Silicon Laboratories Finland APX4 Wireless System-on-Module User Manual APx4 datasheet

Silicon Laboratories Finland Oy Wireless System-on-Module APx4 datasheet

Datasheet

                       APX4 – WIRELESS SYSTEM-ON-MODULE DATA SHEET Tuesday, 23 July 2013 Version 1.01
  Bluegiga Technologies Oy                          Copyright © 2000-2013 Bluegiga Technologies All rights reserved.  Bluegiga  Technologies  assumes  no  responsibility  for  any  errors  which  may  appear  in  this  manual.  Furthermore, Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications detailed  here  at  any  time  without  notice  and  does  not  make  any  commitment  to  update  the  information contained here. Bluegiga’s products are not authorized for use as critical components in life support devices or systems. The  WRAP,  Bluegiga  Access  Server,  Access  Point  and  iWRAP  are  registered  trademarks  of  Bluegiga Technologies.  The Bluetooth trademark is owned by the Bluetooth SIG Inc., USA and is licensed to Bluegiga Technologies. All  other  trademarks  listed  herein  are  owned  by  their  respective  owners.
  Bluegiga Technologies Oy VERSION HISTORY Version Comment 0.1 First draft 0.2 Defined screws and attachment to motherboard 0.3.1 Some small fixes and additions 0.3 TBDs defined 0.4 Review 0.4.1 Small fix to part number clarification 0.4.2 Updated document name, product description and contact information 0.4.3 Added Bluetooth RF specifications 0.5 Clarified pins etc. 0.6 Fixed layout. Removed software version from part number. 0.7 Styles updated and fixed Added notes about missing information 0.8 Added Mouser part number for the SO-DIMM receptacle 0.9 Chapter 6.5.1 removed 1.0 Added FCC/IC texts, removed battery related texts 1.01 Typos
  Bluegiga Technologies Oy  TABLE OF CONTENTS 1 Ordering Information......................................................................................................................................7 1.1 Part number decoder .............................................................................................................................7 2 APx4 pin descriptions ....................................................................................................................................8 2.1 Receptacle ............................................................................................................................................8 2.2 Power contacts on the left side .............................................................................................................8 2.3 Debug UART on the right side ..............................................................................................................8 2.4 SO-DIMM connection pin descriptions ..................................................................................................9 3 Power subsystem ....................................................................................................................................... 22 3.1 PSWITCH_OUT pin 14 ...................................................................................................................... 23 3.2 RESETN ............................................................................................................................................. 23 4 Processor subsystem ................................................................................................................................. 24 4.1 Bootmodes ......................................................................................................................................... 24 5 Wireless interfaces ..................................................................................................................................... 25 5.1 Bluetooth ............................................................................................................................................ 25 5.1.1 Bluetooth GPIOs ........................................................................................................................... 25 5.1.2 Bluetooth Audio interface .............................................................................................................. 25 5.1.3 Bluetooth PCM slots and formats.................................................................................................. 26 5.1.4 Bluetooth I2S interface .................................................................................................................. 26 5.2 Wi-Fi ................................................................................................................................................... 27 6 Peripheral interfaces................................................................................................................................... 28 6.1 Ethernet .............................................................................................................................................. 28 6.2 USB .................................................................................................................................................... 29 6.3 I2C ...................................................................................................................................................... 29 6.4 PWM outputs ...................................................................................................................................... 30 6.5 SDIO / SPI / MMC .............................................................................................................................. 31 6.6 UARTs ................................................................................................................................................ 32 6.6.1 UART 0 .......................................................................................................................................... 32 6.6.2 UART 2 .......................................................................................................................................... 32 6.6.3 UART 3 .......................................................................................................................................... 32 6.6.4 UART 4 .......................................................................................................................................... 33 6.6.5 Debug UART ................................................................................................................................. 33 6.7 CAN .................................................................................................................................................... 34 6.8 Processor Audio ................................................................................................................................. 34 6.9 LCD .................................................................................................................................................... 35 6.10 LRADC0-6 (Touch interface) .............................................................................................................. 36 6.11 HSADC (High-Speed ADC) ................................................................................................................ 37
  Bluegiga Technologies Oy 6.12 JTAG .................................................................................................................................................. 37 7 Electrical Characteristics ............................................................................................................................ 39 7.1 Absolute Maximum Ratings................................................................................................................ 39 7.2 Recommended Operating Conditions ................................................................................................ 39 7.3 Power Consumption ........................................................................................................................... 40 8 RF Characteristics ...................................................................................................................................... 41 9 Physical Dimensions .................................................................................................................................. 43 10 Attachment to motherboard ................................................................................................................ 44 11 Layout Guidelines ............................................................................................................................... 45 11.1 Internal antenna: Optimal module placement .................................................................................... 45 11.2 External antenna ................................................................................................................................ 45 11.3 Thermal Considerations ..................................................................................................................... 45 11.4 EMC Considerations for Motherboard ................................................................................................ 45 12 Certifications ....................................................................................................................................... 47 12.1 CE ....................................................................................................................................................... 47 12.2 FCC .................................................................................................................................................... 47 12.3 IC ........................................................................................................................................................ 48 12.4 IC ........................................................................................................................................................ 49 12.5 MIC, formerly TELEC ......................................................................................................................... 51 12.6 Qualified Antenna Types for APx4-E ................................................................................................. 51 13 Contact Information ............................................................................................................................ 52
