Motorola Mc9S12C Family Users Manual

MC9S12GC-Family to the manual 8d979494-7ee8-401a-971b-f65e48ee1509

2015-01-23

: Motorola Motorola-Mc9S12C-Family-Users-Manual-271885 motorola-mc9s12c-family-users-manual-271885 motorola pdf

Open the PDF directly: View PDF PDF.
Page Count: 136 [warning: Documents this large are best viewed by clicking the View PDF Link!]

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the
Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges
that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
DOCUMENT NUMBER
9S12C128DGV1/D
1
©Motorola, Inc., 2002
MC9S12C Family
Device User Guide
V01.05
Covers also
MC9S12GC Family
Original Release Date: 25 JAN 2003
Revised: 11 FEBRUARY 2004
Motorola, Inc.
Device User Guide — 9S12C128DGV1/D V01.05
2
Revision History
Version
Number Revision
Date Effective
Date Author Description of Changes
00.01 25.JAN.03 25.JAN.03 Original Version. Based on C32 user guide version 01.12
00.02 07.FEB.03 07.FEB.03 Enhanced PortK description
Part number table revision in preface
00.03 25.FEB.03 25.FEB.03 QFP112 Emulation pinout correction
Enhanced part number explanation in preface
Reduced pseudo STOP current spec. for C64,C96,C128
00.04 15.APR.03 15.APR03 Enhanced PortAD signal description
Corrected VDDR description in 2.4.2
Revised pin leakage in electrical parameters
00.05 05.MAY.03 05.MAY.03
SPI timing parameter table correction
Output drive high value reduced in 3V range
PE[4:2] Pull-Up spec out of reset changed
3V Expansion bus timing parameters not tested in production
Minimum bus frequency specification increased to 0.25MHz.
00.06 21.MAY.03 21.MAY.03 Parameter classification added to Appendix Table C-2.
IOH changed to 4mA for 3V range.
01.00 15.JUL.03 15.JUL03
LVR level defined.for C32. Run IDD changed for C32.
Block guide reference table updated
Added PCB layout guide for Pierce oscillator configuration
IOL parameter updated in 3.3V range
01.01 12.AUG.03 12.AUG.03 Updated PARTID listing due to C128 ECO revision
01.02 20.NOV.03 20.NOV.03 Changed DOC number and CPU DOC reference number
Included separate C32 LVI levels
Changed PortM pull up reset state to enabled.
01.03 27.NOV.03 27.NOV.03
Added References to the CAN-less GC-Family
No major revision number increment, since silicon functionality is
not changed.
Added VDDX connection in PCB layout figures 8-1.to 8-6
Added Part ID for 2L45J mask set to Part ID table
01.04 27.JAN.04 27.JAN.04 Table A-4 VDD/VDDPLL min when supplied externally now 2.35V
Reference S12FTS128K1 in Preface (was S12FTS128K)
Reference to CPU Guide corrected to Version2
01.05 11.FEB.04 11.FEB.04
Corrected flash sector sizes for C-Family devices with >64K Flash
Corrected Preface Table 0-1 16K part listing to GC16 without CAN
Added PPAGE specifications to memory map diagrams
Added flash timing parameters for 1024 byte sector size
Device User Guide — 9S12C128DGV1/D V01.05
3
Table of Contents
Section 1 Introduction
1.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5 Device Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6 Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.7 Part ID Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Section 2 Signal Description
2.1 Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2 Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2.1 Pin Initialization for 48 & 52 Pin LQFP bond-out versions . . . . . . . . . . . . . . . . . . 56
2.3 Detailed Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.1 EXTAL, XTAL — Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.2 RESET — External Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.3 TEST / VPP — Test Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.4 XFC — PLL Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.5 BKGD / TAGHI / MODC — Background Debug, Tag High & Mode Pin . . . . . . . 58
2.3.6 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins . . . . . . . . . . . . . . . . . . . . 58
2.3.7 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins . . . . . . . . . . . . . . . . . . . . . . 58
2.3.8 PE7 / NOACC / XCLKS — Port E I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.9 PE6 / MODB / IPIPE1 — Port E I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.10 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.11 PE4 / ECLK— Port E I/O Pin [4] / E-Clock Output. . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.12 PE3 / LSTRB — Port E I/O Pin [3] / Low-Byte Strobe (LSTRB). . . . . . . . . . . . . . 60
2.3.13 PE2 / R/W — Port E I/O Pin [2] / Read/Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.14 PE1 / IRQ — Port E input Pin [1] / Maskable Interrupt Pin . . . . . . . . . . . . . . . . . 61
2.3.15 PE0 / XIRQ — Port E input Pin [0] / Non Maskable Interrupt Pin . . . . . . . . . . . . 61
2.3.16 PAD[7:0] / AN[7:0] — Port AD I/O Pins [7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.17 PP[7] / KWP[7] — Port P I/O Pin [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.18 PP[6] / KWP[6]/ROMCTL — Port P I/O Pin [6] . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.19 PP[5:0] / KWP[5:0] / PW[5:0] — Port P I/O Pins [5:0] . . . . . . . . . . . . . . . . . . . . . 62
Device User Guide — 9S12C128DGV1/D V01.05
4
2.3.20 PJ[7:6] / KWJ[7:6] — Port J I/O Pins [7:6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.21 PM5 / SCK — Port M I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.22 PM4 / MOSI — Port M I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.23 PM3 / SS — Port M I/O Pin 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.24 PM2 / MISO — Port M I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.25 PM1 / TXCAN — Port M I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.26 PM0 / RXCAN — Port M I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.27 PS[3:2] — Port S I/O Pins [3:2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.28 PS1 / TXD — Port S I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.29 PS0 / RXD — Port S I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.30 PPT[7:5] / IOC[7:5] — Port T I/O Pins [7:5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.31 PT[4:0] / IOC[4:0] / PW[4:0]— Port T I/O Pins [4:0] . . . . . . . . . . . . . . . . . . . . . . . 63
2.4 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers. . . . . . . . . . . . . . . . . . . . . 63
2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator
63
2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Pins . . . . . . . . . . . . . . . . . . 63
2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG . . . . . . . . . . . . . . . . . . 64
2.4.5 VRH, VRL — ATD Reference Voltage Input Pins . . . . . . . . . . . . . . . . . . . . . . . . 64
2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL . . . . . . . . . . . . . . . . . . . . . . . . 64
Section 3 System Clock Description
Section 4 Modes of Operation
4.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Chip Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
4.3.1 Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.2 Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.3 Unsecuring the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.1 Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.2 Pseudo Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.3 Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.4 Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Section 5 Resets and Interrupts
Device User Guide — 9S12C128DGV1/D V01.05
5
5.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.1 Vector Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.1 Reset Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.2 Effects of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Section 6 HCS12 Core Block Description
6.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.1 PPAGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.2 BDM alternate clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.3 Extended Address Range Emulation Implications . . . . . . . . . . . . . . . . . . . . . . . . 71
Section 7 Voltage Regulator (VREG) Block Description
7.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.1.1 VREGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.1.2 VDD1, VDD2, VSS1, VSS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Section 8 Recommended Printed Circuit Board Layout
Section 9 Clock Reset Generator (CRG) Block Description
9.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.1.1 XCLKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Section 10 Oscillator (OSC) Block Description
Section 11 Timer (TIM) Block Description
Section 12 Analog to Digital Converter (ATD) Block Description
12.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
12.1.1 VRL (voltage reference low). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Section 13 Serial Communications Interface (SCI) Block Description
Section 14 Serial Peripheral Interface (SPI) Block Description
Section 15 Flash Block Description
Device User Guide — 9S12C128DGV1/D V01.05
6
Section 16 RAM Block Description
Section 17 Pulse Width Modulator (PWM) Block Description
Section 18 MSCAN Block Description
Section 19 Port Integration Module (PIM) Block Description
Appendix A Electrical Characteristics
A.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1.2 Power Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1.3 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.1.4 Current Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.1.5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.1.6 ESD Protection and Latch-up Immunity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.1.7 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.1.8 Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.1.9 I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Appendix B Electrical Specifications
B.1 Voltage Regulator Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.2 Chip Power-up and LVI/LVR graphical explanation . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.3 Output Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.3.1 Resistive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.3.2 Capacitive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.4 ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.4.1 ATD Operating Characteristics In 5V Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.4.2 ATD Operating Characteristics In 3.3V Range . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.4.3 Factors influencing accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
B.4.4 ATD accuracy (5V Range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
B.4.5 ATD accuracy (3.3V Range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
B.5 NVM, Flash and EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.5.1 NVM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.5.2 NVM Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Device User Guide — 9S12C128DGV1/D V01.05
7
B.6 Reset, Oscillator and PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.6.1 Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.6.2 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
B.6.3 Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.7 MSCAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
B.8 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Appendix C Electrical Specifications
C.1 Master Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
C.2 Slave Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
C.3 External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
C.3.1 General Muxed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Appendix D Package Information
D.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
D.2 80-pin QFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
D.3 52-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
D.4 48-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Appendix E Emulation Information
E.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
E.1.1 PK[2:0] / XADDR[16:14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
E.2 112-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Device User Guide — 9S12C128DGV1/D V01.05
8
Device User Guide — 9S12C128DGV1/D V01.05
9
List of Figures
Figure 0-1 Order Part number Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 1-1 MC9S12C-Family Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 1-2 MC9S12C128 and MC9S12GC128 User configurable Memory Map . . . . . . 29
Figure 1-3 MC9S12C96 User Configurable Memory Map . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 1-4 MC9S12C64 and MC9S12GC64 User Configurable Memory Map. . . . . . . . 31
Figure 1-5 MC9S12C32 and MC9S12GC32 User Configurable Memory Map. . . . . . . . 32
Figure 1-6 MC9S12GC16 User Configurable Memory Map . . . . . . . . . . . . . . . . . . . . . . 33
Figure 2-1 Pin Assignments in 80 QFP for MC9S12C-Family . . . . . . . . . . . . . . . . . . . . 52
Figure 2-2 Pin assignments in 52 LQFP for MC9S12C-Family. . . . . . . . . . . . . . . . . . . . 53
Figure 2-3 Pin Assignments in 48 LQFP for MC9S12C-Family . . . . . . . . . . . . . . . . . . . 54
Figure 2-4 PLL Loop Filter Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 2-5 Colpitts Oscillator Connections (PE7=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 2-6 Pierce Oscillator Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 2-7 External Clock Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 3-1 Clock Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 8-1 Recommended PCB Layout (48 LQFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 8-2 Recommended PCB Layout (52 LQFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 8-3 Recommended PCB Layout (80 QFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 8-4 Recommended PCB Layout for 48 LQFP Pierce Oscillator . . . . . . . . . . . . . 77
Figure 8-5 Recommended PCB Layout for 52 LQFP Pierce Oscillator . . . . . . . . . . . . . 78
Figure 8-6 Recommended PCB Layout for 80QFP Pierce Oscillator . . . . . . . . . . . . . . . 79
Figure B-1 Voltage Regulator - Chip Power-up and Voltage Drops (not scaled) . . . . . 96
Figure B-2 ATD Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure B-3 Basic PLL functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure B-4 Jitter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure B-5 Maximum bus clock jitter approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure C-1 SPI Master Timing (CPHA=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure C-2 SPI Master Timing (CPHA=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure C-3 SPI Slave Timing (CPHA=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure C-4 SPI Slave Timing (CPHA=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure C-5 General External Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure D-1 80-pin QFP Mechanical Dimensions (case no. 841B). . . . . . . . . . . . . . . . 128
Figure D-2 52-pin LQFP Mechanical Dimensions (case no. 848D-03) . . . . . . . . . . . . 129
Device User Guide — 9S12C128DGV1/D V01.05
10
Figure D-3 48-pin LQFP Mechanical Dimensions (case no.932-03 ISSUE F) . . . . . . 130
Figure 19-1 Pin Assignments in 112-pin LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 19-2 112-pin LQFP mechanical dimensions (case no. 987)80-pin QFP Mechanical Di-
mensions (case no. 841B)133
Device User Guide — 9S12C128DGV1/D V01.05
11
List of Tables
Table 0-2 MC9S12C-Family Package Option Summary . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 0-1 List of MC9S12C and MC9S12GC Family members. . . . . . . . . . . . . . . . . . . . 15
Table 0-3 MC9S12C-Family Part Number Coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 0-4 MC9S12GC-Family Part Number Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 0-5 Document References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 1-1 Device Register Map Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
$0000 - $000FMEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface) 34
$0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control) 34
$0018 - $0018 Miscellaneous Peripherals (Device User Guide) 35
$0019 - $0019 VREG3V3 (Voltage Regulator) 35
$0015 - $0016 INT map 1 of 2 (HCS12 Interrupt) 35
$0017 - $0017MMC map 2 of 4 (HCS12 Module Mapping Control) 35
$001A - $001B Miscellaneous Peripherals (Device User Guide) 35
$001C - $001D MMC map 3 of 4 (HCS12 Module Mapping Control, 36
Device User Guide) 36
$001E - $001E MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface) 36
$001F - $001F INT map 2 of 2 (HCS12 Interrupt) 36
$0020 - $002F DBG (including BKP) map 1 of 1 (HCS12 Debug) 36
$0030 - $0031 MMC map 4 of 4 (HCS12 Module Mapping Control) 37
$0032 - $0033 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface) 37
$0034 - $003F CRG (Clock and Reset Generator) 37
$0040 - $006F TIM (Timer 16 Bit 8 Channels) 38
$0070 - $007F Reserved 40
$0080 - $009F ATD (Analog to Digital Converter 10 Bit 8 Channel) 40
$00A0 - $00C7 Reserved 41
$00D0 - $00D7 Reserved 42
$00C8 - $00CF SCI (Asynchronous Serial Interface) 42
$00D8 - $00DF SPI (Serial Peripheral Interface) 42
$00E0 - $00FF PWM (Pulse Width Modulator) 43
$0100 - $010F Flash Control Register 44
$0110 - $013F Reserved 45
$0140 - $017F CAN (Motorola Scalable CAN - MSCAN) 45
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout. . . . . . . . 46
Device User Guide — 9S12C128DGV1/D V01.05
12
$0180 - $023F Reserved 47
$0240 - $027F PIM (Port Interface Module) 47
$0280 - $03FF Reserved space 50
Table 1-3 Assigned Part ID Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 1-4 Memory size registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 2-1 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 2-2 MC9S12C-Family Power and Ground Connection Summary . . . . . . . . . . . . . 64
Table 4-1 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 4-2 Clock Selection Based on PE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 5-1 Interrupt Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 5-2 Reset Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 6-1 Device Specific Flash PAGE Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 8-1 Recommended External Component Values. . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table A-1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table A-2 ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table A-3 ESD and Latch-Up Protection Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 86
Table A-4 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table A-5 Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table A-6 5V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table A-7 3.3V I/O Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table A-8 Supply Current Characteristics for MC9S12C32 . . . . . . . . . . . . . . . . . . . . . . . 93
Table A-9 Supply Current Characteristics for MC9S12C64,MC9S12C96,MC9S12C128 94
Table B-1 Voltage Regulator Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table B-2 Voltage Regulator - Capacitive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table B-3 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table B-4 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table B-5 ATD Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table B-6 ATD Conversion Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table B-7 ATD Conversion Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table B-8 NVM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table B-9 NVM Reliability Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table B-10 Startup Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table B-11 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table B-12 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table B-13 MSCAN Wake-up Pulse Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table C-1 Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Device User Guide — 9S12C128DGV1/D V01.05
13
Table C-2 SPI Master Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table C-3 SPI Slave Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table C-4 Expanded Bus Timing Characteristics (5V Range). . . . . . . . . . . . . . . . . . . . 124
Table C-5 Expanded Bus Timing Characteristics (3.3V Range) . . . . . . . . . . . . . . . . . . 125
Device User Guide — 9S12C128DGV1/D V01.05
14
Device User Guide — 9S12C128DGV1/D V01.05
15
Preface
The Device User Guide provides information about the MC9S12C-Family as well the MC9S12GC-Family
devices made up of standard HCS12 blocks and the HCS12 processor core. This document is part of the
customer documentation. A complete set of device manuals also includes the HCS12 Core User Guide and
all the individual Block User Guides of the implemented modules. In an effort to reduce redundancy all
module specific information is located only in the respective Block User Guide. If applicable, special
implementation details of the module are given in the block description sections of this document.
The C-Family and the GC-Family offer an extensive range of package, temperature and speed options.
The members of the GC-Family do not feature a CAN module.
Table 0-1 shows a feature overview of the MC9S12C and MC9S12GC Family members.
Table 0-2 summarizes the package option and size configuration.
Table 0-3 lists the part number coding based on the package, speed and temperature and preliminary die
options for the C-Family.
Table 0-4 lists the part number coding based on the package, speed and temperature and preliminary die
options for the GC-Family.
Table 0-2 MC9S12C-Family Package Option Summary
Table 0-1 List of MC9S12C and MC9S12GC Family members
Flash RAM Device CAN SCI SPI A/D PWM Timer
128K 4K MC9S12C128 1 1 1 8ch 6ch 8ch
MC9S12GC128 1 1 8ch 6ch 8ch
96K 4K MC9S12C96 1 1 1 8ch 6ch 8ch
64K 4K MC9S12C64 1 1 1 8ch 6ch 8ch
MC9S12GC64 1 1 8ch 6ch 8ch
32K 2K MC9S12C32 1 1 1 8ch 6ch 8ch
MC9S12GC32 1 1 8ch 6ch 8ch
16K 1K MC9S12GC16 1 1 8ch 6ch 8ch
Package Device Part Number Mask1
set Temp.2
Options Flash RAM I/O3,4
48LQFP MC9S12C128 MC9S12C128 0L09S M, V, C
128K 4K
31
52LQFP MC9S12C128 MC9S12C128 0L09S M, V, C 35
80QFP MC9S12C128 MC9S12C128 0L09S M, V, C 60
48LQFP MC9S12C96 MC9S12C96 TBD M, V, C
96K 4K
31
52LQFP MC9S12C96 MC9S12C96 TBD M, V, C 35
80QFP MC9S12C96 MC9S12C96 TBD M, V, C 60
Device User Guide — 9S12C128DGV1/D V01.05
16
Figure 0-1 Order Part number Coding
Table 0-3 MC9S12C-Family Part Number Coding
48LQFP MC9S12C64 MC9S12C64 TBD M, V, C
64K 4K
31
52LQFP MC9S12C64 MC9S12C64 TBD M, V, C 35
80QFP MC9S12C64 MC9S12C64 TBD M, V, C 60
48LQFP MC9S12C32 MC9S12C32 1L45J M, V, C
32K 2K
31
52LQFP MC9S12C32 MC9S12C32 1L45J M, V, C 35
80QFP MC9S12C32 MC9S12C32 1L45J M, V, C 60
48LQFP MC9S12GC128 MC9S12GC128 0L09S M, V, C
128K 4K
31
52LQFP MC9S12GC128 MC9S12GC128 0L09S M, V, C 35
80QFP MC9S12GC128 MC9S12GC128 0L09S M, V, C 60
48LQFP MC9S12GC128 MC9S12GC64 TBD M, V, C
64K 4K
31
52LQFP MC9S12GC128 MC9S12GC64 TBD M, V, C 35
80QFP MC9S12GC128 MC9S12GC64 TBD M, V, C 60
48LQFP MC9S12GC32 MC9S12GC32 1L45J M, V, C
32K 2K
31
52LQFP MC9S12GC32 MC9S12GC32 1L45J M, V, C 35
80QFP MC9S12GC32 MC9S12GC32 1L45J M, V, C 60
48LQFP MC9S12GC16 MC9S12GC16 1L45J M, V, C
16K 2K
31
52LQFP MC9S12GC16 MC9S12GC16 1L45J M, V, C 35
80QFP MC9S12GC16 MC9S12GC16 1L45J M, V, C 60
NOTES:
1. Maskset dependent errata can be accessed at
http://e-www.motorola.com/wbapp/sps/site/prod_summary.jsp
2. C: TA = 85˚C, f = 25MHz. V: TA=105˚C, f = 25MHz. M: TA= 125˚C, f = 25MHz
3. All C-Family derivatives feature 1 CAN, 1 SCI, 1 SPI, an 8-channel A/D, a 6-channel PWM and an 8
channel timer. The GC-Family members do not have the CAN module
4. I/O is the sum of ports capable to act as digital input or output.
Part Number Mask
set Temp. Package Speed Description
MC9S12C128CFA16 TBD -40˚C, 85˚C 48LQFP 16MHz C128 die
Package Device Part Number Mask1
set Temp.2
Options Flash RAM I/O3,4
MC9S12 C32 (P)C FU 25
Package Option
Temperature Option
Device Title
Controller Famil
y
Temperature Options
C = -40˚C to 85˚C
V = -40˚C to 105˚C
M = -40˚C to 125˚C
Package Options
FU = 80QFP
PB = 52LQFP
FA = 48LQFP
Speed Option
Speed Options
25 = 25MHz bus
16 = 16MHz bus
Preliminary Option
Device User Guide — 9S12C128DGV1/D V01.05
17
MC9S12C128CPB16 TBD -40˚C, 85˚C 52LQFP 16MHz C128 die
MC9S12C128CFU16 TBD -40˚C, 85˚C 80QFP 16MHz C128 die
MC9S12C128VFA16 TBD -40˚C,105˚C 48LQFP 16MHz C128 die
MC9S12C128VPB16 TBD -40˚C,105˚C 52LQFP 16MHz C128 die
MC9S12C128VFU16 TBD -40˚C, 105˚C 80QFP 16MHz C128 die
MC9S12C128MFA16 TBD -40˚C,125˚C 48LQFP 16MHz C128 die
MC9S12C128MPB16 TBD -40˚C,125˚C 52LQFP 16MHz C128 die
MC9S12C128MFU16 TBD -40˚C, 125˚C 80QFP 16MHz C128 die
MC9S12C128CFA25 TBD -40˚C, 85˚C 48LQFP 25MHz C128 die
MC9S12C128CPB25 TBD -40˚C, 85˚C 52LQFP 25MHz C128 die
MC9S12C128CFU25 TBD -40˚C, 85˚C 80QFP 25MHz C128 die
MC9S12C128VFA25 TBD -40˚C,105˚C 48LQFP 25MHz C128 die
MC9S12C128VPB25 TBD -40˚C,105˚C 52LQFP 25MHz C128 die
MC9S12C128VFU25 TBD -40˚C, 105˚C 80QFP 25MHz C128 die
MC9S12C128MFA25 TBD -40˚C,125˚C 48LQFP 25MHz C128 die
MC9S12C128MPB25 TBD -40˚C,125˚C 52LQFP 25MHz C128 die
MC9S12C128MFU25 TBD -40˚C, 125˚C 80QFP 25MHz C128 die
MC9S12C96PCFA16 0L09S -40˚C, 85˚C 48LQFP 16MHz Preliminary C96 using C128 die
MC9S12C96PCPB16 0L09S -40˚C, 85˚C 52LQFP 16MHz Preliminary C96 using C128 die
MC9S12C96PCFU16 0L09S -40˚C, 85˚C 80QFP 16MHz Preliminary C96 using C128 die
MC9S12C96CFA16 TBD -40˚C, 85˚C 48LQFP 16MHz Final C96 using C96 die
MC9S12C96CPB16 TBD -40˚C, 85˚C 52LQFP 16MHz Final C96 using C96 die
MC9S12C96CFU16 TBD -40˚C, 85˚C 80QFP 16MHz Final C96 using C96 die
MC9S12C96PVFA16 0L09S -40˚C, 105˚C 48LQFP 16MHz Preliminary C96 using C128 die
MC9S12C96PVPB16 0L09S -40˚C, 105˚C 52LQFP 16MHz Preliminary C96 using C128 die
MC9S12C96PVFU16 0L09S -40˚C, 105˚C 80QFP 16MHz Preliminary C96 using C128 die
MC9S12C96VFA16 TBD -40˚C,105˚C 48LQFP 16MHz Final C96 using C96 die
MC9S12C96VPB16 TBD -40˚C,105˚C 52LQFP 16MHz Final C96 using C96die
MC9S12C96VFU16 TBD -40˚C, 105˚C 80QFP 16MHz Final C96 using C96 die
MC9S12C96PMFA16 0L09S -40˚C, 125˚C 48LQFP 16MHz Preliminary C96 using C128 die
MC9S12C96PMPB16 0L09S -40˚C, 125˚C 52LQFP 16MHz Preliminary C96 using C128 die
MC9S12C96PMFU16 0L09S -40˚C, 125˚C 80QFP 16MHz Preliminary C96 using C128 die
MC9S12C96MFA16 TBD -40˚C,125˚C 48LQFP 16MHz Final C96 using C96 die
MC9S12C96MPB16 TBD -40˚C,125˚C 52LQFP 16MHz Final C96 using C96 die
MC9S12C96MFU16 TBD -40˚C, 125˚C 80QFP 16MHz Final C96 using C96 die
MC9S12C96PCFA25 0L09S -40˚C, 85˚C 48LQFP 25MHz Preliminary C96 using C128 die
MC9S12C96PCPB25 0L09S -40˚C, 85˚C 52LQFP 25MHz Preliminary C96 using C128 die
MC9S12C96PCFU25 0L09S -40˚C, 85˚C 80QFP 25MHz Preliminary C96 using C128 die
MC9S12C96CFA25 TBD -40˚C, 85˚C 48LQFP 25MHz Final C96 using C96 die
MC9S12C96CPB25 TBD -40˚C, 85˚C 52LQFP 25MHz Final C96 using C96 die
MC9S12C96CFU25 TBD -40˚C, 85˚C 80QFP 25MHz Final C96 using C96 die
MC9S12C96PVFA25 0L09S -40˚C, 105˚C 48LQFP 25MHz Preliminary C96 using C128 die
MC9S12C96PVPB25 0L09S -40˚C, 105˚C 52LQFP 25MHz Preliminary C96 using C128 die
MC9S12C96PVFU25 0L09S -40˚C, 105˚C 80QFP 25MHz Preliminary C96 using C128 die
Part Number Mask
set Temp. Package Speed Description
Device User Guide — 9S12C128DGV1/D V01.05
18
MC9S12C96VFA25 TBD -40˚C,105˚C 48LQFP 25MHz Final C96 using C96 die
MC9S12C96VPB25 TBD -40˚C,105˚C 52LQFP 25MHz Final C96 using C96 die
MC9S12C96VFU25 TBD -40˚C, 105˚C 80QFP 25MHz Final C96 using C96 die
MC9S12C96PMFA25 0L09S -40˚C, 125˚C 48LQFP 25MHz Preliminary C96 using C128 die
MC9S12C96PMPB25 0L09S -40˚C, 125˚C 52LQFP 25MHz Preliminary C96 using C128 die
MC9S12C96PMFU25 0L09S -40˚C, 125˚C 80QFP 25MHz Preliminary C96 using C128 die
MC9S12C96MFA25 TBD -40˚C,125˚C 48LQFP 25MHz Final C96 using C96 die
MC9S12C96MPB25 TBD -40˚C,125˚C 52LQFP 25MHz Final C96 using C96 die
MC9S12C96MFU25 TBD -40˚C, 125˚C 80QFP 25MHz Final C96 using C96 die
MC9S12C64PCFA16 0L09S -40˚C, 85˚C 48LQFP 16MHz Preliminary C64 using C128 die
MC9S12C64PCPB16 0L09S -40˚C, 85˚C 52LQFP 16MHz Preliminary C64 using C128 die
MC9S12C64PCFU16 0L09S -40˚C, 85˚C 80QFP 16MHz Preliminary C64 using C128 die
MC9S12C64CFA16 TBD -40˚C, 85˚C 48LQFP 16MHz Final C64 using C64 die
MC9S12C64CPB16 TBD -40˚C, 85˚C 52LQFP 16MHz Final C64 using C64 die
MC9S12C64CFU16 TBD -40˚C, 85˚C 80QFP 16MHz Final C64 using C64 die
MC9S12C64PVFA16 0L09S -40˚C, 105˚C 48LQFP 16MHz Preliminary C64 using C128 die
MC9S12C64PVPB16 0L09S -40˚C, 105˚C 52LQFP 16MHz Preliminary C64 using C128 die
MC9S12C64PVFU16 0L09S -40˚C, 105˚C 80QFP 16MHz Preliminary C64 using C128 die
MC9S12C64VFA16 TBD -40˚C,105˚C 48LQFP 16MHz Final C64 using C64 die
MC9S12C64VPB16 TBD -40˚C,105˚C 52LQFP 16MHz Final C64 using C64 die
MC9S12C64VFU16 TBD -40˚C, 105˚C 80QFP 16MHz Final C64 using C64 die
MC9S12C64PMFA16 0L09S -40˚C, 125˚C 48LQFP 16MHz Preliminary C64 using C128 die
MC9S12C64PMPB16 0L09S -40˚C, 125˚C 52LQFP 16MHz Preliminary C64 using C128 die
MC9S12C64PMFU16 0L09S -40˚C, 125˚C 80QFP 16MHz Preliminary C64 using C128 die
MC9S12C64MFA16 TBD -40˚C,125˚C 48LQFP 16MHz Final C64 using C64 die
MC9S12C64MPB16 TBD -40˚C,125˚C 52LQFP 16MHz Final C64 using C64 die
MC9S12C64MFU16 TBD -40˚C, 125˚C 80QFP 16MHz Final C64 using C64 die
MC9S12C64PCFA25 0L09S -40˚C, 85˚C 48LQFP 25MHz Preliminary C64 using C128 die
MC9S12C64PCPB25 0L09S -40˚C, 85˚C 52LQFP 25MHz Preliminary C64 using C128 die
MC9S12C64PCFU25 0L09S -40˚C, 85˚C 80QFP 25MHz PreliminaryC64 using C128 die
MC9S12C64CFA25 TBD -40˚C, 85˚C 48LQFP 25MHz Final C64 using C64 die
MC9S12C64CPB25 TBD -40˚C, 85˚C 52LQFP 25MHz Final C64 using C64 die
MC9S12C64CFU25 TBD -40˚C, 85˚C 80QFP 25MHz Final C64 using C64 die
MC9S12C64PVFA25 0L09S -40˚C, 105˚C 48LQFP 25MHz Preliminary C64 using C128 die
MC9S12C64PVPB25 0L09S -40˚C, 105˚C 52LQFP 25MHz Preliminary C64 using C128 die
MC9S12C64PVFU25 0L09S -40˚C, 105˚C 80QFP 25MHz Preliminary C64 using C128 die
MC9S12C64VFA25 TBD -40˚C,105˚C 48LQFP 25MHz Final C64 using C64 die
MC9S12C64VPB25 TBD -40˚C,105˚C 52LQFP 25MHz Final C64 using C64 die
MC9S12C64VFU25 TBD -40˚C, 105˚C 80QFP 25MHz Final C64 using C64 die
MC9S12C64PMFA25 0L09S -40˚C, 125˚C 48LQFP 25MHz Preliminary C64 using C128 die
MC9S12C64PMPB25 0L09S -40˚C, 125˚C 52LQFP 25MHz Preliminary C64 using C128 die
MC9S12C64PMFU25 0L09S -40˚C, 125˚C 80QFP 25MHz Preliminary C64 using C128 die
MC9S12C64MFA25 TBD -40˚C,125˚C 48LQFP 25MHz Final C64 using C64 die
MC9S12C64MPB25 TBD -40˚C,125˚C 52LQFP 25MHz Final C64 using C64 die
Part Number Mask
set Temp. Package Speed Description
Device User Guide — 9S12C128DGV1/D V01.05
19
Table 0-4 MC9S12GC-Family Part Number Coding
MC9S12C64MFU25 TBD -40˚C, 125˚C 80QFP 25MHz Final C64 using C64 die
MC9S12C32CFA16 1L45J -40˚C, 85˚C 48LQFP 16MHz C32 die
MC9S12C32CPB16 1L45J -40˚C, 85˚C 52LQFP 16MHz C32 die
MC9S12C32CFU16 1L45J -40˚C, 85˚C 80QFP 16MHz C32 die
MC9S12C32VFA16 1L45J -40˚C,105˚C 48LQFP 16MHz C32 die
MC9S12C32VPB16 1L45J -40˚C,105˚C 52LQFP 16MHz C32 die
MC9S12C32VFU16 1L45J -40˚C, 105˚C 80QFP 16MHz C32 die
MC9S12C32MFA16 1L45J -40˚C,125˚C 48LQFP 16MHz C32 die
MC9S12C32MPB16 1L45J -40˚C,125˚C 52LQFP 16MHz C32 die
MC9S12C32MFU16 1L45J -40˚C, 125˚C 80QFP 16MHz C32 die
MC9S12C32CFA25 1L45J -40˚C, 85˚C 48LQFP 25MHz C32 die
MC9S12C32CPB25 1L45J -40˚C, 85˚C 52LQFP 25MHz C32 die
MC9S12C32CFU25 1L45J -40˚C, 85˚C 80QFP 25MHz C32 die
MC9S12C32VFA25 1L45J -40˚C,105˚C 48LQFP 25MHz C32 die
MC9S12C32VPB25 1L45J -40˚C,105˚C 52LQFP 25MHz C32 die
MC9S12C32VFU25 1L45J -40˚C, 105˚C 80QFP 25MHz C32 die
MC9S12C32MFA25 1L45J -40˚C,125˚C 48LQFP 25MHz C32 die
MC9S12C32MPB25 1L45J -40˚C,125˚C 52LQFP 25MHz C32 die
MC9S12C32MFU25 1L45J -40˚C, 125˚C 80QFP 25MHz C32 die
Part Number Mask
set Temp. Package Speed Description
MC9S12GC128PCFA25 0L09S -40˚C, 85˚C 48LQFP 25MHz Preliminary GC128 using C128 die
MC9S12GC128PCPB25 0L09S -40˚C, 85˚C 52LQFP 25MHz Preliminary GC128 using C128 die
MC9S12GC128PCFU25 0L09S -40˚C, 85˚C 80QFP 25MHz Preliminary GC128 using C128 die
MC9S12GC128CFA25 TBD -40˚C, 85˚C 48LQFP 25MHz Final GC128 using GC128 die
MC9S12GC128CPB25 TBD -40˚C, 85˚C 52LQFP 25MHz Final GC128 using GC128 die
MC9S12GC128CFU25 TBD -40˚C, 85˚C 80QFP 25MHz Final GC128 using GC128 die
MC9S12GC128PVFA25 0L09S -40˚C, 105˚C 48LQFP 25MHz Preliminary GC128 using C128 die
MC9S12GC128PVPB25 0L09S -40˚C, 105˚C 52LQFP 25MHz Preliminary GC128 using C128 die
MC9S12GC128PVFU25 0L09S -40˚C, 105˚C 80QFP 25MHz Preliminary GC128 using C128 die
MC9S12GC128VFA25 TBD -40˚C, 105˚C 48LQFP 25MHz Final GC128 using GC128 die
MC9S12GC128VPB25 TBD -40˚C, 105˚C 52LQFP 25MHz Final GC128 using GC128 die
MC9S12GC128VFU25 TBD -40˚C, 105˚C 80QFP 25MHz Final GC128 using GC128 die
MC9S12GC128PMFA25 0L09S -40˚C, 125˚C 48LQFP 25MHz Preliminary GC128 using C128 die
MC9S12GC128PMPB25 0L09S -40˚C, 125˚C 52LQFP 25MHz Preliminary GC128 using C128 die
MC9S12GC128PMFU25 0L09S -40˚C, 125˚C 80QFP 25MHz Preliminary GC128 using C128 die
MC9S12GC128MFA25 TBD -40˚C, 125˚C 48LQFP 25MHz Final GC128 using GC128 die
MC9S12GC128MPB25 TBD -40˚C, 125˚C 52LQFP 25MHz Final GC128 using GC128 die
MC9S12GC128MFU25 TBD -40˚C, 125˚C 80QFP 25MHz Final GC128 using GC128 die
MC9S12GC64PCFA25 0L09S -40˚C, 85˚C 48LQFP 25MHz Preliminary GC64 using C128 die
MC9S12GC64PCPB25 0L09S -40˚C, 85˚C 52LQFP 25MHz Preliminary GC64 using C128 die
MC9S12GC64PCFU25 0L09S -40˚C, 85˚C 80QFP 25MHz Preliminary GC64 using C128 die
Part Number Mask
set Temp. Package Speed Description
Device User Guide — 9S12C128DGV1/D V01.05
20
MC9S12GC64CFA25 TBD -40˚C, 85˚C 48LQFP 25MHz Final GC64 using GC64 die
MC9S12GC64CPB25 TBD -40˚C, 85˚C 52LQFP 25MHz Final GC64 using GC64 die
MC9S12GC64CFU25 TBD -40˚C, 85˚C 80QFP 25MHz Final GC64 using GC64 die
MC9S12GC64PVFA25 0L09S -40˚C, 105˚C 48LQFP 25MHz Preliminary GC64 using C128 die
MC9S12GC64PVPB25 0L09S -40˚C, 105˚C 52LQFP 25MHz Preliminary GC64 using C128 die
MC9S12GC64PVFU25 0L09S -40˚C, 105˚C 80QFP 25MHz Preliminary GC64 using C128 die
MC9S12GC64VFA25 TBD -40˚C, 105˚C 48LQFP 25MHz Final GC64 using GC64 die
MC9S12GC64VPB25 TBD -40˚C, 105˚C 52LQFP 25MHz Final GC64 using GC64 die
MC9S12GC64VFU25 TBD -40˚C, 105˚C 80QFP 25MHz Final GC64 using GC64 die
MC9S12GC64PMFA25 0L09S -40˚C, 125˚C 48LQFP 25MHz Preliminary GC64 using C128 die
MC9S12GC64PMPB25 0L09S -40˚C, 125˚C 52LQFP 25MHz Preliminary GC64 using C128 die
MC9S12GC64PMFU25 0L09S -40˚C, 125˚C 80QFP 25MHz Preliminary GC64 using C128 die
MC9S12GC64MFA25 TBD -40˚C, 125˚C 48LQFP 25MHz Final GC64 using GC64 die
MC9S12GC64MPB25 TBD -40˚C, 125˚C 52LQFP 25MHz Final GC64 using GC64 die
MC9S12GC64MFU25 TBD -40˚C, 125˚C 80QFP 25MHz Final GC64 using GC64 die
MC9S12GC32PCFA25 1L45J -40˚C, 85˚C 48LQFP 25MHz Preliminary GC32 using C32 die
MC9S12GC32PCPB25 1L45J -40˚C, 85˚C 52LQFP 25MHz Preliminary GC32 using C32 die
MC9S12GC32PCFU25 1L45J -40˚C, 85˚C 80QFP 25MHz Preliminary GC32 using C32 die
MC9S12GC32CFA25 TBD -40˚C, 85˚C 48LQFP 25MHz Final GC32 using GC32 die
MC9S12GC32CPB25 TBD -40˚C, 85˚C 52LQFP 25MHz Final GC32 using GC32 die
MC9S12GC32CFU25 TBD -40˚C, 85˚C 80QFP 25MHz Final GC32 using GC32 die
MC9S12GC32PVFA25 1L45J -40˚C,105˚C 48LQFP 25MHz Preliminary GC32 using C32 die
MC9S12GC32PVPB25 1L45J -40˚C,105˚C 52LQFP 25MHz Preliminary GC32 using C32 die
MC9S12GC32PVFU25 1L45J -40˚C, 105˚C 80QFP 25MHz Preliminary GC32 using C32 die
MC9S12GC32VFA25 TBD -40˚C,105˚C 48LQFP 25MHz Final GC32 using GC32 die
MC9S12GC32VPB25 TBD -40˚C,105˚C 52LQFP 25MHz Final GC32 using GC32 die
MC9S12GC32VFU25 TBD -40˚C, 105˚C 80QFP 25MHz Final GC32 using GC32 die
MC9S12GC32PMFA25 1L45J -40˚C,125˚C 48LQFP 25MHz Preliminary GC32 using C32 die
MC9S12GC32PMPB25 1L45J -40˚C,125˚C 52LQFP 25MHz Preliminary GC32 using C32 die
MC9S12GC32PMFU25 1L45J -40˚C, 125˚C 80QFP 25MHz Preliminary GC32 using C32 die
MC9S12GC32MFA25 TBD -40˚C,125˚C 48LQFP 25MHz Final GC32 using GC32 die
MC9S12GC32MPB25 TBD -40˚C,125˚C 52LQFP 25MHz Final GC32 using GC32 die
MC9S12GC32MFU25 TBD -40˚C, 125˚C 80QFP 25MHz Final GC32 using GC32 die
MC9S12GC16PCFA25 1L45J -40˚C, 85˚C 48LQFP 25MHz Preliminary GC16 using C32 die
MC9S12GC16PCPB25 1L45J -40˚C, 85˚C 52LQFP 25MHz Preliminary GC16 using C32 die
MC9S12GC16PCFU25 1L45J -40˚C, 85˚C 80QFP 25MHz Preliminary GC16 using C32 die
MC9S12GC16CFA25 TBD -40˚C, 85˚C 48LQFP 25MHz Final GC16 using GC16 die
MC9S12GC16CPB25 TBD -40˚C, 85˚C 52LQFP 25MHz Final GC16 using GC16 die
MC9S12GC16CFU25 TBD -40˚C, 85˚C 80QFP 25MHz Final GC16 using GC16 die
MC9S12GC16PVFA25 1L45J -40˚C,105˚C 48LQFP 25MHz Preliminary GC16 using C32 die
MC9S12GC16PVPB25 1L45J -40˚C,105˚C 52LQFP 25MHz Preliminary GC16 using C32 die
MC9S12GC16PVFU25 1L45J -40˚C, 105˚C 80QFP 25MHz Preliminary GC16 using C32 die
MC9S12GC16VFA25 TBD -40˚C,105˚C 48LQFP 25MHz Final GC16 using GC16 die
MC9S12GC16VPB25 TBD -40˚C,105˚C 52LQFP 25MHz Final GC16 using GC16 die
Part Number Mask
set Temp. Package Speed Description
Device User Guide — 9S12C128DGV1/D V01.05
21
Table 0-5 Document References
Terminology
MC9S12GC16VFU25 TBD -40˚C, 105˚C 80QFP 25MHz Final GC16 using GC16 die
MC9S12GC16PMFA25 1L45J -40˚C,125˚C 48LQFP 25MHz Preliminary GC16 using C32 die
MC9S12GC16PMPB25 1L45J -40˚C,125˚C 52LQFP 25MHz Preliminary GC16 using C32 die
MC9S12GC16PMFU25 1L45J -40˚C, 125˚C 80QFP 25MHz Preliminary GC16 using C32 die
MC9S12GC16MFA25 TBD -40˚C,125˚C 48LQFP 25MHz Final GC16 using GC16 die
MC9S12GC16MPB25 TBD -40˚C,125˚C 52LQFP 25MHz Final GC16 using GC16 die
MC9S12GC16MFU25 TBD -40˚C, 125˚C 80QFP 25MHz Final GC16 using GC16 die
User Guide 1
NOTES:
1. For the GC16 refer to the 16K flash, for the C32 and GC32 refer to the 32K flash, for the C64 and GC64 the 64K flash, for
the C96 the 96K flash and C128 the 128K flash document.
Version Document Order Number
CPU12 Reference Manual V02 S12CPUV2/D
HCS12 Debug (DBG) Block Guide V01 S12DBGV1/D
HCS12 Background Debug (BDM) Block Guide V04 S12BDMV4/D
HCS12 Module Mapping Control (MMC) Block Guide V04 S12MMCV4/D
HCS12 Multiplexed External Bus Interface (MEBI) Block Guide V03 S12MEBIV3/D
HCS12 Interrupt (INT) Block Guide V01 S12INTV1/D
Analog To Digital Converter: 10 Bit 8 Channel (ATD_10B8C) Block Guide V02 S12ATD10B8CV2/D
Clock and Reset Generator (CRG) Block Guide V04 S12CRGV4/D
Serial Communications Interface (SCI) Block Guide V02 S12SCIV2/D
Serial Peripheral Interface (SPI) Block Guide V03 S12SPIV3/D
Motorola Scalable CAN (MSCAN) Block Guide 2
2. Not available on the GC-Family members
V02 S12MSCANV2/D
Pulse Width Modulator: 8 bit, 6 channel (PWM_8B6C) Block Guide V01 S12PWM8B6V1/D
Timer: 16 bit, 8 channel (TIM_16B8C) Block Guide V01 S12TIM16B8CV1/D
Voltage Regulator (VREG) Block Guide V02 S12VREG3V3V2/D
Oscillator (OSC) Block Guide V02 S12OSCV2/D
Port Integration Module (PIM_9C32) Block Guide V01 S12C32PIMV1/D
32Kbyte Flash EEPROM (FTS32K) Block Guide V01 S12FTS32KV1/D
64Kbyte Flash EEPROM (FTS64K) Block Guide V01 S12FTS64KV1/D
128Kbyte Flash EEPROM (FTS128K1) Block Guide V01 S12FTS128K1V1/D
Acronyms and Abbreviations
New or invented terms, symbols, and notations
Part Number Mask
set Temp. Package Speed Description
Device User Guide — 9S12C128DGV1/D V01.05
22
Device User Guide — 9S12C128DGV1/D V01.05
23
Section 1 Introduction
1.1 Overview
The MC9S12C-Family and the MC9S12GC-Family is a 48/52/80 pin Flash-based Industrial/Automotive
network control MCU family. Members of the MC9S12C-Family and the MC9S12GC-Family deliver the
power and flexibility of our 16 Bit core (CPU12) family to a whole new range of cost and space sensitive,
general purpose Industrial and Automotive network applications. All MC9S12C-Family and
MC9S12GC-Family members are comprised of standard on-chip peripherals including a 16-bit central
processing unit (CPU12), up to 128K bytes of Flash EEPROM, up to 4K bytes of RAM, an asynchronous
serial communications interface (SCI), a serial peripheral interface (SPI), an 8-channel 16-bit timer
module (TIM), a 6-channel 8-bit Pulse Width Modulator (PWM), an 8-channel, 10-bit analog-to-digital
converter (ADC). The MC9S12C-Family members also feature a CAN 2.0 A, B software compatible
module (MSCAN12). The MC9S12C-Family as well as the MC9S12GC-Family has full 16-bit data paths
throughout. The inclusion of a PLL circuit allows power consumption and performance to be adjusted to
suit operational requirements. In addition to the I/O ports available in each module, up to 10 dedicated I/O
port bits are available with Wake-Up capability from STOP or WAIT mode. The MC9S12C-Family and
the MC9S12GC-Family devices are available in 48, 52 and 80 pin QFP packages, with the 80 Pin version
pin compatible to the HCS12 A, B and D- Family derivatives.
1.2 Features
16-bit HCS12 CORE
HCS12 CPU
i. Upward compatible with M68HC11 instruction set
ii. Interrupt stacking and programmer’s model identical to M68HC11
iii.Instruction queue
iv. Enhanced indexed addressing
MMC (memory map and interface)
INT (interrupt control)
BDM (background debug mode)
DBG12 (enhanced debug12 module, including breakpoints and change-of-flow trace buffer)
MEBI: Multiplexed Expansion Bus Interface (available only in 80 pin package version)
Wake-up interrupt inputs
Up to 12-port bits available for wake up interrupt function with digital filtering
Memory options
16K or 32KByte Flash EEPROM (erasable in 512-byte sectors)
64K, 96K or 128KByte Flash EEPROM (erasable in 1024-byte sectors)
Device User Guide — 9S12C128DGV1/D V01.05
24
1K, 2K or 4K Byte RAM
Analog-to-Digital Converters
One 8-channel module with 10-bit resolution.
External conversion trigger capability
Available on MC9S12C-Family:
One 1M bit per second, CAN 2.0 A, B software compatible module
Five receive and three transmit buffers
Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8x8bit
Four separate interrupt channels for Rx, Tx, error and wake-up
Low-pass filter wake-up function
Loop-back for self test operation
Timer Module (TIM)
8-Channel Timer
Each Channel Configurable as either Input Capture or Output Compare
Simple PWM Mode
Modulo Reset of Timer Counter
16-Bit Pulse Accumulator
External Event Counting
Gated Time Accumulation
6 PWM channels
Programmable period and duty cycle
8-bit 6-channel or 16-bit 3-channel
Separate control for each pulse width and duty cycle
Center-aligned or left-aligned outputs
Programmable clock select logic with a wide range of frequencies
Fast emergency shutdown input
Serial interfaces
One asynchronous serial communications interface (SCI)
One synchronous serial peripheral interface (SPI)
CRG (Clock Reset Generator Module)
Windowed COP watchdog,
Real time interrupt,
Clock monitor,
Device User Guide — 9S12C128DGV1/D V01.05
25
Pierce or low current Colpitts oscillator
Phase-locked loop clock frequency multiplier
Limp home mode in absence of external clock
Low power 0.5 to 16 MHz crystal oscillator reference clock
Operating frequency
32MHz equivalent to 16MHz Bus Speed for single chip
32MHz equivalent to 16MHz Bus Speed in expanded bus modes
Option of 9S12C-Family: 50MHz equivalent to 25MHz Bus Speed
All 9S12GC-Family Members allow a 50MHz operting frequency.
Internal 2.5V Regulator
Supports an input voltage range from 2.97V to 5.5V
Low power mode capability
Includes low voltage reset (LVR) circuitry
Includes low voltage interrupt (LVI) circuitry
48-Pin LQFP, 52-Pin LQFP or 80-Pin QFP package
Up to 58 I/O lines with 5V input and drive capability (80 pin package)
Up to 2 dedicated 5V input only lines (IRQ, XIRQ)
5V 8 A/D converter inputs and 5V I/O
Development support
Single-wire background debug™ mode (BDM)
On-chip hardware breakpoints
Enhanced DBG12 debug features
1.3 Modes of Operation
User modes (Expanded modes are only available in the 80 pin package version).
