Jetson TX2 OEM Product Design Guide

User Manual: Pdf

Open the PDF directly: View PDF PDF.
Page Count: 98

DownloadJetson TX2 OEM Product Design Guide Jetson-tx2-oem-product-design-guide
Open PDF In BrowserView PDF
OEM PRODUCT DESIGN GUIDE

NVIDIA Jetson TX2

Abstract
This document contains recommendations and guidelines for Engineers to follow to create a product that is optimized
to achieve the best performance from the common interfaces supported by the NVIDIA® Jetson™ TX2 System-onModule (SOM).

Note:

Jetson TX2 utilizes Tegra X2 which is a Parker series SoC.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

1

NVIDIA Jetson TX2 OEM Product Design Guide

Document Change History
Date

Description

MAY, 2017

Initial Release

SEP, 2017

Power
Added pull-up mention for CARRIER_PWR_ON and updated for RESET_OUT# & SLEEP# in Power &
-

System Pin Descriptions (Table 5 & Table 90 in Appendix)
Updated Power Block diagram to show pull-ups on CARRIER_PWR_ON, POWER_BTN# & SLEEP# and
added Auto-power-on block & pull-up for CHARGER_PRSNT#
Added Deep Sleep (SC7) sequence

USB 3.0
Added Electrical Spec section
Updated impedance
Added Trace Spacing for TX/RX non-interleaving section
PCIe
Removed note under routing guidelines table related to max trace length as this was intended for chi-down
designs, not module based designs.

PCIe/SATA/HDMI
Removed min spacing between turn requirement from Serpentine section
DSI/CSI guidelines
Updated max frequency to include separate max speeds for DSI & CSI
Updated reference plane
Updated breakout impedance
Updated main impedance
Updated max trace delay to include different lengths for 1.0, 1.5 & 2.5 Gbps
HDMI
Added pre HDMI 1.4b max length/delay requirements
I2C
Updated notes under I2C signal Connections table to use E_IO_HV, not E_OD_HV.
UART
Updated UART Connections figure to add strapping information and added caution note below figure
Debug
Removed external pull-up on JTAG_GP0 (JTAG_TRST_N)
Strapping
Updated figure, table & notes to remove mention of RAM_CODE[3:2] straps.
Pads
Updated Schmitt Trigger Usage section to add caution when considering changing settings
Checklist
Corrected on-module termination for CHARGER_PRSNT# & added RESET_OUT#
Added check for using pins associated with Tegra straps

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

2

NVIDIA Jetson TX2 OEM Product Design Guide

Table of Contents
1.0 INTRODUCTION ....................................................................................................................................................................5
1.1 References.......................................................................................................................................................................5
1.2 Abbreviations and Definitions .......................................................................................................................................5
2.0 JETSON TX2 ..........................................................................................................................................................................6
2.1 Overview ..........................................................................................................................................................................6
3.0 POWER ..................................................................................................................................................................................8
3.1 Supply Allocation ............................................................................................................................................................9
3.2 Main Power Sources/Supplies .....................................................................................................................................10
3.3 Power Sequencing ........................................................................................................................................................10
3.4 Power Discharge ...........................................................................................................................................................13
3.5 Power & Voltage Monitoring ........................................................................................................................................14
3.6 Deep Sleep (SC7) ..........................................................................................................................................................15
3.7 Optional Auto-Power-On Support................................................................................................................................16
4.0 GENERAL ROUTING GUIDELINES ....................................................................................................................................18
5.0 USB, PCIE & SATA .............................................................................................................................................................20
5.1 USB ................................................................................................................................................................................22
5.2 PCIe ................................................................................................................................................................................26
5.3 SATA ..............................................................................................................................................................................30
6.0 GIGABIT ETHERNET ..........................................................................................................................................................33
7.0 DISPLAY ..............................................................................................................................................................................35
7.1 MIPI DSI..........................................................................................................................................................................35
7.2 eDP / DP / HDMI .............................................................................................................................................................38
8.0 MIPI CSI (VIDEO INPUT) .....................................................................................................................................................48
9.0 SDIO/SDCARD/EMMC .........................................................................................................................................................52
9.1 SD Card ..........................................................................................................................................................................52
10.0 AUDIO ................................................................................................................................................................................55
11.0 WLAN / BT (INTEGRATED)...............................................................................................................................................57
12.0 MISCELLANEOUS INTERFACES .....................................................................................................................................58
12.1 I2C ................................................................................................................................................................................58
12.2 SPI ................................................................................................................................................................................60
12.3 UART ............................................................................................................................................................................62
12.4 Fan................................................................................................................................................................................63
12.5 CAN ..............................................................................................................................................................................64
12.6 Debug ...........................................................................................................................................................................66
12.7 Strapping Pins .............................................................................................................................................................68
13.0 PADS ..................................................................................................................................................................................70
13.1 MPIO Pad Behavior when Associated Power Rail is Enabled .................................................................................70
13.2 Internal Pull-ups for CZ Type Pins at Power-on .......................................................................................................70
13.3 Schmitt Trigger Usage ................................................................................................................................................70
13.4 Pins Pulled/Driven High During Power-on ................................................................................................................70
13.5 Pad Drive Strength ......................................................................................................................................................71
14.0 UNUSED INTERFACE TERMINATIONS ...........................................................................................................................72

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

3

NVIDIA Jetson TX2 OEM Product Design Guide

14.1 Unused MPIO Interfaces .............................................................................................................................................72
14.2 Unused SFIO Interface Pins .......................................................................................................................................72
15.0 DESIGN CHECKLIST ........................................................................................................................................................73
16.0 APPENDIX A: GENERAL LAYOUT GUIDELINES ...........................................................................................................81
16.1 Overview ......................................................................................................................................................................81
16.2 Via Guidelines .............................................................................................................................................................81
16.3 Connecting Vias ..........................................................................................................................................................82
16.4 Trace Guidelines .........................................................................................................................................................82
17.0 APPENDIX B: STACK-UPS ..............................................................................................................................................84
17.1 Reference Design Stack-Ups .....................................................................................................................................84
18.0 APPENDIX C: TRANSMISSION LINE PRIMER ................................................................................................................85
18.1 Background .................................................................................................................................................................85
18.2 Physical Transmission Line Types ...........................................................................................................................85
18.3 Driver Characteristics .................................................................................................................................................86
18.4 Receiver Characteristics ............................................................................................................................................86
18.5 Transmission Lines & Reference Planes ..................................................................................................................86
19.0 APPENDIX D: DESIGN GUIDELINE GLOSSARY ...........................................................................................................89
20.0 APPENDIX E: JETSON TX2 PIN DESCRIPTIONS ..........................................................................................................90

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

4

NVIDIA Jetson TX2 OEM Product Design Guide

1.0 INTRODUCTION
1.1 References
Refer to the documents or models listed in Table 1 for more information. Use the latest revision of all documents at all times.
Table 1. List of Related Documents
Document
Jetson TX2 Module Data Sheet
Parker Series SoC Technical Reference Manual
Jetson TX1/TX2 Developer Kit Carrier Board Specification
Jetson TX2 Module Pinmux
Jetson TX2 Thermal Design Guide
Jetson TX1/TX2 Developer Kit Carrier Board Design Files
Jetson TX1/TX2 Developer Kit Carrier Board BOM
Jetson TX1/TX2 Developer Kit Camera Module Design Files
Jetson TX1/TX2 Supported Component List

1.2 Abbreviations and Definitions
Table 2 lists abbreviations that may be used throughout this document and their definitions.
Table 2. Abbreviations and Definitions
Abbreviation
BT
CEC
CAN
DP
eDP
eMMC
GPS
HDMI
I2C
I2S
LCD
LDO
LPDDR4
PCIe (PEX)
PCM
PHY
PMC
PMIC
RF
RTC
SATA
SDIO
SPI
UART
USB
WLAN

Definition
Bluetooth
Consumer Electronic Control
Controller Area Network
Display Port
Embedded Display Port
Embedded MMC
Global Positioning System
High Definition Multimedia Interface
Inter IC
Inter IC Sound Interface
Liquid Crystal Display
Low Dropout (voltage regulator)
Low Power Double Data Rate DRAM, Fourth-generation
Peripheral Component Interconnect Express interface
Pulse Code Modulation
Physical Interface (i.e. USB PHY)
Power Management Controller
Power Management IC
Radio Frequency
Real Time Clock
Serial “AT” Attachment interface
Secure Digital I/O Interface
Serial Peripheral Interface
Universal Asynchronous Receiver-Transmitter
Universal Serial Bus
Wireless Local Area Network

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

5

NVIDIA Jetson TX2 OEM Product Design Guide

2.0 JETSON TX2
2.1 Overview
The Jetson TX2 resides at the center of the embedded system solution and includes:
1.
3.
5.
7.

Power (PMIC/Regulators, etc.)
DRAM (LPDDR4)
eMMC
Connects to WLAN and Bluetooth enabled devices

2.
4.
6.

Ethernet PHY
Power & Voltage Monitors
Thermal Sensor

In addition, a range of interfaces are available at the main connector for use on the carrier board as shown in the following table.
Table 3. Jetson TX2 Interfaces

Catagory
USB
PCIe
SATA
Camera
Display
Audio
SD Card
LAN
Note:

Function

Catagory

Function

USB 2.0 (3x)
USB 3.0 (up to 3x) see note
Control [x3] (shared Wake)
PCIe (3 root ports - See note)
SATA & Device Sleep control
CSI (6 x2 or 3 x4), Control, Clock
2x eDP/DP/HDMI
DSI (2 x4), Display/Backlight Control
I2S (4x), Control & Clock
Digital Mic & Speaker
SD Card or SDIO
Gigabit Ethernet

CAN
I2C
UART
SPI
WLAN/BT/Modem
Touch
Sensor
Fan
Debug
System
Power

2x
8x
5x
3x
PEX/UART/I2S, Control/handshake
Touch Clock, Interrupt & Reset
Control & Interrupt
FAN PWM & Tach Input
JTAG, UART
Power Control, Reset, Alerts
Main Input

Some USB 3.0 or PCIe instances are shared. Refer to Chapter 5.0 USB, PCIe & SATA for details.

Table 4. Jetson TX2 Connector (8x50) Pin Out Matrix
1
2
3
4
5
6
7

A
VDD_IN
VDD_IN
GND
GND
RSVD
I2C_PM_CLK
CHARGING#

8

GPIO14_AP_WAKE_MDM

B
VDD_IN
VDD_IN
GND
GND
RSVD
I2C_PM_DAT
CARRIER_STBY#

C
VDD_IN
VDD_IN
GND
GND
RSVD
I2C_CAM_CLK
BATLOW#

GPIO1_CAM1_PWR#

GPIO4_CAM_STROBE

H
I2S0_LRCLK
I2S0_SDOUT
GPIO20_AUD_INT
DSPK_OUT_DAT
I2S2_LRCLK
I2S2_SDOUT
GPIO3_CAM1_RST#

VIN_PWR_BAD#
GPIO15_AP2MDM_ GPIO17_MDM2AP_
9
READY
READY
GPIO16_MDM_
GPIO18_MDM_COL
10
WAKE_AP
DBOOT
11 JTAG_GP1
JTAG_TCK

BATT_OC

UART7_TX

CAM_VSYNC

CAM1_MCLK

GPIO0_CAM0_PWR#

GPIO2_CAM0_RST#

WDT_TIME_OUT#

UART1_TX

UART1_RTS#

CAM0_MCLK

UART3_CTS#

UART3_RX

I2C_GP2_DAT

UART1_RX

UART1_CTS#

UART3_RTS#

UART3_TX

I2C_GP2_CLK

RSVD

RSVD

GND
RSVD

UART0_RTS#

UART0_CTS#

12 JTAG_TMS

JTAG_TDI

I2C_GP3_CLK

RSVD

RSVD

RSVD

UART0_RX

UART0_TX

13 JTAG_TDO

JTAG_GP0

I2C_GP3_DAT

I2S1_LRCLK

RSVD

SPI1_MOSI

SPI1_CLK

GPIO8_ALS_PROX_INT

14 JTAG_RTCK

I2S1_SDIN

I2S1_SDOUT

SPI1_CS0#

SPI1_MISO

GPIO9_MOTION_INT

SPI2_CLK

15 UART2_CTS#

GND
UART2_RX

I2S1_CLK

I2C_GP0_DAT

I2C_GP0_CLK

SPI2_MOSI

SPI2_MISO

16 UART2_RTS#

UART2_TX

FAN_PWM

AO_DMIC_IN_DAT

AO_DMIC_IN_CLK

GND
SPI2_CS1#

SPI2_CS0#

SDCARD_PWR_EN

17 USB0_EN_OC#

FAN_TACH

CAN1_STBY

CAN1_RX

RSVD

SDCARD_CD#

SDCARD_D1

18 USB1_EN_OC#

RSVD

CAN1_TX

CAN0_RX

CAN0_ERR

SDCARD_D3

GND
SDCARD_CLK

19 RSVD

GPIO11_AP_WAKE_BT

CAN1_ERR

CAN0_TX

SDCARD_D2

SDCARD_CMD

20 I2C_GP1_DAT
21 I2C_GP1_CLK

GPIO10_WIFI_WAKE_AP

CAN_WAKE

GND
CSI5_CLK-

GND
CSI5_D1-

SDCARD_WP

GND
CSI4_D1-

CSI5_D1+

22 GPIO_EXP1_INT
23 GPIO_EXP0_INT
24 LCD1_BKLT_PWM

GPIO13_BT_WAKE_AP

GND
CSI4_D0CSI4_D0+
GND

GND
CSI4_CLK-

GPIO12_BT_EN

GND
CSI5_D0GPIO7_TOUCH_RST CSI5_D0+
TOUCH_CLK
GND

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

D

E
FORCE_RECOV#
SLEEP#
SPI0_CLK
SPI0_MISO
UART7_RX
I2S3_SDIN
I2C_CAM_DAT
I2S3_CLK
GPIO5_CAM_FLASH_EN CAM2_MCLK
RSVD
RSVD
RSVD
RSVD

CSI5_CLK+
GND
CSI3_CLK-

GND
CSI3_D1CSI3_D1+

F
AUDIO_MCLK
GPIO19_AUD_RST
SPI0_CS0#
SPI0_MOSI
I2S3_LRCLK
I2S3_SDOUT

G
I2S0_SDIN
I2S0_CLK
GND
DSPK_OUT_CLK
I2S2_CLK
I2S2_SDIN

CSI4_CLK+
GND
CSI2_CLK-

SDCARD_D0

CSI4_D1+
GND
CSI2_D1CSI2_D1+

6

NVIDIA Jetson TX2 OEM Product Design Guide

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

A
LCD_TE
GSYNC_HSYNC
GSYNC_VSYNC
GND
SDIO_RST#
RSVD
RSVD
RSVD
DP1_HPD
DP1_AUX_CHDP1_AUX_CH+
USB0_OTG_ID
GND
USB1_D+
USB1_D–
GND
PEX2_REFCLK+
PEX2_REFCLK–
GND
PEX0_REFCLK+
PEX0_REFCLK–
RESET_OUT#
RESET_IN#
CARRIER_PWR_ON
CHARGER_PRSNT#
VDD_RTC

Ground

Legend

Notes:

B
GPIO6_TOUCH_INT
LCD_VDD_EN
LCD0_BKLT_PWM
LCD_BKLT_EN
RSVD
RSVD
GND
RSVD
HDMI_CEC
DP0_AUX_CHDP0_AUX_CH+
DP0_HPD
USB0_VBUS_DET
GND
USB0_D+
USB0_DGND
USB2_D+
USB2_DGND
PEX1_REFCLK+
PEX1_REFCLKGND
RSVD
RSVD
POWER_BTN#

1.
2.

C
CSI3_D0CSI3_D0+
GND
CSI1_D0CSI1_D0+
GND
DSI3_D0+
DSI3_D0GND
DSI1_D0+
DSI1_D0GND
DP1_TX1DP1_TX1+
GND
PEX2_TX+
PEX2_TXGND
USB_SS0_TX+
USB_SS0_TXGND
PEX2_CLKREQ#
PEX1_CLKREQ#
PEX0_CLKREQ#
PEX0_RST#
RSVD
Power

D
CSI3_CLK+
GND
CSI1_CLKCSI1_CLK+
GND
DSI3_CLK+
DSI3_CLK–
GND
DSI1_CLK+
DSI1_CLK–
GND
DP1_TX2DP1_TX2+
GND
PEX_RFU_TX+
PEX_RFU_TXGND
USB_SS1_TX+
USB_SS1_TXGND
SATA_TX+
SATA_TXSATA_DEV_SLP
PEX_WAKE#
PEX2_RST#
RSVD
Not available on Jetson
TX1

E
GND
CSI1_D1CSI1_D1+
GND
DSI3_D1+
DSI3_D1GND
DSI1_D1+
DSI1_D1GND
DP1_TX3DP1_TX3+
GND
DP1_TX0DP1_TX0+
GND
PEX1_TX+
PEX1_TXGND
PEX0_TX+
PEX0_TXGND
GBE_LINK_ACT#
GBE_MDI0+
GBE_MDI0PEX1_RST#
Reserved

F
CSI2_D0CSI2_D0+
GND
CSI0_D0CSI0_D0+
GND
DSI2_D0+
DSI2_D0GND
DSI0_D0+
DSI0_D0GND
DP0_TX1DP0_TX1+
GND
PEX2_RX+
PEX2_RXGND
USB_SS0_RX+
USB_SS0_RXGND
GBE_LINK1000#
GBE_MDI1+
GBE_MDI1GND
GBE_LINK100#

G
CSI2_CLK+
GND
CSI0_CLKCSI0_CLK+
GND
DSI2_CLK+
DSI2_CLKGND
DSI0_CLK+
DSI0_CLKGND
DP0_TX2DP0_TX2+
GND
PEX_RFU_RX+
PEX_RFU_RXGND
USB_SS1_RX+
USB_SS1_RXGND
SATA_RX+
SATA_RXGND
GBE_MDI2+
GBE_MDI2GND

H
GND
CSI0_D1CSI0_D1+
GND
DSI2_D1+
DSI2_D1GND
DSI0_D1+
DSI0_D1GND
DP0_TX3DP0_TX3+
GND
DP0_TX0DP0_TX0+
GND
PEX1_RX+
PEX1_RXGND
PEX0_RX+
PEX0_RXGND
GBE_MDI3+
GBE_MDI3GND
RSVD

Unassigned on carrier
board

RSVD (Reserved) pins on Jetson TX2 must be left unconnected.
Signals starting with “GPIO_” are standard GPIOs that have been assigned recommended usage. If the assigned usage is
required in a design it is recommended the matching GPIO be used. If the assigned usage is not required, the pins may be
used as GPIOs for other purposes.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

7

NVIDIA Jetson TX2 OEM Product Design Guide

3.0 POWER
Caution

Jetson TX2 is not hot-pluggable. Before installing or removing the module, the main power supply
(to VDD_IN pins) must be disconnected and adequate time (recommended > 1 minute) must be
allowed for the various power rails to fully discharge.

Table 5. Jetson TX2 Power & System Pin Descriptions
Tegra Signal

Usage/Description

Usage on the
Carrier Board

Direction

Pin Type

−

Main power – Supplies PMIC & external supplies

Main DC input

Input

5.5V-19.6V

(PMIC_GPIO6)

Battery Low (PMIC GPIO)
Carrier Power On. Used as part of the power up sequence.
The module asserts this signal when it is safe for the carrier
board to power up. A 10kΩ pull-up to VDD_3V3_SYS is
present on the module.
Carrier Board Standby: The module drives this signal low
when it is in the standby power state.
System
Charger Present. Connected on module to PMIC ACOK
through FET & 4.7kΩ resistor. PMIC ACOK has 100kΩ pull-up
internally to MBATT (VDD_5V0_SYS). Can optionally be used
to support auto-power-on where the module platform will
power-on when the main power source is connected instead
of waiting for a power button press.
Charger Interrupt
Fan PWM
Fan
Fan Tachometer
Force Recovery strap pin
Power Button. Used to initiate a system power-on.
Connected to PMIC EN0 which has internal 10KΩ Pull-up to
VDD_5V0_SYS. Also connected to Tegra POWER_ON pin
through Diode with 100kΩ pull-up to VDD_1V8_AP near
Tegra.
Reset In. System Reset driven from PMIC to carrier board for
devices requiring full system reset. Also driven from carrier
board to initiate full system reset (i.e. RESET button). A pull- System
up is present on module.
Reset Out. Reset from PMIC (through diodes) to Tegra &
eMMC reset pins. Driven from carrier board to force reset of
Tegra & eMMC (not PMIC). An external 100kΩ pull-up to

Input

CMOS – 1.8V

Output

Open-Collector – 3.3V

Output

CMOS – 1.8V

Input

MBATT level – 5.0V
(see note 2)

Input
Output
Input
Input

CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V

Input

CMOS – 5.0V
(see note 2)

Bidir

Open Drain, 1.8V

Bidir

CMOS – 1.8V

Input

CMOS – 1.8V
(see note 2)

Input

CMOS – 5.0V

Input

CMOS – 1.8V

Bidir

1.65V-5.5V

Bidir

CMOS – 1.8V

Pin #

Jetson TX2 Pin Name

A1
A2
B1
B2
C1
C2
C7

VDD_IN
VDD_IN
VDD_IN
VDD_IN
VDD_IN
VDD_IN
BATLOW#

A48

CARRIER_PWR_ON

−

B7

CARRIER_STBY#

SOC_PWR_REQ

A49

CHARGER_PRSNT#

(PMIC ACOK)

A7
C16
B17
E1

CHARGING#
FAN_PWM
FAN_TACH
FORCE_RECOV#

(PMIC GPIO5)
GPIO_SEN6
UART5_TX
GPIO_SW1

B50

POWER_BTN#

POWER_ON / (PMIC
EN0)

A47

RESET_IN#

(PMIC NRST_IO)

A46

RESET_OUT#

SYS_RESET_N

E2

SLEEP#

GPIO_SW2

B8

VIN_PWR_BAD#

−

C9

WDT_TIME_OUT#

GPIO_SEN7

A50

VDD_RTC

(PMIC BBATT)

C8

BATT_OC

BATT_OC

Note:

1.
2.

1.8V near Tegra (module pin side) & external 10kΩ
pull-up to 1.8V on the other side of a diode (PMIC
side).
Sleep Request to the module from the carrier board. An
internal Tegra pull-up is present on the signal.
VDD_IN Power Bad. Carrier board indication to the module
that the VDD_IN power is not valid. Carrier board should deassert this (drive high) only when VDD_IN has reached its
required voltage level and is stable. This prevents Tegra from
powering up until the VDD_IN power is stable.
Watchdog Timeout
Real-Time-Clock. Optionally used to provide back-up power
for RTC. Connects to Lithium Cell or super capacitor on
Carrier Board. PMIC is supply when charging cap or coin cell.
Super cap or coin cell is source when system is disconnected
from power.
Battery Over-current (& Thermal) warning

Sleep (VOL
DOWN) button

System

Battery Back-up
using Supercapacitor

Power efficiency is higher when the input voltage is lower, such as 9V or 12V. At very low voltages (close to the 5.5V
minimum), the power supported by some of the supplies may be reduced.
These pins are handled as Open-Drain on the carrier board.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

8

NVIDIA Jetson TX2 OEM Product Design Guide

Figure 1. Power Block Diagram

Jetson TX2

PU

B8

From Carrier Board main
power input & discharge circuit

CARRIER_PWR_ ON

A48

To Carrier Board power subsystem

RESET_IN#

A47

System Reset to/from Carrier Board

RESET_O UT#

A46

Tegra Force Reset from Carrier Board

VIN_PWR_BAD#
PU

Power Subsystem

DC
Jack

A1
A2
B1
B2
C1
C2

Super Cap
or Li Cell
(Optional)

A50

PU

VDD_IN

5V/3.3V Pre-Regs
PMU Switchers/LDOs
CPU/GPU Regs
Ext. LDOs
Load Switches

PU
PU

VDD_RTC

Tegra

POWER

PU

POWE R_BTN#

Optional Power Button

B50

ACO K
SLEEP

PU

SLEEP #
PU

Memory/Peripherals
LPDDR4, eMMC,
Ethernet, WiFi / BT

Auto-poweron Circuit

CARRIER_STBY #
CHARGER_P RS NT#

Optional Sleep Button

E2
B7

To Carrier Board to disable devices/
rails to be off in sleep mode

A49

Optional signal from Carrier Board
to support Auto-Power-On

3.1 Supply Allocation
Table 6 Jetson TX2 Internal Power Subsystem Allocation
Power Rails
VDD_5V0_SYS
VDD_CPU
VDD_GPU & VDD_SRAM
VDD_SOC (CORE)
VDD_DDR_1V1_PMIC
AVDD_DSI_CSI_1V2
VDD_1V8
VDD_3V3_SYS
VDDIO_3V3_AOHV
VDDIO_SDMMC1_AP
VDD_RTC (See note)
VDDIO_SDMMC3_AP
VDD_HDMI_1V05
VDD_PEX_1V05
VDD_1V8_AP (&
VDD_1V8_AP_PLL)

Note:

Usage
Supplies various switchers & load switches that power
the various circuits & peripherals on Jetson TX2.
Tegra MCPU/BCPU
Tegra GPU & SRAM
Tegra Core
LPDDR4
Source for some DSI/CSI blocks
Tegra, eMMC, WLAN
Supplies various LDOs & load switches that in turn
power the various circuits & peripherals on Jetson TX2.
Tegra VDDIO_AO_HV rail
Tegra SD Card I/O rail
Tegra Real Time Clock/Always-on Rail
Tegra SDIO rail
Tegra HDMI / DP rail
Tegra PCIe / USB 3.0 / SATA rail
Main 1.8V Tegra rail

(V)
5.0

Power Supply
5V DC-DC

Source
VDD_IN

1.0 (Var)
1.0 (Var)
1.0 (Var)
1.125
1.2
1.8
3.3

OpenVREG (uP1666QQKF)
OpenVREG (uP1666QQKF)
OpenVREG (uP1666QQKF)
PMIC Switcher SD0
PMIC Switcher SD1
PMIC Switcher SD2
PMIC Switcher SD3

VDD_5V0_SYS
VDD_5V0_SYS
VDD_5V0_SYS
VDD_5V0_SYS
VDD_5V0_SYS
VDD_5V0_SYS
VDD_5V0_SYS

3.3
1.8/3.3
1.0 (Var)
1.8/3.3
1.0
1.0
1.8

PMIC LDO 2
PMIC LDO 3
PMIC LDO 4
PMIC LDO 5
PMIC LDO 7
PMIC LDO 8
Load Switch

VDD_5V0_SYS
VDD_5V0_SYS
VDD_1V8
VDD_5V0_SYS
AVDD_DSI_CSI_1V2
AVDD_DSI_CSI_1V2
VDD_1V8

This is the Tegra supply, and should not be confused with Jetson TX2 VDD_RTC pin which is the supply that connects to the
PMIC BBATT pin to keep the Real-Time Clock powered.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

9

NVIDIA Jetson TX2 OEM Product Design Guide

3.2 Main Power Sources/Supplies
The figure below shows the power connections used on the carrier board, including the DC Jack which connects to the 5.5V19.6V AC/DC adapter, and the main 5.0V, 3.3V and 1.8V supplies. Also shown are the power control signals that are used to
enable these supplies, or are used to communicate power sequence information to Jetson TX2 or other circuitry on the carrier
board (i.e. discharge circuits).
Figure 2. Main Power Source/Supply Connections

DC Jack

VDD_19V_IN
(5.5V-19.6V)

S
PWR
G
FET
D
G
S FET D

VIN_PWR_BAD#
VDD_MOD

To Jetson TX2 & Power
Discharge Circuitry
To Jetson TX2 VDD_IN

U31
TPS53015
DC-DC
From CARRIER_PWR_ON
Jetson TX2

VIN

SW

EN

PG

VDD_5V0_IO_SYS

Main Carrier
Board 5V Supply

3V3_SYS_BUCK_EN
U16
TPS53015
DC-DC

VDD_3V3_SYS

VIN

SW

EN

PG

Main Carrier Board
3.3V Supply

L7
VDD_3V3_SYS_PG

Main 3.3V Power Good – Routed
to Power LED on Carrier board

1V8_IO_VREG_EN

U9
From Main VDD_5V0_IO_SYS
5V supply

VDD_1V8

APW8805
OpenVReg
VIN

SW

L6

VCC
EN/FS

PGOOD

1V8_IO_PG

RESET_OUT#

Note

Main Carrier Board
1.8V Supply
Main 3.3V Power Good – Routed
to Power LED on Carrier board
To Jetson TX2 (RESET_OUT#)
to keep Tegra in Reset until
1.8V rail Valid

The figure above is a high-level representation of the connections involved. Refer to the Jetson
TX1/TX2 carrier board reference design for details.

3.3 Power Sequencing
In order to ensure reliable and consistent power up sequencing, the pins VIN_PWR_BAD#, CARRIER_PWR_ON, and
RESET_OUT# on Jetson TX2 connector should be connected and used as described below:
VIN_PWR_BAD# signal is generated by the Carrier Board and passed to Jetson TX2 to keep the Tegra processor powered off
until the VDD_IN supply is stable and it is possible to power up any standby circuits on Jetson TX2. This signal prevents the
Tegra processor from powering up prematurely before the Carrier Board has charged up its decoupling capacitors and power to
Jetson TX2 is stable
CARRIER_PWR_ON signal is generated by Jetson TX2 and passed to the Carrier Board to indicate that Jetson TX2 is powered
up and that the power up sequence for the Carrier Board circuits can begin.
RESET_OUT# is de-asserted by the Carrier Board after a period sufficient to allow the Carrier Board circuits to power up.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

10

NVIDIA Jetson TX2 OEM Product Design Guide

Figure 3. Power Up Sequence
1

2

3

4

5

6

7

8

VDD_IN
VIN_PWR_BAD#
POWER_BTN#
Jetson TX2 System Power (Main 1.8V
rail most IF pins are associated with)
CARRIER_PWR_ON
Carrier Board VDD_1V8 (note 1)
RESET_OUT# (note 2)

Note:

1.

2.
3.

The 1.8V supply on the carrier board associated with MPIO pins common to Jetson TX2 must not be enabled unless the
Jetson TX2 main 1.8V rail is on. In addition, the carrier board should keep RESET_OUT# low until this 1.8V supply is valid.
On the P2597, this is accomplished by connecting the VDD_1V8 supply PGOOD signal to RESET_OUT#.
Inactive when both PMIC Reset is inactive (high) & VDD_1V8 PGOOD is active (high)
During run time if any Jetson TX2 I/O rail is switched OFF or ON, the following sequences should be performed. Violating
these sequences will result in extra in-rush current during the rail transition.
OFF Sequence: The associated NO_IOPOWER bit in the PMC APBDEV_PMC_NO_IOPOWER_0 register must be enabled before the
-

I/O Rail is powered OFF
ON Sequence. After an I/O Rail is powered ON, the associated NO_IOPOWER bit in the PMC APBDEV_PMC_NO_IOPOWER_0
register needs to be cleared to the “disable” state

Table 7. Power Up Sequence Timing Relationships
Timing

t1-2
t2-3
t3-4
t4-5
t4-6
t5-6
t6-7
t6-8

Note:

Parameter
VDD_IN On to POWER_BTN# Pull-up (PMIC) active
VDD_IN On to VIN_PWR_BAD# inactive
VIN_PWR_BAD# inactive to POWER_BTN# active
POWER_BTN# active time
POWER_BTN# active to CARRIER_PWR_ON active
Jetson TX2 System Power On to CARRIER_PWR_ON
CARRIER_PWR_ON active to Carrier Board System Power Enabled
CARRIER_PWR_ON to On-Module PMIC Reset Inactive
RESET_IN# active time
1.
2.
3.
4.
5.
6.

Min

0
50

0
50

Typ
8.8
54
See Notes
38.6
8
6.6
77.4

Max

Units
ms
ms
ms
ms
ms
ms
ms
ms
ms

Notes
1
2
3
3

4
5
6

Measured from VDD_IN ramp start to POWER_BTN# ramp start. Carrier board dependent.
Typical value using NVIDIA P2597, measured from VDD_IN ramp start to VIN_PWR_BAD# inactive start. Carrier board
dependent.
User Dependent if POWER_BTN# connected to button. Otherwise, carrier board dependent.
Typical value measured using NVIDIA P2597. Carrier board dependent
Typical value using P2597. Carrier board dependent.
User Dependent if RESET_IN# connected to button. Otherwise, carrier board dependent. Not shown in Power up
sequence figure.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

11

NVIDIA Jetson TX2 OEM Product Design Guide

Figure 4. Power Down Sequence (Controlled Case)
1

2

3

4

5

6

7

8

9

RESET_OUT#
CARRIER_PWR_ON
Carrier Board System Power (1.8V
used for pins shared w/Jetson TX2)
Jetson TX2 System Power (Main 1.8V rail
most IF pins are associated with)
VIN_PWR_BAD#
VDD_IN

Table 8. Power Down Sequence Timing Relationships (Controlled Case)
Table 9. Power Down Sequence Timing Relationships (Controlled Case)
Timing

t1-2
t2-3
t2-4
Note:

Parameter
RESET_OUT# active to CARRIER_PWR_ON inactive
CARRIER_PWR_ON inactive to carrier board system power off
CARRIER_PWR_ON inactive to Jetson TX2 System Power (main 1.8V rail) Off
1.
2.
3.

Min

Typ
3.76
0.46
1.24

Max

Units
mS
ms
mS

Notes
1
2
3

Measured from RESET_OUT# active to CARRIER_PWR_ON to inactive ramp down start.
Typical value measured using NVIDIA P2597. Measured from CARRIER_PWR_ON to carrier board VDD_1V8 ramp down
start. Carrier board dependent.
Typical value measured using NVIDIA P2597. Measured from CARRIER_PWR_ON ramp down start to Jetson TX2 main
1.8V ramp down start.

Figure 5. Power Down Sequence (Uncontrolled Power Removal Case)
1

2

3

4

5

6

7

8

9

VDD_IN
VIN_PWR_BAD#
RESET_OUT#
CARRIER_PWR_ON
Carrier Board System Power
Jetson TX2 System Power

Table 10. Power Down Sequence Timing Relationships (Uncontrolled Power Removal Case)
Timing

t1
t2

Parameter
VDD_IN Removed in uncontrolled manner
VIN_PWR_BAD detection “sees” drop in VDD_IN & is
asserted to start uncontrolled power-down sequence.
RESET_OUT# & CARRIER_PWR_ON are driven low via
PMIC sequence soon after. Carrier board power &
Jetson TX2 power begin to ramp down.

Min

Typ

Max

Units

Notes
Carrier board power (mainly 1.8V rail
associated with interface pins connected to
Jetson TX2) should ramp down faster so it is
off before the Jetson TX2 main 1.8V rail is
off.

Removal of the VDD_IN/VDD_MUX supply causes VIN_PWR_BAD# to go active which causes Jetson TX2 to initiate a
controlled shut down. The controlled shut down takes ~20ms to complete so the internal PMIC supply needs to stay above
~2.9v for >~20ms. The USB0_OTG_ID pin is a pin which can be monitored to see the state of the internal PMIC supply level.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

12

NVIDIA Jetson TX2 OEM Product Design Guide

Figure 6. VIN_PWR_BAD# Detection Test Circuit for Uncontrolled Power-down Case
~20%
droop

VDD_IN
VIN_PWR_BAD#
Voltage measured at
USB0_OTG_ID pin

2.9V

>20ms

3.4 Power Discharge
In order to meet the Power Down requirements, discharge circuitry is required. In the figure below the DISCHARGE signal is
generated, based on a transition of the CARRIER_POWER_ON signal or the removal of the main supply (VDD_MUX/VDD_IN).
When DISCHARGE is asserted, VDD_5V0_IO_SYS, VDD_3V3_SYS, VDD_1V8 and VDD_3V3_SLP are forced to GND in a
controlled manner. Removal of the VDD_MUX supply also causes VIN_PWR_BAD# to go active which causes Jetson TX2 to
initiate a controlled shut down.
Figure 7. Power Discharge
VDD_5V0_IO_SYS

VIN_PWR_BAD#
(Jetson TX2 Pin B8)

100Ω

VDD_MUX
D

10kΩ

C

MMBT
4403

NTR4003
NT1G

G

VDD_3V3_SYS
47Ω

S
D

10MΩ

0Ω

E
B

0.05Ω Tol.

10kΩ

BAT54ALT1

10uF 10uF

D
NTR4001
NT1G

G

NTR4003
NT1G

G

S

D

DISCHARGE
VDD_MUX

NTR4003
NT1G

NTR4003
NT1G

G

VDD_5V0_IO_SYS

VDD_3V3_SLP
47Ω

S

D

VDD_12V_SLP

D

470Ω
G
470Ω

S

S

D

75kΩ

CARRIER_PWR_ON
(Jetson TX2 pin A48)

NTR4003
NT1G

G

100kΩ,1%

1uF

47kΩ

100kΩ,1%

100kΩ,1%

BAT54CW

4.7uF

VDD_1V8
36Ω

S

BAT54CW

NTR4003
NT1G

G

VDD_5V0_IO_SLP
100Ω

S
FDV301N

D

VDD_3V3_SLP
G

S

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

D
NTR4003
NT1G

G
S

13

NVIDIA Jetson TX2 OEM Product Design Guide

3.5 Power & Voltage Monitoring
3.5.1 Power Monitor
Power monitors are provided on Jetson TX2. These monitor the main DC, CPU, GPU/SRAM, SOC (CORE) & DDR Supplies.
The monitors will toggle a WARN (warning) output, or a CRIT (critical) output, depending on the power “seen” at the sense
resistors and the thresholds set for each supply.
Figure 8. Power Monitor (GPU/SRAM, SOC & WLAN)
INA3221AIRGVR
Power Monitor

VDD_3V3_SYS

GPU Supply Monitor

1uF

VS
GEN1_I2C
(PU to 3.3V)

GPU_INA_P

VIN1P

0.1uF
GEN1_I2C_SCL
GEN1_I2C_SDA

10Ω

VIN1N

SCL
SDA
AO

VIN2P

PV
TC
VPU

VIN2N

GND
PAD

VIN3P

10Ω

GPU_INA_M

10Ω

SOC_INA_P
SOC Supply Monitor

1uF
10Ω

SOC_INA_M

10Ω

WIFI_INA_P

10Ω

WIFI_INA_M

Wi-Fi Supply Monitor

1uF

VIN3N

Sense
Resistors

VDD_IN

0.01Ω, 1%
0805

VDD_SYS_GPU_IN
(GPU supply input)
VDD_IN

0.01Ω, 1%
0805

VDD_SYS_SOC_IN
(SOC supply input)
VDD_5V0_SYS

0.01Ω, 1%
0603

VDD_3V8_WIFI_SENSE

VDD_1V8
100kΩ

WARN

INA_WIFI_THERM_WARN_L

CRIT

Tegra GPIO_MDM6

Figure 9. Power Monitor (VDD_IN, CPU & DDR)
INA3221AIRGVR
Power Monitor

VDD_3V3_SYS

VDD_IN Supply Monitor

1uF

VS
GEN1_I2C_SCL
GEN1_I2C_SDA

VDD_IN_SENSE

VIN1P

0.1uF

GEN1_I2C
(PU to 3.3V)

10Ω

10Ω

VIN1N

SCL
SDA
AO

10Ω

VIN2P
VIN2N

GND
PAD

VIN3P

10Ω

CPU_INA_M

10Ω

SRAM_INA_P
DDR Supply Monitor

1uF

VIN3N

10Ω

SRAM_INA_M

VDD_IN_RS

0.02Ω, 1%
3012
VDD_IN

CPU_INA_P
CPU Supply Monitor

1uF

PV
TC
VPU

VDD_IN_PREREG_SENSE

Sense
Resistors

VDD_IN
0.01Ω, 1%
0805

VDD_SYS_CPU_IN
(CPU supply input)
VDD_5V0_SYS

0.01Ω, 1%
0603

VDD_5V0_SD0
(DDR supply input)

VDD_1V8

WARN
CRIT

100kΩ
INA_PREREG_THERM_WARN_L

Tegra BATT_OC

3.5.2 Voltage Monitor
A voltage monitor circuit is implemented on Jetson TX2 to indicate if the main DC input rail, VDD_IN, “droops” below an
acceptable level. The device used will react quickly and generate an alert to one of the Tegra SOC_THERM capable pins
(VCOMP_ALERT). The voltage monitor circuit is implemented with a fast voltage comparator supplied by VDD_IN with a 1.8V
(VDD_1V8) reference common with the Tegra IO domain that receives the output signal. This device has an open drain active
low output which is pulled low when the VDD_IN voltage drops below the selected threshold.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

14

NVIDIA Jetson TX2 OEM Product Design Guide

Figure 10. Voltage Monitor Connections
VDD_5V0_SYS
1.8V
100kΩ
VDD_IN

VDD_1V8

Note:

110kΩ,1%

IN_POS

49.9kΩ,
1%

IN_NEG

+
–

VCC
VOUT

COMP_SOC_THERM* (Tegra VCOMP_ALERT)

VEE

34kΩ,1%

The threshold for VDD_IN, determined by the voltage divider components used in the circuit above is 5.75V.

