Xilinx Virtex 5 Fpga Ml561 Users Manual UG199 Memory Interfaces Development Board, User Guide

ML561 to the manual d85356bc-1aa8-4178-8940-2dc350d16e70

2015-02-03

: Xilinx Xilinx-Virtex-5-Fpga-Ml561-Users-Manual-473579 xilinx-virtex-5-fpga-ml561-users-manual-473579 xilinx pdf

Open the PDF directly: View PDF PDF.
Page Count: 140

DownloadXilinx Xilinx-Virtex-5-Fpga-Ml561-Users-Manual- UG199 Virtex-5 FPGA ML561 Memory Interfaces Development Board, User Guide  Xilinx-virtex-5-fpga-ml561-users-manual
Open PDF In BrowserView PDF
Virtex-5 FPGA ML561
Memory Interfaces
Development Board
User Guide

UG199 (v1.2) April 19, 2008

R

R

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.
THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.
© 2007–2008 Xilinx, Inc. All rights reserved.
XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. PCI EXPRESS is a registered trademark of PCI-SIG. All other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.
Date

Version

Revision

02/12/07

1.0

Initial Xilinx release.

08/09/07

1.1

Revised Read and Write Strobe in Table 5-4, page 49. Added Chapter 7, “ML561
Hardware-Simulation Correlation.”

04/19/08

1.2

Revised Figure 3-11, page 37 and Table 3-19, page 38. Corrected FPGA driver for Read
Data and Read Strobe in Table 5-4, page 49. Updated Data and Strobe entries in Table 5-5,
page 49. Updated manufacturers and links in Appendix B, “Bill of Materials.”

Virtex-5 FPGA ML561 User Guide

www.xilinx.com

UG199 (v1.2) April 19, 2008

Table of Contents
Preface: About This Guide
Guide Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Additional Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Additional Support Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7
7
8

9
Typographical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Online Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 1: Introduction
About the Virtex-5 FPGA ML561 Memory Interfaces Tool Kit . . . . . . . . . . . . . . . . 11
Virtex-5 FPGA ML561 Memory Interfaces Development Board . . . . . . . . . . . . . . . 12

Chapter 2: Getting Started
Documentation and Reference Design CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Initial Board Check Before Applying Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Applying Power to the Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 3: Hardware Description
Hardware Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DDR400 SDRAM Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DDR2 DIMM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DDR2 SDRAM Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
QDRII SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RLDRAM II Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18
19
19
19
20
20
20

Memory Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DDR400 and DDR2 Component Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DDR2 SDRAM DIMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
QDRII and RLDRAM II Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

External Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
RS-232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
200 MHz LVPECL Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SMA Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33 MHz Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33 MHz System ACE Controller Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GTP Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
User I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General-Purpose Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DIP Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

27
27
27
28
28
28
29
29
29
29
29

3

R

Seven-Segment Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Light Emitting Diodes (LEDs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pushbuttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power On or Off Slide Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Soft Touch Probe Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Measurement Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Liquid Crystal Display Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30
30
30
31
31
31
32

Power Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Power Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Voltage Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Board Design Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 4: Electrical Requirements
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
FPGA Internal Power Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 5: Signal Integrity Recommendations
Termination and Transmission Line Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 6: Configuration
Configuration Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JTAG Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JTAG Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parallel IV Cable Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System ACE Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51
52
52
52
52

Chapter 7: ML561 Hardware-Simulation Correlation
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Signal Integrity Correlation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
DDR2 Component Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DDR2 Component Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DDR2 DIMM Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DDR2 DIMM Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
QDRII Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
QDRII Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

59
65
70
76
81
86

Summary and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
How to Generate a User-Specific FPGA IBIS Model . . . . . . . . . . . . . . . . . . . . . . . . . 93

Appendix A: FPGA Pinouts
FPGA #1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
FPGA #2 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
FPGA #3 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Appendix B: Bill of Materials
Appendix C: LCD Interface
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Display Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Hardware Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Peripheral Device KS0713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Controller – Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Controller – LCD Panel Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Controller – Power Supply Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation Example of the 64128EFCBC-3LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Read/Write Characteristics (6800 Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Design Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LCD Panel Used in Full Graphics Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LCD Panel Used in Character Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Array Connector Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

121
123
125
126
127
130
133
134
134
135
139

5

R

6

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Preface

About This Guide
This user guide describes the Virtex®-5 FPGA ML561 Memory Interfaces Development
Board. Complete and up-to-date documentation of the Virtex-5 family of FPGAs is
available on the Xilinx website at http://www.xilinx.com/virtex5.

Guide Contents
This manual contains the following chapters:
•

Chapter 1, “Introduction”

•

Chapter 2, “Getting Started”

•

Chapter 3, “Hardware Description”

•

Chapter 4, “Electrical Requirements”

•

Chapter 5, “Signal Integrity Recommendations”

•

Chapter 6, “Configuration”

•

Chapter 7, “ML561 Hardware-Simulation Correlation”

•

Appendix A, “FPGA Pinouts”

•

Appendix B, “Bill of Materials”

•

Appendix C, “LCD Interface”

Additional Documentation
The following documents are also available for download at
http://www.xilinx.com/virtex5.
•

Virtex-5 Family Overview
The features and product selection of the Virtex-5 family are outlined in this overview.

•

Virtex-5 FPGA Data Sheet: DC and Switching Characteristics
This data sheet contains the DC and Switching Characteristic specifications for the
Virtex-5 family.

•

Virtex-5 FPGA User Guide
Chapters in this guide cover the following topics:
-

Clocking Resources

-

Clock Management Technology (CMT)

-

Phase-Locked Loops (PLLs)

-

Block RAM

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

7

R

Preface: About This Guide

•

-

Configurable Logic Blocks (CLBs)

-

SelectIO™ Resources

-

SelectIO Logic Resources

-

Advanced SelectIO Logic Resources

Virtex-5 FPGA RocketIO GTP Transceiver User Guide
This guide describes the RocketIO™ GTP transceivers available in the Virtex-5 LXT
and SXT platforms.

•

Virtex-5 FPGA RocketIO GTX Transceiver User Guide
This guide describes the RocketIO GTX transceivers available in the Virtex-5 FXT
platform.

•

Virtex-5 FPGA Embedded Processor Block for PowerPC® 440 Designs
This reference guide is a description of the embedded processor block available in the
Virtex-5 FXT platform.

•

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC User Guide
This guide describes the dedicated Tri-Mode Ethernet Media Access Controller
available in the Virtex-5 LXT, SXT, and FXT platforms.

•

Virtex-5 FPGA Integrated Endpoint Block User Guide for PCI Express Designs
This guide describes the integrated Endpoint blocks in the Virtex-5 LXT, SXT, and FXT
platforms used for PCI Express® designs.

•

Virtex-5 FPGA XtremeDSP Design Considerations User Guide
This guide describes the XtremeDSP™ slice and includes reference designs for using
the DSP48E.

•

Virtex-5 FPGA Configuration Guide
This all-encompassing configuration guide includes chapters on configuration
interfaces (serial and SelectMAP), bitstream encryption, Boundary-Scan and JTAG
configuration, reconfiguration techniques, and readback through the SelectMAP and
JTAG interfaces.

•

Virtex-5 FPGA System Monitor User Guide
The System Monitor functionality available in all the Virtex-5 devices is outlined in
this guide.

•

Virtex-5 FPGA Packaging and Pinout Specifications
This specification includes the tables for device/package combinations and maximum
I/Os, pin definitions, pinout tables, pinout diagrams, mechanical drawings, and
thermal specifications.

•

Virtex-5 FPGA PCB Designer’s Guide
This guide provides information on PCB design for Virtex-5 devices, with a focus on
strategies for making design decisions at the PCB and interface level.

Additional Support Resources
To search the database of silicon and software questions and answers, or to create a
technical support case in WebCase, see the Xilinx website at:
http://www.xilinx.com/support.

8

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Conventions

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
This document uses the following typographical conventions. An example illustrates each
convention.
Convention

Meaning or Use
References to other documents

See the Virtex-5 Configuration Guide
for more information.

Emphasis in text

The address (F) is asserted after
clock event 2.

Indicates a link to a web page.

http://www.xilinx.com/virtex5

Italic font

Underlined Text

Example

Online Document
The following conventions are used in this document:
Convention

Meaning or Use

Example
See the section “Additional
Documentation” for details.

Blue text

Cross-reference link to a location
in the current document

Red text

Cross-reference link to a location
in another document

See Figure 5 in the Virtex-5 FPGA
Data Sheet

Blue, underlined text

Hyperlink to a website (URL)

Go to http://www.xilinx.com
for the latest documentation.

Refer to “Clock Management
Technology (CMT)” in
Chapter 2 for details.

Terminology
This section defines terms used in Chapter 7, “ML561 Hardware-Simulation Correlation,”
of this document.

Data Valid Window (DVW)

DVW is the data valid window opening measured by the VIH and VIL masks. The
smaller of the two values are listed as absolute time as well as in terms of the percentage
of UI (Unit Interval), or bit time.

Extrapolation

The ultimate goal of a design is to ascertain quality of signal at the receiver I/O Buffer
(IOB). This measurement can only be simulated. When the hardware measurements are
correlated with the simulation at the probe point, the extra probe capacitance is
removed from the IBIS schematics, and the simulation is repeated at two extreme
corners (slow-weak and fast-strong). Removal of probe capacitance is important to
represent the actual hardware. If the SI characteristics of these simulations are proved
to be within the acceptable range with sufficient margin, then the performance
requirements for data signal interface of the corresponding memory operation at the
target clock frequency are proved to have been met.

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

9

R

Preface: About This Guide

Hardware Measurements

Inter-Symbol Interference
(ISI)

These measurements are the actual real-time measurements of an eye diagram and a
segment of the test pattern (PRBS6) waveform captured on ML561 hardware at the
designated probe point using an Agilent scope.
As the frequency of operation increases, the signal delay is affected by the data pattern
that precedes the current data bit. This is called the inter-symbol interference (ISI) effect.
All testing is performed with a pseudo-random bitstream (PRBS) of order 6, that is,
PRBS6. ISI is the jitter represented by the eye at all four voltage thresholds. The worst
of the following two sum values are listed in this table:
• Sum of ISI at VIH(ac)-min and VIH(dc)-min
• Sum of ISI at VIL(ac)-max and VIL(dc)-max

Noise Margin

This is the noise margin available at the receiver. Measurements are taken at the AC
voltage levels as the minimum vertical opening of the eye in the vicinity of the center
of the bit period. Ideally, the input voltage needs to remain above the DC voltage
specifications. However, by considering the AC voltage specifications for the nominal
voltage level for VREF, these measurements are more conservative values that also
include the effects of VREF variations.
• VIH margin: Difference between the top of the eye opening and VIH(ac)-min
• VIL margin: Difference between VIL(ac)-max and the bottom of the eye opening
These measurements are performed in stand-alone fashion for the signal under test.
Thus no consideration of crosstalk or Simultaneously Switching Output (SSO) effects
are accounted for.

Overshoot / Undershoot
Margin

Overshoot margin is the difference between the maximum allowable VIH per JEDEC
specification and the maximum amplitude of the measured eye. Similarly, undershoot
margin is the difference between the minimum amplitude of the measured eye and the
minimum allowable VIL value per JEDEC specification. For both SSTL18 and 1.8V
HSTL specifications:
• VIH(max) < (VDDQ + 300 mV) = (1.8 + 0.3)V = 2.1V
• VIL(min) > -300 mV = 0.3V

Simulation Correlation

The BoardSim utility of the HyperLynx simulator is used to extract the IBIS schematics
of the same signal net for which hardware measurements are made. To replicate the
hardware measurement probe set up at the probe point, a 0.5 pF probe capacitance is
added based on Agilent probe loading specifications to the extracted IBIS schematics of
the memory signal. For the FPGA devices soldered on the ML561 board under test, the
process corner (slow, typical, or fast) is not known. Thus simulation is performed for all
three corners (slow-weak, typical, and fast-strong), and the results of the case that best
fits with hardware measurement is selected for tabulation.

VIH(ac)-min

This term is the minimum input level at which the receiver must recognize input logic
High.

VIH(dc)-min

When the input signal reaches VIH(ac)-min, the receiver continues to interpret the
input as a logic High as long as the signal remains above this voltage. (This parameter
is basically the hysteresis for a logic ‘1’.)

VIL(ac)-max

This term is the maximum input level at which the receiver must recognize input logic
Low.

VIL(dc)-max

When the input signal reaches VIL(ac)-max, the receiver continues to interpret the input
as a logic Low as long as the signal remains below this voltage. (This parameter is
basically the hysteresis for logic ‘0’.)

10

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Chapter 1

Introduction
This chapter introduces the Virtex®-5 FPGA ML561 reference design. It contains the
following sections:
•

“About the Virtex-5 FPGA ML561 Memory Interfaces Tool Kit”

•

“Virtex-5 FPGA ML561 Memory Interfaces Development Board”

About the Virtex-5 FPGA ML561 Memory Interfaces Tool Kit
The Virtex-5 FPGA ML561 Memory Interfaces Tool Kit provides a complete development
platform to interface with external memory devices for designing and verifying
applications based on the Virtex-5 LXT FPGA platform. This kit allows designers to
implement high-speed applications with extreme flexibility using IP cores and customized
modules. The Virtex-5 LXT FPGA, with its column-based architecture, makes it possible to
develop highly flexible memory interface applications.
The Virtex-5 FPGA ML561 Memory Interfaces Tool Kit includes the following:
•

Virtex-5 FPGA ML561 Memory Interfaces Development Board (XC5VLX50T-FFG1136
FPGA)

•

5V/6.5 A DC power supply

•

Country-specific power supply line cord

•

RS-232 serial cable, DB9-F to DB9-F

•

Documentation and reference design CD-ROM

Optional items that also support development efforts include:
•

Xilinx® ISE® software

•

JTAG cable

•

Xilinx Parallel IV cable

For assistance with any of these items, contact your local Xilinx distributor or visit the
Xilinx online store at www.xilinx.com.
The heart of the Virtex-5 FPGA ML561 Memory Interfaces Tool Kit is the Virtex-5 FPGA
ML561 Development Board. This manual provides comprehensive information on Rev A3
and later revisions of this board.

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

11

R

Chapter 1: Introduction

Virtex-5 FPGA ML561 Memory Interfaces Development Board
A high-level functional block diagram of the Virtex-5 FPGA ML561 Memory Interfaces
Development Board is shown in Figure 1-1.

External Interfaces:
System ACE Controller,
USB, RS-232, LCD
SSTL18/SSTL2

SSTL18
FPGA #2
XC5VLX50T/
FFG1136

FPGA #3
XC5VLX50T/
FFG1136

72
QDRII SRAM

72

36
RLDRAM II
(CIO)

DDR2 DIMM

DDR2 DIMM

DDR2 DIMM

DDR2 DIMM

DDR2 DIMM

72

32
DDR400 SDRAM

DDR2 SDRAM

32

72

FPGA #1
XC5VLX50T/
FFG1136

HSTL

WIDE
DEEP

Figure 1-1:

UG191_c1_01_020807

Virtex-5 FPGA ML561 Development Board Block Diagram

The Virtex-5 FPGA ML561 Development Board includes the following major functional
blocks:

12

•

Three XC5VLX50T-FFG1136 FPGAs (see DS100, Virtex-5 Family Overview)

•

DDR400 components: 128 MB (32M x 32 bits) at 200 MHz clock speed. See XAPP851,
DDR SDRAM Controller Using Virtex-5 FPGA Devices.

•

DDR2 DIMM: Five PC2-5300 DIMM sockets for up to 2 GB (128M x 144 bits). See
XAPP858, High-Performance DDR2 SDRAM Interface in Virtex-5 Devices.

•

DDR2-667 components: 64 MB (16M x 32 bits) at 333 MHz clock speed

•

QDRII memory: 16 MB (2M x 72 bits) at up to 300 MHz clock speed. See XAPP853,
QDR II SRAM Interface for Virtex-5 Devices.

•

RLDRAM II memory: 64 MB (16M x 36 bits) at up to 300 MHz clock speed. See
XAPP852, RLDRAM II Memory Interface for Virtex-5 FPGAs.

•

One DB9-M RS-232 port and one USB 2.0 port

•

A System ACE™ CompactFlash (CF) Configuration Controller that allows storing
and downloading of up to eight FPGA configuration image files

•

On-board power regulators with ±5% output margin test capabilities

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Virtex-5 FPGA ML561 Memory Interfaces Development Board

Figure 1-2 shows the Virtex-5 FPGA ML561 Development Board and indicates the
locations of the resident memory devices.

32-bit
DDR400
SDRAM

144 bits wide
DDR2
SDRAM
DIMM

32-bit
DDR2
SDRAM

72 bits wide,
up to 4 deep

72-bit
QDRII
SRAM

36-bit
RLDRAM II
UG199_c1_02_050106

S

Ai lN
10 t
hit
/d
h d
F/L
Figure 1-2: Virtex-5 FPGA ML561 Development Board

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

13

R

Chapter 1: Introduction

14

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Chapter 2

Getting Started
This chapter describes the items needed to configure the Virtex-5 FPGA ML561 Memory
Interfaces Development Board. The Virtex-5 FPGA ML561 Development Board is tested at
the factory after assembly and should be received in working condition. It is set up to load
a bitstream from the CompactFlash card at socket J27 through the System ACE controller
(U45).
This chapter contains the following sections:
•

“Documentation and Reference Design CD”

•

“Initial Board Check Before Applying Power”

•

“Applying Power to the Board”

Documentation and Reference Design CD
The CD included in the Virtex-5 FPGA ML561 Memory Interfaces Tool Kit contains the
design files for the Virtex-5 FPGA ML561 Development Board, including schematics,
board layout, and reference design files. Open the ReadMe.rtf file on the CD to review
the list of contents.

Initial Board Check Before Applying Power
Perform these steps before applying board power:
1.

Set up the Configuration Mode jumpers (P27, P46, and P112) for JTAG configuration.
See “Configuration Modes” on page 51 for all available modes for the Virtex-5 FPGA
ML561 Development Board.

2.

Confirm that the JTAG chain jumpers P38, P44, and P109 are connecting pins 1 to 2 and
pins 3 to 4. This way, all three devices are in the chain. Otherwise, the ISE iMPACT
software will not find all three devices to configure. For more information see “JTAG
Chain” on page 52.

3.

Make sure that no inhibit jumpers are present on any of the power supply regulator
modules. For more information, see “Voltage Regulators” on page 34.

4.

The Virtex-5 FPGA ML561 Development Board has a 200 MHz on-board oscillator,
which provides a copy of a differential LVPECL clock to each of the three FPGAs
through a differential clock buffer (ICS853006). There is also a connection to a pair of
SMA connectors (J19, J20) to provide a differential LVDS clock from an off-board signal
generator. Another differential clock buffer (ICS853006) provides a copy of this clock to
each of the three FPGAs. These clocks are available after configuration for the design to
use for various system clocks.

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

15

R

Chapter 2: Getting Started

5.

Insert the CompactFlash card included in the kit into socket J27 on the Virtex-5 FPGA
ML561 Development Board. To select the startup file, check that SW8 is set to position
0.

Applying Power to the Board
The Virtex-5 FPGA ML561 Development Board is now ready to power on. The Virtex-5
FPGA ML561 Development Board is shipped with a country-specific AC line cord for the
universal input 5V desktop power supply. Follow these steps to power up the Virtex-5
FPGA ML561 Development Board:

16

1.

Confirm that the ON-OFF switch, SW5, is in the OFF position.

2.

Plug the 5V desktop power supply into the 5V DC input barrel jack J28 on the Virtex-5
FPGA ML561 Development Board. Plug the desktop power supply AC line cord into
an electrical outlet supplying the appropriate voltage.

3.

Turn SW5 to the ON position. The power indicators for all regulator modules should
come on, indicating output from the regulators. The System ACE status LED D37
comes on when the System ACE controller (U45) extracts the BIT configuration file
from the CompactFlash card to the FPGA. If no CompactFlash card is installed in the
card socket J27 on the Virtex-5 FPGA ML561 Development Board, the red System ACE
error LED D38 flashes.

4.

If a CompactFlash card is not installed in socket J27, a JTAG cable must be used to
configure the FPGAs. To use a Parallel IV cable or other JTAG pod, download the
FPGA configuration bitstream into each FPGA. After the DONE LED (D28) comes on,
the FPGAs are configured and ready to use.

5.

Push the reset button SW4.

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Chapter 3

Hardware Description
This chapter describes the major hardware blocks on the Virtex-5 FPGA ML561
Development Board and provides useful design consideration. It contains the following
sections:
•

“Hardware Overview”

•

“Memory Details”

•

“External Interfaces”

•

“Power Regulation”

•

“Board Design Considerations”

Hardware Overview
The ML561 Development/Evaluation system reference design is implemented with three
XC5VLX50T-FFG1136 devices from the Virtex-5 FPGA family to demonstrate high-speed
external memory application interfaces. The memory technologies supported by the
Virtex-5 FPGA ML561 Development Board are DDR2 SDRAM, DDR400 SDRAM, QDRII
SRAM, and RLDRAM II SDRAM.
Figure 3-1 provides a view of all the major components on ML561 board. It shows the
placement of the three Virtex-5 FPGAs, and the position of the associated major interfaces
for each FPGA.

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

17

R

SSTL2
_M

Chapter 3: Hardware Description

SSTL18
MGT Connections

FPGA #1
LEDs

SSTL2
VTT & VREF

SPY

A1

DIMM1

DIMM2

DIMM3

DIMM4

DIMM5

DDR

FPGA #2

FPGA #1
DDR

SPY
FPGA #2
Test Header 2
LEDs

FPGA #1
LEDs

Test Header 1

A1

SSTL18
_M

SSTL18
VTT & VREF
Config2

12V Banana
Jacks
ON
OFF

External
CLK

Clocks &
Buffers

Config1
AVTTX

AVTRX
FBD
VCC

7SEG2
DIP2

VCCINT

SSTL2

A1

7SEG1

SPY

HSTL

QDRII

12V Input
Jack
5V Banana
Jacks
ON

VVTTR
XC

DIP1

MGT
CLK

DDR2

DDR2
AVC
CPLL

RLDRAM II

FPGA #3
12V -> 5V

QDRII

RLDRAM II

SPY
Test Header 3

VCCAUX /
VCCO
HSTL
VTT & VREF
JTAG Test Header

OFF

3.3V

FPGA #3 LEDs

5V Input
Jack

RS-232
Driver

Serial Header

RESET

System ACE
Controller

Config3
7SEG3 DIP3

Pwr Measure Header

LCD Connector

HSTL

PROG

USB

JTAG
UG199_c3_01_050106

Figure 3-1:

ML561 XC5VLX50T-FFG1136 Board Placement Diagram

FPGA
The ML561 uses three Virtex-5 XC5VLX50T-FFG1136 devices, each in a 1136-pin,
35 mm x 35 mm BGA package. Figure 1-1, page 12 shows the memory devices associated
with the three FPGAs. Refer to Appendix A, “FPGA Pinouts,” for a complete pinout of all
Virtex-5 devices on the board. Refer to Appendix B, “Bill of Materials,” for a list of major
components on the Virtex-5 FPGA ML561 Development Board, including their reference
designators and links to their corresponding data sheets.

18

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Hardware Overview

Memories
Table 3-1 lists the types of memories that the ML561 board supports.
Table 3-1:

Summary of ML561 Memory Interfaces

Memory Type

Maximum Speed

Data Rate

Data Width

I/O Standard

Data/Strobe
Ratios

DDR400 SDRAM

200 MHz

400 Mbps

32

SSTL2

8:1

DDR2 DIMM

333 MHz

667 Mbps

144

SSTL18

8:1

DDR2 SDRAM

333 MHz

667 Mbps

32

SSTL18

8:1

QDRII SRAM

300 MHz

1.2 Gbps

72

HSTL18

18:1, 36:1

RLDRAM II

300 MHz

600 Mbps

36

HSTL18

9:1, 18:1

When a larger data/strobe ratio is implemented, for example, a x36 QDRII device, the
smaller configurations can also be demonstrated by programming the FPGA for a smaller
data width, such as a 9:1 data/strobe ratio for the QDRII device.

DDR400 SDRAM Components
The Virtex-5 FPGA ML561 Development Board has two 200 MHz Micron
MT46V32M16BN-5B (16-bit) DDR400 SDRAM components that provide a 32-bit interface.
Each 16-bit device is packaged in a 60-ball FBGA package, with a common address and
control bus and separate clocks and DQS/DQ signals.

DDR2 DIMM
The Virtex-5 FPGA ML561 Development Board contains five PC-5300 240-pin DIMM
sockets for a maximum data width of 144 bits or a maximum depth of four DIMMs. The
sockets are arranged in a row leading away from the FPGA so they can share common
address and control signals. DIMM1 through DIMM4 share DQ/DQS signals to form a
deep 72-bit memory interface, while DIMM5 has separate DQ/DQS signals.
For the deep DDR2 interface, the sockets are to be populated starting at socket DIMM4.
Table 3-2 illustrates how the sockets should be populated based on the interface wanted.
Table 3-2:

Populating DDR2 DIMM Sockets

DIMM Interface

DIMM Sockets
Populated

Interface Width

One Deep

5 or 4

72-bit

Two Deep

4 and 3

72-bit

Three Deep

4, 3, and 2

72-bit

Four Deep

4, 3, 2, and 1

72-bit

Two Wide

5 and 4

144-bit

Populating the DIMMs in this order is necessary due to the placement of the termination
on the signals being shared. More detail on termination is given in “Board Design
Considerations,” page 36.

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

19

R

Chapter 3: Hardware Description

Wide

DIMM1 (XP5)

DIMM2 (XP4)

DIMM3 (XP3)

DIMM4 (XP2)

DIMM5 (XP1)

Deep

DQ and DQS
BY0-BY7, CB0_7
DQ and DQS
BY8-BY15, CB8_15
Address and Commands

DIMM1 Control
DIMM2 Control
DIMM3 Control
DIMM4 Control
DIMM5 Control

UG199_c3_02_050106

Figure 3-2:

DDR2 Deep and Wide DIMM Sockets

DDR2 SDRAM Components
The ML561 board contains two 333 MHz Micron MT47H32M16CC-3 (16-bit) DDR2
SDRAM components that provide a 32-bit interface to FPGA #1. Each 16-bit device is
packaged in an 84-ball FBGA package, with a common address and control bus and
separate clocks and DQS/DQ signals.

QDRII SRAM
The ML561 board contains a 300 MHz QDRII SRAM interface with a 72-bit Read interface
and a 72-bit Write interface using two Samsung K7R643684M-FC30 components (x36).
They are packaged in a 165-ball FBGA package with a body size of 15 x 17 mm. These two
components share the same address/control signals but have separate clock and data
signals.

RLDRAM II Devices
The ML561 contains a 300 MHz 36-bit RLDRAM II interface using two Micron
MT49H16M18BM-25 devices (x18) packaged in a 144-ball PBGA package. They share a
common address and control bus but have separate clocks and DQS/DQ signals.

20

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Memory Details

Memory Details
DDR400 and DDR2 Component Memories
The FPGA #1 device on the Virtex-5 FPGA ML561 Development Board is connected to
DDR and DDR2 component memories, as shown in Figure 3-3.
Figure 3-3 summarizes the distribution of DDR and DDR2 discrete component interface
signals among the different banks of the FPGA #1 device.
GTP I/O
BANK 25 (40)

BANK 21 (40)

BANK 6 (20)

BANK 4 (20)

BANK 126

BANK 22 (40)

BANK 122

BANK 18 (40)

BANK 118

Global Clock Inputs

BANK 17 (40)

BANK 2 (20)
Voltage Control

BANK 13 (40)

BANK 114

DDR Components
DQ 0, 1, 2

(Configuration)

BANK 11 (40)

BANK 0

DDR Components

BANK 12 (40)

BANK 112

USB Controls

DQ 3 & Controls
BANK 116

BANK 15 (40)

BANK 1 (20)

DDR2 Component

DDR2 Component

DQ 0, 1

Address

BANK 19 (40)

BANK 3 (20)

BANK 20 (40)

DDR2 Component

DDR2 Component

RS232

DQ 2, 3

Controls

Inter-FPGA MII Links

BANK 23 (40)

BANK 5 (20)

BANK 120

BANK 124

UG199_c3_03_050106

Figure 3-3:

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

FPGA #1 Banks for DDR400 and DDR2 Component (Top View)

www.xilinx.com

21

R

Chapter 3: Hardware Description

Table 3-3 describes all signals associated with DDR400 Component memories.
Table 3-3:

DDR400 Component Signal Summary
Board Signal Name(s)

Bits

Description

DDR1_A[13:0]

14

DDR400 Component Address

DDR1_CK[2:1]_[P,N]

4

DDR400 Component Differential Clock

DDR1_[RAS,CAS,WE]_N, DDR1_CKE,
DDR1_BA[1:0], DDR1_BY[0_1,2_3]_CS_N,
DDR1_DM_BY[3:0]

12

DDR400 Component Control Signals

DDR1_DQ_BY0_B[7:0], DDR1_DQS_BY0_P

9

DDR400 Data and Strobe: Byte 0

DDR1_DQ_BY1_B[7:0], DDR1_DQS_BY1_P

9

DDR400 Data and Strobe: Byte 1

DDR1_DQ_BY2_B[7:0], DDR1_DQS_BY2_P

9

DDR400 Data and Strobe: Byte 2

DDR1_DQ_BY3_B[7:0], DDR1_DQS_BY3_P

9

DDR400 Data and Strobe: Byte 3

Notes:
1. DDR1_CKE signal has a weak 4.7KΩ pull-down resistor to meet the memory power-up requirements.

Table 3-4 describes all signals associated with DDR2 Component memories. For a complete
list of FPGA #1 signals and their pin locations, refer to Appendix A, “FPGA Pinouts.”
Table 3-4:

DDR2 Component Signal Summary
Board Signal Name(s)

Bits

Description

DDR2_A[12:0]

13

DDR2 Component Address

DDR2_CK[1:0]_[P,N]

4

DDR2 Component Differential
Clock

DDR2_ODT[1:0], DDR2_[RAS,CAS,WE]_N,
DDR2_CKE, DDR2_BA[1:0], DDR2_CS[1:0]_N,
DDR2_DM_BY[3:0]

14

DDR2 Component Control Signals

DDR2_DQ_BY0_B[7:0], DDR2_DQS_BY0_[P,N]

10

DDR2 Data and Strobe: Byte 0

DDR2_DQ_BY1_B[7:0], DDR2_DQS_BY1_[P,N]

10

DDR2 Data and Strobe: Byte 1

DDR2_DQ_BY2_B[7:0], DDR2_DQS_BY2_[P,N]

10

DDR2 Data and Strobe: Byte 2

DDR2_DQ_BY3_B[7:0], DDR2_DQS_BY3_[P,N]

10

DDR2 Data and Strobe: Byte 3

Notes:
1. DDR2_CKE and DDR2_ODT[1:0] signals have a weak 4.7KΩ pull-down resistor to meet the memory
power-up requirements.

XAPP851, DDR SDRAM Controller Using Virtex-5 FPGA Devices, XAPP858, HighPerformance DDR2 SDRAM Interface in Virtex-5 Devices, and the corresponding demos are
included on the CD shipped with the ML561 Tool Kit. For a complete list of FPGA #1
signals and their pin locations, refer to Appendix A, “FPGA Pinouts.”

