D Flow1D User Manual Flow1D_User_Manual

User Manual: Pdf D-Flow1D_User_Manual

Open the PDF directly: View PDF PDF.
Page Count: 174

DownloadD-Flow1D User Manual D-Flow1D_User_Manual
Open PDF In BrowserView PDF
1D/2D modelling suite for integral water solutions

DR
AF

T

SOBEK Suite

D-Flow 1D in Delta Shell

User Manual

DR
AF
T

T

DR
AF

SOBEK 3, D-Flow 1D
D-Flow 1D in Delta Shell

User Manual

Released for:
SOBEK Suite 3.7

Version: 3.7.5
SVN Revision: 53926
April 18, 2018

DR
AF

T

SOBEK 3, D-Flow 1D, User Manual

Published and printed by:
Deltares
Boussinesqweg 1
2629 HV Delft
P.O. 177
2600 MH Delft
The Netherlands

For sales contact:
telephone: +31 88 335 81 88
fax:
+31 88 335 81 11
e-mail:
software@deltares.nl
www:
https://www.deltares.nl/software

telephone:
fax:
e-mail:
www:

+31 88 335 82 73
+31 88 335 85 82
info@deltares.nl
https://www.deltares.nl

For support contact:
telephone: +31 88 335 81 00
fax:
+31 88 335 81 11
e-mail:
software.support@deltares.nl
www:
https://www.deltares.nl/software

Copyright © 2018 Deltares
All rights reserved. No part of this document may be reproduced in any form by print, photo
print, photo copy, microfilm or any other means, without written permission from the publisher:
Deltares.

Contents

Contents
List of Figures

vii

List of Tables

xi

1 A guide to this manual
1.1 Introduction . . . . . . . . . . . . . . . .
1.2 Overview . . . . . . . . . . . . . . . . .
1.3 Manual version and revisions . . . . . . .
1.4 Typographical conventions . . . . . . . .
1.5 Changes with respect to previous versions

1
1
1
1
2
3

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

2 Module D-Flow 1D: Overview

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

7
7
7
7
8
8
9
9
10
11
11
12
12
13
13
14
14
18
19
21
21
22
23
23
23
24

4 Module D-Flow 1D: All about the modeling process
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.1 Import modeldata on  level . . . . . . . . . .
4.2.2 Import a network from another model on  level
4.2.3 Import a network from GIS . . . . . . . . . . . . . . . .
4.2.3.1 The GIS import wizard . . . . . . . . . . . . .
4.2.3.2 Import from personal geodatabase . . . . . . .
4.2.3.3 Import of culvert (profile) data . . . . . . . . .
4.2.4 Import cross section profiles from csv . . . . . . . . . . .
4.2.5 Import time series from csv . . . . . . . . . . . . . . . .
4.3 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1 Setting up a network from scratch . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

27
27
27
27
28
29
29
31
32
32
34
36
36

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

T
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

DR
AF

3 Module D-Flow 1D: Getting started
3.1 Introduction . . . . . . . . . . .
3.2 Starting a D-flow 1D model . . .
3.3 Dockable views . . . . . . . . .
3.3.1 Docking tabs separately
3.3.2 Multiple tabs . . . . . .
3.4 Ribbons and toolbars . . . . . .
3.4.1 Ribbons (shortcut keys) .
3.4.2 File . . . . . . . . . . .
3.4.3 Home . . . . . . . . . .
3.4.4 View . . . . . . . . . .
3.4.5 Tools . . . . . . . . . .
3.4.6 Map . . . . . . . . . .
3.4.7 Scripting . . . . . . . .
3.4.8 Shortcuts . . . . . . . .
3.4.9 Quick access toolbar . .
3.5 Schematization . . . . . . . . .
3.6 Generating a computational grid
3.7 Boundary conditions . . . . . .
3.8 Roughness . . . . . . . . . . .
3.9 Initial conditions . . . . . . . . .
3.10 Model parameter settings . . . .
3.11 Set output . . . . . . . . . . .
3.12 Validation . . . . . . . . . . . .
3.13 Running a simulation . . . . . .
3.14 Viewing simulation results . . . .

5

Deltares

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

iii

SOBEK 3, D-Flow 1D, User Manual

Nodes and branches . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2.1 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2.2 Branches . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2.3 Interpolation across nodes . . . . . . . . . . . . . . . . .
4.3.3 Weir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . .
4.3.3.2 Simple weir . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.3.3 Gated weir . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.3.4 Weir with piers . . . . . . . . . . . . . . . . . . . . . . .
4.3.3.5 Weir with detailed description of crest . . . . . . . . . . .
4.3.3.6 Free form weir . . . . . . . . . . . . . . . . . . . . . . .
4.3.3.7 General structure . . . . . . . . . . . . . . . . . . . . . .
4.3.4 Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.5 Culvert, Siphon and Inverted Siphon . . . . . . . . . . . . . . . . .
4.3.6 Composite structure . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.7 Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.8 Extra Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.9 Lateral Source . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.10 Retention area . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.11 Observation point . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.12 Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.12.1 Adding Cross Sections to the network . . . . . . . . . . .
4.3.12.2 Cross Section YZ . . . . . . . . . . . . . . . . . . . . . .
4.3.12.3 Cross Section XYZ . . . . . . . . . . . . . . . . . . . . .
4.3.12.4 Cross Section ZW . . . . . . . . . . . . . . . . . . . . .
4.3.12.5 Cross Section . . . . . . . . . . . . . . . . . . . . . . .
4.3.12.6 Working with Shared Cross Section definitions . . . . . . .
4.3.12.7 Import and export cross sections from/to <.csv>-file . . . .
4.3.12.8 Inspect multiple cross sections in one view . . . . . . . . .
4.3.13 General functions on network objects . . . . . . . . . . . . . . . . .
4.3.13.1 Esc key . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.13.2 Copy and paste network object . . . . . . . . . . . . . . .
4.3.13.3 Add network object . . . . . . . . . . . . . . . . . . . . .
4.3.13.4 Zoom to network object . . . . . . . . . . . . . . . . . . .
4.3.13.5 Selection of multiple network objects . . . . . . . . . . . .
4.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.1 Types of boundary conditions . . . . . . . . . . . . . . . . . . . . .
4.4.2 Editing boundary conditions . . . . . . . . . . . . . . . . . . . . .
4.4.3 Time series for boundary conditions . . . . . . . . . . . . . . . . .
4.4.4 Remarks on discharge boundary conditions in D-Flow 1D . . . . . . .
4.4.4.1 Simulation results corresponding to discharge boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.4.2 Discharge-waterlevel-relation . . . . . . . . . . . . . . . .
4.5 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.1 Setting the initial conditions . . . . . . . . . . . . . . . . . . . . . .
4.5.2 Initial conditions from restart . . . . . . . . . . . . . . . . . . . . .
4.6 Roughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.2 Defining roughness . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.3 Import and export roughness from/to csv-file . . . . . . . . . . . . .
4.7 Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8 Salt water intrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.10 Computational grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DR
AF

