FFFF range if ROMON is set. For all devices (ecept
9S12GC16) Page 3E is also visible in the $4000-$7FFF range if ROMHM is cleared and ROMON is set.
For all devices apart from MC9S12C32 Flash Page 3D is visible in the $0000-$3FFF range if ROMON is
set...
Table 6-1 Device Specific Flash PAGE Mapping
Device

PAGE

PAGE visible with PPAGE contents

MC9S12GC16

3F

$00,$01,$02,$03,$04,$05,$06,$07,$08,$09......$36,$37,$38,$39,$3A,$3B,$3C,$3D,$3E,$3F

MC9S12C32
MC9S12GC32

3E

$00,$02,$04,$06,$08,$0A,$0C,$0E,$10,$12......$2C,$2E,$30,$32,$34,$36,$38,$3A,$3C,$3E

3F

$01,$03,$05,$07,$09,$0B,$0D,$0F,$11,$13.....$2D,$2F,$31,$33,$35,$37,$39,$3B,$3D,$3F

3C

$00,$04,$08,$0C,$10,$14,$18,$1C,$20,$24,$28,$2C,$30,$34,$38,$3C

3D

$01,$05,$09,$0D,$11,$15,$19,$1D,$21,$25,$29,$2D,$31,$35,$39,$3D

3E

$02,$06,$0A,$0E,$12,$16,$1A,$1E,$22,$26,$2A,$2E,$32,$36,$3A,$3E

3F

$03,$07,$0B,$0F,$13,$17,$1B,$1F,$23,$27,$2B,$2F,$33,$37,$3B,$3F

3A

$00,$02,$08,$0A,$10,$12,$18,$1A,$20,$22,$28,$2A,$30,$32,$38,$3A

3B

$01,$03,$09,$0B,$11,$13,$19,$1B,$21,$23,$29,$2B,$31,$33,$39,$3B

3C

$04,$0C,$14,$1C,$24,$2C,$34,$3C

3D

$05,$0D,$15,$1D,$25,$2D,$35,$3D

3E

$06,$0E,$16,$1E,$26,$2E,$36,$3E

3F

$07,$0F,$17,$1F,$27,$2F,$37,$3F

38

$00,$08,$10,$18,$20,$28,$30,$38

39

$01,$09,$11,$19,$21,$29,$31,$39

3A

$02,$0A,$12,$1A,$22,$2A,$32,$3A

3B

$03,$0B,$13,$1B,$23,$2B,$33,$3B

3C

$04,$0C,$14,$1C,$24,$2C,$34,$3C

3D

$05,$0D,$15,$1D,$25,$2D,$35,$3D

3E

$06,$0E,$16,$1E,$26,$2E,$36,$3E

3F

$07,$0F,$17,$1F,$27,$2F,$37,$3F

MC9S12C64
MC9S12GC64

MC9S12C96

MC9S12C128
MC9S12GC128

6.1.2 BDM alternate clock
The BDM section of S12 Core User Guide reference to alternate clock is equivalent to oscillator clock.

6.1.3 Extended Address Range Emulation Implications
In order to emulate the MC9S12GC or MC9S12C-Family devices, external addressing of a 128K memory
map is required. This is provided in a 112 LQFP package version which includes the 3 necessary extra
external address bus signals via PortK[2:0]. This package version is for emulation only and not provided
as a general production package.
The reset state of DDRK is $00, configuring the pins as inputs.
The reset state of PUPKE in the PUCR register is “1” enabling the internal PortK pullups.
In this reset state the pull-ups provide a defined state and prevent a floating input, thereby preventing
unnecessary current flow at the input stage.

71

Device User Guide — 9S12C128DGV1/D V01.05

To prevent unnecessary current flow in production package options, the states of DDRK and PUPKE
should not be changed by software.

Section 7 Voltage Regulator (VREG) Block Description
Consult the VREG Block User Guide for information about the dual output linear voltage regulator.

7.1 Device-specific information
The VREG is part of the IPBus domain.

7.1.1 VREGEN
VREGEN is connected internally to VDDR.

7.1.2 VDD1, VDD2, VSS1, VSS2
In the 80 pin QFP package versions, both internal VDD and VSS of the 2.5V domain are bonded out on 2
sides of the device as two pin pairs (VDD1, VSS1 & VDD2, VSS2). VDD1 and VDD2 are connected
together internally. VSS1 and VSS2 are connected together internally.
The extra pin pair enables systems using the 80 pin package to employ better supply routing and further
decoupling.

Section 8 Recommended Printed Circuit Board Layout
The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the
MCU itself. The following rules must be observed:
•

Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the
corresponding pins (C1 - C6).

•

Central point of the ground star should be the VSSR pin.

•

Use low ohmic low inductance connections between VSS1, VSS2 and VSSR.

•

VSSPLL must be directly connected to VSSR.

•

Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7,
C8, C11 and Q1 as small as possible.

•

Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the
connection area to the MCU.

•

Central power input should be fed in at the VDDA/VSSA pins.

72

Device User Guide — 9S12C128DGV1/D V01.05

Table 8-1 Recommended External Component Values
Component

Purpose

Type

Value

C1

VDD1 filter capapcitor

ceramic X7R

220nF, 470nF1

C2

VDD2 filter capacitor (80 QFP only)

ceramic X7R

220nF

C3

VDDA filter capacitor

ceramic X7R

100nF

C4

VDDR filter capacitor

X7R/tantalum

>=100nF

C5

VDDPLL filter capacitor

ceramic X7R

100nF

C6

VDDX filter capacitor

X7R/tantalum

>=100nF

C7

OSC load capacitor

C8

OSC load capacitor

C9

PLL loop filter capacitor

C10

PLL loop filter capacitor

C11

DC cutoff capacitor

Colpitts mode only, if recommended by
quartz manufacturer

R1

PLL loop filter resistor

See PLL Specification chapter

R2 / RB

PLL loop filter resistor

R3 / RS

PLL loop filter resistor

Q1

Quartz

See PLL specification chapter

See PLL specification chapter

Pierce mode only

NOTES:
1. In 48LQFP and 52LQFP package versions, VDD2 is not available. Thus 470nF must be connected
to VDD1.

73

Device User Guide — 9S12C128DGV1/D V01.05

C6

VDDX

VSSA

C3

VSSX

VDDA
VDD1
C1
VSS1

VSSR
C4
C7

R1

C8

C10

C9

Note:
Oscillator in
Colpitts mode.

C11

C5

VDDR

Q1
VSSPLL
VDDPLL

Figure 8-1 Recommended PCB Layout (48 LQFP)

74

Device User Guide — 9S12C128DGV1/D V01.05

)
NOTE: Oscillator in Colpitts mode.

C6

VDDX

VSSA

VSSX

C3

VDDA
VDD1
C1
VSS1

VSSR
C4
C7

C8

C10

C9
R1

C11

C5

VDDR

Q1
VSSPLL
VDDPLL

Figure 8-2 Recommended PCB Layout (52 LQFP)

75

Device User Guide — 9S12C128DGV1/D V01.05

)
NOTE: Oscillator in Colpitts mode.
C6

VDDX

VSSA
VSSX

C3

VDDA

VDD1

VSS2

C2

C1
VSS1

VDD2

VSSR

C4
C7

C8

C10

C9
R1

C11

C5

VDDR

Q1
VSSPLL
VDDPLL

Figure 8-3 Recommended PCB Layout (80 QFP)

76

Device User Guide — 9S12C128DGV1/D V01.05

C6

VDDX

VSSA

VSSX

C3

VDDA
VDD1
C1
VSS1

VSSR
C5

C4

R3
R2

VDDR
Q1

C7

C8

C10

C9
R1

VSSPLL
VDDPLL

Figure 8-4 Recommended PCB Layout for 48 LQFP Pierce Oscillator

77

Device User Guide — 9S12C128DGV1/D V01.05

C6

VDDX

VSSA

VSSX

C3

VDDA
VDD1
C1
VSS1

VSSR
C5

C4

R3
R2

VDDR
Q1

C7

C8

C10

C9
R1

VSSPLL
VDDPLL

Figure 8-5 Recommended PCB Layout for 52 LQFP Pierce Oscillator

78

Device User Guide — 9S12C128DGV1/D V01.05

C6

VDDX

VSSA

VSSX

C3

VDDA

VDD1
VSS2
C1

C2

VSS1
VDD2

VSSPLL

VSSR
C4

R3

C5

VDDR

R2
Q1
C7

C8

C10

C9
R1

VSSPLL
VDDPLL

Figure 8-6 Recommended PCB Layout for 80QFP Pierce Oscillator

Section 9 Clock Reset Generator (CRG) Block Description
Consult the CRG Block User Guide for information about the Clock and Reset Generator module.

9.1 Device-specific information
The CRG is part of the IPBus domain.

79

Device User Guide — 9S12C128DGV1/D V01.05

The Low Voltage Reset feature uses the low voltage reset signal from the VREG module as an input to the
CRG module. When the regulator output voltage supply to the internal chip logic falls below a specified
threshold the LVR signal from the VREG module causes the CRG module to generate a reset. Consult the
VREG Block User Guide for voltage level specifications.

9.1.1 XCLKS
The XCLKS input signal is active low (see 2.3.8 PE7 / NOACC / XCLKS — Port E I/O Pin 7).

Section 10 Oscillator (OSC) Block Description
Consult the OSC Block User Guide for information about the Oscillator module.

Section 11 Timer (TIM) Block Description
Consult the TIM_16B8C Block User Guide for information about the Timer module.

Section 12 Analog to Digital Converter (ATD) Block
Description
12.1 Device-specific information
12.1.1 VRL (voltage reference low)
In the 48 and 52 pin package versions, the VRL pad is bonded internally to the VSSA pin.
Consult the ATD_10B8C Block User Guide for further information about the A/D Converter module.

Section 13 Serial Communications Interface (SCI) Block
Description
Consult the SCI Block User Guide for information about the Asynchronous Serial Communications
Interface module.

Section 14 Serial Peripheral Interface (SPI) Block
Description
Consult the SPI Block User Guide for information about the Serial Peripheral Interface module.

80

Device User Guide — 9S12C128DGV1/D V01.05

Consult the SPI Block User Guide for information about the Synchronous Serial Communications
Interface module.

