u blox 1EHQ24NN UMTS/LTE Voice and Data Module User Manual TOBY L2 series
u-blox AG UMTS/LTE Voice and Data Module TOBY L2 series
u blox >
Contents
- 1. Users manual
- 2. Test Setup photos
Users manual
TOBY-R2 series LTE Cat 1 / HSPA / EGPRS modules System Integration Manual Abstract This document describes the features and the system integration of TOBY-R2 series multi-mode cellular modules. These modules are a complete, cost efficient and performance optimized LTE Cat 1 / 3G / 2G multi-mode solution covering up to five LTE bands, up to four 3G UMTS/HSPA bands and up to four 2G GSM/EGPRS bands in the compact TOBY LGA form factor. www.u-blox.com UBX-16010572 - R01 TOBY-R2 series - System Integration Manual Document Information Title TOBY-R2 series Subtitle LTE Cat 1 / HSPA / EGPRS modules Document type System Integration Manual Document number UBX-16010572 Revision and date R01 Document status Objective Specification 08-Jul-2016 Document status explanation Objective Specification Document contains target values. Revised and supplementary data will be published later. Advance Information Document contains data based on early testing. Revised and supplementary data will be published later. Early Production Information Document contains data from product verification. Revised and supplementary data may be published later. Production Information Document contains the final product specification. This document applies to the following products: Name Type number Modem version Application version PCN / IN TOBY-R200 TOBY-R201 TOBY-R200-02B-00 TOBY-R201-02B-00 TBD TBD TBD TBD TBD TBD TOBY-R202 TOBY-R202-02B-00 30.01 A01.00 UBX-16016282 u-blox reserves all rights to this document and the information contained herein. Products, names, logos and designs described herein may in whole or in part be subject to intellectual property rights. Reproduction, use, modification or disclosure to third parties of this document or any part thereof without the express permission of u-blox is strictly prohibited. The information contained herein is provided “as is” and u-blox assumes no liability for the use of the information. No warranty, either express or implied, is given, including but not limited, with respect to the accuracy, correctness, reliability and fitness for a particular purpose of the information. This document may be revised by u-blox at any time. For most recent documents, please visit www.u-blox.com. Copyright © 2016, u-blox AG u-blox® is a registered trademark of u-blox Holding AG in the EU and other countries. Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. All other registered trademarks or trademarks mentioned in this document are property of their respective owners. UBX-16010572 - R01 Page 2 of 146 TOBY-R2 series - System Integration Manual Preface u-blox Technical Documentation As part of our commitment to customer support, u-blox maintains an extensive volume of technical documentation for our products. In addition to our product-specific technical data sheets, the following manuals are available to assist u-blox customers in product design and development. AT Commands Manual: This document provides the description of the AT commands supported by the u-blox cellular modules. System Integration Manual: This document provides the description of u-blox cellular modules’ system from the hardware and the software point of view, it provides hardware design guidelines for the optimal integration of the cellular modules in the application device and it provides information on how to set up production and final product tests on application devices integrating the cellular modules. Application Note: These documents provide guidelines and information on specific hardware and/or software topics on u-blox cellular modules. See Related documents for a list of Application Notes related to your Cellular Module. How to use this Manual The TOBY-R2 series System Integration Manual provides the necessary information to successfully design and configure the u-blox cellular modules. This manual has a modular structure. It is not necessary to read it from the beginning to the end. The following symbols are used to highlight important information within the manual: An index finger points out key information pertaining to module integration and performance. A warning symbol indicates actions that could negatively impact or damage the module. Questions If you have any questions about u-blox Cellular Integration: Read this manual carefully. Contact our information service on the homepage http://www.u-blox.com/ Technical Support Worldwide Web Our website (http://www.u-blox.com/) is a rich pool of information. Product information, technical documents can be accessed 24h a day. By E-mail Contact the closest Technical Support office by email. Use our service pool email addresses rather than any personal email address of our staff. This makes sure that your request is processed as soon as possible. You will find the contact details at the end of the document. Helpful Information when Contacting Technical Support When contacting Technical Support, have the following information ready: Module type (TOBY-R202) and firmware version Module configuration Clear description of your question or the problem A short description of the application Your complete contact details UBX-16010572 - R01 Objective Specification Preface Page 3 of 146 TOBY-R2 series - System Integration Manual Contents Preface ................................................................................................................................ 3 Contents.............................................................................................................................. 4 System description ....................................................................................................... 8 1.1 1.2 Overview .............................................................................................................................................. 