T

4.3.2

iv

37
37
38
39
40
40
41
42
42
43
44
45
46
47
49
49
51
51
52
52
52
53
54
55
56
57
58
59
60
60
60
60
60
60
61
62
62
63
64
65
65
66
67
67
68
70
70
70
74
74
76
80
82

Deltares

Contents

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

DR
AF

T

4.11 Model properties . . . . . . . . . . . . . . . . . . . . . . .
4.11.1 Introduction . . . . . . . . . . . . . . . . . . . . . .
4.11.2 General . . . . . . . . . . . . . . . . . . . . . . . .
4.11.3 Initial conditions . . . . . . . . . . . . . . . . . . .
4.11.4 Model settings . . . . . . . . . . . . . . . . . . . .
4.11.4.1 Roughness for tidal flow . . . . . . . . . .
4.11.4.2 Salt water intrusion . . . . . . . . . . . . .
4.11.5 Output parameters . . . . . . . . . . . . . . . . . .
4.11.6 Run parameters . . . . . . . . . . . . . . . . . . .
4.11.6.1 Simulation period and timestep . . . . . . .
4.11.6.2 Restart and save State . . . . . . . . . . .
4.11.6.3 Model parameters . . . . . . . . . . . . .
4.11.6.4 Structure Inertia Damping Factor . . . . . .
4.11.6.5 Extra resistance for general structure . . . .
4.11.6.6 Summerdike . . . . . . . . . . . . . . . .
4.11.6.7 Advanced options . . . . . . . . . . . . .
4.11.6.8 Volumes based on waterlevels or discharges
4.11.6.9 Reduction of timestep on large lateral flow .
4.11.6.10 Use timestep reduction on structure . . . .
4.11.6.11 Parameter set for lowland rivers . . . . . .
4.11.7 Default bed roughness . . . . . . . . . . . . . . . .
4.12 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.13 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.14 Merge Models . . . . . . . . . . . . . . . . . . . . . . . .
5 Module D-Flow 1D: Simulation and model output
5.1 Simulation information . . . . . . . . . . .
5.2 Results in the Map . . . . . . . . . . . . .
5.3 Results in a Graph . . . . . . . . . . . . .
5.4 Results in a Table . . . . . . . . . . . . . .
5.5 Sideviews . . . . . . . . . . . . . . . . . .
5.5.1 Routes . . . . . . . . . . . . . . .
5.5.2 Results in Sideview . . . . . . . . .
5.6 Export . . . . . . . . . . . . . . . . . . .
5.7 Case analysis . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

84
84
85
85
85
85
85
86
86
86
86
86
87
88
88
88
88
89
89
89
90
90
93
93

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

95
96
97
99
100
100
100
101
102
102

6 Module D-Flow 1D: Morphology and Sediment Transport
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 Input files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3 Output files . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4 Scripting support . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.1 Generating input files and working with spatially varying input
6.4.2 Dumping and dredging . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

105
105
106
106
106
107
107

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

7 Module D-Flow 1D: 1D2D-coupled modelling to D-Flow Flexible Mesh
109
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.1.1 Principle of embankments in a 1D2D model . . . . . . . . . . . . . . 109
7.1.2 Principle of the embankment overtopping equations . . . . . . . . . 109
7.2 Integrated 1D2D model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3 Creation of embankments . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.3.1 Automatic generation . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.3.2 Import from GIS . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3.3 Merging of embankments . . . . . . . . . . . . . . . . . . . . . . . 112
7.3.4 Draw embankments and changing geometry of existing embankments 113

Deltares

v

SOBEK 3, D-Flow 1D, User Manual

7.4

7.5

7.3.5 Inspecting the height of embankments . . . . . . . .
Grid generation . . . . . . . . . . . . . . . . . . . . . . . .
7.4.1 Automatic generation based on embankments . . . .
7.4.2 Grid deletion, modification and manual grid generation
7.4.2.1 Grid deletion . . . . . . . . . . . . . . . .
Simulation output . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

113
114
114
115
115
115

References

117

A How to use OpenDA for Delta Shell models

119

B How to use SOBEK 3 models in Delft-FEWS

121

.
.
.
.

.
.
.
.

