Trane RTAC 120 To 200 Air Cooled Series R Helical Rotary Liquid Chiller Catalog User Manual The E75f1628 Dfd6 4895 96e2 Fdec0b1f1eca

User Manual: Trane RTAC 120 to 200 to the manual

Open the PDF directly: View PDF PDF.
Page Count: 51

DownloadTrane RTAC 120 To 200 Air-Cooled Series R Helical-Rotary Liquid Chiller Catalog User Manual  The E75f1628-dfd6-4895-96e2-fdec0b1f1eca
Open PDF In BrowserView PDF
Air-Cooled Series R
Helical-Rotary Liquid Chiller
™

Model RTAC 120 to 200
(400 to 760kw - 50 Hz)
Built for the Industrial and
Commercial Markets

RLC-PRC005-E4

Introduction
The new Trane Model RTAC Air-Cooled
Helical-Rotary Chiller is the result of a
search for higher reliability, higher
energy efficiency, and lower sound
levels for today’s environment.
In an effort to reduce energy consumed
by HVAC equipment and to continually
produce chilled water, Trane has
developed the Model RTAC chiller with
higher efficiencies and a more reliable
design than any other air cooled chiller
available on the market today.
The Model RTAC chiller uses the proven
design of the Trane helical-rotary
compressor, which embraces all of the
design features that have made the
Trane helical-rotary compressor liquid
chillers such a success since 1987.

What Is New
The RTAC offers the same high
reliability coupled with greatly improved
energy efficiency, vastly reduced
physical footprint, and improved
acoustical performance, due to its
advanced design, low-speed, directdrive compressor, and proven
Series R™ performance.
The major differences between the
Series R, Model RTAC and Model RTAA
are:
• Smaller physical footprint
• Lower sound levels
• Higher energy efficiency
• Designed specifically for operating
with environmentally-safe HFC-134a.
The Series R Model RTAC helical-rotary
chiller is an industrial-grade design, built
for both the industrial and commercial
markets. It is ideal for schools, hospitals,
retailers, office buildings, and industrial
applications.

Figure 1

©American Standard Inc. 2000

RLC-PRC005-E4

Contents
Introduction

2

Features and Benefits

4
5
6
7
8
9

Improved Acoustical Performance
Simple Installation
Superior Control with Tracer™ Chiller Controls
Options

Application Considerations
Selection Procedure

12

General Data

13

Performance Data

19

Electrical Data

33
36
36
39
44
45

Dimensional Data

47

Mechanical Specifications

50

Performance Adjustment Factors

Controls
Generic Building Automation System Controls
Typical Wiring Diagrams
Job Site Data

RLC-PRC005-E4

3

Features and
Benefits
Water Chiller Systems Business Unit

The Series R™
Helical-Rotary Compressor
• Unequaled reliability. The next
generation Trane helical-rotary
compressor is designed, built, and
tested to the same demanding and
rugged standards as the Trane scroll
compressors, the centrifugal
compressors, and the previous
generation helical-rotary compressors
used in both air- and water-cooled
chillers for more than 13 years.
• Years of research and testing. The
Trane helical-rotary compressor has
amassed thousands of hours of
testing, much of it at severe operating
conditions beyond normal commercial
air-conditioning applications.
• Proven track record. The Trane
Company is the world’s largest
manufacturer of large helical-rotary
compressors used for refrigeration.
Over 90,000 compressors worldwide
have proven that the Trane helicalrotary compressor has a reliability rate
of greater than 99.5 percent in the first
year of operation—unequalled in the
industry.

• Resistance to liquid slugging. The
robust design of the Series R
compressor can ingest amounts of
liquid refrigerant that normally would
severely damage reciprocating
compressor valves, piston rods, and
cylinders.
• Fewer moving parts. The helical-rotary
compressor has only two rotating
parts: the male rotor and the female
rotor. Unlike reciprocating
compressors, the Trane helical-rotary
compressor has no pistons,
connecting rods, suction and
discharge valves, or mechanical oil
pump. In fact, a typical reciprocating
compressor has 15 times as many
critical parts as the Series R
compressor. Fewer moving parts leads
to increased reliability and longer life.
• Direct-drive, low-speed, semi-hermetic
compressor for high efficiency and
high reliability.
• Field-serviceable compressor for easy
maintenance.
• Suction-gas-cooled motor. The motor
operates at lower temperatures for
longer motor life.
• Five minute start-to-start and two
minute stop-to-start anti-recycle timer
allows for closer water-loop
temperature control.

4

RLC-PRC005-E4

Improved
Acoustical
Performance
Figure 2 — Cutaway of a compressor

The sound levels of the Series R Model
RTAA have been steadily improved
since its introduction. With the advent of
the Model RTAC, sound levels are
reduced significantly by addressing two
major sources: the compressor and the
refrigerant piping. First, the compressor
has been specifically designed to
minimize sound generation. Second, the
refrigerant components and piping have
been optimized to reduce sound
propagation throughout the system. The
result: sound levels achieved on the
Model RTAC represent the lowest sound
levels ever on Trane air-cooled helicalrotary compressor water chillers.

Superior Efficiency Levels:
The Bar Has Been Raised
The standard-efficiency Trane Model
RTAC has COP levels up to 2.90 kW/kW
[9.9 EER] (including fans), while the
premium-efficiency, or high-efficiency,
units leap to COP levels of 3.08 kW/kW
[10.51 EER] (including fans).

RLC-PRC005-E4

The modern technology of the RTAC
with the efficient direct-drive
compressor, the flooded evaporator, the
unique design to separate liquid and
vapor, the electronic expansion valve,
and the revolutionary Tracer™ Chiller
Controls, has permitted Trane to achieve
these efficiency levels, unmatched in the
industry.
Precise Rotor Tip Clearances
Higher energy efficiency in a helicalrotary compressor is obtained by
reducing the rotor tip clearances. This
next-generation compressor is no
exception. With today’s advanced
manufacturing technology, clearances
can be controlled to even tighter
tolerances. This reduces the leakage
between high- and low-pressure cavities
during compression, allowing for more
efficient compressor operation.
Capacity Control and Load Matching
The combination patented unloading
system on Trane helical-rotary
compressors uses the variable

unloading valve for the majority of the
unloading function. This allows the
compressor to modulate infinitely, to
exactly match building load and to
maintain chilled-water supply
temperatures within ± 0.3°C [±0.5°F] of
the set point. Reciprocating and helicalrotary chillers that rely on stepped
capacity control must run at a capacity
equal to or greater than the load, and
typically can only maintain water
temperature to around ± 1°C [±2°F].
Much of this excess capacity is lost
because overcooling goes toward
removing building latent heat, causing
the building to be dried beyond normal
comfort requirements. When the load
becomes very low, the compressor also
uses a step unloader valve, which is a
single unloading step to achieve the
minimum unloading point of the
compressor. The result of this design is
optimized part-load performance far
superior to single reciprocating
compressors and step-only helicalrotary compressors.

5

Simple Installation
Compact Physical Size
The Trane Model RTAC chiller averages a
20 percent reduction in physical
footprint, while the greatest change is
actually 40 percent smaller when
compared against the previous design.
This improvement makes the RTAC the
smallest air-cooled chiller in the industry
and a prime candidate for installations
that have space constraints. All physical
sizes were changed without sacrificing
the side clearances needed to supply
fresh airflow without coil starvation—the
tightest operational clearances in the
industry.
Close Spacing Installation
The air-cooled Series R™ chiller has the
tightest recommended side clearance in
the industry, 1.2 meters, but that is not
all. In situations where equipment must
be installed with less clearance than
recommended, which frequently occurs
in retrofit applications, restricted airflow
is common. Conventional chillers may
not work at all. However, the air-cooled
Series R chiller with the Adaptive
Control™ microprocessor will make as
much chilled water as possible given the
actual installed conditions, stay on-line
during any unforeseen abnormal
conditions, and optimize its
performance. Consult your Trane sales
engineer for more details.

6

Factory Testing Means Trouble-Free
Start-up
All air-cooled Series R chillers are given
a complete functional test at the factory.
This computer-based test program
completely checks the sensors, wiring,
electrical components, microprocessor
function, communication capability,
expansion valve performance, and fans.
In addition, each compressor is runtested to verify capacity and efficiency.
Where applicable, each unit is factory
preset to the customer’s design
conditions. An example would be the
leaving-liquid temperature set point. The
result of this test program is that the
chiller arrives at the job site fully tested
and ready for operation.
Factory-Installed and Tested Controls
and Options Speed Installation
All Series R chiller options, including
main power-supply disconnect, low
ambient control, ambient temperature
sensor, low ambient lockout,
communication interface and icemaking controls are factory installed and
tested. Some manufacturers send
accessories in pieces to be field
installed. With Trane, the customer saves
on installation expense and has
assurance that ALL chiller controls and
options have been tested and will
function as expected.

RLC-PRC005-E4

Superior Control with
Tracer Chiller Controls
™

The End of Nuisance
Trip-Outs and
Unnecessary Service Calls?
The Adaptive Control™ microprocessor
system enhances the air-cooled Series R
chiller by providing the very latest chiller
control technology. With the Adaptive
Control microprocessor, unnecessary
service calls and unhappy tenants are
avoided. The unit does not nuisance-trip
or unnecessarily shut down. Only when
the Tracer chiller controls have
exhausted all possible corrective
actions, and the unit is still violating an
operating limit, will the chiller shut
down. Controls on other equipment
typically shut down the chiller, usually
just when it is needed the most.
For Example:
A typical five-year-old chiller with dirty
coils might trip out on high-pressure
cutout on a 38°C [100°F] day in August.
A hot day is just when comfort cooling
is needed the most. In contrast, the aircooled Series R chiller with an Adaptive
Control microprocessor will stage fans
on, modulate the electronic expansion
valve, and modulate the slide valve as it
approaches a high-pressure cutout,
thereby keeping the chiller on line when
you need it the most.
System Options: Ice Storage
Trane air-cooled chillers are well-suited
for ice production. The unique ability to
operate at decreased ambient
temperature while producing ice results
in approximately the same amount of
work for the compressor. An air-cooled
machine typically switches to ice
production at night. Two things happen
under this assumption. First, the leaving
brine temperature from the evaporator

is lowered to around -5.5 to -5°C [22 to
24°F]. Second, the ambient temperature
has typically dropped about 8.3 to 11°C
[15 to 20°F] from the peak daytime
ambient. This effectively places a lift on
the compressors that is similar to
daytime running conditions. The chiller
can operate in lower ambient at night
and successfully produce ice to
supplement the next day’s cooling
demands.
The Model RTAC produces ice by
supplying ice storage tanks with a
constant supply of glycol solution. Aircooled chillers selected for these lower
leaving-fluid temperatures are also
selected for efficient production of
chilled fluid at nominal comfort-cooling
conditions. The ability of Trane chillers to
serve “double duty” in ice production
and comfort cooling greatly reduces the
capital cost of ice-storage systems.
When cooling is required, ice-chilled
glycol is pumped from the ice storage
tanks directly to the cooling coils. No
expensive heat exchanger is required.
The glycol loop is a sealed system,
eliminating expensive annual chemical
treatment costs. The air-cooled chiller is
also available for comfort-cooling duty
at nominal cooling conditions and
efficiencies. The modular concept of
glycol ice-storage systems, and the
proven simplicity of Trane Tracer™
controls, allow the successful blend of
reliability and energy-saving
performance in any ice-storage
application.
The ice-storage system is operated in
six different modes, each optimized for
the utility cost at a particular time of day.
1. Provide comfort cooling with chiller
2. Provide comfort cooling with ice
3. Provide comfort cooling with ice and
chiller

4. Freeze ice storage
5. Freeze ice storage when comfort
cooling is required
6. Off
Tracer optimization software controls
operation of the required equipment
and accessories to easily move from
one mode of operation to another. For
example: even with ice-storage systems,
there are numerous hours when ice is
neither produced nor consumed, but
saved. In this mode, the chiller is the
sole source of cooling. For example, to
cool the building after all ice is produced
but before high electrical-demand
charges take effect, Tracer sets the aircooled chiller leaving-fluid set point to
its most efficient setting and starts the
chiller, chiller pump, and load pump.
When electrical demand is high, the ice
pump is started and the chiller is either
demand limited or shut down
completely. Tracer controls have the
intelligence to optimally balance the
contribution of the ice and the chiller in
meeting the cooling load.
The capacity of the chiller plant is
extended by operating the chiller and ice
in tandem. Tracer rations the ice,
augmenting chiller capacity while
reducing cooling costs. When ice is
produced, Tracer will lower the aircooled chiller leaving-fluid set point and
start the chiller, ice and chiller pumps,
and other accessories. Any incidental
loads that persists while producing ice
can be addressed by starting the load
pump and drawing spent cooling fluid
from the ice storage tanks.
For specific information on ice storage
applications, contact your local Trane
sales office.

Figure 3 — Ice storage demand cost savings
LOAD

ICE

CHILLER

MN
RLC-PRC005-E4

6 A.M.

NOON

6 P.M.

MN

7

Options
Premium Efficiency and
Performance Option
This option provides oversized heat
exchangers with two purposes. One, it
allows the unit to be more energy
efficient. Two, the unit will have
enhanced operation in high-ambient
conditions.
Low-Temperature Brine
The hardware and software on the unit
are factory set to handle lowtemperature brine applications, typically
below 5°C [41°F].
Ice Making
The unit controls are factory set to
handle ice making for thermal storage
applications.
Tracer Summit™ Communication
Interface
Permits bi-directional communication to
the Trane Integrated Comfort™ system.
Remote Input Options
Permits remote chilled-liquid set point,
remote current-limit set point, or both,
by accepting a 4-20 mA or 2-10 VDC
analog signal.
Remote Output Options
Permits alarm relay outputs, ice-making
outputs, or both.
Chilled-Water Reset
This option provides the control logic
and field-installed sensors to reset
leaving-chilled-water temperature. The
set point can be reset based on either
ambient temperature or return
evaporator-water temperature.

8

Protection Grilles

Night Noise Setback

Protection grilles cover the complete
condensing coils and the service areas
beneath the coils.

At night, on contact closure all the fans
run at low speed, bringing the overall
sound level further down.

Coil Protection

SCR (Short-Circuit Rating)

A coated wire mesh that covers the
condenser coils only.

Offers a measure of safety for what the
starter-panel enclosure is able to
withstand in the event of an explosion
caused by a short circuit; protection up
to 35,000 amps is available on most
voltages.

Access Protection
A coated wire mesh that covers the
access area underneath the condenser
coils.
Service Valves
Provides a service valve on the suction
and discharge lines of each circuit to
facilitate compressor servicing.
High-Ambient Option
The high-ambient option consists of
special control logic to permit highambient (up to 52°C [125°F]) operation.
This option offers the best performance
when coupled with the premium
efficiency and performance option.
Low-Ambient Option
The low-ambient option consists of
special control logic and fans to permit
low-ambient (down to -23°C [-9°F])
operation.
Low-Ambient Lockout
A factory-installed ambient sensor and
control logic will prevent starting below
the recommended ambient
temperature.
Power Disconnect Switch
A disconnect switch with a through-thedoor handle, plus compressor
protection fuses, is provided to
disconnect main power.

Neoprene Isolators
Isolators provide isolation between the
chiller and the structure to help
eliminate vibration transmission.
Neoprene isolators are more effective
and recommended over spring
isolators.
Victaulic Connection Kit
Provides a kit that includes a set of two
pipe stubs and Victaulic couplings.
Low Noise Version
The unit is equipped with low-speed
fans and a compressor soundattenuating enclosure. All the
sound-emitting parts, like refrigerant
lines and panels subject to vibration, are
acoustically treated with soundabsorbent material.
Evaporator Freeze Protection
Factory-installed and -wired trace
heaters on the water boxes and on the
intermediate tube plate, with an ambient
thermostat and protected by a circuit
breaker.
Ground Fault Detection
Sensing ground current for improved
chiller protection.

RLC-PRC005-E4

Application Considerations
Certain application constraints should
be considered when sizing, selecting,
and installing Trane air-cooled Series R
chillers. Unit and system reliability is
often dependent on properly and
completely complying with these
considerations. When the application
varies from the guidelines presented, it
should be reviewed with your local
Trane sales engineer.
Unit Sizing
Unit capacities are listed in the
performance data section. Intentionally
oversizing a unit to ensure adequate
capacity is not recommended. Erratic
system operation and excessive
compressor cycling are often a direct
result of an oversized chiller. In addition,
an oversized unit is usually more
expensive to purchase, install, and
operate. If oversizing is desired, consider
using two units.
Water Treatment
Dirt, scale, products of corrosion, and
other foreign material will adversely
affect heat transfer between the water
and system components. Foreign matter
in the chilled-water system can also
increase pressure drop and,
consequently, reduce water flow. Proper
water treatment must be determined
locally, depending on the type of system

and local water characteristics. Neither
salt nor brackish water is recommended
for use in Trane air-cooled Series R
chillers. Use of either will lead to a
shortened chiller life. The Trane
Company encourages the employment
of a reputable water-treatment specialist,
familiar with local water conditions, to
assist in this determination and in the
establishment of a proper watertreatment program.
Effect of Altitude on Capacity
Air-cooled Series R chiller capacities
given in the performance data tables are
for use at sea level. At elevations
substantially above sea level, the
decreased air density will reduce
condenser capacity and, therefore, unit
capacity and efficiency. The adjustment
factors in Table F-1 can be applied
directly to the catalog performance data
to determine the unit’s adjusted
performance.
Ambient Limitations
Trane air-cooled Series R chillers are
designed for year-round operation over
a range of ambient temperatures. The
air-cooled Model RTAC chiller will
operate in ambient temperatures of 4 to
46°C [25 to 115°F]. Selecting the highambient option will allow the chiller to
operate in ambient temperatures of

51°C [125°F], and selecting the lowambient option will increase the
operational capability of the water chiller
to ambient temperatures as low as 18°C
[0°F]. For operation outside of these
ranges, contact the local Trane sales
office.
Water Flow Limits
The minimum water flow rates are
given in Tables G-1 and G-2. Evaporator
flow rates below the tabulated values
will result in laminar flow and cause
freeze-up problems, scaling,
stratification, and poor control. The
maximum evaporator water flow rate is
also given in the general data section.
Flow rates exceeding those listed may
result in excessive tube erosion.
Flow Rates Out of Range
Many process cooling jobs require flow
rates that cannot be met with the
minimum and maximum published
values within the Model RTAC
evaporator. A simple piping change can
alleviate this problem. For example: a
plastic injection molding process
requires 5.0 Lps [80 gpm] of 10°C [50°F]
water and returns that water at 15.6°C
[60°F].The selected chiller can operate at
these temperatures, but has a minimum
flow rate of 7.6 Lps [120 gpm].The
following system can satisfy the process.

