Nexus 21 1066Mt S Interposer Users Manual NEX NEXVuDDR800M X

1066MTs Interposer to the manual 0f8e1930-12e6-4c16-8b9b-dc677d1a1114

2015-02-05

: Nexus-21 Nexus-21-1066Mt-S-Interposer-Users-Manual-494957 nexus-21-1066mt-s-interposer-users-manual-494957 nexus-21 pdf

Open the PDF directly: View PDF PDF.
Page Count: 91

DownloadNexus-21 Nexus-21-1066Mt-S-Interposer-Users-Manual- NEX-NEXVuDDR800M-x Users Manual  Nexus-21-1066mt-s-interposer-users-manual
Open PDF In BrowserView PDF
NEX-DDR3INTR-THIN
DDR3 800/1066MT/s Interposer
For use with the TLA7BB4 Logic Analyzer
Modules
Including these Software Support packages:
B_DDR3D_2D (Single/Dual/Quad Rank, single slot with Selective Clocking)
*B_DDR3D_2G (2 or 3 DIMM slots, two Rank @ 800MT/s)
*B_DDR3D_3A (2 DIMM slots, two Rank @ 1066MT/s)
* Optional Software
Copyright © 2007 Nexus Technology, Inc. All rights reserved.
Contents of this publication may not be reproduced in any form without
the written permission of Nexus Technology, Inc.
Brand and product names used throughout this manual are the trademarks
of their respective holders.

DDR3THIN-MN-XXX

1

Doc. Rev. 1.11

Product Warranty
Due to wide variety of possible customer target implementations, this product has a 30 day
acceptance period by the customer from the date of receipt. If the customer does not contact
Nexus Technology within 30 days of the receipt of the product, it will be said that the customer
has accepted the product. If the customer is not satisfied with this product, they may return it
within 30 days for a refund.
This Nexus Technology product has a warranty against defects in material and workmanship for a
period of 1 year from the date of shipment. During the warranty period, Nexus Technology will,
at its option, either replace or repair products proven to be defective. For warranty service or
repair, this product must be returned to the factory.
For products returned to Nexus Technology for warranty service, the Buyer shall prepay shipping
charges to Nexus Technology and Nexus Technology shall pay shipping charges to return the
product to the Buyer. However, the Buyer shall pay all shipping charges, duties, and taxes for
products returned to Nexus Technology from another country.
Nexus Technology warrants that its software and hardware designated by Nexus Technology for
use with an instrument will execute its programming instructions when properly installed on that
instrument. Nexus Technology does not warrant that the operation of the hardware or software
will be uninterrupted or error-free.

Limitation of Warranty
The foregoing warranty shall not apply to defects resulting from improper or inadequate
maintenance by the Buyer, Buyer-supplied software or interfacing, unauthorized modification or
misuse, operation outside of the environmental specifications for the product, or improper site
preparation or maintenance. NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. NEXUS
TECHNOLOGY SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Exclusive Remedies
THE REMEDIES PROVIDED HERIN ARE BUYER’S SOLE AND EXCLUSIVE REMEDIES.
NEXUS TECHNOLOGY SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON
CONTRACT, TORT OR ANY OTHER LEGAL THEORY.

Software License Agreement
IMPORTANT – Please read this license agreement carefully before opening the CD case. Rights
in the software are offered only on the condition that the customer agrees to all terms and
conditions of the license agreement. Opening the CD case indicates your acceptance of these
terms and conditions. If you do not agree to the licensing agreement, you may return the
unopened package for a full refund.

DDR3THIN-MN-XXX

2

Doc. Rev. 1.11

License Agreement
In return for payment for this product, Nexus Technology grants the Customer a SINGLE user
LICENSE in the software subject to the following:

Use of the Software:
- Customer may use the software on only one Tektronix mainframe logic analysis system at
any given time
- Customer may make copies or adaptations of the software (see Copies and Adaptations below
for more information)
- Customer may NOT reverse assemble or decompile the software

Copies and Adaptations:
- Are allowed for archival purpose only
- When copying for adaptation is an essential step in the use of the software with the logic
analyzer and/or logic analysis mainframe so long as the copies and adaptations are used in no
other manner. Customer has no right to copy software unless it acquires an appropriate
license to reproduce from Nexus Technology.
- Customer agrees that it does not have any title or ownership of the software, other than the
physical media.

Ownership:
- Customer acknowledges and agrees that the software is copyrighted and protected under the
copyright laws.
- Transfer of the right of ownership shall only be done with the consent of Nexus Technology.

Sublicensing and Distribution:
- Customer may not sublicense the software or distribute copies of the software to the public in
physical media or by electronic means or any other means without the prior written consent
of Nexus Technology.

Compliance with WEEE and RoHS Directives
This product is subject to European Union regulations on Waste Electrical and Electronics
Equipment. Return to Nexus Technology for recycle at end of life. Costs associated with the
return to Nexus Technology are the responsibility of the sender.

DDR3THIN-MN-XXX

3

Doc. Rev. 1.11

TABLE OF CONTENTS
1.0 OVERVIEW ........................................................................................................................... 9
1.1 General Information ............................................................................................................ 9
1.2 Software Package description.............................................................................................. 9
1.3 Eye size required ............................................................................................................... 11
2.0 SOFTWARE INSTALLATION ........................................................................................... 11
3.0 CONNECTING to the NEX-DDR3INTR-THIN INTERPOSER ........................................ 12
3.1 General .............................................................................................................................. 12
3.2 B_DDR3D_2D Support..................................................................................................... 12
3.3 B_DDR3D_2G Support..................................................................................................... 12
3.4 B_DDR3D_3A Support..................................................................................................... 13
3.5 Short “LEASH” probes ..................................................................................................... 15
3.5.1 Samtec connector on the LEASH probe pins ............................................................ 16
3.5.2 LEASH probe to NEX-PRB1X/2X connection......................................................... 17
3.5.3 Alternate use of NEX-PRB1X or NEX-PRB2X probes ............................................ 17
3.6
Slot Numbering............................................................................................................. 18
3.7 Display Groups not in Tables 1,2 or 3............................................................................... 39
4.0 CLOCK SELECTION .......................................................................................................... 40
4.1 B_DDR3D_2D Clocking Selections ................................................................................. 40
4.2 B_DDR3D_2G Clocking Selections ................................................................................. 41
4.3 B_DDR3D_3A Clocking Selections ................................................................................. 43
5.0 CONFIGURING FOR READ / WRITE DATA ACQUISITION........................................ 44
5.1 A Note About the Different Data Groups.......................................................................... 44
5.2 MagniVu Signals ............................................................................................................... 44
5.3 Adjusting Input Thresholds for Proper Data Acquisition.................................................. 53
5.4 DDR3 and DDR3SPA ....................................................................................................... 53
5.5 Selecting B_DDR3E_XX Read Data Sample Points ........................................................ 53
5.6 Selecting B_DDR3D_XX Write Data Sample Points....................................................... 54
5.7 B_DDR3D_XX Support Setup.......................................................................................... 55
5.8 Setting B_DDR3D_3A Read Data Sample Points ............................................................ 62
6.0 VIEWING DATA ................................................................................................................. 63
6.1 Viewing B_DDR3D_XX Data .......................................................................................... 63
6.2
Viewing Raw DDR3 Data using B_DDR3D_XX Supports......................................... 66
6.3 B_DDR3D_2A / 3A Mnemonics Description................................................................... 66
6.4 B_DDR3D_2G Mnemonics Description........................................................................... 66
6.5 Viewing Timing Data on the TLA .................................................................................... 67
7.0 HINTS & TIPS ..................................................................................................................... 69
7.1 Symbolic Triggering on a Command using B_DDR3D_XX Supports............................. 69
7.3 Capturing MRS (Mode Register Set) Cycles .................................................................... 70
7.4 Clock Capture quality........................................................................................................ 71
7.5 Thresholds ......................................................................................................................... 72
APPENDIX A – How DDR Data is Clocked ............................................................................... 73
A.1 Background....................................................................................................................... 73
A.2 DDR Acquisition - General .............................................................................................. 73
A.3 B_DDR3D_2D / 2G / 3A Data Acquisition ..................................................................... 74
APPENDIX B - Considerations.................................................................................................... 75
B.1 NEX-DDR3INTR-THIN Bus Loading............................................................................. 75
B.2 DIMM connector location for best quality signal capture................................................ 75
DDR3THIN-MN-XXX

4

Doc. Rev. 1.11

B.3 TLA7BB4 Module to module skew.................................................................................. 75
APPENDIX C – 240-pin DDR3 DIMM Pinout ........................................................................... 76
APPENDIX D –Data Flow Through the Probes (coax cable to channel) .................................... 78
APPENDIX E – B_DDR3D_2D Support Pinout, DIMM Slot 0.................................................. 80
APPENDIX F – B_DDR3_2G Support Pinout, DIMM Slot 0 Auxiliary Signals ....................... 82
APPENDIX G – B_DDR3D_3A Support Pinout, DIMM Slot 1 ................................................. 84
APPENDIX H – Data Group / Data Byte / Strobe Cross-Reference............................................ 86
APPENDIX I – NEX-DDR3INTR-THIN Silkscreen................................................................... 87
APPENDIX J – Keep out area ...................................................................................................... 88
APPENDIX K – Simulation Model.............................................................................................. 89
APPENDIX L - References .......................................................................................................... 90
APPENDIX M - Support .............................................................................................................. 91

DDR3THIN-MN-XXX

5

Doc. Rev. 1.11

TABLE OF FIGURES
Figure 1 – Drawing of Interposer with probes attached ............................................................... 15
Figure 2 – Samtec connector on the LEASH probe...................................................................... 16
Figure 3 – LEASH probe to NEX-PRB1X/2X connection .......................................................... 17
Figure 4 - Read Data Latency = CAS Latency + CAS Additive Latency + RDIMM (5+0+1) = 6
cycles) ........................................................................................................................................... 54
Figure 5 - Write Data Latency = CAS Write Latency + RDIMM (5+1) = 6 cycles..................... 54
Figure 6 - Locating Minimum Valid B_DDR3D_XX Read Data Window ................................. 55
Figure 7 - Measuring B_DDR3D_XX RdA_DatHi / Lo Read Data Setup & Hold ..................... 56
Figure 8 - Measuring B_DDR3D_XX RdB_DatHi / Lo Read Data Setup & Hold ..................... 57
Figure 9 - Setting B_DDR3D_XX RdA_DatHi / Lo and RdB_DatHi / Lo Sample Points ......... 57
Figure 10 - Locating Minimum Valid B_DDR3D_XX Write Data Window .............................. 58
Figure 11 - Measuring B_DDR3D_XX WrA_DatHi / Lo Write Data Setup & Hold.................. 59
Figure 12 - Measuring B_DDR3D_XX WrB_DatHi / Lo Write Data Setup & Hold.................. 59
Figure 13 - Setting B_DDR3D_XX WrA_DatHi / Lo and WrB_DatHi / Lo Sample Points ...... 60
Figure 14 - Viewing Individual 8-bit Read Data Groups ............................................................. 61
Figure 15 - Setting Individual Setup & Hold Values for the 8-bit Read Data Groups................. 61
Figure 16 - B_DDR3D_XX Listing Display ................................................................................ 63
Figure 17 - Disassembly Properties .............................................................................................. 64
Figure 18 - B_DDR3D_XX Listing Display - Control Flow ....................................................... 65
Figure 19 - B_DDR3D_XX MagniVu Display on TLA .............................................................. 68
Figure 20 - B_DDR3D_2D MRS Trigger .................................................................................... 71
Figure 21 - MRS Cycle Acquisition Disassembly........................................................................ 71

DDR3THIN-MN-XXX

6

Doc. Rev. 1.11

TABLE OF TABLES
Table 1 - B_DDR3D_2D (<=1066MT/s Read and Write) TLA Channel Grouping.................... 19
Table 2 - B_DDR3D_2G (<=1066MT/s Read and Write) TLA Channel Grouping.................... 25
Table 3 - B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping.................... 31
Table 4 - B_DDR3D_2D/_2G TLA MagniVu Channel Grouping .............................................. 45
Table 5 - B_DDR3D_3A TLA MagniVu Channel Grouping ...................................................... 48
Table 6 - B_DDR3D_2A / 3A Mnemonics Definition................................................................. 66
Table 7 - B_DDR3D_2G Mnemonics Definition......................................................................... 67
Table 8 - B_DDR3D_2D / 3A Control Symbol Table ................................................................ 69
Table 9 - B_DDR3D_2G Control Symbol Table ........................................................................ 70

DDR3THIN-MN-XXX

7

Doc. Rev. 1.11

DDR3THIN-MN-XXX

8

Doc. Rev. 1.11

1.0 OVERVIEW
1.1 General Information
The DDR3 Interposer Products are designed for ease of use. Interposers extra signal trace
length, also an extra connector that might affect the quality of the system operation in some
systems.
•

This Product is designed for capture of 1066MT/s or slower, and may only be used with
the Tektronix TLA7BB4 acquisition modules.

This product requires the use of the new NEX-PRB1X-T / PRB2X-T Low Profile Distributed
probes available from Nexus. Tektronix P68xx or P69xx probes can not be used.
This Interposer has been designed to provide a quick and easy connection to interface to a
Tektronix TLA7BB4 Logic Analyzer acquisition cards to a 240-pin DDR3 (Double Data Rate 3)
bus. Contact NEXUS Technology for other available DDR3 Products. The Nexus Technology
web site (www.NexusTechnology.com) contains information on the latest software release.

1.2 Software Package description
The NEX-DDR3INTR-THIN support includes the following software packages:
B_DDR3D_2D allows the user to acquire Read AND Write data from a single, dual or
quad rank DDR3 DIMM running 1066MT/s or less. This support requires 1ea. NEXPRB1X-T and 3ea. NEX-PRB2X-T Low Profile Distributed probes, and two merged
Tektronix TLA7BB4 acquisition cards. This support can use selective clocking to reduce
the number of Idle states acquired by the logic analyzer.
Optional software available for the NEX-DDR3INTR-THIN support includes the following
software packages:
B_DDR3D_2G allows the user to acquire Read AND Write data from a memory
channel made up of two or three DIMM slots with one or two rank DDR3 DIMMs
running 800MT/s or less. This is total disassembly for the 3 DIMM memory channel.
This support requires 2ea. NEX-PRB1X-T and 3ea. NEX-PRB2X-T Low Profile
Distributed probes, and two merged Tektronix TLA7BB4 acquisition cards. This support
also requires the NEX-PRBCOAX product. This support can be used with Single Rank
and Dual Rank DIMMs (will also support a single quad rank DIMM). Reads for the three
DIMMs must have a common data eye (over lap) of 330ps. No selective clocking
B_DDR3D_3A allows the user to acquire Read AND Write data from a memory channel
made up of two DIMM slots with single or dual rank DDR3 DIMMs running 1066MT/s
or less. This is total disassembly for the 2 DIMM memory channel. This support
requires 5ea. NEX-PRB1X-T and 3ea. NEX-PRB2X-T Low Profile Distributed probes,
and three merged Tektronix TLA7BB4 acquisition cards. This support also requires two
DDR3THIN-MN-XXX

9

Doc. Rev. 1.11

NEX-DDR3INTR-THIN Interposer products. This support can be used with Single
Rank and Dual Rank DIMMs.
Note that this manual uses some terms generically. For instance, references to the TLA700/7000
apply to all suitable TLA700/7000 Logic Analyzers, or PCs being used to control the TLA.
NEX-DDR3INTR-THIN refers to the B_DDR3D_2D/2G/3A software support packages.
Appendix G has a silk-screened print of the NEX-DDR3INTR-THIN Logic Analyzer Interposer
board. Referring to this drawing while reading the manual is suggested.
This manual assumes that the user is familiar with the DDR3 SDRAM Specification and the
Tektronix TLA Logic Analyzers. It is also expected that the user is familiar with the Windows
environment used with the TLA.

DDR3THIN-MN-XXX

10

Doc. Rev. 1.11

1.3 Eye size required
The Eye size (stable data) required at the input resistor to the Nexus passive probes (NEXPRB1X(-T) & NEX-PRB2X(-T)) is 330ps, and 0.2V. Capture accuracy may be affected if a
stable eye can not meet this requirement. . The eye is a perfectly shaped diamond with each side
equal distant from the center.

2.0 SOFTWARE INSTALLATION
To Install the NEX-DDR3INTR-THIN software support place the B_DDR3D_XX Install CD in
the CD drive of the TLA or the PC being used to control the TLA. Using Windows Explorer
select the CD, navigate to the support_software folder, select the folder of the support to be
installed (B_DDR3D_2D, B_DDR3D_2G or B_DDR3D_3A) and then run the .MSI file within
the folder. The selected software will be installed on the TLA’s hard disk.
To load the support into the TLA, first select the desired Logic Analyzer module (different
supports require different module counts) in the Setup window, select Load Support Package
from the File pull-down, then choose the software package name you are want to load and click
on Okay. Note that this support requires two or more merged modules and that the TLA
acquisition cards must be configured properly for the software to load.

DDR3THIN-MN-XXX

11

Doc. Rev. 1.11

3.0 CONNECTING to the NEX-DDR3INTR-THIN INTERPOSER
3.1 General
Care should be taken to support the weight of the acquisition probes so that the Logic Analyzer
Interposer board and/or target socket are not damaged.

3.2 B_DDR3D_2D Support
To acquire DDR3 Read and Write data at speeds up to 1066MT/s requires two merged
TLA7BB4 136-channel, with 1.4G state option, acquisition cards and the use of the
B_DDR3D_2D support software. The Master card will be in the lower numbered of the two
cards. Slave card #1 is in the adjacent high-numbered slots. The logic analyzer modules should
be connected to the DDR3 DIMM Interposer as follows using (1) NEX-PPRB1X-T probes and
three (3) NEX-PRB2X-T probes:
TLA Master
Connect the NEX-PRB1X-T “C” probe head to DDR3 Interposer’s LEASH (soldered-on
coax cable) that is attached to “M_C” position on the Interposer.
Connect the NEX-PRB2X-T A3/2 & A1/0 probe head to DDR3 Interposer’s LEASH
that is attached to “M_ A3/2 A1/0” position on the Interposer.
Match the label on the end of the NEX-PRB1X-T/2X-T probes with the labels on the
front of the Tektronix Logic Analyzer Master module and connect.
TLA Slave
Connect the NEX-PRB2X-T A3/2 & A1/0 probe head to DDR3 Interposer’s LEASH
that is attached to “S_ A3/2 A1/0” position on the Interposer.
Connect the NEX-PRB2X-T “C3/2” & “E3/2” probe head to DDR3 Interposer’s LEASH
that is attached to “S_C3/2 E3/2” position on the Interposer.
See Figure 1 for connections. Table 1 shows the Channel Grouping / Wiring for use with the
B_DDR3D_2D support.

3.3 B_DDR3D_2G Support
To acquire DDR3 Read and Write data from two or three DIMM slots, for total memory channel
disassembly, at speeds up to 800MT/s requires two merged TLA7BB4 136-channel, with 1.4G
state option, acquisition cards and the use of the B_DDR3D_2G optional support software. The
Master card will be in the lower numbered, of the two cards. Slave card #1 will be in the
adjacent high-numbered slots. This support requires an additional NEX-PRB1X-T (for a total of
2), and the NEX-PRBCOAX product. The logic analyzer modules should be connected to the
DDR3 DIMM Interposer as follows using (1) NEX-PPRB1X-T probes and three (3) NEXPRB2X-T probes, with the additional NEX-PRB1X-T connected to the NEX-PRBCOAX:
DDR3THIN-MN-XXX

12

Doc. Rev. 1.11

TLA Master
Connect the NEX-PRB1X-T “C” probe head to DDR3 Interposer’s LEASH (soldered-on
coax cable) that is attached to “M_C” position on the Interposer.
Connect the NEX-PRB2X-T A3/2 & A1/0 probe head to DDR3 Interposer’s LEASH
that is attached to “M_ A3/2 A1/0” position on the Interposer.
Connect the NEX-PRB1X-T “E” probe head to the NEX-PRBCOAX.
Note the leads 9- 12 of the NEX-PRBCOAX must be connected to the second slots Chip
Select lines (CS) near the second and third DIMM socket, usually on the back of the
mother board.
Match the label on the end of the NEX-PRB1X-T/2X-T probes with the labels on the
front of the Tektronix Logic Analyzer Master module and connect.
TLA Slave
Connect the NEX-PRB2X-T A3/2 & A1/0 probe head to DDR3 Interposer’s LEASH
that is attached to “S_ A3/2 A1/0” position on the Interposer.
Connect the NEX-PRB2X-T “C3/2” & “E3/2” probe head to DDR3 Interposer’s LEASH
that is attached to “S_C3/2 E3/2” position on the Interposer.
See Figure 1 for connections. Table 2 shows the Channel Grouping / Wiring for use with the
B_DDR3D_2G support.

3.4 B_DDR3D_3A Support
To acquire DDR3 Read and Write data from a two DIMM slots, for total memory channel
disassembly, at speeds up to 1066MT/s requires three merged TLA7BB4 136-channel, with
1.4G state option, acquisition cards and the use of the B_DDR3D_3A optional support software.
The Master card will be in the lower numbered, of the three cards. Slave card #1 will be in the
adjacent high-numbered slots. Slave card #2 will be in the adjacent low-numbered slots. This
support also requires two NEX-DDR3INTR-THIN Interposer products. The logic analyzer
modules should be connected to the DDR3 DIMM Interposer as follows using (5) NEXPPRB1X-T probes and three (3) NEX-PRB2X-T probes:
TLA Master
Connect the NEX-PRB1X-T “C” probe head to DDR3 Interposer’s LEASH (soldered-on
coax cable) that is attached to “M_C” position on the Interposer.
Connect the NEX-PRB2X-T A3/2 & A1/0 probe head to DDR3 Interposer’s LEASH
that is attached to “M_ A3/2 A1/0” position on the Interposer.
Match the label on the end of the NEX-PRB1X-T/2X-T probes with the labels on the
front of the Tektronix Logic Analyzer Master module and connect.
DDR3THIN-MN-XXX

13

Doc. Rev. 1.11

TLA Slave1
Connect the NEX-PRB2X-T A3/2 & A1/0 probe head to DDR3 Interposer’s LEASH
that is attached to “S_ A3/2 A1/0” position on the Interposer.
Connect the NEX-PRB2X-T “C3/2” & “E3/2” probe head to DDR3 Interposer’s LEASH
that is attached to “S_C3/2 E3/2” position on the Interposer.
TLA Slave2
Connect the NEX-PRB1X-T A3/2 D3/2 probe head to DDR3 Interposer’s LEASH that is
attached to “M_A3/2 A1/0” position on the second Interposer.
Connect the NEX-PRB1X-T A1/0 D1/0 probe head to DDR3 Interposer’s LEASH that is
attached to “S_A3/2 A1/0” position on the second Interposer.
Connect the NEX-PRB1X-T “C” probe head to DDR3 Interposer’s LEASH that is
attached to “M_C3/2 C1/0” position on the second Interposer.
Connect the NEX-PRB1X-T “E” probe head to DDR3 Interposer’s LEASH that is
attached to “S_C3/2 E3/2” position on the second Interposer.
See Figure 1 for connections. Table 3 shows the Channel Grouping / Wiring for use with the
B_DDR3D_3A support.

