Ultra Low Power 32 Bit MCU Arm® Based Cortex® M0+, Up To 192KB Flash, 20KB SRAM, 6KB EEPROM, USB, ADC, DACs STM32L072Z Reference Manual

User Manual: Pdf

Open the PDF directly: View PDF PDF.
Page Count: 149

DownloadUltra-low-power 32-bit MCU Arm®-based Cortex®-M0+, Up To 192KB Flash, 20KB SRAM, 6KB EEPROM, USB, ADC, DACs STM32L072Z Reference Manual
Open PDF In BrowserView PDF
STM32L072x8 STM32L072xB
STM32L072xZ
Ultra-low-power 32-bit MCU Arm®-based Cortex®-M0+, up to 192KB
Flash, 20KB SRAM, 6KB EEPROM, USB, ADC, DACs
Datasheet - production data

Features
•

•

•

•
•

•

•
•

Ultra-low-power platform
– 1.65 V to 3.6 V power supply
– -40 to 125 °C temperature range
– 0.29 µA Standby mode (3 wakeup pins)
– 0.43 µA Stop mode (16 wakeup lines)
– 0.86 µA Stop mode + RTC + 20 KB RAM
retention
– Down to 93 µA/MHz in Run mode
– 5 µs wakeup time (from Flash memory)
– 41 µA 12-bit ADC conversion at 10 ksps
Core: Arm® 32-bit Cortex®-M0+ with MPU
– From 32 kHz up to 32 MHz max.
– 0.95 DMIPS/MHz
Memories
– Up to 192 KB Flash memory with ECC(2 banks
with read-while-write capability)
– 20 KB RAM
– 6 KB of data EEPROM with ECC
– 20-byte backup register
– Sector protection against R/W operation
Up to 84 fast I/Os (78 I/Os 5V tolerant)
Reset and supply management
– Ultra-safe, low-power BOR (brownout reset)
with 5 selectable thresholds
– Ultra-low-power POR/PDR
– Programmable voltage detector (PVD)
Clock sources
– 1 to 25 MHz crystal oscillator
– 32 kHz oscillator for RTC with calibration
– High speed internal 16 MHz factory-trimmed RC
(+/- 1%)
– Internal low-power 37 kHz RC
– Internal multispeed low-power 65 kHz to
4.2 MHz RC
– Internal self calibration of 48 MHz RC for USB
– PLL for CPU clock
Pre-programmed bootloader
– USB, USART supported
Development support
– Serial wire debug supported

September 2017
This is information on a product in full production.

)%*$

LQFP32 7x7 mm
LQFP48 7x7 mm
LQFP64 10x10 mm
LQFP100 14x14 mm

UFQFPN32
5x5 mm

UFBGA64
TFBGA64
5x5mm

)%*$

UFBGA100
7x7 mm

WLCSP49
(3.294x3.258 mm)

•

•
•
•

•

•
•
•

Rich Analog peripherals
– 12-bit ADC 1.14 Msps up to 16 channels (down
to 1.65 V)
– 2 x 12-bit channel DACs with output buffers
(down to 1.8 V)
– 2x ultra-low-power comparators (window mode
and wake up capability, down to 1.65 V)
Up to 24 capacitive sensing channels supporting
touchkey, linear and rotary touch sensors
7-channel DMA controller, supporting ADC, SPI,
I2C, USART, DAC, Timers
11x peripheral communication interfaces
– 1x USB 2.0 crystal-less, battery charging
detection and LPM
– 4x USART (2 with ISO 7816, IrDA), 1x UART
(low power)
– Up to 6x SPI 16 Mbits/s
– 3x I2C (2 with SMBus/PMBus)
11x timers: 2x 16-bit with up to 4 channels, 2x 16-bit
with up to 2 channels, 1x 16-bit ultra-low-power
timer, 1x SysTick, 1x RTC, 2x 16-bit basic for DAC,
and 2x watchdogs (independent/window)
CRC calculation unit, 96-bit unique ID
True RNG and firewall protection
All packages are ECOPACK®2
Table 1. Device summary
Reference

Part number

STM32L072x8 STM32L072V8
STM32L072xB

STM32L072VB, STM32L072RB,
STM32L072CB, STM32L072KB

STM32L072xZ

STM32L072VZ, STM32L072RZ,
STM32L072CZ, STM32L072KZ

DocID027100 Rev 4

1/149
www.st.com

Contents

STM32L072xx

Contents
1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3

2.1

Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2

Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1

Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2

Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3

Arm® Cortex®-M0+ core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4

Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.1

Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.2

Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.3

Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5

Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6

Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 26

3.7

General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.8

Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.9

Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.10

Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.11

Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.12

Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.12.1

2/149

Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.13

Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.14

Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 30

3.15

Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.16

Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.16.1

General-purpose timers (TIM2, TIM3, TIM21 and TIM22) . . . . . . . . . . . 32

3.16.2

Low-power Timer (LPTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.16.3

Basic timer (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.16.4

SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.16.5

Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

DocID027100 Rev 4

STM32L072xx

Contents
3.16.6

3.17

Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.17.1

I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.17.2

Universal synchronous/asynchronous receiver transmitter (USART) . . 34

3.17.3

Low-power universal asynchronous receiver transmitter (LPUART) . . . 35

3.17.4

Serial peripheral interface (SPI)/Inter-integrated sound (I2S) . . . . . . . . 35

3.17.5

Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.18

Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.19

Cyclic redundancy check (CRC) calculation unit . . . . . . . . . . . . . . . . . . . 36

3.20

Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4

Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5

Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.1

Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.1.1

Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1.2

Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1.3

Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1.4

Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1.5

Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1.6

Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1.7

Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2

Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3

Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3.1

General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3.2

Embedded reset and power control block characteristics . . . . . . . . . . . 64

6.3.3

Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3.4

Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3.5

Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.6

External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.7

Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3.8

PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.9

Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.10

EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.11

Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
DocID027100 Rev 4

3/149
4

Contents

7

STM32L072xx
6.3.12

I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.13

I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.14

NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3.15

12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3.16

DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.17

Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.18

Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.19

Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.20

Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.1

LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2

UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3

LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4

UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.5

TFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.6

WLCSP49 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.7

LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.8

LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.9

UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.10

Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.10.1

Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8

Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4/149

DocID027100 Rev 4

STM32L072xx

List of tables

List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.

Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ultra-low-power STM32L072xx device features and peripheral counts . . . . . . . . . . . . . . . 12
Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 17
CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 17
Functionalities depending on the working mode
(from Run/active down to standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
STM32L0xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Internal voltage reference measured values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Capacitive sensing GPIOs available on STM32L072xx devices . . . . . . . . . . . . . . . . . . . . 31
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
STM32L072xx I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
STM32L072xxx pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Alternate functions port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Alternate functions port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Alternate functions port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Alternate functions port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Alternate functions port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Alternate functions port H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 64
Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Current consumption in Run mode, code with data processing running from
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Current consumption in Run mode vs code type,
code with data processing running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Current consumption in Run mode, code with data processing running from RAM . . . . . . 69
Current consumption in Run mode vs code type,
code with data processing running from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Current consumption in Low-power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Current consumption in Low-power sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 74
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 75
Average current consumption during Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Peripheral current consumption in Run or Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Peripheral current consumption in Stop and Standby mode . . . . . . . . . . . . . . . . . . . . . . . 79
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

DocID027100 Rev 4

5/149
7

List of tables
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.

6/149

STM32L072xx

HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
16 MHz HSI16 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Flash memory and data EEPROM endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 89
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
RAIN max for fADC = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
SPI characteristics in voltage Range 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
SPI characteristics in voltage Range 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
SPI characteristics in voltage Range 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
USB: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 124
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch
ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
UFBGA64 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . 129
TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
TFBGA64 recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . . . . 132
WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
WLCSP49 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 136

DocID027100 Rev 4

STM32L072xx
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.

List of tables

LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . 138
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . 140
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
STM32L072xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

DocID027100 Rev 4

7/149
7

List of figures

STM32L072xx

List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.

8/149

STM32L072xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
STM32L072xx LQFP100 pinout - 14 x 14 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
STM32L072xx UFBGA100 ballout - 7x 7 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
STM32L072xx LQFP64 pinout - 10 x 10 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
STM32L072xx UFBGA64/TFBGA64 ballout - 5x 5 mm . . . . . . . . . . . . . . . . . . . . . . . . . . 40
STM32L072xx WLCSP49 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
STM32L072xx LQFP48 pinout - 7 x 7 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
STM32L072xx LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
STM32L072xx UFQFPN32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSE, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSI16, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
IDD vs VDD, at TA= 25 °C, Low-power run mode, code running
from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled
and running on LSE Low drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled,
all clocks OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
HSI16 minimum and maximum value versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . 85
VIH/VIL versus VDD (CMOS I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
VIH/VIL versus VDD (TTL I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Power supply and reference decoupling (VREF+ not connected to VDDA) . . . . . . . . . . . . 103
Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 104
12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 119
LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 121
LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball

DocID027100 Rev 4

STM32L072xx

Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.

List of figures

grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 125
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint . . . . . . . . . . 126
LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch
ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch
ball grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
UFBGA64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
,grid array recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
TFBGA64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
WLCSP49 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 137
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 138
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 139
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 140
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

DocID027100 Rev 4

9/149
9

Introduction

1

STM32L072xx

Introduction
The ultra-low-power STM32L072xx are offered in 9 different package typesfrom 32 pins to
100 pins. Depending on the device chosen, different sets of peripherals are included, the
description below gives an overview of the complete range of peripherals proposed in this
family.
These features make the ultra-low-power STM32L072xx microcontrollers suitable for a wide
range of applications:
•

Gas/water meters and industrial sensors

•

Healthcare and fitness equipment

•

Remote control and user interface

•

PC peripherals, gaming, GPS equipment

•

Alarm system, wired and wireless sensors, video intercom

This STM32L072xx datasheet should be read in conjunction with the STM32L0x2xx
reference manual (RM0376).
For information on the Arm® Cortex®-M0+ core please refer to the Cortex®-M0+ Technical
Reference Manual, available from the www.arm.com website.
Figure 1 shows the general block diagram of the device family.

10/149

DocID027100 Rev 4

STM32L072xx

2

Description

Description
The ultra-low-power STM32L072xx microcontrollers incorporate the connectivity power of
the universal serial bus (USB 2.0 crystal-less) with the high-performance Arm® Cortex®-M0+
32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), highspeed embedded memories (up to 192 Kbytes of Flash program memory, 6 Kbytes of data
EEPROM and 20 Kbytes of RAM) plus an extensive range of enhanced I/Os and
peripherals.
The STM32L072xx devices provide high power efficiency for a wide range of performance.
It is achieved with a large choice of internal and external clock sources, an internal voltage
adaptation and several low-power modes.
The STM32L072xx devices offer several analog features, one 12-bit ADC with hardware
oversampling, two DACs, two ultra-low-power comparators, several timers, one low-power
timer (LPTIM), four general-purpose 16-bit timers and two basic timer, one RTC and one
SysTick which can be used as timebases. They also feature two watchdogs, one watchdog
with independent clock and window capability and one window watchdog based on bus
clock.
Moreover, the STM32L072xx devices embed standard and advanced communication
interfaces: up to three I2Cs, two SPIs, one I2S, four USARTs, a low-power UART
(LPUART), and a crystal-less USB. The devices offer up to 24 capacitive sensing channels
to simply add touch sensing functionality to any application.
The STM32L072xx also include a real-time clock and a set of backup registers that remain
powered in Standby mode.
The ultra-low-power STM32L072xx devices operate from a 1.8 to 3.6 V power supply (down
to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR
option. They are available in the -40 to +125 °C temperature range. A comprehensive set of
power-saving modes allows the design of low-power applications.

DocID027100 Rev 4

11/149
36

Description

2.1

STM32L072xx

Device overview
Table 2. Ultra-low-power STM32L072xx device features and peripheral counts
Peripheral

STM32L07
2V8

Flash (Kbytes)

64 Kbytes

Data EEPROM (Kbytes)

3 Kbytes

STM32L07
2KB

STM32L07
2CB

STM32L07
2VB

2

LPTIMER

1

RTC/SYSTICK/IWDG/
WWDG

USB
/(VDD_USB)
GPIOs

1/1/1/1
6(4)(1)/1

4(3)(2)/0

6(4)(1)/1

4(3)(2)/0

6(4)(1)/1

3

2

3

2

3

4

4(3)

4

4(3)

4

1/(0)(3)

1/(1)

1
1/(1)

1/(0)(3)

84

25(3)

1/(1)
40(4)

84

Clocks:
HSE/LSE/HSI/MSI/LSI
12-bit synchronized ADC
Number of channels

51(5)

1
16

1
10

1
13(4)

1
16

Comparators

2
24

13(3)

19(4)

24

Max. CPU frequency

84

51(5)

1
10

1
13(4)

1
16

1
16(5)

24(5)

13(3)

19(4)

24

24(5)

32 MHz
1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 to 3.6 V without BOR option
Ambient temperature: –40 to +125 °C
Junction temperature: –40 to +130 °C

Operating temperatures

Packages

40(4)

1
16(5)
2
2

Operating voltage

25(3)

1/1/1/1/1

12-bit DAC
Number of channels

Capacitive sensing
channels

STM32L07
2RZ

20 Kbytes

Basic

Com.
USART
interfaces
LPUART

STM32L07
2VZ

6 Kbytes

4

I2C

STM32L07
2CZ

192 Kbytes

Generalpurpose

SPI/I2S

STM32L07
2KZ

128 Kbytes

RAM (Kbytes)

Timers

STM32L07
2RB

LQFP100 UFQFPN32
UFBGA100
LQFP32

LQFP48
WLCSP49

LQFP100
UFBGA100

LQFP64
TFBGA64

UFQFPN32
LQFP32

LQFP48
WLCSP49

LQFP100
UFBGA100

LQFP64
TFBGA64
UFBGA64

1. 4 SPI interfaces are USARTs operating in SPI master mode.
2. 3 SPI interfaces are USARTs operating in SPI master mode.
3.

UFQFP32 has 2 GPIOs, 1 UART and 1 capacitive sensing channel less that LQFP32. However, UFQFP32 features a VDD_USB pin while
LQPF32 does not.

4.

LQFP48 has three GPIOs, three ADC channels and two capacitive sensing channel less than WLCSP49.

5.

TFBGA64 has one GPIO, one ADC input and one capacitive sensing channel less than LQFP64.

12/149

DocID027100 Rev 4

STM32L072xx

Description
Figure 1. STM32L072xx block diagram
7HPS
VHQVRU

6:'

6:'

)/$6+
((3520
%227
),5(:$//
&257(;0&38
)PD[0+]

5$0

038

'%*
'0$

19,&

(;7,

$
3
%


$'&

$,1[

63,

0,62026,
6&.166

86$57

5;7;576
&76&.

7,0

FK

7,0

FK

%5,'*(

3$>@

*3,23257$

3%>@

*3,23257%

3&>@

3(>@

3+>@>@

,13,10287

&203

,13,10287

%5,'*(

/37,0

,1,1
(75287

5$0.

86%)6

7,0

'$&

287

7,0

'$&

287

,&

6&/6'$
60%$

,&

6&/6'$

,&

6&/6'$
60%$

&5&

*3,23257&

51*

*3,23257'

$+%)PD[0+]

3'>@

&203
76&

*3,23257(

*3,23257+

::'*

$
3
%

26&B,1
26&B287

+6(

+6,0

+6,0
/6,

06,

5;7;576
&76&.

86$57

5;7;576
&76&.

,:'*

7,0

5;7;576
&76&.
5;7;576
&76
0,620&.
026,6'
6&.&.166
:6
FK

7,0

FK

86$57

57&

/38$57

%&.35(*

63,,6

5(6(7 &/.

:.83[

26&B,1
26&B287

86$57

&56

3//

/6(

'3'02(
&56B6<1&
9''B86%

39'B,1
95()B287
308
1567
9''$
9''

5(*8/$725

06Y9

DocID027100 Rev 4

13/149
36

Description

2.2

STM32L072xx

Ultra-low-power device continuum
The ultra-low-power family offers a large choice of core and features, from 8-bit proprietary
core up to Arm® Cortex®-M4, including Arm® Cortex®-M3 and Arm® Cortex®-M0+. The
STM32Lx series are the best choice to answer your needs in terms of ultra-low-power
features. The STM32 ultra-low-power series are the best solution for applications such as
gaz/water meter, keyboard/mouse or fitness and healthcare application. Several built-in
features like LCD drivers, dual-bank memory, low-power run mode, operational amplifiers,
128-bit AES, DAC, crystal-less USB and many other definitely help you building a highly
cost optimized application by reducing BOM cost. STMicroelectronics, as a reliable and
long-term manufacturer, ensures as much as possible pin-to-pin compatibility between all
STM8Lx and STM32Lx on one hand, and between all STM32Lx and STM32Fx on the other
hand. Thanks to this unprecedented scalability, your legacy application can be upgraded to
respond to the latest market feature and efficiency requirements.

14/149

DocID027100 Rev 4

STM32L072xx

Functional overview

3

Functional overview

3.1

Low-power modes
The ultra-low-power STM32L072xx support dynamic voltage scaling to optimize its power
consumption in Run mode. The voltage from the internal low-drop regulator that supplies
the logic can be adjusted according to the system’s maximum operating frequency and the
external voltage supply.
There are three power consumption ranges:
•

Range 1 (VDD range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz

•

Range 2 (full VDD range), with a maximum CPU frequency of 16 MHz

•

Range 3 (full VDD range), with a maximum CPU frequency limited to 4.2 MHz

Seven low-power modes are provided to achieve the best compromise between low-power
consumption, short startup time and available wakeup sources:
•

Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at
16 MHz is about 1 mA with all peripherals off.

•

Low-power run mode
This mode is achieved with the multispeed internal (MSI) RC oscillator set to the lowspeed clock (max 131 kHz), execution from SRAM or Flash memory, and internal
regulator in low-power mode to minimize the regulator's operating current. In Lowpower run mode, the clock frequency and the number of enabled peripherals are both
limited.

•

Low-power sleep mode
This mode is achieved by entering Sleep mode with the internal voltage regulator in
low-power mode to minimize the regulator’s operating current. In Low-power sleep
mode, both the clock frequency and the number of enabled peripherals are limited; a
typical example would be to have a timer running at 32 kHz.
When wakeup is triggered by an event or an interrupt, the system reverts to the Run
mode with the regulator on.
Stop mode with RTC
The Stop mode achieves the lowest power consumption while retaining the RAM and
register contents and real time clock. All clocks in the VCORE domain are stopped, the
PLL, MSI RC, HSE crystal and HSI RC oscillators are disabled. The LSE or LSI is still
running. The voltage regulator is in the low-power mode.
Some peripherals featuring wakeup capability can enable the HSI RC during Stop
mode to detect their wakeup condition.
The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the
processor can serve the interrupt or resume the code. The EXTI line source can be any
GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event
(if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup
events, the USB/USART/I2C/LPUART/LPTIMER wakeup events.

DocID027100 Rev 4

15/149
36

Functional overview
•

STM32L072xx

Stop mode without RTC
The Stop mode achieves the lowest power consumption while retaining the RAM and
register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, HSE and
LSE crystal oscillators are disabled.
Some peripherals featuring wakeup capability can enable the HSI RC during Stop
mode to detect their wakeup condition.
The voltage regulator is in the low-power mode. The device can be woken up from Stop
mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or
resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the
comparator 1 event or comparator 2 event (if internal reference voltage is on). It can
also be wakened by the USB/USART/I2C/LPUART/LPTIMER wakeup events.

•

Standby mode with RTC
The Standby mode is used to achieve the lowest power consumption and real time
clock. The internal voltage regulator is switched off so that the entire VCORE domain is
powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched
off. The LSE or LSI is still running. After entering Standby mode, the RAM and register
contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG,
RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register).
The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG
reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B),
RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

•

Standby mode without RTC
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire VCORE domain is powered off. The
PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off.
After entering Standby mode, the RAM and register contents are lost except for
registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz
oscillator, RCC_CSR register).
The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising
edge on one of the three WKUP pin occurs.

Note:

16/149

The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by
entering Stop or Standby mode.

DocID027100 Rev 4

STM32L072xx

Functional overview

Table 3. Functionalities depending on the operating power supply range
Functionalities depending on the operating power supply
range
Operating power supply
range(1)

DAC and ADC
operation

Dynamic voltage
scaling range

USB

VDD = 1.65 to 1.71 V

ADC only, conversion
time up to 570 ksps

Range 2 or
range 3

Not functional

VDD = 1.71 to 1.8 V(2)

ADC only, conversion
time up to 1.14 Msps

Range 1, range 2 or
range 3

Functional(3)

VDD = 1.8 to 2.0 V(2)

Conversion time up to
1.14 Msps

Range1, range 2 or
range 3

Functional(3)

VDD = 2.0 to 2.4 V

Conversion time up to
1.14 Msps

Range 1, range 2 or
range 3

Functional(3)

VDD = 2.4 to 3.6 V

Conversion time up to
1.14 Msps

Range 1, range 2 or
range 3

Functional(3)

1. GPIO speed depends on VDD voltage range. Refer to Table 62: I/O AC characteristics for more information
about I/O speed.
2. CPU frequency changes from initial to final must respect "fcpu initial <4*fcpu final". It must also respect 5
μs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2
MHz to 16 MHz, wait 5 μs, then switch from 16 MHz to 32 MHz.
3. To be USB compliant from the I/O voltage standpoint, the minimum VDD_USB is 3.0 V.

