Sharp Mz 3500 Users Manual
MZ-3500 to the manual 30945b32-ab8c-422f-a17d-e85d340b9cd3
2015-01-23
: Sharp Sharp-Mz-3500-Users-Manual-285119 sharp-mz-3500-users-manual-285119 sharp pdf
Open the PDF directly: View PDF .
Page Count: 116
Download | |
Open PDF In Browser | View PDF |
MZ-3500 SERVICE MANUAL CODE: OOZMZ 3500SM/E PERSONAL COMPUTER MODEL Z-350 CONTENTS 1. Specifications 2. Software (Memory) Configuration 3. CPU and memory 4. CRT display 5. MFD interface 6. R232C interface 7. Printer interface 8. Other interface 9. Power circuit description 10. Keyboard controller circuit discription 11. Self check functions 12. IPL flow chart 13. Circuit diagram & P.W.B Parts list & Guide SHARP CORPORATION 1 7 12 25 52 72 yg 81 gy 90 94 103 M 7 3500 1. SPECIFICATIONS 1-1. Specification of the main unit (Model 35XX) Outline 1) 2) 3) 4) High speed processing using multi-CPL' Built in mini floppy disk Built in printer interface and RS232C Aerial interface Connection of up to two video displa, mitt (separate graphic display or overlaid display possible on two individual color monitor units) 5) Permits the use of standard CP/M Model 3530 incluse a single double-side, double density mini floppy disk and 64 KB RAM. Model MZ3540 has two double-side, density mini floppy disks and 64 KB RAM. CPU Multi-CPU processing MEMORY Z80A microprocessor x 2 8K Byte ROM IPL ROM RAM C, G 8K Byte ROM For main CPU 64K Bit DRAM x 16 chips or 8 chips For sub-CPU 16K Bit SRAM x 4 chips Shared RAM 16K Bit SRAM x VIDEO RAM 16K B't SRAM x 1 chip 4K Bit SRAM x 2 chips Memory mapper LSI Model 3531 includes a single double side, double density mini floppy disk and 128 KB Model 3541 has two double side, double density mini floppy disks, and 128 KB TH 1 chip SP6102R001 Custom LSI Screen controller CSP-1 SP6102C002 CSP 2 SP6102C003 GDC CRT controller MPD7220 FDC Floppy disk controller pPD765 PIO Parallel I/O port 8255 SIO Serial I/O port 8251 TIMER Counter 8253 CLOCK Clock /iPD1990AC Screen structure 80 characters x 25 lines. 80 x 20, 40 x 25. or 40 x 20 Elements Attribute 8 x 16,8x8 Reverse, blink, line (horizontal, vertical) Colors 8 colors on each character and background color I/F 2 channels (applicable CRT 640 x 400, 640 x 200, B/W or color) MZ353X One double-side, double density floppy disk 256 bytes/sector, 16 sectors/track, 80 tracks/disk MZ354X Two double-side, double density floppy disks Built-in interface for optional MFD I/O DISPLAY MFD Light pen Other I/F Other functions Keyboard Dedicated keyboard Printer Centronics interface RS232C No protocol, asynchronus mode, 110 to 9600 bps, half-duplex Speaker (500mW) Battery backup clock BASIC HALT SW Speaker volume control High class compatible with PC3200 BASIC, supplemented and graphic control commands Expanded RS232C, GPIB, and GPIO FDOS Software Utilities CP/M Accessories Basic CP/M Expanded CP/M Intstruction Manual master floppy disk power cord BACKUP, INIT, COPY, DEBUG, KILLALL MZ3500 1-2. MZ-1K01 (Keyboard) specification Outline MZ1K02 U.S. keyboard (ASCII) MZ1K04 German keyboard MZ1K03: U.K. keyboard (ISO). MZ1K05: French keyboard Keyboard controller 80C49 or 8749 CMOSIC 4049x2,4514 LSI, 1C Sculpture key Keys (98) Mechanical contact key, with life of 10,000,000 operations. Alphanumeric keys Mode switch Interfacing cables Ten key 61 15 Function keys 6 Definable keys 1 For data transfer with the CPU (serial) and power supply (transmission under 15,000 baud) Use of coiled cable with 8-pin DIN plug Specification Repeat function Automatic repeat occurs 0.64 seconds after . . . . . continuous depression of the same key. Indicators (4 LED's) POWER, Alphanumeric keys Other Molded Cabinet Color 2 Two-key rollover Office gray Size (W x H x U 467 x 35 x 190 Weight | About 1 .5kg (3.3 Ib) Keyboard layout Refer to the page TIN "CIRCUIT DIAGRAM" 1-3. MZ-1U02 Outline Expansion unit for the MZ-3500 series CPU, which can be attached to the rear side of the main unit. Optional boards are plugged in to the expansion box. The expansion box will accomodate up to four option boards. Number of slots: 4 slots Slot connector. 60-pin edge connector x 4 Specifications Area of the slot inserting option board: 140.5 x 140 Slot for option and slot number Slot 1 MZ-1R06 (expansion RAM) Slot2 o Slot 3 O o SFDI/F Slot 4 O Expansion RS232C o o O 0 GPIO o o o o GPIB (IEEE I/F) o 0 o o -2- 10 MZ3500 Expansion unit Screw (1) 1-4. MZ-IR03 Outline Optional board used graphic display functions with the Model-3500 series CPU. It includes 32KB of RAM. It is inserted through the slot on the front panel of the PU. The MZ-1U02 expansion box is not required. GDC LSI Graphic controller vinrn HAM Specifications ~~~~~ Graphic functions (Color must be specified for each dot. when the color video unit is in use) MPD7220 Basic (buit-in) 16KDRAM x 16 (32KB) Expansion (optional) 16KORAM x 32 (64KB) —_ _ _ _ W D E O RAM 640 x 200 green monitor 640 x 200 color monitor 32KB (basic) 96KB (maximum expansion) 640 x 200 dots Two screens 640 x 200 dots Six screens 640 x 200 dots Two screens _____ 640 x 400 green monitor 640 x 400 dots One screen 640 x 400 color monitor ^______- BASIC graphic control statements Software -3- — 640 x 400 dots Three screens ~" 640 x 400 dots One screen SDISP Screen designation for two video units. ODISP Designation of output screen. CHANGE DISP Mode designation GCOLOR Graphic pattern designation CLS Cleared by the color specified. PSET Dot set PRESET Dot reset LINE Line creation GTABLE Table creation CIRCLE Circle creation PAINT Paint over GINPUT Input of graphic pattern GDISP Display of graphic pattern GPRINT Output of graphic pattern on printer GREAD Read of coordinates CENTER Input of pattern within the specified area GCURSOR Graphic cursor position designation GSCROL Graphic screen scrolling SYMBOL Graphic symbol displaying SCALE Scren scle-down designation MZ3500 1-6. MZ-1R06 Outline Optional board for memory expantion of the MZ-3500 sries CPU. with this option the main memory (RAM) can be expanded up to a maximum of 256 KB. This option plug into the expantion box in slot 1 or 3. LSI Specifications Basic 64KDRAM x8 (64KBI Expansion 64KDRAM x8 (128KB) Memory and user area Main CPU only Use of MZ-1R06 Using eight 64K RAM's on theMZ-1R06 Total capacity of the main CPU RAM SYSTEM AREA BASIC: (RAM USER BASE ' AREA 128 KB 192 KB 256KB • 57 KB «- *- 128 KB 208 KB 80 KB - 4- MZ3500 1-7. MZ-1D07 Outline High resolution MZ 3500 series 12 green monitor Video tube Type Non glare green Size 12", 90" deflection Display capacity 640 horizontal dots, 400 vertical lines Vertical 47 8 Hz Weight 7.2kg Fluorescent color P39 (green, long PERSISTANCE) Display capacity Total number of display characters Display size 220 x 145 2,000 characters (80 characters x 25 lines) Specifications Method Separate input, TTL level Horizontal 20 86kHz Input signals Power supply 29W power consumpt ion Molded Color Office gray Cabinet Size (W x H x U 324x310x356 Adjusting knobs 3 Accessories CPU connection cable and power cord and Tilt stand Vertical synchronization, contrast, brightness r - 5- MZ3500 1-8. System configuration of Model 3500 Keyboard MZ-1K02 MZ-1K03 MZ-1K04 MZ-1K05 Printer IO2824E I I 6 I Option MFDI CE-331M | I "Model-3541 = Model-3531 + MZ-1F03 ' I I MZ3500 2. SOFTWARE (MEMORY) CONFIGURATION Memory will be operated under four states of SDO ~ SD3, depending on the hardware and software configurations. In the paragraphs to follow, description will be made for those four states. 2-1. SDO (INITIALIZE STATE) SDO can only exist immediately after power on, and the system executes IPL under this condition and that the system thus loaded will automatically assign memory area for SD1, SD2. and SD3. MAIN CPU SUB CPU MAS 0 MAI 0 0 0 0 0 1 MA2 MAO 0 1 1 V FFFF 1 MS1 = ° (D MSO = 0 (L) 1 FFFF T ? IRAM(COM^ jOO11—— ^\ reoo RAMA RAMA cooo BFFF \\ u \\ \\ RAMA 8000 7FFF \\ N ROM (SPAPE) v V \ \ RAMA 4000 3FFF i 4000 | ROME [ I I 2000 I ' 27FF RAM (COM) ROM IPL OFFF 0000 2000 1 FFF ROM JPL 0000 *7 M 7. 3500 Operational description (1) Upon reset after power on, the main CPU loads the contents of the initial program loader (IPL) into RAM starting at address 4000H, during which time reset is applied to the sub-CPU. (2) The main CPU then terminates resetting the sub CPU and starts the sub-CPU. At the same time, the ROM IPL is assigned to the sub-CPU. (3) The main CPU then send the memory allocation (state) to SD1, and starts to load DOS from the system floppy disk. TIMING OF RESET SIGNAL VtcSYSKES- Signal generated from the CR network and power supply SKES- Output signal from the main CPU port pr)WFjJSUB PO E CPU * ^ START POWER OFF MAIN CPU START a. Main CPU reset time b. Main CPU IPL load time Memory Map Data: 1. ROM-B is tested to determine if ROM's are present. 2. The ROM-IPL functions under control of the main CPU at first, but later it functions under the sub-CPU after the IPL program has been loaded in RAM. 3. RAM-COM is shared by both the main CPU and the subCPU. INITIALIZE FLOW «TABT 4. Memories other than described above cannot be accessed under the SDO state. 5. Bank select, MAO~MA3, is used within the address range ofCOOOH-FFFFH. MZ3500 ROM-IPL 1. An 8KB ROM (2764 or mask ROM equivalent) is used 2. 3. 4. 5. Mam CPU logical address (during IPL operation) Logical address of the sub-CPU for the ROM-IPL. When the system reset signal turns from low to high state after power on, the main CPU starts to operate At this stage, the ROM-IPL is addressed. The CPU starts from address OOOOIROM address 10000) The main CPU sets the sub-CPU reset signal from low to high state as it goes out of its initial state via the memory mapper and the sub-CPU starts to operate. At this point, the ROM-IPL is addressed by the sub-CPU. Address 0000 of the sub-CPU is ROM address (0000) The memory area above ROM address (1000) cannot be used by the sub-CPU because the mam CPU initial program has been loaded there. ROM physical address OfFF 1 FFF 1 FFF 0800 1 800 1 7FF 1 800 I 7FF ROM IPL 0000 1 OOP OFFF 1 OOP OFFF 0800 07FF 0800 07FF 0000 0000 2-2. SD1 (SYSTEM LOADING & CP/M) SD1 determines which operating system ts in use. The system is loaded in the CP/M (Control Program for Microprocessors) mode. MS1 = 0( L) MSO=l(Hj M A I N CPU rr F?' r RAMicnu: \ \ > \ ^ x \ V 4 \ ^\ 3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ i RAM sn RAM SA KAM«.(IH) 2000 1FFF f. ft f n -9- MZ3500 Operational description (1) As soon as the sub-CPU is started, it initializes the I/O port and waits for program transfer (IOCS) from the main CPU. This IOCS (Input Output Control System) is the program resident at address 4000H-5FFFH. (2) As the main CPU loads the information from sector "1" of track "0" of the floppy disk, it loads the IOCS and bootstrap routine to the sub-CPU. (3) The bootstrap program is loaded next. (4) The bootstrap program determines rnemory allocation. Communication between Main and SUB CPU BUSRQ H OUTPUT (ISOLATION OF COM RAM) | 2:3. SD2 (ROM based BASIC) SD2 is active when "SHARP BASIC" is executed via ROM. MAIN M A S BANK SELECT 0 0 M A 2 ° MAI 0 ° 0 MAO 1 0 FFFF 0 0 1 0 1 i\ 1 1 1 I 1 1 0 0 0 0 1 1 0 I 0 0 1 I 0 1 0 1 0 1 0 1 0 1 KAMB 4 Sffi 0 1 I 0 I I I R\MA i . 0 0 0 1 0 0 0 1 1 1, MS] = I (H) MSO = 0 Li CPU 1 1 1 4 3| 11 2| 3, 4 3 2 IFF? ROME IFF? J ROMC ROMU ROM! ROM 2 ROMA 0000 (MO2 M M 0 O O 0 1 O 0 0 0 0 0 1 1 1 1 0 0 1 1 KAMI! K \M L 2, 1 0 1. Bank select, MAO~MA3. is effective for memory area COOOH-FFF FH. 2. Bank select, MOO~MA2, is effective for memory area 2000H-3FFFH - 10 - 11 2, 3 | 4 SUB CPU MZ3500 2-4. SD3 (RAM based BASIC) SD3 is active when "SHARP BASIC" is ececuted via RAM. "SHARP BASIC" is loaded in RAM from the floppy disk. MSI = 1< H) MAIN CPU RAM BANK SELECT MAS 0 0 0 0 0 0 MA2 0 0 0 0 1 1 MAI 0 0 1 MAO 0 1 Ffft 0 1 0 1 0 0 0 1 0 I 1 1 1 I I I ) 0 I I 0 0 1 ! 0 0 1 0 1 0 1 1 1 1 1 lRwnuf% \\ I I I RANC SUB CPU 1 0 0 I I I RAMB \ MSO = HH) KAMI) r 1 v\ \v 1 2 , 3 , 4 1 , 2 , 3 , 4 1 , 2 , 3 gFFF 4 \ \ \\ N\ - vx \\ \\ \ , , RAMA ROM! ROM2 KOM3 K(IM4 1FFF RAN. SP RAN SC RAM SB \\ 0 0 0 0 0 ' ROM 1 PI 0000 0 1 0 1 " 0 ) i ] 1 0 0 1 1 0 1 0 1. Bank select, MAO-MA3. is effective for memory area COOOH-FFFFH. 2. Bank select, MOO-MO2, is effective for memory area 2000H-3FFFH. Operational description The state of the system is determined by the bootstrap program before the load of the system program. KU "° ROM BAS k ]L ROM M02 [NOI BANK SELECT MOO , SUB CPU 3. CPU AND MEMORY 3-1. Block diagram 1) Relation between MMR (Main Memory Mapper) and main memory. I RECEI VFR , RAM I (II'TION 1 4- RAN VI ' 64KBV2) °l 1 OPTION 1 . || I '7220 i JK» 2K* J (, , A P M , C {) R MPXR VIIIK1 RAM 32KB V 1 HI O RAM 32KB It Ml DM1 I MO*J OK II K U MO* 400 kl Mil I 1 ION V I D H ) RAM 32KH L si v i (.us TOM 1 SI CSI -2 SEMI CUSTOM IS! CSI'-I RS-232C l/f MZ3500 3-2. Main CPU and I/O port r^ IX M A I N Connector I PC 2 |~^T 1 A2 A3 "" ~s j^ A4 —££-1 A6 M C P A v~\ P r (jtA. v f^-r-^r-.—r Y 1 ~~> \J> -•> r DL iZ \J I Obr J This paragraph discusses main CPU I/O Port select and addressing. The address output from the main CPU is decoded in the 74LS138 to create the select signal. Table below describes address map and signal functions. Y3 C -) Y4 J IORQ f\ -\J G2 B u Y5 ^ 0 MFUC Mi Ol • \J lUMr Y6 5 O IOABCMEMORY MAPPER) 74LSI38 ADDRESS A7 A6 A5 A4 A3 A2 A1 AO 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1 01 1 1 0 1 1 1 1 0 DE 1 1 0 1 1 1 1 1 DF ^ ^ ^ Q o o x x HEX NOT USE EO NOT USE E3 E4 ^ ^ ^ Q O • ^ x x SFD interface FDC chip select. SFDC (UPD765) E7 AO used for RD and WR. A1 is "don't care". E8 i i i o t o x x IOSF SFD interface I/O port and DMAC chip select. EB EC 1 1 1 0 1 1 X. X Interrupt signal from the sub-CPU to the main CPU. INTR Flipflop resetting signal. EF FO 1 1 1 1 Q O X X NOT USE F3 F4 1 1 1 1 0 1 X MFDC (UPD765) X MFD interface FDC chip select. F7 F8 1 1 1 1 1 0 X MFD interface I/O port. IOMF X FB AO used for RD and WR. AT is "don't care". FC 1 1 1 1 1 1 X IOAB (MEMORY MAPPER) X FF I/O port select in the memory mapper. AO and A1 used during ~W5. WR. MZ3500 3-3. Sub CPU and I/O port SUB AS6 5 ASS 2 AS4 i Y6 CPU Y4 4G 4_ AST J s07 ~9 S06 _JQ J SOS .Jl SO4 ^ . 012 S03 ,. D15 S 2 HEC3 -C* *. ^ r CKP 1 . CSP 2 . Shown at the left is the circuit used by the CPU to select the I/O ports The out put address from the sub CPU is decoded by the 74LS138to create the select signal. Shown below is the address map and select signals. ...... -^ *"" 5 "MT 6 Gl Yl YO 14 ° -^ "SOT D15 '*°° r MAIN CPU \m 74LS138 8 8 AS 7654 M £X\ 0000 1 8 8 Signal description 2 3 4 5 6 7 8 9 A B C D E F soo Output signal to set the flipflop to apply interrupt (INTO) to the main CPU. Enables communication between CPU's. 8251 SIO chip select. 0001 S018251 ASO is used for data control selection. AS1, AS2, and ASS are "don't care". 8253 counter chip select. 0010 S02 8253 ASO and AS1 are used for programming during write. AS2 and ASS are "don't care". 8255 PIO chip select. 0011 S03 8255 ASO and AS1 are used for port/control selection. AS2 and ASS are "don't care". 8-bit input port. 0100 S04 input port select Used for read. AS3 are "don't care". CRT control I/O port chip select. 0101 AS1, AS2, and ASS are used for write. 805 ASO is "don't care". UPD7220 (graphic) chip select. 0110 ASO is used for read and write. S06 AS1, AS2, and AS3 are "don't care" UPD7220 (character) chip select. 0111 S07 ASO is used for read and write. AS1, AS2, and AS3 are "don't care" 1000 1001 1010 1011 1100 NOT USE 1101 1110 1111 - 18- MZ3500 3-4. Memory mapper (MMR) SP6102R-001 1) Block diagram Memory mapping logic ADDRESS BUS AO . i. is. COAB A 15 A15 A14 AI3 A] AO AU COAB MKEQB RFSH ~L I/O CONTROL BUS MERQ RFSH RD "WR PORT LOGIC RB —L - n OAB DATA BUS I— \ DO-D7 V INTB WAITB WAIT TIMING GENERATOR INTERRUPT PRIORITY ENCORDER CLK SYSR ->TO RESET 1NTFI) - 19 - MZ3500 2) Memory mapper (MMR) SP6102R-001 signal description Polarity Signal Name 1 ST 2 DO IN IN/OUT 9 D7 10 A15 A13 13 A1 Bidirectional main CPU data bus. (Data bus 0 ~ 7) Main CPU address bus. IN 12 Main CPU DRAM output buffer (LS244) switching strap. Used in the memory mapping logic of the MMR for address output for the DRAM, ROM, and shared RAM. IN (Address bus 13 ~ 15) Main CPU address bus. Used in the I/O port select logic of the MMR to assign device number. Sub-CPU bus request signal. 14 SRES OUT • After power on: Halts the sub-CPU. • After write command (LDA-80H: OUT#FD) by the main CPU- Starts the sub-CPU. This signal is issued after transfer of the main CPU program contained in the ROM-IPL. (Sub CPU Reset) Sub-CPU bus request signal. 15 SRQ OUT • After power on: Resets bus request to sub-CPU. • After write command (LDA-02H1 OUT#FC) by the main CPU' Place bus request to the sub-CPU This signal is issued to bus of the sub-CPU, after the main CPU writes to the shared RAM a command parameter to the sub-CPU or reads the message status from the sub-CPU. (Sub CPU Request) 16 Address signal to the main CPU dynamic RAM. AR13 OUT 18 The main CPU address signals, A 13-A 15, merged in the memory mapping logic circuit to produce AR13-AR15. This is means by which the 4 basic and CP/M memory maps are made, along with MS1 AR15 and MSO. BASIC interpreter 32KB mask ROM chip select signal. 19 R32 OUT Valid when SD2 is active (Sharp ROM based BASIC). Command (LDA 02H OUT 3FD) (ROM 32K select) Internal MMR I/O port select logic signal. 