10°C
5 Lps

Figure 4 — GPM Out of Range

10°C
7.6 Lps

CV Pump
5 Lps

Load
10°C
2.5 Lps
13.7°C
7.6 Lps

CV pump
7.5 Lps
RLC-PRC005-E4

15.6°C
5 Lps

9

Application Considerations
Figure 5 — GPM Out of Range

29.4°C
7.6 Lps

15.6°C
2.2 Lps

15.6°C
7.6 Lps

CV Pump

Load
35°C
5.4 Lps

15°C
5.4 Lps
21°C
7.6 Lps

CV Pump

35°C
2.2 Lps

35°C
7.6 Lps

Leaving-Water Temperature Range
Trane air-cooled Series R chillers have
three distinct leaving-water categories:
standard, low temperature, and ice
making. The standard leaving-solution
temperature range is 4.4 to 15.6°C [40 to
60°F]. Low-temperature machines
produce leaving-liquid temperatures
less than 4.4°C [40°F]. Since liquid
supply temperature set points less than
4.4°C [40°F] result in suction
temperatures at or below the freezing
point of water, a glycol solution is
required for all low-temperature
machines. Ice-making machines have a
leaving-liquid temperature range of -6.7
to 15.6°C [20 to 60°F]. Ice-making
controls include dual set point controls
and safeties for ice making and standard
cooling capabilities. Consult your local
Trane sales engineer for applications or
selections involving low temperature or
ice making machines. The maximum
water temperature that can be circulated
through an evaporator when the unit is
not operating is 42°C [108°F].
Leaving-Water Temperature
Out of Range
Similar to the flow rates above, many
process cooling jobs require
temperature ranges that cannot be met
with the minimum and maximum
published values for the Model RTAC
evaporator. A simple piping change can
alleviate this problem. For example: a
laboratory load requires 7.6 Lps [120
gpm] of water entering the process at
10

29.4°C [85°F] and returning at 35°C
[95°F]. The accuracy required is higher
than the cooling tower can give. The
selected chiller has adequate capacity,
but has a maximum leaving-chilledwater temperature of 15.6°C [60°F].
In the example shown, both the chiller and
process flow rates are equal.This is not
necessary. For example, if the chiller had a
higher flow rate, there would be more water
bypassing and mixing with warm water.
Supply-Water Temperature Drop
The performance data for the Trane aircooled Series R chiller is based on a
chilled-water temperature drop of 6°C
[10.8°F]. Chilled-water temperature
drops from 3.3 to 10°C [6 to 18°F] may
be used as long as minimum and
maximum water temperature, and
minimum and maximum flow rates, are
not violated. Temperature drops outside
this range are beyond the optimum
range for control, and may adversely
affect the microcomputer’s ability to
maintain an acceptable supply-water
temperature range. Further, temperature
drops of less than 3.3°C [6°F] may result
in inadequate refrigerant superheat.
Sufficient superheat is always a primary
concern in any direct-expansion
refrigerant system and is especially
important in a package chiller where the
evaporator is closely coupled to the
compressor. When temperature drops
are less than 3.3°C [6°F], an evaporator
runaround loop may be required.

RLC-PRC005-E4

Application Considerations
Variable Flow in the Evaporator
An attractive chilled-water system
option may be a variable primary flow
(VPF) system. VPF systems present
building owners with several costsaving benefits that are directly related
to the pumps. The most obvious cost
savings result from eliminating the
secondary distribution pump, which in
turn avoids the expense incurred with
the associated piping connections
(material, labor), electrical service, and
variable-frequency drive. Building
owners often cite pump-related energy
savings as the reason that prompted
them to install a VPF system. With the
help of a software analysis tool such as
System Analyzer™, TRACE™, or DOE-2,
you can determine whether the
anticipated energy savings justify the
use of variable primary flow in a
particular application. It may also be
easier to apply variable primary flow in
an existing chilled-water plant. Unlike
the “decoupled” design, the bypass can
be positioned at various points in the
chilled-water loop and an additional
pump is unnecessary. The evaporator in
the Model RTAC can withstand up to 50
percent water flow reduction as long as
this flow is equal to or above the
minimum flow-rate requirements. The
microprocessor and capacity control
algorithms are designed to take a
minimum of 10 percent change in water
flow rate per minute.

RLC-PRC005-E4

Ice Storage Provides
Reduced Electrical Demand
An ice-storage system uses a standard
chiller to make ice at night, when utilities
charge less for electricity. The ice
supplements, or even replaces,
mechanical cooling during the day,
when utility rates are at their highest.
This reduced need for cooling results in
big utility cost savings.
Another advantage of ice storage is
standby cooling capacity. If the chiller is
unable to operate, one or two days of
ice may still be available to provide
cooling. In that period of time, the chiller
can be repaired before building
occupants feel any loss of comfort.
The Trane Model RTAC chiller is uniquely
suited to low-temperature applications
like ice storage because of the ambient
relief experienced at night. This allows
the Model RTAC chiller to produce ice
efficiently, with less stress on the
machine.
Simple and smart control strategies are
another advantage the Model RTAC
chiller offers for ice-storage applications.
Trane Tracer™ building management
systems can actually anticipate how
much ice needs to be made at night,
and operate the system accordingly. The
controls are integrated right into the
chiller. Two wires and preprogrammed
software dramatically reduce field
installation cost and complex
programming.

Short Water Loops
The proper location of the temperature
control sensor is in the supply (outlet)
water connection or pipe. This location
allows the building to act as a buffer and
assures a slowly-changing return-water
temperature. If there is not a sufficient
volume of water in the system to
provide an adequate buffer, temperature
control can be lost, resulting in erratic
system operation and excessive
compressor cycling. A short water loop
has the same effect as attempting to
control using the building return water.
Typically, a two-minute water loop is
sufficient to prevent a short water loop.
Therefore, as a guideline, ensure that
the volume of water in the evaporator
loop equals or exceeds two times the
evaporator flow rate. For a rapidly
changing load profile, the amount of
volume should be increased. To prevent
the effect of a short water loop, the
following item should be given careful
consideration: a storage tank or larger
header pipe to increase the volume of
water in the system and, therefore,
reduce the rate of change of the return
water temperature.
Applications Types
• Comfort cooling
• Industrial process cooling
• Ice or thermal storage
• Low-temperature process cooling.

11

Selection Procedure
The chiller capacity tables cover the
most frequently encountered leavingliquid temperatures. The tables reflect a
6°C [10.8°F] temperature drop through
the evaporator. For other temperature
drops, apply the appropriate
performance data adjustment factors.
For chilled brine selections, refer to
Figures F-3 and F-4 for ethylene and
propylene glycol adjustment factors.

Selection Procedure SI Units

5

The chiller capacity tables P-1 through
P-4 cover the most frequently
encountered leaving-water
temperatures. The tables reflect a 6°C
temperature drop through the
evaporator

The final unit selection is:

To select a Trane air-cooled Series R™
chiller, the following information is
required:

1

• Leaving chilled-water
temperatures = 7°C

Design load in kW of refrigeration

• Chilled-water flow rate = 24.2 Lps

2
Design chilled-water temperature drop

• Evaporator water pressure
drop = 53 kPa

3

• Compressor power input = 159 kW

Design leaving-chilled-water
temperature

• Unit COP = 2.9 kW/kW

To select a Trane air-cooled RTAC chiller,
the following information is required:

4
Design ambient temperature
Evaporator flow rates can be
determined by using the following
formula:
Lps = kW (capacity) x 0.239 ÷
temperature drop (°C)
To determine the evaporator pressure
drop we use the flow rate (Lps) and the
evaporator water pressure drop Figure
F1.

• Quantity (1) RTAA 140
• Cooling capacity = 505.9 kW
• Design ambient temperature 35°C
• Entering chilled-water
temperatures = 12°C

Contact the local Trane sales engineer
for a proper selection at the given
operating conditions.
For a selection in English units:
• 1 ton = 3.5168 kW
• Evaporator flow rate in gpm =
24 x tons ÷ delta T (°F)
• Delta T (°F) = delta T (°C) x 1.8
• 1 gpm = 0.06309 Lps
• 1 ft WG = 3 kPa
• EER = COP ÷ 0.293

For selection of chilled brine units, or
applications where the altitude is
significantly greater than sea level or the
temperature drop is different than 6°C,
the performance adjustment factors
from Table F-1 should be applied at this
point.
For example:
Corrected Capacity = Capacity
(unadjusted) x Glycol Capacity
Adjustment Factor
Corrected Flow Rate = Flow Rate
(unadjusted) x Glycol Flow Rate
Adjustment Factor

12

RLC-PRC005-E4

General Data
SI Units
Table G-1 — RTAC Standard
Size
Compressor
Quantity
Nominal Size (1)
tons
Evaporator
Evaporator Model
Water Storage
L
Minimum Flow
Lps
Maximum Flow
Lps
Condenser
Qty of Coils
Coil Length
mm
Coil Height
mm
Fin series
fins/ft
Number of Rows
Condenser Fans
Quantity (1)
Diameter
mm
Total Air Flow
m3/s
Nominal RPM
Tip Speed
m/s
Motor kW
kW
Min Starting/Operating Ambient(2)
Standard Unit
°C
Low-Ambient Unit
°C
General Unit
Refrigerant
Number of Independent
Refrigerant Circuits
% Minimum Load (3)
Refrigerant Charge (1)
kg
Oil Charge (1)
L
Operating Weight
kg
Shipping Weight
kg

140

155

170

185

200

2
70/70

2
70/85

2
85/85

2
85/100

2
100/100

F140
132.3
10.8
33.1

F155
141.3
11.5
38.2

F170
150.7
12.5
43.1

F185
156
13.6
39.5

F200
163.5
13.6
48.4

4
3962/3962
1067
192
3

4
4572/3962
1067
192
3

4
4572/4572
1067
192
3

4
5486/4572
1067
192
3

4
5486/5486
1067
192
3

4/4
762
35.82
915
36.48
1.9

5/4
762
39.53
915
36.48
1.9

5/5
762
43.22
915
36.48
1.9

6/5
762
47.55
915
36.48
1.9

6/6
762
51.88
915
36.48
1.9

-4
-23

-4
-23

-4
-23

-4
-23

-4
-23

HFC 134a

HFC 134a

HFC 134a

HFC 134a

HFC 134a

2
15
65.8/65.8
7.6/7.6
5216
5107

2
15
70.3/65.8
7.6/7.6
5407
5265

2
15
70.3/70.3
7.6/7.6
5586
5434

2
15
99.8/95.3
9.9/7.6
6268
6111

2
15
99.8/99.8
9.9/9.9
6396
6232

120

130

140

155

170

185

200

2
60/60

2
60/70

2
70/70

2
70/85

2
85/85

2
85/100

2
100/100

F140
132.3
10.8
33.1

F155
141.3
11.5
38.2

F170
150.7
12.5
43.3

F185
156
13.6
39.5

F200
163.5
13.6
48.4

F220
175.9
14.9
53.5

F240
188.3
16.3
58.6

4
3962/3962
1067
192
3

4
4572/3962
1067
192
3

4
4572/4572
1067
192
3

4
5486/4572
1067
192
3

4
5486/5486
1067
192
3

4
6400/2486
1067
192
3

4
6400/6400
1067
192
3

4/4
762
35.82
915
36.48
1.9

5/4
762
39.53
915
36.48
1.9

5/5
762
43.22
915
36.48
1.9

6/5
762
47.55
915
36.48
1.9

6/6
762
51.88
915
36.48
1.9

7/6
762
56.17
915
36.48
1.9

7/7
762
60.47
915
36.48
1.9

-4
-23

-4
-23

-4
-23

-4
-23

-4
-23

-4
-23

-4
-23

HFC 134a

HFC 134a

HFC 134a

HFC 134a

HFC 134a

HFC 134a

HFC 134a

2
15
65.8/65.8
7.6/7.6
5198
5089

2
15
70.3/65.8
7.6/7.6
5271
5129

2
15
70.3/70.3
7.6/7.6
5274
5122

2
15
99.8/95.3
7.6/7.6
6073
5916

2
15
99.8/99.8
7.6/7.6
6323
6159

2
15
104.4/99.8
9.9/7.6
6555
6378

2
15
104.4/104.4
9.9/9.9
6759
6569

Table G-2 — RTAC High Efficiency
Size
Compressor
Quantity
Nominal Size (1)
tons
Evaporator
Evaporator Model
Water Storage
L
Minimum Flow
Lps
Maximum Flow
Lps
Condenser
Qty of Coils
Coil Length
mm
Coil Height
mm
Fin series
fins/ft
Number of Rows
Condenser Fans
Quantity (1)
Diameter
mm
Total Air Flow
m3/s
Nominal RPM
Tip Speed
m/s
Motor kW
kW
Min Starting/Operating Ambient(2)
Standard Unit
°C
Low-Ambient Unit
°C
General Unit
Refrigerant
Number of Independent
Refrigerant Circuits
% Minimum Load (3)
Refrigerant Charge (1)
kg
Oil Charge (1)
L
Operating Weight
kg
Shipping Weight
kg
RLC-PRC005-E4

13

General Data
SI Units
Table G-3 — RTAC Low Noise Standard
Size
Compressor
Quantity
Nominal Size (1)
tons
Evaporator
Evaporator Model
Water Storage
L
Minimum Flow
Lps
Maximum Flow
Lps
Condenser
Qty of Coils
Coil Length
mm
Coil Height
mm
Fin series
fins/ft
Number of Rows
Condenser Fans
Quantity (1)
Diameter
mm
Total Air Flow
m3/s
Nominal RPM
Tip Speed
m/s
Motor kW
kW
Min Starting/Operating Ambient(2)
Standard Unit
°C
Low-Ambient Unit
°C
General Unit
Refrigerant
Number of Independent
Refrigerant Circuits
% Minimum Load (3)
Refrigerant Charge (1)
kg
Oil Charge (1)
L
Operating Weight
kg
Shipping Weight
kg

14

140

155

170

185

200

2
70/70

2
70/85

2
85/85

2
85/100

2
100/100

F140
132.3
10.8
33.1

F155
141.3
11.5
38.2

F170
150.7
12.5
43.1

F185
156
13.6
39.5

F200
163.5
13.6
48.4

4
3962/3962
1067
192
3

4
4572/3962
1067
192
3

4
4572/4572
1067
192
3

4
5486/4572
1067
192
3

4
5486/5486
1067
192
3

4/4
762
25.61
680
27.5
0.85

5/4
762
28.27
680
27.5
0.85

5/5
762
30.93
680
27.5
0.85

6/5
762
34.02
680
27.5
0.85

6/6
762
37.11
680
27.5
0.85

-4
-23

-4
-23

-4
-23

-4
-23

-4
-23

HFC 134a

HFC 134a

HFC 134a

HFC 134a

HFC 134a

2
15
65.8/65.8
7.6/7.6
5306
5197

2
15
70.3/65.8
7.6/7.6
5497
5355

2
15
70.3/70.3
7.6/7.6
5676
5524

2
15
99.8/95.3
9.9/7.6
6358
6201

2
15
99.8/99.8
9.9/9.9
6486
6322

RLC-PRC005-E4

General Data
SI Units
Table G-4 — RTAC High Efficiency Low Noise
Size
Compressor
Quantity
Nominal Size (1)
tons
Evaporator
Evaporator Model
Water Storage
L
Minimum Flow
Lps
Maximum Flow
Lps
Condenser
Qty of Coils
Coil Length
mm
Coil Height
mm
Fin series
fins/ft
Number of Rows
Condenser Fans
Quantity (1)
Diameter
mm
Total Air Flow
m3/s
Nominal RPM
Tip Speed
m/s
Motor kW
kW
Min Starting/Operating Ambient(2)
Standard Unit
°C
Low-Ambient Unit
°C
General Unit
Refrigerant
Number of Independent
Refrigerant Circuits
% Minimum Load (3)
Refrigerant Charge (1)
kg
Oil Charge (1)
L
Operating Weight
kg
Shipping Weight
kg

120

130

140

155

170

185

200

2
60/60

2
60/70

2
70/70

2
70/85

2
85/85

2
85/100

2
100/100

F140
132.3
10.8
33.1

F155
141.3
11.5
38.2

F170
150.7
12.5
43.3

F185
156
13.6
39.5

F200
163.5
13.6
48.4

F220
175.9
14.9
53.5

F240
188.3
16.3
58.6

4
3962/3962
1067
192
3

4
4572/3962
1067
192
3

4
4572/4572
1067
192
3

4
5486/4572
1067
192
3

4
5486/5486
1067
192
3

4
6400/2486
1067
192
3

4
6400/6400
1067
192
3

4/4
762
25.61
680
27.5
0.85

5/4
762
28.27
680
27.5
0.85

5/5
762
30.93
680
27.5
0.85

6/5
762
34.02
680
27.5
0.85

6/6
762
37.11
680
27.5
0.85

7/6
762
40.23
680
27.5
0.85

7/7
762
43.34
680
27.5
0.85

-4
-23

-4
-23

-4
-23

-4
-23

-4
-23

-4
-23

-4
-23

HFC 134a

HFC 134a

HFC 134a

HFC 134a

HFC 134a

HFC 134a

HFC 134a

2
15
65.8/65.8
7.6/7.6
5288
5179

2
15
70.3/65.8
7.6/7.6
5361
5219

2
15
70.3/70.3
7.6/7.6
5364
5212

2
15
99.8/95.3
7.6/7.6
6163
6006

2
15
99.8/99.8
7.6/7.6
6413
6249

2
15
104.4/99.8
9.9/7.6
6645
6468

2
15
104.4/104.4
9.9/9.9
6849
6659

Notes:
1. Data containing information on two circuits shown as follows: ckt1/ckt2
2. Minimum start-up/operation ambient based on a 2.22 m/s (5mph) wind across the condenser.
3. Percent minimum load is for total machine at 10°C (50°F) ambient and 7°C (44°F) leaving chilled water temperature. Not each individual circuit.