3.6 Deep Sleep (SC7)
Jetson TX2 supports a low power state called Deep Sleep or SC7. This can be entered under software control, and exited using
various mechanisms, including wake capable pins that are listed in the table below.
Table 11. Jetson TX2 Signal Wake Events
Potential Wake Event (Reference Design Signal)
PCIe Wake Request (PEX_WAKE#)
Bluetooth Wake AP (BT2_WAKE_AP – Secondary)
WLAN Wake AP (WIFI_WAKE_AP - Secondary)
Thermal/Over-current Warning
Audio Codec Interrupt (AUD_INT_L)
DP 0 Hot Plug Detect (DP_AUX_CH0_HPD)
HDMI Consumer Electronic Control (HDMI_CEC)
DP 1 Hot Plug Detect (DP_AUX_CH1_HPD)
Camera Vertical Sync (CAM_VSYNC)
POWER_BTN#
Motion Interrupt (MOTION_INT)
CAN 1 Error (CAN1_ERR)
CAN Wake (CAN_WAKE)
CAN 0 Error (CAN0_ERR)
Touch Interrupt (TOUCH_INT)
USB VBUS Detect (USB_VBUS_DET)
GPIO Expansion 0 Interrupt (GPIO_EXP0_INT)
Modem Wake AP (MDM_WAKE_AP)
Battery Low (BATLOW#)
GPIO Expansion 1 Interrupt (GPIO_EXP1_INT)
USB Vbus Enable 0 (USB_VBUS_EN0)
USB Vbus Enable 1 (USB_VBUS_EN1)
Ambient Light Proximity Interrupt (ALS_PROX_INT)
Modem Coldboot (MDM_COLDBOOT)
Force Recovery (FORCE_RECOV#)
Sleep (SLEEP_L)

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Jetson TX2 Pin Assigned
PEX_WAKE#
GPIO13_BT_WAKE_AP
GPIO10_WIFI_WAKE_AP
BATT_OC
GPIO20_AUD_INT
DP0_HPD
HDMI_CEC
DP1_HPD
CAM_VSYNC
POWER_BTN#
GPIO9_MOTION_INT
CAN1_ERR
CAN_WAKE
CAN0_ERR
GPIO6_TOUCH_INT
USB0_VBUS_DET
GPIO_EXP0_INT
GPIO16_MDM_WAKE_AP
BATLOW#
GPIO_EXP1_INT
USB_VBUS_EN0
USB_VBUS_EN1
GPIO8_ALS_PROX_INT
GPIO18_MDM_COLDBOOT
FORCE_RECOV#
SLEEP#

Wake #
1
8
9
10
12
19
20
21
23
29
46
47
48
49
51
53
54
55
56
58
61
62
63
64
67
68

15

NVIDIA Jetson TX2 OEM Product Design Guide

Figure 11. Deep Sleep (SC7) Entry/Exit Sequence
SC7 Entry

SC7 Exit

SC7 Entry/Exit Trigger
VDD_IN

VIN_PWR_BAD#
CARRIER_PWR_ON
Carrier Board VDD_1V8
RESET_OUT#
CARRIER_STBY#
(Tegra X2 SOC_PWR_REQ)

VDD_3V3_SLP
VDD_5V0_SLP
VDD_12V_SLP
VDD_5V0_HDMI_CON

3.7 Optional Auto-Power-On Support
Jetson TX2 includes circuitry on the module to support Auto-Power-On. This allows the platform to power on when VDD_IN is
first powered, instead of waiting for a power button press. In order to enable this feature, the CHARGER_PRSNT# pin should
be tied to GND.
This section provides guidance for modifying a carrier board design to power the platform on when VDD_IN is first powered,
instead of waiting for a power button press. In order to power the system on without a power button, a specific sequence is
required between the time the VDD_IN power (5.5V-19.6V) is connected and the CHARGER_PRSNT# pin on Jetson TX2 is
driven low. The CHARGER_PRSNT# pin connects to the Jetson TX2 PMIC and requires a minimum delay of 300ms from the
point VDD_IN reaches its minimum level (5.5V) before it can be driven low. Four options to meet this requirement and allow
Auto-Power-On are described:
▪
▪
▪
▪

Built-in Auto-Power-On circuit: Not available on Jetson TX1.
Microcontroller: Recommended if a microcontroller is already being used to control power-on.
Supervisor IC: Using a supervisor IC and related discrete devices to meet the sequencing requirements.
Discrete Circuit: Circuit using only discrete devices to meet the sequencing requirements

Built-in Auto-Power-On circuit
Jetson TX2 includes circuitry on the module to support Auto-Power-On. In order to enable this feature, the
CHARGER_PRSNT# pin should be tied to GND. This option is not compatible with Jetson TX1 which does not have this
circuitry.
Microcontroller
If a microcontroller is already present on the carrier board and is used to power the system on when the main power source is
connected, then it can be used to support Auto-Power-On with the following conditions:
▪
▪
▪

After the microcontroller is out of reset wait 300ms before driving CHARGER_PRSNT# low or pulsing
POWER_BTN# low
If the POWER_BTN# pin is used, it should be held low for a time period between 50ms & 5sec.
If the CHARGER_PRSNT# pin is used, it should be held low for >200us

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

16

NVIDIA Jetson TX2 OEM Product Design Guide

Supervisor IC

90.9kΩ,1%

The figure below shows a circuit that includes a supervisor IC. This circuit meets the sequence requirement to leave
CHARGER_PRSNT# floating until VDD_IN is on plus the delay mentioned above (>300ms) then driving the signal low. The
circuit works across the full range of VDD_IN (5.5V to 19.6V).

Supervisor
MAX16053AUT

VIN_PWR_BAD#

IN

GND

OUT

EN

2N7002W
SOT323

G

CDELAY
22nF

0.1uF

CHARGER_PRSNT#

D

10nF

100kΩ,1%

0.1uF

VCC

10kΩ,1%

5.5V-19.6V Input Supply

S

Discrete Circuit
The figure below shows a circuit using only discrete components. This circuit also meets the sequence requirement to keep
CHARGER_PRSNT# floating until VDD_IN is on plus the delay mentioned above (>300ms) before driving it low. The circuit
assumes the VDD_IN ramp slew rate is faster than 7 V/S. In order to meet the full supported range for VDD_IN (5.5V to 19.6V),
the turn-on delay can be as long as 4sec. For a narrower VDD_IN range, the delay can be optimized (reduced).

5.5V-19.6V Input Supply

10kΩ

NTS4001
NT1G
SOT323

4.7uF

D

4.7uF
G

NTS4001
NT1G
SOT323

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

CHARGER_PRSNT#

G
S

RB521S30
T1G, 30V
SOD523

470kΩ

RB521S30
T1G, 30V
SOD523

470kΩ

S

D

17

NVIDIA Jetson TX2 OEM Product Design Guide

4.0 GENERAL ROUTING GUIDELINES
Signal Name Conventions
The following conventions are used in describing the signals for Jetson TX2:
▪

▪

Signal names use a mnemonic to represent the function of the signal. For example, Secure Digital Interface #3
Command signal is represented as SDCARD_CMD, written in bold to distinguish it from other text. All active low
signals are identified by a # or an underscore followed by capital N (_N) after the signal name. For example,
RESET_IN# indicates an active low signal. Active high signals do not have the underscore-N (_N) after the signal
names. For example, SDCARD_CMD indicates an active high signal. Differential signals are identified as a pair
with the same names that end with _P & _N, just P & N or + & - (for positive and negative, respectively). For
example, USB1_DP and USB1_DN indicate a differential signal pair.
I/O Type The signal I/O type is represented as a code to indicate the operational characteristics of the signal. The
table below lists the I/O codes used in the signal description tables.

Table 12. Signal Type Codes
Code
A
DIFF I/O
DIFF IN
DIFF OUT
I/O
I
O
OD
I/OD
P

Definition
Analog
Bidirectional Differential Input/Output
Differential Input
Differential Output
Bidirectional Input/Output
Input
Output
Open Drain Output
Bidirectional Input / Open Drain Output
Power

Routing Guideline Format
The routing guidelines have the following format to specify how a signal should be routed.
▪

▪
▪

Breakout traces are traces routed from a BGA or other pin array, either to a point beyond the array, or to another
layer where full normal spacing guidelines can be met. Breakout trace delay limited to 500 mils unless otherwise
specified.
After breakout, signal should be routed according to specified impedance for differential, single-ended, or both (for
example: HDMI). Trace spacing to other signals also specified.
Follow max & min trace delays where specified. Trace delays are typically shown in mm or in terms of signal delay
in pico-seconds (ps) or both.
For differential signals, trace spacing to other signals must be larger of specified × dielectric height or interpair spacing
Spacing to other signals/pairs cannot be smaller than spacing between complementary signals (intra-pair).
Total trace delay depends on signal velocity which is different between outer (microstrip) & inner (stripline)
layers of a PCB.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

18

NVIDIA Jetson TX2 OEM Product Design Guide

Signal Routing Conventions
Throughout this document, the following signal routing conventions are used:
SE Impedance (/ Diff Impedance) at x Dielectric Height Spacing
▪

Note:

Single-ended (SE) impedance of trace (along with differential impedance for diff pairs) is achieved by spacing
requirement. Spacing is multiple of dielectric height. Dielectric height is typically different for microstrip & stripline.
Note: 1 mil = 1/1000th of an inch.

Trace spacing requirement applies to SE traces or differential pairs to other SE traces or differential pairs. It does not apply to
traces making up a differential pair. For this case, spacing/trace widths are chosen to meet differential impedance
requirement.

General Routing Guidelines
Pay close attention when routing high speed interfaces, such as HDMI/DP, USB 3.0, PCIe or DSI/CSI. Each of these interfaces
has strict routing rules for the trace impedance, width, spacing, total delay, and delay/flight time matching. The following
guidelines provide an overview of the routing guidelines and notations used in this document.
▪

▪

▪

Controlled Impedance
Each interface has different trace impedance requirements & spacing to other traces. It is up to designer to
calculate trace width & spacing required to achieve specified single-ended (SE) & differential (Diff) impedances.
Unless otherwise noted, trace impedance values are ±15%.
Max Trace Lengths/Delays
Trace lengths/delays should include main PCB routing and any additional routing on a Flex/ secondary PCB
segment connected to main PCB. The max length/delay should be from Jetson TX2 to the actual connector (i.e.
USB, HDMI, SD Card, etc.) or device (i.e. onboard USB device, Display driver IC, camera imager IC, etc.)
Trace Delay/Flight Time Matching
Signal flight time is the time it takes for a signal to propagate from one end (driver) to other end (receiver). One
way to get same flight time for signal within signal group is to match trace lengths within specified delay in the
signal group.
Total trace delay = Carrier PCB trace delay only. Do not exceed maximum trace delay specified.
For six layers or more, it is recommended to match trace delays based on flight time of signals. For example,
outer-layer signal velocity could be 150psi (ps/inch) & inner-layer 180psi. If one signal is routed 10 inches on
outer layer & second signal is routed 10 inches in inner layer, difference in flight time between two signals will
be 300ps! That is a big difference if required matching is 15ps (trace delay matching). To fix this, inner trace
needs to be 1.7 inches shorter or outer trace needs to be 2 inches longer.
In this design guide, terms such as intra-pair & inter-pair are used when describing differential pair delay.
Intra-pair refers to matching traces within differential pair (for example, true to complement trace matching).
Inter-pair matching refers to matching differential pairs average delays to other differential pairs average
delays.

General PCB Routing Guidelines
For GSSG stack-up to minimize crosstalk, signal should be routed in such a way that they are not on top of each
other in two routing layers (see diagram to right)

G
S
S
G

Do not route other signals or power traces/areas directly under or over critical high-speed interface signals.

Note: The requiements detailed in the Interface Signal Routing Requirements tables must be met for
all interfaces implemented or proper operation cannot be guaranteed.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

19

NVIDIA Jetson TX2 OEM Product Design Guide

5.0 USB, PCIE & SATA
The Jetson TX2 allows multiple USB 3.0 & PCIe interfaces, and a single SATA interface to be brought out on the module. In
some cases, these interfaces are multiplexed on some of the module pins. The tables below show several ways to bring out as
many of the USB 3.0 or PCIe interfaces as possible to meet different design requirements. The first table covers many of the
combinations possible on designs built around Jetson TX2 only. The second table covers the combinations possible for both
Jetson TX2 and previous/future pin compatible modules.
Table 13. Jetson TX2 USB 2.0 Pin Descriptions
Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

B40
B39
A17
A36
B37
A39
A38
A18
B43
B42

USB0_D–
USB0_D+
USB0_EN_OC#
USB0_OTG_ID
USB0_VBUS_DET
USB1_D–
USB1_D+
USB1_EN_OC#
USB2_D–
USB2_D+

USB0_DN
USB0_DP
USB_VBUS_EN0
(PMIC GPIO0)
UART5_CTS
USB1_DN
USB1_DP
USB_VBUS_EN1
USB2_DN
USB2_DP

USB 2.0 Port 0 Data–
USB 2.0 Port 0 Data+
USB VBUS Enable/Overcurrent 0
USB 0 ID
USB 0 VBUS Detect
USB 2.0, Port 1 Data–
USB 2.0, Port 1 Data+
USB VBUS Enable/Overcurrent 1
USB 2.0, Port 2 Data–
USB 2.0, Port 2 Data+

Usage on Carrier
Board
USB 2.0 Micro AB

USB 3.0 Type A

M.2 Key E

Direction

Pin Type

Bidir
Bidir
Bidir
Input
Input
Bidir
Bidir
Bidir
Bidir
Bidir

USB PHY
Open Drain – 3.3V
Analog
USB VBUS, 5V
USB PHY
Open Drain – 3.3V
USB PHY

Table 14. Jetson TX2 USB 3.0, PCIe & SATA Pin Descriptions
Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

A44

PEX0_REFCLK+

PEX_CLK1P

A45

PEX0_REFCLK–

PEX_CLK1N

C48

PEX0_CLKREQ#

PEX_L0_CLKREQ_N

C49

PEX0_RST#

PEX_L0_RST_N

H44

PEX0_RX+

PEX_RX4P

H45

PEX0_RX–

PEX_RX4N

E44

PEX0_TX+

PEX_TX4P

E45

PEX0_TX–

PEX_TX4N

G42

USB_SS1_RX+

PEX_RX2P

G43

USB_SS1_RX–

PEX_RX2N

D42

USB_SS1_TX+

PEX_TX2P

D43

USB_SS1_TX–

PEX_TX2N

PCIe 0 Reference Clock+ (PCIe IF #0)
PCIe 0 Reference Clock – (PCIe IF #0)
PCIe 0 Clock Request (PCIe IF #0)
PCIe 0 Reset (PCIe IF #0)
PCIe 0 Lane 0 Receive+ (PCIe IF #0)
PCIe 0 Lane 0 Receive– (PCIe IF #0)
PCIe 0 Lane 0 Transmit+ (PCIe IF #0)
PCIe 0 Lane 0 Transmit– (PCIe IF #0)
USB SS 1 Receive+ (USB 3.0 Port #2 or
PCIe IF #0 Lane 1)
USB SS 1 Receive– (USB 3.0 Port #2 or
PCIe #0 Lane 1)
USB SS 1 Transmit+ (USB 3.0 Port #2 or
PCIe IF #0 Lane 1)
USB SS 1 Transmit– (USB 3.0 Port #2 or
PCIe #0 Lane 1)
PCIe 2 Receive+ (PCIe IF #0 Lane 2 or PCIe
IF #1 Lane 0)
PCIe 2 Receive– (PCIe IF #0 Lane 2 or PCIe
IF #1 Lane 0)
PCIe 2 Transmit+ (PCIe IF #0 Lane 2 or
PCIe IF #1 Lane 0)
PCIe 2 Transmit– (PCIe IF #0 Lane 2 or
PCIe IF #1 Lane 0)
PCIe RFU Receive+ (PCIe IF #0 Lane 3 or
USB 3.0 Port #1)
PCIe RFU Receive– (PCIe IF #0 Lane 3 or
USB 3.0 Port #1)
PCIe RFU Transmit+ (PCIe IF #0 Lane 3 or
USB 3.0 Port #1)
PCIe RFU Transmit – (PCIe IF #0 Lane 3 or
USB 3.0 Port #1)
PCIe Wake

F40

PEX2_RX+

PEX_RX3P

F41

PEX2_RX–

PEX_RX3N

C40

PEX2_TX+

PEX_TX3P

C41

PEX2_TX–

PEX_TX3N

G39

PEX_RFU_RX+

PEX_RX1P

G40

PEX_RFU_RX–

PEX_RX1N

D39

PEX_RFU_TX+

PEX_TX1P

D40

PEX_RFU_TX–

PEX_TX1N

D48

PEX_WAKE#

PEX_WAKE_N

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Usage on the Carrier
Board

Direction
Output
Output
Bidir
Output

Pin Type
PCIe PHY
Open Drain 3.3V, Pull-up on
the module

Input
Input
Output
Output
Input
Input
Output
Output
PCIe x4 Connector
Input

PCIe PHY, AC-Coupled on
carrier board

Input
Output
Output
Input
Input
Output
Output
PCIe x4 conn & M.2

Input

Open Drain 3.3V, Pull-up on
the module

20

NVIDIA Jetson TX2 OEM Product Design Guide

Usage on the Carrier
Board

Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

B45

PEX1_REFCLK+

PEX_CLK3P

B46

PEX1_REFCLK–

PEX_CLK3N

C47

PEX1_CLKREQ#

PEX_L2_CLKREQ_N

E50

PEX1_RST#

PEX_L2_RST_N

H41

PEX1_RX+

PEX_RX0P

H42

PEX1_RX–

PEX_RX0N

E41

PEX1_TX+

PEX_TX0P

E42

PEX1_TX–

PEX_TX0N

A41

PEX2_REFCLK+

PEX_CLK2P

A42

PEX2_REFCLK–

PEX_CLK2N

C46

PEX2_CLKREQ#

PEX_L1_CLKREQ_N

D49

PEX2_RST#

PEX_L1_RST_N

F43

USB_SS0_RX+

PEX_RX0P

F44

USB_SS0_RX–

PEX_RX0N

PCIe Reference Clock 1+ (PCIe IF #2)
PCIe Reference Clock 1– (PCIe IF #2)
PCIE 1 Clock Request (mux option - PCIe IF
#2)
PCIe 1 Reset (PCIe IF #2)
PCIe 1 Receive+ (PCIe #2 Lane 0 muxed
w/USB 3.0 Port #0)
PCIe 1 Receive– (PCIe #2 Lane 0 muxed
w/USB 3.0 Port #0)
PCIe 1 Transmit+ (PCIe #2 Lane 0 muxed
w/USB 3.0 Port #0)
PCIe 1 Transmit– (PCIe #2 Lane 0 muxed
w/USB 3.0 Port #0)
PCIe 2 Reference Clock+ (PCIe IF #1)
PCIe 2 Reference Clock– (PCIe IF #1)
PCIE 2 Clock Request (PCIe IF #1)
PCIe 2 Reset (PCIe IF #1)
USB SS 0 Receive+ (USB 3.0 Port #0 muxed
w/PCIe #2 Lane 0)
USB SS 0 Receive– (USB 3.0 Port #0 muxed
w/PCIe #2 Lane 0)
USB SS 0 Transmit+ (USB 3.0 Port #0
muxed w/PCIe #2 Lane 0)
USB SS 0 Transmit– (USB 3.0 Port #0
muxed w/PCIe #2 Lane 0)
SATA Receive+
SATA Receive–
SATA Transmit+
SATA Transmit–
SATA Device Sleep or PEX1_CLKREQ#
(PCIe IF #2) depending on Mux setting

C43

USB_SS0_TX+

PEX_TX0P

C44

USB_SS0_TX–

PEX_TX0N

G45

SATA_RX+

PEX_RX5P

G46

SATA_RX–

PEX_RX5N

D45

SATA_TX+

PEX_TX5P

D46

SATA_TX–

PEX_TX5N

D47

SATA_DEV_SLP

PEX_L2_CLKREQ_N

Direction

Pin Type

Output

PCIe PHY

Output
M.2 Key E

Bidir
Output

Open Drain 3.3V, Pull-up on
the module

Input

USB 3.0 Type A
(Default) or M.2 Key E

Input
Output

PCIe PHY, AC-Coupled on
carrier board

Output
Output

PCIe PHY

Output

Unassigned

Bidir
Output

Open Drain 3.3V, Pull-up on
the module

Input

USB SS PHY, AC-Coupled
(off the module)

Input
USB 3.0 Type A
Output
Output

USB SS PHY, AC-Coupled on
carrier board

Input
Input
SATA Connector

Output

SATA PHY, AC-Coupled on
carrier board

Output
Input

Open Drain 3.3V, Pull-up on
the module

Table 15. Jetson TX2 USB 3.0, PCIe & SATA Lane Mapping Configurations
Jetson TX2 Pin Names

Configs
1

Tegra Lanes
Avail. Outputs from Jetson TX2
USB 3.0
PCIe
SATA

2 (CB
Default)
3
4
5
6

1.
2.

3.

PEX_RFU

PEX2

USB_SS1

PEX0

Lane 0

Lane 1

Lane 3

Lane 2

Lane 4

PCIe#0_3
PCIe#0_3

PCIe#0_2
PCIe#0_2

PCIe#0_1
PCIe#0_1

PCIe#0_0
PCIe#0_0

USB_SS#1
USB_SS#1
USB_SS#1
USB_SS#1

PCIe#1_0
USB_SS#2
PCIe#1_0
USB_SS#2
PCIe#1_0
PCIe#0_1
PCIe#1_0
PCIe#0_1
X4 PCIe Connector

PCIe#0_0
PCIe#0_0
PCIe#0_0
PCIe#0_0

0
1

1x1 + 1x4
1x4

1
1

PCIe#2_0

2
3
1
2

3x1
2x1
2x1 + 1x2
1x1 + 1x2

1
1
1
1

PCIe#2_0

Default Usage on CB (carrier board)

Note:

PEX1

PCIe#2_0
Unused

USB_SS0
(see note 1)

SATA
Lane 5

USB_SS#0

USB_SS#0
USB_SS#0
USB 3 Type A

SATA
SATA
SATA
SATA
SATA
SATA
SATA

PCIe interface #2 can be brought to the PEX1 pins, or USB 3.0 port #1 to the USB_SS0 pins on Jetson TX2 depending on
the setting of a multiplexor on the module. The selection is controlled by QSPI_IO2 configured as a GPIO.
Jetson TX2 has been designed to enable use cases listed in the table above. However, released Software may not
support all configurations, nor has every configuration been validated.
o Configuration #1 & 2 represent the supported and validated Jetson TX2 Developer Kit configurations. These
configurations are supported by the released Software, and the PCIe, USB 3.0, and SATA interfaces have been
verified on the carrier board.
The cell colors highlight the different PCIe interfaces and USB 3.0 ports. Three shades of green are used for PCIe
interfaces #[2:0]. Three shades of blue are used for USB 3.0 ports #[2:0]. SATA is highlighted in orange.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

21

NVIDIA Jetson TX2 OEM Product Design Guide

4.

Any x4 configuration can be used as a single x2 using only lanes 0 & 1 or a single x1 using only lane 0. Any x2 configuration
can be used as a single x1 using only lane 0.

5.

In order to ease routing, the order of lanes for PCIe #0 can either be as shown above, or the reverse (i.e., PCIE#0_3 on
PEX0, PCIE#0_2 on USB_SS1, PCIE#0_1 on PEX2 & PCIE#0_0 on PEX_RFU).

Table 16. Backward Compatible USB 3.0, PCIe & SATA Lane Mapping Configurations

Configs
A

Module Pin Names
Avail. Outputs from Module
USB 3.0
PCIe
SATA

B (CB
Default)
C
D

PEX_RFU

PEX2

USB_SS1

PEX0

USB_SS0

SATA

PCIe x4 L3
PCIe x4 L3

PCIex4 L2
PCIex4 L2

PCIex4 L1
PCIex4 L1

PCIex4 L0
PCIex4 L0

USB_SS (1)

SATA
SATA

USB_SS (2)
USB_SS (2)
X4 PCIe Connector

PCIex4 L0
PCIex4 L0

USB_SS (1)

0
1

1x1 + 1x4
1x4

1
1

PCIe x1

1
2

2x1
1x1

1
1

PCIe x1

Default Usage on CB (carrier board)

Note:

PEX1

Unused

SATA
SATA
SATA

USB 3 Type A

See notes under Table 15 related to color coding, PCIe x2/x1 support & lane reversal.

5.1 USB

Jetson TX2
Tegra
UARTCAM

VDD_5V0_IO_SYS

To PMIC GPIO0
(on Module)

UART5_CTS_N

Gate/LS

USB0_OTG_ID

USB0_VBUS_DET

A36

USB_VBUS_EN0

Load Switch
IN
OUT
EN
OC

100kΩ

Figure 12 USB Connection Example

100Ω

B37

VBUS

VDD_3V3_SYS
USB2_EN_OC#

USB_VBUS_EN0

USB0_EN_OC#

USB_VBUS_EN1

USB 2.0

USB1_EN_OC#

USB0_DP
USB0_DN

USB0_D+

USB1_DP
USB1_DN

USB1_D+

USB2_DP
USB2_DN

USB2_D+

USB0_D–

USB1_D–

USB2_D–
USB_SS0_TX+

USB 3.0
& PEX

Default

USB_SS0_TX–
USB_SS0_RX+

PEX_TX0_P
PEX_TX0_N
PEX_RX0_P
PEX_RX0_N

USB_SS0_RX–

Mux

PEX1_TX+
PEX1_TX–
PEX1_RX+
PEX1_RX–

Note:

1.

2.

3.
4.

A19
A17
A18

VDD_5V0_IO_SYS

B39
B40

USB_VBUS_EN1

ID

Load Switch
IN
OUT
EN
OC

ESD

100Ω

A38
A39
B42
B43

VBUS
To M.2 Module
on Carrier Board
0.1uF
0.1uF

C43
C44
F43
F44
E41
E42
H41

USB 2.0
Micro AB

D+
D–

Common
Mode Choke

PCIe#2 (x1)

Common
Mode Choke

D+
D–

Common
Mode Choke

TX+
TX–

Common
Mode Choke

RX+
RX–

USB 3.0
Type A

ESD

H42

Common mode filters on USB[2:0]_DP/DN (USB 2.0 interfaces) are optional. Place only as needed if EMI is an issue.
Common mode filters on USB3_TX/RX_P/N signals are not recommended. If common mode devices are placed, they
must be selected to minimize the impact to signal quality, which must meet the USB spec. signal requirements. See the
Common Mode Choke requirements in the USB 3.0 Interface Signal Routing Requirements table.
If USB 3.0 is routed to a connector, only AC caps on Jetson TX2 TX lines are required. If routed directly to a peripheral,
AC caps are needed for both Jetson TX2 TX lines (connected to device RX) & Device TX lines (connected to Jetson TX2
RX).
USB0 must be available to use as USB Device for USB Recovery Mode.
Connector used must be USB-IF certified if USB 3.0 implemented.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

22

NVIDIA Jetson TX2 OEM Product Design Guide

USB 2.0 Design Guidelines
These requirements apply to the USB 2.0 controller PHY interfaces: USB[2:0]_D–/D+
Table 17. USB 2.0 Interface Signal Routing Requirements
Parameter
Max Frequency (High Speed)
Bit Rate/UI period/Frequency
Max Loading
High Speed / Full Speed / Low Speed
Reference plane
Trace Impedance
Diff pair / Single Ended
Via proximity (Signal to reference)
Max Trace Delay
With CMC or SW (Microstrip / Stripline)
Without CMC or SW (Microstrip / Stripline)

Requirement
480/2.083/240
10 / 150 / 600
GND
90 / 50
< 3.8 (24)
900/1050 (6)
1350/1575 (9)

Max Intra-Pair Skew between USBx_D+ & USBx_D–

7.5

Note:

1.
2.
3.
4.

Units
Mbps/ns/MHz
pF
Ω
mm (ps)
ps (in)

Notes

±15%
See Note 2
Prop delay assumption: 175ps/in.
for stripline, 150ps/in. for
microstrip). See Note 3

ps

If portion of route is over a flex cable this length should be included in the Max Trace Delay/Length calculation & 85Ω
Differential pair trace impedance is recommended.
Up to 4 signal Vias can share a single GND return Via.
CMC = Common-Mode-Choke. SW = Analog Switch
Adjustments to the USB drive strength, slew rate, termination value settings should not be necessary, but if any are
made, they MUST be done as an offset to default values instead of overwriting those values.

USB 3.0 Design Guidelines
The following requirements apply to the USB 3.0 PHY interfaces
Table 18. USB 3.0 Interface Signal Routing Requirements
Parameter
Specification
Data Rate / UI period
Max Number of Loads
Termination
Reference plane
Electrical Specification
Insertion Loss @ 2.5GHz

Type-C
Type A
Resonance dip frequency

TDR dip
Near-end Crosstalk (NEXT) @ DC to 5GHz
IL/NEXT plot

Trace Impedance
Trace Impedance
Reference plane

Diff pair / Single Ended

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Requirement

Units

5.0 / 200
1
90 differential
GND

Gbps / ps
load
Ω

<=2
<=7
>8
>= 75
<=-45

85-90 / 45-55
GND

dB
dB
GHz
Ω
dB

Ω

Notes

On-die termination at TX & RX

Only PCB with add-on components (connector
excluded) is considered
Using TDR pulse with Tr (10%-90%) = 200ps
For each TX-RX NEXT

±15%

23

NVIDIA Jetson TX2 OEM Product Design Guide

Trace Length/Skew
Trace loss characteristic @ 2.5GHz
Breakout Region
Max Trace Length

< 0.7

Max trace length/delay

dB/in

11 (73)
152.3 (1014)

mm (ps)
mm (ps)

The following max length is derived based on this
characteristic. See Note 1.
Trace with minimum width and spacing
Max length assume USB3 Tx voltage swing set at 0.8V
MIN, length can increase if Tx swing increase.
Do trace length matching before hitting discontinuities

0.15 (1)
mm (ps)
Max Within Pair (Intra-Pair) Skew
Differential pair uncoupled length
6.29 (41.9)
mm (ps)
Trace Spacing – for TX/RX non-interleaving
TX-RX Xtalk is very critical in PCB trace routing. The ideal solution is to route TX and RX on different layers.
If routing on the same layer, strongly recommend not interleaving TX and RX lanes
If it is necessary to have interleaved routing in breakout, all the inter-pair spacing should follow the rule of inter-SNEXT
The breakout trace width is suggested to be the minimum to increase inter-pair spacing
Do not perform serpentine routing for intra-pair skew compensation in the breakout region

Min Inter-SNEXT
Breakout
(between TX/RX)
Main-route
Min Inter-SFEXT
Breakout
(between TX/TX or RX/RX)
Main-route
Max length
Breakout
Main-route
Trace Spacing – for TX/RX interleaving
Trace Spacing
Pair-Pair (inter-pair)
Microstrip / Stripline
To plane & capacitor pad
Microstrip / Stripline
To unrelated high-speed signals Microstrip / Stripline
Via
Topology

4.85x
3x
1x
1x
11
Max trace
length - LBRK

Dielectric
height
Inter-pair
spacing
mm

4x / 3x
4x / 3x
4x / 3x

dielectric

-

GND via

-

-

Max # of Vias
Max Via Stub Length
Serpentine
Min bend angle
Dimension

PTH vias
Micro Vias

Min A Spacing
Min B, C Length
Min Jog Width

-

This is the recommended dimension for meeting
NEXT requirement
Stripline structure in a GSSG structure is assumed; it
holds in broadside-coupled stripline structure
All values are in terms of minimum dielectric height

Y-pattern is
recommended
Keep symmetry

Y-pattern helps with
Xtalk suppression. It
can also reduce the
limit of pair-pair
distance. Need review
(NEXT/FEXT check) if
via placement is not Ypattern.

Place ground vias as
symmetrically as
possible to data pair
vias
up to 4 signal vias (2
diff pairs) can share a
single GND return via

GND via is used to maintain return path, while its Xtalk
suppression is limited

4
Not limited as long as total channel loss meets IL spec
0.4
mm
long via stub requires review (IL & resonance dip check)
135
4x
1.5x
3x

deg (α)
Trace
width

S1 must be taken care in order
to consider Xtalk to adjacent
pair

Added-on Components

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

24

NVIDIA Jetson TX2 OEM Product Design Guide

Placement Order

AC Cap
Value
Min/Max
Location (max length to adjacent discontinuity)
Voiding

Chip ̶ AC capacitor (TX only) ̶ common mode choke ̶ ESD ̶ Connector

uF
mm
GND/PWR void under/above
cap is preferred

0.1 / 0.2
8

Only required for TX pair when routed to connector
Discontinuity is connector, via, or component pad
Voiding is required if AC cap size is 0603 or larger

ESD (the usage of ESD is optional. A design should include the footprint for ESD as a stuffing option)
e.g. SEMTECH RClamp0524p
Preferred device
pF
Max Junction capacitance (IO to GND)
0.8
Footprint
Pad should be on the net –
not trace stub

Location (max length to adjacent discontinuity)
Common-mode Choke (Only if needed. Place near connector.)
Common-mode impedance @100MHz
Min/Max
Max Rdc
Differential TDR impedance @TR-200ps (10%-90%)
Min Sdd21 @ 2.5GHz
Max Scc21 @ 2.5GHz
Routing length reduction

8 (53)

mm (ps)

65/90
0.3
90
2.22
19.2
<= 3

Ω
Ω
Ω

1.
2.
3.

TDK ACM2012D-900-2P

dB
dB
in

FPC (Additional length of Flexible Printed Circuit Board)
The FPC routing should be included for PCB trace calculations (max length, etc.)
Characteristic Impedance
Same as PCB
Loss characteristic
Strongly recommend to be
the same as PCB or better
Connector
Connector used must be USB-IF certified

Note:

Discontinuity is connector, via, or component pad

If worse than PCB, the PCB & FPC length must be reestimated

Longer trace lengths may be possible if the total trace loss is equal to or better than the target. If the loss is greater, the
max trace lengths will need to be reduced.
Recommend trace length matching to <1ps before Vias or any discontinuity to minimize common mode conversion.
Place GND Vias as symmetrically as possible to data pair Vias.

Common USB Routing Guidelines
Guideline
If routing to USB device or USB connector includes a flex or 2nd PCB, the total routing including all PCBs/flexes must be used for the max trace & skew
calculations.
Keep critical USB related traces away from other signal traces or unrelated power traces/areas or power supply components

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

25

NVIDIA Jetson TX2 OEM Product Design Guide

Table 19. Jetson TX2 USB 2.0 Signal Connections
Jetson TX2 Ball
Name
USB[2:0]_D+
USB[2:0]_D–

Type

Termination

Description

DIFF
I/O

90Ω common-mode chokes close to
connector. ESD Protection between choke
& connector on each line to GND

USB Differential Data Pair: Connect to USB connector, Mini-Card
Socket, Hub or other device on the PCB.

Table 20. Miscellaneous USB 2.0 Signal Connections
Jetson TX2 Pin
Name
USB0_VBUS_DET

USB0_OTG_ID

Type
A

Termination

Description

100kΩ resistor to GND. See reference
design for VBUS power filtering.

USB0 VBus Detect: Connect to VBUS pin of USB connector receiving
USB0_+/– interface. Also connects to VBUS power supply if host mode
supported.
USB Identification: Connect to ID pin of USB OTG connector receiving
USB0_P/M interface.

A

Table 21. Jetson TX2 USB 3.0 Signal Connections
Jetson TX2 Pin Name
USB_SS0_TX+/– (USB 3.0 Port #0)
PEX_RFU_TX+/– (USB 3.0 Port #1)
USB_SS1_TX+/– (USB 3.0 Port #2)
USB_SS0_RX+/– (USB 3.0 Port #0)
PEX_RFU_RX+/– (USB 3.0 Port #1)
USB_SS1_RX+/– (USB 3.0 Port #2)

Type
DIFF
Out

Termination
Series 0.1uF caps. Common-mode chokes &
ESD protection if these are used.

DIFF
In

If routed directly to a peripheral on the board,
AC caps are needed for the peripheral TX lines.
Common-mode chokes & ESD protection, if
these are used.

Description
USB 3.0 Differential Transmit Data Pairs: Connect
to USB 3.0 connectors, hubs or other devices on the
PCB.
USB 3.0 Differential Receive Data Pairs: Connect
to USB 3.0 connectors, hubs or other devices on the
PCB.

Table 22. Recommended USB observation (test) points for initial boards
Test Points Recommended
One for each of the USB 2.0 data lines (D+/-)
One for each of the USB 3.0 output lines used (TXn_+/-)
One for each of the USB 3.0 input lines (RX_+/-)

Location
Near Jetson TX2 connector & USB device. USB connector pins can serve as test points.
Near USB device. USB connector pins can serve as test points
Near Jetson TX2 connector.

