Trane RTAC 120 To 200 Air Cooled Series R Helical Rotary Liquid Chiller Catalog User Manual The E75f1628 Dfd6 4895 96e2 Fdec0b1f1eca
User Manual: Trane RTAC 120 to 200 to the manual
Open the PDF directly: View PDF .
Page Count: 51
Download | |
Open PDF In Browser | View PDF |
Air-Cooled Series R Helical-Rotary Liquid Chiller ™ Model RTAC 120 to 200 (400 to 760kw - 50 Hz) Built for the Industrial and Commercial Markets RLC-PRC005-E4 Introduction The new Trane Model RTAC Air-Cooled Helical-Rotary Chiller is the result of a search for higher reliability, higher energy efficiency, and lower sound levels for today’s environment. In an effort to reduce energy consumed by HVAC equipment and to continually produce chilled water, Trane has developed the Model RTAC chiller with higher efficiencies and a more reliable design than any other air cooled chiller available on the market today. The Model RTAC chiller uses the proven design of the Trane helical-rotary compressor, which embraces all of the design features that have made the Trane helical-rotary compressor liquid chillers such a success since 1987. What Is New The RTAC offers the same high reliability coupled with greatly improved energy efficiency, vastly reduced physical footprint, and improved acoustical performance, due to its advanced design, low-speed, directdrive compressor, and proven Series R™ performance. The major differences between the Series R, Model RTAC and Model RTAA are: • Smaller physical footprint • Lower sound levels • Higher energy efficiency • Designed specifically for operating with environmentally-safe HFC-134a. The Series R Model RTAC helical-rotary chiller is an industrial-grade design, built for both the industrial and commercial markets. It is ideal for schools, hospitals, retailers, office buildings, and industrial applications. Figure 1 ©American Standard Inc. 2000 RLC-PRC005-E4 Contents Introduction 2 Features and Benefits 4 5 6 7 8 9 Improved Acoustical Performance Simple Installation Superior Control with Tracer™ Chiller Controls Options Application Considerations Selection Procedure 12 General Data 13 Performance Data 19 Electrical Data 33 36 36 39 44 45 Dimensional Data 47 Mechanical Specifications 50 Performance Adjustment Factors Controls Generic Building Automation System Controls Typical Wiring Diagrams Job Site Data RLC-PRC005-E4 3 Features and Benefits Water Chiller Systems Business Unit The Series R™ Helical-Rotary Compressor • Unequaled reliability. The next generation Trane helical-rotary compressor is designed, built, and tested to the same demanding and rugged standards as the Trane scroll compressors, the centrifugal compressors, and the previous generation helical-rotary compressors used in both air- and water-cooled chillers for more than 13 years. • Years of research and testing. The Trane helical-rotary compressor has amassed thousands of hours of testing, much of it at severe operating conditions beyond normal commercial air-conditioning applications. • Proven track record. The Trane Company is the world’s largest manufacturer of large helical-rotary compressors used for refrigeration. Over 90,000 compressors worldwide have proven that the Trane helicalrotary compressor has a reliability rate of greater than 99.5 percent in the first year of operation—unequalled in the industry. • Resistance to liquid slugging. The robust design of the Series R compressor can ingest amounts of liquid refrigerant that normally would severely damage reciprocating compressor valves, piston rods, and cylinders. • Fewer moving parts. The helical-rotary compressor has only two rotating parts: the male rotor and the female rotor. Unlike reciprocating compressors, the Trane helical-rotary compressor has no pistons, connecting rods, suction and discharge valves, or mechanical oil pump. In fact, a typical reciprocating compressor has 15 times as many critical parts as the Series R compressor. Fewer moving parts leads to increased reliability and longer life. • Direct-drive, low-speed, semi-hermetic compressor for high efficiency and high reliability. • Field-serviceable compressor for easy maintenance. • Suction-gas-cooled motor. The motor operates at lower temperatures for longer motor life. • Five minute start-to-start and two minute stop-to-start anti-recycle timer allows for closer water-loop temperature control. 4 RLC-PRC005-E4 Improved Acoustical Performance Figure 2 Cutaway of a compressor The sound levels of the Series R Model RTAA have been steadily improved since its introduction. With the advent of the Model RTAC, sound levels are reduced significantly by addressing two major sources: the compressor and the refrigerant piping. First, the compressor has been specifically designed to minimize sound generation. Second, the refrigerant components and piping have been optimized to reduce sound propagation throughout the system. The result: sound levels achieved on the Model RTAC represent the lowest sound levels ever on Trane air-cooled helicalrotary compressor water chillers. Superior Efficiency Levels: The Bar Has Been Raised The standard-efficiency Trane Model RTAC has COP levels up to 2.90 kW/kW [9.9 EER] (including fans), while the premium-efficiency, or high-efficiency, units leap to COP levels of 3.08 kW/kW [10.51 EER] (including fans). RLC-PRC005-E4 The modern technology of the RTAC with the efficient direct-drive compressor, the flooded evaporator, the unique design to separate liquid and vapor, the electronic expansion valve, and the revolutionary Tracer™ Chiller Controls, has permitted Trane to achieve these efficiency levels, unmatched in the industry. Precise Rotor Tip Clearances Higher energy efficiency in a helicalrotary compressor is obtained by reducing the rotor tip clearances. This next-generation compressor is no exception. With today’s advanced manufacturing technology, clearances can be controlled to even tighter tolerances. This reduces the leakage between high- and low-pressure cavities during compression, allowing for more efficient compressor operation. Capacity Control and Load Matching The combination patented unloading system on Trane helical-rotary compressors uses the variable unloading valve for the majority of the unloading function. This allows the compressor to modulate infinitely, to exactly match building load and to maintain chilled-water supply temperatures within ± 0.3°C [±0.5°F] of the set point. Reciprocating and helicalrotary chillers that rely on stepped capacity control must run at a capacity equal to or greater than the load, and typically can only maintain water temperature to around ± 1°C [±2°F]. Much of this excess capacity is lost because overcooling goes toward removing building latent heat, causing the building to be dried beyond normal comfort requirements. When the load becomes very low, the compressor also uses a step unloader valve, which is a single unloading step to achieve the minimum unloading point of the compressor. The result of this design is optimized part-load performance far superior to single reciprocating compressors and step-only helicalrotary compressors. 5 Simple Installation Compact Physical Size The Trane Model RTAC chiller averages a 20 percent reduction in physical footprint, while the greatest change is actually 40 percent smaller when compared against the previous design. This improvement makes the RTAC the smallest air-cooled chiller in the industry and a prime candidate for installations that have space constraints. All physical sizes were changed without sacrificing the side clearances needed to supply fresh airflow without coil starvation—the tightest operational clearances in the industry. Close Spacing Installation The air-cooled Series R™ chiller has the tightest recommended side clearance in the industry, 1.2 meters, but that is not all. In situations where equipment must be installed with less clearance than recommended, which frequently occurs in retrofit applications, restricted airflow is common. Conventional chillers may not work at all. However, the air-cooled Series R chiller with the Adaptive Control™ microprocessor will make as much chilled water as possible given the actual installed conditions, stay on-line during any unforeseen abnormal conditions, and optimize its performance. Consult your Trane sales engineer for more details. 6 Factory Testing Means Trouble-Free Start-up All air-cooled Series R chillers are given a complete functional test at the factory. This computer-based test program completely checks the sensors, wiring, electrical components, microprocessor function, communication capability, expansion valve performance, and fans. In addition, each compressor is runtested to verify capacity and efficiency. Where applicable, each unit is factory preset to the customer’s design conditions. An example would be the leaving-liquid temperature set point. The result of this test program is that the chiller arrives at the job site fully tested and ready for operation. Factory-Installed and Tested Controls and Options Speed Installation All Series R chiller options, including main power-supply disconnect, low ambient control, ambient temperature sensor, low ambient lockout, communication interface and icemaking controls are factory installed and tested. Some manufacturers send accessories in pieces to be field installed. With Trane, the customer saves on installation expense and has assurance that ALL chiller controls and options have been tested and will function as expected. RLC-PRC005-E4 Superior Control with Tracer Chiller Controls ™ The End of Nuisance Trip-Outs and Unnecessary Service Calls? The Adaptive Control™ microprocessor system enhances the air-cooled Series R chiller by providing the very latest chiller control technology. With the Adaptive Control microprocessor, unnecessary service calls and unhappy tenants are avoided. The unit does not nuisance-trip or unnecessarily shut down. Only when the Tracer chiller controls have exhausted all possible corrective actions, and the unit is still violating an operating limit, will the chiller shut down. Controls on other equipment typically shut down the chiller, usually just when it is needed the most. For Example: A typical five-year-old chiller with dirty coils might trip out on high-pressure cutout on a 38°C [100°F] day in August. A hot day is just when comfort cooling is needed the most. In contrast, the aircooled Series R chiller with an Adaptive Control microprocessor will stage fans on, modulate the electronic expansion valve, and modulate the slide valve as it approaches a high-pressure cutout, thereby keeping the chiller on line when you need it the most. System Options: Ice Storage Trane air-cooled chillers are well-suited for ice production. The unique ability to operate at decreased ambient temperature while producing ice results in approximately the same amount of work for the compressor. An air-cooled machine typically switches to ice production at night. Two things happen under this assumption. First, the leaving brine temperature from the evaporator is lowered to around -5.5 to -5°C [22 to 24°F]. Second, the ambient temperature has typically dropped about 8.3 to 11°C [15 to 20°F] from the peak daytime ambient. This effectively places a lift on the compressors that is similar to daytime running conditions. The chiller can operate in lower ambient at night and successfully produce ice to supplement the next day’s cooling demands. The Model RTAC produces ice by supplying ice storage tanks with a constant supply of glycol solution. Aircooled chillers selected for these lower leaving-fluid temperatures are also selected for efficient production of chilled fluid at nominal comfort-cooling conditions. The ability of Trane chillers to serve “double duty” in ice production and comfort cooling greatly reduces the capital cost of ice-storage systems. When cooling is required, ice-chilled glycol is pumped from the ice storage tanks directly to the cooling coils. No expensive heat exchanger is required. The glycol loop is a sealed system, eliminating expensive annual chemical treatment costs. The air-cooled chiller is also available for comfort-cooling duty at nominal cooling conditions and efficiencies. The modular concept of glycol ice-storage systems, and the proven simplicity of Trane Tracer™ controls, allow the successful blend of reliability and energy-saving performance in any ice-storage application. The ice-storage system is operated in six different modes, each optimized for the utility cost at a particular time of day. 1. Provide comfort cooling with chiller 2. Provide comfort cooling with ice 3. Provide comfort cooling with ice and chiller 4. Freeze ice storage 5. Freeze ice storage when comfort cooling is required 6. Off Tracer optimization software controls operation of the required equipment and accessories to easily move from one mode of operation to another. For example: even with ice-storage systems, there are numerous hours when ice is neither produced nor consumed, but saved. In this mode, the chiller is the sole source of cooling. For example, to cool the building after all ice is produced but before high electrical-demand charges take effect, Tracer sets the aircooled chiller leaving-fluid set point to its most efficient setting and starts the chiller, chiller pump, and load pump. When electrical demand is high, the ice pump is started and the chiller is either demand limited or shut down completely. Tracer controls have the intelligence to optimally balance the contribution of the ice and the chiller in meeting the cooling load. The capacity of the chiller plant is extended by operating the chiller and ice in tandem. Tracer rations the ice, augmenting chiller capacity while reducing cooling costs. When ice is produced, Tracer will lower the aircooled chiller leaving-fluid set point and start the chiller, ice and chiller pumps, and other accessories. Any incidental loads that persists while producing ice can be addressed by starting the load pump and drawing spent cooling fluid from the ice storage tanks. For specific information on ice storage applications, contact your local Trane sales office. Figure 3 — Ice storage demand cost savings LOAD ICE CHILLER MN RLC-PRC005-E4 6 A.M. NOON 6 P.M. MN 7 Options Premium Efficiency and Performance Option This option provides oversized heat exchangers with two purposes. One, it allows the unit to be more energy efficient. Two, the unit will have enhanced operation in high-ambient conditions. Low-Temperature Brine The hardware and software on the unit are factory set to handle lowtemperature brine applications, typically below 5°C [41°F]. Ice Making The unit controls are factory set to handle ice making for thermal storage applications. Tracer Summit™ Communication Interface Permits bi-directional communication to the Trane Integrated Comfort™ system. Remote Input Options Permits remote chilled-liquid set point, remote current-limit set point, or both, by accepting a 4-20 mA or 2-10 VDC analog signal. Remote Output Options Permits alarm relay outputs, ice-making outputs, or both. Chilled-Water Reset This option provides the control logic and field-installed sensors to reset leaving-chilled-water temperature. The set point can be reset based on either ambient temperature or return evaporator-water temperature. 