DDR3THIN-MN-XXX

14

Doc. Rev. 1.11

3.5 Short “LEASH” probes
The standard product includes 4 “LEASH” probes connected to this Interposer product. These
short probes are soldered directly onto the interposer and interface the Interposer to the Passive
probes that connect to the logic analyzer. These “LEASH” probes are to allow the user to easily
install and remove the Interposer product in their system with out the added weight of the
passive probe attached. There may be other probing options in the future. Contact Nexus for any
updates.
Figure 1 below shows the location on the Interposer of the LEASH probe connections.
Location of HCD connectors, right under metal compression plate, and probe tip board:

S_C3/2

PRB2

M_A3/2 A1/0

PRB2

M_

PRB1

S_A3/2 A1/0

PRB2

Figure 1 – Drawing of Interposer with probes attached

The four (4) each, 1 foot long, “LEASH” probes that are soldered onto the Interposer are in turn
connected to either a NEX-PRB1X-T or NEX-PRB2X-T probe. The NEX-PRB1X-T or NEXPRB2X-T probe in turn connects to the input of the logic analyzer modules. The connection
between the LEASH Probes and the logic Analyzer is a Samtec connector with a pin out as
shown below on the LEASH probe. Refer to 3.2 to determine if a NEX-PRB1X-T or NEXPRB2X-T connects to each LEASH probe.

DDR3THIN-MN-XXX

15

Doc. Rev. 1.11

The strain relief on the LEASH to NEXPRB1X/2X interface, while designed for bench handling,
can be damaged by twisting the coax cables. Bends of over 45 degrees in this area should be
avoided. The coax connection points, under any circumstances, are not to be bent.
3.5.1 Samtec connector on the LEASH probe pins

Figure 2 – Samtec connector on the LEASH probe

The LEASH probe connects to the NEX-PRB1X-T or NEX-PRB2X-T probe using two plastic
nuts and screws, with a plastic spacer between the two boards. These parts are supplied.

DDR3THIN-MN-XXX

16

Doc. Rev. 1.11

3.5.2 LEASH probe to NEX-PRB1X/2X connection

Probe tip on the NEX-PRB1X-T or
NEX-PRB2X-T

Interposer
here

Two each plastic
Spacers
Screws
&
Nuts
Hold each probe
together

Transition board on the “LEASH”
Cable end
Figure 3 – LEASH probe to NEX-PRB1X/2X connection

3.5.3 Alternate use of NEX-PRB1X or NEX-PRB2X probes
The NEX-PRB1X or NEX-PRB2X can be used in place of the “-T” probes but will have to be
secured for long term connection by tie-wraps.

DDR3THIN-MN-XXX

17

Doc. Rev. 1.11

3.6 Slot Numbering
The Interposer must be installed in the furthest slot from the memory controller. For 1066MT/s
support only the two furthest slots may be used. Slots are named as shown below:

Slot naming for a three slot system
Memory controller
Slot C

Slot B

cS0-1#
cCLKE0-1
(from NEXPRBCOAX)

Slot A

bS0-1#
S0-3#
bCLKE0-1 CLKE0(from NEXPRBCOAX)

If only one slot is used it must be the furthest slot from the memory controller.
If two slots are used they must be the furthest slots from the memory controller.
Quad rank is only supported in the single slot configuration
Interposer in any two or three slot configuration must be in the furthest slot.
1066MT/s full channel support (B_DDR3D_3A) requires two interposers in the two
furthest slots from the memory controller.

DDR3THIN-MN-XXX

18

Doc. Rev. 1.11

Group
Name
RdA_DatHi
(Hex)

Signal
Name
RD_A_DQ63
RD_A_DQ62
RD_A_DQ61
RD_A_DQ60
RD_A_DQ59
RD_A_DQ58
RD_A_DQ57
RD_A_DQ56
RD_A_DQ55
RD_A_DQ54
RD_A_DQ53
RD_A_DQ52
RD_A_DQ51
RD_A_DQ50
RD_A_DQ49
RD_A_DQ48
RD_A_DQ47
RD_A_DQ46
RD_A_DQ45
RD_A_DQ44
RD_A_DQ43
RD_A_DQ42
RD_A_DQ41
RD_A_DQ40
RD_A_DQ39
RD_A_DQ38
RD_A_DQ37
RD_A_DQ36
RD_A_DQ35
RD_A_DQ34
RD_A_DQ33
RD_A_DQ32

DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
207
206
201
200
88
87
83
81

TLA
Input
S_A2:0
S_A2:1
S_A2:5
S_CK0
S_A2:2
S_A2:3
S_A2:7
S_A3:0
S_A3:2
S_A3:3
S_A3:7
S_A1:5
S_A3:1
S_A3:4
S_A1:7
S_A1:6
S_A1:4
S_A1:1
S_A0:7
S_A0:6
S_A1:3
S_A1:2
S_A0:5
S_A0:4
S_A0:3
S_A0:2
M_C2:1
M_C2:4
S_A0:1
S_A0:0
M_C2:6
M_C2:7

Group
Name
RdA_DatLo
(Hex)

Signal
Name
RD_A_DQ31
RD_A_DQ30
RD_A_DQ29
RD_A_DQ28
RD_A_DQ27
RD_A_DQ26
RD_A_DQ25
RD_A_DQ24
RD_A_DQ23
RD_A_DQ22
RD_A_DQ21
RD_A_DQ20
RD_A_DQ19
RD_A_DQ18
RD_A_DQ17
RD_A_DQ16
RD_A_DQ15
RD_A_DQ14
RD_A_DQ13
RD_A_DQ12
RD_A_DQ11
RD_A_DQ10
RD_A_DQ9
RD_A_DQ8
RD_A_DQ7
RD_A_DQ6
RD_A_DQ5
RD_A_DQ4
RD_A_DQ3
RD_A_DQ2
RD_A_DQ1
RD_A_DQ0

DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3

TLA
Input
M_A0:6
M_A0:3
S_C2:0
S_C2:1
M_A0:4
M_A0:1
S_C2:2
S_C2:3
S_C2:4
S_C2:5
S_C3:2
S_C3:3
S_C2:6
S_C2:7
S_C3:1
S_C3:4
S_C3:6
S_C3:7
S_E3:4
S_E3:1
S_C3:5
S_E3:7
S_E3:3
S_E3:2
S_E3:0
S_E2:7
S_E2:3
S_E2:2
S_Q3
S_E2:5
S_E2:1
S_E2:0

Table 1 - B_DDR3D_2D (<=1066MT/s Read and Write) TLA Channel Grouping

Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair

DDR3THIN-MN-XXX

19

Doc. Rev. 1.11

Group
Name
RdB_DatHi
(Hex)

Signal
Name

DDR3
Pin#

TLA
Input

RD_B_DQ63
RD_B_DQ62
RD_B_DQ61
RD_B_DQ60
RD_B_DQ59
RD_B_DQ58
RD_B_DQ57
RD_B_DQ56
RD_B_DQ55
RD_B_DQ54
RD_B_DQ53
RD_B_DQ52
RD_B_DQ51
RD_B_DQ50
RD_B_DQ49
RD_B_DQ48
RD_B_DQ47
RD_B_DQ46
RD_B_DQ45
RD_B_DQ44
RD_B_DQ43
RD_B_DQ42
RD_B_DQ41
RD_B_DQ40
RD_B_DQ39
RD_B_DQ38
RD_B_DQ37
RD_B_DQ36
RD_B_DQ35
RD_B_DQ34
RD_B_DQ33
RD_B_DQ32

234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
207
206
201
200
88
87
83
81

S_A2:0^1
S_A2:1^1
S_A2:5^1
S_CK0^1
S_A2:2^1
S_A2:3^1
S_A2:7^1
S_A3:0^1
S_A3:2^1
S_A3:3^1
S_A3:7^1
S_A1:5^1
S_A3:1^1
S_A3:4^1
S_A1:7^1
S_A1:6^1
S_A1:4^1
S_A1:1^1
S_A0:7^1
S_A0:6^1
S_A1:3^1
S_A1:2^1
S_A0:5^1
S_A0:4^1
S_A0:3^1
S_A0:2^1
M_C2:1^1
M_C2:4^1
S_A0:1^1
S_A0:0^1
M_C2:6^1
M_C2:7^1

Group
Name
RdB_DatLo
(Hex)

Signal
Name

DDR3
Pin#

TLA
Input

RD_B_DQ31
RD_B_DQ30
RD_B_DQ29
RD_B_DQ28
RD_B_DQ27
RD_B_DQ26
RD_B_DQ25
RD_B_DQ24
RD_B_DQ23
RD_B_DQ22
RD_B_DQ21
RD_B_DQ20
RD_B_DQ19
RD_B_DQ18
RD_B_DQ17
RD_B_DQ16
RD_B_DQ15
RD_B_DQ14
RD_B_DQ13
RD_B_DQ12
RD_B_DQ11
RD_B_DQ10
RD_B_DQ9
RD_B_DQ8
RD_B_DQ7
RD_B_DQ6
RD_B_DQ5
RD_B_DQ4
RD_B_DQ3
RD_B_DQ2
RD_B_DQ1
RD_B_DQ0

156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3

M_A0:6^1
M_A0:3^1
S_C2:0^1
S_C2:1^1
M_A0:4^1
M_A0:1^1
S_C2:2^1
S_C2:3^1
S_C2:4^1
S_C2:5^1
S_C3:2^1
S_C3:3^1
S_C2:6^1
S_C2:7^1
S_C3:1^1
S_C3:4^1
S_C3:6^1
S_C3:7^1
S_E3:4^1
S_E3:1^1
S_C3:5^1
S_E3:7^1
S_E3:3^1
S_E3:2^1
S_E3:0^1
S_E2:7^1
S_E2:3^1
S_E2:2^1
S_Q3^1
S_E2:5^1
S_E2:1^1
S_E2:0^1

Table 1 – B_DDR3D_2D (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)

Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
3. All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a
MagniVu display value

DDR3THIN-MN-XXX

20

Doc. Rev. 1.11

Group
Name
WrA_DatHi
(Hex)

Signal
Name
WR_A_DQ63
WR_A_DQ62
WR_A_DQ61
WR_A_DQ60
WR_A_DQ59
WR_A_DQ58
WR_A_DQ57
WR_A_DQ56
WR_A_DQ55
WR_A_DQ54
WR_A_DQ53
WR_A_DQ52
WR_A_DQ51
WR_A_DQ50
WR_A_DQ49
WR_A_DQ48
WR_A_DQ47
WR_A_DQ46
WR_A_DQ45
WR_A_DQ44
WR_A_DQ43
WR_A_DQ42
WR_A_DQ41
WR_A_DQ40
WR_A_DQ39
WR_A_DQ38
WR_A_DQ37
WR_A_DQ36
WR_A_DQ35
WR_A_DQ34
WR_A_DQ33
WR_A_DQ32

DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
207
206
201
200
88
87
83
81

TLA
Input
S_D2:0
S_D2:1
S_D2:5
S_Q1
S_D2:2
S_D2:3
S_D2:7
S_D3:0
S_D3:2
S_D3:3
S_D3:7
S_D1:5
S_D3:1
S_D3:4
S_D1:7
S_D1:6
S_D1:4
S_D1:1
S_D0:7
S_D0:6
S_D1:3
S_D1:2
S_D0:5
S_D0:4
S_D0:3
S_D0:2
M_C0:1
M_C0:4
S_D0:1
S_D0:0
M_C0:6
M_C0:7

Group
Name
WrA_DatLo
(Hex)

Signal
Name
WR_A_DQ31
WR_A_DQ30
WR_A_DQ29
WR_A_DQ28
WR_A_DQ27
WR_A_DQ26
WR_A_DQ25
WR_A_DQ24
WR_A_DQ23
WR_A_DQ22
WR_A_DQ21
WR_A_DQ20
WR_A_DQ19
WR_A_DQ18
WR_A_DQ17
WR_A_DQ16
WR_A_DQ15
WR_A_DQ14
WR_A_DQ13
WR_A_DQ12
WR_A_DQ11
WR_A_DQ10
WR_A_DQ9
WR_A_DQ8
WR_A_DQ7
WR_A_DQ6
WR_A_DQ5
WR_A_DQ4
WR_A_DQ3
WR_A_DQ2
WR_A_DQ1
WR_A_DQ0

DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3

TLA
Input
M_D0:6
M_D0:3
S_C0:0
S_C0:1
M_D0:4
M_D0:1
S_C0:2
S_C0:3
S_C0:4
S_C0:5
S_C1:2
S_C1:3
S_C0:6
S_C0:7
S_C1:1
S_C1:4
S_C1:6
S_C1:7
S_E1:4
S_E1:1
S_C1:5
S_E1:7
S_E1:3
S_E1:2
S_E1:0
S_E0:7
S_E0:3
S_E0:2
S_CK2
S_E0:5
S_E0:1
S_E0:0

Table 1 – B_DDR3D_2D (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)

Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair

DDR3THIN-MN-XXX

21

Doc. Rev. 1.11

Group
Name
WrB_DatHi
(Hex)

Signal
Name
WR_B_DQ63
WR_B_DQ62
WR_B_DQ61
WR_B_DQ60
WR_B_DQ59
WR_B_DQ58
WR_B_DQ57
WR_B_DQ56
WR_B_DQ55
WR_B_DQ54
WR_B_DQ53
WR_B_DQ52
WR_B_DQ51
WR_B_DQ50
WR_B_DQ49
WR_B_DQ48
WR_B_DQ47
WR_B_DQ46
WR_B_DQ45
WR_B_DQ44
WR_B_DQ43
WR_B_DQ42
WR_B_DQ41
WR_B_DQ40
WR_B_DQ39
WR_B_DQ38
WR_B_DQ37
WR_B_DQ36
WR_B_DQ35
WR_B_DQ34
WR_B_DQ32
WR_B_DQ33

DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
207
206
201
200
88
87
83
81

TLA
Input
S_D2:0^1
S_D2:1^1
S_D2:5^1
S_Q1^1
S_D2:2^1
S_D2:3^1
S_D2:7^1
S_D3:0^1
S_D3:2^1
S_D3:3^1
S_D3:7^1
S_D1:5^1
S_D3:1^1
S_D3:4^1
S_D1:7^1
S_D1:6^1
S_D1:4^1
S_D1:1^1
S_D0:7^1
S_D0:6^1
S_D1:3^1
S_D1:2^1
S_D0:5^1
S_D0:4^1
S_D0:3^1
S_D0:2^1
M_C0:1^1
M_C0:4^1
S_D0:1^1
S_D0:0^1
M_C0:6^1
M_C0:7^1

Group
Name
WrB_DatLo
(Hex)

Signal
Name
WR_B_DQ31
WR_B_DQ30
WR_B_DQ29
WR_B_DQ28
WR_B_DQ27
WR_B_DQ26
WR_B_DQ25
WR_B_DQ24
WR_B_DQ23
WR_B_DQ22
WR_B_DQ21
WR_B_DQ20
WR_B_DQ19
WR_B_DQ18
WR_B_DQ17
WR_B_DQ16
WR_B_DQ15
WR_B_DQ14
WR_B_DQ13
WR_B_DQ12
WR_B_DQ11
WR_B_DQ10
WR_B_DQ9
WR_B_DQ8
WR_B_DQ7
WR_B_DQ6
WR_B_DQ5
WR_B_DQ4
WR_B_DQ3
WR_B_DQ2
WR_B_DQ1
WR_B_DQ0

DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3

TLA
Input
M_D0:6^1
M_D0:3^1
S_C0:0^1
S_C0:1^1
M_D0:4^1
M_D0:1^1
S_C0:2^1
S_C0:3^1
S_C0:4^1
S_C0:5^1
S_C1:2^1
S_C1:3^1
S_C0:6^1
S_C0:7^1
S_C1:1^1
S_C1:4^1
S_C1:6^1
S_C1:7^1
S_E1:4^1
S_E1:1^1
S_C1:5^1
S_E1:7^1
S_E1:3^1
S_E1:2^1
S_E1:0^1
S_E0:7^1
S_E0:3^1
S_E0:2^1
S_CK2^1
S_E0:5^1
S_E0:1^1
S_E0:0^1

Table 1 – B_DDR3D_2D (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)

Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
3. All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a
MagniVu display value

DDR3THIN-MN-XXX

22

Doc. Rev. 1.11

Group
Name
RdAChkBits
(OFF)

RdBChkBits 4
(OFF)

ADatMsks
(BIN)

Signal
Name
RD_A_CB7
RD_A_CB6
RD_A_CB5
RD_A_CB4
RD_A_CB3
RD_A_CB2
RD_A_CB1
RD_A_CB0
RD_B_CB7
RD_B_CB6
RD_B_CB5
RD_B_CB4
RD_B_CB3
RD_B_CB2
RD_B_CB1
RD_B_CB0
A_DM7/DQS16
A_DM6/DQS15
A_DM5/DQS14
A_DM4/DQS13
A_DM3/DQS12
A_DM2/DQS11
A_DM1/DQS10
A_DM0/DQS9

DDR3
Pin #
165
164
159
158
46
45
40
39
165
164
159
158
46
45
40
39
230
221
212
203
152
143
134
125

TLA
Input
M_A1:5
M_A1:4
M_A1:0
M_A0:7
M_A1:6
M_A1:3
M_CK1
M_A0:5
M_A1:5^1
M_A1:4^1
M_A1:0^1
M_A0:7^1
M_A1:6^1
M_A1:3^1
M_CK1^1
M_A0:5^1
S_A2:4
S_A3:6
S_A1:0
M_C2:0
M_A0:2
S_CK3
S_E3:5
S_E2:6

Group
Name
WrAChkBits 4
(OFF)

WrBChkBits 4
(OFF)

BDatMsks 4
(BIN)

Signal
Name
WR_A_CB7
WR_A_CB6
WR_A_CB5
WR_A_CB4
WR_A_CB3
WR_A_CB2
WR_A_CB1
WR_A_CB0
WR_B_CB7
WR_B_CB6
WR_B_CB5
WR_B_CB4
WR_B_CB3
WR_B_CB2
WR_B_CB1
WR_B_CB0
B_DM7/DQS16
B_DM6/DQS15
B_DM5/DQS14
B_DM4/DQS13
B_DM3/DQS12
B_DM2/DQS11
B_DM1/DQS10
B_DM0/DQS9

DDR3
Pin #
165
164
159
158
46
45
40
39
165
164
159
158
46
45
40
39
230
221
212
203
152
143
134
125

TLA
Input
M_D1:5
M_D1:4
M_D1:0
M_D0:7
M_D1:6
M_D1:3
M_Q0
M_D0:5
M_D1:5^1
M_D1:4^1
M_D1:0^1
M_D0:7^1
M_D1:6^1
M_D1:3^1
M_Q0^1
M_D0:5^1
S_A2:4^1
S_A3:6^1
S_A1:0^1
M_C2:0^1
M_A0:2^1
S_CK3^1
S_E3:5^1
S_E2:6^1

Table 1 – B_DDR3D_2D (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)

Notes:
1. ‘ # ‘ denotes a low-true signal
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set
3. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair
4. Signals in these groups are acquired using the TLA’s demux capability and will not have
a MagniVu display value

DDR3THIN-MN-XXX

23

Doc. Rev. 1.11

Group
Name
Control 2
(SYM)

Strobes
(HEX)

Unprobed

Signal
Name
CKE1
CKE0
S3#
S2#
S1#
S0#
BA2
BA1
BA0
A15
A14
A13
A12/BC#
A10/AP
RAS#
CAS#
WE#
DQS7
DQS6
DQS5
DQS4
DQS3
DQS2
DQS1
DQS0
All DQSx#
DDRCK1+/SA1
SDA
SA0
SCL

DDR3
Pin #
169
50
49
48
76
193
52
190
71
171
172
196
174
70
192
74
73
111
103
94
85
34
25
16
7

TLA
Input
M_A3:2
M_A3:1
M_C2:5
M_C3:0
M_C3:4
M_C3:3
M_A3:0
M_C3:7
M_C1:6
M_CK0
M_A2:5
M_CK3
M_A2:4
M_C1:3
M_C3:6
M_C3:5
M_C1:7
S_A2:6
S_A3:5
S_CK1
M_C2:3
M_A0:1
S_C3:0
S_E3:6
S_E2:4

Group
Name
Address 2
(Hex)

Misc 2
(OFF)
Ungrouped

63/64
237
238
117
118

Signal
Name
BA2
BA1
BA0
A15
A14
A13
A12/BC#
A11
A10/AP
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
MISC1
MISC0
DDRCK0+/DQS8
DM8
ERR_OUT#³
RESET#
TEST
ODT0
ODT1
PAR_IN

DDR3
Pin #
52
190
71
171
172
196
174
55
70
175
177
56
178
58
59
180
61
181
188

TLA
Input
M_A3:0
M_C3:7
M_C1:6
M_CK0
M_A2:5
M_CK3
M_A2:4
M_A2:6
M_C1:3
M_A2:1
M_A2:0
M_A2:3
M_C0:3
M_A2:2
M_C0:5
M_C1:0
M_Q1
M_C1:1
M_C1:5

Placeholder
Placeholder

184/185
43
161
53
168
167
195
77
68

M_C1:4
M_A1:2
M_A1:1
M_A2:7
M_A3:6
M_A3:7
M_C2:0
M_C2:1
M_C1:2

Table 1 – B_DDR3D_2D TLA Channel Grouping (cont’d.)