8 Architecture ........................................................................................................................................ 10 1.3 Pin-out ............................................................................................................................................... 12 1.4 1.5 Operating modes ................................................................................................................................ 16 Supply interfaces ................................................................................................................................ 18 1.5.1 Module supply input (VCC) ......................................................................................................... 18 1.5.2 1.5.3 RTC supply input/output (V_BCKP) .............................................................................................. 26 Generic digital interfaces supply output (V_INT) ........................................................................... 27 1.6 System function interfaces .................................................................................................................. 28 1.6.1 1.6.2 Module power-on ....................................................................................................................... 28 Module power-off ....................................................................................................................... 30 1.6.3 Module reset ............................................................................................................................... 32 1.6.4 Module / host configuration selection ......................................................................................... 32 1.7 Antenna interface ............................................................................................................................... 33 1.7.1 Antenna RF interfaces (ANT1 / ANT2) .......................................................................................... 33 1.7.2 Antenna detection interface (ANT_DET) ...................................................................................... 35 1.8 SIM interface ...................................................................................................................................... 35 1.8.1 SIM interface ............................................................................................................................... 35 1.8.2 SIM detection interface ............................................................................................................... 35 1.9 Data communication interfaces .......................................................................................................... 36 1.9.1 UART interface ............................................................................................................................ 36 1.9.2 1.9.3 USB interface............................................................................................................................... 47 DDC (I C) interface ...................................................................................................................... 50 1.9.4 SDIO interface ............................................................................................................................. 51 1.10 Audio .............................................................................................................................................. 52 1.10.1 Digital audio over I S interface ..................................................................................................... 52 1.11 General Purpose Input/Output ........................................................................................................ 53 1.12 1.13 Reserved pins (RSVD) ...................................................................................................................... 53 System features............................................................................................................................... 54 1.13.1 Network indication ...................................................................................................................... 54 1.13.2 1.13.3 Antenna supervisor ..................................................................................................................... 54 Jamming detection ...................................................................................................................... 54 1.13.4 Dual stack IPv4/IPv6 ..................................................................................................................... 55 1.13.5 1.13.6 TCP/IP and UDP/IP ....................................................................................................................... 55 FTP .............................................................................................................................................. 55 1.13.7 HTTP ........................................................................................................................................... 55 UBX-16010572 - R01 Objective Specification Contents Page 4 of 146 TOBY-R2 series - System Integration Manual 1.13.8 1.13.9 SSL / TLS ...................................................................................................................................... 56 Bearer Independent Protocol ....................................................................................................... 57 1.13.10 AssistNow clients and GNSS integration ................................................................................... 57 1.13.11 1.13.12 Hybrid positioning and CellLocate .......................................................................................... 58 Wi-Fi integration ...................................................................................................................... 