22

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Memory Details

DDR2 SDRAM DIMM
The FPGA #2 device on the Virtex-5 FPGA ML561 Development Board is connected to
DDR2 memories. The DDR2 memory interface includes a 144-bit wide DIMM connection
to up to five 240-pin DDR2 DIMM sockets.
For the 144-bit wide DIMM datapath, the data bytes are spread across multiple banks of
the FPGA #2 device. Figure 3-4 summarizes the distribution of DDR2 DIMM interface
signals among the different banks of the FPGA #2 device.
BANK 124

BANK 5 (20)

BANK 23 (40)

BANK 20 (40)

BANK 3 (20)

BANK 19 (40)

DDR2 DIMM

General I/O

DDR2 DIMM

TX 0, 1

BANK 120

RX 0, 1
DQ 8, 9, 10
BANK 116

Controls & DIMM1 Cntl
BANK 1 (20)

BANK 15 (40)

General I/O

DDR2 DIMM

GTP CLK
DQ 0, 1, 2
BANK 112

BANK 12 (40)

BANK 11 (40)

DDR2 DIMM

DDR2 DIMM

DQ 11, 12, CB8_15
BANK 114

(Configuration)
BANK 0

DQ 6, 3 CB0_7
BANK 13 (40)
DDR2 DIMM
DQ 5, 7, 4

BANK 118

BANK 18 (40)

BANK 2 (20)

BANK 17 (40)

DDR2 DIMM

Inter-FPGA MII Links

DDR2 DIMM

DQ 14, 15, 13
BANK 122

Common Controls

BANK 22 (40)

BANK 4 (20)

BANK 21 (40)

DDR2 DIMM

Global Clock Inputs

DDR2 DIMM

DIMM 4 & 5 Cntl
BANK 126

DIMM 1, 2, 3 Cntl
BANK 6 (20)

BANK 25 (40)

UG199_c3_04_050106

Figure 3-4:

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

FPGA #2 Banks for DDR2 DIMM (SSTL18) Interfaces (Top View)

www.xilinx.com

23

R

Chapter 3: Hardware Description

Table 3-5 describes all the signals associated with DDR2 DIMM component memories. For
the Deep DIMM interface to four DIMMs, the individual dedicated control signals are
listed at the bottom of Table 3-5.
Table 3-5:

DDR2 DIMM Signal Summary
Board Signal Name(s)

Bits

Description

DDR2_DIMM_A[15:0]

16

DDR2 DIMM Address

DDR2_DIMM[5:1]_CK[2:0]_[P,N]

30

DDR2 DIMM Differential Clocks: Three copies per
DIMM

DDR2_DIMM_[RAS,CAS,WE,RESET]_N,
DDR2_DIMM[5:1]_CKE[1:0], DDR2_DIMM_BA[2:0],
DDR2_DIMM[5:1]_CS[1:0]_N,
DDR2_DIMM[5:1]_ODT[1:0]

37

DDR2 DIMM Common Control Signals

DDR2_DIMM[1:5]_CS[1:0]_N,
DDR2_DIMM[1:5]_CKE[1:0],
DDR2_DIMM[1:5]_ODT[1:0]

20

DDR2 DIMM Dedicated Control Signals

DDR2_DIMM_LB_BK[11,13,15]_[IN,OUT]

6

Deep DIMMs (DIMM1 through DIMM4) Loopback
Signals

DDR2_DIMM_LB_BK[12,18,20]

3

Wide DIMM (DIMM5) Loopback Signals (Total of six
FPGA pins)

DDR2_DIMM[1:5]_CNTL_PAR,
DDR2_DIMM[1:5]_CNTL_PAR_ERR,
DDR2_DIMM[1:5]_NC_019, DDR2_DIMM[1:5]_NC_102

20

Miscellaneous Place Holder Signals to the Five
DIMMs

DDR2_DIMM_DQ_BY[0:15]_B[7:0],
DDR2_DIMM_DQS_BY[0:15]_L_[P,N],
DDR2_DIMM_DM_BY[0:15]

176

DDR2 DIMM Data, Strobes, and Data Mask: Bytes 0
through 15

DDR2_DIMM_DQ_CB0_7_B[7:0],
DDR2_DIMM_DQS_CB0_7_L_[P,N],
DDR2_DIMM_DM_CB0_7

11

DDR2 DIMM Data, Strobes, and Data Mask: Check
Byte 0

DDR2_DIMM_DQ_CB8_15_B[7:0],
DDR2_DIMM_DQS_CB8_15_L_[P,N],
DDR2_DIMM_DM_CB8_15

11

DDR2 DIMM Data, Strobes, and Data Mask: Check
Byte 1

DDR2_DIMM[1:5]_SA[2:0]

15

Serial PROM Address

DDR2_DIMM_[SCL,SDA]"

2

Serial PROM interface CLK and Data

Notes:
1. DDR2_DIMM_CKE and DDR2_DIMM_ODT signals are connected to a 4.7KΩ pull-down resistor to meet the memory power-up
requirements.

XAPP858, High-Performance DDR2 SDRAM Interface in Virtex-5 Devices and its
corresponding demo are included on the CD shipped with the ML561 Tool Kit.

24

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Memory Details

QDRII and RLDRAM II Memories
Figure 3-5 summarizes the distribution of QDRII and RLDRAM II component interface
signals among the different banks of the FPGA #3 device.
BANK 124

BANK 120

BANK 5 (20)

BANK 23 (40)

BANK 20 (40)

BANK 3 (20)

BANK 19 (40)

RLDII Data

General I/O

QDRII Data
Q1, 3 & D1

DQ 0, 1 & D0
BANK 116

BANK 1 (20)

BANK 15 (40)

System ACE Controls

QDRII Data
D7, 2, 3, 0

BANK 112

BANK 12 (40)

BANK 11 (40)

RLDII Data
DQ 2, 3 & D1

QDRII Data
(Configuration)
BANK 0

BANK 114

Q0, 2 & D6
BANK 13 (40)
QDRII Data
Q4, 5, 6

BANK 118

BANK 18 (40)

BANK 2 (20)

BANK 17 (40)

RLDII Data

Inter-FPGA MII Links

QDRII Data

D 2, 3
BANK 122

Q7 & D4, 5

BANK 22 (40)

BANK 4 (20)

BANK 21 (40)

RLDII Address
and Control

Global Clock Inputs

QDRII Address
and Control

BANK 126

BANK 6 (20)

BANK 25 (40)

UG199_c3_05_050106

Figure 3-5:

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

FPGA #3 Banks for QDRII SRAM and RLDRAM II Interfaces (Top View)

www.xilinx.com

25

R

Chapter 3: Hardware Description

Table 3-6 describes all the signals associated with QDRII component memories.
Table 3-6:

QDRII Component Signal Summary

Board Signal Name(s)

Bits

Description

QDR2_SA[18:0]

19

QDRII Address

QDR2_CK_BY0_3_[P,N],
QDR2_CK_BY4_7_[P,N]

4

QDRII Differential Clock

QDR2_[R,W,DLL_OFF]_N

3

QDRII Control Signals

QDR2_D_BY[3:0]_B[8:0],
QDR2_K_BY0_3_[P,N],
QDR2_BW_BY[3:0]

42

QDRII Write Data, Strobes, and Byte Write: Bytes 3:0

QDR2_Q_BY[3:0]_B[8:0],
QDR2_CQ_BY0_3_[P,N]

38

QDRII Read Data and Strobes: Bytes 3:0

QDR2_D_BY[7:4]_B[8:0],
QDR2_K_BY4_7_[P,N],
QDR2_BW_BY[3:0]

42

QDRII Write Data, Strobes, and Byte Write: Bytes 7:4

QDR2_Q_BY[7:4]_B[8:0],
QDR2_CQ_BY4_7_[P,N]

38

QDRII Read Data and Strobes: Bytes 7:4

Notes:
1. QDR2_SA[18] is incorrectly labeled QDR2_NC_A3 in the ML561 schematics and layout file.

XAPP853: QDR II SRAM Interface for Virtex-5 Devices and its corresponding demo are
included on the CD shipped with the ML561 Tool Kit.
For a complete list of FPGA #3 signals and their pin locations, refer to Appendix A, “FPGA
Pinouts.”
Table 3-7 describes all signals associated with RLDRAM II devices.
Table 3-7:

RLDRAM II Component Signal Summary
Board Signal Name(s)

Bits

Description

RLD2_A[19:0], RLD2_BA[2:0]

23

RLDRAM II Address

RLD2_CK_BY0_1 _[P,N]

2

RLDRAM II Differential Clock

RLD2_CK_BY2_3 _[P,N]

2

RLDRAM II Differential Clock

RLD2_CS_BY[0_1,2_3]_N, RLD2_[REF,WE]_N,
RLD2_DM_BY[0_1,2_3]_N, RLD2_QVLD_BY[0_1,2_3]

8

RLDRAM II Control Signals

RLD2_DQ_BY[1:0]_B[8:0], RLD2_DK_BY0_1_[P,N],
RLD2_QK_BY[1:0]_[P,N]

24

RLDRAM II Data and Strobes: Bytes 1:0

RLD2_DQ_BY[3:2]_B[8:0], RLD2_DK_BY0_1_[P,N],
RLD2_QK_BY[3:2]_[P,N]

24

RLDRAM II Data and Strobes: Bytes 3:2

XAPP852, RLDRAM II Memory Interface for Virtex-5 FPGAs and its corresponding demo are
included on the CD shipped with the ML561 Tool Kit.

26

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

External Interfaces

External Interfaces
The external interfaces of the Virtex-5 FPGA ML561 Development Board are described in
this section.

RS-232
The ML561 board provides an RS-232 serial interface using a Maxim MAX3316ECUP
device. The maximum speed of this device is 460 Kbps.
Hooks are provided to connect and disconnect FPGAs to the RS-232 serial interface, by
placing jumpers on headers based on the FPGA involved in the communication. Only one
FPGA is allowed in the communication, and others must be disconnected before operation.
The ML561 toolkit CD contains code to implement a UART core in one FPGA for
interfacing with a host PC.
The RS-232 interface is accessible through a male DB-9 serial connector (P73).
Table 3-8:

RS-232 Jumper Settings

To Connect FPGA # to
DB-9 (P73)

TX

RX

FPGA #1

P52 Pin 2 -> P52 Pin 1

P53 Pin 2 -> P53 Pin 1

FPGA #2

P52 Pin 2 -> P51 Pin 1

P53 Pin 2 -> P54 Pin 1

FPGA #3

P52 Pin 2 -> P52 Pin 3

P53 Pin 2 -> P53 Pin 3

USB
Full-speed (12 Mbps) USB functionality is proved using a Silicon Laboratories CP2102-GM
USB to RS-232 Bridge. RS-232 and USB signals are converted between one another so a
RS-232 core needs to be implemented in the FPGA for communication. A level translator is
used to convert between the 2.5V I/O of the FPGA and the 3.3V I/O the CP2102 uses.
Hooks are provided to connect and disconnect FPGAs to the USB connection, by placing
jumpers on headers based on the FPGA involved in the communication. Only one FPGA is
allowed in the communication, and others must be disconnected before operation.
The USB interface is accessible through a female ‘A’ USB connector (J29).
Table 3-9:

USB Jumper Settings

To Connect FPGA # to DB-9
(J29)

TX

RX

FPGA #1

P36 Pin 2 -> P36 Pin 1

P22 Pin2 -> P22 Pin 1

FPGA #2

P36 Pin 2 -> P35 Pin 1

P22 Pin2 -> P23 Pin 1

FPGA #3

P36 Pin 2 -> P36 Pin 3

P22 Pin2 -> P22 Pin 3

Clocks
The ML561 board contains a 200 MHz LVPECL clock oscillator and connectors for external
clock inputs for use as system clocks (J19 and J20). The GTP transceivers use their own
clock source that can be provided through SMA connectors on the board (J16 and J21).

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

27

R

Chapter 3: Hardware Description

200 MHz LVPECL Clock
The 200 MHz LVPECL clock source is an Epson EG-2121CA200M-PCHS oscillator (Y1)
with a differential output. The oscillator runs at 200 MHz ± 100 PPM with an operating
voltage of 2.5V ±5%. This output is fed into an ICS853006 LVPECL buffer for generating a
separate differential copy for each FPGA as well as a test point (P59).
Table 3-10:
FPGA #

FPGA 200 MHz IDELAY Reference Clock Source
Signal Name

1

DIRECT_CLK_TO_FPGA1_P

1

DIRECT_CLK_TO_FPGA1_N

2

DIRECT_CLK_TO_FPGA2_P

2

DIRECT_CLK_TO_FPGA2_N

3

DIRECT_CLK_TO_FPGA3_P

3

DIRECT_CLK_TO_FPGA3_N

SMA Clock
Two SMA connectors are provided for the input of an off-board differential clock (J19 and
J20). A differential clock buffer (ICS853006) is used on the board (U17 and U18) to generate
four LVPECL copies of the differential clock signal, one for each FPGA along with a probe
point (P40) for testing. The traces from the buffer are routed as a differential pair to each
FPGA where they are terminated with 100Ω differential termination.
Table 3-11:
FPGA #

FPGA External Clock Sources
Signal Name

1

EXT_CLK_TO_FPGA1_P

1

EXT_CLK_TO_FPGA1_N

2

EXT_CLK_TO_FPGA2_P

2

EXT_CLK_TO_FPGA2_N

3

EXT_CLK_TO_FPGA3_P

3

EXT_CLK_TO_FPGA3_N

33 MHz Clock
A single-ended 33 MHz Epson SG-8002CA oscillator is provided on the board (Y2) for
testing purposes. Four copies of this clock are generated using a clock buffer (ICS8304) on
the board, one per FPGA along with a probe point for testing (P41).
The application using this clock source as an input to the PLL on the Virtex-5 device has
not yet been fully verified.

28

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

External Interfaces

Table 3-12:

FPGA Slow Clock Sources

FPGA

Signal Name

1

FPGA1_LOW_FREQ_CLK

2

FPGA2_LOW_FREQ_CLK

3

FPGA3_LOW_FREQ_CLK

33 MHz System ACE Controller Oscillator
A single-ended 33 MHz Epson SG-8002CA oscillator is provided on the board (Y3) as a
clock source for System ACE functionality.

GTP Clocks
Two SMA connectors are provided for the input of an off-board differential clock (J16 and
J21). A differential clock buffer (ICS8543BG) is used on the board (U20) to generate four
LVDS copies of the differential clock signal, two for FPGA #1, one for FPGA #2, and one for
FPGA #3.
A header is used to select between a clock forwarded by the GTP or from the external clock
source used to provide a clock to the FPGA logic.

User I/Os
This subsection describes the devices that connect to the User I/Os of the ML561 board.
These I/Os are provided to ease hardware development using the ML561.

General-Purpose Headers
The 16-pin test headers are surface mounted, one per FPGA. Of the two bytes of test
signals, traces are matched for signals within a byte.
Table 3-13:

Test Headers

Header Signal Description

Location

Header Pin #

FPGA1_TEST_HDR_BY0_B[0:7]

P20 (TEST1)

Odd pins: 1, 3, 5, 7, 9, 11, 13, 15

FPGA1_TEST_HDR_BY1_B[0:7]

P20 (TEST1)

Even pins: 2, 4, 6, 8, 10, 12, 14, 16

FPGA2_TEST_HDR_BY0_B[0:7]

P21 (TEST2)

Odd pins: 1, 3, 5, 7, 9, 11, 13, 15

FPGA2_TEST_HDR_BY1_B[0:7]

P21 (TEST2)

Even pins: 2, 4, 6, 8, 10, 12, 14, 16

FPGA3_TEST_HDR_BY0_B[0:7]

P93 (TEST3)

Odd pins: 1, 3, 5, 7, 9, 11, 13, 15

FPGA3_TEST_HDR_BY1_B[0:7]

P93 (TEST3)

Even pins: 2, 4, 6, 8, 10, 12, 14, 16

DIP Switch
One four-position DIP switch per FPGA (for a total of three) is available to externally pull
up or pull down a signal on the FPGA. This can be used to manually set values used by the
design running on the FPGA.

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

29

R

Chapter 3: Hardware Description

Seven-Segment Displays
One seven-segment display per FPGA (for a total of three) is available for use. The red
Stanley-Electric NAR131SB displays are active Low, using seven inputs to display a
character or number plus another input for a decimal point.

7SEG_0_N

7SEG_5_N

7SEG_1_N

7SEG_6_N

7SEG_4_N

7SEG_2_N

7SEG_3_N

7SEG_DP_N
UG199_c3_06_050106

Figure 3-6:

Seven-Segment Display Signal Mapping

Light Emitting Diodes (LEDs)
Each FPGA is able to control four active-high green LEDs. The green is used to distinguish
the User LEDs from the blue system LEDs on the Virtex-5 FPGA ML561 Development
Board.

Pushbuttons
The ML561 board contains two momentary pushbuttons. Their functions and locations are
described in Table 3-14.
Table 3-14:
Button

User Pushbuttons
Description

Pin Connection

SW7

PROG_B: Configure FPGA

System ACE Controller: Pin 33

SW4

RESET_N: Reset the FPGA designs

FPGA #1: AH14
FPGA #2: AH14
FPGA #3: AH14

The Reset signal goes to a buffer (U32) that provides a separate copy of Reset to each
FPGA.

30

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

External Interfaces

Power On or Off Slide Switch
The power on or off slide switch is a DPST slide switch used to apply input power to the
board. While the board contains two such switches, the 5V switch is primarily used to
supply 5V power to the board, whereas the 12V switch is available for testing only.

Soft Touch Probe Points
Soft Touch E5396A Probeless connection points are provided for monitoring FPGA #2 and
FPGA #3 test signals with a compatible Agilent logic analyzer. FPGA #2 uses separate test
signals for soft touch pins, while FPGA #3 shares the general-purpose test header signals
with soft touch pins due to lack of available I/O pins.

Power Measurement Header
The ML561 comes with a 3M Pak 100 power measurement header to enable easy
measurement of the power being consumed by the devices on the ML561. Each power
regulator uses an Isotek Kelvin current sense resistor (SMV-R010-0.5) in the path from the
output of the regulator to the power plane. The power can be computed by measuring the
voltage drop across each of these resistors.

RKELVIN = 10 mΩ
+5V or +12V

MARGIN+

VIN

MARGIN-

VOUT

VCCX

VCCXXPR

Voltage
Regulator

1KΩ

To FPGA or
Other Device

VCCXX Mon

VCCXX SenseRSET

VCCXX Sense+

To
Monitor
Cable

UG199_c3_07_050106

Figure 3-7:

Virtex-5 FPGA ML561 Development Board Power Measurement System

Table 3-15:

Power Measurement Header Pins (P102)

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

Header Signal

Power Header Pin #

VCC1V0_SENSE+

1

VCC1V0_SENSE-

2

VCC1V0_MON

3

VCC2V5_SENSE+

5

VCC2V5_SENSE-

6

VCC2V5_MON

7

VCC3V3_SENSE+

9

VCC3V3_SENSE-

10

VCC3V3_MON

11

www.xilinx.com

31

R

Chapter 3: Hardware Description

Table 3-15:

Power Measurement Header Pins (P102) (Continued)
Header Signal

Power Header Pin #

VCC1V8_SENSE+

13

VCC1V8_SENSE-

14

VCC1V8_MON

15

VCC1V5_SENSE+

17

VCC1V5_SENSE-

18

VCC1V5_MON

19

VCC2V6_SENSE+

21

VCC2V6_SENSE-

22

VCC2V6_MON

23

VCC5_SENSE+

25

VCC5_SENSE-

26

VCC5_MON

24

VCC5

20

GND

4

GND

8

GND

12

GND

16

Liquid Crystal Display Connector
Previous memory boards such as the ML461 had a DisplaytechQ 64128E-FC-BC-3LP
64x128 LCD panel. This display was removed from the ML561, but the connection is still
available for use with embedded systems if the user connects the display to connector
(P104). The LCD panel needs to hang off the edge of the board as shown in Figure 3-8.

32

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

OFF

Power Regulation

A1

QDRII

12V Input
Jack
5V Banana
Jacks
ON

7SEG1

SPY

HSTL

RLDRAM II

FPGA3
12V -> 5V

QDRII

RLDRAM II

SPY
Test Header 3

Serial Header

VCCAUX /
VCCO

RESET

HSTL
VTT & VREF

System ACE
Controller

JTAG Test Header
OFF

3.3V

FPGA3 LEDs

5V Input
Jack

RS232
Driver

Config3
7SEG3 DIP3

Pwr Measure Header

LCD Connector

HSTL

PROG

USB

JTAG

LCD
UG199_c3_08_050106

Figure 3-8:

LCD Panel Connector for Possible LCD Support

The product specification at
http://www.displaytech.com.hk/pdf/graphic/64128e%20series-v10.PDF provides more
information. Appendix C, “LCD Interface,” describes the LCD operation in detail.

Power Regulation
This section describes the devices that supply power to the Virtex-5 FPGA ML561
Development Board. For electrical requirements and power consumption, see Chapter 4,
“Electrical Requirements.”

Power Distribution
The ML561 board uses +5V to drive numerous voltage regulators. Figure 3-9 shows a
general overview of the power distribution system.
Board Power
3.3V

+5V
Slide
Switch
12V -> 5V

+12V
Slide
Switch

To Devices
MGT
Power

MGT Power

FPGA Power
VCCINT or VCCAUX/VCCO

To All FPGAs

FPGA Power
SSTL18, HSTL, or SSTL2

To FPGAs
To Memories

Memory Power
SSTL18, HSTL, or SSTL2

VTT
VREF

VTT
VREF
UG199_c3_09_050106

Figure 3-9:

Virtex-5 FPGA ML561 Development Board Power Distribution System

The Virtex-5 FPGA ML561 Development Board is powered through the +5V input jack
(J28) from the power supply included in the ML561 Tool Kit. Alternatively, the +5V can

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

33

R

Chapter 3: Hardware Description

also be supplied from a bench supply using the two banana jacks: J25 (RED) for +5V and
J24 (BLACK) for GND.
The Rev-A assembly of the Virtex-5 FPGA ML561 Development Board does not support
the +12V input via jack J23 or via banana jacks J18 (RED) for +12V and J17 (BLACK) for
GND.
The memory and FPGAs use separate power supplies for SSTL18, HSTL, and SSTL2,
respectively. Thus the power being consumed can be easily measured for each using the
power measurement header provided on the ML561.

Voltage Regulators
The +5V voltage source is supplied as input to nine on-board regulator modules. Six of
those modules (TI PTH05010-WAZ) are used to generate the +1.0V, +2.5V, and +1.8V for
SSTL18 at FPGA #1 and FPGA #2, +1.8V for HSTL18 at FPGA #3, +2.6V for SSTL2 at
FPGA #1, and +3.3V voltages for the GTP power supplies, LEDs, etc. The remaining three
modules (TI PTH05000-ADJ) are used to generate +1.8V for SSTL18 at the memories, +1.8V
for HSTL at the memories, and +2.6V for SSTL2 at the memories.
An additional three bulk voltage regulators (Fairchild FN6555) are used to generate
termination (VTT) and reference (VREF) voltages each for the SSTL2, SSTL18, and HSTL
power levels. By design, these voltage levels are half of the input reference voltage being
supplied by the memory power supplies.
The TI PTH05010-WAZ and TI PTH05000-ADJ regulator modules require a fixed 5V input.
The output is adjustable over a range of 0.9V to 3.6V by changing the resistor tied between
pin 4 and GND. The difference between these two modules is that the PTH05010-WAZ
output voltage can be margined up to+ 5% of the nominal value by driving pin 10 to GND
(or digital Low), or margined down to -5% of the nominal value by driving pin 9 Low. The
PTH05010-WAZ also has a tracking feature that can be used to track another voltage
source.
TRACK
VMARGIN_DN_xxxx_N
VMARGIN_UP_xxxx_N
10
1

2

5V

9

8

GND MRGNUP MRGNDN TRACK

PTH05010
Voltage Regulator

VIN

INHIBIT VO_ADJ VO_SENSE
3

+

4

GND

VOUT

7

6

5

+
CIN
470 μF

Inhibit
Jumper

RSET

COUT
330 μF
(optional)

UG199_c3_10_050106

Figure 3-10:

PTH05010 Voltage Regulator

There are two ways to apply the digital controls to the margin input pins of the PTH05010:
either from FPGA #1 or manually with jumpers.

34

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Power Regulation

The FPGA can drive VMARGIN_DN_xxxx_N and VMARGIN_UP_xxxx_N signals, where
xxxx indicates one of the six main power regulators: SSTL2, HSTL, SSTL18, VCC1V0,
VCC2V5, and VCC3V3.
Table 3-16:

Manual Voltage Margining

VMARGIN_UP_N

VMARGIN_DN_N

Output Voltage

High

High

Nominal

High

Low

-5%

Low

High

+5%

Low

Low

Not Applicable

If both voltage-margining inputs to the power regulator are pulled Low, the output voltage
is close to nominal but has the possibility of a slightly higher error in the output voltage.
The power modules use a low-leakage open-drain control signal to control the voltage
margining. In the FPGA, this can be approximated by using a control signal that drives the
output Low when active and does not drive the signal at all when inactive (highimpedance output).
Three-pin headers are available for performing manual voltage margining, using jumpers
to select between Nominal, -5%, and +5%. Table 3-17 shows the jumper settings.
Table 3-17:

FPGA #1 Signals and On-Board Jumpers for Voltage Margining

Power Regulator

Signal Name

Jumper Setting

VCCINT (VR6)

VMARGIN_UP_VCC1V0_N

P48: 1 -> 2

VMARGIN_DN_VCC1V0_N

P48: 3 -> 2

VMARGIN_UP_SSTL18_N

P4: 1 -> 2

VMARGIN_DN_SSTL18_N

P4: 3 -> 2

VMARGIN_UP_SSTL2_N

P450 1 -> 2

VMARGIN_DN_SSTL2_N

P50: 3 -> 2

VMARGIN_UP_HSTL_N

P58: 1 -> 2

VMARGIN_DN_HSTL_N

P58: 3 -> 2

VMARGIN_UP_VCC2V5_N

P69: 1 -> 2

VMARGIN_DN_VCC2V5_N

P69: 3 -> 2

SSTL18 (VR1)

SSTL2 (VR9)

HSTL (VR10)

VCCAUX (VR12)

The TI PTH05010-WAZ and TI PTH05000-ADJ regulator outputs can be enabled or
inhibited through the use of on-board two-pin jumpers. The inhibit jumpers use the
following conventions:
•

Jumper OFF = Enabled

•

Jumper ON = Inhibited

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

35

R

Chapter 3: Hardware Description

Table 3-18 summarizes the inhibit headers.
Table 3-18:

Headers for Voltage Regulator Inhibition

Power Regulator

Inhibit Header

VCCINT (VR6)

P63

SSTL18 (VR1)

P11

SSTL18_M (VR4)

P32

SSTL2 (VR9)

P68

SSTL2_M (VR2)

P5

HSTL (VR10)

P74

HSTL_M (VR14)

P105

VCCAUX (VR12)

P79

VCC3V3 (VR13)

P101

Board Design Considerations
UG086, Memory Interface Generator (MIG) User Guide includes PCB implementation rules
and guidelines to be followed for designing a board for a MIG reference design.
The Virtex-5 FPGA ML561 Development Board design allows implementation of DCI
termination scheme at the FPGA for each of the memory interfaces on the board. A
preliminary analysis of the Weighted Average Simultaneously Switching Outputs
(WASSO) for all three Virtex-5 devices indicates that the SSO guidelines are met for the
current pinout. The following factors helped to reduce the SSO noise as compared to the
Virtex-4 FPGA ML461 board implementation:
•

SparseChevron pinout resulting in larger number of Power/GND pin pairs per bank

•

A revised higher SSO allowance per Power/GND pair for SparseChevron packages

•

Reduced thickness of the board (74 mils vs. 98 mils) resulting in reduced via
inductance

External terminations at both the memory and FPGA are provided for data signals for
most of the memory interfaces on the Virtex-5 FPGA ML561 Development Board layout.
The external VTT termination is implemented with a single 50Ω termination to the VREF
level. See Chapter 5, “Signal Integrity Recommendations,” for specific recommendations
and guidelines for terminations.
These are VTT end terminations to the respective voltage levels for SSTL2, SSTL18, and
HSTL signals. There are two topologies of end terminations for data signals:
1.

Fly-by termination: The parallel termination is placed after the receiver pin.

2.

Non-fly-by termination: The parallel termination is placed between the driver and the
receiver along the trace as close to the receiver pin as possible. Also the stub from
signal trace to the termination resistor is kept very short, within 0.1 inch.

For Read data, terminations at the FPGA have non-fly-by termination topology. These
terminations can be selectively depopulated on the ML561 board when DCI termination is
implemented inside FPGA for received data. Due to non-fly-by termination topology, the
result is a minimal stub for the signal, thus preserving good signal integrity for read data.