  Bluegiga Technologies Oy DESCRIPTION The Bluegiga APx4 is a small  form factor, low power  system-on-module  that  includes  the latest  wireless  connectivity  standards:  802.11 b/g/n  and Bluetooth 4.0.  APx4  is  based  on Freescale's  i.MX28  processor  family  and  runs an embedded Linux operating system based on the  Yocto  ProjectTM.  In  addition  to  integrating the  454MHz  ARM9  processor,  the  wireless connectivity  technologies,  Linux  operating system the APx4 also includes with several built in  applications,  such  as  the  802.11 and Bluetooth 4.0 stacks,  Continua v.1.5 compliant IEEE manager and many more. This combination provides an ideal platform for designing  multi-radio  wireless  gateways  that enables fast time-to-market and minimum R&D risks. The  Bluegiga  APx4  software  can  be  easily extended  or  tailored  customizing  the  Linux operating  system  with  applications.  The motherboards  for  the  APx4  can  be  easily extended  to  include  almost  anything  from  3G modems  to  Ethernet  and  audio  interfaces  to and touch screen displays. The  Bluegiga  APx4  is  an  ideal  product  for applications  requiring  wireless  or  wired connectivity  technologies  and  the  processing power of the  ARM9 processor,  such as health and  fitness  gateways,  building  and  home automation  gateways,  M2M,  point-of-sale  and industrial connectivity. APPLICATIONS:   Health gateways   M2M connectivity   Fitness gateways   Home and building automation   Point-of-sale gateways   People and asset tracking         KEY FEATURES APx4 is a computing platform:  454MHz ARM9 core (Freescale i.MX28)   64MB RAM   128MB Flash   Real Time Clock   Linux operating system  SO-DIMM form factor A connectivity platform:  Bluetooth 4.0 dual-mode radio   2.4GHz 802.11 b/g/n radio  Wi-Fi Access Point mode   10/100 Ethernet   USB 2.0 High Speed With many extension options:   Up to 800 x 480, 24bit display   Resistive touch screen   MMC/SDIO   Multiple SPI, UART and I²C   I²S   PWM, GPIO and AIO Linux operating system:   Based on the Yocto Project(TM)   Thousands of open source software packets available Qualifications:  Bluetooth  CE   FCC and IC  Figure 1: Physical outlook
 Bluegiga Technologies Oy Page 7 of 52 1  Ordering Information Product code CPU and memories Connectivity Antenna Temperature range APX4-367CC-A i.MX283 64MB DDR2 128MB Flash Bluetooth + Wi-Fi Internal antenna -10 – 50°C 1.1  Part number decoder                         Note: Not all variants are available. Minimum order quantities and lead times may apply for special variants. Please contact Bluegiga Technologies Oy for more information. APX 4 – 3 6 7 C C – A   Product category APX Product generation 4 Processor 3: i.MX283  Memory 6: 64MB Flash 7: 128MB Connectivity C: Bluetooth and Wi-Fi Temperature C: Commercial  I: Industrial (contact sales@bluegiga.com) Antenna A: Internal antenna E: External antenna
 Bluegiga Technologies Oy Page 8 of 52 2  APx4 pin descriptions The APX4 connector uses a standard DDR1 SO-DIMM connector with 2.5V keying.   Odd numbered pins are located on top layer   Even numbered pins are located on bottom layer There is a ½ pitch (0.3mm) offset from top layer pins to bottom layer pins.  Note that most receptacles also have 0.3mm offset from odd pins to even pins. 2.1  Receptacle Suitable  receptacles  are  available  from  multiple  vendors.  For  example  TE  Connectivity’s  part  number 1473005-1, Mouser part number: 571-1473005-1 and Digi-Key’s part number: A99605-ND. PCB footprint and  schematic symbol for  the  mentioned part number will be  available  for download from Techforum in Mentor Graphics’ PADS format. 2.2  Power contacts on the left side In addition to the 200 pins/finger contacts there are two pairs of plated through holes on the left side of the module which can be used for powering the module stand-alone (not assembled on any motherboard). The pitch  between  the  holes  is  2.54mm.  Leave  the  holes  unconnected  if  the  module  is  assembled  on  a motherboard. Name Function GND Ground VIN +5V input GND Ground VBATTERY Battery positive input/output Table 1: Power supply pins 2.3  Debug UART on the right side On the right side there are four plated through holes for PWM or debug port stand-alone (not assembled on any motherboard). The vertical distance between the holes is 1.27mm: Name Function 3V3 3.3V output (for current limits, see  Table 50) PWM1/DUART TxD Debug UART data transmit, logic level 3.3V PWM0/DUART RxD Debug UART data receive, logic level 3.3V GND Ground Table 2: Debug UART pins
 Bluegiga Technologies Oy Page 9 of 52 2.4  SO-DIMM connection pin descriptions Note: Signals/nets marked with a star (*) are not present on standard version Pin# Default function Net name Note 1 5V input VIN  2 5V input VIN  3 5V input VIN  4 5V input VIN  5 Battery input/output VBATTERY  6 Battery input/output VBATTERY  7 Battery input/output VBATTERY  8 Bootmode BOOTMODE  9 3.3V output 3V3 Pins  9-10  may  source  up  to 200mA combined. 10 3.3V output 3V3 Pins  9-10  may  source  up  to 200mA combined. 11 3.3V output 3V3 Pins  9-10  may  source  up  to 200mA combined. 12 3.3V output 3V3 Pins  9-10  may  source  up  to 200mA combined. 13 RTC battery VBACKUP  14 PS switch PSWITCH_OUT  15 NC NC  16 NC NC  17 Reset in - Master reset RESETN  18 Ground GND  Table 3: Main power pins
 Bluegiga Technologies Oy Page 10 of 52 Pin# Default function Net name 19 Ethernet TX - ETN_TXN 20 GND GND 21 Ethernet TX + ETN_TXP 22 3.3V output 3V3 23 Ethernet RX - ETN_RXN 24 Ethernet LED ETN_LED1N* 25 Ethernet RX + ETN_RXP 26 GND GND Table 4: Ethernet  * See 6.1 for detailed function.  Pin# Default function Net name 27 USB External VBUS enable SPDIF* 28  NC 29 USB D- USB1DM 30  NC 31 USB D+ USB1DP 32 Ground GND Table 5: USB Host
 Bluegiga Technologies Oy Page 11 of 52 Pin# Default function Net name 33 USB OTG id USB0_ID 34  NC 35 USB D- USB0DM 36  NC 37 USB D+ USB0DP 38  NC 39 Ground GND Table 6: USB On-the-go  Pin# Default function Net name 40 I2C Data I2C0_SDA 41 I2C Clock I2C0_SCL Table 7: I2C 0  Pin# Default function Net name 42 PWM (Backlight) PWM4 43 Status led PWM3 Table 8: Dedicated PWMs
 Bluegiga Technologies Oy Page 12 of 52 Pin# Default function Net name 44 Slave select 1 SDIO_DAT1_OUT* 45 Slave select 2 SDIO_DAT2_OUT* 46 Command - Master out, slave in SDIO_CMD_OUT* 47 Data 0, Master in, slave out SDIO_DAT0_OUT* 48 Clock SDIO_CLK_OUT* 49 Ready - Slave select 0 SDIO_DAT3_OUT* 50 Ground GND Table 9: SSP2 – SDIO/MMC/SPI  Pin# Default function Net name 51 Card detect SSP0_DETECT 52 Data 0 SSP0_DATA0 53 Data 1 SSP0_DATA1 54 Data 2 SSP0_DATA2 55 Data 3 SSP0_DATA3 56 Command SSP0_CMD 57 Clock SSP0_SCK 58 Ground GND Table 10: SSP0 – SDIO/MMC/SPI  Pin# Default function Net name 59 UART transmit AUART0_TX 60 UART receive AUART0_RX 61 UART clear-to-send AUART0_CTS 62 UART request-to-send AUART0_RTS Table 11: UART 0
 Bluegiga Technologies Oy Page 13 of 52 Pin# Default function Net name 63 UART transmit SSP2_MOSI 64 UART receive SSP2_SCK 65  NC 66  NC Table 12: UART 2  Pin# Default function Net name 67 UART transmit SSP2_SS0 68 UART receive SSP2_MISO 69  NC 70  NC 71 Ground GND Table 13: UART 3  Pin# Default function Net name 72 Bluetooth GPIO BT_PIO7 73 Bluetooth GPIO BT_PIO8 74 Bluetooth GPIO BT_PIO9 75 Bluetooth GPIO BT_PIO25 Table 14: Bluetooth GPIO
 Bluegiga Technologies Oy Page 14 of 52 Pin# Default function Net name 76 CAN 0 transmit GPMI_RDY2* 77 Ground GND 78 CAN 1 transmit GPMI_CE2N* 79 CAN 1 receive GPMI_CE3* 80 Ground GND 81 CAN 0 receive GPMI_RDY3* 82 Ground GND Table 15: CAN  Pin# Default function Net name 83 MCLK SAIF0_MCLK 84 Data line 1 SAIF1_SDATA0 85 Data line 0 SAIF0_SDATA0 86 Bit clock SAIF0_BITCLK 87 Left/Right clock SAIF0_LRCLK 88 GND GND Table 16: Primary audio / UART 4
 Bluegiga Technologies Oy Page 15 of 52 Pin# Default function Net name 89  NC 90  NC 91  NC 92  NC 93  NC 94 Ground GND 95  NC 96  NC 97  NC 98  NC 99  NC 100  NC Table 17: Reserved group 1
 Bluegiga Technologies Oy Page 16 of 52 Pin# Default function Net name 101  NC 102 Ground GND 103  NC 104  NC 105  NC 106  NC 107 1.4V output* 1V4_CPU 108 1.8V output* 1V8 109 4.2V output* 4V2_CPU 110  NC 111  GND 112  NC 113  NC 114  NC 115  NC 116 Ground GND Table 18: Reserved group 2  *Important: Pins 107-109 are only meant for manufacturing test. Please leave unconnected. Do not pull any current from these outputs. Doing so may create a black hole in the universe.
