Tektronix Water Dispenser 494A Users Manual
494A to the manual 67a0ebf2-7266-4669-9a5c-00505daf38a6
2015-02-03
: Tektronix Tektronix-Water-Dispenser-494A-Users-Manual-464251 tektronix-water-dispenser-494a-users-manual-464251 tektronix pdf
Open the PDF directly: View PDF .
Page Count: 336
Download | |
Open PDF In Browser | View PDF |
o o o o o o o o o o o I o o o o a o o o o o o o o o o o o o o a o o a o o o o o o o o o Service Manual Tektronix 494A& 494AP SpectrumAnalyzers Volume 1 070-ss60-00 Warning The servicing instructions are for use by qualified personnelonly. To avoid personal injury, do not perform any servicing unlessyou are qualified to do so. Refer to the Safety Summary prior to performing service. Pleasecheck for change information at the rear of this manual. First Edition: January1987 I Copyright @ Tekrronix, Inc. 1987. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supercedes that in all previously published material. Specifications and price change privileges reserved. Printed in the U.S.A. Tektronix, Inc., P.O.Box 1000, Wilsonville, OR 97070_1000 TEKTRONIX and TEK are registered trademarks of Tektronix. Inc. o o o ? o a o o t o o O o o o o a o o o o o o o o o o o o o a o o o o a o o o o a o o o o o o o o o o o o a o I o o O o o o o o o o o o o o O I o o o o o o t o o o o I O a o RELEASEOF COPYRIGHT Tektronixcannotprovidemanualsfor measurementproductsthat are no longereligiblefor longterm support.Tektronixherebygrantspermission and licensefor othersto reproduceand distributecopiesof any Tektronix productmanual,includingusermanuals,operato/s measurement manuals,servicemanuals,and the like,that (a) havea Tektronixpart Numberand (b) are for a measurementproductthat is no longer supportedby Tektronix.A Tektronixmanualmay be revisedto reflect changesmadeto the productduringits manufacturing life.Thus, differentversionsof a manualmayexistfor anygivenproduot.Gare shouldbe takento ensurethatone obtainsthe propermanualversionfor a specificproductserialnumber.This permissionand licensedoesnot applyto any manualor otherpublicationthat is still availablefrom Tektronix,or to any manualor otherpublicationfor a videoproduction productor a colorprinterproduct.Tektronixdoes not wanantthe accuracyor completeness of the information,text,graphics,schematics, partslists,or othermaterialcontainedwithinany measurementproduct manualor otherpublicationthat is not suppliedby Tektronixor that is producedor distributedin accordancewith the permissionand license set forthabove.TEKTRONIX SHALLNoT BE LIABLEFoR ANY DAMAGES WHATSOEVER (|NCLUD|NG, WTTHOUT LtMtTATtON, ANy CONSEQUENTIAL OR INCIDENTAL DAMAGES,DAMAGESFOR LOSSOF PROFITS, BUSINESS INTERRUPTION. OR FOR pROpERTylAR|S|NGOUTOF TNFRTNGEMENT OF TNTELLECTUAL THEUSEOF ANYMEASUREMENT PRODUCT MANUALOR OTHER PUBLICATION PRODUCED OR DISTRIBUTED IN ACCORDANCE WITHTHEPERMISSION ANDLICENSE SETFORTHABOVE ThomasF. LenihanChieftntellectual PropertyCounselTektronix, tnc(503)627-7266 o a o o ,.'.t a o a o a a o o o t a a o I o o o o o o o O a I o a o a o o t a o o a a a a a I o o I o I t I o o I I O o I t o I I o o o o o o o t o I o o o o o I o O t I O o O t o WARRANTY Tektronix warrants that this product will be free from defects in materials and workmanship fbr a period of one (l) year from the date of shipment. If any such product proves defective during this warranty feriod, Tektronix, at its option, either will repair the defective product without charge for parts and labor, or will provide a replacementin exchange for the defective product. In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period and make suitable arrangementsfor the performance of service. Customer shall be responsible for packaging and shipping the defective product to the service center designatedby Tektronix, with shipping charges prepaid- Tektronix shall pay for the return of the product to Cusromer if the shipment is to a location within the country in which the Tektronix service center is located.customer shall be responsiblefor paying all shipping charges,duties, taxes, and any other charges for products returned to any other locations. This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate maintenance and care' Tektronix shall not be obligated to furnish service under this warranry a) to repair damage resulting from attempts by personnel other than Tektroriix representativesto install, repair or service the product; b) to repair damageresulting from improper use or connection to incompatibleequipment;or c) to servicea product that has been modified or integrated with other products when the effect of such modification or integration increasesthe time or difficulty of servicing the product. TIIIS WARRANTY IS GIVEN BY TEKTRONTX WITH RESPECT TO THIS PRODUCT IN LIEU OF ANY OTI{ER WARRANTIES, EXPRESSED OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX'RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE PRODUCTS IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT' SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS ADVANCE NOTICE OF TIM POSSIBILITY OF SUCH DAMAGES. O a o I ? o a a a a a I t o I a a a O o O o o o t C a I a o O t a o a o a o o a o o I o o o 494A/494APServiceVot.1 o t o o I I o a O I a o I I o t I o a o O o I o o o I o o I o o o a o I a o o o o o PREFACE This manual contains servic€ informationfor the TEKTRONfX494A1494Ap.The informationis tocatedin two volumes. Volume1 containsthe text and Volume2 contains the diagrams and parts lists. The Tabte of Contents in each volume lists the contents of both volumes. Manualsthat describeother aspectsof the product are: . Operator's Manual . Operator'sHandbook o Programmer's Manual o Programmer's ReferenceGuide Who Should Use This Manual? This rnanualis intendedfor electronictechnicians with experiencein servicingdigital,analog,and rf circuitw. Circuit analysis is mostly functionil and shoutd help isolate most malfunctioneto a board or block of circuitry.The technicianshould then be abte, with the aid of test equipment,to isolate the malfunctionto a specificcomponentor components. This instrumentcontains firmwarethat provides a thoroughinstrumentcheck during power up and during operation,and if needed,guidesthe usei throughai abbreviatedfront-panelcalibrationprocedure. lf cali_ brationcannotbe achieved,a diagnostictest detects and isolatesmost problemsto the system,suchas 1st LO. The techniciancan then run troubleshooting diagnostics to further isolate the problemto the board or blockof components.Referto the Maintenance section for diagnosticsinformation. DocumentationStandards Most terminologyand graphicsfollow ANSI stan_ qalds. A glossaryof terms is providedas an appendix. Referto the followingstandards: . ANSIY1.1- Abbreviations . ANSIY32.2- GraphicSymbots o IEEE91 - Logic Symbots Change/History Inf ormation Sometimesinstrumentchanges occur or manual errors are found that make some of the informationin the manual inaccurate.When that happens,Manual ChangeInformationnoticesare insertedat the rear of the manual.This helpsensurethat the manualcontains the latestand most accurateinformationavailable when the productis sold. History information, with the updated data, is integratedinto the text or diagrams: Whena text page is updated,the revisedpages are identifiedby a revision date in the lowerinsidecornerof the page. When a diagramis updated,the revisiondate is placedat the lower center of the diagram. History informationis shown with a gray tint. When a componentvalue is changed,the designatoron the drawingis boxedwith a grey outline. Whena circuit is deletedor changed,the originalconfigurationis shown in grey, drawn eitherat its originallocationor to the side of the drawing. lf you havea manualother than the one that came with your instrumentit may containrevisionsthat do not applyto your instrument;however all historyinformation that pertainsto the earlierinstrumentsis retained. When a major modificationhas been made to an assemblyor circuit board, the data for the replaced assernblywill follow the new informationand will be identifiedwith appropriatetitles or headingssuch as instrurnentserial number range or the assemblyor boardpart numbers. Also, if your instrumenthas an assemblyreplaced with a newer version,documentationfor the newer assemblymay be supplied. Contactany TektronixServiceCenterfor information. o o o I a o t a a a o a o o I O a a a o o o o o o o t o a a o o I o o o a o o o a o a o o o o t o o o o o o o a I o I a a o I o o o o o o o o o t o a o I o o t o I a o o a o o 494A/494APServiceVot. 1 TABLEOF CONTENTS The 494A/494APservice Manuatis divided into two volumes. VOLUME1 Page PREFACE ........................ i TABLEOF CONTENTS .............. .......... iii LISTOF ILLUSTRATTONS ........... ........x LISTOF TABLES ............. xiii SERVICING SAFETYSUMMARY .........xv Section1 GENERALINFoRMATION productDescription ........... 1_1 Conformanceto IndustryStandards ............ 1_1 ProductService ................. 1_1 Instrum€ntConstruction .... 1-z Installationand ,l_2 Preparation for Use ........... powerInputRange....,.....,..... Changing 1_2 Replacing Fuses......... Selected Components .......1-2 Assemblyand CircuitNumbering .............. 1_2 FirmwareVersionand Error MessageReadout .... 1-g Options .......... 1-g Accessories ..,.................... 1-3 Section2 SPEC|F|CAT|ON ' ELECTRICAL ................ .....2-1 Verificationof ToleranceValues .....,. Z-1 FrequencyRelatedCharacteristics... 2-1 AmplitudeRelatedCharacteristics .... 2_6 InputSignatCharacteristics .............. 2-11 OutputSignalCharacteristics ........... 2-1g GeneralCharacteristics .................... 2-1s PowerRequirements ........,.........,..... 2-15 ENV|RONMENTAL.......... ... 2_16 PHYSTCAL .....2-.t7 Section3 INSTALLATION UNPACKING AND tNtilAL TNSPECTTON .......,3-1 coNNECTtNGPOWER .....3_2 PowerSourceand PowerRequirements g_2 ........................ STORAGE ANDREPACKAGING ......,.... 3.2 Storage .....g_2 Repackaging g-3 for Shipment................ Page Section4 PERFORMANCE CHECK Introduction ..,.4-1 Incoming Inspection Test ...................... 4_1 OptionInstrumentChecks..............,...... 4_1 Verification of ToleranceValues............ 4_1 HistoryInformation ............ 4-1 Equipment Required ..........4-1 PRELIMINARY PREPARATTON ............. 4-4 InitialPower-Up............ .....44 CalibratePosition, CenterFrequency, ReferenceLevel, and DynamicRange ..........4-s PERFORMANCE CHECK pRocEDURE................ .....4_6 1. Check't0MHz Reference OscillatorAccuracy ........... 4_6 2. CheckCounterAccuracy.................. 4-6 3. CheckCounterSensitivity................ 4-6 4. CheckCentErFrequency Accuracy .,......4-T 5. CheckCenterFrequency Stability ........... 4-9 6. CheckResidualFM .......................... 4-9 7. CheckFrequency Span/DivAccuracy ............ 4-10 8. CheckMarkerAccuracy................... 4-12 9. CheckSweepTime Accuracy ........4-19 10. CheckPulseStretcher.................... 4-19 11.CheckResolutionBandwidth and ShapeFactor ..........-...4-14 12.CheckCalibrator Output.................. 4-15 13.CheckNoiseSidebands.................. 4-15 14.CheckFrequency Response ............ 4-16 15.CheckDisptayDynamic RangeandAccuracy............................. 4-1g 16. CheckPreselector UltimateRejection .........-...4-20 17. CheckRF AttenuatorAccuracy.......4-20 18. ChecklF GainAccuracy.................. 4-25 'l 9. Gheck GainVariationBetween Resolution Bandwidths ......4-26 20. CheckSensitivity .........4-26 21. CheckResidual SpuriousResponse ...........4-27 22. Cheeklntermodulation Distortion ........4-2A 23. CheckHarmonicDistortion........,..... 4-29 ill o o o 49441494AP ServtceVot. i I TABLEOF CONTENTS (Gonr.) page Section 4 PERFORMANCE CHECK(Conr.) 24.CheckLO Emission .....4-29 point.......4-29 25.Check1 dB Compression 26. CheckExternalReference InputPower .... 4-31 27. CheckTriggeringOperation and Sensitivity.............. .....4-31 28. CheckExternal SweepOperation ............... 4-92 29.CheckVERTOUTPUTSignat..........4-34 30. CheckHORTZOUTPUT SignafLevel ....4-94 oPTloN TNSTRUMENTS ....................... 4_34 31. CheckOption07 CalibratorOutput ............... 4-94 32. CheckOption07 Frequency Response .........4-95 33. CheckOption4i Frequency Span/DivAccuracy ............ 4-gz 34. CheckOption42 110MHz OUTLevel .......... 4-gB 35. GheckOptiopn42110MHz tF OutputBandwidth,CenterFrequency, BandpassRipple,and Symmetry About110MHz ..................4-gg GPIBVERIFICATTON PROGRAM..........4-39 Section 5 ADJUSTMENT Introduction .... 5-1 Equipment Required ..........5-1 ADJUSTMENT PROCEDURE ................ 5-2 PREPARAT|ON ............. .....5-2 1. AdjustLow Voltagepower Suppty ... 5-3 2. AdjustZ-Axis and HighVoltageCircuits .........5-5 3. Adjust DeflectionAmptifier Gainand Frequency Response............. 5-6 4. Adjust DigitalStorageCalibration.... 5-g 5. AdjustSweepTiming .... 5-g 6. AdjustFrequencyGontrolSystem and Dot Marker Position .... S-g 7. AdjustLog Amplifier......................... 5-11 8. Adjust ResolutionBandwidth andShapeFactor .............. 5-14 9. Presetthe VariableResolution Gainand BandLeveling.....,.................. 5-19 10.AdjustCalibratorOutputLevet ........5-20 11.AdjustlF Gain .............. S-20 12.Adjust B-SAVEA Refergnce Level ......... .......5-21 13.AdjustPreselector Driver................ S-21 14.AdjustBandLevelingfor CoaxialBands ................... 5-24 tv .| Page 15. AdjustBandLevelingfor WaveguideBands .............. 5-25 16. PhasELockCalibration .................... 5-2S OPTIONINSTRUMENTS ONLY............. 5-29 17. AdjustOption07 VR Band Leveling 5-29 18. AdjustOption42 Module................. 5-29 Section 6 MAINTENANCE TNTRODUCTTON ............................... 6-1 Removingthe lnstrument from its Cabinet..........6-1 static-sensitivecomponents .......6-1 PREVENTIVE MAINTENANCE ............... 6.2 ElapsedTimeMeter ..................... 6-2 Cleaning ......-............ 6-2 Lubrication ............... 6-2 Fixturesand Tools for Maintenance .................,......... 6-2 Visuallnspection .......................... 6-2 Transistorand Integrated CircuitChecks ..........6-2 PerformanceChecks and Recalibration ......................... 6-3 SavingStoredDatain Battery-Backup Memory............... 6-3 TROUBLESHOONNG ........6.3 Troubleshooting Aids ................... 6-9 Diagrams ............. 6-3 CircuitBoard lllustrationsand Component LocatorCharts ..... 6-4 Diagnostics ..........6-4 GeneralTroubleshooting Techniques ............... 6-4 Semiconductor Checks............ 6-4 DiodeChecks.......................... 6-4 Diagnostic Firmware................,... 6-5 Troubleshooting Steps ................. 6-5 DTAGNOSTTCS ...................................... 6-5 TROUBLESHOOTING USING THEERRORMESSAGE DISPLAY....6.5 Introduction ..............6-5 Combinationof Error Messages... 6-6 ProcedureFormat .... 6-6 ............ TRACEMODES 6-14 AlternateFrequency Display........6-14 AuxiliarySynthesizer Control.......6-14 ........-... CorrectionDisable/Enable 6-14 coRRECTtVE MATNTENANCE .............. 6-15 HandlingStaticSensitive .............6-1 5 Components Parts.......6-15 ObtainingReplacement PartsRepairand Return Program ................... 6-15 r o o a a o I o o t a o O o o o I a o o o t o a a I I I o o o o o I o a a a o o o o I O I I o o O I a o o a I o I o o t o o o a o o o I o a a t o O o I o o o a o o o 494A/494APService Vot. 1 TABLEOF CONTENTS(Conr.) page Section6 MAINTENANCE (Conr) FirmwareVersionand Enor MessageReadout............... 6-15 SelectedComponents.................. 6-15 ReplacingEPROM or ROMDevices ........6-15 Surface-Mounted Components..... 6_16 ReplacingSurface-Mount€d Components .............. 6_17 Transistorand Integrated CircuitConfigurations ................,.. 6_1 7 DiodeCotorCode......................... 6_1g MultipleTerminal (Harmonica) Connectors............... 6_1g Resistor Values ......... 6-1g CapacitorMarking .....6_1g Soldering Techniques ................... 6-1g Replacingthe Squarepin for the Multi-pinConnectors.............. 6_1g Servicingthe VR Module.............. 6-1g REPLACING ASSEMELIES ANDSUBASSEMBLTES .................... 6_19 Removingand Installing the GPIBBoard .........6-22 Removingor Replacing Semi-rigid CoaxialCables............ 6_22 Replacingthe DualDiode Assembtyin the 1st Mixer ............ 6_22 Replaeingthe Crt ......6_23 Repairingthe Crt Trace RotationCoil ... 6-29 FrontPanelAssemblyRemoval...6-29 Front-Panel BoardRemoval.........6_24 ReplacingFront panel Pushbutton Switches.................... 6_24 MainPowerSuppty ModuleRemoval ........6_24 HighVottagepower Supply..........6_25 Removingand Replacingthe lst LO ..6_25 Replacingthe l st LO InterfaceBoard .........6_25 FanAssembtyRernovaf................ 6-25 MAINTENANCE ADJUSTMENTS ......6.26 110MHz tF Assembty ReturnLossCalibration ................ 6-26 2072MHz2nd Converter............. 6_26 FourCavityFilter.......... ........... 6_27 Mixer......... ...........,9-27 110MHz ThreeCavityFitter.........6_29 829 MHz Converter Maintenance .............. 6_29 Troubleshooting and Calibrating the 2ndLO ............. ..6-32 Page Preparingthe 2nd LO Assemblyfor Adjustment............. 6-35 Reassembling the 2nd LO Assembty .....6-9g Troubleshootingand Calibrating the 16-20 MHz PhaseLock Section ..................... 6-40 Troubleshooting Aids for the 2182MHzPhaseLocked 2nd LO Assembty .....6-42 100MHz Osciltator in the 3rd Converter ............................... 649 l st ConverterBias .....................,. 6-44 AuxiliarySynthesizer VCOAdjustment ........................... 6-44 BaselineLeveling (VideoProcessor) ..... 6-46 10 MHz Reference OscillatorAccuracy .. 6-49 MICROCOMPUTER SYSTEM MATNTENANCE ............. .... 6-50 OptionSwitches .......6-50 Power-upSelf Test ... 6-50 MicrocomputerSystemTest ........6-51 AddressBus Test .....6-52 Microcomputer Bus ................. 6-52 MernoryAddressDecoders..... 6-52 ProcessorAddressDecoder.... 6-59 GPIBBoard AddressDecoders 6-s3 Clocksahd ControlLines.........6-54 Instrument Bus Test 6-54 TROUBLESHOOTING ON THE INSTRUMENT BUS 6-54 Instrument Bus DataTransfers.... 6-54 Instrument Bus Registers,............ 6-56 Front-PanelRegisters 6-62 TAPEOATATRANSFERPROGRAM.... 6-63 Section 7 THEORY OF OPERATION F U N C T T O N AD L E S C R | p T t O N. . . . . . . . . ...... . 7- 1 W h a t l t D o e s . . . . . . . . . . . . . . . . - . . . . . .7. .-.1. . How lt Works .......7-1 First, Second, and T h i r d G o n v e r t e r s. . . . . . . . ...... . . . . . . .7. - 1 lF Section ..-.........7-2 D i s p l a yS e c t i o n ....7-2 FrequencyControl Section .,.... 7-2 Counter and P h a s eL o c k S e c t i o n. . . . . . . . . . . . . , .7.-. 2 DigitalControl Section .............7-3 P o w e r S u p p l yS e c t i o n. . . . . . . . . . . . 7 . .- 3 O t h e r S e c t i o n s. . . . . . . . . . . ........ . . . . . 7. - 3 494A1494AP ServlceVol. 1 TABLEOF CONTENTS(Cont.) Page Section7 THEORYOF OPERATTON (Cont) DETAILED DESCR|PT|ON ................ .....7-4 1STCONVERTER SECTTON ............. 7_4 RF InterfaceQircuits.................... 7-4 'l st Converter................. ..........,,,.. 7-4 RF Input ............... 7-4 Preselector Circuits...........,..... 74 lst Mixer .............. 7_5 1st LocalOscillator.................. 7_5 powerDivider ......7-s Transfer Switch .... 7-s Directional Filter................,...... Z-6 2O72MHztF Fitters....,............ 7-6 Diplexerand Filter...,............... Z-6 2NDCONVERTER SECTTON ............ 7_7 2072MHz 2ND CONVERTER .......7-8 Four-Cavity Fi|ter.......... ........... Z-g MixerCircuit............................ 7-g PrecisionExternalCables........7-9 Filterto Mixer RF InputGable.................... 7-10 2nd LO to Mixer LO InputCable.................... Z-10 2182MHzPHASELocKED 2NDLO .....................7-10 2182MHz Microstrip Oscillator ............. 7-10 2200 MHz Reference Board ....................7-11 220OMHz Reference M i x e r. . . . . . . . . ...........7-11 16-20MHz phaselock Board ....................7-11 829MHz 2NDCONVERTER .........7-19 lF Section ............ 7,13 829 MHz Diplexer .,.............. 7-tg 829 MHz Amplifier ............... t-13 829 MHz 2nd Converter...,..7-14 1 1 0M H zl F S e | e c t . . . . . . . . . .7. -. .i 5 .. LO Section ........... 7-16 PhaseLockCircuit.............. 7-16 2nd Local Oscillator OuputCircuit ... 7-19 719 MHz OutputCircuit.......7-18 3RDCONVERTER SECTION......,..... 7-19 1 1 0M H zt F A M p L t F t E R . . . . . . . . . . .7. .-.1. 9 110MHz FILTERS 3rd CONVERTER ............ .............. 7 -2A 100MHz Oscillator.................. 7_20 Mixer......... ........... 7_20 Distribution Amplifier............... 7 -20 Calibrator .............2-21 REFERENCE LOCK......,............... 7-21 ExternalReferance Det€ctor ...,...,,..,...7-21 vl Page Frequency Synchronizer ..........7-21 Phase/Frequency Detector ...,.,..,.....,7-21 er ............... TuneAmplifi ........... 7-22 LockDetector.............. ......... "..7 -22 rF sEcTtoN ...................7-22 VAR|ABLERESOLUTION ............. 7-22 VR fnput ...............7-22 1st FilterSelect .....7-22 100Hz and 10 Hz BandpassFilter.......... .............. 7 -24 1st Mixer ,..,,.....7-25 Filter.......... Bandpass ....,.,.. 7 -25 2ndMixer .........7-25 LocalOscillator............. ......7-26 10 dB GainSteps..........-..........7-26 20 dB GainSteps.....................7-26 BandLevelingCircuit........,...... 7-27 VR MotherBoards................... 7-27 2nd FilterSelect ....7-28 PostVR AmplifierCircuit .........7-28 LOG AMP and DETEGTOR..........7-29 Log AmplifierCircuits.............. 7-29 DetectorCircuit .-...7-31 DTSPLAY ........7€3 SECTTON DESCRIPTION .......7-33 FUNCTIONAL .,,.7.33 VIDEOAMPLIFIER Log ModeCircuits................... 7-33 LinearModeCircuits..............-. 7-34 PulseStretchCircuit................ 7-34 .......7-35 ldentifyCircuit DigitalControlCircuit............... 7-35 vrDEo pRocESSoR.................... 7-35 Interfacewith 1405TV 7-35 SidebandAdapter.............-...... 7-36 MdeoMarker........................... VideoLeveling.......,...... 7-37 ........... VideoLevelerCircuits.............. 7€7 VideoFilterCircuits......,.......... 7-37 VideoBlanking.-..............,........ 7-39 7-39 DIGITAL STORAGE VerticafSection .....740 D i g i t i z i n gC i r c u i t s . . . . . . . . . . . . . .7. .4 3 Address Decoding ...............7-43 I n t e r f a c eL o g i c . . . . . . . . . , . . . . . . .7. 4 3 M a x i m u mH o l d . . . . . . . . . . . . . . . . .7. .4. 3 . .-. 4 3 C o n s t a n tC i r c u i t . . . . . . . . . . . . . . . 7 O u t p u tC i r c u i t s . . . . . . . . . . . . . . . . .7. .-.4 4 Peak/Average Level .............7-44 Circuits H o r i z o n t aS l e c t i o n . . . . . - . . . . . . . . . .7. .-.4 4 . .-.4. .6 M a r k e rl C . . . . . . . . . . . . . . . . . . . . . . . 7 Tracking Digital-to7*46 Analog Converter ................ Update Marker Circuits .......746 a o o 'to o o a a a o o o a o o t o o I o I o o o o o o o o o t o o o o o a o o o o o o o o o o o o O a o o o a o I t I o I o o I o o a o o o o o t o a I o o t t o a O o o o a 494A1494AP Service Vot. I TABLEOF CONTENTS(Conr.) Page Section7 THEORYOF OPERATION (Conr) FastRetraceBlanking...,.,...742 Memories ........7-47 DEFLECTION AMPLIFIERS ..........7-47 Horizontal Section...............,... 747 VerticalSection ....249 Z.AXISANDRF INTERFACE .......7-48 RF InterfaceCircuits................ 7_49 Z-AxisCircuits .....7_49 power-FailDetector................. 7-50 powerSupplyMonitor............. 7_50 OptionsSwitch .....7-50 Timer ......... .......... 7_50 HIGH.VOLTAGE SUPPLY............. 7.50 High-Vottage Osciilator............ 7-50 VoltageDoubter ... 7_SO High-Voltag€ Regulator............ 7_S0 Z_AxisGtipper ......7_51 cRT READOUT ............................ 7_51 Generating Readout................. Z_51 R€adoutOnlOtrTiming.......Z-S1 Character Scan ................... 7-Sj CharacterGenerator Timing ............. z-54 DotDefay .....-..2-54 lnstrument Bus Interface.........7-56 ControlPort......................... 7-56 Address/Data Port ...,...,...... T-Sz Frequency Dot Marker.,........... 7_57 FREQUENCY CONTROL sEcTtoN .. 7_60 Sweep .................. 7-60 SpanAttenuator....................... Z-60 CenterFrequency Control........7-60 1st LO Driver........................... 7-60 preselector Driver.................... Z_60 swEEP ..................... 7-60 DigitalControt ......7_61 SweepGenerator..................... 7_62 TriggerCircuits ....7-62 SweepOutputCircuits............. 7_62 MarkerDAC............................. 7-63 SweepControl .....Z_69 TriggerControl..................;..... Z-69 SweepHoldoff .....7-64 Interface Circuits..................... 7_64 spAN ATTENUATOR ................... 7-65 DigitalControl ......7-65 lnputSection ........7_65 Digital-to-Analog Converter..... 7_65 DecadeAttenuator ................... 7_66 Page lst LO DRIVER .........7-67 DigitalControf ......7-6g InputSwitching........................ 7-69 OscillatorFilter SwitchDriver .......7-69 Summing Amptifier ................... 7-69 OscillatorDriver ... 7-69 Reference Suppty.................... Z-69 MixerBiasDriver..................... 7-69 Programmable Bias ................. 7-69 PRESELECTOR DRTVER .............. 7-69 DigitafControlCircuits............. 7-70 OscillatorVoltageProcessor... 7-lO lF Offset ...............7-21 Summing Amplifi er ................... 7 -71 Trackingand ShaperCircuits ....7-71 CurrentDriver ......Z-72 Preselector SwitchDriver.,......7-22 CENTERFREQUENCY CoNTROL -................7-72 Operating Modes..................... 7-72 DigitalControl ......7-73 StorageRegisters..,..,......... 7-74 Digital-to-Analog Converters .......7-75 Track-and-Hold Amplifier.........7-75 Write-Back Circuit........,........... 7-76 -1 0 V Reference Buffer......... ..7-76 and PHASELOCK COUNTER sEcTroN ...7-77 FUNCTIONAL DESCRIPTION .......7-77 PhaseLock Assembly............. 7-77 Frequency 7-78 Gontrol................... Controllingthe OscillatorFrequency......,.,., 7 -78 Counting 7-78 the lF .................... HARMONIC MIXER ..7.78 AUXILIARY ..........7-79 SYNTHESIZER BOARD COUNTER .,,7.82 7-82 AddressDecoder..................... ServiceRequestCircuits.........7-82 DataBuffers .........7-82 InputAmplifiersand Multiplexer ........... 7-83 +2n Gounter .........7.83 21-bitCounter.......................... 7-83 PHASELOCKSYNTHESIZER ...,..7.83 Synthesizer ..........7-83 PhaseLock .............................. 7-84 7-84 OffsetMixer ........................ 7-85 ErrorAmplifier..................... ControlledOscillator............ 7-86 StrobeDriverCircuit............ 7-86 vll o a o 4944/494APServlce Vot. 1 I TABLE OF CONTENTS(Cont.) Page Page Section7 THEORYOF OPERATTON (Conr) DtctTALCONTROLSECTTON ..........7_88 Microcomputer............................. 7-gg Processor ............. 7-gg Microprocessor ................... 7-88 Cfock......... ......7-92 Microcomputer Bus ........,.... T-92 AddressDecoder................ Z-92 Timer......... ......7-gz PIA and lnstrumentBus ......7-92 DMAController............. ......7 -gz InterruptProcessing...........: 7-93 Memory .................2-94 AddressDecoders.............. 7-94 RAM .......... ......7-94 Options ............. 7-95 ROM .......... ......7-96 ROM Banksand GptB ............. 7-96 AddressDecoder................ 7-96 BankSelector...................... 7-96 BankROMs .....7-96 GPIBSwitches...............,.... 7-97 GPfA.......... ......7-97 AccessorissInterface.......,.,.... Z-gT Frontpanel ..........7_97 Pot€ntiometers .................... 7-98 output Mode shift R€gistersand LEDs ............ 7-98 Processor ...,....7-98 Scanningthe Keyboard.......7-98 Scanningthe FREQUENCY ControlCoder .. 7-gg Outputtingthe CorrectCode ....................... 7-99 Software ..........7-gg MainScanRoutine.............. 7-99 KeyboardCheck Subroutine .......7-100 FrequencyCoder Subroutine Check................ 7-100 OutputSubroutine............... 7-100 , POWERSUPPLY ..........7-103 PrimaryCircuits ........7-103 Line InputCircuits.................... 7-103 Invert€rCircuit ..... 7-103 Multivibrator .... 7-103 RampGenerator.................. 7-l 04 PrimaryRegulator............... 7-104 InverterLogic ...................... 7-104 InverterDriver.............,....... 7-105 OutputStage.............,......... 7-105 Soft Start and Primary Over-Current Circuits ......"...7-105 Secondary& Fan DriveCircuits .....7-106 Rectifier-FilterCircuits.................. 7-106 *5V Voltage ReferenceSupply RegulatorCircuits .....7-106 +5V Over-Voltage ProtectionCircuit ......7-106 Fan DriveCircuit -......7-107 Sectlon8 OPTIONS OptionsA1-A5 PowerCordOptions .... 8-1 OptionBl ServiceManuals................... 8-1 OptionsMl-MS ExtendedService and WanantyOptions ........8-1 Option07 75O Input.............................. 8-2 Option 08 Delet€ External MixerInput ....8-2 Options 21 and 22 Waveguide Mixers ............. 8-g Option39 AlternateBattery................... 84 Option41 DigitalRadio ......................... 8-4 Option42110 MHz lF Output................ 8-4 ........... Option45 MATECO 8-4 Option52 North American220V ............8-4 AppendlxA GLOSSARY ........A.1 GENERALTERMS FREQUENCYTERMS ... A-2 ..... A-2 AMPLITUDETERMS DIGITAL STORAGETERMS ..-..........A-3 WAVEFORMMARKERTERMS ........A-3 a o o a o a I o t o t a o o I a a o o o o a o t a o I o o o I o v||l o I o O o o o 494A/{94APServiceVot.1 TABLEOF CONTENTS(Cont.) VOLUME2 Sec|ion9 Section10 REPLACEABLE ELECTRICAL PARTS DTAGRAMS Section1.I REPLACEABLE MECHANICAL PARTS I 494A/494APServlce Vol. 1 LIST OF ILLUSTRATIONS page Figure The 494APSpectrumAnalyzer.................... xvi 2-1 Dimensions. 3-1 Locationof input power selectorswitch and finefuse..._....... .....,..,.........9-2 4-1 4-2 ....,....,..2-12 Crt displayat initialpower-up....................... 4-4 Typicaldisplayof catibrator signalin Max SpanlDiv................................ 4-5 4-3 Test equipmentsetuplor checking centerfrequencyaccuracy. .......4-g 44 Centerfrequencydrift with the 1st LO tocked. ....................4-9 4-5 Typicaldisplayfor measuring r e s i d u aFl M . . . . . . . . . . . . . ..................4-10 4-6 Typicalmarkerdisplayfor measuringSpan/Divaccuracy...................... 4-11 4-7 Test equipmentsetupfor checking frequencySpan/Divand sweep Time/Divaccuracy. .................... 4-13 Typicaldisplayfor measuring 4-8 Time/Divaccuracy. .................... 4-14 4-9 Typicaldisplayfor measuring bandwidthand shapefactor. .....4-14 4-10 Typicaldisplayfor measuring noisesidebands. ........... ............ 4-15 4-1'l Test equipments€tuptor measuring0.01GHzto 21 GHz frequency response. .................. 4-17 4-12 Test equipmentsetupfor measuring 10 kHzto l0 MHz frequency response. .................. 4-19 4-13 Test equipmentsetupfor checking dynamicrangeand accuracy,and preselector rejection. ................ 4-19 4-14 RF attenuatortest equipm€ntsetup.............4-21 4-15 RF attenuatortest equipmentsetup lor 50-60 dB step. .........,.........4-24 4-16 . Test equipmentsetupfor checking intermodulation distortion ....,,,....4-28 products 4-17 fntermodulation ............4-29 4-1I Test equipmentsetupfor checking harmonicdistortion. ..............,... 4-90 4-19 Test equipmentsetupfor checking1 dB inputcompression point...........................,... 4-31 4-20 T€st equipmentsetupfor checking internaltriggercharacteristics. .............. ......-4-92 4-21 Externalvideo selectpins and MARKERIVIDEOinput........... .. 4-30 4-22 Test equipmentsetupfor checking externaltriggeringand horizontal inputcharacteristics. ................. 4-33 x Figure Page 4-23 Test oscilloscopedisplayof VERT outputwith a full screendisplay on the SpectrumAnalyzer. .......4-34 4-24 Equipmentsetupfor checking Option07 frequencyresponse from 0.01GHzto 1 GHz. ..........4-35 4-25 Equipmentsetupfor checking Option 07 frequencyresponse from5 MHzto 10 MHz. ............ 4€6 4-26 Test equipmentsetupfor checking Option41 Span/Divaccuracy. .. 4-37 4-27 Test equipmentsetupfor checking Option42 frequencycharacteristics. 4-38 ............ 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11 5-12 5-13 5-14 5-15 5-16 5-17 5-18 5-19 5-20 Low voltagepower supplyadiustmentsi ..................................... 5-4 Crt displayadjustmentand test pointlocations. .................. 5-5 Adjustmentand test point locationson HighVoltagemodule................ 5-6 Test equiprnentsetup for adjustingthe Deflection Amplifier................. 5-7 Test pointson the CRT Readoutboard. .....5-7 DeflectionAmptifiertest points andadjustments. ............ .......... 5-8 Digitalstorageadjustment .........,.... 5-9 locations. Test equipmentsetupfor ............ 5-9 adjustingsweeptiming. Sweepboardtimingadjustment andtestpointlocations. ............................... 5-10 Frequencycontrolsystemtest pointand adjustmentlocations.................... 5-11 P3035on the VideoProcessorboard. .........5-12 Test equipmentsetup for adjusting ..................... 5-12 the LogAmplifier. Log and VideoAmplifiertest point ...........5-13 and adjustment locations Test equipmentsetup for adjusting 5-14 the Variabl€Resolutionmodule...........,......., Adjustmentson the rear of the .....5-15 VariableResolution module. 5-16 100kHzover10 kHz filterresponse............ Adjustmentson the tront of the .....5-18 VariableResolution module. on the 10 Hzl'|00Hz Adjustments 5-18 ........................... Bandpass FilterAssembly. 10 kHz,100kHz,and 5-1I 1 MHzfilterresponse.....,............................. lF gaintest setup,and adiustment ..........5-21 and connectorlocations. a o o t t a a o o o I o I o t o o o I a a o o o o I o o I I o I O t o a a O o o o o o I o o a 494A/494APServtceVot.1 o LIST OF ILLUSTRATIONS (Conr.) I I o o a I a t o I I o t o o I t o a o o a o I I a o o Figure 6-1 6--? 9-9 9-1 9-9 6-6 6-7 9-9 6-9 6-10 6-11 _ 6-12 6-13 6-14 6-15 6-16 6-17 o 6-18 6-19 o a o o o 6-20 I o I Flgure Page 5-21 PreseleetorDriver adjustment setup.......... ............5_22 5-22 PreselectorDrivertest point and adjustment locations ........... S_Zg 5-23 Test equipmentsetupfor band levelingadjustment. ,.................S-24 5-24 Band levelingadjustmentand gaindiodelocations. ...-.....,,,....5-24 5-25 Test equipments€tupfor adjusting the phaseLockassembly............................ 5_26 5-26 PhaseLock assemblyadjustment and test pointlocations..............,................. S_27 5-27 Option42 adjustmenttest equipment setup.......... ............. S_g0 o I Page 6-21 6-22 construction details. .................. 6-gg 6-23 2182MHz2nd LO PhaseLock adjustmentsetup......... .............. 6_39 6-24 Tuneand SweepRange adjustments ............641 6-25 3rd Convertertest points and adjustments. .......... ............ 6_43 6-26 FirstConvertersetupfor adjustment...........6-45 6-27 1st LO Driverboard adjustment andtest pointlocations. ............................... 646 6-28 Baselinelevelingtest setup, .....647 6-29 Typicalbaselinelevelingresponse.............., 649 6-30 Baselinelevelingadjument andtest pointlocations. ............................... 649 6-31 Typicalbaseline compensation response. ........... 6_49 Surface-mounted components 6€2 A15throughA12 in leadconfiguration. .................... 6_1 6 microcomputer test mode. .......6-52 Diodepotaritymarkings. ..........6-18 6-33 Four main bloackselectoutputs Multipin(harmonica) connectors.................. 6_1g of addressdecoderU2045. ......6_59 Servicingthe vR assembty. ......6_19 6-34 RAM selectoutput Topdeckassembties. .............................,-...6-20 in relationto O'XXX. ................... 6-53 RF deckassemblies. ................ 6_2.1 6-35 RAM setectoutput Removingthe 1st LO in relationtoTffi. ...................6-5g -UOand Interfaceboard. ..... 6-25 6-36 S1050setecttines Fanassembtymounting. ..........6-26 in relationto oxxx. ................... 6-53 110 MHz lF returnloss 6-37 ChipselectsY0, Y1, yS, adiustment setup.......... ............6-2T and Y7 in retationtoT/O-. ...........6-54 110MHztF test points 6-38 ChipselectsY2, Y4, and y6 and adjustments. .......... ............ 6-2g in retationtd:IIO. .. 6-54 2072MHz Converterbias 6-39 Instrumentbus check. .............. 6-55 adjustments. ..........6_2g 829 MHz LO test points andconnectors. ........... ............ 6-29 7-1 Crosssectionof 829 MHz amptifiertest a four-cavity filter. .......... ..........7-g iack andjumper. .... 6_30 7-2 Equivalent circuitof 829 MHz filtertest the four-cavity filter. .................. 7-g equipment setup.......... ............. 6-gi 7-3 Simplified diplexerdiagram. .....7-19 829 MHz Converterfilter 7-4 Equivalentac circuitof tunetabs. ............. 6-32 an 829MHz amplifier................................... 7-14 Correctresponsefor 929 MHz 7-S Equivalentdc circuitof first and secondresonators. .... 6-92 an 829MHz amplifier...........................,....... 7-'t4 Correctresponsefor 829 MHz 7-6 Blockdiagrarnof the phaselock loop thirdand fourthresonators.......................... 6_9g in the 829 MHz 2ndConverter.....................7-16 2182MHz2nd LO frequency 7-7 Bridged'T"attenuator accuracytest setup......... .........6_94 equivalent circuit. ..................... 7-lg 2182MHz phase Locked2nd LO 7-8 Blockdiagramof a three adjustment setup.......... ............ 6_96 stagelog amplifier. .................... 7-29 16-20 MHz phaseLock circuittest 7-g Log amplifiergaincurve pointand component locations. ................,.. 6_32 showingbreakpoints ................. 7-90 2182MHz2nd LO adjustment 7-14 Curveshowingend-of-range for a log amplifier. .................... 7-gO Coaxialtest probe 7-11 Simplified detectorcircuit. ........,2-gz xl o I o a 494A/494APServlce Vot. 1 LIST OF ILLUSTRATIONS (Cont.) Figure Page 7-12 Selectionof disptayposition on the log scale. .....7-94 7-13 Functionaldiagramshowingthe sp€ctrum analyzerand 1405 TV SidebandAdaptersystem. ........7€6 7-14 Simplifieddiagramof videofilter. ............. Z-39 7-15 Verticalcontrol lC bfockdiagram............... .............241 7-16 Horizontalcontrollc bfockdiagram............... .............145 7-17 Blockdiagramof crt readout. .............7-52 7-18 Characteron/offtiming ............... 7-53 7-1I Characterscan..,........ ............... 7-54 7-20 Charactergenerator blockdiagram................ ............ 7-5S 7-21 Charactertimingdiagram. .........7-56 7-22 Frequencydot markersimplified diagramwith timingwaveforms.................... 7-Sg Figure 7-23 I I Page 7-35 Simplifieddigital-to-analog converter. ....-........ 7-66 Simplifiedspandecadeattanuator............... 7-67 DACvariancegraph. ................7-73 Simpfffiedtune voltageconverter................. 7-74 Simplifiedschematicof harmonicmixer.......7-79 Block diagramof a basic synthesizer..........7-80 Basic block diagramof a -rN synthesizer with a variablemodulusprescaler................ 7-80 Systemmemorymap. .......... .... 7-89 l/O addressspac€. ...................7-90 PIA and Timeraddressmap. .... 7,91 Optionsswitchbank on the Memoryboard. .............. 7-95 Primary regulator input/outputwaveforms. ...........7-104 Timingwaveformsfor soft-startcircuit. .......7-105 8-1 Int€rnational Powercord options................. 8-1 7-24 7-25 7-26 7-27 7-28 7-29 7€0 7-31 7-32 7€3 7-34 o a o I I I o o O t o o o I a I o o I o o o o o o a o o ) I a o I xil o o o o t o a o a o O I I O o o I o I t I I I I I o I o a I o t o I t a o o o a o I o o o o o o o 494A1494AP ServiceVot.1 LIST OF TABLES Table page Table 1-1 TEKTRON'X WAVEGUIDE MIXERS.............. 1-3 6-6 2-1 FREQUENCY RELATED CHARACTERTSTTCS .................. 2-1 AMPLITUDERELATED CHARACTERTSTTCS ................. 2_6 INPUTSIGNAL CHARACTERTSTTCS .................. 2_11 OUTPUTSIGNAL CHARACTERTSTICS ........,......... 2_13 GENERALCHARACTERTSTTCS ................... 2_15 POWERREQUTREMENTS ............................ 2_15 ENVIRONMENTAL CHARACTERTSTTCS ........,......... 2-16 pHySIcALCHARACTERIST|CS ..................2-17 6-7 2-2 2-3 24 2-5 2-6 2.7 2-8 4.1 4.2 4-3 44 4.5 4.6 4-7 4-8 EQUIPMENT REQUIRED ..........4-2 CENTERFREQUENCY ACCURACY CHECKpOtNTS(1stLO UNLOCKED) .........4-a SPAN/D|VVERSUSTIME MARKERSFORSPAN/DIV ACCURACY CHECK .................4-11 FREQUENCY RESPONSE CHECK SETTINGS FORBANDS3_5 .......... .,.......... 4-17 OTO 30 dB RF ATTENUATOR TESTSETT|NGS ........... ........... 4-22 30 TO 60 dB RF ATTENUATOR TESTSETTINGS ..4-2g CORRECTION FACTORTO DETERMINE TRUESIGNALLEVEL............. 4-25 SENSlTlury .........4_27 5-1 5-2 5-3 5-4 EQUIPMENT REQUIRED ..........5-2 powER suppLy ToLERANCES................. 5_3 FTLTER ADJUSTMENTS ............................... 5-1I EXTMIXERBANDLEVELING ADJUSTMENTS ............. .......... 5-25 6-1 RELATIVESUSCEPTIBILITY TO STATTC DTSCHARGE DAMAGE................... 6_1 SERVICE KITSANDTOOLS .... 6-3 POWERSUPPLYRANGES ......6.8 SELECTED COMPONENTS .......................... 6-16 SERVICING TOOLSFORBOARDS WITHSURFACEMOUNTED C O M P O N E N T. .S. . . . . . . . . . . ...........6_17 6-2 6-3 64 6-5 6-8 6-9 6-10 6-11 6-12 6.13 6.14 6-15 7-1 7-2 7.3 7-4 7.5 7.6 7-7 7-8 7-9 7-1O 7.1'I 7-12 7-13 7.'14 7-15 7-16 7-17 7-18 7-19 7-20 7-21 7-22 7-23 7-24 page EQUIPMENT REQUIRED FORRETURN LOSSADJUSTMENT ...............6-27 EOUIPMENT REQUIRED FOR 2ndLO CALIBRATION ................................. 6-94 EQUIPMENT REQUIRED FOR CALIBRATING THE16-20 MHz PHASELOCKCtRCUtr................................ 6-39 EQUIPMENT FORADJUSTING FIRSTCONVERTER BIASAND STARTSPURAMPLITUDE ......645 OPTIONSWTTCH SETTTNGS ...6-50 RAMTEST ...........6-51 ROMTEST ........... 6-51 INSTRUMENT BUS REGISTERS .................. 6-57 AUXILIARY SYNTHESIZER VALUES AS A FUNCTTON OF N ANDA ..................... 6-62 FRONT-PANEL REGrSTERS ........................ 6-62 zNDCONVERTER tF SELECTTON ...............7_7 SWITCHANDAMPLIFIER SELECTION ..........7-1s BANDWIDTH SELECTION ........7.23 GAINSTEPCOMBTNATTONS.......................7-27 PROGRESSION OF cAlN REDUCTTON .......... .........7_30 FILTERCOMPONENT COMBINATIONS ......7.38 RF TNTERFACE LTNES .............7-49 U2039TRUTHTABLE .............. 7-49 CONTROL PORT ..7-57 ADDRESS/DATA PORT ...........7-57 SWEEPRATESELECTION CODES.............7-61 TRtccERSELECTTON MODES...............,...7-62 SWEEPHOLDOFF SELECT|ON ....,..............7-62 CALIBRATION CONTROL SELECTTON CODES ................. 7-66 AfiENUATIONSELECTION CODES........... 7.67 u4017oUTPUTLTNES ............. 7-68 u5031oUTPUTLrNES .............7-70 PRESELECTOR FREQUENCY BANDS..,...,.7-71 ADDRESS 70 FORMATS .............................. 7-75 DACTUNINGCODES ..............7-75 u2025oUTPUTLTNES ............. 7-8s POLLBITS ........... 7-93 ROMBANKSELECTTON DATA................... 7-97 FRONTPANELSW'TCHMATRIX CoDE/FUNCT|ON TABLE ........7-101 xltl o o o a I o {944/494AP Service Vot. 1 LIST OF TABLES(Cont.) ) Table 8.1 8.2 8.3 page EXTENDEDSERVICEAND WARRANWOPT|ONS .............8_1 OPNON07 ALTERNATE spEctFtcATloNs ................... 8-2 OPTIONS21 AND 22 WAVEGUIDE MtxERSCHARACTERTSTTCS ...................... 8_3 page Table 84 8-5 OPTION41 ALTERNATE SPECTF|CAT|ONS ......... OPTION42 ELECTRICAL CHARACTERTSTTCS ............8-4 .................. 8-5 I o o o I o t o I o t a I o I o O I O I o t a t I a o I o I a I a a o o o t o o 494A|494APServiceVot. 1 I SERVICINGSAFETYSUMMARY o I I I o o o a o O t I o I o I I o o o o I o o o o o o I o o t a o o o o o I I FORQUALIFIED SERVICEPERSONNEL ONLY Do Not ServiceAlone Do not perform internalserviceor adjustmentof this product unless anoth€r person capable of rendering first aid and resuscitation is present. Do Not Wear Jewelry Removejewelry prior to servicing. Rings, neck. laces, and other metallicobjectscould come into con_ tact with dangerousvoltagesand currents. Use Gare When Servicing With power On Dangerousvoltages exist at several points in this product. To avoid personal injury, do not touch exposed connectionsand componentswhile power is on. Djsconnect power before removing protective panels,soldering,or replacing components. Power Source This product is intendedto operate from a power source that will not apply more than 250 volts rms betweenthe supplyconductorand ground. A protective ground connectionby way of the groundingconductor in the power cord is essentialfor safe operation. X-Radiation X-ray emissiongeneratedwithin this instrumenthas been sufficientlyshielded. Do not modify or otherwis€ alter the highvoltagecircuitryor the crt enclosure. TERMS In This Manual CAUTION statements identify conditions or prac_ tices that could result in damage to the equipment or other property. WARNING statements identify conditions or prac_ tices that could result in personal injury or loss of liie. As Markedon Equipment CAUTIONindicatesa personalinjury hazardnot imm€diately accessible as one reads the marking, or a hazard to property including the equipm€nt itself. DANGER indicates a personal injury hazard immediatefy accessible as one reads the marking, SYMBOLS In This Manual This symbol indacateswhere appticablecautionaryor other informationasto be tound. As Markedon Equipment t - Highvortage. DANGER e Protectiveground(earth)terminal- A ATTENTION- Referto manual. o Referto manual. Groundingthe Product This productis groundedthroughthe grounding conductorof the power cord. To avoidelectricalshock. plug the power cord into a properly wired receptacle before connectingto the product input or output terminals. A protectiveground conn€ctionby way of the groundingconductorin the power cord is essentialfor safe operation. Danger Arising From Loss of Ground Upon loss of the protective ground connection,all accessibleconductiveparts (includingknobs and controls that may appearto be insulating) can renderan electricshock. Use the Proper Power Cord Use only the power cord and connectorspecifiedfor your product. Useonlya powercord that is in goodcondition. For detailedinformationon power cords and connectorssee Section1. o a o t a t t I a o o I o t o a o t o i a o o o o o I o o I o I I o I o I o a o a o o o I o o Sedon 1 - t I I Product Description I I The 494A and the 494Ap (programmabte)instru_ ments are high performance,compict, portablespectrum analyzers. Microcomputercontrol of most functions simplifiesand enhancesoperation. o a o I o o o a o o I o o a o o o o t o I o a a t a I o o I a o o o o o 4g4[l494Ap Servlce,Vol. 1 GENERALINFORMATION The analyzersfeature: . singleand delta markermodes o synthesizerfreguencyaccuracy o precisionsignalcounting r preciseamplitudemeasurement o digitatstoragedisptay o internal memory for front-panel settings and displays o helpand diagnosticcrt messages . keypadentryand menuselections r abilityto ptot the disptay.readout,and graticule o abilityto hold g personalizedmacrosin memory o 10 Hz to 3 MHz resolution o multiband sweepcapability , The frequencyrange is 10kHz to 21 GHz with the internalmixer, extendingup to 925 GHz with ext€rnal waveguidemixers. Resolutionbandwidthis 10 Hz to 3 MHz. Digital storage provides flicker-freedisplays plus functionsto compare and subtract displays,anO save maximumvalues. In addition,up to nine separate displayswith their readouts can be stored in batterypowered non-volatilememory, then later recalled for additionalanalysisand comparison.Up to ten different front-panelcontrol setups can also be stored for future recall. The signalcountingf€atureallows the spectrum analyzer-toselectivelycount a particularsignal out of severalthat may be presentat its input. Select center frequency either by the front-panel tuning knob or by the Data Entry keypad. When using the keypad,it is not necessaryto alter the Span/Dii setting regardless of the frequency selected. oiher parameters,such as vertical display and reference level,are also keypadselectable. Marker functions provide direct readout of frequency and amplitudeat any point along any displayed trace. Relative(delta)frequencyand amplitudeinformation-betwe€nany two points along any displayedtrace is also available.The tuning knob moves ihe-markers, and it can also move the display with a stationaryfrequency marker. lt is possible to fix the marker to a position on the display and use th€ knob to move both the spectrumand the marker at the same time. Refer to using the MarkersFeaturein section 6 of the opera_ tors Manual. The programmable(p) version of the instrument adds remote controlcapabilitiesto the manualinstru_ ment features. The front-panel controls (except those intended exclusivelyfor local use, such ai lrufLruSlW1 can be remotelyoperatedthrough the GplB port. Thia allows the spectrumanalyzerto b€ used with a variety of systemsand controllers.Refer to the programmers Manualfor additionalinformation. The programmable instrument also adds the macroinstructions(macros) feature. The,nstrument memory has 8K bytes set aside for the constructionof made-to-ordermacros. The macro menu can hold the titles of eight macrosfor easy access. Specificmacro informationis locatedin the programmersManuat. Conformance to fndustry Standards This spectrumanalyzercomplies with the following Industry Safety Standards and Regulatory Requirements: Safety csA - ElectrlcalBulletin FM - ElectricatUtitizationStandardCtass3g20 ANSI C39.5- SafetyRequirementsfor Etectrical and ElectronicMeasuringand ControllingInstrumentation. IEC 348 (2nd edlton) - Safety Requirements for ElectronicMeasuringApparatus, Regulatory VDE 0871 Class B Regutationsfor RFI Suppressionof High Frequency Apparatusand Installations. Product Service To assure adequateproduct service and maintenance for our instruments,Tektronix has established Field Offices and Service Centers at strategic points 1-1 Generaf Infornation - o o o 4g4[l4g4Ap Service, Vol. 1 throughoutthe UnitedStatEsand in countrieswherEour products are sold. Several types of maintenanceor repairagreementsare available. For example,for a fixed fee, a maintenanceagreement program provides maintenanceand recalibration on a regular basis. Tektronix will remind you when a product is due for r€calibrationand performthe service within a specifi€dtime. Compartmentsare enclosed on both sides by metal plat€s and interconn€ctions betweencompartmentsare made by feedthroughterminalsrather than cables. lf the compartmentsare opened,be sure that the shields and coversare properlyreinstalledbeforeoperating. Installation and Preparation for Use . Tektronix emergency repair service provides immediate service when the instrument is urgently needed. The Installation section of the manual provides unpacking information and the procedures to prepare the instrum€ntfor use. lt also includes repackaging information. Contact your local Tektronix SeMce Center, representativeror sales engineerfor details regarding productservice. Changing Power lnput Range I nstrument Construction The procedurefor changingthe input voltage range is describedin the Installationsection. Detailson how to changethe line fuse are also given. Modularconstructionprovides ready accessto the major circuits. Circuit boards containingsensitivecir_ cuits are either mounted on metal castings,each of which providesshieldingbetweenadjacentmodules,or they ars mountedwithin honeycomb-likecastings,with feedthroughconnectorsthrough the compartmentwall. All boards and assembliesplug onto a commoninterconnect board. Most adjustm€nlsand test points are aecessiblewhile the anstrumentis operationaland with the modulesor assembliessecuredin their normalposi_ tion. Extendersare availablein an optional ServiceKit (see Maintenancesection under Service Fixtures and Tools for Maintenance).Any module or board can be removedwithout disturbingthe structuralor functional integrity of the other modules. The extendersallow most circuit board assemblies to function in an extended position for service or adjustment. The circuit boards mountedon the metal casting can be removed by removing the securing screws. All other circuit boards (which should require minimal service) are accessibleby removinga cover plateover the assembly or module. Disassemblyof some modulesmay require special tools and procedures. These pro_ cedur€s are located in the Maintenance section. Circuits are isolated in shielded compartmentsto obtain and maintainth€ frequencystability,sensitivity, and EMI characteristics.While shieldinghetpsensuie spurious-freeresponse,the closeness of the circuits minimizeslosses and interactionswith other functions. 1-2 The power cord that is suppliedwith the instrument and the instrumentpower voltagerequirementsdepend on the availablepow€r source (see Specificationsection). Powercord optionsare describedin the Options section. Replacing Fuses Referto the Installationsectionfor line fuse replacement and the Maintenancesection for replacing the power supplyfuses. Selected Components Some componentsare selected,matched,or preconditionedto meet Tektronix specifications.These componentsare shown in the parts list and may carry a Tektronix Part Number under the Mfr. Part Number column. Selectedvalue componentsare identifiedon the circuit diagramand in the parts list as a 'SEL" value. The componentd€scription lists either the nominal value or a range of values. Selectioncriteriais includedin the Maintenance section. Selection procedures are includedin the AdjustmentProcedureor Maintenance sectionsof the manualas needed. Assembly and Circuit Numbering Each assembly and subassembly are assigned assembly numbers. Generally,each component is assigneda circuit number accordingto its geographic locationwithin an assembly.The ReplaceableElectrical Parts list prefixes these circuit numbers with the correspondingassemblyand subassemblynumbers. t a t o o o a I a o a o a o o o I a o o o o o I a a I o o o a I o a a o o o o o a I o o a o I I o o o o o o o a o a o t I I o o a t o t o I o o o I a o o o I o o o a I o GenerafInformation - EXAMpLE: R2090 on becomss420R2090. assembly A2O 4g4Ll4g4ApService,Vol. 1 I cord clamp . Crt light filters; 2 - one each arnberand grey EXAMpLE: U1044 on subassemblvAl of assembly A36 is found in the ejectrical parts tist as A3641U.t044. o Crt meshfilter . R€arConnectorShield Firmware Version and Eror Message Readout o 494A1494AP Operators Manual This feature of the spectrum analyzer provides readoutthat identifiesth€ versionof firmwareinstalled. The readoutis momentarilydisplayedwhen the power is turned on. Ail front-panettights ivitt temporarilyflash on when the power is first turned on. In addition, programmableinstrumentwill flash that informationthe and the GplB address and macro status when RESETTO LOCALis pressed. . 494APProgramrnersManual;494ApOnly Table 1-1 lists the Tektronixwaveguidemixers that are availableas optionalaccessories. Tabte 1-l TEKTRONIX WAVEGUIDE MIXERS Mlxer lf the spectrumanalyzerfaits to compteteany routine or function, an error message will flash on th€ screenexplainingthe failure. 4 Accessories The ReplaceableMechanicalparts list in the Service Manual,Volume2, containsthe part numbers,descriptions, and ordering informationfor all standard and optionalaccessoriesoffered for the spectrumanalyzer at thistime. The followinglist includesall standardaccessories currently shipped with each instrurnent.Refer to the Optionssectionof this rnanualfor alternateinformation. 490U WM 49OV wM 490E 490W 490F wM4 1 8t o 26.5to 33 to 50 40 to 1 1 0G H z GHz | 10 to 170GHz ro 220GHz WM 490GOption01 . 50 O coaxialcable;N to N connector,72 inch Options . 50 O coaxialcable;bnc to bnc connector,1g inch The Options section of this Manualcontainsinformation on all of the options currentlyavailablefor the spectrumanalyzer. . Adapter;N maleto bnc female o 44 fast-blowfusesl; 2 each o Powercordt It the insttument It wired lor 22o'24o v ope.ation (optiona.Al, *ilh rtandsrd powe. cord), 2A medium_blow turerlr! used. A2, 43, 44, A5) or it opfion s2 lr Inrralled (North Arnerlc.n conliguration lot zloy 1-3 a o o I o I a O o o o t o t o o o o I I a I o a o o I a I t o o I o o I o a I o o o a o I o a I o o o t o o o J o o o o I a t a I a o o o o o o I o I o I a o C I o o o o I I o Section2 - 494A1494Ap Service,Vol. 1 SPECIFICATION This section includesthe eiectrical,physical,and environmentalcharacteristicsof this insirument.Any instrumentspecificationchanges due to options ari listedin the Optionssectionof this manual. ELECTRICAL CHARACTERI STICS The instrumentperformsan internalcalibrationcheck each tirne poweris turnedon. This checkverifiesthat the instrumentfrequencyand amplitudeperformanceis as specified.An InstrumentCheck Out procedure,which requireslittleexternaltest equipmentor technicalexpertise, is providedin Section5 of the OperatorsManual. This procedurewill satisfy most incominginspections and will helpfamiliarizeyou with the instrurnent capabilities. - The followingtablesof electricalcharacteristics and featuresapplyto the spectrumanalyzeraftera 3O_minute warm up and after doing the front-panelCAL adjust_ Verification of Tolerance Values ments,exceptas noted.The performanceRequirement columndefinessomecharacteristics in quantitativeterms Performcompliancetests of specifiedlimits,listedin and in limit form. The Supplemental lnformationcolumn the PerformanceRequirernentcolurnn,only after a 30_ explains performancerequirementsor provides performinutewarm-uptime (exceptas noted)and attera doing mance information.Statementsin this column are not the front-panel CAL procedure.Use measurement instruconsideredto be guaranteedperformanceand are not mentsthat do not affectthe valuesmeasured.Measure_ ordinarilysupportedby a performance checkprocedure. ment toleranceof test equipmentshould be negligible P.rocedures to verify performancerequirementsare pro_ when comparedto the specifiedtolerance.lf the toler_ videdin the Performance Checkportionof thrsmanual. ance is not negligible,add the error of the measuring deviceto the specifiedtolerance. Table 2-1 FREOUENCYRELATEDCHARACTERISTICS Characteristic CenterFrequency OperatingRange InternalMixer PerformanceRequirement Supplemental Intormation 10 kHz-21 GHz Tuned by the CENTER/MARKER FREQUENCY control or the DATA ENTRY pushbuttons External Mixers (optional) Accuracy (after front-panelCAL has beenperformed) 10 kHz-325GHz Center Frequency Accuracy specifiedby two characteristics: is . initial accuracy (firmwarecorrected) o center frequency drift during the sweep lnitial (start of sweep) B a n d s 1 & 5 - 1 2 w i t h *{2Oo/oD+ (CF x REF) + 15N kHz) Refer to lF Frequency, LO Range, SPANiDIV >200 kHz, and and Harmonic Number specification Where: Bands 2-4 with SPAN/D|V later in this table for the N value : D S P A N / D | V o r R E S O L U T T O N >100 kHz BANDWIDTH, whichever is Allow a settlingtime of one second (1st LO unlocked) greater for each GHz change in CF within a band. In bands 4-'12, dividethe CF CF - Center Frequency change by N. REF Reference Frequency Error N : H a r m o n i cN u m b e r 2-1 Specffication - a o a I 'o 494A1494ApService, Vol. 1 Table 2.1 (Continued) FREQUENCYRELATEDCHARACTERISTICS Characteristic InitialAccuracy(continued) Bands1& 5-12 with SPAN/DIV(200 kHz, and Bands2-4 with SpAN/DlV (100 kHz (1stLO locked) PerformanceRequirement t{20%D + (cF x REF) + (2N + 25)Hz) Where: D - SPAN/D|Vor RESOLUTTON BANDWIDTH, whichever is greater CF : CenterFrequency REF Reference Frequency Error N : HarmonicNumber Drift Supplemental Information Refer to lF Frequency,LO Range, and HarmonicNumberspecification laterin this tablefor the N value With constantambient temperature and fixed centerfrequency Correctionwill occur at the end of the sweepfor sweeptimes >5 s/div <(25 kHz)Nper minute After30 minutewarm up Bands 1 & 5-12 with SPANiDIV>200 kHz, and Bands2-4 with SPAN/D|V > 1 0 0k H z (1stLO unlocked) Bands 1 & 5-12 with SPAN/DIV (200 kHz, and Bands 2-4 with SPAN/DtV (100 kHz <150 Hz per minute (1st LO locked) Aftert hourwarmup Bands 1& 5-12 with SPAN/DIV>200 kHz, and Bands2-4 with SpAN/DtV > 1 0 0k H z (1stLO unlocked) Bands1& 5-12 with SPAN/DIV(200 kHz, and Bands2-4 with SPANiD|V (100 kHz <(5 kHz)Nper minute (50 Hz per minute (1stLO locked) Readout Resolution SignalCounter Accuracy(with span to resolution bandwidthratios(10:1) A t l e a s t1 0 % o f S P A N / D I V * { ( F x R E F )+ ( 1 0 + 2 N ) H z + l L S D } Where: F - Center or Marker Frequency and LSD REF Reference Frequency Error N - H a r m o n i cN u m b e r L S D : L e a s t S i g n i f i c a nD t igit Refer to lF Frequency, LO Range, and Harmonic Number specification later in this table for the N value Count at center, marker, or delta markers a a a o o O a o a a O o o o a I o o o o a o o o o I o e o o I o o a a o o o a Specification- 494Al4g4ApService,Vol. 1 Tabte2-1 (Continued) FREOUENCY RELATED CHARACTERISTICS Characteristic SignalCounter(continued) DeltaFrequency Accuracy Sensitivity tal Inlormation +tAF. x BEF) + (20 + 4N)Hz+ Refer to lF Frequency,LO Range, 1LSD] and HarmonicNumber specification laterin this tablefor the N vatue Where AF: DeltaFrequency REF Reference Frequency Error N : HarmonicNumber Digit !9D LeastSignificant Signal level,at center screenor at marker, must be 2A dB or rnore above the average noise level and within60 dB of the referencelevel. ReadoutResolution Selectablefrom Hz to 1 GHz withCOUNT RESOLUTIONpushbutton. ReferenceFrequency Error AgingRate ShortTerm ( 1 x 1 9 - s p e rd a y (7x10-e per week Firstsix months (1x10-7 in first six months After the first six months (1x.t0-z per year Accuracy during warmup at +25oC(30 qlin. after poweron) Temperature sensitivity within 5x10-8 of the frequencyafter 24 hours R e s i d u aF l M Bands1 & 5-12 with SpAN/D|V ((7 kHz)Ntotal excursionin 20 ms > 200 kHz, and Bands2-4 with SPAN/DIV >100 kHz Within 2x10-8 over the instrument operatingrange ol -1 SoCto +55"C (referenced to +25"C) Shortterrn,after t hour warm up Refer to lF Frequency,LO Range, and HarmonicNumberspecification laterin this tablefor the N value B a n d s 1 & 5 - 1 2 w i t h S p A N / D I V {(10+2N)Hz total excursion in 20 Refer to lF Frequency, LO Range, (200 kHz, and bands 2-4 with rns and Harmonic Number specification S P A N I D | V( 1 0 0 k H z later in this table for the N value 1st LO lock Static Resolution Bandwidth (6 dB Within 20/" ot selected bandwidth 1 0 H z t o 1 M H z i n d e c a d es t e p s ,a n d down) MHz Shape Factor (150 Hz Within 20"h, impacted by residual FM 60 dB bandwidth and drift during sweep time 3 MHz-100Hz Noise Sidebands 7.5:1or less At least -70 dBc at an offset of 30 x the selected bandwidthfor resolution bandwidthsof 100 Hz and 1O Hz At least -75 dBc at an offset of 30 x the selected bandwidth for all other bandwidths 2-3 Specilication - 494A/494Ap Service, Vot. 1 Table 2-l (Continued) FREQUENCYRELATEDCHARACTERTSTICS Characteristic Performance uirement Line-relatedSidebands SupplementalInf ormation cally (-55 dBc (47 Hz - 44A Hz) EffectiveVideo Bandwidth kHz 3 kHz 300 Hz 30 Hz 3Hz 0.3 Hz Typically 30 psldivision of pulse tude Pulse StretcherFall Time Marker(s) When activated, the marker is a bright dot positioned by the CENTER/MARKER FREQUENCY control or the DATA ENTRY pushbuttons. Normal Accuracyand Resolution ldenticalto centerfrequency For the active trace Delta Marker Accuracy t1o/o of the tolal span For the active trace. 5/" at the measurernent on multiband and stored displays Displays delta time in Zero Span mooe AMKR activates a second marker at the position of the single marker on the trace. Parenthesisappear on the marker display line indicatingthat the delta mode is active. The display shows the difference in frequency and amplitude. 1-MKR-2 selects which marker is tuned. Resolution Frequency Span/Div OverallRange MinimumSpan/Div 2-4 At least10/ ot Span/Div 10 Hzldivto 10 GHz/div(in a 1-2-5 sequencewith SPAN/DIVcontrol)or 10 Hzldiv to 15 GHz/div(from the DATA ENTRY pushbuttons)to two significant digits. 10 Hz in all bands o o O a o o a t Specification- Tabte2-1 (Continued) FREOUENCY RELATED CHARACTERISTICS Characteristic Frequency Span/Div(cont) MultibandMode o o t o o o o o e o I o I o ? Supplemental Intormation In bands2-5, FREQ STARTSTOPpermitsentryof a start frequency in one band and a stop frequencyin anotherband. Start and stop frequenciesare limited to a singleband in Band 1 and B a n d s6 - 1 2 Maximumrangeis 1.7-21GHz The FREQRANGEreadoutdisplays MULTIBD when in the Muttiband Mode MaximumSpan/Div with SPAN/DtV Band1 (0-1.8GHz) Band2 (1.7-5.5GHz) Band3 (3.0-7.1GHz) Band4 (5.4-18GHz) Band5 (15-21GHz) Band6 (18-27GHz) Band7 (26-40GHz) Band8 (33-60GHz) Band9 (50-90GHz) Band10 (75-140GHz) B a n d1 1 ( 1 1 0 * 2 2G 0 Hz) Band12 (170-325GHz) O o o e o o I o o o o o o o o a o o a o o 494A1494Ap Service,Vol. 1 100MHz 200 MHz 200 MHz 'l GHz 500 MHz 500MHz 1 GHz 2GHz 2 GHz 5 GHz 1 0G H z 1 0G H z With DATA ENTRY 1 7 0M H z 370 MHz 400 MHz 1.2GHz 590 MHz 790 MHz 1 . 3G H z 2.6 GHz 3.9 GHz 6.4 GHz 10GHz ln addition, MAX SPAN sweeps across an entire band and ZERO SPAN provides a 0 Hz display. With ZERO SPAN the horizontal axis is calibrated in time/div instead of Accuracy/Linearity f Within 5% of the selected span/div, Measured over the center 8 divisions 750 Hzldiv below 50 Hzldiv, within 10% Specificationas not applicableto lF Frequency, LO Range, and HarmonicNumber(N) Bandand Freq Range 1 (0-1.8GHz) 2 (1.7-5.5GHz) 3 (3.0-7.1GHz) 4 (5.4-18GHz) 5 (15-21GHz) 6 (18-27 GHzl 7 (26-40GHz) I (33-60GHz) 9 (50-90GHz) 10 (75-140GHz) 0 Hz) 1 1( 1 1 0 - 2 2 G 12 (170-325GHz) iband LO Range (MHz) 2072 829 829 829 2072 2072 2072 2072 2072 2072 2072 2072 1t- 1+ 33+ 6+ 10+ 10+ 15+ 23+ 37+ 56+ 2072-3872 2529-6329 2't71-6271 2476-6276 4309-6309 2655-4071 2443-3793 3092-5790 3195-5862 3170-6000 2917-s890 2998-5841 2-5 Specification - 494A,1494ApService, Vol. 1 Table 2-2 AMPLITUDERELATEDCHARACTERISTICS Characteristic Performance Requirement requencyResponse SupplementalInformation Measuredwith 10 dB RF attenuation and peaking optimized for each centerfrequencysetting(whenapplicable) Responseis affectedby: o input VSWR r harmonicnumber(N) o gain variation . mixer Coaxial (direct)Input Band and Freq Range 1 (10kHz-l.8 GHz) 2 ( 1 . 7 - 5 . 5G H z ) 3 (3.0-7.1 GHz) 4 ( 5 . a - 1 8G H z ) 5 (15-21GHz) Referenced to 100 MHz r1.5 dB *2.5 dB 1 2 . 5d B a 3 . 5d B f 5.0dB i2.5 dB *3.5 dB :t3.5 dB r4.5 dB :86.5dB 7 (26-a0 GHz) *2.0 dB *2.0 dB + 2 . 0d B *2.5 dB f 6.0 dB *6.0 dB 8 (33-s0GHz) (40-60 GHz) 9 (50-90 GHz) 1 0 ( 7 5 - 1 4 0G H z ) 1 1 ( 1 1 0 - 2 2 0G H z ) 1 2 ( 1 7 0 - 3 2 5G H z ) t o o Refer to the Options section for alternatespecifications I With Tektronix External High PerformanceWaveguideMixers Band and Freq Range 6 (18-27GHz) e o Display flatness is typically 1 db greaterthan frequencyresponse. Refer to the Options section of this rnanual for alternate specifications. About the midpoint between two extremes a o o o a e a o o *6.0 dB *6.0 dB Typically:h3 dB overany 5 GHz range Typically+3 dB overany5 GHz range Typically13 dB overany 5 GHz range Typically*3 dB overany 5 GHz o t a o o a o s a o o o o o a o o ? o o o a o e. 2-6 a I o o a Specification_ 494A1494Ap Service,Vot. 1 AMPLITUDE RELATED CHARAiTERISTICS Characteristic ReferenceLevel Range Log Mode tal Informalion Top of the graticule. From-117 dBmto +50 dBm; +50 dBm inctudes20 dB of tF gain reduction(+30 dBm is the maximum safe input).Alternatereferencelevels arei . dBV (-130 dBVto +97 dBV) o dBrnv (-70 dBmVto +97 dBmV) Linear Mode Accuracy o dBpV (-10 dBpV to +157 dBpV) 39.6 nV/Divto 2.8 v/Div (Maximumsafeinputlevelis .t W cw orl0Vpeak) Dependent on the foltowing charac- teristics: . RF AttenuationAccuracy o lF GainAccuracy r Resolution Bandwidth . DisplayMode o CalibratorAccuracy . FrequencyBand Steps 10 dB/divLog Mode 2 dBldiv Log Mode L i n e a rM o d e o Frequency Response o CAL routinere_ duceserror,betweenresolution bandwidths at -20 dBm REF LEVEL.Otherreferencelevels may havelargererrors. o AmbientTemperature Change (+0.15dB/"Cmaximum) The inputRF attenuatorsteps 10 dB for reference level changes above -30 dBm (-20 dBm when MtN NOISEis active)unlessthe MIN RF ATTENsettingis greaterthan zero. The lF gainincreases10 dB for each 10 dB referencelevel changebelow -30 dBm (20dBm whenMtN NOISE is active) '1 0 dB for the Coarse Mode 1 dB for the Fine Mode 1 dB for the Coarse Mode 0.25 dB for the Fine Mode 1-2-5 sequencefor Coarse Mode 1 dB equivalentsteps for Fine Mode 2-7 Specification - 494A!494Ap Service, Vol. 1 Table 2-2 (Continued) AMPLITUDERELATEDCHARACTERISTICS Characteristic SupplementalInformation ReferenceLevel(continued) SEt With DATA ENTRY pushbuttons Steps correspond to the disptay mode in coarse; except, tor 2 dB whenthe stepsare 1 dB. In FineMode: 1 dB whenthe modeis 5 dB/divor more 0.25 dB for display modes of 4 dB/div or less (referred to as DeltaA Mode) VerticalDisplay Modes 10 dB/Div, 2 dB/Div, and Linear any integer between 1-1 5 dBlDiv can also be selected with the DATA ENTRYpushbuttons. DisplayDynamicRange Accuracy 90 dB maximumfor Log mode 10 dB/div Log Mode *1.0 dB/l0 dB to a maximumcumulativeerror of *2.0 dB over B0 dB range 2 dBldiv Log Mode 40,4 dBP.A dB to a maximum cumulative erroro,f+1.0 dB over 16 dB range Linear Mode t5o/" ot full scale RF Attenuatol Range Accuracy D c t o 1 . 8G H z slonsfor Linearmode +4.0 dB maximumcumulativeerror over 90 dB range 0-60 dB in 10 dB steps Within0.5 dB/10 dB to a maximum of 1 dB over the 60 dB range 1.8GHz to 'l8 GHz Within 1.5 dB/10 dB to a maximum of 3 dB over the 60 dB range 18 GHz to 2'l GHz W i t h i n3 . 0 d B / 1 0 d B t o a m a x i m u m of 6 dB overthe 60 dB range Marker(s) When activated, the marker is a bright dot positioned by the CENTER/MARKER FREQUENCY control, Accuracy (Normal or Mode) Delta ldentical to REF LEVEL accuracy pluscumulative errorof displayscale (dependent on verticalposition) Gain Variation Between Resolution Bandwidths Measurementconditions: o measured at -20 dBm o Minimum DistortionMode o after front-panelCAL adjustments 3 MHz Fi Two Filters 2-8 < i0.4 dB o o o Specification_ 494A1494Ap Service,Vot. 1 I o o o o o o o c I o o o o o a o I o o ) o o o o I o ? o a o O o o I o o a o I o Tabte 2-2 (Continued) AMPLITUDE RELATEDCHARAiTERISTICS Characteristic Performancq Requirement lF Gain Range lt_ ielst 0.2 dB/dB step to 0.5dB/g dB steps except at the decadetransitions 0.5dB or less -29 -39 -49 -59 ..-DecadeTransitions the * 2 d B 3rd OrderIntermodulation Products 10 kHz-21GHz (Bands1-5) Harmonic Distortion 10 kHz-21 GHz (Band't) 't.7 GHz-21 GHz (Bands 2-5) LO Emission DifferentialAmplitude Measurement Range lnfarnari 87 dB of gain increase, 20 dB of gain decrease (MlN NOISE and reduled gain mode activated), in 10 dB and j dB steps Accuracy 'l dB Step Maximum Deviation 107 dB Range Spurious Responses Residual emehlrl -100 dBmor less to -30 to -40 to -50 to -60 dBm dBm dBm dBm Maximum1 dB cumulative errorover 1 0d B No input signal,with 0 dB attenua_ tion terminatingin 50 O, and funda_ mental mixing for Bands 1_3. (See Options 30 anO gl in the Options sectionfor alternatespecifications.) -70 dBc or less from any two on_ In MinimumDistortion Mode screen signals within any frequency span. -60 dBc or less Measured at -40 dBm input level in Minimum DistortionMode. Not discernible above the average At least-100 dBc noise floor Less than -70 dBm to 21 GHz With 0 dB RF Attenuarion Delta A Mode provides differential measurements in 0.25dB increments (This is not related to the Delta MarkerMode) Maximum range of SZ.7SdB dependent on reference level when the Deita A Mode was activated Ditference Steps Error 0.25 dB 1 2dB I 0.4 dB 10dB 40 1 . 0d B 20 to 57.75dB 80 to 231 2.0dB 0 . 1 5d B 2-9 Specification - 4g4[l4g4Ap Service, Vol. 1 Table 2-2 (Continued) AMPLITUDE RELATED CHARACTERISTICS PerfgrmanceRequirement Characteristic Sensitivity Frequency Range Band 1 1 0 k H z - ' t . 8G H z Equivalent Input Noise in dBm vs. Resolution Bandwidth 1 0 H z 1 0 0 H z 1 k H z 1 0 k H z 100 kHza 1 MHz 3 MHz -134 -125 -115 -10s -v5 -85 -80 Supplemental Intormation quivalentmaximuminput noise rr eachresolutionbandwidth. leasuredat 25" C with: . 0 dB attenuation (MinAtten0 dB) o NarrowVideoFilteron Bands2 & 3 1.7 GHz-7.1GHz -125 - ' t 1 9 -1 09 -99 -89 -79 -74 Band4 5 . 4 G H z - 1 2G H z -111 -105 -YC -85 - //b -65 -60 Band 4 1 2 G H z - ' t 8G H z -107 -100 -90 *80 -74 *60 -55 . VerticalDisplay2dBlDiv (5 dBidiv in 10 Hz RBW) o DigitalStorageon Band 5 1 5 G H z - 2 1G H z -'a07 -1 00 -90 -80 -70 -60 -55 o Max Holdoff Band 6 1 8 G H z - 2 7G H z u - 1 1 6 -108 -100 -90 -80 -70 -oc Band 7 26 GHZ-40 GHzb - 1 1 1 -103 -v5 -85 -75 -65 -60 Band8 33 GHz-60GHzb -111 -103 -85 -{5 -65 -60 -qq Band 9 50 GHz-90 GHzb B a n d1 0 75 GHz-l40GHzb B a n d1 1 1 1 0 G H z - 2 2 0G H z b B a n d1 2 170GHz-325GHzb aOption 07 replaces the 100 kHz fitter with a 300 kHz filter. bspecified using externar rektronix High-performance waveguide Mixers. o Peak/Average in Average o 1 sec Time/Div o Zero Span o lnputterminatedin 50O pically -95 dBm for 1 kHz ndwidth at 50 GHz, degrading -85 dBm at 90 GHz pically -90 dBm for 1 kHz ndwidth at 75 GHz, degrading - 7 5 d B m a t ' 1 4 0G H z pically -80 dBm for 1 kHz n d w i d t ha t 1 1 0 G H z , d e g r a d i n g -65 dBm at220GHz pically -70 dBm for 1 kHz ndwidthat 170 GHz,degrading -55 dBm at 325GHz e o o I o t a o o o t o I o I o o c o I o o a ) t o o O o o e o t 2-10 o c o o a o o o o ) o I o o t o I o Specification - Tabte2-3 INPUTSIGNALCHARACTERISTICS Characteristic Supplemental Informaton RF INPUT Type N female connector,specifieO to 21 GHz. I o t I o o I a I o o o o I o o o o O t e t c o o o o o o o I o o o I t 3 4g4Al494Ap Service, Vol. 1 (See Option 07 in the Optionssection for supplemental specifications concerningan additional 75 O input.) 50() lmpedance VSWRwith 10 dB or moreRF Attenuation 10 kHz-2.5GHz 2.5-6.0GHz 6.0-18GHz 18-21GHz VSWRwith 0 dB RF Attenuation 1.3:1(typically 1.2:1) 1 . 7 : 1( t y p i c a l l y1 . 5 : 1 ) 2.3:1(typically1.9:'t) 3.5:1(typically 2.7:1) Measured from '10 kHz to 1.9 GHz on Band 1, and measured within 3 MHz of the center of the preselected b a n d o n B a n d s2 , 3 , 4 , a n d 5 . 10 kHz-2.5GHz T y p i c a l l y1 . 9 : 1 2 . 5 - 6 . 0G H z T y p i c a l l y1 . 9 ; ' l 6.0-18GHz Typically2.3:1 18-21 GHz T y p i c a l l y3 . 0 : 1 MaximumSafeInput With 0 dB RF attenuation) +30 dBm (1W) continuous or 75 W peak, pulse width of 1 ps or less with a maximum duty factor of 0.001 (attenuatorlimit) DO NOT APPLY DC VOLTAGE TO THE RF INPUT point 1 dB Compression (Minimum) Bands1-5 (10kHz-21GHz) With no RF attenuation With MIN DISTORTIONon and not in reduced gain mode Measured at the 10 MHz lF output - 1 0 d B m w i t h M t N N O T S Eo n EXTERNAL MIXER EXT REF IN Frequency Waveshape lmpedance Input for an lF signal from an external waveguide mixer. Provides dc bias for the external mixer. See Output Characteristics. 1 MHz, 2 MHz, S MHz, or 10 MHz. *5 PPM -15 dBmto +15 dBm Sinewave, ECL or TTL, with a duty cycle of 40%-60% 50Oacor500Odc 2-11 t Specification - o o 494A1494ApService, Vol. 1 I a Table 2-3 (Continued) INPUT SIGNAL CHARACTERISTICS Characteristic SupplementalInformatlon HORIZITBIG (RearPanel) Dc coupled input for external horizontal drive (selected by the EXT positionof the front-panelTIME/DIV control) and ac coupled input for externaltrigger signals(selectedat otherpositionsof the TIME/Dlvcontrol). 0 to +10V (dc * peak ac) tor tutl screendeflection SweepInputVoltageRange TriggerInputVoltageRange Minimum Maximum dc + peakac At least 1.0 V peak from 15 Hz to 1 MHz 50v Video lnput Level 30 vrms to 10 kHz, then derate linearlyto 3.5 Vr." at 100 kHz and above. 0.1 rs minimum External Video input or External Video Markerinpul,switchedby pin 1 0f the J104 ACCESSORY connector. 0to*4V MarkerInputLevel 0 to -10 V PulseWidth MARKERIVIDEO (RearPanet) lnterfaces with Tektronix 1405 Sideband Adapter. J104 ACCESSORY(Rear Panet) 25-pin connector (Not R5-232 compatible) Provides bi-directionalaccess to the instrumentbus. Also provides external Video select and external preselector drive. Except for the external preselector drive output, all lines are TTL compatible. Maximum voltage on all lines is +'l5 v. Pin 1 ExternalVideo Select Low selects ExternalVideo lnput. High (default) selects Video Marker Input. Pin 2 ExternalPreselector Drive Drivesignalfor an externalpreselector. Outputvoltageis proportionalto frequency change (only in Bands 2-s\. P i n3 ExternalPreselector Return Ground return for the External Preselector siqnal. 