36

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Board Design Considerations

For Write data and terminations at the memory, if the trace length from the receiver pin to
the termination resistor can be guaranteed to be within 0.3 inches, then the fly-by
termination scheme is implemented. Otherwise, the non-fly-by termination topology is
implemented for Write data at the memory end.
The physical dimensions of the raw PCB are 12.75 inches x 11.75 inches. With the
overhangs due to edge connectors, the actual size of the fully assembled board is
approximately 13 inches x 12 inches, with 1.5 inches height allowance for the DIMM
modules. This 14-layer board has 6 signal layers, 4 GND layers, and 4 power planes and
uses Polyclad 370HR material for lead-free assembly. Figure 3-11 shows a stack-up
diagram of the ML561 Revision A PCB.
Refer to UG203, Virtex-5 PCB Designer’s Guide for more information on the PCB design
using Virtex-5 devices.
1.0 oz, TOP, Z0 = 50Ω, width = 6 mils
3.8 mils, Er = 4.4
1.0 oz, 02_GND1
4 mils, Er = 4.4
0.5 oz, 03_INR1, Z0 = 50Ω, width = 4.5 mils
5.3 mils, Er = 4.4
1.0 oz, 04_PWR1
8 mils, Er = 4.4
0.5 oz, 05_INR2, Z0 = 50Ω, width = 4.5 mils
3.2 mils, Er = 4.4
1.0 oz, 06_GND2
3 mils, Er = 4.4
1.0 oz, 07_PWR2
73.90 ±7 mils

3.3 mils, Er = 4.4
1.0 oz, 08_PWR3
3 mils, Er = 4.4
1.0 oz, 09_GND3
3.2 mils, Er = 4.4
0.5 oz, 10_INR5, Z0 = 50Ω, width = 4.5 mils
8 mils, Er = 4.4
1.0 oz, 11_PWR4
5.3 mils, Er = 4.4
0.5 oz, 12_INR6, Z0 = 50Ω, width = 4.5 mils
4 mils, Er = 4.4
1.0 oz, 13_GND4
3.8 mils, Er = 4.4
1.0 oz, BOTTOM, Z0 = 50Ω, width = 6 mils
UG199_c3_11_102407

Figure 3-11:

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

ML561 Revision A PCB Stack-Up

www.xilinx.com

37

R

Chapter 3: Hardware Description

Table 3-19 shows the details of the dielectric material and construction for each layer and
the controlled impedance values for the signal layers.
Table 3-19:

ML561 Revision A PCB Controlled Impedance

Seq #

Layer
Name

Type

Usage

1

TOP

Metal

Signal

Dielectric

Substrate

Metal

Plane

Dielectric

Substrate

Metal

Signal

Dielectric

Substrate

Metal

Plane

Dielectric

Substrate

Metal

Signal

Dielectric

Substrate

Metal

Plane

Dielectric

Substrate

Metal

Plane

Dielectric

Substrate

Metal

Plane

Dielectric

Substrate

Metal

Plane

Dielectric

Substrate

Metal

Signal

Dielectric

Substrate

Metal

Plane

Dielectric

Substrate

Metal

Signal

Dielectric

Substrate

Metal

Plane

Dielectric

Substrate

Metal

Signal

2
3

02_GND1

4
5

03_INR1

6
7

04_PWR1

8
9

05_INR2

10
11

06_GND2

12
13

07_PWR2

14
15

08_PWR3

16
17

09_GND3

18
19

10_INR5

20
21

11_PWR4

22
23

12_INR6

24
25

13_GND4

26
27

38

BOTTOM

Substrate
Cu
Weight Thickness
(mils)
(oz.)
1.0

Er


3.8
1.0

Test
Z0
Width
(ohms)
(mils)
6

50 ±5

0.5

1.0

Ground Plane #1

4.4


5.3

4.5

50 ±5

0.5

1.0

Split Power Plane #1

4.4


3.2

4.5

50 ±5

1.0

Ground Plane #2

4.4


3.3
1.0

Split Power Plane #2

4.4


3
1.0

Split Power Plane #3

4.4


3.2
0.5

1.0

Ground Plane #3

4.4


8

4.5

50 ±5

0.5

1.0

Split Power Plane #4

4.4


4

4.5

50 ±5

1.0

Ground Plane #4

4.4


www.xilinx.com

Stripline Signal - Inner #4

4.4


3.8

Stripline Signal - Inner #3

4.4


5.3

Stripline Signal - Inner #2

4.4


3

Stripline Signal - Inner #1

4.4


8

Microstrip Signal Top

4.4


4

Comment

6

50 ±5

Microstrip Signal Bottom

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Chapter 4

Electrical Requirements
This chapter provides the electrical requirements for the Virtex-5 FPGA ML561
Development Board. It contains the following sections:
•

“Power Consumption”

•

“FPGA Internal Power Budget”

Power Consumption
Table 4-1 lists the operating voltages, maximum currents, and power consumption used by
the ML561 board devices. The Virtex-5 FPGA ML561 Development Board has provisions
for two power inputs: a 5V power supply and a 12V power supply. The maximum rating of
a commercially available 5V power supply is limited to 8A, or a 40W maximum capacity.
This power supply is similar to the 5V brick used for previous memory tool kits, for
example, ML461. This tool kit expects the Virtex-5 FPGA ML561 Development Board to
exercise only one external memory interface at a time. In this case, the total power
consumption of the board stays within the 40W limit.
As shown in Table 4-1, if all three FPGA devices and their associated memory devices are
activated simultaneously, then the total power consumption is approximately 57W, which
exceeds the 40W capacity of the 5V power brick. So an alternate 12V power input jack (J23)
is provided on the Virtex-5 FPGA ML561 Development Board to hook up a 12V power
brick, for example, CUI DTS120500U with a 60W capacity. The 12V is converted to 5V
using the TI PTH12010WAS power module (VR11), which can supply up to 12A of current
at 5V, or a 60W capacity.

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

39

R

Chapter 4: Electrical Requirements

Table 4-1:

ML561 Power Consumption

Device Description

Quantity Voltage (V)

Current Power
(mA)
(W)

Source

Total Available Power
5V Power Supply

1

5.0

8000

40.0

Bellus Power SPD-050-5

12V Power Supply

1

12.0

5000

60.0

CUI DTS120500U

XC5VLX50T-FFG1136:
FPGA #1 (DDR400)

1

1.0, 2.5, 2.6

1887

3.7

DDR x16 Memory

2

2.6

210

1.1

Micron DDR Component Data Sheet

DDR Comp VTT Termination

60

1.2

16

1.2

All signals. ±608 mV swing around VTT

XC5VLX50T-FFG1136:
FPGA #1 (DDR2)

1

1.0, 1.8[S],
2.5

1991

3.1

DDR2 x16 Memory

2

1.8

250

0.9

Micron DDR2 Component Data Sheet

DDR2 Comp VTT Termination

25

1.2

16

0.5

Addr/Cntl: ± 603 mV swing around VTT

XC5VLX50T-FFG1136:
FPGA #2 (DDR2)

1

1.0, 1.8[S],
2.5

6420

10.2

DDR2 DIMM

2

1.8

1755

6.3

Micron DDR2 DIMM Data Sheet

160

1.2

16

3.1

All signals: ± 603 mV swing around VTT

XC5VLX50T-FFG1136:
FPGA #3 (QDRII)

1

1.0, 1.8[H],
1.8[S], 2.5

3917

6.3

QDRII Memory [H]

2

1.8

950

3.4

Samsung QDRII Data Sheet

175

1.0

16

2.8

All signals. ± 500 mV swing around VTT

XC5VLX50T-FFG1136:
FPGA #3 (RLDRAM II)

1

1.0, 1.8[H],
2.5

3069

4.5

RLDRAM II Memory

2

1.8

920

3.3

Micron RLDRAM II Data Sheet

RLDRAM II VTT Termination

60

1.0

16

1.0

All signals. ± 500 mV swing around VTT

Clock Buffer

1

3.3

23

0.1

ICS8304 Data Sheet

Differential Clock Buffer

2

3.3

115

0.8

ICS853006 Data Sheet

System ACE Controller

1

3.3

200

0.7

DS080, System ACE CompactFlash Solution

200 MHz Oscillator

1

2.5

30

0.1

Epson EG2121CA Data Sheet

33 MHz Oscillator

2

3.3

45

0.3

Epson SG-8002CA Data Sheet

Power Consumed
DDR400 Component Interface
Xilinx Power Estimator

DDR2 Component Interface
Xilinx Power Estimator

DDR2 DIMM Interface

DDR2 DIMM VTT Termination

Xilinx Power Estimator

QDRII Memory Interface

QDRII VTT Termination

Xilinx Power Estimator

RLDRAM II Memory Interface
Xilinx Power Estimator

Miscellaneous Circuit

Total Power Consumed

40

53.2

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Table 4-1:

Power Consumption

ML561 Power Consumption (Continued)

Device Description

Quantity Voltage (V)

Current Power
(mA)
(W)

Source

Power Modules Capacity
VCCINT Power Plane (1.0V)

1

1.00

15000

15.0

HSTL FPGA Power Plane (1.8V)

1

1.80

15000

27.0

HSTL Memory Power Plane (1.8V)

1

1.80

6000

10.8

TI PTH05000 6A Module Data Sheet

HSTL _VREF Power Plane (0.9V)

1

0.90

3000

2.7

Fairchild FN6555 Data Sheet

SSTL18 FPGA Power Plane (1.8V)

1

1.80

15000

27.0

TI PTH05010 15A Module Data Sheet

SSTL18 Memory Power Plane (1.8V)

1

1.80

6000

10.8

TI PTH05000 6A Module Data Sheet

SSTL18 _VREF Power Plane (0.9V)

1

0.90

3000

2.7

Fairchild FN6555 Data Sheet

SSTL2 FPGA Power Plane (2.6V)

1

2.60

15000

39.0

TI PTH05010 15A Module Data Sheet

SSTL2 Memory Power Plane (2.6V)

1

2.60

6000

15.6

TI PTH05000 6A Module Data Sheet

SSTL2 _VREF Power Plane (1.3V)

1

1.30

3000

3.9

Fairchild FN6555 Data Sheet

2.5V Power Plane

1

2.50

15000

37.5

TI PTH05010 15A Module Data Sheet

3.3V Power Plane

1

3.30

15000

49.5

12V-to-5V Converter

1

5.00

12000

60.0

TI PTH05010 15A Module Data Sheet

TI PTH12010 12A Module Data Sheet

Notes:
1. [S] = 1.8V power for SSTL18 plane.
2. [H] = 1.8V power for HSTL18 plane.

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

41

R

Chapter 4: Electrical Requirements

Table 4-2 lists the 12 different power planes on the Virtex-5 FPGA ML561 Development
Board. For the SSTL2, SSTL18, and HSTL power, separate power modules are
implemented for VCCO to FPGA, and VDD to memory, allowing for ease of power
measurement for the FPGAs. The power modules for VCCO inputs are implemented with
TI PTH05010 modules, which have provisions for ± 5% voltage margining pins.
Table 4-2:

Power Planes
VRM REFDES

Stack-Up
Layer

VCCINT Power Plane (1.0V)

VR6

Layer 4

SSTL18 FPGA Power Plane (1.8V)

VR1

Layer 7

HSTL FPGA Power Plane (1.8V)

VR10

Layer 8

VCCAUX Power Plane (2.5V)

VR12

Layer 11

SSTL2 FPGA Power Plane (2.6V)

VR9

Layer 8

TTL Power Plane (3.3V)

VR13

Layer 11

SSTL18 Memory Power Plane (1.8V)

VR4

Layer 7

HSTL Memory Power Plane (1.8V)

VR14

Layer 8

SSTL2 Memory Power Plane (2.6V)

VR2

Layer 8

Voltage Regulator Module (VRM) Part

TI PTH05010 15A Modules

TI PTH05000 6A Modules

Power Plane

SSTL18_VREF Power Plane (0.9V)
SSTL18_VTT Power Plane (0.9V)
Fairchild FN6555 3A Bus Term Regulators
(Separate outputs for VTT and VREF)

HSTL_VREF Power Plane (0.9V)
HSTL_VTT Power Plane (0.9V)
SSTL2_VREF Power Plane (1.3V)
SSTL2_VTT Power Plane (1.3V)

U14

U42

U2

Layer 8
Layer 8
Layer 7
Layer 7
Layer 7
Layer 7

Each of the three Fairchild FN6555 Bus Terminator Regulators has two voltage outputs:
one each for VREF and VTT. The FN6555 regulator is a push-pull device rated at ± 3A for the
VTT output and 3 mA for the VREF output.
Because the VREF voltage is used by the FPGA and memory devices only as reference, the
power supply does not source any real current. Thus the 3 mA capacity for the VREF output
is considered sufficient.
The VTT voltage is guaranteed to within ± 20 mV of the VREF output by the FN6555
regulator. The minimum driver output voltage swing around VREF is specified for the
SSTL18, SSTL2, and HSTL I/O standards as:
•

SSTL2: ± 608 mV

•

SSTL18: ± 603 mV

•

HSTL: ± 500 mV (for HSTL18)

For a given memory interface, the maximum number of single-ended (non-differential)
signals that might need to be pulled up or down at a time for QDRII is 144 data bits and
approximately 30 address and control signals. The differential pair signals offset for the
sink and source of current. With a continuous current capacity of 3A for the FN6555
regulator, the regulator can supply up to (3000 / 175) = 17 mA of current per signal. The
maximum drive strength for a driver is specified at 16 mA. For a 50Ω VTT termination, this

42

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Power Consumption

current can support a voltage swing of up to (16 mA * 50Ω) = 800 mV, which is sufficient to
meet the output voltage specifications for SSTL18, SSTL2, and HSTL18 I/O standards.
Table 4-3 separates the power consumption information from Table 4-1 according to the
nine TI power modules for the first set of nine power planes and the three Fairchild
regulators for the VTT power planes. The positive values in the Excess Power column of
Table 4-3 show that each of the 14 modules can supply the necessary power for the
corresponding power plane.
Table 4-3:

ML561 Power Plane Capacities
Device Description

Quantity

Excess
Voltage Current Power
Power
(V)
(mA)
(W)
(W)

Source

Total Available Power
5V Power Supply

1

5.0

8000

40.0

Bellus Power SPD-050-5

12V Power Supply

1

12.0

5000

60.0

CUI DTS120500U

XC5VLX50T-FFG1136: FPGA #1
(DDR400, DDR2)

1

1.0

2289

2.3

XC5VLX50T-FFG1136: FPGA #2
(DDR2 DIMM)

1

1.0

1945

1.9

XC5VLX50T-FFG1136: FPGA #3
(QDRII and RLDRAM II)

1

1.0

2675

2.7

1

1.0

15000

15.0

XC5VLX50T-FFG1136: FPGA #3
(QDRII and RLDRAM II)

1

1.8

3876

7.0

HSTL FPGA Power Plane (1.8V)
Capacity

1

1.8

15000

27.0

QDRII Memory [H]

2

1.8

950

3.4

Samsung QDRII Data Sheet

RLDRAM II Memory

2

1.8

920

3.3

Micron RLDRAM II Data Sheet

HSTL_Mem Power Plane (1.8V)
Capacity

1

1.8

6000

10.8

QDRII VTT Termination

175

1.0

16

2.8

All signals. ± 500 mV swing
around VTT.

RLDRAM II VTT Termination

60

1.0

16

1.0

All signals. ± 500 mV swing
around VTT.

HSTL _VREF Power Plane (0.9V)

1

0.9

3000

2.7

XC5VLX50T-FFG1136:
FPGA #1 (DDR2)

1

1.8

1011

1.8

XC5VLX50T-FFG1136:
FPGA #2 (DDR2 DIMM)

1

1.8

4258

7.7

Power Consumed by Power Plane

VCCINT Power Plane (1.0V) Capacity

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

Xilinx Power Estimator
Xilinx Power Estimator
Xilinx Power Estimator

8.1

TI PTH05010 15A Module Data
Sheet
Xilinx Power Estimator

20.0

4.1

-0.1

TI PTH05010 15A Module Data
Sheet

TI PTH05000 6A Module Data
Sheet

Fairchild FN6555 Data Sheet
Xilinx Power Estimator
Xilinx Power Estimator

43

R

Chapter 4: Electrical Requirements

Table 4-3:

ML561 Power Plane Capacities (Continued)
Device Description

SSTL18 FPGA Power Plane (1.8V)
Capacity

Quantity

Excess
Voltage Current Power
Power
(V)
(mA)
(W)
(W)

TI PTH05010 15A Module Data
Sheet

1

1.8

15000

27.0

2

1.8

250

0.9

Micron DDR2 Component Data
Sheet

DDR2 DIMM

2

1.8

1755

6.3

Micron DDR2 DIMM Data Sheet

SSTL18_Mem Power Plane (1.8V)
Capacity

1

1.8

6000

10.8

DDR2 Comp VTT Termination

25

1.2

16

0.5

Addr/Cntl: ± 603 mV swing
around VTT

DDR2 DIMM VTT Termination

160

1.2

16

3.1

All signals: ± 603 mV swing
around VTT

SSTL18 _VREF Power Plane (0.9V)

1

0.9

3000

2.7

XC5VLX50T-FFG1136: FPGA #1
(DDR400, DDR2)

1

2.5

609

1.5

XC5VLX50T-FFG1136: FPGA #2
(DDR2 DIMM)

1

2.5

218

0.5

XC5VLX50T-FFG1136: FPGA #3
(QDRII and RLDRAM II)

1

2.5

435

1.1

Differential Clock Buffer

2

2.5

115

0.8

ICS853006 Data Sheet

200 MHz Osc

1

2.5

30

0.1

Epson EG2121CA Data Sheet

1

2.5

15000

37.5

XC5VLX50T-FFG1136: FPGA #1
(DDR400)

1

2.6

950

2.5

SSTL2_FPGA Power Plane (2.6V)
Capacity

1

2.6

15000

39.0

2

2.6

210

1.1

1

2.6

6000

15.6

DDR Comp VTT Termination

60

1.2

16

1.2

SSTL2 _VREF Power Plane (1.3V)

1

1.3

3000

3.9

Clock Buffer

1

3.3

23

0.1

DDR2 x16 Memory

2.5V Power Plane Capacity

DDR x16 Memory
SSTL2_Mem Power Plane (2.6V)
Capacity

44

www.xilinx.com

17.5

Source

3.6

-0.9

TI PTH05010 15A Module Data
Sheet

Fairchild FN6555 Data Sheet
Xilinx Power Estimator
Xilinx Power Estimator
Xilinx Power Estimator

34.1

TI PTH05010 15A Module Data
Sheet
Xilinx Power Estimator

36.5

TI PTH05010 15A Module Data
Sheet
Micron DDR Component Data
Sheet

14.5

TI PTH05010 15A Module Data
Sheet
All signals. ± 608 mV swing
around VTT

2.7

Fairchild FN6555 Data Sheet
ICS8304 Data Sheet

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Table 4-3:

Power Consumption

ML561 Power Plane Capacities (Continued)
Device Description

System ACE Controller
33 MHz Oscillator
3.3V Power Plane Capacity

Quantity

Excess
Voltage Current Power
Power
(V)
(mA)
(W)
(W)

1

3.3

200

0.7

DS080, System ACE
CompactFlash Solution

2

3.3

45

0.3

Epson SG-8002CA Data Sheet

1

3.3

15000

49.5

Total Power Consumed
12V-to-5V Power Module Capacity

Source

47.8

TI PTH05010 15A Module Data
Sheet

6.8

TI PTH12010 12A Module Data
Sheet

53.2
1

5.0

12000

60.0

Notes:
1. [S] = 1.8V power for SSTL18 plane.
2. [H] = 1.8V power for HSTL18 plane.

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

45

R

Chapter 4: Electrical Requirements

FPGA Internal Power Budget
Table 4-4 summarizes power consumption estimates by each of the three
XC5VLX50T-FFG1136 FPGAs on the Virtex-5 FPGA ML561 Development Board. This
estimate derives the FPGA utilization information from the respective map report of a fully
configured reference design.
Table 4-4:

ML561 FPGA Power Estimate Summary
FPGA #
Interface

FPGA #2(1)

FPGA #1
DDR400 Comp
(DCI)

DDR2 Comp
(DCI)

I/O Standard

FPGA #3

DDR2 DIMM
(DCI)

QDRII (DCI)

RLDRAM II
(DCI)

SSTL_18

HSTL_18

HSTL_18

3.7

3.1

10.2

6.3

4.5

VCCINT (1.0V) mW

763

763

1945

1160

1515

VCCAUX (2.5V) mW

435

544

544

544

544

1819

7664

4571

2406

Total Power (W)

SSTL_18 VCCO (1.8V) mW
SSTL_2 VCCO (2.6V) mW

2469

HSTL_18 VCCO (1.8V) mW
I/O Frequency (MHz)

200

400

400

400

400

Fabric Frequency (MHz)

200

200

200

200

200

Number of Slices

1500

1500

5910

2750

1951

Number of Flip-flops

2000

2000

7352

2000

1800

Number of Shift Register LUTs

50

50

143

750

400

Number of Block RAMs

5

5

17

14

21

Number of DCMs

2

2

2

2

2

Inputs

10

10

10

90

13

Outputs

50

50

90

160

52

Bidirectionals

36

40

192

0

36

Ambient Temperature (°C)

25

25

25

25

25

Airflow (LFM)

0

0

250

250

0

n/a

n/a

5

5

n/a

67

60

78

58

76

Heat Sink (Theta-J)
Junction Temperature (°C)
Notes:

1. For DDR2 DIMMs as well as QDRII memory interfaces with DCI, an MD35E-10B heat sink is needed. A heat sink with Theta-J = 5.0
should be okay without airflow. See http://www.alphanovatech.com/c_md35e.html for the heat sink profile. A heat sink with
Theta-J = 5.0 might need airflow of 250 LFM.

46

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Chapter 5

Signal Integrity Recommendations
Termination and Transmission Line Summaries
The following are common recommendations for the signal termination scheme to all
external memories implemented on the Virtex-5 FPGA ML561 Development Board:
•

Single-ended signals: Simulation indicates that for a single-ended signal, there is no
significant performance difference for a signal with split termination of 100Ω + 100Ω
between VDD and GND versus the VTT termination of 50Ω to the VREF voltage.
Because the power consumption for the split termination is considerably higher than
the VTT termination for the SSTL2, SSTL18, and HSTL I/O standards, VTT termination
is recommended for single-ended signals on the board, such as data, address, and
control. For bidirectional single-ended signals (for example, DDR2 DQ), the VTT
termination is provided at both ends of the signal at the FPGA as well as at the
memory.

•

Differential signals: For differential pair signals, a 100Ω differential termination is
provided between the two legs of the differential pair. This termination is placed
closest to the load. For bidirectional differential signals (for example, DDR2 DQS), the
differential SelectIO™ primitives in Virtex-5 FPGAs (for example,
DIFF_SSTL_II_18_DCI), account for the differential termination within the IOB. So
external differential termination is required only at the memory.

•

Multiload signals: Address and control signals are driven by the FPGA, and they
have multiple loads. The termination is placed at the end of the trace after the last
load.

Table 5-1 through Table 5-5 summarize the specific termination schemes used on the
Virtex-5 FPGA ML561 Development Board for the following five different memory
interfaces. For each signal category, these tables include reference to the preliminary IBIS
simulation results (1).
1.

DDR400 SDRAM Components (Table 5-1)

2.

DDR2 SDRAM DIMM (Table 5-2)

3.

DDR2 SDRAM Components (Table 5-3)

4.

QDRII SRAM (Table 5-4)

5.

RLDRAM II (Table 5-5)

1. Virtex-4 device IBIS models were used during the development of the ML561 board to understand the
expected signal integrity of the memory interface signals. When the Virtex-5 device IBIS models are available,
the results of post-layout IBIS simulations and characterization results will be reported.

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

47

R

Chapter 5: Signal Integrity Recommendations

Table 5-1:

DDR400 SDRAM Component Terminations
Signal

FPGA Driver

Termination at FPGA

Data (DQ)

SSTL2_II_DCI

No termination

50Ω pull-up to 1.3V

Data Strobe (DQS)

SSTL2_II_DCI

No termination

50Ω pull-up to 1.3V

Clock (CK, CK)

SSTL2_II

No termination

100Ω differential termination
between pair

Address (A, BA)

SSTL2_II

No termination

50Ω pull-up to 1.3V after the last
component

Control (RAS, CAS, WE, CS, DM, and
CKE)

SSTL2_II

No termination

50Ω pull-up to 1.3V after the last
component

Table 5-2:

Termination at Memory

DDR2 SDRAM DIMM Terminations
Signal

FPGA Driver

Termination at FPGA

SSTL18_II_DCI

No termination

No termination (use 75Ω ODT(1))

DIFF_SSTL18_II_DCI

No termination

No termination (use 75Ω ODT)

Data Mask (DM)

SSTL18_II

No termination

No termination (use 75Ω ODT)

6 Pairs of Clocks (CK, CK),
3 each per DIMM

SSTL18_II

No termination

No termination(2)

Address (A, BA)

SSTL18_II

No termination

50Ω pull-up to 0.9V after the second
DIMM

Control (RAS, CAS, WE,
CS, CKE, and others)

SSTL18_II

No termination

50Ω pull-up to 0.9V after the second
DIMM

Data (DQ)
Data Strobe (DQS, DQS)

Termination at Memory

Notes:
1. Due to use of DCI I/O for DQ and DQS, these signals have parallel termination at the source during Write operations. Simulation
results show that use of a weaker 75Ω ODT instead of a matching 50Ω ODT setting gives better noise margin at the memory.
2. The DIMM already contains 120Ω differential termination. A 5 pF capacitive termination is provided on the board as per Micron
TN-47-01.

Table 5-3:

DDR2 SDRAM Component Terminations
Signal

FPGA Driver

Termination at FPGA

SSTL18_II_DCI

No termination

No termination (use 75Ω ODT)

DIFF_SSTL18_II_DCI

No termination

No termination (use 75Ω ODT)

Data Mask (DM)

SSTL18_II

No termination

No termination (use 75Ω ODT)

Clock (CK, CK)

SSTL18_II

No termination

100Ωdifferential termination between
pair

Address (A, BA)

SSTL18_II

No termination

50Ω pull-up to 0.9V after the last
component

Control (RAS, CAS, WE, CS,
and CKE)

SSTL18_II

No termination

50Ω pull-up to 0.9V after the last
component

Data (DQ)
Data Strobe (DQS, DQS)

48

www.xilinx.com

Termination at Memory

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Table 5-4:

Termination and Transmission Line Summaries

QDRII SRAM Terminations
Signal

FPGA Driver

Termination at FPGA

Write Data (D)

HSTL_I_18

No termination

50Ω pull-up to 0.9V

Read Data (Q)

HSTL_I_DCI_18

No termination

No termination

HSTL_I_18

No termination

50Ω pull-up to 0.9V

HSTL_I_DCI_18

No termination

No termination

Clock (CK, CK)

HSTL_I_18

No termination

100Ω differential termination
between pair

Address (A, BA)

HSTL_I_18

No termination

50Ω pull-up to 0.9V after the last
component

Control (RAS, CAS, WE,
CS, CKE, and BW)

HSTL_I_18

No termination

50Ω pull-up to 0.9V after the last
component

Write Strobe (K, K)
Read Strobe (CQ, CQ)

Table 5-5:

Termination at Memory

RLDRAM II Terminations

Signal

FPGA Driver

Termination at FPGA

Data (DQ for CIO)

HSTL_II_DCI_18

No termination

50Ω pull-up to 0.9V

Data (Q for SIO)

HSTL_I_DCI_18

No termination

No termination

Write Data (D for SIO)

HSTL_I_18

No termination

50Ω pull-up to 0.9V

Write Strobe (DK, DK)

DIFF_HSTL_I_18

No termination

100Ω differential termination
between pair

Read Strobe (QK, QK)

DIFF_HSTL_II_DCI_18 (for CIO)
DIFF_HSTL_I_DCI_18 (for SIO)

No termination

No termination

HSTL_II_DCI_18 (for CIO)
HSTL_I_DCI_18 (for SIO)

No termination

No termination

Clock (CK, CK)

DIFF_HSTL_I_18

No termination

100Ω differential termination
between pair

Address (A, BA)

HSTL_I_18

No termination

50Ω pull-up to 0.9V after the last
component

Control (RAS, CAS, WE,
CS, and CKE)

HSTL_I_18

No termination

50Ω pull-up to 0.9V after the last
component

Data Valid (QVLD)

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

Termination at Memory

49

R

Chapter 5: Signal Integrity Recommendations

50

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Chapter 6

Configuration
This chapter provides a brief description of the FPGA configuration methods used on the
Virtex-5 FPGA ML561 Development Board. This chapter contains the following sections:
•

“Configuration Modes”

•

“JTAG Chain”

•

“JTAG Port”

•

“Parallel IV Cable Port”

•

“System ACE Interface”

Configuration Modes
The Virtex-5 FPGA ML561 Memory Interfaces Development Board includes several
options to configure the Virtex-5 FPGAs. The configuration modes are:
•

System ACE mode

•

JTAG mode

Table 6-1 shows the Virtex-5 FPGA configuration modes. The Master and Slave (Parallel)
SelectMAP configuration modes are not supported on the Virtex-5 FPGA ML561
Development Board. A separate 6-pin 3x2 header is provide for each FPGA to control the
Mode bits setting. The three headers are P27, P46, and P112 for FPGA #1, FPGA #2, and
FPGA #3, respectively. The even pins (# 2, 4, and 6) of the headers are tied to GND, and the
odd pins (# 1, 3, and 5) are connected to the respective Mode bit FPGA inputs (M0, M1, and
M2, respectively). A weak (4.7KΩ) pull-up is applied to each of these pins to set a logic '1'
by default.
Table 6-1:

Configuration Modes
Mode Jumpers(3,4)
XCONFIG
P72

JTAG
P114

X(1)

Slave Serial

Mode

5 -> 6
(M2)

3 -> 4
(M1)

1 -> 2
(M0)

—(2)

0

0

0

X

—

1

1

1

Master SelectMAP

—

—

0

1

1

Slave SelectMAP

—

—

1

1

0

JTAG

—

X

1

0

1

Master Serial

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

51

R

Chapter 6: Configuration

Table 6-1:

Configuration Modes (Continued)
Mode Jumpers(3,4)
Mode

System ACE CF Card

XCONFIG
P72

JTAG
P114

—

—

5 -> 6
(M2)

3 -> 4
(M1)

1 -> 2
(M0)

1

1

1

Notes:
1.
2.
3.
4.

X = Supported.
— = Not applicable.
Corresponding jumper position is Closed.
Corresponding jumper position is Open.

JTAG Chain
Four devices (the System ACE chip and three XC5VLX50T-FFG1136 FPGAs) are connected
via a JTAG chain on the Virtex-5 FPGA ML561 Development Board. The order of the four
devices in the JTAG chain is System ACE chip (U45), FPGA #1 (U7), FPGA #2 (U5), and
FPGA #3 (U34). The DONE pin of the FPGAs in the chain are tied together to a single LED
(D28). Each FPGA in the JTAG chain must be programmed for the board to be configured
properly. To program FPGAs in the JTAG chain that do not need functionality, a blank
design with no logic implementation can be used to compile to generate the corresponding
configuration bitstream.
Three different sources can be used to drive this JTAG chain:
•

JTAG Port

•

Xilinx Parallel IV Cable

•

System ACE Controller

JTAG Port
The Virtex-5 FPGA ML561 Development Board provides a JTAG connector (P114) that can
be used to program the Virtex-5 FPGAs, and program and/or configure other JTAG
devices in the chain.

Parallel IV Cable Port
The Virtex-5 FPGA ML561 Development Board provides a Parallel IV Cable connector
(P64) to configure the Virtex-5 FPGAs and program JTAG devices located in the JTAG
chain.

System ACE Interface
The Virtex-5 FPGA ML561 Development Board provides a System ACE interface to
configure the Virtex-5 FPGA. The interface also gives software designers the ability to run
code (for soft processor IP within the FPGA) from removable CompactFlash cards.
Refer to the DS080, System ACE CompactFlash Solution for detailed information on creating
System ACE compatible ACE files, formatting the CompactFlash card, and storing
multiple design images.