20 IOAB IN Goes low by the command IN/OUT #FC-#FF. (Input/Output Address) 21 SRDY IN 22 ROPB OUT Input of ready signal from the sub-CPU. (Sub CPU Ready) Chip select signal issued from the main CPU to the 8KB mask ROM. Valid with SDO active (initialize state). (ROM ipl) 23 ROAB Chip select signal for four chip BASIC interpreter 8KB EPROM (A. B. C, D). OUT 26 RODS Valid with SD2 active (Sharp ROM based BASIC). "R32B (alternate choice with the 32KB mask ROM chip select signal). (ROM A~D Buffer) 27 RSAB ~ ~ 30 RSDB Row address select signal for the main CPU dynamic RAM (block A-block D). OUT RAS (ROW ADDRESS SELECT; LINE ADDRESS SELECT) SIGNAL (Row address Select) Input of bus acknowledge signal from the sub-CPU. 31 SACK IN command is written in the shared RAM after acknowledgement from the sub-CPU 1 At the end of the command cycle bus request is released and the sub CPU executes the command / - 20- M 7, 3500 Polarity Pin No. IN/OUT Function Signal Name Main CPU 128KB dynamic RAM output buffer (LS244) output enable signal. 32 RF1B OUT 33 RF2B OUT 34 WATB OUT (RAM buffer 1) Signal identical to R F 1 B For option RAM (RAM buffer 2) Wait signal to the mam CPU (One wait cycle 15 applied during the memory fetch cycle of the main CPU. It consists of one clock period) (WA|T) Chip select signal issued from the mam CPU to select the RAM shared by the main CPU and 35 RCMB OUT the sub-CPU (RAM Common) 36 ITFB 37 ITOB IN IN Interrupt input from the UPD765 FDC (Floppy Disk Controller). (Interrupt from Floppy) Interrupt input from the sub-CPU. (Interrupt from No. 0) 38 IT1B IN 39 TT2B 40 MRQB 41 WRB 42 IT3B IN IT4B 44 SEC (Interrupt from No. 1, 2) Memory request signal from the main CPU. (Memory Request) Write signal from the main CPU. IN IN 43 Interrupt input from slot 1 or 2. (Write) Interrupt input from slot 3 or 4. (Interrupt from No. 3, 4) Input from the FDD (Floppy Disk Drive) assignment dip switch (A), No. 1. IN 'See the dip switch description, provided separately. (Section) 45 GND IN Ground 46 Vcc IN 5V supply 47 SW1 IN 48 SW2 49 AO IN RFSH IN 50 51 SW3 IN 52 SW4 53 GND IN 54 FD1 IN 55 Vcc IN 56 FD2 IN Input from The s v s t e m assignment dip switch, "See the dip switch description, provided separately. Mam CPU address bus Used rn the I/O port select logic in the MMR to designate device number. Refresh signal from the main CPU. (Refresh) Input from the system assignment dip switch. •See the dip switch description, provided separately. Ground Input from the system assignment dip switch. 'See the dip switch description, provided separately. 5V supply. Input from the FDD assignment dip switch (A), No. 2. *See the dip swi'ch description, provided separately. MX 3500 Polarity IN/OUT Pin No Function Signal Name System reset signal. 57 SYSR IN Used to reset I/O port in the MMR. (System Reset) 58 FD3 IN 59 COAB IN Input from the sytem assignment dip switch. "See the dip switch description, provided separately. Shared RAM select signal. Address of the shared RAM is *F800-#FFFF for the main CPU (Common RAM Address) Select signal for 8KB area allocated to slot 1. 60 RO1B OUT Valid when SD2 is active (ROM based BASIC) and SD3 (RAM based BASIC) (ROM 1) 61 GND IN Ground 62 Vcc IN 5V supply 63 RO2B 64 R03B 65 RDB 66 CLK 67 R04B Select signal for 8KB area allocated to slot 2 or 3 OUT Valid when SD2 is active (ROM based BASIC) and SD3 (RAM based BASIC). (ROM2, 3) IN Read signal from the main CPU. (Read) EAIT signal generation clock. (Clock) Select signal for 8KB area allocated to slot 4. OUT Valid when SD2 or SD3 (RAM based BASIC) are active. (ROM 4) RAS/CAS address switching signal for the main CPU DRAM. 68 MPX OUT High: Row address Low: Column address (Multiplex) 69 GND IN 70 CASB OUT Ground CAS (Column Address) signal for the main CPU 64K DRAM. •Refresh for the RAM only. (Column Address Select Buffer) 71 GND IN 72 INTB OUT 73 Ground (Interrupt) Not used - 22 - M 7.3500 MAIN CPU I/O PORT IN MEMORY MAPPER ADDKKSS A7 A6 A5|A4|A3|A2|Al|AO H E X UHUS 01 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 KI) FE FF 1 O r\i IT SKQB DO D7 SKI S Dl MS] DO 1)7 D6 D5 D4 D2 Dl DO D4 D3 D2 Dl DO D7 D6 D5 1)4 D3 D2 Dl DO D7 D6 MSO SRQ Bus request from the mam CPU to the sob-CPU 1 1 Sub-CPU reset signal Memory system define M<\3 Bank select signal to memory area of COOO-FFFF. MA2 MAI OUT MAO _J MO2 MOI MOO Bank select signal to memory area of 2000-3FFF. SW4 b«3 INI System assign switch M\2 Sttl she FD3 FD2 IN FD assign (SW8) H>1 SKDY •f> Sub-CPU READY signal SACK •p Sub-CPU acknowledge signal 1NP2 I MM Interrupt status IN'1'0 MF2 Mhl 1. All output signals are reset to low level upon power on, except for SRBQ that goes high. 2. Noted with a star mark "£" are input/output signals, and rest of others are processed in the LSI. M II #1 I/O port output of ME1 and ME2 uses the memory at the addresses. ( ME2->8000~BFFF I ME1->-4000~7FFF When ME1 and ME2 are in high state. RSAB (RASA) is inhibited during memory addresses in RAM-A that correspond to overlayed addresses for MET and ME2 This is not true during SD1 mode. 01 iri T hkoM fMont TO t MOI«m Mm n (i H j 1 I 1 H M 2 hTisn 1 T4h -^. t <|, TvfT J i\=TjTNT7 JM3 i i 1 IM 2 IM 1 h |M It "- T" 1 X "fJ~ 11 1 1 j X X 1 L 1 H H I H H 1 H | 1 L H " I " H j H j H H I ' H H j H j H L 1 j H i l ""•» H | H H 1 FKOM SI in M " l" Wait timing generator WAIT is issued once per main CPU fetch cycle. Its outut is tri state H | TO HA MZ3500 3-5. Memory (ROMIPL, RAMCOM, S-RAM) select circuit To main CPU 1) ROM-IPL select by the main CPU As ROM IPL turns to low level after power on address bus buffers (LS244, LS367) and data bus buffer (LS245) are enabled. S of the data selector 1C (LS157) is set to a low level to enable input 1A-4A. The 3Y and 2Y outputs of the LS157 then go low so that CE and OE of the ROM-IPL are from main CPU. The contents of the IPL-ROM are then read by the main CPU. Because the input pin (^16) of the address buffer (LS367) is connected to Vcc, IPL for the main CPU will be at address 1000 of the IPL-ROM. Switch SW2BA is the operation test dip switch which should be ON at all times. 4) RAM-COM select by sub-CPU Y1 of the LS139 changes to low level when AS13 is high and AS14 and AS15 are low. In other words, the input 4B of the LS157 is at low level which brings the output Y4 to low level, so that CS of the RAM-COM chip select signal should become effective. If SMRQ, SRD or SMRQ, SWR is in low level at this point, it enables read (OE) or write (WE). Address range, however, is 2000 to 3FFF 5) RAM (SA, SB, SC, SD) select by sub-CPU SMRQ, SRD (Of) or SMRQ, SWR (WE) is at low level to select the sub-CPU dedicated RAM, SA-SD. Tne following chip select signal, then becomes valid under these conditions: RAMSA .. ASVi, AS12, AS13, AS14, AST! (address 4000^17FF) RAMSB .. AS11, AST2, AST3, AS14, AS15 (address 4800-4FFF) RAMSC .. AS11, AS12, AS13, AS14, AS15 (address 5000-57FF) RAMSD .. AS11, AS12, AS13, ASK, ASHi (address 5800-5FFF) 2) RAM-COM select by the main CPU When RAM COM is low, SRES high, and SACK low, the select input S of the selector 1C (LS157) is in low state so that input 1A-4A becomes effective. That is, the output 4Y is low and either 1Y (WE) or 2Y (OE) becomes low level, so as to enable to read or write RAM-COM. 3) ROM-IPL select by sub-CPU Normally, the select signal S of the selector is pulled up to Vcc level that inputs 1B-4B are enabled by sub CPU. If A13 thru A15 were to be at low level, the output YO of the LS139 becomes low level so that the output 3Y of the LS147 or CE of the ROM-IPL should be at low level. Should SRD, SMRQ be at low lebel as well, the output 2Y of the LS157 or OE of the ROM-IPL turnde to low lebel to read the ROM-IPL. Though the sub-CPU can access an address range of 0000 to 1FFF theoretically, it would be from 0000 to OFFF, actually. - 24 - 4. CRT DISPLAY 4-1. Specification Ust of high resolution CRT 3KB (characit>-s! Display memory Character display 96KB. max (graphic i Screen structure Use of medium resolution (,RT Option 80 chrs x 25 lines. 80 chrs x 20 lines 40 chrs x 25 lines, 40 chrs x 20 lines Programmable 8 x 1 6 dots 8 x 8 dots With lower case descenders Character structure 255 characters Alphanumencs and 69 symbols 26 small characters 97 graphic patterns Attributes Graphic display (option) Revers, vertical line, blink, horizontal line Programmable for each character Blink, revers Programmable for each character. Colors 8 colors, programmable for each character 32KB type 640 x 400 dots, B/W (one frame) 640 x 200 dots, B/W (Two frames) Color designation for each character Color designation possible for each character 640 x 400 dots. B/W (three frames) Color designation possible for each character 640 x 200 dots. B/W (six frames) Color designation possible for each character Color (one frame) Color (Two frame) 96KB type Screen merge Merge any graphic screen (1 to 3 frames) Merge of chracters and graphics Merge a character screen with a graphic screen Background color Choice of 8 colors Control of two independent screens Possible to d aplay on separate two screens ongind 1 graphic screen and character screen Separate graphic screens can be merged into one Possible to affix attributes (CRT2 only) Selection of character/non-character screen display Control channel number Incorporation of two independent video outut channels Light pen input (option) Scans coordinates and character code Table 1 Summary of video display specification Medium resolution CRT (640 x 200 dots mode) High resolution CRT (640 x 400 dots mode) ^""~-\^ Characters Function ^^\^^ Elements Character s t r u c t u r e Color monitor Green monitor Type of monitor Graphics (option) B/W ASCII Color ASCII 8x8 8 x 20 8x 20 8x10 8x10 5x14 5x14 5x7 (Characters x ines) 40 x 25 mode 80 x 20 40 x 25 640 x 400 80 x 25 80x20 640 x 200 40 x 25 40 x 20 40 x 20 80 x 20 640 x 200 40 x 25 40 x 20 By character Basic Color 5x7 80 x 25 80 x 25 640 x 400 dot 40 x 20 mode By character Option 1 (48KB) t By character Option II (96KB) t By dot Small t e t t e r descenders O O X Line creation O X X Frames ASCI: 8x8 80 x 25 mode Basic B/W ASCII I Graphics ( o p t i o n ) Characters 8x 16 80 x 20 mode Display memory Graphics (option) Characters 8x16 Screen s t r u c t u r e Color designation Graphics (option) Characters Color monitor Green monitor 3KB 32KB 3KB 32KB I I ) , 9 6 K B ( I I ) 3KB 1 frame No frame 1 frame No frame 1 frame (1 page) 16KB No frame t By dot t t X X 3KB 48KB 1 frame (1 page) No frame Option 1 ( 4 8 K B ) t 1 frame t 1 frame t 3 frames t 1 frame Option II (96KB) t 3 frames t 1 frame t 6 frames t 2 frames Basic Not possible *- «- One B/W character screen agamst Option 1 ( 4 8 K B ) One character screen Against One character screen against One character screen against t h r e e graphic screens one graphic screen one graphic screen t h r e e graphic screens One color c h a r a c t e r screen a g a i n s t one graphic s c r e e n Screen One B/W c h a r a c t e r screen a g a i n s t overlay Option II (96KB) One c h a r a c t e r screen igain-,t t h r e e graphic srrpens t h r e e graphic screens One color c h a r a c t e r s c r e e n against ' • one graphic screen NOTE Graphics o p t i o n M7 3500 1) Character display 1.1. Screen structure CRT used Character Medium resolution CRT (640 x 200 dot) fH = 15 7KHz fV = 60Hz High resolution CRT (640 x 400 dot) fH = 20 9KHz ( N e w ) f V = 47 3Hz W Whne 80 x 25 lines 80 x 25 lines - ASCIL 40 x 25 lines 40 x 20 lines Dip switch in the mam unit is used to select assignment of Three basic colors high resolution/medium resolution CRT. Display mode must be chosen by programming. 4) Attribute 1-2. Character structure and picture elements Color B/W 640 x 200 640 x 400 Elements Structure 8x 16 ASCII Structure 5x7 8x10 1 symbol 8x8 5 x 14 8 x 20 Graphic Elements AT1 Vertical line B AT2 Horizontal line R AT3 Reverse G AT4 Blink Blink and character r,,uy may also be dis- played on the 80 charac 8x8 ters x 25 lines screen.) Small letter descenders and line creating functions are not available. Small letter descenders and line creating functions are available. 5} Screen overlay It will be possible to have an overlaid screen that consists of NOTE: Line exist in the same element (Line I 8 x 16 Designated for each chaiacter. one character (screen and a maximum of three In the case of 8 x 8 and 8 x 1 6 picture elements, graphic screens. (For detail of overlay screen, refer to vertically Table 1.) adjoining graphic symbols will joint together in the 25-line mode. In the color mode, if there are two colors in the same As for character structure of 6 x 14, 7 x 14, 6 x 7 , screen and other designated for a dot on the graphic or 7 x 7, decision must be given on an actual dot screen element — the one designated for a character on the character — both colors will be merged sltorjpther pattern. to produce image. 2) Graphic display (option) (High resolution CRT) (Red) © Dot color designated by character attribute (Medium resolution CRT) 640 dot 640 dot o 200 dot 400 dot Dot pitch Dot pitch Horizontal vertical = 1 : 2 Horizontal vertical = 1 3) Color designation Eight colors are usable (white, yellow, cyan, green, violet, red, blue, black) Color designation ASCII Graph 48K b y t e | 96 K b y t e 640 x 400 dot 640 x 200 dot By character By character By character By dot By dot By dot Background color 8 c o l o r s for designation 00 o o O (Blue) O Dot color designated by graphic dot. (Violet) Q Dot composed of more than two color Jj>i"jrn*ion:. MZ 3500 6) Screen overlay and displaying on two CRT's As there are two video output channels independent it will be pos screens sible to display two independent screens on separate video display unit Overlay is possible on either Data Address Hex 50 AS AS AS 3 2 1 0 0 0 0 AS DS 2 DS 1 DS 0 1 0 1 1 ;p i 51 0 0 0 1 1 1 52 0 0 1 1 0 1 1 53 0 0 1 1 1 1 54 0 1 0 of Internal S gnat name of CSP Function ECH1 Choice of outputting the character screen on CRT1 0 No 1 Yes ECH2 Cho ce of outputting the character screen on CRT2 0 No 1 Yes EAT2 Choice of whether attribute or cursor be put on the frame that displayed on CRT2 (0 No 1 Yes) SR1 Displays on CRT1 the blue elements contained in the VRAM SR2 Displays on CRT1 the red elements contained in the VRAM SR3 Displays on CRT1 the green elements contained in the VRAM SR4 Displays on CRT2 the blue elements contained in the VRAM SR5 Displays on CRT2 the red elements contained in the VRAM SR6 Displays on CRT2 the green elements contained m the VRAM BGC B BGC R 1 (See preceding item 5) ) The following bit selection is needed for screen overlay [ Choice of background color display BGCG 1 0 1 COLOR Color mode BODER Border color mode in effect 08/16 Defines the data size for the graphic RAM (0 8 bits, 1 16 bits) 40/80 Defines display digits for the character screen 1 55 (50) 0 1 0 1 1 1 1 56 0 1 1 (0 40 digits 1 80 digits) 1 0 0 1 1 1 Connection of a 400 raster CRT V RAM2 Connection of the 96K bytes VRAM V RAM1 Connection of graphio GDC 1 25/20 25 lines/20 lines switching (0 25 lines, 1 20 lines) 1 08/16 Defines data size for the graphic RAM (0 8 bits 1 16 bits) 40/80 Defines display digits for the character screen 1 1 57 RA-400 1 1 5D 1 1 0 1 ;P2 1 1 (0 40 digits, 1 80 digits) NOTE Both CRT1 and CRT2 must be high resolution CRT's (640 x 400) or medium resolution CRT's 'RO x Output to each CRT may be possible in the following combination . Output to each CRT may be possible in the following CRT1 CH ( AT ) C.KA7 ) CH AI ) + ( , ! ^ AT) CH GF CRT2 CH( AT) (,f- AT) CH(Ar)+(,! CH (.1CH+GI ASCII Graphic screen, including overlay of two graphics screens M (AT) Attached with attribute MZ3500 7) ASCII CG Uses an 8KB MROM contains two patterns' 640 x 400 dots ( 8 x 1 6 dots) and 640 x 200 dots ( 8 x 8 dots) #OFFF 8 x 8 d o t pattern (2K byte) For Model 3200 series With 8 x 8 dot format two kinds of patterns coexist Refer to ROM address and data ! x 8 dot pattern (2K byte) #0000 Without lower-case, code on separate information letter descenders #1 FFF Model 3500 8 x 16 dot pattern (4K byte) With lower-case, letter (h i j) descenders #1 000 D7| Address and pattern in picture element | DO (Address) . #1000 O o O 12 o o o o 0 o o ooooo ooooo o o 0 0 0 0 o o (Example of 5 x 12 dots pattern for 1 x 16 elements) (Data) #00 #1001 10 #1002 #1003 #1004 #1005 #1006 #1007 #1008 #1009 #100A #1006 #100C #100D #100E .- #100F 10 28 28 44 44 7C 7C 44 44 44 44 00 00 00 8) Element structure, character structure, and line Element structure, character structure, and line 640 x 200 dot 1) 25 line display mode /— Character pattern area \— Line area X— Area where pattern and line are overload 640 x 400 dot 1) 25 line display mode 12 1 5 2 IASCD/JIS] 8 Without line 'With line HL On 16th line VL Line ot the right of element In the case of graphic symbol display Both HL and V L a r e overlaid to the pattern [Graphic symbol - 29 - MZ3500 2) 20 line display mode 2) 20 line display mode 8 20 \\NS\\\\Mi ASCII With line HL On 18th raster VL Line to the right of element e VL does not join a In the case of graphic symbol display, VL is overlaid to the pattern Without line 10 20 Graphic symbol j I Graphic symbol 9) Cursor Sharp of the cursor: Same as seen in Model 3200 Reverse and blink) 4-2. Video RAM 1) Structure of VRAM GDC1 (for character) 10) Light pen input Incorporates the light pen input connector and its interface. The light pen, however, is an option. Accuracy: By each character Function: Coordinates/character code GDC2 (for graphic) #BFFF 16Kbit i i t 1 1 j i 1 1 1 1 i i xg 11) Difference in specification with that of Model 3200 (1) There are two modes for the Model 3200; normal mode ( 6 x 9 elements) and graphic mode ( 6 x 8 elements). In the normal mode of 25-line displaying of the PC-3200, vertically adjacent graphic symbols do not joint. But, they will joint with the Model 3500. (G) Attribute Model-3200 Model 3500 I *07FF (D-RAM) 16Kh,t 16Kbit 2Kbit > 8 2Kbit ( S-RA.M) x4 ts- (ASCI L RAM) (B) ' 0000 #0000 DO- DO- -D7 1)8—Oil (R) -D7 D8- -D15 Solid line 48KB option Broken line. To be added to comprise the 96KB option. (2) No line will be displayed for the medium resolution CRT (640x200 dot). It is possible to display line on the high resolution CRT, compatible to line the utilizing program of the Model 3200 V R A M capacity Graphic option 1: 48KB Basic 3KB (including a t t i b u t e s ) Graphic option 2 96KB Bit structure of V R A M — —______ CRT j Character VRAM Graphic VRAM - 30- ! 