Sharp Mz 3500 Users Manual

MZ-3500 to the manual 30945b32-ab8c-422f-a17d-e85d340b9cd3

2015-01-23

: Sharp Sharp-Mz-3500-Users-Manual-285119 sharp-mz-3500-users-manual-285119 sharp pdf

Open the PDF directly: View PDF PDF.
Page Count: 116

DownloadSharp Sharp-Mz-3500-Users-Manual-  Sharp-mz-3500-users-manual
Open PDF In BrowserView PDF
MZ-3500

SERVICE MANUAL
CODE: OOZMZ 3500SM/E

PERSONAL COMPUTER

MODEL

Z-350

CONTENTS

1. Specifications
2. Software (Memory) Configuration
3. CPU and memory
4. CRT display
5. MFD interface
6. R232C interface
7. Printer interface
8. Other interface
9. Power circuit description
10. Keyboard controller circuit discription
11. Self check functions
12. IPL flow chart
13. Circuit diagram & P.W.B
Parts list & Guide

SHARP CORPORATION

1
7
12
25
52
72
yg
81
gy
90
94
103

M 7 3500

1. SPECIFICATIONS
1-1. Specification of the main unit (Model 35XX)

Outline

1)
2)
3)
4)

High speed processing using multi-CPL'
Built in mini floppy disk
Built in printer interface and RS232C Aerial interface
Connection of up to two video displa, mitt (separate graphic display or overlaid display possible on two individual color
monitor units)
5) Permits the use of standard CP/M
Model 3530 incluse a single double-side, double density mini floppy
disk and 64 KB RAM.
Model MZ3540 has two double-side, density mini floppy disks and
64 KB RAM.
CPU

Multi-CPU processing

MEMORY

Z80A microprocessor x 2
8K Byte ROM

IPL

ROM

RAM

C, G

8K Byte ROM

For main CPU

64K Bit DRAM x 16 chips or 8 chips

For sub-CPU

16K Bit SRAM x 4 chips

Shared RAM

16K Bit SRAM x

VIDEO
RAM

16K B't SRAM x 1 chip
4K Bit SRAM x 2 chips

Memory mapper

LSI

Model 3531 includes a single double side,
double density mini floppy disk and 128 KB
Model 3541 has two double side, double
density mini floppy disks, and 128 KB

TH

1 chip

SP6102R001

Custom LSI

Screen controller

CSP-1 SP6102C002
CSP 2 SP6102C003

GDC

CRT controller

MPD7220

FDC

Floppy disk controller

pPD765

PIO

Parallel I/O port

8255

SIO

Serial I/O port

8251

TIMER

Counter

8253

CLOCK

Clock

/iPD1990AC

Screen structure

80 characters x 25 lines. 80 x 20, 40 x 25. or 40 x 20

Elements
Attribute

8 x 16,8x8
Reverse, blink, line (horizontal, vertical)

Colors

8 colors on each character and background color

I/F

2 channels (applicable CRT 640 x 400, 640 x 200, B/W or color)

MZ353X

One double-side,
double density
floppy disk

256 bytes/sector, 16 sectors/track, 80 tracks/disk

MZ354X

Two double-side,
double density
floppy disks

Built-in interface for optional MFD

I/O

DISPLAY

MFD

Light pen
Other I/F

Other
functions

Keyboard

Dedicated keyboard

Printer

Centronics interface

RS232C

No protocol, asynchronus mode, 110 to 9600 bps, half-duplex

Speaker (500mW)

Battery backup clock

BASIC

HALT SW

Speaker volume control

High class compatible with PC3200 BASIC, supplemented and graphic
control commands
Expanded RS232C, GPIB, and GPIO

FDOS
Software

Utilities
CP/M

Accessories

Basic CP/M
Expanded CP/M

Intstruction Manual
master floppy disk
power cord

BACKUP, INIT, COPY, DEBUG, KILLALL

MZ3500
1-2. MZ-1K01 (Keyboard) specification
Outline

MZ1K02 U.S. keyboard (ASCII)
MZ1K04 German keyboard

MZ1K03: U.K. keyboard (ISO).
MZ1K05: French keyboard

Keyboard controller

80C49 or 8749

CMOSIC

4049x2,4514

LSI, 1C
Sculpture key
Keys (98)

Mechanical contact key, with life of 10,000,000 operations.

Alphanumeric keys
Mode switch

Interfacing cables

Ten key

61

15

Function keys

6

Definable keys

1

For data transfer with the CPU (serial) and power supply (transmission under 15,000 baud)
Use of coiled cable with 8-pin DIN plug

Specification

Repeat function

Automatic repeat occurs 0.64 seconds after
. . . .
.
continuous depression of the same key.

Indicators (4 LED's)

POWER, Alphanumeric keys

Other
Molded
Cabinet

Color

2

Two-key rollover

Office gray

Size (W x H x U

467 x 35 x 190

Weight

| About 1 .5kg (3.3 Ib)

Keyboard layout

Refer to the page TIN "CIRCUIT DIAGRAM"

1-3. MZ-1U02
Outline

Expansion unit for the MZ-3500 series CPU, which can be attached to the rear side of the main unit.
Optional boards are plugged in to the expansion box.
The expansion box will accomodate up to four option boards.
Number of slots: 4 slots
Slot connector. 60-pin edge connector x 4

Specifications

Area of the slot inserting option board: 140.5 x 140
Slot for option and slot number

Slot 1
MZ-1R06
(expansion RAM)

Slot2

o

Slot 3

O

o

SFDI/F

Slot 4

O

Expansion RS232C

o

o

O

0

GPIO

o

o

o

o

GPIB
(IEEE I/F)

o

0

o

o

-2-

10

MZ3500
Expansion unit

Screw (1)

1-4. MZ-IR03
Outline

Optional board used graphic display functions with the Model-3500 series CPU. It includes 32KB of RAM.
It is inserted through the slot on the front panel of the PU.
The MZ-1U02 expansion box is not required.
GDC
LSI