52

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

System ACE Interface

Table 6-2 shows the System ACE interface signal names, descriptions, and pin
assignments.
Table 6-2:

System ACE Interface Signal Descriptions

System ACE Pin Number

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

Signal Name

70

SYSACE_MPA0

69

SYSACE_MPA1

68

SYSACE_MPA2

67

SYSACE_MPA3

45

SYSACE_MPA4

44

SYSACE_MPA5

43

SYSACE_MPA6

66

SYSACE_MPD0

65

SYSACE_MPD1

63

SYSACE_MPD2

62

SYSACE_MPD3

61

SYSACE_MPD4

60

SYSACE_MPD5

59

SYSACE_MPD6

58

SYSACE_MPD7

77

SYSACE_CTRL0/MPOE

76

SYSACE_CTRL1/MPWE

42

SYSACE_CTRL2/MPCE

41

SYSACE_CTRL3/MPIRQ

39

SYSACE_CTRL4/MPBRDY

93

SYSACE_CLK

www.xilinx.com

53

R

Chapter 6: Configuration

54

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Chapter 7

ML561 Hardware-Simulation
Correlation
This chapter contains the following sections:
•

“Introduction”

•

“Test Setup”

•

“Signal Integrity Correlation Results”

•

“Summary and Recommendations”

•

“How to Generate a User-Specific FPGA IBIS Model”

Introduction
Signal integrity (SI) simulation is a very powerful tool that predicts the quality of signal at
the receiver. The quality of signal at the I/O buffer of the receiver device is most important
to the system designer. The observation point is buried within the IC device and is not
accessible for attaching a physical probe. This signal can only be simulated. It cannot be
measured on the hardware with an oscilloscope.
Signals can only be measured on hardware at the via probe points of a printed circuit board
(PCB) near the receiver device. For a high level of confidence in the SI simulation results, it
is necessary to develop and validate the simulation model to get a good correlation with
the hardware measurements at the probe points. When the correlation is obtained, the
same simulation model is used to extrapolate and accurately predict the signal quality at
the I/O buffer of the receiver device for the two significant corner driver conditions: slowweak and fast-strong.
The Virtex-5 FPGA ML561 Development Board implements five different memory
interfaces:
•

32-bit DDR2 component

•

144-bit DDR2 DIMM

•

72-bit QDRII SRAM

•

32-bit DDR component

•

36-bit RLDRAM II

Each of these interfaces consists address, control, clock, data, and strobe signals. The
ML561 board has over 500 unique signals.
DDR2 SDRAMs and QDRII SRAM represent the large majority of Virtex-5 FPGA memory
applications. The dual data rate (DDR) data bits are the most critical signals to analyze.
This chapter presents SI analysis for only six representative data bit signals. The procedure

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

55

R

Chapter 7: ML561 Hardware-Simulation Correlation

illustrated here for these signals can be easily adopted to perform SI analysis for any other
memory interface signal on the ML561 board.
This chapter presents the SI results for the following six data bit signals:
•

DDR2 component DQ bit (DDR2_DQ_BY2_B3) for write operations

•

DDR2 component DQ bit (DDR2_DQ_BY2_B3) for read operations

•

DDR2 DIMM DQ bit (DDR2_DIMM_DQ_BY2_B3) for write operations

•

DDR2 DIMM DQ bit (DDR2_DIMM_DQ_BY2_B3) for read operations

•

QDRII D bit (QDR2_D_BY0_B5) for write operations

•

QDRII Q bit (QDR2_Q_BY0_B5) for read operations

Test Setup
Hardware measurements were performed for the six specific signal nets, and then signal
integrity (SI) simulations were performed for correlation and extrapolation. The test setup
consisted of the following hardware equipment, simulation software tools, the stimulus
test pattern, and test criteria for determining the quality of signals. The test bench is
designed so that the test pattern is applied only to the signal under test, and all other data
bits to the same memory interface are kept in a quiet Low state. This setup ensures that the
hardware measurement is not altered due to any simultaneous switching output (SSO)
effect.
•

•

•

Hardware measurement equipment
♦

Agilent DSO80604B 6 GHz oscilloscope

♦

Agilent 1131A 3.5 GHz Infiniimax probe amplifier

♦

Agilent E2675A (Differential browser) or E2677A (Differential solder-in probe) or
N5425A (ZIF probe)

♦

Virtex-5 FPGA ML561, Rev B2 board: S/N 103

♦

SRS Model CG635 Synthesized Clock Generator for low jitter clock source

Simulation software
♦

Mentor Graphics HyperLynx EXT, Version 7.5 with LineSim and BoardSim
features

♦

Xilinx Virtex-5 FPGA IBIS package file: ff1136_5vlx50t.pkg, Rev 1.0 dated
June 12, 2006

♦

ML561, Rev B layout file: ML561_B_041706.hyp

♦

Micron DDR2-667 IBIS model for output and ODT input

♦

Micron PC2-5300 RDIMM IBIS model

♦

Molex DDR2 DIMM socket specification (P/N 087705-1041)

♦

Samsung QDRII HSTL 1.8V IBIS model

♦

IBISWriter Utility of ISE software suite to create customized IBIS model of the
FPGA1 (U7) and FPGA3 (U34) devices on the ML561 board: Model files
ml561_fpga1_u7.ibs and ml561_fpga3_u34.ibs. (See “How to Generate a
User-Specific FPGA IBIS Model,” page 93 for steps on how to create a customized
IBIS model of Virtex-5 FPGA for your design.)

Stimulus
Pseudo Random Bit Stream (PRBS) is accepted as the most effective test pattern to
measure the quality of data signals because, unlike the periodic signals like clock and

56

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Test Setup

strobe, a random value can be applied to data bits from one cycle to another. A 63-bit
PRBS6 (1) (PRBS of order 6) test pattern stimulus is used for this analysis. The value of
this PRBS6 string is 63’h03F5_66ED_2717_9461, that is:
63’b000001111110101011001101110110100100111000101111001010001100001.
The HyperLynx stimulus setup is for: a 2-sequence repeat, 10 bits skipped, 1 eye, and
0% jitter.
•

Test criteria
Quality of a signal is measured in terms of the opening of the signal eye at the receiver
input for both the amplitude and the width. DDR2 SDRAM (Component and DIMM)
interfaces utilize the SSTL_18 I/O standard, and the QDRII SRAM interface utilizes
the HSTL 1.8V I/O standard. For each of these two I/O standards, the eye mask is
defined by the trapezoid enclosed by the following four voltage thresholds at the
receiver input:
♦

VIH(ac)-min at the rising edge

♦

VIH(dc)-min at the falling edge

♦

VIL(dc)-max at the rising edge

♦

VIL(ac)-max at the falling edge

Refer to Figure 7-1 for the definition of voltage levels with regard to the trapezoidal
eye mask. Refer to “Terminology,” page 9 for definitions of the voltage thresholds.
Because the HyperLynx SI simulation software does not support a trapezoidal mask
definition, two separate triangular masks for VIH and VIL are defined, as shown in
Figure 7-2, such that the third vertex of triangle falls on the VREF axis.
VDDQ
VOH(dc)

VIH(ac)

VOH(ac)

VIH(dc)
VREF
VIL(dc)
VIL(ac)

VOL(ac)

VOL(dc)

VSS
UG199_c7_01_062707

Figure 7-1:

Single Trapezoid Eye Mask Definition

1. A maximal-length PRBS test sequence of order n generates all (2n – 1), n-bit combinations of test sequences
(except all 0s). Thus the test sequence contains one n-bit long consecutive string of 1s and two (n-1)-bit long
consecutive strings of 0s. With the PRBS6 test pattern, at the highest test frequency of 333 MHz (that is, the bit
time is 1.5 ns), measurements in this setup result in a maximum settling time of (1.5 ns * 5) = 7.5 ns for a logic
Low, and a maximum settling time of (1.5 ns * 6) = 9 ns for a logic High. 7.5 ns is sufficient time for the test
signal to reach a steady state before the next transition. Thus a PRBS test pattern of higher order, such as 7 or
9, does not change the eye pattern, as proven by sample simulation of one test signal with PRBS6, PRBS7, and
PRBS9 stimuli.

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

57

R

Chapter 7: ML561 Hardware-Simulation Correlation

VDDQ
VOH(dc)
VOH(ac)

VIH(ac)
VIH(dc)
VREF
VIL(dc)
VIL(ac)

VOL(ac)

VOL(dc)

VSS
UG199_c7_02_062707

Figure 7-2:
♦

♦

Two Triangular Eye Mask Definitions for VIH and VIL

DDR2 mask (for nominal VDDQ = 1.8V and VREF = 0.9V):
-

VIH(ac)-min = VREF + 200 mV = 1.1V

-

VIH(dc)-min = VREF + 125 mV = 1.025V

-

VIL(ac)-max = VREF – 200 mV = 0.7V

-

VIL(dc)-max = VREF – 125 mV = 0.775V

QDRII mask (for nominal values of VDDQ = 1.8V and VREF = 0.9V):
-

VIH(ac)-min = VREF + 200 mV = 1.1V

-

VIH(dc)-min = VREF + 100 mV = 1.0V

-

VIL(ac)-max = VREF – 200 mV = 0.7V

-

VIL(dc)-max = VREF – 100 mV = 0.8V

Signal Integrity Correlation Results
This section presents SI results for each of the six chosen memory signals on the ML561
board. The following information is presented for each memory signal:
•

A post-layout IBIS schematics of the signal under test

•

A description of the major circuit elements (1) of this signal

•

A summary of four SI results: hardware measurement, correlation simulation, slowweak corner driver simulation extrapolation, and fast-strong corner driver simulation
extrapolation

•

A set of eight figures showing eye and waveform scope shots for each of the four SI
results mentioned in the bulleted list in the previous section

For an explanation of the different terms used to present these results, refer to
“Terminology,” page 9 for some definitions and routing terminologies.

1. With regard to transmission line impedance, Table 3-19 in the “Board Design Considerations” section lists
controlled impedance values of all routing layers. The design goal for the ML561 board is to keep the
characteristic impedance for all routing layers as close to 50Ω as possible. Manufacturing tolerance is usually
±10%. The characteristic impedance of DIMM PCB is derived from the Micron DIMM layout file.

58

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Signal Integrity Correlation Results

DDR2 Component Write Operation
This subsection shows the test results for the DDR2_DQ_BY2_B3 signal from FPGA1 (U7)
to the DDR2 memory component (U12) measured at 333 MHz (667 Mb/s), where the unit
interval (UI) = 1.5 ns.

U12.D3

28.5 ohms
3.579 ps
0.022 in
DDR2_DQ_BY2_B3

49.0 ohms
24.721 ps
0.164 in
DDR2_DQ_BY2_B3

71.0 ohms
27.482 ps
AutoPadstk_3

TL2
MT47H32M16CC_…
DQ11

TL4

TL3

DDR2_D…

DDR2_D…

C9

58.3 ohms
25.244 ps
AutoPadstk_19

49.1 ohms
47.132 ps
0.302 in
DDR2_DQ_BY2_B3

TL8

TL9

DDR2_D…

DDR2_D…

58.1 fF

140.8 fF

49.1 ohms
445.560 ps
2.852 in
DDR2_DQ_BY2_B3

28.5 ohms
4.473 ps
0.028 in
DDR2_DQ_BY2_B3

21.2 ohms
1.000 ps
AutoPadstk_3

TL1

TL5

TL6

U7.P25

Virtex-5 FPGA
DDR2_DQ_BY2_B3

DDR2_D…
DDR2_D…

C7
22.9 fF

22.9 fF

22.9 fF

500.0 fF

365.6 fF

500.0 fF

UG199_c7_03_071907

Figure 7-3:

Post-Layout IBIS Schematics of DDR2 Component Write Data Bit (DDR2_DQ_BY2_B3)
Table 7-1: Circuit Elements of DDR2 Component Write Data Bit
(DDR2_DQ_BY2_B3)
Element

Table 7-2:

Designation

Description

Driver

U7.P25

FPGA SSTL18_II_DCI_O

Receiver

U12.D3

DDR2 Memory, 75 Ω ODT

Probe Point

C9

Via under the memory device

PCB Termination

None

ODT75 at load

Trace Length

TL 2, 4, 9, 6, 1

3.37 inches

DDR2 Component Write Operation Correlation Results

Measurement

DVW(1)
(%UI)

ISI
(% UI)

Noise Margin
(VIH, + VIL) = Total
(% of VREF)

Overshoot / Undershoot
Margin
(% of VREF)

Hardware at probe
point

1.18 ns
(78.7%)

(80 + 80) = 160 ps

(274 + 384) = 658 mV

(550 + 470) = 1020 mV

(10.7%)

(73.1%)

(113.3%)

Simulation correlation
slow-weak corner

1.22 ns
(81.3%)

(77 + 36) = 113 ps

(294 + 266) = 560 mV

(461 + 490) = 951 mV

(7.5%)

(62.2%)

(105.7%)

Correlation Delta:
HW vs. Simulation

40 ps

47 ps

98 mV

69 mV

(2.6%)

(3.2%)

(10.9%)

(7.6%)

Extrapolation at IOB
slow-weak corner

1.27 ns
(84%)

(91 + 36) = 127 ps

(300 + 270) = 570 mV

(469 + 501) = 970 mV

(8.5%)

(63.3%)

(107.8%)

Extrapolation at IOB
fast-strong corner

1.39 ns
(92%)

(34 + 20) = 54 ps

(406 + 351) = 757 mV

(304 + 381) = 685 mV

(3.7%)

(84.1%)

(76.1%)

Notes:
1. DVW = Data Valid Window, ISI = Inter-Symbol Interference

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

59

R

Chapter 7: ML561 Hardware-Simulation Correlation

DDR2 DQ is a bidirectional signal. To perform hardware measurements for a Write
operation that is not interrupted by a Read response or a Refresh operation, the testbench
on FPGA1 is controlled by DIP switches (SW2) as indicated in Table 7-3.
Table 7-3:

DIP[1:2] Settings
Setting

60

Description

2’b00 or 2’b11

Normal alternating Write/Read sequence

2’b01

Write only, Refresh disabled

2’b10

Write once, then Read only, Refresh disabled

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Signal Integrity Correlation Results

UG199_c7_04_071107

Figure 7-4:

DDR2 Component Write HW Measurement - Eye Scope Shot at Probe Point (DDR2 Memory Via)
1800.0
1600.0
1400.0

Voltage (mV)

1200.0
1000.0
800.0
600.0
400.0
200.0
0.000

Probe 3:C9.1 (at pin)

-200.0
0.000

400.0

800.0

1200.0

Time (ps)

♦
♦
♦
♦

Figure 7-5:

1600.0
UG199_c7_05_070907

333 MHz, Slow, PRBS6, 81.5% UI
Cursor 1: 1.1028V, 123.6 ps
Cursor 2: 1.0253V, 1.3458 ns
Delta Voltage = 77.5 mV, Delta Time = 1.2222 ns (81.5% UI)

DDR2 Component Write Correlation - Eye Scope Shot at Probe Point (Slow Corner)

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

61

R

Chapter 7: ML561 Hardware-Simulation Correlation

UG199_c7_06_071107

Figure 7-6:

DDR2 Component Write HW Measurement - Waveform Scope Shot at Probe Point
(DDR2 Memory Via)
1800.0
1600.0
1400.0

Voltage (mV)

1200.0
1000.0
800.0
600.0
400.0
200.0
0.000

Probe 3:C9.1 (at pin)

-200.0
65.000

75.000

85.000

Time (ns)

Figure 7-7:

62

95.000

105.000
UG199_c7_07_070907

DDR2 Component Write Correlation - Waveform Scope Shot at Probe Point (Slow Corner)

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Signal Integrity Correlation Results

1800.0
1600.0
1400.0
1200.0

Voltage (mV)

1000.0
800.0
600.0
400.0
200.0
Probe 1:U12.D3 (at die)

0.000
-200.0
-200.0

200.0

600.0

1000.0

Time (ps)

♦
♦
♦
♦

Figure 7-8:

1400.0

1800.0

UG199_c7_08_071007

333 MHz, Slow, PRBS6, 84.5% UI
Cursor 1: 1.1007V, 123.7 ps
Cursor 2: 1.0253V, 1.3921 ns
Delta Voltage = 75.4 mV, Delta Time = 1.2684 ns (84.5% UI)

DDR2 Component Write Extrapolation - Eye Scope Shot at Receiver IOB (Slow Corner)
1800.0
1600.0
1400.0

Voltage (mV)

1200.0
1000.0
800.0
600.0
400.0
200.0
Probe 1:U12.D3 (at die)

0.000
-200.0
65.000

75.000

85.000

Time (ns)

Figure 7-9:

95.000

105.000
UG199_c7_09_071007

DDR2 Component Write Extrapolation - Waveform Scope Shot at Receiver IOB (Slow Corner)

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

63

R

Chapter 7: ML561 Hardware-Simulation Correlation

1900.0
1700.0
1500.0

Voltage (mV)

1300.0
1100.0
900.0
700.0
500.0
300.0
100.0
Probe 1:U12.D3 (at die)
-100.0
800.0

1200.0

2000.0

1600.0

2400.0

Time (ps)

♦
♦
♦
♦

2800.0

UG199_c7_10_071007

333 MHz, Fast, PRBS6, 92.5% UI
Cursor 1: 701.2 mV, 1.0026 ns
Cursor 2: 774.6 mV, 2.3908 ns
Delta Voltage = 73.4 mV, Delta Time = 1.3883 ns (92.5% UI)

Figure 7-10: DDR2 Component Write Extrapolation - Eye Scope Shot at Receiver IOB (Fast Corner)
1900.0
1700.0
1500.0

Voltage (mV)

1300.0
1100.0
900.0
700.0
500.0
300.0
100.0
Probe 1:U12.D3 (at die)
-100.0
65.000

75.000

85.000

Time (ns)

Figure 7-11:

64

95.000

105.000
UG199_c7_11_071007

DDR2 Component Write Extrapolation - Waveform Scope Shot at Receiver IOB (Fast Corner)

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Signal Integrity Correlation Results

DDR2 Component Read Operation
This subsection shows the test results for the DDR2_DQ_BY2_B3 signal from the DDR2
memory component (U12) to FPGA1 (U7) measured at 333 MHz (667 Mb/s), where the
unit interval (UI) = 1.5 ns.
U12.D3

TL2

TL3

28.5 ohms
MT47H64M8CB-3 3.579 ps
0.022 in
DQ3
DDR2_DQ_BY2_B3

TL4

49.0 ohms
24.721 ps
0.164 in
DDR2_DQ_BY2_B3

71.0 ohms
27.482 ps
AutoPadstk_3

DDR2_D…
22.9 fF

TL8

DDR2_D… C9
22.9 fF

500.0 fF

TL9

58.3 ohms
25.244 ps
AutoPadstk_19
DDR2_D…

49.1 ohms
47.132 ps
0.302 in
DDR2_DQ_BY2_B3

TL6

TL5

49.1 ohms
445.560 ps
2.852 in
DDR2_DQ_BY2_B3

28.5 ohms
Virtex-5 FPGA
4.473 ps
DDR2_DQ_BY2_B3
0.028 in
DDR2_DQ_BY2_B3

21.2 ohms
1.000 ps
AutoPadstk_3

DDR2_D…

DDR2_D…

DDR2_D…
C7

58.1 fF

U7.P25

TL1

140.8 fF

365.6 fF

22.9 fF

500.0 fF

UG199_c7_12_071907

Figure 7-12:

Post-Layout IBIS Schematics of the DDR2 Component Read Data Bit (DDR2_DQ_BY2_B3)
Table 7-4: Circuit Elements of DDR2 Component Read Data Bit
(DDR2_DQ_BY2_B3)
Element

Table 7-5:

Designation

Description

Driver

U12.D3

DDR2 Memory

Receiver

U7.P25

FPGA SSTL18_II_DCI_I

Probe Point

C7

Via under FPGA1

PCB Termination

None

DCI at receiver

Trace Length

TL 2, 4, 9, 6, 1

3.37 inches

DDR2 Component Read Operation Correlation Results

Measurement

DVW (% UI)

ISI
(% UI)

Noise Margin
(VIH + VIL) = Total
(% of VREF)

Overshoot /
Undershoot Margin
(% of VREF)

Hardware at probe point

1.28 ns
(85%)

(70 + 110) = 180 ps

(423 + 416) = 839 mV

(400 +400) = 800 mV

(12%)

(83.1%)

(79.1%)

Simulation correlation
slow-weak corner

1.28 ns
(85%)

(132 + 91) = 223 ps

(406 +439) = 845 mV

(279 +277) = 556 mV

(14.9%)

(83.8%)

(61.9%)

Correlation Delta:
HW vs. Simulation

0 ps

43 ps

6 mV

244 mV

(0.0%)

(2.9%)

(0.7%)

(17.2%)

Extrapolation at IOB
slow-weak corner

1.29 ns
(86%)

(96 + 82) = 178 ps

(418 + 449) = 867 mV

(304 +265) = 569 mV

(11.9%)

(96.3%)

(63.1%)

Extrapolation at IOB
fast-strong corner

1.32 ns
(88%)

(29 + 67) = 96 ps

(455 +435) = 890 mV

(167 +182) = 349 mV

(6.7%)

(98.9%)

(38.9%)

To perform hardware measurements for a Read operation that is not interrupted by a Write
or a Refresh operation, the testbench on FPGA1 is controlled by the following DIP switch
(SW2) setting:
•

DIP[1:2] = 2’b10 – Write once, then Read only, Refresh disabled

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

65

R

Chapter 7: ML561 Hardware-Simulation Correlation

UG199_c7_13_071107

Figure 7-13:

DDR2 Component Read HW Measurement - Eye Scope Shot at Probe Point (FPGA1 Via)
1900.0
1700.0
1500.0
1300.0

Voltage (mV)

1100.0
900.0
700.0
500.0
300.0
100.0
Probe 3:C7.1 (at pin)
-100.0
800.0

1200.0

1600.0

2000.0

Time (ns)

♦
♦
♦
♦

Figure 7-14:

66

2400.0

2800.0

UG199_c7_14_071107

333 MHz, Slow, PRBS6, 85.9% UI
Cursor 1: 697.1 mV, 1.2345 ns
Cursor 2: 774.6 mV, 2.5191 ns
Delta Voltage = 77.5 mV, Delta Time = 1.2846 ns (85.9% UI)

DDR2 Component Read Correlation - Eye Scope Shot at Probe Point (Slow Corner)

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Signal Integrity Correlation Results

UG199_c7_15_071107

Figure 7-15:

DDR2 Component Read HW Measurement - Waveform Scope Shot at Probe Point (FPGA1
Via)
1900.0
Probe 3:C7.1 (at pin)
1700.0
1500.0

Voltage (mV)

1300.0
1100.0
900.0
700.0
500.0
300.0
100.0
-100.0
65.000

75.000

85.000

Time (ns)

Figure 7-16:

95.000

105.000
UG199_c7_16_071007

DDR2 Component Read Correlation - Waveform Scope Shot at Probe Point (Slow Corner)

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

67

R

Chapter 7: ML561 Hardware-Simulation Correlation

1900.0
Probe 1:U7.P25 (at die)
1700.0
1500.0

Voltage (mV)

1300.0
1100.0
900.0
700.0
500.0
300.0
100.0
-100.0
800.0

1200.0

1600.0

2000.0

2400.0

Time (ps)

♦
♦
♦
♦

Figure 7-17:

2800.0

UG199_c7_17_071007

333 MHz, Slow, PRBS6, 85.5% UI
Cursor 1: 1.0988V, 1.2170 ns
Cursor 2: 1.0254V, 2.5029 ns
Delta Voltage = 73.4 mV, Delta Time = 1.2859 ns (85.5% UI)

DDR2 Component Read Extrapolation - Eye Scope Shot at Receiver IOB (Slow Corner)
1800.0
1600.0
1400.0

Voltage (mV)

1200.0
1000.0
800.0
600.0
400.0
200.0
0.000
Probe 1:U7.P25 (at die)
-200.0
65.000

75.000

85.000

Time (ns)

95.000

105.000
UG199_c7_18_071007

Figure 7-18: DDR2 Component Read Extrapolation - Waveform Scope Shot at Receiver IOB (Slow Corner)

68

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Signal Integrity Correlation Results

1900.0
1700.0
1500.0
1300.0

Voltage (mV)

Probe 1:U7.P25 (at die)
1100.0
900.0
700.0
500.0
300.0
100.0
-100.0
800.0

1200.0

1600.0

2000.0

2400.0

Time (ps)

♦
♦
♦
♦

2800.0

UG199_c7_19_071007

333 MHz, Fast, PRBS6, 88% UI
Cursor 1: 701.2 mV, 1.0772 ns
Cursor 2: 774.6 mV, 2.3980 ns
Delta Voltage = 73.4 mV, Delta Time = 1.3208 ns (88% UI)

Figure 7-19: DDR2 Component Read Extrapolation - Eye Scope Shot at Receiver IOB (Fast Corner)

Probe 1:U7.P25 (at die)
1900.0
1700.0
1500.0

Voltage (mV)

1300.0
1100.0
900.0
700.0
500.0
300.0
100.0
-100.0
65.000

75.000

85.000

Time (ns)

Figure 7-20:

95.000

105.000
UG199_c7_20_071007

DDR2 Component Read Extrapolation - Waveform Scope Shot at Receiver IOB (Fast Corner)

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

69

R

Chapter 7: ML561 Hardware-Simulation Correlation

DDR2 DIMM Write Operation
This subsection shows the test results for the DDR2_DIMM_DQ_BY2_B3 signal from
FPGA2 (U5) to the DDR2 DIMM (XP2) measured at 333 MHz (667 Mb/s), where the unit
interval (UI) = 1.5 ns.
49.8 ohms
94.605 ps
0.606 in
DDR2_DIMM_DQ_...

U3_B01.J1

59.8 ohms
3.590 ps
0.022 in
MDQ19_B01

TL1

59.8 ohms
31.503 ps
0.195 in
MDQ19_B01

59.8 ohms
78.962 ps
0.490 in
MDQ19_B01

TL5

TL11

RN6_B01

22.0 ohms

59.8 ohms
10.373 ps
0.064 in
DQ19_B01

J1_B01.31

49.8 ohms
90.955 ps
0.582 in
DDR2_DIMM_DQ_...

TL15

TL16

XP2_B00.31

XP3_B00.31

49.8 ohms
90.340 ps
0.578 in
DDR2_DIMM_DQ_...

TL17

49.8 ohms
864.365 ps
5.533 in
DDR2_DIMM_DQ_...

TL18

XP4_B00.31

59.1 ohms
12.486 ps
AutoPadstk_12_B...

TL19

49.1 ohms
78.216 ps
0.501 in
DDR2_DIMM_DQ_...

TL20

49.1 ohms
71.6 ohms
41.316 ps
22.319 ps
0.264 in
DDR2_DIMM_DQ_... AutoPadstk_3_B00

TL7

TL6

28.5 ohms
4.473 ps
0.028 in
DDR2_DIMM_DQ_...

TL3

XP5_B00.31

U5_B00.H29

Virtex-5 FPGA
DDR2_DQ_BY2_B3

TL12
????

MT47H64M8CB_C...
DQ6
MDQ19_...

C13

TL14
????

17.3 fF

500.0 fF

50.3 ohms
23.650 ps
DDR2_D...

R_00179...
0.0 milliohms

TL27
????

TL23
????

50.3 ohms
23.650 ps
DDR2_D...

R7
0.0 milliohms

50.3 ohms
23.650 ps
DDR2_D...

R5
0.0 milliohms

TL25
????
50.3 ohms
23.650 ps
DDR2_D...

DDR2_DI...

DDR2_DI...

253.0 fF

46.4 fF

DDR2_DI...
96.3 fF

DDR2_DI...
C8
500.0 fF

22.9 fF

R6
0.0 milliohms

TL13
50.3 ohms
23.650 ps
DQ19_B...

Figure 7-21:

TL26

TL22

50.3 ohms
23.650 ps
DQ19_B...

50.3 ohms
23.650 ps
DQ19_B...

TL24
50.3 ohms
23.650 ps
DQ19_B...

UG199_c7_21_071907

Post-Layout IBIS Schematics of DDR2 DIMM Write Data Bit (DDR2_DIMM_DQ_BY2_B3)
Table 7-6: Circuit Elements of DDR2 DIMM Write Data Bit
(DDR2_DIMM_DQ_BY2_B3)
Element

Designation

Description

Driver

U5.H29

FPGA SSTL18_II_DCI_O

Receiver

XP2-U3.J1

DDR2 DIMM, 75 Ω ODT

Probe Point

C13

Via under memory on DIMM

PCB Termination

None

ODT at load

Trace Length

Multiple TLs

8.975 inches

The IBIS schematics for DDR2 DIMM interface is extracted from a multi-board project
definition of the two-board combination, which includes the ML561 motherboard and the
DDR2 DIMM at the XP2 connector of the motherboard. The impedance characteristics of
the Molex socket pin (XP2, pin 31) is also included in the IBIS model as a (TL13,
R_00179_CONN_0001, TL14) combination.
The ML561 board under test (S/N 103) is assembled with DDR2 sockets XP3, XP4, and
XP5, which can be utilized for deep DIMM interfaces as described in Table 3-2, page 19 and
Figure 3-2, page 20. To accurately represent the IBIS model of the
DDR2_DIMM_DQ_BY2_B3 signal, the IBIS schematics in Figure 7-21 have added stubs for
the three socket pins at the XP3, XP4, and XP5 connectors.
The DDR2 DIMM used for this correlation testing is a single-rank DIMM part (Micron part
number MT9HTF6472xx-667). Thus for hardware measurements closest to the load, a
probe point via on the DIMM for pin U3.J1 is available.

70

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Table 7-7:

Signal Integrity Correlation Results

DDR2 DIMM Write Operation Correlation Results
DVW
(%UI)

ISI
(% UI)

Noise Margin
(VIH + VIL) = Total
(% of VREF)

Overshoot / Undershoot
Margin
(% of VREF)

Hardware at Probe
Point

942 ps
(62.8%)

(300 + 200) = 500 ps

(110 + 100) = 210 mV

(620 + 620) = 1240 mV

(33.3%)

(23.3%)

(137.7%)

Simulation correlation
at memory via (C13)
slow-weak corner

1.16 ns
(77.3%)

(80 + 54) = 134 ps

(172 + 150) = 322 mV

(606 + 636) =1242 mV

(8.9%)

(35.9%)

(138%)

Correlation Delta:

218 ps

366 ps

112 mV

2 mV

HW vs. Simulation

(14.5%)

(24.4%)

(12.6%)

(0.3%)

Extrapolation at IOB
slow-weak corner

1.23 ns
(82%)

(85 + 32) = 117 ps

(178 + 137) = 315 mV

(604 + 632) = 1236 mV

(7.8%)

(35.0%)

(137.3%)

Extrapolation at IOB
fast-strong corner

1.32 ns
(88%)

(54 + 46) = 100 ps

(146 + 107) = 253 mV

(457 + 524) = 981 mV

(6.7%)

(28.1%)

(109.0%)

Measurement

DDR2 DQ is a bidirectional signal. To perform hardware measurements for a Write
operation that is not interrupted by a Read response or a Refresh operation, the testbench
on FPGA2 is controlled by DIP switches (SW1) as indicated in Table 7-8.
Table 7-8:

DIP[1:2] Settings
Setting

Description

2’b00 or 2’b11

Normal alternating Write/Read sequence

2’b01

Write only, Refresh disabled

2’b10

Write once, then Read only, Refresh disabled

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

71

R

Chapter 7: ML561 Hardware-Simulation Correlation

UG199_c7_22_071107

Figure 7-22:

DDR2 DIMM Write HW Measurement - Eye Scope Shot at Probe Point #1 (DDR2 Memory Via)
1800.0
1600.0
1400.0
1200.0

Voltage (mV)

1000.0
800.0
600.0
400.0
200.0
0.000
-200.0
800.0

Probe 3:C13.1 (at pin)

1200.0

1600.0

2000.0

Time (ps)

♦
♦
♦
♦

Figure 7-23:

72

2400.0

2800.0

UG199_c7_23_070907

333 MHz, Slow, PRBS6, 77% UI
Cursor 1: 1.1004V, 1.2553 ns
Cursor 2: 1.0253V, 2.4105 ns
Delta Voltage = 75.2 mV, Delta Time = 1.1582 ns (77% UI)

DDR2 DIMM Write Correlation - Eye Scope Shot at Probe Point #1 (Slow Corner)

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Signal Integrity Correlation Results

UG199_c7_24_071107

Figure 7-24: DDR2 DIMM Write HW Measurement - Waveform Scope Shot at Probe Point #1 (DDR2 Memory
Via)
1800.0
1600.0
1400.0

Voltage (mV)

1200.0
1000.0
800.0
600.0
400.0
200.0
0.000
-200.0
95.000

Probe 3:C13.1 (at pin)

105.000

115.000

125.000

Time (ns)

Figure 7-25:

135.000

145.000

UG199_c7_23_071007

DDR2 DIMM Write Correlation - Waveform Scope Shot at Probe Point #1 (Slow Corner)

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

73

R

Chapter 7: ML561 Hardware-Simulation Correlation

1800.0
1600.0
1400.0
1200.0

Voltage (mV)

1000.0
800.0
600.0
400.0
200.0
0.000

Probe 6:U3_B01.J1 (at die)

-200.0
1000.0

1400.0

1800.0

2200.0

Time (ps)

♦
♦
♦
♦

2600.0
UG199_c7_26_071007

333 MHz, Slow, PRBS6, 82% UI
Cursor 1: 1.1028V, 1.2399 ns
Cursor 2: 1.0253V, 2.4671 ns
Delta Voltage = 77.5 mV, Delta Time = 1.2272 ns (82% UI)

Figure 7-26: DDR2 DIMM Write Extrapolation - Eye Scope Shot at Receiver IOB (Slow Corner)
1800.0
1600.0
1400.0

Voltage (mV)

1200.0
1000.0
800.0
600.0
400.0
200.0
0.000
-200.0
95.000

Probe 6:U3_B01.J1 (at die)

105.000

115.000

125.000

Time (ns)

Figure 7-27:

74

135.000

145.000

UG199_c7_27_071007

DDR2 DIMM Write Extrapolation - Waveform Scope Shot at Receiver IOB (Slow Corner)

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Signal Integrity Correlation Results

1800.0
1600.0
1400.0
1200.0

Voltage (mV)

1000.0
800.0
600.0
400.0
200.0
0.000
-200.0
400.0

Probe 6:U3_B01.J1 (at die)

800.0

1200.0

1600.0

2000.0

Time (ps)

♦
♦
♦
♦

Figure 7-28:

2400.0

UG199_c7_28_071007

333 MHz, Fast, PRBS6, 88% UI
Cursor 1: 1.1004V, 646.3 ps
Cursor 2: 1.0273V, 1.9659 ns
Delta Voltage = 73.1 mV, Delta Time = 1.3196 ns (88% UI)

DDR2 DIMM Write Extrapolation - Eye Scope Shot at Receiver IOB (Fast Corner)
1800.0
1600.0
1400.0

Voltage (mV)

1200.0
1000.0
800.0
600.0
400.0
200.0
0.000

95.000

Probe 6:U3_B01.J1 (at die)

105.000

115.000

125.000

Time (ns)

Figure 7-29:

135.000

145.000

UG199_c7_29_071007

DDR2 DIMM Write Extrapolation - Waveform Scope Shot at Receiver IOB (Fast Corner)

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

75

R

Chapter 7: ML561 Hardware-Simulation Correlation

DDR2 DIMM Read Operation
This subsection shows the test results for the DDR2_DIMM_DQ_BY2_B3 signal from the
DDR2 DIMM (XP2) to FPGA2 (U5) measured at 333 MHz (667 Mb/s), where the unit
interval (UI) = 1.5 ns.