Notes:
1. ‘ # ‘ denotes a low-true signal
2. These signals are required for accurate acquisition and post-processing of acquired data
3. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
4. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair
5. Signals in these groups are acquired using the TLA’s demux capability and will not have
a MagniVu display value

DDR3THIN-MN-XXX

24

Doc. Rev. 1.11

Group
Name
RdA_DatHi
(Hex)

Signal
Name
RD_A_DQ63
RD_A_DQ62
RD_A_DQ61
RD_A_DQ60
RD_A_DQ59
RD_A_DQ58
RD_A_DQ57
RD_A_DQ56
RD_A_DQ55
RD_A_DQ54
RD_A_DQ53
RD_A_DQ52
RD_A_DQ51
RD_A_DQ50
RD_A_DQ49
RD_A_DQ48
RD_A_DQ47
RD_A_DQ46
RD_A_DQ45
RD_A_DQ44
RD_A_DQ43
RD_A_DQ42
RD_A_DQ41
RD_A_DQ40
RD_A_DQ39
RD_A_DQ38
RD_A_DQ37
RD_A_DQ36
RD_A_DQ35
RD_A_DQ34
RD_A_DQ33
RD_A_DQ32

DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
207
206
201
200
88
87
83
81

TLA
Input
S_A2:0
S_A2:1
S_A2:5
S_CK0
S_A2:2
S_A2:3
S_A2:7
S_A3:0
S_A3:2
S_A3:3
S_A3:7
S_A1:5
S_A3:1
S_A3:4
S_A1:7
S_A1:6
S_A1:4
S_A1:1
S_A0:7
S_A0:6
S_A1:3
S_A1:2
S_A0:5
S_A0:4
S_A0:3
S_A0:2
M_C2:1
M_C2:4
S_A0:1
S_A0:0
M_C2:6
M_C2:7

Group
Name
RdA_DatLo
(Hex)

Signal
Name
RD_A_DQ31
RD_A_DQ30
RD_A_DQ29
RD_A_DQ28
RD_A_DQ27
RD_A_DQ26
RD_A_DQ25
RD_A_DQ24
RD_A_DQ23
RD_A_DQ22
RD_A_DQ21
RD_A_DQ20
RD_A_DQ19
RD_A_DQ18
RD_A_DQ17
RD_A_DQ16
RD_A_DQ15
RD_A_DQ14
RD_A_DQ13
RD_A_DQ12
RD_A_DQ11
RD_A_DQ10
RD_A_DQ9
RD_A_DQ8
RD_A_DQ7
RD_A_DQ6
RD_A_DQ5
RD_A_DQ4
RD_A_DQ3
RD_A_DQ2
RD_A_DQ1
RD_A_DQ0

DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3

TLA
Input
M_A0:6
M_A0:3
S_C2:0
S_C2:1
M_A0:4
M_A0:1
S_C2:2
S_C2:3
S_C2:4
S_C2:5
S_C3:2
S_C3:3
S_C2:6
S_C2:7
S_C3:1
S_C3:4
S_C3:6
S_C3:7
S_E3:4
S_E3:1
S_C3:5
S_E3:7
S_E3:3
S_E3:2
S_E3:0
S_E2:7
S_E2:3
S_E2:2
S_Q3
S_E2:5
S_E2:1
S_E2:0

Table 2 - B_DDR3D_2G (<=1066MT/s Read and Write) TLA Channel Grouping

Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set

DDR3THIN-MN-XXX

25

Doc. Rev. 1.11

Group
Name
RdB_DatHi
(Hex)

Signal
Name

DDR3
Pin#

TLA
Input

RD_B_DQ63
RD_B_DQ62
RD_B_DQ61
RD_B_DQ60
RD_B_DQ59
RD_B_DQ58
RD_B_DQ57
RD_B_DQ56
RD_B_DQ55
RD_B_DQ54
RD_B_DQ53
RD_B_DQ52
RD_B_DQ51
RD_B_DQ50
RD_B_DQ49
RD_B_DQ48
RD_B_DQ47
RD_B_DQ46
RD_B_DQ45
RD_B_DQ44
RD_B_DQ43
RD_B_DQ42
RD_B_DQ41
RD_B_DQ40
RD_B_DQ39
RD_B_DQ38
RD_B_DQ37
RD_B_DQ36
RD_B_DQ35
RD_B_DQ34
RD_B_DQ33
RD_B_DQ32

234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
207
206
201
200
88
87
83
81

S_A2:0^1
S_A2:1^1
S_A2:5^1
S_CK0^1
S_A2:2^1
S_A2:3^1
S_A2:7^1
S_A3:0^1
S_A3:2^1
S_A3:3^1
S_A3:7^1
S_A1:5^1
S_A3:1^1
S_A3:4^1
S_A1:7^1
S_A1:6^1
S_A1:4^1
S_A1:1^1
S_A0:7^1
S_A0:6^1
S_A1:3^1
S_A1:2^1
S_A0:5^1
S_A0:4^1
S_A0:3^1
S_A0:2^1
M_C2:1^1
M_C2:4^1
S_A0:1^1
S_A0:0^1
M_C2:6^1
M_C2:7^1

Group
Name
RdB_DatLo
(Hex)

Signal
Name

DDR3
Pin#

TLA
Input

RD_B_DQ31
RD_B_DQ30
RD_B_DQ29
RD_B_DQ28
RD_B_DQ27
RD_B_DQ26
RD_B_DQ25
RD_B_DQ24
RD_B_DQ23
RD_B_DQ22
RD_B_DQ21
RD_B_DQ20
RD_B_DQ19
RD_B_DQ18
RD_B_DQ17
RD_B_DQ16
RD_B_DQ15
RD_B_DQ14
RD_B_DQ13
RD_B_DQ12
RD_B_DQ11
RD_B_DQ10
RD_B_DQ9
RD_B_DQ8
RD_B_DQ7
RD_B_DQ6
RD_B_DQ5
RD_B_DQ4
RD_B_DQ3
RD_B_DQ2
RD_B_DQ1
RD_B_DQ0

156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3

M_A0:6^1
M_A0:3^1
S_C2:0^1
S_C2:1^1
M_A0:4^1
M_A0:1^1
S_C2:2^1
S_C2:3^1
S_C2:4^1
S_C2:5^1
S_C3:2^1
S_C3:3^1
S_C2:6^1
S_C2:7^1
S_C3:1^1
S_C3:4^1
S_C3:6^1
S_C3:7^1
S_E3:4^1
S_E3:1^1
S_C3:5^1
S_E3:7v
S_E3:3^1
S_E3:2^1
S_E3:0^1
S_E2:7^1
S_E2:3^1
S_E2:2^1
S_Q3^1
S_E2:5^1
S_E2:1^1
S_E2:0^1

Table 2 – B_DDR3D_2G (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)

Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set
3. All signals on this page are acquired using the TLA’s demux capability and will not have
a MagniVu display value

DDR3THIN-MN-XXX

26

Doc. Rev. 1.11

Group
Name
WrA_DatHi
(Hex)

Signal
Name
WR_A_DQ63
WR_A_DQ62
WR_A_DQ61
WR_A_DQ60
WR_A_DQ59
WR_A_DQ58
WR_A_DQ57
WR_A_DQ56
WR_A_DQ55
WR_A_DQ54
WR_A_DQ53
WR_A_DQ52
WR_A_DQ51
WR_A_DQ50
WR_A_DQ49
WR_A_DQ48
WR_A_DQ47
WR_A_DQ46
WR_A_DQ45
WR_A_DQ44
WR_A_DQ43
WR_A_DQ42
WR_A_DQ41
WR_A_DQ40
WR_A_DQ39
WR_A_DQ38
WR_A_DQ37
WR_A_DQ36
WR_A_DQ35
WR_A_DQ34
WR_A_DQ33
WR_A_DQ32

DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
207
206
201
200
88
87
83
81

TLA
Input
S_D2:0
S_D2:1
S_D2:5
S_Q1
S_D2:2
S_D2:3
S_D2:7
S_D3:0
S_D3:2
S_D3:3
S_D3:7
S_D1:5
S_D3:1
S_D3:4
S_D1:7
S_D1:6
S_D1:4
S_D1:1
S_D0:7
S_D0:6
S_D1:3
S_D1:2
S_D0:5
S_D0:4
S_D0:3
S_D0:2
M_C0:1
M_C0:4
S_D0:1
S_D0:0
M_C0:6
M_C0:7

Group
Name
WrA_DatLo
(Hex)

Signal
Name
WR_A_DQ31
WR_A_DQ30
WR_A_DQ29
WR_A_DQ28
WR_A_DQ27
WR_A_DQ26
WR_A_DQ25
WR_A_DQ24
WR_A_DQ23
WR_A_DQ22
WR_A_DQ21
WR_A_DQ20
WR_A_DQ19
WR_A_DQ18
WR_A_DQ17
WR_A_DQ16
WR_A_DQ15
WR_A_DQ14
WR_A_DQ13
WR_A_DQ12
WR_A_DQ11
WR_A_DQ10
WR_A_DQ9
WR_A_DQ8
WR_A_DQ7
WR_A_DQ6
WR_A_DQ5
WR_A_DQ4
WR_A_DQ3
WR_A_DQ2
WR_A_DQ1
WR_A_DQ0

DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3

TLA
Input
M_D0:6
M_D0:3
S_C0:0
S_C0:1
M_D0:4
M_D0:1
S_C0:2
S_C0:3
S_C0:4
S_C0:5
S_C1:2
S_C1:3
S_C0:6
S_C0:7
S_C1:1
S_C1:4
S_C1:6
S_C1:7
S_E1:4
S_E1:1
S_C1:5
S_E1:7
S_E1:3
S_E1:2
S_E1:0
S_E0:7
S_E0:3
S_E0:2
S_CK2
S_E0:5
S_E0:1
S_E0:0

Table 2 – B_DDR3D_2G (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)

Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set

DDR3THIN-MN-XXX

27

Doc. Rev. 1.11

Group
Name
WrB_DatHi
(Hex)

Signal
Name
WR_B_DQ63
WR_B_DQ62
WR_B_DQ61
WR_B_DQ60
WR_B_DQ59
WR_B_DQ58
WR_B_DQ57
WR_B_DQ56
WR_B_DQ55
WR_B_DQ54
WR_B_DQ53
WR_B_DQ52
WR_B_DQ51
WR_B_DQ50
WR_B_DQ49
WR_B_DQ48
WR_B_DQ47
WR_B_DQ46
WR_B_DQ45
WR_B_DQ44
WR_B_DQ43
WR_B_DQ42
WR_B_DQ41
WR_B_DQ40
WR_B_DQ39
WR_B_DQ38
WR_B_DQ37
WR_B_DQ36
WR_B_DQ35
WR_B_DQ34
WR_B_DQ32
WR_B_DQ33

DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
207
206
201
200
88
87
83
81

TLA
Input
S_D2:0^1
S_D2:1^1
S_D2:5^1
S_Q1^1
S_D2:2^1
S_D2:3^1
S_D2:7^1
S_D3:0^1
S_D3:2^1
S_D3:3^1
S_D3:7^1
S_D1:5^1
S_D3:1^1
S_D3:4^1
S_D1:7^1
S_D1:6^1
S_D1:4^1
S_D1:1^1
S_D0:7^1
S_D0:6^1
S_D1:3^1
S_D1:2^1
S_D0:5^1
S_D0:4^1
S_D0:3^1
S_D0:2v
M_C0:1^1
M_C0:4^1
S_D0:1v
S_D0:0^1
M_C0:6^1
M_C0:7^1

Group
Name
WrB_DatLo
(Hex)

Signal
Name
WR_B_DQ31
WR_B_DQ30
WR_B_DQ29
WR_B_DQ28
WR_B_DQ27
WR_B_DQ26
WR_B_DQ25
WR_B_DQ24
WR_B_DQ23
WR_B_DQ22
WR_B_DQ21
WR_B_DQ20
WR_B_DQ19
WR_B_DQ18
WR_B_DQ17
WR_B_DQ16
WR_B_DQ15
WR_B_DQ14
WR_B_DQ13
WR_B_DQ12
WR_B_DQ11
WR_B_DQ10
WR_B_DQ9
WR_B_DQ8
WR_B_DQ7
WR_B_DQ6
WR_B_DQ5
WR_B_DQ4
WR_B_DQ3
WR_B_DQ2
WR_B_DQ1
WR_B_DQ0

DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3

TLA
Input
M_D0:6^1
M_D0:3^1
S_C0:0^1
S_C0:1^1
M_D0:4^1
M_D0:1^1
S_C0:2^1
S_C0:3^1
S_C0:4^1
S_C0:5^1
S_C1:2^1
S_C1:3^1
S_C0:6^1
S_C0:7^1
S_C1:1^1
S_C1:4^1
S_C1:6^1
S_C1:7^1
S_E1:4^1
S_E1:1^1
S_C1:5^1
S_E1:7^1
S_E1:3^1
S_E1:2^1
S_E1:0^1
S_E0:7^1
S_E0:3^1
S_E0:2^1
S_CK2^1
S_E0:5^1
S_E0:1^1
S_E0:0^1

Table 2 – B_DDR3D_2G (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)

Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set
3. All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a
MagniVu display value

DDR3THIN-MN-XXX

28

Doc. Rev. 1.11

Group
Name
RdAChkBits
(OFF)

RdBChkBits 4
(OFF)

ADatMsks
(BIN)

Signal
Name
RD_A_CB7
RD_A_CB6
RD_A_CB5
RD_A_CB4
RD_A_CB3
RD_A_CB2
RD_A_CB1
RD_A_CB0
RD_B_CB7
RD_B_CB6
RD_B_CB5
RD_B_CB4
RD_B_CB3
RD_B_CB2
RD_B_CB1
RD_B_CB0
A_DM7/DQS16
A_DM6/DQS15
A_DM5/DQS14
A_DM4/DQS13
A_DM3/DQS12
A_DM2/DQS11
A_DM1/DQS10
A_DM0/DQS9

DDR3
Pin #
165
164
159
158
46
45
40
39
165
164
159
158
46
45
40
39
230
221
212
203
152
143
134
125

TLA
Input
M_A1:5
M_A1:4
M_A1:0
M_A0:7
M_A1:6
M_A1:3
M_CK1
M_A0:5
M_A1:5^1
M_A1:4^1
M_A1:0^1
M_A0:7^1
M_A1:6^1
M_A1:3^1
M_CK1^1
M_A0:5^1
S_A2:4
S_A3:6
S_A1:0
M_C2:0
M_A0:2
S_CK3
S_E3:5
S_E2:6

Group
Name
WrAChkBits 4
(OFF)

WrBChkBits 4
(OFF)

BDatMsks 4
(BIN)

Signal
Name
WR_A_CB7
WR_A_CB6
WR_A_CB5
WR_A_CB4
WR_A_CB3
WR_A_CB2
WR_A_CB1
WR_A_CB0
WR_B_CB7
WR_B_CB6
WR_B_CB5
WR_B_CB4
WR_B_CB3
WR_B_CB2
WR_B_CB1
WR_B_CB0
B_DM7/DQS16
B_DM6/DQS15
B_DM5/DQS14
B_DM4/DQS13
B_DM3/DQS12
B_DM2/DQS11
B_DM1/DQS10
B_DM0/DQS9

DDR3
Pin #
165
164
159
158
46
45
40
39
165
164
159
158
46
45
40
39
230
221
212
203
152
143
134
125

TLA
Input
M_D1:5
M_D1:4
M_D1:0
M_D0:7
M_D1:6
M_D1:3
M_Q0
M_D0:5
M_D1:5^1
M_D1:4^1
M_D1:0^1
M_D0:7^1
M_D1:6^1
M_D1:3^1
M_Q0^1
M_D0:5^1
S_A2:4^1
S_A3:6^1
S_A1:0^1
M_C2:0^1
M_A0:2^1
S_CK3^1
S_E3:5^1
S_E2:6^1

Table 2 – B_DDR3D_2G (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)

Notes:
1.
2.
3.
4.

‘ # ‘ denotes a low-true signal
The ‘S’ in front of a TLA channel denotes the Slave card of the merged set
The ‘M’ in front of a TLA channel denotes the Master card of the merged set
All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a
MagniVu display value

DDR3THIN-MN-XXX

29

Doc. Rev. 1.11

Group
Name
Control 2
(SYM)

Misc 2
(OFF)
Unprobed

Signal
Name
cCKE1
cCKE0
bCLK1
bCLK0
CKE1
CKE0
cS1#
cS0#
bS1#
bS0#
S3#
S2#
S1#
S0#
BA2
BA1
BA0
A15
A14
A13
A12/BC#
A10/AP
RAS#
CAS#
WE#
MISC1
MISC0
DDRCK0+/All DQSx#
DDRCK1+/SA1
SDA
SA0
SCL

DDR3
Pin #
From Slot C
From Slot C
From Slot B
From Slot B
169
50
From Slot C
From Slot C
From Slot B
From Slot B
49
48
76
193
52
190
71
171
172
196
174
70
192
74
73
Placeholder
Placeholder

184/185

TLA
Input
M_E3:5
M_E3:4
M_Q2
M_E1:7
M_A3:2
M_A3:1
M_E2:6
M_E2:2
M_E0:4
M_E0:0
M_C2:5
M_C3:0
M_C3:4
M_C3:3
M_A3:0
M_C3:7
M_C1:6
M_CK0
M_A2:5
M_CK3
M_A2:4
M_C1:3
M_C3:6
M_C3:5
M_C1:7
M_A3:5
M_A3:4
M_C1:4

Group
Name
Address 2
(Hex)

Strobes
(HEX)

Ungrouped

63/64
237
238
117
118

Signal
Name
BA2
BA1
BA0
A15
A14
A13
A12/BC#
A11
A10/AP
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
DQS7
DQS6
DQS5
DQS4
DQS3
DQS2
DQS1
DQS0
DQS8
1_DQS8
DM8
ERR_OUT#³
RESET#
TEST
ODT0
ODT1
PAR_IN

DDR3
Pin #
52
190
71
171
172
196
174
55
70
175
177
56
178
58
59
180
61
181
188
111
103
94
85
34
25
16
7
43
43
161
53
168
167
195
77
68

TLA
Input
M_A3:0
M_C3:7
M_C1:6
M_CK0
M_A2:5
M_CK3
M_A2:4
M_A2:6
M_C1:3
M_A2:1
M_A2:0
M_A2:3
M_C0:3
M_A2:2
M_C0:5
M_C1:0
M_Q1
M_C1:1
M_C1:5
S_A2:6
S_A3:5
S_CK1
M_C2:3
M_A0:1
S_C3:0
S_E3:6
S_E2:4
M_A1:2
S2_D3:2
M_A1:1
M_A2:7
M_A3:6
M_A3:7
M_C2:0
M_C2:1
M_C1:2

Table 2 – B_DDR3D_2G (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)

Notes:
1. ‘ # ‘ denotes a low-true signal
2. These signals are required for accurate acquisition and post-processing of acquired data
3. The ‘S’ in front of a TLA channel denotes the Slave card of the merged set
4. The ‘M’ in front of a TLA channel denotes the Master card of the merged set

DDR3THIN-MN-XXX

30

Doc. Rev. 1.11

Group
Name
RdA_DatHi
(Hex)

Signal
Name
RD_A_DQ63
RD_A_DQ62
RD_A_DQ61
RD_A_DQ60
RD_A_DQ59
RD_A_DQ58
RD_A_DQ57
RD_A_DQ56
RD_A_DQ55
RD_A_DQ54
RD_A_DQ53
RD_A_DQ52
RD_A_DQ51
RD_A_DQ50
RD_A_DQ49
RD_A_DQ48
RD_A_DQ47
RD_A_DQ46
RD_A_DQ45
RD_A_DQ44
RD_A_DQ43
RD_A_DQ42
RD_A_DQ41
RD_A_DQ40
RD_A_DQ39
RD_A_DQ38
RD_A_DQ37
RD_A_DQ36
RD_A_DQ35
RD_A_DQ34
RD_A_DQ33
RD_A_DQ32

DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
207
206
201
200
88
87
83
81

TLA
Input
S_A2:0
S_A2:1
S_A2:5
S_CK0
S_A2:2
S_A2:3
S_A2:7
S_A3:0
S_A3:2
S_A3:3
S_A3:7
S_A1:5
S_A3:1
S_A3:4
S_A1:7
S_A1:6
S_A1:4
S_A1:1
S_A0:7
S_A0:6
S_A1:3
S_A1:2
S_A0:5
S_A0:4
S_A0:3
S_A0:2
M_C2:1
M_C2:4
S_A0:1
S_A0:0
M_C2:6
M_C2:7

Group
Name
RdA_DatLo
(Hex)

Signal
Name
RD_A_DQ31
RD_A_DQ30
RD_A_DQ29
RD_A_DQ28
RD_A_DQ27
RD_A_DQ26
RD_A_DQ25
RD_A_DQ24
RD_A_DQ23
RD_A_DQ22
RD_A_DQ21
RD_A_DQ20
RD_A_DQ19
RD_A_DQ18
RD_A_DQ17
RD_A_DQ16
RD_A_DQ15
RD_A_DQ14
RD_A_DQ13
RD_A_DQ12
RD_A_DQ11
RD_A_DQ10
RD_A_DQ9
RD_A_DQ8
RD_A_DQ7
RD_A_DQ6
RD_A_DQ5
RD_A_DQ4
RD_A_DQ3
RD_A_DQ2
RD_A_DQ1
RD_A_DQ0

DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3

TLA
Input
M_A0:6
M_A0:3
S_C2:0
S_C2:1
M_A0:4
M_A0:1
S_C2:2
S_C2:3
S_C2:4
S_C2:5
S_C3:2
S_C3:3
S_C2:6
S_C2:7
S_C3:1
S_C3:4
S_C3:6
S_C3:7
S_E3:4
S_E3:1
S_C3:5
S_E3:7
S_E3:3
S_E3:2
S_E3:0
S_E2:7
S_E2:3
S_E2:2
S_Q3
S_E2:5
S_E2:1
S_E2:0

Table 3 - B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping

Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged set
3. The ‘S’ in front of a TLA channel denotes Slave card #1 of the merged set

DDR3THIN-MN-XXX

31

Doc. Rev. 1.11

Group
Name
RdB_DatHi
(Hex)

Signal
Name

DDR3
Pin#

TLA
Input

RD_B_DQ63
RD_B_DQ62
RD_B_DQ61
RD_B_DQ60
RD_B_DQ59
RD_B_DQ58
RD_B_DQ57
RD_B_DQ56
RD_B_DQ55
RD_B_DQ54
RD_B_DQ53
RD_B_DQ52
RD_B_DQ51
RD_B_DQ50
RD_B_DQ49
RD_B_DQ48
RD_B_DQ47
RD_B_DQ46
RD_B_DQ45
RD_B_DQ44
RD_B_DQ43
RD_B_DQ42
RD_B_DQ41
RD_B_DQ40
RD_B_DQ39
RD_B_DQ38
RD_B_DQ37
RD_B_DQ36
RD_B_DQ35
RD_B_DQ34
RD_B_DQ33
RD_B_DQ32

234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
207
206
201
200
88
87
83
81

S_A2:0^1
S_A2:1^1
S_A2:5^1
S_CK0^1
S_A2:2^1
S_A2:3^1
S_A2:7^1
S_A3:0^1
S_A3:2^1
S_A3:3^1
S_A3:7^1
S_A1:5^1
S_A3:1^1
S_A3:4^1
S_A1:7^1
S_A1:6^1
S_A1:4^1
S_A1:1^1
S_A0:7^1
S_A0:6^1
S_A1:3^1
S_A1:2^1
S_A0:5^1
S_A0:4^1
S_A0:3^1
S_A0:2^1
M_C2:1^1
M_C2:4^1
S_A0:1^1
S_A0:0^1
M_C2:6^1
M_C2:7^1

Group
Name
RdB_DatLo
(Hex)

Signal
Name

DDR3
Pin#

TLA
Input

RD_B_DQ31
RD_B_DQ30
RD_B_DQ29
RD_B_DQ28
RD_B_DQ27
RD_B_DQ26
RD_B_DQ25
RD_B_DQ24
RD_B_DQ23
RD_B_DQ22
RD_B_DQ21
RD_B_DQ20
RD_B_DQ19
RD_B_DQ18
RD_B_DQ17
RD_B_DQ16
RD_B_DQ15
RD_B_DQ14
RD_B_DQ13
RD_B_DQ12
RD_B_DQ11
RD_B_DQ10
RD_B_DQ9
RD_B_DQ8
RD_B_DQ7
RD_B_DQ6
RD_B_DQ5
RD_B_DQ4
RD_B_DQ3
RD_B_DQ2
RD_B_DQ1
RD_B_DQ0