123
123
123
124
126

D Morphology and Sediment Transport
D.1 Input files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D.1.1 Sediment input file . . . . . . . . . . . . . . . . . . . . . . . . .
D.1.2 Morphology input file . . . . . . . . . . . . . . . . . . . . . . . .
D.1.3 Sediment transport input file . . . . . . . . . . . . . . . . . . . .
D.1.4 Sediment transport and morphology boundary condition file . . . . .
D.1.5 Nodal Relations Definition file . . . . . . . . . . . . . . . . . . . .
D.1.6 Table file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D.2 Output files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D.3 Bedload sediment transport of non-cohesive sediment . . . . . . . . . . .
D.3.1 Basic formulation . . . . . . . . . . . . . . . . . . . . . . . . . .
D.3.2 Calculation of bedload transport at open boundaries . . . . . . . .
D.4 Transport formulations for non-cohesive sediment . . . . . . . . . . . . . .
D.4.1 Van Rijn (1993) . . . . . . . . . . . . . . . . . . . . . . . . . . .
D.4.2 Engelund-Hansen (1967) . . . . . . . . . . . . . . . . . . . . . .
D.4.3 Meyer-Peter-Muller (1948) . . . . . . . . . . . . . . . . . . . . .
D.4.4 General formula . . . . . . . . . . . . . . . . . . . . . . . . . .
D.4.5 Bijker (1971) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D.4.5.1 Basic formulation . . . . . . . . . . . . . . . . . . . . .
D.4.5.2 Transport in wave propagation direction (Bailard-approach)
D.4.6 Van Rijn (1984) . . . . . . . . . . . . . . . . . . . . . . . . . . .
D.4.7 Soulsby/Van Rijn . . . . . . . . . . . . . . . . . . . . . . . . . .
D.4.8 Soulsby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D.4.9 Ashida–Michiue (1974) . . . . . . . . . . . . . . . . . . . . . . .
D.4.10 Wilcock–Crowe (2003) . . . . . . . . . . . . . . . . . . . . . . .
D.4.11 Gaeuman et al. (2009) laboratory calibration . . . . . . . . . . . .
D.4.12 Gaeuman et al. (2009) Trinity River calibration . . . . . . . . . . .
D.5 Morphological updating . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

127
127
127
129
131
133
135
136
137
137
137
137
138
138
143
143
144
144
145
146
148
150
151
154
154
155
155
156

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

DR
AF

T

C How to use OpenMI for SOBEK 3, D-Flow 1D
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . .
C.2 The omi-file . . . . . . . . . . . . . . . . . . . . . .
C.3 omi file options (for both OpenMI 1.4 and OpenMI 2.0)
C.4 Installing OpenMI for SOBEK 3 models . . . . . . . .

vi

.
.
.
.

Deltares

List of Figures

List of Figures
.
.
.
.
.
.
.
.
.
.
.
.
.

8
8
8
9
9
10
11
11
11
12
12
13
14

.
.
.
.
.
.
.
.
.
.
.
.
.
.

15
16
17
17
18
19
20
20
21
22
23
24
25
26

Data Import window . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data import window for network (features) . . . . . . . . . . . . . . . . . .
The GIS import wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example of the mapping table . . . . . . . . . . . . . . . . . . . . . . . . .
Import properties window for snapping precision and saving of mapping files
Setting of related tables . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example importing YZ Cross Section from <.csv>-file . . . . . . . . . . . .
Selecting delimiters for a <.csv> file . . . . . . . . . . . . . . . . . . . . .
Selecting the columns of the <.csv>-file . . . . . . . . . . . . . . . . . . .
Linking a Timeseries . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example of boundary nodes . . . . . . . . . . . . . . . . . . . . . . . . .
Two branches with different Order number: No interpolation across the connection node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Two branches with same Order numbers: Bed level is interpolated across the
connection node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Simple weir editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gated weir editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Weir with piers editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Weir with detailed description of crest editor, the side-view shows the shape of
the crest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Free form weir editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General structure editor . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pump editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28
29
30
30
31
32
33
34
35
36
37

DR
AF

3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27

Docking windows on two screens within the Delta Shell framework. . . . . .
Bringing the Time Navigator window to the front . . . . . . . . . . . . . .
Docking the Time Navigator window. . . . . . . . . . . . . . . . . . . . .
Auto hide the Properties window . . . . . . . . . . . . . . . . . . . . . .
Perform operations using the shortcut keys . . . . . . . . . . . . . . . . .
The File ribbon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Delta Shell options dialog. . . . . . . . . . . . . . . . . . . . . . . .
The Home ribbon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The View ribbon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Tools ribbon contains just the Data item. . . . . . . . . . . . . . . . .
The Map ribbon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The scripting ribbon within Delta Shell. . . . . . . . . . . . . . . . . . . .
The quick access toolbar. . . . . . . . . . . . . . . . . . . . . . . . . . .
Map view with open street background map and a D-Flow 1D branch generated near the city of Rotterdam . . . . . . . . . . . . . . . . . . . . . . .
Example of a cross section . . . . . . . . . . . . . . . . . . . . . . . . .
Example of a weir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Editor for lateral sources/sinks . . . . . . . . . . . . . . . . . . . . . . .
Example of the resulting schematization . . . . . . . . . . . . . . . . . .
Computational grid editor . . . . . . . . . . . . . . . . . . . . . . . . . .
Boundary nodes in the Central Map . . . . . . . . . . . . . . . . . . . .
Constant water level boundary condition . . . . . . . . . . . . . . . . . .
Editing the roughness . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output options in the Properties Window . . . . . . . . . . . . . . . . . .
Output options in the Properties Window . . . . . . . . . . . . . . . . . .
Map results of water level . . . . . . . . . . . . . . . . . . . . . . . . . .
Results of water level for three locations along the branch in Function view .
Chart and the corresponding Properties window . . . . . . . . . . . . . .