8 Protection Grilles Night Noise Setback Protection grilles cover the complete condensing coils and the service areas beneath the coils. At night, on contact closure all the fans run at low speed, bringing the overall sound level further down. Coil Protection SCR (Short-Circuit Rating) A coated wire mesh that covers the condenser coils only. Offers a measure of safety for what the starter-panel enclosure is able to withstand in the event of an explosion caused by a short circuit; protection up to 35,000 amps is available on most voltages. Access Protection A coated wire mesh that covers the access area underneath the condenser coils. Service Valves Provides a service valve on the suction and discharge lines of each circuit to facilitate compressor servicing. High-Ambient Option The high-ambient option consists of special control logic to permit highambient (up to 52°C [125°F]) operation. This option offers the best performance when coupled with the premium efficiency and performance option. Low-Ambient Option The low-ambient option consists of special control logic and fans to permit low-ambient (down to -23°C [-9°F]) operation. Low-Ambient Lockout A factory-installed ambient sensor and control logic will prevent starting below the recommended ambient temperature. Power Disconnect Switch A disconnect switch with a through-thedoor handle, plus compressor protection fuses, is provided to disconnect main power. Neoprene Isolators Isolators provide isolation between the chiller and the structure to help eliminate vibration transmission. Neoprene isolators are more effective and recommended over spring isolators. Victaulic Connection Kit Provides a kit that includes a set of two pipe stubs and Victaulic couplings. Low Noise Version The unit is equipped with low-speed fans and a compressor soundattenuating enclosure. All the sound-emitting parts, like refrigerant lines and panels subject to vibration, are acoustically treated with soundabsorbent material. Evaporator Freeze Protection Factory-installed and -wired trace heaters on the water boxes and on the intermediate tube plate, with an ambient thermostat and protected by a circuit breaker. Ground Fault Detection Sensing ground current for improved chiller protection. RLC-PRC005-E4 Application Considerations Certain application constraints should be considered when sizing, selecting, and installing Trane air-cooled Series R chillers. Unit and system reliability is often dependent on properly and completely complying with these considerations. When the application varies from the guidelines presented, it should be reviewed with your local Trane sales engineer. Unit Sizing Unit capacities are listed in the performance data section. Intentionally oversizing a unit to ensure adequate capacity is not recommended. Erratic system operation and excessive compressor cycling are often a direct result of an oversized chiller. In addition, an oversized unit is usually more expensive to purchase, install, and operate. If oversizing is desired, consider using two units. Water Treatment Dirt, scale, products of corrosion, and other foreign material will adversely affect heat transfer between the water and system components. Foreign matter in the chilled-water system can also increase pressure drop and, consequently, reduce water flow. Proper water treatment must be determined locally, depending on the type of system and local water characteristics. Neither salt nor brackish water is recommended for use in Trane air-cooled Series R chillers. Use of either will lead to a shortened chiller life. The Trane Company encourages the employment of a reputable water-treatment specialist, familiar with local water conditions, to assist in this determination and in the establishment of a proper watertreatment program. Effect of Altitude on Capacity Air-cooled Series R chiller capacities given in the performance data tables are for use at sea level. At elevations substantially above sea level, the decreased air density will reduce condenser capacity and, therefore, unit capacity and efficiency. The adjustment factors in Table F-1 can be applied directly to the catalog performance data to determine the unit’s adjusted performance. Ambient Limitations Trane air-cooled Series R chillers are designed for year-round operation over a range of ambient temperatures. The air-cooled Model RTAC chiller will operate in ambient temperatures of 4 to 46°C [25 to 115°F]. Selecting the highambient option will allow the chiller to operate in ambient temperatures of 51°C [125°F], and selecting the lowambient option will increase the operational capability of the water chiller to ambient temperatures as low as 18°C [0°F]. For operation outside of these ranges, contact the local Trane sales office. Water Flow Limits The minimum water flow rates are given in Tables G-1 and G-2. Evaporator flow rates below the tabulated values will result in laminar flow and cause freeze-up problems, scaling, stratification, and poor control. The maximum evaporator water flow rate is also given in the general data section. Flow rates exceeding those listed may result in excessive tube erosion. Flow Rates Out of Range Many process cooling jobs require flow rates that cannot be met with the minimum and maximum published values within the Model RTAC evaporator. A simple piping change can alleviate this problem. For example: a plastic injection molding process requires 5.0 Lps [80 gpm] of 10°C [50°F] water and returns that water at 15.6°C [60°F].The selected chiller can operate at these temperatures, but has a minimum flow rate of 7.6 Lps [120 gpm].The following system can satisfy the process. 10°C 5 Lps Figure 4 — GPM Out of Range 10°C 7.6 Lps CV Pump 5 Lps Load 10°C 2.5 Lps 13.7°C 7.6 Lps CV pump 7.5 Lps RLC-PRC005-E4 15.6°C 5 Lps 9 Application Considerations Figure 5 — GPM Out of Range 29.4°C 7.6 Lps 15.6°C 2.2 Lps 15.6°C 7.6 Lps CV Pump Load 35°C 5.4 Lps 15°C 5.4 Lps 21°C 7.6 Lps CV Pump 35°C 2.2 Lps 35°C 7.6 Lps Leaving-Water Temperature Range Trane air-cooled Series R chillers have three distinct leaving-water categories: standard, low temperature, and ice making. The standard leaving-solution temperature range is 4.4 to 15.6°C [40 to 60°F]. Low-temperature machines produce leaving-liquid temperatures less than 4.4°C [40°F]. Since liquid supply temperature set points less than 4.4°C [40°F] result in suction temperatures at or below the freezing point of water, a glycol solution is required for all low-temperature machines. Ice-making machines have a leaving-liquid temperature range of -6.7 to 15.6°C [20 to 60°F]. Ice-making controls include dual set point controls and safeties for ice making and standard cooling capabilities. Consult your local Trane sales engineer for applications or selections involving low temperature or ice making machines. The maximum water temperature that can be circulated through an evaporator when the unit is not operating is 42°C [108°F]. Leaving-Water Temperature Out of Range Similar to the flow rates above, many process cooling jobs require temperature ranges that cannot be met with the minimum and maximum published values for the Model RTAC evaporator. A simple piping change can alleviate this problem. For example: a laboratory load requires 7.6 Lps [120 gpm] of water entering the process at 10 29.4°C [85°F] and returning at 35°C [95°F]. The accuracy required is higher than the cooling tower can give. The selected chiller has adequate capacity, but has a maximum leaving-chilledwater temperature of 15.6°C [60°F]. In the example shown, both the chiller and process flow rates are equal.This is not necessary. For example, if the chiller had a higher flow rate, there would be more water bypassing and mixing with warm water. Supply-Water Temperature Drop The performance data for the Trane aircooled Series R chiller is based on a chilled-water temperature drop of 6°C [10.8°F]. Chilled-water temperature drops from 3.3 to 10°C [6 to 18°F] may be used as long as minimum and maximum water temperature, and minimum and maximum flow rates, are not violated. Temperature drops outside this range are beyond the optimum range for control, and may adversely affect the microcomputer’s ability to maintain an acceptable supply-water temperature range. Further, temperature drops of less than 3.3°C [6°F] may result in inadequate refrigerant superheat. Sufficient superheat is always a primary concern in any direct-expansion refrigerant system and is especially important in a package chiller where the evaporator is closely coupled to the compressor. When temperature drops are less than 3.3°C [6°F], an evaporator runaround loop may be required. RLC-PRC005-E4 Application Considerations Variable Flow in the Evaporator An attractive chilled-water system option may be a variable primary flow (VPF) system. VPF systems present building owners with several costsaving benefits that are directly related to the pumps. The most obvious cost savings result from eliminating the secondary distribution pump, which in turn avoids the expense incurred with the associated piping connections (material, labor), electrical service, and variable-frequency drive. Building owners often cite pump-related energy savings as the reason that prompted them to install a VPF system. With the help of a software analysis tool such as System Analyzer™, TRACE™, or DOE-2, you can determine whether the anticipated energy savings justify the use of variable primary flow in a particular application. It may also be easier to apply variable primary flow in an existing chilled-water plant. Unlike the “decoupled” design, the bypass can be positioned at various points in the chilled-water loop and an additional pump is unnecessary. The evaporator in the Model RTAC can withstand up to 50 percent water flow reduction as long as this flow is equal to or above the minimum flow-rate requirements. The microprocessor and capacity control algorithms are designed to take a minimum of 10 percent change in water flow rate per minute. RLC-PRC005-E4 Ice Storage Provides Reduced Electrical Demand An ice-storage system uses a standard chiller to make ice at night, when utilities charge less for electricity. The ice supplements, or even replaces, mechanical cooling during the day, when utility rates are at their highest. This reduced need for cooling results in big utility cost savings. Another advantage of ice storage is standby cooling capacity. If the chiller is unable to operate, one or two days of ice may still be available to provide cooling. In that period of time, the chiller can be repaired before building occupants feel any loss of comfort. The Trane Model RTAC chiller is uniquely suited to low-temperature applications like ice storage because of the ambient relief experienced at night. This allows the Model RTAC chiller to produce ice efficiently, with less stress on the machine. Simple and smart control strategies are another advantage the Model RTAC chiller offers for ice-storage applications. Trane Tracer™ building management systems can actually anticipate how much ice needs to be made at night, and operate the system accordingly. The controls are integrated right into the chiller. Two wires and preprogrammed software dramatically reduce field installation cost and complex programming. Short Water Loops The proper location of the temperature control sensor is in the supply (outlet) water connection or pipe. This location allows the building to act as a buffer and assures a slowly-changing return-water temperature. If there is not a sufficient volume of water in the system to provide an adequate buffer, temperature control can be lost, resulting in erratic system operation and excessive compressor cycling. A short water loop has the same effect as attempting to control using the building return water. Typically, a two-minute water loop is sufficient to prevent a short water loop. Therefore, as a guideline, ensure that the volume of water in the evaporator loop equals or exceeds two times the evaporator flow rate. For a rapidly changing load profile, the amount of volume should be increased. To prevent the effect of a short water loop, the following item should be given careful consideration: a storage tank or larger header pipe to increase the volume of water in the system and, therefore, reduce the rate of change of the return water temperature. Applications Types • Comfort cooling • Industrial process cooling • Ice or thermal storage • Low-temperature process cooling. 