Section 15 Flash Block Description
Consult the FTS16K Block User Guide for information about the Flash module for the MC9S12GC16.
Consult the FTS32K Block User Guide for information about the Flash module for the MC9S12C32 or
MC9S12GC32.
Consult the FTS64K Block User Guide for information about the Flash module for the MC9S12C64 or
MC9S12GC64.
Consult the FTS96K Block User Guide for information about the Flash module for the MC9S12C96.
Consult the FTS128K Block User Guide for information about the Flash module for the MC9S12C128or
MC9S12GC128.

Section 16 RAM Block Description
This module supports single-cycle misaligned word accesses without wait states.
The MC912GC16 features a single 1K byte RAM module.
The MC9S12C32 and MC9S12GC32 feature a 2K byte RAM module.
The MC9S12C64, MC9S12GC64, MC9S12C96, MC9S12C128 and MC9S12GC128 versions feature a
4K byte RAM module.

Section 17 Pulse Width Modulator (PWM) Block
Description
Consult the PWM_8B6C Block User Guide for information about the Pulse Width Modulator Module.

Section 18 MSCAN Block Description
Consult the MSCAN Block User Guide for information about the Motorola Scalable CAN Module.
This module is not available on the MC9GC-Family Members.

Section 19 Port Integration Module (PIM) Block Description

81

Device User Guide — 9S12C128DGV1/D V01.05

Consult the PIM_9C32 Block User Guide for information about the Port Integration Module for all
versions of the MC9DS12GC and MC9S12C-Family.
The MODRR register within the PIM allows for mapping of PWM channels to PortT in the absence of
PortP pins for the low pin count packages. For the 80QFP package option it is recommended not to use
MODRR since this is intended to support PWM channel availability in low pin count packages. Note that
when mapping PWM channels to PortT in an 80QFP option, the associated PWM channels are then
mapped to both PortP and PortT.

82

Device User Guide — 9S12C128DGV1/D V01.05

Appendix A Electrical Characteristics
A.1 General
NOTE:

The electrical characteristics given in this section are preliminary and should be
used as a guide only. Values cannot be guaranteed by Motorola and are subject to
change without notice.

NOTE:

The parts are specified and tested over the 5V and 3.3V ranges. For the
intermediate range, generally the electrical specifications for the 3.3V range
apply, but the parts are not tested in production test in the intermediate range.

This supplement contains the most accurate electrical information for the MC9S12C-Family
microcontrollers available at the time of publication. The information should be considered
PRELIMINARY and is subject to change.
This introduction is intended to give an overview on several common topics like power supply, current
injection etc.

A.1.1 Parameter Classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the
customer a better understanding the following classification is used and the parameters are tagged
accordingly in the tables where appropriate.

NOTE:

This classification will be added at a later release of the specification

P: Those parameters are guaranteed during production testing on each individual device.
C: Those parameters are achieved by the design characterization by measuring a statistically relevant
sample size across process variations. They are regularly verified by production monitors.
T: Those parameters are achieved by design characterization on a small sample size from typical devices.
All values shown in the typical column are within this category.
D: Those parameters are derived mainly from simulations.

A.1.2 Power Supply
The MC9S12C-Family and MC9S12GC-Family members utilize several pins to supply power to the I/O
ports, A/D converter, oscillator and PLL as well as the internal logic.
The VDDA, VSSA pair supplies the A/D converter.
The VDDX, VSSX pair supplies the I/O pins
The VDDR, VSSR pair supplies the internal voltage regulator.
VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic.
VDDPLL, VSSPLL supply the oscillator and the PLL.

83

Device User Guide — 9S12C128DGV1/D V01.05

VSS1 and VSS2 are internally connected by metal.
VDD1 and VDD2 are internally connected by metal.
VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD
protection.

NOTE:

In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5
is used for either VSSA, VSSR and VSSX unless otherwise noted.
IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR
pins.
VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and
VSSPLL.
IDD is used for the sum of the currents flowing into VDD1 and VDD2.

A.1.3 Pins
There are four groups of functional pins.
A.1.3.1 5V I/O pins
Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog
inputs, BKGD pin and the RESET inputs.The internal structure of all those pins is identical, however some
of the functionality may be disabled. E.g. pull-up and pull-down resistors may be disabled permanently.
A.1.3.2 Analog Reference
This class is made up by the two VRH and VRL pins. In 48 and 52 pin package versions the VRL pad is
bonded to the VSSA pin.
A.1.3.3 Oscillator
The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied
by VDDPLL.
A.1.3.4 TEST
This pin is used for production testing only.

A.1.4 Current Injection
Power supply must maintain regulation within operating VDD5 or VDD range during instantaneous and
operating maximum current conditions. If positive injection current (Vin > VDD5) is greater than IDD5, the
injection current may flow out of VDD5 and could result in external power supply going out of regulation.
Insure external VDD5 load will shunt current greater than maximum injection current. This will be the
greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is
very low which would reduce overall power consumption.

84

Device User Guide — 9S12C128DGV1/D V01.05

A.1.5 Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima
is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the
device.
This device contains circuitry protecting against damage due to high static voltage or electrical fields;
however, it is advised that normal precautions be taken to avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused
inputs are tied to an appropriate logic voltage level (e.g., either VSS5 or VDD5).

Table A-1 Absolute Maximum Ratings
Num

Rating

Symbol

Min

Max

Unit

1

I/O, Regulator and Analog Supply Voltage

VDD5

-0.3

6.5

V

2

Digital Logic Supply Voltage1

VDD

-0.3

3.0

V

3

PLL Supply Voltage (1)

VDDPLL

-0.3

3.0

V

4

Voltage difference VDDX to VDDR and VDDA

∆VDDX

-0.3

0.3

V

5

Voltage difference VSSX to VSSR and VSSA

∆VSSX

-0.3

0.3

V

6

Digital I/O Input Voltage

VIN

-0.3

6.5

V

7

Analog Reference

VRH, VRL

-0.3

6.5

V

8

XFC, EXTAL, XTAL inputs

VILV

-0.3

3.0

V

9

TEST input

VTEST

-0.3

10.0

V

10

Instantaneous Maximum Current
Single pin limit for all digital I/O pins 2

I

D

-25

+25

mA

11

Instantaneous Maximum Current
Single pin limit for XFC, EXTAL, XTAL3

IDL

-25

+25

mA

12

Instantaneous Maximum Current
Single pin limit for TEST4

IDT

-0.25

0

mA

13

Operating Temperature Range (packaged)

T

A

– 40

125

°C

14

Operating Temperature Range (junction)

TJ

– 40

140

°C

15

Storage Temperature Range

Tstg

– 65

155

°C

NOTES:
1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply.
The absolute maximum ratings apply when the device is powered from an external source.
2. All digital I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA.
3. These pins are internally clamped to VSSPLL and VDDPLL
4. This pin is clamped low to VSSX, but not clamped high. This pin must be tied low in applications.

85

Device User Guide — 9S12C128DGV1/D V01.05

A.1.6 ESD Protection and Latch-up Immunity
All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade
Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body
Model (HBM), the Machine Model (MM) and the Charge Device Model.
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification. Complete DC parametric and functional testing is performed per the applicable device
specification at room temperature followed by hot temperature, unless specified otherwise in the device
specification.
Table A-2 ESD and Latch-up Test Conditions
Model

Human Body

Machine

Description

Symbol

Value

Unit

Series Resistance

R1

1500

Ohm

Storage Capacitance

C

100

pF

Number of Pulse per pin
positive
negative

-

3
3

Series Resistance

R1

0

Ohm

Storage Capacitance

C

200

pF

Number of Pulse per pin
positive
negative

-

3
3

Minimum input voltage limit

-2.5

V

Maximum input voltage limit

7.5

V

Latch-up

Table A-3 ESD and Latch-Up Protection Characteristics
Num

C

1

C

2

Rating

Symbol

Min

Max

Unit

Human Body Model (HBM)

VHBM

2000

-

V

C

Machine Model (MM)

VMM

200

-

V

3

C

Charge Device Model (CDM)

VCDM

500

-

V

4

C

Latch-up Current at 125°C
positive
negative

ILAT

+100
-100

-

mA

5

C

Latch-up Current at 27°C
positive
negative

ILAT

+200
-200

-

mA

A.1.7 Operating Conditions
This chapter describes the operating conditions of the devices. Unless otherwise noted those conditions
apply to all the following data.

86

Device User Guide — 9S12C128DGV1/D V01.05

NOTE:

Instead of specifying ambient temperature all parameters are specified for the more
meaningful silicon junction temperature. For power dissipation calculations refer
to Section A.1.8 Power Dissipation and Thermal Characteristics.
Table A-4 Operating Conditions
Rating

Symbol

Min

Typ

Max

Unit

I/O, Regulator and Analog Supply Voltage

VDD5

2.97

5

5.5

V

Digital Logic Supply Voltage1

VDD

2.35

2.5

2.75

V

PLL Supply Voltage (1)

VDDPLL

2.35

2.5

2.75

V

Voltage Difference VDDX to VDDA

∆VDDX

-0.1

0

0.1

V

Voltage Difference VSSX to VSSR and VSSA

∆VSSX

-0.1

0

0.1

V

Oscillator

fosc

0.5

-

16

MHz

Bus Frequency

fbus2

0.25

-

25

MHz

T

-40

-

140

°C

Operating Junction Temperature Range

J

NOTES:
1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The
absolute maximum ratings apply when this regulator is disabled and the device is powered from an external
source.
2. Some blocks e.g. ATD (conversion) and NVMs (program/erase) require higher bus frequencies for proper operation.