2-12 a t o a I I I o I o o ,o o o o a o e o o I t o a o a o o o o o a C o o o a t o Speclfication- 494Al4g4ApService,Vol. 1 Table2-3 (Continued) INPUTSIGNALCHARACTERISTICS Characteristic SupplementalInformation J104 ACCESSORy (Continued) Pin4 InternalControl. High(default)selectsinternalcontrol. lnstrumentbus lines are output at theJ104ACCESSORy connector. Low selects Externalcontrol.lnstrument bus lines at the J104 AccESSORY connector accept input from an externalcontroller. ChassisGround Pin5 P i n s6 - 1 3 a InstrumentBus Address lines 7-0a Pin14a Instrument Bus DataValidsignala InstrumentBus ServiceRequestsignal Pin15 Pin16a InstrumentBus Poll signala Pin17 Data Bus Enable input signal for externalcontroller. High (unasserted) disables external data bus. Low enables externaldata bus. Pins18-25 Instrument Bus Datalines0-7 Active when external Data Bus Enable(pin17)is low. soutput when internally controlled {pin 4 high) and input when externally controled (pin 4 low). Table 2-4 OUTPUTSIGNAL CHARACTERISTICS Characteristic ualrbrator(cAL ouT) Performance Requirement -20 dBm *0.3 dB at 100 MHz 1st LO and 2nd LO OUTpUTs 1st LO OUTPUTpower 2nd LO OUTPUT power SupplementalInlormation 100 MHz comb of markers provide amplitudecalibrationat-100 MHz Phaselockedto referenceoscillator Provide access to the output of the respective local oscillators THESE PORTS MUST BE TERMINATEDIN 50 O AT ALL TIMES. + 7 . 5d B mt o + 1 5 d B m -12 dBm.*5 dB aover lhe operating temperature range this is +15 ppM. 2-13 Specification- o o o 494At494ApService,Vol. 1 I Table2-4 (Continued) OUTPUT SIGNALCHARACTERISTICS Characteristic EXTERNALMIXER I Supplemental lnformation When EXT MIXERis selected,provides bias from a 70f,) sourcefor an externalmixer. Bias is set by the MANUALPEAK controlor internally set if AUTOPEAKis selected. Also see InputCharacteristics. Replaced by 75 O RF Input for ion 07. See Ootions Bias Range +1.0 V to -2.0 V (default) or. -1.0V to +2.0V(internally selectable) VERT (OUTPUT)(Rear Panet) Provides 0.5V t5% of signal per division of video that is above and below centerline. Source the impedanceis approximately1 kO. HORIZ(OUTPUT) (Rearpanet) Provides 0.5 V/Div either side ol center.Full range -2.5 V to +2.5 V. Sourceimpedanceis approximately 1 ko. PEN LIFT (Rear Panel) TTL compatible, nominal +5 V to lift plotter pen 10 MHz lF (OUTPUT)(Rear Panet) Providesaccess to the 10 MHz lF signal. Output level is approximately -5 dBm for a full screen signal at -40 dBm reference level. Nominal impedanceis approximately50 O. IEEESTD488PORT(RearPanel) ln accordance with IEEE 488-78 standard Manualversion (plotteroutput) Programmable {P)version lmplemented as SHl, AHo, T3, L0, SR0,RL0,PP0,DC0,DT0,and C0. lmplemented as sH1, AH1, T5, L3, S R 1 ,R L 1 .P P 1 ,D C 1 ,D T 1 ,a n dC 0 . Manual. See Programmers PROBEPOWER(RearPanet) Outputs voltages for P i n1 + 5 V a t ' 10 0 m A m a x i m u m Pin 2 Ground -15 V at 100mA maximum +'15V at 100mA maximum All inputs and outputs are listed in Tab|e 2.3 INPUTSIGNALCHARAC. TERISTICS. Pin3 P i n4 J104ACCESSORY (RearPanet) 2-14 Provides operating active probes. I t o o o o I o o O o o I l t I o o o o o I o I t o o o o o t o I o o o a o f o o o Specification - o t I t o o t o o o t o o o t o o o a o o t o t o o I o o I o o o I o o o I o o I 494A1494Ap Service, Vol. 1 Tabte 2-5 GENERALCHARACTERISTICS Characteristic Performance Requirement Sweep Modes Sweep Time Accuracy Triggering 20 ps/Div-S s/Div in 'l -2-5 sequence s/Div avaitable in AUTO) !],,.9 Information Triggered, auto, manual, external, and singlesweep *57o overcenterI divisions lNTernal,EXTernal,FREERUN.and LINE InternalTrigger Level 2 divisionsor more of signal ExternalTriggerInputLevel 1.0V peak,minimum EXTernal is ac-coupled (15 Hz-1 MHz). Maximum external trigger inputis 50 V (dc+ peakac). Displaysall parameterslistedon the crt bezel, plus help and operating rnessages. lnstrument settings, macros (programmableinstrumentonly)displays, calibration offsets, and peaking codes for each band are stored in battery-powered, non-volatile RAM. 1-2 years Crt Readout Battery-Powered Memory BatteryLife At +55"C Ambient Temperature At +25"C Ambient Temperature (See Option 39 in the Options section for alternatespecification) least5 Temperature Range for Retaining Data Operating Non-Operating MarkerTimeMeasurement Accuracy(in zerospan mode) -1 5"C to +55oC -30"C to +85"C *.10"h for single marker and isyo for delta marker Marker time available only in zero span Table 2-6 P O W E RR E O U I R E M E N T S Characteristic Line Voltage Range Supplemenlal Information 90 V.^ to 132 V 47 lo 440 Hz 11 5 V n o m i n a l 180V,^ to 250V 230 V nominal Line Fuse 1 1 5V N o m i n a l 230V Nominat InputPower LeakageCurrent 47Hz-63Hz 63 Hz - 440 Hz 4A 2 A Medium-Blow 210W maximum(3.2A) A t 1 1 5V a n d 6 0 H z 3.5 mA maximum 5 mA maximum 2-15 Speclfication- 494A1494AP Service,Vot. 1 Table 2-7 ENVIRONMENTALCHARACTERISTICS MeetsMIL T-28800C,type class 3, style C specifications. Characteristic Temperature Operatingand Humidity Non-operating Altitude Operating Non-operating Descr -15oC to +55oC/95"/"(t 5o/"relative humidity). -62"C to +85 "C 15,000feet (testedto 25,000fee$ 40,000feet (testedto 50,000feet) Humidity(non-operating) Five cycles (120 hours)in accordancewith MIL-Std-8l0 Procedure lll {modified) Vibration(operating) MIL-Std-810D,Method 514, Procedure| (modlfied).Resonant searchesalong all (instrumentsecuredto a vibra. t h r e e a x e s f r o m 5 H z t o 1 5 H z a t 0 . 0 6 0 - i n c hd i s p l a c e m e n l t o r T m i n u t e s ,1 5 H z tion platformduringtest) to 25 Hz at 0.040-inch displacement for 3 minutes, and 25 Hz to 55 Hz at 0.020-inchdisplacementfor 5 minutes (tested to 0.025 inch). Additionaldwellfor 10 minutes in each axis at the frequency of the major resonance or at 55 Hz if none was found. Resonance is defined as twice the input displacement. Total vibrationtime is approximately75 minutes. Shock (operatingand non-operating) Three guillotine-typeshocks of 309, one-halfsine, 11 ms duration each direction along each major axis for a total of 18 shocks (tested to 509). Transit drop (free fall) One 8-inch drop on each of six faces and eight corners (tested at and meets d r o p h e i g h to f 1 2 i n c h e s ) . Electromagneticlnterference(EMl) Meets requirementsdescribed in MIL-Std-461B, Part 4, except as noted. Remarks Conducted Emissions ConductedSusceptibility CE01- 60 Hz to 15 kHz CS06-spike power leads RadiatedEmissions 1 kHz to 15 kHz only CE03-15 kHzto 50 MHz powerleads 1 5 k H z t o 5 0 k H z , r e l a x e db y 1 5 d B CS01-30 Hz to 50 kHz power leads Fulltimit power CS02-50 kHz to 400 MHz Fulllimit leads Fulllimit R E 0 1 * 3 0 H z t o 5 0 k H z m a g n e t i cf i e l d Relaxed by 10 dB for fundamentalto (measuredat 30 cm) 1oth harmonic of power line Exceptioned,30 kHz to 36 kHz RE02-14 kHzto 10 GHz RadiatedSusceptibility aAfter Fulllimit RS01-30 Hz to 50 kHz Fulllimit RS02- Magnetic lndu6tion To 5 A only RS03-14 kHzto 10GHz up to 1 GHz storage at temperatures below -1soc, the instrument may not reset when power is first turned on. It this happens, allow the instrument to warm up {or at least 15 minutes, then turn the power off for 5 seconds and back on. 2-16 o I a o Specificaiion - Table 2-8 PHYSICALCHARACTERISTTCS , t Characieristic a Weight o Dimensions (seeFigure2-1) o o ) I o t o I o o o J a a O o o t a o I to o o o o o o o J o o o o , 494A1494ApService, Vol. 1 Descriotion 47 pounds, 14 ounces (21.8 kg) maximumlsee the Optionssectionfor alternatespecifications) Includingcoverand standardaccessories, exceptmanuat> Without Front Cover, Handle,or Feet With Front Cover, Feet, and Handle 6 . 9 x 1 2 . 8 7x 1 9 . 6 5 i n c h e s( 1 7 5 x 3 2 7 x 4 9 9 6 6 ; HandleFoldedBackOverthe lnstrument H a n d l eF u l l yE x t e n d e d 9,15x 15.05x 23.1inches(282x 382 x 567 p1r1 9.15x '15.05x 28.85inches(232x 392 x 732.gmm) l---t7'6cm(23''- 20.32cm(8.0in.) 23.24cm (9.15in-) srDEvtEw 2726-10C Figure 2-1- Dimensions. 2-17 o a o I ct t o o a o I o t o c o t o o a a o o I I o o a to o o o o o o o f o o a I o a O o a o o I I o t I ) I o a I a o o a o o o o o a o o I o o Section 3 - 494A1494ApService,Vot. I INSTALLATION This section describes unpacking, installation, pow€r requirements,storage informationand repackaging for the spectrurn analy;er. UNPACKING AND INITIALINSPECT|6N Bglorg unpackingthe spectrum analyzer, inspect .. the shippingcontainerfor signs of externatdamage. lf the containeris damageO,nbtity the carier as well as Tektronix, Inc. The shipping Lontainer contains the basic instrumentand its standardacc€ssories. For a list of the standardaccgssori€s,refer to Section1 of this manual(or, for ordering information,refer to the list followingthe ReplaceableMechanicalparts list in the ServiceManual,Volume2). lf the contentsof the shippingcontainerare incomplete, if there is mechanicaldamige or defect,or if the instrumentdoes not meet operationalcheck requirernents, contact your local Tektronix Field Office or representative. Keep the shippingcontainerif the instrumentis to be -stored^or shipped to T€ktronix tor service or repatr. Referto Storageand Repackagingfor Shipmentlaterin this section. The instrumentwas inspected both mechanically and electricallybefore shipment,and it should be free of mechanicaldamageand meet or exceedall electrical specifications.Th€ Operationsectionof the Operators Manual contains procedures to check functional or operationalperformance. perform the functionalcheck procedure to verify that the instrument is operating properly. This check is intendedto satisfythe require-, ments for most receivingor incominginipections. {A detailedelectricalperformanceveriticition procedurein the PerformanceChecksectionof this manualprovides a check of afl specified pertormancerequirements,as listedin the Specification section.) The instrumentcan be operatedin any positionthat allows air flow in the bottom and out the rear of the instrurnent. FEeton the four corners allow ample cfearance sven if the instrumentis stackedwith other instru_ ments. The air is drawn in by a fan through the bottom and expelled out th€ back Avoid locating the instru_ ment where paper, plastic, or any other materialmight block the air intake. The front cover providesa dust-tightseat and a con_ venient place to store accessories and extemal waveguide mixers. Us€ the cover to protect the front panel when storingor transportingthe instrument.To removs the cover, stand the instrumenton the h^/oback feet so the name on the handle is facing up and towardsyou, and pull slightlyout and up on the sidesof the cover. Attachedto the inside of the cover is the accessoriespouch. To open the accessoriespouch, pull up evenlyon the flap. You can position the handle of the spectrum analyzerat severalanglesto serve as a tilt stand. To stack instruments,positionthe handleat the top rear of the instrument.To changethe handleposition,press in at both pivot points and rotate the handleto the desired position. Removingor replacingthe cabinet on the instrument can be hazardous. Only qualifiedservice personnelshould attempt to rernovethe instrumentcabinet. O I o a a o a o o o O o o 3-1 o a o I a Installation- 494A/494ApServlce,Vol. 1 CONNECTING POWER PowerSourceand power Requirements ooo o o oo o o oo o o oo o o oo O o oo o o o oo o 335 Changing the dangerous. powef input can be 03s3 o Work safely o Knowthe intendedpowersource o o O a o a o o Set the instrument for the power source I o Checkthe fuse for properratings o o o t o a o o o o O o o o o o O o o a o o o o o o o a I . Use the power cord and plug intended for the power source WATTS ([AXl 210 AMPS 3.2 AT 1'ls Y 60 Hr FREO a! TO i|'.o X! FANGE 90-132 V The spectrum analyzer operates from a single_ phase power sourcethat has one of its curent-carrying conductors(neutral)at ground (earth)potentiat.Oo-no-t operate the spectrum analyzer from power sources where both current-carryingconductorsare isolated or above ground potential(such as phase-to_phase on a multi-phasesystem or across the legs ot a fiA-220 y single-phase,three-wire system). tn tms method of operation, only the line conductor has over_current (fuse) protectionwithin the unit. Refer to the Safety summaryat the front of this manual. The ac power connectoris a three_wire,polarized plug with the ground (earth)lead connecteddirecflyto the instrumentframe to provideelectricalshockproiection. lf th€ unit is connectedto any otherpowersource, connectthe unitframeto an earthgroundOperatethe spectrumanalyzerfrom Either11SVac or 230 Vac nominalline voltage with a range of 90 to 132 or 180 to 250 Vac, at 4g to 440Hz. power and vol_ tage requirementsare printed on a back_panelplate mountedbelowthe power inputjack. tnput powerrequirementsare changedwith a switch on the back panel(see Figure3-1) and by replacingthe input line fuse. The instrumentuses a 4A fast blow fuse for 115Vac operation,and a 2A slow blow fuse for 230 Vac operation. Removethe protectivecover and set the line select switchfor the appropriatevoltagerange. g-2 a o@ CAUTION r POWER IEFORE NI FIRE OilLY WITH FUItE 250Y aA :AST FUSe. Figure3-1. Inputpowerselectorswitchandfuse. Removethe fuse holder and replace the line fuse with the appropriatefuse for the voltagerange selected. The internationalpower cord and plug configuration is shownin the Optionssectionof this manual. STORAGEAND REPACKAGING Storage Short Term (less than 90 days) - For short term storage, store the instrum€ntin an environmentthat meetsthe non-operatingenvironmentalspeciticationsin Section2 of this manual. ) o o o o o o o o o o o a o o o o o o o o o o O o a o o o o o a o O o o o o a o o o o o o Instaltaton- Long Term - For instrumentstorageof more than 90 days,retain the shippingcontainerti iepacXage ttre instrument. The battery in tt e instrume-rit does not require rernoval. package the instrumentin a vapor barrierbag with a dryingagent and store'in a tocation rnat meets the non-op€rating environmental specifications in Section2 of this manlal. |f Lgr. l1o: any questions,contact your tocat Tektronix FieldOfficeor representative. Repackaging for Shipment _ . Whgnthe spectrum analyzeris to be shippedto a Tektronix Service Center for serviceo, ,"j"ir, attach a tag that shows the owner and address,the name of the individualat your firm that can be contacted, the com_ plete instrumentserial number.and a description of the servicerequired.lf the originalpackageis unnt for use or not available,use the followingrepickaginginforma_ tion. 494[l4g4Ap Service,Vol. 1 1. To allow for cushioning,use a corrugated cardboard container with a test strengttr oi gZS pounds (140 kilograms)and inside dimensions that are at least six inches more than the equipment dimensions(refer to the physical Characteristicsin Section2). 2. Installthe instrumentfront cover,and surround the instrument with plastic sheeting to protect the finish. . 3. Cus.hionthe equipmenton all sides with packing materialor plasticfoam. 4. Seal the container with shipping tap€ or an industrial,heavy-dutystapler. 3-3 O o o o o a o o o O o o o o o o o o o o O o o o c o O o o o a o o O O o o o I o o o o o o o o O o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o o o o o o o Secton 4 - 4g4Al494ApServiceVol. 1 PERFORMANCE CHECK Introduction All performancechecks are carried out without removingthe instrumentcovers. The proceduresin this sectionverifythat the instrument performancesatisli€s the performancerequirernents specified under the performanceRequirement columnin Section2, Specification. Some parametersand instrumentfunctionsthat are not explicitlyspecifiedare also checked.These checks verifythat the instrumentperformsas described. Checksshould be performedin sequencebecause som€ tests rely on the satisfactoryperformance of related circuits. Also, the cneck iteps have arrangedso that the changingof test equipment been setups from one step to the next is minimized. lf a measurementis marginalor belowspecification, an adjustmentprocedureto enhanceperformance will be found,undera similartreading,in Section5, Adjustment Procedure.After adjustment,recheckthe perfor_ mance. Adjustonly those circuitsthat do not meet performancecriteria. lf adjustmentfails to return the circuit to specified performance, refer to the Maintenancesection for troubleshooting and repairprocedures. Incoming Inspection Test The Operators manual contains an operationalor functionalcheckthat checksall functions.This eheck is recommendedfor incoming inspectionsbecause it requiresno externalequipmentor specialexpertise and is a reliableindicationthat the instrumentis perforrning properly. Option Instrument Checks . Wheneverpractical,performancechecks for option instrumentsare integratedin the performancecheck steps for the standard instrument,otherwise special check-steps are provided under OPTION INSTRUMENTStowardsthe backof this section. Verification of Tolerance Values Compliancetests, of thoselimitslistedin the p€rformance Requirement column of the instrum€nt specifications,shall be perform€dafter sufficientwarmup time and comptetionof preliminarypr€parationsteps (suchas front-paneladjustments). Measurementtoleranceof test eguipmentshouldbe negligiblein comparisonto the specifiedtolerance;and, when not negligibte, the error of the measuring apparatusshall be addedto the tolerancespecified. History Information The instrument and manual are periodically evaluated and updated. lf modifications require changes in the procedures,informationapplicableto earlierinstrumentswil be includedwithina step or as a sub-partto a step. Equipment Required Table 4-1 lists the test equipmentand calibration fixturesrecommendedfor the performanceCheck, This equipmentis also applicablefor the adjustmentpro_ cedures in Section 5, Adjustment procedure. The equipmentcharacteristicsspecified are the minimum required for the checks. Substituteequipmentmust meet or exceed these characteristics.These fixtures are availablefrom Tektronix,Inc., and may be ordered throughyour local TektronixField Officeor representative. Some checks may not be practical becausethey may require sophisticatedtest equipmentand/or procedur€s.In those cases,a compromisemay be made in the procedures. When that occurs, a statementor footnote to that fact is added to the step. The more exact method of measuringthe characteristiccan be suppliedby your TektronixServiceCenter. 4-1 PerformanceCheck Procedure- 494A/4g4ApServiceVol. 1 Table4-1 EOUIPMENT REOUIRED or Test Flxture Test Oscilloscope Time Mark Generator Vertical sensitivity, 50 mV/Div to V/Div;Bandwidth,DC to 100 MHz FrequencyCountera Marker output, 5 s to 20 ns; accuracy 0.001% 0 to 200 MHz, 1 Hz resolution,25 mV Prescaler Compatiblewith TEKTRONTX DC S09 Functionor Sine-WaveGenerator 1 Hz to'l MHz;0 to 20 V p-p Signal Generator 10 Hz to 't0 MHz,constantoutput SignalGenerator Two leveledgenerators,500 kHz to 2.0 GHz. Output,-100 dBm to *10 dBm; spectral purity 60 dB or more below the fundamental. Low Loss RF Cable (WL Gore) Flat to at least 21 GHz CrystalDetector SweepOscillator 0.01 to 21 QHz; frequency response f 1 . 0d B Power Meter with Power Sensor -30 dBm to +20 dBm tuil scale: 100 kHz to 26 GHz 750-to-50(} Minimum Loss Attenuator lmpedanceMatchingPowerDivider VSWR1.1to 100MHz Frequency Range:DCto 1000MHz BNC MAIE tO BNC Male Adapter, 75() Recommendationand Use Any TEKTRONIX7000-Seriesoscilloscope with plug-in units for realtime display sueh as 7A11/7850A, and P610810XProbe TEKTRONIXTG 501 (time/div and span accuracycheck) TEKTRONIX DC 509 Option 01 (Calibratorfrequencymeasurement) TEKTRONIXDP 501 (Center frequencymeasurement) TEKTRONIXFG 503 FunctionGenerator (externaltrigger and horizontal input requirementscheck) Hewlett-Packard Model3336C(gain accuracy and frequency r€sponse checks) TEKTRONIX SG 504, HewlettPackardModel 8ilOA/B and Model generators (frequency 8614A response,lM, and displayaccuracy checks) Tektronix Part No. 006-7609-00(frequencyresponsecheck) Hewlett-PackardModel 8473C (treresponsecheck) Hewlett-PackardModel 8350A with Model 83595A Option 002 Plug-in (frequencyresponsecheck) WeinschelModel 1 Hewlett-PackardModel 435A or 436A with 8/,82Aand 8485A Power Tektronix Part No. 011-00s7-01 (Option07 only) Tektronix Part No. 067-1232-00 (Optlon07 only) Tektronlx Part No. 103-0254-00 (Option07 only) Texscanor Lark Low-PassFilter Must have rolloff of 40 dB or more al UHFCombGenerator Providecomblineto 18 MHz;accuracy 0.01% TEKTRONIX Calibration Fixture 067-088s-00 (frequency readout accuracy Power Module (At least 4-wide) For use with TG 501,DC 509, DP 501, FG 503,SG 504.and 067-0885-00 TM 500 Power Moduleb I The frequency counter must b€ clocked by an external frequency standard such as wwvB. b Option 07 it checking en Option 42 Spactrum Analyzer. 4-2 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o a o o o o o o o o o o o o o o o o o o O o a o o o o o o o o o o o o o o o o o o o o o o o o o o o o Performancecheck procedure - 4g4br4g4Apservice vor. 1 Table 4-1 (cont) EOUIPMENT REOUIRED Equipmentor Test Fixture spectrumAnalyzer TrackingGenerator 10 dB StepAttenuatora dB step Attenuatora lnterconnect Kita Characteristics Recommendation and Use Frequencyrange,50 kHz to 2_2GHz TEKTBONIX 492A, 494, or ZLIU; Option39 (compressionpointcheck) Frequency range,100kHzto 1.9 GHz TEKTRONIX TR502(Option42 check) 0 dB to 110 dB in 10 dB steps :L3yo Hewlett Packard 84968 from dc to 12.4 GHz, and *4oh trom dc compression point check) to 18 GHz 0 dB to 11 dB in.t dB steps;*0.3 de Hewlett Packard 84948 1-2d8, +0.4 dB g-4 dB, :r0.5 dB compression point check) 5-6 dB, *0.6 dB 7-10 dB, and *0.7 dB 11 dB from dc to 12.4GHz; *0.7 dB 1-5 dB, :b0.8 dB 6-9 dB, and *0.9 dB 10-11 dB fromdc to 1g GHz For Hewlett packard 94948 and 94968 step Attenuators 50O Terminator (1 dB (1 dB Hewlett Packard 1 12.16A TektronixPart No. 011-0049-01 StepAttenuator- Range, 0 dB to 90 dB in 10 dB steps Hewlett Packard g55D (input *0.1 dB from dc to 1 GHz compression,displaydynamicrange, st"pnttenui- Ra.nge!0 dB - 12dB, in 1 dB steps; dc Hewlett and lF gain steps checks) LrlrGtr, lodB/sooltt"ffi 20 dB/50O Attenuator dc to 21 GHz;*1 dB accuracy dc to 21 GHz; +1 dB accuracy 2NMaretoApc@ APcg.5rt,tur"to@ Arlenuator(sMA connectors) 3 dB, 50o; dc to 20 cHz Two Attenuators(bncconnectors) 20 dB,50o; dc to 2.0GHz (5url uoaxtal cable with sma connec- 5 n s N Mate to sMA Male Adapter N Mate to BNC Female Adapter UNU I Adapter _ Two 50O CoaxialCables 355C (input and lF gain stepschecks) Hewlett Packard 3gg40c Option 10 (RFattenuatoraccuracycheck) Hewlett Packard ggg4oc Option 20 (RFattenuatoraceuracycheck) Maury Model 8023D (RF attenuator accuracycheck) Maury Model 80218 (RF attenuator accuracycheck) APC 3.5 Femaleto ApC 3.S Femate Adapter tors) Packard accuracy *0.2s dB io 0.5 compression,displaydynamicrange, Maury Model 8021A (RF attenuator accuracycheck) WeinschelModel 4M. Tektronixpart No.015-1053-00 TektronixPart No. 011-00S9-O2 TektronixPart No. 015-1006-00 TektronixPart No. 015-0369-00 TektronixPart No. 103-0045-00 TektronixPart No. 103-0030-00 TektronixPart No. 015-1006-00 8 The 10 dB step attenuator' 1 d-Bstep attenuator. and interconnect kit must be calibrated iogether as a single unit. using p(ecision standard attenuators such as Weinschel Model AS_6 attenuator. 4-3 PerformanceCheck Procedure- 4g4Ll4g4ApServlceVol. 1 PRELIMINARY PREPARATION lnitial Power-Up During initial power-up cycle, the instrumenttype, instrumentoperating system processor firmware ver_ sion, and the front panel processor firmwareversions are displayedon the crt for approximatelytwo seconds. The ReplacementParts List in the Serviie manual,lists the ROMs used for each version. The servicemanual also lists the firmware operatingnotes associatedwith eachfirmwareversion. lf the microcomputerdetects a hardwarefailure.a failurereportwill come on screenand remainfor about 2 seconds. A status messagewill then appear and remain for the duration of the failure. press MAX HOLD to bring eror messagesto the screen. a. Connectthe spectrumanalyzerpower cord to an appropriatepower source (refer to power Source and Power Requirementsin Section g, Installation). Set TIME/DIVto AUTOand switch pOWERon. b. When POWERis sivitchedoR, the pOWERindicator(a greenLED)shouldcome on. c. The microprocessorruns a memoryand UO t€st. lf no processorsystem problemsare found,the powerup programwill completein approximately10 seconds, and the instrumentwilt be ready to operite. After the power-uproutine,the crt will initiatizeas shown in Figure 4-'l. rE a.SlC TI a -tt -n { { { -t - 4E j d. The operating functions and modes should initialize to th€ following state: Readout REF LEVEL CENTERFRECIUENCY MARKERFREQUENCY sPAN/DrV VERTDISPLAY RF ATTEN FREORANGE REFOSC RESOLUTION BANDWIDTH TRIGGERING AUTO RESOLN DIGITALSTORAGE MIN NOISE All other pushbuttons On ODBM 0.90GHZ 0.00GHz MAX 10DB/ 2ODB 0-1.8a t-ub 3MHZ FREERUN On VIEWA&VIEWBon On lnactiveor off e. Set the MIN RF ATTENdB controtto 0 (NORM) and th€ PEAK/AVERAGE controlfully counterclockwise. set the TlMEiDlv controlto AuTo, REF LEVELto read -20DBM, and adjust th€ INTENSITYcontrol for the desired brightness.Note that the RF ATTENreadoutis now 0DB. f. Apply the CAL OUT signal to the RF INPUT througha 50O cableand a N-TO-BNCadapter. g, A dot markerwill appear in the upper portionof the screen in the MAX frequencymode. This marker indicatesthe locationon the displayto whichthe spectrum analyzer frequencyis tuned, With a frequency readoutof 0.00GH2,the markerwill be in the upperleft portion of the screen. Rotate the CENTER/MARKER FREQUENCYcontrol and note that the dot marker moves across the display. Notice that the oENTER FREOUENCYreadout (top line) remains at 0.90GH2, and that the MARKERFREOUENCYreadout (second line) changes accordingto the positionof the marker (dot). h. Harmonicsof the 100 MHz calibratorsignalwill be displayedas shown in Figure4-2. To select100 MHz centerfrequency,press the pushbuttonsequence of FREO'100 MHz. i. To changethe SPAN/DIVto 100 MHz, pressthe pushbuttonsequenceof SPAN/DIV100 MHz. The dot markeris now horizontallycentered,and the 100 MHz calibratorsignalis at centerscreen. 55€{t24 Figure4-1. Grt disptayat initial power-up. 4-4 aGHz btntEnNeL UNLOCK:Most lrequency measurementswill not be accurateunlil after this readouthas changedto lNT. o o o o a o o o o o o o o o O o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o o o o O o o o o a o o o o o o o o o o o o O o o o o o o O a O o o o o O a o PerformanceCheck procedure - E -28( o a. rotx f, -t { { I I { -r - t' I sr -ta .C This calibrationshould be done at regular intervals so the instrument can meet its eenterfrequencyand referencelevel accu_ racy performancespecifi,cations.lt should also be done each time the ambienttemperatureof the instrumentis changed. To observethe results after the microcomputer has cornpleted a calibrationroutine, pressthe LIN seguence.A message will appear on the screen that shows the correction factor used by the microcomputer to center the resolution bandwidth filters to produce a calibrated centerfrequency. lt also showsthe correction that was requiredto bring the ampli_ tude levelwithin0.4 dB of the 3 MHz filter. DII ssqx2 Figure -4-2. Span/Div. 4g4Ll4g4ApServiceVol. 1 Typical display of catibrator signat In Max i CalibratePosition,Center Frequency,Reference Level,and DynamicRange Whenthe CAL sequenceis pressed, the microcomputerpe*orms a center frequencyand referencelevel calibration. Prompts app€ar on the screen to guide .the user step-by_stepthrough the procedure. Press the CAL sequenceto start the calibration routine. A prompt message on the screen will guide you through setting the four frontpaneladjustmentsof verticaland horizontalpOSlTlON, and AMPL and LOG CAL. This sets thE absolut€refer_ ence levelfor the 3 MHz resolutionbandwidthfilter. An automaticcalibrationis then done,whichmeasuresand correctsfor absolutefrequencyand amplitudo(r€lative to 3 MHz)errorsof the filters. tnis takesapproximately 60 seconds. lf a messageappearson the screen,rsfer to Error MessageReadoutearlierin this section. The correctionfactors are held in memory. press FINEto continuecalibrationas instructedor to exit the routine. lf any amplitude correction factor for a fitter is greaterthan 1 dB. at roorntemperature,the tilter in the VR assemblyshouldbe readjusted.Referto SectionS. AdjustmentProcedure. 4-5 PerformanceCheck Procedure- 4g4Ll4g4ApServlceVot..l PERFORMANCE CHECKPROCEDURE 1. Check 10 MHz Reference Oscillator Accuracy (Agingrate <1 x 10-7) e. ResetSPAN/DIVto 500 kHz. f. Press COUNT RESOLN and enter 1 kHz for a counterresolutionof 1 kHz. The 10 MHz ReferenceOscillatoraccuracyis not a performancerequirement;however,it must be checked so the centerfrequencyaccuracycan be verified. Since the calibrator is locked to the 10 MHz oscillator this procedureverifies accuracyby countingthe frequency of the calibratorsignal. g. Press COUNT and note that the error over severalcountsdoes not exceed1 kHz. a. Connectthe CAL OUT signal to the frequency counter. (Counterswith a frequencyrange above 200 MHz may requirea 150 MHz low pass filter to €nsurea stabletriggeron the 100 MHz CAL OUTsignat). i. SEt thE CENTERFREOUENCYtO 1.8GHZ Or 1.7 GHz and repeatthe counteraccuracycheckfor this end of the band. The TektronixDC 509 must.be modifiedto accept an external oscillator reference. Refer to the TMS00ffM5000Series Rear InterfaceData Book, part No. 070-2099_04 for modification instructions. b. Connectthe frequencystandardto th€ External FrequencyStandardInput of th€ frequencycounter. c. Checkthat the frequencyof the GAL OUT signat i s 1 0 0M H z* 1 0 H z . d. Disconnectthe counterfrom the CAL OUT con_ nector. 2. Check Counter Accuracy Error+ (10+ 2N)Hz+ l LSD [CFx gslslsnceFrequency a. SettheSpectrum Analyzer controlsas follows: CENTERFREOUENCY 500MHz sPAN/DrV 2AkHz AUTO RESOLN REF LEVEL VERTICALDISPLAY TrME/DrV TRIGGERING On -30 dBm 10 dB/Dlv AUTO FREERUN b. Applythe CAL OUT signatto the RF lNpUT,and centerthe 500 MHz markercalibratorharmonic. c. Press COUNT RESOLN and enter 1 Hz via the Data Entrykeypad. d. Press COUNT and note that the error over several counts does not exceed .lSHz. The factor (CF x Reference FrequencyError)is canceledwhenthe CAL OUTsignalis used. 4-6 g. h. Resetthe sPAN/Dlv to 200 kHz and repeatpart 3. Check Counter Sensitivity (At least 20 dB above the average noise level at center screen and no more than 60 dB down from the refer€ncelevel) a. Applythe CAL OUTsignalto the RF INPUTvia a 1 dB and a 10 dB step attenuator.Set both attenuators for 0 dB attenuation. b. Set the SpectrumAnalyzercontrolsas follows: CENTERFREOUENCY sPAN/DrV RESOLUTION BANDWIDTH REF LEVEL NARROWVIDEOFILTER VERTICALDISPLAY TrME/DtV TRIGGERING 100MHz 1 MHz 1 MHz 0 dBm On 10 dB/Drv AUTO FREERUN c, Set the 1 dB and 10 dB attenuators such that the signal amplitude is approximately 20 dB above the noise floor. d. Press COUNT RESOLN and enter 1 Hz via the Data Entry keypad. e. Press COUNT and note that the counter is counting the signal with the accuracy noted in performance check step 2. f. Reset SPAN/DIV ancl RESOLUTIONBANDWIDTH to 100 Hz, REF LEVEL to -30 dBm, and activate WIDE VIDEO FILTER. g, Reset the 1 dB and 10 dB attenuatorssuch that the signal amplitude is approximatety60 dB down from the referencelevel. h. Press COUNT and note that the counter is counting the signal with the accuracy noted in performance check step 2. o o o o o o o o o o a o o a o o o o o o o o o o o o o o o o o o o o a O O o o o o o o o o o o o o o a o o a o a o o o I a o o o o I o o o o o O I I o o O o I I o O O o a o o o PerformanceCheck procedure - 4. Check Center Frequency Accuracy This is a two part procedure;part I checks center . frequencyaccuracy with the 1st LO unlocked,part ll checksaccuracywith the l st LO phase lockecl. A front panel CAL should be done before performing this check. Part | - lst LO not phase Locked Accuracywith the .lst LO unlockedis :r {(20%of the Span/Div or Resolution Bandwidth, whichever is g.relter)+ (CF x ReferenceFrequencyEror) + 15N kHz). 4g4ful4g4ApServlce Vol. .l f. Check that the disptayedsignat is within 0.271 divisions(5T kHz)of center screen. S. Continuechecking frequenciesas indicatedin Table4-2 as per the foilowingexample: CheckCenterFrequencyAccuracyat 19.5GHz Fundamentalindicated by frequency counter : 499.99831 MHz. Deternine Center Frequencyto the nearestkHz: Fundamentalx 37 (from Table 4-2) 0.499998 GHz x 37 - 18.a99926 GHz Use Data Entry keypad to s€t CENTER FRE_ QUENCYto 18.499926 eHz. Check that the disptayed signat is within 0.424 divi_ sions (89 kHz) of center screen. The 1st LO is not phase_lockedin Fre_ quency Span/Div settings >200 kHz. For Span/Divsettings (200t 200kHz for band 1 and bands s through 12 and SPANIDfV>10OkHzfor bands 2 through4.)) {Within(10 + 2N)Hzover 20 ms with the 1st LO locked(SPAN/D|V<200kHz for band 1 and bands5 through 12 and SPAN/D|V 10 dB/DlV. A message "FREOUENCY CORRECTIONSDTSABLED: USE HELp,.wiil be displayed on the CBT. cl. Reset the SPAN/DIV to 100 kHz, and recenter the 100 MHz calibrator signal on screen with the CENTERFREOUENCYcontrot. E. SEt thE VERTICALDISPLAY tO LIN. POSitiON thE signal so the slope (horizontalversus vertical excursion) of the response can be determined as illustratedin Figure 4-5A. Slope determination may be made easier by switching VIEW B off, and using SINGLE SWEEp and SAVE A to freeze the display at a convenient position on the graticule. The slope should calculate to approximat€ly 1 0 kHzldivision. 4-9 PerformanceCheck procedure- 4g4Al4g4ApServiceVol. 1 SPAN/DIVto 50 Hz and RESOLUTTON BANDWIDTH to 10Hz. cr gl.TttB lm{ iv ra.l ta., t2.a a.l a.a 2-a h. Tune the CENTERFREQUENCYcontrotto position the signal so its slope can be determined.Again, slope determinationrnay be made easier by switching VIEW B off, and using SINGLESWEEPand SAVEA to treeze the displayat a convenientpositionon the graticule. The slope should calculate to approximately 2 Hzldivision. i. DeactivateSAVE A and SINGLE SWEEP and switch the TIME/DIVto 20 ms. ActivatezERo spAN and positionthe displaynear centerscreenso the vertical excursionsper horizontal division (20 ms) can be measured.ResidualFM must not exc€ed12 Hz within any one horizontal division. t.l A C.bubu|g tbp. of |lteon|.. E -2$el .a( t.5:rrq _2rS/--* n la.a ta.t t:.t ra. a,l a.a {.1 2.4 .T a.l IM n B. Lr.r|dog Ft .t lhc drylato||/dl'rlaloo ot urc roapo||ac. Figure 4-5. Typical display for measuriag residual FM. f. lf SAVEA was used in part e, de-activateSAVEA and vtEW B. Activate zERo spAN, set TtME/Dlv to 20 ms, and set CENTERFREQUENCY controtto position the displaynear centerscreenas shown in Figure 4-58. Use SAVE A to freeze the display for easl in measuring FM. The peak-to-peakamplitude of the display (numberof vertical divisions)within any given horizontaldivision, scaled to the vertical deflections accordingto the slope estimatedin part e, is the FM. ResidualFM must not exceed7 kHz over 20 ms (1 divi_ sion). S. Press 10 dB/DlV to re_enable the phase tock, then set the FREQUENCYto 100 MHz and switchthe TIME/DIVto AUTO. Reducethe FREQ 4-10 7. Check Frequency Span/Div Accuracy (Within5% of the selectedspan/div) (Measuredover the center I divisionsof a 10 divisiondisplay) Span accuracyis checked by noting the displacement of calibratedmarkersfrom their respectivegraticule lines over the centereight divisionsof the screen. The frequencyspan/div accuracy is checked, for all SPAN/DIVsettingson band 1, at 100 kHz/Divon band 2, {2nd LO check)and at 500 MHz/Divon band4. The accuracyof the 1 GHz, 2 GHz. 5 GHz, and 10 GHz spanldiv of the upper bands is directly relatedto the 100 MHz/Div and 200 MHz/Div spans. Therefore,the 1 GHzlDiv, 2 GHz/Div, 5 GHz/Div, and 10 GHz/Div spans are not includedin this procedure. FREOUENCY SPAN/DIVrangeis 20 Hz to 100MHz for the 0 to 7.1 GHz bands,in a in a 1-2-5 s€quence when selected via the SPAN/DIV control, or up to 400 MHz when selectedvia the DataEntrykeyboard. a. Set the SpectrumAnalyzercontrolsas follows: CENTERFREOUENCY 1 GHz SPAN/DIV 100MHz RESOLUTIONBANDWIDTHAUTO -30 dBm REFLEVEL T|ME/D|V AUTO VERTTCAL DTSPLAY 10 dB/DtV b. Applythe CAL OUT signalto the RF INPUTand set the CENTERFREQUENCYto align the 100 MHz markersso the 100 MHz/divaccuracycan be measured over the centereightdivisionsof the display.lt may be necessaryto changethe REF LEVELto obtainadequate markeramplitude.Maximumdeviation(seeFigure4-6) must not exceed5 MHz/Div, o o o o a o o a o a o a o a a o o o o a o o o o o o a o o o o o a o o O O a a o O o o o o o o PerformanceCheck procedure- t O o a o o a o a O o t O a o a a O o o o a o o o a o I o o o o o t t a o o o I o E -Otr .rr t.Eq' i5tr TI -t -..4 -r -tt trl 'l ''t I' r' { -ll ^rla ss603it Figure4S. Typicalmarkerdlsplayfor measuring Span/Div accutacy. c. Removethe CAL OUT signatfrom the RF tNpUT and set up the test equipment;s shown in Figure 4_7. set the CENTERFREOUENCyto 10 eni, bnlr.rTDtv to 500 MHz, RESOLUTTON BANDWIDTHto'100 kHz, and REF LEVELto -10 dBm. peak the responsewith the MANUALpEAK controtand set REF LE'EL for the best markerdefinition.lt may also help to resetthe CENTER FREQUENCY for b€ttermarkerdefinition. d. Tune a markerto center screenthen check the accuracyover the centereight divisionsof the display, Deviationmust not exceed*25 MHz/Div. E. SEt thE CENTER FREOUENCYtO 2.0 GHZ, SPAN/DIVto 100kHz, RESOLUION BANDWTDTH to 1 If., T|ME/D|V to 50 ms, and REF LEVEL to -20 dBm. f. Modulatethe Comb Generatorsignalwith 1Ops markers,from the Time Mark Generato-r, by applying the MarkerOutputto the pulse Inputof tte iomU denl erator.asshownin Figure4-7. S;t the MANUALpEAK controltor optirnummarkerdefinition. g. C[e9k SPAN/D|V accuracy. Error must not . exceed*5 kHz/Div. 4g4AJ4g4Ap ServlceVol. 1 i. Reset the REF LEVEL for tho best marker definirion,and the CENTERFREouENcy t" ariln ii.,e ryt9rs so span/div accuracycan be checkedilr the 50 MHz/div. j. Reset CENTERFREOUENCY to 100MHz and SPAN/D|Vto 20 MHz, and apply 50 ns (20 frlHzymaif 10dB/DlV. (4) R_€setthe spAN/Dtv to 100 kHz white keeping the 600 MHz harmonicof the calibratorsignal neai center'screen with the CENTER/MARKERFRE_ OUENCYcontrol. The 1st LO is now unlocked. (5) Enablea single marker, and position it on the signalbypressing PEAKF|ND. (6) Checkthat the marker readout is within 35 kHz of the centerfrequencyreadout. (7') Press 1OdB/DtV to enabte phaselock. The 1st LO is not phas€-lockedin Fre_ quency Span/Div settings >200 kHz. For Span/Divsettings (200kH2, the lst LO may be unlocked by first going to an unlockedSpan/Divsettingand disablingfre_ quency corr€ctions (Btue_SHtFT 1OdB), then-spanningdown to a Span/Divsettint (200 kHz. QuantityN is the lst LO harmonicnumber used for the first conversion.press HELp and BANDV for the value of N. a. Check slngle markeraccuracy. (1) Applythe CAL OUTsignattothe RF tNpUT. (2) Set the SpectrumAnalyzercontrolsas follows: CENTERFREOUENCY sPAN/DlV AUTORESOLN REF LEVEL VERTICALDISPLAY TrME/DtV TRlGGERING 4-12 600MHz 500 kHz On -20 dBm 10 dB/Dtv AUTO FREERUN (8) Use the CENTER/MARKER FREQUENCYcontrol to reposition the calibrator harmonic near center-screen. (9) Press PEAK F|ND to position the markeron the signal. (10) Check that the marker frequencyreadout is within 47 kHz of the center frequencyreadout. The factor (CF x ReferenceFrequencyError)is canceled whenihe CAL OUTsignatis used. b. CheckA marker accuracy. (1) Set the SpectrumAnalyzercontrolsas follows: CENTERFREQUENCY sPAN/DtV AUTORESOLN REFLEVEL VERTICALDISPLAY TtME/DtV TRIGGERING 0-60GHz 1 0 0M H z On -20 dBm 10 dB/Drv AUTO FREERUN (2) EnableA markersby pressing A MKR, and tune one marker to a harmonicof the calibrator signal. Press MKR 1*MKR 2, and tune the second marker to anotherharmonicof the catibratorsignal. (3) Check that the A marker frequencyreadout is within17oof the measuredspan. o o o o a a o o o a o a o a a o o a o a o o o o O o o o O o o o a o a o I o a o o o O o o o a o o o a o o PerformaneeCheck procedure _ 4g4Al4g4Ap Servlce Vol. 1 SPECTRIfr AI{I.AYZERUI{OERTEST I I t o a a o a o o o a I o O o o t o I O coME OENERATOR MOOULE Figure 4-7' Test equipment setup for checklng frequency span/Dlv and sweep Time/Div accuracy. 9. ^C.*:*_qyegpTimeAccuracy (Within S%of therateserecitJi' a. Connectthe outputof the Time Mark Generator to the rear-panetMARKERI/|DEO input.--6'onnect pin 1 of J104 ACCESSORYconnector ti-groiio (connect pin 1 to pin S). - .b. _Setthe SpectrumAnalyzerTIME/D|Vto 20 ps, and activatezERo SpAN ano tNT rireb-lnjr.rc. t a o a a O O I O o o o o o e. check the accuracyof the 20 ps to 5 s TIME/D|V ::l!'!.S_r by apptying appropriate markers ,or each TIME/DlV setting and noting the displac€ment as describedin part d of this step. f. Disconnectthe-test_equipment, and the shorting strap from pin 1 of Jl04 ACCESSORyconnector. 10. Check Pulse Stretcher Disabledigitalstoragefor sweeptimes fast€r than 2 ms. c. Set the Time Mark Generatorcontrols for 20 ps time marks. d. use the horizontalposlTloN controt to align a marker..onrhe 1st graticutetine (see Fd;; 4-B),then check the displacement of markerstrori-ineir respective positionsover the c€ntereight divisions.Marker dispfacement mustnot exceedS/o overthe display. a. Apply .1 ms time marks, from the Time Mark Generator, to the RF lNpUT. Set the spectrum Analyzercontrolsas follows: CENTERFBEOUENCY ZEROSPAN RESOLUTTON BANDWIDTH REF LEVEL VERTICAL DISPLAY TtME/DtV VIEWA and VIEWB TRIGGERING 2.0MHz On 100kHz 0 dBm 10 dB/Dtv .1ms off INT 4-13 o o o PerformanceCheck procedure- 4g4A/4g4ApServiceVol. 1 b. ActivatePULSESTRETCHERand nore that this modeextendsthe talt time of the markers. c. Removethe test equipment. -z!il E nl € .a {a ltl -8dBDOWN 1 \ r EANDW|OTH / I t { t I { \ .,aa { t-l.t A" t E { DaT gE rt||rhg tG doun b.nffdtt|. -znl tt.atc .E TI .it { -0d8DowN )?illt;l- Figure 4€. Typlcal display for measuring Time/Div accuracy. 11. Check ResolutionBandwidth and shape Factor (6 dB bandwidth within 2ov" of the s€lected bandwidth; shape factor is 7.S:l or less lor all bandwidths otherthanthe 1OHz bandwidthwhichis 12:1or less) a. Applythe CAL OUT signatto the RF lNpUT. Set the SpectrumAnalyzercontrolsas follows: CENTERFREQUENCY sPAN/DrV RESOLUTION BANDWIDTH REFLEVEL VERTICAL DISPLAY MINNO]SE PEAK/AVERAGE TrME/DrV TRIGGERING 100MHz 1 MHz 3 MHz -20 dBm 2 dBlDtv Activated FullyClockwise AUTO FREERUN b, Measurethe 6 dB down bandwidth(see Figure 4-9A). Bandwidthshoutdequal3 MHz *600 kHz. c. Resetthe vERTtcALDtspLAy to 10 dB/Dtv and measurethe 60 dB down bandwidth(seeFigure4_gB), 4-14 BAIIDWIDTH I I tl - *ffi-"t - lt\r I+l t+l < I t\ | | S}IAPEFACTOR *r--zffrr* t*l V I -l { -t- D r Fr.t &E Dfi a. llolrtqlnq COdAdorn DenrMrt0r end computhg d'|Pc tactot 556{r..6 Figure 4-9. Typical display for measuring bandwldthand shapefactor. d. Check that the shape factor is 7.5:1 or less. The shape factor is the ratio of -60 dB/-6 dB bandwidths {see Figure 4-9). e. Reset the RESOLUTIONBANDWIDTHto 1 MHz, SPAN/DIV to 500 kHz, and VERTICAL DISPLAY to 2 dB/DrV. f. Check the resolution bandwidth and shape factor of the 't MHz filter by repeating parts b through d. o I o o o o a a o a o a t o o o o o a o O o o o o a o O a o ) o O o o a o I o I o I o o t o t o I o o I I o a a a a O a a o o o o a o o a a I a o I o o o o I O o I o I o PerlormanceCheck procedure_ 4g4Ll4g4ApServlce Vot. 1 g. Checkthe resolutionbandwidths and shapefac_ tors for the 100 kHz (300ftHa for Option bA, 1 kHz,and 100Hz fitters. Shapefactlistroufd 10 kHz, be 7.5:1 or less. h. RESET thE RESOLUTION BANDWIDTH 'IO tO HZ, qlglptv to 50Hz, and VERlCnl.'drdpr-ry ro 2 dB/Dlv. i. Checkthe resolutionbandwidthand shapefactor of the 10 Hz fitter. Shapefactor should i" iZrt or tess. 12. Check Catibrator Output (-20 dBm *0.3 dB) Apply a 100MHz signal to the power meter through a 3 dB attenuatoranO a SOO Set the generatoroutput levelfor a reading _20 of "d;t". dBm on the powermeter. b. Disconnectthe power meterfrom the signal gen_ erator,and connectthe referencesignat established in part a to the RF tNpUT,through thd same 50O cable and 3 dB attenuator. c. Set the SpectrumAnalyzercontrolsas follows: CENTERFREQUENCY SPAN/DIV RESOLUTION BANDWIDTH REFLEVEL VERTICALDISPLAY TfME/Dlv PEAK/AVERAGE 100MHz 100kHz 1 MHz -18 dBm 2 dBlDtv AUTO FullyClockwise ; .d. .Sel the spectrumanalyzerVERTICALDlSpLAy factor to th€ AA mode by pressingfiruE.-'Set the REF LEVELsuchthat the top'oi the siinat is'on graticute a line near the top of the crt. nesJt ttre neF LEVELto 0.99 gP by pressingF|NE twice. Store ttre displayby activatingSAVEA. CENTERFREOUENCY sPAN/DtV RESOLUTION BANDWTDTH REFLEVEL VERTICALDISPLAY TrME/DtV WIDEVIDEOFTLTER 100MHz 1 kHz 100Hz -40 dBm 10 dB/Dtv AUTO On b. Checkthat the amplitudeof th€ noisesidebands is at least 50 dB down from the referencelev€l at g0 times the resolutionbandwidth(3 divisionsaway from the centerfrequencyposition).See Figure4-10. c. Reset the spAN/Dlv to 1oo Hz and set the RESOLUTTON BANDWTDTH to 10 Hz. d. check that the amplitudeof the noise sidebands is at least 50 dB down from the referencelevel at 30 timesthe resolution bandwidth. €. Reset the spAN/Dtv to 10 kHz and set the RESOLUTION BANDWIDTH to 1 kHz. f. Checkthat the amplitudeof the noisesidebands is at least 55 dB down from the referencelevel at O0 timesthe resolution bandwidth. E -St cd ra.C - rttr |rq n { _e. Removethe referencesignaffrorn the nF tNpUT and connectthe CAL OU.Tsignll in its place using the samecablethat was usedin part b of this step. f. ActivateVIEWB and VIEWA. g. Checkthat the amplitudedifference betweenthe VIEWB and SAVEA disptays(CALOUi iignar anOthe reference) doesnot exceedb.S'Og. { _tt - r I ( rrl \ tr l4f I -rl -il4 13. Check Noise Sidebands (At least-70 dBc at 30Xthe selectedbandwidth for bandwidthsof 100Hz and 10 Hz) , resolution (At least-75 dBc at gOXthe selectedbandwidth for all otherresolulionbandwidths) 1. Apptythe CALOUTsignatto the RF tNpUT.Set the SpectrumAnalyzercontrolsas follows: -tt t ll{l 556034 Figure 4-10. Typical disptay for measuring noas€sidebands. 4-15 Performance Checkprocedure_ 4g4Al4g4Ap ServiceVol. 1 14.Check FrequencyResponse (Response,about the midpoint between two €xtremes,measuredwith 10dB of RF attenuation and peaking optimized in the applicabl€bands for eachcenterfrequencysetting,is as follows: Band1: +1.5 dB from 10 kHzto 1.gGHz Band2: *2.5 dB from 1.7 to S.5GHz Band3: r2.S dB from 3 to 7.1 GHz Band4: i3.S dB from 5.4 to 1g GHz Band5: iS.O dB from t5 to 21 GHz) (Response with respectto 100MHz is as,ollows: Band1: *2.5 dB from t0 kHzto 1.gGHz Band2: *3.5 dB from t.Z to 5.5GHz Band3: *3.5 dB from 3 to 7.1 GHz Band4: *4.5 dB from 5.4 to 1g GHz Band5: *6.5 dB from t5 to 21 GHz) . The responseat each check point, above band l, shouldbe peakedwith the MANUALPEAKcontrot. ^, ?: Check frequency response from 0.01GHz to 21 GHz (Bands1 through5). (1) Connectthe CAL OUT signatto the RF tNpUT, and perforrnthe CAL routine. (2) Set the SpectrumAnalyzercontrolsas follows: CENTERFREQUENCY 1OOMHz SPAN/D|V 500 kHz RESOLUTION 3 MHz REF LEVEL -20 dBm VERTICALDTSPLAY 2 dB/Dtv MIN RF ATTENdB O TIME/DIV AUTO PEAK/AVERAGE Fully Counterclockwise (3) Set the CAL AMPL adjustmentfor 5 divisionson the SpectrumAnalyzerdiiptay. This is the 1OOMHz reference. Activate SAVE A to save the reference. (4) Connectth€ test equipmentas shownin Figure 4-11. (5) Set the sweeposcillatorcontrolsfor a cw output that rnatchesthe SAVEA display(outputfrequency of 100 MHz and an output amptituOiof approximately-20 dBm). (6) DeactivateSAVEA. Reset the CENTERFREQUENCYto 500 MHz, and SpANiDtv to 100 MHz, and activateMAX HOLD. (/) R:seJ the sweep oscillatorcontrolsfor a sweep output from 0.01GHz-1 GHz. Enable singlb sweepon the sweep oscillator. (8) Check that amplitude deviation from the 100 MHz referencedoes not exceed*2.S dB. (9) Make a note of the highestand lowestpeaksfor later comparison. 4-16 00) D€activateMAX HOLD, and repeat parts 6 through10 for a CENTERFREQUENCy of 1.5GHz (1 GHzto 1.8 GHz). (11) Calculate the hatfway point between the highest and the lowest peak from the peak data notedin parts g and 10. (12) Checkthat swept frequencyflatnessis within 1 1 . 5 d B i n B a n d1 . (13) Switch the Spectrum Analyzer to Band 2 ( BANDA),CENTERFREeUENCyto 2.7 GHz,and SPAN/DIVto 200 MHz. (14) Reset the sweep oscillator controls for a sweep output trom 1.7 GHz-3.7 GHz. Enablesingle sweepon the sweeposcillator. Before sweeping any range in Bands 2 through5, set th€ CENTERFREQUENCyto the centerof the range;applya cw signalat this center frequency; and peak the responsewith the MANUALPEAKcontrol. (15) Check that amptitude deviation from thE '100 MHz referencedoes not exceedf3.5 dB. (16) Again, make a note of the highestand lowest peaksfor latercomparison. (17)- Check frequency response in the range 3.7 GHz-5.5 GHz (CENTER FREQUENCY Lt 4.6 GHz and SPAN/D|V at 200 MHz). Continue making notes of the highest and lowest peaks for comparisonlateron. (18) Check Bands 3 through 5 accordingto Tabte 44. 8e sure to make a note of the highest and lowest peaks after each check. (19) Calculate the halfway point between the highest and the lowest peak from the peak data notedin parts 16 and17. (20) Check that swept frequencyflatness is within *2.5 dB in Band2 and Band3, within *3.5 dB in Band4, and within*5.0 clBin Band5. lf any segmentor portion of the span fails to meet the specification,set the FREQUENCYto the centerof this portion;apply a cw marker at this center frequencyand re-peakwith the MANUALor AUTO PEAKlNG. Decreasethe FREQUENCY SPAN/D|V to displaythat portionand then recheckthe frequencyresponsefor this portion. o o o o a o a I o a a o o o o o o o o o o t o o o o o o o o o o a o o O o o a o o a o o o o o o o a o I o o a o o a a I o Perforrnance Check procedure _ 70 EXT. ALC III'PUT CO{IINECTOB- F' I t O a I o a o o o o a a o I o o RF OUT o oo swEEpoSctLLATOR €XT ALC TORFOtrTCoxnecG SPECTRUII AilALYZER UNDERTEST Undor Test I Nro sMAooaeten f ) 3 dB ATTENUATOR o t I o I o o a o o t o J a 4g4Ll4g4Ap Servlce Vol. 1 CRYSTAL DETECTOR Low LosscoAxcABLEwrrx sul courEEroid Figurc4-11' Testequipmentsetupfor measuring0.01GHzto 2r GHzfrequency,esponse. Table 4-4 Oscillator Sweep Range 3-5.0 GHz 5-7.1 GHz 5.4-7.4 GHz 7.4-9,4 c 1 0 . 4G H z 12.4 GHz 4-17 PerformanceCheck procedure- 4g4A/494ApServiceVol. 1 from 10 kHz to ^ b: Check frequency response 10 MHz (lowerend of Band1). (1) Reconnectthe_testeguipmentas shownin Figure4.12. ResetCENTERFREQUENCY Io 10 MHz. (2) Set the generator output for _20 dBm at 10 MHz,and set the SpectrumAnalyzercontrolsas follows: CENTERFREQUENCY 10 MHz SPAN/DIV 500 kHz RESOLUTION 1 MHz -20 dBm REFLEVEL VERT|CALDTSPLAY 2 dBlDlV MIN RF AfiEN dB O TIME/DIV AUTO PEAK/AVERAGE FullyCounterclockwise (3) Manually tune the Signal Generatortowards 10kHz while simultaneousty tuning the CENTER FREQUENCYcontrol to hold the signal at center screen. Note amplitudedeviation,and the highest and lowest peaks. SlOllAL SOTRC€ (10 kltr -.t0 lrtltr) As the Signal Generatoris tuned towards 10 kHz, the RESOLUTTON on the Spectrum Analyzer must be reset to 100 kHz when the generator output frequency reaches 2 MHa Also, at approximatety 200 kHz, the Spectrum Analyzer SPAN/DIVand RESOLUTION BANDWIDTHmust be reset to 50 kHz and 10 kHz respectivelyto prevent the 0 Hz spur from interferingwith the signal. Continue resetting the SpAN/DlV and RESOLUTION as the generatorfrequencyis luneddowntowards10 kHz. SPECTRT'TAIIALYZER UIIDERTEST o o o o a o o I o a o a o o O a o a o O o I a o o o a a a I Figure4-12. Test equipmentsetup for measuring10 kHz to 10 MHz frequencyresponse, 4-18 a I o o o o a a o o o o o a t I a o o o o o o o t a o o o a o a a a o a o o a I a o o o o o o o o PerformanceCheck procedure_ 4g4Ll4g4Ap ServlceVol. 1 (4) Check that amplitude deviation from 100MHz reference_does not,*.""J-*i.s checkthatflatn€ssis within*1.5 dB. the dB. Atso c. Connectthe CAL.OUTsignatto the RF tNpUT, and performthe CAfiouiin". 15.,Chec_k Display DVnamic Range and Accuracy (99 jB._il dB/DtV moOe,-wirrin-accuracy or :!1.0 dB/l0_10 dB to^-amaximumcumulativeerror of *2.0 dB over the g0 dB window;rO Oe-in rnodewfth an accuracyof *0.4 ABpia 2 dBlDtV to a max_ imum cumulative enor of *1.0 Oe'ovei the 16 dB window;Lin modeis 15% ot fuffica[l-' a. Connectthe test equipmentas shown in Figure 4-13-,usingthe lOdB and 1'dB siep"ti"nrutorr. S"t the SpectrumAnalyzercontrolsas foilows: Signaf Source *30 dBm to -80 dBm 100 kHz to 10 GHz CENTER FREQUENCY sPAN/DtV AUTO RESOLN REF LEVEL MIN RF ATTENdB VERTICALDTSPLAY NARROWVIDEOFILTER PEAK/AVERAGE TrME/DtV 100MHz 20 kHz On *10 dBm 0 10 dB/DtV On FullyClockwise AUTO b. Set the attenuatorsfor OdB attenuation.Set the generatorcontrolsfor a.100 MHz outputfrequency, and carefullyset the outputlevelsuchttrai tne signatpeak is at the top graticuletine. c. Add 80 dB of externalattenuationin 10 dB steps and note that th€ signalst€psdown in 10 dB steps. Specfrum Analyzer Under Ted Calibraled Altenuators 10dB&20d8 Calfbrated 1O dB and 1 dB step ailenuators or separate 10 dB and i dB attenualors. I t I o O a a I t Figure 4-13' Test eguipment s€tup for checking dynamic range and accuracy, and preserecror image fejection. 4,19 PerformanceCheck procedure- 494A/4g4ApServiceVol. 1 d. Check that the signal steps down in 10 dB (r1.0 dB) steps as attenuationis added. Maximum cumulativeerror should not exceed 2.0 dB over the 80 dB range. e. Deactivatethe NARROWVTDEOF|LTER,return the externalattenuationto 0 dB, and changethe VERTICAL OISPLAYto 2 dB/DlV. Set the signatpeakat the reference(top) graticuleline, with the generatoroutput control. f. Add 16 dB of externalattenuationin 2 dB steps, and note that the displaysteps down in 2 dB steps. g, Check the display accuracy as attenuationis added. Error should not exceed +6.+ aep dB step, or exce€da cumulativeerror of +1.0 dB over the i6 dB window. d. Checkthat spurioussignalsare at least too dB down from the levelestablishedin part b. Spurioussignals above100dB down from the referenceestabtished in part b indicatethat the ylG-tuned preselectorfilter could be defective. 17. Check RF Attenuator Accuracy (Within0.5 dB/10 dB to a maximumof 1 dB over the 60 dB rangefrom dc to 1.8 GHz; within1.5 dB/tO dB to a maximumof 3 dB over the 60 dB range from 1.8GHzto 18 GHz;and withing dB/10dB to a maximumof 6 dB over the 60 dB range from 1g GHzto 21 GHz) h. Returnthe externalattenuationto 0 dB. change the VERTTCAL DlSpLAy to LtN. Set the signalgenerator outputfor a full screendisplay. i. Check that the signal amplitude decreasesro within *0.4 divisionsof half screenas 6 dB of external attenuationis added. j. Check that the signal amplitudedecreases ro within i0.4 divisionsot 114screenor hatf the previous amplitudeas an additional6dB of att€nuation is added. k. Check that the signal amplitude decreasesto within *0.4 divisionsot 1lg screen or half the last amplitudeas an additional6 dB of attenuationis added (for a total of 18 dB). t. Returnths vERTtcALDtspLAy to 1o dB/Dtvand disconnectths generatorfrom the RF lNpUT. This is a three part procedure. part I checks the first 30 dB (0-30 dB) range of the rf attenuator,Part ll checksthe remaining 30 dB (30dB-60 dB) range for frequenciesup to 18 GHz,and part lll checks the 50 dB to 60 dB step of the RF Attenuator lor frequencies above18 GHz. PART I a. Connectthe test equipm€ntas shown in Figure 4-14. Set the SpectrumAnalyzercontrolsas follows: 16. Check Preseleclor Ultimate Rejection This is a check of preselectoropeiation,not a per_ formancerequirementspecification. a. Connectthe test equipmentas shown in Figure 4-13, omittingthe step attenuators. Set the Spect-rum Analyzercontrolsas follows: CENTERFREOUENCY SPAN/D|V AUTO RESOLN REFLEVEL VERT|CALDTSPLAY MIN RF ATTENdB WIDEVIDEOFTLTER T|MEIDIV 3.SGHz (Band2) 10 kHz On 0 dBm 10 dB/Dtv O On AUTO b. Set the generatorcontrols for a full screen displayoutputat 3.S GHz. peak the responsewith the MANUALPEAKcontrotor pEAK MENUmode. _ c. Changethe FREQ RANGEto band 3 (3.0_7.1 GHz). 4-20 CENTER FREOUENCY SPAN/DIV RESOLUNONBANDWIDTH REF LEVEL MIN RF ATTEN dB MINNOISE VERTfCALDISPLAY NARROWVIDEOFILTER T|ME/D|V PEAK/AVERAGE VIEW A and VIEW B Test Freguency 200 kHz 100 kHz -30 dBm o On 2 dBlDtV On AUTO FullyClockwise On b. Set the power meter controls as follows: Mode Range Hold Power Reference Watts Out Out o o O o a o o o o a I o o o a o t O o o o t o o o o a o o o I t o o a o I a a o o o o o t o a o I o o I a a o o a PerformanceCheck procedure- POWERMETER RF OUT O I I I a O o o o o o a O a o POTYER SENSOR AOAPTER Flgure4-14. RF attenuatortest equipmentselup. c. Disconnectthe power sensor from the power divider, and connect it to th€ the I ,WISO MHz reference output port through an appropriateadapter. Be sure that the 50 MHz referenceis'tumedoff. - d. On the power meter,press SensorZeroand wait for the-zero light to turn off. Repeatuntil a zero is attained. O O I ATTET'IUATOf, LOW LOSSCOAXCABLEIYITHSMA COI{NECTORS f. Turn off the 50 MHz reference on the power meter, and reconnectth€ power sensor to th€ power divider. o a ADAPTER FOWERDIVTDER e. .On the power meter, set the 50 MHz reference on and set the Cal Factor switch to the 50 MHz reference.. Set the power meter Cal Adj for a 1.000 mW reading. o t o o o o I o ExT ALc ADAPTER I I o SPECTRUIIANALYZERUI{DERTEST SIGI{ALSOURCE ADAPTER 4g4Al4g4ApServlceVol. 1 g. Resetthe powermetercontrolsas follows: Cal Factor Mode RangeHotd Test frequency dBm Out con.h. setthe signatgen€rator(Hp g3508/s3595A) trols as follows: Frequency Mode Frequency OutputLevel CW Test Frequency --5 dBm i. Set the generatorcontrolsfor a -15 dBm power -5 dBm generatoroutput meter reading(approximately Ievel). j. Tune the CENTERFREQUENCY controt to brino the signalto centerscreen. k. The SpectrumAnalyzershould be displayinga signalof approximately-35 dBm. l. Use the SpectrumAnalyze/sAMPL CAL control to positionthe signalpeak at a convenientgraticuleline, then activateSAVEA. m. Establisha referencesettingfor the first 10 dB incrernentby pressingdB[Ref on the power meter. n. Resetthe MIN RF ATTENdB controlto 10 and the REFERENCE LEVELto -20 dBm. Reset the generatoroutputlevel for a power meterreadingof +10 dB (10 dB increasein outputlevel). 4-21 o o a o o PerformanceCheck procedure_ 4g4Ll4g4ApServlce Vol. 1 Tabte4-5 OTO 30 dB RF ATTENUATOR TESTSETTINGS SpectrumAnalyzer ReferenceLevel -30 dBm MIN RF ATTEN dB Setting ExternalAttenuator 0dB -20 ctBm -20 dBm 20 dB 10dB 20 dB 1 0d B -10 dB," -10 clBm 10dB 20 dB 1 0d B 20 dB -0 dBm 0dB 30 dB 0dB o. Check that the differencebetweenthe SAVEA and V|EWB_disptays is tessthan O.SdB up to 1.g GHz, lessthan1.5dB from .t.gGHzto 1g GHz,and tess than 3.0 dB from 18 GHZ to 21 GHz. Make a note of the level difference between the SAVEA and VIEW B displays. p. To check the next 10 dB step, reset the genera_ !o^rlor a 0 dB power meter reading,and replace the 20 dB attenuatorwith a 10 dB attenuitor. _- _e.I"peat parts m through o, except that the next MfN RF AfiEN dB setting witt Ue 20 and rhe reference levelwillbe -10 dB flabte 4-5). . r. lepeat,the procedurefor the third 10 dB step as a guide for setupinformationfor th€ lfing__T19le-4-5 third MIN RF ATTENdB setting. PART II a. The 30-60 dB range is checked in the same fashion as the 0-30 dB range using differentpower levelsbecauseof the outputlevellimitition of the signal generator. b. Connectthe test equiprnentas shownin Figure 4-14. Setth€ SpectrumAnalyzercontrolsas follows: CENTER FREQUENCY sPAN/DtV RESOLUTION BANDWIDTH REF LEVEL MIN RF ATTEN dB MIN NOISE VERTICALDISPLAY NARROWVIDEO FILTER TrME/DtV PEAK/AVERAGE VIEWA andVIEWB 4-22 Test Frequency 200 kHz 100kHz -25 dBm 30 On 2 dB/Dtv On AUTO FullyClockwise On Power Meter dB(Rel) 0 dB:Ref +10 dB 0 dB-Ref +10 dB 0 dB-Ref +10dB Power Meter dBm --15 dBm :-5 dBm --lA; =-5 dBm :-15 dBm :-5 dBm c. Set the power metercontrolsas follows: Mode Watts RangeHold Out PowerReference Out d. Disconnectthe power s€nsor from th€ power divider, and connect it to the 1 mW/S0MHz reference output port through an appropriateadapter. Be sure that the 50 MHz referenceis turnedoff. e. On the power meter,press SensorZeroand wait for the zero light to turn off. Repeat until a zero is attained. f. On the powermeter,set the S0 MHz referenceon and set the Cal Factorswitch to the S0 MHz reference. Set the power meterCat Adj for a 1.000mW reading. g. Turn off the 50 MHz referenceon the power meter, and reconnectthe power sensor to the power divider. h. Resetthe power meter controlsas follows: Cal Factor Mode RangeHold Test frequency dBm Out i. Set the generatorcontrols for a maximumpower meter reading,then reduce the generatoroutput tevel untilthe meterreads't1 dB lessthanthe maximum. j. Tune the CENTERFREQUENCyconrrotto bring the signalto centerscreen. The REF LEVELmay have to be varied slightlyto obtain a convenienton-screen display. k. Use the SpectrumAnalyzer'sAMPLCAL control to positionthe signalpeak at a convenientgraticuleline, then activatesAvE A. o O o o a o I o o o I o I o o ) I o o I o a o a I I a a o t t a a o a a a o o o I PerformanceCheck procedure- 4g4Al4g4Ap ServlceVol. 1 ) o o o o o a l. Establisha referencesetting for the first 10 dB incrementby pressingdB[Ref on tie po*"i meter. m. Increasethe tr4tNRF ATTEN dB setting by 10 and reset the REFERENCE LEVEL10 dB higherthan the levetset in part j. Resettn" !"n"i"i* output level for a power meter readingof +16 Oe. Eeter to Tabte 4-6 for setupinformationai each rf attenuaior setting. n. check that the differencebetweenthe SAVEA and VIEW.B_displays i9 t^e1than0.5 dB up to .t.AGHz, less than 1.5dB from 1.9GHzto f g Gftz, lnd 'note tessthan 3.0 dB from 1g GHz to 21 GHz. frrt"f."'" level differencebetween the SAVEA and of the VIEWB displays. I o o I o CENTERFREQUENCY SPAN/DlV RESOLUTIONBANDWIDTH REF LEVEL MIN RF ATTEN dB MIN NOISE VERTICALDISPLAY NARROWVTDEO FILTER TIME/DIV PEAK/AVERAGE VIEWA and V|EWB o. Continueto cheekthe secondand third attenuator steps usingTable 4;6 as a guide for setup information. Make a note of the levelliference at each settingbetweenthe SAVEA and VIEWB ctisptays.step p. Using the data noted in step o of part steps n and o of part lt, check that deviation I and over the entire60 dB rangeis lessthanI dB up to 1.g GHz,teis than 3dB from 1.gGHz to lgGH;, and tess than 6.0 dB from 1BGHzto 21 GHz. t I t a I o o o o o b. Connectthe test eguipmentas shown in Figure 4-15. Set the SpectrumAnatyzercontrolsas followj: Test Frequency 200 kHz 1 MHz -25 dBm 50 On 21BIDIV On AUTO FullyClockwise On c. ^ !o1n_ectthe power sensorto the 1 mW/50MHz Power Ref Output port_onthe power meterthroughan appropriateadapter. Be sure that the 50 MHz ieference is turnedoff. d. On the power meter,pressSensorZeroand wait for the zero light to turn off. Repeatuntit a zero is attained. e. On the power rneter,set the 50 MHz reference on and set the Cal Factor switch to the S0 MHz reference. Set the power meter Cal Adj for a 1.000mW reading. PARTIII Dueto-outputpowerlimitationsof the signalgen.a. erator, a different test setup is required to test the 50-60 dB step of the RF Att€nuatorfoi frequencies above18 GHz. I O o o o I o o t o a t I I a o Table 4-6 SpectrumAnalyzer ReferenceLevel -25 dBm - 30 TO 60 dB RF ATTENUATOR TESTSETTINGS MIN RF ATTEN dB Setting ExternalAttenuator 30 dB -15 dBm -15 dBm 20 dB 40 dB 20 dB 40 dB -5 dBm 1 0d B 50 d8 -5 dBm 1 0d B 50 dB 0dB +5 dBm 60 dB 0dB Power Meter dB(Rel) 0 dB-Ref +10 dB 0 dB-Ref +10 dB 0 dB:Ref + 1 0d B Max Power Meter Reading In dBm (Maximum- 11 dBm) (Maximum- 1 dBm) - 11 dBm) (Maximum (Maximum- 1 dBm) - 11 dBm (Maximum (Maximum- 1 dBm) o t I o 4-23 PerformanceCheck procedure- 4g4Al4g4ApServiceVot. 1 f. Turn off the 50 MHz reference on the power rneter, and disconnect th€ power sensor from the PowerRef Outputport. k. Use the Spectrum Anatyzer's REFERENCE LEVELand AMPL CAL controls to position tho signal peak at a convenientgraticuleline,then press SAVEA. g. Collect the generator output to the Spectrum AnalyzerRF lN through the precisioncabte and 10 dB attenuator. l. Disconnect the Spectrum Analyzer from the 10 dB attenuator,and connectthe power sensorto the attenuator. h. Set the generatorcontrolsfor a maximumoutput power. m. Establisha referenceby pressingdB[Ref on the powerrnet€r. i. Tune the CENTERFREQUENCycontrotto bring the signalto center screen. The REF LEVELmay hav6 to be varied slightly to obtain a convenienton-screen display. j. Reduce the generator output power by 1 dB. _This allowsenoughof an adjustmentrangeto piovide a 10 dB incrementin power levellater. n. Without disturbing any settings, remove th€ 10 dB attenuatorand reconnectthe cable directlyto the power sensor. o. Reset the generatorcontrolsfor a +10 dB power meterreading. p. Disconnectthe cablefrom the power sensor,and connectit to the SpectrumAnalyzerRF lN. SPECTRUMANALYZER UNDER TEST POWER METER SIGNAL GENERATOR --J PRECISIONLOW LOSS CABLE 10 dB ATTENUATOR I I I I I I I I I a a a o o o o o I o o o t o I o o POWER SENSOR Figure 4-15. RF attenuato. test equipment setup for 50-60 4-24 o o t o a o o o o a o I o o o I t t dB step. a a o o a I I o I a o o o o o o a o I o o I I , o I o I a o o a a a o a o PerformanceCheck procedura q: .. 19.gt the SpectrumAnalyzerRF attenuatorsetting to 60 dB, and increasethe reference level setting by t0 dB. I c. ActivateMIN NOISEand note signallevel Level shift must not exceed *0.g dB, o-,+ minorshift. Oiui_ sions(attenuatorplus gain accuracies). t I t o o O a I o dB Ratio of Signal Plus Noise Correction Factor change the REF LEVEL from _20 dBm to -30-9. dBm, in 1 dB increments,with the 1 dB stef attenuator,and note incrementaland 10 dB step accuracies. h. Return the 1 dB step attenuator to 0 clB. Decrease the signal level by 10 dB with external attenuation,or with the signat generator output fevel control, then re-estabtishthe signal referenceampli_ tude. i. Check the -30 dBm to -40 dBm gain accuracies as in part e. j. Repeat the procedurecheckinggain accuracies to -60 dBm. k. Establish a signal reference amplitude of -60 dBm, activate NARROW VTOEOFILTER, then checkgain accuracyto -70 dBm. I. Decreasethe RESOLUTION BANDWIDTHand SPAN/DIVto 1 kHz. Re-establisha signal reference levelof -70 dBm as describedpreviously. m. Check the -70 dBm to -90 dBm gain accuracies by repeatingthe processpreviouslydeicribed. n. Decrease the RESOLUTTONBANDWTDTH 100 Hz and SpAN/DIVto 50 Hz, reestabtishthe signal referencelevel and check the -g0 dBm to _gOdBm and -90dBm to -1 00dBm gain accuracies.These rangesare directlyrelatedto the -60 dBm to _70 dBm check(parts d throughm). 100MHz 10 kHz 10 kHz -10 dBm 0 1 dB/Dlv On AUTO off O o o e. switch ihe REF LEVELfrom _10dBm to _20 dBm in I dB steps, adding.l dB of externatatt€nuation at each step. Note incrementalaccuracyand the 10 dB 91n.jr9g!racy. Incrementataccuracy must be within 0.2 dB/dB. Maximumcumulativeerroi rnustnot exceed 0.5 dB except when steppingfrorn the g dB to 10 dB increment, where the error could be an addational 0.5 dB. This exception_does not apply when stepping from -69 dBm to _70 dBm,_79 dBm to _go oem, itc.f. DeactivateMtN NolsE. Return the 1 dB step attenuatorto 0 dB, decreasethe output of the sign;l generatorby 10 dB or add l0 dB of external attenuation. Reset the generatoroutput so the signal tevetis againat the 6th graticuleline. 18. Check lF Gain Accuracy (+0.2.dB/dBStep to a miximum of *0.S dB/g dB exceptat the decadetransitionsof _19 Oem _eO to -29 dBm, dBm to __30dBm, _3s oam to _40 dBm, -49 dBm ro -S0 dBm, and _59 dBm io _60 oBm wherean additionalO.SdB can occurfoi a totat of dB/decade.Maximumdeviationover the full g7 t dB rangeis within+2 dB) T.hf".checkrequirescalibratedattenuators .. to check the 10dB and 1 dB steps. When mafing measurements within 10 dB of the noise floor, a correction tor shouldbe used to correct for the logarithmic facaddition of noisein the system,as shownin fi6te +-2. a. Connectth€ test equipmentas shown in Figure 4-13, usingthe calibrated'1ddB ano t ae attenuators !"j ::g^::l the output-of the g"n"r"to, oirecily to the RF TNPUTif individuatfixed atGnu"tor" be used as "r"1o controls lhe standard).Set th€ SpectrumAnalyzer as follows: - b. Set the generatorcontrolsfor a 100 MHz output frequency,and a signalamplitudeot six Oivisions. a d. Set the output of the signal generatorto repositionthe signallevelat the 6th graticuleline. between the SAVEA .r, lheck that t,€ and.VIEWg.gi.prqfr {itEreqce t\"n s.ri o-e. Make a note is \ss of th€ levetdiffere(rce OetNqer/ttreSnVe n'anO V|EWB displays. \ s. Usingthe data noted in step o of part l, and o of part ll, and step r of part ttt, ctreck steps n that deviatlon overthe entire60 dB rangeis lessit Og. "n'O CENTEBFREOUENCY SPANIDtV RESOLUTION BANDWIDTH REFLEVEL MIN RF ATTENdB VERTICALDISPLAY WIDEVIDEOFILTER TrME/DtV SAVEA 4g4Al4g4ApServlce Vol. 1 Table 4-7 CORRECTIONFACTORTO DETERMINETRUE STGNAL LEVEL 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 't2.0 14.0 3.0 2.20 1.65 1.26 0.97 0.75 0.s8 0.46 4.28 0.18 4-25 PerformanceCheck procedure- 4g4Al4g4ApServiceVol. 1 19. Check Gain Variation Between Resolution Bandwidths (Less than *0.4 dB with respect to the 3 MHz fitter and less than 0.8 dB betweenany two filters) Before performingthis check, do a front panelCAL procedure by pressing CAL and per_ forming the steps promptedby the spectrum analyzer. a. Apply the CAL OUT signatto the RF tNpUT,and set th€ SpectrumAnalyzercontrolsas follows: CENTERFREQUENCY 100MHz SPAN/DIV 100 kHz RESOLUTION BANDWTDTH 3 MHz -18 dBm REFLEVEL MlN RF ATTENdB 0 VERTICALDISPLAY 1 dB/Dtv MIN NOISE On TrME/D|V AUTO FREQ RANGE sPAN/DrV RESOLUTION BANDWIDTH REFLEVEL MIN RF ATTENdB VERTICALDISPLAY NARROWVIDEOFILTER VIEWA&VIEWB PEAK/AVERAGE TrME/DrV 0-1.8 GHz MAX 10 kHz -100 dBm 0 2 dBlDlV On On FullyClockwise 1s b. Enable a marker by pressing TUNE CFIMKR. Tune the markerto the highestpoint on the noisefloor. Activate zERo SPAN, and change the RESoLUTIoN BANDWIDTHto 3 MHz and the REFERENCE LEVELas ncessaryto view the baseline. c. Checkthat the noise floor (level)is down as per Table 4-8 (at least -80 dBm down if checkinga standard instrument,or -31 dBmV if checking the 7SO input in an Option07 instrument). d. Change the RESOLUTTONBANDWTDTHto 1 MHz. e. check that amplitudedeviationfrom the 3 MHz referenc€is no morethan *0.4 dB. f. Change the RESOLUTTONBANDWTDTHto 100 kHz and the FREQSpAN/Dtvto .t0 kHz. g. Check that amplitudedeviationfrom the 3 MHz referencelevelis no morethan f 0.4 dB. h. R€p9at the procedureto check the remaining filters(10kHz, 1 kHz, 100H2, and 10 Hz) to verifythat the signal amplitude does not change more than +0.4 dB from the 3 MHz referencelevel. i. Check variation between any two filters (0.g dB) by finding the filter that has the lowest amplitude,sav_ ing it on the A-trace,then comparingthe other filtersto the saved trace. a. conn€ct the cAL ouT signat to the RF tNpuT, and perform th€ CAL routine. Remove the CAL OUT signalfrom the RF lNpUT, and terminate the FF INPUTin its characteristicimpedance. Set the SpectrumAnalyzercontrolsas follows: 4-26 o I I t I m. Gheck that the noise floor (level) is down as per Table 4-8. a o a O o o a o o o o o I o o N. RESETthE RESOLUTION BANOWIDTH tO 1O HZ. and VERTICAL DISPLAY to 5 dB/DlV. O The REF LEVEL will have to be reset each tiME thE RESOLUTION BANDWIDTH iS changed. d. RESET thE RESOLUTION BANDWIDTH tO 1 MHZ. e, Check that the noise floor (level) is down as per TablE 4-8. Reset f. 100 kHz. the RESOLUTION BANDWTDTH to g. Check that the noise floor (level) is down as per Table 4-8. h. RESET thE RESOLUTIONBANDWIDTHtO 1O KHZ. i. Check that the noise floor (level) is down as per Table 4-8. j. Reset the RESoLUTION BANDWTDTHto 1 kHz. k. Check that the noise floor (level) is down as per Table 4-8. I. RESET thE RESOLUTIONBANDWIDTHtO 1OOHZ. 20. Gheck Sensitivity (Referto Table4-8) I I b. Activatethe AA mode by pressingFINE. c. Resetthe REFERENCE LEVELcontrotto position the calibrator signal at the 7th graticule line (1 major division from the top), then activate SAVEA to store the 3 MHz amplitude. o o o a a o o o o a o o. Check that the noise floor {level) is down as per Table 4-8. p. Repeat this procedure for the remaining coaxial input frequency range (1.7 to 21 GHz). lf desired, the sensitivity for the waveguide bands can be checked as per the listings in Table 4-8. The values for the 50 GHz to 140 GHz range are typical and not intended as a performance requirement. o I a a a o a o o o o o I o o o o o o a o o o o o o I o I I O a O o o o o o o o a a I o o a I o I a o o o a PerformanceCheck procedurc - Band/Frequency eanQ I MHz Table 4-8 SENSITIVITY. tN dBm (dBmVfor 75o tNpUT) 1 MHz 300 kHzb 100kHz 10 kHz 4g4Ll4g4ApService Vol. l 1 kHz 100 Hz 10 Hz | (cut, -80 -85 -90 -95 -105 -115 -12s -134 -31 -36 -41 NA -56 -66 -76 -85 -74 -79 -u -89 -99 -109 -119 -125 -60 -65 -70 -75 -85 -95 -105 -111 Band4 (50o Input) 12-18 GHz -55 -60 -65 -70 -80 -90 -l 00 -107 uano ] (5utr tnput) 15-21 GHz -55 -60 -oc -70 -80 -90 -100 -'t07 bano bs (5o{} Input) 78-27 GHz -65 -70 -75 -80 -90 -100 -108 -116 -60 | -65 -74 -75 -85 -9s Input) 10 kHz-l.8 GHz \rPuonu/ (/5{r Input) 5 MHz-l GHz E anss z 6( U (5U{1, Input) 1.7 GHz-7.1 GHz Eano 4 (curl tnput) 5.4-12 GHz Eanos / arue(5uo Input) 26-60 GHz Band9c (50O Input) 50-90 GHz Band 10c(50o Input) 7$-140 GHz Band11c(50O Input) 110-220 GHz Bandl2c (50O fnput) 170-325 GHz ypically-95 iHz ypically-90 40 GHz ypically-80 20 GHz ypically-70 25 GHz MIN RF ATTEN dB VERTICAL DISPLAY TrME/DtV -103 | -trr dBm for 1 kHz resolutionbandwidthat 50 GHz,degradingto -g5 oam at g0 dBm for 1 kHz resolutionbandwidthat zs aHz, oegradingto -7s oam ai dBm for 1 kHz resolutionbandwidthat 110 enr, o"graoingto -65 dBm at dBm for 1 kHz resolutionbandwidthat 170 GHz, degradingto -55 dBm at 21. Gheck Residual Spurious Response With no inputsignat,-100 dBm oi tessl _a. Removeany signal connectedto the RF lNpUT, and terminatethe RF tNpUT in 50O. Set the Spectrum Analyzercontrolsas follows: CENTERFREQUENCY SPAN/DIV RESOLUTION BANDWIDTH REFLEVEL | 50 MHz 10 MHz 10 kHz -50 dBm 0 10 dB/Dtv AUTO b. Press STEPSIZE to estabtish a center frequencystep size. This will allow changing center frequencyin 50 MHz incrementsby use of the +STEPand -STEP pushbuttons. c. Scan the frequencyrange of bands "1, Z, o( S in 100 MHz increments. Note the amplitudeof any spurious response. Spuriousresponseamplitudesmust not exceecl-1 00 dBm. (ActivatingA F after each increment, makes it easier to determine100 MHz increments.) a Equivalent maximum inPut noise (average nois€ {or €sch resolution bandwidth with int€rnal mixer and rEKTRoNtx waveguide Mixers), b Option 07 reptaces the 100 kHz filter with a 300 kHz filter. c TEKTRONIXWaveguide Mixers. 4-27 PerformanceCheck procedure- 4g4A/4g4ApServiceVol. 1 Spactum Analtrar Un(br Totl al|C T{oilt clot Figure 4'16. Test equlpment setup for checking intermoduration distortion. b. Set the generatoroutputs approximately2 MHz apart within the frequencyrange of band 1, and set the outputlevelsfor full screensignals. c. Decreasethe separation of the generatorfrequenciesto 1 MHz. Reset the spAN/Dlv to 500 kHz AndRESOLUTION BANDWIDTH to 1OKHz. f1 t2 freq.-..t, Third (3rd) Order Intermodulationproducts d. Check that the third order lM productsare at least 70 dB down trom the input signallevel. See Figure 4-17. 2127_.ts Figure4-17. Intermodulatlon products. 22. Check Intermodutation Distortion fl-hirdorder productsat least 70 dB down from anv two on-screensignals) a. connectthe test equipmentas shown in Figure 4-16, and set the SpectrumAnalyzercontrolsas follows: FREORANGE CENTERFREQUENCY 0 - 1 . 