Renesas R61509V Users Manual ER61509V_0.11_20080424

R61509V R61509V

R61509V to the manual a8ca65a3-9abb-45fc-9ff1-2a1acc3f8dcb

2015-02-06

: Renesas Renesas-R61509V-Users-Manual-523436 renesas-r61509v-users-manual-523436 renesas pdf

Open the PDF directly: View PDF PDF.
Page Count: 181

DownloadRenesas Renesas-R61509V-Users-Manual ER61509V_0.11_20080424
Open PDF In BrowserView PDF
Target Spec

R61509V
260k-color, 240RGB x 432-dot graphics liquid crystal
controller driver for Amorphous-Silicon TFT Panel
REJxxxxxxx-xxxx
Rev.0.11
April 25, 2008

Description ......................................................................................................... 6
Features

......................................................................................................... 7

Power Supply Specifications .............................................................................. 8
Differences Between R61509 and R61509V...................................................... 9
Block Diagram .................................................................................................... 10
Block Function.................................................................................................... 11
1. System Interface.....................................................................................................................................................11
2. External Display Interface (RGB, VSYNC interfaces)........................................................................................12
3. Address Counter (AC) ...........................................................................................................................................12
4. Graphics RAM (GRAM)........................................................................................................................................13
5. Grayscale Voltage Generating Circuit..................................................................................................................13
6. Liquid Crystal Drive Power Supply Circuit..........................................................................................................13
7. Timing Generator ..................................................................................................................................................13
8. Oscillator (OSC).....................................................................................................................................................13
9. Liquid crystal driver Circuit ..................................................................................................................................13
10. Internal Logic Power Supply Regulator...............................................................................................................13

Pin Function ........................................................................................................ 14
Pad Arrangement ................................................................................................ 19
Pad coordinate..................................................................................................... 21
Bump Arrangement............................................................................................. 36
Connection Example........................................................................................... 37
GRAM Address Map .......................................................................................... 38
Instruction ......................................................................................................... 40
Rev. 0.11 April 25, 2008, page 1 of 181

R61509V

Target Spec

Outline ..........................................................................................................................................................................40
Instruction Data Format..............................................................................................................................................40
Index (IR) .....................................................................................................................................................................41
Display control .............................................................................................................................................................41
Device code read (R000h)......................................................................................................................................41
Driver Output Control (R001h)..............................................................................................................................41
LCD Drive Wave Control (R002h).........................................................................................................................42
Entry Mode (R003h) ...............................................................................................................................................42
Display Control 1 (R007h) .....................................................................................................................................45
Display Control 2 (R008h) .....................................................................................................................................46
Display Control 3 (R009h) .....................................................................................................................................48
8 Color Control (R00Bh)........................................................................................................................................49
External Display Interface Control 1 (R00Ch)......................................................................................................50
External Display Interface Control 2 (R00Fh) ......................................................................................................52
Panel Interface Control 1 (R010h).........................................................................................................................53
Panel Interface Control 2 (R011h).........................................................................................................................55
Panel Interface Control 3 (R012h).........................................................................................................................56
Panel Interface Control 4 (R013h).........................................................................................................................58
Panel Interface Control 5 (R014h).........................................................................................................................59
Panel Interface Control 6 (R020h).........................................................................................................................60
Panel Interface Control 7 (R021h).........................................................................................................................62
Panel Interface Control 8 (R022h).........................................................................................................................63
Panel Interface Control 9 (R023h).........................................................................................................................65
Frame Marker Control (R090h).............................................................................................................................66
Power Control...............................................................................................................................................................67
Power Control 1 (R100h) .......................................................................................................................................67
Power Control 2 (R101h) .......................................................................................................................................69
Power Control3 (R102h) ........................................................................................................................................73
Power Control 4 (R103h) .......................................................................................................................................74
RAM Access..................................................................................................................................................................75
RAM Address Set (Horizontal Address) (R200h) RAM Address Set (Vertical Address) (R201h) ........................75
GRAM Data Write (R202h) ....................................................................................................................................76
GRAM Data Read (R202h).....................................................................................................................................77
NVM Data Read / NVM Data Write (R280h).........................................................................................................78
Window Address Control .............................................................................................................................................81
Window Horizontal RAM Address Start (R210h), Window Horizontal RAM Address End (R211h) ...................81
Window Vertical RAM Address Start (R212h), Window Vertical RAM Address End (R213h) ............................81
γ Control .......................................................................................................................................................................82
γ Control 1 ~ 14 (R300h to R309h) ........................................................................................................................82
Base Image Display Control ........................................................................................................................................84
Base Image Number of Line (R400h).....................................................................................................................84
Base Image Display Control (R401h) ....................................................................................................................84
Base Image Vertical Scroll Control (R404h) .........................................................................................................84
Partial Display Control ................................................................................................................................................88
Partial Image 1: Display Position (R500h), RAM Address 1 (Start Line Address) (R501h), RAM Address 1 (End Line Address)
(R502h) ................................................................................................................................................................88
Pin Control ...................................................................................................................................................................89
Test Register (Software Reset) (R600h) .................................................................................................................89

Rev. 0.11 April 25, 2008, page 2 of 181

R61509V

Target Spec

NVM Control ................................................................................................................................................................90
NVM Access Control 1 (R6F0h), NVM Access Control 2 (R6F1h), NVM Access Control 3 (R6F2h).................90

Instruction List .................................................................................................... 92
Reset Function .................................................................................................... 93
Basic Mode Operation of the R61509V.............................................................. 95
Interface and Data Format .................................................................................. 96
System Interface.................................................................................................. 99
80-System 18-bit Bus Interface ...................................................................................................................................100
80-System 16-bit Bus Interface ...................................................................................................................................101
80-System 9-bit Bus Interface .....................................................................................................................................104
Data Transfer Synchronization in 9-bit Bus Interface Operation ............................................................................105
80-System 8-bit Bus Interface .....................................................................................................................................106
Serial Interface.............................................................................................................................................................109

VSYNC Interface................................................................................................ 112
Notes to VSYNC Interface Operation .........................................................................................................................114

FMARK Interface ............................................................................................... 116
FMP Setting Example..................................................................................................................................................120

RGB Interface ..................................................................................................... 121
RGB Interface ..............................................................................................................................................................121
Polarities of VSYNCX, HSYNCX, ENABLE, and DOTCLK Signals.......................................................................122
Setting Example of Display Control Clock in RGB Interface Operation .................................................................123
RGB Interface Timing .................................................................................................................................................124
16-/18-Bit RGB Interface Timing ...........................................................................................................................124
RAM access via system interface in RGB interface operation ..................................................................................125
16-Bit RGB Interface ...................................................................................................................................................126
18-bit RGB Interface....................................................................................................................................................127
Notes to RGB Interface Operation ..............................................................................................................................128

RAM Address and Display Position on the Panel .............................................. 129
Instruction Setting Example........................................................................................................................................132

Window Address Function ................................................................................. 134
Scan Mode Setting .............................................................................................. 135
8-Color Display Mode ........................................................................................ 136
Frame-Frequency Adjustment Function ............................................................. 137
Relationship between Liquid Crystal Drive Duty and Frame Frequency.................................................................137

Rev. 0.11 April 25, 2008, page 3 of 181

R61509V

Target Spec

Partial Display Function ..................................................................................... 139
Liquid Crystal Panel Interface Timing ............................................................... 140
Internal Clock Operation.............................................................................................................................................140
RGB Interface Operation.............................................................................................................................................141

γ Correction Function.......................................................................................... 142
γ Correction Function..................................................................................................................................................142
γ Correction Circuit......................................................................................................................................................142
γ Correction Registers ..................................................................................................................................................143
Reference level adjustment registers...........................................................................................................................143
Interpolation Registers.................................................................................................................................................145
Frame Memory Data and the Grayscale Voltage.......................................................................................................148

Power Supply Generating Circuit ....................................................................... 149
Power Supply Circuit Connection Example 1 (VCI1 = VCIOUT)............................................................................149
Power Supply Circuit Connection Example 2 (VCI1 = VCI Direct Input)...............................................................150

Specifications of Power-supply Circuit External Elements................................ 151
Voltage Setting Pattern Diagram ........................................................................ 152
Liquid Crystal Application Voltage Waveform and Electrical Potential ..................................................................153

VCOMH and VREG1OUT Voltage Adjustment Sequence ............................... 154
NVM Control ...................................................................................................... 155
NVM Load (Register Resetting) Sequence .................................................................................................................156
NVM Write Sequence...................................................................................................................................................157
NVM Erase Sequence ..................................................................................................................................................158

Power Supply Setting Sequence ......................................................................... 159
Notes to Power Supply ON Sequence ................................................................ 161
Instruction Setting Sequence and Refresh Sequence .......................................... 162
Display ON/OFF Sequences and Refresh Sequence .................................................................................................162
Shutdown Mode Sequences .........................................................................................................................................163
Partial Display Setting .................................................................................................................................................166

Absolute Maximum Ratings ............................................................................... 167
Electrical Characteristics .................................................................................... 168
DC Characteristics .......................................................................................................................................................168
Step-up Circuit Characteristics..............................................................................................................................170
Internal Reference Voltage: Condition ..................................................................................................................170
Power Supply Voltage Range .................................................................................................................................171
Output Voltage Range ............................................................................................................................................171
AC Characteristics .......................................................................................................................................................172

Rev. 0.11 April 25, 2008, page 4 of 181

R61509V

Target Spec

Clock Characteristics .............................................................................................................................................172
80-system 18-/16-/9-/8-bit Bus interface Timing Characteristics .........................................................................172
Clock Synchronous Serial Interface Timing Characteristics.................................................................................173
RGB Interface Timing Characteristics...................................................................................................................173
LCD Driver Output Characteristics.......................................................................................................................174
Reset Timing Characteristics .................................................................................................................................174
Notes to Electrical Characteristics ..............................................................................................................................175
Test Circuits..................................................................................................................................................................176
Timing Characteristics.................................................................................................................................................177
80-system Bus Interface..........................................................................................................................................177
Clock Synchronous Serial Interface .......................................................................................................................178
Reset Operation ......................................................................................................................................................178
LCD Driver and VCOM Output Characteristics ...................................................................................................179

Rev. 0.11 April 25, 2008, page 5 of 181

R61509V

Target Spec

Description
The R61509V is a single-chip liquid crystal controller driver LSI for a-Si TFT panel, incorporating RAM
for a maximum 240 RGB x 432 dot graphics display, gate driver, source driver and power supply circuits.
For efficient data transfer, the R61509V supports high-speed interface via 8-/9-/16-/18-bit ports as system
interface to the microcomputer. As moving picture interface, the R61509V also supports RGB interface
(VSYNCX, HSYNCX, DOTCLK, ENABLE and DB17-0).
The power supply circuit incorporates step-up circuit and voltage follower circuit to generate TFT liquid
crystal panel drive voltages.
The R61509V’s power management functions such as 8-color display and shut down and so on make this
LSI an ideal driver for the medium or small sized portable products with color display systems such as
digital cellular phones or small PDAs, where long battery life is a major concern.

Rev. 0.11 April 25, 2008, page 6 of 181

R61509V

Target Spec

Features
•
•

•

•
•

•

•

•

•
•
•
•
•
•

A single-chip controller driver incorporating a gate circuit and a power supply circuit for a maximum
240RGB x 432dots graphics display on amorphous TFT panel in 262k colors
System interface
– High-speed interfaces via 8-, 9-, 16-, 18-bit parallel ports
– Clock synchronous serial interface
Moving picture display interface
– 16-/18-bit RGB interface (VSYNCX, HSYNCX, DOTCLK, ENABLE, DB17-0)
– VSYNC interface (System interface + VSYNCX)
– FMARK interface (System interface + FMARK)
Window address function to specify a rectangular area in the internal RAM to write data
Write data within a rectangular area in the internal RAM via moving picture interface
– Reduce data transfer by specifying the area in the RAM to rewrite data
– Enable displaying the data in the still picture RAM area with a moving picture simultaneously
Abundant color display and drawing functions
– Programmable for 262k-color display
– Partial display function
Low -power consumption architecture (allowing direct input of interface I/O power supply)
– Shut down function
– 8-color display function
Input power supply voltages: IOVCC (interface I/O power supply)
VCC (logic regulator power supply)
VCI (liquid crystal analog circuit power supply)
Incorporates a liquid crystal drive power supply circuit
– Source driver liquid crystal drive/VCOM power supply: DDVDH
VCL
– Gate drive power supply: VGH
VGL
– VCOM drive (VCOM power supply): VCOMH
VCOML
Liquid crystal power supply startup sequencer
TFT storage capacitance: Cst only (common VCOM formula)
233,280-byte internal RAM
Internal 720-channel source driver and 432-channel gate driver
Single-chip solution for COG module with the arrangement of gate circuits on both sides of the glass
substrate
Internal NVM
User identification code: 8 bits
VCOM level adjustment: 7 bits x 2. Rewriting is available up to 5 times

Rev. 0.11 April 25, 2008, page 7 of 181

R61509V

Target Spec

Power Supply Specifications
Table 1
No.

1

Item

TFT data lines

R61509V

720 output

2

TFT gate lines

432 output

3

TFT display storage capacitance

Cst only (Common VCOM formula)

4

Liquid crystal
drive output

V0 ~ V63 grayscales

5

6

Input voltage

Liquid crystal
drive
voltages

S1~S720
G1~G432

VGH-VGL

VCOM

Change VCOMH-VCOML amplitude with electronic volume
Change VCOMH with either electronic volume or from
VCOMR

IOVCC
(interface voltage)

1.65V ~ 3.3V
Power supply to IM0_ID, IM1-2, RESETX, DB17-0, RDX,
SDI, SDO, WR_SCL, RS, CSX, VSYNCX, HSYNCX,
DOTCLK, ENABLE, FMARK
Connect to VCC and VCI on the FPC when the electrical
potentials are the same.

VCC
(logic regulator power
supply)

2.5V ~ 3.3V
Connect to IOVCC and VCI on the FPC when the electrical
potentials are the same.

VCI
(liquid crystal drive
power supply voltage)

2.5V ~ 3.3V
Connect to IOVCC and VCC on the FPC when the electrical
potentials are the same.

DDVDH

4.5 ~ 6.0V (VCI1 x 2)

VGH

10 ~ 18.0 V (VCI1 x 5, 6)

VGL

-4.5 ~ -13.5V (VCI1 x –3, -4, -5)

VGH-VGL

max. 28V

VCL

-1.9 ~ -3.0V (VCI1 x -1)

VCI-VCL

max. 6V

See “DC characteristics” in Chapter “Electrical Characteristics” for voltage spec.

Rev. 0.11 April 25, 2008, page 8 of 181

Difference Between R61509 and R61509V

2008.04.18
R61509V
Deleted
B509H
1 line inversion
Deleted

Index
(Pin)
R000h
R002h
R003h

Command
System Interface
Device Code Read
LCD Drive Waveform Control
Entry Mode

NW[1-0] --> NW bit is deleted.
HWM

R006h
R007h

Outline Sharpening Control
Display Control 1

EPF[1-0]
EGMODE, AVST[2:0], ADST[2:0]DTHU[1:0], DTHL[1:0]
PTDE[1-0]-->PTDE0

High Speed RAM Write
Sets data format when writing 16bit
data in 18bit format.
Outline Sharpening Function
Controls partial image 1 and 2.

VON

Starts VCOM output

Manual setting

GON

Sets gate output to OFF level.

Manual setting

DTE

Starts gate scan

Manual setting

D[1-0]
FP[3-0]
BP[3-0]
PTG[1-0] --> Deleted.
ISC[3:0]
PTS[2-0] -->PTS
VEM[0] --> VEM[1-0]

Manual setting
2-14 lines (in units of 1 line)
2-14 lines (in units of 1 line)
Normal scan / interval scan
3, 5, 7, 9, 11, 13 or 15 frames
V0-V31
VCOMH to VCOML only

Deleted
Deleted
Partial image 1
Deleted. (Because the sequence is changed. See "Power Supply
Setting Sequence" for detail. )
Deleted. (Because the sequence is changed. See "Power Supply
Setting Sequence" for detail. )
Deleted. (Because the sequence is changed. See "Power Supply
Setting Sequence" for detail. )
Deleted. (Because the sequence is changed. See "Power Supply
Setting Sequence" for detail. )
3-128 lines (in units of 1 line)
3-128 lines (in units of 1 line)
Normal scan only (Interval scan is not available)
Deleted
V0-V63
VCOML to VCOMH / VCOMH to VCOML (See description)

Supported
0, 1, 2 or 3 clock period
16-127 clocks
0 - 15 clocks
0 - 15 clocks

Deleted
0, 1, 2, 3, 4, 5, 6 or 7 clock period
16 - 63 clocks
0 - 7 clocks
0 - 7 clocks

Supported

Deleted
Deleted. (Because the sequence is changed. See "Power Supply
Setting Sequence" for detail. )
Deleted. (Because the sequence is changed. See "Power Supply
Setting Sequence" for detail. )
DDVDH: x2, VCL: x-1, VGH: x5, x6, VGL: x-3, x-4, x-5
Deleted. (Because the sequence is changed. See "Power Supply
Setting Sequence" for detail. )
Deleted
Synchronized with internal clock (Default)
Synchronized with internal clock (Default)
5bit (VRH [4:0]). Enables minute setting.

Code
IM2-0=011, TRI=1, DFM=0

Function
8bit 3 transfer (2bit-8bit-8bit)

R61509
Supported
1509H
1, 2, 3 or 4 line inversion
Supported
Supported
Supported
Partial image 1 and 2

R008h

Display Control 2

R009h

Display Control 3

R00Bh

Low Power Control

R00Ch
R012h
R020h
R021h

External Display Interface Control
Panel Interface Control 3
Panel Interface Control 4
Panel Interface Control 5

RIM[1-0]=10
VEQWI[1-0]-->VEQWI[2-0]
RTNE[6-0]-->RTNE[5-0]
NOWE[3-0]-->NOWE[2-0]
SDTE[3-0]-->SDTE[2-0]

R092h

MDDI Sub-display Control

SIM[1:0] --> Deleted.

R100h

Power Control 1

SAP[1-0]

Starts/halts display operation
Defines front porch
Defines back porch
Sets gate scan mode
Sets gate scan cycle
Sets source output level
Execute VCOM equalize.
Selects 6bit 3 transfer via RGB
interface
Defines VCOM equalize period.
Defines number of clock per line.
Defines gate non overlap period.
Defines source output delay period.
Defines data format for sub display
interface operation.
Adjusts bias current in source
amplifier.

SAP --> SOAPON
BT[2-0]

Enables source amplifier
Defines step-up factor

Supported
DDVDH: x2, VCL:x-1, VGH: x6, x7, VGL: x-3, x-4, x-5
Supported
Supported
Not synchronized with internal clock (Default)
Not synchronized with internal clock (Default)
4bit (VRH [3:0])
Selects external or internal reference voltage.
VCOML can be set at GND level

Supported

R101h

Power Control 2

R102h

Power Control 3

APE --> Deleted.
SLP --> Deleted.
DC1[2-0]
DC2[2-0]
VRH[3-0]

R103h

Power Control 4

VRG1R --> Deleted.
VCOMG

Enables power supply circuit
Selects sleep mode.
Defines step-up factor for DCDC1.
Defines step-up factor for DCDC2.
Sets a factor to generate
Defines reference level to generate
VREG1OUT
Defines VCOM amplitude

R110h

Power Control 6

PSE

Enables power supply sequencer

Supported

R112h
R280h
R281h

Power Control 7
NVM Data Read / NVM Data Write

TBT[1-0]
UID[3:0]
VCM1[4-0]

Used in power supply sequencer
User code
Defines VCOMH 1level

Supported
UID[3:0]

VCMSEL , VCM2[4-0]
Gamma Control
NL0[5-0]

Defines VCOMH 2level
Gamma control method changed.
Specifies LCD drive line.
Defines source output level in non-lit
display area
Inverts grayscale level in the display
area
Settings for partial image 2.
Software Reset
Selects the order of receiving data.

VCMSEL VCM2
84 bit
16 - 432 line (in units of 8 lines)

Internal reference voltage only
Deleted
Deleted. (Because the sequence is changed. See "Power Supply
Setting Sequence" for detail. )
Deleted. (Because the sequence is changed. See "Power Supply
Setting Sequence" for detail. )
VCM[6-0] UID[7-0]
NVM specification changed. VCM bit is moved to R280h.
Deleted. (Because the R61509V supports both NVM write and erase
functions).
100 bit (New gamma correction method)
240 - 432 lines (in units of 8 lines)

V31-V0

V63-V0

V31-V0
Partial image 1 and 2
Software Reset
Supported

V63-V0
Partial image 1 only
Only secret test registers are initialized.
Deleted

R282h
R300h-R309h
R400h
R401h

VCOM High Voltage 1
VCOM High Voltage 2
Gamma Control
Base Image Number of Line
Base Image Display Control

R503h-R505h
Partial Image Control
R600h
Software Reset
R606h
i80-I/F Endian Control
See each register's description for detail.

NDL0
REV0
PTDP1[8-0] PTSA1[8-0] PTEA1[8-0] --> Deleted.
SRST--> TRSR
TCREV[1] , TCREV[0]

VCM1[4-0]

R61509V

Target Spec

Block Diagram

GND

Control
㩷
Register
(CR)

AGND

18

㩷

㩷

18 bit
16 bit
9 bit
8 bit
Serial

Write data
latch 㩷

18
㩷

18

Read data
㩷
latch

㩷

18

Graphic RAM
(GRAM)
233,280byte

18

㩷

18

㩷
㩷
External
display㩷
㩷
interface

Gate line drive circuit

NVM
VDD

Figure 1
Rev. 0.11 April 25, 2008, page 10 of 181

VCOM

VCOML

VCOMH

VCOMR

VREG1OUT

VCL

VGL

VGH

DDVDH

C21P/C21M
C22P/C22M

VCI1

㩷
LCD drive level generating circuit

VCI

G1-G432

㩷

Internal logic
power supply 㩷
㩷
circuit

C11P/C11M
C12P/C12M
C13P/C13M

㩷
㩷
㩷
㩷
㩷
㩷
㩷
㩷

VCC

VMON

㩷

㩷

Internal reference
㩷
voltage generating
㩷
circuit

㩷

Scan data generating circuit

㩷

Oscillator

VGS

㩷

Timing
generator

Grayscale voltage
generating circuit

V63-0
㩷
㩷

Gamma
correction circuit

㩷
CSX
㩷 RS
WR_SCL
㩷
RDX
㩷 SDI
㩷 SDO
DB17-0
㩷
VSYNCX
㩷
HSYNCX
㩷
DOTCLK
ENABLE
㩷
㩷
RESETX
㩷
FMARK
PROTECT
㩷
㩷

㩷
㩷
㩷
㩷
㩷

Source line drive circuit

System
㩷
interface

Latch Circuit

IOVCC
㩷
IM2-1, IM0_ID
㩷

M alternation

Address
Counter

Latch circuit

㩷

Latch circuit

Index
㩷
Register (IR)

VPP1,
VPP3A,3B

R61509V

Target Spec

Block Function
1.

System Interface

The R61509V supports 80-system high-speed interface via 8-, 9-, 16-, 18-bit parallel ports and a clock
synchronous serial interface. The interface is selected by setting the IM2-0 pins.
The R61509V has 16-bit index register (IR), 18-bit write-data register (WDR), and 18-bit read-data register
(RDR). The IR is the register to store index information from control register and internal GRAM. The
WDR is the register to temporarily store write data to control register and internal GRAM. The RDR is the
register to temporarily store the read data from the GRAM. The write data from the host processor to the
internal GRAM is first written to the WDR and then automatically written to the internal GRAM by
internal operation. The data is read via RDR from the internal GRAM. Therefore, invalid data is sent to
the data bus when the R61509V performs the first read operation from the internal GRAM. Valid data is
read out when the R61509V performs the second and subsequent read operation.
The R61509V allows writing instructions consecutively by executing the instruction in the same cycle
when it is written (0 instruction cycle).
Table 2 Register Selection (80-System 8-/9-/16-/18-Bit Parallel Interface)
WRX

RDX

RS

Function

0

1

0

Write index to IR

1

0

0

Setting disabled

0

1

1

Write to control register or internal GRAM via WDR

1

0

1

Read from internal GRAM and register via RDR

Table 3 Register Selection (Clock Synchronous Serial Interface)
Start byte
R/W

RS

Function

0

0

Write index to IR

1

0

Setting disabled

0

1

Write to control register or internal GRAM via WDR

1

1

Read from internal GRAM and register via RDR

Rev. 0.11 April 25, 2008, page 11 of 181

R61509V

Target Spec

Table 4

2.

IM2

IM1

IM0

System interface

DB pins

0

0

0

80-system 18-bit
DB17-0
interface

Single transfer (18 bits)

0

0

1

80-system 9-bit
interface

2-transfer (1st: 9 bits, 2nd: 9 bits)

0

1

0

0

1

1

1

0

*

1
1

1
1

0
1

DB17-9

RAM write data

Single transfer (16 bits)
80-system 16-bit DB17-10,
2-transfer (1st: 2 bits, 2nd: 16 bits)
interface
DB8-1
2-transfer (1st: 16 bits, 2nd: 2 bits)
st
nd
2-transfer (1 : 8 bits, 2 : 8 bits)
80-system 8-bit
st
DB17-10 3-transfer (1 : 6 bits, 2nd: 6 bits, 3rd: 6
interface
bits)
Clock
2-transfer (1st: 8 bits, 2nd: 8 bits)
synchronous
(SDI,
serial interface
SDO)
Setting disabled
Setting disabled
-

Instruction write
transfer

Single transfer
(16 bits)
2-transfer
(1st: 8 bits, 2nd: 8
bits)
Single transfer
(16 bits)
2-transfer
(1st: 8 bits, 2nd: 8
bits)
2-transfer
(1st: 8 bits, 2nd: 8
bits)
-

External Display Interface (RGB, VSYNC interfaces)

The R61509V supports RGB and VSYNC interfaces as the external interface to display moving picture.
When the RGB interface is selected, the display operation is synchronized with externally supplied
synchronous signals (VSYNCX, HSYNCX, and DOTCLK). In RGB interface operation, data (DB17-0) is
written in synchronization with these signals when the polarity of enable signal (ENABLE) allows write
operation in order to prevent flicker when updating display data.
In VSYNC interface operation, the display operation is synchronized with the internal clock except frame
synchronization, which synchronizes the display operation with the VSYNCX signal. The display data is
written to the internal GRAM via system interface. When writing data via VSYNC interface, there are
constraints in speed and method in writing data to the internal RAM. For details, see Section “VSYNC
Interface”.
The R61509V allows switching interface by instruction according to the display image (still and/or moving
picture). This allows data to be transferred only when the data is updated hence less power consumption
during moving picture display.
3.

Address Counter (AC)

The address counter (AC) gives an address to the internal GRAM. When the index of a register is written
to the IR, the address information is sent from the IR to the AC. After data is written to GRAM, the
address in the AC is automatically updated plus or minus 1. The window address function enables writing
data only within the rectangular area specified in the GRAM.

Rev. 0.11 April 25, 2008, page 12 of 181

R61509V
4.

Target Spec

Graphics RAM (GRAM)

GRAM stands for graphics RAM, which can store bit-pattern data of 233,280 (240RGB x 432 (dots) x
18(bits)) bytes at maximum, using 18 bits per pixel.
5.

Grayscale Voltage Generating Circuit

The grayscale voltage generating circuit generates liquid crystal drive voltages according to the grayscale
data in the γ-correction registers to enable 262k-color display. For details, see the γ-Correction Register
section.
6.

Liquid Crystal Drive Power Supply Circuit

The liquid crystal drive power supply circuit generates DDVDH, VGH, VGL and VCOM levels to drive
liquid crystal.
7.

Timing Generator

The timing generator generates a timing signal for the operation of internal circuits such as the internal
GRAM. The timing signal for display operations such as RAM read and the timing signal for internal
operations such as RAM access from the host processor are generated separately in order to avoid mutual
interference.
8.

Oscillator (OSC)

The R61509V generates the RC oscillation clock internally. Using an external oscillation resistor is not
possible. The oscillation frequency is set to 678 kHz before shipment (for details, see Electrical
Characteristics). Use the frame frequency adjustment function to change the number of display lines and
the frame frequency. While the R61509V is shut down, RC oscillation halts so that reduce power
consumption is reduced.
9.

Liquid crystal driver Circuit

The liquid crystal driver circuit of the R61509V consists of a 720-output source driver (S1 ~ S720) and a
432-output gate driver (G1~G432). The display pattern data is latched when all of 240RGB data are
inputted. The latched data control the source driver and output drive waveforms. The gate driver for
scanning gate lines outputs either VGH or VGL level. The shift direction of 720-bit source output from the
source driver can be changed by setting the SS bit and the shift direction of gate output from the gate driver
can be changed by setting the GS bit. The scan mode by the gate driver can be changed by setting the SM
bit.
10. Internal Logic Power Supply Regulator
The internal logic power supply regulator generates internal logic power supply VDD.

Rev. 0.11 April 25, 2008, page 13 of 181

R61509V

Target Spec

Pin Function
Table 5 External Power Supply
Signal

I/O

Connect to

Function

Power supply for Internal VDD regulator.

When not
used

VCC

I

Power
supply

IOVCC

I

Power
supply

Power supply for interface pins.

―

GND

I

Power
supply

GND level for internal logic and interface pins. GND=0V.

―

VCI

I

Power
supply

Power supply for liquid crystal power supply analog circuit.

―

VCILVL

I

Reference
power
supply

Connect to an external power supply at the same level as VCI the
power supply for liquid crystal power supply analog circuit. In case of
COG, connect to VCI on the FPC to prevent noise.

―

AGND

I

Power
supply

Analog GND (for logic regulator and liquid crystal power supply).
AGND = 0V.
In case of COG, connect to GND on the FPC to prevent noise.

―

VPP1

I

Power
supply

VPP3A

I

Power
supply

VCC≧IOVCC

Power supply for internal NVM.
See section “NVM Control” for input voltages during write and erase
operation using VPP1-VPP3A pins.

―

Open or
AGND
Open or
AGND

Note 1: VCC, GND and AGND pins are allocated several different places on the chip. Make sure to connect
all of them to power following “Connection Example”.

Table 6 Bus Interface (Amplitude: IOVCC~GND)
Signal

I/O

Connect to

Function

When not
used

Chip selection signal. (Amplitude: IOVCC-GND)
Low: The R61509V is selected and accessible.
High: The R61509V is not selected and not accessible.

IOVCC

CSX

I

Host
processor

RS

I

Host
processor

Register selection signal. (Amplitude: IOVCC-GND)
Low: Index register is selected.
High: Control register is selected.

IOVCC

IOVCC

WRX_SCL

I

Host
processor

Write strobe signal when 80-system bus interface is selected.
Data are written when Low level.
Synchronous clock signal when clock synchronous serial
interface is selected.
(Amplitude: IOVCC-GND)

RDX

I

Host
processor

Read strobe signal when 80-system bus interface is selected.
Data are read when Low level. (Amplitude: IOVCC-GND)

IOVCC

SDI

I

Host
processor

Serial data input pin when clock synchronous serial interface is
selected. Data are inputted on the rising edge of SCL signal.
(Amplitude: IOVCC-GND)

GND
/IOVCC

SDO

O

Host
processor

Serial data output pin when clock synchronous serial interface is
selected. Data are outputted on the falling edge of SCL signal.
(Amplitude: IOVCC-GND)

Open

Rev. 0.11 April 25, 2008, page 14 of 181

R61509V

DB[17:0]

Target Spec

I/O

Host
processor

18-bit parallel bi-directional data bus for 80-system interface
operation (Amplitude: IOVCC-GND).
8-bit I/F: DB17-DB10 are used.
9-bit I/F: DB17-DB9 are used.
16-bit I/F: DB17-DB10 and DB8-1 are used.
18-bit I/F: DB17-DB0 are used.
18-bit parallel bi-directional data bus for RGB interface operation
(Amplitude: IOVCC-GND).
16-bit I/F: DB17-DB13 and DB11-1 are used.
18-bit I/F: DB17-DB0 are used.

GND /
IOVCC

ENABLE

I

Host
processor

Data enable signal for RGB interface operation.
Low: accessible (selected)
High: Not accessible (Not selected)
The polarity of ENABLE signal can be inverted by setting the
EPL bit. (Amplitude: IOVCC-GND).

VSYNCX

I

Host
processor

Frame synchronous signal. Low active. (Amplitude: IOVCCGND).

GND /
IOVCC

HSYNCX

I

Host
processor

Line synchronous signal, Low active. (Amplitude: IOVCC-GND)

GND /
IOVCC

DOTCLK

I

Host
processor

Dot clock signal. Data is input on the rising edge of DOTCLK.
(Amplitude: IOVCC-GND)

GND /
IOVCC

FMARK

O

Host
processor

Frame head pulse. (Amplitude: IOVCC-GND)
FMARK is used when writing data to the internal RAM.

Open

GND /
IOVCC

Select host processor interface. (Amplitude: IOVCC-GND)
DB pins
IM2 IM1 IM0
System Interface
Colors
in use

IM2-1,
IM0_ID

I

GND /
IOVCC

(ID)

80-system 18-bit
interface
80-system 9-bit
interface
80-system 16-bit
interface
80-system 8-bit
interface
Clock synchronous
serial interface

1

0

1

1

0

0

0

0

0

1

0

1

0

0

1

1

1

0

1
1

*

DB17-0

262,144

DB17-9

262,144

DB17-10,
8-1

262,144
(Note 1)
262,144
(Note 2)

DB17-10
―

65536

Setting inhibited

―

―

Setting inhibited

―

―

―

Note 1: 65,536 colors in one-transfer operation.
Note 2: 65,536 colors in two-transfer operation.
RESETX

I

Host
processor
or external
RC circuit

Reset pin. The R61509V is reset when RESETX is low. Make
sure to execute a power on reset after turning power on.
(Amplitude: IOVCC-GND)

Rev. 0.11 April 25, 2008, page 15 of 181

―

R61509V

PROTECT

Target Spec

I

Host
processor

Reset protect pin. The R61509V enters a reset protect status by
fixing PROTECT to GND level disabling hardware reset. With
this, erroneous operations caused by noise are prevented.
Low: Hardware reset is disabled (Reset protect status)
High: Hardware reset is enabled. (Normal status)

IOVCC

Table 7 Internal Power Supply Circuit
Signal

I/O

Connect
to

Function

When
not
used

VDD

O

Stabilizing
capacitor

Output from internal logic regulator. Connect to a stabilizing
capacitor.

―

VCI1

O

Stabilizing
capacitor

Reference voltage for step-up circuit 1. Make sure that DDVDH,
VGH and VGL output voltages do no go exceed the ratings.

―

DDVDH

O

Stabilizing
capacitor

Power supply for the source driver liquid crystal drive unit and
VCOM drive. Connect to a stabilizing capacitor.

―

VGH

O

Stabilizing
capacitor

Power supply for the gate driver liquid crystal drive unit.
Connect to a stabilizing capacitor.

―

VGL

O

Stabilizing
capacitor

Power supply for the gate driver liquid crystal drive unit.
Connect to a stabilizing capacitor.

―

VCL

O

Stabilizing
capacitor

Power supply for VCOML drive.

―

C11P,
C11M,
C12P,
C12M

I/O

Step-up
capacitor

Make sure to connect capacitors for internal step-up circuit 1.

―

C13P,
C13M,
C21P,
C21M,
C22P,
C22M

I/O

Step-up
capacitor

Make sure to connect capacitors for internal step-up circuit 2.

―

Rev. 0.11 April 25, 2008, page 16 of 181

R61509V

Target Spec

Table 8 LCD drive
Signal

I/O

VREG1OUT O

VCOM

O

Connect to

Function

When not in
use

Stabilizing Output voltage generated from the reference voltage VCIR. The factor
capacitor is determined by instruction (VRH bits).
VREG1OUT is used for (1) source driver grayscale reference voltage
VREG1OUT, (2) VCOMH level reference voltage, and (3) VCOM
amplitude reference voltage. Connect to a stabilizing capacitor.
VREG1OUT =4.0V ~ (DDVDH – 0.5)V

―

TFT panel Power supply to the TFT panel’s common electrode. VCOM alternates
common between VCOMH and VCOML. The alternating cycle is set by internal
electrode register. Also, the VCOM output can be started and halted by register
setting.

―

VCOMH

O

Stabilizing The High level of VCOM amplitude. The output level can be adjusted
capacitor by either external resistor (VCOMR) or electronic volume.

―

VCOML

O

Stabilizing The Low level of VCOM amplitude. The output level can be adjusted
capacitor by instruction (VDV bits). VCOML = (VCL+0.5) V ~ 0V

―

VCOMR

I

Variable
Connect a variable resistor when adjusting the VCOMH level between
resistor or VREG1OUT and GND.
open

Open

VGS

I

GND

Reference level for the grayscale voltage generating circuit.

―

S1~S720

O

LCD

Liquid crystal application voltages.

Open

G1~G432

O

LCD

Gate line output signals.
VGH: The gate line is selected.
VGL: The gate line is not selected.

Open

Rev. 0.11 April 25, 2008, page 17 of 181

R61509V

Target Spec

Table 9 Others (test, dummy pins)
When not in
use

Signal

I/O

Connect to

Function

VTEST

O

Open

Test pin. Leave open.

VREFC

I

GND

Test pin. Make sure to fix to the GND level.

VREFD

O

Open

Test pin. Leave open.

Open
Open

VREF

O

Open

Test pin. Leave open.

VDDTEST

I

GND

Test pin. Make sure to fix to the GND level.

VMON

O

Open

Test pin. Leave open.

VCIR

O

Open
-

Open

Open

Test pin. Leave open.

Open

GNDDUM1- O
10,
AGNDDUM1
-5,
VCCDUM,
IOVCCDUM
1-2

-

Pins to fix the electrical potentials of unused interface and test pins.

Open

DUMMYR
1-4

-

-

DUMMYR1 and DUMMYR4, DUMMYR2 and DUMMYR3 are shortcircuited within the chip for COG contact resistance measurement.

Open

VGLDMY
1-4

O

Unused
gate line

Output VGL level. Use when fixing unused gate line of the panel.

Open

DUMMYA

―

Open

Dummy pad. Leave open.

OPEN

DUMMYB

―

Open

Dummy pad. Leave open.

OPEN

DUMMYC

―

Open

Dummy pad. Leave open.

OPEN

TESTO1-15

O

―

Dummy pad. Leave open.

OPEN

TEST
1-5

I

GND

Test pin. Connect to GND.

GND

TS0-8

O

Open

Test pin. Leave open.

OPEN

VPP3B

I

AGND

Test pin. Connect to AGND.

―

TSC

I

GND

Test pin. Connect to GND.