A.1.8 Power Dissipation and Thermal Characteristics
Power dissipation and thermal characteristics are closely related. The user must assure that the maximum
operating junction temperature is not exceeded. The average chip-junction temperature (TJ) in °C can be
obtained from:
T J = T A + ( P D • Θ JA )
T J = Junction Temperature, [°C ]
T A = Ambient Temperature, [°C ]
P D = Total Chip Power Dissipation, [W]
Θ JA = Package Thermal Resistance, [°C/W]
The total power dissipation can be calculated from:
P D = P INT + P IO
P INT = Chip Internal Power Dissipation, [W]

87

Device User Guide — 9S12C128DGV1/D V01.05

Two cases with internal voltage regulator enabled and disabled must be considered:
1. Internal Voltage Regulator disabled
P INT = I DD ⋅ V DD + I DDPLL ⋅ V DDPLL + I DDA ⋅ V DDA
2
P IO =
R DSON ⋅ I
IO i
i

∑

Which is the sum of all output currents on I/O ports associated with VDDX and VDDM.
For RDSON is valid:

V OL
R DSON = ------------ ;for outputs driven low
I OL

respectively

V DD5 – V OH
R DSON = ------------------------------------ ;for outputs driven high
I OH
2. Internal voltage regulator enabled
P INT = I DDR ⋅ V DDR + I DDA ⋅ V DDA
IDDR is the current shown in Table A-8 and not the overall current flowing into VDDR, which
additionally contains the current flowing into the external loads with output high.
2
P IO =
R DSON ⋅ I IO
i
i

∑

88

Device User Guide — 9S12C128DGV1/D V01.05

Which is the sum of all output currents on I/O ports associated with VDDX and VDDR.
Table A-5 Thermal Package Characteristics1
Num

C

1

T

2

Rating

Symbol

Min

Typ

Max

Unit

Thermal Resistance LQFP48, single layer PCB2

θJA

-

-

69

o

C/W

T

Thermal Resistance LQFP48, double sided PCB with
2 internal planes3

θJA

-

-

53

o

C/W

3

T

Junction to Board LQFP48

θJB

30

oC/W

4

T

Junction to Case LQFP48

θJC

20

o

C/W

5

T

Junction to Package Top LQFP48

ΨJT

4

o

C/W

6

T

Thermal Resistance LQFP52, single sided PCB

θJA

-

-

65

oC/W

7

T

Thermal Resistance LQFP52, double sided PCB with
2 internal planes

θJA

-

-

49

oC/W

8

T

Junction to Board LQFP52

θJB

31

oC/W

9

T

Junction to Case LQFP52

θJC

17

oC/W

10

T

Junction to Package Top LQFP52

ΨJT

3

oC/W

11

T

Thermal Resistance QFP 80, single sided PCB

θJA

-

-

52

oC/W

12

T

Thermal Resistance QFP 80, double sided PCB with
2 internal planes

θJA

-

-

42

oC/W

13

T

Junction to Board QFP80

θJB

28

oC/W

14

T

Junction to Case QFP80

θJC

18

oC/W

15

T

Junction to Package Top QFP80

ΨJT

4

oC/W

NOTES:
1. The values for thermal resistance are achieved by package simulations
2. PC Board according to EIA/JEDEC Standard 51-2
3. PC Board according to EIA/JEDEC Standard 51-7

A.1.9 I/O Characteristics
This section describes the characteristics of all I/O pins. All parameters are not always applicable, e.g. not
all pins feature pull up/down resistances.

89

Device User Guide — 9S12C128DGV1/D V01.05

Table A-6 5V I/O Characteristics
Conditions are 4.5< VDDX <5.5V Termperature from -40˚C to +140˚C, unless otherwise noted

Num

C

Min

Typ

Max

Unit

1

P

Input High Voltage

V

0.65*VDD5

-

-

V

T

Input High Voltage

VIH

-

-

VDD5 + 0.3

V

P

Input Low Voltage

VIL

-

-

0.35*VDD5

V

T

Input Low Voltage

VIL

VSS5 - 0.3

-

-

V

C

Input Hysteresis

4

P

Input Leakage Current (pins in high ohmic input
mode)1
Vin = VDD5 or VSS5

5

C

6

2

3

Rating

Symbol
IH

V

250

HYS

mV

I

in

–1

-

1

µA

Output High Voltage (pins in output mode)
Partial Drive IOH = –2mA

V

OH

VDD5 – 0.8

-

-

V

P

Output High Voltage (pins in output mode)
Full Drive IOH = –10mA

VOH

VDD5 – 0.8

-

-

V

7

C

Output Low Voltage (pins in output mode)
Partial Drive IOL = +2mA

VOL

-

-

0.8

V

8

P

Output Low Voltage (pins in output mode)
Full Drive IOL = +10mA

V

OL

-

-

0.8

V

9

P

Internal Pull Up Device Current,
tested at V Max.

IPUL

-

-

-130

µA

Internal Pull Up Device Current,
tested at V Min.

IPUH

-10

-

-

µA

Internal Pull Down Device Current,
tested at V Min.

IPDH

-

-

130

µA

Internal Pull Down Device Current,
tested at V Max.

IPDL

10

-

-

µA

7

-

pF

-

2.5
25

mA

3

µs

IL

10

C

IH

11

P

IH

12

C

IL

13

D

Input Capacitance

Cin

14

T

Injection current2
Single Pin limit
Total Device Limit. Sum of all injected currents

IICS
IICP

15

P

Port P, J Interrupt Input Pulse filtered3

tPIGN

16

P

Port P, J Interrupt Input Pulse passed3

tPVAL

-2.5
-25

10

µs

NOTES:
1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for
each 8 C to 12 C in the temperature range from 50 C to 125 C.
2. Refer to Section A.1.4 Current Injection, for more details
3. Parameter only applies in STOP or Pseudo STOP mode.

90

Device User Guide — 9S12C128DGV1/D V01.05

Table A-7 3.3V I/O Characteristics
Conditions are VDDX=3.3V +/-10%, Termperature from -40˚C to +140˚C, unless otherwise noted

Num

C

Min

Typ

Max

Unit

1

P

Input High Voltage

V

0.65*VDD5

-

-

V

T

Input High Voltage

VIH

-

-

VDD5 + 0.3

V

P

Input Low Voltage

VIL

-

-

0.35*VDD5

V

T

Input Low Voltage

VIL

VSS5 - 0.3

-

-

V

3

C

Input Hysteresis

4

P

Input Leakage Current (pins in high ohmic input
mode)1
Vin = VDD5 or VSS5

5

C

6

2

Rating

Symbol
IH

V

250

HYS

mV

I

in

–1

-

1

µA

Output High Voltage (pins in output mode)
Partial Drive IOH = –0.75mA

V

OH

VDD5 – 0.4

-

-

V

P

Output High Voltage (pins in output mode)
Full Drive IOH = –4mA

V

VDD5 – 0.4

-

-

V

7

C

Output Low Voltage (pins in output mode)
Partial Drive IOL = +0.9mA

V

-

-

0.4

V

8

P

Output Low Voltage (pins in output mode)
Full Drive IOL = +4.75mA

V

OL

-

-

0.4

V

9

P

Internal Pull Up Device Current,
tested at V Max.

IPUL

-

-

–60

µA

IL

OH

OL

10

C

Internal Pull Up Device Current,
tested at VIH Min.

IPUH

-6

-

-

µA

11

P

Internal Pull Down Device Current,
tested at V Min.

IPDH

-

-

60

µA

Internal Pull Down Device Current,
tested at V Max.

IPDL

6

-

-

µA

7

-

pF

-

2.5
25

mA

3

µs

IH

12

C

IL

11

D

Input Capacitance

Cin

12

T

Injection current2
Single Pin limit
Total Device Limit. Sum of all injected currents

IICS
IICP

13

P

Port P, J Interrupt Input Pulse filtered3

tPIGN

14

P

Port P, J Interrupt Input Pulse passed3

tPVAL

-2.5
-25

10

µs

NOTES:
1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for
each 8 C to 12 C in the temperature range from 50 C to 125 C.
2. Refer to Section A.1.4 Current Injection, for more details
3. Parameter only applies in STOP or Pseudo STOP mode.

91

Device User Guide — 9S12C128DGV1/D V01.05

A.1.10 Supply Currents
This section describes the current consumption characteristics of the device as well as the conditions for
the measurements.
A.1.10.1 Measurement Conditions
All measurements are without output loads. Unless otherwise noted the currents are measured in single
chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator.
A.1.10.2 Additional Remarks
In expanded modes the currents flowing in the system are highly dependent on the load at the address, data
and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be
given. A very good estimate is to take the single chip currents and add the currents due to the external
loads.

92

Device User Guide — 9S12C128DGV1/D V01.05

Table A-8 Supply Current Characteristics for MC9S12C32
Conditions are shown in Table A-4 with internal regulator enabled unless otherwise noted
Num

C

1

P

Rating
Run Supply Current Single Chip

Symbol

Min

Typ

IDD5

Max

Unit

35

mA

30
8

mA

Wait Supply current
2

3

4

P
P
C

All modules enabled
VDDR<4.9V, only RTI enabled(2)
VDDR>4.9V, only RTI enabled

C
P
C
P
C
P
C
P

Pseudo Stop Current (RTI and COP disabled)(2)(3)
-40°C
27°C
85°C
"C" Temp Option 100˚C
105°C
"V" Temp Option 120˚C
125°C
"M" Temp Option 140°C

IDDPS1

C
C
C
C
C

Pseudo Stop Current (RTI and COP enabled)2 3
-40°C
27°C
85°C
105°C
125°C

IDDPS1

IDDW

3.5
2.5
340
360
500
550
590
720
780
1100

450
1450

µA

1900
4500

540
700
750
880
1300

µA

Stop Current (3)

5

C
P
C
P
C
P
C
P

-40°C
27°C
85°C
"C" Temp Option 100˚C
105°C
"V" Temp Option 120˚C
125°C
"M" Temp Option 140°C

IDDS(1)

10
20
100
140
170
300
350
520

80
1000

µA

1400
4000

NOTES:
1. STOP current measured in production test at increased junction temperature, hence for Temp Option "C" the test is
carried out at 100˚C although the Temperature specification is 85˚C. Similarly for "v" and "M" options the temperature
used in test lies 15˚C above the temperature option specification.
2. PLL off
3. At those low power dissipation levels TJ = TA can be assumed

93

Device User Guide — 9S12C128DGV1/D V01.05

Table A-9 Supply Current Characteristics for MC9S12C64,MC9S12C96,MC9S12C128
Conditions are shown in Table A-4 with internal regulator enabled unless otherwise noted
Num

C

1

P

Rating
Run Supply Current Single Chip,

Symbol

Min

Typ

IDD5

Max

Unit

45

mA

33
8

mA

Wait Supply current
2

6

4

P
P
C

All modules enabled
VDDR<4.9V, only RTI enabled(2)
VDDR>4.9V, only RTI enabled

C
P
C
P
C
P
C
P

Pseudo Stop Current (RTI and COP disabled)(2)(3)
-40°C
27°C
85°C
"C" Temp Option 100˚C
105°C
"V" Temp Option 120˚C
125°C
"M" Temp Option 140°C

IDDPS1

C
C
C
C
C

Pseudo Stop Current (RTI and COP enabled)2 3
-40°C
27°C
85°C
105°C
125°C

IDDPS1

IDDW

2.5
3.5
190
200
300
400
450
600
650
1000

250
1400

µA

1900
4800

370
500
590
780
1200

µA

Stop Current (3)