Table 4. CPU frequency range depending on dynamic voltage scaling
CPU frequency range

Dynamic voltage scaling range

16 MHz to 32 MHz (1ws)
32 kHz to 16 MHz (0ws)

Range 1

8 MHz to 16 MHz (1ws)
32 kHz to 8 MHz (0ws)

Range 2

32 kHz to 4.2 MHz (0ws)

Range 3

DocID027100 Rev 4

17/149
36

Functional overview

STM32L072xx
Table 5. Functionalities depending on the working mode
(from Run/active down to standby) (1)(2)
Standby

Run/Active

Sleep

CPU

Y

--

Y

--

--

--

Flash memory

O

O

O

O

--

--

RAM

Y

Y

Y

Y

Y

--

Backup registers

Y

Y

Y

Y

Y

Y

EEPROM

O

O

O

O

--

--

Brown-out reset
(BOR)

O

O

O

O

O

DMA

O

O

O

O

--

Programmable
Voltage Detector
(PVD)

O

O

O

O

O

O

-

Power-on/down
reset (POR/PDR)

Y

Y

Y

Y

Y

Y

Y

High Speed
Internal (HSI)

O

O

--

--

(3)

--

High Speed
External (HSE)

O

O

O

O

--

--

Low Speed Internal
(LSI)

O

O

O

O

O

O

Low Speed
External (LSE)

O

O

O

O

O

O

Multi-Speed
Internal (MSI)

O

O

Y

Y

--

--

Inter-Connect
Controller

Y

Y

Y

Y

Y

--

RTC

O

O

O

O

O

O

O

RTC Tamper

O

O

O

O

O

O

O

O

Auto WakeUp
(AWU)

O

O

O

O

O

O

O

O

USB

O

O

--

--

--

O

--

O

O

(4)

O

--

O

--

IPs

USART

O

O

O

Lowpower
sleep

Stop

Lowpower
run

Wakeup
capability

O

Wakeup
capability

O
--

LPUART

O

O

O

O

O(4)

SPI

O

O

O

O

--

I2C

O

O

O

O

O(5)

ADC

O

O

--

--

--

--

DAC

O

O

O

O

O

--

18/149

DocID027100 Rev 4

O

-O

--

Y

STM32L072xx

Functional overview
Table 5. Functionalities depending on the working mode
(from Run/active down to standby) (continued)(1)(2)
Standby

Run/Active

Sleep

Temperature
sensor

O

O

O

O

O

Comparators

O

O

O

O

O

16-bit timers

O

O

O

O

--

LPTIMER

O

O

O

O

O

O

IWDG

O

O

O

O

O

O

WWDG

O

O

O

O

--

--

Touch sensing
controller (TSC)

O

O

--

--

--

--

SysTick Timer

O

O

O

O

GPIOs

O

O

O

O

0 µs

0.36 µs

3 µs

32 µs

IPs

Wakeup time to
Run mode

Lowpower
sleep

Stop

Lowpower
run

Wakeup
capability

Wakeup
capability
--

O

---

O

O

-O

O
3.5 µs

2 pins
50 µs

0.28 µA (No
0.4 µA (No
RTC) VDD=1.8 V RTC) VDD=1.8 V
Consumption
VDD=1.8 to 3.6 V
(Typ)

Down to
140 µA/MHz
(from Flash
memory)

Down to
37 µA/MHz
(from Flash
memory)

Down to
8 µA

0.65 µA (with
0.8 µA (with
=1.8
V
RTC)
VDD=1.8 V
RTC)
V
DD
Down to
4.5 µA
0.4 µA (No
0.29 µA (No
RTC) VDD=3.0 V RTC) VDD=3.0 V
0.85 µA (with
1 µA (with RTC)
RTC) VDD=3.0 V
VDD=3.0 V

1. Legend:
“Y” = Yes (enable).
“O” = Optional can be enabled/disabled by software)
“-” = Not available
2. The consumption values given in this table are preliminary data given for indication. They are subject to slight changes.
3. Some peripherals with wakeup from Stop capability can request HSI to be enabled. In this case, HSI is woken up by the
peripheral, and only feeds the peripheral which requested it. HSI is automatically put off when the peripheral does not need
it anymore.
4. UART and LPUART reception is functional in Stop mode. It generates a wakeup interrupt on Start. To generate a wakeup
on address match or received frame event, the LPUART can run on LSE clock while the UART has to wake up or keep
running the HSI clock.
5. I2C address detection is functional in Stop mode. It generates a wakeup interrupt in case of address match. It will wake up
the HSI during reception.

DocID027100 Rev 4

19/149
36

Functional overview

3.2

STM32L072xx

Interconnect matrix
Several peripherals are directly interconnected. This allows autonomous communication
between peripherals, thus saving CPU resources and power consumption. In addition,
these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power
run, Low-power sleep and Stop modes.

Table 6. STM32L0xx peripherals interconnect matrix
Interconnect
source

Lowpower
sleep

Stop

Y

Y

-

Y

Y

Y

Y

Y

Y

Y

Y

-

Timer triggered by Auto
wake-up

Y

Y

Y

Y

-

LPTIM

Timer triggered by RTC
event

Y

Y

Y

Y

Y

TIMx

Clock source used as
input channel for RC
measurement and
trimming

Y

Y

Y

Y

-

CRS/HSI48

the clock recovery
system trims the HSI48
based on USB SOF

Y

Y

-

-

-

TIM3

USB_SOF is channel
input for calibration

Y

Y

-

-

-

TIMx

Timer input channel and
trigger

Y

Y

Y

Y

-

LPTIM

Timer input channel and
trigger

Y

Y

Y

Y

Y

ADC,DAC

Conversion trigger

Y

Y

Y

Y

-

Interconnect action

Run

TIM2,TIM21,
TIM22

Timer input channel,
trigger from analog
signals comparison

Y

Y

LPTIM

Timer input channel,
trigger from analog
signals comparison

Y

TIMx

Timer triggered by other
timer

TIM21

COMPx

TIMx

RTC

All clock
source

USB

GPIO

20/149

LowSleep power
run

Interconnect
destination

DocID027100 Rev 4

STM32L072xx

3.3

Functional overview

Arm® Cortex®-M0+ core with MPU
The Cortex-M0+ processor is an entry-level 32-bit Arm Cortex processor designed for a
broad range of embedded applications. It offers significant benefits to developers, including:
•

a simple architecture that is easy to learn and program

•

ultra-low power, energy-efficient operation

•

excellent code density

•

deterministic, high-performance interrupt handling

•

upward compatibility with Cortex-M processor family

•

platform security robustness, with integrated Memory Protection Unit (MPU).

The Cortex-M0+ processor is built on a highly area and power optimized 32-bit processor
core, with a 2-stage pipeline Von Neumann architecture. The processor delivers exceptional
energy efficiency through a small but powerful instruction set and extensively optimized
design, providing high-end processing hardware including a single-cycle multiplier.
The Cortex-M0+ processor provides the exceptional performance expected of a modern 32bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.
Owing to its embedded Arm core, the STM32L072xx are compatible with all Arm tools and
software.

Nested vectored interrupt controller (NVIC)
The ultra-low-power STM32L072xx embed a nested vectored interrupt controller able to
handle up to 32 maskable interrupt channels and 4 priority levels.
The Cortex-M0+ processor closely integrates a configurable Nested Vectored Interrupt
Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC:
•

includes a Non-Maskable Interrupt (NMI)

•

provides zero jitter interrupt option

•

provides four interrupt priority levels

The tight integration of the processor core and NVIC provides fast execution of Interrupt
Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved
through the hardware stacking of registers, and the ability to abandon and restart loadmultiple and store-multiple operations. Interrupt handlers do not require any assembler
wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also
significantly reduces the overhead when switching from one ISR to another.
To optimize low-power designs, the NVIC integrates with the sleep modes, that include a
deep sleep function that enables the entire device to enter rapidly stop or standby mode.
This hardware block provides flexible interrupt management features with minimal interrupt
latency.

DocID027100 Rev 4

21/149
36

Functional overview

STM32L072xx

3.4

Reset and supply management

3.4.1

Power supply schemes

3.4.2

•

VDD = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided
externally through VDD pins.

•

VSSA, VDDA = 1.65 to 3.6 V: external analog power supplies for ADC reset blocks, RCs
and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.

•

VDD_USB = 1.65 to 3.6V: external power supply for USB transceiver, USB_DM (PA11)
and USB_DP (PA12). To guarantee a correct voltage level for USB communication
VDD_USB must be above 3.0V. If USB is not used this pin must be tied to VDD. On
packages without VDD_USB pin, VDD_USB voltage is internally connected to VDD
voltage.

Power supply supervisor
The devices have an integrated ZEROPOWER power-on reset (POR)/power-down reset
(PDR) that can be coupled with a brownout reset (BOR) circuitry.
Two versions are available:
•

The version with BOR activated at power-on operates between 1.8 V and 3.6 V.

•

The other version without BOR operates between 1.65 V and 3.6 V.

After the VDD threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or
not at power-on), the option byte loading process starts, either to confirm or modify default
thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes
1.65 V (whatever the version, BOR active or not, at power-on).
When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever
the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the
power ramp-up should guarantee that 1.65 V is reached on VDD at least 1 ms after it exits
the POR area.
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To
reduce the power consumption in Stop mode, it is possible to automatically switch off the
internal reference voltage (VREFINT) in Stop mode. The device remains in reset mode when
VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external
reset circuit.
Note:

The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive
at power-up.
The devices feature an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An
interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when
VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

22/149

DocID027100 Rev 4

STM32L072xx

3.4.3

Functional overview

Voltage regulator
The regulator has three operation modes: main (MR), low power (LPR) and power down.

3.5

•

MR is used in Run mode (nominal regulation)

•

LPR is used in the Low-power run, Low-power sleep and Stop modes

•

Power down is used in Standby mode. The regulator output is high impedance, the
kernel circuitry is powered down, inducing zero consumption but the contents of the
registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC,
LSI, LSE crystal 32 KHz oscillator, RCC_CSR).

Clock management
The clock controller distributes the clocks coming from different oscillators to the core and
the peripherals. It also manages clock gating for low-power modes and ensures clock
robustness. It features:
•

Clock prescaler
To get the best trade-off between speed and current consumption, the clock frequency
to the CPU and peripherals can be adjusted by a programmable prescaler.

•

Safe clock switching
Clock sources can be changed safely on the fly in Run mode through a configuration
register.

•

Clock management
To reduce power consumption, the clock controller can stop the clock to the core,
individual peripherals or memory.

•

System clock source
Three different clock sources can be used to drive the master clock SYSCLK:

•

–

1-25 MHz high-speed external crystal (HSE), that can supply a PLL

–

16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can
supply a PLLMultispeed internal RC oscillator (MSI), trimmable by software, able
to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1
MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE),
the MSI frequency can be trimmed by software down to a ±0.5% accuracy.

Auxiliary clock source
Two ultra-low-power clock sources that can be used to drive the real-time clock:

•

–

32.768 kHz low-speed external crystal (LSE)

–

37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock can be measured using the high-speed internal RC oscillator for
greater precision.

RTC clock source
The LSI, LSE or HSE sources can be chosen to clock the RTC, whatever the system
clock.

•

USB clock source
A 48 MHz clock trimmed through the USB SOF or LSE supplies the USB interface.

DocID027100 Rev 4

23/149
36

Functional overview
•

STM32L072xx

Startup clock
After reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI).
The prescaler ratio and clock source can be changed by the application program as
soon as the code execution starts.

•

Clock security system (CSS)
This feature can be enabled by software. If an HSE clock failure occurs, the master
clock is automatically switched to HSI and a software interrupt is generated if enabled.
Another clock security system can be enabled, in case of failure of the LSE it provides
an interrupt or wakeup event which is generated if enabled.

•

Clock-out capability (MCO: microcontroller clock output)
It outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and
APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See
Figure 2 for details on the clock tree.

24/149

DocID027100 Rev 4

STM32L072xx

Functional overview
Figure 2. Clock tree

#9

(QDEOH:DWFKGRJ

/6,5&

/HJHQG
+6( +LJKVSHHGH[WHUQDOFORFNVLJQDO
+6, +LJKVSHHGLQWHUQDOFORFNVLJQDO
/6, /RZVSHHGLQWHUQDOFORFNVLJQDO
/6( /RZVSHHGH[WHUQDOFORFNVLJQDO
06, 0XOWLVSHHGLQWHUQDOFORFNVLJQDO

:DWFKGRJ/6

/6,WHPSR
57&6(/

57&HQDEOH

/6(26&

57&

/6(WHPSR

/68

/6'

0+]

#9
#9

06,5&

/6,
/6(

06,

/HYHOVKLIWHUV
#9

/6'

0&26(/

$'&HQDEOH
$'&&/.

0&2



QRWGHHSVOHHS

#9

+6,5&
/HYHOVKLIWHUV
#9

FNBUFKV



+6,
6\VWHP
&ORFN

06,
+6,
+6(

#9

+6(26&
/HYHOVKLIWHUV
#9

3//65&

/68
#9

0+]&ORFN
'HWHFWRU

3//&/.
#9
FNBSOOLQ 3//

'HGLFDWHG0+]3//RXWSXW
+6,06(/

)&/.

QRW VOHHSRU
GHHSVOHHS

+&/.

6\V7LFN
7LPHU

$+%
35(6&
«
$3%
35(6&


;


/HYHOVKLIWHUV
#9''&25(
+6(SUHVHQWRUQRW

QRW VOHHSRU
GHHSVOHHS



0+]
PD[

3&/.WR$3%
SHULSKHUDOV

3HULSKHUDO
FORFNHQDEOH

WR7,0[

,I $3%SUHVF  [
HOVH[



/6'

&ORFN
6RXUFH
&RQWURO

$3%
35(6&


3HULSKHUDO
FORFNHQDEOH
3&/.WR$3%
0+]
SHULSKHUDOV
PD[

3HULSKHUDO
FORFNHQDEOH
,I $3%SUHVF  [
HOVH[

#9

5&0+]

&.B3:5

QRWGHHSVOHHS

+6,

/HYHOVKLIWHUV
#9

/6,
6<6&/.

&ORFN
5HFRYHU\
6\VWHP

WR7,0[

3HULSKHUDO
FORFNHQDEOH

/6(
+6,

3HULSKHUDO
FORFNHQDEOH

3&/.

3HULSKHUDO
FORFNHQDEOH

/37,0&/.

/38$57
8$57&/.

,&&/.

XVEBHQ
UQJBHQ

0+]
86%&/.
0+]51*
06Y9

DocID027100 Rev 4

25/149
36

Functional overview

3.6

STM32L072xx

Low-power real-time clock and backup registers
The real time clock (RTC) and the 5 backup registers are supplied in all modes including
standby mode. The backup registers are five 32-bit registers used to store 20 bytes of user
application data. They are not reset by a system reset, or when the device wakes up from
Standby mode.
The RTC is an independent BCD timer/counter. Its main features are the following:
•
•
•
•
•
•
•
•
•

Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format
Automatically correction for 28, 29 (leap year), 30, and 31 day of the month
Two programmable alarms with wake up from Stop and Standby mode capability
Periodic wakeup from Stop and Standby with programmable resolution and period
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy
2 anti-tamper detection pins with programmable filter. The MCU can be woken up from
Stop and Standby modes on tamper event detection.
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop and Standby modes on timestamp event detection.

The RTC clock sources can be:
•
•
•
•

3.7

A 32.768 kHz external crystal
A resonator or oscillator
The internal low-power RC oscillator (typical frequency of 37 kHz)
The high-speed external clock

General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions, and can be individually
remapped using dedicated alternate function registers. All GPIOs are high current capable.
Each GPIO output, speed can be slowed (40 MHz, 10 MHz, 2 MHz, 400 kHz). The alternate
function configuration of I/Os can be locked if needed following a specific sequence in order
to avoid spurious writing to the I/O registers. The I/O controller is connected to a dedicated
IO bus with a toggling speed of up to 32 MHz.

Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 29 edge detector lines used to generate
interrupt/event requests. Each line can be individually configured to select the trigger event
(rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 84 GPIOs can be connected
to the 16 configurable interrupt/event lines. The 13 other lines are connected to PVD, RTC,
USB, USARTs, I2C, LPUART, LPTIMER or comparator events.
26/149

DocID027100 Rev 4

STM32L072xx

3.8

Functional overview

Memories
The STM32L072xx devices have the following features:
•

20 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait
states. With the enhanced bus matrix, operating the RAM does not lead to any
performance penalty during accesses to the system bus (AHB and APB buses).

•

The non-volatile memory is divided into three arrays:
–

64, 128 or 192 Kbytes of embedded Flash program memory

–

6 Kbytes of data EEPROM

–

Information block containing 32 user and factory options bytes plus 8 Kbytes of
system memory

Flash program and data EEPROM are divided into two banks. This allows writing in one
bank while running code or reading data from the other bank.
The user options bytes are used to write-protect or read-out protect the memory (with
4 Kbyte granularity) and/or readout-protect the whole memory with the following options:
•

Level 0: no protection

•

Level 1: memory readout protected.
The Flash memory cannot be read from or written to if either debug features are
connected or boot in RAM is selected

•

Level 2: chip readout protected, debug features (Cortex-M0+ serial wire) and boot in
RAM selection disabled (debugline fuse)

The firewall protects parts of code/data from access by the rest of the code that is executed
outside of the protected area. The granularity of the protected code segment or the nonvolatile data segment is 256 bytes (Flash memory or EEPROM) against 64 bytes for the
volatile data segment (RAM).
The whole non-volatile memory embeds the error correction code (ECC) feature.

3.9

Boot modes
At startup, BOOT0 pin and nBOOT1 option bit are used to select one of three boot options:
•

Boot from Flash memory

•

Boot from System memory

•

Boot from embedded RAM

The boot loader is located in System memory. It is used to reprogram the Flash memory by
using USB (PA11, PA12), USART1(PA9, PA10) or USART2(PA2, PA3). See STM32™
microcontroller system memory boot mode AN2606 for details.

DocID027100 Rev 4

27/149
36

Functional overview

3.10

STM32L072xx

Direct memory access (DMA)
The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory,
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports
circular buffer management, avoiding the generation of interrupts when the controller
reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with software trigger
support for each channel. Configuration is done by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, LPUART,
general-purpose timers, DAC, and ADC.

3.11

Analog-to-digital converter (ADC)
A native 12-bit, extended to 16-bit through hardware oversampling, analog-to-digital
converter is embedded into STM32L072xx device. It has up to 16 external channels and 3
internal channels (temperature sensor, voltage reference). Three channels, PA0, PA4 and
PA5, are fast channels, while the others are standard channels.
The ADC performs conversions in single-shot or scan mode. In scan mode, automatic
conversion is performed on a selected group of analog inputs.
The ADC frequency is independent from the CPU frequency, allowing maximum sampling
rate of 1.14 MSPS even with a low CPU speed. The ADC consumption is low at all
frequencies (~25 µA at 10 kSPS, ~240 µA at 1MSPS). An auto-shutdown function
guarantees that the ADC is powered off except during the active conversion phase.
The ADC can be served by the DMA controller. It can operate from a supply voltage down to
1.65 V.
The ADC features a hardware oversampler up to 256 samples, this improves the resolution
to 16 bits (see AN2668).
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all scanned channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) can be internally connected to
the ADC start triggers, to allow the application to synchronize A/D conversions and timers.

3.12

Temperature sensor
The temperature sensor (TSENSE) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC_IN18 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.

28/149

DocID027100 Rev 4

STM32L072xx

Functional overview

To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
Table 7. Temperature sensor calibration values
Calibration value name

3.12.1

Description

Memory address

TSENSE_CAL1

TS ADC raw data acquired at
temperature of 30 °C,
VDDA= 3 V

0x1FF8 007A - 0x1FF8 007B

TSENSE_CAL2

TS ADC raw data acquired at
temperature of 130 °C
VDDA= 3 V

0x1FF8 007E - 0x1FF8 007F

Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and Comparators. VREFINT is internally connected to the ADC_IN17 input channel. It
enables accurate monitoring of the VDD value (when no external voltage, VREF+, is available
for ADC). The precise voltage of VREFINT is individually measured for each part by ST during
production test and stored in the system memory area. It is accessible in read-only mode.
Table 8. Internal voltage reference measured values
Calibration value name
VREFINT_CAL

3.13

Description
Raw data acquired at
temperature of 25 °C
VDDA = 3 V

Memory address
0x1FF8 0078 - 0x1FF8 0079

Digital-to-analog converter (DAC)
Two 12-bit buffered DACs can be used to convert digital signal into analog voltage signal
output. An optional amplifier can be used to reduce the output signal impedance.
This digital Interface supports the following features:
•

One data holding register (for each channel)

•

Left or right data alignment in 12-bit mode

•

Synchronized update capability

•

Noise-wave generation

•

Triangular-wave generation

•

Dual DAC channels with independent or simultaneous conversions

•

DMA capability (including the underrun interrupt)

•

External triggers for conversion

•

Input reference voltage VREF+

Six DAC trigger inputs are used in the STM32L072xx. The DAC channels are triggered
through the timer update outputs that are also connected to different DMA channels.