U3_B01.J1

59.8 ohms
3.590 ps
0.022 in
MDQ19_B01

TL1
MT47H64M8CB_C...
DQ6

59.8 ohms
31.503 ps
0.195 in
MDQ19_B01

59.8 ohms
78.962 ps
0.490 in
MDQ19_B01

TL5

RN6_B01

TL11

22.0 ohms

49.8 ohms
94.605 ps
0.606 in
DDR2_DIMM_DQ_...

59.8 ohms
10.373 ps
0.064 in
DQ19_B01

49.8 ohms
90.340 ps
0.578 in
DDR2_DIMM_DQ_...

49.8 ohms
90.955 ps
0.582 in
DDR2_DIMM_DQ_...

49.8 ohms
864.365 ps
5.533 in
DDR2_DIMM_DQ_...

49.1 ohms
78.216 ps
59.1 ohms
0.501 in
12.486 ps
AutoPadstk_12_B... DDR2_DIMM_DQ_...

49.1 ohms
71.6 ohms
41.316 ps
22.319 ps
0.264 in
DDR2_DIMM_DQ_... AutoPadstk_3_B00

C13

17.3 fF

500.0 fF

U5_B00.H29

J1_B01.31
TL15

TL16

TL17

TL18

XP2_B00.31

XP3_B00.31

XP4_B00.31

TL14
????
50.3 ohms
23.650 ps
DDR2_D...

TL27
????
50.3 ohms
23.650 ps
DDR2_D...

TL23
????
50.3 ohms
23.650 ps
DDR2_D...

TL19

TL20

TL7

DDR2_DI...

DDR2_DI...

253.0 fF

46.4 fF

TL6

TL3

XP5_B00.31

Virtex-5 FPGA
DIMM_DQ_BY2_B3

TL12
????

MDQ19_...

28.5 ohms
4.473 ps
0.028 in
DDR2_DIMM_DQ_...

R_00179...
0.0 milliohms

R7
0.0 milliohms

TL25
????
50.3 ohms
23.650 ps
DDR2_D...

R5
0.0 milliohms

DDR2_DI...
96.3 fF

DDR2_DI...
C8
500.0 fF

22.9 fF

R6
0.0 milliohms

TL13
50.3 ohms
23.650 ps
DQ19_B...

Figure 7-30:

TL26

TL22

50.3 ohms
23.650 ps
DQ19_B...

50.3 ohms
23.650 ps
DQ19_B...

TL24
50.3 ohms
23.650 ps
DQ19_B...

UG199_c7_30_071907

Post-Layout IBIS Schematics of the DDR2 DIMM Read Data Bit (DDR2_DIMM_DQ_B)
Table 7-9: Circuit Elements of DDR2 DIMM Read Data Bit
(DDR2_DIMM_DQ_BY2_B3)
Element

Table 7-10:

Designation

Description

Driver

XP2-U3.J1

DDR2 DIMM

Receiver

U5.H29

FPGA SSTL18_II_DCI_I

Probe Point

C8

Via under FPGA2 (U5.H29)

PCB Termination

None

DCI at load

Trace Length

Multiple TLs

8.975 inches

DDR2 DIMM Read Operation Correlation Results
DVW (%
UI)

ISI
(% UI)

Noise Margin
(VIH + VIL) = Total
(% of VREF)

Overshoot / Undershoot
Margin
(% of VREF)

Hardware at probe
point

904 ps

(107 + 62) = 169 ps
(11.2%)

(242 + 258) = 500 mV

(623 + 613) = 1236 mV
(137.3%)

Simulation correlation
slow-weak corner

865 ps

(130 + 83) = 213 ps
(14.2%)

(+292 + 298) = 590 mV

(524 + 504) = 1028 mV
(114.2%)

Correlation Delta:
HW vs. Simulation

39 ps
(2.6%)

44 ps (2.9%)

90 mV (10%)

208 mV (23.1%)

Extrapolation at IOB
slow-weak corner

1.23 ns
(82%)

(139 + 75) = 224 ps
(14.9%)

(243 + 303) = 546 mV

(594 + 544) = 1138 mV

(60.7%)

(116.5%)

Extrapolation at IOB
fast-strong corner

1.24 ns
(83%)

(131 + 60) = 191 ps
(12.7%)

(288 + 282) = 570 mV
(63.3%)

(+481 + 508) = 989 mV
(109.9%)

Measurement

(60%)
(59%)

To perform hardware measurements for a Read operation that is not interrupted by a Write
or a Refresh operation, the testbench on FPGA1 is controlled by the following DIP switch
(SW1) setting:
•

76

DIP[1:2] = 2’b10 – Write once, then Read only, Refresh disabled

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Signal Integrity Correlation Results

UG199_c7_31_071107

Figure 7-31:

DDR2 DIMM Read HW Measurement - Eye Scope Shot at Probe Point (FPGA1 Via)
1900.0
1700.0
1500.0

Voltage (mV)

1300.0
1100.0
900.0
700.0
500.0
300.0
100.0
Probe 3:C8.1 (at pin)
-100.0
2000.0

2400.0

2800.0

Time (ps)

♦
♦
♦
♦

Figure 7-32:

3200.0

3600.0
UG199_c7_32_071107

333 MHz, Slow, PRBS6, 59% UI
Cursor 1: 1.0988V, 2.5207 ns
Cursor 2: 1.0254V, 3.3859 ns
Delta Voltage = 73.4 mV, Delta Time = 865.2 ps (59% UI)

DDR2 DIMM Read Correlation - Eye Scope Shot at Probe Point (Slow Corner)

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

77

R

Chapter 7: ML561 Hardware-Simulation Correlation

UG199_c7_33_071107

Figure 7-33:

DDR2 DIMM Read HW Measurement - Waveform Scope Shot at Probe Point (FPGA1 Via)
1800.0
1600.0
1400.0

Voltage (mV)

1200.0
1000.0
800.0
600.0
400.0
200.0
Probe 3:C8.1 (at pin)

0.000
-200.0
25.000

35.000

45.000

55.000

Time (ns)

Figure 7-34:

78

65.000

75.000

UG199_c7_34_071007

DDR2 DIMM Read Correlation - Waveform Scope Shot at Probe Point (Slow Corner)

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Signal Integrity Correlation Results

1800.0
1600.0
1400.0

Voltage (mV)

1200.0
1000.0
800.0
600.0
400.0
200.0
Probe 6:U5_B00.H29 (at die)

0.000
-200.0
2000.0

2400.0

2800.0

3200.0

3600.0

Time (ps)

♦
♦
♦
♦

Figure 7-35:

4000.0

UG199_c7_35_071007

333 MHz, Slow, PRBS6, 82% UI
Cursor 1: 1.1007V, 2.3997 ns
Cursor 2: 1.0232V, 3.6257 ns
Delta Voltage = 77.5 mV, Delta Time = 1.2260 ns (82% UI)

DDR2 DIMM Read Extrapolation - Eye Scope Shot at Receiver IOB (Slow Corner)
1800.0
1600.0
1400.0

Voltage (mV)

1200.0
1000.0
800.0
600.0
400.0
200.0
0.000

Probe 6:U5_B00.H29 (at die)

-200.0
30.000

40.000

50.000

Time (ns)

Figure 7-36:

60.000

70.000
UG199_c7_36_071007

DDR2 DIMM Read Extrapolation - Waveform Scope Shot at Receiver IOB (Slow Corner)

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

79

R

Chapter 7: ML561 Hardware-Simulation Correlation

1800.0
1600.0
1400.0
1200.0

Voltage (mV)

1000.0
800.0
600.0
400.0
200.0
Probe 6:U5_B00.H29 (at die)

0.000
-200.0
400.0

800.0

1200.0

1600.0

2000.0

Time (ps)

♦
♦
♦
♦

2400.0

UG199_c7_37_071007

333 MHz, Fast, PRBS6, 83% UI
Cursor 1: 697.0 mV, 763.0 ps
Cursor 2: 776.6 mV, 2.0052 ns
Delta Voltage = 79.5 mV, Delta Time = 1.2422 ns (83% UI)

Figure 7-37: DDR2 DIMM Read Extrapolation - Eye Scope Shot at Receiver IOB (Fast Corner)
1800.0
1600.0
1400.0

Voltage (mV)

1200.0
1000.0
800.0
600.0
400.0
200.0
0.000

Probe 6:U5_B00.H29 (at die)

-200.0
30.000

40.000

50.000

Time (ns)

Figure 7-38:

80

60.000

70.000
UG199_c7_38_071007

DDR2 DIMM Read Extrapolation - Waveform Scope Shot at Receiver IOB (Fast Corner)

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Signal Integrity Correlation Results

QDRII Write Operation
This subsection shows the test results for the QDR2_D_BY0_B5 signal from FPGA3 (U34)
to QDRII memory (U35) measured at 300 MHz (600 Mb/s), where the unit interval
(UI) = 167 ns.
49.0 ohms
5.283 ps
0.035 in
QDR2_D_BY0_B5

VCC0V7…
0.9V
R1586
49.9 ohms

U35.G11

TL6

28.5 ohms
4.404 ps
71.0 ohms
0.027 in
27.482 ps
QDR2_D_BY0_B5 AutoPadstk_3

TL2

49.0 ohms
11.902 ps
0.079 in
QDR2_D_BY0_B5

TL4

49.8 ohms
520.665 ps
3.333 in
QDR2_D_BY0_B5

45.1 ohms
7.862 ps
AutoPadstk_19

TL5

TL7

28.5 ohms
4.473 ps
0.028 in
QDR2_D_BY0_B5

70.8 ohms
16.339 ps
AutoPadstk_3

TL8

TL3

U34.M31

TL1
Virtex-5 FPGA
QDR2_D_BY0_B5

K7R323684M_1.8V
D5
QDR2_D...
QDR2_D...

QDR2_D...

C7

22.9 fF

22.9 fF

500.0 fF

QDR2_D...

58.1 fF

QDR2_D...

QDR2_D...

399.1 fF

177.3 fF

22.9 fF

UG199_c7_39_070907

Figure 7-39:

Post-Layout IBIS Schematics of QDRII Write Data Bit (QDR2_D_BY0_B5)
Table 7-11:

Circuit Elements of QDRII Write Data bit (QDR2_D_BY0_B5)

Element

Table 7-12:

Designation

Description

Driver

U34.M31

FPGA HSTL_I_18

Receiver

U35.G11

QDRII memory

Probe Point

C7

Via under Memory

PCB Termination

R1586

External termination at memory

Trace Length

TL 2, 5, 8, 1

3.46 inches

QDRII Write Operation Correlation Results

Measurement

DVW
(% UI)

ISI
(% UI)

Noise Margin
(VIH + VIL) = Total
(% of VREF)

Overshoot / Undershoot
Margin
(% of VREF)

Hardware at probe
point

1.40 ns
(84.1%)

(50 + 70) = 120 ps (7.2%)

(340 + 400) = 740 mV
(82.2%)

(450 + 400) = 850 mV
(94.5%)

Simulation correlation
slow-weak corner

1.39 ns
(83.5%)

(136 + 91) = 227 ps (13.6%)

(344 + 398) = 742 mV
(82.5%)

(483 + 452) = 935 mV
(103.9%)

Correlation Delta:
HW vs. Simulation

10 ps
(0.6%)

107 ps (6.4%)

2 mV (0.3%)

85 mV (9.4%)

Extrapolation at IOB
slow-weak corner

1.38 ns

(172 + 141) = 313 ps

(83%)

(18.8%)

(329 + 358) = 687 mV
(76.3%)

(400 + 361) = 761 mV
(84.5%)

Extrapolation at IOB
fast-strong corner

1.49 ns

(353 + 376) = 729 mV
(81.0%)

(156 + 30) = 186 mV
(20.7%)

(89%)

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

(126 + 91) = 217 ps (13.0%)

www.xilinx.com

81

R

Chapter 7: ML561 Hardware-Simulation Correlation

UG199_c7_40_071107

Figure 7-40:

QDRII Write HW Measurement - Eye Scope Shot at Probe Point (QDRII Memory Via)
1800.0
1600.0
1400.0
1200.0

Voltage (mV)

1000.0
800.0
600.0
400.0
200.0
Probe 3:C7.1 (at pin)

0.000
-200.0
0.000

400.0

800.0

1200.0

Time (ps)

♦
♦
♦
♦

Figure 7-41:

82

1600.0
UG199_c7_41_070907

300 MHz, Slow, PRBS6, 83.5% UI
Cursor 1: 699.1 mV, 90.0 ps
Cursor 2: 801.0 mV, 1.4770 ns
Delta Voltage = 101.9 mV, Delta Time = 1.3870 ns (83.5% UI)

QDRII Write Correlation - Eye Scope Shot at Probe Point (Slow Corner)

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Signal Integrity Correlation Results

UG199_c7_42_071107

Figure 7-42:

QDRII Write HW Measurement - Waveform Scope Shot at Probe Point (QDRII Memory Via)
1900.0
1700.0
1500.0

Voltage (mV)

1300.0
1100.0
900.0
700.0
500.0
300.0
100.0
Probe 3:C7.1 (at pin)
-100.0
110.000

120.000

130.000

140.000

Time (ns)

Figure 7-43:

150.000

160.000

UG199_c7_43_071007

QDRII Write Correlation - Waveform Scope Shot at Probe Point (Slow Corner)

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

83

R

Chapter 7: ML561 Hardware-Simulation Correlation

1800.0
1600.0
1400.0
1200.0

Voltage (mV)

1000.0
800.0
600.0
400.0
200.0
Probe 6:U35.G11 (at die)

0.000
-200.0
0.000

400.0

800.0

1200.0

Time (ps)

♦
♦
♦
♦

Figure 7-44:

1600.0
UG199_c7_44_070907

300 MHz, Slow, PRBS6, 83% UI
Cursor 1: 699.1 mV, 61.3 ps
Cursor 2: 801.0 mV, 1.4433 ns
Delta Voltage = 101.9 mV, Delta Time = 1.3820 ns (83% UI)

QDRII Write Extrapolation - Eye Scope Shot at Receiver IOB (Slow Corner)
1900.0
1700.0
1500.0

Voltage (mV)

1300.0
1100.0
900.0
700.0
500.0
300.0
100.0
Probe 6:U35.G11 (at die)
-100.0
110.000

120.000

130.000

140.000

Time (ns)

Figure 7-45:

84

150.000

160.000

UG199_c7_45_071007

QDRII Write Extrapolation - Waveform Scope Shot at Receiver IOB (Slow Corner)

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Signal Integrity Correlation Results

3100.0
2600.0
2100.0
1600.0

Voltage (mV)

1100.0
600.0
100.0
-400.0
-900.0
Probe 6:U35.G11 (at die)

-1400.0
-1900.0
800.0

1200.0

1600.0

2000.0

Time (ps)

♦
♦
♦
♦

Figure 7-46:

2400.0

2800.0

UG199_c7_46_070907

300 MHz, Fast, PRBS6, 89% UI
Cursor 1: 699.1 mV, 1.1440 ns
Cursor 2: 801.0 mV, 2.6334 ns
Delta Voltage = 101.9 mV, Delta Time = 1.4894 ns (89% UI)

QDRII Write Extrapolation - Eye Scope Shot at Receiver IOB (Fast Corner)
3400.0
2900.0
2400.0

Voltage (mV)

1900.0
1400.0
900.0
400.0
-100.0
-600.0
-1100.0
-1600.0
110.000

Probe 6:U35.G11 (at die)

120.000

130.000

140.000

Time (ns)

Figure 7-47:

150.000

160.000

UG199_c7_47_070907

QDRII Write Extrapolation - Waveform Scope Shot at Receiver IOB (Fast Corner)

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

85

R

Chapter 7: ML561 Hardware-Simulation Correlation

QDRII Read Operation
This subsection shows the test results for the QDR2_Q_BY0_B5 signal from QDRII
memory (U35) to FPGA3 (U34) measured at 300 MHz (600 Mb/s), where the unit interval
(UI) = 1.67 ns.
28.5 ohms
4.473 ps
0.028 in
QDR2_Q_BY0_B5

U34.G33

TL1

49.1 ohms
427.654 ps
2.737 in
QDR2_Q_BY0_B5

49.1 ohms
95.834 ps
0.613 in
QDR2_Q_BY0_B5

71.6 ohms
22.319 ps
AutoPadstk_3

TL3

TL2

TL6

28.5 ohms
4.404 ps
0.027 in
QDR2_Q_BY0_B5

71.8 ohms
22.319 ps
AutoPad...

TL7

U35.F11

TL8
K7R323684M_1.8V
C5

Virtex-5 FPGA
QDR2_Q_BY0_B5
QDR2_Q...

QDR2_Q...

QDR2_Q...

513.2 fF

96.3 fF

22.9 fF

C7

QDR2_Q...

96.3 fF

22.9 fF

QDR2_Q...

500.0 fF

UG199_c7_48_071907

Figure 7-48: Post-Layout IBIS Schematics of QDRII Read Data Bit (QDR2_Q_BY0_B5)
Table 7-13:

Circuit Elements of QDRII Read Data Bit (QDR2_Q_BY0_B5)

Element

Table 7-14:

Designation

Description

Driver

U36.F11

QDRII memory

Receiver

U34.G33

FPGA HSTL_I_DCI_18

Probe Point

C7

Via under FPGA3 (U34)

PCB Termination

None

DCI at FPGA

Trace Length

TL 1, 3, 6, 8

3.41 inches

QDRII Read Operation Correlation Results

Measurement

DVW
(% UI)

ISI
(% UI)

Noise Margin
(VIH + VIL) = Total
(% of VREF)

Overshoot / Undershoot
Margin
(% of VREF)

Hardware at probe point

1.09 ns
(65.4%)

(70 + 50) = 120 ps (7.2%)

(400 + 400) = 800 mV
(88.9%)

(500 + 500) = 1000 mV
(111.1%)

(72 + 75) = 147 ps (8.8%)

(250 + 264) = 514 mV
(57.1%)

(532 + 518) = 1050 mV
(105.5%)

27 ps (1.6%)

386 mV (31.8%)

50 mV (5.6%)

(49 + 36) = 85 ps (5.1%)

(237 + 272) = 509 mV
(56.5%)

(608 + 575) = 1183 mV
(131.5%)

(27 + 39) = 66 ps (4.0%)

(341 +201) = 542 mV
(60.3%)

(532 + 661) = 1193 mV
(132.6%)

984 ps

Simulation correlation
slow-weak corner

(59.0%)

Correlation Delta:
HW vs. Simulation

106 ps
(6.4%)

Extrapolation at IOB
slow-weak corner

1.46 ns

Extrapolation at IOB
fast-strong corner

1.45 ns

86

(88%)
(87%)

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Signal Integrity Correlation Results

UG199_c7_49_071107

Figure 7-49:

QDRII Read HW Measurement - Eye Diagram Scope Shot at Probe Point (FPGA3 Via)
1800.0
1600.0
1400.0
1200.0

Voltage (mV)

1000.0
800.0
600.0
400.0
200.0
Probe 3:C7.1 (at pin)

0.000
-200.0
800.0

1200.0

1600.0

2000.0

Time (ps)

♦
♦
♦
♦

Figure 7-50:

2400.0
UG199_c7_50_070907

300 MHz, Slow, PRBS6, 59% UI
Cursor 1: 1.1007V, 1.4881 ns
Cursor 2: 1.0029V, 2.4719 ns
Delta Voltage = 97.9 mV, Delta Time = 983.8 ps (59% UI)

QDRII Read Correlation - Eye Diagram Scope Shot at Probe Point (Slow Corner)

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

87

R

Chapter 7: ML561 Hardware-Simulation Correlation

UG199_c7_51_071107

Figure 7-51:

QDRII Read HW Measurement - Waveform Scope Shot at Probe Point (FPGA3 Via)
1900.0
1700.0
1500.0

Voltage (mV)

1300.0
1100.0
900.0
700.0
500.0
300.0
Probe 3:C7.1 (at pin)

100.0
-100.0
20.000

30.000

40.000

50.000

Time (ns)

Figure 7-52:

88

60.000

70.000

UG199_c7_52_071007

QDRII Read Correlation - Waveform Scope Shot at Probe Point (Slow Corner)

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Signal Integrity Correlation Results

1800.0
1600.0
1400.0
1200.0

Voltage (mV)

1000.0
800.0
600.0
400.0
200.0
Probe 6:U34.G33 (at die)

0.000
-200.0
1000.0

1400.0

1800.0

2200.0

Time (ps)

♦
♦
♦
♦

2600.0
UG199_c7_53_070907

300 MHz, Slow, PRBS6, 88% UI
Cursor 1: 1.1008V, 1.2758 ns
Cursor 2: 998.9 mV, 2.7352 ns
Delta Voltage = 101.9 mV, Delta Time = 1.4594 ns (88% UI)

Figure 7-53: QDRII Read Extrapolation - Eye Scope Shot at Receiver IOB (Slow Corner)
1900.0
1700.0
1500.0

Voltage (mV)

1300.0
1100.0
900.0
700.0
500.0
300.0
100.0

Probe 6:U34.G33 (at die)

-100.0
30.000

40.000

50.000

Time (ns)

Figure 7-54:

60.000

70.000
UG199_c7_54_071007

QDRII Read Extrapolation - Waveform Scope Shot at Receiver IOB (Slow Corner

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

89

R

Chapter 7: ML561 Hardware-Simulation Correlation

1800.0
1600.0
1400.0
1200.0

Voltage (mV)

1000.0
800.0
600.0
400.0
200.0
0.000
Probe 6:U34.G33 (at die)
-200.0
1200.0

1600.0

2000.0

2400.0

Time (ps)

♦
♦
♦
♦

Figure 7-55:

2800.0
UG199_c7_55_070907

300 MHz, Fast, PRBS6, 87% UI
Cursor 1: 801 mV, 2.7263 ns
Cursor 2: 697.0 mV, 1.2744 ns
Delta Voltage = 104.0 mV, Delta Time = 1.4519 ns (87% UI)

QDRII Read Extrapolation - Eye Scope Shot at Receiver IOB (Fast Corner)
1900.0
1700.0
1500.0

Voltage (mV)

1300.0
1100.0
900.0
700.0
500.0
300.0
100.0
-100.0
25.000

Probe 6:U34.G33 (at die)

35.000

45.000

55.000

Time (ns)

Figure 7-56:

90

65.000

75.000

UG199_c7_56_071007

QDRII Read Extrapolation - Waveform Scope Shot at Receiver IOB (Fast Corner)

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Summary and Recommendations

Summary and Recommendations
The first objective of this exercise is to establish correlation between hardware
measurements and the simulation at the probe point. The intention was to validate the
simulation model for the targeted signal. The degree of correlation achieved is looked at in
terms of absolute difference as well as relative percentage. The relative percentage
differences are presented in terms of unit interval (UI) for timing characteristics and in
terms of VREF voltage for the voltage margin characteristics.
Correlation simulation is performed under ideal conditions, that is, the stimulus is
generated without any jitter. On the other hand, the hardware measurements are subject to
jitter (which tends to increase ISI), board-level power fluctuation (which can affect the eye
amplitude), and stability of the probing station. Thus some correlation differences are
expected. The user ultimately uses his or her own judgment to account for these
differences, and adjusts the values extrapolated for quality of signal at the receiver IOB.
Table 7-15 contains this information for all six test signals.
Table 7-15:

Summary of Correlation Differences: Hardware vs. Simulation
ΔDVW
(% UI(1))

ΔISI
(% UI)

Noise Margin
(% VREF)

Overshoot /
Undershoot Margin
(% VREF)

40 ps
(2.6%)

47 ps
(3.2%)

98 mV

69 mV

(10.9%)

(7.6%)

0 ps

6 mV

244 mV

(0%)

43 ps
(2.9%)

(0.7%)

(17.2%)

DDR2 DIMM Write

218 ps
(14.5%)

366 ps
(24.5%)

112 mV

2 mV

(12.6%)

(0.3%)

DDR2 DIMM Read

39 ps
(2.6%)

44 ps
(2.9%)

QDRII Write

10 ps
(0.6%)

107 ps
(6.4%)

QDRII Read

106 ps
(6.4%)

27 ps
(1.6%)

Operation

DDR2 Component Write
DDR2 Component Read

90 mV

208 mV

(10.0%)

(23.1%)

2 mV

85 mV

(0.3%)

(9.4%)

386 mV

50 mV

(31.8%)

(5.6%)

Notes:
1. Unit Interval (UI): 1.5 ns for DDR2 and 1.67 ns for QDRII. VREF = 0.9V for DDR2 and QDRII.

There are varying degrees of correlation differences among the six test signals. In general,
there is a good match between hardware measurements and the correlation simulation,
except for some yet-to-be analyzed differences, for example, DDR2 DIMM Write DVW and
QDRII read noise margin.
The remainder of this section summarizes the extrapolation results of the data bit interface
for all six memory operations on the ML561 board. The measure of SI characteristics of
each signal is determined by the worst-case extrapolation measurement from among the
simulations with drivers at slow-weak and fast-strong corners. The values chosen between
these two corner cases are:
•

Minimum of DVW, noise margin, and overshoot/undershoot margin

•

Maximum of ISI

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

91

R

Chapter 7: ML561 Hardware-Simulation Correlation

Table 7-16 summarizes the extrapolated SI characteristics of all six test signals.
Table 7-16:

Summary of Worst-Case SI Characteristics
ΔDVW
(% UI)

ΔISI
(% UI)

Noise Margin
(% VREF)

Overshoot /
Undershoot Margin
(% VREF)

DDR2 Component Write

1.27 ns
(84%)

127 ps

570 mV

685 mV

(8.5%)

(63.3%)

(76.1%)

DDR2 Component Read

1.29 ns
(86%)

178 ps

867 mV

349 mV

(11.9%)

(96.3%)

(38.9%)

DDR2 DIMM Write

1.23 ns
(82%)

117 ps

253 mV

981 mV

(7.8%)

(28.1%)

(109.0%)

DDR2 DIMM Read

1.23 ns
(82%)

224 ps

546 mV

989 mV

(14.9%)

(60.7%)

(109.9%)

QDRII Write

1.38 ns
(83%)

313 ps

687 mV

186 mV

(18.8%)

(76.3%)

(20.7%)

QDRII Read

1.45 ns
(87%)

85 ps

509 mV

1183 mV

(5.1%)

(56.5%)

(131.5%)

Operation

Here are some observations about extrapolated SI characteristics among these test signals:
•

The Data Valid Window (DVW) values already account for the degradation caused by
ISI due to the PRBS6 test pattern. For timing analysis, two values need to be taken into
consideration appropriately. For a PRBS6 test pattern, the worst-case DVW value
(after discounting for ISI) is 82% UI for DDR2 DIMM operations.

•

DDR2 write operations, as compared to QDRII write operations, have a lower noise
margin due to the always on nature of the DCI termination on the DQ signal for the
SSTL18_II_DCI I/O standard at the FPGA. Consequently, the overshoot/undershoot
margin for DDR2 write operations is higher than for QDRII write operations. The
DDR2 DIMM write operation has the lowest VIL noise margin of 107 mV.

•

For read operations, the sum of VIH and VIL noise margins beyond the AC value
specifications is at least 509 mV (56.6% of VREF). QDRII read operations have the
lowest VIL noise margin of 201 mV.

•

All six signals have positive values for overshoot and undershoot margins. QDRII
write operations have the lowest undershoot margin value of 30 mV.

(For Table 5-1, page 48 through Table 5-5, page 49, the recommendations remain the same
except for a clarification for DDR2 ODT as “75 ohm ODT”.)

92

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

How to Generate a User-Specific FPGA IBIS Model

How to Generate a User-Specific FPGA IBIS Model
The following steps indicate how to generate an IBIS model:
1.
2.

Under ISE, open your fully compiled project.
Go to the Tcl Shell tab, and issue an ibiswriter command as:
ibiswriter –allmodels .ncd .ibs ;

For example, ibiswriter –allmodels mem_interface_top.ncd
ml561_fpga3_u34.ibs
3.

Unzip the Virtex-5 FPGA IBIS models ZIP file located at the Xilinx Download Center
(under the “Device Models” sidebar link). Then unzip the ZIP file containing the
device package files and extract a package file for your device, for example,
ff1136_5vlx50t.pkg. Place this file in the same directory as the FPGA IBIS file (for
example, ml561_fpga3_u34.ibs).

4.

Open the ml561_fpga3_u34.ibs file generated by ibiswriter in HyperLynx Visual
IBIS Editor. Check the file for correctness by clicking on the check (9) button in the top
toolbar. Warnings are okay.

5.

Open the ff1136_5vlx50t.pkg file using a text editor and locate the [Define
Package Model] line. Copy and paste this line into the ml561_fpga3_u34.ibs file
just above the line with the [Package] declaration. Edit the copied line to change
[Define Package Model] to [Package Model].

6.

Again, check the file for correctness by clicking on the check (9) button in the top
toolbar. Multiple errors will appear. The package model file defines I/O definitions for
all usable pins, but now ibiswriter only declares pins defined under the UCF. Thus
errors are displayed for all the undefined pins, for example:
ERROR - Pin 'AK9' found in Package_Model 'ff1136_xc5vlx50t_fga0106_dc' Pin_Numbers
list not found in Component 'VIRTEX-5' Pin list.