8 ( B a n d1 ) Within 2 MHz of Test Generators sPAN/DrV 5 MHz RESOLUTION BANDWIDTH 1 0 0 k H z -30 dBm REFLEVEL n MIN RF ATTENdB VERTICAL DISPLAY 10 dBiDrv TrME/DrV AUTO 4-28 Use the Video Filter and very slow sweep ratesto help resolvethesesidebands. e. Decr€asethe signal separationand SPAN/DIV settingsand re-checkfor sidebands. Checkfor lM products at olher spans of the frequencyrange. lM products shouldbe -70 dBc or more. f. Change the FREQUENCYRANGE to Band 2 (1.7-5.5 GHz),FREQSPAN/DIVto 5 MHz, and RESOLUTIONBANDWIDTH to 100 kHz. g. Reset the generator outputs approximately 2 MHz apart within the frequencyrange of band 2, and set the outputlevelsfor full screensignals.Reducethe SPAN/DIVand RESOLUTION BANDWIDTH so the noise floor is at least 70 dB down from the referencelevel. h. Checkthat lM productsare at least70 dB down from the inputsignallevelor top of the screen. o o t o a o O a o I o I o a o I I a o t o o o o o o o o o o t o o o t I C a a O o o o o o o o o I o s o ) o o o o o I I I t I I I a o o o o o o o t a I a o o a I I o a t a I a PerformanceCheck procedure- 23. Check Harmonic Distortion {-60 dBc or tessfrorn10 kHz to 1.gGHz) {Not discernibleabove tt no]r" ftoor (at teast100dBc)from 1.7GHz " "u"r"g" to 21-cHti Testedat -90 dBm in MIN DTSTORTTON mode a. Gonnectthe test equipmentas shown in Figure 4-18, and set the Spectrum-Analyzer as fol_ lows: "onirolu CENTERFREOUENCY Same as Generator sPAN/DtV 5 MHz AUTORESOLN On REF LEVEL -30 dBm MIN RF ATTENdB 0 VERTICALOTSPLAY 10 dB/Dlv WIDEVIDEOFILTER On MIN DISTORTION On VIEWA and V|EWB On TrME/DtV AUTO Note the SpectrumAnalyzerdisplayas the gen.b. erator frequencycontroris variid auoui ilie center frequencyof the bandpassfilter if a bandpass filter is used in the test, or as the frequencyis varied below the cutofffrequencyif a low pass filter is used. Set the generatorfrequencyat that frequency that yieldedthe maximumamplitudein part b, then set the outputtevetfor a fuil screen(_30 Oelnyiign"t. In Figure4-18,the filtershownmusthavea minimumof 40 dB rolloffto attenuatemulti_ ples of the generator frequency,and the frequencyot the signal generatordepends on the frequencycharacteristics of the fitter. d. SEt thE CENTER FREQUENCY tO !2jlLq$lequency), FREQSPAN/D|Vto 500 kHz, and RESOLUTTON BANDWTDTH to 10 kHz. e. Checkthat the secondharmonicof the input sig_ nal is at least60 dB belowthe -90 dBm carrier. f. SEt thE CENTERFREQUENCYtO thE 3rd hAr. monic. g, Checkthat the third harmonicof the input signal is at least60 dB down from the -30 dBm carrier. 24. CheckLO Emission (-70 dBmor tess) CenterFrequency Span/Div Min RF AttendB VerticatDisplay Time/Div Triggering BaselineClip ReferenceLevel Auto Resolution View A and View B Mdeo Filter Peak/Average 4g4Al4g4ApServiceVd. l 2O72MHz 2MHz 0 t0dB/DtV Auto Free Run Otr -70 dBm On On Wide FullyClockwise . b. Set the SpectrumAnalyzerundertest as foltows: CENTERFREQUENCY 0Hz -30 dBm REFLEVEL SPAN/DIV 100kHz MIN RF ATTENdB 0 PEAK/AVERAGE FullyClockwise c. Checkfor any indicationof LO emission.LO ernission mustbe fessthan-70 dBm. 25. Check 1 dB Compressionpoint (-20 dBmBandsI through 5) Calibrate the power meter befora making this measurement. a. Use the power meterto set the outputlevel of a signalgeneratorto 0 dBm at 1.7 GHz. b. Connectthe test equipmentas shown in Figure 4-19, using th€ generator with the calibrated output level. Set the SpectrumAnalyzercontrolsas followsi CENTERFREOUENCY sPAN/D1V AUTORESOLN REF LEVEL MIN RF ATTENdB VERTICALDISPLAY VIEWA and VIEWB TIME/DrV 1 . 7G H z 100kHz On -30 dBm 0 10 dB/Dtv On AUTO c. Set the attenuatorsfor 25 dB of attenuation. a. Monitor the RF INPUT with a hioh frequency spectrum analyzer such as a 4g2A. Set tie test spectrum analyzer controls as follows. 4-29 PerformanceCheck procedure- 4g4Al4g4ApServiceVol. 1 Spectrum AnalyeerUnderTest Figure4-18. Test equipmentsetuplor checklngharmonicdistortion. d. Monitorthe 10 MHz lF outputon the rear panel with a test sp€ctrum analyzer through a 1 dB step attenuator.Set this step attenuatorfor 0 clB of attenuation. e. Set the test spectrum analyzercontrols as tollows: CenterFrequency FrequencySpan/Div Resolution Ref Levet VerticalDisptay Time/Div 10 MHz i MHz Auto _20 dBm 2 dB/Div Auto f. Use the test spectrumanalyzerCenterFrequency controlto cent€rthe 10 MHz signalon the test spectrum analyzer. 4-30 g. ActivatezERo spAN and set the CENTERFREOUENCYcontrolto maximizethe 10 MHz signalon the test spectrumanalyzerdisplay. h. Resetthe test spectrumanalyzerreferEncelevel for a four divisionexcursionof the signal. i. Increasethe input signal level to the Spectrum Analyzerby switchingout 1 dB of attenuationbetween the signalgeneratorand the RF INPUT. Add 1 dB of attenuationbetweenthe 10 MHz lF outputand the test spectrumanalyzer. j. Checkthat the 10 MHz lF outputlevelon the test spectrumanalyzerdisplayremainsconstantas 1 dB of attenuationis removedfrom the generatoroutput path and insertedin the 10 MHzlF outputpath. k. Continueto increasethe input signallevelto the RF INPUT by 1 dB incrementswhile increasingthe attenuationbetweenthe 10 MHz lF output and the test spectrumanalyzeruntil the signalamplitudeon the test analyzerdecreases1 dB (0.5division).This is the 1 dB point. compression o I o o o o PerformanceCheckprocedure- o 4g4Al4g4ApServiceVol. 1 TEST SPECTRUMANALYZER I o e I o o TO 10 tlHz tF OUTPUT (REARPANEL) STEP ATTEI{UATOR o a SIGNAL GENERATOR o {l I I RF INPUT POWERMETER @o@o@g@@ SPECTRUTTI ANALYZER UNOERTEST RF INPUT OUTPUT a I o o a o o e o o I o o o o i o I I o a STEP ATTENUATORS Flgure4'19. Test equrpmentsetuptor checkrng 1 dB inputcompressionpoinl l. Checkthat the 1 dB compressionpoint occurs at -20 dBm or less (20 dB or less attenuationOetweenthe generatorand the RF INPUT). 26. Check External Reference Input power (+15dBm to -15 dBm) (1 MHz,2 MHz,5 MHz,or 10 MHz.) a. Connectthe outputof a signalgeneratorto a frequency counter and set the generator frequency to 10 MHz *50 Hz. b. Disconnect the generator output from the counter,and connectit to the EXTERNALREFERENCE Input connector on the rear panel of the Spectrum Analyzer. c. Set the generatoroutputlevelto *1 5 dBm. ...d..Monitorthe SpectrumAnalyzerCAL OUTsignal with the frequencycounter. e. Check that the crt readout for REF OSC reads EXT. f. Checkthatthe frequencycounterreads100 MHz. g. Reset the output of the signal generator to -15 dBm. h. Checkthat crt readoutstill readsEXTand the fre_ quencycounterstill reads 10x the referencesourcefre_ quency. lf the crt readout changes to E_U (External Unlock), recheck the external reference source frequencytor 10 MHz *S0 Hz at -15 dBm. 27. Check Triggering Operation and Sensitivity trigger:2 divisionsor more) .(lnternal trigger:1.0V peakfrom .t5 Hz to 1 MHz) {External a. Connectthe test equlpmentas shownin Figure 4-20. C o o a 4-31 o a o o a o PerformanceCheck procedure- 4g4A/4g4ApServiceVol. l Speclnm Andyrcr Undcr Tcst I a o t t e o Iodrl.l.d RF Figure4'20. Test equlpmentselup for checkingIntemaltrlgger characteri3tica. b. Set the SpectrumAnalyzercontrolsas follows: CENTERFREQUENCY SPAN/DIV RESOLUTTON BANDWTDTH REF LEVEL VERTICALDISPLAY TRIGGERING TIME/OIV VIEWA and V|EW B 100MHz 10 kHz 1 MHz -30 dBm LIN INT S ms Off _ c. Set the signal source output amplitude for -30 dBm, and an output frequencyof 100 MHz. Note that the signalsourcewill be modulatedby the function 9enerator. d. Decreasethe output of the signalsourceso the display is half screentthen rnodulatethe signalsource with a 1 kHz sinewave. e. ActivateZEROSPANand, if necessary,resetthe CENTERFREQUENCY controlfor maximumresponse. f. Set the function generatoroutput for a modula_ tion amplitudeof two divisions. g. Checkth€ internaltriggeroperationin the 15 Hz through1 MHz frequencyrange. Because of deflection amplifier response, the displayamplitudewill decreaseat the high frequencyend. The triggeringsignal 4-32 a o o o a f o can also be appliedto the MARKER/VIDEO connectoron the rear panel if a jumper is connected between pins 1 and 5 (Video Select) of the r€ar-panel ACCESSORIES connector(Figure4-21). h. Connectthe test equipmentas shown in Figure 4-22. i. Set the function generatoroutput frequencyat 1 kHz, and output level at 2 V peak-to-peak,as indicatedon th€ test Oscilloscope. j. ActivateEXTTRIGGER|NG. k. Check that the sweep is triggeredover the frequencyrangeot 15 Hz to 1 MHz. I. REIUTNthE TRIGGERINGtO FREE RUN ANd disconnect the test equipment. 28. Check External Sweep Operation {O to t0 V (dc + peak ac) *1 V for a lull screen deftection) This is an operationalcheck, not a performance requirement. t o a o o O o o o a a o o a a o o a o a c o o a PerfonnanceCheck procedure - a. Connectthe test eguiprn€ntas shown in Figure 4-22. Set the Spectrumenityzer fouows: "ontroi, "i VERT|CALDTSPLAY 2 dB/DtV T|ME/D|V EXT VIEWA and V|EWB Otr b. Set the functiongeneratorcontrolsfor no output 4g4ful4g4ApServiceVol. l Pioa€ POWEF \s7/^t (0v). c. Use thE POSITION to position the crt "ontroi beam -on the left graticuleedge. This'est;btishesthe 0 V reference. d. Resetthe functiongeneratoroutputfrequency to 1 kHz, and increaseits outputlevelfor trti t O-Oiri"ion sweepon the SpectrumAnalyzer. " e. Checkthat the functiongeneratoroutput level is 20 V peak-to-peak*2 V. t15VMAX CAUTION JIdACC-ESSORIT pin t, Video Setecr - ooooooo?toooo oooo ococoooo NOT RS232 COMPATIBLE A variablevoltage source can be used in plac€ of the function generator to check external sweep operation, lf used. the rangewould be 0V to +10 V. Place jumper between pin I antl pin 5 lo selecl EXTERNALVIDEO. f, Disconnect and remove the test equipment. ReturnTIME/DIVto AUTO. Figure4-21. Extemalvldeo select plns and MARKER IVIDEO Input Test Oscltloscope Funclion Generato. @ @ @ @". ooooooo Spectrum Analyzer Under Test (Rear Panel) Figure 4'22' Test equipment setup for checking external triggering and horizontal input characteristics. 4-33 Performance - 4g4Al4g4Ap checkProcedure servrceVor.I 29. Check VERTOUTPUTSignal (0.5V *5% per divisionof disptayfromthe center line) a. Monitor the VERT OUTPUT with a dc_coupted test oscilloscope. b. S€t the test oscilloscopecontrolsfor a sensitivity of 1 V/div and a sweeprate of 10 ms. c. Set the SpectrumAnalyzercontrolsas follows: CENTERFREQUENCY SPAN/D|V RESOLUTTON BANDWTDTH REFLEVEL VERTICALOISPLAY VIEWA and V|EWB TRIGGERING TrME/DlV 100 MHz 100 kHz 100 kHz -20dBm 2 dB/DIV Off FREERUN AUTO d. Apply the cAL oUT signatto the RF tNpUT and verify that the signal amplitude is full screen. lf not, performthe CAL routine. e. check that the amplitudeof the VERTouTpuT signal is 4 V peak-to-peak +0.2 V centered around 0 Vdc as disptayedon the test oscilloscope.See Figure 4-23. b. Set TIME/D|V to MNL, and vary the MANUAL SCANcontrolfor a five divisionbeamdeflectionleft and right of center screen. Note the voltageswe€p on the test Oscilloscopeas the MANUAL SCAN control is varied. c. check that the output voltagevaries 5 v *.10"/o peak-to-peak, centeredaround0 Vdc, d. Reset the TtMEiDtv to AUTo. Disconnectand removethe test equipment. OPTIONINSTRUMENTS 31. Check Option 07 Calibrator Output (+20dBmVr0.5 dB) a. Connect the 50O port of the 75o to 50o MinimumLossAttenuatorto a 100MHz 50O source. b. Monitor the 75o port of the 75o to 50o MinimumLoss Attenuatorwith the powermgter. c. Set the generator output level for a readingof -28.95 dBm on the power meter. a t I t d. Disconnectthe power meter from the 7SO port and connectthe 75O port to the 75O INPUT of the SpectrumAnalyzervia a 75O cable. e. Set the SpectrumAnalyzercontrolsas follows: I r'/DIYISP}I rttl OF DISPLAY FORFIL|.SCREEX) {. [-i3fil l t r l OY Flgure 4-23. Test oscllloscope dlsplay of VERT output wlth a full screen dlsplay on the Spectrum Analyrer. 30. Check HORIZOUTPUTSignatLevel (0.5V/division*syo either sid-eof center) a. Monitorthe HORIZOUTPUTwith a dc_coupted test oscilloscope. 4-34 CENTERFREOUENCY sPAN/DrV RESOLUTION BANDWIDTH REFLEVEL MIN RF ATTENdB VERTICALDISPLAY TrME/DlV PEAK/AVERAGE 100MHz 500 kHz 1 MHz +18 dBmV 0 1 dB/DrV AUTO FullyClockwise f. Set the AMPL CAL control on the SpectrumAnalyzer for a O-division excursionof the signal. g. Removethe 75O cable frorn the 75O port ot the 75O to 50O MinimumLoss Attenuatorand connectit to the CAL OUTconnectoron the SpectrumAnalyzer(CAL OUTto 75o INPUT). g. Checkthat the displayis 6 divisions*0.5 dB. i. Set the Spectrum Analyzer REF LEVEL to +20 dBmV and reset the the AMPL CAL control for an excursionof the signal. 8-division PerformanceCheck procedure _ 4g4Ll4g4Ap Service Vol. 1 32.Gheck Option 07 FrequencyResponse (Response,about tt"' rniJioini'.0!i*""n . two €xtremes,measured with 10dg oi nF-ettenuation, is *2 dBfromS MHzto 1000MH;i response farts.lt-trryughf checkfrequency g il;;;; fro.mt0 MHzto 1 GHz,anO'partJ i;ff;:.t*ouency response from6 Mllii" oo I o I CENTERFREOUENCY 500 MHz SPANIDIV 100MHz RESOLUTION 3 MHz REFLEVEL +23 dBmV VERTICALDTSPLAY 1 dBiDtv MAX HOLD On MIN RF ATTENdB 0 TrMElDlv AUTO PEAK/AVERAGE FullyCounterclockwise o RF OUT ot a SWEEPOSCILLATOR b. Set the SpectrumAnalyzercontrolsas follows: SPECTRUIIAiIALYZER UilOEF TEST TO EXT.ALC tilpUTCo0$ttECTOn I a. Connectthe test equipmentas shown in Figure 4-24. ExT ALc o TO RF OUTCOI{}{ECTOR r{TOSIIAADAPTER { POWER SPLITTER 5G) REF LOW LOSSCOAXCABTEWITHSUA CONilECTORS 5560.15 Flgure 4-24' Equlpment retup for checklng option 0z trequency ?esponse from 0.ol GHr to 1 GHz. 4-35 PerformanceCheck Procedure- 4g4A/4g4ApServlceVol. 1 - c. Set tle_:rlveeposcillatorcontrolsfor a cw output frequencyof 500 MHz and an amptitudeof +20 Oe;1V at the 75O INPUT. d. lf necessary,set th€ cAL AMPL adjustmentfor 5 divisionson the SpectrumAnalyzerdisplay. e. Reset the sweep oscillatorcontrolslor a sweep outputfrom 0.01GHz-l GHz. Enablesinglesweepon the sweeposcillator,and activateMAX HOLD. f. Make a note of the highestand lowestpeaksfor latercomparison,then deactivateMAX HOLD. S, Reconnectthe test equipmentas shownin Figure4-25. ResetCENTERFREQUENCy to 10 MHz. h. Set the SpectrumAnalyzercontrols as follows, then set the generatorcontrolsfor a +20 dBmV of the signalat 10 MHz. Srcl|AL SOTRCE (5 ltHz-io CENTERFREOUENCY 10 MHz SPAN/DfV 500 kHz RESOLUTION 1 MHz REFLEVEL +23 dBmV VERTTCAL DTSPLAY 1 dBlDlV MIN RF ATTENdB O T|MEIDIV AUTO PEAK/AVERAGE FullyCounterclockwise i. Manually tune the Signal Generator towards 5 MHz while simultaneously tuning the CENTERFREQUENCYcontrol to hold the signat at center screen. Makea note of the highestand lowestpeaks. j. calculate the halfway point between the highest and the lowest peak from the peak data noted in parts f and i. k. Checkthat flatnessis within !2 dB from 5 MHz to 1000MHz. SPECTRUTANALYZERUNOERTEST tdHz] E!- F Figure 4-25. Equipment setup for checklng option 07 frequency response from 5 MHz to 10 MHz- 4-36 PerforrnanceCheck procedure- 33. Check Option 4t Frequency Span/Div Accuracv !1t73 o.t5 MHz/Divover the cdnter6 divisionsof the display) Sp:laccuracy is c_hecked at centerfrequencyset., tingsof 6 GHzand 11 GHz. a. 'Connectthe test equipmentas shown in Figure 4-26. set the sp€ctrumAnalyzer follows: "ontroir ", FREQRANGE 5.4-18GHz CENTERFREQUENCY 6 GHz sPAN/DtV 5 MHz RESOLUTION BANDWIDTH 100kHz REFLEVEL As Needed TrMElDtv AUTO VERTICALDISPLAY 10 dB/Dtv 4g4ful4g4Ap ServiceVol. 1 b. Modulatethe Comb Generatorsignal with .2ps time markers. c. peak the responsewith the MANUALpEAK control and set REF LEVELfor the best markerdefinition. d. use the HorizontalposlTloN control on the Spectrum Anafyzer to position a marker to center screenthen checkthe accuracyover the centersix divisionsof the disptay. e. Check that.the^tim€marks align with the maior graticulelineswithinS0 kHz. f. RESET th€ CENTERFREQUENCY tO 11 GHZ. S. Check SPAN/D|V accuracy. Error must not exceed*50 kHz/Div. SPECTRUTANLAYZERUIiIDERTEST COMB GENERATOR MOOULE Figure4-26. Test equipmenisetupfor checkingoption 4i span/Divaccuracy. 4-37 PerformanceCheck procedure- 4g4Al4g4ApServiceVol. 1 34. Check Option 42110 MHz OUT Level ((0 dBm for Band 1) (>.-40 dBm for Band 5) . a. Tune the Spectrum Analyzer CENTER FRE_ QUENCY to 100 MHz. j. Switch thE FREOUENCYSPAN/D|V control towards zero span while keeping the signal centered with the CENTER FREQUENCYcontrol. The crr SPANIDIVreadoutwill indicate10 ms when zero span is reached. b. Connect a signal generatorto the RF lNpUT. Set the signal generatoroutput frequencyto i00 MHz, and outputlevelto -30 dBm. c. Set th€ REF LEVEL to -gO dBm. and RF ATTENUATION to O dB. k. set the CENTERFREQUENCYcontrotto peak the signaldisplayedon the t€st spectrumanalyzer. l. check that the 110 MHz tF ouT levet is )-40 dBm. d. Switch the FREQUENCYSPAN/D|V control towards zero span while keeping the signal centered with the CENTER FREQUENCYcontrot. The crt SPANiDIVreadoutwill indicate10 ms when zero span is reached. 35. Check Optiopn 4211O MHz lF Output Bandwidth, Center Frequency, Bandpass Ripple, and Symmetry About 110 MHz (Bandwidth: >5 MHz) (CenterFrequency: 108.5MHz-l11 .5 MHz) (Bandpass Ripple;<0.5 dB) (Symmetry: *1.0 MHz) e. Monitorthe 110 MHz OUTwith a test spectrum analyzer. f. set the CENTERFREOUENCYcontrot to peak the signaldisplayedon the test spectrumanalyzer. a. Connectthe test equipmentas shown in Figure 4-27. g. check that the 110 MHz tF ouT outputtevetis (0 dBmtypically-8 dBm for Band1. b. Set the test equipmentcontrolsas follows: - h. Connecta signalgenerator,capableof delivering 18 GHz,to the RF lNpUT. Set the signalgeneratoroutput frequ€ncyto 18 GHz and outputlevelto -30 dBm. i. Reset the Spectrum Anatyzer CENTER FREOUENCYto 18 GHz on Band5, REFERENCE LEVELto -30 dBm, and RF ATTENUATTON to 0 ctB. TR5O2 OutputLevel-dBm Var dB Dot Intensity H:H ull I e R F In Spectrsm Analyzer Under Test (Option 42) 1 1 OM H z IF 7L14 I O Trrckiog Gcn o .I ll QQ. 15o'it RF Input 30 0 Off o 2ndLO o o o o I o e o o o o I I o o o o I I o o o o o t o I o o I I r'i"line Gcn ooo O I o o I I o Figure 4-27. Test equlpment setup lor checking option 42 frequency characterlstics. 4-38 o o o o o o o I PerformanceCheck procedure- o C o t o t o o I 7L14 CenterFrequency Freq Span/Div Hz Resolution ReferenceLevel DisplayMode DigitafStorage TimelDiv Triggering Source Mode VideoFilter 1 1 0M H z 1 MHz 3 MHZ 0 dBm 2 dBlDiv off Manuaf FreeRun Norm On 4g4Al4g4Ap ServiceVol. 1 j. check that the waveformsymmetryis *1.0 MHz (*1.O division)by checkingthat the 3 dBpoints as wetl as the 6 dB points on the waveformare equidistant from centerscreen. fl-he peakof the signalmiy not Oe at centerscreen). k. Reset the 7L14 Resolution Bandwidth to 0.3 MHz, l. Set the ZL14 CenterFrequencycontrolsuch that the intensified dot is at th€ p€akof th; 7L14disptsr.-'-m. Check that the frequencycounter indicatesa frequeancy between1t g.5MHz anOt t t.S MHz. ) t I C o a o o c o o t a o o o o o o a o a o o o c O o o a o I o DC 509 Function chA Source Atten Coupl FrequencyA Ext X1 Dc Opton 42 CENTER FREQUENCY FREQUENCY SPAN/D|V REFLEVEL RESOLUTTON BANDW|DTH VERTICAL DISPLAY MIN RF ATTENdB t10MHz 1 MHz _30 dBm 1 MHz 2 dB/DIV O c. set the 7L14 dot to center screen with the ManualScancontrol. d, Set the 7L14 Center Frequencycontrotfor an indicationof 1j 0.0 on the f requeniyCo'unter. e. swirch the FREQUENcy spAN/DlV control tgward-szero span while keeping the signaf centered with the oENTER FREOUENCYcontr'ot. The crt SPANiDIVreadoutwill indicate10 ms *t"n ."ro is reached. "p"n f. set the 7L14 Time/Divfor a catibrateddisptay, and set the ReferenceLevel and TR502Var dB for full screensignal. g. Switch the TRS02Dot Intensity,,on",and reset the 7L'l4 CenterFrequency for an indiiationo, 110.0on the FrequencyCounter. h. Check that the 3dB bandwidth(1.5 divisions from the peakof the signal)is )5 MHz. _^i: th-"-"!_thatany ripple presenton the displayis <0.5 dB (0.25divisionsor tess). GPIBVERIFICATION PROGRAM This verificationprogram can be used with a TEKTRONIX4050-SeriesComputerTErminalto check the operationof the GplB in the SpectrumAnalyzer. All interfacelines and interfacemessages,excludingthose for parallelpoll, are verified. In addition,the instrumentinterfaceis checkEdfor operationon other primary addresses,as well as the talk-onlyand listen-onlymodes. The programis written in TEKTRONTX 4OSOBASIC, and is dividedinto individualtests, each for a sp€cific interfaceline, message,or function. The tests start on even 1000 line numbersto allow easy modificationof the program. The followingdescribesthe functionof each test in the program. Lines 1-5000:lnterfac€sto user definablekeys for recoveryfrom a failedtest. Lines 5000-6000:Inputsthe primaryaddressof the SpectrumAnalyzerundertest (1 shouldbeused). Lines 6000-7000: tD query response test. The instrumentmust be able to talk and listen,to send out its lD? responseand manipulateall eight of the DIO linesfor the test to be successful, Llnes7000-8000:Local lock-outtest. Tests correct operationof the interfacemessagethat shoulddisable all programmable front-panelcontrols. Lines 8000-9000:Go to LOCALtest. Tests correct operationof the interfacemessagethat shouldenable all front-panel controls. 4-39 o t PerformanceCheck procedure- 4g4A/4g4ApServiceVol. I Lines 9000-10000: Group Execute Trigger test. Checksthat a GET messagedoes causethe Spectrum Analyzerto abort the present sweep and re-arm the trigger,causinga sweep to start and end, sendingout an End-of-SweepSRe. Thus, the SRe line and GET m€ssageare verified. Lines 10000-11000:Selected Device Clear Test. This test verifiesthat an SDC messageresetsthe Spectrum Analyzer'sGplB output bufferclearingout it's lD? response. Lines 11000-12000: Devicecteartest. This test is identicalto the selected device clear test, except the universalcommandDCL is used instead. Lines 12000-13000:Addressed as tistener, tatker test. This t€st checksthat the microprocessor correcily recognizEsthat the GPIA chip has been addressedto listen or talk, and sends the appropriatecharacterto the ert readout (L or T). Lines 13000-14000:Seriat poil test. This checks correct operation of the serial poll enable (spE) and serial poll disable (SPD) interface messages. The status byte is read, and if anythingother than ordinary operationis indicated,the instrumenttailsthe test. Lines14000-15000: GptB rear panetswitch test. Atl five primaryaddress switch€s are checkedfor corr€ct operation. Three subroutinesare called in the process of testingone addressswitch. The first two send a formattedrnessageto the 4050 display,and the third performsthe addressswitchtest. Lines 1500G16000:Line feed or EOt switch test. Checksfor correct selectlonof line feed as a termina_ tion when selectedby this switch by sendingan lD? ter_ minaledonly by a line feed. Lines 16000-17000:Talk-only mode t€st. When selected, this mode should cause the instrumentto send a SET? response and (optionally)a CURVE? response whenever the RESET-TO-LOCALbutton is pressed. The string received from the instrumentis thus examinedfor existenceof a portion of the correct' SET? response after the RESET-TO-LOCAL button is pressed. Lines 17000-18000: Listen-onlymod€ test. When selected, this mode will cause ths instrum€nt to respondto any messageon the bus, since it is always addressedto listen. The commandREF 0 is sentto the bus without addressingthe instrument,then the listenonly mode is deselectedand the instrumentinterrogated to see if it did respond to the REF command whilein the listen-only mode. Lines 18000-'19000: Interface clean (and Remote Enable)test. This IFC line on the GPIB will unaddress the instrument'sinterface.This is verifiedby notingthat the L is not present in the crt readout,indicatingthat the IFC line worked; also the REN line will be unassertedwhen the end statementis executed(except for some early 4052and 4054's). Thus, a front panelin the local mode indicatesthat the RENline was successfully unasserted. (Evidenceit was assertedis that the instrumentwas able to execut€commandssentto it by previoustests.) Lines 19000-end:Utility routines. Rear panel interface switch test text routineputs headerson the interface switch test display. The rear panel test text routine tells the operator what to do after changingthe addressswitches. Test addressswitch acquiresan lD? responsefrom the instrum€nton its new addressduring the addressswitchtest. The SRQ handlerwill handle SRQ's that occur, althoughnone would be expected, except the power-up SRO. (fhe end of sweep SRQ during the GET test is handled by anoth€r SRQ handler.) Delay Generatorgeneratesdelays lor other tests. The FailureDecisionHandlerallows the program to be restartedwith the user-definablekeys if any test fails. 1 GOTO s000 4 B2-1 5 RETURN 20 B2-5 21 RETURN REM"'49XP GPIBVERIFICATION 5OOO PROGRAM'-' 5030tNlT 5O4O ON SRQTHEN19280 5050DrM V$(400),w$(400) 506017-0 5O7O PAGE 5080pRtNT'J.JJENTER 49Xp'SpRlMARyADDRESS(DEFAULT:1) "; 5O9OINPUTT$ 5 1 0 0t F T S < > " T H E N5 1 3 0 5 1 1 0A 1 - 1 s120GO TO 5180 4-40 o o t o t o o o I I I t o a o o I t o a o a I o o o o o I o o o o o o o o o a o t I o o o o a o t t o o o o t a I I o o o o o o t I a o t o I o o o o a o a o r C o o o I o Performancecheck procedure- 4g4A/4g4Apservice vor. 1 5130A1-vALrr$) 5140tF A1>0 ANDA1<31 THEN5180 "{JJGERROR!!';A1;,tS Nor A vALtD :1i9lllltl ADDRESS,,; 5160PRINT" ONLYO THRUgOINE VALIDADDRESSESKK' s170co To 5080 5180PAGE 5190REM 52OOREM 5210REM 5220REM 5230REM 6000REMrrr'IDrQUERYRESPONSE'-' 601O PRINT'r.i '(IDOI' ..". OUERYRESPONSE 6020PRTNT :"tNlT;lD?;SlG,, @A1 6030INPUT@A1:T$ 6040v$-sEGCr$,1,9) 6050!FV$:"lD TEK/49'THEN60g0 .r. FA|L-rcil QUERYRESPONSE 9999lltryI'J,Jf.""tD,, 6070GOTO 19s30 6080WBYTE@32+A1:64,128,-1ZZ 6090PRINT@A1:,WFMENC:B|N;CUR?. 6100 PRINT@37,0:07,255,255 o/"A1:Tg 6110INPUT 6120WBYTE@6a+A1: 6130RBYTER,R,R,T6 6140WBYTE@95: 6150lF R->128 ANDT6<128THEN7O0O 6160 PRINT'JJJ... Dlog TEST..' FAIL,*G" 6170co To 19530 6180REM 6190REM 6200REM 6210REM 6220 REM 7000REM.'r LOCALLOCK-OUT..............LLO ". 7010PRINT""' LOCALLOCK-OUT..........LLo .,." 7020WBYTE@32+A1,17: 7030PRINT@A1:,.SET?" 7040INPUT @At:V$ (LLo)" 19!gl!!NI "Ll4exptNLocALLocK-ourMoDE lggglllNr tLArrEMprro usE4expcoNrRoLs" RETURN WHEN DONE,'; 1g1g ryNr.'!_!_PRESS 7O8OINPUT T$ 7090PRINT@A1:"SET?,' 7100INPUT @At:W$ 7 1 1 0t F W $ < > v $ T H E N7 1 3 0 7120cO TO 8000 7130pntNT'!". LOCALLOCK_OUT.............LLO '., FAtL..G,' 7140cO TO 19530 7150REM 7160REM 7170REM 7180REM 7190REM 8000REM*.'GO TO LOCAL.............GTL'.. 8010 PRINT@Al :"lNtT;TtM?" 8 0 2 0 I N P U@ T A1:R 8030PRINT@A1:"TtMtNC., .'." 8040pRtNT*.r co To LocAL.............GTL 8050WBYTE@32+41,1: 4-4'l PerformanceCheck procedure- 4g4Ll4g4ApServiceVol. 1 8060PRINT@A1:'TlM?, 8070INPUT@41:T6 8080tF R<>T6 THEN8100 8090 GO TO 9000 '* FAIL*rG, 8100PRINT"J".. GOTO LOCAL...........GTL 8 1 1 0c O T O 1 9 5 3 0 8120REM 8130REM 8140REM 8150REM 8160REM 9OOO REM "' GROUPEXECUTE TRIGGER........GET'*' 9O1OPRINT"''' GROUPEXECUTE TRIGGER...GET "TS 9O2O ON SRQTHEN9120 9030 r7-0 9040PRTNT@A1:"]NlT;TtM 10OM;S|G;EOS ON" 9050WBYTE@32+41,8: 9060 T6-3 9070cosuB 19390 9080PRINT@A1:"EOS OFF', 9090rF 17<>'t THEN9150 91OO ON SRQTHEN19280 9110GO TO 10000 9120WBYTE@20: 9130l7*1 9140RETURN 9150PRINT"GROUPEXECUTE TRIGGER...G 9160cO TO 19530 9170REM 9't80 REM 9190 REM 92OOREM 9210REM ..' lOOOO REM'" SELECTED DEVICECLEAR...SDC -"" 1OO1O PRINT""' SELECTED DEVICECLEAR...SDC 10020PRINT@A1:'tD?" 10030WBYTE@32+A1,4: 10040WBYTE@64+A1: lOO5ORBYTER 10060tF ABS (R)<>2s5 THEN10080 10070coTo 11000 *r FAtL.'.G' 10090pRtNT"... SELECTED DEVICECLEAR........SDC 10090Go To 19530 1 0 1 0 0R E M 1 0 ' t 1 0R E M 10120 REM 1 0 1 3 0R E M 10140REM 11000REM.'. DEVICE CLEAR...........DCL.'. ..'" 11010pRtNT"... DEVTCE CLEAR,...........DCL 11020PRINT@A1:"lD?' 11030WBYTE@20: 11040WBYTE@621+A1: 11O5ORBYTER 11060rF ABS(R)<>255THEN11080 11070GO TO 12000 11080pRINT.'." DEVICE CLEAR...........DCL 11090GO TO 19530 1 1 1 0 0R E M 1 1 1 1 0R E M 4-42 o o o I a a t o o o o o o o o o o o t o o o o o I o o o C t o o a t o I a o o a a I ) o t O perrormancecheck procedure4g4A/4g4Apservrcevor. 1 o I o o ? o o c o o I ) o T o t o a o o o o o e a o o o o e o o ) t o o a o o I a I 1 1 1 2 0R E M 11130 REM 1I 1 4 0R E M 12OOO REM" ADDRESSED AS LISTENER, TALKER"' 12010 pRtNT,... 49xp ADDRESSEbndlisreneR...*tr :76.zg,se,6s,id,-eJ @32+Al I ?9?9 I/-BvTE 12030T6-1 12040cosuB 19390 12050INPUT @A1:vg r_$*gEG (v$,1 6,1) 1 ?ggg 12070tF T$:"L,' THENi21 0o 12080PR]NT"J'"'49XP ADDRESSED Jr' FAIL AS LISTENER "iGS 12090cO TO 19530 12100pRtNT"'.* 4gxp ADDRESSED AS TALKER......_, :',tNtr;TMsoM;stc;sf d,wel,r_onooz" ] ?1I n|!] @A1 r$-sEG(v$,16,1) 1?139 1 2 1 2 0 I N P U@ TA1:V$ 12140 tFT$-"T"THENi3ooo 12150PRINTO"'49XPADDRESSED AS TALKERrA.FAIL.irtr 12160cO TO 19530 12170REM 12180REM 1 2 1 9 0R E M 12200REM 't2210 FEM 13OOO REM*" SERIALPOLL*.. pRtNT'.". 13010 sERtALpoLL.........spD/spE *rr 13020WBYTEG)95,63, 24,64+4l: 13030RBYTER 13040WBYTE@95.25: 13050lFR-0 OR R-l6 THEN.t3080 POLL...FAIL*..cn lgggqtltryT'J." SERTAL 13070GO TO 19530 13080T6:3 13090cosuB 19390 13100REM 13110 REM 13120REM 13130REM 13140REM 14OOO REM"'GPIB TNTERFACE REARPANELSWITCHTEST"' 14010PAGE 14011WBYTE@32+A1,20. 63: 14020A1*2 14030GOSUB19000 1 4 0 4 0 P R | N T0' ! _ 0 L 0 ! _ 0 0 0 1 0 " 14050cosuB 19070 14060GOSUB19190 14070PAGE 't4080A1-a 14090cosuB 19000 1 4 1 0 0 P R | N T0" ! _ 0 ! _ o L 0 0 1 0 0 , 14110 GOSUB.t9070 1 4 1 2 0G O S U B1 9 1 9 0 14130PAGE 1 4 1 4 0A 1 : 8 141s0cosuB 19000 1 4 1 6 0 P R I N T0" ! _ 0 ! _ o ! _ 0 1 0 0 0 , 14170GOSUB19070 1 4 1 8 0G O S U B1 9 1 9 0 4-43 PerformanceCheck procedure_ 4g4Ll4g4ApServiceVol. 1 14190PAGE 14200A1-16 14210GOSUB19000 1 4 2 2 0 P R | N T0" L 0 l 0 l _ 1 o 0 o o . 14230GOSUB19070 14240GOSUB19190 14250REM 14260REM 14270REM 14280REM 14290REM 15000REM., nLFroR ,EOl. swlTcH .," 15010PAGE 1502041:1 15030cosuB 19000 1 5 0 4 0 P R | N T0. t o L 1 ! _ 0 O O O 1 " 1s050GosuB 19070 15060PRINT"JJTESTTNG "EOt''SwtTcH" 15070cosuB 19190 15080WBYTE@32+A1:73,68,63,1 0 15090INPUT @A1:T$ 15100 r$-sEG cr$,1,9) 15110lFT$-"lD TEK/49,THEN15140 15120 PRINTU*LF" .OR' uEOl"'swlTcH 15130GOTO 19530 15140 T6-2 15150GOSUB19390 15160REM 15170REM 1 5 1 8 0R E M 1 5 1 9 0R E M 15200REM 16000REM'" TALK ONLYMODE"" 16010PAGE 16020cosuB 19000 1 6 0 3 0 P R | N T0" ! _1 ! _ 0 ! _ o o o o 1 ' 16040cosuB 19070 16050PRTNT !{JTEST|NG TALKONLY" 16060INPUT @A1:V$ 16070I7-POS(V$,"rrNeoFF",l) 160801F t7<>0 THEN17000 16090PRINT''JJJTALKONLYMODEO" FAILrr'GT 16100co To 19530 16110 REM 16120REM 16130REM 1 6 1 4 0R E M 1 6 1 5 0R E M 17OOO REM'" LISTENONLYMODE"' 17010PAGE 17020GOSUB19000 1 7 0 3 0 P R | N T1' ! _ 0 ! _ 0 ! _ 0 0 0 0 1 " 17040cosuB 19070 17050pRtNT"JJJTESTTNG LISTENONLY" 17060PRINT@A1:"tNt', 17070T6-0.5 17080GOSUB19390 17090WBYTE92,69,70,32,_48 17100PAGE 17110GOSUB19000 4-44 o O o t o o o o c co t ? o o I o t I I o o o o I o o o o I o a o o a o o a I o o o , O I o o C o a I I o e C o o a o o ; I a o o a o o o e o O t o o C o o o o o o o o a o o ) performancecheck procedure- 4g4Ar4g4Ap servrcevor. 1 17120 P R | N T ' 0 L o l _ 0 L O O O OI , 17130cosuB 19d70 17140PRTNT @A1:'REF?,, 1 7 1 5 0 I N P U@ TAt:V$ 17160tF v$<>"REFLVL+0.0.THEN17180 17170co To 18000 IJ{L|SrEN ONLYMODE'r. FA|L*.Gn 11199lltu 17190co To 19530 17200REM 17210REM 17220REM 17230REM 17240REM '8OOO REM"'INTERFACECLEARANDREMOTE ENABLETEST......IFC & REN',' 18010PAGE rFc(TNTERFACE CLEAR), AND REN (REMorE ENABLE)" 13333 fiBlI.6gilT:-" 18040T6-3 180s0GosuB19390 l!999llfNr lJcHEgK-rHE 4expcRr, FOR BETWEEN rHE vERflCAL" 18070 PRTNT "OISPLAY ANDTHEr"IirrN'EATTENREADOUTS." pRtNT 18080 "JPRESS RETURN rO Corvrir.ruE.,; 18090INPUT P$ 1 8 1 0t0N t T 18110PRINT UF AN" "L" "IS STILL PRESENT, THE IFC pRtNT'lFTHE""L""VAN|SHID,'tr-crEsreo LINE IS FAULW,, 18120 ox." 18130PRINTlJcHEc^KALSOTHE4bip raor'rr pANaL FoR pRopERLocAL coNTRoL' 'lF 18140PRI THEFRONTPANELrS iOcxeo --' ouT, THanir.t r_rivE ts FAUL,", tF, 18150PRINT"NOT,RENTESTED OK;- cotapr-erEo" ]9199 nryr !J{GPIBvERlFlcArtoH 18170END 1 8 1 8 0R E M 18190REM 18200REM 19OOO REM*'REAR P4NELINTERFACE SWITCH "' 19010PRINT"SETGPIBADDRES' SWIiCTTES TESTTEXTROUTTNE rO,. "JJLrsrEN!_TALKTLF oCrnoiness" 199?9 fllNr 19030pRtNT. ONLy!_ONLy!_Eor!_ro s q 2 l" 19040pRtNT*---t ---l ----t ___-------19050RETURN 19060REM 19070REM ''' REARPANELTESTTEXTROUTINE "' rHEswrrcHEs,,; 1?gg? llfNr IJAFTERCHANGING 19090PRINT"PRESSTHE REMOTCIUObIiBUTTON ONCEJJ. "r-(NorE: rFyou eer i eiia rNieRiobE lglgg lllNr L"#o=n MESSAGE," ,'!_ trI4EANS 19110 PRINT *rer rr_re swrrcH6SlWERE Nbi " 19120PR]NT-!READCORRECTLY.IORE-TEST,TYPE" 19130PRINT1 rouowEo ei rHe LINENUMBERIN THE" 19140PRTNT'!_ ERRORMESSAGE)' WHEN 19119 IINI lJ!_pREssRETURN DoNE"; 19160INPUT T$ 19170RETURN 1 9 1 8 0R E M 19190REM"'- TESTADDRESSSWITCH"' 19200PRINT@At:,,1D?" 1 9 2 1 0 I N P U@ T A1:T$ 19220T$:SEG Cr$,1,9) 19230tF T$-,lD TEK/49"THEN19260 19240PRINT'ADDRESS SWITCHTESTFAIL" 19250cO TO 19530 4-45 PerformanceCheck procedure _ 4g4Ll4g4ApServlce Vot. 1 19260RETURN 19270REM 19280REM ". SRQ HANDLER". 19290T6-3 19300 cosuB 19390 19310POLL21,21;A1 19320PRINT@A1:"ERR?" 19330INPUT @A1:S$ TNTERRUPT occuRRED oN rHEBUs,rHE4expRETURNS 19919 !l!NT "GGAN ";s$ 19350pRtNT "JPRESS RETURN TO CONTTNUE'; 19360INPUT T$ 19370RETURN 19380REM -' 19390REM "'DELAY GENERATOR 19410REM... T6 GTVEN tN SEC(GLOBAL)**. tg scRATcH ... 19420tF T6<0 THEN19510 19430tF RND(0)>0.5THEN19490 19440REM ... 4051*r 19450T6-T6'220 19460FORt9-1 TO T6 19470NEXTt9 19480GO TO 19510 19490REM'..4052 19500CALL "WA!T..T6 19510T6-0 19520RETURN 19530REM"'' FAILUREDECISION HANDLER.',19540PRINT!{SELECT A UDK:' 19550PRTNT"!_ (1)RE-START' 19560PRTNT"L (5) END" 19570SET KEY 19580B2-0 19590tF B2<>1 ANDB2<>5 THEN19590 19600lF B2-5 THEN19630 19610PAGE 19620 cO TO 6000 19630END 4-46 o a o t o a o o o ? c o o o o a o o o I a O o o o o o o o o o I o o o o o o o o o o o , o o a o I o o t o o o o o o o o a o a o o o O O o o o o o o a o t o o a o o o o o o o O Secdon 5 - 4g4Al494ApService Vot. 1 ADJUSTMENT fntroduction l{ the lnstrumentperformanceis not withinspecified requarementsfor a particular characteristic,determine the cause,repair if necessary,then use the appropriate adiustmentprocedureto retuln the instrumentoperation to .performancespecification. After any adjustment, verify performanceby repeatingthat part;f the perfor_ manceCheck. Allow the instrum€ntto warm up for at least one hour, in an ambienttemperatureof *20" C to +30oC FI:* m.akingany adjustments.Waveformiilustrations tn tne adrustmentprocedureare typical and may differ from one instrument to another: These waveforms should not b€ construed as being repres€ntative of speciftcationtolerances. 1. Handle static-sensitivecomponentsor circuitassembliesat or on a static-freesur_ face. Work station areas should contain a static-free bench cover or work plane such as conductivepolyethylenesheetingand a grounding wrist strap. The work plane shouldbe connectedto earthground. 2. All test equipment, accessories, and soldering tools should be connected to earthground. 3. Minimizehandlingby keepingthe com_ ponents in their original containers until ready for use. Minimize the removal and installationof semiconductors from their cir_ cuit boards. 4. Hold the lC devicesby their body rather than the terminals. STANC DISCHARGE CAN DAMAGEMANY SEMICONDUCTOR COMPONENTSUSED IN THISINSTRUMENT. Many semiconductorcomponents, esDecially MOS types,can be damagedOystitic discharge. Damage may not be catastrophic and, therefore, not immediately appare-nt.lt usuallyappearsas a degradailon or the semiconductorcharacteristics. Devices-lhat are particularly susceptible are: MOS, CMOS, JFETa, and high impedanceoperationalamplifiers(FET inp-ut stag€s.) The damagedparts may operate wttntn acceptedlimits over a short period, but their reliabilitywiil have been severely impaired.- Damage can be significanily reducedby observingthe followingp.ecautions. 5. Use containers made of conductive material or filled with conductivemateriat for storageand transportation.Avoid using ordinaryplasticcontainers.Any static sen_ sitive part or assembly(circultboard)that is to be returnedto Tektronix,lnc., should be packaged in its original container or one with anti-staticpackagingmaterial. Equipment Required Table 5-1 lists additionaltest equipm€ntand test fixtures recommendedfor the adjustmentprocedure. Test equipmentlist€d in Table 5-1 together with those listed in Table4-1 in Section4, performanceCheckare requiredfor the adjustmentprocedure.The characteris_ tics specifiedare the minimumrequiredfor the checks. Substitute equipment must meet or exceed these charact€ristics. 5-1 Adluctment Procedure- 4g4A/4g4ApServtce Vot. 1 Table 5-l EOUIPMENTREOUIRED Equlpmentor Test Flxture Recommendatlonand Use lsolationTransformer 1:1 turns ratio AND AT LEAST500 VA StancorG|S21000 Att€nuator(3 dB miniature) Frequency,to 5 GHz;connectors5 mm WeinchelModel 4M, TektronixPart No. 015-1053-00 Autotransformer Capable of varying line vottage from 90 Vac to 130 Vac 100 pV to 350 Vdc GeneralRadioVariacTypeWl0MT3 o o o o o o o ) Dc Block TektronixPart No. 015-022140 Adapt€r (Sealectromale to male) Adapter (bnc female to Sealectro male) TektronixPart 10i!-0098-00 TektronixPart No. 103-0180-00 o o o o o Three Extension Cables (Sealectro femaleto Seal€ctromale) Adapter (bnc to Sealectro) TektronixPart No. 17$2902-00 ; Adapter(bncfemaleto sma male) Cable(20"),Tip Ptugsto bnc TektronixPart No. 015-1018-00 CoaxialCable(8) TektronixPart No. 012-020&00 50 O Terminator TektronixPart No. 011-0049-01 Screwdriver,Tuning AlignmentTool Tektronix Part No. 003-0675-00 Multimeter TEKTRONIXDM 5O1Aor DM 5O2A TektronixPart No. 175-241240 TektronixPart No. 175-1178-00 Tektronix Part No. 003-0968-00 Screwdriver,Flat,6" with 1/8, Tip Screwdriver,PhillipsNo. 1 Allen Wrenches (3), 3lgl, 7lu 5/il" ServiceKit (ExtenderBoardsla TektronixPart No. 672-0865-01 o a o o I I o O o o t o o O ADJUSTMENTPROCEDURE PREPARATION Removethe cabinetas follows: 1. Set the instrumenton its face or front panel. 2. Loosenthe lour screws throughthe back rubber feet. 4. Place the instrumenton the bench and reconnect the power cord. Some circuit boards or assemblies must be removed and placed on extendersto gain access to some test points or adjustments. When this is done, turn the power off beforeremovingthe assembly. 3. Pull the cover up and off. e This kit is pari of the service Kit 006-3286-01. listed in the Maintenance section, 5-2 o o a o ) o o o t o I o a a a o o o o o o o o o o o o a o o o o o O o o o o o o o o o o o a o o o a o O o o o o o o o , Adjustment Procedure- 494A/4g4ApService Vol. 1 1. !{iust Low Vottagepower Suppty (R6028andR6061on the powerSu'pljlyboard) This high-efficiencypower supply uses an internal oscillatorwith a frequencyof 66 i PULSE STRETCHER,and selectingitem 2 (DIGITALSTORAGECAL.) Foilowthe instructionsthat ar€ displayedon the crt. Referto Figure 5-7 for adjustmentlocations. 5. Adiust Sweep Timing (Rl062 on the Sweepboard) a. Connectthe test equipmentas shown in Figure 5-8. Set the followingSpectrumAnalyzercontrols: FREQSPAN/D|V 10 MHz or tess TIME/D|V 10 ms TRIGGERING EXT 5-8 b. Connecta jumper between pins 1 and 5 (Ext Video Selectand Ground respectivety)on the ACCESSORIESconnector. c. Set the Tim€ Mark Generatorcontrolsfor 10 ms timE marks. d. AdjustSweepTiming,Rl062 (see Figure5-9)for 1 marker per division. (Use HorizontalPositionadjustment to alignmarkerswith graticulelines.) e. Check the accuracyof the remainingTIME/DIV selections. Error over the center eight divisionsmust not exceed !.5 o/o. f. R€set the TIME/D!v to AUTo, FREQ SPAN/D|V tO MAX, TRIGGERINGtO FREE RUN, ANd ACtiVAtE AUTO RESOLN. g. Removethe jumper betweenpins 1 and 5 of the ACCESSORIESconnector. Reposition the trace if movedin part d. 6. Adjust Frequency Control System and Dot Marker position (R1028,R1032,R3040,and R4040on the CF Control board;R1031,R1032,and R1034on the 1st LO board; R1063,R1065,R1067,and R1071 on the Span Attenuatorboard; C1013 and C2011 on the Controlled Oscillator board: and R1052 on the Sweepboard) R1028, R1032, R3040, and R4040 on the CF Control board: Rl031, R1032, and R1034 on the 1st LO board: and C'!013 and C2011 on the Controlled Oscillator board are adjusted in part d. o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o AdJustmentProcedure- lnput Gain,RlO3a ouFur GarnR1033 | 494A1494ApService Vot. 1 O.rtput Of*t nrors RIINC iITAL STORAGE HORIZONTAL G.io R1OOo Figure 5-7. Digltal storage adiustment locations. TO: TTARKEBiVID8O TITE TIARK GEI{ERATOR ffi Itull \=z BETWEEI{PINSl&5. PARTIAL BACK PANEL SHOWINGJl(X ACCESSORY COilNECTOR. Figure 5{. Test equlpment setup lor adiusting sweep timing. Adjustnent Procedure- 4g4A/4g4ApServtceVot. 1 Figure 5-9. Sweep board tlming adiustment and test point locations. The SpectrumAnalyzerhas a procedurein firmware for calibratingthe frequencycontrol system. However, it is possible that some adjustmentsmay be misad_ justedenoughto causethe microcomputer io displayan €rror message. lf this occurs, bypass the step then returnto the calibratlonroutine. Test equipment required for this step are a Voltmeter, Time Mark Generator, and Fiequency Counter.Set the followingSpectrumAnalyzercontrols: FREQUENCY 0.0 MHz FREQSPAN/D|V 5 MHz TRIGGERING FREERUN b. Connect a shorting strap from Tplogs. on the SpanAttenuatorboard,to chassisground(Figure5-10). MonitorTP1073on the Span Attenuatorboard with the voltmeter. - --c: Adjust Sweep Offset R1063 (Figure S-10) for 0.00v. d. Removethe shortingstrap from Tp1035. press PULSESTRETGHER and selectitem 1 (FREOUENCYLOOPS CAL), then item 0 (OVERALL SYSTEM)from the menus. perform the calibration steps as directed ('CONNECTA DVM TO Tp105g ON THE1STLO DRTVER BOARDANDGROUND,),etc. (1) lf a "CAL|BRATION STEPCANNOTBE COMPLETED"message is displayed,bypass the step, perform the other adjustmentsthen return to the adjustmentand try to bring the adjustmentin range. lf the problempersists,refer to Troubleshooting the FrequencyControlSystem,in the Maintenancesec_ tion. 5-10 e. Adjust 1st LO Sweepas follows: (1) Applythe CAL OUT signalto the RF tNpUT,set the FREQUENCYto 600 MHz, FREQ SPAN/DIVto 100 MHz, and set the REF LEVEL to display the mark€rs, (2) Adjust'Tune Coil Swp R1065, on the Span Attenuatorboard (Figure 5-10) for one marker per divisionover the center eight divisionsof the graticule. Reset the CENTERFREQUENCYas necessary to align the markers. (3) Removethe Calibrator signal and apply 0.2 ps time marks from the Time Mark Generatorto th€ RF INPUT. (4) Set the FREQSpAN/Dtv to 5 MHz, REF LEVEL to +10 dBm,and FREQUENCY to about10 MHz. (5) Adjustthe lst LO FM Coil Swp R1071(Figure 5-10)for 1 marker/divisionover the centereightdivisionsof the display. (6) Set th€ FREQ SPAN/DIVto 20 KHz and appty 50 ps markersfrom the Time Mark Generator. Adjust the 2nd LO Sweep, R1067, for one n marker/division over the centereight divisions. f. AdjustDot Markerpositionas follows: (1) Press RESET. (2) AdjustDot PositionR1052on the Sweepboard to positionthe dot markerover the start spur. o o o a o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o a o o o a o o o o O a o o a o o O o o o o o o o o o o o o o o o o o O o o o o o a o o '' AdjustmentProcedure- TuneCoil R1065:ttl 494Ll4g4ApServlceVol. 1 FM Coil Swcco RtOZl =?l rPlo3s-.8 I Span Attcnualor boild \circgir Ccnter Frcqucncy control boord II Ilst LO Orivct lcircuit board I I R1031Rro32 R10:t4 556G17 Figure5'10. Frequencycontrorsystemtest potntand adiustmentrocations. 7. Adjust Log Amptitier (R1012,R102S,R1030,R1037,and R.t060on the LogAmptifier board) Use only an insulatedscrewdriveror tuning tool to make these adjustments. . a. Set the Log Amplifiercorrectionfactors to zero b_y pressing (Bfue-SHtFT> PULSE STRETCHER (DIAGNOSTICFUNCTTONS;and setecting item 5 (DISABLE/ENABLE USE OF CAL FACTORS),tnen item 2 (SET RESULTSTO "UNCALED). Remove Leveler Disableplug P3035on the Videoprocessorboard (Fig_ ure 5-11). b. Connectthe t€st equipmentas shown in Figure 5-12. (P621must be removedin order to accessJ621 on the Log Amplifierboard. See FigureS_1g.)Set the SpectrumAnalyzercontrolsas follovis: FREQUENCY FREOSPAN/D|V AUTO RESOLN REF LEVEL MIN RF AfiEN VERT|CALDTSPLAY TtMEiDtV 2MHz 2MHz On -60 ctam OdB 1OdB/DtV 10 ms c. Centerthe two front panel LOG and AMPL CAL adjustments. Set the signat generatorcontrols for a 10MHzl+6 dBm output. Set the step attenuatorsfor 50 dB of attenuation. d. Positionthe displayat a graticulereferenceline with the verticalPOSITIONcontrol,then switchthe REF LEVELfrom -60 dBm to -110 dBm in decadesteps. e. S€t the front-panelLOG CAL such that each 10 dB step equalsone division. f. Reset the REF LEVELto -20 dBm and tha step attenuatorsfor 0 dB attenuation.Resetverticalposition to a graticulelineif necessary. g. Increase the attenuation through the step attenuatorsin 10 dB incrementsto 50 dB. _ h- Adjustthe Log Gain,R1037(FigureS-13)so each 10 dB incrementof attenuationresultsin one majordivision of changeon thE display. . i. Reset vertical position by temporarilyremoving the signal and settingthe verticatPOSITIONcontrolto position the baseline at the bottom graticule line. Returnthe step attenuatorto 0 dB. Displayshouldbe full screen (+6 dBm); if not, readjustJtrg*iglfial-gene@@ lzJ,r rli,1 [v i:"lllCrerh j. AdjustInputReferenceLevel,R1012(Figure5-13) for minimumamplitudechangebetweenthe 10 dB/DlV and 2 dB/DlV displays while alternatelyswitchingthe VERTICALDISPLAYbetween10 dB/DtVand 2 dB/DlV. 5-11 Adrustment Procedure- 4g4Ll4g4ApServtce Vot. 1 Figure 5-'11. P3035 on the Video processor board. BilC fo Sorlos:tro Ad.gtCr To &21 on Log Ampl Bd m LHr Lcvclod Signrl Gcocr.to?,0-lO dBm @"o.@"@"G)Pt Spectrum Analyzer Under Tesl I I 'lO dB Stcp Attcnu.tor 1 1 dB Stcp An nu.to. 5565-19 Figure 5-12. Test equlpment setup for adjusting the Log Amplifier. o o o I a o o o o o a o o o o o o o o o o o o o O o a o o o o o o o o o O o o o a o o (?, o o O o Adjustment Procedure- 4g4A/4g4ApServiceVol. 1 I I o I o o o t o o o o o I o o o o o o o o o o a o o o o o o o a o o o a o o O ffwu"nffEneilercYEl R10f2 LOGFIOELTTYR1O6O REFERENCELEVEL RIOIIO @ftftfl ll n Lqrc^$t*FroilT fill oll l--E L-.,E Pl075 (J620) Pm70 (J621) L-HHF il il Figure 5'13. Log and video Ampri{iertest pornt and adiustmentrocations. .- .k. lctlvate 2 dB/Dtv and add 10 dB of artenuation. lf..the1098 step (S division)is short,adjustthe gain slightlywith R'|037 in the same direction;'thenrem-ove the 10 dB of externalattenuationand adjust R1012for a full.screendisplay. Repeatthis checkuntitthe 10 dB step is within0.2 dB of 1OdB. Activate10 dB/OtVand recheck10 dB logging. . l: Activate 2 dB/Dlv and momentarilyremove the input signalto the Log Amplifier. positionthe baseline on the bottomgraticuleline then returnthe signal to the Log Amplifier. _ 11 Adjust Output-ReferenceLevel, R1030 (Figure 5-13)for a full screen(eightdivisions) display. n. Switchto the l0 dB/DtV mode and set the step attenuatorsfor 40 dB of attenuation.AdjustLog Lineai_ ity, R1060(Figure5-10)so the disptayis mid_screen. o lf a large change in the setting of R1060 was f-q-Tregin part t, repeatthe adjustmenlsof R1012and R1030 becauseof interaction. p. Checkthe accuracyof 10 ctB/DtVand 2 dB/DtV gfqPy-T9des by addingattenuationin 10 dB steps for 10 dB/DlVmodeand 1 dB stepsfor the 2 dBlDtV'rnode an! -gbsqrvingthat the disptay steps 1 major division, *0.25 minordivision,for eictrl0 A'estep,jnd 0.5 divi_ sion, r0.5 minor division,for the 2 dB mode. (Readjust the signalgeneratoroutputto establisha new reference level after each step.) After the accuracyof the indivi_ dual steps has been verified,reset the signal level for full screen. q. Add appropriatestep attenuationto step the displaydown screenand measurethe worst caseerror over the dynamic range. Error must not exceed 11.5 dB over the first 80 dB of range,or11.0 dB over the 16 dB range. r. lf the 10 dB log step in the 2 dB/DtVmode is long,adjustgainwith R1097for less gainand rebalance R1012. s. Set the step attenuatorsto 10 dB and activate 2 dBlDtv. t. set the Ref Levetto -15 dBm and adjustthe signal generator output for a full screen display in the 2 dB/DlVmode. u. Press LIN and adjustLin MocJeBalance,R102S (Figure5-13)for a full screendisptay.Amplitude of LtN, zdBlDlV, and 10dB/DtVdisptayshouldnow be the sarne. 5-13 , Adjustment Procedure- 494[l4g4Ap Service Vot. 1 5[ton'"*' I Filrc.sotocr I ffi 6097-18 Figurc 5-14. Test equipment3etup tor adiusting tlre VarlableRe3olutionrnoOut". v. Check LIN disptay linearity by adding 6 dB, 12 dB. and 18 dB of attenuationand note the display step down from full screento, 4 +0.4, 6 *0.4, and 7 *0.4 divisions. w. Remove the signal generator from the Log Amplifierinput jack and reptacep621. Reptacep3035 on the Video Processorboard. 8. Adjust ResolutionBandwidth and Shape Factor (c304r, c5048, C505s, R106s, R3015,R3029, R3033,and R4025on the VR 2nd Filter Setect board) The filters in each section are aligned separately,then a signal is appliedthrough both the first and second sections. The final adjustments trim filter shape and bandwidth. Because of interaction,it is easy to offset one filter to compensatefor another misadjustedfilter; therefore, only adjusteachfilter in small increments. Before calibrating the Variable Resolution Bandwidth and Gain, disable use of cal factors by pressing PULSE STRETCHER and selectingitem 5, then item 0. (c1034, C1044, C1046, C2030, C3O3O, C3039, C3045, and R1027 on the VR 1st Fitter Setect board) a. Equipmentsetup is shownin Figure5-14. (c1032, C4015, G4028, C4036, C4045, C4051, C4060, R3010, and R3025 in the 10 Hz Fitter Assembly) (1) Remove and install the Variable Resolution moduleon an extender. (R2025 on the 10 dB Gain Steps board) (2) Use a Sealectromale-to-maleadapteranclcoaxial cable to connect the 10 MHz lF output signal, from the 3rd Converter,to the input of the second s€ction (make connectionfrom plug removedfrom J693 to J683). The 3 dB down bandwidth of each filter section should be as wide or slighfly wider than the 6 dB down point of the combined two filter sections. 5-14 o o a o o o a o o a o o o o o o o o o o o o o o o o o I O o o o o O o a o O o o o o a o o o o o o AdJustmentProcedure - 4g4[l4g4Ap Service Vot. 1 t t o I o O o O o o o a o o o o o a a o O o o a o O o O o o O o a o o o o o Flgure 5'15. Adiu3tmontson the rear of tre VariabreResorudonmodure. (3) Connectthe output of the VariableResolution moduleto the input.of Log Amplifierassembly by connectinga cable lhe from J6g2 on the Variable ResolutionModule to J621 on th€ Log & Video -S-t+;. Amplifierassembly{see FiguresS-10and (a) Applythe CAL OUT signatto th€ RF tNpUT,and set the SpectrumAnalyzercontrolsas follows: FREQUENCY 100MHz FREOSPAN/D|V S0kHz RESOLUTTON BANDWTDTH 10 kHz -20dBm REFLEVEL MtN RF ATTEN 0 ctB VERTICALDTSPLAY 2 dBl}tv b. Resetthe REF LEVELfor a sevendivisionexcur_ sion Tune the display to center screen and activate SAVEA. - c. Change the RESOLUTTONBANDWIDTHto 3 MHz and FREQ SPAN/D|Vto 1 MHz. Reset REF LEVELto bring the signal amplitudeto aboutthe same levelas th€ 10 kHz response. -d. Adjustthe four tuning screws(capacitors)on the 110MHz Bandpass Fitter (FL361foi tire best 3 MHz fi-lter. response (3 MHz bandwidth *600 kHz, 6 dB down) that is centered about the 10 kHz reference. Referto Figure5-16. e. Change the RESOLUTTONBANDWIDTHro 1 MHz and FREQ SPAN/D|Vto 500 kHz. Reset REF LEVELto bring the signal amplitudeto aboutthe same levelas th€ 10 kHz response. f. AdjustC1034,C1044,and C1046,and R1027on the VR 2nd FilterSelectboard (Figure5,15)for the best 1 MHz filter response (1 MHz bandwidth,3 dB down. that is centeredabout the 10 kHz reference). Referto Figure5-16. g. Change the RESOLUTTONBANDWTDTHro 100 kHz and reset REF LEVELto bring the signatamptitude to aboutthe same levelas the l0 kHz response. h. AdjustC5055,C5048,and C3041on the VR 2nd Filter Select board (Figure 5-17) for the best .lOOkHz filter response(100 kHz bandwidth,3 dB down, that is centeredabout the 10 kHz reference).Refer to Figure 5-16. i. RESET th€ RESOLUTION BANDWIDTHtO 1OKHZ, deactivateand reactivateSAVE A to re-establishthe 10 kHz reference.n ', -' -5 r( J. Adlust 10 Hz BandpassFllter lNorE-l All adjustablecapacitorson the Bandpass Fifter board in the 10 Hzfi00 Hz Bandpass Filterassemblyshouldbe set to midrangeif the filter is badly misadjusted.This minimizes the numberof times interactingadjustrnents must be repeated to eliminate interaction. 5-15 Adlustnent Procedure- 494ful4g4ApServtce Vot. 1 (9) Adjust C1032 in the loHz/lfi)Hz Bandpass Filterassemblyfor maximumslgnalamplitude. (10) Set the SpectrumAnalyzercontrols as follows: FREQSPAN/DIV RESOLUTION BANDWIDTH VERTTCAL DTSPLAY T|ME/D|V '10Hz 10 Hz 5 dB/DlV AUTO (11) Press (Blue-SHIFT> WIDE and select item #3 CTOGGLE EOSCORRECTTON MODE). (12) Resetthe CENTERFREQUENCY as necessary to centerthe 100 MHz calibratorsignal,then set the REFERENCELEVELfor a seven-divisionexcursion of the display. (13) Activate SAVEA. Store s€ttings in register 1 by pressing STORE1. (14) Set the SpectrumAnalyzercontrolsas follows: Flgure5-16.100kHzoverl0 kHzlitter respona€. (1) Set the, foltowing adjustmentsto midrange: R4025on the VR 2nd FitterSelectboard,and R3OIO 'and R3025 in the 10Hz/100H2 BandpassFitter assembly. (2) Install jumpers on J30i5, JgogS,and J3052 in the 10 Hzll00 Hz Fitterassembty(Figure5-ig). (3) Apply the CAL OUT signatto th€ RF tNpUT,and set the SpectrumAnalyzercontrolsas follows: FREQUENCY 100 MHz FREQSPAN/D|V 100Hz AUTORESOLN Off RESOLUTTON BANDWTDTH 100 Hz VERT|CALDTSPLAY 2 dB/DtV -20 dBm REFERENCE LEVEL FREQSPAN/DIV RESOLUTION BANDWIDTH VERTICALDTSPLAY VIEWA 100 Hz 100 Hz 10 dB/DlV Otr (15) Store settingsin register2 by pressing STORE2. (16) Adjust C4015 in the 10Hz/100H2 Bandpass Filterassemblyfor b€st symmetry. (17) Press RECALLSETTINGS1. (18) Adjust C4028 In the 10Hz/100H2 Bandpass Filtsr assembly to match th€ trequency of th€ B display to that of the sAVE A display. (19) Repeat adiustment of C4015 and C4028 to eliminateinteraction. (20) Remove the jumper from J3038 (2nd stage of the bandpassfilter) and install it on J3015 in the 10 Hzl100Hz BandpassFilter assembly. (21) Press RECALLSETTINGS1. Throughoutthe 10 Hz ftlter adiustment,set the REFERENCE LEVELas neededto maintain a 7-divisionexcursionof the display. (4) Adjust R4025on the VR 2nd Filter Set€ctboard (Figure5-17)for maximumsignalamplitude. (5) Set TIME/D|Vto 50 ms. (6) AdjustRg0i0 in the 10 Hzl100Hz BandpassFitter assembty(Figure518)for maximumsignalamplitude. 0 Adjust R3025 in the 10Hz/100H2 Bandpass Filterassemblyfor maximumsignalamplitude. (8) Removethe jumperfrom JO01S(1st stageof the bandpassfilter)in the 10 Hzl100Hz BandpassFilter assembly. s-l6 (22) Adjust C4036 in the 10Hz/10OHzBandpass Filter assembly to matoh th€ frequencyof the B displayto that of the sAvE A display. (23) PressRECALLSETTINGS2. (24) Adjust C4045 in the 10 Hzl100Hz Bandpass Filterassemblyfor best symmetry. (25) Repeat parts 22 through 25 to eliminate interaction. (26) Remove the jumper from J3052 (3rd stage of the bandpassfilter) and install it on J3038 in the 10 Hzll00 Hz BandpassFilterassembly. (27) Press RECALLSETTINGS1. (28) Adjust C4051 in the 10Hz/100H2 Bandpass Filter assembly to match the frequ€ncy of the B displayto that of th€ SAVEA display. o o o o a o o a o o a a o o o o o o o o o o o o o o O o o o o o I o o o o o o o o o o a o o o a O o o Adjustnent Procedure- ocrttt? to.t2l, too ArLlEi I O o d @.*.'--;o,-.* @t* I a o a o 4g4[l4g4Ap Service Vot. 1 R'm3GnEo' 66-// oooo@ 6*@ I o I O o o a o o o o a o t I o O O o o o o t a o o o o o Figure 5-17. Adiu3tments on the front of the Variabte Resolution module. (29) PressRECALLSETTTNGS 2. !30) Adjust C4060.in the 10 Hzl100Hz Bandpass Filterassemblyfor best symmetry. lgtt Repeat parts 2g through 31 to etiminate interaction. (32) Remove ail jumpers from the 10 Hzl100 Hz BandpassFilterassembly. (33) press CAL to start the internat calibrationroutine. press FINEto continu€calibra_ tion as prompted. K. RCSCT thE RESOLUTION BANDWIDTHtO 1OOHZ and FREQ SpAN/Dtv to 50 Hz. set the REF LEVEL su-chthat the responseis near the amplitudeof the reference. L Disconnectthe 10 MHz third converterlF signal from J683 and reconnectit to J690. Reconnectp6g3 to J683. m. set the FREQ spAN/DlV to 1 kHz, RESOLUTION BANDWIDTHto 1 kHz and reset the REF LEVEL tor a 7 divisiondisptay. ActivateSAVEA. n. set th€ FREQ spAN/DtVto 10 kHz, RESOLUTIONBANDWTDTH to 10 kHz and adjustREFLEVELfor a 7 divisiondisplay. o. Adjust C2030(Figure5-1S)for the best 1OkHz responsecenteredaboutthe 1 kHz reference. p. Deactivate SAVE A and then reactivate to save the 10 kHz display. q. Set FREQ SPAN/D|V to 50 kHz and RESOLU_ TION BANDWIDTHto 100 kHz. , r. Adjust C3045, C3039, and C3030 (Figure 5_15) for the best 100 kHz response centered about the 10 kHz filter reference. s. Check the waveshape, bandwidth, and centering of all filters. lf necessary, make only fine or minor adjustments. Figure 5-1g shows typical response shapes. t. Level th€ gain of the filters as follows: (1) SCt thE FREQ SPAN/DIV tO 5OOKHZ, RESOLUTION BANDWIDTH to 1OOKHz, and REF LEVEL to -20 dBm. (2) Adjust all filters to the 1OOkHz tevet as p€r the follovying Table 5-3. Change FREQ SPANIDIV as necessary to maintain a "suitabledisplay. u. Press PULSE STRETCHER (DIAGNOSTIC FUNCTTONS) and setect item #s (DISABLE/ENABLEUSE OF CAL FACTORS),then item #1 (USE RESULTS), to re-enable use of cal factors. 5-17 Adiustment Procedure - 494A1494ApService Vol. 1 9. Preset the Variable Resolution Gain O o og o a $o o3 $o oE EooE $o o and Band Leveling (R1030on the Post VR Amplifierboard) (R2031on the Va #2 Motherboard). (R3035on the 10 dB GainStepsboard) (R2023and R2060on the 20 dB Gain Stepsboard) o The Log Amplifiermust be calibratedbefore adjustingany VariableResolutiongain settings. Log Amplifier calibration can be verifiedby applyinga +6 dBm, 10 MHz signal to the input (J621),of the Log Amplifier, and checkinglor full screendisplaywith the REF LEVELat -20 dBM. o b. Test equipmentsetup is shown in Figure 5-14. Set the SpectrumAnalyzercontrolsas follows: go0F FREQSPAN/D|V RESOLUTION BANDWIDTH REF LEVEL MIN RF ATTEN VERTICALDISPLAY go o , o o Figure5-18. Adiustmentson the 10 Hzl100Hz Bandpass Filter assembly. Table 5-3 FILTER Filter 1 MHz 10 kHz 1 kHz 100Hz 10 Hz 5-18 1 MHz 100 kHz -20 dBm 0dB 2 dB/DrV c. The gain of the Post VR Amplifier should be ratio throughthe Variable 20 dB for best signal-to-noise Resolutionstages. lf any maintenancehas been performed on this stage,performthe followingsteps. oH o a. Before adjusting the Variable Resolutiongain and band leveling,set the correctionfactors to zero by pressing PULSE STRETCHER,and selectingmenuitem 5, then item 2. Locatlon Figure5-17 Figure5-17 Figure5-17 Figure5-17 Figure5-15 (1) Removethe cover for the VR 2nd Filter Select board. Disconnectthe jumper connector to the input of the Post VR Amplifier(pin JJ). (2) Apply a '10MHz, -14 dBm signal,from a 50o signalsource,to pin JJ of the amplifier. (3) Adjust Post VR Gain R1030 on the Post VR Amplifierboard for a full screendisplay. (4) Removethe signaltrom the inputto the Post VR Amplifier and replace the iumper connector to pins JJ at the input to the Post VR Amplifier. Replace the coverfor the VR 2nd FilterSelectboard' d. Set the front panelAMPL CAL fullycounterclockwise and set the Band 1 Galn R20310n VR Mother baard #2 (Figure5-15)fully counterclockwise. o o o o o o o a o o o a o a o o o t o a o o a o a o a O o o o o a o I o a o o o o o a a b, Adjurtment Procedure- O O o I o I o I o ro.a attr TT -ll a a .A -t { { * f" Rrynm ot tqOE filtrr. (Ex re.&ra n -ta a tl _1 / . ilqdr EFILTER -a \t -ar I -a arrl F,>Ai kHr ., f. lf the signalamplitudeis over 5 divisions,adjust the Post VR Gain R1030(Figure5-15)for a 5 diviiion signalamplitude. g. Resetthe front panelAMPL CAL for a 7 division signal. h. Switch MIN NOISEoff, decreasethe g€nerator outputto -35 dBm, leavethe REF LEVELat -20 dBm, and adjustthe 10dB Gain R303S,on the 10dB Gain board (Figure 5-17) so the signal amptitudeis 7 divisions. i. Change the generator output to -4S dBm, the REF LEVELto -40 dBm, and adjust the 20 dB Gain R2023on the 20 dB Gain Step board (Figure5-17) for a 7 divisionsignalamplitude. \ / GI.E fEo -loil q -e { D{T B B. Rorpolrrc oil lolrlls E { rl lOtHz lqlfl EL[rn lrrccDil fft r. lo.dtla I O a a o o o o I o o o o o o o e. Disconnectp693 (Figure5-17)and activateMtN NOISE. Apply a 10 MH4 -25 dBm signat,from the signal generator, through a bnc-to-sealsctro adapter to J693: Set the genorator frequency to peak the signal amplitude. (Signal amplitude should be between 3.5 and 6.5 divisions. tf signalamptitudeis not withinthese limits it indicatesa gain problemin the VariableResolution module.) -t I O o o I o t o o o o o o o o o o 494A1494Ap SeMce Vot. I TI -tl I lilllz \ € FILTER -4. j. change the generator output to -65 dBm, the REF LEVELto -60dBm, and adjustthe t0dB Gain R2060 on the 20 dB Gain Step board (Figure 5-1Tl tor a 7 divisionsignalamplitude. k. set the REFLEVELto -30 dBm and the generator output to -35 dBm. Check lor a 7 division signal amplitude. Repeat this check for -45, -55, and -65 dBm input levels. Note that each maintainsthe Z division signal to verify that the gain of the Variable Resolutiongain stages are correct. Readjust gain il necessary. -ca € EUI >!oot(Hi-{ I I -a \ I \ -Jn "J ,.T"*r ut { l. Removethe 10 MHz signalto J680 and reconnect P680. The final band level adjustmentsar€ described after calibrating the PreselectorTracking and checking flatness. The mean level for each band is set to th€ levelof Band1. d -t. rlrngt 08tr m, Removethe extenderboards and re-installthe VariableResolutionmodulein the SpectrumAnalyzer. C. Rcrpoor ot tn|z fihcr. 55@-29 n. Press CAL to reruna calibration routineand re-establishprocessorcorrectionfactors. Flgurc 5-19. 10 kHz, 100 kH:" and 1 MHz lilter response. 5-19 AdiustmentProcedure- 494A/4g4Ap ServiceVot.1 10. Adjusf CalibratorOutput Level (R1041on the 100 MHz Osc and 3rd Converter board) The calibratoroutput level is matchedto a knownreference. A power meteris usedto verify the output level of the referencesig_ nal generator.Harmonicsof th€ signalgen_ erator must be greater than 40 dB down from the fundamental. a. Apply a 100 MHz signal from the signalg€nera_ tor to the power meter through a 3 dB attenuator.Set the generatoroutputlevel for a readingof -20 dBm on the power meter. This sets up a referencesignal for adiustingthe calibratoroutput level. b. Disconnectthe power meterfrom the signalgenerator,and connectth€ refencesignal(fromthe generator) to the test spectrumanalyzerRF INPUTusing the samecablethat was used to set the referencesignal. c. Set the test spectrum analyzer controis as fol_ lows: FREQUENCY FREQSPAN/D|V RESOLUTION BANDWIDTH REFLEVEL MIN RF ATTEN VIEWA and VIEWB PEAK/AVERAGE TrME/DtV TRIGGERING 100MHz 100kHz 1 MHz -18 dBm 0dB On FullyCounterclockwise AUTO AUTO d. Set the test spectrum analyzerVerticatDisplay factor to the A A mode by pressingFINE. Set the REF LEVELsuch that the top of the signalis on a graticule line near the top of the crt. Reset the REF LEVELto 0.00dB by pressingFINE twice. Store the display by activatingSAVEA. e. Removethe r€ferencesignalfrom the RF INPUT and connectthe cAL oUT signalin its place, Tune the CENTERFREQUENCYcontrot to atign the CAL OUT signalwith the SAVEA disptay. f. Adjust Cal LevetR1041,in the 3rd converter(#2 in Figure 5-20) for no displacementbetweenthe CAL OUT signal and the reference(VIEWB and SAVE A displays). 5-20 11. Adjust lF Gain (Rl015on the 110 MHz Amptifierboard) a. Test equipmentsetup is shown in Figure 5-20. SEt thE RESOLUTIONBANDWIDTHtO 1 MHZ, REF LEVELto -20 dBm, and VERT DISPLAYto 2 dB/DtV. Apply a -25 dBm, 110 MHz signat, through step attenuators,to the input(J365)of the 110 MHz fitter. b. set the step attenuatorsfor 0 dB. set the signal generator frequency {or maximurn amplitude display. With -25 dBm input the signal level shoutd be 7 divisions or more.) Set the generatoroutput for a 7 division signalreferencelevel. c. Removethe 110 MHz signalfrom the 110MHz filter and reconnectP365. d. Set the step attenuatorsfor 21 dB attenuation and applythe 110 MHz signalto the input(J321)of the '110MHz lF amplifier(Figure5-20). e. Adjust R1015,110MHz lF Gain, for a disptay amplitudethat equalsthe sevendivisionreferenceset in part b. f. Removethe 110 MHz signaland reconnectP321. Apply the cAL ouT signal to the RF |NPUT. set the SpectrumAnalyzercontrolsas follows: FREQUENCY FREQ SPAN/DIV RESOLUTION BANDWIDTH REF LEVEL VERT]CAL DISPLAY 100 MHz 100 kHz 100 kHz -20 dBm 2 dB/DIV g. Set the front panel AMPL CAL fully counterclockwise and readjust Rl015 (110 MHz lF Gain) for 5 divisions of signal. (lf this cannot be achieved, it indicates excessive loss through the front end.) h. Adjust the AMPL CAL for a full screen signal. AMPL CAL adjustment should now have 6 dB down range and 6 dB or more up range. Two variablecapacitors,C1054 and C2047 on the 110 MHz lF board, do not require adjustment during calibration. These adjustments require return loss measurement which is a maintenanceand repair function. o o O o O o o o a a a a o o o o a o o o o o o o o o o o I o O o o o a o a o a o o o o o o a o o Adjustment procedure - O I o a I a a 4g4Al4g4ApseMce vot. 1 Calibrato. Level R1045 in 3rd Converter lF Gain R1015 10 ltlHz lF Ampl o t t t Tll 5O3 llain Frame I o o O o o o o o a o I o o o I o o o o I I 10 dB and 1 dB Step Attenuators Figure 5-20- lF gain test setup,and adjustnent and conn€ctor rocason3- 12. Adjust B-SAVE A Reference Level (S1015on the VerticatDigitatStorageboard) when B-sAVE A is selected,the expressionimplementedis (B-sAVE A) + kl, where k is'a constantset by the input data for an g-to-4 line encoder, u1015. Each bit will move the referencelevel about 0.2 minor division. Normally,the referencelevel is set at the centergraticuleline; however,it can be set anywhere within the graticuteare3 the setting of an g_biibinary !y switch,S1015(Figure5-7). The MSB (switch#8) shifti the display about five divisions,swiich #7 h;lf this amount,etc. The following proceduresets the referencelevel. Estimate the amount and direction the reference level is to be shifted,then close or open the switches on 31015 to obtain the desired B-SAVEA reference level. 13. Adjust Preselector Driver (Rl031, Rl045, Rl049, Rl052, R10s4, Rl056, R1061,R1063,R1064, R1065,and R2066on the Preselectordriverboard) a. Connectthe test equipmentas shown in Figure 5-21. o o t I a 5-21 Adlustment Procedure- o a o o o o o I o o I a a a I OTi#i" o o 494A/494ApServlce Vot. 1 PRESEIECTONOR]YEREOARD TtrsooMAN FRATE I o oo NETARK GilERffOR DIGITA OOTB VOLTreTER GEilERATOR SOURCE SPECTRTI AilALYZERlrl'DER TEST OMGEilERATOR f,OOIJLE Figure5-21. Preselector Driveradiustmentlietup. b. Set th€ test equipmentas follows: Time Mark Generator .l0 ns CombGenerator On c. Connect the DVM betweenthe center tap of the MANUALPEAK potentiometerand ground. Adjust the control for 0 V indication. lf index on the knob is not alignedwith the mark on the front panel, loosen knob and positionthe mark so it is aligned. d. Set the SpectrumAnalyzercontrols as follows: FREQUENCY RANGE FREQSPAN/D|V AUTORESOLN REF LEVEL 1.7-5.5 GHz 20 MHz On _30 dBm E. SEt thE CENTER FREQUENCYtO CENIET thE 2.1 GHz markEr. Center the Input Ofiset adjustment R1031 (Figure 5-221,then center the 2.1 GHz marker with the CENTER FREQUENCY control. Ground TP1069with a jumperstrap. 5-22 f. Adjustthe PreselectorOffsetRl064 for maximum responseof the 2.1 GHz signal. Removethe grounding strap. s. Peak the 2.1 GHz signal with the -829 MHz lF OfisetR1049(Figure5-22). h, Remove the Time Mark Generatorfrom the comb Generator. change the REF LEVELto 0 dBm. set FREQUENCYto 5.5 GHz, and center the 5.5 GHz comb markeron screen. i. Peak the 5.5 GHz signal with the Preselector Sense,R1065 adjustment. j. Due to interactionbetween R1049 and R1065, repeatparts g throughi. k. change the FREQRANGEto 5.4-18.0 (Band4). S€t REF LEVEL and RESOLUTIONBANDWIDTHto obsgrve the 6 GHz marker. Set the MANUAL PEAK controlto peakthe 6 GHz signal. l. Set FREOUENCYto 9 GHz and observe th€ 9 GHz marker on screen. Peak this responsewith the X3 GainRl052 adjustment. ) o a o o a O o o o o t o o a O O O o o o o o I o o o o I o o A Adrustment Procedure- 4g4A/494ApService Vol. l $tsr. o { O o I a a o o t a a o o o o o a o a O I o a o I a o o I t o o a I a a 1 ,",1 1'[ \\\-''l O O o I o 'h; ' i - .f\ [:r n oo r- H H Qr r I r;;3 p-rplo?2(/h) & TP1069 (EXTPRESELECTOR) [,*f4n ANALOG GND ,r) ldFnzo'e fi"** TP'O54 n il il HBc R.|{}49 Figurc 5-22. PreselectorDrivertest point and adiustmentlocations. . m. Repeatparts k and I to compensatefor int€rac_ tion. u. Adjust -829 MHz tF Offset Ri049 (Figure5-22) to peak the 3.5 GHz response. n. lncrease FREQUENCYto the 12GHz marker, then peak the 12 GHz point with Shaper #1 R1OS4 adjustment(Figure5-22). o. Set FREeUENCYto center the 17 GHz marker, then peak the signat with Shaper #2, R1056 adjust_ ment. v. ChangeFREQRANGEto 3.0-7.1 GHz, set the FREQUENCYto 5.0 GHz to observethe marker,then peak the 5.0 GHz signatwith the +829 MHz tF Offset R1045adjustment. p. Recheckthe 6,9, 12, and 17 GHz pointsto verify that th€y all peak at the same positionor tne rront_panet MANUALPEAKINGcontrol. lf they do not, repeatparts g througho. _ q. Change the FREQ RANGE to 1.7_5.5 GHz (Band 2). Center the 5.5 GHz marker, then peak the signatwith the MANUALPEAKcontrol. r. change FREQ RANGEto 5.4_19.0 GHz (Band 4). Centerthe 5.5 GHz with the CENTERFREQUiNCY control. AdjustInput OffsetR10gl, to peak the signat. :. Repeat parts q and r untit the signat amptitude peaks, on both bands, occur at the same position of the MANUALPEAKcontrot. t. Set MANUAL pEAK control so the index mark alignswith the front panelmark. ChangeFREQRANGE tO 1.7_5.5 GHZ, ANdSEtthE CENTERFREQUENCY tO centerthe 3.5 GHz comb marker. w. ChangeFREQRANGEto 15-21 GHz. Set th€ FREQUENCY to 15GHz, then peak the t5GHz signal with Rl064. x. Tune the 19 GHz marker to c€nter screenthen peak the 19 GHz signalwith Shaper#3 R1061adjustment (Figure5-22). y. Tune to the 21 GHz markerthen peak the signal with shaper #4 n1063adjustment. z. Recheckthe 15, 19, and 21 GHz pointsto verify that they all peak at the same positionof the MANUAL PEAKcontrol. aa. ChangeFREQRANGEto 3.0-7.1 GHz, center a 5.0 GHz signal on screen;then peak the signalwith the +829 MHz lF, Rl045 adjustment. ab. Change to the 1.7-5.5 GHz band, center a 3.5 GHz markeron screen,then peak the 9.5 GHz signal with the -829 MHz tF, Rl049 adjustment. 5-23 Adfustrnent Procedure- o I o a o o o t o a 4g4A/4g4ApServtceVol. 1 TO EXT. ALC IXP|JT@}|IGCTOR- I oo I ro o RF OUT ot o sttEEP osc|llATOR EXT ALc o TO RF OUT @IOIECTON I I SPECTRUT AIIALY:ZER ITIOER TEST t O O LOW LOSSCOAXCABI."EWttH SflA OO|,{€CTORS Figure 5-23. Test equipmentsetup for band leveling adiustmenl 1tt. Adjust Band Levetinglor Coaxial Bands (Bands 1-5) (R2031,R3034,R3090,R9019andR3022on theVR #2 Motherboard) Inpul trom VR #1 The mean value of the frequencyresponse for each band is set to a -20 dBm referenceat 100 MHz. a. Perform FrequencyResponseCheckof bands 1 through 5 as describedin the performanceChecksection and note th€ frequencyat the mean level (average level betweentwo extremes)for each band. b. Perform adiustmentstep 11 (presettingthe Variable ResolutionGain and Baseline Leveling)prior to proceedingwith this step. c. Remove and install the Variable Resolution moduleon an extender. d. Connecttest equipmentas shownin Figure5-23. Set the SpectrumAnalyzercontrolsas follows: FREQUENCY RANGE FREQSPAN/D|V AUTTORESOLN REF LEVEL MIN RF ATTEN VERT|CALDTSPLAY VIEWA and VIEWB 5-24 1.7-5.5 GHz 10 MHz on -20 dBm O dB 2 dB/Drv on I I Figure5-24. Bandlevelingadiustmentand gain diodelocation3. e. Apply a calibrated -20 dBm signal, whose frequencyis the same as that noted for the mean level in part 'a", to the RF INPUT. Set the FREQUENCY to the input signal and reduc€ the FREQ SPANIDIV to 500 kHz. o o a t o a a o a O a o o o O o a o t o o o I o o o o o o o a I o o o o o I o o o t o t o I I I o a a o o o o o t o o Adru3tmentProcedure- . f. Adjust Band 2 Gain RgOg4on th€ vR Mother b.oard #2 (Figure 5-241 tor a fult screEn (_20 OBml display. _ g. Chang€ th€ FREQUENCYRANGE to 3.0_ 7.1 GH.z(Band3) and appty a catibrated_20 dBm signal with the same frequencyas noted for the meanlevel in Band 3 for part a of this step. h. set the FREQUENCyto the incomingsignatand FFEOSPAN/DIVto 500 kHz/Div i. AdjustBand 3 Gain R3030(Figure5-24)for a futl screendisplay. j. Repeat the above procedure for €ach coaxial band (1-5) and set the gain of each with the appropriate adjustment. lf the range of any adjustmEnt is insufficlent, add or r€movea diodebetrr,leen'pin DD and th€ -appfopriateadjustmentpotentiometeron th€ vR Mother board #2. to obtain the reguiredrange. Refer 19 .th: schematicdiagram and componenttocator for Variable Besolution Mother goarOs, in Volume 2. Addingthe diodeincreasesgain. 15. Adiust Band Leveling for Waveguide Bands (Bands 6-11) (R3024, R3026, Rg02g, R9029, anct R3032 on the VR Mother board #Z) ?. I:g! equipmentsetup is shown in Figure5-23. Apply 2072MHz at -€O dBm, through a dt_btocking capacitor to the EXT MIXER input. Monitor the inpui with a pow€r meter to set the pow€r tevel then add a known 30 dB attenuator so th€ input 'Set level to the EXTERNALMIXERport is -60 dBm. ttre Spectrum Analyzercontrolsas follows: FREQUENCY RANGE 1g_26 GHz(Banct6) FREOSPAN/D|V 200 MHz AUTORESOLN On -3OdBm REFLEVEL O a o o a o o I t o o a o o o The baselineof the display will rise when the 2072MHz signat is apptied to the EXTERNAL MTXERinput port connector. -60 b. With dBm input level apptied,adjustBancl6 Gain Leveting R3024 (Figure 5-24) lor iuil screen display. c. change the FREQUENCY RANGEand input signalfrequencyand levelas listedin Table54, and adjuit the appropriateBand Gain adjustmentsfor a fult screen display. Gainadjustmentfor the waveguidebandsneed to be adjustedonly if these bandswill be used. d. Switch POWERoff; replaceVariableResolution module,then switchPOWERback on. 4g4rl4g4Ap ServiceVot. I Tabte 5-4 EXT MIXERBAND LEVELINGADJUSTi,IENTS Band 6 (18-27 GHz) 7 (26-40 GHz) 8 (33-60 GHz) 9 (50-90 GHz) 10 (75-140 GHz) 11 (110-220 GHz) 12 (r7O-325 GHz) Gain AdJustment R3024 R3026 R3032 R3029 R3028 R3028 R3028 16. Phase Lock Calibration (C1016,C1018,C1032,and C1034on the Strobe Driver board; C10i3 and C2011 on th€ Controlled Oscillator board; and Rl06l and R3Og2on the Error Amplifier board) The PhaseLock assemblynormallyrequirescalibration only after some part of the assembly has been repaired or replaced. phase noise, produced by the phase lock loop, is specified tor -7AdBc or better, 3 kHz out from the response. This should be checked beforecalibratingth€ assembly. a. Test equipmentsetup is shown in Figure5-25. Remove the Phas€ Lock module and the two cover plates so all circuit test points and adjustm€ntsare accessible. Plug the assemblyon extenderboardsand into the instrument. Use Extendercables and adapters to reconnect signal cables to their respectiveconnector (cable with yellow band to J501, and the cable with blackband to J502). lf d€sired, the direct reading counter may be connectedto the VerticalOutputof the t€st oscilloscopeto get a count of a display at each test point, when appropriate,throughout this procedure. The ground side of the test oscilloscopeprobe will serv€ as the commongroundreturnfor both instruments. b. Press CAL and do the directed calibration routine through adjusting the LOG CAL. Press to return the instrumentto normal operationand set REF LEVELto -30 dBm. Check that the AUTo RESoLN is active (button tit). c. Check O{fset Mixer - This part of the procedure is only requiredafter repair or replacementof the Mixer board. (1) Connect the Direct Input of the frequency counter to pin N (Figure 5-26) and set the counter controlsfor a count. Notethe frequency. (2) Connectthe counterto pin K and note the frequency. 