Evaluation Board With STM32L476ZGT6 MCU Eval User Manual

User Manual: Pdf

Open the PDF directly: View PDF PDF.
Page Count: 101

DownloadEvaluation Board With STM32L476ZGT6 MCU Eval User Manual
Open PDF In BrowserView PDF
UM1855
User manual
Evaluation board with STM32L476ZGT6 MCU

Introduction
The STM32L476G-EVAL evaluation board is designed as complete demonstration and
development platform for STMicroelectronics ARM® Cortex®-M4-core-based
STM32L476ZGT6 microcontroller with three I²C buses, three SPI and six USART ports,
CAN port, SWPMI, two SAI ports, 12-bit ADC, 12-bit DAC, LCD driver, internal 128-Kbyte
SRAM and 1-Mbyte Flash memory, Quad-SPI port, touch sensing capability, USB OTG FS
port, LCD controller, flexible memory controller (FMC), JTAG debug port.
STM32L476G-EVAL, shown in Figure 1, is used as reference design for user application
development, although it is not considered as final application.
A full range of hardware features on the board helps users to evaluate all on-board
peripherals such as USB, USART, digital microphones, ADC and DAC, dot-matrix TFT LCD,
LCD glass module, IrDA (supported up to version MB1144 C-01 of the board), LDR, SRAM,
NOR Flash memory device, Quad-SPI Flash memory device, microSD card, sigma-delta
modulators, smartcard with SWP, CAN transceiver, EEPROM, RF-EEPROM. Extension
headers allow connecting daughterboards or wrapping boards.
ST-LINK/V2-1 in-circuit debugger and flashing facility is integrated on the mainboard.
Figure 1. STM32L476G-EVAL evaluation board

1. Picture not contractual.

November 2016

DocID027351 Rev 5

1/101
www.st.com

1

Contents

UM1855

Contents
1

2

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1

Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2

Demonstration software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3

Order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4

Unpacking recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Hardware layout and configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1

2.1.1

Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2

ST-LINK/V2-1 firmware upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2

ETM trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3

Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1

Supplying the board through ST-LINK/V2-1 USB port . . . . . . . . . . . . . . 15

2.3.2

Using ST-LINK/2-1 along with powering through CN22 power jack . . . 16

2.4

Clock references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5

Reset sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6

Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7

2.8

2.9

2/101

ST-LINK/V2-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.1

Boot options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.2

Bootloader limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7.1

Digital microphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7.2

Headphones outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7.3

Limitations in using audio features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

USB OTG FS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8.1

STM32L476G-EVAL used as USB device . . . . . . . . . . . . . . . . . . . . . . . 23

2.8.2

STM32L476G-EVAL used as USB host . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8.3

Configuration elements related with USB OTG FS port . . . . . . . . . . . . 24

2.8.4

Limitations in using USB OTG FS port . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8.5

Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

RS-232 and IrDA ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9.1

RS-232 port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.9.2

IrDA port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.9.3

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

DocID027351 Rev 5

UM1855

Contents
2.9.4

Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.10

LPUART port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.11

microSD card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.12

2.13

2.11.1

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.11.2

Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Motor control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.12.1

Board modifications to enable motor control . . . . . . . . . . . . . . . . . . . . . 30

2.12.2

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.13.1

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.13.2

Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.14

Extension connectors CN6 and CN7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.15

LCD glass module daughterboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.15.1

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.16

TFT LCD panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.17

User LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.18

Physical input devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.18.1

2.19

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Operational amplifier and comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.19.1

Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.19.2

Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.20

Analog input, output, VREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.21

SRAM device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.22

2.23

2.21.1

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.21.2

Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

NOR Flash memory device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.22.1

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.22.2

Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.23.1

Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.24

RF-EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.25

Quad-SPI Flash memory device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.26

2.25.1

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.25.2

Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Touch-sensing button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

DocID027351 Rev 5

3/101
5

Contents

UM1855
2.26.1

2.27

Smartcard, SWP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.27.1

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.27.2

Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.28

Near-field communication (NFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.29

Dual-channel sigma-delta modulators STPMS2L . . . . . . . . . . . . . . . . . . 51

2.30

3

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.29.1

STPMS2L presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.29.2

STPMS2L settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.29.3

STPMS2L power metering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.29.4

STPMS2L for PT100 measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.29.5

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

STM32L476ZGT6 current consumption measurement . . . . . . . . . . . . . . 54
2.30.1

IDD measurement principle - analog part . . . . . . . . . . . . . . . . . . . . . . . 55

2.30.2

Low-power-mode IDD measurement principle - logic part . . . . . . . . . . . 56

2.30.3

IDD measurement in dynamic run mode . . . . . . . . . . . . . . . . . . . . . . . . 58

2.30.4

Calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1

RS-232 D-sub male connector CN9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2

Power connector CN22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3

LCD daughterboard connectors CN11 and CN14 . . . . . . . . . . . . . . . . . . 61

3.4

Extension connectors CN6 and CN7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5

ST-LINK/V2-1 programming connector CN16 . . . . . . . . . . . . . . . . . . . . . 65

3.6

ST-LINK/V2-1 Standard-B USB connector CN17 . . . . . . . . . . . . . . . . . . . 65

3.7

JTAG connector CN15

3.8

ETM trace debugging connector CN12 . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.9

microSD card connector CN18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.10

ADC/DAC connector CN8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.11

RF-EEPROM daughterboard connector CN3 . . . . . . . . . . . . . . . . . . . . . 69

3.12

Motor control connector CN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.13

USB OTG FS Micro-AB connector CN1 . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.14

CAN D-sub male connector CN5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.15

NFC connector CN13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Appendix A Schematic diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4/101

DocID027351 Rev 5

UM1855

Contents

Appendix B Federal Communications Commission (FCC)
and Industry Canada (IC) Compliance Statements. . . . . . . . . . . . . 99
B.1

B.2

4

FCC Compliance Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.1.1

Part 15.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.1.2

Part 15.105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.1.3

Part 15.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

IC Compliance Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.2.1

Compliance Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.2.2

Déclaration de conformité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

DocID027351 Rev 5

5/101
5

List of tables

UM1855

List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.

6/101

Setting of configuration elements for trace connector CN12 . . . . . . . . . . . . . . . . . . . . . . . 14
Power-supply-related jumper settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
X1-crystal-related solder bridge settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
X2-crystal-related solder bridge settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Boot selection switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Bootloader-related jumper setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Digital microphone-related jumper settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Configuration elements related with USB OTG FS port . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Settings of configuration elements for RS-232 and IrDA ports . . . . . . . . . . . . . . . . . . . . . . 26
Hardware settings for LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Terminals of CN18 microSD slot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Motor control terminal and function assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CAN related jumpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
LCD-daughterboard-related configuration elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
LCD glass element mapping - segments 0 to 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
LCD glass element mapping - segments 10 to 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
LCD glass element mapping - segments 20 to 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
LCD glass element mapping - segments 30 to 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Access to TFT LCD resources with FMC address lines A0 and A1 . . . . . . . . . . . . . . . . . . 39
Assignment of CN19 connector terminals of TFT LCD panel . . . . . . . . . . . . . . . . . . . . . . . 39
Port assignment for control of LED indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Port assignment for control of physical input devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Setting of jumpers related with potentiometer and LDR . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
SRAM chip select configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
NOR Flash memory-related configuration elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Configuration elements related with Quad-SPI device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Touch-sensing-related configuration elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Assignment of ports for ST8024CDR control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Configuration elements related with smartcard and SWP . . . . . . . . . . . . . . . . . . . . . . . . . 49
CN13 NFC connector terminal assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
JP11 jumper settings during IDD measurement with calibration . . . . . . . . . . . . . . . . . . . . 59
RS-232 D-sub (DE-9M) connector CN9 with HW flow control and ISP support . . . . . . . . . 60
CN11 and CN14 daughterboard connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Daughterboard extension connector CN6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Daughterboard extension connector CN7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
USB Standard-B connector CN17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
JATG debugging connector CN15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Trace debugging connector CN12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
microSD card connector CN18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Analog input-output connector CN8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
RF-EEPROM daughterboard connector CN3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Motor control connector CN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
USB OTG FS Micro-AB connector CN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
CAN D-sub (DE-9M) 9-pins male connector CN5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
NFC CN13 terminal assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

DocID027351 Rev 5

UM1855

List of figures

List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.

STM32L476G-EVAL evaluation board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM32L476G-EVAL hardware block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
STM32L476G-EVAL main component layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
USB composite device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
CN22 power jack polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
CN20, CN21 top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
PCB top-side rework for motor control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
PCB underside rework for motor control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
LCD glass module daughterboard in display position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
LCD glass module daughterboard in I/O-bridge position . . . . . . . . . . . . . . . . . . . . . . . . . . 34
LCD glass display element mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
NFC board plugged into STM32L476G-EVAL board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Routing of STPMS2L dual-channel sigma-delta modulators . . . . . . . . . . . . . . . . . . . . . . . 52
Power measurement principle schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
STPMS2L power metering schematic diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Temperature measurement principle schematic diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 54
Schematic diagram of the analog part of IDD measurement . . . . . . . . . . . . . . . . . . . . . . . 56
Schematic diagram of logic part of low-power-mode IDD measurement . . . . . . . . . . . . . . 57
Low-power-mode IDD measurement timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
RS-232 D-sub (DE-9M) 9-pole connector (front view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Power supply connector CN22 (front view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
USB type B connector CN17 (front view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
JTAG debugging connector CN15 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Trace debugging connector CN12 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
microSD card connector CN18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Analog input-output connector CN8 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
RF-EEPROM daughterboard connector CN3 (front view) . . . . . . . . . . . . . . . . . . . . . . . . . 69
Motor control connector CN2 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
USB OTG FS Micro-AB connector CN1 (front view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
CAN D-sub (DE-9M) 9-pole male connector CN5 (front view) . . . . . . . . . . . . . . . . . . . . . . 71
NFC female connector CN13 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
STM32L476G-EVAL top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
MCU, LCD daughterboard and I/O expander interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 75
STM32L476G-EVAL MCU part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
STM32L476G-EVAL MCU part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
LCD glass module daughterboard connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
I/O expander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Smartcard, SWP and NFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
USART and IrDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
SRAM and NOR Flash memory devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
TFT LCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Extension connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Quad-SPI Flash memory device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
microSD card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Physical control peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
CAN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Touch-sensing device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

DocID027351 Rev 5

7/101
8

List of figures
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.

8/101

UM1855

USB_OTG_FS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
IDD measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Audio codec device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
STPMS2L and PT100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
RF-EEPROM and EEPROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Motor control connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
JTAG and trace debug connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
ST-LINK/V2-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

DocID027351 Rev 5

UM1855

Overview

1

Overview

1.1

Features
•

STM32L476ZGT6 microcontroller with 1-Mbyte Flash memory and 128-Kbyte RAM

•

Four power supply options: power jack, ST-LINK/V2-1 USB connector, USB OTG FS
connector, daughterboard

•

Microcontroller supply voltage: 3.3 V or range from 1.71 V to 3.6 V

•

Two MEMS digital microphones

•

Two jack outputs for stereo audio headphone with independent content

•

Slot for microSD card supporting SD, SDHC, SDXC

•

4-Gbyte microSD card bundled

•

16-Mbit (1M x 16 bit) SRAM device

•

128-Mbit (8M x 16 bit) NOR Flash memory device

•

256-Mbit Quad-SPI Flash memory device with double transfer rate (DTR) support

•

RF-EEPROM with I²C bus

•

EEPROM supporting 1 MHz I²C-bus communication speed

•

RS-232 port configurable for communication or MCU flashing

•

IrDA transceiver (only supported up to MB1144 C-01 version of the board, no more
supported from MB1144 C-02 version)

•

USB OTG FS Micro-AB port

•

CAN 2.0A/B-compliant port

•

Joystick with four-way controller and selector

•

Reset and wake-up / tamper buttons

•

Touch-sensing button

•

Light-dependent resistor (LDR)

•

Potentiometer

•

Coin battery cell for power backup

•

LCD glass module daughterboard (MB979) with 40x8-segment LCD driven directly by
STM32L476ZGT6

•

2.8-inch 320x240 dot-matrix color TFT LCD panel with resistive touchscreen

•

Smartcard connector and SWP support

•

NFC transceiver connector

•

Connector for ADC input and DAC output

•

Power-metering demonstration with dual-channel, sigma-delta modulator

•

PT100 thermal sensor with dual-channel, sigma-delta modulator

•

MCU current consumption measurement circuit

•

Access to comparator and operational amplifier of STM32L476ZGT6

•

Extension connector for motor control module

•

JTAG/SWD, ETM trace debug support, user interface through USB virtual COM port,
embedded ST-LINK/V2-1 debug and flashing facility

•

Extension connector for daughterboard

DocID027351 Rev 5

9/101
100

Overview

1.2

UM1855

Demonstration software
Demonstration software is preloaded in the STM32L476ZGT6 Flash memory, for easy
demonstration of the device peripherals in stand-alone mode. For more information and to
download the latest available version, refer to the STM32L476G-EVAL demonstration
software available on the www.st.com website.

1.3

Order code
To order the evaluation board based on the STM32L476ZGT6 MCU, use the order code
STM32L476G-EVAL.

1.4

Unpacking recommendations
Before the first use, make sure that, no damage occurred to the board during shipment and
no socketed components are loosen in their sockets or fallen into the plastic bag.
In particular, pay attention to the following components:
1.

Quartz crystal (X2 position)

2.

microSD card in its CN18 receptacle

3.

RF-EEPROM board (ANT7-M24LR-A) in its CN3 connector

For product information related with STM32L476ZGT6 microcontroller, visit www.st.com
website.

10/101

DocID027351 Rev 5

UM1855

2

Hardware layout and configuration

Hardware layout and configuration
The STM32L476G-EVAL evaluation board is designed around STM32L476ZGT6 target
microcontroller in LQFP 144-pin package. Figure 2 illustrates STM32L476ZGT6
connections with peripheral components. Figure 3 shows the location of main components
on the evaluation board.
Figure 2. STM32L476G-EVAL hardware block diagram
65$0
125)ODVK
PHPRU\

0LIDUH
FRQQHFWRU
)0&
56
WUDQVFHLYHU

¶¶FRORU
7)7/&'
4XDG63,
)ODVKP(PRU\
GHYLFH
/&'J/DVV
PRGXOH
[

6WDQGDUG%
86%
FRQQHFWRU

56
FRQQHFWRU

86$57
,U'$
WUDQVFHLYHU
48$'63,
6LJPDGHOWD
PRGXODWRU

3RZHUPHWHU

6LJPDGHOWD
PRGXODWRU

37
VHQVRU

')6'0

/&'

67/,1.9

WZRGLJLWDO0(06
PLFURSKRQHV
-7$*

-7$*WUDFHDQG

6:'FRQQHFWRUV
6$,

7RXFKVHQVLQJEXWWRQ

WZRVWHUHR
KHDGSKRQH
RXWSXWV

76&

670/=*7
/'5

$XGLR
FRGHF

((3520

$'&
2S$PS

3RWHQWLRPHWHU
/('

.H\
EXWWRQ

,&

&RPSDUDWRU

5)((3520
FRQQHFWRU
,2
([SDQGHU

7)7/&'
FRQWUROOHU

*3,2
*3,2

*3,2

6PDUWFDUG
LQWHUIDFH

6:3
PLFUR6'
FDUG

-R\VWLFN
7)7/&'
WRXFKVFUHHQ

6PDUWFDUG
ZLWK6:3

6',2
86%SRZHU
VZLWFK

&$1WUDQVFHLYHU
DQGFRQQHFWRU

&$1

([WHQVLRQ
FRQQHFWRUVIRU
*3,2V

*3,2

86%0LFUR$%
FRQQHFWRU

86%27*)6

9UHJXODWRU
57&

%DWWHU\
WR9
DGMXVWDEOH
UHJXODWRU

0&8
VXSSO\FXUUHQW
PHDVXUHPHQW

0RWRUFRQWURO
FRQQHFWRU

06Y9

Note:

If the STM32L476G-EVAL board version is greater than or equal to MB1144 C-02, the IrDA
feature is not populated. Any mention of the IrDA feature in this User manual refers to the
previous versions of the board (up to MB1144 C-01). The version of the board is written on
the sticker placed on bottom side of the board.

DocID027351 Rev 5

11/101
100

Hardware layout and configuration

UM1855

Figure 3. STM32L476G-EVAL main component layout

&1
86%27*SRUW

76
7RXFKVHQVLQJ
EXWWRQ

&1
0RWRUFRQWURO

8
670/=*7

&1
5)((3520

&1
6LJPDGHOWDLQ

5
/'5

&1
&$1

&1
86$57

&1
&1
([WHQVLRQ
FRQQHFWRUV

&1
&1
/&'JODVVPRGXOH
GDXJKWHUERDUG
'%

8
,U'$

&17UDFH

&1
1)&

&1
-7$*
&1
7)7/&'

&1
PLFUR6'FDUG

6WDQGDUG%
86%SRUWRI
67/,1.9
&1
+HDGSKRQHV
MDFN

&1
3RZHUMDFN

&1
+HDGSKRQHV
MDFN

8OHIW
PLFURSKRQH
)RXU/('V
59
9''VHWWLQJ

%
-R\VWLFN
%
5HVHWEXWWRQ

%
:DNHXSWDPSHU
EXWWRQ

8ULJKW
PLFURSKRQH
59
3RWHQWLRPHWHU

06Y9

12/101

DocID027351 Rev 5

UM1855

2.1

Hardware layout and configuration

ST-LINK/V2-1
ST-LINK/V2-1 facility for debug and flashing of STM32L476ZGT6, is integrated on the
STM32L476G-EVAL evaluation board.
Compared to ST-LINK/V2 stand-alone tool available from STMicroelectronics,
ST-LINK/V2-1 offers new features and drops some others.
New features:
•

USB software re-enumeration

•

Virtual COM port interface on USB

•

Mass storage interface on USB

•

USB power management request for more than 100mA power on USB

Features dropped:
•

SWIM interface

The USB connector CN17 can be used to power STM32L476G-EVAL regardless of
the ST-LINK/V2-1 facility use for debugging or for flashing STM32L476ZGT6. This holds
also when ST-LINK/V2 stand-alone tool is connected to CN12 or CN15 connector and used
for debugging or flashing STM32L476ZGT6. Section 2.3 provides more detail on powering
STM32L476G-EVAL.
For full detail on both versions of the debug and flashing tool, the stand-alone ST-LINK/V2
and the embedded ST-LINK/V2-1, refer to www.st.com.

2.1.1

Drivers
Before connecting STM32L476G-EVAL to a Windows 7, Windows 8 or Windows XP PC via
USB, a driver for ST-LINK/V2-1 must be installed. It can be downloaded from www.st.com.
In case the STM32L476G-EVAL evaluation board is connected to the PC before installing
the driver, the Windows device manager may report some USB devices found on
STM32L476G-EVAL as “Unknown”. To recover from this situation, after installing the
dedicated driver downloaded from www.st.com, the association of “Unknown” USB devices
found on STM32L476G-EVAL to this dedicated driver must be updated in the device
manager manually. It is recommended to proceed using USB Composite Device line, as
shown in Figure 4.
Figure 4. USB composite device

DocID027351 Rev 5

13/101
100

Hardware layout and configuration

2.1.2

UM1855

ST-LINK/V2-1 firmware upgrade
For its own operation, ST-LINK/V2-1 employs a dedicated MCU with Flash memory. Its
firmware determines ST-LINK/V2-1 functionality and performance. The firmware may evolve
during the life span of STM32L476G-EVAL to include new functionality, fix bugs or support
new target microcontroller families. It is therefore recommended to keep ST-LINK/V2-1
firmware up to date. The latest version is available from www.st.com.