RLC-PRC005-E4

15

General Data
English Units
Table G-5 — RTAC Standard
Size
Compressor

140

155

170

185

200

Quantity
Nominal Size (1)

tons

2
70/70

2
70/85

2
85/85

2
85/100

2
100/100

Evaporator Model
Water Storage
Minimum Flow
Maximum Flow

gal
gpm
gpm

F140
35
171.2
524.7

F155
37.3
182.3
605.6

F170
39.8
198.2
683.2

F185
41.2
215.6
626.2

F200
43.2
215.6
767.2

4
13/13
3.5
192
3

4
15/13
3.5
192
3

4
15/15
3.5
192
3

4
18/15
3.5
192
3

4
18/18
3.5
192
3

ft/s
kW

4/4
30
75867
915
120
1.9

5/4
30
83725
915
120
1.9

5/5
30
91540
915
120
1.9

6/5
30
100710
915
120
1.9

°F
°F

25
-9

25
-9

25
-9

25
-9

HFC 134a

HFC 134a

HFC 134a

HFC 134a

lb
gal
lb
lb

2
15
145/145
2/2
12018
11767

2
15
155/145
2.2
12459
12131

2
15
155/155
2.2
12871
12521

2
15
220/210
2.6/2
14442
14081

120

130

140

155

170

185

200

2
60/60

2
60/70

2
70/70

2
70/85

2
85/85

2
85/100

2
100/100

F140
35
171.2
524.7

F155
37.3
182.3
605.6

F170
39.8
198.2
683.2

F185
41.2
215.6
626.2

F200
43.2
215.6
767.2

F220
46.5
231.4
848.1

F240
49.8
258.4
928.9

4
13/13
3.5
192
3

4
15/13
3.5
192
3

4
15/15
3.5
192
3

4
18/15
3.5
192
3

4
18/18
3.5
192
3

4
21/18
3.5
192
3

4
21/21
3.5
192
3

4/4
30
75867
915
120
1.9

5/4
30
83725
915
120
1.9

5/5
30
91540
915
120
1.9

6/5
30
100710
915
120
1.9

6/6
30
109882
915
120
1.9

7/6
30
118968
915
120
1.9

7/7
30
128075
915
120
1.9

25
-9

25
-9

25
-9

25
-9

25
-9

25
-9

25
-9

HFC 134a

HFC 134a

HFC 134a

HFC 134a

HFC 134a

HFC 134a

HFC 134a

2
15
145/145
2/2
11977
11726

2
15
155/145
2.2
12145
11818

2
15
155/155
2.2
12152
11802

2
15
220/210
2.6/2
13993
13631

2
15
220/220
2.6/2.6
14569
14191

2
15
230/220
2.6/2
15104
14696

2
15
230/230
2.6/2.6
15574
15136

Evaporator

Condenser
Quantity of Coils
Coil Length
Coil Height
Fin Series
Number of Rows

ft
ft
fins/ft

Condenser Fans
Quantity (1)
Diameter
Total Air Flow
Nominal RPM
Tip Speed
Motor kW
Minimum Starting/Operating Ambient(2)
Standard Unit
Low-Ambient Unit
General Unit
Refrigerant
Number of Independent
Refrigerant Circuits
% Minimum Load (3)
Refrigerant Charge (1)
Oil Charge (1)
Operating Weight
Shipping Weight

in.
cfm

6/6
30
109882
915
120
1.9
25
-9
HFC 134a
2
15
220/220
2.6/2.6
14737
14359

Table G-6 — RTAC High Efficiency
Size
Compressor
Quantity
Nominal Size (1)
tons
Evaporator
Evaporator Model
Water Storage
gal
Minimum Flow
gpm
Maximum Flow
gpm
Condenser
Quantity of Coils
Coil Length
ft
Coil Height
ft
Fin Series
fins/ft
Number of Rows
Condenser Fans
Quantity (1)
Diameter
in.
Total Air Flow
cfm
Nominal RPM
Tip Speed
ft/s
Motor kW
kW
Minimum Starting/Operating Ambient(2)
Standard Unit
°F
Low-Ambient Unit
°F
General Unit
Refrigerant
Number of Independent
Refrigerant Circuits
% Minimum Load (3)
Refrigerant Charge (1)
lb
Oil Charge (1)
gal
Operating Weight
lb
Shipping Weight
lb

16

RLC-PRC005-E4

General Data
English Units
Table G-7 — RTAC Low Noise Standard
Size
Compressor
Quantity
Nominal Size (1)
tons
Evaporator
Evaporator Model
Water Storage
gal
Minimum Flow
gpm
Maximum Flow
gpm
Condenser
Quantity of Coils
Coil Length
ft
Coil Height
ft
Fin Series
fins/ft
Number of Rows
Condenser Fans
Quantity (1)
Diameter
in.
Total Air Flow
cfm
Nominal RPM
Tip Speed
ft/s
Motor kW
kW
Minimum Starting/Operating Ambient(2)
Standard Unit
°F
Low-Ambient Unit
°F
General Unit
Refrigerant
Number of Independent
Refrigerant Circuits
% Minimum Load (3)
Refrigerant Charge (1)
lb
Oil Charge (1)
gal
Operating Weight
lb
Shipping Weight
lb

RLC-PRC005-E4

140

155

170

185

200

2
70/70

2
70/85

2
85/85

2
85/100

2
100/100

F140
35
171.2
524.7

F155
37.3
182.3
605.6

F170
39.8
198.2
683.2

F185
41.2
215.6
626.2

F200
43.2
215.6
767.2

4
13/13
3.5
192
3

4
15/13
3.5
192
3

4
15/15
3.5
192
3

4
18/15
3.5
192
3

4
18/18
3.5
192
3

4/4
30
54242
680
90
0.85

5/4
30
59876
680
90
0.85

5/5
30
65510
680
90
0.85

6/5
30
72054
680
90
0.85

6/6
30
78600
680
90
0.85

25
-9

25
-9

25
-9

25
-9

25
-9

HFC 134a

HFC 134a

HFC 134a

HFC 134a

HFC 134a

2
15
145/145
2/2
12226
11975

2
15
155/145
2.2
12666
12339

2
15
155/155
2.2
13078
12728

2
15
220/210
2.6/2
14650
14288

2
15
220/220
2.6/2.6
14945
14567

17

General Data
English Units
Table G-8 — RTAC High Efficiency Low Noise
Size
Compressor
Quantity
Nominal Size (1)
tons
Evaporator
Evaporator Model
Water Storage
gal
Minimum Flow
gpm
Maximum Flow
gpm
Condenser
Quantity of Coils
Coil Length
ft
Coil Height
ft
Fin Series
fins/ft
Number of Rows
Condenser Fans
Quantity (1)
Diameter
in.
Total Air Flow
cfm
Nominal RPM
Tip Speed
ft/s
Motor kW
kW
Minimum Starting/Operating Ambient(2)
Standard Unit
°F
Low-Ambient Unit
°F
General Unit
Refrigerant
Number of Independent
Refrigerant Circuits
% Minimum Load (3)
Refrigerant Charge (1)
lb
Oil Charge (1)
gal
Operating Weight
lb
Shipping Weight
lb

120

130

140

155

170

185

200

2
60/60

2
60/70

2
70/70

2
70/85

2
85/85

2
85/100

2
100/100

F140
35
171.2
524.7

F155
37.3
182.3
605.6

F170
39.8
198.2
683.2

F185
41.2
215.6
626.2

F200
43.2
215.6
767.2

F220
46.5
231.4
848.1

F240
49.8
258.4
928.9

4
13/13
3.5
192
3

4
15/13
3.5
192
3

4
15/15
3.5
192
3

4
18/15
3.5
192
3

4
18/18
3.5
192
3

4
21/18
3.5
192
3

4
21/21
3.5
192
3

4/4
30
54242
680
90
0.85

5/4
30
59876
680
90
0.85

5/5
30
65510
680
90
0.85

6/5
30
72054
680
90
0.85

6/6
30
78600
680
90
0.85

7/6
30
85207
680
90
0.85

7/7
30
91794
680
90
0.85

25
-9

25
-9

25
-9

25
-9

25
-9

25
-9

25
-9

HFC 134a

HFC 134a

HFC 134a

HFC 134a

HFC 134a

HFC 134a

HFC 134a

2
15
145/145
2/2
12184
11933

2
15
155/145
2.2
12353
12025

2
15
155/155
2.2
12359
12009

2
15
220/210
2.6/2
14200
13839

2
15
220/220
2.6/2.6
14776
14399

2
15
230/220
2.6/2
15311
14903

2
15
230/230
2.6/2.6
15781
15343

Notes:
1. Data containing information on two circuits shown as follows: ckt1/ckt2
2. Minimum start-up/operation ambient based on a 5mph wind across the condenser.
3. Percent minimum load is for total machine at 10°C [50°F] ambient and 7°C [44°F] leaving chilled water temperature. Not each individual circuit.

18

RLC-PRC005-E4

Performance Data
Standard Units (SI Units)
Table P-1 — RTAC 140
LWT
°C
C.C.
kW
5
536.3
7
571.1
9
606.9
11
643.4
13
680.6

25
P.I.
kW/kW
131.3
136.4
141.7
147.2
152.8

COP
kW
3.65
3.75
3.85
3.95
4.04

Table P-2 — RTAC 155
LWT
°C
C.C.
kW
5
587.8
7
625.7
9
664.3
11
703.7
13
743.7

25
P.I.
kW/kW
145.8
151.7
157.8
164.1
170.6

COP
kW
3.60
3.70
3.79
3.87
3.95

Table P-3 — RTAC 170
LWT
°C
C.C.
kW
5
640.2
7
681.1
9
722.7
11
765.0
13
807.9

25
P.I.
kW/kW
160.5
167.2
174.2
181.4
188.8

COP
kW
3.56
3.65
3.73
3.81
3.88

Table P-4 — RTAC 185
LWT
°C
C.C.
kW
5
708.2
7
753.1
9
798.8
11
845.3
13
892.5

25
P.I.
kW/kW
177.3
184.7
192.3
200.2
208.4

COP
kW
3.57
3.66
3.74
3.81
3.88

Table P-5 — RTAC 200
LWT
°C
C.C.
kW
5
777.8
7
827.0
9
877.0
11
928.0
13
979.8

25
P.I.
kW/kW
194.3
202.4
210.8
219.5
228.5

COP
kW
3.58
3.66
3.75
3.82
3.89

Entering Condenser Air Temperature (°C)
C.C.
kW
505.7
539.0
573.2
608.1
643.7

30
P.I.
kW/kW
141.8
147.1
152.6
158.2
164.0

COP
kW
3.21
3.31
3.41
3.50
3.58

C.C.
kW
474.1
505.9
538.4
571.7
605.6

35
P.I.
kW/kW
153.5
159.0
164.6
170.4
176.4

COP
kW
2.80
2.90
2.99
3.07
3.15

C.C.
kW
441.6
471.7
502.6
534.2
566.3

40
P.I.
kW/kW
166.5
172.1
177.9
183.9
190.0

COP
kW
2.42
2.51
2.60
2.68
2.75

C.C.
kW
400.7
428.8
457.6
486.9
509.4

46
P.I.
kW/kW
184.0
189.8
195.8
202.0
204.9

COP
kW
2.01
2.09
2.16
2.24
2.31

C.C.
kW
374.2
400.9
409.6
417.2
423.3

50
P.I.
kW/kW
196.1
202.1
197.1
191.3
184.6

COP
kW
1.77
1.84
1.92
2.01
2.11

C.C.
kW
484.5
517.1
550.3
584.2
618.7

40
P.I.
kW/kW
183.2
189.6
196.2
203.0
209.9

COP
kW
2.41
2.50
2.57
2.65
2.72

C.C.
kW
440.0
470.2
501.1
532.6
561.8

46
P.I.
kW/kW
201.9
208.5
215.3
222.3
225.5

COP
kW
2.00
2.08
2.15
2.22
2.31

C.C.
kW
411.0
439.7
450.5
454.9
461.3

50
P.I.
kW/kW
214.9
221.7
217.4
209.3
202.5

COP
kW
1.77
1.84
1.92
2.00
2.10

C.C.
kW
527.9
562.9
598.6
634.9
671.8

40
P.I.
kW/kW
200.0
207.2
214.6
222.2
230.0

COP
kW
2.41
2.48
2.56
2.63
2.69

C.C.
kW
479.5
511.9
545.0
578.7
607.7

46
P.I.
kW/kW
220.0
227.4
234.9
242.7
245.1

COP
kW
2.00
2.07
2.14
2.21
2.30

C.C.
kW
448.1
478.8
491.5
497.9
504.4

50
P.I.
kW/kW
233.9
241.4
237.7
230.3
222.7

COP
kW
1.77
1.84
1.91
1.99
2.08

C.C.
kW
587.4
625.9
665.2
705.3
746.1

40
P.I.
kW/kW
220.8
228.9
237.3
245.9
254.8

COP
kW
2.43
2.50
2.57
2.64
2.70

C.C.
kW
534.9
570.5
607.0
644.2
672.6

46
P.I.
kW/kW
242.8
251.2
259.9
268.9
271.9

COP
kW
2.03
2.09
2.16
2.22
2.29

C.C.
kW
500.5
525.9
539.2
548.1
551.0

50
P.I.
kW/kW
258.0
261.3
256.9
249.3
238.7

COP
kW
1.79
1.86
1.94
2.03
2.12

C.C.
kW
647.9
690.1
733.1
777.2
822.1

40
P.I.
kW/kW
241.8
250.8
260.2
270.0
280.0

COP
kW
2.44
2.52
2.59
2.65
2.71

C.C.
kW
591.0
630.0
670.1
711.0
741.1

46
P.I.
kW/kW
265.7
275.3
285.1
295.4
298.2

COP
kW
2.04
2.11
2.17
2.23
2.31

C.C.
kW
553.7
580.4
588.7
598.7
607.0

50
P.I.
kW/kW
282.4
285.5
276.7
268.6
258.8

COP
kW
1.81
1.88
1.96
2.05
2.15

Entering Condenser Air Temperature (°C)
C.C.
kW
554.5
590.6
627.5
665.1
703.4

30
P.I.
kW/kW
156.9
163.0
169.3
175.7
182.4

COP
kW
3.18
3.27
3.36
3.44
3.52

C.C.
kW
520.0
554.4
589.5
625.3
661.7

35
P.I.
kW/kW
169.4
175.6
182.0
188.7
195.5

COP
kW
2.78
2.87
2.95
3.03
3.10

Entering Condenser Air Temperature (°C)
C.C.
kW
603.9
642.9
682.6
723.0
763.9

30
P.I.
kW/kW
172.2
179.1
186.2
193.5
201.1

COP
kW
3.15
3.24
3.32
3.39
3.46

C.C.
kW
566.5
603.5
641.2
679.5
718.5

35
P.I.
kW/kW
185.4
192.4
199.7
207.2
214.8

COP
kW
2.77
2.85
2.93
3.00
3.07

Entering Condenser Air Temperature (°C)
C.C.
kW
669.4
712.2
755.9
800.3
845.4

30
P.I.
kW/kW
190.2
197.8
205.7
213.8
222.2

COP
kW
3.16
3.25
3.33
3.40
3.47

C.C.
kW
629.1
669.8
711.3
753.6
796.6

35
P.I.
kW/kW
204.6
212.5
220.6
229.0
237.6

COP
kW
2.78
2.86
2.94
3.01
3.08

Entering Condenser Air Temperature (°C)
C.C.
kW
736.2
783.1
830.9
879.7
929.3

30
P.I.
kW/kW
208.3
216.7
225.5
234.5
243.8

COP
kW
3.18
3.26
3.34
3.41
3.48

C.C.
kW
692.9
737.4
782.9
829.4
876.7

35
P.I.
kW/kW
224.2
232.9
241.9
251.3
260.9

COP
kW
2.80
2.88
2.95
3.02
3.08

Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. Consult Trane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.