DocID027100 Rev 4

29/149
36

Functional overview

3.14

STM32L072xx

Ultra-low-power comparators and reference voltage
The STM32L072xx embed two comparators sharing the same current bias and reference
voltage. The reference voltage can be internal or external (coming from an I/O).
•

One comparator with ultra low consumption

•

One comparator with rail-to-rail inputs, fast or slow mode.

•

The threshold can be one of the following:
–

DAC output

–

External I/O pins

–

Internal reference voltage (VREFINT)

–

submultiple of Internal reference voltage(1/4, 1/2, 3/4) for the rail to rail
comparator.

Both comparators can wake up the devices from Stop mode, and be combined into a
window comparator.
The internal reference voltage is available externally via a low-power / low-current output
buffer (driving current capability of 1 µA typical).

3.15

Touch sensing controller (TSC)
The STM32L072xx provide a simple solution for adding capacitive sensing functionality to
any application. These devices offer up to 24 capacitive sensing channels distributed over 8
analog I/O groups.
Capacitive sensing technology is able to detect the presence of a finger near a sensor which
is protected from direct touch by a dielectric (such as glass, plastic). The capacitive variation
introduced by the finger (or any conductive object) is measured using a proven
implementation based on a surface charge transfer acquisition principle. It consists of
charging the sensor capacitance and then transferring a part of the accumulated charges
into a sampling capacitor until the voltage across this capacitor has reached a specific
threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the
hardware touch sensing controller and only requires few external components to operate.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library, which is free to use and allows touch sensing functionality to be implemented reliably
in the end application.

30/149

DocID027100 Rev 4

STM32L072xx

Functional overview

Table 9. Capacitive sensing GPIOs available on STM32L072xx devices
Group

Capacitive sensing
signal name

Pin
name

TSC_G1_IO1

PA0

TSC_G1_IO2

PA1

TSC_G1_IO3

PA2

TSC_G1_IO4

1

2

3

4

Capacitive sensing
signal name

Pin
name

TSC_G5_IO1

PB3

TSC_G5_IO2

PB4

TSC_G5_IO3

PB6

PA3

TSC_G5_IO4

PB7

TSC_G2_IO1

PA4(1)

TSC_G6_IO1

PB11

TSC_G2_IO2

PA5

TSC_G6_IO2

PB12

TSC_G2_IO3

PA6

TSC_G6_IO3

PB13

TSC_G2_IO4

PA7

TSC_G6_IO4

PB14

TSC_G3_IO1

PC5

TSC_G7_IO1

PC0

TSC_G3_IO2

PB0

TSC_G7_IO2

PC1

TSC_G3_IO3

PB1

TSC_G7_IO3

PC2

TSC_G3_IO4

PB2

TSC_G7_IO4

PC3

TSC_G4_IO1

PA9

TSC_G8_IO1

PC6

TSC_G4_IO2

PA10

TSC_G8_IO2

PC7

TSC_G4_IO3

PA11

TSC_G8_IO3

PC8

TSC_G4_IO4

PA12

TSC_G8_IO4

PC9

Group

5

6

7

8

1. This GPIO offers a reduced touch sensing sensitivity. It is thus recommended to use it as sampling
capacitor I/O.

3.16

Timers and watchdogs
The ultra-low-power STM32L072xx devices include three general-purpose timers, one lowpower timer (LPTIM), one basic timer, two watchdog timers and the SysTick timer.
Table 10 compares the features of the general-purpose and basic timers.
Table 10. Timer feature comparison

Timer

Counter
resolution

Counter type

Prescaler factor

DMA
request
generation

TIM2,
TIM3

16-bit

Up, down,
up/down

Any integer between
1 and 65536

Yes

4

No

TIM21,
TIM22

16-bit

Up, down,
up/down

Any integer between
1 and 65536

No

2

No

TIM6,
TIM7

16-bit

Up

Any integer between
1 and 65536

Yes

0

No

DocID027100 Rev 4

Capture/compare Complementary
channels
outputs

31/149
36

Functional overview

3.16.1

STM32L072xx

General-purpose timers (TIM2, TIM3, TIM21 and TIM22)
There are four synchronizable general-purpose timers embedded in the STM32L072xx
device (see Table 10 for differences).

TIM2, TIM3
TIM2 and TIM3 are based on 16-bit auto-reload up/down counter. It includes a 16-bit
prescaler. It features four independent channels each for input capture/output compare,
PWM or one-pulse mode output.
The TIM2/TIM3 general-purpose timers can work together or with the TIM21 and TIM22
general-purpose timers via the Timer Link feature for synchronization or event chaining.
Their counter can be frozen in debug mode. Any of the general-purpose timers can be used
to generate PWM outputs.
TIM2/TIM3 have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the
digital outputs from 1 to 3 hall-effect sensors.

TIM21 and TIM22
TIM21 and TIM22 are based on a 16-bit auto-reload up/down counter. They include a 16-bit
prescaler. They have two independent channels for input capture/output compare, PWM or
one-pulse mode output. They can work together and be synchronized with the TIM2/TIM3,
full-featured general-purpose timers.
They can also be used as simple time bases and be clocked by the LSE clock source
(32.768 kHz) to provide time bases independent from the main CPU clock.

3.16.2

Low-power Timer (LPTIM)
The low-power timer has an independent clock and is running also in Stop mode if it is
clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.
This low-power timer supports the following features:

3.16.3

•

16-bit up counter with 16-bit autoreload register

•

16-bit compare register

•

Configurable output: pulse, PWM

•

Continuous / one shot mode

•

Selectable software / hardware input trigger

•

Selectable clock source
–

Internal clock source: LSE, LSI, HSI or APB clock

–

External clock source over LPTIM input (working even with no internal clock
source running, used by the Pulse Counter Application)

•

Programmable digital glitch filter

•

Encoder mode

Basic timer (TIM6, TIM7)
These timers can be used as a generic 16-bit timebase.

32/149

DocID027100 Rev 4

STM32L072xx

3.16.4

Functional overview

SysTick timer
This timer is dedicated to the OS, but could also be used as a standard downcounter. It is
based on a 24-bit downcounter with autoreload capability and a programmable clock
source. It features a maskable system interrupt generation when the counter reaches ‘0’.

3.16.5

Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 37 kHz internal RC and, as it operates independently of the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes. The counter
can be frozen in debug mode.

3.16.6

Window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.

3.17

Communication interfaces

3.17.1

I2C bus
Up to three I2C interfaces (I2C1 and I2C3) can operate in multimaster or slave modes.
Each I2C interface can support Standard mode (Sm, up to 100 kbit/s), Fast mode (Fm, up to
400 kbit/s) and Fast Mode Plus (Fm+, up to 1 Mbit/s) with 20 mA output drive on some I/Os.
7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with
configurable mask) are also supported as well as programmable analog and digital noise
filters.
Table 11. Comparison of I2C analog and digital filters
Analog filter

Digital filter

Pulse width of
suppressed spikes

≥ 50 ns

Programmable length from 1 to 15
I2C peripheral clocks

Benefits

Available in Stop mode

1. Extra filtering capability vs.
standard requirements.
2. Stable length

Drawbacks

Variations depending on
temperature, voltage, process

Wakeup from Stop on address
match is not available when digital
filter is enabled.

In addition, I2C1 and I2C3 provide hardware support for SMBus 2.0 and PMBus 1.1: ARP
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts
verifications and ALERT protocol management. I2C1/I2C3 also have a clock domain

DocID027100 Rev 4

33/149
36

Functional overview

STM32L072xx

independent from the CPU clock, allowing the I2C1/I2C3 to wake up the MCU from Stop
mode on address match.
Each I2C interface can be served by the DMA controller.
Refer to Table 12 for an overview of I2C interface features.
Table 12. STM32L072xx I2C implementation
I2C features(1)

I2C1

I2C2

I2C3

7-bit addressing mode

X

X

X

10-bit addressing mode

X

X

X

Standard mode (up to 100 kbit/s)

X

X

X

Fast mode (up to 400 kbit/s)

X

X

X

Fast Mode Plus with 20 mA output drive I/Os (up to 1
Mbit/s)

X

X(2)

X

Independent clock

X

-

X

SMBus

X

-

X

Wakeup from STOP

X

-

X

1. X = supported.
2. See Table 16: STM32L072xxx pin definition on page 43 for the list of I/Os that feature Fast Mode Plus
capability

3.17.2

Universal synchronous/asynchronous receiver transmitter (USART)
The four USART interfaces (USART1, USART2, USART4 and USART5) are able to
communicate at speeds of up to 4 Mbit/s.
They provide hardware management of the CTS, RTS and RS485 driver enable (DE)
signals, multiprocessor communication mode, master synchronous communication and
single-wire half-duplex communication mode. USART1 and USART2 also support
SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability, auto
baud rate feature and has a clock domain independent from the CPU clock, allowing to
wake up the MCU from Stop mode using baudrates up to 42 Kbaud.
All USART interfaces can be served by the DMA controller.
Table 13 for the supported modes and features of USART interfaces.
Table 13. USART implementation
USART modes/features(1)

USART1 and USART2

USART4 and USART5

Hardware flow control for modem

X

X

Continuous communication using DMA

X

X

Multiprocessor communication

X

X

X

X

Smartcard mode

X

-

Single-wire half-duplex communication

X

X

IrDA SIR ENDEC block

X

-

Synchronous

34/149

mode(2)

DocID027100 Rev 4

STM32L072xx

Functional overview
Table 13. USART implementation (continued)
USART modes/features(1)

USART1 and USART2

USART4 and USART5

LIN mode

X

-

Dual clock domain and wakeup from Stop mode

X

-

Receiver timeout interrupt

X

-

Modbus communication

X

-

Auto baud rate detection (4 modes)

X

-

Driver Enable

X

X

1. X = supported.
2. This mode allows using the USART as an SPI master.

3.17.3

Low-power universal asynchronous receiver transmitter (LPUART)
The devices embed one Low-power UART. The LPUART supports asynchronous serial
communication with minimum power consumption. It supports half duplex single wire
communication and modem operations (CTS/RTS). It allows multiprocessor
communication.
The LPUART has a clock domain independent from the CPU clock. It can wake up the
system from Stop mode using baudrates up to 46 Kbaud. The Wakeup events from Stop
mode are programmable and can be:
•

Start bit detection

•

Or any received data frame

•

Or a specific programmed data frame

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while
having an extremely low energy consumption. Higher speed clock can be used to reach
higher baudrates.
LPUART interface can be served by the DMA controller.

3.17.4

Serial peripheral interface (SPI)/Inter-integrated sound (I2S)
Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in
full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes.
The USARTs with synchronous capability can also be used as SPI master.
One standard I2S interfaces (multiplexed with SPI2) is available. It can operate in master or
slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output
channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When the
I2S interfaces is configured in master mode, the master clock can be output to the external
DAC/CODEC at 256 times the sampling frequency.
The SPIs can be served by the DMA controller.
Refer to Table 14 for the differences between SPI1 and SPI2.

DocID027100 Rev 4

35/149
36

Functional overview

STM32L072xx
Table 14. SPI/I2S implementation
SPI features(1)

SPI1

SPI2

Hardware CRC calculation

X

X

I2S mode

-

X

TI mode

X

X

1. X = supported.

3.17.5

Universal serial bus (USB)
The STM32L072xx embed a full-speed USB device peripheral compliant with the USB
specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP
pull-up and also battery charging detection according to Battery Charging Specification
Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with
added support for USB 2.0 Link Power Management. It has software-configurable endpoint
setting with packet memory up to 1 KB and suspend/resume support. It requires a precise
48 MHz clock which can be generated from the internal main PLL (the clock source must
use a HSE crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming
mode. The synchronization for this oscillator can be taken from the USB data stream itself
(SOF signalization) which allows crystal-less operation.

3.18

Clock recovery system (CRS)
The STM32L072xx embed a special block which allows automatic trimming of the internal
48 MHz oscillator to guarantee its optimal accuracy over the whole device operational
range. This automatic trimming is based on the external synchronization signal, which could
be either derived from USB SOF signalization, from LSE oscillator, from an external signal
on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also
possible to combine automatic trimming with manual trimming action.

3.19

Cyclic redundancy check (CRC) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at
linktime and stored at a given memory location.

3.20

Serial wire debug port (SW-DP)
An Arm SW-DP interface is provided to allow a serial wire debugging tool to be connected to
the MCU.

36/149

DocID027100 Rev 4

STM32L072xx

Pin descriptions

ϭϬϬ
ϵϵ
ϵϴ
ϵϳ
ϵϲ
ϵϱ
ϵϰ
ϵϯ
ϵϮ
ϵϭ
ϵϬ
ϴϵ
ϴϴ
ϴϳ
ϴϲ
ϴϱ
ϴϰ
ϴϯ
ϴϮ
ϴϭ
ϴϬ
ϳϵ
ϳϴ
ϳϳ
ϳϲ

s
s^^
W ϭ
W
W
W
KK7
3%
3%
W
W
W
Wϳ
Wϲ
Wϱ
Wϰ
Wϯ
WϮ
Wϭ
WϬ
WϭϮ
Wϭϭ
WϭϬ
Wϭϱ
Wϭϰ

Figure 3. STM32L072xx LQFP100 pinout - 14 x 14 mm

ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ϴ
ϵ
ϭϬ
ϭϭ
ϭϮ
ϭϯ
ϭϰ
ϭϱ
ϭϲ
ϭϳ
ϭϴ
ϭϵ
ϮϬ
Ϯϭ
ϮϮ
Ϯϯ
Ϯϰ
Ϯϱ

>Y&WϭϬϬ

ϳϱ
ϳϰ
ϳϯ
ϳϮ
ϳϭ
ϳϬ
9''ϲϵ
ϲϴ
ϲϳ
ϲϲ
ϲϱ
ϲϰ
ϲϯ
ϲϮ
ϲϭ
ϲϬ
ϱϵ
ϱϴ
ϱϳ
ϱϲ
ϱϱ
ϱϰ
ϱϯ
ϱϮ
ϱϭ

sB86%
s^^
9''
Wϭϯ
WϭϮ
W ϭϭ
WϭϬ
W
3$
Wϵ
Wϴ
Wϳ
Wϲ
Wϭϱ
Wϭϰ
Wϭϯ
WϭϮ
Wϭϭ
WϭϬ
Wϵ
Wϴ
W ϭϱ
W ϭϰ
W ϭϯ
W ϭϮ

Ϯϲ
Ϯϳ
Ϯϴ
Ϯϵ
ϯϬ
ϯϭ
ϯϮ
ϯϯ
ϯϰ
ϯϱ
ϯϲ
ϯϳ
ϯϴ
ϯϵ
ϰϬ
ϰϭ
ϰϮ
ϰϯ
ϰϰ
ϰϱ
ϰϲ
ϰϳ
ϰϴ
ϰϵ
ϱϬ

WϮ
Wϯ
Wϰ
Wϱ
Wϲ
9''
Wϭϯ
Wϭϰ26&B,1
Wϭ26&B287
3+
3+
W,Ϭ26&B,1
W,ϭ26&B287
EZ67
WϬ
Wϭ
WϮ
Wϯ
s^^
sZ&
95()
9''$
3$
3$
3$

3$
s^^
s
W
W
3$
3$
Wϰ
Wϱ
WϬ
Wϭ
WϮ
Wϳ
Wϴ
Wϵ
W ϭϬ
W ϭϭ
W ϭϮ
W ϭϯ
W ϭϰ
W ϭϱ
W ϭϬ
W ϭϭ
966
s

4

Pin descriptions

06Y9

1. The above figure shows the package top view.
2. I/O pin supplied by VDD_USB.

DocID027100 Rev 4

37/149
56

Pin descriptions

STM32L072xx
Figure 4. STM32L072xx UFBGA100 ballout - 7x 7 mm
ϱ

Ϯ



3(

3(



3(

WϮ

3%

3%

3%

3&

3(

3(

9''

3%




&
'

,

3&
26& 3(
B,1
3&
26& 9''
B287

ϯ

ϰ

ϭ

3% %227 3'

ϲ

ϳ

ϴ

ϵ

ϭ

3'

3%

3%

3$

3$

3'

3'

3'

3' 3&

3& 3$

3'

3' 3&

9''

3$

3$

3$

3&

3&

3&

3&

966

966

966
966

3+
3+
26&B,1
3+
26&B 3+
287
3&


3$

ϭ
3$

9''B
86% 9''
3' 3'

1567 9''

:

966$

3&

3&

<

95()


3&

3$

3$

3&

>

95()


3$

3$

3$

3&

3%

3(

3( 3( 3%

D

9''$

3$

3$

3%

3%

3(

3( 3( 3(

3'

3' 3' 3'

3$

3'

3'

3% 3%

3%

3% 3%
3(

3(

06Y9

1. The above figure shows the package top view.
2. I/O pin supplied by VDD_USB.

38/149

DocID027100 Rev 4

STM32L072xx

Pin descriptions

9''
966
3%
3%
%227
3%
3%
3%
3%
3%
3'
3&
3&
3&
3$
3$

Figure 5. STM32L072xx LQFP64 pinout - 10 x 10 mm

               
















/4)3
















               

9''B86%
966
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%

3$
966
9''
3$
3$
3$
3$
3&
3&
3%
3%
3%
3%
3%
966
9''

9''
3&
3&26&B,1
3&26&B287
3+26&B,1
3+26&B287
1567
3&
3&
3&
3&
966$
9''$
3$
3$
3$

06Y9

1. The above figure shows the package top view.
2. I/O pin supplied by VDD_USB.

DocID027100 Rev 4

39/149
56

Pin descriptions

STM32L072xx
Figure 6. STM32L072xx UFBGA64/TFBGA64 ballout - 5x 5 mm
















$

3&
26&
B,1

3&

3%

3%

3%

3$

3$

3$

%

3&
26&
B287

9''

3%

%227


3'

3&

3&

3$

3+
26&B,1

966

3%

3%

3&

3$

3$

3$

'

3+
26&B
287

9''

3%

966

966

966

3$

3&

(

1567

3&

3&

9''

9''

9''B
86%

3&

3&

)

966$

3&

3$

3$

3%

3&

3%

3%

&

*

95()


3$

3$

3$

3%

3%

3%

3%

+

9''$

3$

3$

3$

3&

3&

3%

3%

06Y9

1. The above figure shows the package top view.
2. I/O pin supplied by VDD_USB.

40/149

DocID027100 Rev 4

STM32L072xx

Pin descriptions
Figure 7. STM32L072xx WLCSP49 ballout














$

9''B
86%

3$

3%

3%

%227

3%

9''

%

3$

3$

3%

3%

3%

9''

3&

&

3$

3$

3%

3&

3&

'

3$

3$

3%

966

(

3%

3$

3%

)

3%

3%

*

3%

9''

3&
26&
B,1

3&
26&
B287

1567

3+
26&B,1

3+
26&B
287

3$

3$

95()

3&

3%

3$

3$

3$

9''$

3%

3%

3$

3$

3$

06Y9

1. The above figure shows the package top view.
2. I/O pin supplied by VDD_USB.

9''
966
3%
3%
%227
3%
3%
3%
3%
3%
3$
3$

Figure 8. STM32L072xx LQFP48 pinout - 7 x 7 mm

           












/4)3












           

9''B86%
966
3$
3$
3$
3$
3$
3$
3%
3%
3%
3%

3$
3$
3$
3$
3$
3%
3%
3%
3%
3%
966
9''

9''
3&
3&26&B,1
3&26&B287
3+26&B,1
3+26&B287
1567
966$
9''$
3$
3$
3$

06Y9

1. The above figure shows the package top view.
2. I/O pin supplied by VDD_USB.

DocID027100 Rev 4

41/149
56

Pin descriptions

STM32L072xx

9''
3&26&B,1
3&26&B287

       








/4)3






         

3$
3$
3$
3$
3$
3$
3$
9''

3$
3$
3$
3$
3$
3%
3%
966

1567
9''$
3$
3$
3$

3%
3%
3%
3%
3%
3$

966
%227

Figure 9. STM32L072xx LQFP32 pinout

06Y9

1. The above figure shows the package top view.

       







966







        

9''B86%
3$
3$
3$
3$
3$
3$
9''

3$
3$
3$
3$
3$
3%
3%
966

3&26&B,1
3&26&B287
1567
966$
9''$
3$
3$
3$

%227
3%
3%
3%
3%
3$

9''
966

Figure 10. STM32L072xx UFQFPN32 pinout

06Y9

1. The above figure shows the package top view.
2. I/O pin supplied by VDD_USB.

42/149

DocID027100 Rev 4

STM32L072xx

Pin descriptions
Table 15. Legend/abbreviations used in the pinout table

Name

Abbreviation

Definition

Unless otherwise specified in brackets below the pin name, the pin function during
and after reset is the same as the actual pin name

Pin name

Pin type

I/O structure

S

Supply pin

I

Input only pin

I/O

Input / output pin

FT

5 V tolerant I/O

FTf

5 V tolerant I/O, FM+ capable

TC

Standard 3.3V I/O

B

Dedicated BOOT0 pin

RST

Unless otherwise specified by a note, all I/Os are set as floating inputs during and
after reset.