7.

Copy all these errors into a text file with a .txt file type.
♦

Open this text file with Excel and provide the delimiter as (‘), which puts all the
unused pin names in one column. Delete all other columns before and after the
one with the pin names.

♦

In column 2, fill in Unused_IO for all pins.

♦

In column 3, fill in the name of one of the I/O standards defined under the
[Model] section of the ml561_fpga3_u34.ibs file, for example,
LVCMOS25_S_12. Choose a name that is not an output only standard, because it
might conflict with other outputs in the same bank.

♦

Right-justify the indentation for all three columns and make sure that each
column is wider by a few spaces than the longest string in that column.

♦

Save this file with the Save As command in Excel using the Formatted Text (space
delimited) (*.prn) option to create a text file with text columns separated by
spaces. (The IBIS checker gives a warning if the .ibs file contains tabs.)

8.

Open the .prn file with a text editor and copy all these lines to the .ibs file at the end
of the [Pin] definitions section (just above the [Diff Pin] declarations).

9.

Check (9) the .ibs file again. There should not be any errors. Again, warnings are
okay.

10. The result is an accurate custom-made IBIS model of a Virtex-5 device specific to your
design.

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

93

Chapter 7: ML561 Hardware-Simulation Correlation

94

www.xilinx.com

R

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Appendix A

FPGA Pinouts
This appendix provides the pinouts for the three FPGAs on the Virtex-5 FPGA ML561
Development Board. The toolkit CD shipped with every ML561 contains sample UCFs for
each memory interface. These UCFs are for pinout reference only and do not include other
constraints, like I/O standards.

FPGA #1 Pinout
Table A-1 lists the connections for FPGA #1 (U7).
Table A-1:

FPGA #1 Pinout
Signal Name

Pin

Signal Name

Pin

DDR400 Component Interface
DDR1_A0

M32

DDR1_CK1_N

AJ34

DDR1_A1

L33

DDR1_CK1_P

AH34

DDR1_A10

E33

DDR1_CK2_N

AE34

DDR1_A11

E32

DDR1_CK2_P

AF34

DDR1_A12

E34

DDR1_CKE

AC34

DDR1_A13

F33

DDR1_LB_BK11

N32

DDR1_A2

K32

DDR1_LB_BK11

P32

DDR1_A3

K34

DDR1_LB_BK13

AJ32

DDR1_A4

L34

DDR1_LB_BK13

AK32

DDR1_A5

J34

DDR1_RAS_N

AB32

DDR1_A6

H34

DDR1_WE_N

AD34

DDR1_A7

H33

DDR1_DM_BY0

AG32

DDR1_A8

F34

DDR1_DM_BY1

Y32

DDR1_A9

G33

DDR1_DM_BY2

P34

DDR1_BA0

AK33

DDR1_DM_BY3

G32

DDR1_BA1

AK34

DDR1_DQ_BY0_B0

AP32

DDR1_BY0_1_CS_N

AB33

DDR1_DQ_BY0_B1

AN32

DDR1_BY2_3_CS_N

AC33

DDR1_DQ_BY0_B2

AN33

DDR1_CAS_N

AC32

DDR1_DQ_BY0_B3

AN34

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

95

R

Appendix A: FPGA Pinouts

Table A-1:

FPGA #1 Pinout (Continued)
Signal Name

Pin

Signal Name

Pin

DDR400 Component Interface (cont.)
DDR1_DQ_BY0_B4

AM32

DDR1_DQ_BY2_B4

R32

DDR1_DQ_BY0_B5

AM33

DDR1_DQ_BY2_B5

R33

DDR1_DQ_BY0_B6

AL33

DDR1_DQ_BY2_B6

R34

DDR1_DQ_BY0_B7

AL34

DDR1_DQ_BY2_B7

T33

DDR1_DQ_BY1_B0

Y34

DDR1_DQ_BY3_B0

D34

DDR1_DQ_BY1_B1

AA34

DDR1_DQ_BY3_B1

C34

DDR1_DQ_BY1_B2

AA33

DDR1_DQ_BY3_B2

D32

DDR1_DQ_BY1_B3

Y33

DDR1_DQ_BY3_B3

C32

DDR1_DQ_BY1_B4

V34

DDR1_DQ_BY3_B4

C33

DDR1_DQ_BY1_B5

W34

DDR1_DQ_BY3_B5

B33

DDR1_DQ_BY1_B6

V33

DDR1_DQ_BY3_B6

A33

DDR1_DQ_BY1_B7

V32

DDR1_DQ_BY3_B7

B32

DDR1_DQ_BY2_B0

U31

DDR1_DQS_BY0_P

AD32

DDR1_DQ_BY2_B1

U32

DDR1_DQS_BY1_P

AF33

DDR1_DQ_BY2_B2

T34

DDR1_DQS_BY2_P

K33

DDR1_DQ_BY2_B3

U33

DDR1_DQS_BY3_P

J32

DDR2 Component Interface

96

DDR2_A0

K12

DDR2_CAS_N

J14

DDR2_A1

K13

DDR2_CK0_N

K19

DDR2_A10

G22

DDR2_CK0_P

L19

DDR2_A11

J15

DDR2_CK1_N

J19

DDR2_A12

K16

DDR2_CK1_P

K18

DDR2_A2

H23

DDR2_CKE

K17

DDR2_A3

G23

DDR2_CS0_N

H20

DDR2_A4

H12

DDR2_CS1_N

H19

DDR2_A5

J12

DDR2_LB_BK15

T28

DDR2_A6

K22

DDR2_LB_BK15

T29

DDR2_A7

K23

DDR2_LB_BK19

M28

DDR2_A8

K14

DDR2_LB_BK19

N28

DDR2_A9

L14

DDR2_ODT0

H18

DDR2_BA0

K21

DDR2_ODT1

H17

DDR2_BA1

J22

DDR2_RAS_N

H13

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Table A-1:

FPGA #1 Pinout

FPGA #1 Pinout (Continued)
Signal Name

Pin

Signal Name

Pin

DDR2 Component Interface (cont.)
DDR2_WE_N

J21

DDR2_DQ_BY2_B2

N25

DDR2_DM_BY0

U30

DDR2_DQ_BY2_B3

P25

DDR2_DM_BY1

L29

DDR2_DQ_BY2_B4

P24

DDR2_DM_BY2

K27

DDR2_DQ_BY2_B5

N24

DDR2_DM_BY3

J27

DDR2_DQ_BY2_B6

P27

DDR2_DQ_BY0_B0

T25

DDR2_DQ_BY2_B7

P26

DDR2_DQ_BY0_B1

U25

DDR2_DQ_BY3_B0

M26

DDR2_DQ_BY0_B2

T26

DDR2_DQ_BY3_B1

M25

DDR2_DQ_BY0_B3

U26

DDR2_DQ_BY3_B2

J25

DDR2_DQ_BY0_B4

R27

DDR2_DQ_BY3_B3

J24

DDR2_DQ_BY0_B5

R26

DDR2_DQ_BY3_B4

L26

DDR2_DQ_BY0_B6

U28

DDR2_DQ_BY3_B5

L25

DDR2_DQ_BY0_B7

U27

DDR2_DQ_BY3_B6

L24

DDR2_DQ_BY1_B0

E31

DDR2_DQ_BY3_B7

K24

DDR2_DQ_BY1_B1

F31

DDR2_DQS_BY0_N

N30

DDR2_DQ_BY1_B2

J29

DDR2_DQS_BY0_P

M31

DDR2_DQ_BY1_B3

H29

DDR2_DQS_BY1_N

P29

DDR2_DQ_BY1_B4

F30

DDR2_DQS_BY1_P

N29

DDR2_DQ_BY1_B5

G30

DDR2_DQS_BY2_N

E27

DDR2_DQ_BY1_B6

F29

DDR2_DQS_BY2_P

E26

DDR2_DQ_BY1_B7

E29

DDR2_DQS_BY3_N

H27

DDR2_DQ_BY2_B0

T24

DDR2_DQS_BY3_P

G27

DDR2_DQ_BY2_B1 23

R24
FPGA #1 Clock and Reset Signals

CLK_TO_FPGA1_MGT_116_N

H3

DIRECT_CLK_TO_FPGA1_P

AG22

CLK_TO_FPGA1_MGT_116_P

H4

EXT_CLK_TO_FPGA1_N

AG13

CLK_TO_FPGA1_MGT_118_N

AF3

EXT_CLK_TO_FPGA1_P

AH12

CLK_TO_FPGA1_MGT_118_P

AF4

FPGA1_LOW_FREQ_CLK

AH20

DIRECT_CLK_TO_FPGA1_N

AH22

FPGA1_RESET_N

AH14

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

97

R

Appendix A: FPGA Pinouts

Table A-1:

FPGA #1 Pinout (Continued)
Signal Name

Pin

Signal Name

Pin

FPGA #1 MII Link Interface
FPGA2_TO_FPGA1_MII_TX_CLK

J10

FPGA3_TO_FPGA1_MII_TX_CLK

D10

FPGA2_TO_FPGA1_MII_TX_DATA0

C13

FPGA3_TO_FPGA1_MII_TX_DATA0

H10

FPGA2_TO_FPGA1_MII_TX_DATA1

B13

FPGA3_TO_FPGA1_MII_TX_DATA1

C12

FPGA2_TO_FPGA1_MII_TX_DATA2

K9

FPGA3_TO_FPGA1_MII_TX_DATA2

D12

FPGA2_TO_FPGA1_MII_TX_DATA3

K8

FPGA3_TO_FPGA1_MII_TX_DATA3

J11

FPGA2_TO_FPGA1_MII_TX_EN

L11

FPGA3_TO_FPGA1_MII_TX_EN

A13

FPGA2_TO_FPGA1_MII_TX_ERR

L10

FPGA3_TO_FPGA1_MII_TX_ERR

H9

FPGA2_TO_FPGA1_MII_TX_SPARE

J9

FPGA3_TO_FPGA1_MII_TX_SPARE

K11

FPGA #1 Configuration Signals
FPGA_INIT

N14

FPGA1_D_IN

P15

FPGA_PROGB

M22

FPGA1_DONE

M15

FPGA_TMS

AC14

FPGA1_DOUT_B

AD15

FPGA_VBATT

L23

FPGA1_HSWAPEN

M23

FPGA1_CCLK

N15

FPGA1_TCK

AB15

FPGA1_CNFG_M0

AD21

FPGA1_TDI_IN

AC15

FPGA1_CNFG_M1

AC22

FPGA1_TDO 15

AD14

FPGA1_CNFG_M2

AD22
FPGA #1 Test and Debug Signals

98

FPGA1_DIP0

AG18

FPGA1_TEST_HDR_BY0_B6

E8

FPGA1_DIP1

AG15

FPGA1_TEST_HDR_BY0_B7

E9

FPGA1_DIP2

AH15

FPGA1_TEST_HDR_BY1_B0

E12

FPGA1_DIP3

AG20

FPGA1_TEST_HDR_BY1_B1

L9

FPGA1_SPYHOLE_BK21

AF26

FPGA1_TEST_HDR_BY1_B2

M10

FPGA1_TEST_HDR_BY0_B0

H8

FPGA1_TEST_HDR_BY1_B3

E11

FPGA1_TEST_HDR_BY0_B1

G8

FPGA1_TEST_HDR_BY1_B4

F11

FPGA1_TEST_HDR_BY0_B2

G10

FPGA1_TEST_HDR_BY1_B5

L8

FPGA1_TEST_HDR_BY0_B3

F10

FPGA1_TEST_HDR_BY1_B6

M8

FPGA1_TEST_HDR_BY0_B4

F8

FPGA1_TEST_HDR_BY1_B7

G12

FPGA1_TEST_HDR_BY0_B5

F9

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Table A-1:

FPGA #1 Pinout

FPGA #1 Pinout (Continued)
Signal Name

Pin

Signal Name

Pin

FPGA #1 Test Display Signals
FPGA1_7SEG_0_N

AG17

FPGA1_7SEG_6_N

AF19

FPGA1_7SEG_1_N

AH18

FPGA1_7SEG_DP_N

AG21

FPGA1_7SEG_2_N

AE18

FPGA1_LED0

AD19

FPGA1_7SEG_3_N

AF18

FPGA1_LED1

AE19

FPGA1_7SEG_4_N

AG16

FPGA1_LED2

AE17

FPGA1_7SEG_5_N

AH17

FPGA1_LED3

AF16

FPGA #1 External Interfaces
FPGA1_LCD_BL_ON

M6

FPGA1_LCD_E

M5

FPGA1_LCD_CSB

M7

FPGA1_LCD_R_WB

N8

FPGA1_LCD_DB0

K6

FPGA1_LCD_RESET_N

L6

FPGA1_LCD_DB1

K7

FPGA1_LCD_RS

N7

FPGA1_LCD_DB2

P6

FPGA1_RS232_CTS

R11

FPGA1_LCD_DB3

P7

FPGA1_RS232_RTS

G5

FPGA1_LCD_DB4

L5

FPGA1_RS232_RX

P9

FPGA1_LCD_DB5

L4

FPGA1_RS232_TX

H5

FPGA1_LCD_DB6

P5

FPGA1_TXN0_BK124

B9

FPGA1_LCD_DB7

N5

FPGA1_TXP0_BK124

B10

FPGA1_USB_CTS_N

G6

FPGA1_USB_RTS_N

G7

FPGA1_USB_DSR_N

E6

FPGA1_USB_RX

T9

FPGA1_USB_DTR_N

E7

FPGA1_USB_SUSPEND

T11

FPGA1_USB_RST_N

T10

FPGA1_USB_TX

U10

FPGA #1 Voltage Margining Interface
VMARGIN_DN_3V3_N

AE22

VMARGIN_UP_3V3_N

AE23

VMARGIN_DN_HSTL_N

AE13

VMARGIN_UP_HSTL_N

AE12

VMARGIN_DN_SSTL18_N

AF13

VMARGIN_UP_SSTL18_N

AG12

VMARGIN_DN_SSTL2_N

AF23

VMARGIN_UP_SSTL2_N

AG23

VMARGIN_DN_VCC1V0_N

AF20

VMARGIN_UP_VCC1V0_N

AF21

VMARGIN_DN_VCC2V5_N

AE14

VMARGIN_UP_VCC2V5_N

AF14

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

99

R

Appendix A: FPGA Pinouts

FPGA #2 Pinout
Table A-2 lists the connections for FPGA #2 (U5).
Table A-2:

FPGA #2 Pinout
Signal Name

Pin

Signal Name

Pin

DDR2 DIMM Deep Interface

100

DDR2_DIMM_A0

AG30

DDR2_DIMM1_CK0_N

M26

DDR2_DIMM_A1

AH29

DDR2_DIMM1_CK0_P

M25

DDR2_DIMM_A10

AF31

DDR2_DIMM1_CK1_N

J25

DDR2_DIMM_A11

AC29

DDR2_DIMM1_CK1_P

J24

DDR2_DIMM_A12

AD30

DDR2_DIMM1_CK2_N

L26

DDR2_DIMM_A13

AA30

DDR2_DIMM1_CK2_P

L25

DDR2_DIMM_A14

AA29

DDR2_DIMM1_CKE0

G28

DDR2_DIMM_A15

AC30

DDR2_DIMM1_CKE1

H28

DDR2_DIMM_A2

AH30

DDR2_DIMM1_CS0_N

V27

DDR2_DIMM_A3

AJ30

DDR2_DIMM1_CS1_N

V28

DDR2_DIMM_A4

AF30

DDR2_DIMM1_ODT0

H24

DDR2_DIMM_A5

AF29

DDR2_DIMM1_ODT1

H25

DDR2_DIMM_A6

AK31

DDR2_DIMM2_CK0_N

AF26

DDR2_DIMM_A7

AJ31

DDR2_DIMM2_CK0_P

AF25

DDR2_DIMM_A8

AD29

DDR2_DIMM2_CK1_N

AG25

DDR2_DIMM_A9

AE29

DDR2_DIMM2_CK1_P

AF24

DDR2_DIMM_BA0

AB30

DDR2_DIMM2_CK2_N

AJ26

DDR2_DIMM_BA1

AA31

DDR2_DIMM2_CK2_P

AH27

DDR2_DIMM_BA2

AB31

DDR2_DIMM2_CKE0

AE24

DDR2_DIMM_CAS_N

V29

DDR2_DIMM2_CKE1

AD24

DDR2_DIMM_LB_BK11_IN

P32

DDR2_DIMM2_CS0_N

W27

DDR2_DIMM_LB_BK11_OUT

H33

DDR2_DIMM2_CS1_N

Y27

DDR2_DIMM_LB_BK13_IN

AJ32

DDR2_DIMM2_ODT0

AE26

DDR2_DIMM_LB_BK13_OUT

AK32

DDR2_DIMM2_ODT1

AE27

DDR2_DIMM_LB_BK15_IN

T28

DDR2_DIMM3_CK0_N

AA24

DDR2_DIMM_LB_BK15_OUT

T29

DDR2_DIMM3_CK0_P

Y24

DDR2_DIMM_RAS_N

Y28

DDR2_DIMM3_CK1_N

AC27

DDR2_DIMM_RESET_N

Y29

DDR2_DIMM3_CK1_P

AB27

DDR2_DIMM_WE_N

W29

DDR2_DIMM3_CK2_N

AA26

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Table A-2:

FPGA #2 Pinout

FPGA #2 Pinout (Continued)
Signal Name

Pin

Signal Name

Pin

DDR2 DIMM Deep Interface (cont.)
DDR2_DIMM3_CK2_P

AA25

DDR2_DIMM_DQ_BY0_B4

R27

DDR2_DIMM3_CKE0

AE28

DDR2_DIMM_DQ_BY0_B5

R26

DDR2_DIMM3_CKE1

AH28

DDR2_DIMM_DQ_BY0_B6

U28

DDR2_DIMM3_CS0_N

W25

DDR2_DIMM_DQ_BY0_B7

U27

DDR2_DIMM3_CS1_N

V25

DDR2_DIMM_DQ_BY1_B0

N29

DDR2_DIMM3_ODT0

AB26

DDR2_DIMM_DQ_BY1_B1

M30

DDR2_DIMM3_ODT1

AB25

DDR2_DIMM_DQ_BY1_B2

L30

DDR2_DIMM4_CK0_N

AK9

DDR2_DIMM_DQ_BY1_B3

J31

DDR2_DIMM4_CK0_P

AK8

DDR2_DIMM_DQ_BY1_B4

J30

DDR2_DIMM4_CK1_N

AJ11

DDR2_DIMM_DQ_BY1_B5

G31

DDR2_DIMM4_CK1_P

AK11

DDR2_DIMM_DQ_BY1_B6

H30

DDR2_DIMM4_CK2_N

AD11

DDR2_DIMM_DQ_BY1_B7

L29

DDR2_DIMM4_CK2_P

AD10

DDR2_DIMM_DQ_BY2_B0

E31

DDR2_DIMM4_CKE0

AG11

DDR2_DIMM_DQ_BY2_B1

F31

DDR2_DIMM4_CKE1

AG10

DDR2_DIMM_DQ_BY2_B2

J29

DDR2_DIMM4_CS0_N

W26

DDR2_DIMM_DQ_BY2_B3

H29

DDR2_DIMM4_CS1_N

Y26

DDR2_DIMM_DQ_BY2_B4

F30

DDR2_DIMM4_ODT0

AE11

DDR2_DIMM_DQ_BY2_B5

G30

DDR2_DIMM4_ODT1

AF11

DDR2_DIMM_DQ_BY2_B6

F29

DDR2_DIMM_DM_BY0

U30

DDR2_DIMM_DQ_BY2_B7

E29

DDR2_DIMM_DM_BY1

R31

DDR2_DIMM_DQ_BY3_B0

J32

DDR2_DIMM_DM_BY2

T31

DDR2_DIMM_DQ_BY3_B1

F34

DDR2_DIMM_DM_BY3

L33

DDR2_DIMM_DQ_BY3_B2

G33

DDR2_DIMM_DM_BY4

AK34

DDR2_DIMM_DQ_BY3_B3

E33

DDR2_DIMM_DM_BY5

AG32

DDR2_DIMM_DQ_BY3_B4

E32

DDR2_DIMM_DM_BY6

P34

DDR2_DIMM_DQ_BY3_B5

E34

DDR2_DIMM_DM_BY7

AK33

DDR2_DIMM_DQ_BY3_B6

F33

DDR2_DIMM_DM_CB0_7

M32

DDR2_DIMM_DQ_BY3_B7

G32

DDR2_DIMM_DQ_BY0_B0

T25

DDR2_DIMM_DQ_BY4_B0

Y34

DDR2_DIMM_DQ_BY0_B1

U25

DDR2_DIMM_DQ_BY4_B1

AA34

DDR2_DIMM_DQ_BY0_B2

T26

DDR2_DIMM_DQ_BY4_B2

AA33

DDR2_DIMM_DQ_BY0_B3

U26

DDR2_DIMM_DQ_BY4_B3

Y33

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

101

R

Appendix A: FPGA Pinouts

Table A-2:

FPGA #2 Pinout (Continued)
Signal Name

Pin

Signal Name

Pin

DDR2 DIMM Deep Interface (cont.)
DDR2_DIMM_DQ_BY4_B4

V34

DDR2_DIMM_DQ_BY7_B7

Y32

DDR2_DIMM_DQ_BY4_B5

W34

DDR2_DIMM_DQ_CB0_7_B0

D34

DDR2_DIMM_DQ_BY4_B6

V33

DDR2_DIMM_DQ_CB0_7_B1

C34

DDR2_DIMM_DQ_BY4_B7

V32

DDR2_DIMM_DQ_CB0_7_B2

D32

DDR2_DIMM_DQ_BY5_B0

AP32

DDR2_DIMM_DQ_CB0_7_B3

C32

DDR2_DIMM_DQ_BY5_B1

AN32

DDR2_DIMM_DQ_CB0_7_B4

C33

DDR2_DIMM_DQ_BY5_B2

AN33

DDR2_DIMM_DQ_CB0_7_B5

B33

DDR2_DIMM_DQ_BY5_B3

AN34

DDR2_DIMM_DQ_CB0_7_B6

A33

DDR2_DIMM_DQ_BY5_B4

AM32

DDR2_DIMM_DQ_CB0_7_B7

B32

DDR2_DIMM_DQ_BY5_B5

AM33

DDR2_DIMM_DQS_BY0_L_N

N30

DDR2_DIMM_DQ_BY5_B6

AL33

DDR2_DIMM_DQS_BY0_L_P

M31

DDR2_DIMM_DQ_BY5_B7

AL34

DDR2_DIMM_DQS_BY1_L_N

P30

DDR2_DIMM_DQ_BY6_B0

U31

DDR2_DIMM_DQS_BY1_L_P

P31

DDR2_DIMM_DQ_BY6_B1

U32

DDR2_DIMM_DQS_BY2_L_N

L31

DDR2_DIMM_DQ_BY6_B2

T34

DDR2_DIMM_DQS_BY2_L_P

K31

DDR2_DIMM_DQ_BY6_B3

U33

DDR2_DIMM_DQS_BY3_L_N

J34

DDR2_DIMM_DQ_BY6_B4

R32

DDR2_DIMM_DQS_BY3_L_P

H34

DDR2_DIMM_DQ_BY6_B5

R33

DDR2_DIMM_DQS_BY4_L_N

AE34

DDR2_DIMM_DQ_BY6_B6

R34

DDR2_DIMM_DQS_BY4_L_P

AF34

DDR2_DIMM_DQ_BY6_B7

T33

DDR2_DIMM_DQS_BY5_L_N

AE32

DDR2_DIMM_DQ_BY7_B0

AF33

DDR2_DIMM_DQS_BY5_L_P

AD32

DDR2_DIMM_DQ_BY7_B1

AB33

DDR2_DIMM_DQS_BY6_L_N

K32

DDR2_DIMM_DQ_BY7_B2

AC33

DDR2_DIMM_DQS_BY6_L_P

K33

DDR2_DIMM_DQ_BY7_B3

AB32

DDR2_DIMM_DQS_BY7_L_N

AJ34

DDR2_DIMM_DQ_BY7_B4

AC32

DDR2_DIMM_DQS_BY7_L_P

AH34

DDR2_DIMM_DQ_BY7_B5

AD34

DDR2_DIMM_DQS_CB0_7_L_N

K34

DDR2_DIMM_DQ_BY7_B6

AC34

DDR2_DIMM_DQS_CB0_7_L_P

L34

DDR2 DIMM Wide Interface

102

DDR2_DIMM5_CK0_N

AM13

DDR2_DIMM5_CK2_N

AP14

DDR2_DIMM5_CK0_P

AN13

DDR2_DIMM5_CK2_P

AN14

DDR2_DIMM5_CK1_N

AA10

DDR2_DIMM5_CKE0

AC10

DDR2_DIMM5_CK1_P

AB10

DDR2_DIMM5_CKE1

AM11

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Table A-2:

FPGA #2 Pinout

FPGA #2 Pinout (Continued)
Signal Name

Pin

Signal Name

Pin

DDR2 DIMM Wide Interface (cont.)
DDR2_DIMM5_CS0_N

V24

DDR2_DIMM_DQ_BY11_B5

G6

DDR2_DIMM5_CS1_N

W24

DDR2_DIMM_DQ_BY11_B6

T11

DDR2_DIMM5_ODT0

AA9

DDR2_DIMM_DQ_BY11_B7

T10

DDR2_DIMM5_ODT1

AA8

DDR2_DIMM_DQ_BY12_B0

J6

DDR2_DIMM_LB_BK12

F5

DDR2_DIMM_DQ_BY12_B1

T6

DDR2_DIMM_LB_BK12

F6

DDR2_DIMM_DQ_BY12_B2

R6

DDR2_DIMM_LB_BK18

W10

DDR2_DIMM_DQ_BY12_B3

K6

DDR2_DIMM_LB_BK18

Y6

DDR2_DIMM_DQ_BY12_B4

K7

DDR2_DIMM_LB_BK20

E11

DDR2_DIMM_DQ_BY12_B5

P6

DDR2_DIMM_LB_BK20

F11

DDR2_DIMM_DQ_BY12_B6

P7

DDR2_DIMM_DM_BY10

G11

DDR2_DIMM_DQ_BY12_B7

L4

DDR2_DIMM_DM_BY11

R11

DDR2_DIMM_DQ_BY13_B0

AD7

DDR2_DIMM_DM_BY12

G5

DDR2_DIMM_DQ_BY13_B1

AC7

DDR2_DIMM_DM_BY13

Y11

DDR2_DIMM_DQ_BY13_B2

AB5

DDR2_DIMM_DM_BY14

AH7

DDR2_DIMM_DQ_BY13_B3

AA5

DDR2_DIMM_DM_BY15

W11

DDR2_DIMM_DQ_BY13_B4

AB7

DDR2_DIMM_DM_BY8

M8

DDR2_DIMM_DQ_BY13_B5

AB6

DDR2_DIMM_DM_BY9

G12

DDR2_DIMM_DQ_BY13_B6

AC5

DDR2_DIMM_DM_CB8_15

H5

DDR2_DIMM_DQ_BY13_B7

AC4

DDR2_DIMM_DQ_BY10_B0

H8

DDR2_DIMM_DQ_BY14_B0

V9

DDR2_DIMM_DQ_BY10_B1

G8

DDR2_DIMM_DQ_BY14_B1

V10

DDR2_DIMM_DQ_BY10_B2

G10

DDR2_DIMM_DQ_BY14_B2

AK6

DDR2_DIMM_DQ_BY10_B3

F10

DDR2_DIMM_DQ_BY14_B3

AK7

DDR2_DIMM_DQ_BY10_B4

F8

DDR2_DIMM_DQ_BY14_B4

U8

DDR2_DIMM_DQ_BY10_B5

F9

DDR2_DIMM_DQ_BY14_B5

V8

DDR2_DIMM_DQ_BY10_B6

E8

DDR2_DIMM_DQ_BY14_B6

AJ6

DDR2_DIMM_DQ_BY10_B7

E9

DDR2_DIMM_DQ_BY14_B7

AJ7

DDR2_DIMM_DQ_BY11_B0

E7

DDR2_DIMM_DQ_BY15_B0

W6

DDR2_DIMM_DQ_BY11_B1

E6

DDR2_DIMM_DQ_BY15_B1

AE6

DDR2_DIMM_DQ_BY11_B2

U10

DDR2_DIMM_DQ_BY15_B2

AD6

DDR2_DIMM_DQ_BY11_B3

T9

DDR2_DIMM_DQ_BY15_B3

Y7

DDR2_DIMM_DQ_BY11_B4

G7

DDR2_DIMM_DQ_BY15_B4

AA6

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

103

R

Appendix A: FPGA Pinouts

Table A-2:

FPGA #2 Pinout (Continued)
Signal Name

Pin

Signal Name

Pin

DDR2 DIMM Wide Interface (cont.)
DDR2_DIMM_DQ_BY15_B5

AD5

DDR2_DIMM_DQ_CB8_15_B4

N7

DDR2_DIMM_DQ_BY15_B6

AD4

DDR2_DIMM_DQ_CB8_15_B5

N8

DDR2_DIMM_DQ_BY15_B7

Y8

DDR2_DIMM_DQ_CB8_15_B6

M5

DDR2_DIMM_DQ_BY8_B0

G13

DDR2_DIMM_DQ_CB8_15_B7

M6

DDR2_DIMM_DQ_BY8_B1

F13

DDR2_DIMM_DQS_BY10_L_N

J9

DDR2_DIMM_DQ_BY8_B2

N9

DDR2_DIMM_DQS_BY10_L_P

J10

DDR2_DIMM_DQ_BY8_B3

N10

DDR2_DIMM_DQS_BY11_L_N

J7

DDR2_DIMM_DQ_BY8_B4

E13

DDR2_DIMM_DQS_BY11_L_P

H7

DDR2_DIMM_DQ_BY8_B5

E12

DDR2_DIMM_DQS_BY12_L_N

U7

DDR2_DIMM_DQ_BY8_B6

L9

DDR2_DIMM_DQS_BY12_L_P

T8

DDR2_DIMM_DQ_BY8_B7

M10

DDR2_DIMM_DQS_BY13_L_N

AF6

DDR2_DIMM_DQ_BY9_B0

A13

DDR2_DIMM_DQS_BY13_L_P

AE7

DDR2_DIMM_DQ_BY9_B1

H9

DDR2_DIMM_DQS_BY14_L_N

V7

DDR2_DIMM_DQ_BY9_B2

H10

DDR2_DIMM_DQS_BY14_L_P

W7

DDR2_DIMM_DQ_BY9_B3

C12

DDR2_DIMM_DQS_BY15_L_N

AF5

DDR2_DIMM_DQ_BY9_B4

D12

DDR2_DIMM_DQS_BY15_L_P

AG5

DDR2_DIMM_DQ_BY9_B5

J11

DDR2_DIMM_DQS_BY8_L_N

C13

DDR2_DIMM_DQ_BY9_B6

K11

DDR2_DIMM_DQS_BY8_L_P

B13

DDR2_DIMM_DQ_BY9_B7

D11

DDR2_DIMM_DQS_BY9_L_N

K9

DDR2_DIMM_DQ_CB8_15_B0 20

P5

DDR2_DIMM_DQS_BY9_L_P

K8

DDR2_DIMM_DQ_CB8_15_B1

N5

DDR2_DIMM_DQS_CB8_15_L_N

R8

DDR2_DIMM_DQ_CB8_15_B2

L6

DDR2_DIMM_DQS_CB8_15_L_P

R7

DDR2_DIMM_DQ_CB8_15_B3

M7
DDR2 DIMM Miscellaneous Signals

DDR2_DIMM1_CNTL_PAR

G27

DDR2_DIMM3_CNTL_PAR

AA28

DDR2_DIMM1_CNTL_PAR_ERR

H27

DDR2_DIMM3_CNTL_PAR_ERR

AG28

DDR2_DIMM1_NC_019

K24

DDR2_DIMM3_NC_019

AK29

DDR2_DIMM1_NC_102

L24

DDR2_DIMM3_NC_102

AJ29

DDR2_DIMM2_CNTL_PAR

AD26

DDR2_DIMM4_CNTL_PAR

AG8

DDR2_DIMM2_CNTL_PAR_ERR

AD25

DDR2_DIMM4_CNTL_PAR_ERR

AH8

DDR2_DIMM2_NC_019

AK28

DDR2_DIMM4_NC_019

AL10

DDR2_DIMM2_NC_102

AK27

DDR2_DIMM4_NC_102

AE8

104

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Table A-2:

FPGA #2 Pinout

FPGA #2 Pinout (Continued)
Signal Name

Pin

Signal Name

Pin

DDR2 DIMM Miscellaneous Signals (cont.)
DDR2_DIMM5_CNTL_PAR

AB8

DDR2_DIMM2_SA2

N24

DDR2_DIMM5_CNTL_PAR_ERR

AM12

DDR2_DIMM3_SA0

P27

DDR2_DIMM5_NC_019

AC9

DDR2_DIMM3_SA1

P26

DDR2_DIMM5_NC_102

AL11

DDR2_DIMM3_SA2

N28

DDR2_DIMM_SCL

W31

DDR2_DIMM4_SA0

K27

DDR2_DIMM_SDA

Y31

DDR2_DIMM4_SA1

L28

DDR2_DIMM1_SA0

T24

DDR2_DIMM4_SA2

K28

DDR2_DIMM1_SA1

R24

DDR2_DIMM5_SA0

E26

DDR2_DIMM1_SA2

N25

DDR2_DIMM5_SA1

F28

DDR2_DIMM2_SA0

P25

DDR2_DIMM5_SA2

E28

DDR2_DIMM2_SA1

P24
FPGA #2 Clock and Reset Signals

CLK_TO_FPGA2_MGT_N

H3

EXT_CLK_TO_FPGA2_N

AG13

CLK_TO_FPGA2_MGT_P

H4

EXT_CLK_TO_FPGA2_P

AH12

DIRECT_CLK_TO_FPGA2_N

AH22

FPGA2_LOW_FREQ_CLK

AH20

DIRECT_CLK_TO_FPGA2_P

AG22

FPGA2_RESET_N_IN

AH14

FPGA #2 MII Link Interface
FPGA1_TO_FPGA2_MII_TX_CLK

AE14

FPGA1_TO_FPGA2_MII_TX_DATA3

AF20

FPGA1_TO_FPGA2_MII_TX_DATA0

AE16

FPGA1_TO_FPGA2_MII_TX_EN

AD20

FPGA1_TO_FPGA2_MII_TX_DATA1

AF15

FPGA1_TO_FPGA2_MII_TX_ERR

AE21

FPGA1_TO_FPGA2_MII_TX_DATA2

AF21

FPGA1_TO_FPGA2_MII_TX_SPARE

AF14

FPGA #2 Configuration Signals
FPGA_INIT

N14

FPGA2_D_IN

P15

FPGA_PROGB

M22

FPGA2_DONE

M15

FPGA_TMS

AC14

FPGA2_DOUT_B

AD15

FPGA_VBATT

L23

FPGA2_HSWAPEN

M23

FPGA2_CCLK

N15

FPGA2_TCK

AB15

FPGA2_CNFG_M0

AD21

FPGA2_TDI_IN

AC15

FPGA2_CNFG_M1

AC22

FPGA2_TDO

AD14

FPGA2_CNFG_M2

AD22

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

105

R

Appendix A: FPGA Pinouts

Table A-2:

FPGA #2 Pinout (Continued)
Signal Name

Pin

Signal Name

Pin

FPGA #2 Test and Debug Signals
FPGA2_DIP0

AG18

FPGA2_SOFTTOUCH_BY1_B7

H17

FPGA2_DIP1

AG15

FPGA2_SPYHOLE_BK15

P29

FPGA2_DIP2

AH15

FPGA2_SPYHOLE_BK18

W9

FPGA2_DIP3

AG20

FPGA2_TEST_HDR_BY0_B0

AE23

FPGA2_SOFTTOUCH_BY0_B0

H20

FPGA2_TEST_HDR_BY0_B1

AE22

FPGA2_SOFTTOUCH_BY0_B1

H19

FPGA2_TEST_HDR_BY0_B2

AG12

FPGA2_SOFTTOUCH_BY0_B2

H13

FPGA2_TEST_HDR_BY0_B3

AF13

FPGA2_SOFTTOUCH_BY0_B3

J14

FPGA2_TEST_HDR_BY0_B4

AG23

FPGA2_SOFTTOUCH_BY0_B4

J21

FPGA2_TEST_HDR_BY0_B5

AF23

FPGA2_SOFTTOUCH_BY0_B5

J20

FPGA2_TEST_HDR_BY0_B6

AE12

FPGA2_SOFTTOUCH_BY0_B6

H15

FPGA2_TEST_HDR_BY0_B7

AE13

FPGA2_SOFTTOUCH_BY0_B7

H14

FPGA2_TEST_HDR_BY1_B0

K12

FPGA2_SOFTTOUCH_BY1_B0

J19

FPGA2_TEST_HDR_BY1_B1

K13

FPGA2_SOFTTOUCH_BY1_B1

K18

FPGA2_TEST_HDR_BY1_B2

H23

FPGA2_SOFTTOUCH_BY1_B2

G16

FPGA2_TEST_HDR_BY1_B3

G23

FPGA2_SOFTTOUCH_BY1_B3

G15

FPGA2_TEST_HDR_BY1_B4

H12

FPGA2_SOFTTOUCH_BY1_B4

L18

FPGA2_TEST_HDR_BY1_B5

J12

FPGA2_SOFTTOUCH_BY1_B5

K17

FPGA2_TEST_HDR_BY1_B6

K22

FPGA2_SOFTTOUCH_BY1_B6

H18

FPGA2_TEST_HDR_BY1_B7

K23

FPGA #2 Test Display Signals
FPGA2_7SEG_0_N

AG17

FPGA2_7SEG_6_N

AF19

FPGA2_7SEG_1_N

AH18

FPGA2_7SEG_DP_N

AG21

FPGA2_7SEG_2_N

AE18

FPGA2_LED0

AD19

FPGA2_7SEG_3_N

AF18

FPGA2_LED1

AE19

FPGA2_7SEG_4_N

AG16

FPGA2_LED2

AE17

FPGA2_7SEG_5_N

AH17

FPGA2_LED3

AF16

FPGA #2 External Interfaces

106

FPGA2_116_TX0_N

G2

FPGA2_120_RX1_P

D1

FPGA2_116_TX0_P

F2

FPGA2_124_TX0_N

B10

FPGA2_120_RX0_N

A2

FPGA2_124_TX0_P

B9

FPGA2_120_RX0_P

A3

FPGA2_124_TX1_N

B6

FPGA2_120_RX1_N

C1

FPGA2_124_TX1_P

B5

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Table A-2:

FPGA #2 Pinout

FPGA #2 Pinout (Continued)
Signal Name

Pin

Signal Name

Pin

FPGA #2 External Interfaces (cont.)
FPGA2_TXN0_BK120

B3

FPGA2_USB_CTS_N

L15

FPGA2_TXN1_BK120

D2

FPGA2_USB_DSR_N

K16

FPGA2_TXP0_BK120

B4

FPGA2_USB_DTR_N

J15

FPGA2_TXP1_BK120

E2

FPGA2_USB_RST_N

L21

FPGA2_RS232_CTS

K14

FPGA2_USB_RTS_N

L16

FPGA2_RS232_RTS

L14

FPGA2_USB_RX

J22

FPGA2_RS232_RX

G22

FPGA2_USB_SUSPEND

L20

FPGA2_RS232_TX

H22

FPGA2_USB_TX

K21

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

107

R

Appendix A: FPGA Pinouts

FPGA #3 Pinout
Table A-3 lists the connections for FPGA #3 (U34).
Table A-3:

FPGA #3 Pinout
Signal Name

Pin

Signal Name

Pin

QDRII Memory Interface

108

QDR2_CK_BY0_3_N

K34

QDR2_SA11

AB26

QDR2_CK_BY0_3_P

G28

QDR2_SA12

AB25

QDR2_CK_BY0_3_P

L34

QDR2_SA13

AA24

QDR2_CK_BY4_7_N

AJ34

QDR2_SA14

Y24

QDR2_CK_BY4_7_P

AA31

QDR2_SA15

AC27

QDR2_CK_BY4_7_P

AH34

QDR2_SA16

AB27

QDR2_CQ_BY0_3_N

E26

QDR2_SA17

AA26

QDR2_CQ_BY0_3_P

K33

QDR2_SA2

AJ27

QDR2_CQ_BY4_7_N

AA29

QDR2_SA3

AK26

QDR2_CQ_BY4_7_P

AD32

QDR2_SA4

AF28

QDR2_DLL_OFF_N

AK27

QDR2_SA5

AE28

QDR2_K_BY0_3_N

F28

QDR2_SA6

AH28

QDR2_K_BY0_3_P

E28

QDR2_SA7

AG28

QDR2_K_BY4_7_N

AC30

QDR2_SA8

AA28

QDR2_K_BY4_7_P

AB30

QDR2_SA9

AB28

QDR2_LB_BK11

P32

QDR2_W_N

AH27

QDR2_LB_BK11

P34

QDR2_BW_BY0_N

M32

QDR2_LB_BK13

AE34

QDR2_BW_BY1_N

L33

QDR2_LB_BK13

AJ32

QDR2_BW_BY2_N

L28

QDR2_LB_BK17

AE29

QDR2_BW_BY3_N

K28

QDR2_LB_BK17

AF31

QDR2_BW_BY4_N

AK33

QDR2_LB_BK19

K27

QDR2_BW_BY5_N

AK34

QDR2_LB_BK19

M28

QDR2_BW_BY6_N

AC29

QDR2_NC_A3

AG25

QDR2_BW_BY7_N

AD30

QDR2_NC_C6

AF24

QDR2_D_BY0_B0

T28

QDR2_R_N

AJ26

QDR2_D_BY0_B1

U30

QDR2_SA0

AJ29

QDR2_D_BY0_B2

R31

QDR2_SA1

AK29

QDR2_D_BY0_B3

T31

QDR2_SA10

AC28

QDR2_D_BY0_B4

N30

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Table A-3:

FPGA #3 Pinout

FPGA #3 Pinout (Continued)
Signal Name

Pin

Signal Name

Pin

QDRII Memory Interface (cont.)
QDR2_D_BY0_B5

M31

QDR2_D_BY4_B1

AH29

QDR2_D_BY0_B6

P30

QDR2_D_BY4_B2

AH30

QDR2_D_BY0_B7

P31

QDR2_D_BY4_B3

AJ30

QDR2_D_BY0_B8

L31

QDR2_D_BY4_B4

AF30

QDR2_D_BY1_B0

J27

QDR2_D_BY4_B5

AF29

QDR2_D_BY1_B1

M26

QDR2_D_BY4_B6

AK31

QDR2_D_BY1_B2

M25

QDR2_D_BY4_B7

AJ31

QDR2_D_BY1_B3

J25

QDR2_D_BY4_B8

AD29

QDR2_D_BY1_B4

J24

QDR2_D_BY5_B0

V30

QDR2_D_BY1_B5

L26

QDR2_D_BY5_B1

W27

QDR2_D_BY1_B6

L25

QDR2_D_BY5_B2

Y27

QDR2_D_BY1_B7

L24

QDR2_D_BY5_B3

W25

QDR2_D_BY1_B8

K24

QDR2_D_BY5_B4

V25

QDR2_D_BY2_B0

L29

QDR2_D_BY5_B5

W26

QDR2_D_BY2_B1

E31

QDR2_D_BY5_B6

Y26

QDR2_D_BY2_B2

F31

QDR2_D_BY5_B7

V24

QDR2_D_BY2_B3

J29

QDR2_D_BY5_B8

W24

QDR2_D_BY2_B4

H29

QDR2_D_BY6_B0

U31

QDR2_D_BY2_B5

F30

QDR2_D_BY6_B1

U32

QDR2_D_BY2_B6

G30

QDR2_D_BY6_B2

T34

QDR2_D_BY2_B7

F29

QDR2_D_BY6_B3

U33

QDR2_D_BY2_B8

E29

QDR2_D_BY6_B4

R32

QDR2_D_BY3_B0

K31

QDR2_D_BY6_B5

R33

QDR2_D_BY3_B1

P29

QDR2_D_BY6_B6

R34

QDR2_D_BY3_B2

N29

QDR2_D_BY6_B7

T33

QDR2_D_BY3_B3

M30

QDR2_D_BY6_B8

N32

QDR2_D_BY3_B4

L30

QDR2_D_BY7_B0

T25

QDR2_D_BY3_B5

J31

QDR2_D_BY7_B1

U25

QDR2_D_BY3_B6

J30

QDR2_D_BY7_B2

T26

QDR2_D_BY3_B7

G31

QDR2_D_BY7_B3

U26

QDR2_D_BY3_B8

H30

QDR2_D_BY7_B4

R27

QDR2_D_BY4_B0

AG30

QDR2_D_BY7_B5

R26

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

109

R

Appendix A: FPGA Pinouts

Table A-3:

FPGA #3 Pinout (Continued)
Signal Name

Pin

Signal Name

Pin

QDRII Memory Interface (cont.)

110

QDR2_D_BY7_B6

U28

QDR2_Q_BY3_B2

G27

QDR2_D_BY7_B7

U27

QDR2_Q_BY3_B3

F26

QDR2_D_BY7_B8

T29

QDR2_Q_BY3_B4

F25

QDR2_Q_BY0_B0

J34

QDR2_Q_BY3_B5

H24

QDR2_Q_BY0_B1

H34

QDR2_Q_BY3_B6

H25

QDR2_Q_BY0_B2

H33

QDR2_Q_BY3_B7

G26

QDR2_Q_BY0_B3

J32

QDR2_Q_BY3_B8

G25

QDR2_Q_BY0_B4

F34

QDR2_Q_BY4_B0

AP32

QDR2_Q_BY0_B5

G33

QDR2_Q_BY4_B1

AN32

QDR2_Q_BY0_B6

E33

QDR2_Q_BY4_B2

AN33

QDR2_Q_BY0_B7

E32

QDR2_Q_BY4_B3

AN34

QDR2_Q_BY0_B8

E34

QDR2_Q_BY4_B4

AM32

QDR2_Q_BY1_B0

T24

QDR2_Q_BY4_B5

AM33

QDR2_Q_BY1_B1

R24

QDR2_Q_BY4_B6

AL33

QDR2_Q_BY1_B2

N25

QDR2_Q_BY4_B7

AL34

QDR2_Q_BY1_B3

P25

QDR2_Q_BY4_B8

AK32

QDR2_Q_BY1_B4

P24

QDR2_Q_BY5_B0

AF34

QDR2_Q_BY1_B5

N24

QDR2_Q_BY5_B1

AE33

QDR2_Q_BY1_B6

P27

QDR2_Q_BY5_B2

AF33

QDR2_Q_BY1_B7

P26

QDR2_Q_BY5_B3

AB33

QDR2_Q_BY1_B8

N28

QDR2_Q_BY5_B4

AC33

QDR2_Q_BY2_B0

G32

QDR2_Q_BY5_B5

AB32

QDR2_Q_BY2_B1

D34

QDR2_Q_BY5_B6

AC32

QDR2_Q_BY2_B2

C34

QDR2_Q_BY5_B7

AD34

QDR2_Q_BY2_B3

D32

QDR2_Q_BY5_B8

AC34

QDR2_Q_BY2_B4

C32

QDR2_Q_BY6_B0

Y32

QDR2_Q_BY2_B5

C33

QDR2_Q_BY6_B1

Y34

QDR2_Q_BY2_B6

B33

QDR2_Q_BY6_B2

AA34

QDR2_Q_BY2_B7

A33

QDR2_Q_BY6_B3

AA33

QDR2_Q_BY2_B8

B32

QDR2_Q_BY6_B4

Y33

QDR2_Q_BY3_B0

H28

QDR2_Q_BY6_B5

V34

QDR2_Q_BY3_B1

H27

QDR2_Q_BY6_B6

W34

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Table A-3:

FPGA #3 Pinout

FPGA #3 Pinout (Continued)
Signal Name

Pin

Signal Name

Pin

QDRII Memory Interface (cont.)
QDR2_Q_BY6_B7

V33

QDR2_Q_BY7_B4

W29

QDR2_Q_BY6_B8

V32

QDR2_Q_BY7_B5

Y31

QDR2_Q_BY7_B0

AB31

QDR2_Q_BY7_B6

W31

QDR2_Q_BY7_B1

Y29

QDR2_Q_BY7_B7

V27

QDR2_Q_BY7_B2

Y28

QDR2_Q_BY7_B8

V28

QDR2_Q_BY7_B3

V29
RLDRAM II Memory Interface

RLD2_A0

AD10

RLD2_CK_BY2_3_N

AE11

RLD2_A1

AD9

RLD2_CK_BY2_3_P

AF11

RLD2_A10

AC8

RLD2_CS_BY0_1_N

AK9

RLD2_A11

AP12

RLD2_CS_BY2_3_N

AK8

RLD2_A12

AA9

RLD2_DK_BY0_1_N

AH8

RLD2_A13

AA8

RLD2_DK_BY0_1_P

AG8

RLD2_A14

AM13

RLD2_DK_BY2_3_N

AH10

RLD2_A15

AN13

RLD2_DK_BY2_3_P

AH9

RLD2_A16

AA10

RLD2_QK_BY0_N

C13

RLD2_A17

AB10

RLD2_QK_BY0_P

B13

RLD2_A18

AP14

RLD2_QK_BY1_N

K9

RLD2_A19

AN14

RLD2_QK_BY1_P

K8

RLD2_A2

AE8

RLD2_QK_BY2_N

J7

RLD2_A3

AL10

RLD2_QK_BY2_P

H7

RLD2_A4

AL11

RLD2_QK_BY3_N

U7

RLD2_A5

AC9

RLD2_QK_BY3_P

T8

RLD2_A6

AC10

RLD2_QVLD_BY0_1

F11

RLD2_A7

AM11

RLD2_QVLD_BY2_3

U10

RLD2_A8

AM12

RLD2_REF_N

AJ9

RLD2_A9

AB8

RLD2_WE_N

AF9

RLD2_BA0

AJ11

RLD2_D_BY0_B0

D11

RLD2_BA1

AK11

RLD2_D_BY0_B1

H8

RLD2_BA2

AD11

RLD2_D_BY0_B2

G8

RLD2_CK_BY0_1_N

AG11

RLD2_D_BY0_B3

G10

RLD2_CK_BY0_1_P

AG10

RLD2_D_BY0_B4

F10

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

111

R

Appendix A: FPGA Pinouts

Table A-3:

FPGA #3 Pinout (Continued)
Signal Name

Pin

Signal Name

Pin

RLDRAM II Memory Interface (cont.)

112

RLD2_D_BY0_B5

F8

RLD2_DM_BY2_3_N

T9

RLD2_D_BY0_B6

F9

RLD2_DQ_BY0_B0

G13

RLD2_D_BY0_B7

E8

RLD2_DQ_BY0_B1

F13

RLD2_D_BY0_B8

E9

RLD2_DQ_BY0_B2

N9

RLD2_D_BY1_B0

R11

RLD2_DQ_BY0_B3

N10

RLD2_D_BY1_B1

R7

RLD2_DQ_BY0_B4

E13

RLD2_D_BY1_B2

J6

RLD2_DQ_BY0_B5

E12

RLD2_D_BY1_B3

T6

RLD2_DQ_BY0_B6

L9

RLD2_D_BY1_B4

R6

RLD2_DQ_BY0_B7

M10

RLD2_D_BY1_B5

K6

RLD2_DQ_BY0_B8

E11

RLD2_D_BY1_B6

K7

RLD2_DQ_BY1_B0

J10

RLD2_D_BY1_B7

P6

RLD2_DQ_BY1_B1

B12

RLD2_D_BY1_B8

P7

RLD2_DQ_BY1_B2

A13

RLD2_D_BY2_B0

V9

RLD2_DQ_BY1_B3

H9

RLD2_D_BY2_B1

V10

RLD2_DQ_BY1_B4

H10

RLD2_D_BY2_B2

AK6

RLD2_DQ_BY1_B5

C12

RLD2_D_BY2_B3

AK7

RLD2_DQ_BY1_B6

D12

RLD2_D_BY2_B4

U8

RLD2_DQ_BY1_B7

J11

RLD2_D_BY2_B5

V8

RLD2_DQ_BY1_B8

K11

RLD2_D_BY2_B6

AJ6

RLD2_DQ_BY2_B0

E7

RLD2_D_BY2_B7

AJ7

RLD2_DQ_BY2_B1

E6

RLD2_D_BY2_B8

W9

RLD2_DQ_BY2_B2

G7

RLD2_D_BY3_B0

Y8

RLD2_DQ_BY2_B3

G6

RLD2_D_BY3_B1

AD7

RLD2_DQ_BY2_B4

F6

RLD2_D_BY3_B2

AC7

RLD2_DQ_BY2_B5

F5

RLD2_D_BY3_B3

AB5

RLD2_DQ_BY2_B6

J5

RLD2_D_BY3_B4

AA5

RLD2_DQ_BY2_B7

G5

RLD2_D_BY3_B5

AB7

RLD2_DQ_BY2_B8

H5

RLD2_D_BY3_B6

AB6

RLD2_DQ_BY3_B0

L4

RLD2_D_BY3_B7

AC5

RLD2_DQ_BY3_B1

P5

RLD2_D_BY3_B8

AC4

RLD2_DQ_BY3_B2

N5

RLD2_DM_BY0_1_N

G12

RLD2_DQ_BY3_B3

L6

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Table A-3:

FPGA #3 Pinout

FPGA #3 Pinout (Continued)
Signal Name

Pin

Signal Name

Pin

RLDRAM II Memory Interface (cont.)
RLD2_DQ_BY3_B4

M7

RLD2_DQ_BY3_B7

M5

RLD2_DQ_BY3_B5

N7

RLD2_DQ_BY3_B8

M6

RLD2_DQ_BY3_B6

N8
FPGA #3 Clock and Reset Signals

CLK_TO_FPGA3_MGT_N

D4

EXT_CLK_TO_FPGA3_N

AG13

CLK_TO_FPGA3_MGT_P

E4

EXT_CLK_TO_FPGA3_P

AH12

DIRECT_CLK_TO_FPGA3_N

AH22

FPGA3_LOW_FREQ_CLK

AH20

DIRECT_CLK_TO_FPGA3_P

AG22

FPGA3_RESET_N_IN

AH14

FPGA #3 MII Link Interface
FPGA1_TO_FPGA3_MII_TX_CLK

AE14

FPGA1_TO_FPGA3_MII_TX_DATA3

AF20

FPGA1_TO_FPGA3_MII_TX_DATA0

AE16

FPGA1_TO_FPGA3_MII_TX_EN

AD20

FPGA1_TO_FPGA3_MII_TX_DATA1

AF15

FPGA1_TO_FPGA3_MII_TX_ERR

AE21

FPGA1_TO_FPGA3_MII_TX_DATA2

AF21

FPGA1_TO_FPGA3_MII_TX_SPARE

AF14

FPGA #3 Configuration Signals
FPGA_INIT

N14

FPGA3_D_IN

P15

FPGA_PROGB

M22

FPGA3_DONE

M15

FPGA_TMS

AC14

FPGA3_DOUT_B

AD15

FPGA_VBATT

L23

FPGA3_HSWAPEN

M23

FPGA3_CCLK

N15

FPGA3_TCK

AB15

FPGA3_CNFG_M0

AD21

FPGA3_TDI_IN

AC15

FPGA3_CNFG_M1

AC22

FPGA3_TDO

AD14

FPGA3_CNFG_M2

AD22
FPGA #3 Test and Debug Signals

FPGA3_DIP0

AG18

FPGA3_TEST_HDR_BY0_B3

AF13

FPGA3_DIP1

AG15

FPGA3_TEST_HDR_BY0_B4

AG23

FPGA3_DIP2

AH15

FPGA3_TEST_HDR_BY0_B5

AF23

FPGA3_DIP3

AG20

FPGA3_TEST_HDR_BY0_B6

AE12

FPGA3_SPYHOLE_BK12

R8

FPGA3_TEST_HDR_BY0_B7

AE13

FPGA3_SPYHOLE_BK13

AG32

FPGA3_TEST_HDR_BY1_B0

AE24

FPGA3_TEST_HDR_BY0_B0

AE23

FPGA3_TEST_HDR_BY1_B1

AD24

FPGA3_TEST_HDR_BY0_B1

AE22

FPGA3_TEST_HDR_BY1_B2

AD25

FPGA3_TEST_HDR_BY0_B2

AG12

FPGA3_TEST_HDR_BY1_B3

AD26

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

113

R

Appendix A: FPGA Pinouts

Table A-3:

FPGA #3 Pinout (Continued)
Signal Name

Pin

Signal Name

Pin

FPGA #3 Test and Debug Signals (cont.)
FPGA3_TEST_HDR_BY1_B4

AC24

FPGA3_TEST_HDR_BY1_B6

AE26

FPGA3_TEST_HDR_BY1_B5

AC25

FPGA3_TEST_HDR_BY1_B7

AE27

FPGA #3 Test Display Signals
FPGA3_7SEG_0_N

AG17

FPGA3_7SEG_6_N

AF19

FPGA3_7SEG_1_N

AH18

FPGA3_7SEG_DP_N

AG21

FPGA3_7SEG_2_N

AE18

FPGA3_LED0

AD19

FPGA3_7SEG_3_N

AF18

FPGA3_LED1

AE19

FPGA3_7SEG_4_N

AG16

FPGA3_LED2

AE17

FPGA3_7SEG_5_N

AH17

FPGA3_LED3

AF16

FPGA #3 External Interfaces
FPGA3_RS232_CTS

G15

FPGA3_USB_DTR_N

H13

FPGA3_RS232_RTS

L18

FPGA3_USB_RST_N

L19

FPGA3_RS232_RX

H18

FPGA3_USB_RTS_N

H15

FPGA3_RS232_TX

K17

FPGA3_USB_RX

J20

FPGA3_USB_CTS_N

H14

FPGA3_USB_SUSPEND

K19

FPGA3_USB_DSR_N

J14

FPGA3_USB_TX

J21

FPGA #3 System ACE Control Signals

114

SYSACE_CTRL0

H12

SYSACE_MPA5

K22

SYSACE_CTRL1

G23

SYSACE_MPA6

J12

SYSACE_CTRL2

H23

SYSACE_MPD0

L21

SYSACE_CTRL3

K13

SYSACE_MPD1

L20

SYSACE_CTRL4

K12

SYSACE_MPD2

L15

SYSACE_MPA0

G22

SYSACE_MPD3

L16

SYSACE_MPA1

H22

SYSACE_MPD4

J22

SYSACE_MPA2

L14

SYSACE_MPD5

K21

SYSACE_MPA3

K14

SYSACE_MPD6

K16

SYSACE_MPA4

K23

SYSACE_MPD7

J15

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Appendix B

Bill of Materials
This appendix lists the bill of materials (BOM) for many of the components used for the
assembly of the Virtex-5 FPGA ML561 Development Board, Revision A. Wherever feasible
and practical, the associated reference designators are also listed for each part. The
component part number in the “Mfr. Part Number” column includes a link to the
corresponding manufacturer or supplier’s web page. Check with the manufacturer for
current information regarding the location and status of component data sheets.
Table B-1:

Bill of Materials

Category

Description

Manufacturer

Mfr. Part Number

Reference Designators

FPGA

Virtex-5 FPGA

Xilinx

XC5VLX50T-FFG1136 -2 speed grade

U5, U7, U34

DDR2 Registered DIMM

Micron

MT9HTF6472Y-667 (RDIMM)

XP1, XP2, XP3, XP4, XP5
(DIMM)

DDR2 Unbuffered DIMM

Micron

MT9HTF6472AY-667 (UDIMM)

XP1, XP2, XP3, XP4, XP5
(DIMM)

DDR400 SDRAM

Micron

MT46V32M16BN-5B

U6, U9

DDR2 SDRAM

Micron

MT47H32M16CC-3

U11, U12

QDRII

Samsung

K7R643684M-FC30

U35, U41

RLDRAM II

Micron

MT49H16M18BM-25

U25, U33

DIMM Socket

SMP Technology

B037-2401-010-0-Z

XP1, XP2, XP3, XP4, XP5
(Socket)

33 MHz Oscillator

Epson

SG-8002CA-33.0000M-PCC

Y2, Y3

200 MHz Oscillator

Epson

EG2121CA-200.0000M-PHPAB

Y1

System ACE Controller

Xilinx

XCCACE-TQG144I

U45

JTAG Port

Molex

87832-1420

P114

Memory

Clock

Configuration

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

115

R

Appendix B: Bill of Materials

Table B-1:

Bill of Materials (Continued)

Category

Power

Glue Logic

Clock Buffer

Display

Socket/
Connector

116

Description

Manufacturer

Mfr. Part Number

Reference Designators

15A Power Module

Texas Instruments

PTH05010-WAZ

VR1, VR6, VR9, VR10,
VR12, VR13

6A Power Module

Texas Instruments

PTH05000-WAZ

VR2, VR4, VR14

4A LDO

Maxim

MAX8556ETE

VR3, VR5, VR7, VR8

1.5A VLDO Regulator

Linear Technology

LTC3026EMSE#PBF

U15

DDR Bus Termination
Regulator

Fairchild
Semiconductor

FN6555

U1, U2, U14, U42

Power Measurement Header

3M

3429-6002

P102

500 mA VLDO Regulator

Linear Technology

LT3021ES8

U16, U22

5A LDO

Texas Instruments

TPS75501

U23

Power Sensing Resistor

Isotek Corp.

SMV-R010-0.5

R63, R724, R764, R777,
R874, R885, R954

USB to RS-232 Bridge

Silicon Labs

CP2102GM

U43

Schmitt Inverter

Toshiba

TC74LCX14FTCT-ND

U32

Level Translator

Maxim

MAX3008

U10

RS-232 Compatible Transceiver

Maxim

MAX3316ECUP

U31

CMOS Octal Buffer

ON Semiconductor

MC74LCX541DT

U37, U38

LVCMOS, 1-to-4

Integrated Device
Technology

ICS8304

U19

LVCMOS, 1-to-4, 5V Tolerant

Integrated Device
Technology

ICS553MI

U30, U44

Differential LVPECL, 1-to-6

Integrated Device
Technology

ICS853006

U17, U18

Diff. LVPECL-to-LVDS, 1-to-4

Integrated Device
Technology

ICS8543BG

U20

Diff. HCSL, 1-to-4

Integrated Device
Technology

ICS557-06

U24

7-Segment LED

Stanley Electric

NAR131SB

D17, D23, D35

Banana Jack (Red)

Hirschmann

973-582-101

J18, J25

Banana Jack (Black)

Hirschmann

973-582-100

J17, J24

RS232 DB-9 Port

Tyco Electronics

747250-4

P73

USB Port

KYCON

KUSB-AS-1-N-BLK

J29

Test Headers (2x8)

Tyco Electronics

146130-7-ND

P20, P21, P93

CompactFlash Holder

Molex

55358-5038

J27

CompactFlash Ejector

Molex

55364-0011

5V Power Input Jack

CUI Inc.