5

C
P
C
P
C
P
C
P

-40°C
27°C
85°C
"C" Temp Option 100˚C
105°C
"V" Temp Option 120˚C
125°C
"M" Temp Option 140°C

IDDS(1)

12
25
130
160
200
350
400
600

100
1200

µA

1700
4500

NOTES:
1. STOP current measured in production test at increased junction temperature, hence for Temp Option "C" the test is
carried out at 100˚C although the Temperature specification is 85˚C. Similarly for "v" and "M" options the temperature
used in test lies 15˚C above the temperature option specification.
2. PLL off
3. At those low power dissipation levels TJ = TA can be assumed

94

Device User Guide — 9S12C128DGV1/D V01.05

Appendix B Electrical Specifications
B.1 Voltage Regulator Operating Conditions
Table B-1 Voltage Regulator Electrical Parameters
Nu
m

C

1

P

Input Voltages

2

C

3

Symbol

Min

Typical

Max

Unit

VVDDR, A

2.97

—

5.5

V

Regulator Current
Reduced Power Mode
Shutdown Mode

IREG

—
—

20
12

50
40

µA
µA

P

Output Voltage Core
Full Performance Mode

VDD

2.35

2.5

2.75

V

P

Low Voltage Interrupt1
Assert Level C32, GC32
Assert Level C64, C96,C128
GC64, GC128
Deassert Level C32, GC32
Deassert Level C64, C96, C128
GC64, GC128

VLVIA
VLVIA
VLVID
VLVID

4.30
4.10
4.42
4.25

4.53
4.37
4.65
4.52

4.77
4.66
4.89
4.77

V
V
V
V

5

P

Low Voltage Reset2
Assert Level C32, GC32
Assert Level C64, C96, C128
GC64, GC128

VLVRA

2.25
2.25

2.3
2.35

—

V

6

P

Low Voltage Reset(2)
Deassert Level

VLVRD

—

—

2.55

V

7

C

Power-on Reset3
Assert Level
Deassert Level

VPORA
VPORD

0.97
—

—
—

—
2.05

V
V

4

Characteristic

NOTES:
1. Monitors VDDA, active only in Full Performance Mode. Indicates I/O & ADC performance degradation due to low supply
voltage.
2. Monitors VDD, active only in Full Performance Mode. MCU is monitored by the POR in RPM (see Figure B-1)
3. Monitors VDD. Active in all modes.

NOTE:

The electrical characteristics given in this section are preliminary and should be
used as a guide only. Values in this section cannot be guaranteed by Motorola and
are subject to change without notice.

95

Device User Guide — 9S12C128DGV1/D V01.05

B.2 Chip Power-up and LVI/LVR graphical explanation
Voltage regulator sub modules LVI (low voltage interrupt), POR (power-on reset) and LVR (low voltage
reset) handle chip power-up or drops of the supply voltage. Their function is described in Figure B-1.
Figure B-1 Voltage Regulator - Chip Power-up and Voltage Drops (not scaled)
V

VDDA
VLVID
VLVIA

VDD

VLVRD
VLVRA
VPORD

t
LVI

LVI enabled

LVI disabled due to LVR

POR

LVR

B.3 Output Loads
B.3.1 Resistive Loads
The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits allows no
external DC loads.

96

Device User Guide — 9S12C128DGV1/D V01.05

B.3.2 Capacitive Loads
The capacitive loads are specified in Table B-2. Ceramic capacitors with X7R dielectricum are required.
Table B-2 Voltage Regulator - Capacitive Loads
Num

Characteristic

1

VDD external capacitive load

2

VDDPLL external capacitive load

Symbol

Min

Typical

Max

Unit

CDDext

400

440

12000

nF

CDDPLLext

90

220

5000

nF

97

Device User Guide — 9S12C128DGV1/D V01.05

98

Device User Guide — 9S12C128DGV1/D V01.05

B.4 ATD Characteristics
This section describes the characteristics of the analog to digital converter.
VRL is not available as a separate pin in the 48 and 52 pin versions. In this case the internal VRL pad is
bonded to the VSSA pin.
The ATD is specified and tested for both the 3.3V and 5V range. For ranges between 3.3V and 5V the
ATD accuracy is generally the same as in the 3.3V range but is not tested in this range in production test.

B.4.1 ATD Operating Characteristics In 5V Range
The Table B-3 shows conditions under which the ATD operates.
The following constraints exist to obtain full-scale, full range results:
VSSA ≤ VRL ≤ VIN ≤ VRH ≤ VDDA. This constraint exists since the sample buffer amplifier can not
drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will
effectively be clipped.
Table B-3 ATD Operating Characteristics
Conditions are shown in Table A-4 unless otherwise noted. Supply Voltage 5V-10% <= VDDA <=5V+10%

Num

C

Rating

1

D

2

C

Differential Reference Voltage1

3

D

ATD Clock Frequency

Symbol

Min

VRL
VRH

VSSA
VDDA/2

VRH-VRL

4.75

fATDCLK

Typ

Max

Unit

VDDA/2
VDDA

V
V

5.25

V

0.5

2.0

MHz

NCONV10
TCONV10

14
7

28
14

Cycles
µs

NCONV10
TCONV10

12
6

26
13

Cycles
µs

Reference Potential
Low
High

5.0

ATD 10-Bit Conversion Period
Clock Cycles2
Conv, Time at 2.0MHz ATD Clock fATDCLK

4

D

5

D

5

D

Recovery Time (VDDA=5.0 Volts)

tREC

20

µs

6

P

Reference Supply current

IREF

0.375

mA

ATD 8-Bit Conversion Period
Clock Cycles2
Conv, Time at 2.0MHz ATD Clock fATDCLK

NOTES:
1. Full accuracy is not guaranteed when differential voltage is less than 4.75V
2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample
period of 16 ATD clocks.

B.4.2 ATD Operating Characteristics In 3.3V Range
The Table B-3 shows conditions under which the ATD operates.
The following constraints exist to obtain full-scale, full range results:
VSSA ≤ VRL ≤ VIN ≤ VRH ≤ VDDA. This constraint exists since the sample buffer amplifier can not drive
99

Device User Guide — 9S12C128DGV1/D V01.05

beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively
be clipped

Table B-4 ATD Operating Characteristics
Conditions are shown in Table A-4 unless otherwise noted; Supply Voltage 3.3V-10% <= VDDA <= 3.3V+10%

Num C

Rating

Symbol

Min

VRL
VRH

VSSA
VDDA/2

Typ

Max

Unit

VDDA/2
VDDA

V
V

3.6

V

Reference Potential
1

D

Low
High

2

C Differential Reference Voltage

VRH-VRL

3.0

3

D ATD Clock Frequency

fATDCLK

0.5

2.0

MHz

4

D

14
7

28
14

Cycles
µs

5

D

12
6

26
13

Cycles
µs

6

D Recovery Time (VDDA=3.3 Volts)

tREC

20

µs

7

P

IREF

0.250

mA

3.3

ATD 10-Bit Conversion Period
Clock Cycles1 NCONV10
Conv, Time at 2.0MHz ATD Clock fATDCLK TCONV10
ATD 8-Bit Conversion Period
Clock Cycles(1)
Conv, Time at 2.0MHz ATD Clock fATDCLK

Reference Supply current

NCONV8
TCONV8

NOTES:
1. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample
period of 16 ATD clocks.

B.4.3 Factors influencing accuracy
Three factors - source resistance, source capacitance and current injection - have an influenceon the
accuracy of the ATD.
B.4.3.1 Source Resistance:
Due to the input pin leakage current as specified in Table A-6 in conjunction with the source resistance
there will be a voltage drop from the signal source to the ATD input. The maximum source resistance RS
specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or
operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source
resistance is allowable.
B.4.3.2 Source capacitance
When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due
to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input
voltage ≤ 1LSB, then the external filter capacitor, Cf ≥ 1024 * (CINS- CINN).

100

Device User Guide — 9S12C128DGV1/D V01.05

B.4.3.3 Current injection
There are two cases to consider.
1. A current is injected into the channel being converted. The channel being stressed has conversion
values of $3FF ($FF in 8-bit mode) for analog inputs greater than VRH and $000 for values less
than VRL unless the current is higher than specified as disruptive conditions.
2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this
current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy
of the conversion depending on the source resistance.
The additional input voltage error on the converted channel can be calculated as VERR = K * RS *
IINJ, with IINJ being the sum of the currents injected into the two pins adjacent to the converted
channel.
Table B-5 ATD Electrical Characteristics
Conditions are shown in Table A-4 unless otherwise noted

Num

C

Rating

Symbol

Min

Typ

Max

Unit

1

C

Max input Source Resistance

RS

-

-

1

KΩ

2

T

Total Input Capacitance
Non Sampling
Sampling

10
15

pF

3

C

Disruptive Analog Input Current

INA

2.5

mA

4

C

Coupling Ratio positive current injection

Kp

10-4

A/A

5

C

Coupling Ratio negative current injection

Kn

10-2

A/A

CINN
CINS
-2.5

101

Device User Guide — 9S12C128DGV1/D V01.05

B.4.4 ATD accuracy (5V Range)
Table B-6 specifies the ATD conversion performance excluding any errors due to current injection, input
capacitance and source resistance.
Table B-6 ATD Conversion Performance
Conditions are shown in Table A-4 unless otherwise noted
VREF = VRH - VRL = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV

fATDCLK = 2.0MHz
Num

C

1

P

10-Bit Resolution

LSB

2

P

10-Bit Differential Nonlinearity

DNL

–1

1

Counts

3

P

10-Bit Integral Nonlinearity

INL

–2

2

Counts

4

P

10-Bit Absolute Error1

AE

-2.5

2.5

Counts

5

P

8-Bit Resolution

LSB

6

P

8-Bit Differential Nonlinearity

DNL

–0.5

7

P

8-Bit Integral Nonlinearity

INL

–1.0

AE

-1.5

8

P

Rating

8-Bit Absolute

Error(1)

Symbol

Min

Typ

Max

5

Unit
mV

20

mV
0.5

Counts

±0.5

1.0

Counts

±1

1.5

Counts

NOTES:
1. These values include quantization error which is inherently 1/2 count for any A/D converter.