2.2

ETM trace
The connector CN12 can output trace signals used for debug. By default, the evaluation
board is configured such that, STM32L476ZGT6 signals PE2 through PE5 are not
connected to trace outputs Trace_D0, Trace_D1, Trace_D2, Trace_D3 and Trace_CK of
CN12. They are used for other functions.
Table 1 shows the setting of configuration elements to shunt PE2, PE3, PE4 and PE5 MCU
ports to CN12 connector, to use them as debug trace signals.
Table 1. Setting of configuration elements for trace connector CN12
Element

R103
SB26

Setting
R103 in
SB26 open
R103 out
SB26 closed
R104 in

R104
R104 out

R84
SB40

R85
SB38

R86
SB39

R84 in
SB40 open
R84 out
SB40 closed
R85 in
SB38 open
R85 out
SB38 closed
R86 in
SB39 open
R86 out
SB39 closed

Use of PE2, PE3, PE4, PE5 terminals of STM32L476ZGT6
Default setting.
PE2 connected to LCDSEG38 and memory address line A23.
PE2 connected to TRACE_CK on CN12. A23 pulled down.
Default setting.
PE3 connected to LCDSEG39 and memory address line A19.
PE3 connected to TRACE_D0 on CN12. A19 pulled down.
Default setting.
PE4 connected to memory address line A20.
PE4 connected to TRACE_D1 on CN12. A20 pulled down.
Default setting.
PE5 connected to memory address line A21.
PE5 connected to TRACE_D2 on CN12. A21 pulled down.
Default setting.
PE6 is used for address bit A22.
PE6 connected to TRACE_D3 on CN12. A22 pulled down.

Warning: Enabling the CN12 trace outputs through hardware modifications described in
Table 1 results in reducing the memory address bus width to 19 address lines and so the
addressable space to 512 Kwords of 16 bits. As a consequence, the on-board SRAM and
NOR Flash memory usable capacity is reduced to 8 Mbits.

14/101

DocID027351 Rev 5

UM1855

2.3

Hardware layout and configuration

Power supply
STM32L476G-EVAL evaluation board is designed to be powered from 5 V DC power
source. It incorporates a precise polymer Zener diode (Poly-Zen) protecting the board from
damage due to wrong power supply. One of the following four 5V DC power inputs can be
used, upon an appropriate board configuration:
•

Power jack CN22, marked PSU_E5V on the board. A jumper must be placed in PSU
location of JP17. The positive pole is on the center pin as illustrated in Figure 5.

•

Standard-B USB receptacle CN17 of ST-LINK/V2-1, offering enumeration feature
described in Section 2.3.1.

•

Micro-AB USB receptacle CN1 of USB OTG interface, marked OTG_FS on the board.
Up to 500mA can be supplied to the board in this way.

•

Pin 28 of CN6 extension connector for custom daughterboards, marked D5V on the
board.

No external power supply is provided with the board.
LD7 red LED turns on when the voltage on the power line marked as +5V is present. All
supply lines required for the operation of the components on STM32L476G-EVAL are
derived from that +5V line.
Table 2 describes the settings of all jumpers related with powering STM32L476G-EVAL and
extension board. VDD_MCU is STM32L476ZGT6 digital supply voltage line. It can be
connected to either fixed 3.3 V or to an adjustable voltage regulator controlled with RV1
potentiometer and producing a range of voltages between 1.71 V and 3.6 V.

2.3.1

Supplying the board through ST-LINK/V2-1 USB port
To power STM32L476G-EVAL in this way, the USB host (a PC) gets connected with the
STM32L476G-EVAL board’s Standard-B USB receptacle, via a USB cable. This event starts
the USB enumeration procedure. In its initial phase, the host’s USB port current supply
capability is limited to 100 mA. It is enough because only ST-LINK/V2-1 part of
STM32L476G-EVAL draws power at that time. If the jumper header JP18 is open, the U37
ST890 power switch is set to OFF position, which isolates the remainder of
STM32L476G-EVAL from the power source. In the next phase of the enumeration
procedure, the host PC informs the ST-LINK/V2-1 facility of its capability to supply up to
300 mA of current. If the answer is positive, the ST-LINK/V2-1 sets the U37 ST890 switch to
ON position to supply power to the remainder of the STM32L476G-EVAL board. If the PC
USB port is not capable of supplying up to 300 mA of current, the CN22 power jack can be
used to supply the board.
Should a short-circuit occur on the board, the ST890 power switch protects the USB port of
the host PC against a current demand exceeding 600 mA, In such an event, the LD9 LED
lights on.
The STM32L476G-EVAL board can also be supplied from a USB power source not
supporting enumeration, such as a USB charger. In this particular case, the JP18 header
must be fitted with a jumper as shown in Table 2. ST-LINK/V2-1 turns the ST890 power
switch ON regardless of enumeration procedure result and passes the power
unconditionally to the board.
The LD7 red LED turns on whenever the whole board is powered.

DocID027351 Rev 5

15/101
100

Hardware layout and configuration

2.3.2

UM1855

Using ST-LINK/2-1 along with powering through CN22 power jack
It can happen that the board requires more than 300 mA of supply current. It cannot be
supplied from host PC connected to ST-LINK/2-1 USB port for debugging or flashing
STM32L476ZGT6. In such a case, the board can be supplied through CN22 (marked PSU
_E5V on the board).
To do this, it is important to power the board before connecting it with the host PC, which
requires the following sequence to be respected:
1.

Set the jumper in JP15 header in PSU position

2.

Connect the external 5 V power source to CN22

3.

Check the red LED LD7 is turned on

4.

Connect host PC to USB connector CN17

In case the board demands more than 300 mA and the host PC is connected via USB
before the board is powered from CN22, there is a risk of the following events to occur, in
the order of severity:
1.

The host PC is capable of supplying 300 mA (the enumeration succeeds) but it does
not incorporate any over-current protection on its USB port. It is damaged due to overcurrent.

2.

The host PC is capable of supplying 300 mA (the enumeration succeeds) and it has a
built-in over-current protection on its USB port, limiting or shutting down the power out
of its USB port when the excessive current demand from STM32L476G-EVAL is
detected. This causes an operating failure to STM32L476G-EVAL.

3.

The host PC is not capable of supplying 300 mA (the enumeration fails) so
ST-LINK/V2-1 does not supply the remainder of STM32L476G-EVAL from its USB port
VBUS line.
Figure 5. CN22 power jack polarity

16/101

DocID027351 Rev 5

UM1855

Hardware layout and configuration
Table 2. Power-supply-related jumper settings
Jumper array

Jumper setting
JP17

3688967/.'9

Configuration

STM32L476G-EVAL is supplied through CN22 power
jack (marked PSU_E5V). CN6 extension connector
does not pass the 5 V of STM32L476G-EVAL to
daughterboard.

JP17
STM32L476G-EVAL is supplied through CN1 Micro-AB
USB connector. CN6 extension connector does not
pass the 5 V of STM32L476G-EVAL to daughterboard.
3688967/.'9

JP17
JP17
Power source
selector

3688967/.'9

Default setting.
STM32L476G-EVAL is supplied through CN17
Standard-B USB connector. CN6 extension connector
does not pass the 5 V of STM32L476G-EVAL to
daughterboard.
Check JP18 setting in Table 2.

JP17
STM32L476G-EVAL is supplied through pin 28 of CN6
extension connector.
3688967/.'9

JP17

3688967/.'9

STM32L476G-EVAL is supplied through CN22 power
jack (marked PSU_E5V). CN6 extension connector
passes the 5 V of STM32L476G-EVAL to
daughterboard. Make sure to disconnect from the
daughterboard any power supply that could generate
conflict with the power supply on CN22 power jack.

JP12


Vbat is connected to battery.

JP12
Vbat connection

JP12
 

Default setting.
Vbat is connected to VDD.

DocID027351 Rev 5

17/101
100

Hardware layout and configuration

UM1855

Table 2. Power-supply-related jumper settings (continued)
Jumper array

Jumper setting
JP2
 

JP2
VDD_MCU
connection

JP2


JP10
 

JP10
VDDA
connection

JP10


JP1
 

JP1
VDD_USB
connection

 

JP3

JP18

Powering
through USB of
ST-LINK/V2-1

18/101

VDD_MCU is connected to voltage in the range from
+1.71 V to +3.6 V, adjustable with potentiometer RV1.

Default setting.
VDDA terminal of STM32L476ZGT6 is connected with
VDD_MCU.

VDDA terminal of STM32L476ZGT6 is connected to
+3.3 V.

Default setting.
VDD_USB (VDDUSB terminal of STM32L476ZGT6) is
connected with VDD_MCU.

VDD_USB is connected to +3.3V.

Default setting.
VDD_IO (VDDIO2 terminals of STM32L476ZGT6) is
connected with VDD_MCU

JP3
 

JP18

Default setting.
VDD_MCU (VDD terminals of STM32L476ZGT6) is
connected to fixed +3.3 V.

JP1


JP3

VDD_IO
connection

Configuration

 

JP18
 

VDD_IO is open.

Default setting.
Standard-B USB connector CN17 of ST-LINK/V2-1 can
supply power to the STM32L476G-EVAL board
remainder, depending on host PC USB port’s powering
capability declared in the enumeration.
Standard-B USB connector CN17 of ST-LINK/V2-1
supplies power to the STM32L476G-EVAL board
remainder. Setting for powering the board through
CN17 using USB charger.

DocID027351 Rev 5

UM1855

2.4

Hardware layout and configuration

Clock references
Two clock references are available on STM32L476G-EVAL for the STM32L476ZGT6 target
microcontroller:
•

32.768 kHz crystal X1, for embedded RTC

•

8 MHz crystal X2, for main clock generator

The main clock can also be generated using an internal RC oscillator. The X2 crystal is in a
socket. It can be removed when the internal RC oscillator is used.
Table 3. X1-crystal-related solder bridge settings
Solder
bridge

Setting

Description

Open

Default setting.
PC14-OSC32_IN terminal is not routed to extension connector CN7. X1 is
used as clock reference.

Closed

PC14-OSC32_IN is routed to extension connector CN7.
R87 must be removed, for X1 quartz circuit not to disturb clock reference
or source on daughterboard.

SB41

Open
SB33
Closed

Default setting.
PC15-OSC32_OUT terminal is not routed to extension connector CN7.
X1 is used as clock reference.
PC15-OSC32_OUT is routed to extension connector CN7.
R88 must be removed, for X1 quartz circuit not to disturb clock reference
on daughterboard.

Table 4. X2-crystal-related solder bridge settings
Solder
bridge

Setting

Open

Default setting.
PH0-OSC_IN terminal is not routed to extension connector CN7. X2 is
used as clock reference.

Closed

PH0-OSC_IN is routed to extension connector CN7.
X2 and C54 must be removed, in order not to disturb clock reference or
source on daughterboard.

SB24

Open

Default setting.
PH1-OSC_OUT terminal is not routed to extension connector CN7. X2 is
used as clock reference.

Closed

PH1-OSC_OUT is routed to extension connector CN7.
R95 must be removed, in order not to disturb clock reference or source on
daughterboard.

SB23

2.5

Configuration

Reset sources
Reset signal of the STM32L476G-EVAL board is active low.

DocID027351 Rev 5

19/101
100

Hardware layout and configuration

UM1855

Sources of reset are:
•

reset button B1

•

JTAG/SWD connector CN15 and ETM trace connector CN12 (reset from debug tools)

•

through extension connector CN7, pin 32 (reset from daughterboard)

•

ST-LINK/V2-1

•

RS-232 connector CN9, terminal 8 (CTS signal), if JP9 is closed (open by default)

2.6

Boot

2.6.1

Boot options
After reset, the STM32L476ZGT6 MCU can boot from the following embedded memory
locations:
•

main (user, non-protected) Flash memory

•

system (protected) Flash memory

•

RAM, for debugging

The microcontroller is configured to one of the listed boot options by setting the
STM32L476ZGT6 port BOOT0 level by the switch SW1 and by setting nBOOT1 bit of
FLASH_OPTR option bytes register, as shown in Table 5. Depending on JP8, BOOT0 level
can be forced high and, SW1 action overruled, by DSR line of RS-232 connector CN9, as
shown in Table 6. This can be used to force the execution of bootloader and start user Flash
memory flashing process (ISP) from RS-232 interface.
The option bytes of STM32L476ZGT6 and their modification procedure are described in the
reference manual RM0351. The application note AN2606 details the bootloader mechanism
and configurations.
Table 5. Boot selection switch
Switch

Setting

Description
Default setting.
BOOT0 line is tied low. STM32L476ZGT6 boots from user Flash
memory.

SW1

BOOT0 line is tied high. STM32L476ZGT6 boots from system Flash
memory (nBOOT1 bit of FLASH_OPTR register is set high) or from
RAM (nBOOT1 is set low).

Table 6. Bootloader-related jumper setting
Jumper

Setting
JP8
 

JP8

JP8
 

20/101

Description
Default setting.
BOOT0 level only depends on SW1 switch position
BOOT0 can be forced high with terminal 6 of CN9 connector (RS-232
DSR line). This configuration is used to allow the device connected via
RS-232 to initiate STM32L476ZGT6 flashing process.

DocID027351 Rev 5

UM1855

2.6.2

Hardware layout and configuration

Bootloader limitations
Boot from system Flash memory results in executing bootloader code stored in the system
Flash memory protected against write and erase. This allows in-system programming (ISP),
that is, flashing the MCU user Flash memory. It also allows writing data into RAM. The data
come in via one of the communication interfaces such as USART, SPI, I²C bus, USB or
CAN.
Bootloader version can be identified by reading Bootloader ID at the address 0x1FFF6FFE.
The STM32L476ZGT6 part soldered on the STM32L476G-EVAL main board is marked with
a date code corresponding to its date of manufacture. STM32L476ZGT6 parts with the date
code prior or equal to week 22 of 2015 are fitted with bootloader V 9.0 affected by the
limitations to be worked around, as described hereunder. Parts with the date code starting
week 23 of 2015 contain bootloader V9.2 in which the limitations no longer exist.
To locate the visual date code information on the STM32L476ZGT6 package, refer to its
datasheet (DS10198) available on www.st.com, section Package Information. Date code
related portion of the package marking takes Y WW format, where Y is the last digit of the
year and WW is the week. For example, a part manufactured in week 23 of 2015 bares the
date code 5 23.
Bootloader ID of the bootloader V 9.0 is 0x90.
The following limitations exist in the bootloader V 9.0:
1.

RAM data get corrupted when written via USART/SPI/I2C/USB interface

Description:
Data write operation into RAM space via USART, SPI, I²C bus or USB results in wrong
or no data written.
Workaround:
To correct the issue of wrong write into RAM, download STSW-STM32158 bootloader
V 9.0 patch package from www.st.com and load "Bootloader V9.0 SRAM patch" to the
MCU, following the information in readme.txt file available in the package.
2.

User Flash memory data get corrupted when written via CAN interface

Description:
Data write operation into user Flash memory space via CAN interface results in wrong
or no data written.
Workaround:
To correct the issue of wrong write into Flash memory, download STSW-STM32158
bootloader V 0.9 patch package from www.st.com and load "Bootloader V9.0 CAN
patch" to the MCU, following the information in readme.txt file available in the package.

2.7

Audio
A codec connected to SAI interface of STM32L476ZGT6 supports TDM feature of the SAI
port. TDM feature offers to STM32L476ZGT6 the capability to stream two independent
stereo audio channels to two separate stereo analog audio outputs, simultaneously.
There are two digital microphones on board of STM32L476G-EVAL.

DocID027351 Rev 5

21/101
100

Hardware layout and configuration

2.7.1

UM1855

Digital microphones
U35 and U36 on board of STM32L476G-EVAL are MP34DT01TR MEMS digital omnidirectional microphones providing PDM (pulse density modulation) outputs. To share the
same data line, their outputs are interlaced. The combined data output of the microphones
is directly routed to STM32L476ZGT6 terminals, thanks to the integrated input digital filters.
The microphones are supplied with programmable clock generated directly by
STM32L476ZGT6.
As an option, the microphones can be connected to U29, Wolfson audio codec device,
WM8994. In that configuration, U29 also supplies the PDM clock to the microphones.
Regardless of where the microphones are routed to, STM32L476ZGT6 or WM8994, they
can be power-supplied from either VDD or MICBIAS1 output of the WM8994 codec device.
Table 7 shows settings of all jumpers associated with the digital microphones on the board.
Table 7. Digital microphone-related jumper settings
Jumper

Setting
JP14


JP14

JP16


PDM clock for digital microphones comes from WM8994 codec.

Default setting.
Power supply of digital microphones is VDD.

JP16
 

2.7.2

Default setting.
PDM clock for digital microphones comes from STM32L476ZGT6

JP14
 

JP16

Configuration

Power supply of digital microphones is generated by WM8994 codec.

Headphones outputs
The STM32L476G-EVAL evaluation board can drive two sets of stereo headphones.
Identical or different stereo audio content can be played back in each set of headphones.
The STM32L476ZGT6 sends up to two independent stereo audio channels, via its SAI1
TDM port, to the WM8994 codec device. The codec device converts the digital audio stream
to stereo analog signals. It then boosts them for direct drive of headphones connecting to
3.5 mm stereo jack receptacles on the board, CN20 for Audio-output1 and CN21 for
Audio_output2. Figure 6 shows a top view of the CN20 and CN21 headphones jack
receptacles.
The CN21 jack takes its signal from the output of the WM8994 codec device intended for
driving an amplifier for loudspeakers. A hardware adaptation is incorporated on the board to
make it compatible with a direct headphone drive. The adaptation consists of coupling
capacitors blocking the DC component of the signal, attenuator and anti-pop resistors. The
loudspeaker output of the WM8994 codec device must be configured by software in linear
mode called “class AB” and not in switching mode called “class D”.
The I²C-bus address of WM8994 is 0b0011010.

22/101

DocID027351 Rev 5

UM1855

Hardware layout and configuration
Figure 6. CN20, CN21 top view

+HDGSKRQHVMDFN

5LJKW
/HIW
FKDQQHO FKDQQHO

*1'

+HDGSKRQHVMDFN
(YDOXDWLRQERDUG
06Y9

2.7.3

Limitations in using audio features
Due to the share of some terminals of STM32L476ZGT6 by multiple peripherals, the
following limitations apply in using the audio features:

2.8

•

If the SAI1_SDA is used as part of SAI1 port, it cannot be used as FMC_NWAIT signal
for NOR Flash memory device. However, FMC_NWAIT is not necessary for operating
the NOR Flash memory device. More details on FMC_NWAIT are available in
Section 2.22: NOR Flash memory device.

•

If the SAI1 port of STM32L476ZGT6 is used for streaming audio to the WM8994 codec
IC, STM32L476ZGT6 cannot control the motor.

•

If the digital microphones are attached to STM32L476ZGT6, the LCD glass module
cannot be driven.

USB OTG FS port
The STM32L476G-EVAL board supports USB OTG full-speed (FS) communication. The
USB OTG connector CN1 is of Micro-AB type.

2.8.1

STM32L476G-EVAL used as USB device
When a “USB host” connection to the CN1 Micro-AB USB connector of STM32L476G-EVAL
is detected, the STM32L476G-EVAL board starts behaving as “USB device”. Depending on
the powering capability of the USB host, the board can take power from VBUS terminal of
CN1. In the board schematic diagrams, the corresponding power voltage line is called U5V.
Section 2.3 provides information on how to set associated jumpers for this powering option.
The JP19 jumper must be left open to prevent STM32L476G-EVAL from sourcing 5 V to
VBUS terminal, which would cause conflict with the 5 V sourced by the USB host. This may

DocID027351 Rev 5

23/101
100

Hardware layout and configuration

UM1855

happen if the PC6 GPIO is controlled by the software of the STM32L476ZGT6 such that, it
enables the output of U1 power switch.

