Silicon Laboratories Finland APX4 Wireless System-on-Module User Manual APx4 datasheet
Silicon Laboratories Finland Oy Wireless System-on-Module APx4 datasheet
Datasheet
APX4 – WIRELESS SYSTEM-ON-MODULE DATA SHEET Tuesday, 23 July 2013 Version 1.01 Copyright © 2000-2013 Bluegiga Technologies All rights reserved. Bluegiga Technologies assumes no responsibility for any errors which may appear in this manual. Furthermore, Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications detailed here at any time without notice and does not make any commitment to update the information contained here. Bluegiga’s products are not authorized for use as critical components in life support devices or systems. The WRAP, Bluegiga Access Server, Access Point and iWRAP are registered trademarks of Bluegiga Technologies. The Bluetooth trademark is owned by the Bluetooth SIG Inc., USA and is licensed to Bluegiga Technologies. All other trademarks listed herein are owned by their respective owners. Bluegiga Technologies Oy VERSION HISTORY Version Comment 0.1 First draft 0.2 Defined screws and attachment to motherboard 0.3.1 Some small fixes and additions 0.3 TBDs defined 0.4 Review 0.4.1 Small fix to part number clarification 0.4.2 Updated document name, product description and contact information 0.4.3 Added Bluetooth RF specifications 0.5 Clarified pins etc. 0.6 Fixed layout. Removed software version from part number. 0.7 Styles updated and fixed Added notes about missing information 0.8 Added Mouser part number for the SO-DIMM receptacle 0.9 Chapter 6.5.1 removed 1.0 Added FCC/IC texts, removed battery related texts 1.01 Typos Bluegiga Technologies Oy TABLE OF CONTENTS Ordering Information......................................................................................................................................7 1.1 APx4 pin descriptions ....................................................................................................................................8 2.1 Receptacle ............................................................................................................................................8 2.2 Power contacts on the left side .............................................................................................................8 2.3 Debug UART on the right side ..............................................................................................................8 2.4 SO-DIMM connection pin descriptions ..................................................................................................9 Power subsystem ....................................................................................................................................... 22 3.1 PSWITCH_OUT pin 14 ...................................................................................................................... 23 3.2 RESETN ............................................................................................................................................. 23 Processor subsystem ................................................................................................................................. 24 4.1 Bootmodes ......................................................................................................................................... 24 Wireless interfaces ..................................................................................................................................... 25 5.1 Bluetooth ............................................................................................................................................ 25 5.1.1 Bluetooth GPIOs ........................................................................................................................... 25 5.1.2 Bluetooth Audio interface .............................................................................................................. 25 5.1.3 Bluetooth PCM slots and formats.................................................................................................. 26 5.1.4 Bluetooth I2S interface .................................................................................................................. 26 5.2 Part number decoder .............................................................................................................................7 Wi-Fi ................................................................................................................................................... 27 Peripheral interfaces................................................................................................................................... 28 6.1 Ethernet .............................................................................................................................................. 28 6.2 USB .................................................................................................................................................... 29 6.3 I2C ...................................................................................................................................................... 29 6.4 PWM outputs ...................................................................................................................................... 30 6.5 SDIO / SPI / MMC .............................................................................................................................. 31 6.6 UARTs ................................................................................................................................................ 32 6.6.1 UART 0.......................................................................................................................................... 32 6.6.2 UART 2.......................................................................................................................................... 32 6.6.3 UART 3.......................................................................................................................................... 32 6.6.4 UART 4.......................................................................................................................................... 33 6.6.5 Debug UART ................................................................................................................................. 33 6.7 CAN .................................................................................................................................................... 34 6.8 Processor Audio ................................................................................................................................. 34 6.9 LCD .................................................................................................................................................... 35 6.10 LRADC0-6 (Touch interface) .............................................................................................................. 36 6.11 HSADC (High-Speed ADC) ................................................................................................................ 37 Bluegiga Technologies Oy 6.12 JTAG .................................................................................................................................................. 37 Electrical Characteristics ............................................................................................................................ 39 7.1 Absolute Maximum Ratings................................................................................................................ 39 7.2 Recommended Operating Conditions ................................................................................................ 39 7.3 Power Consumption ........................................................................................................................... 40 RF Characteristics ...................................................................................................................................... 