RLC-PRC005-E4

19

Performance Data
High Efficiency Units (SI Units)
Table P-6 — RTAC 120
LWT
°C
C.C.
kW
5
459.3
7
490.9
9
523.2
11
556.3
13 590.0

25
P.I.
kW
104.9
108.9
113.0
117.2
121.6

COP
kW/kW
3.81
3.94
4.07
4.18
4.29

Table P-7 — RTAC 130
LWT
°C
C.C.
kW
5
506.6
7
541.5
9
577.2
11
613.9
13 651.4

25
P.I.
kW
115.3
119.7
124.3
129.0
133.9

COP
kW/kW
3.81
3.94
4.07
4.19
4.30

Table P-8 — RTAC 140
LWT
°C
C.C.
kW
5
554.6
7
592.8
9
632.1
11
672.6
13 714.2

25
P.I.
kW
125.8
130.7
135.7
140.9
146.3

COP
kW/kW
3.82
3.95
4.07
4.19
4.31

Table P-9 — RTAC 155
LWT
°C
C.C.
kW
161.7 2.93
7
645.9
9
687.9
11
730.9
13 774.8

25
P.I.
kW
501.0
145.3
151.0
157.0
163.2

COP
kW/kW
174.7
3.88
3.99
4.10
4.20

Table P-10 — RTAC 170
LWT
°C
C.C.
kW
5
656.3
7
700.0
9
744.6
11
790.3
13 836.8

25
P.I.
kW
153.7
160.0
166.6
173.3
180.3

COP
kW/kW
3.71
3.82
3.92
4.02
4.11

Table P-11 — RTAC 185
LWT
°C
C.C.
kW
5
728.8
7
777.3
9
827.0
11
877.8
13 929.6

20

25
P.I.
kW
170.9
178.0
185.3
192.9
200.8

COP
kW/kW
3.72
3.83
3.93
4.03
4.11

Entering Condenser Air Temperature (°C)
C.C.
kW
433.2
463.4
494.3
525.8
558.0

30
P.I.
kW
112.9
117.0
121.3
125.7
130.3

COP
kW/kW
3.37
3.49
3.61
3.72
3.82

C.C.
kW
406.2
434.8
464.2
494.2
524.8

35
P.I.
kW
122.1
126.3
130.7
135.3
140.0

COP
kW/kW
2.95
3.06
3.17
3.27
3.37

C.C.
kW
378.2
405.3
433.1
461.5
490.6

40
P.I.
kW
132.4
136.8
141.4
146.1
150.9

COP
kW/kW
2.55
2.66
2.76
2.85
2.94

C.C.
kW
342.9
368.1
393.9
420.3
447.3

46
P.I.
kW
146.6
151.2
155.9
160.8
165.8

COP
kW/kW
2.11
2.21
2.29
2.38
2.46

C.C.
kW
310.0
333.4
350.7
366.3
383.8

52
P.I.
kW
161.0
165.8
167.0
167.0
167.5

COP
kW/kW
1.75
1.84
1.92
2.00
2.09

C.C.
kW
418.3
448.4
479.3
511.1
543.5

40
P.I.
kW
145.5
150.3
155.3
160.4
165.7

COP
kW/kW
2.56
2.67
2.77
2.87
2.97

C.C.
kW
380.0
408.1
436.9
466.5
496.7

46
P.I.
kW
160.9
165.9
171.0
176.3
181.7

COP
kW/kW
2.13
2.22
2.32
2.41
2.49

C.C.
kW
344.3
370.4
393.9
413.3
425.5

52
P.I.
kW
176.5
181.7
185.0
185.9
182.7

COP
kW/kW
1.77
1.86
1.94
2.03
2.12

C.C.
kW
458.7
491.9
526.2
561.3
597.3

40
P.I.
kW
158.7
163.9
169.3
174.9
180.6

COP
kW/kW
2.57
2.68
2.79
2.89
2.99

C.C.
kW
417.4
448.4
480.3
513.1
546.7

46
P.I.
kW
175.3
180.7
186.2
191.9
197.7

COP
kW/kW
2.14
2.24
2.33
2.43
2.52

C.C.
kW
378.9
407.8
437.6
457.7
466.4

52
P.I.
kW
192.0
197.6
203.3
203.5
197.6

COP
kW/kW
1.79
1.88
1.96
2.05
2.15

Entering Condenser Air Temperature (°C)
C.C.
kW
478.2
511.5
545.7
580.8
616.7

30
P.I.
kW
124.2
128.7
133.4
138.3
143.3

COP
kW/kW
3.37
3.50
3.61
3.73
3.83

C.C.
kW
448.7
480.4
513.0
546.5
580.7

35
P.I.
kW
134.2
138.9
143.8
148.7
153.9

COP
kW/kW
2.95
3.07
3.18
3.28
3.39

Entering Condenser Air Temperature (°C)
C.C.
kW
523.6
560.2
597.9
636.7
676.5

30
P.I.
kW
135.5
140.5
145.7
151.0
156.5

COP
kW/kW
3.38
3.50
3.62
3.73
3.84

C.C.
kW
491.7
526.6
562.6
599.6
637.5

35
P.I.
kW
146.5
151.6
156.9
162.3
167.9

COP
kW/kW
2.96
3.08
3.19
3.30
3.40

Entering Condenser Air Temperature (°C)
C.C.
kW
2.55
610.6
650.7
691.9
733.9

30
P.I.
kW
456.0
155.7
161.6
167.7
174.0

COP
kW/kW
192.6
3.45
3.56
3.66
3.76

C.C.
kW
2.13
574.0
612.3
651.5
691.6

35
P.I.
kW
414.1
167.5
173.5
179.7
186.1

COP
kW/kW
210.7
3.04
3.14
3.24
3.33

C.C.
kW
1.78
536.3
572.6
609.9
648.0

40
P.I.
kW

COP
kW/kW

C.C.
kW

46
P.I.
kW

COP
kW/kW

C.C.
kW

52
P.I.
kW

COP
kW/kW

180.7
186.8
193.2
199.6

2.65
2.75
2.84
2.93

489.0
522.8
557.5
593.1

198.7
205.0
211.4
218.0

2.22
2.31
2.39
2.48

444.8
476.3
501.2
506.2

217.0
223.4
225.6
217.5

1.87
1.95
2.03
2.12

C.C.
kW
543.6
581.2
619.7
659.2
699.5

40
P.I.
kW
190.9
197.6
204.5
211.6
218.8

COP
kW/kW
2.54
2.63
2.72
2.81
2.89

C.C.
kW
494.8
529.8
565.7
602.5
640.1

46
P.I.
kW
210.0
216.9
223.9
231.1
238.4

COP
kW/kW
2.12
2.21
2.29
2.37
2.45

C.C.
kW
449.4
481.9
515.3
539.5
546.7

52
P.I.
kW
229.4
236.4
243.5
245.1
237.3

COP
kW/kW
1.78
1.86
1.93
2.01
2.10

C.C.
kW
606.9
648.7
691.6
735.7
780.7

40
P.I.
kW
211.6
219.3
227.2
235.3
243.7

COP
kW/kW
2.56
2.65
2.74
2.82
2.90

C.C.
kW
553.8
592.8
632.7
673.8
715.8

46
P.I.
kW
232.6
240.5
248.6
257.0
265.6

COP
kW/kW
2.15
2.23
2.31
2.39
2.46

C.C.
kW
504.2
540.3
577.5
590.5
599.4

52
P.I.
kW
253.8
261.9
270.3
264.2
256.0

COP
kW/kW
1.81
1.88
1.95
2.04
2.13

Entering Condenser Air Temperature (°C)
C.C.
kW
619.9
661.6
704.3
748.0
792.5

30
P.I.
kW
164.6
171.1
177.7
184.6
191.7

COP
kW/kW
3.30
3.40
3.50
3.60
3.69

C.C.
kW
582.3
622.0
662.7
704.2
746.7

35
P.I.
kW
177.0
183.6
190.4
197.4
204.5

COP
kW/kW
2.91
3.01
3.10
3.19
3.28

Entering Condenser Air Temperature (°C)
C.C.
kW
689.7
736.0
783.5
832.0
881.7

30
P.I.
kW
182.8
190.1
197.6
205.4
213.4

COP
kW/kW
3.32
3.42
3.52
3.61
3.70

C.C.
kW
649.0
693.1
738.3
784.7
832.0

35
P.I.
kW
196.4
203.8
211.5
219.5
227.7

COP
kW/kW
2.93
3.03
3.12
3.21
3.29

RLC-PRC005-E4

Performance Data
High Efficiency Units (SI Units)
Table P-12 — RTAC 200
LWT
25
°C
C.C.
P.I.
kW
kW
5
803.3 188.3
7
856.9 196.2
9
911.8 204.4
11
968.0 212.9
13 1025.5 221.6

COP
kW/kW
3.73
3.84
3.94
4.04
4.12

Entering Condenser Air Temperature (°C)
C.C.
kW
761.2
812.3
864.8
918.6
973.7

30
P.I.
kW
201.3
209.4
217.8
226.5
235.5

COP
kW/kW
3.33
3.44
3.53
3.62
3.71

C.C.
kW
717.3
766.0
816.0
867.3
919.9

35
P.I.
kW
216.1
224.4
233.0
242.0
251.2

COP
kW/kW
2.95
3.05
3.14
3.22
3.31

C.C.
kW
671.8
717.9
765.4
814.1
864.1

40
P.I.
kW
232.6
241.2
250.2
259.4
269.0

COP
kW/kW
2.59
2.68
2.76
2.84
2.92

C.C.
kW
614.2
657.1
701.3
746.8
793.5

46
P.I.
kW
255.4
264.3
273.7
283.3
293.3

COP
kW/kW
2.17
2.26
2.33
2.41
2.48

C.C.
kW
560.1
600.0
629.6
642.5
648.9

52
P.I.
kW
278.4
287.8
290.6
283.5
272.4

COP
kW/kW
1.83
1.91
1.98
2.07
2.17

Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. Consult Trane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.

RLC-PRC005-E4

21

Performance Data
Low Noise Standard Units (SI Units)
Table P-13 — RTAC 140
LWT
°C
C.C. kW
5
510.3
7
541.1
9
572.3
11
603.8
13
635.6

25
P.I. kW
144.5
150.7
157.1
163.7
170.6

Table P-14 — RTAC 155
LWT
°C
C.C. kW
5
560.0
7
593.4
9
627.1
11
661.1
13
695.3

25
P.I. kW
159.7
166.7
173.9
181.4
189.1

Table P-15 — RTAC 170
LWT
°C
C.C. kW
5
610.3
7
646.3
9
682.6
11
719.1
13
755.8

25
P.I. kW
175.1
182.9
191.0
199.4
208.0

Table P-16 — RTAC 185
LWT
°C
C.C. kW
5
675.9
7
715.5
9
755.4
11
795.7
13
836.2

25
P.I. kW
193.4
202.1
211.1
220.5
230.1

Table P-17 — RTAC 200
LWT
°C
C.C. kW
5
742.7
7
786.1
9
829.9
11
874.1
13
918.6

25
P.I. kW
212.0
221.6
231.6
242.0
252.8

Entering Condenser Air Temperature (°C)
COP kW/kW
3.36
3.42
3.48
3.53
3.57

C.C. kW
478.7
507.9
537.4
567.3
597.3

30
P.I. kW
156.3
162.7
169.4
176.2
183.3

COP kW/kW
2.92
2.98
3.04
3.09
3.13

C.C. kW
446.2
473.7
501.6
529.7
558.0

35
P.I. kW
169.3
175.9
182.8
189.9
197.2

COP kW/kW
2.52
2.58
2.64
2.68
2.73

C.C. kW
412.9
438.8
465.3
491.5
509.0

40
P.I. kW
183.5
190.4
197.4
204.7
205.6

COP kW/kW
2.16
2.22
2.27
2.32
2.39

C.C. kW
490.0
519.8
549.8
580.0
610.5

35
P.I. kW
186.1
193.5
201.2
209.2
217.3

COP kW/kW
2.52
2.57
2.62
2.67
2.71

C.C. kW
453.8
481.6
509.8
538.1
556.8

40
P.I. kW
201.2
208.9
216.8
224.9
225.9

COP kW/kW
2.16
2.22
2.26
2.31
2.38

C.C. kW
534.3
566.2
598.4
630.9
663.5

35
P.I. kW
203.0
211.3
219.9
228.6
237.6

COP kW/kW
2.52
2.57
2.61
2.65
2.69

C.C. kW
494.8
524.8
555.0
585.5
604.8

40
P.I. kW
219.1
227.7
236.3
245.3
246.2

COP kW/kW
2.17
2.22
2.26
2.30
2.37

C.C. kW
593.7
628.9
664.4
700.2
736.3

35
P.I. kW
224.3
233.6
243.3
253.3
263.7

COP kW/kW
2.53
2.58
2.62
2.66
2.69

C.C. kW
550.9
583.8
615.2
648.6
668.0

40
P.I. kW
242.1
251.7
261.0
271.3
271.0

COP kW/kW
2.19
2.23
2.27
2.31
2.38

C.C. kW
654.1
692.6
731.6
771.0
810.6

35
P.I. kW
245.8
256.2
267.1
278.4
290.2

COP kW/kW
2.55
2.59
2.63
2.66
2.69

C.C. kW
607.7
643.7
680.5
717.1
730.4

40
P.I. kW
265.2
276.1
287.3
299.2
292.2

COP kW/kW
2.20
2.24
2.28
2.31
2.41

Entering Condenser Air Temperature (°C)
COP kW/kW
3.33
3.39
3.44
3.48
3.52

C.C. kW
525.5
557.0
588.9
621.1
653.4

30
P.I. kW
172.2
179.5
186.9
194.7
202.6

COP kW/kW
2.91
2.97
3.02
3.06
3.10

Entering Condenser Air Temperature (°C)
COP kW/kW
3.31
3.36
3.41
3.45
3.48

C.C. kW
572.8
606.8
641.1
675.6
710.2

30
P.I. kW
188.3
196.4
204.7
213.3
222.1

COP kW/kW
2.90
2.95
3.00
3.04
3.07

Entering Condenser Air Temperature (°C)
COP kW/kW
3.32
3.37
3.42
3.45
3.48

C.C. kW
635.4
672.8
710.6
748.6
787.0

30
P.I. kW
208.0
217.1
226.4
236.1
246.1

COP kW/kW
2.91
2.96
3.01
3.04
3.07

Entering Condenser Air Temperature (°C)
COP kW/kW
3.33
3.38
3.42
3.46
3.48

C.C. kW
699.2
740.1
781.5
823.3
865.5

30
P.I. kW
228.1
238.0
248.5
259.3
270.6

COP kW/kW
2.93
2.97
3.01
3.05
3.07

Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. Consult Trane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.

22

RLC-PRC005-E4

Performance Data
Low Noise HE Units (SI Units)
Table P-18 — RTAC 120
LWT
°C
5
7
9
11
13.0

C.C.
kW
443.2
471.8
500.8
530.2
560.0

25
P.I.
kW
113.4
118.0
122.9
128.0
133.2

Entering Condenser Air Temperature (°C)
COP
kW/kW
3.67
3.76
3.84
3.91
3.98

Table P-19 — RTAC 130
LWT
°C
5
7
9
11
13

C.C.
kW
489.3
520.9
553.2
585.9
619.1

25
P.I.
kW
124.6
129.8
135.2
140.7
146.5

5
7
9
11
13

C.C.
kW
535.9
570.7
606.3
642.5
679.4

25
P.I.
kW
136.0
141.7
147.5
153.6
159.9

COP
kW/kW
3.68
3.77
3.85
3.93
4.00

5
7
9
11
13

C.C.
kW
584.6
621.9
659.8
698.3
737.3

25
P.I.
kW
150.5
156.9
163.5
170.4
177.5

COP
kW/kW
3.69
3.78
3.87
3.95
4.02

5
7
9
11
13

C.C.
kW
634.0
673.7
714.1
755.0
796.3

25
P.I.
kW
165.0
172.2
179.6
187.3
195.2

COP
kW/kW
3.64
3.73
3.80
3.87
3.93

5
7
9
11
13

C.C.
kW
704.3
748.4
793.2
838.5
884.5

RLC-PRC005-E4

25
P.I.
kW
183.7
191.7
200.1
208.9
217.8

35
P.I.
kW
132.6
137.7
142.9
148.4
154.0

COP
kW/kW
2.77
2.85
2.92
2.99
3.05

C.C.
kW
359.7
383.7
408.0
432.7
457.6

40
P.I.
kW
143.9
149.1
154.6
160.3
166.1

COP
kW/kW
2.38
2.45
2.52
2.58
2.64

C.C.
kW
323.9
345.9
363.8
376.7
391.7

46
P.I.
kW
159.2
164.8
167.4
166.8
166.8

COP
kW/kW
1.94
2.01
2.08
2.16
2.25

C.C.
kW
459.8
489.9
520.5
551.6
583.1

30
P.I.
kW
134.6
139.9
145.5
151.3
157.2

COP
kW/kW
3.22
3.30
3.38
3.46
3.52

C.C.
kW
429.5
458.0
486.9
516.3
546.0

35
P.I.
kW
145.7
151.2
157.0
162.9
169.0

COP
kW/kW
2.79
2.87
2.94
3.01
3.08

C.C.
kW
398.4
425.2
452.4
480.0
508.0

40
P.I.
kW
158.0
163.7
169.6
175.8
182.0

COP
kW/kW
2.40
2.47
2.54
2.61
2.67

C.C.
kW
359.6
384.2
406.1
422.9
434.8

46
P.I.
kW
174.6
180.5
184.9
185.7
182.8

COP
kW/kW
1.97
2.03
2.10
2.18
2.27

C.C.
kW
503.9
537.1
570.9
605.3
640.3

30
P.I.
kW
146.8
152.7
158.7
165.0
171.5

COP
kW/kW
3.23
3.32
3.40
3.47
3.54

C.C.
kW
471.1
502.5
534.5
567.1
600.2

35
P.I.
kW
158.9
164.9
171.1
177.6
184.2

COP
kW/kW
2.80
2.89
2.96
3.04
3.10

C.C.
kW
437.5
467.1
497.3
527.9
559.0

40
P.I.
kW
172.1
178.3
184.7
191.3
198.1

COP
kW/kW
2.41
2.49
2.56
2.63
2.70

C.C.
kW
395.5
422.9
450.9
468.5
476.8

46
P.I.
kW
189.9
196.4
202.9
203.5
197.6

COP
kW/kW
1.99
2.06
2.13
2.20
2.31

C.C.
kW
550.0
585.3
621.3
657.9
695.0

30
P.I.
kW
162.0
168.6
175.4
182.5
189.7

COP
kW/kW
3.20
3.28
3.35
3.42
3.48

C.C.
kW
514.3
547.8
581.8
616.4
651.5

35
P.I.
kW
174.9
181.7
188.7
195.9
203.3

COP
kW/kW
2.78
2.86
2.93
2.99
3.05

C.C.
kW
477.8
509.3
541.4
573.9
606.9

40
P.I.
kW
189.1
196.1
203.3
210.6
218.2

COP
kW/kW
2.40
2.47
2.54
2.60
2.66

C.C.
kW
432.1
461.2
491.1
511.6
519.4

46
P.I.
kW
208.3
215.5
222.9
224.4
217.6

COP
kW/kW
1.98
2.04
2.11
2.18
2.28

35
P.I.
kW
191.0
198.6
206.4
214.4
222.6

COP
kW/kW
2.76
2.83
2.90
2.96
3.01

C.C.
kW
518.4
551.9
585.9
620.4
655.3

40
P.I.
kW
206.2
213.9
221.9
230.1
238.4

COP
kW/kW
2.39
2.45
2.52
2.57
2.63

C.C.
kW
468.9
499.8
531.3
551.4
561.1

46
P.I.
kW
226.8
234.8
242.8
243.6
237.4

COP
kW/kW
1.97
2.03
2.09
2.17
2.26

35
P.I.
kW
212.2
220.8
229.8
239.0
248.6

COP
kW/kW
2.78
2.84
2.90
2.96
3.01

C.C.
kW
578.6
615.7
653.4
691.7
730.6

40
P.I.
kW
228.9
237.8
247.0
256.6
266.4

COP
kW/kW
2.40
2.47
2.52
2.58
2.63

C.C.
kW
524.5
558.6
590.1
605.9
614.9

46
P.I.
kW
251.5
260.8
267.9
264.3
256.3

COP
kW/kW
1.99
2.05
2.11
2.19
2.29

Entering Condenser Air Temperature (°C)
COP
kW/kW
3.60
3.68
3.75
3.81
3.86

Table P-23 — RTAC 185
LWT
°C

C.C.
kW
388.3
413.9
439.8
466.1
492.6

Entering Condenser Air Temperature (°C)