Graphic controller

vinrn HAM

Specifications

~~~~~
Graphic functions
(Color must be
specified for each
dot. when the color
video unit is in use)

MPD7220

Basic (buit-in)

16KDRAM x 16 (32KB)

Expansion
(optional)

16KORAM x 32 (64KB)

—_ _ _ _ W D E O RAM
640 x 200
green monitor
640 x 200
color monitor

32KB
(basic)

96KB
(maximum expansion)

640 x 200 dots
Two screens

640 x 200 dots
Six screens
640 x 200 dots
Two screens

_____

640 x 400
green monitor

640 x 400 dots
One screen

640 x 400
color monitor

^______-

BASIC graphic control statements
Software

-3-

—

640 x 400 dots
Three screens
~"

640 x 400 dots
One screen

SDISP

Screen designation for two video units.

ODISP

Designation of output screen.

CHANGE DISP

Mode designation

GCOLOR

Graphic pattern designation

CLS

Cleared by the color specified.

PSET

Dot set

PRESET

Dot reset

LINE

Line creation

GTABLE

Table creation

CIRCLE

Circle creation

PAINT

Paint over

GINPUT

Input of graphic pattern

GDISP

Display of graphic pattern

GPRINT

Output of graphic pattern on printer

GREAD

Read of coordinates

CENTER

Input of pattern within the specified area

GCURSOR

Graphic cursor position designation

GSCROL

Graphic screen scrolling

SYMBOL

Graphic symbol displaying

SCALE

Scren scle-down designation

MZ3500

1-6. MZ-1R06
Outline

Optional board for memory expantion of the MZ-3500 sries CPU. with this option the main memory (RAM) can be expanded
up to a maximum of 256 KB.
This option plug into the expantion box in slot 1 or 3.
LSI

Specifications

Basic

64KDRAM x8 (64KBI

Expansion

64KDRAM x8 (128KB)

Memory and user
area

Main CPU only Use of MZ-1R06 Using eight 64K RAM's
on theMZ-1R06
Total capacity of
the main CPU RAM
SYSTEM
AREA
BASIC:
(RAM
USER
BASE
'
AREA

128 KB

192 KB

256KB

• 57 KB

«-

*-

128 KB

208 KB

80 KB

- 4-

MZ3500
1-7.

MZ-1D07

Outline

High resolution MZ 3500 series 12 green monitor
Video tube

Type

Non glare green

Size

12", 90" deflection

Display capacity

640 horizontal dots,
400 vertical lines

Vertical

47 8 Hz

Weight

7.2kg

Fluorescent color P39 (green, long PERSISTANCE)
Display capacity

Total number of
display characters

Display size

220 x 145

2,000 characters
(80 characters x 25 lines)

Specifications
Method

Separate input, TTL level

Horizontal

20 86kHz

Input signals
Power supply

29W power consumpt ion
Molded

Color

Office gray

Cabinet
Size (W x H x U

324x310x356

Adjusting knobs

3

Accessories

CPU connection cable and power cord and Tilt stand

Vertical synchronization, contrast, brightness

r

- 5-

MZ3500
1-8. System configuration of Model 3500

Keyboard
MZ-1K02
MZ-1K03
MZ-1K04
MZ-1K05

Printer
IO2824E

I

I

6

I

Option MFDI
CE-331M |

I

"Model-3541 = Model-3531 + MZ-1F03

'
I

I

MZ3500

2. SOFTWARE (MEMORY) CONFIGURATION
Memory will be operated under four states of SDO ~ SD3,
depending on the hardware and software configurations.
In the paragraphs to follow, description will be made for
those four states.

2-1. SDO (INITIALIZE STATE)
SDO can only exist immediately after power on, and the
system executes IPL under this condition and that the
system thus loaded will automatically assign memory area
for SD1, SD2. and SD3.

MAIN CPU

SUB CPU

MAS

0

MAI

0
0

0
0
0

1

MA2
MAO

0

1

1

V

FFFF

1
MS1

= ° (D
MSO = 0 (L)

1

FFFF

T

? IRAM(COM^
jOO11——
^\
reoo

RAMA

RAMA

cooo

BFFF

\\

u
\\
\\

RAMA

8000
7FFF

\\
N

ROM
(SPAPE)

v
V

\

\

RAMA

4000
3FFF i

4000

| ROME [

I

I

2000 I

'

27FF
RAM (COM)

ROM
IPL

OFFF
0000

2000
1 FFF

ROM
JPL

0000

*7

M 7. 3500
Operational description

(1) Upon reset after power on, the main CPU loads the
contents of the initial program loader (IPL) into RAM
starting at address 4000H, during which time reset is
applied to the sub-CPU.

(2) The main CPU then terminates resetting the sub CPU
and starts the sub-CPU. At the same time, the ROM
IPL is assigned to the sub-CPU.
(3) The main CPU then send the memory allocation (state)
to SD1, and starts to load DOS from the system floppy
disk.

TIMING OF RESET SIGNAL

VtcSYSKES-

Signal generated from the
CR network and power supply

SKES-

Output signal from the main CPU port

pr)WFjJSUB
PO E

CPU
* ^ START

POWER
OFF

MAIN CPU
START

a. Main CPU reset time
b. Main CPU IPL load time

Memory Map Data:
1. ROM-B is tested to determine if ROM's are present.
2. The ROM-IPL functions under control of the main CPU
at first, but later it functions under the sub-CPU after
the IPL program has been loaded in RAM.
3. RAM-COM is shared by both the main CPU and the subCPU.
INITIALIZE FLOW

«TABT

4. Memories other than described above cannot be accessed
under the SDO state.
5. Bank select, MAO~MA3, is used within the address range
ofCOOOH-FFFFH.

MZ3500
ROM-IPL
1. An 8KB ROM (2764 or mask ROM equivalent) is used
2.

3.
4.

5.

Mam CPU logical address (during IPL operation)
Logical address of the sub-CPU

for the ROM-IPL.
When the system reset signal turns from low to high
state after power on, the main CPU starts to operate At
this stage, the ROM-IPL is addressed.
The CPU starts from address OOOOIROM address 10000)
The main CPU sets the sub-CPU reset signal from low to
high state as it goes out of its initial state via the memory
mapper and the sub-CPU starts to operate. At this point,
the ROM-IPL is addressed by the sub-CPU.
Address 0000 of the sub-CPU is ROM address (0000)
The memory area above ROM address (1000) cannot
be used by the sub-CPU because the mam CPU initial
program has been loaded there.

ROM physical address
OfFF

1 FFF

1 FFF

0800

1 800
1 7FF

1 800
I 7FF

ROM IPL

0000

1 OOP
OFFF

1 OOP
OFFF

0800
07FF

0800
07FF

0000

0000

2-2. SD1 (SYSTEM LOADING & CP/M)
SD1 determines which operating system ts in use. The
system is loaded in the CP/M (Control Program for Microprocessors) mode.
MS1 = 0( L)
MSO=l(Hj

M A I N CPU

rr

F?'

r

RAMicnu: \

\
> \

^

x

\
V

4

\
^\
3

\\
\\
\\

\\
\\
\\
\\
\\
\\
\\

i

RAM

sn

RAM

SA

KAM«.(IH) 2000
1FFF

f. ft f

n

-9-

MZ3500
Operational description

(1) As soon as the sub-CPU is started, it initializes the I/O
port and waits for program transfer (IOCS) from the
main CPU. This IOCS (Input Output Control System)
is the program resident at address 4000H-5FFFH.
(2) As the main CPU loads the information from sector

"1" of track "0" of the floppy disk, it loads the IOCS
and bootstrap routine to the sub-CPU.
(3) The bootstrap program is loaded next.
(4) The bootstrap program determines rnemory allocation.

Communication between Main and SUB CPU

BUSRQ

H

OUTPUT
(ISOLATION OF COM RAM)

|

2:3. SD2 (ROM based BASIC)
SD2 is active when "SHARP BASIC" is executed via ROM.

MAIN
M A S

BANK
SELECT

0

0

M A 2

°
MAI 0

°
0

MAO

1

0

FFFF

0

0
1

0

1

i\

1

1

1

I

1

1

0

0

0

0

1

1

0

I

0

0

1

I

0

1

0

1

0

1

0

1

0

1

KAMB

4

Sffi

0

1
I

0

I I I

R\MA

i

.
0

0

0

1
0

0

0
1

1

1,

MS] = I (H)
MSO = 0 Li

CPU

1

1

1

4

3|

11

2|

3,

4

3

2

IFF?

ROME

IFF?
J

ROMC

ROMU

ROM!

ROM 2

ROMA

0000
(MO2
M
M

0
O
O

0
1

O

0

0

0

0
0

1

1
1

1
0

0
1

1

KAMI!

K \M L

2,

1

0

1. Bank select, MAO~MA3. is effective for memory area COOOH-FFF FH.
2. Bank select, MOO~MA2, is effective for memory area 2000H-3FFFH

- 10 -

11

2,

3 |

4

SUB CPU

MZ3500

2-4. SD3 (RAM based BASIC)
SD3 is active when "SHARP BASIC" is ececuted via RAM.
"SHARP BASIC" is loaded in RAM from the floppy disk.

MSI = 1< H)

MAIN CPU
RAM
BANK
SELECT

MAS

0

0

0

0

0

0

MA2

0

0

0

0

1

1

MAI

0

0

1

MAO

0

1

Ffft

0

1

0

1

0

0

0

1

0

I

1

1

1

I I I

)

0

I

I

0
0

1

!

0

0

1

0

1
0

1
1

1

1

1

lRwnuf%
\\

I I I

RANC

SUB CPU

1
0

0

I I I

RAMB

\

MSO = HH)

KAMI)

r

1

v\

\v
1

2

,

3

,

4

1

,

2

,

3

,

4

1

,

2

,

3

gFFF

4

\ \

\\
N\

-

vx
\\
\\
\ ,

,
RAMA

ROM!

ROM2

KOM3

K(IM4

1FFF

RAN. SP
RAN SC
RAM SB
\\

0 0 0

0
0

'

ROM 1 PI

0000

0
1

0

1

"

0

)

i

]

1

0

0

1

1

0

1

0

1. Bank select, MAO-MA3. is effective for memory area COOOH-FFFFH.
2. Bank select, MOO-MO2, is effective for memory area 2000H-3FFFH.

Operational description
The state of the system is determined by the bootstrap
program before the load of the system program.

KU

"°

ROM BAS
k

]L

ROM M02
[NOI
BANK
SELECT MOO

,

SUB CPU

3. CPU AND MEMORY
3-1. Block diagram
1) Relation between MMR (Main Memory Mapper) and
main memory.

I

RECEI VFR

, RAM
I
(II'TION
1

4-

RAN

VI

' 64KBV2)

°l

1

OPTION

1
.

||

I

'7220

i
JK» 2K*

J

(, , A P M , C
{)

R

MPXR

VIIIK1 RAM
32KB

V 1 HI O RAM
32KB

It

Ml DM1 I MO*J
OK II K U MO* 400
kl Mil I 1 ION

V I D H ) RAM
32KH

L
si v i (.us TOM
1 SI CSI -2

SEMI CUSTOM
IS! CSI'-I

RS-232C l/f

MZ3500

3-2. Main CPU and I/O port

r^
IX
M
A
I
N

Connector
I PC 2
|~^T
1

A2
A3

""
~s

j^

A4

—££-1
A6
M

C
P

A
v~\
P

r (jtA.

v

f^-r-^r-.—r

Y 1 ~~>

\J> -•> r DL

iZ

\J I Obr

J

This paragraph discusses main CPU I/O
Port select and addressing.
The address output from the main CPU
is decoded in the 74LS138 to create the
select signal.
Table below describes address map and
signal functions.

Y3

C

-)
Y4 J

IORQ

f\
-\J

G2 B

u

Y5 ^

0 MFUC

Mi
Ol

• \J lUMr

Y6
5

O IOABCMEMORY MAPPER)

74LSI38

ADDRESS
A7

A6

A5

A4

A3

A2

A1 AO

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

1

01

1

1

0

1

1

1

1

0

DE

1

1

0

1

1

1

1

1

DF

^

^

^

Q

o

o

x

x

HEX

NOT USE

EO
NOT USE

E3
E4

^

^

^

Q

O

•

^

x

x

SFD interface FDC chip select.
SFDC (UPD765)

E7

AO used for RD and WR.
A1 is "don't care".

E8

i

i

i

o

t

o

x

x

IOSF

SFD interface I/O port and DMAC chip select.

EB
EC
1

1

1

0

1

1

X.

X

Interrupt signal from the sub-CPU to the main CPU.

INTR

Flipflop resetting signal.

EF
FO

1

1

1

1

Q

O

X

X

NOT USE

F3
F4
1

1

1

1

0

1

X

MFDC (UPD765)

X

MFD interface FDC chip select.

F7

F8
1

1

1

1

1

0

X

MFD interface I/O port.
IOMF

X

FB

AO used for RD and WR.
AT is "don't care".

FC
1

1

1

1

1

1

X

IOAB (MEMORY MAPPER)

X

FF

I/O port select in the memory mapper.
AO and A1 used during ~W5. WR.

MZ3500
3-3. Sub CPU and I/O port

SUB

AS6

5

ASS

2

AS4

i

Y6

CPU

Y4

4G
4_

AST

J

s07

~9

S06

_JQ
J

SOS

.Jl

SO4 ^ .

012

S03

,.

D15

S 2

HEC3 -C*

*.

^
r CKP 1 . CSP 2

.

Shown at the left is the circuit used by
the CPU to select the I/O ports The out
put address from the sub CPU is decoded
by the 74LS138to create the select signal.
Shown below is the address map and
select signals.

......
-^

*""

5

"MT

6

Gl

Yl
YO

14

°

-^

"SOT

D15 '*°° r MAIN CPU \m

74LS138

8
8

AS 7654 M £X\

0000

1

8

8

Signal description

2 3 4 5 6 7 8 9 A B C D E F

soo

Output signal to set the flipflop to apply interrupt (INTO) to the
main CPU. Enables communication between CPU's.
8251 SIO chip select.

0001

S018251

ASO is used for data control selection.
AS1, AS2, and ASS are "don't care".
8253 counter chip select.

0010

S02 8253

ASO and AS1 are used for programming during write.
AS2 and ASS are "don't care".
8255 PIO chip select.

0011

S03 8255

ASO and AS1 are used for port/control selection.
AS2 and ASS are "don't care".
8-bit input port.

0100

S04 input port select

Used for read.
AS3 are "don't care".
CRT control I/O port chip select.

0101

AS1, AS2, and ASS are used for write.

805

ASO is "don't care".
UPD7220 (graphic) chip select.
0110

ASO is used for read and write.

S06

AS1, AS2, and AS3 are "don't care"
UPD7220 (character) chip select.
0111

S07

ASO is used for read and write.
AS1, AS2, and AS3 are "don't care"

1000
1001
1010
1011
1100

NOT USE

1101
1110
1111

- 18-

MZ3500

3-4. Memory mapper (MMR) SP6102R-001
1) Block diagram
Memory mapping logic

ADDRESS BUS

AO . i. is.
COAB

A 15

A15
A14
AI3
A]
AO

AU

COAB
MKEQB
RFSH

~L
I/O

CONTROL BUS
MERQ
RFSH
RD
"WR

PORT
LOGIC

RB

—L -

n

OAB

DATA BUS I— \
DO-D7
V

INTB

WAITB

WAIT
TIMING
GENERATOR
INTERRUPT
PRIORITY
ENCORDER

CLK

SYSR

->TO

RESET

1NTFI)

- 19 -

MZ3500
2) Memory mapper (MMR) SP6102R-001 signal description
Polarity
Signal Name

1

ST

2

DO

IN

IN/OUT
9

D7

10

A15
A13

13

A1

Bidirectional main CPU data bus.
(Data bus 0 ~ 7)
Main CPU address bus.

IN

12

Main CPU DRAM output buffer (LS244) switching strap.

Used in the memory mapping logic of the MMR for address output for the DRAM, ROM, and
shared RAM.

IN

(Address bus 13 ~ 15)

Main CPU address bus.
Used in the I/O port select logic of the MMR to assign device number.
Sub-CPU bus request signal.

14

SRES

OUT

•

After power on: Halts the sub-CPU.

•

After write command (LDA-80H: OUT#FD) by the main CPU- Starts the sub-CPU.

This signal is issued after transfer of the main CPU program contained in the ROM-IPL.
(Sub CPU Reset)
Sub-CPU bus request signal.

15

SRQ

OUT

•

After power on: Resets bus request to sub-CPU.

•

After write command (LDA-02H1 OUT#FC) by the main CPU' Place bus request to the sub-CPU

This signal is issued to bus of the sub-CPU, after the main CPU writes to the shared RAM a command
parameter to the sub-CPU or reads the message status from the sub-CPU.
(Sub CPU Request)

16

Address signal to the main CPU dynamic RAM.

AR13

OUT

18

The main CPU address signals, A 13-A 15, merged in the memory mapping logic circuit to produce
AR13-AR15. This is means by which the 4 basic and CP/M memory maps are made, along with MS1

AR15

and MSO.

BASIC interpreter 32KB mask ROM chip select signal.
19

R32

OUT

Valid when SD2 is active (Sharp ROM based BASIC). Command (LDA 02H OUT 3FD)
(ROM 32K select)
Internal MMR I/O port select logic signal.

20

IOAB

IN

Goes low by the command IN/OUT #FC-#FF.
(Input/Output Address)

21

SRDY

IN

22

ROPB

OUT

Input of ready signal from the sub-CPU.
(Sub CPU Ready)
Chip select signal issued from the main CPU to the 8KB mask ROM.
Valid with SDO active (initialize state).

(ROM ipl)
23

ROAB

Chip select signal for four chip BASIC interpreter 8KB EPROM (A. B. C, D).
OUT

26

RODS

Valid with SD2 active (Sharp ROM based BASIC).
"R32B (alternate choice with the 32KB mask ROM chip select signal).
(ROM A~D Buffer)

27

RSAB

~

~

30

RSDB

Row address select signal for the main CPU dynamic RAM (block A-block D).
OUT

RAS (ROW ADDRESS SELECT; LINE ADDRESS SELECT) SIGNAL
(Row address Select)
Input of bus acknowledge signal from the sub-CPU.

31

SACK

IN

command is written in the shared RAM after acknowledgement from the sub-CPU

1

At the end of the command cycle bus request is released and the sub CPU executes the command

/

- 20-

M 7, 3500
Polarity

Pin No.

IN/OUT

Function

Signal Name
Main CPU 128KB dynamic RAM output buffer (LS244) output enable signal.

32

RF1B

OUT

33

RF2B

OUT

34

WATB

OUT

(RAM buffer 1)
Signal identical to R F 1 B

For option RAM
(RAM buffer 2)

Wait signal to the mam CPU
(One wait cycle 15 applied during the memory fetch cycle of the main CPU. It consists of one clock
period)

(WA|T)

Chip select signal issued from the mam CPU to select the RAM shared by the main CPU and

35

RCMB

OUT

the sub-CPU
(RAM Common)

36

ITFB

37

ITOB

IN

IN

Interrupt input from the UPD765 FDC (Floppy Disk Controller).
(Interrupt from Floppy)
Interrupt input from the sub-CPU.
(Interrupt from No. 0)

38

IT1B

IN

39

TT2B

40

MRQB

41

WRB

42

IT3B

IN

IT4B

44

SEC

(Interrupt from No. 1, 2)

Memory request signal from the main CPU.
(Memory Request)
Write signal from the main CPU.

IN

IN

43

Interrupt input from slot 1 or 2.

(Write)

Interrupt input from slot 3 or 4.
(Interrupt from No. 3, 4)

Input from the FDD (Floppy Disk Drive) assignment dip switch (A), No. 1.

IN

'See the dip switch description, provided separately.
(Section)

45

GND

IN

Ground

46

Vcc

IN

5V supply

47

SW1

IN

48

SW2

49

AO

IN

RFSH

IN

50

51

SW3

IN

52

SW4

53

GND

IN

54

FD1

IN

55

Vcc

IN

56

FD2

IN

Input from The s v s t e m assignment dip switch,
"See the dip switch description, provided separately.

Mam CPU address bus
Used rn the I/O port select logic in the MMR to designate device number.
Refresh signal from the main CPU.
(Refresh)

Input from the system assignment dip switch.
•See the dip switch description, provided separately.

Ground
Input from the system assignment dip switch.
'See the dip switch description, provided separately.
5V supply.
Input from the FDD assignment dip switch (A), No. 2.
*See the dip swi'ch description, provided separately.

MX 3500
Polarity
IN/OUT

Pin No

Function

Signal Name
System reset signal.
57

SYSR

IN

Used to reset I/O port in the MMR.
(System Reset)

58

FD3

IN

59

COAB

IN

Input from the sytem assignment dip switch.
"See the dip switch description, provided separately.
Shared RAM select signal.
Address of the shared RAM is *F800-#FFFF for the main CPU
(Common RAM Address)
Select signal for 8KB area allocated to slot 1.

60

RO1B

OUT

Valid when SD2 is active (ROM based BASIC) and SD3 (RAM based BASIC)
(ROM 1)

61

GND

IN

Ground

62

Vcc

IN

5V supply

63

RO2B

64

R03B

65

RDB

66

CLK

67

R04B

Select signal for 8KB area allocated to slot 2 or 3
OUT

Valid when SD2 is active (ROM based BASIC) and SD3 (RAM based BASIC).
(ROM2, 3)

IN

Read signal from the main CPU.
(Read)
EAIT signal generation clock.
(Clock)
Select signal for 8KB area allocated to slot 4.

OUT

Valid when SD2 or SD3 (RAM based BASIC) are active.
(ROM 4)
RAS/CAS address switching signal for the main CPU DRAM.

68

MPX

OUT

High: Row address

Low: Column address
(Multiplex)

69

GND

IN

70

CASB

OUT

Ground
CAS (Column Address) signal for the main CPU 64K DRAM.
•Refresh for the RAM only.
(Column Address Select Buffer)

71

GND

IN

72

INTB

OUT

73

Ground

(Interrupt)
Not used

- 22 -

M 7.3500
MAIN CPU
I/O PORT IN MEMORY MAPPER

ADDKKSS
A7 A6 A5|A4|A3|A2|Al|AO H E X UHUS
01

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

0

1 1 1 1 1 1 1 1

KI)

FE

FF

1 O
r\i IT

SKQB

DO
D7

SKI S

Dl

MS]

DO
1)7
D6
D5
D4
D2
Dl
DO
D4
D3
D2
Dl
DO
D7
D6
D5
1)4
D3
D2
Dl
DO
D7
D6

MSO

SRQ Bus request from the mam CPU to the sob-CPU

1 1
Sub-CPU reset signal
Memory system define

M<\3
Bank select signal to memory area of COOO-FFFF.

MA2

MAI
OUT

MAO

_J

MO2
MOI
MOO

Bank select signal to memory area of 2000-3FFF.

SW4
b«3
INI

System assign switch

M\2
Sttl

she
FD3
FD2
IN

FD assign

(SW8)

H>1
SKDY

•f>

Sub-CPU READY signal

SACK

•p

Sub-CPU acknowledge signal

1NP2
I MM

Interrupt status

IN'1'0
MF2
Mhl

1. All output signals are reset to low level upon power on,
except for SRBQ that goes high.
2. Noted with a star mark "£" are input/output signals, and
rest of others are processed in the LSI.

M II

#1 I/O port output of ME1 and ME2 uses the memory at
the addresses.
( ME2->8000~BFFF
I ME1->-4000~7FFF
When ME1 and ME2 are in high state. RSAB (RASA) is
inhibited during memory addresses in RAM-A that
correspond to overlayed addresses for MET and ME2
This is not true during SD1 mode.

01 iri T hkoM fMont

TO t MOI«m

Mm n (i H j 1 I 1 H M 2 hTisn 1 T4h
-^. t <|,
TvfT J i\=TjTNT7 JM3

i i

1
IM 2

IM 1

h

|M It

"- T"

1
X

"fJ~
11

1

1

j

X

X

1

L

1

H

H
I

H

H

1

H

|

1

L

H

" I "

H

j

H

j

H

H

I

'

H

H

j

H

j

H

L

1

j

H

i

l
""•»

H

|

H

H
1

FKOM SI in
M

" l"

Wait timing generator
WAIT is issued once per main CPU fetch cycle.
Its outut is tri state

H

|

TO HA

MZ3500
3-5. Memory (ROMIPL, RAMCOM, S-RAM) select circuit
To main CPU

1) ROM-IPL select by the main CPU
As ROM IPL turns to low level after power on address
bus buffers (LS244, LS367) and data bus buffer
(LS245) are enabled. S of the data selector 1C (LS157)
is set to a low level to enable input 1A-4A. The 3Y and
2Y outputs of the LS157 then go low so that CE and OE
of the ROM-IPL are from main CPU. The contents of
the IPL-ROM are then read by the main CPU. Because
the input pin (^16) of the address buffer (LS367) is
connected to Vcc, IPL for the main CPU will be at
address 1000 of the IPL-ROM. Switch SW2BA is the
operation test dip switch which should be ON at all
times.

4) RAM-COM select by sub-CPU
Y1 of the LS139 changes to low level when AS13 is high
and AS14 and AS15 are low. In other words, the input
4B of the LS157 is at low level which brings the output
Y4 to low level, so that CS of the RAM-COM chip select
signal should become effective.
If SMRQ, SRD or SMRQ, SWR is in low level at this
point, it enables read (OE) or write (WE). Address range,
however, is 2000 to 3FFF
5) RAM (SA, SB, SC, SD) select by sub-CPU