 Bluegiga Technologies Oy Page 17 of 52 Pin# Default function Net name 117 Data 0 LCD_D0 118 Data 1 LCD_D1 119 Data 2 LCD_D2 120 Data 3 LCD_D3 121 Data 4 LCD_D4 122 Data 5 LCD_D5 123 Data 6 LCD_D6 124 Data 7 LCD_D7 125 Data 8 LCD_D8 126 Data 9 LCD_D9 127 Data 10 LCD_D10 128 Data 11 LCD_D11 129 Ground GND 130 Data 12 LCD_D12 131 Data 13 LCD_D13 132 Data 14 LCD_D14 133 Data 15 LCD_D15 134 Data 16 LCD_D16 135 Data 17 LCD_D17 136 Data 18 LCD_D18 137 Data 19 LCD_D19 138 Data 20 LCD_D20 139 Data 21 LCD_D21 140 Data 22 LCD_D22 141 Data 23 LCD_D23 142 Ground GND
 Bluegiga Technologies Oy Page 18 of 52 Table 19 LCD data lines Pin# Default function Net name 143 Horizontal Sync LCD_WR_RWN 144 Vertical Sync LCD_RD_E 145 LCD Enable LCD_CS 146 Dot clock LCD_RS 147 Ground GND Table 20: LCD control lines  Pin# Function Net name 148 Debug UART RX or I2C1_SDA PWM0  (also  connected  to  PTH  pins  on  right side) 149 Debug UART TX or I2C1_SCL PWM1  (also  connected  to  PTH  pins  on  right side) 150 LCD reset / GPIO LCD_RESET 151  NC Table 21: Debug UART / PWM / I2C1 / GPIO
 Bluegiga Technologies Oy Page 19 of 52 Pin# Function Net name 152  NC 153  NC 154  NC 155  NC 156  NC 157  NC 158  NC 159 Ground GND 160 Ground GND 161  NC 162  NC 163 Ground GND 164 Ground GND 165  NC 166  NC 167 Ground GND 168 Ground GND 169  NC 170 WiFi Activity WIFI_ACT 171 Ground GND Table 22: Reserved group 3
 Bluegiga Technologies Oy Page 20 of 52 Pin# Function Net name 172 Wi-Fi Debug SPI - MISO SPI_WIFI_MISO 173 Wi-Fi Debug SPI – CLK SPI_WIFI_CLK 174 Wi-Fi Debug SPI – MOSI SPI_WIFI_MOSI 175 Wi-Fi Debug SPI - CS SPI_WIFI_CS 176 RTC interrupt INT_EXT_RTC_N 177 Factory reset button / JTAG return clock JTAG_RTCK 178 JTAG test clock JTAG_TCK 179 JTAG test data in JTAG_TDI 180 JTAG test data out JTAG_TDO 181 JTAG test mode state JTAG_TMS 182 JTAG test reset JTAG_TRST 183 Ground GND 184 JTAG enable boundary scan DEBUG Table 23: Misc  Pin# Function Net name 185 Touch controller XN LRADC4 186 Touch controller XP LRADC2 187 Touch controller YN LRADC5 188 Touch controller YP LRADC3 189 Touch controller WIPER LRADC6 190 Generic ADC 0 LRADC0 191 Generic ADC 1 LRADC1 192 High speed ADC HSADC0 193 Ground GND 194 Ground GND Table 24: ADC
 Bluegiga Technologies Oy Page 21 of 52  Pin # Function Net name 195 Bluetooth debug enable BT_SPI_PCM1N 196 PCM in BT_PCM1_IN 197 PCM out BT_PCM1_OUT 198 PCM clock BT_PCM1_CLK 199 PCM sync BT_PCM1_SYNC 200 Ground GND Table 25: Bluetooth audio
 Bluegiga Technologies Oy Page 22 of 52 3  Power subsystem Pin# Function APx4 net name Description 1-4 5V input VIN Main power input 5-7 Battery input/output VBATTERY A  rechargeable  battery  can  be connected 9-12, 22 3.3V output 3V3 For  maximum  current  draw,  see  Table 50 13 RTC battery VBACKUP RTC battery backup power 14 Power switch PSWITCH_OUT Power switch 17 Reset in - Master reset RESETN Active  low  master  reset.  Resets  the entire board. Table 26: Power supply pins  The module is powered through the 5V input. It is recommended that all the pins (1-4) are connected together on the application board. The external battery connectable to VBATTERY is currently not supported. VBACKUP is connected to the Real-Time clock battery and the VDD input of the Real Time Clock. This pin can be used to power the real time clock in cases where the battery is not placed on the module.  Figure 2: VBACKUP and battery connection                VDD Real Time Clock 3V3 Pin 13:VBACKUP On-board battery
 Bluegiga Technologies Oy Page 23 of 52 3.1  PSWITCH_OUT pin 14 Note: In most cases the user can ignore the PSWITCH pin. Leave unconnected for normal operation.  The ÅSWITCH_OUT (pin 14) has three levels: low, mid and high. A 10kΩ pull-up to mid-level is applied on the module to the PSWITCH line, causing the device to start booting immediately once power is applied. Boot-up requires a mid-level voltage to be present for >100ms. If the PSWITCH is pulled high for over 5 seconds, for example by connecting it to 3.3V, a special Freescale USB  recovery  mode  is  entered.  For  further  details  about  the  power  switch,  refer  to  Freescale’s  Reference Manual, Section 11.4. This mode can also be entered using the BOOTMODE pin.  3.2  RESETN Power-on reset is generated internally. If a reset from external pins is required use the RESETN pin. RESETN is internally pulled up to 3.3V.  The RESETN pin must be kept low for at least 100ms and then released in order to guarantee a proper reset.   Figure 3: NRESET     100ms NRESET
 Bluegiga Technologies Oy Page 24 of 52 4  Processor subsystem The processor belongs to the Freescale i.MX28-family and integrates  an ARM9 core operating at 454MHz. The standard APX4 variant uses the i.MX283 processor. The module also has 128MB of SLC NAND flash and 64MB of DDR2-400 memory. For  more details  regarding  the features  the  processor  offers,  please see  the Freescale Reference Manual. By default the module boots from the NAND flash into the U-Boot boot loader environment. From there the boot loader loads a Linux kernel which boots into the Bluegiga Linux userspace. 4.1  Bootmodes The module supports booting from multiple different media including NAND Flash, Secure Digital (SD) cards, MMC cards, I2C EEPROM and USB (in a device mode). The selected boot media can be selected using the LCD_DATA[0-3] signals or in the case of USB recovery boot, by tying the BOOTMODE pin to ground. By  default  the  module  boots  from  internal  NAND  flash,  meaning  that  LCD_DATA[3],  LCD_DATA[1]  and LCD_DATA[0] have pull-downs on the module and LCD_DATA[2] has a pull-up. Default  boot  mode  in  bold  face.  The  module  has  pull-ups  and  pull-downs  so  that  when LCD_DATA[0]..LCD_DATA[3]  are  left  unconnected  the  module  boots  from  internal  NAND.  After  boot  the LCD_DATA lines can be used fro any purpose.  LCD_DATA[3] LCD_DATA[2] LCD_DATA[1] LCD_DATA[0] Port 0 0 0 0 USB0 device mode boot 0 0 0 1 EEPROM connected to I2C0 0 0 1 0 SPI flash on SSP2 (non-Wi-Fi version only) 0 0 1 1 SPI flash on SSP3 (not available on standard versions) 0 1 0 0 Module’s internal NAND Flash 0 1 1 0 Wait for JTAG connection 1 0 0 0 SPI EEPROM on SSP3 (not available on standard versions) 1 0 0 1 SD/MMC card on SSP0 1 0 1 0 SD/MMC on SSP1 (not available on standard versions) Table 27: Bootmodes
 Bluegiga Technologies Oy Page 25 of 52 5  Wireless interfaces The  wireless  connectivity  on  the  module  is  implemented  using  two  separate  chips  which  share  a  2.4GHz antenna.  5.1  Bluetooth The module is a fully qualified Bluetooth 4.0, Class 1, system, supporting both classical Bluetooth as well as Bluetooth Smart (Bluetooth low energy) devices simultaneously.  5.1.1 Bluetooth GPIOs Pin# Function Net name 72 Bluetooth GPIO 7 BT_PIO7 73 Bluetooth GPIO 8 BT_PIO8 74 Bluetooth GPIO 9 BT_PIO9 75 Bluetooth GPIO 25 BT_PIO25 Table 28: Bluetooth GPIO These GPIOs are controlled by the Bluetooth baseband chip. The main processor can read and write them by issuing special commands to the Bluetooth chip, making them suitable for use as status indicators, but not for high speed signals. For the current status of software support, please refer to the software documentation. Contact support if needed. The pins are bidirectional pins with internal programmable strength pull-up or pull-down. By default they are inputs with a weak pull-down.  5.1.2 Bluetooth Audio interface Pin # Net name PCM function I2S function Debug interface 195 BT_SPI_PCM1N Select Audio: GND Select Audio: GND Select Debug: +3.3V 196 BT_PCM1_IN PCM in Serial in (SD_IN) MOSI 197 BT_PCM1_OUT PCM out Serial out (SD_OUT) MISO 198 BT_PCM1_CLK PCM clock Serial clock (SCK) Clock 199 BT_PCM1_SYNC PCM sync Write sync (WS) Chip select (active low) Table 29: Bluetooth audio and debug interface The  Bluetooth  audio  functionality  can  be  configured  to  work  in  either  I2S  or  PCM  mode.  In  addition,  the Bluetooth chip’s debug interface is multiplexed with the audio pins.  The  audio  interface  supports  continuous  transmission  and  reception  of  PCM  audio  data  over  Bluetooth. Operation in either master or slave mode are supported and many different clock modes can be supported. A maximum of 3 SCO audio links can be transmitted through the PCM interface at any one time.