Table P-22 — RTAC 170
LWT
°C

COP
kW/kW
3.20
3.29
3.37
3.44
3.50

Entering Condenser Air Temperature (°C)

Table P-21 — RTAC 155
LWT
°C

30
P.I.
kW
122.4
127.3
132.4
137.6
143.1

Entering Condenser Air Temperature (°C)

Table P-20 — RTAC 140
LWT
°C

C.C.
kW
416.2
443.3
470.8
498.6
526.8

C.C.
kW
596.5
634.2
672.5
711.3
750.5

30
P.I.
kW
177.3
184.7
192.3
200.1
208.2

COP
kW/kW
3.17
3.24
3.31
3.37
3.42

C.C.
kW
557.9
593.6
629.7
666.4
703.5

Entering Condenser Air Temperature (°C)
COP
kW/kW
3.60
3.68
3.74
3.80
3.85

C.C.
kW
663.7
705.5
747.9
791.0
834.7

30
P.I.
kW
197.1
205.5
214.2
223.1
232.4

COP
kW/kW
3.18
3.25
3.31
3.37
3.42

C.C.
kW
621.7
661.2
701.3
742.0
783.3

23

Performance Data
Low Noise HE Units (SI Units)
Table P-24 — RTAC 200
LWT
°C
5
7
9
11
13

C.C.
kW
776.4
824.9
874.3
924.4
975.2

25
P.I.
kW
202.6
211.6
221.0
230.8
240.9

Entering Condenser Air Temperature (°C)
COP
kW/kW
3.61
3.68
3.74
3.80
3.85

C.C.
kW
732.4
778.4
825.2
872.8
921.0

30
P.I.
kW
217.3
226.6
236.4
246.5
257.1

COP
kW/kW
3.19
3.25
3.31
3.37
3.42

C.C.
kW
686.9
730.3
774.5
819.5
865.1

35
P.I.
kW
233.7
243.4
253.6
264.1
275.1

COP
kW/kW
2.79
2.85
2.91
2.96
3.01

C.C.
kW
640.1
680.8
722.4
764.6
807.5

40
P.I.
kW
251.9
262.0
272.5
283.5
294.9

COP
kW/kW
2.42
2.48
2.53
2.58
2.63

C.C.
kW
581.1
618.6
644.6
654.7
665.5

46
P.I.
kW
276.6
287.2
289.6
281.3
272.6

COP
kW/kW
2.01
2.06
2.13
2.23
2.33

Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. Consult Trane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.

24

RLC-PRC005-E4

Performance Data
Standard Units (English Units)
Table P-25 — RTAC 140
LWT
°F
41
44
45
46
48

C.C.
Ton
152.5
160.8
163.6
166.4
172.0

77
P.I.
kW
131.3
135.5
137.0
138.5
141.4

EER
12.45
12.75
12.85
12.95
13.14

Table P-26 — RTAC 155
LWT
°F
41
44
45
46
48

C.C.
Ton
167.2
176.2
179.2
182.2
188.3

77
P.I.
kW
145.8
150.7
152.4
154.1
157.5

EER
12.28
12.56
12.65
12.74
12.91

Table P-27 — RTAC 170
LWT
°F
41
44
45
46
48

C.C.
Ton
182.1
191.8
195.0
198.3
204.9

77
P.I.
kW
160.5
166.1
168.0
170.0
173.8

EER
12.14
12.40
12.48
12.56
12.72

Table P-28 — RTAC 185
LWT
°F
41
44
45
46
48

C.C.
Ton
201.4
212.1
215.6
219.3
226.5

77
P.I.
kW
177.3
183.4
185.5
187.6
191.9

EER
12.17
12.43
12.51
12.59
12.74

Table P-29 — RTAC 200
LWT
°F
41
44
45
46
48

C.C.
Ton
221.2
232.9
236.8
240.7
248.6

77
P.I.
kW
194.3
201.0
203.3
205.7
210.3

EER
12.21
12.46
12.54
12.62
12.77

Entering Condenser Air Temperature (°F)
C.C.
Ton
143.8
151.7
154.4
157.1
162.5

86
P.I.
kW
141.8
146.2
147.7
149.2
152.3

EER
10.96
11.24
11.34
11.43
11.61

C.C.
Ton
134.8
142.4
144.9
147.5
152.6

95
P.I.
kW
153.5
158.1
159.6
161.2
164.3

EER
9.56
9.83
9.92
10.00
10.17

C.C.
Ton
125.6
132.7
135.1
137.6
142.5

104
P.I.
kW
166.5
171.2
172.8
174.4
177.6

C.C.
Ton
137.8
145.5
148.1
150.7
156.0

104
P.I.
kW
183.2
188.5
190.3
192.1
195.8

C.C.
Ton
150.2
158.4
161.2
164.0
169.7

104
P.I.
kW
200.0
206.0
208.0
210.1
214.2

C.C.
Ton
167.1
176.2
179.3
182.4
188.6

104
P.I.
kW
220.8
227.5
229.8
232.1
236.8

C.C.
Ton
184.3
194.3
197.6
201.0
207.8

104
P.I.
kW
241.8
249.3
251.9
254.5
259.7

EER
8.27
8.52
8.60
8.68
8.84

C.C.
Ton
114.0
120.6
122.9
125.1
129.7

115
P.I.
kW
184.0
188.9
190.5
192.2
195.5

C.C.
Ton
125.1
132.3
134.7
137.2
142.0

115
P.I.
kW
201.9
207.4
209.3
211.2
214.9

C.C.
Ton
136.4
144.1
146.6
149.3
154.5

115
P.I.
kW
220.0
226.1
228.2
230.3
234.5

C.C.
Ton
152.1
160.6
163.4
166.3
172.1

115
P.I.
kW
242.8
249.8
252.1
254.6
259.4

C.C.
Ton
168.1
177.3
180.5
183.6
189.9

115
P.I.
kW
265.7
273.7
276.3
279.1
284.6

EER
6.85
7.08
7.15
7.22
7.37

C.C.
Ton
106.4
112.8
114.3
115.0
116.3

122
P.I.
kW
196.1
201.1
201.5
200.1
197.4

C.C.
Ton
116.9
123.7
125.4
126.2
127.9

122
P.I.
kW
214.9
220.6
221.2
220.0
217.6

C.C.
Ton
127.4
134.7
136.5
137.5
139.5

122
P.I.
kW
233.9
240.1
241.0
240.0
237.9

C.C.
Ton
142.4
148.3
150.0
151.0
153.1

122
P.I.
kW
258.0
260.8
260.8
259.6
257.1

C.C.
Ton
157.5
163.8
165.3
166.0
167.3

122
P.I.
kW
282.4
285.0
284.5
282.1
277.2

EER
6.03
6.24
6.31
6.39
6.55

Entering Condenser Air Temperature (°F)
C.C.
Ton
157.7
166.3
169.1
172.1
177.9

86
P.I.
kW
156.9
162.0
163.7
165.4
168.9

EER
10.84
11.11
11.20
11.28
11.44

C.C.
Ton
147.9
156.0
158.8
161.6
167.1

95
P.I.
kW
169.4
174.6
176.3
178.1
181.7

EER
9.49
9.74
9.83
9.91
10.06

EER
8.24
8.47
8.55
8.62
8.77

EER
6.84
7.05
7.12
7.19
7.33

EER
6.03
6.23
6.30
6.38
6.53

Entering Condenser Air Temperature (°F)
C.C.
Ton
171.8
181.0
184.1
187.2
193.5

86
P.I.
kW
172.2
177.9
179.9
181.9
185.8

EER
10.75
11.00
11.08
11.16
11.31

C.C.
Ton
161.1
169.9
172.8
175.8
181.8

95
P.I.
kW
185.4
191.2
193.2
195.2
199.3

EER
9.44
9.67
9.75
9.82
9.97

EER
8.21
8.43
8.50
8.57
8.71

EER
6.83
7.04
7.10
7.17
7.30

EER
6.04
6.23
6.29
6.36
6.51

Entering Condenser Air Temperature (°F)
C.C.
Ton
190.4
200.5
203.9
207.4
214.3

86
P.I.
kW
190.2
196.5
198.6
200.8
205.2

EER
10.80
11.04
11.12
11.20
11.35

C.C.
Ton
178.9
188.6
191.8
195.1
201.6

95
P.I.
kW
204.6
211.2
213.4
215.7
220.2

EER
9.50
9.73
9.80
9.88
10.02

EER
8.28
8.49
8.56
8.63
8.76

EER
6.91
7.11
7.17
7.23
7.35

EER
6.11
6.31
6.38
6.45
6.60

Entering Condenser Air Temperature (°F)
C.C.
Ton
209.4
220.5
224.2
228.0
235.6

86
P.I.
kW
208.3
215.3
217.7
220.1
225.0

EER
10.85
11.09
11.17
11.24
11.39

C.C.
Ton
197.1
207.6
211.2
214.8
221.9

95
P.I.
kW
224.2
231.4
233.9
236.4
241.4

EER
9.56
9.78
9.85
9.93
10.06

EER
8.34
8.55
8.62
8.69
8.81

EER
6.98
7.17
7.23
7.29
7.40

EER
6.18
6.38
6.45
6.53
6.68

Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. Consult Trane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.

RLC-PRC005-E4

25

Performance Data
High Efficiency Units (English Units)
Table P-30 — RTAC 120
LWT
°F
41
44
45
46
48

C.C.
Ton
130.6
138.1
140.6
143.2
148.3

77
P.I.
kW
104.9
108.2
109.3
110.5
112.7

Entering Condenser Air Temperature (°F)
EER
EER
12.99
13.37
13.49
13.62
13.85

Table P-31 — RTAC 130
LWT
°F
41
44
45
46
48

C.C.
Ton
144.1
152.4
155.1
158.0
163.6

77
P.I.
kW
115.3
119.0
120.2
121.5
124.0

41
44
45
46
48

C.C.
Ton
157.7
166.8
169.8
172.9
179.2

77
P.I.
kW
125.8
129.8
131.2
132.6
135.4

EER
EER
13.01
13.38
13.51
13.63
13.86

41
44
45
46
48

C.C.
Ton
172.1
181.8
185.0
188.4
195.0

77
P.I.
kW
139.7
144.3
145.9
147.5
150.7

EER
EER
13.03
13.40
13.52
13.64
13.88

41
44
45
46
48

C.C.
Ton
186.7
197.0
200.5
204.0
211.1

77
P.I.
kW
153.7
159.0
160.7
162.6
166.2

EER
EER
12.82
13.16
13.27
13.38
13.59

41
44
45
46
48

26

C.C.
Ton
207.3
218.8
222.7
226.6
234.4

77
P.I.
kW
170.9
176.8
178.8
180.8
184.9

95
P.I.
kW
122.1
125.6
126.8
128.0
130.5

EER
EER
10.06
10.38
10.49
10.59
10.80

C.C.
Ton
107.6
114.0
116.2
118.3
122.7

104
P.I.
kW
132.4
136.1
137.3
138.6
141.1

EER
EER
8.71
9.01
9.11
9.20
9.39

C.C.
Ton
97.5
103.5
105.5
107.5
111.6

115
P.I.
kW
146.6
150.4
151.7
153.0
155.7

EER
EER
7.21
7.48
7.56
7.65
7.81

C.C.
Ton
88.1
93.7
95.3
96.7
99.4

122
P.I.
kW
161.0
165.0
165.9
166.3
166.9

EER
EER
1.72
6.22
6.30
6.38
6.53

C.C.
Ton
136.0
143.9
146.6
149.3
154.7

86
P.I.
kW
124.2
128.0
129.2
130.5
133.2

EER
EER
11.51
11.86
11.98
12.09
12.31

C.C.
Ton
127.6
135.1
137.7
140.2
145.4

95
P.I.
kW
134.2
138.1
139.5
140.8
143.5

EER
EER
10.08
10.41
10.52
10.62
10.83

C.C.
Ton
119.0
126.1
128.5
131.0
135.8

104
P.I.
kW
145.5
149.5
150.9
152.2
155.0

EER
EER
8.75
9.05
9.15
9.25
9.44

C.C.
Ton
108.1
114.7
117.0
119.2
123.8

115
P.I.
kW
160.9
165.1
166.5
167.9
170.8

EER
EER
7.27
7.54
7.62
7.71
7.89

C.C.
Ton
97.9
104.1
106.1
107.9
111.6

122
P.I.
kW
176.5
180.8
182.0
183.0
184.8

EER
EER
1.74
6.30
6.38
6.46
6.62

C.C.
Ton
148.9
157.6
160.5
163.5
169.5

86
P.I.
kW
135.5
139.7
141.1
142.5
145.4

EER
EER
11.53
11.88
12.00
12.11
12.33

C.C.
Ton
139.8
148.1
150.9
153.7
159.4

95
P.I.
kW
146.5
150.7
152.2
153.6
156.6

EER
EER
10.11
10.44
10.55
10.66
10.87

C.C.
Ton
130.5
138.3
141.0
143.7
149.1

104
P.I.
kW
158.7
163.0
164.5
166.0
169.0

EER
EER
8.79
9.10
9.20
9.30
9.49

C.C.
Ton
118.7
126.1
128.5
131.1
136.1

115
P.I.
kW
175.3
179.8
181.3
182.8
185.9

EER
EER
7.31
7.59
7.68
7.77
7.95

C.C.
Ton
107.7
114.6
116.9
119.3
124.0

122
P.I.
kW
192.0
196.6
198.2
199.8
203.0

EER
EER
6.11
6.36
6.44
6.53
6.69

C.C.
Ton
162.5
171.8
174.9
178.1
184.4

86
P.I.
kW
150.0
154.8
156.4
158.0
161.3

EER
EER
11.38
11.70
11.81
11.91
12.12

C.C.
Ton
152.7
161.5
164.5
167.5
173.5

95
P.I.
kW
161.7
166.5
168.2
169.9
173.2

EER
EER
10.01
10.31
10.41
10.51
10.70

C.C.
Ton
142.5
150.9
153.7
156.6
162.3

104
P.I.
kW
174.7
179.7
181.4
183.1
186.5

EER
EER
8.72
9.00
9.09
9.19
9.37

C.C.
Ton
129.7
137.5
140.1
142.8
148.2

115
P.I.
kW
192.6
197.7
199.4
201.2
204.7

EER
EER
7.27
7.53
7.62
7.70
7.87

C.C.
Ton
117.7
125.0
127.5
130.0
134.9

122
P.I.
kW
210.7
215.9
217.7
219.4
223.0

EER
EER
6.09
6.32
6.40
6.48
6.63

EER
EER
9.92
10.21
10.30
10.39
10.57

C.C.
Ton
154.6
163.5
166.5
169.6
175.6

104
P.I.
kW
190.9
196.5
198.4
200.3
204.1

EER
EER
8.66
8.93
9.02
9.10
9.27

C.C.
Ton
140.7
149.0
151.8
154.7
160.3

115
P.I.
kW
210.0
215.7
217.7
219.6
223.5

EER
EER
7.24
7.48
7.56
7.64
7.80

C.C.
Ton
127.8
135.5
138.1
140.7
146.0

122
P.I.
kW
229.4
235.2
237.2
239.1
243.1

EER
EER
6.07
6.29
6.36
6.44
6.58

EER
EER
10.00
10.28
10.37
10.46
10.63

C.C.
Ton
172.6
182.5
185.9
189.3
196.0

104
P.I.
kW
211.6
218.0
220.2
222.4
226.7

EER
EER
8.75
9.01
9.09
9.18
9.34

C.C.
Ton
157.5
166.7
169.9
173.0
179.3

115
P.I.
kW
232.6
239.1
241.4
243.6
248.1

EER
EER
7.34
7.57
7.65
7.72
7.87

C.C.
Ton
143.4
151.9
154.8
157.8
163.6

122
P.I.
kW
253.8
260.6
262.9
265.2
269.9

EER
EER
6.17
6.38
6.45
6.52
6.66

Entering Condenser Air Temperature (°F)
EER
EER
12.66
12.97
13.07
13.17
13.37

Table P-35 — RTAC 185
LWT
°F

C.C.
Ton
115.5
122.3
124.6
126.9
131.6

Entering Condenser Air Temperature (°F)