Normal and Emulation Operating Modes
Normal Single-Chip Mode
Normal Expanded Wide Mode
Normal Expanded Narrow Mode
Emulation Expanded Wide Mode
Emulation Expanded Narrow Mode
Special Operating Modes
Device User Guide — 9S12C128DGV1/D V01.05
26
Special Single-Chip Mode with active Background Debug Mode
Special Test Mode (Motorola use only)
Special Peripheral Mode (Motorola use only)
Low power modes
Stop Mode
Pseudo Stop Mode
Wait Mode
Device User Guide — 9S12C128DGV1/D V01.05
27
1.4 Block Diagram
Figure 1-1 MC9S12C-Family Block Diagram
MSCAN TXCAN
RXCAN
16K, 32K, 64K, 96K, 128K Byte Flash
1K, 2K, 4K Byte RAM
SCI
VDDR VDDA
VSSA
VRH
VRL
ATD
AN2
AN6
AN0
AN7
AN1
AN3
AN4
AN5
PAD3
PAD4
PAD5
PAD6
PAD7
PAD0
PAD1
PAD2
IOC2
IOC6
IOC0
IOC7
IOC1
IOC3
IOC4
IOC5
PT3
PT4
PT5
PT6
PT7
PT0
PT1
PT2
RXD
TXD
SCK
MISO
PS3
PS0
PS1
PS2
SS
SPI
PTAD
PTT
DDRT
PTS
DDRS
Voltage Regulator
VDD1
VSS1
PWM
Signals shown in Bold are not available on the 52 or 48 Pin Package
DDRAD
VDDA
VSSA
Timer
Module
VDDX
VSSX VRH
VRL
VSSR
RESET
EXTAL
XTAL
BKGD
R/W
MODB/IPIPE1
XIRQ
NOACC/XCLKS
System
Integration
Module
(SIM)
HCS12
Periodic Interrupt
COP Watchdog
Clock Monitor
Background
PLL
VSSPLL
XFC
VDDPLL
Multiplexed Address/Data Bus
Multiplexed
Wide Bus
IRQ
LSTRB/TAGLO
ECLK
MODA/IPIPE0
PA4
PA3
PA2
PA1
PA0
PA7
PA6
PA5
TEST/VPP
ADDR12
ADDR11
ADDR10
ADDR9
ADDR8
ADDR15
ADDR14
ADDR13
DATA12
DATA11
DATA10
DATA9
DATA8
DATA15
DATA14
DATA13
PB4
PB3
PB2
PB1
PB0
PB7
PB6
PB5
ADDR4
ADDR3
ADDR2
ADDR1
ADDR0
ADDR7
ADDR6
ADDR5
DATA4
DATA3
DATA2
DATA1
DATA0
DATA7
DATA6
DATA5
PE3
PE4
PE5
PE6
PE7
PE0
PE1
PE2
DDRA DDRB
PTA PTB
DDRE
PTE
Clock and
Reset
Generation
Module
Debug12 Module
VDD2
VSS2
Signals shown in
Bold Italic
are available in the 52, but not the 48 Pin Package
CPU
PM3
PM4
PM5
PM0
PM1
PM2
PTM
DDRM
PW2
PW0
PW1
PW3
PW4
PW5
PP3
PP4
PP5
PP6
PP7
PP0
PP1
PP2
PTP
DDRP
PJ6
PJ7
PTJ
DDRJ
VDD1,2
VSS1,2 VDDX
VSSX
Internal Logic 2.5V
VDDPLL
VSSPLL
PLL 2.5V
I/O Driver 5V
VDDA
VSSA
A/D Converter 5V
VDDR
VSSR
Voltage Regulator 5V & I/O
VRL is bonded internally to VSSA
for 52 and 48 Pin packages
MOSI
Module
MUX
Keypad Interrupt
Key Int
MODC
MSCAN is not available on the
9S12GC Family Members
Device User Guide — 9S12C128DGV1/D V01.05
28
1.5 Device Memory Map
Table 1-1 shows the device register map of the MC9S12C-Family after reset. The following figures
(Figure 1-2,Figure 1-2,Figure 1-3 and Figure 1-4) illustrate the full device memory map with flash
and RAM.
Table 1-1 Device Register Map Overview
Address Module Size
$000 - $017 CORE (Ports A, B, E, Modes, Inits, Test) 24
$018 Reserved 1
$019 Voltage Regulator (VREG) 1
$01A - $01B Device ID register 2
$01C - $01F CORE (MEMSIZ, IRQ, HPRIO) 4
$020 - $02F CORE (DBG) 16
$030 - $033 CORE (PPAGE1)
NOTES:
1. External memory paging is not supported on this device (6.1.1 PPAGE).
4
$034 - $03F Clock and Reset Generator (CRG) 12
$040 - $06F Standard Timer Module16-bit 8-channels (TIM) 48
$070 - $07F Reserved 16
$080 - $09F Analog to Digital Convert (ATD) 32
$0A0 - $0C7 Reserved 40
$0C8 - $0CF Serial Communications Interface (SCI) 8
$0D0 - $0D7 Reserved 8
$0D8 - $0DF Serial Peripheral Interface (SPI) 8
$0E0 - $0FF Pulse Width Modulator 8-bit 6 channels (PWM) 32
$100 - $10F Flash Control Register 16
$110 - $13F Reserved 48
$140 - $17F Motorola Scalable CAN (MSCAN)2
2. Not available on MC9S12GC-Family Devices
64
$180 - $23F Reserved 192
$240 - $27F Port Integration Module (PIM) 64
$280 - $3FF Reserved 384
Device User Guide — 9S12C128DGV1/D V01.05
29
Figure 1-2 MC9S12C128 and MC9S12GC128 User configurable Memory Map
$0000
$FFFF
$C000
$8000
$4000
$0400
$FF00
EXT
NORMAL
SINGLE CHIP EXPANDED SPECIAL
SINGLE CHIP
VECTORS
VECTORS
$FF00
$FFFF
BDM
(If Active)
$C000
$FFFF
16K Fixed Flash EEPROM
$8000
$BFFF
16K Page Window
8 * 16K Flash EEPROM Pages
$4000
$7FFF
16K Fixed Flash EEPROM
$3000
$3FFF
$0000
$03FF
1K Register Space
Mappable to any 2K Boundary
Mappable to any 4K Boundary
4K Bytes RAM
$3000
The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space
$0000 - $0FFF: 4K RAM (only 3K visible $0400 - $0FFF)
$0000
$3FFF
16K Fixed Flash EEPROM
VECTORS
Flash Erase Sector Size is 1024 Bytes
PAGE MAP
$3D
$3E
$3F
PPAGE
Device User Guide — 9S12C128DGV1/D V01.05
30
Figure 1-3 MC9S12C96 User Configurable Memory Map
$0000
$FFFF
$C000
$8000
$4000
$0400
$FF00
EXT
NORMAL
SINGLE CHIP EXPANDED SPECIAL
SINGLE CHIP
VECTORS
VECTORS
$FF00
$FFFF
BDM
(If Active)
$C000
$FFFF
16K Fixed Flash EEPROM
$8000
$BFFF
16K Page Window
6 * 16K Flash EEPROM Pages
$4000
$7FFF
16K Fixed Flash EEPROM
$3000
$3FFF
$0000
$03FF
1K Register Space
Mappable to any 2K Boundary
Mappable to any 4K Boundary
4K Bytes RAM
$3000
The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space
$0000 - $0FFF: 4K RAM (only 3K visible $0400 - $0FFF)
$0000
$3FFF
16K Fixed Flash EEPROM
VECTORS
Flash Erase Sector Size is 1024 Bytes
PAGE MAP
$3D
$3E
$3F
PPAGE
Device User Guide — 9S12C128DGV1/D V01.05
31
Figure 1-4 MC9S12C64 and MC9S12GC64 User Configurable Memory Map
$0000
$FFFF
$C000
$8000
$4000
$0400
$FF00
EXT
NORMAL
SINGLE CHIP EXPANDED SPECIAL
SINGLE CHIP
VECTORS
VECTORS
$FF00
$FFFF
BDM
(If Active)
$C000
$FFFF
16K Fixed Flash EEPROM
$8000
$BFFF
16K Page Window
4 * 16K Flash EEPROM Pages
$4000
$7FFF
16K Fixed Flash EEPROM
$3000
$3FFF
$0000
$03FF
1K Register Space
Mappable to any 2K Boundary
Mappable to any 4K Boundary
4K Bytes RAM
$3000
The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space
$0000 - $0FFF: 4K RAM (only 3K visible $0400 - $0FFF)
$0000
$3FFF
16K Fixed Flash EEPROM
VECTORS
Flash Erase Sector Size is 1024 Bytes
PAGE MAP
$3E
$3F
PPAGE
$3D
Device User Guide — 9S12C128DGV1/D V01.05
32
Figure 1-5 MC9S12C32 and MC9S12GC32 User Configurable Memory Map
$0000
$FFFF
$C000
$8000
$4000
$0400
$FF00
EXT
NORMAL
SINGLE CHIP EXPANDED SPECIAL
SINGLE CHIP
VECTORS
VECTORS
$FF00
$FFFF
BDM
(If Active)
$C000
$FFFF
16K Fixed Flash EEPROM
$8000
$BFFF
16K Page Window
2 * 16K Flash EEPROM Pages
$3800
$3FFF
$0000
$03FF
1K Register Space
Mappable to any 2K Boundary
Mappable to any 2K Boundary
2K Bytes RAM
$3800
The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space
$0800 - $0FFF: 2K RAM
VECTORS
Flash Erase Sector Size is 512 Bytes
PAGE MAP
$3E
$3F
PPAGE
Device User Guide — 9S12C128DGV1/D V01.05
33
Figure 1-6 MC9S12GC16 User Configurable Memory Map
1.6 Detailed Register Map
The detailed register map of the MC9S12C Family is listed in address order below.
$0000
$FFFF
$C000
$8000
$4000
$0400
$FF00
EXT
NORMAL
SINGLE CHIP EXPANDED SPECIAL
SINGLE CHIP
VECTORS
VECTORS
$FF00
$FFFF
BDM
(If Active)
$C000
$FFFF
16K Fixed Flash EEPROM
$3800
$3FFF
$0000
$03FF
1K Register Space
Mappable to any 2K Boundary
Mappable to any 2K Boundary
2K Bytes RAM
$3800
The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space
$0800 - $0FFF: 2K RAM
VECTORS
Flash Erase Sector Size is 512 Bytes
PAGE MAP
$3F
PPAGE
Device User Guide — 9S12C128DGV1/D V01.05
34
$0000 - $000F MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0000 PORTA Read: Bit 7 654321Bit 0
Write:
$0001 PORTB Read: Bit 7 654321Bit 0
Write:
$0002 DDRA Read: Bit 7 654321Bit 0
Write:
$0003 DDRB Read: Bit 7 654321Bit 0
Write:
$0004 Reserved Read: 00000000
Write:
$0005 Reserved Read: 00000000
Write:
$0006 Reserved Read: 00000000
Write:
$0007 Reserved Read: 00000000
Write:
$0008 PORTE Read: Bit 7 65432
Bit 1 Bit 0
Write:
$0009 DDRE Read: Bit 7 6543Bit 2 00
Write:
$000A PEAR Read: NOACCE 0PIPOE NECLK LSTRE RDWE 00
Write:
$000B MODE Read: MODC MODB MODA 0IVIS 0EMK EME
Write:
$000C PUCR Read: PUPKE 00
PUPEE 00
PUPBE PUPAE
Write:
$000D RDRIV Read: RDPK 00
RDPE 00
RDPB RDPA
Write:
$000E EBICTL Read: 0000000
ESTR
Write:
$000F Reserved Read: 00000000
Write:
$0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0010 INITRM Read: RAM15 RAM14 RAM13 RAM12 RAM11 00
RAMHAL
Write:
$0011 INITRG Read: 0 REG14 REG13 REG12 REG11 000
Write:
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12C128DGV1/D V01.05
35
$0018 - $0018 Miscellaneous Peripherals (Device User Guide)
$0019 - $0019 VREG3V3 (Voltage Regulator)
$0012 INITEE Read: EE15 EE14 EE13 EE12 EE11 00
EEON
Write:
$0013 MISC Read: 0000
EXSTR1 EXSTR0 ROMHM ROMON
Write:
$0014 Reserved Read: 00000000
Write:
$0015 - $0016 INT map 1 of 2 (HCS12 Interrupt)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0015 ITCR Read: 0 0 0 WRINT ADR3 ADR2 ADR1 ADR0
Write:
$0016 ITEST Read: INTE INTC INTA INT8 INT6 INT4 INT2 INT0
Write:
$0017 - $0017 MMC map 2 of 4 (HCS12 Module Mapping Control)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0017 Reserved Read: 00000000
Write:
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0018 Reserved Read: 00000000
Write:
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0019 VREGCTRL Read: 00000LVDS
LVIE LVIF
Write:
$001A - $001B Miscellaneous Peripherals (Device User Guide)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$001A PARTIDH Read: ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8
Write:
$001B PARTIDL Read: ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0
Write:
$0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12C128DGV1/D V01.05
36
$001C - $001D MMC map 3 of 4 (HCS12 Module Mapping Control,
Device User Guide)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$001C MEMSIZ0 Read: reg_sw0 0 eep_sw1 eep_sw0 0 ram_sw2 ram_sw1 ram_sw0
Write:
$001D MEMSIZ1 Read: rom_sw1 rom_sw0 0000pag_sw1 pag_sw0
Write:
$001E - $001E MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$001E INTCR Read: IRQE IRQEN 000000
Write:
$001F - $001F INT map 2 of 2 (HCS12 Interrupt)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$001F HPRIO Read: PSEL7 PSEL6 PSEL5 PSEL4 PSEL3 PSEL2 PSEL1 0
Write:
$0020 - $002F DBG (including BKP) map 1 of 1 (HCS12 Debug)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0020 DBGC1 read DBGEN ARM TRGSEL BEGIN DBGBRK 0CAPMOD
-write
$0021 DBGSC read AF BF CF 0 TRG
-write
$0022 DBGTBH read Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
-write
$0023 DBGTBL read Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
- write
$0024 DBGCNT read TBF 0 CNT
- write
$0025 DBGCCX read PAGSEL EXTCMP
- write
$0026 DBGCCH read Bit 15 14 13 12 11 10 9 Bit 8
write
$0027 DBGCCL read Bit 7 654321Bit 0
- write
$0028 DBGC2 read BKABEN FULL BDM TAGAB BKCEN TAGC RWCEN RWC
BKPCT0 write
$0029 DBGC3 read BKAMBH BKAMBL BKBMBH BKBMBL RWAEN RWA RWBEN RWB
BKPCT1 write
$002A DBGCAX read PAGSEL EXTCMP
BKP0X write
$002B DBGCAH read Bit 15 14 13 12 11 10 9 Bit 8
BKP0H write
Device User Guide — 9S12C128DGV1/D V01.05
37
$002C DBGCAL read Bit 7 654321Bit 0
BKP0L write
$002D DBGCBX read PAGSEL EXTCMP
BKP1X write
$002E DBGCBH read Bit 15 14 13 12 11 10 9 Bit 8
BKP1H write
$002F DBGCBL read Bit 7 654321Bit 0
BKP1L write
$0030 - $0031 MMC map 4 of 4 (HCS12 Module Mapping Control)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0030 PPAGE Read: 0 0 PIX5 PIX4 PIX3 PIX2 PIX1 PIX0
Write:
$0031 Reserved Read: 00000000
Write:
$0032 - $0033 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0032 PORTK1
NOTES:
1. Only applicable in special emulation-only bond outs, for emulation of extended memory map.
Read: Bit 7 654321Bit 0
Write:
$0033 DDRK(1) Read: Bit 7 654321Bit 0
Write:
$0034 - $003F CRG (Clock and Reset Generator)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0034 SYNR Read: 0 0 SYN5 SYN4 SYN3 SYN2 SYN1 SYN0
Write:
$0035 REFDV Read: 0000
REFDV3 REFDV2 REFDV1 REFDV0
Write:
$0036 CTFLG
TEST ONLY
Read: TOUT7 TOUT6 TOUT5 TOUT4 TOUT3 TOUT2 TOUT1 TOUT0
Write:
$0037 CRGFLG Read: RTIF PROF 0LOCKIF LOCK TRACK SCMIF SCM
Write:
$0038 CRGINT Read: RTIE 00
LOCKIE 00
SCMIE 0
Write:
$0039 CLKSEL Read: PLLSEL PSTP SYSWAI ROAWAI PLLWAI CWAI RTIWAI COPWAI
Write:
$003A PLLCTL Read: CME PLLON AUTO ACQ 0PRE PCE SCME
Write:
$0020 - $002F DBG (including BKP) map 1 of 1 (HCS12 Debug)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12C128DGV1/D V01.05
38
$0040 - $006F TIM (Timer 16 Bit 8 Channels)
$003B RTICTL Read: 0 RTR6 RTR5 RTR4 RTR3 RTR2 RTR1 RTR0
Write:
$003C COPCTL Read: WCOP RSBCK 000
CR2 CR1 CR0
Write:
$003D FORBYP
TEST ONLY
Read: RTIBYP COPBYP 0PLLBYP 00
FCM 0
Write:
$003E CTCTL
TEST ONLY
Read: TCTL7 TCTL6 TCTL5 TCTL4 TCLT3 TCTL2 TCTL1 TCTL0
Write:
$003F ARMCOP Read: 00000000
Write: Bit 7 654321Bit 0
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0040 TIOS Read: IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0
Write:
$0041 CFORC Read: 00000000
Write: FOC7 FOC6 FOC5 FOC4 FOC3 FOC2 FOC1 FOC0
$0042 OC7M Read: OC7M7 OC7M6 OC7M5 OC7M4 OC7M3 OC7M2 OC7M1 OC7M0
Write:
$0043 OC7D Read: OC7D7 OC7D6 OC7D5 OC7D4 OC7D3 OC7D2 OC7D1 OC7D0
Write:
$0044 TCNT (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0045 TCNT (lo) Read: Bit 7 654321Bit 0
Write:
$0046 TSCR1 Read: TEN TSWAI TSFRZ TFFCA 0000
Write:
$0047 TTOV Read: TOV7 TOV6 TOV5 TOV4 TOV3 TOV2 TOV1 TOV0
Write:
$0048 TCTL1 Read: OM7 OL7 OM6 OL6 OM5 OL5 OM4 OL4
Write:
$0049 TCTL2 Read: OM3 OL3 OM2 OL2 OM1 OL1 OM0 OL0
Write:
$004A TCTL3 Read: EDG7B EDG7A EDG6B EDG6A EDG5B EDG5A EDG4B EDG4A
Write:
$004B TCTL4 Read: EDG3B EDG3A EDG2B EDG2A EDG1B EDG1A EDG0B EDG0A
Write:
$004C TIE Read: C7I C6I C5I C4I C3I C2I C1I C0I
Write:
$004D TSCR2 Read: TOI 000
TCRE PR2 PR1 PR0
Write:
$004E TFLG1 Read: C7F C6F C5F C4F C3F C2F C1F C0F
Write:
$004F TFLG2 Read: TOF 0000000
Write:
$0034 - $003F CRG (Clock and Reset Generator)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12C128DGV1/D V01.05
39
$0050 TC0 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0051 TC0 (lo) Read: Bit 7 654321Bit 0
Write:
$0052 TC1 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0053 TC1 (lo) Read: Bit 7 654321Bit 0
Write:
$0054 TC2 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0055 TC2 (lo) Read: Bit 7 654321Bit 0
Write:
$0056 TC3 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0057 TC3 (lo) Read: Bit 7 654321Bit 0
Write:
$0058 TC4 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0059 TC4 (lo) Read: Bit 7 654321Bit 0
Write:
$005A TC5 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$005B TC5 (lo) Read: Bit 7 654321Bit 0
Write:
$005C TC6 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$005D TC6 (lo) Read: Bit 7 654321Bit 0
Write:
$005E TC7 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$005F TC7 (lo) Read: Bit 7 654321Bit 0
Write:
$0060 PACTL Read: 0PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAI
Write:
$0061 PAFLG Read: 000000
PAOVF PAIF
Write:
$0062 PACNT (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0063 PACNT (lo) Read: Bit 7 654321Bit 0
Write:
$0064 Reserved Read: 00000000
Write:
$0065 Reserved Read: 00000000
Write:
$0066 Reserved Read: 00000000
Write:
$0067 Reserved Read: 00000000
Write:
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12C128DGV1/D V01.05
40
$0070 - $007F Reserved
$0068 Reserved Read: 00000000
Write:
$0069 Reserved Read: 00000000
Write:
$006A Reserved Read: 00000000
Write:
$006B Reserved Read: 00000000
Write:
$006C Reserved Read: 00000000
Write:
$006D Reserved Read: 00000000
Write:
$006E Reserved Read: 00000000
Write:
$006F Reserved Read: 00000000
Write:
$0070
- $007F Reserved Read: 00000000
Write:
$0080 - $009F ATD (Analog to Digital Converter 10 Bit 8 Channel)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0080 ATDCTL0 Read: 00000000
Write:
$0081 ATDCTL1 Read: 00000000
Write:
$0082 ATDCTL2 Read: ADPU AFFC AWAI ETRIGLE ETRIGP ETRIG ASCIE ASCIF
Write:
$0083 ATDCTL3 Read: 0 S8C S4C S2C S1C FIFO FRZ1 FRZ0
Write:
$0084 ATDCTL4 Read: SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0
Write:
$0085 ATDCTL5 Read: DJM DSGN SCAN MULT 0CC CB CA
Write:
$0086 ATDSTAT0 Read: SCF 0ETORF FIFOR 0 CC2 CC1 CC0
Write:
$0087 Reserved Read: 00000000
Write:
$0088 ATDTEST0 Read: 00000000
Write:
$0089 ATDTEST1 Read: 0000000
SC
Write:
$008A Reserved Read: 00000000
Write:
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12C128DGV1/D V01.05
41
$00A0 - $00C7 Reserved
$008B ATDSTAT1 Read: CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0
Write:
$008C Reserved Read: 00000000
Write:
$008D ATDDIEN Read: Bit 7 654321Bit 0
Write:
$008E Reserved Read: 00000000
Write:
$008F PORTAD0 Read: Bit7 654321BIT 0
Write:
$0090 ATDDR0H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0091 ATDDR0L Read: Bit7 Bit6 000000
Write:
$0092 ATDDR1H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0093 ATDDR1L Read: Bit7 Bit6 000000
Write:
$0094 ATDDR2H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0095 ATDDR2L Read: Bit7 Bit6 000000
Write:
$0096 ATDDR3H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0097 ATDDR3L Read: Bit7 Bit6 000000
Write:
$0098 ATDDR4H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0099 ATDDR4L Read: Bit7 Bit6 000000
Write:
$009A ATDDR5H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$009B ATDDR5L Read: Bit7 Bit6 000000
Write:
$009C ATDDR6H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$009D ATDDR6L Read: Bit7 Bit6 000000
Write:
$009E ATDDR7H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$009F ATDDR7L Read: Bit7 Bit6 000000
Write:
$00A0
- $00C7 Reserved Read: 00000000
Write:
$0080 - $009F ATD (Analog to Digital Converter 10 Bit 8 Channel)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12C128DGV1/D V01.05
42
$00D0 - $00D7 Reserved
$00C8 - $00CF SCI (Asynchronous Serial Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00C8 SCIBDH Read: 000
SBR12 SBR11 SBR10 SBR9 SBR8
Write:
$00C9 SCIBDL Read: SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0
Write:
$00CA SCICR1 Read: LOOPS SCISWAI RSRC M WAKE ILT PE PT
Write:
$00CB SCICR2 Read: TIE TCIE RIE ILIE TE RE RWU SBK
Write:
$00CC SCISR1 Read: TDRE TC RDRF IDLE OR NF FE PF
Write:
$00CD SCISR2 Read: 00000
BRK13 TXDIR RAF
Write:
$00CE SCIDRH Read: R8 T8 000000
Write:
$00CF SCIDRL Read: R7 R6 R5 R4 R3 R2 R1 R0
Write: T7 T6 T5 T4 T3 T2 T1 T0
$00D0
- $00D7 Reserved Read: 00000000
Write:
$00D8 - $00DF SPI (Serial Peripheral Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00D8 SPICR1 Read: SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE
Write:
$00D9 SPICR2 Read: 0 0 0 MODFEN BIDIROE 0SPISWAI SPC0
Write:
$00DA SPIBR Read: 0 SPPR2 SPPR1 SPPR0 0SPR2 SPR1 SPR0
Write:
$00DB SPISR Read: SPIF 0 SPTEF MODF 0000
Write:
$00DC Reserved Read: 00000000
Write:
$00DD SPIDR Read: Bit7 654321Bit0
Write:
$00DE Reserved Read: 0 0 0 0 0 0 0 0
Write:
$00DF Reserved Read: 00000000
Write:
Device User Guide — 9S12C128DGV1/D V01.05
43
$00E0 - $00FF PWM (Pulse Width Modulator)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00E0 PWME Read: 0 0 PWME5 PWME4 PWME3 PWME2 PWME1 PWME0
Write:
$00E1 PWMPOL Read: 0 0 PPOL5 PPOL4 PPOL3 PPOL2 PPOL1 PPOL0
Write:
$00E2 PWMCLK Read: 0 0 PCLK5 PCLK4 PCLK3 PCLK2 PCLK1 PCLK0
Write:
$00E3 PWMPRCLK Read: 0 PCKB2 PCKB1 PCKB0 0PCKA2 PCKA1 PCKA0
Write:
$00E4 PWMCAE Read: 0 0 CAE5 CAE4 CAE3 CAE2 CAE1 CAE0
Write:
$00E5 PWMCTL Read: 0 CON45 CON23 CON01 PSWAI PFRZ 00
Write:
$00E6 PWMTST
Test Only
Read: 00000000
Write:
$00E7 PWMPRSC Read: 00000000
Write:
$00E8 PWMSCLA Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00E9 PWMSCLB Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00EA PWMSCNTA Read: 00000000
Write:
$00EB PWMSCNTB Read: 00000000
Write:
$00EC PWMCNT0 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 00000000
$00ED PWMCNT1 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 00000000
$00EE PWMCNT2 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 00000000
$00EF PWMCNT3 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 00000000
$00F0 PWMCNT4 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 00000000
$00F1 PWMCNT5 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 00000000
$00F2 PWMPER0 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00F3 PWMPER1 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00F4 PWMPER2 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00F5 PWMPER3 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00F6 PWMPER4 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
Device User Guide — 9S12C128DGV1/D V01.05
44
$00F7 PWMPER5 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00F8 PWMDTY0 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00F9 PWMDTY1 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00FA PWMDTY2 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00FB PWMDTY3 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00FC PWMDTY4 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00FD PWMDTY5 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$00FE Reserved Read: 00000000
Write:
$00FF Reserved Read: 00000000
Write:
$0100 - $010F Flash Control Register
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0100 FCLKDIV Read: FDIVLD PRDIV8 FDIV5 FDIV4 FDIV3 FDIV2 FDIV1 FDIV0
Write:
$0101 FSEC Read: KEYEN1 KEYEN0 NV5 NV4 NV3 NV2 SEC1 SEC0
Write:
$0102 FTSTMOD Read: 0 0 0 WRALL 0000
Write:
$0103 FCNFG Read: CBEIE CCIE KEYACC 000
BKSEL1 BKSEL0
Write:
$0104 FPROT Read: FPOPEN NV6 FPHDIS FPHS1 FPHS0 FPLDIS FPLS1 FPLS0
Write:
$0105 FSTAT Read: CBEIF CCIF PVIOL ACCERR 0BLANK 00
Write:
$0106 FCMD Read: 0 CMDB6 CMDB5 00
CMDB2 0CMDB0
Write:
$0107 Reserved for
Factory Test
Read: 00000000
Write:
$0108 Reserved for
Factory Test
Read: 00000000
Write:
$0109 Reserved for
Factory Test
Read: 00000000
Write:
$010A Reserved for
Factory Test
Read: 00000000
Write:
$010B Reserved for
Factory Test
Read: 00000000
Write:
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12C128DGV1/D V01.05
45
$0110 - $013F Reserved
$010C Reserved Read: 00000000
Write:
$010D Reserved Read: 00000000
Write:
$010E Reserved Read: 00000000
Write:
$010F Reserved Read: 00000000
Write:
$0110
- $003F Reserved Read: 00000000
Write:
$0140 - $017F CAN (Motorola Scalable CAN - MSCAN)1
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0140 CANCTL0 Read: RXFRM RXACT CSWAI SYNCH TIME WUPE SLPRQ INITRQ
Write:
$0141 CANCTL1 Read: CANE CLKSRC LOOPB LISTEN 0WUPM SLPAK INITAK
Write:
$0142 CANBTR0 Read: SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0
Write:
$0143 CANBTR1 Read: SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10
Write:
$0144 CANRFLG Read: WUPIF CSCIF RSTAT1 RSTAT0 TSTAT1 TSTAT0 OVRIF RXF
Write:
$0145 CANRIER Read: WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE RXFIE
Write:
$0146 CANTFLG Read: 00000
TXE2 TXE1 TXE0
Write:
$0147 CANTIER Read: 00000
TXEIE2 TXEIE1 TXEIE0
Write:
$0148 CANTARQ Read: 00000
ABTRQ2 ABTRQ1 ABTRQ0
Write:
$0149 CANTAAK Read: 00000ABTAK2ABTAK1ABTAK0
Write:
$014A CANTBSEL Read: 00000
TX2 TX1 TX0
Write:
$014B CANIDAC Read: 0 0 IDAM1 IDAM0 0 IDHIT2 IDHIT1 IDHIT0
Write:
$014C Reserved Read: 00000000
Write:
$014D Reserved Read: 00000000
Write:
$0100 - $010F Flash Control Register
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12C128DGV1/D V01.05
46
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout
$014E CANRXERR Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0
Write:
$014F CANTXERR Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0
Write:
$0150 -
$0153 CANIDAR0 -
CANIDAR3
Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$0154 -
$0157 CANIDMR0 -
CANIDMR3
Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$0158 -
$015B CANIDAR4 -
CANIDAR7
Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$015C -
$015F CANIDMR4 -
CANIDMR7
Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$0160 -
$016F CANRXFG Read: FOREGROUND RECEIVE BUFFER see Table 1-2
Write:
$0170 -
$017F CANTXFG Read: FOREGROUND TRANSMIT BUFFER see Table 1-2
Write:
NOTES:
1. Not available on the MC9S12GC-Family members. Those memory locations should not be accessed.
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$xxx0
Extended ID Read: ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21
Standard ID Read: ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3
CANxRIDR0 Write:
$xxx1
Extended ID Read: ID20 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15
Standard ID Read: ID2 ID1 ID0 RTR IDE=0
CANxRIDR1 Write:
$xxx2
Extended ID Read: ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7
Standard ID Read:
CANxRIDR2 Write:
$xxx3
Extended ID Read: ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR
Standard ID Read:
CANxRIDR3 Write:
$xxx4-
$xxxB CANxRDSR0 -
CANxRDSR7
Read: DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Write:
$xxxC CANRxDLR Read: DLC3 DLC2 DLC1 DLC0
Write:
$xxxD Reserved Read:
Write:
$xxxE CANxRTSRH Read: TSR15 TSR14 TSR13 TSR12 TSR11 TSR10 TSR9 TSR8
Write:
$xxxF CANxRTSRL Read: TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0
Write:
$xx10
Extended ID Read: ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21
CANxTIDR0 Write:
Standard ID Read: ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3
Write:
$0140 - $017F CAN (Motorola Scalable CAN - MSCAN)1
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12C128DGV1/D V01.05
47
$0180 - $023F Reserved
$0240 - $027F PIM (Port Interface Module)
$xx11
Extended ID Read: ID20 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15
CANxTIDR1 Write:
Standard ID Read: ID2 ID1 ID0 RTR IDE=0
Write:
$xx12
Extended ID Read: ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7
CANxTIDR2 Write:
Standard ID Read:
Write:
$xx13
Extended ID Read: ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR
CANxTIDR3 Write:
Standard ID Read:
Write:
$xx14-
$xx1B CANxTDSR0 -
CANxTDSR7
Read: DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Write:
$xx1C CANxTDLR Read: DLC3 DLC2 DLC1 DLC0
Write:
$xx1D CONxTTBPR Read: PRIO7 PRIO6 PRIO5 PRIO4 PRIO3 PRIO2 PRIO1 PRIO0
Write:
$xx1E CANxTTSRH Read: TSR15 TSR14 TSR13 TSR12 TSR11 TSR10 TSR9 TSR8
Write:
$xx1F CANxTTSRL Read: TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0
Write:
$0180
- $023F Reserved Read: 00000000
Write:
$0240 PTT Read: PTT7 PTT6 PTT5 PTT4 PTT3 PTT2 PTT1 PTT0
Write:
$0241 PTIT Read: PTIT7 PTIT6 PTIT5 PTIT4 PTIT3 PTIT2 PTIT1 PTIT0
Write:
$0242 DDRT Read: DDRT7 DDRT7 DDRT5 DDRT4 DDRT3 DDRT2 DDRT1 DDRT0
Write:
$0243 RDRT Read: RDRT7 RDRT6 RDRT5 RDRT4 RDRT3 RDRT2 RDRT1 RDRT0
Write:
$0244 PERT Read: PERT7 PERT6 PERT5 PERT4 PERT3 PERT2 PERT1 PERT0
Write:
$0245 PPST Read: PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPST0
Write:
$0246 Reserved Read: 00000000
Write:
$0247 MODRR Read: 0 0 0
MODRR4 MODRR3 MODRR2 MODRR1 MODRR0
Write:
$0248 PTS Read: 0000
PTS3 PTS2 PTS1 PTS0
Write:
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12C128DGV1/D V01.05
48
$0249 PTIS Read: 0000PTIS3 PTIS2 PTIS1 PTIS0
Write:
$024A DDRS Read: 0000
DDRS3 DDRS2 DDRS1 DDRS0
Write:
$024B RDRS Read: 0000
RDRS3 RDRS2 RDRS1 RDRS0
Write:
$024C PERS Read: 0000
PERS3 PERS2 PERS1 PERS0
Write:
$024D PPSS Read: 0000
PPSS3 PPSS2 PPSS1 PPSS0
Write:
$024E WOMS Read: 0000
WOMS3 WOMS2 WOMS1 WOMS0
Write:
$024F Reserved Read: 00000000
Write:
$0250 PTM Read: 0 0 PTM5 PTM4 PTM3 PTM2 PTM1 PTM0
Write:
$0251 PTIM Read: 0 0 PTIM5 PTIM4 PTIM3 PTIM2 PTIM1 PTIM0
Write:
$0252 DDRM Read: 0 0 DDRM5 DDRM4 DDRM3 DDRM2 DDRM1 DDRM0
Write:
$0253 RDRM Read: 0 0 RDRM5 RDRM4 RDRM3 RDRM2 RDRM1 RDRM0
Write:
$0254 PERM Read: 0 0 PERM5 PERM4 PERM3 PERM2 PERM1 PERM0
Write:
$0255 PPSM Read: 0 0 PPSM5 PPSM4 PPSM3 PPSM2 PPSM1 PPSM0
Write:
$0256 WOMM Read: 0 0 WOMM5 WOMM4 WOMM3 WOMM2 WOMM1 WOMM0
Write:
$0257 Reserved Read: 00000000
Write:
$0258 PTP Read: PTP7 PTP6 PTP5 PTP4 PTP3 PTP2 PTP1 PTP0
Write:
$0259 PTIP Read: PTIP7 PTIP6 PTIP5 PTIP4 PTIP3 PTIP2 PTIP1 PTIP0
Write:
$025A DDRP Read: DDRP7 DDRP7 DDRP5 DDRP4 DDRP3 DDRP2 DDRP1 DDRP0
Write:
$025B RDRP Read: RDRP7 RDRP6 RDRP5 RDRP4 RDRP3 RDRP2 RDRP1 RDRP0
Write:
$025C PERP Read: PERP7 PERP6 PERP5 PERP4 PERP3 PERP2 PERP1 PERP0
Write:
$025D PPSP Read: PPSP7 PPSP6 PPSP5 PPSP4 PPSP3 PPSP2 PPSP1 PPSS0
Write:
$025E PIEP Read: PIEP7 PIEP6 PIEP5 PIEP4 PIEP3 PIEP2 PIEP1 PIEP0
Write:
$025F PIFP Read: PIFP7 PIFP6 PIFP5 PIFP4 PIFP3 PIFP2 PIFP1 PIFP0
Write:
$0260 Reserved Read: 00000000
Write:
Device User Guide — 9S12C128DGV1/D V01.05
49
$0261 Reserved Read: 00000000
Write:
$0262 Reserved Read: 00000000
Write:
$0263 Reserved Read: 00000000
Write:
$0264 Reserved Read: 00000000
Write:
$0265 Reserved Read: 00000000
Write:
$0266 Reserved Read: 00000000
Write:
$0267 Reserved Read: 00000000
Write:
$0268 PTJ Read: PTJ7 PTJ6 000000
Write:
$0269 PTIJ Read: PTIJ7 PTIJ6 000000
Write:
$026A DDRJ Read: DDRJ7 DDRJ7 000000
Write:
$026B RDRJ Read: RDRJ7 RDRJ6 000000
Write:
$026C PERJ Read: PERJ7 PERJ6 000000
Write:
$026D PPSJ Read: PPSJ7 PPSJ6 000000
Write:
$026E PIEJ Read: PIEJ7 PIEJ6 000000
Write:
$026F PIFJ Read: PIFJ7 PIFJ6 000000
Write:
$0270 PTAD Read:
PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0
Write:
$0271 PTIAD Read:
PTIAD7 PTIAD6 PTIAD5 PTIAD4 PTIAD3 PTIAD2 PTIAD1 PTIJ7
Write:
$0272 DDRAD Read:
DDRAD7 DDRAD6 DDRAD5 DDRAD4 DDRAD3 DDRAD2 DDRAD1 DDRAD0
Write:
$0273 RDRAD Read:
RDRAD7 RDRAD6 RDRAD5 RDRAD4 RDRAD3 RDRAD2 RDRAD1 RDRAD0
Write:
$0274 PERAD
Read: PERAD7 PERAD6 PERAD5 PERAD4 PERAD3 PERAD2 PERAD1 PERAD0
Write:
$0275 PPSAD Read:
PPSAD7 PPSAD6 PPSAD5 PPSAD4 PPSAD3 PPSAD2 PPSAD1 PPSAD0
Write:
$0276-
$027F Reserved Read: 00000000
Write:
Device User Guide — 9S12C128DGV1/D V01.05
50
1.7 Part ID Assignments
The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses $001A and $001B after
reset). The read-only value is a unique part ID for each revision of the chip. Table 1-3 shows the assigned
part ID numbers.
The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses $001C
and $001D after reset). Table 1-4 shows the read-only values of these registers. Refer to Module Mapping
and Control (MMC) Block Guide for further details.
$0280 - $03FF Reserved space
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0280
- $2FF Reserved Read: 00000000
Write:
$0300 -
$03FF Unimplemented Read: 00000000
Write:
Table 1-3 Assigned Part ID Numbers
Device Mask Set Number Part ID1
NOTES:
1. The coding is as follows:
Bit 15-12: Major family identifier
Bit 11-8: Minor family identifier
Bit 7-4: Major mask set revision number including FAB transfers
Bit 3-0: Minor - non full - mask set revision
MC9S12C32 0L45J $3300
MC9S12C32 1L45J $3300
MC9S12C32 2L45J $3302
MC9S12C64 TBD TBD
MC9S12C96 TBD TBD
MC9S12C128 0L09S $3100
MC9S12C128 1L09S $3101
MC9S12GC16 TBD TBD
MC9S12GC32 TBD TBD
MC9S12GC64 TBD TBD
MC9S12GC128 TBD TBD
Table 1-4 Memory size registers
Device Register name Value
MC9S12GC16 MEMSIZ0 $00
MEMSIZ1 $80
Device User Guide — 9S12C128DGV1/D V01.05
51
MC9S12C32, MC9S12GC32 MEMSIZ0 $00
MEMSIZ1 $80
MC9S12C64, MC9S12GC64 MEMSIZ0 $01
MEMSIZ1 $C0
MC9S12C96 MEMSIZ0 $01
MEMSIZ1 $C0
MC9S12C128, MC9S12GC128 MEMSIZ0 $01
MEMSIZ1 $C0
Table 1-4 Memory size registers
Device Register name Value
Device User Guide — 9S12C128DGV1/D V01.05
52
Section 2 Signal Description
2.1 Device Pinout
Figure 2-1 Pin Assignments in 80 QFP for MC9S12C-Family
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
MC9S12C-Family
MC9S12GC-Family
VRH
VDDA
PAD07/AN07
PAD06/AN06
PAD05/AN05
PAD04/AN04
PAD03/AN03
PAD02/AN02
PAD01/AN01
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8
PP4/KWP4/PW4
PP5/KWP5/PW5
PP7/KWP7
VDDX
VSSX
PM0/RXCAN
PM1/TXCAN
PM2/MISO
PM3/SS
PM4/MOSI
PM5/SCK
PJ6/KWJ6
PJ7/KWJ7
PP6/KWP6/ROMCTL
PS3
PS2
PS1/TXD
PS0/RXD
VSSA
VRL
PW3/KWP3/PP3
PW2/KWP2/PP2
PW1/KWP1/PP1
PW0/KWP0/PP0
PW0/IOC0/PT0
PW1/IOC1/PT1
PW2/IOC2/PT2
PW3/IOC3/PT3
VDD1
VSS1
PW4/IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4
ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
XCLKS/NOACC/PE7
MODB/IPIPE1/PE6
MODA/IPIPE0/PE5
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST/VPP
LSTRB/TAGLO/PE3
R/W/PE2
IRQ/PE1
XIRQ/PE0
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
Signals shown in Bold are not available on the 52 or 48 Pin Package
Signals shown in
Bold Italic
are available in the 52, but not the 48 Pin Package
Device User Guide — 9S12C128DGV1/D V01.05
53
Figure 2-2 Pin assignments in 52 LQFP for MC9S12C-Family
MC9S12C-Family
MC9S12GC-Family
1
2
3
4
5
6
7
8
9
10
11
12
13
39
38
37
36
35
34
33
32
31
30
29
28
27
14
15
16
17
18
19
20
21
22
23
24
25
26
52
51
50
49
48
47
46
45
44
43
42
41
40
* Signals shown in
Bold italic
are not available on the 48 Pin Package
PP4/KWP4/PW4
PP5/KWP5/PW5
VDDX
VSSX
PM0/RXCAN
PM1/TXCAN
PM2/MISO
PM3/SS
PM4/MOSI
PM5/SCK
PS1/TXD
PS0/RXD
VSSA
VRH
VDDA
PAD07/AN07
PAD06/AN06
PAD05/AN05
PAD04/AN04
PAD03/AN03
PAD02/AN02
PAD01/AN01
PAD00/AN00
PA2
PA1
PA0
XCLKS/PE7
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST/VPP
IRQ/PE1
XIRQ/PE0
PW3/KWP3/PP3
PW0/IOC0/PT0
PW1/IOC1/PT1
PW2/IOC2/PT2
PW3/IOC3/PT3
VDD1
VSS1
PW4/IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
MODC/BKGD
PB4
Device User Guide — 9S12C128DGV1/D V01.05
54
Figure 2-3 Pin Assignments in 48 LQFP for MC9S12C-Family
MC9S12C-Family
MC9S12GC-Family
1
2
3
4
5
6
7
8
9
10
11
12
36
35
34
33
32
31
30
29
28
27
26
25
13
14
15
16
17
18
19
20
21
22
23
24
48
47
46
45
44
43
42
41
40
39
38
37
PP5/KWP5/PW5
VDDX
VSSX
PM0/RXCAN
PM1/TXCAN
PM2/MISO
PM3/SS
PM4/MOSI
PM5/SCK
PS1/TXD
PS0/RXD
VSSA
PW0/IOC0/PT0
PW1/IOC1/PT1
PW2/IOC2/PT2
PW3/IOC3/PT3
VDD1
VSS1
PW4/IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
MODC/BKGD
PB4
XCLKS/PE7
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST/VPP
IRQ/PE1
VRH
VDDA
PAD07/AN07
PAD06/AN06
PAD05/AN05
PAD04/AN04
PAD03/AN03
PAD02/AN02
PAD01/AN01
PAD00/AN00
PA0
XIRQ/PE0
Device User Guide — 9S12C128DGV1/D V01.05
55
2.2 Signal Properties Summary
Table 2-1 Signal Properties
Pin Name
Function 1 Pin Name
Function 2 Pin Name
Function 3 Power
Domain
Internal Pull
Resistor Description
CTRL Reset
State
EXTAL VDDPLL NA NA Oscillator pins
XTAL VDDPLL NA NA
RESET VDDX None None External reset pin
XFC VDDPLL NA NA PLL loop filter pin
TEST VPP VSSX NA NA Test pin only
BKGD MODC TAGHI VDDX Up Up Background debug, mode pin, tag signal high
PE7 NOACC XCLKS VDDX PUCR Up Port E I/O pin, access, clock select
PE6 IPIPE1 MODB VDDX While RESET
pin is low: Down Port E I/O pin and pipe status
PE5 IPIPE0 MODA VDDX While RESET
pin is low: Down Port E I/O pin and pipe status
PE4 ECLK VDDX PUCR Mode
Dep1Port E I/O pin, bus clock output
PE3 LSTRB TAGLO VDDX PUCR Mode
Dep(1) Port E I/O pin, low strobe, tag signal low
PE2 R/W VDDX PUCR Mode
Dep(1) Port E I/O pin, R/W in expanded modes
PE1 IRQ VDDX PUCR Up Port E input, external interrupt pin
PE0 XIRQ VDDX PUCR Up Port E input, non-maskable interrupt pin
PA[7:3] ADDR[15:1/
DATA[15:1] VDDX PUCR Disabled Port A I/O pin & multiplexed address/data
PA[2:1] ADDR[10:9/
DATA[10:9] VDDX PUCR Disabled Port A I/O pin & multiplexed address/data
PA[0] ADDR[8]/
DATA[8] VDDX PUCR Disabled Port A I/O pin & multiplexed address/data
PB[7:5] ADDR[7:5]/
DATA[7:5] VDDX PUCR Disabled Port B I/O pin & multiplexed address/data
PB[4] ADDR[4]/
DATA[4] VDDX PUCR Disabled Port B I/O pin & multiplexed address/data
PB[3:0] ADDR[3:0]/
DATA[3:0] VDDX PUCR Disabled Port B I/O pin & multiplexed address/data
PAD[7:0] AN[7:0] VDDA PERAD/P
PSAD Disabled Port AD I/O pins and ATD inputs
PP[7] KWP[7] VDDX PERP/
PPSP Disabled Port P I/O Pins and keypad wake-up
PP[6] KWP[6] ROMCTL VDDX PERP/
PPSP Disabled Port P I/O Pins, keypad wake-up and ROMON
enable.
PP[5] KWP[5] PW5 VDDX PERP/
PPSP Disabled Port P I/O Pin, keypad wake-up, PW5 output
PP[4:3] KWP[4:3] PW[4:3] VDDX PERP/
PPSP Disabled Port P I/O Pin, keypad wake-up, PWM output
Device User Guide — 9S12C128DGV1/D V01.05
56
2.2.1 Pin Initialization for 48 & 52 Pin LQFP bond-out versions
Not Bonded Pins If the port pins are not bonded out in the chosen package the user should initialize the
registers to be inputs with enabled pull resistance to avoid excess current consumption. This applies to the
following pins:
(48LQFP): Port A[7:1], Port B[7:5], Port B[3:0], PortE[6,5,3,2], Port P[7:6], PortP[4:0], Port J[7:6],
PortS[3:2]
(52LQFP): Port A[7:3], Port B[7:5], Port B[3:0], PortE[6,5,3,2], Port P[7:6], PortP[2:0], Port J[7:6],
PortS[3:2]
PP[2:0] KWP[2:0] PW[2:0] VDDX PERP/
PPSP Disabled Port P I/O Pins, keypad wake-up, PWM outputs
PJ[7:6] KWJ[7:6] VDDX PERJ/
PPSJ Disabled Port J I/O Pins and keypad wake-up
PM5 SCK VDDX PERM/
PPSM Up Port M I/O Pin and SPI SCK signal
PM4
MOSI
VDDX PERM/
PPSM Up Port M I/O Pin and SPI
MOSI
signal
PM3 SS VDDX PERM/
PPSM Up Port M I/O Pin and SPI SS signal
PM2
MISO
VDDX PERM/
PPSM Up Port M I/O Pin and SPI
MISO
signal
PM1 TXCAN VDDX PERM/
PPSM Up Port M I/O Pin and CAN transmit signal2
PM0 RXCAN VDDX PERM/
PPSM Up Port M I/O Pin and CAN receive signal2
PS[3:2] VDDX PERS/
PPSS Up Port S I/O Pins
PS1 TXD VDDX PERS/
PPSS Up Port S I/O Pin and SCI transmit signal
PS0 RXD VDDX PERS/
PPSS Up Port S I/O Pin and SCI receive signal
PT[7:5] IOC[7:5] VDDX PERT/
PPST Disabled Port T I/O Pins shared with timer (TIM)
PT[4:0] IOC[4:0] PW[4:0] VDDX PERT/
PPST Disabled Port T I/O Pins shared with timer and PWM
NOTES:
1. The PortE output buffer enable signal control at reset is determined by the PEAR register and is mode dependent. E.g. in
special test mode RDWE=LSTRE=1 which enables the PE[3:2] output buffers and disables the pull-ups. Refer to S12_MEBI
user guide for PEAR register details.
2. CAN functionality is not available on the MC9S12GC-Family members
Pin Name
Function 1 Pin Name
Function 2 Pin Name
Function 3 Power
Domain
Internal Pull
Resistor Description
CTRL Reset
State
Device User Guide — 9S12C128DGV1/D V01.05
57
2.3 Detailed Signal Descriptions
2.3.1 EXTAL, XTAL — Oscillator Pins
EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived
from the EXTAL input frequency. XTAL is the crystal output.
2.3.2 RESET — External Reset Pin
RESET is an active low bidirectional control signal that acts as an input to initialize the MCU to a known
start-up state. It also acts as an open-drain output to indicate that an internal failure has been detected in
either the clock monitor or COP watchdog circuit. External circuitry connected to the RESET pin should
not include a large capacitance that would interfere with the ability of this signal to rise to a valid logic one
within 32 ECLK cycles after the low drive is released. Upon detection of any reset, an internal circuit
drives the RESET pin low and a clocked reset sequence controls when the MCU can begin normal
processing.
2.3.3 TEST / VPP — Test Pin
This pin is reserved for test and must be tied to VSS in all applications.
2.3.4 XFC — PLL Loop Filter Pin
Dedicated pin used to create the PLL loop filter. See CRG BUG for more detailed information.PLL loop
filter. Please ask your Motorola representative for the interactive application note to compute PLL loop
filter elements. Any current leakage on this pin must be avoided.