 Bluegiga Technologies Oy Page 26 of 52  5.1.3 Bluetooth PCM slots and formats The  module  receives  and  transmits  on  any  selection  of  the  first  4  slots  following  each  sync  pulse.  Slot durations are either 8 or 16 clock cycles:   8 clock cycles for 8-bit sample formats.   16 clocks cycles for 8-bit, 13-bit or 16-bit sample formats. The supported formats are:  13-bit linear, 16-bit linear and 8-bit μ-law or A-law sample formats.   A sample rate of 8ksamples/s.   Little or big endian bit order.   For 16-bit slots, the 3 or 8 unused bits in each slot are filled with sign extension, padded with zeros or a programmable 3-bit audio attenuation compatible with some codecs. There is also a compatibility mode that forces PCM_OUT to be 0. In master mode, this allows for compatibility with some codecs which control power down by forcing PCM_SYNC to 0 while keeping PCM_CLK running. 5.1.4 Bluetooth I2S interface The I2S mode supports left-justified and right-justified data.  The interface shares the same pins as the PCM interface, which means each audio bus is mutually exclusive in its usage. The  digital  audio  interface  is  configured  using  the  PSKEY_DIGITAL_AUDIO_CONFIG  in  the  Bluetooth  PS Key configuration. The internal representation of audio samples within CSR8811 is 16-bit and data on SD_OUT is limited to 16-bit per channel.  Symbol Parameter Minimum Maximum Unit - SCK frequency - 6.2 MHz - SCK frequency - 96 kHz tch SCK high time 80 - ns tcl SCK low time 80 - ns tssu WS valid to SCK high setup time 20 - ns tsh SCK high to WS invalid hold time 2.5 - ns topd SCK low to SD_OUT valid delay time - 20 ns tisu SD_IN valid to SCK high setup time 20 - ns tih SCK high to SD_IN invalid hold time 2.5 - ns Table 30: I2S Slave mode timing
 Bluegiga Technologies Oy Page 27 of 52 Symbol Parameter Minimum Maximum Unit - SCK Frequency - 6.2 MHz - WS Frequency - 96 kHz tspd SCK low to WS valid delay time - 39.27 ns topd SCK low to SD_OUT valid delay time - 18.44 ns tisu SD_IN valid to SCK high setup time 18.44 - ns tih SCK high to SD_IN invalid hold time 0 - ns Table 31: I2S Master mode timing 5.2  Wi-Fi The on board Wi-Fi is designed for IEEE 802.11b/g/n in the 2.4GHz band. Hardware encryption support for WEP40/64, WEP104/128, TKIP, CCMP (AES),  BIP and CKIP provides functionality for WPA, WPA2, IEEE 802.11i, IEEE 802.11w and CCX advanced security mechanisms.  The following modulations are supported:   All mandatory IEEE 802.11b modulations: 1, 2, 5.5, 11Mbps   All IEEE 802.11g OFDM modulations: 6, 9, 12, 18, 24, 36, 48, 54Mbps   Single stream  IEEE  802.11n HT  modulations  MCS0-7, 20MHz,  800 and  400ns  guard  interval: 6.5, 7.2, 13.0, 14.4, 19.5, 21.7, 26.0, 28.9, 39.0, 43.3, 52.0, 57.8, 58.5, 65.0, 72.2Mbps   STBC (Space Time Block Coding) reception for IEEE 802.11n HT modulations MCS0-7 The receiver features direct conversion architecture. Sufficient out-of-band blocking specification at the Low Noise  Amplifier (LNA)  input  allows  the  receiver  to be  used  in  close  proximity to  Global  System  for  Mobile Communications (GSM) and Wideband Code Division Multiple Access (W-CDMA) cellular phone transmitters without  being  desensitized.  High-order  baseband  filters  ensure  good  performance  against  in-band interference. The transmitter features a direct conversion IQ transceiver. Digital baseband transmit circuitry provides the required spectral shaping and on-chip trims are used to reduce IQ modulator distortion. Transmitter gain can be controlled on a per-packet basis, allowing the optimization of the transmit power as a function of modulation scheme. The modulator supports digital predistortion to reduce non-linarites in the power amplifier.  The module supports automatic PA thermal drift compensation by measuring the transmit power through an internal power coupler.
 Bluegiga Technologies Oy Page 28 of 52 6  Peripheral interfaces The module allows for several kinds of different interfaces to peripherals to be used. 6.1  Ethernet Pin# Function Net name 19 Ethernet TX - ETN_TXN 20 GND GND 21 Ethernet TX + ETN_TXP 22 3.3V output 3V3 23 Ethernet RX - ETN_RXN 24 Ethernet LED ETN_LED1N 25 Ethernet RX + ETN_RXP 26 GND GND Table 32: Ethernet pins The  Ethernet  I/O  lines  are  connected  on  the  module  to  a  standard  10Base-T/100Base-TX  physical  layer transceiver (PHY). A connector board will only need to have the magnetics as well as an RJ45 jack in order to have  fully  functioning  Ethernet.  Multiple  vendors  also  supply  RJ45  jacks  with  integrated  magnetics  under brand names such as MagJack and PulseJack which further simplify design. A reference schematic for such a design is available in the APx4 reference design. When routing the Ethernet signals, care should be taken to route the differential signals together, meaning that for example ETN_TXN and ETN_TXP should be kept close together. The traces must also be kept short in order to avoid EMC issues.  The Ethernet LED pin (ETN_LED1N) indicates link and activity and has a maximum output drive current of 8 mA. The ETN_LED is high when no Link is present (typically connected so that a physical LED is off), low when a Link is present (physical LED on) and toggled on activity (physical LED is blinking).  Make sure that the driving capability of 8mA is not exceeded.  Pin state LED Meaning HIGH Off No Link LOW On Link Toggle Blinking Activity Table 33: ETN_LED1N pin  Figure 4 Typical external LED connection
 Bluegiga Technologies Oy Page 29 of 52  6.2  USB Pin# Function Net name 27 USB OTG Host External VBUS enable SPDIF* 29 USB Host D- USB1_DM 31 USB Host D+ USB1_DP 33 USB OTG ID USB0_ID 35 USB OTG D- USB0_DM 37 USB OTG D+ USB0_DP Table 34: USB pins  The module has two USB high-speed controllers, one which supports USB Host mode only and another which support USB On-the-Go (OTG). The USB On-the-Go controller is capable of operating as a USB Host or a USB  Device  and  support  the  OTG  role  negotiation  via  the  USB  OTG-ID  signal.  For  the  current  software support, please see the software documentation. The USB D+ and D- signals can be directly connected to a USB connector, however when using a connector, protection against electrostatic discharge (ESD) should be taken into account.  Because USB high-speed is a very high frequency digital signal (480Mbps), care must be taken to route the D+ and D- signals as close together as possible and to have a ground plane follow them. The traces must also be kept as short as possible. The USB Host External VBUS enable signal is not present in the standard model, and has a fixed pull-up. For more details refer to the i.MX28 Applications Processor Reference Manual (MCIMX28RM) chapters 31 and 32. 6.3   I2C Pin# I2C function Alternate Functions Net name 40 I2C 0 Data  I2C0_SDA 41 I2C 0 Clock  I2C0_SCL 148 I2C 1 Data PWM0, Debug UART TX PWM0/I2C1_SDA 149 I2C 1 Clock PWM1, Debug UART RX PWM1/I2C1_SCL Table 35: I2C interface The  Inter  Integrated  Circuit  bus  (I2C)  is  a  standard  two-wire  interface  used  for  communication  between peripherals  and  the  host.  The  interface  supports  both  standard  speed  (up  to  100kbps)  and  as  fast  speed (400kbps) I2C connection to multiple devices with the processor acting in either master or slave mode.