60 1.13.13 Firmware update Over AT (FOAT)............................................................................................. 60 1.13.14 1.13.15 Firmware update Over The Air (FOTA) ...................................................................................... 60 Smart temperature management ............................................................................................. 61 1.13.16 Power saving ........................................................................................................................... 63 ® Design-in ..................................................................................................................... 64 2.1 Overview ............................................................................................................................................ 64 2.2 Supply interfaces ................................................................................................................................ 65 2.2.1 2.2.2 Module supply (VCC) .................................................................................................................. 65 RTC supply output (V_BCKP) ....................................................................................................... 79 2.2.3 Generic digital interfaces supply output (V_INT) ........................................................................... 81 2.3 System functions interfaces ................................................................................................................ 82 2.3.1 Module power-on (PWR_ON) ...................................................................................................... 82 2.3.2 Module reset (RESET_N) .............................................................................................................. 83 2.3.3 Module / host configuration selection ......................................................................................... 84 2.4 Antenna interface ............................................................................................................................... 85 2.4.1 Antenna RF interfaces (ANT1 / ANT2) .......................................................................................... 85 2.4.2 Antenna detection interface (ANT_DET) ...................................................................................... 92 2.5 SIM interface ...................................................................................................................................... 94 2.5.1 Guidelines for SIM circuit design.................................................................................................. 94 2.5.2 Guidelines for SIM layout design ................................................................................................. 99 2.6 Data communication interfaces ........................................................................................................ 100 2.6.1 UART interface .......................................................................................................................... 100 2.6.2 2.6.3 USB interface............................................................................................................................. 105 DDC (I C) interface .................................................................................................................... 107 2.6.4 SDIO interface ........................................................................................................................... 111 2.7 Audio interface ................................................................................................................................. 112 2.7.1 Digital audio interface ............................................................................................................... 112 2.8 General Purpose Input/Output .......................................................................................................... 116 2.9 2.10 Reserved pins (RSVD) ........................................................................................................................ 117 Module placement ........................................................................................................................ 117 2.11 Module footprint and paste mask ................................................................................................. 118 2.12 2.13 Thermal guidelines ........................................................................................................................ 119 ESD guidelines .............................................................................................................................. 120 2.13.1 ESD immunity test overview ...................................................................................................... 120 2.14 Schematic for TOBY-R2 series module integration ......................................................................... 121 2.14.1 Schematic for TOBY-R2 series module “02” product version ..................................................... 121 2.15 2.15.1 Design-in checklist ........................................................................................................................ 122 Schematic checklist ................................................................................................................... 122 UBX-16010572 - R01 Objective Specification Contents Page 5 of 146 TOBY-R2 series - System Integration Manual 2.15.2 2.15.3 Layout checklist ......................................................................................................................... 123 Antenna checklist ...................................................................................................................... 123 Handling and soldering ........................................................................................... 