5.2 PCIe
Jetson TX2 contains a PCIe (PEX) controller that supports up to 5 lanes, and 3 separate interfaces. This narrow, high-speed
interface can be used to connect to a variety of high bandwidth devices.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

26

NVIDIA Jetson TX2 OEM Product Design Guide

Figure 13. PCIe Connection Example

Jetson TX2
Tegra - PCIe
PEX

PEX1_REFCLK+

PEX_CLK3_P
PEX_CLK3_N

PEX1_REFCLK–
PEX1_TX+
PEX1_TX–

PEX1_RX+

PEX_TX0P
PEX_TX0N
PEX_RX0P
PEX_RX0N

PEX1_RX–

Mux

Tegra
QSPI_IO2 LS

SEL

USB_SS0_TX+

(Default)

USB_SS0_TX–
USB_SS0_RX+

B4 5
B4 6

E41
E42
H41
H42
C43
C44
F43

USB_SS0_RX–

PEX_CLK1_P
PEX_CLK1_N

PEX0_REFCLK+

PEX_TX1P
PEX_TX1N
PEX_RX1P
PEX_RX1N

PEX_RFU_T X+

PEX0_REFCLK–

PEX_RFU_T X–
PEX_RFU_RX+
PEX_RFU_RX–
USB_SS1_TX+

PEX_TX2P
PEX_TX2N
PEX_RX2P
PEX_RX2N

USB_SS1_TX–
USB_SS1_RX+
USB_SS1_RX–

PEX2_TX+

PEX_TX3P
PEX_TX3N
PEX_RX3P
PEX_RX3N

PEX2_TX–
PEX2_RX+
PEX2_RX–
PEX0_TX+

PEX_TX4P
PEX_TX4N
PEX_RX4P
PEX_RX4N

PEX0_TX–
PEX0_RX+
PEX0_RX–

PEX2_REFCLK+

PEX_CLK2_P
PEX_CLK2_N

PEX2_REFCLK–

PCIe – Single Lane (IF #2) or
(USB 3.0 Port #0). Used for M.2
Connector on Carrier Board

0.1uF
0.1uF

USB 3.0 (Port #1)

F44

A44
A45
D39
D40
G39
G40

D42
D43
G42
G43
C40

C41
F40
F41
E44
E45
H44
H45

0.1uF
0.1uF
PCIe IF #0 Lane 3

Default: PCIe x1
(only PEX2_TX/RX lane used)
0.1uF
0.1uF
PCIe IF #0 Lane 1 Alternate: PCIe x4
(Routed to PCIe Connector on
Carrier Board)
0.1uF
0.1uF
PCIe IF #0 Lane 2
0.1uF
0.1uF
PCIe IF #0 Lane 0
Optionally used with PCIe
IF x1 on PEX2_TX/RX (PCIe
IF #1).

A41
A42

VDD_3V3_SYS

PEX
Control

PEX_L0_CLKREQ_N
PEX_L0_RST_N

PEX0_CLKREQ#

PEX_L1_CLKREQ_N
PEX_L1_RST_N

PEX2_CLKREQ#

PEX_L2_CLKREQ_N
PEX_L2_RST_N

PEX0_RST#

PEX2_RST#

Mux

PMIC
GPIO7

SEL

SATA_DEV_SLP
PEX1_CLKREQ#

PEX1_RST#
PEX_WAKE#

PEX_WAKE_N

C48
C49

Control for PCIe
IF #0 Lanes

C46

Control for PCIe
IF #1 Lane

D49
D47

Control for PCIe
IF #2 Lane

C47
E50

Shared

D48

PCIE Design Guidelines
Table 23. PCIE Interface Signal Routing Requirements
Parameter
Specification
Data Rate / UI Period
Configuration / Device Organization
Topology
Termination
Impedance
Trace Impedance
differential / Single Ended
Reference plane
Spacing
Trace Spacing (Stripline/Microstrip) Pair – Pair
To plane & capacitor pad

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Requirement
5.0 / 200
1
Point-point
50

Units
Gbps / ps
Load

Notes
2.5GHz, half-rate architecture

Ω

Unidirectional, differential
To GND Single Ended for P & N

85 / 50
GND

Ω

±15%. See note 1

3x / 4x
3x / 4x

Dielectric

27

NVIDIA Jetson TX2 OEM Product Design Guide

To unrelated high-speed signals
Length/Skew
Trace loss characteristic @ 2.5GHz

3x / 4x
< 0.7

dB/in

Breakout region (Max Length)

41.9

ps

Max trace length
Max PCB via distance from the BGA
PCB within pair (intra-pair) skew

5.5 (880)
41.9
0.15 (0.5)

in (ps)
ps
mm (ps)

0.15 (0.5)

mm (ps)

Within pair (intra-pair) matching between
subsequent discontinuities
Differential pair uncoupled length
Via
Via placement
Max # of Vias

PTH Vias
Micro-Vias

Max Via stub length
Routing signals over antipads
AC Cap
Value
Min/Max
Location (max length to adjacent discontinuity)
Voiding

Serpentine
Min bend angle
Dimension

Min A Spacing
Min B, C Length
Min Jog Width

MIsc.
Routing signals over antipads
Routing over voids
Connector
Voiding

41.9

The following max length is derived based on this
characteristic. See note 3
Minimum width and spacing. 4x or wider
dielectric height spacing is preferred
Max distance from BGA ball to first PCB via.
Do trace length matching before hitting
discontinuities

ps

Place GND vias as symmetrically as possible to data pair vias. GND via distance should be placed
less than 1x the diff pair via pitch
2 for TX traces & 2 for RX trace
No requirement
0.4
mm
Longer via stubs would require review
Not allowed
uF
0.075 / 0.2
mm
8
Voiding the plane directly under the pad 3-4
mils larger than the pad size is
recommended.

Only required for TX pair when routed to connector
Discontinuity such as edge finger, component pad

135
4x
1.5x
3x

S1 must be taken care in
order to consider Xtalk to
adjacent pair

deg (a)
Trace width

Not allowed
When signal pair approaches Vias, the maximal trace length across the void on the plane is 50mil.
Voiding the plane directly under the pad 5.7
mils larger than the pad size is
recommended.

Keep critical PCIe traces such as PEX_TX/RX, TERMP etc. away from other signal traces or unrelated power traces/areas or power supply components

Note:

1.
2.
3.
4.

The PCIe spec. has 40-60Ω absolute min/max trace impedance, which can be used instead of the 50Ω, ± 15%.
If routing in the same layer is necessary, route group TX & RX separately without mixing RX/TX routes & keep distance
between nearest TX/RX trace & RX to other signals 3x RX-RX separation.
Longer trace lengths may be possible if the total trace loss is equal to or better than the target. If the loss is greater, the
max trace lengths will need to be reduced.
Do length matching before Via transitions to different layers or any discontinuity to minimize common mode conversion.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

28

NVIDIA Jetson TX2 OEM Product Design Guide

Table 24. PCIE Signal Connections
Jetson TX2 Pin Name

Type

Termination

Description

PCIe Interface #0 (x1 default configuration – x4 optional.
PEX0_TX+/–
USB_SS1_TX+/–
PEX2_TX+/–
PEX_RFU_TX+/–
PEX0_RX_+/–
USB_SS1_RX+/–
PEX2_RX+/–
PEX_RFU_RX+/–
PEX0_REFCLK+/–
PEX0_CLKREQ#
PEX0_RST#

(Lane 0)
(Lane 1)
(Lane 2)
(Lane 3)
(Lane 0)
(Lane 1)
(Lane 2)
(Lane 3)

DIFF OUT

DIFF IN

Series 0.1uF Capacitor

Differential Transmit Data Pairs: Connect to TX_P/N pins of PCIe
connector or RX_P/N pin of PCIe device through AC cap according to
supported configuration. Default configuration (x1) uses only Lane 0.

Series 0.1uF capacitors if
device on main PCB.

Differential Receive Data Pairs: Connect to RX_P/N pins of PCIe
connector or TX_P/N pin of PCIe device through AC cap according to
supported configuration. Default configuration (x1) uses only Lane 0.

DIFF OUT
I/O
O

56KΩ pullup to
VDD_3V3_SYS on each line
(exists on Jetson TX2)

Differential Reference Clock Output: Connect to REFCLK_P/N pins of
PCIe device/connector
PEX Clock Request for PEX0_REFCLK: Connect to CLKREQ pin on
device/connector.
PEX Reset: Connect to PERST pin on device/connector.

PCIe Interface #1 (x1) – (Shared with PCIe Interface #0 lane 2)
PEX2_TX+/–

DIFF OUT

PEX2_RX+/–

DIFF IN

PEX2_REFCLK+/–
PEX2_CLKREQ#
PEX2_RST#

Series 0.1uF Capacitor

Series 0.1uF capacitors if
device on main PCB.

DIFF OUT
I/O
O

56KΩ pullup to
VDD_3V3_SYS on each line
(exists on Jetson TX2)

Differential Transmit Data Pairs: Connect to TX+/– pins of PCIe
connector or RX_+/– pin of PCIe device through AC cap according to
supported configuration.
Differential Receive Data Pairs: Connect to RX_+/– pins of PCIe
connector or TX_+/– pin of PCIe device through AC cap according to
supported configuration.
Differential Reference Clock Output: Connect to REFCLK_+/– pins of
PCIe device/connector.
PEX Clock Request for PEX2_REFCLK: Connect to CLKREQ pin on
device/connector(s)
PEX Reset: Connect to PERST pin on device/connector.

PCIe Interface #2 (x1) – Muxed with USB 3.0 Port #0 on USB_SS0
PEX1_TX+/–

DIFF OUT

PEX1_RX+/–

DIFF IN

PEX1_REFCLK+/–
PEX1_CLKREQ#

PEX1_RST#
PEX_WAKE#

Note:

Series 0.1uF Capacitor

Series 0.1uF capacitors if
device on main PCB.

DIFF OUT
I/O

O
I

56KΩ pullup to
VDD_3V3_SYS on each line
(exists on Jetson TX2)
56KΩ pullup to
VDD_3V3_SYS (exists on
Jetson TX2)

Differential Transmit Data Pairs: Connect to TX+/– pins of PCIe
connector or RX_+/– pin of PCIe device through AC cap according to
supported configuration.
Differential Receive Data Pairs: Connect to RX_+/– pins of PCIe
connector or TX_+/– pin of PCIe device through AC cap according to
supported configuration.
Differential Reference Clock Output: Connect to REFCLK_+/– pins of
PCIe device/connector
PEX Clock Request for PEX1_REFCLK: Connect to CLKREQ pin on
device/connector(s)
PEX Reset: Connect to PERST pin on device/connector(s)
PEX Wake: Connect to WAKE pins on devices or connectors

Check “Supported USB 3.0, PEX & SATA Interface Mappings” tables earlier in this section for PCIE IF mapping options.

Table 25. Recommended PCIe observation (test) points for initial boards
Test Points Recommended
One for each of the PCIe TX_+/– output lines used.
One for each of the PCIe RX_+/– input lines used.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Location
Near PCIe device. Connector pins may serve as test points if accessible.
Near Jetson TX2 connector.

29

NVIDIA Jetson TX2 OEM Product Design Guide

5.3 SATA
A Gen 2 SATA controller is implemented on Jetson TX2. The interface is brought to Jetson TX2 edge connector as shown in
the figure below.
Figure 14. SATA Connection Example

Jetson TX2
1

Tegra
PEX, USB
3.0 & SATA

2
SATA_TX+

PEX_TX5P
PEX_TX5N
PEX_RX5P
PEX_RX5N

SATA_TX–
SATA_RX+
SATA_RX–

PEXCTL

D45
D46

PEX1_CLKREQ#

Mux
SEL

PMIC

SATA_DEV_SLP

4

0.01uF
0.01uF

G45

5
6

G46

7

VDD_1V8

PEX_L2_CLKREQ_N

3

0.01uF
0.01uF

VDD_3V3_SLP
8

C47

9

Level
Shifter

D47

10
11
12
13

GPIO7

14
15

VDD_5V0_IO_SLP

16
17
18
19

VDD_12V_SLP

20
21
22

SATA Design Guidelines
Table 26. SATA Signal Routing Requirements
Parameter
Specification
Max Frequency
Bit Rate / UI
Topology
Configuration / Device Organization
Max Load (per pin)
Termination
Impedance
Reference plane
Trace Impedance
Differential Pair / Single Ended
Spacing
Trace Spacing
Pair-to-pair (inter-pair)
Stripline / Microstrip
To plane & capacitor pad
Stripline / Microstrip
To unrelated high-speed signals
Stripline / Microstrip
Length/Skew
Breakout region
Max Length
Spacing
Max Trace Length/Delay
Max PCB Via distance from pin
Max Within Pair (Intra-Pair) Skew
Intra-pair matching between subsequent discontinuities

Requirement

Units

Notes

3.0 / 333.3
Point to point
1
0.5
100

Gbps / ps

1.5GHz
Unidirectional, differential

Differential pair uncoupled length
AC Cap
AC Cap Value
typical (max)
AC Cap Location (max distance from adjacent discontinuities)

GND
95 / 45-55

load
pf
Ω

On die termination

Ω

±15%

3x / 4x
3x / 4x
3x / 4x

Dielectric

41.9
Min width/spacing
76.2 (480)
6.29 (41.9)
0.15 (0.5)
0.15 (0.5)

ps

6.29 (41.9)

mm (ps)

0.01 (0.012)
8 (53.22)

uF
mm (ps)

Mm (ps)
mm (ps)
mm (ps)
mm (ps)

4x or wider dielectric height spacing is
preferred

Do trace length matching before hitting
discontinuities

The AC cap location should be located as
close as possible to nearby
discontinuities.

Via

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

30

NVIDIA Jetson TX2 OEM Product Design Guide

Parameter
GND Via Placement

Requirement
Units
Notes
Place ground vias as symmetrically as possible to data pair vias
GND via distance should be placed less than 1x the diff pair via pitch
3
If all are through-hole
< 0.4
mm

Max # of vias
Via stub length
Voiding
AC cap pad voiding

Voiding the plane directly under the pad 3-4 mils larger than the pad size is
recommended
The size of voiding can be same as the size of pin pad

Connector voiding (Required)

ESD
ESD protection device (Optional)

Type: SEMTECH RClamp0524p. Place ESD component near connector.
A design may include the footprints for ESD as a stuffing option. The junction
capacitance in ESD may cause effect on signal integrity, so it’s important to choose
an ESD component with low capacitance and whose package design is optimized
for high speed links. The SEMTECH ESD Rclamp0524p has been well verified with
its 0.3pF capacitance.
8 (53)
mm (ps)

Max distance from ESD Device to Connector
Recommended ESD layout

Choke
Preferred device

Type: TDK ACM2012D-900-2P. Only if needed. Place
near connector. Refer to Common Mode Choke
Requirement section.

Location - Max distance from to adjacent discontinuities
– ex, connector, AC cap)
Common-mode impedance @ 100MHz
Min/Max
Max Rdc
Differential TDR impedance

8 (53)

mm (ps)

65/90
0.3
90

Ω
Ω
Ω @TR200ps
(10%90%)

Min Sdd21 @ 2.5GHz
Max Scc21 @ 2.5GHz

2.22
19.2

Serpentine
Min bend angle
Dimension

Min A Spacing
Min B, C Length
Min Jog Width

TDK ACM2012D-900-2P

dB
dB

135
4x
1.5x
3x

deg (a)
Trace width

S1 must be
taken care in
order to
consider Xtalk
to adjacent pair

MIsc.
Routing over voids
Noise Coupling

Note:

Where signal
1.27mm
Keep critical SATA related traces such as SATA_TX/RX, SATA_TERM etc. away from other signal
traces or unrelated power traces/areas or power supply components

If routing to SATA device or SATA connector includes a flex or 2nd PCB, the total routing including all PCBs/flexes must be used
for the max trace & skew calculations

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

31

NVIDIA Jetson TX2 OEM Product Design Guide

Table 27. SATA Signal Connections
Jetson TX2 Pin Name
SATA_TX+/–
SATA_RX+/–
SATA_DEV_SLP

Type
DIFF OUT

Termination
Series 0.01uF Capacitor

DIFF IN

Series 0.01uF Capacitor

O

1.8V to 3.3V level shifter

Description
Differential Transmit Data Pair: Connect to SATA+/– pins of SATA
device/connector through termination (capacitor)
Differential Receive Data Pair: Connect to SATA+/– pins of SATA
device/connector through termination (capacitor)
SATA Device Sleep: Connect through level shifter to matching pin
on device or connector (pin 10 of Connector show in example).

Table 28. Recommended SATA observation (test) points for initial boards
Test Points Recommended
One for each of the SATA_TX_+/– output lines.
One for each of the SATA_RX_+/– input lines.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Location
Near SATA device. Connector pins may serve as test points if accessible.
Near Jetson TX2 connector.

32

NVIDIA Jetson TX2 OEM Product Design Guide

6.0 GIGABIT ETHERNET
Jetson TX2 integrates a BCM54610C1IMLG Ethernet PHY. The magnetics & RJ45 connector are implemented on the Carrier
board. Contact Broadcom for the Carrier board placement/routing guidelines.
Table 29. Jetson TX2 Gigabit Ethernet Pin Descriptions
Usage on Carrier
Board

Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

E47
F50
F46
E49
E48
F48
F47
G49
G48
H48
H47

GBE_LINK_ACT#
GBE_LINK100#
GBE_LINK1000#
GBE_MDI0–
GBE_MDI0+
GBE_MDI1–
GBE_MDI1+
GBE_MDI2–
GBE_MDI2+
GBE_MDI3–
GBE_MDI3+

−
−
−
−
−
−
−
−
−
−
−

GbE RJ45 connector Link ACT (LED0)
GbE RJ45 connector Link 100 (LED1)
GbE RJ45 connector Link 1000 (LED2)
GbE Transformer Data 0–
GbE Transformer Data 0+
GbE Transformer Data 1–
GbE Transformer Data 1+
GbE Transformer Data 2–
GbE Transformer Data 2+
GbE Transformer Data 3–
GbE Transformer Data 3+

Direction
Output
Output
Output
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir

LAN

Pin Type

CMOS – 3.3V tolerant

MDI

Figure 15. Ethernet Connections

Jetson TX2
Tegra
SDMMC2_HV

GbE
Tranceiver

EQOS_TXC
EQOS_TD0
EQOS_TD1
EQOS_TD2
EQOS_TD3
EQOS_TX_CTL

GBE_MDI1–
GBE_MDI2+
GBE_MDI2–
GBE_MDI3+
GBE_MDI3–
GBE_LINK_ACT
GBE_LINK_100
GBE_LINK_1000

VDD_3V3_SYS

EQOS_MDC
EQOS_MDIO

1.8V

DMIC4_DAT
DMIC4_CLK

GBE_MDI0–
GBE_MDI1+

EQOS_RXC
EQOS_RD0
EQOS_RD1
EQOS_RD2
EQOS_RD3
EQOS_RX_CTL

AUDIO_HV

GBE_MDI0+

ENETPHY_RST

GBE_CTREF

E48
E49
F47
F48
G48
G49

To Magnetics /
RJ45 Connector

H47
H48
E47
F50
F46
H50

3.3V

LS

ENETPHY_INT
VDD_1V8

Figure 16. Gigabit Ethernet Magnetics & RJ45 Connections
Magnetics

GBE_MDI0+

+
CT
–
+
CT
–
+
CT
–
+
CT
–

GBE_MDI0–
GBE_MDI1+

GBE_MDI1–
GBE_MDI2+

GBE_MDI2–
GBE_MDI3+

GBE_MDI3–

VDD_3V3_SLP

+
CT
–
+
CT
–
+
CT
–
+
CT
–

VDD_3V3_SLP
TDP

75Ω

0.1uF

TDN
RDP

RJ45
14
9
10

75Ω

1

RDN
TDP1

3
5

75Ω

7

TDN1
RDP1

11

4
6
8

12
13

75Ω
RDN1

ESD 10nF

2

100pF
1nF
0.1uF

GBE_LINK_ACT

GBE_LED0_SPICSB

GBE_LINK_100

GBE_LED1_SPISCK

681Ω,1%

0.1uF

681Ω,1%

Note:

The connections above match those used on the carrier board and are shown for reference.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

33

NVIDIA Jetson TX2 OEM Product Design Guide

Table 30. Ethernet MDI Interface Signal Routing Requirements
Parameter
Reference plane
Trace Impedance

Diff pair / Single Ended

Min Trace Spacing (Pair-Pair)
Max Trace Length
Max Within Pair (Intra-Pair) Skew
Number of Vias

Requirement
GND
100 / 50
0.763
109 (690)
0.15 (1)
minimum

Units

Notes

Ω

±15%. Differential impedance target is 100Ω. 90Ω can be used if 100Ω
is not achievable

mm
mm (ps)
mm (ps)

Ideally there should be no vias, but if required for breakout to Ethernet
controller or magnetics, keep very close to either device.

Table 31. Ethernet Signal Connections
Jetson TX2 Pin
Name
GBE_MDI[3:0]+/–

Type

Termination

Description

ESD device to GND per signal

Gigabit Ethernet MDI IF Pairs: Connect to Magnetics +/– pins

GBE_LINK_ACT
GBE_LINK100

DIFF
I/O
O
O

GBE_LINK1000
GBE_CTREF

O
na

681Ω series resistor & 0.1uF capacitor to GND
681Ω series resistor & 0.1uF capacitor to GND.
10kΩ Pull-down to GND (exists on Jetson TX2)
681Ω series resistor & 0.1uF capacitor to GND

Gigabit Ethernet ACT : Connect to LED1C on Ethernet connector.
Gigabit Ethernet Link 100 : Connect to LED2C on Ethernet connector.
Pulldown part of strapping to use 3.3V PHY mode.
Gigabit Ethernet Link 1000 : Connect to Link 1000 LED on conn.
Not used

Table 32. Recommended Gigabit Ethernet observation (test) points for initial boards
Test Points Recommended
One for each of the MDI[3:0]+/– lines.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Location
Near Jetson TX2 connector & Magnetics device.

34

NVIDIA Jetson TX2 OEM Product Design Guide

7.0 DISPLAY
Jetson TX2 designs can select from several display options including MIPI DSI & eDP for embedded displays, and HDMI or DP
for external displays. Three display controllers are available, so the possible display combinations are:
▪
▪
▪

DP/HDMI + eDP + single/dual-link-DSI
DP/HDMI + single-link-DSI + single-link-DSI
DP/HDMI + DP/HDMI + single/dual-link-DSI

Table 33. Jetson TX2 Display General Pin Descriptions
Pin #
A26
A27
A25
B26
B28
B27
A24

Jetson TX2 Pin Name
GSYNC_HSYNC
GSYNC_VSYNC
LCD_TE
LCD_VDD_EN
LCD_BKLT_EN
LCD0_BKLT_PWM
LCD1_BKLT_PWM

Tegra Signal
GPIO_DIS4
GPIO_DIS2
GPIO_DIS1
GPIO_EDP0
GPIO_DIS3
GPIO_DIS0
GPIO_DIS5

Usage/Description
GSYNC Horizontal Sync
GSYNC Vertical Sync
Display Tearing Effect
Display VDD Enable
Display Backlight Enable
Display Backlight PWM 0
Display Backlight PWM 1

Usage on Carrier Board

Display Connector

Direction
Output
Output
Input
Output
Output
Output
Output

Pin Type
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V

7.1 MIPI DSI
Jetson TX2 supports eight total MIPI DSI data lanes. Each data lane has a peak bandwidth up to 1.5Gbps. The lanes can be
configured in Dual Link & Split Link modes. The following configurations are possible:
Dual Link Mode (Up to 8 PHY lanes):
▪
DSI-A (1x4) + DSI-C (1x4) to single display
▪
DSI-A (1x4) to one display, DSI-C (1x4) to a second display
Split Link Mode (Up to 8 PHY lanes):
▪
Two Links with 1-lane each: DSI-A(1x1) + DSI-B (1x1) or DSI-C (1x1) + DSI-D (1x1)
▪
Two Links with 2-lane each: DSI-A(1x2) + DSI-B (1x2) or DSI-C (1x2) + DSI-D (1x2)
▪
Four Links with 1-lane each: DSI-A(1x1) + DSI-B (1x1) + DSI-C (1x1) + DSI-D (1x1)
▪
Four Links with 2-lane each: DSI-A(1x2) + DSI-B (1x2) + DSI-C (1x2) + DSI-D (1x2)
Table 34. Jetson TX2 DSI Pin Descriptions
Pin #
G34
G33
F35
F34
H33
H32
D34
D33
C35
C34
E33
E32
G31
G30
F32
F31
H30
H29
D31
D30
C32
C31
E30
E29

Jetson TX2 Pin Name
DSI0_CLK–
DSI0_CLK+
DSI0_D0–
DSI0_D0+
DSI0_D1–
DSI0_D1+
DSI1_CLK–
DSI1_CLK+
DSI1_D0–
DSI1_D0+
DSI1_D1–
DSI1_D1+
DSI2_CLK–
DSI2_CLK+
DSI2_D0–
DSI2_D0+
DSI2_D1–
DSI2_D1+
DSI3_CLK–
DSI3_CLK+
DSI3_D0–
DSI3_D0+
DSI3_D1–
DSI3_D1+

Tegra Signal
DSI_A_CLK_N
DSI_A_CLK_P
DSI_A_D0_N
DSI_A_D0_P
DSI_A_D1_N
DSI_A_D1_P
DSI_B_CLK_N
DSI_B_CLK_P
DSI_B_D0_N
DSI_B_D0_P
DSI_B_D1_N
DSI_B_D1_P
DSI_C_CLK_N
DSI_C_CLK_P
DSI_C_D0_N
DSI_C_D0_P
DSI_C_D1_N
DSI_C_D1_P
DSI_D_CLK_N
DSI_D_CLK_P
DSI_D_D0_N
DSI_D_D0_P
DSI_D_D1_N
DSI_D_D1_P

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Usage/Description
Display, DSI 0 Clock–
Display, DSI 0 Clock+
Display, DSI 0 Data 0–
Display, DSI 0 Data 0+
Display, DSI 0 Data 1–
Display, DSI 0 Data 1+
Display DSI 1 Clock–
Display DSI 1 Clock+
Display, DSI 1 Data 0–
Display, DSI 1 Data 0+
Display, DSI 1 Data 1–
Display, DSI 1 Data 1+
Display DSI 2 Clock–
Display DSI 2 Clock+
Display, DSI 2 Data 0–
Display, DSI 2 Data 0+
Display, DSI 2 Data 1–
Display, DSI 2 Data 1+
Display DSI 3 Clock–
Display DSI 3 Clock+
Display, DSI 3 Data 0–
Display, DSI 3 Data 0+
Display, DSI 3 Data 1–
Display, DSI 3 Data 1+

Usage on Carrier Board

Display Connector

Direction
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output

Pin Type

MIPI D-PHY

35

NVIDIA Jetson TX2 OEM Product Design Guide

Figure 17: DSI Dual Link Connections

Jetson TX2

Display
Connector (DSI)

Tegra
DSI/CSI

Note:

DSI_A_CLK_P
DSI_A_CLK_N
DSI_A_D0_P
DSI_A_D0_N
DSI_A_D1_P
DSI_A_D1_N

DSI0_CK+

DSI_B_CLK_P
DSI_B_CLK_N
DSI_B_D0_P
DSI_B_D0_N
DSI_B_D1_P
DSI_B_D1_N

DSI1_CK+

DSI_C_CLK_P
DSI_C_CLK_N
DSI_C_D0_P
DSI_C_D0_N
DSI_C_D1_P
DSI_C_D1_N

DSI2_CK+

DSI_D_CLK_P
DSI_D_CLK_N
DSI_D_D0_P
DSI_D_D0_N
DSI_D_D1_P
DSI_D_D1_N

DSI3_CK+

DSI0_CK–
DSI0_D0+
DSI0_D0–
DSI0_D1+
DSI0_D1–

DSI1_CK–
DSI1_D0+
DSI1_D0–
DSI1_D1+
DSI1_D1–

DSI2_CK–
DSI2_D0+
DSI2_D0–
DSI2_D1+
DSI2_D1–

DSI3_CK–
DSI3_D0+
DSI3_D0–
DSI3_D1+
DSI3_D1–

A_CLKP
A_CLKN
A_D0P
A_D0N
A_D1P
A_D1N

G33
G34
F34
F35
H32
H33

4-Lane

D33
D34
C34
C35
E32
E33
G30

EMI/ESD

G31
F31
F32
H29
H30

A_D2P
A_D2N
A_D3P
A_D3N
B_CLKP
B_CLKN
B_D0P
B_D0N
B_D1P
B_D1N

Each 4-lane
interface can go to
a separate display,
or both can go to a
single display.

4-Lane

D30
D31

B_D2P
B_D2N
B_D3P
B_D3N

C31
C32
E29
E30

If EMI/ESD devices are necessary, they must be tuned to minimize impact to signal quality, which must meet the DSI spec.
requirements for the frequencies supported by the design.

Figure 18: DSI Split Link Connections

Jetson TX2

Display
Connector (DSI)

Tegra
DSI/CSI

DSI_A_CLK_P
DSI_A_CLK_N
DSI_A_D0_P
DSI_A_D0_N
DSI_A_D1_P
DSI_A_D1_N

DSI0_CK+

DSI_B_CLK_P
DSI_B_CLK_N
DSI_B_D0_P
DSI_B_D0_N
DSI_B_D1_P
DSI_B_D1_N

DSI1_CK+

DSI_C_CLK_P
DSI_C_CLK_N
DSI_C_D0_P
DSI_C_D0_N
DSI_C_D1_P
DSI_C_D1_N

DSI2_CK+

DSI_D_CLK_P
DSI_D_CLK_N
DSI_D_D0_P
DSI_D_D0_N
DSI_D_D1_P
DSI_D_D1_N

DSI3_CK+

DSI0_CK–
DSI0_D0+
DSI0_D0–
DSI0_D1+
DSI0_D1–

DSI1_CK–
DSI1_D0+
DSI1_D0–
DSI1_D1+
DSI1_D1–

DSI2_CK–
DSI2_D0+
DSI2_D0–
DSI2_D1+
DSI2_D1–

DSI3_CK–

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

DSI3_D0+
DSI3_D0–
DSI3_D1+
DSI3_D1–

G33
G34
F34
F35
H32
H33
D33
D34
C34
C35
E32
E33
G30
G31
F31
F32
H29
H30
D30
D31
C31
C32
E29
E30

EMI/ESD

CLK_P
CLK_N
D0_P
D0_N
D1_P
D1_N

1-2
Lanes

CLK_P
CLK_N
D0_P
D0_N
D1_P
D1_N

1-2
Lanes

CLK_P
CLK_N
D0_P
D0_N
D1_P
D1_N

1-2
Lanes

CLK_P
CLK_N
D0_P
D0_N
D1_P
D1_N

1-2
Lanes

36

NVIDIA Jetson TX2 OEM Product Design Guide

Figure 19: Display Backlight/Control Connections

Jetson TX2
Tegra
SYS

LCD_BKLT_EN

GPIO_DIS3
GPIO_DIS0
GPIO_DIS5
GPIO_DIS1

eDP

LCD0_BKLT_PWM
LCD1_BKLT_PWM
LCD_TE

LCD_VDD_EN

GPIO_EDP0

B28
B27
A24

Backlight
Control

A25

Tearing Effect

B26

Display
Power Enable

MIPI DSI / CSI Design Guidelines
Table 35. MIPI DSI & CSI Interface Signal Routing Requirements
Parameter
Max Frequency/Data Rate (per data lane)

HS (DSI)
HS (CSI)
LP

Requirement
0.75 / 1.5
1.25 / 2.5
10
1
10
GND
45-50
48
90-100 / 45-50
< 3.8 (24)
2x / 2x
1100
800
350

Units
GHz/Gbps
MHz

Notes

Number of Loads
load
Max Loading (per pin)
pF
Reference plane
See Note 1
Breakout Region Impedance (Single Ended)
Ω
±15%
Max PCB breakout delay
ps
Trace Impedance
Diff pair / Single Ended
Ω
Via proximity (Signal to reference)
mm (ps)
See Note 2
Trace spacing
Microstrip / Stripline
dielectric
mm (ps)
Max Trace Delay
1 Gbps
See Note 3
1.5 Gbps
2.5 Gbps
1
ps
Max Intra-pair Skew
See Note 3
5
ps
Max Trace Delay Skew between DQ & CLK
See Note 3
Keep critical DSI/CSI related traces including DSI/CSI clock/data traces & RDN/RUP traces away from other signal traces or unrelated power
traces/areas or power supply components

Note:

1.
2.
3.

If PWR, 0.01uF decoupling cap required for return current
Up to 4 signal Vias can share a single GND return Via
If routing to device includes a flex or 2nd PCB, the max trace & skew calculations must include all the PCBs/flex routing

MIPI DSI / CSI Connection Guidelines
Table 36. MIPI DSI Signal Connections
Jetson TX2 Pin Name
DSI[3:0]_CK+/–

Type
DIFF OUT

DSI[3:0]_D[1:0]+/–

DIFF OUT

LCD_TE
LCD_BL_EN
LCD[1:0]_BKLT_PWM

I
O
O

LCD_VDD_EN

O

Termination

Description
DSI Differential Clocks: Connect to CLKn & CLKp pins of receiver. See
connection diagrams for Dual & Split Link Mode configurations.
DSI Differential Data Lanes: Connect to Dn & Dp pins of DSI display. See
connection diagrams for Dual & Split Link Mode configurations.
LCD Tearing Effect: Connect to LCD Tearing Effect pin if supported
LCD Backlight Enable: Connect to LCD backlight solution enable if supported
LCD Backlight Pulse Width Modulation: Connect to LCD backlight solution PWM
input if supported
LCD Power Enable: Connect as necessary to enable appropriate Display power
supply(ies).

Table 37. Recommended DSI observation (test) points for initial boards
Test Points Recommended
One for each signal line.

Note:

Location
Near display. Panel connector pins can be used if accessible.

Test points must be done carefully to minimize signal integrity impact. Avoid stubs & keep pads small & near signal traces

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

37

NVIDIA Jetson TX2 OEM Product Design Guide

7.2 eDP / DP / HDMI
Jetson TX2 includes two interfaces (DP0 & DP1). Both support eDP / DP or HDMI. See Jetson TX2 Data Sheet for the
maximum resolution supported.
Table 38. Jetson TX2 HDMI / eDP / DP Pin Descriptions
Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

B34

DP0_AUX_CH–

DP_AUX_CH0_N

B35

DP0_AUX_CH+

H38
H39
F37
F38
G36
G37
H35
H36
B36
A34

Usage on the Carrier
Board

Direction

Pin Type

Display Port 0 Aux– or HDMI DDC SDA

Bidir

DP_AUX_CH0_P

Display Port 0 Aux+ or HDMI DDC SCL

Bidir

AC-Coupled on Carrier
Board (eDP/DP) or OpenDrain, 1.8V (3.3V tolerant DDC/I2C)

DP0_TX0–
DP0_TX0+
DP0_TX1–
DP0_TX1+
DP0_TX2–
DP0_TX2+
DP0_TX3–
DP0_TX3+
DP0_HPD
DP1_AUX_CH–

HDMI_DP0_TXDN2
HDMI_DP0_TXDP2
HDMI_DP0_TXDN1
HDMI_DP0_TXDP1
HDMI_DP0_TXDN0
HDMI_DP0_TXDP0
HDMI_DP0_TXDN3
HDMI_DP0_TXDP3
DP_AUX_CH0_HPD
DP_AUX_CH1_N

DisplayPort 0 Lane 0– or HDMI Lane 2–
DisplayPort 0 Lane 0+ or HDMI Lane 2+
DisplayPort 0 Lane 1– or HDMI Lane 1–
DisplayPort 0 Lane 1+or HDMI Lane 1+
DisplayPort 0 Lane 2– or HDMI Lane 0–
DisplayPort 0 Lane 2+ or HDMI Lane 0+
DisplayPort 0 Lane 3– or HDMI Clk Lane–
DisplayPort 0 Lane 3+ or HDMI Clk Lane+
Display Port 0 Hot Plug Detect
Display Port 1 Aux– or HDMI DDC SDA

A35

DP1_AUX_CH+

DP_AUX_CH1_P

Display Port 1 Aux+ or HDMI DDC SCL

E38
E39
C37
C38
D36
D37
E35
E36
A33
B33

DP1_TX0–
DP1_TX0+
DP1_TX1–
DP1_TX1+
DP1_TX2–
DP1_TX2+
DP1_TX3–
DP1_TX3+
DP1_HPD
HDMI_CEC

HDMI_DP1_TXDN2
HDMI_DP1_TXDP2
HDMI_DP1_TXDN1
HDMI_DP1_TXDP1
HDMI_DP1_TXDN0
HDMI_DP1_TXDP0
HDMI_DP1_TXDN3
HDMI_DP1_TXDP3
DP_AUX_CH1_HPD
HDMI_CEC

DisplayPort 1 Lane 0– or HDMI Lane 2–
DisplayPort 1 Lane 0+ or HDMI Lane 2+
DisplayPort 1 Lane 1– or HDMI Lane 1–
DisplayPort 1 Lane 1+ or HDMI Lane 1+
DisplayPort 1 Lane 2– or HDMI Lane 0–
DisplayPort 1 Lane 2+ or HDMI Lane 0+
DisplayPort 1 Lane 3– or HDMI Clk Lane–
DisplayPort 1 Lane 3+ or HDMI Clk Lane+
Display Port 1 Hot Plug Detect
HDMI CEC

Note:

Output
Output
Output
Output
Output
Output
Output
Output
Input
Bidir

Display Connector

Bidir
Output
Output
Output
Output
Output
Output
Output
Output
Input
Bidir

HDMI Type A Conn.

AC-Coupled on carrier
board

CMOS – 1.8V
AC-Coupled on Carrier
Board (eDP/DP) or OpenDrain, 1.8V (3.3V tolerant DDC/I2C)

AC-Coupled on carrier
board

CMOS – 1.8V
Open Drain, 3.3V

In the Connection figures & tables, the “x” in the signal/power rail names indicates that the interface can come from either
HDMI_DP0 or HDMI_DP1. The interface must include only signals from one or the other (not mixed).

Table 39. DP/HDMI Pin Mapping
Jetson TX2 Pin Name

Jetson TX2 Pin #s

Tegra Pin Name

Tegra Pin #s

HDMI

DP

H39
H38
F38
F37
G37
G36
H36
H35

HDMI_DP0_TXDP2
HDMI_DP0_TXDN2
HDMI_DP0_TXDP1
HDMI_DP0_TXDN1
HDMI_DP0_TXDP0
HDMI_DP0_TXDN0
HDMI_DP0_TXDP3
HDMI_DP0_TXDN3

E4
E5
C3
B3
A3
B4
C1
C2

TX2+
TX2–
TX1+
TX1–
TX0+
TX0–
TXC+
TXC–

TX0+
TX0–
TX1+
TX1–
TX2+
TX2–
TX3+
TX3–

E39
E38
C38
C37
D37
D36
E36
E35

HDMI_DP1_TXDP2
HDMI_DP1_TXDN2
HDMI_DP1_TXDP1
HDMI_DP1_TXDN1
HDMI_DP1_TXDP0
HDMI_DP1_TXDN0
HDMI_DP1_TXDP3
HDMI_DP1_TXDN3

A5
A6
C5
B5
D5
D6
C6
B6

TX2+
TX2–
TX1+
TX1–
TX0+
TX0–
TXC+
TXC–

TX0+
TX0–
TX1+
TX1–
TX2+
TX2–
TX3+
TX3–

DP0
DP0_TX0+
DP0_TX0–
DP0_TX1+
DP0_TX1–
DP0_TX2+
DP0_TX2–
DP0_TX3+
DP0_TX3–

DP1
DP1_TX0+
DP1_TX0–
DP1_TX1+
DP1_TX1–
DP1_TX2+
DP1_TX2–
DP1_TX3+
DP1_TX3–

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

38

NVIDIA Jetson TX2 OEM Product Design Guide

7.2.1 EDP/DP
Figure 20: eDP / DP Connection Example
See Note 2
3.3V

Jetson TX2
DP0/DP1

DP[1:0]

1.