SMRQ, SRD (Of) or SMRQ, SWR (WE) is at low level
to select the sub-CPU dedicated RAM, SA-SD. Tne
following chip select signal, then becomes valid under
these conditions:
RAMSA .. ASVi, AS12, AS13, AS14, AST!
(address 4000^17FF)
RAMSB .. AS11, AST2, AST3, AS14, AS15
(address 4800-4FFF)
RAMSC .. AS11, AS12, AS13, AS14, AS15
(address 5000-57FF)
RAMSD .. AS11, AS12, AS13, ASK, ASHi
(address 5800-5FFF)

2) RAM-COM select by the main CPU
When RAM COM is low, SRES high, and SACK low, the
select input S of the selector 1C (LS157) is in low state
so that input 1A-4A becomes effective. That is, the output 4Y is low and either 1Y (WE) or 2Y (OE) becomes
low level, so as to enable to read or write RAM-COM.
3) ROM-IPL select by sub-CPU
Normally, the select signal S of the selector is pulled up
to Vcc level that inputs 1B-4B are enabled by sub CPU.
If A13 thru A15 were to be at low level, the output YO
of the LS139 becomes low level so that the output 3Y
of the LS147 or CE of the ROM-IPL should be at low
level. Should SRD, SMRQ be at low lebel as well, the
output 2Y of the LS157 or OE of the ROM-IPL turnde
to low lebel to read the ROM-IPL. Though the sub-CPU
can access an address range of 0000 to 1FFF theoretically, it would be from 0000 to OFFF, actually.
- 24 -

4. CRT DISPLAY
4-1. Specification
Ust of high resolution CRT
3KB (characit>-s!

Display memory

Character display

96KB. max (graphic i
Screen structure

Use of medium resolution (,RT

Option

80 chrs x 25 lines. 80 chrs x 20 lines
40 chrs x 25 lines, 40 chrs x 20 lines

Programmable

8 x 1 6 dots

8 x 8 dots

With lower case descenders
Character
structure

255 characters
Alphanumencs and 69 symbols
26 small characters
97 graphic patterns

Attributes

Graphic display
(option)

Revers, vertical line, blink, horizontal line
Programmable for each character

Blink, revers
Programmable for each character.

Colors

8 colors, programmable for each character

32KB type

640 x 400 dots, B/W (one frame)

640 x 200 dots, B/W (Two frames)

Color designation for each character

Color designation possible for each character

640 x 400 dots. B/W (three frames)
Color designation possible for each character

640 x 200 dots. B/W (six frames)
Color designation possible for each character

Color (one frame)

Color (Two frame)

96KB type

Screen merge

Merge any graphic screen (1 to 3 frames)

Merge of chracters and graphics

Merge a character screen with a graphic screen

Background color

Choice of 8 colors

Control of two independent screens

Possible to d aplay on separate two screens ongind 1 graphic screen and character screen
Separate graphic screens can be merged into one
Possible to affix attributes (CRT2 only)
Selection of character/non-character screen display

Control channel number

Incorporation of two independent video outut channels

Light pen input (option)

Scans coordinates and character code

Table 1

Summary of video display specification

Medium resolution CRT (640 x 200 dots mode)

High resolution CRT (640 x 400 dots mode)
^""~-\^

Characters
Function

^^\^^

Elements
Character s t r u c t u r e

Color monitor

Green monitor

Type of monitor

Graphics (option)
B/W

ASCII

Color

ASCII

8x8

8 x 20

8x 20

8x10

8x10

5x14

5x14

5x7

(Characters x ines)

40 x 25 mode

80 x 20
40 x 25

640 x 400

80 x 25

80x20

640 x 200

40 x 25
40 x 20

40 x 20

80 x 20

640 x 200

40 x 25
40 x 20

By character

Basic

Color

5x7

80 x 25

80 x 25
640 x 400 dot

40 x 20 mode

By character

Option 1 (48KB)

t

By character

Option II (96KB)

t

By dot

Small t e t t e r descenders

O

O

X

Line creation

O

X

X

Frames

ASCI:

8x8

80 x 25 mode

Basic

B/W

ASCII

I

Graphics ( o p t i o n )

Characters

8x 16

80 x 20 mode

Display memory

Graphics (option)

Characters

8x16

Screen s t r u c t u r e

Color
designation

Graphics (option)

Characters

Color monitor

Green monitor

3KB

32KB

3KB

32KB I I ) , 9 6 K B ( I I )

3KB

1 frame

No frame

1 frame

No frame

1 frame (1 page)

16KB

No frame

t

By dot

t

t

X
X
3KB

48KB

1 frame (1 page)

No frame

Option 1 ( 4 8 K B )

t

1 frame

t

1 frame

t

3 frames

t

1 frame

Option II (96KB)

t

3 frames

t

1 frame

t

6 frames

t

2 frames

Basic

Not possible

*-

«-

One B/W character screen agamst

Option 1 ( 4 8 K B )

One character screen Against

One character screen against

One character screen against

t h r e e graphic screens

one graphic screen

one graphic screen

t h r e e graphic screens

One color c h a r a c t e r screen a g a i n s t
one graphic s c r e e n

Screen
One B/W c h a r a c t e r screen a g a i n s t

overlay
Option II (96KB)

One c h a r a c t e r screen igain-,t
t h r e e graphic srrpens

t h r e e graphic screens
One color c h a r a c t e r s c r e e n against

'

•

one graphic screen
NOTE

Graphics o p t i o n

M7 3500
1) Character display
1.1. Screen structure
CRT used
Character

Medium resolution CRT
(640 x 200 dot)
fH = 15 7KHz
fV = 60Hz

High resolution CRT
(640 x 400 dot)
fH = 20 9KHz
( N e w ) f V = 47 3Hz

W Whne
80 x 25 lines
80 x 25 lines

-

ASCIL

40 x 25 lines
40 x 20 lines

Dip switch in the mam unit is used to select assignment of
Three basic colors

high resolution/medium resolution CRT.
Display mode must be chosen by programming.
4) Attribute
1-2. Character structure and picture elements

Color

B/W
640 x 200

640 x 400

Elements

Structure

8x 16

ASCII

Structure
5x7

8x10

1

symbol

8x8

5 x 14

8 x 20

Graphic

Elements

AT1

Vertical line

B

AT2

Horizontal line

R

AT3

Reverse

G

AT4

Blink

Blink

and character

r,,uy

may

also

be dis-

played on the 80 charac

8x8

ters x 25 lines screen.)
Small letter descenders
and line creating
functions are not
available.

Small letter descenders
and line creating
functions are available.

5} Screen overlay
It will be possible to have an overlaid screen that consists
of

NOTE:

Line

exist in the same element
(Line

I

8 x 16

Designated for each chaiacter.

one character

(screen and a maximum of

three

In the case of 8 x 8 and 8 x 1 6 picture elements,

graphic screens. (For detail of overlay screen, refer to

vertically

Table 1.)

adjoining graphic symbols will joint

together in the 25-line mode.

In the color mode, if there are two colors in the same

As for character structure of 6 x 14, 7 x 14, 6 x 7 ,

screen and other designated for a dot on the graphic

or 7 x 7, decision must be given on an actual dot

screen element — the one designated for a character on
the character — both colors will be merged sltorjpther

pattern.

to produce image.
2) Graphic display (option)
(High resolution CRT)

(Red)
© Dot color designated by
character attribute

(Medium resolution CRT)

640 dot

640 dot

o
200 dot

400 dot

Dot pitch

Dot pitch
Horizontal vertical = 1 : 2

Horizontal vertical = 1

3) Color designation
Eight colors are usable (white, yellow, cyan, green,
violet, red, blue, black)
Color designation

ASCII
Graph

48K b y t e
| 96 K b y t e

640 x 400 dot

640 x 200 dot

By character

By character

By character

By dot

By dot

By dot

Background color
8 c o l o r s for designation

00

o
o

O

(Blue)
O Dot color designated by
graphic dot.
(Violet)
Q Dot composed of more than
two color Jj>i"jrn*ion:.

MZ 3500
6) Screen

overlay

and displaying on two

CRT's
As there are two video output channels

independent
it will be pos

screens

sible to display two independent screens on separate
video display unit

Overlay is possible on either
Data

Address
Hex

50

AS AS AS
3 2 1 0
0

0

0

AS

DS
2

DS
1

DS
0
1

0

1
1

;p i

51

0

0

0

1
1
1

52

0

0

1

1

0

1
1
53

0

0

1

1

1

1

54

0

1

0

of

Internal
S gnat name
of CSP

Function

ECH1

Choice of outputting the character screen on CRT1

0 No

1 Yes

ECH2

Cho ce of outputting the character screen on CRT2

0 No

1 Yes

EAT2

Choice of whether attribute or cursor be put on the frame that displayed
on CRT2 (0 No 1 Yes)

SR1

Displays on CRT1 the blue elements contained in the VRAM

SR2

Displays on CRT1 the red elements contained in the VRAM

SR3

Displays on CRT1 the green elements contained in the VRAM

SR4

Displays on CRT2 the blue elements contained in the VRAM

SR5

Displays on CRT2 the red elements contained in the VRAM

SR6

Displays on CRT2 the green elements contained m the VRAM

BGC B
BGC R

1

(See preceding item 5) ) The following bit

selection is needed for screen overlay

[

Choice of background color display

BGCG
1

0

1

COLOR

Color mode

BODER

Border color mode in effect

08/16

Defines the data size for the graphic RAM (0 8 bits, 1 16 bits)

40/80

Defines display digits for the character screen

1
55
(50)

0

1

0

1

1

1
1

56

0

1

1

(0 40 digits 1 80 digits)
1

0

0

1

1

1

Connection of a 400 raster CRT

V RAM2

Connection of the 96K bytes VRAM

V RAM1

Connection of graphio GDC

1

25/20

25 lines/20 lines switching (0 25 lines, 1 20 lines)

1

08/16

Defines data size for the graphic RAM (0 8 bits 1 16 bits)

40/80

Defines display digits for the character screen

1
1
57

RA-400

1
1
5D

1

1

0

1

;P2

1
1

(0 40 digits, 1 80 digits)

NOTE Both CRT1 and CRT2 must be high resolution CRT's (640 x 400) or medium resolution CRT's 'RO x
Output to each CRT may be possible in the following combination .
Output to each CRT may be possible in the following

CRT1
CH ( AT )
C.KA7 )
CH AI ) + ( , ! ^ AT)

CH
GF

CRT2
CH( AT)
(,f- AT)
CH(Ar)+(,!
CH

(.1CH+GI

ASCII
Graphic screen, including overlay of two graphics
screens

M

(AT) Attached with attribute

MZ3500
7) ASCII CG
Uses an 8KB MROM contains two patterns'
640 x 400 dots ( 8 x 1 6 dots) and 640 x 200 dots ( 8 x 8
dots)
#OFFF
8 x 8 d o t pattern
(2K byte)

For Model 3200 series

With 8 x 8 dot format
two kinds of patterns coexist
Refer to ROM address and data

! x 8 dot pattern
(2K byte)
#0000

Without lower-case,

code on separate information

letter descenders

#1 FFF
Model 3500
8 x 16 dot pattern
(4K byte)

With lower-case,
letter (h i j) descenders

#1 000
D7|

Address and pattern in picture element

| DO

(Address)
. #1000

O

o

O
12

o o
o o

0

o
o
ooooo
ooooo
o
o
0

0

0

0

o

o

(Example of 5 x 12 dots pattern for 1 x 16 elements)

(Data)
#00

#1001

10

#1002
#1003
#1004
#1005
#1006
#1007
#1008
#1009
#100A
#1006
#100C
#100D
#100E
.- #100F

10
28
28
44
44
7C
7C
44
44
44
44
00
00
00

8) Element structure, character structure, and line

Element structure, character structure, and line

640 x 200 dot
1) 25 line display mode

/— Character pattern area
\— Line area
X— Area where pattern and line are overload

640 x 400 dot
1) 25 line display mode

12

1 5

2

IASCD/JIS]
8
Without line

'With line
HL On 16th line
VL Line ot the right of
element

In the case of graphic
symbol display
Both HL and V L a r e
overlaid to the pattern
[Graphic symbol

- 29 -

MZ3500
2) 20 line display mode

2) 20 line display mode
8

20

\\NS\\\\Mi
ASCII

With line
HL On 18th raster
VL Line to the right of
element
e VL does not join
a In the case of graphic
symbol display, VL is
overlaid to the pattern

Without line

10

20

Graphic symbol

j I Graphic symbol

9) Cursor
Sharp of the cursor: Same as seen in Model 3200
Reverse and blink)

4-2. Video RAM
1) Structure of VRAM
GDC1 (for character)

10) Light pen input
Incorporates the light pen input connector and its interface. The light pen, however, is an option.
Accuracy: By each character
Function: Coordinates/character code

GDC2 (for graphic)

#BFFF
16Kbit

i
i
t
1
1
j
i
1
1
1
1
i
i

xg

11) Difference in specification with that of Model 3200
(1) There are two modes for the Model 3200; normal
mode ( 6 x 9 elements) and graphic mode ( 6 x 8 elements). In the normal mode of 25-line displaying of
the PC-3200, vertically adjacent graphic symbols do
not joint. But, they will joint with the Model 3500.

(G)

Attribute
Model-3200

Model 3500

I

*07FF
(D-RAM)
16Kh,t 16Kbit

2Kbit > 8 2Kbit
( S-RA.M)
x4

ts-

(ASCI L

RAM)

(B)
' 0000

#0000

DO-

DO-

-D7 1)8—Oil

(R)

-D7 D8-

-D15

Solid line 48KB option
Broken line. To be added to comprise
the 96KB option.

(2) No line will be displayed for the medium resolution
CRT (640x200 dot).
It is possible to display line on the high resolution
CRT, compatible to line the utilizing program of
the Model 3200

V R A M capacity

Graphic option 1: 48KB

Basic 3KB (including a t t i b u t e s )

Graphic option 2 96KB

Bit structure of V R A M
— —______ CRT j
Character VRAM
Graphic
VRAM

- 30-

! 48KB
[ 96KB

640 x 400 dot
8 bu / word

'

640 x 200 do i
8 bit / word

16 bit ,' word

8 bit / word

16 bit / word

16 bit / wo-d

M 7 3500
2) Read/write from Z 80 to VRAM
(1) Timing period for display and
V-RAM Read/write.

//><-' Range wh°r? GDC can draw.

Fly back period

H • SYNCJ

BLNK-

(2) Timing that the Z-80 can read/write VRAM
The Z-80 can read/write VRAM when GDC FIFO
buffer is either empty or Full, and can be accessed by

refreshing during the display period. Number of
characters that can be read/write within one raster in
any mode.

3) Structure of character VRAM
(1) When read/write from GDC

(A)

#07FF

(B)

(A)
2KX8
ASC I I

ASCI I ( 8 b i t )

#0000

DO

8bi t

"D7

V&

4bit
«-Dll

( 12bit )

DO Dl D2 D3 D4 D5 1)6 D7 DO Dl D2 D3
• Blink
Reverse (G)
Vertical line (R)
. Horizontal line (B)

(2) During display
#07FF

(A)
2KX8
#0000

12bi t

(B)
2KX4

MZ3500
4) Graphic V R A M memory (MZIR03)
• Block Diagram

R ASA ^ RAS • A14 • A15
RASB~ RAS • A14 • AlS ...
RASC =• RAS • A14 • A15

0000 ~ 3 F F F
4000-7FFF
8000 ~ BFFF

2. Display mode
A14 and A15 are not valid and RASA, RASB, RASC are selected
together. By the DBIN signal from GDC-2. 08/16 signal is generated by CSP-2.
The signal of 08/16 select, after P-5 conversion for RAMA,
RAMB output signal then output to VB by serial signal, or sprit
the signal to VB and VR.
(08/16 select: 08 for 200 rasters. 16 for 400 rasters)

1. read/write Mode
The select signal RASA, RASB and RASC are generate from
RAS, A14 and A1 5 which is signal of GDC-2.
The address is allocated to each area selected by above signal.

Read/write by Z-80 via the GDC

During displaying

(1) 640 x 200 dots display mode
Low
byte

High
byte

B/W:

3 frames

Color: 1 frame

Option I

(48K byte)
8bit structure

1

#BFFF
G

+ 8000
#3FFF
16K

#4000

#0000
A

B

8bit

16K

R

#0000

8bit

31,L

i

8bit

8bit

Option I I
#BFFF
(96K byte)
16bit structure

B/W:

6 frames

Color: 2 frames

#8000
#3FFF
#4000

16K

#0000

I

16K

*0000

ifit.it
16bit

- 32-

1

1

M Z 3500
(2) 640 x 400 dots display mode
B/W: 1 frame
Color: 1 frame
Option I

(48Kbyte)
16 bits structure

#4000
# 3 KKK

16K

16K

*0000

(

Option II

Color can be
designated for
sach character.

i

#3FFF

#0000

BFFF

B/W: 3 frames
Color: 1 frame

(96K byte)
16 bits s t r u c t u r e

#8000

#3FFF

16K

#4000
#0000

16K
#0000

16bit

16bit

16bit

16bit

5) Synchronize signal timing
(1)

For 640 x 200 dots display mode
X : Y- 1 :2

fH = 15.87kHz

fV =

60 Hz
GDC-2 graphic)

GDC-1 (80 digits)
Character display (40 digits)
Dot clock (OD)
2XCCLK
Horizontal display time

8 bits

16 bits

(16MHz)
( 8MHz)

16MHz

16MHz

(4MHz)
<2MHz>

4MHz

2MHz

40MS

-

-

HFP

?A«

HS

6>js

(1?Chr )
(tREF-0.8ms)

5^s
( t R E F = 1.6ms)

10/js

- (20 Chr.)

8ns

1 2.6ms

-

-

VFP

1.2ms

-

VS

1 ms

-

-

VBP

1.8ms

-

-

HBP

Vertical display time

Total rasters: 261 rasters
Display raster: 200 rasters

•^(14

•—n.
—-1

r~-

Chr.)

10MS

j

MZ3500

(2) 640 x 400 bits display mode
fH = 20.92 kHz
fV = 47.3 Hz

X : Y : 1: 1

GDC-1 (80 digits)
Character display (40 digits)

8 bits

16 bits

Dot clock (OD)

(19 66MHz)
(9 83 MHz)

19.66MHz (50.86ns)

9.83MHz (101 92ns)

2XCCLK

(4.9152MHz)
(2.4575MHz)

4.9152MHz (203.45ns)

24575MHz (406 9ns)

-

-

Horizontal display time
HFP

GDC-2 graphic)

32 55^s 80 Chr. /40 Chr.
4.88fjs
4^is

HS

*~

«-

-

(tREF=0.6ms)

5 Chr.
(tREF = 1.23ms)

6 5ys

HBP

Vertical display time

19.16ms

VFP

0.527ms

VP

0.24 ms

VBP

1.198ms

*~

-

-

-

-

-

-

-

«-

-

-

Total rasters: 441 rasters
Display rasters 400 rasters
(3) CRT synchronizing signal specification (400 raster
CRT)
1. Horizontal synchronization frequency (fH): 20.92kHz
2. Vercial synchronization frequency ( f V ) : 47.3Hz
3. Total rasters: 441 rasters
4. Rasters used: 400 rasters
5. Display dots: 640 x 400 dots
6. Dot clock: (19.66MHz)
7. Timing

9. HS, VS, and VIDEO signals are supplied from the LS
type TTL 1C (totem pole)
6) Setup of GCD master/slave
(1) Master/slave setup by combination
^^•v^^

Character

^^•\^^

GDC

40 digits

80 digits

Without VRAM PWB

Character

Character

8 bit structure
48K byte
200 rasters

Character

Ch3rai.te'

16-bit structure
96 K byte
48K byte
400 rasters

Character

Graphic

Graphic

^^^^

GDC

^"\^

Master should be setup in the above i.ia.

(2) I/O signal switching

ft

PIT A

to

(8255.PB7 )

fiQ /I

!
8. Output method
outputs.

VFP: 11 rasters (0.5ms)
VS5 rasters (0.24ms)
VBP- 25 rasters (1.2ms)

HS, VS. and VIDEO are indpendent

p

(CSP-2)

,,

,.

,fc

VSYNC
Switching
Circuit

M-3500
CH48 -

I 08/16 -

0 For 40 digit display
1 : For 80 digit display
There is a 40/80 digit switching signal I/O port
in the gate array of CSP1 and CSP2, but, the I/O
signal called CH48 is provided apart from the I/O
port.
I/O port inside CSP1 and CSP2.

Relation between V R A M address and screen
16-bit structure
Graphic
address
map for
400 rasters

7) Graphic V-RAM Address
Relation between V R A M address and screen (640 x 200 d o t s )
8-bit s t r u c t u r e
0000
0050
00\0
OOFO

t

lnntn"~^

~
Graphic
address
map for
200 rasters

LXH)

liytr

bOb\ir —

CRTC block diagram
Color graphic VRAM PWB (option)

MZ3500

4/6. Master slice LSI (CSP-1) SP6102C 002 signal description
Priority
Signal Name

1

HSYi

IN

Horizontal synchronizing signal from the GDC1 Also, it becomes the refresh timing signal in the
dynamic RAM mode.

2

NABC

IN

Input from the UPD7220 GDC1. When the GDC1 is in the character display mode, the attribute,
blinking timing and line counter ciear signals are multiplexed.

3

CSR

IN

Input from the GDC1 which is the cursor display input when the GDC1 is in the character display
mode.

4-6

ASO - AS2

IN

Address bus input from the sub-CPU.
ABO = ASO, AB1 = AS1 , AB2 = AS2

7-9

DSO - DS2

IN

Data bus input from the sub-CPU.
DBO = DBO, DB1 = DB1 , DB2 = DB2

10

G2

OUT

11

NWRO

IN

CSP1 I/O port select signal (OUT # 5 X )

12

NVB

IN

Input of the blue image from the graphic R A M ( A ) and (B).

Green image output to the CRT2.

13

NVR

IN

Input of the red image from the graphic RAM (B), (C), and (D).

14

NVB

IN

Input of the green image from the graphic RAM (E) and (F).

15

FYD2

IN

Input of the graphic RAM parallel/serial conversion 1C 74LS166 shift out clock.
(Used to latch the image data in CSP1 .)

16-18

AT2 - AT4

IN

Attribute
f AT-2 AT-3 |_AT-4 -

19

CH

IN

Input of character display data signal.

20.21

GND

IN

0V supply

22

DSP2

IN

Input of display timing signal supplied from the CSP-2. (BLINK signal from the GDC2 is delayed by
two flipflop intervals in the CSP-2 to creat this signal.)

data input from the 21 14A-1 attribute RAM.
Horizontal Ime/R "]
Reverse/G
Blink
J

23

VID2

OUT

VIDEO output to CRT2.

24

LCD

OUT

Character CG line counter output.
(Becomes address input to the CG when LCD = CG address AO.)

25

AT1

IN

26-28

LC1 - LC3

OUT

Attribute data input (vertical line/B) from the 2114A-1 attribute RAM.
Character CG line counter output.
(LC1 = A1, LC2 = A2, LC3 = A3CG = A3)

29

NCL4

OUT

Character CG output data latch timing.

30

HSYO

OUT

CRT1 , 2 horizontal synchronizing signal

31

RA40

OUT

The signal that turns high level when the 400-raster CRT is in connection. LDA, 01 H OUT??56

32

VIDI

OUT

VIDEO output to the CRT1 .

33

B1

OUT

Blue image output to the CRT1 .

34

R1

OUT

Red image output to the CRT1.

35

Of

OUT

Green image output to the CRT1.

36

SL1

IN

37

Character CG output parallel/serial converter 1C 74LS166 shift load signal, and character CG address
latch signal input. (Used for the image data latch signal in the CSP-1 and horizontal synchronizing
signal delay flipflop clock.)

B2

OUT

Blue image output to CRT2.

38

R2

OUT

Red image output to CRT2.

39

BLNK

IN

Erase signal from the GDC1 which becomes input at the following times.
1. Horizontal flyback period
2. Vertical flyback period
3. Period from the execution of the SYNC SET command to the execution of the DISP START
command.