5-25 AdJustnent Procedure - 494A/4g4ApServtce Vot. I To: Vsrt liignel Out (back penell o a o o o o o a a o I a , I o a Spectnrm Analyrer Under Tegt t I Flgure 5-25. Test equlpm€ntretup for adjusting llre phase Lock assembly. (3) Connect the counter to the coll€ctor of e1040 and not6 the frequency. Frequencyshould equalthe difference between pins N and K (e.g., 25.080MHz - 25.000MHz - 80 kHz). Disconnect the counterprobe from the collectorof e1040. (4) Connecta test oscilloscopeprobe to the collector of Q1040and checkfor a signalwith a frequency of approximately B0 kHz, 507" duty cycle, and an amplitudeof approximatety5 V peak-to-peak. d. Check Synthesizer (1) Set the SPAN/D|V to 200 kHz. phase tock should occur. {2) ChangeSPAN/DIVto 500 kHz and connectthe counter to J500 on the Synthesizer board. Check for a readingof 50.00MHz. (3) Connect the counter to Tp2O40 (Figure 5_26a) and checkfor a readingthat is near 25.0 MHz. (4) Connectthe test oscilloscopeto Tpl040 (Figure 5-26a) and check for positive pulses with an amplitude of approximately4 V peak-to-peak. (5) Changethe SPAN/DIVto 200 kHz and observe that the signalon Tpl040, in part d(4)is stiil th€re. 5-26 G. Contolled Osc{llator - This part of the checkis only requirgd after repair or replac€mentof the ControlledOscillatorboard. Bandpass filter adjustments c1041 and C1042 are set at the factory becausethey requirea specialtest fixture. Theseadjustmentsdo not need furtheradjustm€nt. lf adjustmentof C1013 and C2011 is not sufncientto achieve phase-lock,the board shouldbe replaced. (1) Press PULSESTRETCHER and select item #1 (FREQUENCYLOOPS CAL), then item #5 (PHASE LOCK SYNTHESIZER) from the displayedmenu. (2) Followthe instructionsuntil the message,'VERIFY LAST STEP'. Due to the interactionof adjustment capacitorsC1013 and C2011, the two steps will have to be repeated until the voltages are correct. Alternately press AUTO RESOLN and IDENTand adjust until the two voltagereadingsare correct. o o o I a a o a o o o o o a t O o o o o o o o o o O l.t a o o a o I o I o I o I I I I a t a a o a o I o o o o a a a I o o a I I o o o I o o AdrustmentProcedure - 0@ @ coitrnou.ED Cf OSCIIIATOR 4g4A/4g4ApServlceVol. 1 (E l-r rP2C3 E rpzoro 0 put.l PSI B o El TP10'|O El Ptilt- c1013 c,rll @@r L-J o*tto J-ffi]snrnasrzen @ @ oFFsE nrxEn @ @ @ @ A Syntfredror, Oftrrt l|h.r, rnd Gontlotocl Orcileor. LOOPOA0T R30!2 n TP36T E c2105 TP,OI5 EI o fTr.t I Ft 004 STROBEDRIVER | "trrl B. Stiobc Orlyrr rnd Eror Ampllllcr. Flgure 5-26. Phage Lock ariembly adjustment and test point locations. Adiustment Procedure- 494A/tg4Ap Service Vol. 1 (3) Connect the counter to Tp2o11 on th€ controlled Oscillator board (Figure 5-26a) and atternatelypress AUTO RESOLNand IDENTand check for a count reading of either 25.0g4gMHz or 25.0328MHz. f. Chec-kOpera0onof Strobe Drlver The *PhaseLock Synthesiz€r"test is still used for this test. lf aborted, press PULSE STRETCHERto return to the Synthesizerroutine. Any step in the routinewillwork. (1) Connectthe test osciltoscopeto Tp2015on the Strobe Driver board (Figure 5..26b)and eheck for a square wave response with a Time/Div setting of .05 ps. Amplitudeshould be ==5V peak-to-peak. (21 Connect the test osciiloscope to Tp2Og7 and check for a sinusoidal waveform of approximatety 5vpp. (5) RemoveP3057 (Figure5-26b). This turns on the strobe to the Phase Gate. Set Loop Gain R3082 fully counterclockwise.MoveP2035to pins 2 and 3. (6) Monitor TP3081 with the test oscllloscope. Triggerthe test oscilloscopeexternallywith the signal at TP2037 (U204&6) shown Figure 5F26b. Set the test oscilloscopeTime/Divto 5 ms and Volts/Div to 0.5 v. Note the beat notes. Beat notes are produced by the difference betw€en strobes from the phaselock (one every5 MHz) and th€ particularfrequencythe lst LO is tunedto. O) Vary R3082 clockwise slowly and make a note of th€ amplitude of the beat notes prior to lock The when lock is achieved. beatnot€swill dasappsar (8) Set R3082 fully clockwise. Reset SPAN/DIVto BANDWIDTHto 100 Hz, and MAX, RESOLUTTON TIME/olv to AUTO. D€activatevlEW A and VIEW B. (3) lf the amplitude of the strob€ signat is low and noisy,chang€the values of selectcapacitorsCl01 6, C1018,C1032,and C1034 for maximumamptitude and minimumnoise at TP2087. The rangeof values for thesecapacitorsis 3.3 pF-27 pF. (9) As the sweep scans across the span, note the position of the smallest beat note. Tune the CENTERFREQUENCYto positionthe fr€quencydot at this location, then reduce the sPAN/Dlv to 100 MHz. Set TIME/DIVto 1 s and activateVIEWA. (4) Connectth€ counter to TP2087 and check for a count of either 5.018868or 5.00642 MHz. (10) Adjust R3082to set the amplitudeof the beat note to 1.5x the amplitudenoted in sub-part7 of part g. (5) Gonnectthe test oscilloscopeto JS04and check for5Vlogiclevels. (6) Press to abort the test. g. Error Ampllfier- This proceduresets loop gain whichis requiredwhen either the PhaseLock assembly, 1st LO, PhaseDetector,or Error Amplifieris replaced. (1) Set SPAN/DIVto 200 kHz then press PULSE STRETCHER. The DTAGNOSTTC FUNCTIONSmenu will now be disptayed. Setect menuitem 3 (DIAGNOST|C A|DS)and setectt st LO PHASE LOCK (sub-menu item 0). phase tock shouldbs disabled. (2) Connectthe test osciiloscopeto Tp203B(Figure 5-26b) and set the test osciltoscopeTime/Div to 20 ms. Check for a waveform with an amplitude that is approximately6 V peak-to-peak. (3) Press lOdBiDlV to enable phase lock and note that the messageindicates LOCK ENABLED. Connect the test oscilloscopeto Tp 3081 (Figure5-26b) and vary R3082from stop to stop and note that the beat note signalvaries in amplitude. Press to returnto normalop€ration. (4) Set th6 TIME/DIV to AUTO, FREOUENCY RANGE to 1.7-5.5 (Band 2), and SpAN/D|V to 50 kHz. 5-28 (11) Reset the TIME/DIVto MNL, and deactivate VIEWA. Set SPAN/DIVto 50 kHz, then increaseit to 100 kHz. Center th€ crt beam with MANUAL scAN control. set the oENTER/MARKERFREOUENCYcontrol lor a null of the displayon the test oscilloscope. (12) Positionthe crt beam with the MANUALSCAN control4 divisionsfrom centerscreen(400kHz from c€nterscreen). (13) Monitor TP1031on the Error Amplifierboard with the test oscilloscope.Externallytriggerthe test oscilloscopewith the signal at TP1031. Set R1061 to midrange. (14) Vary Rl061 clockwise until the oscilloscope displayjust startsto breakup. (15) Use the MANUALSCANcontrol to position the beam 4 divisions on the opposite side of center screen. As the beam crosses center screen, the displayon the test oscilloscopeshouldgo througha null. lf no nufl occurs as the beam reachescenter FREQUENCY scre€n, reset the CENTER/MARKER control for a null of the displayon the test oscilloscope. (16) Adjust R1061 such that break points are 400 kHz on either side of centerscreen. o o o o o o o I a o o t I a t I a o o , I I a o I o o a o o o o t o I o o o I o o a o o o o o o o I o a O I a a o t o I I I I o a t a O t o o o t a o a I a o a I a o o o o o I Adjustment Procedure- 07) Move p2035 back to pins 1 and 2, reptace P3057, and disconnectthe iest oscilloscopefrom the ErrorAmplifierboard. (18) ReduceSPAN/D|Vto 200 kHz and ensure that phaselock occurs, by the absenceof error rnessage and a sweep. Replacethe covers on the assemdly and reinstallthe modulein the lnstrument.perform the phaselock noise check as describedin the performanceGhecksection. h. Check Strobe Drlver - Excessivenoise on the display and intermittentlock are indicationsthat the strobe pulse from the Strobe Driver is noisy or tow in amplitude.This can be causedby a mismaichin input g o$qut impedanceto th€ band-passfitter FL20Li4. The folfowing procedur€ is required if the filter or any component that affects the input or output impedanc6 matchis replaced. (1) With the instrument in phase lock rnode (SPAN/D|V200 kHz or tess),monitorTp1Og2with a test,oscilloscope.Note the amplitudeof the 5 MHz strobe signal. Amplitudeof the sinusodialstrobe signal is normaily5 V to 6 V peak-to_peak. (2) lf the strobe signal amplitudeis low and noisy, changethe valueof selectcapacitorsC1016,C.t016; C1032 and C1034 to obtain the maximum strobe pulse amplitudeat Tpl0g2. Thesecapacitorsrange from 3.3 pF to 27 pF. (3) lf the signatamplitudeis still tow, checkthe fre_ quency at TP1012 with a frequencycounter. Frequency must fie between 5.0067MHz and 5.0188MHz. The frequency is a function of the ControlledOscillatorassembiyand counterU1OZ2. OPTIONINSTRUMENTS ONLY 17.Adjust Option0Z VR BandLevetino (R3024on the VR Motherboard#2) a. Set the front-panelcontrolsas follows: FREQUENCY FREQSPAN/D|V REF LEVEL MIN RF ATTEN AUTO RESOLN TIME/DIV VERT|CALDISPLAY vtEW A/V|EWB .t00MHz 200 kHz _20 dBm O dB on AUTO 10 dB/Dtv On b. Place the VR module on an extender,and con_ nect the cAL ouT signat to the 50o RF tNpUT via a 50O cable. 4g4[l4g4fup ServlceVol. 1 c. lt may be necessaryto set th€ FREQUENCy control to ke€p the 100 MHz signalat centerscreen. d. RESETthE RESOLUTION BANDWIDTH tO 300 kHz, and the VERTTCAL DtSpLAyto 2 dB/DtV. e. Set the front-panelAMPL CAL for a 7-division excursionof the 100MHz signat. f. Flemovethe 50O cable from the instrumentand reconnectthe cAL ouT signalto the 75o RF INpUTvia a 75O cabl€. Pushthe 75O RF tNpUTbutton. g. Resetthe REFERENCE LEVELto +20 dBmV h. Adjust R3024 on the VR Mother board #Z tor a 7-divisionexcursionof the 100 MHz signal. i. Disconnectthe 75O cable,disablethe 7SO input, and re-fnstallthe VR modulein the spectrum analyzer. 18. Adjust Option 42 Modute (Cl016, Cl020 and Cl024 in the Option42 Moctute) This adjustmentn€ed only be done after the circuit board in the modulehas been replaced. a. Connectthe test equipmentas shown in Figure 5-27. b. Set the front-panelcontrolsof the test instrument as follows: TR5O2 Output Level -dBm Var dB 25 0 7L14 CenterFrequency 0110 Freq Span/Oiv 2 MHz Resolution 3 MHz VerticalDisplay 2 dB ReferenceLevel DisplayAandB Off DC503A chA Term Slope Atten Coupl FreguencyA Autotrig 50O + dc 5-29 o o o o Adrustment Procedure- 4g4A/4g4ApServlce Vot, I o DC503A I [[ ORF Input oo lc ba1* RFOurO LO lst LO P1024 (rFouT) P1012 P1010 (OUr) (tN) H:N rrn I e I O RF ln lrtlO O t I t O t o a t t o Figure 5-27. Opton 42 adiustmenttest equipmentsetup. c. set the 7L14Time/Divto Manual,and adjustthe crt beam (dot)to center screen. (1) Set the 7L14 Spectrum Analyzer Reference Levelto 0 dBm. d. The DC503Areadout shoutd indicate approximately 110.000MH2. Set Level as nec€ssary,and set the 7L14 Center Frequency for an indication of 110.0MHz. (2) Checkthat the displayon the 7L14 is between4 and 7 divisionsin amplitude(-5 dBm, i3 dBm). e. set the 7L14Time/Divto catibrateddisplay. f. Adjust C1016,C1020 and C1024for maximum amplitude, symmetry and bandpass (3 dB and 6 dB points). (1) Increasethe TR502 Output Level and REFERENCE LEVEL setting in 1 dB incrementsuntil the amplitudedisplayedby the 7L14 decreasesby 0.5 division(1 dB compression). (1) Adjust the bandwidthsymmetry +0.5 divisions (r1 MHz)at th€ 3 dB and 6 dB points. (2} Check that bandwidth at the 3 dB point is 7.5 MHz,*1.5 MHz. (3) Checkthat 3 dB and 6 dB points are equidistant from centerscreenwithin0.5 division. (4) Checkthat any ripple presenton the waveform is (0.2 div (0.4dB). A slightchangein display may be observed whenthe coveris reinstalledon the module. S. Check the CoupledFonuard Gain (tF OUT port P1O24l. 5-30 h. Checkthe Input Compression. (2) Checkthat the signaldisplayedon the 7L14 indicates)0 dBm. i. CheckForwardGain (1) Return the TR502 Output Level to -25 and removethe connectionto the modulo]F OUT. (2) Connecta 50o terminationto the lF OUT connector,P1024. (3) Connectthe OUT (P1012)connectorto the 7L14 RF Inputwith a 50o cable. (4) Adjust the 7L14 Reference Level until the displayedsignalis nearfull screen(8 divisions). (5) Checkthat the signaldisplayedon the 7L14 indi-23 dBm (-21.5 dBm cates -20 dBm to *1.5 dBrn). a o o o o I t a a I o o o a O a a o a o a o o o o o o o o a o o o a t o o o o I t o I o I a o I t o a o o o O o o a o o O t a o o O O I O o o I I Sectfon 6 - 494A/494Ap Servicc Vot. 1 MAINTENANCE INTRODUCTION This section describes proceduresfol reducingand pr€venting instrum€nt. malfunction, tioubleshootint methods, correctavemalntenance,and procedures for recalibratingthose assembtiesthat normally do not requireroutinecalibration. Removing the Instrument trom its Cabinet T-opreparethe standard instrumentfor maintenance or adiustment,perform the following steps1. S€t the instrumenton lts facs or front panel. 2. Loosenthe four screws in th€ feet. 3. Pull the cover up and off. 4. Place the instrument on the work bench and reconnectthe power cord. 4. Nothingcapabl€of generatingor hotdinga static charge should be allowed on the work station surface. 5.. Keep the cornponent leads shortEd together wheneverpossible. 9 Pick up components by the body, never by the leads. 7. Do not slide the componentsover any surface. 8. Avoid handlingcomponentsin areas that hav€a floor or work-surfacecovering capabfeof generating a static charge. 9. UsE a solderingiron that ls connectedto €arth ground. 10. Use only specialanti-staticsuctiontype or wick type desolderingtools. Tabte 6-1 RELATIVESUSCEPTIBILITY TO STATICDISCHARGE DAMAGE Static-Sensitive Componentg This instrumentcontainselectricalcomponentsthat 9an be damagedby static discharge. See iabte 6_1for the relativesusceptibitityof varioui classesof semiconductors. Static voltages of 1 kV to 30 kV can occur in unprotectedenvironments. MOS or CMOS microcircuits or discretes,or linearmicrocircuitswith Static dischargecan damageany semicon_ ductorcomponentin this instrumint. Observethe following precautionsto avoid damage: 1. Minimize handling of static-sensitivecomponents. 2. Transportand store static-sensitive components or assembli€sin their originalcontainers,on metalized or conductivefoam, Labelpackagesthat contains static-sensitiveassEmblies or com,-ponents. 3. Discharge body static voltage by wearing a grounded wrist strap while handling these com_ ponents. Statie-sensitive assemblies or components should be handted and serviced only at staticfree work stationsby qualifiedserviceperson_ nel. TTL (L€astSensitive) VoltageEqulvalentfor Levels: 1-100to500V a-500V fa400to 1000V (estl 2 - 200to 500 v 5 - 400 to 600 v 8-900V 3-250V 6-600to800V 9-1200V a Voltage discharged from a 100 pF capacitor through a resistance of 100{). 6-1 Maintenance- 4g4Al4g4ApServlce Vot. 1 PREVENTIVEMAINTENANCE Preventivemaintenanceconsists of cleaning,visual inspection,performancecheck, and if needed a recalibration. The preventive maintenanceschedule that is establishedfor the instrumentshould be based on the environmentin which the instrumentis operatedand the amount of use. Under av€rage conditions (laboratory situation)a preventivemaintenancecheck should be performedevery 1000 hours of instrumentoperation. Elapsed Time Meter A 5000 hour elapsed time indicator, graduated in 500 hourincrements.is installedon thE Z-AxislRFInterface circuit board. This provides a convenientway to check operating time. The meter on new instruments may indicate from 200 to 300 hours elapsed time becausemost instrumentsgo through a factory burn-in tim€ to improvereliabitity.This is simitarto usingaged componentsto improve reliabilityand operatingstability. Cleaning Cleanthe instrumentoften enough to preventdust or dirt from accumulatingin or on it. Accumulationof dirt and grease acts as a thermal insulatingblanket and preventsefficientheat dissipation.lt also provideshigh resistanceelectrical leakagg paths between conductors or componentsin a humidenvironment. Exterlor. Clean the dust from the outside of the Instrumentby wiping or brushingthe surfacewith a soft cloth or small brush. The brush will removedust from around the front-panel selector buttons. Hardeneddirt may be rernovedwith a cloth dampened in water that contains a mild d€tergent. Abrasive cleaners should not be used. Do not allow water to get inside any enclosedassemblyor compon€ntssuch as thE hybrid assemblies, RF Attenuator assembly,pot€ntiometers,etc. Instructions for removingthese assembliesare provided in the CorrectiveMaintenancepart of this section. Do not clean any plasticmaterials with organiccleaningsolventssuchas benzene, toluene, xylene, ac€tone or similar compoundsbecausethey may damagethe plastic. Lubrication Componentsin this instrumentdo not requirelubrication. Fixtures and Tools for Maintenance Table 6-2 lists kits and fixtures that are availableto aid in servicingthe spectrumanalyzer. Visual Inspection After cleaning,carefully check the instrumentfor such defects as defective connectionsand damaged parts. The remedyfor most visibledefectsis obvious. lf heat-damagedparts are discovered,try to determine the cause of overheatingbefore the damagedpart is replaced;othenwise, the damagemay be rep€ated. Interlon Clean the interior by looseningaccumulated dust with a clry soft brush, then remove the looseneddirt with low pressureair to blow the dust cl€ar. (High velocity air can damage som€ components.) Hardeneddirt or grease may be removed with a cotton tipped applicatordampenedwith a solution of mild detergentin wat€r. Do not leavedetergent on critical memory components. Abrasive cleaners should not b€ used. lf the circuit board assemblies need cleaning,removethe circuit board by referringto the instructionsunder CorrectiveMaintenancEin this section. Transistor and Integrated Circuit Checks After cleaning,allow the interior to thoroughlydry beforeapplyingpow€rto the instrument. observethe necesWhenhandlinga static-sensitive, sary handlingproceduresto preventdamage. 6-2 All transistorsand integratedcircuits are soldered on the boards to prevent pin contact problems, Periodic checks of the transistorsand integratedcircuits is not recommended.The best measureof performance is the actual operationof the componentin the circuit. In most cases any degradationin performance will be detectedby the microcomputerwhen it runs its power up routine. Performanceof thesecomponentsis also checkedduring the performancecheck or recalibration; any sub-standardtransistorsor integratedcircuits will usuallybe detectedat that time. a o o o o t o t o a I t t o o I o t I o o t a a I o o a a o a o o o o o o o o o o o o o o a a o o I o o o a o Maintenance- Table 6-2 SERVICE KITS AND TOOLS Nomenclature 006-3286-01 067-0973-00 067-0971-00 I AccessoriesInterface extender 1 Ribboncabte 067-0972-00 3 Coaxialcables, Sealectromale-to-S€atectro temate 17$2902-00 1 VR modulehandle o 1 Circuitboard extenderassemblykit consiiiing of: t o I a t a o e a a t o t o o o t o o o I o I o o o o o I o Tekfonix Part No. ServiceKit consistingof: 'l Front panel extender 1 Power moduleextender ) t 494A1494Ap ServiceVol. 1 175-2901-00 367-028s,00 672-0865-01 I Left €xtender board 670-5562-00 2 Right exlender boards 670-5s63-00 1 Right GPIB extender board 670-8493-00 1 Frameeldrusionfor circuitboardextender 426-1527-A0 6 Screws,panheadwith flat and tockwasheii 211-0116-00 screwdriver,flat, with 1/4 to 3lg-inchbit Screwdriver, posidrive@ 440-2 Wrench,5/16-inch open-end Hex drive wrenches,glg2, SI€/',ZlGzt-inch TorqueWrench Kit 003-1324-00 Performance Checks and Recalibration The instrument performance should be checked after each 2000 hours of operationor every 12 months if the instrumentis used intermittentlyto insure max_ imum performanceand assist in lociting defects that may not be apparent during regular operation. Instruc_ tions for conductinga performancecheck are provided by the Performance Check section of the service instructions. Saving Stored Data in Battery-Backup Memory lf backup-battery power to the memory is interrupted,such as when changingthe battery,data stored in battery-backedup memorywill be lost. This data can be down-loadedonto tape using the programprovided at the end of this section. Macros cannot be down-loadedonto tape. However, these macros can be readilyreconstructedif they had beensavedon a tape or disc. TROUBLESHOOTING The spectrum analyzyer contains firmware that will troubleshoot the frequency control system and the power supply. Troublsshootingprocedurefor this sys_ t€m and the power supptyis providedln the Diagnostics part of this section. Also includedwith this part is a descriptionof the trace modesand their actions. After th€ def€ctiveassemblyor componenthas be€n tocated, refer to the ReplacingAssembliesand Sub_assemblies pert of this section tor removaland repfacementinstruc_ tions. TroubleshootingAids Diagrams - Functional block and circuit diagrams. on foldout pages in the Diagrams section, eontain significant waveforms, voltages, and togic data information. Conditions for getting the data are provided on the diagram or adjacent to it. Refer to the Replaceable Electrical Parts list section for a description of all assemblies and components. Diagrams are arranged in signal flow sequence and by sections, such as RF section, lF section, frequency control section, etc., with an accompanying functional block diagram. 6-3 Malntenance- tl94A/494ApSeMce Vot. 1 Schematic diagrams list the Tektronix part No. (670-xxxx-) for the assembty or board atong with the assemblynumber (e.9. AS0) and name. The tast two digits or sufftx of the part number are not indicatedon the diagram, however, they are list€d in the El€ctrical Parts section. These two digits rsflect changes or modifications to the assembly or board. When a change is made to the assemblythe suffx rolls one digit. The diagramindicatesthesechangeswith a grey tint drawing of the original circuit or if a component changes value the symbol is enclosed with a grey tint box. When a major modificationis made to an assembly or board and it is no longercompatiblewith eadier instrumentsa nsw part number ls asslgned and a separate schematic with associated illustrations are added. all diagrams indicate the new part number and the instrumentserlal numberbreak. lf the assemblyis compatiblewith earlier lnstrumentsand the change is significantenoughto requirea separateschematic,this will also be identified. Correctionsto the manualand instrument modificationsare documentedby ad MAX HOLD. Combinations of error m€ssagesmay help determineand expedite the proc€ss of findingthe problem. has been isolatedto the assemblyor circuitlevel,refer to the diagrams and circuit descr{ption, as suggested under General TroubleshootingTechnigues,for further isolation. The proceduresare structuredas follows: Error Message Troubleshooting Procedure 1. a. b. . . Some of the proceduresuse firmware diagnostics aid routineswhich can only be accessedby pressing >Blue-SHIFT> PULSE STRETCHERanO- ietecting menuitem #3 (DIAGNOST|C A|DS). Combination of Error Messages The followingis a list of error m€ssagecombinations and suggestionsas to their cause. lf the problem is not resolvedwith the followingsuggestions.or if the combination of effor messages displayed is not covered,proceedto the listing of each error message and how to troubleshootthe problem. POWERSUPPLYOUT OF REGULATION (in comblnatlonwlth any otfrer meseage/s) A missingor inaccuratesupplyvoltage is probably causingthe other errors. proceedto the POWERSUpPLY OUTOF REGULATTON procedure. TUNINGFAILURE- lST LO and TUNINGFAILURE- 2ND LO The CF Controlboard is probablythe cause,particularly if signalsdo not tune or do not tune smoothly. The problemis probablythe voltagereterenceor in the digitalcontrolsection. Procedure Format The format for thes€ proceduresis such that the problemis diagnosedin a dEscendingorder. The aim, to isolate a problem down to one part of the system, usuailyan assembly(such as a module or boardl or a functionalsection of the assembly. After the pr6btem 6-5 (1) (2) 2. Steps at the same level are either sequentialor alternativesteps, based on measurementor observation. Proceedto the lower-levelsteps only if the conditions of the higher-levelsteps are met. lf the conditions are not met, proceed to the next step at the same level. An "(E)' at the end of a step, signifiesthis is as far as this procedur€can tak€ you to locate the problem. Several of the troubleshootingproceduresrequire that frequenciesbe countedand comparedto eitheran expectedvalue,or the numbercountedby the spectrum analyzer'sinternalcounter. The frequenciescan differ by up to [(1x107)+ (counteraccuracy). Theseprocedures,unlessspecifted,assumethe frequencyrangeis either0 - 1.8GHz or 1.7- 5.5 GHz. Some failures,in the frequencycontrol system,may appear only at sp€cific oscillator frequencies.lf this occurs, in a higher frequencyrange, the fundamental frequencyof the appropriateoscillatorshouldbe determined so it can be set to the same frequencyin the lower bands. This can be done by: o o o o o o o o o o o a o o o o o o a o o o o I o o o o o I o o o a o I a o o o a o o Malntenance_ 4g4Ll4g4ApServlceVol. 1 (1) Press PULSE STRETCHEB and #0, then setect either the lst to reaoout lmenu item #1) or the lnd fg.readout (menu iteni *e1. I!9 _LO frequency wiil be displayect on the crt CENTERFREQUENCY readoutpbsition. (2[fter n-otingthe.freque^ncy of the oscillator,press PULSE STRETCHERand #0, and select center frequencyreadout to return to the normal center frequencyreadout mode. Sincethe instrument'spower is usuallyswitchedon and off during troubleshooting,the ponJer-do*n settings, that are automatically Ltored in register 0 of Paltery-backed-upmemory, lhout6 be recalted so the instrumentsettlngs and operatingmode dupticatethose that existedwhen th€ error messagewas ginerat"d. . The following, describeseach error messageand the proceduresrecommendedto locate the problem. POWERSUPPLYOUTOF REGULATION Any out-of-tolerancevoltage will cause this eror m.?.":"g.e to be displayed.A pow€r supptystatuscircuit withinthe power supply will change tne itatus LED on the Z-Axis board to red,whenany supptyexcept_17 v -error'message changesby more than 25%. An will be also-be displayed. An apparent power suppty failure can be producedwhen eitherthe supplyfails or a circuit demandsexcessivecurrent and Ofowi L protectivefuse or produces a current limit condition. The following procedureshould determinethose voltages that are out of range and whether the failure is in th6 supply or in a circuitoutsidethe supply. Troubleshooting procedure The spectrum analyzer uses a high eficiency pow€r supply, with the primJry ground potential difierent from chassis or €arth ground. An isolation transformer, with a turns ratio of 1:1 And a 5OOVA minimum rating, should be used between the power source and the spectrum analyzer power input receptacle, The transformer must have three-wire input and output connectors with a through - ground 99!*99n input and output. S-tancor GlS1000 is an €xample of a suitable transformer. A iump€r should also be conn€ctedbetweenth€ primarygroundside to chassis ground (emitterof e2061 and the groundt€rminatof the input fitterFL301). lf the power supply is separat€d from the instrument and operated on the bench, hazardouspotentialsexist withinthe supply for several seconds after power is discon_ nected. This is due to the slow discharge of capacitorsC6101 and C61fi. DS5112 (next to 96111) tights when the potential exceeds80 V. _ - 1. Verify that the power supply status LED, on the Z-Axis board, is red. lf the LED is green,there is probably a failure in the microprocessorlnterface.(E) .2, Measurethe power supply voltagesat the test points on the Z-Axis board. To accessine test points, remov€ the hold down cover over the Sweep and Z-Axis boards. Hazardous voltages (900 V and 100 V) are presenton the Z-axis board. The rangesfor each supply are listed in Table 6€. ThEseare tolerancelimits which are much tighterthan the limits used by the power supply sensingcircuit. A supply that exceedsthese limits may not trigger the error messageor cause the instrumentto malfunction. The +15 V supply is adjustableand affects the other supplies. Referto the Adjustmentproceduresectionof the manualfor adjustmentinformationif a supplyis iust out of tolerance. . a. lf all suppliesare within limitsand the powersup_ ply status LED is r€d, the probtemis probablyin the power supply status circuit on the Z-Axis board. R1065may be misadjusted;adjust Rl065 to see it the LED changesto green. lf it changes,set R1065at the centerof the 'green'range.(E) b. lf the +17 V or -17 V supptyand any other supply or supplies are inaccurate,or, if both the +9 V and +5 V suppliesare inaccurate,the troubleis likelyin the PowerSupply.(E) c. lf the voltage is high (in absolutevalue),the troubleis probablyin the Power Supply.(E) d. lf the voltagefrom a fused supplyis inaccurate, the trouble is probabtyin the power Suppty.{E) e. lf the voltagefrom a fused supply is absent,it indicatesthe fuse could be blown. To accessthe fuses. remove the cover at the top left hand corner of the Power Supply module (as viewed from the front of the instrument),A blown fuse generallyindicatesthat one of the circuits that this supply furnishesis defective; however,a fuse may open without an overcurrentcondition. Replace the fuse and try again. lf the fuse opens,the troubleis definitelyin one of th€ circuitsthe supplyfurnishes. | 6-7 Malntenance- o a o 494A/494ApServlceVol. 1 o o Table 6-3 POWER SUPPLYRANGES Supply +300 v Range Test Polnt 280V to 310 V TPl052 Fuse(F1033) +100v Circult Protecton 95Vto105V TPl048 Fuse (F1035) 10.8V to 18.6V TPl047 Fuse (F2013) 15V 14.85V to 15.15V TPr046 Currentlimit +9V 8.5 V to 10.5V TPl011 +5V -5V 4.8 V to 5.2 V -4.8 V to -5.2 V TPl044 Fuse{F1014 Curent limit TPl036 Gurr€ntlimit TPl037 Fuse(Fl013) TPt035 Currentlimit + 1 7V -7V -15 V -7 V to -8.5 V -14.85V to -15.15V -17V8 Fuse (F3038) Gnd TPl034 f. lf the fuse does not open and the vottageis still absent,it indicatesthe troubleis the power Supply.(E) g. lf the voltage from a current limited supply is absent or low, the problemcould be the supply,or circuits the supply furnishesmay be drawing excessive curr€nt. Turn the POWER ofr, then disconnect the suspect assembliesor modules from the supply and re-measurethe voltage; or, remove the power Suppty from the instrumentand measurEthe unloadedvoltagei on the PowerSupplyconnector. (1) lf the supplyvoltageis correctwith assembtyor module removed, or when the voltage with th€ power supply removed is normal, the circuits this supplyfurnishesare causingthe problem.(E) (2) lf the voltage for the unloadedsupply voltage is still inaccurate,the power supplyis defective.(g TUNINGFAILURE- 1ST LO The 1st LO is set by a combination hardware/software loop. There are two distinct hardwareblocks to the loop: the block that measures the oscillator frequency and the block that sets the oscillator to frequency. The microprocessorsystem closes the loop by det€rmininghow muchthe oscillator rnust b€ tuned to set the desired frequency. The microprocessorindirectlycountsthe 1st LO, tunes it as needed,and countsagain. GroundRefer€nce The l st LO Tuning Failure error message is displayedwh€n the lst LO has not been set correcuy after a numberof iterations. The number of times the 1st LO is countedand tuned varieswith instrumentsettings. The l st LO Control DiagnosticAid displays data on the crt screen which can be used to determinewhich part of the loop has failed. To displaythis data, press PULSE STRETCHERand #3. th6n select#1. The first two lines list the voltage to b€ exp€ctedat the output of the lst LO s€ction of the Center Frequency Control and the voltag€ across the sense resistor of the l st LO Driver. The nominalvaluesare based on the Desiredlst LO Freq and the nominaltuningsensitivityof the oscillator. The DAG Set valuesare basedon the settingof the lst LO tuning DACs. The DAC Set values can differ from the Nominalvaluesbecausethe systemcannotbe exactlycalibrated,tbe tuningsensitivityof the oscillator is possiblynot its nominalvalue,and the DACSwill be movedin an attemptto set the oscillator. a The -17 V..:upPty is nol monitored. by trre Power supply status cirouit nor does it have a iest point on the z-axis board, It this suppty rails, the cooling fan wilt not tun. The fsn will atso not run it tre im5ient tempe.ature is tow. The -17 v suipty witt probably affect other suppliei ai weil. 6-8 o o o o a o I t o o o o o I I a t o a o a o a o I o o a o a I a o o o o o o a Mafntenance- 4g4ful4g4ApServtceVot. 1 1STLO CONTROLDIAGNOSTIC AID TUNEVOLTS SENSEVOLTS NOMINAL -6.79 V 3.43V DAC -6.80 V 3.43 V DESIRED lST LO FREQ MIXERFREO 2.720 504 c|-1.z 45.896MHZ 1ST LO SETNNGACCURACY AUXILIARYSYNTHESIZER 2.719735 cHZ 46.665MHZ 4.981MHZ 212.800 MHZ PRESS'SH|FT"TO EXIT The Desiredl st LO Freq is th€ frequ€ncyto which llre qroge.ssor,is trying to move the oscillator. The uounted l st Lo Freq is the frequencythe microcomputer has calculatedfrom, the internaltycounted harmonic mixer outputfrequency,the Auxiliiry Synthesizer frequ€ncy, and the assumed harmonic numOerof the AuxiliarySynthesizer.BEcauseof this lasi assumption, if the lst LO is not near the Desired Frequency, the counted Frequencywiil not be the actuarosciilatorfrequency,eventhoughthe counteris functioning. The Desired Mixer Freq is the difierencebetween the the Desired1st LO Fr€q and the nearestharmonic of the Auxiti.arySynthesizer.(fhe AuxitiarySynthesizer wiil atways be higher in frequencythan rhe laryolig desiredlst LO frequency.) The 1st LO Setting Accuracyis the maximumper_ mitted difference.betweenthe actual and desired LO frequencies. The setting process will end when the differencebecomes less than, or equal to, this value. The tolerancedependson frequencyspan and band. Auxiliary Synthe.sizerFreq is the frequency .. -T" that is programrnedinto the +N synthesizer. This troubleshootingprocedure should localize a problemto the oscillator,the oscillatorsettingblock, or the.oscillatorcountingblock. lf the failur€ is not in the oscillator, it is further localized within one of the hardwareblocks. Troubleshooting procedure 1. Press PULSESTRETCHER and #3 to displaythe DiagnosticAids menu,then sefect#1 to display the 1st LO Control DiagnosticAid information. 2. lf the counted lst Lo Freq is within the 1st Lo Setting-Acgyracy of ths Desired Freq readout, press to retum to normal operation. Now detennine if the error occurs, for the same center frequency,at frequencyspans/divisionabove S MHz only, or at spans less than 5 MHz/div. (Frequencyrange mustbe 0 - 1.8GHzor i.fl(em 5.5 GHz.) a. lf the frequencycontrol error occurs only at fre_ quency spans of 5 MHz/div or more, the capacitor switchingrelay,on the 1st LO assembly,is probably shorted.(E) b. lf the error occurs with a frequencyspan/divof 5 MHz or less,the 1st LO is probablydefective.(E) 3, Measurethe voltage across th€ sense resistor (R1040)on the lst LO Driver board. tf this vottageis within 50 mV of the DAC Set value, measurethe frequency on the l ST LO Output connector. This measured frequencyshould be within S0 MHz of the frequencycalculatedby multiptying800 MHz/V by the vottage that was measured across the sense resistor R1040. 6-9 O Mafntenance- 494A1494ApServtceVot. 1 a. lf the calculated and measured frequenciesare within 50 MHz of each other and the mbasuredfre_ quency agrees with the internallycount€d 1st LO Freg readoutor differs from it by a multipleof the AuxiliarySynthesizerFreq, r€turnto normal opera_ tion-(by pressing ). Now attemptto calibratethe CF Controlboardand the 1st LO Driver board by pressing PULSE STRETCHERand select #1 from the menu for the FREQUENCY LOOPSCAL, and #1 againfor the CF Control board. or #2 for the lst LO Driver board. Exit from the CF Control board calibrationroutine by pressing whenthe step for Ra040ii displayed. lf you are able to completethe calibration routin€, check to gee if the error message is still present. lf it is, or if the calibrationroutines cannot be completed,continuetroubleshootingwith step 4. (E) (a) lf the tune voltage is within th€ center of its normal range and the output frequencyat P1060 is stable (varies no more than l2Hzl, the programmable divider in the phase-lockedloop is probablydefective.(E) (b) lf the tune voltageis in th€ centerportion of its normal range and the output frequency at P1061 is unstable,the loop amplifierii probablydefective.(E) b. lf the calculat€dand measuredfrequenciesare within 50 MHz, but do not m€Etthe abovecondition in step 3a, measurethe AuxiliarySynthesizeroutput frequency at P1060 on the Auxiliary Synthesizer board. (d) lf th€ tuning voltage and the Auxitiary Synthesizerfrequencyare in oppositedirections from the c€nter of their respective ranges(8.5Vand 210 MHz),the VCO is probably defective.(E) 0) lf the AuxitiarySynthesizeroutputfrequency is coffect, measurethe input frequencylrom the HarmonicMixerwith a spectrumanalyier,at the cabte connectionto p261 on ttre euiitiary Syn_ thesizer board. (A counter woutd probaOiygive an eroneous reading becauseof the harmonic mixing process). The frequencymeasuredwith the speetrumanalyzershould equal the sum of the Desired Mixer Freq and the measured1st LO frequency,less the Desired lst LO Freq, if the catculatedfrequencyis between10 MHz and 90 MHz. lf the calculat€dfrequencyis outside th€ 10 MHz to g0 MHz range, the lst Lo fre_ quencyis far from the d€siredvalue. Repeatthe previousstepsin this procedure. (a) lf the HarmonicMixer outputfrequencyis correct. measurethe frequencyat edge con_ nector 'l5, on the Auxillary synthesizer board, with a countgr. This should be 1i100th of the Harmonic Mixer output fre_ quency. (b) A correct frequencymeasurementindi_ cates the Counterboard is defective.(E) (c) An incorrect frequency measurement indicatesthe AuxiliarySynthesizeris defective. (E) (d) The HarmonicMixer is probablydefec_ tive if no signal is present at the output or the signalfrequencyis incorrect.{E) (2) tf the output frequency, at p1060 is incorrect, measurefie 200_220 MHz VCo tune voltage between Tp1066 and Tp1074 on the Auxiliary Synthesizerboard. The range of the tuningvoltageis normally+S V to +12 V. 6-10 (c) lf the tune voltage and oscillator freguencyare at the end or outsidetheir range, in the same dir€ction(highor low), C1070tn the VCO may be misadjusted.lf adjustment of the capacitor do'es not conect the problem it is not in the VCO but somewhereelse in the loop. (E) {e) lf the calculatedand measuredfrequencies difier by more than 50 MHz, removethe jumper plug P3043 on the 1st LO Driver board and measurethe oscillatorcurrent. The oscillator coil has significant inductance. Interruptingthe oscillator current will gen€rate hlgh voltage. Remove/replace P3043 or connect/disconnecta current meter after the power is off. fiypical voltages at P3043can rangeas high as 35 V.) The coil current should be: 40 mA/y, where the voltag€ is the sense-resistorvoltageas previously measured across Rl040. The measuredcurrentshouldbe within1oloof this value. (3) lf the measuredand calculatedcurrentsare within 17o.return to normal op€ration (by pressing ) and determineif the frequency control error occurs with frequency span/divof 5 MHz or less, or above 5 MHz/div, with the sam€ center fr€qu€ncy.The frequency rangeshouldbe in eitherband1 or band 2. (a) lf the frequencycontrolerror occursonly with frequencyspans of 5 MHz/div or less, one of the noise filter capacitors on the 1st LO Assemblyis probablydefective.(E) o o o o I o I o o o o o o o o o o o a a o C o o o o o o o I a t o I o o o o o o o o a Malntenance_ 4g4A/494ApServlceVol. 1 (b) lf the -e1o-r-9cnr: with frequencyspans greater than 5 MHz/div, ttre t si t-O is iroOabtydefective.(E) (4) lf the measuredand calculatedcurrents are not equal,th€ problemis likelyin the final stage of the LO Driver.(E) 4. Measurethe lst LO tuningvoltageat edge connector 47, of the Center Frequeniy Conirot boarO. Ttris voltageshoutdbe within 200 mV 6t tne tisteo DAC Set value. ?. lffl".vottage is within this timit, faitureof the l st LO Driver board is indicated.(E) b. tf th€ vottageis not withinthe limit, failureof the CenterFrequencyControt board is inOicateO. 6y TUNINGFATLURE - zND LO The 2nd LO is set by a combination hardware/software loop. There are two distinct hardwareblocks in the loop; the block which measurEs the..oscillatorfrequencyanO tne Uoct wfrictr sets oscillatorto frequency.The micropro""".o, closesthe the roop by d€termininghow far the oscillator must be moved to bring it to the desiredfrequency. setting is an iterativeprocesswhereinthe microprocesso, counts the oscillator frequency, moves it as needed, and counts again. The error messagels displayed if the 2nd LO is not set to the Oesiid trequlncy after a numberof iterations,dependingon instrumentlettings. The 2nd LO Controt DiagnosticAid displays data which can be used to deternrinewhich part ot t'tretoop has. fait€d._11typicat disptay is snown below. press PULSE STRETCHERand setect #3 from the menufor the DIAGNOSTIC AIDS, then select #2tor the 2nd LO Control. 2NDLO CONTROLDIAGNOSTTC A'- TUNE VOLTS O.O1V 2ND LO FREQ 2.182OOO GHZ OFFSETFREQ 18.OOO OOO MHZ OFFSET SET. TING ACCU. RACY PRESS "SHIFT' EXIT TO 0 . 1 9V 2.182140c4z 17.860 MHZ 540.672 KHZ The Tune Volts is the voltage that would be expected at the output of the 2nd Lo section of the Cent€r FrequencyControl. The Nominalvoltageis the value neededfor the Desiredfrequency -me of the 6scillator in a perfecflycatibrat€dsystem. beC Set vonale should be producedby the present seuing of the 2;d LO tuning DACs. The DAC Set vottage may ditrer trom the Nominal value because_the system may not fully calibratedand the DACswitf be movedto tryto set th; oscillator. The Desired2nd LO Freq is the frequencyto which the microcomputeris trying to move the osciitator. The Counted 2nd LO Freq is that frequency the microcom_ puter has calculatedfrom the CountedOfset freq. The Offset Freq is the frequency of the towofrset VGO in the 2nd LO Asiembly. ln the lr9^e-u9ncy 2182 MHz LO, this frequ€ncyis the differencebetween 22OAMHz and the LO frequency. -aniFtre 719 MHz LO is derived from the Z1g2MHZ LO, the frequencyretationshipsare more complex.) Again,the DesiredFreq is--thefrequ€ncythe microcomputlr is trying to set the offset, and the CountedFreq is the value iead by the internalcounter. .If-|j, Offset€etting Accuracy is the maximumpermat_ ted differencebetweenthe actual and desiredotriet frequencies. The setting process ends when the difference beeomesless than or equal to this value. The tolerancedependson frequencyspanand band. The following procedureshould localizethe failure to the 2nd LO assembly,the hardwaresettingblock,or the hardwarecountingblock. Troubleshooting Procedure 1. Displaythe diagnosticinformationfor the 2nd LO control loop as outlinedabove. 2. lf the CountedOffsetFreq and the DesiredOffset Freq are within the OffsetSettingAccuracy,the 2nd LO probablyhas failed. 3. lf the CountedOffset Freq is within 100kHz of the DesiredOffsetFreq,make sure that p1049is prop_ erly seatedon J1048. lf the fine tune groundlead is not making .good contact, the tuning voltage can shift sufflcientlyto causesettingfailures.(E) 4. lf the Counted Offset Freq readout is within 100 kHz of the DesiredOffset Freq, the oscillatormay be out of calibration. Return to normal operation by pressing . Try to calibratethe 2nd LO by pressing PULSE STRETCHERand selecting #1 from the menu for the FREQUENCY LOOPS GAL, then setecting#4 {2nd LO). Now, foilow the instructionsof the displayedmessages. lf you are able to completethe calibrationroutine,checkto see if the error condition sfllt exists. lf the error is stiil there or you where unableto completethe calibrationroutine. proceedto the next step.(E) 6-11 Malntenance- 494A1494ApServtce Vol. 1 5. Measure the 2nd LO Tune Volts at Tp1044 on the Center FrequencyControl board. a. lf the 2nd LO tuning vottage is within 200 mV of the DAC SEt value, measurethe 2nd LO frequency at the front-panet2ND LO Output connector. (1) lf the measuredfrequencydoes not agree with the internallycounted roadout.the couhter board is probabtyat fautt. (E) (2) lf the frequency agrees with the Counted value, measur€the mixed down frequencyat the cable going to p513 on the Count€rboard. This frequencyshould equal the sum of th€ Desir€d Offset Freq and the Desired 2nd LO Freq, less the measured2nd LO frequency. (a) lf this freguency 19present, measurethe 2182MHz oscillator tuning voltag€ on the feedthrough capacitor CZaO} between the 16-20 MHz phase Lock circuitand the 2tg2 MHz Microstrip Osciltator in the 21g2 MHz Phase Locked 2nd LO Assemblv. The normal range of this voltageis 0V to -12.5V. With the phase locked loop unlocked,this vottage wiil probably be stighuy outside one end of the range. (0 tf the absolute value (magnitude)of the tuning voltage and the oscillatorfre_ quency are ofi in the same direction from the centers of their respective ranges [6 {-6) V and 2182 MHz , the Microstrip Osciltatorhas probablyfaited.(E (ii) tf th€ absotutevalue (magnitude)of the tuning voltage and the oscillator frequency are off in the opposite direction from the centeror their respectiveranges 16(-6) V and 2i 82 MHz , someother part of the lock loop, besides the Microstrip Oscillator,has probablyfailed.(E) (b) lf the mixed-downfrequencyis absent, either the 22OOMHz Reference, the 2182MHz Microstrip Oscillator or the 22AAMHz Reference Mixer probabty has faited. (E) b. lf the tuning vottageis not within 200 mV of the DAC Set value,the Center FrequencyControlboard probablyhas faited.(E) PHASELOCKFAILURE- 1ST LO The followingprocedureassumesthat the oscillator is at the conect frequency,so the probtemmust be in the phase lock system. The following crt display of th€ lst LO phase lock DiagnosticAid displaysdata for troubteshooting th€ 1st LO phaselock loop. 6-12 lST LO PHASELOCKDIAGNOSTIC AID lst LO FREQ 2.A72000000 cHZ STROBEFREQ 5.016949 MHZ LOCKDISABLED PRESS TO ENABLE PRESS'SHIFT'TO EXIT While the troubleshootinginformationis displayed, the lst Lo is repetitivelybeing stepped *750KH2. lf LOCK DISABLEDis display€d,the lock loop is open betweenthe outputof the phase gat€ and the input to the FM coil. lf lock is enabled,the loop is closed,and the fourth line of thE display changes to LocK ENABLEDPRESS"HELP"TO DISABLE. The lst LO Freq readoutis the frequencythe oscillator should be at when locked. The frequencythat is measuredat the front-panel1ST LO Out connectorwill not check exactlywith this value becausethe oscillator is unlockedand steppingin frequency. The StrobeFreq is the frequencyat P502and P504 of the PhaseLock module. This procedureshouldhelp localizethe failureto the PhaseGateor to a sectionof the phaselock circuitry. Troubleshooting procedure Beforetroubleshootingdata on the phaselock loop is displayed,the Freq Span/Divmust be in those spans that enablethe phase lock mode (200 kHz or l€ss for band1). 1. Press PULSESTRETCHER and select #3 from the menu to bring up the DlAGNosTlc AIDS menu, then select #0 to display the 1st LO PHASELOCKdiagnosticaid information. 2. With an oscilloscope,examinethe signal atP242 on the PhaseGate. Beat notes (burstsof signal at up to 500 kHz) at a 10 Hz rate should'be present as th€ oscillatoris stepped. Beat note amplitudeshould be about6 V peak-peak.The amplitudeof the positiveand negativepeaksshouldnot differ by more than2Oh. a o I o ) o t o o I o a o o a o t o a o o ) |, I t o I o o o a a I o o O o e o o a o e I Malntenance- a. lf.b€at notes are present,press HELP to enable the lock. Check the- Error' Amplifiei output at T?2O3T,on th€ Error AmplifierOolrJln the prrase Lock module. gutput signat amptituOe'sfroufO Oe approximately 6 V peak-peak aho its frequency should be 10 Hz. fhe up anO Oown-oui.t_r"ng" :igngj:, on edge connectors g and 10 oi tn" error. Amplifierboard, shoutdbe toggling Oetween 0 V and +5 V. (1)..1fthere is a signatat Tp2O37but one or both or tne out-of-rangelines is not toggling, the outof-range comparator on the frior- Amptifier board, or the sensing circuit on the phase Lock Controt board, has probabty failed. firis coutO cause problems in maintaininglock but not in acquiring lock. lf the instrument does not acquire lock. note the out-of_rangeproblem and continuetroubteshootingwith steF gj. (2) lf there is no signal at Tp20g7, the Error Amplifierhas probabtyfailed.(E) (3) ff there is a signal atTp2A}Z, th€ switching circuit that connects the output of the Error Amplifierto th€ FM coil of tne i st LO has prob_ ably failed. (E) lf b€at notes arg present,but their amplitude P is v (peak-peak),or the amptitude ::::_^T"l !:9 qrnerenceof the positiveand negativesxcursionsis more than 2AVo,the phase GatJ is probably defective. (E) c. lf there are no beat notes, mEasurethe strobe frequency,at p504 on the phase l_ocf moOuie. (1) lf the strobe frequencyis the same as the readouton the diagnosticaiOdisplay,it is possi_ ble, but not probable,that the r it [o systemis miscalibratedand that th€ lst LO is near tne wrong harmonic of the Auxiliary Synthesizer. Press to returnto'normatoperation and look at the calibratorline that is ctosest in. frequency to the frequency (in Band 1) at which the error occurs. lf the irequency indi_ cated for the calibratorline is correci (a multiple phase cate has proOa-Uty 9t..tlO MHz), the failed. lf the frequencyindicatedis incorrect, attemptto calibratethe 1st LO system by pressing PULSESTRETCHERand sete-cting#1 (FREQUENCYLOOPS CAL), and tben #O (OVERALLSYSTEM)from the rnenu. Exit from the calibration routine when the display for R4040, on the CF. _C*ontrolboard appears by pressing . lf the calibrationcan not b€ completed,or it does not rEsult in the correct frequency indication for the calibrator rine, troubleshootthe lst LO system using the procedure under TUNTNGFAIiURE _rst LO error messagestep 3b. (E) 4g4Ll4g4ApServiceVol. 1 (2) lf there is no strobe signal,checkfor a signal on feedthrough M, on the Strobe Driver boardin the PhaseLock module. (a) lf there is a signat,the StrobeDriverhas probablyfaited.(E) (b) lf there is no signat,the ControiledOscitlator has probablyfaited.(E) (3) lf the frequency of the strobe signal is effoneous.but is stable (within1_2 Hz), in the normal strobe range of 5.006477MHz to 5.018868MHz, the programmabtedividerin the Synthesizerhas probabtyfaited.(E) (4) lf the listed Strobe Freq is betow5.OOZ10O MHz and the actual strobe frequencyis slightly aboveth€ desiredfrequency;orabove 5.01g240 MHz and the actual strobe frequencyis slightly below the desired frequency,attempt to cali_ brate the Phase Lock Synthesizer. press PULSESTRETCHER and select #1, then #5. lf you are able to completethe calibration,check to see if the error messageis still present. lf it is stilt displayed,or the calibra_ tion routinecould not be completed,proceedto th€ next step as if th€ strobe frequencywas not withinthe aboverange.(E) (5) lf the listedStrobe Freq is outsidethe range pr_ejgdingstep, measurethe tune voltage in th.e for the VCO, at feedthroughH on the Controll€d Oscillatorboard in the phase Lock module. The normalrange is from 5.9 V to 11.3V. With the loop unlocked,the voltage wiil probablybe near or beyondone end of the range. (a) lf the voltageis aroundthe centerof the range, the loop filter and amplifier,on the Error Amplifierboard, are probablyat fault. (E) (b) lf the tuning vottageand the strobefrequencyare displacedfrom the centerof their range (8.6V and 5.013MHz) in the same direction,the VCO is good and something else withinthe loop has faited.(E) (c) lf the tuning voltageand the strobefr€quencyare displacedin oppositedirections from the center of their range,th€ VCO has probablyfaited.(E) 6-13 Malntenance- 4S4Al4g4ApServtceVol. 1 TRACE MODES Trace Mode provides information on how the frequency control system is working. lt is acc€ssed by pressing PULSE STRETCHER.menu item #7, then selectinglst LO (menuitem #1),2nd LO (menuitem #2} MARKER(menuitem #3), or CORREG_ TION TIMER (menu item #4), gRD tF dOUrur (menu item #5), or DISPLAYRESULTS(menuitem #6). Trace Mode 1, starts tracing the l st LO control actions. Trace Mode 2, starts tracing the 2nd LO con_ trol actions. Trace Mode g, starts tracing signal counts. Trace Mode 4 starts tracing marker conection cycles. Informationfrom these four trace modesis stored in RAM and can be disptayed by setecting DtSpLAy RESULTS(menuitem 6) from the TRACEMbDE menu. This mode disptaysup to 16 lines of data gatheredby the trace modes. data applies to the primary marker and S if the data applies to the secondary marker. The second letter is c if th€ oscillators are being counted at the marker positionto determinethe markerfrequency,or S if the markerpositionis being synthesizedto maintaina constant markerfrequency. The numberin this columnis 1 if the 1st LO is being countedat the marker and 2 if the secondLO is being counted. The fourth column is the hexadecimal setting of the marker DAC. The fifth column is the decimal digital storage location of the mark€r. The sixth columnis the oscillatorsettlingtime in ms before the count. The last column is the harmonic mixer output frequency in KHz for a 1st LO count,or the 16-20 MHz VCO fr€quencyfor a 2nd LO count at the rnarkerposition. The sequencE PULSESTRETCHER, #7, #0, terminatestrace actionsand erases the RAM of alldata. Alternate Frequency Display Informationused is obtainedonly wh€n the internalfrequencycorrectionoccurs. Thihs correction is related to the drift rate of the spectrum analyzer. The time between corrections can be as long as 30 s. To assure informationis available,change th€ FREO SpAN/Dtv one position then retum. This forces the correction cycle to occur. For modes1 and 2, the flrst field of the displayindicates which mode was active at the time the information was gathered. The secondfield of th€ displayindicates which attempt at tuning or correctingthe oscilla_ tor the data is for. The next lield containsthe tuning DAG settings before a tune or conection took ptace. The first three digits are the upper DAG settings, the next three dagitsthe lowEr DAC s€ttings. The next field containsthe DAc settingsafter the tuningor correction was attempt€d. Again, the first three digits are the upper DAC, and the next three digits the lower DAC settings. The next field indicates the time delay betweensettingthe DACSto the new valuesand reading the resultingfrequency,in units of millisecond.The final field contains the frequency of th€ oscillator in question,after the tune or correctionattempt. Actually, the displayedfrequencyis the beat notefrequencyfrom the auxiliary mixer for the l st LO (in KHz), and the 16-20 MHz oscillatorfrequencyfor the 2nd LO. For mode 3, the resultingtrace displayconsists of sevencolumns. The first columnis alwaysg. indicating that the marker is being traced. The second column gives the iterationnumberof the correctioncycle which the displayedline describes. The third columnconsists of two lefters and a number. The first letter is p if the 6-14 The Alternate FrequencyDisplay mode selects an alternatefrequencydisplayinstEadof the normalGenter Frequencydisplay. These alternate frequencies are selected by pressing PULSE STRETCHER,selecling menu item #0, and selecting #0, #1, or #2 as indicat€dby the menu. The normalCenterFrequencyis displayedwhen #0 is selected. The frequencyof the 1st LO is displayedwhen #1 is selected. This displayis updat€deach time ths 1st LO frequencyis counted. The frequencyof the 2nd LO is displayedwhen #2 is selected. This displayis updatedeach time the trequencyof the 2nd Lo is counted. Auxiliary Synthesizer Control The AuxiliarySynthesizerControl can be turned on continuously,or turned on only duringcorrectionfor the 1st LO tunes. This mode is toggled (turnedon continuously or during 1st LO corrections)by pressing PULSESTRETCHER, #4, A messagewill come on screen indicatingwhich modethe AuxiliarySynthesizeris in. Correction Disable/Enable Correctionof the 1st and 2nd LO frequenciescan be disabledor enabledby pressing and 10 dB/DlVor PULSESTRETCHER, selecting menu item #6. When corrections are disabled. the oscillator frequenciesare counted but no furtheractionis taken. This mode can be used to monitor the drift of the oscillatorsby activatingthe respective trace mode. When correctionsare disabled.the 1st LO cannotbe phaselocked! o a o o a a I o o t o t a o o o t o t o o o o a o a t o o o a a a o o o o I t o o I o a o o o o o o I o o o Maintenance- 494Al4g4fupService Vof. 1 CORRECTIVE MAINTENANCE Corrective maintenance consists of component replacementand instrumentrepair. Speciat tecnhiques and procedures that may be iequirJj to-remove and replace assombliesand/br in tnis instrumsnt are describedhere. "ompon"nis Tel(ronix iepair centers provide ,replacementor repair serviceon maior assembliesas well as the unit. Returnthe instrumentor assemblyto your local Field Office for this seMce, or contact your l6cat Field Oftce for repair and exchangerates. ) ) I t o t I o C o t o o o t o o o o o o o t o a o o C o o J o I o Handling Static Sensitive Components Most semiconductor..types, both separatetyand in assembliEs,are susceptibleto damageto statii charge, see Table 6-1 for voltagelevels. WJrecommend static sensitive procedures be implementedfor att operations involvingsemiconductorhandling. Obtalning Replacement parts All electrical and mechanicalparts are available throughyour locat TektronixFielddffic; oi'r"pr"r"nt"tive. The Replaceabteparts rist section contains informationon how to order these replacementparts. Some componentsthat are heat sinked to the circuit board extrusionor module wall, are soldered to the board after the board is mounted in place. This is necessary to avoid crackingthe case when the mounting lgrew ls tightened. These componentsare identifiedby a note on the schematicdrawilg. .Their part number appears with chassis mounted componenis in the ReplaceableElectricalparts list. Parts orientationand lead dress should be dupli_ cated because some components are oriented to reduce interaction between circuits or control circuit characteristics. Where applicable,an improvedpart will b€ substi_ tuted.whena replacementis ordered. tf the changeis complex, your local Field Office or representativewill contact you concerningthe change. After repair, the circuitsmay need recalibration. Parts Repair and Return program Assembliescontaininghybrid circuits or substrates in a semi-sealedmodule,and complexassembliessuch as ths 1st LO, 829 MHz conv€rter,or phasegate ctetector, can be returnedto Tektronixfor repair under the repairand returnprogram. Firmware Version and Error Message Readout This feature provides readout of the firmware ver_ sion when the power on/off is cycled. Duringthe initial power-upcycle, the instrumentfirmware and iront panel firmwar€ versions are displayed on the crt for approxi_ mately two seconds. The ReplaceabteElectricalparts list section,under Memory board (A54),lists the ROM devices and their Tektronix part' numbers for each firmwareversion. Wheneveran error occurs in an operationalroutine, an eror message on screen describes the nature of the error. Status messagesor prompts(see Diagnositics part of this section), are also displayedwhen running a diagnostictest or calibrationproceiure. Selected Components A few componentsthat are selectedto meetcertain parameterssuch as temperaturecompensation,or to center the range of some adjustable component. The selected componentsare identifiedas selectableon the circuit diagram and in the ReplaceableElectrical Parts list. The Replaceableparts list descriptionfor the componentgiveseithera nominalvatue. The procedure for selection is explained in the adjustmentpart of recalibrationprocedure. Table 6-4 lists these components,their nominalvalues,and the criteriafor selec_ tion. Replacing EPROM or ROM Devtces Firmware for the microcomputeris contained in ROM packs on the Memoryand GplB boards. Referto the ReplaceableElectricalparts list (vot.2) underthese assemblies(A54 Memory and A56 GplB) for the versions and integrated circuit part numbers. All integrat€d circuits are soldered into sockets on the board to reduce problemsthat occur due to poor contact becaus€ of corrosion or loose pins. Refer to replacing Transistor and Integrated Circuit for procedure. 6-1s Malntenance- o o o o o o o o 494A1494ApService Vot. 1 Table 6-4 SELECTEDCOMPONENTS t Number 422A1Rl070 422A1R2049 422A1R2070 422A1R2072 A46A1R1011 1Rl012 446A1Rl013 Selection Crlteria Sets ReferenceMixer outputat 18 MHz linearityof the 2nd LO sweep Adjusts2nd LO tune range Sets 2nd LO sweep Matchedfor temperaturecoefficientto 5PPM/oC ) o o Matchedfor temperaturecoefficientto SPPM/"C 446A1Rl014 A46A1Rl015 446A1Rl010 I Match€d for t€mperature coefficient to SPPM/oC 1R1020 446A1Rl048 Rl049 446A1R1050 1Rl A46A1Rl052 A46A1Rl053 A46A1Rl055 45045C1038 450A5C1048 450A2C1016 A50A2C1018 A50A2C1032 450A2C1024 Matched for temperature coefiicient to SPPMI"C Matchedfor temperaturecoefiicientto SPPM/"C Matchedfor temperaturecoefficientto SPPM/oC 3.3 pF-27 pF 3.3 pF-27 pF 3.3 pF-27 pF MoveC1041frequencyadjustmentrange MoveCl042 frequencyadjustmentrange FL1024 inputloutput i mpedancematch Surface-Mounted Components Surface-mountedcomponents are used in this instrument. These componentsare mountedon pads on the circuit board, rather than through holes in the board. (ln some rare instances,componentsmay be mount€d on pads around through holes.) Lead configurations of these componentsare shownin Figure 6-1. .# #. E CATE ) TRATT|3IION The positive end of electrolytic capacitors is identifiedwith a band. Other capacitorsand resistors have no visibleidentification.However,like their axialleadedcounterparts,their valuescan be measuredwith a meter. Surface-mounted semiconductordevicesare sensitive to static €lectricity discharges, and should be treatedas outlinedin the beginningof this section. I t- \ t a t f 2 c c 5 OIO€ Figure 6-1. Surface-mountedcomponentslead conliguration. 6-16 o t I a a o o o f o a a t o o o o I o a o o o o I o o t a t o o o 3 o o o o o o o o ) I I o I a I o o I o o o o o o o o o a o o o o o o t o o a a o o Mafntenance- 494[l4g4Ap ServtceVot. 1 SERvIcING TooLsFoRBoARD'Tffi3.i*,o"= MouNTED coMPoNENTs Model Type Hor Alr HepairTerminal Nu-ConceptsSystemsHART2OOA Tempilaq TempilaqThinner Flux Dispenser Solderinglron uordertngtron SMDTips Nu-ConceptsSystems Nu-ConceptsSystemsTLTH Nu-ConceptssystemsFD2 HexaconModel SMD1O Semi-Chisel, 1/16' Conical,1132' SharpContcat" Bevel,1/32" Chisel,1/16' Bevel,l/16' 0.062"Stot" 0.195"Slot 0.195"Slot 0.195'Slot HexaconModet ZTAOX HexaconModet ZTB}X Hsxacon Modet ZI&4X Hexacon Model ZZ$6X H€xaconModel ZZ|TX HexaconModetZT$BX HexaconModel 5303 HexaconModelS30g HexaconModel S314 HexaconModel 3316 0.195"Stot HexaconModified3302 titainbss Steel, Non-Magnetic Tweezers StraightTip CurvedTip Replacing Surface-Mounted Components A Hot Air Machine, such as Hart Model 200A manufacturedby Nu-ConceptComputerSystems lncor_ porated of Colmar, pennsylvania,is recommendedfor unsoldering and soldering surface-mounted components. Table 6-5 lists tools that are suitablefor servicing circuitboardswith surfac€-mouni€d components. . Do not apply too much heat, as th€ pad/s on which the device is soldered may be lifted fiom the circuit board. 1. Unsolderthe component. 2. Cleanthe boardwith isopropylalcohot. 3. Solder in the replacement. Surface-mountecl componentsare pretinned,and shoutdbe solderedonto the boardwith solderpasteratherthan solder. Tektronix Part No. N/A N/A N/A N/A 003-1401-00 003-1402{0 003-1403-00 @3-1404-00 003-1405-00 003-140&00 003-1407-00 003-1408-00 003-1409-00 003-1410-00 003-141 1-00 003-1412-00 Tektronix Part No. 003464-00 Tektronix Part No. 003-046$.00 Tektronix Part No.251-0514-00 lf you use a solderingiron, use one with a small tip. After applying th€ sotderpaste, touch the corner of the pad with the iron to fasten the component. Avoid touchingthe component with the hot soldering iron. Thermal shock causes hairlinecracks that are not visibleto the eye. Transistor and Integrated Circuit Configurations Lead identificationfor transistorsand integratedcircuits, is readily available from manufacture'sdata books. Integrat€dcircuit pin-outs for Vcc and ground are shown with a box on the schematicdiagram. Refer to SolderingTechniquein CorrectiveMaintenancepart for unsolderingand solderinginstructions. 6-17 o o o o - 494A/494Ap Maintenance ServtceVot.1 a o Diode Color Code The cathode of each glass encaseddiode is indigated by a stripe, a series of stripes, or a dot. Some diodeshavea diodesymbolprintedon one side. Figure 6-2 illustratesdiode types Lnd potarity markings'that are used in this instrument. o o o o ffi. \ I - o I (x)95-11 Flgure 6-3. Multpln (harmonlca)conneciors. Resistor Values Many types of resistors (such as composition,metal film, tapped,thick film resistornetworkpackage,plate, etc.) are used. The value is either color coded in accordance with the EIA color code, or printedon the body of the component. Capacitor Marking The capacitancevalue of ceramic disc, plate, and slug, or small electrolytic capacitors, is marked in microfarads on the side of the component body. The ceramictubularcapacitorsand feed-throughcapacitors are color coded in picofarads. ) ct66.t-14 Soldering Techniques Figure 6-2. Diode polartty marklngs. Multiple Terminal (Harmonica) Connectors Som€ int€rcircuitconnectionsare madethroughpin connectors that are mounted in a harmonica-type holder. The terminalsin the holder, are identifiedty numbers that appear on the holder and the circuit diagrams. Connectorsare identifiedon the schematic and board with eitherthe prefix letter p or J followedby a circuit number. Connectororientationto the circuit board ls keyed by a triangle on the holder and the cir_ cuit board (seeFigure6-3). 6-18 t o o o o I o o o a a I o a o Disconnectthe instrumentfrom its power source before replacingor solderingcomponents. Extreme caution must be used when removingor replacingcomponentsbecausethe instrumentcontains severalmultilayercircuit boards. Excessheat from the solderingiron and bent componentleads may pull the plating out of the hole. We suggest clipping the old componentfree. Leaveenoughlead length so the new componentleadscan be solderedin place. a a o o o o I o o o o c a o o o a a o o o o o o o o a o o o t O I o o e a o o o c o o I o o a o o a o a o o O o O o o Maintenance- 494AJ494ApService Vot. 1 lf you desire to remove the componentl€ads, use a ol tess pencil type iron. Straigtrten-the teads on J.5Y me oacKside of the board;then whenthe sotder melts, gently puil the sotdered tead through the hote. A -remove desolderingtool should be used to the old solder. Use a desolderingtoot that has a low build-up of static charge,such as SiMerstatSoldapullt desoldering tool, when unsolderingintegratedcircuiisor transis_ tors. Replacing the Square pin tor the Multi-pin Connsctors It is importantnot to damageor disturbthe ferrule when removing the old stub of a broken pin. Tne ter_ rule is pressed into the circuit board and provides a basefor solderingthe pin connector. lf the broken stub is long enough,grasp it with a pair of needlenose pliers,apptytreatlwiih a smallsoldering iron, to the pin base of ine ferrute and pull pin.out. (Ihe pin is pressed into th€ terruie the old so a firm pull is r€quiredto pult it out.) lf the broken stub.is-too short to grasp with pliers, use a small dowel (0.029inch in diameter;clamped in a vise to.push the pin out of the ferruleafter the solder has melted. A. Locetionrnd positionof mountingplate. VR mountingptate The old ferrule can be cleaned by reheatingsocket and placinga sharp object such as a toothpicklr small dowel lnto the hote. A O.Oglinch driil mountedin a pin vise may also be used to ream the solderout ol the old ferrule. pair of diagonal cutters to removethe ferrule - Ur." a from the new pin; then insertthe pin into the otd ferrule and solderthe pin to both sidesoi the ferrute. lf it-is,-necessary.to bend the new pin, grasp the . base of the pin with needle_nosepliirs and bend againstthe pressureof ths pliErsto avoid breakingthe boardaroundthe ferrule, Servicing the VR Module The VR modulerequiresmechanicatsupportwhen it is installedon board extenders. Mechanicalsupport is provided by moving the mountingplate at the upper . :'.qe of the modut€ (Figure 6_Anfti the bottom sicte. This allows installationof a mountingscrew through a supportbracket into the mountingplate screw hole as shown in Figure6-48. For bettei iupport, we recommend using a second bracket on the other end. Removethe bracket, turn it over and install it so the threadedstuds are below the module. B, VR module on €rtender boards and secrred for rervicing. 5565-41 Figure6.4. Serviclngthe VR ass€mbly_ REPLACING ASSEMBLIES AND SUBASSEMBLIES Most assembliesor sub-assembliesin this instrument are easily removedand replaced. The following describesproceduresfor replacing those assemblies that require special attention. Top and bottom views are shown in Figures6-5 and 6-6, respectively.These illustrationsshow the locationand identifymost assemblies by their nameand assemblynumber. 6-19 A30-POWER St,PPLY A30A57-GPIB INTERFACE A62-LOG & VIOEO ATPL A61_DIGITAL STORAGE YERT A6O-DIGITAL STORAGE }IORIZ As8-PROCESSOR 456_GPIB A5'-MEMORY A26_AUXILARY SYNTHESIZER A51_COUNTER PHASE LOCK SYNTI{ESIZER A/f0-SPAN ATTENUATOR A/16-CENTER FREOCOilTROL A{2PRESELECTOR ORIVER o a o o a o o o o o o o o c o o o o o o o o o o ) c o o o o a O o o o I o o o o O o o o O o o o o o o o o o o o a o o o o o o o a O o O o o o o o a a o a o a a o o o o o o o I Maintenance- 494Al4g4ApServiceVot. 1 FL36 FL15 A32-110 ilHr IF AMPL 413_POWER OIVIDER A23-E29 trtHz 2NDCO}IVERTER 434-3RD CONVERTER AlE- 2072MH: 2NDCONVERTOR A2{-PHASE GATE s11 sl2 FL'1 FL12_ PRESELECTOR A1'-DIPLEXER FL'O& A1OLIMITER All-B|AS RETURN sr3- TRANSFER SIV il II lt 412-1ST llrxER ATI{'_STEP ATTENUATOR FL16_DIRECTIOI{AL FILTER Figure 6-6. RF deck assemblies. 6-21 Mafntenance- 494A1494ApService Vot. 1 Somecircuit boardsand assembliesmust be placed on extenders to access test points or adjustments. Before removingthese boards and assembli6s,the air bafie attached to the left siderail must also be r€moved. Turn the power off before removingan assembly. Removing and Installing the GplB Board The GPIB board connectsto the GplB port on the back panel,througha GptB Extend€rboard (A56A1),a ribbon cable (W560), and a GplB Interface board (A30A54 in the Power Suppty modute. The GptB Extender board edge connector is clamp€d to th€ con_ nector on the GPIB board by means of a locking key that extendsthrough the connector. When the fly ii turned, so it faces inward, the connector is clamped. To releasethe connector,so the GplB board can be removed,proceedas follows: 1. Unscrew the mounting screws that hold the metal shield over the GPIB, processor. and Digital Storageboardsand removethe shield. 2. Lift th€ key to the GptB Extenderboard connector up so it iust clearsthe board and turn it gOdegrees, so it faces the rear of the instrument.This will spread the connectorso the GPIB board can now be pull from the connectoron the Motherboard. 3. Use a board puller to pull the GplB board free from the Mother board. lnstallthe board as tollows: 1. With the key tor the GplB Extenderboard connectorturnedso the connectoris spread(top of the key facing to the rear of the instrument),slide the GplB board through the guides and onto the Mother board connector.Ensurethat the board is well seated. 2. Turn the key 90 degreesto lock the connectors of the GPIB Extender board and the GplB board together. Pushthe key down to its rest position. 3. Re-installthe shield over the GplB, processor, and DigitalStorageboards. Removing or Replacing Semi-rigid Coaxial Cables Performanceof the instrumentis easily degradedif theseconnectorsare loose,dirty, or damaged. The followingprocedurewill help ensurethat the connectionis good enoughto maintainproperperformance. 1. Use a 5/16 inch open-endwrenchto loosenor tighten the connectors. lt is good practice to use a secondwrench to hold the rigid (receptacle)portion of the connectorto preventbendingor twistingthe cable. 6-22 2. Ensure that the plug and receptacleare clean and free of any foreign matter. 3. Insertthe plug connectorfully into the receptacte before screwingth€ nut on. Tightenth€ connectionto g in-lbs to ensure that the connectionis tight. Do not overtighten('l5 to 20 in-lbs)becausethis can damage the connector. Replacing lhe Dual Diode Assembly in the 1st Mixer The diode subassemblythat houses the Schottky mixer diodes permits easy field replacementof the diodes. The subassemblyis securedin place with four 0-80 screws. An 8-32threadedhole is providedto facilitate insertionand removalof the subassembly.There are threecontactpointslocatedon the substrateside of the subassembly.Use care to ensure proper fit when mounting and orienting these contacts in the mixer assembly. Insertionand removalof the subassembly more than twice is not recommendeddue to th€ goldribbonattachingtechniqueused in fabrication. ' A tuning screw is adjustedto null a start spur on Band 1. This tuningscrewis mountedthroughthe top of the diode asssembly,adjacentto the 8-32 hole. lf adjustmentof this screw is warranted.care shouldbe taken to not force the tuning screw after it bottoms out on the surfaceof the quartz-suspended substrate. The diode assemblyis packaged in a static-free package. Keep the diode subassemblyin this package until ready to install. The following should be used when replacingthis assembly. The diodes are beam-lead devices, mountedon a quartz-suspended substrate. These diodes are extremely sensitive to static electricity discharge. Refer to the caution note on static discharge at the beginningof this section. Do not expose the diodeassemblyto RF fields. 1. Loosen and disconnectthe three coaxial cable connectionsat the 1st converterassembly. 2. Removethe two mountingscrews, and remove the assemblyfrom the instrument. 3. Removethe four 0-80 screwsthat hold the diode subassemblyin the 1st Converter,and insert a 8-32 screws into the threadedhole providedin the centerof the diodeassembly. 4. Lift the diode assemblyout of the mixer assembly by m€ansof the 8-32screw,then removethe screw. o o o o o o o o o o o o o o o o o a o o o o o O o O o o o o I O o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o a o o o o o o o o o o o o o o o o o o o o o Maintenance- 5. Openthe diode package. Use a pair of tweezers to grasp th€ diode assemblyby its side,and place it on a static-freesurface. Grasp t-heside of the'"rr"rOty with^thefingers. Avoid coniact with the diodes. Insert the 8-32 screw. 6, Orient the diode assemblyso the three contact tips are arignedwith their respictive contacts in the mixer; then, using the index fingers of both hands so equal pressureis applieO,presJ the subassembty into place. 7, Insert the four mounting screws, then replace and tighten the three coaxial ionnectois to g in-lbs. Remountthe lst Conv€rterassemblyOy instatting itre two mountingscrews that hold ttre aisembtyto th; RF deck. -. . 8. The Spectrum Analyzer may not meet the flatness specificationafter the Duat CIodeassembly is replaced. Refer to MATNTENANCE ADJUSTMENTS in this_seetionfor a procedurefor adjustingconverter bias and flatness. Replacing the Crt 1. Removethe snap_inprinted bezel and crt tight filter. 2: Use an g/64 inch AllEn wrench to remove . the four bezelscrews,unplugand removethe innerbezel. 3. Unsolderthe ground wire from the front panel casting and unplug the crt cables at their respective ?oarg_connections(High Voltage module, Deflection Amplifierboard,and Z-Axis UoarO;. 4. Slidethe crt, with its shletd,out throughthe front panel. 5. Removethe crt shieldas follows: a. Remove the tube base cap and unplug the socket. b. Removethe two side screws that hold th€ upper shieldin place,then removethe shield. c. Loosenthe screwsthat clampthe plasticbracket around the crt, then remove the bracket. . 6. Jnstallthe plastic bracket so the back on the ctamp is 5.07inches from the back of the cn socket guide. - 7. ReplacEthe crt shield plus the socketand base shieldby reversingthe removalprocedure.The finished crt ^assembly length. with cap installed, must equal 11.05inches. lf it is longer,the assemblymayshortcir_ cuit the DeflectionAmplifier circuit boird when it is installed. Place the spectrum analyzeron its rear panel . 