Note:

2.
3.

DP_AUX_CHx_P
DP_AUX_CHx_N

DPx_AUX_CH+

DP_AUX_CHx_HPD

DPx_HPD

DPx_AUX_CH–

HDMI_DPx_TXDP0
HDMI_DPx_TXDN0

TXD2_P

DPx_TX2/HDMIx_TX0_P

TXD2_N

DPx_TX2/HDMIx_TX0_N

HDMI_DPx_TXDP1
HDMI_DPx_TXDN1

TXD1_P

DPx_TX1 / HDMIx_TX1_P

TXD1_N

DPx_TX1 / HDMIx_TX1_N

HDMI_DPx_TXDP2
HDMI_DPx_TXDN2

TXD0_P

DPx_TX0 / HDMIx_TX2_P

TXD0_N

DPx_TX0 / HDMIx_TX2_N

HDMI_DPx_TXDP3
HDMI_DPx_TXDN3

TXD3_P

DPx_TX3 / HDMIx_TXC_P

TXD3_N

DPx_TX3 / HDMIx_TXC_N

0.1uF

B35/A35
B34/A34
B36/A33
G37/D37
G36/D36
F38/C38
F37/C37
H39/E39
H38/E38
H36/E36
H35/E35

100kΩ

Tegra
EDP

eDP / DP Connector
+3.3V
0.1uF 10uF

0.1uF
See Note 1
Level Shifter

100kΩ
1kΩ

EMI/
ESD

AUX+
AUX–
HPD

EDP_TX2+

0.1uF

EDP_TX1+

0.1uF
0.1uF

EDP_TX1–
EDP_TX0+

0.1uF

EMI/ESD

0.1uF

EDP_TX0–
EDP_TX3+

LN2+
LN2–

0.1uF

EDP_TX2–

0.1uF

LN0+
LN0–

2-lane

4-lane

LN3+
LN3–

0.1uF

EDP_TX3–

LN1+
LN1–

A Level shifter is required on HPD to avoid the pin from being driven when Jetson TX2 is off. The level shifter must be noninverting (preserve the polarity of the HPD signal from the display).
Pull-up/down only required for DP – not for eDP.
If EMI devices are necessary, they must be tuned to minimize the impact to signal quality, which must meet the timing &
electrical requirements of the DisplayPort specification for the modes to be supported. Any ESD solution must also maintain
signal integrity & meet the DisplayPort requirements for the modes to be supported.

eDP Routing Guidelines
Figure 21: eDP / DP (Differential Main Link) Topology

Jetson TX2

Common Mode
Chokes & ESD

Tegra
DP
Driver

P

eDP
Conn

Pkg
N

Table 40. eDP / DP Main Link Signal Routing Requirements (Including DP_AUX)
Parameter
Specification
Max Data Rate / Min UI

Requirement
HBR2
HBR
RBR

Number of Loads / Topology
Termination
Electrical Spec
Insertion Loss
E-HBR @ 0.675GHz
PBR 0.68GHz
HBR 1.35GHz
HBR2 @ 2.7GHz
Resonance dip frequency
TDR dip
FEXT
@ DC
@ 2.7GHz

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

5.4 / 185
2.7 / 370
1.62 / 617
1
100
<=0.7
<=0.7
<=1.2
<=2.4
>8
>85
<= -40dB
<= -30dB

Units
Gbps / ps

load
Ω

Notes
Per data lane

Point-Point, Differential, Unidirectional
On die at TX/RX

dB
dB
dB
dB
GHz
Ω
@ Tr-200ps (10%-90%)
IL/FEXT plot – up to HBR2

39

NVIDIA Jetson TX2 OEM Product Design Guide

Parameter

Impedance
Trace Impedance

Requirement

Diff pair

100
90
85

Units

Ω (±10%)

Notes

-

Reference Plane
Trace Length, Spacing & Skew
Trace loss characteristic @ 2.7GHz

GND
< 0.81

Max PCB Via dist. from module conn. RBR/HBR
HBR2
Max trace length from module to connector
RBR/HBR (Stripline / Microstrip)
HBR2 (Stripline)
HBR2 (Microstrip, 5x / 7x)
Trace spacing (Pair-Pair)
Stripline
Microstrip (HBR/RBR)
Microstrip (HBR2)
Trace spacing
Stripline/Microstrip
(Main Link to AUX)
Max Intra-pair (within pair) Skew

No requirement
7.63 (0.3)
165 (1137.5)/(975)
101.6 (700)
89 (525) / 101.6 (600)
3x
4x
5x to 7x
3x / 5x
0.15 (1)

dB/in

The following max length is derived based on this
characteristic. See note 2.

mm (in)
mm (ps)

175ps/inch assumption for Stripline, 150ps/inch
for Microstrip.

dielectric

dielectric
mm (ps)

-

Max Inter-pair (pair-pair) Skew
Via
Max GND transition Via distance
Via Structure
Impedance dip

Recommended via dimension
for impedance control

100Ω is the spec. target. 95/85Ω are
implementation options (Zdiff does not
account for trace coupling)
95Ω should be used to support DP-HDMI colayout as HDMI 2.0 requires 100Ω impedance
(see HDMI section for addition of series
resistor RS).
85Ω can be used if eDP/DP only & is
preferable as it can provide better trace loss
characteristic performance. See Note 1.

Drill/Pad
Antipad
Via pitch

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Do not perform length matching within
breakout region
Do trace length matching before hitting
discontinuity (i.e. matching to <1ps
before the vias or any discontinuity to
minimize common mode conversion).

150

ps

< 1x

diff pair pitch

For signals switching reference layers, add
symmetrical GND stitching Via near signal Vias.

≥97
≥92

Ω @ 200ps
Ω @ 35ps

The via dimension must be required for the HDMIDP co-layout condition.

200/400
>840
≥880

um
um
um

40

NVIDIA Jetson TX2 OEM Product Design Guide

Parameter
Topology

Requirement
Units
Y-pattern is recommended
keep symmetry

Notes

Xtalk suppression is best using the Y-pattern.
It can also reduce the limit of pair-pair
distance.

For in-line via, the distance from a via of one
lane to the adjacent via from other lane >=
1.2mm center-center.

GND via

Max # of Vias

PTH vias
Micro Vias

Max Via Stub Length
Serpentine
Min bend angle
Dimension

AC Cap
Value
Max Dist. from AC cap
to connector
Voiding
Connector
Voiding

Min A Spacing
Min B, C Length
Min Jog Width

Place GND via as symmetrically as possible to
data pair vias. Up to 4 signal vias (2 diff
pairs) can share a single GND return via
4 if all vias are PTH via
Not limited as long as total channel loss
meets IL spec
0.4
mm

GND via is used to maintain return path, while its
Xtalk suppression is limited

135
4x
1.5x
3x

S1 must be taken care in
order to consider Xtalk to
adjacent pair

RBR/HBR
HBR2
RBR/HBR
HBR2

0.1
No requirement
0.5
No requirement
Voiding required

RBR/HBR
HBR2

No requirement
Voiding required

deg (a)
Trace width

uF

Discrete 0402

in
HBR2: Voiding the plane directly under the pad 34 mils larger than the pad size is recommended.

HBR2: Standard DP Connector: Voiding
requirement is stack-up dependent. For typical
stack-ups, voiding on the layer under the
connector pad is required to be 5.7mil larger than
the connector pad.
Keep critical eDP related traces including differential clock/data traces & RSET trace away from other signal traces or unrelated power traces/areas or
power supply components

Notes:

1.

2.
3.
4.

For eDP/DP, the spec puts a higher priority on the trace loss characteristic than on the impedance. However, before
selecting 85Ω for impedance, it is important to make sure the selected stack-up, material & trace dimension can achieve
the needed low loss characteristic.
Longer trace lengths may be possible if the total trace loss is equal to or better than the target. If the loss is greater, the
max trace lengths will need to be reduced.
The average of the differential signals is used for length matching.
Do not perform length matching within breakout region. Recommend doing trace length matching to <1ps before Vias
or any discontinuity to minimize common mode conversion

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

41

NVIDIA Jetson TX2 OEM Product Design Guide

Table 41. eDP Signal Connections
Jetson TX2 Pin
Name
DPx_TX[3:0]+/–

Type

DPx_AUX+/–
DPx_HPD

I/OD
I

O

Termination

Description

Series 0.1uF capacitors on all lines

eDP/DP Differential CLK/Data Lanes: Connect to matching pins on display
connector. See DP/HDMI Pin Mapping & connection diagram for details.
eDP/DP: Auxiliary Channels: Connect to AUX_CH+/– on display connector.
eDP/DP: Hot Plug Detect: Connect to HPD pin on display connector.

Series 0.1uF capacitors

Table 42. Recommended eDP/DP observation (test) points for initial boards
Test Points Recommended
One for each signal line.

Note:

Location
Near display connector. Connector pins can be used if accessible.

Test points must be done carefully to minimize signal integrity impact. Avoid stubs & keep pads small & near signal traces

7.2.2 HDMI
A standard DP 1.2a or HDMI V2.0 interface is supported. These share the same set of interface pins, so either Display Port or
HDMI can be supported natively. Dual-Mode DisplayPort(DP++ ) can be supported, in which the DisplayPort connector logically
outputs TMDS signaling to a DP-to-HDMI dongle.

7.2.3 HDMI
Figure 22: HDMI Connection Example

Jetson TX2

VDD_1V8 VDD_3V3_SYS

HDMI Connector

VDD_5V0_HDMI

eDP

DP_AUX_CH1_P
DP_AUX_CH1_N

DPx_AUX_CH+

HDMI_CEC

HDMI_CEC

10kΩ

10kΩ

DP0/DP1
B3 6/A33

0.1uF

1.8kΩ

DPx_HPD

See Note 1
Level Shifter

1.8kΩ

DP_AUX_CH1_HPD

10kΩ

+5V

Tegra - HDMI

10uF

100kΩ

HPD

EMI

HDMI_DPx

HDMI_DPx_TXDP0
HDMI_DPx_TXDN0

TXD0_P
TXD0_N

DPx_TX2/HDMIx_TX0_N

HDMI_DPx_TXDP1
HDMI_DPx_TXDN1

TXD1_P
TXD1_N

DPx_TX1 / HDMIx_TX1_N

HDMI_DPx_TXDP2
HDMI_DPx_TXDN2

TXD2_P

DPx_TX0 / HDMIx_TX2_P

TXD2_N

DPx_TX0 / HDMIx_TX2_N

HDMI_DPx_TXDP3
HDMI_DPx_TXDN3

TXC_P
TXC_N

DPx_TX3 / HDMIx_TXC_N

DPx_TX2/HDMIx_TX0_P

DPx_TX1 / HDMIx_TX1_P

DPx_TX3 / HDMIx_TXC_P

B3 3

G37/D37
G36/D36

SCL
SDA

Level Shifter

B3 5/A35
B3 4/A34

CEC Gating
Circuitry

100kΩ

DPx_AUX_CH–

CEC
See Note 2

ESD

RS

0.1uF
0.1uF

RS
RS

0.1uF

F38/C3 8
F37/C3 7

0.1uF

H39/E3 9
H38/E3 8

0.1uF

RS

H36/E3 6

0.1uF
0.1uF

RS

H35/E3 5

RS

CMC

0.1uF

RS

RS

See Note 3

See
Note 2

,
1%

ESD

See
Note 4

CK+
CKD0+
D0D1+
D1D2+
D2-

00
@100MHz

5V0_HDMI_EN

Note:

1.
2.

3.

4.

Enable

FET

Level shifters required on DDC/HPD. Jetson TX2 pads are not 5V tolerant & cannot directly meet HDMI VIL/VIH
requirements. HPD level shifter can be non-inverting or inverting.
If EMI/ESD devices are necessary, they must be tuned to minimize the impact to signal quality, which must meet the
timing & electrical requirements of the HDMI specification for the modes to be supported. See requirements &
recommendations in the related sections of the HDMI Interface Signal Routing Requirements table.
The HDMI_DP_TXx pads are native DP pads & require series AC capacitors (ACCAP) & pull-downs (RPD) to be HDMI
compliant. The 499Ω, 1% pull-downs must be disabled when Tegra is off to meet the HDMI VOFF requirement. The
enable to the FET, enables the pull-downs when the HDMI interface is to be used. Chokes between pull-downs & FET are
required for Standard Technology designs and recommended for HDI designs.
Series resistors RS are required. See the RS section of the HDMI Interface Signal Routing Requirements table for details.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

42

NVIDIA Jetson TX2 OEM Product Design Guide

Figure 23: HDMI Clk/Data Topology
Common Mode
Chokes & ESD

AC CAP

Jetson TX2

Main Route –
Seg A
95-100Ω

Tegra

0.1uF
0.1uF

RS
(See note 4)

Seg B
100Ω
* Note 3

Seg D
100Ω
* Note 3

Seg E
100Ω
* Note 3

Seg F
100Ω
* Note 3

100Ω

100Ω

100Ω

100Ω

95-100Ω

Seg C

HDMI
Conn

See Note 1

PCB Vias
RPD

499Ω,
1%

499Ω,
1%

PCB Vias
3.3V

Note:

Choke or Trace
See Note 2

RPD pad must be on the main trace. RPD & ACCAP must be on same layer.
Chokes (600Ω@100MHz) or narrow traces (1uH@DC-100MHz) between pull-downs & FET are required for Standard
Technology (through-hole) designs and recommended for HDI designs.
The trace after the main-route via should be routed on the Top or Bottom layer of the PCB, and either with 100ohm
differential impedance, or as uncoupled 50ohm Single Ended traces.
RS series resistor is required. See the RS section of the HDMI Interface Signal Routing Requirements table for details.

1.
2.
3.
4.

Table 43. HDMI Interface Signal Routing Requirements
Parameter
Specification
Max Frequency / UI
Topology
Termination

Requirement

Units

5.94 / 168
Point to point
At Receiver 100
On-board 500

Gbps / ps
Ω

Electrical Specification
IL

TDR dip

<= 1.7
<= 2
<= 3
<6
resonance dip frequency > 12
>= 85

FEXT (PSFEXT)

dB @ 1GHz
dB @ 1.5GHz
dB @ 3GHz
dB @ 6GHz
GHz
Ω @ Tr=200ps

<= -50
<= -40
<= -40

dB at DC
dB at 3GHz
dB at 6GHz
IL/FEXT plot

Impedance
Trace Impedance
Reference plane
Trace spacing/Length/Skew
Trace loss characteristic:

Diff pair 100

Notes
Per lane – not total link bandwidth
Unidirectional, Differential
Differential To 3.3V at receiver
To GND near connector

10%-90%. If TDR dip is 75~85ohm that dip width
should < 250ps
PSNEXT is derived from an algebraic summation of the
individual NEXT effects on each pair by the other pairs
TDR plot

Ω

±10%. Target is 100Ω. 95Ω for the breakout & main
route is an implementation option.

GND
< 0.8
< 0.4

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

dB/in. @ 3GHz
dB/in. @ 1.5GHz

The max length is derived based on this characteristic.
See note 1.

43

NVIDIA Jetson TX2 OEM Product Design Guide

Parameter
Trace spacing (Pair-Pair)

Requirement

Stripline
Microstrip: pre 1.4b
Microstrip: 1.4b/2.0
Trace spacing
Stripline
(Main Link to DDC)
Microstrip
Max Total Delay (1.4b/2.0 - up to
5.94Gbps)
Stripline
Microstrip (5x spacing)
Microstrip (7x spacing)
Max Total Delay (Pre-1.4b)
(up to 165Mhz)
Microstrip
Stripline
Max Intra-Pair (within pair) Skew
Max Inter-Pair (pair to pair) Skew
Max GND transition Via distance

Via
Topology

3x
4x
5x to 7x
3x
5x

63.5/2.5 (437)
50.8/2.0 (300)
63.5/2.5 (375)
254/10 (1500)
225/8.5 (1500)
0.15 (1)
150
1x

8. Y-pattern is recommended
9. keep symmetry
97
92

Minimum Impedance Dip
Recommended Via Dimension
drill/pad
Antipad
Via pitch
GND via

Connector pin via

-

Max Via Stub Length
Serpentine
Min bend angle

PTH via
u-via

dielectric

dielectric

Notes
For Stripline, this is 3x of the thinner of above and
below.

For Stripline, this is 3x of the thinner of above and
below.
Propagation delay: 175ps/in. for stripline, 150ps/in. for
microstrip).

mm/in (ps)

mm/in (ps)

Propagation delay: 175ps/in. for stripline, 150ps/in. for
microstrip).

Mm (ps)
ps
Diff pair via pitch

See Notes 2, 3 & 4
See Notes 2, 3 & 4
For signals switching reference layers, add one or two
ground stitching vias. It is recommended they be
symmetrical to signal vias.

Ω@200ps
Ω@35ps

200/400
uM
840
880
Place GND via as symmetrically as possible to data pair
vias. Up to 4 signal vias (2 diff pairs) can share a single
GND return via
The break-in trace to the connector pin via should
-

Max # of Vias

Units

Xtalk suppression is the
best by Y-pattern. Also it
can reduce the limit of
pair-pair distance. Need
review (NEXT/FEXT check)
if via placement is not Ypattern.
GND via is used to maintain return path, while its Xtalk
suppression is limited

be routed on the BOTTOM in order to avoid via stub
effect
Equal spacing (0.8mm) between adjacent signal
vias.
The x-axis distance between signal and GND via
should be > 0.6mm

4 if all vias are PTH via
Not limited as long as total channel loss meets IL spec.
No breakout: ≤ 3 vias

0.4

mm

135

deg (a)

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

breakout on the same layer as main trunk: ≤ 4 vias

long via stub requires review (IL & resonance dip check)

44

NVIDIA Jetson TX2 OEM Product Design Guide

Parameter
Dimension

Min A Spacing
Min B, C Length
Min Jog Width

Requirement
4x
1.5x
3x

Units
Trace width

Topology
The main-route via dimensions should comply with the via structure rules (See Via section)
For the connector pin vias, follow the rules for the connector pin vias (See Via section)
The traces after main-route via should be routed as 100Ω differential or as uncoupled 50ohm
Single-ended traces on PCB Top or Bottom.
1
mm
Max distance from RPD to main
trace (seg B)
Max distance from AC cap to RPD
~0
mm
stubbing point (seg A)
Max distance between ESD and
3
mm
signal via
Add-on Components
Example of a case where space is
Top
limited for placing components.

AC Cap
Value
Max via distance from BGA
Location

0.1
uF
7.62 (52.5)
mm (ps)
must be placed before pull-down resistor

Notes
S1 must be taken care in order to
consider Xtalk to adjacent pair

See topology figure above table

Bottom

The distance between the AC cap and the HDMI
connector is not restricted.

Placement

PTH design Place cap on bottom layer if main-route above core
Place cap on top layer if main-route below core
Micro-Via design Not Restricted
Void
GND (or PWR) void under/above the cap is needed.
Void size = SMT area + 1x dielectric height keepout
distance
Pull-down Resistor (RPD), choke/FET
Value
500
Ω
Location.
Must be placed after AC cap
Layer of placement
Same layer as AC cap. The FET & choke can be placed
on the opposite layer thru a PTH via

Choke between RPD & FET

Choke 600 or
Ω@100MHz
1
uH@DC-100MHz
Max Trace Rdc ≤20
mΩ
Max Trace length 4
mm
Void
GND/PWR void under/above cap is preferred
Common-Mode Choke (Stuffing option – not added unless EMI issue is seen)
Common-mode
Min 65
Ω
impedance @ 100MHz
Max 90
RDC
<=0.3ohm
Differential TDR impedance
90ohm +/-15% @
Tr=200ps (10%-90%)

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Can be choke or Trace. Recommended option for
HDMI2.0 HF1-9 improvement.

TDK ACM2012D-900-2P

45

NVIDIA Jetson TX2 OEM Product Design Guide

Parameter
Min Sdd21 @ 2.5GHz
Max Scc21 @ 2.5GHz
Location

Requirement
Units
2.22
dB
19.2
dB
Close to any adjacent discontinuity (< 8mm) – such as
connector, via, etc.

Notes

ESD (On-chip protection diode is able to withstand 2kV HMM. External ESD is optional. Designs should include ESD footprint as a stuffing option)
Max junction capacitance
0.35
pF
e.g. ON-semiconductor ESD8040
(IO to GND)
Footprint
Pad right on the net instead of trace stub

Location
Void

After pull-down resistor/CMC and before RS
GND/PWR void under/above the cap is needed. Void
size = 1mm x 2mm for 1 pair

Series Resistor (RS) – Series resistor on P/N path for HDMI 2.0 (Mandatory)
Value
≤6

Location
Void

± 10%. 0ohm is acceptable if the design passes the
HDMI2.0 HF1-9 test. Otherwise, adjust the RS value to
ensure the HDMI2.0 tests pass: Eye diagram, Vlow test
and HF1-9 TDR test

After all components and before HDMI connector
GND/PWR void under/above the RS device is needed.
Void size = SMT area + 1x dielectric height keepout
distance.

Trace at Component Region
Value
Location
Trace entering the SMT pad

Trace between components

HDMI Connector
Connector Voiding

General
Routing over Voids
Noise Coupling

Note:

Ω

1.
2.
3.
4.

100
At component region (Microstrip)
One 45°

Ω

± 10%

Uncoupled structure

Voiding the ground below the signal lanes
0.1448(5.7mil) larger than the pin itself

Routing over voids not allowed except void around device ball/pin the signal is routed to.
Keep critical HDMI related traces including differential clock/data traces & RSET trace away from other signal
traces or unrelated power traces/areas or power supply components

Longer trace lengths may be possible if the total trace loss is equal to or better than the target. If the loss is greater, the
max trace lengths will need to be reduced.
The average of the differential signals is used for length matching.
Do not perform length matching within breakout region. Recommend doing trace length matching to <1ps before vias or
any discontinuity to minimize common mode conversion
If routing includes a flex or 2nd PCB, the max trace delay & skew calculations must include all the PCBs/flex routing.
Solutions with flex/2nd PCB may not achieve maximum frequency operation.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

46

NVIDIA Jetson TX2 OEM Product Design Guide

Table 44. HDMI Signal Connections
Jetson TX2 Pin Name
DPx_TX3+/–

DPx_HPD

Type
DIFF
OUT
DIFF
OUT
I

HDMI_CEC

I/OD

DPx_AUX_CH+/–

I/OD

HDMI 5V Supply

P

DPx_TX[2:0] +/–

Note:

Termination (see note on ESD)
0.1uF series ACCAP → 500Ω RPD (controlled by FET) →
EMI/ESD (if required),.≤6Ω RS (series resistor)

Jetson TX2 to Connector: 10kΩ PU to 1.8V → level
shifter → 100kΩ series resistor. 100kΩ to GND on
connector side.
Gating circuitry, See connection figure or reference
schematics for details.
From Jetson TX2 to Connector: 10kΩ PU to 3.3V → level
shifter → 1.8kΩ PU to 5V → connector pin
Adequate decoupling (0.1uF & 10uF recommended) on
supply near connector.

Description
HDMI Differential Clock: Connect to C–/C+ & pins on
HDMI Connector
HDMI Differential Data: Connect to D[2:0]+/– pins. See
DP/HDMI Pin Mapping table and connection diagram.
HDMI Hot Plug Detect: Connect to HPD pin on HDMI
Connector
HDMI Consumer Electronics Control: Connect to CEC
on HDMI Connector through circuitry.
HDMI: DDC Interface – Clock and Data: Connect
DP1_AUX_CH+ to SCL & DP1_AUX_CH– to SDA on
HDMI Connector
HDMI 5V supply to connector: Connect to +5V on
HDMI Connector.

Any ESD and/or EMI solutions must support targeted modes (frequencies).

Table 45. Recommended HDMI / DP observation (test) points for initial boards
Test Points Recommended
One for each signal line.

Note:

Location
Near display connector. Connector pins can be used if accessible.

Test points must be done carefully to minimize signal integrity impact. Avoid stubs & keep pads small & near signal traces

Figure 24: Optional Dual-Mode (DP/HDMI) Connections
5.0V

10kΩ

10kΩ

DP_MODE*

10kΩ

10nF

DP_AUX_CHx_P

DP_AUX
100kΩ 0.1uF

To Jetson
TX2

CONFIG1
10kΩ

To DP Connector

Gated
100kΩ
3.3V

DP_MODE*
100kΩ
DP_AUX_CHx_N

DP_AUX*
100kΩ 0.1uF

DP Interface Signal Routing Requirements
See eDP/DP Signal Routing Requirements.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

47

NVIDIA Jetson TX2 OEM Product Design Guide

8.0 MIPI CSI (VIDEO INPUT)
Jetson TX2 supports three MIPI CSI x4 bricks, allowing a variety of device types and combinations to be supported. Up to three
quad lane stereo cameras or 6 dual lane camera streams are available. Each data lane has a peak bandwidth of up to 2.5Gbps.
Note:

Maximum data rate may be limited by use case / memory bandwidth.

Table 46. Jetson TX2 CSI Pin Descriptions
Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

G27
G28
F28
F29
H26
H27
D27
D28
C28
C29
E26
E27
G24
G25
F25
F26
H23
H24
D24
D25
C25
C26
E23
E24
G21
G22
F22
F23
H20
H21
D21
D22
C22
C23
E20
E21

CSI0_CLK–
CSI0_CLK+
CSI0_D0–
CSI0_D0+
CSI0_D1–
CSI0_D1+
CSI1_CLK–
CSI1_CLK+
CSI1_D0–
CSI1_D0+
CSI1_D1–
CSI1_D1+
CSI2_CLK–
CSI2_CLK+
CSI2_D0–
CSI2_D0+
CSI2_D1–
CSI2_D1+
CSI3_CLK–
CSI3_CLK+
CSI3_D0–
CSI3_D0+
CSI3_D1–
CSI3_D1+
CSI4_CLK–
CSI4_CLK+
CSI4_D0–
CSI4_D0+
CSI4_D1–
CSI4_D1+
CSI5_CLK–
CSI5_CLK+
CSI5_D0–
CSI5_D0+
CSI5_D1–
CSI5_D1+

CSI_A_CLK_N
CSI_A_CLK_P
CSI_A_D0_N
CSI_A_D0_P
CSI_A_D1_N
CSI_A_D1_P
CSI_B_CLK_N
CSI_B_CLK_P
CSI_B_D0_N
CSI_B_D0_P
CSI_B_D1_N
CSI_B_D1_P
CSI_C_CLK_N
CSI_C_CLK_P
CSI_C_D0_N
CSI_C_D0_P
CSI_C_D1_N
CSI_C_D1_P
CSI_D_CLK_N
CSI_D_CLK_P
CSI_D_D0_N
CSI_D_D0_P
CSI_D_D1_N
CSI_D_D1_P
CSI_E_CLK_N
CSI_E_CLK_P
CSI_E_D0_N
CSI_E_D0_P
CSI_E_D1_N
CSI_E_D1_P
CSI_F_CLK_N
CSI_F_CLK_P
CSI_F_D0_N
CSI_F_D0_P
CSI_F_D1_N
CSI_F_D1_P

Camera, CSI 0 Clock–
Camera, CSI 0 Clock+
Camera, CSI 0 Data 0–
Camera, CSI 0 Data 0+
Camera, CSI 0 Data 1–
Camera, CSI 0 Data 1+
Camera, CSI 1 Clock–
Camera, CSI 1 Clock+
Camera, CSI 1 Data 0–
Camera, CSI 1 Data 0+
Camera, CSI 1 Data 1–
Camera, CSI 1 Data 1+
Camera, CSI 2 Clock–
Camera, CSI 2 Clock+
Camera, CSI 2 Data 0–
Camera, CSI 2 Data 0+
Camera, CSI 2 Data 1–
Camera, CSI 2 Data 1+
Camera, CSI 3 Clock–
Camera, CSI 3 Clock+
Camera, CSI 3 Data 0–
Camera, CSI 3 Data 0+
Camera, CSI 3 Data 1–
Camera, CSI 3 Data 1+
Camera, CSI 4 Clock–
Camera CSI 4 Clock+
Camera, CSI 4 Data 0–
Camera, CSI 4 Data 0+
Camera, CSI 4 Data 1–
Camera, CSI 4 Data 1+
Camera, CSI 5 Clock–
Camera, CSI 5 Clock+
Camera, CSI 5 Data 0–
Camera, CSI 5 Data 0+
Camera, CSI 5 Data 1–
Camera, CSI 5 Data 1+

Usage on the Carrier
Board

Camera Connector

Direction

Pin Type

Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input

MIPI D-PHY

Direction

Pin Type

Output
Output
Output
Output
Output
Output
Output
Output
Output
Output

CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V

Table 47. Jetson TX2 Camera Miscellaneous Pin Descriptions
Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

F9
F8
E7
G8
F7
H8
H7
G7
D7
E8

CAM0_MCLK
CAM1_MCLK
CAM2_MCLK
GPIO0_CAM0_PWR#
GPIO1_CAM1_PWR#
GPIO2_CAM0_RST#
GPIO3_CAM1_RST#
GPIO4_CAM_STROBE
GPIO5_CAM_FLASH_EN
CAM_VSYNC

EXTPERIPH1_CLK
EXTPERIPH2_CLK
GPIO_CAM2
QSPI_SCK
GPIO_CAM3
QSPI_CS_N
QSPI_IO0
GPIO_SEN5
UART5_RTS_N
QSPI_IO1

Camera 0 Reference Clock
Camera 1 Reference Clock
Camera 2 Master Clock
Camera 0 Powerdown or GPIO
Camera 1 Powerdown or GPIO
Camera 0 Reset or GPIO
Camera 1 Reset or GPIO
Camera Strobe or GPIO
Camera Flash Enable or GPIO
Camera Vertical Sync

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Usage on the Carrier
Board

Camera Connector

48

NVIDIA Jetson TX2 OEM Product Design Guide

Table 48. CSI Configurations
Camera #
CSI Lanes
CSI_0_CLK
CSI_0_D[1:0]
CSI_1_CLK
CSI_1_D[1:0]
CSI_2_CLK
CSI_2_D[1:0]
CSI_3_CLK
CSI_3_D[1:0]
CSI_4_CLK
CSI_4_D[1:0]
CSI_5_CLK
CSI_5_D[1:0]

Note:

1.
2.

#1

2-Lane Configurations
#3
#4

#2

#5

#6

√
√

#1

4-Lane Configurations
#2

#3

√
√
√
√

√
√
√

√
√
√
√

√
√
√

√
√
√
√

√

Each 2-lane options shown above can also be used for one single lane camera as well
Combinations of 1, 2 & 4-lane cameras are supported, as long as any 4-lane cameras match one of the three configurations
above

Figure 25: Camera Control Connections

Jetson TX2
Tegra

1kΩ
VDD_1V8
1kΩ

UART/CAM

I2C_CAM_CLK

CAM_I2C_SCL
CAM_I2C_SDA
EXTPERIPH1_CLK
EXTPERIPH2_CLK
GPIO_CAM2
GPIO_CAM3
UART5_RTS

I2C_CAM_DAT
120Ω

CAM0_MCLK

120Ω

GPIO0_CAM0_PWR#

120Ω

GPIO2_CAM0_RST#
CAM1_MCLK
GPIO1_CAM1_PWR#
GPIO3_CAM1_RST#

QSPI_SCK
QSPI_CS
QSPI_IO1
QSPI_IO0

SPI

CAM2_MCLK

CAM_VSYNC
GPIO4_CAM_STROBE
GPIO5_CAM_FLASH_EN

AO
Note:

Camera
I2C

C6
D6
F9

Camera 0
Clock/Control

G8
H8

EMI

F8

&

F7
H7

CAM_AF_EN

ESD

Camera 1
Clock/Control

E7

Camera 2 Clock

E8

Misc.
Camera
Strobe/Flash

G7
D7

GPIO_SEN5

1.
2.

If Jetson TX2 is providing flash control (as shown), GPIO5_CAM_FLASH_EN & GPIO4_CAM_STROBE must be used.
Any EMI/ESD devices must be tuned to minimize impact to signal quality and meet the timing & Vil/Vih requirements at
the receiver & maintain signal quality and meet requirements for the frequencies supported by the design.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

49

NVIDIA Jetson TX2 OEM Product Design Guide

Figure 26: Camera CSI Connections

Jetson TX2
Tegra
DSI/CSI

Note:

CSI_A_CLK_P
CSI_A_CLK_N
CSI_A_D0_P
CSI_A_D0_N
CSI_A_D1_P
CSI_A_D1_N

CSI0_CK+

CSI_B_CLK_P
CSI_B_CLK_N
CSI_B_D0_P
CSI_B_D0_N
CSI_B_D1_P
CSI_B_D1_N

CSI1_CK+

CSI_C_CLK_P
CSI_C_CLK_N
CSI_C_D0_P
CSI_C_D0_N
CSI_C_D1_P
CSI_C_D1_N

CSI2_CK+

CSI_D_CLK_P
CSI_D_CLK_N
CSI_D_D0_P
CSI_D_D0_N
CSI_D_D1_P
CSI_D_D1_N

CSI3_CK+

CSI_E_CLK_P
CSI_E_CLK_N
CSI_E_D0_P
CSI_E_D0_N
CSI_E_D1_P
CSI_E_D1_N

CSI4_CK+

CSI_F_CLK_P
CSI_F_CLK_N
CSI_F_D0_P
CSI_F_D0_N
CSI_F_D1_P
CSI_F_D1_N

CSI5_CK+

CSI0_CK–
CSI0_D0+
CSI0_D0–
CSI0_D1+
CSI0_D1–

CSI1_CK–
CSI1_D0+
CSI1_D0–
CSI1_D1+
CSI1_D1–

CSI2_CK–
CSI2_D0+
CSI2_D0–
CSI2_D1+
CSI2_D1–

CSI3_CK–
CSI3_D0+
CSI3_D0–
CSI3_D1+
CSI3_D1–

CSI4_CK–
CSI4_D0+
CSI4_D0–
CSI4_D1+
CSI4_D1–

CSI5_CK–
CSI5_D0+
CSI5_D0–
CSI5_D1+
CSI5_D1–

G28
G27
F29

2-Lane

F28
H27

4-Lane
(B_CLK not
used)

H26
D28
D27
C29

2-Lane

C28
E27
E26
G25
G24
F26
F25
H24
H23
D25

EMI

2-Lane

&

4-Lane
(D_CLK not
used)

ESD

D24
C26
C25

2-Lane

E24
E23
G22
G21
F23
F22

2-Lane

H21
4-Lane
(F_CLK not
used)

H20
D22
D21
C23
C22

2-Lane

E21
E20

Any EMI/ESD devices must be tuned to minimize impact to signal quality and meet the timing & Vil/Vih requirements at the
receiver & maintain signal quality and meet requirements for the frequencies supported by the design.

CSI Design Guidelines
CSI & DSI use the MIPI D-PHY for the physical interface. The routing & connection requirements are found in the DSI section.
Table 49. MIPI CSI Signal Connections
Jetson TX2 Pin
Name
CSI[5:0]_CLK+/–
CSI[5:0]_D[1:0]+/–

Note:

Type

Termination

Description

I

See note

I/O

See note

CSI Differential Clocks: Connect to clock pins of camera. See the CSI Configurations tables for
details
CSI Differential Data Lanes: Connect to data pins of camera. See the CSI Configurations tables for
details

Depending on the mechanical design of the platform and camera modules, ESD protection may be necessary. In addition,
EMI control may be needed. Both are shown in the Camera Connection Example diagram. Any EMI/ESD solution must be
compatible with the frequency required by the design.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

50

NVIDIA Jetson TX2 OEM Product Design Guide

Table 50. Miscellaneous Camera Connections
Jetson TX2 Pin Name
I2C_CAM_CLK
I2C_CAM_DAT
CAM[2:0]_MCLK

GPIO1_CAM1_PWR#
GPIO0_CAM0_PWR#
GPIO4_CAM_STROBE

Type
O
I/O
O

Termination
1kΩ Pull-ups VDD_1V8 (on Jetson TX2).
See note related to EMI/ESD under MIPI
CSI Signal Connections tables.
120Ω Bead in series (on Jetson TX2) See
note related to EMI/ESD under MIPI CSI
Signal Connections tables.

I/O

GPIO5_CAM_FLASH_EN
GPIO3_CAM1_RST#
GPIO2_CAM0_RST#

O
O

CAM_VSYNC

O

See note related to ESD under MIPI CSI
Signal Connections tables.

Description
Camera I2C Interface: Connect to I2C SCL & SDA pins of imager

Camera Master Clocks: Connect to Camera reference clock
inputs.
Camera Power Control signals (or GPIOs [1:0]): Connect to
powerdown pins on camera(s).
Camera Strobe Enable (or GPIO 4): Connect to camera strobe
circuit unless strobe control comes from camera module.
Camera Flash Enable: Connect to enable of flash circuit
Camera Resets (or GPIO [3:2]): Connect to reset pin on any
cameras with this function. If AutoFocus Enable is required,
connect GPIO3_CAM1_RST# to AF_EN pin on camera module &
use GPIO2_CAM0_RST# as common reset line.
Camera Vertical Sync

Table 51. Recommended CSI observation (test) points for initial boards
Test Points Recommended
One per signal line.