41 Physical Dimensions .................................................................................................................................. 43 10 Attachment to motherboard ................................................................................................................ 44 11 Layout Guidelines ............................................................................................................................... 45 11.1 Internal antenna: Optimal module placement .................................................................................... 45 11.2 External antenna ................................................................................................................................ 45 11.3 Thermal Considerations ..................................................................................................................... 45 11.4 EMC Considerations for Motherboard ................................................................................................ 45 12 Certifications ....................................................................................................................................... 47 12.1 CE....................................................................................................................................................... 47 12.2 FCC .................................................................................................................................................... 47 12.3 IC ........................................................................................................................................................ 48 12.4 IC ........................................................................................................................................................ 49 12.5 MIC, formerly TELEC ......................................................................................................................... 51 12.6 Qualified Antenna Types for APx4-E ................................................................................................. 51 13 Contact Information ............................................................................................................................ 52 Bluegiga Technologies Oy KEY FEATURES DESCRIPTION The Bluegiga APx4 is a small form factor, low power system-on-module that includes the latest wireless connectivity standards: 802.11 b/g/n and Bluetooth 4.0. APx4 is based on Freescale's i.MX28 processor family and runs an embedded Linux operating system based on TM the Yocto Project . In addition to integrating the 454MHz ARM9 processor, the wireless connectivity technologies, Linux operating system the APx4 also includes with several built in applications, such as the 802.11 and Bluetooth 4.0 stacks, Continua v.1.5 compliant IEEE manager and many more. This combination provides an ideal platform for designing multi-radio wireless gateways that enables fast time-to-market and minimum R&D risks. The Bluegiga APx4 software can be easily extended or tailored customizing the Linux operating system with applications. The motherboards for the APx4 can be easily extended to include almost anything from 3G modems to Ethernet and audio interfaces to and touch screen displays. The Bluegiga APx4 is an ideal product for applications requiring wireless or wired connectivity technologies and the processing power of the ARM9 processor, such as health and fitness gateways, building and home automation gateways, M2M, point-of-sale and industrial connectivity. 454MHz ARM9 core (Freescale i.MX28) 64MB RAM 128MB Flash Real Time Clock Linux operating system SO-DIMM form factor A connectivity platform: Bluetooth 4.0 dual-mode radio 2.4GHz 802.11 b/g/n radio Wi-Fi Access Point mode 10/100 Ethernet USB 2.0 High Speed With many extension options: Up to 800 x 480, 24bit display Resistive touch screen MMC/SDIO Multiple SPI, UART and I²C I²S PWM, GPIO and AIO Linux operating system: Based on the Yocto Project(TM) Thousands of open source software packets available Qualifications: APPLICATIONS: APx4 is a computing platform: Health gateways M2M connectivity Fitness gateways Home and building automation Point-of-sale gateways People and asset tracking Bluetooth CE FCC and IC Figure 1: Physical outlook Bluegiga Technologies Oy 1 Ordering Information Product code CPU and memories Connectivity Antenna Temperature range APX4-367CC-A i.MX283 Bluetooth + Wi-Fi Internal antenna -10 – 50°C 64MB DDR2 128MB Flash 1.1 Part number decoder APX 4 – 3 6 7 C C – A Product category APX Product generation Processor 3: i.MX283 Memory 6: 64MB Flash 7: 128MB Connectivity C: Bluetooth and Wi-Fi Temperature C: Commercial I: Industrial (contact sales@bluegiga.com) Antenna A: Internal antenna E: External antenna Note: Not all variants are available. Minimum order quantities and lead times may apply for special variants. Please contact Bluegiga Technologies Oy for more information. Bluegiga Technologies Oy Page 7 of 52 2 APx4 pin descriptions The APX4 connector uses a standard DDR1 SO-DIMM connector with 2.5V keying. Odd numbered pins are located on top layer Even numbered pins are located on bottom layer There is a ½ pitch (0.3mm) offset from top layer pins to bottom layer pins. Note that most receptacles also have 0.3mm offset from odd pins to even pins. 2.1 Receptacle Suitable receptacles are available from multiple vendors. For example TE Connectivity’s part number 1473005-1, Mouser part number: 571-1473005-1 and Digi-Key’s part number: A99605-ND. PCB footprint and schematic symbol for the mentioned part number will be available for download from Techforum in Mentor Graphics’ PADS format. 2.2 Power contacts on the left side In addition to the 200 pins/finger contacts there are two pairs of plated through holes on the left side of the module which can be used for powering the module stand-alone (not assembled on any motherboard). The pitch between the holes is 2.54mm. Leave the holes unconnected if the module is assembled on a motherboard. Name Function GND Ground VIN +5V input GND Ground VBATTERY Battery positive input/output Table 1: Power supply pins 2.3 Debug UART on the right side On the right side there are four plated through holes for PWM or debug port stand-alone (not assembled on any motherboard). The vertical distance between the holes is 1.27mm: Name Function 3V3 3.3V output (for current limits, see Table 50) PWM1/DUART TxD Debug UART data transmit, logic level 3.3V PWM0/DUART RxD Debug UART data receive, logic level 3.3V GND Ground Table 2: Debug UART pins Bluegiga Technologies Oy Page 8 of 52 2.4 SO-DIMM connection pin descriptions Note: Signals/nets marked with a star (*) are not present on standard version Pin# Default function Net name Note 5V input VIN 5V input VIN 5V input VIN 5V input VIN Battery input/output VBATTERY Battery input/output VBATTERY Battery input/output VBATTERY Bootmode BOOTMODE 3.3V output 3V3 Pins 9-10 may source up to 200mA combined. 10 3.3V output 3V3 Pins 9-10 may source up to 200mA combined. 11 3.3V output 3V3 Pins 9-10 may source up to 200mA combined. 12 3.3V output 3V3 Pins 9-10 may source up to 200mA combined. 