4. Line drawing period

40

Vcc

IN

+5V supply.

- 39 -

MZ3500

CSP-1 Block Diagram
ASO

1

1

AS1
AS2

1

4 ,. ..
o

MkRO
(bO)

(51)

Jl J,
„
o >

J

*

DSO '
DS1

n
x

— H

I)S2

—

to

—

fO

t—

(52)

'S3)

1

1

1

ro

CO

(54)

'55,50)

1

I
^.

,r»T ,

• 5fi .

II

I

I

c

n

n

r-

Cn

<7>

]
~

|
X

O

C
X

0 "
m

O
m

?

-_ i

^

0 = 5 °
o re —

3

"

fr

HSYI

K \ 400

1

NABC

j

1^

SL1

Line counter/
Line signal generator

>

RA400 — 1
25 /20 —1

FYD2
BLNK

B-VL

__

0/1..

DSP2

^ .« ". +, i,
..._.

.

.

<

—

*-

"\

AT 2

s

ATS

**

AT 4

'

CSR

J

}

*
n F/F

l-» CK
1 i > CK

*

. HSYI

"

BINK'

y^m-i™

t» o
r \

SO
1
to

5C
<

D

ECH1

NVR

DF/F

.V

1
»
?
X

Merge
circuit

4

1

-»-DSPT

<

r-

r~

M~^y_

-c

40/80 d,q,t
shift circu t

,

^

„ _

tr

r-

<

t~

r

??? U

*ili
Cursor
erase
circuit

^ '
''

JTV

"
-^

—

"

>
- Boder 1— =H>-^
background (

— -D "c

merge

* '• ~^

CSR-2D

*— ~*^

^
"O

<

r-|

OK;

^SR4

1

-

^

J

4

\j
X—^
}__S
|

.

- —'

°^SR6

O3

4

4

bri

' —0

5

n
X
C

4

fin

G. RV -> — ° " '" — i

f.
/ »
*

'

B 'VL-»> 1 S ^ ^

V

O-l

>- V1D2
T * 31

l^^^ro

/

color designation
during graphic
mode.

I

OM pS

4

'—+ Cursor; Blink ;Reverse Line

COLOR-*

RA400

~

B/W attribute merge circuit
i-r- --r

-^

c

r-

{> {> i>-hi>,

ECH2

"

r-

>- V I D 1

£

'"'

08 -'16

HSYO

j

o~"^o

s

L

,.

)— »-

-

\

.

'^
'p
^

~*—
ndividual
9/VL~* character]

V-RAM2

5-

1 4 4 1 4

J?^"

S

^

B/W attribute merge circuit

I

s

1

80

j

1
T
P

—

F/F

1

,.„
*

,)FXF

CH
D

H

-|

n F/F

n
u:

hIr1
1

40

D F/F

CK

NVB -C

\

— . >J

.

"N

} }

-* CK

n

•

\

ATI

I
'

^

^\_

^
^

_ Border
'~) ") *•
background

y-

OJ
0

-

*-

U

0G
FAT 2

1

CSH-

- 40-

-TV 5*= -""
fAIL-

"

4^V^

•>-

MZ3500

46. LSI (CSP-2) SP6012C-003 Signal Description
Polarity
IN/OUT
Signal Name

1

HSY2

IN

Horizontal synchronizing signal from GDC2 which also becomes the refresh tirniny . i j r . s ' i in the
dynamic RAM mode.

2

BLK2

IN

Erase signal input from the GDC2 which is supplied 4T the following times:
1. Horizotal flyback period.
2. Vertical flyback period.
3. Period from the execution of the SYNC SET command to -be execution of the DISP S T A R T
command.
4. Line drawing period.

3

OWE

OUT

4-5

AD14-AD15

IN

Input of the display output signals (AD14, AD1 5) from GDC2.
(Used to create DBIA-DBIC in the CSP-2.)

6

DBI2

IN

Input from the GDC2 by which the image memory output is sent on the data bus.
(Used to create RASA-RASC, CAS, PS, OWE in the CSP-2.)

7

DBI1

IN

Input from the GDC1 by which the image memory output is sent on the data bus.
(Used to create BUSG, SOE, SWE in the CSP-2.)

8

BUSG

OUT

Gate signal of the bidirection bus buffer (LS245) which is used to read/write attribute, and character,
data from the static RAM (21 14A-1 , 61 16P-3).

9

SOE

OUT

OUTPUT ENABLE for character static RAM (61 16P-3).

10

SWE

OUT

WRITE ENABLE for attribute, character static RAM.

11

0816

OUT

8-bit/word and 16-bit/word select signal.
(8-bit/word chosen with LDA. OOH OUT#5D, and 16-bit/word is chosen with LDA, 01 H OUTiSD.)

12

RAS1

IN

Memory control signal RAS from GDC1.
(Used to create CGOE, SL1 in CSP-2.)

13

RAS2

IN

Memory control signal RAS from CDC3.
(Used to create SL2, LOAD, RASA-RASC, CAS, FS. DBIA-DBIC. DSP2 in CSP-2.)

14

ASS

IN

Address bus input from the sub-CPU (ASS = AB3)
Chip select (OUT#5X) of the I/O port in CSP-2.

WRITE ENABLE output for the graphic dynamic RAM.

15

NWRO

IN

16-17

DSO-DS1

IN

Data bus input from the sub-CPU (DSO = DBO, DS1 = DB1 ).

18

RA40

IN

The signal that goes to high level (input from CSP-1) when the 400-raster CRT is connected.
(Used for clock frequency selection in CSP-2.)

19

M40

IN

Clock input from the clock generator (39.32MHz, for 400-raster mode.)

20

GND

IN

0V supply

21

SL2

OUT

Graphic DRAM output parallel/serial converter 1C 74LS166 shift load signal.

22

RASA

OUT

Graphic DRAM (A), (B) RAS signal.

23

2CM2

OUT

Double character clock output. In the character display mode, a single phase clock of the half the
one character wide frequency is supplied. In the graphic display mode, a single phase clock of
8/16 dot frequency is supplied to GDC2.

24

LOAD

OUT

Graphic DRAM output parallel/serial converter 1C 74LS166 load timing clock.

25

Vcc

IN

26

FYD2

OUT

Graphic DRAM output parallel/serial converter 1C 74LS166 shift out clock.

27

2CK1

OUT

Double character clock output same as 2CK2. In the character display mode, a single phase clock
of one half the one character wide frequency is supplied to GDC1 .

28

SL1

OUT

Character CG output parallel/serial converter 1C 74LS166 shift out clock.

29

SL1

OUT

Character CG output parallel/serial converter 1C LS166 shift load signal.
Character CG address.

30

CGOE

OUT

Character CG output enable signal.

31-33

DB1C-DB1A

OUT

Timing signal by which the graphic DRAM output is sent on the data bus.

34-35

RAS-C ~
RAS-B

OUT

Graphic DRAM RAS (ROW ADDRESS SELECT) signal
RAS-B; RAM(C), (D)
RAS-C; RAM (E), (F)

+5V supply.

- 41 -

M/3 r >00
Priority

Signal Name

36

M32

IN

37

FS

OUT

Graphic DRAM address multiplexer signal (High order 8 bits I ADS ADI 5] /low 3'der S hi"
|ADO A D 7 ] select signal )

38

DSP2

OUT

Display timing signal (In the CSP 2, the signal BLINK from GDC2 is delayed by 2 collor intervals to
create this signal )

39

CAS 2

OUT

Graphic D RAM CAS (COLUMN ADDRESS SELECT) signal
(Line address selection)

40

Vcc

IN

Clock input 32MHz, 200 raster

+ 5V supply

CSP 2 Block Diagram

S-RAM & CG
control signal
generator

^— Bl SC,
D- SOf
O- SHE

Ci

^

''

: co
3 6

L

ii

Jl
PR

r*

™

Hexadecimal
counter

D
£

O

-a.

GDC1 &
character
display clock
generator

5

32MHz

L>

*M n~,
4U(J
HasTer

*

^00/41to
rasters

•

0

GOC2&
graphic display
clock
generator

t

T
ft.

Cfi

CK

VWRO — C

Oh

16

5

DBI2D

3«32MHz

Clock select
^ ClfCU1,

8/1 6 bill
select circuit

200 Raster

Q
I)
F F
O

1 O

40/80

K A S 2 —C

F

'

Ubl 2 —C

DRAM
control signal
generator

' ' '•

, cK
F

GDC2
Read
ignal
generator

n
Q

2 — 3
)ECODER

n
L} \

t

- 42 -

h P°
CK
f

O—HB 1 A

M 7.3500

4-7. GDC (Graphic display controller) (UPD7220) signal description
Polarity
Signal Name

1

2XCCLK

IN

2

DBIN

OUT

Memory contro signal supp'ied to the image memory from the GDC, which causes the image
memory output data to be sent on the data bus.

3

HSYNC-REF

OUT

Memory contro' signal sent to the image memory from the GDC, which is the horizontal
synchronizing signal.
• Since the image drawing process is automatically interrupted in the dynamic RAM mode the refresh
address is output during the HSYNC period. It can also be used as the refresh timing signal.
• Refresh is accomplished by suppressing the CAS signal derived from the RAS signal in the external
circuit when the HSYC is at h gh lebel (Horizontal Synchronous - Refresh timing)

4

VSYNC
EX.SY
NC

IN/OUT

5

BLNK

OUT

Erase signal output is issued at the following times (blanking signal):
1. Horizontal flyback period.
2. Vertical flyback period
3. Period from the execution of the SYNC SET command to the execution of the DISP START
command.

6

RAS

OUT

Memory control signal sent to the image memory from the GDC,
• In the dynamic RAM mode, it is used as the reference signal of RAS. When at high level, used
as the timing signal by which the address signal is latched.
(Row Address Strobe)

7

DRQ
(NO USE)

OUT

DMA request output which is connected with the DRQ input of the DMA controller is output by the
following two commands'
1. DREQE (DMA request write): CPU memory to image memory.
2. DREQR (DMA request read). Image memory to CPU memory.
It will be continuously output until the DMA transfer word/byte number set by the VECTW (vector
write) command becomes zero.
(DMA Request)

8

DACK
(NO USE)

IN

Signal supplied from the DMA controller that is subsequently decoded by the GDC as the read or
write signal during DMA.
(DMA Acknowledge)

9

RD

IN

In the external circuit RD is combined with the chip select signal (CS). And is used when the CPU
reads from the GDC either data or status flag and the signal DACK.
(Read strobe)

10

WR~

IN

In the external circuit WR is combined with the chip select signal. And is used when the CPU
writes to the GDC either a command or parameter and the signal DACK.
(Write strobe)

11

AO

IN

Normally, connected with the address line and is used TO designate data type.

Double character clock supplied from the external dot timing generator which has the followin^
two modes:
1. Character display mode 1 Single phaseclock at one half of the one character wide cycle
2. G r aphic disp'ay mode: Single phase clock of eight dots that cycles

Establishes one of following two modes, depending on whether the GDC is operated by the master
or the slave.
1. When the master is operational: sends out the vertical synchronizing signal.
2. When the slave is operational : The synchronizing signal generation counter is initialized by a high
level input.

AO

RD

WR

0
1
0
1

0
0
1
1

1
1
0
0

function
READ STATUS FLAG
READ DATA
WRITE PARAMETER
WRITE COMMAND

^Mode^'
IN
#70
IN
#71
OUT #70
OUT #71
GDC1

IN
#60
IN
#61
OUT #60
OUT #61
GDC2

(Address Bus 0)
12~19

DBO-DB7

IN/OUT

Bidirectional data bus connected to the system bus.
(Data Bus 0 - 7 )

20

GND

IN

0V supply.

21

LPEN

IN

Light pen strobe nput. When a input light is sensed by the light pen, it outputs a high level signal.
The CPU can then read the display address via the LPENR (Light Pen Read) command.

22-34

ADO-AD12

IN/OUT

Bidn ectional address/data bus connected between the image memory and the GDC on which address
and data are sent on the bus by means of multiplexer ALE (Address Latch Enable) is drived from
the RAS output in the exte r nal circu t.
(Address/Data bus 0 - 1 2 )

M Z 3500
Polar, ty
Pin No

IN/OUT

Function

Signal Name
35-37

AD13ILCO)AD15ILC2)

IN/OUT

Provides the following functions based on the operational mode of the GDC (graphic display mode,
character display mode 0, character display mode 1).
1. In the graphic display mode and character display mode 0: Bidirectional address/data bus
2. In the character display mode 1 : Line counter output in connected to the character generator
ROM or graphic RAM address.
• In the graphic and character display mode 0: AD13~AD1 5.
• In the character display mode 1 : LCO~LC1.
(Address Data bus 13 ~ 15)
(Line Count 0 - 2 )

38

A16 (LC3)
(AT~BTI
NK-CLC)

OUT

Provides the following functions based on the operational mode of the GDC (graphic display mode.
0. character display mode 1 ):
1. Graphic display mode: Image memory address output.
2. Character display mode 1 : Line counter output.
3. Character display mode 0: Attribute/blinking/timing signal and external line counter clear signal
(Address 16}
(Line Count 3)
(Attribute Blink — Clear Lire Counter)

39

A17 (CSR)
(CSR-1MAGE)

OUT

Provides the following functions based on the operational mode of the GDC (graphic display mode,
character display mode 0, character display mode 1):
1. Graphic display mode: Image memory address output.
2. Character display mode 1 : Cursor display output.
3. Character display mode 0: Cursor display output, character display area (graphic) display area
select timing signal.
(Address)
(Cursor)
(Cursor-image)

40

Vcc

IN

+ 5V supply.

- -14 -

M

"

4 8 CG Address Select Circuit

When 200 rasters on ASCII in use
(only the high order 8 bytes of 16 bytes are set to low level I

ASCII C.G. Structure
»

Ii rr

=^=^
1020
10! 1-

leBytes

ASCII character structure
of the 200 raster CRT

Character
Code 01

For
Model 3500
lOOh

ifiBytes

Character
Code 00
For
Model 3500

[Circuit description]
(Purpose)

I

The character genrerator (CG) incorporates all character code^ used by

\ l'= I -

1000
01-1^

ASCII character structure
of the 400 raster CRT

8 x 1 6 dot
> Pattern
400 Rasters

M'-O

the 200 raster video display unit of the \X

•>

3500 and by the 400 raster

video display unit of the \X 3500 The CG address select cirruit is

I

therefore used to select those modes

=
=

[Operational description]
1 When the 400 raster CRT is in use, RA40 is set to high level which
sets A12 of the CG to high level at all times, so that the CG address
0020
001 t

a Bytes
0018
0017

above 1000 is selected Also, gate (1) opened so that LC3 is input to
Code 01
For
Model 3200
'/ '///'

s/

/////^

I
A3=l

f

K Bytes ' Code 01 ',
' For
x
(Hi in ,. Model 3500: \ 1-0
001 1
Character
*
Code 00
8 Bytes
1
For
Model 3200 \ i i
0 Iftk
OKI
/ Character /i
fc Bytes Code 00 ',
' For
 Pattern
200 Rasters

A3 of the CG At the same time, gate (3) is opened so that the gate
of the LS240 is closed every 16 bytes
2 When the 200 raster CRT is in use, RA40 is set turned to low level
which sets A12 of the CG to low level continuously, so that the CG
address 0000 OFFF is selected Also, gate (2) is opened so that the
CPU

t

8 b ts

- 45-

MZ 3500
4-9.

VSYNC

From
(8255 PB7) CH48

0 40 Digit
1 80 Digu
SRES ( F r o m MMR)

40 digit. 16bu/word
80 digit, 8bit/word
Master is GDC

40 digit, Sbit'word
Master is GDC 1

80 digit, 16bit/word
Master is GDC-2

[Circuit description]
When more than two UPD7220 GDC's are to be operated in
parallel, one must be assigned to the master and the other
to the slave in order to mantain synchronous display
timing. The master and the slave are determined according
to the table below. The above circuit shoud be used to
compare with the table description.

""~~~-~^GDC-1 (character)
CH48 = 0 40 digit CH48 = 1 80 digit
GDC-2 (graphic)"""

^^^

Without VRAM PWB

GDC1 (character)
is the master.

GDC 1

8-bit structure [0816=0)
(48KB, 200 raster)

GDC1

GDC 1

16-bit structure [0816=1]
(4896KB, 400 rasters)

GDC1

GDC2 (Graphic)

The master GDC must be set as indicated above.

[Oprational example]
If it was set to 80 digit, 16 bit/word mode SRES will be
0 when CH48 = 1, 0816 = 1 when not in the reset condition. These signals are supplied to terminal A (weight 1),
B (weight 2), and G (gate), and set terminal Y3 of the
decoder 1C LS139 to "0", so that the YSYNC output of
the GDC2 is input to terminal EX SYNC of the GDC2.

- 46-

MZ3500

4-10. Character VRAM select circuit
Lov*/ when
0 300^07FF

The signal BLNK is used to address the ASCII RAM
within address area of 0000-07FF in transferring
the display data from the VRAM to the CG.

CS

6 1 1 6( 2 K * 8 )
ASCB
V-RAM

2114(!Kx4)
First half of
attribute

*0000
-07PF

*0000
-03FF

2114(1K*4)
Latter half of
attribute

#0400
-07FF

#0000
-07FF

BL'SC
BLNK Erase signal
TTJ
H-SYNC

Period that the GDC is enabled to read/write
and draw graphic data.

TT_

BLANK
[Circuit description]
With respect to GCD1, the assignment during read/write
of the character VIDEO-ROM is per the table below. The
character VRAM select circuit is provided. Jo accomplish
this function.

6 I 1 6 >2K»8 )

Latter half of
attribute

ASL C

V-KAM

First half
of attribute

*07FF
t
ARIO = H1

T

AK10 = Low

8bil

- 47 -

*0400
#03KF

toooo

MZ3500

4-12. Read/write from the Z-80 to V-RAM
Read/write of the Model 3500 V-RAM is done via the
UPD7220GDC. There are two methods used to read/write
data. The method (1) is used for the model 3500.

(1) Read/write via the 16 byte FIFO.
(2) Read/write of V-RAM in the DMA mode without
intervention of the FIFO.
(Outline of the read/write data via the FIFO;

NO

YES

Set GDC command code

Method used to give a command
to the GDC.
YES

Set parameter for the command

YES
Set parameter for the command.

I
Command must be given to the GDC in the same manner.
On next page is the program of the above flowchart.

- 48-

MZ3500
(Subroutine lo send command and parameter to the GDC
via the F I F O )

HL reg — First address of the command code oarametpr
B. reg — Q'ty of data.
C reg - 60H (graphic GDC), 70H (character GDC)

> FIFO Empty?

; COMMAND —• GDC

; Return if parameter not sent.

f F I F O Empty?

; PARAMETER — GDC

;

Return when all parameters were sent.

RET

Example of graphic drawing by GDC
1) Dot display

0000

0001

Example to display a dot on the fourth bit of the address
CSRW C
49H -COMMAND CODE

0027

0028
VRAM 16-bit
structure

- 49-

P1

01H

— Low order one byte of the ab-

P2

solute address
OOH — High order one byte of thp ah

P3

solute address
30H - Dot address (dAD)

WRITE C

23H - COMMAND CODE

VECTE C

6CH - COMMAND CODE

M23500
[Explanation]
C-COMMAND CODE
) To
A
p_ PARAMETER
'
Display dot, specify the display address of the VRAM and
the dot address. Set the command code of the SET mode
(set mode plus CLEAR, REPLACE, and COMPLEMENT
modes using "WRITE", and specify to start with
"VECTE". Dot address is structured on the screen in the
following manner.

Address 0001

dAD= 0

1

2

3

1

5

6

7

[Dot display program example-1]

LD
LD
INC
LD
INC
LD
INC
LD
INC
LD
INC
LD

LD
LD
LD
CALL

LD
LD
LD
CALL

LD
LD
LD
CALL

HL .5000H
(HL) . 49H
L
(HL) ,01H
L
(HL) , OOH
L
(HL) 30H
L
(HL) ,23H
L
(HL) , 6CH

C
,60H
B ,4H
HL , 5 0 0 0 H
GDC

C
,60H
B , 1H
HL . 5 0 0 4 H
GDC

C , 60H
B , 1H
HL . 5 0 0 5 H
GDC

5000 — 49 H

5001
5002
5003
5004
5005

—
—
—
—
—

01 H
CSRWdata
00 H
30 H
23 H } W R I T E data
6CH } VECTE data

C — BOH (port address during graphic draw)
B - Byte size CSRW data
HL - Top address of the CSRW data
Command, parameter of CSRW - GDC

B - Byte size of the WRITE data
HL - Top address of the WRITE data
Command, parameter of W R I T E - GDC

B — Byte number of the VECTE data
HL - Top address of the VECTE data
; Command, parameter of the VECTE - GDC

8

9 10 11 12 13 14 15

M 7. 3500
2) Straight line drawing

00000

0001

0027

0028

0050
VRAM 16 bit
structure

Example to draw a straight line from (X, Y) = (3, 1) to (X,
Y) = (635, 1).

Coordinates must be changed to absolute addresses.
(3, 1) - absolute address = 0028H
Dot address = 2H
Displacement between two points when the line draw
direction is OA (to the right): X = 635-3 = 632 (=278H),
Y=0
Whereas.

CSRW

TEXTW

VECTW

C
PI
P2
P3

49H
28H
OOH
20H

HAD
dAU

C 78H
PI FF
P2 FF
C

PI
P2
P3
P4
P5
P6
P7
P8
P9

I, , H

Kind of line (solid line)

4CH
OAH

} Drawing direction

78H

}

02H
88H
H>H
1 OH

FBH
OOH
OOH

WRITE

C

23H

VECTE

C

6CH

\

1 AX I

1

f 2 ! AY 1 - I A x I

1

> 2 1 AY

1

1 -2

1 AX

I

2 i AY !

[Explanation]
Specify the kind of line by TEXTW, using C for command
code and P for parameter, and specify the line drawing
direction using VECTW and above four values using X and
Y. The rest will be same the dot display It is also possible
to display a dot using the line drawing method for any line
drawing direction using X = Y = 0.

M Z 3500

5. MFD INTERFACE
1) Floppy disk nomenclature

5-1. Outline
Floppy disk is a disk which is made of a mylar sheet whose
surface is coated with magnetic particles and set on the
device to write and read data on the surface of the disk
It will be necessary to know operating pnciple of the
floppy disk unit and operational description, including
recording method and format.

5-2. Floppy disk
As various recording methods and formats are used for
floppy disk (F.D.) systems we will discuss some of them
3) Components of FD's:

Floppy disks called by different names dependng on the
manufacturer
[>- Floppy media (or simply as medn)
<•' Diskette
Floppy disk
2) Types of media
Four types are used at present depending on their
storage capacity
(>- Single sided, double density (floppy disk-1)
[° Double-sided, double density (floppy disk-2D)

Single sided media index detect hole
Double sided media index detect hole
Front side-

Feverse side

Head engage slit
(do not touch)
Head 1

Head-0

4) Write protect notch
Different write protects are adopted depending on the
drive unit used.
Example-1:
In the case of the CE331 the presence of
light reflection is sensed by the photo
coupler and decoded as write protect

Write protected
Front side

Write enabled
- No reflection (Write enable)

o
0

Front side

o
0

- (Reflect"n

+

— »•

"^

r\

vy
i irn
n

D
0

»•

_
n
fi_i
.— > k

C

n ILJi
l— 1i

r\

^

D

0

—*•

J

Shaped waveform

C

— L_J

Write current

Differentiate
waveform

I)

fl_Jn_jn

Wrote

•\

Xy

f-'

Read

LJ

9 US
4

Write current: The write data is input to the flipflop and
is inverted each time a pulse is received to change the
direction of writing current.

Read waveform: The peak of the waveform is detected
at a change of magnetic flux. The waveform is than