Notes

Pin functions

Bidirectional reset pin with embedded weak pull-up resistor

Alternate
functions

Functions selected through GPIOx_AFR registers

Additional
functions

Functions directly selected/enabled through peripheral registers

Table 16. STM32L072xxx pin definition

LQFP32

UFQFPN32(1)

LQFP48

LQFP64

UFBGA64/TFBGA64

WLCSP49

LQFP100

UFBG100

Pin type

I/O structure

Note

Pin number

Alternate functions

-

-

-

-

-

-

1

B2

PE2

I/O

FT

-

TIM3_ETR

-

-

-

-

-

-

-

2

A1

PE3

I/O

FT

-

TIM22_CH1, TIM3_CH1

-

-

-

-

-

-

-

3

B1

PE4

I/O

FT

-

TIM22_CH2, TIM3_CH2

-

-

-

-

-

-

-

4

C2

PE5

I/O

FT

-

TIM21_CH1, TIM3_CH3

-

-

-

-

-

-

-

5

D2

PE6

I/O

FT

-

TIM21_CH2, TIM3_CH4 RTC_TAMP3/WKUP3

1

-

1

1

B2 B6

6

E2

VDD

S

-

-

2

2

A2 B7

7

C1

PC13

I/O

Pin name
(function
after reset)

FT

Additional functions

-

-

-

-

-

RTC_TAMP1/RTC_TS/
RTC_OUT/WKUP2

DocID027100 Rev 4

43/149
56

Pin descriptions

STM32L072xx
Table 16. STM32L072xxx pin definition (continued)

UFQFPN32(1)

LQFP48

LQFP64

UFBGA64/TFBGA64

LQFP100

UFBG100

Pin type

I/O structure

Note

Alternate functions

2

1

3

3

A1 C6

8

D1

I/O

FT

-

-

OSC32_IN

3

2

4

4

B1 C7

9

PC15E1 OSC32_OUT I/O
(PC15)

TC

-

-

OSC32_OUT

-

-

-

-

-

-

10 F2

PH9

I/O

FT

-

-

-

-

-

-

-

-

-

11 G2

PH10

I/O

FT

-

-

-

-

-

5

5

C1 D6 12 F1

PH0-OSC_IN
I/O
(PH0)

TC

-

USB_CRS_SYNC

OSC_IN

-

-

6

6

D1 D7 13 G1

PH1OSC_OUT
(PH1)

I/O

TC

-

-

OSC_OUT

4

3

7

7

E1 D5 14 H2

NRST

I/O

-

-

-

-

LPTIM1_IN1,
EVENTOUT,
TSC_G7_IO1,
LPUART1_RX,
I2C3_SCL

ADC_IN10

ADC_IN11

-

-

-

8

WLCSP49

LQFP32

Pin number

E3 C5 15 H1

Pin name
(function
after reset)

PC14OSC32_IN
(PC14)

PC0

I/O

FTf

Additional functions

-

-

-

9

E2 C4 16

J2

PC1

I/O

FTf

-

LPTIM1_OUT,
EVENTOUT,
TSC_G7_IO2,
LPUART1_TX,
I2C3_SDA

-

-

-

10

F2 E7 17

J3

PC2

I/O

FTf

-

LPTIM1_IN2,
SPI2_MISO/I2S2_MCK,
TSC_G7_IO3

ADC_IN12

-

-

-

11

-

-

18 K2

PC3

I/O

FT

-

LPTIM1_ETR,
SPI2_MOSI/I2S2_SD,
TSC_G7_IO4

ADC_IN13

-

4

8

12

F1

-

19

J1

VSSA

S

-

-

-

-

-

-

-

-

-

20 K1

VREF-

S

-

-

-

-

-

-

-

VREF+

S

-

-

-

44/149

G1 E6 21

L1

DocID027100 Rev 4

STM32L072xx

Pin descriptions
Table 16. STM32L072xxx pin definition (continued)

6

7

8

6

7

8

10

11

12

14 G2 E5 23

L2

15 H2 E4 24 M2

16

F3 F6

9

9

13

-

-

-

18 C2

-

-

-

19 D2

25 K3

17 G3 G7 26

S

PA0

PA1

PA2

I/O TTa

I/O

I/O

FT

FT

Note

VDDA

Alternate functions

Additional functions

-

-

-

TIM2_CH1,
TSC_G1_IO1,
COMP1_INM,
USART2_CTS,
ADC_IN0,
TIM2_ETR, USART4_TX, RTC_TAMP2/WKUP1
COMP1_OUT

-

EVENTOUT, TIM2_CH2,
TSC_G1_IO2,
USART2_RTS,
COMP1_INP, ADC_IN1
TIM21_ETR,
USART4_RX

-

TIM21_CH1, TIM2_CH3,
TSC_G1_IO3,
USART2_TX,
LPUART1_TX,
COMP2_OUT

TIM21_CH2, TIM2_CH4,
TSC_G1_IO4,
COMP2_INP, ADC_IN3
USART2_RX,
LPUART1_RX

COMP2_INM,
ADC_IN2

L3

PA3

I/O

FT

-

-

27 D3

VSS

S

-

-

-

-

-

28 H3

VDD

S

-

-

-

-

SPI1_NSS,
TSC_G2_IO1,
USART2_CK,
TIM22_ETR

COMP1_INM,
COMP2_INM,
ADC_IN4, DAC_OUT1

29 M3

PA4

I/O

TC

(2)

F4 G6 30 K4

PA5

I/O

TC

-

SPI1_SCK, TIM2_ETR,
TSC_G2_IO2, TIM2_CH1

COMP1_INM,
COMP2_INM,
ADC_IN5, DAC_OUT2

-

SPI1_MISO, TIM3_CH1,
TSC_G2_IO3,
LPUART1_CTS,
TIM22_CH1,
EVENTOUT,
COMP1_OUT

ADC_IN6

10 10 14

20 H3 F5

11 11 15

21

12 12 16

22 M1

I/O structure

13 H1 F7

Pin name
(function
after reset)

Pin type

LQFP64

9

UFBG100

LQFP48

5

LQFP100

UFQFPN32(1)

5

WLCSP49

LQFP32

UFBGA64/TFBGA64

Pin number

22 G4 G5 31

L4

PA6

I/O

FT

DocID027100 Rev 4

45/149
56

Pin descriptions

STM32L072xx
Table 16. STM32L072xxx pin definition (continued)

I/O structure

Pin type

WLCSP49

UFBGA64/TFBGA64

32 M4

PA7

I/O

FT

-

UFBG100

23 H4 F4

SPI1_MOSI, TIM3_CH2,
TSC_G2_IO4,
TIM22_CH2,
EVENTOUT,
COMP2_OUT

LQFP100

Note

13 13 17

Pin name
(function
after reset)

Alternate functions

LQFP64

LQFP48

UFQFPN32(1)

LQFP32

Pin number

Additional functions

ADC_IN7

-

-

-

24 H5

-

33 K5

PC4

I/O

FT

-

EVENTOUT,
LPUART1_TX

ADC_IN14

-

-

-

25 H6

-

34

L5

PC5

I/O

FT

-

LPUART1_RX,
TSC_G3_IO1

ADC_IN15

EVENTOUT, TIM3_CH3,
ADC_IN8, VREF_OUT
TSC_G3_IO2

14 14 18

26

F5 G4 35 M5

PB0

I/O

FT

-

15 15 19

27 G5 D3 36 M6

PB1

I/O

FT

-

TIM3_CH4,
TSC_G3_IO3,
LPUART1_RTS

ADC_IN9, VREF_OUT

28 G6 E3 37

L6

PB2

I/O

FT

-

LPTIM1_OUT,
TSC_G3_IO4,
I2C3_SMBA

-

-

-

20

-

-

-

-

-

-

38 M7

PE7

I/O

FT

-

USART5_CK/USART5_R
TS_DE

-

-

-

-

-

-

-

39

L7

PE8

I/O

FT

-

USART4_TX

-

-

-

-

-

-

-

40 M8

PE9

I/O

FT

-

TIM2_CH1, TIM2_ETR,
USART4_RX

-

-

-

-

-

-

-

41

L8

PE10

I/O

FT

-

TIM2_CH2, USART5_TX

-

-

-

-

-

-

-

42 M9

PE11

I/O

FT

-

TIM2_CH3, USART5_RX

-

-

-

-

-

-

-

43

PE12

I/O

FT

-

TIM2_CH4, SPI1_NSS

-

-

-

-

-

-

-

44 M10

PE13

I/O

FT

-

SPI1_SCK

-

-

-

-

-

-

-

45 M11

PE14

I/O

FT

-

SPI1_MISO

-

-

-

-

-

-

-

46 M12

PE15

I/O

FT

-

SPI1_MOSI

-

-

TIM2_CH3, TSC_SYNC,
LPUART1_TX,
SPI2_SCK, I2C2_SCL,
LPUART1_RX

-

-

-

46/149

21

L9

29 G7 G3 47 L10

PB10

I/O

FT

DocID027100 Rev 4

STM32L072xx

Pin descriptions
Table 16. STM32L072xxx pin definition (continued)

I/O structure

Pin type

UFBG100

LQFP100

WLCSP49

UFBGA64/TFBGA64

LQFP64

LQFP48

-

-

16 16 23

31 D6 D4 49 F12

VSS

S

-

-

-

17 17 24

32 E5 G2 50 G12

VDD

S

-

-

-

-

SPI2_NSS/I2S2_WS,
LPUART1_RTS_DE,
TSC_G6_IO2,
I2C2_SMBA,
EVENTOUT

-

-

SPI2_SCK/I2S2_CK,
MCO, TSC_G6_IO3,
LPUART1_CTS,
I2C2_SCL, TIM21_CH1

-

SPI2_MISO/I2S2_MCK,
RTC_OUT,
TSC_G6_IO4,
LPUART1_RTS_DE,
I2C2_SDA, TIM21_CH2

-

-

-

26

33 H8 G1 51 L12

34 G8 F2

52 K12

PB12

PB13

I/O

I/O

FT

EVENTOUT, TIM2_CH4,
TSC_G6_IO1,
LPUART1_RX,
I2C2_SDA,
LPUART1_TX

I/O

25

30 H7 F3

Additional functions

PB11

-

22

Alternate functions

48 L11

-

-

Pin name
(function
after reset)

Note

-

UFQFPN32(1)

LQFP32

Pin number

FT

FTf

-

-

27

35

F8 F1

53 K11

PB14

I/O

FTf

-

-

28

36

F7 E1 54 K10

PB15

I/O

FT

-

SPI2_MOSI/I2S2_SD,
RTC_REFIN

-

-

-

-

-

-

-

55 K9

PD8

I/O

FT

-

LPUART1_TX

-

-

-

-

-

-

-

56 K8

PD9

I/O

FT

-

LPUART1_RX

-

-

-

-

-

-

-

57 J12

PD10

I/O

FT

-

-

-

-

-

-

-

-

-

58 J11

PD11

I/O

FT

-

LPUART1_CTS

-

-

-

-

-

-

-

59 J10

PD12

I/O

FT

-

LPUART1_RTS_DE

-

-

-

-

-

-

-

60 H12

PD13

I/O

FT

-

-

-

-

-

-

-

-

-

61 H11

PD14

I/O

FT

-

-

-

-

-

-

-

-

-

62 H10

PD15

I/O

FT

-

USB_CRS_SYNC

-

DocID027100 Rev 4

47/149
56

Pin descriptions

STM32L072xx
Table 16. STM32L072xxx pin definition (continued)

LQFP48

LQFP64

UFBGA64/TFBGA64

WLCSP49

Pin type

I/O structure

Note

-

-

-

37

F6

-

63 E12

PC6

I/O

FT

-

TIM22_CH1, TIM3_CH1,
TSC_G8_IO1

-

-

-

-

38 E7

-

64 E11

PC7

I/O

FT

-

TIM22_CH2, TIM3_CH2,
TSC_G8_IO2

-

-

-

-

39 E8

-

65 E10

PC8

I/O

FT

-

TIM22_ETR, TIM3_CH3,
TSC_G8_IO3

-

-

-

-

40 D8

-

66 D12

PC9

I/O

FTf

-

TIM21_ETR,
USB_NOE/TIM3_CH4,
TSC_G8_IO4, I2C3_SDA

-

18 18 29

41 D7 D1 67 D11

PA8

I/O

FTf

-

MCO, USB_CRS_SYNC,
EVENTOUT,
USART1_CK, I2C3_SCL

-

19 19 30

42 C7 E2 68 D10

PA9

I/O

FTf

-

MCO, TSC_G4_IO1,
USART1_TX, I2C1_SCL,
I2C3_SMBA

-

20 20 31

43 C6 C1 69 C12

PA10

I/O

FTf

-

TSC_G4_IO2,
USART1_RX, I2C1_SDA

-

21 21 32

UFBG100

UFQFPN32(1)

Alternate functions

LQFP100

LQFP32

Pin number

44 C8 D2 70 B12

Pin name
(function
after reset)

PA11

I/O

Additional functions

FT

SPI1_MISO, EVENTOUT,
TSC_G4_IO3,
(3)
USART1_CTS,
COMP1_OUT

USB_DM

SPI1_MOSI, EVENTOUT,
TSC_G4_IO4,
USART1_RTS_DE,
COMP2_OUT

USB_DP

22 22 33

45 B8 B1 71 A12

PA12

I/O

FT

(3)

23 23 34

46 A8 C2 72 A11

PA13

I/O

FT

-

SWDIO, USB_NOE,
LPUART1_RX

-

-

-

-

-

-

35

-

-

-

47 D5

-

73 C11

VDD

S

-

-

-

-

74 F11

VSS

S

-

-

-

-

-

-

-

SWCLK, USART2_TX,
LPUART1_TX

-

24 36

48 E6 A1 75 G11

VDD_USB

S

24 25 37

49 A7 B2 76 A10

PA14

I/O

48/149

FT

DocID027100 Rev 4

STM32L072xx

Pin descriptions
Table 16. STM32L072xxx pin definition (continued)

FT

-

-

51 B7

-

78 B11

PC10

I/O

FT

-

LPUART1_TX,
USART4_TX

-

-

-

52 B6

-

79 C10

PC11

I/O

FT

-

LPUART1_RX,
USART4_RX

-

-

-

-

53 C5

-

80 B10

PC12

I/O

FT

-

USART5_TX,
USART4_CK

-

-

-

-

-

-

-

81 C9

PD0

I/O

FT

-

TIM21_CH1,
SPI2_NSS/I2S2_WS

-

-

-

-

-

-

-

82 B9

PD1

I/O

FT

-

SPI2_SCK/I2S2_CK

-

-

-

-

-

83 C8

PD2

I/O

FT

-

LPUART1_RTS_DE,
TIM3_ETR, USART5_RX

-

-

-

-

-

-

-

84 B8

PD3

I/O

FT

-

USART2_CTS,
SPI2_MISO/I2S2_MCK

-

-

-

-

-

-

-

85 B7

PD4

I/O

FT

-

USART2_RTS_DE,
SPI2_MOSI/I2S2_SD

-

-

-

-

-

-

-

86 A6

PD5

I/O

FT

-

USART2_TX

-

-

-

-

-

-

-

87 B6

PD6

I/O

FT

-

USART2_RX

-

-

-

-

-

-

-

88 A5

PD7

I/O

FT

-

USART2_CK,
TIM21_CH2

-

-

SPI1_SCK, TIM2_CH2,
TSC_G5I_O1,
EVENTOUT,
USART1__RTS_DE,
USART5_TX

COMP2_INM

38

-

-

-

26

-

39

54 B5

UFBG100

I/O

-

LQFP100

PA15

25

LQFP64

50 A6 A2 77 A9

SPI1_NSS, TIM2_ETR,
EVENTOUT,
USART2_RX,
TIM2_CH1,
USART4_RTS_DE

LQFP48

Alternate functions

LQFP32

Note

I/O structure

Pin name
(function
after reset)

Pin type

WLCSP49

UFBGA64/TFBGA64

UFQFPN32(1)

Pin number

55 A5 A3 89 A8

PB3

I/O

FT

DocID027100 Rev 4

Additional functions

-

49/149
56

Pin descriptions

STM32L072xx
Table 16. STM32L072xxx pin definition (continued)

PB4

I/O

I/O structure

Pin type

UFBG100

LQFP100

WLCSP49

UFBGA64/TFBGA64

56 A4 B3 90 A7

Pin name
(function
after reset)

FTf

Note

27 26 40

LQFP64

LQFP48

UFQFPN32(1)

LQFP32

Pin number

Alternate functions

Additional functions

-

SPI1_MISO, TIM3_CH1,
TSC_G5_IO2,
TIM22_CH1,
USART1_CTS,
USART5_RX, I2C3_SDA

COMP2_INP

COMP2_INP

COMP2_INP

28 27 41

57 C4 A4 91 C5

PB5

I/O

FT

-

SPI1_MOSI,
LPTIM1_IN1,
I2C1_SMBA,
TIM3_CH2/TIM22_CH2,
USART1_CK,
USART5_CK/USART5_R
TS_DE

29 28 42

58 D3 B4 92 B5

PB6

I/O

FTf

-

USART1_TX, I2C1_SCL,
LPTIM1_ETR,
TSC_G5_IO3

FTf

USART1_RX, I2C1_SDA,
LPTIM1_IN2,
TSC_G5_IO4,
USART4_CTS

30 29 43

59 C3 C3 93 B4

PB7

I/O

31 30 44

60 B4 A5 94 A4

BOOT0

I

COMP2_INP,
VREF_PVD_IN

-

-

-

-

-

45

61 B3 B5 95 A3

PB8

I/O

FTf

-

TSC_SYNC, I2C1_SCL

-

-

-

46

62 A3 A6 96 B3

PB9

I/O

FTf

-

EVENTOUT, I2C1_SDA,
SPI2_NSS/I2S2_WS

-

-

-

-

-

-

-

97 C3

PE0

I/O

FT

-

EVENTOUT

-

-

-

-

-

-

-

98 A2

PE1

I/O

FT

-

EVENTOUT

-

-

99 D3

VSS

S

-

-

-

-

64 E4 A7 100 C4

VDD

S

-

-

-

-

32 31 47
-

32 48

63 D4

1. UFQFPN32 pinout differs from other STM32 devices except STM32L07xxx and STM32L8xxx.
2. PA4 offers a reduced touch sensing sensitivity. It is thus recommended to use it as sampling capacitor I/O.
3. These pins are powered by VDD_USB. For all characteristics that refer to VDD, VDD_USB must be used instead.