 Bluegiga Technologies Oy Page 30 of 52 The primary I2C interface (I2C 0, pins 40 and 41) is also connected to the module’s Real Time Clock (RTC) chip and thus some additional restrictions for the communication apply. The processor is always the master. The standard 2K pull-ups are located on APx4. Do not place additional pull-ups on I2C 0. One I2C slave address (1010001X) on I2C 0 is reserved for the Real Time Clock PCF8563T on the APx4:    Read: 0xA3 (10100011)   Write: 0xA2 (10100010) The secondary I2C (I2C 1) is available on pins 148 and 149 and can be used freely in either master or slave mode. By default it is configured to provide the Debug UART. I2C 1 does not have built-in pull-ups. For more details about I2C, please refer to the i.MX28 Applications Processor Reference Manual, chapter 27. 6.4  PWM outputs Pin# Default function PWM function Additional function Net name 42 LCD Backlight (PWM4) PWM4  PWM4 43 Status led (PWM3) PWM3  PWM3 148 Debug UART TX PWM0 I2C 1 bus data  PWM0/I2C1_SDA 149 Debug UART RX  PWM1 I2C 1 bus clock PWM1/I2C1_SCL 83 MCLK PWM3 UART4 CTS SAIF0_MCLK 84 Data line 1 PWM7  SAIF1_SDATA0 85 Data line 0 PWM6 UART 4 TX SAIF0_SDATA0 86 Bit clock PWM5 UART4 RX  SAIF0_BITCLK 87 Left/Right clock PWM4 UART4 RTS SAIF0_LRCLK Table 36: PWM outputs  The module has up to seven  Pulse Width Modulator  outputs available. Independent output control of each phase allows 0, 1 or high-impedance to be independently selected for the active and inactive phases.  Two dedicated PWM outputs are at pins 42 and 43, and are typically used for the LCD’s backlight and as a status led, respectively. The same PWM outputs are available also on pins 83 and 87. The Debug UART on pins 148 and 149 can be disabled and used for two independent PWM outputs instead. For more details about PWM, please refer to the i.MX28 Applications Processor Reference Manual, chapter 28.
 Bluegiga Technologies Oy Page 31 of 52 6.5  SDIO / SPI / MMC Pin# SDIO/SD/MMC SPI mode Net name 51 Card detect  SSP0_DETECT 52 Data 0 MISO SSP0_DATA0 53 Data 1  SSP0_DATA1 54 Data 2  SSP0_DATA2 55 Data 3 Slave Select SSP0_DATA3 56 Command MOSI SSP0_CMD 57 Clock Clock SSP0_SCK 58 Ground  GND Table 37: SDIO/SPI/MMC The  Synchronous  Serial  Port  subsystem  provides  support  for  MMC  cards,  SD  cards,  SDIO  devices,  SPI master and slave communication and eMMC 4.4 devices. In a standard configuration 1-bit and 4-bit modes for MMC/SD/SDIO/eMMC is available. On versions without Wi-Fi support the 8-bit mode can also be configured.   For use with removable cards, a hardware card detect pin is provided.  For further information, please refer to the i.MX28 Applications Processor Reference Manual, chapter 17.
 Bluegiga Technologies Oy Page 32 of 52 6.6  UARTs The module can be configured to support up to five UARTs simultaneously, two with hardware flow control, two without hardware flow control and one for debugging. The UART interfaces offer similar functionality to the industry-standard 16C550 UART device, and the regular UARTs support baud rates of up to 3.25Mbits/s.  For  further  information  about  UARTs  0,  2,  3  and  4,  please  refer  to  the  i.MX28  Applications  Processor Reference Manual, chapter 30. Debug UART is covered in chapter 24. 6.6.1  UART 0 Pin# UART 0 Debug UART UART 4 Direction Net name 59 Transmit Request-to-send  Output from module AUART0_TX 60 Receive Clear-to-Send  Input to module AUART0_RX 61 Clear-to-send Receive Receive Input to module AUART0_CTS 62 Request-to-send Transmit Transmit Output from module AUART0_RTS Table 38: UART0 The first UART section (pins 59-62) is by default configured to provide UART 0 with hardware flow control. The hardware supports selecting the function of each pin separately. For example pins 59 and 60 could be configured for UART 0 and 61 and 62 for UART 4. 6.6.2  UART 2 Pin# UART 2 function Alternative function Net name 63 TX - Transmit SAIF 0 SDATA 2 SSP3_MOSI 64 RX - Receive SAIF 0 SDATA 1 SSP2_SCK Table 39: UART 2 The pins 63 and 64 provide UART 2 functions. UART 2 does not have hardware flow control available. They can alternatively be configured as additional processor audio data lines. 6.6.3  UART 3 Pin# UART 3 function Alternative function Net name 67 TX - Transmit SAIF 1 SDATA 2 SSP2_SS0 68 RX - Receive SAIF 1 SDATA 1 SSP2_MISO Table 40: UART 3 The pins 67 and 68 provide UART 3 functions. UART 3 does not have hardware flow control available. They can alternatively be configured as additional processor audio data lines.
 Bluegiga Technologies Oy Page 33 of 52  6.6.4  UART 4 Pin# UART 4 Other functions Net name 61 Receive DUART RX, AUART 0 CTS AUART0_CTS 62 Transmit DUART TX, AUART 0 RTS AUART0_RTS 83 Clear-to-send SAIF0_MCLK, PWM 3 SAIF0_MCLK 85 Transmit SAIF0_SDATA0, PWM 6 SAIF0_SDATA0 86 Receive SAIF0_BITCLK, PWM 5 SAIF0_BITCLK 87 Request-to-send SAIF0_LRCLK, PWM 4 SAIF0_LRCLK Table 41: UART 4 The fourth UART is not available by default, but can be configured to be available from two different locations. Using UART 4 disables either CPU Audio or UART 0’s hardware flow-control lines. If hardware flow control is required, then the CPU Audio pins (83-87) can be configured to provide the UART 4 functionality instead of CPU Audio. Using UART 4 with hardware flow control at the same time as CPU Audio is not possible. If hardware flow control  is not required for UART  4 or for UART  0, then the hardware flow control lines of UART 0 can be configured to provide UART 4 RX/TX instead.  6.6.5  Debug UART Pin# Debug UART Alternative functions UART I/O direction Net name 148 Receive I2C1 SDA, PWM0 Input to module PWM0 149 Transmit I2C1 SCL, PWM1 Output from module PWM1 59 Request-to-send UART 0 TX Output from module AUART0_TX 60 Clear-to-Send UART 0 RX Input to module AUART0_RX 61 Receive UART 0 CTS, UART 4 RX Input to module AUART0_CTS 62 Transmit UART 0 RTS, UART 4 TX  Output from module AUART0_RTS Table 42: DEBUG UART By default the Debug UART is provided on pins 148 and 149 without using hardware flow control. This will prevent the use of the second I2C port. Alternatively the Debug UART can be configured to be available from the pins of UART 0 as seen in the table above.  The main difference between the Debug UART and the Application UARTs is that there is no DMA for the Debug UART and the maximum baud rate is 115.2Kb/s. It unsuitable for any high throughput use-cases and consumes more processor resources than the other UART interfaces, making it best suited for debugging. In
 Bluegiga Technologies Oy Page 34 of 52 theory the Debug UART  can be  used  for  other  UART applications  instead  of  debugging,  but  it is primarily intended for simple console access to the processor. For further information, please refer to the i.MX28 Applications Processor Reference Manual, chapter 30. 6.7  CAN Pin# Function Net name 76 CAN 0 transmit GPMI_RDY2* 78 CAN 1 transmit GPMI_CE2* 79 CAN 1 receive GPMI_CE3* 81 CAN 0 receive GPMI_RDY3* Table 43: CAN The standard model does not include CAN support and pins 76, 78, 79 and 81 are not to be connected as they cannot be used. On the  model with CAN support,  the  pins can  be  used  as described in the  i.MX28 Applications  Processor Reference Manual, chapter 25. 6.8  Processor Audio Pin# Audio function SAIF 0 SAIF 1 Alternate functions Net name 83 Master clock MCLK  AUART4 CTS SAIF0_MCLK 84 Data line SDATA1 SDATA0 PWM 7 SAIF1_SDATA0 85 Data line SDATA0  AUART4 TX, PWM 6 SAIF0_SDATA0 86 Bit clock BITCLK  AUART4 RX, PWM 5 SAIF0_BITCLK 87 Left/Right clock LRCLK  AUART4 RTS, PWM 4 SAIF0_LRCLK 63 Data line SDATA2  UART 2 TX SSP2_MOSI 64 Data line SDATA1  UART 2 RX SSP2_SCK 67 Data line  DATA2 UART 3 TX SSP2_SS0 68 Data line  DATA1 UART 3 RX SSP2_MISO Table 44: AUDIO The serial audio  interface provides  a serial interface to the industry’s most common analog codecs. On the processor side, there are two serial audio interface subsystems, SAIF0 and SAIF1. These two can be used together to provide full-duplex stereo audio transfers, where SAIF0 is used as an output and for managing the clocks while SAIF1 is used as a slave to SAIF0 and for audio input.