B.4.5 ATD accuracy (3.3V Range)
Table B-6 specifies the ATD conversion performance excluding any errors due to current injection, input
capacitance and source resistance.
Table B-7 ATD Conversion Performance
Conditions are shown in Table A-4 unless otherwise noted
VREF = VRH - VRL = 3.328V. Resulting to one 8 bit count = 13mV and one 10 bit count = 3.25mV

fATDCLK = 2.0MHz
Num

C

Rating

Symbol

Min

1

P

10-Bit Resolution

LSB

2

P

10-Bit Differential Nonlinearity

DNL

–1.5

3

P

10-Bit Integral Nonlinearity

INL

–3.5

4

P

10-Bit Absolute Error1

AE

-5

5

P

8-Bit Resolution

LSB

6

P

8-Bit Differential Nonlinearity

DNL

–0.5

7

P

8-Bit Integral Nonlinearity

INL

–1.5

8

P

8-Bit Absolute Error(1)

AE

-2.0

Typ
3.25

Unit
mV

1.5

Counts

±1.5

3.5

Counts

±2.5

5

Counts

13

mV
0.5

Counts

±1

1.5

Counts

±1.5

2.0

Counts

NOTES:
1. These values include the quantization error which is inherently 1/2 count for any A/D converter.

102

Max

Device User Guide — 9S12C128DGV1/D V01.05

For the following definitions see also Figure B-2.
Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.

Vi – Vi – 1
DNL ( i ) = ------------------------ – 1
1LSB
The Integral Non-Linearity (INL) is defined as the sum of all DNLs:
n

INL ( n ) =

∑
i=1

Vn – V0
DNL ( i ) = -------------------- – n
1LSB

103

Device User Guide — 9S12C128DGV1/D V01.05

DNL

LSB
Vi-1
$3FF

10-Bit Absolute Error Boundary
Vi
8-Bit Absolute Error Boundary

$3FE
$3FD
$3FC

$FF

$3FB
$3FA
$3F9
$3F8

$FE

$3F7
$3F6

$3F4

8-Bit Resolution

10-Bit Resolution

$3F5
$FD

$3F3

9

Ideal Transfer Curve

8

2

7

10-Bit Transfer Curve

6
5
4

1

3

8-Bit Transfer Curve

2
1
0
3.25

6.5

9.75

13 16.25 19.5 22.75 26 29.25

3286 3289 3292 3295 3299 3302 3305 3309 3312 3315 3318 3321 3324 3328

Vin
mV

Figure B-2 ATD Accuracy Definitions

NOTE:

104

Figure B-2 shows only definitions, for specification values refer to Table B-6.

Device User Guide — 9S12C128DGV1/D V01.05

B.5 NVM, Flash and EEPROM
B.5.1 NVM timing
The time base for all NVM program or erase operations is derived from the oscillator. A minimum
oscillator frequency fNVMOSC is required for performing program or erase operations. The NVM modules
do not have any means to monitor the frequency and will not prevent program or erase operation at
frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at
a lower frequency a full program or erase transition is not assured.
The Flash program and erase operations are timed using a clock derived from the oscillator using the
FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within the limits
specified as fNVMOP.
The minimum program and erase times shown in Table B-8 are calculated for maximum fNVMOP and
maximum fbus. The maximum times are calculated for minimum fNVMOP and a fbus of 2MHz.
B.5.1.1 Single Word Programming
The programming time for single word programming is dependant on the bus frequency as a well as on
the frequency f¨NVMOP and can be calculated according to the following formula.

1
1
t swpgm = 9 ⋅ --------------------- + 25 ⋅ ---------f NVMOP
f bus
B.5.1.2 Row Programming
Generally the time to program a consecutive word can be calculated as:

1
1
t bwpgm = 4 ⋅ --------------------- + 9 ⋅ ---------f NVMOP
f bus
For the C16, GC16, C32 and GC32 device flash arrays, where up to 32 words in a row can be programmed
consecutively by keeping the command pipeline filled, the time to program a whole row is:

t brpgm = t swpgm + 31 ⋅ t bwpgm
For the C64, GC64, C96, C128 and GC128 device flash arrays, where up to 64 words in a row can be
programmed consecutively by keeping the command pipeline filled, the time to program a whole row is:

t brpgm = t swpgm + 63 ⋅ t bwpgm
Row programming is more than 2 times faster than single word programming.

105

Device User Guide — 9S12C128DGV1/D V01.05

B.5.1.3 Sector Erase
Erasing either a 512 byte or 1024 byte Flash sector takes:

1
t era ≈ 4000 ⋅ --------------------f NVMOP
The setup times can be ignored for this operation.
B.5.1.4 Mass Erase
Erasing a NVM block takes:

1
t mass ≈ 20000 ⋅ --------------------f NVMOP
This is independent of sector size.
The setup times can be ignored for this operation.

Table B-8 NVM Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted

Num

C

1

D

2

Rating

Symbol

Min

Typ

Max

Unit

External Oscillator Clock

fNVMOSC

0.5

501

MHz

D

Bus frequency for Programming or Erase Operations

fNVMBUS

1

3

D

Operating Frequency

fNVMOP

150

200

kHz

4

P

Single Word Programming Time

tswpgm

462

74.53

µs

5

D

Flash Burst Programming consecutive word

tbwpgm

20.42

313

µs

6

D

Flash Burst Programming Time for 32 Word row

tbrpgm

678.42

1035.53

µs

6

D

Flash Burst Programming Time for 64 Word row

tbrpgm

1331.22

2027.53

µs

7

P

Sector Erase Time

tera

204

26.73

ms

8

P

Mass Erase Time

tmass

1004

1333

ms

9

D

Blank Check Time Flash per block

t check

115

327786

7t
cyc

9

D

Blank Check Time Flash per block

t check

118

655469

7t

MHz

cyc

NOTES:
1. Restrictions for oscillator in crystal mode apply!
2. Minimum Programming times are achieved under maximum NVM operating frequency f NVMOP and maximum bus frequency fbus.
3. Maximum Erase and Programming times are achieved under particular combinations of f NVMOP and bus frequency f bus
. Refer to formulae in Sections A.3.1.1 - A.3.1.4 for guidance.
4. Minimum Erase times are achieved under maximum NVM operating frequency f NVMOP .
5. Minimum time, if first word in the array is not blank (512 byte sector size).
6. Maximum time to complete check on an erased block (512 byte sector size)
7. Where tcyc is the system bus clock period.
8. Minimum time, if first word in the array is not blank (1024 byte sector size)
9. Maximum time to complete check on an erased block (1024 byte sector size).

106

Device User Guide — 9S12C128DGV1/D V01.05

B.5.2 NVM Reliability
The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process
monitors and burn-in to screen early life failures.
The failure rates for data retention and program/erase cycling are specified at <2ppm defects over lifetime
at the operating conditions noted.
A program/erase cycle is specified as two transitions of the cell value from erased → programmed →
erased, 1 → 0 → 1.

NOTE:

All values shown in Table B-9 are target values and subject to further extensive
characterization.
Table B-9 NVM Reliability Characteristics

Conditions are shown in Table A-4 unless otherwise noted

Num

C

Rating

Symbol

Min

Typ

Max

Unit

1

C

Data Retention at an average junction temperature of
TJavg = 85°C

tNVMRET

15

Years

2

C

Flash number of Program/Erase cycles

nFLPE

10,000

Cycles

107

Device User Guide — 9S12C128DGV1/D V01.05

108

Device User Guide — 9S12C128DGV1/D V01.05

B.6 Reset, Oscillator and PLL
This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and
Phase-Locked-Loop (PLL).

B.6.1 Startup
Table B-10 summarizes several startup characteristics explained in this section. Detailed description of the
startup behavior can be found in the Clock and Reset Generator (CRG) Block User Guide.
Table B-10 Startup Characteristics
Conditions are shown in Table A-4 unless otherwise noted

Num

C

Rating

Symbol

1

T

POR release level

VPORR

2

T

POR assert level

VPORA

0.97

V

3

D

Reset input pulse width, minimum input time

PWRSTL

2

tosc

4

D

Startup from Reset

nRST

192

5

D

Interrupt pulse width, IRQ edge-sensitive
mode

PWIRQ

20

6

D

Wait recovery startup time

tWRS

Min

Typ

Max

Unit

2.07

V

196

nosc
ns

14

tcyc

B.6.1.1 POR
The release level VPORR and the assert level VPORA are derived from the VDD Supply. They are also valid
if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check
are started. If after a time tCQOUT no valid oscillation is detected, the MCU will start using the internal self
clock. The fastest startup time possible is given by nuposc.
B.6.1.2 LVR
The release level VLVRR and the assert level VLVRA are derived from the VDD Supply. They are also valid
if the device is powered externally. After releasing the LVR reset the oscillator and the clock quality check
are started. If after a time tCQOUT no valid oscillation is detected, the MCU will start using the internal self
clock. The fastest startup time possible is given by nuposc.
B.6.1.3 SRAM Data Retention
Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing
code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset
the PORF bit in the CRG Flags Register has not been set.

109

Device User Guide — 9S12C128DGV1/D V01.05

B.6.1.4 External Reset
When external reset is asserted for a time greater than PWRSTL the CRG module generates an internal
reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an
oscillation before reset.
B.6.1.5 Stop Recovery
Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR
is performed before releasing the clocks to the system.
B.6.1.6 Pseudo Stop and Wait Recovery
The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in
both modes. The controller can be woken up by internal or external interrupts. After twrs the CPU starts
fetching the interrupt vector.