50/149

DocID027100 Rev 4

AF0

DocID027100 Rev 4

Port A

Port

AF1

AF2

AF3

AF4

AF5

AF6

AF7

I2C1/TSC/
EVENTOUT

I2C1/USART1/2/L
PUART1/
TIM3/22/
EVENTOUT

SPI2/I2S2/I2C2/
USART1/
TIM2/21/22

I2C1/2/
LPUART1/
USART4/
UASRT5/TIM21/
EVENTOUT

I2C3/LPUART1/
COMP1/2/
TIM3

TIM2_CH1

TSC_G1_IO1

USART2_CTS

TIM2_ETR

USART4_TX

COMP1_OUT

SPI1/SPI2/I2S2/U
SPI1/SPI2/I2S2/L
SART1/2/
PUART1/
LPUART1/USB/L
SPI1/SPI2/I2S2/I2 USART5/USB/LP
PTIM1/TSC/
TIM1/TIM2/3/EVE
C1/TIM2/21
TIM2/21/22/
NTOUT/
EVENTOUT/
SYS_AF
SYS_AF
-

-

PA1

EVENTOUT

TIM2_CH2

TSC_G1_IO2

USART2_RTS_
DE

TIM21_ETR

USART4_RX

-

PA2

TIM21_CH1

TIM2_CH3

TSC_G1_IO3

USART2_TX

-

LPUART1_TX

COMP2_OUT

PA3

TIM21_CH2

TIM2_CH4

TSC_G1_IO4

USART2_RX

-

LPUART1_RX

-

PA4

SPI1_NSS

-

-

TSC_G2_IO1

USART2_CK

TIM22_ETR

-

-

PA5

SPI1_SCK

-

TIM2_ETR

TSC_G2_IO2

TIM2_CH1

-

-

PA6

SPI1_MISO

TIM3_CH1

TSC_G2_IO3

LPUART1_CTS

TIM22_CH1

EVENTOUT

COMP1_OUT

PA7

SPI1_MOSI

TIM3_CH2

TSC_G2_IO4

-

TIM22_CH2

EVENTOUT

COMP2_OUT

PA8

MCO

USB_CRS_
SYNC

EVENTOUT

USART1_CK

-

-

I2C3_SCL

PA9

MCO

-

TSC_G4_IO1

USART1_TX

-

I2C1_SCL

I2C3_SMBA

PA10

-

-

TSC_G4_IO2

USART1_RX

-

I2C1_SDA

-

PA11

SPI1_MISO

-

EVENTOUT

TSC_G4_IO3

USART1_CTS

-

-

COMP1_OUT

PA12

SPI1_MOSI

-

EVENTOUT

TSC_G4_IO4

USART1_RTS_
DE

-

-

COMP2_OUT

PA13

SWDIO

-

USB_NOE

-

-

-

LPUART1_RX

-

PA14

SWCLK

-

-

-

USART2_TX

-

LPUART1_TX

-

PA15

SPI1_NSS

TIM2_ETR

EVENTOUT

USART2_RX

TIM2_CH1

USART4_RTS_
DE

-

51/149

Pin descriptions

PA0

STM32L072xx

Table 17. Alternate functions port A

AF0

DocID027100 Rev 4

Port B

Port

SPI1/SPI2/I2S2/
USART1/2/
LPUART1/USB/
LPTIM1/TSC/
TIM2/21/22/
EVENTOUT/
SYS_AF

AF1

AF2

AF3

AF4

AF5

AF6

AF7

SPI1/SPI2/I2S2/
LPUART1/
USART5/USB/L
PTIM1/TIM2/3/E
VENTOUT/
SYS_AF

I2C1/TSC/
EVENTOUT

I2C1/USART1/2/
LPUART1/
TIM3/22/
EVENTOUT

SPI2/I2S2/I2C2/
USART1/
TIM2/21/22

I2C1/2/
LPUART1/
USART4/
UASRT5/TIM21/
EVENTOUT

SPI1/SPI2/I2S2/I
2C1/TIM2/21

I2C3/LPUART1/
COMP1/2/
TIM3

EVENTOUT

TIM3_CH3

TSC_G3_IO2

-

-

-

-

PB1

-

TIM3_CH4

TSC_G3_IO3

LPUART1_RTS_DE

-

-

-

PB2

-

LPTIM1_OUT

TSC_G3_IO4

-

-

-

I2C3_SMBA

PB3

SPI1_SCK

TIM2_CH2

TSC_G5_IO1

EVENTOUT

USART1_RTS_DE

USART5_TX

-

PB4

SPI1_MISO

TIM3_CH1

TSC_G5_IO2

TIM22_CH1

USART1_CTS

USART5_RX

I2C3_SDA

PB5

SPI1_MOSI

LPTIM1_IN1

I2C1_SMBA

TIM3_CH2/
TIM22_CH2

USART1_CK

USART5_CK/
USART5_RTS_
DE

-

PB6

USART1_TX

I2C1_SCL

LPTIM1_ETR

TSC_G5_IO3

-

-

-

-

PB7

USART1_RX

I2C1_SDA

LPTIM1_IN2

TSC_G5_IO4

-

-

USART4_CTS

-

PB8

-

-

TSC_SYNC

I2C1_SCL

-

-

-

PB9

-

EVENTOUT

-

I2C1_SDA

SPI2_NSS/
I2S2_WS

-

-

PB10

-

TIM2_CH3

TSC_SYNC

LPUART1_TX

SPI2_SCK

I2C2_SCL

LPUART1_RX

PB11

EVENTOUT

TIM2_CH4

TSC_G6_IO1

LPUART1_RX

-

I2C2_SDA

LPUART1_TX

PB12

SPI2_NSS/I2S2_WS

LPUART1_RTS_
DE

TSC_G6_IO2

I2C2_SMBA

EVENTOUT

-

PB13

SPI2_SCK/I2S2_CK

MCO

TSC_G6_IO3

LPUART1_CTS

I2C2_SCL

TIM21_CH1

-

PB14

SPI2_MISO/
I2S2_MCK

RTC_OUT

TSC_G6_IO4

LPUART1_RTS_DE

I2C2_SDA

TIM21_CH2

-

PB15

SPI2_MOSI/
I2S2_SD

RTC_REFIN

-

-

-

-

-

-

STM32L072xx

PB0

Pin descriptions

52/149

Table 18. Alternate functions port B

AF0

Port

SPI1/SPI2/I2S2/
USART1/2/
LPUART1/USB/
LPTIM1/TSC/
TIM2/21/22/
EVENTOUT/
SYS_AF

AF2

AF3

AF4

AF5

AF6

AF7

SPI1/SPI2/I2S2/
LPUART1/
USART5/USB/
LPTIM1/TIM2/3
/EVENTOUT/SYS_AF

I2C1/TSC/
EVENTOUT

I2C1/USART1/2/
LPUART1/
TIM3/22/
EVENTOUT

SPI2/I2S2
/I2C2/
USART1/
TIM2/21/22

I2C1/2/
LPUART1/
USART4/
UASRT5/TIM21/E
VENTOUT

SPI1/SPI2/I2S2/I2C1/
TIM2/21

I2C3/LPUART1/
COMP1/2/
TIM3

DocID027100 Rev 4

PC0

LPTIM1_IN1

EVENTOUT

TSC_G7_IO1

LPUART1_RX

I2C3_SCL

PC1

LPTIM1_OUT

EVENTOUT

TSC_G7_IO2

LPUART1_TX

I2C3_SDA

PC2

LPTIM1_IN2

SPI2_MISO/
I2S2_MCK

TSC_G7_IO3

PC3

LPTIM1_ETR

SPI2_MOSI/
I2S2_SD

TSC_G7_IO4

PC4

EVENTOUT

LPUART1_TX

PC5
Port C

AF1

LPUART1_RX

TSC_G3_IO1

PC6

TIM22_CH1

TIM3_CH1

TSC_G8_IO1

PC7

TIM22_CH2

TIM3_CH2

TSC_G8_IO2

PC8

TIM22_ETR

TIM3_CH3

TSC_G8_IO3

PC9

TIM21_ETR

USB_NOE/TIM3_CH4

TSC_G8_IO4

PC10

LPUART1_TX

USART4_TX

PC11

LPUART1_RX

USART4_RX

PC12

USART5_TX

STM32L072xx

Table 19. Alternate functions port C

I2C3_SDA

USART4_CK

PC13
PC14

53/149

Pin descriptions

PC15

AF0

AF1

AF2

AF4

AF5

AF6

AF7

SPI1/SPI2/I2S2/
USART1/2/
LPUART1/USB/
LPTIM1/TSC/
TIM2/21/22/
EVENTOUT/
SYS_AF

SPI1/SPI2/I2S2/I2C1/
TIM2/21

SPI1/SPI2/I2S2/
LPUART1/
USART5/USB/
LPTIM1/TIM2/3
/EVENTOUT/
SYS_AF

I2C1/TSC/
EVENTOUT

I2C1/USART1/2/
LPUART1/
TIM3/22/
EVENTOUT

SPI2/I2S2
/I2C2/
USART1/
TIM2/21/22

I2C1/2/
LPUART1/
USART4/
UASRT5/TIM21/E
VENTOUT

I2C3/LPUART1/
COMP1/2/TIM3

PD0

TIM21_CH1

SPI2_NSS/I2S2_WS

-

-

-

-

-

-

PD1

-

SPI2_SCK/I2S2_CK

-

-

-

-

-

-

PD2

LPUART1_RTS_
DE

TIM3_ETR

-

-

-

USART5_RX

-

PD3

USART2_CTS

SPI2_MISO/
I2S2_MCK

-

-

-

-

-

PD4

USART2_RTS_D
E

SPI2_MOSI/I2S2_SD

-

-

-

-

-

-

PD5

USART2_TX

-

-

-

-

-

-

-

PD6

USART2_RX

-

-

-

-

-

-

-

PD7

USART2_CK

TIM21_CH2

-

-

-

-

-

-

PD8

LPUART1_TX

-

-

-

-

-

-

PD9

LPUART1_RX

-

-

-

-

-

-

PD10

-

-

-

-

-

-

-

PD11

LPUART1_CTS

-

-

-

-

-

-

PD12

LPUART1_RTS_
DE

-

-

-

-

-

-

PD13

-

-

-

-

-

-

-

PD14

-

-

-

-

-

-

-

PD15

USB_CRS_SYNC

-

-

-

-

-

-

DocID027100 Rev 4

Port D

Port

STM32L072xx

AF3

Pin descriptions

54/149

Table 20. Alternate functions port D

AF0

DocID027100 Rev 4

Port E

Port

SPI1/SPI2/I2S2/
USART1/2/
LPUART1/USB/
LPTIM1/TSC/
TIM2/21/22/
EVENTOUT/
SYS_AF

AF1

AF2

AF3

AF4

AF5

AF6

AF7

SPI1/SPI2/I2S2/
LPUART1/
USART5/USB/
LPTIM1/TIM2/3
/EVENTOUT/
SYS_AF

I2C1/TSC/
EVENTOUT

I2C1/USART1/2/
LPUART1/
TIM3/22/
EVENTOUT

SPI2/I2S2
/I2C2/
USART1/
TIM2/21/22

I2C1/2/
LPUART1/
USART4/
UASRT5/TIM21/
EVENTOUT

SPI1/SPI2/I2S2/I2C1
/TIM2/21

I2C3/LPUART1/
COMP1/2/TIM3

-

EVENTOUT

-

-

-

-

-

PE1

-

EVENTOUT

-

-

-

-

-

PE2

-

TIM3_ETR

-

-

-

-

-

PE3

TIM22_CH1

TIM3_CH1

-

-

-

-

-

PE4

TIM22_CH2

-

TIM3_CH2

-

-

-

-

-

PE5

TIM21_CH1

-

TIM3_CH3

-

-

-

-

-

PE6

TIM21_CH2

-

TIM3_CH4

-

-

-

-

-

PE7

-

-

-

-

-

USART5_CK/U
SART5_RTS_D
E

-

PE8

-

-

-

-

-

USART4_TX

-

PE9

TIM2_CH1

TIM2_ETR

-

-

-

USART4_RX

-

PE10

TIM2_CH2

-

-

-

-

USART5_TX

-

PE11

TIM2_CH3

-

-

-

-

-

USART5_RX

-

PE12

TIM2_CH4

-

SPI1_NSS

-

-

-

-

-

PE13

-

SPI1_SCK

-

-

-

-

-

PE14

-

SPI1_MISO

-

-

-

-

-

PE15

-

SPI1_MOSI

-

-

-

-

-

55/149

Pin descriptions

PE0

STM32L072xx

Table 21. Alternate functions port E

AF0

AF1

AF2

AF3

AF4

AF5

AF6

AF7

SPI1/SPI2/
I2S2/USART1/2/
LPUART1/USB/
LPTIM1/TSC/
TIM2/21/22/
EVENTOUT/
SYS_AF

SPI1/SPI2/I2S2
/I2C1/TIM2/21

SPI1/SPI2/I2S2/
LPUART1/
USART5/USB/
LPTIM1/TIM2/3/
EVENTOUT/
SYS_AF

I2C1/TSC/
EVENTOUT

I2C1/USART1/2/
LPUART1/
TIM3/22/
EVENTOUT

SPI2/I2S2/I2C2/
USART1/
TIM2/21/22

I2C1/2/
LPUART1/
USART4/
UASRT5/TIM21/
EVENTOUT

I2C3/
LPUART1/
COMP1/2/
TIM3

PH0

USB_CRS_SYNC

-

-

-

-

-

-

-

PH1

-

-

-

-

-

-

-

-

Port H

Port

Pin descriptions

56/149

Table 22. Alternate functions port H

DocID027100 Rev 4

STM32L072xx

STM32L072xx

5

Memory mapping

Memory mapping
Refer to the product line reference manual for details on the memory mapping as well as the
boundary addresses for all peripherals.

DocID027100 Rev 4

57/149
57

Electrical characteristics

STM32L072xx

6

Electrical characteristics

6.1

Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.

6.1.1

Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3σ).

6.1.2

Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.6 V (for the
1.65 V ≤VDD ≤3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).

6.1.3

Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.

6.1.4

Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 11.

6.1.5

Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 12.
Figure 11. Pin loading conditions

Figure 12. Pin input voltage

0&8SLQ

0&8SLQ

& S)
9,1

DLF

58/149

DocID027100 Rev 4

DLF

STM32L072xx

6.1.6

Electrical characteristics

Power supply scheme
Figure 13. Power supply scheme

287
*3,2V
,1
9''
9''

/HYHOVKLIWHU

6WDQGE\SRZHUFLUFXLWU\
26&57&:DNHXS
ORJLF57&EDFNXS
UHJLVWHUV

,2
/RJLF

.HUQHOORJLF
&38
'LJLWDO 
0HPRULHV 

5HJXODWRU

1îQ)
î—)
966
9''$

9''$
95()

Q)
—)

Q)
—)

95()
95()

$'&
'$&

$QDORJ
5&3//&203
«

966$

966
9''B86%

86%
WUDQVFHLYHU

06Y9

6.1.7

Current consumption measurement
Figure 14. Current consumption measurement scheme
9''$

,''

1[9''
1îQ)
î—)

1[966

06Y9

DocID027100 Rev 4

59/149
120

Electrical characteristics

6.2

STM32L072xx

Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 23: Voltage characteristics,
Table 24: Current characteristics, and Table 25: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability. Device mission profile (application conditions)
is compliant with JEDEC JESD47 Qualification Standard. Extended mission profiles are
available on demand.
Table 23. Voltage characteristics
Symbol
VDD–VSS

VIN(2)

Definition

Min

Max

–0.3

4.0

Input voltage on FT and FTf pins

VSS −0.3

VDD+4.0

Input voltage on TC pins

VSS −0.3

4.0

Input voltage on BOOT0

VSS

VDD + 4.0

VSS − 0.3

4.0

External main supply voltage
(including VDDA, VDD_USB, VDD)(1)

Input voltage on any other pin
|ΔVDD|

Variations between different VDDx power pins

-

50

|VDDA-VDDx|

Variations between any VDDx and VDDA power
pins(3)

-

300

Variations between all different ground pins
including VREF- pin

-

50

-

0.4

|ΔVSS|

VREF+ –VDDA Allowed voltage difference for VREF+ > VDDA
VESD(HBM)

Electrostatic discharge voltage
(human body model)

Unit

V

mV

V

see Section 6.3.11

1. All main power (VDD,VDD_USB, VDDA) and ground (VSS, VSSA) pins must always be connected to the
external power supply, in the permitted range.
2.

VIN maximum must always be respected. Refer to Table 24 for maximum allowed injected current values.

3. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV
between VDD and VDDA can be tolerated during power-up and device operation. VDD_USB is independent
from VDD and VDDA: its value does not need to respect this rule.

60/149

DocID027100 Rev 4

STM32L072xx

Electrical characteristics
Table 24. Current characteristics
Symbol

Ratings

Max.

ΣIVDD(2)

Total current into sum of all VDD power lines (source)(1)

105

ΣIVSS(2)

(1)

Total current out of sum of all VSS ground lines (sink)

105

Total current into VDD_USB power lines (source)

25

ΣIVDD_USB
IVDD(PIN)
IVSS(PIN)

IIO

ΣIIO(PIN)

IINJ(PIN)
ΣIINJ(PIN)

Maximum current into each VDD power pin (source)(1)

100

(1)

Maximum current out of each VSS ground pin (sink)

100

Output current sunk by any I/O and control pin except FTf
pins

16

Output current sunk by FTf pins

22

Output current sourced by any I/O and control pin

-16

Total output current sunk by sum of all IOs and control pins
except PA11 and PA12(2)

90

Total output current sunk by PA11 and PA12

25

Total output current sourced by sum of all IOs and control
pins(2)

-90

Injected current on FT, FTf, RST and B pins

Unit

mA

-5/+0(3)

Injected current on TC pin

± 5(4)

Total injected current (sum of all I/O and control pins)(5)

± 25

1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output
current must not be sunk/sourced between two consecutive power supply pins referring to high pin count
LQFP packages.
3. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN VDD while a negative injection is induced by VIN < VSS. IINJ(PIN)
must never be exceeded. Refer to Table 23: Voltage characteristics for the maximum allowed input voltage
values.
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).

Table 25. Thermal characteristics
Symbol
TSTG
TJ

Ratings
Storage temperature range
Maximum junction temperature

DocID027100 Rev 4

Value

Unit

–65 to +150

°C

150

°C

61/149
120

Electrical characteristics

STM32L072xx

6.3

Operating conditions

6.3.1

General operating conditions
Table 26. General operating conditions

Symbol

Parameter

Conditions

Min

Max

fHCLK

Internal AHB clock frequency

-

0

32

fPCLK1

Internal APB1 clock frequency

-

0

32

fPCLK2

Internal APB2 clock frequency

-

0

32

BOR detector disabled

1.65

3.6

BOR detector enabled, at power-on

1.8

3.6

BOR detector disabled, after power-on

1.65

3.6

VDD

Standard operating voltage

Unit

MHz

V

VDDA

Analog operating voltage (DAC not
used)

Must be the same voltage as VDD(1)

1.65

3.6

V

VDDA

Analog operating voltage (all
features)

Must be the same voltage as VDD(1)

1.8

3.6

V

USB peripheral used

3.0

3.6

USB peripheral not used

1.65

3.6

2.0 V ≤VDD ≤3.6 V

-0.3

5.5

1.65 V ≤VDD ≤2.0 V

-0.3

5.2

VDD_US Standard operating voltage, USB
domain(2)
B
Input voltage on FT, FTf and RST
pins(3)
VIN

62/149

Input voltage on BOOT0 pin

-

0

5.5

Input voltage on TC pin

-

-0.3

VDD+0.3

DocID027100 Rev 4

V

V

STM32L072xx

Electrical characteristics
Table 26. General operating conditions (continued)

Symbol

Parameter

Min

Max

UFBGA100 package

-

351

LQFP100 package

-

488

UFBG64 package

-

308

TFBGA64 package

-

313

LQFP64 package

-

435

WLCSP49 package

-

417

LQFP48 package

-

370

UFQFPN32 package

-

556

LQFP32 package

-

333

UFBGA100 package

-

88

LQFP100 package

-

122

UFBG64 package

-

77

TFBGA64 package

-

78

LQFP64 package

-

109

WLCSP49 package

-

104

LQFP48 package

-

93

UFQFPN32 package

-

139

LQFP32 package

-

83

Maximum power dissipation (range 6)

–40

85

Maximum power dissipation (range 7)

–40

105

Maximum power dissipation (range 3)

–40

125

Junction temperature range (range 6) -40 °C ≤TA ≤85 °

–40

105

Junction temperature range (range 7) -40 °C ≤TA ≤105 °C

–40

125

Junction temperature range (range 3) -40 °C ≤TA ≤125 °C

–40

130

Power dissipation at TA = 85 °C
(range 6) or TA =105 °C (rage 7) (4)

PD

Power dissipation at TA = 125 °C
(range 3) (4)

TA

TJ

Temperature range

Conditions

Unit

mW

°C

1. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA
can be tolerated during power-up and normal operation.
2. VDD_USB must respect the following conditions:
- When VDD is powered-on (VDD < VDD_min), VDD_USB should be always lower than VDD.
- When VDD is powered-down (VDD < VDD_min), VDD_USB should be always lower than VDD.
- In operating mode, VDD_USB could be lower or higher VDD.
- If the USB is not used, VDD_USB must range from VDD_min to VDD_max to be able to use PA11 and PA12 as standard I/Os.
3. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled.
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 25: Thermal characteristics on
page 61).