11 Selection Procedure The chiller capacity tables cover the most frequently encountered leavingliquid temperatures. The tables reflect a 6°C [10.8°F] temperature drop through the evaporator. For other temperature drops, apply the appropriate performance data adjustment factors. For chilled brine selections, refer to Figures F-3 and F-4 for ethylene and propylene glycol adjustment factors. Selection Procedure SI Units 5 The chiller capacity tables P-1 through P-4 cover the most frequently encountered leaving-water temperatures. The tables reflect a 6°C temperature drop through the evaporator The final unit selection is: To select a Trane air-cooled Series R™ chiller, the following information is required: 1 • Leaving chilled-water temperatures = 7°C Design load in kW of refrigeration • Chilled-water flow rate = 24.2 Lps 2 Design chilled-water temperature drop • Evaporator water pressure drop = 53 kPa 3 • Compressor power input = 159 kW Design leaving-chilled-water temperature • Unit COP = 2.9 kW/kW To select a Trane air-cooled RTAC chiller, the following information is required: 4 Design ambient temperature Evaporator flow rates can be determined by using the following formula: Lps = kW (capacity) x 0.239 ÷ temperature drop (°C) To determine the evaporator pressure drop we use the flow rate (Lps) and the evaporator water pressure drop Figure F1. • Quantity (1) RTAA 140 • Cooling capacity = 505.9 kW • Design ambient temperature 35°C • Entering chilled-water temperatures = 12°C Contact the local Trane sales engineer for a proper selection at the given operating conditions. For a selection in English units: • 1 ton = 3.5168 kW • Evaporator flow rate in gpm = 24 x tons ÷ delta T (°F) • Delta T (°F) = delta T (°C) x 1.8 • 1 gpm = 0.06309 Lps • 1 ft WG = 3 kPa • EER = COP ÷ 0.293 For selection of chilled brine units, or applications where the altitude is significantly greater than sea level or the temperature drop is different than 6°C, the performance adjustment factors from Table F-1 should be applied at this point. For example: Corrected Capacity = Capacity (unadjusted) x Glycol Capacity Adjustment Factor Corrected Flow Rate = Flow Rate (unadjusted) x Glycol Flow Rate Adjustment Factor 12 RLC-PRC005-E4 General Data SI Units Table G-1 — RTAC Standard Size Compressor Quantity Nominal Size (1) tons Evaporator Evaporator Model Water Storage L Minimum Flow Lps Maximum Flow Lps Condenser Qty of Coils Coil Length mm Coil Height mm Fin series fins/ft Number of Rows Condenser Fans Quantity (1) Diameter mm Total Air Flow m3/s Nominal RPM Tip Speed m/s Motor kW kW Min Starting/Operating Ambient(2) Standard Unit °C Low-Ambient Unit °C General Unit Refrigerant Number of Independent Refrigerant Circuits % Minimum Load (3) Refrigerant Charge (1) kg Oil Charge (1) L Operating Weight kg Shipping Weight kg 140 155 170 185 200 2 70/70 2 70/85 2 85/85 2 85/100 2 100/100 F140 132.3 10.8 33.1 F155 141.3 11.5 38.2 F170 150.7 12.5 43.1 F185 156 13.6 39.5 F200 163.5 13.6 48.4 4 3962/3962 1067 192 3 4 4572/3962 1067 192 3 4 4572/4572 1067 192 3 4 5486/4572 1067 192 3 4 5486/5486 1067 192 3 4/4 762 35.82 915 36.48 1.9 5/4 762 39.53 915 36.48 1.9 5/5 762 43.22 915 36.48 1.9 6/5 762 47.55 915 36.48 1.9 6/6 762 51.88 915 36.48 1.9 -4 -23 -4 -23 -4 -23 -4 -23 -4 -23 HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a 2 15 65.8/65.8 7.6/7.6 5216 5107 2 15 70.3/65.8 7.6/7.6 5407 5265 2 15 70.3/70.3 7.6/7.6 5586 5434 2 15 99.8/95.3 9.9/7.6 6268 6111 2 15 99.8/99.8 9.9/9.9 6396 6232 120 130 140 155 170 185 200 2 60/60 2 60/70 2 70/70 2 70/85 2 85/85 2 85/100 2 100/100 F140 132.3 10.8 33.1 F155 141.3 11.5 38.2 F170 150.7 12.5 43.3 F185 156 13.6 39.5 F200 163.5 13.6 48.4 F220 175.9 14.9 53.5 F240 188.3 16.3 58.6 4 3962/3962 1067 192 3 4 4572/3962 1067 192 3 4 4572/4572 1067 192 3 4 5486/4572 1067 192 3 4 5486/5486 1067 192 3 4 6400/2486 1067 192 3 4 6400/6400 1067 192 3 4/4 762 35.82 915 36.48 1.9 5/4 762 39.53 915 36.48 1.9 5/5 762 43.22 915 36.48 1.9 6/5 762 47.55 915 36.48 1.9 6/6 762 51.88 915 36.48 1.9 7/6 762 56.17 915 36.48 1.9 7/7 762 60.47 915 36.48 1.9 -4 -23 -4 -23 -4 -23 -4 -23 -4 -23 -4 -23 -4 -23 HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a 2 15 65.8/65.8 7.6/7.6 5198 5089 2 15 70.3/65.8 7.6/7.6 5271 5129 2 15 70.3/70.3 7.6/7.6 5274 5122 2 15 99.8/95.3 7.6/7.6 6073 5916 2 15 99.8/99.8 7.6/7.6 6323 6159 2 15 104.4/99.8 9.9/7.6 6555 6378 2 15 104.4/104.4 9.9/9.9 6759 6569 Table G-2 — RTAC High Efficiency Size Compressor Quantity Nominal Size (1) tons Evaporator Evaporator Model Water Storage L Minimum Flow Lps Maximum Flow Lps Condenser Qty of Coils Coil Length mm Coil Height mm Fin series fins/ft Number of Rows Condenser Fans Quantity (1) Diameter mm Total Air Flow m3/s Nominal RPM Tip Speed m/s Motor kW kW Min Starting/Operating Ambient(2) Standard Unit °C Low-Ambient Unit °C General Unit Refrigerant Number of Independent Refrigerant Circuits % Minimum Load (3) Refrigerant Charge (1) kg Oil Charge (1) L Operating Weight kg Shipping Weight kg RLC-PRC005-E4 13 General Data SI Units Table G-3 — RTAC Low Noise Standard Size Compressor Quantity Nominal Size (1) tons Evaporator Evaporator Model Water Storage L Minimum Flow Lps Maximum Flow Lps Condenser Qty of Coils Coil Length mm Coil Height mm Fin series fins/ft Number of Rows Condenser Fans Quantity (1) Diameter mm Total Air Flow m3/s Nominal RPM Tip Speed m/s Motor kW kW Min Starting/Operating Ambient(2) Standard Unit °C Low-Ambient Unit °C General Unit Refrigerant Number of Independent Refrigerant Circuits % Minimum Load (3) Refrigerant Charge (1) kg Oil Charge (1) L Operating Weight kg Shipping Weight kg 14 140 155 170 185 200 2 70/70 2 70/85 2 85/85 2 85/100 2 100/100 F140 132.3 10.8 33.1 F155 141.3 11.5 38.2 F170 150.7 12.5 43.1 F185 156 13.6 39.5 F200 163.5 13.6 48.4 4 3962/3962 1067 192 3 4 4572/3962 1067 192 3 4 4572/4572 1067 192 3 4 5486/4572 1067 192 3 4 5486/5486 1067 192 3 4/4 762 25.61 680 27.5 0.85 5/4 762 28.27 680 27.5 0.85 5/5 762 30.93 680 27.5 0.85 6/5 762 34.02 680 27.5 0.85 6/6 762 37.11 680 27.5 0.85 -4 -23 -4 -23 -4 -23 -4 -23 -4 -23 HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a 2 15 65.8/65.8 7.6/7.6 5306 5197 2 15 70.3/65.8 7.6/7.6 5497 5355 2 15 70.3/70.3 7.6/7.6 5676 5524 2 15 99.8/95.3 9.9/7.6 6358 6201 2 15 99.8/99.8 9.9/9.9 6486 6322 RLC-PRC005-E4 General Data SI Units Table G-4 — RTAC High Efficiency Low Noise Size Compressor Quantity Nominal Size (1) tons Evaporator Evaporator Model Water Storage L Minimum Flow Lps Maximum Flow Lps Condenser Qty of Coils Coil Length mm Coil Height mm Fin series fins/ft Number of Rows Condenser Fans Quantity (1) Diameter mm Total Air Flow m3/s Nominal RPM Tip Speed m/s Motor kW kW Min Starting/Operating Ambient(2) Standard Unit °C Low-Ambient Unit °C General Unit Refrigerant Number of Independent Refrigerant Circuits % Minimum Load (3) Refrigerant Charge (1) kg Oil Charge (1) L Operating Weight kg Shipping Weight kg 120 130 140 155 170 185 200 2 60/60 2 60/70 2 70/70 2 70/85 2 85/85 2 85/100 2 100/100 F140 132.3 10.8 33.1 F155 141.3 11.5 38.2 F170 150.7 12.5 43.3 F185 156 13.6 39.5 F200 163.5 13.6 48.4 F220 175.9 14.9 53.5 F240 188.3 16.3 58.6 4 3962/3962 1067 192 3 4 4572/3962 1067 192 3 4 4572/4572 1067 192 3 4 5486/4572 1067 192 3 4 5486/5486 1067 192 3 4 6400/2486 1067 192 3 4 6400/6400 1067 192 3 4/4 762 25.61 680 27.5 0.85 5/4 762 28.27 680 27.5 0.85 5/5 762 30.93 680 27.5 0.85 6/5 762 34.02 680 27.5 0.85 6/6 762 37.11 680 27.5 0.85 7/6 762 40.23 680 27.5 0.85 7/7 762 43.34 680 27.5 0.85 -4 -23 -4 -23 -4 -23 -4 -23 -4 -23 -4 -23 -4 -23 HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a 2 15 65.8/65.8 7.6/7.6 5288 5179 2 15 70.3/65.8 7.6/7.6 5361 5219 2 15 70.3/70.3 7.6/7.6 5364 5212 2 15 99.8/95.3 7.6/7.6 6163 6006 2 15 99.8/99.8 7.6/7.6 6413 6249 2 15 104.4/99.8 9.9/7.6 6645 6468 2 15 104.4/104.4 9.9/9.9 6849 6659 Notes: 1. Data containing information on two circuits shown as follows: ckt1/ckt2 2. Minimum start-up/operation ambient based on a 2.22 m/s (5mph) wind across the condenser. 3. Percent minimum load is for total machine at 10°C (50°F) ambient and 7°C (44°F) leaving chilled water temperature. Not each individual circuit. RLC-PRC005-E4 15 General Data English Units Table G-5 — RTAC Standard Size Compressor 140 155 170 185 200 Quantity Nominal Size (1) tons 2 70/70 2 70/85 2 85/85 2 85/100 2 100/100 Evaporator Model Water Storage Minimum Flow Maximum Flow gal gpm gpm F140 35 171.2 524.7 F155 37.3 182.3 605.6 F170 39.8 198.2 683.2 F185 41.2 215.6 626.2 F200 43.2 215.6 767.2 4 13/13 3.5 192 3 4 15/13 3.5 192 3 4 15/15 3.5 192 3 4 18/15 3.5 192 3 4 18/18 3.5 192 3 ft/s kW 4/4 30 75867 915 120 1.9 5/4 30 83725 915 120 1.9 5/5 30 91540 915 120 1.9 6/5 30 100710 915 120 1.9 °F °F 25 -9 25 -9 25 -9 25 -9 HFC 134a HFC 134a HFC 134a HFC 134a lb gal lb lb 2 15 145/145 2/2 12018 11767 2 15 155/145 2.2 12459 12131 2 15 155/155 2.2 12871 12521 2 15 220/210 2.6/2 14442 14081 120 130 140 155 170 185 200 2 60/60 2 60/70 2 70/70 2 70/85 2 85/85 2 85/100 2 100/100 F140 35 171.2 524.7 F155 37.3 182.3 605.6 F170 39.8 198.2 683.2 F185 41.2 215.6 626.2 F200 43.2 215.6 767.2 F220 46.5 231.4 848.1 F240 49.8 258.4 928.9 4 13/13 3.5 192 3 4 15/13 3.5 192 3 4 15/15 3.5 192 3 4 18/15 3.5 192 3 4 18/18 3.5 192 3 4 21/18 3.5 192 3 4 21/21 3.5 192 3 4/4 30 75867 915 120 1.9 5/4 30 83725 915 120 1.9 5/5 30 91540 915 120 1.9 6/5 30 100710 915 120 1.9 6/6 30 109882 915 120 1.9 7/6 30 118968 915 120 1.9 7/7 30 128075 915 120 1.9 25 -9 25 -9 25 -9 25 -9 25 -9 25 -9 25 -9 HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a 2 15 145/145 2/2 11977 11726 2 15 155/145 2.2 12145 11818 2 15 155/155 2.2 12152 11802 2 15 220/210 2.6/2 13993 13631 2 15 220/220 2.6/2.6 14569 14191 2 15 230/220 2.6/2 15104 14696 2 15 230/230 2.6/2.6 15574 15136 Evaporator Condenser Quantity of Coils Coil Length Coil Height Fin Series Number of Rows ft ft fins/ft Condenser Fans Quantity (1) Diameter Total Air Flow Nominal RPM Tip Speed Motor kW Minimum Starting/Operating Ambient(2) Standard Unit Low-Ambient Unit General Unit Refrigerant Number of Independent Refrigerant Circuits % Minimum Load (3) Refrigerant Charge (1) Oil Charge (1) Operating Weight Shipping Weight in. cfm 6/6 30 109882 915 120 1.9 25 -9 HFC 134a 2 15 220/220 2.6/2.6 14737 14359 Table G-6 — RTAC High Efficiency Size Compressor Quantity Nominal Size (1) tons Evaporator Evaporator Model Water Storage gal Minimum Flow gpm Maximum Flow gpm Condenser Quantity of Coils Coil Length ft Coil Height ft Fin Series fins/ft Number of Rows Condenser Fans Quantity (1) Diameter in. Total Air Flow cfm Nominal RPM Tip Speed ft/s Motor kW kW Minimum Starting/Operating Ambient(2) Standard Unit °F Low-Ambient Unit °F General Unit Refrigerant Number of Independent Refrigerant Circuits % Minimum Load (3) Refrigerant Charge (1) lb Oil Charge (1) gal Operating Weight lb Shipping Weight lb 16 RLC-PRC005-E4 General Data English Units Table G-7 — RTAC Low Noise Standard Size Compressor Quantity Nominal Size (1) tons Evaporator Evaporator Model Water Storage gal Minimum Flow gpm Maximum Flow gpm Condenser Quantity of Coils Coil Length ft Coil Height ft Fin Series fins/ft Number of Rows Condenser Fans Quantity (1) Diameter in. Total Air Flow cfm Nominal RPM Tip Speed ft/s Motor kW kW Minimum Starting/Operating Ambient(2) Standard Unit °F Low-Ambient Unit °F General Unit Refrigerant Number of Independent Refrigerant Circuits % Minimum Load (3) Refrigerant Charge (1) lb Oil Charge (1) gal Operating Weight lb Shipping Weight lb RLC-PRC005-E4 140 155 170 185 200 2 70/70 2 70/85 2 85/85 2 85/100 2 100/100 F140 35 171.2 524.7 F155 37.3 182.3 605.6 F170 39.8 198.2 683.2 F185 41.2 215.6 626.2 F200 43.2 215.6 767.2 4 13/13 3.5 192 3 4 15/13 3.5 192 3 4 15/15 3.5 192 3 4 18/15 3.5 192 3 4 18/18 3.5 192 3 4/4 30 54242 680 90 0.85 5/4 30 59876 680 90 0.85 5/5 30 65510 680 90 0.85 6/5 30 72054 680 90 0.85 6/6 30 78600 680 90 0.85 25 -9 25 -9 25 -9 25 -9 25 -9 HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a 2 15 145/145 2/2 12226 11975 2 15 155/145 2.2 12666 12339 2 15 155/155 2.2 13078 12728 2 15 220/210 2.6/2 14650 14288 2 15 220/220 2.6/2.6 14945 14567 17 General Data English Units Table G-8 — RTAC High Efficiency Low Noise Size Compressor Quantity Nominal Size (1) tons Evaporator Evaporator Model Water Storage gal Minimum Flow gpm Maximum Flow gpm Condenser Quantity of Coils Coil Length ft Coil Height ft Fin Series fins/ft Number of Rows Condenser Fans Quantity (1) Diameter in. Total Air Flow cfm Nominal RPM Tip Speed ft/s Motor kW kW Minimum Starting/Operating Ambient(2) Standard Unit °F Low-Ambient Unit °F General Unit Refrigerant Number of Independent Refrigerant Circuits % Minimum Load (3) Refrigerant Charge (1) lb Oil Charge (1) gal Operating Weight lb Shipping Weight lb 120 130 140 155 170 185 200 2 60/60 2 60/70 2 70/70 2 70/85 2 85/85 2 85/100 2 100/100 F140 35 171.2 524.7 F155 37.3 182.3 605.6 F170 39.8 198.2 683.2 F185 41.2 215.6 626.2 F200 43.2 215.6 767.2 F220 46.5 231.4 848.1 F240 49.8 258.4 928.9 4 13/13 3.5 192 3 4 15/13 3.5 192 3 4 15/15 3.5 192 3 4 18/15 3.5 192 3 4 18/18 3.5 192 3 4 21/18 3.5 192 3 4 21/21 3.5 192 3 4/4 30 54242 680 90 0.85 5/4 30 59876 680 90 0.85 5/5 30 65510 680 90 0.85 6/5 30 72054 680 90 0.85 6/6 30 78600 680 90 0.85 7/6 30 85207 680 90 0.85 7/7 30 91794 680 90 0.85 25 -9 25 -9 25 -9 25 -9 25 -9 25 -9 25 -9 HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a 2 15 145/145 2/2 12184 11933 2 15 155/145 2.2 12353 12025 2 15 155/155 2.2 12359 12009 2 15 220/210 2.6/2 14200 13839 2 15 220/220 2.6/2.6 14776 14399 2 15 230/220 2.6/2 15311 14903 2 15 230/230 2.6/2.6 15781 15343 Notes: 1. Data containing information on two circuits shown as follows: ckt1/ckt2 2. Minimum start-up/operation ambient based on a 5mph wind across the condenser. 3. Percent minimum load is for total machine at 10°C [50°F] ambient and 7°C [44°F] leaving chilled water temperature. Not each individual circuit. 