2.8.2

STM32L476G-EVAL used as USB host
When a “USB device” connection to the CN1 Micro-AB USB connector is detected, the
STM32L476G-EVAL board starts behaving as “USB host”. It sources 5 V on the VBUS
terminal of CN1 Micro-AB USB connector to power the USB device. For this to happen, the
STM32L476ZGT6 MCU sets the U1 power switch STMPS2151STR to ON state. The LD5
green LED marked VBUS indicates that the peripheral is supplied from the board. The LD6
red LED marked FAULT lights up if over-current is detected. The JP19 jumper must be
closed to allow the PC6 GPIO to control the U1 power switch.
In any other STM32L476G-EVAL powering option, the JP19 jumper should be open, to
avoid accidental damage caused to an external USB host.

2.8.3

Configuration elements related with USB OTG FS port
The following STM32L476ZGT6 terminals related with USB OTG FS port control are shared
by other resources of the STM32L476G-EVAL board:
•

PB12, used as USB over-current input (USBOTG_OVRCR signal); it is shared with
SWP, touch sensing, LCD glass module and motor control resources

•

PB13, used as USB power ready input (USBOTG_PRDY signal); it is shared with NFC,
touch sensing and LCD glass module resources

•

PC6, used as USB power switch control (USBOTG_PPWR signal); it is shared with
touch sensing, LCD glass module and motor control

Configuration elements related with the USB OTG FS port, such as jumpers, solder bridges
and zero-ohm resistors, shunt the shared ports toward different resources or determine the
operating mode of the USB OTG FS port. By default, they are set such as to enable the
USB OTG FS port operation where STM32L476G-EVAL plays USB device role and can be
connected to a USB host. Table 8 gives an overview of all configuration elements related
with the USB OTG FS port. The LCD glass module daughterboard should be connected in
I/O position.
USBOTG_OVRCR and USBOTG_PRDY signals, requiring the PB12 and PB13 ports of
STM32L476ZGT6, are only exploited when STM32L476G-EVAL acts as USB host. That is
why, the USB host function of STM32L476G-EVAL is exclusive with alternate functions also
requiring PB12 and PB13 ports of STM32L476ZGT6 - NFC, touch sensing, motor control,
SWP.
The PB12 and PB13 ports of STM32L476ZGT6 are not required for the USB OTG FS port
operating as USB device.
Table 8. Configuration elements related with USB OTG FS port
Element

Setting

Description

Open

USB OTG FS port can be connected with a USB host and get power
from it. If connected with USB device, STM32L476G-EVAL cannot
supply power to it.

JP19
Closed

24/101

Default setting.
USB OTG FS port can be connected with a USB device and supply
power to it. It must not be connected with USB host.

DocID027351 Rev 5

UM1855

Hardware layout and configuration
Table 8. Configuration elements related with USB OTG FS port (continued)
Element

Setting

Description

In

Default setting
PC6 is shunted to control the U1 power switch, transiting through the
LCD glass module daughterboard connector.
LCD glass module daughterboard should be in I/O position, with SB2
and SB27 open.

R36
Out

In
R39
Out

In
R38
Out

2.8.4

2.8.5

PC6 is disconnected from the LCD glass module daughterboard
connector. It can be shunted to one of alternate resources, either
touch sensing (SB2 closed) or motor control (SB27 closed).
Default setting.
PB12 receives USBOTG_OVRCR signal from U1 power switch,
transiting through the LCD glass module daughterboard connector.
SB3 should be open, R109 in, no smartcard in CN23 slot.
PB12 is disconnected from the LCD glass module daughterboard
connector. It can be shunted to one of alternate resources, either
touch sensing or motor control (SB3 closed).
Default setting.
PB13 receives USBOTG_PRDY signal from CN1 connector, transiting
through the LCD glass module daughterboard connector.
SB6 should be open and no daughterboard inserted in CN13 NFC
connector.
PB13 s disconnected from the LCD glass module daughterboard
connector. It can be shunted to touch sensing (SB6 closed).

Limitations in using USB OTG FS port
•

The USB OTG FS port operation as USB host is exclusive with NFC, SWP, LCD glass
module, touch sensing, motor control

•

The USB OTG FS port operation as USB device is exclusive with LCD glass module,
touch sensing, motor control

Operating voltage
The USB-related operating supply voltage of STM32L476ZGT6 (VDD_USB line) must be
within the range from 3.0 V to 3.6 V.

2.9

RS-232 and IrDA ports
The STM32L476G-EVAL board offers one RS-232 communication port and one IrDA port.
If the STM32L476G-EVAL board version is greater than or equal to
MB1144 C-02, the IrDA transceiver (TFDU6300) is not populated, but it is possible to solder
manually the TDFU6300 on U11 footprint to support IRDA feature.

DocID027351 Rev 5

25/101
100

Hardware layout and configuration

2.9.1

UM1855

RS-232 port
The RS-232 communication port uses the DE-9M 9-pole connector CN9. RX, TX, RTS and
CTS signals of USART1 port of STM32L476ZGT6 are routed to CN9.
Bootloader_RESET_3V3 and Bootloader_BOOT0_3V3 signals can also be routed to CN9,
for ISP (in-system programming) support. To route Bootloader_RESET_3V3 to CN9, the
R93 resistor must be removed and the JP9 jumper closed (open by default). To route
Bootloader_BOOT0_3V3 to CN9, the JP8 jumper must be closed.
For configuration elements related with the RS-232 port operation, refer to Table 6 and
Table 9.
Section 2.10 brings information on using the LPUART port of STM32L476ZGT6 for RS-232,
instead of its USART1 port.

2.9.2

IrDA port
The IrDA communication port uses an IrDA transceiver (U11). Table 9 shows the
configuration elements related with the IrDA port operation
.

Table 9. Settings of configuration elements for RS-232 and IrDA ports
Element

Setting

Description

JP15

1
3
5

2
4
6

Default setting.
RS-232 selected: PB7 port of STM32L476ZGT6 receives signal
originating from RXD terminal of CN9.

JP15
JP15

1
3
5

2
4
6

IrDA selected: PB7 port of STM32L476ZGT6 is connected with RxD
terminal of the IrDA transceiver U11.

2
4
6

NFC selected: PB7 port of STM32L476ZGT6 receives NFC_IRQOUT
signal from NFC peripheral. Section 2.28 provides more detail on the
NFC peripheral.

JP15

1
3
5

2.9.3

R93, R118,
R116

In

Required for IrDA operation

R158, R119

Out

Required for IrDA operation

Limitations
The operation of RS-232 and IrDA ports is mutually exclusive. The operation of either port is
also mutually exclusive with the NFC peripheral operation.

2.9.4

Operating voltage
The RS-232- and IrDA-related operating supply voltage of STM32L476ZGT6 (VDD line)
must be within the range from 1.71 V to 3.6 V.

26/101

DocID027351 Rev 5

UM1855

2.10

Hardware layout and configuration

LPUART port
On top of USART1 port for serial communication, the STM32L476ZGT6 offers LPUART, a
low-power UART port.
In the default configuration of STM32L476G-EVAL, the RX and TX terminals of the LPUART
port are routed to the USB virtual COM port of ST-LINK/V2-1 and, the RX and TX terminals
of USART1 port to the RS-232 connector CN9.
For specific purposes, the TX and RX of the LPUART port of STM32L476ZGT6 can be
routed to the RS-232 connector CN9 instead. As RTS and CTS terminals of CN9 keep
routed to USART1 port, they may block the LPUART communication flow. To avoid this, set
the USART1 hardware flow control off.
The default settings of LPUART are: 115200b/s, 8bits, no parity, 1 stop bit, no flow control.
Table 10. Hardware settings for LPUART

2.11

LPUART port use

R188

R189

R158

R119

R118

JP15 1-2

Default setting
USB virtual COM port of ST-LINK/V2-1

In

In

Out

Out

Do not
care

Do not
care

RS-232 (RX and TX)

Out

Out

In

In

Out

Closed

microSD card
The CN18 slot for microSD card is routed to STM32L476ZGT6’s SDIO port, accepting SD
(up to 2 Gbytes), SDHC (up to 32 Gbytes) and SDXC (up to 2 Tbytes) cards. One 4-Gbyte
microSD card is delivered as part of STM32L476G-EVAL. The card insertion switch is
routed to the PA8 GPIO port.
Table 11. Terminals of CN18 microSD slot
Terminal

Terminal name (MCU port)

Terminal

Terminal name (MCU port)

1

SDIO_D2 (PC10)

6

Vss/GND

2

SDIO_D3 (PC11)

7

SDIO_D0 (PC8)

3

SDIO_CMD (PD2)

8

SDIO_D1 (PC9)

4

VDD

9

GND

5

SDIO_CLK (PC12)

10

MicroSDcard_detect (PA8)

For microSD card operation, the LCD glass module daughterboard must be plugged into
CN11 and CN14 in I/O-bridge position, as explained in Section 2.15.

2.11.1

Limitations
Due to the share of SDIO port and PA8 terminals, the following limitations apply:
•

The microSD card cannot be operated simultaneously with LCD glass module or with
motor control.

•

The microSD card insertion cannot be detected when the PA8 is used as
microcontroller clock output (MCO), one of alternate functions of PA8.

DocID027351 Rev 5

27/101
100

Hardware layout and configuration

2.11.2

UM1855

Operating voltage
The supply voltage for STM32L476G-EVAL microSD card operation must be within the
range from 2.7 V to 3.6 V.

2.12

Motor control
The CN2 connector is designed to receive a motor control (MC) module. Table 12 shows the
assignment of CN2 and STM32L476ZGT6 terminals.
Table 12 also lists the modifications to be made on the board versus its by-default
configuration. See Section 2.12.1 for further details.
Table 12. Motor control terminal and function assignment
Motor control
connector CN2

28/101

STM32L476ZGT6 microcontroller

Terminal

Terminal
name

Port name

Function

Alternate
function

Board modifications for
enabling motor control

1

Emergency
Stop

PC9

TIM8_BKIN2

-

Close SB29
Remove MB979 daughterboard

2

GND

-

GND

-

-

3

PWM_1H

PC6

TIM8_CH1

-

Close SB27
Open SB2
Remove MB979 daughterboard

4

GND

-

GND

-

-

5

PWM_1L

PA7

TIM8_CH1N

-

Close SB19
Open SB18
Remove R66

6

GND

-

GND

-

-

7

PWM_2H

PC7

TIM8_CH2

-

Close SB30
Open SB4
Remove R33

8

GND

-

GND

-

-

9

PWM_2L

PB0

TIM8_CH2N

-

Close SB15
Open SB14
Remove R62

10

GND

-

GND

-

-

11

PWM_3H

PC8

TIM8_CH3

-

Close SB28
Remove MB979 daughterboard

12

GND

-

GND

-

-

13

PWM_3L

PB1

TIM8_CH3N

-

Close SB13
Open SB12

14

Bus Voltage

PC5

ADC12_IN

-

Close SB16
Remove MB979 daughterboard

DocID027351 Rev 5

UM1855

Hardware layout and configuration
Table 12. Motor control terminal and function assignment (continued)
Motor control
connector CN2

STM32L476ZGT6 microcontroller

Terminal

Terminal
name

Port name

Function

Alternate
function

Board modifications for
enabling motor control

15

PhaseA
current+

PC0

ADC123_IN

-

Close SB34
Remove MB979 daughterboard

16

PhaseA
current-

-

GND

-

-

17

PhaseB
current+

PC1

ADC123_IN

-

Close SB36

18

PhaseB
current-

-

GND

-

-

19

PhaseC
current+

PC2

ADC123_IN

-

Close SB42
Remove MB979 daughterboard

20

PhaseC
current-

-

GND

-

-

21

ICL Shutout

PG6

GPIO

-

Close SB5
Remove R35

22

GND

-

GND

-

-

23

Dissipative
Brake

PB2

GPIO

-

Close SB11
Remove R54

24

PFC ind.
curr.

PC4

ADC12_IN

-

Close SB17
Remove MB979 daughterboard

25

+5V

-

+5V

-

-

26

Heatsink
Temp.

PA3

ADC12_IN

-

Close SB22
Remove MB979 daughterboard

27

PFC Sync

PF9

TIM15_CH1

-

Close SB25
Remove R90

28

+3.3V

-

+3.3V

-

-

29

PFC PWM

PF10

TIM15_CH2

-

Close SB37
Remove R91

30

PFC
Shutdown

PB12

TIM15_BKIN

-

Close SB3
Remove MB979 daughterboard

31

Encoder A

PA0

TIM2_CH1

ADC12_IN

Close SB35
Remove R83

32

PFC Vac

PA6

ADC12_IN

-

Close SB20
Open SB21
Remove MB979 daughterboard

33

Encoder B

PA1

TIM2_CH2

ADC12_IN

Close SB32
Remove MB979 daughterboard

34

Encoder
Index

PA2

TIM2_CH3

ADC12_IN

Close SB31
Remove MB979 daughterboard

DocID027351 Rev 5

29/101
100

Hardware layout and configuration

2.12.1

UM1855

Board modifications to enable motor control
Figure 7 (top side) and Figure 8 (bottom side) illustrate the board modifications listed in
Table 12, required for the operation of motor control. Red color denotes a component to be
remove. Green color denotes a component to be fitted.
Figure 7. PCB top-side rework for motor control

30/101

DocID027351 Rev 5

UM1855

Hardware layout and configuration
Figure 8. PCB underside rework for motor control

2.12.2

Limitations
Motor control operation is exclusive with LCD glass module, Quad-SPI Flash memory
device, audio codec, potentiometer, LDR, smartcard, LED1 drive and the use of sigma-delta
modulators.

2.13

CAN
The STM32L476G-EVAL board supports one CAN2.0A/B channel compliant with CAN
specification. The CN5 9-pole male connector of DE-9M type is available as CAN interface.
A 3.3 V CAN transceiver is fitted between the CN5 connector and the CAN controller port of
STM32L476ZGT6.
The JP4 jumper allows selecting one of high-speed, standby and slope control modes of the
CAN transceiver. The JP6 jumper can fit a CAN termination resistor in.

DocID027351 Rev 5

31/101
100

Hardware layout and configuration

UM1855
Table 13. CAN related jumpers

Jumper

Setting
JP4
 

JP4

Configuration
Default setting
CAN transceiver operates in high-speed mode

JP4


CAN transceiver is in standby mode

JP6
 

JP6

JP6
 

2.13.1

No termination resistor on CAN physical link

Default setting
Termination resistor fitted on CAN physical link

Limitations
CAN operation is exclusive with LCD glass module operation.

2.13.2

Operating voltage
The supply voltage for STM32L476G-EVAL CAN operation must be within the range from
3.0 V to 3.6 V.

2.14

Extension connectors CN6 and CN7
The CN6 and CN7 headers complement the LCD glass module daughterboard connector, to
give access to all GPIOs of the STM32L476ZGT6 microcontroller. In addition to GPIOs, the
following signals and power supply lines are also routed on CN6 or CN7:
•

GND

•

+3V3

•

DSV

•

RESET#

•

VDD

•

Clock terminals PC14-OSC32_IN, PC15-OSC32_OUT, PH0-OSC_IN, PH1-OSC_OUT

Each header has two rows of 20 pins, with 1.27 mm pitch and 2.54 mm row spacing. For
extension modules, SAMTEC RSM-120-02-L-D-xxx and SMS-120-x-x-D can be
recommended as SMD and through-hole receptacles, respectively (x is a wild card).

2.15

LCD glass module daughterboard
The MB979 daughterboard delivered in the STM32L476G-EVAL package bears a
segmented LCD glass module. The daughterboard inserts into CN11 and CN14 extension
headers of the main board, each having two rows of pins. The corresponding female

32/101

DocID027351 Rev 5

UM1855

Hardware layout and configuration
connectors on the daughterboard have three rows of holes each. One raw is routed to
segments of the LCD. The other two rows are interconnected and form a series of jumpers.
The way of inserting the LCD glass module daughterboard into CN11 and CN14 headers
determines two functions of LCD glass module daughterboard. In its display function,
STM32L476ZGT6 terminals are routed to LCD segments. In its I/O-bridge function, they are
not. Instead, they transit from one row of CN11 pins to the other and from one row of CN14
pins to the other, thanks to interconnections fitted by the LCD glass module daughterboard.
Figure 9 shows how the LCD glass module daughterboard must be positioned for display
function. This position is designated in the document as display position.
Figure 10 shows how the LCD glass module daughterboard must be positioned for I/Obridge function. This position is designated in the document as I/O-bridge position.
The arrow indicates the side of the CN11 and CN14 headers where the extra row of holes of
each female counterpart on the LCD glass module daughterboard has to protrude.
When the LCD glass module daughterboard is not plugged in, CN11 and CN14 give access
to ports of the target microcontroller. Figure 36 shows the related schematic diagram.
Table 14 shows the default settings of board configuration elements linked with CN11 and
CN14 extension connectors and LCD glass module daughterboard.
Figure 9. LCD glass module daughterboard in display position

DocID027351 Rev 5

33/101
100

Hardware layout and configuration

UM1855

Figure 10. LCD glass module daughterboard in I/O-bridge position

Table 14. LCD-daughterboard-related configuration elements
LCD
segment

SEG0

SEG1

SEG2

SEG3

SEG4

SEG5

SEG6

SEG10

34/101

Element

Setting to enable
LCD glass
module

R82

In

SB32

Open

R81

In

SB31

Open

R78

In

SB22

Open

R68

In

SB21

Open

PA6 not routed to Quad-SPI Flash memory device

SB20

Open

PA6 not routed to motor control

R66

In

SB18

Open

PA7 not routed to Quad-SPI Flash memory device

SB19

Open

PA7 not routed to motor control

R62

In

SB14

Open

PB0 not routed to Quad-SPI Flash memory device

SB15

Open

PB0 not routed to motor control

R56

In

SB12

Open

PB1 not routed to Quad-SPI Flash memory device

SB13

Open

PB1 not routed to motor control

R50

In

SB9

Open

Description
PA1 routed to LCDSEG0
PA1 not routed to motor control
PA2 routed to LCDSEG1
PA2 not routed to motor control
PA3 routed to LCDSEG2
PA3 not routed to motor control
PA6 routed to LCDSEG3

PA7 routed to LCDSEG4

PB0 routed to LCDSEG5

PB1 routed to LCDSEG6

PB10 routed to LCDSEG10
PB10 not routed to Quad-SPI Flash memory device

DocID027351 Rev 5

UM1855

Hardware layout and configuration
Table 14. LCD-daughterboard-related configuration elements (continued)
Element

Setting to enable
LCD glass
module

R48

In

SB8

Open

R39

In

SB3

Open

R38

In

SB6

Open

R97

In

SB34

Open

R98

In

SB36

Open

R99

In

SB42

Open

R65

In

SB17

Open

R64

In

SB16

Open

R36

In

SB2

Open

PC6 not routed to Touch sensing

SB27

Open

PC6 not routed to for motor control

R33

In

SB4

Open

PC7 not routed to Touch sensing

SB30

Open

PC7 not routed to for motor control

SEG26

SB28

Open

PC8 not routed to motor control

SEG27

SB29

Open

PC9 not routed to motor control

R103

In

SB26

Open

R104

In

LCD
segment

SEG11

SEG12

SEG13

SEG18

SEG19

SEG20

SEG22

SEG23

SEG24

SEG25

SEG38
SEG39

Description
PB11 routed to LCDSEG11
PB11 not routed to Quad-SPI Flash memory device
PB12 routed to LCDSEG12
PB12 not routed to Quad-SPI Flash memory device
PB13 routed to LCDSEG13
PB13 not routed to Touch sensing
PC0 routed to LCDSEG18
PC0 not routed to motor control
PC1 routed to LCDSEG19
PC1 not routed to motor control
PC2 routed to LCDSEG20
PC2 not routed to motor control
PC4 routed to LCDSEG22
PC4 not routed to motor control
PC5 routed to LCDSEG23
PC5 not routed to motor control
PC6 routed to LCDSEG24