DocID027100 Rev 4

63/149
120

Electrical characteristics

6.3.2

STM32L072xx

Embedded reset and power control block characteristics
The parameters given in the following table are derived from the tests performed under the
ambient temperature condition summarized in Table 26.
Table 27. Embedded reset and power control block characteristics

Symbol

Parameter

Conditions

VDD rise time rate
tVDD(1)
VDD fall time rate
TRSTTEMPO(1) Reset temporization

Typ

Max

BOR detector enabled

0

-

∞

BOR detector disabled

0

-

1000

BOR detector enabled

20

-

∞

BOR detector disabled

0

-

1000

VDD rising, BOR enabled

-

2

3.3

0.4

0.7

1.6

Falling edge

1

1.5

1.65

Rising edge

1.3

1.5

1.65

Falling edge

1.67

1.7

1.74

Rising edge

1.69

1.76

1.8

Falling edge

1.87

1.93

1.97

Rising edge

1.96

2.03

2.07

Falling edge

2.22

2.30

2.35

Rising edge

2.31

2.41

2.44

Falling edge

2.45

2.55

2.6

Rising edge

2.54

2.66

2.7

Falling edge

2.68

2.8

2.85

Rising edge

2.78

2.9

2.95

Falling edge

1.8

1.85

1.88

Rising edge

1.88

1.94

1.99

Falling edge

1.98

2.04

2.09

Rising edge

2.08

2.14

2.18

Falling edge

2.20

2.24

2.28

Rising edge

2.28

2.34

2.38

Falling edge

2.39

2.44

2.48

Rising edge

2.47

2.54

2.58

Falling edge

2.57

2.64

2.69

Rising edge

2.68

2.74

2.79

Falling edge

2.77

2.83

2.88

Rising edge

2.87

2.94

2.99

VDD rising, BOR

VPOR/PDR

Power-on/power down reset
threshold

VBOR0

Brown-out reset threshold 0

VBOR1

Brown-out reset threshold 1

VBOR2

Brown-out reset threshold 2

VBOR3

Brown-out reset threshold 3

VBOR4

Brown-out reset threshold 4

VPVD0

Programmable voltage detector
threshold 0

VPVD1

PVD threshold 1

VPVD2

PVD threshold 2

VPVD3

PVD threshold 3

VPVD4

PVD threshold 4

VPVD5

PVD threshold 5

64/149

Min

DocID027100 Rev 4

disabled(2)

Unit

µs/V

ms

V

STM32L072xx

Electrical characteristics

Table 27. Embedded reset and power control block characteristics (continued)
Symbol

Parameter

VPVD6

Conditions

PVD threshold 6

Hysteresis voltage

Vhyst

Min

Typ

Max

Falling edge

2.97

3.05

3.09

Rising edge

3.08

3.15

3.20

BOR0 threshold

-

40

-

All BOR and PVD thresholds
excepting BOR0

-

100

-

Unit
V

mV

1. Guaranteed by characterization results.
2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details.

6.3.3

Embedded internal reference voltage
The parameters given in Table 29 are based on characterization results, unless otherwise
specified.
Table 28. Embedded internal reference voltage calibration values
Calibration value name

Description

Memory address

Raw data acquired at
temperature of 25 °C
VDDA= 3 V

VREFINT_CAL

0x1FF8 0078 - 0x1FF8 0079

Table 29. Embedded internal reference voltage(1)
Symbol

Parameter

VREFINT out(2)

Internal reference voltage

Conditions

Min

Typ

Max

Unit

– 40 °C < TJ < +125 °C

1.202

1.224

1.242

V

TVREFINT

Internal reference startup time

-

-

2

3

ms

VVREF_MEAS

VDDA and VREF+ voltage during
VREFINT factory measure

-

2.99

3

3.01

V

AVREF_MEAS

Accuracy of factory-measured
VREFINT value(3)

Including uncertainties
due to ADC and
VDDA/VREF+ values

-

-

±5

mV

TCoeff(4)

Temperature coefficient

–40 °C < TJ < +125 °C

-

25

100

ppm/°C

ACoeff(4)

Long-term stability

1000 hours, T= 25 °C

-

-

1000

ppm

VDDCoeff(4)

Voltage coefficient

3.0 V < VDDA < 3.6 V

-

-

2000

ppm/V

TS_vrefint(4)(5)

ADC sampling time when
reading the internal reference
voltage

-

5

10

-

µs

TADC_BUF(4)

Startup time of reference
voltage buffer for ADC

-

-

-

10

µs

IBUF_ADC(4)

Consumption of reference
voltage buffer for ADC

-

-

13.5

25

µA

IVREF_OUT(4)

VREF_OUT output current(6)

-

-

-

1

µA

VREF_OUT output load

-

-

-

50

pF

CVREF_OUT

(4)

DocID027100 Rev 4

65/149
120

Electrical characteristics

STM32L072xx

Table 29. Embedded internal reference voltage(1) (continued)
Symbol

Parameter

Conditions

Min

Typ

Max

Unit

Consumption of reference
voltage buffer for VREF_OUT
and COMP

-

-

730

1200

nA

VREFINT_DIV1(4)

1/4 reference voltage

-

24

25

26

VREFINT_DIV2(4)

1/2 reference voltage

-

49

50

51

VREFINT_DIV3(4)

3/4 reference voltage

-

74

75

76

ILPBUF(4)

%
VREFINT

1. Refer to Table 41: Peripheral current consumption in Stop and Standby mode for the value of the internal reference current
consumption (IREFINT).
2. Guaranteed by test in production.
3. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes.
4. Guaranteed by design.
5. Shortest sampling time can be determined in the application by multiple iterations.
6. To guarantee less than 1% VREF_OUT deviation.

6.3.4

Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, temperature, I/O pin loading, device software configuration, operating
frequencies, I/O pin switching rate, program location in memory and executed binary code.
The current consumption is measured as described in Figure 14: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to Dhrystone 2.1 code if not specified
otherwise.
The current consumption values are derived from the tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 26: General operating
conditions unless otherwise specified.
The MCU is placed under the following conditions:
•

All I/O pins are configured in analog input mode

•

All peripherals are disabled except when explicitly mentioned

•

The Flash memory access time and prefetch is adjusted depending on fHCLK
frequency and voltage range to provide the best CPU performance unless otherwise
specified.

•

When the peripherals are enabled fAPB1 = fAPB2 = fAPB

•

When PLL is ON, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or
HSE = 16 MHz (if HSE bypass mode is used)

•

The HSE user clock applied to OSCI_IN input follows the characteristic specified in
Table 43: High-speed external user clock characteristics

•

For maximum current consumption VDD = VDDA = 3.6 V is applied to all supply pins

•

For typical current consumption VDD = VDDA = 3.0 V is applied to all supply pins if not
specified otherwise

The parameters given in Table 51, Table 26 and Table 27 are derived from tests performed
under ambient temperature and VDD supply voltage conditions summarized in Table 26.

66/149

DocID027100 Rev 4

STM32L072xx

Electrical characteristics

Table 30. Current consumption in Run mode, code with data processing running from
Flash memory
Symbol

Parameter

fHCLK
(MHz)

Typ

Max(1)

1

190

250

2

345

380

4

650

670

4

0,8

0,86

8

1,55

1,7

16

2,95

3,1

8

1,9

2,1

16

3,55

3,8

32

6,65

7,2

0,065

39

130

0,524

115

210

4,2

700

770

Range2,
Vcore=1.5 V
VOS[1:0]=10

16

2,9

3,2

Range1,
Vcore=1.8 V
VOS[1:0]=01

32

Condition
Range3,
Vcore=1.2 V
VOS[1:0]=11
fHSE = fHCLK up to
16MHz included,
fHSE = fHCLK/2 above
16 MHz (PLL ON)(2)

IDD (Run
from Flash
memory)

Range2,
Vcore=1.5 V
VOS[1:0]=10
Range1,
Vcore=1.8 V
VOS[1:0]=01

Supply current in Run
mode code executed
from Flash memory
MSI clock source

HSI clock source
(16MHz)

Range3,
Vcore=1.2 V
VOS[1:0]=11

Unit

µA

mA

µA

mA
7,15

7,4

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

DocID027100 Rev 4

67/149
120

Electrical characteristics

STM32L072xx

Table 31. Current consumption in Run mode vs code type,
code with data processing running from Flash memory
Symbol

IDD
(Run
from
Flash
memory)

Parameter

Conditions

fHCLK

Range 3,
VCORE=1.2 V,
VOS[1:0]=11

Supply
current in
Run mode,
code
executed
from Flash
memory

Dhrystone

650

CoreMark

655

Fibonacci

fHSE = fHCLK up to
16 MHz included, fHSE
= fHCLK/2 above 16
MHz (PLL ON)(1)
Range 1,
VCORE=1.8 V,
VOS[1:0]=01

Typ

Unit

485

4 MHz

µA

while(1)

385

while(1), 1WS,
prefetch OFF

375

Dhrystone

6,65

CoreMark

6,9

Fibonacci

6,75

32 MHz

while(1)

5,8

while(1), prefetch
OFF

5,5

mA

1. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Figure 15. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSE, 1WS




,'' P$






9'' 9
























ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&

06Y9

68/149

DocID027100 Rev 4

STM32L072xx

Electrical characteristics
Figure 16. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSI16, 1WS




,'' P$








9'' 9






















ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
06Y9

Table 32. Current consumption in Run mode, code with data processing running from RAM
Symbol

Parameter

fHCLK
(MHz)

Typ

Max(1)

1

175

230

2

315

360

4

570

630

4

0,71

0,78

8

1,35

1,6

16

2,7

3

8

1,7

1,9

16

3,2

3,7

32

6,65

7,1

0,065

38

98

0,524

105

160

4,2

615

710

Range2,
Vcore=1.5 V
VOS[1:0]=10

16

2,85

3

Range1,
Vcore=1.8 V
VOS[1:0]=01

32

Condition
Range3,
Vcore=1.2 V
VOS[1:0]=11
fHSE = fHCLK up to
16 MHz included,
fHSE = fHCLK/2 above
16 MHz (PLL ON)(2)

IDD (Run
from RAM)

Range2,
Vcore=1.5 V
VOS[1:0]=10
Range1,
Vcore=1.8 V
VOS[1:0]=01

Supply current in Run
mode code executed
from RAM, Flash
memory switched off
MSI clock

HSI clock source
(16 MHz)

Range3,
Vcore=1.2 V
VOS[1:0]=11

Unit

µA

mA

µA

mA
6,85

7,3

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

DocID027100 Rev 4

69/149
120

Electrical characteristics

STM32L072xx

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Table 33. Current consumption in Run mode vs code type,
code with data processing running from RAM(1)
Symbol

Parameter

Conditions

fHCLK
Dhrystone

IDD (Run
from
RAM)

Supply current in
Run mode, code
executed from
RAM, Flash
memory switched
off

fHSE = fHCLK up to
16 MHz included,
fHSE = fHCLK/2 above
16 MHz (PLL ON)(2)

Range 3,
VCORE=1.2 V,
VOS[1:0]=11

Range 1,
VCORE=1.8 V,
VOS[1:0]=01

CoreMark
Fibonacci

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

70/149

DocID027100 Rev 4

4 MHz

670
410
375

Dhrystone

6,65

CoreMark
Fibonacci

Unit

570

while(1)

while(1)
1. Guaranteed by characterization results, unless otherwise specified.

Typ

32 MHz

6,95
5,9
5,2

µA

mA

STM32L072xx

Electrical characteristics

Table 34. Current consumption in Sleep mode
Symbol

Parameter

fHCLK (MHz)

Typ

Max(1)

1

43,5

110

2

72

140

4

130

200

4

160

220

8

305

380

16

590

690

8

370

460

16

715

840

32

1650

2000

0,065

18

93

0,524

31,5

110

4,2

140

230

Range2,
Vcore=1.5 V
VOS[1:0]=10

16

665

850

Range1,
Vcore=1.8 V
VOS[1:0]=01

32

1750

2100

1

57,5

130

2

84

160

4

150

220

4

170

240

8

315

400

16

605

710

8

380

470

16

730

860

32

1650

2000

0,065

29,5

110

0,524

44,5

120

4,2

150

240

Range2,
Vcore=1.5 V
VOS[1:0]=10

16

680

930

Range1,
Vcore=1.8 V
VOS[1:0]=01

32

1750

2200

Condition
Range3,
Vcore=1.2 V
VOS[1:0]=11
fHSE = fHCLK up to
16 MHz included,
fHSE = fHCLK/2 above
16 MHz (PLL ON)(2)

Range2,
Vcore=1.5 V
VOS[1:0]=10
Range1,
Vcore=1.8 V
VOS[1:0]=01

Supply current in
Sleep mode, Flash
memory switched
OFF

Range3,
Vcore=1.2 V
VOS[1:0]=11

MSI clock

HSI clock source
(16 MHz)
IDD
(Sleep)

Range3,
Vcore=1.2 V
VOS[1:0]=11
fHSE = fHCLK up to
16MHz included,
fHSE = fHCLK/2 above
16 MHz (PLL ON)(2)

Range2,
Vcore=1.5 V
VOS[1:0]=10
Range1,
Vcore=1.8 V
VOS[1:0]=01

Supply current in
Sleep mode, Flash
memory switched
ON

Range3,
Vcore=1.2 V
VOS[1:0]=11

MSI clock

HSI clock source
(16MHz)

Unit

µA

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

DocID027100 Rev 4

71/149
120

Electrical characteristics

STM32L072xx

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Table 35. Current consumption in Low-power run mode
Symbol

Parameter

fHCLK
(MHz)

Typ

Max(1)

9,45

12

14

58

21

64

36,5

160

14,5

18

19,5

60

26

65

42

160

26,5

30

27,5

60

31

66

TA = 105°C

37,5

77

TA = 125°C

53,5

170

TA = − 40 to 25°C

24,5

34

30

82

38,5

90

TA = 125°C

58

120

TA = − 40 to 25°C

30,5

40

36,5

88

45

96

TA = 125°C

64,5

120

TA = − 40 to 25°C

45

56

TA = 55°C

48

96

51

110

TA = 105°C

59,5

120

TA = 125°C

79,5

150

Condition
TA = − 40 to 25°C
TA = 85°C

MSI clock = 65 kHz,
fHCLK= 32 kHz

TA = 105°C

0,032

TA = 125°C
TA = − 40 to 25°C
All peripherals
OFF, code
TA = 85°C
MSI clock = 65 kHz,
executed from
0,065
f
=
65kHz
HCLK
TA = 105°C
RAM, Flash
memory switched
TA = 125°C
OFF, VDD from
1.65 to 3.6 V
TA = − 40 to 25°C
TA = 55°C

MSI clock=131 kHz,
fHCLK= 131 kHz
IDD
(LP Run)

Supply
current in
Low-power
run mode

TA = 85°C

TA = 85°C

MSI clock = 65 kHz,
fHCLK= 32 kHz

All peripherals
OFF, code
MSI clock = 65 kHz,
executed from
fHCLK= 65 kHz
Flash memory,
VDD from 1.65 V
to 3.6 V

TA = 105°C

TA = 85°C
TA = 105°C

MSI clock =
131 kHz,
fHCLK= 131 kHz

TA = 85°C

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

72/149

DocID027100 Rev 4

0,131

0,032

0,065

0,131

Unit

µA

STM32L072xx

Electrical characteristics

Figure 17. IDD vs VDD, at TA= 25 °C, Low-power run mode, code running
from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS
,'' P$

(
(
(
(
(
(
(
(
(





















9'' 9









06Y9

Table 36. Current consumption in Low-power sleep mode
Symbol

Parameter

Condition

Max
(1)

MSI clock = 65 kHz,
fHCLK= 32 kHz,
TA = − 40 to 25°C
Flash memory OFF

4,7

-

TA = − 40 to 25°C

17

24

TA = 85°C

19,5

30

TA= 105°C

23

47

TA= 125°C

32,5

70

TA= − 40 to 25°C

17

24

TA= 85°C

20

31

TA = 105°C

23,5

47

TA = 125°C

32,5

70

TA= − 40 to 25°C

19,5

27

TA = 55°C

20,5

28

TA = 85°C

22,5

33

TA = 105°C

26

50

TA= 125°C

35

73

MSI clock = 65 kHz,
fHCLK= 32 kHz
All peripherals
Supply current in
OFF, code
IDD
Low-power sleep
executed from
(LP Sleep)
mode
Flash memory, VDD
from 1.65 to 3.6 V

Typ

MSI clock = 65 kHz,
fHCLK= 65 kHz

MSI clock = 131kHz,
fHCLK= 131 kHz

Unit

µA

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

DocID027100 Rev 4

73/149
120

Electrical characteristics

STM32L072xx

Table 37. Typical and maximum current consumptions in Stop mode
Symbol

Parameter

Max(1) Unit

Conditions

Typ

TA = − 40 to 25°C

0,43

1,00

TA = 55°C

0,735

2,50

TA= 85°C

2,25

4,90

TA = 105°C

5,3

13,00

TA = 125°C

12,5

28,00

IDD (Stop) Supply current in Stop mode

µA

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

Figure 18. IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled
and running on LSE Low drive

(
(
(
(

,'' P$

(
(
(
(
9'' 9
























ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
06Y9

74/149

DocID027100 Rev 4

STM32L072xx

Electrical characteristics

Figure 19. IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled,
all clocks OFF

(
(
(

,'' P$

(
(
(
(
9'' 9























ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&

06Y9

Table 38. Typical and maximum current consumptions in Standby mode
Symbol

Parameter

Typ

Max(1)

TA = − 40 to 25°C

0,855

1,70

TA = 55 °C

-

2,90

TA= 85 °C

-

3,30

TA = 105 °C

-

4,10

TA = 125 °C

-

8,50

TA = − 40 to 25°C

0,29

0,60

TA = 55 °C

0,32

1,20

TA = 85 °C

0,5

2,30

TA = 105 °C

0,94

3,00

TA = 125 °C

2,6

7,00

Conditions

Independent watchdog
and LSI enabled
IDD
Supply current in Standby
(Standby)
mode
Independent watchdog
and LSI OFF

Unit

µA

1. Guaranteed by characterization results at 125 °C, unless otherwise specified

DocID027100 Rev 4

75/149
120

Electrical characteristics

STM32L072xx

Table 39. Average current consumption during Wakeup
System frequency

Current
consumption
during wakeup

HSI

1

HSI/4

0,7

MSI clock = 4,2 MHz

0,7

MSI clock = 1,05 MHz

0,4

MSI clock = 65 KHz

0,1

Reset pin pulled down

-

0,21

BOR ON

-

0,23

MSI clock = 2,1 MHz

0,5

MSI clock = 2,1 MHz

0,12

Symbol

parameter

IDD (Wakeup from Supply current during Wakeup from
Stop)
Stop mode

IDD (Reset)
IDD (Power-up)

IDD (Wakeup from With Fast wakeup set
StandBy)
With Fast wakeup disabled

76/149

DocID027100 Rev 4

Unit

mA

STM32L072xx

Electrical characteristics

On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in the following tables. The
MCU is placed under the following conditions:
•

all I/O pins are in input mode with a static value at VDD or VSS (no load)

•

all peripherals are disabled unless otherwise mentioned

•

the given value is calculated by measuring the current consumption
–

with all peripherals clocked OFF

–

with only one peripheral clocked on
Table 40. Peripheral current consumption in Run or Sleep mode(1)
Typical consumption, VDD = 3.0 V, TA = 25 °C
Peripheral

CRS

APB1

Low-power
sleep and
run

2.5

2

2

2

DAC1/2

4

3.5

3

2.5

I2C1

11

9.5

7.5

9

I2C3

11

9

7

9

LPTIM1

10

8.5

6.5

8

LPUART1

8

6.5

5.5

6

SPI2

9

4.5

3.5

4

USART2

14.5

12

9.5

11

USART4

5

4

3

5

USART5

5

4

3

5

USB

8.5

4.5

4

4.5

TIM2

10.5

8.5

7

9

TIM3

12

10

8

11

TIM6

3.5

3

2.5

2

TIM7

3.5

3

2.5

2

3

2

2

2

5.5

5

3.5

4

4

3

3

2.5

USART1

14.5

11.5

9.5

12

TIM21

7.5

6

5

5.5

TIM22

7

6

5

6

FIREWALL

1.5

1

1

0.5

DBGMCU

1.5

1

1

0.5

SYSCFG

2.5

2

2

1.5

WWDG
ADC1

(2)

SPI1

APB2

Range 2,
Range 3,
Range 1,
VCORE=1.8 V VCORE=1.5 V VCORE=1.2 V
VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11

DocID027100 Rev 4

Unit

µA/MHz
(fHCLK)

µA/MHz
(fHCLK)

77/149
120

Electrical characteristics

STM32L072xx

Table 40. Peripheral current consumption in Run or Sleep mode(1) (continued)
Typical consumption, VDD = 3.0 V, TA = 25 °C
Peripheral

Range 2,
Range 3,
Range 1,
VCORE=1.8 V VCORE=1.5 V VCORE=1.2 V
VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11

Low-power
sleep and
run

Unit

GPIOA

3.5

3

2.5

2.5

GPIOB

3.5

2.5

2

2.5

Cortex- GPIOC
M0+ core
I/O port GPIOD

8.5

6.5

5.5

7

1

0.5

0.5

0.5

GPIOE

8

6

5

6

GPIOH

1.5

1

1

0.5

CRC

1.5

1

1

1

FLASH

0(3)

0(3)

0(3)

0(3)

DMA1

10

8

6.5

8.5

RNG

5.5

1

0.5

0.5

TSC

3

2.5

2

3

All enabled

204

162

130

202

µA/MHz
(fHCLK)

PWR

2.5

2

2

1

µA/MHz
(fHCLK)

AHB

µA/MHz
(fHCLK)

µA/MHz
(fHCLK)

1. Data based on differential IDD measurement between all peripherals OFF an one peripheral with clock
enabled, in the following conditions: fHCLK = 32 MHz (range 1), fHCLK = 16 MHz (range 2), fHCLK = 4 MHz
(range 3), fHCLK = 64kHz (Low-power run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for
each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. Not tested in production.
2. HSI oscillator is OFF for this measure.
3. Current consumption is negligible and close to 0 µA.

78/149

DocID027100 Rev 4

STM32L072xx

Electrical characteristics

Table 41. Peripheral current consumption in Stop and Standby mode(1)
Symbol
IDD(PVD / BOR)

-

IREFINT

-

-

Typical consumption, TA = 25 °C

Peripheral

LSE Low

drive(2)

VDD=1.8 V

VDD=3.0 V

0.7

1.2

-

1.7

0.11

0,13

-

LSI

0.27

0.31

-

IWDG

0.2

0.3

-

LPTIM1, Input 100 Hz

0.01

0,01

-

LPTIM1, Input 1 MHz

11

12

-

LPUART1

-

0,5

-

RTC

0.16

0,3

Unit

µA

1. LPTIM, LPUART peripherals can operate in Stop mode but not in Standby mode.
2.

LSE Low drive consumption is the difference between an external clock on OSC32_IN and a quartz between OSC32_IN
and OSC32_OUT.-

6.3.5

Wakeup time from low-power mode
The wakeup times given in the following table are measured with the MSI or HSI16 RC
oscillator. The clock source used to wake up the device depends on the current operating
mode:
•

Sleep mode: the clock source is the clock that was set before entering Sleep mode

•

Stop mode: the clock source is either the MSI oscillator in the range configured before
entering Stop mode, the HSI16 or HSI16/4.