48KB [ 96KB 640 x 400 dot 8 bu / word ' 640 x 200 do i 8 bit / word 16 bit ,' word 8 bit / word 16 bit / word 16 bit / wo-d M 7 3500 2) Read/write from Z 80 to VRAM (1) Timing period for display and V-RAM Read/write. //><-' Range wh°r? GDC can draw. Fly back period H • SYNCJ BLNK- (2) Timing that the Z-80 can read/write VRAM The Z-80 can read/write VRAM when GDC FIFO buffer is either empty or Full, and can be accessed by refreshing during the display period. Number of characters that can be read/write within one raster in any mode. 3) Structure of character VRAM (1) When read/write from GDC (A) #07FF (B) (A) 2KX8 ASC I I ASCI I ( 8 b i t ) #0000 DO 8bi t "D7 V& 4bit «-Dll ( 12bit ) DO Dl D2 D3 D4 D5 1)6 D7 DO Dl D2 D3 • Blink Reverse (G) Vertical line (R) . Horizontal line (B) (2) During display #07FF (A) 2KX8 #0000 12bi t (B) 2KX4 MZ3500 4) Graphic V R A M memory (MZIR03) • Block Diagram R ASA ^ RAS • A14 • A15 RASB~ RAS • A14 • AlS ... RASC =• RAS • A14 • A15 0000 ~ 3 F F F 4000-7FFF 8000 ~ BFFF 2. Display mode A14 and A15 are not valid and RASA, RASB, RASC are selected together. By the DBIN signal from GDC-2. 08/16 signal is generated by CSP-2. The signal of 08/16 select, after P-5 conversion for RAMA, RAMB output signal then output to VB by serial signal, or sprit the signal to VB and VR. (08/16 select: 08 for 200 rasters. 16 for 400 rasters) 1. read/write Mode The select signal RASA, RASB and RASC are generate from RAS, A14 and A1 5 which is signal of GDC-2. The address is allocated to each area selected by above signal. Read/write by Z-80 via the GDC During displaying (1) 640 x 200 dots display mode Low byte High byte B/W: 3 frames Color: 1 frame Option I (48K byte) 8bit structure 1 #BFFF G + 8000 #3FFF 16K #4000 #0000 A B 8bit 16K R #0000 8bit 31,L i 8bit 8bit Option I I #BFFF (96K byte) 16bit structure B/W: 6 frames Color: 2 frames #8000 #3FFF #4000 16K #0000 I 16K *0000 ifit.it 16bit - 32- 1 1 M Z 3500 (2) 640 x 400 dots display mode B/W: 1 frame Color: 1 frame Option I (48Kbyte) 16 bits structure #4000 # 3 KKK 16K 16K *0000 ( Option II Color can be designated for sach character. i #3FFF #0000 BFFF B/W: 3 frames Color: 1 frame (96K byte) 16 bits s t r u c t u r e #8000 #3FFF 16K #4000 #0000 16K #0000 16bit 16bit 16bit 16bit 5) Synchronize signal timing (1) For 640 x 200 dots display mode X : Y- 1 :2 fH = 15.87kHz fV = 60 Hz GDC-2 graphic) GDC-1 (80 digits) Character display (40 digits) Dot clock (OD) 2XCCLK Horizontal display time 8 bits 16 bits (16MHz) ( 8MHz) 16MHz 16MHz (4MHz) <2MHz> 4MHz 2MHz 40MS - - HFP ?A« HS 6>js (1?Chr ) (tREF-0.8ms) 5^s ( t R E F = 1.6ms) 10/js - (20 Chr.) 8ns 1 2.6ms - - VFP 1.2ms - VS 1 ms - - VBP 1.8ms - - HBP Vertical display time Total rasters: 261 rasters Display raster: 200 rasters •^(14 •—n. —-1 r~- Chr.) 10MS j MZ3500 (2) 640 x 400 bits display mode fH = 20.92 kHz fV = 47.3 Hz X : Y : 1: 1 GDC-1 (80 digits) Character display (40 digits) 8 bits 16 bits Dot clock (OD) (19 66MHz) (9 83 MHz) 19.66MHz (50.86ns) 9.83MHz (101 92ns) 2XCCLK (4.9152MHz) (2.4575MHz) 4.9152MHz (203.45ns) 24575MHz (406 9ns) - - Horizontal display time HFP GDC-2 graphic) 32 55^s 80 Chr. /40 Chr. 4.88fjs 4^is HS *~ «- - (tREF=0.6ms) 5 Chr. (tREF = 1.23ms) 6 5ys HBP Vertical display time 19.16ms VFP 0.527ms VP 0.24 ms VBP 1.198ms *~ - - - - - - - «- - - Total rasters: 441 rasters Display rasters 400 rasters (3) CRT synchronizing signal specification (400 raster CRT) 1. Horizontal synchronization frequency (fH): 20.92kHz 2. Vercial synchronization frequency ( f V ) : 47.3Hz 3. Total rasters: 441 rasters 4. Rasters used: 400 rasters 5. Display dots: 640 x 400 dots 6. Dot clock: (19.66MHz) 7. Timing 9. HS, VS, and VIDEO signals are supplied from the LS type TTL 1C (totem pole) 6) Setup of GCD master/slave (1) Master/slave setup by combination ^^•v^^ Character ^^•\^^ GDC 40 digits 80 digits Without VRAM PWB Character Character 8 bit structure 48K byte 200 rasters Character Ch3rai.te' 16-bit structure 96 K byte 48K byte 400 rasters Character Graphic Graphic ^^^^ GDC ^"\^ Master should be setup in the above i.ia. (2) I/O signal switching ft PIT A to (8255.PB7 ) fiQ /I ! 8. Output method outputs. VFP: 11 rasters (0.5ms) VS5 rasters (0.24ms) VBP- 25 rasters (1.2ms) HS, VS. and VIDEO are indpendent p (CSP-2) ,, ,. ,fc VSYNC Switching Circuit M-3500 CH48 - I 08/16 - 0 For 40 digit display 1 : For 80 digit display There is a 40/80 digit switching signal I/O port in the gate array of CSP1 and CSP2, but, the I/O signal called CH48 is provided apart from the I/O port. I/O port inside CSP1 and CSP2. Relation between V R A M address and screen 16-bit structure Graphic address map for 400 rasters 7) Graphic V-RAM Address Relation between V R A M address and screen (640 x 200 d o t s ) 8-bit s t r u c t u r e 0000 0050 00\0 OOFO t lnntn"~^ ~ Graphic address map for 200 rasters LXH) liytr bOb\ir — CRTC block diagram Color graphic VRAM PWB (option) MZ3500 4/6. Master slice LSI (CSP-1) SP6102C 002 signal description Priority Signal Name 1 HSYi IN Horizontal synchronizing signal from the GDC1 Also, it becomes the refresh timing signal in the dynamic RAM mode. 2 NABC IN Input from the UPD7220 GDC1. When the GDC1 is in the character display mode, the attribute, blinking timing and line counter ciear signals are multiplexed. 3 CSR IN Input from the GDC1 which is the cursor display input when the GDC1 is in the character display mode. 4-6 ASO - AS2 IN Address bus input from the sub-CPU. ABO = ASO, AB1 = AS1 , AB2 = AS2 7-9 DSO - DS2 IN Data bus input from the sub-CPU. DBO = DBO, DB1 = DB1 , DB2 = DB2 10 G2 OUT 11 NWRO IN CSP1 I/O port select signal (OUT # 5 X ) 12 NVB IN Input of the blue image from the graphic R A M ( A ) and (B). Green image output to the CRT2. 13 NVR IN Input of the red image from the graphic RAM (B), (C), and (D). 14 NVB IN Input of the green image from the graphic RAM (E) and (F). 15 FYD2 IN Input of the graphic RAM parallel/serial conversion 1C 74LS166 shift out clock. (Used to latch the image data in CSP1 .) 16-18 AT2 - AT4 IN Attribute f AT-2 AT-3 |_AT-4 - 19 CH IN Input of character display data signal. 20.21 GND IN 0V supply 22 DSP2 IN Input of display timing signal supplied from the CSP-2. (BLINK signal from the GDC2 is delayed by two flipflop intervals in the CSP-2 to creat this signal.) data input from the 21 14A-1 attribute RAM. Horizontal Ime/R "] Reverse/G Blink J 23 VID2 OUT VIDEO output to CRT2. 24 LCD OUT Character CG line counter output. (Becomes address input to the CG when LCD = CG address AO.) 25 AT1 IN 26-28 LC1 - LC3 OUT Attribute data input (vertical line/B) from the 2114A-1 attribute RAM. Character CG line counter output. (LC1 = A1, LC2 = A2, LC3 = A3CG = A3) 29 NCL4 OUT Character CG output data latch timing. 30 HSYO OUT CRT1 , 2 horizontal synchronizing signal 31 RA40 OUT The signal that turns high level when the 400-raster CRT is in connection. LDA, 01 H OUT??56 32 VIDI OUT VIDEO output to the CRT1 . 33 B1 OUT Blue image output to the CRT1 . 34 R1 OUT Red image output to the CRT1. 35 Of OUT Green image output to the CRT1. 36 SL1 IN 37 Character CG output parallel/serial converter 1C 74LS166 shift load signal, and character CG address latch signal input. (Used for the image data latch signal in the CSP-1 and horizontal synchronizing signal delay flipflop clock.) B2 OUT Blue image output to CRT2. 38 R2 OUT Red image output to CRT2. 39 BLNK IN Erase signal from the GDC1 which becomes input at the following times. 1. Horizontal flyback period 2. Vertical flyback period 3. Period from the execution of the SYNC SET command to the execution of the DISP START command. 4. Line drawing period 40 Vcc IN +5V supply. - 39 - MZ3500 CSP-1 Block Diagram ASO 1 1 AS1 AS2 1 4 ,. .. o MkRO (bO) (51) Jl J, „ o > J * DSO ' DS1 n x — H I)S2 — to — fO t— (52) 'S3) 1 1 1 ro CO (54) '55,50) 1 I ^. ,r»T , • 5fi . II I I c n n r- Cn <7> ] ~ | X O C X 0 " m O m ? -_ i ^ 0 = 5 ° o re — 3 " fr HSYI K \ 400 1 NABC j 1^ SL1 Line counter/ Line signal generator > RA400 — 1 25 /20 —1 FYD2 BLNK B-VL __ 0/1.. DSP2 ^ .« ". +, i, ..._. . . < — *- "\ AT 2 s ATS ** AT 4 ' CSR J } * n F/F l-» CK 1 i > CK * . HSYI " BINK' y^m-i™ t» o r \ SO 1 to 5C < D ECH1 NVR DF/F .V 1 » ? X Merge circuit 4 1 -»-DSPT < r- r~ M~^y_ -c 40/80 d,q,t shift circu t , ^ „ _ tr r- < t~ r ??? U *ili Cursor erase circuit ^ ' '' JTV " -^ — " > - Boder 1— =H>-^ background ( — -D "c merge * '• ~^ CSR-2D *— ~*^ ^ "O < r-| OK; ^SR4 1 - ^ J 4 \j X—^ }__S | . - —' °^SR6 O3 4 4 bri ' —0 5 n X C 4 fin G. RV -> — ° " '" — i f. / » * ' B 'VL-»> 1 S ^ ^ V O-l >- V1D2 T * 31 l^^^ro / color designation during graphic mode. I OM pS 4 '—+ Cursor; Blink ;Reverse Line COLOR-* RA400 ~ B/W attribute merge circuit i-r- --r -^ c r- {> {> i>-hi>, ECH2 " r- >- V I D 1 £ '"' 08 -'16 HSYO j o~"^o s L ,. )— »- - \ . '^ 'p ^ ~*— ndividual 9/VL~* character] V-RAM2 5- 1 4 4 1 4 J?^" S ^ B/W attribute merge circuit I s 1 80 j 1 T P — F/F 1 ,.„ * ,)FXF CH D H -| n F/F n u: hIr1 1 40 D F/F CK NVB -C \ — . >J . "N } } -* CK n • \ ATI I ' ^ ^\_ ^ ^ _ Border '~) ") *• background y- OJ 0 - *- U 0G FAT 2 1 CSH- - 40- -TV 5*= -"" fAIL- " 4^V^ •>- MZ3500 46. LSI (CSP-2) SP6012C-003 Signal Description Polarity IN/OUT Signal Name 1 HSY2 IN Horizontal synchronizing signal from GDC2 which also becomes the refresh tirniny . i j r . s ' i in the dynamic RAM mode. 2 BLK2 IN Erase signal input from the GDC2 which is supplied 4T the following times: 1. Horizotal flyback period. 2. Vertical flyback period. 3. Period from the execution of the SYNC SET command to -be execution of the DISP S T A R T command. 4. Line drawing period. 3 OWE OUT 4-5 AD14-AD15 IN Input of the display output signals (AD14, AD1 5) from GDC2. (Used to create DBIA-DBIC in the CSP-2.) 6 DBI2 IN Input from the GDC2 by which the image memory output is sent on the data bus. (Used to create RASA-RASC, CAS, PS, OWE in the CSP-2.) 7 DBI1 IN Input from the GDC1 by which the image memory output is sent on the data bus. (Used to create BUSG, SOE, SWE in the CSP-2.) 8 BUSG OUT Gate signal of the bidirection bus buffer (LS245) which is used to read/write attribute, and character, data from the static RAM (21 14A-1 , 61 16P-3). 9 SOE OUT OUTPUT ENABLE for character static RAM (61 16P-3). 10 SWE OUT WRITE ENABLE for attribute, character static RAM. 11 0816 OUT 8-bit/word and 16-bit/word select signal. (8-bit/word chosen with LDA. OOH OUT#5D, and 16-bit/word is chosen with LDA, 01 H OUTiSD.) 12 RAS1 IN Memory control signal RAS from GDC1. (Used to create CGOE, SL1 in CSP-2.) 13 RAS2 IN Memory control signal RAS from CDC3. (Used to create SL2, LOAD, RASA-RASC, CAS, FS. DBIA-DBIC. DSP2 in CSP-2.) 14 ASS IN Address bus input from the sub-CPU (ASS = AB3) Chip select (OUT#5X) of the I/O port in CSP-2. WRITE ENABLE output for the graphic dynamic RAM. 15 NWRO IN 16-17 DSO-DS1 IN Data bus input from the sub-CPU (DSO = DBO, DS1 = DB1 ). 18 RA40 IN The signal that goes to high level (input from CSP-1) when the 400-raster CRT is connected. (Used for clock frequency selection in CSP-2.) 19 M40 IN Clock input from the clock generator (39.32MHz, for 400-raster mode.) 20 GND IN 0V supply 21 SL2 OUT Graphic DRAM output parallel/serial converter 1C 74LS166 shift load signal. 22 RASA OUT Graphic DRAM (A), (B) RAS signal. 23 2CM2 OUT Double character clock output. In the character display mode, a single phase clock of the half the one character wide frequency is supplied. In the graphic display mode, a single phase clock of 8/16 dot frequency is supplied to GDC2. 24 LOAD OUT Graphic DRAM output parallel/serial converter 1C 74LS166 load timing clock. 25 Vcc IN 26 FYD2 OUT Graphic DRAM output parallel/serial converter 1C 74LS166 shift out clock. 27 2CK1 OUT Double character clock output same as 2CK2. In the character display mode, a single phase clock of one half the one character wide frequency is supplied to GDC1 . 28 SL1 OUT Character CG output parallel/serial converter 1C 74LS166 shift out clock. 29 SL1 OUT Character CG output parallel/serial converter 1C LS166 shift load signal. Character CG address. 30 CGOE OUT Character CG output enable signal. 31-33 DB1C-DB1A OUT Timing signal by which the graphic DRAM output is sent on the data bus. 34-35 RAS-C ~ RAS-B OUT Graphic DRAM RAS (ROW ADDRESS SELECT) signal RAS-B; RAM(C), (D) RAS-C; RAM (E), (F) +5V supply. - 41 - M/3 r >00 Priority Signal Name 36 M32 IN 37 FS OUT Graphic DRAM address multiplexer signal (High order 8 bits I ADS ADI 5] /low 3'der S hi" |ADO A D 7 ] select signal ) 38 DSP2 OUT Display timing signal (In the CSP 2, the signal BLINK from GDC2 is delayed by 2 collor intervals to create this signal ) 39 CAS 2 OUT Graphic D RAM CAS (COLUMN ADDRESS SELECT) signal (Line address selection) 40 Vcc IN Clock input 32MHz, 200 raster + 5V supply CSP 2 Block Diagram S-RAM & CG control signal generator ^— Bl SC, D- SOf O- SHE Ci ^ '' : co 3 6 L ii Jl PR r* ™ Hexadecimal counter D £ O -a. GDC1 & character display clock generator 5 32MHz L> *M n~, 4U(J HasTer * ^00/41to rasters • 0 GOC2& graphic display clock generator t T ft. Cfi CK VWRO — C Oh 16 5 DBI2D 3«32MHz Clock select ^ ClfCU1, 8/1 6 bill select circuit 200 Raster Q I) F F O 1 O 40/80 K A S 2 —C F ' Ubl 2 —C DRAM control signal generator ' ' '• , cK F GDC2 Read ignal generator n Q 2 — 3 )ECODER n L} \ t - 42 - h P° CK f O—HB 1 A M 7.3500 4-7. GDC (Graphic display controller) (UPD7220) signal description Polarity Signal Name 1 2XCCLK IN 2 DBIN OUT Memory contro signal supp'ied to the image memory from the GDC, which causes the image memory output data to be sent on the data bus. 3 HSYNC-REF OUT Memory contro' signal sent to the image memory from the GDC, which is the horizontal synchronizing signal. • Since the image drawing process is automatically interrupted in the dynamic RAM mode the refresh address is output during the HSYNC period. It can also be used as the refresh timing signal. • Refresh is accomplished by suppressing the CAS signal derived from the RAS signal in the external circuit when the HSYC is at h gh lebel (Horizontal Synchronous - Refresh timing) 4 VSYNC EX.SY NC IN/OUT 5 BLNK OUT Erase signal output is issued at the following times (blanking signal): 1. Horizontal flyback period. 2. Vertical flyback period 3. Period from the execution of the SYNC SET command to the execution of the DISP START command. 6 RAS OUT Memory control signal sent to the image memory from the GDC, • In the dynamic RAM mode, it is used as the reference signal of RAS. When at high level, used as the timing signal by which the address signal is latched. (Row Address Strobe) 7 DRQ (NO USE) OUT DMA request output which is connected with the DRQ input of the DMA controller is output by the following two commands' 1. DREQE (DMA request write): CPU memory to image memory. 2. DREQR (DMA request read). Image memory to CPU memory. It will be continuously output until the DMA transfer word/byte number set by the VECTW (vector write) command becomes zero. (DMA Request) 8 DACK (NO USE) IN Signal supplied from the DMA controller that is subsequently decoded by the GDC as the read or write signal during DMA. (DMA Acknowledge) 9 RD IN In the external circuit RD is combined with the chip select signal (CS). And is used when the CPU reads from the GDC either data or status flag and the signal DACK. (Read strobe) 10 WR~ IN In the external circuit WR is combined with the chip select signal. And is used when the CPU writes to the GDC either a command or parameter and the signal DACK. (Write strobe) 11 AO IN Normally, connected with the address line and is used TO designate data type. Double character clock supplied from the external dot timing generator which has the followin^ two modes: 1. Character display mode 1 Single phaseclock at one half of the one character wide cycle 2. G r aphic disp'ay mode: Single phase clock of eight dots that cycles Establishes one of following two modes, depending on whether the GDC is operated by the master or the slave. 1. When the master is operational: sends out the vertical synchronizing signal. 2. When the slave is operational : The synchronizing signal generation counter is initialized by a high level input. AO RD WR 0 1 0 1 0 0 1 1 1 1 0 0 function READ STATUS FLAG READ DATA WRITE PARAMETER WRITE COMMAND ^Mode^' IN #70 IN #71 OUT #70 OUT #71 GDC1 IN #60 IN #61 OUT #60 OUT #61 GDC2 (Address Bus 0) 12~19 DBO-DB7 IN/OUT Bidirectional data bus connected to the system bus. (Data Bus 0 - 7 ) 20 GND IN 0V supply. 21 LPEN IN Light pen strobe nput. When a input light is sensed by the light pen, it outputs a high level signal. The CPU can then read the display address via the LPENR (Light Pen Read) command. 22-34 ADO-AD12 IN/OUT Bidn ectional address/data bus connected between the image memory and the GDC on which address and data are sent on the bus by means of multiplexer ALE (Address Latch Enable) is drived from the RAS output in the exte r nal circu t. (Address/Data bus 0 - 1 2 ) M Z 3500 Polar, ty Pin No IN/OUT Function Signal Name 35-37 AD13ILCO)AD15ILC2) IN/OUT Provides the following functions based on the operational mode of the GDC (graphic display mode, character display mode 0, character display mode 1). 