PC7 routed to LCDSEG25

PE2 routed to LCDSEG38
PE2 not routed to Trace
PE3 routed to LCDSEG39

The custom LCD glass module used on MB979 daughterboard is XHO5002B. To optimize
the number of driving signals, the display elements are connected to eight common planes
called COMx (LCDCOMx in the schematic diagrams), where “x” can be substituted with
figures from “0” to “7”. The other pole of each display element is called segment, SEGy
(LCDSEGy in the schematic diagrams), where “y” can be substituted with figures from “0” to
“39”. Each combination of COMx and SEGy addresses one display element. Table 15,
Table 16, Table 17 and Table 22 show the LCD element mapping. COMx are ordered in
rows, SEGy in columns. The table cells then display the display element names

DocID027351 Rev 5

35/101
100

Hardware layout and configuration

UM1855

corresponding to each COMx and SEGy combination. Names in quoting marks denote
elements forming textual symbols, for example “µA” or “+”. Figure 11 shows the physical
location and shape of each segment on the LCD glass module.
Table 15. LCD glass element mapping - segments 0 to 9
SEG0

SEG1

SEG2

SEG3

SEG4

SEG5

SEG6

SEG7

SEG8

SEG9

COM0

O1

5D

Q4

O4

6D

Q5

ST

7D

Q6

S5

COM1

O2

5K

5L

O3

6K

6L

“nA”

7K

7L

S6

COM2

13b

12b

11b

16b

15b

14b

19b

18b

17b

1b

COM3

13a

12a

11a

16a

15a

14a

19a

18a

17a

1a

COM4

5I

5A

5G

6I

6A

6G

7I

7A

7G

1I

COM5

5B

5H

5F

6B

6H

6F

7B

7H

7F

1B

COM6

5C

5M

P4

6C

6M

P5

7C

7M

P6

1C

COM7

5J

5N

5E

6J

6N

6E

7J

7N

7E

1J

Table 16. LCD glass element mapping - segments 10 to 19
SEG10 SEG11 SEG12 SEG13 SEG14 SEG15 SEG16 SEG17 SEG18 SEG19
COM0

1D

“-”

C1

2D

Q1

C4

3D

Q2

“µA”

4D

COM1

1K

1L

C2

2K

2L

C3

3K

3L

“mA”

4K

COM2

S4

S2

4b

3b

2b

7b

6b

5b

10b

9b

COM3

S3

S1

4a

3a

2a

7a

6a

5a

10a

9a

COM4

1A

1G

2I

2A

2G

3I

3A

3G

4I

4A

COM5

1H

1F

2B

2H

2F

3B

3H

3F

4B

4H

COM6

1M

“+”

2C

2M

P1

3C

3M

P2

4C

4M

COM7

1N

1E

2J

2N

2E

3J

3N

3E

4J

4N

Table 17. LCD glass element mapping - segments 20 to 29
SEG20 SEG21 SEG22 SEG23 SEG24 SEG25 SEG26 SEG27 SEG28 SEG29

36/101

COM0

Q3

1e

2e

3e

4e

5e

6e

7e

8e

9e

COM1

4L

1f

2f

3f

4f

5f

6f

7f

8f

9f

COM2

8b

1c

2c

3c

4c

5c

6c

7c

8c

9c

COM3

8a

1d

2d

3d

4d

5d

6d

7d

8d

9d

COM4

4G

1j

2j

3j

4j

5j

6j

7j

8j

9j

COM5

4F

1i

2i

3i

4i

5i

6i

7i

8i

9i

COM6

P3

1h

2h

3h

4h

5h

6h

7h

8h

9h

COM7

4E

1g

2g

3g

4g

5g

6g

7g

8g

9g

DocID027351 Rev 5

UM1855

Hardware layout and configuration
Table 18. LCD glass element mapping - segments 30 to 39
SEG30 SEG31 SEG32 SEG33 SEG34 SEG35 SEG36 SEG37 SEG38 SEG39

2.15.1

COM0

10e

11e

12e

13e

14e

15e

16e

17e

18e

19e

COM1

10f

11f

12f

13f

14f

15f

16f

17f

18f

19f

COM2

10c

11c

12c

13c

14c

15c

16c

17c

18c

19c

COM3

10d

11d

12d

13d

14d

15d

16d

17d

18d

19d

COM4

10j

11j

12j

13j

14j

15j

16j

17j

18j

19j

COM5

10i

11i

12i

13i

14i

15i

16i

17i

18i

19i

COM6

10h

11h

12h

13h

14h

15h

16h

17h

18h

19h

COM7

10g

11g

12g

13g

14g

15g

16g

17g

18g

19g

Limitations
LCD glass module operation is exclusive with all other features of the board.

DocID027351 Rev 5

37/101
100

$

$
)

(

*

+

,

0

1

/

.

$

$

$

$

3

3

3

3

3

3

3

3

3

3

3

3

4

'

4

'

'

4

'

4

+

,

%

1
-

/
.

&

'
4

4

DocID027351 Rev 5

D D D D D D D D D D D D D D D D D D D

6

67

E E

6

F

6

F

G G

6
6

H H
I

&

2

I

2

J J
&

&

'

*
0

(

&

6

&

$
)

%

'

Hardware layout and configuration

38/101

Figure 11. LCD glass display element mapping

K K
L

L

M

M

2
M

M

M

M

M

M

M

M M M M M M M M M M

2

06Y9

UM1855

UM1855

2.16

Hardware layout and configuration

TFT LCD panel
STM32L476G-EVAL is delivered with MB989P, a daughterboard plugged into the CN19
extension connector. It bears a TFT 2.8-inch color LCD panel with resistive touchscreen and
an on-board controller. Section 2.18 provides further information.
Thanks to level shifters on all signal lines, the TFT LCD panel can operate with the entire
operating voltage range of STM32L476G-EVAL.
The TFT LCD panel is attached to the 16-bit data bus and accessed with FMC. The base
address is 0x6800 0000, corresponding to NOR/SRAM3 bank1. The panel is selected with
LCD_NE3 chip select signal generated by PG10 port of the STM32L476ZGT6. Address
lines A0 and A1 determine the panel resources addressed, as depicted in Table 19.
Table 20 gives the CN19 extension connector terminal assignment.
Table 19. Access to TFT LCD resources with FMC address lines A0 and A1
Address

A1

A0

Usage

0x6800_0000

0

0

Read register

0x6800_0002

0

1

Read Graphic RAM (GRAM)

0x6800_0004

1

0

Write register

0x6800_0006

1

1

Write graphic RAM (GRAM)

Table 20. Assignment of CN19 connector terminals of TFT LCD panel
CN19
terminal

Terminal
name

MCU
port

CN19
terminal

Terminal
name

MCU
port

1

CSN

PG10

2

RS

PF0

3

WRN

PD5

4

RDN

PD4

5

RSTN

RESET#

6

D0

PD14

7

D1

PD15

8

D2

PD0

9

D3

PD1

10

D4

PE7

11

D5

PE8

12

D6

PE9

13

D7

PE10

14

D8

PE11

15

D9

PE12

16

D10

PE13

17

D11

PE14

18

D12

PE15

19

D13

PD8

20

D14

PD9

21

D15

PD10

22

BL_GND

-

23

BL_CONTROL

-

24

+3V3

-

25

+3V3

-

26

26

-

27

GND

-

28

BL_VDD

-

29

SDO

-

30

SDI

-

31

XL

I/O expander_X-

32

XR

I/O expander_X+

33

YD

I/O expander_Y-

34

YU

I/O expander_Y+

DocID027351 Rev 5

39/101
100

Hardware layout and configuration

2.17

UM1855

User LEDs
Four general-purpose color LEDs (LD1, LD2, LD3, LD4) are available as light indicators.
Each LED is in light-emitting state with low level of the corresponding control port. They are
controlled either by the STM32L476ZGT6 or by the I/O expander IC U32, named
IOExpander1 in the schematic diagram. Table 21 gives the assignment of control ports to
the LED indicators.
Table 21. Port assignment for control of LED indicators

2.18

User LED

Control port

Control device

LED1 (Green)

PB2

STM32L476ZGT6

LED2 (Orange)

GPIO0

IOExpander1

LED3 (Red)

PC1

STM32L476ZGT6

LED4 (Blue)

GPIO2

IOExpander1

Physical input devices
The STM32L476G-EVAL board provides a number of input devices for physical human
control. These are:
•

four-way joystick controller with select key (B3)

•

wake-up/ tamper button (B2)

•

reset button (B1)

•

resistive touchscreen of the TFT LCD panel

•

10 kΩ potentiometer (RV3)

•

light-dependent resistor, LDR (R52)

Table 22 shows the assignment of ports routed to the physical input devices. They are either
ports of the STM32L476ZGT6 or of one of the two I/O expander ICs on the board, named, in
the schematic diagrams, IOExpander1 and IOExpander2.
Table 22. Port assignment for control of physical input devices

40/101

Input device

Control port

Control device

Joystick SEL

GPIO0

IOExpander2

Joystick DOWN

GPIO1

IOExpander2

Joystick LEFT

GPIO2

IOExpander2

Joystick RIGHT

GPIO3

IOExpander2

Joystick UP

GPIO4

IOExpander2

Wake-up/ tamper B2

PC13

STM32L476ZGT6

Reset B1

NRST

STM32L476ZGT6

Resistive touch screen X+

X+

IOExpander1

Resistive touch screen X-

X-

IOExpander1

Resistive touch screen Y+

Y+

IOExpander1

DocID027351 Rev 5

UM1855

Hardware layout and configuration
Table 22. Port assignment for control of physical input devices (continued)
Input device

Control port

Control device

Resistive touch screen Y-

Y-

IOExpander1

Potentiometer

PB4 or PA0

STM32L476ZGT6

LDR

PA0 or PB4

STM32L476ZGT6

The potentiometer and the light-dependent resistor can be routed, mutually exclusively, to
either PB4 or to PA0 port of STM32L476ZGT6. Table 23 depicts the setting of associated
configuration jumpers.
As illustrated in the schematic diagram in Figure 46, the PB4 port is routed, in the
STM32L476ZGT6, to the non-inverting input of comparator Comp2. The PA0 is routed to
non-inverting input of operational amplifier OpAmp1. However, depending on register
settings, it can also be routed to ADC1 or to ADC2.
Table 23. Setting of jumpers related with potentiometer and LDR
Jumper

2.18.1

Setting
JP5

Routing
JP7

JP5
JP7

 

JP5
JP7

JP5

JP7

 

 

JP5
JP7

JP5

JP7





JP5
JP7



JP5

Potentiometer is routed to pin PB4 of STM32L476ZGT6.



Default setting.
Potentiometer is routed to pin PA0 of STM32L476ZGT6.

LDR is routed to pin PB4 of STM32L476ZGT6.

JP7
 

LDR is routed to pin PA0 of STM32L476ZGT6.

Limitations
The potentiometer and the light-dependent resistor are mutually exclusive.

2.19

Operational amplifier and comparator

2.19.1

Operational amplifier
STM32L476ZGT6 provides two on-board operational amplifiers, one of which, OpAmp1, is
made accessible on STM32L476G-EVAL. OpAmp1 has its inputs and its output routed to
I/O ports PA0, PA1 and PA3, respectively. The non-inverting input PA0 is accessible on the
terminal 1 of the JP7 jumper header. On top of the possibility of routing either of the

DocID027351 Rev 5

41/101
100

Hardware layout and configuration

UM1855

potentiometer or LDR to PA0, en external source can also be connected to it, using the
terminal 1 of JP7.
The PA3 output of the operational amplifier can be accessed on test point TP9. Refer to the
schematic diagram in Figure 46.
The gain of OpAmp1 is determined by the ratio of the variable resistor RV2 and the resistor
R121, as shown in the following equation:
Gain = 1 + ( RV2 ) ÷ ( R121 )

With the RV2 ranging from 0 to 10 kΩ and R121 being 1 kΩ, the gain can vary from 1 to 11.
The R63 resistor in series with PA0 is beneficial for reducing the output offset.

2.19.2

Comparator
STM32L476ZGT6 provides two on-board comparators, one of which, Comp2, is made
accessible on STM32L476G-EVAL. Comp2 has its non-inverting input and its output routed
to I/O ports PB4 and PB5, respectively. The input is accessible on the terminal 3 of the JP7
jumper header. On top of the possibility of routing either the potentiometer or LDR to PB4,
an external source can also be connected to it, using the terminal 3 of JP7.
The PB5 output of the comparator can be accessed on test point TP6. Refer to the
schematic diagram in Figure 46.

2.20

Analog input, output, VREF
STM32L476ZGT6 provides on-board analog-to-digital converter, ADC and, digital-to-analog
converter, DAC. The port PA4 can be configured to operate either as ADC input or as DAC
output. PA4 is routed to the two-way header CN8 allowing to fetch signals to or from PA4 or
to ground it by fitting a jumper into CN8.
Parameters of the ADC input low-pass filter formed with R72 and C47 can be modified by
replacing these components according to application requirements. Similarly, parameters of
the DAC output low-pass filter formed with R73 and C47 can be modified by replacing these
components according to application requirements.
The VREF+ terminal of STM32L476ZGT6 is used as reference voltage for both ADC and
DAC. By default, it is routed to VDDA through a jumper fitted into the two-way header CN10.
The jumper can be removed and an external voltage applied to the terminal 1 of CN10, for
specific purposes.

2.21

SRAM device
IS61WV102416BLL, a 16-Mbit static RAM (SRAM), 1 M x16 bit, is fitted on the
STM32L476G-EVAL main board, in U2 position. The STM32L476G-EVAL main board as
well as the addressing capabilities of FMC allow hosting SRAM devices up to 64 Mbytes.
This is the reason why the schematic diagram in Figure 41 mentions several SRAM
devices.
The SRAM device is attached to the 16-bit data bus and accessed with FMC. The base
address is 0x6000 0000, corresponding to NOR/SRAM1 bank1. The SRAM device is

42/101

DocID027351 Rev 5

UM1855

Hardware layout and configuration
selected with FMC_NE1 chip select. FMC_NBL0 and FMC_NBL1 signals allow selecting 8bit and 16-bit data word operating modes.
By removal of R18, a zero-ohm resistor, the SRAM is deselected and the STM32L476ZGT6
ports PD7, PE0 and PE1 corresponding to FMC_NE1, FMC_NBL0 and FMC_NBL1 signals,
respectively, can be used for other application purposes.
Table 24. SRAM chip select configuration
Resistor

Fitting
In

R18
Out

2.21.1

Configuration
Default setting.
SRAM chip select is controlled with FMC_NE1
SRAM is deselected. FMC_NE1 is freed for other application purposes.

Limitations
The SRAM addressable space is limited if some or all of A19, A20, A21, A22 and A23 FMC
address lines are shunted to the CN12 connector for debug trace purposes. In such a case,
the disconnected addressing inputs of the SRAM device are pulled down by resistors.
Section 2.2 provides information on the associated configuration elements.

2.21.2

Operating voltage
The SRAM device operating voltage is in the range from 2.4 V to 3.6 V.

2.22

NOR Flash memory device
M29W128GL70ZA6E, a 128-Mbit NOR Flash memory, 8 M x16 bit, is fitted on the
STM32L476G-EVAL main board, in U5 position. The STM32L476G-EVAL main board as
well as the addressing capabilities of FMC allow hosting M29W256GL70ZA6E, a 256-Mbit
NOR Flash memory device. This is the reason why the schematic diagram in Figure 41
mentions both devices.
The NOR Flash memory device is attached to the 16-bit data bus and accessed with FMC.
The base address is 0x6400 0000, corresponding to NOR/SRAM2 bank1. The NOR Flash
memory device is selected with FMC_NE2 chip select signal. 16-bit data word operation
mode is selected by a pull-up resistor connected to BYTE terminal of NOR Flash memory.
The jumper JP13 is dedicated for write protect configuration.
By default, the FMC_NWAIT signal is not routed to RB port of the NOR Flash memory
device, and, to know its ready status, its status register is polled by the demo software fitted
in STM32L476G-EVAL. This can be modified with configuration elements, as shown in
Table 25.

DocID027351 Rev 5

43/101
100

Hardware layout and configuration

UM1855

Table 25. NOR Flash memory-related configuration elements
Element

Setting
JP13
 

JP13

2.22.1

2.22.2

Default setting.
NOR Flash memory write is enabled.

JP13
 

R53
SB10

Configuration

R53 In
SB10 open

NOR Flash memory write is inhibited. Write protect is activated.
Default setting.
PD6 port of STM32L476ZGT6 is used for SAI1_SDA signal and routed
to audio codec.
NOR Flash memory device’s status register can be accessed.

PD6 port of STM32L476ZGT6 is used for FMC_NWAIT signal and
R53 Out
routed to NOR Flash memory device’s RB port.
SB10 closed
NOR Flash memory device’s status register cannot be accessed.

Limitations
•

FMC_NWAIT and SAI1_SDA signals are mutually exclusive.

•

The NOR Flash memory device’s addressable space is limited if some or all of A19,
A20, A21, A22 and A23 FMC address lines are shunted to the CN12 connector for
debug trace purposes. In such a case, the disconnected addressing inputs of the NOR
Flash memory device are pulled down by resistors. Section 2.2 provides information on
the associated configuration elements.

Operating voltage
NOR Flash memory operating voltage must be in the range from 1.65 V to 3.6 V.

2.23

EEPROM
M24128-DFDW6TP, a 128-Kbit I²C-bus EEPROM device, is fitted on the main board of
STM32L476G-EVAL, in U6 position. It is accessed with I²C-bus lines I2C2_SCL and
I2C2_SDA of STM32L476ZGT6. It supports all I²C-bus modes with speeds up to 1 MHz.
The base I²C-bus address is 0xA0. Write-protecting the EEPROM is possible through
opening the SB7 solder bridge. By default, SB7 is closed and writing into the EEPROM
enabled.

2.23.1

Operating voltage
The M24128-DFDW6TP EEPROM device’s operating voltage must be in the range from
1.7 V to 3.6 V

2.24

RF-EEPROM
RF-EEPROM daughterboard, ANT7-M24LR-A, can be connected to CN3 connector of the
STM32L476G-EVAL board. STM32L476ZGT6 can access the RF-EEPROM in two ways,

44/101

DocID027351 Rev 5

UM1855

Hardware layout and configuration
wired through I²C bus or wireless using 13.56 MHz RF band reserved for RFID and NFC
equipment. For wireless access, CR95HF reader daughterboard plugged in the CN13
connector can be used, for example.
I²C address of RF-EEPROM device is 0xA6.

2.25

Quad-SPI Flash memory device
N25Q256A13EF840E, a 256-Mbit Quad-SPI Flash memory device, is fitted on the
STM32L476G-EVAL main board, in U9 position. It allows evaluating STM32L476ZGT6
Quad-SPI Flash memory device interface.
N25Q256A13EF840E can operate in single transfer rate (STR) and double transfer rate
(DTR) modes.
By default, the Quad-SPI Flash memory device is not accessible. Table 26 shows the
configuration elements and their settings allowing to access the Quad-SPI Flash memory
device. The LCD glass module daughterboard MB979 takes active part in the configuration.
It must be removed from the main board (denoted as “MB979 out”), to operate the QuadSPI Flash memory device. Section 2.12: Motor control provides additional information.
Table 26. Configuration elements related with Quad-SPI device
Element

SB12
SB13
MB979

SB14
SB15
MB979

SB18
SB19
MB979

Setting
SB12 open
SB13 open

Configuration
Default setting.
QSPI_D0 data line is not available at Quad-SPI Flash memory device:
PB1 port of STM32L476ZGT6 is only routed to CN11 connector for the
MB979 daughterboard.

SB12 closed QSPI_D0 data line is available at Quad-SPI Flash memory device:
SB13 open PB1 port of STM32L476ZGT6 is routed to DQ0 port of Quad-SPI Flash
MB979 out memory device.
SB14 open
SB15 open

Default setting.
QSPI_D1 data line is not available at Quad-SPI Flash memory device:
PB0 port of STM32L476ZGT6 is only routed to CN11 connector for the
MB979 daughterboard.