8.. _ then loosenthe four crt blue ptasticmountingblockson the front castingso they can be readilypositionedwhen the crt is installed. 4g4Ll4g4ApService Vol. 1 9. lnstall the crt with shield assemblythrough the front panel;seat the wedgeson the siOeof the crt, into the blue plasticrnountingblocks. 10. Positionthe cast bezel and implosionshieldin place to €nsurethat there is clearancebetweenthe crt face and the bezel, fl'he bezel must bottom on the front casting.) It. is very importantthat the four mounting blocks are loose enough so the bezel retainingscrews can be tightenedwithout the bezel touchingthe crt face. lf not the crt or the bezelmay crack when the screws are tightened. 11. Removethe bezel and tighten the mounting block screwsevenlyin a cross pattemto approximatel! 8 in-lbs. Make sure the crt stays centereOin tf,e Utui plasticmountingblocksas the screwsare tightened. 12. Replacethe bezel and implosionshield,reconnect cablesto their respectiveboard connectors,and resolderthe groundlead to its terminal. 13. Replacecrt light filter and snap-inprintedbezel. Repairing the Crt Trace Rotation Coil The trace rotationcoil is part of the crt assembly.tf the coil is damagedbeyondrepair,the crt with the coil must be replaced. 'finish"(red)lead is broken,removethe tape .lf the and unwindone or two tums so it can be resplicedand solder€dto the leadwire. Rewindand retape. .lf the "start"(black)lead is broken and the lead is too shortto re-splice,atempt to fish out the brokenend so one or two turns can be unwound,re-splice and solderto the lead;then rewindand retape. Front Panel Assembly Removat It is not necessaryto removethe front panelassembly to replace any of the push buttons. (Refer to ReplacingFront Panel pushbuttons,that follows this procedure.) The crt is removed with the front-panel assembly, 1. Set the instrumentupright on its rear panel,then unscrew and removethg mounting nuts and washers for the RF INPUT,EXT MIXER,lst Lo oUTPUT.and 2nd LO OUTPUTconnectors. 2. Removethe two screws that holdthe front panel to the RF deck(centerand left side). 6-23 Maintenance- 4g4A/4g4ApSeruiceVot. 1 - 3. Unplugthe CAL OUT coaxialcabtefrom the grd Converter;then disconnectthe five crt cables from the Z-Axis/RF Interface, High Voltage module, and DeflectionAmplifier. 4. Lookingat the top of the instrument,removethe one screw that holds th€ front panelto the side extru_ sion betweenthe crt and the right side of the instru_ ment. Removethe four screwsthat holdthe tront panel to the side rails. 5. Pullthe front panelup and off the Motherboard. Replacethe front panel by reversingth€ removal procedure. Front-Panel Board Removal A replacementFront panel board comes with switches and controls for programmablo diffErent versions of the spectrum analyzer. Before replacing an existing board, removethe switchesand controlson the new board that are not used on the par_ ticularversionof the instrument. 1. Removethe front panel assemblyas previously described,then removeall the knobs. 2. Placethe front panelon its face and removethe eleven circuit board screws plus the screw that heat_ sinks and holds U6090 on the board. Note that the screw next to the connectorplug has a fiberwasher. 3. To preventtosing the groundingrings or bush_ ings, betweenthe front panel controls and the front panel casting,hold th€ circuit board againstthe front panelcastingwhile turningthe completeassemblyso it r€sts on the base of the crt assembly. 4. Gently lift the casting from the circuit board. Ensurethat the groundingrings remainon the shaft of all controlsas the castingis removed. Reversethe r€moval procedure,ensuringthat the fiber washeris on the board screw next to the connec_ tor plug. This waEherpreventsthe screwfrom shorting a circuitboardrun to the front panelcasting. Replacing Front Panel pushbutton Switches Removalof the front panelassembtyis not required to replace any pushbuttonswitch. The procedurefol_ lows: 1. Remove the front panel knobs. Loosen and remove nuts and washers for the RF lNpUT, EXTER_ NAL MIXER,and the 1st and 2nd LO connectors. 6-24 2. Remove the screw under the CENTER FRE_ QUENCYtuning knob that holds the panelto the front panelcasting. 3. Loosen the black screws through the crt bezel so the panelcan be movedenoughto lift it off the casting. 4. Unplugand replacethe desiredswitches. Main PowerSupply Module Removal [eAUloNl To avoid damageto the Mother board connector J5041 and lnterface connector J1034, during removalor installationof the Power Supply module, use the following procedure. 1. Disconnect the power cord and remove the instrumentcover. 2. On the circuit board side of the instrument. unplug the coaxial cable connectorP620 from the Log and Video Amplifier assembly. On the RF deck side disconnectth€ plug for the cable to the ReferenceLock assembly,at the lower right comer of the PowerSupply module. 3. For programmableinstruments,removethe cable clamp for the GPIB interconnectcable and unplugP560 to the GPIB Extenderboard. 4. Remove the three screws that hold the power moduleto the RF deck flange(bottom right side),then remove the four screws that hold the power supply moduleto the side rails. 5. With the instrumentRF deck on the near side, pull the left side of the power moduletrom its side-rail (no more than 1.5 inch). Now grasp both sides of the moduleand lift to separatethe modulefrom the Mother board. Because C6111 and C6101 dischargevery slowly.hazardouspotentialsexist withinthe pow€r supply for several minutesafter the power switch is turned off. A relaxation oscillator,formed by C5113, R5111,and DS5112, indicatethe presenceof voltages in the circuit until the potentialacross th€ filter capacitorsis belowB0 V. 6. Loosenand removethe two screwsthat holdthe mounting bracket for P361. Lift the cover off the module and unptugP3045to the Fan Driveboard. The power supplyshouldnow be accessible. o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O a o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o Malnfenance- 4g4Ll4g4ApServiceVot. 1 7. Reinstallp361.mountingbracketthen ptugpg045 ontoth€ power supplyboardanOrepacJ the cover. 8. Set the instrumentwith the RF deck on the near side.then hold the power supply module at the rear of the instrumentso the right side is touctring the side_rait and the teft side is aboui 1.5inchaboveiti side-rait. 9. Align connectorsp5041 and p1034 with their respectiveMother board and Interface board connectors' then press the modureinto pracebeh^/een the side rails. 10. Replace the four module holding screws and the thre€flangescrews. 11. Reconnectthe.coaxialcablesand GplB cable,if appropriate,then installthecableclamp. 12. Replacethe instrumentcover. High Vottage power Suppty A screw must be removedbeforethe High Voltage Power luqpty circuit board can Oe unplugged removed. The screw goes througt tt" iib"-rail and into a nylon standoff bushing at the bottom corner of the board. Removing and Replacing the lst LO . 1. Unplug and removethe multipinconnectorsto the assembty. Cut the tie_downthai hoids the black encasedRF coil to the semi-rigidcable. .. 2. Using a S/16 inch open-endwrench,toosenand disconnectthe semi-rigidcoaxialcable. 3. Loosen and removethe four mountingscrews that holethe assemblyto the RF deck. Remove the 1st LO assembly. 4. To replace the assembly,reverse the removal procedure.Use a tie_downto ri-tie the RF coil to the semi-rigidcable to preventvibrationfrom breaking the coif leads. Replacing the 1st LO Interface Board The 1st LO assemblyincludesan interfacecircuit boardthat ^c1nbe reptaced.To replacethe boardrefer to Figure6-7 and the following procedure. Use a desolderingtool to removetne sotOlr as the teads are unsoldered. 1. Unsolderand tiftone_end of C1014(g20uF capa_ citor)at the top of the board 2. Unsolderand tift oneendof VRl010. 3. Unsolderand lift the + leadof C1016. 4. Unsolderthe eight leadsto the oscillatorand lift the boardoff the assembly. A. Oscillator assembly. Unsolder circled connections. @@ tr\ @o o\ DOU pJ trD ff B. Interface board showing terminals to unsolder for removal. Figure6-7. Removingthe lst LO Intertaceboard. Fan Assembly Removal 1. Removepower supplyas describedin this sec_ tion. 2. Removesix screws that hold the power supply cover in place. Take the coaxialcableout of the plastic retainerclip and lift the power supplycoverwith fan up, so harmonicaconnector pgO4Scan be disconnected and the coverremoved. 3. Removethe nuts and lockwashersthat hold the fan brackets from the back side of the power supply housing. The fan will fall free from the brackets. 6-25 Maintenance- 494A1494Ap ServlceVol. I 4. The resilient mounts at the corners of the fan frame shouldbe replacedif a new fan is to be installed or fan vibrationis generatingspurs on the display. 5. Insert four resilient mounts into the corners of th€ fan, flushwith the fan frame. 6. Installone ol the fan bracketsto the power supply housing by attachingits lock washers and nuts to th€ back of the housing. MAINTENANCE ADJUSTMENTS The following procedures are not part of the regular calibration. They are only performed when certain assemblies are replaced or after major repair. 110 MHz lF Assembly Return Loss Calibration Table6-6 lists test equipmentrequiredfor adjustingthis assembly. Fan bracketsshould be installedas in Figure 6-8. 7. Insert the posts of the brackets into the holes providedin the resilientmount and installthe remaining bracket,with lockwashersand nuts, to the back side of the power supplyhousing. 8. Reconnectthe fan to the Fan Drive board then replacethe cover, with the fan, onto the power supply module. 9. After installingthe six screwsthat hotd the cover in place, ensure that the fan assemblymoves freely. Replacethe coaxialcable in the plasticretainingclip. 10. Reinstall the Power Supply assembly as directed under Power Supply Replacement. Apply power and checkfor normalfan operation. 1. Test equipmentsetup is shown in Flgure 6-9. The lF assemblymust be removsdto gain accessto the adiustments. 2. Apply 110 MHz at 2V peak-to-peak (+10 dBm) through 35 dB of attenuationto the RF Input of the vswR bridge. connect the RF out of the vswR bridge to the RF Input of the spectrumanalyzer.(Do not connectthe 110MHz lF to the vswR bridge.) 3. Set the test spectrumanalyzerCenterFrequency to 110MHz, FrequencySpan/Divto 5 MHz, REsolution Bandwidthto 3 MHz, VerticalDisplayto 10 dB/Div, and Ref Levelto-20 dBm. 4, Set the step attenuator for a full screen (-20 dBm)display. 5. Connect the 110MHz lF input to the vswR bridge and connecta 50O terminationto the output of the lF amplifier. Now plug the power cable P3045into the + and -15 V source and ground the case of the assembly. 6. Adjust C2047and Cl054 (Figure6-10)simultaneously for minimuh signal amplitudeon the spectrum analyzerdisplay. Minimumamplitudemust be at least -55 dBm. 7. Disconnectte6t equipmentsetupand replacethe 110MHzlF assembly. 2072MHz 2nd Converter The 2nd Converterassemblyconsistsof a four cavity 2072MHz band-passfilter, mixer, and a 110 MHz low-passfilter. The assemblyis precalibratedprior to installation,and requires no calibration after it is installed. We recommendreplacingthe assemblyif it shouldmalfunction.The followingproceduresdescribe adjustmentsthat can be madeif the biasingshouldmalfunctionor the seal on any of the filter tuning slugs is broken. The mixer diodes are not to be replacedin the field. Returnthe assemblyto Tektronix,lnc., for repair. Flgure5{. Fan assembtymounting. 6-26 Do not open the assembly. Adjust the tuning slug only after checking the filter characteristics. o o o o a o o o o o o o o o o O o o o o o o o o o o o o o o o o o o O o o O O o o o o o o o o o o o o o o o o o o o a o o o o o o o o o o o o o o o o o o o o o o O o o o a o o Malntenance- 494A/494ApServiceVol. 1 Four Cavlty Fllter-The characteristicsof the filter are checkedwith a network analyzer. Freguency of the filter is 2A72MHz, bandpass,t-SUl-lz down, is 1 dB, return loss is 20 dB or greater, and insertionloss is 1 clB. lf the seal is brokenon anytuningslug,adjust for maximumreturnloss. Mlxer*To gain access to the Bias adjustments, rernove the assembly from its mounting; then remove the mounting ptate on the bottom of the assembly. Reconnectthe Mixerto the input/outputlines,usingthe same cables (cablelengthof semi rigid cablesis iriti_ cal). Appty the CAL OUT signatto the RF INpUT and tune a rnarkerto centerscr€en, Simultaneously adjust 99th bjas porentiometers,R1021 and R1022, liee Figure6-11)for maximumsignalamplitude. Table6-6 EOUIPMENT REQUIRED FORRETURNLOSSADJUSTMENT Test Equlpment SpectrumAnalyzer SignalGenerator VSWRBridge 10 dB & 1 dB Step Attenuators Frequency range)110 MHz + 1 0 d B ma t 1 1 0M H z 50O, 0 dB to 40 dB Termination Adapter RecommendedType TEKTRONIX 49X-Seriesor 7L14 TEKTRONIX SG 503 for the TM S0O-Series Wiltron628F50 HewlettPackard355C& g55D TektronixPart No. 011-0049-01 TektronixPart No. 175-0419-00 Tll 50O M.ine F.rme Test fg0-S€ries Spoctrum Anatyz€r a{te76 Figure 6-9. 110 MHz lF return loss adjustment setup, 6-27 Mafntenance- 494A1494Ap ServtceVot. 1 110 MHz Three Cavity Filter Alignmentof this filter is not required unless the spectrum analyzer fails to meet bandwidth specifications.The filters are adiust€dfor center frequency and response shape so the resolution bandwidthis within specifications.The adjustmentprocedureis as follows: Input c1045 c2047 1. With the cAL ouT signat apptied to the RF INPUT,tune the signalto center screenand reducethe RESOLUTION BANDWIDfi to 1 kHz. 2. Tune the signal to center screen to establish centerfrequencyreference;then increasethe RESOLUTION BANDWIDTHto 1 MHz. 3. Adjustthe tuning slugs for best responseshape, centeredaroundthe reference. Ensurebandwidth(6 dB down)is 1 MHz. Flgure6-10. 110 MHz lF test poinb and adiuetmenb. 4. Check resolution bandwidthaccuracy over the range of the RESoLUTIoNBANDWIDTHcontrotas per instructionsin the PerformanceChecksectionto ensure that bandwidthis within specifieation Figure 6-11. 2O72 MHz Converter blas adiustments. 6-28 o o o O o o a o o o o o o o o a o O o o o o o o o o a o o o O o o o o O o o o o o o o o o a o o t o t o o I o a o t a O a o o o a a o o o o O o o o o o o o o o o o o o o a o o Maintenance- 829 MHz Converler Maintenance Some circuit boards in this assembly contain critical-lengthprinted elements. Whendamaged, elementsare usuallynot repairable;therefore, these the cir_ cuit board must be replaced. even itroujfr repfacement bgards .are precalibrated and ,"p"i, be accom_ plish.ed.byreplacingthe board, we recommend "-"n sending the instrumentor assemblyto your Tekironix Service Centerfor repairand calibrition. The 829 MHz band-passfilter in the lF section, and the 7'l9 MHz LO in the section, requireadjustment -Lo only if the board has been damaged'J, ponents (transistor or varactor) hive ""tiu" "o*been reptaced. The following describes prepaiation foi service and replacementprocedures. The first two steps describe how to gain access to either the LO or the lF section; the.remainingst€ps describeadjustmentprocedure for each section. 4g4N494ApServtceVol. 1 for th€ DVM,a 50O coaxialcabtewith bnc connec_ tors ffektronix part number 012-04g2_00)and a sma male-to-bnc f_emaleadapter Cfektronix part number015-1018-O0). b. The 2nd LO range is 714.5 MHz to 223.5 MHz (withthe coveroff). 71g MHz is the optimumcenterfre_ guen!{. . Frequencyof the osciltator is controlledby the TuneVoltsfrom the 25 MHz phase Lock circuit at TPl011)whichvariesfrom +5 V (lowend)to ltoiateO +11.gV (high end) with +6.75 V to +2.5 V as the timits for op€rationat 719 MHz. set the digitalvoltmeterto meas_ ure 12 V then connectat betweenTplolt (Figure6-12) and ground. c. Disconnectthe 100 MHz referencefrom the grd Converterby unpluggingp235 (Figure6-12). The oscit_ lator shouldgo to its upperlimit and the voltmeterindicate about11.9 V. 1. To gain access to the LO section: a. Switch POWERofi; use a 5/64 Ailen wrench to loosenand removethe cover screws. b. Removethe cover. c. Referto step 3 (withinthis procedure)for adjustment procedure. 2. To gain access to the lF section a. Switch POWERoff; use a 5/16 inch wrench to disconnect and remove all coaxial connectors to the 829 MHz converter. b. Removethe six mounting screws, unplugthe input power connector P4OSO,ihen remove the g2g MHz converterassembly. c. Turn the assemblyover and removethe cover for the lF section. d. To troubteshootor calibratethe circuits,set the assemblyat a locationso the input power plug p4050 can be reconnectedto the Mother boarO. Be sure to observeplug orientation(pin 1 to pin 1). e. Referto step 4 (withinthis procedure)for adjustment procedure. Figure6-12. 829MHzLOtest pointsandconnectors. 3. 719 MHz Osciilator Range Adjustment a. Adjustment requires the foilowing test equipment: | ^frequency counter with a frequency range to 1 GHz (nine digit readout),sensitivityof 20 mV rms for prescaledinput or 15 mVrms tor a direct input (suchas TEKTRONIX Dc 510 counterwitha Dp 501 pres.calee;a digital voltmeter with a g.5 digit readout(such as TEKTRONIXDM 502A);test teads d. Connectthe 75 MHz-1 000 MHz input of the frequencycounterthrougha 50O coaxialcableto the front panel2nd LO OUTPUTconnector. e. Minoradjustmentsto the oscillatorfrequencyare made by shorteningthe U-shapedtransmissionline stub, off the main line. Graduation marks (see Figure6-12)along the side of the stub providea guide to calculatefrequency correction. Each minor mark from the end or cut across the stub, representsan approximatechangeot 2 MHz. 6-29 Maintenance- 494A1494ApService Vot. 1 _ Check the freguency by noting the readingon the frequency counter. lf above 729.900MHz, the stub must be lengthened. Solder a bridge across the cut r.e"!99\ frequency. Nominalfrequencyfor an uncut "q stubis 710 MHz. f. Shorten the line so the frequency is near 723.500MHz. For example: The frequencydifference betweenthe desired and thE actuatdivideciOy Z Unz, equalsthe numberof minor divisionsfrom thE line end for the new cut. Make a cut across the line and check that the new frequency is between 723.100MHz and 723.900MHz.Repeatas necessary. g. Coverthe 719 MHz osciltatorcavitywith the g29 MHz Converter cover, press down to ensure good shielding, and note the frequency readout of the counter. Frequencyshouldfall within 723.600MHz and 724.400MHz. \ \ h. Reconnectp2S4(100 MHz) andp237(2i82 MHz) and confirmthat phase lock is operatingby notingthai the voltageon Tp1011 is betweenO.7SVand 7.5V. This completesthe adjustmentof the 71gMHz Lo. Replacethe cover and reinstallthe g2g MHz converter assembly. 4. 829 lr/lHzCoaxial Band-pass FitterAdjustment Figure6-13. 829MHzampllfier testiack andiumper. This procedureis necessaryif the position of one of the variablecapacitorloops (tabs) has been altered, changingthe bandpass characteristica of the filter. a. Test equipmentrequired: Spectrum analyzer with tracking generator(such as a TEKTRONIX49X-Series SpectrumAnalyzerwith TR 503 TrackingGenerator,or 7L,t4 with i TR 502 TrackingGenerator);FrequencyCounter(suchas a TEKTRONIXDC 510 Counter with a Dp 501 pres_ caler);and a Beturn Loss Bridge (suchas a Wiltron Model62BF50.) b. Unsolderand reconnectthe jumper,on the g2g MHz Amplifierboard, to the test peltolajack J1029(see Figure6-13). c. Connectthe spectrumanalyzer,trackinggenerator, and frequencycounter together as a system,with the frequencycounter connected to the Auxiliary - RF Outputof the trackinggenerator(seeFigure6-14). 6-30 d. Connect the spectrum analyzerltrackinggenerator system throughthe returnloss bridgeto the Peltola jack (J1029) on the 829MHz amplifier board {see Figure6-14). ReconnectP235(100MHz referencesignaf)and P2g7(2182MHz input)to the LO sectionof the converter. Terminatethe 110 MHz Output (J2 21 connector with 50o, using a bnc-to Sealectroadapterand 20 dB bnc attenuator. Pull the lF SELEGTline high by switching to band 2 (1.7-5.5GHz). e. Set the test spectrum analyzerReferenceLevel to -20 dBm, VerticalDisplaymode to 2 dBldiv,Resolution Bandwidth to 300 kHz, and Freq Span/Div to 20 MHz. Tune the Center Frequencyfor a readoutof 829.00MHz on the frequencycounter. f. Adjust the 114 wavelengthlines in the filter in sequence,startingwith the resonatorat the 829 1 MHz input (see Figure6-15), Adjustmentis madeby shorting the adjacentresonatorto groundwith a low inductance conductor, such as a broad blade screwdriver,then bend the loop or tab of the respectivestub with a nonmetallictuning tool to changethe series capacitanceof the resonator. o a o a a o a o o a a a o a o a o o o O o o o o o o o o o o O o o o o o o o o o o o o o o o o o o o I o o O o a O a t o a o o a O o a o a o t o a O I o I o o o o o o o o a o o Maintenance- 494[l4g4Ap ServlceVot. I Test Osciltoscope o o o o J231 I Tracking Generator I o a __^ lo IRF Out 829 MHz Converter lF Section I Y .O Aur. Return Loss Bridge (Device Under Test) 2727-157 Flgure 6-14. 829 MH: filter test equlpment setup. g. .With the adjacent resonator (second) shorted to ground, adjust the series capacitance by benOing tne tab so the response on the_spectrumanalyzer display is centered at 829 MHz (see Figure 6_16A). h. Now move the shorting strap (screwdriver) to the next resonator and adjust the tab of the second resona_ tor for a response as indicatedin Figure OiOe. i. Remove the short from the third resonator and short the fourth resonator. Adjust the third resonator for a response similar to that snown in Figure 6-17A. j. Repeatthe procedurefor the final(fourth)resonator for a responsesimilarto that shownin Figure6-178. k. Checkthat the return loss is equalto or greater than12 dB. l. Disconnectthe return loss Device Under Test leadto the pettotajack J1029on the g29MHzAmptifier board, then unsolderand r€connectthe jumperto the amplifieroutput. m. Replacethe 829 MHz Convertercoverand reinstall the assemblyin the SpectrumAnlyzer. 6-31 Malntenance- o o 494A/4g4ApService Vol. 1 A. lsl ResonalorResponse Fe5 Flgure 6-'15. 829 MH: Converbr lilte. hlne tabs. B. 2nd Regonator Response 2727-159 Figure 6-16. Correct responeefor 829 MHz first and second resonators. Troubleshooting and Calibrating the 2nd LO The 2182MHz Oscillatorand 2200 MHz Reference Mixer containcritical printed elementsthat are difficult to repair. Therefore the board should be replaced if damaged. lf the oscillator frequency is beyond adjust_ ment with the frequ€ncyadjusttab after replacingeither the varactor or the oscillator transistor for the 2182MHz Oscillator, the circuit board must be replaced. Eventhough repair can be accomplishedby replacing the board, it is recommendthat the instrumentor assemblybe returnEdto your TektronixServiceCenter for repairto ensurebest performance. 6-42 The 2182MHz 2nd LO requires calibration only when a component within the assembly has been replaced. Table6-7 lists test equipmentrequiredto calibrate the LO section, and Table6-8 lists equipmentfor the PhaseLock section. o o o o a o o O o o o a o o I o a o o o o o a o o o o o o o o o o t o o o o o O o o o O Malntenance- o I a o o Frequency FrequencySpan/Div ReferenceLevel Auto Resolution VerticalDisplay DigitalStorage TimelDiv Triggering I O o o t o I o I I I o o O o a O o O a O o o a o o o O o o o o o o a o o 4g4A/4g4Apservice vot. 1 2GHz 10 MHz +20 dBm On 10 dB/Div ViewA&ViewB Auto FreeRun d. Set the Time Mark generatorfor 0.1 Fs markers. Markers should appear on the test sp€ctrumanalyzer display,approximately one marker/division. A 3rd Resonator e. Press degauss,and peak the 2.0 GHz signalfor maximum amplitudewith the peaking control, if available. f. Usingthe 2 GHz signalas a startingpoint,begln countingmarkersuntil the 18th markeris located. The 2 GHz signal should be greater in amptitudethan the time markers. The frequencymust be tuned towards 2.18 GHz to locatethe 18th marker. Increasethe reference levelas necessaryto view the markers. S. Center the 18th marker on the test spectrum analyzer (center frequency should be approximately 2.18GHz). Retu?nLo-ss>12 dA h. Reset the test spectrum analyzer frequency span/divisionto 1 MHz. B. 4th Resonator and Fllter i. Positionthe 18th marker 2 major divisionsto the left of the center graticule line on the test spectrum analyzer (center frequency should be approximately 2.182GHz),then activateSAVEA. Figure 6-17. Corect re3ponse tor g29 MHr tlrlrd and fourth resonators. J. Disconnectthe output of the comb generator from the rf inputof the test spectrumanalyzer. 1. Check 2nd LO Frequency (2182 MHz *i MHz) k. Resetthe ReferenceLevel of the test spectrum analyzer to +10 dBm. Connect the 2ND LO output, from the spectrumanalyzerundertest, to the rf inputof the test spectrumanalyzer. The referencefrequencypositionset up in this step ... will also be used in the adiustrnentprocedure. a. Connect the test equipment as shown in Figure6-18. b. Set the Spectrum Analyzer to Band 1 and Max Span. c, Set the test spectrum analyzer front-panel as follows: l. Checkthat the 2nd LO output signalis withinone majordivisionof the centergraticuleline(2.181GHz to 2.183GHz). m. lf the frequencyof the znd Lo is greaterthan 2.1813 MHz or less than 2.181 MHz, adjustmentis required. The SAVEA display referenceused in part I will be used in the adjustmentprocedure. 6-33 Maintenance - o o 494A/494Ap Servlce Vol. 1 Table 6-7 EQUIPMENTREOUIREDFOR 2nd LO CALTBRATTON Test Equipment Characteristics RecommendedType TEKTRONIX 49X-Series or 7L'14 Option39 SpectrumAnalyzer Frequencyrangeto 2.2 GHz UHF GombGenerator 500 MHzPulseInput Tektronix 067-0885-00 Calibration Fixture with TM 500 Series Power Module Time Mark Generator 0.1 ,rs markers;accuracy0.001o/o TEKTRONIXTG 501 with TM 500 SeriesPower Module Signal Generator Calibrated100 MHz.with +20 kHz accuracy Hewlett-Packard Model 8640 A/B Voltmeter Measuresto within 0.01 V, impedance TEKTRONIXDM 502A with TM 500 >1 MO SeriesPower Module 0 to 12.5V, accurateto 0.1 V TEKTRONIXPS 501 with TM 500 SeriesPower Module 50O, 3 mm connectors T€ktronixPart No. 011-0049-01 VariablePowerSupply Terminations(2) Tt 5@ X.an Fr.m. Tcrt Spcclnrm An.lyrct Timc trrt Gcnetrlor Comb Gcnc Sourcc Coorb Goneclor lodrlc 5560-{X Figure 6-18. 2182 MHz 2nd LO frequency accuracy test setup. 6-34 o a o o o o o o o o O o o o I o o o o o o o o o o o o o O o o o o o o o o o o a o o o o o a I o o I O o o O O o I o a I a a o o a o o I o O I o a O I o a a o o O o o o o o Maintenance_ 4g4[l494Ap ServtceVot. 1 Preparing the 2nd LO Assembly lor Adjustment T_":! setup is shownin Figure6-19. .. _"guipment the POWERoff. Rernovethe cabinet and placeTurn the Spectrum Analyzer_upsideOownio-ine nf Oect 1Mo o Frequency Counter o I o Time-Mark Generator I Tabte 6-g EOUIPMET.IT REOUTRED FORCALTBRATING THE 16-20]VtHz pHASELOCKC|RCU|T Characteristlcs Recommended Type Measuresto within 0.Ol V, impedance TEKTRONTX Frequencyto g0 MHz TM S00-seriesDM 501A,DM502A,or DM SO10 TEKTRONIX TM SO0-Series DC 503A, DC 508A,DC 509 y1ll9l output, 1 s to 1 ps; accuracy TEKTRONIXTG 501 0.001o/" servtce Kit Extend€r Board Tektronix Part No. 622-0g65-00 I I t o I a a o a a o o a o o DIGITAL TITE VOLT OIGITAL TARX METER COI'NTER GENERATOR CENTERFREOUENCY CONTROLSOARD Oil EXTENDER I I a a SPECTRUil ANALYZER I O o a o o a o a o o I Flgure 6-23. 2182 MHr 2nd LO phase Lock adiu3tment setup. 6-39 Maintenance- o o o 494A/{g4Ap Servtce Vol. I Troubleshooting and Galibrating the 16-20 Phase Lock Section MHz Replacingoscillatorcomponentsin this sectionmay alter sweep linearity and the oscillator frequency. Thi following checks and calibrationaid in repairingand retuningthe assembly. 1. Preliminary _ a. Test equipmentsetup is shown in Figure6-23. Removeand install the Center FrequencyControl board on an extenderboard. b. SwitchPOWERon and set the FREOSPAN/D|V to 1 MHz. 2. Check Voltages - a. Checkall inputvoltagesat the feedthroughcapa_ cJtorsin the housingwall. RefErto FigureOZb or ine data printed on the tid. The vottage LEVEL at the sweep and tuns input lines shouldbe 0 V +O.OSV with the FREQSPAN/D|V)500 kHz. b. Switchthe POWERoff. Removethe tid frorn the mu-metal housingassemblyto gain access to internal circuitry. c. SwitchPOWERon, then check the internalregulated voltages;+12 V *0.4 V at C2201,-12V *O.i V at C2202, and +S.2V *0.2S V at TplO109 (see Figure6-16). Checkthe outputof the shaperat Tpl0gg for a levelbetween+0.9 V and -0.3 V (0 V i0.g V). 3. Setting Center Frequency a. Connecta frequencycounterto Tp2O35and note the frequency. tf the frequency is within S0 kHz of 18 MHz no correctionis necessary;proceedto part 4 (Setting Tune Sensitivityand nangay. tf outside the rangeproceedas follows: (1) Turn POWERoff. Unsotderand removeone end of ShaperOffset resistor R1070. Unsolderthe wire strap betweenT2092 and T1091,at the T1091end. and lift it free. (2) Soldera flexiblewire jumper to the T2092end; then, by meansof a a plastictuningtool, attachthe free end to one of the three pads for T1091 and notethe frequencyreadoutof the counter. ll this flexible wire touches ground whil€ the circuit is operating, the supply regulators can be damaged. The regulators are not protected against a short circuit. 6-40 (3) lf one of the pads provides a frequencythat is within the rangeof 17.5MHz *0.2S MHz, solderthe wire strap to this pad. lf the frequ€ncyis still outside the range, movEthe jumper to the other pad for T2092 and repeat the procedure. Frequencymust equal17.5MHz +0.25 MHz. b. Turn POWEROFF. Replace R1070 with a 10 turn 25 kO potentiometerin serieswith a S ko resistor. c. Turn POWERon and with the counter connected to TP2035, adjust th€ potentiometer for a frequency readoutof 18 MHz *50 kHz. d. Turn POWER off, measure the total resistance valu6 and teplace R1070 with a lyo resistor of thls measuredvalue. Switch POWERon and recheckthe frequency to ensure that it is 18 MHz *50 kHz. Disconnectthe counterfrom TP2035. 4. Setting Tune Sensitivity and Range a. Centerthe Fine Tune adjustmentR4040,on the CenterFrequencyControlboard and the 2nd LO Sweep adjustment Rl067, on the Span Attenuator board (Figure6-24). b. Decreasethe FREQ SPAN/D|Vto 200 kHz or less. The 2nd LO is now in the centerof its tune range. c. Press 10 dB/DlV to disabtefrsquency corrections. Press PULSE STRETCHERand select item #0 (ALTERNATEFREQUENCY DfSPLAY), then item #2 (znd LO FREOUENCYDISPLAY).Beadoutwill now indicatethe 2nd LO frequency. d. Tune the 2nd LO to one end of its rangewhere the frequencyreadout no longer changes. Note the frEquency and measurethe voltage on the Tune Line at the input feed-throughcapacitor(Figure6-20). e. Tune the 2nd LO to the other end of its range and again note the frequencyand the new voltagereading. f. Calculate the frequency change per vott (frequencyrangeversusvoltagerange). Frequencychange per volt should equal 128.0kHz *10o/o or range between115.2kHz and 140.8kHz. g. lf the frequency/voltchangeis low, decreaseihe vafueof R2072(Figure6-20). h. Press PULSESTRETCHER and menu item #1. then select the 2nd LO for calibration. Perform the procedurethat is called out for adjusting the Fine Tune Range R4040and Fine Tune Sensitivity R3040to calibratethe 2nd LO tuningrange. O ) a o a o t o o o a a o a o o o o o O o o o t o o o O o o o t o o o O o o I o , o o o a o o o o o o o o o o I o o o a a o a o o I o a a I Maintenanco- R404OFine TuneRanee-+! CENTER F REOUE'{CYCOI{TROL A. Location of R4040, Fine tune Renge. ) I I a I o o a t o o o o a o o 4g4A/4g4ApServlceVol. 1 B. Location ot R|O6Z.2nd LO Sweep. Figure 6-24, Tune and Sweep Range adjustnents. - 494A/4g4Ap Maintenance ServlceVot.1 5. Setting Sweep Range a. Apply 5 ps time markersfrom the Time Mark Generator to the RF tNpUT. Setthe FREOSPAN/D|V to 500 kHz then back to 200 kHz to center the 2nd LO frequency. b. Adjust the REF LEVEL to disptay the 200 kHz markers then center one of the markers with the CENTERFREOUENCY controt. c. Adjust the 2nd LO Sweep R1O6Z,on the Span Attenuatorboard (Figure6241, so the comb lines on oppositesides of the screen,are exactlyg major divi_ sionsapart. 6. Check and Adjust Tune Linearity a. With Frequency Corrections disabled (see part 2), apply 5 ps markers from a Time Mark Generatorto thE RF INPUT. SEt thE FREQUENCY tO 20 MHZ.FREQ SPAN/DIVto 200 kHz and activate AUTO RESOLN. Adjust th€ REF LEVELso a comb of 200 kHz markers is displayed. b. Turn the CENTERFREQUENCY controtcount€rclockwise until the c€nter frequency stops tuning, decrease FREQ SPAN/D|V to 50 kHz then tune tfre CENTERFREQUENCYup untit a marker signal is one major division from the left edge of the graticule. A comb line (or marker signal)should appearon or near the first major division in from the right sid€ of th€ scr€en. c. lt the right marker is not exacily g divisionsfrom the left marker,note the €rror to th€ nearest0.5 minor division. d. Tum the CENTER FREQUENCYcontrol ctockwise, to increase center frequency, until the next marker signal is one divislonin from the lett edge and again note thE spacing between this marker and the markernearthe right edge. e. Continuethis process of tuning up in frequency until the centerfrequencystops tuning,notingthe slgnil spacingat eachcheck point. f. lf the peak-to-peakenor is 2.5 minor divisions (25 kHz) or l€ss, the lin€arityover the center2 MHz of swEepis satisfactory;if more, the shaperneedsadjustment or repair. g. Switch the FREQ SPAN/D|Vto 200 kHz, tune to the low end of the sweep range and note the linearity over the centereight divisionsof span,then tune to the high end of the 2nd LO rangeand againnote the linearity. Peak-to-peakdeviation should not exceed 0.5 minordivision. h. lf the shaperneeds adjustm€ntor repairproceed as follows: 6-42 (1) A shaper diode or resistor may be defectiveif the comb line spacingis consistentfor part of the tuning range and 30 kHz or tnore off for the other parts of the sweep. To test the diodes for forward conduction, tune to the low end of the range and short R2049 (Figure6-20). The output of U1073A (pin 1) should equal about *3V. Ut0S9 diodes B throughG and U2059diodesA throughF shouldail have a 0.48 V forward drop. Use a floating or digital voltmeterto check the drop. (21 Tum POWER off then temporarily replace Shaperresistor R2049with a 20 kO potentiometer. Switch POWERon, and adjust the potentiometerto obtain the best overall linearity; decreasing reslstance will decreasethe spacingbetweencomb lines in the upper portion of the tune range and spread the spacing for the lower portion. Increasingthe resistanceof R2049 will reversethe effect. When the correct setting is found, turn POWERoff, measure the resistance,and replacewith a fixed resistor of the sameor nearthe samevalue. i. Checkthe tun€ sensitivityand sweep rangeof the 2nd LO. Repeatsteps4, 5, and 6 if necessary. 7. Conclusion a. Replacethe housinglid with its 14 screws. b. Tightenthe screwssequentially, startingfrom the centerof the lid and progressingtoward the cornersto prevent gaps between the lid and the housing. Use care to not strip the screws as you tighten them. c. This completesthe 2182MHz PhaseLocked2nd LO calibration.Referto "Adjustcontrol system"in Section 5 for readjustingthe system. Troubleshooting Aids for the 2182 MHz Phase Locked 2nd LO Assembly lf the Phase Locked assembly is in the instrurnent,set the FREQsPAN/Dlv to 500 kHz or more so the 2nd LO is not sweot. The differencefrequencysignal (18 MHz) from the 2200MHz Reference Mixer is amplified and fed to P224. Nominally,its amplitudeis -5 dBm into 50O. P224 is convenient for monitoring the 16-20 MHz VCO. When phase lock is operating,the differencefrequency exactly equals the frequencyof the vco. lf phase lock is not functioningproperly, the difference frequency signal will either disappear completelyor tune to its rangelimit of -6 MHz or 30 MHz. o o o o o o o t o a o t o O o I o o o a a o o o a o a o o t t o o o o a t o a o o a o a o o o o o o o I o o o o o I I I I o a o t a o o o o o a o I I o I o o O o I a Maintenance_ 4g4N4g4Apservice vot. I wIT the foop is unlocked,RF teakagefrom _^ the 16-20 MHz osciilatorbuffer is present.ip224 with a level of --35 dBm. The-amplifiedOmeience frequency can be monitoredat Tp20gS. Another check of phase lock operation can be done by measuring the dc voltage on the 21g2 MHz Tune Line at.feedthrough capaciior C22Og.-ttominally voltage is approximately-5 V when phase lock€d. itris Use a FREQ SPAN/D|V of S00kHz or greater before measuring. lf there is no differencefreq-uency, the voltage wilt be about 0 V.- vottageof _13 V may indicate l loss of signalfrom the VCO. Narrow-bandnoise on the 2nd LO signal may be due to noisemodulationof ths 16_20 MiivCO. trton_ itor the stgnatat the tg MHz port to ii ttre oscittator signal is noisy. Noise on this line is """often caused by noise on the *12V lines. Use a differentiat oscillo_ scope with 1 Hz to 300 Hz bandwidthlimits to check supply noise. Measurethe ac Oifferentiat Letweenthe supplyand the 2nd LO housing. Less than 5 pV peakto-peak of noise will cause noticeable performance jeOradatign. Output noise from the shapel is typicaily less than 5 pV peak-to-peak. . When making power m€asurem€ntsof microwave circuitry, at circuit board interfaces, use a coaxial probe with v9ry litfle stray. inductance (see figure'O-ee1 Ground the outer conductor of the pioUe tolhe circuit housingas close as possibleto the measurementport. Disconnectotherloadsfrom ths meaEurement point. 100 MHz Oscillator in the 3rd Converter A variable capacitor, C10gg, inside the cover (Figure6-25),should only need actjustingafter reptacing a. componentor componentsin the 100MHz oscillatoi circuit. 1. Wth the cover removed, monitorthe CAL OUT connector with a frequency counter and adiust Cgoiil , with a non-metallictunning tool, for a reading of 100 MHz rlkHz. 2. The Cat Amplitude adjustment, Rl041, is describedin the Adjustmentproceduresection. 1?8 TPttt4! Flgure 6-25- 3rd Converter test poinb and adjustments. o o a o o 6-43 t a o - 4g4A/4g4Ap Malntenance ServlceVol.i 1st ConverterBias This procedurepresetsflatnessfor Band4, Band5, and Bands '1, 2, and 3,: then adjusts the Start (OHzi Responseamplitudeand overallflatness. These adjustmentsshould only be performed after replacem€ntof the Dual Diode Assem'blyin the First Converter. Test equipmentneeded to adjust the 1st Converterare listedin Table6-9. a. Removethe lst Converterassemblyfrom the SpeetrumAnalyzer. Connectthe assemblyt6 the Spectrum Analyzeras shownin FigureG26. b. MonitorTp1011on the lst LO Driverboard with a_voltmeter(meter ground at crt shield). See Figure 6_ 27 tor the locationof Tpl01 1. c. Set the SpectrumAnalyzercontrolsas follows: TIME/DtV REFERENCE LEVEL FREQUENCY RANGE FREOSPAN/D|V VIEWA and VIEWB MIN RF ATTEN PEAK/AVERAGE AUTO -30 dBM 5.4-18 GHz(Band4) MAX ofi 0dB FullyGlockwise d. Preset Bias 2 R1022 (Figure 6-271tor a meter readingof -0.25 V. e. Change the FREQUENCYRANGE to Band s (15-21 GHz.) f. Preset Blas 3 R1026 (Figure 6_27)for a meter readingof -0.25 V. g. Resetthe SpectrumAnalyzercontrolsas follows: FREQUENCY 2MHz FREOUENCY RANGE 0-1.9 GHz(Bandt) FREOSPAN/D|V 200 kHz VIEWA and MEW B On WIDEVIDEOFILTEH on Calibratethe power meter before making measurements. h. Connect a 50O cable from the output of the SG503to the PowerMeter(Sensor.) 6-44 i. Set the SG503 output frequencyat 2 MHz, and outputlevelat 0 dBm as indicatedon the power Meter. j. Disconnectth€ 50O cable from the power Meter and connect the cable to the SpectrumAnalyzer RF INPUTthrough the 10dB and gdB attenuators.The CENTERmay have to be reset to bring the 2 MHz signal to centerscreen. k Activate SAVEA to save the bandwidth of the 2 MHz for reference. l. Monitor TP1011on the lst LO Driver board with the voltmeter. m. Preset R1013 on the 1st LO DrivEr board for -1.0 V at TP1011. n. Reset FREQUENCY to 0 (0.00MHz) to bringthe 0 Hz spur to centerscreen. t o O o o o o o I o a t I DO NOT ALLOW THE VOLTAGE AT TPlOll TO EXCEED+0.1 V WHILE THE FOLLOWINGADJUSTMENTSARE BEING MADE. o. Adjust the tuning screw on the 1st Mixer assembfy and R1013,R1022,and Rl026 on the 1st LO Driver board to match the response of the 0 Hz spur to the bandwidthof the 2 MHz reterence(SAVEA disptay). o o o t t o o a t I Auxiliary Synthesizer VCO Adjustment a. Monitor TP1066 on the Auxitiary Synthesizer board with a voltmeter. b. DisconnectP261, P1039,and p1060 from the AuxiliarySynthesizermodule. c. Disable frequency corrections by pressing 10 dB/DlV. d. Enable the Auxiliary Synthesizerby pressing pulse STRETCHER and selectingmenu item #4. e. Adjust Cl070 on the AuxiliarySynthesizerboard for +5 V at TPl066. a a a t I a o o t o o a o o o I o a o o O o o o o I o o o t o o I o o o Malntenance- 494A1494Ap Servtce Vol. 1 Table 6-9 EQUIPMENT FOR ADJUSTING FIRST CONVERTER BIAS AND START SPUR AMPLTTUDE Test Equipment vottm€ter Characteristics (10 pV to )350 Vdc SinewaveGengrator PowerMeter ...PolrrerSensor 2.0 MHz,o dBm,+10 dBm to _100 dBm Capableof measuring0 Ogm it 2 t\,tt-tz Capableof measuring0 dBm at Z Unz *0.3 dB at 2 MHz *0.6 dB at 2 MHz Attenuator(3 dB) Attenuator(10dB) 50O CoaxiatCabte 5U{} CoaxiatCable 50O CoaxiatCabte Recommended Tvoe TEKTRONTXDM502A and TM SO0_series Power Module TEKTRONIXSG5O3 Hewlett€ackard 4358 Hewlett-Packard8482A Hewlett-Packard8491AOption 003 H€wl€tt-Packard 8491AOption010 Tektronix Part No. 175-276$00 Tektronix Part No. 175-2ggT-W TektronixPart No. 17S€g1O-00 I I o o o o o o a a o o t a o a a o o o o o CONNECTTO A13 tvtTH 175-2765-d' CABLE CONNECTTO AT1O wtTH 175-3310-d) CAELE CONNECTTO FL16 wfTH 17s-2337-fi' CAELE Nole: Adiu3tnent is facing the back ot the instrumeni. Figure 6-26. First Converter setup for adjustment O a o o 6-45 Maintenance - o o o o o a o t o o o o o 4g4A/4g4Ap Servlce Vol. I Coarse Tune Range R1032 3_Z.B EtiasI 5.4-18.Bias2 15-21 Bias 3 R1026 Mirer BiasTptoll o I t Flgure 5-27. 1st LO Ddyer board adjustment and test point locatlons. Baseline Leveling (Video processor) a. Connectthe test equipmentas shown in Figure 6-28. Set the ALC switch on the RF ptug-into the MTR position. Set the power Levef to approximately -10 dBm thsn set the Gain on the Sweepbscittatorfoi stableoperation(outputstops oscillating). b. S€t the SpectrumAnalyzercontrolsas follows: FREOUENCY FREQSPAN/D|V AUTORESOLN REFLEVEL MIN RF ATTEN VERT|CALDTSPLAY PEAK/AVERAGE 0.00 GHz MAX on -20 dBm O dB 2 dB/Dtv FuilyCounterctokwise c. Set the Sweep Oscillatorto the AutomaticInternal Sweep (Marker Sweep),sweep time to 100 s, and se! lhg SweepOscillatorso it sweepsfrom 10 MHz to 1.8GHz. d. Activate MAX HoLD, VIEW A, and VIEW B. Selecta TIME/DIVso there ar€ no breaks in the stored display(Figure6-29a). e. ReactivateMAX HoLD and SAVEA. Trace and record the response of Band 1. Note the number of divisionsfrom the baselineto the lowest point in the first 5 divisionsof the disptay. f. set the CENTERFREQUENCYto ptace the dot marker directly over the towest point within the last o divisionsof the display. -9. Set the Sweep OscillatorCW Marker controlOn, ancladjustit so a signalis at the cent€rof the crt. h. AdjustR1O12(Band1 Stope)on the Video processorboard(Figure6€0) to set the top of the signalto the levelnotedin part e. 6-46 i. Repeat until the frequency response is within 1.5 dB of the mid-pointbetweenth€ h^/oextremes. j. Resetthe SpectrumAnalyeercontrolsas follows: FREQUENCY RANGE FREQUENCY FREQSPAN/DIV AUTORESOLN REF LEVEL VERTTCAL DTSPLAY TIME/DIV 5.4-18.0 GHz 10 GHz MAX ON -10 dBm 10 dB/DlV 10 ms The UNCALindicatorwill light. k. Adjustmentresistor R3030 is set at the factory and usually does not require adjustment. Remove P3035and replaceit. lf the baselineremainsstraightor breaks up after the plug is replaced.compensationis required. Adjustmentprocedureis as follows: (1) Activate wlDE vtDEo FTLTERand change TIME/DIVto 50 ms. (2) Set the REF LEVELso the basetineis near the top of the graticule.Reset the VERTICALDtspLAy to 2 clB/Dlv,and set the REF LEVELsuch that the displayis at mid-screen. (3) Vary R3030 counterclockwiseuntil the display breaks up towardsthe right side of the display(Figure 6-31a). (4) Vary R3030clockwise1/8th tum past the point where the display broke up. Store the display in RegisterA. (5) Alternately set Rl013 throughRl061 fullyclockwise and fully counterclockwise, so that everyother potentiometeris fully clockwise and the adiacent potentiometeris fully counterclockwise.The display shouldnow look like a triangularwaveform. o o o I o o o o o o a a o t t I o o o O o o ) o o I o o o o a O a o o I o o I o o a t o o o o o o a o o o o o o I I a a o a I O t o o o I I o o Maintenance- 4g4Al4S4ApServtceVot. 1 TO EXT.ALC lltPUT COt{ftECTCn- F; I I o o RF OUT ol o SWEEP OSCILLATOR CXT AtC o TO RF OT'T COi.NECTOR I SP€CTRUT AIIALYZER U}IDER IEST lrndc? Tqtt ( { LOW LOSS@AI CAaLE W|THStA COr*ecroes Figurc 6-28. Baseline levefingtert setup. (6) Adjust R1069 for a triangular waveform across the screen. See Figure6-g1b: f/) ResetRl0tg throughRl061 to midrange. (8) Sweep Band4 in 2 GHz increments. Set the Spectrum Analyzer as foltows for th€ first 2 GHz portionof Band 4. FREQUENCY RANGE FREQUENCY FREQSPANiDtv RESOLUNONBANDWIDTH REFLEVEL VERTICALDISPLAY TrME/D|V PEAK/AVERAGE MAX HOLD 5.4-18.0 GHz 6.4 GHz 200 MHz 1 MHz -20 dBm 10 dBiDtv AUTO Fully Counterclockwise On l. Adjustthe slop€ of band 5 as follows: (1) -Resetthe Sweep Oscillatorso it sweepsfrom 15 GHz to 21 GHz (MarkerSweepland set the out_ Plt 9o the power meter reads approximately -10 dBm. (2) Set R1070(Band 5 Stope)on the Mdeo processor board,fully counterclockwise. (3) Set the SpectrumAnalyzercontrolsas follows: FREQUENCY RANGE FREQUENCY FREQSPAN/DIV AUTORESOLN REFLEVEL MIN RF ATTEN VERTICALDTSPLAY TIMEID|V 15-2i GHz 15GHz MAX On -1OdBm O dB 10 dB/Dtv 50 ms The UNCALindicatorwiil tight. (9) Check that flatness is within +g.S dB. tf flatnessis out of limits, activateSAVEA and WIDE MDEO FILTER,and deactivateMAX HOLD. Reset REFLEVELso the baselineis on the screen. (10) to compensate .Adjust-levelingpotEntiometers for abnormalitiesin tha SAVEA disptay. (11) Recheck the 2eHz window for flatness. Proceed checking the Band 5 flatness in 2 GHz increments. (4) Selecta 15 GHz markeron the SweepOscillator and set the outputfor --10 dBm. (5) Activate2 dBiDlV and set the REF LEVELsuch that the signal amplitude is approximatety6 divisions. Set MANUAL PEAK for maximumresponse or activateAUTO PEAK. (6) Changethe SweepOscillatorto AutomaticInternal Sweepand set the SweepTime for 100 s or its slowestsweep. 6-47 Malntenance- 494A/494Ap Servlce Vol. 1 car ll-tqz n { td I t,l['r tflru.d fl ||' ll II ifl't VI[ !|'|n I 'll I ll - { + + + lh n s.+tc A rr' rl. { {l - ltrr rl,, {t hh Fr $ f lh ft IJ, 'I I -tt ..- -?l 4 -7a -a A TYptcrl roapoNc betore baceline lcveting. -I at ruTrcr. oE t B. Typlcrl rlrpo€e 5. *tr rD t:!,la aftcr barcline lcvcling. Figure 6-29. Typlcal basellne teveling response. (7) ActivateView A, View B, and MAX HOLD. Note the responseas th€ oscillatorsw€eps. (8) Activate SAVE A and deactivate MAX HOLD, then selectCW Marker on the SweepOscillatorand r_noyethe signal to the upper end of band S (19_ 21 GHz). (9) Msualizean imaginarytine throughthe midpoint of th€ SAVE A display and select a point on the saved display (betweent9 and 20 GHz) that inter_ sectsthe imaginaryline. (10) Switch VIEW A on and off as requiredwhite rnovingthe CW Marker to the s€lectedpoint, then switch MEW A ofi. (11) Adjust R1070 until the CW Marker is at the 6 divisionlevelor maximum,whichEveroccursfirst. (12) DeactivateSAVE A and repeat step I parts 6 through11 until the best overallflatnessis achieved. 10 MHr Reference Oscillator Accuracv (Agingrate is 1 x 10-e) The 10 MHz ReferenceOscillatoraccuracyis not a performancerequirement;however, it must be checked so th€ center frequency accuracycan be verified. Since the Calibratoris tocked to the 10 MHz Osciilatorthis procedureverifies accuracy by countingthe frequency of the calibratorsignal. a. connect the cAL ouT signal to the frequency counter. (counters with a frequency range above 20i) MHz may requirea 150 MHz low pass filterto €nsurea stabletriggeron the 100 MHz CAL OUT signat). 6-48 o o o a o o o t o t o o o I t o o o o I The Tektronix DC 510 must be modified to accept an external oscillator reference. Refer to the TM500ffM5000 Series Rear Interface Data Book, Part No. 070-2088-04 f or modificationinstructions. b. Connectthe frequencystandardto the Extemal FrequencyStandardlnput of the frequencycounter. c. Removethe protectivescrew from the oscillator. lf the 10 MHz CrystalOscillator(th€ instrument) has not been powered-up for an extended period, additionalwarm-up time (in excess of the recommendedwarm-up time tor making adjustments) may be necessary before a final adjustment is made. ln that case, several frequency checks must be made before the final adjustmentis made. d. Adjustthe FrequencyAdj on the 10 MHz Crystal Oscillatorslowlywith a smallscrewdriveror adjustment tool until the frequency counter indicates 100 MHz *10 Hz. e. Replacethe protectiveserew in the oscillator, and disconnectthe count€rfrom the CAL OUT connector. a o o o o I a o o t t a o o o a o o o o o I o a o o a o t o t o o o Malntenance- 494A/4g4ApService Vot. 1 I a o 106l (low) through R1013 (high) leyete, actiustments a o o o o a o o a a o Figure 6-30. Easelinelevelingadiumentand test point locations. I I I o o t o a a o o I I I t a I a a I ltl -s t. I ,l tl ll n 'l -f I /1 It tt tt I I I 1 tt I U .u. ) .ffl a il.ft1c I C -- < { < 'f MI { rrl Jdl {tt at t I F - l.r ilth tt' 4 ll,l ,'I IrlF' ril" 1- t { { -il 4 -t2 { .A -71 -n Gs. A- Scrler ol waveforms.Amplihrdeapproximately+5 dB tbovc rnd belowbaaelingreterenc".-- B. Typlcalwrvclorm when dirsay bleaks up. Flgure 6-31. Typical basetine compensation adjustrnent displays. Maintenance- 494A/4g4ApServtceVot.1 MICROCOMPUTER SYSTEMMAINTENANCE a o a a o I I Severalmaintenanceaids are built into the microcomputer syst€m. Th€se operating tssts dEmonstrate correct performanceor indicate the location of a prob_ lem, if any. The switch settingsthat set up two of these tests are describedfirst. Theseare followedby descriptions of the threetests. In the first test, the microcomputerexecutesa self_ test that verifies,as much as possible,correct operation. RAM, ROM, and interfaceadaptersare checked. Any failure found is indicated by LEDs on the GplB board. The secondtest forces the microcornputer to cycle through all of its addresses.This test requiresless of the systemto run than does the first test, so it may be used to troubleshootproblemsthat disablethe first test mode. Table 6-1O SETTINGS Switch 1 s1010 Open 2 Open Closed €xcept in Option 41 instruments 3 Open Closed except in nonprogrammableinstruments 4 Not used 5 Open lesilist The third test exercisesthe instrumentbus to iso_ late problemsin data transfer betweenthe microcomputer and the instrument. Option Switches S1050 on the Memoryboard selectsthe microcomputer system test modes, as well as selectingsom€ instrumentoptions. S1010 on th€ Z-Axis board selects rnost ot the instrumentoptions exclusively.Table 6_10 shows the selections controlled by the individual switchesof 51010and S1050. The microcomputerr€ads these switches only at power-up.Any changein a switch positiontakes effect when the instrumentis next poweredup. 6 '7 Open When set open (programmable instruments only) causesinstrumentto output tront-panel settings (no waveform)when RESETTO LOCAL is pressed in TALK ONLY mode. When set closed, causes the instrument to output both the front-panelsettings and the currentwaveform. Closed Open except in 7 & S c l o s e d - N o r m a l Option 07 Operation instruments 7 closed I open Not defined 7 open 8 closed : Longversion of the power-up self test which reports on the GPIBboard. 7 & 8 open - Instrumentbus a o e o a o o o o o o a t o o o o o t a o o , t Power-up Sell Test Normal instrumentoperationis selectedby closing switches #7 and #8 of Si050. At power-up,the pro_ cessor executessteps 1 and 2, the first part of step 3, and steps 4 and 5 of the MicrocomputerSystemTest (describednext). lf the first two steps in the test are successful,any problemsin the other three steps are reportedon the crt. Possibleerror messagesare: "RAMXX TESTSBAD. PUSHA BUTTONTO CONT.' 'ROM XX TESTSBAD. PUSH A BUTTONTO CONT." "ROMXX MISPLACED. PUSHA BUTTONTO CONT." TIMER TESTSBAD. PUSHA BUTTONTO CONT." 6-50 a a Cross-referencetables betweenthe ROM and BAM numbers given in error messages(XX) and the circuit numbersof the parts are givenin Table 6-11 and Table 6-12. lf the entiretest is successful. the instrumentinitializes and beginsnormaloperation. o o o o o t o O I o o o I t I I I o I o t o t o o o o o a o a o a o o t a I o t t o I a o o t t 3 o o o a I t Maintenance- Microcomputer System Test .The microcomputersystemtest is chosenby setting switch #8 ctosed and switch #7 ogen in S1O6O. fni displayis inoperativewhile this test is beingperformed. The microcomputerreports th€ t€st results via the LEDS on the GplB board rather than on the GRT. lf a problem is encountered,the test stops and the problem is indicat€d by one of the LEDSon itre GptB Ooard. tf no problemis found,the systemtest takes two minutes. , The system test _doesnot begin normal operation after the test is complete. .. . A.ddrelsgsare specifiedas hexadecimalnumbersin this description. l. The microcomputerfirst veriftesthe check sum of the system ROM portion of U30S0on the Memory board. The check sum test uses no memoryexceptfor U3050. The correct ROM must be instailed,the clock on the Processor board must be present, and the microcomputersystembus must be operatingcorrectty. tf the conect check sum is not obtained,the routine halts and lights DS1047on the GplB board. lf the test stops but does not tight DS1O47,and everythingetse seemsto be in order, the AddressBus Test (desiribeo later in this section)shouldbe performed. 2. Tl'rg microeomputernext checks part of the pro_ cessorinterfaceto the instrumentUus'pln, U1010,on the Processorboard. lf the test fails, the routinestops and lights DS1050 on th€ GptB board. tf the test succeeds,the processorassumesthat the instrument bus interface is working, and displays PROCESSOR SYSTEMTEST,PLEASEWA|T. on the trt. Tabfe 6-11 u1010 u3020 ul030 The third part of the test is similar to the first part. However,the memorycontentsare allowedto residein memoryfor thirty secondsbefore being read back. The resultsare reportedvia DS104g. 4. The microcomputernext performsa check sum test of all ROMs.The checksum storedin eachROMis comparedto the check sum formed by the successive 16-bit spirat sum of each byte in tne nOU, startingat the third location in the ROM. The ROM numberco-ded into each ROM will causean error if a ROM is installed in the wrong location. The Tektronix part number is also coded into each ROM. lf the part number suffix and its complement, which are stored in th€ fifth and sixth bytes of the ROM header, do not read as complements,the microcomputer assumesthat no ROM is installedand does not attemptthe checksumtest. lf a bad or misplacedROM is found,the microcom_ puter pulses DS1049on the GplB board N+1 times, where N is the numberof the ROM in error (e,g.,a bad ROM #3 will cause four pulses; refer to Table Gi2). MissingROMsare reportedas describedin part 6. ROM Table 6-12 TEST ROM Saakct 3. The microcomputernext checks RAM. The RAM test containsthree parts. The first part performs a quick test of all non-battery backed-up RAM (U10.10and U3020 on th€ Memory Board). The microcomputer loads the bit paftern 01010101into a RAM tocation, reads the location,and compareswhat is returnedto what was stored. The microcomputerthen repeatsthis test with the pattern10101010.This step does not rely on the RAM beinggood to execute. . lf a readingerror occurs, the microcomputerstops the test and pulsesLED DSlO4gon the GplB boardtire numberof times correspondingto the RAM that failed the test (referto Table6-11). The second part of the test is a Moving Inversions test of all RAM (volatile and non-volatile).This test assumesthat a few byes of the RAM are good. lf a RAM faits this test, DS1O4gon the Memory board is pulsedas describedearlier. 4g4Ll4g4ApServiceVot. 1 0 1 2 3 4 5 6 7 I 9 10 11 12 13 14 15 16 17 u3060 u3060 u1010 u1010 u1020 u1020 ul025 u1025 ul035 ul035 u3015 u3015 u3020 u3020 u3030 u3030 u3050 u30s0 DSl049 Board A54Memory A54 Memory 456 GPIB 456 GPIB 1 2 3 4 A56 GPIB A56 GPIB A56 GPIB 456 GPIB 456 GPIB A56 GPIB 456 GPIB 456 GPIB A56 GPIB A56 GPIB 456 GPIB 456 GPIB A54 Memory A54 Memory 5 6 7 I 9 10 11 12 13 14 15 16 17 6-51 Maintenance- a o 494A/494ApService Vot. 1 o t !. A" microcomput€rnext tests U2015,a timerchip on th€ Procassorboard. lf any of the timers in U201b result in timo d€lays that ar€ too short or too long, the test stops with LED DS10Sgon th€ GptB boardtit. 6. The microcomputer resets the GplA, U2050, on the GPIB board and checks to see that the GptA is not addressed to talk or listen. The GplA is set to the listen-only mode and checked to see that it is addressedto listen. The GplA is then set to the talk_ only mode and checked to sEe that it is addressedto talk. lf any part of this step falls, the test stops and LED DSl052 on the GPIB board is ilt. lf all steps in the test arE successfullycompletEd, the microcomputer lights LED DS10S4 on the GptB board. The LED is lit continuouslyif no empty ROM sockets are found, or putsed the number of times corresponding to the number of empty RoM sockets found. lf the number of pulses is greater than the number of absent ROMs, a ROM (or ROMs) was missed in step 4. Look tor a problem on the chip-s€lect line or on the D7 data bus line. lf th€ microcomput€rsystem passes the t€st, but does not controlthe instrum€flt,run the lnstrumentBus Checkdescrib€dtaterin this section. AddressBusTest Select the address bus t€st by moving jumper P3015 on the Processor board to th€ TEST position. This forces the microprocessor(U1025)data linss to hexadecimal5F. As a result, the microproc€ssorcontinuously executes a CLR B instruction, and rep€titively cycles through all of itE address space. There shouldbi a known pattern on the microcomputer address and control lines and at th€ output of th€ address decoders. This allows qualified servic personnel to corr€ct probl€ms that pr€vont the microcomputer from running its self-t€st. The spectrum analyzerwill not function while running this test. Mlerocomputer Bus As the microcomputer cycles through its address spac€, it toggles the address lines. The MSB, A15, has a period of approximately 1540ms. Each line, 414 through A0, has a periodhaif that of the previousline. Thus, the LSB A0 has a period of approximately4.7 ps. High-orderlines A15 through A12 ara shown in Figure 6€2. lgnore the narrow pulses that may be evident during the low portion of each cycle. 6-52 I o o I o I I I Figure6-32. A15throughA12ln mlcrocomputor test node. The data lines on the microprocessorside of U2025 on the Processor board are static; D7 and D5 are low, the oth€rs are high. The TEST position of P3015 disables U2025. On the bus eidE of this buffer, the data lines are driven by the various memory devices on the bus as they are addressed. Examlnlngthe data lines can locate shorted or open lines; i.e., lines inactive at hlgh, low, or in-between states or changingin unison, usuallyto indeterminate logic lev€tsof +1 V to +2 V. A problem r€lated to a particular device may be evident only while that device is addressed. Memory Address Decoders - Address decoder U2045 on the Memoryboard sets its outputs low in turn to access blocks of memory space. The four main block-selectorrtputsare shown in Figure 6-33. U3025 on the Memory board decodes the RAM addresses. Becauseof the power-upconditlonof the bank select,only one of the non-volatileRAM chips will be selected. The RAM seleotoutputsand their relationship to 6-ffi andl{ffi are shown in Figure 6€4 and Figure6-35. U3040and U3045on the Memoryboard decodethe T/O-selectline and th€ selectline for S1050. Thesesignals are shownin Figure6€6. lgnore the narrow pulses evident during the time each outputis asserted.The pulsesresultfrom address lines togglingbetweenmicrocomputercycles. o o o o o o o o a o I o o I a o o I o a c o o o O e o o o o o o o o o a t o t Maintenance- 494A1494Ap ServiceVot. .t Processor Address Decoder _ Address decoder U3035 on the processor board decodesseverd chip_ sel€cts. Y0, Y'1,y5, and y7 areshownin relation to the T/6-linein Figure6-37. I a o o O o I o o o o I I o a o o 4XXX Itflu|ll ----lMm oxxx Ixxr IilMU- erxx t a a o o o u3025, PIN12 5S4{5 Figure6-35. RAM select output in retationto-llXXX. 5565-75 Flgure 6-33. Four maln bloack select outputs ot address decoder U20tf5. ililil1Iililt fltilfiililil1ilililil I ilIIilililil1ilil1ilt a O I- SXXX I o o o I o lilfi-xilT; axfr. w 0xxx OPTIONS U u302s, PIN6 swtTcH SELECT s@4-09 u3025, PIN 4 Figure6-36.-Ip and 51050setecttinesIn relationto 0XXK 5@lL07 Figure 6-34. RAM select ouhut in relailon to dXXX. GP|B Board Address Decoders Address decoderU1055on the GPIB board sets its outputslow to select the GPIA, the GPIB address switch and the bank latch. Y2, Y4, and YGare shownin relationto-TO in Figure6-38. I o o a o a 6-53 Maintenance- 494A/494ApServtceVol. 1 Instrument Bus Test uo woEm It|l Yr iffiI [[I t[I[ Y5 (70XXl Y7 offii 556UX) Flgurc 6-37. -rlo. Chlp relectr Y0, Yl, Y5, and y7 In retadon to lf the microcomputer performs the power-up selftest, but fails to properly control the instrumeht, the instrument bus interface may be faulty. Select the instrument bus test by setting the option switch as shown in Table 6-10.The microcomputercontinuously writes to the instrumentbus in a repetitivemannertso the instrumentdoes not operatenormally. The pattern on the instrument bus toggles DATA VALID and POLL and exercisesthe addressand data lines. The addresslines changewhen DATAVALID ls low and the data lines change when DATA VALID ls high. However,if an assemblyon the bus is requesting service because of the way it powered up, DBo-DB4 may continueto change after DATA VALID goes low. In this case, an assemblyor assembliesmay respondto the high stat€ of POLL and the changingstate of AB7 and attempt to report status. The patternfor the upper addressand data lines is shown in Figure 6€9. From addressor data line 7 to linE 0, each line changesat twic€ the rate of the previous lin€, resultingIn 128 cycles on the LSB lines. ThE initial pulse on the upper four data lines is not part of the +2 pattgrn and is not repeated on the lower four data lines. lt is possibleto discoveropen or shorted lines by comparingthe patterns to those in Figure 6€9, checkingthat they +t. Look for lines that stay high or low, change together or at wrong times in the pattern, or go to indeterminate logic levels(1 V to 2 V). TROUBLESHOOTING ON THE INSTRUMENT BUS lnstrument Bus Data Transfers FlgureG-38. Chlp relects Y2, y4, and y6 in relation tilll6. Clocks and Control Llnes - The 680g clock input line should be a squarewave with a period of approximately0.293ps. The c 2 outputon pin 37 shoutdhave a periodof approximately 1.17;rs. VMA, RESET,NMt, and R/W shouldbe high. TFd instrumentbus powerup. 6-54 There are two commands and queries provided to aid troubleshootingof circuit functionscontrolledby the instrumentbus. Thesecircuitsget data from the microcomputeror respondwith data for the microcomputer. The ADDR commandand ADDR query set and retum the instrumentbus address for the DATA command. The DATA command and DATA query set and return data on the instrumentbus. Becauseth€ DATA commandchangesthe status of internal hardware, its use may prevent normal spectrum Analyzer operation. Incorrect,settingsof some hardware could causeinstrumentdamage. o I o o I o I I O o o I o o o o o o I o e o o o a a a o I I o t I o o o o o o o o a o o Malntenance- These commandsand queries are transmitted to the Anatyzer with ihe pRtNT st#ment. rne !ryl*rn upecrrumAnatyzerresp-onseto a query is input into a string variablewith the tNpUT statement. A string variable is-formeclpVendinOth€ variablename with a doilar sign ($),€.9. A$, Xt$. FOr thE GPIB PRIMARY ADDRESS, ENtEr tIiE '.'--' rear-panel 9"_g'g"l equivalentof the spectrr, GPIBADDRESS switchsettings. "n"lyi"r 4g4N494ApService Vol. 1 ADDR(instrumentbus address)command HEX DIGIT - A character in the sequence 0 through 9 and A through F that representsa hexade_ cimal digit. The two digits (in ordei; torm a numberto representa locationon the instrumentbus used by fot_ lowing DATA commands. lf a character is not a hexadecimaldigit or part of a pair of digits,it is not usedto €xecutethe ADDRcommand,and an error is reported. ADDR (instrument bus address) query Responseto ADDRquery r_----{-a DATA (instrumentbus data) command B. 419 chip selectoutputs from U1044 and Uptton switch enablelineson the Memory board. 4416-92A Figure6-39. Insfument bus check. HEX DIGITS- As with ADDR,a pair of digitsforms a hexadecimalnumber.The numberis a data valueto b€ sent on the instrumentbus to the locationspecified by the last ADDR command.This allows internalspectrum analyzerparametersto be set for service:these parameterscontrol functions by setting the status or mode of spectrumanalyzercircuitassemblies.Up to .16 pairs of charactersare accepted.lf a characteris not a hexadecimaldigit or part of a pair of digits, the data byte formed by the pair is not executedand an error is reported.Also, an error is reportedwhen data is sentto an invalidaddress. 6-55 Malntenance- o 494Alttg4ApService Vol. I DATA(instrumentbus data)query l \ \ - F--{ 2. Convert each group of four bits to a hexadecimal digit. Hexadecimaldigits range from 0 to F in the sequenc€0123456789A8CDEF. 0100- 4 1011- B (i.e..8+0+2+1-11,whichis hexadecimat B) oaraz }-.- :^p0RjdglE*tF' 4416-08 3. Group the two hexadecimaldigits together, keeping their respectiveplaces. Responseto DATA query 4 and B mak€the two-digithexadecimalnumber48 a4t$09 The infornationin Table6-13 is separatedby registers. The following information is related to the table informationby leadingalphadesignators. CombinedADDRcommand and DATA command A. Variable Resolutlon (refer to diagram 20) The address command may precede a data commandor queryto identifythe instrumentbus locationas part of the same m€ssage. Enors related to these commands are 41, invalid DATA or ADDR argument contents, and 42, DATA directionnot compatiblewith ADDRdirection. InstrumentBus Registers Registersprovide the link between the instrument bus and microcomputercontrolledfunctions.The registers are definedhere in the same order as they appear in the Diagramssection.The definitionsare providedto help in constructingDATA commandsand interpreting responsesto DATA queries. The data is presentedhere as binary.In somecases a data value occupies the entire register width; for instance,a value in digital storage. tn other cases, a single bit or group of bits in the registerforms a code; for instance,the upper five bits in the sweep rate and mode register indicate the sweep timeldivision.The meaningof the data is not fully defined here; ref€r to the d€scriptionof the circuit module in Section 5 for details. To use the binary codes presentedhere with the DATA commandand query statements,you must convert_binary to hexadecimal.The binary code number 01001011 i$ used as an examplein the followingsteps. 1. Groupthe lower four bits and th€ upper four bits (breakthe data byte in half). 0 1 0 0 1 0 1-1 0 1 0 01 0 1 1 6-56 The microcomputerwrites to two variableresolution registers. The data MSB steers the other bits that are definedinto the desiredregister.WhenDB7 equals1, it steers DBo through DB2 to select the resolution bandwidth.WhEn DB7 equals0, it steers DB6 through DBo to selectthe amountof gain added in the VR s€ction and the band levelinggain (gainadjustmentrelated to front-endresponsein each band).These two functions are addressedand set togetherby the same data byte. B. Log and Video Amplifier (refer to diagram 23) There are two registers that receive data from the microcomputer. One register controls vid€o offset (78) and the other controlsthe displaymodes and the vertical scale factor (79). C. Video Processor (reler to diagram 24) Register 7C controls out-of-bandclamping,video filtering,and leveling. D. Digital Storage, Vertical (refer to diagram 25) Registers7A and FA on the V€rticalDigitalStorage board transfer displaydata to and from the microcomputer for spectrumanalyzerGPIB operations.Register 78 controlsdigitalstoragefunctions. E. Z-Axis & RF Interface (refer to digram 28) Register 4F on the Z-Axis & RF Interface board enablesZ-axis and RF attenuatorcontrol. RegisterCF reports powersupplystatus. F. Crt Readout (refer to diagram 30) Register5F controlscrt readoutand data steering. Register2F acceptsdatafrom the microcomputer. o O o I o o o o o o I o t o a o C o t a o o a o o o o o o o o t o (l ) o o a a C o o o - 4g4Al4g4Ap Maintenance ServlceVol.l G. Sweep (refer to diagram 3l) The microcomputerwrites to registers0F and 1F to control sweep rate, mode. holdott, interrupts, and triggEring. N. Front Panel(refer to diagram43) Readingfrom F4 accessesthe keyboardencoder andtheCENTER/MKR FREQUENCy controtencoder. H. Span Attenuator (refer to diagram 32) Registers75 and 76 controlthe spanattenuator. Tabte 6-13 INSTRUMENT BUS REGISTERS DataBits 76543210 Description l. lst LO Driver (refer to diagram 33) Register72 controlsfunctionson the 1st LO Driver board. RegisterZE is addedto makethe pEAKingcontrol programmable. J. Preselector Driver (refer to diagram 34) Register 77 controls functions on the preselector Driver. The singlebit DB3 respondson the data bus to indicats that the board is instaileOwhen the microcom_ puter performsa read at F7. K CENTER/MKR FREQUENCy Controt (reter ro diagram 35) .R€gisjer70 is provid€d for control functionsand register71 is providedfor data valuesfor center fre_ quency DAC(s).A read, F0, returns the results of a comparisonof the DAC output voltageand a memory voltage. L. Auxiliary Synthesizer Control (refer to diagram 371 Register 7D accepts data to set the synthesizer chip, U4041,to output 200 MHz to 220 MHz in 400 kHz steps.Valuesof R, A, and N are givento determine the outputfrequencyas given by the formula fout : (l/RXNP+A) where R, the referencedivisionratio, is set at 5 and p is the prescale value of 32. N values neededare 3.1 through 34, while A ranges from 0 to 31. (fable 6_14 showsthe fou, resultsfor givenN and A values.) M. Phase Lock (refer to diagram 39) ,Register73 acceptsdatato preloadthe +2n counter and control the synthesizer.Successivereads from registerF3 obtainstatusand counteroutputs. After the counter output register selectoris reset, three read cycles return status bits and counterbits in lhg To"l significantbyte and the remainingcounterbits in followingbytes. A. Variable Resolution {3F} Resolution Bandwidth 1xxxx001 1xxxx010 1xxxx011 1xxxx100 1xxxx101 I MHz Resolution Bandwidth 100 kHz Resotution Bandwidth 10 kHz Resolution Bandwidth 1 kHz Resolution Bandwidth 100 Hz Resolution Bandwidth Galn, Levellng 00000xxx 00100xxx 00010xxx 00110xxx 00001xxx 00101xxx 00011xxx 00111xxx 01000xxx 01100xxx 0xxxx000 0xxxx001 0xxxx100 0xxxx101 0xxxx111 Band 1 Leveling Band 2 Leveling Band 3 Leveling Band 4 Leveling Band 5 Leveling Band 6 Leveling Band 7 Leveling Band I Leveling Band 9 Leveling Band 10 Leveling 0 dB Gain t0 dB Gain 20 dB Gain 30 dB Gain 40 dB Gain B. Log & Video Ampllfier Video Olfset {78} DB7-DBO LSB - 114dB Total range - 63.75dB Modes and ScaleFactorO9) lxxxxxxx Pulsestretcheron 0xxxxxxx Pulsestretcheroff xlxxxxxx ldentifyoffseton x0xxxxxx ldentifyoffsetoff xx0lxxxx Lin xxl0xxxx Log xx00xxxx Full-screendeflection DB3-DBO Log verticalscalefactor in dB/div 6-57 o o o a Maintenance- 494A/494ApServiceVot. i Table 6-13(cont) Data Bits 76543210 Data Bits 7654321 Description C. Vldeo Processor(7C) 011xxxxx 001xxxxx 1l1xxxxx 010xxxxx xxx0000x xxx0001x xxx1001x xxx1101x xxx0011x xxx1011x xxx1111x xxxxxxxl xxxxxxx0 Out-of-bandclamp - ns clamp Out-of-bandclamp- g;6rt upper5 div Out-of-bandctamp- 66rO lower div Out-of-bandclamp- qlgmt lower5 div Mdeo filter off Videofilter30 kHz Mdeo filter 3 kHz Videofilter300 Hz Videofilter 30 Hz Mdeo filter 3 Hz Mdeo filter 0.3 Hz Base-linelevelingon Base-linelevelingoff Horlzontal Board xlxxxxxx xxlxxxxx xxxlxxxx xxxxlxxx xxxx0xxx xxxxxlxx xxxxx0xx xxxxxxlx xxxxxx0x xxxxxxxl xxxxxxx0 Extended Address 2-O Digital Storage Digital Storage Acquisition Enable Digital Storage Acquisition Disabl€ Extended Address 2 Extended Address 1 Extended Address 0 B-SAVE A on B-SAVE A otr VIEWB on VIEWB off VIEWA on VIEWA off SAVEA on SAVEA off Subaddressbits for Port 7A giving subaddresses Z-0. Addressing 7A.6 transfers the bus to the Vertical Digital Storageboard. 