Patents of dummy pin, which is used to fix to VCC or GND are granted.
PATENT ISSUED:
United States Patent No. 6,924,868
United States Patent No. 6,323,930
Japanese Patent No. 3,980,066
Korean Patent No. 401,270
Taiwanese Patent No. 175,413

Rev. 0.11 April 25, 2008, page 18 of 181

GND

R61509V Pad Arrangement Rev 0.6

(1-a)
7

No

□
□

Top View
BUMP

Chip

□
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

DUMMYR1
DUMMYR2
AGNDDUM1
VPP3B
4
VPP3B
VPP3B
VPP3B
AGNDDUM2
VPP3A
VPP3A
VPP1
VPP1
VPP1
4
VPP1
VPP1
VPP1
VPP1
GNDDUM1
VDDTEST
VREFC
VREFD
VREF
VCCDUM1
DUMMYA
DUMMYA
5 DUMMYA
DUMMYA
DUMMYA
GNDDUM2
AGND
AGND
AGND
AGND
AGND
AGND
GND
GND
GND
GND
GND
VCC
VCC
VCC
VCC
VCC
VCC
VCC
TS8
TS7
TS6
TS5
TS4
TS3
TS2
TS1
TS0
TEST5
TEST4
TEST3
TEST2
TEST1
5 GNDDUM3
TSC
IM2
IM1
8
IM0_ID
IOVCCDUM1
PROTECT
8
RESETX
GNDDUM4
DUMMYB
5
DUMMYB
8
VSYNCX
8 HSYNCX
IOVCCDUM2
ENABLE
DOTCLK
DB17
DB16
5 GNDDUM5
DB15
DB14
DB13
DB12
5 GNDDUM6
DB11
DB10
DB9
IOVCC
IOVCC
IOVCC
IOVCC
IOVCC
IOVCC
DB8
5 GNDDUM7
DB7
DB6
DB5
DB4
5 GNDDUM8
DB3
DB2
DB1
DB0
5
GNDDUM9
CSX
8
RS
8
WRX_SCL
8
RDX
5 GNDDUM10
FMARK
SDI
SDO
VDD
VDD
VDD
VDD
VDD
VDD
VDD
VDD
VDD
VMON
1
VCOM
1 VCOM
1
VCOM
1 VCOM
1
VCOM
1 VCOM
1
VCOM
1
VCOM
VCOMH
VCOMH
VCOMH
VCOMH
VCOMH
VCOMH
VCOML
VCOML
VCOML
VCOML
VCOML
VCOML
GND
GND
GND
GND
GND
GND
GND
GND
GND
VGS
AGND
AGND
AGND
AGND
AGND
AGND
AGND
AGND
AGND
VTEST
VCIR
VREG1OUT
VCOMR
C11M
C11M
C11M
C11M
C11M
C11P
C11P
C11P
C11P
C11P
C12M
C12M
C12M
C12M
C12M
C12P
C12P
C12P
C12P
C12P
DDVDH
DDVDH
5
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
VCI1
VCI1
VCI1
VCI1
VCI
VCI
VCI
VCI
VCI
VCI
VCILVL
DUMMYC
DUMMYC
5 DUMMYC
DUMMYC
DUMMYC
GND
GND
GND
3
GND
GND
AGND
AGND
AGND
AGND
AGND
VGL
VGL
VGL
VGL
VGL
VGL
VGL
VGL
5
VGL
AGNDDUM3
AGNDDUM4
VGH
5
VGH
VGH
VGH
VGH
VGH
AGNDDUM5
VCL
VCL
VCL
C13M
C13M
C13M
C13P
C13P
C13P
C21M
C21M
C21M
C21P
C21P
C21P
C22M
C22M
C22M
C22P
C22P
C22P
TESTO1

□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

□
□
□
□
□
□

G427
G429
G431
VGLDMY3

1217
1216
1215
1214

Open
Open
Open
Open
Open

Open
Open
Open
Open
Open
Open
Open
Open
Open
Connect to GNDDUM3
Connect to GNDDUM3
Connect to GNDDUM3
Connect to GNDDUM3
Connect to GNDDUM3

□
□
□
□

Connect to GNDDUM3
Connect to IOVCCDUM1/GNDDUM3
Connect to IOVCCDUM1/GNDDUM3
Connect to IOVCCDUM1/GNDDUM3

1

No PAD

Open
Open
□

TESTO14
S1
S2
S3
S4
S5

1213
1212
1211
1210
1209
1208

S356
S357
S358
S359
S360
TESTO13
TESTO12
TESTO11
TESTO10

857
856
855
854
853
852
851
850
849

TESTO9
TESTO8
TESTO7
TESTO6
S361
S362
S363
S364
S365

848
847
846
845
844
843
842
841
840

□

S716
S717
S718
S719
S720
TESTO5

489
488
487
486
485
484

1

No PAD

□
□
□
□
□

□
□
□
Open

□
□
□
□
□
□

840um

□
□
□
□
□
□
□
□
□

Open
Open

□
□
□
□
□

□
□
□
□

Open
Open
Open
Open
Open

VGLDMY2
G432
G430
G428

483
482
481
480

G10
G8
G6
G4
G2
VGLDMY1
TESTO4
TESTO3
TESTO2

271
270
269
268
267
266
265
264
263

6

□
□
□
□
□
□
□
□

7

No
1434
1433
1432
1431
1430
1429
1428
1427
1426

Connect to GNDDUM1
Connect to GNDDUM1
Open
Open

□

(1-b)

DUMMYR4
DUMMYR3
TESTO15
VGLDMY4
G1
G3
G5
G7
G9

Rev0.00 2007.12.13
First virsion
Rev0.10 2007.12.27
R61517's VCOMA, VCOMB --> R61509V's VCOM
Rev0.20 2008.02.13 Rev Mark 1 PAD No. 24~28, 71, 72, 208-217 changed to NC1-NC17
Rev0.21 2008.02.14 Rev Mark 2 NC's application voltage decided.
Rev0.30 2008.02.19 Rev Mark 4 VPP3C-->VPP3B, VPP2-->VPP1
Rev0.31 2008.02.27 Rev Mark 5 NC1-5-->DUMMYA
NC6-7-->DUMMYB
NC8-12-->DUMMYC
GNDDUM5-->GNDDUM2
GNDDUM6-->GNDDUM3
GNDDUM7-->GNDDUM4
GNDDUM8-->GNDDUM5
GNDDUM9-->GNDDUM6
GNDDUM10-->GNDDUM7
VLOUT1-->DDVDH
VLOUT2-->VGH
VLOUT3-->VGL
Rev0.4 2008.03.14 Rev Mark 6  DUMMYC's description "Open" added.
Rev0.5 2008.04.02 Rev Mark 7  Alignment mark (1-a) (1-b) added.
Rev0.6 2008.04.21 Rev Mark 8  Pin names changed.
Pad No66 IM0/ID→IM0_ID
Pad No69 RESET→RESETX
Pad No73 VSYNC→VSYNCX
Pad No74 HSYNC→HSYNCX
Pad No107 CS→CSX
Pad No109 WR/SCL→WRX_SCL
Pad No110 RD→RDX

R61509V

Target Spec

●Chip size: 19.03mm x 0.76mm
●Chip thickness: 280μm (typ)
●Pad coordinates: Pad center
●Coordinate origin: Chip center
●Au bump size
1. 50μm x 90μm (I/O side: No.1-262)
2. 15μm x 100μm (LCD output side: No.263-1434)
●Au bump pitch: See pad coordinate
●Au bump height:12μm
● Alignment mark
Table 10
Alignment marks
Type A

X-axis

Y-axis

(1-a)

-9381.0

-251.0

(1-b)

9381.0

-251.0

1-a: ( Left Alignment Mark )

1-b: ( Right Alignment Mark )

150um : Alignment Mark Area X-size

150um : Alignment Mark Area X-size

75um

75um

30um

30um

30um

30um

㩷
Y 㩷
㩷
㩷

30um

30um

30um

30um

30um

20um

30um

30um

30um

30um

Y

X

30um

X

Figure 2

Rev. 0.11 April 25, 2008, page 20 of 181

30um

20um

75um

75um

150um : Alignment Mark Area Y-size

20um

㩷

Alignment
Mark Area

30um
150um : Alignment Mark Area Y-size

Alignment
Mark Area

20um

30um

30um

30um

30um

R61509V Pad Coordinate (Unit:μm)
pad No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

pad name
DUMMYR1
DUMMYR2
AGNDDUM1
VPP3B
VPP3B
VPP3B
VPP3B
AGNDDUM2
VPP3A
VPP3A
VPP1
VPP1
VPP1
VPP1
VPP1
VPP1
VPP1
GNDDUM1
VDDTEST
VREFC
VREFD
VREF
VCCDUM1
DUMMYA
DUMMYA
DUMMYA
DUMMYA
DUMMYA
GNDDUM2
AGND
AGND
AGND
AGND
AGND
AGND
GND
GND
GND
GND
GND
VCC
VCC
VCC
VCC
VCC
VCC
VCC
TS8
TS7
TS6

X
-9135.0
-9065.0
-8995.0
-8925.0
-8855.0
-8785.0
-8715.0
-8645.0
-8575.0
-8505.0
-8435.0
-8365.0
-8295.0
-8225.0
-8155.0
-8085.0
-8015.0
-7945.0
-7875.0
-7805.0
-7735.0
-7665.0
-7595.0
-7525.0
-7455.0
-7385.0
-7315.0
-7245.0
-7175.0
-7105.0
-7035.0
-6965.0
-6895.0
-6825.0
-6755.0
-6685.0
-6615.0
-6545.0
-6475.0
-6405.0
-6335.0
-6265.0
-6195.0
-6125.0
-6055.0
-5985.0
-5915.0
-5845.0
-5775.0
-5705.0

Y
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0

2008.04.21 rev0.1
pad No
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

pad name
TS5
TS4
TS3
TS2
TS1
TS0
TEST5
TEST4
TEST3
TEST2
TEST1
GNDDUM3
TSC
IM2
IM1
IM0_ID
IOVCCDUM1
PROTECT
RESETX
GNDDUM4
DUMMYB
DUMMYB
VSYNCX
HSYNCX
IOVCCDUM2
ENABLE
DOTCLK
DB17
DB16
GNDDUM5
DB15
DB14
DB13
DB12
GNDDUM6
DB11
DB10
DB9
IOVCC
IOVCC
IOVCC
IOVCC
IOVCC
IOVCC
DB8
GNDDUM7
DB7
DB6
DB5
DB4

X
-5635.0
-5565.0
-5495.0
-5425.0
-5355.0
-5285.0
-5215.0
-5145.0
-5075.0
-5005.0
-4935.0
-4865.0
-4795.0
-4725.0
-4655.0
-4585.0
-4515.0
-4445.0
-4375.0
-4305.0
-4235.0
-4165.0
-4095.0
-4025.0
-3955.0
-3885.0
-3815.0
-3745.0
-3675.0
-3605.0
-3535.0
-3465.0
-3395.0
-3325.0
-3255.0
-3185.0
-3115.0
-3045.0
-2975.0
-2905.0
-2835.0
-2765.0
-2695.0
-2625.0
-2555.0
-2485.0
-2415.0
-2345.0
-2275.0
-2205.0

Y
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0

R61509V Pad Coordinate (Unit:μm)
pad No
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

pad name
GNDDUM8
DB3
DB2
DB1
DB0
GNDDUM9
CSX
RS
WRX_SCL
RDX
GNDDUM10
FMARK
SDI
SDO
VDD
VDD
VDD
VDD
VDD
VDD
VDD
VDD
VDD
VMON
VCOM
VCOM
VCOM
VCOM
VCOM
VCOM
VCOM
VCOM
VCOMH
VCOMH
VCOMH
VCOMH
VCOMH
VCOMH
VCOML
VCOML
VCOML
VCOML
VCOML
VCOML
GND
GND
GND
GND
GND
GND

X
-2135.0
-2065.0
-1995.0
-1925.0
-1855.0
-1785.0
-1715.0
-1645.0
-1575.0
-1505.0
-1435.0
-1365.0
-1295.0
-1225.0
-1155.0
-1085.0
-1015.0
-945.0
-875.0
-805.0
-735.0
-665.0
-595.0
-525.0
-455.0
-385.0
-315.0
-245.0
-175.0
-105.0
-35.0
35.0
105.0
175.0
245.0
315.0
385.0
455.0
525.0
595.0
665.0
735.0
805.0
875.0
945.0
1015.0
1085.0
1155.0
1225.0
1295.0

Y
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0

2008.04.21 rev0.1
pad No
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

pad name
GND
GND
GND
VGS
AGND
AGND
AGND
AGND
AGND
AGND
AGND
AGND
AGND
VTEST
VCIR
VREG1OUT
VCOMR
C11M
C11M
C11M
C11M
C11M
C11P
C11P
C11P
C11P
C11P
C12M
C12M
C12M
C12M
C12M
C12P
C12P
C12P
C12P
C12P
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
VCI1
VCI1
VCI1
VCI1

X
1365.0
1435.0
1505.0
1575.0
1645.0
1715.0
1785.0
1855.0
1925.0
1995.0
2065.0
2135.0
2205.0
2275.0
2345.0
2415.0
2485.0
2555.0
2625.0
2695.0
2765.0
2835.0
2905.0
2975.0
3045.0
3115.0
3185.0
3255.0
3325.0
3395.0
3465.0
3535.0
3605.0
3675.0
3745.0
3815.0
3885.0
3955.0
4025.0
4095.0
4165.0
4235.0
4305.0
4375.0
4445.0
4515.0
4585.0
4655.0
4725.0
4795.0

Y
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0

R61509V Pad Coordinate (Unit:μm)
pad No
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

pad name
VCI
VCI
VCI
VCI
VCI
VCI
VCILVL
DUMMYC
DUMMYC
DUMMYC
DUMMYC
DUMMYC
GND
GND
GND
GND
GND
AGND
AGND
AGND
AGND
AGND
VGL
VGL
VGL
VGL
VGL
VGL
VGL
VGL
VGL
AGNDDUM3
AGNDDUM4
VGH
VGH
VGH
VGH
VGH
VGH
AGNDDUM5
VCL
VCL
VCL
C13M
C13M
C13M
C13P
C13P
C13P
C21M

X
4865.0
4935.0
5005.0
5075.0
5145.0
5215.0
5285.0
5355.0
5425.0
5495.0
5565.0
5635.0
5705.0
5775.0
5845.0
5915.0
5985.0
6055.0
6125.0
6195.0
6265.0
6335.0
6405.0
6475.0
6545.0
6615.0
6685.0
6755.0
6825.0
6895.0
6965.0
7035.0
7105.0
7175.0
7245.0
7315.0
7385.0
7455.0
7525.0
7595.0
7665.0
7735.0
7805.0
7875.0
7945.0
8015.0
8085.0
8155.0
8225.0
8295.0

Y
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0

2008.04.21 rev0.1
pad No
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

pad name
C21M
C21M
C21P
C21P
C21P
C22M
C22M
C22M
C22P
C22P
C22P
TESTO1
TESTO2
TESTO3
TESTO4
VGLDMY1
G2
G4
G6
G8
G10
G12
G14
G16
G18
G20
G22
G24
G26
G28
G30
G32
G34
G36
G38
G40
G42
G44
G46
G48
G50
G52
G54
G56
G58
G60
G62
G64
G66
G68

X
8365.0
8435.0
8505.0
8575.0
8645.0
8715.0
8785.0
8855.0
8925.0
8995.0
9065.0
9135.0
9397.5
9382.5
9367.5
9352.5
9337.5
9322.5
9307.5
9292.5
9277.5
9262.5
9247.5
9232.5
9217.5
9202.5
9187.5
9172.5
9157.5
9142.5
9127.5
9112.5
9097.5
9082.5
9067.5
9052.5
9037.5
9022.5
9007.5
8992.5
8977.5
8962.5
8947.5
8932.5
8917.5
8902.5
8887.5
8872.5
8857.5
8842.5

Y
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
-269.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0

R61509V Pad Coordinate (Unit:μm)
pad No
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

pad name
G70
G72
G74
G76
G78
G80
G82
G84
G86
G88
G90
G92
G94
G96
G98
G100
G102
G104
G106
G108
G110
G112
G114
G116
G118
G120
G122
G124
G126
G128
G130
G132
G134
G136
G138
G140
G142
G144
G146
G148
G150
G152
G154
G156
G158
G160
G162
G164
G166
G168

X
8827.5
8812.5
8797.5
8782.5
8767.5
8752.5
8737.5
8722.5
8707.5
8692.5
8677.5
8662.5
8647.5
8632.5
8617.5
8602.5
8587.5
8572.5
8557.5
8542.5
8527.5
8512.5
8497.5
8482.5
8467.5
8452.5
8437.5
8422.5
8407.5
8392.5
8377.5
8362.5
8347.5
8332.5
8317.5
8302.5
8287.5
8272.5
8257.5
8242.5
8227.5
8212.5
8197.5
8182.5
8167.5
8152.5
8137.5
8122.5
8107.5
8092.5

Y
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0

2008.04.21 rev0.1
pad No
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

pad name
G170
G172
G174
G176
G178
G180
G182
G184
G186
G188
G190
G192
G194
G196
G198
G200
G202
G204
G206
G208
G210
G212
G214
G216
G218
G220
G222
G224
G226
G228
G230
G232
G234
G236
G238
G240
G242
G244
G246
G248
G250
G252
G254
G256
G258
G260
G262
G264
G266
G268

X
8077.5
8062.5
8047.5
8032.5
8017.5
8002.5
7987.5
7972.5
7957.5
7942.5
7927.5
7912.5
7897.5
7882.5
7867.5
7852.5
7837.5
7822.5
7807.5
7792.5
7777.5
7762.5
7747.5
7732.5
7717.5
7702.5
7687.5
7672.5
7657.5
7642.5
7627.5
7612.5
7597.5
7582.5
7567.5
7552.5
7537.5
7522.5
7507.5
7492.5
7477.5
7462.5
7447.5
7432.5
7417.5
7402.5
7387.5
7372.5
7357.5
7342.5

Y
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0

R61509V Pad Coordinate (Unit:μm)
pad No
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

pad name
G270
G272
G274
G276
G278
G280
G282
G284
G286
G288
G290
G292
G294
G296
G298
G300
G302
G304
G306
G308
G310
G312
G314
G316
G318
G320
G322
G324
G326
G328
G330
G332
G334
G336
G338
G340
G342
G344
G346
G348
G350
G352
G354
G356
G358
G360
G362
G364
G366
G368

X
7327.5
7312.5
7297.5
7282.5
7267.5
7252.5
7237.5
7222.5
7207.5
7192.5
7177.5
7162.5
7147.5
7132.5
7117.5
7102.5
7087.5
7072.5
7057.5
7042.5
7027.5
7012.5
6997.5
6982.5
6967.5
6952.5
6937.5
6922.5
6907.5
6892.5
6877.5
6862.5
6847.5
6832.5
6817.5
6802.5
6787.5
6772.5
6757.5
6742.5
6727.5
6712.5
6697.5
6682.5
6667.5
6652.5
6637.5
6622.5
6607.5
6592.5

Y
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0

2008.04.21 rev0.1
pad No
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

pad name
G370
G372
G374
G376
G378
G380
G382
G384
G386
G388
G390
G392
G394
G396
G398
G400
G402
G404
G406
G408
G410
G412
G414
G416
G418
G420
G422
G424
G426
G428
G430
G432
VGLDMY2
TESTO5
S720
S719
S718
S717
S716
S715
S714
S713
S712
S711
S710
S709
S708
S707
S706
S705

X
6577.5
6562.5
6547.5
6532.5
6517.5
6502.5
6487.5
6472.5
6457.5
6442.5
6427.5
6412.5
6397.5
6382.5
6367.5
6352.5
6337.5
6322.5
6307.5
6292.5
6277.5
6262.5
6247.5
6232.5
6217.5
6202.5
6187.5
6172.5
6157.5
6142.5
6127.5
6112.5
6097.5
5887.5
5872.5
5857.5
5842.5
5827.5
5812.5
5797.5
5782.5
5767.5
5752.5
5737.5
5722.5
5707.5
5692.5
5677.5
5662.5
5647.5

Y
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0

R61509V Pad Coordinate (Unit:μm)
pad No
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

pad name
S704
S703
S702
S701
S700
S699
S698
S697
S696
S695
S694
S693
S692
S691
S690
S689
S688
S687
S686
S685
S684
S683
S682
S681
S680
S679
S678
S677
S676
S675
S674
S673
S672
S671
S670
S669
S668
S667
S666
S665
S664
S663
S662
S661
S660
S659
S658
S657
S656
S655

X
5632.5
5617.5
5602.5
5587.5
5572.5
5557.5
5542.5
5527.5
5512.5
5497.5
5482.5
5467.5
5452.5
5437.5
5422.5
5407.5
5392.5
5377.5
5362.5
5347.5
5332.5
5317.5
5302.5
5287.5
5272.5
5257.5
5242.5
5227.5
5212.5
5197.5
5182.5
5167.5
5152.5
5137.5
5122.5
5107.5
5092.5
5077.5
5062.5
5047.5
5032.5
5017.5
5002.5
4987.5
4972.5
4957.5
4942.5
4927.5
4912.5
4897.5

Y
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0

2008.04.21 rev0.1
pad No
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600

pad name
S654
S653
S652
S651
S650
S649
S648
S647
S646
S645
S644
S643
S642
S641
S640
S639
S638
S637
S636
S635
S634
S633
S632
S631
S630
S629
S628
S627
S626
S625
S624
S623
S622
S621
S620
S619
S618
S617
S616
S615
S614
S613
S612
S611
S610
S609
S608
S607
S606
S605

X
4882.5
4867.5
4852.5
4837.5
4822.5
4807.5
4792.5
4777.5
4762.5
4747.5
4732.5
4717.5
4702.5
4687.5
4672.5
4657.5
4642.5
4627.5
4612.5
4597.5
4582.5
4567.5
4552.5
4537.5
4522.5
4507.5
4492.5
4477.5
4462.5
4447.5
4432.5
4417.5
4402.5
4387.5
4372.5
4357.5
4342.5
4327.5
4312.5
4297.5
4282.5
4267.5
4252.5
4237.5
4222.5
4207.5
4192.5
4177.5
4162.5
4147.5

Y
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0

R61509V Pad Coordinate (Unit:μm)
pad No
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

pad name
S604
S603
S602
S601
S600
S599
S598
S597
S596
S595
S594
S593
S592
S591
S590
S589
S588
S587
S586
S585
S584
S583
S582
S581
S580
S579
S578
S577
S576
S575
S574
S573
S572
S571
S570
S569
S568
S567
S566
S565
S564
S563
S562
S561
S560
S559
S558
S557
S556
S555

X
4132.5
4117.5
4102.5
4087.5
4072.5
4057.5
4042.5
4027.5
4012.5
3997.5
3982.5
3967.5
3952.5
3937.5
3922.5
3907.5
3892.5
3877.5
3862.5
3847.5
3832.5
3817.5
3802.5
3787.5
3772.5
3757.5
3742.5
3727.5
3712.5
3697.5
3682.5
3667.5
3652.5
3637.5
3622.5
3607.5
3592.5
3577.5
3562.5
3547.5
3532.5
3517.5
3502.5
3487.5
3472.5
3457.5
3442.5
3427.5
3412.5
3397.5

Y
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0

2008.04.21 rev0.1
pad No
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

pad name
S554
S553
S552
S551
S550
S549
S548
S547
S546
S545
S544
S543
S542
S541
S540
S539
S538
S537
S536
S535
S534
S533
S532
S531
S530
S529
S528
S527
S526
S525
S524
S523
S522
S521
S520
S519
S518
S517
S516
S515
S514
S513
S512
S511
S510
S509
S508
S507
S506
S505

X
3382.5
3367.5
3352.5
3337.5
3322.5
3307.5
3292.5
3277.5
3262.5
3247.5
3232.5
3217.5
3202.5
3187.5
3172.5
3157.5
3142.5
3127.5
3112.5
3097.5
3082.5
3067.5
3052.5
3037.5
3022.5
3007.5
2992.5
2977.5
2962.5
2947.5
2932.5
2917.5
2902.5
2887.5
2872.5
2857.5
2842.5
2827.5
2812.5
2797.5
2782.5
2767.5
2752.5
2737.5
2722.5
2707.5
2692.5
2677.5
2662.5
2647.5

Y
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0

R61509V Pad Coordinate (Unit:μm)
pad No
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750

pad name
S504
S503
S502
S501
S500
S499
S498
S497
S496
S495
S494
S493
S492
S491
S490
S489
S488
S487
S486
S485
S484
S483
S482
S481
S480
S479
S478
S477
S476
S475
S474
S473
S472
S471
S470
S469
S468
S467
S466
S465
S464
S463
S462
S461
S460
S459
S458
S457
S456
S455

X
2632.5
2617.5
2602.5
2587.5
2572.5
2557.5
2542.5
2527.5
2512.5
2497.5
2482.5
2467.5
2452.5
2437.5
2422.5
2407.5
2392.5
2377.5
2362.5
2347.5
2332.5
2317.5
2302.5
2287.5
2272.5
2257.5
2242.5
2227.5
2212.5
2197.5
2182.5
2167.5
2152.5
2137.5
2122.5
2107.5
2092.5
2077.5
2062.5
2047.5
2032.5
2017.5
2002.5
1987.5
1972.5
1957.5
1942.5
1927.5
1912.5
1897.5

Y
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0

2008.04.21 rev0.1
pad No
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800

pad name
S454
S453
S452
S451
S450
S449
S448
S447
S446
S445
S444
S443
S442
S441
S440
S439
S438
S437
S436
S435
S434
S433
S432
S431
S430
S429
S428
S427
S426
S425
S424
S423
S422
S421
S420
S419
S418
S417
S416
S415
S414
S413
S412
S411
S410
S409
S408
S407
S406
S405

X
1882.5
1867.5
1852.5
1837.5
1822.5
1807.5
1792.5
1777.5
1762.5
1747.5
1732.5
1717.5
1702.5
1687.5
1672.5
1657.5
1642.5
1627.5
1612.5
1597.5
1582.5
1567.5
1552.5
1537.5
1522.5
1507.5
1492.5
1477.5
1462.5
1447.5
1432.5
1417.5
1402.5
1387.5
1372.5
1357.5
1342.5
1327.5
1312.5
1297.5
1282.5
1267.5
1252.5
1237.5
1222.5
1207.5
1192.5
1177.5
1162.5
1147.5

Y
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0

R61509V Pad Coordinate (Unit:μm)
pad No
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850

pad name
S404
S403
S402
S401
S400
S399
S398
S397
S396
S395
S394
S393
S392
S391
S390
S389
S388
S387
S386
S385
S384
S383
S382
S381
S380
S379
S378
S377
S376
S375
S374
S373
S372
S371
S370
S369
S368
S367
S366
S365
S364
S363
S362
S361
TESTO6
TESTO7
TESTO8
TESTO9
TESTO10
TESTO11

X
1132.5
1117.5
1102.5
1087.5
1072.5
1057.5
1042.5
1027.5
1012.5
997.5
982.5
967.5
952.5
937.5
922.5
907.5
892.5
877.5
862.5
847.5
832.5
817.5
802.5
787.5
772.5
757.5
742.5
727.5
712.5
697.5
682.5
667.5
652.5
637.5
622.5
607.5
592.5
577.5
562.5
547.5
532.5
517.5
502.5
487.5
472.5
457.5
442.5
427.5
-427.5
-442.5

Y
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0

2008.04.21 rev0.1
pad No
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900

pad name
TESTO12
TESTO13
S360
S359
S358
S357
S356
S355
S354
S353
S352
S351
S350
S349
S348
S347
S346
S345
S344
S343
S342
S341
S340
S339
S338
S337
S336
S335
S334
S333
S332
S331
S330
S329
S328
S327
S326
S325
S324
S323
S322
S321
S320
S319
S318
S317
S316
S315
S314
S313

X
-457.5
-472.5
-487.5
-502.5
-517.5
-532.5
-547.5
-562.5
-577.5
-592.5
-607.5
-622.5
-637.5
-652.5
-667.5
-682.5
-697.5
-712.5
-727.5
-742.5
-757.5
-772.5
-787.5
-802.5
-817.5
-832.5
-847.5
-862.5
-877.5
-892.5
-907.5
-922.5
-937.5
-952.5
-967.5
-982.5
-997.5
-1012.5
-1027.5
-1042.5
-1057.5
-1072.5
-1087.5
-1102.5
-1117.5
-1132.5
-1147.5
-1162.5
-1177.5
-1192.5

Y
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0

R61509V Pad Coordinate (Unit:μm)
pad No
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950

pad name
S312
S311
S310
S309
S308
S307
S306
S305
S304
S303
S302
S301
S300
S299
S298
S297
S296
S295
S294
S293
S292
S291
S290
S289
S288
S287
S286
S285
S284
S283
S282
S281
S280
S279
S278
S277
S276
S275
S274
S273
S272
S271
S270
S269
S268
S267
S266
S265
S264
S263

X
-1207.5
-1222.5
-1237.5
-1252.5
-1267.5
-1282.5
-1297.5
-1312.5
-1327.5
-1342.5
-1357.5
-1372.5
-1387.5
-1402.5
-1417.5
-1432.5
-1447.5
-1462.5
-1477.5
-1492.5
-1507.5
-1522.5
-1537.5
-1552.5
-1567.5
-1582.5
-1597.5
-1612.5
-1627.5
-1642.5
-1657.5
-1672.5
-1687.5
-1702.5
-1717.5
-1732.5
-1747.5
-1762.5
-1777.5
-1792.5
-1807.5
-1822.5
-1837.5
-1852.5
-1867.5
-1882.5
-1897.5
-1912.5
-1927.5
-1942.5

Y
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0

2008.04.21 rev0.1
pad No
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

pad name
S262
S261
S260
S259
S258
S257
S256
S255
S254
S253
S252
S251
S250
S249
S248
S247
S246
S245
S244
S243
S242
S241
S240
S239
S238
S237
S236
S235
S234
S233
S232
S231
S230
S229
S228
S227
S226
S225
S224
S223
S222
S221
S220
S219
S218
S217
S216
S215
S214
S213

X
-1957.5
-1972.5
-1987.5
-2002.5
-2017.5
-2032.5
-2047.5
-2062.5
-2077.5
-2092.5
-2107.5
-2122.5
-2137.5
-2152.5
-2167.5
-2182.5
-2197.5
-2212.5
-2227.5
-2242.5
-2257.5
-2272.5
-2287.5
-2302.5
-2317.5
-2332.5
-2347.5
-2362.5
-2377.5
-2392.5
-2407.5
-2422.5
-2437.5
-2452.5
-2467.5
-2482.5
-2497.5
-2512.5
-2527.5
-2542.5
-2557.5
-2572.5
-2587.5
-2602.5
-2617.5
-2632.5
-2647.5
-2662.5
-2677.5
-2692.5

Y
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0

R61509V Pad Coordinate (Unit:μm)
pad No
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

pad name
S212
S211
S210
S209
S208
S207
S206
S205
S204
S203
S202
S201
S200
S199
S198
S197
S196
S195
S194
S193
S192
S191
S190
S189
S188
S187
S186
S185
S184
S183
S182
S181
S180
S179
S178
S177
S176
S175
S174
S173
S172
S171
S170
S169
S168
S167
S166
S165
S164
S163

X
-2707.5
-2722.5
-2737.5
-2752.5
-2767.5
-2782.5
-2797.5
-2812.5
-2827.5
-2842.5
-2857.5
-2872.5
-2887.5
-2902.5
-2917.5
-2932.5
-2947.5
-2962.5
-2977.5
-2992.5
-3007.5
-3022.5
-3037.5
-3052.5
-3067.5
-3082.5
-3097.5
-3112.5
-3127.5
-3142.5
-3157.5
-3172.5
-3187.5
-3202.5
-3217.5
-3232.5
-3247.5
-3262.5
-3277.5
-3292.5
-3307.5
-3322.5
-3337.5
-3352.5
-3367.5
-3382.5
-3397.5
-3412.5
-3427.5
-3442.5

Y
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0

2008.04.21 rev0.1
pad No
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

pad name
S162
S161
S160
S159
S158
S157
S156
S155
S154
S153
S152
S151
S150
S149
S148
S147
S146
S145
S144
S143
S142
S141
S140
S139
S138
S137
S136
S135
S134
S133
S132
S131
S130
S129
S128
S127
S126
S125
S124
S123
S122
S121
S120
S119
S118
S117
S116
S115
S114
S113

X
-3457.5
-3472.5
-3487.5
-3502.5
-3517.5
-3532.5
-3547.5
-3562.5
-3577.5
-3592.5
-3607.5
-3622.5
-3637.5
-3652.5
-3667.5
-3682.5
-3697.5
-3712.5
-3727.5
-3742.5
-3757.5
-3772.5
-3787.5
-3802.5
-3817.5
-3832.5
-3847.5
-3862.5
-3877.5
-3892.5
-3907.5
-3922.5
-3937.5
-3952.5
-3967.5
-3982.5
-3997.5
-4012.5
-4027.5
-4042.5
-4057.5
-4072.5
-4087.5
-4102.5
-4117.5
-4132.5
-4147.5
-4162.5
-4177.5
-4192.5

Y
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0

R61509V Pad Coordinate (Unit:μm)
pad No
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

pad name
S112
S111
S110
S109
S108
S107
S106
S105
S104
S103
S102
S101
S100
S99
S98
S97
S96
S95
S94
S93
S92
S91
S90
S89
S88
S87
S86
S85
S84
S83
S82
S81
S80
S79
S78
S77
S76
S75
S74
S73
S72
S71
S70
S69
S68
S67
S66
S65
S64
S63

X
-4207.5
-4222.5
-4237.5
-4252.5
-4267.5
-4282.5
-4297.5
-4312.5
-4327.5
-4342.5
-4357.5
-4372.5
-4387.5
-4402.5
-4417.5
-4432.5
-4447.5
-4462.5
-4477.5
-4492.5
-4507.5
-4522.5
-4537.5
-4552.5
-4567.5
-4582.5
-4597.5
-4612.5
-4627.5
-4642.5
-4657.5
-4672.5
-4687.5
-4702.5
-4717.5
-4732.5
-4747.5
-4762.5
-4777.5
-4792.5
-4807.5
-4822.5
-4837.5
-4852.5
-4867.5
-4882.5
-4897.5
-4912.5
-4927.5
-4942.5

Y
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0

2008.04.21 rev0.1
pad No
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200

pad name
S62
S61
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
S42
S41
S40
S39
S38
S37
S36
S35
S34
S33
S32
S31
S30
S29
S28
S27
S26
S25
S24
S23
S22
S21
S20
S19
S18
S17
S16
S15
S14
S13

X
-4957.5
-4972.5
-4987.5
-5002.5
-5017.5
-5032.5
-5047.5
-5062.5
-5077.5
-5092.5
-5107.5
-5122.5
-5137.5
-5152.5
-5167.5
-5182.5
-5197.5
-5212.5
-5227.5
-5242.5
-5257.5
-5272.5
-5287.5
-5302.5
-5317.5
-5332.5
-5347.5
-5362.5
-5377.5
-5392.5
-5407.5
-5422.5
-5437.5
-5452.5
-5467.5
-5482.5
-5497.5
-5512.5
-5527.5
-5542.5
-5557.5
-5572.5
-5587.5
-5602.5
-5617.5
-5632.5
-5647.5
-5662.5
-5677.5
-5692.5

Y
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0

R61509V Pad Coordinate (Unit:μm)
pad No
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250

pad name
S12
S11
S10
S9
S8
S7
S6
S5
S4
S3
S2
S1
TESTO14
VGLDMY3
G431
G429
G427
G425
G423
G421
G419
G417
G415
G413
G411
G409
G407
G405
G403
G401
G399
G397
G395
G393
G391
G389
G387
G385
G383
G381
G379
G377
G375
G373
G371
G369
G367
G365
G363
G361

X
-5707.5
-5722.5
-5737.5
-5752.5
-5767.5
-5782.5
-5797.5
-5812.5
-5827.5
-5842.5
-5857.5
-5872.5
-5887.5
-6097.5
-6112.5
-6127.5
-6142.5
-6157.5
-6172.5
-6187.5
-6202.5
-6217.5
-6232.5
-6247.5
-6262.5
-6277.5
-6292.5
-6307.5
-6322.5
-6337.5
-6352.5
-6367.5
-6382.5
-6397.5
-6412.5
-6427.5
-6442.5
-6457.5
-6472.5
-6487.5
-6502.5
-6517.5
-6532.5
-6547.5
-6562.5
-6577.5
-6592.5
-6607.5
-6622.5
-6637.5

Y
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0

2008.04.21 rev0.1
pad No
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300

pad name
G359
G357
G355
G353
G351
G349
G347
G345
G343
G341
G339
G337
G335
G333
G331
G329
G327
G325
G323
G321
G319
G317
G315
G313
G311
G309
G307
G305
G303
G301
G299
G297
G295
G293
G291
G289
G287
G285
G283
G281
G279
G277
G275
G273
G271
G269
G267
G265
G263
G261

X
-6652.5
-6667.5
-6682.5
-6697.5
-6712.5
-6727.5
-6742.5
-6757.5
-6772.5
-6787.5
-6802.5
-6817.5
-6832.5
-6847.5
-6862.5
-6877.5
-6892.5
-6907.5
-6922.5
-6937.5
-6952.5
-6967.5
-6982.5
-6997.5
-7012.5
-7027.5
-7042.5
-7057.5
-7072.5
-7087.5
-7102.5
-7117.5
-7132.5
-7147.5
-7162.5
-7177.5
-7192.5
-7207.5
-7222.5
-7237.5
-7252.5
-7267.5
-7282.5
-7297.5
-7312.5
-7327.5
-7342.5
-7357.5
-7372.5
-7387.5

Y
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0

R61509V Pad Coordinate (Unit:μm)
pad No
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350

pad name
G259
G257
G255
G253
G251
G249
G247
G245
G243
G241
G239
G237
G235
G233
G231
G229
G227
G225
G223
G221
G219
G217
G215
G213
G211
G209
G207
G205
G203
G201
G199
G197
G195
G193
G191
G189
G187
G185
G183
G181
G179
G177
G175
G173
G171
G169
G167
G165
G163
G161

X
-7402.5
-7417.5
-7432.5
-7447.5
-7462.5
-7477.5
-7492.5
-7507.5
-7522.5
-7537.5
-7552.5
-7567.5
-7582.5
-7597.5
-7612.5
-7627.5
-7642.5
-7657.5
-7672.5
-7687.5
-7702.5
-7717.5
-7732.5
-7747.5
-7762.5
-7777.5
-7792.5
-7807.5
-7822.5
-7837.5
-7852.5
-7867.5
-7882.5
-7897.5
-7912.5
-7927.5
-7942.5
-7957.5
-7972.5
-7987.5
-8002.5
-8017.5
-8032.5
-8047.5
-8062.5
-8077.5
-8092.5
-8107.5
-8122.5
-8137.5

Y
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0

2008.04.21 rev0.1
pad No
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400

pad name
G159
G157
G155
G153
G151
G149
G147
G145
G143
G141
G139
G137
G135
G133
G131
G129
G127
G125
G123
G121
G119
G117
G115
G113
G111
G109
G107
G105
G103
G101
G99
G97
G95
G93
G91
G89
G87
G85
G83
G81
G79
G77
G75
G73
G71
G69
G67
G65
G63
G61

X
-8152.5
-8167.5
-8182.5
-8197.5
-8212.5
-8227.5
-8242.5
-8257.5
-8272.5
-8287.5
-8302.5
-8317.5
-8332.5
-8347.5
-8362.5
-8377.5
-8392.5
-8407.5
-8422.5
-8437.5
-8452.5
-8467.5
-8482.5
-8497.5
-8512.5
-8527.5
-8542.5
-8557.5
-8572.5
-8587.5
-8602.5
-8617.5
-8632.5
-8647.5
-8662.5
-8677.5
-8692.5
-8707.5
-8722.5
-8737.5
-8752.5
-8767.5
-8782.5
-8797.5
-8812.5
-8827.5
-8842.5
-8857.5
-8872.5
-8887.5

Y
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0

R61509V Pad Coordinate (Unit:μm)
pad No
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434

pad name
G59
G57
G55
G53
G51
G49
G47
G45
G43
G41
G39
G37
G35
G33
G31
G29
G27
G25
G23
G21
G19
G17
G15
G13
G11
G9
G7
G5
G3
G1
VGLDMY4
TESTO15
DUMMYR3
DUMMYR4

X
-8902.5
-8917.5
-8932.5
-8947.5
-8962.5
-8977.5
-8992.5
-9007.5
-9022.5
-9037.5
-9052.5
-9067.5
-9082.5
-9097.5
-9112.5
-9127.5
-9142.5
-9157.5
-9172.5
-9187.5
-9202.5
-9217.5
-9232.5
-9247.5
-9262.5
-9277.5
-9292.5
-9307.5
-9322.5
-9337.5
-9352.5
-9367.5
-9382.5
-9397.5

Y
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0
157.0
276.0

2008.04.21 rev0.1
Alignment mark
1-a
1-b

X
-9381.0
9381.0

Y
-251.0
-251.0

Rev0.1 2008.04.21
Pad No66 IM0/ID→IM0_ID (rename)
Pad No69 RESET→RESETX (rename)
Pad No73 VSYNC→VSYNCX (rename)
Pad No74 HSYNC→HSYNCX (rename)
Pad No107 CS→CSX (rename)
Pad No109 WR/SCL →WRX_SCL (rename)
Pad No110 RD→RDX (rename)

R61509V

Target Spec

Bump Arrangement

㪪㪈䌾㪪㪎㪉㪇䋬㩷
㪞㪈䌾㪞㪋㪊㪉䋬㩷
㪛㪬㪤㪤㪰㪩㪎㪄㪈㪇㪃㩷
㪫㪜㪪㪫㪦㪈㪈㪄㪈㪏㪃㩷
㪭㪞㪣㪛㪤㪰㪈㪄㪋㩷
㩿㪥㫆㩷㪉㪍㪊㪄㪈㪋㪊㪋㪀

㩷
㩷
㩷
㩷
㩷
㩷
㩷
㩷
㩷
㩷
㩷
㩷
㩷
㩷
㩷
㩷
㩷
㩷
㩷
㩷
㩷

15

15

100

19

219

12

Unit : um

50

50
20

S=4,500um2
90

㪠㪆㪦㩷㫇㫀㫅㫊㩷
㩿㪥㫆㪈㩷㵨㩷㪉㪍㪉㪀㩷

12
70

Figure 3

Rev. 0.11 April 25, 2008, page 36 of 181

S=1,500um2

Unit : um

R61509V Wiring Example & Recommended Wiring Resistance

(Pad Arrangement Rev0.6)

2008.04.21 Rev0.5
Rev0.1 2008.02.14 Made for PR
Rev0.11 2008.02.19 VPP3C-->VPP3B, VPP2-->VPP1
Rev0.2 2008.02.28 Pad names changed.
Rev0.3 2008.0314 Instruction changed.
Rev0.4 2008.0402 R61517's EEPROM IF deleted.
R61509V VPP2--> VPP1
Rev0.5 2008.04.21 Pad names changed.
Pad No66 IM0/ID→IM0_ID
Pad No69 RESET→RESETX
Pad No73 VSYNC→VSYNCX
Pad No74 HSYNC→HSYNCX
Pad No107 CS→CSX
Pad No109 WR/SCL→WRX_SCL
Pad No110 RD→RDX

R61517 outline

VCOM

Pad No.