T

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

Deltares

39
40
41
42
43
44
45
46
47

vii

SOBEK 3, D-Flow 1D, User Manual

DR
AF

T

4.21 Culvert editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.22 Example of a Composite Structure in the Central Map . . . . . . . . . . . . .
4.23 Region window with a Composite Structure consisting of two weirs, a pump
and a culvert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.24 Bridge editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.25 Editor for lateral source data . . . . . . . . . . . . . . . . . . . . . . . . .
4.26 Generate data series . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.27 Cross Section editor for yz Cross Sections . . . . . . . . . . . . . . . . . .
4.28 Editing window for an XYZ Cross Section . . . . . . . . . . . . . . . . . . .
4.29 Projection of a xyz-cross- section . . . . . . . . . . . . . . . . . . . . . . .
4.30 Cross section editor for ZW Cross Sections . . . . . . . . . . . . . . . . . .
4.31 Cross section editor for Trapezium . . . . . . . . . . . . . . . . . . . . . .
4.32 Switch between Local Cross Section definition and Shared Cross Section definition in the Cross Section editing window . . . . . . . . . . . . . . . . . .
4.33 Example importing YZ Cross Section from <.csv>-file . . . . . . . . . . . .
4.34 Example of a network with nodes with or without boundary conditions . . . . .
4.35 Boundary nodes in the Central Map . . . . . . . . . . . . . . . . . . . . .
4.36 Timeseries on boundary node . . . . . . . . . . . . . . . . . . . . . . . .
4.37 Computational grid of a simple network with a discharge boundary condition
upstream (water flows from right to left). . . . . . . . . . . . . . . . . . . .
4.38 Side-view of computed waterlevels . . . . . . . . . . . . . . . . . . . . . .
4.39 Initial conditions editing window . . . . . . . . . . . . . . . . . . . . . . . .
4.40 write restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.41 output states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.42 use restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.43 Roughness editor for a model of the Dutch part of the river Meuse . . . . . .
4.44 Setting of roughness-sections in the Region window . . . . . . . . . . . . .
4.45 Cross section editor for an XYZ Cross Section with three Sections . . . . . .
4.46 Function table for roughness as a function of discharge and the graphical representation of the table content . . . . . . . . . . . . . . . . . . . . . . . .
4.47 Wind shielding (factors) presented in the Central Map and the table for editing
4.48 Addition of salt in a flow model in the Properties window . . . . . . . . . . .
4.49 Project window after setting Use salinity to “True” . . . . . . . . . . . . . . .
4.50 The use of an advanced dispersion formulation like KuijperVanRijn . . . . . .
4.51 Boundary node editor for salinity . . . . . . . . . . . . . . . . . . . . . . .
4.52 Addition of temperature in a flow model in the Properties window . . . . . . .
4.53 Modelling initial temperature . . . . . . . . . . . . . . . . . . . . . . . . .
4.54 Generate Computational Grid window . . . . . . . . . . . . . . . . . . . .
4.55 Table and map view of the computational grid (note that only waterlevel points
are shown in this view) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.56 Set output in the Properties window . . . . . . . . . . . . . . . . . . . . .
4.57 Validation Report: example . . . . . . . . . . . . . . . . . . . . . . . . . .
4.58 Merge model workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

viii

Output in the Project window . . . . . . . . . . . . . . . . . . . . . .
Map results of discharge . . . . . . . . . . . . . . . . . . . . . . . .
Layer properties editor . . . . . . . . . . . . . . . . . . . . . . . . .
Customised map . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Select parameter for graphical representation . . . . . . . . . . . . . .
Time results of water level for 3 locations along the branch . . . . . . .
Example of 3 network routes shown in the network with different colours
Example of the use of intermediate locations to specify routes . . . . .
Example of sideview with Time Navigator . . . . . . . . . . . . . . .
Example of Case analysis . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

48
49
49
50
51
52
54
55
56
57
58
58
59
62
63
64
65
65
67
68
69
69
70
71
72
73
75
76
77
78
79
80
81
82
84
91
93
94
96
97
98
99
99
100
101
101
102
103

Deltares

List of Figures

6.1

How to simulate morfology together with a D-Flow 1D simulation

. . . . . . . 105

Principle of the horizontal 1D-2D coupling in a top view and a side view. In
brown the 1D model is schematised. In black the 2D grid is shown. . . . . .
7.2 The variables which control the flow over the interface between the 1D and the
2D model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3 The workflow for the integrated 1D2D model . . . . . . . . . . . . . . . .
7.4 Generate embankments wizard . . . . . . . . . . . . . . . . . . . . . . .
7.5 Embankments created with automatic generation . . . . . . . . . . . . . .
7.6 Merging of two embankments . . . . . . . . . . . . . . . . . . . . . . . .
7.7 Change geometry of an embankment . . . . . . . . . . . . . . . . . . . .
7.8 Sideview of an embankment . . . . . . . . . . . . . . . . . . . . . . . .
7.9 Automatic grid generation. The button is encircled in the top left, the outer
boundary of the grid is drawn in the map view on the right and the final window
‘Generate grid’ is shown on the left . . . . . . . . . . . . . . . . . . . . .
7.10 Different output types within a 1D2D-model . . . . . . . . . . . . . . . . .

. 109
.
.
.
.
.
.
.

110
110
111
112
113
113
113

. 114
. 115

Exporting the DIMR configuration . . . . . . . . . . . . . . . . . . . . . . . 121
Exporting the information on input and output for FEWS . . . . . . . . . . . . 121

DR
AF

B.1
B.2

T

7.1

Deltares

ix

DR
AF

T

SOBEK 3, D-Flow 1D, User Manual

x

Deltares

List of Tables

List of Tables
Functions and their descriptions within the scripting ribbon of Delta Shell. . . 13
Shortcut keys within the scripting editor of Delta Shell. . . . . . . . . . . . . 13
Shortcut keys within the scripting editor of Delta Shell. . . . . . . . . . . . . 14

4.1

Options for roughness types and default values . . . . . . . . . . . . . . . . 90

D.1
D.2
D.3
D.4
D.5
D.6
D.7
D.8

Sediment input file with keywords . . . . . . . . . . . . . . . . . . . . . .
Options for sediment diameter characteristics . . . . . . . . . . . . . . . .
Morphological input file with keywords . . . . . . . . . . . . . . . . . . . .
Additional transport relations . . . . . . . . . . . . . . . . . . . . . . . .
Transport formula parameters . . . . . . . . . . . . . . . . . . . . . . . .
Nodal relation file with keywords . . . . . . . . . . . . . . . . . . . . . .
Additional transport relations . . . . . . . . . . . . . . . . . . . . . . . .
Overview of the coefficients used in the various regression models (Soulsby
et al., 1993) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview of the coefficients used in the various regression models, continued
(Soulsby et al., 1993) . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.