7A.0 DB1-DB7 DBO 6-58 t SecondaryMarkerpositionbits SecondaryMarkertrace bit a Horlzontal Digital Board (cont) Storage 7A.1 DB8,DBg DB1 SecondaryMarkerpositionbits SecondaryMarkertrace bit 7A.2 DBl-7 DBO PrimaryMarkerpositionbits PrimaryMarkertrace bit 7A.3 DB8_9 DB1 PrimaryMarkerpositionbits PrimaryMarkertrace bit 7A,.4 ADDRT-ADDRO DigitalStorageaddressbits 7A.5 DB6 DB5 Transfersthe bus to the Vertical DigitalStorageboard. Determinesif bus transferis for a single cycle or until it is returned by the Vertical Digital Storage board. D84 DisableUpdateMarker ADDRg,ADDRS Loading ADDRT-o reloads th€ lastADDR9.8 7B 0xxxxxxx t Description D. Digital Storage (cont) D. DlgitalStorage l xxxxxxx a Table S13 (cont) 7A.7 DB4-7 DBO-3 PrimaryMarker intensitybits SecondaryMarkerint€nsitybits FA DBO-7 DigitalStoragepositionbits FB Always low to indicatethat it is from the Horizontal Digital Storageboard DBO& DBl DigitalStoragepositionbits o I o I o a o o o o I o o o o o o o o a o I o o a e t I o o o o o e o a Maintenance- Table &13 {cont) Data Blts 76549210 Deseription D. Digital Storage (cont) Ver$cal Digltal Storage Board FA DB7-DBO Datavaluesfrom digitalstorage. A writeto 78 initializesoutputto begin at the left of the trace and proce€dto the right FB Alwayshigh to indicatethat it is frorn the Vertical Digital Storage board 7A DB7-DBO Table &13 (cont) DataEits 76543210 F. Crt Readout Crt Controt (5F) lxxxxxxx 0xxxxxxx xlxxxxxx x0xxxxxx xxlxxxxx xx0xxxxx xxxxlxxx xxxx0xxx xxxxxxlx xxxxxxOx xxxxxxxl xxxxxxx0 Spectrumchop enable Spectrumchop disable 32 characters/line 40 characters/line 2lines 16lines Max span dot on Max span dot ofr Address2F containsan address Address2F containsdata Readoutenabted Reacloutdisabledto load readout D84 A8 (addressbit 8) oB2 A9 (addressbit 9) Address/Data(2F) DB7.DB6 l f D B l i n 5 F - 1 - A 7 , A 6 o f address. With Ag and A9 in 5F, they specify the line number (0-F). DB5-DBO l f D B I i n 5 F - 1 A5-40 of address. This specifies the characterposition in a line. D87 l f D B l i n 5 F - 0 1 - Characteris a space 0 - Characteris not a space DBO l f D B l i n 5 F - 0 1-Skipaline 0: Don'tskipa tine DB5-DBO l f D B l i n 5 F : 0 Data values for digital storage. A write to 78 clearsthe address counterso valuesare storedfor points on the display startingat the left and proceedingto the right in order 7B x1'lxxxxx xl0xxxxx x0lxxxxx xxx'txxxx xxx0xxxx Peak/Averagecursor in knob position Peak/Averagecursor in peak position Peak/Averagecursor in Average position Max Holdon Max Holdoff E. Z-Axls & RF Interfaee Z-Axis & RF Attenuator{4F) lxxxxxxx 0xxxxxxx x1xxx1x1 x1xxx1x0 x0xxx1x1 x1xxx0x1 x1xxx0x0 x0xxx0x1 x0xxx0x0 xxlxxxxx xx0xxxxx xxxlxxxx xxx0xxxx xxxxOxxx xxxxxxlx xxxxxx0x Baselineclipperon Baselineclipperoff 0 dB RF attenuation 10 dB RF attenuation 20 dB RF attenuation 30 dB RF attenuation 40 dB RF attenuation 50 dB RF attenuation 60 dB RF attenuation 829 MHz 2nd converter 2 GHz 2nd converter EXTMIXER RF INPUT 100ms to switchattenuator PowerSuppliesStatus(CF) Fault Suppliesokay 494A^l494Ap Service Vot. 1 Charactercode (lower 6 bits of ASCII) G. Sweep 1F lxxxxxxx xlxxxxxx xxlxxxxx xxxxlxxx xxxxxlxx xxxxxxlx xxxxxxxl ExtendedAddress1 ExtendedAddress0 MarkerDAC/RampGenerator TriggerSingleSweep DisableSweepGate DisableTrigger Abort Sweep Extended Address 1 and Address 2 Subaddressbits for Port 0F giving subaddresses3-0. Subaddresses0 and t havethe rest of the control bits not on Address lF. Subaddresses2 and 3 receive the 12 bits to set the DAC. 6-59 I Malntenance- 494A/4g4ApServlce Vol. 1 Table 6-13 {cont) Data Bits 76549210 Descriptlon G. Sweep Holdoff, Interrupt, Trigger (0F.0) xx00xxxx xx0lxxxx xxl0xxxx xxxx00xx xxxx0lxx xxxxl0xx xxxxllxx xxxxxxlx xxxxxxxl Short sweep holdoff Mediumsweepholdofi Long sweep holdoff Free run triggermode Internaltrigger mode Extemaltrigg€rmode Line triggermod€ Enableend-of-sweepinterrupt SingleSweepMode Sweep Rato and Mode (0F.1) xxx1101 xxx1O11 xxx1001 xxx0101 xxx0011 xxx0001 xxx1100 xxx1010 xxx1000 xxx0100 xxx0O10 xxx0000 xxx1100 xxx1010 xxx1000 xxx0100 xxx0010 xxx0000 xxx1111 xxx0111 20 ps Time/Div 50 ps Time/Div 100 ps Time/Div 200 ps Time/Div 500 ps Time/Div 1 rns Time/Div 2 ms Time/Div 5 ms Time/Div 10 ms Time/Div 20 ms Time/Div 50 ms Time/Div 100 ms Time/Div 200 ms Time/Div 500 ms Time/Div 1 s Time/Div 2 s Time/Div 5 s Time/Div 10 s Time/Div Manual External 0 0 0 0 0 0 1 1 Table 6-13 (cont) Data Bits 76543210 lxxxxxxx 0xxxxxxx xO0xxxxx x0lxxxxx xl0xxxxx xxx00xxx of U3032is +1 Gainof U3032is -1 x1,0 sweepdecadeattenuator x0.1 sweepdecadeattenuator x0.01 swe€pdecadeattenuator l st LO maincoil output selectand calibration xxx0lxxx 1st LO FM coil output select and calibration xxxl0xxx 2nd LO output select and calibration DB2 For futureuse DBl, DBO Uppertwo bits of attenuationcode l. 1st LO Driver lst LO DriverFunctions(72) lxxxxxxx 0xxxxxxx xlxxxxxx x0xxxxxx xxlxxxxx xx0xxxxx xxxlxxxx xxx0xxxx xxxxlxxx xxxx0xxx MarkerDACvaluebits 0F.3 (U103s) DB3-DBO MarkerDACvaluebits 9F xxx0xxxx PollBit H. Span Attenuator Span Magnitude (75) DB7-DBO 6-60 Lower 8 bits of 10-bit attenuation code (000 is max attenuation) xxxxx xxxxx xxxxx xxxxx xxxxx0 xxxxxl 10 10 10 01 11 11 I o ) Span Magnitudeand Attenuator (76) 0F.2 (U104s) DB7-O Descrlption H. Span Attenuator (cont) o o o Normalspan mode spanmode sweepvoltageto driver Disconnect sweep voltage to driver Driveroff {for degauss) Driveron Filter on at driver output (for unphase'locked narrowspans) Filteroff at driveroutput Externalmixerdisconnected External mixer connected (connected in bands 1-5 if external mixer selected;always connected in higherbands) Internalmixerbiasfor Band1 Internalmixerbias for Band 2 Internalmixerbias for Band3 Internalmixerbias for Band4 lnternalmixerbias for Band 5 No inlernalmixerbias selected PEAKingControl(7E) 0xxxxxxx SteersDB4-DB0to upper latch x0xxxxxx SteersDBs-DBoto lower latch DBs-DBO 1 sent to DB4 of upper latch disablesfront-panelPEAKingcontrol; DB3-DB0 of upper latch and DBS-DBOof lower latch form 10bit inputto DACfor programmable peakingvoltage t o o a o o o o I o I o 3 a o o o C o o o o a o o o o o o o a a O o o t o o o C o I o o C o o o o o a o I O t o J a o o a o o t o t I o o o a o o o o a o o a I o Mafntenanca- Table 6-13(cont) Data Bits 7654321A J. Preselector Driver (77) 0lxxxxxx l0xxxxxx 00xxxxxx xxlxxxxx Descrlption -conversion,g2g MHz ofiset +conversion,829 MHz offset 829 MHz tF not usEd Driver output filter on (for narrow spans) Driver output filter off Preselectorswitch LPF switch lst LO FM coil not swept 1st LO FM coit swept Driveron Driver ofi (for degauss) 3rd harmonic1st LO conversion x x0 X xxx X x xx 1 xxx x x xx 0 xxx x x XX x lxx x x xx x 0xx x x xx x xlx x x xx x x0x x x xx x xxx 1 x xx xxx lst LO conversion K. CENTER/MKR FREQUENCY Control Control (70) lxxxxxxx 1st LO storagegateopen 0xxxxxxx 1st LO storagegateclosed x0xxxxxx Steers DAC data to 1st LO high byte xx0xxxxx Steers DAC data to ist LO mid byte xxx0xxxx Steers DAC data to 1st LO low byte xxxxlxxx 2nd LO storag€gate open xxxx0xxx 2nd LO storagegate closed xxxxx0xx steers DAC data to 2nd Lo high byte xxxxxx0x Steers DAC data to 2nd LO mid byte xxxxxxx0 Steers DAC data to 2nd LO low byte DAC Data (71) DB7-DBO Data for center frequencyDAC(s) steeredby controlregister CENTER/MKRFREQUENCyControl Read (F0) D87 1st LO DAC stored voltage com_ parator DBO 2nd LO DAC storedvoltagecomparator L. Auxiliary Synthesizer Control (7D) DB7-D84 synthesizerchip data(D3-D0) DB2-DBO Synthesizer chip addresses (A2-A0) xxxxlxxx VCOenable xxxx0xxx vco 494A1494Ap ServiceVol. 1 Table6-13 (contl Data Bits 76543210 DescripUon L Auxlllary Syntheslzer Control (7D) (cont) 0101x101 0000x110 0000x111 This sectionsets R, the reference divider to 5 yietding a 20O kHz referencefrequency. AAAA x 0 0 0 This section sets the value of A from 0 to 31 LSB 000Ax001 N N N N x 0 t 0 This sectionsets N from 3.1to 34 0 0 NN x 01 1 0000x100 31-1111 32-0000 01 .r0 33*0001 34-0010 10 10 M. Phase Control Lock Write (73) lxxxxxxx xxlxxxxx xxxlxxxx xxxxlxxx xxxxxxlx DB6 DB2 DBO lxxxxxxx xlxxxxxx xxlxxxxx DB4-DBO Glocksdata on DBo into a tatch Clearsthe counters TransfersDBOserial data to control latch outputs Resetsthe counteroutputregister selector TransfersDBo serial data to synthesizerN latches Gate mode latch NVRAMswitchlatch Serial data for control of synthesizerN latches Read(F3)-Most SlgnlficantByte Enor voltage below a preset amount Error voltage above a preset amount Validcountis in counters Upper five bits of counteroutput; the remaining16 bits are in the followingtwo bytes N. Front Panel Reading Data Encoders(F4) lxxxxxxx 0xxxxxxx DB6-DBO From Swilch CENTER/MKR FREQUENCY down CENTER/MKR FREQUENCY up Switch codes (see Figure 7-33 in Section7) 6-6r Malntsnance- o I o o 494A/494ApServlceVol. l o Table6-14 AUXILIARY SYNTHESTZERVALUES AS A FUNCTIONOF N AND A N A F*, Result N A Fou,Result N A Fou,Result N A FooiResult 31 31 31 31 31 31 31 g1 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 32 I I 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31 0 200.0MHz 200.2MHz 200.4MHz 200.6MHz 200.8MHz 201.0MHz 201.2MHz 201.4MHz 201.6MHz 201.8MHz 201.0MHz 202.2MH2 202.4 MHz 202.6MHz 202.8MHz 203.0MHz 2O3.2MHz 203.4MHz 203.6MHz 203.8MHz 204.0MHz 2O4.2MHz 204.4 MHz 204.6MHz 204.8MHz 92 32 32 32 32 32 32 32 32 32 32 92 32 32 32 32 32 92 32 32 32 32 32 32 32 1 2 3 4 5 6 7 I 9 10 11 12 13 14 15 16 17 18 19 20 21 22 29 24 25 205.0MHz 205.2MH2 205.4MHz 205.6MHz 205.8MHz 206.0MHz 2O6.2MHz 206.4MHz 206.6MHz 206.8MHz 207.0MHz 207.2MH2 2O7.4MHz 207.6MHz 207.8 MHz 208.0MHz 208.2MH2 208.4MHz 208.6MHz 208.8MHz 209.0MHz 2O9.2MHz 209.4MHz 209.6MHz 209.8MHz 32 92 32 32 32 32 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 26 27 28 29 30 31 0 1 2 3 4 210.0MHz 210.2MH2 210.4MHz 210.6MHz 210.8MHz 2 1 1 . 0M H z 211.2MH2 211.4MHz 2 1 1 . 6M H z 2 1 1 . 8M H z 212.0MHz 212.2MH2 212.4MHz 212.6MHz 212.8MH2 213.0MHz 213.2MH2 213.4MHz 213.6MHz 213.8MHz 214.0MHz 214.2MH2 214.4MHz 214.6MHz 214.8MHz 33 33 33 33 33 33 33 33 33 33 33 33 33 34 34 g4 34 34 34 34 34 34 34 34 34 34 19 20 21 22 215.0MHz 215,2MH2 215.4MHz 215.6MHz 215.8MHz 216.0MHz 216.2MH2 216.4MHz 216.6MHz 216.8MHz 217.0 MHz 217.2MH2 217.4MHz 217.6MHz 217.8MH2 218.0MHz 218.2MH2 218.4MHz 218.6MHz 218.8MHz 219.0MHz 219.2MH2 219.4MHz 219.6MHz 219.8MHz 220.0 MHz c 6 7 I 9 10 11 12 13 14 15 16 17 18 a 24 25 26 27 28 29 30 3l 0 1 2 3 4 5 6 7 I 9 10 11 12 I ) o o o o e t a o o o o o I a o o o I o t o a Front-PanelRegisters See Table 6-15. Table6-15 FRONT.PANEL REGISTERS Writing Data to Shift Registersfor Lightsfi4) DB3-1 - Initiallzesencoder at powerup Writingto register74 loads data into shift registersthat drive all the lightson the front panel,includingthe one for the crt graticule.Four 8-bit shift registersstore the data, requiringeight wlites of four bits each time (one bit for each register)to updatethe front-panellights. This table showsthe order in whichdata is enter€dto controlthe lights.A o turns on the light (exceptin the case of the crt graticule),and a 1 turns off the light. Wrlte Number 1 2 3 4 5 6 7 I 6-62 DB5 Not Used Not Used Not Used Not Used RECALL SETTINGS GREEN SHIFT Not Used AF DB4 MAX HOLD M A R K E RM E N U ADDRESSED HELP BLUE SHIFT Not Used MAX SPAN PULSE STRETCHER DB2 ZEROSPAN REMOTE 10 dB/Drv 2 dB/DrV IDENT MIN NOISE AUTO RESOLN UNCAL DB1 GRAT ILLUM FINE READY LINE TRIG SINGLESWEEP FREE RUN TRIG INT TRIG EXT TRIG DBO TUNEMODE UN WIDE NARROW B_SAVEA VIEWB VIEWA SAVEA t I o a a t o o a a o o o t o I o J o Maintenance- TAPE DATATRANSFERPROGRAM I I t I o O o 4g4ful4g4ApService Vol. 1 Macros stored in battery-backedup memorycannot be down-loadedto tape. consequenfly,the macros will be lost each time the battery is removedfrom ttre f_Aemory UoarO. lf the battery on the Memory board is removed while the memorywill be lost' A Tektronix4041'seriescomputer, board is not.poweredup, data stor€d in battery-backedup to the spectrumanalyzervia the GplB, will move this datato a tape and back into memoryusingthe "onn""t"a tottowing piogr"rn. ) I I J t o o o o I o o o I o t o o I o o I a J ) o o o o o a a I lntegeral,sl ,tl,wl ,i,v,y,z,vl Print "SpectrumAnalyzerAddressis: ,,; lnput al Print Print#al:.ROS OFF" Print "Savememoryon tape? "; Inputb$ B$-seg$(b$,.t,1) 19q !j b$-"y" or b$-',y,,then goto 2000 190 Print 20O Goto 1000 109 119 PA 130 140 150 160 174 1000 ! This routinemovesdata from TApEto the spEcrRUM ANALYZER and Settingsare on the foilowingdata fites" -I919 !1"t "Disptays *(3060 1020 Print x 9 for displays,1020x t0 tor settiigsl; 1030 Print 1040 Dir 1050 Print 1060 Print"Enternumberof first datafile,FlL,:,,; 1070 Inputtl 1080 Gosub9000 1090 Print"Writeover all Displaysand Settings(0),,, 1100 Print'Orwriteonlyin b1ank........ memory(1):,,; 1 1 1 0 t n p u yt $ 11?9 lf y$:"0' or y$-,'1"then goto 11S0 ,,,,,pleasl: ,,: 1130 pfint uuuO*" Of ,,,,1 1 1 4 0G o t o1 1 1 0 1150 Y:vat(y$) 1160 Detetevar ig 1170 Dimi$ 700 1180 Print#al:"SET?,, 1190 lnput#al:i$ 1200 w1-0 1210 Print#ai:"BVtEWOFF,' 1220 pilnt 1230 Print 124O For i:l to 9 1250 Gosub8000 1260 Gosub6000 1270 lf z-0 then goto I3O0 1280 Printw1;': Waveformfrom DataFileFtL';tl 1290 Goto1310 1300 Printw1:n: ........not written.FlL,,;tl;,,not used.,, 1310 Wl-w1+1 6-53 Maintenance- 4g4[l4g4Ap ServlceVot. 1 1320 T1-t1+1 1330 Nexti 13a0 S1:0 1350 Print 1360 Print 1370 Print 1380 For i-1 to 10 1390 Gosub5000 1400 lf z-0 then goto 1400 1410 Prints1;'- Settingsfrom DataFile";t1 1424 Goto 1440 14i10 Prints1;"-........ not written.FIL';TI;,.not used" 1440 S1-sl+1 1450 T1-t1+1 1460 Next i 1470 Print#al:i$ 1480 Print 1490 Print 1500 Print 1530 Print *rn 1540 Printo*r FINISHED 1550 Goto10000 2000 !This routinemovesdata from the spEcrRUM ANALYZERto TAPE 2010 Deletevar i$ 2020 Dim i$ to 700 2030 Print#at:"SET?" 2040 Input#al:i$ 2050 Dir 2060 Print 2070 Print'WARNING!This couldoverwriteexistingfiles!" 2080 Print'Enterthe Numberof the lasttape file: ',f 2090 Inputt1 2100 Gosub9000 2110 Print 2120 Print 2130 Print#a1:"BVtEW OFF,' 2140 W1:0 2150 For i-l to g 2160 Gosub3000 2170 Gosub7000 2180 lf z-0 then goto 2210 2190 Printwl;': Waveformsent to FileFlL,,;tl 22A0 Goto2220 2210 Printwl;":.,...... skippedover.FlL";t1;', is empty* 2224 Wl:w1f1 2230 T1-tl+1 2240 Next i 2250 Print#a1:i$ 2260 | Settingsare sent to tape 2270 S1-o 2280 Print 2290 Print 2300 Print 2310 For i-1 to 10 2320 Gosub4000 2330 lf z:0 then goto 2360 2340 Printsl;"- Settingssent to FileFlL,,;tl 2350 Goto 2370 2360 Printsl ;"- ........skippedover.FlL";t1 ;,'is empty.,' 6-64 o o e o o a o o o o o a t a o I o o a O a o a o o o I o t a t o o t e o o a o o o a o o o o t o I I o o o t a t a I ) I a t o a t a o o t o o o o t ) o I o o o o o o o a o ) t Mafntenance- 494A1494Ap ServiceVot. 1 237A 51-sl+1 2380 T1-tl+1 2390 Next i 2400 Print#a1:i$ 2410 Print 2420 Print 2$A Print"... FINISHED'.." 2440 Goto 10000 3000 ! AcquireWaveformand Settings. 3010 X? i.r 500 pointwaveform,t$ G towerreadout, i 3020 lm$ is upperreadout,and €g is an er-i i"""ag" 3030 Deletevar eg,hg,lg,m$,x9 3040 Z-O 3050 Dimh$ to 1100 3060 Integerx9 (1000) 3070 Dim l$ to So,m$to 50 3080 Print #a1:"SAVEAOFF;DRECAL A:",wl 3090 Print#al:"ERR?" 3100 Input#al:eg 3 11 0 E$*seg(e$,5;2) 3120 lf e$<>'62'then goto3190 3 1 3 0v-0 3140 X9:0 3150 M$-"" 3160 L$*",' 3170 Goto 3280 3180 V-1 3190 Print#al:"UPRDO?" 3200 lnput#al:m$ 3210 Print#al:"LORDO?' 3220 Input#a1:l$ 3230 M$-seg$(m$,8,40) 3240 L$-seg$(l$,8,40) 3250 PTint#a1:NVFMWFID:A,ENCDG:BIN;CURVE?.. 3260 lnput using"la,*Bo/o'dels'," #al :h$,x9 3270 Z-1 3280 Return 4000 ! Removememorysettings(S$)from SPECTRUM ANALYZER 4010 Z-0 4020 Deletevar sg 4030 Dim s$ to 700 4040 Print#al :'RECALL,,:s1 4050 Print#a1:.ERR?, 4060 Input#al:eg 4070 E$-seg$(e$,S,2) 4080 lf e$<>'62" thengoto4120 a090 V1:0 4100 S$-"NULL" 4110 Goto4170 4120 Print#al :,,SET?,' 4130 Input#a1:s$ 4140 Print#al:"ReS OFF" 4150 V1-1 4160 Z-1 4170 Open#1 00:"FtL"&str$(r1)&'{opE:REp,stz_1 020),, 4180 Print#100:v'l,s$ 4190 Close100 4200 Return 6-65 Malntenance- 494[l4g4Ap ServtceVot. 1 5000 ! Retrievetaped settings (s$) and sendto memorytocations(s1) 5010 Z-0 5020 Deletevar s$ 5030 Dim s$ to 6zt0 5040 Open#100:"FtL"&st6(t1)&'(ope-otd),, 5050 Input#100:v1,s$ 5060 lf v1-0 then goto SiSO 5070 lf Y-0 then goto 5120 5080 Print#a1:"RECALL ";s1;,';ReSOFF;WAIT;ERR?, 5090 Input#al:e$ 5100 E$:seg(e$,S,2) 5110 lf e$<>"62'thengoto51S0 5120 Print#a1:s$ 5130 Print#a1:"STORE";s1;":ReSOFF,, 5140 Z-1 5150 Close100 5160 Return 6000 I Sendwaveform(X9)& readouts(M$,L$)to memorytocation(Wl) 6010 z:0 6020 lf v-0 then goto 6180 6030 lf Y-0 then goto 6080 6040 PriNt#A1:'SAVEAOFF;DRECNL A:";Wl;',;ERR?,, 6050 Input#a1:e$ 6060 E$-seg$(e$,5,2) 6070 lf e$<>"62" then goto 6190 6080 Print #al:"WA|T:TR|?" 6090 Input#a1:h$ 6100 Print#al :"RDOUT'";69.t';r, 6110 Print#a1:'RDOUT',,;l$;"'" 6120 PriNt#A1:NVFMWFID:A,ENCDG:BIN;SIG;SAVEA ON6130 Wbyteatn(mta,32+a1),x9,eoi 6140 Wbyteatn (unt,unt) 6150 Print#a1:'DSTOREA:...wl 6160 Print#a1:h$ 6i7a z-1 6180 Return 7000 ! Storereadouts(M$,L$),and waveforms(X9)on TApE Fite(I1) 7010 Open#1 00:'FtL"&strg(tl)&,IopE-REp,St2_doOO). 7020 M$:m$ 7030 L$-t$ 7040 Print#100:v 7050 Print#100:m$ 7060 Print #100:l$ 7070 Print #100:xg 7080 Close100 7090 Return 8000 ! Retri€vesreadouts(M$, L$), and waveform(X9)from TApE 8010 ! From setectedTAPEFite [r1) 8020 Open#1 00:"FtL"&strg(tl )&(ope-otd)', 8030 Deletevar x9,mg,tg 8040 lntegerx9 (1000) 8050 Dim m$ to SO,tgto SO 8060 Input#100:v 8070 Input#100:m$ 8080 Input#100:t$ 8090 Input#100:x9 8100 Close100 6-66 o o o I a o ) o o ? t I t o o o o o a O a O o o I o a o o o I o f I I o o o o o o a t o o o o o t I o I o o o t o o t I o o o o o a a o t o o o o a a o o o a o a o o o o a o o Maantenance- I94Al4S4ApServiceVol. 1 8110 Return 9000 ! This routineshowsthe contentsof Memory dispraysand settings 9010 Print"DisptayMemory', 9020 Print 9030 Print#al:,'ReS OFF' 9040 Deletevar sg 9050 Dim s$ to 660 9060 Print #a1:"SET?' 9070 Input#at:s$ 9080 Wl-0 9090 For i:t to 9 9100 Print#at:,SAVEA:OFF;DRECAL A:";w1 9110 Print#al:"ERR?" 9120 Input#a1:eg 9130 E$-s€gg(e$,5,2) 9140 if e$:"52' then goto 9170 9150 Print w1;"- Waveform" 9160 goto 9180 9170 Printwl;"*......... 9180 Wl:w1+1 9190 Next i 9200 ! NOTE:"RECALL"may recaila RQS_ON 9210 ! state,so this must be turnedotf atain by ReS OFF 9220 Print 9230 Print "settingsMemory.' 9240 Print 9250 51-0 9260 For i-l to 10 9270 Print#a1:"RECALL',;st;',;ReS OFF;WA|T,, 9280 Print#al:,,ERR?" 9290 Input#al:e$ 9300 E$-seg$(e$,5,2) 9310 lf e$-'62" then goto 9g4O 9320 Print sl:"- Settings,, 9330 coto 9350 9340 Printsl;"- ........' 9350 S1-sl+1 9360 Next i 9370 Print 9380 Print#a1:sg 9390 Return 10000End 6-67 o a o o ? o o a o o o o O o t o o o o o a o o o o a o o o o o o o o I o o a t o o a o o O o o o o a o o o O o a o o o t a o o a o o o o o o o a o O a o o o o a a o o O a o o o Secton 7 - 494A1494ApService,Vot. 1 THEORYOF OPERATION This sectiondescribesthe spectrurnanalyzer circuitry. The section beginswith a functionaldescriptionof the maiorcircuitblocks' This is fotloweJ6y'ror" detaileddescriptionsof the circuitrywithin each block. while readingthese descriptions,refer to the corespondingblock or schematicdiagramin volume2 of the serviceManual' The description'tittes use ir,e oi"grar nam-esand numbersfor easy reference. The FunctionalBlock diagram,locatedat the front of the Diagramssectionin Volume 2. shows how the majorsectionsin the instrumentrelateandihe.paths_of *o.1 r-"pr signals. Block diagramsshowingmore L::*;ffi?#:llr:*tions rollowttreFunctiinat Brockoiagr;;. Gircuitschematicliasrams ror6wthe Adjacentto each schematicis a third level of block diagram,a circuit parts locationillustration,and cross-reference look-uptables.The third level block diairam'snows board the functionof the Lornpon"nt"shown on the schematic' The parts locationillustration ano tooi-uf t"or". aid in findingcomponentson eitherthe schematicor circuitboard. FUNCTIONAL DESCRI PTION What lt Does The spectrumanalyzeracceptsan electricalsignal as its input and displays the signal,sfrequency com_ nn:t:.9n a crt. Signatscan beapptieddirecilyto the RF fNPUTor throughan externalmixer. The displayof the input signatappearson the crt as a graph where the horizontalaxis is'frequ€ncy and the v.ertjcalaxis is arnptitude.The disptaycan be ptotted, i, desired,by connectinga chart recorderthrougn rear_ panelconnectors.The displaycan also be transmitted digitallyvia a |EEE4gg GeneiarpurposeInterface Bus (GPIB)to a GptB-compatible ptotter. The programmableversion can be operatedeither front-panetcontrots,or remotetyvia rhe T:H"lll.*jih \rFtE wtrnan easy_to_use programming language. How lt Works The Spectrum Analyzer operates as a swept, narrow-bandreceiver. The crt beammovesnorizontatty as a range of frequenciesis spanned. When a fre_ quency componentof an input signatis detected,the beamis deflectedverticallyas a fuiction oi inprt power at that frequency. Frequencyis measuredby countingthe local oscillator lrequencies againsta reference.Amplitudeis measured by catibratingthe REFERENCELEVEL and RF attenuator.A master microcomputerperforms control, storage,signal processing,and communications func_ tions. First, Second, and Third Converters Swept-frequencyanatysis is achievedby a triple'the conversion superheterodynetechnique. Each of three frequencyconvertersconsists of a rnixer,a local oscillator,and appropriatefilters. Onlyone frequencyis converted in each mixer to pass through bind_piss filters to the detector. This frequencycan be changeO by tuning the local oscillator trequencyin the first or second convErters.The third converteruses the fixed 100 MHz calibratorsignal as a stable local oscillator. An externalsourcemay also be used as a referencefor the 100 MHz calibratorand third converter. The first converter. usually referred to as the front end,. converts the input signal frequencyto an intermediatefrequency(tF) of either g2g MHz or ZO72MHz, dependingon which band is in use. The internalmixer converts signals over the input range of 10kHz to 21 GHz. Externalmixers may be used for signalsinto the millimeterwavelengths.When the internalmixer is used, a preselectoror low-pass filter is insertedin the signal path to reduce unwanted signalsor imagesand spuriousresponses. One of two second converters is automatically selected for each band so the input fr6quencyrange does not overlap the first lF frequency. Each second converterhas its own local oscillator(LO),mixer, and filters. Both down-convert the signalto 110MHz which is sent to the third converter. The third converteramptifiesthe 110MHz lF signal and converts it to the final intermediatefrequencyof 10 MHz. The third converter passes the signalto the 7-1 O Theory of Operation- 494A/494ApService, Vol. 1 mainlF sectionfor processingand detection. lF Section This section processes the signal for frequency resolution. Several functions are performed here: bandwidth filtering, amplitude calibration and logarithmicconversion,and signaldetection. The 10 MHz lF signal is processedthroughone of sev€ralband-passfilters selectedby the RESoLUTIoN BANDWIDTHcontrol. In the auto mode the microcom_ puter will sel€ctthe best combinationof bandwidthand sw€eptime for the selectedspan, unlessoverriddenby the operator. Weak signals can be amplifiedby a set of switchable amplifiersso the dynamic display range (v€rtical window) ls shifted up or down. The REFERENCE LEVELcontrolselectsth€ gain and inputRF attenuation to frame this windowbetweenthe referencelev€lat th€ top of the displayscreenand the bottomof the display. A levelingcircuit helps provide flat frequencyresponse across the range. The signal is amplifiedby a logarithmicamplifierto producethe verticalsignalcalibrat€d in dB/div. The detector produces a voltage that corresponds to th€ input signal strength in decibels. The detector outputis then sent to the verticalchannelof the display sectionto drive the verticalaxis of the crt and display the signal. Display Section The display section draws the signal on the crt screen. Vertical deflection of the beam (y axis) is increased as th€ output of the amplitude detector increases.The horizontalposition(X axis) of a signalis controlled by th€ frequency controt section and correspondsto the frequency of the detectedsignal. The Z axis, or brightness,is controlledby th€ INTEN_ SITYcontroland the Z axis blankingcircuits.(However, markerbrightnessis actuallycontrolledby stoppingthe digital storage sweep for a period of time to brighten the spot.) As the spectrumanalyzer spans from low to high frequenciesthe beam sweeps from left to right. When the spectrumanalyzertunesthrougha signalfrequency, a vertical deflectionshows the strengthof the signal. The result is a signal displayedat a position on the span that correspondsto its frequency,or in other words,the displayshowsamplitudeas a functionof freguency. 7-2 The video amplifier scales the detector output for vertical deflectionin dB/div or performs a log/linear conversion,depending on the vertical display mode. The video processor provides additional bandwidth filteringit eitherthe wide or narrowfilter is selected. The display section also provides crt readout to show control settings and measurementdata. This readoutis basedon data from the microcomputer which is reading the settings of the front panel controls or data on the instrum€ntand GPIB buses. Digital storage circuits provide two functions;they provide a flicker-free display at slow sweep rates, and they store the display for later viewing. Up to nine different displays with their readouts can be stored in the battery-poweredmemory. The stored display data can then be transmittedthrough the IEEE-488port to a plotter,or for programmableinstrumentsto GPIB compatiblecontrollersor instruments. Frequency Control Section The spectrumanalyzersweepsthrougha frequency range that is set by the frequencycontrol section. The CENTER/MARKER FREQUENCYcontrol sets the frequencythe l st and 2nd local oscillators. The output of a sweep generator is scaled by a span attenuatorto sw€ep a range or span of frequencies. The output of the span attenuatordrivesthe lst LO for wide spans and the 2nd LO for narrow spans. The output sweep also deflects the crt beam across the horizontal axis as the local oscillatorsar€ swept so the displayis a spectrumof power versusfrequency. The frequency control section also tunes the pr€selector so it tracks the signal frequency being detectedoverthe 1.7 to 21 GHz range. Counter and Phase Lock Section The Counter, Harmonic Mixer, and Auxiliary Synthesizer form the nucleus of the frequency control hardware. Both the l st LO and 2nd LO frequ€nciesare controlledvia the firmware-basedcontrol loop. Oata from the Counter is used as feedbackto control the oscillatorfrequency. Accurate signal frequencymeasurement is possible by countingthe frequencyof the 3rd lF. The Phase Lock system stabilizesthe 1st Lo frequency. This minimizes display jitter and increases resolution. o o o O o o o o o o O o o o a o o a o o o o o o o o o a o o O a o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o Theory of Operation- 4g4A/4g4ApServlce,Vol. .l Digital Control Section Operational modes and internal functions spectrumanalyzerare selectedand controlled of the from the front panel. The modesanOtunctions directly that are selectedare processedand activatedby the instrument mastermicrocomputerwhich tarksand iisten" to ail cuits over the instrumentbus. ttre progiammable cir_ ver_ sion can also be remotelycontrolledfrim an external controilerthroughthe IEEE_4gg (GplB) connector. This connectorinterfacesto the instrument microcomputer throughthe GptB. Front panel control and sel€ctordata is processed by a front panel CpU that interrac"" *itt the master microcomputerover the instrumentbus. The master microcomputerreceivesand sendsall of its information over the instrumentbus to th€ intemal circuits. The programmable version communicateswith other instrum€ntsthroughthe GplB connector. The programmable controllanguagecorrespondsto tront_panel controfs. Power Supply Section The power supply s€ction provides regulateddc power and forced air cootingfor all circuits within the instrument.The switchingsupptyis capabteof providing regulatedvoltagesover a wide range of input line frequenciesand voltages. The coolingsystemconsists of an intake on the bottom of the cise, air passages within the instrument,a fan, and a rear panel exhaust. Air is routedto all sEctionsof the instrumentin proportion to th€ heat generatedby circuitswithin thoie sections. Internaltemperaturevariationsare minimizedto providereliableoperation. Other Sections Interconnectionsbetween assemblies are made through a common Mother board. Most circuit board assembliesplug into the top side of the Motherboard. Assemblieson the RF deck are connectedto the bottom side of the Mother board throughcables and con_ nectors. 7-3 Theory of Operation - 4g4Ll4g4ApService, Vot. 1 DETAILEDDESCRIPTION The followingdescriptionis arrangedby sectionsor systems;such as lst Converter,2nd Converter,etc., followed by circuit analysisof the circuiiswithinthat section. Each systemor section is introducedwith a descriptionof the system using the sectionblock diagramfound in ihe oiagrams section of the Service Manual,Volume2. This is followedby a descriptionof Lach cireuitboard or miajorcircuitwithinthe system. The appropriateblock or schematicdiagramnumberis includedin the text h6adingsfor each section or part. 1ST CONVERTER (Diagram2) SECTTON The 1st Converter consists of the 0-60dB step Atenuator, PreseleCtor,lst Mixer, .lSt LO, power Divider, Transfer Switch, 2.OT2GHz DirectionalFilter. Diplexer,and two 4.5 GHz Low-pass Filters. Externai circuits that control or drive the assemblieswithin the l st Conv€rter are: the preselector Driver, 1st LO Driver, Counter and phase Loek system, and the RF Interfaceboard. The spectrum analyzer uses two intermediatefreguencies(2472MHz and 829 MHz) to preventbasetine rise caused by local oscillator f€edthroughand crossover of intermodulationproducts. The 2072MHz lF is selectedfor band I and for bands 5 and above. The 829 MHz lF is select€dfor bands2-4. RF Interface Circuits (Diagram28) The 1st Converterconvertsthe incomingRF signals to the lst lF. lncomingsignals are applied througha calibrated0-60 dB decade attenuator(AT10)to a fitter select switch (S12). Signats in band t (t Ok|-tz to 1.8GHz) route through a Limiter (A10) and 1.gGHz Low-PassFilter (FLl0) to the .tst Mixer (A12). Signats in bands 2 through S (1.7 to 21 GHz) route througha tunable Preselector (FL12) and a g dB Attenuator (4T11)to the mixer. The RF interfacecircuits receiveinstructionfrom the microcomputerand produce control signals for the RF Attenuator, the Transfer Switch, and the lF Select. TheseRF controlcircuits are located on the Z-Axis/RF Int€rfaceboard (A70) and their operationis described underthe z-Axis board part of th€ Displaysection. lst Converter(Diagram12) The RF signals mix with the output from a tunable localoscillator(A16)to generateproductsat one of two intermediatefrequencies,dependingon the bandin use. The 1st Mixer output goes to DirectionalFilter FL16 through Transfer Switch S1B. The transfer switch allows input from the EXTERNALMTXERinput,except in Option 07 and 08 instruments.In Option 0Z anO0g instruments, the EXTERNAL MTXER capability is deleted. RF Input The EXTERNALMIXERinput permits an externallF source (externalmixer) to be connectedto the instru_ ment. The lF signalsfrom external mixers are routed through the Transfer switch to the DirectionalFilter. This feature allows much higher input frequenciesby usingwaveguidemixers. The RF input signal goes through a 0-60 dB Step Attenuator(AT10)consistingof relay-controlled 10d8, 20 dB, and 30 dB sections. The relaysare actuatedby controlsignalsfrom the RF Interfacecircuit. The direetionalfilter separates the 2OTZMHzand 829 MHz intermediatefrequenciesfor the 2072MHz 2nd Converter(A18)or 829 MHz 2nd Gonverter(A23). The 2072MHz lF is apptiedthrough a 4.5 GHz Low_ Pass Filter (FLl1) to the 2072MHz 2nd Converter.The 829 MHz lF is fed througha Diptexer(A14)and another 4.5GHz Low-PassFitter(FL1S)before it is apptiedto the 829 MHz lF stages. 7-4 TheRFINPUT50() connector acceptsthe inputsignals in bands 1 through 5. Higher frequenciesrequire external waveguide mixers that use the EXTERNAL MIXERinput,alongwith the LO outputs. Option 07 instrumentshave a75A input in place of the EXTERNALMIXERconnector. TransferSwitch S13 selectsbetweenthe 50O and 75O inputs. PreselectorCircuits Coaxialswitches311 and 512 are relaysthat select eitherthe low-passfilter (FLl0) and Limiter(A10)or the Preselectorand 3 dB attenuator(AT11)for the RF signal path. The relay coils are driven by circuitryon the PreselectorDriver board. The low-pass filter path is used for band 1, and the Preselectorpath is used for bands2 through5. a o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o a o o o o o o a o O o o o o o o o o o o o Theory of Operation - _ The 2GHz Limit€r(A10) operatesfrom 100kHz to 2 GHz. lt has a lineartwo-porttransfercharacteristic of unity (-1 dB) until the input exceeds+5 dBm. Above this point, the internai detEctor OioOes conduct, reflecting part of the RF input energy back to the source.. A: lhe input level rises, the-Limiter reflects more signal,.limiting the amountthat can pass through the mixer, thus protectingthe mixer from being over_ driven. The 1.gGHz Low-pass Fitter (FL10) strips incoming signal of any frequen"y cbmpon"nts the above 1.9911.andpassesdtt treiueniy 1.8 GHzto FitterSetectorswiicnSi2."olnion"nt.o"ro* The presetector(FL12) is a 1.7-1gGHz yttrium_ lron-Garnet(ylG) filterthat providesnigh setectivity anO y1S"-jl"qyency rejection. Tuning c-urrent,which is near 500 mA at 21 GHz, is provideJby the preselector Driver (A42) circuits. The presele"ior op"rates on bands 2, g, 4, and S. Becausethe preselector is sensitive to outputtoadimpedance,a g dB Attenuator(AT11) is insertedbetweenthe pr€s€lectoroutputand one port of the FitterSelectswitchto hetpisotateoutput loading. 4g4Al4g4ApServtce,Vot l 1st Local Oscillator The lst LO (A16) is a ytG (yttrium-tron-Gamet) oscillatorthat has a tuning range of 2.072 to 6.4 GHz. The oscillator assembly includesthe interface circuit board that couples operatingand tuning voltagesfrom the l.st LO Driver, Span Attenuator,and Error Amptifier circuitsto the oscillator. The +15 Vl voltage providesoperatingbias for the p,l"jl1!or.- The_suppty is protected and iecoupted by VRl 010,Cl 0t 6, and L1011. Th: s9c9ndsuppty,+t S t2: is not used in this instrument.VRlolg anctVR1019 clamp transientvoltagesfrom the tune voltage coil. lt atso protects the driving circuits from the transients inducedwhendegaussing. When the FM coil is used to sweep the osciilator, relay K101S closes and couptesC1d12 and C1014 across the tune coil, The capacitorstower the noise bandwidthof the main coil drivingcircuit while the FM coil is in operation. The heater provides temperature stability. 1st Mixer The 1st Mixer {A12)circuit consistsof a single bal_ anced mixer,a coupler,and a g0ophaseshifter. A balanced mixer inherentlyhas less conversionloss com_ Par€d to an unbalancedmixer, and local oscillator feedthroughto ths RF port is minimized. The locat oscillator input is split through a broad-band multisection coupler whose outputeare equal in power but 9p deoqegs.out of phase. an aOOiitonat tiO degree phase shift is cascadedwith the appropriate signal to create a 180 degree phase differencettrat is ipptied across a pair of series-connected Schottkydiodes.The result is that the diodesare alternatetyswitcned on and off as the local oscillatorcycles. The node betweenthe two diodes is isotated from by about O0dB so the RF input is 11"-,,1^"j !O ^ilpu. apptteo to this node. The blocking capacitor at the input connector permits broadbandsignal application from the RF port, whileblockingthe dc'diodebias from g.etting. to the RF port and the ipectrum analyzerinput. Mixer bias is suppliedfrom the ist LO Driverboard via the 829 MHz lF circuits,4.5 GHz Filter,Diplexet, Direc_ tional Filter,and TransferSwitch. Bias returnis through assemblyA11 to ground. Excludinglossesin the lF filteringcircuitry,the fun_ -Conuener dam€ntalconversionloss of ths l st is about 14 dB, and the thirdharmonicconversionloss is about 24.d8. The.Schottkydiodes are mountedin a mixer suo-assembty(A12A1)so that they can be easily replaced. Power Divider The Power Divider(A13)splits the output of the 1st LO (YlG osciilator)to isolatethe 1st Mixei from thg tst !O OUjP,qT .front-panet connector. Basicaily, the Power Divider is two multi-sectiondirectionalcouplers that are cascaded to produce two ports having equal power. The isolationbetweenoutputports is 15 dg or mors at the op€rating frequency. The power Divider also providesan improvedload to the local oscillator. Transfer Switch The Transfer Switch (S13) is a three-port coaxial relay that selects 1st lF signals from either the 1st Mixer or from the EXTERNALMIXERinput. This allows the use of an externalmixer by by-passingthe lst Converter circuitry. The function is controlledby circuitry on the RF Interfaceboard. lt is autornatically actuated when waveguidebands ars selectedor the front-panel EXTMIXERpush buttonis pressed. ln Option07 and 08 instruments,the externalmixer capability is detet€d. In those instruments, W125 directlyconnectsthe 1st Mixer outputto the Directional Filter. In Option 07 instruments,the transfer switch selects between the 50O and 7SO inputs to feed the Step Attenuator. 7-5 Theoryof Operation- 4g4A/494ApService,Vot. 1 Directional Filter 2072MHz lF Filters The DirectionatFitter (FL10)couptesthe 2072MHz signalto the 2nd Convertervia low-passand band-pass filters FLl1 and FL14. As mixing products iass through FL16, they induce a selected current into a one-wavelengthdistributed dng, which couples the 2072MHz lF signatout to the tow-passfitter FLl t. The remainder of the intermodulationproducts pass on through since the ring is excited only with ZiOZZl/r{z signals. The bandwidth of this Dirirctional Fitter is approximately45 MHz. The unfiltered signals are passedon to the Diplexer. The 2072MHz signal, from the Directional Fitter, passes througha 4.5 GHz Low-PassFilter {FL11}.The signal is then sent through a 15 MHz band-passfilter (FL14) which reiects intermodulationproducts either side of the 2072MHz lF. 7-6 Diplexer and Filter The Diplexer (A14)passes the 829 MHz tF signal from the mixer output through a low-passfilter (FL15)to the 2nd Converter. The Diplexerand DirectionalFilter provide a broadbandimpedancematch to the l st Mixer lF port. This match contributes to thE overall flatn€ss and frequencyresponseof the analyzer. o o o o O o o o o o o O o o O o o o o o o o o o o o o o o o a o o o o o o o o o o o o o o o o o a o o I o o O o o o o o o o o O o o o o o o o o o o o o o o O o o o o o o o o o Theory of Operafon - 4g4A/494ApServlce,Vot. i 2ND CONVERTER SECTTON (Diagramg) Two 2nd ConvErtersystgms are used in the spec_ trum analyzer. One converts207ZMHz to 110 MHz and the other convertsg2g MHz to 110 MHz. The con_ verter used is determinedby the frequencyband being conveted. The lF selectionfor each banOis snown in Table7-1 along with the band frequencyrangeand the local oscillatorfrequencyrangE. two 2iO lFs are used by the analyzerfor the followingreasons: o lf the lst tF is inctuded in the frequencyband being converted,it is possiblefor some input signals to pass un-convertedthroughthe lst c6nvert6r to the 2nd Converter,appearingat ttre lst lF. The resultingspurioussignat would cause the baseline level on the screento rise and obscurereal signat. Two 2nd converters avoids the problem by usiig a 1st lF not in the band beingconverted. I With two lF'S, lF feedthroughin band 2 and higher orderspursin bands3 and 4lan be eliminated. . Because of the limited tuning range of the 719MHz LO, the lower lF cannoibe used above band4. The 2072MHz 2nd Convertermixes the 2072MHz from the 1st Converterwith the output trom a 21g2 MHz phase-locked2nd local oseillator. This local oscillator is sweptand tuned over a 4 MHz range. The 2A72MHz input tF signal is passed through a four-cavitybandpass filt€r (FL14)to ailow onty the 2OZ2MHz.tsi tf signal to pass through a1d pr€vent other signals, geierated within the 2nd Converter, from getting back to -combines the lst Converter. A diode mixer the 2072MHz lF input and the local oscillatorsignatsto generatethe 110MHz lF output which then passes through a 110 MHz fow-pass fltter to reject any higher ordersignalsfrom the mixer. The 829 MHz 2nd Converteruses a phase-locked voltage controlled oscillator to produce the Z1gMHz signal that is mixed with the g29 MHz first tF signat. The swept 2182MHz 2nd Local Oscillatoris usectas a referencefor the phasetockedoscillator.The 719 MHz oscillator can be disabled upon command from the microcomputerin the tF selectionprocess. The phase lock circuit maintainsa constant relationshipbetween the two local oscillatorsas the 719 MHz oscillatoris sweptand tunedover a 1.33MHz range. A four section coaxial band-passfilter is used before the mixer to excludeany RF signalsother thanthe d€slredg29 MHz. Again,a diode mixer is used to mix the g29 MHz input and local oscillator signals to produce the 110 MHz secondlF output. Tabte7-1 2NDCONVERTER IF SELECTION Band Range 1 2 3 4 5 6 7 I I 10 11 12 50 kHz-1.8GHz 1.7-5.5GHz 3.0-7.1GHz 5.4-18.0 GHz 15.0-21.0 GHz 18.0-26GHz 26-40.0GHz 40.0-60.0 GHz 50.0-90.0GHz 75-140.0GHz 110-220 GHz 170-325GHz 2nd LO Range 2182 r.2.25MHz 719 *0.75 MHz 719 *,0.75 MHz 719 *0.75 MHz 2182x.2.25MHz 2182 *.2.25MH? 2182 *,2.25MH2 2182 *.2.25MHa 2182 *.2.25MH2 2182 *.2.25MH2 2182 *.2.25 MHz 2182 *.2.25MH2 lst lF 2072MHz 829 MHz 829 MHz 829 MHz 2072MHz 2072MHz 2072MHz 2072MHz 2O72MHz 2072MHz 2072MHz 2072MHz 7-7 Theory ot Operation- 494A/4g4ApServlce,Vot. 1 COUPLING HAT COUPLINGLOOP FREOUENCYDETERMININGGAP F I L T E R TOP J cAvrrYPosr+ l+ FtRsr cAVrry INTER-cAVttt*ott"raoND cAvrry 2727-707A Figure 7-1. Ctpsr section of a four-cavltyfiltee Selectionbetweenthe two 2nd lF signalsalso takes place within the 829 MHz convertersystem. A diode switchingnetwork connectsthe activej10 MHz 2nd lF signalto the outputto drivethe grd Converter. 2472MHz 2ND CONVERTER (Diagram12) The 2072 MHz 2nd Converter converts the 2O72MHz signal output from the 1st Convener to 110 MHz for eventualapplicationto the grd Converter. The assemblyconsists of a four-cavityfilter connected to a narrow band mixer through an external cable, a 110 MHz low-passfilter, and a mixer-biasing circuit. This filter has a 1 dB bandwidthof 15 MHz and an insertionloss of 1.2 dB. Eachend resonatorls capacity coupled to external circuits through a coupling hat pluggedinto a 3 millimeterconnector.Intercavitycoupling is provided by coupling loops that protrude from the machinedfilter top. The resonantfrequencyof each cavity is determinedprimarilyby the depth of a gap in the undersideof the filter top, and is fine tuned with a tuningscrew on the side of each cavity. All of the tight machiningtolerancesare confinedto the top. Thus,the main cavity milling need not be a high precisionpart. When properly tuned, using a network analyzer,the filter return loss is greaterthan 25 dB from either end (in a 50 ohms system). Figure7-1 shows a cross sectional view of the filter, and Figure 7-2 shows the equivalentelectricalcircuit. Four-Cavity Filter The four-cavityfilter (FL14) is a low-loss narrowband fifter that only pass€s lhe 2072MHz IF signal to the mixer. Any other frequenciesare reflectedback to the lst Converterand terminated. In addition.the filter prevents the converter LO and mixer products from enteringthe 1st Converter. 7-8 Mixer Circuit The mixer circuit consists of a single-balanced, two-diodemixer, a bias circuit for th€ mixer, a delay line,and a 110 MHz low-passfilter. o o o O o o o o o O o a o o o a o o o o o o o o o o o o o a o o o o o o o o o o o o o o o o o a o o o a a a o o o o a o o o a o o o o o a o O o o o o o O o o o o o o o o o o o Theory of Operaton - 4g4A/4g4ApService, Vol. .l RF INPUT j--"ou"'-'T'oo"---l RF OUTPUT +FoI Q+r h TUNINGSCREW , CAVITY 1 CAVITY 2 lh I CAVITY 3 CAV!TY 4 2727-1o2A Figute 7-2. Equivalentcircuit of the four-cavity filter. 2072MHz RF from.the four-cavity fitter (FL14) enters the mixer, where it is switchedon anOoff at a 2.182MH2rate by the the mixer diodes. Both mixer diodes are tumed on and off by the 2lg2 MHz 2nd LO signal. The difierence frequency of 110MHz is separatedfrom the other mixer productsby a low-pass filter for use as the tF output. Attnougnth! diodes are connectedfor opposite polarity, both are tumed on at the same time becauseof ths 1g0 degree phase shift delay.line in.the input path to one of t[e diodes. Note that the diodesare matchedand must be replacedas a pair lf one fails. At the output of the mixer. the two inductorsand one capacitorform a low-pass filter that passes unat_ tenuated110MHz signat to the g2gMtiz 2nd Converter,via coaxialconnectorplg2. Dc_blocking capacitors at the three inputs to the mixer, keep tne diode bias from being applied to the RF and locat oscillator lines. The bias circuit, which consists of operational amplifierUl014 and the associatedcomponents, establishes th€ bias for the mixer diodes and atso provides the meansfor effectivelyswitchingthE mixer oif lunder control of the microcomputer). When the mixer is active, each diode has approximately2 mA of forward bias. For this condition,the tF SELEbTsignalfrom the Z Axis/RF lnterface circuits lappti-eO through feedthroughcapacitorC182) is low. This causes the outputfrom U1014Ato be at +14 V and the outputfrom U10148to be -14 V. DiodesCR1O14 and CR101gare therebyreverse-biased.Thus,the seriesresistancesof potentiometerR1019 plus resistor R1014, and poten_ tiometer Rl010 plus resistorR1017,provideforuvard bias to the diodes. The potentiometersare set to balancethe bias levels. In op€ration where the mixer is not active,the lF SELECTsignal is high. This reversesthe statesof the Ul0'14outputsand foruvardbiasesdiodesCRl014and CR1018. With these diodes conducting, resistors R1014,R1016,R1017,and R1018form two voltage dividersthat set the reversebias, to the mixer diodes. at 5 V. This effectivelyturns the mixer off and attenuatesthe 110 MHz signalby about55 dB. PrecisionExternalCabtes The externalcablethat connectsthe four-cavityfilter output to the mixer RF input (W140)and the external cable that connectsthe 2nd LO to the mixer LO input W222) are both criticattengthcabtes. 7-9 Theory of Operation - 494A/494ApServtce,Vot. 1 Fllter to Mlxer RF Input Cable. Several products and harmonicsof the local oscillatorand RF input frequencieswill exit the mixer via the RF input port of th€ mixer. The image (RF input minusthe 2nd LO) and the sum (RF input plus the 2nd LO) are two significantpro_ ducts. There is enoughenergyin these two signalsto warrant efforts to r€coverthat energy. Onfy the RF signal at 2072MHz can pass through the four-cavity filter. Thus, any other signal frequeniy that is applied to th€ filter (that is, signils exiting thi mixer via the RF port) is reflectedback to the mixlr by the filter. lf the cablebetweEnthe filter and the mixeris the correct length,the most slgnificantreflectedsignals (i.e., the image and th€ sum) can be returnedto the mixer in phase and convert€dinto additional€nergyat the intermediatefrequency. This technique is called "image enhancementmixing,,and typically improves conversionloss by approximately3 dB at the design frequencies. The image frequency,in this instance,is very near the RF frequency. A very sharpcut-offfilter is required to pass the RF, yet refl€ctthe image. The four_cavity filter performsthis function. 2nd LO lo Mlxer LO Input Cable. The image and sum products are also present at the LO port of the mixer. These signals leave the mixer via the cable to the 2nd LO and are reflectEdback to the mixer by the LO .The oscillatorsresonatorappears highly reflective to the image and sum signalsbecauseit is tunedto the LO frequency. Again, the length of the cable from the LO to th€ mixer LO port is adjustedso the lmage and sum signals are rEflectedback to the mixer, in the proper phase, for re-conversionto suppty additional energyat the lF frequency. 2182 MHz PHASELOCKED2nd LO (Diagrams13 and i4) The 2182 MHz phase locked2nd LO assemblycon_ tains a tunable microwaveoscillator,frequencyrefer_ ence, and phase lock circuitry. A two-sectionhousing containsthe circuitry. Microwavecircuitry is packaged within the machinedaluminumportion of the housing. Low frequency phase lock circuitry is within the mumetalcompartment, In the microwaveor LO portionof the assembly,the 2182MHz MicrostripOsciilatorg€nerates2Ig2 MHz tor the 2nd convertersand the 2nd LO internal reference circuitry. The 2200MHz Referencecircuit receivesa 100 MHz drive signal from the grd convert€r crystal oscillatorand produces100 MHz harmonics. The i2nd harmonicor 2200MHz is mixed with 21g2MHz from the microstrip oscillator in the 2Z0OMHz Reference 7-10 Mixer circuit. The differencefrequencyof 18 MHz is then fed to the phaselock side of the module. A phase/frequencydetector, on the 16-20MHz Phase Lock circuit board, compares the 18 MHz differencefrequency with a signal from a linearized varactor tuned, 18MHz voltage controlled oscillator. The det€ctor output tunes the 2182 MHz Microstrip Oscillator such that the differencefrequency exactly matchesthe frequencyof the 18 MHz referenceVCO. Sweep and tune signals from the Span Attenuator and Cent€rFrequencyControl circuitstune the 18 MHz VCO. The output voltage from the phase/frequency detector forces the Microstrip Oscillator to tune the same amount. 2182 MHz Microstrip Osciltator (Diagram 14) This oscillatorconsists of a printed 1/2 wavelength resonator driven by a common-emitt€r feedback amplifier(01021). The base of Q1021 is capacitivety tapped into the resonator. The resonatorserves as a tuned phase inv€rterand impedancetransformer,connected betweenthe base and coll€ctorof Q1021. Part ot the base feedback capacitanceis provided by a bendabletab (C'1021).This allows line adjustmentof the total feedback. This feedback RF signal is detected, by the base- emitter junction of Q1021, to produce a changein bias voltagethat is relatedto the amount of feedback. The base voltage can be monitored at TP1015 with a high impedance voltmeter without significantlydisturbingthe oscillator. The dc collectorvoltage and current for Q1021 is regulated by an activ€ feedback circuit containing transistorQ2021. Voltageat the junctionof R2023and L2023is a functionof Ql021 collectorcurrent. This voltage is sensedby Q2021,which alters the base current to Q1021 thereby regulatingthe collector current and maintaining+10 Vdc on the resonator. Decouplingand control of bias loop dynamicsare providedby C2104. Resistor R2016 swamps the negativebase resistance of Q102'l to provide stabilization. ResistorR2015protects th€ base- emitter junction of Q1021 trom exc€ssive reversebias in the eventthe +12 V supplyfails. The oscillator is tuned by varactor diode CR1028, connectedto one end of the resonator. Decouplingfor the varactoris providedby the low-passelementsin the tune fine. Bendabletab C1022can be used to fine tune the oscillatorcenterfrequency. Three output taps are coupled to the resonator through printed capacitors under the resonator. One output supplies2182MHz througha 6 dB attenuatorto the HarmonicMixer in the 829 MHz 2nd Converter.The other two output taps coupl€ LO power through 6 dB attenuatorsto bufferamplifiersQl031 and Ql0'll. The o o o o o o O a o o o a o o o o O o o o a o O o o o a o o O a a o o o o O o o o o o o o a o o o o o I o o a o I a o o a o O o o I o o O I o o o o Theory of Opera{on - amplifiers provide approximatety +10 dBm to the 2072 MHz 2nd Converterand +g dBm to the Reference Mixer. Sinc€ the two buffers are..nearlyidentical,only the 'Oain 2nd Converterbufferis described. is provicledby Q1011. printed elements provide input and ortpui imp:91199matching..Out-of-banddampingis provided by R1011in serieswith a t/4 wavelengihsnortedstub. Dc is btockedby G1014and C101t. i t1+wavetength open stub is used at the output to reflectone of the 2;d Converter'simage freguenciesat 4ZS4MHz (the other buffer does not use nor need this stub). Collector bias for Q1011is providedthrough Rtfiz; 11011, the 1/4 wavelength shorted stub. and R1011. The 114 wavetengthshorted stub is groundedthrough C2Oi1 (C2011,Cl0lg, and L1011 aie also used for decoupling). Coilectorvottageis determinedby divider R101g and R2013; this controts the dc te6dback to the collector-basejunctionof eloll. The bias networkis decouptedfrom the RF path by L1014. DiodeCR2013 protectsthe baseof el01 1 from excessivereverse bias if the +12 V supptyfails. 2200 MHz Reference Board (Diagram t4) _ Th," circuit generates harmonics of the 100MHz input. The 22nd harmonicor 2200MHz is used by the ReferenceMixer. The input 100 MHz signalls apptieO through€^matching,network lconsistiig of LiOg4, L1025, C1096, C1029, and Clb2S) to i oinerential amplifier (01024 and e2024). The €mitters of this ampfifierare ac coupled through C2026,reducinglow frequency gain and ensuring balancedoperation. A snap-ofrdiode (CR2014)is driven by the amplifier,via transforner T2015, to generate muitipteharmonicsof the 100 MHz signatinctudingthe 22ObMHz reference. The outputpassesthrougha 3 dB attenuator,for isolation, to the ReferenceMixer circuit. t , o a o I O o o o o o o I o 22A0 MHz Reference Mixer (Diagram i4) Signals from the 2200 MHz Referencecircuit are filtered by a printed 22AOMHz bandpassnner. OioOei CR1011and CR1012are the switchingelementsof a single-balanced mixer. The microstripLscillatoroutput is appliedto CR1011and through a 1/2 wavelength derayrineto cRl012. The derayrineshifti the osciilator signal 180 degrees so both diodes switch together. Mixing the 2200MHz with the osciilatorZ1g2Mfiz sig_ nal producesthe differencefrequencyof 1g MHz. This 18 MHz signatis fed througha 3Z MHz tow_pass fitter to th€ 16-20MHz phaselock circuit. The low-passfilter pley9lls llwanted products, such as 82 MHz (product of 2100MHz and 21g2MHz), from passinginto the phaselock circuit. 4g4Ll4g4ApServlce, Vol. 1 16-20 MHz Phasetock Board (Diagram 13) This board contains regulated pow€r supplies, a 16-20MHz (18 MHz nominal)voltagecontrolledoscillator with linearizing circuitry, and a phase/frequency detector circuit. lts main function is control of thi 2182 MHz Microstrip Oscillator. Th€ entire circuit board is housed in a magnetic shield to reduce spurious efiects of external ac fields. All power supply and control inputs enter thg circuit board via feedthroughcapacitors in the housing wall. All connectionswith the 1ic^loyave circu_rlryare through feedthroughcapacitors c2200 through c22a4. in the floor of the ho=using. The +15V, -lSV, and +gV supplyinputsare reregulateddown to +12V, -12V, and *5.2 V by regulators using operationalamplifiers. lC U2O2Sprbvidesa stable -6.2 V referencethat is fittered by R201g and C2015and amptifiedby U20t6B to produte the -i2V supply. fC U20168 uses emitter-foilowere2024 to increasethe current capabilityof the supply. Resistor R2013 ensures sufficient base drive, wiriie collector resistor R2025 r€duces pow€r dissipation in e2024. DiodeCR2019protectsthe base-emitterjunctionduring power supply shutdown. Feedback resistors R2016 and R2017 set the gain of U2O16Band control the -12 V, +12 V, and *5.2 V supptyvottages. -12V suppty is apptiedto invertingamptifier ..^-fE U2016A to produce the +12 V supply, and inverting amplifierU1017to producethe +S.2V suppty. The output circuitryfor the +12V and +5.2 V suppliesare similar to the -12 V suppty. Differentialampliffer V2072A accepts th6 2nd LO sweep voltages. One input sensesthe sweep voltage while the other input sensesthe groundpotentiatat the Sweep board. Sweep sensitivityis adjustedby selecting resistor R2070. fn wide spans, the sweep signal passesthrough parall€lresistorsR2AE2and R20g3. ln narrow spans, R2082 may be switched out by 02094, which reducesthe weep sensitivityby a factor of ten. Whenthe TTL signatto 02026 is high, e2076 is tumed off, R2086holds the gate of e2094 to -lS V. e2094 is turnedoff, and R2082is switchedout. This reducesthe sweep sensitivity. When the TTL signal is low, e2026 saturateswith the collector stighflyabove 0 V, O20g4 turns on, and full sweepsensitivityis restored. AmplifierU2072Bacceptsthe 2nd LO tune vottag€. the Tune board sensesthe ground potentialof the 1620 MHz Phase Lock board and floats the tune voltage. Tunesensitivityis adjustedby selectingresistorR2Ol2. The sweep and tune signals combine at the summing node input of a non-linearshapingamplifier.The non-linearityof the shapingamptifiercompensatesfor the non-lineartuning of the referenceoscillatorvaractor to give a lineartuningcharacteristicfrom 16 to 20 MHz, The shaping function is produced by a resistor-diode 7-11 Theory of Operation - 4g4ful4g4Ap Servlce, Vol. 1 afray in the feedback loop of inverting amplifier ul073A. All of the amptifier's feedback is through R1072 when the output swings to the negativelimit. As th€ output voltage swings less negative, it sequentially passes the tap-point voltages of a series of voltage dividersconnectedb€tween0 V (the summingnode at pin 12) and a negativereferences€t by e1047. lf the ot tput becomespositivewith respectto a givendivider tap, a correspondingdiode in U2059 forward biases and connectsthe output to the tap, which createsadditional feedbackthrough one leg of the divider to the summingnode. This causes R2051,then R2052,then R2053 (as so on through R20S6)to be connectedin parallel with R1072 as the amptitieroutput becomes le$s negativs. This progressivelyincreasesthe feedback,whichcausesthe gain of Ul073A to decrease. Another series of dividers connectedbetweenthe amplifier's output and a negative vottage reference. causesthe diodes in U1059to sequ€ntlaltyconduct as the output becomes more positive. ResistorsR2O6O, then R2061,then R2062 (as so on through R206S)are sequentiallyadded in parallel with the existing feedback. Soft diode turn-on characteristicsand a large numberof breakpointsresult in smooth gain changes. The nonlinearamplifier'svoltage-gaincharacteristicis controlledby the shaperreferencevoltage,which is set by R2049. Altering R2049 wiil make the breakpoints either closer together or further apart; in practice,this resistoris sel€ctedto correctthe tolerancevariationsof th€ 18 MHz VCO varactor. The fomrard drop of the shaper diodes gives Ul073A an offset voltage. Temperature correction diodes CR1086, CR1087, and CR1OBBcorrect this ofiset over a wide temperaturerange by summing a co.rectionvoltage through R1074. These diodes also compensatefor the lack of s€ries diode drop across R1072 and eliminate offsets at the summing input of Ul0738. SelectingR1070 providesfine adjustmentof the VCO's center frequency. lC U107gBis an inverting amplifierthat increasesthe shaperoutputvoltageswing to a level that can control the varactor of the 1g MHz vco. A differential amplifier with weil-defined timiting characteristicsis used for the 1g MHz VCo. Emitter degenerationis Lsed to control loop gain. Transistors 02096 and Q2087 form the differentiatpair of transistors, with the emitters coupled through C2091. Transformer T2092 provides ac feedback for the collector-basejunction of 02096 and also creates the maiorityof the resonatorinductance.The total resonator inductancemay b€ adjustedby trying differentcombinations of connections between taps on inductor Tl 091 and transformerT2092. Thesetaps allowcoarse adiustmentof the VCO centerfrequency.The capacitor of the resonatoris varactorCR1089. CapacitorC10gg 7-12 complet€s the resonator ac path and acts as a dc bloc( which allows a bias voltageto be impressedon the varactor. Resistor R2092 and capacitor C2090 damp the 02096 collector, which prevents hightrequencyinstabilityin the oscillator. TranslstorQ2087 provides a bufieredoscillatoroutput. A discrete two-stage amplifier provides an unsaturated voltage gain of approximat€ly 43 dB for thg 18MHz signal lrom the 22A0MHz ReferenceMixer board. Transistor Q1041 ls the common-emitterfirst stage while Q1042 and Q1043 form the difierential second stage. Th€ differential stage limits the output swing to 0.8 V to prev€nt over- driving the following ECL circuitry. Dc bias is malntainedby Q1041,which has dc collsctor-basefeedback via R1O46and the Rl043/R1048 vdtage divider. Transistor Q1043 receivesits base bias through R1042. Each transistor operateswith 5 mA of quiescentcurrent. ECL line receiversU2041Dand U20418amplifyand bufier the 18 MHz signalsfrom the ReferenceMixerand the VCO, respectively. These two signals are then applied to the phase/frequencydetector for comparison. A pair of ECL D-type flip-flops, U2031A and U20318, comprisethe phase/frequencydetector. The flip-flops drive a common reset lins with a wired-AND output. The clock input of u20318 is driven with the signal from the 18MHz VCO, and the clock input of U20314is drivenwith the signalfromthe 18 MHzsignal from the RefereneeMixer. Both flip-flops are configured to r€set together wheneverboth are set. lf they are clockedwith signals that exactly match in trequency and phase, then both flip-flops set simultaneouslyand then almost immediately reset. lf the R€ferenceMixer signal has a slight phase lead, U2031A will remain set longer than U20318. lf the ReferenceMixer signal has a slight phaselag, U20318will set first and remainset the longest. The signalthat has the phase lead will causethe associated flipflop to be set a grgater p€rcentag€of time than the lagging flip-flop. lf there is a frequency differencebetweenthe two inputs,the flip-flopwith th€ higherinput frequencywill be set more of the time than the other flip-flop, The ratio betweenthe filtered output signalsof the two flip-flopsindicateswhetherthe Reference Mixer signal leads, lags; or differs in frequency from the 18 MHz VCOsignal. The outputs of the flip-flops are low-pass filteredby Cl031 and C1028 and applied to differentialamplifier U1031. U1031 comparesthe outputs of the flip-flops and producesan output that controlsthe tuningof the 2182MHz microstrip oscillator. The phase-lockloop bandwidthis controlledby R1026,C1029,Rl027, and C1026. The gain slope breaks to -l2dB/octave for frequenciesbetow16 kHz. ResistorsR1033and R1034 o o o a I o o a o a o a o o o o o o o o a o o a o o O o a t a o o o O o o O o o o o o O o a o a O o o I a o t I o o o o a o O a o o O o a o o o o o t a I a O a o o o I o o o o Theory of Operation - 4g4[l4g4Ap Servtce,Vot. 1 divideand offset lhe output of U1031so the tune voltage rangesbetween0 and -12.5 V. The outputof divid-erRl0gg/R1Og4is apptied to varactorof the 2192MHz microstriposcillaior(2nd the LO). This closes the phase-locktoop, tuning if," ZnO LO so !l"l-j! 9t9JrVtracksthe IB'MHZvto. when the 18 MHz VCO is tuned, Ul0gt simuttaneousty tun€s the microstriposcillatoran equal amount. Withinthe toop bandwidth,the 2nd LO performanceis OeiermineO Uy the 18 MHz VCO instead of the microstriposciilator, giving a significantimprwement in frequency stabitity and reductionof phasenoise. SERIES RESONATOR fo : 829 MHz SERIES RESONATORlo = 829 MHz 500 OUTPUT PARALLEL 829 MHz 2nd CONVERTER (Diagrams15 and 16) RESONATORfo : 829 MHz 44.t695 Flgure7-3. Stmpllfieddlplexerdiagram. The 829 MHz 2nd ConvErterassembty(A23) downconvertsthe lst Converterband 2-4 g2g irtHz lF signal to 110 MHz to drive the 3rd Gonverter.lt also provides the switchingto select either the 2Ot2 MAz 2nd Converteror the 829 MHz 2nd Converter. The lF circuits in the signal path are shown on diagram 16, tF Section. The local oscillatorcircuits are sh-ownon diagram 15, LO Section. lF Section (Diagram 16) The 829 MHz lF circuitsincludean inputdiplexer,an amplifier, a band-pass filter, a mixer, and a diode switch. 829 MHz Diptexer_.The 829 MHz Diptexer(A23A4) passes signats at 929 MHz with approximateiy f Ofi rninimumattenuationand 200 MHz' pass-band. Frequencies outside the pass-band but betvyeen about 50 kHz to 2 GHz are terminatedin 50O loads with a matchof at least 10 dB. Figure Z-3 shows a simplified schematicof the diplexer. At 829 MHz, the series resonatorsprovide a low irnpedancepath from input to output. fnl inputis from the 1st Converterthrough low_passfilter FL.l5 and P231. Signal loss across the SOO resistors is insignificantbecauseof the low impedancepatharound these r€sistors. The paraltetresonantcircu'ltto ground appearsas an open circuitat 929 MHz. At frequenciesabove or below the pass-band,the s.eries. r€sonatorsapp€ar as large reaciances,shifting the primarysignalflow throughthe 50O r€sistors. The out-of-bandimpedanceof the parallelresonantcircuitis now small comparedto S0O. Thus, the 50O resistors are.essentiallygroundedat their junction,terminating boththe inputand outputports of the diplexer. A wide bandwidthis used to minimiz€loss in the resonant circuits and eliminateadjustments. Relative bandwidthsof the series and parailelresonantcircuits are optimizedto providereasonablematchat the band edgEs. As shown in the schematicdiagram,the diplexer contains componentsnot shown in Figure 7-3. The 50o terminationsare actuallytwo pairsbt i00O resis_ tors, Rl014-R1015and Ri011-Ri0t2, connect€din parallel to reduce load inductance. Small capacitors, C1010 and C1013,are connectedacross each load to improve impedance match at frequenciesabove the pass-band. The inductor in the parallelresonatoris a printed l€ngth of transmissionline that is tapped to establishthe correct bandwidth. one end of this inductor is groundedthrough four capacitorsso that dc bias from the lst Local OscillatorDrivercan be introduced to the lst Mixer (A12) or the EXTERNALMIXERinput through this diplexer. Severatcapacitorsare used in paraflelto minimizeinductanceand circuit e degradation. A low-pass filter is includedin the bias line to minimizeany noise from the 1st LO driver. The diplexerdrivesthe 829 MHz Amptifierthrougha 1.2GHz Low-PassFilter that consistsof three shunt capacitorsand two series inductors. Cutoff frequency for this filteris 1.2 GHz. 829 MHz Amplitier. The 829 MHz Amptifier (A2SA5) provides about 18 dB of signal gain at g2g MHz. The amplifier consists of two similar cascaded amplifler stages, Q1017 and Q1025, and a 3 dB pad. The overall noise figure is approximately 2.8 dB. The gain stages are stable amplifiers that are designed for use in a 50 ohm system. 7-13 o Theory of Operaton - 494A/4g4ApService, Vol. 1 Since the amplifiersare nearlyidentical,the following descriptionapplies to both amptifiers.The ac and dc signalpathsare treatedseparat€ly. Figures74 and 7-5 are simplifieddiagrams of the ac and dc signal paths. + 1 2V = 'PRINTED COMPONENT Figure 7-4. Equivalent ac circuit of an B2g MH: amptifier. f n th€ ac circuit(Figure7-41,C1,L1, and L2 form the input matchingnetwork. (tn the first stag€, L1 is actually the series inductance of dc-blocking capacitor cl016 at the input of the amplifier.)The coilectorcircuit is matchedto 50o by L4 and c2. To a large extent,L3 controlsthe gain of the stage. High frequencystability is enhancedby Rl and R2. In the dc circuit (Figure 7-5), negative feedback through the voltage divider, consistingof RO and R4, sets the collectorvoltage as a fixed proportionof the -12 V reference supply. Collector current is determined by R5. Current requirementsfor the first stage are less than the requirementsfor the second because the first stage requires less intermodulationdistortion performance. Diode clamps are provided for each amplifier (CR1013 and CR1022 at the bases of the amplifiersin the actual circuits)to protectthe transistor againstreversebreakdownof the base-emitterjunction in casethe +12 V supptyfaits. In the actual amplifiers(not shown in Figures 7-4 and 7-5)Ll 014 and Cl 014 at the baseof e1 017, Cl 0.tg at the collectorof Q1017,L1021and Cl023 at the base of Q'1025,and Cl013 at the collectorof Q1017decouple the signalpath from the bias network. The 3 dB pad (R1026,R1027,R102B,and R1029) helpsmaintaina wide-band50O interfacebetweenthe second amplifierstage and the 829 MHz Bandpass Filteron the 829 MHz 2nd Converterboard. Test point J1029 at the outputport of the 3 dB pac, is used for checkingamplifierperformanceand to aid in adjustrnentof the 929 MHz band-passlilter on the 829 MHz 2nd Converterboard (A2347). 7-14 2?27-1A6A Figure7-5. Equivalent dc circultot an 829MHzamplifiee 829 MHz 2nd Converter. Down-conversionlrom 829 MHz to 110 MHz lF occurs on the 829 MHz 2nd Converter board (A23A7). The board contains a 829MHz Band-PassFilter,a 1.3 GHz Low-PassFilter, a 3 dB pad, a 450 MHz High-PassFilter, a singlebalancedmixer,and a 300 MHz Low-PassFilter. The 829 MHz Band-Pass Filter blocks unwanted inputs,primarilythe 609 MHz image signal. lt consists of four, quarter-wave,coaxial type resonators,mounted on the 829 MHz 2nd Converterboard. The end resonators are tapped near their grounded end to facilitate input and output couplingof the filter. lnter-resonator coupling is provided by printed "through-the-board" capacitorsthat connectb€tweenthe resonatorsat their high impedanceend. A bendabletab is locatedat the high impedanceend of each resonatorfor fine adjustment of resonantfrequency. The bendabletab acts as a small, variable capacitor to ground, making fine adjustments of resonant frequency possible. When properlytuned, the filter presents at least 12 dB input returnloss and about2 dB insertionloss at 829 MHz. The 1.3 GHz Low-PassFilter blockshigh trequency signals that would otherwasebe admitted at the re' entrant frequencies of the band pass in excess of 2 GHz. The functionof the 1.3 GHz Low-PassFilteris sharedby the 1.2 GHz Low-PassFilter on the 829 MHz Diplexerboard. o o o O a o a o a o a o o o o o o o o a o o o a o o o t o o o O o O o o o o a a o o o o a o a o o O I I a a t o O a o o o t a o a O a a o o o t o O o t o o a o a o o o o o o Theory of Operation- _ The 3 dB pad helps ensurea consistent5Oo interface for the 829 MHz Band-passFilter. . T!" 450 MHz High-passFilter btocks the tower lF signalsgeneratedwithinthe mixer. . The mixer generates several intermodulationproducts of the 829MHzRF and 71g MHz LO signats. The mixer diodes are transformerdriven Oy a targe amplitucre{+12dBm) 719 MHz signartrom t'he rocit osciitator. .This large signal driveJ the diodei in and out of conduction,switchinglhe.loweramplitudeg29 MHz sig_ nal on and off at a 71g MHz rate, to generate the mixer producJ:: Onty the differencetrequeicy of 110 MHz is passedthroughthe A00MHz Low-pasj filter. The sum product of 1548MHz, is reflectedback to th€ mixer by the 829 MHz Band-passFilter, in-phasewith LO harmonics,to increasethe energyof ine 110 MHz signal. A..printedde-layline, Uetweenitre S2gMHz Band_pass Filter and 1.3 GHz Low-passFilters, the phase delay, The net rssult of this ,'image "ontrot" enhancem€nt,, is low conversionloss and good intJr-modulation distortion performance. The O dB pad reduces the image enhancementeffect and permitsthe use of non-critical line lengthsand filter characteristics. Overallconversion loss,from 829 MHzto 1.10MHz,is aboutg.5dB, including 2 dB from the 929 MHz Band-passFitterand g dB from the attenuator. 4g4[l4g4Ap SeMce, Vot. 1 829 MHz 2nd Converter. Becausethe 7l g MHz LO is also turned off by the state of the lF sELECTline,isola_ tion for the 829 MHz 2nd Converteris nol critical wlien the converteris inactive. The switchand amplifierlogic is summarizedin TableZ-2. Tabte Z-2 SWITCHAND AMPLIFIERSELECTION lF Select Llne Serles Swltch Shunt Ampllfier 1 1 0M H z lF Source High On otr 829 MHz 2nd Conv. Low otr On 2O72MHz2nd Conv. The diodes are used as the basic switch el€ments. They present only a few ohms of series resistanceto RF signalswhen fonrvardbiased,with currentof several milliamps. When reverse biased, the diodEs present €s_sentially an open circuit. The control signal from 02015 is connectedin a series path through the four diodes (CR2011,CR2012,CR201g,anO CAtOtSl anC inductorsL2011,L2019,and L2019. Thus,only a small currentis requiredto fonarardbias all four diodes. This bias currentis also used to turn off el01 1. 110 MHz lF Select The 110 MHz lF Selectcircuit {1?3161selects the 110 MHz tF signat from eitherthe 829 MHz 2nd Converteror the 2OlZ-UAz2ndConverter for transmission to the 110MHz tF Amptifier. DiodesCR2012and CR2013are incorporat€dinto a pi+!pj_matching network,consistingof L2011, L2O1O, and C2012. Thereforeboth switchesshuntthe signalat moderatelyhigh impedancepoints. In addition,when the switch diodes are turned on, parallel resonance between L2011 and CzAl2 presentsvirtuallyan open circuit to signals passed by switch CR2O11. Switch diode CR2013is tocated at th€ high impedancenode created by the series resonanceof L2019and C2017. DiodeCRl015direcilyshuntsthe outputfrom el01 l. The 110 MHz tF signatfrom the 929 MHz 2nd Con_ y919r-boa( is apptieddirecflyto thE selectcircuit. The 1'f0 MHz lF signalfrom the iaZZu{z Convert€rboard is appliedto the selectcircuitvia p233 and a controiled amplifier(Ot012/Oi011). Switchingbetweenthe two lgft:_ is done by CR2011,CRtOt2, CR2013,and cR1015. Transistor Q1011 operates as a common-ernitter ampfifierfor the 110 MHz tF signatfrom the 20Z2MHz 2nd Converter. lts gain and impedancematch are controlledby feedbackresistorsR101i and Rl012. Resistors R1013and R1018attenuatethe output by approximately 6 dB for enhancedcontrol of impedancematch and stabilitycharacteristics. DiodeCR2011is turnedon whenthe tF SELECTline to the 110MHz lF SElect is low. Thls steers the 110 MHz lF signal,from the g29 MHz 2nd Converter 1119:-to the_outputport. At the same time CR2012, CR2013,and CR't01Sturn on and el011 turn off to isolalg_theoutput port from any spurioussignalsfrom the 2072 MHz 2nd Converter. Transistor Q1012 maintainsa constant dc current through01011. Dc Coilectorcurrentfor 01011is set at approximately15 mA. Collectorcurrent from e1011 developsa voltageacross Rl017. Transistorel012 then comparesthis voltagewith the fixed voltageof the voltagedivider,Rl015 and R1016.Any variationin the collector current of Ql 011 is sensed by e1012, and ofiset by a resultant change in the base curent of Q1011 The 300 MHz Low-pass Filter btocks LO, RF, and higherfrequencyproducts. Whenthe lF SELECTtinegoes high,etOtl turnson and CR2012,CR201g,and CBl01Stirn otr to ailowthe 110 MHz lF signal,from the 2O72MHz2nd Converter, to be apptiedto the output port. Seriesdiode CR2011 also turns off to prevent signal loss into th€ inactive When th€ control current from e2015 (throughthe switchingdiodes)developsa voltageacross Rl017 that exceeds the control limits of 01 012, it effectively removes the base-bias from e101i and turns el 01I 7-15 Theory of Opera$on- t t 4944/4g4Ap Servtce,Vol. I off. Negativecurrent.suppliedthroughRl014, €nsures that Q1011 is turned off. Diode CRt011 protects the base of 01011 from excessivereversebias. Voltage across R1017 is approximately 9.4 V when e1011 ls turned on and approximately4.4V when it is off. Overall gain is approximately 12.9dB when the amplilieris turnedon. The 110 MHz lF signalis transmittedvia p2g2 to the 110 MHz lF Amplifiershownon diagram17. LO Section (Diagram'15) The 829 MHz 2nd Converter LO generates the 719 MHz frequencythat is mixed with the 929 MHz tF to produceth€ 110MHz lF signat. ln the following description,the circuitsare referredto as the 71g MHz LO. The 719MHz LO consistsof a phaselock loop, a 719 MHz outputcircuit,and a 2nd LO front paneloutput circuit. PHASE/FREOUENCY DETECTOR Phase Lock Circult The phaselock circuitreceives referencefrequencyinputs and uses phase/frequency detectiontechniquesto use those signals in controlling the outputfrequencyof the 719 MHz oscillator. The circuit consists of a voltage controlled oscillator (VCO),a phase/ frequencydetector,a harmonicmixer, and various amplificationstag€sand power splitters. Whenthe 719 MHz LO is enabled,the 2182MHz LO output fr€quency is used as a swept r€f€rence to d€rive the 719 MHz frequency. The VCO is controlled so that the third harmonic of its output frequency is a constant differencefrom the 2182MHz reference.This control is accomplishedby the phase lock loop. Refer to Figure 7-6 for a simplifiedblockdiagram. In the phase lock loop, the harmonic mixer generates a frequencythat is the difierencebetweenthe swept 2182 MHz input referenceand the third harmonic of the VGO output frequency. ldeally,this differenceis 25 MH4 which in tum. is compared with the 25 MHz that is divideddown from the 100 MHz oscillatoroutput supplied from the 3rd Converter. This comparisonis done by the phase/frequencydet€ctorwhose outputis a correctionvoltage that drives the VCO and shiftsthe oscillatorfrequencyin the directionto hold the nominal output frequencyat 719 MHz. This completesthe loop that causesthe vco to track the 2182 MHz reference. COMPENSATION AMPLIFIER OSCILLATOR 25 MHz DIFFERENCE FREOUENCY 829 MHz HARMONIC MIXER Figure7$. Block diagramof the phasetock loop in the 829 MHe2nd Converter. 