PJ-002AH

J28

Power Fuse

Digikey

RUE600-ND

F1, F2

SMA for Ext Clock Inputs

AMPHENOL-RF

901-144-8RFX

J16, J19, J20, J21

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Table B-1:
Category

Switch

Bill of Materials (Continued)
Description

Manufacturer

Mfr. Part Number

Reference Designators

DIP (Test Inputs)

ITT_INDUSTRIES

SDA04H1KD

SW1, SW2, SW6

System Reset (Black)

Panasonic

EVQ11L07K

SW4

Configuration Reset (Red)

Panasonic

EVQ11L05K

SW7

Power Input (12V and 5V)

APEM

25336NA

SW3, SW5

Rotary 8-position

Digikey

GH3311-ND

SW8

0402 (Assorted Values)

Panasonic

ECJ-xxx

MLC_CAP_0402

0603 (Assorted Values)

Panasonic

ECJ-xxx

MLC_CAP_0603

0805 (Assorted Values)

Panasonic

ECJ-xxx

MLC_CAP_0805

Tantalum C

Kemet

T520xxx

TANT_CAP_C

Tantalum D

Kemet

T520xxx

TANT_CAP_D

Tantalum E

Kemet

T520xxx

TANT_CAP_E

DO3316

Coilcraft

DO3316

Lxx

Ferrite Bead

TDK

MPZ1608S221A

FBxx

0805 (assorted values)

Digikey

HZ0805E601R-00

Lxx

0402 (assorted values)

Panasonic

ERJ-xxx

Rxxx

0603 (assorted values)

Panasonic

ERJ-xxx

Rxxx

0805 (assorted values)

Panasonic

ERJ-xxx

Rxxx

MOSFET

Diodes

BSS138

Qxx

Capacitor

Inductor

Resistor

Transistor

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

117

R

Appendix B: Bill of Materials

118

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Appendix C

LCD Interface
This appendix describes the LCD interface for the Virtex-5 FPGA ML561 Development
Board.

General
The Virtex-5 FPGA ML561 Development Board has a full graphical LCD panel. This
display was chosen because of its possible use in embedded systems. A character-type
display also can be connected because the graphical LCD has the same interface as the
character-type LCD panels.
A hardware character generator must be designed to display characters on the screen.

Display Hardware Design
The FPGA (I/O functioning at 2.5V) is connected to the graphic LCD panel through a set of
voltage-level converting devices. These switches translate the 2.5 I/O voltage to a 3.3V
voltage for the LCD panel.
A graphics-based LCD panel from DisplayTech (64128EFCBC-XLP) is used on the Virtex-5
FPGA ML561 Development Board. The control for this LCD panel is based on the KS0713
controller from Samsung. The KS0713 is a 65-column, 132-segment driver-controller device
for graphic dot matrix LCD systems. The chip accepts serial or parallel display data. The
8-bit parallel interface is compatible with most LCD panel manufacturers. The serial
connection mode is write only.
Extra features added to the interface in addition to the normal parallel signals are:
•

Intel or Motorola compatible interface

•

External reset of the chip

•

External chip select

The interface also contains the following built-in options for the display and controller:
•

On-chip oscillator circuitry

•

On-chip voltage converter (x2, x3, x4, and x5)

•

A 64-step electronic contrast control function

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

119

R

Appendix C: LCD Interface

Table C-1 summarizes the controller specifications.
Table C-1:

Display Controller Specifications

Parameter

Specification

Supply Voltage

2.4V to 3.6V (VDD)

LCD Driving Voltage

4V to 15V (VLCD = V0 - VDD)

Power Consumption

70 μA typical (VDD = 3V, x4 boost, V0 = 11V,
internal supply = ON)

Sleep Mode

2 μA

Standby Mode

10 μA

The on-chip RAM size is 65 x 132 = 8580 bits.

Hardware Schematic Diagram

SamArray

Figure C-1 illustrates the schematic for the display.

LCD-BUS
Rst

MI

LED
- + Vcc Gnd

LCD_D[7:0]

IC19
3.3V
ENA, R/W, RSEL, CS1B

3.3V
IC22

3.3V

3.3V
68xx

IC23
68xx

DIP1_4
Default =
Resistor to Gnd

Default = 68xx

Backlight ON/OFF
UG199_C_01_050106

Figure C-1:

120

Display Schematic Diagram

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Hardware Schematic Diagram

Peripheral Device KS0713
Figure C-2 is a block diagram of the Samsung KS0713.

VDD

33 Common
Driver
Circuits

132 Segment
Driver
Circuits

33 Common
Driver
Circuits

VSS

Segment Controller

Common Controller

V/F
Circuit
Page
Address
Circuit

I/O
Buffer

Display Data RAM
65 x132 =
8580 Bits

Line
Address
Circuit

Display
Timing
Generator
Circuit

V/R
Circuit
Column Address
Circuit

Oscillator

V/C
Circuit

Status Register

Instruction Register

Bus Holder

Instruction Decoder

MPU Interface (Parallel & Serial)

Figure C-2:

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

DB0
DB1
DB2
DB3
DB4
DB5
DB6 (SCLK)
DB7 (SID)
MI
RESETB
PS
RW_WR
E_RD
RS

CS1B

KS0713 Samsung

UG199_C_02_050106

KS0713 Block Diagram

www.xilinx.com

121

R

Appendix C: LCD Interface

Figure C-3 shows only the signals of interest for the LCD controller. The data sheet from
the Samsung web pages provides a complete signal listing.

VSS
VDD
MI
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
E
R/W
RS
RST
CS1B
LED+
LED-

Jumper J3
Parallel or Serial Selection.
Default is Parallel.

Controller
KS0713

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

S128

C64

LCD Panel

LED Backlight
UG199_C_03_050106

Figure C-3:

64128EFCBC-XLP Block Diagram

Figure C-4 shows the dimensions for the 64128EFCBC-XLP LCD panel.
74.00
69.00
56.00

J2

J1
18

36.70

41.70

17

128 x 64 DOTS

1

LED

2

30

1

2.50

Dimensions in mm

2.54

8.00 Max

UG199_C_04_050106

Figure C-4:

122

64128EFCBC-XLP Dimensions

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Hardware Schematic Diagram

Controller – Operation
The pixels for the LCD panel are stored in the controller data RAM. This RAM is a 65-row
by 132-column array. Each display pixel is represented by a single bit in the RAM array.
The interface to the RAM array goes through the 8-bit (DB0 – DB7) LCD interface.
Therefore, the 65-bit rows are split into eight pages of eight lines. The ninth page is a single
line page (DB0 only).
Interface designs can read from or write to the RAM array.
The display page is changed through the 4-bit page address register.
The column address (line address) is set with a two-byte register access. The line address
corresponds to the first line that is going to be displayed on the LCD panel. This address is
located in a 6-bit address register.
The RAM array is configured such that there are two characters per row (page), where each
character pair uses eight rows of the display panel. Table C-2 shows the input data bytes,
address lines, ADC control, and LCD outputs (segments).
Table C-2:

LCD Panel
Line
Address

DB3 DB2 DB1 DB0 Data
DB0

00H

DB1

01H

DB2

02H

DB3
0

0

0

03H

0

Page 0
DB4

04H

DB5

05H

DB6

06H

DB7

07H

DB0

08H

DB1

09H

DB2

0AH

DB3
0

0

0

0BH
Page 1

1
DB4

0CH

DB5

0DH

DB6

0EH

DB7

0FH

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

123

R

Appendix C: LCD Interface

Table C-2:

LCD Panel (Continued)
Line
Address

DB3 DB2 DB1 DB0 Data
DB0

10H

DB1

11H

DB2

12H

DB3
0

0

1

13H

0

Page 2
DB4

14H

DB5

15H

DB6

16H

DB7

17H

DB0

18H

DB1

19H

DB2

1AH

DB3
0

0

1

1BH
Page 3

1
DB4

1CH

DB5

1DH

DB6

1EH

DB7

1FH

DB0

20H

DB1

21H

DB2

22H

DB3
0

1

0

23H
Page 4

0
DB4

24H

DB5

25H

DB6

26H

DB7

27H

DB0

28H

DB1

29H

DB2

2AH

DB3
0

124

1

0

2BH
Page 5

1
DB4

2CH

DB5

2DH

DB6

2EH

DB7

2FH

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Table C-2:

Hardware Schematic Diagram

LCD Panel (Continued)
Line
Address

DB3 DB2 DB1 DB0 Data
DB0

30H

DB1

31H

DB2

32H

DB3
0

1

1

33H

0

Page 6
DB4

34H

DB5

35H

DB6

36H

DB7

37H

DB0

38H

DB1

39H

DB2

3AH

DB3
0

1

1

0

1

0

0

DB4

3CH

DB5

3DH

DB6

3EH

DB7

3FH

DB0
1

2

3

4

5

6

7

8

9

A

B

7E

7F

80

81

82

83

83

82

81

80

7F

7
E

7
D

7
C

7
B

7
A

79

78

5

4

3

2

1

0

Seg 3

Seg 4

Seg 5

Seg 6

Seg 7

Seg 8

Seg 9

Seg 10

Seg 11

Seg 12

Seg 127

Seg 128

Seg 129

Seg 130

Seg 131

Seg 132

LCD Output

0

Seg 2

ADC = 1

Page 8

Seg 1

ADC = 0
Column
Address

3BH
Page 7

1

When a page is addressed, all the bits representing dots on the LCD panel can be accessed
in that page. An array of 8x132 bits is available. The line address dictates what line of the
RAM is going to be displayed on the first line of the glass panel.

Controller – LCD Panel Connections
The controller die, KS0713, connects to the LCD glass panel and user connection pins via a
small PCB. Other necessary pins have default connections on the PCB.

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

125

R

Appendix C: LCD Interface

Controller – Power Supply Circuits
Figure C-5 shows the power supply circuits. The power supply is used in the five times
boost mode, where VDD is 3.3V and VOUT is 16.5V. VOUT is the operating voltage of the
operational amplifier delivering the operating voltage, V0, for the LCD panel.

DUTY1
DUTY2
BSTS

VR
MS

VOUT
5 x VDD

INTRS
2
VDD

17 VDD
18 VOUT
25
26
27
28

VDD

29
1
VSS

30 VSS1

VSS

16 VSS
DCDC5B
UG199_C_05_050106

Figure C-5:

Power Supply Circuits

The LCD operating voltage, V0, is set with two resistors RA and RB. INTRS is driven Low
when the resistors are external. INTRS is driven High when the resistors are internal. For
the Virtex-5 FPGA ML561 Development Board, internal resistors are selected.
The LCD operating voltage (V0) and the Electronic Volume Voltage (VEV) can be calculated
in units of V using Equation C-1 and Equation C-2:

R
V0 = ⎛⎝ 1 + ------B-⎞⎠ × V EV
R

Equation C-1

– α-⎞ × V
V EV = ⎛⎝ 1 – 63
-------------REF
300 ⎠

Equation C-2

A

In Equation C-2, VREF is equal to 2.0V at 25 ° C.
The values of the reference voltage parameter, α, and the ratio RA/RB are determined with
bit settings in the LCD controller’s instruction registers. Thus, it is possible to change
physical operating parameters of the LCD through register bit settings, controlling the
operating voltage, and the electronic volume level.

126

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Hardware Schematic Diagram

The voltage and contrast settings must be configured before the LCD panel is ready for
operation. Figure C-6 shows the initialization procedure required to set up the LCD
controller.
Setup Instruction Flow
Power ON

Board Power Supply Start

RESETB Pin is Kept LOW

Start FPGA Configuration
RESETB Pin is Kept LOW

FPGA Configured and Application Running
RESETB Pin is Taken HIGH
ADC Select
- ADC = 0 SEG1 --> SEG132
- ADC = 1 SEG132 --> SEG1

ADC Select
SHL Select
LCD Bias Select

SHL Select
- SHL = 0 COM1 --> COM64
- SHL = 1 COM64 --> COM1

Voltage Converter ON
Voltage Regulator ON
Voltage Follower ON

Regulator Resistor Select
Set Reference Voltage

End Initialization

LCD Bias
DUTY0, 1 is "11".
LCD Bias 0 = 1/7
LCD Bias 1 = 1/9

Wait longer than 1 ms between
each instruction to let the voltages stabilize.

The on-chip resistors are used.
Therefore, the selection MUST be
set to 101.
Setting Reference Voltage
is a two-pass instruction:
- Set Reference Voltage Mode
- Set Reference Voltage Register
UG199_C_06_050106

Figure C-6:

LCD Controller Initialization Flow

Operation Example of the 64128EFCBC-3LP
The KS0713 LCD controller has several default settings of operation on the LCD panel
PCB. Some settings are forced through direct bonding on the chip. The default settings are:
•

Master mode

•

Parallel mode

•

Internal oscillator

•

Duty cycle ratio is set to 1/65

•

Voltage converter input is between 2.4V ≤VDD ≤3.6V, where VDD connects to 3.3V

•

Internal voltage divider resistors

•

Temperature coefficient is set to -0.05%/° C

•

Normal power mode is set

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

127

R

Appendix C: LCD Interface

•

The voltage follower and voltage regulator are set to:
♦

Five times boost mode

♦

The V4, V3, V2, V1, and V0 outputs depend on the bias settings of 1/9 or 1/7.

Because of these default settings, the following display controller connections are not used:
•

DISP: Turns into an output when Master mode is selected

•

FRS: Static driver segment output

•

M: Used in Master/Slave display configurations

•

CL: Clock pin used in Master/Slave display configurations

When RESETB is Low, the display controller is initialized as indicated in Table C-3.
Table C-3:

Display Controller Initialization (RESETB is Low)

Parameter

Initial Value

Display

OFF

Entire Display

OFF

ADC Select

OFF

Reverse Display

OFF

Power Control

0,0,0 (VC, VR, VF)

LCD Bias

1/7

Read-Modify-Write

OFF

SHL Select

OFF

Static Indicator Mode

OFF

Static Indicator Register

0,0 (S1, S0)

Display Start

0 (First line)

Column Address

0

Page Address

0

Regulator Select

0,0,0 (R2, R1, R0)

Reference Voltage

OFF

Reference Voltage Register

1,0,0,0,0,0 (SV5, SV4, SV3, SV2, SV1, SV0)

When RESETB is High, the display must be initialized. The first steps to be taken to
guarantee correct operation of the display and the controller are:
•

•

128

Configure the ADC bit. This bit determines the scanning direction of the segments.
♦

When the RESETB signal is active, ADC is reset to 0, meaning that the segments
are scanned from SEG1 up to SEG132.

♦

When ADC is set to 1, the segments are scanned in opposite direction.

Configure the SHL bit. This bit sets the scanning direction of the COM lines.
♦

When the RESETB signal is active, SHL is reset to 0, meaning that the segments
are scanned from COM1 up to COM64.

♦

When SHL is set to 1, the common lines are scanned in opposite direction.

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Hardware Schematic Diagram

After the SHL bit is configured, these settings normally are not changed.
•

Select the LCD bias settings.
♦

The duty cycle is selected as 1/65 by hardwiring the controller IC pads on the
display PCB.

♦

The LCD bias is set to:
-

1/7: when the BIAS bit is 0

-

1/9: when the BIAS bit is 1

The following steps are performed next:
•

Start the onboard converter, regulator, and follower

•

Set the regulator resistor values (see Table C-4)

•

Configure the reference voltage register parameters (see Table C-5)

Table C-4:

Resistor Value Settings
3-Bit Data Settings (R2 R1 R0)

1+(Rb/Ra)

Table C-5:

000

001

010

011

100

101

110

111

1.90

2.19

2.55

3.02

3.61

4.35

5.29

6.48

Reference Voltage Parameters

SV5

SV4

SV3

SV2

SV1

SV0

Reference Voltage Parameter (α)

0

0

0

0

0

0

0

0

0

0

0

0

1

1

..

..

…

..

..

..

..

..

..

..

..

..

..

..

1

1

1

1

1

0

62

1

1

1

1

1

1

63

At startup of the LCD controller (after RESETB operation), the resistor and reference
voltage values are:
•

Resistor selection is: 0,0,0

•

Reference voltage is: 1,0,0,0,0,0

The resistor selection value MUST be set to 101b when using this LCD panel.
After the display is brought to operational mode, it is best to wait at least 1 ms to ensure the
stabilization of power supply levels. After this time, all other necessary display
initializations can be performed.

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

129

R

Appendix C: LCD Interface

Instruction Set
Table C-6 shows the instruction set for the LCD panel.
Table C-6:

Display Instructions

Instruction

RS

RW

Read display data

1

1

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0

Read Data

8-bit data specified by the column and page address can be read from the Display Data RAM. The column address is increased automatically,
thus data can be read continuously from the addressed page.
Write display data

1

0

Write Data

8-bit data can be written into a RAM location specified by the column and page address. The column address is increased automatically, thus
data can be written continuously to the addressed page.
Read status

0

1

BUSY

ADC

ONOFF

RESETB

0

0

0

0

BUSY: Device is BUSY when internal operation or reset. (0=active, 1 =busy).
ADC: Indicates the relationship between RAM column address and segment driver.
ONOFF: Indicates display ON or OFF status.
RESETB: Indicates if initialization is in progress.
Display ON/OFF

0

0

1

0

1

0

1

1

1

DON

0

0

1

ST5

ST4

ST3

ST2

ST1

ST0

Turn display ON or OFF. (1=ON, 0 = OFF)
Initial display line

0

Sets the line address of the display RAM to determine the initial line of the LCD panel.
ST5

ST4

ST3

ST2

ST1

ST0

0

0

0

0

0

0

Line address 0

0

0

0

0

0

1

Line address 1

..

..

..

..

..

..

..

1

1

1

1

1

0

Line address 62

1

1

1

1

1

1

Line address 63

Set reference voltage mode

0

0

1

0

0

0

0

0

0

1

Set reference voltage register

0

0

x

x

SV5

SV4

SV3

SV2

SV1

SV0

This is a two-byte instruction. The first instruction sets the reference voltage mode. The second instruction sets the reference voltage parameter.

130

SV5

SV4

SV3

SV2

SV1

SV0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

..

..

..

..

..

..

..

1

1

1

1

1

0

62

1

1

1

1

1

1

63

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Table C-6:

Hardware Schematic Diagram

Display Instructions (Continued)

Instruction

RS

RW

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0

Set page address

0

0

1

0

1

1

P3

P2

P1

P0

This instruction sets the address of the display data page. Any RAM data bit can be accessed when its page address and column address are
specified. Changing the Page Address does not affect the display status.
P3

P2

P1

P0

0

0

0

0

page 0

0

0

0

1

page 1

..

..

..

..

...

0

1

1

1

page 7

1

0

0

0

page 8

Set column address MSB

0

0

0

0

0

1

Y7

Y6

Y5

Y4

Set column address LSB

0

0

0

0

0

0

Y3

Y2

Y1

Y0

This instruction sets the address of the display data RAM. When a read or write to or from the display data RAM occurs, the addresses are
automatically increased.

ADC select

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

0

0

0

0

0

0

0

0

Col
Addr 0

0

0

0

0

0

0

0

1

Col
Addr 1

..

..

..

..

..

..

..

..

...

1

1

1

1

1

1

1

0

Col
Addr
130

1

1

1

1

1

1

1

1

Col
Addr
131

0

0

1

0

1

0

0

0

0

ADC

This instruction changes the relationship between RAM column address and segment driver.
ADC = 0, SEG1 --> SEG132
ADC = 1, SEG132 --> SEG1

default mode

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

131

R

Appendix C: LCD Interface

Table C-6:

Display Instructions (Continued)

Instruction

RS

RW

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0

Reverse display ON/OFF

0

0

1

0

1

0

0

1

1

REV

1

0

EON

Entire display ON/OFF

0

0

REV

RAM bit data = '1'

RAM bit data = '0'

0

Pixel ON

Pixel OFF

1

Pixel OFF

Pixel ON

1

0

1

0

0

This instruction forces the display to be turned on regardless the contents of the display data RAM. The contents of the display data RAM are
saved. This instruction has priority over reverse display.
LCD bias select

0

0

1

0

1

0

Duty
ratio

Bias = 0

Bias = 1

1/65

1/7

1/9

1

1

0

0

0

1

BIAS

0

0

0

0

This instruction selects the LCD bias.

Set modify-read

0

0

1

This instruction stops the automatic incrementing of the column address by a read operation. The automatic increment is still done with a
write operation.
Reset modify-read

0

0

1

1

1

0

1

1

1

0

1

1

0

0

0

1

0

This instruction resets the changed modify-read to the normal.
Reset

0

0

1

This instruction resets the LCD controller registers to the default values. The instruction CANNOT initialize the LCD power supply initialized
with RESETB.
SHL select

0

0

1

1

0

0

SHL

x

x

x

0

1

0

1

VC

VR

VF

This instruction sets the COM output scanning direction.
SHL = 0, COM1 ----> COM64
SHL = 1, COM64 ----> COM1
Power Control

(default)

0

0

0

This instruction selects one of the eight power circuit functions. In the case of the DisplayTech 64128EFCBC display, these must be kept at "000"
Regulator resistor select

0

0

0

0

1

0

0

R2

R1

R0

This instruction selects the resistor ratio Rb/Ra.
Set static indicator mode

0

0

1

0

1

0

1

1

0

SM

Set static indicator register

0

0

x

x

x

x

x

x

S1

S0

This is a two-byte instruction. The first instruction enables the second instruction. The second instruction update the contents of the static
indicator register.

132

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Hardware Schematic Diagram

Read/Write Characteristics (6800 Mode)
Table C-7 list the read and write timing parameters in 6800 mode. The associated
waveforms for these parameters are illustrated in Figure C-7.
Table C-7:

Read/Write Characteristics in 6800 Mode

Parameter

Signal

Symbol

Min

Typ

Max

Unit

TAS

13

-

-

ns

TAH

17

-

-

ns

TDS

35

-

-

ns

TDH

13

-

-

ns

Access Time

TACC

-

-

125

ns

Output Disable Time

TOD

10

-

90

ns

400

-

-

ns

TPWR

125

-

ns

TPWW

55

-

ns

Address Setup Time

RS

Address Hold Time
Data Setup Time

DB7 to DB0

Data Hold Time

System Cycle Time

RS

TCYC

Enable Pulse Width

Read/Write

E_RD

RS
RW
TAS

TAH

CS1B
TCYC
TPWR

TPWW

E
TDS

TDH

WRITE
DB0-DB7
TACC

TOD

READ
UG199_C_07_050106

Figure C-7:

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

Read/Write Timing Waveforms (6800 Mode)

www.xilinx.com

133

R

Appendix C: LCD Interface

Design Examples
LCD Panel Used in Full Graphics Mode
The LCD controller RAM has eight 132-byte pages (in fact, there are nine pages; page 9 is
special). Each page is one byte wide. If all the pages are put in one memory block, the
needed space is 8 pages x 8 bits x 132 pixels or 8448 bits (1056 bytes).
One Virtex-5 FPGA block RAM can be configured as 8+1 by 2048.
One block RAM can be used to store one complete pixel view of the LCD panel. There is
enough space left for commands.
The ninth bit in the block RAM indicates whether the data in the block RAM is real data to
be displayed or is a command for the controller.
The interface to the LCD panel is slow. The E signal can be used as the controller clock
signal. This signal has a minimum cycle time of 400 ns for displaying 8 bits (equal to 8 dots)
on the LCD. One full page of the display takes up to 132 x 400 ns = 52.8 μs. Updating the
full display takes 52.8μs x 8 = 423μs.
If using the dual port and data width capabilities of the block RAM, then writes to the
block RAM can be 32 bits (+4 control bits), and reads from the block RAM on the LCD side
can be 8 bits (1 control bit). An entire LCD page is updated in 33 write operations.
The interface on the LCD panel side sequentially reads the block RAM, and thus, updates
the screen contiguously (like a television screen). The controller (microcontroller or other)
side of the block RAM can be written at any time.
The write operation happens on the rising edge of the clock and the read (LCD update)
happens on the falling edge of the clock. Normally write and read operations at the same
address give corrupt read data when the read and write clock edges do not respect the
clock-to-clock setup timing. This problem is solved by using both edges of the clock.
A state machine provides correct timing of the signals on the LCD panel side. The panel
can be used in write-only mode or in read/write mode. Most of the time, LCD panels
operate in write-only mode.
At first, the block RAM must be initialized with some data (instructions to the LCD) to
make the LCD operate correctly. Figure C-8 illustrates a general block diagram of the LCD
panel in full graphics mode.

134

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Hardware Schematic Diagram

RData (8+gnd)

DataIn (8)
DB (8)

CoreConnect

DataOut (8)

IorD = '1' Instruction
'0' Data

WData (32+4)
Address

IorD (bit 9)
Addr

CS1B

Write

read

RS

Enable

ena

RW

Clock

Clock

E
Clock

Block RAM
Reset

E
Clock

TC

State
Machine

Clock
Reset

Design for Full Graphics Interface, Attached to CoreConnect Bus
UG199_C_08_050106

Figure C-8:

General Block Diagram of LCD Panel in Full Graphics Mode

LCD Panel Used in Character Mode
This design example requires a byte representing a command or data to be displayed as
input.
•

When the Enable signal is Low, nothing happens. The display interface design is
locked.

•

When the Enable signal is High and the data_or_command control signal is Low, the
byte written is a display command.

•

When the Enable signal and the data_or_command control signal are High, the byte
written is the ASCII character code of the character to be put on the display.

Display Command Byte
The command set of the display can be found in Table C-6, page 130.
When the LCD interface is enabled for the first time, a set of command bytes is sent to the
LCD. This command set provides the basic initialization of the LCD controller. When this
initialization is done, the normal LCD interface is freed for normal use. Command bytes
from the valid command set can be sent to the display (controller).
The Toplevel.vhd.txt file provides a detailed description of the LCD controller
interface.

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

135

R

Appendix C: LCD Interface

Display Data Byte
The supplied byte must be a valid ASCII representation of a character as shown in
Figure C-9.

UG199_C_09_050106

Figure C-9:

ASCII Character Representations

The character set is stored in block RAM (used as ROM). The CharacterSet.xls file
contains the layout of the block RAM character set. The block RAM (see Figure C-10) is
organized as small arrays of eight bytes, which is easy for address calculation.

136

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Hardware Schematic Diagram

Data[7:0]

2047

F0 - FF
E0 - EF
D0 - DF
C0 - CF
B0 - BF
A0 - AF

Addr[10:0]

1280
1279
1024
1023

Not Used

The RAM array is divided in
pages of eight bytes by 16,
forming an array of 128 bytes.
This array represents one
column of standard ASCII table.
A character is stored as:

Not Used
N-x

70 - 7F
60 - 6F
50 - 5F
40 - 4F

N
N-1

30 - 3F
256
255

RAMB16_S9

0

Shift
Direction

Addr

20 - 2F
10 - 1F
Not Used

0
0 1 2 3 4 5 6 7 Data
UG199_C_10_050106

Figure C-10:

Block RAM Organization

When presenting byte value 30 hex, character 0 must be displayed. Shifting the value
00110000b (30h) up three positions gives the value 180h or 348d.
Because each character uses eight byte locations, character 0 in the character set starts from
memory location 348 decimal.
For example, character X has byte value 58h or 01011000b. Shifting this value three
positions gives the value 2C0h or 704d.

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

www.xilinx.com

137

R

Appendix C: LCD Interface

Figure C-11 shows a block diagram of the LCD character generator controller. Character
data is latched and then shifted left three positions. This shifted value is the start byte for a
counter that outputs an address to the block RAM. The result is a stream of bytes
representing a character for the display.
A small second counter determines when a new character is loaded into the block RAM
address counter.
Position
Register

Page

8
DesRst

Ena

DI

11

11

DataIn

Data

0

Counter A

Addr

DO

8

1

8

8
E

E
L

3

Rst
Display
Register

Clk

Ena
DesRst

RAMB16_S9

We

Clk

DesRst

Ssr

DesRst

Clk
Clk

E
Load
Counter B TC
Clk
DesRst

DesRst
Count to 8.
Stop both counters at TC.
Rst
Send character position and
line to the LCD.
Ena
Load new value in counter A.
Clk
Switch to character ROM.
Enable counters.

LUT-ROM
Display
Initialization
RS
State Machine

RW
E

UG199_C_11_050106

Figure C-11:

LCD Character Generator Controller

A state machine manages the processing order.
A minimum cycle time of 400 ns on the E signal used as a reference. The 200 MHz system
clock frequency is used as reference system clock. One E cycle uses at least 80 system clock
cycles when the design is running at 200 MHz. The E pulse is part of the state machine, and
the design only depends on the system clock. Timing is met as long as the system clock
does not exceed 200 MHz.
This design can be adapted easily to fit the MicroBlaze™ or PPC405 CoreConnect bus
system.

138

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

R

Hardware Schematic Diagram

Array Connector Numbering
Figure C-12 shows the LCD connections for Bank 0.

Bank 0
Connector Pin
A

B

C

D

E

F

G

H

10
9
8
7
6
5
4
3
2
1

Connector J32

I

D9

LCD_D0

D7

LCD_D4

D5

LCD_D5

D3

LCD_D6

D1

LCD_D7

E10

LCD_RST

E8

LCD_D1

E6

LCD_D2

E4

LCD_D3

E2

LCD_ENA

F5

LCD_R/W

F3

LCD_RSEL

F1

LCD_CS1B
UG199_C_12_050106

Figure C-12:

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008

LCD Connections (Bank 0)

www.xilinx.com

139

R

Appendix C: LCD Interface

140

www.xilinx.com

Virtex-5 FPGA ML561 User Guide
UG199 (v1.2) April 19, 2008



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.4
Linearized                      : Yes
Page Mode                       : UseOutlines
XMP Toolkit                     : Adobe XMP Core 4.0-c316 44.253921, Sun Oct 01 2006 17:14:39
Creator Tool                    : FrameMaker 7.1
Modify Date                     : 2008:04:19 15:12:08Z
Create Date                     : 2008:04:19 15:10:20Z
Format                          : application/pdf
Title                           : Xilinx UG199 Virtex-5 FPGA ML561 Memory Interfaces Development Board, User Guide
Creator                         : Xilinx, Inc.
Description                     : Xilinx UG199 Virtex-5 FPGA ML561 Memory Interfaces Development Board, User Guide
Producer                        : Acrobat Distiller 8.1.0 (Windows)
Keywords                        : 199, Virtex-5, virtex5, DDR, DDR2, board, ML561, QDRII, RLDRAM II
Document ID                     : uuid:4aaa7011-3612-4e34-a19c-ec1fedacc9a6
Instance ID                     : uuid:879ecb35-001c-47a5-9570-c36e03c931c8
Page Count                      : 140
Subject                         : Xilinx UG199 Virtex-5 FPGA ML561 Memory Interfaces Development Board, User Guide
Author                          : Xilinx, Inc.
EXIF Metadata provided by EXIF.tools

Navigation menu