156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3

M_A0:6^1
M_A0:3^1
S_C2:0^1
S_C2:1^1
M_A0:4^1
M_A0:1^1
S_C2:2^1
S_C2:3^1
S_C2:4^1
S_C2:5^1
S_C3:2^1
S_C3:3^1
S_C2:6^1
S_C2:7^1
S_C3:1^1
S_C3:4^1
S_C3:6^1
S_C3:7^1
S_E3:4^1
S_E3:1^1
S_C3:5^1
S_E3:7^1
S_E3:3^1
S_E3:2^1
S_E3:0^1
S_E2:7^1
S_E2:3^1
S_E2:2^1
S_Q3^1
S_E2:5^1
S_E2:1^1
S_E2:0^1

Table 3 – B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)

Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged set
3. The ‘S’ in front of a TLA channel denotes Slave card #1 of the merged set
4. All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a
MagniVu display value

DDR3THIN-MN-XXX

32

Doc. Rev. 1.11

Group
Name
1_RdA_DatHi
(Hex)

Signal
Name
1_RD_A_DQ63
1_RD_A_DQ62
1_RD_A_DQ61
1_RD_A_DQ60
1_RD_A_DQ59
1_RD_A_DQ58
1_RD_A_DQ57
1_RD_A_DQ56
1_RD_A_DQ55
1_RD_A_DQ54
1_RD_A_DQ53
1_RD_A_DQ52
1_RD_A_DQ51
1_RD_A_DQ50
1_RD_A_DQ49
1_RD_A_DQ48
1_RD_A_DQ47
1_RD_A_DQ46
1_RD_A_DQ45
1_RD_A_DQ44
1_RD_A_DQ43
1_RD_A_DQ42
1_RD_A_DQ41
1_RD_A_DQ40
1_RD_A_DQ39
1_RD_A_DQ38
1_RD_A_DQ37
1_RD_A_DQ36
1_RD_A_DQ35
1_RD_A_DQ34
1_RD_A_DQ33
1_RD_A_DQ32

DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
207
206
201
200
88
87
83
81

TLA
Input
S2_A0:0
S2_A0:1
S2_A0:5
S2_CK1
S2_A0:2
S2_A0:3
S2_A0:7
S2_A1:0
S2_A1:2
S2_A1:3
S2_A1:7
S2_D1:5
S2_A1:1
S2_A1:4
S2_D1:7
S2_D1:6
S2_D1:4
S2_D1:1
S2_D0:7
S2_D0:6
S2_D1:3
S2_D1:2
S2_D0:5
S2_D0:4
S2_D0:3
S2_D0:2
S2_C2:1
S2_C2:4
S2_D0:1
S2_D0:0
S2_C2:6
S2_C2:7

Group
Name
1_RdA_DatLo
(Hex)

Signal
Name
1_RD_A_DQ31
1_RD_A_DQ30
1_RD_A_DQ29
1_RD_A_DQ28
1_RD_A_DQ27
1_RD_A_DQ26
1_RD_A_DQ25
1_RD_A_DQ24
1_RD_A_DQ23
1_RD_A_DQ22
1_RD_A_DQ21
1_RD_A_DQ20
1_RD_A_DQ19
1_RD_A_DQ18
1_RD_A_DQ17
1_RD_A_DQ16
1_RD_A_DQ15
1_RD_A_DQ14
1_RD_A_DQ13
1_RD_A_DQ12
1_RD_A_DQ11
1_RD_A_DQ10
1_RD_A_DQ9
1_RD_A_DQ8
1_RD_A_DQ7
1_RD_A_DQ6
1_RD_A_DQ5
1_RD_A_DQ4
1_RD_A_DQ3
1_RD_A_DQ2
1_RD_A_DQ1
1_RD_A_DQ0

DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3

TLA
Input
S2_D2:6
S2_D2:3
S2_E2:0
S2_E2:1
S2_D2:4
S2_D2:1
S2_E2:2
S2_E2:3
S2_E2:4
S2_E2:5
S2_E3:2
S2_E3:3
S2_E2:6
S2_E2:7
S2_E3:1
S2_E3:4
S2_E3:6
S2_E3:7
S2_E1:4
S2_E1:1
S2_E3:5
S2_E1:7
S2_E1:3
S2_E1:2
S2_E1:0
S2_E0:7
S2_E0:3
S2_E0:2
S2_Q2
S2_E0:5
S2_E0:1
S2_E0:0

Table 3 – B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)

Notes:
1. These signals are acquired from the second DIMM slot
2. All signals on this page are required for accurate post-processing of acquired data
3. The ‘S2’ in front of a TLA channel denotes Slave card #2 of the merged set

DDR3THIN-MN-XXX

33

Doc. Rev. 1.11

Group
Name
1_RdB_DatHi
(Hex)

Signal
Name

DDR3
Pin#

TLA
Input

Group
Name

Signal
Name

DDR3
Pin#

TLA
Input

1_RD_B_DQ63
1_RD_B_DQ62
1_RD_B_DQ61
1_RD_B_DQ60
1_RD_B_DQ59
1_RD_B_DQ58
1_RD_B_DQ57
1_RD_B_DQ56
1_RD_B_DQ55
1_RD_B_DQ54
1_RD_B_DQ53
1_RD_B_DQ52
1_RD_B_DQ51
1_RD_B_DQ50
1_RD_B_DQ49
1_RD_B_DQ48
1_RD_B_DQ47
1_RD_B_DQ46
1_RD_B_DQ45
1_RD_B_DQ44
1_RD_B_DQ43
1_RD_B_DQ42
1_RD_B_DQ41
1_RD_B_DQ40
1_RD_B_DQ39
1_RD_B_DQ38
1_RD_B_DQ37
1_RD_B_DQ36
1_RD_B_DQ35
1_RD_B_DQ34
1_RD_B_DQ33
1_RD_B_DQ32

234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
207
206
201
200
88
87
83
81

S2_A0:0^1
S2_A0:1^1
S2_A0:5^1
S2_CK1^1
S2_A0:2^1
S2_A0:3^1
S2_A0:7^1
S2_A1:0^1
S2_A1:2^1
S2_A1:3^1
S2_A1:7^1
S2_D1:5^1
S2_A1:1^1
S2_A1:4^1
S2_D1:7^1
S2_D1:6^1
S2_D1:4^1
S2_D1:1^1
S2_D0:7^1
S2_D0:6^1
S2_D1:3^1
S2_D1:2^1
S2_D0:5^1
S2_D0:4^1
S2_D0:3^1
S2_D0:2^1
S2_C2:1^1
S2_C2:4^1
S2_D0:1^1
S2_D0:0^1
S2_C2:6^1
S2_C2:7^1

1_RdB_DatLo
(Hex)

1_RD_B_DQ31
1_RD_B_DQ30
1_RD_B_DQ29
1_RD_B_DQ28
1_RD_B_DQ27
1_RD_B_DQ26
1_RD_B_DQ25
1_RD_B_DQ24
1_RD_B_DQ23
1_RD_B_DQ22
1_RD_B_DQ21
1_RD_B_DQ20
1_RD_B_DQ19
1_RD_B_DQ18
1_RD_B_DQ17
1_RD_B_DQ16
1_RD_B_DQ15
1_RD_B_DQ14
1_RD_B_DQ13
1_RD_B_DQ12
1_RD_B_DQ11
1_RD_B_DQ10
1_RD_B_DQ9
1_RD_B_DQ8
1_RD_B_DQ7
1_RD_B_DQ6
1_RD_B_DQ5
1_RD_B_DQ4
1_RD_B_DQ3
1_RD_B_DQ2
1_RD_B_DQ1
1_RD_B_DQ0

156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3

S2_D2:6^1
S2_D2:3^1
S2_E2:0^1
S2_E2:1^1
S2_D2:4^1
S2_D2:1^1
S2_E2:2^1
S2_E2:3^1
S2_E2:4^1
S2_E2:5^1
S2_E3:2^1
S2_E3:3^1
S2_E2:6^1
S2_E2:7^1
S2_E3:1^1
S2_E3:4^1
S2_E3:6^1
S2_E3:7^1
S2_E1:4^1
S2_E1:1^1
S2_E3:5^1
S2_E1:7^1
S2_E1:3^1
S2_E1:2^1
S2_E1:0^1
S2_E0:7^1
S2_E0:3^1
S2_E0:2^1
S2_Q2^1
S2_E0:5^1
S2_E0:1^1
S2_E0:0^1

Table 3 – B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)

Notes:
1.
2.
3.
4.

These signals are acquired from the second DIMM slot
All signals on this page are required for accurate post-processing of acquired data
The ‘S2’ in front of a TLA channel denotes Slave card #2 of the merged set
All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a
MagniVu display value

DDR3THIN-MN-XXX

34

Doc. Rev. 1.11

Group
Name
WrA_DatHi
(Hex)

Signal
Name
WR_A_DQ63
WR_A_DQ62
WR_A_DQ61
WR_A_DQ60
WR_A_DQ59
WR_A_DQ58
WR_A_DQ57
WR_A_DQ56
WR_A_DQ55
WR_A_DQ54
WR_A_DQ53
WR_A_DQ52
WR_A_DQ51
WR_A_DQ50
WR_A_DQ49
WR_A_DQ48
WR_A_DQ47
WR_A_DQ46
WR_A_DQ45
WR_A_DQ44
WR_A_DQ43
WR_A_DQ42
WR_A_DQ41
WR_A_DQ40
WR_A_DQ39
WR_A_DQ38
WR_A_DQ37
WR_A_DQ36
WR_A_DQ35
WR_A_DQ34
WR_A_DQ33
WR_A_DQ32

DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
207
206
201
200
88
87
83
81

TLA
Input
S_D2:0
S_D2:1
S_D2:5
S_Q1
S_D2:2
S_D2:3
S_D2:7
S_D3:0
S_D3:2
S_D3:3
S_D3:7
S_D1:5
S_D3:1
S_D3:4
S_D1:7
S_D1:6
S_D1:4
S_D1:1
S_D0:7
S_D0:6
S_D1:3
S_D1:2
S_D0:5
S_D0:4
S_D0:3
S_D0:2
M_C0:1
M_C0:4
S_D0:1
S_D0:0
M_C0:6
M_C0:7

Group
Name
WrA_DatLo
(Hex)

Signal
Name
WR_A_DQ31
WR_A_DQ30
WR_A_DQ29
WR_A_DQ28
WR_A_DQ27
WR_A_DQ26
WR_A_DQ25
WR_A_DQ24
WR_A_DQ23
WR_A_DQ22
WR_A_DQ21
WR_A_DQ20
WR_A_DQ19
WR_A_DQ18
WR_A_DQ17
WR_A_DQ16
WR_A_DQ15
WR_A_DQ14
WR_A_DQ13
WR_A_DQ12
WR_A_DQ11
WR_A_DQ10
WR_A_DQ9
WR_A_DQ8
WR_A_DQ7
WR_A_DQ6
WR_A_DQ5
WR_A_DQ4
WR_A_DQ3
WR_A_DQ2
WR_A_DQ1
WR_A_DQ0

DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3

TLA
Input
M_D0:6
M_D0:3
S_C0:0
S_C0:1
M_D0:4
M_D0:1
S_C0:2
S_C0:3
S_C0:4
S_C0:5
S_C1:2
S_C1:3
S_C0:6
S_C0:7
S_C1:1
S_C1:4
S_C1:6
S_C1:7
S_E1:4
S_E1:1
S_C1:5
S_E1:7
S_E1:3
S_E1:2
S_E1:0
S_E0:7
S_E0:3
S_E0:2
S_CK2
S_E0:5
S_E0:1
S_E0:0

Table 3 – B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)

Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged set
3. The ‘S’ in front of a TLA channel denotes Slave card #1 of the merged set

DDR3THIN-MN-XXX

35

Doc. Rev. 1.11

Group
Name
WrB_DatHi
(Hex)

Signal
Name
WR_B_DQ63
WR_B_DQ62
WR_B_DQ61
WR_B_DQ60
WR_B_DQ59
WR_B_DQ58
WR_B_DQ57
WR_B_DQ56
WR_B_DQ55
WR_B_DQ54
WR_B_DQ53
WR_B_DQ52
WR_B_DQ51
WR_B_DQ50
WR_B_DQ49
WR_B_DQ48
WR_B_DQ47
WR_B_DQ46
WR_B_DQ45
WR_B_DQ44
WR_B_DQ43
WR_B_DQ42
WR_B_DQ41
WR_B_DQ40
WR_B_DQ39
WR_B_DQ38
WR_B_DQ37
WR_B_DQ36
WR_B_DQ35
WR_B_DQ34
WR_B_DQ32
WR_B_DQ33

DDR3
Pin #
234
233
228
227
115
114
109
108
225
224
219
218
106
105
100
99
216
215
210
209
97
96
91
90
207
206
201
200
88
87
83
81

TLA
Input
S_D2:0^1
S_D2:1^1
S_D2:5^1
S_Q1^1
S_D2:2^1
S_D2:3^1
S_D2:7^1
S_D3:0^1
S_D3:2^1
S_D3:3^1
S_D3:7^1
S_D1:5^1
S_D3:1^1
S_D3:4^1
S_D1:7^1
S_D1:6^1
S_D1:4^1
S_D1:1^1
S_D0:7^1
S_D0:6^1
S_D1:3^1
S_D1:2^1
S_D0:5^1
S_D0:4^1
S_D0:3^1
S_D0:2^1
M_C0:1^1
M_C0:4^1
S_D0:1^1
S_D0:0^1
M_C0:6^1
M_C0:7^1

Group
Name
WrB_DatLo
(Hex)

Signal
Name
WR_B_DQ31
WR_B_DQ30
WR_B_DQ29
WR_B_DQ28
WR_B_DQ27
WR_B_DQ26
WR_B_DQ25
WR_B_DQ24
WR_B_DQ23
WR_B_DQ22
WR_B_DQ21
WR_B_DQ20
WR_B_DQ19
WR_B_DQ18
WR_B_DQ17
WR_B_DQ16
WR_B_DQ15
WR_B_DQ14
WR_B_DQ13
WR_B_DQ12
WR_B_DQ11
WR_B_DQ10
WR_B_DQ9
WR_B_DQ8
WR_B_DQ7
WR_B_DQ6
WR_B_DQ5
WR_B_DQ4
WR_B_DQ3
WR_B_DQ2
WR_B_DQ1
WR_B_DQ0

DDR3
Pin #
156
155
150
149
37
36
31
30
147
146
141
140
28
27
22
21
138
137
132
131
19
18
13
12
129
128
123
122
10
9
4
3

TLA
Input
M_D0:6^1
M_D0:3^1
S_C0:0^1
S_C0:1^1
M_D0:4^1
M_D0:1^1
S_C0:2^1
S_C0:3^1
S_C0:4^1
S_C0:5^1
S_C1:2^1
S_C1:3^1
S_C0:6^1
S_C0:7^1
S_C1:1v
S_C1:4^1
S_C1:6^1
S_C1:7^1
S_E1:4^1
S_E1:1v
S_C1:5^1
S_E1:7^1
S_E1:3^1
S_E1:2^1
S_E1:0^1
S_E0:7^1
S_E0:3^1
S_E0:2^1
S_CK2^1
S_E0:5^1
S_E0:1^1
S_E0:0^1

Table 3 – B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)

Notes:
1. All signals on this page are required for accurate post-processing of acquired data
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged set
3. The ‘S’ in front of a TLA channel denotes Slave card #1 of the merged set
4. All signals on this page are stored in the TLA7BB4’s Prime memory and will not have a
MagniVu display value

DDR3THIN-MN-XXX

36

Doc. Rev. 1.11

Group
Name
RdAChkBits
(OFF)

RdBChkBits 4
(OFF)

1_RdAChkBits
(OFF)

ADatMsks
(BIN)

Signal
Name
RD_A_CB7
RD_A_CB6
RD_A_CB5
RD_A_CB4
RD_A_CB3
RD_A_CB2
RD_A_CB1
RD_A_CB0
RD_B_CB7
RD_B_CB6
RD_B_CB5
RD_B_CB4
RD_B_CB3
RD_B_CB2
RD_B_CB1
RD_B_CB0
1_RD_A_CB7
1_RD_A_CB6
1_RD_A_CB5
1_RD_A_CB4
1_RD_A_CB3
1_RD_A_CB2
1_RD_A_CB1
1_RD_A_CB0
A_DM7/DQS16
A_DM6/DQS15
A_DM5/DQS14
A_DM4/DQS13
A_DM3/DQS12
A_DM2/DQS11
A_DM1/DQS10
A_DM0/DQS9

DDR3
Pin #
165
164
159
158
46
45
40
39
165
164
159
158
46
45
40
39
165
164
159
158
46
45
40
39
230
221
212
203
152
143
134
125

TLA
Input
M_A1:5
M_A1:4
M_A1:0
M_A0:7
M_A1:6
M_A1:3
M_CK1
M_A0:5
M_A1:5^1
M_A1:4^1
M_A1:0^1
M_A0:7^1
M_A1:6^1
M_A1:3^1
M_CK1^1
M_A0:5^1
S2_D3:5
S2_D3:4
S2_D3:0
S2_D2:7
S2_D3:6
S2_D3:3
S2_Q0
S2_D2:5
S_A2:4
S_A3:6
S_A1:0
M_C2:0
M_A0:2
S_CK3
S_E3:5
S_E2:6

Group
Name
WrAChkBits 4
(OFF)

WrBChkBits 4
(OFF)

1_RdBChkBits 4
(OFF)

BDatMsks 4
(BIN)

Signal
Name
WR_A_CB7
WR_A_CB6
WR_A_CB5
WR_A_CB4
WR_A_CB3
WR_A_CB2
WR_A_CB1
WR_A_CB0
WR_B_CB7
WR_B_CB6
WR_B_CB5
WR_B_CB4
WR_B_CB3
WR_B_CB2
WR_B_CB1
WR_B_CB0
1_RD_B_CB7
1_RD_B_CB6
1_RD_B_CB5
1_RD_B_CB4
1_RD_B_CB3
1_RD_B_CB2
1_RD_B_CB1
1_RD_B_CB0
B_DM7/DQS16
B_DM6/DQS15
B_DM5/DQS14
B_DM4/DQS13
B_DM3/DQS12
B_DM2/DQS11
B_DM1/DQS10
B_DM0/DQS9

DDR3
Pin #
165
164
159
158
46
45
40
39
165
164
159
158
46
45
40
39
165
164
159
158
46
45
40
39
230
221
212
203
152
143
134
125

TLA
Input
M_D1:5
M_D1:4
M_D1:0
M_D0:7
M_D1:6
M_D1:3
M_Q0
M_D0:5
M_D1:5^1
M_D1:4^1
M_D1:0^1
M_D0:7^1
M_D1:6^1
M_D1:3^1
M_Q0^1
M_D0:5^1
S2_D3:5^1
S2_D3:4^1
S2_D3:0^1
S2_D2:7^1
S2_D3:6^1
S2_D3:3^1
S2_Q0^1
S2_D2:5^1
S_A2:4^1
S_A3:6^1
S_A1:0^1
M_C2:0^1
M_A0:2^1
S_CK3^1
S_E3:5^1
S_E2:6^1

Table 3 – B_DDR3D_3A (<=1066MT/s Read and Write) TLA Channel Grouping (cont’d.)

Notes:
1. ‘ # ‘ denotes a low-true signal
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged set
3. The ‘S’ in front of a TLA channel denotes Slave card #1 of the merged set
4. The ‘S2’ in front of a TLA channel denotes Slave card #2 of the merged set
5. Signals in these groups are acquired using the TLA’s demux capability and will not have
a MagniVu display value

DDR3THIN-MN-XXX

37

Doc. Rev. 1.11

Group
Name
Control 2
(SYM)

Strobes
(HEX)

Unprobed

Signal
Name
CKE1
CKE0
S3#
S2#
S1#
S0#
BA2
BA1
BA0
A15
A14
A13
A12/BC#
A10/AP
RAS#
CAS#
WE#
DQS7
DQS6
DQS5
DQS4
DQS3
DQS2
DQS1
DQS0
All DQSx#
DDRCK1+/SA1
SDA
SA0
SCL

DDR3
Pin #
169
50
49
48
76
193
52
190
71
171
172
196
174
70
192
74
73
111
103
94
85
34
25
16
7

TLA
Input
M_A3:2
M_A3:1
S2_C2:5
S2_C3:0
M_C3:4
M_C3:3
M_A3:0
M_C3:7
M_C1:6
M_CK0
M_A2:5
M_CK3
M_A2:4
M_C1:3
M_C3:6
M_C3:5
M_C1:7
S_A2:6
S_A3:5
S_CK1
M_C2:3
M_A0:1
S_C3:0
S_E3:6
S_E2:4

Group
Name
Address 2
(Hex)

Misc 2
(OFF)
Ungrouped

63/64
237
238
117
118

Signal
Name
BA2
BA1
BA0
A15
A14
A13
A12/BC#
A11
A10/AP
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
MISC1
MISC0
DDRCK0+/DQS8
DM8
ERR_OUT#³
RESET#
TEST
ODT0
ODT1
PAR_IN

DDR3
Pin #
52
190
71
171
172
196
174
55
70
175
177
56
178
58
59
180
61
181
188
Placeholder
Placeholder

184/185
43
161
53
168
167
195
77
68

TLA
Input
M_A3:0
M_C3:7
M_C1:6
M_CK0
M_A2:5
M_CK3
M_A2:4
M_A2:6
M_C1:3
M_A2:1
M_A2:0
M_A2:3
M_C0:3
M_A2:2
M_C0:5
M_C1:0
M_Q1
M_C1:1
M_C1:5
M_A3:5
M_A3:4
M_C1:4
M_A1:2
M_A1:1
M_A2:7
M_A3:6
M_A3:7
M_C2:0
M_C2:1
M_C1:2

Table 3 – B_DDR3D_3A TLA Channel Grouping (cont’d.)