Table P-34 — RTAC 170
LWT
°F

EER
EER
11.49
11.84
11.96
12.07
12.29

Entering Condenser Air Temperature (°F)

Table P-33 — RTAC 155
LWT
°F

86
P.I.
kW
112.9
116.3
117.5
118.7
121.0

Entering Condenser Air Temperature (°F)

Table P-32 — RTAC 140
LWT
°F

C.C.
Ton
123.2
130.4
132.8
135.2
140.1

C.C.
Ton
176.3
186.2
189.5
192.9
199.6

86
P.I.
kW
164.6
170.0
171.8
173.6
177.4

EER
EER
11.26
11.56
11.66
11.76
11.94

C.C.
Ton
165.6
175.0
178.2
181.4
187.8

95
P.I.
kW
177.0
182.5
184.3
186.2
190.0

Entering Condenser Air Temperature (°F)
EER
EER
12.69
13.00
13.10
13.20
13.39

C.C.
Ton
196.2
207.1
210.8
214.6
222.1

86
P.I.
kW
182.8
188.9
190.9
193.0
197.2

EER
EER
11.32
11.61
11.71
11.80
11.99

C.C.
Ton
184.6
195.0
198.5
202.1
209.3

95
P.I.
kW
196.4
202.6
204.7
206.8
211.1

RLC-PRC005-E4

Performance Data
Table P-36 — RTAC 200
LWT
°F

C.C.
Ton
232.6 8.83
44
241.2
45
245.5
46
249.8
48
258.5

77
P.I.
kW
174.7
194.9
197.1
199.4
204.0

Entering Condenser Air Temperature (°F)
EER
EER
255.4
13.04
13.14
13.24
13.43

C.C.
Ton
7.42
228.6
232.7
236.8
245.1

86
P.I.
kW
159.3
208.1
210.3
212.7
217.3

EER
EER
278.4
11.67
11.76
11.86
12.04

C.C.
Ton
6.26
215.5
219.4
223.4
231.3

95
P.I.
kW

EER
EER

C.C.
Ton

104
P.I.
kW

EER
EER

C.C.
Ton

115
P.I.
kW

EER
EER

C.C.
Ton

122
P.I.
kW

EER
EER

223.0
225.4
227.8
232.6

10.34
10.43
10.52
10.69

202.0
205.7
209.4
216.9

239.8
242.2
244.7
249.7

9.08
9.17
9.25
9.41

184.9
188.3
191.8
198.8

262.8
265.4
268.0
273.1

7.65
7.73
7.80
7.95

168.7
171.5
173.9
178.6

286.2
288.1
288.9
290.4

6.46
6.53
6.61
6.75

Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. Consult Trane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.

RLC-PRC005-E4

27

Performance Data
Low Noise Standard Units (English Units)
Table P-37 — RTAC 140

Entering Condenser Air Temperature (°F)

LWT
°F
41
44
45
46
48

EER
11.46
11.64
11.70
11.75
11.86

C.C.Ton
145.1
152.4
154.9
157.3
162.3

77
P.I. kW
144.5
149.7
151.4
153.2
156.7

C.C.Ton
136.1
143.1
145.4
147.7
152.4

86
P.I. kW
156.3
161.7
163.5
165.3
169.0

EER
9.97
10.15
10.20
10.26
10.36

Table P-38 — RTAC 155

Entering Condenser Air Temperature (°F)

LWT
°F
41
44
45
46
48

EER
11.37
11.54
11.59
11.64
11.73

C.C.Ton
159.3
167.2
169.8
172.5
177.8

77
P.I. kW
159.7
165.5
167.5
169.5
173.5

C.C.Ton
149.5
156.9
159.4
162.0
167.0

86
P.I. kW
172.2
178.3
180.3
182.4
186.5

EER
9.93
10.09
10.14
10.19
10.28

Table P-39 — RTAC 170

Entering Condenser Air Temperature (°F)

LWT
°F
41
44
45
46
48

EER
11.30
11.45
11.50
11.54
11.63

C.C.Ton
173.6
182.1
185.0
187.8
193.6

77
P.I. kW
175.1
181.6
183.8
186.0
190.6

C.C.Ton
162.9
171.0
173.7
176.4
181.8

86
P.I. kW
188.3
195.0
197.3
199.6
204.3

EER
9.90
10.05
10.09
10.13
10.22

Table P-40 — RTAC 185

Entering Condenser Air Temperature (°F)

LWT
°F
41
44
45
46
48

EER
11.34
11.48
11.53
11.57
11.65

C.C.Ton
192.2
201.6
204.7
207.9
214.2

77
P.I. kW
193.4
200.6
203.1
205.6
210.6

C.C.Ton
180.7
189.6
192.6
195.5
201.5

86
P.I. kW
208.0
215.6
218.1
220.7
225.9

EER
9.94
10.08
10.13
10.17
10.25

Table P-41 — RTAC 200

Entering Condenser Air Temperature (°F)

LWT
°F
41
44
45
46
48

EER
11.37
11.51
11.55
11.59
11.67

C.C.Ton
211.2
221.5
225.0
228.4
235.3

77
P.I. kW
212.0
220.0
222.7
225.5
231.0

C.C.Ton
198.9
208.6
211.8
215.1
221.6

86
P.I. kW
228.1
236.4
239.2
242.1
247.9

EER
9.99
10.12
10.16
10.20
10.28

C.C.Ton
126.9
133.4
135.6
137.8
142.2

95
P.I. kW
169.3
174.8
176.7
178.6
182.4

EER
8.61
8.78
8.83
8.89
8.98

C.C.Ton
117.4
123.5
125.6
127.7
131.9

104
P.I. kW
183.5
189.2
191.1
193.1
197.0

EER
7.38
7.54
7.59
7.64
7.74

C.C.Ton
139.4
146.4
148.8
151.2
155.9

95
P.I. kW
186.1
192.3
194.4
196.5
200.8

EER
8.60
8.76
8.81
8.85
8.94

C.C.Ton
129.0
135.6
137.8
140.1
144.5

104
P.I. kW
201.2
207.7
209.8
212.0
216.3

EER
7.39
7.54
7.58
7.63
7.72

C.C.Ton
152.0
159.5
162.1
164.6
169.7

95
P.I. kW
203.0
209.9
212.3
214.6
219.4

EER
8.59
8.74
8.78
8.82
8.91

C.C.Ton
140.7
147.8
150.2
152.6
157.3

104
P.I. kW
219.1
226.2
228.6
231.0
235.8

EER
7.40
7.53
7.58
7.62
7.71

C.C.Ton
168.9
177.2
180.0
182.8
188.4

95
P.I. kW
224.3
232.0
234.7
237.4
242.7

EER
8.65
8.78
8.83
8.87
8.94

C.C.Ton
156.7
164.4
167.0
169.5
174.4

104
P.I. kW
242.1
250.1
252.8
255.3
260.5

EER
7.46
7.59
7.63
7.66
7.74

C.C.Ton
186.0
195.2
198.2
201.3
207.5

95
P.I. kW
245.8
254.5
257.4
260.4
266.5

EER
8.70
8.83
8.87
8.90
8.98

C.C.Ton
172.8
181.3
184.2
187.1
192.9

104
P.I. kW
265.2
274.3
277.3
280.4
286.7

EER
7.51
7.63
7.67
7.71
7.78

Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. Consult Trane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.

28

RLC-PRC005-E4

Performance Data
Low Noise HE Units (English Units)
Table P-42 — RTAC 120
LWT
°F
C.C.Ton
41
126.0
44
132.8
45
135.1
46
137.4
48
142.0

77
P.I. kW
113.4
117.3
118.6
119.9
122.6

Entering Condenser Air Temperature (°F)
EER
12.51
12.78
12.86
12.94
13.09

Table P-43 — RTAC 130
LWT
°F
C.C.Ton
41
139.2
44
146.7
45
149.2
46
151.7
48
156.8

77
P.I. kW
124.6
128.9
130.4
131.9
134.9

77
P.I. kW
136.0
140.7
142.3
143.9
147.2

EER
12.56
12.82
12.90
12.98
13.14

77
P.I. kW
150.5
155.8
157.6
159.4
163.1

EER
12.60
12.86
12.94
13.03
13.19

77
P.I. kW
165.0
171.0
173.0
175.1
179.2

C.C.Ton
110.4
116.5
118.5
120.6
124.7

95
P.I. kW
132.6
136.8
138.2
139.7
142.6

EER
9.46
9.69
9.76
9.83
9.97

C.C.Ton
102.3
108.0
109.9
111.8
115.6

104
P.I. kW
143.9
148.3
149.8
151.3
154.3

EER
8.11
8.32
8.38
8.45
8.58

C.C.Ton
92.1
97.3
98.9
100.3
103.2

115
P.I. kW
159.2
163.8
165.1
165.8
167.3

EER
6.63
6.82
6.88
6.95
7.08

C.C.Ton
130.8
137.9
140.3
142.7
147.6

86
P.I. kW
134.6
139.1
140.6
142.1
145.2

EER
10.98
11.23
11.31
11.38
11.53

C.C.Ton
122.2
128.9
131.2
133.4
138.0

95
P.I. kW
145.7
150.3
151.9
153.5
156.7

EER
9.52
9.75
9.82
9.90
10.04

C.C.Ton
113.3
119.7
121.8
123.9
128.2

104
P.I. kW
158.0
162.7
164.4
166.0
169.3

EER
8.18
8.39
8.46
8.53
8.66

C.C.Ton
102.2
108.1
109.9
111.7
115.1

115
P.I. kW
174.6
179.5
181.0
182.2
184.6

EER
6.71
6.90
6.97
7.03
7.16

C.C.Ton
143.3
151.2
153.8
156.5
161.8

86
P.I. kW
146.8
151.7
153.3
155.0
158.4

EER
11.02
11.27
11.36
11.43
11.59

C.C.Ton
134.0
141.4
143.9
146.5
151.5

95
P.I. kW
158.9
163.9
165.6
167.3
170.8

EER
9.57
9.81
9.88
9.96
10.10

C.C.Ton
124.4
131.5
133.8
136.2
140.9

104
P.I. kW
172.1
177.3
179.0
180.8
184.4

EER
8.24
8.46
8.53
8.60
8.74

C.C.Ton
112.5
119.0
121.1
123.4
127.8

115
P.I. kW
189.9
195.3
197.1
198.9
202.5

EER
6.78
6.98
7.05
7.11
7.24

95
P.I. kW
174.9
180.5
182.5
184.4
188.3

EER
9.49
9.71
9.78
9.85
9.98

C.C.Ton
135.9
143.4
145.9
148.4
153.4

104
P.I. kW
189.1
194.9
196.9
198.9
202.9

EER
8.19
8.39
8.46
8.52
8.65

C.C.Ton
122.9
129.8
132.1
134.4
139.2

115
P.I. kW
208.3
214.3
216.4
218.4
222.5

EER
6.75
6.94
7.00
7.06
7.18

95
P.I. kW
191.0
197.3
199.4
201.6
205.9

EER
9.43
9.63
9.70
9.76
9.88

C.C.Ton
147.4
155.4
158.1
160.7
166.1

104
P.I. kW
206.2
212.6
214.9
217.1
221.5

EER
8.15
8.34
8.40
8.46
8.58

C.C.Ton
133.3
140.6
143.1
145.6
150.6

115
P.I. kW
226.8
233.4
235.7
237.9
242.4

EER
6.73
6.91
6.97
7.02
7.14

95
P.I. kW
212.2
219.4
221.8
224.3
229.3

EER
9.47
9.67
9.73
9.79
9.90

C.C.Ton
164.6
173.4
176.3
179.3
185.2

104
P.I. kW
228.9
236.3
238.9
241.4
246.5

EER
8.21
8.39
8.44
8.50
8.61

C.C.Ton
149.1
157.2
159.8
162.3
167.3

115
P.I. kW
251.5
259.3
261.6
263.6
267.5

EER
6.80
6.96
7.02
7.08
7.19

Entering Condenser Air Temperature (°F)
EER
12.43
12.67
12.75
12.82
12.96

Table P-46 — RTAC 170
LWT
°F
C.C.Ton
41
180.3
44
189.7
45
192.9
46
196.1
48
202.5

EER
10.93
11.18
11.25
11.33
11.47

Entering Condenser Air Temperature (°F)

Table P-45 — RTAC 155
LWT
°F
C.C.Ton
41
166.3
44
175.1
45
178.1
46
181.1
48
187.1

86
P.I. kW
122.4
126.5
127.9
129.3
132.1

Entering Condenser Air Temperature (°F)

Table P-44 — RTAC 140
LWT
°F
C.C.Ton
41
152.4
44
160.7
45
163.4
46
166.3
48
171.9

C.C.Ton
118.4
124.8
126.9
129.1
133.5

C.C.Ton
156.4
164.8
167.6
170.5
176.1

86
P.I. kW
162.0
167.5
169.4
171.3
175.1

EER
10.91
11.14
11.21
11.28
11.42

C.C.Ton
146.3
154.2
156.9
159.6
164.9

Entering Condenser Air Temperature (°F)
EER
12.30
12.52
12.59
12.65
12.78

C.C.Ton
169.7
178.6
181.6
184.6
190.7

86
P.I. kW
177.3
183.4
185.5
187.6
191.9

EER
10.82
11.03
11.09
11.16
11.28

C.C.Ton
158.7
167.1
170.0
172.8
178.5

Table P-47 — RTAC 185 Entering Condenser Air Temperature (°F)
LWT
°F
C.C.Ton
41
200.3
44
210.8
45
214.3
46
217.8
48
224.9

RLC-PRC005-E4

77
P.I. kW
183.7
190.4
192.7
195.0
199.7

EER
12.30
12.51
12.58
12.64
12.76

C.C.Ton
188.8
198.7
202.0
205.3
212.0

86
P.I. kW
197.1
204.1
206.4
208.9
213.7

EER
10.84
11.04
11.11
11.17
11.29

C.C.Ton
176.8
186.2
189.3
192.5
198.8

29

Performance Data
Table P-48 — RTAC 200 Entering Condenser Air Temperature (°F)
LWT
°F
C.C.Ton
41
220.8
44
232.3
45
236.2
46
240.1
48
247.9

77
P.I. kW
202.6
210.1
212.6
215.3
220.5

EER
12.32
12.52
12.58
12.64
12.76

C.C.Ton
208.3
219.2
222.9
226.6
234.0

86
P.I. kW
217.3
225.1
227.7
230.4
235.8

EER
10.87
11.07
11.13
11.19
11.30

C.C.Ton
195.4
205.7
209.1
212.6
219.6

95
P.I. kW
233.7
241.8
244.6
247.4
253.0

EER
9.52
9.70
9.76
9.81
9.92

C.C.Ton
182.0
191.7
195.0
198.2
204.8

104
P.I. kW
251.9
260.3
263.2
266.1
272.0

EER
8.26
8.43
8.48
8.53
8.64

C.C.Ton
165.2
174.1
176.7
178.8
182.9

115
P.I. kW
276.6
285.4
287.4
288.1
289.5

EER
6.86
7.01
7.07
7.14
7.27

Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. Consult Trane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressor, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control Microprocessor control algorithms.