1. In the graphic display mode and character display mode 0: Bidirectional address/data bus 2. In the character display mode 1 : Line counter output in connected to the character generator ROM or graphic RAM address. • In the graphic and character display mode 0: AD13~AD1 5. • In the character display mode 1 : LCO~LC1. (Address Data bus 13 ~ 15) (Line Count 0 - 2 ) 38 A16 (LC3) (AT~BTI NK-CLC) OUT Provides the following functions based on the operational mode of the GDC (graphic display mode. 0. character display mode 1 ): 1. Graphic display mode: Image memory address output. 2. Character display mode 1 : Line counter output. 3. Character display mode 0: Attribute/blinking/timing signal and external line counter clear signal (Address 16} (Line Count 3) (Attribute Blink — Clear Lire Counter) 39 A17 (CSR) (CSR-1MAGE) OUT Provides the following functions based on the operational mode of the GDC (graphic display mode, character display mode 0, character display mode 1): 1. Graphic display mode: Image memory address output. 2. Character display mode 1 : Cursor display output. 3. Character display mode 0: Cursor display output, character display area (graphic) display area select timing signal. (Address) (Cursor) (Cursor-image) 40 Vcc IN + 5V supply. - -14 - M " 4 8 CG Address Select Circuit When 200 rasters on ASCII in use (only the high order 8 bytes of 16 bytes are set to low level I ASCII C.G. Structure » Ii rr =^=^ 1020 10! 1- leBytes ASCII character structure of the 200 raster CRT Character Code 01 For Model 3500 lOOh ifiBytes Character Code 00 For Model 3500 [Circuit description] (Purpose) I The character genrerator (CG) incorporates all character code^ used by \ l'= I - 1000 01-1^ ASCII character structure of the 400 raster CRT 8 x 1 6 dot > Pattern 400 Rasters M'-O the 200 raster video display unit of the \X •> 3500 and by the 400 raster video display unit of the \X 3500 The CG address select cirruit is I therefore used to select those modes = = [Operational description] 1 When the 400 raster CRT is in use, RA40 is set to high level which sets A12 of the CG to high level at all times, so that the CG address 0020 001 t a Bytes 0018 0017 above 1000 is selected Also, gate (1) opened so that LC3 is input to Code 01 For Model 3200 '/ '///' s/ /////^ I A3=l f K Bytes ' Code 01 ', ' For x (Hi in ,. Model 3500: \ 1-0 001 1 Character * Code 00 8 Bytes 1 For Model 3200 \ i i 0 Iftk OKI / Character /i fc Bytes Code 00 ', ' ForPattern 200 Rasters A3 of the CG At the same time, gate (3) is opened so that the gate of the LS240 is closed every 16 bytes 2 When the 200 raster CRT is in use, RA40 is set turned to low level which sets A12 of the CG to low level continuously, so that the CG address 0000 OFFF is selected Also, gate (2) is opened so that the CPU t 8 b ts - 45- MZ 3500 4-9. VSYNC From (8255 PB7) CH48 0 40 Digit 1 80 Digu SRES ( F r o m MMR) 40 digit. 16bu/word 80 digit, 8bit/word Master is GDC 40 digit, Sbit'word Master is GDC 1 80 digit, 16bit/word Master is GDC-2 [Circuit description] When more than two UPD7220 GDC's are to be operated in parallel, one must be assigned to the master and the other to the slave in order to mantain synchronous display timing. The master and the slave are determined according to the table below. The above circuit shoud be used to compare with the table description. ""~~~-~^GDC-1 (character) CH48 = 0 40 digit CH48 = 1 80 digit GDC-2 (graphic)""" ^^^ Without VRAM PWB GDC1 (character) is the master. GDC 1 8-bit structure [0816=0) (48KB, 200 raster) GDC1 GDC 1 16-bit structure [0816=1] (4896KB, 400 rasters) GDC1 GDC2 (Graphic) The master GDC must be set as indicated above. [Oprational example] If it was set to 80 digit, 16 bit/word mode SRES will be 0 when CH48 = 1, 0816 = 1 when not in the reset condition. These signals are supplied to terminal A (weight 1), B (weight 2), and G (gate), and set terminal Y3 of the decoder 1C LS139 to "0", so that the YSYNC output of the GDC2 is input to terminal EX SYNC of the GDC2. - 46- MZ3500 4-10. Character VRAM select circuit Lov*/ when 0 300^07FF The signal BLNK is used to address the ASCII RAM within address area of 0000-07FF in transferring the display data from the VRAM to the CG. CS 6 1 1 6( 2 K * 8 ) ASCB V-RAM 2114(!Kx4) First half of attribute *0000 -07PF *0000 -03FF 2114(1K*4) Latter half of attribute #0400 -07FF #0000 -07FF BL'SC BLNK Erase signal TTJ H-SYNC Period that the GDC is enabled to read/write and draw graphic data. TT_ BLANK [Circuit description] With respect to GCD1, the assignment during read/write of the character VIDEO-ROM is per the table below. The character VRAM select circuit is provided. Jo accomplish this function. 6 I 1 6 >2K»8 ) Latter half of attribute ASL C V-KAM First half of attribute *07FF t ARIO = H1 T AK10 = Low 8bil - 47 - *0400 #03KF toooo MZ3500 4-12. Read/write from the Z-80 to V-RAM Read/write of the Model 3500 V-RAM is done via the UPD7220GDC. There are two methods used to read/write data. The method (1) is used for the model 3500. (1) Read/write via the 16 byte FIFO. (2) Read/write of V-RAM in the DMA mode without intervention of the FIFO. (Outline of the read/write data via the FIFO; NO YES Set GDC command code Method used to give a command to the GDC. YES Set parameter for the command YES Set parameter for the command. I Command must be given to the GDC in the same manner. On next page is the program of the above flowchart. - 48- MZ3500 (Subroutine lo send command and parameter to the GDC via the F I F O ) HL reg — First address of the command code oarametpr B. reg — Q'ty of data. C reg - 60H (graphic GDC), 70H (character GDC) > FIFO Empty? ; COMMAND —• GDC ; Return if parameter not sent. f F I F O Empty? ; PARAMETER — GDC ; Return when all parameters were sent. RET Example of graphic drawing by GDC 1) Dot display 0000 0001 Example to display a dot on the fourth bit of the address CSRW C 49H -COMMAND CODE 0027 0028 VRAM 16-bit structure - 49- P1 01H — Low order one byte of the ab- P2 solute address OOH — High order one byte of thp ah P3 solute address 30H - Dot address (dAD) WRITE C 23H - COMMAND CODE VECTE C 6CH - COMMAND CODE M23500 [Explanation] C-COMMAND CODE ) To A p_ PARAMETER ' Display dot, specify the display address of the VRAM and the dot address. Set the command code of the SET mode (set mode plus CLEAR, REPLACE, and COMPLEMENT modes using "WRITE", and specify to start with "VECTE". Dot address is structured on the screen in the following manner. Address 0001 dAD= 0 1 2 3 1 5 6 7 [Dot display program example-1] LD LD INC LD INC LD INC LD INC LD INC LD LD LD LD CALL LD LD LD CALL LD LD LD CALL HL .5000H (HL) . 49H L (HL) ,01H L (HL) , OOH L (HL) 30H L (HL) ,23H L (HL) , 6CH C ,60H B ,4H HL , 5 0 0 0 H GDC C ,60H B , 1H HL . 5 0 0 4 H GDC C , 60H B , 1H HL . 5 0 0 5 H GDC 5000 — 49 H 5001 5002 5003 5004 5005 — — — — — 01 H CSRWdata 00 H 30 H 23 H } W R I T E data 6CH } VECTE data C — BOH (port address during graphic draw) B - Byte size CSRW data HL - Top address of the CSRW data Command, parameter of CSRW - GDC B - Byte size of the WRITE data HL - Top address of the WRITE data Command, parameter of W R I T E - GDC B — Byte number of the VECTE data HL - Top address of the VECTE data ; Command, parameter of the VECTE - GDC 8 9 10 11 12 13 14 15 M 7. 3500 2) Straight line drawing 00000 0001 0027 0028 0050 VRAM 16 bit structure Example to draw a straight line from (X, Y) = (3, 1) to (X, Y) = (635, 1). Coordinates must be changed to absolute addresses. (3, 1) - absolute address = 0028H Dot address = 2H Displacement between two points when the line draw direction is OA (to the right): X = 635-3 = 632 (=278H), Y=0 Whereas. CSRW TEXTW VECTW C PI P2 P3 49H 28H OOH 20H HAD dAU C 78H PI FF P2 FF C PI P2 P3 P4 P5 P6 P7 P8 P9 I, , H Kind of line (solid line) 4CH OAH } Drawing direction 78H } 02H 88H H>H 1 OH FBH OOH OOH WRITE C 23H VECTE C 6CH \ 1 AX I 1 f 2 ! AY 1 - I A x I 1 > 2 1 AY 1 1 -2 1 AX I 2 i AY ! [Explanation] Specify the kind of line by TEXTW, using C for command code and P for parameter, and specify the line drawing direction using VECTW and above four values using X and Y. The rest will be same the dot display It is also possible to display a dot using the line drawing method for any line drawing direction using X = Y = 0. M Z 3500 5. MFD INTERFACE 1) Floppy disk nomenclature 5-1. Outline Floppy disk is a disk which is made of a mylar sheet whose surface is coated with magnetic particles and set on the device to write and read data on the surface of the disk It will be necessary to know operating pnciple of the floppy disk unit and operational description, including recording method and format. 5-2. Floppy disk As various recording methods and formats are used for floppy disk (F.D.) systems we will discuss some of them 3) Components of FD's: Floppy disks called by different names dependng on the manufacturer [>- Floppy media (or simply as medn) <•' Diskette Floppy disk 2) Types of media Four types are used at present depending on their storage capacity (>- Single sided, double density (floppy disk-1) [° Double-sided, double density (floppy disk-2D) Single sided media index detect hole Double sided media index detect hole Front side- Feverse side Head engage slit (do not touch) Head 1 Head-0 4) Write protect notch Different write protects are adopted depending on the drive unit used. Example-1: In the case of the CE331 the presence of light reflection is sensed by the photo coupler and decoded as write protect Write protected Front side Write enabled - No reflection (Write enable) o 0 Front side o 0 - (Reflect"n + — »• "^ r\ vy i irn n D 0 »• _ n fi_i .— > k C n ILJi l— 1i r\ ^ D 0 —*• J Shaped waveform C — L_J Write current Differentiate waveform I) fl_Jn_jn Wrote •\ Xy f-' Read LJ 9 US 4 Write current: The write data is input to the flipflop and is inverted each time a pulse is received to change the direction of writing current. Read waveform: The peak of the waveform is detected at a change of magnetic flux. The waveform is than shaped to obtain read data identic it >.<_• tlirf write data. Data cycle will be 4/^s. MZ3500 times the data density of the MFM mode (The unneceb sary clock pulse is eliminated using this method ) (Condition) Clock is written only when there is no data o MFM method (double density) The MFM method writes data on the basis of the condi tion metntioned below, and it yields a data density two 0 Input data £ 0 £ 0 1 0 •'•> 0 1 1 1 0 1 0^0 n n n n n 7 / nnn n(O n n nnn n ' VnVn n nV [ci |D (ci |u ici ,i> ci (0 ;i> (c) \ /\ /\ X"V /\ / Write data C C (C) I) (C) t \ Data that follows '(_ < i i i Data that precedes The clock pulse (Ci will be eliminated in above illustra tion as there is no data preceding or following the clock Because the data rate is 2/Js for this method, it is possible to obtain twice the density of the FM method NOTE 6) Media recording format Media is formatted according to the IBM format For Double side media, data is written on the front side (head-1) and the reverse side (head-00) Floppy disk Tracks, consists of 40 tracks, 00-39. (May also be called cylinders) Sector. 01-16 Recording density: 256 bytes/sector Three types of write data cycl»- (2f ~>t"> SA*S) are used The read/write waveform is identical to FM method M 7 3500 Shown below is an enlarged view of data format sequence W r i t i n g starts as soon as the index hole comes through the index detect hole 1 Track Sector 02 Sector 01 DATA <[ DATA Firnl ^p IU II) DA I A t INDEX \M Start point Hatched portion is a recording gap 51 ID TT HH SS DL CRC CRC AM DATA AM DATA Data ID section CRC check code CRC CRC Data section CRC check code Size of data section ' Data address mark (or delete address mark) (00) H — 128 bytes (01) H — 256 bytes NOTE Sector number Head number (00) H -» Head 0 (side 0) (01) H -* Head 1 (side 1) The delete address mark is written to indicate invalid data It is often written on a new floppy disk as there are no valid data on it • Track number • ID address mark which begins the ID section 7) Formatting (6) The sector of the identical ID is read and verified To write the above format (ID section, data section, gap) with the write data Because of thr on an entire surface of formatting capability the possibility of an error in the written a new floppy disk is called Note 1 Formatting may also be called initialization. The word "initialize" is also used as a software term to clear the data section or to partition data area. Keep the difference between formatting and initializing in mind. Note 2 Unless formatting has been done on a properly adjusted floppy disk drive unit, an erroe may occur on another floppy disk drive unit pad dftei A r . ' e data is quite low 9) Data read procedure Described next is the procedure to read data from the FD. (1) The head is moved over the track tu -^ i ead (2) The head is loaded (3) The ID section is read and repeated until the desired sector is reached (4) When the identical IDsection is found, the <~i-m IP 8) Data write procedure Described next is the procedure to write data on the FD. (1) The head is moved over the track to be written. (2) The head is loaded (3) ID section is read and repeated until the desired section is reached (4) When the desired ID section is found, data is written on that area (DATA AM is also written ) (5) The data thus written is now checked if it was written correctly (read after write) The respective ID section is read while the media makes a full turn that data section is then read MZ3500 5-3. MFD interface block diagram > MOTOT ON - 56 - M 2 3500 FDC (UPD765) UPD765 block diagram UPD765 pin configuration (top view) R L S t IQ »• 1 RDO » 2 39 WRO »• 3 38 K3LCT/DIR CSO > 4 *O FLTR/STEP AOO DBOo-« > » 5 6 37 36 DB1CX » 7 DB2O4 K DB304 8 ». 9 DB4 O< ft- 10 ^ OVcc 40 K3HDLD 35 « 0 READY 34 4 33 4 O WPRX/2S1DE 32 K> PSO K> PS1 DB5CX—* 11 K> WDATA DB6O4— t- 12 29 >0 USO DB7O4 — *• 13 14 DRQcn 28 K5 US1 27 K> S I D E 26 25 K> MFM NDWE 24 23 •< >0 SYNC * 15 TCO > 16 INDEXO »• 17 INT04 *0 GNDO 18 »• 19 20 22 1 Mf K F A C f c READ/ WRITE/ RD- DUA WR—K CONTROL L.OGIC DR 1 VE 1NTERFACE CONTMO1 LER O RDATA 0 WCLK : Reset : Read : Write : Chip Select :AO : Data Bus : DMA Request : DMA Acknowledge : Terminal Count : Index : Interrupt Request : Clock : Ground : Write Clock : Data Window : Read Data : VFO Synchronize : Write Enable I SPUT - » I KT POKT - 1 M)t X - Fl T T •«— o WINDOW 21 4 RESET RD WR CS AO DBO-7 DRQ DACK TC INDEX INT 0 GND WCLK WINDOW RDATA SYNC WE SER f AL O FLT/TRKO 31 30 DACKO A-N. No/ KDRW/SEEK MFM SIDE USO. 1 WDATA PSO, 1 FLT TRKO WPRT 2 SIDE READY HOLD FLTR STEP LCT DIR RW/SEEK - 57 - : MFM Mode : Side Select : Unit Select : Write Data : Pre Shift : Fault : Track 0 : Write Protected : Two Side : Ready : Head Load : Fault Reset : Step : Low Current : Direction : Read Write/Seek MZ3500 UPD765 signal description Function Pin No. Signal name I/O 40 Vcc - +5V 20 GND - 0V 19 0 I Single phase, TTL level clock 1 RESET 1 Set the FDC into an idle state, and all drive unit interface outputs, except PSO, 1 , and WDATA (don't care), are set to low level In addition, INT and DRW outputs are set to low level DB goes into an input state. 4 CS 1 Validates RD and WR signals DB7 ~ DBO I/O 13-6 3 i Bidirectional, tri-state data bus Control signal to write data to the FDC via the data bus WR 2 RD ' 1 18 INT o 5 AO 1 The signal used to select the status register or data register of the FDC for access via the data bus. When 0, it selects the status register When 1. it selects the data register. 14 DRQ FDC to memory data transfer request signal in the DMA mode 15 DACK o 1 29,28 USD, 1 0 Drive unit select signal, with which up to four drive units can be selected. 26 MFM o The signal used to designate the operation mode of the VFO circuit When 0, the MFM mode is assigned. When 1, the FM mode is assigned 24 SYNC o The signal used to designate the operation mode of the VFO circuit When 1, it permits reading operation. When 0, it prohibits reading operation 39 RW/SEEK o Signal used to discriminate the read/write signal from the seek signal that used for drive unit interfacing signal. When 0, it indicates RW When 1 , it indicates 36 HOLD 0 Signal used to load the read/write head 27 SIDE 0 Signal used to select head #0 and head #1 for the double-sided floppy disk drive unit. When 0, it selects head 0. When 1, it selects head 1. 38 LCT/DIR 0 When the RW/seek signal is operating as RW, the signal works as LCT which indicates that the read/write head is selecting the cylinder above 43. When the RW/SEEK is operating as SEEK, it works as DIR which indicate seek direction When 0. seek is made towards outer side When 1, seek is made towards inner side 37 FLTR/STEP o When the RW/SEEK signal functions as RW, it works as F LTR which resets any fault condition as the seek step signal. 35 READY 1 Signal used to indicate that the drive unit is ready for operation 34 WPRT/2 SIDE 1 When the RW/SEEK signal is operating as RW, it function as WPRT which indicates that the drive unit or the floppy disk is write protected. When the RW/SEEK is function as the SEEK signal produces 2 SIDE which indicates that a double sided media is in use. 17 INDEX ' 33 FLT/TRKO 1 When the RW/SEEK signal is operating as RW. it works as FLT which indicates that the drive unit is in a fault condition. When the RW/SEEK is operating as SEEK, it works as TRKO which indicates that the read/write head is on cylinder 0. 