SB14 closed QSPI_D1 data line is available at Quad-SPI Flash memory device:
SB15 open PB0 port of STM32L476ZGT6 is routed to DQ1 port of Quad-SPI Flash
MB979 out memory device.
SB18 open
SB19 open

Default setting.
QSPI_D2 data line is not available at Quad-SPI Flash memory device:
PA7 port of STM32L476ZGT6 is only routed to CN11 connector for the
MB979 daughterboard.

SB18 closed QSPI_D2 data line is available at Quad-SPI Flash memory device:
SB19 open PA7 port of STM32L476ZGT6 is routed to DQ2 port of Quad-SPI Flash
MB979 out memory device.

DocID027351 Rev 5

45/101
100

Hardware layout and configuration

UM1855

Table 26. Configuration elements related with Quad-SPI device (continued)
Element

SB21
SB20
MB979

Setting
SB21 open
SB20 open

Default setting.
QSPI_D3 data line is not available at Quad-SPI Flash memory device:
PA6 port of STM32L476ZGT6 is only routed to CN11 connector for the
MB979 daughterboard.

SB21 closed QSPI_D3 data line is available at Quad-SPI Flash memory device:
SB20 open PA6 port of STM32L476ZGT6 is routed to DQ3 port of Quad-SPI Flash
MB979 out memory device.

SB9 open
SB9
MB979
SB9 closed
MB979 out

SB8 open
SB8
MB979
SB8 closed
MB979 out

2.25.1

Configuration

Default setting.
QSPI_CLK clock line is not available at Quad-SPI Flash memory device:
PB10 port of STM32L476ZGT6 is only routed to CN11 connector for the
MB979 daughterboard.
QSPI_CLK clock line is available at Quad-SPI Flash memory device:
PB10 port of STM32L476ZGT6 is routed to C port of Quad-SPI Flash
memory device.
Default setting.
QSPI_CS line is not available at Quad-SPI Flash memory device:
PB11 port of STM32L476ZGT6 is only routed to CN11 connector for the
MB979 daughterboard.
QSPI_CS line is available at Quad-SPI Flash memory device:
PB11 port of STM32L476ZGT6 is routed to S# port of Quad-SPI Flash
memory device.

Limitations
Quad-SPI operation is exclusive with LCD glass module and with motor control.

2.25.2

Operating voltage
Voltage of Quad-SPI Flash memory device N25Q256A13EF840E is in the range of 2.7 V to
3.6 V.

2.26

Touch-sensing button
The STM32L476G-EVAL evaluation board supports a touch sensing button based on either
RC charging or on charge-transfer technique. The latter is enabled, by default.
The touch sensing button is connected to PB12 port of STM32L476ZGT6 and the related
charge capacitor is connected to PB13.
An active shield is designed in the layer two of the main PCB, under the button footprint. It
allows reducing disturbances from other circuits to prevent from false touch detections.
The active shield is connected to PC6 port of STM32L476ZGT6 through the resistor
R37.The related charge capacitor is connected to PC7.
Table 27 shows the configuration elements related with the touch sensing function. Some of
them serve to enable or disable its operation. However, most of them serve to optimize the
touch sensing performance, by isolating copper tracks to avoid disturbances due to their
antenna effect.

46/101

DocID027351 Rev 5

UM1855

Hardware layout and configuration
Table 27. Touch-sensing-related configuration elements
Element

Setting

Configuration

In

Default setting. PB12 port is routed to CN11 connector for LCD glass
module daughterboard.
This setting is not good for robustness of touch sensing.

R39
Out

PB12 port is cut from CN11.
This setting is good for robustness of touch sensing.

Open

Default setting. PB12 is not routed to motor control.
This setting is good for robustness of touch sensing.

SB3
Closed

In
R38
Out

SB6

PB12 is routed to motor control.
This setting is not good for robustness of touch sensing.
Default setting. PB13 port is routed to CN11 connector for LCD glass
module daughterboard.
This setting is not good for robustness of touch sensing.
PB13 port is cut from CN11.
This setting is good for robustness of touch sensing.

Open

Default setting. PB13 is not routed to sampling capacitor. Touch
sensing cannot operate.

Closed

PB13 is routed to sampling capacitor. Touch sensing can operate.

In
R36
Out

Open
SB2
Closed
Open
SB27
Closed

In
R33
Out

Open
SB4
Closed

Default setting. PC6 port is routed to CN14 connector for LCD glass
module daughterboard.
This setting is not good for robustness of touch sensing.
PC6 port is cut from CN14.
This setting is good for robustness of touch sensing.
Default setting. PC6 is not routed to active shield under the touchsensing button.
This setting is not good for robustness of touch sensing.
PC6 is routed to active shield under the touch-sensing button.
This setting is good for robustness of touch sensing.
Default setting. PC6 port of STM32L476ZGT6 is not routed to motor
control. This setting is good for robustness of touch sensing.
PC6 is routed to motor control.
This setting is not good for robustness of touch sensing.
Default setting. PC7 port is routed to CN14 connector for LCD glass
module daughterboard.
This setting is not good for robustness of touch sensing.
PC7 port is cut from CN14.
This setting is good for robustness of touch sensing.
Default setting. PC7 port of STM32L476ZGT6 is not routed to
sampling capacitor of the active shield under the touch-sensing button.
This setting is not good for robustness of touch sensing.
PC7 is routed to sampling capacitor of the active shield under the
touch-sensing button.
This setting is good for robustness of touch sensing.

DocID027351 Rev 5

47/101
100

Hardware layout and configuration

UM1855

Table 27. Touch-sensing-related configuration elements (continued)
Element

Setting

Configuration

Open

Default setting. PC7 port of STM32L476ZGT6 is not routed to motor
control.
This setting is good for robustness of touch sensing.

Closed

PC7 is routed to motor control. This setting is not good for robustness
of touch sensing.

SB30

2.26.1

Limitations
Touch sensing button is exclusive with LCD glass module, thermal sensor PT100 via sigmadelta conversion, USB OTG FS port operating as USB host, SWP and NFC.

2.27

Smartcard, SWP
ST8024CDR, an interface device for 3 V and 5 V asynchronous smartcards, is fitted on the
STM32L476G-EVAL main board, in U30 position. ST8024CDR performs all supply
protection and control functions of the smartcard.
ST8024CDR is controlled, on its turn, by STM32L476ZGT6, directly through its ports or
indirectly through ports of the U33 I/O expander device (IOExpander2), as shown in
Table 28.
The SWIO port of the smartcard for single-wire protocol (SWP) communication is managed
directly by PB12 port of STM32L476ZGT6.
Table 28. Assignment of ports for ST8024CDR control
ST8024CDR
port

Function

Control port

5V/3V

Smartcard power supply selection pin.

IOexpander2 GPIO7

I/OUC

Data I/O line

STM32L476ZGT6 PC4

XTAL1

Quartz crystal or external clock input

STM32L476ZGT6 PB0

OFF

Card presence detect

IOexpander2 GPIO8

RSTIN

Card reset command input

IOexpander2 GPIO5

CMDVCC

Activation sequence start command input (active low)

IOexpander2 GPIO6

Table 29 provides information on configuration elements related with smartcard operation.
Refer to Table 8, Table 12, Table 26 and Table 27 for complementary information. Bridging
of CN11 and CN14 rows of I/Os can be done by means of the MB979 daughterboard
plugged into CN11 and CN14 in I/O-bridge position, as explained in Section 2.15.

48/101

DocID027351 Rev 5

UM1855

Hardware layout and configuration
Table 29. Configuration elements related with smartcard and SWP
Element

Setting

Configuration

Default setting.
R109 in
Smartcard SWP cannot be handled:
R39 in
PB12 is routed to USB OTG FS port as USBOTG_OVRCR line, on
SB3 open
top of being routed to SWIO port of smartcard
CN11 I/O-bridged
Configuration dedicated for USB OTG FS operation.
R39
SB3
R109
CN11

R109 out
R39 in
SB3 open
CN11 I/O-bridged
R39 out
SB3 closed

R39 out
SB3 open

Smartcard SWP can be handled:
PB12 is routed to SWIO port of smartcard. It is disconnected from
any other resource that could affect the SWP operation
Configuration dedicated for smartcard SWP operation
Smartcard SWP cannot be handled:
PB12 is routed to motor control as MC_PFC_Shutdown
Configuration dedicated for motor control operation
Smartcard SWP cannot be handled:
PB12 is only routed to touch-sensing button and it is disconnected
from any other resource.
Configuration dedicated for touch-sensing button operation.

Default setting.
R62 in
Smartcard controller U30 is supplied with clock:
SB14 open
PB0 port is routed to XTAL1 of U30, as SmartCard_CLK line and it
SB15 open
is not routed to other resources.
CN11 I/O-bridged
Configuration dedicated for smartcard operation.
R62
SB14
SB15

R65
SB17
CN14

R62 out
SB14 closed
SB15 open

Smartcard controller U30 is not supplied with clock:
PB0 is routed to Quad-SPI Flash memory device as QSPI_D1 and it
is not routed to other resources.
Configuration dedicated for Quad-SPI Flash memory device
operation.

R62 out
SB14 open
SB15 closed

Smartcard controller U30 is not supplied with clock:
PB0 is routed to motor control as MC_PWM_2L line and it is not
routed to other resources.
Configuration dedicated for motor control operation.

Default setting.
R65 in
Smartcard controller gets SmartCard_IO line:
PC4 port of MCU is routed to IOUC port of U30, as SmartCard_IO
SB17 open
CN14 I/O-bridged line and it is not routed to other resources.
Configuration dedicated for smartcard operation.
R65 out
SB17 closed

Smartcard controller does not get SmartCard_IO line:
PC4 port of MCU is routed to motor control as MC0PFC0IndCur line
and it is not routed to other resources.
Configuration dedicated for motor control operation.

DocID027351 Rev 5

49/101
100

Hardware layout and configuration

2.27.1

UM1855

Limitations
The following limitations apply for the smartcard operation:

2.27.2

•

Smartcard operation is mutually exclusive with LCD glass module, Quad-SPI Flash
memory device and motor control operation.

•

SWP operation is mutually exclusive with LCD glass module, touch-sensing button,
motor control and USB OTG FS port operation, if the last operates as USB host. SWP
can operate concurrently with USB OTG FS port acting as USB device.

Operating voltage
Smartcard operating ranging from VDD = 2.7 V to VDD = 3.6 V. However, the SWP only
operates with the supply voltage of 3.3 V.

2.28

Near-field communication (NFC)
The STM32L476G-EVAL board can host an NFC transceiver board plugged in CN13
extension connector.
Figure 12 illustrates the way of attaching an NFC board.
Figure 12. NFC board plugged into STM32L476G-EVAL board

50/101

DocID027351 Rev 5

UM1855

Hardware layout and configuration
Table 30 shows the assignment of signals to CN13 connector.
The serial communication with the module plugged in CN13 can either use SPI
communication protocol (default) or UART communication protocol.
Table 30. CN13 NFC connector terminal assignment
CN13
terminal

NFC line name

MCU port

1

NFC_IRQOUTN or
UART_TX

PB7

Interrupt output for NFC device
Connected to STM32L476ZGT6 UART RX

2

NFC_IRQINN or
UART_RX

PB6

Interrupt input for NFC device
Connected to STM32L476ZGT6 UART TX

3

NFC_NSS

PF11

SPI slave select

4

NFC_MISO

PB14

SPI data, slave output

5

NFC_MOSI

PB15

SPI data, slave input

6

NFC_SCK

PB13

SPI serial clock

7

+3V3

-

Main power supply/power supply for RF drivers

8

GND

-

Ground

Function

2.29

Dual-channel sigma-delta modulators STPMS2L

2.29.1

STPMS2L presentation
With its DFSDM interface, the STM32L476ZGT6 microcontroller can directly interact with
sigma-delta modulator devices, such as STPMS2L.
STPMS2L comprises two analog measuring channels based on second-order sigma-delta
modulators. Typically, it can be used in power metering where both voltage and current
need to be known. One channel measures the voltage, the other channel measures the
current.
DAT port outputs converted measurement data on the DFSDM_DATIN1 line, received by
the STM32L476ZGT6 DFSDM controller. The data from STPMS2L are synchronized with
DFSDM_CKOUT clock generated by the STM32L476ZGT6 DFSDM controller and received
on CLK terminal of STPMS2L.
There are two STPMS2L devices on STM32L476G-EVAL, sharing the DFSDM clock. One is
wired such as to support a power-metering demonstrator. The other allows measuring
temperature using the PT100 sensor.

DocID027351 Rev 5

51/101
100

Hardware layout and configuration

UM1855

Figure 13. Routing of STPMS2L dual-channel sigma-delta modulators

670/=*7
67306/
3RZHUPHWHULQJ

')6'0B'$7,1

'$7

3'

&/.

67306/
7HPSHUDWXUHPHWHULQJ
'$7
37

37B'$7,1
3&
')6'0B&.287

&/.

3&

&/.287
WR0(06PLFURSKRQHV
06Y9

2.29.2

STPMS2L settings
STPMS2L operating parameters are set through its configuration terminals MS0, MS1, MS2
and MS3. On STM32L476G-EVAL, both devices are configured as follows:

2.29.3

•

Voltage channel range: differential voltage +/- 300mV

•

Current channel range: differential voltage +/- 300mV

•

Internal voltage reference is used

•

Input bandwidth: 0 to 1 kHz

•

Temperature compensation: flattest +30ppm/°C

•

DAT output: voltage and current samples multiplexed

•

DATn output: not used

•

HW mode selected for settings

STPMS2L power metering
STPMS2L in U3 position simulates low-voltage AC power metering, with capacitive load
impedance, to give different phase to voltage and current.

52/101

DocID027351 Rev 5

UM1855

Hardware layout and configuration
Figure 14. Power measurement principle schematic diagram


6KXQWUHVLVWRU
IRUFXUUHQW
PHDVXUHPHQW

$&VRXUFH

a

FXUUHQW

&RPSOH[
LPSHGDQFH
YROWDJH






WR67306/
GLIIHUHQWLDOLQSXW

WR67306/
GLIIHUHQWLDOLQSXW

06Y9

A low-voltage AC generator is to be applied by the user as shown in Figure 14. The shunt
resistor is connected in series with the load to provide current measurement points to one of
STPMS2L input channels. The voltage measurement points for the other input channel are
taken across the load. Figure 15 shows an extract of the corresponding schematic diagram.

Warning:

do not connect AC mains!

Test example:
The output of a low-voltage AC generator is connected to CN4, terminals 1 and 3. The
amplitude is set between 200 mV and 300 mV and the frequency adjustable between 10 Hz
and 100 Hz.
With 34 Hz frequency and the load formed of R27 of 1 kΩ in parallel with C29 of 4.7 µF, the
voltage and current phases are theoretically 45 degrees apart.
Figure 15. STPMS2L power metering schematic diagram

C26

C27

1

5

2

CIP

C22
1uF

GND
DATn

Exposed
pad GND

CIN

VDD

1

2
VDDAC

3
VDDA

6
R26
1K

CN4

4

GND
U3
STPMS2L-PUR

VBG

current
shunt

GND

1uF

100nF

VCC

STPMS2 power metering

DAT

16
15

3

GND
C24

13

12

11

10

9

17

GND

R+jX Load

14

MS2

MS3
MS1

VIN

MS0

CLK

GND

7

VIP

VDDAV
AV

R27
1K

4.7uF

external generator input: pins 1 and 3
voltage of complex load: pins 2 and 3
shunt voltage
: pins 1 and 2

C29

8
GND

GND

GND
1uF

DocID027351 Rev 5

53/101
100

Hardware layout and configuration

2.29.4

UM1855

STPMS2L for PT100 measurement
PT100 is a resistor with temperature-dependent resistance.
Usually, one of two methods is used for measuring temperature with a temperaturedependent resistor. In the first method, a known current is driven through the measuring
resistor. The temperature is represented by the voltage measured across the resistor. In the
second method, a known voltage is applied on the resistor and the current flowing through is
measured, representing the temperature. In these methods, either an accurate current
source or an accurate voltage source is required.
With the dual-input measurement with STPMS2L in U4 position, no such accurate current or
voltage sources are required. Instead, a precision shunt resistor is required. One channel of
the STPMS2L measures the voltage across the precise shunt resistor, representing the
current flowing through PT100. The other channel measures the voltage across PT100.
Figure 16. Temperature measurement principle schematic diagram
9''

%LDVLQJUHVLVWRU

NŸ


FXUUHQW

6KXQWUHVLVWRUIRUFXUUHQW
PHDVXUHPHQW

Ÿ

7HPSHUDWXUHGHSHQGHQW
UHVLVWRU

37
YROWDJH






WR67306/
GLIIHUHQWLDOLQSXW

WR67306/
GLIIHUHQWLDOLQSXW

06Y9

With voltage across and current through the PT100 resistor, the STM32L476ZGT6
microcontroller computes resistance PT100.
For temperatures lower than +100°C, the temperature is given by the following equation,
where PT100 is resistance of the PT100 resistor and T is temperature in degrees
centigrade:
T = ( PT100 – 100 ) ⁄ ( 0.385 )

2.29.5

Limitations
Operating voltage must be in the range from 3.2 V to 3.6 V.

2.30

STM32L476ZGT6 current consumption measurement
STM32L476ZGT6 has a built-in circuit allowing to measure its own current consumption
(IDD) in Run and Low-power modes, except for Shutdown mode.

54/101

DocID027351 Rev 5

UM1855

Hardware layout and configuration
It is strongly recommended that, the MCU supply voltage (VDD_MCU line) does not exceed
3.3 V. This is because there are components on STM32L476G-EVAL supplied from 3.3 V
that communicate with the MCU through I/O ports. Voltage exceeding 3.3 V on the MCU
output port may inject current into 3.3 V-supplied peripheral I/Os and false the MCU current
consumption measurement.

2.30.1

IDD measurement principle - analog part
The analog part is based on measuring voltage drop across a shunt resistor, amplified with a
differential amplifier. The STM32L476ZGT6 microcontroller supply current is shunted, by
jumper settings, to flow through the measurement 1 Ω resistor R135: JP11 terminals 1 and 2
are to be open, terminals 3 and 4 closed. When the transistor T2 is in conductive state, the
MCU supply current is proportional to the voltage across R135. When T2 is in highimpedance state, the MCU supply current is proportional to the voltage across the series of
R135 and R123. The former state is used for measuring the current consumption in dynamic
run mode, the latter in low-power mode.
The differential amplifier uses three stages U15B, U15C, U15D of quadruple operational
amplifier device U15, TSZ124. The gain is set to 50, so every 1 mA of supply current is
represented by additional 50 mV at the U15C output, terminal 8 of U15.
The resistance formed with the series of R135 and R123, when T2 is in high-impedance
state, is of 1001 Ω. It makes the voltage on terminal 8 of U15 increase by approximately
50 mV for every µA of MCU power consumption. The full-scale range, with VDD at 1.8 V is
about 30 µA.
Even with precision resistors R136, R125, R129, R132 to set the gain of the differential
amplifier, the output voltage may theoretically become negative. To avoid the need of
negative power supply, a positive offset of about 220 mV is created at the output, at zero
current consumption of the MCU. This offset does not need to be precise. Any dispersion is
compensated through a calibration procedure detailed in Section 2.30.4.
For allowing the IDD measurement, the jumper in the JP11 header must be placed such as
to short its terminals 3 and 4.