Note:

Location
Near Jetson TX2 pins

Test points must be done carefully to minimize signal integrity impact. Avoid stubs & keep pads small & near signal traces

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

51

NVIDIA Jetson TX2 OEM Product Design Guide

9.0 SDIO/SDCARD/EMMC
Jetson TX2 has four SD/MMC interfaces. Three are used on Jetson TX2 for eMMC, WLAN/BT & Ethernet. One is brought to
the connector pins for SD Card or SDIO use.
Table 52. Jetson TX2 SDMMC Pin Descriptions
Usage on the Carrier
Board

Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

G18
G19
H18
H17
F19
F18
F17
H16
F20

SDCARD_CLK
SDCARD_CMD
SDCARD_D0
SDCARD_D1
SDCARD_D2
SDCARD_D3
SDCARD_CD#
SDCARD_PWR_EN
SDCARD_WP

SDMMC1_CLK
SDMMC1_CMD
SDMMC1_DAT0
SDMMC1_DAT1
SDMMC1_DAT2
SDMMC1_DAT3
GPIO_EDP2
GPIO_EDP3
GPIO_EDP1

SD Card (or SDIO) Clock
SD Card (or SDIO) Command
SD Card (or SDIO) Data 0
SD Card (or SDIO) Data 1
SD Card (or SDIO) Data 2
SD Card (or SDIO) Data 3
SD Card Card Detect
SD Card power switch Enable
SD Card Write Protect

SD Card

Direction

Pin Type

Output
Bidir
Bidir
Bidir
Bidir
Bidir
Input
Output
Input

CMOS – 3.3/1.8V
CMOS – 3.3/1.8V
CMOS – 3.3V/1.8V
CMOS – 3.3V/1.8V
CMOS – 3.3/1.8V
CMOS – 3.3/1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V

Table 53. SDIO / SD Card / eMMC Interface Mapping
Jetson TX2 Pins
SDCARD

Tegra Interface
SDMMC1

Width
4-bit

N/A
N/A
N/A

SDMMC2
SDMMC3
SDMMC4

4-bit
4-bit
8-bit

Usage
SD (Primary SD Card). Can be used instead for SDIO
interface.
Pins used for EQOS for Ethernet on Jetson TX2
Used on Jetson TX2 for WLAN/BT
Used on Jetson TX2 - eMMC

9.1 SD Card
The Figure shows a standard SD socket. Internal pull-up resistors are used for SDCARD Data/CMD lines, so external pull-ups
are not required.
Figure 27. SD Card Socket Connection Example
VDD_3V3_SYS
4.7kΩ

D

Jetson TX2

G
S

Tegra
SDMMC1

SDMMC1_CLK
SDMMC1_CMD
SDMMC1_DAT0
SDMMC1_DAT1
SDMMC1_DAT2
SDMMC1_DAT3

EDP

SDCARD_CLK
120Ω@100MHz
SDCARD_CMD
SDCARD_D0
SDCARD_D1
SDCARD_D2
SDCARD_D3

GPIO_EDP3

SDCARD_PWR_EN

GPIO_EDP2

SDCARD_CD#

G18

Load Switch
VIN
VOUT
ON
10Ω

DATA2

10Ω

DATA3

10Ω

CMD
GND

G19

VDD

H18
H17

CLK

0Ω

F19

GND

F18

H16

F17

SDMMC_VDD_EN

10Ω

DATA0

10Ω

DATA1

SDMMC1_ CD*

C_DETECT
COMMON

C_WR_PROTECT

ESD
GPIO_EDP1

Notes:

1.

2.

SDCARD_WP

F20

SDMMC1_ WP

If EMI and/or ESD devices are necessary, they must be tuned to minimize the impact to signal quality, which must meet
the timing & Vil/Vih requirements at the receiver & maintain signal quality and meet requirements for the frequencies
supported by the design.
Supply (load switch, etc) used to provide power to the SD Card must be current limited if the supply is shorted to GND.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

52

NVIDIA Jetson TX2 OEM Product Design Guide

Table 54. SDCARD Interface Signal Routing Requirements
Parameter
Max Frequency

3.3V Signaling

DS
HS
SDR12
SDR25
SDR50
SDR104
DDR50

1.8V Signaling

Topology
Reference plane
Trace Impedance
Max Via Count
Via proximity (Signal to reference)
Trace spacing
Trace length
SDR50 / SDR25 / SDR12 / HS / DS

PTH
HDI
Microstrip / Stripline
Min
Max
Min
Max

SDR104 / DDR50

Requirement
25 (12.5)
50 (25)
25 (12.5)
50 (25)
100 (50)
208 (104)
50 (50)
Point to point
GND or PWR
50
4
10
< 3.8 (24)
4x / 3x

Units
MHz (MB/s)

Ω

mm (ps)
dielectric

16 (100)
139 (876)
16 (100)
83 (521)

Notes
See Note 1

See Note 2
±15%. 45Ω optional depending on stack-up
Independand of stackup layers
Depends on stackup layers
Up to 4 signal Vias can share 1 GND return Via

mm (ps)

See Note 3
Max Trace Delay Skew in/between CLK & CMD/DAT
Mm (ps)
SDR50 / SDR25 / SDR12 / HS / DS 14 (87.5)
SDR104 / DDR50 2 (12.5)
Keep CLK, CMD & DATA traces away from other signal traces or unrelated power traces/areas or power supply components

Note:

1.
2.
3.

Actual frequencies may be lower due to clock source/divider limitations.
If PWR, 0.01uF decoupling cap required for return current.
If routing to SD Card socket includes a flex or 2nd PCB, max trace & skew calculations must include PCB & flex routing.

Table 55. SD Card Loading vs Drive Type
General SD Card Compliance
CCARD (CDIE+CPKG)
Drive Type

FMAX (CLK base frequency)

CLOAD (CCARD+CEQ)
(CLK freq = 208MHz)

CLOAD (CCARD+CEQ)
(CLK freq = 100/50/25MHz)

Parameter
Min
Max
A
B
C
D
SDR104
DDR50
SDR50
SDR25
SDR12
HS
DS
Drive Type = A
Drive Type = B
Drive Type = C
Drive Type = D
Drive Type = A
Drive Type = B
Drive Type = C
Drive Type = D

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Value
5
10
33
50
66
100
208
50
100
50
25
50
25
21
15
11
22
43
30
23
22

Units
pF
pF
Ω
Ω
Ω
Ω
MHz
MHz
MHz
MHz
MHz
MHz
MHz
pF
pF
pF
pF
pF
pF
pF
pF

Notes
Spec best case value
Spec worst case value
UHS50 Card = optional, UHS104 Card = mandatory
UHS50 Card = mandatory, UHS104 Card = mandatory
UHS50 Card = optional, UHS104 Card = mandatory
UHS50 Card = optional, UHS104 Card = mandatory
Single data rate up to 104MB/sec
Double data rate up to 50MB/sec
Single data rate up to 50MB/sec
Single data rate up to 25MB/sec
Single data rate up to 12.5MB/sec
Single data rate up to 25MB/sec
Single data rate up to 12.5MB/sec
Total load capacitance supported
Total load capacitance supported
Total load capacitance supported
Possibly 22pF+ depending on host system
Total load capacitance supported
Total load capacitance supported
Total load capacitance supported
Possibly 22pF+ depending on host system

53

NVIDIA Jetson TX2 OEM Product Design Guide

Table 56. SDCARD Signal Connections
Function Signal Name
SDCARD_CLK

SDCARD_CMD
SDCARD_D[3:0]
SDCARD_CD#
SDCARD_WP
SDIO_RST#
SDCARD_PWR_EN

Note:

Type
O

I/O
I/O

Termination
120 Ω bead on module
for SDCARD_CLK. 0Ω
series resistor on carrier
board as placeholder.
See note for EMI/ESD
10Ω series resistors for
SDCARD CMD/D[3:0].
See note for EMI/ESD

I
I
O
O

Description
SDIO/SD Card Clock: Connect to CLK pin of device or socket

SDIO/SDMMC Command: Connect to CMD pin of device/socket
SDIO/SDMMC Data: Connect to Data pins of device or socket
SDIO Card Detect: Connect to CD/C_DETECT pin on socket if required.
SDIO Write Protect: Connect to WP/WR_PROTECT pin on socket if required.
SDIO Reset: Connect to reset line on SDIO peripheral/connector.
SDIO Supply/Load Switch Enable: Connect to enable of supply/load switch
supplying VDD on SD Card socket.

EMI/ESD may be required for SDIO when used as the SD Card socket interface. Any EMI/ESD device used must be able to meet signal
timing/quality requirements. The Carrier Board implements 10Ω series resistors on the SDCARD data lines and a 0Ω series resistor on the
clock line (for possible tuning if required).

Table 57. Recommended SDCARD observation (test) points for initial boards
Test Points Recommended
One for SDCARD_CLK line.
One SDCARD_DATx line & one for SDCARD_CMD.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Location
Near Device/Connector pin. SD connector pin can be used for device end if accessible.
Near Jetson TX2 & Device pins. SD connector pin can be used for device end if accessible.

54

NVIDIA Jetson TX2 OEM Product Design Guide

10.0 AUDIO
Jetson TX2 brings four PCM/I2S audio interfaces to the module pins & includes a flexible audio-port switching architecture. In
addition, digital microphone & speaker interfaces are provided.
Table 58. Jetson TX2 Audio Pin Descriptions
Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

F1
G2
H1
G1
H2
C15
D13
C14
D14
G5
H5
G6
H6
E6
F5
E5
F6
E16
D16
G4
H4
F2
H3

AUDIO_MCLK
I2S0_CLK
I2S0_LRCLK
I2S0_SDIN
I2S0_SDOUT
I2S1_CLK
I2S1_LRCLK
I2S1_SDIN
I2S1_SDOUT
I2S2_CLK
I2S2_LRCLK
I2S2_SDIN
I2S2_SDOUT
I2S3_CLK
I2S3_LRCLK
I2S3_SDIN
I2S3_SDOUT
AO_DMIC_IN_CLK
AO_DMIC_IN_DAT
DSPK_OUT_CLK
DSPK_OUT_DAT
GPIO19_AUD_RST
GPIO20_AUD_INT

AUD_MCLK
DAP1_SCLK
DAP1_FS
DAP1_DIN
DAP1_DOUT
DAP2_SCLK
DAP2_FS
DAP2_DIN
DAP2_DOUT
DMIC2_DAT
DMIC1_CLK
DMIC1_DAT
DMIC2_CLK
DAP4_SCLK
DAP4_FS
DAP4_DIN
DAP4_DOUT
CAN_GPIO1
CAN_GPIO0
GPIO_AUD3
GPIO_AUD2
GPIO_AUD1
GPIO_AUD0

Audio Codec Master Clock
I2S Audio Port 0 Clock
I2S Audio Port 0 Left/Right Clock
I2S Audio Port 0 Data In
I2S Audio Port 0 Data Out
I2S Audio Port 1 Clock
I2S Audio Port 1 Left/Right Clock
I2S Audio Port 1 Data In
I2S Audio Port 1 Data Out
I2S Audio Port 2 Clock
I2S Audio Port 2 Left/Right Clock
I2S Audio Port 2 Data In
I2S Audio Port 2 Data Out
I2S Audio Port 3 Clock
I2S Audio Port 3 Left/Right Clock
I2S Audio Port 3 Data In
I2S Audio Port 3 Data Out
Digital Mic Input Clock
Digital Mic Input Data
Digital Speaker Output Clock
Digital Speaker Output Data
Audio Codec Reset or GPIO
Audio Codec Interrupt or GPIO

Usage on the Carrier
Board

Direction

Pin Type

Output
Bidir
Bidir
Input
Bidir
Bidir
Bidir
Input
Bidir
Bidir
Bidir
Input
Bidir
Bidir
Bidir
Input
Bidir
Output
Input
Output
Output
Output
Input

CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V

Expansion Header

GPIO Expansion
Header

M.2 Key E

Camera Connector

Expansion Header
GPIO Expansion
Header
Expansion Header

When possible, the following assignments should be used for the I2Sx interfaces.
Table 59. I2S Interface Mapping
Jetson TX2 Pins (Tegra Functions)
I2S0 (I2S1)
I2S1 (I2S2)
I2S2 (I2S3)
I2S3 (I2S4)
NA (I2S6)

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

I/O Block
AUDIO
CONN
AUDIO_HV
AUDIO_HV
DMIC_HV

Typical Usage
Available (Codec)
Available (Misc)
Available (WLAN / BT, Modem)
Available (Misc)
Used for on-module WLAN / BT

55

NVIDIA Jetson TX2 OEM Product Design Guide

Figure 28. Audio Device Connections

Jetson TX2
Tegra
AUDIO

AUD_MCLK
GPIO_AUD1
DAP1_SCLK
DAP1_FS
DAP1_DOUT
DAP1_DIN

AUDIO_HV

GPIO_AUD0
DMIC2_DAT
DMIC1_CLK
DMIC2_CLK
DMIC1_DAT

Note:

-

75Ω

AUDIO_MCLK
GPIO19_AUD_RST

I2S1_CLK

75Ω

I2S1_LRCK

I2S0_CLK
I2S0_LRCK

I2S1_SDOUT

I2S0_SDOUT

I2S1_SDIN

I2S0_SDIN

GPIO20_AUD_INT
I2S3_CLK

75Ω

I2S3_LRCK

I2S2_CLK
I2S2_LRCK

I2S3_SDOUT

I2S2_SDOUT

I2S3_SDIN

DAP4_SCLK
DAP4_FS
DAP4_DOUT
DAP4_DIN

I2S4_CLK

GPIO_PQ0
GPIO_PQ3
GPIO_PQ1
GPIO_PQ2

I2S6_CLK

DAP2_SCLK
DAP2_FS
DAP2_DOUT
DAP2_DIN

I2S2_CLK

DMIC_HV

CONN

Nvidia
Carrier Board
Net Name

Tegra
Function

I2S2_SDIN
120Ω@

I2S4_LRCK

I2S3_CLK
I2S3_LRCK

I2S4_SDOUT

I2S3_SDOUT

I2S4_SDIN

I2S3_SDIN

F1
F2
G2
H1
H2
G1
H3
G5
H5
H6
G6
E6
F5
F6
E5

Audio
Codec

AUDIO_I2S_MCLK
GPIO_X1_AUD
DAP1_SCLK_AP
DAP1_FS_AP
DAP1_DOUT_AP
DAP1_DIN_AP

AUD_INT
DAP3_SCLK_AP

2nd WiFi/BT,
Modem

DAP3_FS_AP
DAP3_DOUT_AP
DAP3_DIN_AP
DAP4_SCLK_AP

Misc

DAP4_FS_AP
DAP4_DOUT_AP
DAP4_DIN_AP

120Ω@

Primary
WiFi/BT

I2S6_LRCK
I2S6_SDOUT
I2S6_SDIN

I2S2_LRCK
I2S2_SDOUT

I2S1_CLK
I2S1_LRCK
I2S1_SDOUT

I2S2_SDIN

I2S1_SDIN

C15
D13
D14
C14

DAP2_SCLK_AP

Misc

DAP2_FS_AP
DAP2_DOUT_AP
DAP2_DIN_AP

The I2S interfaces can be used in either Master or Slave mode.
A capacitor from DAPn_FS to GND is recommended if Tegra an I2S slave & the edge_cntrl configuration = 1 (SDATA
driven on positive edge of SCLK). The value of the capacitor should be chosen to provide a minimum of 2ns hold time for
the DAPn_FS edge after the rising edge of DAPn_SCLK.

I2S Design Guidelines
Table 60. I2S Interface Signal Routing Requirements
Parameter
Configuration / Device Organization
Max Loading
Reference plane
Breakout Region Impedance
Trace Impedance
Via proximity (Signal to reference)
Trace spacing
Microstrip or Stripline
Max Trace Delay
Max Trace Delay Skew between SCLK & SDATA_OUT/IN

Note:

Requirement
1
8
GND
Min width/spacing
50
< 3.8 (24)
2x
3600 (~22)
250 (~1.6”)

Units
load
pF

Ω
mm (ps)
dielectric

Notes

±20%
See Note 1

ps (in)
ps (in)

Up to 4 signal Vias can share a single GND return Via

Table 61. Audio Signal Connections
Jetson TX2 Pin Name
I2S[3:0]_SCLK

Type
I/O

I2S[3:0]_LRCK
I2S[3:0]_SDATA_OUT
I2S[3:0]_SDATA_IN
AUD_MCLK
GPIO19_AUD_RST
GPIO20_AUD_INT

I/O

Termination
I2S[2,0]_CLK have 75Ω beads & I2S3_CLK
has a 120Ω Bead in series (on Jetson TX2).

I/O

I
O
O
I

75Ω Beads in series (on Jetson TX2).

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Description
I2S Serial Clock: Connect to I2S/PCM CLK pin of audio device.
I2S Left/Right Clock: Connect to Left/Right Clock pin of audio device.
I2S Data Output: Connect to Data Input pin of audio device.
I2S Data Input: Connect to Data Output pin of audio device.
Audio Codec Master Clock: Connect to clock pin of Audio Codec.
Audio Reset: Connect to reset pin of Audio Codec.
Audio Interrupt: Connect to interrupt pin of Audio Codec.

56

NVIDIA Jetson TX2 OEM Product Design Guide

11.0 WLAN / BT (INTEGRATED)
Jetson TX2 integrates a Broadcom BCM4354 WLAN / BT solution. Two Dual-band antenna connectors are located on the
module. The requirements are in the Antenna Requirements table below. The UART interface is multiplexed and either route
these to the WLAN/BT device or to the connector pins for use on the carrier board. The default selection for the multiplexers is
to the WLAN/BT device.
Figure 29. Integrated WLAN / BT

Jetson TX2

Tegra
SDMMC3_CLK
SDMMC3_CMD
SDMMC3_DAT0
SDMMC3_DAT1
SDMMC3_DAT2
SDMMC3_DAT3

SDMMC3

SPI

QSPI_IO3

CAM

GPIO_CAM1

SYS
UART

Load
Switch

WIFI_EN

GPIO_SW3

WIFI_WAKE_AP

GPIO_SW4

BT2_WAKE_AP

GP_PWM7

BT_EN

GPIO_MDM5

VDD_3V3_SYS

MUX_SEL

RF

VDD_1V8
Antenna
Connector #1

RF

Antenna
Connector #2

WiFi / BT
AP2_WAKE_BT

UART3_TX
UART3_RX

UART4_TX
UART4_RX
UART4_RTS_N
UART4_CTS_N

CONN

DMIC_HV

GPIO_PQ0
GPIO_PQ1
GPIO_PQ2
GPIO_PQ3

SEL

UART3_RTS#
UART3_CTS#

Mux

H10
H9
G10
G9

(Default)
DAP6_SCLK
DAP6_DOUT
DAP6_DIN
DAP6_FS

Table 62. Antenna Requirements
Parameter
Type
Frequency Band(s)
Impedance
Mating Connector

Note:

1.
2.
3.

Requirement
Dual-Band (x2) Dipole
2.4 & 5.0
50
Plug: I-PEX U.FL series

Units

Notes

GHz
Ω
See note 1

Receptacles on Jetson TX2 are from Hirose Electric (U.S.A). Part # is U.FL-R-SMT-1(10).
Antenna Manufacturer: Pulse, Part Number: W1043
Cable manufacturer: Pulse, part number: W9009

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

57

NVIDIA Jetson TX2 OEM Product Design Guide

12.0 MISCELLANEOUS INTERFACES
12.1 I2C
Tegra has nine I2C controllers. Jetson TX2 brings eight of the I2C interfaces out, which are shown in the tables below. The
assignments in Table 64 should be used for the I2C interfaces:
Table 63. Jetson TX2 I2C Pin Descriptions
Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

C6
D6
E15
D15
A21
A20
C11
C10
C12
C13
A6
B6
A34
A35
B34
B35

I2C_CAM_CLK
I2C_CAM_DAT
I2C_GP0_CLK
I2C_GP0_DAT
I2C_GP1_CLK
I2C_GP1_DAT
I2C_GP2_CLK
I2C_GP2_DAT
I2C_GP3_CLK
I2C_GP3_DAT
I2C_PM_CLK
I2C_PM_DAT
DP1_AUX_CH–
DP1_AUX_CH+
DP0_AUX_CH–
DP0_AUX_CH+

CAM_I2C_SCL
CAM_I2C_SDA
GPIO_SEN8
GPIO_SEN9
GEN1_I2C_SCL
GEN1_I2C_SDA
GEN7_I2C_SCL
GEN7_I2C_SDA
GEN9_I2C_SCL
GEN9_I2C_SDA
GEN8_I2C_SCL
GEN8_I2C_SDA
DP_AUX_CH1_N
DP_AUX_CH1_P
DP_AUX_CH0_N
DP_AUX_CH0_P

Camera I2C Clock
Camera I2C Data
General I2C 0 Clock
General I2C 0 Data
General I2C 1 Clock
General I2C 1 Data
General I2C 2 Clock
General I2C 2 Data
General I2C 3 Clock
General I2C 3 Data
PM I2C Clock
PM I2C Data
Display Port 1 Aux– or HDMI DDC SDA
Display Port 1 Aux+ or HDMI DDC SCL
Display Port 0 Aux– or HDMI DDC SDA
Display Port 0 Aux+ or HDMI DDC SCL

Usage on the Carrier
Board
Camera Connector

I2C (General)

HDMI Type A Conn.
Display Connector

Direction

Pin Type

Bidir
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir

Open Drain – 1.8V
Open Drain – 1.8V
Open Drain – 1.8V
Open Drain – 1.8V
Open Drain – 3.3V
Open Drain – 3.3V
Open Drain – 1.8V
Open Drain – 1.8V
Open Drain – 1.8V
Open Drain – 1.8V
Open Drain – 1.8V
Open Drain – 1.8V
AC-Coupled on Carrier
Board (eDP/DP) or OpenDrain, 1.8V (3.3V tolerant DDC/I2C)

Table 64. I2C Interface Mapping
Ctrlr

Usage on Jetson
TX2
Power monitors

Typcial usage on Carrier board

On-Jetson TX2 Pull-up/voltage

I2C1
I2C2
I2C3
I2C4

Jetson TX2 Pins
Names
I2C_GP1_CLK/DAT
I2C_GP0_CLK/DAT
I2C_CAM_CLK/DAT
DP1_AUX_CH_P/N

General I2C bus usage. 3.3V devices supported
Audio Codec, general I2C. 1.8V devices supported
Cameras & related functions. 1.8V devices supported
HDMI / DP / I2C. 1.8V / 3.3V devices supported.

I2C5
I2C6

na
DP0_AUX_CH_P/N

Power control

On-Jetson TX2 use only
HDMI / DP / I2C. 1.8V / 3.3V devices supported.

I2C7
I2C8
I2C9

I2C_GP2_CLK/DAT
I2C_PM_CLK/DAT
I2C_GP3_CLK/DAT

1KΩ on Jetson TX2 to 3.3V
1KΩ on Jetson TX2 to 1.8V
1KΩ on Jetson TX2 to 1.8V
None on Jetson TX2. I/F supports
pull-up to 1.8V or 3.3V (3.3V in
Open-drain mode only)
1KΩ on Jetson TX2 to 1.8V
None on Jetson TX2. I/F supports
pull-up to 1.8V or 3.3V (3.3V in
Open-drain mode only)
1KΩ on Jetson TX2 to 1.8V
1KΩ on Jetson TX2 to 1.8V
1KΩ on Jetson TX2 to 1.8V

Thermal Sensor

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

General I2C bus. 1.8V devices supported
General I2C bus. Only 1.8V devices supported
General I2C bus. Only 1.8V devices supported

58

NVIDIA Jetson TX2 OEM Product Design Guide

Figure 30. I2C Connections

Jetson TX2
1kΩ

Tegra – I2C
SYS

I2C5

VDD_1V8

1kΩ

PWR_I2C_SCL
PWR_I2C_SDA

On-Module
Usage Only
1kΩ

VDD_3V3_SYS

1kΩ

I2C1

I2C_GP1_CLK

GEN1_I2C_SCL
GEN1_I2C_SDA

I2C_GP1_DAT

1kΩ

A21
A20

Used on-module for power monitors, & typically offmodule for GPIO expansion or other misc 3.3V I2C usage

VDD_1V8

1kΩ

CAM

I2C3

I2C_CAM_CLK

CAM_I2C_SCL
CAM_I2C_SDA

I2C_CAM_DAT

1kΩ

UART

C6
D6

Used as camera module
control interface

VDD_1V8

1kΩ

I2C7

I2C_GP2_CLK

GEN7_I2C_SCL
GEN7_I2C_SDA

I2C_GP2_DAT

1kΩ

C11
C10

Available for misc.
1.8V I2C devices

VDD_1V8

1kΩ

I2C9

I2C_GP3_CLK

GEN9_I2C_SCL
GEN9_I2C_SDA

I2C_GP3_DAT

1kΩ

C12
C13

Available for misc.
1.8V I2C devices

VDD_1V8

1kΩ

AO

I2C2

I2C_GP0_CLK

GPIO_SEN8
GPIO_SEN9

I2C_GP0_DAT

1kΩ

E15
D15

Available for misc.
1.8V I2C devices

VDD_1V8

1kΩ

DP

GEN8_I2C_SCL
GEN8_I2C_SDA

I2C_PM_CLK

I2C8

DP_AUX_CH0_P
DP_AUX_CH0_N

DP0_AUX_CH+

I2C6

DP_AUX_CH1_P
DP_AUX_CH1_N

DP1_AUX_CH+

I2C4

I2C_PM_DAT

DP0_AUX_CH–

DP1_AUX_CH–

A6
B6

B35
B34
A35
A34

Available for misc.
1.8V I2C devices
Typically used for eDP. Otherwise
available for Misc 1.8V/3.3V I2C usage.
Typically used for HDMI or DP. Otherwise
available for Misc 1.8V/3.3V I2C usage.

I2C Design Guidelines
Care must be taken to ensure I2C peripherals on same I2C bus connected to Jetson TX2 do not have duplicate addresses.
Addresses can be in two forms: 7-bit, with the Read/Write bit removed or 8-bit including the Read/Write bit. Be sure to compare
I2C device addresses using the same form (all 7-bit or all 8-bit format).
Table 65. I2C Interface Signal Routing Requirements
Parameter
Max Frequency
Topology
Max Loading
Reference plane
Trace Impedance
Trace Spacing
Max Trace Delay

Note:

1.
2.
3.

Standard-mode / Fm / Fm+
Standard-mode / Fm / Fm+

Standard Mode
Fm & Fm+

Requirement
Units
Notes
100 / 400 / 1000
kHz
See Note 1
Single ended, bi-directional, multiple masters/slaves
400
pF
Total of all loads
GND or PWR
50 – 60
Ω
±15%
1x
dielectric
ps (in)
3400 (~20)
1700 (~10)

Fm = Fast-mode, Fm+ = Fast-mode Plus
Avoid routing I2C signals near noisy traces, supplies or components such as a switching power regulator.
No requirement for decoupling caps for PWR reference

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

59

NVIDIA Jetson TX2 OEM Product Design Guide

Table 66. I2C Signal Connections
Jetson TX2 Pin
Name
I2C_GP0_CLK/DAT
I2C_GP1_CLK/DAT
I2C_GP2_CLK/DAT
I2C_GP3_CLK/DAT
I2C_PM_CLK/DAT

Type

Termination

Description

I/OD
I/OD
I/OD
I/OD
I/OD

1kΩ pull-ups to VDD_1V8 on Jetson TX2
1kΩ pull-ups to VDD_3V3_SYS on Jetson TX2
1kΩ pull-ups to VDD_1V8 on Jetson TX2
1kΩ pull-ups to VDD_1V8 on Jetson TX2
1kΩ pull-ups to VDD_1V8 on Jetson TX2

I2C_CAM_CLK/DAT
DP0_AUX_CH+/–

I/OD
I/OD

DP1_AUX_CH+/–

I/OD

1kΩ pull-ups to VDD_1V8 on Jetson TX2
See eDP/HDMI/DP sections for correct
termination
See eDP/HDMI/DP sections for correct
termination

General I2C 0 Clock\Data. Connect to CLK/Data pins of 1.8V devices
General I2C 1 Clock\Data. Connect to CLK/Data pins of 3.3V devices.
General I2C 2 Clock\Data. Connect to CLK/Data pins of 1.8V devices
General I2C 3 Clock\Data. Connect to CLK/Data pins of 1.8V devices.
Power Mon. I2C Clock\Data. Connect to CLK/Data pins of 1.8V
devices
Camera I2C Clock\Data. Connect to CLK/Data pins of any 1.8V devices
DP_AUX Channel (eDP/DP) or DDC I2C 2 Clock & Data (HDMI).
Connect to AUX_CH+/– (DP) or SCL/SDA (HDMI)
DP_AUX Channel (eDP/DP) or DDC I2C 2 Clock & Data (HDMI).
Connect to AUX_CH+/– (DP) or SCL/SDA (HDMI)

Note:

1.
2.

If some devices require a different voltage level than others connected to the same I2C bus, level shifters are required.
For I2C interfaces that are pulled up to 1.8V, disable the E_IO_HV option for these pads. For I2C interfaces that are
pulled up to 3.3V, enable the E_IO_HV option. The E_IO_HV option is selected in the Pinmux registers.

De-bounce
The tables below contain the allowable De-bounce settings for the various I2C Modes.
Table 67. De-bounce Settings (Fast Mode Plus, Fast Mode & Standard Mode)
I2C Mode

Clock Source

Source Clock Freq

I2C Source Divisor

Sm/Fm Divisor

Fm+

PLLP_OUT0

408MHz

5 (0x04)

10 (0x9)

Fm

PLLP_OUT0

408MHz

5 (0x4)

Sm

PLLP_OUT0

408MHz

20 (0x13)

Note:

De-bounce Value
0
5:1
7:6

I2C SCL Freq
1016KHz
905.8KHz
816KHz

26 (0x19)

7:0

392KHz

26 (0x19)

7:0

98KHz

Sm = Standard Mode.

12.2 SPI
Jetson TX2 brings out three of the Tegra SPI interfaces.
Table 68. Jetson TX2 SPI Pin Descriptions
Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

E3
F3
E4
F4
G13
E14
F14
F13
H14
G16
F16
H15
G15

SPI0_CLK
SPI0_CS0#
SPI0_MISO
SPI0_MOSI
SPI1_CLK
SPI1_CS0#
SPI1_MISO
SPI1_MOSI
SPI2_CLK
SPI2_CS0#
SPI2_CS1#
SPI2_MISO
SPI2_MOSI

GPIO_SEN1
GPIO_SEN4
GPIO_SEN2
GPIO_SEN3
GPIO_CAM4
GPIO_CAM7
GPIO_CAM5
GPIO_CAM6
GPIO_WAN5
GPIO_WAN8
GPIO_MDM4
GPIO_WAN6
GPIO_WAN7

SPI 0 Clock
SPI 0 Chip Select 0
SPI 0 Master In / Slave Out
SPI 0 Master Out / Slave In
SPI 1 Clock
SPI 1 Chip Select 0
SPI 1 Master In / Slave Out
SPI 1 Master Out / Slave In
SPI 2 Clock
SPI 2 Chip Select 0
SPI 2 Chip Select 1
SPI 2 Master In / Slave Out
SPI 2 Master Out / Slave In

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Usage on the Carrier
Board

Display Connector

Expansion Header

Display/Camera Conns.

Direction

Pin Type

Bidir
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir
Bidir

CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V

60

NVIDIA Jetson TX2 OEM Product Design Guide

Figure 31. SPI Connections

Jetson TX2
Tegra – SPI
AO

120Ω@100MHz

GPIO_SEN1
GPIO_SEN2
GPIO_SEN3
GPIO_SEN4

CAM

SPI0_CLK
SPI0_MISO
SPI0_MOSI
SPI0_CS0#

SPI1_CLK

GPIO_CAM4
GPIO_CAM5
GPIO_CAM6
GPIO_CAM7

SPI1_MISO
SPI1_MOSI
SPI1_CS0#
SPI1_CS1#

UART

SPI2_CLK

GPIO_WAN5
GPIO_WAN6
GPIO_WAN7
GPIO_WAN8
GPIO_MDM4

SPI2_MISO
SPI2_MOSI
SPI2_CS0#
SPI2_CS1#

E3
E4
F4

Touch

F3
G13
F14
F13

Expansion

E14
E13
H14
H15
G15
G16

Display (CS0)
Camera (CS1)

F16

The figure below shows the basic connections used.
Figure 32. Basic SPI Master/Slave Connections

Jetson TX2 Master

SPI Slave Device

SPIn_CSx#

CS (Chip Select)

SPIn_SCK

Jetson TX2 Slave
SPIn_CSx#

CLK (Clock)

SPIn_SCK

SPI Master Device
CS (Chip Select)
CLK (Clock)

SPIn_MOSI

MOSI (Master out, Slave in)

SPIn_MOSI

MOSI (Master out, Slave in)

SPIn_MISO

MISO (Master in, Slave out)

SPIn_MISO

MISO (Master in, Slave out)

SPI Design Guidelines
Figure 33. SPI Point-Point Topology
Jetson TX2
Die

PKG

Main trunk

SPI
Device

Figure 34. SPI Star Topologies

Jetson TX2
Die

Branch-A

SPI
Device #1

Branch-B

SPI
Device #2

PKG

Main trunk

Figure 35. SPI Daisy Topologies

Branch-A

SPI
Device #1

Jetson TX2

Die

PKG

Main trunk

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Branch-B

SPI
Device #2

61

NVIDIA Jetson TX2 OEM Product Design Guide

Table 69. SPI Interface Signal Routing Requirements
Parameter
Max Frequency
Configuration / Device Organization
Max Loading (total of all loads)
Reference plane
Breakout Region Impedance
Max PCB breakout delay
Trace Impedance
Via proximity (Signal to reference)
Trace spacing
Microstrip / Stripline
Max Trace Length/Delay (PCB Main Trunk)
Point-Point
For MOSI, MISO, SCK & CS
2x-Load Star/Daisy
Max Trace Length/Delay (Branch-A)
2x-Load Star/Daisy
for MOSI, MISO, SCK & CS
Max Trace Length/Delay (Branch-B)
2x-Load Star/Daisy
for MOSI, MISO, SCK & CS
Max Trace Length/Delay Skew from MOSI, MISO & CS to SCK

Note:

Requirement
65
3
15
GND
Minimum width & spacing
75
50 – 60
< 3.8 (24)
4x / 3x
195 (1228)
120 (756)
75 (472)

Units
MHz
load
pF

ps
Ω
mm (ps)
dielectric

Notes

±15%
See Note 1

mm (ps)
mm (ps)

75 (472)

mm (ps)

16 (100)

mm (ps)

At any point

Up to 4 signal Vias can share a single GND return Via

Table 70. SPI Signal Connections
Jetson TX2 Pin Names
SPI[2:0]_CLK
SPI[2:0]_MOSI
SPI[2:0]_MISO
SPI[2:1]_CS[1:0]#
SPI0_CS0#

Type
I/O

Termination
SPI0_CLK has 120Ω Bead in series
(on Jetson TX2).

I/O
I/O
I/O

Description
SPI Clock.: Connect to Peripheral CLK pin(s)
SPI Data Output: Connect to Slave Peripheral MOSI pin(s)
SPI Data Input: Connect to Slave Peripheral MISO pin(s)
SPI Chip Selects.: Connect one CS_N pin per SPI IF to each Slave
Peripheral CS pin on the interface

Table 71. Recommended SPI observation (test) points for initial boards
Test Points Recommended
One for each SPI signal line used

Location
Near Jetson TX2 & Device pins.

12.3 UART
Jetson TX2 brings five UARTs out to the main connector. One of the UARTs is used for the WLAN/BT on Jetson TX2 or as
UART3 at the connector depending on the setting of a multiplexor. See Table 73 for typical assignments of the UARTs.
Table 72. Jetson TX2 UART Pin Descriptions
Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

H11
G11
G12
H12
E10
E9
D10
D9
A15
A16
B15
B16

UART0_CTS#
UART0_RTS#
UART0_RX
UART0_TX
UART1_CTS#
UART1_RTS#
UART1_RX
UART1_TX
UART2_CTS#
UART2_RTS#
UART2_RX
UART2_TX

UART 0 Clear to Send
UART 0 Request to Send
UART 0 Receive
UART 0 Transmit
UART 1 Clear to Send
UART 1 Request to Send
UART 1 Receive
UART 1 Transmit
UART 2 Clear to Send
UART 2 Request to Send
UART 2 Receive
UART 2 Transmit

G9

UART3_CTS#

UART1_CTS
UART1_RTS
UART1_RX
UART1_TX
UART3_CTS
UART3_RTS
UART3_RX
UART3_TX
UART2_CTS
UART2_RTS
UART2_RX
UART2_TX
UART4_CTS_N (via
mux)
UART4_RTS_N (via
mux)
UART4_RX (via mux)
UART4_TX (via mux)

G10

UART3_RTS#

H9
H10

UART3_RX
UART3_TX

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Usage on the Carrier
Board

Debug Header

Serial Port Header

M.2 Key E

UART 3 Clear to Send

Direction

Pin Type

Input
Output
Input
Output
Input
Output
Input
Output
Input
Output
Input
Output

CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V

Input

CMOS – 1.8V

Output

CMOS – 1.8V

Input
Output

CMOS – 1.8V
CMOS – 1.8V

Not assigned
UART 3 Request to Send
UART 3 Receive
UART 3 Transmit

Optional source of
UART on Exp. Header

62

NVIDIA Jetson TX2 OEM Product Design Guide

Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

D5
D8

UART7_RX
UART7_TX

UART7_RX
UART7_TX

UART 7 Receive
UART 7 Transmit

Usage on the Carrier
Board
Not Assigned

Direction

Pin Type

Input
Output

CMOS – 1.8V
CMOS – 1.8V

Table 73. UART Interface Mapping
Jetson TX2 Pins (Tegra Functions)
UART0 (UART1)
UART1 (UART3)
UART2 (UART2)
UART3 (UART4)

I/O Block
DEBUG
AO
UART
CONN

UART7 (UART7)

AO

Typical Usage
Debug
Serial Port
M.2 socket for external WLAN / BT
Misc. Available if not used for on-module WLAN /
BT (selected by on-module multiplexor)
2nd Debug/Misc.

Figure 36. Jetson TX2 UART Connections

Jetson TX2
Tegra – UART
AO

UART3_TX
UART3_RX
UART3_RTS_N
UART3_CTS_N

(RAM_CODE1 Strap) UART 1_TX

UART7_TX
UART7_RX

(RAM_CODE1 Strap) RSVD

UART 1_RX
UART 1_RTS#
UART 1_CTS#

RSVD
UART3_TX

CONN

UART3_RX

UART4_TX
UART4_RX
UART4_RTS_N
UART4_CTS_N

DEBUG

UART1_TX
UART1_RX
UART1_RTS_N
UART1_CTS_N

Mux

UART3_CTS#

D8
D5

Serial Port,
etc.
UART 7_TX_AP
UART 7_RX_AP

Misc.

H10
H9
G10

Misc.

G9

WiFi / BT on
Jetson TX2
UART 0_TX
UART 0_RX
(RAM_CODE0 Strap) UART 0_RTS#
UART 0_CTS#

UART2_TX

UART2_TX
UART2_RX
UART2_RTS_N
UART2_CTS_N

UART

Note:

UART3_RTS#

D9
D10
E9
E10

UART2_RX
UART2_RTS#
UART2_CTS#

H12
G12
G11
H11

Used for
Debug, etc.

B1 6
B1 5
A16

M.2 Conn.
(2nd WiFi/Bt)

A15

Care should be taken when using UART pins that are associated with Tegra straps. See Strapping Pins section for details.

Table 74. UART Signal Connections
Ball Name
UART[7,3:0]_TX
UART[7,3:0]_RX
UART[3:0]_CTS#
UART[3:0]_RTS#

Type
O
I
I
O

Termination

Description
UART Transmit: Connect to Peripheral RXD pin of device
UART Receive: Connect to Peripheral TXD pin of device
UART Clear to Send: Connect to Peripheral RTS_N pin of device
UART Request to Send: Connect to Peripheral CTS pin of device

12.4 Fan
Jetson TX2 provides PWM and Tachometer functionality for controlling a fan as part of the thermal solution. Information on the
PWM and Tachometer pins/functions can be found in the following locations:
Jetson TX2 Module Pin Mux:
▪

This is used to configure the FAN_PWM & FAN_TACH pins. The FAN_PWM pin is configured as GP_PWM4.
The FAN_TACH pin is configured as NV_THERM_FAN_TACH.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

63

NVIDIA Jetson TX2 OEM Product Design Guide

Tegra X2 Technical Reference Manual:
▪

Functional descriptions and related registers can be found in the TRM for the FAN_PWM (PWM chapter) &
FAN_TACH (Tachometer chapter) functions.