•

Standby mode: the clock source is the MSI oscillator running at 2.1 MHz

All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 26.
Table 42. Low-power mode wakeup timings
Symbol
tWUSLEEP

Parameter

Conditions

Wakeup from Sleep mode

tWUSLEEP_ Wakeup from Low-power sleep mode,
fHCLK = 262 kHz
LP

Typ

Max

fHCLK = 32 MHz

7

8

fHCLK = 262 kHz
Flash memory enabled

7

8

fHCLK = 262 kHz
Flash memory switched OFF

9

10

DocID027100 Rev 4

Unit

Number
of clock
cycles

79/149
120

Electrical characteristics

STM32L072xx

Table 42. Low-power mode wakeup timings (continued)
Symbol

tWUSTOP

tWUSTDBY

80/149

Parameter

Conditions

Typ

Max

fHCLK = fMSI = 4.2 MHz
Wakeup from Stop mode, regulator in Run
fHCLK = fHSI = 16 MHz
mode
fHCLK = fHSI/4 = 4 MHz

5.0

8

4.9

7

8.0

11

fHCLK = fMSI = 4.2 MHz
Voltage range 1

5.0

8

fHCLK = fMSI = 4.2 MHz
Voltage range 2

5.0

8

fHCLK = fMSI = 4.2 MHz
Voltage range 3

5.0

8

7.3

13

13

23

28

38

fHCLK = fMSI = 262 kHz

51

65

fHCLK = fMSI = 131 kHz

100

120

fHCLK = MSI = 65 kHz

190

260

fHCLK = fHSI = 16 MHz

4.9

7

fHCLK = fHSI/4 = 4 MHz

8.0

11

fHCLK = fHSI = 16 MHz
Wakeup from Stop mode, regulator in lowfHCLK = fHSI/4 = 4 MHz
power mode, code running from RAM
fHCLK = fMSI = 4.2 MHz

4.9

7

7.9

10

4.7

8

Wakeup from Standby mode
FWU bit = 1

fHCLK = MSI = 2.1 MHz

65

130

Wakeup from Standby mode
FWU bit = 0

fHCLK = MSI = 2.1 MHz

2.2

3

fHCLK = fMSI = 2.1 MHz
Wakeup from Stop mode, regulator in lowfHCLK = fMSI = 1.05 MHz
power mode
fHCLK = fMSI = 524 kHz

DocID027100 Rev 4

Unit

µs

ms

STM32L072xx

6.3.6

Electrical characteristics

External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The
external clock signal has to respect the I/O characteristics in Section 6.3.12. However, the
recommended clock input waveform is shown in Figure 20.
Table 43. High-speed external user clock characteristics(1)
Symbol

fHSE_ext

Parameter

User external clock source
frequency

Conditions

Min

Typ

Max

Unit

CSS is ON or
PLL is used

1

8

32

MHz

CSS is OFF,
PLL not used

0

8

32

MHz

VHSEH

OSC_IN input pin high level voltage

0.7VDD

-

VDD

VHSEL

OSC_IN input pin low level voltage

VSS

-

0.3VDD

tw(HSE)
tw(HSE)

OSC_IN high or low time

12

-

-

tr(HSE)
tf(HSE)

OSC_IN rise or fall time

-

-

20

OSC_IN input capacitance

-

2.6

-

pF

45

-

55

%

-

-

±1

µA

Cin(HSE)

ns

-

DuCy(HSE) Duty cycle
IL

OSC_IN Input leakage current

V

VSS ≤VIN ≤VDD

1. Guaranteed by design.

Figure 20. High-speed external clock source AC timing diagram

9+6(+

9+6(/


WU +6(

WI +6(

W: +6(

W: +6(

W

7+6(

(;7(5 1$/
&/2&. 6285& (

I+6(BH[W
26& B,1

,/
670/[[
DLF

DocID027100 Rev 4

81/149
120

Electrical characteristics

STM32L072xx

Low-speed external user clock generated from an external source
The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 26.
Table 44. Low-speed external user clock characteristics(1)
Symbol

Parameter

Conditions

fLSE_ext

User external clock source
frequency

VLSEH

OSC32_IN input pin high level
voltage

VLSEL

OSC32_IN input pin low level
voltage

tw(LSE)
tw(LSE)

OSC32_IN high or low time

tr(LSE)
tf(LSE)

OSC32_IN rise or fall time

CIN(LSE)

Typ

Max

Unit

1

32.768

1000

kHz

0.7VDD

-

VDD
V

-

VSS

-

0.3VDD

465

-

ns

-

-

10

-

-

0.6

-

pF

-

45

-

55

%

VSS ≤VIN ≤VDD

-

-

±1

µA

OSC32_IN input capacitance

DuCy(LSE) Duty cycle
IL

Min

OSC32_IN Input leakage current

1. Guaranteed by design, not tested in production

Figure 21. Low-speed external clock source AC timing diagram

9/6(+

9/6(/


WU /6(

WI /6(

W: /6(

W: /6(

W

7/6(

(;7(5 1$/
&/2&. 6285& (

I/6(BH[W
26&B,1

,/
670/[[

DLF

82/149

DocID027100 Rev 4

STM32L072xx

Electrical characteristics

High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 1 to 25 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 45. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 45. HSE oscillator characteristics(1)
Symbol

Parameter

Conditions

fOSC_IN Oscillator frequency
RF

Feedback resistor

Gm

Maximum critical crystal
transconductance

tSU(HSE)
(2)

Startup time

Min Typ

-

1

-

-

Startup
VDD is stabilized

Max Unit
25

MHz

200

-

kΩ

-

-

700

µA
/V

-

2

-

ms

1. Guaranteed by design.
2. Guaranteed by characterization results. tSU(HSE) is the startup time measured from the moment it is
enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard
crystal resonator and it can vary significantly with the crystal manufacturer.

For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 22). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
Figure 22. HSE oscillator circuit diagram
I+6(WRFRUH

5P
/P

5)

&2
&/
26&B,1

&P

JP

5HVRQDWRU

5HVRQDWRU

&RQVXPSWLRQ
FRQWURO

670
26&B287
&/

DLE

DocID027100 Rev 4

83/149
120

Electrical characteristics

STM32L072xx

Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 46. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 46. LSE oscillator characteristics(1)
Symbol
fLSE

Gm

Conditions(2)

Min(2)

Typ

Max

Unit

-

32.768

-

kHz

LSEDRV[1:0]=00
lower driving capability

-

-

0.5

LSEDRV[1:0]= 01
medium low driving capability

-

-

0.75

LSEDRV[1:0] = 10
medium high driving capability

-

-

1.7

LSEDRV[1:0]=11
higher driving capability

-

-

2.7

VDD is stabilized

-

2

-

Parameter
LSE oscillator frequency

Maximum critical crystal
transconductance

tSU(LSE)(3) Startup time

µA/V

s

1. Guaranteed by design.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
3. Guaranteed by characterization results. tSU(LSE) is the startup time measured from the moment it is enabled (by software)
to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary
significantly with the crystal manufacturer. To increase speed, address a lower-drive quartz with a high- driver mode.

Note:

For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 23. Typical application with a 32.768 kHz crystal
5HVRQDWRUZLWKLQWHJUDWHG
FDSDFLWRUV
&/
26&B,1

I/6(
'ULYH
SURJUDPPDEOH
DPSOLILHU

N+]
UHVRQDWRU
26&B287

&/

069

Note:

84/149

An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.

DocID027100 Rev 4

STM32L072xx

6.3.7

Electrical characteristics

Internal clock source characteristics
The parameters given in Table 47 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 26.

High-speed internal 16 MHz (HSI16) RC oscillator
Table 47. 16 MHz HSI16 oscillator characteristics
Symbol
fHSI16
TRIM

(1)(2)

ACCHSI16
(2)

Parameter

Conditions

Min

Typ

Max

Unit

Frequency

VDD = 3.0 V

-

16

-

MHz

HSI16 usertrimmed resolution

Trimming code is not a multiple of 16

-

± 0.4

0.7

%

Trimming code is a multiple of 16

-

Accuracy of the
factory-calibrated
HSI16 oscillator

-

± 1.5

%

VDDA = 3.0 V, TA = 25 °C

-1(3)

-

1(3)

%

VDDA = 3.0 V, TA = 0 to 55 °C

-1.5

-

1.5

%

VDDA = 3.0 V, TA = -10 to 70 °C

-2

-

2

%

VDDA = 3.0 V, TA = -10 to 85 °C

-2.5

-

2

%

VDDA = 3.0 V, TA = -10 to 105 °C

-4

-

2

%

-5.45

-

3.25

%

VDDA = 1.65 V to 3.6 V
TA = − 40 to 125 °C
tSU(HSI16)(2)

HSI16 oscillator
startup time

-

-

3.7

6

µs

IDD(HSI16)(2)

HSI16 oscillator
power consumption

-

-

100

140

µA

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are
multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).
2. Guaranteed by characterization results.
3. Guaranteed by test in production.

Figure 24. HSI16 minimum and maximum value versus temperature




9PLQ























9W\S
9PD[
9PD[



9PLQ




06Y9

DocID027100 Rev 4

85/149
120

Electrical characteristics

STM32L072xx

High-speed internal 48 MHz (HSI48) RC oscillator
Table 48. HSI48 oscillator characteristics(1)
Symbol
fHSI48
TRIM

Parameter

Conditions

Frequency

Min

Typ

Max

Unit

-

48

-

MHz

(2)

HSI48 user-trimming step

0.09

DuCy(HSI48) Duty cycle

0.14

(2)

%

(2)

%

0.2

(2)

-

55

-4(3)

-

4(3)

%

45

ACCHSI48

Accuracy of the HSI48
oscillator (factory calibrated
before CRS calibration)

tsu(HSI48)

HSI48 oscillator startup time

-

-

6(2)

µs

HSI48 oscillator power
consumption

-

330

380(2)

µA

IDDA(HSI48)

TA = 25 °C

1. VDDA = 3.3 V, TA = –40 to 125 °C unless otherwise specified.
2. Guaranteed by design.
3. Guaranteed by characterization results.

Low-speed internal (LSI) RC oscillator
Table 49. LSI oscillator characteristics
Symbol
fLSI(1)
DLSI(2)
tsu(LSI)(3)
IDD(LSI)

(3)

Parameter

Min

Typ

Max

Unit

LSI frequency

26

38

56

kHz

LSI oscillator frequency drift
0°C ≤TA ≤ 85°C

-10

-

4

%

LSI oscillator startup time

-

-

200

µs

LSI oscillator power consumption

-

400

510

nA

1. Guaranteed by test in production.
2. This is a deviation for an individual part, once the initial frequency has been measured.
3. Guaranteed by design.

Multi-speed internal (MSI) RC oscillator
Table 50. MSI oscillator characteristics
Symbol

fMSI

86/149

Parameter

Frequency after factory calibration, done at
VDD= 3.3 V and TA = 25 °C

DocID027100 Rev 4

Condition

Typ

Max Unit

MSI range 0

65.5

-

MSI range 1

131

-

MSI range 2

262

-

MSI range 3

524

-

MSI range 4

1.05

-

MSI range 5

2.1

-

MSI range 6

4.2

-

kHz

MHz

STM32L072xx

Electrical characteristics
Table 50. MSI oscillator characteristics (continued)
Symbol
ACCMSI

DTEMP(MSI)(1)

DVOLT(MSI)(1)

IDD(MSI)(2)

tSU(MSI)

Parameter

Condition

Typ

Frequency error after factory calibration

-

±0.5

-

MSI oscillator frequency drift
0 °C ≤TA ≤85 °C

-

±3

-

MSI range 0

− 8.9

+7.0

MSI range 1

− 7.1

+5.0

MSI range 2

− 6.4

+4.0

MSI range 3

− 6.2

+3.0

MSI range 4

− 5.2

+3.0

MSI range 5

− 4.8

+2.0

MSI range 6

− 4.7

+2.0

-

-

2.5

MSI range 0

0.75

-

MSI range 1

1

-

MSI range 2

1.5

-

MSI range 3

2.5

-

MSI range 4

4.5

-

MSI range 5

8

-

MSI range 6

15

-

MSI range 0

30

-

MSI range 1

20

-

MSI range 2

15

-

MSI range 3

10

-

MSI range 4

6

-

MSI range 5

5

-

MSI range 6,
Voltage range 1
and 2

3.5

-

MSI range 6,
Voltage range 3

5

-

MSI oscillator frequency drift
VDD = 3.3 V, − 40 °C ≤TA ≤110 °C

MSI oscillator frequency drift
1.65 V ≤VDD ≤3.6 V, TA = 25 °C

MSI oscillator power consumption

MSI oscillator startup time

DocID027100 Rev 4

Max Unit
%

%

%/V

µA

µs

87/149
120

Electrical characteristics

STM32L072xx
Table 50. MSI oscillator characteristics (continued)

Symbol

tSTAB(MSI)(2)

fOVER(MSI)

Parameter

Condition

MSI oscillator stabilization time

MSI oscillator frequency overshoot

Typ

Max Unit

MSI range 0

-

40

MSI range 1

-

20

MSI range 2

-

10

MSI range 3

-

4

MSI range 4

-

2.5

MSI range 5

-

2

MSI range 6,
Voltage range 1
and 2

-

2

MSI range 3,
Voltage range 3

-

3

Any range to
range 5

-

4

Any range to
range 6

-

µs

MHz
6

1. This is a deviation for an individual part, once the initial frequency has been measured.
2. Guaranteed by characterization results.

6.3.8

PLL characteristics
The parameters given in Table 51 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 26.
Table 51. PLL characteristics
Value
Symbol

Parameter

Unit

Min

Typ

Max(1)

PLL input clock(2)

2

-

24

MHz

PLL input clock duty cycle

45

-

55

%

fPLL_OUT

PLL output clock

2

-

32

MHz

tLOCK

PLL input = 16 MHz
PLL VCO = 96 MHz

-

115

160

µs

Jitter

Cycle-to-cycle jitter

-

± 600

ps

IDDA(PLL)

Current consumption on VDDA

-

220

450

IDD(PLL)

Current consumption on VDD

-

120

150

fPLL_IN

µA

1. Guaranteed by characterization results.
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.

88/149

DocID027100 Rev 4

STM32L072xx

6.3.9

Electrical characteristics

Memory characteristics
RAM memory
Table 52. RAM and hardware registers
Symbol
VRM

Parameter

Conditions

Data retention mode(1)

STOP mode (or RESET)

Min

Typ

Max

Unit

1.65

-

-

V

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware
registers (only in Stop mode).

Flash memory and data EEPROM
Table 53. Flash memory and data EEPROM characteristics
Symbol

Conditions

Min

Typ

Max(1)

Unit

-

1.65

-

3.6

V

Erasing

-

3.28

3.94

Programming

-

3.28

3.94

Average current during
the whole programming /
erase operation

-

500

700

µA

Maximum current (peak) TA = 25 °C, VDD = 3.6 V
during the whole
programming / erase
operation

-

1.5

2.5

mA

Parameter

VDD

Operating voltage
Read / Write / Erase

tprog

Programming time for
word or half-page

IDD

ms

1. Guaranteed by design.

Table 54. Flash memory and data EEPROM endurance and retention
Value
Symbol

Parameter
Cycling (erase / write)
Program memory

NCYC(2)

Conditions

Min(1)

Unit

10

Cycling (erase / write)
EEPROM data memory
Cycling (erase / write)
Program memory

TA = -40°C to 105 °C
100
kcycles
0.2

Cycling (erase / write)
EEPROM data memory

TA = -40°C to 125 °C

DocID027100 Rev 4

2

89/149
120

Electrical characteristics

STM32L072xx

Table 54. Flash memory and data EEPROM endurance and retention (continued)
Value
Symbol

Parameter
Data retention (program memory) after
10 kcycles at TA = 85 °C
Data retention (EEPROM data memory)
after 100 kcycles at TA = 85 °C

tRET(2)

Data retention (program memory) after
10 kcycles at TA = 105 °C
Data retention (EEPROM data memory)
after 100 kcycles at TA = 105 °C
Data retention (program memory) after
200 cycles at TA = 125 °C
Data retention (EEPROM data memory)
after 2 kcycles at TA = 125 °C

Conditions

Min(1)

Unit

30
TRET = +85 °C
30

TRET = +105 °C

years
10

TRET = +125 °C

1. Guaranteed by characterization results.
2. Characterization is done according to JEDEC JESD22-A117.

6.3.10

EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•

Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.

•

FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.
The test results are given in Table 55. They are based on the EMS levels and classes
defined in application note AN1709.
Table 55. EMS characteristics
Symbol

90/149

Parameter

Conditions

VFESD

VDD = 3.3 V, LQFP100, TA = +25 °C,
Voltage limits to be applied on any I/O pin to
fHCLK = 32 MHz
induce a functional disturbance
conforms to IEC 61000-4-2

VEFTB

Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance

DocID027100 Rev 4

VDD = 3.3 V, LQFP100, TA = +25
°C,
fHCLK = 32 MHz
conforms to IEC 61000-4-4

Level/
Class
3B

4A

STM32L072xx

Electrical characteristics

Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•

Corrupted program counter

•

Unexpected reset

•

Critical data corruption (control registers...)

Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 56. EMI characteristics
Symbol Parameter

SEMI

Conditions

VDD = 3.6 V,
Peak level TA = 25 °C,
LQFP100 package
compliant with IEC 61967-2

DocID027100 Rev 4

Monitored
frequency band

Max vs.
frequency
range at
32 MHz

0.1 to 30 MHz

-7

30 to 130 MHz

14

130 MHz to 1 GHz

9

EMI Level

2

Unit

dBµV

-

91/149
120

Electrical characteristics

6.3.11

STM32L072xx

Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/JEDEC standard.
Table 57. ESD absolute maximum ratings
Symbol

VESD(HBM)

Ratings

Conditions

Class

Maximum
value(1)

2

2000

TA = +25 °C,
Electrostatic discharge
conforming to
voltage (human body model)
ANSI/JEDEC JS-001
TA = +25 °C,
conforming to
ANSI/ESD STM5.3.1.

Electrostatic discharge
VESD(CDM) voltage (charge device
model)

Unit

V
C4

500

1. Guaranteed by characterization results.

Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•

A supply overvoltage is applied to each power supply pin

•

A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 58. Electrical sensitivities
Symbol
LU

92/149

Parameter
Static latch-up class

Conditions
TA = +125 °C conforming to JESD78A

DocID027100 Rev 4

Class
II level A

STM32L072xx

6.3.12

Electrical characteristics

I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard pins) should be avoided during normal product operation.
However, in order to give an indication of the robustness of the microcontroller in cases
when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.

Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of –5 µA/+0 µA range), or other functional failure (for example reset occurrence oscillator
frequency deviation).
The test results are given in the Table 59.
Table 59. I/O current injection susceptibility
Functional susceptibility
Symbol

IINJ

Description

Negative
injection

Positive
injection

Injected current on BOOT0

-0

NA(1)

Injected current on PA0, PA4, PA5, PC15,
PH0 and PH1

-5

0

Injected current on any other FT, FTf pins

-5 (2)

NA(1)

Injected current on any other pins

-5 (2)

+5

Unit

mA

1. Current injection is not possible.
2. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject
negative currents.

DocID027100 Rev 4

93/149
120

Electrical characteristics

6.3.13

STM32L072xx

I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 60 are derived from tests
performed under the conditions summarized in Table 26. All I/Os are CMOS and TTL
compliant.
Table 60. I/O static characteristics

Symbol

VIL
VIH
Vhys

Ilkg

RPU

Parameter

Input low level voltage
Input high level voltage
I/O Schmitt trigger voltage hysteresis
(2)

Input leakage current (4)

Weak pull-up equivalent resistor(5)

RPD

Weak pull-down equivalent resistor

CIO

I/O pin capacitance

(5)

Conditions

Min

Typ

Max

TC, FT, FTf, RST
I/Os

-

-

0.3VDD

BOOT0 pin

-

-

0.14VDD(1)

All I/Os

0.7 VDD

-

-

Standard I/Os

-

10% VDD(3)

-

BOOT0 pin

-

0.01

-

VSS ≤VIN ≤VDD
All I/Os except for
PA11, PA12, BOOT0
and FTf I/Os

-

-

±50

VSS ≤VIN ≤VDD,
PA11 and PA12 I/Os

-

-

-50/+250

VSS ≤VIN ≤VDD
FTf I/Os

-

-

±100

VDD≤VIN ≤5 V
All I/Os except for
PA11, PA12, BOOT0
and FTf I/Os

-

-

200

VDD≤VIN ≤5 V
FTf I/Os

-

-

500

VDD≤VIN ≤5 V
PA11, PA12 and
BOOT0

-

-

10

µA

VIN = VSS

25

45

65

kΩ

VIN = VDD

25

45

65

kΩ

-

-

5

-

pF

nA

2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.
3. With a minimum of 200 mV. Guaranteed by characterization results.
4. The max. value may be exceeded if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
MOS/NMOS contribution to the series resistance is minimum (~10% order).

DocID027100 Rev 4

V

nA

1. Guaranteed by characterization.

94/149

Unit

STM32L072xx

Electrical characteristics
Figure 25. VIH/VIL versus VDD (CMOS I/Os)
9,/9,+ 9

LQV
 DOOS 

9 '' 3+



3&

9 ,+PLQ W%227 IRU

S
H[FH 9 '' +
3

9 ,+PLQ 3&
7
%22

9 '

'

PLQ

9,+PLQ

LUH

UHTX

DUG

WDQG

6V
&02

WV9 ,+
PHQ

9 ,/PD[



'
9 '

,QSXWUDQJHQRW
JXDUDQWHHG
&026VWDQGDUGUHTXLUHPHQWV9,/PD[ 9''

9,/PD[


9'' 9









06Y9

Figure 26. VIH/VIL versus VDD (TTL I/Os)
9,/9,+ 9


SLQV
 DOO
 3+
'
'
9


3&

9 ,+PLQ W%227 IRU

S
H[FH 9 '' 3+



LQ

9 ,+P 3&
7
%22

77/VWDQGDUGUHTXLUHPHQWV9,+PLQ 9

9,+PLQ

9 ,/PD[



'
9 '

,QSXWUDQJHQRW
JXDUDQWHHG

9,/PD[


77/VWDQGDUGUHTXLUHPHQWV9,/PD[ 9

9'' 9









06Y9

Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±15 mA with the non-standard VOL/VOH specifications given in Table 61.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
•

The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD(Σ) (see Table 24).