Recommended
max.Rcog [ohm]

R61509V outline

R61509V Pad name

□
TP
TP

VPP3A

p

VPP1

p

30

8

10

12

GND

p

9

IM2
IM1
IM0

in
in
in

60
60
60

PROTECT
RESX

in
in
out
out
in
in

60
60
60
60
60
60
60

DE
PCLK
DB17
DB16

in
in
io
io

60
60
60
60

DB15
DB14
DB13
DB12

io
io
io
io

60
60
60
60

DB11
DB10
DB9

io
io
io

60
60
60

LEDON
LEDPWM
VSYNC
HSYNC

10

IOVCC
(MIPI name: VDDI)

p

DB8

io

60

DB7
DB6
DB5
DB4

io
io
io
io

60
60
60
60

DB3
DB2
DB1
DB0

io
io
io
io

60
60
60
60

CSX
DCX
WRX/SCL
RDX

in
in
in
in

60
60
60
60
60
60
60

TE out
DIN in
DOUT out

1uF/6V/B

7

8

1uF/6V/B

10

1uF/6V/B

10

7

60

7

1uF/6V/B
60
60

When VCOMH is adjusted
using variable resisrance

> 200kΩ

12
1uF/6V/B

12

1uF/6V/B

12

12

1uF/6V/B

7

Capacitor is not required when VCI voltage is directly applied to VCI1 pin

15

When VCI1 is adjusted by register
1uF/6V/B

0ohm
VCI
(MIPI name: VDDI)

p

10

60

12

12

1uF/25V/B

6

VF<0.38V/5mA@25℃, VR≧25V

1uF/25V/B

6

VF<0.38V/5mA@25℃, VR≧25V

20
1uF/6V/B

20
1uF/6V/B

20

20
1uF/10V/B

20

20
1uF/10V/B

20

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

DUMMYR1
DUMMYR2
AGNDDUM1
VPP3B
VPP3B
VPP3B
VPP3B
AGNDDUM2
VPP3A
VPP3A
VPP1
VPP1
VPP1
VPP1
VPP1
VPP1
VPP1
GNDDUM1
VDDTEST
VREFC
VREFD
VREF
VCCDUM1
DUMMYA
DUMMYA
DUMMYA
DUMMYA
DUMMYA
GNDDUM2
AGND
AGND
AGND
AGND
AGND
AGND
GND
GND
GND
GND
GND
VCC
VCC
VCC
VCC
VCC
VCC
VCC
TS8
TS7
TS6
TS5
TS4
TS3
TS2
TS1
TS0
TEST5
TEST4
TEST3
TEST2
TEST1
GNDDUM3
TSC
IM2
IM1
IM0_ID
IOVCCDUM1
PROTECT
RESETX
GNDDUM4
DUMMYB
DUMMYB
VSYNCX
HSYNCX
IOVCCDUM2
ENABLE
DOTCLK
DB17
DB16
GNDDUM5
DB15
DB14
DB13
DB12
GNDDUM6
DB11
DB10
DB9
IOVCC
IOVCC
IOVCC
IOVCC
IOVCC
IOVCC
DB8
GNDDUM7
DB7
DB6
DB5
DB4
GNDDUM8
DB3
DB2
DB1
DB0
GNDDUM9
CSX
RS
WRX_SCL
RDX
GNDDUM10
FMARK
SDI
SDO
VDD
VDD
VDD
VDD
VDD
VDD
VDD
VDD
VDD
VMON
VCOM
VCOM
VCOM
VCOM
VCOM
VCOM
VCOM
VCOM
VCOMH
VCOMH
VCOMH
VCOMH
VCOMH
VCOMH
VCOML
VCOML
VCOML
VCOML
VCOML
VCOML
GND
GND
GND
GND
GND
GND
GND
GND
GND
VGS
AGND
AGND
AGND
AGND
AGND
AGND
AGND
AGND
AGND
VTEST
VCIR
VREG1OUT
VCOMR
C11M
C11M
C11M
C11M
C11M
C11P
C11P
C11P
C11P
C11P
C12M
C12M
C12M
C12M
C12M
C12P
C12P
C12P
C12P
C12P
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
VCI1
VCI1
VCI1
VCI1
VCI
VCI
VCI
VCI
VCI
VCI
VCILVL
DUMMYC
DUMMYC
DUMMYC
DUMMYC
DUMMYC
GND
GND
GND
GND
GND
AGND
AGND
AGND
AGND
AGND
VGL
VGL
VGL
VGL
VGL
VGL
VGL
VGL
VGL
AGNDDUM3
AGNDDUM4
VGH
VGH
VGH
VGH
VGH
VGH
AGNDDUM5
VCL
VCL
VCL
C13M
C13M
C13M
C13P
C13P
C13P
C21M
C21M
C21M
C21P
C21P
C21P
C22M
C22M
C22M
C22P
C22P
C22P
TESTO1

□
□
□
Connect
Connect
Connect
Connect

to
to
to
to

AGNDDUM1/2
AGNDDUM1/2
AGNDDUM1/2
AGNDDUM1/2

□
□
□
□
□

BUMP

Top View

□
□

Connect to GNDDUM1
Connect to GNDDUM1
Open
Open

□
□
□
□
□

Open
Open
Open
Open
Open

□
□
□
□
□
□
□
□
□

Open
Open
Open
Open
Open
Open
Open
Open
Open
Connect
Connect
Connect
Connect
Connect

Chip

to
to
to
to
to

GNDDUM3
GNDDUM3
GNDDUM3
GNDDUM3
GNDDUM3

□
□

30um_Space

□
□

Connect
Connect
Connect
Connect

to
to
to
to

GNDDUM3
IOVCCDUM1/GNDDUM3
IOVCCDUM1/GNDDUM3
IOVCCDUM1/GNDDUM3

VCOM
Glass substrate

G427
G429
G431
VGLDMY3

30um
1
VCOM

□
□

Open
Open
30um
□
□

30um_Space

□
□
□
□

TESTO14
S1
S2
S3
S4
S5

Note: When using same glass substrate for the R61517 and
the R61509V, make sure that the R61517's VCOMA and
VCOMB for VCOM drive mode are same polarity.
The R61509V does not have VCOM output pin on the output
side (the area is just flat surface). When supplying voltage to
panel from four corners of it, draw wires from VCOM pins on the
I/O side.
□
□
□ Open

□
□
□
□
□
□
□

S356
S357
S358
S359
S360
TESTO13
TESTO12
TESTO11
TESTO10

840um
□
□
□
□
□
□
□
□
□

□
□

TESTO9
TESTO8
TESTO7
TESTO6
S361
S362
S363
S364
S365

Open
Open

□
□
□
□

30um_Space

□
□

S716
S717
S718
S719
S720
TESTO5

30um

VCOM

30um
□
□

30um_Space
□

□

□
□
□
□
□

□
□
□
□
□
□
□
□

VGLDMY2
G432
G430
G428

Open
Open
Open
Open
Open

Open

□
□

FPC

DUMMYR4
DUMMYR3
TESTO15
VGLDMY4
G1
G3
G5
G7
G9

G10
G8
G6
G4
G2
VGLDMY1
TESTO4
TESTO3
TESTO2

R61509V

Target Spec

GRAM Address Map

GS=0 GS=1

S720

S719

S718

S717

S716

S715

S714

S713

S712

S711

S710

・・・・・

S709

S12

S11

S10

S9

S8

S7

S6

S5

S4

S3

S2

S/G pin

S1

Table 11 GRAM address and display position on the panel (SS = 0, BGR = 0)

WD[17:0]

WD[17:0]

WD[17:0]

WD[17:0]

・・・・・

WD[17:0]

WD[17:0]

WD[17:0]

WD[17:0]

G1

G432

h00000

h00001

h00002

h00003

・・・・・

h000EC

h000ED

h000EE

h000EF

G2

G431

h00100

h00101

h00102

h00103

・・・・・

h001EC

h001ED

h001EE

h001EF

G3

G430

h00200

h00201

h00202

h00203

・・・・・

h002EC

h002ED

h002EE

h002EF

G4

G429

h00300

h00301

h00302

h00303

・・・・・

h003EC

h003ED

h003EE

h003EF

G5

G428

h00400

h00401

h00402

h00403

・・・・・

h004EC

h004ED

h004EE

h004EF

G6

G427

h00500

h00501

h00502

h00503

・・・・・

h005EC

h005ED

h005EE

h005EF

G7

G426

h00600

h00601

h00602

h00603

・・・・・

h006EC

h006ED

h006EE

h006EF

G8

G425

h00700

h00701

h00702

h00703

・・・・・

h007EC

h007ED

h007EE

h007EF

G9

G424

h00800

h00801

h00802

h00803

・・・・・

h008EC

h008ED

h008EE

h008EF

G10

G423

h00900

h00901

h00902

h00903

・・・・・

h009EC

h009ED

h009EE

h009EF

G11

G422

h00A00

h00A01

h00A02

h00A03

・・・・・

h00AEC

h00AED

h00AEE

h00AEF

G12

G421

h00B00

h00B01

h00B02

h00B03

・・・・・

h00BEC

h00BED

h00BEE

h00BEF

G13

G420

h00C00

h00C01

h00C02

h00C03

・・・・・

h00CEC

h00CED

h00CEE

h00CEF

G14

G419

h00D00

h00D01

h00D02

h00D03

・・・・・

h00DEC

h00DED

h00DEE

h00DEF

G15

G418

h00E00

h00E01

h00E02

h00E03

・・・・・

h00EEC

h00EED

h00EEE

h00EEF

G16

G417

h00F00

h00F01

h00F02

h00F03

・・・・・

h00FEC

h00FED

h00FEE

h00FEF

G17

G416

h01000

h01001

h01002

h01003

・・・・・

h010EC

h010ED

h010EE

h010EF

G18

G415

h01100

h01101

h01102

h01103

・・・・・

h011EC

h011ED

h011EE

h011EF

G19

G414

h01200

h01201

h01202

h01203

・・・・・

h012EC

h012ED

h012EE

h012EF

G20

G413

h01300

h01301

h01302

h01303

・・・・・

h013EC

h013ED

h013EE

h013EF

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

G417

G16

h1A000

h1A001

h1A002

h1A003

・・・・・

h1A0EC

h1A0ED

h1A0EE

h1A0EF

G418

G15

h1A100

h1A101

h1A102

h1A103

・・・・・

h1A1EC

h1A1ED

h1A1EE

h1A1EF

G419

G14

h1A200

h1A201

h1A202

h1A203

・・・・・

h1A2EC

h1A2ED

h1A2EE

h1A2EF

G420

G13

h1A300

h1A301

h1A302

h1A303

・・・・・

h1A3EC

h1A3ED

h1A3EE

h1A3EF

G421

G12

h1A400

h1A401

h1A402

h1A403

・・・・・

h1A4EC

h1A4ED

h1A4EE

h1A4EF

G422

G11

h1A500

h1A501

h1A502

h1A503

・・・・・

h1A5EC

h1A5ED

h1A5EE

h1A5EF

G423

G10

h1A600

h1A601

h1A602

h1A603

・・・・・

h1A6EC

h1A6ED

h1A6EE

h1A6EF

G424

G9

h1A700

h1A701

h1A702

h1A703

・・・・・

h1A7EC

h1A7ED

h1A7EE

h1A7EF

G425

G8

h1A800

h1A801

h1A802

h1A803

・・・・・

h1A8EC

h1A8ED

h1A8EE

h1A8EF

G426

G7

h1A900

h1A901

h1A902

h1A903

・・・・・

h1A9EC

h1A9ED

h1A9EE

h1A9EF

G427

G6

h1AA00

h1AA01

h1AA02

h1AA03

・・・・・

h1AAEC

h1AAED

h1AAEE

h1AAEF

G428

G5

h1AB00

h1AB01

h1AB02

h1AB03

・・・・・

h1ABEC

h1ABED

h1ABEE

h1ABEF

G429

G4

h1AC00

h1AC01

h1AC02

h1AC03

・・・・・

h1ACEC

h1ACED

h1ACEE

h1ACEF

G430

G3

h1AD00

h1AD01

h1AD02

h1AD03

・・・・・

h1ADEC

h1ADED

h1ADEE

h1ADEF

G431

G2

h1AE00

h1AE01

h1AE02

h1AE03

・・・・・

h1AEEC

h1AEED

h1AEEE

h1AEEF

G432

G1

h1AF00

h1AF01

h1AF02

h1AF03

・・・・・

h1AFEC

h1AFED

h1AFEE

h1AFEF

Rev. 0.11 April 25, 2008, page 38 of 181

R61509V

Target Spec

GS=0 GS=1 WD[17:0]

S1

S3

S2

S4

S5

S6

S7

S8

S9

S10

S11

・・・・・

S12

S709

S710

S711

S712

S713

S714

S715

S716

S717

S718

S719

S/G pin

S720

Table 12 GRAM address and display position on the panel (SS = 1, BGR = 1)

WD[17:0]

WD[17:0]

WD[17:0]

・・・・・

WD[17:0]

WD[17:0]

WD[17:0]

WD[17:0]

G1

G432

h00000

h00001

h00002

h00003

・・・・・

h000EC

h000ED

h000EE

h000EF

G2

G431

h00100

h00101

h00102

h00103

・・・・・

h001EC

h001ED

h001EE

h001EF

G3

G430

h00200

h00201

h00202

h00203

・・・・・

h002EC

h002ED

h002EE

h002EF

G4

G429

h00300

h00301

h00302

h00303

・・・・・

h003EC

h003ED

h003EE

h003EF

G5

G428

h00400

h00401

h00402

h00403

・・・・・

h004EC

h004ED

h004EE

h004EF

G6

G427

h00500

h00501

h00502

h00503

・・・・・

h005EC

h005ED

h005EE

h005EF

G7

G426

h00600

h00601

h00602

h00603

・・・・・

h006EC

h006ED

h006EE

h006EF

G8

G425

h00700

h00701

h00702

h00703

・・・・・

h007EC

h007ED

h007EE

h007EF

G9

G424

h00800

h00801

h00802

h00803

・・・・・

h008EC

h008ED

h008EE

h008EF

G10 G423

h00900

h00901

h00902

h00903

・・・・・

h009EC

h009ED

h009EE

h009EF

G11 G422

h00A00

h00A01

h00A02

h00A03

・・・・・

h00AEC

h00AED

h00AEE

h00AEF

G12 G421

h00B00

h00B01

h00B02

h00B03

・・・・・

h00BEC

h00BED

h00BEE

h00BEF

G13 G420

h00C00

h00C01

h00C02

h00C03

・・・・・

h00CEC

h00CED

h00CEE

h00CEF

G14 G419

h00D00

h00D01

h00D02

h00D03

・・・・・

h00DEC

h00DED

h00DEE

h00DEF

G15 G418

h00E00

h00E01

h00E02

h00E03

・・・・・

h00EEC

h00EED

h00EEE

h00EEF

G16 G417

h00F00

h00F01

h00F02

h00F03

・・・・・

h00FEC

h00FED

h00FEE

h00FEF

G17 G416

h01000

h01001

h01002

h01003

・・・・・

h010EC

h010ED

h010EE

h010EF

G18 G415

h01100

h01101

h01102

h01103

・・・・・

h011EC

h011ED

h011EE

h011EF

G19 G414

h01200

h01201

h01202

h01203

・・・・・

h012EC

h012ED

h012EE

h012EF

G20 G413

h01300

h01301

h01302

h01303

・・・・・

h013EC

h013ED

h013EE

h013EF
:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

G417 G16

h1A000

h1A001

h1A002

h1A003

・・・・・

h1A0EC

h1A0ED

h1A0EE

h1A0EF

G418 G15

h1A100

h1A101

h1A102

h1A103

・・・・・

h1A1EC

h1A1ED

h1A1EE

h1A1EF

G419 G14

h1A200

h1A201

h1A202

h1A203

・・・・・

h1A2EC

h1A2ED

h1A2EE

h1A2EF

G420 G13

h1A300

h1A301

h1A302

h1A303

・・・・・

h1A3EC

h1A3ED

h1A3EE

h1A3EF

G421 G12

h1A400

h1A401

h1A402

h1A403

・・・・・

h1A4EC

h1A4ED

h1A4EE

h1A4EF

G422 G11

h1A500

h1A501

h1A502

h1A503

・・・・・

h1A5EC

h1A5ED

h1A5EE

h1A5EF

G423 G10

h1A600

h1A601

h1A602

h1A603

・・・・・

h1A6EC

h1A6ED

h1A6EE

h1A6EF

G424

G9

h1A700

h1A701

h1A702

h1A703

・・・・・

h1A7EC

h1A7ED

h1A7EE

h1A7EF

G425

G8

h1A800

h1A801

h1A802

h1A803

・・・・・

h1A8EC

h1A8ED

h1A8EE

h1A8EF

G426

G7

h1A900

h1A901

h1A902

h1A903

・・・・・

h1A9EC

h1A9ED

h1A9EE

h1A9EF

G427

G6

h1AA00

h1AA01

h1AA02

h1AA03

・・・・・

h1AAEC

h1AAED

h1AAEE

h1AAEF

G428

G5

h1AB00

h1AB01

h1AB02

h1AB03

・・・・・

h1ABEC

h1ABED

h1ABEE

h1ABEF

G429

G4

h1AC00

h1AC01

h1AC02

h1AC03

・・・・・

h1ACEC

h1ACED

h1ACEE

h1ACEF

G430

G3

h1AD00

h1AD01

h1AD02

h1AD03

・・・・・

h1ADEC

h1ADED

h1ADEE

h1ADEF

G431

G2

h1AE00

h1AE01

h1AE02

h1AE03

・・・・・

h1AEEC

h1AEED

h1AEEE

h1AEEF

G432

G1

h1AF00

h1AF01

h1AF02

h1AF03

・・・・・

h1AFEC

h1AFED

h1AFEE

h1AFEF

Rev. 0.11 April 25, 2008, page 39 of 181

R61509V

Target Spec

Instruction
Outline
The R61509V adopts 18-bit bus architecture in order to interface to high-performance microcomputer in
high speed. The R61509V starts internal processing after storing control information (18, 16, 9, 8, 1 bit(s)),
sent from the microcomputer, in the instruction register (IR) and the data register (DR). Since the internal
operation of the R61509V is controlled by the signals sent from the microcomputer, the register selection
signal (RS), the read/write signal (R/W), and the internal 16-bit data bus signals (IB15 ~ IB0) are called
instructions. The following are the kinds of instruction of the R61509V.
1.
2.
3.
4.

Specify index
Display control
Power management control
Set internal GRAM addresssss

5.
6.
7.
8.

Transfer data to and from the internal GRAM
Window address control
γ-correction
Panel Display Control

Normally, the data write instructions (5) are used the most frequently. The internal GRAM address is
updated automatically as data is written to the internal GRAM, which, in combination with the window
address function, contributes to minimizing data transfer and thereby lessens the load on the microcomputer.
The R61509V writes instructions consecutively by executing the instruction within the cycle when it is
written (instruction execution time: 0 cycle).
Instruction Data Format
As the following figure shows, the data bus used to transfer 16 instruction bits (IB[15:0]) is different
according to the data format of a selected interface. Make sure to transfer the instruction bits according to
the format of the selected interface.
The bits to which no instruction is assigned must be set to either “0” or “1” according to the following
register tables. When changing only one instruction bit setting, the setting values in other bits in the
register must be written.

Rev. 0.11 April 25, 2008, page 40 of 181

R61509V

Target Spec

Index (IR)
R/W

RS

IB15

IB14

IB13

IB12

IB11

W

0

0

0

0

0

0

IB10
ID
[10]

IB9
ID
[9]

IB8
ID
[8]

IB7
ID
[7]

IB6
ID
[6]

IB5
ID
[5]

IB4
ID
[4]

IB3
ID
[3]

IB2
ID
[2]

IB1
ID
[1]

IB0
ID
[0]

The index register specifies the indexes of control register or RAM control to be accessed. It is prohibited
to access registers and instruction bits to which no index register is assigned.
Display control
Device code read (R000h)
R/W
R

RS
1

IB15

IB14

IB13

IB12

IB11

IB10

1

0

1

1

0

1

IB9

IB8

IB7

IB6

IB5

IB4

IB3

IB2

IB1

IB0

0

1

0

0

0

0

1

0

0

1

The device code “B509”H is read out when this register is read forcibly.
Driver Output Control (R001h)
R/W

RS

IB15

IB14

IB13

IB12

IB11

IB10

IB9

IB8

IB7

IB6

IB5

IB4

IB3

IB2

IB1

IB0

R/W

1

0

0

0

0

0

SM

0

SS

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Default value

SS: Sets the shift direction of output from the source driver.
When SS = “0”, the source driver output shift from S1 to S720.
When SS = “1”, the source driver output shift from S720 to S1.
The combination of SS and BGR settings determines the RGB assignment to the source driver pins S1 ~
S720.
When SS = “0” and BGR = “0”, RGB dots are assigned one to one from S1 to S720.
When SS = “1” and BGR = “1”, RGB dots are assigned one to one from S720 to S1.
When changing the SS and BGR bits, RAM data must be rewritten.
SM: Controls the scan mode in combination with GS setting. See “ Scan mode setting”.

Rev. 0.11 April 25, 2008, page 41 of 181

R61509V

Target Spec

LCD Drive Wave Control (R002h)
R/W

RS

IB15

IB14

IB13

IB12

IB11

IB10

IB9

IB8

IB7

IB6

IB5

IB4

IB3

IB2

IB1

IB0

R/W

1

0

0

0

0

0

0

0

BC

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

IB3

IB2

IB1

IB0

AM

0

0

0

0

0

0

0

Default value

BC: Selects the liquid crystal drive waveform VCOM.
BC = 0: frame inversion waveform is selected.
BC = 1: line inversion waveform is selected.
Entry Mode (R003h)
R/W

RS

R/W

1

Default value

IB15 IB14 IB13 IB12 IB11 IB10

IB9

IB8

IB7

IB6

TRI

DF
M

0

BGR

0

0

0

0

OR
G

0

0

0

0

0

0

0

0

0

0

0

IB5

IB4

ID

ID

[1]

[0]

1

1

The entry mode registers include instruction bits for setting how to write data from the microcomputer to
the internal GRAM of the R61509V.
AM: Sets either horizontal or vertical direction in updating the address counter automatically as the
R61509V writes data to the internal GRAM.
AM = “0”, sets the horizontal direction.
AM = “1”, sets the vertical direction.
When specifying window address area, the data is written only within the area in the direction determined
by ID and AM bits.
ID[1:0]: Either increments (+1) or decrements (-1) the address counter (AC) automatically as the data is
written to the GRAM. The ID[0] bit sets either increment or decrement in horizontal direction (updates the
address AD[7:0]). The ID[1] bit sets either increment or decrement in vertical direction (updates the
address AD[8:16]). The AM bit sets either horizontal or vertical direction in updating RAM address
counter automatically when writing data to the internal RAM.
ORG: Moves the origin address according to the ID setting when a window address area is described. This
function is enabled when executing burst data transfer within the window address area.
ORG = 0: The origin address is not moved. In this case, specify the address to start write
operation according to the GRAM address map within the window address area.
ORG = 1: The origin address “h00000” is moved according to the ID[1:0] setting.
Notes: 1. When ORG = 1, the origin address can be set only at “h00000”.
2. In RAM read operation, make sure to set ORG = 0.

Rev. 0.11 April 25, 2008, page 42 of 181

R61509V

Target Spec

BGR: Reverses the order from RGB to BGR in writing 18-bit pixel data in the GRAM.
BGR = 0:
BGR = 1:

Write data in the order of RGB to the GRAM.
Reverse the order from RGB to BGR in writing data to the GRAM.

DFM: In combination with the TRI setting, DFM sets the format to develop 16-/8-bit data to 18-bit data
when using either 16- or 8-bit bus interface. Make sure to set DFM = 0 when not transferring data via 16bit or 8-bit interface. Set DFM in accordance with selected interface and image data format in RAM write
operation.
DFM=0: 18bpp (R:G:B = 6:6:6), DFM=1: 16bpp (R:G:B = 5:6:5)
TRI: Selects the format to transfer data bits via 16-bit or 8-bit interface.
In 8-bit interface operation,
TRI = 0: 16-bit RAM data is transferred in two transfers.
TRI = 1: 18-bit RAM data is transferred in three transfers.
In 16-bit bus interface operation,
TRI = 0: 16-bit RAM data is transferred in one transfer.
TRI = 1: 18-bit RAM data is transferred in two transfers.
Make sure TRI = 0 when not transferring data via 16- or 8-bit interface. Also, set TRI = 0 during read
operation.

Rev. 0.11 April 25, 2008, page 43 of 181

R61509V

Target Spec

Automatic Address Update (ORG = 0, AM, ID)
ID1-0 = 00
Horizontal: Decrement
Vertical: Decrement

ORG = 0
AM = 0
Horizontal

17'h00000

ID1-0 = 01
Horizontal: Increment
Vertical: Decrement

17'h00000

17'h00000

17'hAFEF

Note:

17'h00000

17'h00000

17'hAFEF

17'hAFEF

ID1-0 = 11
Horizontal: Increment
Vertical: Increment

17'hAFEF

17'hAFEF
17'h00000

17'h00000

AM = 1
Vertical

ID1-0 = 10
Horizontal: Decrement
Vertical: Increment

17'hAFEF
17'h00000

17'hAFEF

17'hAFEF

When writing data within the window address area with ORG = 0,
any address within the window address area can be set as the starting point of data write operation.

Automatic Address Update (ORG = 1, AM, ID)
ORG = 1
AM = 0
Horizontal

ID1-0 = 00
Horizontal: Decrement
Vertical: Decrement

ID1-0 = 01
Horizontal: Increment
Vertical: Decrement
17'h00000

17'h00000

ID1-0 = 11
Horizontal: Increment
Vertical: Increment

17'h00000

17'h00000
S

17'hAFEF

17'hAFEF

17'hAFEF
17'h00000

17'h00000

S

17'hAFEF
17'h00000

17'h00000
S

S

S
17'hAFEF

17'hAFEF

Notes:

S

S

S

AM = 1
Vertical

ID1-0 = 10
Horizontal: Decrement
Vertical: Increment

17'hAFEF

17'hAFEF

1. When ORG = 1, the address to start data write operation within the window address area is set
at either corner of the window address area (the positions of the S in the circle in the above figure).
2. When ORG = 1, make sure to set the address h00000 in the RAM address set register.
Setting other addresses is prohibited.

Figure 4 Automatic Address Update

Rev. 0.11 April 25, 2008, page 44 of 181

R61509V

Target Spec

Display Control 1 (R007h)
R/W

RS

R/W

1

Default

IB15 IB14 IB13 IB12 IB11 IB10
PTD
0
0
0
0
0
E
0

0

0

0

0

0

IB9
0
0

IB8
BAS
EE

IB7

IB6

IB5

IB4

IB3

IB2

IB1

IB0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

BASEE: Base image display enable bit.
BASEE = 0: No base image is displayed. The R61509V drives the LCD at non-lit display level or displays
partial images.
BASEE = 1: A base image is displayed.
PTDE: Partial display 1 enable bit.
PTDE=0: Partial display is turned off. Only a base image is displayed on the panel.
PTDE=1: Partial image is displayed. Set BASEE = 0 to turn off the base image.

Rev. 0.11 April 25, 2008, page 45 of 181

R61509V

Target Spec

Display Control 2 (R008h)
R/W

RS

R/W

1

IB15 IB14 IB13 IB12 IB11 IB10
FP
FP
FP
FP
FP
FP
[7]
[6]
[5]
[4]
[3]
[2]

Default

0

0

0

0

1

0

IB9
FP
[1]

IB8
FP
[0]

IB7
BP
[7]

IB6
BP
[6]

IB5
BP
[5]

IB4
BP
[4]

IB3
BP
[3]

IB2
BP
[2]

IB1
BP
[1]

IB0
BP
[0]

0

0

0

0

0

0

1

0

0

0

FP[7:0]: Sets the number of lines for front porch period (a blank period made after the end of display).
BP[7:0]: Sets the number of lines for back porch period (a blank period made before the beginning of
display).
In external display interface operation, a back porch (BP) period starts on the falling edge of the VSYNCX
signal and the display operation starts after the back porch period. After the front porch period, a blank
period continues until next VSYNCX input is detected.
Table 13
FP [7:0]
BP [7:0]

Number of front porch line

Number of back porch line

8’h00

Setting inhibited

Setting inhibited

8’h01

Setting inhibited

Setting inhibited

8’h02

Setting inhibited

2 lines

8’h03

3 lines

3 lines

8’h04

4 lines

4 lines

8’h05

5 lines

5 lines

8’h06

6 lines

6 lines

8’h07

7 lines

7 lines

8’h08

8 lines

8 lines

8’h09

9 lines

9 lines

8’h0A

10 lines

10 lines

8’h0B

11 lines

11 lines

8’h0C

12 lines

12 lines

8’h0D

13 lines

13 lines

8’h0E

14 lines

14 lines

8’h0F

15 lines

15 lines

:

:

:

8’h7F

127 lines

127 lines

8’h80

128 lines

128 lines

8’h81

Setting inhibited

Setting inhibited

:

:

:

8’hFF

Setting inhibited

Setting inhibited

Rev. 0.11 April 25, 2008, page 46 of 181

R61509V

Target Spec
VSYNCX

BP

Back porch

NL

Display Area

Front porch

FP

Note: The output timing to the panel is delayed by 2 line period
from the synchronous signal (VSYNCX) input.

Figure 5 Front and Back Porch Periods

Note on Setting BP and FP:
Set the BP and FP bits as follows in the following operation modes, respectively.
Table 14
BP ≥ 2 lines

FP ≥ 3 lines

FP + BP ≤ 256 lines

Rev. 0.11 April 25, 2008, page 47 of 181

R61509V

Target Spec

Display Control 3 (R009h)
R/W

RS

IB15 IB14 IB13 IB12 IB11 IB10

R/W

1

0

0

0

0

PTV

Default

0

0

0

0

0

IB9

IB8

IB7

IB6

IB5

IB4

IB3

IB2

IB1

IB0

PTS

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

PTS: Sets the source output level to drive non-display area. PTS also selects operation of grayscale
amplifier and step-up clock frequency.
Table 15
Source output in non-lit display area (Note)

PTS

Positive polarity

Negative polarity

Non-lit display area
Grayscale amplifier
in operation

Step-up clock frequency

0

V63

V0

V0 to V63

Register setting (DC0, DC1)

1

V63

V0

V0, V63

Register setting (DC0) x 1/2

Note: The power efficiency improved by halting grayscale amplifiers and slowing down the step-up clock

frequency can be obtained in non-display drive period.

PTV: Sets the VCOM output in non-lit display area. When PTV=1, frame inversion in non-lit display area
is selected.
Table 16
PTV

VCOM operation in non-lit display drive period

0

BC setting

1

Frame inversion

Rev. 0.11 April 25, 2008, page 48 of 181

R61509V

Target Spec

8 Color Control (R00Bh)
R/W

RS

IB15

IB14

IB13

IB12

IB11

IB10

IB9

IB8

IB7

IB6

IB5

IB4

IB3

IB2

IB1

IB0

W/R

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

COL

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Default value

COL: When COL = 1, the R61509V enters the eight-color display mode. RAM data rewrite operation is
not required when setting the eight-color display mode. Set the 8-color mode instruction according to the
8-color mode sequence.
The electrical potential of liquid crystal drive in 8-color display mode is V0/V63. Selecting frame inversion
is recommended to reduce power consumption.
Table 17
COL

Display Color

1’h0

262,144 colors

1’h 1

8 colors

Rev. 0.11 April 25, 2008, page 49 of 181

R61509V

Target Spec

External Display Interface Control 1 (R00Ch)
R/W RS
R/W

IB15 IB14 IB13 IB12 IB11 IB10 IB9

1

0

Default

0

ENC ENC ENC
[2]

[1]

[0]

0

0

0

IB8

IB7

IB6

0

0

0

RM

0

0

0

0

0

0

0

0

IB5

IB4

DM

DM

[1]

[0]

0

0

IB3

IB2

IB1

IB0

0

0

0

RIM

0

0

0

0

RIM: Sets the interface format when RGB interface is selected by RM and DM bits. Set RIM bit before
starting display operation via the external display interface. Do not change the setting while the R61509V
performs display operation.
Table 18
RIM

RGB interface operation

Color

0

18-bt RGB interface (1 transfer/pixel)

DB17-0

262,144

1

16-bit RGB interface (1 transfer / pixel)

DB17-13, 11-1

65536

Notes: 1: Instruction bits are set via system interface.
2: Transfer the RGB dot data one by one in synchronization with DOTCLK.

DM[1:0]: The DM[1:0] setting allows switching between internal clock operation mode and external
display interface operation mode. However, switching between the RGB interface operation and the
VSYNCX interface operation is prohibited.
Table 19 Display Interface
DM[1:0]

2’h0

Display Interface

Internal clock operations

2’h1

RGB interface

2’h2

VSYNC interface

2’h3

Setting inhibited

RM: Selects the interface for RAM access operation. RAM access is possible only via the interface
selected by the RM bit. Set RM = 1 when writing display data via RGB interface. When RM = 0, it is
possible to write data via system interface while performing display operation via RGB interface.
Table 20 RAM Access Interface
RM

RAM Access Interface

0

System interface/VSYNC interface

1

RGB interface

* Transfer instruction commands via clock synchronous serial interface.

Rev. 0.11 April 25, 2008, page 50 of 181

R61509V

Target Spec

ENC[2:0]: Sets the RAM write cycle via RGB interface.
Table 21
ENC[2:0]

RAM Write Cycle (frame periods)

3’h0

1 frame

3’h1

2 frames

3’h2

3 frames

3’h3

4 frames

3’h4

5 frames

3’h5

6 frames

3’h6

7 frames

3’h7

8 frames

Rev. 0.11 April 25, 2008, page 51 of 181

R61509V

Target Spec

External Display Interface Control 2 (R00Fh)
R/W

RS

IB15

IB14

IB13

IB12

IB11

IB10

IB9

IB8

IB7

IB6

IB5

R/W

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Default value

IB4

0

DPL: Sets the signal polarity of DOTCLK pin.
DPL = 0: input data on the rising edge of DOTCLK
DPL = 1: input data on the falling edge of DOTCLK
EPL: Sets the signal polarity of ENABLE pin.
EPL = 0: writes data DB17-0 when ENABLE = “0” and disables data write operation
when ENABLE = “1”.
EPL = 1: writes data DB17-0 when ENABLE = “1” and disables data write operation
when ENABLE = “0”.
HSPL: Sets the signal polarity of HSYNCX pin.
HSPL = 0: low active
HSPL = 1: high active
VSPL: Sets the signal polarity of VSYNCX pin.
VSPL = 0: low active
VSPL = 1: high active

Rev. 0.11 April 25, 2008, page 52 of 181

IB3

VSPL HSPL
0

IB2

IB1

IB0

0

EPL

DPL

0

0

0

R61509V

Target Spec

Panel Interface Control 1 (R010h)
R/W

RS

IB15 IB14 IB13 IB12 IB11 IB10

R/W

1

0

0

0

0

0

0

Default

0

0

0

0

0

0

IB9
DIV
I
[1]
0

IB8
DIV
I
[0]
0

IB7

IB6

IB5

IB4

IB3

IB2

IB1

IB0

0

0

0

RTNI
[4]

RTNI
[3]

RTNI
[2]

RTNI
[1]

RTNI
[0]

0

0

0

1

1

0

0

1

RTNI[4:0]: Sets 1H (line) period. This setting is valid when the R61509V’s display operation is
synchronized with internal clock signal.
Table 22 Clocks per Line (Internal Clock Operation)
RTNI[4:0]

Clocks per Line

RTNI[4:0]

Clocks per Line

5’h00-5’h0F Setting inhibited

5’h18

24 clocks

5’h10

16 clocks

5’h19

25 clocks

5’h11

17 clocks

5’h1A

26 clocks

5’h12

18 clocks

5’h1B

27 clocks

5’h13

19 clocks

5’h1C

28 clocks

5’h14

20 clocks

5’h1D

29 clocks

5’h15

21 clocks

5’h1E

30 clocks

5’h16

22 clocks

5’h1F

31 clocks

5’h17
23 clocks
Note: In Power Supply Instruction Setting, Deep Standby Exit Sequence and Sleep Mode Exit Sequence,
RTNI bit must be set at the “Initial instruction setting” state. See “Power Supply Setting Sequence”
and “Instruction Setting Sequence and Refresh Sequence”.

DIVI[1:0]: Sets the division ratio of the internal clock frequency. The R61509V’s internal operation is
synchronized with the frequency divided internal clock, which is set according to the division ratio
determined by DIVI[1:0] setting. The frame frequency can be changed by setting RTNI and DIVI bits.
When changing the number of lines to drive the LCD panel, adjust the frame frequency too. For details,
see Frame-Frequency Adjustment Function.
In RGB interface operation, the DIVI[1:0] setting has no effect.
Table 23 Division Ratio (Internal Operation)
DIVI[1:0]

Division Ratio

Internal Operation Clock Unit

2’h0

1/1

1 x OSC

2’h1

1/2

2 x OSC

2’h2

1/4

4 x OSC

2’h3

1/8

8 x OSC

Note: In Power Supply Instruction Setting, Deep Standby Exit Sequence and Sleep Mode Exit Sequence,
RTNI bit must be set at the “Initial instruction setting” state. See “Power Supply Setting Sequence”
and “Instruction Setting Sequence and Refresh Sequence”.

Rev. 0.11 April 25, 2008, page 53 of 181

R61509V

Target Spec

Frame Frequency Calculation
Frame frequency =

fosc
Clocks per line x division ratio x (line + BP + FP)

fosc : RC oscillation frequency
Line: Number of lines to drive the LCD (NL bits)
Division ratio: DIVI
Clocks per line: RTNI

Rev. 0.11 April 25, 2008, page 54 of 181

[Hz]

R61509V

Target Spec

Panel Interface Control 2 (R011h)
R/W
R/W

RS

IB15 IB14

IB13

IB12

IB11

1

0

0

0

0

0

Default

0

0

0

0

0

IB10

IB9

IB8

IB7

NOW NOW NOW
I[2]
I[1]
I[0]
0
0
1

IB6

IB5

IB4

IB3

0

0

0

0

0

0

0

0

0

0

IB2

IB1

NOWI[2:0]: Sets the non-overlap period of adjacent gate outputs. The setting is enabled when the
R61509V’s display operation is synchronized with internal clock signals.
Table 24
NOWI[2:0]

Non-overlap period

NOWI[2:0]

Non-overlap period

3'h0

0 (internal clock *see note)

3'h4

4 (internal clock *see note)

3'h1

1

3'h5

5

3'h2

2

3'h6

6

3'h3
Note:

3
3'h7
7
The internal clock is the frequency divided clock, which is set by DIVI[[1:0] bits.

SDTI[2:0]: Sets the source output delay period from the reference point. For the relationships between
gate interface signals, see Liquid Crystal Panel Interface Timing.
Table 25
SDTI[2:0]

Source output delay period

3’h0

0 clocks

3’h1

1 clock

3’h2

2 clocks

3’h3

3 clocks

3’h4

4 clocks

3’h5

5 clocks

3’h6

6 clocks

3’h7

7 clocks

Notes: 1. The number of clocks in the table setting is measured from the reference point.
2. 1 clock = (internal oscillation clock (OSC1) period) x (division ratio)
3. The reference point is the falling edge of gate output.

Rev. 0.11 April 25, 2008, page 55 of 181

IB0

SDTI SDTI SDTI
[2]
[1]
[0]
0
0
1

R61509V

Target Spec

Panel Interface Control 3 (R012h)
R/W

RS

R/W

1

Default value

IB15 IB14

IB12

IB11

0

0

IB13
0

0

0

0

0

0

0

0

IB10
IB9
IB8
VEQ VEQ VEQ
WI[2] WI[1] WI[0]
0

0

0

IB7

IB6

IB5

IB4

IB3

0

0

0

0

0

0

0

0

0

0

IB2
IB1
IB0
SEQ SEQ SEQ
WI[2] WI[1] WI[0]
0

0

VEQWI[2:0]: Sets VCOM equalize period. The VCOM equalize operation is executed from VCOM
alternating point defined by MCPI [2:0] for the period defined by VEQWI [2:0]. This function is disabled
when RGB interface is selected.
Table 26
VEQWI [2:0]

VCOM Equalize period

3’h0

0 clocks

3’h1

1 clock

3’h2

2 clocks

3’h3

3 clocks

3’h4

4 clocks

3’h5

5 clocks

3’h6

6 clocks

3’h7
7 clocks
Note: The clock is the frequency divided clock, which is set by DIVI[[1:0] bits.

㪭㪚㪦㪤㩷㫆㫌㫋㫇㫌㫋
㩷
1) VEQW [2:0]=0h

㪭㪜㪨㪮㪠㪲㪉㪑㪇㪴

㪭㪚㪦㪤㩷㫆㫌㫋㫇㫌㫋

㪭㪜㪨㪮㪠㪲㪉㪑㪇㪴
㪭㪚㪠㩷㫃㪼㫍㪼㫃㩷 㩷

㩷
㪞㪥㪛㩷㫃㪼㫍㪼㫃㩷
2) VEQWI [2:0] ≠0h

Figure 6

Rev. 0.11 April 25, 2008, page 56 of 181

0

R61509V

Target Spec

SEQWI[2:0]: Sets source equalize period. SEQWI setting is enabled only when the R61509V executes
display operation in synchronization with internal clock.
Table 27
SEQWI[2:0]

Source Equalize Period

3'h0

0 clocks

3'h1

1 clock

3'h2

2 clocks

3'h3

3 clocks

3'h4

4 clocks

3'h5

5 clocks

3'h6

6 clocks

3'h7
7 clocks
Note: The clock is the frequency divided clock, which is set by DIVI[[1:0] bits.

Rev. 0.11 April 25, 2008, page 57 of 181

R61509V

Target Spec

Panel Interface Control 4 (R013h)
R/W

RS

IB15 IB14 IB13 IB12 IB11 IB10

R/W

1

0

0

0

0

0

Default

0

0

0

0

0

IB9

IB8

IB7

IB6

IB5

IB4

IB3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

IB2

IB1
MC
MC
PI
PI[2]
[1]
0
0

IB0
MC
PI
[0]
1

MCPI: Defines VCOM alternating timing. This bit is enabled when displaying in synchronization with
internal clock. MCP cannot be used in RGB interface operation.
Table 28
MCPI [2:0]

VCOM alternating timing

3’h0

Setting inhibited

3’h1

1 clock

3’h2

2 clocks

3’h3

3 clocks

3’h4

4 clocks

3’h5

5 clocks

3’h6

6 clocks

3’h7
7 clocks
Note: The clock is the frequency divided clock, which is set by DIVI [1:0] bits.