16 TC 1 Signal used to indicate the termination of a read or write operation 30 WDATA 0 Data written on the floppy disk consists of clock bits and data bits 25 WE o Signal to indicate write enable to the drive unit 21 WCLK 1 Data write timing signal which is 250kHz in the FM mode or 500kHz in the MFM mode Control signal to read data from the FDC via the data bus The signal used to indicate a service request from the FDC It is issued at every byte in the nonDMA mode, or upon completion execution of a command in the DMA mode The signal that indicates use of the DMA cycle During the DMA cycle, it functions identically toCS. Signal to indicate the physical start point of the track. - 58- MZ350C P,n No Signal name I/O 32. 31 PSO. 1 O 23 RDATA 22 WINDOW Function Signal used to either advance or delay the write data in writi ng under the MFM mode, to obtain tirrung adjustment for reading. The WDATA signal is controlled as shown in the table be ow FM MFM PSO PS1 0 0 0 1 - LATE 225~250ns 1 0 - EARLY 225~250ns 1 1 - - Not changed Not changed 1 Read data from the drive unit consists of clock bits and data bits. ' Signal created in the VFO circuit which is used to sample RDATA. Phase syncroni^i carried out in the FDC for RDATA data bits and WINDOW. 5-5. Data recording method 1) MF recording method (1) Clock bit indicates a bit cell. (2) Data bit is placed in a middle of a bit cell. (See Fig. I. There are two ways of recording data; FM recording method and MFM recording method. 2) MFM recording method (1) Data bit is placed in a middle of a bit cell. (2) When the data bit is "0", a clock bit is placed before the current bit cell. (See Fig. 1) ' ' •__ —1 v i —JUULJUULJLJlJLJLnJl 1 i n i !i n ii i 0 ! i ! i i ! n r-JLJLJ1 0 | , i i | 0 | 0 • (MFM recording method) 1 o Model 3500, only side 0 of track 0 (128 bytes/sector) is written in the FM mode and rest of other tracks are recorded in the MFM mode. As seen from the above illustration, bit density of the MFM recording method is twice the FM recording method. In other words, data density of the MFM recording method doubles that of the FM recording method. For the 5-6. I/O port in the MFD interface I/O port used in the MFD interface is as follows. D-BUS IOMF#F9-AO IOMF#F8-AO I/O OUT D7 D6 D5 D4 D3 1)2 1)1 DO U2 Dl DO DACK ME SCTRL TC OUT IN TRIG SEL3 SKI. 2 SEL1 SELO M . ON I NDEX DRQ Used for data transfer between the CPU and the FDC. INT from the FDC is output enabled on INTFD. FDD select signal output is enabled. TC to FDC. Trigger (motor on) of the timer (555) Selects FDD 3 Selects FDD 2 Selects FDD 1 Selects F D D O ON/OFF state of the motor INDEX signal from the motor DRO from the FDC. - 59- M 7.3 500 5-7. Precompensate Circuit Set the counter to 200ms. (Actually, slightly longer than 200ms.) K K I T E DATA (Fig. 2) PSO PS1 FM MFM Value of LSI 63 0 0 Not changed Not changed 1101 0 1 - LATE(125»is) 1100 1 1 0 - EARLY(125ja) 1110 1 - - - Media is present. (Table!) Media is not present. 5-9. Controls during read, write, seek, and recalibrate Above operations are all controlled via the FDC. 1) Control during read and write WDATA8MHz CLOCK I f READ (or WRITE) command to FDC. EARLYNOMAL- I TC-»FDC. HALT (Wait for interrupt) H-">uit staius is read by FDC. LATEDATA<- FDC DATA-* FDC (Fig.3) The precompensate circuit is used to compensate the peak shift before writing. The FDC sends out the compensation rate to PSO and PS1 and the data bit location is shifted according to this signal. With issuance of WDATA. the value dependent on PSO and PS1 is set in the LS163. (See Table 1.) For instance, when both PSO and PS1 are low, it will set "1101 (D)" to the LS163, counted up by the 8MHz clock, and QB is sent out When it becomes "1110, 1111". When in EARLY (PSO= "H", PS1="L"), the value "1110(E)" will be set to the LS163 so that the output is issued 125ns earier than "not changed". The QB output, however, will be supplied for a period of two clock cycles. 2) Control during seek and recalibration SEEK (or RECALB) command to FDC I HALT (waits for interrupt) 5-8. Media detection Insertion of a media on the MFD is detected via the signal INDEX from the MFD. Since it takes 200ms for the media to make a full turn, "NO MEDIA" is detected signal INDEX does not appear within 200ms. tNI) - 60 - RtTKY Read'result status from FDC. MZ 3500 In the case of the MFM method, need to trace cycle fluctuation is further increased, as a peak shift is apt to occur because there are three write data cycles. (Peak shift). Data read cycles fluctuate as the flux change point is moved forwards or backwards. Write pulse Polarity inversion Read waveform Advanced peak shift Regenerated pulse *— Delayed peak shift H Cb) {VFO circuit): Variable frequency oscillator Polarity inversion f~J Polarity inversion Write pulse J Read waveform j I 6.0 40 20 0 20 40 Advanced peak shift —-| t— 60 (a) I —•) j*- Delayed peak shift (c) When the output waveform is observed after writing a single pluse on the floppy disk, the waveform show in (a) appears. Shown in (b) is two pluses of 4jis interval. Deviation in the peak point is called peak shift. Since pluse intervals of the MFD in actual operation are 4ns, 6/JS, and 8/^s, the largest shift takes place when a pluse appears 8/Js before or after 4/JS, as shown in (c). 5-10. VFO circuit 1) Purpose n String of data pulses from the FDD. n Data window String of separate data Data from the clock or data portion must be differentiated when read from the FDD. For this purpose a window pulse is used. In order to increase read tolerance, the VFO circuit carses the window to trace phase changes in the read data that take place during a floppy disk drive motor speed change. - 61 - MZ3500 2) VFO circuit configuration READ DATA" —» h, Phase detector k. Filter amplifier ^ Window Data separator SEPARATED DATA SEPARATED CLOCK The VFO circuit has the following capabilities. (1) Two modes: MFM and FM. (2) The VFO circuit operation is suspended during the SYNC field located before the ID field and data field. (3) After suspention, the VFO circuit will synchronize with the read data (timing is affected by a speed change in the FDD). Fluctuations in an individual bit that may be seen (peak shift are ignored. VFO circuit +5V RtAD DATA -62- MFM Mode AlMHz _rLTLJT_r B)QA) 1_ Nomal STD Eary n Delay © J~L MZ3500 FM mode timing chart A 4M B(QA) C(QB) D(QC) WINDOW E F L Normal O P F L Advanced Q O P L K Delayed Q O P Does not trace ± I j 1 1 [ 1 1 1 1 1 1 1 1 I * ~ * oinQle density ~^~^~~~^~~~ 0 ~—~^——^— LJQUOI6 density *" U. o / 1 / 2 c o ,— ^ c UJ o o ~ Q s .. 5 o o o 0 O O 0 0 \ S3 0 \ I o \ \ / o o U, U- U, U. a. s 5 cD - / / * \ u. u. 1/5 U lO U? a) U 10 w / Q U o tQ ^_t OS UJ H . c o ^ (O u 0 02- 1£ CD" L-i O o *#- ca Csl h O O cc m H 8« Q. J2 (J I 2 £ W w T— 1 U, »• CL U3 U 10 UJ 2 CTJ H O O u ro "O (U O "c — CO s "o 00 0) lO • 00 0! ,„ ^ O ^"^-^ to IN VO ^—^_^ .2 73 QJ •• Reverse side •~" M/asoo Track 0, sector 1 information (SBACIS) (Fig AA 7 L' 1 ( 1) 00 02 00 00 04 i i 1 00 ! i I / M HF i c | 1 '. OO1 i ' 1 1 48 1 ! i 1 i 041 1 Jv IM 1 No, of sectors m media 1 48 i ' Start address > 1 02 I ! * I , . ; —I 'T '< Oo! 01 i > 1 r u U S I IM' SJ"L tor 01 ' i , N I SUB IOCS BOOT r ; 02 10 01 01 01 10 i No of Track SIDE Sector sectors N j i FF , No of END sectors f 0 . Single density, other than front side, track 0. 1 . SIDE = Double density, other than front side, track 0. . Side 0 (front side) 1 Side 1 (reverse side) No of data transfers INT=[IOCScapacity/1k] +1 0 track * 8 sector 78 FF F 10 11 FF| + Volume name IF 20 18 FI- FF t FF FF Diskette Type m SH/DD(M,ni) <-C DH/DD(M.m) Track No 1 Error Mep (Bad Treck) Tr 3Ck No 2 cc FF 80 01 I Fail name (8 bytes) Expander M A,r,Ar. .4 (3 bytes) No ALOAD command File specification only With operand SC 3D 7F FF FF For FLOAD command Volume name (8 bytes) ALOAD Status line No label (8 bytes) All "F" when ALOAD command is not on (Sbytes) Contents of X register When used for the line number (when line No 1 23) These three bytes are in effect Drive NO 34 35 36 3b>tesfj$!l 00 01 23 Channel A (<•) B (I) When used for a label (Wight bytes are in e f f e c t a n d r e s e a r e ) 1' 11 34 A B C I) - 66 - 3C f ? 7 F M7 350? o Map information 0 track 10 sector 0 track 9 sector // x 1 / / / / 2 1 7H 129 &0H 130 I 71! 131 FFH 151 FFH 3 1 FFH 22 \ J FFH 4CH FFH / 23 24 FFH 128 blocks are controlled by one sector. OOH-7FH 80H: End of link FEH: Links to next map, and the starting block number. 152 FFH 153 75 76 77 \ \ 126 \ 127 1 iy / 1 ^ \128 FFH 7 EH FFH FEH FFH FFH Indicates the byte position • from the top of directory. 25 01 00 02 01 FF 29 30 31 FF FF FF MAPNa Block NO Starting block number (directory) - 67 - 32 H MZ3500 o Block number allocation The program and data areas are located after Track 2 1 block = 2K bytes (8 sector) (Double side) (Single sided) Block No track Block No Front track Reverse Front 2 BO Bl B2 B3 2 BO Bl 3 B4 B5 B6 B7 3 B2 B3 I I 38 B144 6145 B146 B147 38 B72 B73 39 B148 B149 B150 B151 39 B74 B75 2Kx 152 = 304K 2KX 76=152K Each track is blocked in the following manner: 2 sec tor ' 4 6 1 sector 3 5 1 block 1 block 13 15 sector 14 16 sector o Track 1, Sector 1 information (CP/M) 0 i AA t TRACK SIDE SECTOR N SECTO ^1 NUM BER t Drive unit specification Represents the system media i i . . . Load address i i i PATAT *ANSF| -TRACK ER NU 1KAt* MBER 1 SIDE SECTOR N . . . Start address BOOT (• 20 SECTO R NUM TRACK BER 15 10 5 50 51 SECTO|~ I R NUM T?F%! \ BER j j SECTO R NUM BER Indicates the end SUB-IOCS ._ 0 1 Single density (front, Track 0) Double density (other than front. Track 0) 0 Side 0 (front) SIDE = 1 Side 1 (reverse) Nosof data transfers = INT [IOCS capacity/1 K] + 1 • Sub IOCS can be divided into either blocks If divided to less than eight blocks, the block that follows - 68- MZS500 6. R232C INTERFACE 6-1. General specification Input/output format RS-232C bit serial input/output No of channels 1 channel Code used JIS 7-channel/JIS 8 channel Baud rate Transmission system Half-duplex Synchronization method Start-stop Communication control procedure Non-procedure Data format Stop bif 1/1.5/2, with or without even or odd parity. LSI used 8251 AC or8253C-5 (Programmable interval Timer) 110 to 9600 bits/sec 6-2. Data transmission format 2° 21 22 23 24 25 26 7-bit, with parity v j v__^___/ „ _i \ Start bit Data bit (7 bits) Parity bit Stop bit (1 or 2 bits) 7-bit, without parity V X XV Start bit Data bit (7 bits) V X ' Stop bit 8-bit with parity V • w •' V Start bit ^ Data bit (8 bits) ^ Parity bit _ Stop bit (1 or 2 bits) 8-bit, without parity v , y Tr Start bit Data bit (8 bits) Y Stop bit (1 or 2 bit Example: 7-bits, even parity, 1 stop bit Start bit 7-bit data (26H) Stop bit of preceding data Parity bit Start bit of succeeding data Stop bit - 7) - MZ3500 6-3. Block diagram of the interface Control signal Peripheral 6-4. System switch functions ON OFF SW5 Causes an error when the ER signal is low or open during data output. ER signal is disabled. SW6 Always high when power is on to the main unit. The CD signal is set high while data output, but would not be set high when the echo-back function is selected for the host computer. SW7 Causes on error when the PO signal is high during data output. Polarity is inverted. 6-5. 8251AC controls c There are two control words for the 8251 AC. (1) Mode instruction: Defining general operational parameters, such as unit, stop bit, etc. (2) Command instruction: Defining status words used for actual operation, such as send/receive enable, etc. START 8251AC internal reset 1) Definition of generation operational parameters • Baud rate • Character size • Even/odd/off parity assignment ••Stop bit size "Corresponds to channel command of BASIC. 8251AC mode instruction - 72 - MZ3500 2) Data output control SKNU Command instruction (KTS,RXEN,TXEN) 8251 AC "L"->KTS »- 8251 AC Set counter (200ms) ERROR 101 Stop Output data to 8251AC The 8251 send data when CTS goes low. The 8251 AC would not output, unlessv CTS goes low. Therefore, the state of \ CTS will be checked when the buffer I .becomes empty. / ERROR 101 - 73 - M/3SOO 3) Data input control RCV Command nstruction 8251 AC ( E R . R X DISLN) 8251 AC /Error reset \ \Data input disable/ Read one data /Clears the data before N Vthe start of the receive command / Command instruction (RXEN,UTR,TXEN) - 8251 AC 8251 AC , \" L "-»DTR Waits for NMI by the RXRDY signal Resets error by setin DTR high Command instruction ( tK > 8251 AC ERROR ERROR - 74 - N / Data input enabled ( Data output enabled (echo-back, selected) MZ 3500 6-6. 8253 Controls Baud rate of this interface will be determined by the clock output of the 8253. The 8251 is configured such that its baud rate is 1/16 of the input clock and has the following relation between the 8253 output clock and the baud rate: 1 1 0 .t 300 1760Hz 4800 600 9600 1 200 2400 4800 9600 8253 input frequency: 2457.6kHz 8253 Mode set: Mode 3(rec'angle waveform rate generator) 8253 Parameter 8253 Output frequency Baud rale 1 3 9 6.3 6 51 2 256 128 64 32 16 1 9200 38400 76800 153600 Control signals Signal name Symbol IN/OUT Transmission enabled CS -* Peripheral When high, data input from a peripheral is enabled. When low, data input from a peripheral is disabled. Data set ready DR — Peripheral Goes high when power is on to the interface unit. Carrier detect CD — Peripheral (SW6-ON) High at all times when power is on to the interface unit. (SW6-OFF) Goes high only when data is on output. READY — Peripheral Data output from the interface is enabled. (ON) Data is output from the interface. (OFF) Waits for data output. NOTE: A maximum of two bytes are output after the signal goes from high to low state. Equipment ready ER «- Peripheral Indicates that the peripheral is ready. It results in an error if low or open when data is sent from the interface. This signal will be invalidated when the SW5 is turned off. Paper out PO <- Peripheral (SW7-ON) Causes an error if set high during data output. (SW7-OFF) Causes an error if set low during data output. Ready Function 6-7. Description of LSI's 1) UPD8251AC (Programmable Communication Interface) The UPD8251A is a USART (Universal Synchronous/ Asynchronous Receiver/Transmitter that was specifically designed for data communication. The USART receives parallel data from the CPU and converts it into serial data before transmitting. Also, serial data is received from an external circuit and transferred to the CPU after converting it into parallel. The CPU can monitor the current state of the USART at any time (data transfer error, and control signal of , SYNDETandTXEMPTY. ,-eatures • 8080A/8085A compatible • Synchronous/asychronous operation • Synchronous operation 5 — 8 bits character Clock rate: baud rate x 1, x16, x64 BREAK character generation Stop bit: 1, 1.5, 2 bits Error start bit detection Automatic break detection and operation. • Baud rate: DC - 64K baud • Full-duplex Double buffer type transmitter/receiver • Error detect Parity, overrun, framing • Input/output TTL compatible • N-channel MOS • Single +5V supply • Single phase TTL level clock • 28-pin, plastic DIP • Intel 8251A compatible Pin configuration (Top View) <28 »OD1 3?5 PORTS' 422-0 DSR -i-2—XDTXEMPTY 3*12-0 CT3 SYNDET BD TXRDY Block diagram 1)7-1)004 8 » Data bus buffer 8 „«. 8 RESET O »• 8 Read/ write control logic 1 Transmission t * Transmissic>n control ' 34 _ X>TXE OTXC Reception 8 buffer Dsko m MOOhM t rscx — x: controller k'l so* ( S -• P ) * ^_ 8 c V Internal data bus^ - 75 - t 1 Receiver ^ control HI) M Z 3500 DO~D7 Data Bas RXD Receive Data (IN/OUT) WR Write (IN) RD Read (IN) C/D Control/Data (IN/OUT) CS Chip Select (IN) DSR Data Set Ready (IN) DTR Data Terminal Ready (OUT) RTS Request to Send (OUT) TXC UO O Data bus AA buffer v-v Counter •« t 1 KO Counter < # 1 < /«--N \r,V C1K 1 OA1 ^ 1 »-()l £ I1 t ^ ^ 2) UPD8253C-5 (Programmable Interval Timer) — Control word register The UPD8253-5 is a programmable counter/timer specifically designed for the 8-bit microcomputer system. Counter /" **w ' 1 A^S S— K] *« Cl K2 GA1L2 # 2 KHT2 It consists of three sets of 16-bit counters that operate under a maximum counter rate of 4MHz. Timer and six 1 operational modes are programmed to be used for a wide t range of microcomputer system timing control. Features • Z-80 compatible D7-DO Data Bus (8 bit) • Three sets of 16-bit counters CLKN Counter Clock Inputs • DC-4MHz of count rate GATEN Counter Gate Inputs Programmable OUTN • six operational modes and timer duration RD Counter Outputs . Read Counter • Choice of binary counter/BCD counter WR Write Command or Data • N-channel MOS, input/output TTL compatible CS Chip Select • Single +5V supply, 24-pin DIP A1~AO : Counter Select Intel 8253-5 compatible Vcc . +5 Volts GND . Ground • Pin configuration (Top View) .VCC - 76 - M 2 3500 8251 CLK DTK IN IN OUT CTS 1 N DSK 8251 chip address[0001/xxxx] IN Uix OUT) 2.45MHz clock DATA SET READY READY DATA TERMINAL READY TRANSMITTER DATA CS PO (MPER SUT), ER CD RD TRANSMITTER CLOCK RECEIVE DATA OUT 0 of 8253 SD RECEIVER READY To 3iil>CPU of RECEIVE CLOCK 8253 OUT CLEAR TO SEND OUT Rl S OUT TXD TXRDY N.C. TXE N.C. IN TXC IN RXD RXRDY OUT IN "RXC SYN/BD N.C. REQUEST TO SEND 8253 CLKO GATED 8253 chip address[0010/xxxx] IN #UxH OUT#|2XH OUTO CLK1 GATE1 OUT1 CLK2 GATE 2 OUT 2 IN IN OUT IN IN OUT IN IN OUT 2.45MHz Vcc To TXC, RXC of the 8251 2.45MHz From OUT2 MUSIC 2.45MHz Vcc To GATE 1 INTO TO MAIN FROM SUB POWER ON RESET INTO H SOO - S I W ( I O R Q - W R o f S U B ) L fNTR=L(FROM MAIN) H INT TO SUB FROM KEY STK= (L) - 77 - M 7. 3500 7. PRINTER INTERFACE 7-1. Printer interfacing circuit AS 4 • AS 5 AS6 • AS 7 AR SO3 Chip CS 8255 I )fi i >de r rs. RI) 3C r-— •^ —° I ORQ °^ *-!-"N cf^ 1i— cjX Al Z80 SUB CPU AO PA 0 -^jp -J S1W PA RD H/ PA 2 WR A © DA1A2 © "A^A3 H^ PA 3 Al ^ 1 PA 4 ° PA 5 C|^» ts^ CP^» PA 6 i^^ PA 7 ol ^^ rv_"v*~i PC 5 PC 6 rs_ 1 "No (3) DAT 16 — (g) DATA? Op) D \TA S ffi\ STRDRF ^o^l-X}—^^^ACK PC 7 PC 0 PC 1 PC 2 1 , DSO _ DS1 ^ DS2 L_ 0< ~ xr DS4 ^ DS5 v Io^l ^J DS3 .