18 RLC-PRC005-E4 Performance Data Standard Units (SI Units) Table P-1 — RTAC 140 LWT °C C.C. kW 5 536.3 7 571.1 9 606.9 11 643.4 13 680.6 25 P.I. kW/kW 131.3 136.4 141.7 147.2 152.8 COP kW 3.65 3.75 3.85 3.95 4.04 Table P-2 — RTAC 155 LWT °C C.C. kW 5 587.8 7 625.7 9 664.3 11 703.7 13 743.7 25 P.I. kW/kW 145.8 151.7 157.8 164.1 170.6 COP kW 3.60 3.70 3.79 3.87 3.95 Table P-3 — RTAC 170 LWT °C C.C. kW 5 640.2 7 681.1 9 722.7 11 765.0 13 807.9 25 P.I. kW/kW 160.5 167.2 174.2 181.4 188.8 COP kW 3.56 3.65 3.73 3.81 3.88 Table P-4 — RTAC 185 LWT °C C.C. kW 5 708.2 7 753.1 9 798.8 11 845.3 13 892.5 25 P.I. kW/kW 177.3 184.7 192.3 200.2 208.4 COP kW 3.57 3.66 3.74 3.81 3.88 Table P-5 — RTAC 200 LWT °C C.C. kW 5 777.8 7 827.0 9 877.0 11 928.0 13 979.8 25 P.I. kW/kW 194.3 202.4 210.8 219.5 228.5 COP kW 3.58 3.66 3.75 3.82 3.89 Entering Condenser Air Temperature (°C) C.C. kW 505.7 539.0 573.2 608.1 643.7 30 P.I. kW/kW 141.8 147.1 152.6 158.2 164.0 COP kW 3.21 3.31 3.41 3.50 3.58 C.C. kW 474.1 505.9 538.4 571.7 605.6 35 P.I. kW/kW 153.5 159.0 164.6 170.4 176.4 COP kW 2.80 2.90 2.99 3.07 3.15 C.C. kW 441.6 471.7 502.6 534.2 566.3 40 P.I. kW/kW 166.5 172.1 177.9 183.9 190.0 COP kW 2.42 2.51 2.60 2.68 2.75 C.C. kW 400.7 428.8 457.6 486.9 509.4 46 P.I. kW/kW 184.0 189.8 195.8 202.0 204.9 COP kW 2.01 2.09 2.16 2.24 2.31 C.C. kW 374.2 400.9 409.6 417.2 423.3 50 P.I. kW/kW 196.1 202.1 197.1 191.3 184.6 COP kW 1.77 1.84 1.92 2.01 2.11 C.C. kW 484.5 517.1 550.3 584.2 618.7 40 P.I. kW/kW 183.2 189.6 196.2 203.0 209.9 COP kW 2.41 2.50 2.57 2.65 2.72 C.C. kW 440.0 470.2 501.1 532.6 561.8 46 P.I. kW/kW 201.9 208.5 215.3 222.3 225.5 COP kW 2.00 2.08 2.15 2.22 2.31 C.C. kW 411.0 439.7 450.5 454.9 461.3 50 P.I. kW/kW 214.9 221.7 217.4 209.3 202.5 COP kW 1.77 1.84 1.92 2.00 2.10 C.C. kW 527.9 562.9 598.6 634.9 671.8 40 P.I. kW/kW 200.0 207.2 214.6 222.2 230.0 COP kW 2.41 2.48 2.56 2.63 2.69 C.C. kW 479.5 511.9 545.0 578.7 607.7 46 P.I. kW/kW 220.0 227.4 234.9 242.7 245.1 COP kW 2.00 2.07 2.14 2.21 2.30 C.C. kW 448.1 478.8 491.5 497.9 504.4 50 P.I. kW/kW 233.9 241.4 237.7 230.3 222.7 COP kW 1.77 1.84 1.91 1.99 2.08 C.C. kW 587.4 625.9 665.2 705.3 746.1 40 P.I. kW/kW 220.8 228.9 237.3 245.9 254.8 COP kW 2.43 2.50 2.57 2.64 2.70 C.C. kW 534.9 570.5 607.0 644.2 672.6 46 P.I. kW/kW 242.8 251.2 259.9 268.9 271.9 COP kW 2.03 2.09 2.16 2.22 2.29 C.C. kW 500.5 525.9 539.2 548.1 551.0 50 P.I. kW/kW 258.0 261.3 256.9 249.3 238.7 COP kW 1.79 1.86 1.94 2.03 2.12 C.C. kW 647.9 690.1 733.1 777.2 822.1 40 P.I. kW/kW 241.8 250.8 260.2 270.0 280.0 COP kW 2.44 2.52 2.59 2.65 2.71 C.C. kW 591.0 630.0 670.1 711.0 741.1 46 P.I. kW/kW 265.7 275.3 285.1 295.4 298.2 COP kW 2.04 2.11 2.17 2.23 2.31 C.C. kW 553.7 580.4 588.7 598.7 607.0 50 P.I. kW/kW 282.4 285.5 276.7 268.6 258.8 COP kW 1.81 1.88 1.96 2.05 2.15 Entering Condenser Air Temperature (°C) C.C. kW 554.5 590.6 627.5 665.1 703.4 30 P.I. kW/kW 156.9 163.0 169.3 175.7 182.4 COP kW 3.18 3.27 3.36 3.44 3.52 C.C. kW 520.0 554.4 589.5 625.3 661.7 35 P.I. kW/kW 169.4 175.6 182.0 188.7 195.5 COP kW 2.78 2.87 2.95 3.03 3.10 Entering Condenser Air Temperature (°C) C.C. kW 603.9 642.9 682.6 723.0 763.9 30 P.I. kW/kW 172.2 179.1 186.2 193.5 201.1 COP kW 3.15 3.24 3.32 3.39 3.46 C.C. kW 566.5 603.5 641.2 679.5 718.5 35 P.I. kW/kW 185.4 192.4 199.7 207.2 214.8 COP kW 2.77 2.85 2.93 3.00 3.07 Entering Condenser Air Temperature (°C) C.C. kW 669.4 712.2 755.9 800.3 845.4 30 P.I. kW/kW 190.2 197.8 205.7 213.8 222.2 COP kW 3.16 3.25 3.33 3.40 3.47 C.C. kW 629.1 669.8 711.3 753.6 796.6 35 P.I. kW/kW 204.6 212.5 220.6 229.0 237.6 COP kW 2.78 2.86 2.94 3.01 3.08 Entering Condenser Air Temperature (°C) C.C. kW 736.2 783.1 830.9 879.7 929.3 30 P.I. kW/kW 208.3 216.7 225.5 234.5 243.8 COP kW 3.18 3.26 3.34 3.41 3.48 C.C. kW 692.9 737.4 782.9 829.4 876.7 35 P.I. kW/kW 224.2 232.9 241.9 251.3 260.9 COP kW 2.80 2.88 2.95 3.02 3.08 Notes : 1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW. 2. Consult Trane representative for performance at temperatures outside of the ranges shown. 3. P.I. kW = compressor power input only. 4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power. 5. Ratings are based on an evaporator temperature drop of 6°C. 6. Interpolation between points is permissible. Extrapolation is not permitted. 7. Above 40°C ambient, the units will have the High-Ambient option. 8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms. RLC-PRC005-E4 19 Performance Data High Efficiency Units (SI Units) Table P-6 — RTAC 120 LWT °C C.C. kW 5 459.3 7 490.9 9 523.2 11 556.3 13 590.0 25 P.I. kW 104.9 108.9 113.0 117.2 121.6 COP kW/kW 3.81 3.94 4.07 4.18 4.29 Table P-7 — RTAC 130 LWT °C C.C. kW 5 506.6 7 541.5 9 577.2 11 613.9 13 651.4 25 P.I. kW 115.3 119.7 124.3 129.0 133.9 COP kW/kW 3.81 3.94 4.07 4.19 4.30 Table P-8 — RTAC 140 LWT °C C.C. kW 5 554.6 7 592.8 9 632.1 11 672.6 13 714.2 25 P.I. kW 125.8 130.7 135.7 140.9 146.3 COP kW/kW 3.82 3.95 4.07 4.19 4.31 Table P-9 — RTAC 155 LWT °C C.C. kW 161.7 2.93 7 645.9 9 687.9 11 730.9 13 774.8 25 P.I. kW 501.0 145.3 151.0 157.0 163.2 COP kW/kW 174.7 3.88 3.99 4.10 4.20 Table P-10 — RTAC 170 LWT °C C.C. kW 5 656.3 7 700.0 9 744.6 11 790.3 13 836.8 25 P.I. kW 153.7 160.0 166.6 173.3 180.3 COP kW/kW 3.71 3.82 3.92 4.02 4.11 Table P-11 — RTAC 185 LWT °C C.C. kW 5 728.8 7 777.3 9 827.0 11 877.8 13 929.6 20 25 P.I. kW 170.9 178.0 185.3 192.9 200.8 COP kW/kW 3.72 3.83 3.93 4.03 4.11 Entering Condenser Air Temperature (°C) C.C. kW 433.2 463.4 494.3 525.8 558.0 30 P.I. kW 112.9 117.0 121.3 125.7 130.3 COP kW/kW 3.37 3.49 3.61 3.72 3.82 C.C. kW 406.2 434.8 464.2 494.2 524.8 35 P.I. kW 122.1 126.3 130.7 135.3 140.0 COP kW/kW 2.95 3.06 3.17 3.27 3.37 C.C. kW 378.2 405.3 433.1 461.5 490.6 40 P.I. kW 132.4 136.8 141.4 146.1 150.9 COP kW/kW 2.55 2.66 2.76 2.85 2.94 C.C. kW 342.9 368.1 393.9 420.3 447.3 46 P.I. kW 146.6 151.2 155.9 160.8 165.8 COP kW/kW 2.11 2.21 2.29 2.38 2.46 C.C. kW 310.0 333.4 350.7 366.3 383.8 52 P.I. kW 161.0 165.8 167.0 167.0 167.5 COP kW/kW 1.75 1.84 1.92 2.00 2.09 C.C. kW 418.3 448.4 479.3 511.1 543.5 40 P.I. kW 145.5 150.3 155.3 160.4 165.7 COP kW/kW 2.56 2.67 2.77 2.87 2.97 C.C. kW 380.0 408.1 436.9 466.5 496.7 46 P.I. kW 160.9 165.9 171.0 176.3 181.7 COP kW/kW 2.13 2.22 2.32 2.41 2.49 C.C. kW 344.3 370.4 393.9 413.3 425.5 52 P.I. kW 176.5 181.7 185.0 185.9 182.7 COP kW/kW 1.77 1.86 1.94 2.03 2.12 C.C. kW 458.7 491.9 526.2 561.3 597.3 40 P.I. kW 158.7 163.9 169.3 174.9 180.6 COP kW/kW 2.57 2.68 2.79 2.89 2.99 C.C. kW 417.4 448.4 480.3 513.1 546.7 46 P.I. kW 175.3 180.7 186.2 191.9 197.7 COP kW/kW 2.14 2.24 2.33 2.43 2.52 C.C. kW 378.9 407.8 437.6 457.7 466.4 52 P.I. kW 192.0 197.6 203.3 203.5 197.6 COP kW/kW 1.79 1.88 1.96 2.05 2.15 Entering Condenser Air Temperature (°C) C.C. kW 478.2 511.5 545.7 580.8 616.7 30 P.I. kW 124.2 128.7 133.4 138.3 143.3 COP kW/kW 3.37 3.50 3.61 3.73 3.83 C.C. kW 448.7 480.4 513.0 546.5 580.7 35 P.I. kW 134.2 138.9 143.8 148.7 153.9 COP kW/kW 2.95 3.07 3.18 3.28 3.39 Entering Condenser Air Temperature (°C) C.C. kW 523.6 560.2 597.9 636.7 676.5 30 P.I. kW 135.5 140.5 145.7 151.0 156.5 COP kW/kW 3.38 3.50 3.62 3.73 3.84 C.C. kW 491.7 526.6 562.6 599.6 637.5 35 P.I. kW 146.5 151.6 156.9 162.3 167.9 COP kW/kW 2.96 3.08 3.19 3.30 3.40 Entering Condenser Air Temperature (°C) C.C. kW 2.55 610.6 650.7 691.9 733.9 30 P.I. kW 456.0 155.7 161.6 167.7 174.0 COP kW/kW 192.6 3.45 3.56 3.66 3.76 C.C. kW 2.13 574.0 612.3 651.5 691.6 35 P.I. kW 414.1 167.5 173.5 179.7 186.1 COP kW/kW 210.7 3.04 3.14 3.24 3.33 C.C. kW 1.78 536.3 572.6 609.9 648.0 40 P.I. kW COP kW/kW C.C. kW 46 P.I. kW COP kW/kW C.C. kW 52 P.I. kW COP kW/kW 180.7 186.8 193.2 199.6 2.65 2.75 2.84 2.93 489.0 522.8 557.5 593.1 198.7 205.0 211.4 218.0 2.22 2.31 2.39 2.48 444.8 476.3 501.2 506.2 217.0 223.4 225.6 217.5 1.87 1.95 2.03 2.12 C.C. kW 543.6 581.2 619.7 659.2 699.5 40 P.I. kW 190.9 197.6 204.5 211.6 218.8 COP kW/kW 2.54 2.63 2.72 2.81 2.89 C.C. kW 494.8 529.8 565.7 602.5 640.1 46 P.I. kW 210.0 216.9 223.9 231.1 238.4 COP kW/kW 2.12 2.21 2.29 2.37 2.45 C.C. kW 449.4 481.9 515.3 539.5 546.7 52 P.I. kW 229.4 236.4 243.5 245.1 237.3 COP kW/kW 1.78 1.86 1.93 2.01 2.10 C.C. kW 606.9 648.7 691.6 735.7 780.7 40 P.I. kW 211.6 219.3 227.2 235.3 243.7 COP kW/kW 2.56 2.65 2.74 2.82 2.90 C.C. kW 553.8 592.8 632.7 673.8 715.8 46 P.I. kW 232.6 240.5 248.6 257.0 265.6 COP kW/kW 2.15 2.23 2.31 2.39 2.46 C.C. kW 504.2 540.3 577.5 590.5 599.4 52 P.I. kW 253.8 261.9 270.3 264.2 256.0 COP kW/kW 1.81 1.88 1.95 2.04 2.13 Entering Condenser Air Temperature (°C) C.C. kW 619.9 661.6 704.3 748.0 792.5 30 P.I. kW 164.6 171.1 177.7 184.6 191.7 COP kW/kW 3.30 3.40 3.50 3.60 3.69 C.C. kW 582.3 622.0 662.7 704.2 746.7 35 P.I. kW 177.0 183.6 190.4 197.4 204.5 COP kW/kW 2.91 3.01 3.10 3.19 3.28 Entering Condenser Air Temperature (°C) C.C. kW 689.7 736.0 783.5 832.0 881.7 30 P.I. kW 182.8 190.1 197.6 205.4 213.4 COP kW/kW 3.32 3.42 3.52 3.61 3.70 C.C. kW 649.0 693.1 738.3 784.7 832.0 35 P.I. kW 196.4 203.8 211.5 219.5 227.7 COP kW/kW 2.93 3.03 3.12 3.21 3.29 RLC-PRC005-E4 Performance Data High Efficiency Units (SI Units) Table P-12 — RTAC 200 LWT 25 °C C.C. P.I. kW kW 5 803.3 188.3 7 856.9 196.2 9 911.8 204.4 11 968.0 212.9 13 1025.5 221.6 COP kW/kW 3.73 3.84 3.94 4.04 4.12 Entering Condenser Air Temperature (°C) C.C. kW 761.2 812.3 864.8 918.6 973.7 30 P.I. kW 201.3 209.4 217.8 226.5 235.5 COP kW/kW 3.33 3.44 3.53 3.62 3.71 C.C. kW 717.3 766.0 816.0 867.3 919.9 35 P.I. kW 216.1 224.4 233.0 242.0 251.2 COP kW/kW 2.95 3.05 3.14 3.22 3.31 C.C. kW 671.8 717.9 765.4 814.1 864.1 40 P.I. kW 232.6 241.2 250.2 259.4 269.0 COP kW/kW 2.59 2.68 2.76 2.84 2.92 C.C. kW 614.2 657.1 701.3 746.8 793.5 46 P.I. kW 255.4 264.3 273.7 283.3 293.3 COP kW/kW 2.17 2.26 2.33 2.41 2.48 C.C. kW 560.1 600.0 629.6 642.5 648.9 52 P.I. kW 278.4 287.8 290.6 283.5 272.4 COP kW/kW 1.83 1.91 1.98 2.07 2.17 Notes : 1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW. 2. Consult Trane representative for performance at temperatures outside of the ranges shown. 3. P.I. kW = compressor power input only. 4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power. 5. Ratings are based on an evaporator temperature drop of 6°C. 6. Interpolation between points is permissible. Extrapolation is not permitted. 7. Above 40°C ambient, the units will have the High-Ambient option. 8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms. RLC-PRC005-E4 21 Performance Data Low Noise Standard Units (SI Units) Table P-13 — RTAC 140 LWT °C C.C. kW 5 510.3 7 541.1 9 572.3 11 603.8 13 635.6 25 P.I. kW 144.5 150.7 157.1 163.7 170.6 Table P-14 — RTAC 155 LWT °C C.C. kW 5 560.0 7 593.4 9 627.1 11 661.1 13 695.3 25 P.I. kW 159.7 166.7 173.9 181.4 189.1 Table P-15 — RTAC 170 LWT °C C.C. kW 5 610.3 7 646.3 9 682.6 11 719.1 13 755.8 25 P.I. kW 175.1 182.9 191.0 199.4 208.0 Table P-16 — RTAC 185 LWT °C C.C. kW 5 675.9 7 715.5 9 755.4 11 795.7 13 836.2 25 P.I. kW 193.4 202.1 211.1 220.5 230.1 Table P-17 — RTAC 200 LWT °C C.C. kW 5 742.7 7 786.1 9 829.9 11 874.1 13 918.6 25 P.I. kW 212.0 221.6 231.6 242.0 252.8 Entering Condenser Air Temperature (°C) COP kW/kW 3.36 3.42 3.48 3.53 3.57 C.C. kW 478.7 507.9 537.4 567.3 597.3 30 P.I. kW 156.3 162.7 169.4 176.2 183.3 COP kW/kW 2.92 2.98 3.04 3.09 3.13 C.C. kW 446.2 473.7 501.6 529.7 558.0 35 P.I. kW 169.3 175.9 182.8 189.9 197.2 COP kW/kW 2.52 2.58 2.64 2.68 2.73 C.C. kW 412.9 438.8 465.3 491.5 509.0 40 P.I. kW 183.5 190.4 197.4 204.7 205.6 COP kW/kW 2.16 2.22 2.27 2.32 2.39 C.C. kW 490.0 519.8 549.8 580.0 610.5 35 P.I. kW 186.1 193.5 201.2 209.2 217.3 COP kW/kW 2.52 2.57 2.62 2.67 2.71 C.C. kW 453.8 481.6 509.8 538.1 556.8 40 P.I. kW 201.2 208.9 216.8 224.9 225.9 COP kW/kW 2.16 2.22 2.26 2.31 2.38 C.C. kW 534.3 566.2 598.4 630.9 663.5 35 P.I. kW 203.0 211.3 219.9 228.6 237.6 COP kW/kW 2.52 2.57 2.61 2.65 2.69 C.C. kW 494.8 524.8 555.0 585.5 604.8 40 P.I. kW 219.1 227.7 236.3 245.3 246.2 COP kW/kW 2.17 2.22 2.26 2.30 2.37 C.C. kW 593.7 628.9 664.4 700.2 736.3 35 P.I. kW 224.3 233.6 243.3 253.3 263.7 COP kW/kW 2.53 2.58 2.62 2.66 2.69 C.C. kW 550.9 583.8 615.2 648.6 668.0 40 P.I. kW 242.1 251.7 261.0 271.3 271.0 COP kW/kW 2.19 2.23 2.27 2.31 2.38 C.C. kW 654.1 692.6 731.6 771.0 810.6 35 P.I. kW 245.8 256.2 267.1 278.4 290.2 COP kW/kW 2.55 2.59 2.63 2.66 2.69 C.C. kW 607.7 643.7 680.5 717.1 730.4 40 P.I. kW 265.2 276.1 287.3 299.2 292.2 COP kW/kW 2.20 2.24 2.28 2.31 2.41 Entering Condenser Air Temperature (°C) COP kW/kW 3.33 3.39 3.44 3.48 3.52 C.C. kW 525.5 557.0 588.9 621.1 653.4 30 P.I. kW 172.2 179.5 186.9 194.7 202.6 COP kW/kW 2.91 2.97 3.02 3.06 3.10 Entering Condenser Air Temperature (°C) COP kW/kW 3.31 3.36 3.41 3.45 3.48 C.C. kW 572.8 606.8 641.1 675.6 710.2 30 P.I. kW 188.3 196.4 204.7 213.3 222.1 COP kW/kW 2.90 2.95 3.00 3.04 3.07 Entering Condenser Air Temperature (°C) COP kW/kW 3.32 3.37 3.42 3.45 3.48 C.C. kW 635.4 672.8 710.6 748.6 787.0 30 P.I. kW 208.0 217.1 226.4 236.1 246.1 COP kW/kW 2.91 2.96 3.01 3.04 3.07 Entering Condenser Air Temperature (°C) COP kW/kW 3.33 3.38 3.42 3.46 3.48 C.C. kW 699.2 740.1 781.5 823.3 865.5 30 P.I. kW 228.1 238.0 248.5 259.3 270.6 COP kW/kW 2.93 2.97 3.01 3.05 3.07 Notes : 1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW. 2. Consult Trane representative for performance at temperatures outside of the ranges shown. 3. P.I. kW = compressor power input only. 4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power. 5. Ratings are based on an evaporator temperature drop of 6°C. 6. Interpolation between points is permissible. Extrapolation is not permitted. 7. Above 40°C ambient, the units will have the High-Ambient option. 