Jetson Developer Kit Carrier Board Specification:
▪

The document contains the maximum current capability of the VDD_5V0_IO_SYS supply in the Interface Power
chapter (VDDIO_5V0_IO_SLP comes from that supply). The fan is powered by this supply on the Jetson TX2
Developer Kit carrier board.

Table 75. Jetson TX2 Fan Pin Descriptions
Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

Usage on the Carrier
Board

C16
B17

FAN_PWM
FAN_TACH

GPIO_SEN6
UART5_TX

Fan PWM
Fan Tach

Fan

Direction

Pin Type

Output
Input

CMOS – 1.8V
CMOS – 1.8V

Figure 37. Jetson TX2 Fan Connection Example
VDD_1V8

VDD_5V0_IO_SLP

AO
UART

GPIO_SEN6

FAN_PWM

UART5_TX

FAN_TACH

D
100Ω

G

C16

10kΩ

Tegra – Fan

100kΩ

4.7kΩ

Jetson TX2
10uF

0.1uF

Fan
Header
4

S

3
2

B17
VDD_5V0_IO_SYS
100kΩ

D

10pF

G

PS_VDD_FAN_DISABLE
(GPIO Expander P04)

1

10pF

S

Table 76. Fan Signal Connections
Ball Name
FAN_PWM

Type
O

FAN_TACH

I

Termination

ESD diode to GND

Description
Fan Pulse Width Modulation: Connect through FET as shown in the
Jetson TX2 Fan Connections figure.
Fan Tachometer: Connect to TACH pin on fan connector.

12.5 CAN
Jetson TX2 brings two CAN (Controller Area Network) interfaces out to the main connector.
Table 77. Jetson TX2 CAN Pin Descriptions
Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

C20
E18
D18
D19
C19
D17
C17
C18

CAN_WAKE
CAN0_ERR
CAN0_RX
CAN0_TX
CAN1_ERR
CAN1_RX
CAN1_STBY
CAN1_TX

CAN_GPIO4
CAN_GPIO5
CAN0_DIN
CAN0_DOUT
CAN_GPIO3
CAN1_DIN
CAN_GPIO6
CAN1_DOUT

CAN Wake
CAN #0 Error
CAN #0 Receive
CAN #0 Transmit
CAN #1 Error
CAN #1 Receive
CAN #1 Standby
CAN #1 Transmit

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Usage on the Carrier
Board

GPIO Expansion
Header

Direction

Pin Type

Input
Input
Input
Output
Input
Input
Output
Output

CMOS 3.3V
CMOS 3.3V
CMOS 3.3V
CMOS 3.3V
CMOS 3.3V
CMOS 3.3V
CMOS 3.3V
CMOS 3.3V

64

NVIDIA Jetson TX2 OEM Product Design Guide

Figure 38. Jetson TX2 CAN Connections

Jetson TX2
Tegra - CAN
AO_HV

CAN #1

CAN1_DOUT
CAN1_DIN

CAN1_TX
CAN1_RX

CAN0_DOUT
CAN0_DIN

CAN0_TX
CAN0_RX
CAN1_ERR

CAN_GPIO3
CAN_GPIO4
CAN_GPIO5
CAN_GPIO6

CAN_WAKE
CAN0_ERR
CAN1_STBY

C18
D17
D19

CAN #0

D18
C19
C20
E18

CAN Wake

C17

Table 78. CAN Interface Signal Routing Requirements
Parameter
Max Data Rate / Frequency
Configuration / Device Organization
Reference plane
Trace Impedance
Via proximity (Signal via to GND return via)
Trace spacing
Microstrip / Stripline
Max Trace Length (for RX & TX only)
Max Trace Length/Delay Skew from RX to TX

Requirement
1
1
GND
50
< 3.8 (24)
4x / 3x
223 (1360)
8 (50)

Units
Mbps / MHz
load

Notes

Ω
mm (ps)
dielectric

±15%
See Note 1

mm (ps)
mm (ps)

See Note 2
See Note 2

Table 79. CAN Signal Connections
Ball Name
CAN[1:0]_TX
CAN[1:0]_RX
CAN[1:0]_ERR
CAN1_STBY
CAN_WAKE

Type
O
I
I
O
I

Termination

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Description
CAN Transmit: Connect to matching pin of device
CAN Receive: Connect to Peripheral pin of device
CAN Error: Connect to matching pin of device
CAN Standby: Connect to matching pin of device
CAN Wake: Connect to matching pin of device

65

NVIDIA Jetson TX2 OEM Product Design Guide

12.6 Debug
Figure 39. Debug Connections

Jetson TX2
JTAG_RTCK
JTAG_T MS

JTAG_TMS
JTAG_TDI
JTAG_TCK
JTAG_TDO
JTAG_TRST_N
NVJTAG_SEL

JTAG_T DI

JTAG_TCK
JTAG_TDO
JTAG_GP0

100kΩ

100kΩ

100kΩ

JTAG_GP1

0.1uF
To PMIC

RESET_IN

A13
B1 3
A11

A47

0Ω

See Note 1

VDD_1V8

UART0_TX

UART1_TXD
UART1_RXD
UART1_RTS_N
UART1_CTS_N

A14
A12
B1 2
B1 1

UART 0_RX
UART 0_RTS#

UART0_CTS#

VDD_3V3_SYS

H12
G12
G11

100kΩ

DEBUG

Optional JTAG
connections
RTCK
TMS
TDI
TCLK
TDO
TRST_N
RST

VDD_1V8

100kΩ

Tegra

Level
Shifter

For Debug Use

H11
See Note 2

DP

RSVD

UART7_TX
UART7_RX

Notes:

1.
2.
3.

RSVD

D8
D5

JTAG_GP1 (Tegra NVJTAG_SEL) is left unconnected (pulled down on module) for normal operation and pulled to 1.8V for
Boundary Scan Mode.
If level shifter is implemented, pull-ups are required the RX & CTS lines on the non-Tegra side of the level shifter. This is
required to keep the inputs from floating and toggling when no device is connected to the debug UART.
Check preferred JTAG debugger documentation for JTAG PU/PD recommendations.

12.6.1 JTAG
JTAG is not required, but may be useful for new design bring-up or for Boundary Scan.
Table 80. Jetson TX2 JTAG Pin Descriptions
Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

B13

JTAG_GP0

JTAG_TRST_N

JTAG Test Reset

A11

JTAG_GP1

NVJTAG_SEL

A14
B11
B12
A13
A12

JTAG_RTCK
JTAG_TCK
JTAG_TDI
JTAG_TDO
JTAG_TMS

−
JTAG_TCK
JTAG_TDI
JTAG_TD0
JTAG_TMS

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

JTAG General Purpose 1. Pulled low on
module for normal operation & pulled
high by test device for Boundary Scan
test mode.
JTAG Return Clock
JTAG Test Clock
JTAG Test Data In
JTAG Test Data Out
JTAG Test Mode Select

Usage on the Carrier
Board
JTAG Header & Debug
Connector
JTAG

JTAG Header & Debug
Connector

Direction

Pin Type

Input

CMOS – 1.8V

Input

CMOS – 1.8V

Input
Input
Input
Output
Input

CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V

66

NVIDIA Jetson TX2 OEM Product Design Guide

Table 81. JTAG Signal Connections
Jetson TX2 Pin
(function) Name
JTAG_TMS
JTAG_TCK
JTAG_TDO
JTAG_TDI
JTAG_RTCK
JTAG_GP0#
(JTAG_TRST_N)
JTAG_GP1

Type
I
I
O
I
I
I

Termination

Description
JTAG Mode Select: Connect to TMS pin of connector
JTAG Clock: Connect to TCK pin of connector
JTAG Data Out: Connect to TDO pin of connector
JTAG Data In: Connect to TDI pin of connector
JTAG Return Clock: Connect to RTCK pin of connector
JTAG General Purpose Pin #0: Connect to TRST pin of connector

100kΩ to GND (on Jetson TX2)

100kΩ to GND &
0.1uF to GND (on Jetson TX2)
100kΩ to GND (on Jetson TX2)

JTAG General Purpose Pin #1: Used as select
Normal operation: Leave series resistor from NVJTAG_SEL not stuffed.
Scan test mode: Connect NVJTAG_SEL to VDD_1V8 (install 0Ω resistor as
shown).

12.6.2 Debug UART
Jetson TX2 provides UART0 for debug purposes. The connections are shown in Figure 39 and described in the table below.
Table 82. Debug UART Connections
Jetson TX2 Pin
Name
UART0_TXD
UART0_RXD

Type
O
I

UART0_RTS#

O

UART0_CTS#

I

Termination

Description

If level shifter implemented, 100kΩ to supply
on the non-Jetson TX2 side of the device.
4.7kΩ to GND or VDD_1V8 on Jetson TX2 for
RAM Code strapping
If level shifter implemented, 100kΩ to supply
on the non-Jetson TX2 side of the device.

UART #0 Transmit: Connect to RX pin of serial device
UART #0 Receive: Connect to TX pin of serial device
UART #0 Request to Send: Connect to CTS pin of serial device
UART #0 Clear to Send: Connect to RTS pin of serial device

12.6.3 Boundary Scan Test Mode
To support Boundary Scan Test mode, the Tegra NVJTAG_SEL pin must be pulled high and Tegra must be held in reset
without resetting the PMIC. The figure below illustrates this. Other requirements related to supporting Boundary Scan Test
mode are described in the “Tegra X2 Boundary Scan Requirements & Usage” document.
Figure 40. Boundary Scan Connections

Jetson TX2
Tegra
NVJTAG_SEL

JTAG_GP0
100kΩ

100kΩ

JTAG_GP1
VDD_1V8

SYS_RESET_N

eMMC

RESET_OUT#

RESET*

PMIC
RST I/O

RESET_IN#
10kΩ

B1 3
A11

100kΩ

JTAG_TRST_N

A46

A47

TRST on JTAG Connector
R1 - 0 Ω

VDD_1V8

Leave Resistors R1 & R2 uninstalled
for normal operation. Install both
for boundary scan test mode.
R2 - 0Ω

Devices requiring system reset
& System Reset Sources

1.8V

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

67

NVIDIA Jetson TX2 OEM Product Design Guide

12.7 Strapping Pins
Jetson TX2 has one strap (FORCE_RECOV#) that is intended to be used on the carrier board. That strap is used to enter
Force Recovery mode. The other straps mentioned in this section are for use on the module by Nvidia only. They are included
here as their state at power-on must be kept at the level selected on the module.
Figure 41. Jetson TX2 Strap Connections

Tegra

Jetson TX2

~100kΩ

1.8V

~100kΩ
~100kΩ
RECOVERY

SYS

RCM0 Strap

GPIO_SW1
GPIO_SW2
GPIO_SW4

FORCE_RECOV#

RCM1 Strap

SLEEP#

RCM2 Strap

E2

BT Wake AP
(On-Module Bt/Wi-Fi)

1.8V

DEBUG

E1
VO L DN / SLEEP
(See Note)

RAM_CODE1 Strap

UART3_TX
UART7_TX

BOOT_SELECT2 Strap

4.7kΩ

AO

4.7kΩ

RAM_CODE0 Strap

UART1_RTS_N

UART 0_RTS

G11

~100kΩ
UART 1_TX

~100kΩ

D9

~100kΩ
UART7_TX

UART4_TX
UART4_RTS_N

UART3_TX

SPI

~100kΩ

UART 3_RTS

Mux

4.7kΩ

BOOT_SELECT0 Strap

4.7kΩ

~100kΩ

BOOT_SELECT1 Strap

4.7kΩ

CONN

SEL

D8

H10
G10

UART
(On-Module Bt/Wi-Fi)

QSPI_IO2

Table 83. Power-on Strapping Breakdown
Jetson TX2 Pin
Name

Tegra Ball Name

Strap Options

FORCE_RECOV#
SLEEP#

GPIO_SW1
GPIO_SW2

UART1_TX

UART0_RTS
RSVD-D8
NA (see note 5)
NA (see note 5)

Note:

1.

2.

Jetson
TX2
PU/PD

RCM0
RCM1

Tegra
Internal
PU/PD
~100kΩ PU
~100kΩ PU

UART3_TX

RAM_CODE1

~100kΩ PD

4.7KΩ PU

UART1_RTS_N
UART7_TX
UART4_TX
UART4_RTS_N

RAM_CODE0
BOOT_SELECT2
BOOT_SELECT1
BOOT_SELECT0

~100kΩ PD
~100kΩ PD
~100kΩ PD
~100kΩ PD

4.7KΩ PU
4.7kΩ PD
4.7kΩ PD
4.7kΩ PD

Description

Recovery Mode [1:0]
x1: Normal boot from secondary device
10: Forced Recovery Mode
00: Reserved
See critical warning in note 1
[3:2] Selects secondary boot device configuration set
within the BCT. For Nvidia use only.
[1:0] Selects DRAM configuration set within the BCT. For
Nvidia use only.
See critical warning in Note 2.
Software reads value and determines Boot device to be
configured and used
000 = eMMC x8 BootModeOFF, 512-byte page. Maps to
SDMMC w/config=0x0001 size. 26MHz
001 – 111 Reserved
See Note 3 & 5. See critical warning in Note 4.

If the SLEEP# pin is used in a design, it must not be driven or pulled low during power-on at the same time as
FORCE_RECOV# is pulled low for Recovery Mode as this would change the strapping and select a reserved mode.
Violating this requirement will prevent the system from entering Recovery Mode.
If UART1_TX or UART0_RTS are used in a design, they must not be driven or pulled high or low during power-on.
Violating this requirement can change the RAM_CODE strapping & result in functional failures.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

68

NVIDIA Jetson TX2 OEM Product Design Guide

3.
4.
5.
6.

The above BOOT_SELECT option is only in effect in "regular boot" conditions i.e. coldboot. If "Forced Recovery" mode is
detected (FORCE_RECOV# low at boot), that mode take precedence over the eMMC boot device choice.
If UART7_TX (on RSVD pin) is used in a design, it must not be driven or pulled high during power-on as this would affect
the BOOT_SELECT strapping. Violating this requirement will likely prevent the system from booting.
eMMC boot does not use either the normal boot mode or alternate boot mode supported by the eMMC spec. The Tegra
BootROM uses the Card Identification mode for booting from eMMC.
Tegra UART4_TX & UART4_RTS_N are routed to a mux on Jetson TX2 and directed to either UART3_TX/RTS or On-module WLAN/BT.
Since these pins are outputs, and the mux is in the path, Jetson TX2 UART3 pins will not affect the Boot Select [1:0] strapping.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

69

NVIDIA Jetson TX2 OEM Product Design Guide

13.0 PADS
13.1 MPIO Pad Behavior when Associated Power Rail is Enabled
Jetson TX2 CZ (see note) type MPIOs pins may glitch when the associated power rail is enabled or disabled. Designers should
take this into account. MPIOs of this type that must maintain a low state even while the power rail is being ramped up or down
may require special handling. The CZ type pins are used on the following Jetson TX2 pins:
-

I2S[3:2]_x
SDCARD_x

-

AO_DMIC_IN_x
GPIO[18,17,11,9,8,6]/x

CANx

Note:

The Pin Descriptions section of Jetson TX2 Data Sheet includes the pin type information.

13.2 Internal Pull-ups for CZ Type Pins at Power-on
The MPIO pads of type CZ (see note) are on blocks that can be powered at 1.8V or 3.3V. If the associated block is powered at
1.8V, the internal pull-up at initial power-on is not effective. The signal may only be pulled up a fraction of the 1.8V rail. Once
the system boots, software can configure the pins for 1.8V operation and the internal pull-ups will work correctly. Signals that
need the pull-ups during power-on should have external pull-up resistors added. If the associated block is powered at 3.3V by
default, the pull-ups work correctly. The affected pins listed below. These are the Jetson TX2 CZ Type Pins on blocks powered
at 1.8V with Power-on-Reset Default of Internal Pull-up Enabled. The SD_CARD pins are CZ type, but the associated power rail
is not enabled at power-on – software enables this at a later time. As long as the software configures the pins appropriately for
the voltage, the issue will not affect the SD_CARD pins.
-

CAN1_DOUT
CAN1_DIN
CAN0_DOUT
CAN0_DIN

Note:

The Pin Descriptions section of Jetson TX2 Data Sheet includes the pin type information.

13.3 Schmitt Trigger Usage
The MPIO pins have an option to enable or disable Schmitt Trigger mode on a per-pin basis. This mode is recommended for
pins used for edge-sensitive functions such as input clocks, or other functions where each edge detected will affect the
operation of a device. Schmitt Trigger mode provides better noise immunity, and can help avoid extra edges from being “seen”
by the Tegra inputs. Input clocks include the I2S & SPI clocks (I2Sx_SCLK & SPIx_SCK) when Tegra is in slave mode. The
FAN_TACH pin is another input that could be affected by noise on the signal edges. The SD_CARD pin (Tegra SDMMC1_CLK
function), while used to output the SD clock, also samples the clock at the input to help with read timing. Therefore, the
SD_CARD_CLK pin may benefit from enabling Schmitt Trigger mode. Care should be taken if the Schmitt Trigger mode setting
is changed from the default initialization mode as this can have an effect on interface timing.

13.4 Pins Pulled/Driven High During Power-on
The Jetson TX2 is powered up before the carrier board (See Power Sequencing section). The table below lists the pins on
Jetson TX2 that default to being pulled or driven high. Care must be taken on the carrier board design to ensure that any of
these pins that connect to devices on the carrier board (or devices connected to the carrier board) do not cause damage or
excessive leakage to those devices. The SD_CARD pins are not included because the associated power rail is not enabled at
power-on – software enables this at a later time. Some of the ways to avoid issues with sensitive devices are:
▪

External pull-downs on the carrier board that are strong enough to keep the signals low are one solution, given that
this does not affect the function of the pin. This will not work with RESET_IN# which is actively driven high.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

70

NVIDIA Jetson TX2 OEM Product Design Guide

▪

Buffers or level shifters can be used to separate the signals from devices that may be affected. The buffer/shifter
should be disabled until the device power is enabled.

Table 84. Jetson TX2 Pins Pulled/Driven High by Tegra Prior to CARRIER_PWR_ON Active
Jetson TX2 Pin
DSPK_OUT_CLK
SPI1_CS0#
RESET_IN#
FORCE_RECOV#
SLEEP#
GPIO7_TOUCH_RST
CARRIER_STBY#

GPIO5/CAM_FLASH_EN
USB0_VBUS_DET
SPI2_CS1#
SPI2_CS0#
UART0_TX
UART0_RX
WDT_TIME_OUT#

Power-on Reset
Default
Internal Pull-up
Internal Pull-up
Driven High
Internal Pull-up
Internal Pull-up
Driven High
Driven High
Internal Pull-up
Internal Pull-up
Internal Pull-up
Internal Pull-up
Internal Pull-up
Internal Pull-up
Driven High

Pull-up Strength
(kΩ)
~100
~100
na
~100
~100
na
na
~100
~100
~100
~100
~100
~100
na

Jetson TX2 Pin
JTAG_TMS
JTAG_TDI
UART1_RX
SPI0_MISO
SPI0_MOSI
CAN1_TX
CAN1_RX
CAN0_TX
CAN0_RX
GPIO6_TOUCH_INT
GPIO3_CAM1_RST#
CAM_VSYNC
GPIO2_CAM0_RST#

Power-on Reset
Default
Internal Pull-up
Internal Pull-up
Internal Pull-up
Internal Pull-up
Internal Pull-up
Internal Pull-up
Internal Pull-up
Internal Pull-up
Internal Pull-up
Driven High
Internal Pull-up
Internal Pull-up
Internal Pull-up

Pull-up Strength
(kΩ)
~100
~100
~100
~100
~100
~20
~20
~20
~20
na
~18
~18
~18

Table 85. Jetson TX2 Pins Pulled High on the Module Prior to CARRIER_PWR_ON Active
Jetson TX2 Pin
VIN_PWR_BAD#
RESET_OUT#
I2C_GP0_CLK/DAT
I2C_GP1_CLK/DAT
I2C_GP2_CLK/DAT
I2C_GP3_CLK/DAT
I2C_PM_CLK/DAT
I2C_CAM_CLK/DAT

Pull-up Supply
Voltage (V)
5.0
1.8
1.8
3.3
1.8
1.8
1.8
1.8

External
Pull-up (kΩ)
10
4.7
1.0
1.0
1.0
1.0
1.0
1.0

Jetson TX2 Pin
USB0_EN_OC#
USB1_EN_OC#
PEX0_CLKREQ#
PEX0_RST#
PEX1_CLKREQ#
PEX1_RST#
PEX2_CLKREQ#
PEX2_RST#
PEX_WAKE#

Pull-up Supply
Voltage (V)
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3

External
Pull-up (kΩ)
100
100
56
56
56
56
56
56
56

13.5 Pad Drive Strength
The table below provides the maximum MPIO pad output drive current when the pad is configured for the maximum
DRVUP/DRVDN values (11111b). The MPIO pad types include the ST, DD, CZ and LV_CZ type pads. The pad types can be
found in the Jetson TX2 Module Data Sheet.
Table 86. MPIO Maximum Output Drive Current
IOL/IOH
+/- 1mA
+/- 1mA
+/- 1mA
+/- 1mA
+/- 1mA

Pad Type
ST
DD
CZ (1.8V mode)
CZ (3.3V mode)
LV_CZ

VOL
0.15*VDD
0.15*VDD
0.15*VDD
0.15*VDD
0.15*VDD

VOH
0.825*VDD
0.8*VDD
0.85*VDD
0.85*VDD
0.85*VDD

+/- 2mA
+/- 2mA
+/- 2mA
+/- 2mA
+/- 2mA

ST
DD
CZ (1.8V mode)
CZ (3.3V mode)
LV_CZ

0.15*VDD
0.175*VDD
0.25*VDD
0.15*VDD
0.25*VDD

0.7*VDD
0.7*VDD
0.75*VDD
0.75*VDD
0.75*VDD

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

71

NVIDIA Jetson TX2 OEM Product Design Guide

14.0 UNUSED INTERFACE TERMINATIONS
14.1 Unused MPIO Interfaces
The following Jetson TX2 pins (& groups of pins) are Jetson TX2 MPIO (Multi-purpose Standard CMOS Pad) pins that support
either special function IOs (SFIO) and/or GPIO capabilities. Any unused pins or portions of pin groups listed below that are not
used can be left unconnected.
Table 87. Unused MPIO pins / Pin Groups
Jetson TX2 Pins / Pin Groups
SLEEP#
BATLOW#
FORCE_RECOV#
RESET_OUT#
WDT_TIME_OUT#
CARRIER_STBY#
CHARGER_PRSNT#
CHARGING#
USBx_EN_OC#
PEXx_REFCLK/RST/CLKREQ/WAKE
LCD0_BKLT_PWM, FAN_PWM
CAN
LCD_x
DP0_HPD, DP1_HPD, HDMI_CEC
CAM Control, Clock

Jetson TX2 Pins / Pin Groups
SDIO, SDMMC
AUDIO_x
I2S
DMIC
DSPK
UART
I2C
SPI
TOUCH_x
WIFI_WAKE_x
MODEM_x, MDM2AP_x, AP2MDM_x
GPIO_EXP[1:0]_INT
ALS_PROX_INT, MOTION_INT
JTAG

14.2 Unused SFIO Interface Pins
See the Unused SFIO (Special Function I/O) interface pins section in the Checklist at the end of this document.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

72

NVIDIA Jetson TX2 OEM Product Design Guide

15.0 DESIGN CHECKLIST
The checklist below is intended to help ensure that the correct connections have been made in a design. The check items
describe connections for the various interfaces and the “Same/Diff/NA” column is intended to be used to indicate whether the
design matches the check item description, is different, or is not applicable to the design.
Table 88. Checklist
Same/Diff/NA

Check Item Description

Jetson TX2 Signal Terminations (Present on the module - shown for reference only)
Note: Internal refers to Tegra internal Pull-up/down resistors. External refers to resistors added on the module.

Parallel Termination

Series Termination

USB0_EN_OC#
USB1_EN_OC#
USB0_VBUS_DET

External 100KΩ pull-up to 3.3V
External 100KΩ pull-up to 3.3V

PEX0_CLKREQ#
PEX0_RST#
PEX1_CLKREQ#
PEX1_RST#
PEX2_CLKREQ#
PEX2_RST#
PEX_WAKE#

External 56KΩ pull-up to 3.3V
External 56KΩ pull-up to 3.3V
External 56KΩ pull-up to 3.3V
External 56KΩ pull-up to 3.3V
External 56KΩ pull-up to 3.3V
External 56KΩ pull-up to 3.3V
External 56KΩ pull-up to 3.3V

–
–
Level shifter between Tegra & Jetson TX2
USB0_VBUS_DET pin
–
–
–
–
–
–
–

Internal pull-down
Internal pull-down

–
–

External 1KΩ pull-up to 1.8V
External 1KΩ pull-up to 3.3V
External 1KΩ pull-up to 1.8V
External 1KΩ pull-up to 1.8V
External 1KΩ pull-up to 1.8V
External 1KΩ Pull Up to 1.8V

–
–
–
–
–
–

Internal pull-down
Internal pull-down
Internal pull-down
Internal pull-up to 1.8V
Internal pull-down
Internal pull-down
Internal pull-down
Internal pull-up to 1.8V
Internal pull-up to 1.8V
Internal Pull Down
Internal Pull Down
Internal Pull Down
Internal pull-up to 1.8V
Internal pull-up to 1.8V

–
–
–
–
–
–
–
–
–
–
–
–
–
–

Internal pull-up to 1.8V/3.3V
Internal pull-up to 1.8V/3.3V
Internal pull-up to 1.8V
Internal pull-up to 1.8V

–
–
–
–

Internal pull-down

–

Internal pull-down to GND
Internal pull-down to GND

–
–

USB/PCIe

HDMI/DP/eDP
DP0_HPD
DP1_HPD

I2C
I2C_GP0_CLK/DAT
I2C_GP1_CLK/DAT
I2C_GP2_CLK/DAT
I2C_GP3_CLK/DAT
I2C_PM_CLK/DAT
I2C_CAM_CLK/DAT

SPI
SPI0_MOSI
SPI0_MISO
SPI0_CLK
SPI0_CS0#
SPI1_MOSI
SPI1_MISO
SPI1_CLK
SPI1_CS0#
SPI1_CS1#
SPI2_MOSI
SPI2_MISO
SPI2_CLK
SPI2_CS0#
SPI2_CS1#

SD Card
SDCARD_CMD
SDCARD_D[3:0]
SDCARD_CD#
SDCARD_WP

Embedded Display
LCD_TE

GPIO
GPIO0_CAM0_PWR
GPIO1_CAM1_PWR

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

73

NVIDIA Jetson TX2 OEM Product Design Guide

GPIO2_CAM0_RST
GPIO3_CAM1_RST
GPIO4_CAM_STROBE
GPIO5_CAM_FLASH_EN
GPIO6/TOUCH_INT
GPIO7/TOUCH_RST
GPIO8/ALS_PROX_INT
GPIO9/MOTION_INT
GPIO10/WIFI_WAKE_AP
GPIO11_AP_WAKE_BT
GPIO12_BT_EN
GPIO13/BT_WAKE_AP
GPIO14_AP_WAKE_MDM
GPIO15_AP2MDM_READY
GPIO16/MDM_WAKE_AP
GPIO17/MDM2AP_READY
GPIO18/MDM_COLDBOOT
GPIO19/AUD_RST
GPIO20/AUD_INT
GPIO_EXP0_INT
GPIO_EXP1_INT

Internal pull-up to 1.8V
Internal pull-up to 1.8V
Internal pull-down to GND
Internal pull-up to 1.8V
Internal pull-up to 1.8V
(Driven high)
Internal pull-up to 1.8V
Internal pull-up to 1.8V
Internal pull-up to 1.8V
Internal pull-down to GND
Internal pull-down to GND
Internal pull-up to 1.8V
(Driven low)
(Driven low)
Internal pull-up to 1.8V
Internal pull-up to 1.8V
Internal pull-up to 1.8V
Internal pull-up to 1.8V
Internal pull-up to 1.8V
Internal pull-up to 1.8V
Internal pull-up to 1.8V

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

External 10kΩ pull-up to 3.8V
External 10kΩ pull-up to 3.3V
Internal pull-up to 1.8V
Internal pull-up to 1.8V
Internal Pull Up to 1.8V near Tegra & PMIC
internal Pull-up to 5.0V on other side of
diodes (module pin side)
External 10kΩ pull-up to 1.8V
External 100kΩ pull-up to 1.8V near Tegra
(module pin side) & external 10kΩ pull-up
to 1.8V on the other side of a diode
Internal pull-up to 1.8V

–

System Control
VIN_PWR_BAD#
CARRIER_PWR_ON
FORCE_RECOV#
SLEEP#
POWER_BTN#

RESET_IN#
RESET_OUT#

FAN_TACH

–
–
BAT54CW Schottky barrier diodes

–

Charging
CHARGER_PRSNT#

CHARGING#
BATLOW#

External 4.7kΩ pull-up to 5V & Internal
–
PMIC pull-up to 5.0V once FET is enabled
by VDD_IN on & VIN_PWR_BAD# inactive.
Internal pull-up to 1.8V
–
Internal pull-up to 1.8V
–

JTAG
JTAG_TCK
JTAG_GP0
JTAG_GP1

External 100KΩ pull-down to GND
–
External 100KΩ pull-down to GND & 0.1uF –
capacitor to GND
External 100KΩ pull-down to GND

Carrier Board Signal Terminations
(To be implemented on the carrier board for interfaces that are used)
Parallel Termination

Series Termination

–
–
–
–
–
–
–
–
–
–
–
–

0.1uF capacitors
0.1uF capacitors
0.1uF capacitors if directly connected
0.1uF capacitors directly connected
0.1uF capacitors
0.1uF capacitors
0.1uF capacitors
0.1uF capacitors
0.1uF capacitors if directly connected
0.1uF capacitors if directly connected
0.1uF capacitors if directly connected
0.1uF capacitors

USB/PCIe/SATA
USB_SS0_TX+/USB_SS1_TX+/USB_SS0_RX+/USB_SS1_RX+/PEX0_TX+/PEX1_TX+/PEX2_TX+/PEX_RFU_TX+/PEX0_RX+/PEX1_RX+/PEX2_RX+/PEX_RFU_RX+/-

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

74

NVIDIA Jetson TX2 OEM Product Design Guide

SATA_TX+/SATA_RX+/SATA_DEV_SLP

–
–
–

0.01uF capacitors
0.01uF capacitors
1.8V to 3.3V Level Shifter

–
–
–
–
–
–
–

Magnetics near RJ45 connector
Magnetics near RJ45 connector
Magnetics near RJ45 connector
Magnetics near RJ45 connector
LED and pull-up Current Limiting Circuit
LED and pull-up Current Limiting Circuit
LED and pull-up Current Limiting Circuit

–
–
–
–
100kΩ Pull-down to GND near connector
(DP only)
100kΩ Pull-up to 3.3V near connector (DP
only)
10kΩ Pull-up to 1.8V near main conn. &
100kΩ Pull-down to GND on DP side of
level shifter.

0.1uF capacitors
0.1uF capacitors
0.1uF capacitors
0.1uF capacitors
0.1uF capacitor

499Ω, 1% resistor to 600Ω bead to GND
499Ω, 1% resistor to 600Ω bead to GND
499Ω, 1% resistor to 600Ω bead to GND
499Ω, 1% resistor to 600Ω bead to GND
10kΩ Pull-up to 3.3V near main conn. &
1.8kΩ Pull-up to 5V near HDMI conn.
10kΩ Pull-up to 1.8V near main conn. &
100kΩ Pull-down to GND near HDMI conn.

0.1uF capacitors
0.1uF capacitors
0.1uF capacitors
0.1uF capacitors
Bidirectional level shifter between Pull-ups in
Parallel Termination column
Level shifter (w/output toward main connector)
between Pull-up & Pull-down in Parallel
Termination column. Level shifter can be
inverting or non-inverting. 100kΩ series
resistor between pull-down & HDMI connector.

Ethernet
GBE_MDI0+/GBE_MDI1+/GBE_MDI2+/GBE_MDI3+/GBE_LINK100#
GBE_LINK1000#
GBE_LINK_ACT#

DP[1:0] for eDP/DP
DPx_TX3+/DPx_TX2+/DPx_TX1+/DPx_TX0+/DPx_AUX_CH+
DPx_AUX_CHDPx_HPD

0.1uF capacitor
Level Shifter (w/output toward main
connector) near main connector & 100kΩ
resistor to DP connector. Level shifter must be
non-inverting.

DP[1:0] for HDMI
DPx_TX3+/DPx_TX2+/DPx_TX1+/DPx_TX0+/DPx_AUX_CH+/DPx_HPD

Power
Jetson TX2 Power Supplies
Supply (Carrier Board)
VDD_IN

Usage
Main Supply from Adapter

(V)
5.519.6
1.655.5

Supply Type
Adapter

Source
na

Enable
na

VDD_RTC

Real-time clock supply

PMIC is
supply when
charging cap
or coin cell

Super cap or coin
cell is source
when system
power removed

na

Main power input from DC
Adapter
Main 5V supply
Main 3.3V supply
Main 1.8V supply

5.519.6
5.0
3.3
1.8

FETs

DC Adapter

DC/DC
DC/DC
DC/DC

VDD_MUX
VDD_MUX
VDD_5V0_IO_SYS

3.3V rail, off in Sleep
(various)
5V rail, off in Sleep
(SATA/FAN)
PCIe & SATA connectors
VBUS (USB 2.0 Type AB conn)
VBUS (USB 3.0 Type A conn)
SD Card power rail
5V rail for HDMI connector
1.8V rail for touch screen

3.3

FETs/Load
Switch
FETs/Load
Switch
Boost
Load Switch
Load Switch
Load Switch
Load Switch
Load Switch

VDD_3V3_SYS

CARRIER_PWR_ON
3V3_SYS_BUCK_EN
1V8_IO_VREG_EN
(VDD_3V3_SYS_PG)
SOC_PWR_REQ

VDD_5V0_IO_SYS

VDD_3V3_SLP

VDD_5V0_IO_SYS
VDD_5V0_IO_SYS
VDD_5V0_IO_SYS
VDD_3V3_SYS
VDD_5V0_IO_SYS
VDD_1V8

VDD_3V3_SLP
USB_VBUS_EN0
USB_VBUS_EN1
SDCARD_VDD_EN
GPIO Expander U29, P14
GPIO Expander U29, P01

Carrier Board Supplies
VDD_MUX
VDD_5V0_IO_SYS
VDD_3V3_SYS
VDD_1V8
VDD_3V3_SLP
VDD_5V0_IO_SLP
VDD_12V_SLP
VDD_VBUS_CON
USB_VBUS
SD_CARD_SW_PWR
VDD_5V0_HDMI_CON
VDD_TS_1V8

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

5
12
5.0
5.0
3.3
5.0
1.8

75

NVIDIA Jetson TX2 OEM Product Design Guide

AVDD_TS_DIS
VDD_LCD_1V8_DIS
VDD_DIS_3V3_LCD
VDD_1V2
DVDD_CAM_IO_1V8
AVDD_CAM
DVDD_CAM_IO_1V2

High voltage rail for touch
screen
1.8V rail for panel
High voltage rail for panel
Generic 1.2V display rail
1.8V rail for camera I/O
High voltage rail for cameras
1.2V rail for camera Core

3.3

Load Switch

VDD_3V3_SLP

1.8
3.3
1.2
1.8
2.8
1.2

Load Switch
Load Switch
LDO
Load Switch
Load Switch
LDO

VDD_1V8
VDD_3V3_SYS
VDD_1V8
VDD_1V8
VDD_3V3_SLP
VDD_1V8

GPIO Expander U29, P02
GPIO Expander U29, P11
GPIO Expander U29, P03
GPIO Expander U29, P12
GPIO Expander U28, P11
GPIO Expander U29, P15
GPIO Expander U28, P12

Power Control
VIN_PWR_BAD# connects to Carrier Board main power input & discharge circuit. Inactive when main supply is stable
CARRIER_PWR_ON used as enable for Carrier Board main 5V supply & discharge circuit
RESET_IN# to/from carrier board connects to devices requiring full system reset, and to system reset sources (reset button, etc.)
RESET_OUT# to Jetson TX2 from Carrier Board when a force reset is required (as for Boundary Scan test mode)
POWER_BTN# connects to button or similar to pull POWER_BTN# to GND when pressed/asserted to power system ON/OFF
SLEEP# connects to button or similar to pull SLEEP# to GND when pressed/asserted to put system in sleep mode
CARRIER_STBY# connects to enable of supplies that should be off in Sleep mode such as VDD_3V3_SLP

Power Discharge
VIN_PWR_BAD# connects to Carrier Board main power input & discharge circuit. Inactive when main supply is stable
VDD_5V0_IO_SYS Discharge implemented: FET enabled by DISCHARGE w/Source GND'd & 100Ω to VDD_5V0_IO_SYS
VDD_3V3_SYS Discharge implemented: FET enabled by DISCHARGE w/Source GND'd & 47Ω to VDD_3V3_SYS
VDD_1V8 Discharge implemented: FET enabled by DISCHARGE w/Source GND'd & 36Ω to VDD_1V8
VDD_3V3_SLP Discharge implemented: FET enabled by DISCHARGE w/Source GND'd & 47Ω to VDD_3V3_SLP
VDD_12V_SLP Discharge implemented: FET enabled by DISCHARGE & VDD_3V3_SLP w/Source GND'd & 2x470Ω to VDD_12V_SLP
VDD_5V0_IO_SLP Discharge implemented: FET enabled by DISCHARGE & VDD_3V3_SLP w/Source GND'd & 100Ω to VDD_5V0_IO_SLP

Wake Event Pins
If Audio Interrupt required, GPIO20_AUD_INT pin is used
If External BT Wake Request to AP required, GPIO13_BT_WAKE_AP pin is used
If External WLAN Wake Request to AP required, GPIO10_WIFI_WAKE_AP pin is used
If Modem to AP Ready required, GPIO17_MDM2AP_READY pin is used
If Modem Coldboot Alert required, GPIO18_MDM_COLDBOOT pin is used
If HDMI CEC required, HDMI_CEC pin is used
If GPIO Exapander 0 Interrupt required, GPIO_EXP0_INT pin is used
If Power Button On required, POWER_BTN# pin is used
If Charging Interrupt required, CHARGING# pin is used
If Sleep Request from Carrier Board required, SLEEP# pin is used
If Ambient/Proximity Interrupt required, GPIO8_ALS_PROX_INT pin is used
If HDMI Hot Plug Detect required, DP1_HPD pin is used
If Battery Low Warning required, BATLOW# pin is used
If Primary Modem Wake Request to AP required, GPIO16_MDM_WAKE_AP pin is used
If Touch Controller Interrupt required, GPIO6_TOUCH_INT pin is used
If Motion Sensor Interrupt required, GPIO9_MOTION_INT pin is used

USB/PEX/SATA Connections
USB 2.0
USB0 available to be used as device for USB recovery at a minimum
USB ID from connector, if used, connects to Jetson TX2 USB0_OTG_ID pin
VBUS from connector connects to load switch (if host supported) and USB0_VBUS_DET pin on Jetson TX2 (100kΩ resistor to GND
required)
USB[2:0]_DP/DN connected to D+/D- pins on USB 2.0 connector/device.
Any EMI/ESD devices used are suitable for USB High-speed

USB 3.0
USB_SS0_RX+/– connected to RX+/- pins on USB 3.0 connector, Device, Hub, etc. (muxed w/PCIe #2 on module)
USB_SS0_TX+/– connected to TX+/- pins on USB 3.0 conn., Device, Hub, etc. (muxed w/PCIe #2 on module - See Signal Terminations)
Additional USB 3.0 interfaces taken from USB_SS1 or PEX_RFU (See Signal Terminations)
See USB 3.0 section for Common Mode Choke requirements if this is required. TDK ACM2012D-900-2P device is recommended
See USB 3.0 section for ESD requirements. SEMTECH ESD Rclamp0524p device is recommended

PCIe
PCIe Controller #0 (x1 by default – supports up to x4. Lanes [2:1] of x4 configuration shared w/USB_SS#[2:1]
PEX0 used for 3.3V single-lane device/connector (lane 0 of PCIe x1 connector on reference Carrier Board)
PEX0 & USB_SS1 used for 3.3V 2-lane device/connector
PEX0, USB_SS1, PEX2 & PEX_RFU used for 3.3V 4-lane device/connector
TX+/– connected to corresponding pins on connector, or RX+/– on device on the carrier board (See Signal Terminations)

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

76

NVIDIA Jetson TX2 OEM Product Design Guide

RX+/– connected to corresponding pins on connector, or TX+/– on device on the carrier board
AC caps are provided for device TX pins (those connected to Jetson TX2 RX+/–) if device is on the carrier board (See Signal Terminations)
Reference clock used for PCIe Controller #0 (Up to x4 lane PCIe interface) is PEX0_REFCLK+/–
Clock Request & Reset for PCIe Controller #0 are PEX0_CLKREQ# & PEX0_RST#
PCIe Controller #1 (x1 – Shared with PCIe Controller #0 lane 2)
PEX2 used for 3.3V single-lane device/connector
TX+/– connected to corresponding pins on connector, or RX+/– on device on the carrier board (See Signal Terminations)
RX+/– connected to corresponding pins on connector, or TX+/– on device on the carrier board
AC caps are provided for device TX pins (those connected to Jetson TX2 RX+/–) if device is on the carrier board (See Signal Terminations)
Reference clock used for PCIe Controller #1 (single-lane PCIe interface) is PEX2_REFCLK+/–
Clock Request & Reset for PCIe Controller #1 are PEX2_CLKREQ# & PEX2_RST# (See Signal Terminations)
PCIe Controller #2 (x1)
PEX1 used for 3.3V single-lane device/connector (M.2 connector on Jetson carrier board) or USB_SS#0 (controlled by on module mux)
TX+/– connected to corresponding pins on connector, or RX+/– on device on the carrier board (See Signal Terminations)
RX+/– connected to corresponding pins on connector, or TX+/– on device on the carrier board
AC caps are provided for device TX pins (those connected to Jetson TX2 RX+/–) if device is on the carrier board (See Signal Terminations)
Reference clock used for PCIe Controller #2 (single-lane PCIe interface) is PEX1_REFCLK+/–
Clock Request & Reset for PCIe Controller #1 are PEX1_CLKREQ# & PEX1_RST# (PEX1_CLKREQ# muxed with SATA_DEV_SLP on module See Signal Terminations)
Common
PEX_WAKE# connected to WAKE pins on devices/connectors (See Signal Terminations)

SATA
SATA_TX+/– connected to TX_P/N pins of SATA connector (or RX+/– pins of onboard device) (See Signal Terminations)
SATA_RX+/– connected to RX_P/N pins of SATA connector (or TX+/– pins of onboard device) (See Signal Terminations)
See SATA section for Common Mode Choke requirements if they are required. TDK ACM2012D-900-2P device is recommended
See SATA section for ESD requirements. SEMTECH ESD Rclamp0524p device is recommended
SATA_DEV_SLP connected to matching pin on device or connector (pin 10 on conn. shown in SATA section – See Signal Terminations)

Ethernet
GBE_MDI[3:0]+/ – connected to equivalent pins on magnetics device (See Signal Terminations)
GBE_LINK_ACT, GBE_LINK100 & GBE_LINK1000 connected to LED pins on connector (See Signal Terminations)
GBE_CTVREF – Not used. Leave NC.