13 RTC battery VBACKUP 14 PS switch PSWITCH_OUT 15 NC NC 16 NC NC 17 Reset in - Master reset RESETN 18 Ground GND Table 3: Main power pins Bluegiga Technologies Oy Page 9 of 52 Pin# Default function Net name 19 Ethernet TX - ETN_TXN 20 GND GND 21 Ethernet TX + ETN_TXP 22 3.3V output 3V3 23 Ethernet RX - ETN_RXN 24 Ethernet LED ETN_LED1N* 25 Ethernet RX + ETN_RXP 26 GND GND Table 4: Ethernet * See 6.1 for detailed function. Pin# Default function Net name 27 USB External VBUS enable SPDIF* 28 29 NC USB D- 30 USB1DM NC 31 USB D+ USB1DP 32 Ground GND Table 5: USB Host Bluegiga Technologies Oy Page 10 of 52 Pin# Default function Net name 33 USB OTG id USB0_ID 34 35 NC USB D- USB0DM 36 37 NC USB D+ USB0DP 38 39 NC Ground GND Table 6: USB On-the-go Pin# Default function 40 I C Data 41 I C Clock Net name I2C0_SDA I2C0_SCL Table 7: I C 0 Pin# Default function Net name 42 PWM (Backlight) PWM4 43 Status led PWM3 Table 8: Dedicated PWMs Bluegiga Technologies Oy Page 11 of 52 Pin# Default function Net name 44 Slave select 1 SDIO_DAT1_OUT* 45 Slave select 2 SDIO_DAT2_OUT* 46 Command - Master out, slave in SDIO_CMD_OUT* 47 Data 0, Master in, slave out SDIO_DAT0_OUT* 48 Clock SDIO_CLK_OUT* 49 Ready - Slave select 0 SDIO_DAT3_OUT* 50 Ground GND Table 9: SSP2 – SDIO/MMC/SPI Pin# Default function Net name 51 Card detect SSP0_DETECT 52 Data 0 SSP0_DATA0 53 Data 1 SSP0_DATA1 54 Data 2 SSP0_DATA2 55 Data 3 SSP0_DATA3 56 Command SSP0_CMD 57 Clock SSP0_SCK 58 Ground GND Table 10: SSP0 – SDIO/MMC/SPI Pin# Default function Net name 59 UART transmit AUART0_TX 60 UART receive AUART0_RX 61 UART clear-to-send AUART0_CTS 62 UART request-to-send AUART0_RTS Table 11: UART 0 Bluegiga Technologies Oy Page 12 of 52 Pin# Default function Net name 63 UART transmit SSP2_MOSI 64 UART receive SSP2_SCK 65 NC 66 NC Table 12: UART 2 Pin# Default function Net name 67 UART transmit SSP2_SS0 68 UART receive SSP2_MISO 69 NC 70 NC 71 Ground GND Table 13: UART 3 Pin# Default function Net name 72 Bluetooth GPIO BT_PIO7 73 Bluetooth GPIO BT_PIO8 74 Bluetooth GPIO BT_PIO9 75 Bluetooth GPIO BT_PIO25 Table 14: Bluetooth GPIO Bluegiga Technologies Oy Page 13 of 52 Pin# Default function Net name 76 CAN 0 transmit GPMI_RDY2* 77 Ground GND 78 CAN 1 transmit GPMI_CE2N* 79 CAN 1 receive GPMI_CE3* 80 Ground GND 81 CAN 0 receive GPMI_RDY3* 82 Ground GND Table 15: CAN Pin# Default function Net name 83 MCLK SAIF0_MCLK 84 Data line 1 SAIF1_SDATA0 85 Data line 0 SAIF0_SDATA0 86 Bit clock SAIF0_BITCLK 87 Left/Right clock SAIF0_LRCLK 88 GND GND Table 16: Primary audio / UART 4 Bluegiga Technologies Oy Page 14 of 52 Pin# Default function Net name 89 NC 90 NC 91 NC 92 NC 93 NC 94 Ground GND 95 NC 96 NC 97 NC 98 NC 99 NC 100 NC Table 17: Reserved group 1 Bluegiga Technologies Oy Page 15 of 52 Pin# Default function 101 102 Net name NC Ground GND 103 NC 104 NC 105 NC 106 NC 107 1.4V output* 1V4_CPU 108 1.8V output* 1V8 109 4.2V output* 4V2_CPU 110 NC 111 GND 112 NC 113 NC 114 NC 115 NC 116 Ground GND Table 18: Reserved group 2 *Important: Pins 107-109 are only meant for manufacturing test. Please leave unconnected. Do not pull any current from these outputs. Doing so may create a black hole in the universe. Bluegiga Technologies Oy Page 16 of 52 Pin# Default function Net name 117 Data 0 LCD_D0 118 Data 1 LCD_D1 119 Data 2 LCD_D2 120 Data 3 LCD_D3 121 Data 4 LCD_D4 122 Data 5 LCD_D5 123 Data 6 LCD_D6 124 Data 7 LCD_D7 125 Data 8 LCD_D8 126 Data 9 LCD_D9 127 Data 10 LCD_D10 128 Data 11 LCD_D11 129 Ground GND 130 Data 12 LCD_D12 131 Data 13 LCD_D13 132 Data 14 LCD_D14 133 Data 15 LCD_D15 134 Data 16 LCD_D16 135 Data 17 LCD_D17 136 Data 18 LCD_D18 137 Data 19 LCD_D19 138 Data 20 LCD_D20 139 Data 21 LCD_D21 140 Data 22 LCD_D22 141 Data 23 LCD_D23 142 Ground GND Bluegiga Technologies Oy Page 17 of 52 Table 19 LCD data lines Pin# Default function Net name 143 Horizontal Sync LCD_WR_RWN 144 Vertical Sync LCD_RD_E 145 LCD Enable LCD_CS 146 Dot clock LCD_RS 147 Ground GND Table 20: LCD control lines Pin# Function Net name 148 Debug UART RX or I2C1_SDA PWM0 (also connected to PTH pins on right side) 149 Debug UART TX or I2C1_SCL PWM1 (also connected to PTH pins on right side) 150 LCD reset / GPIO LCD_RESET 151 NC Table 21: Debug UART / PWM / I2C1 / GPIO Bluegiga Technologies Oy Page 18 of 52 Pin# Function Net name 152 NC 153 NC 154 NC 155 NC 156 NC 157 NC 158 NC 159 Ground GND 160 Ground GND 161 NC 162 NC 163 Ground GND 164 Ground GND 165 NC 166 NC 167 Ground GND 168 Ground GND 169 NC 170 WiFi Activity WIFI_ACT 171 Ground GND Table 22: Reserved group 3 Bluegiga Technologies Oy Page 19 of 52 Pin# Function Net name 172 Wi-Fi Debug SPI - MISO SPI_WIFI_MISO 173 Wi-Fi Debug SPI – CLK SPI_WIFI_CLK 174 Wi-Fi Debug SPI – MOSI SPI_WIFI_MOSI 175 Wi-Fi Debug SPI - CS SPI_WIFI_CS 176 RTC interrupt INT_EXT_RTC_N 177 Factory reset button / JTAG return clock JTAG_RTCK 178 JTAG test clock JTAG_TCK 179 JTAG test data in JTAG_TDI 180 JTAG test data out JTAG_TDO 181 JTAG test mode state JTAG_TMS 182 JTAG test reset JTAG_TRST 183 Ground GND 184 JTAG enable boundary scan DEBUG Table 23: Misc Pin# Function Net name 185 Touch controller XN LRADC4 186 Touch controller XP LRADC2 187 Touch controller YN LRADC5 188 Touch controller YP LRADC3 189 Touch controller WIPER LRADC6 190 Generic ADC 0 LRADC0 191 Generic ADC 1 LRADC1 192 High speed ADC HSADC0 193 Ground GND 194 Ground GND Table 24: ADC Bluegiga Technologies Oy Page 20 of 52 Pin # Function Net name 195 Bluetooth debug enable BT_SPI_PCM1N 196 PCM in BT_PCM1_IN 197 PCM out BT_PCM1_OUT 198 PCM clock BT_PCM1_CLK 199 PCM sync BT_PCM1_SYNC 200 Ground GND Table 25: Bluetooth audio Bluegiga Technologies Oy Page 21 of 52 3 Power subsystem Pin# Function APx4 net name Description 1-4 5V input VIN Main power input 5-7 Battery input/output VBATTERY A rechargeable connected 9-12, 22 3.3V output 3V3 For maximum current draw, see Table 50 13 RTC battery VBACKUP RTC battery backup power 14 Power switch PSWITCH_OUT Power switch 17 Reset in - Master reset RESETN Active low master reset. Resets the entire board. battery can be Table 26: Power supply pins The module is powered through the 5V input. It is recommended that all the pins (1-4) are connected together on the application board. The external battery connectable to VBATTERY is currently not supported. VBACKUP is connected to the Real-Time clock battery and the VDD input of the Real Time Clock. This pin can be used to power the real time clock in cases where the battery is not placed on the module. 3V3 Pin 13:VBACKUP VDD Real Time Clock On-board battery Figure 2: VBACKUP and battery connection Bluegiga Technologies Oy Page 22 of 52 3.1 PSWITCH_OUT pin 14 Note: In most cases the user can ignore the PSWITCH pin. Leave unconnected for normal operation. The ÅSWITCH_OUT (pin 14) has three levels: low, mid and high. A 10kΩ pull-up to mid-level is applied on the module to the PSWITCH line, causing the device to start booting immediately once power is applied. Boot-up requires a mid-level voltage to be present for >100ms. If the PSWITCH is pulled high for over 5 seconds, for example by connecting it to 3.3V, a special Freescale USB recovery mode is entered. For further details about the power switch, refer to Freescale’s Reference Manual, Section 11.4. This mode can also be entered using the BOOTMODE pin. 3.2 RESETN Power-on reset is generated internally. If a reset from external pins is required use the RESETN pin. RESETN is internally pulled up to 3.3V. The RESETN pin must be kept low for at least 100ms and then released in order to guarantee a proper reset. 100ms NRESET Figure 3: NRESET Bluegiga Technologies Oy Page 23 of 52 4 Processor subsystem The processor belongs to the Freescale i.MX28-family and integrates an ARM9 core operating at 454MHz. The standard APX4 variant uses the i.MX283 processor. The module also has 128MB of SLC NAND flash and 64MB of DDR2-400 memory. For more details regarding the features the processor offers, please see the Freescale Reference Manual. By default the module boots from the NAND flash into the U-Boot boot loader environment. From there the boot loader loads a Linux kernel which boots into the Bluegiga Linux userspace. 4.1 Bootmodes The module supports booting from multiple different media including NAND Flash, Secure Digital (SD) cards, MMC cards, I C EEPROM and USB (in a device mode). The selected boot media can be selected using the LCD_DATA[0-3] signals or in the case of USB recovery boot, by tying the BOOTMODE pin to ground. By default the module boots from internal NAND flash, meaning that LCD_DATA[3], LCD_DATA[1] and LCD_DATA[0] have pull-downs on the module and LCD_DATA[2] has a pull-up. Default boot mode in bold face. The module has pull-ups and pull-downs so that when LCD_DATA[0]..LCD_DATA[3] are left unconnected the module boots from internal NAND. After boot the LCD_DATA lines can be used fro any purpose. LCD_DATA[3] LCD_DATA[2] LCD_DATA[1] LCD_DATA[0] Port USB0 device mode boot EEPROM connected to I2C0 SPI flash on SSP2 (non-Wi-Fi version only) SPI flash on SSP3 (not available on standard versions) Module’s internal NAND Flash Wait for JTAG connection SPI EEPROM on SSP3 (not available on standard versions) SD/MMC card on SSP0 SD/MMC on SSP1 (not available on standard versions) Table 27: Bootmodes Bluegiga Technologies Oy Page 24 of 52 5 Wireless interfaces The wireless connectivity on the module is implemented using two separate chips which share a 2.4GHz antenna. 