Notes:
1. ‘ # ‘ denotes a low-true signal
2. These signals are required for accurate acquisition and post-processing of acquired data
3. The ‘M’ in front of a TLA channel denotes the Master card of the merged set
4. The ‘S’ in front of a TLA channel denotes Slave card #1 of the merged set
5. The ‘S2’ in front of a TLA channel denotes Slave card #2 of the merged set
6. Signals in these groups are acquired using the TLA’s demux capability and will not have
a MagniVu display value

DDR3THIN-MN-XXX

38

Doc. Rev. 1.11

3.7 Display Groups not in Tables 1,2 or 3
There are several groups in the List window that are not documented in the tables as these
groups are used only by the post-processing display software. To ensure correct data display
these groups must not be modified. These groups are:
•
•
•
•
•
•

DataHi
DataLo
ChekBits
Command
DataMasks
MRSAddr

DDR3THIN-MN-XXX

39

Doc. Rev. 1.11

4.0 CLOCK SELECTION
4.1 B_DDR3D_2D Clocking Selections
There are two clocking option fields available when using the B_DDR3D_2D support package.
These select fields permit the user to setup the TLA acquisition as follows:
SDRAM Clocking: – Permits selecting the Clocking Mode to be used to acquire DDR3
data. It is important to note that the selection chosen will force unused Chip Selects and
CKE1 into inactive states. The field choices are:
S0#; Every Rising Edge (default) – Clocks data using every rising edge of DDR
Clock 0. Forces CKE1 low and S1-3# high. No Idle Cycle filtering is done.
S0# & S1#; Every Rising Edge – Clocks data using every rising edge of DDR
Clock 0. Forces S2-3# high. No Idle Cycle filtering is done.
S0-3#; Every Rising Edge – Clocks data using every rising edge of DDR Clock
0. No Idle Cycle filtering is done.
S0#; Total L <=5 – utilizes Selective Clocking to reduce acquisition of Idle bus
states. Forces CKE1 low and S1-3# high.
S0# & S1#; Total L <=5 - utilizes Selective Clocking to reduce acquisition of
Idle bus states. Forces S2-3# high.
S0-3#; Total L <=5 - utilizes Selective Clocking to reduce acquisition of Idle bus
states.
S0#; Total L <=6
S0# & S1#; Total L <=6
S0-3#; Total L <=6
.
.
.
S0#; Total L <=25
S0# & S1#; Total L <=25
S0-3#; Total L <=25
The above selections reduce the number of Idle cycles stored by the acquisition
card to provide optimum use of the acquisition memory. Data is stored whenever
RAS# or CAS# is asserted low along with a valid Chip Select. After every
assertion of CAS# (paired with a valid Chip Select) samples are taken during the
next X DDR Clock cycles to ensure that all valid memory cycles have been
acquired. The acquisition then pauses and waits for the next Command. If CAS#
and a Chip Select are asserted during these X clock cycles the count is reset. The
X-clock cycle value is determined by adding the maximum Burst Length of 8
clock cycles to the selected maximum Read Latency. So for a selected Total
DDR3THIN-MN-XXX

40

Doc. Rev. 1.11

Latency of <= 5 cycles the support software will store a total of 13 clock cycles
worth of data after the Read or Write Command appears on the bus.
Refresh Cycles: – Permits choosing whether Refresh Cycles will be stored or not. The
field choices are:
Acquire (default) – Refresh Cycles will be stored.
Do Not Acquire – This mode will reduce the number of Refresh cycles stored by
the acquisition card to provide optimum use of the acquisition memory.
NOTE: This mode is disabled when the SDRAM Clocking choice is set to a
Every Rising Edge selection.

4.2 B_DDR3D_2G Clocking Selections
There is one clocking option field available when using the B_DDR3D_2G support package.
These select fields permit the user to setup the TLA acquisition as follows:
Active Chip Selects: – Permits selecting which of 8 possible Chip Selects are active on
the target. The rising edge of the DDR Clock is always used to acquire data. How the
display software interprets which Chip Selects are active will be based on this field
setting. With 8 possible Chip Selects and 6 Clock Enable signals it is possible to support
data acquisition from a 3 slot channel at 800. See section 3.6 for channel configuration.
This support only allows one quad rank support in slot A (the interposer slot), or most
combinations of single and dual rank DIMMs in the three slots.
The “B” slot is the DIMM slot between the Interposer and the memory controller.
The “C” slot is the slot nearest the memory controller in a three slot system.
The field choices shown correspond to the Chip Select number defined in the channel
map, and are as follows:
Chip Select(s)

Equivalent Memory DIMM configuration

C:____B:____A:___0
0r0r1r (default) –
Only S0# in the Interposer slot is active; all other Chip Selects will be
forced inactive (high) by the support package. Equivalent to one Single
Rank DIMM.
C:____B:____A:__10
0r0r2r –
S0# and S1# in the Interposer slot are active, equivalent to a Dual Rank
DIMM.
C:____B:____A:3210
0r0r4r –
S0#, S1#, S2# and S3# in the Interposer slot are active, equivalent to a
Quad Rank DIMM.
DDR3THIN-MN-XXX

41

Doc. Rev. 1.11

C:____B:_0__A:___0
0r1r1r –
bS0# in the slot between the Interposer and the memory controller and
S0# in the Interposer slot are active, equivalent to two Single Rank
DIMMs.
C:____B:_0__A:__10
0r1r2r –
bS0#, S0# and S1# are active, equivalent to one Single Rank DIMM and
one Dual Rank DIMM.
C:____B:10__A:___0 0r2r1r –
bS1#, bS0# and S0# are active, equivalent to a Dual Rank DIMM and a
Single Rank DIMM.
C:____B:10__A:__10 0r2r2r –
bS1#, bS0#, S1# and S0# are active, equivalent to two Dual Rank
DIMMs.
C:_0__B:_0__A:___0 1r1r1r –
cS0# is the slot nearest the memory control if three slot channel, bS0# is
the slot in the middle of a three slot channel and S0# in the Interposer slot
are active, equivalent to three Single Rank DIMMs.
C:_0__B:_0__A:__10 1r1r2r –
cS0#, bS0#, S0# and S1# are active, equivalent to two Single Rank
DIMMs and one Dual Rank DIMM.
C:_0__B:10__A:___0 1r2r1r –
cS0#, bS1#, bS0# and S0# are active, equivalent to a Dual Rank DIMM
and two Single Rank DIMMs.
C:_0__B:10__A:__10 1r2r2r –
cS0#, bS1#, bS0#, S1# and S0# are active, equivalent to a Single Rank
DIMM, and two Dual Rank DIMMs.
C:10__B:_0__A:___0 2r1r1r –
cS1#, cS0#, bS0# and S0# are active, equivalent to two Single Rank
DIMMs, and a dual rank DIMM.
C:10__B:_0__A:__10 2r1r2r –
cS1#, cS0#, bS0#, S0# and S1# are active, equivalent to one Single Rank
DIMM and two Dual Rank DIMMs.
C:10__B:10__A:___0 2r2r1r –
cS1#, cS0#, bS1#, bS0# and S0# are active, equivalent to two Dual Rank
DIMM and a Single Rank DIMM.
C:10__B:10__A:__10 2r2r2r –
cS1#, cS0#, bS1#, bS0#, S1# and S0# are active, equivalent to three Dual
Rank DIMMs.
DDR3THIN-MN-XXX

42

Doc. Rev. 1.11

4.3 B_DDR3D_3A Clocking Selections
There is one clocking option field available when using the B_DDR3D_3A support package.
This select field sets up the TLA acquisition as follows:
SDRAM DDR CLK0 Clocking: – Permits selecting the Clocking Mode to be used to
acquire DDR3 data. Only one choice is available:
Every Rising Edge – As the name implies this will cause the acquisition card to
acquire data on every Rising edge of the DDR Clock 0.

DDR3THIN-MN-XXX

43

Doc. Rev. 1.11

5.0 CONFIGURING FOR READ / WRITE DATA ACQUISITION
Prior to configuring your NEX-DDR3INTR-THIN support package it is strongly recommended
that Appendix A (“How DDR Data is Clocked”), section 5.4 (“Selecting DDR Read Sample
Points”) and section 5.5. (“Selecting DDR Write Sample Points”) be read. This background
information is very helpful and facilitates proper support configuration.

5.1 A Note About the Different Data Groups
The NEX-DDR3INTR-THIN support software have three different areas where signal groups are
defined to provide specific functionality. There are the MagniVu data groups (see Table 4) are
the groups that contain raw MagniVu data. Storage data groups (see Tables 1, 2 and 3) can be
seen in the acquisition card Setup window and contain the data stored in Main Memory which is
used for the Listing display. Capture data groups (not defined in this manual) are the groups seen
in the TLA’s Setup & Hold dialog box and are the groups used to capture data during each DDR
clock cycle. The MagniVu and Capture data groups will be referred to in the following
explanation on determining and setting the correct sample points to acquire Read and Write data.
Please contact your local Tektronix representative for a detailed explanation of the different data
group areas and what they mean.

5.2 MagniVu Signals
Because of the design of the Tektronix TLA7BB4 acquisition cards different data groups need to
be defined for use within MagniVu. Table 4 shows the MagniVu group definitions present in the
B_DDR3D_2D/_2G supports. Table 5 shows the MagniVu group definitions present in the
B_DDR3D_3A support.

DDR3THIN-MN-XXX

44

Doc. Rev. 1.11

Group
Name
Data_H
i

Signal
Name
DQ63

TLA
Input
S_A2:0

DQ62
DQ61
DQ60
DQ59
DQ58
DQ57
DQ56
DQ55
DQ54
DQ53
DQ52
DQ51
DQ50
DQ49
DQ48
DQ47
DQ46
DQ45
DQ44
DQ43
DQ42
DQ41
DQ40
DQ39
DQ38
DQ37
DQ36
DQ35
DQ34
DQ33
DQ32

S_A2:1
S_A2:5
S_CK0
S_A2:2
S_A2:3
S_A2:7
S_A3:0
S_A3:2
S_A3:3
S_A3:7
S_A1:5
S_A3:1
S_A3:4
S_A1:7
S_A1:6
S_A1:4
S_A1:1
S_A0:7
S_A0:6
S_A1:3
S_A1:2
S_A0:5
S_A0:4
S_A0:3
S_A0:2
M_C2:1
M_C2:4
S_A0:1
S_A0:0
M_C2:6
M_C2:7

Group
Name
Data_L
o

Signal
Name
DQ31

TLA
Input
M_A0:6

DQ30
DQ29
DQ28
DQ27
DQ26
DQ25
DQ24
DQ23
DQ22
DQ21
DQ20
DQ19
DQ18
DQ17
DQ16
DQ15
DQ14
DQ13
DQ12
DQ11
DQ10
DQ9
DQ8
DQ7
DQ6
DQ5
DQ4
DQ3
DQ2
DQ1
DQ0

M_A0:3
S_C2:0
S_C2:1
M_A0:4
M_A0:1
S_C2:2
S_C2:3
S_C2:4
S_C2:5
S_C3:2
S_C3:3
S_C2:6
S_C2:7
S_C3:1
S_C3:4
S_C3:6
S_C3:7
S_E3:4
S_E3:1
S_C3:5
S_E3:7
S_E3:3
S_E3:2
S_E3:0
S_E2:7
S_E2:3
S_E2:2
S_Q3
S_E2:5
S_E2:1
S_E2:0

Table 4 - B_DDR3D_2D/_2G TLA MagniVu Channel Grouping

Notes:
1. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair

DDR3THIN-MN-XXX

45

Doc. Rev. 1.11

Group
Name
DataByte
7

DataByte
6

DataByte
5

DataByte
4

Signal
Name
DQ63

TLA
Input
S_A2:0

DQ62
DQ61
DQ60
DQ59
DQ58
DQ57
DQ56
DQ55

S_A2:1
S_A2:5
S_CK0
S_A2:2
S_A2:3
S_A2:7
S_A3:0
S_A3:2

DQ54
DQ53
DQ52
DQ51
DQ50
DQ49
DQ48
DQ47

S_A3:3
S_A3:7
S_A1:5
S_A3:1
S_A3:4
S_A1:7
S_A1:6
S_A1:4

DQ46
DQ45
DQ44
DQ43
DQ42
DQ41
DQ40
DQ39

S_A1:1
S_A0:7
S_A0:6
S_A1:3
S_A1:2
S_A0:5
S_A0:4
S_A0:3

DQ38
DQ37
DQ36
DQ35
DQ34
DQ33
DQ32

S_A0:2
M_C2:1
M_C2:4
S_A0:1
S_A0:0
M_C2:6
M_C2:7

Group
Name
DataByte
3

DataByte
2

DataByte
1

DataByte
0

Signal
Name
DQ31

TLA
Input
M_A0:6

DQ30
DQ29
DQ28
DQ27
DQ26
DQ25
DQ24
DQ23

M_A0:3
S_C2:0
S_C2:1
M_A0:4
M_A0:1
S_C2:2
S_C2:3
S_C2:4

DQ22
DQ21
DQ20
DQ19
DQ18
DQ17
DQ16
DQ15

S_C2:5
S_C3:2
S_C3:3
S_C2:6
S_C2:7
S_C3:1
S_C3:4
S_C3:6

DQ14
DQ13
DQ12
DQ11
DQ10
DQ9
DQ8
DQ7

S_C3:7
S_E3:4
S_E3:1
S_C3:5
S_E3:7
S_E3:3
S_E3:2
S_E3:0

DQ6
DQ5
DQ4
DQ3
DQ2
DQ1
DQ0

S_E2:7
S_E2:3
S_E2:2
S_Q3
S_E2:5
S_E2:1
S_E2:0

Table 4 – B_DDR3D_2D/_2G TLA MagniVu Channel Grouping (cont’d.)

Notes:
1. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair

DDR3THIN-MN-XXX

46

Doc. Rev. 1.11

Group
Name
CheckBit
s

Strobes 2

Control 2

Signal
Name
CB7

TLA
Input
M_A1:5

CB6
CB5
CB4
CB3
CB2
CB1
CB0
DQS8
DQS7
DQS6
DQS5
DQS4
DQS3
DQS2
DQS1
DQS0
CKE1
CKE0
S3#
S2#
S1#
S0#
BA2
BA1
BA0
A15
A14
A13
A12/BC#
A10/AP
RAS#
CAS#
WE#

M_A1:4
M_A1:0
M_A0:7
M_A1:6
M_A1:3
M_CK1
M_A0:5
M_A1:2
S_A2:6
S_A3:5
S_CK1
M_C2:3
M_A0:0
S_C3:0
S_E3:6
S_E2:4
M_A3:2
M_A3:1
M_C2:5
M_C3:0
M_C3:4
M_C3:3
M_A3:0
M_C3:7
M_C1:6
M_CK0
M_A2:5
M_CK3
M_A2:4
M_C1:3
M_C3:6
M_C3:5
M_C1:7

Group
Name
DataMasks

Address 2

Orphans

Misc 2,5

Signal
Name
DM7

TLA
Input
S_A2:4

DM6
DM5
DM4
DM3
DM2
DM1
DM0
BA2
BA1
BA0
A15
A14
A13
A12/BC#
A11
A10/AP
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
PAR_IN
ERR_OUT#
TEST
RESET#
ODT1
ODT0
MISC1
MISC0
DDRCK0

S_A3:6
S_A1:0
M_C2:0
M_A0:2
S_CK3
S_E3:5
S_E2:6
M_A3:0
M_C3:7
M_C1:6
M_CK0
M_A2:5
M_CK3
M_A2:4
M_A2:6
M_C1:3
M_A2:1
M_A2:0
M_A2:3
M_C0:2
M_A2:2
M_C0:5
M_C1:0
M_Q1
M_C1:1
M_C1:5
M_C1:2
M_A2:7
M_A3:7
M_A3:6
M_C3:1
M_C3:2
M_A3:5
M_A3:4
M_C1:4

Table 4 – B_DDR3D_2D/_2G (<=1333MT/s Read and Write) TLA Channel Grouping (cont’d.)

Notes:
1. ‘ # ‘ denotes a low-true signal
2. These signals are required for accurate acquisition and post-processing of acquired data
3. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
4. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair
5. MISC1 and MISC0 are placeholders only and will not have interesting data on them

DDR3THIN-MN-XXX

47

Doc. Rev. 1.11

Group
Name
Data_H
i

Signal
Name
DQ63

TLA
Input
S_A2:0

DQ62
DQ61
DQ60
DQ59
DQ58
DQ57
DQ56
DQ55
DQ54
DQ53
DQ52
DQ51
DQ50
DQ49
DQ48
DQ47
DQ46
DQ45
DQ44
DQ43
DQ42
DQ41
DQ40
DQ39
DQ38
DQ37
DQ36
DQ35
DQ34
DQ33
DQ32

S_A2:1
S_A2:5
S_CK0
S_A2:2
S_A2:3
S_A2:7
S_A3:0
S_A3:2
S_A3:3
S_A3:7
S_A1:5
S_A3:1
S_A3:4
S_A1:7
S_A1:6
S_A1:4
S_A1:1
S_A0:7
S_A0:6
S_A1:3
S_A1:2
S_A0:5
S_A0:4
S_A0:3
S_A0:2
M_C2:1
M_C2:4
S_A0:1
S_A0:0
M_C2:6
M_C2:7

Group
Name
Data_L
o

Signal
Name
DQ31

TLA
Input
M_A0:6

DQ30
DQ29
DQ28
DQ27
DQ26
DQ25
DQ24
DQ23
DQ22
DQ21
DQ20
DQ19
DQ18
DQ17
DQ16
DQ15
DQ14
DQ13
DQ12
DQ11
DQ10
DQ9
DQ8
DQ7
DQ6
DQ5
DQ4
DQ3
DQ2
DQ1
DQ0

M_A0:3
S_C2:0
S_C2:1
M_A0:4
M_A0:1
S_C2:2
S_C2:3
S_C2:4
S_C2:5
S_C3:2
S_C3:3
S_C2:6
S_C2:7
S_C3:1
S_C3:4
S_C3:6
S_C3:7
S_E3:4
S_E3:1
S_C3:5
S_E3:7
S_E3:3
S_E3:2
S_E3:0
S_E2:7
S_E2:3
S_E2:2
S_Q3
S_E2:5
S_E2:1
S_E2:0

Table 5 - B_DDR3D_3A TLA MagniVu Channel Grouping

Notes:
1. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair

DDR3THIN-MN-XXX

48

Doc. Rev. 1.11

Group
Name
DataByte
7

DataByte
6

DataByte
5

DataByte
4

Signal
Name
DQ63

TLA
Input
S_A2:0

DQ62
DQ61
DQ60
DQ59
DQ58
DQ57
DQ56
DQ55

S_A2:1
S_A2:5
S_CK0
S_A2:2
S_A2:3
S_A2:7
S_A3:0
S_A3:2

DQ54
DQ53
DQ52
DQ51
DQ50
DQ49
DQ48
DQ47

S_A3:3
S_A3:7
S_A1:5
S_A3:1
S_A3:4
S_A1:7
S_A1:6
S_A1:4

DQ46
DQ45
DQ44
DQ43
DQ42
DQ41
DQ40
DQ39

S_A1:1
S_A0:7
S_A0:6
S_A1:3
S_A1:2
S_A0:5
S_A0:4
S_A0:3

DQ38
DQ37
DQ36
DQ35
DQ34
DQ33
DQ32

S_A0:2
M_C2:1
M_C2:4
S_A0:1
S_A0:0
M_C2:6
M_C2:7

Group
Name
DataByte
3

DataByte
2

DataByte
1

DataByte
0

Signal
Name
DQ31

TLA
Input
M_A0:6

DQ30
DQ29
DQ28
DQ27
DQ26
DQ25
DQ24
DQ23

M_A0:3
S_C2:0
S_C2:1
M_A0:4
M_A0:1
S_C2:2
S_C2:3
S_C2:4

DQ22
DQ21
DQ20
DQ19
DQ18
DQ17
DQ16
DQ15

S_C2:5
S_C3:2
S_C3:3
S_C2:6
S_C2:7
S_C3:1
S_C3:4
S_C3:6

DQ14
DQ13
DQ12
DQ11
DQ10
DQ9
DQ8
DQ7

S_C3:7
S_E3:4
S_E3:1
S_C3:5
S_E3:7
S_E3:3
S_E3:2
S_E3:0

DQ6
DQ5
DQ4
DQ3
DQ2
DQ1
DQ0

S_E2:7
S_E2:3
S_E2:2
S_Q3
S_E2:5
S_E2:1
S_E2:0

Table 5 – B_DDR3D_3A TLA MagniVu Channel Grouping (cont’d.)

Notes:
1. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair

DDR3THIN-MN-XXX

49

Doc. Rev. 1.11

Group
Name
Data_Hi_1

Signal
Name
1_DQ63

TLA
Input
S2_A0:0

1_DQ62
1_DQ61
1_DQ60
1_DQ59
1_DQ58
1_DQ57
1_DQ56
1_DQ55
1_DQ54
1_DQ53
1_DQ52
1_DQ51
1_DQ50
1_DQ49
1_DQ48
1_DQ47
1_DQ46
1_DQ45
1_DQ44
1_DQ43
1_DQ42
1_DQ41
1_DQ40
1_DQ39
1_DQ38
1_DQ37
1_DQ36
1_DQ35
1_DQ34
1_DQ33
1_DQ32

S2_A0:1
S2_A0:5
S2_CK1
S2_A0:2
S2_A0:3
S2_A0:7
S2_A1:0
S2_A1:2
S2_A1:3
S2_A1:7
S2_D1:5
S2_A1:1
S2_A1:4
S2_D1:7
S2_D1:6
S2_D1:4
S2_D1:1
S2_D0:7
S2_D0:6
S2_D1:3
S2_D1:2
S2_D0:5
S2_D0:4
S2_D0:3
S2_D0:2
S2_C2:1
S2_C2:4
S2_D0:1
S2_D0:0
S2_C2:6
S2_C2:7

Group
Name
Data_Lo_
1

Signal
Name
1_DQ31

TLA
Input
S2_D2:6

1_DQ30
1_DQ29
1_DQ28
1_DQ27
1_DQ26
1_DQ25
1_DQ24
1_DQ23
1_DQ22
1_DQ21
1_DQ20
1_DQ19
1_DQ18
1_DQ17
1_DQ16
1_DQ15
1_DQ14
1_DQ13
1_DQ12
1_DQ11
1_DQ10
1_DQ9
1_DQ8
1_DQ7
1_DQ6
1_DQ5
1_DQ4
1_DQ3
1_DQ2
1_DQ1
1_DQ0

S2_D2:3
S2_E2:0
S2_E2:1
S2_D2:4
S2_D2:1
S2_E2:2
S2_E2:3
S2_E2:4
S2_E2:5
S2_E3:2
S2_E3:3
S2_E2:6
S2_E2:7
S2_E3:1
S2_E3:4
S2_E3:6
S2_E3:7
S2_E1:4
S2_E1:1
S2_E3:5
S2_E1:7
S2_E1:3
S2_E1:2
S2_E1:0
S2_E0:7
S2_E0:3
S2_E0:2
S2_Q2
S2_E0:5
S2_E0:1
S2_E0:0

Table 5 - B_DDR3D_3A TLA MagniVu Channel Grouping

Notes:
1. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair

DDR3THIN-MN-XXX

50

Doc. Rev. 1.11

Group
Name
DataByte7_
1

DataByte6_
1

DataByte5_
1

DataByte4_
1

Signal
Name
1_DQ63

TLA
Input
S2_A0:0

1_DQ62
1_DQ61
1_DQ60
1_DQ59
1_DQ58
1_DQ57
1_DQ56
1_DQ55

S2_A0:1
S2_A0:5
S2_CK1
S2_A0:2
S2_A0:3
S2_A0:7
S2_A1:0
S2_A1:2

1_DQ54
1_DQ53
1_DQ52
1_DQ51
1_DQ50
1_DQ49
1_DQ48
1_DQ47

S2_A1:3
S2_A1:7
S2_D1:5
S2_A1:1
S2_A1:4
S2_D1:7
S2_D1:6
S2_D1:4

1_DQ46
1_DQ45
1_DQ44
1_DQ43
1_DQ42
1_DQ41
1_DQ40
1_DQ39

S2_D1:1
S2_D0:7
S2_D0:6
S2_D1:3
S2_D1:2
S2_D0:5
S2_D0:4
S2_D0:3

1_DQ38
1_DQ37
1_DQ36
1_DQ35
1_DQ34
1_DQ33
1_DQ32

S2_D0:2
S2_C2:1
S2_C2:4
S2_D0:1
S2_D0:0
S2_C2:6
S2_C2:7

Group
Name
DataByte3_
1

DataByte2_
1

DataByte1_
1

DataByte0_
1

Signal
Name
1_DQ31

TLA
Input
S2_D2:6

1_DQ30
1_DQ29
1_DQ28
1_DQ27
1_DQ26
1_DQ25
1_DQ24
1_DQ23

S2_D2:3
S2_E2:0
S2_E2:1
S2_D2:4
S2_D2:1
S2_E2:2
S2_E2:3
S2_E2:4

1_DQ22
1_DQ21
1_DQ20
1_DQ19
1_DQ18
1_DQ17
1_DQ16
1_DQ15

S2_E2:5
S2_E3:2
S2_E3:3
S2_E2:6
S2_E2:7
S2_E3:1
S2_E3:4
S2_E3:6

1_DQ14
1_DQ13
1_DQ12
1_DQ11
1_DQ10
1_DQ9
1_DQ8
1_DQ7

S2_E3:7
S2_E1:4
S2_E1:1
S2_E3:5
S2_E1:7
S2_E1:3
S2_E1:2
S2_E1:0

1_DQ6
1_DQ5
1_DQ4
1_DQ3
1_DQ2
1_DQ1
1_DQ0

S2_E0:7
S2_E0:3
S2_E0:2
S2_Q2
S2_E0:5
S2_E0:1
S2_E0:0

Table 5 – B_DDR3D_3A TLA MagniVu Channel Grouping (cont’d.)