8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms. 22 RLC-PRC005-E4 Performance Data Low Noise HE Units (SI Units) Table P-18 — RTAC 120 LWT °C 5 7 9 11 13.0 C.C. kW 443.2 471.8 500.8 530.2 560.0 25 P.I. kW 113.4 118.0 122.9 128.0 133.2 Entering Condenser Air Temperature (°C) COP kW/kW 3.67 3.76 3.84 3.91 3.98 Table P-19 — RTAC 130 LWT °C 5 7 9 11 13 C.C. kW 489.3 520.9 553.2 585.9 619.1 25 P.I. kW 124.6 129.8 135.2 140.7 146.5 5 7 9 11 13 C.C. kW 535.9 570.7 606.3 642.5 679.4 25 P.I. kW 136.0 141.7 147.5 153.6 159.9 COP kW/kW 3.68 3.77 3.85 3.93 4.00 5 7 9 11 13 C.C. kW 584.6 621.9 659.8 698.3 737.3 25 P.I. kW 150.5 156.9 163.5 170.4 177.5 COP kW/kW 3.69 3.78 3.87 3.95 4.02 5 7 9 11 13 C.C. kW 634.0 673.7 714.1 755.0 796.3 25 P.I. kW 165.0 172.2 179.6 187.3 195.2 COP kW/kW 3.64 3.73 3.80 3.87 3.93 5 7 9 11 13 C.C. kW 704.3 748.4 793.2 838.5 884.5 RLC-PRC005-E4 25 P.I. kW 183.7 191.7 200.1 208.9 217.8 35 P.I. kW 132.6 137.7 142.9 148.4 154.0 COP kW/kW 2.77 2.85 2.92 2.99 3.05 C.C. kW 359.7 383.7 408.0 432.7 457.6 40 P.I. kW 143.9 149.1 154.6 160.3 166.1 COP kW/kW 2.38 2.45 2.52 2.58 2.64 C.C. kW 323.9 345.9 363.8 376.7 391.7 46 P.I. kW 159.2 164.8 167.4 166.8 166.8 COP kW/kW 1.94 2.01 2.08 2.16 2.25 C.C. kW 459.8 489.9 520.5 551.6 583.1 30 P.I. kW 134.6 139.9 145.5 151.3 157.2 COP kW/kW 3.22 3.30 3.38 3.46 3.52 C.C. kW 429.5 458.0 486.9 516.3 546.0 35 P.I. kW 145.7 151.2 157.0 162.9 169.0 COP kW/kW 2.79 2.87 2.94 3.01 3.08 C.C. kW 398.4 425.2 452.4 480.0 508.0 40 P.I. kW 158.0 163.7 169.6 175.8 182.0 COP kW/kW 2.40 2.47 2.54 2.61 2.67 C.C. kW 359.6 384.2 406.1 422.9 434.8 46 P.I. kW 174.6 180.5 184.9 185.7 182.8 COP kW/kW 1.97 2.03 2.10 2.18 2.27 C.C. kW 503.9 537.1 570.9 605.3 640.3 30 P.I. kW 146.8 152.7 158.7 165.0 171.5 COP kW/kW 3.23 3.32 3.40 3.47 3.54 C.C. kW 471.1 502.5 534.5 567.1 600.2 35 P.I. kW 158.9 164.9 171.1 177.6 184.2 COP kW/kW 2.80 2.89 2.96 3.04 3.10 C.C. kW 437.5 467.1 497.3 527.9 559.0 40 P.I. kW 172.1 178.3 184.7 191.3 198.1 COP kW/kW 2.41 2.49 2.56 2.63 2.70 C.C. kW 395.5 422.9 450.9 468.5 476.8 46 P.I. kW 189.9 196.4 202.9 203.5 197.6 COP kW/kW 1.99 2.06 2.13 2.20 2.31 C.C. kW 550.0 585.3 621.3 657.9 695.0 30 P.I. kW 162.0 168.6 175.4 182.5 189.7 COP kW/kW 3.20 3.28 3.35 3.42 3.48 C.C. kW 514.3 547.8 581.8 616.4 651.5 35 P.I. kW 174.9 181.7 188.7 195.9 203.3 COP kW/kW 2.78 2.86 2.93 2.99 3.05 C.C. kW 477.8 509.3 541.4 573.9 606.9 40 P.I. kW 189.1 196.1 203.3 210.6 218.2 COP kW/kW 2.40 2.47 2.54 2.60 2.66 C.C. kW 432.1 461.2 491.1 511.6 519.4 46 P.I. kW 208.3 215.5 222.9 224.4 217.6 COP kW/kW 1.98 2.04 2.11 2.18 2.28 35 P.I. kW 191.0 198.6 206.4 214.4 222.6 COP kW/kW 2.76 2.83 2.90 2.96 3.01 C.C. kW 518.4 551.9 585.9 620.4 655.3 40 P.I. kW 206.2 213.9 221.9 230.1 238.4 COP kW/kW 2.39 2.45 2.52 2.57 2.63 C.C. kW 468.9 499.8 531.3 551.4 561.1 46 P.I. kW 226.8 234.8 242.8 243.6 237.4 COP kW/kW 1.97 2.03 2.09 2.17 2.26 35 P.I. kW 212.2 220.8 229.8 239.0 248.6 COP kW/kW 2.78 2.84 2.90 2.96 3.01 C.C. kW 578.6 615.7 653.4 691.7 730.6 40 P.I. kW 228.9 237.8 247.0 256.6 266.4 COP kW/kW 2.40 2.47 2.52 2.58 2.63 C.C. kW 524.5 558.6 590.1 605.9 614.9 46 P.I. kW 251.5 260.8 267.9 264.3 256.3 COP kW/kW 1.99 2.05 2.11 2.19 2.29 Entering Condenser Air Temperature (°C) COP kW/kW 3.60 3.68 3.75 3.81 3.86 Table P-23 — RTAC 185 LWT °C C.C. kW 388.3 413.9 439.8 466.1 492.6 Entering Condenser Air Temperature (°C) Table P-22 — RTAC 170 LWT °C COP kW/kW 3.20 3.29 3.37 3.44 3.50 Entering Condenser Air Temperature (°C) Table P-21 — RTAC 155 LWT °C 30 P.I. kW 122.4 127.3 132.4 137.6 143.1 Entering Condenser Air Temperature (°C) Table P-20 — RTAC 140 LWT °C C.C. kW 416.2 443.3 470.8 498.6 526.8 C.C. kW 596.5 634.2 672.5 711.3 750.5 30 P.I. kW 177.3 184.7 192.3 200.1 208.2 COP kW/kW 3.17 3.24 3.31 3.37 3.42 C.C. kW 557.9 593.6 629.7 666.4 703.5 Entering Condenser Air Temperature (°C) COP kW/kW 3.60 3.68 3.74 3.80 3.85 C.C. kW 663.7 705.5 747.9 791.0 834.7 30 P.I. kW 197.1 205.5 214.2 223.1 232.4 COP kW/kW 3.18 3.25 3.31 3.37 3.42 C.C. kW 621.7 661.2 701.3 742.0 783.3 23 Performance Data Low Noise HE Units (SI Units) Table P-24 — RTAC 200 LWT °C 5 7 9 11 13 C.C. kW 776.4 824.9 874.3 924.4 975.2 25 P.I. kW 202.6 211.6 221.0 230.8 240.9 Entering Condenser Air Temperature (°C) COP kW/kW 3.61 3.68 3.74 3.80 3.85 C.C. kW 732.4 778.4 825.2 872.8 921.0 30 P.I. kW 217.3 226.6 236.4 246.5 257.1 COP kW/kW 3.19 3.25 3.31 3.37 3.42 C.C. kW 686.9 730.3 774.5 819.5 865.1 35 P.I. kW 233.7 243.4 253.6 264.1 275.1 COP kW/kW 2.79 2.85 2.91 2.96 3.01 C.C. kW 640.1 680.8 722.4 764.6 807.5 40 P.I. kW 251.9 262.0 272.5 283.5 294.9 COP kW/kW 2.42 2.48 2.53 2.58 2.63 C.C. kW 581.1 618.6 644.6 654.7 665.5 46 P.I. kW 276.6 287.2 289.6 281.3 272.6 COP kW/kW 2.01 2.06 2.13 2.23 2.33 Notes : 1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW. 2. Consult Trane representative for performance at temperatures outside of the ranges shown. 3. P.I. kW = compressor power input only. 4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power. 5. Ratings are based on an evaporator temperature drop of 6°C. 6. Interpolation between points is permissible. Extrapolation is not permitted. 7. Above 40°C ambient, the units will have the High-Ambient option. 8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms. 24 RLC-PRC005-E4 Performance Data Standard Units (English Units) Table P-25 — RTAC 140 LWT °F 41 44 45 46 48 C.C. Ton 152.5 160.8 163.6 166.4 172.0 77 P.I. kW 131.3 135.5 137.0 138.5 141.4 EER 12.45 12.75 12.85 12.95 13.14 Table P-26 — RTAC 155 LWT °F 41 44 45 46 48 C.C. Ton 167.2 176.2 179.2 182.2 188.3 77 P.I. kW 145.8 150.7 152.4 154.1 157.5 EER 12.28 12.56 12.65 12.74 12.91 Table P-27 — RTAC 170 LWT °F 41 44 45 46 48 C.C. Ton 182.1 191.8 195.0 198.3 204.9 77 P.I. kW 160.5 166.1 168.0 170.0 173.8 EER 12.14 12.40 12.48 12.56 12.72 Table P-28 — RTAC 185 LWT °F 41 44 45 46 48 C.C. Ton 201.4 212.1 215.6 219.3 226.5 77 P.I. kW 177.3 183.4 185.5 187.6 191.9 EER 12.17 12.43 12.51 12.59 12.74 Table P-29 — RTAC 200 LWT °F 41 44 45 46 48 C.C. Ton 221.2 232.9 236.8 240.7 248.6 77 P.I. kW 194.3 201.0 203.3 205.7 210.3 EER 12.21 12.46 12.54 12.62 12.77 Entering Condenser Air Temperature (°F) C.C. Ton 143.8 151.7 154.4 157.1 162.5 86 P.I. kW 141.8 146.2 147.7 149.2 152.3 EER 10.96 11.24 11.34 11.43 11.61 C.C. Ton 134.8 142.4 144.9 147.5 152.6 95 P.I. kW 153.5 158.1 159.6 161.2 164.3 EER 9.56 9.83 9.92 10.00 10.17 C.C. Ton 125.6 132.7 135.1 137.6 142.5 104 P.I. kW 166.5 171.2 172.8 174.4 177.6 C.C. Ton 137.8 145.5 148.1 150.7 156.0 104 P.I. kW 183.2 188.5 190.3 192.1 195.8 C.C. Ton 150.2 158.4 161.2 164.0 169.7 104 P.I. kW 200.0 206.0 208.0 210.1 214.2 C.C. Ton 167.1 176.2 179.3 182.4 188.6 104 P.I. kW 220.8 227.5 229.8 232.1 236.8 C.C. Ton 184.3 194.3 197.6 201.0 207.8 104 P.I. kW 241.8 249.3 251.9 254.5 259.7 EER 8.27 8.52 8.60 8.68 8.84 C.C. Ton 114.0 120.6 122.9 125.1 129.7 115 P.I. kW 184.0 188.9 190.5 192.2 195.5 C.C. Ton 125.1 132.3 134.7 137.2 142.0 115 P.I. kW 201.9 207.4 209.3 211.2 214.9 C.C. Ton 136.4 144.1 146.6 149.3 154.5 115 P.I. kW 220.0 226.1 228.2 230.3 234.5 C.C. Ton 152.1 160.6 163.4 166.3 172.1 115 P.I. kW 242.8 249.8 252.1 254.6 259.4 C.C. Ton 168.1 177.3 180.5 183.6 189.9 115 P.I. kW 265.7 273.7 276.3 279.1 284.6 EER 6.85 7.08 7.15 7.22 7.37 C.C. Ton 106.4 112.8 114.3 115.0 116.3 122 P.I. kW 196.1 201.1 201.5 200.1 197.4 C.C. Ton 116.9 123.7 125.4 126.2 127.9 122 P.I. kW 214.9 220.6 221.2 220.0 217.6 C.C. Ton 127.4 134.7 136.5 137.5 139.5 122 P.I. kW 233.9 240.1 241.0 240.0 237.9 C.C. Ton 142.4 148.3 150.0 151.0 153.1 122 P.I. kW 258.0 260.8 260.8 259.6 257.1 C.C. Ton 157.5 163.8 165.3 166.0 167.3 122 P.I. kW 282.4 285.0 284.5 282.1 277.2 EER 6.03 6.24 6.31 6.39 6.55 Entering Condenser Air Temperature (°F) C.C. Ton 157.7 166.3 169.1 172.1 177.9 86 P.I. kW 156.9 162.0 163.7 165.4 168.9 EER 10.84 11.11 11.20 11.28 11.44 C.C. Ton 147.9 156.0 158.8 161.6 167.1 95 P.I. kW 169.4 174.6 176.3 178.1 181.7 EER 9.49 9.74 9.83 9.91 10.06 EER 8.24 8.47 8.55 8.62 8.77 EER 6.84 7.05 7.12 7.19 7.33 EER 6.03 6.23 6.30 6.38 6.53 Entering Condenser Air Temperature (°F) C.C. Ton 171.8 181.0 184.1 187.2 193.5 86 P.I. kW 172.2 177.9 179.9 181.9 185.8 EER 10.75 11.00 11.08 11.16 11.31 C.C. Ton 161.1 169.9 172.8 175.8 181.8 95 P.I. kW 185.4 191.2 193.2 195.2 199.3 EER 9.44 9.67 9.75 9.82 9.97 EER 8.21 8.43 8.50 8.57 8.71 EER 6.83 7.04 7.10 7.17 7.30 EER 6.04 6.23 6.29 6.36 6.51 Entering Condenser Air Temperature (°F) C.C. Ton 190.4 200.5 203.9 207.4 214.3 86 P.I. kW 190.2 196.5 198.6 200.8 205.2 EER 10.80 11.04 11.12 11.20 11.35 C.C. Ton 178.9 188.6 191.8 195.1 201.6 95 P.I. kW 204.6 211.2 213.4 215.7 220.2 EER 9.50 9.73 9.80 9.88 10.02 EER 8.28 8.49 8.56 8.63 8.76 EER 6.91 7.11 7.17 7.23 7.35 EER 6.11 6.31 6.38 6.45 6.60 Entering Condenser Air Temperature (°F) C.C. Ton 209.4 220.5 224.2 228.0 235.6 86 P.I. kW 208.3 215.3 217.7 220.1 225.0 EER 10.85 11.09 11.17 11.24 11.39 C.C. Ton 197.1 207.6 211.2 214.8 221.9 95 P.I. kW 224.2 231.4 233.9 236.4 241.4 EER 9.56 9.78 9.85 9.93 10.06 EER 8.34 8.55 8.62 8.69 8.81 EER 6.98 7.17 7.23 7.29 7.40 EER 6.18 6.38 6.45 6.53 6.68 Notes : 1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW. 2. Consult Trane representative for performance at temperatures outside of the ranges shown. 3. P.I. kW = compressor power input only. 4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power. 5. Ratings are based on an evaporator temperature drop of 6°C. 6. Interpolation between points is permissible. Extrapolation is not permitted. 7. Above 40°C ambient, the units will have the High-Ambient option. 8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms. RLC-PRC005-E4 25 Performance Data High Efficiency Units (English Units) Table P-30 — RTAC 120 LWT °F 41 44 45 46 48 C.C. Ton 130.6 138.1 140.6 143.2 148.3 77 P.I. kW 104.9 108.2 109.3 110.5 112.7 Entering Condenser Air Temperature (°F) EER EER 12.99 13.37 13.49 13.62 13.85 Table P-31 — RTAC 130 LWT °F 41 44 45 46 48 C.C. Ton 144.1 152.4 155.1 158.0 163.6 77 P.I. kW 115.3 119.0 120.2 121.5 124.0 41 44 45 46 48 C.C. Ton 157.7 166.8 169.8 172.9 179.2 77 P.I. kW 125.8 129.8 131.2 132.6 135.4 EER EER 13.01 13.38 13.51 13.63 13.86 41 44 45 46 48 C.C. Ton 172.1 181.8 185.0 188.4 195.0 77 P.I. kW 139.7 144.3 145.9 147.5 150.7 EER EER 13.03 13.40 13.52 13.64 13.88 41 44 45 46 48 C.C. Ton 186.7 197.0 200.5 204.0 211.1 77 P.I. kW 153.7 159.0 160.7 162.6 166.2 EER EER 12.82 13.16 13.27 13.38 13.59 41 44 45 46 48 26 C.C. Ton 207.3 218.8 222.7 226.6 234.4 77 P.I. kW 170.9 176.8 178.8 180.8 184.9 95 P.I. kW 122.1 125.6 126.8 128.0 130.5 EER EER 10.06 10.38 10.49 10.59 10.80 C.C. Ton 107.6 114.0 116.2 118.3 122.7 104 P.I. kW 132.4 136.1 137.3 138.6 141.1 EER EER 8.71 9.01 9.11 9.20 9.39 C.C. Ton 97.5 103.5 105.5 107.5 111.6 115 P.I. kW 146.6 150.4 151.7 153.0 155.7 EER EER 7.21 7.48 7.56 7.65 7.81 C.C. Ton 88.1 93.7 95.3 96.7 99.4 122 P.I. kW 161.0 165.0 165.9 166.3 166.9 EER EER 1.72 6.22 6.30 6.38 6.53 C.C. Ton 136.0 143.9 146.6 149.3 154.7 86 P.I. kW 124.2 128.0 129.2 130.5 133.2 EER EER 11.51 11.86 11.98 12.09 12.31 C.C. Ton 127.6 135.1 137.7 140.2 145.4 95 P.I. kW 134.2 138.1 139.5 140.8 143.5 EER EER 10.08 10.41 10.52 10.62 10.83 C.C. Ton 119.0 126.1 128.5 131.0 135.8 104 P.I. kW 145.5 149.5 150.9 152.2 155.0 EER EER 8.75 9.05 9.15 9.25 9.44 C.C. Ton 108.1 114.7 117.0 119.2 123.8 115 P.I. kW 160.9 165.1 166.5 167.9 170.8 EER EER 7.27 7.54 7.62 7.71 7.89 C.C. Ton 97.9 104.1 106.1 107.9 111.6 122 P.I. kW 176.5 180.8 182.0 183.0 184.8 EER EER 1.74 6.30 6.38 6.46 6.62 C.C. Ton 148.9 157.6 160.5 163.5 169.5 86 P.I. kW 135.5 139.7 141.1 142.5 145.4 EER EER 11.53 11.88 12.00 12.11 12.33 C.C. Ton 139.8 148.1 150.9 153.7 159.4 95 P.I. kW 146.5 150.7 152.2 153.6 156.6 EER EER 10.11 10.44 10.55 10.66 10.87 C.C. Ton 130.5 138.3 141.0 143.7 149.1 104 P.I. kW 158.7 163.0 164.5 166.0 169.0 EER EER 8.79 9.10 9.20 9.30 9.49 C.C. Ton 118.7 126.1 128.5 131.1 136.1 115 P.I. kW 175.3 179.8 181.3 182.8 185.9 EER EER 7.31 7.59 7.68 7.77 7.95 C.C. Ton 107.7 114.6 116.9 119.3 124.0 122 P.I. kW 192.0 196.6 198.2 199.8 203.0 EER EER 6.11 6.36 6.44 6.53 6.69 C.C. Ton 162.5 171.8 174.9 178.1 184.4 86 P.I. kW 150.0 154.8 156.4 158.0 161.3 EER EER 11.38 11.70 11.81 11.91 12.12 C.C. Ton 152.7 161.5 164.5 167.5 173.5 95 P.I. kW 161.7 166.5 168.2 169.9 173.2 EER EER 10.01 10.31 10.41 10.51 10.70 C.C. Ton 142.5 150.9 153.7 156.6 162.3 104 P.I. kW 174.7 179.7 181.4 183.1 186.5 EER EER 8.72 9.00 9.09 9.19 9.37 C.C. Ton 129.7 137.5 140.1 142.8 148.2 115 P.I. kW 192.6 197.7 199.4 201.2 204.7 EER EER 7.27 7.53 7.62 7.70 7.87 C.C. Ton 117.7 125.0 127.5 130.0 134.9 122 P.I. kW 210.7 215.9 217.7 219.4 223.0 EER EER 6.09 6.32 6.40 6.48 6.63 EER EER 9.92 10.21 10.30 10.39 10.57 C.C. Ton 154.6 163.5 166.5 169.6 175.6 104 P.I. kW 190.9 196.5 198.4 200.3 204.1 EER EER 8.66 8.93 9.02 9.10 9.27 C.C. Ton 140.7 149.0 151.8 154.7 160.3 115 P.I. kW 210.0 215.7 217.7 219.6 223.5 EER EER 7.24 7.48 7.56 7.64 7.80 C.C. Ton 127.8 135.5 138.1 140.7 146.0 122 P.I. kW 229.4 235.2 237.2 239.1 243.1 EER EER 6.07 6.29 6.36 6.44 6.58 EER EER 10.00 10.28 10.37 10.46 10.63 C.C. Ton 172.6 182.5 185.9 189.3 196.0 104 P.I. kW 211.6 218.0 220.2 222.4 226.7 EER EER 8.75 9.01 9.09 9.18 9.34 C.C. Ton 157.5 166.7 169.9 173.0 179.3 115 P.I. kW 232.6 239.1 241.4 243.6 248.1 EER EER 7.34 7.57 7.65 7.72 7.87 C.C. Ton 143.4 151.9 154.8 157.8 163.6 122 P.I. kW 253.8 260.6 262.9 265.2 269.9 EER EER 6.17 6.38 6.45 6.52 6.66 Entering Condenser Air Temperature (°F) EER EER 12.66 12.97 13.07 13.17 13.37 Table P-35 — RTAC 185 LWT °F C.C. Ton 115.5 122.3 124.6 126.9 131.6 Entering Condenser Air Temperature (°F) Table P-34 — RTAC 170 LWT °F EER EER 11.49 11.84 11.96 12.07 12.29 Entering Condenser Air Temperature (°F) Table P-33 — RTAC 155 LWT °F 86 P.I. kW 112.9 116.3 117.5 118.7 121.0 Entering Condenser Air Temperature (°F) Table P-32 — RTAC 140 LWT °F C.C. Ton 123.2 130.4 132.8 135.2 140.1 C.C. Ton 176.3 186.2 189.5 192.9 199.6 86 P.I. kW 164.6 170.0 171.8 173.6 177.4 EER EER 11.26 11.56 11.66 11.76 11.94 C.C. Ton 165.6 175.0 178.2 181.4 187.8 95 P.I. kW 177.0 182.5 184.3 186.2 190.0 Entering Condenser Air Temperature (°F) EER EER 12.69 13.00 13.10 13.20 13.39 C.C. Ton 196.2 207.1 210.8 214.6 222.1 86 P.I. kW 182.8 188.9 190.9 193.0 197.2 EER EER 11.32 11.61 11.71 11.80 11.99 C.C. Ton 184.6 195.0 198.5 202.1 209.3 95 P.I. kW 196.4 202.6 204.7 206.8 211.1 RLC-PRC005-E4 Performance Data Table P-36 — RTAC 200 LWT °F C.C. Ton 232.6 8.83 44 241.2 45 245.5 46 249.8 48 258.5 77 P.I. kW 174.7 194.9 197.1 199.4 204.0 Entering Condenser Air Temperature (°F) EER EER 255.4 13.04 13.14 13.24 13.43 C.C. Ton 7.42 228.6 232.7 236.8 245.1 86 P.I. kW 159.3 208.1 210.3 212.7 217.3 EER EER 278.4 11.67 11.76 11.86 12.04 C.C. Ton 6.26 215.5 219.4 223.4 231.3 95 P.I. kW EER EER C.C. Ton 104 P.I. kW EER EER C.C. Ton 115 P.I. kW EER EER C.C. Ton 122 P.I. kW EER EER 223.0 225.4 227.8 232.6 10.34 10.43 10.52 10.69 202.0 205.7 209.4 216.9 239.8 242.2 244.7 249.7 9.08 9.17 9.25 9.41 184.9 188.3 191.8 198.8 262.8 265.4 268.0 273.1 7.65 7.73 7.80 7.95 168.7 171.5 173.9 178.6 286.2 288.1 288.9 290.4 6.46 6.53 6.61 6.75 Notes : 1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW. 2. Consult Trane representative for performance at temperatures outside of the ranges shown. 