Figure 2-4 PLL Loop Filter Connections
MCU
XFC
R0
CS
CP
VDDPLLVDDPLL
Device User Guide — 9S12C128DGV1/D V01.05
58
2.3.5 BKGD / TAGHI / MODC — Background Debug, Tag High & Mode Pin
The BKGD / TAGHI / MODC pin is used as a pseudo-open-drain pin for the background debug
communication. In MCU expanded modes of operation when instruction tagging is on, an input low on
this pin during the falling edge of E-clock tags the high half of the instruction word being read into the
instruction queue. It is also used as a MCU operating mode select pin at the rising edge during reset, when
the state of this pin is latched to the MODC bit.
2.3.6 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins
PA7-PA0 are general purpose input or output pins,. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus. PA[7:1] pins are not available in the 48 package
version. PA[7:3] are not available in the 52 pin package version.
2.3.7 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins
PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus. PB[7:5] and PB[3:0] pins are not available in the
48 nor 52 pin package version.
2.3.8 PE7 / NOACC / XCLKS — Port E I/O Pin 7
PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC
signal, when enabled, is used to indicate that the current bus cycle is an unused or “free” cycle. This signal
will assert when the CPU is not using the bus.The XCLKS is an input signal which controls whether a
crystal in combination with the internal Colpitts (low power) oscillator is used or whether Pierce
oscillator/external clock circuitry is used. The state of this pin is latched at the rising edge of RESET. If
the input is a logic low the EXTAL pin is configured for an external clock drive or a Pierce Oscillator. If
input is a logic high a Colpitts oscillator circuit is configured on EXTAL and XTAL. Since this pin is an
input with a pull-up device during reset, if the pin is left floating, the default configuration is a Colpitts
oscillator circuit on EXTAL and XTAL.
Device User Guide — 9S12C128DGV1/D V01.05
59
Figure 2-5 Colpitts Oscillator Connections (PE7=1)
Figure 2-6 Pierce Oscillator Connections (PE7=0)
Figure 2-7 External Clock Connections (PE7=0)
MCU
C2
EXTAL
XTAL
Crystal or
VSSPLL
ceramic resonator
C1
CDC *
* Due to the nature of a translated ground Colpitts oscillator a
DC voltage bias is applied to the crystal
.Please contact the crystal manufacturer for crystal DC
MCU
EXTAL
XTAL
RS*
RB
VSSPLL
Crystal or
ceramic resonator
C2
C1
* Rs can be zero (shorted) when use with higher frequency crystals.
Refer to manufacturer’s data.
MCU
EXTAL
XTAL
CMOS-COMPATIBLE
EXTERNAL OSCILLATO
R
not connected
(VDDPLL-Level)
Device User Guide — 9S12C128DGV1/D V01.05
60
2.3.9 PE6 / MODB / IPIPE1 — Port E I/O Pin 6
PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE1}. This pin is an input with a pull-down device which is only
active when RESET is low. PE[6] is not available in the 48 / 52 pin package versions.
2.3.10 PE5 / MODA / IPIPE0 — Port E I/O Pin 5
PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE0}. This pin is an input with a pull-down device which is only
active when RESET is low. This pin is not available in the 48 / 52 pin package versions.
2.3.11 PE4 / ECLK— Port E I/O Pin [4] / E-Clock Output
ECLK is the output connection for the internal bus clock. It is used to demultiplex the address and data in
expanded modes and is used as a timing reference. ECLK frequency is equal to 1/2 the crystal frequency
out of reset. The ECLK pin is initially configured as ECLK output with stretch in all expanded modes. The
E clock output function depends upon the settings of the NECLK bit in the PEAR register, the IVIS bit in
the MODE register and the ESTR bit in the EBICTL register. All clocks, including the E clock, are halted
when the MCU is in STOP mode. It is possible to configure the MCU to interface to slow external
memory. ECLK can be stretched for such accesses. Reference the MISC register (EXSTR[1:0] bits) for
more information. In normal expanded narrow mode, the E clock is available for use in external select
decode logic or as a constant speed clock for use in the external application system. Alternatively PE4 can
be used as a general purpose input or output pin.
2.3.12 PE3 / LSTRB — Port E I/O Pin [3] / Low-Byte Strobe (LSTRB)
In all modes this pin can be used as a general-purpose I/O and is an input with an active pull-up out of
reset. If the strobe function is required, it should be enabled by setting the LSTRE bit in the PEAR register.
This signal is used in write operations. Therefore external low byte writes will not be possible until this
function is enabled. This pin is also used as TAGLO in Special Expanded modes and is multiplexed with
the LSTRB function. This pin is not available in the 48 / 52 pin package versions.
2.3.13 PE2 / R/W — Port E I/O Pin [2] / Read/Write
In all modes this pin can be used as a general-purpose I/O and is an input with an active pull-up out of
reset. If the read/write function is required it should be enabled by setting the RDWE bit in the PEAR
register. External writes will not be possible until enabled. This pin is not available in the 48 / 52 pin
package versions.
Device User Guide — 9S12C128DGV1/D V01.05
61
2.3.14 PE1 / IRQ — Port E input Pin [1] / Maskable Interrupt Pin
The IRQ input provides a means of applying asynchronous interrupt requests to the MCU. Either falling
edge-sensitive triggering or level-sensitive triggering is program selectable (INTCR register). IRQ is
always enabled and configured to level-sensitive triggering out of reset. It can be disabled by clearing
IRQEN bit (INTCR register). When the MCU is reset the IRQ function is masked in the condition code
register. This pin is always an input and can always be read. There is an active pull-up on this pin while in
reset and immediately out of reset. The pull-up can be turned off by clearing PUPEE in the PUCR register.
2.3.15 PE0 / XIRQ — Port E input Pin [0] / Non Maskable Interrupt Pin
The XIRQ input provides a means of requesting a non maskable interrupt after reset initialization. During
reset, the X bit in the condition code register (CCR) is set and any interrupt is masked until MCU software
enables it. Because the XIRQ input is level sensitive, it can be connected to a multiple-source wired-OR
network. This pin is always an input and can always be read. There is an active pull-up on this pin while
in reset and immediately out of reset. The pull-up can be turned off by clearing PUPEE in the PUCR
register.
2.3.16 PAD[7:0] / AN[7:0] — Port AD I/O Pins [7:0]
PAD7-PAD0 are general purpose I/O pins and also analog inputs for the analog to digital converter. In
order to use a PAD pin as a standard I/O, the corresponding ATDDIEN register bit must be set. These bits
are cleared out of reset to configure the PAD pins for A/D operation.
When the A/D converter is active in multi-channel mode, port inputs are scanned and converted
irrespective of PortAD configuration. Thus PortAD pins that are configured as digital inputs or digital
outputs are also converted in the A/D conversion sequence.
2.3.17 PP[7] / KWP[7] — Port P I/O Pin [7]
PP7 is a general purpose input or output pin, shared with the keypad interrupt function. When configured
as an input, it can generate interrupts causing the MCU to exit STOP or WAIT mode. This pin is not
available in the 48 / 52 pin package versions.
2.3.18 PP[6] / KWP[6]/ROMCTL — Port P I/O Pin [6]
PP6 is a general purpose input or output pin, shared with the keypad interrupt function. When configured
as an input, it can generate interrupts causing the MCU to exit STOP or WAIT mode. This pin is not
available in the 48 / 52 pin package versions. During MCU expanded modes of operation, this pin is used
to enable the Flash EEPROM memory in the memory map (ROMCTL). At the rising edge of RESET, the
state of this pin is latched to the ROMON bit.
PP6=1 in emulation modes equates to ROMON =0 (ROM space externally mapped)
PP6=0 in expanded modes equates to ROMON =0 (ROM space externally mapped)
Device User Guide — 9S12C128DGV1/D V01.05
62
2.3.19 PP[5:0] / KWP[5:0] / PW[5:0] — Port P I/O Pins [5:0]
PP[5:0] are general purpose input or output pins, shared with the keypad interrupt function. When
configured as inputs, they can generate interrupts causing the MCU to exit STOP or WAIT mode.
PP[5:0] are also shared with the PWM output signals, PW[5:0]. Pins PP[2:0] are only available in the 80
pin package version. Pins PP[4:3] are not available in the 48 pin package version.
2.3.20 PJ[7:6] / KWJ[7:6] — Port J I/O Pins [7:6]
PJ[7:6] are general purpose input or output pins, shared with the keypad interrupt function. When
configured as inputs, they can generate interrupts causing the MCU to exit STOP or WAIT mode. These
pins are not available in the 48 pin package version nor in the 52 pin package version.
2.3.21 PM5 / SCK — Port M I/O Pin 5
PM5 is a general purpose input or output pin and also the serial clock pin SCK for the Serial Peripheral
Interface (SPI).
2.3.22 PM4 / MOSI — Port M I/O Pin 4
PM4 is a general purpose input or output pin and also the master output (during master mode) or slave
input (during slave mode) pin for the Serial Peripheral Interface (SPI).
2.3.23 PM3 / SS — Port M I/O Pin 3
PM3 is a general purpose input or output pin and also the slave select pin SS for the Serial Peripheral
Interface (SPI).
2.3.24 PM2 / MISO — Port M I/O Pin 2
PM2 is a general purpose input or output pin and also the master input (during master mode) or slave
output (during slave mode) pin for the Serial Peripheral Interface (SPI).
2.3.25 PM1 / TXCAN — Port M I/O Pin 1
PM1 is a general purpose input or output pin and the transmit pin, TXCAN, of the CAN module if
available.
2.3.26 PM0 / RXCAN — Port M I/O Pin 0
PM0 is a general purpose input or output pin and the receive pin, RXCAN, of the CAN module if available.
Device User Guide — 9S12C128DGV1/D V01.05
63
2.3.27 PS[3:2] — Port S I/O Pins [3:2]
PS3 and PS2 are general purpose input or output pins. These pins are not available in the 48 / 52 pin
package versions.
2.3.28 PS1 / TXD — Port S I/O Pin 1
PS1 is a general purpose input or output pin and the transmit pin, TXD, of Serial Communication Interface
(SCI).
2.3.29 PS0 / RXD — Port S I/O Pin 0
PS0 is a general purpose input or output pin and the receive pin, RXD, of Serial Communication Interface
(SCI).
2.3.30 PPT[7:5] / IOC[7:5] — Port T I/O Pins [7:5]
PT7-PT5 are general purpose input or output pins. They can also be configured as the timer system input
capture or output compare pins IOC7-IOC5.
2.3.31 PT[4:0] / IOC[4:0] / PW[4:0]— Port T I/O Pins [4:0]
PT4-PT0 are general purpose input or output pins. They can also be configured as the timer system input
capture or output compare pins IOC4-IOC0 or as the PWM outputs PW[4:0].
2.4 Power Supply Pins
2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers
External power and ground for I/O drivers. Bypass requirements depend on how heavily the MCU pins
are loaded.
2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal
Voltage Regulator
External power and ground for the internal voltage regulator. Connecting VDDR to ground disables the
internal voltage regulator.
2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Pins
Power is supplied to the MCU through VDD and VSS. This 2.5V supply is derived from the internal
voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned
off, if VDDR is tied to ground.
Device User Guide — 9S12C128DGV1/D V01.05
64
2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG
VDDA, VSSA are the power supply and ground input pins for the voltage regulator reference and the
analog to digital converter.
2.4.5 VRH, VRL — ATD Reference Voltage Input Pins
VRH and VRL are the reference voltage input pins for the analog to digital converter.
2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL
Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the
supply voltage to the Oscillator and PLL to be bypassed independently. This 2.5V voltage is generated by
the internal voltage regulator.
Table 2-2 MC9S12C-Family Power and Ground Connection Summary
NOTE:
All VSS pins must be connected together in the application. Because fast signal transitions
place high, short-duration current demands on the power supply, use bypass capacitors with
high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements
depend on MCU pin load.
Section 3 System Clock Description
Mnemonic Nominal
Voltage Description
VDD1
VDD2 2.5 V Internal power and ground generated by internal regulator. These also
allow an external source to supply the core VDD/VSS voltages and bypass
the internal voltage regulator.
In the 48 and 52 LQFP packages VDD2 and VSS2 are not available.
VSS1
VSS2 0V
VDDR 5.0 V External power and ground, supply to internal voltage regulator.
VSSR 0 V
VDDX 5.0 V External power and ground, supply to pin drivers.
VSSX 0 V
VDDA 5.0 V Operating voltage and ground for the analog-to-digital converters and the
reference for the internal voltage regulator, allows the supply voltage to the
A/D to be bypassed independently.
VSSA 0 V
VRH 5.0 V Reference voltage low for the ATD converter.
In the 48 and 52 LQFP packages VRL is bonded to VSSA.
VRL 0 V
VDDPLL 2.5 V Provides operating voltage and ground for the Phased-Locked Loop. This
allows the supply voltage to the PLL to be bypassed independently.
Internal power and ground generated by internal regulator.
VSSPLL 0 V
Device User Guide — 9S12C128DGV1/D V01.05
65
The Clock and Reset Generator provides the internal clock signals for the core and all peripheral modules.
Figure 3-1 shows the clock connections from the CRG to all modules. Consult the CRG Block User
Guide for details on clock generation.
Figure 3-1 Clock Connections
Section 4 Modes of Operation
4.1 Overview
Eight possible modes determine the operating configuration of the MC9S12C Family. Each mode has an
associated default memory map and external bus configuration controlled by a further pin.
Three low power modes exist for the device.
4.2 Chip Configuration Summary
The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during
reset. The MODC, MODB, and MODA bits in the MODE register show the current operating mode and
provide limited mode switching during operation. The states of the MODC, MODB, and MODA pins are
CRG bus clock
core clock
EXTAL
XTAL
oscillator clock
S12_CORE
VREG
RAM
SCI
ATD
Flash
TIM
TPM
SPI
MSCAN
PIM
Not on 9S12GC
Device User Guide — 9S12C128DGV1/D V01.05
66
latched into these bits on the rising edge of the reset signal. The ROMCTL signal allows the setting of the
ROMON bit in the MISC register thus controlling whether the internal Flash is visible in the memory map.
ROMON = 1 mean the Flash is visible in the memory map. The state of the ROMCTL pin is latched into
the ROMON bit in the MISC register on the rising edge of the reset signal.
For further explanation on the modes refer to the S12_MEBI block guide.
4.3 Security
The device will make available a security feature preventing the unauthorized read and write of the
memory contents. This feature allows:
Protection of the contents of FLASH,
Operation in single-chip mode,
Operation from external memory with internal FLASH disabled.
The user must be reminded that part of the security must lie with the user’s code. An extreme example
would be user’s code that dumps the contents of the internal program. This code would defeat the purpose
of security. At the same time the user may also wish to put a back door in the user’s program. An example
Table 4-1 Mode Selection
BKGD =
MODC PE6 =
MODB PE5 =
MODA PP6 =
ROMCTL ROMON
Bit Mode Description
000X1
Special Single Chip, BDM allowed and ACTIVE. BDM is
allowed in all other modes but a serial command is
required to make BDM active.
00101
Emulation Expanded Narrow, BDM allowed
10
0 1 0 X 0 Special Test (Expanded Wide), BDM allowed
01101
Emulation Expanded Wide, BDM allowed
10
1 0 0 X 1 Normal Single Chip, BDM allowed
10100
Normal Expanded Narrow, BDM allowed
11
110X1
Peripheral; BDM allowed but bus operations would cause
bus conflicts (must not be used)
11100
Normal Expanded Wide, BDM allowed
11
Table 4-2 Clock Selection Based on PE7
PE7 = XCLKS Description
1 Colpitts Oscillator selected
0 Pierce Oscillator/external clock selected
Device User Guide — 9S12C128DGV1/D V01.05
67
of this is the user downloads a key through the SCI which allows access to a programming routine that
updates parameters.
4.3.1 Securing the Microcontroller
Once the user has programmed the FLASH, the part can be secured by programming the security bits
located in the FLASH module. These non-volatile bits will keep the part secured through resetting the part
and through powering down the part.
The security byte resides in a portion of the Flash array.
Check the Flash Block User Guide for more details on the security configuration.
4.3.2 Operation of the Secured Microcontroller
4.3.2.1 Normal Single Chip Mode
This will be the most common usage of the secured part. Everything will appear the same as if the part was
not secured with the exception of BDM operation. The BDM operation will be blocked.
4.3.2.2 Executing from External Memory
The user may wish to execute from external space with a secured microcontroller. This is accomplished
by resetting directly into expanded mode. The internal FLASH will be disabled. BDM operations will be
blocked.
4.3.3 Unsecuring the Microcontroller
In order to unsecure the microcontroller, the internal FLASH must be erased. This can be done through an
external program in expanded mode or via a sequence of BDM commands. Unsecuring is also possible via
the Backdoor Key Access. Refer to Flash Block Guide for details.
Once the user has erased the FLASH, the part can be reset into special single chip mode. This invokes a
program that verifies the erasure of the internal FLASH. Once this program completes, the user can erase
and program the FLASH security bits to the unsecured state. This is generally done through the BDM, but
the user could also change to expanded mode (by writing the mode bits through the BDM) and jumping to
an external program (again through BDM commands). Note that if the part goes through a reset before the
security bits are reprogrammed to the unsecure state, the part will be secured again.
4.4 Low Power Modes
The microcontroller features three main low power modes. Consult the respective Block User Guide for
information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of
information about the clock system is the Clock and Reset Generator User Guide (CRG).
Device User Guide — 9S12C128DGV1/D V01.05
68
4.4.1 Stop
Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static
mode. Wake up from this mode can be done via reset or external interrupts.
4.4.2 Pseudo Stop
This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running
and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are
turned off. This mode consumes more current than the full STOP mode, but the wake up time from this
mode is significantly shorter.
4.4.3 Wait
This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute
instructions. The internal CPU signals (address and databus) will be fully static. All peripherals stay active.
For further power consumption reduction the peripherals can individually turn off their local clocks.
4.4.4 Run
Although this is not a low power mode, unused peripheral modules should not be enabled in order to save
power.
Section 5 Resets and Interrupts
5.1 Overview
Consult the Exception Processing section of the CPU12 Reference Manual for information.
5.2 Vectors
5.2.1 Vector Table
Table 5-1 lists interrupt sources and vectors in default order of priority.
Table 5-1 Interrupt Vector Locations
Vector Address Interrupt Source CCR
Mask Local Enable HPRIO Value
to Elevate
$FFFE, $FFFF External Reset, Power On Reset or Low
Voltage Reset (see CRG Flags Register
to determine reset source) None None
$FFFC, $FFFD Clock Monitor fail reset None COPCTL (CME, FCME)
$FFFA, $FFFB COP failure reset None COP rate select
$FFF8, $FFF9 Unimplemented instruction trap None None
Device User Guide — 9S12C128DGV1/D V01.05
69
5.3 Resets
Resets are a subset of the interrupts featured inTable 5-1. The different sources capable of generating a
system reset are summarized in Table 5-2. When a reset occurs, MCU registers and control bits are
$FFF6, $FFF7 SWI None None
$FFF4, $FFF5 XIRQ X-Bit None
$FFF2, $FFF3 IRQ I-Bit INTCR (IRQEN) $F2
$FFF0, $FFF1 Real Time Interrupt I-Bit CRGINT (RTIE) $F0
$FFEE, $FFEF Standard Timer channel 0 I-Bit TIE (C0I) $EE
$FFEC, $FFED Standard Timer channel 1 I-Bit TIE (C1I) $EC
$FFEA, $FFEB Standard Timer channel 2 I-Bit TIE (C2I) $EA
$FFE8, $FFE9 Standard Timer channel 3 I-Bit TIE (C3I) $E8
$FFE6, $FFE7 Standard Timer channel 4 I-Bit TIE (C4I) $E6
$FFE4, $FFE5 Standard Timer channel 5 I-Bit TIE (C5I) $E4
$FFE2, $FFE3 Standard Timer channel 6 I-Bit TIE (C6I) $E2
$FFE0, $FFE1 Standard Timer channel 7 I-Bit TIE (C7I) $E0
$FFDE, $FFDF Standard Timer overflow I-Bit TMSK2 (TOI) $DE
$FFDC, $FFDD Pulse accumulator A overflow I-Bit PACTL (PAOVI) $DC
$FFDA, $FFDB Pulse accumulator input edge I-Bit PACTL (PAI) $DA
$FFD8, $FFD9 SPI I-Bit SPICR1 (SPIE, SPTIE) $D8
$FFD6, $FFD7 SCI I-Bit SCICR2
(TIE, TCIE, RIE, ILIE) $D6
$FFD4, $FFD5 Reserved
$FFD2, $FFD3 ATD I-Bit ATDCTL2 (ASCIE) $D2
$FFD0, $FFD1 Reserved
$FFCE, $FFCF Port J I-Bit PIEP (PIEP7-6) $CE
$FFCC, $FFCD Reserved
$FFCA, $FFCB Reserved
$FFC8, $FFC9 Reserved
$FFC6, $FFC7 CRG PLL lock I-Bit PLLCR (LOCKIE) $C6
$FFC4, $FFC5 CRG Self Clock Mode I-Bit PLLCR (SCMIE) $C4
$FFBA to $FFC3 Reserved
$FFB8, $FFB9 FLASH I-Bit FCNFG (CCIE, CBEIE) $B8
$FFB6, $FFB7 CAN wake-up1I-Bit CANRIER (WUPIE) $B6
$FFB4, $FFB5 CAN errors1I-Bit CANRIER (CSCIE, OVRIE) $B4
$FFB2, $FFB3 CAN receive1I-Bit CANRIER (RXFIE) $B2
$FFB0, $FFB1 CAN transmit1I-Bit CANTIER (TXEIE[2:0]) $B0
$FF90 to $FFAF Reserved
$FF8E, $FF8F Port P I-Bit PIEP (PIEP7-0) $8E
$FF8C, $FF8D PWM Emergency Shutdown I-Bit PWMSDN(PWMIE) $8C
$FF8A, $FF8B VREG LVI I-Bit CTRL0 (LVIE) $8A
$FF80 to $FF89 Reserved
NOTES:
1. Not available on MC9S12GC-Family members
Device User Guide — 9S12C128DGV1/D V01.05
70
changed to known start-up states. Refer to the respective module Block User Guides for register reset
states.
5.3.1 Reset Summary Table
5.3.2 Effects of Reset
When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the
respective module Block User Guides for register reset states. Refer to the HCS12 Multiplexed External
Bus Interface (MEBI) Block Guide for mode dependent pin configuration of port A, B and E out of reset.
Refer to the PIM Block User Guide for reset configurations of all peripheral module ports.
Refer to Figure 1-2 to Figure 1-5 footnotes for locations of the memories depending on the operating
mode after reset.
The RAM array is not automatically initialized out of reset.
NOTE:
For devices assembled in 48-pin or 52-pin LQFP packages all non-bonded out pins
should be configured as outputs after reset in order to avoid current drawn from
floating inputs. Refer to
Table 2-1
for affected pins.
Section 6 HCS12 Core Block Description
Consult the individual block guides for information about the HCS12 core modules, i.e. central processing
unit (CPU), interrupt module (INT), module mapping control module (MMC), multiplexed external bus
interface (MEBI), debug12 module (DBG12) and background debug mode module (BDM).
Where the CPU12 Reference Manual refers to cycles this is equivalent to device bus clock periods.
6.1 Device-specific information
6.1.1 PPAGE
External paging is not supported on these devices. In order to access the 16K flash blocks in the address
range $8000-$BFFF the PPAGE register must be loaded with the corresponding value for this range. Refer
to Table 6-1 for device specific page mapping.
Table 5-2 Reset Summary
Reset Priority Source Vector
Power-on Reset 1 CRG Module $FFFE, $FFFF
External Reset 1 RESET pin $FFFE, $FFFF
Low Voltage Reset 1 VREG Module $FFFE, $FFFF
Clock Monitor Reset 2 CRG Module $FFFC, $FFFD
COP Watchdog Reset 3 CRG Module $FFFA, $FFFB
Device User Guide — 9S12C128DGV1/D V01.05
71
For all devices Flash Page 3F is visible in the $C000-$FFFF range if ROMON is set. For all devices (ecept
9S12GC16) Page 3E is also visible in the $4000-$7FFF range if ROMHM is cleared and ROMON is set.
For all devices apart from MC9S12C32 Flash Page 3D is visible in the $0000-$3FFF range if ROMON is
set...
Table 6-1 Device Specific Flash PAGE Mapping
6.1.2 BDM alternate clock
The BDM section of S12 Core User Guide reference to alternate clock is equivalent to oscillator clock.
6.1.3 Extended Address Range Emulation Implications
In order to emulate the MC9S12GC or MC9S12C-Family devices, external addressing of a 128K memory
map is required. This is provided in a 112 LQFP package version which includes the 3 necessary extra
external address bus signals via PortK[2:0]. This package version is for emulation only and not provided
as a general production package.
The reset state of DDRK is $00, configuring the pins as inputs.
The reset state of PUPKE in the PUCR register is “1” enabling the internal PortK pullups.
In this reset state the pull-ups provide a defined state and prevent a floating input, thereby preventing
unnecessary current flow at the input stage.