 Bluegiga Technologies Oy Page 35 of 52 Each data line carries two channels of  audio data, meaning that if SDATA0, SDATA1 and SDATA2 are all used, bi-directional 6 channel audio is possible. Please note that when the pins for UART 2 and UART 3 are used as audio data lines, they cannot be used as UARTs. Each function can be configured separately, so in case for example only one channel stereo is required, only the data  line  on  pin 84  or  85 need to  be used, allowing for the rest  of  the data lines  to be used for  other purposes. For example if bi-directional audio is not required, the data input line on pin 84 can alternatively be configured as a second SAIF0 data line (SAIF0_SDATA1), meaning it is possible to have 4-channel audio input or output without sacrificing UART 2 or UART 3. The  module  has  been  tested  with  the  Freescale  SGTL5000  audio  codec  which  is  used  in  the  reference design. If the optional master clock is not used, it can be configured to operate as a GPIO.  For  more  information  about  the  serial  audio  interfaces,  please  refer  to  refer  to  the  i.MX28  Applications Processor Reference Manual, chapter 35.  6.9  LCD Pin# Default function Net name 143 Horizontal Sync LCD_WR_RWN 144 Vertical Sync LCD_RD_E 145 LCD Enable LCD_CS 146 Dot clock LCD_RS 147 Ground GND 117-141 Data lines, see Table 19 LCD_D0-LCD_D23 Table 45: LCD signals The LCDIF provides display data for external LCD panels from simple text-only displays to WVGA, 16/18/24 bpp color TFT panels. The LCDIF supports all of these different interfaces by providing fully programmable functionality and sharing register space, FIFOs, and ALU resources at the same time. The LCDIF supports RGB (DOTCLK) modes as well as system mode including both VSYNC and WSYNC modes. Features:   Display resolution up to 800x480.   AXI-based  bus  master  mode  for  LCD  writes  and  DMA  operating  modes  for  LCD  reads  requiring minimal CPU overhead.   8/16/18/24 bit per pixel.   Programmable  timing  and  parameters  for  system,  MPU,  VSYNC  and  DOTCLK  LCD  interfaces  to support a wide variety of displays.   ITU-R BT.656 mode including progressive-to-interlace feature and RGB to YCbCr 4:2:2 color space conversion to support 525/60 and 625/50 operation.   Ability to drive 24-bit RGB/DOTCK displays up to WVGA at 60 Hz. High robustness guaranteed by 512-pixel FIFO with under-run recovery.
 Bluegiga Technologies Oy Page 36 of 52   Support for full 24-bit system mode (8080/6080/VSYNC/WSYNC).   ITU-R/BT.656  compliant  D1  digital  video  output  mode  with  on-the-fly  RGB  to  YCbCr  color-space-conversion.   Support for a wide variety of input and output formats that allows for conversion between input and output (for example, RGB565 input to RGB888 output).  For more information refer to the i.MX28 Applications Processor Reference Manual, chapter 33. 6.10  LRADC0-6 (Touch interface)  Function Resolution 12 bits Maximum sampling rate 428kHz DC input voltage 0-1.85V Expected plate resistance 2000-50000 ohm Table 46: LRADC LRADC 0 - 6 measure the voltage on the seven application-dependent LRADC pins. The auxiliary channels can  be  used  for  a  variety  of  uses,  including  a  resistor-divider-based  wired  remote  control,  external temperature sensing, touch-screen, button and so on.  Pin# 4-wire touch  5-wire touch  Other Net name 185 X- UR Generic ADC 4 LRADC4 186 X+ UL Generic ADC 2 LRADC2 187 Y- LR Generic ADC 5 LRADC5 188 Y+ LL Generic ADC 3 LRADC3 189  WIPER Generic ADC 6 LRADC6 190   Generic ADC 0 LRADC0 191   Generic ADC 1 LRADC1 Table 47: LRADC For  pull-up  or  pull-down  switch  control  on  LRADC2~5  pins,  please  refer  to  HW_LRADC_CTRL0  register. LRADC 0 can be used for button and external temperature sensing, they cannot be enabled at same time in hardware configuration. LRADC 1 can be used for button as well as LRADC 0. For an example of how LRADC can  be  used  for  connecting  multiple  buttons,  please  see  Freescale’s  reference  design  for  the  i.MX28 processor.   For more information refer to the i.MX28 Applications Processor Reference Manual.
 Bluegiga Technologies Oy Page 37 of 52 6.11 HSADC (High-Speed ADC) Function Value Input sampling capacitance (Cs) 1.0pF typical Resolution 12 bits Maximum sampling rate 2MHz DC input voltage 0.5 — VDDA-0.5 Power-up time 1 sample cycles Table 48: HSADC The processor contains a high speed, high resolution analog to digital converter which can be used when the lower resolution ADCs do not provide enough sampling speed or resolution. For more information refer to refer to the i.MX28 Applications Processor Reference Manual. 6.12  JTAG Pin# Function Net name Note 118 Mode LCD_D1 LCD_D1=HIGH:  CPU  is  ready,  waiting  for  JTAG connection 177 JTAG  return  clock  (Factory reset) JTAG_RTCK* During normal operation, this pin is reserved for use as a factory reset button by the software. 178 JTAG test clock JTAG_TCK  179 JTAG test data in JTAG_TDI  180 JTAG test data out JTAG_TDO  181 JTAG test mode select JTAG_TMS  182 JTAG test reset JTAG_TRST  183 Ground GND  184 JTAG enable boundary scan DEBUG** DEBUG=0: JTAG interface works for boundary scan. DEBUG=1:  JTAG  interface  works  for  ARM debugging. Table 49: JTAG pins * Most JTAG adapters do not use the Return Test Clock in which case it can be used for other purposes. E.g. on the APX4 reference design this pin is used for Factory Reset button. ** DEBUG pin is pulled down inside CPU. Leave unconnected for ordinary boundary scan.
 Bluegiga Technologies Oy Page 38 of 52 In case ARM debugging is needed the board must be powered on in JTAG mode (Wait JTAG connection mode), i. e. LCD_D1 (pin 118) must be high.