Rev. 0.11 April 25, 2008, page 58 of 181

R61509V

Target Spec

Panel Interface Control 5 (R014h)
R/W

RS

IB15 IB14 IB13 IB12 IB11 IB10

R/W

1

0

0

0

0

0

Default

0

0

0

0

0

IB9

IB8

IB7

0

0

0

0

0

0

0

0

IB6
PC
DIV
H
[2]
1

IB5
PC
DIV
H
[1]
0

IB4
PC
DIV
H
[0]
1

IB3
0
0

IB2
PC
DIV
L
[2]
1

IB1
PC
DIV
L
[1]
0

IB0
PC
DIV
L
[0]
1

PCDIVH[2:0], PCDIVL[2:0]: When DM=1 and RGB I/F is selected, display operation is executed using
DOTCLKD. PCDIVH and PCDIVL define division ratio of DOTCLK to generate DOTCLKD.
PCDIVH is used to define number of DOTCLK in High period in units of one clock.
PCDIVL is used to define number of DOTCLK in Low period in units of one clock.
Make sure that PCDIVL=PCDIVH or PCDIVH-1.
Write PCDIVH and PCDIVL values so that DOTCLKD frequency is the closest to internal oscillation
clock frequency 678KHz.
For details, see “Setting Example of Display Control Clock in RGB Interface Operation”.
Table 29
PCDIVH[2:0]

Table 30
Number of DOTCLK
in High period

Number of DOTCLK
in Low period

PCDIVL[2:0]

3’h0

Setting inhibited

3’h0

Setting inhibited

3’h1

1 clock

3’h1

1 clock

3’h2

2 clocks

3’h2

2 clocks

3’h3

3 clocks

3’h3

3 clocks

3’h4

4 clocks

3’h4

4 clocks

3’h5

5 clocks

3’h5

5 clocks

3’h6

6 clocks

3’h6

6 clocks

3’h7

7 clocks

3’h7

7 clocks

Rev. 0.11 April 25, 2008, page 59 of 181

R61509V

Target Spec

Panel Interface Control 6 (R020h)
R/W

RS

IB15 IB14 IB13 IB12 IB11 IB10

R/W

1

0

0

0

0

0

0

Default

0

0

0

0

0

0

IB9
DIV
E[1]
0

IB8
DIV
E[0]
0

IB7

IB6

0

0]

0

0

IB5 IB4 IB3 IB2 IB1 IB0
RTN RTN RTN RTN RTN RTN
E[5] E[4] E[3] E[2] E[1] E[0]
0
1
1
0
0
1

DIVE[1:0]: Sets the division ratio of DOTCLK. The R61509V’s internal operation is synchronized with
the frequency-divided DOTCLK, the frequency of which is divided by the division ratio set by DIVE[1:0].
This setting is enabled while the R61509V’s display operation is synchronized with RGB interface signals.
Table 31 Division Ratio of DOTCLK (RGB interface operation)
DIVE[1:0]

Division ratio

2’h0

1/1

2’h1

1/2

2’h2

1/4

2’h3

1/8

Note: Clock frequency for internal operation = DOTCLK / (( DIVE x (PCDIVL + PCDIVH) ). For details, see

R014h.

Rev. 0.11 April 25, 2008, page 60 of 181

R61509V

Target Spec

RTNE[5:0]: Sets RTNE in combination with PCDIVH and PCDIVL to decide the number of DOTCLK in
1H (1 line) period according to the following formula. RTNE is enabled when RGB interface is selected.
DOTCLKD x RTNE (Number of clock) ≤ DOTCLK in 1H period.
Table 32 DOTCLKD in 1H period (RGB interface operation)
RTNE[5:0]

Clocks per
line period (1H)

RTNE[5:0]

Clocks per
line period (1H)

6'h00

Setting inhibited

6'h20

32 clocks

6'h01

Setting inhibited

6'h21

33 clocks

6'h02

Setting inhibited

6'h22

34 clocks

6'h03

Setting inhibited

6'h23

35 clocks

6'h04

Setting inhibited

6'h24

36 clocks

6'h05

Setting inhibited

6'h25

37 clocks

6'h06

Setting inhibited

6'h26

38 clocks

6'h07

Setting inhibited

6'h27

39 clocks

6'h08

Setting inhibited

6'h28

40 clocks

6'h09

Setting inhibited

6'h29

41 clocks

6'h0A

Setting inhibited

6'h2A

42 clocks

6'h0B

Setting inhibited

6'h2B

43 clocks

6'h0C

Setting inhibited

6'h2C

44 clocks

6'h0D

Setting inhibited

6'h2D

45 clocks

6'h0E

Setting inhibited

6'h2E

46 clocks

6'h0F

Setting inhibited

6'h2F

47 clocks

6'h10

16 clocks

6'h30

48 clocks

6'h11

17 clocks

6'h31

49 clocks

6'h12

18 clocks

6'h32

50 clocks

6'h13

19 clocks

6'h33

51 clocks

6'h14

20 clocks

6'h34

52 clocks

6'h15

21 clocks

6'h35

53 clocks

6'h16

22 clocks

6'h36

54 clocks

6'h17

23 clocks

6'h37

55 clocks

6'h18

24 clocks

6'h38

56 clocks

6'h19

25 clocks

6'h39

57 clocks

6'h1A

26 clocks

6'h3A

58 clocks

6'h1B

27 clocks

6'h3B

59 clocks

6'h1C

28 clocks

6'h3C

60 clocks

6'h1D

29 clocks

6'h3D

61 clocks

6'h1E

30 clocks

6'h3E

62 clocks

6'h1F

31 clocks

6'h3F

63 clocks

Rev. 0.11 April 25, 2008, page 61 of 181

R61509V

Target Spec

Panel Interface Control 7 (R021h)
R/W

RS

R/W

1

Default

IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7
NOW NOW NOW
0
0
0
0
0
0
E[2] E[1] E[0]
0
0
0
0
0
0
0
1
0

IB6

IB5

IB4

IB3

0

0

0

0

0

0

0

0

IB2 IB1 IB0
SDTE SDTE SDTE
[2]
[1]
[0]
0
0
1

NOWE[2:0]: Sets the non-overlap period of adjacent gate outputs. NOWE is enabled when RGB interface
is selected.
Table 33
NOWE[2:0] Non-overlap period
3’h0

0 clocks

3’h1

1 clock

3’h2

2 clocks

3’h3

3 clocks

3’h4

4 clocks

3’h5

5 clocks

3’h6

6 clocks

3’h7
Note:

7 clocks
1 clock = (number of data transfer/pixel) x DIVE (division ratio) x (PCDIVL + PCDIVH) [DOTCLK]

SDTE[2:0]: Sets the source output delay period from the reference point when the R61509V’s display
operation is synchronized with DOTCLK (DM = 2’h1). For the relationships between signals, see Liquid
Crystal Panel Interface Timing.
Table 34
SDTE[2:0]

Source output delay period

3’h0

0 clocks

3’h1

1 clock

3’h2

2 clocks

3’h3

3 clocks

3’h4

4 clocks

3’h5

5 clocks

3’h6

6 clocks

3’h7

7 clocks

Notes: 1. The number of clocks in the table setting is measured from the reference point.
2. 1 clock = DOTCLKD (when pixel data is transferred in one- transfer)
3. The reference point is falling edge of gate control signals.

Rev. 0.11 April 25, 2008, page 62 of 181

R61509V

Target Spec

Panel Interface Control 8 (R022h)
R/W

RS

R/W

1

Default

IB15 IB14 IB13 IB12 IB11 IB10
0

0

0

0

0
0

0
0

IB9

IB8

IB7

IB6

IB5

IB4

IB3

0

0

0

0

0

VEQ VEQ VEQ
WE WE WE

0
0

[2]

[1]

[0]

0

0

0

0

0

0

0

0

IB2

IB1

IB0

SEQ SEQ SEQ
WE WE WE
[2]

[1]

[0]

0

0

0

VEQWE[2:0]: Sets low power VCOM drive period. The setting is enabled when RGB interface is
selected.
Table 35
VEQWE[2:0]

Source output delay period

VEQWE[2:0]

Source output delay period

3’h0

0 clocks (*see Notes)

3’h1

1 clock

3’h5

5 clocks

3’h2

2 clocks

3’h6

6 clocks

3’h4

4 clocks

3’h3
3 clocks
3’h7
7 clocks
Notes: 1. 1 clock = (Number of data transfer/pixel) x DIVE (division ratio) x (PCDIVL + PCDIVH)) [DOTCLK]
2. The number of clocks is measured from the reference point. The reference point is the
alternating position of VCOM, which is set by SDTE bits.

㪭㪚㪦㪤㩷㫆㫌㫋㫇㫌㫋
㩷
1) VEQW [2:0]=0h

㪭㪜㪨㪮㪠㪲㪉㪑㪇㪴

㪭㪚㪦㪤㩷㫆㫌㫋㫇㫌㫋

㪭㪜㪨㪮㪠㪲㪉㪑㪇㪴
㪭㪚㪠㩷㫃㪼㫍㪼㫃㩷 㩷

㩷
㪞㪥㪛㩷㫃㪼㫍㪼㫃㩷
2) VEQWI [2:0] ≠0h

Figure 7

Rev. 0.11 April 25, 2008, page 63 of 181

R61509V

Target Spec

SEQWE[2:0]: Sets source equalize period. SEQWE setting is enabled when the R61509V executes
display operation via RGB interface.
Table 36
SEQWE[2:0]

Source Equalize Period

3'h0

0 clocks

3'h1

1 clock

3'h2

2 clocks

3'h3

3 clocks

3'h4

4 clocks

3'h5

5 clocks

3'h6

6 clocks

3'h7

7 clocks

Note: 1 clock = (number of data transfer/pixel) x DIVE(Division ratio) x (PCDIVL + PCDIVH))

Rev. 0.11 April 25, 2008, page 64 of 181

[DOTCLK]

R61509V

Target Spec

Panel Interface Control 9 (R023h)
R/W

RS

IB15 IB14 IB13 IB12 IB11 IB10

R/W

1

0

0

0

0

0

Default

0

0

0

0

0

IB9

IB8

IB7

IB6

IB5

IB4

IB3

IB2

IB1

IB0

0

0

0

0

0

0

0

0

MC
PE
[2]

MC
PE
[1]

MC
PE
[0]

0

0

0

0

0

0

0

0

0

0

1

MCPE [2:0]: Specifies VCOM alternating point. MCPE is enabled when RGB interface is selected.

Table 37
MCPE [2:0]

VCOM alternating point

3’h0

Setting inhibited

3’h1

1 clock

3’h2

2 clocks

3’h3

3 clocks

3’h4

4 clocks

3’h5

5 clocks

3’h6

6 clocks

3’h7

7 clocks

Note: 1 clock = (number of data transfer/pixel) x DIVE(Division ratio) x (PCDIVL + PCDIVH))

Rev. 0.11 April 25, 2008, page 65 of 181

[DOTCLK]

R61509V

Target Spec

Frame Marker Control (R090h)
R/W

RS

R/W

1

IB15 IB14 IB13 IB12 IB11 IB10

Default

FM
KM

FMI

FMI

FMI

[2]

[1]

[0]

0

0

0

0

IB9

0

0

0

0

0

0

IB8

IB7

IB6

IB5

IB4

IB3

IB2

IB1

IB0

FMP FMP FMP FMP FMP FMP FMP FMP FMP
[8]

[7]

[6]

[5]

[4]

[3]

[2]

[1]

[0]

0

0

0

0

0

0

0

0

0

FMI[2:0]: Sets FMARK output interval by FMI register setting according to the update period of display
data and transfer rate. Set FMKM = 1 if FMARK signal is output from FMARK pin. See “FMARK
Interface” for detail.
Table 38
FMI[2]

FMI[1]

FMI[0]

Output interval

0

0

0

1 frame

0

0

1

2 frames

0

1

1

4 frames

1

0

1

Other settings

6 frames
Setting inhibited

FMP[8:0]: Sets the output position of frame synchronous signal (frame marker). A pulse (FMARK) is
output by starting from back porch during a 1H period when FMP[8:0] = 9’h000 (high active, amplitude:
IOVCC1-GND). FMP[8:0] is used as a trigger signal for write operation in synchronization with frame.
Setting range: 9’h000 ≤ FMP ≤ BP + NL + FP
For details, see “FMARK Interface”.
Table 39
FMP[8:0]

FMARK output position

9’h000

0

9’h001

1

9’h002

2

:
9’h1BE

446

9’h1BF

447

9’h1C0 ~ 9’h1FF

Setting inhibited

Rev. 0.11 April 25, 2008, page 66 of 181

R61509V

Target Spec

Power Control
Power Control 1 (R100h)
R/W
R/W

RS

IB15 IB14 IB13 IB12 IB11 IB10

1

0

0

0

0

0

Default

0

0

0

0

0

IB9

IB8

BT

BT

BT

[2]

[1]

[0]

0

1

1

IB7

IB6

0

0

0

0

IB5

IB4

AP

AP

[1]

[0]

1

1

IB3

IB2

IB1

IB0

0

DST
B

0

0

0

0

0

0

DSTB: When DSTB = 1, the R61509V enters the shut down mode. In shut down mode, the internal logic
power supply is turned off to reduce power consumption. The GRAM data and instruction setting are not
maintained when the R61509V is in the shut down mode. Set the instruction again after the shut down
mode is exited. GND level is outputted to the panel in the shut down mode.
AP[1:0]: Adjusts the constant current in the operational amplifier circuit in the LCD power supply circuit.
The larger constant current, the better the drivability of the LCD, but it also increases the current
consumption. Adjust the constant current taking the trade-off between the display quality and the current
consumption into account. In no-display period, set AP[1:0]=2’h0 to halt operational amplifiers and stepup circuits to reduce power consumption.
Table 40 Constant Current in Operational Amplifiers
AP[1:0]

Electricity in LCD drive power supply amplifiers

2’h0

Operational amplifiers and step-up circuits halt

2’h1

0.5

2’h2

0.75

2’h3
1
Note: The values in the table represent the ratios of currents in respective settings to the current when
AP[1:0]=2’h3.

Rev. 0.11 April 25, 2008, page 67 of 181

R61509V

Target Spec

BT[2:0]: Sets the factor used in the step-up circuits. Select the optimal step-up factor for the operating
voltage. To reduce power consumption, set a smaller factor.
Table 41 Step-Up Factor for Step-Up Circuits
BT[2:0]

DDVDH

VCL

3’h0

Setting inhibited

VGH

3’h1
3’h2

VCI1 x2
[x 2]

-VCI1
[x –1]

DDVDH x 3
[x 6]

3’h3
3’h4

-(VCI1+DDVDH x 2)
[x –5]
-(DDVDH x 2)
[x –4]
-(VCI1+DDVDH)
[x –3]

Setting inhibited

3’h5
3’h6

VGL

VCI1 x2
[x 2]

-VCI1
[x –1]

VCI1+DDVDH
x2
[x 5]

3’h7

-(VCI1+DDVDH x 2)
[x –5]
-(DDVDH x 2)
[x –4]
-(VCI1+DDVDH)
[x –3]

Notes: 1. The factors in the brackets show the step-up factors from VCI1.
2. Make sure DDVDH=max.6.0V, VGH=max.18.0V, VGL=max -13.5V, VGH-VGL=max. 28.0V, and
VCL=max -3.0V.

Rev. 0.11 April 25, 2008, page 68 of 181

R61509V

Target Spec

Power Control 2 (R101h)
R/W

RS

IB15 IB14 IB13 IB12 IB11 IB10

R/W

1

0

0

0

0

0

Default

0

0

0

0

0

IB9

IB8

DC1 DC1 DC1
[2]
[1]
[0]
0

1

0

IB7
0
0

IB6

IB5

IB4

DC0 DC0 DC0
[2]
[1]
[0]
1

0

0

IB3

IB2

IB1

IB0

0

VC
[2]

VC
[1]

VC
[0]

0

1

1

1

DC1 [2:0]: Sets step-up clock frequency for Step-up Circuit 2. The step-up clock is in synchronization
with internal clock.
Table 42 Step-up Frequency (Step-up Circuit 1)
DC1[2:0]

Step-up Circuit 2
Step-up frequency (fDCDC2)

3’h0

Step-up Circuit 2 halts

3’h1

Setting inhibited

3’h2

Line frequency / 4

3’h3

Line frequency / 8

3’h4

Line frequency / 16

3’h5

Setting inhibited

3’h6

Setting inhibited

3’h7

Setting inhibited

[Step-up clock frequency for Step-up Circuit 2]
Line frequency
2(N)
Internal clock frequency fOSC

Step-up clock frequency (fDCDC2) =

[Hz]

[Hz]
=
Number of clock per line x Division ratio x 2(N)
fosc

:

Number of clock per line :

Internal clock frequency
RTN*[4:0]

(RTNI or RTNE)

Division ratio

: DIV*[1:0] (DIVI or DIVE)

N

: DC1 [2:0]

Rev. 0.11 April 25, 2008, page 69 of 181

R61509V

Target Spec

DC0 [2:0]: Sets step-up clock frequency for Step-up Circuit 1. The step-up clock is in synchronization
with internal clock.
Table 43 Step-up Frequency (Step-up Circuit 2)
DC0[2:0]

Step-up Circuit 1
Step-up frequency (fDCDC1)

3’h0

Step-up circuit 1 halts

3’h1

Setting inhibited

3’h2

Setting inhibited

3’h3

Setting inhibited

3’h4

FOSC / 8

3’h5

FOSC / 16

3’h6

FOSC / 32

3’h7

Setting inhibited

Note 1: Make sure that fDCDC1 ≥ fDCDC2.
Note 2: Set DC0 and RTN* so that ((DCDC1 step-up frequency) ≤ (Line frequency). If not, step-up operation
may not be completed satisfactory.

[Step-up clock frequency for Step-up Circuit 1]
Step-up clock frequency (fDCDC1) =

Line frequency
2(N-1)
Internal clock frequency fOSC

[Hz]

[Hz]
=
Number of clock per line x Division ratio x 2(N-1)
fosc
Division ratio
N

: Internal clock frequency
: DIV*[1:0] ((DIVI or DIVE)
: DC1 [2:0]

The step-up frequencies synchronize with display operation. Clock count is reset at the beginning of 1H
period.

Rev. 0.11 April 25, 2008, page 70 of 181

R61509V

Target Spec

VC[2:0]: Sets VCI voltage level.
VC[2:0]

VCI1 voltage (Reference voltage for step-up operation)

3’h0

Setting inhibited

3’h1

0.94 x VCILVL

3’h2

0.89 x VCILVL

3’h3

Setting inhibited

3’h4

Setting inhibited

3’h5

0.76 x VCILVL

3’h6

Setting inhibited

3’h7

1.00 x VCILVL

Rev. 0.11 April 25, 2008, page 71 of 181

■DC0x Value and DCDC1 Step-up Clock Signal Waveform Example
DCDC1 performs charge operation and boost operation with the step-up clock generated from the timing generator.
The DCDC1 step-up clock frequency is adjusted by setting the division ratio of the reference clock frequency with DC0x register.
(To prevent flickering, the DCDC1 step-up clock signal is synchronized with the reference point of display operation in unit of lines.)
Note: Set DC0x and RTNx so that (DCDC1 step-up clock frequency) ≧ (line clock frequency)
  If the above restriction is not followed, the duty cycle during the boost period is less than 50%. As a result, the step-up circuit may not operate normally.
Example) DIVn=2'h0, RTN=5'h19 (reference clock period = 1/1 of internal operation clock, 1H period = 25 clocks)
Reference point

Reference point

1H period

Reference clock
Reference clock counter

5'h10 5'h00 5'h01 5'h02 5'h03 5'h04 5'h05 5'h06 5'h07 5'h08 5'h09 5'h0A 5'h0B 5'h0C 5'h0D 5'h0E 5'h0F 5'h10 5'h11 5'h12 5'h13 5'h14 5'h15 5'h16 5'h17 5'h18 5'h00 5'h01 5'h02 5'h03 5'h04 5'h05 5'h06 5'h07 5'h08
Synchronized with the reference point in unit of lines

Synchronized with the reference point in unit of lines

 a) DC0x=3'h4
8 clock cycles

    (1/8 of reference clock frequency)

8 clock cycles

8 clock cycles

DCDC1 step-up clock

 b) DC0x=3'h5
16 clock cycles

    (1/16 of reference clock frequency)

DCDC1 step-up clock

 c) DC0x=3'h6
32 clock cycles (As the number of clocks per 1H period is less than 32, the duty cycle of the step-up clock is not 50%.

    (1/32 of reference clock frequency)

DCDC1 step-up clock

Note: The duty cycle of the step-up clock should be close to 50%.

■DC1x Value and DCDC2 Step-up Clock Signal Waveform Example
DCDC2 performs charge operation and boost operation with the step-up clock generated from the timing generator.
The DCDC2 step-up clock frequency is adjusted by setting the division ratio of the reference clock frequency with DC1x register.
(To prevent flicker, the DCDC2 step-up clock signal is synchronized with the head of BP period in unit of lines.)
Example) BP=FP=8'h08, NL=7'h6B (front porch = back porch 8 lines, the number of lines to drive the LCD = 432 lines)
Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference
point

point

point

point

point

point

point

point

point

point

point

point

point

point

point

point

point

point

point

point

point

point

point

point

point

point

point

point

1H period 1H period 1H period

Reference clock
Line clock
Counter for the number of lines

'h1BE 'h1BF 'h000 'h001 'h002 'h003 'h004 'h005 'h006 'h007 'h008 'h009 'h00A 'h00B 'h00C 'h00D 'h00E 'h00F 'h010 'h011 'h012 'h013 'h014 'h015 'h016 'h017 'h018 'h019
Front Porch

Back Porch

Display Area

Synchronized with the head of BP period

 a) DC1x=3'h2
    (1/4 of line clock frequency)

4H cycles

4H cycles

4H cycles

4H cycles

DCDC2 step-up clock

 b) DC1x=3'h3
    (1/8 of line clock frequency)

8H cycles

8H cycles

DCDC2 step-up clock

 c) DC0x=3'h4
    (1/16 of line clock frequency)
DCDC2 step-up clock

16H cycles

R61509V

Target Spec

Power Control3 (R102h)
R/W

RS

R/W

1

Default

IB15 IB14 IB13 IB12 IB11 IB10
VRH VRH VRH VRH VRH
0
[4]
[3]
[2]
[1]
[0]
R/W R/W R/W R/W R/W
0

0

0

0

0

0

IB9
0

0

IB8 IB7
VCM
1
R
R/W R/W
1

1

IB6
0

0

IB5

IB4

PSON PON
W

W

0

0

IB3

IB2

IB1

IB0

0

0

0

0

0

0

0

0

Note: True values of PSON and PON are not read when instruction read is executed.

PON, PSON: Turn power supply ON. PON and PSON must be written to power supply ON and start the
internal power supply operation. Follow power supply sequencer to set PON and PSON bits.
VCMR: Selects either external resistance (VCOMR pin) or internal electronic volume (VCM[4:0]) to set
the electrical potential of VCOMH. The internal electronic volume is set by VCM bits
Table 44
VCMR0[0]

VCOMH Electrical Potential setting

0

VCOMR (externally supplied)

1

Internal electronic volume

VRH[3:0]: Sets the factor to generate VREG1OUT.
Table 45
VRH[4:0]

VREG1OUT

5’h00

Halt (Hiz)

5’h01-5’h0F

Setting inhibited

5’h10

VCIR x 1.600

5’h11

VCIR x 1.625

5’h12

VCIR x 1.650

5’h13

VCIR x 1.675

5’h14

VCIR x 1.700

5’h15

VCIR x 1.725

5’h16

VCIR x 1.750

5’h17

VCIR x 1.775

5’h18

VCIR x 1.800

5’h19

VCIR x 1.825

5’h1A

VCIR x 1.850

5’h1B

VCIR x 1.875

5’h1C

VCIR x 1.900

5’h1D

VCIR x 1.925

5’h1E

VCIR x 1.950

5’h1F

VCIR x 1.975

Rev. 0.11 April 25, 2008, page 73 of 181

Note: Write VC and VRH bits so that VREG1OUT ≤ DDVDH0.5V.

R61509V

Target Spec

Power Control 4 (R103h)
R/W
R/W

RS

IB15 IB14 IB13 IB12 IB11 IB10

1

0

0

0

Default

0

0

0

IB9

IB8

VDV

VDV

VDV

VDV

VDV

[4]

[3]

[2]

[1]

[0]

0

0

0

0

0

IB7

IB6

IB5

IB4

IB3

IB2

IB1

IB0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

VDV[4:0]: Selects the factor of VREG1OUT to set the amplitude of VCOM alternating voltage from 0.70
to 1.32.
Table 46
VDV[4:0]

VCOM amplitude

VDV[4:0]

VCOM amplitude

5’h0

VREG1OUT x 0.70

5’h10

VREG1OUT x 1.02

5’h1

VREG1OUT x 0.72

5’h11

VREG1OUT x 1.04

5’h2

VREG1OUT x 0.74

5’h12

VREG1OUT x 1.06

5’h3

VREG1OUT x 0.76

5’h13

VREG1OUT x 1.08

5’h4

VREG1OUT x 0.78

5’h14

VREG1OUT x 1.10

5’h5

VREG1OUT x 0.80

5’h15

VREG1OUT x 1.12

5’h6

VREG1OUT x 0.82

5’h16

VREG1OUT x 1.14

5’h7

VREG1OUT x 0.84

5’h17

VREG1OUT x 1.16

5’h8

VREG1OUT x 0.86

5’h18

VREG1OUT x 1.18

5’h9

VREG1OUT x 0.88

5’h19

VREG1OUT x 1.20

5’hA

VREG1OUT x 0.90

5’h1A

VREG1OUT x 1.22

5’hB

VREG1OUT x 0.92

5’h1B

VREG1OUT x 1.24

5’hC

VREG1OUT x 0.94

5’h1C

VREG1OUT x 1.26

5’hD

VREG1OUT x 0.96

5’h1D

VREG1OUT x 1.28

5’hE

VREG1OUT x 0.98

5’h1E

VREG1OUT x 1.30

5’hF

VREG1OUT x 1.00

5’h1F

VREG1OUT x 1.32

Note 1:
Note 2:

Set VDV[4:0] so that VCOM amplitude becomes 6.0V or less.
Set VCOML (VCOMH-VCOM amplitude) ≤ 0V.

Rev. 0.11 April 25, 2008, page 74 of 181

R61509V

Target Spec

RAM Access
RAM Address Set (Horizontal Address) (R200h)
RAM Address Set (Vertical Address) (R201h)
R/W
R
200
R
201

R/W

RS

IB15 IB14 IB13 IB12 IB11 IB10

IB9

IB8

IB7

IB6

IB5

IB4

IB3

IB2

IB1

IB0

AD

AD

AD

AD

AD

AD

AD

AD

[7]

[6]

[5]

[4]

[3]

[2]

[1]

[0]

1

0

0

0

0

0

0

0

0

Default

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

AD

AD

AD

AD

AD

AD

AD

AD

AD

[16]

[15]

[14]

[13]

[12]

[11]

[10]

[9]

[8]

0

0

0

0

0

0

0

0

0

R/W

1

0

0

0

0

0

0

0

Default

0

0

0

0

0

0

0

AD[16:0]: Sets a GRAM address in the AC (Address Counter) which is automatically updated according to
the combination of AM, ID[1:0] settings as the R61509V writes data to the internal GRAM. Data can be
written consecutively without resetting the address in the AC. The address is not automatically updated
after reading data from the internal GRAM.
Note 1: In RGB interface operation (RM = “1”), the address AD16-0 is set in the address counter every
frame on the falling edge of VSYNCX.
Note 2: In internal clock operation and VSYNC interface operation (RM = “0”), the address AD16-0 is set
when executing the instruction.

Table 47 GRAM Address setting range
AD[16:0]

GRAM Data Setting

17’h00000 – 17’h000EF

Bitmap data on the first line

17’h00100 – 17’h001EF

Bitmap data on the second line

17’h00200 – 17’h002EF

Bitmap data on the third line

17’h00300 – 17’h003EF

Bitmap data on the fourth line

17’h00400 – 17’h004EF

Bitmap data on the fifth line

:

:

17’h1AC00 – 17’h1ACEF

Bitmap data on the 429th line

17’h1AD00 – 17’h1ADEF

Bitmap data on the 430th line

17’h1AE00 – 17’h1AEEF

Bitmap data on the 431st line

17’h1AF00 – 17’h1AFEF

Bitmap data on the 432

Rev. 0.11 April 25, 2008, page 75 of 181

nd

line

R61509V

Target Spec

GRAM Data Write (R202h)
R/W

RS

W

1

RAM write data WD[17:0] is transferred via different data bus in different interface operation.

RGB
interface

RAM write data WD[17:0] is transferred via different data bus in different interface operation.

WD[17:0]: The R61509V develops data into 18 bits internally in write operation. The format to develop
data into 18 bits is different in different interface operation.
The GRAM data represents the grayscale level. The R61509V automatically updates the address according
to AM and ID[1:0] settings as it writes data in the GRAM. The DFM bit sets the format to develop 16-bit
data into the 18-bit data in 16-bit or 8-bit interface operation.
Note: When writing data in the GRAM via system interface while using the RGB interface, make sure
that write operations via two interfaces that do not conflict one another.

Rev. 0.11 April 25, 2008, page 76 of 181

R61509V

Target Spec

GRAM Data Read (R202h)
R/W

RS

R

1

RAM read data RD[17:0] is transferred via different data bus in different interface operation.

RD[17:0]: 18-bit data read from the GRAM. RAM read data RD[17:0] is transferred via different data bus
in different interface operation.
When the R61509V reads data from the GRAM to the microcomputer, the first word read immediately
after RAM address set is not outputted. Therefore, data on the data bus is invalid. Valid data is sent to the
data bus when the R61509V reads out the second and subsequent words.
When either 8-bit or 16-bit interface is selected, the LSBs of R and B dot data are not read out.
Note: This register is disabled in RGB interface operation

Set ID, AM,
HSA, HEA, VSA, and VEA bits
Set address N

First word

Second word

Dummy read (invalid data to DB17-0)
From GRAM to read data latch
Read (data of address N)
From read data latch to DB17-0

Set address M

First word

Dummy read (invalid data to DB17-0)
From GRAM to read data latch

Second word

Read (data of address M)
From read data latch to DB17-0

Read out data to the microcomputer

Figure 8 GRAM Read Sequence

Rev. 0.11 April 25, 2008, page 77 of 181

R61509V

Target Spec

NVM Data Read / NVM Data Write (R280h)

R
280h

R/W

RS

IB15 IB14 IB13 IB12 IB11 IB10

R/W

1

1

VC
M
[6]

VC
M
[5]

VC
M
[4]

VC
M
[3]

Default

1

1

1

1

1

IB9

IB8

IB7

IB6

IB5

IB4

IB3

IB2

IB1

IB0

VC
M
[2]

VC
M
[1]

VC
M
[0]

UID

UID

UID

UID

UID

UID

UID

UID

[7]

[6]

[5]

[4]

[3]

[2]

[1]

[0]

1

1

1

1

1

1

1

1

1

1

1

UID[3:0]: Used to temporarily store NVM data such as used identification code.
The write data is loaded to NVM data write register (NVDAT [7:0]) and then is written to NVM.
NVM data is loaded to UID[7:0] when power on reset, when shutdown mode is exited or when CALB=1 is
written. When NVM data write is not executed, UID[7:0] = 8’hFF (Default).
VCM[6:0]: Used to control VCOMH.
To use NVM data to adjust VCOMH, specify the VCOMH level using VCM [6:0], write the same value to
the NVM data write register NVDAT [14:8] (R6F1h) and then write the data to NVM.
NVM data is loaded to VCM[6:0] when power on reset, when shutdown mode is exited or when CALB=1
is written. When NVM data write is not executed, VCM[6:0]= 7’h7F (Default).

Rev. 0.11 April 25, 2008, page 78 of 181

R61509V

Target Spec

Table 48
VCM [6:0]

VCOMH voltage

VCM [6:0]

VCOMH voltage

7’h00

VREG1OUT x 0.492

7’h40

VREG1OUT x 0.748

7’h01

VREG1OUT x 0.496

7’h41

VREG1OUT x 0.752

7’h02

VREG1OUT x 0.500

7’h42

VREG1OUT x 0.756

7’h03

VREG1OUT x 0.504

7’h43

VREG1OUT x 0.760

7’h04

VREG1OUT x 0.508

7’h44

VREG1OUT x 0.764

7’h05

VREG1OUT x 0.512

7’h45

VREG1OUT x 0.768

7’h06

VREG1OUT x 0.516

7’h46

VREG1OUT x 0.772

7’h07

VREG1OUT x 0.520

7’h47

VREG1OUT x 0.776

7’h08

VREG1OUT x 0.524

7’h48

VREG1OUT x 0.780

7’h09

VREG1OUT x 0.528

7’h49

VREG1OUT x 0.784

7’h0A

VREG1OUT x 0.532

7’h4A

VREG1OUT x 0.788

7’h0B

VREG1OUT x 0.536

7’h4B

VREG1OUT x 0.792

7’h0C

VREG1OUT x 0.540

7’h4C

VREG1OUT x 0.796

7’h0D

VREG1OUT x 0.544

7’h4D

VREG1OUT x 0.800

7’h0E

VREG1OUT x 0.548

7’h4E

VREG1OUT x 0.804

7’h0F

VREG1OUT x 0.552

7’h4F

VREG1OUT x 0.808

7’h10

VREG1OUT x 0.556

7’h50

VREG1OUT x 0.812

7’h11

VREG1OUT x 0.560

7’h51

VREG1OUT x 0.816

7’h12

VREG1OUT x 0.564

7’h52

VREG1OUT x 0.820

7’h13

VREG1OUT x 0.568

7’h53

VREG1OUT x 0.824

7’h14

VREG1OUT x 0.572

7’h54

VREG1OUT x 0.828

7’h15

VREG1OUT x 0.576

7’h55

VREG1OUT x 0.832

7’h16

VREG1OUT x 0.580

7’h56

VREG1OUT x 0.836

7’h17

VREG1OUT x 0.584

7’h57

VREG1OUT x 0.840

7’h18

VREG1OUT x 0.588

7’h58

VREG1OUT x 0.844

7’h19

VREG1OUT x 0.592

7’h59

VREG1OUT x 0.848

7’h1A

VREG1OUT x 0.596

7’h5A

VREG1OUT x 0.852

7’h1B

VREG1OUT x 0.600

7’h5B

VREG1OUT x 0.856

7’h1C

VREG1OUT x 0.604

7’h5C

VREG1OUT x 0.860

7’h1D

VREG1OUT x 0.608

7’h5D

VREG1OUT x 0.864

7’h1E

VREG1OUT x 0.612

7’h5E

VREG1OUT x 0.868

7’h1F

VREG1OUT x 0.616

7’h5F

VREG1OUT x 0.872

7’h20

VREG1OUT x 0.620

7’h60

VREG1OUT x 0.876

7’h21

VREG1OUT x 0.624

7’h61

VREG1OUT x 0.880

7’h22

VREG1OUT x 0.628

7’h62

VREG1OUT x 0.884

7’h23

VREG1OUT x 0.632

7’h63

VREG1OUT x 0.888

7’h24

VREG1OUT x 0.636

7’h64

VREG1OUT x 0.892

7’h25

VREG1OUT x 0.640

7’h65

VREG1OUT x 0.896

7’h26

VREG1OUT x 0.644

7’h66

VREG1OUT x 0.900

7’h27

VREG1OUT x 0.648

7’h67

VREG1OUT x 0.904

7’h28

VREG1OUT x 0.652

7’h68

VREG1OUT x 0.908

7’h29

VREG1OUT x 0.656

7’h69

VREG1OUT x 0.912

7’h2A

VREG1OUT x 0.660

7’h6A

VREG1OUT x 0.916

7’h2B

VREG1OUT x 0.664

7’h6B

VREG1OUT x 0.920

7’h2C

VREG1OUT x 0.668

7’h6C

VREG1OUT x 0.924

7’h2D

VREG1OUT x 0.672

7’h6D

VREG1OUT x 0.928

7’h2E

VREG1OUT x 0.676

7’h6E

VREG1OUT x 0.932

7’h2F

VREG1OUT x 0.680

7’h6F

VREG1OUT x 0.936

7’h30

VREG1OUT x 0.684

7’h70

VREG1OUT x 0.940

7’h31

VREG1OUT x 0.688

7’h71

VREG1OUT x 0.944

7’h32

VREG1OUT x 0.692

7’h72

VREG1OUT x 0.948

7’h33

VREG1OUT x 0.696

7’h73

VREG1OUT x 0.952

7’h34

VREG1OUT x 0.700

7’h74

VREG1OUT x 0.956

7’h35

VREG1OUT x 0.704

7’h75

VREG1OUT x 0.960

7’h36

VREG1OUT x 0.708

7’h76

VREG1OUT x 0.964

7’h37

VREG1OUT x 0.712

7’h77

VREG1OUT x 0.968

Rev. 0.11 April 25, 2008, page 79 of 181

R61509V

Target Spec

7’h38

VREG1OUT x 0.716

7’h78

7’h39

VREG1OUT x 0.720

7’h79

VREG1OUT x 0.972
VREG1OUT x 0.976

7’h3A

VREG1OUT x 0.724

7’h7A

VREG1OUT x 0.980

7’h3B

VREG1OUT x 0.728

7’h7B

VREG1OUT x 0.984

7’h3C

VREG1OUT x 0.732

7’h7C

VREG1OUT x 0.988

7’h3D

VREG1OUT x 0.736

7’h7D

VREG1OUT x 0.992

7’h3E

VREG1OUT x 0.740

7’h7E

VREG1OUT x 0.996

7’h3F

VREG1OUT x 0.744

7’h7F

VREG1OUT x 1.000

Notes: 1. Make sure the VCOMH level is between 3.0V to (DDVDH-0.5)V.
2. The above setting is enabled when internal electronic volume is selected for setting the VCOMH
level.

Rev. 0.11 April 25, 2008, page 80 of 181

R61509V

Target Spec

Window Address Control
Window Horizontal RAM Address Start (R210h), Window Horizontal RAM Address End
(R211h)
Window Vertical RAM Address Start (R212h), Window Vertical RAM Address End (R213h)

R
210
R
211
R
212
R
213

R/W

RS

R/W

1

0

0

0

0

0

0

0

Default

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

Default

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

Default

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

Default

0

0

0

0

0

0

0

R/W

R/W

R/W

IB15 IB14 IB13 IB12 IB11 IB10

IB9

IB8

IB7
HSA
[7]
0
0
HEA
0
[7]
0
1
VSA VSA
[8]
[7]
0
0
VEA VEA
[8]
[7]
1
1
0

IB6
HSA
[6]
0
HEA
[6]
1
VSA
[6]
0
VEA
[6]
0

IB5
HSA
[5]
0
HEA
[5]
1
VSA
[5]
0
VEA
[5]
1

IB4
HSA
[4]
0
HEA
[4]
0
VSA
[4]
0
VEA
[4]
0

IB3
HSA
[3]
0
HEA
[3]
1
VSA
[3]
0
VEA
[3]
1

IB2
HSA
[2]
0
HEA
[2]
1
VSA
[2]
0
VEA
[2]
1

IB1
HSA
[1]
0
HEA
[1]
1
VSA
[1]
0
VEA
[1]
1

IB0
HSA
[0]
0
HEA
[0]
1
VSA
[0]
0
VEA
[0]
1

HSA[7:0], HEA[7:0]: HSA[7:0] and HEA[7:0] specify the start and end addresses of the window address
area in horizontal direction, respectively. See GRAM Address Map. HSA[7:0] and HEA[7:0] specify the
horizontal range to write data. Set HSA[7:0] and HEA[7:0] before starting RAM write operation. In
setting, make sure that 8’h00 ≤ HSA < HEA ≤ 8’hEF.
VSA[8:0], VEA[8:0]: VSA[8:0] and VEA[8:0] specify the start and end addresses of the window address
area in vertical direction, respectively. See GRAM Address Map. VSA[8:0] and VEA[8:0] specify the
vertical range to write data. Set VSA[8:0] and VEA[8:0] before starting RAM write operation. In setting,
make sure that 9’h000 ≤ VSA < VEA ≤ 9’h1AF.

17'h000-00
HSA

HEA

Window address area setting range:
HSA HEA 8'hEF,
8'h00
HEA - HSA 8'h4,
VSA VEA 9'h1AF
9'h000

VSA

Window address area

Notes: 1. Make an window address area within the GRAM address area.
2. Set an address within the window address area.