30

RLC-PRC005-E4

Performance Data
SI Units

English Units

Table P-49 — ARI Part-Load Values RTAC Standard
(along with ARI 550/590-98)

Table P-51 — ARI Part-Load Values RTAC Standard
(along with ARI 550/590-98)

Unit
140

Unit
140

155

170

185

200

% Load
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25

kW cooling
505.9
372.0
247.9
124.1
554.3
407.6
271.9
135.7
603.4
443.8
295.8
148.1
669.7
491.7
328.1
164.2
737.6
542.3
361.5
180.8

P.I. kW
159.0
85.8
47.3
21.0
175.6
94.7
52.2
24.8
192.4
103.7
58.4
26.0
212.5
114.6
62.6
31.1
232.9
125.8
71.3
32.7

COP (kW/kW) IPLV (kW/kW)
2.90
4.09
3.67
4.47
4.25
2.87
3.98
3.63
4.36
3.89
2.85
3.98
3.60
4.32
4.11
2.86
3.98
3.62
4.40
3.81
2.88
4.00
3.64
4.34
4.05

155

170

185

200

% Load
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25

tons
143.9
105.8
70.5
35.3
157.6
115.9
77.3
38.6
171.6
126.2
84.1
42.1
190.4
139.8
93.3
46.7
209.7
154.2
102.8
51.4

P.I. kW
159.0
85.8
47.3
21.0
175.6
94.7
52.2
24.8
192.4
103.7
58.4
26.0
212.5
114.6
62.6
31.1
232.9
125.8
71.3
32.7

EER
9.88
12.51
15.24
14.51
9.79
12.39
14.89
13.29
9.72
12.29
14.74
14.02
9.77
12.34
15.02
13.00
9.83
12.42
14.81
13.81

IPLV
13.95

13.59

13.58

13.60

13.64

Table P-50 — ARI Part-Load Values RTAC High-Efficiency
(along with ARI 550/590-98)

Table P-52 — ARI Part-Load Values RTAC High-Efficiency
(along with ARI 550/590-98)

Unit
120

Unit
120

130

140

155

170

185

200

% Load
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25

RLC-PRC005-E4

kW cooling
434.8
320.0
213.1
106.6
480.3
353.5
235.3
117.8
526.6
387.2
258.1
129.1
574.0
423.4
281.4
140.7
622.0
456.9
304.9
152.3
693.1
510.3
339.7
169.9
765.9
561.7
375.6
187.8

P.I. kW
126.3
70.5
38.3
16.3
138.9
76.9
41.2
19.6
151.6
83.4
46.2
20.6
167.5
92.1
50.7
24.2
183.6
100.1
56.5
25.4
203.9
111.9
61.7
30.6
224.4
122.8
70.6
32.2

COP (kW/kW) IPLV (kW/kW)
3.06
4.17
3.71
4.58
4.34
3.07
4.14
3.74
4.59
3.97
3.08
4.18
3.76
4.59
4.21
3.04
4.08
3.73
4.49
3.89
3.01
4.08
3.70
4.45
4.07
3.03
4.08
3.72
4.50
3.82
3.05
4.10
3.75
4.45
4.08

130

140

155

170

185

200

% Load
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25

tons
434.8
320.0
213.1
106.6
480.3
353.5
235.3
117.8
526.6
387.2
258.1
129.1
574.0
423.4
281.4
140.7
622.0
456.9
304.9
152.3
693.1
510.3
339.7
169.9
765.9
561.7
375.6
187.8

P.I. kW
126.3
70.5
38.3
16.3
138.9
76.9
41.2
19.6
151.6
83.4
46.2
20.6
167.5
92.1
50.7
24.2
183.6
100.1
56.5
25.4
203.9
111.9
61.7
30.6
224.4
122.8
70.6
32.2

EER
10.45
12.66
15.63
14.82
10.47
12.76
15.66
13.55
10.50
12.84
15.65
14.37
10.37
12.73
15.31
13.26
10.26
12.64
15.20
13.90
10.33
12.71
15.35
13.04
10.40
12.80
15.17
13.93

IPLV
14.23

14.14

14.27

13.93

13.92

13.91

13.98

31

Performance Data
SI Units

English Units

Table P-53 — ARI Part-Load Values RTAC Low-Noise Standard
(along with ARI 550/590-98)

Table P-55 — ARI Part-Load Values RTAC Low-Noise Standard
(along with ARI 550/590-98)

Unit
140

Unit
140

155

170

185

200

% Load
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25

kW cooling
473.9
353.4
232.5
116.1
519.8
382.6
254.6
127.3
566.1
417.1
277.5
138.9
628.8
463.5
308.1
154.0
692.7
508.9
339.4
169.9

P.I. kW
175.9
90.2
49.6
21.9
193.6
99.5
53.5
25.1
211.3
108.8
60.1
26.6
233.5
120.6
64.4
32.1
256.2
131.9
73.5
33.8

COP (kW/kW) IPLV (kW/kW)
2.58
4.03
3.62
4.33
4.47
2.57
3.98
3.55
4.35
4.24
2.57
3.96
3.53
4.27
4.40
2.58
3.98
3.55
4.39
4.07
2.59
3.96
3.56
4.28
4.29

Table P-54 — ARI Part-Load Values RTAC Low-Noise High-Efficiency
(along with ARI 550/590-98)
Unit
120

130

140

155

170

185

200

32

% Load
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25

kW cooling
412.6
302.8
202.2
101.3
458.1
337.9
224.4
112.2
502.6
370.7
246.2
123.1
547.7
401.6
268.3
134.3
593.7
437.9
291.2
145.6
661.2
484.3
324.3
162.1
730.4
536.7
358.0
179.0

P.I. kW
137.4
73.9
39.8
16.9
151.2
81.1
42.7
20.2
164.9
87.8
48.1
21.3
181.7
95.8
52.1
24.7
198.6
105.1
58.4
26.0
220.9
116.4
63.5
31.5
243.4
129.0
72.3
33.2

COP (kW/kW) IPLV (kW/kW)
2.85
4.24
3.72
4.61
4.83
2.87
4.27
3.78
4.71
4.45
2.89
4.28
3.82
4.64
4.69
2.86
4.24
3.79
4.63
4.41
2.83
4.20
3.78
4.54
4.58
2.84
4.21
3.78
4.63
4.25
2.85
4.20
3.79
4.54
4.49

155

170

185

200

% Load
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25

tons
473.9
353.4
232.5
116.1
519.8
382.6
254.6
127.3
566.1
417.1
277.5
138.9
628.8
463.5
308.1
154.0
692.7
508.9
339.4
169.9

P.I. kW
175.9
90.2
49.6
21.9
193.6
99.5
53.5
25.1
211.3
108.8
60.1
26.6
233.5
120.6
64.4
32.1
256.2
131.9
73.5
33.8

EER
8.82
12.35
14.77
15.26
8.78
12.11
14.86
14.48
8.76
12.06
14.56
15.03
8.81
12.11
14.98
13.89
8.85
12.16
14.61
14.64

IPLV
13.75

13.60

13.51

13.58

13.53

Table P-56 — ARI Part-Load Values RTAC Low-Noise HighEfficiency (along with ARI 550/590-98)
Unit
120

130

140

155

170

185

200

% Load
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25
100
75
50
25

tons
117.3
86.1
57.5
28.8
130.3
96.1
63.8
31.9
142.9
105.4
70.0
35.0
155.7
114.2
76.3
38.2
168.8
124.5
82.8
41.4
188.0
137.7
92.2
46.1
207.7
152.6
101.8
50.9

P.I. kW
137.4
73.9
39.8
16.9
151.2
81.1
42.7
20.2
164.9
87.8
48.1
21.3
181.7
95.8
52.1
24.7
198.6
105.1
58.4
26.0
220.9
116.4
63.5
31.5
243.4
129.0
72.3
33.2

EER
9.72
12.70
15.73
16.49
9.80
12.89
16.09
15.20
9.85
13.04
15.83
15.99
9.75
12.95
15.81
15.04
9.67
12.88
15.49
15.62
9.70
12.90
15.79
14.49
9.74
12.94
15.48
15.33

IPLV
14.48

14.58

14.62

14.46

14.35

14.36

14.34

RLC-PRC005-E4

Performance Adjustment Factors
Table F1 — Performance Data Adjustment Factors
Fouling
Factor
(SI)

0.0176
m² K/kW

0.044
m² K/kW

Fouling
Factor
(US)

0.0001

0.00025

Chilled
Water
Temperature
Drop °C
4
5
6
7
8
9
10
4
5
6
7
8
9
10
Chilled
Water
Temperature
Drop °F
8
10
12
14
16
8
10
12
14
16

RLC-PRC005-E4

Altitude
Cooling
Capacity
0.998
1.000
1.000
1.002
1.003
1.004
1.005
0.982
0.984
0.986
0.987
0.99
0.993
0.995

Sea level
Evaporator
Flow Rate
1.500
1.200
1.000
0.857
0.750
0.667
0.600
1.479
1.183
0.986
0.845
0.740
0.657
0.592

Cooling
Capacity
0.997
1
1.003
1.004
1.006
0.982
0.986
0.988
0.991
0.992

Sea level
Evaporator
gpm
1.246
1
0.835
0.717
0.629
1.227
0.985
0.823
0.708
0.621

Compressor
kW
0.999
1.000
1.000
1.001
1.001
1.02
1.025
0.99
0.991
0.992
0.993
0.995
0.996
0.997

Cooling
Capacity
0.986
0.989
0.99
0.991
0.992
0.995
0.997
0.972
0.974
0.976
0.978
0.98
0.983
0.985

600 m
Evaporator
Flow Rate
1.485
1.188
0.990
0.849
0.743
0.660
0.594
1.464
1.171
0.976
0.837
0.732
0.651
0.586

Cooling
Capacity
0.987
0.989
0.992
0.993
0.995
0.972
0.975
0.978
0.980
0.982

2000 ft
Evaporator
gpm
1.233
0.989
0.826
0.710
0.622
1.215
0.975
0.815
0.700
0.614

Compressor
kW
1.011
1.011
1.013
1.013
1.015
1.016
1.017
1.020
1.030
1.050
1.060
1.080
1.090
1.010

Cooling
Capacity
0.974
0.975
0.977
0.979
0.98
0.982
0.983
0.96
0.962
0.964
0.966
0.968
0.97
0.973

1200 m
Evaporator
Flow Rate
1.466
1.172
0.977
0.837
0.733
0.651
0.586
1.446
1.157
0.964
0.826
0.723
0.643
0.578

Compressor
kW
1.026
1.027
1.028
1.029
1.03
1.031
1.032
1.017
1.019
1.02
1.021
1.022
1.023
1.024

Cooling
Capacity
0.96
0.961
0.962
0.964
0.966
0.967
0.97
0.946
0.947
0.95
0.952
0.954
0.956
0.958

1800 m
Evaporator Compressor
Flow Rate
kW
1.443
1.044
1.154
1.045
0.962
1.046
0.825
1.047
0.722
1.049
0.641
1.05
0.577
1.051
1.425
1.035
1.140
1.036
0.950
1.038
0.814
1.039
0.713
1.041
0.633
1.042
0.570
1.043

Cooling
Capacity
0.975
0.977
0.979
0.981
0.982
0.961
0.963
0.966
0.968
0.970

4000 ft
Evaporator
gpm
1.217
0.977
0.816
0.701
0.614
1.200
0.963
0.805
0.692
0.606

Compressor
kW
1.027
1.028
1.030
1.031
1.032
1.018
1.020
1.022
1.023
1.024

Cooling
Capacity
0.960
0.963
0.965
0.966
0.968
0.947
0.950
0.952
0.954
0.956

6000 ft
Evaporator Compressor
gpm
kW
1.200
1.045
0.963
1.047
0.804
1.048
0.690
1.049
0.605
1.050
1.183
1.036
0.950
1.038
0.793
1.040
0.682
1.041
0.598
1.042

Altitude
Compressor
kW
0.999
1
1.001
1.002
1.003
0.991
0.992
0.994
0.995
0.996

Compressor
kW
1.012
1.013
1.014
1.016
1.016
1.003
1.005
1.006
1.008
1.009

33

Performance Adjustment Factors
Figure F1 — Evaporator Water Pressure Drops, RTAC 120 to 200 (SI)

100
90
80
70
60
50
40
30
20

10
20

10

30

40

50

60

70 80 90

100

Flow Lps
Evp. F140 (RTAC 120/140)

Evp. F155 (RTAC 130/155)

Evp. F170 (RTAC 140/170)

Evp. F185 RTAC (155/185)

Evp. F200 (RTAC 170/200)
Evp. F240 (RTAC 200HE)

Evp. F220 (RTAC 185HE)
Legend (RTAC HE/STD)

Figure F2 — Evaporator Water Pressure Drops, RTAC 120 to 200 (US Units)

WPD ft of WG

100.0

10.0

1.0

100.0

200

300

400

500

600

700 800 900

1000.0
Flow GPM

Evp. F140 (RTAC 120/140)

Evp. F155 (RTAC 130/155)

Evp. F170 (RTAC 140/170)

Evp. F185 RTAC (155/185)

Evp. F200 (RTAC 170/200)
Evp. F240 (RTAC 200HE)

34

Evp. F220 (RTAC 185HE)
Legend (RTAC HE/STD)

RLC-PRC005-E4

Performance Adjustment Factors
Figure F-3 — Ethylene Glycol Performance Factors

Figure F-4 — Propylene Glycol Performance Factors

Figure F-5 — Ethylene Glycol and Propylene Glycol Freeze Point

RLC-PRC005-E4

35

Generic Building Automation
System Controls
Simple Interface with Other
Control Systems
Microcomputer controls afford a simple
interface with other control systems,
such as time clocks, building automation
systems, and ice storage systems. This
means you can have the flexibility to
meet job requirements while not having
to learn a complicated control system.
This setup has the same standard
features as a stand-alone water chiller,
with the possibility of having the
following optional features.
Alarm Indication Contacts
The unit provides four single-pole,
double-throw contact closures to
indicate that a failure has occurred, if
any compressors are running, or if the
compressors are running at maximum
capacity. These contact closures may be
used to trigger job-site-provided alarm
lights or alarm bells.

External Chilled-Water Set Point
Allows the external setting independent
of the front panel set point by one of
two means:
a) 2-10 VDC input, or
b) 4-20 mA input.
External Current-Limit Set Point
Allows the external setting independent
of the front panel set point by one of
two means:
a) 2-10 VDC input, or
b) 4-20 mA input.
Ice-Making Control
Provides an interface to ice-making
control systems.
Chilled-Water Temperature Reset
Reset can be based on return water
temperature or outdoor air temperature.

Figure 6

Modem
Pumps

Tracer Chiller Plant Manager

36

IBM PC with Building
Management Network

RLC-PRC005-E4

Generic Building Automation
System Controls
Tracer Summit™ Controls —
Interface with theTrane
Integrated Comfort System (ICS)
Trane Chiller Plant Manager with ICS
The Tracer Chiller Plant Manager
building management system provides
building automation and energy
management functions through standalone control. The Chiller Plant Manager
is capable of monitoring and controlling
your entire chiller plant system.
Application software available:
• Time-of-day scheduling
• Duty cycle
• Demand limiting
• Chiller sequencing
• Process control language
• Boolean processing
• Zone control
• Reports and logs
• Custom messages
• Run time and maintenance
• Trend log
• PID control loops
And of course, the Trane Chiller Plant
Manager panel can be used on a standalone basis or tied into a complete
building automation system.
When the air-cooled Series R chiller is
used in conjunction with a Trane Tracer™
system, the unit can be monitored and
controlled from a remote location. The
air-cooled Series R chiller can be
controlled to fit into the overall building
automation strategy by using time-ofday scheduling, timed override, duty
cycling, demand limiting, and chiller
sequencing. A building owner can
completely monitor the air-cooled Series
R chiller from the Tracer system, since all
of the monitoring information indicated
on the microcomputer can be read on
the Tracer system display. In addition, all
™

RLC-PRC005-E4

the powerful diagnostic information can
be read back at the Tracer system. Best
of all, this powerful capability comes
over a single twisted pair of wires! Aircooled Series R chillers can interface
with many different external control
systems, from simple stand-alone units
to ice-making systems. Each unit
requires a single-source, three-phase
power supply and a 115-volt power
supply. The 115-volt supply handles the
freeze protection for the evaporator
heaters.
A single twisted pair of wires tied
directly between the air-cooled Series R™
chiller and a Tracer™ system provides
control, monitoring, and diagnostic
capabilities. Control functions include
auto/stop, adjustment of leaving-watertemperature set point, compressor
operation lockout for kW demand
limiting, and control of ice-making
mode. The Tracer system reads
monitoring information such as
entering- and leaving-evaporator-water
temperatures and outdoor air
temperature. Over 60 individual
diagnostic codes can be read by the
Tracer system. In addition, the Tracer
system can provide sequencing control
for two to six units on the same chilledwater loop. Pump sequencing control
can be provided from the Tracer system.
Tracer ICS is not available in conjunction
with the remote display or the external
set point capability.

Required Options
1
Tracer Comm 3 Interface

External Trane Devices Required
Tracer Summit™, Tracer 100 System or
Tracer Chiller Plant Manager
Ice-Making Systems Controls
An ice-making option may be ordered
with the air-cooled Series R™ chiller.The
unit will have two operating modes, ice
making and normal daytime cooling. In
the ice-making mode, the air-cooled
Series R chiller will operate at full
compressor capacity until the return
chilled-fluid temperature entering the
evaporator meets the ice-making set
point.This ice-making set point is
manually adjusted on the unit’s
microcomputer.Two input signals are
required to the air-cooled Series R chiller
for the ice-making option.The first is an
auto/stop signal for scheduling, and the
second is required to switch the unit
between the ice-making mode and
normal daytime operation.The signals are
provided by a remote job site buildingautomation device such as a time clock or
a manual switch. In addition, the signals
may be provided over the twisted wire
pair from aTracer™ system.
Required Options
External Auto/Stop (Standard)
Ice-Making Control
Additional Options That May Be Used
Failure Indication Contacts
Communications Interface (For Tracer
Systems)
Chilled-Water Temperature Reset
External Trane Devices Required-None
Note: All wiring outside the unit is
supplied at the job site.

Additional Options that May Be Used
Ice-Making Control

37

Controls
Tracer™ Chiller Control human interfaces
The Trane air-cooled Series R Model
RTAC chiller offers two easy-to-use
operator interface panels, the EasyView,
and the DynaView.
Standard Features
External Auto/Stop
A job-site-provided contact closure will
turn the unit on and off.

Figure 7 — Easy View

Chilled Waterflow Interlock
A job-site-provided contact closure from
a chilled-water pump contactor, or a
flow switch, is required and will allow
unit operation if a load exists. This
feature will allow the unit to run in
conjunction with the pump system.
External Interlock
A job-site-provided contact opening
wired to this input will turn the unit off
and require a manual reset of the unit
microcomputer. This closure is typically
triggered by a job-site-provided system
such as a fire alarm.

Figure 8 — Dyna View

Safety Controls
A centralized microcomputer offers a
higher level of machine protection.
Because the safety controls are smarter,
they limit compressor operation in order
to avoid compressor or evaporator
failures, thereby minimizing nuisance
shutdowns. Tracer™ Chiller Controls
directly senses the control variables that
govern the operation of the chiller:
motor current draw, evaporator
pressure, condenser pressure, and so
forth. When any one of these variables
approaches a limit condition at which
the unit may be damaged or shut down
on a safety, Tracer Chiller Controls takes
corrective action to avoid shutdown and
keep the chiller operating. It does this
through combined actions of
compressor slide-valve modulation,
electronic expansion-valve modulation,
and fan staging. Tracer Chiller Controls
optimizes total chiller power
consumption during normal operating
conditions. During abnormal operating

38

conditions, the microprocessor will
continue to optimize chiller performance
by taking the corrective action necessary
to avoid shutdown. This keeps cooling
capacity available until the problem can
be solved. Whenever possible, the chiller
is allowed to perform its function: make
chilled water. In addition,
microcomputer controls allow for more
types of protection, such as over and
under voltage! Overall, the safety
controls help keep the building or
process running and out of trouble.
Stand-alone controls
Interfacing to stand-alone units is very
simple: only a remote auto/stop for
scheduling is required for unit operation.
Signals from the chilled-water pump
contactor auxiliary, or a flow switch, are
wired to the chilled-water flow interlock.
Signals from a time clock or some other
remote device are wired to the external
auto/stop input.