5.1 Bluetooth The module is a fully qualified Bluetooth 4.0, Class 1, system, supporting both classical Bluetooth as well as Bluetooth Smart (Bluetooth low energy) devices simultaneously. 5.1.1 Bluetooth GPIOs Pin# Function Net name 72 Bluetooth GPIO 7 BT_PIO7 73 Bluetooth GPIO 8 BT_PIO8 74 Bluetooth GPIO 9 BT_PIO9 75 Bluetooth GPIO 25 BT_PIO25 Table 28: Bluetooth GPIO These GPIOs are controlled by the Bluetooth baseband chip. The main processor can read and write them by issuing special commands to the Bluetooth chip, making them suitable for use as status indicators, but not for high speed signals. For the current status of software support, please refer to the software documentation. Contact support if needed. The pins are bidirectional pins with internal programmable strength pull-up or pull-down. By default they are inputs with a weak pull-down. 5.1.2 Bluetooth Audio interface Pin # Net name PCM function I S function Debug interface 195 BT_SPI_PCM1N Select Audio: GND Select Audio: GND Select Debug: +3.3V 196 BT_PCM1_IN PCM in Serial in (SD_IN) MOSI 197 BT_PCM1_OUT PCM out Serial out (SD_OUT) MISO 198 BT_PCM1_CLK PCM clock Serial clock (SCK) Clock 199 BT_PCM1_SYNC PCM sync Write sync (WS) Chip select (active low) Table 29: Bluetooth audio and debug interface The Bluetooth audio functionality can be configured to work in either I S or PCM mode. In addition, the Bluetooth chip’s debug interface is multiplexed with the audio pins. The audio interface supports continuous transmission and reception of PCM audio data over Bluetooth. Operation in either master or slave mode are supported and many different clock modes can be supported. A maximum of 3 SCO audio links can be transmitted through the PCM interface at any one time. Bluegiga Technologies Oy Page 25 of 52 5.1.3 Bluetooth PCM slots and formats The module receives and transmits on any selection of the first 4 slots following each sync pulse. Slot durations are either 8 or 16 clock cycles: 8 clock cycles for 8-bit sample formats. 16 clocks cycles for 8-bit, 13-bit or 16-bit sample formats. The supported formats are: 13-bit linear, 16-bit linear and 8-bit μ-law or A-law sample formats. A sample rate of 8ksamples/s. Little or big endian bit order. For 16-bit slots, the 3 or 8 unused bits in each slot are filled with sign extension, padded with zeros or a programmable 3-bit audio attenuation compatible with some codecs. There is also a compatibility mode that forces PCM_OUT to be 0. In master mode, this allows for compatibility with some codecs which control power down by forcing PCM_SYNC to 0 while keeping PCM_CLK running. 5.1.4 Bluetooth I2S interface The I S mode supports left-justified and right-justified data. The interface shares the same pins as the PCM interface, which means each audio bus is mutually exclusive in its usage. The digital audio interface is configured using the PSKEY_DIGITAL_AUDIO_CONFIG in the Bluetooth PS Key configuration. The internal representation of audio samples within CSR8811 is 16-bit and data on SD_OUT is limited to 16bit per channel. Symbol Parameter Minimum Maximum Unit SCK frequency 6.2 MHz SCK frequency 96 kHz tch SCK high time 80 ns tcl SCK low time 80 ns tssu WS valid to SCK high setup time 20 ns tsh SCK high to WS invalid hold time 2.5 ns topd SCK low to SD_OUT valid delay time 20 ns tisu SD_IN valid to SCK high setup time 20 ns tih SCK high to SD_IN invalid hold time 2.5 ns Table 30: I S Slave mode timing Bluegiga Technologies Oy Page 26 of 52 Symbol Parameter Minimum Maximum Unit SCK Frequency 6.2 MHz WS Frequency 96 kHz tspd SCK low to WS valid delay time 39.27 ns topd SCK low to SD_OUT valid delay time 18.44 ns tisu SD_IN valid to SCK high setup time 18.44 ns tih SCK high to SD_IN invalid hold time ns Table 31: I S Master mode timing 5.2 Wi-Fi The on board Wi-Fi is designed for IEEE 802.11b/g/n in the 2.4GHz band. Hardware encryption support for WEP40/64, WEP104/128, TKIP, CCMP (AES), BIP and CKIP provides functionality for WPA, WPA2, IEEE 802.11i, IEEE 802.11w and CCX advanced security mechanisms. The following modulations are supported: All mandatory IEEE 802.11b modulations: 1, 2, 5.5, 11Mbps All IEEE 802.11g OFDM modulations: 6, 9, 12, 18, 24, 36, 48, 54Mbps Single stream IEEE 802.11n HT modulations MCS0-7, 20MHz, 800 and 400ns guard interval: 6.5, 7.2, 13.0, 14.4, 19.5, 21.7, 26.0, 28.9, 39.0, 43.3, 52.0, 57.8, 58.5, 65.0, 72.2Mbps STBC (Space Time Block Coding) reception for IEEE 802.11n HT modulations MCS0-7 The receiver features direct conversion architecture. Sufficient out-of-band blocking specification at the Low Noise Amplifier (LNA) input allows the receiver to be used in close proximity to Global System for Mobile Communications (GSM) and Wideband Code Division Multiple Access (W-CDMA) cellular phone transmitters without being desensitized. High-order baseband filters ensure good performance against in-band interference. The transmitter features a direct conversion IQ transceiver. Digital baseband transmit circuitry provides the required spectral shaping and on-chip trims are used to reduce IQ modulator distortion. Transmitter gain can be controlled on a per-packet basis, allowing the optimization of the transmit power as a function of modulation scheme. The modulator supports digital predistortion to reduce non-linarites in the power amplifier. The module supports automatic PA thermal drift compensation by measuring the transmit power through an internal power coupler. Bluegiga Technologies Oy Page 27 of 52 6 Peripheral interfaces The module allows for several kinds of different interfaces to peripherals to be used. 6.1 Ethernet Pin# Function Net name 19 Ethernet TX - ETN_TXN 20 GND GND 21 Ethernet TX + ETN_TXP 22 3.3V output 3V3 23 Ethernet RX - ETN_RXN 24 Ethernet LED ETN_LED1N 25 Ethernet RX + ETN_RXP 26 GND GND Table 32: Ethernet pins The Ethernet I/O lines are connected on the module to a standard 10Base-T/100Base-TX physical layer transceiver (PHY). A connector board will only need to have the magnetics as well as an RJ45 jack in order to have fully functioning Ethernet. Multiple vendors also supply RJ45 jacks with integrated magnetics under brand names such as MagJack and PulseJack which further simplify design. A reference schematic for such a design is available in the APx4 reference design. When routing the Ethernet signals, care should be taken to route the differential signals together, meaning that for example ETN_TXN and ETN_TXP should be kept close together. The traces must also be kept short in order to avoid EMC issues. The Ethernet LED pin (ETN_LED1N) indicates link and activity and has a maximum output drive current of 8 mA. The ETN_LED is high when no Link is present (typically connected so that a physical LED is off), low when a Link is present (physical LED on) and toggled on activity (physical LED is blinking). Make sure that the driving capability of 8mA is not exceeded. Pin state LED Meaning HIGH Off No Link LOW On Link Toggle Blinking Activity Table 33: ETN_LED1N pin Figure 4 Typical external LED connection Bluegiga Technologies Oy Page 28 of 52 6.2 USB Pin# Function Net name 27 USB OTG Host External VBUS enable SPDIF* 29 USB Host D- USB1_DM 31 USB Host D+ USB1_DP 33 USB OTG ID USB0_ID 35 USB OTG D- USB0_DM 37 USB OTG D+ USB0_DP Table 34: USB pins The module has two USB high-speed controllers, one which supports USB Host mode only and another which support USB On-the-Go (OTG). The USB On-the-Go controller is capable of operating as a USB Host or a USB Device and support the OTG role negotiation via the USB OTG-ID signal. For the current software support, please see the software documentation. The USB D+ and D- signals can be directly connected to a USB connector, however when using a connector, protection against electrostatic discharge (ESD) should be taken into account. Because USB high-speed is a very high frequency digital signal (480Mbps), care must be taken to route the D+ and D- signals as close together as possible and to have a ground plane follow them. The traces must also be kept as short as possible. The USB Host External VBUS enable signal is not present in the standard model, and has a fixed pull-up. For more details refer to the i.MX28 Applications Processor Reference Manual (MCIMX28RM) chapters 31 and 32. 