127
128
129
131
132
135
138

. 152
. 153

DR
AF

D.9

T

3.1
3.2
3.2

Deltares

xi

DR
AF

T

SOBEK 3, D-Flow 1D, User Manual

xii

Deltares

1 A guide to this manual
1.1

Introduction
This User Manual concerns the hydrodynamic module D-Flow 1D.
This module is part of several Modelling suites, released by Deltares as Deltares Systems
or Dutch Delta Systems. These modelling suites are based on the Delta Shell framework.
The framework enables to develop a range of modeling suites, each distinguished by the
components and — most significantly — the (numerical) modules, which are plugged in. The
modules which are compliant with the Delta Shell framework are released as D-Name of the
module, for example: D-Flow Flexible Mesh, D-Waves, D-Water Quality, D-Real Time Control,
D-Rainfall Run-off.

1.2

DR
AF

T

Therefore, this user manual is shipped with several modelling suites. In the start-up screen
links are provided to all relevant User Manuals (and Technical Reference Manuals) for that
modelling suite. It will be clear that the Delta Shell User Manual is shipped with all these
modelling suites. Other user manuals can be referenced. In that case, you need to open the
specific user manual from the start-up screen in the central window. Some texts are shared
in different user manuals, in order to improve the readability.
Overview

To make this manual more accessible we will briefly describe the contents of each chapter.
If this is your first time to start working with D-Flow 1D we suggest you to read Chapter 3,
Module D-Flow 1D: Getting started. This chapter explains the user interface and guide you
through the modeling process resulting in your first simulation.
Chapter 2: Module D-Flow 1D: Overview, gives a brief introduction on D-Flow 1D.
Chapter 3: Module D-Flow 1D: Getting started, gives an overview of the basic features of the
D-Flow 1D GUI and will guide you through the main steps to set up a D-Flow 1D model.
Chapter 4: Module D-Flow 1D: All about the modeling process, provides practical information
on the GUI, setting up a model with all its parameters, including the output the user wants to
inspect (after the model run), and finally validating the model.
Chapter 5: Module D-Flow 1D: Simulation and model output, discusses how to execute a
model run and explains in short the visualization of results within the GUI.
Chapter 6: Module D-Flow 1D: Morphology and Sediment Transport, discusses the modelling
of Morphodynamic processes and sediment transport.
Chapter 7: Module D-Flow 1D: 1D2D-coupled modelling to D-Flow Flexible Mesh, provides
practical information on the GUI, the lateral coupling of 1D network flow with 2D overland flow
1.3

Manual version and revisions
This manual applies to SOBEK 3 suite, version 3.5 (and higher).

Deltares

1 of 160

SOBEK 3, D-Flow 1D, User Manual

Typographical conventions
Throughout this manual, the following conventions help you to distinguish between different
elements of text.
Description

Module
Project

Title of a window or a sub-window are in given in bold.
Sub-windows are displayed in the Module window and
cannot be moved.
Windows can be moved independently from the Module window, such as the Visualisation Area window.

Save

Item from a menu, title of a push button or the name of
a user interface input field.
Upon selecting this item (click or in some cases double
click with the left mouse button on it) a related action
will be executed; in most cases it will result in displaying
some other (sub-)window.
In case of an input field you are supposed to enter input
data of the required format and in the required domain.

T

Example

DR
AF

1.4

<\tutorial\wave\swan-curvi>


Directory names, filenames, and path names are expressed between angle brackets, <>. For the Linux
and UNIX environment a forward slash (/) is used instead of the backward slash (\) for PCs.

“27 08 1999”

Data to be typed by you into the input fields are displayed between double quotes.
Selections of menu items, option boxes etc. are described as such: for instance ‘select Save and go to
the next window’.

delft3d-menu

Commands to be typed by you are given in the font
Courier New, 10 points.
In this User manual, user actions are indicated with this
arrow.

[m s−1 ] [−]

2 of 160

Units are given between square brackets when used
next to the formulae. Leaving them out might result in
misinterpretation.

Deltares

A guide to this manual

Changes with respect to previous versions
In the 3.4 edition chapter 7: Module D-Flow 1D: 1D2D-coupled modelling to D-Flow Flexible
Mesh is added.
In the 3.5 edition the Appendix A: How to use OpenDA for Delta Shell models and Appendix B:
How to use SOBEK 3 models in Delft-FEWS have been adjusted.
In the 3.6 edition the following is adjusted:

T

 the model merge functionality is described in section 4.14: Merge Models
 the improved Salt dispersion formulation is described section 4.8: Salt water intrusion

DR
AF

1.5

Deltares

3 of 160

DR
AF

T

SOBEK 3, D-Flow 1D, User Manual

4 of 160

Deltares

2 Module D-Flow 1D: Overview
D-Flow 1D is one of the models available in SOBEK 3. D-Flow 1D is the product line designed
for the simulation of water flows in open channels. It combines functionality of the former
SOBEK-River Estuary and SOBEK-RIVER and is capable of modelling river systems, estuaries, streams and other types of alluvial channel networks.

T

The software calculates accurately, fast and robust the one-dimensional water flow for shallow water in simple water systems or complex channel networks with more than thousand
reaches, cross sections and structures. D-Flow 1D solves the full Saint-Venant equations with
the help of the staggered grid numerical scheme (Stelling and Duinmeijer, 2003; Stelling and
Verwey, 2006). In order to model one-dimensional salt water intrusion in estuaries D-Flow 1D
can also solve the Saint-Venant equation and the advection-dispersion equation conjunctively
to account for advective and diffusive/dispersive transport and density driven flow.