shaped to obtain read data identic it >.<_• tlirf write data.
Data cycle will be 4/^s.

MZ3500
times the data density of the MFM mode (The unneceb
sary clock pulse is eliminated using this method )
(Condition) Clock is written only when there is no data

o MFM method (double density)
The MFM method writes data on the basis of the condi
tion metntioned below, and it yields a data density two

0
Input data

£

0 £

0

1

0 •'•> 0

1

1

1

0

1

0^0

n
n n n
n
7 /
nnn
n(O
n n nnn n ' VnVn
n
nV
[ci |D (ci |u ici ,i> ci
(0 ;i> (c)

\ /\ /\ X"V /\ /
Write data

C

C

(C) I) (C)

t \

Data that follows

'(_

<

i

i

i

Data that precedes

The clock pulse (Ci will be eliminated in above illustra
tion as there is no data preceding or following the clock
Because the data rate is 2/Js for this method, it is
possible to obtain twice the density of the FM method

NOTE

6) Media recording format
Media is formatted according to the IBM format
For Double side media, data is written on the front side
(head-1) and the reverse side (head-00)

Floppy disk

Tracks, consists of 40 tracks, 00-39. (May also be called
cylinders)
Sector. 01-16
Recording density: 256 bytes/sector

Three types of write data cycl»- (2f
~>t"> SA*S)
are used The read/write waveform is identical
to FM method

M 7 3500
Shown

below

is an enlarged view of

data format

sequence W r i t i n g starts as soon as the index hole comes
through the index detect hole

1 Track
Sector 02

Sector 01

DATA

<[

DATA

Firnl ^p

IU

II)

DA I A

t

INDEX
\M

Start point

Hatched portion is
a recording gap

51

ID
TT HH SS DL CRC CRC
AM

DATA
AM

DATA

Data

ID section CRC check code

CRC CRC

Data section
CRC check code

Size of data section
' Data address mark
(or delete address mark)

(00) H — 128 bytes
(01) H — 256 bytes

NOTE
Sector number
Head number
(00) H -» Head 0 (side 0)
(01) H -* Head 1 (side 1)

The delete address mark
is written to indicate invalid
data It is often written on
a new floppy disk as there are
no valid data on it

• Track number
• ID address mark which
begins the ID section

7) Formatting

(6) The sector of the identical ID is read and verified

To write the above format (ID section, data section, gap)

with the write data Because of thr

on an entire surface of
formatting

capability the possibility of an error in the written

a new floppy disk is called

Note 1 Formatting may also be called initialization. The
word "initialize" is also used as a software term to clear
the data section or to partition data area. Keep the
difference between formatting and initializing in mind.
Note 2

Unless formatting has been done on a properly

adjusted floppy disk drive unit, an erroe may occur on
another floppy disk drive unit

pad dftei A r . ' e

data is quite low
9) Data read procedure
Described next is the procedure to read data from the

FD.
(1) The head is moved over the track tu -^ i ead
(2) The head is loaded
(3) The ID section is read and repeated until the desired
sector is reached
(4) When the identical IDsection is found, the <~i-m IP

8) Data write procedure
Described next is the procedure to write data on the FD.
(1)

The head is moved over the track to be written.
(2) The head is loaded
(3) ID section is read and repeated until the desired
section is reached
(4) When the desired ID section is found, data is written
on that area (DATA AM is also written )
(5) The data thus written is now checked if it was
written correctly (read after write) The respective
ID section is read while the media makes a full turn

that data section is then read

MZ3500
5-3. MFD interface block diagram

> MOTOT ON

- 56 -

M 2 3500

FDC (UPD765)
UPD765 block diagram

UPD765 pin configuration (top view)

R L S t IQ

»•

1

RDO

»

2

39

WRO

»•

3

38

K3LCT/DIR

CSO

>

4

*O FLTR/STEP

AOO
DBOo-«

>
»

5
6

37
36

DB1CX

»

7

DB2O4

K

DB304

8
». 9

DB4 O<

ft- 10

^

OVcc

40

K3HDLD

35 «

0 READY

34 4
33 4

O WPRX/2S1DE

32

K> PSO
K> PS1

DB5CX—* 11

K> WDATA

DB6O4— t- 12

29

>0 USO

DB7O4 — *• 13
14
DRQcn

28

K5 US1

27

K> S I D E

26
25

K> MFM
NDWE

24
23 •<

>0 SYNC

* 15

TCO

> 16

INDEXO

»• 17

INT04
*0

GNDO

18
»• 19
20

22

1 Mf K F A C f c

READ/
WRITE/

RD-

DUA

WR—K

CONTROL
L.OGIC

DR 1 VE

1NTERFACE
CONTMO1
LER

O RDATA
0 WCLK

: Reset
: Read
: Write
: Chip Select
:AO
: Data Bus
: DMA Request
: DMA Acknowledge
: Terminal Count
: Index
: Interrupt Request
: Clock
: Ground
: Write Clock
: Data Window
: Read Data
: VFO Synchronize
: Write Enable

I SPUT

- » I KT

POKT

- 1 M)t X
- Fl T T

•«— o WINDOW

21 4

RESET
RD
WR
CS
AO
DBO-7
DRQ
DACK
TC
INDEX
INT
0
GND
WCLK
WINDOW
RDATA
SYNC
WE

SER f AL

O FLT/TRKO

31
30

DACKO

A-N.
No/

KDRW/SEEK

MFM
SIDE
USO. 1
WDATA
PSO, 1
FLT
TRKO
WPRT
2 SIDE
READY
HOLD
FLTR
STEP
LCT
DIR
RW/SEEK

- 57 -

: MFM Mode
: Side Select
: Unit Select
: Write Data
: Pre Shift
: Fault
: Track 0
: Write Protected
: Two Side
: Ready
: Head Load
: Fault Reset
: Step
: Low Current
: Direction
: Read Write/Seek

MZ3500
UPD765 signal description
Function

Pin No.

Signal name

I/O

40

Vcc

-

+5V

20

GND

-

0V

19

0

I

Single phase, TTL level clock

1

RESET

1

Set the FDC into an idle state, and all drive unit interface outputs, except PSO, 1 , and WDATA
(don't care), are set to low level In addition, INT and DRW outputs are set to low level DB goes
into an input state.

4

CS

1

Validates RD and WR signals

DB7 ~ DBO

I/O

13-6

3

i

Bidirectional, tri-state data bus
Control signal to write data to the FDC via the data bus

WR

2

RD

'
1

18

INT

o

5

AO

1

The signal used to select the status register or data register of the FDC for access via the data
bus. When 0, it selects the status register When 1. it selects the data register.

14

DRQ

FDC to memory data transfer request signal in the DMA mode

15

DACK

o
1

29,28

USD, 1

0

Drive unit select signal, with which up to four drive units can be selected.

26

MFM

o

The signal used to designate the operation mode of the VFO circuit When 0, the MFM mode is
assigned. When 1, the FM mode is assigned

24

SYNC

o

The signal used to designate the operation mode of the VFO circuit When 1, it permits reading
operation. When 0, it prohibits reading operation

39

RW/SEEK

o

Signal used to discriminate the read/write signal from the seek signal that used for drive unit
interfacing signal. When 0, it indicates RW When 1 , it indicates

36

HOLD

0

Signal used to load the read/write head

27

SIDE

0

Signal used to select head #0 and head #1 for the double-sided floppy disk drive unit. When 0,
it selects head 0. When 1, it selects head 1.

38

LCT/DIR

0

When the RW/seek signal is operating as RW, the signal works as LCT which indicates that the
read/write head is selecting the cylinder above 43. When the RW/SEEK is operating as SEEK,
it works as DIR which indicate seek direction When 0. seek is made towards outer side
When 1, seek is made towards inner side

37

FLTR/STEP

o

When the RW/SEEK signal functions as RW, it works as F LTR which resets any fault condition
as the seek step signal.

35

READY

1

Signal used to indicate that the drive unit is ready for operation

34

WPRT/2 SIDE

1

When the RW/SEEK signal is operating as RW, it function as WPRT which indicates that the drive
unit or the floppy disk is write protected. When the RW/SEEK is function as the SEEK signal
produces 2 SIDE which indicates that a double sided media is in use.

17

INDEX

'

33

FLT/TRKO

1

When the RW/SEEK signal is operating as RW. it works as FLT which indicates that the drive
unit is in a fault condition. When the RW/SEEK is operating as SEEK, it works as TRKO
which indicates that the read/write head is on cylinder 0.

16

TC

1

Signal used to indicate the termination of a read or write operation

30

WDATA

0

Data written on the floppy disk consists of clock bits and data bits

25

WE

o

Signal to indicate write enable to the drive unit

21

WCLK

1

Data write timing signal which is 250kHz in the FM mode or 500kHz in the MFM mode

Control signal to read data from the FDC via the data bus
The signal used to indicate a service request from the FDC It is issued at every byte in the nonDMA mode, or upon completion execution of a command in the DMA mode

The signal that indicates use of the DMA cycle During the DMA cycle, it functions identically
toCS.

Signal to indicate the physical start point of the track.

- 58-

MZ350C
P,n No

Signal name

I/O

32. 31

PSO. 1

O

23

RDATA

22

WINDOW

Function
Signal used to either advance or delay the write data in writi ng under the MFM mode,
to obtain tirrung adjustment for reading. The WDATA signal is controlled as shown in
the table be ow

FM

MFM

PSO

PS1

0

0

0

1

-

LATE
225~250ns

1

0

-

EARLY
225~250ns

1

1

-

-

Not changed Not changed

1

Read data from the drive unit consists of clock bits and data bits.

'

Signal created in the VFO circuit which is used to sample RDATA. Phase syncroni^i
carried out in the FDC for RDATA data bits and WINDOW.

5-5. Data recording method

1) MF recording method
(1) Clock bit indicates a bit cell.
(2) Data bit is placed in a middle of a bit cell. (See Fig. I.

There are two ways of recording data; FM recording
method and MFM recording method.
2) MFM recording method
(1) Data bit is placed in a middle of a bit cell.
(2) When the data bit is "0", a clock bit is placed before
the current bit cell. (See Fig. 1)

'
' •__ —1
v
i
—JUULJUULJLJlJLJLnJl
1

i

n
i

!i n
ii
i
0

!
i

!
i

i

!

n

r-JLJLJ1
0

| ,

i

i

|

0 | 0

• (MFM recording method)

1
o
Model 3500, only side 0 of track 0 (128 bytes/sector) is
written in the FM mode and rest of other tracks are
recorded in the MFM mode.

As seen from the above illustration, bit density of the MFM
recording method is twice the FM recording method. In
other words, data density of the MFM recording method
doubles that of the FM recording method. For the

5-6. I/O port in the MFD interface
I/O port used in the MFD interface is as follows.

D-BUS
IOMF#F9-AO

IOMF#F8-AO

I/O
OUT

D7
D6
D5
D4
D3
1)2
1)1
DO
U2
Dl
DO

DACK
ME

SCTRL
TC

OUT

IN

TRIG
SEL3
SKI. 2
SEL1
SELO
M . ON
I NDEX
DRQ

Used for data transfer between the CPU and the FDC.
INT from the FDC is output enabled on INTFD.
FDD select signal output is enabled.
TC to FDC.
Trigger (motor on) of the timer (555)
Selects FDD 3
Selects FDD 2
Selects FDD 1

Selects F D D O
ON/OFF state of the motor
INDEX signal from the motor
DRO from the FDC.

- 59-

M 7.3 500
5-7. Precompensate Circuit
Set the counter to 200ms.
(Actually, slightly longer than 200ms.)

K K I T E DATA

(Fig. 2)
PSO

PS1

FM

MFM

Value of LSI 63

0

0

Not changed

Not changed

1101

0

1

-

LATE(125»is)

1100

1
1

0

-

EARLY(125ja)

1110

1

-

-

-

Media is present.

(Table!)

Media is not present.

5-9. Controls during read, write, seek, and recalibrate
Above operations are all controlled via the FDC.
1) Control during read and write

WDATA8MHz
CLOCK

I

f

READ (or WRITE)
command to FDC.

EARLYNOMAL-

I

TC-»FDC.

HALT
(Wait for interrupt) H-">uit staius
is read by FDC.

LATEDATA<- FDC
DATA-* FDC

(Fig.3)

The precompensate circuit is used to compensate the peak
shift before writing.
The FDC sends out the compensation rate to PSO and PS1
and the data bit location is shifted according to this signal.
With issuance of WDATA. the value dependent on PSO and
PS1 is set in the LS163. (See Table 1.) For instance, when
both PSO and PS1 are low, it will set "1101 (D)" to the
LS163, counted up by the 8MHz clock, and QB is sent out
When it becomes "1110, 1111". When in EARLY (PSO=
"H", PS1="L"), the value "1110(E)" will be set to the
LS163 so that the output is issued 125ns earier than "not
changed". The QB output, however, will be supplied for a
period of two clock cycles.

2) Control during seek and recalibration

SEEK (or RECALB)
command to FDC
I
HALT
(waits for interrupt)

5-8. Media detection
Insertion of a media on the MFD is detected via the signal
INDEX from the MFD. Since it takes 200ms for the media
to make a full turn, "NO MEDIA" is detected signal
INDEX does not appear within 200ms.

tNI)

- 60 -

RtTKY

Read'result
status from FDC.

MZ 3500
In the case of the MFM method, need to trace cycle fluctuation is further increased, as a peak shift is apt to occur
because there are three write data cycles.
(Peak shift). Data read cycles fluctuate as the flux change
point is moved forwards or backwards.

Write pulse
Polarity inversion

Read waveform

Advanced peak shift Regenerated pulse

*— Delayed peak shift
H

Cb)

{VFO circuit): Variable frequency oscillator
Polarity inversion

f~J
Polarity inversion

Write pulse

J

Read waveform

j I

6.0 40 20

0

20 40

Advanced peak shift —-| t—

60

(a)

I

—•) j*- Delayed peak shift

(c)

When the output waveform is observed after writing a single
pluse on the floppy disk, the waveform show in (a) appears.
Shown in (b) is two pluses of 4jis interval.

Deviation in the peak point is called peak shift. Since pluse
intervals of the MFD in actual operation are 4ns, 6/JS, and
8/^s, the largest shift takes place when a pluse appears 8/Js
before or after 4/JS, as shown in (c).

5-10. VFO circuit
1) Purpose

n

String of data
pulses from the FDD.

n

Data window
String of
separate data

Data from the clock or data portion must be differentiated
when read from the FDD. For this purpose a window pulse
is used. In order to increase read tolerance, the VFO circuit
carses the window to trace phase changes in the read data
that take place during a floppy disk drive motor speed
change.

- 61 -

MZ3500
2) VFO circuit configuration

READ

DATA"

—»
h,

Phase
detector

k.

Filter
amplifier

^

Window

Data
separator

SEPARATED DATA
SEPARATED CLOCK

The VFO circuit has the following capabilities.
(1) Two modes: MFM and FM.
(2) The VFO circuit operation is suspended during the
SYNC field located before the ID field and data field.
(3) After suspention, the VFO circuit will synchronize
with the read data (timing is affected by a speed
change in the FDD). Fluctuations in an individual bit
that may be seen (peak shift are ignored.

VFO circuit

+5V

RtAD

DATA

-62-

MFM Mode
AlMHz

_rLTLJT_r

B)QA)

1_

Nomal
STD

Eary

n

Delay

©

J~L

MZ3500
FM mode timing chart

A 4M

B(QA)
C(QB)
D(QC)
WINDOW

E

F
L

Normal

O
P

F
L

Advanced

Q
O
P

L
K
Delayed

Q
O
P

Does not trace ± I

j

1

1

[

1

1

1

1

1

1

1

1

I

*

~

*

oinQle density ~^~^~~~^~~~

0

~—~^——^— LJQUOI6 density

*"

U.
o

/

1

/

2

c

o

,— ^

c

UJ

o
o
~
Q

s
..

5

o
o

o
0

O
O

0
0

\

S3

0

\

I
o

\
\

/

o
o

U,
U-

U,
U.

a.

s

5

cD
-

/

/

*

\

u.
u.

1/5

U

lO

U?

a)

U

10

w

/

Q
U
o
tQ
^_t

OS
UJ

H
.

c
o

^

(O

u

0

02-

1£

CD"
L-i
O

o
*#-

ca

Csl

h

O
O

cc

m

H

8«

Q. J2

(J

I 2

£

W

w

T— 1

U,

»•
CL

U3
U

10
UJ

2

CTJ

H
O
O

u

ro
"O
(U

O

"c —
CO

s

"o

00

0)

lO

•

00

0!

,„

^

O

^"^-^

to

IN

VO
^—^_^

.2
73
QJ

•• Reverse side

•~"

M/asoo
Track 0, sector 1 information (SBACIS) (Fig

AA

7

L'
1

(

1)

00

02

00

00

04 i
i

1

00

!
i

I

/

M HF

i

c

|

1

'. OO1
i
'

1

1

48

1

!
i

1

i

041

1

Jv

IM
1
No, of sectors

m media

1

48

i

'
Start address

>

1

02

I

!
*

I

,

.

;

—I

'T

'< Oo!
01
i
>

1 r u U S I IM' SJ"L tor

01

'
i
,

N

I

SUB IOCS

BOOT

r
;

02

10

01

01

01

10
i

No of Track SIDE Sector
sectors

N

j
i

FF
,

No of END
sectors

f 0 . Single density, other than front side, track 0.
1 .
SIDE =

Double density, other than front side, track 0.
. Side 0 (front side)
1

Side 1 (reverse side)

No of data transfers INT=[IOCScapacity/1k] +1

0 track

*

8 sector

78
FF

F 10 11

FF|

+

Volume
name

IF 20

18

FI-

FF

t

FF

FF

Diskette Type
m SH/DD(M,ni)
<-C DH/DD(M.m)
Track No 1
Error Mep (Bad Treck)
Tr 3Ck No 2

cc
FF
80
01

I
Fail name (8 bytes) Expander
M A,r,Ar.
.4 (3 bytes)
No ALOAD command
File specification only
With operand

SC 3D

7F

FF

FF

For FLOAD command

Volume name
(8 bytes)

ALOAD
Status line No label
(8 bytes)

All "F" when ALOAD command
is not on

(Sbytes)

Contents of X register
When used for the line number (when line No 1 23)
These three bytes are in effect

Drive NO

34 35 36

3b>tesfj$!l

00 01 23

Channel
A (<•)
B (I)

When used for a label (Wight bytes are in e f f e c t a n d r e s e a r e )
1'
11

34
A B C I)

- 66 -

3C
f ?

7 F

M7 350?
o Map information
0 track 10 sector

0 track 9 sector

//

x
1

/
/

/
/

2

1 7H

129

&0H

130

I 71!

131

FFH

151

FFH

3

1

FFH

22

\
J

FFH
4CH

FFH

/

23
24

FFH

128 blocks are controlled
by one sector.
OOH-7FH
80H: End of link
FEH: Links to next map,
and the starting
block number.

152
FFH

153

75
76
77

\
\

126
\ 127

1
iy
/

1
^

\128

FFH
7 EH
FFH

FEH
FFH
FFH

Indicates the byte position
• from the top of directory.

25
01

00

02

01

FF

29

30

31

FF

FF

FF

MAPNa
Block NO
Starting block number (directory)

- 67 -

32

H

MZ3500
o Block number allocation
The program and data areas are located after Track 2
1 block = 2K bytes (8 sector)
(Double side)

(Single sided)

Block No
track

Block No

Front

track

Reverse

Front

2

BO

Bl

B2

B3

2

BO

Bl

3

B4

B5

B6

B7

3

B2

B3

I

I

38

B144

6145

B146 B147

38

B72

B73

39

B148 B149

B150 B151

39

B74

B75

2Kx 152 = 304K

2KX 76=152K

Each track is blocked in the following manner:

2 sec tor '
4
6

1 sector

3
5
1 block

1 block

13
15 sector

14

16 sector

o Track 1, Sector 1 information (CP/M)

0

i

AA
t

TRACK

SIDE

SECTOR

N

SECTO
^1 NUM
BER

t
Drive unit
specification

Represents the
system media

i
i

.
.
.
Load address

i
i
i

PATAT
*ANSF| -TRACK
ER NU 1KAt*
MBER 1

SIDE

SECTOR

N

.
.
.
Start address

BOOT

(•

20
SECTO
R NUM TRACK
BER

15

10

5

50

51
SECTO|~
I
R NUM T?F%! \
BER
j
j

SECTO
R NUM
BER

Indicates
the end

SUB-IOCS

._

0
1

Single density (front, Track 0)
Double density (other than front. Track 0)
0
Side 0 (front)
SIDE =
1
Side 1 (reverse)
Nosof data transfers = INT [IOCS capacity/1 K] + 1
• Sub IOCS can be divided into either blocks If divided to
less than eight blocks, the block that follows

- 68-

MZS500

6. R232C INTERFACE
6-1. General specification
Input/output format

RS-232C bit serial input/output

No of channels

1 channel

Code used

JIS 7-channel/JIS 8 channel

Baud rate
Transmission system

Half-duplex

Synchronization method

Start-stop

Communication control
procedure

Non-procedure

Data format

Stop bif 1/1.5/2, with or without
even or odd parity.

LSI used

8251 AC or8253C-5
(Programmable interval Timer)

110 to 9600 bits/sec

6-2. Data transmission format
2°

21

22

23

24

25

26

7-bit,
with parity

v

j v__^___/

„ _i \

Start bit

Data bit (7 bits)

Parity bit Stop bit (1 or 2 bits)

7-bit,
without parity
V

X

XV

Start bit

Data bit (7 bits)

V

X

'

Stop bit

8-bit
with parity
V

•

w

•'

V

Start bit

^

Data bit (8 bits)

^

Parity bit

_

Stop bit (1 or 2 bits)

8-bit,
without parity

v

,
y

Tr

Start bit

Data bit (8 bits)

Y

Stop bit (1 or 2 bit

Example: 7-bits, even parity, 1 stop bit

Start bit

7-bit data (26H)

Stop bit of preceding data

Parity bit

Start bit of
succeeding data

Stop bit

- 7) -

MZ3500
6-3. Block diagram of the interface

Control signal

Peripheral

6-4. System switch functions
ON

OFF

SW5

Causes an error when the
ER signal is low or open
during data output.

ER signal is disabled.

SW6

Always high when power is
on to the main unit.

The CD signal is set high
while data output, but
would not be set high
when the echo-back
function is selected for
the host computer.

SW7

Causes on error when the
PO signal is high during
data output.

Polarity is inverted.

6-5. 8251AC controls

c

There are two control words for the 8251 AC.
(1) Mode instruction: Defining general operational parameters, such as unit, stop bit, etc.
(2) Command instruction: Defining status words used for
actual operation, such as send/receive enable, etc.

START

8251AC internal reset

1) Definition of generation operational parameters
• Baud rate
• Character size
• Even/odd/off parity assignment
••Stop bit size
"Corresponds to channel command of BASIC.

8251AC mode instruction

- 72 -

MZ3500
2) Data output control

SKNU

Command instruction
(KTS,RXEN,TXEN)

8251 AC
"L"->KTS

»- 8251 AC

Set counter (200ms)

ERROR 101
Stop
Output data to
8251AC

The 8251 send data when CTS goes low.
The 8251 AC would not output, unlessv
CTS goes low. Therefore, the state of \
CTS will be checked when the buffer I