DocID027351 Rev 5

55/101
100

Hardware layout and configuration

UM1855

Figure 17. Schematic diagram of the analog part of IDD measurement
+5V

decoupling capacitor
close from TSZ124 part

R128
22K

GND
3

4

C75
100nF

VDD from
power
supply

V+

Current
direction

6
R135
1[1%]
S

4

U15B
TSZ124IPT
R136
7
3K6 0.1%

R129
180K 0.1%
U15C
TSZ124IPT
8

shunts

G
D

5
1
2
6

R123
1K[1%]

differential
amplifier

9

R132

FDC606P
12

U15D
TSZ124IPT
R125
14

13

180K 0.1%

3K6 0.1%

current
measurement
path

JP11

1
2
3
4

bypass path

V-

GND

10
Shunt_x1000 3

2

GND
GND

5

T2

R124
1K

11

C144
100nF

VDD

U15A
TSZ124IPT
1

Current
direction

VDD_MCU

to MCU

2.30.2

Low-power-mode IDD measurement principle - logic part
The target microcontroller can only carry out actions for measuring a voltage when in
dynamic run mode. This is the reason why, voltage representing the current consumed by
the microcontroller when in low-power mode needs to be held by a sample-and-hold circuit,
for being exploited by the microcontroller at a later time, when back in dynamic run mode.
The sample-and-hold (S&H) circuit is built with U13 switch, R122 resistor and C73 sampling
capacitor.
The measurement of low-power-mode current consumption is started and end by the
microcontroller in its dynamic run mode. As, between the start and end event, the
microcontroller must transit through one of its low-power modes, an extra logic is required to
time and control events during this state. It consists of U14 counter, U16 inverter and the
transistor T3. Figure 18 shows the corresponding schematic diagram.

56/101

DocID027351 Rev 5

UM1855

Hardware layout and configuration
Figure 18. Schematic diagram of logic part of low-power-mode IDD measurement
R122

U13

VCC

PA5

2
VDDC74
5

10K

T3

SN74LVC1G66DCKT 100nF
4

3
VDD

3

2

Shunt_x1000

VDD

SN74LVC1G04DCKT

PC5

FDC606P

100nF

C72
100nF

U14
1
2
3
4
5
6
7
8

Q11
Q12
Q13
Q5
Q4
Q6
Q3
GND

IDD_Measurement

VDD

5
1
2
6

U16

C76
5

4

S

O/I

G

I/O
C
GND

D

1
4
3

C73
1uF

U15C
TSZ124IPT
8

VCC
Q9
Q7
Q8
MR
RS
Rtc
Ctc

74LV4060PW

16
15
14
13
12
11
10
9

VDD

IDD_WAKEUP

R137
220K

R127
220K

PF10

C77
1nF

R134
15K

IDD_CNT_EN

R130
30K

Oscillator frequency 30KHz

The measurement process consists of 3 phases:
Phase 1 - start and transiting to low-power mode
While in dynamic run mode, the MCU sets IDD_CNT_EN signal on its PF10 port low,
starting the measurement process. This makes the counters in U14 start counting the clock
pulses generated with an own RC oscillator. At about 150 ms from the start, the Q12 output
of U14 goes high, terminating the phase 1. After starting the measurement process, the
MCU transits to low-power mode. The duration of the phase 1 of about 150ms allows the
MCU enough time for transiting into low-power mode.
Phase 2 - sampling
The MCU is now in low-power mode. The phase 2 starts with the Q12 port of U14 going
high, 150 ms after the MCU, at that time in dynamic run mode, started the low-power-mode
consumption current measurement process. The transistor T2 goes in high-impedance
mode, which results in setting the analog part in high sensitivity state, needed for measuring
very low currents. The Q13 port of U14 keeps the path between ports I/O and O/I of U13
conductive. The sampling capacitor C73 is charged through the resistor R122 to the voltage
at the output of the differential analog amplifier, representing the current consumed by the
MCU in low-power mode. The duration of the phase 2 is about 150 ms. This time is needed
to allow the voltage on the sampling capacitor C73 to stabilize.
Phase 3 - exiting low-power mode, measurement and end
The MCU is in low-power mode. The voltage across C73 capacitor is now stabilized so it
represents the current consumed by the MCU in low-power mode. The phase 3 starts with
setting the U13 path between ports O/I and I/O to non-conductive state, for the voltage
across C73 to hold. The same event causes the IDD_WAKEUP signal for the MCU to
change state, to signal to the MCU that the voltage on C73 is now ready for being
measured. The MCU transits from low-power mode to dynamic run mode. The voltage on
C73 representing the current the MCU consumed when it was in low-power mode, is now
measured by the MCU, using the ADC port PA5, and stored. The Q12 port transits to low
state at the same time as the Q13 goes high. As a consequence, the analog part of the IDD
measurement circuit is back to low-sensitivity mode adapted for measuring the
microcontroller supply current in its dynamic run mode. The phase 3 and the whole
measurement process ends with the microcontroller setting the IDD_CNT_EN signal back
high. Figure 19 illustrates the timing of the low-power-mode current consumption
measurement process.
DocID027351 Rev 5

57/101
100

Hardware layout and configuration

UM1855

Figure 19. Low-power-mode IDD measurement timing
6WDUWORZSRZHU,''
VDPSOLQJ

$FWLRQE\ORJLF
6WDUW
SURFHVV

$FWLRQE\0&8
0&8RSHUDWLQJPRGH

ŵĞĂƐƵƌĞŵĞŶƚ

>ŽǁͲƉŽǁĞƌ

ZƵŶ

,''B&17B(1
8 0&8 SRUW3%

/2:B32:(5B(1
8 FRXQWHU SRUW4

+ROGORZSRZHU,''VDPSOH
:DNH0&8XS
(QG
SURFHVV

ZƵŶ

,''PHDVXUHPHQWSURFHVVLQSURJUHVV

KLJK,''UDQJH

ORZ,''UDQJH

KLJK,''UDQJH

,''B:$.(83
8 FRXQWHU SRUW4

,''B:$.(83
8 LQYHUWHU WHUPLQDO

6 +VZLWFK8FORVHG

WŚĂƐĞϭ

WŚĂƐĞϮ

aPV

aPV

8RSHQ

WŚĂƐĞϯ

06Y9

2.30.3

IDD measurement in dynamic run mode
In dynamic run mode, the IDD_CNT_EN remains high. The T2 is in conductive state, setting
the shunt resistor to 1 Ω. The U13 path from port 1 to 2 is permanently conductive and the
voltage on the capacitor C73 follows the MCU current consumption. R122 allows filtering
fast changes.

2.30.4

Calibration procedure
For the measurement to be precise, it is mandatory to perform a calibration before the
measurement. The calibration allows subtracting, from the voltage measured across C73,
the offset at the differential amplifier output, described in Section 2.30.1.
The calibration procedure consists in measuring the offset voltage when the current through
the shunt resistor is zero. The current consumption values measured by the microcontroller
are then compensated for offset, by subtracting the now-known offset number from the
measured number. Setting the current through the shunt resistor to zero is reached through
appropriate setting jumpers in the JP11 jumper header.

58/101

DocID027351 Rev 5

UM1855

Hardware layout and configuration
Calibration procedure and current measurement compensation steps:
•

On JP11, short terminals 1 and 2 and open terminals 3 and 4. The current through the
shunt resistor is now zero.

•

Run low-power-mode IDD measurement as described in Section 2.30.2. The value
Voffset measured corresponds to offset of the differential amplifier.

•

On JP11, add a second jumper, to short terminals 3 and 4, then remove the jumper
from terminals 1 and 2 of JP11. The MCU supply has not been interrupted and the
supply current now passes through the shunt resistor.

•

Run low-power-mode IDD measurement as described in Section 2.30.2. The value
Vmeasured obtained corresponds to the sum of MCU supply current and the differential
amplifier’s offset Voffset.

•

The software computes a Vout number representing the MCU supply current as
Vout = Vmeasured - Voffset
Table 31. JP11 jumper settings during IDD measurement with calibration
Jumper

Setting
JP11
1 2 3 4

Description
Configuration used to measure Voffset.
JP11 in VDD position
STM32L476ZGT6 supply current does not flow through shunt
resistor.

JP11
JP11

1 2 3 4

Configuration to transit from direct to shunted supply to
STM32L476ZGT6, without ever interrupting the MCU supply.

JP11

Default setting.
Configuration used to measure the MCU supply current.
JP11 in IDD position
STM32L476ZGT6 supply current flows through shunt resistor.

1 2 3 4

İ
İ

DocID027351 Rev 5

59/101
100

Connectors

UM1855

3

Connectors

3.1

RS-232 D-sub male connector CN9
Figure 20. RS-232 D-sub (DE-9M) 9-pole connector (front view)

-36

Table 32. RS-232 D-sub (DE-9M) connector CN9 with HW flow control and ISP support

3.2

Terminal

Terminal name

Terminal

Description

1

NC

6

Bootloader_BOOT0

2

RS232_RX (PB7)

7

NC

3

RS232_TX (PG12)

8

Bootloader_RESET

4

NC

9

NC

5

GND

-

-

Power connector CN22
The STM32L476G-EVAL board can be powered from a DC-5V external power supply via
the CN22 jack illustrated in Figure 21. The central pin of CN22 must be positive.
Figure 21. Power supply connector CN22 (front view)

'&9
*1'


-36

60/101

DocID027351 Rev 5

UM1855

3.3

Connectors

LCD daughterboard connectors CN11 and CN14
Two 48-pin male headers CN11 and CN14 are used to connect to LCD glass module
daughterboard MB979. The type of connectors, their mutual orientation, distance and
terminal assignment are kept for a number of ST MCU evaluation boards. This
standardization allows developing daughterboards that can be used in multiple evaluation
kits. The width between CN11 pin1 and CN14 pin1 is 700 mils (17.78 mm).
STM32L476ZGT6 ports routed to these two connectors can be accessed on odd CN11 and
CN14 pins (the row of pin 1), when no daughterboard is plugged in.
Daughterboards plugging into CN11 and CN14 must keep the even terminals of CN11 and
CN14 open.
Table 33 shows the signal assignment to terminals.
Table 33. CN11 and CN14 daughterboard connectors
CN11

CN14

Odd pin

MCU port

Odd pin

MCU port

1

PA9

1

PD2

3

PA8

3

PC12

5

PA10

5

PC11

7

PB9

7

PC10

9

PB11

9

PB7

11

PB10

11

PC4

13

PB5

13

PC5

15

PB14

15

PC6

17

PB13

17

PC7

19

PB12

19

PC8

21

PA15

21

PC9

23

PB8

23

PD8

25

PB15

25

PD9

27

PC2

27

PD10

29

PC1

29

PD11

31

PC0

31

PD12

33

PA3

33

PD13

35

PA2

35

PD14

37

PB0

37

PD15

39

PA7

39

PE0

41

PA6

41

PE1

43

PB4

43

PE2

DocID027351 Rev 5

61/101
100

Connectors

UM1855
Table 33. CN11 and CN14 daughterboard connectors (continued)
CN11

3.4

CN14

Odd pin

MCU port

Odd pin

MCU port

45

PB3

45

PE3

47

PB1

47

PA1

Extension connectors CN6 and CN7
Table 34. Daughterboard extension connector CN6

62/101

Pin

Description

Alternative
Functions

How to disconnect Alternative functions to
use on the extension connector

1

GND

-

3

PG6

CODEC_INT,
MC_ICL_Shutout

5

PA13

TMS/SWDIO

Do not use Trace connector CN12 and JTAG
connector CN15

7

PA12

USBOTG_DP

Remove R4

9

PG8

LPUART_RX_3V3

11

GND

-

13

PG2

A12

15

PD3

DFSDM_DATIN1

17

PD0

D2

19

PD5

FMC_NWE

Cannot be disconnected from SRAM and Flash
memory, but is an input for SRAM and Flash
memory

21

PG10

LCD_NE3

Cannot be disconnected from TFT LCD level
shifters U21 and U22, but is an input for TFT
LCD.

23

PD7

FMC_NE1

Remove R18

25

PF0

A0

27

PG11

USART1_CTS_3V3

Remove R93

29

PG13

I2C_SDA

Remove R58

31

PG12

USART1_RTS

Remove R116

33

PG14

I2C_SCL

Remove R61

35

PG15

IOExpander_INT

Remove R228

37

PF4

A4

Remove R35, Open SB5

Remove R158, R188
Remove R18 to deselect SRAM U2
Remove R43 to deselect Flash memory U5
Remove R23
Remove R18 to deselect SRAM U2
Remove R43 to deselect Flash memory U5

Remove R18 to deselect SRAM U2
Remove R43 to deselect Flash memory U5

Remove R18 to deselect SRAM U2
Remove R43 to deselect Flash memory U5

DocID027351 Rev 5

UM1855

Connectors
Table 34. Daughterboard extension connector CN6 (continued)
Pin

Description

Alternative
Functions

How to disconnect Alternative functions to
use on the extension connector

39

GND

-

-

2

+3V3

-

-

4

PG7

LPUART_TX

Remove R119, R189

6

PA11

USBOTG_DM

Remove R3

8

PA14

TCK/SWCLK

Do not use Trace connector CN12 and JTAG
connector CN15

10

PG5

A15

Remove R18 to deselect SRAM U2
Remove R43 to deselect Flash memory U5

12

PG3

A13

Remove R18 to deselect SRAM U2
Remove R43 to deselect Flash memory U5

14

PG4

A14

Remove R18 to deselect SRAM U2
Remove R43 to deselect Flash memory U5

16

PD1

D3

Remove R18 to deselect SRAM U2
Remove R43 to deselect Flash memory U5

18

PD4

FMC_NOE

Remove R18 to deselect SRAM U2
Remove R43 to deselect Flash memory U5

20

PG9

FMC_NE2

Remove R43

22

GND

-

24

PD6

SAI1_SDA,
FMC_NWAIT

26

PF1

A1

28

D5V

-

30

PC13

Wake-up

32

PF2

A2

Remove R18 to deselect SRAM U2
Remove R43 to deselect Flash memory U5

34

PF3

A3

Remove R18 to deselect SRAM U2
Remove R43 to deselect Flash memory U5

36

GND

-

38

PF5

A5

40

PB6

USART1_TX

Remove R53, open SB10
Remove R18 to deselect SRAM U2
Remove R43 to deselect Flash memory U5
Remove R244

Remove R18 to deselect SRAM U2
Remove R43 to deselect Flash memory U5
Remove R118

Table 35. Daughterboard extension connector CN7
Pin

Description

Alternative
Functions

How to disconnect Alternative functions to
use on the extension connector

1

GND

-

-

3

PE14

D11

-

DocID027351 Rev 5

63/101
100

Connectors

UM1855
Table 35. Daughterboard extension connector CN7 (continued)

64/101

Pin

Description

Alternative
Functions

How to disconnect Alternative functions to
use on the extension connector

5

PE12

D9

-

7

PE10

D7

-

9

PE8

D5

-

11

PG1

A11

-

13

PB2

15

GND

-

-

17

PF12

A6

-

19

PF11

NFC_NSS

21

PE4

A20, TRACE_D1

Remove R84, SB40

23

PE5

A21, TRACE_D2

Remove R85, SB38

25

PC14

OSC32_IN

Remove R87, Close SB41

27

PF6

SAI1_SDB

Remove R105

29

PF9

SAI1_FSB,
MC_PFC_sync

Remove R90, SB25

31

PF10

IDD_CNT_EN,
MC_PFC_PWM

Remove R91, SB37

33

PH1

OSC_OUT

35

PA5

IDD_Measurement

37

PA0

OpAmp1_INP,
MC_EncA

39

GND

-

-

2

PE15

D12

-

4

PE13

D10

-

6

PE11

D8

-

8

PE9

D6

-

10

PE7

D4

-

12

PG0

A10

-

14

PF15

A9

-

16

PF14

A8

-

18

PF13

A7

-

20

BOOT0

BootLoader from
UART

Remove JP8

22

PE6

A21, TRACE_D3

Remove R86, SB39

24

PC15

OSC32_OUT

LED1,
Remove R54, SB11
MC_DissipativeBrake

Do not connect the NFC daughterboard to
connector CN13

Remove R95, close SB23
Remove R69
Remove R83, SB35

Remove R88, close SB33

DocID027351 Rev 5

UM1855

Connectors
Table 35. Daughterboard extension connector CN7 (continued)

3.5

Pin

Description

Alternative
Functions

How to disconnect Alternative functions to
use on the extension connector

26

GND

-

28

PF7

SAI1_MCKB

Remove R106

30

PF8

SAI1_SCKB

Remove R89

32

RESET#

-

34

PH0

OSCIN

Remove crystal X2, C54, close SB24

36

PC3

VLCD

Remove R94

38

PA4

ADC_DAC

Remove R73

40

VDD

-

-

-

-

ST-LINK/V2-1 programming connector CN16
The connector CN16 is used only for embedded ST-LINK/V2-1 programming, during board
manufacture. It is not populated by default and not for use by the end user.

3.6

ST-LINK/V2-1 Standard-B USB connector CN17
The USB connector CN17 is used to connect the on-board ST-LINK/V2-1 facility to PC for
flashing and debugging software.
Figure 22. USB type B connector CN17 (front view)

DocID027351 Rev 5

65/101
100

Connectors

UM1855
Table 36. USB Standard-B connector CN17

Terminal

3.7

Description

1

VBUS(power)

2
3

Terminal

Description

4

GND

DM

5,6

Shield

DP

-

-

JTAG connector CN15
Figure 23. JTAG debugging connector CN15 (top view)

 













 





















D^ϯϬϳϮϮsϮ

Table 37. JATG debugging connector CN15

66/101

Terminal

Function / MCU port

Terminal

Function / MCU port

1

VDD power

2

VDD power

3

PB4

4

GND

5

PA15

6

GND

7

PA13

8

GND

9

PA14

10

GND

11

RTCK

12

GND

13

PB3

14

GND

15

RESET#

16

GND

17

DBGRQ

18

GND

19

DBGACK

20

GND

DocID027351 Rev 5

UM1855

3.8

Connectors

ETM trace debugging connector CN12
Figure 24. Trace debugging connector CN12 (top view)

 













 





















D^ϯϬϳϮϮsϮ

Table 38. Trace debugging connector CN12
Terminal

Function / MCU port

Terminal

Function / MCU port

1

VDD power

2

TMS/PA13

3

GND

4

TCK/PA14

5

GND

6

TDO/PB3

7

KEY

8

TDI/PA15

9

GND

10

RESET#

11

GND

12

TraceCLK/PE2

13

GND

14

TraceD0/PE3 or SWO/PB3

15

GND

16

TraceD1/PE4 or nTRST/PB4

17

GND

18

TraceD2/PE5

19

GND

20

TraceD3/PE6

DocID027351 Rev 5

67/101
100

Connectors

3.9

UM1855

microSD card connector CN18
Figure 25. microSD card connector CN18

(YDOXDWLRQERDUG

PLFUR6'
FDUG

&1

06Y9

Table 39. microSD card connector CN18

3.10

Terminal

Terminal name (MCU port)

Terminal

Terminal name (MCU port)

1

SDIO_D2 (PC10)

6

Vss/GND

2

SDIO_D3 (PC11)

7

SDIO_D0 (PC8)

3

SDIO_CMD (PD2)

8

SDIO_D1 (PC9)

4

VDD

9

GND

5

SDIO_CLK (PC12)

10

MicroSDcard_detect (PA8)

ADC/DAC connector CN8
Figure 26. Analog input-output connector CN8 (top view)

ϭ

Ϯ

06Y9

68/101

DocID027351 Rev 5

UM1855

Connectors
Table 40. Analog input-output connector CN8

3.11

Terminal

Function / MCU port

Terminal

Function / MCU port

1

GND

2

analog input-output PA4

RF-EEPROM daughterboard connector CN3
Figure 27. RF-EEPROM daughterboard connector CN3 (front view)








069

Table 41. RF-EEPROM daughterboard connector CN3

3.12

Terminal

Terminal name (MCU port)

Terminal

Terminal name (MCU port)

1

I2C_SDA (PG13)

5

+3V3

2

NC

6

NC

3

I2C_SCL (PG14)

7

GND

4

EXT_RESET(PC6)

8

+5 V

Motor control connector CN2
Figure 28. Motor control connector CN2 (top view)