7-16 o a o o a I o o o o o o O O o o o O o o o o o o o o a a a o o o I o o o o o a O a o o a o I o I t t o o I t o o o o o t o a o o o O a o o o t a o a t o a o I o a o o a o o Theory of Operation- Becausethe grd harmonicof 719 MHz is locked to the 2182MHz reference, the tuning range ot tne 719 MHz osciilatoris onty one third oithe tuning range of the reference.Since.th:rgnge is 4 MHz, ttre ringe-ot ' the 719MHzosciilatoris 71g Jt.gg trlnz. The 719 MHz VCO (O20i4) uses a Cotpitts configuration,with a printed circuit quarter-wavelength transmissionline resonator,to achieve high specir"t purity and good thermatstability. Correction voliageis appliedto varactorctiodeCRldlt (which is connected at the midpointof the transmissionline resonator) to vary ths r€sonantfrequencyof the transmissionjine ov€r a 1.5 MHz range. A tunabletransmissionline(atso printed)adjacentto the printedresonatorcompensates for variationsin componenttolerancesand resonator dimensions-This adjustabletransmissionline is cut, at factory calibration,to the correct length for proper VGO operation.A scale with minor divisions everyiMHz is printednext to th€ adjustabreline to aid in caribration. The outputfrom the oscillatoris extract€dnearone end of the quarter-wavelengthline through two printed inductorsand applied to output amplitiersthrough a powersplitter. The 719MHz VCO is enabtedor disabted,under microprocessorcontrol,dependentupon the frequency band.beinganatyzed,by the tF SELECTline. Whenthis lin€ is low, e2017 is cut off, which turns e2016 otr. This, in turn, cuts off transistor e8015 (which is the current source for oscillator transistor e20t+;, tnus disablingthe 719 MHz oscillator. From the oscillator,the *6 dBm 719 MHz output signalis applied,throu-gha power divider consistingof resistors Rl021, Rl022, and Rl02O, to tsolation amplifierQ1021. From the other side of this power 9iut9gr,the signat is apptied to an output amptifier (02021)for transmissionto the 929 MHz 2nd Converter Mixer circuit. A second isolation amplifier (OgO21), in configuration, providesisotationbetweenthe Il.e^n!i911 719 MHz oscillatoroutput and any undesiredHarmonic Mixer products. The 829 MHz HarmonicMixer producesnot only the required 25MHz differencefrequency,but also many higher order intermodulationproOucts. Two of these frequencies,744 MHz and 6g4 MHz, are 25 MHz from the 719 MHz oscillator frequency. The isolation amplifiers,01021 and e3021, provid6sufficientattenua_ tion in the reversedirectionto preventthese products from gettinginto the 829 MHz mixer to produie spuri_ ous signals. To provide maximum reverse attenuationin each amplifier circuit, external RF feedback is kept to a m,inimum.An output matchingLC network, consisting of capacitorC1025plus a printedinductorfor e1021, and capacitorC3021plus a printedinductorfor e3021, presentsan optimumload impedanceto the collectorof 4g4ful4g4ApServlce,Vol. 1 each transistorto allow maximumpowertransferto the attenuatorthat precedesthe harmonicmixer. An input LC matching network consisting of capacitors Ct0'23, 919?,plus a printedinductorfor al02i and capacitors C3023, CgA22,ptus a printed inductor for e302i, estab_ lishesthe 50 ohm inputimpedanceto each transistor. A 3 dB attenuatorconsisting of resistors R3021, R3022, R2021, and R3023, at the output of isoiation amplifier Q3021, provides a non- rehective source impedanceto the mixer. Withoutthe attenuator.mixer conversionloss couldvary from unitto unit. The 829 MHz HarmonicMixer, consisting of diode CR2021, inductor L2A14, and a half-wavelength(at 2182 MHzl transrnissionline, produces thE difference frequencybetweenthe third harmonicof the 719 MHz 9:9,11?tolfrequency (nominalty 2157MHz) and the 2182 MHz reference frequency. Note that the 2182MHz sfgnal is supplied trom tfre 21g2MHz 2nd Local Oscillatorthroughcoaxialconnectorp237 and the power divider, consistingof resistors R1021, R1029, and R1022.to a 112wavelengthtransmissionline. The VCO input to the mixer switchEsdiode CR2021at a 719 MHz rate, The 2182MHz referenceacts as the RF and is appliedto the diode from the transmissionline. The resultant 25 MHz int€rmediate frequency is diplexedfrom the mixer throughth€ 1OOMHz tow-pass filter consistingof capacitorC3014and inductorL{jfi4. (DiodeCR2021is mountedon printedcircuit boardcut_ outs to relieve any nec€ssity of bending the diode leads. Lead bending may fracture the diode case.) fnductorL2014providesa bias return path to allowthe diodeto switchat a 719 MHz rate. From the 829 MHz Harmonic Mixer, the signal is appliedthroughthe above mentionedlow-passfilter to cascaded amplifiers Ul053 and Ui0448. These amplifiersboost the €2 dBm mixer output signalto a level appropriateto drive the phase/frequencydetector. lC amplifier(U1053)containstwo differentialamplifiers in cascade; amplifier lC U1044 contains only one differentialamplifierand acts as a bufier. When the loop is first acquiringlock, such as at power-on,the nominal25 MHz lF may be as high as 34 MHz. Two stages of amplificationare necessaryto ensureenough gain tor the phase/frequencydetector to drive the lF back to 25 MHz; the bufferis necessaryto provideECL levelsto the detector. The secondinputto ths phase/frequency detectoris the 100 MHz signal,from the referenceoscillatorin the 3rd Converter,via two amptifierstag€s, U1022Aand U10228, and a divide-by-fourcircuit, U1036A and U10368. The 100MHz signat is divided down to a 25 MHz reference for application to the phase/frequencydetector. Two stagesof amplification are used to isolatethe 100 MHz referencebus from signals generatedin the local oscillatorsectionof the 2nd Converter. This stable25 MHz referencesignalis used 7-17 o Theory of Operaton - to lock the difference trequency from th€ Harmonic Mixer to 25 MHz. The phase/frequencydetector output is a voltage that is proportionalto the phase difierencebetweenthe 25 MHz refer€nceand the lF signal from the g29 MHz HarmonicMixer. This correctionvoltageis thenapplied to the 719 MHz VCO to lock it to the reference. The detector circuit consists of two D-typeflip-flops, U2U7A and U2047B, and a differentiatariiptifiei stage used as a NAND-gate(U1044A).The 25 MHz referenie signal, from the frequency divider, is apptied to the cfock input of flip-flopU204tA; the nominat25 MHz signal from the 829 MHz HarmonicMixer is appliedto the clock input of flip-flop V204ZB. The rising €dg€ of the input signalto each flip-flopcausesthe e(bar) outputs to return to the low level only after both flip-flopshave been clocked. lf the frequencyout of the g2g MHz HarmonicMixer is below 25 MHz, or if its phase lags that of the 25 MHz reference, the Q(bar) output of ftip-flop U2047Awitl remain high longer than the a (ba0 outputot u20478. lf the frequencyout of the HarmonicMixer is above 25 MHz, or if its phase leads, the oppositewill occur. When the two flip-flops are clocked at the same frequency and phase, the two outputs will be high for the sam€ amountof time. The e(bar) outputsare applied to a compensationor differentialamplifierU3059,that determineswhich outputis high for the longertime. CompensationamplifierUg05gprovidespart of the loop gain to ensure that the 719 MHz oscillatorwill track the sweep of the 2192 MHz referenceoscillator. The compensation amplifier also limits the loop bandwidthto 100 kHz to make certainthat the loop wilf not oscillate. Note the differentialinputsto the amplifier each include a low-pass RC filter to attenuatethe undesired high frequency clock pulses from the phase/frequency detector. 7-18 o o 4g4A/4g4ApService, Vol. 1 The nominal swing of the U3053 output is from +12V to -12V. Since the compensationamptifieris capable of considerablymore output than is neededto control the oscillator,a voltage divider is used to limit the outputand reduceamplifierrelatednoise. This voltage divider, consisting of resistors R2053, R2054, R3051,and R3052,reducesthe possible*12V swing to +5 V to +12 V, as reguired by varactor diode CR1011.Nominalvoltageswing in a lockedconditionis +6.75 to +7.5 V. Thus, dependent upon whether the HarmonicMixer frequencyis above or below 25 MHz, the correctionvoltageswing, appliedto diode CR1011, is more than nominalto correct the oscillator frequency. 2nd Local Oscillator Oupuf Circult A portion of each 2nd LO output signal is sent to the front panel 2nd LO OUT connector. This output provides signal for externalaccessoryequipment,such as a trackinggenerator. Each local oseillator(719MHz and 2182 MHz) output is applied through power dividers to a power combinerfor applicationto th€ 2nd LO OUT connector. The 719 MHz oscillatorfrequencyis appliedfrom a power splitter(R3027,R3028,R3029)through a 1 GHz fow-passfilter (C3025,C2024,C1023.C1021, and three printed inductors),to the power combiner (R2024, R2025, R2026),and the front panel 2nd LO OUTPUT. The 2182MHz oscillator signal is applied through a power splitter(R1021,R1022,R1023),a 2.2 GHz bandpass filter (consistingof coupled1/4 wavelengthprinted lines) to the power divider (R2024,R2025, R2026)and the front panel2nd LO OUTPUT. Both 2nd local oscillatorsignals, 2182MHz and 719MHz, are present at the front panel when the 829 MHz 2nd Converteris selected. 719 MHz Output Clrcult The 719 MHz 2nd Local Oscillatorsignal is applied is applied through divider resistors R2021, R2023, and R2A24 to isolation amplilier Q2021. 02021 boosts th€ signal level from about 0 dBm to +12 dBm to drive the 829 MHz mixer. The output of the amplifierincludesa 3 dB attenuator (consistingof resistors R2027,R2028,and R2029),to ensur€ a 50 ohms non-r€flectivesource impedance. The signallevelat test point J2026is typically-6 dBm. o t a t a o a o I o o o O o o o o a a o o o o o O t , a O o o o o a a o o a o o o o o o t o o o I o O o I o o a o o a t o o o o o o o a o I o I o t o o o o I o o I o t a Theory of Operation_ 4g4Al4g4ApService, Vol. 1 3RD CONVERTER (Diagram4) The 1t0MHz tF Amptifier(A32)and 3rd Converter (A34) down converts the ttO MHz ouiput signat from the 2nd Converterto 10 MHz for the VariaUieResolution circuits. A 100 MHz crystat controlledoscillator provides.thethird LO signal.This oscillatoris phase locked to either a precise internal10MHz reference or an external1, Z, 5, or 10 MHz reference.The 100 MHz LO signaris appliedto the mixer and is oistriouteo through output amplifiersto many other circuitsthroughout t6e instrumentas a referencesignal. The 100 MFz signal and its harmonicsare also availablefor external use at the front-panelCAL OUT connectorfor irequency anO 100 MHz amplitudecalibration. The 110 MHz signal is amplifiedin a three_stage . gain btockand apptiedthrougha band_paisfitter and a low-passfitter. From the toiv_passfil6r, the signal is appliedto the converter,which consistsof a mixer, an oscillator,and variousoutputamplifiers. 110 MHz tF AMpLtFtER(Diagram17) -lnitial gain for the analyzer is provided by the 110 MHz lF Amplifier. Thi; gain compensates for conversionlosses in the thre€ mixers. Typicalgain for the amptifieris 2t dB. The amplifie, of three stagesof amplificationand an attenuator. "onjirts The first two mixers in the RF syst€m ofier no high_frequency gain; therefore,it is importantthat this ariptifiei exhibit low noise characteristics. lt must atso be relatively free from third-orderintermodulation distortion. . Signalinput is appliedthroughan impedancernatching b.and-pass fitter(L2044anOCSZS) to'a paraileltuned circuit. The signal is injectedinto the paraltet-tuned cir_ cuit through a tap in the inductorand taken out at the high impedanceside through variablecapacitorf;2A47. Inductive input provides for to high impedancewithin the tuned circuit; "onu"riion the extra capacltor on the output providesfor conversionback to 50 ohms pr'.m."ry.tuning capacitor, C325, adjusts l.Iil_"]:_I!: tn€ resonant point; the output capacitor, C20C7,is adjust€din combinationwith bSZSt6r good impedance match at 110MHz. This is done wiih a return loss bridge. The nominalreturnloss is 35 dB. The e of the input filter is approximately20. - From the input fitter,the signatis appliedto e4053, which is the first stage of impliRcaiion. This is a broad-bandfeedback amplifier to provide good input and output impedanceand controliedgain. All feed919! is through reactive componenti (transformer T3054),not resistivecornponents.Thus,the impedance and gain can be controlled without significantnoise problems. The second amplifierstage, e40g7, is essentially .. the same as the first, with oniy minor bias differences. Gain through each of these itages is approximately 9 dB. The output is appliedthrough a 3 dB attenuator, to..preservethe impedancefigure, to the bridged .T; adjustableattenuator. The 3 dB attenuatorconsistsof resistorsR2039,R2038,and R2043. From the 3 dB attenuator,the signal is capacitively goupled through C2Ogl to the aOyustabte attenuator. This attenuator uses two ptN diodes, CR3030 and CR1029,in the mode when the resistanceto RF signal by the current through the diodes. lolv is c_ontrolled Refer to Figure T-7 to aid in understandirigtt e foflowing description. ff resistorR1 in Figure7-T were set to infiniteresis_ tance and resistor R2 were set to zero resistance,the RF signalpath would be throughR2 to ground,to produce infinitesignal attenuation.lf resistor Rl were set to zero resistanceand resistor R2 were set to infinite resistance,the RF signalpath would be throughRl to th€ load, to producealmostno attenuation.This, basically,is.how the adjustableattenuatoroperates,except that resistors R1 and RZ are actually plN diodes and the RF path resistancethrough theie diodes is controlled by the current throughthe diodes in an inverse proportion(higher current results in less resistanceto RF). Figute 7-7. Bridged 'T' attenuator equlvalent clrcuit Resistors R3035 and R20gO on the detail€d schematic diagram establish a constant current of approximately 2 mA from the 15 V supplyto the diodes. This current is dividedaccordingto the bias on the diodes. The bias, in turn,is establishedby gainadjustmentR1015,fromthe +15 V suppty.lf Rl015is set low (nearground),diode CR30g0is reversebiasedand the 2 mA flows through diode CR1029. This routesthe RF signafthrough resistors R2092and R3029and capaci_ tor C2029, with the impedance characteristicsof 7-19 o Theory of Operaton - 494A/4gdApService, Vot. 1 CRl029 addedfor maximumattenuation. lf Rl01 5 is set higher(nearer+i 5 V), diodeCR3030 is forward biased and starts to conduct. Since the 2 mA supply current is relativelyconstant,this subtracts from the currentthroughCRl02g. Thus,the impedance of the diodes is relativelyconstant,which resultsin a good impedance match over a broad range. The RF signal path is determined by the exact amount of curent through CR3030;part of the RF signal path is through CR3030 to th€ output amptifier ind part is through R2032 and diode CRlO2g to ground. This resultsin reducedsignalattenuation. lf R1015is set to the positivetimit,the entire2 mA flows through CR3030. This routes the RF signal through CR3030 (which exhibits titil€ resistance with high current) to the output amplifier with almost no att€nuation.Cl-heinsertionloss is approximatelyI dB.) _Fromthe adiustableattenuator,the signalis applied to the linal amplifier09018. This stage ts a broad'-6and feedback amplifier that supplies relativelysubstantial outputcurrentand exhibitsgood intermodulation distor_ tion performance.This is providedprimarilythroughthe large curr^ent .capacity,by negativefeedbackthiough resistorR3014,and emitterdegenerationthroughreslstor R4029. These resistorsare sized to providea r€asonablygood impedancematch at 110 MHz. Nominal gainof the stageis 13 dB. With Gain potentiomet€rRi0i5 set for maximum gain (least attenuation), the gain of the 110MHz tF Amplifieris approximatety 26dB to 27d8. R.t01Sis normallyadjustedfor total gain of 21 dB. Th€ outputsignalfrom the 110 MHz tF Amplifieris appliedthroughthe 110 MHz band-passfitter FL36and low-passfilter FL37to the 3rd Converter. 110 MHz FTLTERS (Diagram17) The 110 MHz band-passfitter (FLg6)determin€sthe widest resolutionbandwidthof the analyzer,provides i-I1g-g-rejection to prevent the mixer fiom producing 10 MHz outputsfrom input signalsof 90 MHz, and also limitsthe noise spectrumthat appearsat th€ 1OMHz lF circuits. The low-passfilter (FL3Z)that follows turther reducesharmonicsand spurs from the 2nd Converters. Both filters are sealedunitswith no internalservicing. The band-passfilter consistsof four helicalresonators that are tuned with multi-turntrimmer capacitors. For purposesof impedancematching,the fittei is sym_ metrical. 7-20 Adjustment of the filter for minimurnattenuationis performedby setting the trimmer capacitors. Insertion loss is approximately4 dB to 4.5 dB. From this filter. the 110 MHz signal is appliedto the separatelow-pass filter. There is no adjustment for the low-pass filter. The signalthen feedsthe 3rd Converterboard. 3rd CONVERTER(Diagram17) The 3rd Gonverterconsists of a 100 MHz crystat oscillatorand a mixer. lt outputsth€ 3rd lF of 10 MHz, for the Variable Resolution (VR) circuits, and a stable 100 MHz referencefor other circuits within th€ instrument. 100 MHz Oscillator A Colpitts oscillator is formed by Q2038, yg03g, L1041, C1038, and related compon€nts. Y3038 is a 100 MHz crystal that op€rates in a series resonant mode in the fEedbackloop of the oscillator.The oscillator output couples through C2042 to differential amplitier 4204402441. The two separateoutputs of approximately2V peak-to-peakamplitudego to three hybrids(mixer U3051,distributionamplifierU30il1.and cafibratorU2022)on the 3rd Converterboard. lnductor L3041, varactor diode CR3039,and crystal Y3038 form a series resonator that tunes th€ oscillator approximately*1 kHz. The RPL VOLTS TUNE tine varies from 0V to +12V, changingCR3039'scapacL tanceto phaselock the oscillatorto the ReferenceLock source. RPL GND is tied to ground in the Reference Lock module. Mixer At mixEr U3051, 100 MHz enters on pin 2 and is amplifiedto drive a ring diode mixer. 110 MHz enters on pin 10 and is mixed with the 100 MHz to yield mixing products at 10 MHz and 90 MHz. The 1OMHz signal pass€sthrougha low-passfilter and is sent to the Variable Resolution Input circuat, while the unwanted 90 MHz signalis terminatedwithinthe mixer, Distribution Amplilier U3031 distributes a 100 MHz signal to other modulesin the instrument. The input level on pin 2 is typically 2 V peak-to-peak,while the output level is 0 dBm into a 50 ohm load. o o o o o a o o t o a o o O o a a o o o a o o o o o o t o a o a o I o o a o o o o o o a o o I o I o I o o o I o o o O a a o o o O o o o o a o I o a o I a O o o o a o I a I a Theory of Operation - Calibrator u2022 and relatedcomponentsregulat€a 100 MHz signatto -20dBm for the front-panetill bUf connec_ tor. VRI 0S1 serves as an aecurate6.2 V reference, which is dividedto approximately1.e V anOapplied to pin 6 of U2022. The exact tevetii set by R1041the Cal Leveladjustmsnt. The 100MHz signal_enters pin 1 and passes through a pin diode variableattenuator. The signal is th€n amptifiedand passed througha low-pass fitter to removeany harmonics. The signalthen enters a peak detector-and comparator wnere the peak amplitude of the 100 MHz signalis comparedto the 1.2 V reference pin on 6. An operationalamplifier then adiusts the att€nuationlevelof the pin dlodeto maintaina constant signatlevel. The outqq of this operationaiampliRer can be measured on Tp301l. A small of the fortion 1^0-0 MHz signal is attenuated tnrou'gh RzO.ll to -20dBm. R1021and R1022suppfy Uia-s-current p€ak detector circuits. fne vottale on pins to the 7 and g shouldtypicailybe +5 V. c2023, C2011, and related componentsform a high-passfilter to allow harmonicsof iOOMn. to pass throughto the front panet. The nna resuttis a calibrator signal rich in harmonicswith an accurate100 MHz amplitude. In Option0Z instrum€nts,the CAL OUT signalgoes a set of-relayswitches. tn 50O moOe,the out_ thr:ugh put goes straight to the CAL OUT connector. In the 750.mode, the outputis routed througha 50O_to-ZsO matchingpad and the output is +ZOOg-mV. REFERENCE LOCK(DiagramS0) The ReferenceLock module (A36) consists of a '(A3erc), 10 MHz crystat osciilator reference ".tlblg detector, frequency phaie/frequency .synchronizer, detector,and tune window detector. Eittrertne internal 10 MHz referenceor an external1,2,5,or 10 MHz reference frequencyis routedthroughthe referencedetector 1o-^tlg-frequencysynchronizer. The local oscillator,s 100 MHz output is divided by 100 and apptiedto one inp.ut a pha.se/frequency dbtectorwtrich'tomparesit -of with the i MHz reference frequency. Th€ resultant error signal is amplified by the tune amplifier and applied, as a correctivevoltage, to the voltage con_ trolled3rd LO. 4g4Ll4g4ApService,Vot. 1 External Reference Detector _ Buffer amplilier02014 convertsExtemalReference signals,within the range of -iS dBm to +15 dBm, into TTL compatiblelevel. When an ext€mal signal,within !!e tgvet rangE, is apptied, it triggers muttivibrator U20468.. The output of U2046BenaOlesext€rnatsignat control NAND gate U20g2D,and disablesthe inte-rnal signalcontrolgate U2032A.lt also disablesthe internal 10 MHz referEnceosciltatorby turningel0g1 on, which biasesQ1033off, and r€movesthe +5 V" supplyfor the osciltator. The output of U20468,pin 9i is sent to the processor, on the EXT REF line, to indicate that an externalreferencefrequencyis in use. Duringa diag_ nostictest, the microprocessorcan also pultthe INTEi_ NAL SHUT-DOWNline down to turn the lnternatReference Oscillatoroff and check for loop unlock. lJ2Og2B gates either the 10 MHz from the internalgate u2o32A, or the external referencefrom ltZOgZD,to ihe frequency synchronizerU2046A. Frequency Synchronizer MultivibratorU2046A,synchronizes its 1 MHz output with any of the allowed input frsquenciesby edge_ triggeringthe time-out period. The I MHz ouiput frequencyis set by the timingcomponentsR2039,c2o3g, and adjustmentR2042. With a 10 MHz signatappliedto U2046A,adjustrnentRZO4Zis set for a lrrs period, with 65 ns betweenthe fallingedge at Tp2046and the next fallingedgeat Tpl044. Phase/Frequency Detector The 100 MHz from the 3rd Local Oscillator is clividedby 100 and convertedto a TTL level by prescaler U2020. The I MHz from U2020, is fed to the clock input of D-typeflip-flopU1O44A.The 1 MHz from U2946A,is appliedto the clock input of D-typeflip-flop U10448. The two ftip-flopsand NAND gaie UZOO2C, form the Phase/FrequencyDetector. R1Og4,Rl0gS, and C1037,along with it's counterpart,on the outputof U1044A,form a low-passaveragingfilter for the outputs of the flip-flops. When the two input frequenciesare equaland in phase,the compositeoutputof the averaging filter is +2.5 Vdc. 7-21 Theory of Opera0on - t o 4g4[l4g4Ap Servlce, Vot. 1 O Tune Amplilier Thg FET-inputoperationatamptifier (Ui034) takes .. the output of the phasefrequencyd€tector, amplifies tJre gqgr and supplies an appropriate tune vottage to the 1O0MHz voltage controlled oscillator. The tun€ ampliller, with feedback components c1031, c1o3g, Rl028, and Rl029, determinethe toop transfercharacteristics. The toop dc gain is very high which takes advantaggof the high accuracy of tire internal or external references.The loop ac aain (determinedby ClOgl) rolls off very quicklyso any phasenoise, on an external referencesignal,is not amplified. Lock Detector U1012 is used as a tune volts window detector. R1013,R1012,and R1011set the upper threshotdat 11 V6s,and the lower thresholdat 2 Vo". As long as the tune volts stays within these limits, d trigtroutput tells the processorthat the 3rd Lo loop is locked. A low output from Ul012, indicatesthat the referenceoscilta_ tor frequencyis beyondthe Ord LO's tune range. This REF LOCK status line, along with the othEr two proc€s_ sor interface lines, is routed through thE Swe€p board for processor interrupt generation. The processor r€ads the lines and displays their status on th€ crt r€adout. o o a a I a o o I a o o o o t O a o a o o o o o o a o o o a , t 7-22 o o a t o o o o o o a Theory of Operation- o I o o I I o o a I I o I I I I t o a o o o o o o o a I e a t o o t I I o o o o o o 4g4ful4g4ApServlce, Vot. i lF SECTTON (DiagramS) The lF section receivesthe lO MHz lF signal from the 3rd converter, establis_hes the system resolution, levels the gain across the frequencyi"ng., logarithmi_ cally arnplifiesthe signal,and Oetecisthe-signai to pro_ duce the videooutputto the Display """itn. System bandwidth resolution is selectable 3 MHz to 10 Hz. This s.etectionis pe;orm€d from by the VariableResotutioncircuits and is over the instrumentbus. Generally,two sets"6niiot"O oi Ritersar€ used to establisheach bandwidth. A uano-pasi filter is also includedat the circuitsoutput. Significantgain is al.s: prgvided by severatstages amplificationwithinthe VariableResoiution-circuit of block. Other gain steps are also provided by-switching gain blocks in or out of tle^ signal path. ffiese gain blocks -10, provide +10, *20, or +dOdB ot aOOitionat gain when switchedin combination. ..Logarithmicamplificationof the signalis requiredto calibratethe graticulein dB/division.-Tti. i" performed :.."y".n stage amptifiert-hatproOucesLn output pro!y portional to the logarithmof the input. thus, tne screen displacementcan be selectable tor ttre amount of change per division, and can Ue projortional to the input level irilt" 10dB/div 'displar"r.nt .change. For exampl"i display mode, each division of on the screen represents a signal level change of 10 dB regardressof whetherit is at the top or 50ttom of the screen. The detectorfollowsthe logarithmicamplifier proto positive-going outputsilnat that is apptieO 9t"9 " to the displaysectionas the V|DEOsignat. VariabfeResolution (Diagrams19, 19,104;Id,'and 21) The VariabteResotution(VR) assembty(A6g) and the 10 Hzl100Hz Bandpass Firter aiiJmOty inOSy establishthe resolutionbandwidthand provideipproxi_ 41 dB of system gain. The Vi assembiyconTa.tely sists of two sets of filters plus gain stages. The 1.0Hl100 Hz BandpassFitterissem-Oty acts as part of the VR circu.its,but is physicailyin a seiarate assembty. Since the input to the VR circuits'is nominalty at -35-dBm and the Log Amptifier input ,"quir"" *6 dBm for full screen,the VR circuits mi.,.t prduiOe the gain difference. The VR suppties30 dB oi aOJifionat and. 10dB of gain reductionfor alt verticat lain disptay modes. Physically,the VR assembly contains two subassembliesthat connect together and plug onto the instrumentMother board. The input are in one "ir",lit-i sub-assemblyand the output circuits and digital interface are in the other. Each of the sub-assembliesconsists of boards that plug onto a four_layerVR Mother board with a ground plane on both outside layers. pow€r supply and control voltages travel throughOnly th6 VR Mother board. All signatconiectionsare by joaxial cable. VR Input (Diagram 19) The VR Input circuit receivesthe _3S dBm I0 MHz signal from the Ard Mixer through J6g3. This signal goesthroughan amplifierand an attenuator. The signal is applied to broadband feedback amplifier01029, which is biased for a large output current (approximately50 mA) to reduce intermodulaperformanceis provided primarily I_o-1 I:t:ni9n. This through the large currentcapacityby negativefeedbaci through resistor R1025 and by emittei degeneration resistorR1023. A 6 dB attenuatorat the output of amplifierelo2g providesa clean 50 ohm output to the lst Filter Select circuit. 1st Filter Setect (Diagram t9) The 1st Filter Select circuit operateswith the 2nd Filter Selectcircuit through banks of switchedfiltersto set the overallsystembandwidth. Data bits 0, 1, and 2 from the data bus are applied to decimal decoderlC U4035(it providesa low signalon the appropriateoutput pin to enablethe selectedfilter). Bandwidthsetections are 10 Hz to 1 MHz in decadesteps, and 3 MHz. The data bits select a bandwidthfiltei accordingto Table7€. Table 7-3 BANDWIDTHSELECTION Bandwidth 3 MHz t MHz 100kHz 10 kHz 1 kHz 1 0 0H z 1 0H z DBO DBl 1 00 1 11 0 10 1 10 0 0'l 1 01 0 11 DB2 Filters are selected by diode switching. Series and shunt diodes are at the input and output of each filter, The instrument allows only one filter to be selected at a 7-23 t Theory ol Operation- o o 494A/494ApSewice, Vot. 1 time. When a filter is selected,the series diodes are biased on and the shunt diodes are biased off. The diode conditionsare opposite for the filters that are not selected. Sincethe switchingoperationis th€ samefor all ftlters,the followingdescriptionfor the 100 kHz filter selectionappliesto all filters. The 10 kHz filter uses a pair of two-polemonolithic crystal filters that ar€ interconnectedby variable shunt capacitor C2030. Input and outprrt impedances are matched with broadband transformers T2025 and T3040. A 3 dB pi attenuator is included at the filter inputto help matchthe loss of the other sections. When the 100 kHz filter is sel€cted, line 2 from U4035will be low. This tums on switchingtransistors Q3015and Q3055. With input switch 03015 turnedon, the current path is through R4012, R4010, L4010, CR3013,L3015, R3015, and e3015. This current is determinedthe resistors in this seriescircuit. The voltage drop across the resistors is enoughto turn the seraesdiode on and reversebias shuntdiode CR3012. The same case exists for the lilter output switch. 03055. SEries resistors establishthe current to forward biasCR3063and reversebiasCR3062. The 1 kHz resolutionfilter consists of a singletwopole monolithiccrystal filter, matched to the 50 ohm impedance with broadband transformers T2035 and T2040. A 2 dB attenuatoris also included at the filter input to h€lp matchthe loss of the oth€r filters. Thereforethe signal from the VR Input circuit, via jumper B, is applied through the sel€ctedtilter to the 10 dB Gain Steps circuit via jumper K. Nominalloss through the lilter circuit is approximately6 dB, with slight variationsamongthe filt€rs. The 1st FilterSelect output level is nominally-25 dBm. Any differencein gain betweenthe filters is compensatedfor later in the 2nd FilterSelectcircuits. In the non-selectedfilter sections,the inputand output switchtransistorsare tumed off by the high outputs from decimaldecoderU4035. The collectorsare pulled toward -15V through the resistors that forward bias th€ shunt diodes in the input and output. Since one filter is always selected, the voltage drop across the common input and output resistors back biases the seriesdiodes. A filter is not used in the 3 MHz sectionbecausethe wide bandwidth filtering takes ptace in the 110 MHz filters betweenthe znd and 3rd ConvertErs.Insteadof a filter, a 6 dB attenuatoris containedin the 3 MHz selectioncircuit. This attenuatorhelps matchthe lEvels of the various bandwidthsby simulatingthe insertion loss of the other sections. The 1 MHz filter section consistsof a pi attenuator and an LC band-passfilter. The attenuatoradjuststo match the level of the 3 MHz section. Gainis adjusted for bothbandwidthsin the 2nd FilterSelectcircuit. The 100 kHz filter is a doubte-tunedLC circuit designedfor a good time-domainresponseshape. The filter is tun€d with compositevariablecapacitorsconsisting of small air variables paralleledwith switched fixed capacitors. A third variable capacitor may be adjustedto establishthe desiredbandwidth.For Option 07 instruments,a similar 300 kHz filter replac€s the 100 kHz filter. 7-24 The loHzfiAA Hz filter, A69, is contained in a separateassemblywith switchingdone on this board. One set of switchingtransistorsenablesthE filter path when either the 100 Hz or 10 Hz bandwidthis selected. Another switch selects between the two bandwidths. Decimal decoder U4035 selects 100 Hz bandwidthby pulling output 5 (pin 6) low, and selects 10 Hz bandwidth with output 6 (pin 4. The filter path is selectedwhen eitheroutput5 or 6 are low. Diode pair CR1030turns on 01025 at the input to forurrardbias diode CR1011. Diode pair CR4055tums on Q4050 at the outputto fonilard bias diode CR4061. Diodespairs in CR1012and CR1020providelimiterand clamp action at the filter input to remove RF excursions causedby the dc switching. The filter has a bandwidthof 100 Hz when its input port is low (-15V) and 10Hz when high (+15\4. TransistorQ1027does the switching.When100H2 is selected.output 5 (pin 6) of decoder U4035is low and output 6 is high. This turns transistor Q1025on, forward biasing CR1011 and reverse biasing CR101O. This applies the lF signal to the filter input. This also biases 01027 off, placing -15 V at the filter input to select the 100 Hz bandwidth. (04040 also switchesthe output, but is not effectivein this instrumentsinceA69 only requiresswitchingat the input). When output 6 of U4035is low and output5 is high, Q1027 and Q4040 are on in addition to Q1025 and 04050. This selectsthe filter path and applies*15 V to the input and output ports, switching the tilter to the 10 Hz mode. 100 Hz and 10 Hz Bandpass Filter (Diagram 19A) The 100 Hz and 10 Hz bandwidthsare providedby a dual-bandwidthfilteringassembly(A69). The signal is convertedfrom 10 MHz down to the 250 kHz centerfrequency of the filter. Filtering at 250 kHz makes the bandwidtha much higherpercentageof the filter center frequencythan if filteredat 10 MHz. The ltlteredsignal is then convertedback up to 10 MHz. o o a o I o t o I t o a O o a o O a o a o o o o o t t o I a o t o O a I o o o o o a o t a t O o I o o o I o o t o a a a o o o o O o a I o a I I a o o o I o I o o o a a I Theory of Operalion - 4g4A/lg4Ap Service, Vol. 1 - -. The.assemblyconsistsof four subassemblies: 1st Mix-er(A69A't), Bandpass Fitter (A69A2),2nd Mixer (A69A9), and Local Osciilator (A69i4). These subass€mbliesare on individualciriuit boards contained in shielded compartmentswithin a metal cas€ mountedabove th€ crt. lst Mlrer. The lst Mixer (A6gA1)is the input mixer. lt converts the l0 MHz lF signal down to 250 kHz. An input filter reducesthe signil skirts before going to the mixer. The buffered9.ZSi4Hz Local Oscillator (LO) mixes with 19 MHz signat, producingthe -bandpass lhe 250 kHz mixer outputthat drivesttre filter. - The input signal consists of the 10 MHz lF signal with a dc control signal also riding on the line. Ttre Oc control signal selects the 10 Hz or 100 Hz lilter. The 10 MHz signal couples through a capacitor and transformerto feed the input filter. The dc control signal feeds through a resistor and capacitorto isolate ttie 10Ir4Hzsignaland providea cleandc signalto the filter switcheson the BandpassFitterboard(469A2). Input filter Y2025 is a monolithicsecond-ordercrystal fflt€r with a i kHz bandwidth. The tilter limits tarje signals outside the bandpass before they enter the mixer. This reduces th€ intermodulationOistortion (lMD)in the circuit. The l0 MHz signaldriv€sthe fitter at about-20 dBm signatlevet. The filter drives high level mixer USO20,built from a monolithicring of MOSFETswitches. Differentiatpair 05020 and Q5025 buffers the g.7SMHz LO signal and drives the mixer at the LO input. The buffer provides oppositepolarityhigh amplitudesquarewaves to drive the mixerdifferentialLO inputs. The squarewave helps providelow mixer lMD. A potentiomet€radjustsrnixer bias to help provide low IMD and low mixer insertion loss. The adjustmentis madefor best conversiongain. The main power suppliesalso enterthis board. The power suppty is re-regutatedto +1S V to avoid 117V loading the existing +.1SV suppty. The _1 5 V suppty acts as the referencesupply for th€ +1S V regutaior whichconsistsof US010B,e5010, and eS015. hesistors R5125and R5'l27 act as a voltagedivider to set the outputvoltage. Bandpass Fitter. The 250 kHz signat producedby -ampiified the previous mixer is filtered and in the BandpassFilter board (A69A2). The filter consists of thr€e nearly identical stages. Bandwidthis changed from 10 Hz to 100 Hz with transistorswitchesin each ijaS.". The controlsignalfor this switchingcomesfrom the lst Mixer board (A69Al). The filtEr sectionsconsist of crystalsin series with the signal path. Each crystal is driven from a low impedance source. Resistive loading then sets the bandwidthof each section. Ttre switihing transistors connectsmaller resistorsin parallelwith the filter load resistorsto reducethe bandwidth. Each crystal is embeddedin a balancednetwork. The balancEadjustmentcompensatesfor the effects of crystal parallelcapacitance.This improvesfitter stopband attenuationand shapesymmetry. each stagealio containsa variablecapacitorin series with the Lrystal to provide a fine frequency adjustment with a tuning range of about 15 Hz tor each stage. _ lach amplifierconsistsof a feedbackcircuitusinga JFET and a PNP, providing voltage gain of about trio. The stage is completedby drivingan emitterfollowerto providethe low output impedanceneEdedto drive the next crystalor the outputmixer (2nctMixer). The vatues of the f€edbackresistor and the input resistorsdeter_ minethe stagegain. The 250 kHz signal from the mixer drives a smatl attenuator and the transformer Tgoi 6. The attenuator terminatesthe mixer and transformers. The balanced output from T3016 contains crystal y2o2o and the Fre_ guencyadjust capacitorson one side and the Balance adjustmentcapacitoron the other side. Load resistor R4163 terminates the crystal network When 10Hz bandwidthis selected,Q4159turns on, ptacingR9162 in parallelwith load resistor R4l69. This raises the e and reducesthe bandwidth. lt also increasethe insertion loss, so Q2159 also switcheson, placingR3162in parallelwith R4027to increasethe gain and overcome the addedinsertionloss. Series network R2145 and C2150 provide positive feedbackfor the amplifier. This looks inductiveand so compensatesfor the capacitance an the impedance seen at the amplifierinput. Capacitor Cg14g, across feedback resistor R3160, rolls ofr the amplifier gain above250 kHz to prevent10 Mhz feedthrough. Emitter follower Q4145 provides a low impedance drivefor the next filter stage. The secondstag€filter uses Q4140to invertthe signal for BalanceadjustmentC4045. Other than that, the operationof this stageis identicalto the first. The third stageis identicalto the second. 2nd Mker. The 2nd Mixer (A694A)converts the filtered signal trom 250 kHz back up to 10 MHz. The mixer in this circuit is a MOSFETring (U5022)like that used in the 1st Mixer stage. Less LO voltageis needed because IMD requirementsare less stringent in this stage. A potentiometeradjusts mixer gate bias. The adjustmentis madefor best conversiongain. 7-25 Theory of Operation- 494A/494ApServlce, Vol. 1 After mixing,the l0MHz output signal is fittered with a second monotithic crystat fitter (y2020). This filter is importantto the systemoperation. Withoutit, a large signal at 9.75MHz woutd be presentin the wide_ bandVR amplifiersthat foltow. Local Osclllator. The Local Oscillator assembly (469A4)providesthe 9.75MHz squarewave LO signali needed for mixing. This is derived from a 19.SMHz 9ry_sFl oscillator by using a duat D-type flip-flop in divide-by-two circuits. Since both sections are avail_ able, one is used for each mixer. This providesexcellent isolataon.One output drives the buffer amptifierto !he.11 Mixer (A69At),and the other dir€cflydrivesthe 2nd Mixer (A69A3). A +5 V regutatoron this board powers the flip-flops. 10 dB Gain Steps (Diagram 20) The 10 dB Gain Steps circuitprovidessystemgain, a 10 Hz gain adiustment,a 10 dB switchabti gain itep, and the front-paneloverall gain (AMpL CAL) control. The circuit consists of three stages of amplification. The nominalinput signallevelfrom the 1st FilterSelect carcuit is -25 dBm for a resolution bandwidth of 100 kHz. (All levels listed in this descriptionrelate to the 100 kHz resolution.) The input signat is apptied through impedance transformerT4019to the first amplifierstageconsisting of a differentialpair, 03016 and e2027, drivingemitter follower 01036. The signalfeeds back to the base of Q2027throughdividerR2034and R20S1.Signatoutpui resistor R2035presentsapproximatetyS0 ohms output impedanceto the next stage. Gain of th€ input stageis the samefor all resolution bandwidths€xcept 10H2. When 10Hz is selected, Q2015connects10 Hz Level control R2025and R3029 acrossR2031. Tle lst stage output drives commonemitter stage 02043. Gain of this stage changesby +10 dB when Q4039 is switchedon. Data bit 0 froni the gain steps decoder circuit on the VR Mother board #2 {A6gA2) controls this galn step. When the bit is high, emitter resistor R2048sets the stage gain. When low. e40gg saturatesand shuntsR2049with R3039and 10 dB Gain adjustmentR3035. This increasesthe stage gain by 10 dB. The output of Q2043 drives the input of the third amplifierstage. This stage operatesthe same as the first stage except the gain is adjustableby the front panel AMPL CAL screwdriver control. plN diode CR1053and resistorR1056shunt resistorFt1060to 7-26 o o o control the gain of this stage. The AMPL CAL control biases CR1053. The amount of current through the diode determinesits high-frequencyresistance.As the current through the diode increases.the resistance decreasesand the gain of the stage increases. Gain rangeis approximately14 dB. Outputimpedanceof the stage is 50 ohms as set by resistor R1064. Nominal output level is -1 dBm for a full screen display. This level may be as high as +9 dBm when MIN NOISEis active. In the MtN NOTSE mode, '10dB of att€nuationis removedfrom the instrument input step attenuator.vR Inputsignalsare higher. H€nce,10 dB of gain is removedfrom th€ VR. 20 dB Gain Steps Circuit (Diagram 20) This circuit provides gains of -8 dB, +2 dB, +12 dB, and +22 dB in precise10 dB steps. The nominal -1 dBm input is supplied through pin P from the 10 dB Gain Steps circuit. This signal is applied to a chain of three amplifiers,each using emitterdegeneration. A change of the emitter resistancechangesthe amplifiergain. The gain step decoderon the VR Mother board #2 suppliesthe switchingsignalsthat s€lectthe amplifiergain. These ampliftersare similarto the 10 dB Gain Step amplifier previously described. On this board, the first two amplifiers are cascaded for the 20 dB step and the third amplifierprovidesthe additional10 dB step. The nominalgain of the compl€tecircuit is -8 dB, with th€ gain steps switched off. This provides a nominal -9 dBm output. In this condition.controlpins V and Y are high,biasingQ2018,Q204{ and Q1062off. For the 20 dB gain step. 02018 and Q2042turn on (pinV is low), increasing the gain of the first two ampfifiersby 10 dB each, for a 2OdB gain step. Potentiometer A2029 (20 dB Gain) adjusts the first stage (O1025)gain shift while the secondstage(Q1035)gain shift is fixed at about +10 dB. The adjustmentallows settingthe gain step to exactly+20 dB. For the 10 dB step, pin Y is low, saturatingQ1062. This raises the gain of the third amplifier(Q1043)by 10 dB, as set by R2060. Gain of the 20 dB and 10 dB gain step circuitsis controff ed by data bits 0, 1, and 2. Data is latchedon the output of decoder U3017 on the VR Mother board #2. When the bits are high. transistor04035, 03035, and Q4037 switch on. The resultantlow out turns on the respectivegain step circuit. Table 74 shows the state of bits 2, 1, and 0 and the gain shiftsobtained. The output signal from the 20 dB Gain Stepscircuit is appliedthrougha coaxialcableto the VR Band Leveling circuit. o o a I I o o o I o o o o o t I o a o O o O o o o , t I I o o o o o o D o O O t a a a o a a t I t o o o I o O t o o I t o I o o a o o o o I o O a t o o a o I a o Theory of Operatlon - 4g4Al4S4Ap Servlce, Vol. 1 Table 7-4 GAIN STEP COMBINATIONS Galn Required ru ots 20 dB 30 dB 40 dB Data Biis 2 1 0 0 0 0 0 1 0 1 1 1 1 1 1 Band LevetingCircuit (Diagram20) - The two amplifiers,in the VariableResolutionBand Levelingcircuit,conect gain variationsthroughthe front end. These band-to-bandvariations are due to the differentmodulationproducts out of the lst Converter and lossesthroughthe preselector. Nominalsignal input tevel for band 1 at 100 kHz resolution,in the Min Distortionmode, is _12 dBm. This decreasessornefor the higherbands. The output level is about -2 dBm. This output level is kept con_ stant by using the microcomputer to adjust the amplification throughthis circuitfor eachbanct. The two amplifierstageson this boardare similarto llre 10 dB gain steps circuits. A stage consists of a three-transistorcircuit using a diffeiential pair connectedto an emitter-follower.The gain is controlledby alteringthe feedbacknetwork. first stage (e2015, e2019, and e1025) has a .The gain range of 13.5dB by controilingthe bias of ptN diode CR2021in the feedbackloop. Bias for this diode depend-son-a voltage divider network consistingof an array of variablaresistors on the VR Mother board #2, 468A2, with the dividernetwork setectedby the microcomputer. (e1031,e1o3g,and e1041)is . Jh" second.stage similar,.exceptthe gain changeis a one step changeof approximately12.5dB. This gain step occurs in the higlrelbands(4 throughi1). tf required,gain changeis activatedby the microcomputerthrough user-selected diodesand transistore2046. The spectrumanalyzer is normallycalibratedwith the band 1 gain control resistor set for rninimumgain. Gain is then added as requiredfor the higher bands. -banO Data bits 3 through6 select gain for each selection. The output from this board is appliedthrough con_ nectorEE to the 2nd Filter Selectcircuit. 468A5 Pin N (10 dB) 0 1 0 0 468A6 Pin V (20 dB) 1 0 0 0 PinY (10 1 1 1 0 VR Mother Boards {Diagram 18) The circuits on the VR Mother boards provide addressand data decoding,band levelingcontrol,and plwer supply and controlsignalinterfacingto the other VR boards. The VR Motherboard #1 (A6SA|)provides decoupledpower suppliesand interfacelines to the VR Input (A6849), lst Fitter Setect (A68A4),10 dB Gain Steps(A68A5),and 20 dB GainSteps(A6gA6)boards. The VR Mother board #2 (A6gA2)providesaddress and data decoding and gain controf for the Band Levefing circuit. The VR Mother board #2 providespower supply voltages and control lines to the VR Mother board #1 (A68A1),Band Leveting(A68AZ),2nd Fitter Select(468A8),and the VR post Amptifier(A6gA9). Address and data valid lines from the instrument address bus are applied to address decoder U4O2Z. Data bit 7 is appliedto the decoder,sselect inputA as a supplementaladdress bit. This bit selects either an address to latch data for th€ resolution bandwidth selection or an address to latch data for gain step selectionand band identification. Data latchesu3010 and u3017 monitorthe data bus at the sel€ctedaddress. Latch u3010 stores the filtEr s€lect data that controlsth€ lst and 2nd Filter Select circuits. U3017 latches the gain selection and band identificationdata. Latcheddata bits 0, 1, and 2 (output pins 2, 5, and 6) switch transistorse4095, e3035, and Q4037to controlthe gainswitchingcircuitsin the 1OdB and 20 dB Gain Step circuitsthroughVR Motherboard #1. The output on pins 15, 16, 19, and 12 ol U3017 (correspondingto data bits 3, 4, 5, and 6) are apptiedto band decoder U3023, an op€n collector decoder. lf band 1 is selected,pin 1 of u3023goes low and if band 2 is selectedpin 2 goes low, etc. This output in conjunction with a 7.5 V referencesource (providedby operational amplifier U30388 and driver transistor 03036) produces a voltage at the output of a operational amplifier,U3038A. This voltage is indicativeof the gain that must be set for each band so the level remainsconstantat the outputfor all bands. O o a t 7-27 Theory of Operation - 49{A/4g4Ap Service, Vol. I The output of u3038A is apptiedthrough edge connectorpin BB to the gain controlplN diode in the Band Levelingcircuit. For example;when band 1 is selected (U3023pin 1 low), current through Band 1 Gain potentiometer,R2031,and the emitterof e3036 sets the voltage throughR2033to the summinginput of operational amplifier U3038A. The increas€d output of U303gA increasesthe current through band levElingplN diode CR2021and increases the gain of the stage according to the setting of Band 1 Gain pot€ntiometerR2031. In similar fashaon, the other potentiometers (R9034, R3030,R3019,3A22,R3024,R3026,R3032,R302g,and R3028)allow adjustmentof the current for each of the other bands. An additionaldiode may be added to each decoder output,for bands 4 through10, to transmitthe low. via edge connectorpin OD, to the gain control transistor,in the Band Levelingcircuit, and increasethe gain more lor these bands. These diodes are CR3022,CR3O23, CR3024, CR3025, CR3031, CRg027, and CR3026.tf needed these diodes are installed during instrument calibration. The +5 V regulatorcircuit, U9041,suppliesa noisefree +5 V source for the VR system. This ls required becauseof noise in the +5 V main supply. 2nd Filter Select Circuits (Diagram 2l) Circuits on the 2nd Fitter Setect board (46gAg) operatein conjunctionwith the circuits on the lst Filter Select board (A68A4) to set the overall systern bandwidth. Banksol filters are select€dunderthe master microcomput€rcontrol. Data bits 0, 1, and 2, lrom the data bus, are applied to decimal decoder U9070 (which outputs a low on th€ appropriateoutput pin to enable th€ selected filter). Bandwidth selectionsare 10 Hz to 1 MHz in decadesteps,plus3 MHz. Filter selection is accomplished as previously describedfor the 1st Filter Selectcircuit except for the 3 MHz,1 MHz,and 100 Hzl10Hz selections. The input signal,from the Band Levelingcircuitvia jumper EE, is routed through the selectedfilter to the Post VR Amplifiercircuit, via jumper JJ. Nominalloss throughthe filter circuit is approximately12dB, with internal adiustment compensation for variations between the filters. The output level is nominally -12 dBm. The filter for each bandwidthrangeslrom no filter at all to a temperature compensatedcrystal filter. An important difference between the i st and 2nd filter selectcircuits is the additionof a gain adjustmentin all except the 100 kHz circuit. This adjusts the amountof att€nuationthrough the other filters and matches the outputlevel to that of the 100 kHz filter. since the Band 7-28 Levelingcircuit furnishescompensationgain to obtain equal signal levels for all bands, this adjustmentcompensatesfor variationsbetweenthe filters. The 3 MHz and 1 MHz bandwidthsignals use the same path through this board. No filter is required here, becauso of filtering in previous stages. When €ither 3 MHz or 1 MHz is selected, the signal goes through a simple attenuator with a gain control for matchinglevelswith th€ other sections. Pins 2 and 9 of U3070are tied togetherto selectthe 3 MHz/l MHz path for eitherbandwidth. The 100 kHz filter is a double-tunedLC circuit designedfor a good tima-domainresponseshape. The filter is tuned with compositevariablecapacitorsconsisting of small air variables paralleledwith switched fixed capacitors. A third variable capacitor may be adiustedlo establishthe desiredbandwidth.For Option 07 instruments,a similar 300 kHz filter replaces the 100 kHz filter. The 10 kHz filter uses a two-polemonolithiccrystal filter. The impedances at the input and output are matchedto 50 ohm by T5047 and T7050. An attenuator that containsGain adjustmentR3039is includedat the filter inputfor filter variationcompensation. The 1 kHz filter is also a two-polemonolithiccrystal with impedance matching transformers T40/,4 and T:7043. A Gain adjustmentis also part of th€ attenuator. The 100 Hzll0 Hz filter is a temperaturecomp€nsatedhigh-Q crystal filtsr. The actual filter bandwidthis about 200 Hz. This filter augmentsthe filter in the 1st Filter Select circuit and reducesnoise producedin the interveningstages. Freq AdjustR4025, in a voltagedividercircuit,sets the centerfrequencyof th€ crystalfilter. The 100Hzl10Hz path is selectedby Q2020and 08035throughdiodescRl017 and cR8016on the input and output respectively.when 10 Hz is selected,pin 7 of U3070goes low turningon Q2020and Q8035. When 100H2 is selected,pin 6 of U3070 fonarardbiases cR3068,thus enablingthe path. Gain control R3015 adjusts the 100 Hz level. The 10 Hz level is set by a controlon the 10 dB Gain Steps board (A68A5),as previouslydescribed. Post VR Amplifier Circuit (Diagram 21) The Post VR Amplifiercircuit providesthe final VFt system gain to bring the signalto the requir€d+6 dBm output level and providesthe final band-passfiltering. The circuit consistsof two stag€sof gain followedby a filter. o o a o 'o I o o o o o I I o o o o I o o o a t o a a o O o t o a o o I I o a o o o I o a o a o o o t o o o o o I I o I o I o t o t o o a t a o o I o o a I o a o o o o o a a a ) Theory of Operadon- 4g4A/4g4ApService, Vol. 1 .. fn9 input signat.at a nominal_14 dBm, is applied through toroid transformer T1041 to the Oaii of common-emitteramplifier el040. Gain adjustment Rl0i!0, in the emittercircuit. sets the posi Vn impfin"i gain. The output is transformercoupled, by Tt0i0, to the base of feedback amptifier OiOSO. ihis circuit include.semitt€r d€generationthrough resistor RlOg4 and collector-to-base feedbackthroulh resistorRl041. The collectorfeedbackhelps to prorid" a well-deftned output impedanceof 50 ohms. input impedance is a function of transformer T1040 ana relistor R1042 acrossthe primarywinding. Fro.mthe finalamplifier,the-signalis apptiedthrough . a band-pass filter with about 2 O-einserton toss. The *6 dBm outputsignatfrom th€ fitter is afptied through coaxialconnectorJ6g2 to the Log Amplinii. LOc AMp and DETECTOR(Diagram22) The Logarithmic (Log) Amptifier and Detector acceptsinput signalsfrom the Vi circuits. The signals are amplifiedso the output is proportionalto the 1-ogarithm of the input. The output ii ttrenappliedto a linear detector which outputs a video signal. By controlling the compressioncurve_characteristi-c", OBctranfE in th€ input signallevel r€suttsin an equal """hincrementof changein the output. In the 10 clBldivmode,each division of displacementon the screenrepresentsa 10 dB changeof inputsignallevel. Log Amplifier Circuits Tlgr". circuitstogarithmicaily amptifythe inputsignat , from the VR circuitsand apply the output signalto-the Detectorcircuit. The Log'Amplifier consistsof seven ac-coupledamplifierstages. Each stage has two gain valuesthat dependon signalamplitude.-In additionlhe first three stag€s have an extra automaticallysel€cted gain value. The combinedcircuitsprovidehighgain for lowJevel signals and low gain for high-level-ignals. For.the,outputsignalto be ploportionalto the log;ithm of the_input,more gain is reguiredfor a chang-efrom -80 dBm to -79 dBm than a changefrom _1 dBm to 0 dBm. For a given stage of the cir:cuit,the gain starts at approximatelyl0 dB for a low{evel signal and decreasesto unity as the input signal level increases. In _thefirst three stages, the gain becomestess than unityas th€ signalamplitudeincreases. ^ _lnput signaf levels nominalfy range between -84 dBm and *6 dBm. As the signattev-etincreases. the gain decrease begins with the final stage and proc€eds,in succession,_backthrough the remaining six stages to the first. Each stage initially produced approximately10 dB of gain. That gain was reduced to unity, so the total gain reductionis Z0 dB. With further increasesin input signaflevel, three more gain change st€ps take place. The gain of th€ first three stages is reduced.betow unity approximately7 dB for each itage. This reduction starts with the first stage and procee-ds to the third, to provide an additionatgain reduction of approximatety 20 dB. - As the Input signal increases from _g4 dBm to 19 d?r, the gain throughthe amptifierdecreasestoga_ rithmically so that the output signal is exactly proportional to the logarithm of the input. This ii accomplished through a system of seiies diode limiting in each stage, with a second set of diodes for extra timiting in each of the first three stages. The followingdescriptionof a simplethree-stagelog amplifier,with one gain step in each stage, proviOls ai aid -to understanding the concept of a logarithmic ampfifier.Figures7-g, T-9, and 7-10 show an example amplifierand illustrat€its operation. The gain of each stageis.3.16(10d8) up to an outputlevel-of1V peak, then unity for output tevetsgreaterthan t V peafi tnai is,. each stage uses one breakpoint. That breakpoint voltageis used for ease of illustration;the actualbreakpointvoltageis significanfly lower. The amplifier is shown in Figure 7-g. The source has a step att€nuatorthat allows the input signalto be incrementedin 10 dB steps. Table 7-5 shows the progressionof gain reductionabove 1 V at each ampiifier output. Note that with each input level change of 10 dB, the output change at point 4 is 0.694V. The gain curv€ for one stage is shown in Figure 7-9. Also note that when the level at point 1 is increasedbeyond 1.V, it is beyond the togging range of the ampiifier. Similarly,if th€ inputlevelis decreased10 dB betowthe minimuminpul level, the output incrementis different. A curveof the loggingrangeis shownin Figure7-10. POINT 1 POINT 2 POINT 3 POINT 4 44 16-99 Flgure 7{. Block diagram of a tfrree stage log ampllfier. 7-29 Theory of Operation - 494A1494Ap Servlce,Vot. 1 Table 7-5 PROGRESSION OF GAINREDUCTION Input Level Point 1 Point 2 , Point 3 Poinl 4 0.316 0.1 - - 0'216 0.316 BeyondLoggingRange x-10 dB X Level X + 1 0d B X+20 dB x+30 dB x+40 dB X+50 dB 0.00316 0.01 0.01 0.316 0.0316 0.1 0.1 0.316 ___r l_ 0.68a 1.0 3.16 0.1 0.316 1-0.684-1 1.0 0.316 r-0.684 1.€ 1- 0.684-_-1 1.0 =__1 1_ 0.684 1.684 o o o o o o o o o o 1.684 1_ 0.684 2.368 BeyondLoggingRange t I o o o o o o I t LIN VOLTS OUT END OF AMPLIFIERDYNAMIC RANGE a o o o a o o a , o I t Figure 7-10. Curve showing end-ol-range for a log amplifier. 44r&100 Figure 7-9. Log amplifaer gain curye rhowlng break polnts. 7-30 o I o O o I o o o , O o o Theory of Operailon - o I a' a o I o a o I o o o a o o t , I o o I a I . The 10 MHz input signalfrom the VR circuitsdrives input preamptifiere2075, in th€ tog lmftiner circuits on A62A1. The input preamptifierir"nsier" the S0O input signal to the high_impedance input of the first amplifier stage. The input signal is ilso apptied to transistor01 07S,a common-baseamplifierthat acts as a bufierto supplythe l0 MHz lF signatto the rear_panel connector. Frgm the input preamplitier,the signat is apptied .. through seven cascadedstages each cinsisting'ot an emitter follower driving a common base amptifier. Resistorsbetweenthe emitterfollowerand the common base sectionsdeterminethe gain. Diodesswitch various resitorsin or out of the circuitto vary the gain for different input levels. All of the are similar, except that the first three stages "t"g"Jan extra set of diodesfor an additionalgain itep."ontaii All stages have maximum gain for low amplitude input signals. As the input amptitudeincreases,the last stageswitchesto a lower gain. For furtherincreasesin input amplitude,additionalstages decreasegain back to -the first stage. Then the second set of gainswitching diodes switches into the first, second, and third stag€sto reducethe gain for the larggstsignals. Typically,when the inputlevelto the emitterfollower in th€ last stage is less than 60 mV peak-to-peak,the transistorconductsenoughto maintainfonrvardbias on series limitingdiodes. The 10 MHz signatpath at that level is throughboth diodes,a capacitjr, ani a resistor networkto the commonbase sectionof ihe stage. The gain .of the stage under these conditionsis ipproximately10 dB. ) o I o a o I o t I - As the input signalvoltageincreases,more current llows through the left diod€ to increasethe reversebias of the right diode. This sharplyreducesthe stagegain to unity. The signalcurrentthen flows only in the lower path aroundthe diodes.This changetakes ptace during the positive-goingportionof each cycte. tne opposite occurs during the negative_going pdrtion of the signal above the minimum input level. As the input signal increasesbeyondthe point at whichthe gain of the final stage decreasesto unity,the same sequince occurs in the precedingstage.and in succession,backto the first stage. 4g4Ll4g4ApServtce,Vot. l Signal levels above this point activatethe second tier of gain reductionin the first three stages. These stages each incorporate a second set of diodes that r€duces the gain by another 7 dB. In the first tier of gain reduction. reduction started at the last stage and proceededto the first; in the secondtier, the reduction starts at the first stage and proceedsto the third. In the first three stages, the lower diodes are forward biased untit the second tier of gain reduction. With a further increase in input signai level, limiting occurs in the same manneras previouslydescribedand results in less than unity gain through the stage (approximatety 112r. The one-two-th6e reducrion sequenceis establishedby the valuesof the pull_down resistorsat the cathodesof the diodepairs. Detector Circuit This circuit demodulatesthe 10 MHz output of the Log Amplifier,producingthe VIDEOsignal that drives the VideoAmplifiercircuits. The detectoiconsistsof an operationalamplifierwith a diode detectorin the feed_ back path. A low-pass filter at the output, shown on diagram23, filtersthe RF from the dEtectlOsignal. The operationalamplifiEris madE up of common emitt€r amplifier01012 and a differentialamplitierthat consists of Q2010and e20l8. The summingnode for the n€gativeinput is the base of e1012 (the positive input is at the groundedemitt€rof el012). The differentialamptifier's high impedanceoutput allows it to rapidly changeduringthe periodwhen both detector diodes are effectivelyopen circuited;that is, when the outputis near 0 V. Whenneitherdiode is conducting,it is necessarythat the output change rapicfly throughthat zone. Figure 7-11 shows a simptified ac-equivalent schematicdiagramof the detectorcircuit. Two detector diodes are used, but only the negativehalf cycle is taken as the output. Ac couplingis used on both sides of the detector diodes to prevent ternperature coefficient effects of the operationalamplifier from affectingthe detectoroutput. The detector output signal is appliedto the Video Amplifier. A low-pass filter shown on the foilowing diagramcompl€testhe detectorby filteringthe remaining RF. O I a o o o o o 7-31 o Theory of Operation- 4g{A/494Ap Servtce,Vol. 1 I o o o o o o o o I a I o o I I a a a t t o I o o o o o o a o a a o a o t o o a a o o I I Theory of Operation- o a a t o t o a o I o o o a I t o a I o o I o o I o t o o o I o I o o I o o a o o o 4g4ful4g4ApServtce,Vot. I DISPLAYSECTTON (Diagram6) FUNCTIONAL DESCRT PTION The display section consists of the followingmajor blocks: o VideoAmplifier o Mdeo Processor characteristicto lin€arfunction. In either mode, base_ line compensationfrom the Vid€o processoris applied to the video signalto compensatefor any unflatnessin the front-endresponse.The pulsestretcircircuitat the output of the Video Amplifieratters narrow pulses so data can be acquired and disptayed by the Digital Storage logic. Signalamplitudeoffset ciicuits provide displayoffsetfor the "ldentify,,mode operation. . DigitalStorage o DeflectionAmplifiers Log Mode Circuits . Z-Axis The log mode circuits process the VIDEO signal from the Log Amplifier,and they add ofrsetfor selecting that segrnent of the log amplifier gain curve to be displayed. The circuitsalso select screendisplaygain steps from 1 dB/divto 15 dB/div. r CRT Readout . The Video Amplifierprocessesthe detectedlF sig_ nal through appropriateamplifiers for log and tineir displays, and provides pulse stretching for narrow pulsedsignals. The Video processor provides band leveling to corr€ct front-end unflatnessthrough the bands, video filtering for noise averaging,out_;f_bandblanking to clamp the display to the basetinewhen the sweep is outside the range of the selected band, and video markercapabilityfor use with a TV sidebandadapter. Tl" Digitat Storage digitizes th€ video and sweep . signalsand stores the data in memory. Storeddata is thsn converted to analog signals for ttre Deflection Amplifierand Z-Axiscircuits. The DeflectionAmplifierprovidesthe drive voltages for the cRT. This includes vertical and horizontal deflectionsignals as well as readout charactersfrom the CRT Readoutboard. The Z-Axis circuits receive and decode data from the microcomputer;accept control levels ,rom the front-panelbeam controlsand generateunblankingsig_ nals to control the displayappearance,brightnesslaid focus; detect power failure;monitorthe inJtrumentvol_ tage supplies;and recordthe elapsedoperatingtime. The CRT Readout circuits generate the alphanumeric charactersfor the display. VIDEOAMpLtFtER(Diagram23) Video signals, from the log amplifier and ctetectorin the lF section, are received by the Video Amplifier. In the logarithmic mode, the signals are amplified linearly and applied to the Video processor. In the linear mode, exponential amplification converts the logarithmic aain The detectedVIDEOsignat,the VTDEOI correction signal, an offset signal, and reference current are summedat th€ input to operationalamptifierU4050. A lowpass filter removes l0 MHz from the detected VIDEO signal. The VTDEOI signat is adjustedon the Video Processor board (A40) as compensationfor front-endunflatness.The signalis equal and opposite in amplitude to the unflatness. Th€ lnput Ref Level adjustment,Rl 012, sets the reference level. Signal converter(DAC) 9{"9t is suppliedby digitaf-to-anatog us160. The DAC convertsthe microcomputercommandsto an offset signal that selects the location on the log amplifier curve tor the disptay (see Figure 7-12). In dB/div or log display modes, a change in th6 Vertical POSITIONcontrol produces an effect after the log amplifier that is the sam€ as a signal level or gain change before the log amplifier. Instead of using a large amount of linear gain before the log amplifier,the output of the DAC effectivetyofisets ths disptay up or down along the log curve. This offs€t produces the same effectas varyingthe pOSITIONcontrolexceptthe display positiondoes not change,only the signal level requiredto reachthe referencelevelchanges. This processallowsthe lineargain to changewhile the top of the screenis kept constant,and it must also allow any 16 dB segment(in th€ 2 dB/div mode)to be displayed. Nominally,the log amplifier operates with +6 dBm equivalentreferencelevel at the top of the screen. The outputol U4050is equivatentto 20 mV/dB. Futl screenis 2.2 V, as set by lnput ReferenceLevelpotentiometerR1012. From U4050the signalfeedsthe log mode gain circuil and the lin€armode gain circuit. The digital controlcircuitselectsbetweenth€ log and linear modecircuits. 7-33 Theory of Operaton - 494[l4g4Ap Servlce,Vol. 1 * TH|S 16 dB SEGMENT MAY BE MOVED TO ANY POSITION ON LOG CURVE LIN ouT *10 dBm 80 dB Total dB IN 4416-1t3 Figure 7-12. Selecdon ol display positlon on lhe log scale. Log mode amplifierU4030tineartyamptifiesthe signal. (fhe log conversiontook placein the Log Amp circuit.) At 2.2 V input, the output of amptifierU40S0is 0 V. This is the only voltageat which the feedbackcircuit switchingnetwork resistorsof amplifierU4030can be switchedwithont changingthe outputvoltage. The switchingnetworkis describedlater in this discussion. When the log mode is selected,the output signal from U4030is appliedthroughFET e5035to the output amplifier. Output Reference Level potentiometer Rl030, in the input circuitto U5030,adjuststhe output level for a full screen display after Input Reference Level potentiometerR1012 is set for no changein the output of U4030when switchingbetweenthe 10 dB/div and 2 dBldiv modes. The gain switchingnetwork switchesresistorsin or out of the fe€dbackpath of amplifierU4090. The network consists of Q4035, e4090, e4155, and e4150, and associatedresistors. The FET switches(controlled by data bits 0, 1, 2, and 3 from the instrumentdata bus) switch in feedbackresistorslor U4030in combinations determinedby the four data bits. Linear Mode Circuits The linear mode circuits accept the logarithmically scaled output from U4050 and rescalethe signal level to linear values. Sincethe input signalsare logarithmically scaled,the signallevel is exponentiated to operate the systemin the linearmod€. High gain is requiredat the top of the screen and low gain is requiredat the bottom of the screento offset the characteristics of the Log Amplifiercircuits. 7-34 In th€ linear mode, FET switch Q5150 is on. enabling the linear mode signal path; and Q5035 is off, disabling the log mode path. The output from preamplifierU4050 is also appliedto linear mode operational amplifierU4070, with a successiveresistor network switched into the feedback path. From this amplifier, the output signal is applied through FET Q5150 to the summing node at the input of output amplifierU5030. With a *6 dBm input to th€ Vid€oAmplifier,the output of U4070 is 0 V. This is the level that represents the top ot the screen. At that level,the foedbackpath is only through resistors R4118 and R5112. Diode CR4125and R4122 are only activawhen neededto limit negative excursions. The other feedback resistors (switchtransistoremitt€r r€sistors)ar€ not in the path, because the switch transistorsare biased off by the dividernetworkat the transistorbases. As the displaymovesawayfrom full screen,th€ output voltage of U4070 increasesand turns transistor O4120on. This places R4124in parallelwith the tixed feedbackresistors,thus reducingthe gain. As the voltage output increases,transistors04125, Q4065.and 04060 start to conduct in sequence, adding their emitter resistors across the feedback path. This effectivelyreduces the gain of U4070 exponentially. The transistor characteristicssmooth the step transitions, producing a smooth exponential gain curve. Diode CR41'l 5 providesternperaturecompensationfor the switchingtransistors.The Lin Mode Balancecon' trol, R1025,sets the U4070 output level to match the log modeoutput. Pulse Stretch Circuit The pulse stretch circuit consists of FET switch Q5026 and the associated components. When the pulse stretch mode is not sglect€d{data bit 7 on the instrum€ntdata bus is low), pin 13 of U4020Cpulls down to -1 5 V, and Q5026 biases off. This removes C5024from the circuit and also suppliessufficientnegative bias to keep CR5025fonvardbiased. With CR5025 on, the feedback loop for U5030, through Q5025and R5033is closed so the signaloutput will fall as fast as its rise. when the pulse stretch mode is selected(databit 7 high), the open collector output of u4020c (pin 13) is allowedto float. This turns Q5026on which completes the path for C5024to ground. During signal rise time, C5024chargesthrough the low impedanceof CR5025. The feedbackpath for U5030is still closed which providesa fast rise time. When the output of U5030 begins to fall, CR5025 turns off and the signalfall time is now a functionof the RC time constantof R5031and C5024.since the f€ed- Theory of OperaUon- back loop for U5030is now open. DiodeCR5035turns on to preventU5090from slewingtoo far negative. ldentily Circuit This circuit provides a vertical offset on alternate t9 help identifytruE and fatsesignats. Whenthe lllcg: 'ldentify"feature is in op€ration,it allolvsthe operator to distinguishbetweenresponsesthat result from signals at.the desired spectrumanalyzerinput trequenjy (true signals)and those that are produced by'othe? spuriousor harmonicconversions(falsesignats;.fatse signalsshift horizontallyon alternatetrac6s while true signalsremainin position. The horizontaloffset is accomplishedelsewherein the instrumentby movingthe 1st and 2nd LO frequency an equal and opposite amount, relatedto the ist LO harmonicused, or by moving the lst LO twice the lF divided by the harmonic number (N), on every other sweep. The result is that any conversionpioducts causinga false responsewill shift a significantamount horizontallyon the displaywhile true signalswill remain closeto eachother. The identifyoffset circuit describedhere shifts the alternateor'ldentify" sweepvefiicallyas a furtheraid to identifyth€ true signals. The microiomputersets DB6 high during'ldentify"sweep so the open collectoroutput of U4160A(pin 1) goes from -15V to open. This remov€sthe current normaltyflowingin R5154, R51SS, and R5158 from the summing node of U5030 and causesa shift in the VIDEOil outputlev€t. 494A1494ApService,Vot. I vtDEo PROCESSOR (D|AGRAM 24) The Video Processor performs four functions. The ftrst is compensationfor flatness variationsin front-end response. The secondis vldeo filtering,whichprovides the selection of six video bandwidths(90 kHz, O kHz, 300 Hz, 30 Hz. 3 Hz, and 0.3 Hz) under control of the instrumentmicrocomputer.The third functionis out-ofband blanking,which blanksth€ upp€r and lower ends of the local oscillator swept frequ€ncyrange to provide a selectedwindow for the display. This functionis also controlled by the microcomputer. The fourth is the capability to genEratea negative-goingditch markeron the video display for interfacingwith a 1405 TV Sideband Adapter. Interface with 1405 TV Sideband Adapter The TEKTRONIX1405 W SidebandAdapter is a specializedtracking generator that is used with the SpectrumAnalyzerto analyzethe responseof a television transmission system. The Spectrum Analyzer monitorsthe RF outputof the transmitterwhilethe sideband adapterdrivesthe video input of the system. The video input may be at the transmittersite, the headend of th€ studio-transrnitter link, or the video switcherin the studio. ThE sidebandadapter must be connect€dto the lst LO of the SpectrumAnalyzerby a short length of coaxialcable. Th€ system in Figure7-13 depicts a TV transmitter operating on Channel 10 with a video carrier at 193.25MHz. The sidebandadapteris tunedto Channet 10. The Spectrum Analyzer is tuned to 195.25MHz with a span settingof 1 MHz/Div(for purposesof iilustration,the sweep is assumedto be haltedat the center frequencyof the analyzer). The digital control circuit providesthe control sig_ nals that select the various Video Amplifierfunctioni. Addresses78 and 79 are decodedby U6160and sent throughinverterU6170as clock or enablingsignalsfor gainlatchu5010 and modetatchu4010. The sidebandadapterapplies a2MHz signalto the AM modulatorof the video transmitter. Th€ modulator producesa lower sidebandat 191.25 MHz, a carrierat 193.25MHz, and an upper sideband at 195.25MHz. This signal is amplified,filtered,and combinedwith the FM aural signal. The compositesignal is sensedby a RF pickup and appliedto th€ RF Input ot the Spectrum Analyzer. Gain latch lc u5010 is an g-bit latch that suppties commanddata to the 8-bit DAC, USl60, to offset the Log Amplifieroutputsignat. ModetatchU4O1O is an 8_ bit latchthat suppliescommanddata throughthe comparatorsin U4020and U4160to selectthe resistorsin the dB/div switchingcircuitand to sel€ctidentify,pulse stretch,and log or linearmode. The 1st Converterappli€s the compositesignalto the 'l st mixer. The compositesignal is mixed with a 2.26725GHz signalfrom the 1st LO, formingthreeproducts. The subsequentstages of the analyzeraccept onfythe 2.072GHz productand rejectthe rest. For frequenciesused in this example,the acceptedproductis the differencebetweenthe 1st LO and the uppersideband of the TV signal. Digital Control Circuit 7-35 Theory of Operaton - 4g4Al4g4ApService,Vol. I ToVid@Pcq RF ln 'l 95.25 MHz/Uppsr Sdeband t93 25 MHz/Cars 19t.25 MHzIL@d Sirebad trA8X€R/VtO€O rcll -2.5 6lt LOAO Oisglay MaA6 h Z-Ax6 o(rl ffi rffi ?.26525GHz lst lF + fV Carrs i\r o.TsMHr i\o- r.zsMHr i\\o* sprre i\o- 3.5sMHz i\-..rsMHz i\'o- 4.75 MHz Ert. l.Voui !@_f9sEs9Ll9l 5(n+fi Figure 7-13. Functonal dlagramrhowing the Spectrum Anafyzcrand 1405TV SldcbandAd.picr System. The product is converted twic€ more, amplifi€d, liltered,log amplified,and detected. This detectdOsignal is applied either directly to the video amplifiersof the crt or to digitalstorage. The SpectrumAnatyzerlst LO signatis appliedto the RF mixer of the sideband adapter. The 2.26525GHz signal from the tunable LO is subtract€d from the 2.26725GHz signal trom the Spectrum AnalyzerLO, yieldinga ZMHz product. This video frequencysignalis conditionedwith sync and blankingsig_ nals and applied to the video input of the T\/ transmitt€r. Whenthe SpectrumAnalyzeris sweeping,the video signal starts at 3 MHz, lalls to 0 Hz, and rises up to 7 MHz. During this intervat,the analyzerdisplaysthe lower sidebandas it movestoward the carrier,diiplays the carrier,and then displaysthe upper sidebandmov_ ing away from the carrier. Sincethe SpectrumAnatyzer and 1405 TV SidebandAdapter system is similar io a trackinggeneratorsystem,it rejects nolseand uncorrelated signal. This allows normal in-serviceuse of the transmitterby adding a tow tevel (1 to 3 tRE units)cw signal to the video or by using fuil levetswith a ilTS inserter. 