6.3 I2C Pin# I C function 40 I C 0 Data 41 I C 0 Clock 148 I C 1 Data 149 I C 1 Clock Alternate Functions Net name I2C0_SDA I2C0_SCL PWM0, Debug UART TX PWM0/I2C1_SDA PWM1, Debug UART RX PWM1/I2C1_SCL Table 35: I C interface The Inter Integrated Circuit bus (I C) is a standard two-wire interface used for communication between peripherals and the host. The interface supports both standard speed (up to 100kbps) and as fast speed (400kbps) I C connection to multiple devices with the processor acting in either master or slave mode. Bluegiga Technologies Oy Page 29 of 52 2 The primary I C interface (I C 0, pins 40 and 41) is also connected to the module’s Real Time Clock (RTC) chip and thus some additional restrictions for the communication apply. The processor is always the master. The standard 2K pull-ups are located on APx4. Do not place additional pull-ups on I C 0. One I C slave address (1010001X) on I C 0 is reserved for the Real Time Clock PCF8563T on the APx4: Read: 0xA3 (10100011) Write: 0xA2 (10100010) The secondary I C (I C 1) is available on pins 148 and 149 and can be used freely in either master or slave mode. By default it is configured to provide the Debug UART. I C 1 does not have built-in pull-ups. For more details about I C, please refer to the i.MX28 Applications Processor Reference Manual, chapter 27. 6.4 PWM outputs Pin# Default function PWM function Additional function Net name 42 LCD Backlight (PWM4) PWM4 PWM4 43 Status led (PWM3) PWM3 PWM3 148 Debug UART TX PWM0 I C 1 bus data 149 Debug UART RX PWM1 83 MCLK PWM3 84 Data line 1 PWM7 85 Data line 0 PWM6 UART 4 TX SAIF0_SDATA0 86 Bit clock PWM5 UART4 RX SAIF0_BITCLK 87 Left/Right clock PWM4 UART4 RTS SAIF0_LRCLK PWM0/I2C1_SDA I C 1 bus clock PWM1/I2C1_SCL UART4 CTS SAIF0_MCLK SAIF1_SDATA0 Table 36: PWM outputs The module has up to seven Pulse Width Modulator outputs available. Independent output control of each phase allows 0, 1 or high-impedance to be independently selected for the active and inactive phases. Two dedicated PWM outputs are at pins 42 and 43, and are typically used for the LCD’s backlight and as a status led, respectively. The same PWM outputs are available also on pins 83 and 87. The Debug UART on pins 148 and 149 can be disabled and used for two independent PWM outputs instead. For more details about PWM, please refer to the i.MX28 Applications Processor Reference Manual, chapter 28. Bluegiga Technologies Oy Page 30 of 52 6.5 SDIO / SPI / MMC Pin# SDIO/SD/MMC SPI mode Net name 51 Card detect 52 Data 0 53 Data 1 SSP0_DATA1 54 Data 2 SSP0_DATA2 55 Data 3 Slave Select SSP0_DATA3 56 Command MOSI SSP0_CMD 57 Clock Clock SSP0_SCK 58 Ground SSP0_DETECT MISO SSP0_DATA0 GND Table 37: SDIO/SPI/MMC The Synchronous Serial Port subsystem provides support for MMC cards, SD cards, SDIO devices, SPI master and slave communication and eMMC 4.4 devices. In a standard configuration 1-bit and 4-bit modes for MMC/SD/SDIO/eMMC is available. On versions without Wi-Fi support the 8-bit mode can also be configured. For use with removable cards, a hardware card detect pin is provided. For further information, please refer to the i.MX28 Applications Processor Reference Manual, chapter 17. Bluegiga Technologies Oy Page 31 of 52 6.6 UARTs The module can be configured to support up to five UARTs simultaneously, two with hardware flow control, two without hardware flow control and one for debugging. The UART interfaces offer similar functionality to the industry-standard 16C550 UART device, and the regular UARTs support baud rates of up to 3.25Mbits/s. For further information about UARTs 0, 2, 3 and 4, please refer to the i.MX28 Applications Processor Reference Manual, chapter 30. Debug UART is covered in chapter 24. 6.6.1 UART 0 Pin# UART 0 Debug UART 59 Transmit 60 UART 4 Direction Net name Request-to-send Output from module AUART0_TX Receive Clear-to-Send Input to module AUART0_RX 61 Clear-to-send Receive Receive Input to module AUART0_CTS 62 Request-to-send Transmit Transmit Output from module AUART0_RTS Table 38: UART0 The first UART section (pins 59-62) is by default configured to provide UART 0 with hardware flow control. The hardware supports selecting the function of each pin separately. For example pins 59 and 60 could be configured for UART 0 and 61 and 62 for UART 4. 6.6.2 UART 2 Pin# UART 2 function Alternative function Net name 63 TX - Transmit SAIF 0 SDATA 2 SSP3_MOSI 64 RX - Receive SAIF 0 SDATA 1 SSP2_SCK Table 39: UART 2 The pins 63 and 64 provide UART 2 functions. UART 2 does not have hardware flow control available. They can alternatively be configured as additional processor audio data lines. 6.6.3 UART 3 Pin# UART 3 function Alternative function Net name 67 TX - Transmit SAIF 1 SDATA 2 SSP2_SS0 68 RX - Receive SAIF 1 SDATA 1 SSP2_MISO Table 40: UART 3 The pins 67 and 68 provide UART 3 functions. UART 3 does not have hardware flow control available. They can alternatively be configured as additional processor audio data lines. Bluegiga Technologies Oy Page 32 of 52 6.6.4 UART 4 Pin# UART 4 Other functions Net name 61 Receive DUART RX, AUART 0 CTS AUART0_CTS 62 Transmit DUART TX, AUART 0 RTS AUART0_RTS 83 Clear-to-send SAIF0_MCLK, PWM 3 SAIF0_MCLK 85 Transmit SAIF0_SDATA0, PWM 6 SAIF0_SDATA0 86 Receive SAIF0_BITCLK, PWM 5 SAIF0_BITCLK 87 Request-to-send SAIF0_LRCLK, PWM 4 SAIF0_LRCLK Table 41: UART 4 The fourth UART is not available by default, but can be configured to be available from two different locations. Using UART 4 disables either CPU Audio or UART 0’s hardware flow-control lines. If hardware flow control is required, then the CPU Audio pins (83-87) can be configured to provide the UART 4 functionality instead of CPU Audio. Using UART 4 with hardware flow control at the same time as CPU Audio is not possible. If hardware flow control is not required for UART 4 or for UART 0, then the hardware flow control lines of UART 0 can be configured to provide UART 4 RX/TX instead. 6.6.5 Debug UART Pin# Debug UART Alternative functions UART I/O direction Net name 148 Receive I2C1 SDA, PWM0 Input to module PWM0 149 Transmit I2C1 SCL, PWM1 Output from module PWM1 59 Request-to-send UART 0 TX Output from module AUART0_TX 60 Clear-to-Send UART 0 RX Input to module AUART0_RX 61 Receive UART 0 CTS, UART 4 RX Input to module AUART0_CTS 62 Transmit UART 0 RTS, UART 4 TX Output from module AUART0_RTS Table 42: DEBUG UART By default the Debug UART is provided on pins 148 and 149 without using hardware flow control. This will prevent the use of the second I C port. Alternatively the Debug UART can be configured to be available from the pins of UART 0 as seen in the table above. The main difference between the Debug UART and the Application UARTs is that there is no DMA for the Debug UART and the maximum baud rate is 115.2Kb/s. It unsuitable for any high throughput use-cases and consumes more processor resources than the other UART interfaces, making it best suited for debugging. In Bluegiga Technologies Oy Page 33 of 52 theory the Debug UART can be used for other UART applications instead of debugging, but it is primarily intended for simple console access to the processor. For further information, please refer to the i.MX28 Applications Processor Reference Manual, chapter 30. 