.becomes empty.
/

ERROR 101

- 73 -

M/3SOO
3) Data input control

RCV

Command nstruction

8251 AC

( E R . R X DISLN)
8251 AC

/Error reset
\
\Data input disable/

Read one data
/Clears the data before
N
Vthe start of the receive command /

Command instruction
(RXEN,UTR,TXEN)

- 8251 AC

8251 AC
,

\" L "-»DTR
Waits for NMI by
the RXRDY signal

Resets error by setin
DTR high

Command instruction

( tK >
8251 AC

ERROR

ERROR

- 74 -

N

/ Data input enabled
( Data output enabled (echo-back, selected)

MZ 3500

6-6. 8253 Controls
Baud rate of this interface will be determined by the clock
output of the 8253. The 8251 is configured such that its
baud rate is 1/16 of the input clock and has the following
relation between the 8253 output clock and the baud rate:

1 1 0 .t 300

1760Hz
4800

600

9600

1 200
2400
4800
9600

8253 input frequency: 2457.6kHz
8253 Mode set: Mode 3(rec'angle waveform rate generator)

8253
Parameter

8253
Output frequency

Baud rale

1 3 9 6.3 6
51 2
256
128
64
32
16

1 9200
38400
76800
153600

Control signals
Signal name

Symbol

IN/OUT

Transmission enabled

CS

-* Peripheral

When high, data input from a peripheral is enabled.
When low, data input from a peripheral is disabled.

Data set ready

DR

— Peripheral

Goes high when power is on to the interface unit.

Carrier detect

CD

— Peripheral

(SW6-ON) High at all times when power is on to the interface unit.
(SW6-OFF) Goes high only when data is on output.

READY

— Peripheral

Data output from the interface is enabled.
(ON) Data is output from the interface.
(OFF) Waits for data output.
NOTE: A maximum of two bytes are output after the signal goes from high to low
state.

Equipment ready

ER

«- Peripheral

Indicates that the peripheral is ready. It results in an error if low or open when data
is sent from the interface. This signal will be invalidated when the SW5 is turned
off.

Paper out

PO

<- Peripheral

(SW7-ON) Causes an error if set high during data output.
(SW7-OFF) Causes an error if set low during data output.

Ready

Function

6-7. Description of LSI's
1) UPD8251AC (Programmable Communication Interface)
The UPD8251A is a USART (Universal Synchronous/
Asynchronous Receiver/Transmitter that was specifically designed for data communication.
The USART receives parallel data from the CPU and
converts it into serial data before transmitting. Also,
serial data is received from an external circuit and transferred to the CPU after converting it into parallel. The
CPU can monitor the current state of the USART at
any time (data transfer error, and control signal of
, SYNDETandTXEMPTY.
,-eatures
• 8080A/8085A compatible
• Synchronous/asychronous operation
• Synchronous operation
5 — 8 bits character
Clock rate: baud rate x 1, x16, x64
BREAK character generation
Stop bit: 1, 1.5, 2 bits
Error start bit detection
Automatic break detection and operation.
• Baud rate: DC - 64K baud
• Full-duplex
Double buffer type transmitter/receiver
• Error detect
Parity, overrun, framing
• Input/output TTL compatible
• N-channel MOS
• Single +5V supply
• Single phase TTL level clock
• 28-pin, plastic DIP
• Intel 8251A compatible

Pin configuration (Top View)

<28 »OD1

3?5 PORTS'
422-0 DSR

-i-2—XDTXEMPTY
3*12-0 CT3
SYNDET BD
TXRDY
Block diagram

1)7-1)004

8

»

Data
bus
buffer

8

„«.

8
RESET O

»•

8

Read/
write
control
logic

1
Transmission

t *
Transmissic>n
control '
34

_
X>TXE
OTXC

Reception

8 buffer

Dsko

m

MOOhM
t rscx — x: controller
k'l so*

( S -• P )

*
^_
8

c

V
Internal data bus^
- 75 -

t 1
Receiver
^ control
HI)

M Z 3500
DO~D7

Data Bas

RXD

Receive Data (IN/OUT)

WR

Write (IN)

RD

Read (IN)

C/D

Control/Data (IN/OUT)

CS

Chip Select (IN)

DSR

Data Set Ready (IN)

DTR

Data Terminal Ready (OUT)

RTS

Request to Send (OUT)

TXC

UO

O

Data bus AA
buffer

v-v

Counter •«

t 1 KO



Counter

<

# 1

<

/«--N
\r,V

C1K 1
OA1 ^ 1
»-()l

£

I1

t

^
^

2) UPD8253C-5 (Programmable Interval Timer)

—
Control
word
register

The UPD8253-5 is a programmable counter/timer specifically designed for the 8-bit microcomputer system.

Counter

/"
**w

'
1

A^S

S— K]

*«

Cl K2
GA1L2

# 2

KHT2

It consists of three sets of 16-bit counters that operate
under a maximum counter rate of 4MHz. Timer and six

1

operational modes are programmed to be used for a wide

t

range of microcomputer system timing control.
Features
•

Z-80 compatible

D7-DO

Data Bus (8 bit)

•

Three sets of 16-bit counters

CLKN

Counter Clock Inputs

•

DC-4MHz of count rate

GATEN

Counter Gate Inputs

Programmable

OUTN

•

six operational modes

and timer

duration

RD

Counter Outputs
. Read Counter

•

Choice of binary counter/BCD counter

WR

Write Command or Data

•

N-channel MOS, input/output TTL compatible

CS

Chip Select

•

Single +5V supply, 24-pin DIP

A1~AO

: Counter Select

Intel 8253-5 compatible

Vcc

. +5 Volts

GND

. Ground

•

Pin configuration (Top View)

.VCC

- 76 -

M 2 3500

8251
CLK
DTK

IN
IN
OUT

CTS

1 N

DSK
8251
chip address[0001/xxxx]

IN
Uix
OUT)

2.45MHz clock
DATA SET READY

READY

DATA TERMINAL READY

TRANSMITTER DATA

CS
PO (MPER SUT), ER
CD
RD

TRANSMITTER CLOCK
RECEIVE DATA

OUT 0 of 8253
SD

RECEIVER READY

To 3iil>CPU of

RECEIVE CLOCK

8253 OUT

CLEAR TO SEND

OUT
Rl S
OUT
TXD
TXRDY N.C.
TXE
N.C.
IN
TXC
IN
RXD
RXRDY OUT
IN
"RXC
SYN/BD N.C.

REQUEST TO SEND

8253
CLKO
GATED
8253
chip address[0010/xxxx]

IN
#UxH
OUT#|2XH

OUTO
CLK1
GATE1

OUT1
CLK2
GATE 2
OUT 2

IN
IN
OUT
IN
IN
OUT
IN
IN
OUT

2.45MHz
Vcc
To TXC, RXC of the 8251
2.45MHz
From OUT2
MUSIC
2.45MHz

Vcc
To GATE 1

INTO TO MAIN FROM SUB

POWER ON RESET

INTO
H

SOO - S I W ( I O R Q - W R o f S U B )

L

fNTR=L(FROM MAIN)

H

INT TO SUB FROM KEY
STK= (L)

- 77 -

M 7. 3500

7. PRINTER INTERFACE
7-1. Printer interfacing circuit
AS 4 • AS 5 AS6 • AS 7
AR

SO3

Chip

CS 8255

I )fi i >de r

rs.

RI)

3C r-— •^ —°

I ORQ

°^ *-!-"N
cf^
1i—
cjX

Al
Z80
SUB
CPU

AO

PA 0

-^jp

-J

S1W

PA

RD

H/

PA 2
WR

A

© DA1A2
© "A^A3

H^

PA 3

Al

^

1

PA 4

°

PA 5

C|^»

ts^
CP^»

PA 6

i^^

PA 7

ol ^^

rv_"v*~i

PC 5
PC 6

rs_
1 "No

(3) DAT 16

—
(g) DATA?

Op) D \TA S
ffi\ STRDRF

^o^l-X}—^^^ACK

PC 7
PC 0
PC 1
PC 2

1

, DSO
_ DS1
^ DS2

L_

0<

~ xr

DS4

^ DS5
v

Io^l

^J

DS3

.^
///

n EU®
©) PDTR

LS244

DS6

^ DS7
* 2,4,6,... 28areGND.
* Ahnwp nin numbers are of the model-3

'arallel interfacing signals

Function

Pin No.

Signal name

IN/OUT

1

STROB

- PRINTER

Data is transfered to printer when STROB is high.

3

DATA 1

5

DATA 2

7

DATA 3

9

DATA 4

-PRINTER

Data output to the printer

11

DATA 5

13

DATA 6

15

DATA 7

17

DATA 8

19

ACK

- PRINTER

Indicates the end of character input or function input

21

BUSY

• PRINTER

When high, it enables to receive data

23

PE

- PRINTER

When high, it indicates paper empty

25

PDTR

- PRINTER

When high, it indicates the SELECT mode (receive enabled!.

27

SYSRES

- PRINTER

Reset signal, normally high

- 78 -

i

7-3. General description of the parallel interface
The 8255 is used for the LSI to control the parallel interface. The 8255 can be set in the following mode.
/PORT A: MODE 0
I P O R T B : MODE 1
C: Output
74.

Because it is not possible to directly sense the ACK signal as
it uses interrupt for key processing and RS232C input, the
ACK signal is latched by means of the OBF pin function

Data transfer timing

BUSY

ACK

( 8255 A
v
PC-7J

DATA

STROBE

(M1N)

l^s(MIN)

PRINTER: MZ-1P02, MZ-1P03 CE330P, 331P, 332P
* Broken line in the above figure represents timing for the
CE-330Pand331P.
'For detail of timing, refer to Manual provided with
printer.
7-5. General description of control software
Set the 20 second counter.

STROBE OUT
Set the 20 second counter.

- 79 -

M / 3500
7-6. I/O port map
8255 ON SUB CPU BUS

PA6

DATA8
DATA"

i'A5

DATA6

PA7

IN
OUT

I'A4
I'A3

8255

PA2

chip address(0011/xxxxj

PA1

I) AT A 5
Output

DATA4
DATA3

PAO

ACK T-SET
ACK
PC6 ACK inputi
STROBE J
PCS
MUS 1C , sustain
PC4
1NTR
NOT USE
PCS
ACKC
PC 2
PC7

Group A: Mode 1
Group B: Mode 0

O

3

OBF output

PCI

STC

PCO
PB7
PB6
PBS
PB4
PBS

DC

Output

P/M

CG selection

SRDY

Sub CPU R E A D Y

Dm

C2
Cl
CO
STRB

PB1
PBO

INPUT P O R T C 7 4 L S 2 4 4

74LS244

CDS6D

HLT KEY
STK
-i

port address[0100/xxxx]

CDS5D

DK

CDS43

PUTR

CDS33
CDS2D

PE
BUSY

CDS7D

Keyboard

CLK

PB2

IN
#4X
OUT

Printer

DATA2
DATA1

Keyboard

J
Printer

cosn

Reads the 8255 OBF (PC7)

CDSOD

output or timer output.

- 80-

Clock

M 2 3500

8. OTHER INTERFACES
8-1. Clock circuit
1) Schematic

T;

10

*

Ii2

u

HDH
l«"-.r

"

1

2) Clock timing
READ
mode
Cn(CO~C2)
STB

HOLD .
mode [
0 X

READ
mode

3
/

Y~l

\

/

^Ones digit of seconds

Tens digit of seconds
WRITE
mode

DIN

Tens digit of month '

HOLD
mode

SET
mode

Don't care

X

CLK

DOUT
Tens digit of seconds

Tens digit of month*

- 8) -

i
I

HOLD
mode

MZ3500
3) ^PD1990AC
Block diagram

OK O

Command specification
Data Shift

DOUT

C1

CO

Command

0

0

0

Register hold

Holds 40-bit S/R

1Hz

Not possible

Data retention

0

0

1

Register shift

Data input/output

[LSB] Output of LSB

Possible

Shifts in synchronization
with the clock

0

1

0

Time set

Data of the 40-bit S/R is
preset to the time counter.

ILSB] Output

Not possible

Time read

Data in the time counter
is read to the 40-bit S/R.

[LSB] Output

Not possible

0

1

1

Description

Note

C2

Input/output format
Example: In the case of 10 o'clock, 25 minutes, 49 seconds, July 30th.
(LSB)
9

(MSB)
4

«- Seconds—'

5

2

L(\/|jnutes—I

0

1

Lnoure_)

- 82 -

0

3

L_Dey—I

7
Won
!Onth

J

8-2.

Voice input/output circuit

PD8255

Music output waveform

•

mmmil

Tonal signal
OUT1

• Sustain

PC4

•

2SC458
emitter

•

2SC458
collector

• Speaker

output
» GETE1

u
-Tlj

1

J

- 83 -

M/3500
83.

Expansion and interrupt (See 3-(2)-4 for interrupt)

1) Options and expansion units
Options not requiring expansion unit
JIS keyboard
14" medium resolution color CRT
12" high resolution green CRT
1 2" high resolution color CRT
14" CRT tilt stand
12" CRT tilt stand
Light pen
80-character pnnte

MZ 1K01
1001
1D02

•1D03
-1S01
-1S02
•1X02
-1P02
-1P03
-1P04
CE-330P
-333P
-33 1M
-330X
MZ-1F02
-1F03
-1R03
-1R05

MZ-1E01

RS232C 1/F

-1E02
•1E03

GP I/O
SFD 1/F

-1F05
-1R06

SFD unit
RAM

(7)
©

Color injket printer
80-character printer
136-character printer
Optional MFD drive unit
Plotter
Optional MFD drive unit
Optional MFD drive unit (single deck)
Graphic board

2) Expansion unit
Signal assignment by slot

Main CPU
bus line

SLOT1

SLOT2

SFD CONTROL •

VOICE
DRAM control signal
32K mask ROM

BASIC(

8K mask ROM
ROM1

ROM2
ROMS
ROM4
INT1

INT2
I NTS

INT4

-84-

L

SLOTS

SLOT4

M 7 3500
8 4

System SW1 (DIP SW) (User operative through the cabinet bottom)

No

Signal name

1

SW1

Function

Description

Position

Polarity

ON

L

OFF

H

ON

L

OFF

H

ON

L

High resolution CRT (MZ1D02. MZ1D03)

OFF

H

Medium resolution CRT (MZ1D01, MZ1D06)

ON

L

A period is output for a decimal point

OFF

H

A comma is outputted for a decimal point

ON

L

Low state or open ER signal during data output
will result in an error

OFF

H

The signal ER becomes invalid

ON

L

CD is high as long as power is on to the main
unit

OFF

H

CD goes high only during data output However,
it would not go high if the echo back function is
on the host side

ON

L

An error is cause when the PO signal is high
during data output

OFF

H

Polarity is inverted for the above

ON

L

Normally in capital letter, but in small letter
when shifted

OFF

H

Normally small leter and in capital letter when
shifted

ON

L

3500 CG will be assigned when the 200 raster
CRT is in use

H

2000 CG will be assigned when the 200 raster
CRT is in use

SW2
ON
OFF
ON
OFF

Printer select
SW2

2

SW3

3

SW4

4

SW1
ON
ON
OFF
OFF

#47 pin of MMR

CE332P
MZ1P02
IO2824

£48 pin of MMR

#51 pin of MMR

CRT select
Choice of decimal
point output
format

#52 pin of MMR

SW5

5

SW6

6

7

RS232C
assign

SW7

FD1
(SW8)

8

P/M
(SW9)

9

Key shift mode
setup

Choice of CG
for display
OFF

ToCTS, DSR
of the 8251

ToCTS of the
8251

#54 pin of MMR
(FDD

P/M signal
(To A3 CG)

NC

10

^
=
— =T

Dip switches (A) and (B) located on the PWB are used for
servicing the MFD or for other machine service and there
fore the user is not supposed to use these switches

In

addition, these switch must be used when either the CE
330M or 331M is used as the expansion MFD
DIPSW(A)
No

Signal name

1

SEC
(SW1A)

t
44 pin of MMR

2

FD2
(SW2A)

56 pin of MMR

3

FD3
(SW3A)

58 pin of MMR

SRQ
(SW4A)

Bus request
to sub-CPU

4

DIPSW (B)
No

Signal name

1

SRES
(SW1B)

SUB CPU
reset signal

2

SW2B

SUB CPU BUS
select signal

1

2

3

OFF

OFF

OFF

WhenSH in use

ON

OFF

OFF

When DH in use

OFF

ON

OFF

ON

ON

OFF

OFF

OFF

ON

—
—

Use of the CE330M as an expansion unit

ON

OFF

ON

Use of the CE331M as an expansion unit

OFF

ON

ON

Check mode *1

ON

ON

ON

Check mode *2

*1

Test program is loaded and executed

*2

Provided for the test of the MFD interface

The

read/write test is carried out for the expansion unit

\

Used for an individual test of the CPU PWB When these
three switches are turned off altogether, it makes the
sub CPU operated independently
condition under a normal situation

To be used in th ON

MZ3500
DIPSW(B)

DIP S W ( A )

•

1

2

3

4

1

2

OFF

OFF

OFF

ON

ON

ON

Switches are set in this manner before shipment of machines this us the
single-sided minifloppy disk drive.

ON

OFF

OFF

ON

ON

ON

Switches are set in this manner before shipment of
machines that use the double-sided minifloppy
disk drive.

OFF

OFF

ON

ON

ON

ON

Switches are set in this manner when the SH is used for the optional MFD

ON

OFF

ON

ON

ON

ON

Switches are set in this manner when the DH is used for the optional MFD

OFF

ON

ON

ON

ON

ON

Test mode * 1

ON

ON

ON

ON

ON

ON

Test mode "2

OFF

OFF

OFF

X ><^
\(f

Individual CPU PWB test

Can be in either state

- 86 -

, My-it^n Pn^41
( 11/171540' vv"=/n
' '

MZ3500

9, POWER CIRCUIT DESCRIPTION
1. BLOCK DIAGRAM

(Block diagram)

A. +5V and +12V supplies
1. Functions
a. Supply voltage is first rectified in the rectifier circuit
and sent out to the switching regulator via the overcurrent detector provided in the overcurrent protect
circuit.
b. Next, the voltage is converted to the +5/+12V output
in the switching regulator and sent out to the noise
• Nfilter.
c. Change in the switching regulator output voltage is
sensed by the control circuit and is fed back to the
switching regulator after being amplified in the amplifier
located in the control circuit, for maintaining the output
voltage to a constant level.
d. The signal from the oscillator is supplied to the switching regulator through the control circuit for driving the
switching regulator.
e. For prevention of overcurrent, the protect circuit is used
for stopping the oscillator when an overcurrent is met,
and it makes the switching regulator to halt in order to
shut off +12V/+5V supply.

2. Description of each block
a. Overcutrent protect (control/protect) circuit
When an overcurrent is met in the +5V/+12V circuit, it
causes to increase the voltage at both ends of the overcurrent detector resistor R1, which in turn causes to
increase the Q3 collector current, for, there arises larger
voltage difference between the emitter and base of the

transistor Q3. This makes the gate voltage of the thynstor increased owing to activation of SR. Witr, jctivation
of SR it makes the oscillator voltage dropped to the
GND level at the point "a" to stop oscillation, which
also makes the switching regulator stopped by the deactivation of the transistor Q5 oscillation. This causes
the transistor Q5 inactive, and it shuts off the +5V/
+ 12V supply,
b. Oscillation circuit
As the Q1 emitter voltage is at almost GND level whethe transistor Q1 is active, the Q2 base voltage temporarily drops close to the GND level by means of C6,
which in turn makes Q2 inactive and the Q2 emittei
voltage increases.
Then, the Q2 base voltage comes to rise as C6 begins to
be charged through R6, and the transistor Q2 starts to
activate again. With activation of the transistor Q2, the
Q2 emitter voltage starts to drop and the Q1 base
voltage is temporarily dropped by means of C5, to shut
off the transistor Ql, which causes to increase the
transistor Q1 emitter voltage.
Next, as C5 is charged by R5, it makes the Q1 base
voltage increased which puts the transistor Ql into
activation. In this manner, transistors Q1 and O2 are
alternately turned on and off to keep oscillating.
C5 and C6 are charged through R5 and R6 by on/off
action of the Q1 and Q2, and discharged through Ql and
Q2.

M 7,3500

Switching regulator

+ 5V
or

Q5

(Switching regulator and constant
voltage control circuit)
« VR is the+5V or+12V adjusting VR.
• D3 is provided to discharge current from Cj after power off.

- 88-

M23500
c. Power switching circuit

As the signal from the oscillator is amplified through Q7
to Q6 to change current to the transformer T2. it causes
voltage to appear on the base of Q5 (one of components
is cut by D1), so that the transistor Q5 begins to perform switching operation in synchronization with the
oscillation frequency. As Q2 is switched, current is
supplied to the emitter side of the transistor Q5, which
produces smoothed voltage through the capacitor C1
and the coil L2. The circuit composed of D4 and VR1 is
the reference voltage for the +5 or + 12V supply, which
is used to control the emitter current flowing to the
transistor Q9. The current supplied from Q9 is used to
create Tr3 inactive by the delayed C1 and C2 voltages
which supplied from Tr1-R2-VR1-D3. It goes high with
deactivation of Tr3.

3. Alarm circuit
(Alarm generation circuit)

When power turns off, the voltage accumulated in C1
and C2 are supplied to the base of Tr2 via Tr1 ... and
D3, so that Tr2 is kept active and Tr3 inactive for sometimes after power off.
Timing chart

SW

+ 5V
PFD

-89 -

MZ3500

10. MZ1K01 KEYBOARD CONTROLLER CIRCUIT DESCRIPTION
10-1. Specification of keyboard control

11) One-step commands
uior

1) Input Buffer
Capacity: 64 bytes
• Key-in data is written to the input buffer first, and is
supplied to the CPU, byte by byte.
• When an overflow is detected, the overflow code is
affired to the key-in data already sent, before being
sent to the CPU.
2) Rollover
• 2 key rollover (exemption in the CTRL mode)
(Entry of the second key depression can be accepted
even if more than one key is pressed at same time.)
• Simultaneous depression of more than three keys is
ingnored.
3) Key bounce
15msec (Key spec is 5-10msec)
(Indicates unstable state as shown in Fig. 3-2 that key
signal does not turn off immediately after releasing of
finger from the key.)

LMU /

5)

[
6)
7)

8)

LML) o

INrU T

UMU 4

USING

pft/in "7 .

(jU I U
pr\ci ID

Kb 1 UnN
Lib 1

PMH n .
PMn A

At rrn
ULUbt

PMH n -

n ATA

CMU K.

K.hY
IN
i OAH

nrUnMA 1 fF

PMH i
r*Mn r\ -

nhAU

PMH c

4) Key
5msec (norma), 20msec (max),
15msec (allows for key bounce)
DEF Key
Twenty definable keys are available in combination with
the CTRL key.
DFK1-DFK10
(DEF1A-DEF10A)
DEF1-DFK10 in conjunction with the CTRL key
- - - (DEFIB-DEF10B)(DEF1B-DBF10B)
Handling of functional symbols and graphic symbols
See the code table.
Use of the CTRL key to discriminate RUN and CONT of
the DEB key.
Push the DEB in conjunction with the CTRL key to
start running.
Handling of special codes
COPY command: CTRL | 1 J (ten key)
ESCape
CTRL
BRK
CTRL

rnlNI

CA\/C

12) Mode indication on LED
Acrn

i nr^w

13) REP
Key repetition will take place when a key depressed for
more than 0.64 second. Entry of other keys is permitted
during key repetition. When two keys are depresssd at
the same time, an alternate key entry will not be
accepted. This rule does not apply to simultaneous
depression of more than three keys.

9) PRO/OP
Sent to the CPU after power on and when PRO/OP is
changed.
10) HOME key
CTRL
[ HOME] Returns home after clearing the
display screen.
[HOME] Only the cursor returns home.

- 90 -

MZS500

10-2. Key search timing
Single key entry
Bounding

/

Key

n

STROBE

n

n

n

n

n

n

n
15ms

1 Strobe *~5.5ms M 5ms -»

RETURN

cvcle

n

n

n

n

n

n

n

DATA OUT

Two key entry

/A"

Key 1

Key 2

n

STROBE

n

n

n

-5.5ms—M—•6.5ms —M—5ms —W

n
RET

n

n

n

n

n

n

n

n

15ms

M

15ms

DATA
(1)
OUT

DATA
(2)
OUT
10-3.