SDMMC Connections
SD Card
SDCARD_CLK connected to CLK pin of socket/device
SDCARD_CMD connected to CMD pin of socket/device. (See Signal Terminations)
SDCARD_D[3:0] connected to DATA[3:0] pins of socket/device. (See Signal Terminations)
SDCARD_CD connected to the SD Card Detect pin on socket
SDCARD_WP connected to the SD Card Write Protect pin on socket (if supported)
SDCARD_PWR_EN connected to SD Card VDD supply/load switch enable pin
Adequate bypass caps provided on SD Card VDD rail
Any EMI/ESD devices used are suitable for highest frequencies supported (low capacitive load: <1pf recommended).

Display Connections
DSI
DSI Dual Link Configurations
DSI0_CK+/– connected to CLKp/n pins of the lower x4 DSI interface of display
DSI0_D[1:0] +/– connected to lower 2 data lanes of the lower x4 DSI interface of display
DSI1_D[1:0] +/– connected to upper 2 data lanes of the lower x4 DSI interface of display
DSI2_CK+/– connected to CLKp/n pins of the upper x4 DSI interface of display or a x4 DSI interface of secondary display
DSI2_D[1:0] +/– connected to lower 2 data lanes of the upper x4 DSI interface of display or lower 2 lanes of secondary display
DSI3_D[1:0] +/– connected to upper 2 data lanes of the upper x4 DSI interface of display or upper 2 lanes of secondary display
Any EMI/ESD devices used on DSI signals are suitable for highest frequencies supported (low capacitive load: <1pf recommended)
DSI Split Link Configurations
DSI0_CK+/– connected to CLKp/n pins of the 1st x2 DSI interface of split link display
DSI0_D[1:0] +/– connected to up to 2 data lanes of the 1st x1/x2 DSI interface of split link display
DSI1_CK+/– connected to CLKp/n pins of the 2nd x2 DSI interface of split link display
DSI1_D[1:0] +/– connected to up to 2 data lanes of the 2nd x1/x2 DSI interface of split link display
DSI2_CK+/– connected to CLKp/n pins of the 3rd x2 DSI interface of split link display
DSI2_D[1:0] +/– connected to up to 2 data lanes of the 3rd x1/x2 DSI interface of split link display
DSI3_CK+/– connected to CLKp/n pins of the 4th x2 DSI interface of split link display
DSI3_D[1:0] +/– connected to up to 2 data lanes of the 4th x1/x2 DSI interface of split link display
Any EMI/ESD devices used on DSI signals are suitable for highest frequencies supported (low capacitive load: <1pf recommended)

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

77

NVIDIA Jetson TX2 OEM Product Design Guide

Display Control Connections
LCD_TE (used for Tearing Effect signal from display) connected to matching pin on display connector if supported
LCD_VDD_EN connected to enable of embedded display related power supply/load switch
LCD_BKLT_EN connected to enable of backlight solution(s)
LCD[1:0]_BKLT_PWM connected to PWM input(s) of backlight solution(s)

eDP / DP
DPx_TX[3:0]+/– connected to D[3:0]+/– pins on eDP/DP connector (See DP/HDMI Pin Mapping table & Signal Terminations)
DPx_AUX_CH+/– connected to Aux Lane of panel/connector (See Signal Terminations)
DPx_HPD connected to HPD pin of panel/connector
Any EMI/ESD devices used are suitable for highest frequencies supported (low capacitive load: <1pf recommended)

HDMI
DPx_TX3+/– connected to C–/C+ & pins on HDMI Connector (See Signal Terminations)
DPx_TX[2:0]+/– connected to D[0:2]+/– pins (See DP/HDMI Pin Mapping table) (See Signal Terminations)
DPx_HPD connected to HPD pin on HDMI Connector (See Signal Terminations)
HDMI_CEC connected to CEC on HDMI Connector through gating circuitry.
DPx_AUX_CH+ connected to SCL & DPx_AUX_CH– to SDA on HDMI Connector (See Signal Terminations)
HDMI 5V Supply connected to +5V on HDMI Connector.
See HDMI section for Common Mode Choke requirements if this is required (not recommended unless EMI issues seen)
See HDMI section for ESD requirements. ON-Semiconductor ESD8040 device is recommended

Video Input
Camera (CSI)
CSI[5:0]_CLK+/– connected to clock pins of camera. See CSI D-PHY Configurations table for details
CSI[5:0]_D[1:0]+/– connected to data pins of camera. See CSI D-PHY Configurations table for details
Any EMI/ESD devices used are suitable for highest frequencies supported (low capacitive load: <1pf recommended)
Control
I2C_CAM_CK/DAT connected to I2C SCL & SDA pins of imager (See Signal Terminations).
CAM[1:0]_MCLK connected to Camera reference clock inputs.
GPIO1_CAM1_PWR# / GPIO0_CAM0_PWR# connected to powerdown pins on camera(s).
GPIO4_CAM_STROBE connected to camera strobe circuit unless strobe control comes from camera module.
CAM_FLASH_EN connected to enable of flash circuit
If a Jetson TX2 GPIO is used for flash control, CAM_FLASH_EN and/or CAMR_STROBE pins are used
GPIO3_CAM1_RST# / GPIO2_CAM0_RST# connected to reset pin on any cameras with this function.
If AutoFocus Enable is required, GPIO3_CAM1_RST# connected to AF_EN pin on camera module & GPIO2_CAM0_RST# used as
common reset line.

Audio
Codec/I2S/DMIC/DSPK
I2S0 used for Audio Codec if present in design
I2S2 used for BT if present in design
I2S[3:0]_SCLK Connect to I2S/PCM CLK pin of audio device.
I2S[3:0]_LRCK Connect to Left/Right Clock pin of audio device.
I2S[3:0]_SDATA_OUT Connect to Data Input pin of audio device.
I2S[3:0]_SDATA_IN Connect to Data Output pin of audio device.
AUD_MCLK Connect to clock pin of Audio Codec.
GPIO8_AUD_RST Connect to reset pin of Audio Codec.
GPIO9_AUD_INT Connect to interrupt pin of Audio Codec.
AO_DMIC_IN_CLK/DAT connect to CLK/DAT pins of digital mic
DSPK_OUT_CLK/DAT connect to CLK/DAT pins of digital speaker driver

I2C/SPI/UART
I2C
I2C devices on same I2C interface do not have address conflicts (comparisons are done 7-bit to 7-bit format or 8-bit to 8-bit format)
I2C_CAM, I2C_GP0, I2C_GP2, I2C_GP3 & I2C_PM (See Signal Terminations). Additional external pull-ups are not added unless stronger
pull-up than on module required. Devices on bus are 1.8V or level shifter is used.
I2C_GP1 (See Signal Terminations). Additional external pull-ups are not added unless stronger pull-up than on module required &
devices on bus are 3.3V or level shifter is used.
Pull-up resistors are provided on the non-Jetson TX2 side of any level shifters.
Pull-up resistor values based on frequency/load (check I2C Spec)
I2C_CAM_CK/DAT, I2C_GP[3:0]_CK/DAT & I2C_PM_CK/DAT connect to SCL/SDA pins of devices

SPI
SPI[2:0]_CLK connected to Peripheral CLK pin(s)
SPI[2:0]_MOSI connected to Slave Peripheral MOSI pin(s)

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

78

NVIDIA Jetson TX2 OEM Product Design Guide

SPI[2:0]_MISO connected to Slave Peripheral MISO pin(s)
SPI[2:1]_CS[1:0]# / SPI0_CS0# connected one CS# pin per SPI IF to each Slave Peripheral CS pin on the interface

CAN
CAN[1:0]_TX connected to input data (RX) pins of respective CAN device
CAN[1:0]_RX connected to output data (TX) pin of respective CAN device
CAN1_STBY connected to Standby pin of respective CAN device
CAN[1:0]_ERR connected to Error pin of respective CAN device
CAN_WAKE connected to Wake pin of CAN devices

UART
UARTx_TX connects to Peripheral RX pin of device
UARTx_RX connects to Peripheral TX pin of device
UARTx_CTS# connects to Peripheral RTS# pin of device
UARTx_RTS# connects to Peripheral CTS# pin of device

Miscellaneous
JTAG
JTAG_TMS Connect to TMS pin of connector
JTAG_TCK Connect to TCK pin of connector (See Signal Terminations).
JTAG_TDO Connect to TDO pin of connector
JTAG_TDI Connect to TDI pin of connector
JTAG_RTCLK Connect to RTCK pin of connector
JTAG_GP0 (JTAG_TRST#): Connect to TRST pin of connector
JTAG_GP1 (NVJTAG_SEL): For Boundary Scan test mode, NVJTAG_SEL is connected to VDD_1V8. (See Signal Terminations).
JTAG_GP1 (NVJTAG_SEL): For normal operation, NVJTAG_SEL is pullled down. (See Signal Terminations).

Strapping
FORCE_RECOV#: To enter Forced Recovery mode, pin is connected to GND when system is powered on.
All other module pins associated with strapping on Tegra X2: Ensure any devices connected to module pins associated with Tegra X2
straps do not affect the level of the straps at power-on. Module pins affected are: SLEEP#, UART1_TX, UART0_RTS, RSVD-D8
(UART7_TX)

Pin Selection
Pinmux completed including GPIO usage (direction, initial state, Ext. PU/PD resistors, Deep Sleep state).
SFIO usage matches reference platform where possible.
Each SFIO function assigned to only one pin, even if function selected in Pinmux registers is not used or pin used as GPIO
GPIO usage matches reference platform where possible.

Unused SFIO (Special Function I/O) Interface Pins
Ball Name
USB 2.0

Termination

USB[2:1]+/–

Leave NC any unused pins

*USB 3.0 / PCIe
PEX_[2:0]_TX+/–, USB_SS[1:0]_TX+/–,
PEX_RFU_TX+/–
PEX_[2:0]_RX+/–, USB_SS[1:0]_RX+/–,
PEX_RFU_RX+/–
PEX_[2:0]_REFCLK+/–

Leave NC any unused TX lines
Connect to GND any unused RX lines
Leave NC if not used

SATA
SATA_TX+/–
SATA_RX+/–

Leave NC if not used.
Connect to GND if SATA IF not used

DSI
DSI[3:0]_CK+/–
DSI[3:0]_D[1:0]+/–

Leave NC any Clock lane not used.
Leave NC any unused DSI Data lanes

CSI
CSI[5:0]_CK+/–
CSI[5:0]_D[1:0] +/–

Leave NC any unused CSI Clock lanes
Leave NC any unused CSI Data lanes

eDP/DP
DPx_TX[3:0] +/–
DPx_AUX_CH+/–
DPx_HPD

Leave NC any unused lanes
Leave NC if not used
Leave NC if not used

HDMI
DPx_TX[3:0] +/–

Leave NC if lanes not used for HDMI or DP

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

79

NVIDIA Jetson TX2 OEM Product Design Guide

DPx_AUX_CH+/–
DPx_HPD
HDMI_CEC

Leave NC if not used
Leave NC if not used
Leave NC if not used

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

80

NVIDIA Jetson TX2 OEM Product Design Guide

16.0 APPENDIX A: GENERAL LAYOUT GUIDELINES
16.1 Overview
Trace and via characteristics play an important role in signal integrity and power distribution on Jetson TX2. Vias can have a
strong impact on power distribution and signal noise, so careful planning must take place to ensure designs meet NVIDIA’s via
requirements. Trace length and impedance determine signal propagation time and reflections, both of which can greatly improve
or reduce the performance of Jetson TX2. Trace and via requirements for each signal type can be found in the corresponding
chapter; this appendix provides general guidelines for via and trace placement.

16.2 Via Guidelines
The number of vias in the path of a given signal, power supply line, or ground line can greatly affect the performance of the
trace. Via placement can make differences in current carrying capability, signal integrity (due to reflections and attenuation), and
noise generation, all of which can impact the overall performance of the trace. The following guidelines provide basic advice for
proper use of vias.

16.2.1 Via Count and Trace Width
As a general rule, each ampere of current requires at least two micro-vias.

16.2.2 Via Placement
If vias are not placed carefully, they can severely degrade the robustness of a board’s power plane. In standard deigns that don’t
use blind or buried vias, construction of a via entails drilling a hole that cuts into the power and ground planes. Thus, incorrect
via placement affects the amount of copper available to carry current to the power balls of the IC.

16.2.3 Via Placement and Power/Ground Corridors
Vias should be placed so that sufficiently wide power corridors are created for good power distribution, as show in Figure 42.
Figure 42. Via Placement for Good Power Distribution

Care should also be taken to avoid use of “thermal spokes” (also referred to as “thermal relief”) on power and ground vias.
Thermal spokes are not necessary for surface-mount components, and the narrow spoke widths contribute to increased
inductance. The metal on the inner layers between vias may not be flooded with copper if sufficient spacing is not provided. The
diminished spacing creates a blockage and forces the current to find another path due to lack of copper, as shown in Figure 43
and Figure 44. This leads to power delivery issues and impedance discontinuities when traces are routed over these plane
voids.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

81

NVIDIA Jetson TX2 OEM Product Design Guide

Figure 43. Good Current Flow Resulting from Correct Via Placement

Current Flow

Current Flow

With sufficient via spacing

Correct via implementation

Figure 44. Poor Current Flow Resulting from Incorrect via Placement

Current Flow

Current Flow

With insufficient via spacing

Incorrect via implementation

In general, a dense via population should be avoided and good PCB design principles and analysis should be applied.

16.3 Connecting Vias
To be effective, vias must be connected properly to the signal and power planes. Poor via connections make the capacitor and
power planes less effective, leading to increased cost due to the need for additional capacitors to achieve equivalent
performance. This not only impacts the BOM (Bill of Material) cost of the design, but it can greatly impact quality and reliability of
the design.

16.4 Trace Guidelines
Trace length and impedance play a critical role in signal integrity between the driver and the receiver on Jetson TX2. Signal
trace requirements are determined by the driver characteristics, source characteristics, and signal frequency of the propagating
signal.

16.4.1 Layer Stack-Up
The number of layers required is determined by the number of memory signal layers needed to achieve the desired
performance, and the number of power rails required to achieve the optimum power delivery/noise floor. For example, highperformance boards require four memory signal routing layers, with at least two GND planes for reference. This comes to six
layers; add another two for power, which gives eight layers minimum. Reduction from eight to six layers starts the trade-off of
cost versus performance.
Power and GND planes usually serve two purposes in PCB design: power distribution and providing a signal reference for highspeed signals.
Either the power or the ground planes can be used for high-speed signal reference; this is particularly common for low-cost
designs with a low layer count. When both power and GND are used for signal reference, make sure you minimize the reference
plane transition for all high-speed signals. Decoupling caps or transition vias should be added close to the reference plane
transitions.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

82

NVIDIA Jetson TX2 OEM Product Design Guide

16.4.2 Trace Length
The maximum trace length for a given signal is determined by the maximum allowable propagation delay and impedance for the
signal. Higher frequency signals must be treated as transmission lines (see “Appendix C – Transmission Line Primer”) to
determine proper trace characteristics for a signal.
All signals on the graphics card maintain different trace guidelines; please refer to the corresponding signal chapter in the
Design Guide to determine the guidelines for the signal.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

83

NVIDIA Jetson TX2 OEM Product Design Guide

17.0 APPENDIX B: STACK-UPS
17.1 Reference Design Stack-Ups
17.1.1 Importance of Stack-Up Definition
Stack-ups define the number and order of Board layers. Stack-up definition is critical to the following design:
▪
▪
▪

Circuit routability
Signal quality
Cost

17.1.2 Impact of Stack-Up Definition on Design
Stack-Up Impact on Circuit Routability
If there are insufficient layers to maintain proper signal spacing, prevent discontinuities in reference planes, obstruct flow of
sufficient current, or avoid extra vias, circuit routing can become unnecessarily complex. Layer count must be minimally
appropriate for the circuit.
Stack-Up Impact on Signal Quality
Both layer count and layer order impact signal integrity. Proper inter-signal spacing must be achievable. Via count for critical
signals must be minimized. Current commensurate with the performance of the board must be carried. Critical signals must be
adjacent to major and minor reference planes, and adhere to proximity constraints with respect to those planes. The
recommended NVIDIA stack-ups achieve these requirements for the signal speeds supported by the board.
Stack-Up Impact on Cost
While defining extra layers can facilitate excellent signal integrity, current handling capability and routability, extra layers can
impede the goal of hitting cost targets. The art of stack-up definition is achieving all technical and reliability circuit requirements
in a cost efficient manner. The recommended NVIDIA stack-ups achieve these requirements with efficient use of board layers.

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

84

NVIDIA Jetson TX2 OEM Product Design Guide

18.0 APPENDIX C: TRANSMISSION LINE PRIMER
18.1 Background
NVIDIA maintains strict guidelines for high-frequency PCB transmission lines to ensure optimal signal integrity for data
transmission. This section provides a brief primer into basic board-level transmission line theory.
Characteristics
The most important PCB transmission line characteristics are listed in the following bullets:
▪

Trace width/height, PCB height and dielectric constant, and layer stack-up affect the characteristic trace
impedance of a transmission line.

Z0 =˜
▪

L

1/2

C

Signal rise time is proportional to the transmission line impedance and load capacitance.

RiseTime =
˜
▪

Z0 * RTerm
Z0 + RTerm

* CLoad

Real transmission lines (Figure 45) have non-zero resistances that lead to attenuation and distortion, creating
signal integrity issues.

Figure 45. Typical Transmission Line Circuit
Source

ZS

Transmission Line
Z0

Load
ZL

Transmission lines are used to “transmit” the source signal to the load or destination with as little signal degradation or reflection
as possible. For this reason it is important to design the high-speed signal transmission line to fall within characteristic guidelines
based on the signal speed and type.

18.2 Physical Transmission Line Types
The two primary transmission line types often used for Jetson TX2 board designs are:
▪
▪

Microstrip transmission line (Figure 46)
Stripline transmission line (Figure 47)

The following sections describe each type of transmission.
Microstrip Transmission Line
Figure 46. Microstrip Transmission Line
W
H

Dielectric

▪
▪
▪
▪
▪

T

Z0 =

87
Er + 1.414

ln

5.98H
0.8W + T

Z0: Impedance
W: Trace width (inches)
T: Trace thickness (inches)
Er: Dielectric constant of substrate
H: Distance between signal and reference plane

Stripline Transmission Line

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

85

NVIDIA Jetson TX2 OEM Product Design Guide

Figure 47. Stripline Transmission Line
W
T

B

H

▪
▪
▪
▪
▪

Z0 =

60
Er

4H

ln

0.67πW 0.8 +

T
W

Z0: Impedance
W: Trace width (inches)
T: Trace thickness (inches)
Er: Dielectric constant of substrate
H: Distance between signal and reference plane

18.3 Driver Characteristics
Driver characteristics are important to the integrity and maximum speed of the signal. The following points identify key driver
equations and concepts used to improve signal integrity and transmission speed.
▪

The driver (source) has resistive output impedance ZS, which causes only a fraction of the signal voltage to
propagate down the transmission line to the receiver (load).
• Transfer function at source:

T1 =
▪

Z0
ZS+ Z0

• Driver strength is inversely proportional to the source impedance, Z S.
ZS also acts as the source termination, which helps dampen reflection.
Source reflection coefficient:

R1 =

(ZS– Z0)
(ZS+ Z0)

18.4 Receiver Characteristics
Receiver characteristics are important to the integrity and detectability of the signal. The following points identify key receiver
concepts and equations for optimum signal integrity at the final destination.
▪
▪

The receiver acts as a capacitive load and often has a high load impedance, Z L.
Unterminated transmission lines cause overshoot and reflection at the receiver, which can cause data corruption.
Output transfer function at load:

T2 =
-

▪

2 * ZL
ZL + Z0

Load reflection coefficient:
(Z – Z )
R2 = L 0
(ZL + Z0)

Load impedance can be lowered with a termination resistor (R Term) placed at the end of the transmission line.
Reflection is minimized when ZL matches Z0

18.5 Transmission Lines & Reference Planes
Defining an appropriate reference plane is vital to transmission line performance due to crosstalk and EMI issues. The following
points explore appropriate reference plane identification and characteristics for optimal signal integrity:
▪

Transmission line return current (Figure 48)
High-speed return current follows the path of least inductance.
The lowest inductance path for a transmission line is right underneath the transmission line; i(D) is
proportional to:

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

86

NVIDIA Jetson TX2 OEM Product Design Guide

Figure 48. Transmission Line Height

▪

Transmission line return current:
High-speed return current follows the path of least inductance.
The lowest inductance path for a transmission line is the portion of the line closest to the dielectric surface;
i(D) is proportional to

1
D

(1 +
▪

2

H

)

Crosstalk on solid reference plane (Figure 49):
Crosstalk is caused by the mutual inductance of two parallel traces.
Crosstalk at the second trace is proportional to

1

(1 +
-

D
H

2

)

The signals need to be properly spaced to minimize crosstalk.

Figure 49. Crosstalk on Reference Plane

▪

▪

Reference plane selection
Solid ground is preferred as reference plane.
Solid power can be used as reference plane with decoupling capacitors near driver and receiver.
Reference plane cuts and layer changes need to be avoided.
Power plane cut example (Figure 50)
Power plane cuts will cause EMI issues.
Power plane cuts also induce crosstalk to adjacent signals.

Figure 50. Example of Power Plane Cuts

▪

When cut is unavoidable:
• Place decoupling capacitors near transition.
• Place transition near source or receiver when decoupling capacitors are abundant (Figure 51).

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

87

NVIDIA Jetson TX2 OEM Product Design Guide

Figure 51. Another Example of Power Plane Cuts

▪

When signal changes plane:
Try not to change the reference plane, if possible.
When a reference plane switches to different power rail, a stitching capacitor is required (Figure 52).

Figure 52. Switching Reference Planes

-

When the same ground/power reference plane changes to a different layer, a stitching via is required (Figure
53).

Figure 53. Reference Plane Switch Using VIA

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

88

NVIDIA Jetson TX2 OEM Product Design Guide

19.0 APPENDIX D: DESIGN GUIDELINE GLOSSARY
The Design Guidelines include various terms. The descriptions in the table below are intended to show what these terms mean
and how they should be applied to a design.
Table 89 Layout Guideline Tutorial
Trace Delays
Max Breakout Delay
Routing on Component layer: Maximum Trace Delay from module connector pin to point beyond pin array where normal trace spacing/impedance can be met.
Routing passes to layer other than Component layer: Beyond this, normal trace spacing/impedance must be met.

Max Total Trace Delay
Trace from module connector pin to Device pin. This must include routing on the main PCB & any other Flex or secondary PCB. Delay is from Module connector to the
final connector/device.

Intra/Inter Pair Skews
Intra Pair Skew (within pair)
Difference in delay between two traces in differential pair: Shorter routes may require indirect path to equalize delays
Inter Pair Skew (pair to pair)
Difference between two (or possibly more) differential pairs
Impedance/Spacing
Microstrip vs Stripline
Microstrip: Traces next to single ref. plane. Stripline: Traces between two ref planes
Trace Impedance
Impedance of trace determined by width & height of trace, distance from ref. plane & dielectric constant of PCB material. For differential traces, space between pair
of traces is also a factor

Board trace spacing / Spacing to other nets
Minimum distance between two traces. Usually specified in terms of dielectric height which is distance from trace to reference layers.
Pair to pair spacing
Spacing between differential traces
Breakout spacing
Possible exception to board trace spacing where different spacing rules are allowed under module connector pin in order to escape from the pin array. Outside device
boundary, normal spacing rules apply

Reference Return
Ground Reference Return Via & Via proximity (signal to reference)
Signals changing layers & reference GND planes need similar return current path
Accomplished by adding via, tying both GND layers together
Via proximity (sig to ref) is distance between signal & reference return vias
GND reference via for Differential Pair
Where a differential pair changes GND reference layers, return via should be placed close to & between signal vias (example to right)
Signal to return via ratio
Number of Ground Return vias per Signal vias. For critical IFs, ratio is usually 1:1. For less critical IFs, several trace vias can share fewer return vias (i.e. 3:2 – 3 trace
vias & 2 return vias).

Slots in Ground Reference Layer
When traces cross slots in adjacent power or ground plane
Return current has longer path around slot
Longer slots result in larger loop areas
Avoid slots in GND planes or do not route across them
Routing over Split Power Layer Reference Layers
When traces cross different power areas on power plane

-

-

Return current must find longer path - usually a distant bypass cap

-

Placing one cap across two PWR areas near where traces cross area boundaries provides high-frequency path for return current

If possible, route traces w/solid plane (GND or PWR) or keep routes across single area
If traces must cross two or more power areas, use stitching capacitors
Cap value typically 0.1uF & should ideally be within 0.1" of crossing

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

89

NVIDIA Jetson TX2 OEM Product Design Guide

20.0 APPENDIX E: JETSON TX2 PIN DESCRIPTIONS
Table 90. Jetson TX2 Connector (8x50) Pin Descriptions
Tegra Signal

Usage/Description

Usage on the Carrier
Board

Main power – Supplies PMIC & external
supplies

Main DC input

Pin #

Jetson TX2 Pin Name

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10

VDD_IN
VDD_IN
GND
GND
RSVD
I2C_PM_CLK
CHARGING#
GPIO14_AP_WAKE_MDM
GPIO15_AP2MDM_READY
GPIO16_MDM_WAKE_AP

−
−
−
GEN8_I2C_SCL
(PMIC GPIO5)
UFS0_RST
UFS0_REF_CLK
GPIO_MDM2

A11

JTAG_GP1

NVJTAG_SEL

A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25
A26
A27
A28
A29
A30
A31
A32
A33
A34

JTAG_TMS
JTAG_TDO
JTAG_RTCK
UART2_CTS#
UART2_RTS#
USB0_EN_OC#
USB1_EN_OC#
RSVD
I2C_GP1_DAT
I2C_GP1_CLK
GPIO_EXP1_INT
GPIO_EXP0_INT
LCD1_BKLT_PWM
LCD_TE
GSYNC_HSYNC
GSYNC_VSYNC
GND
SDIO_RST#
RSVD
RSVD
RSVD
DP1_HPD
DP1_AUX_CH–

JTAG_TMS
JTAG_TD0
−
UART2_CTS
UART2_RTS
USB_VBUS_EN0
USB_VBUS_EN1
−
GEN1_I2C_SDA
GEN1_I2C_SCL
GPIO_MDM7
GPIO_MDM1
GPIO_DIS5
GPIO_DIS1
GPIO_DIS4
GPIO_DIS2
−
GPIO_WAN3
−
−
−
DP_AUX_CH1_HPD
DP_AUX_CH1_N

GND
GND
Not used
PM I2C Clock
Charger Interrupt
AP (Tegra) Wake Modem or GPIO
AP (Tegra) to Modem Ready or GPIO
Modem Wake AP (Tegra) or GPIO
JTAG General Purpose 1. Pulled low on
module for normal operation & pulled
high by test device for Boundary Scan
test mode.
JTAG Test Mode Select
JTAG Test Data Out
JTAG Return Clock
UART 2 Clear to Send
UART 2 Request to Send
USB VBUS Enable/Overcurrent 0
USB VBUS Enable/Overcurrent 1
Not used
General I2C 1 Data
General I2C 1 Clock
GPIO Expander 1 Interrupt or GPIO
GPIO expander 0 Interrupt or GPIO
Display Backlight PWM 1
Display Tearing Effect
GSYNC Horizontal Sync
GSYNC Vertical Sync
GND
Secondary WLAN Enable
Not used
Not used
Not used
Display Port 1 Hot Plug Detect
Display Port 1 Aux– or HDMI DDC SDA

A35

DP1_AUX_CH+

DP_AUX_CH1_P

Display Port 1 Aux+ or HDMI DDC SCL

A36
A37
A38
A39
A40
A41
A42
A43
A44
A45

USB0_OTG_ID
GND
USB1_D+
USB1_D–
GND
PEX2_REFCLK+
PEX2_REFCLK–
GND
PEX0_REFCLK+
PEX0_REFCLK–

(PMIC GPIO0)
−
USB1_DP
USB1_DN
−
PEX_CLK2P
PEX_CLK2N
−
PEX_CLK1P
PEX_CLK1N

A46

RESET_OUT#

SYS_RESET_N

USB 0 ID / VBUS EN
GND
USB 2.0, Port 1 Data+
USB 2.0, Port 1 Data–
GND
PCIe 2 Reference Clock+ (PCIe IF #1)
PCIe 2 Reference Clock– (PCIe IF #1)
GND
PCIe 0 Reference Clock+ (PCIe IF #0)
PCIe 0 Reference Clock – (PCIe IF #0)
Reset Out. Reset from PMIC (through
diodes) to Tegra & eMMC reset pins.
Driven from carrier board to force reset
of Tegra & eMMC (not PMIC). An
external 100kΩ pull-up to 1.8V near

−

GND
GND
−
I2C (General)
System
M.2 Key E

JTAG

JTAG Header & Debug
Connector
M.2 Key E
USB 2.0 Micro AB
USB 3.0 Type A
−
I2C (General)
GPIO Expander

Display Connector

GND
M.2 Key E
−
−
−

Direction

Pin Type

Input

5.5V-19.6V

−
−
−
Bidir
Input
Output
Output
Input

GND
GND
−
Open Drain – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V

Input

CMOS – 1.8V

Input
Output
Input
Input
Output
Bidir
Bidir
−
Bidir
Bidir
Input
Input
Output
Input
Output
Output
−
Output
−
−
−
Input
Bidir

CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
Open Drain – 3.3V
Open Drain – 3.3V
−
Open Drain – 3.3V
Open Drain – 3.3V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
GND
CMOS – 1.8V
−
−
−
CMOS – 1.8V
AC-Coupled on Carrier
Board (eDP/DP) or OpenDrain, 1.8V (3.3V tolerant DDC/I2C)
Analog
GND

HDMI Type A Conn.
Bidir
USB 2.0 Micro AB
GND
USB 3.0 Type A
GND
Unassigned
GND
PCIe x4 Connector

System

Input
−
Bidir
Bidir
−
Output
Output
−
Output
Output

Bidir

USB PHY
GND
PCIe PHY
GND
PCIe PHY

CMOS – 1.8V

Tegra (module pin side) & external
10kΩ pull-up to 1.8V on the other
side of a diode (PMIC side).

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

90

NVIDIA Jetson TX2 OEM Product Design Guide

Pin #

Jetson TX2 Pin Name

Tegra Signal

A47

RESET_IN#

A48

CARRIER_PWR_ON

−

A49

CHARGER_PRSNT#

(PMIC ACOK)

A50

VDD_RTC

(PMIC BBATT)

B1
B2
B3
B4
B5
B6

VDD_IN
VDD_IN
GND
GND
RSVD
I2C_PM_DAT

−
−
−
GEN8_I2C_SDA

B7

CARRIER_STBY#

SOC_PWR_REQ

B8

VIN_PWR_BAD#

B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31

GPIO17_MDM2AP_READY
GPIO18_MDM_COLDBOOT
JTAG_TCK
JTAG_TDI
JTAG_GP0
GND
UART2_RX
UART2_TX
FAN_TACH
RSVD
GPIO11_AP_WAKE_BT
GPIO10_WIFI_WAKE_AP
GPIO12_BT_EN
GPIO13_BT_WAKE_AP
GPIO7_TOUCH_RST
TOUCH_CLK
GPIO6_TOUCH_INT
LCD_VDD_EN
LCD0_BKLT_PWM
LCD_BKLT_EN
RSVD
RSVD
GND

(PMIC NRST_IO)

−

−

GPIO_PQ7
GPIO_PQ6
JTAG_TCK
JTAG_TDI
JTAG_TRST_N
−
UART2_RX
UART2_TX
UART5_TX
−
GPIO_PQ5
GPIO_WAN4
MCU_PWR_REQ
GPIO_WAN2
SAFE_STATE
TOUCH_CLK
CAN_GPIO7
GPIO_EDP0
GPIO_DIS0
GPIO_DIS3
−
−
−

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Usage/Description

Usage on the Carrier
Board

Direction

Pin Type

Bidir

Open Drain, 1.8V

Output

Open-Collector – 3.3V

Input

MBATT level – 5.0V (see
note 3)

Bidir

1.65V-5.5V

Main DC input

Input

5.5V-19.6V

GND
GND

−
−
−
Bidir

GND
GND
−
Open Drain – 1.8V

Output

CMOS – 1.8V

Input

CMOS – 5.0V

Input
Input
Input
Input
Input
−
Input
Output
Input
−
Output
Input
Output
Input
Output
Output
Input
Output
Output
Output
−
−
−

CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
GND
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
−
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
−
−
GND

Reset In. System Reset driven from
PMIC to carrier board for devices
requiring full system reset. Also driven
from carrier board to initiate full system
reset (i.e. RESET button). A pull-up is
present on module.
Carrier Power On. Used as part of the
power up sequence. The module asserts
this signal when it is safe for the carrier
board to power up. A 10kΩ pull-up to
VDD_3V3_SYS is present on the module.
Charger Present. Connected on module
to PMIC ACOK through FET & 4.7kΩ
resistor. PMIC ACOK has 100kΩ pull-up
internally to MBATT (VDD_5V0_SYS).
Can optionally be used to support autopower-on where the module platform
will power-on when the main power
source is connected instead of waiting
for a power button press.
Real-Time-Clock. Optionally used to
provide back-up power for RTC.
Connects to Lithium Cell or super
Battery Back-up using
capacitor on Carrier Board. PMIC is
Super-capacitor
supply when charging cap or coin cell.
Super cap or coin cell is source when
system is disconnected from power.
Main power – Supplies PMIC & external
supplies
GND
GND
Not used
PM I2C Data
Carrier Board Standby: The module
drives this signal low when it is in the
standby power state.
VDD_IN Power Bad. Carrier board
indication to the module that the
VDD_IN power is not valid. Carrier board
should de-assert this (drive high) only
when VDD_IN has reached its required
voltage level and is stable. This prevents
Tegra from powering up until the
VDD_IN power is stable.
Modem to AP (Tegra) Ready or GPIO
Modem Coldboot or GPIO
JTAG Test Clock
JTAG Test Data In
JTAG General Purpose 0 (Test Reset)
GND
UART 2 Receive
UART 2 Transmit
Fan Tachometer
Not used
AP (Tegra) Wake Bluetooth or GPIO
WLAN 2 Wake AP (Tegra) or GPIO
BT 2 Enable or GPIO
BT 2 Wake AP (Tegra) or GPIO
Touch Reset or GPIO
Touch Clock
Touch Interrupt or GPIO
Display VDD Enable
Display Backlight PWM 0
Display Backlight Enable
Not used
Not used
GND

−
I2C (General)

System

M.2 Key E
JTAG Header & Debug
Connector
GND
M.2 Key E
Fan
−
Display Connector
M.2 Key E

Display Connector

−
−
GND

91

NVIDIA Jetson TX2 OEM Product Design Guide

Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

B32
B33
B34

RSVD
HDMI_CEC
DP0_AUX_CH–

−
HDMI_CEC
DP_AUX_CH0_N

Not used
HDMI CEC
Display Port 0 Aux– or HDMI DDC SDA

B35

DP0_AUX_CH+

DP_AUX_CH0_P

Display Port 0 Aux+ or HDMI DDC SCL

B36
B37
B38
B39
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49

DP0_HPD
USB0_VBUS_DET
GND
USB0_D+
USB0_D–
GND
USB2_D+
USB2_D–
GND
PEX1_REFCLK+
PEX1_REFCLK–
GND
RSVD
RSVD

DP_AUX_CH0_HPD
UART5_CTS
−
USB0_DP
USB0_DN
−
USB2_DP
USB2_DN
−
PEX_CLK3P
PEX_CLK3N
−
−
−

B50

POWER_BTN#

POWER_ON / (PMIC
EN0)

Display Port 0 Hot Plug Detect
USB 0 VBUS Detect
GND
USB 2.0 Port 0 Data+
USB 2.0 Port 0 Data–
GND
USB 2.0, Port 2 Data+
USB 2.0, Port 2 Data–
GND
PCIe 1 Reference Clock+ (PCIe IF #2)
PCIe 1 Reference Clock– (PCIe IF #2)
GND
Not used
Not used
Power Button. Used to initiate a system
power-on. Connected to PMIC EN0
which has internal 10KΩ Pull-up to
VDD_5V0_SYS. Also connected to Tegra
POWER_ON pin through Diode with
100kΩ pull-up to VDD_1V8_AP near
Tegra.