Notes:
1. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
2. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair

DDR3THIN-MN-XXX

51

Doc. Rev. 1.11

Group
Name
ChkBits

Strobes 2

DataMasks

Control 2

Misc 2,5

Signal
Name
CB7
CB6
CB5
CB4
CB3
CB2
CB1
CB0
DQS8
DQS7
DQS6
DQS5
DQS4
DQS3
DQS2
DQS1
DQS0
DM7
DM6
DM5
DM4
DM3
DM2
DM1
DM0
CKE1
CKE0
S3#
S2#
S1#
S0#
BA2
BA1
BA0
A15
A14
A13
A12/BC#
A10/AP
RAS#
CAS#
WE#
MISC1
MISC0
DDRCK0

TLA
Input
M_A1:5
M_A1:4
M_A1:0
M_A0:7
M_A1:6
M_A1:3
M_CK1
M_A0:5
M_A1:2
S_A2:6
S_A3:5
S_CK1
M_C2:3
M_A0:0
S_C3:0
S_E3:6
S_E2:4
S_A2:4
S_A3:6
S_A1:0
M_C2:0
M_A0:2
S_CK3
S_E3:5
S_E2:6
M_A3:2
M_A3:1
S2_C2:5
S2_C3:0
M_C3:4
M_C3:3
M_A3:0
M_C3:7
M_C1:6
M_CK0
M_A2:5
M_CK3
M_A2:4
M_C1:3
M_C3:6
M_C3:5
M_C1:7
M_A3:5
M_A3:4
M_C1:4

Group
Name
ChkBits_1

Strobes_1 2

Address 2

Orphans

Signal
Name
1_CB7
1_CB6
1_CB5
1_CB4
1_CB3
1_CB2
1_CB1
1_CB0
1_DQS8
1_DQS7
1_DQS6
1_DQS5
1_DQS4
1_DQS3
1_DQS2
1_DQS1
1_DQS0
BA2
BA1
BA0
A15
A14
A13
A12/BC#
A11
A10/AP
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
PAR_IN
ERR_OUT#
TEST
RESET#
ODT1
ODT0

TLA
Input
S2_D3:5
S2_D3:4
S2_D3:0
S2_D2:7
S2_D3:6
S2_D3:3
S2_Q0
S2_D2:5
S2_D3:2
S2_A0:6
S2_A1:5
S2_CK2
S2_C2:3
S2_D2:0
S2_E3:0
S2_E1:6
S2:E0:4
M_A3:0
M_C3:7
M_C1:6
M_CK0
M_A2:5
M_CK3
M_A2:4
M_A2:6
M_C1:3
M_A2:1
M_A2:0
M_A2:3
M_C0:2
M_A2:2
M_C0:5
M_C1:0
M_Q1
M_C1:1
M_C1:5
M_C1:2
M_A2:7
M_A3:7
M_A3:6
M_C3:1
M_C3:2

Table 5 – B_DDR3D_3A (<=1333MT/s Read and Write) TLA Channel Grouping (cont’d.)

Notes:
1. ‘ # ‘ denotes a low-true signal
2. These signals are required for accurate acquisition and post-processing of acquired data
3. The ‘S’ in front of a TLA channel denotes the Slave card of the merged pair
4. The ‘M’ in front of a TLA channel denotes the Master card of the merged pair
5. MISC1 and MISC0 are placeholders only and will not have interesting data on them

DDR3THIN-MN-XXX

52

Doc. Rev. 1.11

5.3 Adjusting Input Thresholds for Proper Data Acquisition
The Interposer DDR3 support was designed to work with the new Nexus Low Profile Distributed
probes. To maximize the electrical characteristics of the acquired waveforms the probe input
resistors values were placed at 510 ohms. This value results in a divide by ten of the signals to
the logic analyzer when using the NEX-PRB1X-T and NEX-PRB2X-T probes. The logic
analyzer expects a divide by 20. Since the divide value is different than the standard Tektronix
probe the voltage swing and offset will be higher than expected, and the thresholds will be
different. Instead of the expected 0.75 threshold of approximately 1.9V threshold will be
required. Use of the logic analyzer output to a scope will be required to determine the exact
threshold for the system under test.

5.4 DDR3 and DDR3SPA
It is strongly recommended that Nexus’ DDR3SPA (DDR3 Sample Point Analyzer) be used to
determine the proper sample point setting necessary for accurate Read and Write data
acquisition. Given the correct DDR bus parameters (Latency, Burst Length, etc.) SPA will
analyze any Read and/or Write bus transactions in MagniVu memory and return suggested
sample points. Refer to the DDR SPA documentation for more specific information on using this
software.
If for whatever reason DDR3SPA doesn’t appear to provide good sample point setting
information the following sections describe how to evaluate acquired DDR3 data to determine
the proper sample points manually.

5.5 Selecting B_DDR3E_XX Read Data Sample Points
For the DDR3 Read data to be properly acquired it is necessary to choose the proper sample
points to ensure that data is acquired at the proper point in the transaction. Since valid DDR3
Read data is straddled by the Strobes (see Figure 4) the Setup & Hold sample point must be set
for the valid data that occurs closest to the clock edge. The appropriate clock edge for Reads is
determined by adding the Additive Latency value to the CAS Latency value and adding one if
Registered memory (RDIMMs) are being used, resulting in the total number of clock cycles from
the Read Command to the first valid Read Data. (If these values are not known the technique
described in Section 7.3 can be used to determine the necessary values with the exception of
whether or not the memory is RDIMM or UDIMM.) In Figure 4 the total Read latency is 6
cycles.
The B_DDR3D_XX supports acquire two samples of valid Read data on each rising edge of the
DDR3 clock. So to acquire both pieces of data the RdA_DatHi/Lo data groups must have their
sample point set to that shown by Sample Pt. #1 in the Figure, and the RdB_DatHi/Lo data
groups must have their sample point set to that shown by Sample Pt. #2.

DDR3THIN-MN-XXX

53

Doc. Rev. 1.11

Sample Pt. #2

Sample Pt. #1

Figure 4 - Read Data Latency = CAS Latency + CAS Additive Latency + RDIMM (5+0+1) = 6 cycles)

5.6 Selecting B_DDR3D_XX Write Data Sample Points
Unlike valid DDR Read data, valid Write data is bisected by the Strobes. Since valid DDR3
Write data is bisected by the Strobes (see Figure 5) the Setup & Hold sample point must be set
for the valid data that occurs closest to the clock edge. The appropriate clock edge for Writes is
determined by counting the number of clock cycles specified by the Write Latency MRS value
from the Write Command to the first valid Write Data. (If these values are not known the
technique described in Section 7.3 can be used to determine them.) In Figure 5 the total Write
latency is 6 cycles (Write Latency plus the additional one cycle delay for RDIMM memory).

Sample Pt. #1

Sample Pt. #2

Write Data
Preamble

Figure 5 - Write Data Latency = CAS Write Latency + RDIMM (5+1) = 6 cycles
DDR3THIN-MN-XXX

54

Doc. Rev. 1.11

The B_DDR3D_XX supports acquire two samples of valid Write data on each rising edge of the
DDR3 clock. So to acquire both pieces of data the WrA_DatHi/Lo data groups must have their
sample point set to that shown by Sample Pt. #1 in the Figure, and the WrB_DatHi/Lo data
groups must have their sample point set to that shown by Sample Pt. #2.
NOTE - It is important to note that because of the design of the TLA acquisition card inputs and
the Strobe activity prior to Write data being placed on the data bus it will appear as if the Strobes
indicate valid Write data earlier than the data is actually there (see the circle indicated as Write
Data Preamble in Figure 5). These Write Preamble Strobe edges should NOT be used to
determine where valid Write data is on the data bus.

5.7 B_DDR3D_XX Support Setup
Using the B_DDR3D_XX supports it is possible to acquire both Read and Write data by setting
the sample point of the data groups appropriately. To adjust the Read Data group sample points
first make an appropriate acquisition of Read data by triggering on a Read command. Then
create a timing window display of MagniVu data and display the Data_Hi and Data_Lo 32-bit
data groups, the individual Command group signals and the DDR3 clock that was used for the
data acquisition (DDRCK0). A sample waveform display of MagniVu Read data is shown in
Figure 6. To determine the sample point, locate the smallest window of valid Read data during
the acquired burst (see Figure 6). Note that in this instance the first piece of valid data happens
significantly after the rising edge it is associated with. In fact the initial valid data appears at the
DDR Clock falling edge. This delay must be taken into account or data will not be aligned
properly in the Listing display window. Note that A and B data (corresponding to ADataHi/Lo
and BDataHi/Lo data groups) have been indicated.

Latency
expires
Read Command

Valid Read
Data Begins

A

B

A

Minimum
S&H
B

Figure 6 - Locating Minimum Valid B_DDR3D_XX Read Data Window

DDR3THIN-MN-XXX

55

Doc. Rev. 1.11

A

B

Figure 7 - Measuring B_DDR3D_XX RdA_DatHi / Lo Read Data Setup & Hold

Zoom in further to determine the Setup and Hold sample point necessary to acquire valid data at
that point (Figure 7) and use the cursors to measure the time from the clock edge to the start of
valid Read data. In this example the delay from edge to data is approximately -1.05ns after the
clock edge, meaning that a suitable Setup & Hold value for the RdA_DatHi capture group would
be -1.055ns/1.289ns. Note that the Data_Lo group is valid somewhat later than the Data_Hi
group with its valid time starting at approximately 1.23ns after the clock edge, so the Setup &
Hold sample point for the RdA_DatLo capture group would be set to -1.23ns/1.465ns.
Now the sample point for the RdB_DatHi and RdB_DatLo groups must be determined (see
Figure 8). The next valid Read data (after the cycle measured above) occurs approximately
2.37ns after the rising edge of DDRCK0, so a suitable Setup & Hold value for the RdB_DatHi
capture group would be –2.383ns/2.617ns. As with the A data the Data_Lo group is somewhat
later than the Data_Hi group. The Data_Lo valid time starts at approximately -2.52ns so a
suitable Setup & Hold value for the RdB_DatLo capture group would be -2.52ns/2.754ns.

DDR3THIN-MN-XXX

56

Doc. Rev. 1.11

A

B

Figure 8 - Measuring B_DDR3D_XX RdB_DatHi / Lo Read Data Setup & Hold

Now the sample point positions must be set for the RdA_DatHi, RdA_DatLo, RdB_DatHi and
RdB_DatLo capture groups in the Setup window (see Figure 9). This window is found by going
to the LA Card’s Setup window, then clicking on the More button to the right of the clock select
field. The TLA acquisition cards require a valid data window of approximately 300ps, and this
window can be placed to begin from 15.098ns prior to the clock edge to 7.383ns after the edge in
roughly 20ps increments. Each 32-bit data group (RdA_DatHi, RdA_DatLo, RdB_DatHi,
RdB_DatLo) will require its own value programmed from the measurements noted in the
MagniVu window.

Figure 9 - Setting B_DDR3D_XX RdA_DatHi / Lo and RdB_DatHi / Lo Sample Points
DDR3THIN-MN-XXX

57

Doc. Rev. 1.11

Setting the Setup & Hold values for acquiring Write data is a similar process. To determine the
Write Data group sample points first make an appropriate acquisition of Write data by triggering
on a Write Command. Then, as above, create a timing window display of MagniVu data and
display the Data_Hi and Data_Lo 32-bit data groups, the individual Command group signals and
the DDR3 clock that was used for the data acquisition (DDRCK0).
A sample waveform display of MagniVu Write data is shown in Figure 10. To determine the
sample point, locate the smallest window of valid Write data during the acquired burst (see
Figure 10). Note that in this instance the first piece of valid data happens before the rising edge it
is associated with. This shift must be taken into account or data will not be aligned properly in
the Listing display window. Note that A and B data (corresponding to ADataHi/Lo and
BDataHi/Lo data groups) have been indicated. Refer to section 5.6 for important information on
properly determining the Write data sample points.

Latency
expires
Write Command
A

B

A

B

Minimum
S&H

Write Data
Preamble

Figure 10 - Locating Minimum Valid B_DDR3D_XX Write Data Window

Zoom in further to determine the Setup and Hold sample point necessary to acquire valid data at
that point (Figure 11) and use the cursors to measure the time from the clock edge to the start of
valid Write data. In this example the data leads the clock edge by approximately 740ps, meaning
that a suitable Setup & Hold value for the WrA_DatHi capture group would be 742ps/-508ps.
Note that the Data_Lo group is valid somewhat later than the Data_Hi group with its valid time
starting at approximately 430ps prior to the clock edge, so the Setup & Hold sample point for the
WrA_DatLo capture group would be set to 430ps/-195ps.

DDR3THIN-MN-XXX

58

Doc. Rev. 1.11

A

B

Figure 11 - Measuring B_DDR3D_XX WrA_DatHi / Lo Write Data Setup & Hold

Now the sample point for the WrB_DatHi and WrB_DatLo groups must be determined (see
Figure 12). The next valid Write data (after the cycle measured above) occurs approximately
500ps after the rising edge of DDRCK0, so a suitable Setup & Hold value for the WrB_DatHi
capture group would be -508ps/742ps. As with the A data the Data_Lo group is somewhat later
than the Data_Hi group. The Data_Lo valid time starts at approximately -800ps so a suitable
Setup & Hold value for the WrB_DatLo capture group would be -801ps/1.035ns.

Figure 12 - Measuring B_DDR3D_XX WrB_DatHi / Lo Write Data Setup & Hold

The sample point positions must now be set for the WrA_DatHi, WrA_DatLo, WrB_DatHi,
WrB_DatLo groups in the Setup window (Figure 13). Note that if the Upper Strobes are being
DDR3THIN-MN-XXX

59

Doc. Rev. 1.11

used as Data Masks then the WrtMasks group should have a Setup & Hold value that matches
that of the Write Data groups.

Figure 13 - Setting B_DDR3D_XX WrA_DatHi / Lo and WrB_DatHi / Lo Sample Points

Because of the speeds of DDR3 data it may be necessary to program Setup & Hold values for
each of the 8-bit groups that are associated with a given Strobe. This could be required if there is
significant skew between the DDR Strobes. Figure 14 shows some of these additional data
groups (DataByte7-0) added to the same Waveform display shown in Figure 12. Note that it is
now possible to determine the skew between data groups and place these values into the Setup &
Hold Window settings in the TLA Setup window (see Figure 15). Refer to Appendix F Data
Group / Byte / Strobe Cross-Reference for details on which 8-bit groups make up a 32-bit group.
When setting the individual Setup & Hold values it is suggested that the settings for the
associated 32-bit group (RdA_DatHi, RdA_DatLo, RdB_DatHi, RdB_DatLo, WrA_DatHi,
WrA_DatLo, WrB_DatHi, WrB_DatLo) be reset to “Support Package Default”. This will
prevent the TLA from displaying warnings that conflicting values have been set for the data bits.
The Support Package Default Setup & Hold values are the same as the TLA default values –
117ps/117ps. It will also be necessary to program the Setup & Hold values for all of the 8-bit
groups in the affected 32-bit group. If conflicting Setup & Hold points are programmed then the
values will have exclamation marks beside them to denote the conflict.

DDR3THIN-MN-XXX

60

Doc. Rev. 1.11

Figure 14 - Viewing Individual 8-bit Read Data Groups

Figure 15 - Setting Individual Setup & Hold Values for the 8-bit Read Data Groups

Note: Values shown are for illustration purposes only

DDR3THIN-MN-XXX

61

Doc. Rev. 1.11

5.8 Setting B_DDR3D_3A Read Data Sample Points
The same procedure outlined above for setting Read Data sample points should be used to
determine the sample points for Read Data from teh second DIMM slot. Set the sample points
for the groups named RdA_DatHi_1, RdA_DatLo_1, RdB_DatHi_1 and RdB_DatLo_1.

DDR3THIN-MN-XXX

62

Doc. Rev. 1.11

6.0 VIEWING DATA
6.1 Viewing B_DDR3D_XX Data
When using the NEX-DDR3INTR-THIN support packages the raw Address and Data groups are
suppressed and are replaced with post-processed data in new groups. This data is displayed in
new groups that have the support package name preceding it (i.e., B_DDR3D_XX Address,
B_DDR3D_XX DataHi, etc.). The raw data groups are suppressed so that the display of data can
be done in a more user-friendly fashion.
The Command group is suppressed because its function is replaced with a column labeled
“B_DDR3D_XX Mnemonics”. The Interposer support software includes post-processing code
that permits masking out all invalid Read / Write and non-Command data, providing the user a
much better overview of bus activity. Figure 16 shows the default B_DDR3D_XX display where
all DDR3 data is displayed.

Figure 16 - B_DDR3D_XX Listing Display

DDR3THIN-MN-XXX

63

Doc. Rev. 1.11

To change the display it is necessary to bring up the window’s Properties window (perform a
right mouse-click in the State display window) and select the Disassembly tab. This will bring up
the configuration window shown in Figure 17.

Figure 17 - Disassembly Properties

There are several select fields available in this window, some of which must be set correctly for
the post-processing software to work properly. These fields and their selections are:
Burst Length - permits setting the burst length for Read and Write data. Valid choices
are 4 (the default) 8, and 4/8 On-the-Fly. This value must be set properly for all valid
Read and Write data to be displayed.
CAS Latency (CL) - sets the delay, in clock cycles, from the Read command until the
first piece of valid Read data is available. This value must be set properly for all valid
Read Data to be displayed. Valid choices are 5 (default), 6, 7, 8, 9 or 10 cycles.
CAS Additive Latency - additional latency for data cycles. This value must also be set
properly for valid Read Data to be displayed. Valid choices are 0 (default), CL-1, or CL2 cycles.
CAS Write Latency – number of clock cycles from Write command to the first Write
Data. This value must be set properly for all valid Write Data to be displayed. Valid
choices are 5 (default), 6, 7, or 8 cycles.
Registered? – must be set to reflect whether or not Registered DDR memory is used.
Default is No. When set to Yes an additional clock cycle delay is added to CAS Latency
and to valid Read and Write Data tagging.

DDR3THIN-MN-XXX

64

Doc. Rev. 1.11

DM Signal Use - permits setting Data Mask functionality to Write Masks (default) or
Strobes. When set to Write Mask the DM signals will be used to mask Write Data to
show which data bytes were valid in the cycle.
In addition to these Disassembly Properties selections, changing the settings in the Show field
results in display changes as well:
Hardware - (default) displays all acquired cycles
Software - suppresses all idle or wait cycles
Control Flow - shows Address Command and valid Read / Write data cycles
Subroutine - shows valid Read / Write data cycles only

Figure 18 - B_DDR3D_XX Listing Display - Control Flow

Changing the Show field setting in the display of Figure 16 from Hardware to Control Flow
results in the display of Figure 18 where only Row and Column Address commands and valid
DDR3THIN-MN-XXX

65

Doc. Rev. 1.11

data are displayed. Note that the timestamp is updated to reflect the time between displayed
cycles.

6.2 Viewing Raw DDR3 Data using B_DDR3D_XX Supports
In order to make the display of DDR3 data more user-friendly the raw data from the Address, all
Data and other groups is suppressed in the B_DDR3D_2D Listing display. Instead the postprocessing display software formats and reorders the data to tag and display valid DDR3
Address, Commands and Data. In the case of the B_DDR3D_2D supports, which stores two
Read and two Write data cycles in each TLA Sample location, the data is reordered
chronologically in the display with the oldest data being shown on the line above the newer data.
To see the raw data using the Interposer support package perform a right mouse click in the
Listing window, select Add Column… then click on the group to be added. Refer to the TLA
User’s Manual or online help for further information on added or deleting data groups.