 Bluegiga Technologies Oy Page 39 of 52 7  Electrical Characteristics 7.1  Absolute Maximum Ratings Parameter Min Max Unit Vin -0.3 7.0 V Voltage on ordinary I/O -0.3 3.63 V 3V3 current drain*  200 mA Permissible ambient temperature  (Commercial version) 0 70 °C Permissible ambient temperature (Industrial version) -40 85 °C Storage temperature -40 85 °C Table 50: Absolute Maximum ratings *Pins 9, 10, 11, 12 are 3.3V outputs intended for 3.3V low power devices.   Stresses beyond those listed in Table 50 may cause permanent damage to the device.   Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.   Table  50  gives  stress  ratings  only—functional  operation  of  the  device  is  not  implied  beyond  the conditions indicated in Table 51.   7.2  Recommended Operating Conditions Parameter Min Max Unit Vin 4.75 5.25 V Voltage on ordinary I/O 3.1 3.4 V Board temperature (Industrial version) -40 85 °C Ambient temperature with high Wi-Fi use (Industrial version) -40 60 °C Table 51: Recommended Operating Conditions
 Bluegiga Technologies Oy Page 40 of 52 7.3  Power Consumption Condition Min Typ Max Unit During Boot 1.0 1.2 1.3 W Idle (Linux booted, but no active processes) 0.8 0.9 1.0 W Wi-Fi transmitting 1.7 1.8 1.9 W Table 52: Power consumption (no power saving enabled)
 Bluegiga Technologies Oy Page 41 of 52 8  RF Characteristics  min max  Channels 1 13 (1-11 when used in USA) Frequency 2412 2472 (2462) MHz Table 53: Supported frequencies for Wi-Fi transceiver   min max  Channels 0 78  Frequency 2402 2480 MHz Table 54: Supported frequencies for Bluetooth transceiver  Standard Supported bit rates 802.11b 1, 2, 5.5, 11Mbps 802.11g 6, 9, 12, 18, 24, 36, 48, 54Mbps 802.11n, HT, 20MHz, 800ns 6.5, 13, 19.5, 26, 39, 52, 58.5, 65Mbps 802.11n, HT, 20MHz, 400ns 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2Mbps Table 55: Supported modulations for Wi-Fi transceiver   min max   Accuracy -20 +20 ppm  For all environmental conditions Table 56: Carrier frequency accuracy for both WiFi and Bluetooth
 Bluegiga Technologies Oy Page 42 of 52 802.11b Typ 802.11g Typ 802.11n short GI Typ 802.11n long GI Typ 1 Mbps -97 dBm 6 Mbps -92 dBm 6.5 Mbps -91 dBm 7.2 Mbps -92 dBm 2 Mbps -95 dBm 9 Mbps -91 dBm 13 Mbps -87 dBm 14.4 Mbps -90 dBm 5.5 Mbps -93 dBm 12 Mbps -89 dBm 19.5 Mbps -85 dBm 21.7 Mbps -87 dBm 11 Mbps -89 dBm 18 Mbps -87 dBm 26 Mbps -82 dBm 28.9 Mbps -84 dBm   24 Mbps -84 dBm 39 Mbps -78 dBm 43.3 Mbps -80 dBm   36 Mbps -80 dBm 52 Mbps -74 dBm 57.8 Mbps -75 dBm   48 Mbps -75 dBm 58.5 Mbps -71 dBm 65 Mbps -72 dBm   54 Mbps -73 dBm 65 Mbps -68 dBm 72.2 Mbps -69 dBm Table 57: Wi-Fi receiver sensitivity (at external antenna connector)  Modulation type Typ  DH1 -89 dBm DH3 -89 dBm DH5 -89 dBm 2-DH1 -92 dBm 2-DH3 -92 dBm 2-DH5 -92 dBm 3-DH1 -86 dBm 3-DH3 -85 dBm 3-DH5 -85 dBm Table 58: Bluetooth receiver sensitivity (at external antenna connector)  Modulation type Min Typ Max  Wi-Fi +14 +15 +15.6 dBm Bluetooth/Bluetooth LE +5.5 +8.1 +9 dBm Table 59: Transmitter output power at maximum setting
 Bluegiga Technologies Oy Page 43 of 52 9  Physical Dimensions    Figure 5: Physical dimensions
 Bluegiga Technologies Oy Page 44 of 52 10  Attachment to motherboard In order to ease assembly of the APx4 module, it has slightly oval attachment holes. The size of the hole is ~2.2x3.0mm.  This  makes  it  possible  to  attach  a  screw  and  nut  to  the  motherboard  before  inserting  the module. Parameter Size Note Diameter M2  Length <= 10mm, 8mm recommenced Length excluding head Head diameter <= 3.8mm  Material Steel or similar *Do not use plastic material Table 60: Screw size Parameter Size Note Size M2  Material Steel or similar *Do not use plastic material Table 61: Nut size *Use  metal  screws  and  nuts  that  connect  to  ground,  as  that  improves  the  function  of  the  APx4 integrated antenna. Nylon/plastic screws/nuts may be used only if the motherboard’s locking clips are grounded. Metal screws and nuts will also improve the heat conductivity compared to nylon/plastic. For automatic assembly Phillips, Pozi or Torx head is recommended. A suitable screw is Bossard’s PN 1151495 with following features:   BN 380 - ISO 7048   Cross recessed cheese head screw   Phillips H   ISO 7048   SN 213307
 Bluegiga Technologies Oy Page 45 of 52 11  Layout Guidelines Layout is very important for proper antenna operation when using the integrated antenna. 11.1 Internal antenna: Optimal module placement Key points to remember are   APx4 should be placed so that the antenna faces away from large GND planes.   Typically the best placement is along one of the motherboard edges.   Antenna facing out from board   Antenna preferably in corner or placed outside the motherboard edge   Important: The motherboard’s locking clips must be attached to GND.   Optionally attach APx4 to the motherboard with metal screws and nuts as described in this document  Either: o Create a board cutout under the entire antenna part or  o Place the module so that the antenna is outside the board edge   We recommend issuing the motherboard design to Bluegiga for review in good time before ordering the PCBs. Please allow for several days for such a review.    Figure 6: Example placement w/motherboard cut-out    Figure 7: Example placement, antenna outside motherboard  Important: The motherboard’s locking clips must be attached to GND. 11.2  External antenna In case external antenna is used the RF output can be taken directly from the U.FL connector of the module. In this case internal antenna placement can be ignored. See chapter 12.6 for approved antennas. 11.3  Thermal Considerations APx4  will  heat  up  to  some  extent  during  use,  especially  due  to  Wi-Fi  power  consumption  during  high-throughput  transmissions.  APx4  can  be  attached  to  the  motherboard  with  metal  bolts  to  allow  some  heat transfer to the application board ground plane. 11.4  EMC Considerations for Motherboard Unwanted electromagnetic radiation may arise from a combination of APx4 and a motherboard if not carefully designed.
 Bluegiga Technologies Oy Page 46 of 52   The  number  of  layers  required  depends  on  the  application.  The  simplest  application  with  no  high speed signals connected, 2 layers might be enough, but with a high number of the APx4 signals in use with high clock speeds, 6 layers is recommended, with solid power and ground planes.   Place  the  peripherals  (connectors  etc.)  as  close  as  possible  to  APX4.  One  example  is  USB  and Ethernet. Make the lines as short as possible.   USB lines: Use 45 ohms single-line (90 ohms differential) impedance. Route the lines as differential pairs   Ethernet  lines:  Use  50  ohms  single-line  (100  ohms  differential)  impedance.  Route  the  lines  as differential pairs.   Make sure that Ethernet Tx and Rx lines are well separated in order to minimize cross talk. If there is excessive cross talk the PHY may receive its own packets.   Be careful with clocks, e.g. SAIF0_MCLK. Do not route them longer than absolutely necessary. Place the destination components as close as possible to the APx4. If clock traces are routed e.g. across the board they easily cause radiation which may exceed allowed limits.   The power supply should be designed for 5V and at least 500mA continuous current.   We recommend issuing the motherboard design to Bluegiga for review in good time before ordering the PCBs. Please allow for several days for such a review.