VEA

17'h1AF-EF

Figure 9 GRAM Address Map and Window Address Area

Rev. 0.11 April 25, 2008, page 81 of 181

R61509V

Target Spec

γ Control
γ Control 1 ~ 14 (R300h to R309h)

R/W
R
300

W

RS
1

Default
R
301

W

1

Default
R
302

R
303

R
304

R
305

W

R

R

R
308

R
309

0

0

PR0
P01
[3]

PR0
P01
[2]

IB8

PR0
P01
[1]

PR0
P01
[0]

IB5

0

0

0

0

0

0

IB4

IB1

IB0

PR0
PR0P PR0P PR0P
P00
00[4] 00[3] 00[2]
[1]

PR0
P00
[0]

0

0

0

0

0

0

0

0

PR0
P04
[3]

PR0
P04
[2]

PR0
P04
[1]

PR0
P04
[0]

PR0
P03
[3]

PR0
P03
[2]

PR0
P03
[1]

PR0
P03
[0]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

PR0
P06
[4]

PR0
P06
[3]

PR0
P06
[2]

PR0
P06
[1]

PR0
P06
[0]

0

0

0

0

0

0

0

0

IB3

0

IB2

0

0

PR0
PR0P PR0P PR0P
P02
02[4] 02[3] 02[2]
[1]
0

0

0

0

PR0
PR0P PR0P
P05
05[3] 05[2]
[1]

0
PR0
P02
[0]
0
PR0
P05
[0]

0

0

0

Default

0

0

0

0

0

0

0

0

0

PR0
P08
[4]

PR0
P08
[3]

PR0
P08
[2]

PR0
P08
[1]

PR0
P08
[0]

0

0

0

0

0

0

0

0

0

0

0

PI0
P2
[1]

PI0
P2
[0]

0

0

PI0
P1
[1]

PI0
P1
[0]

0

0

0

0

0

0

0

0

PR0
N00
[4]

PR0
N00
[3]

PR0
N00
[2]

PR0
N00
[1]

PR0
N00
[0]

W

1

0

0

Default

0

0

0

0
PI0
P3
[0]

0

0

0

0

PR0
PR0P PR0P PR0P
P07
07[4] 07[3] 07[2]
[1]
0

0
PR0
P07
[0]

0

0

0

0

PI0
P0
[1]

PI0
P0
[0]

1

0

0

PI0
P3
[1]

Default

0

0

0

0

0

0

0

0

0

PR0
N01
[4]

PR0
N01
[3]

PR0
N01
[2]

PR0
N01
[1]

PR0
N01
[0]

0

0

0

0

0

0

0

0

0

0

0

PR0
N02
[3]

PR0
N02
[2]

PR0
N02
[1]

PR0
N02
[0]

W

W

1

W

1

Default
307

0

PR0
P01
[4]

IB7

IB
6

IB9

1

Default
306

IB15 IB14 IB13 IB12 IB11 IB10

W

0

0

0

0

0

0

0

0

0

0

0

0

PR0
N04
[3]

PR0
N04
[2]

PR0
N04
[1]

PR0
N04
[0]

PR0
N03
[3]

PR0
N03
[2]

PR0
N03
[1]

PR0
N03
[0]

0

0

0

PR0
N02
[4]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

PR0
N06
[4]

PR0
N06
[3]

PR0
N06
[2]

PR0
N06
[1]

PR0
N06
[0]

0

0

0

0

PR0
N05
[3]

PR0
N05
[2]

PR0
N05
[1]

PR0
N05
[0]

0

0

0

0

0

0

0

0

0

PR0
N07
[4]

PR0
N07
[3]

PR0
N07
[2]

PR0
N07
[1]

PR0
N07
[0]

0

0

0

0
PI0
N0
[0]
0

1

0

0

0

Default

0

0

0

0

0

0

0

0

0

PR0
N08
[4]

PR0
N08
[3]

PR0
N08
[2]

PR0
N08
[1]

PR0
N08
[0]

0

0

0

0

0

0

0

0

0

0

PI0
N2
[0]

0

0

PI0
N1
[1]

PI0
N1
[0]

0

0

PI0
N0
[1]

0

0

0

0

0

0

0

0

W

1

0

0

Default

0

0

0

0
PI0
N3
[0]

0

0

PI0
N2
[1]

0

0

0

0

1

0

0

PI0
N3
[1]

Default

0

0

0

W

Rev. 0.11 April 25, 2008, page 82 of 181

R61509V

PR0P00[4:0]
PR0N00[4:0]
PR0P01[4:0]
PR0N01[4:0]
PR0P02[4:0]
PR0N02[4:0]
PR0P03[3:0]
PR0N03[3:0]
PR0P04[3:0]
PR0N04[3:0]
PR0P05[3:0]
PR0N05[3:0]
PR0P06[4:0]
PR0N06[4:0]
PR0P07[4:0]
PR0N07[4:0]
PR0P08[4:0]
PR0N08[4:0]
PI0P0~1[1:0]
PI0N0~1[1:0]
PI0P2~3[1:0]
PI0N2~3[1:0]

Target Spec

Adjusts reference level for positive polarity output R0
Adjusts reference level for negative polarity output R0
Adjusts reference level for positive polarity output R1
Adjusts reference level for negative polarity output R1
Adjusts reference level for positive polarity output R2
Adjusts reference level for negative polarity output R2
Adjusts reference level for positive polarity output R3
Adjusts reference level for negative polarity output R3
Adjusts reference level for positive polarity output R4
Adjusts reference level for negative polarity output R4
Adjusts reference level for positive polarity output R5
Adjusts reference level for negative polarity output R5
Adjusts reference level for positive polarity output R6
Adjusts reference level for negative polarity output R6
Adjusts reference level for positive polarity output R7
Adjusts reference level for negative polarity output R7
Adjusts reference level for positive polarity output R8
Adjusts reference level for negative polarity output R8
Adjusts interpolation level for positive polarity output (V2~V7)
Adjusts interpolation level for negative polarity output (V2~V7)
Adjusts interpolation level for positive polarity output (V56~V61)
Adjusts interpolation level for negative polarity output (V56~V61)

Rev. 0.11 April 25, 2008, page 83 of 181

R61509V

Target Spec

Base Image Display Control
Base Image Number of Line (R400h)
Base Image Display Control (R401h)
Base Image Vertical Scroll Control (R404h)
R/W
R
400

RS

401
R
404

IB9

NL

NL

NL

NL

NL

NL

[5]

[4]

[3]

[2]

[1]

[0]

0

1

1

0

1

0

1

0

0

0

0

0

Default

0

0

0

0

0

R/W

1

Default
R

IB15 IB14 IB13 IB12 IB11 IB10

R/W

R/W

GS

IB8

IB7

IB6

IB5

IB4

IB3

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

Default

0

0

0

0

0

0

0

IB2

IB1

SCN SCN SCN SCN SCN SCN
[3]
[2]
[1]
[0]
[5] [4]
0

0

IB0
0
0

NDL VLE REV

0

0

0

0

0

0

0

0

0

VL

VL

VL

VL

VL

VL

VL

VL

VL

[8]

[7]

[6]

[5]

[4]

[3]

[2]

[1]

[0]

0

0

0

0

0

0

0

0

0

GS: Sets the direction of scan by the gate driver in the range determined by SCN and NL bits. The gate
scan direction determined by setting GS = 0 is reversed by setting GS = 1. Set GS bit in combination with
SM bits.
NL[5:0]: Sets the number of lines to drive the LCD at an interval of 8 lines. The GRAM address mapping
is not affected by the number of lines set by NL[5:0]. The number of lines must be the same or more than
the number of lines necessary for the size of the liquid crystal panel.
SCN[5:0]: Specifies the gate line where the gate driver starts scan.
NDL: Sets the source output level in non-lit display area. Settings are different depending on panel type
(i.e. normally black or normally white).
Table 49
NDL

Non-lit display area
Positive

Negative

0

V63

V0

1
Note:

V0
V63
NDL setting is enabled in non-lit display area in partial display operation.

VLE: Vertical scroll display enable bit. When VLE = 1, the R61509V starts displaying the base image
from the line (of the physical display) determined by VL[8:0] bits. VL[8:0] sets the amount of scrolling,
which is the number of lines to shift the start line of the display from the first line of the physical display.
Note that the partial image display position is not affected by the base image scrolling.
The vertical scrolling is disabled in external display interface operation. In this case, make sure to set VLE
= “0”.

Rev. 0.11 April 25, 2008, page 84 of 181

R61509V

Target Spec

Table 50
VLE

Base image

0

Fixed

1

Scrolling enabled

REV: Grayscale level of a image is inverted when REV = 1. This enables the R61509V to display the
same image from the same set of data both on normally black and white panels.
Table 51
REV

Source Output Level in Display Area

GRAM Data

Positive Polarity

18’h00000

V63

:

:

0

Negative Polarity

V0
:

18’h3FFFFF

V0

V63

18’h00000

V0

V63

1

:

:

18’h3FFFFF

V63

:
V0

Note: Source output of non-lit display area is set by NDL bit during partial display mode.

VL[8:0]: Sets the amount of scrolling of the base image. The base image is scrolled in vertical direction
and displayed from the line which is determined by VL.
Table 52
VL [8:0]

Line per scrolling

9’h000

0 lines

9’h001

1 line

9’h002

2 lines

:

:

:

:

9’h1A0

431 lines

9’h1B0

432 lines

9’h1FF

Setting inhibited

Rev. 0.11 April 25, 2008, page 85 of 181

R61509V

Target Spec

Table 53
NL [5:0]
6’h00

Number of drive line

NL [5:0]

Number of drive line

Setting inhibited

6’h1C

6’h01

16 lines

6’h1D

240 lines

6’h02

24 lines

6’h1E

248 lines

6’h03

32 lines

6’h1F

256 lines

6’h04

40 lines

6’h20

264 lines

6’h05

48 lines

6’h21

272 lines

6’h06

56 lines

6’h22

280 lines

6’h07

64 lines

6’h23

288 lines

6’h08

72 lines

6’h24

296 lines

6’h09

80 lines

6’h25

304 lines

6’h0A

88 lines

6’h26

312 lines

6’h0B

96 lines

6’h27

320 lines

6’h0C

104 lines

6'h28

328 lines

6’h0D

112 lines

6'h29

336 lines

6’h0E

120 lines

6'h2A

344 lines

6’h0F

128 lines

6'h2B

352 lines

6’h10

136 lines

6'h2C

360 lines

6’h11

144 lines

6'h2D

368 lines

6’h12

152 lines

6'h2E

376 lines

6’h13

160 lines

6'h2F

384 lines

6’h14

168 lines

6'h30

392 lines

6’h15

176 lines

6'h31

400 lines

6’h16

184 lines

6'h32

408 lines

6’h17

192 lines

6'h33

416 lines

6’h18

200 lines

6'h34

424 lines

6’h19

208 lines

6'h35

432 lines

6’h1A

216 lines

6'h36-6'h3F

Setting inhibited

6’h1B

224 lines

Rev. 0.11 April 25, 2008, page 86 of 181

232 lines

R61509V

Target Spec

Table 54
Gate scan start position
SCN[5:0]

SM=0

SM=1

GS=0

GS=1

GS=0

GS=1

6’h00

G1

G(N)

G1

G(2N-432)

6’h01

G9

G(N+8)

G17

G(2N-416)

6’h02

G17

G(N+16)

G33

G(2N-400)

6’h03

G25

G(N+24)

G49

G(2N-384)

6’h04

G33

G(N+32)

G65

G(2N-368)

6’h05

G41

G(N+40)

G81

G(2N-352)

6’h06

G49

G(N+49)

G97

G(2N-336)

6’h07

G57

G(N+56)

G113

G(2N-320)

6’h08

G65

G(N+64)

G129

G(2N-304)

6’h09

G73

G(N+72)

G145

G(2N-288)

6’h0A

G81

G(N+80)

G161

G(2N-272)

6’h0B

G89

G(N+88)

G177

G(2N-256)

6’h0C

G97

G(N+96)

G193

G(2N-240)

6’h0D

G105

G(N+104)

G209

G(2N-224)

6’h0E

G113

G(N+112)

G225

G(2N-208)

6’h0F

G121

G(N+120)

G241

G(2N-192)

6’h10

G129

G(N+128)

G257

G(2N-176)

6’h11

G137

G(N+136)

G273

G(2N-160)

6’h12

G145

G(N+144)

G289

G(2N-144)

6’h13

G153

G(N+152)

G305

G(2N-128)

6’h14

G161

G(N+160)

G321

G(2N-112)

6’h15

G169

G(N+168)

G337

G(2N-96)

6’h16

G177

G(N+176)

G353

G(2N-80)

6’h17

G185

G(N+184)

G369

G(2N-64)

6’h18

G193

G(N+192)

G385

G(2N-48)

6’h19

G201

G(N+200)

G401

G(2N-32)

6’h1A

G209

G(N+208)

G417

G(2N-16)

6’h1B

G217

G(N+216)

G2

G(2N-431)

6’h1C

G225

G(N+224)

G18

G(2N-415)

6’h1D

G233

G(N+232)

G34

G(2N-399)

6’h1E

G241

G(N+240)

G50

G(2N-383)

6’h1F

G249

G(N+248)

G66

G(2N-367)

6’h20

G257

G(N+256)

G82

G(2N-351)

6’h21

G265

G(N+264)

G98

G(2N-335)

6’h22

G273

G(N+272)

G114

G(2N-319)

6’h23

G281

G(N+280)

G130

G(2N-303)

6’h24

G289

G(N+288)

G146

G(2N-287)

6’h25

G297

G(N+296)

G162

G(2N-271)

6’h26

G305

G(N+304)

G178

G(2N-255)

6’h27

G313

G(N+312)

G194

G(2N-239)

6’h28

G321

G(N+320)

G210

G(2N-223)

6’h29

G329

G(N+328)

G226

G(2N-207)

6’h2A

G337

G(N+337)

G242

G(2N-191)

6’h2B

G345

G(N+344)

G258

G(2N-175)

6’h2C

G353

G(N+352)

G274

G(2N-159)

6’h2D

G361

G(N+360)

G290

G(2N-143)

6’h2E

G369

G(N+368)

G306

G(2N-127)

6’h2F

G377

G(N+376)

G322

G(2N-111)

6’h30

G385

G(N+384)

G338

G(2N-95)

6’h31

G393

G(N+392)

G354

G(2N-79)

6’h32

G401

G(N+400)

G370

G(2N-63)

6’h33

G409

G(N+408)

G386

G(2N-47)

6’h34

G417

G(N+416)

G402

G(2N-31)

6’h35-6’h3F

Setting inhibited

Setting inhibited

Setting inhibited

Setting inhibited

Note: “N” is the number of line decided by NL [5:0] bit.
Make sure that (Gate scan start position + NL = Gate scan end position) does not exceed 432 lines.

Rev. 0.11 April 25, 2008, page 87 of 181

R61509V

Target Spec

Partial Display Control
Partial Image 1: Display Position (R500h), RAM Address 1 (Start Line Address) (R501h), RAM
Address 1 (End Line Address) (R502h)
R/W
R
500h
R
501h
R
502h

R/W

RS

IB15

IB14

IB13

IB12

IB11

IB10

IB9

IB8

IB7

IB6

IB5

IB4

IB3

IB2

IB1

IB0

PTD
P [8]

PTD
P [7]

PTD
P [6]

PTD
P [5]

PTD
P [4]

PTD
P [3]

PTD
P [2]

PTD
P [1]

PTD
P [0]

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

Default

0

0

0

0

0

0

0

R/W

1

0

0

0

0

0

0

0

Default

0

0

0

0

0

0

0

R/W

1

0

0

0

0

0

0

0

Default

0

0

0

0

0

0

0

PTS PTS PTS PTS PTS PTS PTS PTS PTS
A [8] A [7] A [6] A [5] A [4] A [3] A [2] A [1] A [0]
0
PTE
A
[8]
0

0
PTE
A
0[7]
0

0

0

0

0

0

0

0

PTE PTE PTE PTE PTE PTE PTE
A [6] A [5] A [4] A [3] A [2] A [1] A [0]
0

0

0

0

0

0

0

PTDP[8:0]: Sets the display position of partial image 1.
If PTDP0 = “9’h000”, the partial image 1 is displayed from the first line of the base image.
PTSA[8:0] and PTEA[8:0]: Sets the start line and end line addresses of the RAM area, respectively for the
partial image 1. In setting, make sure that PTSA ≤ PTEA.

Rev. 0.11 April 25, 2008, page 88 of 181

R61509V

Target Spec

Pin Control
Test Register (Software Reset) (R600h)
R/W RS
R/W

1

Default value

IB15 IB14 IB13 IB12 IB11 IB10 IB9

IB8

IB7

IB6

IB5

IB4

IB3

IB2

IB1

IB0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

TRSR

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

TRSR: When TRSR = 1, test registers are initialized.
When TRSR = 0, initialization of test registers halts.

Instruction Write
R600h TRSR="1"

Test registers are initialized (0.1ms or longer)

Instruction Write
R600h TRSR="0"
㩷

Figure 10

Rev. 0.11 April 25, 2008, page 89 of 181

R61509V

Target Spec

NVM Control
NVM Access Control 1 (R6F0h), NVM Access Control 2 (R6F1h), NVM Access Control 3
(R6F2h)
R/W
R
6F0h

R/W

RS
1

Default
R
6F1h

R/W

1

Default
R
6F2h

R/W

1

Default

IB15

IB14

0

0

IB13

IB12

0

0

0
0
0
NV
NV
NV
DAT DAT DAT
[15] [14] [13]
0
0
0

0
NV
DAT
[12]
0

IB11

IB10

IB9

IB8

IB7

IB6

IB5 IB4 IB3
IB2 IB1
IB0
EOP EOP
0
0
0
0
TE
0
0
0
0
[1]
[0]
0
0
0
0
0
0
0
0
0
0
0
0
NV
NV
NV
NV
NV
NV
NV
NV
NV
NV
NV
NV
DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT
[11] [10]
[9]
[8]
[7]
[6]
[5]
[4]]
[3]
[2]]
[1]
[0]
0
0
0
0
0
0
0
0
0
0
0
0
CAL
B

0

0

0

0

0

0

0

0

0

0

0

0

NVV
RF

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

EOP [1:0]: Writes data on R280h to NVM or halts the write operation.
Table 55
EOP[1:0]

NVM control

2’h0

Halt

2’h1

Write

2’h2

Setting disabled

2’h3

Erase

CALB: When CALB=1, all data in NVM is read out and written to internal registers. When finished,
CALB is set to 0.
TE: Enables internal NVM control bit (EOP). Follow the NVM control sequence when setting TE.
NVDAT[15:0]: To write data to NVM, write the data on NVDAT (R6F1h) first, and then start write
operation using EOP bit.
・ NVM data written to NVDAT[14:8] are loaded to R280h VCM [6:0] when power on reset is executed
or CALB=1.
・ NVM data written to NVDAT[7:0] are loaded to R280h UID [7:0] when power on reset is executed or
CALB=1.
See “NVM Control” for details of write operation and required settings.

Rev. 0.11 April 25, 2008, page 90 of 181

R61509V

Target Spec
Write “1” to NVDAT[15].

R6F1h

Write data to NVM

(NVM)

Read data from NVM

㪥㪭㩷
㪛㪘㪫㩷
㪲㪈㪌㪴㩷

㪥㪭㩷
㪛㪘㪫㩷
㪲㪈㪋㪴㩷

㪥㪭㩷
㪛㪘㪫㩷
㪲㪈㪉㪴㩷

㪥㪭
㪛㪘㪫
㪲㪈㪈㪴

㪥㪭
㪛㪘㪫
㪲㪈㪇㪴

㪥㪭
㪛㪘㪫
㪲㪐㪴

㪥㪭
㪛㪘㪫
㪲㪏㪴

㪥㪭
㪛㪘㪫
㪲㪎㪴

㪥㪭
㪛㪘㪫
㪲㪍㪴

㪥㪭
㪛㪘㪫
㪲㪌㪴

㪥㪭
㪛㪘㪫
㪲㪋㪴

㪥㪭㩷
㪛㪘㪫㩷
㪲㪊㪴㩷

㪥㪭㩷
㪛㪘㪫㩷
㪲㪉㪴㩷

㪥㪭㩷
㪛㪘㪫㩷
㪲㪈㪴㩷

㪥㪭
㪛㪘㪫
㪲㪇㪴

㸣㩷㸣 㸣 㸣 㸣 㸣 㸣 㸣 㸣 㸣 㸣 㸣 㸣 㸣 㸣 㸣
㩷

㪥㪭㪤㩷
㪲㪈㪌㪴㩷

㪥㪭㪤㩷
㪲㪈㪋㪴㩷

㩷

㪥㪭㪤㩷
㪲㪈㪊㪴㩷

㩷

㪥㪭㪤㩷
㪲㪈㪉㪴㩷

㩷

㪥㪭㪤
㪲㪈㪈㪴

㪥㪭㪤
㪲㪈㪇㪴

㪥㪭㪤
㪲㪐㪴

㪥㪭㪤
㪲㪏㪴

㪥㪭㪤
㪲㪎㪴

㪥㪭㪤
㪲㪍㪴

㪥㪭㪤
㪲㪌㪴

㪥㪭㪤
㪲㪋㪴

㪥㪭㪤㩷
㪲㪊㪴㩷

㩷

㪥㪭㪤㩷
㪲㪉㪴㩷

㩷

㪥㪭㪤㩷
㪲㪈㪴㩷

㪥㪭㪤
㪲㪇㪴

㸣㸣㸣 㸣㸣㸣㸣㸣㸣㸣㸣㸣㸣㸣㸣 㸣
㩷

R280h

㪥㪭㩷
㪛㪘㪫㩷
㪲㪈㪊㪴㩷

㪈㩷

㩷

㪭㪚㪤㩷
㪲㪍㪴㩷

㩷

㪭㪚㪤㩷
㪲㪌㪴㩷

㩷

㪭㪚㪤㩷
㪲㪋㪴㩷

㩷

㪭㪚㪤
㪲㪊㪴

㪭㪚㪤
㪲㪉㪴

㪭㪚㪤
㪲㪈㪴

㪭㪚㪤
㪲㪇㪴

㪬㪠㪛
㪲㪎㪴

㪬㪠㪛
㪲㪍㪴

㪬㪠㪛
㪲㪌㪴

㪬㪠㪛
㪲㪋㪴

㪬㪠㪛㩷
㪲㪊㪴㩷

㩷

㪬㪠㪛㩷
㪲㪉㪴㩷

㩷

㪬㪠㪛㩷
㪲㪈㪴㩷

Figure 11

NVVRF: Enables erase verify. This bit is used only in the NVM erase sequence. See “NVM Erase
Sequence” for details.

Rev. 0.11 April 25, 2008, page 91 of 181

㪬㪠㪛
㪲㪇㪴

●R61509V Instruction List
Major category

Index

Upper Index

0**

Rev 0.50 2008. 04. 22

Middle category

Index
Display Control

-
00*

000h

Device Code Read

001h

Driver Output Control

0

0

0

0

0

004h
005h
006h

Setting inhibited
Setting inhibited
Setting inhibited

007h

Display Control 1

0

0

0

008h

Display Control 2

FP[7]
(0)

FP[6]
(0)

009h

Display Control 3

0

00Ah

Setting inhibited

00Bh

8 Color Control
External Display Interface Control
1
Setting inhibited
External Display Interface Control
2

0

0

IB10

IB9

IB8

IB7

IB6

IB5

Lower Code
IB4
IB3

IB2

IB1

IB0

ID10

ID9

ID8

ID7

ID6

ID5

ID4

ID2

ID21

ID0

0

0

TRI
(0)
0
0
0

DFM
(0)
0
0
0

0

0
0

0

SM
(0)

0

SS
(0)

0

0

0

BC
(0)

0

0

0

0

0
0
0

0
0
0

0
0
0

0
0
0
BASEE
(0)

0

0

0

0

0

0

-

0

0

0

-

0

0

0

-

0
0
0

0
0
0

0
0
0

-

0

0

0

ID[1]
(1)
0
0
0

ID[0]
(1)
0
0
0

AM
(0)
0
0
0

0

0

0

0

0

0

0

0

0

0

0

-

FP[2]
(0)

FP[1]
(0)

FP[0]
(0)

BP[7]
(0)

BP[6]
(0)

BP[5]
(0)

BP[4]
(0)

BP[3]
(1)

BP[2]
(0)

BP[1]
(0)

BP[0]
(0)

-

0

0

0

0

0

0

0

0

0

0

0

0

-

0

0

0

PTS
(0)
0

0

0

PTV
(0)
0

0

0

0

0

0

0

0

0

0

-

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0
COL
(0)

ENC[1]
(0)
0

ENC[0]
(0)
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
HSPL
(0)

0
EPL
(0)

RIM
(0)
0
DPL
(0)

-

0

DM[0]
(0)
0
VSPL
(0)

0

0

DM[1]
(0)
0

0

0

RM
(0)
0

0

0

ENC[2]
(0)
0

DIVI[0]
(0)

0

0

0

RTNI[4]
(1)

RTNI[3]
(1)

RTNI[2]
(0)

RTNI[1]
(0)

RTNI[0]
(1)

-

0

0

0

0

0

SDTI[2]
(0)

SDTI[1]
(0)

SDTI[0]
(1)

-

SEQWI[1]
(0)

SEQWI[0]
(0)

-

MCPI[1]
(0)

MCPI[0]
(1)

0

Panel Interface Control 1

0

0

0

0

0

0

Panel Interface Control 2

0

0

0

0

0

NOWI[2]
(0)

NOWI[1]
(0)

NOWI[0]
(1)

VEQWI[1]
(0)

VEQWI[0]
(0)

ORG
(0)
0
0
0

0
0
0
0

0

012h

Panel Interface Control 3

0

0

0

0

0

VEQWI[2]
(0)

0

0

0

0

0

SEQWI[2]
(0)

013h

Panel Interface Control 4

0

0

0

0

0

0

0

0

0

0

0

0

0

MCPI[2]
(0)

014h

Panel Interface Control 5

0

0

0

0

0

0

0

0

0

014-01Fh

Setting inhibited

0

0

0

0

0

0

020h

Panel Interface Control 6

0

0

0

0

0

0

0
DIVE[0]
(0)

0

02*

0
DIVE[1]
(0)

Panel Interface
(External Clock)

021h

Panel Interface Control 7

0

0

0

0

0

NOWE[2]
(0)

NOWE[1]
(0)

NOWE[0]
(1)

0

VEQWE[2] VEQWE[1] VEQWE[0]
(0)
(0)
(0)

Panel Interface Control 8

0

0

0

0

0
0
0

PCDIVH[2] PCDIVH[1] PCDIVH[0]
(1)
(0)
(1)
0
0
0
RTNE[4]
0
0
(1)
0
0

0
0

0
0

0
0
RTNE[3]
(1)
0
0

PCDIVL[2] PCDIVL[1] PCDIVL[0]
(1)
(0)
(1)
0
0
0
RTNE[2]
RTNE[1]
RTNE[0]
(0)
(0)
(1)
SDTE[2]
(0)

SDTE[1]
(0)

SDTE[0]
(1)

SEQWE[2] SEQWE[1] SEQWE[0]
(0)
(0)
(0)
MCPE[2]
(0)

MCPE[1]
(0)

-

-

-

MCPE[0]
(1)

023h

Panel Interface Control 9

0

0

0

0

0

0

0

0

0

0

0

0

024h-08Fh

Setting inhibited

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

090h

Frame Marker Control

FMI[2]
(0)
0

FMI[1]
(0)
0

FMI[0]
(0)
0

0

0

0

0

FMP[6]
(0)
0

0

0

0

FMP[2]
(0)
0
DSTB
(0)

FMP[0]
(0)
0

0

FMP[4]
(0)
0
AP[0]
(1)

FMP[1]
(0)
0

0

FMP[5]
(0)
0
AP[1]
(1)

FMP[3]
(0)
0

0

0
BT[1]
(1)

FMP[7]
(0)
0

Power Control 1

0
BT[2]
(0)

FMP[8]
(0)
0
BT[0]
(1)

-

Setting inhibited

FMKM
(0)
0

0

0

-

DC1[2]
(0)

DC1[1]
(1)

DC1[0]
(0)

0

DC0[2]
(1)

DC0[1]
(0)

DC0[0]
(0)

0

VC[2]
(1)

VC[1]
(1)

VC[0]
(1)

-

0

PSON
(0)

PON
(0)

0

0

0

0

-

100h
101h
102h

0

Power Control 2

0

0

0

0

0

Power Control 3

VRH[4]
(0)

VRH[3]
(0)

VRH[2]
(0)

VRH[1]
(0)

VRH[0]
(0)

0

0

VCMR
(1)

VDV[3]
(0)
0

VDV[2]
(0)
0

VDV[1]
(0)
0

VDV[0]
(0)
0

103h

Power Control 4

0

0

0

104-1FFh

Setting inhibited
RAM Address Set
(Horizontal Address)
RAM Address Set
(Vertical Address)
GRAM Data Write/GRAM Data
Read
Setting inhibited
Window Horizontal RAM Address
Start
Window Horizontal RAM Address
End
Window Vertical RAM Address
Start

0

0

0

VDV[4]
(0)
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

AD[16]
(0)

20*

200h

RAM Read/Write

201h
202h
203-20Fh
210h
211h
212h

1

0

0

0

0

0

0

0

0

0

0

0
AD[7]
(0)

0
AD[6]
(0)

0
AD[5]
(0)

0
AD[4]
(0)

0
AD[3]
(0)

0
AD[2]
(0)

0
AD[1]
(0)

0
AD[0]
(0)

AD[15]
(0)

AD[14]
(0)

AD[13]
(0)

AD[12]
(0)

AD[11]
(0)

AD[10]
(0)

AD[9]
(0)

AD[8]
(0)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
HSA[5]
(0)

0
HSA[4]
(0)

0
HSA[3]
(0)

0
HSA[2]
(0)

0
HSA[1]
(0)

0
HSA[0]
(0)

-

HEA[6]
(1)

HEA[5]
(1)

HEA[4]
(0)

HEA[3]
(1)

HEA[2]
(1)

HEA[1]
(1)

HEA[0]
(1)

-

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

VSA[8]
(0)

VSA[7]
(0)

VSA[6]
(0)

VSA[5]
(0)

VSA[4]
(0)

VSA[3]
(0)

VSA[2]
(0)

VSA[1]
(0)

VSA[0]
(0)

-

0

VEA[8]
(1)

VEA[7]
(1)

VEA[6]
(0)

VEA[5]
(1)

VEA[4]
(0)

VEA[3]
(1)

VEA[2]
(1)

VEA[1]
(1)

VEA[0]
(1)

-

UID[7]
(1)
0

UID[6]
(1)
0

UID[5]
(1)
0

0

0

0

0

0

280h

NVM Data Read / NVM Data Write

1

281-2FFh

Setting inhibited

30*

300h

Gamma Control (1)

Gamma Control

301h

Gamma Control (2)

PR0P04[3] PR0P04[2] PR0P04[1] PR0P04[0] PR0P03[3] PR0P03[2] PR0P03[1] PR0P03[0]
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)

302h

Gamma Control (3)

0

0

0

PR0P06[4] PR0P06[3] PR0P06[2] PR0P06[1] PR0P06[0]
(0)
(0)
(0)
(0)
(0)

0

303h

Gamma Control (4)

0

0

0

PR0P08[4] PR0P08[3] PR0P08[2] PR0P08[1] PR0P08[0]
(0)
(0)
(0)
(0)
(0)

0

0

0

0

0

VCM[6]
(1)
0

VCM[5]
(1)
0

0

0

0

0

0

0

-

304h

Gamma Control (5)

0

0

PI0P3[1]
(0)

305h

Gamma Control (6)

0

0

0

VCM[4]
VCM[3]
VCM[2]
VCM[1]
VCM[0]
(1)
(1)
(1)
(1)
(1)
0
0
0
0
0
PR0P01[4] PR0P01[3] PR0P01[2] PR0P01[1] PR0P01[0]
(0)
(0)
(0)
(0)
(0)

PI0P3[0]
(0)

0

0

PI0P2[1]
(0)

PI0P2[0]
(0)

PR0N01[4] PR0N01[3] PR0N01[2] PR0N01[1] PR0N01[0]
(0)
(0)
(0)
(0)
(0)

PR0N04[3] PR0N04[2] PR0N04[1] PR0N04[0] PR0N03[3] PR0N03[2] PR0N03[1] PR0N03[0]
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)

UID[4]
UID[3]
UID[2]
UID[1]
UID[0]
(1)
(1)
(1)
(1)
(1)
0
0
0
0
0
PR0P00[4] PR0P00[3] PR0P00[2] PR0P00[1] PR0P00[0]
(0)
(0)
(0)
(0)
(0)

-

0

PR0P02[4] PR0P02[3] PR0P02[2] PR0P02[1] PR0P02[0]
(0)
(0)
(0)
(0)
(0)

-

0

0

PR0P05[3] PR0P05[2] PR0P05[1] PR0P05[0]
(0)
(0)
(0)
(0)

-

0

0

PR0P07[4] PR0P07[3] PR0P07[2] PR0P07[1] PR0P07[0]
(0)
(0)
(0)
(0)
(0)

-

0

0

PI0P1[1]
(0)

0

0

0

PR0N00[4] PR0N00[3] PR0N00[2] PR0N00[1] PR0N00[0]
(0)
(0)
(0)
(0)
(0)

-

PR0N02[4] PR0N02[3] PR0N02[2] PR0N02[1] PR0N02[0]
(0)
(0)
(0)
(0)
(0)

-

PR0N05[3] PR0N05[2] PR0N05[1] PR0N05[0]
(0)
(0)
(0)
(0)

-

PR0N07[4] PR0N07[3] PR0N07[2] PR0N07[1] PR0N07[0]
(0)
(0)
(0)
(0)
(0)

-

0

PI0P1[0]
(0)

0

306h

Gamma Control (7)

0

0

0

307h

Gamma Control (8)

0

0

0

PR0N06[4] PR0N06[3] PR0N06[2] PR0N06[1] PR0N06[0]
(0)
(0)
(0)
(0)
(0)

0

0

0

308h

Gamma Control (9)

0

0

0

PR0N08[4] PR0N08[3] PR0N08[2] PR0N08[1] PR0N08[0]
(0)
(0)
(0)
(0)
(0)

0

0

0

0

0

PI0N3[1]
(0)

PI0N3[0]
(0)

0

PI0N1[0]
(0)

0

GS
(0)

NL[5]
(1)

NL[4]
(1)

NL[3]
(0)

NL[2]
(1)

SCN[3]
(0)

SCN[2]
(0)

Setting inhibited

400h

Base Image Number of Line

-

HEA[7]
(1)

Setting inhibited

Gamma Control (10)

-

0
HSA[6]
(0)

Window Vertical RAM Address End

309h

-

0
HSA[7]
(0)

213h

30Ah-3FFh

-

-

RAM write data WD[17:0] / RAM read data RD [17:0] is transferred via different data bus in different interface operation.

214-27Fh

Base Image Display Control

0

FP[3]
(1)

011h

28*

0

FP[4]
(0)

010h

Window Address

0

Device Code
"B509h"

FP[5]
(0)

0
0
0

01*

21*

0

Note

BGR
(0)
0
0
0
PTDE
(0)

0

Panel Interface
(Internal Clock)

Power Control

ID3

ALMID1[7] ALMID1[6] ALMID1[5] ALMID1[4] ALMID1[3] ALMID1[2] ALMID1[1] ALMID1[0] ALMID0[7] ALMID0[6] ALMID0[5] ALMID0[4] ALMID0[3] ALMID0[2] ALMID0[1] ALMID0[0]
(1)
(0)
(1)
(1)
(0)
(1)
(0)
(1)
(0)
(0)
(0)
(0)
(1)
(0)
(0)
(1)

Entry Mode

Frame Marker Control 091-0FFh

4**

0

Upper Code
IB12
IB11

DIVI[1]
(0)

09*

Gamma Control

IB13

LCD Drive Waveform Control

022h

3**

IB14

003h

00Fh

RAM Access

IB15

002h

00D-00Eh

2**

Index

Display Control
in general

00Ch

1**

Minor category
Command

0

PI0N2[1]
(0)

PI0N2[0]
(0)

0

0

PI0N1[1]
(0)

NL[1]
(0)

NL[0]
(1)

0

0

SCN[5]
(0)

SCN[4]
(0)

0

0

PI0P0[1]
(0)

PI0P0[0]
(0)

-

-

0

PI0N0[1]
(0)

PI0N0[0]
(0)

SCN[1]
(0)

SCN[0]
(0)

0

-

VLE
(0)
0
VL[1]
(0)
0

REV
(0)
0
VL[0]
(0)
0

-

-

 

401h

Base Image Display Control

0

0

0

0

0

0

0

0

0

0

0

0

0

 

402h-403h

Setting inhibited

0

0

0

0

0

0

0

 

404h

Base Image Vertical Scroll Control

0

0

0

0

0

0

0

 

405-4FFh

Setting inhibited

0

0

0

0

0

0

0

0
VL[8]
(0)
0

0
VL[7]
(0)
0

0
VL[6]
(0)
0

0
VL[5]
(0)
0

0
VL[4]
(0)
0

0
VL[3]
(0)
0

NDL
(0)
0
VL[2]
(0)
0

500h

Partial Image 1: Display Position

0

0

0

0

0

0

0

PTDP[8]
(0)

PTDP[7]
(0)

PTDP[6]
(0)

PTDP[5]
(0)

PTDP[4]
(0)

PTDP[3]
(0)

PTDP[2]
(0)

PTDP[1]
(0)

PTDP[0]
(0)

-

501h

RAM Address 1 (Start Line
Address)

0

0

0

0

0

0

0

PTSA[8]
(0)

PTSA[7]
(0)

PTSA[6]
(0)

PTSA[5]
(0)

PTSA[4]
(0)

PTSA[3]
(0)

PTSA[2]
(0)

PTSA[1]
(0)

PTSA[0]
(0)

-

PTEA[7]
(0)

PTEA[6]
(0)

PTEA[5]
(0)

PTEA[4]
(0)

PTEA[3]
(0)

PTEA[2]
(0)

PTEA[1]
(0)

PTEA[0]
(0)

-

5**

Partial Display Control

 
6**

Pin Control

60*

 
 

 

6F*

NVM-I/F

502h

RAM Address 2 (End Line Address)

0

0

0

0

0

0

0

PTEA[8]
(0)

503h-5FFh

Setting inhibited

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

600h

Test Register (Software Reset)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

601-6EFh

Setting inhibited

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
EOP[0]
(0)

0

0

0
EOP[1]
(0)

0

NVM Access Control 1

0
CALB
(0)

0

6F0h

0
TE
(0)

0
TRSR
(0)
0

0

0

0

0

6F1h

NVM Access Control 2

6F2h

NVM Access Control 3

6F3-FFFh

Setting inhibited

NVDAT[15] NVDAT[14] NVDAT[13] NVDAT[12] NVDAT[11] NVDAT[10] NVDAT[9] NVDAT[8] NVDAT[7] NVDAT[6] NVDAT[5] NVDAT[4] NVDAT[3] NVDAT[2] NVDAT[1] NVDAT[0]
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
0

0

0

0

0

0

0

0

0

0

0

0

NVVRF
(0)

0

0

-

-

0
-

Note 1: Values in parentheses ( ) are default values.
Note 2: Do not access instructions that are not shown in the above table.

R61509V

Target Spec

Reset Function
The R61509V is initialized by the RESETX input. During reset period, the R61509V is in a busy state and
instruction from the microcomputer and GRAM access are not accepted. The R61509V’s internal power
supply circuit unit is initialized also by the RESETX input. The RESET period must be secured for at least
1ms. In case of power-on reset, wait until the RC oscillation frequency stabilizes (for 1 ms). During this
period, GRAM access and initial instruction setting are prohibited.
1.

Initial state of instruction bits (default)

See the instruction list. The default value is shown in the parenthesis of each instruction bit cell.
2.

RAM Data initialization

The RAM data is not automatically initialized by the RESETX input. It must be initialized by software in
display-off period (D1-0 = “00”).
3.

Output pin initial state * see Note

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

LCD driver S1~S720
G1~G432
VCOM
VCOMH
VCOML
VREG1OUT
VCIOUT
DDVDH
VGH
VGL
VCL
FMARK
Oscillator
SDO

4.

Initial state of input/output pins* see Note

: GND
: VGL (= GND)
: Halt (GND output)
: VCI
: Halt (GND output)
: VGS
: Hi-z
: VCI
: DDVDH (VCI clamp)
: GND
: GND
: Halt (GND output )
: Oscillate
: High level (IOVCC1) when IM2-0 = “10*”(serial interface)
: Hi-z when IM2-0 ≠ “10*”(other than serial interface)

1. C11P
: Hi-z
2. C11M
: Hi-z
3. C12P
: Hi-z
4. C12M
: Hi-z
5. C13P
: VCI1 (= Hi-z)
6. C13M
: GND
7. C21P
: DDVDH ( = VCI)
8. C21M
: GND
9. C22P
: DDVDH ( = VCI)
10. C22M
: GND
11. VDD
: VDD
Note: The above-mentioned initial states of output and input pins are those of when the R61509V’s power
supply circuit is connected as in Connection Example.
Rev. 0.11 April 25, 2008, page 93 of 181

R61509V

Target Spec

5 When a RESETX input is entered into the R61509V while it is in shutdown mode, the R61509V starts
up the inside logic regulator and makes a transition to the initial state. During this period, the state of the
interface pins may become unstable. For this reason, do not enter a RESETX input in shutdown mode.
6 When transferring instruction in either two or three transfers via 8-/9-/16-bit interface, make sure to
execute data transfer synchronization after reset operation.

Rev. 0.11 April 25, 2008, page 94 of 181

R61509V

Target Spec

Basic Mode Operation of the R61509V
The basic operation modes of the R61509V are shown in the following diagram. When making a transition
from one mode to another, refer to instruction setting sequence.

Initial setting

Display
OFF

Display OFF sequence
(Power OFF sequence)

moving picture
display

VSYNC
interface

VSYNC i/F sequence 2
(DM=10, RM=0)
VSYNC i/F sequence 1
(DM=00, RM=0)

Display ON sequence
(Power ON sequence)

Internal clock
display
operation

Partial
display
sequence 2

Reset
state

DSTB = 1
Deep
standby set

Exit shut down mode
Shut down
mode

RGB i/F (1) sequence 1
(DM=01, RM=1)
RGB i/F (1) sequence 2
(DM=00, RM=0)

Partial
display
sequence 1

Partial
display

Display color control
262k-color
mode

8
262k
color display
sequence

262k
8
color display
sequence

8-color
mode

Figure 12

Rev. 0.11 April 25, 2008, page 95 of 181

Reset

moving picture
display
RGB
interface (1)

RAM access via
system i/F while displaying
moving picture
RGB i/F (2) sequence 1
(DM=01, RM=0)
RGB
interface (2)
RGB i/F (2) sequence 2
(DM=01, RM=1)

R61509V

Target Spec

Interface and Data Format
The R61509V supports system interface for making instruction and other settings, and external display
interface for displaying a moving picture. The R61509V can select the optimum interface for the display
(moving or still picture) in order to transfer data efficiently.
As external display interface, the R61509V supports RGB interface and VSYNC interface, which enables
data rewrite operation without flickering the moving picture on display.
In RGB interface operation, the display operation is executed in synchronization with synchronous signals
VSYNCX, HSYNCX, and DOTCLK. In synchronization with these signals, the R61509V writes display
data according to data enable signal (ENABLE) via RGB data signal bus (DB17-0). The display data is
stored in the R61509V’s GRAM so that data is transferred only when rewriting the frames of moving
picture and the data transfer required for moving picture display can be minimized. The window address
function specifies the RAM area to write data for moving picture display, which enables displaying a
moving picture and RAM data in other than the moving picture area simultaneously. To access the
R61509V’s internal RAM in high speed with low power consumption, use high-speed write function
(HWM = 1) in RGB or VSYNC interface operation.
In VSYNC interface operation, the internal display operation is synchronized with the frame
synchronization signal (VSYNCX). The VSYNC interface enables a moving picture display via system
interface by writing the data to the GRAM at faster than the minimum calculated speed in synchronization
with the falling edge of VSYNCX. In this case, there are restrictions in setting the frequency and the
method to write data to the internal RAM.
The R61509V operates in either one of the following four modes according to the state of the display. The
operation mode is set in the external display interface control register (R0Ch). When switching from one
mode to another, make sure to follow the relevant sequence in setting instruction bits.
Table 56 Operation Modes
Operation Mode

RAM Access Setting (RM)

Display Operation Mode (DM)

Internal clock operation
(displaying still pictures)

System interface
(RM = 0)

Internal clock operation
(DM1-0 = 00)

RGB interface (1)
(displaying moving pictures)

RGB interface
(RM = 1)

RGB interface
(DM1-0 = 01)

RGB interface (2)
(rewriting still pictures while
displaying moving pictures)

System interface
(RM = 0)

RGB interface
(DM1-0 = 01)

VSYNC interface
(displaying moving pictures)

System interface
(RM = 0)

VSYNC interface
(DM1-0 = 10)

Notes: 1. Instructions are set only via system interface.
2. When RGB interface is used, instructions should be transferred via clock synchronous serial
interface.
3. RGB and VSYNC interfaces cannot be used simultaneously.
4. Do not make changes to the RGB interface operation setting (RIM1-0) while RGB interface is
in operation.
5. See the “External Display Interface” section for the sequences when switching from one mode
to another.