124 3.1 3.2 Packaging, shipping, storage and moisture preconditioning ............................................................. 124 Handling ........................................................................................................................................... 124 3.3 Soldering .......................................................................................................................................... 125 3.3.1 3.3.2 Soldering paste.......................................................................................................................... 125 Reflow soldering ....................................................................................................................... 125 3.3.3 Optical inspection ...................................................................................................................... 126 3.3.4 3.3.5 Cleaning.................................................................................................................................... 126 Repeated reflow soldering ......................................................................................................... 127 3.3.6 Wave soldering.......................................................................................................................... 127 3.3.7 3.3.8 Hand soldering .......................................................................................................................... 127 Rework...................................................................................................................................... 127 3.3.9 Conformal coating .................................................................................................................... 127 3.3.10 3.3.11 Casting...................................................................................................................................... 127 Grounding metal covers ............................................................................................................ 127 3.3.12 Use of ultrasonic processes ........................................................................................................ 127 Approvals.................................................................................................................. 128 4.1 Product certification approval overview ............................................................................................. 128 4.2 US Federal Communications Commission notice ............................................................................... 129 4.2.1 Safety warnings review the structure ......................................................................................... 129 4.2.2 Declaration of Conformity ......................................................................................................... 129 4.2.3 Modifications ............................................................................................................................ 129 4.3 Industry Canada notice ..................................................................................................................... 130 4.3.1 Declaration of Conformity ......................................................................................................... 130 4.3.2 Modifications ............................................................................................................................ 131 4.4 R&TTED / RED and European Conformance CE mark ........................................................................ 133 Product testing ......................................................................................................... 134 5.1 5.2 u-blox in-series production test ......................................................................................................... 134 Test parameters for OEM manufacturer ............................................................................................ 135 5.2.1 “Go/No go” tests for integrated devices .................................................................................... 135 5.2.2 RF functional tests ..................................................................................................................... 135 Appendix ........................................................................................................................ 137 A Migration between TOBY-L2 and TOBY-R2 ............................................................ 137 A.1 A.2 Overview .......................................................................................................................................... 137 Pin-out comparison between TOBY-L2 and TOBY-R2 ........................................................................ 139 A.3 Schematic for TOBY-L2 and TOBY-R2 integration ............................................................................. 141 Glossary .................................................................................................................... 142 UBX-16010572 - R01 Objective Specification Contents Page 6 of 146 TOBY-R2 series - System Integration Manual Related documents......................................................................................................... 144 Revision history .............................................................................................................. 145 Contact ............................................................................................................................ 