3. P.I. kW = compressor power input only. 4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power. 5. Ratings are based on an evaporator temperature drop of 6°C. 6. Interpolation between points is permissible. Extrapolation is not permitted. 7. Above 40°C ambient, the units will have the High-Ambient option. 8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms. RLC-PRC005-E4 27 Performance Data Low Noise Standard Units (English Units) Table P-37 — RTAC 140 Entering Condenser Air Temperature (°F) LWT °F 41 44 45 46 48 EER 11.46 11.64 11.70 11.75 11.86 C.C.Ton 145.1 152.4 154.9 157.3 162.3 77 P.I. kW 144.5 149.7 151.4 153.2 156.7 C.C.Ton 136.1 143.1 145.4 147.7 152.4 86 P.I. kW 156.3 161.7 163.5 165.3 169.0 EER 9.97 10.15 10.20 10.26 10.36 Table P-38 — RTAC 155 Entering Condenser Air Temperature (°F) LWT °F 41 44 45 46 48 EER 11.37 11.54 11.59 11.64 11.73 C.C.Ton 159.3 167.2 169.8 172.5 177.8 77 P.I. kW 159.7 165.5 167.5 169.5 173.5 C.C.Ton 149.5 156.9 159.4 162.0 167.0 86 P.I. kW 172.2 178.3 180.3 182.4 186.5 EER 9.93 10.09 10.14 10.19 10.28 Table P-39 — RTAC 170 Entering Condenser Air Temperature (°F) LWT °F 41 44 45 46 48 EER 11.30 11.45 11.50 11.54 11.63 C.C.Ton 173.6 182.1 185.0 187.8 193.6 77 P.I. kW 175.1 181.6 183.8 186.0 190.6 C.C.Ton 162.9 171.0 173.7 176.4 181.8 86 P.I. kW 188.3 195.0 197.3 199.6 204.3 EER 9.90 10.05 10.09 10.13 10.22 Table P-40 — RTAC 185 Entering Condenser Air Temperature (°F) LWT °F 41 44 45 46 48 EER 11.34 11.48 11.53 11.57 11.65 C.C.Ton 192.2 201.6 204.7 207.9 214.2 77 P.I. kW 193.4 200.6 203.1 205.6 210.6 C.C.Ton 180.7 189.6 192.6 195.5 201.5 86 P.I. kW 208.0 215.6 218.1 220.7 225.9 EER 9.94 10.08 10.13 10.17 10.25 Table P-41 — RTAC 200 Entering Condenser Air Temperature (°F) LWT °F 41 44 45 46 48 EER 11.37 11.51 11.55 11.59 11.67 C.C.Ton 211.2 221.5 225.0 228.4 235.3 77 P.I. kW 212.0 220.0 222.7 225.5 231.0 C.C.Ton 198.9 208.6 211.8 215.1 221.6 86 P.I. kW 228.1 236.4 239.2 242.1 247.9 EER 9.99 10.12 10.16 10.20 10.28 C.C.Ton 126.9 133.4 135.6 137.8 142.2 95 P.I. kW 169.3 174.8 176.7 178.6 182.4 EER 8.61 8.78 8.83 8.89 8.98 C.C.Ton 117.4 123.5 125.6 127.7 131.9 104 P.I. kW 183.5 189.2 191.1 193.1 197.0 EER 7.38 7.54 7.59 7.64 7.74 C.C.Ton 139.4 146.4 148.8 151.2 155.9 95 P.I. kW 186.1 192.3 194.4 196.5 200.8 EER 8.60 8.76 8.81 8.85 8.94 C.C.Ton 129.0 135.6 137.8 140.1 144.5 104 P.I. kW 201.2 207.7 209.8 212.0 216.3 EER 7.39 7.54 7.58 7.63 7.72 C.C.Ton 152.0 159.5 162.1 164.6 169.7 95 P.I. kW 203.0 209.9 212.3 214.6 219.4 EER 8.59 8.74 8.78 8.82 8.91 C.C.Ton 140.7 147.8 150.2 152.6 157.3 104 P.I. kW 219.1 226.2 228.6 231.0 235.8 EER 7.40 7.53 7.58 7.62 7.71 C.C.Ton 168.9 177.2 180.0 182.8 188.4 95 P.I. kW 224.3 232.0 234.7 237.4 242.7 EER 8.65 8.78 8.83 8.87 8.94 C.C.Ton 156.7 164.4 167.0 169.5 174.4 104 P.I. kW 242.1 250.1 252.8 255.3 260.5 EER 7.46 7.59 7.63 7.66 7.74 C.C.Ton 186.0 195.2 198.2 201.3 207.5 95 P.I. kW 245.8 254.5 257.4 260.4 266.5 EER 8.70 8.83 8.87 8.90 8.98 C.C.Ton 172.8 181.3 184.2 187.1 192.9 104 P.I. kW 265.2 274.3 277.3 280.4 286.7 EER 7.51 7.63 7.67 7.71 7.78 Notes : 1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW. 2. Consult Trane representative for performance at temperatures outside of the ranges shown. 3. P.I. kW = compressor power input only. 4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power. 5. Ratings are based on an evaporator temperature drop of 6°C. 6. Interpolation between points is permissible. Extrapolation is not permitted. 7. Above 40°C ambient, the units will have the High-Ambient option. 8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms. 28 RLC-PRC005-E4 Performance Data Low Noise HE Units (English Units) Table P-42 — RTAC 120 LWT °F C.C.Ton 41 126.0 44 132.8 45 135.1 46 137.4 48 142.0 77 P.I. kW 113.4 117.3 118.6 119.9 122.6 Entering Condenser Air Temperature (°F) EER 12.51 12.78 12.86 12.94 13.09 Table P-43 — RTAC 130 LWT °F C.C.Ton 41 139.2 44 146.7 45 149.2 46 151.7 48 156.8 77 P.I. kW 124.6 128.9 130.4 131.9 134.9 77 P.I. kW 136.0 140.7 142.3 143.9 147.2 EER 12.56 12.82 12.90 12.98 13.14 77 P.I. kW 150.5 155.8 157.6 159.4 163.1 EER 12.60 12.86 12.94 13.03 13.19 77 P.I. kW 165.0 171.0 173.0 175.1 179.2 C.C.Ton 110.4 116.5 118.5 120.6 124.7 95 P.I. kW 132.6 136.8 138.2 139.7 142.6 EER 9.46 9.69 9.76 9.83 9.97 C.C.Ton 102.3 108.0 109.9 111.8 115.6 104 P.I. kW 143.9 148.3 149.8 151.3 154.3 EER 8.11 8.32 8.38 8.45 8.58 C.C.Ton 92.1 97.3 98.9 100.3 103.2 115 P.I. kW 159.2 163.8 165.1 165.8 167.3 EER 6.63 6.82 6.88 6.95 7.08 C.C.Ton 130.8 137.9 140.3 142.7 147.6 86 P.I. kW 134.6 139.1 140.6 142.1 145.2 EER 10.98 11.23 11.31 11.38 11.53 C.C.Ton 122.2 128.9 131.2 133.4 138.0 95 P.I. kW 145.7 150.3 151.9 153.5 156.7 EER 9.52 9.75 9.82 9.90 10.04 C.C.Ton 113.3 119.7 121.8 123.9 128.2 104 P.I. kW 158.0 162.7 164.4 166.0 169.3 EER 8.18 8.39 8.46 8.53 8.66 C.C.Ton 102.2 108.1 109.9 111.7 115.1 115 P.I. kW 174.6 179.5 181.0 182.2 184.6 EER 6.71 6.90 6.97 7.03 7.16 C.C.Ton 143.3 151.2 153.8 156.5 161.8 86 P.I. kW 146.8 151.7 153.3 155.0 158.4 EER 11.02 11.27 11.36 11.43 11.59 C.C.Ton 134.0 141.4 143.9 146.5 151.5 95 P.I. kW 158.9 163.9 165.6 167.3 170.8 EER 9.57 9.81 9.88 9.96 10.10 C.C.Ton 124.4 131.5 133.8 136.2 140.9 104 P.I. kW 172.1 177.3 179.0 180.8 184.4 EER 8.24 8.46 8.53 8.60 8.74 C.C.Ton 112.5 119.0 121.1 123.4 127.8 115 P.I. kW 189.9 195.3 197.1 198.9 202.5 EER 6.78 6.98 7.05 7.11 7.24 95 P.I. kW 174.9 180.5 182.5 184.4 188.3 EER 9.49 9.71 9.78 9.85 9.98 C.C.Ton 135.9 143.4 145.9 148.4 153.4 104 P.I. kW 189.1 194.9 196.9 198.9 202.9 EER 8.19 8.39 8.46 8.52 8.65 C.C.Ton 122.9 129.8 132.1 134.4 139.2 115 P.I. kW 208.3 214.3 216.4 218.4 222.5 EER 6.75 6.94 7.00 7.06 7.18 95 P.I. kW 191.0 197.3 199.4 201.6 205.9 EER 9.43 9.63 9.70 9.76 9.88 C.C.Ton 147.4 155.4 158.1 160.7 166.1 104 P.I. kW 206.2 212.6 214.9 217.1 221.5 EER 8.15 8.34 8.40 8.46 8.58 C.C.Ton 133.3 140.6 143.1 145.6 150.6 115 P.I. kW 226.8 233.4 235.7 237.9 242.4 EER 6.73 6.91 6.97 7.02 7.14 95 P.I. kW 212.2 219.4 221.8 224.3 229.3 EER 9.47 9.67 9.73 9.79 9.90 C.C.Ton 164.6 173.4 176.3 179.3 185.2 104 P.I. kW 228.9 236.3 238.9 241.4 246.5 EER 8.21 8.39 8.44 8.50 8.61 C.C.Ton 149.1 157.2 159.8 162.3 167.3 115 P.I. kW 251.5 259.3 261.6 263.6 267.5 EER 6.80 6.96 7.02 7.08 7.19 Entering Condenser Air Temperature (°F) EER 12.43 12.67 12.75 12.82 12.96 Table P-46 — RTAC 170 LWT °F C.C.Ton 41 180.3 44 189.7 45 192.9 46 196.1 48 202.5 EER 10.93 11.18 11.25 11.33 11.47 Entering Condenser Air Temperature (°F) Table P-45 — RTAC 155 LWT °F C.C.Ton 41 166.3 44 175.1 45 178.1 46 181.1 48 187.1 86 P.I. kW 122.4 126.5 127.9 129.3 132.1 Entering Condenser Air Temperature (°F) Table P-44 — RTAC 140 LWT °F C.C.Ton 41 152.4 44 160.7 45 163.4 46 166.3 48 171.9 C.C.Ton 118.4 124.8 126.9 129.1 133.5 C.C.Ton 156.4 164.8 167.6 170.5 176.1 86 P.I. kW 162.0 167.5 169.4 171.3 175.1 EER 10.91 11.14 11.21 11.28 11.42 C.C.Ton 146.3 154.2 156.9 159.6 164.9 Entering Condenser Air Temperature (°F) EER 12.30 12.52 12.59 12.65 12.78 C.C.Ton 169.7 178.6 181.6 184.6 190.7 86 P.I. kW 177.3 183.4 185.5 187.6 191.9 EER 10.82 11.03 11.09 11.16 11.28 C.C.Ton 158.7 167.1 170.0 172.8 178.5 Table P-47 — RTAC 185 Entering Condenser Air Temperature (°F) LWT °F C.C.Ton 41 200.3 44 210.8 45 214.3 46 217.8 48 224.9 RLC-PRC005-E4 77 P.I. kW 183.7 190.4 192.7 195.0 199.7 EER 12.30 12.51 12.58 12.64 12.76 C.C.Ton 188.8 198.7 202.0 205.3 212.0 86 P.I. kW 197.1 204.1 206.4 208.9 213.7 EER 10.84 11.04 11.11 11.17 11.29 C.C.Ton 176.8 186.2 189.3 192.5 198.8 29 Performance Data Table P-48 — RTAC 200 Entering Condenser Air Temperature (°F) LWT °F C.C.Ton 41 220.8 44 232.3 45 236.2 46 240.1 48 247.9 77 P.I. kW 202.6 210.1 212.6 215.3 220.5 EER 12.32 12.52 12.58 12.64 12.76 C.C.Ton 208.3 219.2 222.9 226.6 234.0 86 P.I. kW 217.3 225.1 227.7 230.4 235.8 EER 10.87 11.07 11.13 11.19 11.30 C.C.Ton 195.4 205.7 209.1 212.6 219.6 95 P.I. kW 233.7 241.8 244.6 247.4 253.0 EER 9.52 9.70 9.76 9.81 9.92 C.C.Ton 182.0 191.7 195.0 198.2 204.8 104 P.I. kW 251.9 260.3 263.2 266.1 272.0 EER 8.26 8.43 8.48 8.53 8.64 C.C.Ton 165.2 174.1 176.7 178.8 182.9 115 P.I. kW 276.6 285.4 287.4 288.1 289.5 EER 6.86 7.01 7.07 7.14 7.27 Notes : 1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW. 2. Consult Trane representative for performance at temperatures outside of the ranges shown. 3. P.I. kW = compressor power input only. 4. COP = Coefficient of Performance (kW/kW). Power input includes compressor, condenser fans and control power. 5. Ratings are based on an evaporator temperature drop of 6°C. 6. Interpolation between points is permissible. Extrapolation is not permitted. 7. Above 40°C ambient, the units will have the High-Ambient option. 8. Shaded area reflects Adaptive Control Microprocessor control algorithms. 30 RLC-PRC005-E4 Performance Data SI Units English Units Table P-49 — ARI Part-Load Values RTAC Standard (along with ARI 550/590-98) Table P-51 — ARI Part-Load Values RTAC Standard (along with ARI 550/590-98) Unit 140 Unit 140 155 170 185 200 % Load 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 kW cooling 505.9 372.0 247.9 124.1 554.3 407.6 271.9 135.7 603.4 443.8 295.8 148.1 669.7 491.7 328.1 164.2 737.6 542.3 361.5 180.8 P.I. kW 159.0 85.8 47.3 21.0 175.6 94.7 52.2 24.8 192.4 103.7 58.4 26.0 212.5 114.6 62.6 31.1 232.9 125.8 71.3 32.7 COP (kW/kW) IPLV (kW/kW) 2.90 4.09 3.67 4.47 4.25 2.87 3.98 3.63 4.36 3.89 2.85 3.98 3.60 4.32 4.11 2.86 3.98 3.62 4.40 3.81 2.88 4.00 3.64 4.34 4.05 155 170 185 200 % Load 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 tons 143.9 105.8 70.5 35.3 157.6 115.9 77.3 38.6 171.6 126.2 84.1 42.1 190.4 139.8 93.3 46.7 209.7 154.2 102.8 51.4 P.I. kW 159.0 85.8 47.3 21.0 175.6 94.7 52.2 24.8 192.4 103.7 58.4 26.0 212.5 114.6 62.6 31.1 232.9 125.8 71.3 32.7 EER 9.88 12.51 15.24 14.51 9.79 12.39 14.89 13.29 9.72 12.29 14.74 14.02 9.77 12.34 15.02 13.00 9.83 12.42 14.81 13.81 IPLV 13.95 13.59 13.58 13.60 13.64 Table P-50 — ARI Part-Load Values RTAC High-Efficiency (along with ARI 550/590-98) Table P-52 — ARI Part-Load Values RTAC High-Efficiency (along with ARI 550/590-98) Unit 120 Unit 120 130 140 155 170 185 200 % Load 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 RLC-PRC005-E4 kW cooling 434.8 320.0 213.1 106.6 480.3 353.5 235.3 117.8 526.6 387.2 258.1 129.1 574.0 423.4 281.4 140.7 622.0 456.9 304.9 152.3 693.1 510.3 339.7 169.9 765.9 561.7 375.6 187.8 P.I. kW 126.3 70.5 38.3 16.3 138.9 76.9 41.2 19.6 151.6 83.4 46.2 20.6 167.5 92.1 50.7 24.2 183.6 100.1 56.5 25.4 203.9 111.9 61.7 30.6 224.4 122.8 70.6 32.2 COP (kW/kW) IPLV (kW/kW) 3.06 4.17 3.71 4.58 4.34 3.07 4.14 3.74 4.59 3.97 3.08 4.18 3.76 4.59 4.21 3.04 4.08 3.73 4.49 3.89 3.01 4.08 3.70 4.45 4.07 3.03 4.08 3.72 4.50 3.82 3.05 4.10 3.75 4.45 4.08 130 140 155 170 185 200 % Load 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 tons 434.8 320.0 213.1 106.6 480.3 353.5 235.3 117.8 526.6 387.2 258.1 129.1 574.0 423.4 281.4 140.7 622.0 456.9 304.9 152.3 693.1 510.3 339.7 169.9 765.9 561.7 375.6 187.8 P.I. kW 126.3 70.5 38.3 16.3 138.9 76.9 41.2 19.6 151.6 83.4 46.2 20.6 167.5 92.1 50.7 24.2 183.6 100.1 56.5 25.4 203.9 111.9 61.7 30.6 224.4 122.8 70.6 32.2 EER 10.45 12.66 15.63 14.82 10.47 12.76 15.66 13.55 10.50 12.84 15.65 14.37 10.37 12.73 15.31 13.26 10.26 12.64 15.20 13.90 10.33 12.71 15.35 13.04 10.40 12.80 15.17 13.93 IPLV 14.23 14.14 14.27 13.93 13.92 13.91 13.98 31 Performance Data SI Units English Units Table P-53 — ARI Part-Load Values RTAC Low-Noise Standard (along with ARI 550/590-98) Table P-55 — ARI Part-Load Values RTAC Low-Noise Standard (along with ARI 550/590-98) Unit 140 Unit 140 155 170 185 200 % Load 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 kW cooling 473.9 353.4 232.5 116.1 519.8 382.6 254.6 127.3 566.1 417.1 277.5 138.9 628.8 463.5 308.1 154.0 692.7 508.9 339.4 169.9 P.I. kW 175.9 90.2 49.6 21.9 193.6 99.5 53.5 25.1 211.3 108.8 60.1 26.6 233.5 120.6 64.4 32.1 256.2 131.9 73.5 33.8 COP (kW/kW) IPLV (kW/kW) 2.58 4.03 3.62 4.33 4.47 2.57 3.98 3.55 4.35 4.24 2.57 3.96 3.53 4.27 4.40 2.58 3.98 3.55 4.39 4.07 2.59 3.96 3.56 4.28 4.29 Table P-54 — ARI Part-Load Values RTAC Low-Noise High-Efficiency (along with ARI 550/590-98) Unit 120 130 140 155 170 185 200 32 % Load 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 kW cooling 412.6 302.8 202.2 101.3 458.1 337.9 224.4 112.2 502.6 370.7 246.2 123.1 547.7 401.6 268.3 134.3 593.7 437.9 291.2 145.6 661.2 484.3 324.3 162.1 730.4 536.7 358.0 179.0 P.I. kW 137.4 73.9 39.8 16.9 151.2 81.1 42.7 20.2 164.9 87.8 48.1 21.3 181.7 95.8 52.1 24.7 198.6 105.1 58.4 26.0 220.9 116.4 63.5 31.5 243.4 129.0 72.3 33.2 COP (kW/kW) IPLV (kW/kW) 2.85 4.24 3.72 4.61 4.83 2.87 4.27 3.78 4.71 4.45 2.89 4.28 3.82 4.64 4.69 2.86 4.24 3.79 4.63 4.41 2.83 4.20 3.78 4.54 4.58 2.84 4.21 3.78 4.63 4.25 2.85 4.20 3.79 4.54 4.49 155 170 185 200 % Load 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 tons 473.9 353.4 232.5 116.1 519.8 382.6 254.6 127.3 566.1 417.1 277.5 138.9 628.8 463.5 308.1 154.0 692.7 508.9 339.4 169.9 P.I. kW 175.9 90.2 49.6 21.9 193.6 99.5 53.5 25.1 211.3 108.8 60.1 26.6 233.5 120.6 64.4 32.1 256.2 131.9 73.5 33.8 EER 8.82 12.35 14.77 15.26 8.78 12.11 14.86 14.48 8.76 12.06 14.56 15.03 8.81 12.11 14.98 13.89 8.85 12.16 14.61 14.64 IPLV 13.75 13.60 13.51 13.58 13.53 Table P-56 — ARI Part-Load Values RTAC Low-Noise HighEfficiency (along with ARI 550/590-98) Unit 120 130 140 155 170 185 200 % Load 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 100 75 50 25 tons 117.3 