6.3 B_DDR3D_2A / 3A Mnemonics Description
Table 6 gives a brief description of each of the text lines displayed in the B_DDR3D_2A / _3A
post-processing software display.
Mnemonic

Description

ACT – BANK ACTIVATE (Sx#) Bank:
DESL - IGNORE COMMAND
(E)MRS – (EXTENDED) MODE
REGISTER SET x (Sx#)
NOP - NO OPERATION (Sx#)
PRE – SINGLE BANK PRECHARGE (Sx#)
Bank:
PREA – PRECHARGE ALL BANK (Sx#)
RDA – READ W/AUTO PRECHARGE
(Sx#) Bank:
RD - READ (Sx#) Bank:
READ DATA
REF - REFRESH (Sx#)
WRA – WRITE W/AUTO PRECHARGE
(Sx#) Bank:
WR - WRITE (Sx~) Bank:
WRITE DATA
ZQCL – ZQ CALIBRATION LONG (Sx#)
ZQCS – ZQ CALIBRATION SHORT (Sx#)

Active command – activate a row in a bank for subsequent access
(Chip Select 0-3; Bank x)
Deselect function – no new command
Mode Register Set command, registers 0-3;
(Chip Select 0-3)
No Operation command (Chip Select 0-3)
Precharge command (Chip Select 0-3; Bank x)
Precharge All command (Chip Select 0-3)
Read command with auto precharge (Chip Select 0-3; Bank x)
Read command – initiates a burst read access to active row
(Chip Select 0-3; Bank x)
Valid Read data on the bus
Self Refresh command (Chip Select 0-3)
Write command with auto precharge (Chip Select 0-3; Bank x)
Write command – initiates a burst write access to active row
(Chip Select 0-3; Bank x)
Valid Write data on the bus
ZQ Calibration Long (Chip Select 0-3)
ZQ Calibration Short (Chip Select 0-3)

Table 6 - B_DDR3D_2A / 3A Mnemonics Definition

6.4 B_DDR3D_2G Mnemonics Description
DDR3THIN-MN-XXX

66

Doc. Rev. 1.11

Table 7 gives a brief description of each of the text lines displayed in the B_DDR3D_2G postprocessing software display.
Mnemonic

Description

ACT – BANK ACTIVATE
(Sx# / bS# / cS#) Bank:
DESL - IGNORE COMMAND
(E)MRS – (EXTENDED) MODE
REGISTER SET x (Sx# / bS# / cS#)
NOP - NO OPERATION (Sx# / bS# / cS#)
PRE – SINGLE BANK PRECHARGE
(Sx# / bS# / cS#) Bank:
PREA – PRECHARGE ALL BANK
(Sx# / bS# / cS#)
RDA – READ W/AUTO PRECHARGE
(Sx# / bS# / cS#) Bank:
RD - READ (Sx# / bS# / cS#) Bank:
READ DATA
REF - REFRESH (Sx# / bS# / cS#)
WRA – WRITE W/AUTO PRECHARGE
(Sx# / bS# / cS#) Bank:
WR - WRITE (Sx# / bS# / cS#) Bank:
WRITE DATA
ZQCL – ZQ CALIBRATION LONG
(Sx# / bS# / cS#)
ZQCS – ZQ CALIBRATION SHORT
(Sx# / bS# / cS#)

Active command – activate a row in a bank for subsequent access
(Slot A, B or C; Chip Select 0-3; Bank x)
Deselect function – no new command
Mode Register Set command, registers 0-3;
(Slot A, B or C; Chip Select 0-3)
No Operation command (Slot A, B or C; Chip Select 0-3)
Precharge command (Slot A, B or C; Chip Select 0-3; Bank x)
Precharge All command (Slot A, B or C; Chip Select 0-3)
Read command with auto precharge
(Slot A, B or C; Chip Select 0-3; Bank x)
Read command – initiates a burst read access to active row
(Slot A, B or C; Chip Select 0-3; Bank x)
Valid Read data on the bus
Self Refresh command (Slot A, B or C; Chip Select 0-3)
Write command with auto precharge
(Slot A, B or C; Chip Select 0-3; Bank x)
Write command – initiates a burst write access to active row
(Slot A, B or C; Chip Select 0-3; Bank x)
Valid Write data on the bus
ZQ Calibration Long (Slot A, B or C; Chip Select 0-3)
ZQ Calibration Short (Slot A, B or C; Chip Select 0-3)

Table 7 - B_DDR3D_2G Mnemonics Definition

6.5 Viewing Timing Data on the TLA
By default, the TLA will display an acquisition in the Listing (State) mode. However, the same
data can be displayed in Timing form by adding a Waveform Display window. This is done by
clicking on the Window pull-down, selecting New Data Window, clicking on Waveform
Window Type, then choosing the Data Source. Two valid choices are presented:
B_DDR3D_XX and B_DDR3D_XX: MagniVu. The first will show the exact same data (same
acquisition mode) as that shown in the Listing window, except in Waveform format. The second
selection will show all of the channels in 8GHz MagniVu mode, so that edge relationships can
be examined around the MagniVu trigger point. MagniVu is very useful and in some cases
necessary to see/resolve DDR3 data. With either selection, all channels can be viewed by
scrolling down the window. Refer to the TLA System User’s Manual for additional information
on formatting the Waveform display.

DDR3THIN-MN-XXX

67

Doc. Rev. 1.11

Figure 19 - B_DDR3D_XX MagniVu Display on TLA

DDR3THIN-MN-XXX

68

Doc. Rev. 1.11

7.0 HINTS & TIPS
7.1 Symbolic Triggering on a Command using B_DDR3D_XX Supports
A Symbol Table has been included for the Control data groups defined in each of the support
packages. The Symbol Table for the B_DDR3D_2D / 3A supports is shown in Table 8; the
Symbol Table for the B_DDR3D_2G support is shown in Table 9. The use of Symbol Tables
when triggering makes it easier for the user to define a given cycle to be triggered on. Rather
than trying to remember what signals make up the Control group, the Symbol Table has the
appropriate bits already set for the given cycle.
It is important to note that changing the channel definition of the Control group can result in
incorrect symbol information being displayed.
Symbol

Definition

cc ssss = x1 1110 for S0#
cc ssss = 1x 1101 for S1#
cc ssss = x1 1011 for S2#
cc ssss = 1x 0111 for S3#
x in Definition = Don’t Care
MRS – Sx# MODE REGISTER SET
cc ssss xxx xxx xx000
REF – Sx# REFRESH
cc ssss xxx xxx xx001
PRE – Sx# SINGLE BANK PRECHARGE
cc ssss xxx xxx x0010
PREA – Sx# PRECHARGE ALL BANKS
cc ssss xxx xxx x1010
ACT – Sx# ACTIVATE BANK
cc ssss xxx xxx xx011
WR – Sx# WRITE
cc ssss xxx xxx x0100
WRA – Sx# WRITE WITH AUTO
cc ssss xxx xxx x1100
PRECHARGE
RD – Sx# READ
cc ssss xxx xxx x0101
RDA – Sx# READ WITH AUTO
cc ssss xxx xxx x1101
PRECHARGE
NOP –Sx# NO OPERATION
cc ssss xxx xxx xx111
DES - DEVICE DESELECT
cc ssss xxx xxx xxxxx
ZQCL – Sx# ZQ CALIBRATION LONG
cc ssss xxx xxx x1110
ZQCS – Sx# ZQ CALIBRATION SHORT
cc ssss xxx xxx x0110
Table 8 - B_DDR3D_2D / 3A Control Symbol Table

Signals, left-to-right: CKE1, CKE0, S3#, S2#, S1#, S0#, BA2, BA1, BA0, A15, A14, A13,
A12/BC#, A10/AP, RAS#, CAS#, WE#

DDR3THIN-MN-XXX

69

Doc. Rev. 1.11

Symbol

Definition

cccc ssssssss = xxxxx1 1110 for S0#
cccc ssssssss = xxxx1x 1101 for S1#
cccc ssssssss = xxxxx1 1011 for S2#
cccc ssssssss = xxxx1x 0111 for S3#
cccc ssssssss = xxxxx1 1110 for bS0#
cccc ssssssss = xxxx1x 1101 for bS1#
cccc ssssssss = xxxxx1 1011 for cS0#
cccc ssssssss = xxxx1x 0111 for cS1#
x in Definition = Don’t Care
MRS – Sx# MODE REGISTER SET
cccc ssssssss xxx xxx xx000
MRS – bSx# MODE REGISTER SET
cccc ssssssss xxx xxx xx000
MRS – cSx# MODE REGISTER SET
cccc ssssssss xxx xxx xx000
REF – Sx# REFRESH
cccc ssssssss xxx xxx xx001
PRE – Sx# SINGLE BANK PRECHARGE
cccc ssssssss xxx xxx x0010
PREA – Sx# PRECHARGE ALL BANKS
cccc ssssssss xxx xxx x1010
ACT – Sx# ACTIVATE BANK
cccc ssssssss xxx xxx xx011
WR – Sx# WRITE
cccc ssssssss xxx xxx x0100
WRA – Sx# WRITE WITH AUTO
cccc ssssssss xxx xxx x1100
PRECHARGE
RD – Sx# READ
cccc ssssssss xxx xxx x0101
RDA – Sx# READ WITH AUTO
cccc ssssssss xxx xxx x1101
PRECHARGE
NOP –Sx# NO OPERATION
cccc ssssssss xxx xxx xx111
DES - DEVICE DESELECT
cccc ssssssss xxx xxx xxxxx
ZQCL – Sx# ZQ CALIBRATION LONG
cccc ssssssss xxx xxx x1110
ZQCS – Sx# ZQ CALIBRATION SHORT
cccc ssssssss xxx xxx x0110
Table 9 - B_DDR3D_2G Control Symbol Table

Signals, left-to-right: cCKE1, cCKE0, bCKE1, bCKE0, CKE1, CKE0,
cS1#, cS0#, bS1#, bS0#, S3#, S2#, S1#, S0#,
BA2, BA1, BA0, A15, A14, A13, A12/BC#, A10/AP, RAS#, CAS#, WE#

7.3 Capturing MRS (Mode Register Set) Cycles
If the characteristics of the DDR target (latency, burst length) are not known it is possible to
acquire this information using the TLA so that the post-processing Control settings can be
properly set. This information is programmed into the DDR memory upon system boot by use of
the MRS (Mode Register Set) command, and is required when using the NEX-DDR3INTRTHIN supports for the post-processing software to properly decode the acquisitions. The TLA
trigger shown in Figure 19 can be used to acquire the MRS cycles when using either of these
supports.
Note that because there is no Trigger event defined in this example that it will be necessary to
Stop the TLA acquisition manually to display the MRS data. A trigger could certainly be added
in either (or both) of the Trigger events, but the method shown ensures that the last valid MRS
cycles will be acquired regardless of the memory depth setting of the acquisition card.
DDR3THIN-MN-XXX

70

Doc. Rev. 1.11

Figure 20 - B_DDR3D_2D MRS Trigger

In the trigger example a Storage condition has been created so that only MRS cycles will be
stored. In testing, multiple MRS cycles were seen during the boot process, and the example
triggers shown will ensure that all of the MRS cycles will be acquired, an example of which is
shown in Figure 20. The last acquired MRS cycle will reflect the settings used in the DDR target
– in this case, a CAS latency of 2 cycles with a Burst length of 8.

Figure 21 - MRS Cycle Acquisition Disassembly

7.4 Clock Capture quality
The clock captured by the logic analyzer may exhibit ringing. If this ringing is such that a clock
reference voltage can not be determined it is suggested that the capacitor on the DIMM across
DDR3THIN-MN-XXX

71

Doc. Rev. 1.11

the differential pair by removed. The added capacitance of the logic analyzer compensates for
this missing capacitor.
7.5 Thresholds
Analog waveforms and their associated thresholds viewed using the Tektronix Analog Mux will
display amplitudes and thresholds that are not an exact representation of the actual analog
waveform. The Nexus passive probes used on DDR3 NEXVu and Interposer products are
designed to supply maximum voltage swing to the Logic analyzer to insure correct digital signal
swing capture at the high DDR3 rates. While the Tektronix active P69xx and P68xx series of
probe, being general purpose probes, divide the input voltage swing by 20 the passive probes
from Nexus divide the signals by approximately 7.5. Since the divide value is different than the
standard Tektronix probe the voltage swing and offset will be higher than expected, and the
thresholds will be different. Instead of the expected 0.75 threshold of approximately 1.9V
threshold will be required. This was designed specifically for DDR3 signals to allow the best
possible capture of the digital representation of these signals. Viewing the output of the Logic
Analyzer analog mux should be used as a tool to provide fine adjustment of the logic analyzer
signal Vref. The threshold value determined in this manner should be used as the threshold
setting for the Nexus DDR3 product. Please note: Only the vertical resolution is affected by the
Nexus passive probes.

DDR3THIN-MN-XXX

72

Doc. Rev. 1.11

APPENDIX A – How DDR Data is Clocked
A.1 Background
Demultiplexing means that the TLA’s Logic Analyzer card can have one data probe connected to
the target yet store incoming data in two or four separate data sections of the card. For instance,
the A3 data section (8-bits) can be connected to the target and data can be stored in the A3
section and the D3 section. Using the equivalent of 4X demux (by utilizing both the cross-point
switch and prime memory capabilities of the acquisition card), connections made to the A3
channels permit data to be stored in the A3, A3B (prime channels), D3 and D3B sections. A very
useful side benefit of using demux is that, since only one set of TLA data channels has to be
connected, only one probe load is added to the target, even though data is stored in two or four
different locations of the acquisition card.

A.2 DDR Acquisition - General
All of the above is background necessary to understand how the TLA is able to acquire data at
rates that initially look too fast. The speeds of DDR3 (1066 MT/s) require different setups to
enable proper data acquisition. In addition, instead of trying to use the 8 Data Strobes to acquire
data our solution uses CLK0 of the DDR SDRAM Clocks and all data acquisition is adjusted in
relation to the clock edges. The 8 Data Strobes cannot be easily used to acquire data as some
TLA configurations only support 4 Clock Inputs. Also, the Strobes cannot be used to acquire
Address and Command information.

DDR3THIN-MN-XXX

73

Doc. Rev. 1.11

A.3 B_DDR3D_2D / 2G / 3A Data Acquisition
These supports requires two (2) merged 136-channel with 1.4G state option TLA7BB4
acquisition cards used in a TLA7XX logic analyzer. Data is acquired using the rising edge of the
DDR clock. A_Data information is earlier (older) data than the information stored in B_Data.
Different Sample Points must be set for each of the four 32-bit Data groups, and, if necessary,
sample points can be set for any of the 8-bit data groups or for individual data bits.

Clock

Read

Rb

Ra

Rd

Rc

Re

RdA-S&H
RdB-S&H

Write

Wa

Wb

Wc

Wd

We

WrA-S&H
WrB-S&H

DDR3THIN-MN-XXX

74

Doc. Rev. 1.11

APPENDIX B - Considerations
B.1 NEX-DDR3INTR-THIN Bus Loading
It must be noted that the NEX-DDR3INTR-THIN Interposer is designed to minimal effect on the
user’s circuit. The acquired signals are sampled at top edge connector, and then passed through
isolation resistors to the probe. There will be an effective 600 ohm load on all probed signals.
The B_DDR3D_3A support will use two Interposers and will double probe all signal. Thus the
DC load will be near 300 ohms. The DDR3 Interposer has been tested via detailed simulations,
and by actual in circuit testing.

B.2 DIMM connector location for best quality signal capture
An interposer is subject to reflected noise and the quality of the acquisitions should improve if
the Interposer is in the furthest slot away from the memory controller. If the memory channel
contains two DIMM slots and only one will be used, the slot used must be the furthest away from
the memory controller.

B.3 TLA7BB4 Module to module skew
At print time Tektronix had not yet specified the module to module skew that will be displayed
in MagniVu, and timing modes. This skew is around 300ps. It is expected that in future releases
Tektronix will remove this skew. Contact Tektronix for updates.

DDR3THIN-MN-XXX

75

Doc. Rev. 1.11

APPENDIX C – 240-pin DDR3 DIMM Pinout

Pin
#
1
2
3
4

Front Side (left 1-60)
X64
X72
NonECC
Parity
VREF
VREF
VSS
VSS
DQ0
DQ0
DQ1
DQ1

Back Side (right 121-180
Pin
#

X64
Non-Parity

X72
ECC

121
122
123
124

VSS
DQ4
DQ5
VSS
DM0
DQS9
NC
DQS9#
VSS

VSS
DQ4
DQ5
VSS
DM0
DQS9
NC
DQS9#
VSS

5

VSS

VSS

125

6

DQS0#

DQS0#

126

7

DQS0

DQS0

127

Front Side (left 61-120)
X64
X72
Pin #
NonECC
Parity
61
A2
A2
62
VDD
VDD
63
CK1
CK1
64
CK1#
CK1#
65

VDD

Back Side (right 181-240)
X64
X72
Pin #
NonECC
Parity
181
A1
A1
182
VDD
VDD
183
VDD
VDD
184
CK0
CK0

VDD

185

CK0#

CK0#

66

VDD

VDD

186

VDD

VDD

67

VREF
NC
Par_In
VDD
A10/AP
BA0
VDD
WE#

187

TEST/NC

TEST/NC

188

A0

A0

189
190
191
192
193

VDD
BA1
VDD
RAS#
S0#

VDD
BA1
VDD
RAS#
S0#

8

VSS

VSS

128

DQ6

DQ6

68

9
10
11
12
13

DQ2
DQ3
VSS
DQ8
DQ9

DQ2
DQ3
VSS
DQ8
DQ9

129
130
131
132
133

VSS

VSS

134

74

CAS#

CAS#

194

VDD

VDD

15

DQS1#

DQS1#

135

75

VDD

VDD

195

ODT0

ODT0

16

DQS1

DQS1

136

DQ7
VSS
DQ12
DQ13
VSS
DM1
DQS10
NC
DQS10#
VSS

69
70
71
72
73

14

DQ7
VSS
DQ12
DQ13
VSS
DM1
DQS10
NC
DQS10#
VSS

VREF
NC
Par_In
VDD
A10/AP
BA0
VDD
WE#

76

17

VSS

VSS

137

DQ14

DQ14

77

18

DQ10

DQ10

138

DQ15

DQ15

78

19

DQ11

DQ11

139

VSS

VSS

79

20
21
22

VSS
DQ16
DQ17

VSS
DQ16
DQ17

140
141
142

80
81
82

VSS

VSS

143

83

VSS

VSS

203

24
25
26
27
28
29
30
31

DQS2#
DQS2
VSS
DQ18
DQ19
VSS
DQ24
DQ25

DQS2#
DQS2
VSS
DQ18
DQ19
VSS
DQ24
DQ25

144
145
146
147
148
149
150
151

84
85
86
87
88
89
90
91

DQS4#
DQS4
VSS
DQ34
DQ35
VSS
DQ40
DQ41

DQS4#
DQS4
VSS
DQ34
DQ35
VSS
DQ40
DQ41

204
205
206
207
208
209
210
211

32

VSS

VSS

152

92

VSS

VSS

212

33
34
35
36
37
38
39
40

DQS3#
DQS3
VSS
DQ26
DQ27
VSS
NC
NC

DQS3#
DQS3
VSS
DQ26
DQ27
VSS
CB0
CB1

153
154
155
156
157
158
159
160

DQ20
DQ21
VSS
DML2
DQS11
DQS11#
VSS
DQ22
DQ23
VSS
DQ28
DQ29
VSS
DM3
DQS12
DQS12#
VSS
DQ30
DQ31
VSS
CB4
CB5
VSS

S1#
RSVD
ODT1
VDD
RSVD
Spd3
VSS
DQ32
DQ33

23

DQ20
DQ21
VSS
DML2,
DQS11
DQS11#
VSS
DQ22
DQ23
VSS
DQ28
DQ29
VSS
DM3
DQS12
DQS12#
VSS
DQ30
DQ31
VSS
NC
NC
VSS

S1#
RSVD
ODT1
VDD
RSVD
SPD#
VSS
DQ32
DQ33

93
94
95
96
97
98
99
100

DQS5#
DQS5
VSS
DQ42
DQ43
VSS
DQ48
DQ49

DQS5#
DQS5
VSS
DQ42
DQ43
VSS
DQ48
DQ49

213
214
215
216
217
218
219
220

DDR3THIN-MN-XXX

76

196

A13

A13

197

VDD

VDD

198

Free

Free

199

VSS

VSS

200
201
202

DQ36
DQ37
VSS
DM4
DQS13
DQS13#
VSS
DQ38
DQ39
VSS
DQ44
DQ45
VSS
DM5
DQS14
DQS14#
VSS
DQ46
DQ47
VSS
DQ52
DQ53
VSS

DQ36
DQ37
VSS
DM4
DQS13
DQS13#
VSS
DQ38
DQ39
VSS
DQ44
DQ45
VSS
DM5
DQS14
DQS14#
VSS
DQ46
DQ47
VSS
DQ52
DQ53
VSS

Doc. Rev. 1.11

APPENDIX C - 240-pin DDR3 DIMM Pinout (cont’d.)

Front Side (left 1-60)
X64
Pin
X72
Non#
ECC
Parity

42
43
44
45
46
47
48

DQS8#
DQS8
VSS
NC
NC
VSS
Free
KEY

DQS8#
DQS8
VSS
CB2
CB3
VSS
Free

162
163
164
165
166
167
168

49

RESET#

RESET#

169

CKE1

CKE1

110

VSS

VSS

50
51
52

CKE0
VDD
BA2
NC

CKE0
VDD
BA2
NC

170
171
172

VDD
A15
A14

VDD
A15
A14

111
112
113

DQS7#
DQS7
VSS

DQS7#
DQS7
VSS

Back Side (right 181-240)
X64
Pin
X72
Non#
ECC
Parity
DM6
DM6
221
DQS15
DQS15
222
DQS15#
DQS15#
223
VSS
VSS
224
DQ54
DQ54
225
DQ55
DQ55
226
VSS
VSS
227
DQ60
DQ60
228
DQ61
DQ61
229
VSS
VSS
DM7
DM7
230
DQS16
DQS16
231
DQS16#
DQS16#
232
VSS
VSS
233
DQ62
DQ62

ERR-OUT#

ERR-OUT#

173

VDD

VDD

114

DQ58

DQ58

234

DQ63

DQ63

VDD
A11
A7
VDD
A5
A4
VDD

VDD
A11
A7
VDD
A5
A4
VDD

174
175
176
177
178
179
180

A12
A9
VDD
A8
A6
VDD
A3

A12
A9
VDD
A8
A6
VDD
A3

115
116
117
118
119
120

DQ59
VSS
SA0
SLC
SA2
VTT

DQ59
VSS
SA0
SLC
SA2
VTT

235
236
237
238
239
240

VSS
VDDSPD
SA1
SDA
VSS
VTT

VSS
VDDSPD
SA1
SDA
VSS
VTT

41

53
54
55
56
57
58
59
60

VSS

Back Side (right 121-180
Pin
#

VSS

161

DDR3THIN-MN-XXX

X64
Non-Parity
DM8
DQS17
DQS17#
VSS
NC
NC
VSS
Test
Free
KEY

Front Side (left 61-120)
X64
Pin
X72
Non#
ECC
Parity

X72
ECC
DM8
DQS17
DQS17#
VSS
CB6
CB7
VSS
Test
Free

77

101

VSS

VSS

102
103
104
105
106
107
108
109

DQS6#
DQS6
VSS
DQ50
DQ51
VSS
DQ56
DQ57

DQS6#
DQS6
VSS
DQ50
DQ51
VSS
DQ56
DQ57

Doc. Rev. 1.11

APPENDIX D –Data Flow Through the Probes (coax cable to channel)

Data flow
Slave1 C3/2/1/0 Master A3/2 D3/2 Master C3/2/1/0 Slave1 A3/2 D3/2
Slave1 E3/2/1/0 Master A1/0 D1/0
Slave1 A1/0 D1/0
Plastic Housing
that plugs into
TLA 7BB4

Samtec Connectors
plug together at this
point

J15-x Coax on top
J16-x Coax on

J16-1 edge

J15-1 edge
Master A3/2 &
Slave1 C3/2 & E3/2

DDR3THIN-MN-XXX

Interposer

Slave1 A3/2 & A1/0
Master

78

Doc. Rev. 1.11

APPENDIX D - Data Flow Through the Probes (cont’d.)