146 UBX-16010572 - R01 Objective Specification Contents Page 7 of 146 TOBY-R2 series - System Integration Manual 1 System description 1.1 Overview The TOBY-R2 series comprises LTE Cat 1 / 3G / 2G multi-mode modules supporting up to five LTE bands, up to four 3G UMTS/HSPA bands and up to four 2G GSM/(E)GPRS bands for voice and/or data transmission in the small TOBY LGA form-factor (35.6 x 24.8 mm), easy to integrate in compact designs: TOBY-R200 are designed for worldwide operation, and primarily in North America (on AT&T network) TOBY-R201 are designed primarily for operation in North America (on AT&T / Verizon network) TOBY-R202 are designed primarily for operation in North America (on AT&T network) TOBY-R2 series modules are form-factor compatible with u-blox SARA, LISA and LARA cellular module families and are pin-to-pin compatible with u-blox TOBY-L cellular module families: this facilitates easy migration from the u-blox GSM/GPRS, CDMA, UMTS/HSPA, and LTE high data rate modules, maximizes the investments of customers, simplifies logistics, and enables very short time-to-market. The modules are ideal for applications that are transitioning to LTE from 2G and 3G, due to the long term availability and scalability of LTE networks. With a range of interface options and an integrated IP stack, the modules are designed to support a wide range of data-centric applications. The unique combination of performance and flexibility make these modules ideally suited for medium speed M2M applications, such as smart energy gateways, remote access video cameras, digital signage, telehealth and telematics. TOBY-R2 series modules support Voice over LTE (VoLTE) and voice service over 3G (CSFB) for applications that require voice, such as security and surveillance systems. Table 1 summarizes the main features and interfaces of TOBY-R2 series modules. Network indication Antenna supervisor Rx Diversity Jamming detection Embedded TCP/UDP stack Embedded HTTP,FTP,SSL FOTA Dual stack IPv4/IPv6 ● ● ● ● ● ● ● ● ● ● ● ● 2,4,5, 850,1900 12,13 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 2,4, 5,12 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● TOBY-R201 North America TOBY-R202 North America 850,1900 Automotive Digital audio ● Professional GPIOs ● 850,900, Quad 1900,2100 Standard DDC (I2C) ● 2,4, 5,12 Analog audio SDIO ● North America GSM Bands ● TOBY-R200 UMTS Bands USB 2.0 Grade UART Features CellLocate® Audio AssistNow Software Interfaces GNSS via modem Region Radio Access Technology Positioning LTE Bands* Model * = LTE band 12 is a superset that includes band 17 Table 1: TOBY-R2 series main features summary UBX-16010572 - R01 Objective Specification System description Page 8 of 146 TOBY-R2 series - System Integration Manual Table 2 reports a summary of cellular radio access technologies characteristics and features of the modules. 4G LTE 3G UMTS/HSDPA/HSUPA 2G GSM/GPRS/EDGE 3GPP Release 9 Long Term Evolution (LTE) Evolved Uni.Terrestrial Radio Access (E-UTRA) Frequency Division Duplex (FDD) DL Rx Diversity 3GPP Release 9 High Speed Packet Access (HSPA) UMTS Terrestrial Radio Access (UTRA) Frequency Division Duplex (FDD) DL Rx diversity 3GPP Release 9 Enhanced Data rate GSM Evolution (EDGE) GSM EGPRS Radio Access (GERA) Time Division Multiple Access (TDMA) DL Advanced Rx Performance Band support1: TOBY-R200: Band 12 (700 MHz)2 Band 5 (850 MHz) Band 4 (1700 MHz) Band 2 (1900 MHz) TOBY-R201: Band 12 (700 MHz)2 Band 13 (750 MHz) Band 5 (850 MHz) Band 4 (1700 MHz) Band 2 (1900 MHz) TOBY-R202: Band 12 (700 MHz)2 Band 5 (850 MHz) Band 4 (1700 MHz) Band 2 (1900 MHz) Band support: TOBY-R200: Band 5 (850 MHz) Band 8 (900 MHz) Band 2 (1900 MHz) Band 1 (2100 MHz) TOBY-R201: Band 5 (850 MHz) Band 2 (1900 MHz) Band support: TOBY-R200: GSM 850 MHz E-GSM 900 MHz DCS 1800 MHz PCS 1900 MHz LTE Power Class Class 3 (23 dBm) UMTS/HSDPA/HSUPA Power Class Class 3 (24 dBm) GSM/GPRS (GMSK) Power Class Class 4 (33 dBm) for GSM/E-GSM band Class 1 (30 dBm) for DCS/PCS band EDGE (8-PSK) Power Class Class E2 (27 dBm) for GSM/E-GSM band Class E2 (26 dBm) for DCS/PCS band Data rate LTE category 1: up to 10.3 Mb/s DL, 5.2 Mb/s UL Data Rate HSDPA category 8: up to 7.2 Mb/s DL HSUPA category 6: up to 5.76 Mb/s UL Data Rate3 GPRS multi-slot class 124, CS1-CS4, up to 85.6 kb/s DL/UL EDGE multi-slot class 124, MCS1-MCS9, up to 236.8 kb/s DL/UL TOBY-R202: Band 5 (850 MHz) Band 2 (1900 MHz) Table 2: TOBY-R2 series LTE, 3G and 2G characteristics summary TOBY-R2 modules provide Voice over LTE (VoLTE) as well as Circuit-Switched-Fall-Back (CSFB) audio capability. TOBY-R2 series modules support all the E-UTRA channel bandwidths for each operating band according to 3GPP TS 36.521-1 [21]. LTE band 12 is a superset that includes band 17 GPRS/EDGE multi-slot class determines the number of timeslots available for upload and download and thus the speed at which data can be transmitted and received, with higher classes typically allowing faster data transfer rates. GPRS/EDGE multi-slot class 12 implies a maximum of 4 slots in DL (reception) and 4 slots in UL (transmission) with 5 slots in total. UBX-16010572 - R01 Objective Specification System description Page 9 of 146 TOBY-R2 series - System Integration Manual 1.2 Architecture Figure 1 summarizes the internal architecture of TOBY-R2 series modules. Duplexer ANT1 Switch Filters Filters LNAs Filters ANT_DET SIM 26 MHz DDC(I2C) Duplexer PAs Filters LNAs Filters Filters LNAs Filters Filters LNAs Filters Filters ANT2 PAs SDIO RF Transceiver UART Memory Cellular Base-band Processor Switch 32.768 kHz GPIO Digital audio (I2S) Host Select VCC (Supply) V_BCKP (RTC) USB Power On Power Management Unit V_INT (I/O) External Reset Figure 1: TOBY-R2 series modules simplified block diagram TOBY-R2 series modules internally consists of the RF, Baseband and Power Management sections here described with more details than the simplified block diagrams of Figure 1. RF section The RF section is composed of RF transceiver, PAs, LNAs, crystal oscillator, filters, duplexers and RF switches. Tx signal is pre-amplified by RF transceiver, then output to the primary antenna input/output port (ANT1) of the module via power amplifier (PA), SAW band pass filters band, specific duplexer and antenna switch. Dual receiving paths are implemented according to LTE Receiver Diversity radio technology supported by the modules as LTE category 1 User