DocID027351 Rev 5

-36



69/101
100

Connectors

UM1855
Table 42. Motor control connector CN2

3.13

CN2
terminal

Description

MCU port

CN2
terminal

MCU port

Description

1

Emergency STOP

PC9

2

-

GND

3

PWM_1H

PC6

4

-

GND

5

PWM_1L

PA7

6

-

GND

7

PWM_2H

PC7

8

-

GND

9

PWM_2L

PB0

10

-

GND

11

PWM_3H

PC8

12

-

GND

13

PWM_3L

PB1

14

PC5

BUS VOLTAGE

15

CURRENT A

PC0

16

-

GND

17

CURRENT B

PC1

18

-

GND

19

CURRENT C

PC2

20

-

GND

21

ICL Shutout

PG6

22

-

GND

23

DISSIPATIVE
BRAKE

PB2

24

PC4

PCD Ind Current

25

+5V power

-

26

PA3

Heat sink
temperature

27

PFC SYNC

PF9

28

-

3.3 V power

29

PFC PWM

PF10

30

PB12

PFC Shut Down

31

Encoder A

PA0

32

PA6

PFC Vac

33

Encoder B

PA1

34

PA2

Encoder Index

USB OTG FS Micro-AB connector CN1
Figure 29. USB OTG FS Micro-AB connector CN1 (front view)

069

Table 43. USB OTG FS Micro-AB connector CN1

70/101

Terminal

Terminal name (MCU port)

Terminal

Terminal name (MCU port)

1

VBUS (PA9 & PB13)

4

ID (PA10)

2

D- (PA11)

5

GND

3

D+ (PA12)

-

-

DocID027351 Rev 5

UM1855

3.14

Connectors

CAN D-sub male connector CN5
Figure 30. CAN D-sub (DE-9M) 9-pole male connector CN5 (front view)

-36

Table 44. CAN D-sub (DE-9M) 9-pins male connector CN5

3.15

Terminal

Terminal name

Terminal

Terminal name

1,4,8,9

NC

7

CANH

2

CANL

3,5,6

GND

NFC connector CN13
Figure 31. NFC female connector CN13 (top view)

















06Y9

Table 45. NFC CN13 terminal assignment
CN13
terminal

NFC signal

MCU port

1

NFC_IRQOUTN or
UART_TX

PB7

Interrupt output for NFC
Connected to STM32L476ZGT6 UART RX

2

NFC_IRQINN or
UART_RX

PB6

Interrupt input for CR95HF
Connected to STM32L476ZGT6 UART TX

Description

DocID027351 Rev 5

71/101
100

Connectors

UM1855
Table 45. NFC CN13 terminal assignment (continued)

72/101

CN13
terminal

NFC signal

MCU port

3

NFC_NSS

PF11

SPI slave select

4

NFC_MISO

PB14

SPI data, slave output

5

NFC_MOSI

PB15

SPI data, slave input

6

NFC_SCK

PB13

SPI serial clock

7

+3V3

PB6

Main power supply/power supply for RF drivers

8

GND

PB7

Ground

Description

DocID027351 Rev 5

UM1855

Schematic diagrams

Appendix A

Schematic diagrams

This section provides design schematics for the STM32L476G-EVAL key features to help
users to implement these features in application designs.
This section includes:
•

Overall schematics for the board, see Figure 32

•

MCU, LCD daughterboard and I/O expander interfaces, see Figure 33

•

STM32L476G-EVALMCU part 1, see Figure 34

•

STM32L476G-EVAL MCU part 2, see Figure 35

•

LCD glass module daughterboard connectors, see Figure 36

•

I/O expander, see Figure 37

•

Power supply, see Figure 38

•

Smartcard, SWP and NFC, see Figure 39

•

USART and IrDA, see Figure 40

•

SRAM and NOR Flash memory devices, see Figure 41

•

TFT LCD, see Figure 42

•

Extension connector, see Figure 43

•

Quad-SPI Flash memory device, Figure 44

•

microSD card, see Figure 45

•

Physical control peripherals, see Figure 46

•

CAN transceiver, see Figure 47

•

Touch-sensing device, see Figure 48

•

USB_OTG_FS port, see Figure 49

•

IDD measurement, see Figure 50

•

Audio codec device, see Figure 51

•

STPMS2L and PT100, see Figure 52

•

RF-EEPROM and EEPROM, see Figure 53

•

Motor control connector, see Figure 54

•

JTAG and trace debug connectors, Figure 55

•

ST-LINK/V2-1, see Figure 56

DocID027351 Rev 5

73/101
100

U_SWP_SmartCard_NFC
SWP_SmartCard_NFC.SchDoc

U_MCU_LCDGlass_Symbol
MCU_LCDGlass_Symbol.SchDoc
NFC_MOSI
NFC_MISO
NFC_SCK
NFC_NSS
LED1
SWP_IO
LED2
SmartCard_OFF
LED3
SmartCard_IO
LED4
SmartCard_CLK
JOY_SEL
SmartCard_CMDVCC
JOY_DOWN
SmartCard_3/5V
JOY_LEFT
SmartCard_RST
JOY_RIGHT
JOY_UP
Key
Comp2_INP
USART1_TX
Comp2_OUT
USART1/IrDA_RX_3V3
OpAmp1_INP
USART1_RTS
OpAmp1_INM
USART1_CTS_3V3
OpAmp1_OUT
ADC_DAC

NFC_MOSI
NFC_MISO
NFC_SCK
NFC_NSS
SWP_IO
SmartCard_OFF
SmartCard_IO
SmartCard_CLK
SmartCard_CMDVCC
SmartCard_3/5V
SmartCard_RST

NFC_IRQOUTN
NFC_IRQINN

U_USART_IrDA
USART_IrDA.SchDoc

USART1_TX
USART1/IrDA_RX_3V3
USART1_RTS
USART1_CTS_3V3
LPUART_TX
LPUART_RX_3V3
Bootloader_BOOT0_3V3
Bootloader_RESET_3V3

NFC_IRQINN
NFC_IRQOUTN

RESET#
U_JTAG&Trace
JTAG&Trace.SchDoc

TMS/SWDIO
TCK/SWCLK
TDO/SWO
TDI
TRST
TRACE_D0
TRACE_D1
TRACE_D2
TRACE_D3
TRACE_CK

D[0..15]
A[0..23]
FMC_NE1
FMC_NE2
FMC_NWE
FMC_NOE
FMC_NBL0
FMC_NBL1
FMC_NWAIT

FMC_NBL0
FMC_NBL1
FMC_NWAIT

U_LCD_TFT

RESET#

BOOT0

U_Extension connector
Extension connector.SCHDOC

RESET#

PA[0..15]
PB[0..15]
PC[0..15]
PD[0..15]
PE[0..15]
PF[0..15]
PG[0..15]
PH0

PA[0..15]
PB[0..15]
PC[0..15]
PD[0..15]
PE[0..15]
PF[0..15]
PG[0..15]
PH0
PH1

U_QSPI
QSPI.SchDoc

QSPI_D0
QSPI_D1
QSPI_D2
QSPI_D3
QSPI_CLK
QSPI_CS

QSPI_D0
QSPI_D1
QSPI_D2
QSPI_D3
QSPI_CLK
QSPI_CS

U_MicroSD
MicroSD.SchDoc

uSD_D0
uSD_D1
uSD_D2
uSD_D3
uSD_CLK
uSD_CMD
uSD_DETECT

TKEY
TKEY_CS
SHIELD
SHIELD_CS

U_USB_OTG_FS
USB_OTG_FS.SchDoc

USBOTG_DM
USBOTG_DP
USBOTG_ID
USBOTG_VBUS
USBOTG_OVRCR
USBOTG_PRDY
USBOTG_PPWR

IDD_Measurement
IDD_CNT_EN
IDD_WAKEUP

IDD_Measurement
IDD_CNT_EN
IDD_WAKEUP

SAI1_SDA
SAI1_SDB
SAI1_SCKB
SAI1_MCKB
SAI1_FSB
DMIC_DATIN

SAI1_SDA
SAI1_SDB
SAI1_SCKB
SAI1_MCKB
SAI1_FSB
DMIC_DATIN
DFSDM_CKOUT
CODEC_INT
I2C_SDA
I2C_SCL

U_IDD_measurement
IDD_measurement.SchDoc

U_Audio

CODEC_INT
D[0..15]
A[0..23]
LCD_NE3
FMC_NWE
FMC_NOE
BL_Control
IOExpander_X+
IOExpander_XIOExpander_Y+
IOExpander_Y-

uSD_D0
uSD_D1
uSD_D2
uSD_D3
uSD_CLK
uSD_CMD
uSD_DETECT

VREF+

CAN_RX
CAN_TX

FMC_NE1
FMC_NE2

LCD_TFT.SchDoc
D[0..15]
A[0..23]
LCD_NE3
FMC_NWE
FMC_NOE
BL_Control
IOExpander_X+
IOExpander_XIOExpander_Y+
IOExpander_Y-

VREF+

USBOTG_DM
USBOTG_DP
USBOTG_ID
USBOTG_VBUS
USBOTG_OVRCR
USBOTG_PRDY
USBOTG_PPWR

RESET#

U_SRAM&Flash
SRAM&Flash.SchDoc

PH1 BOOT0

DocID027351 Rev 5

RESET#

TKEY
TKEY_CS
SHIELD
SHIELD_CS

i PCB Rule

Power.SchDoc

U_Touch Sensing
Touch Sensing.SchDoc

Clearance Constraint [Clearance = 10mil]

Matched Net Lengths [Tolerance = 100mil]
i
i
TMS/SWDIO
TCK/SWCLK
TDO/SWO
TDI
TRST
TRACE_D0
TRACE_D1
TRACE_D2
TRACE_D3
TRACE_CK

U_Power

CAN.SchDoc

LPUART_TX
LPUART_RX_3V3
i PCB Rule

peripherals.SchDoc

U_CAN
CAN_RX
CAN_TX

LPUART_TX
LPUART_RX_3V3
TMS/SWDIO
TCK/SWCLK
TDO/SWO
TDI
TRST

U_peripherals
LED1
LED2
LED3
LED4
JOY_SEL
JOY_DOWN
JOY_LEFT
JOY_RIGHT
JOY_UP
KEY
Comp2_INP
Comp2_OUT
OpAmp1_INP
OpAmp1_INM
OpAmp1_OUT
ADC_DAC

Bootloader_BOOT0_3V3
Bootloader_RESET_3V3

U_ST_LINK
ST_LINK.SCHDOC

Schematic diagrams

74/101

Figure 32. STM32L476G-EVAL top

DFSDM_CKOUT
DFSDM_DATIN1
PT100_DATIN

I2C_SDA
I2C_SCL
EXT_RESET
I2C2_SDA
I2C2_SCL
MC_EmergencySTOP
MC_PWM_1H
MC_PWM_1L
MC_PWM_2H
MC_PWM_2L
MC_PWM_3H
MC_PWM_3L
MC_CurrentA
MC_CurrentB
MC_CurrentC
MC_ICL_Shutout
MC_DissipativeBrake
MC_PFC_sync
MC_PFC_PWM
MC_EncA
MC_EncB
MC_BusVoltage
MC_PFC_IndCurr
MC_Temperature
MC_PFC_Shutdown
MC_PFC_Vac
MC_EncIndex

Audio.SchDoc

U_STPMS2&PT100
STPMS2&PT100.SchDoc

DFSDM_CKOUT
DFSDM_DATIN1
PT100_DATIN

U_RF_I2C_EEPROM
RF_I2C_EEPROM.SchDoc

I2C_SDA
I2C_SCL
EXT_RESET
I2C2_SDA
I2C2_SCL

U_MotorControl
MotorControl.SchDoc

MC_EmergencySTOP
MC_PWM_1H
MC_PWM_1L
MC_PWM_2H
MC_PWM_2L
MC_PWM_3H
MC_PWM_3L
MC_CurrentA
MC_CurrentB
MC_CurrentC
MC_ICL_Shutout
MC_DissipativeBrake
MC_PFC_sync
MC_PFC_PWM
MC_EncA
MC_EncB
MC_BusVoltage
MC_PFC_IndCurr
MC_Temperature
MC_PFC_Shutdown
MC_PFC_Vac
MC_EncIndex

Note: In all sheets, Italic format is used to differentiate text from schematic Net labels.

Title: Top schematic
Project: STM32L476G-EVAL
Size: A3

Reference: MB1144

Date: 10/7/2016

Revision: C-02
Sheet: 1 of 25

UM1855

U_IO_Expandor
IO_Expandor.SchDoc

U_MCU2
MCU2.SchDoc
Key
Bootloader_BOOT0_3V3
Bootloader_RESET_3V3

Key
Bootloader_BOOT0_3V3
Bootloader_RESET_3V3

SAI1_SDB
SAI1_MCKB
SAI1_SCKB
SAI1_FSB

SAI1_SDB
SAI1_MCKB
SAI1_SCKB
SAI1_FSB

PH0
PH1
SHIELD
SHIELD_CS

PH0
PH1
SHIELD
SHIELD_CS

IDD_CNT_EN
CODEC_INT

BOOT0
RESET#

RESET#

DocID027351 Rev 5

TMS/SWDIO
TCK/SWCLK
TDO/SWO
TDI
TRST
TRACE_D0
TRACE_D1
TRACE_D2
TRACE_D3
TRACE_CK

DFSDM_DATIN1
IDD_Measurement

DFSDM_DATIN1
IDD_Measurement

OpAmp1_INP
ADC_DAC

OpAmp1_INP
ADC_DAC

USBOTG_DP
USBOTG_DM

USBOTG_DP
USBOTG_DM

PA[0..15]
PB[0..15]
PD[0..15]
PE[0..15]

A[0..23]
D[0..15]

PA[0..15]
PB[0..15]
PD[0..15]
PE[0..15]
LCDCOM7
LCDCOM[0..3]
LCDSEG[28..39]
LCDSEG21
LCDSEG[0..17]
A[20..22]
D[0..15]

A[0..23]
D[0..15]

LCDCOM[0..7]
LCDSEG[0..39]
A23
A[16..19]
D[0..15]

LCDCOM7
LCDCOM[0..3]
LCDSEG[28..39]
LCDSEG21
LCDSEG[0..17]
A[20..22]
D[0..15]

LCDCOM[0..7]
LCDSEG[0..39]
A23
A[16..19]
D[0..15]
DFSDM_CKOUT
DMIC_DATIN
PT100_DATIN

SmartCard_CLK
SmartCard_IO

SmartCard_CLK
SmartCard_IO

USBOTG_VBUS
USBOTG_ID
USBOTG_PRDY
USBOTG_OVRCR
USBOTG_PPWR

USBOTG_VBUS
USBOTG_ID
USBOTG_PRDY
USBOTG_OVRCR
USBOTG_PPWR

IDD_WAKEUP

IDD_WAKEUP

OpAmp1_INM
OpAmp1_OUT
Comp2_INP
Comp2_OUT

OpAmp1_INM
OpAmp1_OUT
Comp2_INP
Comp2_OUT

USART1_RTS
USART1_CTS_3V3
LPUART_TX
LPUART_RX_3V3

JOY_SEL
JOY_DOWN
JOY_LEFT
JOY_RIGHT
JOY_UP

JOY_SEL
JOY_DOWN
JOY_LEFT
JOY_RIGHT
JOY_UP

BL_Control
SmartCard_3/5V
SmartCard_CMDVCC
SmartCard_OFF
SmartCard_RST
LED2
LED4
EXT_RESET

MC_EmergencySTOP
MC_PWM_1H
MC_PWM_2H
MC_PWM_3H
MC_BusVoltage
MC_CurrentA
MC_CurrentB
MC_CurrentC
MC_ICL_Shutout
MC_PFC_IndCurr
MC_PFC_sync
MC_PFC_PWM
U_MCU
MCU.SchDoc

SAI1_SDA

SAI1_SDA

TKEY
TKEY_CS

TKEY
TKEY_CS

LED1

MC_PWM_1L
MC_PWM_2L
MC_PWM_3L
MC_PFC_Shutdown
MC_DissipativeBrake
MC_Temperature
MC_PFC_Vac
MC_EncA
MC_EncB
MC_EncIndex

U_LCD_Glass
LCD_Glass.SchDoc

I2C2_SDA
I2C2_SCL

USART1/IrDA_RX_3V3
FMC_NBL0
FMC_NBL1
LED3
NFC_MOSI
NFC_MISO
NFC_SCK
SWP_IO
CAN_RX
CAN_TX
uSD_CMD
uSD_CLK
uSD_D0
uSD_D1
uSD_D2
uSD_D3
uSD_DETECT

LED2
LED4
EXT_RESET

I2C_SCL
I2C_SDA
I2C_SCL
I2C_SDA

QSPI_D0
QSPI_D1
QSPI_D2
QSPI_D3
QSPI_CLK
QSPI_CS

USART1_TX

SmartCard_3/5V
SmartCard_CMDVCC
SmartCard_OFF
SmartCard_RST

MC_EmergencySTOP
MC_PWM_1H
MC_PWM_2H
MC_PWM_3H
MC_BusVoltage
MC_CurrentA
MC_CurrentB
MC_CurrentC
MC_ICL_Shutout
MC_PFC_IndCurr
MC_PFC_sync
MC_PFC_PWM

QSPI_D0
QSPI_D1
QSPI_D2
QSPI_D3
QSPI_CLK
QSPI_CS

FMC_NOE
FMC_NWE
FMC_NE1
FMC_NWAIT

BL_Control

FMC_NOE
FMC_NWE
FMC_NE1
FMC_NWAIT
LED1
USART1_TX
MC_PWM_1L
MC_PWM_2L
MC_PWM_3L
MC_PFC_Shutdown
MC_DissipativeBrake
MC_Temperature
MC_PFC_Vac
MC_EncA
MC_EncB
MC_EncIndex

I2C2_SDA
I2C2_SCL
USART1/IrDA_RX_3V3
FMC_NBL0
FMC_NBL1
LED3
NFC_MOSI
NFC_MISO
NFC_SCK
SWP_IO
CAN_RX
CAN_TX
uSD_CMD
uSD_CLK
uSD_D0
uSD_D1
uSD_D2
uSD_D3
uSD_DETECT

75/101

Title: MCU_LCDGlassl
Project: STM32L476G-EVAL
Size: A3

Reference: MB1144

Date: 10/7/2016

Revision: C-02
Sheet: 2 of 25

Schematic diagrams

DFSDM_CKOUT
DMIC_DATIN
PT100_DATIN

NFC_NSS

IOExpander_X+
IOExpander_XIOExpander_Y+
IOExpander_Y-

IOExpander_INT

LCDCOM[4..6]
LCDSEG[18..20]
LCDSEG[22..27]
A[0..15]
D[0..15]
BOOT0
RESET#

TMS/SWDIO
TCK/SWCLK
TDO/SWO
TDI
TRST
TRACE_D0
TRACE_D1
TRACE_D2
TRACE_D3
TRACE_CK

NFC_NSS

IOExpander_X+
IOExpander_XIOExpander_Y+
IOExpander_Y-

IOExpander_INT
I2C_SCL
I2C_SDA

PC[0..15]
PF[0..15]
PG[0..15]
LCDCOM[4..6]
LCDSEG[18..20]
LCDSEG[22..27]
A[0..15]
D[0..15]

LCD_NE3
FMC_NE2

USART1_RTS
USART1_CTS_3V3
LPUART_TX
LPUART_RX_3V3

IDD_CNT_EN
CODEC_INT

PC[0..15]
PF[0..15]
PG[0..15]