Rev. 0.11 April 25, 2008, page 96 of 181

R61509V

Target Spec

CSX
System
interface

RS
WRX
(RDX)
System interface
18/16/9/8

System

DB17-0
RGB interface
18/16

R61509V
ENABLE
VSYNCX

RGB
interface

HSYNCX
DOTCLK

Figure 13

Internal clock operation
The display operation is synchronized with signals generated from internal oscillator’s clock (OSC) in this
mode. All input via external display interface is disabled in this operation. The internal RAM can be
accessed only via system interface.
RGB interface operation (1)
The display operation is synchronized with frame synchronous signal (VSYNCX), line synchronous signal
(HSYNCX), and dot clock signal (DOTCLK) in RGB interface operation. These signals must be supplied
during the display operation via RGB interface.
The R61509V transfers display data in units of pixels via DB17-0 pins. The display data is stored in the
internal RAM. The combined use of window address function can minimize the total number of data
transfer for moving picture display by transferring only the data to be written in the moving picture RAM
area when it is written and enables the R61509V to display a moving picture and the data in other than the
moving picture RAM area simultaneously.
The front porch (FP), back porch (BP), and the display (NL) periods are automatically calculated inside the
R61509V by counting the number of clocks of line synchronous signal (HSYNCX) from the falling edge of
the frame synchronous signal (VSYNCX). Make sure to transfer pixel data via DB17-0 pins in accordance
with the setting of these periods.

Rev. 0.11 April 25, 2008, page 97 of 181

R61509V

Target Spec

RGB interface operation (2)
This mode enables the R61509V to rewrite RAM data via system interface while using RGB interface for
display operation. To rewrite RAM data via system interface, make sure that display data is not transferred
via RGB interface (ENABLE = high). To return to the RGB interface operation, change the ENABLE
setting first. Then set an address in the RAM address set register and R22h in the index register.
VSYNC interface operation
The internal display operation is synchronized with the frame synchronous signal (VSYNCX) in this mode.
This mode enables the R61509V to display a moving picture via system interface by writing data in the
internal RAM at faster than the calculated minimum speed via system interface from the falling edge of
frame synchronous (VSYNCX). In this case, there are restrictions in speed and method of writing RAM
data. For details, see the “VSYNC Interface” section.
As external input, only VSYNCX signal input is valid in this mode. Other input via external display
interface becomes disabled.
The front porch (FP), back porch (BP), and the display (NL) periods are automatically calculated from the
frame synchronous signal (VSYNCX) inside the R61509V according to the instruction settings for these
periods.
FMARK interface operation
In the FMARK interface operation, data is written to internal RAM via system interface synchronizing with
the frame mark signal (FMARK), realizing tearing-less moving picture while using conventional system
interface. In this case, there are restrictions in speed and method of writing RAM data. See “FMARK
interface” for detail.

Rev. 0.11 April 25, 2008, page 98 of 181

R61509V

Target Spec

System Interface
The following are the kinds of system interfaces available with the R61509V. The interface operation is
selected by setting the IM2/1/0 pins. The system interface is used for instruction setting and RAM access.
Table 57 IM Bit Settings and System Interface
IM2

IM1

IM0

Interfacing Mode with Host Processor

DB Pins

Colors

0

0

0

80-system 18-bit interface

DB17-0

262,144

0

0

1

80-system 9-bit interface

DB17-9

262,144

0

1

0

80-system 16-bit interface

DB17-10, DB8-1

262,144
*see Note1

0

1

1

80-system 8-bit interface

DB17-10

262,144
*see Note2

1

0

*

Clock synchronous serial interface

-

65,536

1

1

0

Setting inhibited

-

-

1

1

1

Setting inhibited

-

-

Notes: 1. 65,536 colors in 16-bit single transfer mode.
2. 262,144 colors is 8-bit 3-transfer mode. 65,536 colors in 8-bit 2-transfer mode.

Rev. 0.11 April 25, 2008, page 99 of 181

R61509V

Target Spec

80-System 18-bit Bus Interface
IM[2:0] = 000
CSn

CSX

A1

RS

HOST
HWR
PROCESSOR

R61509V

WRX

(RDX)

(RDX)
DB17-0

D31-0

18
Figure 14 18-bit Interface
Instruction write
Input

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
11

DB
10

Instruction

IB
15

IB
14

IB
13

IB
12

IB
11

IB
10

IB
9

IB
8

DB
9

DB
8

DB
7

DB
6

DB
5

DB
4

DB
3

DB
2

DB
1

IB
7

IB
6

IB
5

IB
4

IB
3

IB
2

IB
1

IB
0

IB
7

IB
6

IB
5

IB
4

IB
3

IB
2

IB
1

IB
0

DB
8

DB
7

DB
6

DB
5

DB
4

DB
3

DB
2

DB
1

DB
0

Instruction code

Device code read / Instruction read
Device code

IB
15

IB
14

IB
13

IB
12

IB
11

IB
10

IB
9

IB
8

Output

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
11

DB
10

DB
9

DB
0

Instruction code

Figure 15 18-bit Interface Data Format (Instruction Write / Device Code Read / Instruction Read)
RAM data write
Input

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
11

DB
10

DB
9

DB
8

DB
7

DB
6

DB
5

DB
4

DB
3

DB
2

DB
1

DB
0

GRAM write
data

R5

R4

R3

R2

R1

R0

G5

G4

G3

G2

G1

G0

B5

B4

B3

B2

B1

B0

1 pixel

Note: Normal display in 262,144 colors.

RAM data read
GRAM data

R5

R4

R3

R2

R1

R0

G5

G4

G3

G2

G1

G0

B5

B4

B3

B2

B1

B0

Read data

RD
[17]

RD
[16]

RD
[15]

RD
[14]

RD
[13]

RD
[12]

RD
[11]

RD
[10]

RD
[9]

RD
[8]

RD
[7]

RD
[6]

RD
[5]

RD
[4]

RD
[3]

RD
[2]

RD
[1]

RD
[0]

Output pins

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
11

DB
10

DB
9

DB
8

DB
7

DB
6

DB
5

DB
4

DB
3

DB
2

DB
1

DB
0

Figure 16 18-bit Interface Data Format (RAM Data Write / RAM Data Read)

Rev. 0.11 April 25, 2008, page 100 of 181

R61509V

Target Spec

80-System 16-bit Bus Interface
IM[2:0] = 010
CSn

CS:

A1

RS

HOST
HWR
PROCESSOR

R61509V

WR:

(RD:)

(RD:)
DB17-10, 8-1

D15-0

16
Figure 17 16-bit Interface
Instruction
Input

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
11

DB
10

DB
8

DB
7

DB
6

DB
5

DB
4

DB
3

DB
2

DB
1

Instruction

IB
15

IB
14

IB
13

IB
12

IB
11

IB
10

IB
9

IB
8

IB
7

IB
6

IB
5

IB
4

IB
3

IB
2

IB
1

IB
0

Instruction code

Device code read / Instruction read
Device code

IB
15

IB
14

IB
13

IB
12

IB
11

IB
10

IB
9

IB
8

Output

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
11

DB
10

DB
9

IB
7

IB
6

IB
5

IB
4

IB
3

IB
2

IB
1

IB
0

DB
8

DB
7

DB
6

DB
5

DB
4

DB
3

DB
2

DB
1

Instruction code

DB
0

Note: Device code cannot be read in 2 transfer mode.

Figure 18 16-bit Interface Data Format (Instruction Write / Device Code Read / Instruction Read)

Rev. 0.11 April 25, 2008, page 101 of 181

R61509V

Target Spec

RAM data write (1-transfer mode: TRI = 0) (EPE=2'h0)
Input

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
11

DB
10

R5

R4

R3

R2

R1

R0

G5

G4

G3

DB
8

DB
7

DB
6

DB
5

DB
4

DB
3

DB
2

DB
1

G2

G1

G0

B5

B4

B3

B2

B1

1 pixel

B0

Note: 65,536 colors are available.

RAM data write (2-transfer mode: TRI = 0, DFM = 0)
First transfer

Second transfer

Input
pins

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
11

DB
10

DB
8

DB
7

DB
6

DB
5

DB
4

DB
3

DB
2

DB
1

DB
17

DB
16

GRAM
write data

WD
[17]

WD
[16]

WD
[15]

WD
[14]

WD
[13]

WD
[12]

WD
[11]

WD
[10]

WD
[9]

WD
[8]

WD
[7]

WD
[6]

WD
[5]

WD
[4]

WD
[3]

WD
[2]

WD
[1]

WD
[0]

RGB
assignment

R5

R4

R3

R2

R1

R0

G5

G4

G3

G2

G1

G0

B5

B4

B3

B2

B1

B0

1 pixel

Note: Normal display in 262,144 colors.

RAM data write (2-transfer mode: TRI = 1, DFM = 1)
First transfer

Second transfer
DB
DB
DB
10
8
7

Input pins

DB
2

DB
1

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
11

GRAM write
data

WD
[17]

WD
[16]

WD
[15]

WD
[14]

WD
[13]

WD
[12]

WD
[11]

WD
[10]

WD
[9]

WD
[8]

WD
[7]

RGB
assignment

R5

R4

R3

R2

R1

R0

G5

G4

G3

G2

G1

DB
6

DB
5

DB
4

DB
3

DB
2

DB
1

WD
[6]

WD
[5]

WD
[4]

WD
[3]

WD
[2]

WD
[1]

WD
[0]

G0

B5

B4

B3

B2

B1

B0

1 pixel

Note: Normal display in 262,144 colors.

Figure 19 16-bit Interface Data Format (RAM Data Write)
RAM data read (1-transfer mode: TRI = 0)
GRAM data

R5

R4

R3

R2

R1

R0

G5

G4

G3

G2

G1

G0

B5

B4

B3

B2

B1

B0

Read data

RD
[17]

RD
[16]

RD
[15]

RD
[14]

RD
[13]

RD
[12]

RD
[11]

RD
[10]

RD
[9]

RD
[8]

RD
[7]

RD
[6]

RD
[5]

RD
[4]

RD
[3]

RD
[2]

RD
[1]

RD
[0]

Output pins

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
11

DB
10

DB
8

DB
7

DB
6

DB
5

DB
4

DB
3

DB
2

DB
1

Note: RAM data cannot be read in 2-transfer mode.

Figure 20 16-bit Interface Data Format (RAM Data Read)

Rev. 0.11 April 25, 2008, page 102 of 181

R61509V

Target Spec

Data Transfer Synchronization in 16-bit Bus Interface Operation
The R61509V supports data transfer synchronization function to reset the counters for upper 16-/2-bit and
lower 2-/16-bit transfers in 16-bit 2-transfer mode. When a mismatch occurs in upper and lower data
transfers due to noise and so on, the 000H instruction is written four times consecutively to reset the upper
and lower counters in order to restart the data transfer from upper 2/16 bits. The data transfer
synchronization, when executed periodically, can help the display system recover from runaway.
Make sure to execute data transfer synchronization after reset operation before transferring instruction.

RS

RDX

WRX
DB17 ~ DB10,
DB8 ~ DB1

Upper
Lower

"000"H

"000"H

"000"H

"000"H

Upper

Lower

Upper

(16-bit transfer synchronization)

Figure 21 16-bit Data Transfer Synchronization

Rev. 0.11 April 25, 2008, page 103 of 181

R61509V

Target Spec

80-System 9-bit Bus Interface
When transferring 16-bit instruction, it is divided into upper and lower 8 bits, and the upper 8 bits are
transferred first (the LSB is not used). The RAM write data is also divided into upper and lower 9 bits, and
the upper 9 bits are transferred first. The unused DB pins must be fixed at either IOVCC or IOGND level.
When transferring the index register setting, make sure to write upper byte (8 bits).
IM[2:0] = 001
CSn

CS:

A1

RS

HOST
HWR
PROCESSOR

WR:

(RDX)

R61509V

(RD:)
DB17-9
DB8-0

D15-0

9
9
Figure 22 9-bit Interface
Instruction write
First transfer

Second transfer

Input

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
11

DB
10

Instruction

IB
15

IB
14

IB
13

IB
12

IB
11

IB
10

IB
9

IB
8

DB
9

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
11

DB
10

IB
7

IB
6

IB
5

IB
4

IB
3

IB
2

IB
1

IB
0

IB
7

IB
6

IB
5

IB
4

IB
3

IB
2

IB
1

IB
0

DB
17

DB
16

DB
15

DB
14

DB
11

DB
10

DB
9

Instruction code

Device code read / Instruction read
Instruction

IB
15

IB
14

IB
13

IB
12

Output

DB
17

DB
16

DB
15

DB
14

IB
11

IB
10

IB
9

IB
8

DB
11

DB
10

First transfer

DB
13

DB
12

Second transfer

DB
9

DB
13

DB
12

DB
9

instruction code

Figure 23 9-bit Interface Data Format (Instruction Write / Device Code Read / Instruction Read)

Rev. 0.11 April 25, 2008, page 104 of 181

R61509V

Target Spec

RAM data write
Second transfer

First transfer
Input

GRAM write
data

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
11

DB
10

DB
9

DB
17

DB
6

DB
5

DB
14

DB
13

DB
12

DB
11

DB
10

DB
9

R5

R4

R3

R2

R1

R0

G5

G4

G3

G2

G1

G0

B5

B4

B3

B2

B1

B0

1 pixel

Note: Normal display in 262,144 colors.

RAM read data
GRAM data

R5

R4

R3

R2

R1

R0

G5

G4

G3

G2

G1

G0

B5

B4

B3

B2

B1

B0

Read data

RD
[17]

RD
[16]

RD
[15]

RD
[14]

RD
[13]

RD
[12]

RD
[11]

RD
[10]

RD
[9]

RD
[8]

RD
[7]

RD
[6]

RD
[5]

RD
[4]

RD
[3]

RD
[2]

RD
[1]

RD
[0]

Output pins

DB
17

DB
16

DB
15

DB
14

DB
DB
13
12
First transfer

DB
11

DB
10

DB
9

DB
17

DB
16

DB
15

DB
DB
DB
14
13
12
Second transfer

DB
11

DB
10

DB
9

Figure 24 9-bit Interface Data Format (RAM Data Write/ RAM Data Read)

Data Transfer Synchronization in 9-bit Bus Interface Operation
The R61509V supports data transfer synchronization function to reset the counters for upper and lower 9bit transfers in 9-bit bus transfer mode. When a mismatch occurs in upper and lower data transfers due to
noise and so on, the 00H instruction is written four times consecutively to reset the upper and lower
counters in order to restart the data transfer from upper 9 bits. The data transfer synchronization, when
executed periodically, can help the display system recover from runaway.
Make sure to execute data transfer synchronization after reset operation before transferring instruction.

RS

RDX

WRX

DB17 ~ DB9

Upper
Lower

"00"H

"00"H

"00"H

"00"H

Upper

Lower

Upper

(9-bit transfer synchronization)

Figure 25 9-bit Data Transfer Synchronization

Rev. 0.11 April 25, 2008, page 105 of 181

R61509V

Target Spec

80-System 8-bit Bus Interface
When transferring 16-bit instruction, it is divided into upper and lower 8 bits, and the upper 8 bits are
transferred first. The RAM write data is also divided into upper and lower 8 bits, and the upper 8 bits are
transferred first. The RAM write data is expanded into 18 bits internally as shown below. The unused DB
pins must be fixed at either IOVCC1 or GND level. When transferring the index register setting, make sure
to write upper byte (8 bits).
IM[2:0] = 001
CSn

CSX

A1

RS

HOST
HWR
PROCESSOR

R61509V

WRX

(RDX

(RDX
DB17-10
DB9-0

D15-0

8
10

Figure 26 8-bit Interface
Instruction write
Second transfer

First transfer
Input

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
11

DB
10

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
11

DB
10

Instruction

IB
15

IB
14

IB
13

IB
12

IB
11

IB
10

IB
9

IB
8

IB
7

IB
6

IB
5

IB
4

IB
3

IB
2

IB
1

IB
0

Instruction code

Device code read / Instruction read
Instruction

IB
15

IB
14

IB
13

Input

DB
17

DB
16

DB
15

IB
12

IB
11

IB
10

IB
9

IB
8

IB
7

IB
6

IB
5

IB
4

DB
12

DB
11

DB
10

DB
17

DB
16

DB
15

DB
14

First transfer
DB
14

DB
13

IB
3

IB
2

IB
1

IB
0

DB
11

DB
10

Second transfer
DB
13

DB
12

Note: Device code canot be read out in 3 transfer mode.

Figure 27 8-bit Interface Data Format (Instruction Write / Device Code Read / Instruction Read)
Note: RAM data cannot be read in the 3-transfer mode.

Rev. 0.11 April 25, 2008, page 106 of 181

R61509V

Target Spec

RAM data write (2-transfer mode: TRI = 0)
Second transfer

First transfer
Input

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
11

DB
10

R5

R4

R3

R2

R1

R0

G5

G4

G3

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
11

DB
10

G2

G1

G0

B5

B4

B3

B2

B1

1 pixel

B0

Note: Normal display in 65,536 colors.

RAM data write (3-transfer mode: TRI = 1, DFM = 1)
First transfer
Input

GRAM write
data

Third transfer

Second transfer

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

R5

R4

R3

R2

R1

R0

G5

G4

G3

G2

G1

G0

B5

B4

B3

B2

B1

B0

1 pixel

Note: Normal display in 262,144 colors.

Figure 28 8-bit Interface Data Format (RAM Data Write)
RAM data read
GRAM data

R5

R4

R3

R2

R1

R0

G5

G4

G3

G2

G1

G0

B5

B4

B3

B2

B1

B0

Read data

RD
[17]

RD
[16]

RD
[15]

RD
[14]

RD
[13]

RD
[12]

RD
[11]

RD
[10]

RD
[9]

RD
[8]

RD
[7]

RD
[6]

RD
[5]

RD
[4]

RD
[3]

RD
[2]

RD
[1]

RD
[0]

Output pins

DB
17

DB
16

DB
15

DB
14

DB
DB
13
12
First transfer

DB
11

DB
10

DB
17

DB
16

DB
15

DB
DB
DB
14
13
12
Second transfer

DB
11

DB
10

Note: RAM data cannot be read in 3-transfer mode.

Figure 29 8-bit Interface Data Format (RAM Data Read)

Rev. 0.11 April 25, 2008, page 107 of 181

R61509V

Target Spec

Data Transfer Synchronization in 8-bit Bus Interface operation
The R61509V supports data transfer synchronization function to reset the counters for upper and lower 8bit transfers in 8-bit bus transfer mode. When a mismatch occurs in upper and lower data transfers due to
noise and so on, the 00H instruction is written four times consecutively to reset the upper and lower
counters in order to restart the data transfer from upper 8 bits. The data transfer synchronization, when
executed periodically, can help the display system recover from runaway.
Make sure to execute data transfer synchronization after reset operation before transferring instruction.

RS

RDX

WRX
DB17 ~ DB10

Upper
Lower

"00"H

"00"H

"00"H

"00"H

Upper

Lower

Upper

(8-bit transfer synchronization)

Figure 30 8-bit Data Transfer Synchronization

Rev. 0.11 April 25, 2008, page 108 of 181

R61509V

Target Spec

Serial Interface
The serial interface is selected by setting the IM2/1 pins to the IOVCC/GND levels, respectively. The data
is transferred via chip select line (CS), serial transfer clock line (SCL), serial data input line (SDI), and
serial data output line (SDO). In serial interface operation, the IM0_ID pin functions as the ID pin, and the
DB17-0 pins, not used in this mode, must be fixed at either IOVCC or GND level.
The R61509V recognizes the start of data transfer on the falling edge of CSX input and starts transferring
the start byte. It recognizes the end of data transfer on the rising edge of CSX input. The R61509V is
selected when the 6-bit chip address in the start byte transferred from the transmission unit and the 6-bit
device identification code assigned to the R61509V are compared and both 6-bit data match. Then, the
R61509V starts taking in subsequent data. The least significant bit of the device identification code is
determined by setting the ID pin. Send "01110” to the five upper bits of the device identification code.
Two different chip addresses must be assigned to the R61509V because the seventh bit of the start byte is
register select bit (RS). When RS = 0, index register write operation is executed. When RS = 1, either
instruction write operation or RAM read/write operation is executed. The eighth bit of the start byte is R/W
bit, which selects either read or write operation. The R61509V receives data when the R/W = 0, and
transfers data when the R/W = 1.
When writing data to the GRAM via serial interface, the data is written to the GRAM after it is transferred
in two bytes. The R61509V writes data to the GRAM in units of 18 bits by adding the same bits as the
MSBs to the LSB of R and B dot data.
After receiving the start byte, the R61509V starts transferring or receiving data in units of bytes. The
R61509V transfers data from the MSB. The R61509V’s instruction consists of 16 bits and it is executed
inside the R61509V after it is transferred in two bytes (16 bits: DB15-0) from the MSB. The R61509V
expands RAM write data into 18 bits when writing them to the internal GRAM. The first byte received by
the R61509V following the start byte is recognized as the upper eight bits of instruction and the second
byte is recognized as the lower 8 bits of instruction.
When reading data from the GRAM, valid data is not transferred to the data bus until first five bytes of data
are read from the GRAM following the start byte. The R61509V sends valid data to the data bus when it
reads the sixth and subsequent byte data.
Table 58 Start Byte Format
Transferred Bits

Start byte format

S

Transfer start

1

1

The ID bit is determined by setting the IM0_ID pin.

Table 59 Functions of RS, R/W Bits
RS

R/W

Function

0

0

Set index register

0

1

Setting inhibited

1

0

Write instruction or RAM data

1

1

Read instruction or RAM data

Rev. 0.11 April 25, 2008, page 109 of 181

3

4

5

6

Device ID code
0

Note:

2

1

1

0

ID

7

8

RS

R/W

R61509V

Target Spec

Instruction
Input

D
15

D
14

D
13

Instruction

IB
15

IB
14

IB
13

First transfer (upper)
D
D
D
D9
12
11
10

IB
12

IB
11

IB
10

IB
9

Sec on d t ransfer (lower)
D8

D7

D6

D5

D4

D3

D2

D1

D0

IB
8

IB
7

IB
6

IB
5

IB
4

IB
3

IB
2

IB
1

IB
0

D
7

D
6

Sec on d t ransfer (lower)
D
D
D
D
D
1
5
4
3
2

D
0

G2

G1

G0

B1

Instruction code

RAM data write
Input

D
15

D
14

D
13

GRAM write data

R5

R4

R3

First tran sfer (upper)
D
D
D
12
11
10

R2

R1

R0

D
9

D
8

G5

G4

G3

1 pixel

Figure 31 Serial Interface Data Format

Rev. 0.11 April 25, 2008, page 110 of 181

B5

B4

B3

B2

B5

Note: 65,536-color display in SPI

R61509V

Target Spec

(a) Clock synchronization serial data transfer (basic mode)
End of transfer

Transfer start

CSX
input
1

2

3

4

5

6

7

“0”

“1”

“1”

“1”

“0”

ID

RS

SCL
input

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

D9

D8

D7

D6

D5

D4

D3

D2

D1

LSB

MSB

SDI
input

Device ID code

24

RW D15 D14 D13 D12 D11 D10

D0

RS RW

Start byte

Set IR (index register), instruction, write RAM data

SDO
output

D15 D14 D13 D12 D11 D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Read instruction, RAM data

(b) Clock synchronization serial consecutive data transfer
CSX
input
SCL
input

SDI
input

Start byte

Instruction (1)
Upper 8 bits

Instruction (1)
Lower 8 bits

Instruction (2)
Upper 8 bits

Instruction (2)
Lower 8 bits
End

Start Note: The eight bits read after start byte input is recognized
as the upper byte of instruction.
Instruction
execution time (1)

(c) RAM read data transfer
CSX
input
SCL
input
Start byte
RS = 1
R/W = 1

SDI
input

SDO
output

Dummy read Dummy read Dummy read Dummy read Dummy read RAM read
Upper 8 bits
5
1
2
3
4
Start

RAM read
Lower 8 bits

Note: Valid data is not sent until the R61509V reads five bytes from the GRAM after start byte input .
The R61509V sends valid data when it reads the sixth and subsequent bytes.

(d) Instruction read
CSX
input

SCL
input

Start byte
RS=0
R/W=1

SDI
input

Instruction read
Lower 8 bits
SDO
output

Instruction read
Upper 8 bits

Instruction read
Lower 8 bits
End

Start
Note: Valid RAM data is read out right after the start byte.

Figure 32 Data Transfer in Serial Interface

Rev. 0.11 April 25, 2008, page 111 of 181

End

R61509V

Target Spec

VSYNC Interface
The R61509V supports VSYNC interface, which enables displaying a moving picture via system interface
by synchronizing the display operation with the VSYNCX signal. VSYNC interface can realize moving
picture display with minimum modification to the conventional system operation.

VSYNCX
CSX

HOST
PROCESSOR

RS

R61509V

WRX
DB17-0, 8-1

16
Figure 33 VSYNC Interface
The VSYNC interface is selected by setting DM1-0 = 10 and RM = 0. In VSYNC interface operation, the
internal display operation is synchronized with the VSYNCX signal. By writing data to the internal RAM
at faster than the calculated minimum speed (internal display operation speed + margin), it becomes
possible to rewrite the moving picture data without flickering the display and display a moving picture via
system interface.
The display operation is performed in synchronization with the internal clock signal generated from the
internal oscillator and the VSYNCX signal. The display data is written in the internal RAM so that the
R61509V rewrites the data only within the moving picture area and minimize the number of data transfer
required for moving picture display.

VSYNCX
RAM data
write via
system interface
Display operation
synchronized with
internal clock

Figure 34 Moving Picture Data Transfers via VSYNC Interface

Rev. 0.11 April 25, 2008, page 112 of 181

R61509V

Target Spec

The VSYNC interface has the minimum for RAM data write speed and internal clock frequency, which
must be more than the values calculated from the following formulas, respectively.
Internal clock frequency (fosc) [Hz]
= FrameFrequency × ( DisplayLin es( NL ) + FrontPorch( FP ) + BackPorch( BP )) × 23( clocks ) × var iance

240 × DisplayLines( NL )

RAMWriteSpeed (min .)[ Hz ] >

( BackPorch( BP ) + DisplayLines( NL ) − m arg ins ) × 23( clocks ) ×

1
fosc

Note: When RAM write operation is not started right after the falling edge of VSYNCX, the time from
the falling edge of VSYNCX until the start of RAM write operation must also be taken into account.
An example of calculating minimum RAM writing speed and internal clock frequency in VSYNC interface
operation is as follows.
[Example]
Panel size
Total number of lines (NL)
Back/front porch
Frame frequency
Internal clock frequency

240 RGB × 432 lines (NL = 6’h35: 432 lines)
432 lines
14/2 lines (BP = 4h’E, FP = 4’h2)
60 Hz
678 kHz

Internal clock frequency (fosc) [Hz]
= 678 kHz × 1.07 / 1.0 = 726 kHz
Notes: 1. When setting the internal clock frequency, possible causes of fluctuation must also be taken into
consideration. In this example, the internal clock frequency allows for a margin of ±7% for
variances and guarantee that display operation is completed within one VSYNCX cycle.
2. This example includes variances attributed to LSI fabrication process and room temperature.
Other possible causes of variances, such as differences in voltage change are not considered in
this example. It is necessary to include a margin for these factors.
Minimum speed for RAM writing [Hz]
> 240 × 432 / {((14 + 432 - 2) lines × 23 clocks) × 1/726 kHz} = 7.4 MHz
Notes: 1. In this example, it is assumed that the R61509V starts writing data in the internal RAM on the
falling edge of VSYNCX.
2. There must be at least a margin of 2 lines between the line to which the R61509V has just
written data and the line where display operation on the LCD is performed.
In this example, the RAM write operation at a speed of 7.4 MHz or more, which starts on the falling edge
of VSYNCX, guarantees the completion of data write operation in a certain line address before the
R61509V starts the display operation of the data written in that line and can write moving picture data
without causing flicker on the display.

Rev. 0.11 April 25, 2008, page 113 of 181

R61509V

Target Spec
RAM
write

VSYNCX
Back porch
(14 lines)

RC oscillation
±7%

[line]

Display
operation

432

Line processing

FP = 2H

Main panel
Moving picture
display
(432 lines)

RAM write
7.4 MHz

Display
operation

16.67 [ms]

0

Front porch (2 lines)

(60 Hz)

BP = 14H
VSYNCX

Blank period

Figure 35 Write/Display Operation Timing via VSYNC Interface
Notes to VSYNC Interface Operation
1.

The above example of calculation gives a theoretical value. Possible causes of variances of internal
oscillator should be taken into consideration. Make enough margins in setting RAM write speed for
VSYNC interface operation.

2.

The above example shows the values when writing over the full screen. Extra margin will be created if
the moving picture display area is smaller than that.
RAM
write

Back porch (14 lines)

RC oscillation
±7%

[line]

432
Display
operation

FP = 2H

(16 lines)

376
Line processing

Base image
Moving picture
display
(360 lines)

(56 lines)

RAM write
7.4MHz

16
0

Front porch (2 lines)

BP = 14H
VSYNCX
VSYNC

Figure 36 RAM Write Speed Margins

Rev. 0.11 April 25, 2008, page 114 of 181

Display
operation

[ms]
16.67
(60 Hz)

R61509V

Target Spec

3.

The front porch period continues from the end of one frame period to the next VSYNCX input.

4.

The instructions to switch from internal clock operation (DM1-0 = 00) to VSYNC interface operation
modes and vice versa are enabled from the next frame period.

5.

The partial display and vertical scroll functions are not available in VSYNC interface operation.

6.

In VSYNC interface operation, set AM = 0 to transfer display data correctly.
Internal Clock Operation to VSYNC Interface

VSYNC Interface to Internal Clock Operation

Internal clock operation

VSYNC interface operation

AM = 0
RAM address set
Set DM1-0 = 01 and RM = 0
for VSYNC interface

Display operation in
synchronization with
internal clocks
*Instruction setting for
the RGB interface operation
is enebled from the next frame period.

Set internal clock
operation mode*
(DM1-0 = 00 and RM = 0)
Wait one frame period
or more

Internal clock operation

Display operation in
synchronization with
VSYNCX
*Instruction setting to the
internal clock operation
is enebled from the next
frame period.

Display operation in
synchronization with
internal clocks

Set index register to R202h
Note: Continue VSYNC interface signals at least for
one frame period after setting DM1-0, RM bits
to internal clock operation.

Wait one frame period
or more
Write data to RAM
via VSYNC interface

Display operation in
synchronization with VSYNCX

Operation via VSYNC interface

Internal clock synchronous
operation mode setting
(DM[1:0]=00, RM=0)
Wait one frame period
or more

Internal clock operation
Note: Input the VSYNC interface signals before setting the DM1-0 and RM bits
to the VSYNC interface operation.

Figure 37 Sequences to Switch between VSYNC and Internal Clock Operation Modes

Rev. 0.11 April 25, 2008, page 115 of 181

R61509V

Target Spec

FMARK Interface
In the FMARK interface operation, data is written to internal RAM via system interface synchronizing with
the frame mark signal (FMARK), realizing tearing less video image while using conventional system
interface. FMARK output position is set in units of line using FMP bit. Set the bit considering data transfer
speed.

FMARK

HOST
PROCESSOR

CSX
RS

R61509V

WRX
DB17-10, 8-1

16

Figure 38 FMARK Interface
In this operation, moving picture display is enabled via system interface by writing data at higher than the
internal display operation frequency to a certain degree, which guarantees rewriting the moving picture
RAM area without causing flicker on the display.
The data is written in the internal RAM. Therefore, when moving picture is displayed, data is written only
to the moving picture display area without using RGB or VSYNC interface, minimizing number of data
transfer required for moving picture display.
㩷
㩷FMARK
㩷
㩷
RAM data
㩷write via
㩷system interface
㩷Display operation
㩷synchronized with
internal clock
㩷

Figure 39 Moving Picture Data Transfers via FMARK Function

Rev. 0.11 April 25, 2008, page 116 of 181

R61509V

Target Spec

When transferring data in synchronization with FMARK signal, minimum RAM data write speed and
internal clock frequency must be taken into consideration. They must be more than the values calculated
from the following equations.
Internal clock frequency (fosc) [Hz]
= FrameFrequency × ( DisplayLin es( NL ) + FrontPorch( FP ) + BackPorch( BP )) × 23( clocks ) × var iance

240 × DisplayLin es( NL )

RAMWriteSp eed (min .)[ Hz ] >

( FrontPorch ( FP ) + BackPorch ( BP ) + DisplayLin es( NL ) − m arg ins ) × 16 ( clocks ) ×

1
fosc

Note: When RAM write operation is not started immediately following the rising edge of FMARK, the
time from the rising edge of FMARK until the start of RAM write operation must also be taken into
account.
Examples of calculating minimum RAM data write speed and internal clock frequency is as follows.
[Example]
Panel size
Total number of lines (NL)
Back/front porch
Frame marker position (FMP)
Frame frequency
Internal oscillation frequency

240 RGB × 432 lines (NL = 6’h35: 432 lines)
432 lines
14/2 lines (BP = 4h’E, FP = 4’h2)
Display end line: 432nd line (FMP = 9’h1BF)
60 Hz
678kHz

Internal oscillation frequency (fosc) [Hz] = 678kHz × 1.07 / 1.0 = 726 kHz

(variance is taken into account)

Notes: 1.When setting the internal clock frequency, possible causes of fluctuation must also be taken into
consideration. In this example, the internal clock frequency allows for a margin of ±7% for
variances and guarantee that display operation is completed within one FMARK cycle.
2.This example includes variances attributed to LSI fabrication process and room temperature.
Other possible causes of variances, such as differences in external resistors and voltage change
are not considered in this example. It is necessary to include a margin for these factors.
Minimum speed for RAM writing [Hz]
> 240 × 320 / {((2+14 + 320 – 2) lines × 16 clocks) × 1/726 kHz} = 7.4 MHz
Notes: 1. In this example, it is assumed that the R61509V starts writing data in the internal RAM on the
rising edge of FMARK.
2.There must be at least a margin of 2 lines between the line to which the R61509V has just written
data and the line where display operation on the LCD is performed.
3.The FMARK signal output position is set to the line specified by FMP[8:0] bits.

In this example, RAM write operation at a speed of 7.4MHz or more, when starting on the rising edge of
FMARK, guarantees the completion of data write operation in a certain line address before the R61509V

Rev. 0.11 April 25, 2008, page 117 of 181

R61509V

Target Spec

starts the display operation of the data written in that line and can write moving picture data without
causing flicker on the display.
RAM
write

Back porch (14 lines)

RC oscillation
7%

[line]
432

Front porch (2 lines)
Display
operation

RAM write
7.4MHz

Line processing

FMARK

Main panel
Moving picture
display
(432 lines)

Display
operation

0
FP+BP=16H

[ms]
16.67
(60Hz)

FMARK

Front porch (2 lines)
Back porch (14 lines)

Figure 40
Note to display operation synchronous data transfer using FMARK signal
The above example of calculation gives a theoretical value. Possible causes of variances of internal
oscillator should be taken into consideration. Make enough margin in setting RAM write speed for
this operation.

FMP bit setting
The microcomputer detects FMARK signal outputted at the position defined by FMP bit. The R61509V
outputs an FMARK pulse when the R61509V is driving the line specified by FMP bits. The FMARK
signal can be used as a trigger signal to write display data in synchronization with display operation by
detecting the address where data is read out for display operation.
The FMARK output interval is set by FMI bits. Set FMI bits in accordance with display data rewrite cycle
and data transfer rate.

Rev. 0.11 April 25, 2008, page 118 of 181

R61509V

Target Spec

Table 60

Table 61

FMP[8:0]

FMARK output position

FMI[2]

FMI[1]

FMI[0]

FMARK Output interval

9’h000

0

0

0

0

9’h001

1st line

One frame period

0

0

1

2nd line

2 frame periods

9’h002

0

1

1

4 frame periods

1

0

1

:
9’h1BD

445th line

9’h1BE

446th line

9’h1BF

447 line

9’h1C0 ~ 1FF

Setting disabled

th

Rev. 0.11 April 25, 2008, page 119 of 181

Other setting

6 frame periods
Setting disabled

R61509V

Target Spec

FMP Setting Example

FMARK output position
FMP=9’h008

FMP=9’h008
NL=6’h35 (432 lines)
FP=4’h8
BP=4’h8
VL=8’h00

Line address
0 (1st line)
1 (2nd line)
2 (3rd line)
3 (4th line)
4 (5th line)
5 (6th line)
6 (7th line)
7 (8th line)
8 (1st line)
9 (2nd line)
10 (3rd line)

Base image

Back porch
RAM physical line address
AD[16:8]=9’h000
AD[16:8]=9’h001
AD[16:8]=9’h002

Display area

NL=6'h35

439 (432nd line)
440 (1st line)
441 (2nd line)
442 (3rd line)
443 (4th line)
444 (5th line)
445 (6th line)
446 (7th line)
447 (8th line)

AD[16:8]=9’h13F

Front porch

Figure 41

Rev. 0.11 April 25, 2008, page 120 of 181

R61509V

Target Spec

RGB Interface
The R61509V supports the RGB interface. The interface format is set by RM[1:0] bits. The internal RAM
is accessible via RGB interface.
Table 62 RGB interface
RIM

0
1
Note:

RGB Interface

DB Pin

18-bit RGB interface

DB17-0

16-bit RGB interface
Using multiple interface at a time is prohibited.

DB17-13, DB11-1

RGB Interface
The display operation via RGB interface is synchronized with VSYNCX, HSYNCX, and DOTCLK. The
data can be written only within the specified area with low power consumption by using window address
function. In RGB interface operation, front and back porch periods must be made before and after the
display period. When RGB interface is used, instructions should be transferred via clock synchronous serial
interface. RGB and 80-system bus interfaces cannot be used simultaneously.
VSYNCX ENABLE (V)

Back porch period (BP)

Moving picture
display area

Display period (NL)

Front porch period (FP)

HSYNCX
DOTCLK
ENABLE (H)
DB17-0

VSYNCX: Frame synchronization signal
HSYNCX: Line synchronization signal
DOTCLK: Dot clock
ENABLE: Data enable signal
DB 17-0: RGB (6:6:6) display data

Back porch period (BPP):
Front porch period (FPP):
Display period:
The number of lines for one frame:

14H ҈ BP ҈ 2H
14H ҈ FP ҈ 2H
FP + BP ҇ 16H
NL ҇ 432H
FP + NL + BP

Notes: 1. The front porch period continues until next VSYNCX input is detected.
2. Make sure to match the VSYNCX, HSYNCX, and DOTCLK frequencies to the resolution of liquid crystal panel.

Figure 42 Display Operation via RGB Interface

Rev. 0.11 April 25, 2008, page 121 of 181

R61509V

Target Spec

Polarities of VSYNCX, HSYNCX, ENABLE, and DOTCLK Signals
The polarities of VSYNCX, HSYNCX, ENABLE, and DOTCLK signals can be changed by setting the
DPL, EPL, HSPL, and VSPL bits, respectively for convenience of system configuration.
㪟㫊㫐㫅㪺 㪟㪙㪧

㪟㪘㪻㫉

㪟㪝㪧

㪭㫊㫐㫅㪺
㪙㪧
㪭㪙㪧

㪭㪘㪻㫉

Valid data period

㪭㪝㪧

㪝㪧

Figure 43
Table 63
Parameters

Symbols

Min.

Typ.

Max.

Step

Unit

Horizontal Synchronization

Hsync

2

10

16

1

DOTCLKCYC

Horizontal Back Porch

HBP

2

20

24

1

DOTCLKCYC

Horizontal Address

HAdr

-

240

-

1

DOTCLKCYC

Horizontal Front Porch

HFP

2

10

16

1

DOTCLKCYC

Vertical Synchronization

Vsync

1

2

4

1

Line

Vertical Back Porch

VBP

1

2

-

1

Line

Vertical Address

VAdr

-

432

-

1

Line

Vertical Front Porch

VFP

3

4

-

1

Line

Note:

The values of typ. are based on the following conditions; the panel resolution is QVGA (240 ×
432), the clock frequency is 7.39MHz, and the frame frequency is about 60Hz.)
Vsync + VBP = BP. VFP = FP. Vadr = NL.
(Number of clocks per 1H) ≥ (Number of RTN clocks) × (1/1 div.) × (PCDIVL + PCDIVH)

The setting example is shown in the following page.

Rev. 0.11 April 25, 2008, page 122 of 181

R61509V

Target Spec

Setting Example of Display Control Clock in RGB Interface Operation
Register
The display operation via DPI is performed in synchronization with the internal clock (PCLKD) that is
generated by dividing PCLK frequency.
PCDIVH[3:0]: When PCLKD is High, the number of clocks is set in unit of 1 clock.
PCDIVL[3:0]: When PCLKD is Low, the number of clocks is set in unit of 1 clock.
PCDIVH and PCDIVL (division ratio setting registers) should be set so that the difference between
PCLKD frequency and the internal oscillation clock (678kHz) is minimized.
Set PCDIVL to PCDIVH or PCDIVH − 1.
Make sure (number of PCLK frequency) ≥ (number of RTN clocks) ∗ (division ratio of DIV) ∗ (PCDIVH +
PCDIVL)
Setting example (frame frequency: 60Hz)
Internal clock:

PCLK:

Internal oscillation clock = 678kHz
1/1 Div. = (DIVE[2:0] = 2’b0)
HFP = 10 clocks
FP = 8’h8, BP = 8’h8, NL = 6B (432 lines)
Æ 59.35Hz

Hsync = 10 clocks
HBP = 20 clocks
HFP = 10 clocks
60Hz × (8+432+8) lines (10+20+240+10) clocks = 7.53MHz
PCLK frequency = 7.53MHz
7.53MHz/678kHz = 11.11 (Set PCDIVH and PCDIVL so that PCLK frequency is divided into
11.)
7.53/11 = 685kHz
685kHz / 25 clocks / 448 lines = 61.2Hz

PCDIVH = 4’h6
PCDIVL = 4’h5
㪧㪚㪛㪠㪭㪟㪔㪋㩾㪿㪍
㪧㪚㪛㪠㪭㪣㪔㪋㩾㪿㪌

㪧㪚㪣㪢
㪧㪚㪛㪠㪭㪟

㪧㪚㪛㪠㪭㪣

Internal clock
㪧㪚㪣㪢㪛

㪟㪪㪰㪥㪚

Figure 44
Rev. 0.11 April 25, 2008, page 123 of 181

R61509V

Target Spec

RGB Interface Timing
The timing relationship of signals in RGB interface operation is as follows.
16-/18-Bit RGB Interface Timing
One frame
Back porch period

Front porch period

VSYNCX

HSYNCX

DOTCLK

ENABLE

DB17-0

1H or more

VSYNCX

1H
HLW ҈ 1CLK

HSYNCX

1 clock

DOTCLK

DTST ҈ 1CLK
ENABLE

DB17-0

Valid data

Figure 45
Note: VLW:
HLW:
DTST:

VSYNCX Low period
HSYNCX Low period
data transfer setup time

Rev. 0.11 April 25, 2008, page 124 of 181

R61509V

Target Spec

Moving Picture Display via RGB Interface
The R61509V supports RGB interface for moving picture display and incorporates RAM for storing
display data, which provides the following advantages in displaying a moving picture.
1.
2.
3.
4.