Key serial transmission procedure

1) Data format

Key -» CPU

2s

2s

22

21

2°
Parity

DATA

All nine bits

Command

AM 4 bits

Key

Parity

- 91 -

MZ 3500
•

Command flag: "0" when succeedeing 8 bits are a key
data. "1" when it is a command or a graphic control
data.
• Data: Positive logic (negative logic on the cable)
• Parity: Odd parity up to 27 bit from the correction flag.
2) Interfacing signals
CPU level
• D(K): Output data from the keyboard.
Positive logic
• ST(K): D(K) strobe signal. Also use for Active H
interrupt to the CPU.
• ACK(C): Acknowledge signal form the Active H
CPU. Also use for the data
transfer
interrupt disable
signal.
• D(C): Output data from the CPU.
Positive logic
• ST(C): D(C) strobe signal. Also use for Active L
interrupt to the keyboard side.
3) Protocol
Key to sub CPU
• Keyboard to the sub-CPU data transfer tapes place with
interrupt applied at every signal word (STK).
• As the sub-CPU detects a next strobe (STK) after going
into the interrupt routine, it read data (K) as far as the
final parity bit, and the ACK (C) signal is sent back to
the keyboard side when the check-sum is correct.
• If the ACK (C) signal returns with normal timing, the
keyboard controller accepts it. Unless the ACK signal
was detected, the same data is sent again assuming a
transmission error.

•

Case when the error data link (sub-CPU not enable to
receive data properly) is established.
1) When parity error is found after the check-sum test.
2) When the sub-CPU is in execution of the NMI routine
or when NMI is applied during data tranJ.jj,
3) When an error is detected in the couting of strobe
(STK(K)) due to noise.
When one of above conditions is detected, data will be
sent again until received correctly. Key entries during
this periode are strobe in the key buffer. Should the key
buffer overflow, key entry will not be stored in the key
buffer.
• When a key buffer overflow is detected a KBOF error
code is inserted in the area vacant immediately after
transmission of one key-in data, without clean '~ "
key buffer contents.
SUB CPU TO KEYBOARD
• Basically the same as the above cases.
• Data is 3 bits plus parity bit.
• Return acknowledge pluse: Parity OK . .. STK + DK
Parity NO ... STK only
•

KEY TO CPU (80C49, Z-80)

CPU level

D(K)

n__TL_n

ST(K)

32.5

12.5

SUB CPU
INT

ACK(C)

50

22.5/-s

50

I
17.5 ,«s

60~ 300ns

CPU ->• KEY

D(C)

ST(C)

~ir~Ln_rrr~Lr
.

132.5

ST(K)

D(K)

1

60

7.5
*s
AS
/d« SEEK error
and RECALIBRATE

- 99-

MZ3500
MAIN CPU CHECKER FLOW CHART

M?

Option HAM
read/write check

Change bank of
the option RAM

Error
on display

C

- 100 -

HALT

M 7*500
SUB CPU CHECKER FLOW CHART 1/3

(

SUB CPU
CHECKER START

^
I

CRTmt*f face t«t

SeiGDCto«00

1

DATA

1

[r

IA

IB

2Y

2A

2B

F
CLfcAH

A

R

1

1

A

B

C

U

CLOCK
INHIBIT

JJ

>T

LJ LLTLJ LiJ LJ LJ LlJ LJ
L

D

N

PARALLEL

-

Vt

Y4

i
Yd

Y*

Y5

CLOCK CLOCK
" INHIBIT

(MI>

INPUTS

Y6

I [
Y6

A
<

<

t\

( 1

Y7

ii

Y7

H

r LJ
, 1 , LJ
LJ U LJ U LJ LJ

LJ LiJ LiJ LJ LL! LiJ LJ
1Y

Jl

Y]

QH

1
H

(H TPLTb

V

i

M

(,

SFRIA1
INPUT

74 LS 1 38

Yl

UH

I OAD

SERIAL
INPUT

mm

H

SHIf I

Jr
[

LU LLI LiJTiMU LU LU
GNI)

( M

I OAJ

[j

V
LJ LJ U U U LJ U

if

sim i/ INIVT airuT ^~
Va

C^D

1

A

J, J,

h

( A

C

CSD

74 LS 03
Vet

+B

4A

4Y

3B

3A

i f LT

3Y

tNAHI t

1C

1AI

2Y4

K

1Y1

IA°

'V3

IA3

'Y'

IA4

CM

2Y]

74 LS 139
SELECT

DATA

OUTPtTS

E \.AHI t ,
C

H

LJ LJ LJ LJ LJ LJ LJ
IA

IB

1Y

2A

2B

2Y

GND

NtC

A

1

1

J>

j],

C

A

B

YO

Yl

Y2
Y3

A

B

YO

Yl

Y2

Y3

1

i

Y

Y

IA

IB

1 Y2

1 Y3

C

74 tS 04
6A

6Y

SA^

5Y

4A

4Y^

U

fcAABLt *
'
SELECT

Y Y
1 YO
*

IYI

DATA

A

^
JjuJTU L«J I sITTTT' I I ej LH T»I
1C

GND

IA1 2Y4

1A2

2Y3

1A3

2Y2

lAi ZY]

GND

'

OUTPUTS

m
LJ LJ LJ LJ LJLJ LJ
IA

IY

2A

\tc

4B

4A

2Y

1A

1Y

3B

3A

CM>

74 IS 08
4Y

H I r1 I

I

IY

r1

LJ
LJ
LJ
LJ
LJ
LJ
LJ
IA
1Y
2A
2Y
3A
SY

LULU LD LJ LU LU LU LJ LU Lll

C.ND

/

1NPLTS

A

OUTPUT

,

INPUTS

y

OUTPUT

LJ LJTJLJ LJ LJ LJ
IA

IB

IY

2A

2B

2Y

GN1>

J

(

Vg

1C

IY

3C

3B

3A

4A

4B

4Y

SA

3B

—s

3Y

3Y

M R R R R Rm

J

Y

LJ LJ LJ LJ LJ LJ LJ LJ

SI-1

tO

IA

!B

1 Sf I I ^

IN

2A

B

2Y

LJLJLJLiJLJLJLJLJLJLJ
CLEAW

1Q

ID

2V

2Q

3Q

3D

4Lt

*Q

GND

( M)

IM I fS

jTj IB UTJ
LJ
LJ
LJ
2A
JB
^C
2Y CM>

IA

16

M 7. - 3500

74L593

/^PDI 99OC
\l

\-'

111

I !

IK H I

I ! l\

m M M r^n R m
O\

liiiiilv

II

FY

OL

Ll

HO!

I r KOI

INI

bA

(...iml.r

1

Lu LLI LLTLu ID TLTLzJ
t-L

KO;

NL

Vc(_

NX

LU L^J HI L±J 111 LlJ LJ
<. 2

l~l

LO

S 1 )t

|)|N

(_S

B

74 LS 367
("-

Oil

I.I

LJLJLJliJLJULJ
IA
IK
II
A
I
1
1 Ml
VU

OD

^A

SY

«A

1Y

TA7313
IA

5Y

(A

1Y

mm

q>Jq>J

(2V
W

LJ LiJ LJ bJ LJ LUTJ TZT

LLlQJ
HTLLlliJ
UJ
U
1A
1Y
2A
2Y
»A
3Y
GND
LH008O
S4S1S7
INPUTS

ENABLE

' O

f

STROBE

4A

4B

A! 1C 1
A12C 2
A13C 3

IN
4Y

2A

A14C
C

4B

4A

4Y

2A

S

-

OLTPbT JQ

bJ
LJ
LU
U *DLiJ40LiJ
2D
2y
3Q
3D

JD

AI5C

2Y
IA

CONTROL

2B

IB

IY

2A

2B

CLKC

2Y

LUUJlJJLiJLLjlJJLlJLLl

SELECT

1A

IB

1Y

2A.

2B

2Y

CND

4Y

SB

JA

>Y

171 m nyi ryirTi n

5

6 Z-80
DA4

D3C 8

DA3

D5C 9

DA2

D6C 10

DAI

m£

*A

DA8

4

D4C 7

+
«B

DAIO

12

D7C 13
DOC 14
D l C 15

TVTT: 16

JBUSKO

N M l C 17

DBIISAK

HALTC 18
MK1-.OC 19
TOKOC 20

UUU
LJ .QU .,-.UCNDLT
1
ID
ICK 1PR
CIR

>5
28

DDT
IX.] C

1X2 I

U U U LJ U U U
I 'K

19

IK

l>

-A

h

"i

< M

22
21

Jl

IAD

M/-3500
64K

/"PD8251

I.2C

1

inC

2

KM.C 1
M>C 1

25 ^ R V T

(

""'C

t

DIM R
23 DKT^

IX.Q

7

22 J D S K

I-7C

8

21

Q

2(i "~K I K

mC

'-^C
TJ^C
tit

i'-C
i*C
'*C

D»i
310
20 Ihu
28

27

10

18

12

17

RP>C 13

16

R X R 1 » C 14

15

21

U

3V
3^i<

uC 1
IIINC 2
T c

3

22

D^T)

IMC 4

21

iwC
H2C

20

6

It

D<^ "k\sC 1
DM
we i
D^
\^C i,

I>lC 7

18

D(.IK2

8

17

5

7

It.

H.M,

urc

1

U

1>

DPvs

A\&C

2

11

DI>OI i
^iC
H \i
^^^C
1. D \ <
\M'C
}' DM
uiC
10 3 V.
\\2C

t

17 D \\7
16 D \\8

I.

i

3\-

r^c

~~l( A Th 2

10

3r\hMi'r.
c.vrhoC
DcTS
i-MC

\i C

1

,"PD2114

H

(_ I H 0 f"~

19

11

1
2

D-RAM

PHc

14

D wsD' "i

f.

13

D 1 <>2

7

12 3 1 03

8

H D 1 <>4

1>
K \M

(,M,C M

10

D»h

DLI M

15

11

14 D ' . A I h 1

12

13 D s K.-.'u

1

ST

11

Al 4

21

sRrn

31

SM_K

41

»RB

2

DO

12

Al 3

22

kOl B

32

•RTTti

42

IT3B

3

Dl

13

A

2j

KOAB

33

kh2B

43

IT4B

4

D2

14

24

ROBR

34

WATB

44

She

5

D3

15

SKO

2S

35

RLMB

45

(,M>

6

D4

16

AR1 3

26

KI;LB
RO[>n

36

1TI-B

46

(AD

7

D5

17

AR1 4

27

K-, Mi

37

i roB

47

S»l

8

ns

18

\K1 *

28

K'-MH

38

IT] R

48

M

,r

I"

su 2
\"

\1 5

20

30

I1

10

1' i 1
1 O\

50

Rl-SH

51

SW3

61

C,M>

71

(.NO

52

S»4

62

(,ND

72

1MB

53

(,M>

63

K02B

7d

Nt

54

h»l

64

K03B

1

ksim

i i ; i,
40

VkOIl

©©
©©©©©©©©©©

A7C

55

(.SD

65

HDD

2O1 6P

56

H)2

66

(.1 k

M58725-15
6116P-3

57

SYSR

67

K04B

58

H>3

68

MPX

59

COAB

69

(,M>

60

RO 1 B

70

C ASB

~

^~

24 D V U)

A6C 2
A5C 3

23 DA8

A4C 4
A3C 5

21 ]K'-»
20 3cFI

\2C 6

11 D AIO

AlC 7

18 ]c_!-2

22

DAS

AOC

8

17 3 1 1)8

i>i C

9

16 3 1 XT7

1>2C 10
•03 C I I

15 3 1 'J6

.MC 12

13 3 I 04

14 3 I 1)5

20

MZ-35OO
PARTS GUIDE LI

MZ-3500

li Exteriors
PARTS CODE

NO

1 CCABC1007ACZZ
2
31
4|
!>
6
7
8
9
10
11
12
16

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

G F T A F 1 0 0 1 A C Z Z
HBDGB3004GESA
T L A B Z 1 0 0 3 A C Z Z
T L A B Z 1 0 0 8 A C Z Z
QCNCW1008AC01
Q PWB F 1 0 0 5 A C Z Z
V H P G L 9 P R 2//1
GCABA1003ACZZ
G F T A U 1 0 0 5 A C Z Z
PSPAG1004ACZZ
T L A B Z 1 0 1 7 A C Z Z
X B P S F 3 0 P 0 6 K O O
OUNT-1018ACZZ
DUNT-1035ACZZ
GCABB1004ACZZ
GCOVH1 00 1ACZZ
LANGT1003ACZZ
LANGT1010ACZZ
LCHSM1008ACZZ
L X-l Z 6 0 2 3 R C Z Z
NFANP1001ACZZ
RMEMR1002ACZZ
GLEGP0010UCZZ
XBPSD30P08KSO
XBPSD40P06KSO
L X-B Z 1 0 0 1 ACZ Z
X B P S D 4 0 P 0 6 K O O
X B T S C 4 0 P 0 6 0 0 0
X B T S F 4 0 P 0 8 0 0 0
XCPSD40P12000
PHOG-1001ACZZ
GFTAF1002ACZZ
LHLDW6655RCZZ
QLUGL0006UCZZ
XBPSD30P30KSO
VR S - P T 3 L B3 3 0 J
LHLDW6655RCZZ
PSLDM1003ACZZ
TLABZ1400CCZZ

PRICE
RANK
A Y
A E
A E
AB
A A
AC
A A
AC
BM
A L
AC
AC
A A

**
**
BG
AM
AX
A E
AY
A A
BM
**
AB
A A
A A
AC
A A
A A
A A
A A
AC
A E
AB
AB
A A
AC
AB
AP
A A

NEW
MARK

N
N
N
N
N
N

N
N
N
N

N
N

N

PART
RANK
D
D
D
D
0
C
C
B
D
D
C
C
C
E
E
D
D
C
C
C
C
B
E
C
C
C
C
C
C
C
C
C
D
C
C
C
C
C
C
C

D E S C R I P T I O N
Front Cabinet assembly
Lid for Graphic slot
Badge "SHARP'
Label "POWER 1
Drive No label
Connector 2pm
LED PWB
Photo transistor
Bottom cabinet
Lid for ROM LSI
Rubber spacer
Label for l/O^ort
Screw
Power supply unit for 200V series
Power supply unit for 100V series
Top cabinet
Slot cover
Fixing angle for MFD
Fixing angle for fan
Chassis
Rivet
Fan motor
MFD unit
Rubber foot
Screw
Screw
Screw
Screw
Screw
Screw
Screw
Rubber cushion
Cover
Wire holder
Lug terminal
Screw
Resistor (3 OW 33n ±5%)
Cord holder
Shield for MFD
Label

1

1

I

oe

IE--or

ooss-zw

MZ-3500

[2] PWB & Fixing angles
NO
1
2
3J
4
5
6
7
8
9
11
12
13
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29

31
32
33
34
35

PARTS CODE
JKNBM0004PAZZ
LANGS1006AC2Z
L A N G K 1 0 0 7 A C Z Z
OCNCW1 0 0 8 A C 0 2
Q S W - K 1 0 0 7 ACZ Z
R V R-A 5 4 5 2 QCZ Z
VSP0080P-608N
XBPSD30P06KOO
DUNTK1082ACZZ
DUNTK
083ACZZ
DUNTK
0 6 4 ACZ Z
DUNTK
060ACZZ
GFTAR 003ACZZ
G F T A R 0 0 4 AC Z Z
LHLDZ
001ACZZ
Q C N W — 0 0 3 ACZ Z
QCNW- 0 0 4 A C Z Z
QCNW- 0 4 7 A C Z Z
Q C N W - 0 4 4 ACZ Z
X B B S C 2 6 P 0 4 0 0 0
XBBSC30P06000
XBPSD30P06KSO
XUPSD26P06000
LANGQ1004ACZZ
LANGQ1005ACZZ
PCUSG1001ACZZ
P Z E T Y 1 0 0 1 A C Z Z
QCNCM1002ACZZ
Q C N W — 1 0 0 7 ACZ Z
XBPSD30P10000
XBPSD40P08KSO
XNESD30—24000
PHQG-1002ACZZ
XN E SD3 0-2 4 0 0 0
LHLDF6648RCZZ
PCUSG1001ACZZ

PRICE
RANK

NEW
MARK

PART
RANK

AC

N
N
N

N

C
C
C
C
B
B
C
C
E
E
E
E
D
D
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

N

C
C
C

A F
AB

A
A
A
A
A

F
E
F
N
A

*
*
*
*

*
*
*
*

AD
AC
AD
AK
AM
AM
AM

A
A
A
A

N

N
N
N
N
N
N
N
N

A
A
A
A

AH

A F
A A
A E

N
N
N
N

AQ
AX

N

A A
A A
A A
AC

A A
AB

A A

D E S C R I P T I O N
Knob for V R
Fixing angle for speaker
Fixing angle for speaker
Connector
HALT switch
Variable resistor
Speaker
Screw
CPU PWB unit (Model 3541)
CPU PWB unitiModel 3530)
CPU PWB unit (Model 3540)
MFD I/F PWB unit
Cover for RS232C I/O slot
Cover for I/O slot
Guide for PWB
Connector for light pen
Connector for key board
Connector for CRT-1
Connector for CRT — 2
Screw
Screw
Screw
Screw
Connector "A" angle
Connector "B" angle
Cushion for PWB
Insulator for MFD
Connector
Connector (18pm)
Screw
Screw
Nut
Rubber cushion
Nut
Holder
Rubber cushion for PWB

!

(1-22)--

32

M2-3500

13. Connector
PARTS CODE
NO
11 O C N C P 6 0 4 1 Q C Z Z

T

QCNCP4841QCZZ
3 QCNCW1001ACZZ
4 QCNCM1 0 0 4 A C Z Z
6 QC N W- 1 0 0 7 AC Z Z
9 QCN CWO 2 0 7 HC Z Z
10 Q C N C M 1 0 0 9 A C Z H
11 Q C N C M 1 0 0 9 A C Z i
12 Q C N C M 1 0 0 9 A C Z B
13 Q C N C M 1 0 0 9 A C Z G
14 Q C N C M 1 0 0 9 A C Z E
1&1 Q C N C W 1 0 0 8 AC 0 1
17 QC NCW 1 0 0 8 AC 0 2
18 QC NW— 1 0 4 7 AC Z Z
19 QC NW— 1 0 4 4 AC Z Z
20 Q C N W - 1 0 0 4 A C Z Z
21 Q C N W - 1 0 0 3 ACZ Z
26 L H L D F 6 6 4 8 R C Z Z

PRICE
RANK
AW
AT
AZ
AQ
AX
AK
AC
AC
AA
AC
AB
AC
AF
AM
AM
AM
AK
AB

NEW
MARK

N

N
N
N
N

PART
RANK
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C

D E S C R I P T I O N
Connector
Connector
Connector
Connector
Connector
Connector
Connector
Connector
Connector
Connector
Connector
Connector
Connector
Connector
Connector
Connector
Connector
Holder

for CRT -2
for CRT— 1
for key board
for light pen

18

15

20

21

MZ-3500

[41 Others
NO.

PARTS

CODE

1 RMEMR1004AC07
9
10
13

UBNDA1 0 0 8 C C Z Z
S P A K A 1 0 0 3 A C Z Z
SSAKH3002KCZZ

PRICE
RANK
BA
A A
A Z
AD

NEW
MARK

PRICE
RANK
AH
AB
A K
AZ
A A
AB
AC
AC
AC
A T
AW
A D
AD
A E
A E
AG
A Z
AK
AR
A E
AU
AU
AU
AT
AC
AC
AD
A S
A A
A A
A A
AB
AB
AB
AB
AC
AC
AB
AB
AB
A A
A A
A B
A A
AB
A B
AB
AD
AU
BN
A X
A Z
A E
A E
A E
A E
A E
A E
A H
A K
A L
AM
A K
A L
AM
AR
AP
A F

NEW
MARK
N

N

PART
RANK
D
D
D
D

DESCRIPTION
Master media
AC Cord band
Packing cushion
Plastic bag

CPU PWB
NO.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

PARTS CODE
LANGQ1004ACZZ
LHLDF6648RCZZ
QCNCW0207HCZZ
Q C N C W 1 0 0 1 AC Z Z
QCNCM1 0 0 9 A C Z B
QCNCM1009ACZE
QCNCM1009ACZG
QCNCM1009ACZH
QCNCM1009ACZi
QCNCP484 1QCZZ
QCNCP604 1QCZZ
QSOCZ6414ACZZ
QSOCZ6416ACZZ
Q S C - C Z 6 4 2 4 ACZ Z
QSOCZ6428ACZZ
QSOCZ6440ACZZ
QSW-Z1002SCZZ
QSW-Z2005SCZZ
Q SW-Z 9 6 6 0 K C Z Z
R C - K Z 1 0 1 8 CCZ Z
RCRS-1001ACZZ
RCRS-1002ACZZ
RCRS— 10 0 3 A C Z Z
RCRSP1 003CCZZ
RMPTC4333QCKB
RMPTC4682QCKB
RMPTC8333QCKB
UBATN1001ACZZ
VCCSPU1HL100D
VCCSPU1HL330J
VCCSPU1HL470J
VC E A A A 1 CW 1 0 6 Q
VC E A A A 1 CW 1 0 7M
VCEAAA1CW336M
VCEAAA1EW106M
VCEAAA1EW107M
VCEAAA1EW227M
VC E A A A 1 HW 1 0 5 M
VCEAAA HW335M
VC E A A A HW4 7 5M
VCKYPA HB681K
VCKYPA HB681K
VCKYPU HB221K
V C K Y P U 1 H B 5 6 IK
VCTYPA1NX104M
VCTYPA1NX104M
VCTYPU1EX103M
VHDDS1588L1-1
VH HM472114-1
VH HM6 1 1 6 P 3-1
VH L H 0 0 8 0 A/— 1
VH M 5 8 7 2 5 P - 1 5
VH M74LSOO/-1
VH M 7 4 L S 0 2 / - 1
VH M 7 4 L S 0 3 / - 1
VH M 7 4 L S 0 4 /— 1
VH M 7 4 L S 0 8 /— 1
VH M 7 4 L S 1 0 / - 1
VH M 7 4 L S 1 2 5-1
VH M 7 4 L S 1 3 8 - 1
VH M 7 4 L S 1 3 9 - 1
V H M 7 4 L S 1 4/ — 1
VH M 7 4 1 S 1 5 7— 1
VH M 7 4 L S 1 6 6 - 1
VH
M74LS244-1
VH
M74LS245-1
VH M 7 4 L S 2 7 3 —1
VH M 7 4 L S 3 2/— 1

N
L

N

N

N

PART
RANK
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
B
B
B
C
B
B
B
B
C
C
B
A
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

DESCRIPTION
Connector "A" angle
Holder
Connector
Connector
Connector
Connector
Connector
Connector
Connector
Connector
Connector
1C socket (14pm)
1C socket (16pm)
1C socket (24pm)
1C socket (28pm)
1C socket (40pm)
DipSW
Dip SW
DipSW
Capacitor
X-Tal (3932MHz)
X-Tal (32MHz)
X-Tal (245MHz)
X-Tal (32KHz)
Block resistor (1/8W 33KOX4)
Block resistor (1/8W 68KOX4)
Block resistor (33KQX 8 1/8W ±10%)
Battery
Capacitor (50V 10PF)
Capacitor (50WV 33PF)
Capacitor (50V 47PF)
Capacitor (16WV 10,, F)
Capacitor (16WV lOO^F)
Capacitor (16WV 33WF)
Capacitor (25WV 10j.F)
Capacitor (25WV 100,uF)
Capacitor (25WV 220,/F)
Capacitor (50WV 1 O^F)
Capacitor (50WV 33^F)
Capacitor (50WV 4 7^F)
Capacitor (50WV 680PF)
Capacitor (50WV 680PF)
Capacitor (50WV 220PF)
Capacitor (50WV 560PF)
Capacitor (12WV 0 10,, F)
Capacitor (1 2WV OlO^F)
Capacitor (25WV OOIO^F)
Diode (1S1588L1)
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C

MZ-3500

,5! CPU PWB
NO

PARTS

CODE

69
70
71
72

VH M 7 4 L S 3 6 7 - 1
VH M 7 4 L S 3 7 3 — 1
VH M 7 4 L S 7 4/- 1
VH M 7 4 L S 7 5/— 1

74
75
76
77
78
79
80
81
82
83
84
85
86
87

V H
VH
VH
VH
VH
VH
VH
VH
VH
VH
VH
VH
VH
VH

M 7 4 L S 9 3/1
S N 7 4 0 4 N/- 1
S N 7 4 0 6 N/1
S N 7 4 1 5 7 N - 1
SN75188N-1
S N 7 5 1 8 9 A —1
S P 6 1 0 2 C 0 0 2
SP6102C003
S P 6 1 0 2 R 0 0 1
T A 7 3 1 3 A P —1
T C 4 0 4 9 P/— 1
U P 0 1 9 9 0 A C C
UPD7220D—1
UPD8255/-1

V H 276 4 / / A C
0 1
V H 2 7 6 4/ / A C 0 2
VH
276 4 //AC
03
V H 276 4 / / A C
04
VH
4 1 6 4 —1 5 0 — H
V H 8 2 5 1 A C//—
1
V H 8 2 5 3 ////—
1
V H P G L 3 P R 2//— 1
VRD-ST2EY331J

89
90
91
92
93
94 V R D — S T 2 E Y 4 7 0 J
95 V R D - R V 2 E Y O O O J
% V RD-ST 2 E Y 1 0 1 J
97 V R D - S T 2 E Y 1 0 2 J
98 V R D - S T 2 E Y 1 0 3 J
99 V R D - S T 2 E Y 1 0 4 J
100 V R D - S T 2 E Y 2 2 2 J
101 V R D - S T 2 E Y 3 3 1 J
102 V R D - S T 2 E Y 3 3 2 J
103 V R D - S T 2 E Y 3 3 3 J
104 V R D - S T 2 E Y 5 6 1 J
105 V R D — R V 2 E Y 6 8 2 J
106 V R D - S U 2 E Y 1 5 2 J
107 V R D - S U 2 E Y 4 7 0 J
108 V R D - S U 2 E Y 6 8 1 J
109 V R D - S U 2 E Y 8 2 1 J
110 V R D — S U 2 E Y 8 2 2 J
KC/-1
111 V S 2 S C 4 5 8
112 X B P S D 3 0 P 0 6 K S O
113 X B P S D 3 0 P 0 8 0 0 0

PRICE
RANK
AH
AQ
AG
A E

NEW
MARK

PART
RANK
B
B
B
B

A K
AF

B
B
B
B

AG
AM
AM

L

A P

A L
AN
AT

BS
A Y
LM
LM
LM

LM
A2

A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
B
C
C

BG
BG
BP

Y
A
E
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AD

A A
A A

D E S C R I P T I O N

1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
1C
LSI PROM-IPL
LSI PROM-CG (English)
LSI PROM-CG (Germany)
LSI PROM-CG (French)

1C
1C
1C
Photo transistor GL3PR2
Resistor (1/4W 3300 J)
Resistor (EX 110V.220V onjy) (1/4W 47O ±5%)
Resistor (1/4W ±5%)
Resistor (1/4W lOOO ±5%)
Resistor (1/4W 1KO)
Resistor (1/4W 10KO)
Resistor (1/4W 100KQ ±5%)
Resistor (Japan only) (1/4W 2 2KD ±5%)
Resistor (1/4W 330(1 J)
Resistor (1/4W 33KD ±5%)
Resistor (1/4W 33KO)
Resistor (1/4W 5600 J)
Resistor (1/4W 6 8K(1 ±5%I
Resistor (1/4W 1 5Kfl J)
Resistor (47fi)
Resistor (1/4W 680(1 J)
Resistor (1/4W 8200 ±5%)
Resistor (1/4W 8 2KO ±5%)
Transistor
Screw
Screw

[6] Power supply unit
NO

PARTS CODE

1 O A E 3 0 2 1 6 9 0 4 //
2 O A E 3 0 2 6 3 0 2 5 / /
3 O A E 3 0 2 6 3 0 2 5 / /
4 O A E 3 0 1 0 9 0 6 6 / /
5 O A E 3 0 1 0 9 0 6 6 / /
6 O A E 3 0 2 5 8 7 8 4 / /
7 O A E 3 0 2 2 1 5 1 7 / /
8 O A E 3 0 2 2 1 5 2 0 / /
9 O A E 3 0 2 6 3 0 2 5 / /
10 O A E 3 0 3 6 2 0 5 2 / /
11 O A E 3 0 2 6 3 0 2 5 / /
12 O A E 3 0 2 6 3 0 2 5 / /
13 O A E 3 0 2 6 3 0 2 5 / /
14 J D A E 3 0 1 0 9 0 6 6 / /
15 O A E 3 0 1 0 9 0 6 6 / /
16 O A E 3 0 2 7 9 8 4 4 / /
17 O A E 3 0 1 6 7 3 7 0 / /
18 O A E 3 0 2 2 1 5 4 6 / /
19 O A E 3 0 2 6 3 0 2 5 / /
20 O A E 3 0 2 6 9 4 3 0 / /
21 O A E 3 0 2 6 1 6 5 8 / /
22 O A E 3 0 1 2 1 9 4 7 / /
23 O A E 3 0 4 9 9 8 3 1 / /
24 O A E 3 0 3 6 2 0 8 1 / /

PRICE
RANK
A S
AD
A F
A E
AE
A X
A L
AH
A D
AD
AD
AD
AD
AE
A E
A H
A T
A H
A D
A Y
A D
A F
1_J\D

A D

NEW
MARK
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

PART
RANK
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

D E S C R I P T I O N
1C (UPC78M12H)
Transistor (2SC1815-Y)
Transistor (2SC1815-Y)
Transistor (2SA733-Q)
Transistor (2SA733-Q)
Transistor (2SC2750-L)
Transistor (2SA965-Y)
Transistor (2SC1 627- Y)
Transistor (2SC1815-Y)
Transistor (2SA1015-Y)
Transistor (2SC1815-Y)
Transistor (2SC1815-Y)
Transistor (2SC1815-Y)
Transistor (2SA733-Q)
Transistor (2SA733-Q)
Transistor (2SA1 020- Y)
Transistor (2SC2334-L)
Transistor (2SC2655-Y)
Transistor (2SC1815-Y)
Transistor (SI OSC4M)
Zener diode (H29L-A1)
Diode (1S234-8H)
Zener diode (HZ11L-B1)
Zener diode (HZ7L-C2)

[M001]
[Q001]
[Q002]
[Q003]
[0004]
[Q005]
[Q006]
[0007]
[Q008]
[Q009]
[Q010]
[Q011]
[Q012]
[Q013]
[Q014]
[Q015J
[Q016]
[Q017]
[Q018]
[DU001]
[D001]
[D002]
[D003]
[D004]

MZ-3500

[6j Power supply unit
NO.

25
26
27
28
29
30
31
32
33
34
35
36
37

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

PARTS CODE
OAE30121921XX
O A E 3 0 1 2 1 9 2 1 / /
OAE30379029//
OAE30121921//
O A E 3 0 1 2 1 9 2 1/ /
O A E 3 0 2 0 0 7 7 4 / /
O A E 3 0 2 0 0 7 7 4 / /
OAE30379029XX
O A E 3 0 2 5 0 3 2 6 / /
OAE30121921XX
OAE30159870 / /
OAE30121866//
O A E 3 0 1 6 5 2 6 2 / /
OAE30511353 / /
O A E 3 0 2 7 2 3 9 1/ /
O A E 3 0 5 0 9 7 2 1/ /
O A E 3 0 5 0 9 7 2 1 //
O A E 3 0 5 2 3 3 7 0 / /
O A E 3 0 1 4 3 5 7 2 / /
O A E 3 0 1 4 3 5 7 2XX
O A E 3 0 1 2 0 6 5 0 / /
OAE30169653 / /
OAE30227236 / /
OAE30120524 / /
OAE30129460 //
OAE30129460 //
OAE30129460XX
O A E 3 0 2 8 0 6 7 1XX
OAE30165576 / /
O A E 3 0 1 6 5 5 7 6XX
OAE30169653XX
OAE30169653XX
O A E 3 0 1 2 0 5 2 4 XX
O A E 3 0 1 6 4 4 0 9XX
OAE30120456XX
OAE30 29460 XX
OAE30 2 0 4 5 6 XX
OAE30 70008 XX
OAE30 7 0 0 0 8 XX
OAE30 13525 XX
OAE30 9 5 2 5 8 XX
OAE30 2 0 5 2 4XX
OAE30 2 0 5 2 4 XX
OAE30 6 4 4 0 9 XX
OAE30 16729 XX
OAE30 1672 9XX
V R S—P T 3 A B 1 0 2 J
VR S - P T 3 DB 1 5 2 K
V RD-ST 2 E Y 1 5 2 J
V RD-ST 2 E Y 3 3 3 J
V RD-ST 2 E Y 3 3 3 J
V R D—S T 2 E Y 1 5 2 J
O A E 3 0 4 9 1 1 6 9XX
VRD-ST 2 EY 1 0 0 J
VRD-ST 2 EY 1 0 2 J
O A E 3 0 5 0 8 0 4 9XX
VRD-ST2EY4R7J
O A E 3 0 5 0 1 8 6 8 XX
O A E 3 0 1 4 3 2 8 4XX
VRD-ST 2 EY 3 3 1 J
V R S - P T 3 AB 1 0 0 J
V RD-ST 2 E Y 2 7 2 J
V RD-ST 2 E Y 1 0 2 J
VRD-ST2EY391J
VRD-ST 2 EY 4 7 1 J
VRD-ST 2 EY 3 3 1 J
VRD-ST 2 E Y 1 8 2 J
VRD-ST 2 EY 1 5 2 J
VRD-ST 2 E Y 2 2 2 J
VRD-ST 2 E Y 1 0 2 J
V RD-ST 2 E Y 2 2 2 J
VRD-ST 2 E Y 6 8 1 J
VRD-ST 2 E Y 2 2 0 J
VRD— S T 2 E Y 1 0 2 J
VRD-ST 2 E Y 1 0 2 J
VRD-ST2EY331J
VRD— S T 2 E Y 3 3 1J
O A E 3 0 4 9 0 9 4 0XX
VRD— S T 2 E Y 3 9 0 J
V RD-S ' 2 E Y 1 5 1 J

PRICE NEW
RANK MARK
AC
AC
AD
AC
AC
AG
AG
AD
AG
AC
AY
AN
AH
AP
AP
AG
AG
AP
AC
AC
AG
AC
AD
AC
AC
AC
AC

A E
AG
AG
AD
AD
AC
AC
AC
AC
AC
AG
AG
AG
AG
AC
AC
AC
AK
AK
AC
AB

A
A
A
A
A
A
A

A
A
A
A
E
A
A

AG
AB
AC
AC

A A
AB
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
E
A
A

PART
RANK

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

B
B
B
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

N
N

C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

D E S C R I P T I O N