LCD_NE3
FMC_NE2

UM1855

Figure 33. MCU, LCD daughterboard and I/O expander interfaces

OpAmp1_INP

R83

0

SB35
Open by default

MC_EncA

LCDSEG0

PA1

PA2

R81

0

0

SB31
Open by default

MC_EncIndex

LCDSEG2

PA3

MC_Temperature
LCDSEG3

R82

SB32
Open by default

MC_EncB
LCDSEG1

Schematic diagrams

76/101

Figure 34. STM32L476G-EVAL MCU part 1

PA6

R78

0

U7A

SB22
Open by default

PA0

35

R68
0
SB21
Open by default
SB20
Open by default

QSPI_D3
MC_PFC_Vac

34

36
37
ADC_DAC
LCDSEG4

PA7

QSPI_D2
MC_PWM_1L

R66 0

IDD_Measurement

R69

0

PA4

40

PA5

41

SB18
Open by default
SB19
Open by default

42
43
LCDCOM0

PA8

100

LCDCOM1

PA9

101

LCDCOM2

PA10 102
PA11 103

USBOTG_DM

DocID027351 Rev 5

PA12 104

USBOTG_DP

PA13 105

TMS/SWDIO

PA14 109

TCK/SWCLK
LCDSEG17

TDI

PA15 110

PA0-WKUP1

PD0

PA1

PD1

PA2

PD2

PA3

PD3

PA4

PD4

PA5

PD5

PA6

PD6

PA7

PD7

PA8

PD8

PA9

PD9

PA10

PD10

PA11

PD11

PA12

PD12

PA13

PD13

PA14

PD14

PA15

PD15

PB0

PE0

PB1

PE1

PB2

PE2

PB3

PE3

PB4

PE4

PB5

PE5

PB6

PE6

PB7

PE7

PB8

PE8

PB9

PE9

PB10

PE10

PB11

PE11

PB12

PE12

PB13

PE13

PB14

PE14

PB15

PE15

114 PD0
115 PD1
116 PD2

D2
D3
LCDCOM7

117 PD3

DFSDM_DATIN1

118 PD4

FMC_NOE

119 PD5

FMC_NWE

122 PD6

R53

123 PD7

FMC_NE1

77

PD8

LCDSEG28

78

PD9

LCDSEG29

79

PD10

LCDSEG30

80

PD11

LCDSEG31

81

PD12

LCDSEG32

82

PD13

LCDSEG33

85

PD14

LCDSEG34

86

PD15

LCDSEG35

0

SB10
Open by default

SAI1_SDA
FMC_NWAIT

R103
PE2
LCDSEG38
0
SB26
TRACE_CK
Open by default
R104

PE3

LCDSEG39

0
LCDSEG5
LCDSEG6

PB1

QSPI_D0
MC_PWM_3L

PA[0..15]
PB[0..15]
PD[0..15]
PE[0..15]

R56
0
SB12
Open by default
SB13
Open by default

PB0

QSPI_D1
MC_PWM_2L

R62

46

0

SB14
Open by default
SB15
Open by default

47

TDO/SWO
LED1

PA[0..15]
MC_DissipativeBrake
PB[0..15]

R54

0

SB11
Open by default

TRST

LCDSEG7

PE[0..15]
LCDSEG10 PB10
QSPI_CLK

R50

0

48

PB3

133

LCDSEG8

PB4

134

LCDSEG9

PB5

135

PB6

136

PB7

137

USART1_TX
LCDSEG21

PD[0..15]

PB2

LCDSEG16

PB8

139

LCDCOM3

PB9

140

SB9
Open by default

69
70

D[0..15]
A[20..22]
RESET#

D[0..15]
A[20..22]

LCDSEG11 PB11
QSPI_CS

R48

0

RESET#
LCDSEG12 PB12

R39

0

TKEY
MC_PFC_Shutdown
LCDCOM[0..3]
LCDCOM7

LCDSEG[28..39]
LCDSEG21

74
LCDSEG14

PB14

75

LCDSEG15

PB15

76

LCDSEG36

142 PE1

LCDSEG37

TRACE_D0

R84

1

0

A20
R100

2
SB40
3

PE4

4

PE5

5

PE6

58

PE7

TRACE_D1

Open by default
R85

0

SB38
PE8

D5

60

PE9

D6

63

PE10

D7

64

PE11

D8

A21
R101

D4

59

R86

TRACE_D2

PE12

D9

PE13

D10

67

PE14

D11

68

PE15

D12

A22

0
R102

SB39
66

GND

100K

Open by default

65

GND

100K

Open by default

GND

100K

TRACE_D3

STM32L476ZGT6U
SB3
Open by default

LCDCOM[0..3]
LCDCOM7

LCDSEG13 PB13
TKEY_CS

LCDSEG[0..17]

73

SB8
Open by default

141 PE0

R38

0

SB6
Open by default

LCDSEG[0..17]
LCDSEG[28..39]
LCDSEG21

Project: STM32L476G-EVAL
Size: A3

Reference: MB1144

Date: 10/7/2016

Revision: C-02
Sheet: 3 of 25

UM1855

Title: MCU

LCDSEG18 PC0
MC_CurrentA

LCDSEG19 PC1
MC_CurrentB

LCDSEG20 PC2

R97

UM1855

Figure 35. STM32L476G-EVAL MCU part 2

0

SB34
Open by default
R98

0

SB36
Open by default
R99

0
U7C

MC_CurrentC

SB42
Open by default

26

TP7

VLCD
VLCD input

R94

0

27

C58
1uF

28
PC3

LCDSEG22 PC4
MC_PFC_IndCurr

R65

0

29
44

SB17
Open by default

45
96

LCDSEG23 PC5
MC_BusVoltage

R64

97

0

98

SB16
Open by default

DocID027351 Rev 5

99
LCDSEG24 PC6
SHIELD
MC_PWM_1H

R36

0

SB2
Open by default
SB27
Open by default

SHIELD_CS
MC_PWM_2H

R33

PC10 111

LCDCOM5

PC11 112

LCDCOM6

PC12 113

Key

C56
LCDSEG25 PC7

LCDCOM4

R87

0

SB4
Open by default
SB30
Open by default

0

2.7pF

PC13

7

PC14

8

PC15

9

X1

PC0

PF0

PC1

PF1

PC2

PF2

PC3

PF3

PC4

PF4

PC5

PF5

PC6

PF6

PC7

PF7

PC8

PF8

PC9

PF9

PC10

PF10

PC11

PF11

PC12

PF12

PC13-WKUP2

PF13

PC14-OSC32_IN

PF14

PC15-OSC32_OUT

PF15

32.768 kHz crystal
PG0

LCDSEG26 PC8

PG1

C57
MC_PWM_3H

R88

SB28
Open by default

PG2

0

2.7pF

PG3

NDK NX3215SA-32.768KHZ-EXS00A-MU00525

LCDSEG27 PC9
PC[0..15]
PF[0..15]
PG[0..15]

MC_EmergencySTOP
PC[0..15]

PG4
SB29
Open by default

PG5
PG6

PF[0..15]
PG7
PG[0..15]

PH0
C54
20pF

LCDSEG[22..27]

LCDCOM[4..6]

20pF

PG10
PG11

25
BOOT0

138

NRST

PG13

BOOT0

PG14

R67
10K
SW1
C141
100nF

PG9

PG12

LCDSEG[18..20]

LCDCOM[4..6]

PH1

RESET#

B1
RESET

PH1-OSC_OUT

390

PH1

LCDSEG[22..27]

24

PH0-OSC_IN

PG15

PF0

A0

11

PF1

A1

12

PF2

A2

13

PF3

A3

14

PF4

A4

15

PF5

A5

18

PF6

19

PF7

20

PF8

R90

21

PF9

22

PF10

SB25
Open by default
R91
0

49

PF11

50

PF12

A6

53

PF13

A7

54

PF14

A8

55

PF15

A9

56

PG0

A10

57

PG1

A11

87

PG2

A12

88

PG3

A13

89

PG4

A14

90

PG5

A15

91

PG6

92

PG7

93

PG8

R105

0

R106

0

R89

0

SAI1_SDB

SAI1_MCKB

SAI1_SCKB

0

SB37
Open by default

NFC_NSS

R35

0

SB5
Open by default
R34

0

SAI1_FSB
MC_PFC_sync
IDD_CNT_EN
MC_PFC_PWM

CODEC_INT
MC_ICL_Shutout

LPUART_TX
LPUART_RX_3V3

124 PG9

FMC_NE2

125 PG10

LCD_NE3

126 PG11

USART1_CTS_3V3

127 PG12

USART1_RTS

128 PG13

R58

0

129 PG14

R61

0

I2C_SDA
I2C_SCL

132 PG15

IOExpander_INT

JP8
STM32L476ZGT6U
Header 2X1

R57

R60

1K2

1K2

D3
BOOT0

VDD
R59
BAT60JFILM

77/101

JP9

150

Bootloader_BOOT0_3V3

D4
BAT60JFILM

Title: MCU2
Bootloader_RESET_3V3

Header 2X1

VDD

Project: STM32L476G-EVAL
Size: A3

Reference: MB1144

Date: 10/7/2016

Revision: C-02
Sheet: 4 of 25

Schematic diagrams

LCDSEG[18..20]

R96
[N/A]

PH0

R95

109.03290.01
2
3

PH1

C55

3

PH0

RESET#

2

RESET#

VDD

A[0..15]

4

A[0..15]

PG8
23

X2
8MHz (with socket)

D[0..15]

1

D[0..15]

10

LCD Glass Connector

VDD

R265

0

R266

0

LCD Glass Connector

R263

R264

1K2

1K2

DocID027351 Rev 5

PA9
PA8
PA10
PB9
PB11
PB10
PB5
PB14
PB13
PB12
PA15
PB8
PB15
PC2
PC1
PC0
PA3
PA2
PB0
PA7
PA6
PB4
PB3
PB1

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48

USBOTG_VBUS
uSD_DETECT
USBOTG_ID
CAN_TX

uSD_CMD

NFC_MISO
USBOTG_PRDY

0

NFC_SCK
Comp2_OUT

R109
0

0

R144

0

R145

0

SmartCard_IO

uSD_D3

I2C2_SCL

R108

R143

uSD_CLK
I2C2_SDA

CN11
LCDCOM1
LCDCOM0
LCDCOM2
LCDCOM3
LCDSEG11
LCDSEG10
LCDSEG9
LCDSEG14
LCDSEG13
LCDSEG12
LCDSEG17
LCDSEG16
LCDSEG15
LCDSEG20
LCDSEG19
LCDSEG18
LCDSEG2
LCDSEG1
LCDSEG5
LCDSEG4
LCDSEG3
LCDSEG8
LCDSEG7
LCDSEG6

Schematic diagrams

78/101

Figure 36. LCD glass module daughterboard connectors

USBOTG_OVRCR
SWP_IO

CAN_RX
NFC_MOSI
DFSDM_CKOUT
LED3
DMIC_DATIN

R111

0

OpAmp1_OUT

Comp2_INP

CN14
LCDCOM7 PD2
LCDCOM6 PC12
LCDCOM5 PC11
LCDCOM4 PC10
LCDSEG21 PB7
LCDSEG22 PC4
LCDSEG23 PC5
LCDSEG24 PC6
LCDSEG25 PC7
LCDSEG26 PC
PC8
LCDSEG27 PC9
LCDSEG28 PD8
LCDSEG29 PD9
LCDSEG30 PD10
LCDSEG31 PD11
LCDSEG32 PD12
LCDSEG33 PD13
LCDSEG34 PD14
LCDSEG35 PD15
LCDSEG36 PE0
LCDSEG37 PE1
LCDSEG38 PE2
LCDSEG39 PE3
LCDSEG0 PA1

uSD_D2
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48

R140
0
R141
0
R142
0

IDD_WAKEUP

USBOTG_PPWR

USART1/IrDA_RX_3V3

R146

0

D13
D14
D15
A16

R147

0

A18
D0
D1

R148

0

PT100_DATIN
uSD_D0

uSD_D1

FMC_NBL0
FMC_NBL1
R151

0

R149

0

A17

OpAmp1_INM

Header 24X2
Header 24X2

A23
R138

GND

100K
R107

0

SmartCard_CLK

R150

0

A19
R139
100K

D[0..15]
A[16..19]
A23

GND

D[0..15]
A[16..19]
A23

LCDSEG[0..39]
LCDCOM[0..7]

LCDSEG[0..39]
LCDCOM[0..7]

Project: STM32L476G-EVAL
Size: A3

Reference: MB1144

Date: 10/7/2016

Revision: C-02
Sheet: 5 of 25

UM1855

Title: LCD_Glass

UM1855

Figure 37. I/O expander

IOExpander1
VDD
R229
100K

I2C_SCL
I2C_SDA
IOExpander_INT

PG14
PG13
PG15

R228

C134
100nF

U32

DocID027351 Rev 5

6
14
10
4
5
2
7
3

0

VCC
Vio
GND
SCLK
SDAT
INT
Data in
A0/Data Out

YXY+
X+
IN3
IN2
IN1
IN0

1
16
15
13
12
11
9
8

IOExpander_YIOExpander_XIOExpander_Y+
IOExpander_X+
LED4
LED2

STMPE811QTR
I2C device address:0x82

R239
100K

IOExpander2
U33
1
2
3
4
5
6
7
8

JOY_SEL
JOY_DOWN
JOY_LEFT
JOY_RIGHT
JOY_UP
SmartCard_RST
SmartCard_CMDVCC
SmartCard_3/5V

19
20
VDD
C132
100nF

21
9
25

GPIO0
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7

GPIO8
GPIO9
GPIO10
GPIO11
GPIO12
GPIO13
GPIO14
GPIO15

SCL
SDA
VCC
GND
TAB
STMPE1600QTR

INT
A2
A1
A0

10
11
12
13
14
15
16
17

SmartCard_OFF
BL_Control
EXT_RESET

22
R243
R232
R230

24
23
18

10K
10K
10K

R231 R233 R237
[N/A][N/A][N/A]
VDD

Default I2C Address:1000010X

79/101

Project: STM32L476G-EVAL
Size: A3

Reference: MB1144

Date: 10/7/2016

Revision: C-02
Sheet: 6 of 25

Schematic diagrams

Title: IO_Expandor

2
Z1
SMAJ5.0A-TR

2

DC-10B

C124
100nF

SV

CV

SG CG1
CG2
CG3

6

3
1

C100
220uF

4
5
6

C116
4.7uF

BNX002-01

VI

PG

EN

VO

R206
[N/A]

GND

1

GND

3

2

1

U28
ST1L05BPUR

+5V
E5V

L2
1
2
3

ADJ

TP17
+3V3

R202

3

+3V3

[N/A]

4

Power Supply 3.3V
Vout=1.22*(1+R1/R2)

R204

5

20.5K[1%]

7

U31
ZEN056V130A24LS
CN22

Schematic diagrams

80/101

Figure 38. Power supply

C101
100nF

C98
10uF[ESR<0.2ohm]

R203 11.8K[1%]

E5V

JP17

EN

72
108
144
39
17
52
62
84
121
106

VDD VDD_MCU
2

3
TP5
VDD

1

VDD_USB

95
131

2
3

6
JP1

VREF+

VREF-

VDDA

VSSA

VDD
VDD
VDD
VDD
VDD
VDD
VDD
VDD
VDD
VDDUSB

VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS

VDDIO2
VDDIO2

VSS
VSS

31

R240
[N/A]

C133
100nF

C131
10uF[ESR<0.2ohm]

RV1

2

3386P-503H[5%]

94
130

U27
LD1117S18TR

+3V3

JP12

Vin

Vout
Tab

TP16
1V8
+1V8
2
4

TP12
3V6

U26
LD1117STR

+5V
3

Vin

C107
10uF

+3V6

Vout
Tab

2
4
R207
124[1%]

1
BT1

2
3

VDD_MCU

+

-

Header 2X1

CR1220 holder

Recommendation:
100nF decoupling capacitor for each VDD pin

to use a supercapacitor:
remove the jumper, and connect positive terminal
of the supercapacitor to pin 2 of the jumper.

VDD_MCU

VDD_IO
C51
100nF

C43
100nF

1uF

R209
232[1%]

C114
100nF

C99
10uF

Vout=1.25*(1+232/124)=3.589V

VDD_USB

C46
C32
1uF

20K[1%]

10.2K[1%]

3

VDD_IO

C45
100nF

R236

5

71
107
143
38
16
51
61
83
120

VDD

C42
100nF

[N/A]

4

R235

STM32L476ZGT6U

JP3

VO
ADJ

Power Supply VDD_ADJ [1.7V to 3.61V]
Vout=1.22*(1+R1/R2)
TP13
VDD_ADJ
VDD_ADJ

R234

3

30

VBAT

TP4
VDD_IO

PG

1

33

GND

1

C48
C41
C50
C38
100nF 100nF 100nF 100nF

VI

1

C59
1uF

TP2
VDD_USB

+3V3

C140
4.7uF

U7B
32

JP2

VDD_MCU

1

C60
100nF

GND
+3V3

6

VREF+

connected by shunt of
IDD_measurement circuitry

VDD_ADJ

U34
ST1L05BPUR

+5V

BEAD
JP10

TP3

3

2

TP18

VDDA

L1

3

TP11

2

2

+3V3

1

LD7
Red
1

1K

Header 4X2
TP8
VDDA

VDD_MCU

R165

GND

+5V

1

DocID027351 Rev 5

D5V

TP1

TP10
5V

7
5
3
1

GND

8
6
4
2

7

U5V
U5V_STLINK

C33
C35
100nF

1uF

C36
100nF

Project: STM32L476G-EVAL
Size: A3

Reference: MB1144

Date: 10/7/2016

Revision: C-02
Sheet: 7 of 25

UM1855

Title: Power

UM1855

Figure 39. Smartcard, SWP and NFC

+3V3
+3V3
R211
10K

R212
10K

R216
4K7

IOExpander1
U30

+5V

C136
C138
4.7uF

C135
100nF

C137

1
2
3
4
100nF 5
6
7
100nF 8
9
10
11
12
13
14

28
27
26
25
24
23
22
21
20
19
18
17
16
15

CLKDIV1 AUX2UC
CLKDIV2 AUX1UC
5V/3V
I/OUC
PGND
XTAL2
C1+
XTAL1
Vddp
OFF
C1GND
Vup
Vdd
PRES
RSTIN
PRES
CMDVCC
I/O
PORADJ
AUX2
Vcc
AUX1
RST
CGND
CLK

TP14
TP15
R210

PC4

0

PB0
IOExpander1

C119
100nF

DocID027351 Rev 5

CN23
GND VCC
SWIO RST
I/O
CLK
NC
NC

C112
4.7uF

R241
100K

R213
100K

+3V3
R217
10K
R214
100K

100nF

5
6
7
8

SmartCard_CLK
SmartCard_OFF

+3V3

R218
10K

SmartCard Connector
PB12

SmartCard_IO

VDD

ST8024CDR
C117

SWP_IO

SmartCard_3/5V

AUX2
AUX1

1
2
3
4

R215
100K
IOExpander1
IOExpander1

SmartCard_RST
SmartCard_CMDVCC

Operating range: 2.72
Default setting: Open
JP4

3

R46

10K

100nF

CN5
DB9-male
1
6
2
7
3
8
4
9
5

U8
0

PB8

R76

0

1
2
3
4

D
GND
VCC
R

RS
CANH
CANL
Vref

8
7
6
5

SN65HVD230

JP6
Header 2X1
R55
120

D2
ESDCAN24-2BLY
Optional

2

CAN_RX

R75

1

CAN_TX

PB9

3

DocID027351 Rev 5

R45

2

C49

1

VDD

UM1855

Figure 47. CAN transceiver

R70
[N/A]

R77
0

Operating voltage range: 3.0
Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
Tagged PDF                      : Yes
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 101
Producer                        : Acrobat Distiller 9.0.0 (Windows); modified using iText 2.1.7 by 1T3XT
Keywords                        : Technical Literature, 027351, Product Development, Specification, User manual, STM32L476G-EVAL
Modify Date                     : 2016:11:22 21:32:46+01:00
Subject                         : -
Creator                         : C2 v4.2.0220 build 670 - c2_rendition_config : Techlit_Active
Revision                        : 5
Title                           : Evaluation board with STM32L476ZGT6 MCU
Alternate ID                    : 027351
Alternate Name                  : UM1855
Classification                  : Unclassified
Document Type                   : User manual
Author                          : STMICROELECTRONICS
Create Date                     : 2016:11:21 10:56:31Z
EXIF Metadata provided by EXIF.tools

Navigation menu