Device PAGE PAGE visible with PPAGE contents
MC9S12GC16 3F $00,$01,$02,$03,$04,$05,$06,$07,$08,$09......$36,$37,$38,$39,$3A,$3B,$3C,$3D,$3E,$3F
MC9S12C32
MC9S12GC32
3E $00,$02,$04,$06,$08,$0A,$0C,$0E,$10,$12......$2C,$2E,$30,$32,$34,$36,$38,$3A,$3C,$3E
3F $01,$03,$05,$07,$09,$0B,$0D,$0F,$11,$13.....$2D,$2F,$31,$33,$35,$37,$39,$3B,$3D,$3F
MC9S12C64
MC9S12GC64
3C $00,$04,$08,$0C,$10,$14,$18,$1C,$20,$24,$28,$2C,$30,$34,$38,$3C
3D $01,$05,$09,$0D,$11,$15,$19,$1D,$21,$25,$29,$2D,$31,$35,$39,$3D
3E $02,$06,$0A,$0E,$12,$16,$1A,$1E,$22,$26,$2A,$2E,$32,$36,$3A,$3E
3F $03,$07,$0B,$0F,$13,$17,$1B,$1F,$23,$27,$2B,$2F,$33,$37,$3B,$3F
MC9S12C96
3A $00,$02,$08,$0A,$10,$12,$18,$1A,$20,$22,$28,$2A,$30,$32,$38,$3A
3B $01,$03,$09,$0B,$11,$13,$19,$1B,$21,$23,$29,$2B,$31,$33,$39,$3B
3C $04,$0C,$14,$1C,$24,$2C,$34,$3C
3D $05,$0D,$15,$1D,$25,$2D,$35,$3D
3E $06,$0E,$16,$1E,$26,$2E,$36,$3E
3F $07,$0F,$17,$1F,$27,$2F,$37,$3F
MC9S12C128
MC9S12GC128
38 $00,$08,$10,$18,$20,$28,$30,$38
39 $01,$09,$11,$19,$21,$29,$31,$39
3A $02,$0A,$12,$1A,$22,$2A,$32,$3A
3B $03,$0B,$13,$1B,$23,$2B,$33,$3B
3C $04,$0C,$14,$1C,$24,$2C,$34,$3C
3D $05,$0D,$15,$1D,$25,$2D,$35,$3D
3E $06,$0E,$16,$1E,$26,$2E,$36,$3E
3F $07,$0F,$17,$1F,$27,$2F,$37,$3F
Device User Guide — 9S12C128DGV1/D V01.05
72
To prevent unnecessary current flow in production package options, the states of DDRK and PUPKE
should not be changed by software.
Section 7 Voltage Regulator (VREG) Block Description
Consult the VREG Block User Guide for information about the dual output linear voltage regulator.
7.1 Device-specific information
The VREG is part of the IPBus domain.
7.1.1 VREGEN
VREGEN is connected internally to VDDR.
7.1.2 VDD1, VDD2, VSS1, VSS2
In the 80 pin QFP package versions, both internal VDD and VSS of the 2.5V domain are bonded out on 2
sides of the device as two pin pairs (VDD1, VSS1 & VDD2, VSS2). VDD1 and VDD2 are connected
together internally. VSS1 and VSS2 are connected together internally.
The extra pin pair enables systems using the 80 pin package to employ better supply routing and further
decoupling.
Section 8 Recommended Printed Circuit Board Layout
The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the
MCU itself. The following rules must be observed:
Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the
corresponding pins (C1 - C6).
Central point of the ground star should be the VSSR pin.
Use low ohmic low inductance connections between VSS1, VSS2 and VSSR.
VSSPLL must be directly connected to VSSR.
Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7,
C8, C11 and Q1 as small as possible.
Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the
connection area to the MCU.
Central power input should be fed in at the VDDA/VSSA pins.
Device User Guide — 9S12C128DGV1/D V01.05
73
Table 8-1 Recommended External Component Values
Component Purpose Type Value
C1 VDD1 filter capapcitor ceramic X7R 220nF, 470nF1
NOTES:
1. In 48LQFP and 52LQFP package versions, VDD2 is not available. Thus 470nF must be connected
to VDD1.
C2 VDD2 filter capacitor (80 QFP only) ceramic X7R 220nF
C3 VDDA filter capacitor ceramic X7R 100nF
C4 VDDR filter capacitor X7R/tantalum >=100nF
C5 VDDPLL filter capacitor ceramic X7R 100nF
C6 VDDX filter capacitor X7R/tantalum >=100nF
C7 OSC load capacitor See PLL specification chapter
C8 OSC load capacitor
C9 PLL loop filter capacitor See PLL specification chapter
C10 PLL loop filter capacitor
C11 DC cutoff capacitor Colpitts mode only, if recommended by
quartz manufacturer
R1 PLL loop filter resistor See PLL Specification chapter
R2 / RBPLL loop filter resistor Pierce mode only
R3 / RSPLL loop filter resistor
Q1 Quartz
Device User Guide — 9S12C128DGV1/D V01.05
74
Figure 8-1 Recommended PCB Layout (48 LQFP)
C5
C4
C1
C6
C3
C8
C7
Q1
C10
C9
R1
VDDX
VSSX
VDDR
VSSR
VDD1
VSS1
VDDPLL
VSSPLL
VDDA
VSSA
C11
Oscillator in
Note:
Colpitts mode.
Device User Guide — 9S12C128DGV1/D V01.05
75
)
Figure 8-2 Recommended PCB Layout (52 LQFP)
C4
C1
C6
C8
C7
Q1
C10
C9
R1
VDDX
VSSX
VDDR
VSSR
VDD1
VSS1
VDDPLL
VSSPLL
VDDA
VSSA
C11
NOTE: Oscillator in Colpitts mode.
C3
C5
Device User Guide — 9S12C128DGV1/D V01.05
76
)
Figure 8-3 Recommended PCB Layout (80 QFP)
VDDA
C5
C4
C8
C7
Q1
C10
C9
R1
VDDR
VSSR
VDDPLL
VSSPLL
C11
C6
C3
VDDX
VSSX
VSSA
C1
VDD1
VSS1
C2
VDD2
VSS2
NOTE: Oscillator in Colpitts mode.
Device User Guide — 9S12C128DGV1/D V01.05
77
Figure 8-4 Recommended PCB Layout for 48 LQFP Pierce Oscillator
C4
C1
C6
VDDX
VSSX
VDDR
VSSR
VDD1
VSS1
VDDA
VSSA
C3
C5
C10
C9
R1
VSSPLL
VDDPLL
R2
C7
R3
C8
Q1
Device User Guide — 9S12C128DGV1/D V01.05
78
Figure 8-5 Recommended PCB Layout for 52 LQFP Pierce Oscillator
C4
C1
C6
VDDX
VSSX
VDDR
VSSR
VDD1
VSS1
VDDA
VSSA
C3
C5
C10
C9
R1
VSSPLL
VDDPLL
R2
C7
R3
C8
Q1
Device User Guide — 9S12C128DGV1/D V01.05
79
Figure 8-6 Recommended PCB Layout for 80QFP Pierce Oscillator
Section 9 Clock Reset Generator (CRG) Block Description
Consult the CRG Block User Guide for information about the Clock and Reset Generator module.
9.1 Device-specific information
The CRG is part of the IPBus domain.
C5
C4
C3
C2
C10
C9
R1
C6
C1
VDD1
VSS1
VSS2
VDD2
VSSR
VDDR
VSSPLL
VDDPLL
VDDA
VSSA
VSSX
VDDX
R2
C7
R3
C8
Q1
VSSPLL
Device User Guide — 9S12C128DGV1/D V01.05
80
The Low Voltage Reset feature uses the low voltage reset signal from the VREG module as an input to the
CRG module. When the regulator output voltage supply to the internal chip logic falls below a specified
threshold the LVR signal from the VREG module causes the CRG module to generate a reset. Consult the
VREG Block User Guide for voltage level specifications.
9.1.1 XCLKS
The XCLKS input signal is active low (see 2.3.8 PE7 / NOACC / XCLKS — Port E I/O Pin 7).
Section 10 Oscillator (OSC) Block Description
Consult the OSC Block User Guide for information about the Oscillator module.
Section 11 Timer (TIM) Block Description
Consult the TIM_16B8C Block User Guide for information about the Timer module.
Section 12 Analog to Digital Converter (ATD) Block
Description
12.1 Device-specific information
12.1.1 VRL (voltage reference low)
In the 48 and 52 pin package versions, the VRL pad is bonded internally to the VSSA pin.
Consult the ATD_10B8C Block User Guide for further information about the A/D Converter module.
Section 13 Serial Communications Interface (SCI) Block
Description
Consult the SCI Block User Guide for information about the Asynchronous Serial Communications
Interface module.
Section 14 Serial Peripheral Interface (SPI) Block
Description
Consult the SPI Block User Guide for information about the Serial Peripheral Interface module.
Device User Guide — 9S12C128DGV1/D V01.05
81
Consult the SPI Block User Guide for information about the Synchronous Serial Communications
Interface module.
Section 15 Flash Block Description
Consult the FTS16K Block User Guide for information about the Flash module for the MC9S12GC16.
Consult the FTS32K Block User Guide for information about the Flash module for the MC9S12C32 or
MC9S12GC32.
Consult the FTS64K Block User Guide for information about the Flash module for the MC9S12C64 or
MC9S12GC64.
Consult the FTS96K Block User Guide for information about the Flash module for the MC9S12C96.
Consult the FTS128K Block User Guide for information about the Flash module for the MC9S12C128or
MC9S12GC128.
Section 16 RAM Block Description
This module supports single-cycle misaligned word accesses without wait states.
The MC912GC16 features a single 1K byte RAM module.
The MC9S12C32 and MC9S12GC32 feature a 2K byte RAM module.
The MC9S12C64, MC9S12GC64, MC9S12C96, MC9S12C128 and MC9S12GC128 versions feature a
4K byte RAM module.
Section 17 Pulse Width Modulator (PWM) Block
Description
Consult the PWM_8B6C Block User Guide for information about the Pulse Width Modulator Module.
Section 18 MSCAN Block Description
Consult the MSCAN Block User Guide for information about the Motorola Scalable CAN Module.
This module is not available on the MC9GC-Family Members.
Section 19 Port Integration Module (PIM) Block Description
Device User Guide — 9S12C128DGV1/D V01.05
82
Consult the PIM_9C32 Block User Guide for information about the Port Integration Module for all
versions of the MC9DS12GC and MC9S12C-Family.
The MODRR register within the PIM allows for mapping of PWM channels to PortT in the absence of
PortP pins for the low pin count packages. For the 80QFP package option it is recommended not to use
MODRR since this is intended to support PWM channel availability in low pin count packages. Note that
when mapping PWM channels to PortT in an 80QFP option, the associated PWM channels are then
mapped to both PortP and PortT.
Device User Guide — 9S12C128DGV1/D V01.05
83
Appendix A Electrical Characteristics
A.1 General
NOTE:
The electrical characteristics given in this section are preliminary and should be
used as a guide only. Values cannot be guaranteed by Motorola and are subject to
change without notice.
NOTE:
The parts are specified and tested over the 5V and 3.3V ranges. For the
intermediate range, generally the electrical specifications for the 3.3V range
apply, but the parts are not tested in production test in the intermediate range.
This supplement contains the most accurate electrical information for the MC9S12C-Family
microcontrollers available at the time of publication. The information should be considered
PRELIMINARY and is subject to change.
This introduction is intended to give an overview on several common topics like power supply, current
injection etc.
A.1.1 Parameter Classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the
customer a better understanding the following classification is used and the parameters are tagged
accordingly in the tables where appropriate.
NOTE:
This classification will be added at a later release of the specification
P: Those parameters are guaranteed during production testing on each individual device.
C: Those parameters are achieved by the design characterization by measuring a statistically relevant
sample size across process variations. They are regularly verified by production monitors.
T: Those parameters are achieved by design characterization on a small sample size from typical devices.
All values shown in the typical column are within this category.
D: Those parameters are derived mainly from simulations.
A.1.2 Power Supply
The MC9S12C-Family and MC9S12GC-Family members utilize several pins to supply power to the I/O
ports, A/D converter, oscillator and PLL as well as the internal logic.
The VDDA, VSSA pair supplies the A/D converter.
The VDDX, VSSX pair supplies the I/O pins
The VDDR, VSSR pair supplies the internal voltage regulator.
VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic.
VDDPLL, VSSPLL supply the oscillator and the PLL.
Device User Guide — 9S12C128DGV1/D V01.05
84
VSS1 and VSS2 are internally connected by metal.
VDD1 and VDD2 are internally connected by metal.
VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD
protection.
NOTE:
In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5
is used for either VSSA, VSSR and VSSX unless otherwise noted.
IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR
pins.
VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and
VSSPLL.
IDD is used for the sum of the currents flowing into VDD1 and VDD2.
A.1.3 Pins
There are four groups of functional pins.
A.1.3.1 5V I/O pins
Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog
inputs, BKGD pin and the RESET inputs.The internal structure of all those pins is identical, however some
of the functionality may be disabled. E.g. pull-up and pull-down resistors may be disabled permanently.
A.1.3.2 Analog Reference
This class is made up by the two VRH and VRL pins. In 48 and 52 pin package versions the VRL pad is
bonded to the VSSA pin.
A.1.3.3 Oscillator
The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied
by VDDPLL.
A.1.3.4 TEST
This pin is used for production testing only.
A.1.4 Current Injection
Power supply must maintain regulation within operating VDD5 or VDD range during instantaneous and
operating maximum current conditions. If positive injection current (Vin >V
DD5) is greater than IDD5, the
injection current may flow out of VDD5 and could result in external power supply going out of regulation.
Insure external VDD5 load will shunt current greater than maximum injection current. This will be the
greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is
very low which would reduce overall power consumption.
Device User Guide — 9S12C128DGV1/D V01.05
85
A.1.5 Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima
is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the
device.
This device contains circuitry protecting against damage due to high static voltage or electrical fields;
however, it is advised that normal precautions be taken to avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused
inputs are tied to an appropriate logic voltage level (e.g., either VSS5 or VDD5).
Table A-1 Absolute Maximum Ratings
Num Rating Symbol Min Max Unit
1 I/O, Regulator and Analog Supply Voltage VDD5 -0.3 6.5 V
2Digital Logic Supply Voltage1
NOTES:
1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply.
The absolute maximum ratings apply when the device is powered from an external source.
VDD -0.3 3.0 V
3PLL Supply Voltage (1) VDDPLL -0.3 3.0 V
4 Voltage difference VDDX to VDDR and VDDA VDDX -0.3 0.3 V
5 Voltage difference VSSX to VSSR and VSSA VSSX -0.3 0.3 V
6 Digital I/O Input Voltage VIN -0.3 6.5 V
7 Analog Reference VRH, VRL -0.3 6.5 V
8 XFC, EXTAL, XTAL inputs VILV -0.3 3.0 V
9 TEST input VTEST -0.3 10.0 V
10 Instantaneous Maximum Current
Single pin limit for all digital I/O pins 2
2. All digital I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA.
ID-25 +25 mA
11 Instantaneous Maximum Current
Single pin limit for XFC, EXTAL, XTAL3
3. These pins are internally clamped to VSSPLL and VDDPLL
IDL -25 +25 mA
12 Instantaneous Maximum Current
Single pin limit for TEST4
4. This pin is clamped low to VSSX, but not clamped high. This pin must be tied low in applications.
IDT -0.25 0 mA
13 Operating Temperature Range (packaged) TA– 40 125 °C
14 Operating Temperature Range (junction) TJ– 40 140 °C
15 Storage Temperature Range Tstg – 65 155 °C
Device User Guide — 9S12C128DGV1/D V01.05
86
A.1.6 ESD Protection and Latch-up Immunity
All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade
Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body
Model (HBM), the Machine Model (MM) and the Charge Device Model.
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification. Complete DC parametric and functional testing is performed per the applicable device
specification at room temperature followed by hot temperature, unless specified otherwise in the device
specification.
A.1.7 Operating Conditions
This chapter describes the operating conditions of the devices. Unless otherwise noted those conditions
apply to all the following data.
Table A-2 ESD and Latch-up Test Conditions
Model Description Symbol Value Unit
Human Body
Series Resistance R1 1500 Ohm
Storage Capacitance C 100 pF
Number of Pulse per pin
positive
negative --
3
3
Machine
Series Resistance R1 0 Ohm
Storage Capacitance C 200 pF
Number of Pulse per pin
positive
negative --
3
3
Latch-up Minimum input voltage limit -2.5 V
Maximum input voltage limit 7.5 V
Table A-3 ESD and Latch-Up Protection Characteristics
Num C Rating Symbol Min Max Unit
1 C Human Body Model (HBM) VHBM 2000 - V
2 C Machine Model (MM) VMM 200 - V
3 C Charge Device Model (CDM) VCDM 500 - V
4C
Latch-up Current at 125°C
positive
negative
ILAT +100
-100 -mA
5C
Latch-up Current at 27°C
positive
negative
ILAT +200
-200 -mA
Device User Guide — 9S12C128DGV1/D V01.05
87
NOTE:
Instead of specifying ambient temperature all parameters are specified for the more
meaningful silicon junction temperature. For power dissipation calculations refer
to Section A.1.8 Power Dissipation and Thermal Characteristics.
A.1.8 Power Dissipation and Thermal Characteristics
Power dissipation and thermal characteristics are closely related. The user must assure that the maximum
operating junction temperature is not exceeded. The average chip-junction temperature (TJ)in°C can be
obtained from:
The total power dissipation can be calculated from:
Table A-4 Operating Conditions
Rating Symbol Min Typ Max Unit
I/O, Regulator and Analog Supply Voltage VDD5 2.97 5 5.5 V
Digital Logic Supply Voltage1
NOTES:
1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The
absolute maximum ratings apply when this regulator is disabled and the device is powered from an external
source.
VDD 2.35 2.5 2.75 V
PLL Supply Voltage (1) VDDPLL 2.35 2.5 2.75 V
Voltage Difference VDDX to VDDA VDDX -0.1 0 0.1 V
Voltage Difference VSSX to VSSR and VSSA VSSX -0.1 0 0.1 V
Oscillator fosc 0.5 - 16 MHz
Bus Frequency fbus2
2. Some blocks e.g. ATD (conversion) and NVMs (program/erase) require higher bus frequencies for proper oper-
ation.
0.25 - 25 MHz
Operating Junction Temperature Range TJ-40 - 140 °C
TJTAPDΘJA
()+=
TJJunction Temperature, [°C]=
TAAmbient Temperature, [°C]=
PDTotal Chip Power Dissipation, [W]=
ΘJA Package Thermal Resistance, [°C/W]=
PDPINT PIO
+=
PINT Chip Internal Power Dissipation, [W]=
Device User Guide — 9S12C128DGV1/D V01.05
88
Two cases with internal voltage regulator enabled and disabled must be considered:
1. Internal Voltage Regulator disabled
Which is the sum of all output currents on I/O ports associated with VDDX and VDDM.
For RDSON is valid:
respectively
2. Internal voltage regulator enabled
IDDR is the current shown in Table A-8 and not the overall current flowing into VDDR, which
additionally contains the current flowing into the external loads with output high.
PINT IDD VDD
IDDPLL VDDPLL
IDDA
+V
DDA
+=
PIO RDSON
i
IIOi
2
=
RDSON
VOL
IOL
------------ for outputs driven low;=
RDSON
VDD5 VOH
IOH
------------------------------------ for outputs driven high;=
PINT IDDR VDDR
IDDA VDDA
+=
PIO RDSON
i
IIOi
2
=
Device User Guide — 9S12C128DGV1/D V01.05
89
Which is the sum of all output currents on I/O ports associated with VDDX and VDDR.
A.1.9 I/O Characteristics
This section describes the characteristics of all I/O pins. All parameters are not always applicable, e.g. not
all pins feature pull up/down resistances.
Table A-5 Thermal Package Characteristics1
NOTES:
1. The values for thermal resistance are achieved by package simulations
Num C Rating Symbol Min Typ Max Unit
1T
Thermal Resistance LQFP48, single layer PCB2
2. PC Board according to EIA/JEDEC Standard 51-2
θJA --69
oC/W
2T
Thermal Resistance LQFP48, double sided PCB with
2 internal planes3
3. PC Board according to EIA/JEDEC Standard 51-7
θJA --53
oC/W
3 T Junction to Board LQFP48 θJB 30 oC/W
4 T Junction to Case LQFP48 θJC 20 oC/W
5 T Junction to Package Top LQFP48 ΨJT 4oC/W
6 T Thermal Resistance LQFP52, single sided PCB θJA --65
oC/W
7T
Thermal Resistance LQFP52, double sided PCB with
2 internal planes θJA --49
oC/W
8 T Junction to Board LQFP52 θJB 31 oC/W
9 T Junction to Case LQFP52 θJC 17 oC/W
10 T Junction to Package Top LQFP52 ΨJT 3oC/W
11 T Thermal Resistance QFP 80, single sided PCB θJA --52
oC/W
12 T Thermal Resistance QFP 80, double sided PCB with
2 internal planes θJA --42
oC/W
13 T Junction to Board QFP80 θJB 28 oC/W
14 T Junction to Case QFP80 θJC 18 oC/W
15 T Junction to Package Top QFP80 ΨJT 4oC/W
Device User Guide — 9S12C128DGV1/D V01.05
90
Table A-6 5V I/O Characteristics
Conditions are 4.5< VDDX <5.5V Termperature from -40˚C to +140˚C, unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 P Input High Voltage VIH 0.65*VDD5 --V
T Input High Voltage VIH - - VDD5 + 0.3 V
2 P Input Low Voltage VIL --
0.35*VDD5 V
T Input Low Voltage VIL VSS5 - 0.3 - - V
3 C Input Hysteresis VHYS 250 mV
4P
Input Leakage Current (pins in high ohmic input
mode)1
Vin = VDD5 or VSS5
NOTES:
1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for
each 8 C to 12 C in the temperature range from 50 C to 125 C.
Iin –1 - 1 µA
5C
Output High Voltage (pins in output mode)
Partial Drive IOH = –2mA VOH VDD5 – 0.8 --V
6P
Output High Voltage (pins in output mode)
Full Drive IOH = –10mA VOH VDD5 – 0.8 --V
7C
Output Low Voltage (pins in output mode)
Partial Drive IOL = +2mA VOL - - 0.8 V
8P
Output Low Voltage (pins in output mode)
Full Drive IOL = +10mA VOL - - 0.8 V
9P
Internal Pull Up Device Current,
tested at VIL Max. IPUL - - -130 µA
10 C Internal Pull Up Device Current,
tested at VIH Min. IPUH -10 - - µA
11 P Internal Pull Down Device Current,
tested at VIH Min. IPDH - - 130 µA
12 C Internal Pull Down Device Current,
tested at VIL Max. IPDL 10 - - µA
13 D Input Capacitance Cin 7-pF
14 T Injection current2
Single Pin limit
Total Device Limit. Sum of all injected currents
2. Refer to Section A.1.4 Current Injection, for more details
IICS
IICP
-2.5
-25 - 2.5
25 mA
15 P Port P, J Interrupt Input Pulse filtered3
3. Parameter only applies in STOP or Pseudo STOP mode.
tPIGN 3µs
16 P Port P, J Interrupt Input Pulse passed3tPVAL 10 µs
Device User Guide — 9S12C128DGV1/D V01.05
91
Table A-7 3.3V I/O Characteristics
Conditions are VDDX=3.3V +/-10%, Termperature from -40˚C to +140˚C, unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 P Input High Voltage VIH 0.65*VDD5 --V
T Input High Voltage VIH - - VDD5 + 0.3 V
2 P Input Low Voltage VIL --
0.35*VDD5 V
T Input Low Voltage VIL VSS5 - 0.3 - - V
3 C Input Hysteresis VHYS 250 mV
4P
Input Leakage Current (pins in high ohmic input
mode)1
Vin = VDD5 or VSS5
NOTES:
1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for
each 8 C to 12 C in the temperature range from 50 C to 125 C.
Iin –1 - 1 µA
5C
Output High Voltage (pins in output mode)
Partial Drive IOH = –0.75mA VOH VDD5 – 0.4 --V
6P
Output High Voltage (pins in output mode)
Full Drive IOH = –4mA VOH VDD5 – 0.4 --V
7C
Output Low Voltage (pins in output mode)
Partial Drive IOL = +0.9mA VOL - - 0.4 V
8P
Output Low Voltage (pins in output mode)
Full Drive IOL = +4.75mA VOL - - 0.4 V
9P
Internal Pull Up Device Current,
tested at VIL Max. IPUL - - –60 µA
10 C Internal Pull Up Device Current,
tested at VIH Min. IPUH -6 - - µA
11 P Internal Pull Down Device Current,
tested at VIH Min. IPDH --60µA
12 C Internal Pull Down Device Current,
tested at VIL Max. IPDL 6--µA
11 D Input Capacitance Cin 7-pF
12 T Injection current2
Single Pin limit
Total Device Limit. Sum of all injected currents
2. Refer to Section A.1.4 Current Injection, for more details
IICS
IICP
-2.5
-25 - 2.5
25 mA
13 P Port P, J Interrupt Input Pulse filtered3
3. Parameter only applies in STOP or Pseudo STOP mode.
tPIGN 3µs
14 P Port P, J Interrupt Input Pulse passed3tPVAL 10 µs
Device User Guide — 9S12C128DGV1/D V01.05
92
A.1.10 Supply Currents
This section describes the current consumption characteristics of the device as well as the conditions for
the measurements.