DR
AF

D-Flow 1D allows to apply various types of boundary conditions, as well as to define lateral
inflow and outflow using time series or standard formulae. The networks can be branched
or looped. D-Flow 1D is capable of modelling complex cross-sectional profiles consisting of
multiple roughness sub-sections, e. g. left floodplain, right floodplain and main channel.

Deltares

5 of 160

DR
AF

T

SOBEK 3, D-Flow 1D, User Manual

6 of 160

Deltares

3 Module D-Flow 1D: Getting started
3.1

Introduction
The workflow of setting up a D-Flow 1D model usually consists of the following steps:

T

Add a D-Flow 1D model to a project
Build or import a schematization
Generate a computational grid
Define roughnesses
Set the boundary conditions
Set lateral sources and sinks (lateral stations) - if there are any
Set initial conditions
Set wind and salt values - if applicable
Adjust model wide settings
Set preferred output
Run a simulation
View and analyze simulation results
Add and combine scenarios or models - if applicable

DR
AF















These steps are explained in the next paragraph on a small model without wind data and salt
water intrusion. The focus here is on workflow. An overview of the possibilities and options of
the different steps and components is provided in Chapter 4.
3.2

Starting a D-flow 1D model

When SOBEK 3 is started, it opens with an empty project. To get started, import a model or
network that already exists or build a new model from scratch.
A new model is added in the Project window by a right-mouse-click on  and choosing Add → and New Model .... A window with all the available models from activated plugins
and the corresponding integrated models appears. Selecting Flow1D Model adds a new 1D
flow model to the project.
The new model is now visible in the Project window. Items in the Project window are sorted
according to the usual workflow for setting up a 1-dimensional flow model as listed above.
3.3

Dockable views

The Delta Shell framework offers lots of freedom to customize dockable views, which are
discussed in this section.

Deltares

7 of 160

SOBEK 3, D-Flow 1D, User Manual

3.3.1

Docking tabs separately

T

Within the Delta Shell framework the user can dock the separate windows according to personal preferences. These preferences are then saved for future use of the framework. An
example of such preferences is presented in Figure 3.1, where windows have been docked
on two screens.

Figure 3.1: Docking windows on two screens within the Delta Shell framework.

Multiple tabs

DR
AF

3.3.2

In case two windows are docked in one view, the underlying window (tab) can be brought to
the front by simply selecting the tab, as is shown here.

Figure 3.2: Bringing the Time Navigator window to the front

By dragging dockable windows with the left mouse button and dropping the window left, right,
above or below another one the graphical user interface can be customized according to
personal preferences. Here an example of the Time Navigator window being docked above
the Properties window.

Figure 3.3: Docking the Time Navigator window.

Additional features are the possibility to remove or (auto) hide the window (top right in Figure 3.3). In case of removal, the window can be retrieved by a mouse-click on Time Navigator
in the View ribbon. Hiding the Time Navigator window results in:

8 of 160

Deltares

T

Module D-Flow 1D: Getting started

3.4

DR
AF

Figure 3.4: Auto hide the Properties window

Ribbons and toolbars

The user can access the toolbars arranged in ribbons. Model plug-ins can have their own
model specific ribbon. The ribbon may be auto collapsed by activating the Collapse the Ribbon
button when right-mouse-clicking on the ribbon.
3.4.1

Ribbons (shortcut keys)

Delta Shell makes use of ribbons, just like Microsoft Office. You can use these ribbons for
most of the operations. With the ribbons comes shortcut key functionality, providing shortcuts
to perform operations. If you press Alt, you will see the letters and numbers to access the
ribbons and the ribbon contents (i.e. operations). For example, Alt + H will lead you to the
Home-ribbon (Figure 3.5).
Note: Implementation of the shortcut key functionality is still work in progress.

Figure 3.5: Perform operations using the shortcut keys

Deltares

9 of 160

SOBEK 3, D-Flow 1D, User Manual

File

T

The left-most ribbon is the File ribbon. It has menu-items comparable to most Microsoft
applications. Furthermore, it offers users import and export functionality, as well as the Help
and Options dialogs, as shown in Figure 3.6 and Figure 3.7.

DR
AF

3.4.2

Figure 3.6: The File ribbon.

10 of 160

Deltares

DR
AF

T

Module D-Flow 1D: Getting started

Figure 3.7: The Delta Shell options dialog.

3.4.3

Home

The second ribbon is the Home ribbon (Figure 3.8). It harbours some general features for
clipboard actions, addition of items, running models, finding items within projects or views,
and help functionality.

Figure 3.8: The Home ribbon.

3.4.4

View

The third ribbon is the View ribbon (Figure 3.9). Here, the user can show or hide windows.

Figure 3.9: The View ribbon.

Deltares

11 of 160

SOBEK 3, D-Flow 1D, User Manual

3.4.5

Tools
The fourth ribbon is the Tools ribbon (Figure 3.10). By default, it contains only the Open
Case Analysis View tool. Some model plug-ins offer the installation of extra tools that may be
installed. These are documented within the user documentation of those model plug-ins.

Figure 3.10: The Tools ribbon contains just the Data item.

The last ribbon is the Map ribbon (Figure 3.11).

T

Map

DR
AF

Figure 3.11: The Map ribbon.

This will be used heavily, while it harbours all Geospatial functions, like:

   

 Decorations for the map
North arrow
Scale bar
Legend
...

      

 Tools to customize the map view

Select a single item
Select multiple items by drawing a curve
Pan
Zoom to Extents
Zoom by drawing a rectangle
Zoom to Measure distance
...