B.6.2 Oscillator
The device features an internal Colpitts oscillator. By asserting the XCLKS input during reset this
oscillator can be bypassed allowing the input of a square wave. Before asserting the oscillator to the
internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP
or oscillator fail. tCQOUT specifies the maximum time before switching to the internal self clock mode in
case no proper oscillation is detected. The quality monitor also determines the minimum oscillator start-up

110

Device User Guide — 9S12C128DGV1/D V01.05

time tUPOSC. The device features a clock monitor. A time-out is asserted if the frequency of the incoming
clock signal is below the Clock Monitor FailureAssert Frequency fCMFA.
Table B-11 Oscillator Characteristics
Conditions are shown in Table A-4 unless otherwise noted

Num

C

1a

C

1b

Rating

Symbol

Min

Typ

Max

Unit

Crystal oscillator range (Colpitts)

fOSC

0.5

16

MHz

C

Crystal oscillator range (Pierce) 1(4)

fOSC

0.5

40

MHz

2

P

Startup Current

iOSC

100

3

C

Oscillator start-up time (Colpitts)

tUPOSC

4

D

Clock Quality check time-out

tCQOUT

0.45

5

P

Clock Monitor Failure Assert Frequency

fCMFA

50

6

P

External square wave input frequency 4

fEXT

0.5

7

D

External square wave pulse width low

tEXTL

9.5

ns

8

D

External square wave pulse width high

tEXTH

9.5

ns

9

D

External square wave rise time

tEXTR

1

ns

10

D

External square wave fall time

tEXTF

1

ns

11

D

Input Capacitance (EXTAL, XTAL pins)

12

C

DC Operating Bias in Colpitts Configuration
on EXTAL Pin

µA
82

100

1003

ms

2.5

s

200

KHz

50

MHz

CIN

7

pF

VDCBIAS

1.1

V

NOTES:
1. Depending on the crystal a damping series resistor might be necessary
2. fosc = 4MHz, C = 22pF.
3. Maximum value is for extreme cases using high Q, low frequency crystals
4. XCLKS =0 during reset

B.6.3 Phase Locked Loop
The oscillator provides the reference clock for the PLL. The PLL´s Voltage Controlled Oscillator (VCO)
is also the system clock source in self clock mode.
B.6.3.1 XFC Component Selection
This section describes the selection of the XFC components to achieve a good filter characteristics.

111

Device User Guide — 9S12C128DGV1/D V01.05

Cp
VDDPLL
R
Phase

Cs
fosc

1
refdv+1

fref

∆
fcmp

XFC Pin
VCO

KΦ

KV

fvco

Detector
Loop Divider
1
synr+1

1
2

Figure B-3 Basic PLL functional diagram
The following procedure can be used to calculate the resistance and capacitance values using typical
values for K1, f1 and ich from Table B-12.
The grey boxes show the calculation for fVCO = 50MHz and fref = 1MHz. E.g., these frequencies are used
for fOSC = 4MHz and a 25MHz bus clock.
The VCO Gain at the desired VCO frequency is approximated by:

KV = K1 ⋅ e

( f 1 – f vco )
----------------------K 1 ⋅ 1V

= – 100 ⋅ e

( 60 – 50 )
-----------------------– 100

= -90.48MHz/V

The phase detector relationship is given by:

K Φ = – i ch ⋅ K V

= 316.7Hz/Ω

ich is the current in tracking mode.
The loop bandwidth fC should be chosen to fulfill the Gardner’s stability criteria by at least a factor of 10,
typical values are 50. ζ = 0.9 ensures a good transient response.

2 ⋅ ζ ⋅ f ref
f ref
1
f C < ------------------------------------------ ------ → f C < -------------- ;( ζ = 0.9 )
4 ⋅ 10
2 10

π⋅ ζ+ 1+ζ
fC < 25kHz



112

Device User Guide — 9S12C128DGV1/D V01.05

And finally the frequency relationship is defined as

f VCO
n = ------------- = 2 ⋅ ( synr + 1 )
f ref

= 50

With the above values the resistance can be calculated. The example is shown for a loop bandwidth
fC=10kHz:

2 ⋅ π ⋅ n ⋅ fC
R = ----------------------------- = 2*π*50*10kHz/(316.7Hz/Ω)=9.9kΩ=~10kΩ
KΦ
The capacitance Cs can now be calculated as:
2

0.516
2⋅ζ
C s = ---------------------- ≈ --------------- ;( ζ = 0.9 ) = 5.19nF =~ 4.7nF
π ⋅ fC ⋅ R fC ⋅ R
The capacitance Cp should be chosen in the range of:

C s ⁄ 20 ≤ C p ≤ C s ⁄ 10

Cp = 470pF

B.6.3.2 Jitter Information
The basic functionality of the PLL is shown in Figure B-3. With each transition of the clock fcmp, the
deviation from the reference clock fref is measured and input voltage to the VCO is adjusted
accordingly.The adjustment is done continuously with no abrupt changes in the clock output frequency.
Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock
jitter. This jitter affects the real minimum and maximum clock periods as illustrated in Figure B-4.

113

Device User Guide — 9S12C128DGV1/D V01.05

1

0

2

3

N-1

N

tmin1
tnom
tmax1
tminN
tmaxN

Figure B-4 Jitter Definitions
The relative deviation of tnom is at its maximum for one clock period, and decreases towards zero for larger
number of clock periods (N).
Defining the jitter as:

t min ( N ) 
t max ( N )

J ( N ) = max  1 – --------------------- , 1 – --------------------- 
N ⋅ t nom
N ⋅ t nom 

For N < 100, the following equation is a good fit for the maximum jitter:

j1
J ( N ) = -------- + j 2
N
J(N)

1

5

10

20

N

Figure B-5 Maximum bus clock jitter approximation

114

Device User Guide — 9S12C128DGV1/D V01.05

This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the
effect of the jitter to a large extent.

Table B-12 PLL Characteristics
Conditions are shown in Table A-4 unless otherwise noted

Num C

Rating

Symbol

Min

Typ

Max

Unit

1

P Self Clock Mode frequency

fSCM

1

5.5

MHz

2

D VCO locking range

fVCO

8

50

MHz

3

D

|∆trk|

3

4

%1

4

D Lock Detection

|∆Lock|

0

1.5

%(1)

5

D Un-Lock Detection

|∆unl|

0.5

2.5

%(1)

6

D

|∆unt|

6

8

%(1)

7

C PLLON Total Stabilization delay (Auto Mode) 2

tstab

0.5

ms

8

D PLLON Acquisition mode stabilization delay (2)

tacq

0.3

ms

9

D PLLON Tracking mode stabilization delay (2)

tal

0.2

ms

10

D Fitting parameter VCO loop gain

K1

-100

MHz/V

11

D Fitting parameter VCO loop frequency

f1

60

MHz

12

D Charge pump current acquisition mode

| ich |

38.5

µA

13

D Charge pump current tracking mode

| ich |

3.5

µA

14

C Jitter fit parameter 1(2)

j1

1.1

%

15

C Jitter fit parameter 2(2)

j2

0.13

%

Lock Detector transition from Acquisition to Tracking
mode

Lock Detector transition from Tracking to Acquisition
mode

NOTES:
1. % deviation from target frequency
2. fOSC = 4MHz, fBUS = 25MHz equivalent fVCO = 50MHz: REFDV = #$03, SYNR = #$018, Cs = 4.7nF, Cp = 470pF, Rs =
10KΩ.

115

Device User Guide — 9S12C128DGV1/D V01.05

116

Device User Guide — 9S12C128DGV1/D V01.05

B.7 MSCAN
Table B-13 MSCAN Wake-up Pulse Characteristics
Conditions are shown in Table A-4 unless otherwise noted

Num C

Rating

Symbol

1

P MSCAN Wake-up dominant pulse filtered

tWUP

2

P MSCAN Wake-up dominant pulse pass

tWUP

Min

Typ

Max
2

5

117

Device User Guide — 9S12C128DGV1/D V01.05

118

Device User Guide — 9S12C128DGV1/D V01.05

B.8 SPI

Appendix C Electrical Specifications
This section provides electrical parametrics and ratings for the SPI.
In Table C-1 the measurement conditions are listed.
Table C-1 Measurement Conditions
Description

Value

Unit

full drive mode

—

50

pF

(20% / 80%) VDDX

V

Drive mode
Load capacitance CLOAD,
on all outputs
Thresholds for delay
measurement points

C.1 Master Mode
In Figure C-1 the timing diagram for master mode with transmission format CPHA=0 is depicted.

SS1
(OUTPUT)
2

1

SCK
(CPOL = 0)
(OUTPUT)

13

12

13

3

4
4

SCK
(CPOL = 1)
(OUTPUT)
5
MISO
(INPUT)

6
MSB IN2

10
MOSI
(OUTPUT)

12

BIT 6 . . . 1

LSB IN

9
MSB OUT2

BIT 6 . . . 1

11
LSB OUT

1.if configured as an output.
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure C-1 SPI Master Timing (CPHA=0)
In Figure C-2 the timing diagram for master mode with transmission format CPHA=1 is depicted.

119

Device User Guide — 9S12C128DGV1/D V01.05

SS1
(OUTPUT)
1
2

12

13

12

13

3

SCK
(CPOL = 0)
(OUTPUT)
4

4

SCK
(CPOL = 1)
(OUTPUT)
5
MISO
(INPUT)

6
MSB IN2

BIT 6 . . . 1

LSB IN

11

9
MOSI
(OUTPUT) PORT DATA

MASTER MSB OUT2

BIT 6 . . . 1

MASTER LSB OUT

PORT DATA

1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure C-2 SPI Master Timing (CPHA=1)
In Table C-2 the timing characteristics for master mode are listed.
Table C-2 SPI Master Mode Timing Characteristics
Num

C

Characteristic

1

P

SCK Frequency

1

P

2

Symbol

Unit

Min

Typ

Max

fsck

1/2048

—

1/2

fbus

SCK Period

tsck

2

—

2048

tbus

D

Enable Lead Time

tlead

—

1/2

—

tsck

3

D

Enable Lag Time

tlag

—

1/2

—

tsck

4

D

Clock (SCK) High or Low Time

twsck

—

1/2

—

tsck

5

D

Data Setup Time (Inputs)

tsu

8

—

—

ns

6

D

Data Hold Time (Inputs)

thi

8

—

—

ns

9

D

Data Valid after SCK Edge

tvsck

—

—

30

ns

10

D

Data Valid after SS fall (CPHA=0)

tvss

—

—

15

ns

11

D

Data Hold Time (Outputs)

tho

20

—

—

ns

12

D

Rise and Fall Time Inputs

trfi

—

—

8

ns

Rise and Fall Time Outputs

trfo

—

—

8

ns

13

120

D

Device User Guide — 9S12C128DGV1/D V01.05

C.2 Slave Mode
In Figure C-3 the timing diagram for slave mode with transmission format CPHA=0 is depicted.

SS
(INPUT)
1

12

13

12

13

3

SCK
(CPOL = 0)
(INPUT)
4

2

4

SCK
(CPOL = 1)
(INPUT) 10

8

7
MISO
(OUTPUT)

9
see
note

SLAVE MSB

5
MOSI
(INPUT)

BIT 6 . . . 1

11

11

SLAVE LSB OUT

SEE
NOTE

6
MSB IN

BIT 6 . . . 1

LSB IN

NOTE: Not defined!