The window address function enables transferring data only within the moving picture area
It becomes possible to transfer only the data written over the moving picture area
By reducing data transfer, it can contribute to lowering the power consumption of the whole system
The data in still picture area (icons etc.) can be written over via system interface while displaying a
moving picture via RGB interface

RAM access via system interface in RGB interface operation
The R61509V allows RAM access via system interface in RGB interface operation. In RGB interface
operation, data is written to the internal RAM in synchronization with DOTCLK while ENABLE is “Low”.
When writing data to the RAM via system interface, set ENABLE “High” to stop writing data via RGB
interface. Then set RM = “0” to enable RAM access via system interface. When reverting to the RGB
interface operation, wait for the read/write bus cycle time. Then, set RM = “1” and the index register to
R22h to start accessing RAM via RGB interface. If there is a conflict between RAM accesses via two
interfaces, there is no guarantee that the data is written in the RAM.
The following is an example of rewriting still picture data via system interface while displaying a moving
picture via RGB interface.
updating frame data

updating frame data

VSYNCX

ENABLE

DOTCLK

DB17-0

Note 3)

Note 3)
System
interface

Index
R22

RM = 0

RAM
address
set

Index
R22

writing
moving picture area

Notes:

Update data in the
area other than
moving picture area

RAM
address
set

RM = 1

Index
R22
writing
moving picture area

writing
still picture area

1. In RGB interface operation, RAM address AD16-0 is set in the address counter on the falling edge of VSYNCX.
2. Set AD16-0 bits and the index R22h before starting RAM access via RGB interface.
3. When switching to the system interface operation after writing data via RGB interface, wait at least one write cycle (tcycw).

6/25 00:
6/2
00:00
00

Moving picture
area

6/25 00:
6/2
00:00
00

Moving picture
area

Figure 46 Updating the Still Picture Area while Displaying Moving Picture

Rev. 0.11 April 25, 2008, page 125 of 181

R61509V

Target Spec

16-Bit RGB Interface
The 16-bit RGB interface is selected by setting RIM = 1. The display operation is synchronized with
VSYNCX, HSYNCX, and DOTCLK signals. The display data is transferred to the internal RAM in
synchronization with the display operation via 16-bit ports while data enable signal (ENABLE) allows
RAM access via RGB interface.
Instruction bits can be transferred only via system interface.
RIM = 1
VSYNCX
HSYNCX

HOST
PROCESSOR

DOTCLK

R61509V
ENABLE
DB17-13, 11-1

16

DB12,0

2

Data format for the16-bit interface (RIM = 1)
Input

GRAM data

DB
17

R5

DB
16

R4

DB
15

DB
14

DB
13

R3

R2

R1

R0

DB
11

DB
10

DB
9

DB
8

G5

G4

G3

G2

1 pixel

DB
7

G1

DB
6

G0

DB
5

B5

DB
4

B4

DB
3

B3

B2

DB
1

B1

B0

Note: 65,536-color display

Figure 47 Example of 16-Bit RGB Interface and Data Format

Rev. 0.11 April 25, 2008, page 126 of 181

DB
2

R61509V

Target Spec

18-bit RGB Interface
The 18-bit RGB interface is selected by setting RIM = 0. The display operation is synchronized with
VSYNCX, HSYNCX, and DOTCLK signals. The display data is transferred to the internal RAM in
synchronization with the display operation via 18-bit ports (DB17-0) while data enable signal (ENABLE)
allows RAM access via RGB interface.
Instruction bits can be transferred only via system interface.
RIM = 0
VSYNCX
HSYNCX
DOTCLK

HOST
PROCESSOR

R61509V
ENABLE
DB17-0

18

Data format for the 18-bit interface (RIM = 0)
Input

DB
17

DB
16

DB
15

DB
14

DB
13

DB
12

DB
11

DB
10

GRAM write
data

R5

R4

R3

R2

R1

R0

G5

G4

DB
9

DB
8

DB
7

DB
6

DB
5

DB
4

DB
3

DB
2

DB
1

DB
0

G3

G2

G1

G0

B5

B4

B3

B2

B1

B0

1 pixel

Note: Normal display in 262,144 colors

Figure 48 Example of 18-Bit RGB Interface and Data Format

Rev. 0.11 April 25, 2008, page 127 of 181

R61509V

Target Spec

Notes to RGB Interface Operation
1. The following functions are not available in RGB interface operation.
Table 64 Functions Not Available in RGB Interface operation
Function

RGB Interface

Internal Display Operation

Partial display

Not available

Available

Scroll function

Not available

Available

2. The VSYNCX, HSYNCX, and DOTCLK signals must be supplied during display period.
3. The reference clock to generate liquid crystal panel controlling signals in RGB interface operation is
DOTCLK, not the internal clock generated from the internal oscillator.
4. When switching between the internal operation mode and the external display interface operation mode,
follow the sequences below in setting instruction.
5. In RGB interface operation, front porch period continues after the end of frame period until next
VSYNCX input is detected.
6. RGB and 80-system bus interfaces cannot be used simultaneously.
7. In RGB interface operation, RAM address AD16-0 is set in the address counter every frame on the
falling edge of VSYNCX.

Internal Clock Operation to RGB Interface (1)

RGB Interface (1) to Internal Clock Operation

Internal clock operation

RGB interface operation
Set internal clock
operation mode*
(DM1-0 = 00 and RM = 0)

AM = 0

RAM address set
Set DM1-0 = 01 and RM = 1
for RGB interface

Display operation in
synchronization with
internal clocks

Wait one frame period
or more

*Instruction setting for
the RGB interface operation
is enebled from the next frame period.

Internal clock operation
Set index register to R202h

*Instruction setting to the
internal clock operation
is enebled from the next
frame period.

Display operation in
synchronization with
internal clocks

Note: Continue RGB interface signals at least for
one frame period after setting DM1-0, RM bits
to internal clock operation.

Wait one frame period
or more
Write data to RAM
via RGB interface

Display operation in
synchronization with
VSYNCX, HSYNCX, and
DOTCLK

Display operation in
synchronization with VSYNCX,
HSYNCX, and DOTCLK

Operation via RGB interface

Note: Input the RGB interface signals before setting the DM1-0 and RM bits
to the RGB interface operation.

Figure 49 RGB and Internal Clock Operation Mode Switching Sequences
Rev. 0.11 April 25, 2008, page 128 of 181

R61509V

Target Spec

RAM Address and Display Position on the Panel
The R61509V has memory to store display data of 240RGB x 432 lines. The R61509V incorporates a
circuit to control partial display, which allows switching driving method between full-screen display mode
and partial display mode.
The R61509V makes display arrangement setting and panel driving position control setting separately and
specifies RAM area for each image displayed on the panel.
The following is the sequence of setting full-screen and partial display.
1.
2.
3.

Set (PTSA, PTEA) to specify the RAM area for each partial image
Set the display position of each partial image on the base image by setting PTDP.
Set NL to specify the number of lines to drive the liquid crystal panel to display the base
image
After display ON, set display enable bits (BASEE, PTDE) to display respective images

4.

BASEE = 1, PTDE = 0
BASEE = 0, PTDE = 1

Normal display
Partial display
5.

Changes BASEE, PTDE settings when turning on and off the full and partial displays 1/2.

In driving the liquid crystal panel, the clock signal for gate line scan is supplied consecutively via interface
in accordance with the number of lines to drive the liquid crystal panel (NL setting).
When switching the display position in horizontal direction, set SS bit when writing RAM data.
Table 65
Display ENABLE

Numbers of lines

RAM area

Base image

Note:

BASEE
NL
(VSA, VEA)
The base image is displayed from the first line of the screen.

Table 66
Display ENABLE
Partial image

PTDE

Rev. 0.11 April 25, 2008, page 129 of 181

Display position

PTDP

RAM area

(PTSA, PTEA)

R61509V

Target Spec
Display data
output position

Panel display
position

Base image
RAM address

Partial image
RAM address

1

RAM write
address
(HSA,HEA)

9’h000

Partial
image

PTSA0

PTDP
Scan
direction

䇼LCD䇽

PTEA0

Base
image

Window
Address
(VSA,VEA)

NL
9’h1AF

Figure 50 RAM Address, Display Position and Drive Position

Restrictions in Setting Display Control Instruction
There are restrictions in coordinates setting for display data, display position and partial display.
Screen setting
In setting the number of lines to drive the liquid crystal panel, make sure that the total number of lines is
432 lines or less (NL ≤ 432 lines).
Base image display
The base image is displayed from the first line of the screen: Base image display start position = 1st line

Rev. 0.11 April 25, 2008, page 130 of 181

R61509V

Target Spec

The following figure shows the relationship among the RAM address, display position, and the lines driven
for the display.
LCD panel
physical line address

Display
data output
order

0

RAM line address

Display screen
0 (1st line)
1 (2nd line)
2 (3rd line)

1
2
3
4
5

9’h000

PTDP
Partial image
Display area

Base image 1
RAM area

NL
( n line)

NL

n-1

NL

PTSA

Partial image
RAM area
PTEA

9’h1AF

Figure 51 Display RAM Address and Panel Display Position
Note: This figure shows the relationship between RAM line address and the display position on the panel.
In the R61509V’s internal operation, the data is written in the RAM area specified by the window
address setting.

Rev. 0.11 April 25, 2008, page 131 of 181

R61509V

Target Spec

Instruction Setting Example
The followings are examples of settings for 240(RGB) x 432(lines) panel.
1.

Full screen display (no partial display)

The following is an example of settings for full screen display.
Table 67
Base image display instruction
BASEE
1
NL[5:0]
6’h35
PTDE

0

Display
data output
order

LCD panel
physical line address
0 (1st line)
1 (2nd line)
2 (3rd line)

1
2
3
4
5

NL
(432 lines)

RAM line address
BSA=9'h000
9’h000

Base image
BASE image
RAM area

432

431 (432nd line)

BEA = 9’h1AF

Figure 52 Full Screen Display (no Partial)

Rev. 0.11 April 25, 2008, page 132 of 181

R61509V
2.

Target Spec

Partial only

The following is an example of settings for displaying partial image 1 only and turning off the base image.
The partial image 1 is displayed at the position specified by PTDP0 bit.
Table 68
Base image display instruction
BASEE
0
NL[5:0]
6’h35
partial image 1 display instruction
PTDE
1
PTSA[8:0]
9’h000
PTEA[8:0]
9’h00F
PTDP[8:0]
9’h080

Display
data output
order

LCD panel
physical line address

1
2
3
4
5

RAM line address
PTSA=9’000

0 (1st line)
1 (2nd line)
2 (3rd line)

Partial image
RAM area
PTEA=9’00F
PTDP

Partial image
display area

NL
(432 linrs)

432

Base image
RAM area

Base image
(non-lit display)

431 (432nd line)

Figure 53 Partial Display

Rev. 0.11 April 25, 2008, page 133 of 181

9’h1AF

R61509V

Target Spec

Window Address Function
The window address function enables writing display data consecutively in a rectangular area (a window
address area) made in the internal RAM. The window address area is described by the horizontal address
register (start: HSA7-0, end: HEA7-0 bits) and the vertical address register (start: VSA8-0, end: VEA8-0
bits). The AM and ID bits set the transition direction of RAM address (either increment or decrement,
horizontal or vertical, respectively). Setting these bits enables the R61509V to write data including image
data consecutively without taking the data wrap position into account.
The window address area must be made within the GRAM address map area. Also, the AD16-0 bits (RAM
address set register) must be set to an address within the window address area.
[Window address area setting range]
(Horizontal direction)
(Vertical direction)
[RAM Address setting range]
(RAM address)

8’h00 ≤ HSA ≤ HEA ≤ 8’hEF
9’h000 ≤ VSA ≤ VEA ≤ 9’h1AF
HSA ≤ AD7-0 ≤ HEA
VSA ≤ AD16-8 ≤ VEA

GRAM address map
17'h00000

17'h000EF

Window address area
17'h02010
17'h02110

17'h0202F

17'h05F10

17'h05F2F

17'h0212F

17'h1AF00

17'h1AFEF

Window address area
HSA = 8'h10, HEA = 8'h2F
VSA = 9'h020, VEA = 9'h05F

ID = 2'h3 (increment)
AM = 1'h0 (horizontal writing)

ORG = 0 RAM address set = 17'02010 (arbitrary)
ORG = 1 RAM address set = 17'00000

Both are set to the same RAM address.

Figure 54 Automatic Address Update within a Window Address Area

Rev. 0.11 April 25, 2008, page 134 of 181

R61509V

Target Spec

Scan Mode Setting
The R61509V can set the gate pin assignment and the scan direction in the following 4 different ways by
setting SM and GS bits to realize various connections between the R61509V and the LCD panel.

Scan direction

SM

Interchanging backward direction (GS=1)

Interchanging forward direction (GS=0)

431
429

432
430

2
4

1
3

main
Panel

main
Panel
432

(GS)

(GS)

0
429
176
431

240

430

4

432

2
176

240

3
1

R61509V

R61509V

(Non-bump view)

(Non-bump view)

Scan order (Gate line No.)

Scan order (Gate line No.)

G1ЈG2ЈG3ЈG4.... G429ЈG430ЈG431ЈG432

G432ЈG431ЈG430ЈG3429.... G4ЈG3ЈG2ЈG1

Left/right forward direction (GS=0)

Left/right backward direction (GS=1)

1
2

215
216

432
431
main
Panel
432

(GS)

218
217

217

main
Panel
432

(GS)

218

216
215

1
240

431
432

240

R61509V

2
1

R61509V

(Non-bump view)

(Non-bump view)

Scan order (Gate line No.)

Scan order (Gate line No.)

G1ЈG3.... G429ЈG431Ј G2ЈG4....
G430ЈG432

G432ЈG430 .... G4ЈG2ЈG431ЈG429 ....
G3ЈG1

Note: the numbers in the circles in the figure shows the order of scan.

Figure 55

Rev. 0.11 April 25, 2008, page 135 of 181

R61509V

Target Spec

8-Color Display Mode
The R61509V has a function to display in eight colors. In this display mode, only V0 and V63 are used
and power supplies to other grayscales (V1 to V62) are turned off to reduce power consumption.
In 8-color display mode, the γ-adjustment registers R300 to R309 are disabled and the power supplies to V1
to V62 are halted. The R61509V does not require GRAM data rewrite for 8-color display by writing the
MSB to the rest in each dot data to display in 8 colors.

GRAM
MSB

Display data

LS B

R5 R4 R3 R2 R1 R0

G5 G4 G3 G2 G1 G0

B5 B4 B3 B2 B1 B0

Grayscale amplifier

V0
R5
2-level grayscale
control

2



V63

LCD driver

G5
2-level grayscale
control


LCD driver

B5
2-level grayscale
control


LCD driver

R G B
LCD
Figure 56 8-Color Display Mode

Rev. 0.11 April 25, 2008, page 136 of 181

R61509V

Target Spec

Frame-Frequency Adjustment Function
The R61509V supports a function to adjust frame frequency. The frame frequency for driving liquid
crystal can be adjusted by setting the DIVI, RTNI bits without changing the oscillation frequency.
By changing the DIVI and RTNI settings, the R61509V can operate at high frame frequency when
displaying a moving picture, which requires the R61509V to rewrite data in high speed, and it can operate
at low frame frequency when displaying a still picture.
Relationship between Liquid Crystal Drive Duty and Frame Frequency
The following equation represent the relationship between liquid crystal drive duty and frame frequency.
The frame frequency can be changed by setting the 1H period adjustment bit (RTNI) and the operation
clock frequency division ratio setting bit (DIVI).
Equation for calculating frame frequency

FrameFrequency =

fosc
[ Hz ]
NumberofClocks / line × DivisionRatio × ( Line + FP + BP)

fosc: RC oscillation frequency
Number of clocks per line: RTNI bit
Division ratio: DIVI bit
Line: number of lines to drive the LCD panel (NL bit)
Number of lines for front porch: FP
Number of lines for back porch: BP
Example of Calculation: when maximum frame frequency = 60 Hz
fosc: 678 kHz
Number of lines: 432 lines
1H period: 25 clock cycles (RTNI [4:0] = “11001”)
Division ratio of operating clock: 1/1
Front porch: 2 lines
Back porch: 14 lines

fFLM = 678 (kHz) / 25 (clocks) × 1/1 × (432+2+14) (lines) ≒ 60.5 (Hz)

Rev. 0.11 April 25, 2008, page 137 of 181

R61509V

Target Spec

Under the above conditions, the frame frequency can be changed according to the table shown below.
Table 69 Frame Frequency Setting (NL = 432 lines, BP = 14 lines, FP = 2 lines, fosc = 678 kHz)
RTNI[4:0]

DIVI = 2’h0

DIVI = 2’h1

5’h00 - 5’h0F

-

-

5’h10

95 Hz

47 Hz

5’h11

89 Hz

45 Hz

5’h12

84 Hz

42 Hz

5’h13

80 Hz

40 Hz

5’h14

76 Hz

38 Hz

5’h15

72 Hz

36 Hz

5’h16

69 Hz

34 Hz

5’h17

66 Hz

33 Hz

5’h18

63 Hz

32 Hz

5’h19

61 Hz

30 Hz

5’h1A

58 Hz

29 Hz

5’h1B

56 Hz

28 Hz

5’h1C

54 Hz

27 Hz

5’h1D

52 Hz

26 Hz

5’h1E

50 Hz

25 Hz

5’h1F

49 Hz

24 Hz

Rev. 0.11 April 25, 2008, page 138 of 181

R61509V

Target Spec

Partial Display Function
The partial display function allows the R61509V to drive lines selectively to display partial images by
setting partial display control registers. The lines not used for displaying partial images are driven at nonlit display level to reduce power consumption.
The power efficiency can be enhanced in combination with 8-color display mode. Check the display
quality when using low power consumption functions.

Non-lit display area

G41
Partial image:
20 lines

G60

Non-lit display area

Number of lines to drive LCD: NL = 6’h35 (432 lines)
Base image display enable:
BASEE = 0
Partial image display RAM area: (PTSA, PTEA) = (9’h000, 9’h013)
Partial image display position: PTDP = 9’h028
Partial image display enable:
PTDE = 1

Figure 57 Partial Display
Note: See the RAM Address and Display Position on the Panel for details on the relationship between the
display positions of partial images and respective RAM area setting.

Rev. 0.11 April 25, 2008, page 139 of 181

R61509V

Target Spec

Liquid Crystal Panel Interface Timing
The relationships between RGB interface signals and liquid crystal panel control signals in internal
operation and RGB interface operations are as follows.
Internal Clock Operation
One Frame

reference
point

reference
point

reference
point

reference
point

reference
point

reference
point

1H

FMARK
(FMP=BP-1)
NOWI

G1
G2

G432
SDTI

S(3n+1)
S(3n+2)
S(3n+3)

SDTI

R,G,B

R,G,B

R,G,B

n=0to239

First line

Second line

VCOM

Figure 58

Rev. 0.11 April 25, 2008, page 140 of 181

432nd line

reference
point

reference
point

R61509V

Target Spec

RGB Interface Operation

One frame
BP

FP

VSYNCX
1H

HSYNCX

DOTCLK

ENABLE

DB

1

2

3

4

5

6

430

431

432

1

2

3

5DOTCLK See note

Reference
point

Reference
point

1H

FMARK
(FMP=BP-1)

NOWE

G1
G2
G3
G432
SDTE

S(3n+1)
S(3n+2)
S(3n+3)

RGB

RGB

RGB

432

n=0 to 239
432nd line

Third line
FIrst line
Second line

VCOM

Note: Transfer RGB data in one transfer via 16-bit port

Figure 59

Rev. 0.11 April 25, 2008, page 141 of 181

1

R61509V

Target Spec

γ Correction Function
γ Correction Function
The R61509V supports γ-correction function to make the optimal colors according to the characteristics of
the panel. The R61509V has registers for positive and negative polarities.
γ Correction Circuit
The following figure shows the γ-correction circuit. According to the settings of variable resistors R0 to R8,
the voltage level, the difference between VREG1OUT and VGS, is evenly divided into 8 grayscale
reference voltages (V0, V1, V8, V20, V43, V55, V62, and V63). Other 56-grayscale voltages are
generated by setting the level at a certain interval between the reference voltages. For grayscale voltage,
see “Grayscale Voltage Calculation Formula”.

VREG1OUT
0~31R (1R)

R: Resistor outputting voltage evenly divided into 12
(1R): Trimming step
R0

㪭㪇
1~32R (1R)

R1

㪭㪈
2~33R (1R)

Interpolation
adjustment

R2

㪭㪏
4~19R (1R)

R3

㪭㪉㪇
8~23R (1R)

Linear
interpolation

R4

㪭㪋㪊
4~19R (1R)

R5

㪭㪌㪌
2~33R (1R)

R6

㪭㪍㪉
1~32R (1R)

Interpolation
adjustment

R7

㪭㪍㪊
2~33R (1R)

R8

VGS (=GND)
Figure 60

Rev. 0.11 April 25, 2008, page 142 of 181

R61509V

Target Spec

γ Correction Registers
The γ-correction registers include 42 bits for each of R, G, and B dots and 8-bit interpolation adjustment
registers.
Reference level adjustment registers
Table 70 Reference level adjustment registers
Resistor

Gamma Control
Positive
polarity

Negative
polarity

R0

PR0P00[4:0] PR0N00[4:0]

R1

PR0P01[4:0] PR0N01[4:0]

R2

PR0P02[4:0] PR0N02[4:0]

R3

PR0P03[3:0] PR0N03[3:0]

R4

PR0P04[3:0] PR0N04[3:0]

R5

PR0P05[3:0] PR0N05[3:0]

R6

PR0P06[4:0] PR0N06[4:0]

R7

PR0P07[4:0] PR0N07[4:0]

R8

PR0P08[4:0] PR0N08[4:0]

Rev. 0.11 April 25, 2008, page 143 of 181

R61509V

Target Spec

Table 71 Reference Level Adjustment Registers and Resistors
Resistor

R0

R1

R2

R3

R4

Register
Name

PR0*00[4:0]

PR0*01[4:0]

PR0*02[4:0]

PR0*03[3:0]

PR0*04[3:0]

Value

Resistance

Resistor

Register
Name

Valie

Resistance

5'h00

0R

4'h0

4R

5'h01

1R

4'h1

5R

5'h02

2R

4'h2

6R

5'h1F

31R

4'hF

19R

5'h00

1R

5'h00

2R

5'h01

2R

5'h01

3R

5'h02

3R

5'h02

4R

5'h1F

32R

5'h1F

33R

5'h00

2R

5'h00

1R

5'h01

3R

5'h01

2R

5'h02

4R

5'h02

3R

5'h1F

33R

5'h1F

32R

4'h0

4R

5'h00

2R

4'h1

5R

5'h01

3R

4'h2

6R

5'h02

4R

4'hF

19R

5'h1F

33R

4'h0

8R

4'h1

9R

4'h2

10R

4'hF

23R

Note: * indicates P / N.

Rev. 0.11 April 25, 2008, page 144 of 181

R5

R6

R7

R8

PR0*05[3:0]

PR0*06[4:0]

PR0*07[4:0]

PR0*08[4:0]

R61509V

Target Spec

Interpolation Registers
Table 72 Interpolation Registers
Gamma Control

Interpolation
adjustment

V2~V7
V56~V61

Positive
polarity

Negative
polarity

PI0P0[1:0]

PI0N0[1:0]

PI0P1[1:0]

PI0N1[1:0]

PI0P2[1:0]

PI0N2[1:0]

PI0P3[1:0]

PI0N3[1:0]

Table 73 Interpolation factor for V2 to V7
(See “Grayscale Voltage Calculation Formula” for IPV* level)
PI0*0[1:0]

2'h0

2'h1

2'h2

2'h3

PI0*1[1:0]

IPV2

IPV3

IPV4

IPV5

IPV6

IPV7

2'h0

81%

67%

52%

39%

26%

13%

2'h1

78%

61%

43%

33%

22%

11%

2'h2

73%

52%

31%

23%

15%

8%

2'h3

72%

50%

28%

21%

14%

7%

2'h0

80%

68%

56%

42%

28%

14%

2'h1

76%

62%

48%

36%

24%

12%

2'h2

70%

52%

35%

26%

17%

9%

2'h3

69%

50%

31%

23%

16%

8%

2'h0

78%

70%

61%

46%

30%

15%

2'h1

74%

63%

53%

39%

26%

13%

2'h2

66%

53%

39%

29%

20%

10%

2'h3

64%

50%

36%

27%

18%

9%

2'h0

78%

70%

63%

47%

31%

16%

2'h1

73%

64%

54%

41%

27%

14%

2'h2

65%

53%

41%

31%

20%

10%

2'h3

63%

50%

37%

28%

19%

9%

Rev. 0.11 April 25, 2008, page 145 of 181

R61509V

Target Spec

Table 74 Interpolation Factor for V56 to V61
PI0*3[1:0]

2'h0

2'h1

2'h2

2'h3

PI0*2[1:0]

IPV56

IPV57

IPV58

IPV59

IPV60

IPV61

2'h0

87%

74%

61%

48%

33%

19%

2'h1

89%

78%

67%

57%

39%

22%

2'h2

92%

85%

77%

69%

48%

27%

2'h3

93%

86%

79%

72%

50%

28%

2'h0

86%

72%

58%

44%

32%

20%

2'h1

88%

76%

64%

52%

38%

24%

2'h2

91%

83%

74%

65%

48%

30%

2'h3

92%

84%

77%

69%

50%

31%

2'h0

85%

70%

54%

39%

30%

22%

2'h1

87%

74%

61%

47%

37%

26%

2'h2

90%

80%

71%

61%

47%

34%

2'h3

91%

82%

73%

64%

50%

36%

2'h0

84%

69%

53%

38%

30%

22%

2'h1

86%

73%

59%

46%

36%

27%

2'h2

90%

80%

69%

59%

47%

35%

91%

81%

72%

63%

50%

37%

2'h3
Note: * indicates P/N.

Rev. 0.11 April 25, 2008, page 146 of 181

R61509V

Target Spec

Table 75 Grayscale Voltage Calculation Formula
Grayscale
voltage

Formula

Grayscale
voltage

Formula

V0

ΔV x Σ(R1~R8)/SUMR

V32

V43 + (V20 - V43) x 11/23

V1

ΔV x Σ(R2~R8)/SUMR

V33

V43 + (V20 - V43) x 10/23

V2

V8 + (V1 - V8) x IPV2

V34

V43 + (V20 - V43) x 9/23

V3

V8 + (V1 - V8) x IPV3

V35

V43 + (V20 - V43) x 8/23

V4

V8 + (V1 - V8) x IPV4

V36

V43 + (V20 - V43) x 7/23

V5

V8 + (V1 - V8) x IPV5

V37

V43 + (V20 - V43) x 6/23

V6

V8 + (V1 - V8) x IPV6

V38

V43 + (V20 - V43) x 5/23

V7

V8 + (V1 - V8) x IPV7

V39

V43 + (V20 - V43) x 4/23

V8

ΔV x Σ(R3~R8)/SUMR

V40

V43 + (V20 - V43) x 3/23

V9

V20 + (V8 - V20) x 11/12

V41

V43 + (V20 - V43) x 2/23

V10

V20 + (V8 - V20) x 10/12

V42

V43 + (V20 - V43) x 1/23

V11

V20 + (V8 - V20) x 9/12

V43

ΔV x Σ(R5~R8)/SUMR

V12

V20 + (V8 - V20) x 8/12

V44

V55 + (V43 - V55) x 11/12

V13

V20 + (V8 - V20) x 7/12

V45

V55 + (V43 - V55) x 10/12

V14

V20 + (V8 - V20) x 6/12

V46

V55 + (V43 - V55) x 9/12

V15

V20 + (V8 - V20) x 5/12

V47

V55 + (V43 - V55) x 8/12

V16

V20 + (V8 - V20) x 4/12

V48

V55 + (V43 - V55) x 7/12

V17

V20 + (V8 - V20) x 3/12

V49

V55 + (V43 - V55) x 6/12

V18

V20 + (V8 - V20) x 2/12

V50

V55 + (V43 - V55) x 5/12

V19

V20 + (V8 - V20) x 1/12

V51

V55 + (V43 - V55) x 4/12

V20

ΔV x Σ(R4~R8)/SUMR

V52

V55 + (V43 - V55) x 3/12

V21

V43 + (V20 - V43) x 22/23

V53

V55 + (V43 - V55) x 2/12

V22

V43 + (V20 - V43) x 21/23

V54

V55 + (V43 - V55) x 1/12

V23

V43 + (V20 - V43) x 20/23

V55

ΔV x Σ(R6~R8)/SUMR

V24

V43 + (V20 - V43) x 19/23

V56

V62 + (V55 - V62) x IPV56

V25

V43 + (V20 - V43) x 18/23

V57

V62 + (V55 - V62) x IPV57

V26

V43 + (V20 - V43) x 17/23

V58

V62 + (V55 - V62) x IPV58

V27

V43 + (V20 - V43) x 16/23

V59

V62 + (V55 - V62) x IPV59

V28

V43 + (V20 - V43) x 15/23

V60

V62 + (V55 - V62) x IPV60

V29

V43 + (V20 - V43) x 14/23

V61

V62 + (V55 - V62) x IPV61

V30

V43 + (V20 - V43) x 13/23

V62

ΔV x (R7 + R8)/SUMR

V31

V43 + (V20 - V43) x 12/23

V63

ΔV x R8/SUMR

Note:

Make sure that
ΔV = VREG1OUT – VGS
SUMR = Σ(R0~R8) ≥ 70R.
V63 ≥ 0.2V

Rev. 0.11 April 25, 2008, page 147 of 181

R61509V

Target Spec

Frame Memory Data and the Grayscale Voltage
Table 76
Grayscale Voltage
Frame memory
data

REV = 1

Grayscale Voltage
REV = 0

Frame memory
data

REV = 1

REV = 0

Positive
polarity

Negative
polarity

Positive
polarity

Negative
polarity

6'h20

V32

V31

V31

V32

V1

6'h21

V33

V30

V30

V33

V61

V2

6'h22

V34

V29

V29

V34

V60

V3

6'h23

V35

V28

V28

V35

V59

V59

V4

6'h24

V36

V27

V27

V36

V5

V58

V58

V5

6'h25

V37

V26

V26

V37

V6

V57

V57

V6

6'h26

V38

V25

V25

V38

6'h07

V7

V56

V56

V7

6'h27

V39

V24

V24

V39

6'h08

V8

V55

V55

V8

6'h28

V40

V23

V23

V40

6'h09

V9

V54

V54

V9

6'h29

V41

V22

V22

V41

6'h0A

V10

V53

V53

V10

6'h2A

V42

V21

V21

V42

6'h0B

V11

V52

V52

V11

6'h2B

V43

V20

V20

V43

Positive
polarity

Negative
polarity

Positive
polarity

Negative
polarity

6'h00

V0

V63

V63

V0

6'h01

V1

V62

V62

6'h02

V2

V61

6'h03

V3

V60

6'h04

V4

6'h05
6'h06

6'h0C

V12

V51

V51

V12

6'h2C

V44

V19

V19

V44

6'h0D

V13

V50

V50

V13

6'h2D

V45

V18

V18

V45

6'h0E

V14

V49

V49

V14

6'h2E

V46

V17

V17

V46

6'h0F

V15

V48

V48

V15

6'h2F

V47

V16

V16

V47

6'h10

V16

V47

V47

V16

6'h30

V48

V15

V15

V48

6'h11

V17

V46

V46

V17

6'h31

V49

V14

V14

V49

6'h12

V18

V45

V45

V18

6'h32

V50

V13

V13

V50

6'h13

V19

V44

V44

V19

6'h33

V51

V12

V12

V51

6'h14

V20

V43

V43

V20

6'h34

V52

V11

V11

V52

6'h15

V21

V42

V42

V21

6'h35

V53

V10

V10

V53

6'h16

V22

V41

V41

V22

6'h36

V54

V9

V9

V54

6'h17

V23

V40

V40

V23

6'h37

V55

V8

V8

V55

6'h18

V24

V39

V39

V24

6'h38

V56

V7

V7

V56

6'h19

V25

V38

V38

V25

6'h39

V57

V6

V6

V57

6'h1A

V26

V37

V37

V26

6'h3A

V58

V5

V5

V58

6'h1B

V27

V36

V36

V27

6'h3B

V59

V4

V4

V59

6'h1C

V28

V35

V35

V28

6'h3C

V60

V3

V3

V60

6'h1D

V29

V34

V34

V29

6'h3D

V61

V2

V2

V61

6'h1E

V30

V33

V33

V30

6'h3E

V62

V1

V1

V62

6'h1F

V31

V32

V32

V31

6'h3F

V63

V0

V0

V63

Rev. 0.11 April 25, 2008, page 148 of 181

R61509V

Target Spec

Power Supply Generating Circuit
The following figures show the configurations of liquid crystal drive voltage generating circuit of the
R61509V.
Power Supply Circuit Connection Example 1 (VCI1 = VCIOUT)
In the following example, the VCI1 level can be adjusted.

(1)
VREG1OUT
(2)

VREG1
࡟ࠡࡘ࡟࡯࠲

㓏⺞㔚࿶
↢ᚑ࿁〝

VCILVL

VCIOUT
಴ജ࿁〝

ౝㇱၮḰ
㔚࿶↢ᚑ࿁〝

࠰࡯ࠬ
࠼࡜ࠗࡃ

VCOMR
(3)

VCI1

S1-720

VCOMH

(16)

C11M
(4)

VCOM
಴ജ࿁〝

C11P
C12M

(5)

᣹࿶
࿁〝㧝

VCOM
(17)
VCOML

C12P
DDVDH

(6)

VCOM
࡟ࡌ࡞⺞ᢛ࿁〝

R61509V
C13M
(7)

(11)

VGH

C13P

See note 2.

VGL

ࠥ࡯࠻
࠼࡜ࠗࡃ

G1-432

C21M
(8)

C21P
VCC

C22M
(9)

GND

C22P

᣹࿶
࿁〝㧞

VCILVL
VCI
AGND

(10)
IOVCC
VGH
GND
(12)
VGL

(13)
See note 1.

VCL

(14)

VDD

(15)

Figure 61
Notes: 1. The wiring resistances between the schottky diode and GND/VGL must be 5Ω or less.
2. The wiring resistances between the schottky diode and DDVDH/VGH must be 5Ω or less.

Rev. 0.11 April 25, 2008, page 149 of 181

R61509V

Target Spec

Power Supply Circuit Connection Example 2 (VCI1 = VCI Direct Input)
In the following example, the electrical potential VCI is directly applied to VCI1. In this case, the
VCIOUT level cannot be adjusted internally but step-up operation becomes more effective. Make sure that
VCI≤ 3.0V.

(1)
VREG1OUT
(2)

VREG1
࡟ࠡࡘ࡟࡯࠲

㓏⺞㔚࿶
↢ᚑ࿁〝

VCILVL

VCIOUT
಴ജ࿁〝

ౝㇱၮḰ
㔚࿶↢ᚑ࿁〝

࠰࡯ࠬ
࠼࡜ࠗࡃ

VCOMR

VCI1

VCI

S1-720

VCOMH

(16)

C11M
See note 3. (4)

VCOM
಴ജ࿁〝

C11P
C12M

(5)

᣹࿶
࿁〝㧝

VCOM
(17)
VCOML

C12P

(6)

DDVDH
VCOM
࡟ࡌ࡞⺞ᢛ࿁〝

R61509V
C13M
(7)

(11)

VGH

C13P

See note 2.

VGL

C21M
(8)

ࠥ࡯࠻
࠼࡜ࠗࡃ

G1-432
VCC

C21P

GND

C22M
(9)

C22P

᣹࿶
࿁〝㧞

VCILVL
VCI
AGND

(10)
VGH
IOVCC
(12)
GND

VGL

(13)
See note 1.

VCL

(14)
VDD

(15)

Figure 62
Notes: 1. The wiring resistances between the schottky diode and GND/VGL must be 5Ω or less.
2. The wiring resistances between the schottky diode and DDVDH/VGH must be 5Ω or less.
3. When directly applying the VCI level to VCI1, set VC = 3’h7. Capacitor connection to VCIOUT is
not necessary.

Rev. 0.11 April 25, 2008, page 150 of 181

R61509V

Target Spec

Specifications of Power-supply Circuit External Elements
The specifications of external elements connected to the power-supply circuit of the R61509V are as
follows.
Table 77 Capacitor
Capacitance

1µF
(B characteristics)

Voltage proof

Pin Connection

6V

(1) VREG1OUT, (3) VCI1, (4) C11P, C11M, (5) C12P, C12M,
(7) C13P, C13M, (14) VCL, (16) VCOMH, (17) VCOML

10 V

(6) DDVDH, (8) C21P, C21M, (9) C22P, C22M

25 V

(10) VGH, (12) VGL

Table 78 Schottky Diode
Specification

Pin Connection

VF < 0.38 V/20 mA@25 °C, VR ≥ 25 V
(Recommended diode: HS*226)

(13) GND–VGL,
(11) DDVDH–VGH,

Table 79 Variable Resistor
Specification

Pin Connection

(2) VCOMR

> 200 kΩ

Table 80 Internal Logic Power Supply
Capacitance

1µF (B characteristics)

Voltage proof (recommended)

3V

Rev. 0.11 April 25, 2008, page 151 of 181

Pin Connection

(15) VDD

R61509V

Target Spec

Voltage Setting Pattern Diagram
The following are the diagrams of voltage generation in the R61509V and the TFT display application
voltage waveforms and electrical potential relationship.
VGH

BT

Internal reference
㩷
voltage (VCIR)
VRH
VCILVL(2.5~3.3V)
VCC(2.5~3.3V)

DDVDH
VREG1OUT

VC

VREG1OUT

BT

VCM/VCOMR

IOVCC(1.65~3.3V)

VCOMH

VCI1
VDV

GND(0V)
VCOML
VCL

BT
VGL

Figure 63
Notes: 1. The DDVDH, VGH, VGL, and VCL output voltages will become lower than their theoretical levels
(ideal voltages) due to current consumption at each output level. Make sure that output voltage
level in operation maintains the following relationships: (DDVDH – VREG1OUT) > 0.5V, (VCOML
– VCL) > 0.5V. Also make sure VGH-VGL ≤ 28V, VCI-VCL ≤ 6V. When the alternating cycle of
VCOM is high (e.g. polarity inverts every line cycle), current consumption will increase. In this
case, check the voltage before use.
2. In operation, setting voltages within the respective voltage ranges is recommended.

Rev. 0.11 April 25, 2008, page 152 of 181

R61509V

Target Spec

Liquid Crystal Application Voltage Waveform and Electrical Potential
VGH

VREG1OUT
VCOMH
VCOM

VCOML

Sn (source driver output)

Gn (panel interface output)

Figure 64

Rev. 0.11 April 25, 2008, page 153 of 181

R61509V

Target Spec

VCOMH and VREG1OUT Voltage Adjustment Sequence
When adjusting the VCOMH voltage by setting VCM[6:0] (R280h, internal VCOMH level adjustment
circuit), follow the sequence below.
The R61509V can retain permanently the VREG1OUT and VCOMH level adjustment setting values in
NVM.
To write data to NVM, see “NVM Control” and NVM Write Sequence”.

Display ON Sequence

㩷
VCOM level adjustment
R280h: VCM[6:0]
Set VCM[6:0] adjustment
value.

The display on the panel will
flicker when the VCOMH 㩷
level is adjusted internally.

Check the display
quality.

㩷

Complete the VCOMH level adjustment.

NVM (1)

㪠㫅㪻㪼㫏

㪈㪌

㪈㪋
㪭㪚㪤㩷
㪲㪍㪴

㪉㪏㪇㪿

㪈㪊

㪈㪉

㪈㪈

㪈㪇

㪐

㪏

㪎

㪍

㪌

㪋

㪊

㪭㪚㪤㩷
㪲㪌㪴

㪭㪚㪤
㪲㪋㪴

㪭㪚㪤㩷
㪲㪊㪴

㪭㪚㪤㩷
㪲㪉㪴

㪭㪚㪤
㪲㪈㪴

㪭㪚㪤
㪲㪇㪴

㪬㪠㪛
㪲㪎㪴

㪬㪠㪛
㪲㪍㪴

㪬㪠㪛
㪲㪌㪴

㪬㪠㪛
㪲㪋㪴

㪬㪠㪛
㪲㪊㪴

Set NVDAT[10:4] to the value set in 㩷the
VCM[6:0] after VCOMH level
adjustment. Then, write data to NVM.
㩷

㪉
㪬㪠㪛
㪲㪉㪴

㪈

㪇

㪬㪠㪛㩷
㪲㪈㪴

㪬㪠㪛㩷
㪲㪇㪴

Adjust VCOMH
level
㩷

Set NVDAT[3:0] to the value set 㩷in
UID[7:0]. Then, write data to NVM.