86.1 57.5 28.8 130.3 96.1 63.8 31.9 142.9 105.4 70.0 35.0 155.7 114.2 76.3 38.2 168.8 124.5 82.8 41.4 188.0 137.7 92.2 46.1 207.7 152.6 101.8 50.9 P.I. kW 137.4 73.9 39.8 16.9 151.2 81.1 42.7 20.2 164.9 87.8 48.1 21.3 181.7 95.8 52.1 24.7 198.6 105.1 58.4 26.0 220.9 116.4 63.5 31.5 243.4 129.0 72.3 33.2 EER 9.72 12.70 15.73 16.49 9.80 12.89 16.09 15.20 9.85 13.04 15.83 15.99 9.75 12.95 15.81 15.04 9.67 12.88 15.49 15.62 9.70 12.90 15.79 14.49 9.74 12.94 15.48 15.33 IPLV 14.48 14.58 14.62 14.46 14.35 14.36 14.34 RLC-PRC005-E4 Performance Adjustment Factors Table F1 — Performance Data Adjustment Factors Fouling Factor (SI) 0.0176 m² K/kW 0.044 m² K/kW Fouling Factor (US) 0.0001 0.00025 Chilled Water Temperature Drop °C 4 5 6 7 8 9 10 4 5 6 7 8 9 10 Chilled Water Temperature Drop °F 8 10 12 14 16 8 10 12 14 16 RLC-PRC005-E4 Altitude Cooling Capacity 0.998 1.000 1.000 1.002 1.003 1.004 1.005 0.982 0.984 0.986 0.987 0.99 0.993 0.995 Sea level Evaporator Flow Rate 1.500 1.200 1.000 0.857 0.750 0.667 0.600 1.479 1.183 0.986 0.845 0.740 0.657 0.592 Cooling Capacity 0.997 1 1.003 1.004 1.006 0.982 0.986 0.988 0.991 0.992 Sea level Evaporator gpm 1.246 1 0.835 0.717 0.629 1.227 0.985 0.823 0.708 0.621 Compressor kW 0.999 1.000 1.000 1.001 1.001 1.02 1.025 0.99 0.991 0.992 0.993 0.995 0.996 0.997 Cooling Capacity 0.986 0.989 0.99 0.991 0.992 0.995 0.997 0.972 0.974 0.976 0.978 0.98 0.983 0.985 600 m Evaporator Flow Rate 1.485 1.188 0.990 0.849 0.743 0.660 0.594 1.464 1.171 0.976 0.837 0.732 0.651 0.586 Cooling Capacity 0.987 0.989 0.992 0.993 0.995 0.972 0.975 0.978 0.980 0.982 2000 ft Evaporator gpm 1.233 0.989 0.826 0.710 0.622 1.215 0.975 0.815 0.700 0.614 Compressor kW 1.011 1.011 1.013 1.013 1.015 1.016 1.017 1.020 1.030 1.050 1.060 1.080 1.090 1.010 Cooling Capacity 0.974 0.975 0.977 0.979 0.98 0.982 0.983 0.96 0.962 0.964 0.966 0.968 0.97 0.973 1200 m Evaporator Flow Rate 1.466 1.172 0.977 0.837 0.733 0.651 0.586 1.446 1.157 0.964 0.826 0.723 0.643 0.578 Compressor kW 1.026 1.027 1.028 1.029 1.03 1.031 1.032 1.017 1.019 1.02 1.021 1.022 1.023 1.024 Cooling Capacity 0.96 0.961 0.962 0.964 0.966 0.967 0.97 0.946 0.947 0.95 0.952 0.954 0.956 0.958 1800 m Evaporator Compressor Flow Rate kW 1.443 1.044 1.154 1.045 0.962 1.046 0.825 1.047 0.722 1.049 0.641 1.05 0.577 1.051 1.425 1.035 1.140 1.036 0.950 1.038 0.814 1.039 0.713 1.041 0.633 1.042 0.570 1.043 Cooling Capacity 0.975 0.977 0.979 0.981 0.982 0.961 0.963 0.966 0.968 0.970 4000 ft Evaporator gpm 1.217 0.977 0.816 0.701 0.614 1.200 0.963 0.805 0.692 0.606 Compressor kW 1.027 1.028 1.030 1.031 1.032 1.018 1.020 1.022 1.023 1.024 Cooling Capacity 0.960 0.963 0.965 0.966 0.968 0.947 0.950 0.952 0.954 0.956 6000 ft Evaporator Compressor gpm kW 1.200 1.045 0.963 1.047 0.804 1.048 0.690 1.049 0.605 1.050 1.183 1.036 0.950 1.038 0.793 1.040 0.682 1.041 0.598 1.042 Altitude Compressor kW 0.999 1 1.001 1.002 1.003 0.991 0.992 0.994 0.995 0.996 Compressor kW 1.012 1.013 1.014 1.016 1.016 1.003 1.005 1.006 1.008 1.009 33 Performance Adjustment Factors Figure F1 — Evaporator Water Pressure Drops, RTAC 120 to 200 (SI) 100 90 80 70 60 50 40 30 20 10 20 10 30 40 50 60 70 80 90 100 Flow Lps Evp. F140 (RTAC 120/140) Evp. F155 (RTAC 130/155) Evp. F170 (RTAC 140/170) Evp. F185 RTAC (155/185) Evp. F200 (RTAC 170/200) Evp. F240 (RTAC 200HE) Evp. F220 (RTAC 185HE) Legend (RTAC HE/STD) Figure F2 — Evaporator Water Pressure Drops, RTAC 120 to 200 (US Units) WPD ft of WG 100.0 10.0 1.0 100.0 200 300 400 500 600 700 800 900 1000.0 Flow GPM Evp. F140 (RTAC 120/140) Evp. F155 (RTAC 130/155) Evp. F170 (RTAC 140/170) Evp. F185 RTAC (155/185) Evp. F200 (RTAC 170/200) Evp. F240 (RTAC 200HE) 34 Evp. F220 (RTAC 185HE) Legend (RTAC HE/STD) RLC-PRC005-E4 Performance Adjustment Factors Figure F-3 — Ethylene Glycol Performance Factors Figure F-4 — Propylene Glycol Performance Factors Figure F-5 — Ethylene Glycol and Propylene Glycol Freeze Point RLC-PRC005-E4 35 Generic Building Automation System Controls Simple Interface with Other Control Systems Microcomputer controls afford a simple interface with other control systems, such as time clocks, building automation systems, and ice storage systems. This means you can have the flexibility to meet job requirements while not having to learn a complicated control system. This setup has the same standard features as a stand-alone water chiller, with the possibility of having the following optional features. Alarm Indication Contacts The unit provides four single-pole, double-throw contact closures to indicate that a failure has occurred, if any compressors are running, or if the compressors are running at maximum capacity. These contact closures may be used to trigger job-site-provided alarm lights or alarm bells. External Chilled-Water Set Point Allows the external setting independent of the front panel set point by one of two means: a) 2-10 VDC input, or b) 4-20 mA input. External Current-Limit Set Point Allows the external setting independent of the front panel set point by one of two means: a) 2-10 VDC input, or b) 4-20 mA input. Ice-Making Control Provides an interface to ice-making control systems. Chilled-Water Temperature Reset Reset can be based on return water temperature or outdoor air temperature. Figure 6 Modem Pumps Tracer Chiller Plant Manager 36 IBM PC with Building Management Network RLC-PRC005-E4 Generic Building Automation System Controls Tracer Summit™ Controls — Interface with theTrane Integrated Comfort System (ICS) Trane Chiller Plant Manager with ICS The Tracer Chiller Plant Manager building management system provides building automation and energy management functions through standalone control. The Chiller Plant Manager is capable of monitoring and controlling your entire chiller plant system. Application software available: • Time-of-day scheduling • Duty cycle • Demand limiting • Chiller sequencing • Process control language • Boolean processing • Zone control • Reports and logs • Custom messages • Run time and maintenance • Trend log • PID control loops And of course, the Trane Chiller Plant Manager panel can be used on a standalone basis or tied into a complete building automation system. When the air-cooled Series R chiller is used in conjunction with a Trane Tracer™ system, the unit can be monitored and controlled from a remote location. The air-cooled Series R chiller can be controlled to fit into the overall building automation strategy by using time-ofday scheduling, timed override, duty cycling, demand limiting, and chiller sequencing. A building owner can completely monitor the air-cooled Series R chiller from the Tracer system, since all of the monitoring information indicated on the microcomputer can be read on the Tracer system display. In addition, all ™ RLC-PRC005-E4 the powerful diagnostic information can be read back at the Tracer system. Best of all, this powerful capability comes over a single twisted pair of wires! Aircooled Series R chillers can interface with many different external control systems, from simple stand-alone units to ice-making systems. Each unit requires a single-source, three-phase power supply and a 115-volt power supply. The 115-volt supply handles the freeze protection for the evaporator heaters. A single twisted pair of wires tied directly between the air-cooled Series R™ chiller and a Tracer™ system provides control, monitoring, and diagnostic capabilities. Control functions include auto/stop, adjustment of leaving-watertemperature set point, compressor operation lockout for kW demand limiting, and control of ice-making mode. The Tracer system reads monitoring information such as entering- and leaving-evaporator-water temperatures and outdoor air temperature. Over 60 individual diagnostic codes can be read by the Tracer system. In addition, the Tracer system can provide sequencing control for two to six units on the same chilledwater loop. Pump sequencing control can be provided from the Tracer system. Tracer ICS is not available in conjunction with the remote display or the external set point capability. Required Options 1 Tracer Comm 3 Interface External Trane Devices Required Tracer Summit™, Tracer 100 System or Tracer Chiller Plant Manager Ice-Making Systems Controls An ice-making option may be ordered with the air-cooled Series R™ chiller.The unit will have two operating modes, ice making and normal daytime cooling. In the ice-making mode, the air-cooled Series R chiller will operate at full compressor capacity until the return chilled-fluid temperature entering the evaporator meets the ice-making set point.This ice-making set point is manually adjusted on the unit’s microcomputer.Two input signals are required to the air-cooled Series R chiller for the ice-making option.The first is an auto/stop signal for scheduling, and the second is required to switch the unit between the ice-making mode and normal daytime operation.The signals are provided by a remote job site buildingautomation device such as a time clock or a manual switch. In addition, the signals may be provided over the twisted wire pair from aTracer™ system. Required Options External Auto/Stop (Standard) Ice-Making Control Additional Options That May Be Used Failure Indication Contacts Communications Interface (For Tracer Systems) Chilled-Water Temperature Reset External Trane Devices Required-None Note: All wiring outside the unit is supplied at the job site. Additional Options that May Be Used Ice-Making Control 37 Controls Tracer™ Chiller Control human interfaces The Trane air-cooled Series R Model RTAC chiller offers two easy-to-use operator interface panels, the EasyView, and the DynaView. Standard Features External Auto/Stop A job-site-provided contact closure will turn the unit on and off. Figure 7 — Easy View Chilled Waterflow Interlock A job-site-provided contact closure from a chilled-water pump contactor, or a flow switch, is required and will allow unit operation if a load exists. This feature will allow the unit to run in conjunction with the pump system. External Interlock A job-site-provided contact opening wired to this input will turn the unit off and require a manual reset of the unit microcomputer. This closure is typically triggered by a job-site-provided system such as a fire alarm. Figure 8 — Dyna View Safety Controls A centralized microcomputer offers a higher level of machine protection. Because the safety controls are smarter, they limit compressor operation in order to avoid compressor or evaporator failures, thereby minimizing nuisance shutdowns. Tracer™ Chiller Controls directly senses the control variables that govern the operation of the chiller: motor current draw, evaporator pressure, condenser pressure, and so forth. When any one of these variables approaches a limit condition at which the unit may be damaged or shut down on a safety, Tracer Chiller Controls takes corrective action to avoid shutdown and keep the chiller operating. It does this through combined actions of compressor slide-valve modulation, electronic expansion-valve modulation, and fan staging. Tracer Chiller Controls optimizes total chiller power consumption during normal operating conditions. During abnormal operating 38 conditions, the microprocessor will continue to optimize chiller performance by taking the corrective action necessary to avoid shutdown. This keeps cooling capacity available until the problem can be solved. Whenever possible, the chiller is allowed to perform its function: make chilled water. In addition, microcomputer controls allow for more types of protection, such as over and under voltage! Overall, the safety controls help keep the building or process running and out of trouble. Stand-alone controls Interfacing to stand-alone units is very simple: only a remote auto/stop for scheduling is required for unit operation. Signals from the chilled-water pump contactor auxiliary, or a flow switch, are wired to the chilled-water flow interlock. Signals from a time clock or some other remote device are wired to the external auto/stop input. Chilled Water Pump Control Unit controls provide an output to control the chilled-water pump(s). One contact closure to the chiller is all that is required to initiate the chilled-water system. Additional Features That May Be Used (requires some optional factory-installed hardware) Alarm Indication Contacts Chilled-Water Temperature Reset Note: All wiring outside the unit is supplied at the job site. Integrated Comfort™ System Interface Easy Interface to a Generic Building Management System Controlling the air-cooled Series R chiller with building management systems is state-of-the-art, yet simple. Chiller inputs include: • Chiller enable/disable • Circuit enable/disable • Chilled liquid set point • Current limit set point • Ice-making enable Chiller outputs include: • Compressor running indication • Alarm indication (ckt 1/ckt 2) • Maximum capacity • Ice making RLC-PRC005-E4 Typical Wiring Diagram RTAC 120-200 Figure 9 — Compressor wiring diagram and control supply Figure 10 — Control diagram RLC-PRC005-E4 39 Typical Wiring Diagram RTAC 120-200 40 Figure 11 — Compressor control diagram RLC-PRC005-E4 Typical Wiring Diagram RTAC 120-200 Figure 12 — Control wiring diagram Figure 13 — Option control diagram RLC-PRC005-E4 41 Typical Wiring Diagram RTAC 120-200 5B53 Legend 5B56 5E51 5R3 5R51 Item Designation A2 Dual Analog Input/Output Module A3 Fans Inverter Interface Module A4 4 Relays Output Module A5 2 Relays Output Module A6 Dual Low Voltage Binary Input Module A7 Dual High Voltage Binary Input Module A8 Dual Triac Output Module A9 Communication Module A10 Power Supply Module A14 Starter Module A53 Local Human Interface A54 Remote Human Interface A55 IPC Buffer K43 6S43 Relay Q2 Circuit Breaker 1B52 Evaporator Heater Thermostat 1 F3 1T3 Protection Fuse 1F25 Compressor Fuse 1F45 Fan Motor Fuse 1K4 Protection Relay 1K21 Compressor Transition Contactor 1K22 Compressor Line Contactor 1K23 Star Compressor Contactor 1K24 Delta Compressor Starter 1K40 