  

 Edit polygons, for example within a network, basin, or waterbody
Move geometry point(s)
Add geometry point(s)
Remove geometry point(s)

 Creation of a model Network, for example for D-Flow 1D
     

3.4.6

Add new Branch
Split Branch
Add Cross section
Add Weir
Add Pump
...

Still, all functions of the category can be activated as they will appear in the drop-down panel.

12 of 160

Deltares

Module D-Flow 1D: Getting started

3.4.7

Scripting
When you open the scripting editor in Delta Shell, a Scripting ribbon category will appear.
This ribbon has the following additional options (see also Figure 3.12), which are described in
Table 3.1:

Figure 3.12: The scripting ribbon within Delta Shell.

Table 3.1: Functions and their descriptions within the scripting ribbon of Delta Shell.

Description

Run script

Executes the selected text. If no text is selected then it will
execute the entire script
Clears all variables and loaded libraries from memory
Enables/Disables the debug option. When enabled you can
add breakpoint to the code (using F9 or clicking in the margin) and the code will stop at this point before executing the
statement (use F10 (step over) or F11 (step into) for a more
step by step approach)
Show or hide python variables (like _var_) in code completion
Determines if spaces or tab characters are added when
pressing tab
Sets the number of spaces that are considered equal to a
tab character
Saves the changes to the file before running
Creates a new region surrounding the selected text
Comments out the selected text
Converts all tab characters in the script to spaces. The number of spaces is determined by Tab size
Converts all x number of space characters (determined by
Tab size) in the script to tabs
Opens a link to the python website, showing you the python
syntax and standard libraries
Opens a link to the Delta Shell documentation website (generated documentation of the Delta Shell api)

DR
AF

Clear cached variables
Debugging

T

Function

Python variables

Insert spaces/tabs
Tab size

Save before run
Create region
Comment selection
Convert to space indenting
Convert to tab indenting

Python (documentation)

Delta Shell (documentation)

3.4.8

Shortcuts
The shortcut keys of the scripting editor within Delta Shell are documented in Table 3.2.
Table 3.2: Shortcut keys within the scripting editor of Delta Shell.

Shortcut

Function

Ctrl + Enter
Ctrl + Shift +
Enter
Ctrl + X

Run selection (or entire script with no selection)
Run current region (region where the cursor is in)

Deltares

Cut selection

13 of 160

SOBEK 3, D-Flow 1D, User Manual

Table 3.2: Shortcut keys within the scripting editor of Delta Shell.

Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
F9
F5

+
+
+
+
+
+
+
+

Function

C
V
S
+
"
W
H

Shift + F5
F10

3.4.9

DR
AF

F11

Copy selection
Paste selection
Save script
Collapse all regions
Expand all regions
Comment or Uncomment current selection
Add selection as watch variable
Highlight current selection in script (press esc to cancel)
Add/remove breakpoint (In debug mode only)
Continue running (In debug mode only — when on breakpoint)
Stop running (In debug mode only — when on breakpoint)
Step over current line and break on next line (In debug mode
only - when on breakpoint)
Step into current line if possible, otherwise go to next line
(In debug mode only — when on breakpoint). This is used
to debug functions declared in the same script (that have
already runned)

T

Shortcut

Quick access toolbar

Note: The user can make frequently used functions available by a single mouse-click in the
Quick Access Toolbar, the top-most part of the application-window. Do this by right-mouseclicking a ribbon item and selecting Add to Quick Access Toolbar.

Figure 3.13: The quick access toolbar.

3.5

Schematization

Selecting the Network ribbon will present all icons to add network objects to the schematization. Always start with a channel, but we will come to that shortly. With the Map window,
visualization of the network can be adjusted and map layers can be added. A wms-map layer
can be added by selecting
window.

. After selecting “openstreetmap” the map is added to the main

The zoom button
, the mouse scroll-wheel and the pan zoom button
can be used to
navigate the map. Panning can also be accomplished by holding down the middle mouse
button and moving the mouse. Tip: another way to set for example OpenStreetMap as background is as follows:

14 of 160

Deltares

Module D-Flow 1D: Getting started

 right-mouse-click on  in the Project window, and select Add → and New Item






...
select “General” and “Map”
double click on the map
press
on top of the Map window
select “openstreetmap”
and finally right-mouse-click on the map in the Project window, and select “Use as default
background layer”

This way OpenStreetmap will stay as background not only while modelling the schematization
but also on presenting the Calculation grid or the Output.

T

Now, to follow this tutorial, zoom in on the city of Rotterdam as shown in Figure 3.14.
First activate an icon in the Network ribbon, then click in the Central Map (Flow 1D window)

DR
AF

to position the activated type of object. Start with a channel Add new branch (Freeform)
.
Press and hold the left mouse button to place the starting point of the branch. As long as
the left mouse button is held down, the branch is drawn following the movement of the mouse
pointer. Releasing the mouse button ends the branch.
Now, to follow this tutorial, model the river section “Nieuwe Waterweg” as shown in Figure 3.14. In this tutorial one branch is used, but more branches can be added and connected
in the same way (see also Section 4.3.2.2). To stop adding branches, press Esc. Note that
the order of the mouse clicks defines the normal direction (i.e. the defined direction) of the
branch, visualized by an arrow at the end of the branch.

Figure 3.14: Map view with open street background map and a D-Flow 1D branch generated near the city of Rotterdam

Selecting
in the Network ribbon activates the addition mode for YZ Cross Sections. When
moving the mouse over the map the orange dot shows where SOBEK places the Cross Sec-

Deltares

15 of 160

SOBEK 3, D-Flow 1D, User Manual

Y’

Z

0
75
100
150
200
225
300

10
5
-7.5
-10
-7.5
5
10

T

tion; with a left-click a single Cross Section is added to the branch. Press Esc to leave the
addition mode and double-click on the Cross Section in the map to open the Cross Section
Editor (Figure 3.15). In this chapter we only focus on YZ Cross Sections. The geometry of
the cross section can be specified in the table. Now, to follow this tutorial, fill in the following
values:

DR
AF

This will result in the Cross Section View given in Figure 3.15.