A.1.10.1 Measurement Conditions
All measurements are without output loads. Unless otherwise noted the currents are measured in single
chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator.
A.1.10.2 Additional Remarks
In expanded modes the currents flowing in the system are highly dependent on the load at the address, data
and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be
given. A very good estimate is to take the single chip currents and add the currents due to the external
loads.
Device User Guide — 9S12C128DGV1/D V01.05
93
Table A-8 Supply Current Characteristics for MC9S12C32
Conditions are shown in Table A-4 with internal regulator enabled unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 P Run Supply Current Single Chip IDD5 35 mA
2P
P
C
Wait Supply current All modules enabled
VDDR<4.9V, only RTI enabled(2)
VDDR>4.9V, only RTI enabled
IDDW 3.5
2.5
30
8mA
3
C
P
C
P
C
P
C
P
Pseudo Stop Current (RTI and COP disabled)(2)(3)
-40°C
27°C
85°C
"C" Temp Option 100˚C
105°C
"V" Temp Option 120˚C
125°C
"M" Temp Option 140°C
IDDPS1
NOTES:
1. STOP current measured in production test at increased junction temperature, hence for Temp Option "C" the test is
carried out at 100˚C although the Temperature specification is 85˚C. Similarly for "v" and "M" options the temperature
used in test lies 15˚C above the temperature option specification.
340
360
500
550
590
720
780
1100
450
1450
1900
4500
µA
4
C
C
C
C
C
Pseudo Stop Current (RTI and COP enabled)23
-40°C
27°C
85°C
105°C
125°C
2. PLL off
3. At those low power dissipation levels TJ = TA can be assumed
IDDPS1
540
700
750
880
1300
µA
5
C
P
C
P
C
P
C
P
Stop Current (3)
-40°C
27°C
85°C
"C" Temp Option 100˚C
105°C
"V" Temp Option 120˚C
125°C
"M" Temp Option 140°C
IDDS(1)
10
20
100
140
170
300
350
520
80
1000
1400
4000
µA
Device User Guide — 9S12C128DGV1/D V01.05
94
Table A-9 Supply Current Characteristics for MC9S12C64,MC9S12C96,MC9S12C128
Conditions are shown in Table A-4 with internal regulator enabled unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 P Run Supply Current Single Chip, IDD5 45 mA
2P
P
C
Wait Supply current All modules enabled
VDDR<4.9V, only RTI enabled(2)
VDDR>4.9V, only RTI enabled
IDDW 2.5
3.5
33
8mA
6
C
P
C
P
C
P
C
P
Pseudo Stop Current (RTI and COP disabled)(2)(3)
-40°C
27°C
85°C
"C" Temp Option 100˚C
105°C
"V" Temp Option 120˚C
125°C
"M" Temp Option 140°C
IDDPS1
NOTES:
1. STOP current measured in production test at increased junction temperature, hence for Temp Option "C" the test is
carried out at 100˚C although the Temperature specification is 85˚C. Similarly for "v" and "M" options the temperature
used in test lies 15˚C above the temperature option specification.
190
200
300
400
450
600
650
1000
250
1400
1900
4800
µA
4
C
C
C
C
C
Pseudo Stop Current (RTI and COP enabled)23
-40°C
27°C
85°C
105°C
125°C
2. PLL off
3. At those low power dissipation levels TJ = TA can be assumed
IDDPS1
370
500
590
780
1200
µA
5
C
P
C
P
C
P
C
P
Stop Current (3)
-40°C
27°C
85°C
"C" Temp Option 100˚C
105°C
"V" Temp Option 120˚C
125°C
"M" Temp Option 140°C
IDDS(1)
12
25
130
160
200
350
400
600
100
1200
1700
4500
µA
Device User Guide — 9S12C128DGV1/D V01.05
95
Appendix B Electrical Specifications
B.1 Voltage Regulator Operating Conditions
Table B-1 Voltage Regulator Electrical Parameters
Nu
mC Characteristic Symbol Min Typical Max Unit
1 P Input Voltages VVDDR, A 2.97 5.5 V
2C
Regulator Current
Reduced Power Mode
Shutdown Mode
IREG
20
12 50
40 µA
µA
3P
Output Voltage Core
Full Performance Mode VDD 2.35 2.5 2.75 V
4P
Low Voltage Interrupt1
Assert Level C32, GC32
Assert Level C64, C96,C128
GC64, GC128
Deassert Level C32, GC32
Deassert Level C64, C96, C128
GC64, GC128
NOTES:
1. Monitors VDDA, active only in Full Performance Mode. Indicates I/O & ADC performance degradation due to low supply
voltage.
VLVIA
VLVIA
VLVID
VLVID
4.30
4.10
4.42
4.25
4.53
4.37
4.65
4.52
4.77
4.66
4.89
4.77
V
V
V
V
5P
Low Voltage Reset2
Assert Level C32, GC32
Assert Level C64, C96, C128
GC64, GC128
2. Monitors VDD, active only in Full Performance Mode. MCU is monitored by the POR in RPM (see Figure B-1)
VLVRA 2.25
2.25 2.3
2.35 —V
6P
Low Voltage Reset(2)
Deassert Level VLVRD ——
2.55 V
7C
Power-on Reset3
Assert Level
Deassert Level
3. Monitors VDD. Active in all modes.
NOTE:
The electrical characteristics given in this section are preliminary and should be
used as a guide only. Values in this section cannot be guaranteed by Motorola and
are subject to change without notice.
VPORA
VPORD
0.97
2.05 V
V
Device User Guide — 9S12C128DGV1/D V01.05
96
B.2 Chip Power-up and LVI/LVR graphical explanation
Voltage regulator sub modules LVI (low voltage interrupt), POR (power-on reset) and LVR (low voltage
reset) handle chip power-up or drops of the supply voltage. Their function is described in Figure B-1.
Figure B-1 Voltage Regulator - Chip Power-up and Voltage Drops (not scaled)
B.3 Output Loads
B.3.1 Resistive Loads
The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits allows no
external DC loads.
VLVID
VLVIA
VLVRD
VLVRA
VPORD
LVI
POR
LVR
t
VVDDA
VDD
LVI enabled LVI disabled due to LVR
Device User Guide — 9S12C128DGV1/D V01.05
97
B.3.2 Capacitive Loads
The capacitive loads are specified in Table B-2. Ceramic capacitors with X7R dielectricum are required.
Table B-2 Voltage Regulator - Capacitive Loads
Num Characteristic Symbol Min Typical Max Unit
1 VDD external capacitive load CDDext 400 440 12000 nF
2 VDDPLL external capacitive load CDDPLLext 90 220 5000 nF
Device User Guide — 9S12C128DGV1/D V01.05
98
Device User Guide — 9S12C128DGV1/D V01.05
99
B.4 ATD Characteristics
This section describes the characteristics of the analog to digital converter.
VRL is not available as a separate pin in the 48 and 52 pin versions. In this case the internal VRL pad is
bonded to the VSSA pin.
The ATD is specified and tested for both the 3.3V and 5V range. For ranges between 3.3V and 5V the
ATD accuracy is generally the same as in the 3.3V range but is not tested in this range in production test.
B.4.1 ATD Operating Characteristics In 5V Range
The Table B-3 shows conditions under which the ATD operates.
The following constraints exist to obtain full-scale, full range results:
VSSA VRLVINVRHVDDA.This constraint exists since the sample buffer amplifier can not
drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will
effectively be clipped.
B.4.2 ATD Operating Characteristics In 3.3V Range
The Table B-3 shows conditions under which the ATD operates.
The following constraints exist to obtain full-scale, full range results:
VSSA VRL VIN VRH VDDA.This constraint exists since the sample buffer amplifier can not drive
Table B-3 ATD Operating Characteristics
Conditions are shown in Table A-4 unless otherwise noted. Supply Voltage 5V-10% <= VDDA <=5V+10%
Num C Rating Symbol Min Typ Max Unit
1D
Reference Potential Low
High VRL
VRH VSSA
VDDA/2 VDDA/2
VDDA V
V
2C
Differential Reference Voltage1
NOTES:
1. Full accuracy is not guaranteed when differential voltage is less than 4.75V
VRH-VRL 4.75 5.0 5.25 V
3 D ATD Clock Frequency fATDCLK 0.5 2.0 MHz
4D
ATD 10-Bit Conversion Period
Clock Cycles2
Conv, Time at 2.0MHz ATD Clock fATDCLK
2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample
period of 16 ATD clocks.
NCONV10
TCONV10
14
728
14 Cycles
µs
5D
ATD 8-Bit Conversion Period
Clock Cycles2
Conv, Time at 2.0MHz ATD Clock fATDCLK
NCONV10
TCONV10
12
626
13 Cycles
µs
5D
Recovery Time (VDDA=5.0 Volts) tREC 20 µs
6 P Reference Supply current IREF 0.375 mA
Device User Guide — 9S12C128DGV1/D V01.05
100
beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively
be clipped
B.4.3 Factors influencing accuracy
Three factors - source resistance, source capacitance and current injection - have an influenceon the
accuracy of the ATD.
B.4.3.1 Source Resistance:
Due to the input pin leakage current as specified in Table A-6 in conjunction with the source resistance
there will be a voltage drop from the signal source to the ATD input. The maximum source resistance RS
specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or
operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source
resistance is allowable.
B.4.3.2 Source capacitance
When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due
to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input
voltage 1LSB, then the external filter capacitor, Cf 1024 * (CINS- CINN).
Table B-4 ATD Operating Characteristics
Conditions are shown in Table A-4 unless otherwise noted; Supply Voltage 3.3V-10% <= VDDA <= 3.3V+10%
Num C Rating Symbol Min Typ Max Unit
1D
Reference Potential Low
High VRL
VRH
VSSA
VDDA/2 VDDA/2
VDDA
V
V
2 C Differential Reference Voltage VRH-VRL 3.0 3.3 3.6 V
3 D ATD Clock Frequency fATDCLK 0.5 2.0 MHz
4D
ATD 10-Bit Conversion Period
Clock Cycles1
Conv, Time at 2.0MHz ATD Clock fATDCLK
NOTES:
1. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample
period of 16 ATD clocks.
NCONV10
TCONV10
14
728
14 Cycles
µs
5D
ATD 8-Bit Conversion Period
Clock Cycles(1)
Conv, Time at 2.0MHz ATD Clock fATDCLK
NCONV8
TCONV8
12
626
13 Cycles
µs
6D
Recovery Time (VDDA=3.3 Volts) tREC 20 µs
7 P Reference Supply current IREF 0.250 mA
Device User Guide — 9S12C128DGV1/D V01.05
101
B.4.3.3 Current injection
There are two cases to consider.
1. A current is injected into the channel being converted. The channel being stressed has conversion
values of $3FF ($FF in 8-bit mode) for analog inputs greater than VRH and $000 for values less
than VRL unless the current is higher than specified as disruptive conditions.
2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this
current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy
of the conversion depending on the source resistance.
The additional input voltage error on the converted channel can be calculated as VERR =K*R
S*
IINJ, with IINJ being the sum of the currents injected into the two pins adjacent to the converted
channel.
Table B-5 ATD Electrical Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 C Max input Source Resistance RS--1K
2T
Total Input Capacitance
Non Sampling
Sampling
CINN
CINS
10
15 pF
3 C Disruptive Analog Input Current INA -2.5 2.5 mA
4 C Coupling Ratio positive current injection Kp10-4 A/A
5 C Coupling Ratio negative current injection Kn10-2 A/A
Device User Guide — 9S12C128DGV1/D V01.05
102
B.4.4 ATD accuracy (5V Range)
Table B-6 specifies the ATD conversion performance excluding any errors due to current injection, input
capacitance and source resistance.
B.4.5 ATD accuracy (3.3V Range)
Table B-6 specifies the ATD conversion performance excluding any errors due to current injection, input
capacitance and source resistance.
Table B-6 ATD Conversion Performance
Conditions are shown in Table A-4 unless otherwise noted
VREF = VRH - VRL = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV
fATDCLK = 2.0MHz
Num C Rating Symbol Min Typ Max Unit
1 P 10-Bit Resolution LSB 5 mV
2 P 10-Bit Differential Nonlinearity DNL –1 1 Counts
3 P 10-Bit Integral Nonlinearity INL –2 2 Counts
4P
10-Bit Absolute Error1
NOTES:
1. These values include quantization error which is inherently 1/2 count for any A/D converter.
AE -2.5 2.5 Counts
5 P 8-Bit Resolution LSB 20 mV
6 P 8-Bit Differential Nonlinearity DNL –0.5 0.5 Counts
7 P 8-Bit Integral Nonlinearity INL –1.0 ±0.5 1.0 Counts
8P
8-Bit Absolute Error(1) AE -1.5 ±1 1.5 Counts
Table B-7 ATD Conversion Performance
Conditions are shown in Table A-4 unless otherwise noted
VREF = VRH - VRL = 3.328V. Resulting to one 8 bit count = 13mV and one 10 bit count = 3.25mV
fATDCLK = 2.0MHz
Num C Rating Symbol Min Typ Max Unit
1 P 10-Bit Resolution LSB 3.25 mV
2 P 10-Bit Differential Nonlinearity DNL –1.5 1.5 Counts
3 P 10-Bit Integral Nonlinearity INL –3.5 ±1.5 3.5 Counts
4P
10-Bit Absolute Error1
NOTES:
1. These values include the quantization error which is inherently 1/2 count for any A/D converter.
AE -5 ±2.5 5 Counts
5 P 8-Bit Resolution LSB 13 mV
6 P 8-Bit Differential Nonlinearity DNL –0.5 0.5 Counts
7 P 8-Bit Integral Nonlinearity INL –1.5 ±1 1.5 Counts
8P
8-Bit Absolute Error(1) AE -2.0 ±1.5 2.0 Counts
Device User Guide — 9S12C128DGV1/D V01.05
103
For the following definitions see also Figure B-2.
Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.
The Integral Non-Linearity (INL) is defined as the sum of all DNLs:
DNL i() ViVi1
1LSB
------------------------ 1=
INL n() DNL i()
i1=
n
VnV0
1LSB
--------------------n==
Device User Guide — 9S12C128DGV1/D V01.05
104
Figure B-2 ATD Accuracy Definitions
NOTE: Figure B-2
shows only definitions, for specification values refer to
Table B-6
.
1
3.25 Vin
mV
6.5 9.75 13 16.25 19.5 22.75 26 3305 3309 3312 3315 3318 3321 3324 33283292 3295 3299 33023289
0
3
2
5
4
7
6
29.25
$3F7
$3F9
$3F8
$3FB
$3FA
$3FD
$3FC
$3FE
$3FF
$3F4
$3F6
$3F5
8
9
1
2
$FF
$FE
$FD
$3F3
10-Bit Resolution
8-Bit Resolution
Ideal Transfer Curve
10-Bit Transfer Curve
8-Bit Transfer Curve
3286
10-Bit Absolute Error Boundary
8-Bit Absolute Error Boundary
LSB
Vi-1 Vi
DNL
Device User Guide — 9S12C128DGV1/D V01.05
105
B.5 NVM, Flash and EEPROM
B.5.1 NVM timing
The time base for all NVM program or erase operations is derived from the oscillator. A minimum
oscillator frequency fNVMOSC is required for performing program or erase operations. The NVM modules
do not have any means to monitor the frequency and will not prevent program or erase operation at
frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at
a lower frequency a full program or erase transition is not assured.
The Flash program and erase operations are timed using a clock derived from the oscillator using the
FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within the limits
specified as fNVMOP.
The minimum program and erase times shown in Table B-8 are calculated for maximum fNVMOP and
maximum fbus. The maximum times are calculated for minimum fNVMOP and a fbus of 2MHz.
B.5.1.1 Single Word Programming
The programming time for single word programming is dependant on the bus frequency as a well as on
the frequency f¨NVMOP and can be calculated according to the following formula.
B.5.1.2 Row Programming
Generally the time to program a consecutive word can be calculated as:
For the C16, GC16, C32 and GC32 device flash arrays, where up to 32 words in a row can be programmed
consecutively by keeping the command pipeline filled, the time to program a whole row is:
For the C64, GC64, C96, C128 and GC128 device flash arrays, where up to 64 words in a row can be
programmed consecutively by keeping the command pipeline filled, the time to program a whole row is:
Row programming is more than 2 times faster than single word programming.
tswpgm 91
fNVMOP
---------------------
25 1
fbus
----------
+=
tbwpgm 41
fNVMOP
---------------------
91
fbus
----------
+=
tbrpgm tswpgm 31 tbwpgm
+=
tbrpgm tswpgm 63 tbwpgm
+=
Device User Guide — 9S12C128DGV1/D V01.05
106
B.5.1.3 Sector Erase
Erasing either a 512 byte or 1024 byte Flash sector takes:
The setup times can be ignored for this operation.
B.5.1.4 Mass Erase
Erasing a NVM block takes:
This is independent of sector size.
The setup times can be ignored for this operation.
Table B-8 NVM Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 D External Oscillator Clock fNVMOSC 0.5 501
NOTES:
1. Restrictions for oscillator in crystal mode apply!
MHz
2 D Bus frequency for Programming or Erase Operations fNVMBUS 1 MHz
3 D Operating Frequency fNVMOP 150 200 kHz
4 P Single Word Programming Time tswpgm 462
2. Minimum Programming times are achieved under maximum NVM operating frequency f NVMOP and maximum bus frequen-
cy fbus.
74.53
3. Maximum Erase and Programming times are achieved under particular combinations of f NVMOP and bus frequency f bus
. Refer to formulae in Sections A.3.1.1 - A.3.1.4 for guidance.
µs
5 D Flash Burst Programming consecutive word tbwpgm 20.42313µs
6 D Flash Burst Programming Time for 32 Word row tbrpgm 678.421035.53µs
6 D Flash Burst Programming Time for 64 Word row tbrpgm 1331.222027.53µs
7 P Sector Erase Time tera 204
4. Minimum Erase times are achieved under maximum NVM operating frequency f NVMOP .
26.73ms
8 P Mass Erase Time tmass 10041333ms
9 D Blank Check Time Flash per block t check 115
5. Minimum time, if first word in the array is not blank (512 byte sector size).
327786
6. Maximum time to complete check on an erased block (512 byte sector size)
7tcyc
7. Where tcyc is the system bus clock period.
9 D Blank Check Time Flash per block t check 118
8. Minimum time, if first word in the array is not blank (1024 byte sector size)
655469
9. Maximum time to complete check on an erased block (1024 byte sector size).
7tcyc
tera 4000 1
fNVMOP
---------------------
tmass 20000 1
fNVMOP
---------------------
Device User Guide — 9S12C128DGV1/D V01.05
107
B.5.2 NVM Reliability
The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process
monitors and burn-in to screen early life failures.
The failure rates for data retention and program/erase cycling are specified at <2ppm defects over lifetime
at the operating conditions noted.
A program/erase cycle is specified as two transitions of the cell value from erased programmed
erased, 1 0 1.
NOTE:
All values shown in Table B-9 are target values and subject to further extensive
characterization.
Table B-9 NVM Reliability Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1C
Data Retention at an average junction temperature of
TJavg = 85°CtNVMRET 15 Years
2 C Flash number of Program/Erase cycles nFLPE 10,000 Cycles
Device User Guide — 9S12C128DGV1/D V01.05
108
Device User Guide — 9S12C128DGV1/D V01.05
109
B.6 Reset, Oscillator and PLL
This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and
Phase-Locked-Loop (PLL).
B.6.1 Startup
Table B-10 summarizes several startup characteristics explained in this section. Detailed description of the
startup behavior can be found in the Clock and Reset Generator (CRG) Block User Guide.
B.6.1.1 POR
The release level VPORR and the assert level VPORA are derived from the VDD Supply. They are also valid
if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check
are started. If after a time tCQOUT no valid oscillation is detected, the MCU will start using the internal self
clock. The fastest startup time possible is given by nuposc.
B.6.1.2 LVR
The release level VLVRR and the assert level VLVRA are derived from the VDD Supply. They are also valid
if the device is powered externally. After releasing the LVR reset the oscillator and the clock quality check
are started. If after a time tCQOUT no valid oscillation is detected, the MCU will start using the internal self
clock. The fastest startup time possible is given by nuposc.
B.6.1.3 SRAM Data Retention
Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing
code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset
the PORF bit in the CRG Flags Register has not been set.
Table B-10 Startup Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 T POR release level VPORR 2.07 V
2 T POR assert level VPORA 0.97 V
3 D Reset input pulse width, minimum input time PWRSTL 2tosc
4 D Startup from Reset nRST 192 196 nosc
5D
Interrupt pulse width, IRQ edge-sensitive
mode PWIRQ 20 ns
6 D Wait recovery startup time tWRS 14 tcyc
Device User Guide — 9S12C128DGV1/D V01.05
110
B.6.1.4 External Reset
When external reset is asserted for a time greater than PWRSTL the CRG module generates an internal
reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an
oscillation before reset.
B.6.1.5 Stop Recovery
Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR
is performed before releasing the clocks to the system.
B.6.1.6 Pseudo Stop and Wait Recovery
The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in
both modes. The controller can be woken up by internal or external interrupts. After twrs the CPU starts
fetching the interrupt vector.
B.6.2 Oscillator
The device features an internal Colpitts oscillator. By asserting the XCLKS input during reset this
oscillator can be bypassed allowing the input of a square wave. Before asserting the oscillator to the
internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP
or oscillator fail. tCQOUT specifies the maximum time before switching to the internal self clock mode in
case no proper oscillation is detected. The quality monitor also determines the minimum oscillator start-up
Device User Guide — 9S12C128DGV1/D V01.05
111
time tUPOSC. The device features a clock monitor. A time-out is asserted if the frequency of the incoming
clock signal is below the Clock Monitor FailureAssert Frequency fCMFA.
B.6.3 Phase Locked Loop
The oscillator provides the reference clock for the PLL. The PLL´s Voltage Controlled Oscillator (VCO)
is also the system clock source in self clock mode.
B.6.3.1 XFC Component Selection
This section describes the selection of the XFC components to achieve a good filter characteristics.
Table B-11 Oscillator Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1a C Crystal oscillator range (Colpitts) fOSC 0.5 16 MHz
1b C Crystal oscillator range (Pierce) 1(4)
NOTES:
1. Depending on the crystal a damping series resistor might be necessary
fOSC 0.5 40 MHz
2 P Startup Current iOSC 100 µA
3 C Oscillator start-up time (Colpitts) tUPOSC 82
2. fosc = 4MHz, C = 22pF.
1003
3. Maximum value is for extreme cases using high Q, low frequency crystals
ms
4 D Clock Quality check time-out tCQOUT 0.45 2.5 s
5 P Clock Monitor Failure Assert Frequency fCMFA 50 100 200 KHz
6P
External square wave input frequency 4
4. XCLKS =0 during reset
fEXT 0.5 50 MHz
7 D External square wave pulse width low tEXTL 9.5 ns
8 D External square wave pulse width high tEXTH 9.5 ns
9 D External square wave rise time tEXTR 1ns
10 D External square wave fall time tEXTF 1ns
11 D Input Capacitance (EXTAL, XTAL pins) CIN 7pF
12 C DC Operating Bias in Colpitts Configuration
on EXTAL Pin VDCBIAS 1.1 V
Device User Guide — 9S12C128DGV1/D V01.05
112
Figure B-3 Basic PLL functional diagram
The following procedure can be used to calculate the resistance and capacitance values using typical
values for K1, f1 and ich from Table B-12.
The grey boxes show the calculation for fVCO = 50MHz and fref = 1MHz. E.g., these frequencies are used
for fOSC = 4MHz and a 25MHz bus clock.
The VCO Gain at the desired VCO frequency is approximated by:
The phase detector relationship is given by:
ich is the current in tracking mode.
The loop bandwidth fCshould be chosen to fulfill the Gardner’s stability criteria by at least a factor of 10,
typical values are 50. ζ = 0.9 ensures a good transient response.
fosc 1
refdv+1
fref
Phase
Detector
VCO
KV
1
synr+1
fvco
Loop Divider
KΦ
1
2
fcmp
CsR
Cp
VDDPLL
XFC Pin
KVK1e
f1fvco
()
K11V
-----------------------
=100e
60 50()
100
------------------------
=
= -90.48MHz/V
KΦich
KV
==316.7Hz/
fC
2ζfref
⋅⋅
πζ 1ζ2
++


------------------------------------------ 1
10
------ fC
fref
410
-------------- ζ0.9=();<<
fC < 25kHz
Device User Guide — 9S12C128DGV1/D V01.05
113
And finally the frequency relationship is defined as
With the above values the resistance can be calculated. The example is shown for a loop bandwidth
fC=10kHz:
The capacitance Cs can now be calculated as:
The capacitance Cp should be chosen in the range of:
B.6.3.2 Jitter Information
The basic functionality of the PLL is shown in Figure B-3. With each transition of the clock fcmp, the
deviation from the reference clock fref is measured and input voltage to the VCO is adjusted
accordingly.The adjustment is done continuously with no abrupt changes in the clock output frequency.
Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock
jitter. This jitter affects the real minimum and maximum clock periods as illustrated in Figure B-4.
nfVCO
fref
------------- 2 synr 1+()== = 50
R2πnf
C
⋅⋅⋅
KΦ
-----------------------------= =2*π*50*10kHz/(316.7Hz/)=9.9k=~10k
Cs2ζ2
πfCR⋅⋅
----------------------0.516
fCR
---------------ζ0.9=();== 5.19nF =~ 4.7nF
Cs20CpCs10≤≤ Cp = 470pF
Device User Guide — 9S12C128DGV1/D V01.05
114
Figure B-4 Jitter Definitions
The relative deviation of tnom is at its maximum for one clock period, and decreases towards zero for larger
number of clock periods (N).
Defining the jitter as:
For N < 100, the following equation is a good fit for the maximum jitter:
Figure B-5 Maximum bus clock jitter approximation
2 3 N-1 N1
0
tnom
tmax1
tmin1
tmaxN
tminN
JN() max 1 tmax N()
Nt
nom
---------------------
1tmin N()
Nt
nom
---------------------
,



=
J
N() j1
N
-------- j2
+=
1 5 10 20 N
J
(N)
Device User Guide — 9S12C128DGV1/D V01.05
115
This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the
effect of the jitter to a large extent.
Table B-12 PLL Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 P Self Clock Mode frequency fSCM 1 5.5 MHz
2 D VCO locking range fVCO 8 50 MHz
3D
Lock Detector transition from Acquisition to Tracking
mode |∆trk|34
%1
NOTES:
1. % deviation from target frequency
4 D Lock Detection |∆Lock|0 1.5 %(1)
5 D Un-Lock Detection |∆unl|0.5 2.5 %(1)
6D
Lock Detector transition from Tracking to Acquisition
mode |∆unt|68
%(1)
7C
PLLON Total Stabilization delay (Auto Mode) 2
2. fOSC = 4MHz, fBUS = 25MHz equivalent fVCO = 50MHz: REFDV = #$03, SYNR = #$018, Cs = 4.7nF, Cp = 470pF, Rs =
10K.
tstab 0.5 ms
8D
PLLON Acquisition mode stabilization delay (2) tacq 0.3 ms
9D
PLLON Tracking mode stabilization delay (2) tal 0.2 ms
10 D Fitting parameter VCO loop gain K1-100 MHz/V
11 D Fitting parameter VCO loop frequency f160 MHz
12 D Charge pump current acquisition mode | ich | 38.5 µA
13 D Charge pump current tracking mode | ich | 3.5 µA
14 C Jitter fit parameter 1(2) j11.1 %
15 C Jitter fit parameter 2(2) j20.13 %
Device User Guide — 9S12C128DGV1/D V01.05
116
Device User Guide — 9S12C128DGV1/D V01.05
117
B.7 MSCAN
Table B-13 MSCAN Wake-up Pulse Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C Rating Symbol Min Typ Max
1 P MSCAN Wake-up dominant pulse filtered tWUP 2
2 P MSCAN Wake-up dominant pulse pass tWUP 5
Device User Guide — 9S12C128DGV1/D V01.05
118
Device User Guide — 9S12C128DGV1/D V01.05
119
B.8 SPI
Appendix C Electrical Specifications
This section provides electrical parametrics and ratings for the SPI.
In Table C-1 the measurement conditions are listed.
C.1 Master Mode
In Figure C-1 the timing diagram for master mode with transmission format CPHA=0 is depicted.
Figure C-1 SPI Master Timing (CPHA=0)
In Figure C-2 the timing diagram for master mode with transmission format CPHA=1 is depicted.
Table C-1 Measurement Conditions
Description Value Unit
Drive mode full drive mode
Load capacitance CLOAD,
on all outputs 50 pF
Thresholds for delay
measurement points (20% / 80%) VDDX V
SCK
(OUTPUT)
SCK
(OUTPUT)
MISO
(INPUT)
MOSI
(OUTPUT)
SS
1
(OUTPUT)
1
9
5 6
MSB IN2
BIT 6 . . . 1
LSB IN
MSB OUT2LSB OUT
BIT 6 . . . 1
11
4
4
2
10
(CPOL
=
0)
(CPOL
=
1)
3
13
13
1.if configured as an output.
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
12
12
Device User Guide — 9S12C128DGV1/D V01.05
120
Figure C-2 SPI Master Timing (CPHA=1)
In Table C-2 the timing characteristics for master mode are listed.
Table C-2 SPI Master Mode Timing Characteristics
Num C Characteristic Symbol Unit
Min Typ Max
1 P SCK Frequency fsck 1/2048 — 1/2fbus
1 P SCK Period tsck 2 2048 tbus
2 D Enable Lead Time tlead — 1/2 tsck
3 D Enable Lag Time tlag — 1/2 tsck
4 D Clock (SCK) High or Low Time twsck — 1/2 tsck
5 D Data Setup Time (Inputs) tsu 8— — ns
6 D Data Hold Time (Inputs) thi 8— — ns
9 D Data Valid after SCK Edge tvsck — — 30 ns
10 D Data Valid after SS fall (CPHA=0) tvss — — 15 ns
11 D Data Hold Time (Outputs) tho 20 — ns
12 D Rise and Fall Time Inputs trfi —— 8 ns
13 D Rise and Fall Time Outputs trfo —— 8 ns
SCK
(OUTPUT)
SCK
(OUTPUT)
MISO
(INPUT)
MOSI
(OUTPUT)
1
5 6
MSB IN2
BIT 6 . . . 1
LSB IN
MASTER MSB OUT2MASTER LSB OUT
BIT 6 . . . 1
4
4
9
12 13
11
PORT DATA
(CPOL
=
0)
(CPOL
=
1)
PORT DATA
SS
1
(OUTPUT)
212 13 3
1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Device User Guide — 9S12C128DGV1/D V01.05
121
C.2 Slave Mode
In Figure C-3 the timing diagram for slave mode with transmission format CPHA=0 is depicted.
Figure C-3 SPI Slave Timing (CPHA=0)
In Figure C-4 the timing diagram for slave mode with transmission format CPHA=1 is depicted.
SCK
(INPUT)
SCK
(INPUT)
MOSI
(INPUT)
MISO
(OUTPUT)
SS
(INPUT)
1
9
5 6
MSB IN
BIT 6 . . . 1
LSB IN
SLAVE MSB SLAVE LSB OUT
BIT 6 . . . 1
11
4
4
2
7
(CPOL
=
0)
(CPOL
=
1)
3
13
NOTE: Not defined!
12
12
11
SEE
13
NOTE
8
10
see
note
Device User Guide — 9S12C128DGV1/D V01.05
122
Figure C-4 SPI Slave Timing (CPHA=1)
In Table C-3 the timing characteristics for slave mode are listed.
Table C-3 SPI Slave Mode Timing Characteristics
Num C Characteristic Symbol Unit
Min Typ Max
1 D SCK Frequency fsck DC — 1/4fbus
1 P SCK Period tsck 4— tbus
2 D Enable Lead Time tlead 4— tbus
3 D Enable Lag Time tlag 4— tbus
4 D Clock (SCK) High or Low Time twsck 4— tbus
5 D Data Setup Time (Inputs) tsu 8— — ns
6 D Data Hold Time (Inputs) thi 8— — ns
7D
Slave Access Time (time to data
active) ta— — 20 ns
8 D Slave MISO Disable Time tdis — — 22 ns
9 D Data Valid after SCK Edge tvsck ——
30 + tbus 1
NOTES:
1. tbus added due to internal synchronization delay
ns
10 D Data Valid after SS fall tvss ——
30 + tbus 1ns
11 D Data Hold Time (Outputs) tho 20 — ns
12 D Rise and Fall Time Inputs trfi —— 8 ns
13 D Rise and Fall Time Outputs trfo —— 8 ns
SCK
(INPUT)
SCK
(INPUT)
MOSI
(INPUT)
MISO
(OUTPUT)
1
5 6
MSB IN
BIT 6 . . . 1
LSB IN
MSB OUT SLAVE LSB OUT
BIT 6 . . . 1
4
4
9
12 13
11
(CPOL
=
0)
(CPOL
=
1)
SS
(INPUT)
212 13
3
NOTE: Not defined!
SLAVE
7
8
see
note
Device User Guide — 9S12C128DGV1/D V01.05
123
C.3 External Bus Timing
A timing diagram of the external multiplexed-bus is illustrated in Figure C-5 with the actual timing
values shown on table Table C-4. All major bus signals are included in the diagram. While both a data
write and data read cycle are shown, only one or the other would occur on a particular bus cycle.
C.3.1 General Muxed Bus Timing
The expanded bus timings are highly dependent on the load conditions. The timing parameters shown
assume a balanced load across all outputs.
Figure C-5 General External Bus Timing
Addr/Data
(read)
Addr/Data
(write)
addr data
data
5 10 11
8
166
ECLK
1, 2
3 4
addr data
data
12
159
7
14 13
LSTRB
22
NOACC
25
PIPO0
PIPO1, PE6,5
28
20
21
23
26 29
24
27
R/W
17
19
18
PE4
PA, PB
PA, PB
PE2
PE3
PE7
Device User Guide — 9S12C128DGV1/D V01.05
124
Table C-4 Expanded Bus Timing Characteristics (5V Range)
Conditions are 4.75V < VDDX < 5.25V, Junction Temperature -40˚C to +140˚C, CLOAD = 50pF
Num C Rating Symbol Min Typ Max Unit
1 P Frequency of operation (E-clock) fo0 25.0 MHz
2 P Cycle time tcyc 40 ns
3 D Pulse width, E low PWEL 19 ns
4D
Pulse width, E high1PWEH 19 ns
5 D Address delay time tAD 8ns
6D
Address valid time to E rise (PWEL–tAD)t
AV 11 ns
7 D Muxed address hold time tMAH 2ns
8 D Address hold to data valid tAHDS 7ns
9 D Data hold to address tDHA 2ns
10 D Read data setup time tDSR 13 ns
11 D Read data hold time tDHR 0ns
12 D Write data delay time tDDW 7ns
13 D Write data hold time tDHW 2ns
14 D Write data setup time(1) (PWEH–tDDW)tDSW 12 ns
15 D Address access time(1) (tcyc–tAD–tDSR)tACCA 19 ns
16 D E high access time(1) (PWEH–tDSR)tACCE 6ns
17 D Read/write delay time tRWD 7ns
18 D Read/write valid time to E rise (PWEL–tRWD)t
RWV 14 ns
19 D Read/write hold time tRWH 2ns
20 D Low strobe delay time tLSD 7ns
21 D Low strobe valid time to E rise (PWEL–tLSD)t
LSV 14 ns
22 D Low strobe hold time tLSH 2ns
23 D NOACC strobe delay time tNOD 7ns
24 D NOACC valid time to E rise (PWEL–tLSD)t
NOV 14 ns
25 D NOACC hold time tNOH 2ns
26 D IPIPO[1:0] delay time tP0D 27ns
27 D IPIPO[1:0] valid time to E rise (PWEL–tP0D)t
P0V 11 ns
28 D IPIPO[1:0] delay time(1) (PWEH-tP1V)tP1D 225ns
29 D IPIPO[1:0] valid time to E fall tP1V 11 ns
NOTES:
1. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches.
Device User Guide — 9S12C128DGV1/D V01.05
125
Table C-5 Expanded Bus Timing Characteristics (3.3V Range)
Conditions are VDDX=3.3V+/-10%, Junction Temperature -40˚C to +140˚C, CLOAD = 50pF
Num C Rating Symbol Min Typ Max Unit
1 D Frequency of operation (E-clock) fo0 16.0 MHz
2 D Cycle time tcyc 62.5 ns
3 D Pulse width, E low PWEL 30 ns
4D
Pulse width, E high1PWEH 30 ns
5 D Address delay time tAD 16 ns
6D
Address valid time to E rise (PWEL–tAD)t
AV 16 ns
7 D Muxed address hold time tMAH 2ns
8 D Address hold to data valid tAHDS 7ns
9 D Data hold to address tDHA 2ns
10 D Read data setup time tDSR 15 ns
11 D Read data hold time tDHR 0ns
12 D Write data delay time tDDW 15 ns
13 D Write data hold time tDHW 2ns
14 D Write data setup time(1) (PWEH–tDDW)tDSW 15 ns
15 D Address access time(1) tACCA 29 ns
16 D E high access time(1) (PWEH–tDSR)tACCE 15 ns
17 D Read/write delay time tRWD 14 ns
18 D Read/write valid time to E rise (PWEL–tRWD)t
RWV 16 ns
19 D Read/write hold time tRWH 2ns
20 D Low strobe delay time tLSD 14 ns
21 D Low strobe valid time to E rise (PWEL–tLSD)t
LSV 16 ns
22 D Low strobe hold time tLSH 2ns
23 D NOACC strobe delay time tNOD 14 ns
24 D NOACC valid time to E rise (PWEL–tLSD)t
NOV 16 ns
25 D NOACC hold time tNOH 2ns
26 D IPIPO[1:0] delay time tP0D 214ns
27 D IPIPO[1:0] valid time to E rise (PWEL–tP0D)t
P0V 16 ns
28 D IPIPO[1:0] delay time(1) tP1D 225ns
29 D IPIPO[1:0] valid time to E fall tP1V 11 ns
NOTES:
1. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches.
Device User Guide — 9S12C128DGV1/D V01.05
126
Device User Guide — 9S12C128DGV1/D V01.05
127
Appendix D Package Information
D.1 General
This section provides the physical dimensions of the MC9S12C Family and MC9S12GC Family packages
48LQFP, 52LQFP, 80QFP.
Device User Guide — 9S12C128DGV1/D V01.05
128
D.2 80-pin QFP package
Figure D-1 80-pin QFP Mechanical Dimensions (case no. 841B)
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE
LEAD WHERE THE LEAD EXITS THE PLASTIC
BODY AT THE BOTTOM OF THE PARTING LINE.
4. DATUMS -A-, -B- AND -D- TO BE
DETERMINED AT DATUM PLANE -H-.
5. DIMENSIONS S AND V TO BE DETERMINED
AT SEATING PLANE -C-.
6. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
A AND B DO INCLUDE MOLD MISMATCH
AND ARE DETERMINED AT DATUM PLANE -H-.
7. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION. DAMBAR CANNOT
BE LOCATED ON THE LOWER RADIUS OR
THE FOOT.
SECTION B-B
61
60
DETAIL A
L
41
40
80
-A-
L
-D-
A
S
A-B
M
0.20 D S
H
0.05 A-B
S
120
21
-B-
BV
J
F
N
D
VIEW ROTATED 90 °
DETAIL A
B
BP
-A-,-B-,-D-
E
H
GM
MDETAIL C
SEATING
PLANE
-C-
C
DATUM
PLANE
0.10
-H-
DATUM
PLANE
-H-
U
T
R
Q
K
W
X
DETAIL C
DIM MIN MAX
MILLIMETERS
A13.90 14.10
B13.90 14.10
C2.15 2.45
D0.22 0.38
E2.00 2.40
F0.22 0.33
G0.65 BSC
H--- 0.25
J0.13 0.23
K0.65 0.95
L12.35 REF
M510
N0.13 0.17
P0.325 BSC
Q07
R0.13 0.30
S16.95 17.45
T0.13 ---
U0 ---
V16.95 17.45
W0.35 0.45
X1.6 REF
°°
°°
°
S
A-B
M
0.20 D S
C
S
A-B
M
0.20 D S
H
0.05 D
S
A-B
M
0.20 D S
C
S
A-B
M
0.20 D S
C
Device User Guide — 9S12C128DGV1/D V01.05
129
D.3 52-pin LQFP package
Figure D-2 52-pin LQFP Mechanical Dimensions (case no. 848D-03)
F
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE LEAD WHERE
THE LEAD EXITS THE PLASTIC BODY AT THE
BOTTOM OF THE PARTING LINE.
4. DATUMS -L-, -M- AND -N- TO BE DETERMINED AT
DATUM PLANE -H-.
5. DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE -T-.
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25
(0.010) PER SIDE. DIMENSIONS A AND B DO
INCLUDE MOLD MISMATCH AND ARE
DETERMINED AT DATUM PLANE -H-
7.
DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. DAMBAR PROTRUSION SHALL NOT
CAUSE THE LEAD WIDTH TO EXCEED 0.46 (0.018).
MINIMUM SPACE BETWEEN PROTRUSION AND
ADJACENT LEAD OR PROTRUSION 0.07 (0.003).
VIEW AA
AB
AB
VIEW Y
SECTION AB-AB
ROTATED 90 ° CLOCKWISE
DIM
AMIN MAX MIN MAX
INCHES
10.00 BSC 0.394 BSC
MILLIMETERS
A1 5.00 BSC 0.197 BSC
B10.00 BSC 0.394 BSC
B1 5.00 BSC 0.197 BSC
C--- 1.70 --- 0.067
C1 0.05 0.20 0.002
0.008
C2 1.30 1.50 0.051 0.059
D0.20 0.40 0.008 0.016
E0.45 0.030
F0.22 0.35 0.009 0.014
G0.65 BSC
0.75 0.018
0.026 BSC
J0.07 0.20 0.003 0.008
K0.50 REF 0.020 REF
R1 0.08 0.20 0.003 0.008
S12.00 BSC 0.472 BSC
S1 6.00 BSC 0.236 BSC
U0.09 0.16 0.004 0.006
V12.00 BSC 0.472 BSC
V1 6.00 BSC 0.236 BSC
W0.20 REF 0.008 REF
Z1.00 REF 0.039 REF
C
L
-X-
X=L, M, N
1
13
14 26
27
39
4052
4X 13 TIPS
4X
N0.20 (0.008) H L-M N0.20 (0.008) T L-M
SEATING
PLANE
C
0.10 (0.004) T
4X θ3
4X θ2
S
0.05 (0.002)
0.25 (0.010)
GAGE PLANE
C2
C1
W
K
E
Z
S
L-M
M
0.13 (0.005) N
S
T
PLATING BASE METAL
D
JU
B V
B1
A
S
V1
A1
S1
-L-
-N-
-M-
-H-
-T-
θ1
θ
G
θ
1
θ
θ
3
θ
2
07
°°
12
°
07
°°
0
°
0
°
--- ---
REF 12
°
REF
3X
VIEW Y
VIEW AA
2X R
R1
12
°
REF 12
°
REF
Device User Guide — 9S12C128DGV1/D V01.05
130
D.4 48-pin LQFP package
Figure D-3 48-pin LQFP Mechanical Dimensions (case no.932-03 ISSUE F)
A
A1
Z
0.200 AB T-U
4X
Z0.200 AC T-U
4X
B
B1
1
12
13 24
25
36
37
48
S1
S
V
V1
P
AE AE
T, U, Z
DETAIL Y
DETAIL Y
BASE METAL
NJ
F
D
T-U
M
0.080 ZAC
SECTION AE-AE
AD
G0.080 AC
M°
TOP & BOTTOM
L°
W
K
AA
E
C
H
0.250
R
9
DETAIL AD
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
1. CONTROLLING DIMENSION: MILLIMETER.
2. DATUM PLANE AB IS LOCATED AT BOTTOM
OF LEAD AND IS COINCIDENT WITH THE
LEAD WHERE THE LEAD EXITS THE PLASTIC
BODY AT THE BOTTOM OF THE PARTING
LINE.
3. DATUMS T, U, AND Z TO BE DETERMINED AT
DATUM PLANE AB.
4. DIMENSIONS S AND V TO BE DETERMINED
AT SEATING PLANE AC.
5. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.250 PER SIDE. DIMENSIONS
AANDBDOINCLUDE MOLD MISMATCHAND
ARE DETERMINED AT DATUM PLANE AB.
6. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. DAMBAR PROTRUSION SHALL
NOT CAUSE THE D DIMENSION TO EXCEED
0.350.
7. MINIMUM SOLDER PLATE THICKNESS
SHALL BE 0.0076.
8. EXACT SHAPE OF EACH CORNER IS
OPTIONAL.
TU
Z
AB
AC
GAUGE PLANE
DIM
AMIN MAX
7.000 BSC
MILLIMETERS
A1 3.500 BSC
B7.000 BSC
B1 3.500 BSC
C1.400 1.600
D0.170 0.270
E1.350 1.450
F0.170 0.230
G0.500 BSC
H0.050 0.150
J0.090 0.200
K0.500 0.700
M12 REF
N0.090 0.160
P0.250 BSC
L07
R0.150 0.250
S9.000 BSC
S1 4.500 BSC
V9.000 BSC
V1 4.500 BSC
W0.200 REF
AA 1.000 REF
°
°°
Device User Guide — 9S12C128DGV1/D V01.05
131
Appendix E Emulation Information
E.1 General
In order to emulate the MC9S12C and 9S12GC-Family devices, external addressing of a 128K memory
map is required. This is provided in a 112 LQFP package version which includes the 3 necessary extra
external address bus signals via PortK. This package version is for emulation only and not provided as a
general production package.
Figure 19-1 Pin Assignments in 112-pin LQFP
VRH
VDDA
NC
PAD07/AN07
NC
PAD06/AN06
NC
PAD05/AN05
NC
PAD04/AN04
NC
PAD03/AN03
NC
PAD02/AN02
NC
PAD01/AN01
NC
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8
PP4/KWP4/PW4
PP5/KPW5/PWM
NC
PP7/KWP7/PW7
NC
VDDX
VSSX
PM0/RXCAN
PM1/TXCAN
PM2/MIS
PM3/SS
PM4/MOSI
PM5/SCK
PJ6/KWJ6
PJ7/KWJ7
NC
NC
PP6/KWP6/ROMONE
NC
NC
PS3
PS2
PS1/TXD
PS0/RXD
NC
NC
VSSA
VRL
PW3/KWP3/PP3
PW2/KWP2/PP2
PW1/KWP1/PP1
/PW0/KWP0/PP0
NC
XADDR16/PK2
XADDR15/PK1
XADDR14/PK0
IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3
VDD1
VSS1
IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
NC
NC
NC
NC
MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4
ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
NC
NC
NC
NC
XCLKS/NOACC/PE7
MODB/IPIPE1/PE6
MODA/IPIPE0/PE5
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
NC
NC
NC
NC
LSTRB/TAGLO/PE3
R/W/PE2
IRQ/PE1
XIRQ/PE0
Signals shown in Bold are available only in the 112 Pin Package. Pins marked "NC" are not connected
MC9S12C Family
MC9S12GC Family
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
Device User Guide — 9S12C128DGV1/D V01.05
132
E.1.1 PK[2:0] / XADDR[16:14]
PK2-PK0 provide the expanded address XADDR[16:14] for the external bus.
Refer to the S12 Core user guide for detailed information about external address page access.
The reset state of DDRK in the S12_CORE is $00, configuring the pins as inputs.
The reset state of PUPKE in the PUCR register of the S12_CORE is "1" enabling the internal pullup
resistors at PortK[2:0].
In this reset state the pull-up resistors provide a defined state and prevent a floating input, thereby
preventing unneccesary current consumption at the input stage.
Pin Name
Function 1 Pin Name
Function 2 Power
Domain
Internal Pull
Resistor Description
CTRL Reset
State
PK[2:0] XADDR[16:14] VDDX PUPKE Up Port K I/O Pins
Device User Guide — 9S12C128DGV1/D V01.05
133
E.2 112-pin LQFP package
Figure 19-2 112-pin LQFP mechanical dimensions (case no. 987)80-pin QFP Mechanical
Dimensions (case no. 841B)
DIM
AMIN MAX
20.000 BSC
MILLIMETERS
A1 10.000 BSC
B20.000 BSC
B1 10.000 BSC
C
---
1.600
C1 0.050 0.150
C2 1.350 1.450
D0.270 0.370
E0.450 0.750
F0.270 0.330
G0.650 BSC
J0.090 0.170
K0.500 REF
P
0.325 BSC
R1 0.100 0.200
R2 0.100 0.200
S22.000 BSC
S1 11.000 BSC
V22.000 BSC
V1 11.000 BSC
Y0.250 REF
Z1.000 REF
AA 0.090 0.160
θ
θ
θ
θ
11
°
11
°
13
°
7
°
13
°
VIEW Y
L-M0.20 NT
4X 4X 28 TIPS
PIN 1
IDENT
1
112 85
84
28 57
29 56
BV
V1
B1
A1
S1
A
S
VIEW AB
0.10
3
C
C2
θ
2θ
0.050
SEATING
PLANE
GAGE PLANE
1θ
θ
VIEW AB
C1
(Z)
(Y) E
(K)
R2
R1
0.25
J1
VIEW Y
J1
P
G
108X
4X
SECTION J1-J1
BASE
ROTATED 90 COUNTERCLOCKWISE
°
METAL
JAA
F
D
L-M
M
0.13 NT
1
2
3
C
L
L-M0.20 NT
L
N
M
T
T
112X
X
X=L, M OR N
R
R
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. DIMENSIONS IN MILLIMETERS.
3. DATUMS L, M AND N TO BE DETERMINED AT
SEATING PLANE, DATUM T.
4. DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE, DATUM T.
5. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
A AND B INCLUDE MOLD MISMATCH.
6. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL NOT CAUSE THE D
DIMENSION TO EXCEED 0.46.
8
°
3
°
0
°
Device User Guide — 9S12C128DGV1/D V01.05
134
Device User Guide — 9S12C128DGV1/D V01.05
135
Device User Guide End Sheet
Device User Guide — 9S12C128DGV1/D V01.05
136
FINAL PAGE OF
136
PAGES

Navigation menu