㩷

NVM Data Write Register

㪠㫅㪻㪼㫏

㪈㪌

㪈㪋

㪈㪊

㪈㪉

㪍㪝㪈㪿

㪥㪭㪛㪘㪫㩷
㪲㪈㪌㪴

㪥㪭㪛㪘㪫㩷
㪲㪈㪋㪴

㪥㪭㪛㪘㪫㩷
㪲㪈㪊㪴

㪥㪭㪛㪘㪫
㪲㪈㪉㪴

㪈㪈

㪈㪇

㪥㪭㪛㪘㪫㩷 㪥㪭㪛㪘㪫㩷
㪲㪈㪈㪴
㪲㪈㪇㪴

㪐

㪏

㪎

㪍

㪌

㪋

㪊

㪉

㪈

㪇

㪥㪭㪛㪘㪫
㪲㪐㪴

㪥㪭㪛㪘㪫
㪲㪏㪴

㪥㪭㪛㪘㪫
㪲㪎㪴

㪥㪭㪛㪘㪫
㪲㪍㪴

㪥㪭㪛㪘㪫
㪲㪌㪴

㪥㪭㪛㪘㪫
㪲㪋㪴

㪥㪭㪛㪘㪫
㪲㪊㪴

㪥㪭㪛㪘㪫
㪲㪉㪴

㪥㪭㪛㪘㪫㩷
㪲㪈㪴

㪥㪭㪛㪘㪫㩷
㪲㪇㪴

Set NVDAT[15] to 1.

Figure 65

Rev. 0.11 April 25, 2008, page 154 of 181

㩷 write data.
Set
㩷

R61509V

Target Spec

NVM Control
The R61509V incorporates 16-bit NVM for user’s use.
•

7 bits are for VCOM adjustment (VCM register value is stored).

•

8 bits are for UID.

•

1 bit is for a dummy bit.

To write, read and erase data from/to the NVM, follow the sequences below. Data on the NVM is loaded to
internal registers automatically when the sequences are performed.
•

Power On reset

•

Exit shutdown mode

Data stored in the NVM is retained permanently even if power supply is turned off.
Table 81
Operation mode

Power supply voltage (TBD)

Write

VPP1
VPP3A

Open or AGND

Erase

VPP1

9.2V±0.3V

VPP3A

-9.2V±0.3V

Remarks

Temperature
(TBD)

Write period:
150ms±50ms

-

+20°C~+30C°

Erase period:
10ms±1ms x n
time(s) (N ≤ 30, total
≤ 300ms)

Verify erase operation
at intervals of
10ms±1ms.

+20°C~+30C°

−40°C~+85C°
VPP3A
Open or AGND
NVM data rewrite (erase-write) operation should be performed up to 5 times per address.

Except
Write/Erase
Note:

9.2V±0.3V

Time (TBD)

VPP1

Open or AGND

Rev. 0.11 April 25, 2008, page 155 of 181

-

-

R61509V

Target Spec

NVM Load (Register Resetting) Sequence
Data on the NVM is loaded either automatically or by setting a command.
During the following sequence, the data written to the NVM is automatically loaded to the internal register.

Except for the shutdown mode

Index: 6F0h
Command: 16’h0040

TE = 1’b0
CALB = 1’b1
EOP[1:0] = 2’b00

Wait
1ms
or more
Index: 280h
VCM[6:0], UID[7:0]

NVM data read

Figure 66 NVM Load (Register Resetting) Sequence

Rev. 0.11 April 25, 2008, page 156 of 181

R61509V

Target Spec

NVM Write Sequence
Defined 16 bit data is written to the selected address. When “0” is written to these bits, the bits are set to
“0”. If the data is erased from the bit, the bit is returned to ”1”. The bit to which data is not written should
be set to “1”.

NVM Write Sequence

NVM Load (Register Resetting) Sequence

Power supply (VCC, VCI, IOVCC) ON

NVM load
6F0h:16’h0040
(CALB=1)

1msec
or more
1ms
or more

VPP1=9.2r0.3V

VPP3A/VPP3B=GND
GND

NVM load end
(Automatically CALB = 0)

1msec
or more
Power ON reset
2msec
or more

NVM data read

Transfer synchronization
RS=0, DB=16’h0000
RS=0, DB=16’h0000
RS=0, DB=16’h0000
RS=0, DB=16’h0000

R280h: VCM[6:0], UID[7:0]
Instruction read

NVM write data set
R6F1:16’h****
(NVDAT=16’hXX (arbitrary data))

NVM write setting
R6F0:16’h0010
(TE=0,CALB=0,EOP=2’h1)

NVM write start
R6F0:16’h0090
(TE=1,CALB=0,EOP=2’h1)

150msr50ms(TBD)

NVM write end
RA0: 16’h0000
(TE=0, EOP=2’h0,
NVAD=2’h0)

1us
or more

VPP1=9.2r0.3V

VPP3A =GND
GND

Figure 67 NVM Write Sequence

Rev. 0.11 April 25, 2008, page 157 of 181

R61509V

Target Spec

NVM Erase Sequence
The data written to the selected 16 bits is erased all together. The bits from which data is erased are set to
“1”. To erase data from NVM, make sure VGL < VPP3A, and follow the sequence below after power
supply ON sequence.
NVM Erase Sequence
Power supply ON sequence
㩷
㩷
NVM erase power supply
setting
㩷 and BT bits
To erase data from NVM, set the VC
㩷
as follows to make sure VGL < VPP3A < -9.5V.
(R100h): BT[2:0] = 3’h6 (VGL = -10.8V)
(R101h): VC[2:0] = 3’h7 (VCI = 2.7V)

NVM power supply ON
VPP1 = 9.2±0.3V

GND
1ms
or more㩷

Fix VPP3B to GND.

㩷

VPP3A = -9.2±0.3V 㩷 㩷

1ms or more
R6F0h:
TE=1, EOP[1:0]=2’h03

Start of rasing

Erase period
10ms±1ms

R6F2h:
 NVVRF=0
R6F0h:
TE=0, EOP[1:0]=2’h00㩷
R6F2h:
 NVVRF=1
㪩㪍㪝㪇㪿

End of erasing
Verify ON

㪚㪘㪣㪙㪔㪈

1ms or more

NVM power supply OFF

R280h: NVM data read

VPP1 = 9.2±0.3V
NO
NVM data read result:
15’h7FFF

GND
VPP3 = -9.2±0.3V

YES
 NVVRF=0
R6F2h:

1ms
or more

Verify OFF

Power supply OFF
sequence

Figure 68 NVM Erase Sequence

Rev. 0.11 April 25, 2008, page 158 of 181

R61509V

Target Spec

Power Supply Setting Sequence
The following are the sequences for setting power supply ON/OFF instructions. Set power supply ON/OFF
instructions according to the following sequences in Display ON/OFF, Sleep set/exit sequences.

Power Supply ON Sequence
Power supply (VCC, VCI, IOVCC) ON
㪭㪚㪠
㪠㪦㪭㪚㪚
㪭㪚㪚
㪞㪥㪛
VCC → IOVCC → VCI
or VCC, IOVCC, VCI simultaneously

 PON=1
R102h: PSON=1,

(1) Other mode setting instruction
(2) RAM write instruction,
etc.

Power ON reset
Power supply startup time
(6 frames x 1/osc)
1ms
or more

Automatic NVM data load
Access is prohibited
㩷
㩷
1ms after reset.

Transfer synchronization
RS=0, DB=16’h0000
RS=0, DB=16’h0000
RS=0, DB=16’h0000
RS=0, DB=16’h0000

(B) Liquid crystal
power supply
ON

(DCDC ON) state
Display OFF state

(A) Liquid crystal
power supply OFF
(DCDC OFF) state
㩷
Display OFF state

Display ON sequence
Instruction user setting
R400h:
NL[5:0]
R008h:
BP[7:0], FP[7:0]
R300h~R309h:
γ control
R010h:
RTNI[4:0], DIVI[1:0]
R100h:
BT[2:0], AP[1:0]
R101h:
VC[2:0], DC0[2:0], DC1[2:0]
Other user settings: see notes 1 and 2.

OR
NVM erase sequence

(1) To turn the display on, follow “Display ON Sequence”
in “Instruction Setting Sequence and Refresh Sequence”.
(2) To erase data from NVM, follow “NVM Erase Sequence”.
Erase data from NVM according to “NVM Control”.

Notes: 1. Set VCMR to 1 when using internal electric volume.
2. When NVM is in the status that the R61509V is shipped out, set the instruction register (R280h: VCM[6:0], and
UID[7:0]). If writing values to VCM[6:0] and UID[7:0] has been completed, setting this instruction register is
㩷
unnecessary.

Figure 69

Rev. 0.11 April 25, 2008, page 159 of 181

R61509V

Target Spec

Power Supply OFF Sequence
(B) Liquid crystal
power supply
ON

(DCDC ON) state
Display OFF state

‫ޣ‬ᶧ᥏㔚Ḯ
ࠝࡈࡈࡠ
R102h: PON=0 PSON=0
‫ޤ‬

5 frames or more
(A) Liquid crystal
power supply
OFF

(DCDC OFF)
Display OFF state

Power supply (VCC, VCI, IOVCC) OFF
VCI
IOVCC
VCC
㪞㪥㪛
VCI → IOVCC → VCC
or VCC, IOVCC, VCI simultaneously

Figure 70

Rev. 0.11 April 25, 2008, page 160 of 181

R61509V

Target Spec

Notes to Power Supply ON Sequence
When voltages do not rise in the order of VCC, IOVCC and then VCI and have to change the order, please
follow the following note.
Note
Internal operation of the R61509V is unstable until VCC rises. If IOVCC rose before VCC rises, the
R61509V may be in “output” status. In this case, do not send or receive any data before power supply is
completed.
Changing order of voltage input will not cause troubles such as latchup or destruction of the LSI.

Rev. 0.11 April 25, 2008, page 161 of 181

R61509V

Target Spec

Instruction Setting Sequence and Refresh Sequence
Display ON/OFF Sequences and Refresh Sequence
In setting instruction in the R61509V, follow the sequences below. To reduce malfunction caused by noise,
execute refresh sequence 1 regularly. To exit shutdown mode, execute refresh sequence 2.
Display ON sequence

Display OFF sequence

(B) Liquid crystal
power supply ON
(DCDC ON) state
㩷
Display OFF state

(C) Liquid crystal
power supply ON
(DCD ON) state
㩷
Display ON state

㩷
Display ON
R007h: BASEE=1

Display OFF
㩷
R007h: BASEE=0

(C) Liquid crystal
power supply ON
(DCD ON) state
Display ON state

(B) Liquid crystal
power supply ON
(DCDC ON) state
㩷
Display OFF state

Note: For power supply setting, see “Power Supply Setting Sequence”.
Refresh Sequence 1

Refresh Sequence 2

Transfer synchronization
RS=0, DB=16’h0000
RS=0, DB=16’h0000
RS=0, DB=16’h0000
RS=0, DB=16’h0000

Transfer synchronization
RS=0, DB=16’h0000
RS=0, DB=16’h0000
RS=0, DB=16’h0000
RS=0, DB=16’h0000

Test register initialization
㩷
R600h: TRSR=1

Test register initialization
㩷
R600h: TRSR=1
0.1ms
or more

NVM data load
㩷
R6F0h: CALB=1
0.3ms
or more

R600h: TRSR=0

All instruction initial setting
and user setting

R600h: TRSR=0

All instruction initial setting
and user setting

Except the following㩷 instructions:
R600h: TRSR
R6F0h: CALB

R6F1h: NVDAT[15:0]

Figure 71

Rev. 0.11 April 25, 2008, page 162 of 181

Except the following
㩷 instructions:
R600h: TRSR
R6F0h: CALB

R6F1h: NVDAT[15:0]

R61509V

Target Spec

Shutdown Mode Sequences
Shutdown Sequence (Exit shutdown mode by inputting CSX = “Low”)

㩷

18-/16-/9-/8-bit interface operation
Display OFF sequence
Set shutdown mode
Set shutdown mode
R100h: DSTB=1

CSX=”Low”(1)
CSX=”Low”(2)
VDD startup,
Oscillation startup period

1ms
or more

Exit shutdown mode
Input CSX = “Low” 6 times.
CSX=”Low” (3)
CSX=”Low” (4)
CSX=”Low” (5)

Initialize the
R61509V.

CSX=”Low” (6)
0.3ms
or more

Automatic NVM data load

User setting

Refresh sequence 2

NL, BP, FP, γ control,
RTNI, DIVI, and others

RAM data setting
Executing refresh sequence
regularly is recommended.

Display ON sequence

Notes: 1. See AC characteristics in Electrical Characteristics for details on low width (PWLW), high width (PWHW), and cycle (tCYCW) periods.
2. Leave at least 1 ms between the 2nd and 3rd inputs of CSX = Low in exiting shutdown mode.

WRX

“High” 㩷

RDX

“High” 㩷

RS
Data

2

1

CSX

Wait
1ms.

3

4

5

6

Don’t care

Don’t care

Don’t care

“Low” or “High”
Don’t care

Don’t care

Don’t care

Waveforms in Exiting Shutdown Mode (Input CSX="Low")

Figure 72

Rev. 0.11 April 25, 2008, page 163 of 181

㩷
Data and RS = Don’t
care
 

R61509V

Target Spec

Shutdown Sequence (Exit shutdown mode by inputting CSX = “Low” and WRX = “Low” (Index Write))
㩷 interface operation
(1) 18-/16-bit
Display OFF sequence
Set shutdown mode
Set shutdown mode
R100h: DSTB=1

Index Write (Data=16’h0000)
Index Write (Data=16’h0000)
VDD startup,
Oscillation startup period

1ms
or more

Exit shutdown mode
Index Write (Data=16’h0000)

Initialize the
R61509V.

Index Write (Data=16’h0000)
Index Write (Data=16’h0000)
Index Write (Data=16’h0000)
0.3ms
or more

Automatic NVM data load

User setting

Refresh sequence 2

NL, BP, FP, γ control,
RTNI, DIVI, and others

RAM data setting

Executing refresh sequence
regularly is recommended.

Display ON sequence

Notes: 1. See AC characteristics in Electrical Characteristics for details on low width (PWLW), high width (PWHW), and cycle (tCYCW) periods.
2. Leave 1 ms or more between the 2nd and 3rd inputs of Index Write.
1

CSX

2

Wait
1ms.

3

4

5

16’h0000

16’h0000

16’h0000

6

WRX
RDX

“High”

RS

“Low”

Data

16’h0000

16’h0000

Waveforms in Exiting Shutdown Mode (Input RS = “Low”and Index Write)

Figure 73

Rev. 0.11 April 25, 2008, page 164 of 181

16’h0000

R61509V

Target Spec

(2) 9-/8-bit interface operation
Display OFF sequence
Set shutdown mode
Set shutdown mode
R100h: DSTB=1

Index Write (Data=8’h00)
Index Write (Data=8’h00)
VDD startup,
Oscillation startup period

1ms
or more

Exit shutdown mode

Index Write (Data=8’h00)

Initialize the
R61509V.

Index Write (Data=8’h00)
Index Write (Data=8’h00)
Index Write (Data=8’hFF)

Index Write (Data=8’h00)
Index Write (Data=8’h00)

Transfer synchronization command (see note 3)
Index Write (Data=8’h00)
Index Write (Data=8’h00)
0.3ms
or more

Automatic NVM data load

User setting
Refresh sequence 2

NL, BP, FP, γ control,
RTNI, DIVI, and others

RAM data setting

Display ON sequence

Executing refresh sequence
regularly is recommended.

Notes: 1. See AC characteristics in Electrical Characteristics for details on low width (PWLW), high width (PWHW), and cycle (tCYCW) periods.
2. Leave at least 1 ms between the 2nd and 3rd Index write.
3. Set transfer synchronous command data 8'h00 when using 8 bit interface and 9'h000 when using 9-bit interface.
1

CSX

2
Wait
1ms.

3

5

4

6

1

2

3

4

WRX
RDX
RS
Data

“High” 㩷
“Low”㩷

Upper IW㩷 Lower IW

00h

00h

Upper IW Lower IW Upper IW Lower IW

00h

00h

00h

FFh

Upper IW㩷 Lower IW㩷 Upper IW㩷 Lower IW
00h
00h
00h 㩷
00h㩷

Execute transfer synchronization command by inputting RS = “Low” and Index Write after exiting shutdown mode.

Waveforms in Exiting Shutdown Mode (Input RS = “Low”and Index Write)

Figure 74

Rev. 0.11 April 25, 2008, page 165 of 181

Transfer synchronization
㩷

R61509V

Target Spec

8-Color Mode Setting
262,144 color to 8 color mode

8 color to 262,144 color mode

262,144-color mode
display

8-color mode display

R00Bh: COL=1

R00Bh: COL=0

8-color mode display

262,144-color mode
display

Figure 75
Partial Display Setting
Partial Display Setting Sequence

Full-screen display

Partial display setting
R500h: PTDP[8:0]
R501h: PTSA[8:0]
R502h: PTEA[8:0]

Base image display OFF
Partial display ON
R007h: BASEE=0, PTDE=1

8-color display, low power
consumption settings
R007h: COL=1,
R009h: PTS

Partial display

Base image display ON
Partial display OFF

R007h: BASEE=1, PTDE=0

Full-screen display

Figure 76

Rev. 0.11 April 25, 2008, page 166 of 181

Set as required

R61509V

Target Spec

Absolute Maximum Ratings
Table 82
Items

Symbol

Unit

Value

Note

Power supply voltage 1

VCC, IOVCC

V

-0.3 ~ +4.6

1, 2

Power supply voltage 2

VCI – AGND

V

-0.3 ~ +4.6

1, 3

Power supply voltage 3

DDVDH – AGND

V

-0.3 ~ +6.5

1, 4

Power supply voltage 4

AGND – VCL

V

-0.3 ~ +4.6

1

Power supply voltage 5

DDVDH – VCL

V

-0.3 ~ +9.0

1, 5

Power supply voltage 7

AGND– VGL

V

-0.3 ~ +13.0

1, 6

Power supply voltage 8

VGH – VGL

V

-0.3 ~ +30.0

1
1, 7

Power supply voltage 9

VCI – VGL

V

-0.3 ~ +6.5

Power supply voltage 10

VPP1

V

-0.3 ~ +10.0

1

Power supply voltage 11

VPP3A

V

-0.3 ~ +0.3

1

Input voltage

Vt

V

-0.3 ~ IOVCC + 0.3

Operation temperature

Topr

℃

-40 ~ +85

1, 8

Storage temperature

Tstg

℃

-55 ~ +110

1

1

Notes: 1. If used beyond the absolute maximum ratings, the LSI may be permanently damaged. It is
strongly recommended to use the LSI under the condition within the electrical characteristics in
normal operation. If exposed to the condition not within the electrical characteristics, it may affect
the reliability of the device.
2. Make sure VCC≥GND, and IOVCC≥GND.
3. Make sure VCI≥AGND.
4. Make sure DDVDH ≥ AGND.
5. Make sure DDVDH≥VCL.
6. Make sure AGND≥VGL.
7. Make sure VCI≥VGL.
8. The DC/AC characteristics of the die and wafer products are guaranteed at 85℃.

Rev. 0.11 April 25, 2008, page 167 of 181

R61509V

Target Spec

Electrical Characteristics
DC Characteristics
(VCC= 2.50V~3.30V, VCI=2.50V~3.30V, IOVCC=1.65V~3.30V, Ta= -40°C~+85°C *See note 1)
Table 83
Items

Symbol

Unit

Test condition

Min.

Typ.

Max.

Notes

Input high-level voltage

VIH

V

IOVCC=1.65V~3.30V

0.80×
IOVCC

Input low-level voltage

VIL

V

IOVCC=1.65V~3.30V

-0.3

-

0.20×
IOVCC

2, 3

VOH1

V

IOVCC=1.65V~3.30V,

0.8×
IOVCC

-

-

2

VOL1

V

-

-

0.20×
IOVCC

2

ILI1

µA

Vin=0~IOVCC

-1

-

1

4

IOP1

µA

fosc=678kHz (432-line drive), I80-IF,
IOVCC=VCC=3.00V, fFLM=60Hz,
Ta=25℃, RAM data: 18’h000000, See
other as well.

-

600

TBD

5, 6

Iop2

µA

fosc=678kHz (64-line partial display),
IOVCC=VCC=3.00V, fFLM=40Hz,
Ta=25℃, RAM data: 18h’000000, see
other as well.

-

300

-

5, 6

Ishut1

µA

IOVCC=VCC=3.00V, I80-IF, Ta=25℃

-

0.1

1.0

5, 6

IRAM1

mA

IOVCC=2.40V, VCC=3.00V,
tCYCW=110ns, Ta=25℃, I80-8bit-I/F,
TRIREG=1’h1, Consecutive RAM access
during display operation, BC0=0, FP=5,
BP=8, γ register; 0(default), COL=0

-

3.0

-

5

mA

IOVCC=1.8V, VCC=VCI=2.8V,
432-line drive, fFLM=60Hz, Ta=25℃,
Frame memory data: 18’h00000, REV=0,
BC0=0, FP[7:0]=8’h8, BP[7:0]=8’h8,
VC[2:0]=3’h1, BT[2:0]=3’h2,
VRH[4:0]=5’h18, VCM[6:0]=7’h7F,
VDV[4:0]=5’h11, AP[1:0]=2’h3,
DC0[2:0]=3’h3, DC1[2:0]=3’h4,
PR*P00=PR*N00=5’h00,
PR*P01=PR*N01=5’h02,
PR*P02=PR*N02=5’h04,
PR*P03=PR*N03=4’h8,
PR*P04=PR*N04=4’hF,
PR*P05=PR*N05=4’h8,
PR*P06=PR*N06=5’h04,
PR*P07=PR*N07=5’h02,
PR*P08=PR*N08=5’h04,
PIR*P0= PIR*P1= PIR*P2= PIR*P3=2'h0
PIR*N0= PIR*N1= PIR*N2= PIR*N3=2'h0
(*: 0, 1, 2)
No load on the panel.

-

3.5

TBD

6

Output high voltage 1
(DB0-17,FMARK)
Output low voltage 1
(DB0-17,FMARK)
I/O leakage current

IOH=-0.1mA
IOVCC=1.65V~3.30V,
IOL=0.1mA

-

IOVCC

2, 3

Current consumption
((IOVCC-IOGND)+
(VCC-GND))
Normal operation mode (262,144 color
display)
Current consumption
((IOVCC-IOGND)+
(VCC-GND))
8-color, 64-line partial display on sub
display
Current consumption
((IOVCC-IOGND)+
(VCC-GND))
Shutdown mode
Current consumption
((IOVCC-IOGND)+
(VCC-GND))
RAM access mode 1

LCD power supply current (VCI-GND)
262,144-color display

Ici1

Rev. 0.11 April 25, 2008, page 168 of 181

R61509V

Target Spec

Ici2

mA

IOVCC=1.8V, VCC=VCI=2.8V,
64-line partial, fFLM=40Hz, Ta=25℃,
Frame memory data: 18’h00000, REV=0,
BC0=0, FP[7:0]=8’h8, BP[7:0]=8’h8,
VC[2:0]=3’h1, BT[2:0]=3’h2,
VRH[4:0]=5’h18, VCM[6:0]=7’h7F,
VDV[4:0]=5’h11, AP[1:0]=2’h3,
DC0[2:0]=3’h3, DC1[2:0]=3’h4,
PR*P00=PR*N00=5’h00,
PR*P01=PR*N01=5’h02,
PR*P02=PR*N02=5’h04,
PR*P03=PR*N03=4’h8,
PR*P04=PR*N04=4’hF,
PR*P05=PR*N05=4’h8,
PR*P06=PR*N06=5’h04,
PR*P07=PR*N07=5’h02,
PR*P08=PR*N08=5’h04,
PIR*P0= PIR*P1= PIR*P2= PIR*P3=2'h0
PIR*N0= PIR*N1= PIR*N2= PIR*N3=2'h0
(*: 0, 1, 2)
No load on the panel.

VPP1AGND

IVPP1W

mA

VPP1=9.2V

VPP3AAGND

IVPP3AW

mA

(Write period)

-

-

1.0

6

VPP1AGND

IVPP1E

mA

VPP1=9.2V

-

-

1.0

6

VPP3AAGND

IVPP3AE

mA

(Erase period)

-

-

1.0

6

Output voltage dispersion

ΔVO

mV

-

-

5

-

7

Average output variance

ΔVΔ

mV

-

-35

-

35

8

LCD power supply current (VCI-GND)
8-color, 64-line partial display

NVM current
consumption

Write

NVM current
consumption

Erase

-

0.8

TBD

5, 6

-

-

30.0

6

VPP3A=GND

VPP3A=-9.2V

Rev. 0.11 April 25, 2008, page 169 of 181

R61509V

Target Spec

Step-up Circuit Characteristics
Table 84
Item

Step-up
output
voltage

Unit

DDVDH

VGH

VGL

VCLV

Test condition

Min.

Typ.

Max.

Note

V

IOVCC=VCC=VCI=2.80[V], fosc=678[kHz], Ta=25℃,
VC=3’h1, AP=3’h3, BT=3’h2, DC0=3’h4 (div. 1/8),
DC1=3’h2 (div. 1/4), COL=0, D=2’h0,
C11=C12=C13=C21=C22=1[uF]/B characteristics,
DDVDH=VGH=VGL=VCL=1[uF]/B characteristics,
Iload1=-3 [mA], No load on the panel.

4.8

5.1

-

-

V

IOVCC=VCC=VCI=2.80[V], fosc=678[kHz], Ta=25℃,
VC=3’h1, AP=3’h3, BT=3’h2, DC0=3’h4 (div. 1/8),
DC1=3’h2 (div. 1/4), COL=0, D=2’h0,
C11=C12=C13=C21=C22=1[uF]/B characteristics,
DDVDH=VGH=VGL=VCL=1[uF]/B characteristics,
Iload2=-100[uA], No load on the panel.

14.4

15.1

-

-

V

IOVCC=VCC=VCI=2.80[V], fosc=678[kHz], Ta=25℃,
VC=3’h1, AP=3’h3, BT=3’h2, DC0=3’h4 (div. 1/8),
DC1=3’h2 (div. 1/4), COL=0, D=2’h0,
C11=C12=C13=C21=C22=1[uF]/B characteristics,
DDVDH=VGH=VGL=VCL=1[uF]/B characteristics,
Iload3=+100[uA], No load on the panel.

-

-10.0

-9.6

-

V

IOVCC=VCC=VCI=2.80[V], fosc=678[kHz], Ta=25℃,
VC=3’h1, AP=3’h3, BT=3’h2, DC0=3’h4 (div. 1/8),
DC1=3’h2 (div. 1/4), COL=0, D=2’h0,
C11=C12=C13=C21=C22=1[uF]/B characteristics,
DDVDH=VGH=VGL=VCL=1[uF]/B characteristics,
Iload4=+200[uA], No load on the panel.

-

-2.55

-2.4

-

Internal Reference Voltage: Condition
(VCC= 2.50V~3.30V, Ta= -40°C~+85°C)
Table 85
Item

Internal reference
voltage

Unit

Symbol

VCIR

Rev. 0.11 April 25, 2008, page 170 of 181

V

Min.

-

Typ.

2.50

Max.

-

Note

12

R61509V

Target Spec

Power Supply Voltage Range
(Ta= -40°C~+85°C, GND=AGND=0V)
Table 86
Symbol

Unit

Min.

Typ.

Max.

Condition

Power Supply Voltage

IOVCC

V

1.65

1.80/2.80

3.30

-

Power Supply Voltage

VCC

V

2.50

2.80

3.30

-

Power Supply Voltage

VCI

Item

Power Supply Voltage

VPP1

Power Supply Voltage

VPP3A

V

2.50

2.80

3.30

-

V

8.9

9.2

9.5

Write

V

8.9

9.2

9.5

Erase

V

-0.3

0.0

+0.3

Write

V

-9.5

-9.2

-8.9

Erase

Output Voltage Range
(Ta= -40°C~+85°C, GND=AGND=0V)
Table 87
Item

Grayscale, VCOM
reference

Unit

Symbol

VREG1O
UT

V

VCOMH output

VCOMH

VCOML output

VCOML

Source driver

VCOM amplitude

Min.

Typ.

Max.

Condition

-

-

DDVDH-0.5

-

V

GND+0.2

-

VREG1OUT

-

V

-

-

VREG1OUT

-

V

VCL+0.5

-

-

-

V

-

-

6.0

-

Step-up output

DDVDH

V

4.5

-

6.0

-

Step-up output

VGH

V

10.0

-

18.0

-

Step-up output

VGL

V

-13.5

-

-4.5

-

Step-up output

VCL

V

-3.0

-

-1.9

-

VCI-VCL

V

-

-

6.0

-

VGH-VGL

V

-

-

28.0

-

Rev. 0.11 April 25, 2008, page 171 of 181

R61509V

Target Spec

AC Characteristics
(VCC= 2.50V~3.30V, IOVCC=1.65V~3.30V, Ta= -40°C~+85°C *See note 1)
Clock Characteristics
Table 88
Item

Symbol

Oscillation clock

fosc

Unit

kHz

Test condition

Min.

VCC=IOVCC=3.0V

Typ.

631

Max.

678

725

9

80-system 18-/16-/9-/8-bit Bus interface Timing Characteristics
(1-/2-/3-transfer, IOVCC=1.65V~3.30V) TBD
Table 89
Items

Bus cycle time

Symbol

Unit

Test
condition

Min.

Typ.

Max.

Write

tCYCW

ns

Figure A

75 (TBD)

-

-

Read

tCYCR

ns

Figure A

450 (TBD)

-

-

Write low- level pulse width

PWLW

ns

Figure A

30 (TBD)

-

-

Read low-level pulse width

PWLR

ns

Figure A

170 (TBD)

-

-

Write high-level pulse width

PWHW

ns

Figure A

25 (TBD)

-

-

Read high-level pulse width

PWHR

ns

Figure A

250 (TBD)

-

-

Write/ Read rise/fall time

tWRr,

ns

Figure A

-

-

15

ns

Figure A

0 (TBD)

-

-

ns

Figure A

10 (TBD)

-

-

Setup time

Write (RS to CSX,
WRX)
Read (RS to CSX,
RDX)

WRf

tAS

Address hold time

tAH

ns

Figure A

2 (TBD)

-

-

Write data setup time

tDSW

ns

Figure A

25 (TBD)

-

-

Write data hold time

tH

ns

Figure A

10 (TBD)

-

-

Read data delay time

tDDR

ns

Figure A

-

-

150

Read data hold time

tDHR

ns

Figure A

5 (TBD)

-

-

Rev. 0.11 April 25, 2008, page 172 of 181

Note

R61509V

Target Spec

Clock Synchronous Serial Interface Timing Characteristics
(IOVCC=1.65V~3.30V) TBD
Table 90
Item

Serial clock cycle
time
Serial clock
high-level width
Serial clock
low-level width

Symbol

Unit

Test condition

Min.

Typ.

Max.

Write (receive)

tSCYC

ns

Figure B

100 (TBD)

-

20,000

Read (transmit)

tSCYC

ns

Figure B

350 (TBD)

-

20,000

Write (receive)

tSCH

ns

Figure B

40 (TBD)

-

-

Read (transmit)

tSCH

ns

Figure B

150 (TBD)

-

-

Write (receive)

tSCL

ns

Figure B

40 (TBD)

-

-

Read (transmit)

tSCL

ns

Figure B

150 (TBD)

-

-

Serial clock rise/fall time

tSCr,tSCf

ns

Figure B

-

-

15 (TBD)

Chip select setup time

tCSU

ns

Figure B

20 (TBD)

-

-

Chip select hold time

tCH

ns

Figure B

60 (TBD)

-

-

Serial input data setup time

tSISU

ns

Figure B

30 (TBD)

-

-

Serial input data hold time

tSIH

ns

Figure B

30 (TBD)

-

-

Serial output data delay time

tSOD

ns

Figure B

-

-

130 (TBD)

Serial output data delay time

tSOH

ns

Figure B

5 (TBD)

-

-

RGB Interface Timing Characteristics
(18-/16-bit RGB interface, IOVCC=1.65V~3.30V) TBD
Table 91
Item

Symbol

Unit

VSYNC/HSYNC setup time

tSYNCS

clock

Figure D

0.5 (TBD)

-

1.5

ENABLE setup time

tENS

ns

Figure D

10 (TBD)

-

-

ENABLE hold time

tENH

ns

Figure D

20 (TBD)

-

-

DOTCLK low-level pulse width

PWDL

ns

Figure D

40 (TBD)

-

-

DOTCLK high-level pulse width

PWDH

ns

Figure D

40 (TBD)

-

-

DOTCLK cycle time

tCYCD

ns

Figure D

100 (TBD)

-

-

Data setup time

tPDS

ns

Figure D

10 (TBD)

-

-

Data hold time

tPDH

ns

Figure D

40 (TBD)

-

-

DOTCLK, VSYNCX and HSYNCX
rise/fall time

trgbr,
trgbf

ns

Figure D

-

-

15

Rev. 0.11 April 25, 2008, page 173 of 181

Test condition

Min.

Typ.

Max.

R61509V

Target Spec

LCD Driver Output Characteristics
Table 92
Item

Symbol

Unit

Test condition

Min.

Typ.

Max.

Note

VCC=IOVCC =2.80V, VC[2:0]=3’h7
VRH[4:0]=5’h1F,
fosc=678kHz (432-line drive), Ta=25°C,
PR*P00=PR*N00=5’h00,
PR*P01=PR*N01=5’h02,
PR*P02=PR*N02=5’h04,
PR*P03=PR*N03=4’h8,
PR*P04=PR*N04=4’hF,
PR*P05=PR*N05=4’h8,

Source driver
output delay time

tdds

µs

PR*P06=PR*N06=5’h04,
PR*P07=PR*N07=5’h02,

-

25 (TBD)

-

10

-

25 (TBD)

-

11

PR*P08=PR*N08=5’h04,
PIR*P0= PIR*P1= PIR*P2= PIR*P3=2'h0
PIR*N0= PIR*N1= PIR*N2= PIR*N3=2'h0
Same change from the same grayscale at
all time-division source output pins.
Time to reach the target voltage ±35mV
from VCOM polarity inversion timing.
R=10kohm, C=30pF
VCC=IOVCC=2.80V, VC[2:0]=3’h7,
VRH[4:0] =5’h1F,
fosc=678kHz (432-line drive), Ta=25°C,
PR*P00=PR*N00=5’h00,
PR*P01=PR*N01=5’h02,
PR*P02=PR*N02=5’h04,
PR*P03=PR*N03=4’h8,

VCOM output
delay time

PR*P04=PR*N04=4’hF,
PR*P05=PR*N05=4’h8,

tddv

µs

PR*P06=PR*N06=5’h04,
PR*P07=PR*N07=5’h02,
PR*P08=PR*N08=5’h04,
PIR*P0= PIR*P1= PIR*P2= PIR*P3=2'h0
PIR*N0= PIR*N1= PIR*N2= PIR*N3=2'h0
Time to reach ±35mV when shifting
between source V0⇔V63 in the worst
case of scenario.
R=100ohm, C=10nF

Reset Timing Characteristics
Table 93(IOVCC=1.65V~3.30V)
Item

Symbol

Unit

Test condition

Min.

Typ.

Max.

Reset ”Low” level width

tRES

ms

Figure C

1

-

-

Reset rise time

trRES

µs

Figure C

-

-

10

Rev. 0.11 April 25, 2008, page 174 of 181

R61509V

Target Spec

Notes to Electrical Characteristics
Note 1. The DC/AC electrical characteristics of bare die and wafer products are guaranteed at 85℃.
Note 2. The following figures illustrate the configurations of input, I/O, and output pins.

Pins: FMARK, SDO

Pins: RESETX, IM2-1, IM0_ID
VSYNCX, HSYNCX, DOTCLK, ENABLE,
CSX, RDX, SDI
IOVCC

IOVCC

PMOS

PMOS
Output data

(Input circuit)
NMOS

NMOS

GND

GND

Pins: WR_SCL, RDX

IOVCC

PMOS

Input enable (CSX)

PMOS
(Input circuit)

NMOS

NMOS

GND
Pins: DB17-DB0
IOVCC

PMOS
Input enable (CSX)

PMOS
(Input circuit)

NMOS

NMOS

GND

IOVCC

(Output circuit: three states)
Output enable

PMOS

Output data

NMOS

GND

Figure 77

Rev. 0.11 April 25, 2008, page 175 of 181

R61509V

Target Spec

Note 3: Test 1, 2 and 3 pins must be grounded. The VDDTEST and VREFC must be fixed to AGND. The
IM0_ID pin must be fixed to IOVCC or be grounded.
Note 4: This excludes the current in the output drive MOS.
Note 5: This excludes the current in the input/output lines. Make sure that the input level is fixed because
through current will increase in the input circuit when the CMOS input level takes a middle range
level. The current consumption is unaffected by whether the CSX pin is high or low while not
accessing via interface pins.
Note 7: The output voltage deviation is the difference in the voltages from adjacent source pins for the
same display area. This value is shown for reference.
Note 8: The average output voltage dispersion is the variance source-output voltage of different chips of the
same product. The average source output voltage is measured for each chip with same display area.
Note 9: This applies to internal oscillators when using an internal RC oscillator.
Note 10: The liquid crystal driver output delay time depends on the load on the liquid crystal panel. Adjust
the frame frequency and the cycle per line by checking the quality of display on the actual panel in
use.
Test Circuits

[Data bus DB17-DB0]


[Liquid output: S1-S720]



Test Point

Test Point

Test Point

50pF

10kΩ

Figure 78

Rev. 0.11 April 25, 2008, page 176 of 181

Load capacitance C
30pF

Load resistance R
100Ω

Load capacitance C
10nF

R61509V

Target Spec

Timing Characteristics
80-system Bus Interface

VIH

VIH

VIL

VIL

RS
tAH

tAS
CSX

VIH

VIH

VIL

VIL
Note 1

PWLW PWLR

PWHW PWHR

VIH

WRX
RDX

VIH

VIL

VIH

VIL

tWRr

tWRf
tCYCW tCYCR

tDSW

tH

Note 2

VIH

VIH

Write Data

DB17-0

VIL

VIL

tDDR
Note 2

tDHR
VOH

VOH

Read Data

DB17-0

VOL

VOL

Note 1: PWLW and PWLR are defined by the overlap period when CSX is "Low" and either of WRX or RDX is "Low".
Note 2: Unused DB pins must be fixed at "IOVCC" or "GND".

Figure A 80-system Bus Interface

Rev. 0.11 April 25, 2008, page 177 of 181

R61509V

Target Spec

Clock Synchronous Serial Interface
Start: S

End: P

VIH

CSX

VIL

tSCYC
tscr

tscf

tCSU

tSCH
VIH

SCL

VIH

VIL

tSCL

VIH

VIL

VIH

VIL

tSISU

VIL

tSISH

VIH

VIH

Input Data

SDI

tCH

VIL

Input Data
VIL

tSOD

tSOH
VOH1

VOH1

Output Data

SDO

Output Data

VOL1

VOL1

Figure B Clock Synchronous Serial Interface Timing

Reset Operation
trRES

tRES
VIH

RESETX
VIL

VIL

Figure C Reset Timing

Rev. 0.11 April 25, 2008, page 178 of 181

R61509V

Target Spec

RGB Interface
trgbf
trgbr

tSYNCS

VSYNCX

VIH

VIH

HSYNCX

VIL

VIL

tENS

ENABLE

tENH

VIH

VIH

VIL

VIL

trgbf

trgbr
PWDL

DOTCLK

PWDH

VIH

VIH
VIL

VIH

VIL

VIL

tCYCD
tPDS

tPDH

VIH

DB17-0

VIH

Write Data
VIL

VIL

Figure D RGB Interface Timing

LCD Driver and VCOM Output Characteristics
tDDv

Target voltage r35mV

VCOM
Target voltage r35mV

tDDs

Target voltage r35mV

S1-720
Target voltage r35mV

Figure E LCD Driver and VCOM Output Timing

Rev. 0.11 April 25, 2008, page 179 of 181

Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur
with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary
circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes:
1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes
warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property
rights or any other rights of Renesas or any third party with respect to the information in this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including,
but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass
destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws
and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this
document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document,
please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be
disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsover for any damages incurred as a result of
errors or omissions in the information included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability
of such information to the intended application. Renesas makes no representations, warranties or guarantees regarding the suitability of its products for any particular
application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or
otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and
reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or
undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall
have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
(1) artificial life support devices or systems
(2) surgical implantations
(3) healthcare intervention (e.g., excision, administration of medication, etc.)
(4) any other purposes that pose a direct threat to human life
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing
applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officiers, directors, and employees against any and all damages
arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range,
movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages
arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain
rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage
caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software
alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as
swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any
other inquiries.

http://www.renesas.com

RENESAS SALES OFFICES
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501
Renesas Technology Europe Limited.
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900
Renesas Technology Europe GmbH
Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11
Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2375-6836
Renesas Technology Taiwan Co., Ltd.
FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952
Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

© 2008. Renesas Technology Corp., All rights reserved. Printed in Japan.

Colophon .1.0

R61509V

Target Spec

Revision Record
Rev.

0.11

Date

2008/04/25

Page No.

Contents of Modification

First issue

Rev. 0.11 April 25, 2008, page 181 of 181

Drawn
by

Approved by



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : Yes
XMP Toolkit                     : 3.1-702
Producer                        : Acrobat Distiller 7.0 (Windows)
Creator Tool                    : PScript5.dll Version 5.2
Modify Date                     : 2010:03:01 11:36:29+08:00
Create Date                     : 2008:04:25 18:13:21+09:00
Metadata Date                   : 2010:03:01 11:36:29+08:00
Format                          : application/pdf
Title                           : Microsoft Word - eR61509V_0.11_20080424.doc
Creator                         : a5004468
Document ID                     : uuid:93d14b8c-83d8-4a3b-b230-11846c84b426
Instance ID                     : uuid:062d0ccd-7c86-4659-bf16-807bbe6ecd25
Page Count                      : 181
Author                          : a5004468
EXIF Metadata provided by EXIF.tools

Navigation menu