C1
C2
C3
C4
C5
C6
C7

VDD_IN
VDD_IN
GND
GND
RSVD
I2C_CAM_CLK
BATLOW#

−
−
−
CAM_I2C_SCL
(PMIC_GPIO6)

C8

BATT_OC

BATT_OC

C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25
C26
C27
C28
C29
C30
C31
C32
C33
C34
C35
C36

WDT_TIME_OUT#
I2C_GP2_DAT
I2C_GP2_CLK
I2C_GP3_CLK
I2C_GP3_DAT
I2S1_SDIN
I2S1_CLK
FAN_PWM
CAN1_STBY
CAN1_TX
CAN1_ERR
CAN_WAKE
GND
CSI5_D0–
CSI5_D0+
GND
CSI3_D0–
CSI3_D0+
GND
CSI1_D0–
CSI1_D0+
GND
DSI3_D0+
DSI3_D0–
GND
DSI1_D0+
DSI1_D0–
GND

GPIO_SEN7
GEN7_I2C_SDA
GEN7_I2C_SCL
GEN9_I2C_SCL
GEN9_I2C_SDA
DAP2_DIN
DAP2_SCLK
GPIO_SEN6
CAN_GPIO6
CAN1_DOUT
CAN_GPIO3
CAN_GPIO4
−
CSI_F_D0_N
CSI_F_D0_P
−
CSI_D_D0_N
CSI_D_D0_P
−
CSI_B_D0_N
CSI_B_D0_P
−
DSI_D_D0_P
DSI_D_D0_N
−
DSI_B_D0_P
DSI_B_D0_N
−

−
−

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Main power – Supplies PMIC & external
supplies
GND
GND
Not used
Camera I2C Clock
Battery Low (PMIC GPIO)
Battery Over-current (& Thermal)
warning
Watchdog Timeout
General I2C 2 Data
General I2C 2 Clock
General I2C 3 Clock
General I2C 3 Data
I2S Audio Port 1 Data In
I2S Audio Port 1 Clock
Fan PWM
CAN 1 Standby
CAN 1 Transmit
CAN 1 Error
CAN Wake
GND
Camera, CSI 5 Data 0–
Camera, CSI 5 Data 0+
GND
Camera, CSI 3 Data 0–
Camera, CSI 3 Data 0+
GND
Camera, CSI 1 Data 0–
Camera, CSI 1 Data 0+
GND
Display, DSI 3 Data 0+
Display, DSI 3 Data 0–
GND
Display, DSI 1 Data 0+
Display, DSI 1 Data 0–
GND

Usage on the Carrier
Board
−
HDMI Type A Conn.

Display Connector

USB 2.0 Micro AB
GND
USB 2.0 Micro AB
GND
M.2 Key E
GND
M.2 Key E
GND
−
−

Direction
−
Bidir
Bidir
Bidir
Input
Input
−
Bidir
Bidir
−
Bidir
Bidir
−
Output
Output
−
−
−

Pin Type
−
Open Drain, 3.3V
AC-Coupled on Carrier
Board (eDP/DP) or OpenDrain, 1.8V (3.3V tolerant DDC/I2C)
CMOS – 1.8V
USB VBUS, 5V
GND
USB PHY
GND
USB PHY
GND
PCIe PHY
GND
−
−

System

Input

CMOS – 5.0V (see note 3)

Main DC input

Input

5.5V-19.6V

GND
GND

−
−
−
Bidir
Input

GND
GND
−
Open Drain – 1.8V
CMOS – 1.8V

Bidir

CMOS – 1.8V

Input
Bidir
Bidir
Bidir
Bidir
Input
Bidir
Output
Output
Output
Input
Input
−
Input
Input
−
Input
Input
−
Input
Input
−
Output
Output
−
Output
Output
−

CMOS – 1.8V
Open Drain – 1.8V
Open Drain – 1.8V
Open Drain – 1.8V
Open Drain – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS 3.3V
CMOS 3.3V
CMOS 3.3V
CMOS 3.3V
GND

−
Camera Connector
System

I2C (General)

GPIO Expansion
Header
Fan
GPIO Expansion
Header
GND
Camera Connector
GND
Camera Connector
GND
Camera Connector
GND
Display Connector
GND
Display Connector
GND

MIPI D-PHY
GND
MIPI D-PHY
GND
MIPI D-PHY
GND
MIPI D-PHY
GND
MIPI D-PHY
GND

92

NVIDIA Jetson TX2 OEM Product Design Guide

Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

C37
C38
C39

DP1_TX1–
DP1_TX1+
GND

HDMI_DP1_TXDN1
HDMI_DP1_TXDP1
−

C40

PEX2_TX+

PEX_TX3P

DisplayPort 1 Lane 1– or HDMI Lane 1–
DisplayPort 1 Lane 1+ or HDMI Lane 1+
GND
PCIe 2 Transmit+ (PCIe IF #0 Lane 2 or
PCIe IF #1 Lane 0)
PCIe 2 Transmit– (PCIe IF #0 Lane 2 or
PCIe IF #1 Lane 0)
GND
USB SS 0 Transmit+ (USB 3.0 Port #0
muxed w/PCIe #2 Lane 0)
USB SS 0 Transmit– (USB 3.0 Port #0
muxed w/PCIe #2 Lane 0)
GND
PCIE 2 Clock Request (PCIe IF #1)
PCIE 1 Clock Request (mux option - PCIe
IF #2)
PCIE 0 Clock Request (PCIe IF #0)
PCIe 0 Reset (PCIe IF #0)
Not used
Not used
Not used
Not used
Not used
UART 7 Receive
Camera I2C Data
Camera Flash Enable or GPIO
UART 7 Transmit
UART 1 Transmit
UART 1 Receive
Not used
Not used
I2S Audio Port 1 Left/Right Clock
I2S Audio Port 1 Data Out
General I2C 0 Data
Digital Mic Input Data
CAN 1 Receive
CAN 0 Receive
CAN 0 Transmit
GND
Camera, CSI 5 Clock–
Camera, CSI 5 Clock+
GND
Camera, CSI 3 Clock–
Camera, CSI 3 Clock+
GND
Camera, CSI 1 Clock–
Camera, CSI 1 Clock+
GND
Display DSI 3 Clock+
Display DSI 3 Clock–
GND
Display DSI 1 Clock+
Display DSI 1 Clock–
GND
DisplayPort 1 Lane 2– or HDMI Lane 0–
DisplayPort 1 Lane 2+ or HDMI Lane 0+
GND
PCIe RFU Transmit+ (PCIe IF #0 Lane 3 or
USB 3.0 Port #1)
PCIe RFU Transmit – (PCIe IF #0 Lane 3
or USB 3.0 Port #1)
GND

C41

PEX2_TX–

C42

GND

C43

USB_SS0_TX+

PEX_TX3N
−
PEX_TX0P

C44

USB_SS0_TX–

PEX_TX0N

C45
C46

GND
PEX2_CLKREQ#

−
PEX_L1_CLKREQ_N

C47

PEX1_CLKREQ#

PEX_L2_CLKREQ_N

C48
C49
C50
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25
D26
D27
D28
D29
D30
D31
D32
D33
D34
D35
D36
D37
D38

PEX0_CLKREQ#
PEX0_RST#
RSVD
RSVD
RSVD
RSVD
RSVD
UART7_RX
I2C_CAM_DAT
GPIO5_CAM_FLASH_EN
UART7_TX
UART1_TX
UART1_RX
RSVD
RSVD
I2S1_LRCLK
I2S1_SDOUT
I2C_GP0_DAT
AO_DMIC_IN_DAT
CAN1_RX
CAN0_RX
CAN0_TX
GND
CSI5_CLK–
CSI5_CLK+
GND
CSI3_CLK–
CSI3_CLK+
GND
CSI1_CLK–
CSI1_CLK+
GND
DSI3_CLK+
DSI3_CLK–
GND
DSI1_CLK+
DSI1_CLK–
GND
DP1_TX2–
DP1_TX2+
GND

PEX_L0_CLKREQ_N
PEX_L0_RST_N
−
−
−
−
−
UART7_RX
CAM_I2C_SDA
UART5_RTS_N
UART7_TX
UART3_TX
UART3_RX
−
−
DAP2_FS
DAP2_DOUT
GPIO_SEN9
CAN_GPIO0
CAN1_DIN
CAN0_DIN
CAN0_DOUT
−
CSI_F_CLK_N
CSI_F_CLK_P
−
CSI_D_CLK_N
CSI_D_CLK_P
−
CSI_B_CLK_N
CSI_B_CLK_P
−
DSI_D_CLK_P
DSI_D_CLK_N
−
DSI_B_CLK_P
DSI_B_CLK_N
−
HDMI_DP1_TXDN0
HDMI_DP1_TXDP0
−

D39

PEX_RFU_TX+

PEX_TX1P

D40

PEX_RFU_TX–

D41

GND

PEX_TX1N
−

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Usage on the Carrier
Board
HDMI Type A Conn.
GND

Direction

Pin Type

Output
Output
−

AC-Coupled on carrier
board

Output
PCIe x4 Connector
Output
GND

−
Output

USB 3.0 Type A
Output

GND
PCIe PHY, AC-Coupled on
carrier board
GND
USB SS PHY, AC-Coupled on
carrier board

GND
Unassigned

−
Bidir

GND

M.2 Key E

Bidir

Open Drain 3.3V, Pull-up on
the module

PCIe x4 Connector
−
−
−
−
−
Not Assigned
Camera Connector
Not Assigned
Serial Port Header
−
−
GPIO Expansion
Header
I2C (General)
GPIO Expansion
Header
GND
Camera Connector
GND
Camera Connector
GND
Camera Connector
GND
Display Connector
GND
Display Connector
GND
HDMI Type A Conn.
GND

Bidir
Output
−
−
−
−
−
Input
Bidir
Output
Output
Output
Input
−
−
Bidir
Bidir
Bidir
Input
Input
Input
Output
−
Input
Input
−
Input
Input
−
Input
Input
−
Output
Output
−
Output
Output
−
Output
Output
−
Output

PCIe x4 Connector
Output
GND

−

−
−
−
−
−
CMOS – 1.8V
Open Drain – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
−
−
CMOS – 1.8V
CMOS – 1.8V
Open Drain – 1.8V
CMOS – 1.8V
CMOS 3.3V
CMOS 3.3V
CMOS 3.3V
GND
MIPI D-PHY
GND
MIPI D-PHY
GND
MIPI D-PHY
GND
MIPI D-PHY
GND
MIPI D-PHY
GND
AC-Coupled on carrier
board
GND
PCIe PHY, AC-Coupled on
carrier board
GND

93

NVIDIA Jetson TX2 OEM Product Design Guide

Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

D43

USB_SS1_TX–

PEX_TX2N

D44
D45
D46

GND
SATA_TX+
SATA_TX–

PEX_TX5P
PEX_TX5N

D47

SATA_DEV_SLP

PEX_L2_CLKREQ_N

D48
D49
D50
E1

PEX_WAKE#
PEX2_RST#
RSVD
FORCE_RECOV#

PEX_WAKE_N
PEX_L1_RST_N
−
GPIO_SW1

E2

SLEEP#

GPIO_SW2

E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17

SPI0_CLK
SPI0_MISO
I2S3_SDIN
I2S3_CLK
CAM2_MCLK
CAM_VSYNC
UART1_RTS#
UART1_CTS#
RSVD
RSVD
RSVD
SPI1_CS0#
I2C_GP0_CLK
AO_DMIC_IN_CLK
RSVD

GPIO_SEN1
GPIO_SEN2
DAP4_DIN
DAP4_SCLK
GPIO_CAM2
QSPI_IO1
UART3_RTS
UART3_CTS
−
−
−
GPIO_CAM7
GPIO_SEN8
CAN_GPIO1
−

USB SS 1 Transmit+ (USB 3.0 Port #2 or
PCIe IF #0 Lane 1)
USB SS 1 Transmit– (USB 3.0 Port #2 or
PCIe #0 Lane 1)
GND
SATA Transmit+
SATA Transmit–
SATA Device Sleep or PEX1_CLKREQ#
(PCIe IF #2) depending on Mux setting
PCIe Wake
PCIe 2 Reset (PCIe IF #1)
Not used
Force Recovery strap pin
Sleep Request to the module from the
carrier board. An internal Tegra pull-up
is present on the signal.
SPI 0 Clock
SPI 0 Master In / Slave Out
I2S Audio Port 3 Data In
I2S Audio Port 3 Clock
Camera 2 Master Clock
Camera Vertical Sync
UART 1 Request to Send
UART 1 Clear to Send
Not used
Not used
Not used
SPI 1 Chip Select 0
General I2C 0 Clock
Digital Mic Input Clock
Not used

E18

CAN0_ERR

CAN_GPIO5

CAN 0 Error

E19
E20
E21
E22
E23
E24
E25
E26
E27
E28
E29
E30
E31
E32
E33
E34
E35
E36
E37
E38
E39
E40

GND
CSI5_D1–
CSI5_D1+
GND
CSI3_D1–
CSI3_D1+
GND
CSI1_D1–
CSI1_D1+
GND
DSI3_D1+
DSI3_D1–
GND
DSI1_D1+
DSI1_D1–
GND
DP1_TX3–
DP1_TX3+
GND
DP1_TX0–
DP1_TX0+
GND

−
CSI_F_D1_N
CSI_F_D1_P
−
CSI_D_D1_N
CSI_D_D1_P
−
CSI_B_D1_N
CSI_B_D1_P
−
DSI_D_D1_P
DSI_D_D1_N
−
DSI_B_D1_P
DSI_B_D1_N
−
HDMI_DP1_TXDN3
HDMI_DP1_TXDP3
−
HDMI_DP1_TXDN2
HDMI_DP1_TXDP2
−

E41

PEX1_TX+

PEX_TX0P

E42

PEX1_TX–

PEX_TX0N

E43
E44
E45
E46

GND
PEX0_TX+
PEX0_TX–
GND

GND
Camera, CSI 5 Data 1–
Camera, CSI 5 Data 1+
GND
Camera, CSI 3 Data 1–
Camera, CSI 3 Data 1+
GND
Camera, CSI 1 Data 1–
Camera, CSI 1 Data 1+
GND
Display, DSI 3 Data 1+
Display, DSI 3 Data 1–
GND
Display, DSI 1 Data 1+
Display, DSI 1 Data 1–
GND
DisplayPort 1 Lane 3– or HDMI Clk Lane–
DisplayPort 1 Lane 3+ or HDMI Clk Lane+
GND
DisplayPort 1 Lane 0– or HDMI Lane 2–
DisplayPort 1 Lane 0+ or HDMI Lane 2+
GND
PCIe 1 Transmit+ (PCIe #2 Lane 0 muxed
w/USB 3.0 Port #0)
PCIe 1 Transmit– (PCIe #2 Lane 0 muxed
w/USB 3.0 Port #0)
GND
PCIe 0 Transmit+ (PCIe IF #0 Lane 0)
PCIe 0 Transmit– (PCIe IF #0 Lane 0)
GND

D42

USB_SS1_TX+

PEX_TX2P

−

−
PEX_TX4P
PEX_TX4N
−

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Usage on the Carrier
Board

Direction
Output

PCIe x4 Connector
Output
GND
SATA Connector

−
Output
Output
Input

Pin Type
USB SS PHY, AC-Coupled on
carrier board
GND
SATA PHY, AC-Coupled on
carrier board
Open Drain 3.3V, Pull-up on
the module

PCIe x4 conn & M.2
Unassigned
−
System

Input
Output
−
Input

Open Drain 3.3V, Pull-up on
the module

Sleep (VOL DOWN)
button

Input

CMOS – 1.8V (see note 3)

Bidir
Bidir
Input
Bidir
Output
Output
Output
Input
−
−
−
Bidir
Bidir
Output
−

CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
−
−
−
CMOS – 1.8V
Open Drain – 1.8V
CMOS – 1.8V
−

Input

CMOS 3.3V

−
Input
Input
−
Input
Input
−
Input
Input
−
Output
Output
−
Output
Output
−
Output
Output
−
Output
Output
−

GND

Display Connector
Camera Connector

Serial Port Header
−
−
−
Expansion Header
I2C (General)
Expansion Header
−
GPIO Expansion
Header
GND
Camera Connector
GND
Camera Connector
GND
Camera Connector
GND
Display Connector
GND
Display Connector
GND
HDMI Type A Conn.
GND
HDMI Type A Conn.
GND
USB 3.0 Type A
(Default) or M.2 Key E
GND
PCIe x4 Connector
GND

Output
Output
−
Output
Output
−

−
CMOS – 1.8V

MIPI D-PHY
GND
MIPI D-PHY
GND
MIPI D-PHY
GND
MIPI D-PHY
GND
MIPI D-PHY
GND
AC-Coupled on carrier
board
GND
AC-Coupled on carrier
board
GND
PCIe PHY, AC-Coupled on
carrier board
GND
PCIe PHY, AC-Coupled on
carrier board
GND

94

NVIDIA Jetson TX2 OEM Product Design Guide

Pin #

Jetson TX2 Pin Name

E47
E48
E49

GBE_LINK_ACT#
GBE_MDI0+
GBE_MDI0–

E50

PEX1_RST#

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16
F17
F18
F19
F20
F21
F22
F23
F24
F25
F26
F27
F28
F29
F30
F31
F32
F33
F34
F35
F36
F37
F38
F39

Tegra Signal

Pin Type
CMOS – 3.3V tolerant

LAN

Output
Bidir
Bidir

PCIe 1 Reset (PCIe IF #2)

M.2 Key E

Output

Audio Codec Master Clock
Audio Codec Reset or GPIO
SPI 0 Chip Select 0
SPI 0 Master Out / Slave In
I2S Audio Port 3 Left/Right Clock
I2S Audio Port 3 Data Out
Camera 1 Powerdown or GPIO
Camera 1 Reference Clock
Camera 0 Reference Clock
GND
Not used
Not used
SPI 1 Master Out / Slave In
SPI 1 Master In / Slave Out
GND
SPI 2 Chip Select 1
SD Card Card Detect
SD Card (or SDIO) Data 3
SD Card (or SDIO) Data 2
SD Card Write Protect
GND
Camera, CSI 4 Data 0–
Camera, CSI 4 Data 0+
GND
Camera, CSI 2 Data 0–
Camera, CSI 2 Data 0+
GND
Camera, CSI 0 Data 0–
Camera, CSI 0 Data 0+
GND
Display, DSI 2 Data 0+
Display, DSI 2 Data 0–
GND
Display, DSI 0 Data 0+
Display, DSI 0 Data 0–
GND
DisplayPort 0 Lane 1– or HDMI Lane 1–
DisplayPort 0 Lane 1+or HDMI Lane 1+
GND
PCIe 2 Receive+ (PCIe IF #0 Lane 2 or
PCIe IF #1 Lane 0)
PCIe 2 Receive– (PCIe IF #0 Lane 2 or
PCIe IF #1 Lane 0)
GND
USB SS 0 Receive+ (USB 3.0 Port #0
muxed w/PCIe #2 Lane 0)
USB SS 0 Receive– (USB 3.0 Port #0
muxed w/PCIe #2 Lane 0)
GND
GbE RJ45 connector Link 1000 (LED2)
GbE Transformer Data 1+
GbE Transformer Data 1–
GND
GbE RJ45 connector Link 100 (LED1)
I2S Audio Port 0 Data In
I2S Audio Port 0 Clock
GND

Expansion Header

Output
Output
Bidir
Bidir
Bidir
Bidir
Output
Output
Output
−
−
−
Bidir
Bidir
−
Bidir
Input
Bidir
Bidir
Input
−
Input
Input
−
Input
Input
−
Input
Input
−
Output
Output
−
Output
Output
−
Output
Output
−

PEX_L2_RST_N

AUDIO_MCLK
GPIO19_AUD_RST
SPI0_CS0#
SPI0_MOSI
I2S3_LRCLK
I2S3_SDOUT
GPIO1_CAM1_PWR#
CAM1_MCLK
CAM0_MCLK
GND
RSVD
RSVD
SPI1_MOSI
SPI1_MISO
GND
SPI2_CS1#
SDCARD_CD#
SDCARD_D3
SDCARD_D2
SDCARD_WP
GND
CSI4_D0–
CSI4_D0+
GND
CSI2_D0–
CSI2_D0+
GND
CSI0_D0–
CSI0_D0+
GND
DSI2_D0+
DSI2_D0–
GND
DSI0_D0+
DSI0_D0–
GND
DP0_TX1–
DP0_TX1+
GND

AUD_MCLK
GPIO_AUD1
GPIO_SEN4
GPIO_SEN3
DAP4_FS
DAP4_DOUT
GPIO_CAM3
EXTPERIPH2_CLK
EXTPERIPH1_CLK
−
−
−
GPIO_CAM6
GPIO_CAM5
−
GPIO_MDM4
GPIO_EDP2
SDMMC1_DAT3
SDMMC1_DAT2
GPIO_EDP1
−
CSI_E_D0_N
CSI_E_D0_P
−
CSI_C_D0_N
CSI_C_D0_P
−
CSI_A_D0_N
CSI_A_D0_P
−
DSI_C_D0_P
DSI_C_D0_N
−
DSI_A_D0_P
DSI_A_D0_N
−
HDMI_DP0_TXDN1
HDMI_DP0_TXDP1
−

F40

PEX2_RX+

PEX_RX3P

F41

PEX2_RX–

PEX_RX3N

F42

GND

F43

USB_SS0_RX+
USB_SS0_RX–

F45
F46
F47
F48
F49
F50
G1
G2
G3

GND
GBE_LINK1000#
GBE_MDI1+
GBE_MDI1–
GND
GBE_LINK100#
I2S0_SDIN
I2S0_CLK
GND

−
PEX_RX0P
PEX_RX0N
−
−
−
−
−
−
DAP1_DIN
DAP1_SCLK
−

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Usage on the Carrier
Board

Direction

GbE RJ45 connector Link ACT (LED0)
GbE Transformer Data 0+
GbE Transformer Data 0–

F44

−
−
−

Usage/Description

Display Connector

Camera Connector

GND
−
−
Expansion Header
GND
Display/Camera Conns.

SD Card

GND
Camera Connector
GND
Camera Connector
GND
Camera Connector
GND
Display Connector
GND
Display Connector
GND
Display Connector
GND

Input
PCIe x4 Connector
Input
GND

−
Input

USB 3.0 Type A
Input
GND
LAN
GND
LAN
Expansion Header
GND

−
Output
Bidir
Bidir
−
Output
Input
Bidir
−

MDI
Open Drain 3.3V, Pull-up on
the module
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
GND
−
−
CMOS – 1.8V
CMOS – 1.8V
GND
CMOS – 1.8V
CMOS – 1.8V
CMOS – 3.3/1.8V
CMOS – 3.3/1.8V
CMOS – 1.8V
GND
MIPI D-PHY
GND
MIPI D-PHY
GND
MIPI D-PHY
GND
MIPI D-PHY
GND
MIPI D-PHY
GND
AC-Coupled on carrier
board
GND
PCIe PHY, AC-Coupled on
carrier board
GND
USB SS PHY, AC-Coupled
(off the module)
GND
CMOS – 3.3V Tolerant
MDI
GND
CMOS – 3.3V Tolerant
CMOS – 1.8V
CMOS – 1.8V
GND

95

NVIDIA Jetson TX2 OEM Product Design Guide

Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

G4

DSPK_OUT_CLK

GPIO_AUD3

Digital Speaker Output Clock

G5
G6
G7
G8

I2S2_CLK
I2S2_SDIN
GPIO4_CAM_STROBE
GPIO0_CAM0_PWR#

I2S Audio Port 2 Clock
I2S Audio Port 2 Data In
Camera Strobe or GPIO
Camera 0 Powerdown or GPIO

G9

UART3_CTS#

Direction

Pin Type

Output

CMOS – 1.8V

Bidir
Input
Output
Output

CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V

Input

CMOS – 1.8V

UART 3 Request to Send

Output

CMOS – 1.8V

UART 0 Request to Send
UART 0 Receive
SPI 1 Clock

Output
Input
Bidir

CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V

Input

CMOS – 1.8V

Bidir
Bidir
−
Output
Bidir
−
Input
Input
−
Input
Input
−
Input
Input
−
Output
Output
−
Output
Output
−
Output
Output
−

CMOS – 1.8V
CMOS – 1.8V
GND
CMOS – 3.3/1.8V
CMOS – 3.3/1.8V
GND

G10

UART3_RTS#

G11
G12
G13

UART0_RTS#
UART0_RX
SPI1_CLK

DMIC2_DAT
DMIC1_DAT
GPIO_SEN5
QSPI_SCK
UART4_CTS_N (via
mux)
UART4_RTS_N (via
mux)
UART1_RTS
UART1_RX
GPIO_CAM4

G14

GPIO9_MOTION_INT

CAN_GPIO2

Motion Interrupt or GPIO

G15
G16
G17
G18
G19
G20
G21
G22
G23
G24
G25
G26
G27
G28
G29
G30
G31
G32
G33
G34
G35
G36
G37
G38

SPI2_MOSI
SPI2_CS0#
GND
SDCARD_CLK
SDCARD_CMD
GND
CSI4_CLK–
CSI4_CLK+
GND
CSI2_CLK–
CSI2_CLK+
GND
CSI0_CLK–
CSI0_CLK+
GND
DSI2_CLK+
DSI2_CLK–
GND
DSI0_CLK+
DSI0_CLK–
GND
DP0_TX2–
DP0_TX2+
GND

GPIO_WAN7
GPIO_WAN8
−
SDMMC1_CLK
SDMMC1_CMD
−
CSI_E_CLK_N
CSI_E_CLK_P
−
CSI_C_CLK_N
CSI_C_CLK_P
−
CSI_A_CLK_N
CSI_A_CLK_P
−
DSI_C_CLK_P
DSI_C_CLK_N
−
DSI_A_CLK_P
DSI_A_CLK_N
−
HDMI_DP0_TXDN0
HDMI_DP0_TXDP0
−

G39

PEX_RFU_RX+

PEX_RX1P

DAP1_FS
DAP1_DOUT
GPIO_AUD0

SPI 2 Master Out / Slave In
SPI 2 Chip Select 0
GND
SD Card (or SDIO) Clock
SD Card (or SDIO) Command
GND
Camera, CSI 4 Clock–
Camera CSI 4 Clock+
GND
Camera, CSI 2 Clock–
Camera, CSI 2 Clock+
GND
Camera, CSI 0 Clock–
Camera, CSI 0 Clock+
GND
Display DSI 2 Clock+
Display DSI 2 Clock–
GND
Display, DSI 0 Clock+
Display, DSI 0 Clock–
GND
DisplayPort 0 Lane 2– or HDMI Lane 0–
DisplayPort 0 Lane 2+ or HDMI Lane 0+
GND
PCIe RFU Receive+ (PCIe IF #0 Lane 3 or
USB 3.0 Port #1)
PCIe RFU Receive– (PCIe IF #0 Lane 3 or
USB 3.0 Port #1)
GND
USB SS 1 Receive+ (USB 3.0 Port #2 or
PCIe IF #0 Lane 1)
USB SS 1 Receive– (USB 3.0 Port #2 or
PCIe #0 Lane 1)
GND
SATA Receive+
SATA Receive–
GND
GbE Transformer Data 2+
GbE Transformer Data 2–
GND
I2S Audio Port 0 Left/Right Clock
I2S Audio Port 0 Data Out
Audio Codec Interrupt or GPIO

PEX_RX1N

G41

GND

G42

USB_SS1_RX+

PEX_RX2P

G43

USB_SS1_RX–

PEX_RX2N

G44
G45
G46
G47
G48
G49
G50
H1
H2
H3

GND
SATA_RX+
SATA_RX–
GND
GBE_MDI2+
GBE_MDI2–
GND
I2S0_LRCLK
I2S0_SDOUT
GPIO20_AUD_INT

H4

DSPK_OUT_DAT

GPIO_AUD2

Digital Speaker Output Data

H5
H6
H7

I2S2_LRCLK
I2S2_SDOUT
GPIO3_CAM1_RST#

DMIC1_CLK
DMIC2_CLK
QSPI_IO0

I2S Audio Port 2 Left/Right Clock
I2S Audio Port 2 Data Out
Camera 1 Reset or GPIO

−

−
−
−
−

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

Camera Connector

Not assigned

PEX_RFU_RX–

PEX_RX5P
PEX_RX5N

M.2 Key E

UART 3 Clear to Send

G40

−

Usage on the Carrier
Board
GPIO Expansion
Header

Debug Header
Expansion Header
Camera Conn & Exp.
Hdr.
Display/Camera Conns.
GND
SD Card
GND
Camera Connector
GND
Camera Connector
GND
Camera Connector
GND
Display Connector
GND
Display Connector
GND
Display Connector
GND

Input
PCIe x4 Connector
Input
GND

−
Input

PCIe x4 Connector
Input
GND
SATA Connector
GND
LAN
GND
Expansion Header
GPIO Expansion
Header
M.2 Key E
Camera Connector

−
Input
Input
−
Bidir
Bidir
−
Bidir
Bidir
Input

MIPI D-PHY
GND
MIPI D-PHY
GND
MIPI D-PHY
GND
MIPI D-PHY
GND
MIPI D-PHY
GND
AC-Coupled on carrier
board
GND
PCIe PHY, AC-Coupled on
carrier board
GND
USB SS PHY, AC-Coupled
(off the module)
GND
SATA PHY, AC-Coupled on
carrier board
GND
MDI
GND
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V

Output

CMOS – 1.8V

Bidir
Bidir
Output

CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V

96

NVIDIA Jetson TX2 OEM Product Design Guide

Usage on the Carrier
Board

Pin #

Jetson TX2 Pin Name

Tegra Signal

Usage/Description

H8
H9
H10
H11
H12
H13
H14
H15
H16
H17
H18
H19
H20
H21
H22
H23
H24
H25
H26
H27
H28
H29
H30
H31
H32
H33
H34
H35
H36
H37
H38
H39
H40

GPIO2_CAM0_RST#
UART3_RX
UART3_TX
UART0_CTS#
UART0_TX
GPIO8_ALS_PROX_INT
SPI2_CLK
SPI2_MISO
SDCARD_PWR_EN
SDCARD_D1
SDCARD_D0
GND
CSI4_D1–
CSI4_D1+
GND
CSI2_D1–
CSI2_D1+
GND
CSI0_D1–
CSI0_D1+
GND
DSI2_D1+
DSI2_D1–
GND
DSI0_D1+
DSI0_D1–
GND
DP0_TX3–
DP0_TX3+
GND
DP0_TX0–
DP0_TX0+
GND

QSPI_CS_N
UART4_RX (via mux)
UART4_TX (via mux)
UART1_CTS
UART1_TX
GPIO_PQ4
GPIO_WAN5
GPIO_WAN6
GPIO_EDP3
SDMMC1_DAT1
SDMMC1_DAT0
−
CSI_E_D1_N
CSI_E_D1_P
−
CSI_C_D1_N
CSI_C_D1_P
−
CSI_A_D1_N
CSI_A_D1_P
−
DSI_C_D1_P
DSI_C_D1_N
−
DSI_A_D1_P
DSI_A_D1_N
−
HDMI_DP0_TXDN3
HDMI_DP0_TXDP3
−
HDMI_DP0_TXDN2
HDMI_DP0_TXDP2
−

H41

PEX1_RX+

PEX_RX0P

H42

PEX1_RX–

PEX_RX0N

H43
H44
H45
H46
H47
H48
H49
H50

GND
PEX0_RX+
PEX0_RX–
GND
GBE_MDI3+
GBE_MDI3–
GND
RSVD

Camera 0 Reset or GPIO
UART 3 Receive
UART 3 Transmit
UART 0 Clear to Send
UART 0 Transmit
Proximity sensor Interrupt or GPIO
SPI 2 Clock
SPI 2 Master In / Slave Out
SD Card power switch Enable
SD Card (or SDIO) Data 1
SD Card (or SDIO) Data 0
GND
Camera, CSI 4 Data 1–
Camera, CSI 4 Data 1+
GND
Camera, CSI 2 Data 1–
Camera, CSI 2 Data 1+
GND
Camera, CSI 0 Data 1–
Camera, CSI 0 Data 1+
GND
Display, DSI 2 Data 1+
Display, DSI 2 Data 1–
GND
Display, DSI 0 Data 1+
Display, DSI 0 Data 1–
GND
DisplayPort 0 Lane 3– or HDMI Clk Lane–
DisplayPort 0 Lane 3+ or HDMI Clk Lane+
GND
DisplayPort 0 Lane 0– or HDMI Lane 2–
DisplayPort 0 Lane 0+ or HDMI Lane 2+
GND
PCIe 1 Receive+ (PCIe #2 Lane 0 muxed
w/USB 3.0 Port #0)
PCIe 1 Receive– (PCIe #2 Lane 0 muxed
w/USB 3.0 Port #0)
GND
PCIe 0 Receive+ (PCIe IF #0 Lane 0)
PCIe 0 Receive– (PCIe IF #0 Lane 0)
GND
GbE Transformer Data 3+
GbE Transformer Data 3–
GND
Not used

PEX_RX4P
PEX_RX4N
−
−
−
−
−
Ground

Legend

Notes:

−

1.
2.
3.

Power

Not available on Jetson
TX1

Reserved

Optional source of
UART on Exp. Header
Debug Header
Sensor
Display/Camera Conns.

SD Card
GND
Camera Connector
GND
Camera Connector
GND
Camera Connector
GND
Display Connector
GND
Display Connector
GND
Display Connector
GND
Display Connector
GND

Direction

Pin Type

Output
Input
Output
Input
Output
Input
Bidir
Bidir
Output
Bidir
Bidir
−
Input
Input
−
Input
Input
−
Input
Input
−
Output
Output
−
Output
Output
−
Output
Output
−
Output
Output
−

CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 1.8V
CMOS – 3.3V/1.8V
CMOS – 3.3V/1.8V
GND

USB 3.0 Type A
(Default) or M.2 Key E
GND
PCIe x4 Connector
GND
LAN
GND
−

Input
Input
−
Input
Input
−
Bidir
Bidir
−
−

MIPI D-PHY
GND
MIPI D-PHY
GND
MIPI D-PHY
GND
MIPI D-PHY
GND
MIPI D-PHY
GND
AC-Coupled on carrier
board
GND
AC-Coupled on carrier
board
GND
PCIe PHY, AC-Coupled on
carrier board
GND
PCIe PHY, AC-Coupled on
carrier board
GND
MDI
GND
−

Unassigned on Carrier

The Usage/Description column uses the Jetson TX2 port/lane/interface references.
In the Type/Dir column, Output is from Jetson TX2. Input is to Jetson TX2. Bidir is for Bidirectional signals.
These pins are handled as Open-Drain on the carrier board

JETSON TX2 OEM PRODUCT | DESIGN GUIDE | 20170912

97

Notice

The information provided in this specification is believed to be accurate and reliable as of the date provided. However, NVIDIA Corporation
("NVIDIA") does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information.
NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third
parties that may result from its use. This publication supersedes and replaces all other specifications for the product that may have been
previously supplied.
NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and other changes to this specification, at any
time and/or to discontinue any product or service without notice. Customer should obtain the latest relevant specification before placing
orders and should verify that such information is current and complete.
NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgment, unless
otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer. NVIDIA hereby expressly
objects to applying any customer general terms and conditions with regard to the purchase of the NVIDIA product referenced in this
specification.
NVIDIA products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support
equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury,
death or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer's own risk.
NVIDIA makes no representation or warranty that products based on these specifications will be suitable for any specified use without
further testing or modification. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer's sole
responsibility to ensure the product is suitable and fit for the application planned by customer and to do the necessary testing for the
application in order to avoid a default of the application or the product. Weaknesses in customer's product designs may affect the quality and
reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this
specification. NVIDIA does not accept any liability related to any default, damage, costs or problem which may be based on or attributable
to: (i) the use of the NVIDIA product in any manner that is contrary to this specification, or (ii) customer product designs.
No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right
under this specification. Information published by NVIDIA regarding third-party products or services does not constitute a license from
NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third
party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual
property rights of NVIDIA. Reproduction of information in this specification is permissible only if reproduction is approved by NVIDIA in
writing, is reproduced without alteration, and is accompanied by all associated conditions, limitations, and notices.
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the NVIDIA terms and conditions
of sale for the product.
VESA DisplayPort
DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo
for Active Cables are trademarks owned by the Video Electronics Standards Association in the United States and other countries.
HDMI
HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.
Trademarks
NVIDIA, the NVIDIA logo, Tegra and Jetson are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other
countries. Other company and product names may be trademarks of the respective companies with which they are associated.
Copyright
© 2014, 2015, 2016, 2017 NVIDIA Corporation. All rights reserved.



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.7
Linearized                      : No
Page Count                      : 98
Language                        : en-US
Tagged PDF                      : Yes
XMP Toolkit                     : 3.1-701
Producer                        : Microsoft® Word 2016
Title                           : Jetson TX2 OEM Product Design Guide
Creator                         : Nvidia
Description                     : Jetson TX2 OEM Product Design Guide
Creator Tool                    : Microsoft® Word 2016
Create Date                     : 2017:09:12 16:11:12-07:00
Modify Date                     : 2017:09:12 16:11:12-07:00
Document ID                     : uuid:3AC8EDBE-23EF-491A-83CB-6ECC77FC7FE7
Instance ID                     : uuid:3AC8EDBE-23EF-491A-83CB-6ECC77FC7FE7
Author                          : Nvidia
Subject                         : Jetson TX2 OEM Product Design Guide
EXIF Metadata provided by EXIF.tools

Navigation menu