Fan Contactor 1Q5 Circuit Breaker 1Q10 Disconnect Switch 1Q45 Condenser Fan Motor Circuit Breaker 1R20 Compressor Transition Resistors 1T2 Control Power Transformer 1T3 Over/Undervoltage Transformer 1T10 to 1T20 Current Transformers 1X Control Terminal 1X20 Compressor Power Terminal 2M20 Compressor Motor 2Y21 2Y22 2Y23 3B30 3E30 3E31 3R30 3Y30 4M40 5B23 5B51 42 Compressor Unloading Solenoid Valve Compressor Loading Solenoid Valve Compressor Unloading Step Solenoid Valve Oil Control Sensor Compressor Oil Heater Oil Separator Heater Oil Temperature Sensor Oil Line Solenoid Valve Condenser Fan Motor Low Pressure Control High Pressure Control 5R52 5Y53 6K51 6M51 6Q... 6S1 6S3 6S6 6S7 6S43 6S51 6S55 6S56 6X Evaporator Refrigerant Level Control High Pressure Transducer Evaporator Heater Ambient Air Sensor Leaving-Evaporator-Water Temperature Sensor Entering-Evaporator-Water Temperature Sensor Electronic Expansion Valve Chilled-water Pump Contactor Chilled-Water Pump Motor Circuit Breaker Chiller On/Off Switch Stop/Manual Reset Switch Circuit 1 Interlock Switch Circuit 2 Interlock Switch Time Clock Contact Chilled-water Pump On/Off Switch Ice-making Enable Chilled-water Flow Switch Customer Wiring Terminal Optional Item Designation (circled items) B E J K R 9 11 15 19 20 22 24 Main Terminal Block and Fuses Unit Disconnect Switch Over/Undervoltage Transformer Ground Fault Detection Relay Evaporator Heater Thermostat Low-Ambient Option Communication Card Remote Operator Interface Night Noise Setback Ice-Making Controls Card External Setpoints Input Card Evaporator Heaters Notes 1 Refer to Power Wiring Diagram 2 Refer to Control Wiring Diagram 3 Refer to Fans Power Wiring Diagram 4 Remove the Jumper Wire When Using the Remote Contact 5 Not Supplied with Night Noise Setback (Option 19) 6 Supplied When PED Approval 7 Factory Connected 10 Valid for RTAC 155-170-185-200 11 Valid for RTAC 185-200 12 Valid for RTAC 170 - 185 - 200 13 Valid for RTAC 200 14 Valid for RTAC 130- 140-155-170185-200 15 Valid for RTAC 140- 155- 170185- 200 Customer Inputs E1 E2 E4 S2 S8 S10 External Current Limit Set Point External Chilled-Water Set Point Ice-Making Enable Customer Outputs Programmable Relays Ice-Making Enable Tracer™ Communication Link Trane Wiring Customer Wiring Component Identification Ex 1K20-1 Index Attribute Designation Location Location Numbering Nothing = Control Panel Wiring 1 Control Panel Power Wiring 2 Compressor 3 Oil Circuit 4 Fans 5 Heat Exchanger 6 Customer Wiring 7 Miscellaneous RLC-PRC005-E4 Typical Wiring Diagram RTAC 120-200 Figure 14 — Condenser fan wiring diagram Figure 15 — Condenser fan control diagram RLC-PRC005-E4 43 Job Site Data Job Site Connections Table J-1 — Customer Wire Selection Voltage 400/3/50 Unit Size Standard 140 155 170 185 200 Standard Low Noise 140 155 170 185 200 High Efficiency 120 130 140 155 170 185 200 High Efficiency Low Noise 120 130 140 155 170 185 200 44 Unit without Disconnect Switch Wire Selection Size to Main Terminal Block Minimum cable Maximum cable size mm² size mm² Unit with Disconnect Switch Wire Selection Size to Disconnect Switch Disconnect Switch Minimum cable Maximum cable Size (amps) size mm² size mm² 2x95 mm² 2x185 mm² 2x185 mm² 2x185 mm² 2x185 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 6x250 + 3x125 6x400 + 3x125 6x400 + 3x125 6x400 + 3x125 6x400 + 3x125 2x95 mm² 2x185 mm² 2x185 mm² 2x185 mm² 2x185 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x95 mm² 2x185 mm² 2x185 mm² 2x185 mm² 2x185 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 6x250 + 3x125 6x400 + 3x125 6x400 + 3x125 6x400 + 3x125 6x400 + 3x125 2x95 mm² 2x185 mm² 2x185 mm² 2x185 mm² 2x185 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x95 mm² 2x95 mm² 2x95 mm² 2x185 mm² 2x185 mm² 2x185 mm² 2x185 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 6x250 + 3x125 6x250 + 3x125 6x250 + 3x125 6x400 + 3x125 6x400 + 3x125 6x400 + 3x125 6x400 + 3x125 2x95 mm² 2x95 mm² 2x95 mm² 2x185 mm² 2x185 mm² 2x185 mm² 2x185 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x95 mm² 2x95 mm² 2x95 mm² 2x185 mm² 2x185 mm² 2x185 mm² 2x185 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 6x250 + 3x125 6x250 + 3x125 6x250 + 3x125 6x400 + 3x125 6x400 + 3x125 6x400 + 3x125 6x400 + 3x125 2x95 mm² 2x95 mm² 2x95 mm² 2x185 mm² 2x185 mm² 2x185 mm² 2x185 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² 2x240 mm² RLC-PRC005-E4 Electrical Data Table E-1 — Electrical Data 400/3/50 Unit Wiring Unit Number of Power Size Connections Standard 140 1 155 1 170 1 185 1 200 1 Standard Low Noise 140 1 155 1 170 1 185 1 200 1 High Efficiency 120 1 130 1 140 1 155 1 170 1 185 1 200 1 High Efficiency Low Noise 120 1 130 1 140 1 155 1 170 1 185 1 200 1 Maximum Amps (1) Starting Amps (2) Power Factor Disconnect Switch Size Compressor Fuse Size (A) 398 437 475 525 574 469 494 532 596 645 6x250 + 3x125 6x400 + 3x125 6x400 + 3x125 6x400 + 3x125 6x400 + 3x125 250/250 315/250 315/315 400/400 400/400 383 420 456 504 551 454 477 513 575 622 6x250 + 3x125 6x400 + 3x125 6x400 + 3x125 6x400 + 3x125 6x400 + 3x125 250/250 315/250 315/315 400/400 400/400 330 369 407 444 484 534 583 398 440 478 501 541 605 654 6x250 + 3x125 6x250 + 3x125 6x250 + 3x125 6x400 + 3x125 6x400 + 3x125 6x400 + 3x125 6x400 + 3x125 250/250 250/250 250/250 315/250 315/315 400/400 400/400 315 352 388 423 461 509 557 383 423 459 480 518 580 628 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 6x250 + 3x125 6x250 + 3x125 6x250 + 3x125 6x400 + 3x125 6x400 + 3x125 6x400 + 3x125 6x400 + 3x125 250/250 250/250 250/250 315/250 315/315 400/400 400/400 Notes: 1. Maximum Compressors FLA + all fans FLA + control Amps 2. Starting Amps of the circuit with the largest compressor circuit including fans plus RLA of the second circuit including fans and control amps RLC-PRC005-E4 45 Electrical Data Table E-1 — Electrical Data 400/3/50 Motor Data Compressor (Each) Max Amps (1) Starting Amps (2) Circuit 1 Circuit 2 Circuit 1 Circuit 2 Quantity Standard 2 180 2 214 2 214 2 259 2 259 Standard Low Noise 2 180 2 214 2 214 2 259 2 259 High Efficiency 2 146 2 180 2 180 2 214 2 214 2 259 2 259 High Efficiency Low Noise 2 146 2 180 2 180 2 214 2 214 2 259 2 259 Quantity kW FLA Fans Fuse Size (A) VA A Option Evaporator Heater kW Fans (Each) Control 180 180 214 214 259 251 271 271 330 330 251 251 271 271 330 8 9 10 11 12 1.88 1.88 1.88 1.88 1.88 4.5 4.5 4.5 4.5 4.5 80 80 80 80 80 860 860 860 860 860 2.15 2.15 2.15 2.15 2.15 0.5 0.5 0.5 0.5 0.5 180 180 214 214 259 251 271 271 330 330 251 251 271 271 330 8 9 10 11 12 0.85 0.85 0.85 0.85 0.85 2.6 2.6 2.6 2.6 2.6 80 80 80 80 80 860 860 860 860 860 2.15 2.15 2.15 2.15 2.15 0.5 0.5 0.5 0.5 0.5 146 146 180 178 214 214 259 214 251 251 271 271 330 330 214 214 251 251 271 271 330 8 9 10 11 12 13 14 1.88 1.88 1.88 1.88 1.88 1.88 1.88 4.5 4.5 4.5 4.5 4.5 4.5 4.5 80 80 80 80 80 80 80 860 860 860 860 860 860 860 2.15 2.15 2.15 2.15 2.15 2.15 2.15 0.5 0.5 0.5 0.5 0.5 0.5 0.5 146 146 180 178 214 214 259 214 251 251 271 271 330 330 214 214 251 251 271 271 330 8 9 10 11 12 13 14 0.85 0.85 0.85 0.85 0.85 0.85 0.85 2.6 2.6 2.6 2.6 2.6 2.6 2.6 80 80 80 80 80 80 80 860 860 860 860 860 860 860 2.15 2.15 2.15 2.15 2.15 2.15 2.15 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Notes: 1. Maximum FLA per compressor. 2. Compressors starting amps, Star delta start. 46 RLC-PRC005-E4 Dimensional Data 140-155-170 STD 120-130-140 HE RLC-PRC005-E4 Figure 16 47 Dimensional Data 185-200 STD 185-200 HE 48 Figure 17 RLC-PRC005-E4 Dimensional Data Liquid Chillers 1 Evaporator Water Inlet Connection 2 Evaporator Water Outlet Connection 3 Electrical Panel 4 Power Supply Inlet (155 X 400) 5 Rigging Eyes 045 6 Operating Weight (Kg) 7 Refrigerant Charge (Kg) R134a 8 Oil Charge (Litres) 9 Minimum Clearance (For Maintenance) 10 Minimum Clearance (Evaporator Tubes Removal) 11 Minimum Clearance (Air Entering) 12 Frame Post 13 Recommended Chilled Water Pipework Layout Options 14 Power Disconnect Switch 15 Isolators 16 Chilled Water Pump Starter Panel Figure 18 RLC-PRC005-E4 49 Mechanical Specifications General Units are leak- and pressure-tested at 24.5 bars [350 psi] high side and 14 bars [200 psi] low side, and then evacuated and charged. Packaged units ship with a full operating charge of oil and refrigerant. Unit panels, structural elements, and control boxes are constructed of 1.5 to 3 mm [11 to 16 gauge] galvanized sheet metal and mounted on a welded structural-steel base. Unit panels and control boxes are finished with baked-on powder paint, and the structural-steel base is finished with an air-dry paint RAL 1019. Evaporator The evaporator is a tube-in-shell heat exchanger design, with internally-finned copper tubes roller-expanded into the tube sheet. The evaporator is designed, tested, and stamped in accordance with the appropriate pressure-vessel code approval. The evaporator is designed for a waterside working pressure of 14 bars[200 psi]. Water connections are grooved pipe for Victaulic couplings. Each shell includes a vent, a drain, and fittings for temperature control sensors, and is insulated with 19mm [3/4 inch] Armaflex II (or equivalent) insulation (K=0.26). Optional evaporator heaters with thermostats are provided to protect the evaporator from freezing at ambient temperatures down to -25°C [-13°F]. Condenser and Fans Air-cooled condenser coils have aluminum fins mechanically bonded to internally-finned seamless copper tubing. The condenser coil has an integral subcooling circuit. Condensers are factory proof- and leak-tested at 35 bars [500 psi]. Direct-drive verticaldischarge airfoil ZephyrWing condenser fans are dynamically balanced. Threephase condenser fan motors with 50 permanently-lubricated ball bearings are provided. Standard units will start and operate from -4 to 46°C [25 to 115°F] ambient. Compressor and Lube Oil System The helical-rotary compressor is semihermetic, direct drive, 3000 rpm, with capacity-control slide valve, a load/unload valve, rolling element bearings, differential refrigerant pressure oil pump, and oil heater. The motor is a suction-gas-cooled, hermetically sealed, two-pole squirrelcage induction motor. Oil separator and filtration devices are provided separate from the compressor. Check valves in the compressor discharge and lube oil system, and a solenoid valve in the lube system, are provided. Refrigeration Circuits Each unit has two refrigerant circuits, with one helical-rotary compressor per circuit. Each refrigerant circuit includes a removable-core filter drier, liquid-line shutoff valve, liquid-line sight glass with moisture indicator, charging port, and an electronic expansion valve. Fully modulating compressors and electronic expansion valves provide variable capacity modulation over the entire operating range. (Optional compressor discharge and suction service valve). Unit Controls All unit controls are housed in a weather-tight enclosure, with removable plates to allow for customer connection of power wiring and remote interlocks. All controls, including sensors, are factory-mounted and tested prior to shipment. Microcomputer controls provide all control functions including startup and shutdown, leaving-chilled-water temperature control, compressor and electronic expansion-valve modulation, fan sequencing, anti-recycle logic, automatic lead/lag compressor starting, and load limiting. The unit control module, utilizing the Adaptive Control™ microprocessor, automatically takes action to avoid unit shutdown due to abnormal operating conditions associated with low refrigerant pressure, high condensing pressure, and motor current overload. Should the abnormal operating condition continue until a protective limit is violated, the unit will be shut down. Unit protective functions include loss of chilled-water flow, evaporator freezing, loss of refrigerant, low refrigerant pressure, high refrigerant pressure, reverse rotation, compressorstarting and -running overcurrent, phase loss, phase imbalance, phase reversal, and loss of oil flow. A digital display indicates chilled-water set point and leaving-chilled-water temperature as standard, while current-limit set point, evaporator and condenser refrigerant pressures, and electrical information are an option. Both standard and optional displays can be viewed on the unit without opening any control panel doors. Standard power connections include main three-phase power to the compressors, condenser fans, and control power transformer, and optional connections are available for the 230 volt single-phase power for freeze protection on the evaporator heaters. Starters Starters are housed in a weather-tight enclosure with hinged doors to allow for customer connection of power wiring. Wye-Delta closed transition starters (33 percent of LRA inrush) are standard. An optional Wye-Delta closed transition starter (33 percent of LRA inrush) is available on 400/3/50 volt units. RLC-PRC005-E4 Literature Order Number RLC-PRC005-E4 File Number PL-RF-RLC-PRC-0005-E4-0800 Supersedes New Stocking Location La Crosse The Trane Company An American Standard Company www.trane.com Since The Trane Company has a policy of continuous product improvement, it reserves the right to change design and specifications without notice. For more information contact your local sales office or e-mail us at comfort@trane.com Société Trane – Société Anonyme au capital de 41500 000 F – Siege Social: 1 rue des Amériques – 88190 Golbey – France – Siret 306 050 188-00011 – RSC Epinal B 306 050 188 Numéro d’identification taxe intracommunanutaire: FR 83 3060501888
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : Yes Encryption : Standard V1.2 (40-bit) User Access : Print, Copy, Annotate, Fill forms, Extract, Assemble, Print high-res Create Date : 2000:09:05 11:01:56 Producer : Acrobat Distiller 4.05 for Windows Modify Date : 2001:04:30 16:11:35-05:00 Title : Air-Cooled Series R Helical-Rotary Liquid Chiller Catalog Page Count : 51 Page Mode : UseOutlinesEXIF Metadata provided by EXIF.tools