Figure C-3 SPI Slave Timing (CPHA=0)
In Figure C-4 the timing diagram for slave mode with transmission format CPHA=1 is depicted.

121

Device User Guide — 9S12C128DGV1/D V01.05

SS
(INPUT)
3

1
2

12

13

12

13

SCK
(CPOL = 0)
(INPUT)
4

4

SCK
(CPOL = 1)
(INPUT)
see
note

SLAVE

7

MSB OUT

5

MOSI
(INPUT)

8

11

9
MISO
(OUTPUT)

BIT 6 . . . 1

SLAVE LSB OUT

6
MSB IN

BIT 6 . . . 1

LSB IN

NOTE: Not defined!

Figure C-4 SPI Slave Timing (CPHA=1)
In Table C-3 the timing characteristics for slave mode are listed.
Table C-3 SPI Slave Mode Timing Characteristics
Num

C

Characteristic

1

D

SCK Frequency

1

P

2

Symbol

Unit

Min

Typ

Max

fsck

DC

—

1/4

fbus

SCK Period

tsck

4

—

∞

tbus

D

Enable Lead Time

tlead

4

—

—

tbus

3

D

Enable Lag Time

tlag

4

—

—

tbus

4

D

Clock (SCK) High or Low Time

twsck

4

—

—

tbus

5

D

Data Setup Time (Inputs)

tsu

8

—

—

ns

6

D

Data Hold Time (Inputs)

thi

8

—

—

ns

7

D

Slave Access Time (time to data
active)

ta

—

—

20

ns

8

D

Slave MISO Disable Time

tdis

—

—

22

ns
1

ns

9

D

Data Valid after SCK Edge

tvsck

—

—

30 + tbus

10

D

Data Valid after SS fall

tvss

—

—

30 + tbus 1

ns

11

D

Data Hold Time (Outputs)

tho

20

—

—

ns

12

D

Rise and Fall Time Inputs

trfi

—

—

8

ns

Rise and Fall Time Outputs

trfo

—

—

8

ns

13

D

NOTES:
1. tbus added due to internal synchronization delay

122

Device User Guide — 9S12C128DGV1/D V01.05

C.3 External Bus Timing
A timing diagram of the external multiplexed-bus is illustrated in Figure C-5 with the actual timing
values shown on table Table C-4. All major bus signals are included in the diagram. While both a data
write and data read cycle are shown, only one or the other would occur on a particular bus cycle.

C.3.1 General Muxed Bus Timing
The expanded bus timings are highly dependent on the load conditions. The timing parameters shown
assume a balanced load across all outputs.
Figure C-5 General External Bus Timing
1, 2
3

4

ECLK
PE4
5
9
Addr/Data
(read)
PA, PB

6

data

16

15

7

data

11

data

addr
8

12
Addr/Data
(write)
PA, PB

10

14

13

data

addr

17

18

19

20

21

22

23

24

25

26

27

R/W
PE2

LSTRB
PE3

NOACC
PE7

28

29

PIPO0
PIPO1, PE6,5

123

Device User Guide — 9S12C128DGV1/D V01.05

Table C-4 Expanded Bus Timing Characteristics (5V Range)
Conditions are 4.75V < VDDX < 5.25V, Junction Temperature -40˚C to +140˚C, CLOAD = 50pF

Num

C

Rating

Symbol

Min

1

P

Frequency of operation (E-clock)

2

P

Cycle time

3

D

4

Typ

fo

0

tcyc

40

ns

Pulse width, E low

PWEL

19

ns

D

Pulse width, E high1

PWEH

19

ns

5

D

Address delay time

tAD

6

D

Address valid time to E rise (PWEL–tAD)

tAV

11

ns

7

D

Muxed address hold time

tMAH

2

ns

8

D

Address hold to data valid

tAHDS

7

ns

9

D

Data hold to address

tDHA

2

ns

10

D

Read data setup time

tDSR

13

ns

11

D

Read data hold time

tDHR

0

ns

12

D

Write data delay time

tDDW

13

D

Write data hold time

tDHW

2

ns

14

D

Write data setup time(1) (PWEH–tDDW)

tDSW

12

ns

15

D

Address access time(1) (tcyc–tAD–tDSR)

tACCA

19

ns

16

D

E high access time(1) (PWEH–tDSR)

tACCE

6

ns

17

D

Read/write delay time

tRWD

18

D

Read/write valid time to E rise (PWEL–tRWD)

tRWV

14

ns

19

D

Read/write hold time

tRWH

2

ns

20

D

Low strobe delay time

tLSD

21

D

Low strobe valid time to E rise (PWEL–tLSD)

tLSV

14

ns

22

D

Low strobe hold time

tLSH

2

ns

23

D

NOACC strobe delay time

tNOD

24

D

NOACC valid time to E rise (PWEL–tLSD)

tNOV

14

ns

25

D

NOACC hold time

tNOH

2

ns

26

D

IPIPO[1:0] delay time

tP0D

2

27

D

IPIPO[1:0] valid time to E rise (PWEL–tP0D)

tP0V

11

28

D

IPIPO[1:0] delay time(1) (PWEH-tP1V)

tP1D

2

29

D

IPIPO[1:0] valid time to E fall

tP1V

11

Unit

25.0

MHz

8

7

7

7

7

NOTES:
1. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches.

124

Max

7

ns

ns

ns

ns

ns

ns
ns

25

ns
ns

Device User Guide — 9S12C128DGV1/D V01.05

Table C-5 Expanded Bus Timing Characteristics (3.3V Range)
Conditions are VDDX=3.3V+/-10%, Junction Temperature -40˚C to +140˚C, CLOAD = 50pF

Num

C

Rating

Symbol

Min

1

D

Frequency of operation (E-clock)

2

D

Cycle time

3

D

4

Typ

Max

Unit

fo

0

16.0

MHz

tcyc

62.5

ns

Pulse width, E low

PWEL

30

ns

D

Pulse width, E high1

PWEH

30

ns

5

D

Address delay time

tAD

6

D

Address valid time to E rise (PWEL–tAD)

tAV

16

ns

7

D

Muxed address hold time

tMAH

2

ns

8

D

Address hold to data valid

tAHDS

7

ns

9

D

Data hold to address

tDHA

2

ns

10

D

Read data setup time

tDSR

15

ns

11

D

Read data hold time

tDHR

0

ns

12

D

Write data delay time

tDDW

13

D

Write data hold time

tDHW

2

ns

14

D

Write data setup time(1) (PWEH–tDDW)

tDSW

15

ns

15

D

Address access time(1)

tACCA

29

ns

16

D

E high access time(1) (PWEH–tDSR)

tACCE

15

ns

17

D

Read/write delay time

tRWD

18

D

Read/write valid time to E rise (PWEL–tRWD)

tRWV

16

ns

19

D

Read/write hold time

tRWH

2

ns

20

D

Low strobe delay time

tLSD

21

D

Low strobe valid time to E rise (PWEL–tLSD)

tLSV

16

ns

22

D

Low strobe hold time

tLSH

2

ns

23

D

NOACC strobe delay time

tNOD

24

D

NOACC valid time to E rise (PWEL–tLSD)

tNOV

16

ns

25

D

NOACC hold time

tNOH

2

ns

26

D

IPIPO[1:0] delay time

tP0D

2

27

D

IPIPO[1:0] valid time to E rise (PWEL–tP0D)

tP0V

16

28

D

IPIPO[1:0] delay time(1)

tP1D

2

29

D

IPIPO[1:0] valid time to E fall

tP1V

11

16

15

14

14

14

14

ns

ns

ns

ns

ns

ns
ns

25

ns
ns

NOTES:
1. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches.

125

Device User Guide — 9S12C128DGV1/D V01.05

126

Device User Guide — 9S12C128DGV1/D V01.05

Appendix D Package Information
D.1 General
This section provides the physical dimensions of the MC9S12C Family and MC9S12GC Family packages
48LQFP, 52LQFP, 80QFP.

127

Device User Guide — 9S12C128DGV1/D V01.05

D.2 80-pin QFP package
L
60

41

61

D
S
M

V

P

B

C A-B

D
0.20

M

B

B

-A-,-B-,-D-

0.20

L

H A-B

-B-

0.05 D

-A-

S

S

S

40

DETAIL A

DETAIL A

21

80
1

0.20

A
H A-B

M

S

F

20

-DD

S

0.05 A-B
J

S
0.20

C A-B

M

S

D

S

D

M

E

DETAIL C

C

-H-

-C-

DATUM
PLANE

0.20

M

C A-B

S

D

S

SECTION B-B

VIEW ROTATED 90 °

0.10

H

SEATING
PLANE

N

M
G

U
T
DATUM
PLANE

-H-

R

K
W
X
DETAIL C

Q

NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE
LEAD WHERE THE LEAD EXITS THE PLASTIC
BODY AT THE BOTTOM OF THE PARTING LINE.
4. DATUMS -A-, -B- AND -D- TO BE
DETERMINED AT DATUM PLANE -H-.
5. DIMENSIONS S AND V TO BE DETERMINED
AT SEATING PLANE -C-.
6. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
A AND B DO INCLUDE MOLD MISMATCH
AND ARE DETERMINED AT DATUM PLANE -H-.
7. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION. DAMBAR CANNOT
BE LOCATED ON THE LOWER RADIUS OR
THE FOOT.