Coax wire
PIN
J16-2
J16-5
J16-8
J16-11
J16-14
J16-17
J16-4
J16-7
J16-10
J16-13
J16-16
J16-3
J16-6
J16-9
J16-12
J16-15
J16-18
J15-18
J15-15
J15-12
J15-9
J15-6
J15-3
J15-16
J15-13
J15-10
J15-7
J15-4
J15-17
J15-14
J15-11
J15-8
J15-5
J15-2

DDR3THIN-MN-XXX

M_C
Channel
C2:0
C2:5
C3:3
C1:5
C1:0
C0:3
C2:4
C3:2
C3:7
C1:1
C0:6
C2:1
CLK3
C3:6
C1:4
C0:7
C0:2
C2:2
C2:7
C3:4
C1:6
Q1
C0:1
C2:6
C3:1
C1:7
C1:2
C0:4
C2:3
C3:0
C3:5
C1:3
C0:5
C0:0

M_A3/2 A1/0
Channel
A0:0
A0:5
A1:3
A3:5
A3:0
A2:3
A0:4
A1:2
A1:7
A3:1
A2:6
A0:1
CLK1
A1:6
A3:4
A2:7
A2:2
A0:2
A0:7
A1:4
A3:6
CLK0
A2:1
A0:6
A1:1
A3:7
A3:2
A2:4
A0:3
A1:0
A1:5
A3:3
A2:5
A2:0

79

S_A3/2 A1/0
Channel
A0:0
A0:5
A1:3
A3:5
A3:0
A2:3
A0:4
A1:2
A1:7
A3:1
A2:6
A0:1
CLK1
A1:6
A3:4
A2:7
A2:2
A0:2
A0:7
A1:4
A3:6
CLK0
A2:1
A0:6
A1:1
A3:7
A3:2
A2:4
A0:3
A1:0
A1:5
A3:3
A2:5
A2:0

S_C3/2 E3/2
Channel
E2:0
E2:5
E3:3
C3:5
C3:0
C2:3
E2:4
E3:2
E3:7
C3:1
C2:6
E2:1
Q3
E3:6
C3:4
C2:7
C2:2
E2:2
E2:7
E3:4
C3:6
CLK3
C2:1
E2:6
E3:1
C3:7
C3:2
C2:4
E2:3
E3:0
E3:5
C3:3
C2:5
C2:0

Doc. Rev. 1.11

APPENDIX E – B_DDR3D_2D Support Pinout, DIMM Slot 0

Samtec
Pin

Coax
Pin

15
29
25
28
24
21
19
20
16
12
10
11
9
6
4
5
3
46
32
36
33
37
40

J15-6
J15-10
J15-9
J16-11
J16-12
J15-8
J15-7
J16-13
J16-14
J16-15
J16-16
J15-5
J15-4
J16-17
J16-18
J15-3
J15-2
J16-6
J16-10
J16-9
J15-11
J15-12
J16-8

TLA
Channe
l
CK1
A1:7
A1:6
A1:5
A1:4
A1:3
A1:2
A1:1
A1:0
A0:7
A0:6
A0:5
A0:4
A0:3
A0:2
A0:1
A0:0
CK0
A3:7
A3:6
A3:5
A3:4
A3:3

42
41
45

J16-7
J15-13
J15-14

A3:2
A3:1
A3:0

49
51
50
52
55
57
56
58

DDR3
Signal
CB1
NC
CB3
CB7
CB6
CB2
DQS8
DM8
CB5
CB4
DQ31
CB0
DQ27
DQ30
DM3
DQ26
DQS3
A15
TEST
RESET#
NC
NC
NC

CKE1
CKE0
BA2
ERR_OUT
J15-15
A2:7
#
J15-16
A2:6
A11
J16-5
A2:5
A14
J16-4
A2:4
A12
J15-17
A2:3
A7
J15-18
A2:2
A5
J16-3
A2:1
A9
J16-2
A2:0
A8
2X Probe Connection used with
B_DDR3D_2D software
M_A3/2 A1/0

DDR3THIN-MN-XXX

80

Samte
c
Pin
46
32
36
33
37
40
42
41
45
49
51
50
52
55
57
56
58
15
29
25
28
24
21

Coax
Pin
J16-6
J16-10
J16-9
J15-11
J15-12
J16-8
J16-7
J15-13
J15-14
J15-15
J15-16
J16-5
J16-4
J15-17
J15-18
J16-3
J16-2
J15-6
J15-10
J15-9
J16-11
J16-12
J15-8

TLA
Channe
l
CK3+
C3:7
C3:6
C3:5
C3:4
C3:3
C3:2
C3:1
C3:0
C2:7
C2:6
C2:5
C2:4
C2:3
C2:2
C2:1
C2:0
Q1+
C1:7
C1:6
C1:5
C1:4
C1:3

19
20
16

J15-7
J16-13
J16-14

C1:2
C1:1
C1:0

12
J16-15
C0:7
10
J16-16
C0:6
11
J15-5
C0:5
9
J15-4
C0:4
6
J16-17
C0:3
4
J16-18
C0:2
5
J15-3
C0:1
3
J15-2
C0:0
1X Probe Connection used with
B_DDR3D_2D software
M_C3/2 C1/0

DDR3
Signal
A13
BA1
RAS#
CAS#
S1#
S0#
ODT0
ODT1
S2#
DQ32
DQ33
S3#
DQ36
DQS4
NC
DQ37
DM4
A2
WE#
BA0
A0
CK0
A10
PAR_I
N
A1
A3
NC
NC
A4
NC
A6
NC
NC
NC

Doc. Rev. 1.11

APPENDIX E – B_DDR3D_2D Support Pinout, DIMM Slot 0 (Cont’d.)

Coax
TLA
DDR3
Samtec
Pin
Channel Signal
Pin
15
J15-6
CK1
DQS5
29
J15-10
A1:7
DQ49
25
J15-9
A1:6
DQ48
28
J16-11
A1:5
DQ52
24
J16-12
A1:4
DQ47
21
J15-8
A1:3
DQ43
19
J15-7
A1:2
DQ42
20
J16-13
A1:1
DQ46
16
J16-14
A1:0
DM5
12
J16-15
A0:7
DQ45
10
J16-16
A0:6
DQ44
11
J15-5
A0:5
DQ41
9
J15-4
A0:4
DQ40
6
J16-17
A0:3
DQ39
4
J16-18
A0:2
DQ38
5
J15-3
A0:1
DQ35
3
J15-2
A0:0
DQ34
46
J16-6
CK0
DQ60
32
J16-10
A3:7
DQ53
36
J16-9
A3:6
DM6
33
J15-11
A3:5
DQS6
37
J15-12
A3:4
DQ50
40
J16-8
A3:3
DQ54
42
J16-7
A3:2
DQ55
41
J15-13
A3:1
DQ51
45
J15-14
A3:0
DQ56
49
J15-15
A2:7
DQ57
51
J15-16
A2:6
DQS7
50
J16-5
A2:5
DQ61
52
J16-4
A2:4
DM7
55
J15-17
A2:3
DQ58
57
J15-18
A2:2
DQ59
56
J16-3
A2:1
DQ62
58
J16-2
A2:0
DQ63
2X Probe Connection used with
B_DDR3D_2D software
S_A3/2 A1/0

DDR3THIN-MN-XXX

81

Coax
TLA
DDR3
Samtec
Pin
Channel Signal
Pin
46
J15-6
Q3
DQ3
32
J15-10
E3:7
DQ10
36
J15-9
E3:6
DQS1
33
J16-11
E3:5
DM1
37
J16-12
E3:4
DQ13
40
J15-8
E3:3
DQ9
42
J15-7
E3:2
DQ8
41
J16-13
E3:1
DQ12
45
J16-14
E3:0
DQ7
49
J16-15
E2:7
DQ6
51
J16-16
E2:6
DM0
50
J15-5
E2:5
DQ2
52
J15-4
E2:4
DQS0
55
J16-17
E2:3
DQ5
57
J16-18
E2:2
DQ4
56
J15-3
E2:1
DQ1
58
J15-2
E2:0
DQ0
15
J16-6
CK3
DM2
29
J16-10
C3:7
DQ14
25
J16-9
C3:6
DQ15
28
J15-11
C3:5
DQ11
24
J15-12
C3:4
DQ16
21
J16-8
C3:3
DQ20
19
J16-7
C3:2
DQ21
20
J15-13
C3:1
DQ17
16
J15-14
C3:0
DQS2
12
J15-15
C2:7
DQ18
10
J15-16
C2:6
DQ19
11
J16-5
C2:5
DQ22
9
J16-4
C2:4
DQ23
6
J15-17
C2:3
DQ24
4
J15-18
C2:2
DQ25
5
J16-3
C2:1
DQ28
3
J16-2
C2:0
DQ29
2X Probe Connection used with
B_DDR3D_2D software
S_C3/2 E3/2

Doc. Rev. 1.11

APPENDIX F – B_DDR3_2G Support Pinout, DIMM Slot 0 Auxiliary Signals

Samte
c Pin

Coax
Pin

TLA
Channe
l

46
32
36

J16-6
J16-10
J16-9

E3:7
E3:6

33

J15-11

E3:5

37
40
42
41
45
49

J15-12
J16-8
J16-7
J15-13
J15-14
J15-15

E3:4
E3:3
E3:2
E3:1
E3:0
E2:7

51
50
52
55

J15-16
J16-5
J16-4
J15-17

E2:6
E2:5
E2:4
E2:3

57
56
58

J15-18
J16-3
J16-2

E2:2
E2:1
E2:0

15

J15-6

Q2

29
25
28
24
21
19
20
16
12
10
11

J15-10
J15-9
J16-11
J16-12
J15-8
J15-7
J16-13
J16-14
J16-15
J16-16
J15-5

E1:7
E1:6
E1:5
E1:4
E1:3
E1:2
E1:1
E1:0
E0:7
E0:6
E0:5

9
6
4
5

J15-4
J16-17
J16-18
J15-3

E0:4
E0:3
E0:2
E0:1

3

J15-2

E0:0

DDR3
Signal
NC
NC
NC
cCLKE1
LEAD-6
cCLKE0
LEAD-5
NC
NC
LEAD-4
LEAD-3
NC
cS1#
LEAD-2
NC
NC
NC
cS0#
LEAD-1
NC
NC
bCLKE1
LEAD10
bCLKE0
LEAD-7
LEAD-8
NC
NC
NC
LEAD-9
NC
NC
NC
NC
NC
bS1#
LEAD11
NC
NC
NC
bS0#
LEAD12

Optional Flying Lead Probe Connection used with
B_DDR3D_2G software
M_E3/2 E1/0

DDR3THIN-MN-XXX

82

Doc. Rev. 1.11

DDR3THIN-MN-XXX

83

Doc. Rev. 1.11

APPENDIX G – B_DDR3D_3A Support Pinout, DIMM Slot 1

Samte
c Pin

Coax
Pin

15
29
25
28
24
21
19
20
16
12
10
11
9
6
4
5
3
46
32
36
33
37
40
42
41
45

J15-6
J15-10
J15-9
J16-11
J16-12
J15-8
J15-7
J16-13
J16-14
J16-15
J16-16
J15-5
J15-4
J16-17
J16-18
J15-3
J15-2
J16-6
J16-10
J16-9
J15-11
J15-12
J16-8
J16-7
J15-13
J15-14

TLA
Channe
l
Q0+
D3:7
D3:6
D3:5
D3:4
D3:3
D3:2
D3:1
D3:0
D2:7
D2:6
D2:5
D2:4
D2:3
D2:2
D2:1
D2:0
CK0+
A3:7
A3:6
A3:5
A3:4
A3:3
A3:2
A3:1
A3:0

DDR3
Signal

CB1
NC
CB3
CB7
CB6
CB2
DQS8
DM8
CB5
CB4
DQ31
CB0
DQ27
DQ30
DM3
DQ26
DQS3
A15
TEST
RESET#
NC
NC
NC
CKE1
CKE0
BA2
ERR_OUT
49
J15-15
A2:7
#
51
J15-16
A2:6
A11
50
J16-5
A2:5
A14
52
J16-4
A2:4
A12
55
J15-17
A2:3
A7
57
J15-18
A2:2
A5
56
J16-3
A2:1
A9
58
J16-2
A2:0
A8
2X Probe Connection used with
B_DDR3D_2D software
M_A3/2 A1/0
(S2_A3/2 D3/2 Logic Analyzer Probe)

DDR3THIN-MN-XXX

84

Samte
c
Pin
46
32
36
33
37
40
42
41
45
49
51
50
52
55
57
56
58
15
29
25
28
24
21
19
20
16

Coax
Pin
J16-6
J16-10
J16-9
J15-11
J15-12
J16-8
J16-7
J15-13
J15-14
J15-15
J15-16
J16-5
J16-4
J15-17
J15-18
J16-3
J16-2
J15-6
J15-10
J15-9
J16-11
J16-12
J15-8
J15-7
J16-13
J16-14

TLA
Channe
l
CK3+
C3:7
C3:6
C3:5
C3:4
C3:3
C3:2
C3:1
C3:0
C2:7
C2:6
C2:5
C2:4
C2:3
C2:2
C2:1
C2:0
Q1+
C1:7
C1:6
C1:5
C1:4
C1:3
C1:2
C1:1
C1:0

DDR3
Signal
A13
BA1
RAS#
CAS#
S1#
S0#
ODT0
ODT1
S2#
DQ32
DQ33
S3#
DQ36
DQS4
NC
DQ37
DM4
A2
WE#
BA0
A0
CK0
A10
PAR_IN
A1
A3

12
J16-15
C0:7
NC
10
J16-16
C0:6
NC
11
J15-5
C0:5
A4
9
J15-4
C0:4
NC
6
J16-17
C0:3
A6
4
J16-18
C0:2
NC
5
J15-3
C0:1
NC
3
J15-2
C0:0
NC
1X Probe Connection used with
B_DDR3D_2D software
M_C3/2 C1/0
(S2_C3/2/1/0 Logic Analyzer Probe)

Doc. Rev. 1.11

APPENDIX G – B_DDR3D_3A Support Pinout, DIMM Slot 1 (cont’d.)

Samtec
Pin

DDR
3
Signa
l
15
J15-6
CK2+
DQS5
29
J15-10
D1:7
DQ49
25
J15-9
D1:6
DQ48
28
J16-11
D1:5
DQ52
24
J16-12
D1:4
DQ47
21
J15-8
D1:3
DQ43
19
J15-7
D1:2
DQ42
20
J16-13
D1:1
DQ46
16
J16-14
D1:0
DM5
12
J16-15
D0:7
DQ45
10
J16-16
D0:6
DQ44
11
J15-5
D0:5
DQ41
9
J15-4
D0:4
DQ40
6
J16-17
D0:3
DQ39
4
J16-18
D0:2
DQ38
5
J15-3
D0:1
DQ35
3
J15-2
D0:0
DQ34
46
J16-6
CK1+
DQ60
32
J16-10
A1:7
DQ53
36
J16-9
A1:6
DM6
33
J15-11
A1:5
DQS6
37
J15-12
A1:4
DQ50
40
J16-8
A1:3
DQ54
42
J16-7
A1:2
DQ55
41
J15-13
A1:1
DQ51
45
J15-14
A1:0
DQ56
49
J15-15
A0:7
DQ57
51
J15-16
A0:6
DQS7
50
J16-5
A0:5
DQ61
52
J16-4
A0:4
DM7
55
J15-17
A0:3
DQ58
57
J15-18
A0:2
DQ59
56
J16-3
A0:1
DQ62
58
J16-2
A0:0
DQ63
2X Probe Connection used with
B_DDR3D_2D software
S_A3/2 A1/0
(S2_A1/0 D1/0 Logic Analyzer Probe)

DDR3THIN-MN-XXX

Coax
Pin

TLA
Channe
l

85

Samte
c
Pin

Coax
Pin

TLA
Channe
l

DDR
3
Signa
l
15
J15-6
Q2+
DQ3
29
J15-10
E1:7
DQ10
25
J15-9
E1:6
DQS1
28
J16-11
E1:5
DM1
24
J16-12
E1:4
DQ13
21
J15-8
E1:3
DQ9
19
J15-7
E1:2
DQ8
20
J16-13
E1:1
DQ12
16
J16-14
E1:0
DQ7
12
J16-15
E0:7
DQ6
10
J16-16
E0:6
DM0
11
J15-5
E0:5
DQ2
9
J15-4
E0:4
DQS0
6
J16-17
E0:3
DQ5
4
J16-18
E0:2
DQ4
5
J15-3
E0:1
DQ1
3
J15-2
E0:0
DQ0
46
J16-6
Q3+
DM2
32
J16-10
E3:7
DQ14
36
J16-9
E3:6
DQ15
33
J15-11
E3:5
DQ11
37
J15-12
E3:4
DQ16
40
J16-8
E3:3
DQ20
42
J16-7
E3:2
DQ21
41
J15-13
E3:1
DQ17
45
J15-14
E3:0
DQS2
49
J15-15
E2:7
DQ18
51
J15-16
E2:6
DQ19
50
J16-5
E2:5
DQ22
52
J16-4
E2:4
DQ23
55
J15-17
E2:3
DQ24
57
J15-18
E2:2
DQ25
56
J16-3
E2:1
DQ28
58
J16-2
E2:0
DQ29
2X Probe Connection used with
B_DDR3D_2D software
S_C3/2 E3/2
(S2_E3/2/1/0 Logic Analyzer Probe)

Doc. Rev. 1.11

APPENDIX H – Data Group / Data Byte / Strobe Cross-Reference

32-bit Data Group
RdADatHi

RdADatLo

WrADatHi

WrADatLo

RdBDatHi

RdBDatLo

WrBDatHi

WrBDatLo

8-bit Data Group
RdADatB7
RdADatB6
RdADatB5
RdADatB4
RdADatB3
RdADatB2
RdADatB1
RdADatB0
WrADatB7
WrADatB6
WrADatB5
WrADatB4
WrADatB3
WrADatB2
WrADatB1
WrADatB0
RdBDatB7
RdBDatB6
RdBDatB5
RdBDatB4
RdBDatB3
RdBDatB2
RdBDatB1
RdBDatB0
WrBDatB7
WrBDatB6
WrBDatB5
WrBDatB4
WrBDatB3
WrBDatB2
WrBDatB1
WrBDatB0

Strobe
DQS7
DQS6
DQS5
DQS4
DQS3
DQS2
DQS1
DQS0
DQS7
DQS6
DQS5
DQS4
DQS3
DQS2
DQS1
DQS0
DQS7
DQS6
DQS5
DQS4
DQS3
DQS2
DQS1
DQS0
DQS7
DQS6
DQS5
DQS4
DQS3
DQS2
DQS1
DQS0

Data Bits
63,62,61,60,59,58,57,56
55,54,53,52,51,50,49,48
47,46,45,44,43,42,41,40
39,38,37,36,35,34,33,32
31,30,29,28,27,26,25,24
23,22,21,20,19,18,17,16
15,14,13,12,11,10,9,8
7,6,5,4,3,2,1,0
63,62,61,60,59,58,57,56
55,54,53,52,51,50,49,48
47,46,45,44,43,42,41,40
39,38,37,36,35,34,33,32
31,30,29,28,27,26,25,24
23,22,21,20,19,18,17,16
15,14,13,12,11,10,9,8
7,6,5,4,3,2,1,0
63,62,61,60,59,58,57,56
55,54,53,52,51,50,49,48
47,46,45,44,43,42,41,40
39,38,37,36,35,34,33,32
31,30,29,28,27,26,25,24
23,22,21,20,19,18,17,16
15,14,13,12,11,10,9,8
7,6,5,4,3,2,1,0
63,62,61,60,59,58,57,56
55,54,53,52,51,50,49,48
47,46,45,44,43,42,41,40
39,38,37,36,35,34,33,32
31,30,29,28,27,26,25,24
23,22,21,20,19,18,17,16
15,14,13,12,11,10,9,8
7,6,5,4,3,2,1,0

B_DDR3D_XX Groups/Bytes/Strobes Cross Reference

DDR3THIN-MN-XXX

86

Doc. Rev. 1.11

APPENDIX I – NEX-DDR3INTR-THIN Silkscreen

Front Silk-screen

DDR3THIN-MN-XXX

87

Doc. Rev. 1.11

APPENDIX J – Keep out area

DDR3THIN-MN-XXX

88

Doc. Rev. 1.11

APPENDIX K – Simulation Model
Double this if you are using two Interposers on the same memory channel

DDR3THIN-MN-XXX

89

Doc. Rev. 1.11

APPENDIX L - References
JEDEC PC3-6400/PC3-8500-10660 DDR3 SDRAM Unbuffered DIMM Design Specification
Revision 0.1 March 20, 2006.
Tektronix TLA7000 Series Installation Manual
Tek part number 071-1747-03
Tektronix TLA7000 Series Technical Reference Manual
Tektronix part number 071-1764-00
Nexus Low Profile Distributed Probe Manual—
Part number LowProfileProbes-MN-XXX
JEDEC DDR3 SDRAM Standard
JESD79-3 June 2007

DDR3THIN-MN-XXX

90

Doc. Rev. 1.11

APPENDIX M - Support
About Nexus Technology, Inc.

Established in 1991, Nexus Technology, Inc. is dedicated to developing, marketing, and
supporting Bus Analysis applications for Tektronix Logic Analyzers.
We can be reached at:
Nexus Technology, Inc.
P.O. Box 6575
Nashua, NH 03063
TEL: 877-595-8116
FAX: 877-595-8118
Web site: http://www.nexustechnology.com
Support Contact Information
Technical Support
General Information
Quote Requests

techsupport@nexustechnology.com
support@nexustechnology.com
quotes@nexustechnology.com

We will try to respond within one business day.
If Problems Are Found
Document the problem and e-mail the information to us. If at all possible please forward
a Saved System Setup (with acquired data) that shows the problem. Please do not send a
text listing alone as that does not contain enough data for analysis. To prevent corruption
during the mailing process it is strongly suggested that the Setup be zipped before
transmission.

DDR3THIN-MN-XXX

91

Doc. Rev. 1.11



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.4
Linearized                      : Yes
Encryption                      : Standard V2.3 (128-bit)
User Access                     : Print, Modify, Annotate, Fill forms, Extract, Assemble, Print high-res
Page Count                      : 91
XMP Toolkit                     : XMP toolkit 2.9.1-13, framework 1.6
About                           : uuid:af18947e-5f6e-486a-a441-19ec20456950
Producer                        : Acrobat Distiller 6.0 (Windows)
Company                         : Nexus Technology, Inc.
Verified 0020as 0020newest 003F : 1
Finished 003F                   : 1
Version 0                       : 1.10
Notes 0                         : includes cover & warranty sheet..bookmarked..needs name looked at..products using?
Creator Tool                    : Acrobat PDFMaker 6.0 for Word
Modify Date                     : 2008:02:13 14:40:00-05:00
Create Date                     : 2008:02:13 14:39:30-05:00
Metadata Date                   : 2008:02:13 14:40:00-05:00
Document ID                     : uuid:6d86ae41-c3d6-4b79-930f-2365b230b8f1
Format                          : application/pdf
Title                           : NEX-NEXVuDDR800M-x Users Manual
Creator                         : Nexus Technology, Inc.
Author                          : Nexus Technology, Inc.
Verified As Newest              : 1
Finished                        : 1
EXIF Metadata provided by EXIF.tools

Navigation menu