Chilled Water Pump Control
Unit controls provide an output to
control the chilled-water pump(s). One
contact closure to the chiller is all that is
required to initiate the chilled-water
system.
Additional Features That May Be Used
(requires some optional factory-installed
hardware)
Alarm Indication Contacts
Chilled-Water Temperature Reset
Note: All wiring outside the unit is
supplied at the job site.

Integrated Comfort™
System Interface
Easy Interface to a Generic Building
Management System
Controlling the air-cooled Series R chiller
with building management systems is
state-of-the-art, yet simple. Chiller inputs
include:
• Chiller enable/disable
• Circuit enable/disable
• Chilled liquid set point
• Current limit set point
• Ice-making enable
Chiller outputs include:
• Compressor running indication
• Alarm indication (ckt 1/ckt 2)
• Maximum capacity
• Ice making

RLC-PRC005-E4

Typical Wiring Diagram
RTAC 120-200

Figure 9 — Compressor wiring diagram and control supply

Figure 10 — Control diagram

RLC-PRC005-E4

39

Typical Wiring Diagram
RTAC 120-200

40

Figure 11 — Compressor control diagram

RLC-PRC005-E4

Typical Wiring Diagram
RTAC 120-200

Figure 12 — Control wiring diagram

Figure 13 — Option control diagram

RLC-PRC005-E4

41

Typical Wiring Diagram
RTAC 120-200

5B53

Legend

5B56
5E51
5R3
5R51

Item

Designation

A2

Dual Analog Input/Output
Module
A3
Fans Inverter Interface Module
A4
4 Relays Output Module
A5
2 Relays Output Module
A6
Dual Low Voltage Binary Input
Module
A7
Dual High Voltage Binary Input
Module
A8
Dual Triac Output Module
A9
Communication Module
A10
Power Supply Module
A14
Starter Module
A53
Local Human Interface
A54
Remote Human Interface
A55
IPC Buffer
K43
6S43 Relay
Q2
Circuit Breaker
1B52 Evaporator Heater Thermostat
1 F3
1T3 Protection Fuse
1F25 Compressor Fuse
1F45 Fan Motor Fuse
1K4
Protection Relay
1K21 Compressor Transition
Contactor
1K22 Compressor Line
Contactor
1K23 Star Compressor Contactor
1K24 Delta Compressor Starter
1K40 Fan Contactor
1Q5
Circuit Breaker
1Q10 Disconnect Switch
1Q45 Condenser Fan Motor Circuit
Breaker
1R20 Compressor Transition Resistors
1T2
Control Power Transformer
1T3
Over/Undervoltage Transformer
1T10 to 1T20 Current Transformers
1X
Control Terminal
1X20 Compressor Power Terminal
2M20 Compressor Motor
2Y21
2Y22
2Y23
3B30
3E30
3E31
3R30
3Y30
4M40
5B23
5B51

42

Compressor Unloading
Solenoid Valve
Compressor Loading Solenoid
Valve
Compressor Unloading Step
Solenoid Valve
Oil Control Sensor
Compressor Oil Heater
Oil Separator Heater
Oil Temperature Sensor
Oil Line Solenoid Valve
Condenser Fan Motor
Low Pressure Control
High Pressure Control

5R52
5Y53
6K51
6M51
6Q...
6S1
6S3
6S6
6S7
6S43
6S51
6S55
6S56
6X

Evaporator Refrigerant Level
Control
High Pressure Transducer
Evaporator Heater
Ambient Air Sensor
Leaving-Evaporator-Water
Temperature Sensor
Entering-Evaporator-Water
Temperature Sensor
Electronic Expansion Valve
Chilled-water Pump Contactor
Chilled-Water Pump Motor
Circuit Breaker
Chiller On/Off Switch
Stop/Manual Reset Switch
Circuit 1 Interlock Switch
Circuit 2 Interlock Switch
Time Clock Contact
Chilled-water Pump On/Off
Switch
Ice-making Enable
Chilled-water Flow Switch
Customer Wiring Terminal

Optional
Item
Designation (circled items)

B
E
J
K
R
9
11
15
19
20
22
24

Main Terminal Block and Fuses
Unit Disconnect Switch
Over/Undervoltage Transformer
Ground Fault Detection Relay
Evaporator Heater Thermostat
Low-Ambient Option
Communication Card
Remote Operator Interface
Night Noise Setback
Ice-Making Controls Card
External Setpoints Input Card
Evaporator Heaters

Notes
1
Refer to Power Wiring Diagram
2
Refer to Control Wiring Diagram
3
Refer to Fans Power Wiring
Diagram
4
Remove the Jumper Wire When
Using the Remote Contact
5
Not Supplied with Night Noise
Setback (Option 19)
6
Supplied When PED Approval
7
Factory Connected
10
Valid for RTAC 155-170-185-200
11
Valid for RTAC 185-200
12
Valid for RTAC 170 - 185 - 200
13
Valid for RTAC 200
14
Valid for RTAC 130- 140-155-170185-200
15
Valid for RTAC 140- 155- 170185- 200
Customer Inputs
E1
E2
E4
S2
S8
S10

External Current Limit Set Point
External Chilled-Water Set Point
Ice-Making Enable Customer
Outputs
Programmable Relays
Ice-Making Enable
Tracer™ Communication Link
Trane Wiring
Customer Wiring

Component Identification
Ex 1K20-1
Index
Attribute
Designation
Location
Location Numbering
Nothing = Control Panel Wiring
1
Control Panel Power Wiring
2
Compressor
3
Oil Circuit
4
Fans
5
Heat Exchanger
6
Customer Wiring
7
Miscellaneous

RLC-PRC005-E4

Typical Wiring Diagram
RTAC 120-200

Figure 14 — Condenser fan wiring diagram

Figure 15 — Condenser fan control diagram

RLC-PRC005-E4

43

Job Site Data
Job Site Connections
Table J-1 — Customer Wire Selection
Voltage 400/3/50
Unit
Size
Standard
140
155
170
185
200
Standard Low Noise
140
155
170
185
200
High Efficiency
120
130
140
155
170
185
200
High Efficiency Low Noise
120
130
140
155
170
185
200

44

Unit without Disconnect Switch
Wire Selection Size
to Main Terminal Block
Minimum cable
Maximum cable
size mm²
size mm²

Unit with Disconnect Switch
Wire Selection Size
to Disconnect Switch
Disconnect Switch
Minimum cable
Maximum cable
Size (amps)
size mm²
size mm²

2x95 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x185 mm²

2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²

6x250 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125

2x95 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x185 mm²

2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²

2x95 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x185 mm²

2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²

6x250 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125

2x95 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x185 mm²

2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²

2x95 mm²
2x95 mm²
2x95 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x185 mm²

2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²

6x250 + 3x125
6x250 + 3x125
6x250 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125

2x95 mm²
2x95 mm²
2x95 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x185 mm²

2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²

2x95 mm²
2x95 mm²
2x95 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x185 mm²

2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²

6x250 + 3x125
6x250 + 3x125
6x250 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125

2x95 mm²
2x95 mm²
2x95 mm²
2x185 mm²
2x185 mm²
2x185 mm²
2x185 mm²

2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²
2x240 mm²

RLC-PRC005-E4

Electrical Data
Table E-1 — Electrical Data 400/3/50
Unit Wiring
Unit
Number of Power
Size
Connections
Standard
140
1
155
1
170
1
185
1
200
1
Standard Low Noise
140
1
155
1
170
1
185
1
200
1
High Efficiency
120
1
130
1
140
1
155
1
170
1
185
1
200
1
High Efficiency Low Noise
120
1
130
1
140
1
155
1
170
1
185
1
200
1

Maximum
Amps (1)

Starting
Amps (2)

Power
Factor

Disconnect
Switch Size

Compressor
Fuse Size (A)

398
437
475
525
574

469
494
532
596
645

6x250 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125

250/250
315/250
315/315
400/400
400/400

383
420
456
504
551

454
477
513
575
622

6x250 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125

250/250
315/250
315/315
400/400
400/400

330
369
407
444
484
534
583

398
440
478
501
541
605
654

6x250 + 3x125
6x250 + 3x125
6x250 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125

250/250
250/250
250/250
315/250
315/315
400/400
400/400

315
352
388
423
461
509
557

383
423
459
480
518
580
628

0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88
0.88

6x250 + 3x125
6x250 + 3x125
6x250 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125
6x400 + 3x125

250/250
250/250
250/250
315/250
315/315
400/400
400/400

Notes:
1. Maximum Compressors FLA + all fans FLA + control Amps
2. Starting Amps of the circuit with the largest compressor circuit including fans plus RLA of the second circuit including fans and control amps

RLC-PRC005-E4

45

Electrical Data
Table E-1 — Electrical Data 400/3/50
Motor Data
Compressor (Each)
Max Amps (1)
Starting Amps (2)
Circuit 1 Circuit 2
Circuit 1 Circuit 2

Quantity
Standard
2
180
2
214
2
214
2
259
2
259
Standard Low Noise
2
180
2
214
2
214
2
259
2
259
High Efficiency
2
146
2
180
2
180
2
214
2
214
2
259
2
259
High Efficiency Low Noise
2
146
2
180
2
180
2
214
2
214
2
259
2
259

Quantity

kW

FLA

Fans Fuse
Size (A)

VA

A

Option
Evaporator
Heater
kW

Fans (Each)

Control

180
180
214
214
259

251
271
271
330
330

251
251
271
271
330

8
9
10
11
12

1.88
1.88
1.88
1.88
1.88

4.5
4.5
4.5
4.5
4.5

80
80
80
80
80

860
860
860
860
860

2.15
2.15
2.15
2.15
2.15

0.5
0.5
0.5
0.5
0.5

180
180
214
214
259

251
271
271
330
330

251
251
271
271
330

8
9
10
11
12

0.85
0.85
0.85
0.85
0.85

2.6
2.6
2.6
2.6
2.6

80
80
80
80
80

860
860
860
860
860

2.15
2.15
2.15
2.15
2.15

0.5
0.5
0.5
0.5
0.5

146
146
180
178
214
214
259

214
251
251
271
271
330
330

214
214
251
251
271
271
330

8
9
10
11
12
13
14

1.88
1.88
1.88
1.88
1.88
1.88
1.88

4.5
4.5
4.5
4.5
4.5
4.5
4.5

80
80
80
80
80
80
80

860
860
860
860
860
860
860

2.15
2.15
2.15
2.15
2.15
2.15
2.15

0.5
0.5
0.5
0.5
0.5
0.5
0.5

146
146
180
178
214
214
259

214
251
251
271
271
330
330

214
214
251
251
271
271
330

8
9
10
11
12
13
14

0.85
0.85
0.85
0.85
0.85
0.85
0.85

2.6
2.6
2.6
2.6
2.6
2.6
2.6

80
80
80
80
80
80
80

860
860
860
860
860
860
860

2.15
2.15
2.15
2.15
2.15
2.15
2.15

0.5
0.5
0.5
0.5
0.5
0.5
0.5

Notes:
1. Maximum FLA per compressor.
2. Compressors starting amps, Star delta start.

46

RLC-PRC005-E4

Dimensional Data
140-155-170 STD
120-130-140 HE

RLC-PRC005-E4

Figure 16

47

Dimensional Data
185-200 STD
185-200 HE

48

Figure 17

RLC-PRC005-E4

Dimensional Data
Liquid Chillers
1 Evaporator Water Inlet Connection
2 Evaporator Water Outlet Connection
3 Electrical Panel
4 Power Supply Inlet (155 X 400)
5 Rigging Eyes 045
6 Operating Weight (Kg)
7 Refrigerant Charge (Kg) R134a
8 Oil Charge (Litres)
9 Minimum Clearance (For Maintenance)
10 Minimum Clearance (Evaporator Tubes
Removal)
11 Minimum Clearance (Air Entering)
12 Frame Post
13 Recommended Chilled Water Pipework Layout

Options
14 Power Disconnect Switch
15 Isolators
16 Chilled Water Pump Starter Panel

Figure 18

RLC-PRC005-E4

49

Mechanical Specifications
General
Units are leak- and pressure-tested at
24.5 bars [350 psi] high side and 14 bars
[200 psi] low side, and then evacuated
and charged. Packaged units ship with a
full operating charge of oil and
refrigerant. Unit panels, structural
elements, and control boxes are
constructed of 1.5 to 3 mm [11 to 16
gauge] galvanized sheet metal and
mounted on a welded structural-steel
base. Unit panels and control boxes are
finished with baked-on powder paint,
and the structural-steel base is finished
with an air-dry paint RAL 1019.
Evaporator
The evaporator is a tube-in-shell heat
exchanger design, with internally-finned
copper tubes roller-expanded into the
tube sheet. The evaporator is designed,
tested, and stamped in accordance with
the appropriate pressure-vessel code
approval. The evaporator is designed for
a waterside working pressure of 14
bars[200 psi]. Water connections are
grooved pipe for Victaulic couplings.
Each shell includes a vent, a drain, and
fittings for temperature control sensors,
and is insulated with 19mm [3/4 inch]
Armaflex II (or equivalent) insulation
(K=0.26). Optional evaporator heaters
with thermostats are provided to protect
the evaporator from freezing at ambient
temperatures down to -25°C [-13°F].
Condenser and Fans
Air-cooled condenser coils have
aluminum fins mechanically bonded to
internally-finned seamless copper
tubing. The condenser coil has an
integral subcooling circuit. Condensers
are factory proof- and leak-tested at 35
bars [500 psi]. Direct-drive verticaldischarge airfoil ZephyrWing condenser
fans are dynamically balanced. Threephase condenser fan motors with

50

permanently-lubricated ball bearings
are provided. Standard units will start
and operate from -4 to 46°C [25 to
115°F] ambient.
Compressor and Lube Oil System
The helical-rotary compressor is semihermetic, direct drive, 3000 rpm, with
capacity-control slide valve, a
load/unload valve, rolling element
bearings, differential refrigerant
pressure oil pump, and oil heater. The
motor is a suction-gas-cooled,
hermetically sealed, two-pole squirrelcage induction motor. Oil separator and
filtration devices are provided separate
from the compressor. Check valves in
the compressor discharge and lube oil
system, and a solenoid valve in the
lube system, are provided.
Refrigeration Circuits
Each unit has two refrigerant circuits,
with one helical-rotary compressor per
circuit. Each refrigerant circuit includes
a removable-core filter drier, liquid-line
shutoff valve, liquid-line sight glass with
moisture indicator, charging port, and
an electronic expansion valve. Fully
modulating compressors and electronic
expansion valves provide variable
capacity modulation over the entire
operating range. (Optional compressor
discharge and suction service valve).
Unit Controls
All unit controls are housed in a
weather-tight enclosure, with
removable plates to allow for customer
connection of power wiring and remote
interlocks. All controls, including
sensors, are factory-mounted and tested prior to shipment.
Microcomputer controls provide all
control functions including startup and
shutdown, leaving-chilled-water
temperature control, compressor and

electronic expansion-valve modulation,
fan sequencing, anti-recycle logic,
automatic lead/lag compressor starting,
and load limiting. The unit control
module, utilizing the Adaptive Control™
microprocessor, automatically takes
action to avoid unit shutdown due to
abnormal operating conditions
associated with low refrigerant pressure,
high condensing pressure, and motor
current overload. Should the abnormal
operating condition continue until a
protective limit is violated, the unit will
be shut down. Unit protective functions
include loss of chilled-water flow,
evaporator freezing, loss of refrigerant,
low refrigerant pressure, high refrigerant
pressure, reverse rotation, compressorstarting and -running overcurrent, phase
loss, phase imbalance, phase reversal,
and loss of oil flow. A digital display
indicates chilled-water set point and
leaving-chilled-water temperature as
standard, while current-limit set point,
evaporator and condenser refrigerant
pressures, and electrical information are
an option. Both standard and optional
displays can be viewed on the unit
without opening any control panel
doors. Standard power connections
include main three-phase power to the
compressors, condenser fans, and
control power transformer, and optional
connections are available for the 230
volt single-phase power for freeze
protection on the evaporator heaters.
Starters
Starters are housed in a weather-tight
enclosure with hinged doors to allow for
customer connection of power wiring.
Wye-Delta closed transition starters (33
percent of LRA inrush) are standard. An
optional Wye-Delta closed transition
starter (33 percent of LRA inrush) is
available on 400/3/50 volt units.

RLC-PRC005-E4

Literature Order Number

RLC-PRC005-E4

File Number

PL-RF-RLC-PRC-0005-E4-0800

Supersedes

New

Stocking Location

La Crosse

The Trane Company
An American Standard Company
www.trane.com

Since The Trane Company has a policy of continuous product improvement, it reserves the right to change
design and specifications without notice.

For more information contact
your local sales office or
e-mail us at comfort@trane.com

Société Trane – Société Anonyme au capital de 41500 000 F – Siege Social: 1 rue des Amériques –
88190 Golbey – France – Siret 306 050 188-00011 – RSC Epinal B 306 050 188
Numéro d’identification taxe intracommunanutaire: FR 83 3060501888



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : Yes
Encryption                      : Standard V1.2 (40-bit)
User Access                     : Print, Copy, Annotate, Fill forms, Extract, Assemble, Print high-res
Create Date                     : 2000:09:05 11:01:56
Producer                        : Acrobat Distiller 4.05 for Windows
Modify Date                     : 2001:04:30 16:11:35-05:00
Title                           : Air-Cooled Series R Helical-Rotary Liquid Chiller Catalog
Page Count                      : 51
Page Mode                       : UseOutlines
EXIF Metadata provided by EXIF.tools

Navigation menu