DIM
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Q
R
S
T
U
V
W
X

Figure D-1 80-pin QFP Mechanical Dimensions (case no. 841B)

128

MILLIMETERS
MIN
MAX
13.90
14.10
13.90
14.10
2.15
2.45
0.22
0.38
2.00
2.40
0.22
0.33
0.65 BSC
--0.25
0.13
0.23
0.65
0.95
12.35 REF
5°
10 °
0.13
0.17
0.325 BSC
0°
7°
0.13
0.30
16.95
17.45
0.13
--0°
--16.95
17.45
0.35
0.45
1.6 REF

Device User Guide — 9S12C128DGV1/D V01.05

D.3 52-pin LQFP package
4X

4X 13 TIPS

0.20 (0.008) H L-M N

0.20 (0.008) T L-M N
-XX=L, M, N

52

40

1

CL

39

AB
3X

G

VIEW Y

-L-

-M-

AB
B

B1
13

V

VIEW Y
BASE METAL

F

PLATING

V1

27
14

J

26

U

-N-

A1

0.13 (0.005)

M

D
T L-M

S

N

S

S1
SECTION AB-AB

A
S

4X

C

θ2
0.10 (0.004) T

-H-TSEATING
PLANE

4X

θ3
VIEW AA

0.05 (0.002)

S

W

2X R

θ1

R1

0.25 (0.010)

C2

θ
GAGE PLANE

K
C1
E
VIEW AA

ROTATED 90 ° CLOCKWISE
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE LEAD WHERE
THE LEAD EXITS THE PLASTIC BODY AT THE
BOTTOM OF THE PARTING LINE.
4. DATUMS -L-, -M- AND -N- TO BE DETERMINED AT
DATUM PLANE -H-.
5. DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE -T-.
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25
(0.010) PER SIDE. DIMENSIONS A AND B DO
INCLUDE MOLD MISMATCH AND ARE
DETERMINED AT DATUM PLANE -H7. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. DAMBAR PROTRUSION SHALL NOT
CAUSE THE LEAD WIDTH TO EXCEED 0.46 (0.018).
MINIMUM SPACE BETWEEN PROTRUSION AND
ADJACENT LEAD OR PROTRUSION 0.07 (0.003).

Z

DIM
A
A1
B
B1
C
C1
C2
D
E
F
G
J
K
R1
S
S1
U
V
V1
W
Z
θ
θ1
θ2
θ3

MILLIMETERS
MIN
MAX
10.00 BSC
5.00 BSC
10.00 BSC
5.00 BSC
--1.70
0.05
0.20
1.30
1.50
0.20
0.40
0.45
0.75
0.22
0.35
0.65 BSC
0.07
0.20
0.50 REF
0.08
0.20
12.00 BSC
6.00 BSC
0.09
0.16
12.00 BSC
6.00 BSC
0.20 REF
1.00 REF
0°
7°
--0°
12 ° REF
12 ° REF

INCHES
MIN
MAX
0.394 BSC
0.197 BSC
0.394 BSC
0.197 BSC
--0.067
0.002 0.008
0.051
0.059
0.008
0.016
0.018
0.030
0.009
0.014
0.026 BSC
0.003
0.008
0.020 REF
0.003
0.008
0.472 BSC
0.236 BSC
0.004
0.006
0.472 BSC
0.236 BSC
0.008 REF
0.039 REF
0°
7°
--0°
12 ° REF
12 ° REF

Figure D-2 52-pin LQFP Mechanical Dimensions (case no. 848D-03)

129

Device User Guide — 9S12C128DGV1/D V01.05

D.4 48-pin LQFP package
4X

0.200 AB T-U Z
DETAIL Y

A

P

A1
48

37

1

36

T

U
V

B

AE

B1
12

25

13

AE

V1

24
DIM
A
A1
B
B1
C
D
E
F
G
H
J
K
L
M
N
P
R
S
S1
V
V1
W
AA

Z
S1

T, U, Z
S
DETAIL Y

4X

0.200 AC T-U Z

0.080 AC

G

AB

AD
AC

MILLIMETERS
MIN MAX
7.000 BSC
3.500 BSC
7.000 BSC
3.500 BSC
1.400 1.600
0.170 0.270
1.350 1.450
0.170 0.230
0.500 BSC
0.050 0.150
0.090 0.200
0.500 0.700
0 °
7°
12 ° REF
0.090 0.160
0.250 BSC
0.150 0.250
9.000 BSC
4.500 BSC
9.000 BSC
4.500 BSC
0.200 REF
1.000 REF

M°

BASE METAL

TOP & BOTTOM

J

0.250

N

R

C

E

GAUGE PLANE

9

NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
1. CONTROLLING DIMENSION: MILLIMETER.
2. DATUM PLANE AB IS LOCATED AT BOTTOM
OF LEAD AND IS COINCIDENT WITH THE
LEAD WHERE THE LEAD EXITS THE PLASTIC
BODY AT THE BOTTOM OF THE PARTING
LINE.
3. DATUMS T, U, AND Z TO BE DETERMINED AT
DATUM PLANE AB.
4. DIMENSIONS S AND V TO BE DETERMINED
AT SEATING PLANE AC.
5. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.250 PER SIDE. DIMENSIONS
A AND B DO INCLUDE MOLD MISMATCH AND
ARE DETERMINED AT DATUM PLANE AB.
6. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. DAMBAR PROTRUSION SHALL
NOT CAUSE THE D DIMENSION TO EXCEED
0.350.
7. MINIMUM SOLDER PLATE THICKNESS
SHALL BE 0.0076.
8. EXACT SHAPE OF EACH CORNER IS
OPTIONAL.

F
D
0.080

M

AC T-U Z

SECTION AE-AE

H

W

L°
K

DETAIL AD
AA

Figure D-3 48-pin LQFP Mechanical Dimensions (case no.932-03 ISSUE F)

130

Device User Guide — 9S12C128DGV1/D V01.05

Appendix E Emulation Information
E.1 General

MC9S12C Family
MC9S12GC Family

84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

VRH
VDDA
NC
PAD07/AN07
NC
PAD06/AN06
NC
PAD05/AN05
NC
PAD04/AN04
NC
PAD03/AN03
NC
PAD02/AN02
NC
PAD01/AN01
NC
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8

ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
NC
NC
NC
NC
XCLKS/NOACC/PE7
MODB/IPIPE1/PE6
MODA/IPIPE0/PE5
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
NC
NC
NC
NC
LSTRB/TAGLO/PE3
R/W/PE2
IRQ/PE1
XIRQ/PE0

PW3/KWP3/PP3
PW2/KWP2/PP2
PW1/KWP1/PP1
/PW0/KWP0/PP0
NC
XADDR16/PK2
XADDR15/PK1
XADDR14/PK0
IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3
VDD1
VSS1
IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
NC
NC
NC
NC
MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4

112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85

PP4/KWP4/PW4
PP5/KPW5/PWM
NC
PP7/KWP7/PW7
NC
VDDX
VSSX
PM0/RXCAN
PM1/TXCAN
PM2/MIS
PM3/SS
PM4/MOSI
PM5/SCK
PJ6/KWJ6
PJ7/KWJ7
NC
NC
PP6/KWP6/ROMONE
NC
NC
PS3
PS2
PS1/TXD
PS0/RXD
NC
NC
VSSA
VRL

In order to emulate the MC9S12C and 9S12GC-Family devices, external addressing of a 128K memory
map is required. This is provided in a 112 LQFP package version which includes the 3 necessary extra
external address bus signals via PortK. This package version is for emulation only and not provided as a
general production package.

Signals shown in Bold are available only in the 112 Pin Package. Pins marked "NC" are not connected

Figure 19-1 Pin Assignments in 112-pin LQFP

131

Device User Guide — 9S12C128DGV1/D V01.05

E.1.1 PK[2:0] / XADDR[16:14]
PK2-PK0 provide the expanded address XADDR[16:14] for the external bus.
Refer to the S12 Core user guide for detailed information about external address page access.

Pin Name
Function 1

Pin Name
Function 2

Power
Domain

PK[2:0]

XADDR[16:14]

VDDX

Internal Pull
Resistor
CTRL

Reset
State

PUPKE

Up

Description
Port K I/O Pins

The reset state of DDRK in the S12_CORE is $00, configuring the pins as inputs.
The reset state of PUPKE in the PUCR register of the S12_CORE is "1" enabling the internal pullup
resistors at PortK[2:0].
In this reset state the pull-up resistors provide a defined state and prevent a floating input, thereby
preventing unneccesary current consumption at the input stage.

132

Device User Guide — 9S12C128DGV1/D V01.05

E.2 112-pin LQFP package
0.20 T L-M N

4X
PIN 1
IDENT

0.20 T L-M N

4X 28 TIPS

112

J1

85

4X

P

J1

1

CL

84

VIEW Y
108X

G

X
X=L, M OR N

VIEW Y
B
L

V

M
B1

28

57

29

F
D

56

0.13

N

S1
A
S

C2

VIEW AB

θ2

0.050

0.10 T

112X

SEATING
PLANE

θ3
T

θ

R

R2

R

0.25

R1

GAGE PLANE

(K)

C1

E
(Y)
(Z)
VIEW AB

M

BASE
METAL

T L-M N

SECTION J1-J1
ROTATED 90 ° COUNTERCLOCKWISE

A1

C

AA

J

V1

θ1

NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. DIMENSIONS IN MILLIMETERS.
3. DATUMS L, M AND N TO BE DETERMINED AT
SEATING PLANE, DATUM T.
4. DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE, DATUM T.
5. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
A AND B INCLUDE MOLD MISMATCH.
6. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL NOT CAUSE THE D
DIMENSION TO EXCEED 0.46.

DIM
A
A1
B
B1
C
C1
C2
D
E
F
G
J
K
P
R1
R2
S
S1
V
V1
Y
Z
AA
θ
θ1
θ2
θ3

MILLIMETERS
MIN
MAX
20.000 BSC
10.000 BSC
20.000 BSC
10.000 BSC
--1.600
0.050
0.150
1.350
1.450
0.270
0.370
0.450
0.750
0.270
0.330
0.650 BSC
0.090
0.170
0.500 REF
0.325 BSC
0.100
0.200
0.100
0.200
22.000 BSC
11.000 BSC
22.000 BSC
11.000 BSC
0.250 REF
1.000 REF
0.090
0.160
8 °
0°
7 °
3 °
13 °
11 °
11 °
13 °

Figure 19-2 112-pin LQFP mechanical dimensions (case no. 987)80-pin QFP Mechanical
Dimensions (case no. 841B)

133

Device User Guide — 9S12C128DGV1/D V01.05

134

Device User Guide — 9S12C128DGV1/D V01.05

Device User Guide End Sheet

135

Device User Guide — 9S12C128DGV1/D V01.05

FINAL PAGE OF
136
PAGES

136



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.2
Linearized                      : Yes
Creator                         : FrameMaker 5.5.6.
Modify Date                     : 2005:10:07 12:06:51-06:00
Create Date                     : 2001:06:08 11:51:47Z
Page Count                      : 136
Page Mode                       : UseOutlines
Producer                        : Acrobat Distiller Command 3.01 for HP-UX A.09.01 and later (HPPA)
Mod Date                        : 2005:10:07 12:06:51-06:00
Creation Date                   : 2001:06:08 11:51:47Z
Metadata Date                   : 2005:10:07 12:06:51-06:00
EXIF Metadata provided by EXIF.tools

Navigation menu