^ /// n EU® ©) PDTR LS244 DS6 ^ DS7 * 2,4,6,... 28areGND. * Ahnwp nin numbers are of the model-3 'arallel interfacing signals Function Pin No. Signal name IN/OUT 1 STROB - PRINTER Data is transfered to printer when STROB is high. 3 DATA 1 5 DATA 2 7 DATA 3 9 DATA 4 -PRINTER Data output to the printer 11 DATA 5 13 DATA 6 15 DATA 7 17 DATA 8 19 ACK - PRINTER Indicates the end of character input or function input 21 BUSY • PRINTER When high, it enables to receive data 23 PE - PRINTER When high, it indicates paper empty 25 PDTR - PRINTER When high, it indicates the SELECT mode (receive enabled!. 27 SYSRES - PRINTER Reset signal, normally high - 78 - i 7-3. General description of the parallel interface The 8255 is used for the LSI to control the parallel interface. The 8255 can be set in the following mode. /PORT A: MODE 0 I P O R T B : MODE 1 C: Output 74. Because it is not possible to directly sense the ACK signal as it uses interrupt for key processing and RS232C input, the ACK signal is latched by means of the OBF pin function Data transfer timing BUSY ACK ( 8255 A v PC-7J DATA STROBE (M1N) l^s(MIN) PRINTER: MZ-1P02, MZ-1P03 CE330P, 331P, 332P * Broken line in the above figure represents timing for the CE-330Pand331P. 'For detail of timing, refer to Manual provided with printer. 7-5. General description of control software Set the 20 second counter. STROBE OUT Set the 20 second counter. - 79 - M / 3500 7-6. I/O port map 8255 ON SUB CPU BUS PA6 DATA8 DATA" i'A5 DATA6 PA7 IN OUT I'A4 I'A3 8255 PA2 chip address(0011/xxxxj PA1 I) AT A 5 Output DATA4 DATA3 PAO ACK T-SET ACK PC6 ACK inputi STROBE J PCS MUS 1C , sustain PC4 1NTR NOT USE PCS ACKC PC 2 PC7 Group A: Mode 1 Group B: Mode 0 O 3 OBF output PCI STC PCO PB7 PB6 PBS PB4 PBS DC Output P/M CG selection SRDY Sub CPU R E A D Y Dm C2 Cl CO STRB PB1 PBO INPUT P O R T C 7 4 L S 2 4 4 74LS244 CDS6D HLT KEY STK -i port address[0100/xxxx] CDS5D DK CDS43 PUTR CDS33 CDS2D PE BUSY CDS7D Keyboard CLK PB2 IN #4X OUT Printer DATA2 DATA1 Keyboard J Printer cosn Reads the 8255 OBF (PC7) CDSOD output or timer output. - 80- Clock M 2 3500 8. OTHER INTERFACES 8-1. Clock circuit 1) Schematic T; 10 * Ii2 u HDH l«"-.r " 1 2) Clock timing READ mode Cn(CO~C2) STB HOLD . mode [ 0 X READ mode 3 / Y~l \ / ^Ones digit of seconds Tens digit of seconds WRITE mode DIN Tens digit of month ' HOLD mode SET mode Don't care X CLK DOUT Tens digit of seconds Tens digit of month* - 8) - i I HOLD mode MZ3500 3) ^PD1990AC Block diagram OK O Command specification Data Shift DOUT C1 CO Command 0 0 0 Register hold Holds 40-bit S/R 1Hz Not possible Data retention 0 0 1 Register shift Data input/output [LSB] Output of LSB Possible Shifts in synchronization with the clock 0 1 0 Time set Data of the 40-bit S/R is preset to the time counter. ILSB] Output Not possible Time read Data in the time counter is read to the 40-bit S/R. [LSB] Output Not possible 0 1 1 Description Note C2 Input/output format Example: In the case of 10 o'clock, 25 minutes, 49 seconds, July 30th. (LSB) 9 (MSB) 4 «- Seconds—' 5 2 L(\/|jnutes—I 0 1 Lnoure_) - 82 - 0 3 L_Dey—I 7 Won !Onth J 8-2. Voice input/output circuit PD8255 Music output waveform • mmmil Tonal signal OUT1 • Sustain PC4 • 2SC458 emitter • 2SC458 collector • Speaker output » GETE1 u -Tlj 1 J - 83 - M/3500 83. Expansion and interrupt (See 3-(2)-4 for interrupt) 1) Options and expansion units Options not requiring expansion unit JIS keyboard 14" medium resolution color CRT 12" high resolution green CRT 1 2" high resolution color CRT 14" CRT tilt stand 12" CRT tilt stand Light pen 80-character pnnte MZ 1K01 1001 1D02 •1D03 -1S01 -1S02 •1X02 -1P02 -1P03 -1P04 CE-330P -333P -33 1M -330X MZ-1F02 -1F03 -1R03 -1R05 MZ-1E01 RS232C 1/F -1E02 •1E03 GP I/O SFD 1/F -1F05 -1R06 SFD unit RAM (7) © Color injket printer 80-character printer 136-character printer Optional MFD drive unit Plotter Optional MFD drive unit Optional MFD drive unit (single deck) Graphic board 2) Expansion unit Signal assignment by slot Main CPU bus line SLOT1 SLOT2 SFD CONTROL • VOICE DRAM control signal 32K mask ROM BASIC( 8K mask ROM ROM1 ROM2 ROMS ROM4 INT1 INT2 I NTS INT4 -84- L SLOTS SLOT4 M 7 3500 8 4 System SW1 (DIP SW) (User operative through the cabinet bottom) No Signal name 1 SW1 Function Description Position Polarity ON L OFF H ON L OFF H ON L High resolution CRT (MZ1D02. MZ1D03) OFF H Medium resolution CRT (MZ1D01, MZ1D06) ON L A period is output for a decimal point OFF H A comma is outputted for a decimal point ON L Low state or open ER signal during data output will result in an error OFF H The signal ER becomes invalid ON L CD is high as long as power is on to the main unit OFF H CD goes high only during data output However, it would not go high if the echo back function is on the host side ON L An error is cause when the PO signal is high during data output OFF H Polarity is inverted for the above ON L Normally in capital letter, but in small letter when shifted OFF H Normally small leter and in capital letter when shifted ON L 3500 CG will be assigned when the 200 raster CRT is in use H 2000 CG will be assigned when the 200 raster CRT is in use SW2 ON OFF ON OFF Printer select SW2 2 SW3 3 SW4 4 SW1 ON ON OFF OFF #47 pin of MMR CE332P MZ1P02 IO2824 £48 pin of MMR #51 pin of MMR CRT select Choice of decimal point output format #52 pin of MMR SW5 5 SW6 6 7 RS232C assign SW7 FD1 (SW8) 8 P/M (SW9) 9 Key shift mode setup Choice of CG for display OFF ToCTS, DSR of the 8251 ToCTS of the 8251 #54 pin of MMR (FDD P/M signal (To A3 CG) NC 10 ^ = — =T Dip switches (A) and (B) located on the PWB are used for servicing the MFD or for other machine service and there fore the user is not supposed to use these switches In addition, these switch must be used when either the CE 330M or 331M is used as the expansion MFD DIPSW(A) No Signal name 1 SEC (SW1A) t 44 pin of MMR 2 FD2 (SW2A) 56 pin of MMR 3 FD3 (SW3A) 58 pin of MMR SRQ (SW4A) Bus request to sub-CPU 4 DIPSW (B) No Signal name 1 SRES (SW1B) SUB CPU reset signal 2 SW2B SUB CPU BUS select signal 1 2 3 OFF OFF OFF WhenSH in use ON OFF OFF When DH in use OFF ON OFF ON ON OFF OFF OFF ON — — Use of the CE330M as an expansion unit ON OFF ON Use of the CE331M as an expansion unit OFF ON ON Check mode *1 ON ON ON Check mode *2 *1 Test program is loaded and executed *2 Provided for the test of the MFD interface The read/write test is carried out for the expansion unit \ Used for an individual test of the CPU PWB When these three switches are turned off altogether, it makes the sub CPU operated independently condition under a normal situation To be used in th ON MZ3500 DIPSW(B) DIP S W ( A ) • 1 2 3 4 1 2 OFF OFF OFF ON ON ON Switches are set in this manner before shipment of machines this us the single-sided minifloppy disk drive. ON OFF OFF ON ON ON Switches are set in this manner before shipment of machines that use the double-sided minifloppy disk drive. OFF OFF ON ON ON ON Switches are set in this manner when the SH is used for the optional MFD ON OFF ON ON ON ON Switches are set in this manner when the DH is used for the optional MFD OFF ON ON ON ON ON Test mode * 1 ON ON ON ON ON ON Test mode "2 OFF OFF OFF X ><^ \(f Individual CPU PWB test Can be in either state - 86 - , My-it^n Pn^41 ( 11/171540' vv"=/n ' ' MZ3500 9, POWER CIRCUIT DESCRIPTION 1. BLOCK DIAGRAM (Block diagram) A. +5V and +12V supplies 1. Functions a. Supply voltage is first rectified in the rectifier circuit and sent out to the switching regulator via the overcurrent detector provided in the overcurrent protect circuit. b. Next, the voltage is converted to the +5/+12V output in the switching regulator and sent out to the noise • Nfilter. c. Change in the switching regulator output voltage is sensed by the control circuit and is fed back to the switching regulator after being amplified in the amplifier located in the control circuit, for maintaining the output voltage to a constant level. d. The signal from the oscillator is supplied to the switching regulator through the control circuit for driving the switching regulator. e. For prevention of overcurrent, the protect circuit is used for stopping the oscillator when an overcurrent is met, and it makes the switching regulator to halt in order to shut off +12V/+5V supply. 2. Description of each block a. Overcutrent protect (control/protect) circuit When an overcurrent is met in the +5V/+12V circuit, it causes to increase the voltage at both ends of the overcurrent detector resistor R1, which in turn causes to increase the Q3 collector current, for, there arises larger voltage difference between the emitter and base of the transistor Q3. This makes the gate voltage of the thynstor increased owing to activation of SR. Witr, jctivation of SR it makes the oscillator voltage dropped to the GND level at the point "a" to stop oscillation, which also makes the switching regulator stopped by the deactivation of the transistor Q5 oscillation. This causes the transistor Q5 inactive, and it shuts off the +5V/ + 12V supply, b. Oscillation circuit As the Q1 emitter voltage is at almost GND level whethe transistor Q1 is active, the Q2 base voltage temporarily drops close to the GND level by means of C6, which in turn makes Q2 inactive and the Q2 emittei voltage increases. Then, the Q2 base voltage comes to rise as C6 begins to be charged through R6, and the transistor Q2 starts to activate again. With activation of the transistor Q2, the Q2 emitter voltage starts to drop and the Q1 base voltage is temporarily dropped by means of C5, to shut off the transistor Ql, which causes to increase the transistor Q1 emitter voltage. Next, as C5 is charged by R5, it makes the Q1 base voltage increased which puts the transistor Ql into activation. In this manner, transistors Q1 and O2 are alternately turned on and off to keep oscillating. C5 and C6 are charged through R5 and R6 by on/off action of the Q1 and Q2, and discharged through Ql and Q2. M 7,3500 Switching regulator + 5V or Q5 (Switching regulator and constant voltage control circuit) « VR is the+5V or+12V adjusting VR. • D3 is provided to discharge current from Cj after power off. - 88- M23500 c. Power switching circuit As the signal from the oscillator is amplified through Q7 to Q6 to change current to the transformer T2. it causes voltage to appear on the base of Q5 (one of components is cut by D1), so that the transistor Q5 begins to perform switching operation in synchronization with the oscillation frequency. As Q2 is switched, current is supplied to the emitter side of the transistor Q5, which produces smoothed voltage through the capacitor C1 and the coil L2. The circuit composed of D4 and VR1 is the reference voltage for the +5 or + 12V supply, which is used to control the emitter current flowing to the transistor Q9. The current supplied from Q9 is used to create Tr3 inactive by the delayed C1 and C2 voltages which supplied from Tr1-R2-VR1-D3. It goes high with deactivation of Tr3. 3. Alarm circuit (Alarm generation circuit) When power turns off, the voltage accumulated in C1 and C2 are supplied to the base of Tr2 via Tr1 ... and D3, so that Tr2 is kept active and Tr3 inactive for sometimes after power off. Timing chart SW + 5V PFD -89 - MZ3500 10. MZ1K01 KEYBOARD CONTROLLER CIRCUIT DESCRIPTION 10-1. Specification of keyboard control 11) One-step commands uior 1) Input Buffer Capacity: 64 bytes • Key-in data is written to the input buffer first, and is supplied to the CPU, byte by byte. • When an overflow is detected, the overflow code is affired to the key-in data already sent, before being sent to the CPU. 2) Rollover • 2 key rollover (exemption in the CTRL mode) (Entry of the second key depression can be accepted even if more than one key is pressed at same time.) • Simultaneous depression of more than three keys is ingnored. 3) Key bounce 15msec (Key spec is 5-10msec) (Indicates unstable state as shown in Fig. 3-2 that key signal does not turn off immediately after releasing of finger from the key.) LMU / 5) [ 6) 7) 8) LML) o INrU T UMU 4 USING pft/in "7 . (jU I U pr\ci ID Kb 1 UnN Lib 1 PMH n . PMn A At rrn ULUbt PMH n - n ATA CMU K. K.hY IN i OAH nrUnMA 1 fF PMH i r*Mn r\ - nhAU PMH c 4) Key 5msec (norma), 20msec (max), 15msec (allows for key bounce) DEF Key Twenty definable keys are available in combination with the CTRL key. DFK1-DFK10 (DEF1A-DEF10A) DEF1-DFK10 in conjunction with the CTRL key - - - (DEFIB-DEF10B)(DEF1B-DBF10B) Handling of functional symbols and graphic symbols See the code table. Use of the CTRL key to discriminate RUN and CONT of the DEB key. Push the DEB in conjunction with the CTRL key to start running. Handling of special codes COPY command: CTRL | 1 J (ten key) ESCape CTRL BRK CTRL rnlNI CA\/C 12) Mode indication on LED Acrn i nr^w 13) REP Key repetition will take place when a key depressed for more than 0.64 second. Entry of other keys is permitted during key repetition. When two keys are depresssd at the same time, an alternate key entry will not be accepted. This rule does not apply to simultaneous depression of more than three keys. 9) PRO/OP Sent to the CPU after power on and when PRO/OP is changed. 10) HOME key CTRL [ HOME] Returns home after clearing the display screen. [HOME] Only the cursor returns home. - 90 - MZS500 10-2. Key search timing Single key entry Bounding / Key n STROBE n n n n n n n 15ms 1 Strobe *~5.5ms M 5ms -» RETURN cvcle n n n n n n n DATA OUT Two key entry /A" Key 1 Key 2 n STROBE n n n -5.5ms—M—•6.5ms —M—5ms —W n RET n n n n n n n n 15ms M 15ms DATA (1) OUT DATA (2) OUT 10-3. Key serial transmission procedure 1) Data format Key -» CPU 2s 2s 22 21 2° Parity DATA All nine bits Command AM 4 bits Key Parity - 91 - MZ 3500 • Command flag: "0" when succeedeing 8 bits are a key data. "1" when it is a command or a graphic control data. • Data: Positive logic (negative logic on the cable) • Parity: Odd parity up to 27 bit from the correction flag. 2) Interfacing signals CPU level • D(K): Output data from the keyboard. Positive logic • ST(K): D(K) strobe signal. Also use for Active H interrupt to the CPU. • ACK(C): Acknowledge signal form the Active H CPU. Also use for the data transfer interrupt disable signal. • D(C): Output data from the CPU. Positive logic • ST(C): D(C) strobe signal. Also use for Active L interrupt to the keyboard side. 3) Protocol Key to sub CPU • Keyboard to the sub-CPU data transfer tapes place with interrupt applied at every signal word (STK). • As the sub-CPU detects a next strobe (STK) after going into the interrupt routine, it read data (K) as far as the final parity bit, and the ACK (C) signal is sent back to the keyboard side when the check-sum is correct. • If the ACK (C) signal returns with normal timing, the keyboard controller accepts it. Unless the ACK signal was detected, the same data is sent again assuming a transmission error. • Case when the error data link (sub-CPU not enable to receive data properly) is established. 1) When parity error is found after the check-sum test. 2) When the sub-CPU is in execution of the NMI routine or when NMI is applied during data tranJ.jj, 3) When an error is detected in the couting of strobe (STK(K)) due to noise. When one of above conditions is detected, data will be sent again until received correctly. Key entries during this periode are strobe in the key buffer. Should the key buffer overflow, key entry will not be stored in the key buffer. • When a key buffer overflow is detected a KBOF error code is inserted in the area vacant immediately after transmission of one key-in data, without clean '~ " key buffer contents. SUB CPU TO KEYBOARD • Basically the same as the above cases. • Data is 3 bits plus parity bit. • Return acknowledge pluse: Parity OK . .. STK + DK Parity NO ... STK only • KEY TO CPU (80C49, Z-80) CPU level D(K) n__TL_n ST(K) 32.5 12.5 SUB CPU INT ACK(C) 50 22.5/-s 50 I 17.5 ,«s 60~ 300ns CPU ->• KEY D(C) ST(C) ~ir~Ln_rrr~Lr . 132.5 ST(K) D(K) 1 60 7.5 *s AS / d« SEEK error and RECALIBRATE - 99- MZ3500 MAIN CPU CHECKER FLOW CHART M? Option HAM read/write check Change bank of the option RAM Error on display C - 100 - HALT M 7*500 SUB CPU CHECKER FLOW CHART 1/3 ( SUB CPU CHECKER START ^ I CRTmt*f face t«t SeiGDCto«001 DATA 1 [r IA IB 2Y 2A 2B F CLfcAH A R 1 1 A B C U CLOCK INHIBIT JJ >T LJ LLTLJ LiJ LJ LJ LlJ LJ L D N PARALLEL - Vt Y4 i Yd Y* Y5 CLOCK CLOCK " INHIBIT (MI> INPUTS Y6 I [ Y6 A < < t\ ( 1 Y7 ii Y7 H r LJ , 1 , LJ LJ U LJ U LJ LJ LJ LiJ LiJ LJ LL! LiJ LJ 1Y Jl Y] QH 1 H (H TPLTb V i M (, SFRIA1 INPUT 74 LS 1 38 Yl UH I OAD SERIAL INPUT mm H SHIf I Jr [ LU LLI LiJTiMU LU LU GNI) ( M I OAJ [j V LJ LJ U U U LJ U if sim i/ INIVT airuT ^~ Va C^D 1 A J, J, h ( A C CSD 74 LS 03 Vet +B 4A 4Y 3B 3A i f LT 3Y tNAHI t 1C 1AI 2Y4 K 1Y1 IA° 'V3 IA3 'Y' IA4 CM 2Y] 74 LS 139 SELECT DATA OUTPtTS E \.AHI t , C H LJ LJ LJ LJ LJ LJ LJ IA IB 1Y 2A 2B 2Y GND NtC A 1 1 J> j], C A B YO Yl Y2 Y3 A B YO Yl Y2 Y3 1 i Y Y IA IB 1 Y2 1 Y3 C 74 tS 04 6A 6Y SA^ 5Y 4A 4Y^ U fcAABLt * ' SELECT Y Y 1 YO * IYI DATA A ^ JjuJTU L«J I sITTTT' I I ej LH T»I 1C GND IA1 2Y4 1A2 2Y3 1A3 2Y2 lAi ZY] GND ' OUTPUTS m LJ LJ LJ LJ LJLJ LJ IA IY 2A \tc 4B 4A 2Y 1A 1Y 3B 3A CM> 74 IS 08 4Y H I r1 I I IY r1 LJ LJ LJ LJ LJ LJ LJ IA 1Y 2A 2Y 3A SY LULU LD LJ LU LU LU LJ LU Lll C.ND / 1NPLTS A OUTPUT , INPUTS y OUTPUT LJ LJTJLJ LJ LJ LJ IA IB IY 2A 2B 2Y GN1> J ( Vg 1C IY 3C 3B 3A 4A 4B 4Y SA 3B —s 3Y 3Y M R R R R Rm J Y LJ LJ LJ LJ LJ LJ LJ LJ SI-1 tO IA !B 1 Sf I I ^ IN 2A B 2Y LJLJLJLiJLJLJLJLJLJLJ CLEAW 1Q ID 2V 2Q 3Q 3D 4Lt *Q GND ( M) IM I fS jTj IB UTJ LJ LJ LJ 2A JB ^C 2Y CM> IA 16 M 7. - 3500 74L593 /^PDI 99OC \l \-' 111 I ! IK H I I ! l\ m M M r^n R m O\ liiiiilv II FY OL Ll HO! I r KOI INI bA (...iml.r 1 Lu LLI LLTLu ID TLTLzJ t-L KO; NL Vc(_ NX LU L^J HI L±J 111 LlJ LJ <. 