Equipments: incoming signal is received through the primary (ANT1) and the secondary (ANT2) antenna input ports which are connected to the RF transceiver via specific antenna switch, diplexer, duplexer, LNA, SAW band pass filters. RF transceiver performs modulation, up-conversion of the baseband I/Q signals for Tx, down-conversion and demodulation of the dual RF signals for Rx. The RF transceiver contains: Single chain high linearity receivers with integrated LNAs for multi band multi mode operation, Highly linear RF demodulator / modulator capable GMSK, 8-PSK, QPSK, 16-QAM, RF synthesizer, VCO. Power Amplifiers (PA) amplify the Tx signal modulated by the RF transceiver RF switches connect primary (ANT1) and secondary (ANT2) antenna ports to the suitable Tx / Rx path SAW duplexers and band pass filters separate the Tx and Rx signal paths and provide RF filtering 26 MHz voltage-controlled temperature-controlled crystal oscillator generates the clock reference in active-mode or connected-mode. UBX-16010572 - R01 Objective Specification System description Page 10 of 146 TOBY-R2 series - System Integration Manual Baseband and power management section The Baseband and Power Management section is composed of the following main elements: A mixed signal ASIC, which integrates Microprocessor for control functions DSP core for cellular Layer 1 and digital processing of Rx and Tx signal paths Memory interface controller Dedicated peripheral blocks for control of the USB, SIM and generic digital interfaces Interfaces to RF transceiver ASIC Memory system, which includes NAND flash and LPDDR2 RAM Voltage regulators to derive all the subsystem supply voltages from the module supply input VCC Voltage sources for external use: V_BCKP and V_INT Hardware power on Hardware reset Low power idle-mode support 32.768 kHz crystal oscillator to provide the clock reference in the low power idle-mode, which can be set by enable power saving configuration using the AT+UPSV command. UBX-16010572 - R01 Objective Specification System description Page 11 of 146 TOBY-R2 series - System Integration Manual 1.3 Pin-out Table 3 lists the pin-out of the TOBY-R2 series modules, with pins grouped by function. Function Pin Name Pin No I/O Description Remarks Power VCC 70,71,72 Module supply input VCC supply circuit affects the RF performance and compliance of the device integrating the module with applicable required certification schemes. See section 1.5.1 for functional description / requirements. See section 2.2.1 for external circuit design-in. GND 2, 30, 32, 44, N/A 46, 69, 73, 74, 76, 78, 79, 80, 82, 83, 85, 86, 88-90, 92-152 Ground GND pins are internally connected each other. External ground connection affects the RF and thermal performance of the device. See section 1.5.1 for functional description. See section 2.2.1 for external circuit design-in. V_BCKP I/O RTC supply input/output V_BCKP = 1.8 V (typical) generated by internal regulator when valid VCC supply is present. See section 1.5.2 for functional description. See section 2.2.2 for external circuit design-in. V_INT Generic digital interfaces supply output V_INT = 1.8 V (typical) generated by internal DC/DC regulator when the module is switched on. Test-Point for diagnostic access is recommended. See section 1.5.3 for functional description. See section 2.2.3 for external circuit design-in. PWR_ON 20 Power-on input Internal 10 k pull-up resistor to V_BCKP. See section 1.6.1 for functional description. See section 2.3.1 for external circuit design-in. RESET_N 23 External reset input Internal 10 k pull-up resistor to V_BCKP. Test-Point for diagnostic access is recommended. See section 1.6.3 for functional description. See section 2.3.2 for external circuit design-in. HOST_SELECT0 26 I/O Selection of module / host configuration Not supported. See section 1.6.4 for functional description. See section 2.3.3 for external circuit design-in. HOST_SELECT1 62 I/O Selection of module / host configuration Not supported. See section 1.6.4 for functional description. See section 2.3.3 for external circuit design-in. ANT1 81 I/O Primary antenna Main Tx / Rx antenna interface. 50 nominal characteristic impedance. Antenna circuit affects the RF performance and application device compliance with required certification schemes. See section 1.7 for functional description / requirements. See section 2.4 for external circuit design-in. ANT2 87 Secondary antenna Rx only for Rx diversity. 50 nominal characteristic impedance. Antenna circuit affects the RF performance and application device compliance with required certification schemes. See section 1.7 for functional description / requirements See section 2.4 for external circuit design-in. ANT_DET 75 Antenna detection ADC for antenna presence detection function See section 1.7.2 for functional description. See section 2.4.2 for external circuit design-in. System Antennas UBX-16010572 - R01 Objective Specification System description Page 12 of 146 TOBY-R2 series - System Integration Manual Function Pin Name Pin No I/O Description Remarks SIM VSIM 59 SIM supply output VSIM = 1.8 V / 3 V output as per the connected SIM type. See section 1.8 for functional description. See section 2.5 for external circuit design-in. SIM_IO 57 I/O SIM data Data input/output for 1.8 V / 3 V SIM Internal 4.7 k pull-up to VSIM. See section 1.8 for functional description. See section 2.5 for external circuit design-in. SIM_CLK 56 SIM clock 3.25 MHz clock output for 1.8 V / 3 V SIM See section 1.8 for functional description. See section 2.5 for external circuit design-in. SIM_RST 58 SIM reset Reset output for 1.8 V / 3 V SIM See section 1.8 for functional description. See section 2.5 for external circuit design-in. RXD 17 UART data output 1.8 V output, Circuit 104 (RXD) in ITU-T V.24, for AT commands, data communication, FOAT, FW update by u-blox EasyFlash tool and diagnostic. Test-Point and series 0 for diagnostic access recommended. See section 1.9.1 for