Diode (1S2076A-FEC)
Diode (1S2076A-FEC)
Zener diode (HZ7L- 62)
Diode (1S2076A-FECJ
Diode (1S2076A-FEC)
Diode I30DF-1)
DiodeI30DF -_1)
Zener diode (HZ7L- 32}
Diode {10DF-_1J
Diode (1S2076A-FEC)
Diode (SI OVBIQ}
Diode QB4B1)
Thyristorip3P05M)
Capacitor (0 22^,F 250V)
Capacitor (O.ljiF 125V)
Capacitor (DE1107E222M250VAC)
Capacitor (DE1107E222M250VAC)
Capacitor (KM50VRSN10000HR)
Capacitor (50F2S102K)
Capacitor (50F2S102K)
Capacitor (50F2S154K)
Capacitor (50ULB10-M)
Capacitor (10ULB220-M)
Capacitor (50F2S223K)
Capacitor (50F2S103K)
Capacitor (50F2S103K)
Capacitor (50F2S103K)
Capacitor £35ULB33-M)
Capacitor (10ULB1000-M)
Capacitor (10ULB1000-M)
Capacitor (50ULB10-M)
Capacitor (50ULB10-M)
Capacitor (50F2S223K)
Capacitor (50F2S332K)
Capacitor (50F2S472K)
Capacitor (50F2S103K)
Capacitor (50F2S472K)
Capacitor (25ULB330-M)
Capacitor (25ULB330-M)
Capacitor (35ULB220-M)
Capacitor (25ULB220-M)
Capacitor (50F2S223K)
Capacitor (50F2S223K)
Capacitor (50F2S332K)
Resistorr (TMIOK(PVB)B 2Kfl)
Resistorr (TMIOK(PVB)B 2KQ)
Resistorr (RSI FB IKOJ)
Resistorr (RS2FB 1.5KOJ)
Resistorr (CR25 1.5KOJJ
Resistorr (CR25 33KOI)
Resistorr (CR25 33KHJ)
Resistorr (CR25 1.5KHJ)
Wire resistor
Resistor (CR25 lOflJ FJ
Resistor (CR25 1KOJ)
Resistor (MDS 05N 5.6fl)
Resistor (CR37 4.7OJ)
Resistor (RS1FB 63OI)
Resistor (MR25 47DG)
Resistor (CR25 330OJ F)
Resistor {RSI FB lOflJ)
Resistor (CR25 2.7KHJ F)
Resistor (CR25 IKflJ F)
Resistor (CR25 390HJ F)
Resistor (CR25 470fU)
Resistor (CR25 330flJ F}
Resistor [CR25 1.8KOJ F)
Resistor (CR25 1.5KOJ F)
Resistor (CR25 2.2KC2J F)
Resistor (CR25 1KOI F)
Resistor (CR25 2.2KfiJ F)
Resistor (CR25 680HJ)
Resistor (CR25 22OI)
Resistor (CR25 1KOJ F)
Resistor (CR25 1KOJ)
Resistor (CR25 330nj)
Resistor (CR25 330OJ)
Wire resistor
ResistoriCR25 39DJ F)
Resistor (CR25 150OJ F)

[D005]
[D006]
[D0071
[D008J
[D'.'09j
[D010]
[D011]
[D012]
[D013]
[0014]
[RC001]
[RC002]
[TH001]
[C001 ]
[C001]
[C0021
[C003]
[C004J
[COOS]
[C006]
[C007]
[COOS]
[C009]
[C011]
[C012]
C013]
C014]
[C015]
[C016]
C017]
.0018]
C019]
[C020]
[C021 .
[C022.
[C023.
[C024.
[C025]
C026.
C027!
:C028!
C029]
[C030]
[C031]
[RV001]
[RV002]
[R001]
.R002]
R003]
[R004]
[R005]
[R006]
[R007]
[R008]
[R009]
[R010]
[R012]
[R013]
[R014]
[R015J
[R016
[R01 7
[R018
[R019]
[R020]
[R021 ]
[R022]
[R023]
[R024]
[R025]
[R026]
[R027]
[R028]
[R029]
[R030]
[R031
[R032]
[R033]
[R034]
[R035]

M2-3500

J9, MZ1K02,1K03,1K04,1K05 (Key unit)

19

19

i <,

MZ-3500

[1Q! MZ1R03 (Graphic board)
NO

PRICE
RANK

PARTS CODE

1 DUNTK1025ACZZ
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

*
A
A
A
A
A

S P A K A 1 0 1 3 A C Z Z
SPAKC1 0 7 8 A C Z Z
X B P S D 4 0 P 0 6 0 0 0
T S E L F 0 0 0 3 P A Z Z
LANGT 1 0 0 8 A C Z Z
Q SOC Z 6 4 1 6 A C Z Z
Q S O C Z 6 4 4 0 A C Z Z
RC-C Z 1 0 0 0 Q C Z Z
RC-SZ200 1HCZZ
VCEAAU1CW107M
VCEAAU1CW336M
VCEAAU1EW107M
VCKYPA1HB33 IK
VCTYPA1NX104M
VHERD5
6E5/-1
VH i M5 K 4 1 1 6 P-2
VHiM74LSOO/-l
V H i M 7 4 L S 1 5 7 —1
V H i M 7 4 L S 1 6 6 —1
V H i M 7 4 L S 2 4 4 —1
VHiM74LS273-l
VHiM74LS367-l
VHiM74LS373-l
V H i S N 7 4 0 4 //- 1
VHiUPD7220D—1
V R D—S T 2 E Y 1 0 1 J
V R D— S T 2 E Y 1 0 3 J
V R D— S T 2 E Y 3 3 1 J
V RD-ST 2 E Y 3 3 2 J
V RD-SU 2 E Y 4 7 0 J
V R S - P T 3 DB 6 8 0 K
VS2SA673-01-1
XBTSD30P04000

*
H
K
A
A
F

NEW
MARK

PART
RANK

N
N
N
N

E
C
C
C
D
C
C
C
C
C
C
C
C
C
C
B
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
C
B
C

N

AD
AG
AB

A F
A B
A B
AB

A A
AB
AC

A
A
A
A

P
E
K
L

AM

A P
A H
AQ

A
B
A
L_A
A
A
A

E
S
A
A
A
A
A

AB
AC

AA

D E S C R I P T I O N
PWB unit
Packing cushion
Packing case
Screw
Sealing label
Angle
1C socket
LSI socket
Capacitor
Capacitor
Capacitor (16V lOOj/F)
Capacitor (16V 33>iF)
Capacitor (25V 100j/F)
Capacitor (50V 330pF)
Capacitor (12V 0 Ijif^
Zener diode
LSI RAM
1C
1C
1C
1C
LC
1C
1C
1C
LSI

Resistor (1/2W lOOfi)
Resistor (1/2W 10KO)
Resistor (1/2W 330O)
Resistor (1/2W 3 3KH)
Resistor (1/2W 47fl)
Resistor (2W 68n)
Transistor (2SA673D)
Screw (30X4)

MZ1R06 (RAM board)
NO.
1
2
3
4
5
6
7
8
9
10
11
12
13

PRICE
RANK

PARTS CODE
LBNDJ0009FCZZ
SPAKA1016ACZZ
SPAKC1082ACZZ
T i N S J 1 0 0 9 A C Z Z
TiNSM1017ACZZ
QSOCZ64 16ACZZ
VCEAAA1CW476M
VCTYPA1NX104M
V H i M 7 4 L S 3 6 7 - l
V H i S N 7 4 1 5 7 /— 1
V H i 4 1 6 4 — 150-H
V RD-R V 2 E Y 1 0 1 J
DUNTK1028ACZZ

NEW
MARK

AC

A F
A H
A E
AG
AD

A B
J

AB

AH
AH

A Z
A A
* *

N
N
N
N

PART
RANK
D
D
D
D
0
C
C
C
B
B
B
C

DESCRIPTION
Clamp band
Packing cushion
Packing case
Instruction book
Instruction book
1C socket
Capacitor (16V 47^F)
Capacitor (12V 0 1//F)
1C
1C

LSI DRAM
Resistor
PWB unit

1

j

14

MZ-3500

Index
PARTS CODE
[C]
C C A B C 1 007ACZZ
[D]
DUNT-1 0 1 8 A C Z Z
DUNT-1 0 3 5 A C Z Z
D U N T K 1 0 2 5ACZZ
D U N T K 1 02 8 A C Z Z
DUNTK 1 060ACZZ
D U N T K 1 064 A C Z Z
D U N T K 1 082ACZZ
D U N T K 1 083 ACZZ
DUNTK1085ACZZ
[G]
G C A B A 1 00 1 ACZZ
G C A B A l 003ACZZ
GCABB1002ACZZ
GCABB1004ACZZ
G C O V H 1 00 1ACZZ
G F T A F 1 001ACZZ
G F T A F 1 002ACZZ
GFTAR1003ACZZ
GFTAR1004ACZZ
GFTAU1005ACZZ
GLEGG1001ACZZ
G L E G P O O 10UCZZ
GLEGP1001CCZZ
GSTN-100 1ACZZ
[H]
HBDG83004GESA

n
[J ]
JKNBM0004PAZZ
[L]
LANGK1007ACZZ
L A N G Q l 004ACZZ
//
LANGQ1005ACZZ
//
LANGS1006ACZZ
L A N G T 1 0 0 1 ACZZ
L A N G T 1 002ACZZ
LANGT1003ACZZ
LANGT1008ACZZ
LANGT1010ACZZ
LBNDJ0009FCZZ
LCHSM1008ACZZ
LHLDF6648RCZZ

II
II
LHLDW6655RCZZ
//
L H L D Z 1 00 1ACZZ
L P L T P 1 0 0 1ACZZ
LPLTP1072CCZZ
LX-BZ1001 ACZZ
LX-LZ6023RCZZ
[N]
N F A N P 1 0 0 1ACZZ
[P]
PCUSG1 00 1 ACZZ

H
H
PCUSU1003ACZZ
PHOG-1 0 0 1 A C Z Z
PHGG-1002ACZZ
PSLDM1 001ACZZ
PSLDM1003ACZZ
P S L D P 1 00 1 ACZZ
P S P A G 1 004ACZZ
P S P A X 1 00 1ACZZ
P Z E T Y 1 00 1ACZZ
//

NO.
1- 1

PRICE NEW PART
RANK MARK RANK

AY

0

CODE

QCNCMl 0 0 9 A C Z E
QCNCMl 0 0 9 A C Z G
//

**
**
**
**
**
**
**
**

11101122229-

17
17
1
13
11
9
9
9
8

if *

91911112219199-

16
9
3
18
19
2
35
12
13
10
18
26
19
17

AS
BM
AR
BG
AM
AE
AE
AD
AC
AL
AA
AB
AB
AE

19-

3
1

22252829911011112351129911-

N
N

E
E
E

QCNCMl 0 0 9 A C Z H
//
//

QCNCM1009ACZ i

N

E
E
E
E
E

it

QCNCMl 0 0 9 A C Z J
QCNCP484 1QCZZ
//

QCNCP604 1QCZZ
it

N
N
N
N
N
N

QCNCW0207HCZZ

N

D
D
D
D
D
D
D
D
D
D
C
C
C
D

AE
AE

N

D
D

QCNW-1007ACZZ

1

AC

N

C

//
//

3
24
1
25
1
2
10
15
20
6
21
1
22
34
26
2
36
40
15
5
4
29
23

AB
AH
AH
AF
AF
AF
AG
AC
AX
AF
AE
AC
AY
AB
AB
AB
AB
AB
AD
AC
AD
AC
AA

N
N
N
N
N
N

C
C
C
C
C
C
C
C
C
C
C
D
C
C
C
C
C
C
C
D
D
C
C

1- 24

BM

N

B

2289129191928-

26
35
2
100
34
32
11
41
23
11
7
27
3

AA
AA
AA
AA
AC
AC
AN
AP
AB
AC
AB
AE
AE

N
N
N

C
C
C
C
C
C
C
C
C
C
C
C
C

2- 28
8- 4
3- 4
8- 5
3- 12
5- 5
3- 14

AQ
AQ
AQ
AQ
AA
AA
AB

N
N
N
N

//

QCNCW1 00 1 A C Z Z
ii

QCNCW1 0 0 6 A C Z Z
QCNCW1 0 0 7 A C Z Z
QCNCW1 0 0 8 A C O 1
//

QCNCW1 0 0 8 A C O 2
ii

QCNW-1 0 0 1 A C Z Z
QCNW-1002ACZZ
QCNW-1 0 0 3 A C Z Z
//

QCNW-1004ACZZ
II

QCNW-1 0 4 4 A C Z Z

N
N

N
N

//

QCNW-1 04 7 A C Z Z
//

QLUGL0006UCZZ
QP I N - 2 0 0 5 S C Z Z
QPWBF 1 0 0 5 A C Z Z
QSOCZ64 14ACZZ
QSOCZ64 16ACZZ
;/
//

QSOCZ6424ACZZ
QSOCZ6428ACZZ
QSOCZ6440ACZZ
//
//
//

QSW-K 1 0 02 A C Z Z
QSW-K 1 0 0 3 A C Z Z
QSW-K1 0 0 4 A C Z Z
QSW-K 1 0 0 5 A C Z Z
QSW-K 1 0 0 7 A C Z Z
QSW-S1006ACZZ
QSW-Z1002SCZZ
QSW-Z2005SCZZ
QSW-Z9660KCZZ

PRICE NEW
RANK MARK

NO.

AB
AC
AC
AC
5F* A C
9- 101
AC
3- 11
AC
59
AC
9- 102
AC
AT
32
AT
5- 10
AW
31
AW
5- 11
AK
39
AK
53
AZ
33
AZ
54
AD
9- 103
9- 104
AE
16
AC
3- 16
AC
AF
24
AF
3- 17
BB
9- 13
9- 14
AP
AK
2- 16
AK
3- 21
AM
2- 17
AM
3- 20
AX
2- 29
AX
36
AX
86
AM
2- 19
AM
3- 19
AM
2- 18
AM
3- 18
AB
IT 37
AA
87
AA
17
AD
5- 12
AD
5- 13
107
AD
AD
116
5- 14
AE
5- 15
AE
5- 16
AG
AG
88
AG
9- 105
108
AG
BU
9- 43
BU
9- 43
BU
9- 43
BU
9- 43
AE
25
AF
99
AZ
5- 17
AK
5- 18
AR
5- 19
5353-

PART
RANK

C
C
C
C

6
13
7
10

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
B
N
N
N
N
N
N
N
N
N
N
N

N

N
N
N
N
N

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
E
E
E
E
B
B
B
B
B

[R]

N
N

N
N

[Q]
Q C N C M l 0 0 2 ACZZ
//
Q C N C M l 0 04 A C Z Z
//
QCNCMl 009ACZB
//
QCNCMl009ACZE

PARTS

C
C
C
C
C
C
C

RC-CZ 1 O O O Q C Z Z
u
H

RC-KZ1 0 1 8 C C Z Z
R C - S Z 2 0 0 1HCZZ
R C R S - 1 00 1A C Z Z
RCRS-1 0 0 2 A C Z Z
RCRS-1 0 0 3 A C Z Z
RCRS-1 0 0 4 A C Z Z
RCRSP1003CCZZ
RMEMR 1 0 0 2 A C Z Z
R M E M R 1 0 04 ACO 7
RMPTC4 3 3 1QCKB
RMPTC4 3 3 3QCKB
RMPTC468 2QCKB
RMPTC8333QCKB
RMPTC8333QCK J
RVR-A54 52QCZZ
RVR-MC3 2 1QCZZ

89
9- 106
109
5- 20
10- 10
5- 21
5- 22
5- 23
9- 107
5- 24
1- 25
41
8- 10
5- 25
5- 26
5- 27
9- 108
26
8- 11

AB
AB
AB
AE
AF
AU
AU
AU
AG
AT
* *
B A

N
N
N

N

AB
AC
AC
AD
AD
A F

AH

C
C
C
C
C
B
B
B
B
B
E
D
B
C
C
B
C
B
C

IS]
SPAKA 10 0 3ACZZ

4-

10

A Z

N

D

MZ-3500

NO

PARTS CODE

S P A K A 0 04 A C Z Z
9- 109
S P A K A 0 09 A C Z Z
9- 110
S P A K A 0 1 3 ACZZ
10 2
S P A K A 0 1 6 A C Z Z 1 11- 2
SPAKA 045ACZZ
9- 111
S P A K A 1 27 A C Z Z
9 112
9 113
SPAKC 0 33ACZZ
9- 113
SPAKC1035ACZZ
9- 113
S P A K C 1 03 7ACZZ
S P A K C 1 0 3 9ACZZ
9- 113
10- 3
S P A K C 1 07 8 A C Z Z
11- 3
SPAKC1 082ACZZ
9- 114
S P A K F 1 1 0 4 ACZZ
SSAKH3002KCZZ
4- 13
IT]
T i N S J 1009ACZZ
11- 4
T iN S M 1 0 1 7ACZZ
11
5
T L A B J 1 769CCZZ
9- 115
TLABZ1002ACZZ
9- 2
T L A B Z 1 003 A C Z Z
1- 4
TLABZ1008ACZZ
1- 5
T L A B Z 1 0 1 7ACZZ
1- 12
T L A B Z 1400CCZZ
1- 41
TSELF0003PAZZ
10- 5
TSPC-1010ACZZ
9- 20
9- 20
TSPC-1 0 1 1 A C Z Z
TSPC-1 0 1 2 A C Z Z
9- 20
TSPC-1 0 1 3 A C Z Z
9- 20

tin
U B A T N l 001ACZZ

5- 28
4- 9

U B N D A 1 008CCZZ
[V]
V C C C P U 1 H H 2 0 1J
VCCCPU1HH680 J
VCCSPU1HL1 ODD
//
V C C S P U 1 H L 3 3 0J
//
V C C S P U 1 H L 4 7 0J
//
H
VCEAAA1CW106Q
V C E A A A 1 C W 1 07M
II
VCEAAA1CW336M
VCEAAA1CW476M
VCEAAA1EW106M
V C E A A A 1 E W 1 07M
VCEAAA1EW227M
V C E A A A 1 H W 1 0 5M
V C E A A A 1 H W 2 25M
VCEAAA1HW335M
VCEAAA1HW475M
V C E A A U 1 C W 1 07M
VCEAAU1CW336M
//
VCEAAU1CW475M
V C E A A U 1 E W 1 07M
V C K Y P A 1 H B 3 3 IK
V C K Y P A 1 H B 6 8 IK
H

VCKYPU1HB1 02K
//
V C K Y P U 1 H B 2 2 IK
VCKYPU1HB56 1K
V C S A T U 1 VE 1 04M
V C T Y P A 1 N X 1 04M

V C T Y P U 1 EX 1 0 3M
//
//
V H D D S 1 5 8 8 11-1
//
//
V H E R D 5 6E5/-1
VH i DB 7 4 9 H A C O 5

1

1

PRICE NEW PART
RANK MARK RANK
D
AG
AB
D
AH
N
C
N
AF
D
AP
N
D
AD
N
D
AP
N
D
AP
N
D
AP
N
D
AP
N
D
AK
N
C
AH
N
D
AD
D
AD
D

PARTS CODE
VH i H M 4 7 2 1 1 4 - 1

55-

49
50

510-

51
17

5510-

52
53
18

585558585855558108851088510585810858510115105-

54
25
55
56
57
26
58
27
59
28
60
61
62
63
29
19
30
31
64
20
32
33
65
21
66
34
67
35
22
36
68
37
69
23
9
70
24
71

//
8VH i M 7 4 L S 7 5 / — 1
5VH I M 7 4 L S 8 6 / — 1
55VH.M74LS93/-1
VH . M 7 4 3 8 / / / - 1 _^ 88VH .NE555///-1
VH i S N 7 4 04//-1
10VH i S N 7 4 04N/-1
5//
8VH i S N 7 4 0 6 N / - 1
5V H I S N 7 4 1 4 N/— 1
8VH i S N 7 4 1 57/-1
11VH i S N 7 4 1 5 7 N - 1
5VH I S N 7 5 188N-1
5VH I S N 7 5 1 8 9 A - 1
5VHi SP61 02C002
5VH i S P 6 1 0 2 C 0 0 3
5VH i SP6 1 0 2 R O O 1
5VH i T A 7 3 13AP-1
5VH I T C 4 0 4 9 P / - 1
5//
9V H i T C 4 5 14P/-1
9VH i T L 4 5 5 8 / / - 1
8VHiUPDl 990ACC
5VH.UPD7220D-1
5//
108VH i U P D 7 6 5//-1
VH i U P D 8 2 5 5 / - 1
5VH i 2 7 6 4 / / A C 0 1
5VH i 2 7 6 4 / / A C 0 2
5n
9VH i 27 6 4 / / A C 0 3
5;/
9VH i 2 7 6 4 / / A C 0 4
5//
9-

38
72
73
74
39
40
25
75
41
76
42
10
77
78
79
80
81
82
83
84
122
123

VH i HM6 1 1 6 P 3 - 1
VHi L H 0 0 8 0 A/- 1
VH I M 5 K 4 1 1 6 P - 2
VH i M 5 8 7 2 5 P - 1 5
V H i M 7 4 L S O 0/-1

//
VHiM74LSO

2/-1

//
VH iM7 4 L S 0 3 / - 1
V HI M 7 4 L S 0 4 / - 1
VH . M 7 4 L S 0 8 / - 1

//
VH I M 7 4 L S 1

0/-1

//

AE
AG
AA
AA
AB
A A

AC
AA
AA
AC
AC
AC
AC
AS
AA

8- 12 A B
8- 13 A B
5- 29 A A
9- 116 A A
5- 30 A A
8- 14 A A
5- 31 A A
8- 15 A A
9- 117 A A
5- 32 A B
5- 33 A B
8- 16 A B
5- 34 A B
11- 7 A B
5- 35 A B
5- 36 A C
5- 37 A C
5- 38 A B
8- 17 A B
5- 39 A B
5- 40 A B
10- 11 A B
9- 118 A B
10- 12 A B
9- 119 A B
10- 13 A B
10- 14 A A
5- 41 A A
5- 42 A A
8- 18 A A
8- 19 A A
5- 43 A B
5- 44 A A
8- 20 A C
5- 45 A B
5- 46 A B
8- 21 A B
8- 22 A B
10- 15 A B
11
8 AB
5- 47 A B
8- 23 A B
9- 120I AB
5- 48 I A D
8 24 A B
9 121 . A D
10 16 A C
9 125 B R

N

N
N

N
N

N
N
N
N
N

D
D
D
D
D
D
C
C
D
D
D
D
D

VH I M 7 4 L S 125-1
VH I M 7 4 L S 1 2 6 - 1
VH I M 7 4 L S 1 3 8 - 1
VH I M 7 4 L S 1 3 9 - 1
V H I M 7 4 L S 1 4/-1
V H i M 7 4 L S l 57-1

//
//
VHiM74LS161-l
V H i M 7 4 L S l 63-1
VH I M 7 4 L S 1 66-1

//
VH . M 7 4 L S 2 1 / - 1
VH I M 7 4 L S 2 2 1 - 1
VHiM74LS244-l

A
D

//
VH I M 7 4 L S 2 4 5 - 1
VHiM74LS27/-l
VH iM74L S 2 7 3 - 1

C
C
C
C
C
C
C
C
C

//
//
VH I M 7 4 L S 2 9 3 - 1
VH I M 7 4 L S 3 2 / - 1

//
VHiM74LS367-l

//
//

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

VH I M 7 4 L S 3 7 3 - 1

II
VHiM74LS74/-l

C

N

C
C
C
C
C
C
C
C
C
C
C
C
C
B
B
B
B
B
Ih-

PRICE NEW
RANK MARK

NO

43
85
86
26
44
87
88
88
124
88
124
88
124

PART
RANK

AU
BN
AX
AP
AZ
AE
AE
AE
AE
AE
AE
AE
AE
AE
AE
AH
AH
AK
AL
AM
AK
AK
AK
AH
AH
AL

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

A L

AD
AH
AM
AM
AR
AF
AP
AP
AP
AG
AF
AF
AH
AH
AH
AQ
AQ
AG
AG
AE
AF
AK
AE
AG
A E

AF
AF
AG
AM
AH
AM
AM
AP
BG
BG
BP
AL
AN
AN
AW
A F

AT
BS
BS
BR
AY
LM
LM
BM
LM
BM
LM
BM

N
N
N

I

B

MZ-3500

PARTS

CODE

VH i 4 1 6 4 - 1 5 0 - H
//

VH i 825 1 AC//-1
VH i 8253////-1
VHPGL3PR2//-1
VHPGL9PR2//-1
//

VRO-RV2EYOO 0J
VRD-RV2EY 1 0 1J
VRD-RV2EY682 J
V R O - S T 2 E Y 100 J
H

VRD-ST2EY 1 0 1J
//
//
//

V R D - S T 2 E Y 1 02 J
//
//
//
//
//

V R D - S T 2 E Y 1 03 J
//
//

V R O - S T 2 E Y 1 04 J
//

V R O - S T 2 E Y 1 51 J
VRD-ST2EY152 J
//
II

V R D - S T 2 E Y 1 82 J
VRD-ST2EY220 J
//

VRD-ST2EY222 J
//
ii
H

V R O - S T 2 E Y 2 72 J
V R D - S T 2 E Y 3 3 1J
//
//
//
//
//
//
//
//

VRD— S T 2 E Y 3 3 2 J
H
ii
ti

VRD-ST2EY333 J
//
//
//

VRD-ST2EY390J
//

VRD-ST2EY391 J
VRD-ST2EY392 J
VRD-ST2EY4R7 j
V R D - S T 2 E Y 4 70 J
V R D - S T 2 E Y 4 7 1J
n

VRD-ST2EY472J
//

V R D - S T 2 E Y 5 6 1J
V R D - S T 2 E Y 6 8 1J
ii
II
H

V R D - S U 2 E Y 10 1J
V R D - S U 2 E Y 1 52 J
VRD-SU2EY39 1j
VRD-SU2EY470 J
//

V R D - S U 2 E Y 6 8 1J
VRD-SU2EY8 2 1J
VRD-SU2EY8 2 2 J
//

NO
5- 89
11- 11
5- 90
5- 91
5- 92
1- 8
9- 6
5- 95
11- 12
5- 105
6- 77
6- 105
5- %
8- 45
9- 126
10- 27
5- 97
6- 78
6- 86
6- 93
6- 97
6- 98
5- 98
9- 127
10- 28
5- 99
9- 128
6- 103
6- 72
6- 75
6- 91
6- 90
6- %
6- 114
5- 100
6- 92
6- 94
9- 129
6- 85
5- 93
5- 101
6- 83
6- 89
6- 99
6- 100
6- 106
8- 46
10- 29
5- 102
8- 47
9- 130
10- 30
5- 103
6- 73
6- 74
9- 131
6- 102
6- 113
6- 87
6- 115
6- 80
5- 94
6- 88
9- 132
6- 107
8- 48
5- 104
6- 95
6- 109
6- 110
9- 133
8- 49
5- 106
8- 50
5- 107
10- 31
5- 108
5- 109
5- 110
8- 51

PRICE NEW
RANK MARK

AZ
A2
AY
BA
ft
AC
A C '
A A
A A
A A

AA
A A
A
A
A
A

A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

AA
AA
A A

N
N

N
N
N
N
N

N
N
N
N
N
N
N
N
N

AA
A A

N

AA
AA
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

N
N
N
N
N

N
N

AB

N
N
N
N
N

A A
A A

N

AA
AA
AA
AA
A A
A A
A
A
A
A

A
A
A
A

A
A
A
A
A
A
A

A
A
A
A
A
A
A

N

N
N
N

PART
RANK

PARTS CODE

B
B
B
B
B
B
B
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

V R D - S U 2 E Y8 24 J
V R N - R T 2 EK 1 0 2 F
V R N - R T 2 E K 1 05F
V R N - R T 2 EK 1 2 3F
VRN-RT 2 EK2 2 2F
V R N - R T 2 E K 4 7 2F
V R N - R T 2 E K 9 1 2F
V R S - P T 3 A B 1 00 J
//
V R S - P T 3 A B 1 02 J
V R S - P T 3 D B 1 02 J
VRS-PT3DB1 52K
VRS-PT3DB680K
VRS-PT3LB330 J
VSP0080P-608N
VS2SA673-C/-1
VS2SA673-D1-1
VS2SC4 58KC/-1
[X]
XBBSC26P04000
XBBSC30P06000
XBPSD30P06KSO
//
//
XBPSD3 OPO 6 K O O
//
XBPSD30P08KSO
XBPSD30P08000
XBPSD30P1 0000
II
XBPSD30P30KSO
XBPSD40P06KSO
XBPSD40P06KOO
XBPSD40P06000
XBPSD4 O P 0 8 K S O
XBPSF3 O P 0 6 K O O
XBTSC4 OP06000
XBTSD30P04000
XBTSF40P08000
XCPSD40P12000
XNESD30-24000
n
II
XUPSC26P06000
XUPSC30P08000
XUPSD26P06000
[0 1
O A E 1 0447 1 OO//
O A E 1 0 4 4 7 1 13//
O A E 1 0 4 8 0 3 87//
O A E 1 0 5 0 0 6 23//
O A E 1 0 5 0 4 9 1 7//
O A E 1 0504933//
O A E 1 0507778//
OAE1050778 I//
OAE 105 1 84 8 2//
O A E 10526940//
O A E 1 052 798 I//
OAE 1 053 1087//
OAE 1 0538909//
OAE 1 05389 1 2//
O A E 1 0 5 4 3 4 8 6//
O A E 2 0 4 9 0 4 4 5//
O A E 2 0 5 10574//
O A E 2 0 5 1 2336/X
O A E 2 0 5 2 1 194//
OAE20527978//
OAE22830579//
OAE 2 2 83 1688//
OAE 2 3 594 924//
O A E 3 0 1 0 9 0 6 6//
n
II
n
OAE 30 1 1 67 29//
u
O A E 3 0 1 2 0 4 56//
//
OAE 30 1 20524//
//

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

[_
1

c
17

NO
B68
86886666610128105-

52
111
53
54
112
55
56
84
108
70
104
71
32
39
7
57
33
111

22259291528111-

20
21
22
112
12
8
134
27
113
30
58
38
28
30

102111011228992-

4
30
16
31
34
32
33
31
33
59
21
22
23

PRICE NEW PART
RANK MARK ANK
AA
C
AB
N
C
AA
C
AB
C
AB
N
C
AB
C
AC
C
AB
N
C
AB
N
C
AC
N
C
AB
N
C
AB
N
C
AB
C
AC
C
AN
C
B
AE
B
AC
AD
B

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

6- 125 A F
6- 126 A D
6- 127 A F
6- 129 A M
6- 138 A R
6- 139 AW
6- 130 BQ
6- 131 AQ
6- 128 A V
6- 133 BM
6- 132 A X
6- 140 A Q
6- 147 AW
6- 148 AW
6- 134 A Y
6- 142 A C
6- 137 AC
6- 145 A M
6- 141 A A
6- 144 A G
6- 136 A C
6- 143 A R
6- 146 A C
6- 4 A E
6- 5 A E
6- 14 A E
6- 15 A E
6- 68 A K
6- 69 A K
6- 58 A C
6- 60 AC
6- 47 A C
6- 56 A C

N

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
B
B
B
B
C
C

c
c
c
c

MZ-3500

PARTS CODE
O A E 3 0 1 20524//
//
O A E 3 0 1 206 5 O//
O A E 3 0 1 2 1 8 6 6//
OAE30121921//
//
//
//
//
O A E 3 0 1 2 1 9 4 7//
O A E 3 0 1 29460//
//
//
//
O A E 3 0 143284//
O A E 3 0 1 4 3 5 7 2//
//
O A E 3 0 1 59870//
O A E 3 0 164409//
//
O A E 3 0 1 6526 2//
O A E 3 0 1 6 5 5 7 6//
//
O A E 3 0 1 67370//
O A E 3 0 1 69653/7
//
;/

O A E 3 0 1 7 0008//
//
O A E 3 0 1 95258/7
OAE30200774//
//
O A E 3 0 2 13525//
O A E 3 0 2 1 69 0 4//
O A E 3 0 2 2 1 5 1 7//
OAE30221520//
O A E 3 02 2 1 546//
OAE30227236//
OAE30250326//
OAE30258784//
O A E 3 0 2 6 1 658//
O A E 3 0 2 6 3 0 2 5//
//
//
//
//
//
//
O A E 3 0 2 6 9 4 3 O//
OAE30272391//
OAE30279844//
O A E 3 0 2 8 0 6 7 I//
OAE30362052//
OAE30362081//
OAE30379029//
//
OAE30490940//
O A E 3 049 1 1 69//
O A E 3 0 4 9 9 8 3 I//
OAE30500979//
OAE30500982//
O A E 3 0 5 0 1868//
O A E 3 0 5 0 8 0 4 9//
OAE30508528//
O A E 3 0 5 0 8 5 3 I//
OAE30508557//
O A E 3 0 5 0 8 5 6 O//
//
OAE30509721//
//
OAE30509941//
O A E 3 0 5 1 1 3 53//
O A E 3 0 5 1 54 6 9//
O A E 3 0 5 2 3 3 7 O//
O A E 3 0 5 6 4 740//
OAE30566353//
O O P A 7 K F 0 9 5C//
O O P A 7 K F 1 0 2B//
0 O P A 7 K F 1 03B//
O O P A 7 K F 1 0 4 B//

NO
6666666666666666666666666666666666666666666666666666666666666666666666666666
9999

65
66
44
36
25
26
28
29
34
22
48
49
50
59
82
42
43
35
57
67
37
52
53
17
45
54
55
61
62
64
30
31
63
1
7
8
18
46
33
6
21
2
3
9
11
12
13
19
20
38
16
51
10
24
27
32
101
76
23
116
117
81
79
118
118
120
121
123
39
40
116
38
119
41
124
122
51
51
51
51

PRICE NEW PART
RANK MARK RANK
N
AC
C
N
AC
C
N
AG
C
AN
N
B
N
AC
B
N
AC
B
N
AC
B
N
B
AC
N
AC
B
AF
N
B
N
AC
C
N
AC
C
N
AC
C
N
AC
C
N
AC
C
N
AC
C
N
AC
C
AY
N
B
N
AC
C
N
AC
C
AH
N
B
N
AG
C
N
AG
C
AT
N
B
N
AC
C
N
AD
C
AD
N
C
N
AG
C
N
AG
C
N
AG
C
N
AG
B
N
AG
B
N
AG
C
N
AS
B
AL
N
B
AH
N
B
AH
N
B
AD
N
C
AG
N
B
AX
N
B
AD
N
B
N
AD
B
N
AF
B
AD
N
B
AD
N
B
N
AD
B
N
AD
B
AD
N
B
AY
N
B
AP
N
C
AH
N
B
AE
N
C
AD
N
B
N
AD
B
N
AD
B
N
AD
B
AE
N
AE
C
AD
N
B
AH
N
A
AW
N
B
N
AC
C
N
AG
C
BP
N
B
BY
N
B
N
AX
C
N
AL
C
AX
N
C
N
AG
C
N
AG
C
AG
N
A
AP
N
C
AR
N
B
AP
N
C
AP
N
C
AX
N
C
BX
N
C
BX
N
C
BX
N
C
BX
N
C

PARTS CODE
O O P A 8 K F 1 1 5 A//
OOPCH52203 A//
OOPKCC 1 0 9 0 1-Z
OOPKFL10901-Z
O O P K F L 1 190 1-Z
OOP08KF018 B//
OOP16KF005 A//
0 0 P 1 9 K F 0 0 5 A//
0 0 P 1 9 K F 0 0 7 A//
OOP21KF008 A//
OOP21KF009 A//
0 0 P 2 1 K F 0 1 3 A//
0 0 P 2 1 K F 0 1 4 A//
OOP23KF001 A//
OOP23KF011 B//
OOP23KF014 A//
OOP25KF006 B//
OOP25KF007 A//
OOP25KF008 A//
0 0 P 2 7 K F 0 2 1 A//
OOP29KF006 B//
O O P 2 9 K F 0 0 7 B//
OOP80D9E43000
OOP85Y2K56000
OOP85Y2K60000

- 18-

PRICE NEW PART
RANK MARK RANK
AT
N
9- 50
C
N
9- 39
AC
C
N
B
9- 27
AG
N
B
9- 25
AG
AH
N
9- 26
B
AN
N
9- 28
C
N
9- 37
AC
C
N
9- 35
AC
C
N
9- 36
AC
C
N
9- 31 A D
C
AF
N
9- 33
C
AD
N
9- 32
C
N
9- 34
AC
C
N
9- 46
AC
C
N
AL
9- 29
C
9- 47
N
AC
C
AM
N
9- 30
C
N
9- 48
AC
C
N
9- 49
AC
C
N
B
9- 38
AC
AK
N
9- 44
C
AH
N
9- 45
C
N
9- 42
AQ
C
9- 40
AH
N
C
9- 41 A H
N
C

NO

SHARP CORPORATION
Industrial Instruments Group
Reliability & Quality Control Department
Yamatokoriyama, Nara 639-11, Japan
1983 January Printed in Japan s



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.2
Linearized                      : No
Author                          : 
Creator                         : ABBYY FineReader
Producer                        : 
Title                           : 
Subject                         : 
Create Date                     : 2002:05:26 13:50:23
Modify Date                     : 2002:05:26 13:50:23
Page Count                      : 116
EXIF Metadata provided by EXIF.tools

Navigation menu