2 l~l LO S 1 )t |)|N (_S B 74 LS 367 ("- Oil I.I LJLJLJliJLJULJ IA IK II A I 1 1 Ml VU OD ^A SY «A 1Y TA7313 IA 5Y (A 1Y mm q>Jq>J (2V W LJ LiJ LJ bJ LJ LUTJ TZT LLlQJ HTLLlliJ UJ U 1A 1Y 2A 2Y »A 3Y GND LH008O S4S1S7 INPUTS ENABLE ' O f STROBE 4A 4B A! 1C 1 A12C 2 A13C 3 IN 4Y 2A A14C C 4B 4A 4Y 2A S - OLTPbT JQ bJ LJ LU U *DLiJ40LiJ 2D 2y 3Q 3D JD AI5C 2Y IA CONTROL 2B IB IY 2A 2B CLKC 2Y LUUJlJJLiJLLjlJJLlJLLl SELECT 1A IB 1Y 2A. 2B 2Y CND 4Y SB JA >Y 171 m nyi ryirTi n 5 6 Z-80 DA4 D3C 8 DA3 D5C 9 DA2 D6C 10 DAI m£ *A DA8 4 D4C 7 + «B DAIO 12 D7C 13 DOC 14 D l C 15 TVTT: 16 JBUSKO N M l C 17 DBIISAK HALTC 18 MK1-.OC 19 TOKOC 20 UUU LJ .QU .,-.UCNDLT 1 ID ICK 1PR CIR > 5 28 DDT IX.] C 1X2 I U U U LJ U U U I 'K 19 IK l> -A h "i < M 22 21 Jl IAD M/-3500 64K /"PD8251 I.2C 1 inC 2 KM.C 1 M>C 1 25 ^ R V T ( ""'C t DIM R 23 DKT^ IX.Q 7 22 J D S K I-7C 8 21 Q 2(i "~K I K mC '-^C TJ^C tit i'-C i*C '*C D»i 310 20 Ihu 28 27 10 18 12 17 RP>C 13 16 R X R 1 » C 14 15 21 U 3V 3^i< uC 1 IIINC 2 T c 3 22 D^T) IMC 4 21 iwC H2C 20 6 It D<^ "k\sC 1 DM we i D^ \^C i, I>lC 7 18 D(.IK2 8 17 5 7 It. H.M, urc 1 U 1> DPvs A\&C 2 11 DI>OI i ^iC H \i ^^^C 1. D \ < \M'C }' DM uiC 10 3 V. \\2C t 17 D \\7 16 D \\8 I. i 3\- r^c ~~l( A Th 2 10 3r\hMi'r. c.vrhoC DcTS i-MC \i C 1 ,"PD2114 H (_ I H 0 f"~ 19 11 1 2 D-RAM PHc 14 D wsD' "i f. 13 D 1 <>2 7 12 3 1 03 8 H D 1 <>4 1> K \M (,M,C M 10 D»h DLI M 15 11 14 D ' . A I h 1 12 13 D s K.-.'u 1 ST 11 Al 4 21 sRrn 31 SM_K 41 »RB 2 DO 12 Al 3 22 kOl B 32 •RTTti 42 IT3B 3 Dl 13 A 2j KOAB 33 kh2B 43 IT4B 4 D2 14 24 ROBR 34 WATB 44 She 5 D3 15 SKO 2S 35 RLMB 45 (,M> 6 D4 16 AR1 3 26 KI;LB RO[>n 36 1TI-B 46 (AD 7 D5 17 AR1 4 27 K-, Mi 37 i roB 47 S»l 8 ns 18 \K1 * 28 K'-MH 38 IT] R 48 M ,r I" su 2 \" \1 5 20 30 I1 10 1' i 1 1 O\ 50 Rl-SH 51 SW3 61 C,M> 71 (.NO 52 S»4 62 (,ND 72 1MB 53 (,M> 63 K02B 7d Nt 54 h»l 64 K03B 1 ksim i i ; i, 40 VkOIl ©© ©©©©©©©©©© A7C 55 (.SD 65 HDD 2O1 6P 56 H)2 66 (.1 k M58725-15 6116P-3 57 SYSR 67 K04B 58 H>3 68 MPX 59 COAB 69 (,M> 60 RO 1 B 70 C ASB ~ ^~ 24 D V U) A6C 2 A5C 3 23 DA8 A4C 4 A3C 5 21 ]K'-» 20 3cFI \2C 6 11 D AIO AlC 7 18 ]c_!-2 22 DAS AOC 8 17 3 1 1)8 i>i C 9 16 3 1 XT7 1>2C 10 •03 C I I 15 3 1 'J6 .MC 12 13 3 I 04 14 3 I 1)5 20 MZ-35OO PARTS GUIDE LI MZ-3500 li Exteriors PARTS CODE NO 1 CCABC1007ACZZ 2 31 4| !> 6 7 8 9 10 11 12 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 G F T A F 1 0 0 1 A C Z Z HBDGB3004GESA T L A B Z 1 0 0 3 A C Z Z T L A B Z 1 0 0 8 A C Z Z QCNCW1008AC01 Q PWB F 1 0 0 5 A C Z Z V H P G L 9 P R 2//1 GCABA1003ACZZ G F T A U 1 0 0 5 A C Z Z PSPAG1004ACZZ T L A B Z 1 0 1 7 A C Z Z X B P S F 3 0 P 0 6 K O O OUNT-1018ACZZ DUNT-1035ACZZ GCABB1004ACZZ GCOVH1 00 1ACZZ LANGT1003ACZZ LANGT1010ACZZ LCHSM1008ACZZ L X-l Z 6 0 2 3 R C Z Z NFANP1001ACZZ RMEMR1002ACZZ GLEGP0010UCZZ XBPSD30P08KSO XBPSD40P06KSO L X-B Z 1 0 0 1 ACZ Z X B P S D 4 0 P 0 6 K O O X B T S C 4 0 P 0 6 0 0 0 X B T S F 4 0 P 0 8 0 0 0 XCPSD40P12000 PHOG-1001ACZZ GFTAF1002ACZZ LHLDW6655RCZZ QLUGL0006UCZZ XBPSD30P30KSO VR S - P T 3 L B3 3 0 J LHLDW6655RCZZ PSLDM1003ACZZ TLABZ1400CCZZ PRICE RANK A Y A E A E AB A A AC A A AC BM A L AC AC A A ** ** BG AM AX A E AY A A BM ** AB A A A A AC A A A A A A A A AC A E AB AB A A AC AB AP A A NEW MARK N N N N N N N N N N N N N PART RANK D D D D 0 C C B D D C C C E E D D C C C C B E C C C C C C C C C D C C C C C C C D E S C R I P T I O N Front Cabinet assembly Lid for Graphic slot Badge "SHARP' Label "POWER 1 Drive No label Connector 2pm LED PWB Photo transistor Bottom cabinet Lid for ROM LSI Rubber spacer Label for l/O^ort Screw Power supply unit for 200V series Power supply unit for 100V series Top cabinet Slot cover Fixing angle for MFD Fixing angle for fan Chassis Rivet Fan motor MFD unit Rubber foot Screw Screw Screw Screw Screw Screw Screw Rubber cushion Cover Wire holder Lug terminal Screw Resistor (3 OW 33n ±5%) Cord holder Shield for MFD Label 1 1 I oe IE--or ooss-zw MZ-3500 [2] PWB & Fixing angles NO 1 2 3J 4 5 6 7 8 9 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 31 32 33 34 35 PARTS CODE JKNBM0004PAZZ LANGS1006AC2Z L A N G K 1 0 0 7 A C Z Z OCNCW1 0 0 8 A C 0 2 Q S W - K 1 0 0 7 ACZ Z R V R-A 5 4 5 2 QCZ Z VSP0080P-608N XBPSD30P06KOO DUNTK1082ACZZ DUNTK 083ACZZ DUNTK 0 6 4 ACZ Z DUNTK 060ACZZ GFTAR 003ACZZ G F T A R 0 0 4 AC Z Z LHLDZ 001ACZZ Q C N W — 0 0 3 ACZ Z QCNW- 0 0 4 A C Z Z QCNW- 0 4 7 A C Z Z Q C N W - 0 4 4 ACZ Z X B B S C 2 6 P 0 4 0 0 0 XBBSC30P06000 XBPSD30P06KSO XUPSD26P06000 LANGQ1004ACZZ LANGQ1005ACZZ PCUSG1001ACZZ P Z E T Y 1 0 0 1 A C Z Z QCNCM1002ACZZ Q C N W — 1 0 0 7 ACZ Z XBPSD30P10000 XBPSD40P08KSO XNESD30—24000 PHQG-1002ACZZ XN E SD3 0-2 4 0 0 0 LHLDF6648RCZZ PCUSG1001ACZZ PRICE RANK NEW MARK PART RANK AC N N N N C C C C B B C C E E E E D D C C C C C C C C C C C C C C C C C C C N C C C A F AB A A A A A F E F N A * * * * * * * * AD AC AD AK AM AM AM A A A A N N N N N N N N N A A A A AH A F A A A E N N N N AQ AX N A A A A A A AC A A AB A A D E S C R I P T I O N Knob for V R Fixing angle for speaker Fixing angle for speaker Connector HALT switch Variable resistor Speaker Screw CPU PWB unit (Model 3541) CPU PWB unitiModel 3530) CPU PWB unit (Model 3540) MFD I/F PWB unit Cover for RS232C I/O slot Cover for I/O slot Guide for PWB Connector for light pen Connector for key board Connector for CRT-1 Connector for CRT — 2 Screw Screw Screw Screw Connector "A" angle Connector "B" angle Cushion for PWB Insulator for MFD Connector Connector (18pm) Screw Screw Nut Rubber cushion Nut Holder Rubber cushion for PWB ! (1-22)-- 32 M2-3500 13. Connector PARTS CODE NO 11 O C N C P 6 0 4 1 Q C Z Z T QCNCP4841QCZZ 3 QCNCW1001ACZZ 4 QCNCM1 0 0 4 A C Z Z 6 QC N W- 1 0 0 7 AC Z Z 9 QCN CWO 2 0 7 HC Z Z 10 Q C N C M 1 0 0 9 A C Z H 11 Q C N C M 1 0 0 9 A C Z i 12 Q C N C M 1 0 0 9 A C Z B 13 Q C N C M 1 0 0 9 A C Z G 14 Q C N C M 1 0 0 9 A C Z E 1&1 Q C N C W 1 0 0 8 AC 0 1 17 QC NCW 1 0 0 8 AC 0 2 18 QC NW— 1 0 4 7 AC Z Z 19 QC NW— 1 0 4 4 AC Z Z 20 Q C N W - 1 0 0 4 A C Z Z 21 Q C N W - 1 0 0 3 ACZ Z 26 L H L D F 6 6 4 8 R C Z Z PRICE RANK AW AT AZ AQ AX AK AC AC AA AC AB AC AF AM AM AM AK AB NEW MARK N N N N N PART RANK C C C C C C C C C C C C C C C C C C D E S C R I P T I O N Connector Connector Connector Connector Connector Connector Connector Connector Connector Connector Connector Connector Connector Connector Connector Connector Connector Holder for CRT -2 for CRT— 1 for key board for light pen 18 15 20 21 MZ-3500 [41 Others NO. PARTS CODE 1 RMEMR1004AC07 9 10 13 UBNDA1 0 0 8 C C Z Z S P A K A 1 0 0 3 A C Z Z SSAKH3002KCZZ PRICE RANK BA A A A Z AD NEW MARK PRICE RANK AH AB A K AZ A A AB AC AC AC A T AW A D AD A E A E AG A Z AK AR A E AU AU AU AT AC AC AD A S A A A A A A AB AB AB AB AC AC AB AB AB A A A A A B A A AB A B AB AD AU BN A X A Z A E A E A E A E A E A E A H A K A L AM A K A L AM AR AP A F NEW MARK N N PART RANK D D D D DESCRIPTION Master media AC Cord band Packing cushion Plastic bag CPU PWB NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 PARTS CODE LANGQ1004ACZZ LHLDF6648RCZZ QCNCW0207HCZZ Q C N C W 1 0 0 1 AC Z Z QCNCM1 0 0 9 A C Z B QCNCM1009ACZE QCNCM1009ACZG QCNCM1009ACZH QCNCM1009ACZi QCNCP484 1QCZZ QCNCP604 1QCZZ QSOCZ6414ACZZ QSOCZ6416ACZZ Q S C - C Z 6 4 2 4 ACZ Z QSOCZ6428ACZZ QSOCZ6440ACZZ QSW-Z1002SCZZ QSW-Z2005SCZZ Q SW-Z 9 6 6 0 K C Z Z R C - K Z 1 0 1 8 CCZ Z RCRS-1001ACZZ RCRS-1002ACZZ RCRS— 10 0 3 A C Z Z RCRSP1 003CCZZ RMPTC4333QCKB RMPTC4682QCKB RMPTC8333QCKB UBATN1001ACZZ VCCSPU1HL100D VCCSPU1HL330J VCCSPU1HL470J VC E A A A 1 CW 1 0 6 Q VC E A A A 1 CW 1 0 7M VCEAAA1CW336M VCEAAA1EW106M VCEAAA1EW107M VCEAAA1EW227M VC E A A A 1 HW 1 0 5 M VCEAAA HW335M VC E A A A HW4 7 5M VCKYPA HB681K VCKYPA HB681K VCKYPU HB221K V C K Y P U 1 H B 5 6 IK VCTYPA1NX104M VCTYPA1NX104M VCTYPU1EX103M VHDDS1588L1-1 VH HM472114-1 VH HM6 1 1 6 P 3-1 VH L H 0 0 8 0 A/— 1 VH M 5 8 7 2 5 P - 1 5 VH M74LSOO/-1 VH M 7 4 L S 0 2 / - 1 VH M 7 4 L S 0 3 / - 1 VH M 7 4 L S 0 4 /— 1 VH M 7 4 L S 0 8 /— 1 VH M 7 4 L S 1 0 / - 1 VH M 7 4 L S 1 2 5-1 VH M 7 4 L S 1 3 8 - 1 VH M 7 4 L S 1 3 9 - 1 V H M 7 4 L S 1 4/ — 1 VH M 7 4 1 S 1 5 7— 1 VH M 7 4 L S 1 6 6 - 1 VH M74LS244-1 VH M74LS245-1 VH M 7 4 L S 2 7 3 —1 VH M 7 4 L S 3 2/— 1 N L N N N PART RANK C C C C C C C C C C C C C C C C B B B C B B B B C C B A C C C C C C C C C C C C C C C C C C C B B B B B B B B B B B B B B B B B B B B B DESCRIPTION Connector "A" angle Holder Connector Connector Connector Connector Connector Connector Connector Connector Connector 1C socket (14pm) 1C socket (16pm) 1C socket (24pm) 1C socket (28pm) 1C socket (40pm) DipSW Dip SW DipSW Capacitor X-Tal (3932MHz) X-Tal (32MHz) X-Tal (245MHz) X-Tal (32KHz) Block resistor (1/8W 33KOX4) Block resistor (1/8W 68KOX4) Block resistor (33KQX 8 1/8W ±10%) Battery Capacitor (50V 10PF) Capacitor (50WV 33PF) Capacitor (50V 47PF) Capacitor (16WV 10,, F) Capacitor (16WV lOO^F) Capacitor (16WV 33WF) Capacitor (25WV 10j.F) Capacitor (25WV 100,uF) Capacitor (25WV 220,/F) Capacitor (50WV 1 O^F) Capacitor (50WV 33^F) Capacitor (50WV 4 7^F) Capacitor (50WV 680PF) Capacitor (50WV 680PF) Capacitor (50WV 220PF) Capacitor (50WV 560PF) Capacitor (12WV 0 10,, F) Capacitor (1 2WV OlO^F) Capacitor (25WV OOIO^F) Diode (1S1588L1) 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C MZ-3500 ,5! CPU PWB NO PARTS CODE 69 70 71 72 VH M 7 4 L S 3 6 7 - 1 VH M 7 4 L S 3 7 3 — 1 VH M 7 4 L S 7 4/- 1 VH M 7 4 L S 7 5/— 1 74 75 76 77 78 79 80 81 82 83 84 85 86 87 V H VH VH VH VH VH VH VH VH VH VH VH VH VH M 7 4 L S 9 3/1 S N 7 4 0 4 N/- 1 S N 7 4 0 6 N/1 S N 7 4 1 5 7 N - 1 SN75188N-1 S N 7 5 1 8 9 A —1 S P 6 1 0 2 C 0 0 2 SP6102C003 S P 6 1 0 2 R 0 0 1 T A 7 3 1 3 A P —1 T C 4 0 4 9 P/— 1 U P 0 1 9 9 0 A C C UPD7220D—1 UPD8255/-1 V H 276 4 / / A C 0 1 V H 2 7 6 4/ / A C 0 2 VH 276 4 //AC 03 V H 276 4 / / A C 04 VH 4 1 6 4 —1 5 0 — H V H 8 2 5 1 A C//— 1 V H 8 2 5 3 ////— 1 V H P G L 3 P R 2//— 1 VRD-ST2EY331J 89 90 91 92 93 94 V R D — S T 2 E Y 4 7 0 J 95 V R D - R V 2 E Y O O O J % V RD-ST 2 E Y 1 0 1 J 97 V R D - S T 2 E Y 1 0 2 J 98 V R D - S T 2 E Y 1 0 3 J 99 V R D - S T 2 E Y 1 0 4 J 100 V R D - S T 2 E Y 2 2 2 J 101 V R D - S T 2 E Y 3 3 1 J 102 V R D - S T 2 E Y 3 3 2 J 103 V R D - S T 2 E Y 3 3 3 J 104 V R D - S T 2 E Y 5 6 1 J 105 V R D — R V 2 E Y 6 8 2 J 106 V R D - S U 2 E Y 1 5 2 J 107 V R D - S U 2 E Y 4 7 0 J 108 V R D - S U 2 E Y 6 8 1 J 109 V R D - S U 2 E Y 8 2 1 J 110 V R D — S U 2 E Y 8 2 2 J KC/-1 111 V S 2 S C 4 5 8 112 X B P S D 3 0 P 0 6 K S O 113 X B P S D 3 0 P 0 8 0 0 0 PRICE RANK AH AQ AG A E NEW MARK PART RANK B B B B A K AF B B B B AG AM AM L A P A L AN AT BS A Y LM LM LM LM A2 A B A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B B B B B B B B C C C C C C C C C C C C C C C C C C B C C BG BG BP Y A E A A A A A A A A A A A A A A A A A A AD A A A A D E S C R I P T I O N 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C LSI PROM-IPL LSI PROM-CG (English) LSI PROM-CG (Germany) LSI PROM-CG (French) 1C 1C 1C Photo transistor GL3PR2 Resistor (1/4W 3300 J) Resistor (EX 110V.220V onjy) (1/4W 47O ±5%) Resistor (1/4W ±5%) Resistor (1/4W lOOO ±5%) Resistor (1/4W 1KO) Resistor (1/4W 10KO) Resistor (1/4W 100KQ ±5%) Resistor (Japan only) (1/4W 2 2KD ±5%) Resistor (1/4W 330(1 J) Resistor (1/4W 33KD ±5%) Resistor (1/4W 33KO) Resistor (1/4W 5600 J) Resistor (1/4W 6 8K(1 ±5%I Resistor (1/4W 1 5Kfl J) Resistor (47fi) Resistor (1/4W 680(1 J) Resistor (1/4W 8200 ±5%) Resistor (1/4W 8 2KO ±5%) Transistor Screw Screw [6] Power supply unit NO PARTS CODE 1 O A E 3 0 2 1 6 9 0 4 // 2 O A E 3 0 2 6 3 0 2 5 / / 3 O A E 3 0 2 6 3 0 2 5 / / 4 O A E 3 0 1 0 9 0 6 6 / / 5 O A E 3 0 1 0 9 0 6 6 / / 6 O A E 3 0 2 5 8 7 8 4 / / 7 O A E 3 0 2 2 1 5 1 7 / / 8 O A E 3 0 2 2 1 5 2 0 / / 9 O A E 3 0 2 6 3 0 2 5 / / 10 O A E 3 0 3 6 2 0 5 2 / / 11 O A E 3 0 2 6 3 0 2 5 / / 12 O A E 3 0 2 6 3 0 2 5 / / 13 O A E 3 0 2 6 3 0 2 5 / / 14 J D A E 3 0 1 0 9 0 6 6 / / 15 O A E 3 0 1 0 9 0 6 6 / / 16 O A E 3 0 2 7 9 8 4 4 / / 17 O A E 3 0 1 6 7 3 7 0 / / 18 O A E 3 0 2 2 1 5 4 6 / / 19 O A E 3 0 2 6 3 0 2 5 / / 20 O A E 3 0 2 6 9 4 3 0 / / 21 O A E 3 0 2 6 1 6 5 8 / / 22 O A E 3 0 1 2 1 9 4 7 / / 23 O A E 3 0 4 9 9 8 3 1 / / 24 O A E 3 0 3 6 2 0 8 1 / / PRICE RANK A S AD A F A E AE A X A L AH A D AD AD AD AD AE A E A H A T A H A D A Y A D A F 1_J\D A D NEW MARK N N N N N N N N N N N N N N N N N N N N N N N N PART RANK B B B B B B B B B B B B B B B B B B B B B B B B D E S C R I P T I O N 1C (UPC78M12H) Transistor (2SC1815-Y) Transistor (2SC1815-Y) Transistor (2SA733-Q) Transistor (2SA733-Q) Transistor (2SC2750-L) Transistor (2SA965-Y) Transistor (2SC1 627- Y) Transistor (2SC1815-Y) Transistor (2SA1015-Y) Transistor (2SC1815-Y) Transistor (2SC1815-Y) Transistor (2SC1815-Y) Transistor (2SA733-Q) Transistor (2SA733-Q) Transistor (2SA1 020- Y) Transistor (2SC2334-L) Transistor (2SC2655-Y) Transistor (2SC1815-Y) Transistor (SI OSC4M) Zener diode (H29L-A1) Diode (1S234-8H) Zener diode (HZ11L-B1) Zener diode (HZ7L-C2) [M001] [Q001] [Q002] [Q003] [0004] [Q005] [Q006] [0007] [Q008] [Q009] [Q010] [Q011] [Q012] [Q013] [Q014] [Q015J [Q016] [Q017] [Q018] [DU001] [D001] [D002] [D003] [D004] MZ-3500 [6j Power supply unit NO. 25 26 27 28 29 30 31 32 33 34 35 36 37 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 PARTS CODE OAE30121921XX O A E 3 0 1 2 1 9 2 1 / / OAE30379029// OAE30121921// O A E 3 0 1 2 1 9 2 1/ / O A E 3 0 2 0 0 7 7 4 / / O A E 3 0 2 0 0 7 7 4 / / OAE30379029XX O A E 3 0 2 5 0 3 2 6 / / OAE30121921XX OAE30159870 / / OAE30121866// O A E 3 0 1 6 5 2 6 2 / / OAE30511353 / / O A E 3 0 2 7 2 3 9 1/ / O A E 3 0 5 0 9 7 2 1/ / O A E 3 0 5 0 9 7 2 1 // O A E 3 0 5 2 3 3 7 0 / / O A E 3 0 1 4 3 5 7 2 / / O A E 3 0 1 4 3 5 7 2XX O A E 3 0 1 2 0 6 5 0 / / OAE30169653 / / OAE30227236 / / OAE30120524 / / OAE30129460 // OAE30129460 // OAE30129460XX O A E 3 0 2 8 0 6 7 1XX OAE30165576 / / O A E 3 0 1 6 5 5 7 6XX OAE30169653XX OAE30169653XX O A E 3 0 1 2 0 5 2 4 XX O A E 3 0 1 6 4 4 0 9XX OAE30120456XX OAE30 29460 XX OAE30 2 0 4 5 6 XX OAE30 70008 XX OAE30 7 0 0 0 8 XX OAE30 13525 XX OAE30 9 5 2 5 8 XX OAE30 2 0 5 2 4XX OAE30 2 0 5 2 4 XX OAE30 6 4 4 0 9 XX OAE30 16729 XX OAE30 1672 9XX V R S—P T 3 A B 1 0 2 J VR S - P T 3 DB 1 5 2 K V RD-ST 2 E Y 1 5 2 J V RD-ST 2 E Y 3 3 3 J V RD-ST 2 E Y 3 3 3 J V R D—S T 2 E Y 1 5 2 J O A E 3 0 4 9 1 1 6 9XX VRD-ST 2 EY 1 0 0 J VRD-ST 2 EY 1 0 2 J O A E 3 0 5 0 8 0 4 9XX VRD-ST2EY4R7J O A E 3 0 5 0 1 8 6 8 XX O A E 3 0 1 4 3 2 8 4XX VRD-ST 2 EY 3 3 1 J V R S - P T 3 AB 1 0 0 J V RD-ST 2 E Y 2 7 2 J V RD-ST 2 E Y 1 0 2 J VRD-ST2EY391J VRD-ST 2 EY 4 7 1 J VRD-ST 2 EY 3 3 1 J VRD-ST 2 E Y 1 8 2 J VRD-ST 2 EY 1 5 2 J VRD-ST 2 E Y 2 2 2 J VRD-ST 2 E Y 1 0 2 J V RD-ST 2 E Y 2 2 2 J VRD-ST 2 E Y 6 8 1 J VRD-ST 2 E Y 2 2 0 J VRD— S T 2 E Y 1 0 2 J VRD-ST 2 E Y 1 0 2 J VRD-ST2EY331J VRD— S T 2 E Y 3 3 1J O A E 3 0 4 9 0 9 4 0XX VRD— S T 2 E Y 3 9 0 J V RD-S ' 2 E Y 1 5 1 J PRICE NEW RANK MARK AC AC AD AC AC AG AG AD AG AC AY AN AH AP AP AG AG AP AC AC AG AC AD AC AC AC AC A E AG AG AD AD AC AC AC AC AC AG AG AG AG AC AC AC AK AK AC AB A A A A A A A A A A A E A A AG AB AC AC A A AB AA A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A E A A PART RANK N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N B B B B B B B B B B B B B C C C C C C C C C C C C C C C C C C N N C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C D E S C R I P T I O N Diode (1S2076A-FEC) Diode (1S2076A-FEC) Zener diode (HZ7L- 62) Diode (1S2076A-FECJ Diode (1S2076A-FEC) Diode I30DF-1) DiodeI30DF -_1) Zener diode (HZ7L- 32} Diode {10DF-_1J Diode (1S2076A-FEC) Diode (SI OVBIQ} Diode QB4B1) Thyristorip3P05M) Capacitor (0 22^,F 250V) Capacitor (O.ljiF 125V) Capacitor (DE1107E222M250VAC) Capacitor (DE1107E222M250VAC) Capacitor (KM50VRSN10000HR) Capacitor (50F2S102K) Capacitor (50F2S102K) Capacitor (50F2S154K) Capacitor (50ULB10-M) Capacitor (10ULB220-M) Capacitor (50F2S223K) Capacitor (50F2S103K) Capacitor (50F2S103K) Capacitor (50F2S103K) Capacitor £35ULB33-M) Capacitor (10ULB1000-M) Capacitor (10ULB1000-M) Capacitor (50ULB10-M) Capacitor (50ULB10-M) Capacitor (50F2S223K) Capacitor (50F2S332K) Capacitor (50F2S472K) Capacitor (50F2S103K) Capacitor (50F2S472K) Capacitor (25ULB330-M) Capacitor (25ULB330-M) Capacitor (35ULB220-M) Capacitor (25ULB220-M) Capacitor (50F2S223K) Capacitor (50F2S223K) Capacitor (50F2S332K) Resistorr (TMIOK(PVB)B 2Kfl) Resistorr (TMIOK(PVB)B 2KQ) Resistorr (RSI FB IKOJ) Resistorr (RS2FB 1.5KOJ) Resistorr (CR25 1.5KOJJ Resistorr (CR25 33KOI) Resistorr (CR25 33KHJ) Resistorr (CR25 1.5KHJ) Wire resistor Resistor (CR25 lOflJ FJ Resistor (CR25 1KOJ) Resistor (MDS 05N 5.6fl) Resistor (CR37 4.7OJ) Resistor (RS1FB 63OI) Resistor (MR25 47DG) Resistor (CR25 330OJ F) Resistor {RSI FB lOflJ) Resistor (CR25 2.7KHJ F) Resistor (CR25 IKflJ F) Resistor (CR25 390HJ F) Resistor (CR25 470fU) Resistor (CR25 330flJ F} Resistor [CR25 1.8KOJ F) Resistor (CR25 1.5KOJ F) Resistor (CR25 2.2KC2J F) Resistor (CR25 1KOI F) Resistor (CR25 2.2KfiJ F) Resistor (CR25 680HJ) Resistor (CR25 22OI) Resistor (CR25 1KOJ F) Resistor (CR25 1KOJ) Resistor (CR25 330nj) Resistor (CR25 330OJ) Wire resistor ResistoriCR25 39DJ F) Resistor (CR25 150OJ F) [D005] [D006] [D0071 [D008J [D'.'09j [D010] [D011] [D012] [D013] [0014] [RC001] [RC002] [TH001] [C001 ] [C001] [C0021 [C003] [C004J [COOS] [C006] [C007] [COOS] [C009] [C011] [C012] C013] C014] [C015] [C016] C017] .0018] C019] [C020] [C021 . [C022. [C023. [C024. [C025] C026. C027! :C028! C029] [C030] [C031] [RV001] [RV002] [R001] .R002] R003] [R004] [R005] [R006] [R007] [R008] [R009] [R010] [R012] [R013] [R014] [R015J [R016 [R01 7 [R018 [R019] [R020] [R021 ] [R022] [R023] [R024] [R025] [R026] [R027] [R028] [R029] [R030] [R031 [R032] [R033] [R034] [R035] M2-3500 J9, MZ1K02,1K03,1K04,1K05 (Key unit) 19 19 i <, MZ-3500 [1Q! MZ1R03 (Graphic board) NO PRICE RANK PARTS CODE 1 DUNTK1025ACZZ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 * A A A A A S P A K A 1 0 1 3 A C Z Z SPAKC1 0 7 8 A C Z Z X B P S D 4 0 P 0 6 0 0 0 T S E L F 0 0 0 3 P A Z Z LANGT 1 0 0 8 A C Z Z Q SOC Z 6 4 1 6 A C Z Z Q S O C Z 6 4 4 0 A C Z Z RC-C Z 1 0 0 0 Q C Z Z RC-SZ200 1HCZZ VCEAAU1CW107M VCEAAU1CW336M VCEAAU1EW107M VCKYPA1HB33 IK VCTYPA1NX104M VHERD5 6E5/-1 VH i M5 K 4 1 1 6 P-2 VHiM74LSOO/-l V H i M 7 4 L S 1 5 7 —1 V H i M 7 4 L S 1 6 6 —1 V H i M 7 4 L S 2 4 4 —1 VHiM74LS273-l VHiM74LS367-l VHiM74LS373-l V H i S N 7 4 0 4 //- 1 VHiUPD7220D—1 V R D—S T 2 E Y 1 0 1 J V R D— S T 2 E Y 1 0 3 J V R D— S T 2 E Y 3 3 1 J V RD-ST 2 E Y 3 3 2 J V RD-SU 2 E Y 4 7 0 J V R S - P T 3 DB 6 8 0 K VS2SA673-01-1 XBTSD30P04000 * H K A A F NEW MARK PART RANK N N N N E C C C D C C C C C C C C C C B B B B B B B B B B B C C C C C C B C N AD AG AB A F A B A B AB A A AB AC A A A A P E K L AM A P A H AQ A B A L_A A A A E S A A A A A AB AC AA D E S C R I P T I O N PWB unit Packing cushion Packing case Screw Sealing label Angle 1C socket LSI socket Capacitor Capacitor Capacitor (16V lOOj/F) Capacitor (16V 33>iF) Capacitor (25V 100j/F) Capacitor (50V 330pF) Capacitor (12V 0 Ijif^ Zener diode LSI RAM 1C 1C 1C 1C LC 1C 1C 1C LSI Resistor (1/2W lOOfi) Resistor (1/2W 10KO) Resistor (1/2W 330O) Resistor (1/2W 3 3KH) Resistor (1/2W 47fl) Resistor (2W 68n) Transistor (2SA673D) Screw (30X4) MZ1R06 (RAM board) NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 PRICE RANK PARTS CODE LBNDJ0009FCZZ SPAKA1016ACZZ SPAKC1082ACZZ T i N S J 1 0 0 9 A C Z Z TiNSM1017ACZZ QSOCZ64 16ACZZ VCEAAA1CW476M VCTYPA1NX104M V H i M 7 4 L S 3 6 7 - l V H i S N 7 4 1 5 7 /— 1 V H i 4 1 6 4 — 150-H V RD-R V 2 E Y 1 0 1 J DUNTK1028ACZZ NEW MARK AC A F A H A E AG AD A B J AB AH AH A Z A A * * N N N N PART RANK D D D D 0 C C C B B B C DESCRIPTION Clamp band Packing cushion Packing case Instruction book Instruction book 1C socket Capacitor (16V 47^F) Capacitor (12V 0 1//F) 1C 1C LSI DRAM Resistor PWB unit 1 j 14 MZ-3500 Index PARTS CODE [C] C C A B C 1 007ACZZ [D] DUNT-1 0 1 8 A C Z Z DUNT-1 0 3 5 A C Z Z D U N T K 1 0 2 5ACZZ D U N T K 1 02 8 A C Z Z DUNTK 1 060ACZZ D U N T K 1 064 A C Z Z D U N T K 1 082ACZZ D U N T K 1 083 ACZZ DUNTK1085ACZZ [G] G C A B A 1 00 1 ACZZ G C A B A l 003ACZZ GCABB1002ACZZ GCABB1004ACZZ G C O V H 1 00 1ACZZ G F T A F 1 001ACZZ G F T A F 1 002ACZZ GFTAR1003ACZZ GFTAR1004ACZZ GFTAU1005ACZZ GLEGG1001ACZZ G L E G P O O 10UCZZ GLEGP1001CCZZ GSTN-100 1ACZZ [H] HBDG83004GESA n [J ] JKNBM0004PAZZ [L] LANGK1007ACZZ L A N G Q l 004ACZZ // LANGQ1005ACZZ // LANGS1006ACZZ L A N G T 1 0 0 1 ACZZ L A N G T 1 002ACZZ LANGT1003ACZZ LANGT1008ACZZ LANGT1010ACZZ LBNDJ0009FCZZ LCHSM1008ACZZ LHLDF6648RCZZ II II LHLDW6655RCZZ // L H L D Z 1 00 1ACZZ L P L T P 1 0 0 1ACZZ LPLTP1072CCZZ LX-BZ1001 ACZZ LX-LZ6023RCZZ [N] N F A N P 1 0 0 1ACZZ [P] PCUSG1 00 1 ACZZ H H PCUSU1003ACZZ PHOG-1 0 0 1 A C Z Z PHGG-1002ACZZ PSLDM1 001ACZZ PSLDM1003ACZZ P S L D P 1 00 1 ACZZ P S P A G 1 004ACZZ P S P A X 1 00 1ACZZ P Z E T Y 1 00 1ACZZ // NO. 1- 1 PRICE NEW PART RANK MARK RANK AY 0 CODE QCNCMl 0 0 9 A C Z E QCNCMl 0 0 9 A C Z G // ** ** ** ** ** ** ** ** 11101122229- 17 17 1 13 11 9 9 9 8 if * 91911112219199- 16 9 3 18 19 2 35 12 13 10 18 26 19 17 AS BM AR BG AM AE AE AD AC AL AA AB AB AE 19- 3 1 22252829911011112351129911- N N E E E QCNCMl 0 0 9 A C Z H // // QCNCM1009ACZ i N E E E E E it QCNCMl 0 0 9 A C Z J QCNCP484 1QCZZ // QCNCP604 1QCZZ it N N N N N N QCNCW0207HCZZ N D D D D D D D D D D C C C D AE AE N D D QCNW-1007ACZZ 1 AC N C // // 3 24 1 25 1 2 10 15 20 6 21 1 22 34 26 2 36 40 15 5 4 29 23 AB AH AH AF AF AF AG AC AX AF AE AC AY AB AB AB AB AB AD AC AD AC AA N N N N N N C C C C C C C C C C C D C C C C C C C D D C C 1- 24 BM N B 2289129191928- 26 35 2 100 34 32 11 41 23 11 7 27 3 AA AA AA AA AC AC AN AP AB AC AB AE AE N N N C C C C C C C C C C C C C 2- 28 8- 4 3- 4 8- 5 3- 12 5- 5 3- 14 AQ AQ AQ AQ AA AA AB N N N N // QCNCW1 00 1 A C Z Z ii QCNCW1 0 0 6 A C Z Z QCNCW1 0 0 7 A C Z Z QCNCW1 0 0 8 A C O 1 // QCNCW1 0 0 8 A C O 2 ii QCNW-1 0 0 1 A C Z Z QCNW-1002ACZZ QCNW-1 0 0 3 A C Z Z // QCNW-1004ACZZ II QCNW-1 0 4 4 A C Z Z N N N N // QCNW-1 04 7 A C Z Z // QLUGL0006UCZZ QP I N - 2 0 0 5 S C Z Z QPWBF 1 0 0 5 A C Z Z QSOCZ64 14ACZZ QSOCZ64 16ACZZ ;/ // QSOCZ6424ACZZ QSOCZ6428ACZZ QSOCZ6440ACZZ // // // QSW-K 1 0 02 A C Z Z QSW-K 1 0 0 3 A C Z Z QSW-K1 0 0 4 A C Z Z QSW-K 1 0 0 5 A C Z Z QSW-K 1 0 0 7 A C Z Z QSW-S1006ACZZ QSW-Z1002SCZZ QSW-Z2005SCZZ QSW-Z9660KCZZ PRICE NEW RANK MARK NO. AB AC AC AC 5F* A C 9- 101 AC 3- 11 AC 59 AC 9- 102 AC AT 32 AT 5- 10 AW 31 AW 5- 11 AK 39 AK 53 AZ 33 AZ 54 AD 9- 103 9- 104 AE 16 AC 3- 16 AC AF 24 AF 3- 17 BB 9- 13 9- 14 AP AK 2- 16 AK 3- 21 AM 2- 17 AM 3- 20 AX 2- 29 AX 36 AX 86 AM 2- 19 AM 3- 19 AM 2- 18 AM 3- 18 AB IT 37 AA 87 AA 17 AD 5- 12 AD 5- 13 107 AD AD 116 5- 14 AE 5- 15 AE 5- 16 AG AG 88 AG 9- 105 108 AG BU 9- 43 BU 9- 43 BU 9- 43 BU 9- 43 AE 25 AF 99 AZ 5- 17 AK 5- 18 AR 5- 19 5353- PART RANK C C C C 6 13 7 10 C C C C C C C C C C C C C C C C C C C B N N N N N N N N N N N N N N N N N C C C C C C C C C C C C C C C C C C C C C C C C C E E E E B B B B B [R] N N N N [Q] Q C N C M l 0 0 2 ACZZ // Q C N C M l 0 04 A C Z Z // QCNCMl 009ACZB // QCNCMl009ACZE PARTS C C C C C C C RC-CZ 1 O O O Q C Z Z u H RC-KZ1 0 1 8 C C Z Z R C - S Z 2 0 0 1HCZZ R C R S - 1 00 1A C Z Z RCRS-1 0 0 2 A C Z Z RCRS-1 0 0 3 A C Z Z RCRS-1 0 0 4 A C Z Z RCRSP1003CCZZ RMEMR 1 0 0 2 A C Z Z R M E M R 1 0 04 ACO 7 RMPTC4 3 3 1QCKB RMPTC4 3 3 3QCKB RMPTC468 2QCKB RMPTC8333QCKB RMPTC8333QCK J RVR-A54 52QCZZ RVR-MC3 2 1QCZZ 89 9- 106 109 5- 20 10- 10 5- 21 5- 22 5- 23 9- 107 5- 24 1- 25 41 8- 10 5- 25 5- 26 5- 27 9- 108 26 8- 11 AB AB AB AE AF AU AU AU AG AT * * B A N N N N AB AC AC AD AD A F AH C C C C C B B B B B E D B C C B C B C IS] SPAKA 10 0 3ACZZ 4- 10 A Z N D MZ-3500 NO PARTS CODE S P A K A 0 04 A C Z Z 9- 109 S P A K A 0 09 A C Z Z 9- 110 S P A K A 0 1 3 ACZZ 10 2 S P A K A 0 1 6 A C Z Z 1 11- 2 SPAKA 045ACZZ 9- 111 S P A K A 1 27 A C Z Z 9 112 9 113 SPAKC 0 33ACZZ 9- 113 SPAKC1035ACZZ 9- 113 S P A K C 1 03 7ACZZ S P A K C 1 0 3 9ACZZ 9- 113 10- 3 S P A K C 1 07 8 A C Z Z 11- 3 SPAKC1 082ACZZ 9- 114 S P A K F 1 1 0 4 ACZZ SSAKH3002KCZZ 4- 13 IT] T i N S J 1009ACZZ 11- 4 T iN S M 1 0 1 7ACZZ 11 5 T L A B J 1 769CCZZ 9- 115 TLABZ1002ACZZ 9- 2 T L A B Z 1 003 A C Z Z 1- 4 TLABZ1008ACZZ 1- 5 T L A B Z 1 0 1 7ACZZ 1- 12 T L A B Z 1400CCZZ 1- 41 TSELF0003PAZZ 10- 5 TSPC-1010ACZZ 9- 20 9- 20 TSPC-1 0 1 1 A C Z Z TSPC-1 0 1 2 A C Z Z 9- 20 TSPC-1 0 1 3 A C Z Z 9- 20 tin U B A T N l 001ACZZ 5- 28 4- 9 U B N D A 1 008CCZZ [V] V C C C P U 1 H H 2 0 1J VCCCPU1HH680 J VCCSPU1HL1 ODD // V C C S P U 1 H L 3 3 0J // V C C S P U 1 H L 4 7 0J // H VCEAAA1CW106Q V C E A A A 1 C W 1 07M II VCEAAA1CW336M VCEAAA1CW476M VCEAAA1EW106M V C E A A A 1 E W 1 07M VCEAAA1EW227M V C E A A A 1 H W 1 0 5M V C E A A A 1 H W 2 25M VCEAAA1HW335M VCEAAA1HW475M V C E A A U 1 C W 1 07M VCEAAU1CW336M // VCEAAU1CW475M V C E A A U 1 E W 1 07M V C K Y P A 1 H B 3 3 IK V C K Y P A 1 H B 6 8 IK H VCKYPU1HB1 02K // V C K Y P U 1 H B 2 2 IK VCKYPU1HB56 1K V C S A T U 1 VE 1 04M V C T Y P A 1 N X 1 04M V C T Y P U 1 EX 1 0 3M // // V H D D S 1 5 8 8 11-1 // // V H E R D 5 6E5/-1 VH i DB 7 4 9 H A C O 5 1 1 PRICE NEW PART RANK MARK RANK D AG AB D AH N C N AF D AP N D AD N D AP N D AP N D AP N D AP N D AK N C AH N D AD D AD D PARTS CODE VH i H M 4 7 2 1 1 4 - 1 55- 49 50 510- 51 17 5510- 52 53 18 585558585855558108851088510585810858510115105- 54 25 55 56 57 26 58 27 59 28 60 61 62 63 29 19 30 31 64 20 32 33 65 21 66 34 67 35 22 36 68 37 69 23 9 70 24 71 // 8VH i M 7 4 L S 7 5 / — 1 5VH I M 7 4 L S 8 6 / — 1 55VH.M74LS93/-1 VH . M 7 4 3 8 / / / - 1 _^ 88VH .NE555///-1 VH i S N 7 4 04//-1 10VH i S N 7 4 04N/-1 5// 8VH i S N 7 4 0 6 N / - 1 5V H I S N 7 4 1 4 N/— 1 8VH i S N 7 4 1 57/-1 11VH i S N 7 4 1 5 7 N - 1 5VH I S N 7 5 188N-1 5VH I S N 7 5 1 8 9 A - 1 5VHi SP61 02C002 5VH i S P 6 1 0 2 C 0 0 3 5VH i SP6 1 0 2 R O O 1 5VH i T A 7 3 13AP-1 5VH I T C 4 0 4 9 P / - 1 5// 9V H i T C 4 5 14P/-1 9VH i T L 4 5 5 8 / / - 1 8VHiUPDl 990ACC 5VH.UPD7220D-1 5// 108VH i U P D 7 6 5//-1 VH i U P D 8 2 5 5 / - 1 5VH i 2 7 6 4 / / A C 0 1 5VH i 2 7 6 4 / / A C 0 2 5n 9VH i 27 6 4 / / A C 0 3 5;/ 9VH i 2 7 6 4 / / A C 0 4 5// 9- 38 72 73 74 39 40 25 75 41 76 42 10 77 78 79 80 81 82 83 84 122 123 VH i HM6 1 1 6 P 3 - 1 VHi L H 0 0 8 0 A/- 1 VH I M 5 K 4 1 1 6 P - 2 VH i M 5 8 7 2 5 P - 1 5 V H i M 7 4 L S O 0/-1 // VHiM74LSO 2/-1 // VH iM7 4 L S 0 3 / - 1 V HI M 7 4 L S 0 4 / - 1 VH . M 7 4 L S 0 8 / - 1 // VH I M 7 4 L S 1 0/-1 // AE AG AA AA AB A A AC AA AA AC AC AC AC AS AA 8- 12 A B 8- 13 A B 5- 29 A A 9- 116 A A 5- 30 A A 8- 14 A A 5- 31 A A 8- 15 A A 9- 117 A A 5- 32 A B 5- 33 A B 8- 16 A B 5- 34 A B 11- 7 A B 5- 35 A B 5- 36 A C 5- 37 A C 5- 38 A B 8- 17 A B 5- 39 A B 5- 40 A B 10- 11 A B 9- 118 A B 10- 12 A B 9- 119 A B 10- 13 A B 10- 14 A A 5- 41 A A 5- 42 A A 8- 18 A A 8- 19 A A 5- 43 A B 5- 44 A A 8- 20 A C 5- 45 A B 5- 46 A B 8- 21 A B 8- 22 A B 10- 15 A B 11 8 AB 5- 47 A B 8- 23 A B 9- 120I AB 5- 48 I A D 8 24 A B 9 121 . A D 10 16 A C 9 125 B R N N N N N N N N N N D D D D D D C C D D D D D VH I M 7 4 L S 125-1 VH I M 7 4 L S 1 2 6 - 1 VH I M 7 4 L S 1 3 8 - 1 VH I M 7 4 L S 1 3 9 - 1 V H I M 7 4 L S 1 4/-1 V H i M 7 4 L S l 57-1 // // VHiM74LS161-l V H i M 7 4 L S l 63-1 VH I M 7 4 L S 1 66-1 // VH . M 7 4 L S 2 1 / - 1 VH I M 7 4 L S 2 2 1 - 1 VHiM74LS244-l A D // VH I M 7 4 L S 2 4 5 - 1 VHiM74LS27/-l VH iM74L S 2 7 3 - 1 C C C C C C C C C // // VH I M 7 4 L S 2 9 3 - 1 VH I M 7 4 L S 3 2 / - 1 // VHiM74LS367-l // // C C C C C C C C C C C C C C C C C C C C VH I M 7 4 L S 3 7 3 - 1 II VHiM74LS74/-l C N C C C C C C C C C C C C C B B B B B Ih- PRICE NEW RANK MARK NO 43 85 86 26 44 87 88 88 124 88 124 88 124 PART RANK AU BN AX AP AZ AE AE AE AE AE AE AE AE AE AE AH AH AK AL AM AK AK AK AH AH AL B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B A L AD AH AM AM AR AF AP AP AP AG AF AF AH AH AH AQ AQ AG AG AE AF AK AE AG A E AF AF AG AM AH AM AM AP BG BG BP AL AN AN AW A F AT BS BS BR AY LM LM BM LM BM LM BM N N N I B MZ-3500 PARTS CODE VH i 4 1 6 4 - 1 5 0 - H // VH i 825 1 AC//-1 VH i 8253////-1 VHPGL3PR2//-1 VHPGL9PR2//-1 // VRO-RV2EYOO 0J VRD-RV2EY 1 0 1J VRD-RV2EY682 J V R O - S T 2 E Y 100 J H VRD-ST2EY 1 0 1J // // // V R D - S T 2 E Y 1 02 J // // // // // V R D - S T 2 E Y 1 03 J // // V R O - S T 2 E Y 1 04 J // V R O - S T 2 E Y 1 51 J VRD-ST2EY152 J // II V R D - S T 2 E Y 1 82 J VRD-ST2EY220 J // VRD-ST2EY222 J // ii H V R O - S T 2 E Y 2 72 J V R D - S T 2 E Y 3 3 1J // // // // // // // // VRD— S T 2 E Y 3 3 2 J H ii ti VRD-ST2EY333 J // // // VRD-ST2EY390J // VRD-ST2EY391 J VRD-ST2EY392 J VRD-ST2EY4R7 j V R D - S T 2 E Y 4 70 J V R D - S T 2 E Y 4 7 1J n VRD-ST2EY472J // V R D - S T 2 E Y 5 6 1J V R D - S T 2 E Y 6 8 1J ii II H V R D - S U 2 E Y 10 1J V R D - S U 2 E Y 1 52 J VRD-SU2EY39 1j VRD-SU2EY470 J // V R D - S U 2 E Y 6 8 1J VRD-SU2EY8 2 1J VRD-SU2EY8 2 2 J // NO 5- 89 11- 11 5- 90 5- 91 5- 92 1- 8 9- 6 5- 95 11- 12 5- 105 6- 77 6- 105 5- % 8- 45 9- 126 10- 27 5- 97 6- 78 6- 86 6- 93 6- 97 6- 98 5- 98 9- 127 10- 28 5- 99 9- 128 6- 103 6- 72 6- 75 6- 91 6- 90 6- % 6- 114 5- 100 6- 92 6- 94 9- 129 6- 85 5- 93 5- 101 6- 83 6- 89 6- 99 6- 100 6- 106 8- 46 10- 29 5- 102 8- 47 9- 130 10- 30 5- 103 6- 73 6- 74 9- 131 6- 102 6- 113 6- 87 6- 115 6- 80 5- 94 6- 88 9- 132 6- 107 8- 48 5- 104 6- 95 6- 109 6- 110 9- 133 8- 49 5- 106 8- 50 5- 107 10- 31 5- 108 5- 109 5- 110 8- 51 PRICE NEW RANK MARK AZ A2 AY BA ft AC A C ' A A A A A A AA A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A AA AA A A N N N N N N N N N N N N N N N N AA A A N AA AA A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A N N N N N N N AB N N N N N A A A A N AA AA AA AA A A A A A A A A A A A A A A A A A A A A A A A A A A N N N N PART RANK PARTS CODE B B B B B B B C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C V R D - S U 2 E Y8 24 J V R N - R T 2 EK 1 0 2 F V R N - R T 2 E K 1 05F V R N - R T 2 EK 1 2 3F VRN-RT 2 EK2 2 2F V R N - R T 2 E K 4 7 2F V R N - R T 2 E K 9 1 2F V R S - P T 3 A B 1 00 J // V R S - P T 3 A B 1 02 J V R S - P T 3 D B 1 02 J VRS-PT3DB1 52K VRS-PT3DB680K VRS-PT3LB330 J VSP0080P-608N VS2SA673-C/-1 VS2SA673-D1-1 VS2SC4 58KC/-1 [X] XBBSC26P04000 XBBSC30P06000 XBPSD30P06KSO // // XBPSD3 OPO 6 K O O // XBPSD30P08KSO XBPSD30P08000 XBPSD30P1 0000 II XBPSD30P30KSO XBPSD40P06KSO XBPSD40P06KOO XBPSD40P06000 XBPSD4 O P 0 8 K S O XBPSF3 O P 0 6 K O O XBTSC4 OP06000 XBTSD30P04000 XBTSF40P08000 XCPSD40P12000 XNESD30-24000 n II XUPSC26P06000 XUPSC30P08000 XUPSD26P06000 [0 1 O A E 1 0447 1 OO// O A E 1 0 4 4 7 1 13// O A E 1 0 4 8 0 3 87// O A E 1 0 5 0 0 6 23// O A E 1 0 5 0 4 9 1 7// O A E 1 0504933// O A E 1 0507778// OAE1050778 I// OAE 105 1 84 8 2// O A E 10526940// O A E 1 052 798 I// OAE 1 053 1087// OAE 1 0538909// OAE 1 05389 1 2// O A E 1 0 5 4 3 4 8 6// O A E 2 0 4 9 0 4 4 5// O A E 2 0 5 10574// O A E 2 0 5 1 2336/X O A E 2 0 5 2 1 194// OAE20527978// OAE22830579// OAE 2 2 83 1688// OAE 2 3 594 924// O A E 3 0 1 0 9 0 6 6// n II n OAE 30 1 1 67 29// u O A E 3 0 1 2 0 4 56// // OAE 30 1 20524// // C C C C C C C C C C C C C C C [_ 1 c 17 NO B68 86886666610128105- 52 111 53 54 112 55 56 84 108 70 104 71 32 39 7 57 33 111 22259291528111- 20 21 22 112 12 8 134 27 113 30 58 38 28 30 102111011228992- 4 30 16 31 34 32 33 31 33 59 21 22 23 PRICE NEW PART RANK MARK ANK AA C AB N C AA C AB C AB N C AB C AC C AB N C AB N C AC N C AB N C AB N C AB C AC C AN C B AE B AC AD B AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA 6- 125 A F 6- 126 A D 6- 127 A F 6- 129 A M 6- 138 A R 6- 139 AW 6- 130 BQ 6- 131 AQ 6- 128 A V 6- 133 BM 6- 132 A X 6- 140 A Q 6- 147 AW 6- 148 AW 6- 134 A Y 6- 142 A C 6- 137 AC 6- 145 A M 6- 141 A A 6- 144 A G 6- 136 A C 6- 143 A R 6- 146 A C 6- 4 A E 6- 5 A E 6- 14 A E 6- 15 A E 6- 68 A K 6- 69 A K 6- 58 A C 6- 60 AC 6- 47 A C 6- 56 A C N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N C C C C C C C C C C C C C C C C C c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c B B B B C C c c c c MZ-3500 PARTS CODE O A E 3 0 1 20524// // O A E 3 0 1 206 5 O// O A E 3 0 1 2 1 8 6 6// OAE30121921// // // // // O A E 3 0 1 2 1 9 4 7// O A E 3 0 1 29460// // // // O A E 3 0 143284// O A E 3 0 1 4 3 5 7 2// // O A E 3 0 1 59870// O A E 3 0 164409// // O A E 3 0 1 6526 2// O A E 3 0 1 6 5 5 7 6// // O A E 3 0 1 67370// O A E 3 0 1 69653/7 // ;/ O A E 3 0 1 7 0008// // O A E 3 0 1 95258/7 OAE30200774// // O A E 3 0 2 13525// O A E 3 0 2 1 69 0 4// O A E 3 0 2 2 1 5 1 7// OAE30221520// O A E 3 02 2 1 546// OAE30227236// OAE30250326// OAE30258784// O A E 3 0 2 6 1 658// O A E 3 0 2 6 3 0 2 5// // // // // // // O A E 3 0 2 6 9 4 3 O// OAE30272391// OAE30279844// O A E 3 0 2 8 0 6 7 I// OAE30362052// OAE30362081// OAE30379029// // OAE30490940// O A E 3 049 1 1 69// O A E 3 0 4 9 9 8 3 I// OAE30500979// OAE30500982// O A E 3 0 5 0 1868// O A E 3 0 5 0 8 0 4 9// OAE30508528// O A E 3 0 5 0 8 5 3 I// OAE30508557// O A E 3 0 5 0 8 5 6 O// // OAE30509721// // OAE30509941// O A E 3 0 5 1 1 3 53// O A E 3 0 5 1 54 6 9// O A E 3 0 5 2 3 3 7 O// O A E 3 0 5 6 4 740// OAE30566353// O O P A 7 K F 0 9 5C// O O P A 7 K F 1 0 2B// 0 O P A 7 K F 1 03B// O O P A 7 K F 1 0 4 B// NO 6666666666666666666666666666666666666666666666666666666666666666666666666666 9999 65 66 44 36 25 26 28 29 34 22 48 49 50 59 82 42 43 35 57 67 37 52 53 17 45 54 55 61 62 64 30 31 63 1 7 8 18 46 33 6 21 2 3 9 11 12 13 19 20 38 16 51 10 24 27 32 101 76 23 116 117 81 79 118 118 120 121 123 39 40 116 38 119 41 124 122 51 51 51 51 PRICE NEW PART RANK MARK RANK N AC C N AC C N AG C AN N B N AC B N AC B N AC B N B AC N AC B AF N B N AC C N AC C N AC C N AC C N AC C N AC C N AC C AY N B N AC C N AC C AH N B N AG C N AG C AT N B N AC C N AD C AD N C N AG C N AG C N AG C N AG B N AG B N AG C N AS B AL N B AH N B AH N B AD N C AG N B AX N B AD N B N AD B N AF B AD N B AD N B N AD B N AD B AD N B AY N B AP N C AH N B AE N C AD N B N AD B N AD B N AD B AE N AE C AD N B AH N A AW N B N AC C N AG C BP N B BY N B N AX C N AL C AX N C N AG C N AG C AG N A AP N C AR N B AP N C AP N C AX N C BX N C BX N C BX N C BX N C PARTS CODE O O P A 8 K F 1 1 5 A// OOPCH52203 A// OOPKCC 1 0 9 0 1-Z OOPKFL10901-Z O O P K F L 1 190 1-Z OOP08KF018 B// OOP16KF005 A// 0 0 P 1 9 K F 0 0 5 A// 0 0 P 1 9 K F 0 0 7 A// OOP21KF008 A// OOP21KF009 A// 0 0 P 2 1 K F 0 1 3 A// 0 0 P 2 1 K F 0 1 4 A// OOP23KF001 A// OOP23KF011 B// OOP23KF014 A// OOP25KF006 B// OOP25KF007 A// OOP25KF008 A// 0 0 P 2 7 K F 0 2 1 A// OOP29KF006 B// O O P 2 9 K F 0 0 7 B// OOP80D9E43000 OOP85Y2K56000 OOP85Y2K60000 - 18- PRICE NEW PART RANK MARK RANK AT N 9- 50 C N 9- 39 AC C N B 9- 27 AG N B 9- 25 AG AH N 9- 26 B AN N 9- 28 C N 9- 37 AC C N 9- 35 AC C N 9- 36 AC C N 9- 31 A D C AF N 9- 33 C AD N 9- 32 C N 9- 34 AC C N 9- 46 AC C N AL 9- 29 C 9- 47 N AC C AM N 9- 30 C N 9- 48 AC C N 9- 49 AC C N B 9- 38 AC AK N 9- 44 C AH N 9- 45 C N 9- 42 AQ C 9- 40 AH N C 9- 41 A H N C NO SHARP CORPORATION Industrial Instruments Group Reliability & Quality Control Department Yamatokoriyama, Nara 639-11, Japan 1983 January Printed in Japan s
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.2 Linearized : No Author : Creator : ABBYY FineReader Producer : Title : Subject : Create Date : 2002:05:26 13:50:23 Modify Date : 2002:05:26 13:50:23 Page Count : 116EXIF Metadata provided by EXIF.tools