7-36 The sidebandadapter can lnsert frequencymarkers at preselected deviations from the carrier frequency. Six selectablocrystal oscillators have their outputs mixed with video signal and appliedto a Z-Axis circuit. This circuit producestwo n€gativepulsesas the video signal sweepsthrough tho crystal oscillatorfrequency. These pulses are applied to the spectrum analyzer mark€r input, whers they appear on the crt as two notch€s on either side of th€ marker frequency. The sidEband adapter allows the width and depth of th€ notchesto be adjustedwith the width and Intensitycontrols. Video Marker The Z-Axis signal from the 1405 SidebandAdapter connects to the MARKER input on the spectrum analyz€rrear panel. This negative-goingsignal flows through the Accessories and Mother boards to the Video Processor board. Here, the signal drives the ernitterof Q4060and turns the transistoron, pullingthe VIDEO OUT line down. This produc€sa notch in the video signalof the displayto signifythe locationof the markeron the display. a o I o o o o o o t o I a o o o I o a a I o o o o o I o I o o o I a Theory of Operaton - Video Leveling . -A^mjnor slopein frequencyresponse,causedby the 1.86GHz low-passfilter in the front end, is corr€cted with band I Slope adjustmentR1012. Wirenoperatng in band 1, contacts6 and 7 of U3025are closed;therJ forq a portion of the PRESELECTOR DRTVEsignat is applied to the VIDEO I output signal, providiig the ofiset necessaryto correct slope difference. Video Leveler Circuits . Mdeo levelingcomp€nsatesfor analyzerfront-end microwave circuit characteristics that cause unflat response. band 4 (5.4 GHz to 1g GHz). Since band 4 ln is a multipliedband, any unflatnessis ac"entuatecl. Levelingis accomplishedthroughprogrammableperturbation of the disptaybasetine[trai is opposatein direc_ tion to the flatnesserror. As the signai power output decreases,the baselinerises an equil amountto com_ pensate,and as power output increases,the baseline falls an equalamount. perturbationis producedby .The a normalizerintegrated that produces19 evenly spaced valu€s of the -circuit input voltage, with each valui correctedto compensatefor unflatness. The PRESELECTOR DRTVEsignatfrom the tst LO drivercircuitsis appliedto a translationcircuitthat consists of two currentdrivers(U3O45Aand hatf of e303g, plus U30458 and the other half of e303g). The PRESELECTORDRIVE signat is direcfly r€tated in amplitudeto displayedanalyzerfrequency.The nominal +10V to -10V gxcursion voltage versus frequency 9urve1in maximumspan, relates to the full bandwidth. This 20 V maximurnexcursion is scaled to a precise current(from 1 mA at +10 v to o currentat _10 v) that is appliedto the normalizerlC to generatethe baieline perturbation.Actual signal scaling is done by current driver U3045A/Agmg. The outpui signatis apptiedto the normalizerSWp lN input, pin 5 of U20g9. The second current driver, Ug04SB/Og03g,generates a 2 mA referencecurrent for the normalizer] Horizontal Freq adiustmentRl069, in the input translationcircuits, shifts the 19 evenly spaced points up or down in frequencyto compensatetor unflatness. ? o O o a o o o I a NormalizerlC U2039operatesas a shaperand contains 19 transistorsthat turn on and off in sequenceas the current input to pin 5 decreasesfrom 1 rnA to 0. Each collector is connected to a potentiometerthat allows outputtrimming. potentiometerR1061 is active with no current,and R1013is acfiveat I mA. The trim_ ming operationis describedlater. 4g4AJ4g4ApService, Vol. 1 From the normalizer,the outputis appliedthrougha jumper switch to bufferamptifierU2OS5B,which his a gain of five, then to offs€t amplifier U2OSsA. This amplifierhas a gain of two, but its primarypurposeis to offset the 0 to +5 V (normal),0 to -5 V-(invert),buffer output to the levels requiredby th€ Log Amplifiercircuits. The range requiredby the Log Amplifieris O to . J-0V. The output voltage is a seriss of linear interpo_ lations of th€ voltag€ betwe€n adjacenttrimming reiis_ tors at the outprrts of the normalizer. Compensation adjustmentR1065sets corect interpolation. Jumper ptug p2060 setectsthe input side of buffer amplifi€rU20558 and proper ofiset vottagefor U2055A. This provides the meansto invert the buffer output dur_ ing the instrumentadjustmentprocedure.The adjustment procedure is described in that section of this manual. As previouslynoted,only band4 requiressignificant compensaflon.Selectionof band 4 is indicatedby data bit 0 switchingto a 1 (seethe Lev€lingtabte at tire top right_cornerof Diagram24). When DBOis a 1, pins b and 2 ot switch U2015 are connected,and the output from offset amplifier U205SAis supplied out as the VIDEOI signat. Minor compensationis required for Band 1, to correct a minor slope causedby the 1.8 GHz low-pass filter and 2 GHz limiter. When pins 6 and 7 of switch U3025are connected,the PRESELECTOR DRTVE signal is ofrset by R4023 and R4011and Band Stopeadjustment R1012 to provide an attenuated negative-going ramp to the VIDEOI outputline. Switch Ug02Sis controlled by inverter 04025. O402S is activated by data bit 6 going low. As shown in the Video Blankingtable on the schematicdiagram,DB6 is 1 except when Band 1 is selected. Video Filter Gircuits Video filtering provides selection of onE of six bandwidths,under microcomputercontrol.As shownin the Vid€o Filter table on Diagram24, dataits 1 through 4 select any of six bandwidths:30 kHz, 3 kHz, 300 Hz, 30 Hz, 3 Hz, and 0.3H2. Either wide or nanow-band filtering is selected at the front panel (Wide band is definedas 1/30th of the selectedresolutionbandwidth and narrow is defined as 1/30fth of the resolution bandwidth). The microcomputermakes the selection, based on such factors as sweep rate and total dispersion. With no video filtering(all data bits are 0), the videosystembandwidthis 500 kHz. 7-37 o o Theory of Operation- 4g4A/4g4ApServtce,Vol. 1 I a e I EXT VIDEOSELECT f MARKER/VIDEO15 VIDEO FILTER OUT 6,11 t t o o INTERNAL VIDEO RC FILTER u20158 OATA BIT 1 Flgure 7-14. Simplllied diagram of a video filter. Tabte 7-6 FILTERCOMPONENT COMBINATIONS Bandwldth DB2 DB3 DB4 30 kHz 3 kHz 300 Hz 30 Hz 3Hz 0.3 Hz 0 0 0 1 0 0 1 0 0 1 0 't I 1 R2023 c3026 1 0 1 1 Two signal inputs (EXT MARKER/V|DEO)can be appliedto the video filter circuits. ThE EXTViOeOsignal, from the rear-panelMARKERI VIDEOconnector.is appliedto pin 15 of switch U306gAthroughedge con_ nector pin 53. The INTL VTDEOsignal,from the Video Amplifiercircuits(via the front-panelLOG CAL control), is appliedto pin 2 of U3063Athrough edge connector pin 51. Note that the internalvideo sectidnsof switch U30634 are normallyheld energized(pins 2 and three connected,pins 15 and 14 disconnected) by the +5V supprythrough R3064. tf the EXT vtDEo sELECTtine (from the rear panel ACCESSORIES TNTERFACE connector,throughedge connectorpin 55) is grounded,the externalvideo sectionsof UO063Aare de-energized. 7-38 o o X X X X X X R2021 R2022 x X X X X X X X x x X X x c2016 X X X Wh€n this occurs, the EXT VIDEO signal is applied through, or around, the filter to becorne th€ VIDEO FILTEROUT signal at edge connectorpin 57. This is shown in the simplifiedschematicdiagramof Figure714. As shown in Figure 7-14, when no tiltering is selected(all data bits are 0), eitherthe internalor external signalis routedthroughU3062and aroundthe filter, becausethe two sections of U30638 are selectedby DBl. When DB1 is high, the video is routedthrough the filter. Somefilter value will be setectedby bits 2, 3, and 4. Thesedata bits control three sectionsof switch U20158to add or deletefilter time constants. o o o o a o a t o o 'l o o a o o o o o a o I o o J I O o o I t Theory of Operation- The filter consists of resistors R2O2g,RZOZ1, R2022 and capacitorsC3026 and C2016, between U3062and U2066. Tabte7-6 lists itre "onn""t"O tiiiei components in thE circuitfor eachof the six OanOwiOttrs. Databits 2, 4 are apptiedto switch U2O15B(pi-nsB, 16, 1: and 9) "1! which selects the components. frorir U2OOOB, the signal is routed through contacts Z ana 6 of switch !9.qpp to.edgeconnectorpin 57 as th€ VtoEOFILTER OUT signal. Video Blanking The video btankingcircuits allow selective blanking lower and upper ends of the locat osciilator 9l_!h" range. Selectiveblankingis requiredbecause the local oscillatgrsw€epsthe fuli span-regardlessot the band s_y:tem is desisn;cto op"n IT,r-.:,].P.,:9:? a.otsptay windowonly during "tr""tiu"ry the time for -*iiro"orput"r, display. Data bits 5, 6, and 7, under coritrol of the selectthe appropriateamosntof displayfor eacn end. Video blankingand the PRESELECTOR DRTVEsig_ . nal (which provides frequency information,in rorm) are located on the ViOeo processorvoltag-e board. yg.0g3.incorporates a disabte function rhat, ::1,:h_ wnen provicteda tow input, opens all switch s€ctions regardless of individual section input. This feature allows the VTDEOFTLTEROUT signat to be easity blankedat wiil. The disablefunctionis controlledby a combination of outputs from comparators U30154 anO UgolsB. comparatorsare from the PRESELEC_ I11ttlq.these TOR.DRIVEsignaland a combinationof vottage dividers that are switchselectedundercontrolof dai=a bits 5, 5, and 7. The PRESELECT_OR DRTVEsignatis applied from edge connectorpin 54 through OiiiJer resistors R4013and R4012to the invertingiriput oi UgOtSR, anO throughdividerresistorsR4014inO'Ra0tito the non_ invertinginput of U3O15B.These dividersrectuce excursionof the drivE.signalfrom (+10V to _10V)the to (2.5V to -2.S V), which is the maxlmuminput tevetto the comparators. Input to the non-invertinginput of U3015Ais from divider resistorsR9011,RgOld and selectedr€sistor R4015. The inctusionof R4015 is controlted by DB7 throughpins 2 and 3 of U9025. The junctionof divider resistors R3011 and Rg0l2 is connectedto ground throughR401Sfor band 2. Inputto the invertinginput of Ug0158 is from divider resistorsR4018,R4012,and selectedresistorRgO2g. The inclusionof 83023 is controlleOOy OeO through pins 10 and tl of U3025. The junctionoi Rg0t anO R3012 is connectedto +S V ttrr6ugnRO0rSwhen it is selected.This switchingarrangementof negative and positive levels for comparisbn with the reduced PRESELECTOR DRIVEsignat enabtesthe iop and bot_ 494Al4g4ApService, Vot. i tom extr€mesof the frequencyexcursionto be blanked. The blanking is activated by the disable function of switch U3063, which is controlled by the microcomputer. DlclTAL STORAGE(Diagrams25 and 26) The Digitat Storage circuits provide the abitity to store and process a signal before displayingit. fnis allows flicker-free displays, Even at tire'stow swesp rates required for narrow resolution bandwidth meajurements. Digitizingthe signal also allows signalprocessingand markergeneration. processingincludesdetectingpeak amplitudes .- - Th-" (Max.Hold),storing a signat (SaveA),'subtractingone signal from another (B-Save A), signal averiging (Averaging),and signal comparison(View A anOVei g)t These operations use two memory banks to independently store two completesignalstirat are Each digitized at 500 points across the lweep. Therefore, two signals may be observed simultaneoustyor processedin separateways. The markers are used in a variety of ways. There ar€ two waveform markers that th€ user sets for various measurements. In addition, an update mad <2 x2 x2 )<2 x2 x3 x3 x3 x3 x3 x3 X3 x3 X3 x3 x4 x4 X4 x4 x4 x4 X4 x4 x4 x4 X5 X5 x5 X5 X5 x5 x5 X5 x5 X5 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Yl0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 00 01 02 03 04 05 06 07 08 09 OA OB 0c OD OE OF 10 11 12 13 Y1 Y2 Y3 Y4 Y5 Y6 Y7 20 ps TIME/DIV 50 ps TIME/DIV 0.1 ms TIME/D|V 0.2 ms TIME/DIV 0.5 ms TtME/D|V 1 ms TIME/D|V 2 ms T|ME/D|V 5 ms TIMEID|V 10 ms TIME/D|V 20 ms TIMEID|V 50 ms TIME/DIV 0.1 s TIME/D|V 0.2 s TIME/DIV 0.5 s TIME/DIV 1 s nME/DtV 2 s TIME/O|V 5 s TIME/D|V AUTO MNL EXT EXTTRIGGER SINGLESWP SAVEA 2 dBl B-SAVEA 10 dB/ SHIFT RUN/STOP RESET (Selectplotter) ASSIGN2 SIGNALTRACK (PlotterB-A offsetentry) (Disablecorrections) (Greenshift/ Blueshiftcancel) REFLVLENTRY (Greenshift cancel) Y8 Y9 Yl0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y1 Y2 Y3 Y4 Y5 Y6 Y7 21 18 29 2A 25 26 1B 28 29 28 30 2C 24 20 MAX SPAN - STEP FINE CAL INTTRIG BASELINECLIP FREERUN STEPENTRY NARROW LIN (Calfactor display) VIEWB RECALL(display) WIDE (SpecialModesMenu) ZEROSPAN dB/Dtv AUTORES SPANiDTV + STEP MrN NOTSE/DISTORT|ON REF LEVELUNITS HELP (Blueshifthelp) GRATILLUM READOUT MAX HOLD (Displayerrors) PULSESTRETCHER (Diagnosticmenu) MARKERMENU FREQSTARTSTOP VIEWA STOREDISP SHTFT (Blueshiftcancel) Y8 Y9 Yl0 27 2E 31 IDENT TUNECF/MKR 75f,}a 2F 1C 1D 1E 1F u FREQ MKROFF 2 4 3 7 kHz/-dBX STEPSIZE MKR * REF LVL BW MODE PEAKFIND M K R1 + 2 dBlHz (Greenshift hetp) A MKR 5 1 6 I HzldB MHz/+dBX MKR STARTSTOP (Blueshift/ Greenshift cancel) e Option 07 onty. 7-101 Theoryof Operatlon- 494A1494Ap Service,Vol. 1 Table 7-24 (Continued) FRONTPANELSWTTCH MATRTX TABLE CODE/FUNCT|ON ROW coL X6 X6 X6 X6 X6 X6 X6 Y1 Y2 Y3 Y4 Y5 Y6 Y7 X6 X6 x6 x7 x7 x7 x7 x7 x7 x7 x7 x7 K7 x8 X8 x8 x8 x8 x8 x8 x8 x8 x8 HEX CODE MAIN FUNCTION FUNCTION DATA ENTRY MIN RF ATTEN dB 0 10 20 30 40 50 60 Y8 Y9 Yl0 32 33 34 35 36 37 38 39 3A 3B RECALL AF COUNT Y1 Y2 Y3 Y4 3C 3D 3E 3F FREQUENCY SPAN/D|V FREOUENCY SPAN/D|V FREOUENCY SPAN/D|V FREOUENCY SPAN/DIV Y5 Y6 Y7 Y8 40 41 42 43 RESOLUTION BANDWIDTH RESOLUTION BANDWIDTH RESOLUTION BANDWIDTH RESOLUTION BANDWIDTH Y9 Y10 4A 45 PLOTa/RESETTO LOCALb LINE Y1 Y2 Y3 Y4 46 47 48 49 REFERENCE LEVEL REFERENCE LEVEL REFERENCE LEVEL REFERENCE LEVEL Y5 Y6 Y7 Y8 Y9 Yl0 (Not Used) (NotUsecl) (Not Used) (Not Used) (Not Used) (Not Used) astandard instrument. bP-version only. 7-102 FUNCTION STORE(settings) MKR - CENTER COUNTRESOLN PLOTb MACRO MENU BACKSPACE SEND SROb ASSIGN 1 o o o o o o o o o o o o o o o o o o O o o o o o o O o o o o o o o o o o o a o o o o o o o o O o o o o o o O o o o o o o o o o O o o o o o o o o o o a o O o o o o o o o o o o o Theory of Operation- 4g4A/494ApServlce,Vol. 1 POWERSUppLy(Diagram10) The Main power Supply furnishesall the regulated voltagesfor the spectrumanalyzer,exc€pt the crt highvoltage:uppty. The high-efficiency desiin of the Main Power Supply reduces total weight ind conserves en_ergy.The power supplycircuitslre dividedinto th€ primary circuits and the iecondary and fan drive circuits. primaryCircuits (Diagram46) power supplyprimarycircuitsconsistof the fol_ . .ft" rowing:the rine input circuit, wnicn rectifiesand firters the incomingline voltage;and the inverter,which drives the primaryof the powertransformer. Line Input Circuits _^ Poweris appliedthroughtinefilter FLg0l, line Fuse F301, and through FLgb2 (for additional normal . mode/commonmode EMt fittering)to POWERswitch 5300. The power is then sent thro-ughline s€lectorconnector J1091. The line filter plevents power-line interferencefrom enteringthe power supply,and it also preventsinternally-generated signalsfrom radiatingout the powercord. ThermistorsRT209gand RT2097limit currentsurge at turn on. After the instrumentwarms up, the current demanddrops. The increasein temperaturedecreases the resistancevalue of the thermistorsso they have minimumaffecton the circuit. Thermalcutout switch S2109opensif thE interiorof the instrurnentreaches109"C to preventoverheatingin case the coolingfan fails. E1094 and E2095 are surge voltage protectors. When the line selectorswitch is in the 115V position, only E1094is connectedacross the line input. it a peak voltage surge in €xcess of 230 V occuis across the input,or if the instrumentis accidentallyconnectedto a 230 V source, E1094 will break down and demand enoughcurrent to open the line fuse. Whenthe instrument is operatedwith the line selectorat 230v, E1094 and E2095operatein seriesto protectthe inputagainst line surgesof approximately460 V peak. , The voltage for the line trigger is taken across CR3096. This 48 Hz to 440 Hz vottagedrives optical isolatorU5043. The pulsating5 V outputis ac coupled, then sent both to the Sw€ep circuit to provideinstru, ment triggeringat ths line frequenciosand to th€ Z-Axis board for the Power-FailDetectorcircuit. Inverter Circuit Line selector switch S302 allows instrumentopera_ tion trom €ither a lSV nominalor 230V nominalline voltagesourcg. With S3O2is in the 115 V position,pins 1 and2 of p1091 are connectedto the input power, and rectifi€rsCR3096 and.CR4094operate'in ionjunction with energystorage filter capacitorsC6101and C6111 as a full-wavedoubleqthus, the voltageacrossthe two vatueoJ the line vottage. 9lqacllol: is the peak_to_peak With S302 in the 290 V position,pins 2 and 3 of p1091 are connectedto the input powerand CR3096,CR4O95, CR3098,and CR4094operateas a bridge rectifier. As a- result, the output voltage applieclto the inverteris aboutthe same for 1lS V or 23b-Voperation. BecauseG6011and C610.tdischargevery slowly,hazardouspotentialsexist wiihintne power supply for severalminutesafter the POWERswitch is turned off. A relaxation oscillatorformed by C51lg, R5l 11, and DS5112, indicatesthe presenceof voltages in the circuit until the potentialacrossihe filtor capacitorsis belowg0 V. The inverter consists of a multivibratorthat pro_ duces a rectangularshaped signal to drive the ramp generatorand th€ inverterlogic circuits. The rampgenerator produces a low-level sawtooth ramp that is applied to the primary regulator circuit. The inverter logic circuitscontrolthe duty cycle of the inverterdriver and the inverter output stage. The primaryregulator circuit comparesthe +l 7 V supply output with a reference voltag€,then gates the inverterlogic circuitsoff and on to control the inverter duty cycle and the effective primary voltage. The inverter driver stage amplifiesthe signal from the inverterlogie circuit and drives the output stage, The output stage consistsof two power switchingtransistorsthat drive the primary of main power transformerT4021. The primaryoveicurrentsenseand soft start circuitsadd protection. Multivibrator. U6059, a low-powerS55 tirner, is a multivibratorthat operatesat approximately66 kHz and 90-7-"duty cycle. Oscillator frequencyis adjustedby R6061. The rectangutar-shaped outputsignatis appliei throughR6052to the primaryof T6044in the rampgenerator and atsodirecttyto u6053,u6063A,u60638,and u6069. 7-103 Theory of Operaton - 494A/494ApServtce,Vot. 1 u$36. PrN2 u603A PIN 3 u6036, P|l{ 7 Figure7-34, Primary.egutator Input and output waveforms. Ramp Generator. The ramp generatorcircuit is a gated sawtooth generator that consists of T6044. Q5023, Q6034, Q5032, and related components. The negative excursion of the rectangularshaped signal from U6059 is coupled across T6044 to force e6094 into conduction.This foruvard-biases e5032. lts coll€ctor moves toward +17 V to charge Csoggto this value. 06034 loses drive (since the pulse coupled across T6044 has died away)and the two transistorscut off. 05023 acts as a constant-cunent drain to linearly dischargeC5038. This signal is coupledacross divider R5036/R6032, then apptiedthrough C6Og9to the input of comparatorU6036,which is part of the primaryregulator. Prlmary Regulator. The primary regulator circuit consistsof comparatorU6036and U6046,photocoupler U6043,and relatedcomponents. The circuitvaries the duty cycle of the driving signal for the inverter. The +17 y is dividedby R6038and R6097to approximatety +4.8V and apptiedto the invertinginput of U6036. Thi +5 V referenceis apptied through R6022 to the noninvertinginput of u6036, where it is combinedwith the ramp signal from the ramp generatorstage. The noninvertinginput receivesa sawtooth signal of approximately 500 mV peak-to-peaksuperimposedon a +S V dc level.This is comparedwith the +4.9 V on the other input, so the comparatorswitches with each sawtooth cycle. Note in Figure 7-34 that as the level at pin g (which corresponds to the +I7 V supply variations) 7-104 rises and falls, the duty cyele of th€ output waveform variesaccordingly. The output signal of U6036is appliedto opticalisolator u6043,which drivesthe inputof u6069, lnverter Loglc. This stage consistsof steeringflipflop U6063B and dual quad input NAND gate U6069. The flip-flop is connectedso it toggl€s to enable first one gate then the other. The sguare-wavgoutput from the multivibratordrives the clock input of U60638. The signalalso enables each gate to ready it for the other signals that arrive later. The output state of U60638 determines whether the upper or lower section of U6069will be ready for the enablingsignal. Assumethat the Q output of U60638is holdingpin 2 of U6069high. This meansthat the complementoutput of the latch is holdingthe oppositeside of the gated pair disabled. When the output of U6043moves high, U6043controlsthe duty cycle of the inverter,the upper section of U6069 produces a low state. This causes currentto flow through half the primaryand Q6078only. On the opposite cycle of the multivibratorsignal, the latchis reset, so the lower half of U6069is enabledand Q6077is now in the conductionpath. a o o O o o o a o o o o o o o a o o o o o o o o o o o O o o a o o o o o O o o o o o a o O o o o o o o o o o o o o o o o o o o a o o o o o o o o o o a O o o o o o a o o o o O o Theory of Operation - 494[l4g4Ap Servlce, Vot. 1 TRIGGERIN (PIN 2I lmCONTIOL VOLTAGE = 6.6 v tt(v1( f =140k.95 pF l-----J ll F .,o*.,P oR AFIERCuRRENT.,,.,__I l.- "o.*ro. o"enanon*l 2727-161 Flgure 7-35. Tirning waveformsfor soft-start clrcuit Inverter Driver. The inverter driver consists of transistorsQ6072and e6079, transformerT60g1,and relatedcomponents.This is a push- pull amplifier with diode protectionin the collectorcircuitsto pr€ventdam, age frorn voltagetransientsduringoperation.The drive signal is inducedinto.the two slcondary wlndings of T6081and couptedto the outputstage. ^ 9utput Stage. This circuit consists of transistors Q.2071and Q2061,series LG tank L10g1/C1063,and transformer T4071. The output transistors are connected in a half-bridgeconfiguration.The two transistors drive the series tank, which acts as an energy storage element and. an averaging circuit. Outp-ul . transfonnerT4071is driven by tne tanf circuit,anctit, in turn, drivesthe secondarycircuits. Primaryregulation,-as discussedpreviously, occurs when the duty cycle of the inverterdriver main switch_ ing transistorsis varied.Maximumduty cycle occurs at low input line (90V) and fulty toadedoutput. At maximumduty cycle,bothtransistbrsare off for only 1Ao/o of the period, or l.Sps. This short interval allbws any stored base chargeto deplete,so there is no chance both transistors will conduct at the same time. Minimumduty cycte occurs at high input tine (132V) and minimumloaded output. At minimumduty cycle, each transistor is off for approximately6 ps, or 4O;/oot the total period. Soft'Start and Prlmary Over-CurrentClrcuits. The soft-start circuit consists of U6053and associatedcomponents. Soft-start graduallyincreasesthe switching transistofs duty cycle at turn-onor after over-current shutdownto preventexcessivetranslstorcurrentdue to chargingoutput capacitors. R€fer to Figure 7-35 for timingwaveforms. The primary over-currentcircuit protects against secondary shorts that could destroy the switching transistors. T2080 s€nses the collector current in Q2071and createsa vottageon pin 5 of U60468. lf the bias on pin 5 surpassesthe 2.5 V referenceon pin 6, at approximately 6 A through e2OT1, the output of U60468sets U6063A. U6063Ais a D-typeflipflop used as a timer to shut down the inverterlogic for approximatety1 s and to reset the soft-startcircuit. 7-105 Theory of Operation - 4g4Ll4g4ApService, Vot. 1 Secondary& Fan DriveCircuits (Diagram47) The secondarycircuits includethe rectifier_filter circuit, which rectifies and filters the secondaryvoltages; the voltage reference circuit, which furnistrei a stiOte and precisereferencefor the regulators;and the regulator circuits,which control the voltage and currEntlor the suppliesthat requirepreciseregulation. The Fan Driver board (A30Al) contains the Fan Driver circuit, which furnishes the appropriate drive current for the fan motor. lt also contains the OverVoltage Protection circuit, which shuts down the +5 V supplyin case of over-voltage. Reclifler-Filter Circuits TransformerT4071 has three secondarywindings. The first furnishes current to the +3OOV and +100 V supplies; the second furnishes current to the -7 V, +7 V, and +9 V supplies;and th€ third furnishescurrent to the +17V and -17 V supplies.The linearregulated supplies (+5 V reference, +5 V, -5 V, +iS t, and -1 5 V) derive their cunent from the rectifier-filter circuits. The ac voltage from pins 7 and g of T4071 is qp]i"_q to_ a bridge rectifier composed of CR3053, CR3056, CR3055, and CR3054. The output of this rectifteris filtered, then appliedto the r€mainderof th€ lnstrumentas the +100 V supply. . The +300 V supplyis derivedby stackinga 2X multiplier on the +100 V suppty. CR3O52, CRiO42,CR1O34, CR1022and associated capacitors,compose this circuit. - The ac voltag€ from pins 9 and 10 supplycurrentto full-wave rectifier CR4061/CR4062. The output is fltered and sent to the rest of the instrumentas the *9 V supply. Two other taps off the samewinding(pins 11 and 12) supply current to the bridge rectitierihat consists of CR4063, CR40S7,CR40S3,and CR4065. The output dividEs across filter capacitorsC9051 and C4051 to become the +7 V and -7 V supplies. The +7 V supply is only used on the Main power Suppty board; the -7 V suppty is used by other circuits in ihi instrument. . .The third winding of T407.1(pins 13, 14, and 15) fur_ nishes current to full-wave bridge rectifier CR5052, CR5062,CR5065,and CR5055. The output is divided to bEcometh€ +lZV and -17V supplies.The -lZV s.upflyl: used onty on the Main power Supply board; the +17 V supplyis used both on the Main eower Sup_ ply boardand elsewherein the instrument. 7-106 +5 V Voltage ReferenceSupply The +17V is divideddown by a voltage dividerto Zener diode VR6026. The 6.2 V from VR6026is divided across R6029, R6028, and R6023. CR5031provides a regulatedsourceof bias to VR6020after +15 V comes up. The +5 V REF adjustment,R6028,is set by monitoring the +15v supply and setting it tor a precise +15.00v. Regulator Circuits The +15V, -15V, +5V. and -5V are regulated. Sinceall four regulatorsare basicaltythe same,onlythe +5 V regulatoris described. Significantdifferencesare discussedfollowingthis description. U2O37A,the voltage regulator part of the circuit, compares the +5 v^g. and +5 v sENsE voltages, amplifies the difi€r€nce,and applies the change to driver transistorQ2023. The changeis amplifiedby this stage and appliedto the base of seriss-passtransistor Q2024to change its conductionand correct for the original changeto the +5 V. The +5 V sense samplesthe +5 V at a distributionpoint on the Mother board. This signalcompensatesfor voltage(lR) lossesto that point. U20i!78 is the curent limiter portion of the regutator. The amplifierdet€cts the voltage differentialacross the current sensing resistor R2017,which is in seri€s with the output load. When the overloadthresholdis reached,as set by R2017,R2039,R3032,and R3031. U20378 removes bias current from driver transistor 02023 and Q2024. The negativebias on R3031ailows the limiter to rernainactive under short circuit conditions. The +15 V regulatoris identicalto the +5 V regula, tor, except that the ounent limiter, U2O37Dsupplies additionalpositivebias for Q2031when it is not active. The -15V regulatoris virtuallyidenticalto the +5V regulator. The -5 V regulatordiffersfrom the othersin that a driver stage is not required,so the preamplifiers clrives€ries-passtransistorQ5013 directly. *5 V Over-Voltage Protection Circuit Zener diode VR1015 and SCR 01010 form the over-voltage protection circuit. lf the +5 V supply exceeds +6 V, th€ potential on the gate of 01010 biases it into conduction.This forces the +5 V oupply to ground potential;it remainsat ground potentialuntil the mains poweris turnedoff and turnedon again. o o o o o a o o o o a o o o I o o o o o o o o o o o o o o o a o o o o a o o O o o o O o o o o t I o o o o o a o O o a o O o o o o o o o o o I a o o a a o a o o a a a o o o a o Theory of OperationFan Drfve Circuit The fan drive circuit provides a temperaturecontrolled current drive to the fan motor. if,e circuit pro1y:?: " thr€e-phase_driveculent of approximatety 240 Hz operating freguency. The actuar ctrive circuit operates as a ring counter. TransistorsOl03g and e1044 form a vottag€ regu_ by th€rmistor RT2O4S. The value of !:tlT- _c_ontrotted RT2045varies inverselywith tf," int"in"i temperatureof the anatyzer. The therinistor and ,".Gioi nzo+2 fix the turn-onvoltageat the emitterof e1044 ai approximatety -13 V. The voltage goes mor€ positive as'tire andyzt,Jr warms up. The ring counterconsistsof three stages. Because of circuitimbalances,whenthe anrtyzer-is-nrst powered up one-of the stages beginsto con'ductbefore the oth9r1 Tfie stag€s consastof e1025 .nJ-etOzO, ,itt RlGlt/C1092 and RtOzZClOle as- ine' trequencye2025 anO-'-btOtg, with 99t^"ITjli.nS_-components; R1033/C1033and R2Ot9/Ct01g as the frequency_ $t^"Tjl'lg,components; and e2030 *itt R20141C2012and R2016/C2O18as "nO-OZOZO, ite rrequencydeterminingcomponents. 4gtA/4g4Ap Servlce, Vot. 1 Assume that the stage with e1025 anct e1020 begins to conduct first. The collector vottageof e1025 is near -1T V, which fixes that point as the most nega!y"-^rl _a_rlng consisting ot itrOgz, R1029, niOig, R2036,R2034,and RiO36. Sincethe emi*er vottage of the threecontroltransistors(OfO2O,el01g, anOOiOeO; is the same, the voltage division around ihe resistive ring is such that el0lg and e2020 remain cut ofi. {he1 the capacitivecharge that hotds etO2O in conduction bleeds off, the transistor cuts off and th€ next stage can begin to conduct. Operationof the other two s.!ag,es is prevented until the RC cornbination discharges. The fan motor inductanceworks in conjunctionwith the RC componentsto regulate the switch_ ing of the stages. This ring-counteraction builds up slowly until the circuit producesa three-phasedrive signatof approximat€fy 240 Hz. Th€ inductanceof the m-otorcoils iound off the othenrvisesharp comers of the drive signal; so, the current waveformal p2O2Opins 1, 2, and 3 looks s-imilarto the output of a half-wave rectiher. The fan drive signals are phased approximately120 degrees apart. 7-107 o o o o a o o o o o o o o a o o o o o o o t o o o o o o o o o o o o O a o o O o o o a o o o a Sectlon 8 - I o o o a o a o o o I O o o o o o o o o o o o a o o o o o o a o o o a o o o o o o 494[l4g4Ap Servlce,Vot. I OPTIONS This section describesthe optionsavailableat this time for the spectrum analyzer. Ct.ng"" .in specifications,.if any, are describedin this section.Contaet your local Tektronix Field Office or representativ€ for additionat information and ordering instructaons (unlessothenriseindicated). Optionsare usuailyfactory installed;however,field kits are availablefor some options. Contact your local Tektronix Field Office or r€presentativefor information on fiEldkits and their installation. Options A1-AS lA1 | }IORTH AMERICAN 120V/154 (power Gord Options) EUROPEAN 220Yl104 There are five int€rnataonalpower cord options offered for the spectrum analyzer, The physical . descriptionsof the cord plugs ar; iltustrateC-inRgure 8-1.. For ordering purposes,refer to the Replaceable MechanicalParts list in th€ ServiceManual,Votume 2, for th€ Tektronix part Number. Option Bl (service Manuals) Option81 includesa set of servicemanuatswaththe instrument. Options Ml-M3 (Extended Service and Warranty Options) ut( 2.rcV/134 | ^'J AUSTRALIAN 2&Vl10A There are three extended service and warranty options ofiered for the spectrum analyzer tnat 96 beyond the basic one-year coverage {see Table g_i). Contact your focal Tektronix Field dtric; or representative for additional information about your specific requlrements. EXTENDED sERv'clTlt'D8;ARRANTy opl oNs Two routine calibrations to publistled specifications;one each in years two and Four routine calibrations to NORTH AMERICAN 240V115A swtss 220v1104 Figure 8-1. Intemational power cord options. published specifications;one each in years two, three, four, and five of product ownership, plus four yearsof remedialservice 8-1 o Optons - 4944/494Ap Servlce, Vol. 1 Option 07 (75O Inpur) Option 08 (Delete External Mixer Input) Option 07 provides an optional 7SO input and *20 dBmV calibratorin additionto the standard50O input and +20 dBm calibrator. Also, a 300 kHz Resolution Bandwidthfilter replacesthe 100 kHz fitter. The 7SO input replaces the €xtemal mixer capability. Table g-2 lists the changesand additionsto the standardinstrumsnt electrical characteristics. These characteristics apply to the 75o Input except for the 3@ kHz 50 o Input sensitivity. Option08 deletesthe ext€malmixer capability.The frequencyrange is 10 kHz to 21 GHz. Table 8-2 OPTION 07 ALTERNATE SPECIFICATIONS Characlerlstic SupplementalInformaton Input lmpedance R€tumLoss 5 MHz to 800 MHz 800 MHz to 1000MHz 75(} 17 dB (1.35:1VSWR) 13 dB (1.6:1VSWR)with >10 dB attenuation +78 dBmV, 100 Vo. maximum (dc f peak) MaximumInputL€vel CenterFrequencyOperatingRang€ StaticResolutionBandwidth FrequencyResponse 5 MHz to 1000MHz CoaxialInput 1 MHz to 1000 MHz Within 2ao/ool selected bandwidth 300 kHz resolutionfilter replacesthe standardinstrument100 kHz filter. *2.0 dB about the midpointbetween Frequency response is measured two extremes with )10 dB RF attenuation. The response figure includes the effects of: . inputvswr r gain variations Variationsin displayflatnesscontribute about 1 dB to the responsefigure. Typically <3 dB down from the 5 MHz r€sponse, -68 dBmVto +89 dBmV 1 MHz to 5 MHz Reference Level Range +99 dBmVis achievablein the reducedgainmode. Calibrator Output (cAL OUT) Level +20 dBmV *0.5 dB at 100MHz 100 MHz comb of markers provide amplitude calibration. Phase locked to frequency reference. Outputlmpedance 8-2 75o nominal o O a I o o a o o o o o o a o o o a o o o o o o o o o O a o o o o O o o o o o o o O o o o a o o o o o o o O o o I o o O o a o o o o o I o o o I o a o o o O o a o o o o o o I Optons _ 494Al4g4ApServtce,Vol. 1 Tabtc B-2(Continued) OPTION07 ALTERNATE SPECIFICATIONS Characterlstc Sensitivity 75O INPUT 5-1000 MHz Performanc€Requlrement Eguivatenttnput Noi"t 10 Hz 100 Hz 1 kHz -85 5OOINPUT 300 kHz Resc tion Bandwidth 10 kHz 300 kHz I MHz 3 MHz -66 -s6 -41 -36 I -31 EqulvalentInput Nolso In dBm vs. Band -76 land 1 Band 2 Band 3 Band 4a Band 4b -90 Supplemental Information -84 -u -70 -65 Band 5 -65 ent maximum input for each resolution easuredat 25" C with: . 0 dB anenuation(MinAtten0 dB) o NarrowMdeo Filteron . V€rticalDisptay2dBlDiv o Digital Storageon o Max Hold off o Peak/Averagein Average . 1 sec Time/Div o Zero Span . Inputterminatedin characteristic impedance tS.4GHzto l2 GHz. bl2 GHz to 1g GHz. Options 21 and 22 (Waveguide Mixers) Option 21 includesa set of hrvohigh-performance waveguidemixers (18 to 40 GHz). Optio-ni2 includesa set of-threehigh-performance waveguidemixers (1g to 60 GHz). Both options also includJan interfacecable and a diplexerassembly. SEeTableg-Ofor characteristics. For ordering purposes, refer to the back of the Replaceable Mechanical parts list in the Service Manual,Volume2, for the Tektronixpart Number. Tabte &3 OPTIONS21 AND 22 CHARACTERISTICS The characteristics in Table8€ for Options 21 and22 assumethat the waveguidemixer is connect€dto a continuouswave signal source and that PEAKIAVERAGE is adjusted for maximum signal amplitude. The signal must be stable (not frequency modulated more than the resolution bandwidth);otherwise,frequencyresponse performancecannotbe met. Table 8-3 (Continued) OPTIONS21 AND 22 CHARACTERISTICS CharacterisUc SENSITIVITY EquivalentInput Noise at 1 kHz ResBW PHYSICAL Weight Option21 Option22 Descrlpton With standard accessories,except manuals. Adds 10 oz. (0.28kg) Totafof 48lbs, I oz. {22 kg) for stanion21. Adds 13 oz. (0.37 kg) Total of 48 tbs, 11 oz. (22.1 kg) for STANDARD ACCESSORTES DiplexerAssembly Adapter;tnc to sma Cable;semi-rigid Cable.sma to sma 8-3 O Optione - 494A/494ApService, Vot. 1 Option 39 (Sitver Battery) Option 42 (110 MHz lF Outpur) . Option 39 provides a silver battery for the instru_m€nt'sbattery-poweredmemory. The battery life at +55"C is 1-2 years and 2-5 years at +2SoC. W€ recommendremovingthe silver batteriesduring longterm storage. Option42 providestor a rear-panel110 MHz tF signal with a bandwidthgreEterthan 5 MHz, which makes the spectrum analyzer suitable for broadband sweptrEceiver applications. Table 8-5 lists the electrical characteristicsof the 110 MHz output. Option 41 (Digitat Radio) Oplion 45 (MATECO) Option41 inctudesthe followingteaturesto provide extra measurem€ntcapabilitiesfor Digital Microwave Radio. Table 8-4 tists the changes troh tne standard instrument. This option providesthe spectrumanalyzerwith the software/firmware nec€ssary to meet Modular Automated Test Equipment Compatibitity Options (MATECO). A MATECO Programmers Manual is includedas an accessorywith this option. o A wider bandwidthpresel€ctorprovidesbettersignal symmetryin the digitalradio bands. o A narrowvideo fitter(approximately 1/3000thof the resolutionbandwidth)improvesamplitudevariation analysisat specificfrequencyspansthat are unique to the digitalradio measurements. o Option 52 (North American 220V, Option 52 provides a North American 22O V configurationwith the standard pow€r cord. The fuses are replacedwith 2A slow blow. llprovcd frequency span/div accuracy at s MHz/div span providesaccuratesignal bindwidth measurements. Table 8-4 OPTION 41 ALTERNATE SPECIFICATIONS Gharacteristic FREOUENCY FrequencySpan/Div Accuracy SupplementalInlormation 5 MHz/div,within *1% At center frequency of 6 GHz and 11 GHz Measuredover th€ center6 divisions of Video Filter Narrow 3O Hz (1i3000th)with 100 kHz reso- PreselectorFilter Bandwidth 1.7 GHzto 5 GHz 5 GHz to 16 GHz Hz to 2'l 8-4 3OMHz minimum 35 MHz minimum o o o a o o a o o o o o o o a o o o o o o o o a o a o I t a o o o o o o o o o o o o o o a a a o o o o o I o o o I o o o o o o a o o o I o a o o O a o a o I I a o a a O o o a Opdons _ 494A/4g4ApServlce,Vol. 1 Tabte 8-5 OPTION42 ELECTRICAL CHARACTERISTICS Characteristic tu Mnz tF gutput CenterFrequency goesanoffi B"ndp""" C[ptJ-- symmetry "ooultn"Gffi quency Power Output Band1 Band5 PerformanceReguirement SupptementalInformation 1 0 8 . 5M H zt o 1 1 1 . 5M H z )5MHz < 0.5 dB t1.0 MHz (0dBm ) -40 dBm With -30 dB input and signatat futl screen. In MIN DISTORTION modeonty. 1 dB compressionof output ) 0 dBm. o o o a I o o I O I I I o o o I I o o o o o o o o o a o I a o o a o o a o o t o o o o a o o a a O o a I Appendix A - GLOSSARY gtossary is presented .._-Il"^^1"_l':,*ing understandthe terms as they aie used as an aid to in thi" do"urn"nt and with referenceto spectrumanatyzers. o t o O o o I o a t o o a o o o o a a o o o a o o o o O o Llne Display. The display produced on a spectrum anatyzerwhen the resolution'bandwidih i" t"." than the spacingof the signarampritudesof the individuarfrequ€ncycomponents. I Llne SpectruT.A spectrumcomposed of signal tudesof the discretefrequencycomponents. ampli- t o o o o I 4g4Al494Ap Service, Vol. 1 GENERALTERMS Center Frequency. That frequency which corresponds to the centerof a frequencyspan,expresseO in hertz. Baselinecftpper (rntensrfier).A meansof increasing the brightnessof the signatretativ" i;l;; basetinepor_ tion of the display. dBc. Decibelsreferencedto carrierlevel. 1_8i.. .A unit_to express power level in decibelsreferenced to 1 milliwatt. dBmV. A unit to express voltage levels in decibels referencedto 1 millivolt dBpV. A unit to express voltage levels in decibets referencedto 1 microvolt. Efrectlve.Frequency_.T:1g.".That range of over which the instrument performanie frequency is specified. The lower and upperlimits are n".tr. "if.""r"t:in EnvelopeDisplay.The displayproduced on a spectrum anatyzerwhen the resotutibnbino*iOt ii greatertnan the spacingof the individualtrequenci "o,ipon"nt". Freguency Band. A part of effectjve frequencyrange over which the freouencycan be adlusted, Lxpressedin hertz. Full .Span (Maximum Span). A rnode of operation in which the spectrumanatyzer tr"qu"n"y band. """n, "n "ntir" lnterm-odulation Spurious Response (lntermodulation Distortion - tMD). An..unwanre; ;d;i;* anatyzer responseresultingfrom the mixingof the nth order fre_ quencies,due to non-linearelemints ot in" analyzer, the resultant unwanted ,".fonr"spectrum being displayed. Markers. The instrumentusesthreetyp€s of markers: WaveformMarkers. _ Whenthe Markerfunction is enabled, it provides a movable cursor with readout of frequencyand amplitudeat the marker position. Whenthe delta markermode is enabled,a second marker allows operations and readout between the two_ marker positions. (Also see WaveformMarkerTerms.) UpdateMarker. - Marks the currentsweepposi_ tion in a digitat storage disptay as the disptiy is beingupdated. Video Mark 9{"_rryl VTDEOIMARKERinpul from a Tektronix 1405 TelevisionSideband Analyzer. The Video Markersmark frequenciesof intereston the televisionsignal. MaximumSafe Inputpower WITHOUTDAMAGE...Themaximumpower apptied at the input whichwill not causedegiadation oi the instrument characteristics. WITHDAMAGE.The minimumpower appliedat the ' inputwhich will damagethe instrument. Pulse Sfetcher. A pulse shaperthat producesan out_ put pulse, whose duration is greater than that of the inputpulse,and whoseamplitudeis proportional to that of the peakamplitudeof the inputpui"e.' ScanningVelocity. Frequencyspan divided by sweep timeand expressedin hertzpir second. Signal ldentitier. A means to identifythe spectrurno, the inputsignalwhenspurious,esponsesare possible. Video. The term is used heregenerallyto meana sig_ nal afterthe detectorstage. lt can also be usedmore specificallyto meana baseband(zerocarrierfrequency) television signal. VideoFilter.A post detectionlow_passfilter. Zero Span.A mode of operationin whichthe frequency spanis reducedto zero. A-1 I Gfoesary- 494[l4g4Ap Service,Vol. 1 FREQUENCY TERMS DisplayFrequency.The input frequencyas indicatedby the spectrumanalyzerand expressedi; hertz. Frequency Span (Dispersion).The magnitudeof the frequencyband displayed,expressedin-hertz or hertz per division. FrequencyLlnearityError.The error of the relationship betweenthe frequencyof the input signal and the frequencydisplayed(expressedas a ratio). FreguencyDrlft Gradual shift or change in displayed frequency over the specified time Oue to internal changes in the spectrum analyzer,and expressed in hertz per second, where other conditionsremain constant. lmpulse Bandwldth.The displayedspectrallevel of an applied pulse divided by its spectral voltage density levelassumedto be flat withinthe pass_band. ResidualFM (lncidentalFM). Short term displayedfrequencyinstabilityor jitter due to instabilityin th-espec_ trum analyzerlocal oscillators,givenin terms of pLakto-peakfrequencydeviationand expressedin hertz or percentof the displayedfrequency. Shape Factor (Skirt Selectivlty).The ratio of the fre_ quencyseparationof the two (60 dBi6 dB) down points on the response curve to the static resolution bandwidth. Static (Amplifier)ResolutlonBandwldth.ThE specified bandwidthof the spectrumanalyzer'sresponseto a cw signal, if sweep time is kept substantiailylong. This bandwidthis the frequencyseparationof two pointson the responsecuryerusually6 dB down, if it is measured eitherby manualscan (true static method)or by usinga very low speedsweep(quasi-staticmethod). Zeto Pip (Response). An output indication which correspondsto zero inputfrequency. AMPLITUDETERMS Detlectlon Coeflicient. The ratio of the input signal rnagnitude to the resultant output indication. Tne ratio may be expressed in terms of volts (rms) per division, decibels per division, watts per division, or any other specified factor. Dlsplay Reference Level A designated vertical position representing a specified input level. The level may be expressed in dBm, volts, or any other units. A-2 Display Flatness. The unwanted variation of the displayed amplitudeover a specifiedfrequencyspan, expressedin decibels. Relative Display Flatness. The display ftatness measuredrelativeto the displayamplitudeat a fixed frequencywithin the frequencyspan, expressedin decibels. Display flatness is closely related to frequency response. The main difference is that the spectrum display is not recentered. Display Law. The mathematical law that d€fines the input-output function of the instrument. The following cases apply: Llnear - A display in which the scale divisions are a linear function of the input signalvoltage. Square law {power} - A display in which the scale divisions are a linear function of the input signal power. Logarithmic - A display in which the scale divisions are a logarithmic function of the input signal voltage. Dynamic Range. The maximum ratio of the levels of two signals simultaneouslypresent at the input which can be measured to a specified accuracy. Display Dynamic Range. The maximum ratio of the levels of two non-harmonically related sinusoidal signals each of which can be simultaneouslymeasured on the screen to a specified accuracy. Frequency Response. The unwanted variation of the displayed amplitude over a specified center frequency range, measured at the center frequency,expressed in decibels. Gain Compresslon. Effect seen at an input level where the analyzer circuits have less gain than their small signal values. This is usually specified at the 1 dB compression point in terms of the input level requiredto reduce the gain by 1 dB. Input lmpedance. The impedance at the desired input terminal. Usually expressed in terms of vswr, return loss, or other related terms for low impedancedevices and resistance-capacitance parameters for high impedance devices. o o O a o O o o o o I o o t o I a o o o o o o o o t O t o o o o o o O o I a o o o I o o o o O o o t o o t o I o O o o o I o o O o o a o a o o I O I o I o o Glossary_ 4g4Al4g4ApService,Vol. 1 Sensitvity. MeasureoJ a.spectrurnanalyzef s abilityto display minimumreversignars, -ifei in vorts or decibets. Intermediate.tr"qu"n"V "*pi".J"o bandwidth, displaymode,and any other innueniinji"'.to* must be given. Spu.rious Response. A respons€ of a spectrum _. analyzerwhEreinthe displayed'frequency is not related to the inputfrequency. Hum Sidebands. Undesired responses cr€ated within the spectrum analyzer, on the display, that are separated trom "pp"urlng the desired response by the fundamentalor harmonic of the power linefrequency. Noise Sldebands.Undesiredresponse caused noiseinternalto the spectrurnanalyzerappearingby on the displayarounda desired,".ponr". Resldual Response. A spurious response in absence.ofan inputsignal. (Noiseund:r.ro pip the are excluded.) DIGITALSTORAGETERMS View (Display). Enables viewing of contents of the chosenmemorysection(e.g.,'.VidwA, displays the contents of memory A; ',ViewB" displaysthe contents of memoryB). Max Hold (peak Mode), Digitallystored display mode which,at eachfrequencyaddresi,comparesthsincoming signal level to the stored level and retains the greater.ln this mode, the displayindicates the peak lev€l at each frequency after several successive sweeps. Scan Address. A numberrepresentingeach horizontal data position increment on a direited Ueam type display. An address in a memory is associatedwith eachscanaddress. Volatile/Non-volatile Storage.A volatilestoragesystem is one whereany total loss of power to the systemwill result in a loss of stored information. Non-volatite I"Tory is not subjectto the instrumentpower supply for its storage. WAVEFORM MARKER TERMS DigitatfyStored Disptay-A.disptaymethodwhereby displayedfunctionis held_.in'a'digitalmemory. the tne displayis generatedby readingthe dita ouf ot mernory. Live Trace. Any combination of the A trace and/or the B trace when SAVE A is off. Digltally-Averaged Display. A disptayof the average value of digitized data computedby combining serial samples. Active Trace. Live Trace or the B-SAVE A trace (a trace recalled into B is not an active trace). MultipleDisptayMemory.A digitailystored disptayhav, in_g_ multiple memory sectionswtrictr b" displayed separatelyor simultaneously. ""n Clear (Erase).presets memory to a prescribed state, usuallythat denotingzero. Save. A functionwhich.inhibitsstorageupdate, saving existingdata in a sectionof a multif,le,i"rory 1".g,, SaveA). Inactive Trace. SAVE A trace or a trace recalled into the B display before the sweep is started. Primary Marker. The marker displayed in the Single Marker mode whose frequency and/or position is when tuning with the CENTER/MARKER FRE_ gllseo QUENCY control. When two markers are displayed, the brightest marker is the primary marker. Secondary Marker. The "second,, marker; displayed only in the Delta Marker mode. I I o o O o o o I A-3 o o o o a o o o O o o o o o t o o a o a a o o a O o t o I o C o I o t o o o o o o o o o o o a o o o o REVISIONINFORMATION Manual Part No. 07G556O-00 Flrst prtnilng hduct Revleed I I o ManualInsertStatus O I o o I o o I o o O o o O a a t o t a I o o O a CHANGEREFERENCE SEP1987 FEB1988 MAY1988 JUN 1988 MAY1990 JUN1990 SEP1991 c11887 M63911 c2lsge M66071 c21590 C2l590REVISED c1-991 I I o I o o O o I Page 1 of 1 Effective Effective Effective Efiective Effective Effective Effective JAN 1987 o o o o a a o a o o o o o o a o o I o a o o o a O a t o I o t o o o I I o o I o o o o t o o o I ) o t o o I t I Tektronix. MANUALCHANGEINFORMATION Cornnt|ncd to Ercdl€E Date:9-1-87 Product:See list INSTRUMENT 494N494APOp€rators 494N4944P Service1 ChangeReference: C11887 ManualPartNo:Seelist gN 8010227and up Part No. 070-s557-01 070-5560-00 Feplaca sanshlvlty table In the speclflcailon secilon wlth the tabte betow. o o I o o I o I a a o o o o a o a o I I o SENSmV|TY Equivalent Input Noise in dBm vs. ResohrtionBandwidth Frequency Range Band1 10kHz-1.8 GHz Bands2& 3 1.7GHz-7.1 GHz 10Hz 1 kHz 10 kHz -134 -12s 115 -105 -95 €5 -80 -12s - 11 9 -109 -99 -89 :19 -74 o o o I I 10OkH2f 3 MHz Band 4 5.4 GHz-12 GHz - 1 1I -105 -95 -85 -75 €5 -60 Band4 12GHz-18 GHz -107 -100 -90 -80 -70 €0 -55 Band5 15 GHz-21 GHz # -106 -99 -89 -79 -69 .59 -54 Band5' 18GHz-27 GHz - 11 6 -108 -100 -90 -80 -70 -65 - 1 11 -103 -95 -85 -7s €5 -60 Band7'& 8. 25.5GHz-€0 GHz Band9. 50 GHz-€0 GHz (1 kHz Bandwidlh) Typically-95 dBm at 50 GHz,degradingto -85 dBm at 90 GHz. Band10' 75 GHz-140 GHz (1 kHz Bandwidth) Typically-90 dBm at 75 GHz,degradingto -75 dBmat 140GHz. Band11' 11OGHz-ZZ0GHz (1 kHz Bandwldth) , Band12' 170GHz-825 GHz (1 kHz Bandwidth) Typkafly-80 dBm at 1'l 0 GHz,degradingto -65 dBm al220 GHz. Typlcally-70 dBmat 170GHz,degrading to -55dBmat 325GHz. t I t 1 MHz 1O0Hz I o o productGroup:26 ' SpecifiedusingexternalTEliTRONlX WavequideMixers. b Option07 replacesthe 100kHzfilterwith 300 a kHz fitter. # Revised8-25-87 o o o o t o I a O o o I o o a I o a o o O a o o o o o o I o t o t a t o o o o o o o o I I a I o o a o a o I o o o o a o o Tektronix" Cdmfrittsd to Erca{ence Date:2-22-88 Producl:seelist Inslrument 4941Pservice1 495/Pservice1 49?NAPservice1 494AIAPservice't MANUALCHANGEINFORMATION ChangeReference: M63911 ManualPartNo: seelist Manual 070-4416-00 070-5084-00 070.5565-00 070-5560-00 productGroup:26 Efr/sN 8011156 8,020228 8010702 8010383 ReplaceDeflectionAmplifiers Gainand Freguency Besponsein the AdjustmentProceduresection with procedurebelow. I ) o o t a O o o a o a o I o o o o o a O o o o o t t 3. AdjuslDeflection Ampli{ier Gain,Frequency Response, andreadoutGainandoffset. (C3080,C3060,C1030,C1040,R1055,R1066,R5020,andR5030on the Deflection Amplifier board). A. Connectthetestequipmentas shownin figure5-4.Setthe TIME/DIVto 1 ms. Positionthe traceon the bottomgratiarleline. B. Setthefuncliongenerator for a 500H2sinewave controls signal,withan amplitude of 0 to + 4V. Connecta jumperbetweenpins1 and5 (ExtVideoSelectandGroundrespectively) on the ACCESSOFIIESconnector.Deactivate VIEWA andV|EWB, andsel TRIGGERING to tNT. C. AdjusltheVertGain,R1066(Figure5-2)for a fuilgraticute screendisptay. D. Disconnect the500H2signallromtheMARKERA/IDEO input.Removethejumperbetweenpins1 and5 of theACCESSORTES connector.ResetTriggering lo FREERUN. E. SetTIME/DIV to MNL.MonitorTP2on theSweepboard(Figure5-2)witha vollmeter (DigitalMultimete4. SETTHEMANUALSCANcontrolfor0.0V readingon thevoltmeler(TP2),Sel lhe horizontal POSITION controllo centerthe CRTbeam(dot). F. ResettheMANUALSCANcontrotfor a readingof +5V alTpz. G. AdjustHorizGain,R1055(Figure5-2)to positionthe crt beamto the rightgraliculeedge (1Oth graticule line). H. Resetthe MANUALSCANcontrolsuchthatthe crt beam(dot)moveslo the leftedgeot the graticule andcheckthalthe voltageat TP2 is now-5.0V+ or - 0.2V. l. Disconnect the vollmeter, and setTlMgDlVto AUTO,changethetesloscilloscope to EXTTBIGGER, applylhe Readout CIf signalatTP1038on theCRTFleadoul board(Figure5-5)to thelestoscillosmpe ExtTriggerinput. Setthe testoscilloscope Time/Divto 2us. Page1 ol 5 Product: see list Date:2.22-88 Chg.Ref.M63911 J. Setthe SpectrumAnalyzercontrolsfor a lriggeredsweep,thenswitchthe sweepoft by activating SINGLESWEEP,and ensureREADOUT is on. K. Monitorlhe drains(metaltabs)of 04040 or Q4030,on lhe dellectionAmplifierboard,withtestoscilloscope.See Figure5-6 L. AdjustC1040for bestfrequencyresponse(noovershootor roll off) as viewedon the test oscilloscope. M. Monitor the Drains(metaltabs)of Q4020or Q4010,on the Amplifier board,withthetesl oscilloscope. N. AdjustC1030(Figure5-6torthe bestresponse). O. Monitorthe Drains(metaltabs)of 02090or Q1090,on the Deflection board,withthelest amplifier oscilloscope. P. AdjustC3080for bestresponse. Q. Monitorthe drains(metaltabs)ofQ1070or Q2070,on the Deflection/amplifier board,withthetest oscilloscope. R. AdjustC3060lor bestresponse. S. Disconnect the test oscilloscope. Checklhe appearance of the letter"2" in GHZof the frequency readout,and if necessary,readjustC3060and C3080(verticaloutput)for the straightest top on the letter "2". Note:The oscilloscope probemay alterthe responseand alterremovingthe oscilloscope probe, adjustment will be necessary. T. SettheVERTICALDTSPLAY to LlN,TIME/DIV to MNL,the REFLEVELfor 100uv,withthe MANUAL SCANconlrolsetfully clockwise. U. AdjustC1030and C1040for thebestREFLEVELreadout(straightest lettersandnumerals).Posilion the MANUALSCANbackandforthbetweenlhe clockwiseand countercloskwisepositionandcontinueto adjustC1030and C1040for bestresponse. V. AdjustR5020,R/O GAINand R5030,R/OOFFSETfor bestplacementof the readoutcharacters(top and bottom)dependingon whetheror not the crt hasa lull graticuleor a reducedgraticule. Note: Setthe firsltwo rowof readoutcharactersiustabovethe top graticulelineandset the lastrowof readoutcharacters iust belowthe bottomgraticulelineon Reducedgraticuleinslruments. o o o o a o o o o t o o o o o o I a a o o a o a o o O o O a o o t Page2 of 5 a o o o o o o o o I o o o I o o o o o o o o I o o I o o I o a o o o o o t o o I o I O o o t o o o I o o o o I Product:see llst date:2-22-88 Chg.Ref:M6391r Replacethe descriptionfor the Deftection Amptifiers(Diagram27) with the tottowing. DEFLECTION AMPLIF|ER (Diagram278) Referlo ihe blockdiagramadjacenlto Diagram27aswellastheschematic diagram.TheDeflection Amplifier receivesverlicalsignalinlormation tromtheverticalsectionoflhe DigitalStorageof theVideoProcessoi, and horizonlalorsweep board.TheReadoul dataforthedisplaycomestromtheCR1Readout circuits. Theoutput of the DeflectionAmplifierdrivesthe crt dellectionplates.The amplitierscontainlhe switchingcircuits necessary lo performtheselectionfunctionsandtheyalsocontaintheamplifierstagesneededto productthe defleclionplatedrivesignals. HorizontalSection SignallinesHORIZONTAL SIGNAL(fromlhe digitatstorage pin 49) and circuitsthroughedgeconnector Sweep(fromtheSweepcircuitthroughedgeconnector pin51)areapptied to switChU7O55A. U705s,under conlroloftheSTORAGE OFFsignal(fromthedigitalstorage circuitsthroughedgeconnectorpin 7),setects HORIZONTAL eitherthe S|GNALorSWEEPinput. TheSWEEP signatis setectedwhenthe STORAGE OFF line is pulledlow. ResistivedividerR7065and R7070reducethe selectedsignaltrom 1V/divto o.Sv/div. U7073bufferstheselectedsignal.Thesefected signalgoesoutto theHORTZ OuT rear-panet via conneclor pin 1 and2 on P6100,P6090andpin48 of theedgeconnector. U7073apptiesthe signatto switchU70558. TheHORIZR/OOFFsignal,tromtheCrtReadoulselectsbetweenthesetwosignati.WhenR/Ois floating or pulledhigh,theswitchtransmilsthesignallrombufferU7073to lhe shaper.Whenthe tineis puledtow, it selectsthe HORIZONTAL R/Osignat. U7055 appliesthe signal to a shaper networklo compensatelor non-linearityin the crt deflection characteristics. This networkconsislsof resistorsR5059,R5058,R50S7,R4061,iaosg, and R5062,plus diodesCR4052, CR4051 TheHORIZONTAL , CR4958,andCR4056. POStTtON vottage, fromthefrontpanel via edgeconneclorpin 47, throughresistorR5056,is appliedto the shapercircuitso tne shapeconection lactorrelateslo the crt deflection. Theshapedsignalis thenappliedlhroughpreamplifier U2055to the deftectionamplitiercircuits.HORTZ gain adjuslmentR1055,calibrateslhe amountof gaincompensation requiredfor properdeflectionsensitiviiy. The horizontaldetlectionamplilierconsistsof two circuitssimilarto each other,one for each horizontal deflectionplate.One circuitis an invertingamplitier,the otheroperatesin-phase.Inputsto U2030of the invertingsidearethroughthe paraltelcombination ol resistorsR1039and R1038andcapacitorC1040.The seriesconneclionof resistorR1038 and variablecapacitorCl040 provideshigh-frequency response compensatio n- capacitor c2047controtshigh{requency feedback. fnpullo lhe non-inverting sideof theamplifieris throughresistorR1025to u2030. R1o?'zandR2020setthe dc levelfor the feed-backloop to the plus inputsideof the amplifier.VariablecapacitorC1030provides adjustment to sel lransientgain.Highfrequencyfeedbackis controlledby capaciiorC20tO.Gain ol each amplifiersectionis approximately 20.(Horizontaldellection per sensilivityof lhe crtis approximately 21.3v/div side.) Signalswith a lowrateof changedrivetheoulputFETtransistorsthrough R3038,astherateol riseincreases, the drop acrossR3040increasesand when it reaches0.6V,either03047 or e3046 biasedon. These providehighcurrentdrivefor theoutputlransislors. transislors Whenthesignalrateol changeis low,04030 drivesthecrtdefleclionplatesandQ4040providesbiascurrenlfortheamplitier,Asthe rateor riseincreases, thesignaltothegateof 04040.04040provides ptate,and theposilivedriveto thedeflection 949?1couples 04030providesthenegativedrive.Eachoutputtransislorcanprovidea 200Vexcursioninapproximately 1ps. Page3 of 5 Product: see llst Dale:2-22-88 Chg. Ref: M63911 The standingcunenton the horizontal by a resistivedividerR4046,R3045, amplifierMosletsis established and R5038as lollows.The baseof Q5040is set 3.5voltsnegativewilh respectto the +300volt supply.The voltagedropacross85045is then3 voltsandthe resultingemittercurrenlis 2.0ma.Currentfromthe-15V sourcethroughresistorR2041setsthe output level.FeedbackresistorR2049sets this outpul levelat 142volts.DiodesCR2040,CR3040,andVR4030providetransientvoltageprotectionduring approximalely turnon andunderfaultcondition. Capacitor C2031withresistorR2035shapethephaseresponseof U2030. Operation ot the left drive(non-inverting) sectionis basicallythe sameas the rightdrive(inverting)section. VerticalSection arerouled DigilalStorage VIDEOFILTEROUTfromtheVideo Processor, andVERT|CALS|GNALfromlhe Notethat board. Storage Digital throughswitchU60554,undercontrolof the STORAGEOFFsignalfromlhe thevideofilterout signalis butferedby U7065to preventa changein loadtransientsf romaftectingthesignal anda lowselects level.A highontheSTORAGE VIDEOFILTEROUTSIGNAL, OFFlineselectsthebuffered the VERTICAL SIGNAL.U6065invertsthe selectedsignalandclampsit to ground.Boththe VIDEOFILTER andpositivevohagesabove OUTandtheVERTlCAL SlGNALarespecilied at0.SVtdivwith 0Vforthebaseline thebaseline. The signalis re-inverted andolfselby buflerU6073so cenlerscreenrepresents0V.BufferU6073supplies a sampleof thiscenteredsignallothe rear-panel VERTOUTconnectorvia pins1 and2 ol P7075andedge pin46.The outputof u6073is alsoappliedthroughswitchu60558,whentheR/OOFFlineis high, connector to the verticalshapercircuit.WhenR/O lineis low,the VERTICALR/Osignalis appliedto the shaper. The Verticalsection shaper R4062,R4065, R4077,R4069,R4063 and CR4063,CR4064,plus the preamplifierV2062, operateslhe same as the horizontalsection.04078 limitsposiliveexcursionsto approximately onedivisionabovethetopof the crtscreento protecttheoutputstagesfrombeingoverdriven. The verticaloutputstagesare similarto the horizontalstages,withthe exceptionof highbiascurrent.The outputstageproducesapproximately current,resislorsR3108 andR2086 SmA.To correctforthisincreased are lowerin valuethan theircounterpartsR5032and R5045in the horizonlalseclion. levelseiby dividerR6020 U6024compares lhe signallevelfromthebaseline clamp,U6065,wilha relerence and R6024.This producesthe cLlP signallorthe z-Axls interlacecircuit.when the VIDEOFILTEROUT signalis morenegativethanthe referencelevel(approximately 1 divisionabovebaseline),it pullsthe CLIP linelow.R7035pullsthe CLIPLINEhighif the signalis morepositivethanlhe referencelevel. VariableresistorsR5020and R5030can be usedto adjustthe relaliveverticalpositionof the character readoutsandependently of the vedicalsignal gain adjustmentRl066. 85020 is adjustedlor vertical displacement characters.Wilhthe advanceol the reducedgraticulecrt,R5020and R5030can be adjusted to positionthe readoutcharaClers outsideol the graticulearea. Page4 of 5 o o I o o o $ o o o o o o o I o a t a I O a o o O o a o I a I o o o a t o a o o o o o I o o o o I a e o o a o I o o o Product:see llst Chg. Ref: M63911 Replacetigure 5-6in the Adjustmentprocedure sectionwith thefollowingdiagram Defiectron Arnplif ier t I o t a o I a a o t o o I o I o o HorlZontal freqJency response O I o O I I o o o o o Figure5-6. Deflection Amplifiertestpointsand adjustments Page5 ol 5 o o O a a a t a o o o o o o o I a a o I I a o o o t o o I , t o o o a o o o :o o o o o O o a o o o o G a o o o I o o o o o I I a O a o o o o o o o o I a a o o o o o o o o o a r teKtrontx, -^l-.r-- - Conmined to Erca$eno Date:5-1G-Bg Product:See List INSTRUMENT 49UP Seruice1 492P/6Service1 4941PServicet 4951PServicel 496/PServiceI 492NAPService1 492B|BPService1 494NAPService1 2753PService1 27541P Servicei 27551PServicet 2755NAPServicel 2756PService1 ITIANUAL CHANGEINFORMATION GhangeReference: C2t5lgg ManualPartNo:SeeList productGroup: ZO MANUAL 070,3783-01 07a-4232-O0 070-4416-00 070-5084-00 070-3481-00 070-5565-01 070-5565-01 070-5560-00 070-6306-00 070-6097-00 070-6032-01 070-6032-01 070-6318-00 PERFORMANCE CHECKPROCEDURE NOTE performing lhe accuracycheckat 10 dB/Dlvmodeon someinstrument Ih".n options,the last .t0dB stepof DisplayDynamicRangemaynot appearto meetspecification whenthe 10 KHz ResolutionBandwithFilteris used' Thisis observed. as noiseinierrering withthe signalwhenthe ExternalAttenuatoris setto g0 dB. The signalwillappeartoo high,and noisecan 6e seenon either side. lf this is the case,thenchangethe sparvDiv to 10 kHz'the resoulution BandwidthFilterto 1 kHz,andthe video Fitterto wlDE. Then resetthe External Atlenuator lo 0 dB, readiustthe signalGeneratoroutpulto FULLscFEEN and retestthe 10 dB/Dlvmode. ) Page1 ol 1 o o o a o o o o o o o a o o t o o a o I o o a o o o I o o o o O I o o o o o 'O o o o a a o a o o I o o a o o o a o o o o a o o I Tektronix. Cottrti.d MANUALCHANGEINFORMATION to Ercrltono Date:$01€8 Product:See list ChangeRelerence:M66071 ManualParl No:Seelist INSTBUMENT PARTNO. 494NAP 49YP 2753P 27541P 2756P 4928/BP 2755NAP Operators Operators Operators Operators Operators Operators Operators 070-5557-01 070-5082-00 070-6305-00 070-6096-00 070-6317-00 070-5552-01 070-6031-01 494A/AP 495/P 2753P 2754tP 2756P 4928/8P 2755NAP Service1 Service1 Service1 Servicet Service1 Service1 Servicet 070-5560-00 070-5084-00 070-6306-00 070-6097-00 070-6318-00 070-5565-01 070-6032-01 Efi/SN8010100 produciGroup: 26 t I a a a o o o o C o ADD: oPTtoN43 Option43 providesa reducedgraticuleray tube. Thisoptionatsoenablesthe maindisptayreadout characters to be positionedoutsidethe grdiculearea. O o o T O o o O a o o o I Page1 ot 1 o o o o e o e o o t o I t o o I I a a I t o I O I o o o o o o o o o a I o o o o o o o a Tekt"fp"n[X. MANUAL CHANGE INFORMATION Date: 5/u9o Change Reference:C2lSgO ManualPart No. 070-5s60-OO Product: 494N4g4Ap Service Vol. 1 In section4 - PERF)RMANCE)HECK pRocEDURE Replace header secfian with the foltowing: 11. Check Resolution Bandwidth and Shape Factor (bandwidthis within 2oo/oot the selectedLandwidth for all butthe'l0 Hzfilter;.10Hzto 1 MHz in decadesteps, and 3 MHz; shape factor is 7.5:.t or less _ 60 dB bandwidthfor the .t0 Hz filreris s150 Hz) Change step i. to read as follows: i. . Repeatthe processto checkthe resolutionbandwidth and shape lactor for the 10 kHz, 1 kHz, and 100 Hz fihers. j. To checklhe60dBbandwidthof the 10 Hzfitter,setthe SpanrDivro 50 Hz, and the REFEHENCE t_EVfL lo _20 dBm. Push AUTO RES, VTDEOFTLTERWlOe, and ser PEAK AVERAGEto average. k. Checkthat the 60 dB bandwidthis <150 Hz. change stepr r as foltows: product Group: 2E o o o O o o t o o a o a o o o I o o o t o o C o o o o o o t o o t o t a o o o o I o o I o o C o O' o o o o o o o o o o rf a I o t o o o a o o o o I t t I I o o I C I a o I o I o Tektfgnl;. MANUAL CHANGB INFORMATION Date: 6/1190 Product:494N494ApServiceVot.1 ChangeReference: CA59A(revised) ManualPart No.070-5560-00 productGrOup:2E The followlng is a revision of change Reference:c2ls90 datectslztgo. ln section 4 - PERFORMANCEcHEcK pRocEDIJRE changeas foilows: Replace step 5 wlth the fottowlng. 5. CheckCenterFrequencyStabitity [Driftis50 Hzlminor lesswith1st LOlocked(SPAN/DtV <200kHz for band 1 and bands5 through12, and SPAN/DlVs1 00kHzforbands2through +)lfter t hour ol warmuptimein a stableambienttemperature]. a. Applythe Catibralor signalrothe RF tNpUT. b. Setthe SpectrumAnalyzercontrolsas {ollows: CENTERFREOUENCY SPAN/DIV RESOLUTION BANDWIDTH REFLEVEL MINRF ATTENdB VERTICALDISPLAY TRIGGERING VIEWAandVIEWB TIME/DIV 100MHz 50 Hz 100Hz -20 dBm 0 2 dB/DIV FREERUN On AUTO g. check that the total driftover 60 secondsis within+1 divisionof the referencesignal. h. DeactiveEOS conectionby selecting WIDE VIDEO FILTERthen B-EOS CORRECTTONMODE TOGGLE' l. Enable FrequencyConeclions by selecting PULSE STRETCHERthen selecring.6=D TSABLE/ ENABLE FREOUENCYCORRECTIONS'. F€Hc€|ffi uilEntna, -20ogr ffiREffi IM(EN tw * SHIFT>PULSESTRETCHER rhenseleciing "6=D|SABLE/ ENABLEFREOUENCY CORRECTIONS". f. Observethedriftof thedisplayed signalin relationto the relerencefor 60 seconds.SeeFigure4_4. SPAW frl n' e tl .- 1"" Drift I ), :\ '/N c. Aclivatethe End Of Sweep(EOS)correctionby selecting WIDEVIDEOFtLTERrhen "3=EOS CORRECTION MODETOGGLE. d. Tune rhe CENTERFREOUENCY ro establisha referenceat the intersection of two graticulelines and activateSAVEA. See Figure4-4. Ff,€q,€Td t6,@rrE l/ -T 4 I { 5 tl 20& GF O3RAY I f ,+,-,"1, ODB * Alm | reo asG t; | tl G-lr tmta E G vD@ fLE &|Jm WA Figure4-4. Centerfrequenry drift wilh 1st LO locked. o Change stepll as follows: Replaeestepl7 wtth the tollowlng: 6. CheckReslduatFM 11.CheckResolutlonBandwldlhand ShapeFactor (bandwidlhis within2O%ot lhe selectedbandwidth exceptfor 10Hz.Shapefactoris 7.5:1or lessexceptlor 10 Hz. 10 Hz bandwidth <150Hz @ -60 dBc. [Within7 kHz over 20 ms with the 1st LO unlocked (SPAN/DIV >200kHzfor band1 andbands5 rhrough 12andSPAN/DIV >100kHzfor bands2 rhrough4)1. [Within(5 + N)Hzover20 ms withrhe 1st LO locked (SPAN/DIV s200kHzfor band1 andbands5lhrough <100kHztor bands2 rhrough 12andSPANiDIV 4)1. Change'f-" to read as follows: f, ll SAVEA wasusedin parte, de-activate SAVEA and VIEWB.ActivateZEROSPAN,setTIME/DIV ro 20 ms,and set CENTERFREQUENCY controlto posirion the display nearcenterscreen asshowninFigure4-5B.UseSAVEAto f reezethedisplayforeasein measuring FM.Forthe example in Figure4-5,the verticalamplitude(gp) overeach20 ms sweepinleryal(1 div.)can varyby no morethan7 kHz(O-7 div) nEfg* cv€! IegEE -2308M 'lO0MHz CENTERFREOUENCY l MHz SPAN/DIV RESOLUTION BANDWIDTH 3 MHz -20 dBm REFLEVEL VEHTICALDISPLAY 2 dB/DIV MINNOISE Activated PEAI(AVERAGE FullyClockwise TIME/DIV AUTO FREERUN TRIGGERING b. Measure 6 dB bandwidthfor each ResolulionBandwidth as follows: (2) Select'7 - ENTER BANDWIDTHNUMBER" (3) Enter "6" with the keypadand terminatewith "dB'. Sror =-9!$ or to Ktkrvrnicd (4) Activate BAND WIDTH mode pushbutton( BANDWTDTH). (5) From the inlormationdisplayedon lhe CRT, record the 6 dB bandwidthin Table 44. NOTE 2-6ilv/ A rHI' 10DS RF lru aE€n&€wR udiltryR -aD8rl ol,8 E€O uc t T ET 6C Span Arcurary is not a lactor when using the bandwidthmode. looxHz ru€O AB CffiFBEU*Y ftEruM 3Ailm (6) Check that the recordedvalue for the 6 dB bandwidth is within the limitsas specifiedin Table 44. atMr r*sn&uw ar.6aaJz a,|tg G verucrt dlvlJon (1) Set the Spectrum Analyzercontrolsas follows: SPAN/DIV RESOLUTIONBANDWIDTH VERTICALDISPLAY WIDE VIDEO FILTER 't a e6ra/, IODB ffi B dttut A1E Fico asE (7) Using the values in Table 4A, measure the 6 dB bandwidlh lor all remainingRESOLUTIONBANDWIDTH settings(except10 Hz). c. Measure the 60 dB bandwidthfor each Resolution Bandwidthas follows: tttl 7 tHr:0.7 ttll iF olc sEo FLE| ts!@i tailfr Flgure 4-5. Typlcal dlsptay for measurlng resldual FM t ) a. ApplytheCALOUTsignaltotheRF INPUT.Setthe Spec{rum Analyzercontrolsas follows: (1) Activate MARKER MENU pushbutton. c€,frE; mEqrcrw Kqft€d roos!il||}tz UG o 3 o o o l MHz 3 MHz 1OdBIDIV Activated o O I a o ) o o o I o a o t o o o o o o e I o t I o o t C a a o o o a o (2) AcrivareMARKER MENU pushbutton. (3) Select "7 - ENTER BANDWTDTH NUMBER" (4) Enter'60" with the keypadand terminatewilh "d8". (5) ActivateBAND WIDTH mode pushbutton( BANDWTDTH). (6) From the informationdisplayedon the CRT, record the 60 dB bandwidthin Tabte4A. (7) Using the values in Table 44, measurethe 60 dB bandwidrhfor allremaining RESOLUTIONBANDWIDTH setrings(excepr 10 Hz). d. Usingthe valuesrecordedin Table44forthe 6 dB and 60 dB bandwidth,calculateand recordthe shape factor for each RESOLUTTONBANDWTDTH(excepr10 Hz) e. Checkthat each FiESOLUTIONBANDWTDTHshape factor is less than or equal to lhe specificationin Table 4A. f. To check the 6OdB bandwidthof the 1OHz filter, set the Span/Divlo 50 Hz, and the REFERENCELEVEL to _20 dBm. Push AUTO RES, VTDEOFILTERWIDE, and ser PEAK AVERAGEto average. g. Check lhat the 60 dB bandwidthis s150 Hz. h. Aftercompletionof thetest, deactivateBANDWIDTH MODE. EgH|.tE uq|.E 'E ?j; * q'E*ffi reiu|d * ''f,& re &e|'lt KUf,! # ffu'[ffi re@ ' '-aHE t + \+ /;+i\ \ I / !E /+\ )r{ .dA FTYN t I{r v 3B fxmfiofl t?. Hr tE - + I \ ! I / I ...L , ! { d ''a-6xw I tt -{- .{ / it.. aN Ert F f f : c E l n q M * A. Measuring6 dB down bandwidth , ' L . , . \ -E .:=!ry s Fl! IE ^fru B. Measuring6OdB down bandwidth and computingshape factor Figure 4-9. Displaysthat illustratehow bandwidthand shape factor are determined using markers. 1-3 RESOLUTION BANDWIDTH 6 dB BANDWIDTH LIMITS 3 MHz 1 MHz 60 dB Bandwidth RESOLUTION VERNCAL FREOUENCY 60 dB MEASURED BANDWIDTH DISPLAY SPAIVDIV BANDWIDTH CaleulatedShape Factor (60 dB/6 dB) SHAPE FACTOR SPECIFICATION 3 MHz 10dB/ l MHz <7.5:1 1 MHz 1 0d B / 1 MHz <7.5:1 100kHz '10kHz 1 0d B / 100kHz <7.5:1 t0 dB/ 5 kHz <7.5:1 1 kHz 10dB/ lkHz <7.5:1 100Hz 1 0d B / 1 0 0H z <7.5:1 1 0H z N/A o o a a o Change step 12as follows: t 12. CheckCalibratorOutput (-20 dBm r0.g dB) t - o t o t0 I o a o o I o a C a o C I o t a I a I a o a t a a.Applyan external 100MHzsignalto lhepowermeter througha 3 dB attenualor anda 50e iable.Setthegeneraror outputlevellor a readingol -20 dBmon the powermeter. VERTICALDISPLAY NARROWVIDEOFILTER TIME/DIV PEAI(AVERAGE VIEWA andVIEWB 'Selea 3 test frequencies Test Freq. 1: Tesl Freq.2: Test Freq.3: Change step l7 as follows: PARTI a. Conneclthetestequipment as shownin Figure4_14. Setthe SpectrumAnalyzercontrolsas follows: TeslFrequenry' 200kHz 100kHz -30 dBm 0 On 2 dB/DIV On AUTO FullyClockwise On 'SeleA 3 testlrequencies TestFreq.1: TestFreq.2: TestFreq.3; 1OkHz - 1.8 GHz 1.8-18GHz 18-21GHz PARTIII Change'a." ta readas follows: CENTERFREOUENCY SPAN/DIV RESOLUTION BANDWDITH REFLEVEL MtNRF ATTENdB MINNOISE VERTICALDISPLAY NARROWVIDEOFILTER TIME/DIV PEAIVAVERAGE VIEWA andVIEWB 2dBtDtv On AUTO FullyClockwise On 1OkHz- 1.8GHz 1.8-18 GHz 1g-21GHz PARTIT Change "b." to read as follows: b. Connectthe test equipmentas shown in Figure4-15. Set the SpectrumAnalyzercontrolsas {ollows: CENTERFREOUENCY SPAN/DIV RESOLUTION BANDWDITH REFLEVEL MINRF ATTENdB MINNOISE VEBTICALDISPLAY NARROWVIDEOFILTER TIME/DIV PEAIOAVERAGE VIEWA and VIEWB Test Frequency* 200kHz 1 MHz -25 dBm 50 On 2 dB/DtV On AUTO FullyClockwise On 'Select3 testfrequencies TestFreq-1: TestFreq.2: TestFreq.3: 10 kHz- 1_8GHz 1.8-18GHz 't8-21GHz Change'b."to readas follows: b. Connectthetestequipment as shownin Figure4-14. Setthe SpectrumAnalyzercontrolsas follows: CENTERFREOUENCY SPAN/DIV RESOLUTION BANDWDITH REFLEVEL MINRF ATTENdB MINNOISE Test Frequency' 200 kHz 100 kHz -25 dBm 30 On o 'a a a o a I t 1-5 o a o o a o POWERMETER ANALYZERUNDERTEST SPECTRUM SIGNALSOURCE r^ J o ADAPTER ADAPTEF POWEBDIVIDEB POWERSENSOR ADAPTEF LOW LOSSCOAXCABLEWITHSMACONNECTORS I t I o o a o o o o I Figure 4.14. RF attenuator test equipment setup, Change step 14 as follows: 14. Check Frequency Response (Responseabout the midpoint betweenlwo exlremes measuredwith 10 dB of RF attenuationand peaking optimizedin the applicablebands for each cenrer lreguency setting is as lollows: B a n d 1 : + 1. 5 d B f r o m 1 0 k H z t o 1 . 8 G H z Band 2'.r2.5 dB from 1.71o5.5 GHz Band 3: f2.5 dB from 3 to 7.i GHz Band 4: +3.5 dB from 5.4 to 18 GHz Band 5: +5.0 dB from 15 to 21 GHz) (Responsewith respectto 1OOMHz is as follows: Band 1 : .t2.5 dB from I O kHz to 1.8 GHz Band 2: +3.5 dB from 1.7 to 5.5 GHz Band 3:13.5 dB from 3 to 7.1 GHz Band 4:14.5 dB from 5.4 to 18 GHz Band 5: +6.5 dB from 't5 to 21 GHz) The folfowingproceduretest displayflatness(peakedat center of test frequency range, typically 1 dB greater than Trequencyresponse, see specificationTable 2-2) 1-6 lf any range segmentf ailsto meetthe specification,set the FREOUENCY to the center of the range in question, apply a marker at the centerf requencyof the range,and repeak with the MANUAL or AUTO PEAKING.Decreaselhe FREOUENCYSPAN/DlVto displaythat rangeand recheck the response. The responseat eachcheckpointaboveband 1, should be peaked with the MANUAL PEAK control. a. Checklrequencyresponsefrom0.01GHzto 21 GHz (Band 1 through5) {1) Conneclthe CAL OUT signalto the RF INPUT,and performthe CAL routine. (2) Set the SpectrumAnalyzercontrolsas lollows: C E N T E RF R E O U E N C Y 1 0 0 M H z SPAN/DIV 500 kHz RESOLUTION 3 MHz -20d9m REFLEVEL 2 dB/DIV VERTICALDISPLAY 10 MIN RF ATTENdB AUTO TIME/DIV PEA}VAVERAGE Fully Counterclockwise , o I o t o o o a a a I a I o I I o I t t o I t o o o o o o ? I o a o t o o o o t t o o o O o cHANcE INFoRMAnoN TercfgnixoEcEu.E^pE MANUAL CETvitTTEDT Date: l1_Sep_gl Product: See List . ChangeReference: ManualPart No.: See Lisl DESCRIPTION J I a o o a o O a a ) Prodrrct Group 2E Effectivefor Alt SertalNumbers: 492PGM 494NAP 495/P 497P 2753tP 2754tP 2755tP 2755NAP 2756P 070-7556-00,ServiceVotume1 070-5560-00,ServiceVolume1 070-5084-00,ServiceVotume1 070-7679-00,ServiceVolume1 070-6306-00,ServiceVolume1 070-6097-00,ServiceVotume1 070-6032-01, ServiceVolume1 070-6032-01,ServiceVotume1 070-6318-00,ServiceVolume1 Makethe fotlowlngchanges In your ServtceVolume i manuat: Section2 - Specification Changethe 1 dB Compression specificafion as shownbelow. Measuredin Min Noisenrodewith no RF attenution. o o o o a o C1-991 Section4 - performanceVerification Addthe toilowingequipmentto the Equipment Requiredtabre. PowerSptitter(FemateSMA Connectors) 20 dB Attenuator (SMAConnec_ tors) TEKTRONIX PartNo.015-0565-00 (1 dB Compression check). TEKTRONIX PartNo.015-1003-00 (1 dB Compression check). Replacethe 1 dB compressionPointperformance verification procedure withthe followingprocedurg; Check1 dB Compressionpoint ,,t i :i;lv :,; 0 dBmin MINNOTSEmodefor Bands1 through5. a. Connectthe testequipmentas shownin the followirqfigure. O a o o Page 1 ot 2 Product: See Llst Date:11 Ref. C1-991 Spectrum Analyzer Under Test a o o o o o o I o o I I o O I Test equlpment,setuplor checklng I dB lnput compresslonpolntb. Sefectlhe followingsettingsfor the specirumanatyzer: FBEQUENOY 103MHz FREQUENCYSPAN/DIV 1 MHz RESOLUTIONBANDWTDTH1 MHz -40 dBm REFERENCE LEVEL MINRF ATTEN 0dB VERTICALDISPLAY VIEWA/B TIME/DIV aIDIV On AuTo -40 dBm. c. set the generatoroutputamplitudeto approximatety d. PressSAVEA to storethe 100 MHzsignalamplitudeon the screen fivedivisions). {approximately e . .Set|he REFERENCE LEVELto OdBm. f. Adiustlhe signalgeneratoroutputfor a full-screen display(approximately+6 dBm intothe powerdivkler). g. Setthe REFERENCE LEVELto -40 dBm. h. Checkthat the amplitudeditlerencebetweenthe 100 MHz peakson the activeand SAVEA tracesdoes not exceed1 dB. a a a t o o I o o o O t o o o I o o a a I a I I Page 2 of 2 o o I t o o a a o a o o I O a () ) t o o o c I o o o o o t o a t o o I a a o o a o o o o o o o o o o o t o I a a a o I o I e o o t I J t |} o o o e ? o o t e o t I o o I a a o t o a o o ;
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No Creator : Canon Producer : Create Date : 2006:09:20 02:30:07-08:00 Page Count : 336EXIF Metadata provided by EXIF.tools