Figure 3.15: Example of a cross section

Close the Cross Section Editor and select
to add a weir. Like for the cross section, move
the mouse to a location on the branch and left-click to add a weir to the model. Leave the
addition mode by pressing Esc. A double-click on the weir opens the weir editor. Now fill in
the following values:

property
Crest level
Crest width

16 of 160

value
5m
200 m

Deltares

T

Module D-Flow 1D: Getting started

DR
AF

Figure 3.16: Example of a weir

to add a lateral source/sink. Move the mouse to a
Close the weir-editor window and select
location on the branch and left-click to add a lateral source/sink. After pressing Esc a doubleclick on the lateral node in the map or on the corresponding entry in the Project window opens
the editor for lateral sources/sinks. Now set the type to Q: Constant flow and the value for the
flow to 500 m3 s−1 like shown in Figure 3.17.

Figure 3.17: Editor for lateral sources/sinks

The schematization now looks like Figure 3.18. Note that the extent of the Cross Section
is shown on the map. Note also that the network components are shown in the Region
window. For now, we leave the schematization as it is. For a review of all the options for
schematizations, see Chapter 4.

Deltares

17 of 160

DR
AF

T

SOBEK 3, D-Flow 1D, User Manual

Figure 3.18: Example of the resulting schematization

3.6

Generating a computational grid

Once a schematization exists a computational grid can be generated. The computational grid
is not a part of the network, but a separate layer, which can be re-used for or linked to other
models or scenarios and redefined without influencing the network elements.
A computational grid is generated by a right-click on  in the Project
window and selecting Generate Computational Grid Nodes.... A window pops up (Figure 3.19)
with a number of options, which are described in more detail in Section 4.10. For now we
focus on maximum length, which determines the distance between calculation points. Select
Prefered length and set the value to 1000 meters. After pressing OK the grid is generated
and presented. For more information on the computational grid, see Section 4.10.

18 of 160

Deltares

DR
AF

T

Module D-Flow 1D: Getting started

Figure 3.19: Computational grid editor

3.7

Boundary conditions

The boundary conditions are edited by double-clicking  in the Project window. In the Central Map the boundary nodes are presented on the map and listed in a table.

Deltares

19 of 160

DR
AF

T

SOBEK 3, D-Flow 1D, User Manual

Figure 3.20: Boundary nodes in the Central Map

Right-mouse-clicking on one of the nodes in the table and selecting Open View ... opens an
editor. The following types of boundary conditions can be selected:








None
H(t): Water level time series
Q(t): Discharge time series
Q(h): Discharge Water level table
Q : Constant Discharge
H : Constant Waterlevel

Now, to follow this tutorial, select a constant flow of 800 m3 s−1 at the start of the branch (most
upstream point), and a constant waterlevel of 1 m at the end of the branch (most downstream
point), as shown in Figure 3.21.

Figure 3.21: Constant water level boundary condition

20 of 160

Deltares

Module D-Flow 1D: Getting started

3.8

Roughness
Branch roughness can be defined for different parts of the cross sections, defined as roughness-sections. Open the Cross Section Editor to view the definition of the sections, in the
table underneath the graphical representation. The roughness-section is visualized by the
block under the cross section in the graphical representation. For the simple model discussed
in this chapter, keep a single roughness-section.

DR
AF

T

Notice that the model wide roughness-type and -value can be edited in the Properties window
after selecting Main under  (Figure 4.43). Press the "+" in front
of  to unfold. For now, in this simple model, the default roughness is not
changed and no detailed roughness value is defined for the branch. More information on
setting roughness is found in Section 4.6.

Figure 3.22: Editing the roughness

3.9

Initial conditions
There are two basic initial conditions:

 initial waterlevel or depth; and
Deltares

21 of 160

SOBEK 3, D-Flow 1D, User Manual

 initial water flow (discharge)

DR
AF

T

Both can be specified. The user can choose between initial waterlevel or depth by selecting the  model in the Project window and the Initial conditions section in the
Properties window.

Figure 3.23: Output options in the Properties Window

Now, for this tutorial, change the definition from Depth to Waterlevel, then set its Default value
to “1”. Note that in the Project window  has now changed to . Leave the initial water flow as it is.
3.10

Model parameter settings

Some parameters need to be set before a model run. By selecting Project window , the simulation settings for the model appear in the Properties window. There are several parameters, which can be edited, but the most important are StartTime, StopTime and
TimeStep. The parameters StartTime and StopTime define the simulation period. The parameter TimeStep defines the maximum time step with which the simulation is performed. Whenever and wherever in the schematization the numerical scheme requires a smaller timestep
to ensure computational stability, the program will reduce the timestep as necessary. Please
note that the automated reduction of timestep is only done to prevent model crashes. Based
on the modelled hydrodynamic phenomena, users should select appropriate space-steps as
well as an appropriate timestep to ensure that the hydrodynamic phenomena involved are
computed with sufficient accuracy.
Now, to follow this tutorial, set the simulation period to 3 d by adjusting  and

. Set the 

Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.5
Linearized                      : No
Page Count                      : 174
Page Mode                       : UseOutlines
Author                          : Deltares
Title                           : D-Flow1D User Manual
Subject                         : 
Creator                         : LaTeX hyperref
Producer                        : ps2pdf
Keywords                        : Deltares, User, Manual, D-Flow1D
Create Date                     : 2018:04:18 05:58:19+02:00
Modify Date                     : 2018:04:18 05:58:19+02:00
Trapped                         : False
PTEX Fullbanner                 : This is MiKTeX-pdfTeX 2.9.6588 (1.40.18)
EXIF Metadata provided by EXIF.tools

Navigation menu