 Bluegiga Technologies Oy Page 47 of 52 12  Certifications APx4 is compliant to the following specifications: 12.1  CE TBD 12.2  FCC This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and  (2) this device must accept any interference received, including interference that may cause undesired operation. FCC RF Radiation Exposure Statement:  This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End users must follow the specific operating instructions for satisfying RF exposure compliance. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter. This transmitter is considered as mobile device and should not be used closer than 20 cm from a human body. To allow portable use in a known host class 2 permissive change is required. Please contact support@bluegiga.com for detailed information.  OEM Responsibilities to comply with FCC Regulations The APx4 Module has been certified for integration into products only by OEM integrators under the following conditions:    The antenna(s) must be installed such that a minimum separation distance of  25mm is maintained between the radiator (antenna) and all persons at all times.   The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter.  As long  as  the two  conditions above are met, further transmitter testing  will not be required. However, the OEM integrator  is still responsible  for  testing  their  end-product  for any additional  compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.). IMPORTANT NOTE: In the event that these conditions cannot be met (for certain configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization. End Product Labeling The APx4 Module is labeled with its own FCC ID. If the FCC ID is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module.  In that case, the final end product must be labeled in a visible area with the following: “Contains Transmitter Module FCC ID: QOQAPX4” or  “Contains FCC ID: QOQAPX4”
 Bluegiga Technologies Oy Page 48 of 52 The OEM of the APx4 Module must only use the approved antenna(s) described in Table 62 External Antenna Parameters, which have been certified with this module. The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or change RF related parameters in the user manual of the end product.   12.3  IC This  device  complies  with  Industry  Canada  license-exempt  RSS  standard(s).  Operation  is  subject  to  the following  two  conditions:  (1)  this  device  may  not  cause  interference,  and  (2)  this  device  must  accept  any interference, including interference that may cause undesired operation of the device. Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum  (or  lesser)  gain  approved  for  the  transmitter  by  Industry  Canada.  To  reduce  potential  radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. If detachable antennas are used: This radio transmitter (identify the device by certification number, or model number if Category II) has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. See Table 62 External Antenna Parameters for the approved antennas. OEM Responsibilities to comply with Industry Canada Regulations The APx4 Module has been certified for integration into products only by OEM integrators under the following conditions:    The  antenna(s)  must  be  installed such  that  a  minimum  separation  distance  of  20cm  is maintained between the radiator (antenna) and all persons at all times.   The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter.  As long  as  the two  conditions  above are met, further transmitter  testing will not  be required. However,  the OEM integrator  is still responsible  for  testing  their  end-product  for any additional  compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.). IMPORTANT NOTE: In the event that these conditions cannot be met (for certain configurations or co-location with  another  transmitter),  then  the  Industry Canada  authorization  is  no  longer considered  valid  and the  IC Certification Number cannot be used on the final product. In these circumstances, the OEM integrator will be responsible  for  re-evaluating  the  end  product  (including  the  transmitter)  and  obtaining  a  separate  Industry Canada authorization. End Product Labeling The APx4 Module is labeled with its own IC Certification Number. If the IC Certification Number are not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module.  In that case, the final end product must be labeled in a visible area with the following: “Contains Transmitter Module IC: 5123A-BGTAPX4” or “Contains IC: 5123A-BGTAPX4”
 Bluegiga Technologies Oy Page 49 of 52 The OEM of the APx4 Module must only use the approved antenna(s) described in Table 62 External Antenna Parameters, which have been certified with this module. The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or change RF related parameters in the user manual of the end product.  To comply with Industry Canada RF radiation exposure limits for general population, the antenna(s) used  for  this  transmitter  must  be  installed  such  that  a  minimum  separation  distance  of  20cm  is maintained between the radiator (antenna) and all persons at all times and must not be co-located or operating in conjunction with any other antenna or transmitter.  12.4  IC Déclaration de conformité IC : Ce matériel respecte les standards RSS exempt de licence d’Industrie Canada.  Son utilisation est soumise aux deux conditions suivantes : (1) l’appareil ne doit causer aucune interférence, et (2) l’appareil doit accepter toute interférence, quelle qu’elle soit, y compris les interférences susceptibles d’entraîner un fonctionnement non requis de l’appareil. Selon la réglementation d’Industrie Canada, ce radio-transmetteur ne peut utiliser qu’un seul type d’antenne et  ne  doit  pas  dépasser  la  limite  de  gain  autorisée  par  Industrie  Canada  pour  les  transmetteurs.  Afin  de réduire  les  interférences  potentielles  avec  d’autres  utilisateurs,  le  type  d’antenne  et  son  gain  devront  être définis  de  telle  façon  que  la  puissance  isotrope  rayonnante  équivalente  (EIRP)  soit  juste  suffisante  pour permettre une bonne communication.  Lors de l’utilisation d’antennes amovibles : Ce radio-transmetteur (identifié par un numéro certifié ou un numéro de modèle dans le cas de la catégorie II) a  été  approuvé  par  Industrie  Canada  pour  fonctionner  avec  les  antennes  référencées  ci-dessous  dans  la limite  de  gain  acceptable  et  l’impédance  requise  pour  chaque  type  d’antenne  cité.  Les  antennes  non référencées  possédant  un  gain  supérieur  au  gain  maximum  autorisé  pour  le  type  d’antenne  auquel  elles appartiennent  sont  strictement  interdites  d’utilisation  avec  ce  matériel.  Veuillez  vous  référer  au  Table  62 External Antenna Parameters, concernant les antennes approuvées pour les APx4.   Les responsabilités de l’intégrateur afin de satisfaire aux réglementations d’Industrie Canada : Les modules APx4 ont été certifiés pour entrer dans la fabrication de produits exclusivement réalisés par des intégrateurs dans les conditions suivantes :
 Bluegiga Technologies Oy Page 50 of 52  L’antenne (ou les antennes) doit être installée de façon à maintenir à tout instant une distance minimum de 20cm entre la source de radiation (l’antenne) et toute personne physique.  Le module transmetteur ne doit pas être installé ou utilisé en concomitance avec une autre antenne ou un autre transmetteur. Tant que ces deux conditions sont réunies, il n’est pas nécessaire de procéder à des tests supplémentaires sur le transmetteur. Cependant, l’intégrateur est responsable des tests effectués sur le produit final afin de se mettre en conformité avec d’éventuelles exigences complémentaires lorsque le module est installé (exemple : émissions provenant d’appareils numériques, exigences vis-à-vis de périphériques informatiques, etc.) ;  IMPORTANT : Dans le cas où ces conditions ne peuvent  être satisfaites (pour certaines configurations ou installation avec un autre transmetteur), les autorisations fournies par Industrie Canada ne sont plus valables et les numéros d’identification de certification d’Industrie Canada ne peuvent servir pour le produit final. Dans ces circonstances, il incombera à l’intégrateur de faire réévaluer le produit final (comprenant le transmetteur) et d’obtenir une autorisation séparée d’Industrie Canada. Etiquetage du produit final  Chaque module APx4 possède son propre numéro de certification IC. Si le numéro de certification IC ne sont pas visibles lorsqu’un module est installé à l’intérieur d’un autre appareil, alors l’appareil en question devra lui aussi présenter une étiquette faisant référence au module inclus. Dans ce cas, le produit final doit comporter une étiquette placée de façon visible affichant les mentions suivantes : « Contient un module transmetteur certifié IC 5123A-BGTAPX4 » ou « Inclut la certification IC 5123A-BGTAPX4 »  L’intégrateur du module APx4 ne doit utiliser que les antennes répertoriées dans le tableau 25 certifiées pour ce module. L’intégrateur est tenu de ne fournir aucune information à l’utilisateur final autorisant ce dernier à installer ou retirer le module RF, ou bien changer les paramètres RF du module, dans le manuel d’utilisation du produit final. Afin  de  se  conformer  aux  limites  de  radiation  imposées  par  Industry  Canada,  l’antenne  (ou  les antennes)  utilisée  pour  ce  transmetteur  doit  être  installée  de  telle  sorte  à  maintenir  une  distance minimum de 20cm à tout instant entre la source de radiation (l’antenne) et les personnes physiques. En outre, cette antenne ne devra en aucun  cas être installée ou utilisée en concomitance avec une autre antenne ou un autre transmetteur.
 Bluegiga Technologies Oy Page 51 of 52  12.5  MIC, formerly TELEC TBD 12.6  Qualified Antenna Types for APx4-E This device has been designed to operate with a standard 2.14 dBi dipole antenna. Any antenna of a different type or with a gain higher than 2.14 dBi is strictly prohibited for use with this device. Using an antenna of a different type or gain more than 2.14 dBi will require additional testing for FCC, CE and IC. Please contact support@bluegiga.com for more information. The required antenna impedance is 50 ohms.  Qualified Antenna Types for APX4-E Antenna Type Maximum Gain Dipole 2.14 dBi Table 62 External Antenna Parameters  To reduce potential radio interference to other users, the antenna type and its gain should be chosen so that the equivalent isotropic radiated power (e.i.r.p.) is not more than that permitted for successful communication.
 Bluegiga Technologies Oy Page 52 of 52 13  Contact Information Inquiries/ Support: www.bluegiga.com  Head office, Finland Phone: +358-9-4355 060    Fax: +358-9-4355 0660 Bluegiga Technologies Oy Sinikalliontie 5A, 5th floor 02630 Espoo, FINLAND USA office Phone: +1 770 291 2181 Fax: +1 770 291 2183   Bluegiga Technologies, Inc. 3235 Satellite Boulevard, Building 400, Suite 300, Duluth, GA, 30096, USA  Hong Kong office Phone:  +852 3972 2186 Bluegiga Technologies Ltd. Unit 10-18, 32/F, Tower 1, Millennium City 1, 388 Kwun Tong Road, Kwun Tong, Kowloon, Hong Kong

Navigation menu