6.7 CAN Pin# Function Net name 76 CAN 0 transmit GPMI_RDY2* 78 CAN 1 transmit GPMI_CE2* 79 CAN 1 receive GPMI_CE3* 81 CAN 0 receive GPMI_RDY3* Table 43: CAN The standard model does not include CAN support and pins 76, 78, 79 and 81 are not to be connected as they cannot be used. On the model with CAN support, the pins can be used as described in the i.MX28 Applications Processor Reference Manual, chapter 25. 6.8 Processor Audio Pin# Audio function SAIF 0 83 Master clock MCLK 84 Data line SDATA1 85 Data line 86 SAIF 1 Alternate functions Net name AUART4 CTS SAIF0_MCLK PWM 7 SAIF1_SDATA0 SDATA0 AUART4 TX, PWM 6 SAIF0_SDATA0 Bit clock BITCLK AUART4 RX, PWM 5 SAIF0_BITCLK 87 Left/Right clock LRCLK AUART4 RTS, PWM 4 SAIF0_LRCLK 63 Data line SDATA2 UART 2 TX SSP2_MOSI 64 Data line SDATA1 UART 2 RX SSP2_SCK 67 Data line DATA2 UART 3 TX SSP2_SS0 68 Data line DATA1 UART 3 RX SSP2_MISO SDATA0 Table 44: AUDIO The serial audio interface provides a serial interface to the industry’s most common analog codecs. On the processor side, there are two serial audio interface subsystems, SAIF0 and SAIF1. These two can be used together to provide full-duplex stereo audio transfers, where SAIF0 is used as an output and for managing the clocks while SAIF1 is used as a slave to SAIF0 and for audio input. Bluegiga Technologies Oy Page 34 of 52 Each data line carries two channels of audio data, meaning that if SDATA0, SDATA1 and SDATA2 are all used, bi-directional 6 channel audio is possible. Please note that when the pins for UART 2 and UART 3 are used as audio data lines, they cannot be used as UARTs. Each function can be configured separately, so in case for example only one channel stereo is required, only the data line on pin 84 or 85 need to be used, allowing for the rest of the data lines to be used for other purposes. For example if bi-directional audio is not required, the data input line on pin 84 can alternatively be configured as a second SAIF0 data line (SAIF0_SDATA1), meaning it is possible to have 4-channel audio input or output without sacrificing UART 2 or UART 3. The module has been tested with the Freescale SGTL5000 audio codec which is used in the reference design. If the optional master clock is not used, it can be configured to operate as a GPIO. For more information about the serial audio interfaces, please refer to refer to the i.MX28 Applications Processor Reference Manual, chapter 35. 6.9 LCD Pin# Default function Net name 143 Horizontal Sync LCD_WR_RWN 144 Vertical Sync LCD_RD_E 145 LCD Enable LCD_CS 146 Dot clock LCD_RS 147 Ground GND 117-141 Data lines, see Table 19 LCD_D0-LCD_D23 Table 45: LCD signals The LCDIF provides display data for external LCD panels from simple text-only displays to WVGA, 16/18/24 bpp color TFT panels. The LCDIF supports all of these different interfaces by providing fully programmable functionality and sharing register space, FIFOs, and ALU resources at the same time. The LCDIF supports RGB (DOTCLK) modes as well as system mode including both VSYNC and WSYNC modes. Features: Display resolution up to 800x480. AXI-based bus master mode for LCD writes and DMA operating modes for LCD reads requiring minimal CPU overhead. 8/16/18/24 bit per pixel. Programmable timing and parameters for system, MPU, VSYNC and DOTCLK LCD interfaces to support a wide variety of displays. ITU-R BT.656 mode including progressive-to-interlace feature and RGB to YCbCr 4:2:2 color space conversion to support 525/60 and 625/50 operation. Ability to drive 24-bit RGB/DOTCK displays up to WVGA at 60 Hz. High robustness guaranteed by 512-pixel FIFO with under-run recovery. Bluegiga Technologies Oy Page 35 of 52 Support for full 24-bit system mode (8080/6080/VSYNC/WSYNC). ITU-R/BT.656 compliant D1 digital video output mode with on-the-fly RGB to YCbCr color-spaceconversion. Support for a wide variety of input and output formats that allows for conversion between input and output (for example, RGB565 input to RGB888 output). For more information refer to the i.MX28 Applications Processor Reference Manual, chapter 33. 6.10 LRADC0-6 (Touch interface) Function Resolution 12 bits Maximum sampling rate 428kHz DC input voltage 0-1.85V Expected plate resistance 2000-50000 ohm Table 46: LRADC LRADC 0 - 6 measure the voltage on the seven application-dependent LRADC pins. The auxiliary channels can be used for a variety of uses, including a resistor-divider-based wired remote control, external temperature sensing, touch-screen, button and so on. Pin# 4-wire touch 5-wire touch Other Net name 185 X- UR Generic ADC 4 LRADC4 186 X+ UL Generic ADC 2 LRADC2 187 Y- LR Generic ADC 5 LRADC5 188 Y+ LL Generic ADC 3 LRADC3 WIPER Generic ADC 6 LRADC6 190 Generic ADC 0 LRADC0 191 Generic ADC 1 LRADC1 189 Table 47: LRADC For pull-up or pull-down switch control on LRADC2~5 pins, please refer to HW_LRADC_CTRL0 register. LRADC 0 can be used for button and external temperature sensing, they cannot be enabled at same time in hardware configuration. LRADC 1 can be used for button as well as LRADC 0. For an example of how LRADC can be used for connecting multiple buttons, please see Freescale’s reference design for the i.MX28 processor. For more information refer to the i.MX28 Applications Processor Reference Manual. Bluegiga Technologies Oy Page 36 of 52 6.11 HSADC (High-Speed ADC) Function Value Input sampling capacitance (Cs) 1.0pF typical Resolution 12 bits Maximum sampling rate 2MHz DC input voltage 0.5 — VDDA-0.5 Power-up time 1 sample cycles Table 48: HSADC The processor contains a high speed, high resolution analog to digital converter which can be used when the lower resolution ADCs do not provide enough sampling speed or resolution. For more information refer to refer to the i.MX28 Applications Processor Reference Manual. 6.12 JTAG Pin# Function Net name Note 118 Mode LCD_D1 LCD_D1=HIGH: CPU is ready, waiting for JTAG connection 177 JTAG return clock (Factory reset) JTAG_RTCK* During normal operation, this pin is reserved for use as a factory reset button by the software. 178 JTAG test clock JTAG_TCK 179 JTAG test data in JTAG_TDI 180 JTAG test data out JTAG_TDO 181 JTAG test mode select JTAG_TMS 182 JTAG test reset JTAG_TRST 183 Ground GND 184 JTAG enable boundary scan DEBUG** DEBUG=0: JTAG interface works for boundary scan. DEBUG=1: debugging. JTAG interface works for ARM Table 49: JTAG pins * Most JTAG adapters do not use the Return Test Clock in which case it can be used for other purposes. E.g. on the APX4 reference design this pin is used for Factory Reset button. ** DEBUG pin is pulled down inside CPU. Leave unconnected for ordinary boundary scan. Bluegiga Technologies Oy Page 37 of 52 In case ARM debugging is needed the board must be powered on in JTAG mode ( Wait JTAG connection mode), i. e. LCD_D1 (pin 118) must be high. Bluegiga Technologies Oy Page 38 of 52 7 Electrical Characteristics 7.1 Absolute Maximum Ratings Parameter Min Max Unit Vin -0.3 7.0 Voltage on ordinary I/O -0.3 3.63 200 mA 70 °C -40 85 °C -40 85 °C 3V3 current drain* Permissible ambient temperature (Commercial version) Permissible ambient temperature (Industrial version) Storage temperature Table 50: Absolute Maximum ratings *Pins 9, 10, 11, 12 are 3.3V outputs intended for 3.3V low power devices. Stresses beyond those listed in Table 50 may cause permanent damage to the device. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Table 50 gives stress ratings only—functional operation of the device is not implied beyond the conditions indicated in Table 51. 