•

The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS(Σ) (see Table 24).

DocID027100 Rev 4

95/149
120

Electrical characteristics

STM32L072xx

Output voltage levels
Unless otherwise specified, the parameters given in Table 61 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 26. All I/Os are CMOS and TTL compliant.
Table 61. Output voltage characteristics
Symbol

Parameter

VOL(1)

Output low level voltage for an I/O
pin

VOH(3)

Output high level voltage for an I/O
pin

Conditions

Min

Max

CMOS port(2),
IIO = +8 mA
2.7 V ≤ VDD ≤ 3.6 V

-

0.4

VDD-0.4

-

(1)

Output low level voltage for an I/O
pin

TTL port(2),
IIO =+ 8 mA
2.7 V ≤VDD ≤ 3.6 V

-

0.4

(3)(4)

Output high level voltage for an I/O
pin

TTL port(2),
IIO = -6 mA
2.7 V ≤VDD ≤ 3.6 V

2.4

-

VOL(1)(4)

Output low level voltage for an I/O
pin

IIO = +15 mA
2.7 V ≤VDD ≤ 3.6 V

-

1.3

VOH(3)(4)

Output high level voltage for an I/O
pin

IIO = -15 mA
2.7 V ≤VDD ≤ 3.6 V

VDD-1.3

-

VOL(1)(4)

Output low level voltage for an I/O
pin

IIO = +4 mA
1.65 V ≤VDD < 3.6 V

-

0.45

VOH(3)(4)

Output high level voltage for an I/O
pin

IIO = -4 mA
VDD-0.45
1.65 V ≤VDD ≤ 3.6 V

VOL

VOH

Output low level voltage for an FTf
VOLFM+(1)(4)
I/O pin in Fm+ mode

Unit

V

-

IIO = 20 mA
2.7 V ≤VDD ≤ 3.6 V

-

0.4

IIO = 10 mA
1.65 V ≤VDD ≤ 3.6 V

-

0.4

1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 24.
The sum of the currents sunk by all the I/Os (I/O ports and control pins) must always be respected and
must not exceed ΣIIO(PIN).
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 24. The sum of the currents sourced by all the I/Os (I/O ports and control pins) must always be
respected and must not exceed ΣIIO(PIN).
4. Guaranteed by characterization results.

96/149

DocID027100 Rev 4

STM32L072xx

Electrical characteristics

Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 27 and
Table 62, respectively.
Unless otherwise specified, the parameters given in Table 62 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 26.
Table 62. I/O AC characteristics(1)
OSPEEDRx[1:0]
bit value(1)

Symbol

fmax(IO)out

Maximum frequency(3)

tf(IO)out
tr(IO)out

Output rise and fall time

fmax(IO)out

Maximum frequency(3)

tf(IO)out
tr(IO)out

Output rise and fall time

00

01

Fmax(IO)out Maximum frequency(3)
10
tf(IO)out
tr(IO)out

Output rise and fall time

Fmax(IO)out Maximum frequency(3)
11

Fm+
configuration(4)

-

Min

Max(2)

CL = 50 pF, VDD = 2.7 V to 3.6 V

-

400

CL = 50 pF, VDD = 1.65 V to 2.7 V

-

100

CL = 50 pF, VDD = 2.7 V to 3.6 V

-

125

CL = 50 pF, VDD = 1.65 V to 2.7 V

-

320

CL = 50 pF, VDD = 2.7 V to 3.6 V

-

2

CL = 50 pF, VDD = 1.65 V to 2.7 V

-

0.6

CL = 50 pF, VDD = 2.7 V to 3.6 V

-

30

CL = 50 pF, VDD = 1.65 V to 2.7 V

-

65

CL = 50 pF, VDD = 2.7 V to 3.6 V

-

10

CL = 50 pF, VDD = 1.65 V to 2.7 V

-

2

CL = 50 pF, VDD = 2.7 V to 3.6 V

-

13

CL = 50 pF, VDD = 1.65 V to 2.7 V

-

28

CL = 30 pF, VDD = 2.7 V to 3.6 V

-

35

CL = 50 pF, VDD = 1.65 V to 2.7 V

-

10

CL = 30 pF, VDD = 2.7 V to 3.6 V

-

6

CL = 50 pF, VDD = 1.65 V to 2.7 V

-

17

-

1

-

10

Parameter

tf(IO)out
tr(IO)out

Output rise and fall time

fmax(IO)out

Maximum frequency(3)

Conditions

tf(IO)out

Output fall time

tr(IO)out

Output rise time

-

30

Maximum frequency(3)

-

350

-

15

-

60

8

-

fmax(IO)out
tf(IO)out

Output fall time

tr(IO)out

Output rise time

tEXTIpw

Pulse width of external
signals detected by the
EXTI controller

CL = 50 pF, VDD = 2.5 V to 3.6 V

CL = 50 pF, VDD = 1.65 V to 3.6 V

-

Unit

kHz

ns

MHz

ns

MHz

ns

MHz

ns
MHz
ns
KHz
ns

ns

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the line reference manual for a description of GPIO Port
configuration register.
2. Guaranteed by design.
3. The maximum frequency is defined in Figure 27.
4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the line reference manual for a detailed
description of Fm+ I/O configuration.

DocID027100 Rev 4

97/149
120

Electrical characteristics

STM32L072xx
Figure 27. I/O AC characteristics definition











(;7(51$/
287387
21&/

WU ,2 RXW

WI ,2 RXW
7

0D[LPXPIUHTXHQF\LVDFKLHYHGLI WUWI ”  7DQGLIWKHGXW\F\FOHLV  
ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´


6.3.14

DLG

NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU , except when it is internally driven low (see Table 63).
Unless otherwise specified, the parameters given in Table 63 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 26.
Table 63. NRST pin characteristics
Symbol
VIL(NRST)

(1)

Parameter

Conditions

Min

Typ

NRST input low level voltage

-

VSS

-

0.8

-

1.4

-

VDD

IOL = 2 mA
2.7 V < VDD < 3.6 V

-

-

IOL = 1.5 mA
1.65 V < VDD < 2.7 V

-

-

-

-

10%VDD(2)

-

mV

Weak pull-up equivalent
resistor(3)

VIN = VSS

25

45

65

kΩ

NRST input filtered pulse

-

-

-

50

ns

NRST input not filtered pulse

-

350

-

-

ns

VIH(NRST)(1) NRST input high level voltage
NRST output low level
VOL(NRST)(1)
voltage

Vhys(NRST)(1)
RPU
VF(NRST)(1)
VNF(NRST)

(1)

NRST Schmitt trigger voltage
hysteresis

Max Unit

V
0.4

1. Guaranteed by design.
2. 200 mV minimum value
3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to
the series resistance is around 10%.

98/149

DocID027100 Rev 4

STM32L072xx

Electrical characteristics
Figure 28. Recommended NRST pin protection

([WHUQDO
UHVHWFLUFXLW 

9''
538

1567 

,QWHUQDOUHVHW
)LOWHU

—)

069

1. The reset network protects the device against parasitic resets.
2. The external capacitor must be placed as close as possible to the device.
3. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 63. Otherwise the reset will not be taken into account by the device.

6.3.15

12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 64 are derived from tests
performed under ambient temperature, fPCLK frequency and VDDA supply voltage conditions
summarized in Table 26: General operating conditions.

Note:

It is recommended to perform a calibration after each power-up.
Table 64. ADC characteristics

Symbol

Parameter

Conditions

Min

Typ

Max

Unit

VDDA

Analog supply voltage for
ADC ON

Fast channel

1.65

-

3.6

Standard channel

1.75(1)

-

3.6

VREF+

Positive reference voltage

-

1.65

VREF-

Negative reference voltage

-

-

0

-

Current consumption of the
ADC on VDDAand VREF+

1.14 Msps

-

200

-

10 ksps

-

40

-

Current consumption of the
ADC on VDD(2)

1.14 Msps

-

70

-

10 ksps

-

1

-

Voltage scaling Range 1

0.14

-

16

Voltage scaling Range 2

0.14

-

8

Voltage scaling Range 3

0.14

-

4

Sampling rate

12-bit resolution

0.01

-

1.14

MHz

External trigger frequency

fADC = 16 MHz,
12-bit resolution

-

-

941

kHz

-

-

-

17

1/fADC

-

0

-

VREF+

V

IDDA (ADC)

fADC
fS(3)
fTRIG(3)
VAIN

ADC clock frequency

Conversion voltage range

DocID027100 Rev 4

VDDA

V
V

µA

MHz

99/149
120

Electrical characteristics

STM32L072xx
Table 64. ADC characteristics (continued)

Symbol

Conditions

Min

Typ

Max

Unit

See Equation 1 and
Table 65 for details

-

-

50

kΩ

Sampling switch resistance

-

-

-

1

kΩ

CADC(3)

Internal sample and hold
capacitor

-

-

-

8

pF

tCAL(3)(5)

Calibration time

RAIN(3)
RADC(3)(4)

Parameter
External input impedance

fADC = 16 MHz

5.2

µs

-

83

1/fADC

1.5 ADC
cycles + 2
fPCLK cycles

-

1.5 ADC
cycles + 3
fPCLK cycles

-

ADC clock = PCLK/2

-

4.5

-

fPCLK
cycle

ADC clock = PCLK/4

-

8.5

-

fPCLK
cycle

ADC clock = HSI16
WLATENCY(6)

tlatr(3)

JitterADC
tS(3)
tUP_LDO(3)(5)
tSTAB(3)(5)

tConV

(3)

ADC_DR register write
latency

Trigger conversion latency

fADC = fPCLK/2 = 16 MHz

0.266

µs

fADC = fPCLK/2

8.5

1/fPCLK

fADC = fPCLK/4 = 8 MHz

0.516

µs

fADC = fPCLK/4

16.5

1/fPCLK

fADC = fHSI16 = 16 MHz

0.252

-

0.260

µs

fADC = fHSI16

-

1

-

1/fHSI16

fADC = 16 MHz

0.093

-

10.03

µs

-

1.5

-

160.5

1/fADC

Internal LDO power-up time

-

-

-

10

µs

ADC stabilization time

-

ADC jitter on trigger
conversion
Sampling time

Total conversion time
(including sampling time)

fADC = 16 MHz,
12-bit resolution
12-bit resolution

14
0.875

-

1/fADC
10.81

14 to 173 (tS for sampling +12.5
for successive approximation)

µs
1/fADC

1. VDDA minimum value can be decreased in specific temperature conditions. Refer to Table 65: RAIN max for fADC = 16 MHz.
2. A current consumption proportional to the APB clock frequency has to be added (see Table 40: Peripheral current
consumption in Run or Sleep mode).
3. Guaranteed by design.
4. Standard channels have an extra protection resistance which depends on supply voltage. Refer to Table 65: RAIN max for
fADC = 16 MHz.
5. This parameter only includes the ADC timing. It does not take into account register access latency.
6. This parameter specifies the latency to transfer the conversion result into the ADC_DR register. EOC bit is set to indicate the
conversion is complete and has the same latency.

100/149

DocID027100 Rev 4

STM32L072xx

Electrical characteristics

Equation 1: RAIN max formula
TS
- – R ADC
R AIN < --------------------------------------------------------------N+2
f ADC × C ADC × ln ( 2
)
The simplified formula above (Equation 1) is used to determine the maximum external
impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 65. RAIN max for fADC = 16 MHz(1)
Ts
(cycles)

tS
(µs)

RAIN max for
fast channels
(kΩ)

1.5

0.09

3.5

RAIN max for standard channels (kΩ)
VDD > 1.65 V VDD > 1.65 V
and
and
TA > −10 °C
TA > 25 °C

VDD >
2.7 V

VDD >
2.4 V

VDD >
2.0 V

VDD >
1.8 V

VDD >
1.75 V

0.5

< 0.1

NA

NA

NA

NA

NA

NA

0.22

1

0.2

< 0.1

NA

NA

NA

NA

NA

7.5

0.47

2.5

1.7

1.5

< 0.1

NA

NA

NA

NA

12.5

0.78

4

3.2

3

1

NA

NA

NA

NA

19.5

1.22

6.5

5.7

5.5

3.5

NA

NA

NA

< 0.1

39.5

2.47

13

12.2

12

10

NA

NA

NA

5

79.5

4.97

27

26.2

26

24

< 0.1

NA

NA

19

160.5

10.03

50

49.2

49

47

32

< 0.1

< 0.1

42

1. Guaranteed by design.

Table 66. ADC accuracy(1)(2)(3)
Symbol

Parameter

Conditions

Min

Typ

Max

ET

Total unadjusted error

-

2

4

EO

Offset error

-

1

2.5

EG

Gain error

-

1

2

EL

Integral linearity error

-

1.5

2.5

ED

Differential linearity error

-

1

1.5

10.2

11

11.3

12.1

-

Effective number of bits

1.65 V < VDDA = VREF+ < 3.6 V,
range 1/2/3

ENOB

Effective number of bits (16-bit mode
oversampling with ratio =256)(4)

SINAD

Signal-to-noise distortion

63

69

-

Signal-to-noise ratio

63

69

-

SNR

Signal-to-noise ratio (16-bit mode
oversampling with ratio =256)(4)

70

76

-

THD

Total harmonic distortion

-

-85

-73

DocID027100 Rev 4

Unit

LSB

bits

dB

101/149
120

Electrical characteristics

STM32L072xx
Table 66. ADC accuracy(1)(2)(3) (continued)

Symbol

Parameter

Conditions

Min

Typ

Max

ET

Total unadjusted error

-

2

5

EO

Offset error

-

1

2.5

EG

Gain error

-

1

2

EL

Integral linearity error

-

1.5

3

-

1

2

1.65 V < VREF+ Y&WEϯϮ
ϯϬϬϬ

hY&EϯϮ
>Y&Wϰϴ

ϮϱϬϬ

3' P:

t>^Wϰϵ
d&'ϲϰ

ϮϬϬϬ

h&'ϲϰ
ϭϱϬϬ

>Y&Wϲϰ
>Y&WϭϬϬ

ϭϬϬϬ

h&'ϭϬϬ

ϱϬϬ
Ϭ
ϭϮϱ

ϭϬϬ

ϳϱ

ϱϬ

7HPSHUDWXUH ƒ&

7.10.1

Ϯϱ

Ϭ

06Y9

Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.

144/149

DocID027100 Rev 4

STM32L072xx

8

Ordering information

Ordering information
Table 95. STM32L072xx ordering information scheme

Example:

STM32 L

072

R

8

T

6

D TR

Device family
STM32 = Arm-based 32-bit microcontroller
Product type
L = Low power
Device subfamily
072 = USB
Pin count
K = 32 pins
C = 48/49 pins
R = 64 pins
V = 100 pins
Flash memory size
8 = 64 Kbytes
B = 128 Kbytes
Z = 192 Kbytes
Package
T = LQFP
H = TFBGA
I = UFBGA
U = UFQFPN
Y = Standard WLCSP pins
Temperature range
6 = Industrial temperature range, –40 to 85 °C
7 = Industrial temperature range, –40 to 105 °C
3 = Industrial temperature range, –40 to 125 °C
Options
No character = VDD range: 1.8 to 3.6 V and BOR enabled
D = VDD range: 1.65 to 3.6 V and BOR disabled
Packing
TR = tape and reel
No character = tray or tube

For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.

DocID027100 Rev 4

145/149
145

Revision history

9

STM32L072xx

Revision history
Table 96. Document revision history
Date

Revision

02-Sep-2015

1

Initial release

2

Changed confidentiality level to public.
Updated datasheet status to “production data”.
Modified ultra-low-power platform features on cover page.
Added note related to UFQFPN32 in Table 16: STM32L072xxx pin
definition.
In Section 6: Electrical characteristics, updated notes related to
values guaranteed by characterization.
Updated |ΔVSS| definition to include VREF- in Table 23: Voltage
characteristics.
Updated fTRIG and VAIN maximum value, added VREF+ and VREF- in
Table 64: ADC characteristics.
Updated Figure 42: UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch,
ultra fine pitch ball grid array package outline and Table 82:
UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package mechanical data.
Added Section : Device marking for LQFP64.
Add “U” package type in Section 8: Ordering information

26-Oct-2015

146/149

Changes

DocID027100 Rev 4

STM32L072xx

Revision history
Table 96. Document revision history
Date

22-Mar-2016

Revision

Changes

3

Updated number of SPIs on cover page and in Table 2: Ultra-lowpower STM32L072xx device features and peripheral counts.
Changed minimum comparator supply voltage to 1.65 V on cover
page. Added minimum DAC supply voltage on cover page.
Added number of fast and standard channels in Section 3.11:
Analog-to-digital converter (ADC).
Updated Section 3.17.2: Universal synchronous/asynchronous
receiver transmitter (USART) and Section 3.17.4: Serial peripheral
interface (SPI)/Inter-integrated sound (I2S) to mention the fact that
USARTs with synchronous mode feature can be used as SPI master
interfaces.
Added baudrate allowing to wake up the MCU from Stop mode in
Section 3.17.2: Universal synchronous/asynchronous receiver
transmitter (USART) and Section 3.17.3: Low-power universal
asynchronous receiver transmitter (LPUART).
Section 6.3.15: 12-bit ADC characteristics:
– Table 64: ADC characteristics:
Distinction made between VDDA for fast and standard channels;
added note 1.
Added note 4. related to RADC.
Updated fTRIG..
Updated tS and tCONV.
– Updated equation 1 description.
– Updated Table 65: RAIN max for fADC = 16 MHz for fADC =
16 MHz and distinction made between fast and standard channels.
Updated RO and added Note 2. in Table 67: DAC characteristics.
Added Table 71: USART/LPUART characteristics.

DocID027100 Rev 4

147/149
148

Revision history

STM32L072xx
Table 96. Document revision history
Date

Revision

Changes
Memories and I/Os moved after Core in Features.
Table 2: Ultra-low-power STM32L072xx device features and
peripheral counts: changed number of USART for
LQFP32/UFQFPN32 and added note 3.
Removed column "I/O operation" from Table 3: Functionalities
depending on the operating power supply range and added note
related to GPIO speed.
Updated VDD_USB in Section 3.4.1: Power supply schemes.
In Section 4: Pin descriptions, renamed USB_OE into USB_NOE.
In Section 5: Memory mapping, replaced memory mapping
schematic by reference to the reference manual.
Updated Figure 7: STM32L072xx WLCSP49 ballout.
Added mission profile compliance with JEDEC JESD47 in
Section 6.2: Absolute maximum ratings.
Updated minimum and maximum values of I/O weak pull-up
equivalent resistor (RPU) and weak pull-down equivalent resistor

13-Sep-2017

4

(RPD) in Table 60: I/O static characteristics.
Updated minimum and maximum values of NRST weak pull-up
equivalent resistor (RPU) in Table 63: NRST pin characteristics.
Added note 2. related to the position of the external capacitor below
Figure 28: Recommended NRST pin protection.
Updated RAIN in Table 64: ADC characteristics.
Updated Figure 33: 12-bit buffered/non-buffered DAC and added
note below figure.
Updated tAF maximum value for range 1 in Table 73: I2C analog filter
characteristics.
Removed Table 90: USART/LPUART characteristics.
NSS timing waveforms updated in Figure 34: SPI timing diagram slave mode and CPHA = 0 and Figure 35: SPI timing diagram - slave
mode and CPHA = 1(1).
Updated Figure 50: TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin
profile fine pitch ball grid array package outline.
Added reference to optional marking or inset/upset marks in all
package device marking sections.
Updated note below marking schematics.

148/149

DocID027100 Rev 4

STM32L072xx

IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved

DocID027100 Rev 4

149/149
149



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
Tagged PDF                      : Yes
Language                        : en
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 149
Creator                         : C2 v4.2.0220 build 670 - c2_rendition_config : Techlit_Active
Producer                        : Acrobat Distiller 10.0.0 (Windows); modified using iText 2.1.7 by 1T3XT
Title                           : Ultra-low-power 32-bit MCU Arm®-based Cortex®-M0+, up to 192KB Flash, 20KB SRAM, 6KB EEPROM, USB, ADC, DACs
Keywords                        : Technical Literature, 027100, Product Development, Specification, Datasheet, STM32L072V8, STM32L072VB, STM32L072RB, STM32L072CB, STM32L072KB, STM32L072CZ, STM32L072RZ, STM32L072VZ, STM32L072KZ
Modify Date                     : 2017:09:14 15:51:27+02:00
Subject                         : -
Author                          : STMICROELECTRONICS
Create Date                     : 2017:09:14 13:39:10Z
EXIF Metadata provided by EXIF.tools

Navigation menu