7.2 Recommended Operating Conditions Parameter Min Max Unit Vin 4.75 5.25 Voltage on ordinary I/O 3.1 3.4 Board temperature (Industrial version) -40 85 °C Ambient temperature with high Wi-Fi use -40 60 °C (Industrial version) Table 51: Recommended Operating Conditions Bluegiga Technologies Oy Page 39 of 52 7.3 Power Consumption Condition Min Typ Max Unit During Boot 1.0 1.2 1.3 Idle 0.8 0.9 1.0 1.7 1.8 1.9 (Linux booted, but no active processes) Wi-Fi transmitting Table 52: Power consumption (no power saving enabled) Bluegiga Technologies Oy Page 40 of 52 8 RF Characteristics min max Channels 13 Frequency 2412 2472 (2462) (1-11 when used in USA) MHz Table 53: Supported frequencies for Wi-Fi transceiver min max Channels 78 Frequency 2402 2480 MHz Table 54: Supported frequencies for Bluetooth transceiver Standard Supported bit rates 802.11b 1, 2, 5.5, 11Mbps 802.11g 6, 9, 12, 18, 24, 36, 48, 54Mbps 802.11n, HT, 20MHz, 800ns 6.5, 13, 19.5, 26, 39, 52, 58.5, 65Mbps 802.11n, HT, 20MHz, 400ns 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2Mbps Table 55: Supported modulations for Wi-Fi transceiver Accuracy min max -20 +20 ppm For all environmental conditions Table 56: Carrier frequency accuracy for both WiFi and Bluetooth Bluegiga Technologies Oy Page 41 of 52 802.11b Typ 802.11g Typ 802.11n short GI Typ 802.11n long GI Typ 1 Mbps -97 dBm 6 Mbps -92 dBm 6.5 Mbps -91 dBm 7.2 Mbps -92 dBm 2 Mbps -95 dBm 9 Mbps -91 dBm 13 Mbps -87 dBm 14.4 Mbps -90 dBm 5.5 Mbps -93 dBm 12 Mbps -89 dBm 19.5 Mbps -85 dBm 21.7 Mbps -87 dBm 11 Mbps -89 dBm 18 Mbps -87 dBm 26 Mbps -82 dBm 28.9 Mbps -84 dBm 24 Mbps -84 dBm 39 Mbps -78 dBm 43.3 Mbps -80 dBm 36 Mbps -80 dBm 52 Mbps -74 dBm 57.8 Mbps -75 dBm 48 Mbps -75 dBm 58.5 Mbps -71 dBm 65 Mbps -72 dBm 54 Mbps -73 dBm 65 Mbps -68 dBm 72.2 Mbps -69 dBm Table 57: Wi-Fi receiver sensitivity (at external antenna connector) Modulation type Typ DH1 -89 dBm DH3 -89 dBm DH5 -89 dBm 2-DH1 -92 dBm 2-DH3 -92 dBm 2-DH5 -92 dBm 3-DH1 -86 dBm 3-DH3 -85 dBm 3-DH5 -85 dBm Table 58: Bluetooth receiver sensitivity (at external antenna connector) Modulation type Min Typ Max Wi-Fi +14 +15 +15.6 dBm Bluetooth/Bluetooth LE +5.5 +8.1 +9 dBm Table 59: Transmitter output power at maximum setting Bluegiga Technologies Oy Page 42 of 52 9 Physical Dimensions Figure 5: Physical dimensions Bluegiga Technologies Oy Page 43 of 52 10 Attachment to motherboard In order to ease assembly of the APx4 module, it has slightly oval attachment holes. The size of the hole is ~2.2x3.0mm. This makes it possible to attach a screw and nut to the motherboard before inserting the module. Parameter Size Note Diameter M2 Length <= 10mm, 8mm recommenced Head diameter <= 3.8mm Material Steel or similar Length excluding head *Do not use plastic material Table 60: Screw size Parameter Size Size M2 Material Steel or similar Note *Do not use plastic material Table 61: Nut size *Use metal screws and nuts that connect to ground, as that improves the function of the APx4 integrated antenna. Nylon/plastic screws/nuts may be used only if the motherboard’s locking clips are grounded. Metal screws and nuts will also improve the heat conductivity compared to nylon/plastic. For automatic assembly Phillips, Pozi or Torx head is recommended. A suitable screw is Bossard’s PN 1151495 with following features: BN 380 - ISO 7048 Cross recessed cheese head screw Phillips H ISO 7048 SN 213307 Bluegiga Technologies Oy Page 44 of 52 11 Layout Guidelines Layout is very important for proper antenna operation when using the integrated antenna. 11.1 Internal antenna: Optimal module placement Key points to remember are APx4 should be placed so that the antenna faces away from large GND planes. Typically the best placement is along one of the motherboard edges. Antenna facing out from board Antenna preferably in corner or placed outside the motherboard edge Important: The motherboard’s locking clips must be attached to GND. Optionally attach APx4 to the motherboard with metal screws and nuts as described in this document Either: Create a board cutout under the entire antenna part or Place the module so that the antenna is outside the board edge We recommend issuing the motherboard design to Bluegiga for review in good time before ordering the PCBs. Please allow for several days for such a review. Figure 6: Example placement w/motherboard cut-out Figure 7: Example placement, antenna outside motherboard Important: The motherboard’s locking clips must be attached to GND. 11.2 External antenna In case external antenna is used the RF output can be taken directly from the U.FL connector of the module. In this case internal antenna placement can be ignored. See chapter 12.6 for approved antennas. 11.3 Thermal Considerations APx4 will heat up to some extent during use, especially due to Wi-Fi power consumption during highthroughput transmissions. APx4 can be attached to the motherboard with metal bolts to allow some heat transfer to the application board ground plane. 11.4 EMC Considerations for Motherboard Unwanted electromagnetic radiation may arise from a combination of APx4 and a motherboard if not carefully designed. Bluegiga Technologies Oy Page 45 of 52 The number of layers required depends on the application. The simplest application with no high speed signals connected, 2 layers might be enough, but with a high number of the APx4 signals in use with high clock speeds, 6 layers is recommended, with solid power and ground planes. Place the peripherals (connectors etc.) as close as possible to APX4. One example is USB and Ethernet. Make the lines as short as possible. USB lines: Use 45 ohms single-line (90 ohms differential) impedance. Route the lines as differential pairs Ethernet lines: Use 50 ohms single-line (100 ohms differential) impedance. Route the lines as differential pairs. Make sure that Ethernet Tx and Rx lines are well separated in order to minimize cross talk. If there is excessive cross talk the PHY may receive its own packets. Be careful with clocks, e.g. SAIF0_MCLK. Do not route them longer than absolutely necessary. Place the destination components as close as possible to the APx4. If clock traces are routed e.g. across the board they easily cause radiation which may exceed allowed limits. The power supply should be designed for 5V and at least 500mA continuous current. We recommend issuing the motherboard design to Bluegiga for review in good time before ordering the PCBs. Please allow for several days for such a review. Bluegiga Technologies Oy Page 46 of 52 12 Certifications APx4 is compliant to the following specifications: 12.1 CE TBD 12.2 FCC This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. FCC RF Radiation Exposure Statement: This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End users must follow the specific operating instructions for satisfying RF exposure compliance. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter. This transmitter is considered as mobile device and should not be used closer than 20 cm from a human body. To allow portable use in a known host class 2 permissive change is required. Please contact support@bluegiga.com for detailed information. OEM Responsibilities to comply with FCC Regulations The APx4 Module has been certified for integration into products only by OEM integrators under the following conditions: The antenna(s) must be installed such that a minimum separation distance of 25mm is maintained between the radiator (antenna) and all persons at all times. The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter. As long as the two conditions above are met, further transmitter testing will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.). IMPORTANT NOTE: In the event that these conditions cannot be met (for certain configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization. End Product Labeling The APx4 Module is labeled with its own FCC ID. If the FCC ID is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. In that case, the final end product must be labeled in a visible area with the following: “Contains Transmitter Module FCC ID: QOQAPX4” or “Contains FCC ID: QOQAPX4” Bluegiga Technologies Oy Page 47 of 52 The OEM of the APx4 Module must only use the approved antenna(s) described in Table 62 External Antenna Parameters, which have been certified with this module. The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or change RF related parameters in the user manual of the end product. 12.3 IC This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. If detachable antennas are used: This radio transmitter (identify the device by certification number, or model number if Category II) has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. See Table 62 External Antenna Parameters for the approved antennas. OEM Responsibilities to comply with Industry Canada Regulations The APx4 Module has been certified for integration into products only by OEM integrators under the following conditions: The antenna(s) must be installed such that a minimum separation distance of 20cm is maintained between the radiator (antenna) and all persons at all times. The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter. As long as the two conditions above are met, further transmitter testing will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.). IMPORTANT NOTE: In the event that these conditions cannot be met (for certain configurations or co-location with another transmitter), then the Industry Canada authorization is no longer considered valid and the IC Certification Number cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate Industry Canada authorization. End Product Labeling The APx4 Module is labeled with its own IC Certification Number. If the IC Certification Number are not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. In that case, the final end product must be labeled in a visible area with the following: “Contains Transmitter Module IC: 5123A-BGTAPX4” or “Contains IC: 5123A-BGTAPX4” Bluegiga Technologies Oy Page 48 of 52 The OEM of the APx4 Module must only use the approved antenna(s) described in Table 62 External Antenna Parameters, which have been certified with this module. The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or change RF related parameters in the user manual of the end product. To comply with Industry Canada RF radiation exposure limits for general population, the antenna(s) used for this transmitter must be installed such that a minimum separation distance of 20cm is maintained between the radiator (antenna) and all persons at all times and must not be co-located or operating in conjunction with any other antenna or transmitter. 12.4 IC Déclaration de conformité IC : Ce matériel respecte les standards RSS exempt de licence d’Industrie Canada. Son utilisation est soumise aux deux conditions suivantes : (1) l’appareil ne doit causer aucune interférence, et (2) l’appareil doit accepter toute interférence, quelle qu’elle soit, y compris les interférences susceptibles d’entraîner un fonctionnement non requis de l’appareil. Selon la réglementation d’Industrie Canada, ce radio-transmetteur ne peut utiliser qu’un seul type d’antenne et ne doit pas dépasser la limite de gain autorisée par Industrie Canada pour les transmetteurs. Afin de réduire les interférences potentielles avec d’autres utilisateurs, le type d’antenne et son gain devront être définis de telle façon que la puissance isotrope rayonnante équivalente (EIRP) soit juste suffisante pour permettre une bonne communication. Lors de l’utilisation d’antennes amovibles : Ce radio-transmetteur (identifié par un numéro certifié ou un numéro de modèle dans le cas de la catégorie II) a été approuvé par Industrie Canada pour fonctionner avec les antennes référencées ci-dessous dans la limite de gain acceptable et l’impédance requise pour chaque type d’antenne cité. Les antennes non référencées possédant un gain supérieur au gain maximum autorisé pour le type d’antenne auquel elles appartiennent sont strictement interdites d’utilisation avec ce matériel. Veuillez vous référer au Table 62 External Antenna Parameters, concernant les antennes approuvées pour les APx4. Les responsabilités de l’intégrateur afin de satisfaire aux réglementations d’Industrie Canada : Les modules APx4 ont été certifiés pour entrer dans la fabrication de produits exclusivement réalisés par des intégrateurs dans les conditions suivantes : Bluegiga Technologies Oy Page 49 of 52 L’antenne (ou les antennes) doit être installée de façon à maintenir à tout instant une distance minimum de 20cm entre la source de radiation (l’antenne) et toute personne physique. Le module transmetteur ne doit pas être installé ou utilisé en concomitance avec une autre antenne ou un autre transmetteur. Tant que ces deux conditions sont réunies, il n’est pas nécessaire de procéder à des tests supplémentaires sur le transmetteur. Cependant, l’intégrateur est responsable des tests effectués sur le produit final afin de se mettre en conformité avec d’éventuelles exigences complémentaires lorsque le module est installé (exemple : émissions provenant d’appareils numériques, exigences vis-à-vis de périphériques informatiques, etc.) ; IMPORTANT : Dans le cas où ces conditions ne peuvent être satisfaites (pour certaines configurations ou installation avec un autre transmetteur), les autorisations fournies par Industrie Canada ne sont plus valables et les numéros d’identification de certification d’Industrie Canada ne peuvent servir pour le produit final. Dans ces circonstances, il incombera à l’intégrateur de faire réévaluer le produit final (comprenant le transmetteur) et d’obtenir une autorisation séparée d’Industrie Canada. Etiquetage du produit final Chaque module APx4 possède son propre numéro de certification IC. Si le numéro de certification IC ne sont pas visibles lorsqu’un module est installé à l’intérieur d’un autre appareil, alors l’appareil en question devra lui aussi présenter une étiquette faisant référence au module inclus. Dans ce cas, le produit final doit comporter une étiquette placée de façon visible affichant les mentions suivantes : « Contient un module transmetteur certifié IC 5123A-BGTAPX4 » ou « Inclut la certification IC 5123A-BGTAPX4 » L’intégrateur du module APx4 ne doit utiliser que les antennes répertoriées dans le tableau 25 certifiées pour ce module. L’intégrateur est tenu de ne fournir aucune information à l’utilisateur final autorisant ce dernier à installer ou retirer le module RF, ou bien changer les paramètres RF du module, dans le manuel d’utilisation du produit final. Afin de se conformer aux limites de radiation imposées par Industry Canada, l’antenne (ou les antennes) utilisée pour ce transmetteur doit être installée de telle sorte à maintenir une distance minimum de 20cm à tout instant entre la source de radiation (l’antenne) et les personnes physiques. En outre, cette antenne ne devra en aucun cas être installée ou utilisée en concomitance avec une autre antenne ou un autre transmetteur. Bluegiga Technologies Oy Page 50 of 52 12.5 MIC, formerly TELEC TBD 12.6 Qualified Antenna Types for APx4-E This device has been designed to operate with a standard 2.14 dBi dipole antenna. Any antenna of a different type or with a gain higher than 2.14 dBi is strictly prohibited for use with this device. Using an antenna of a different type or gain more than 2.14 dBi will require additional testing for FCC, CE and IC. Please contact support@bluegiga.com for more information. The required antenna impedance is 50 ohms. Qualified Antenna Types for APX4-E Antenna Type Maximum Gain Dipole 2.14 dBi Table 62 External Antenna Parameters To reduce potential radio interference to other users, the antenna type and its gain should be chosen so that the equivalent isotropic radiated power (e.i.r.p.) is not more than that permitted for successful communication. Bluegiga Technologies Oy Page 51 of 52 13 Contact Information Inquiries/ Support: www.bluegiga.com Head office, Finland Phone: +358-9-4355 060 Fax: +358-9-4355 0660 Bluegiga Technologies Oy Sinikalliontie 5A, 5th floor 02630 Espoo, FINLAND USA office Phone: +1 770 291 2181 Fax: +1 770 291 2183 Bluegiga Technologies, Inc. 3235 Satellite Boulevard, Building 400, Suite 300, Duluth, GA, 30096, USA Hong Kong office Phone: +852 3972 2186 Bluegiga Technologies Ltd. Unit 10-18, 32/F, Tower 1, Millennium City 1, 388 Kwun Tong Road, Kwun Tong, Kowloon, Hong Kong Bluegiga Technologies Oy Page 52 of 52
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.5 Linearized : No Page Count : 52 Language : fi-FI Tagged PDF : Yes Title : APx4 datasheet Author : Bluegiga Subject : APx4 Datasheet Creator : Microsoft® Word 2010 Create Date : 2013:07:23 14:01:41+03:00 Modify Date : 2013:07:23 14:01:41+03:00 Producer : Microsoft® Word 2010EXIF Metadata provided by EXIF.tools