functional description. See section 2.6.1 for external circuit design-in. TXD 16 UART data input 1.8 V input, Circuit 103 (TXD) in ITU-T V.24, for AT commands, data communication, FOAT, FW update by u-blox EasyFlash tool and diagnostic. Internal active pull-up to V_INT. Test-Point and series 0 for diagnostic access recommended. See section 1.9.1 for functional description. See section 2.6.1 for external circuit design-in. CTS 15 UART clear to send output 1.8 V output, Circuit 106 (CTS) in ITU-T V.24. See section 1.9.1 for functional description. See section 2.6.1 for external circuit design-in. RTS 14 UART ready to send input 1.8 V input, Circuit 105 (RTS) in ITU-T V.24. Internal active pull-up to V_INT. See section 1.9.1 for functional description. See section 2.6.1 for external circuit design-in. DSR 10 UART data set ready output 1.8 V, Circuit 107 in ITU-T V.24. See section 1.9.1 for functional description. See section 2.6.1 for external circuit design-in. RI 11 UART ring indicator output 1.8 V, Circuit 125 in ITU-T V.24. See section 1.9.1 for functional description. See section 2.6.1 for external circuit design-in. DTR 13 UART data terminal ready input 1.8 V, Circuit 108/2 in ITU-T V.24. Internal active pull-up to V_INT. Test-Point and series 0 for diagnostic access recommended. See section 1.9.1 for functional description. See section 2.6.1 for external circuit design-in. DCD 12 UART data carrier detect output 1.8 V, Circuit 109 in ITU-T V.24. Test-Point and series 0 for diagnostic access recommended. See section 1.9.1 for functional description. See section 2.6.1 for external circuit design-in. UART UBX-16010572 - R01 Objective Specification System description Page 13 of 146 TOBY-R2 series - System Integration Manual Function Pin Name Pin No I/O Description Remarks USB VUSB_DET USB detect input VBUS (5 V typical) USB supply generated by the host must be connected to this input pin to enable the USB interface. If the USB interface is not used by the Application Processor, Test-Point for diagnostic / FW update access is recommended See section 1.9.2 for functional description. See section 2.6.2 for external circuit design-in. USB_D- 27 I/O USB Data Line D- USB interface for AT commands, data communication, FOAT, FW update by u-blox EasyFlash tool and diagnostic. 90 nominal differential impedance (Z0) 30 nominal common mode impedance (ZCM) Pull-up or pull-down resistors and external series resistors as required by the USB 2.0 specifications [6] are part of the USB pin driver and need not be provided externally. If the USB interface is not used by the Application Processor, Test-Point for diagnostic / FW update access is recommended. See section 1.9.2 for functional description. See section 2.6.2 for external circuit design-in. USB_D+ 28 I/O USB Data Line D+ USB interface for AT commands, data communication, FOAT, FW update by u-blox EasyFlash tool and diagnostic. 90 nominal differential impedance (Z0) 30 nominal common mode impedance (ZCM) Pull-up or pull-down resistors and external series resistors as required by the USB 2.0 specifications [6] are part of the USB pin driver and need not be provided externally. If the USB interface is not used by the Application Processor, Test-Point for diagnostic / FW update access is recommended. See section 1.9.2 for functional description. See section 2.6.2 for external circuit design-in. SCL 54 I2C bus clock line 1.8 V open drain, for communication with I2C-slave devices. See section 1.9.3 for functional description. See section 2.6.3 for external circuit design-in. SDA 55 I/O I2C bus data line 1.8 V open drain, for communication with I2C-slave devices. See section 1.9.3 for functional description. See section 2.6.3 for external circuit design-in. SDIO_D0 66 I/O SDIO serial data [0] Not supported by “02” product versions. SDIO interface for communication with u-blox Wi-Fi module See section 1.9.4 for functional description. See section 2.6.4 for external circuit design-in. SDIO_D1 68 I/O SDIO serial data [1] Not supported by “02” product versions. SDIO interface for communication with u-blox Wi-Fi module See section 1.9.4 for functional description. See section 2.6.4 for external circuit design-in. SDIO_D2 63 I/O SDIO serial data [2] Not supported by “02” product versions. SDIO interface for communication with u-blox Wi-Fi module See section 1.9.4 for functional description. See section 2.6.4 for external circuit design-in. SDIO_D3 67 I/O SDIO serial data [3] Not supported by “02” product versions. SDIO interface for communication with u-blox Wi-Fi module See section 1.9.4 for functional description. See section 2.6.4 for external circuit design-in. SDIO_CLK 64 SDIO serial clock Not supported by “02” product versions. SDIO interface for communication with u-blox Wi-Fi module See section 1.9.4 for functional description. See section 2.6.4 for external circuit design-in. SDIO_CMD 65 I/O SDIO command Not supported by “02” product versions. SDIO interface for communication with u-blox Wi-Fi module See section 1.9.4 for functional description. See section 2.6.4 for external circuit design-in. DDC SDIO UBX-16010572 - R01 Objective Specification System description Page 14 of 146 TOBY-R2 series - System Integration Manual Function Audio GPIO Reserved Pin Name Pin No I/O Description Remarks I2S_TXD 51 O/ I/O I S transmit data / GPIO I2S transmit data output, alternatively configurable as GPIO. See sections 1.10 and 1.11 for functional description. See sections 2.7 and 2.8 for external circuit design-in. I2S_RXD 53 I/ I/O I2S receive data / GPIO I2S receive data input, alternatively configurable as GPIO. See sections 1.10 and 1.11 for functional description. See sections 2.7 and 2.8 for external circuit design-in. I2S_CLK 52 I/O / I/O I2S clock / GPIO I2S serial clock, alternatively configurable as GPIO. See sections 1.10 and 1.11 for functional description. See sections 2.7 and 2.8 for external circuit design-in. I2S_WA 50 I/O / I/O I2S word alignment / GPIO I2S word alignment, alternatively configurable as GPIO. See sections 1.10 and 1.11 for functional description. See sections 2.7 and 2.8 for external circuit design-in. GPIO1 21 I/O GPIO 1.8 V GPIO with alternatively configurable functions. See section 1.11 for functional description. See section 2.8 for external circuit design-in. GPIO2 22 I/O GPIO 1.8 V GPIO with alternatively configurable functions. See section 1.11 for functional description. See section 2.8 for external circuit design-in. GPIO3 24 I/O GPIO 1.8 V GPIO with alternatively configurable functions. See section 1.11 for functional description. See section 2.8 for external circuit design-in. GPIO4 25 I/O GPIO 1.8 V GPIO with alternatively configurable functions. See section 1.11 for functional description. See section 2.8 for external circuit design-in. GPIO5 60 I/O GPIO 1.8 V GPIO with alternatively configurable functions. See section 1.11 for functional description. See section 2.8 for external circuit design-in. GPIO6 61 I/O GPIO 1.8 V GPIO with alternatively configurable functions. See section 1.11 for functional description. See section 2.8 for external circuit design-in. RSVD N/A Reserved pin This pin must be connected to ground. See sections 1.12 and 2.9 RSVD 18, 19 N/A Reserved pin Test-Point for diagnostic access is recommended. See sections 1.12 and 2.9 RSVD 1, 7-9, 29, 31, 33-43, 45, 47-49, 77, 84, 91 N/A Reserved pin Leave unconnected. See sections 1.12 and 2.9 Table 3: TOBY-R2 series module pin definition, grouped by function UBX-16010572 - R01 Objective Specification System description Page 15 of 146 TOBY-R2 series - System Integration Manual 1.4 Operating modes TOBY-R2 series modules have several operating modes. The operating modes are defined in Table 4 and described in detail in Table 5, providing general guidelines for operation. General Status Operating Mode Definition Power-down Not-Powered Mode Power-Off Mode VCC supply not present or below operating range: module is switched off. VCC supply within operating range and module is switched off. Normal Operation Idle-Mode Active-Mode Module processor core runs with 32 kHz reference generated by the internal oscillator. Module processor core runs with 26 MHz reference generated by the internal oscillator. Connected-Mode RF Tx/Rx data connection enabled and processor core runs with 26 MHz reference. Table 4: TOBY-R2 series modules operating modes definition Mode Description Transition between operating modes Not-Powered Module is switched off. Application interfaces are not accessible. When VCC supply is removed, the modules enter not-powered mode. When in not-powered mode, the modules cannot be switched on by PWR_ON, RESET_N or RTC alarm When in not-powered mode, the modules can be switched on by applying VCC supply (see 1.6.1) so that the modules switch from notpowered to active-mode Power-Off Module is switched off: normal shutdown by an appropriate power-off event (see 1.6.2). Application interfaces are not accessible. Idle Module is switched on with application interfaces temporarily disabled or suspended: the module is temporarily not ready to communicate with an external device by means of the application interfaces as configured to reduce the current consumption. The module enters the low power idle-mode whenever possible if power saving is enabled by AT+UPSV (see u-blox AT Commands Manual [2]) reducing current consumption (see 1.5.1.5). The CTS output line indicates when the UART interface is disabled/enabled due to the module idle/active-mode according to power saving and HW flow control settings (see 1.9.1.3, 1.9.1.4). Power saving configuration is not enabled by default: it can be enabled by AT+UPSV (see the u-blox AT Commands Manual [2]). When the modules are switched off by an appropriate power-off event (see 1.6.2), the modules enter power-off mode from active-mode. When in power-off mode, the modules can be switched on by PWR_ON, RESET_N or an RTC alarm. When in power-off mode, the modules enter not-powered mode by removing VCC supply. The modules automatically switch from the active-mode to low power idle-mode whenever possible if power saving is enabled (see sections 1.5.1.5, 1.9.1.4, 1.9.2.4 and u-blox AT Commands Manual [2], AT+UPSV command). The modules wake up from low power idle-mode to active-mode in the following events: Automatic periodic monitoring of the paging channel for the paging block reception according to network conditions (see 1.5.1.5, 1.9.1.4) Automatic periodic enable of the UART interface to receive / send data, with AT+UPSV=1 (see 1.9.1.4) Data received over UART, according to HW flow control (AT&K) and power saving (AT+UPSV) settings (see 1.9.1.4) RTS input set ON by the host DTE, with HW flow control disabled and AT+UPSV=2 (see 1.9.1.4) DTR input set ON by the host DTE, with AT+UPSV=3 (see 1.9.1.4) USB detection, applying 5 V (typ.) to VUSB_DET input (see 1.9.2) The connected USB host forces a remote wakeup of the module as USB device (see 1.9.2.4) The connected u-blox GNSS receiver forces a wakeup of the cellular module using the GNSS Tx data ready function over GPIO3 (see 1.9.3) The connected SDIO device forces a wakeup of the module as SDIO host (see 1.9.4) A preset RTC alarm occurs (see u-blox AT Commands Manual [2], AT+CALA) UBX-16010572 - R01 Objective Specification System description Page 16 of 146 TOBY-R2 series - System Integration Manual Mode Description Transition between operating modes Active Module is switched on with application interfaces enabled or not suspended: the module is ready to communicate with an external device by means of the application interfaces unless power saving configuration is enabled by AT+UPSV (see 1.9.1.4, 1.9.2.4 and u-blox AT Commands Manual [2]). When the modules are switched on by an appropriate power-on event (see 1.6.1), the module enter active-mode from not-powered or power-off mode. If power saving configuration is enabled by the AT+UPSV command, the module automatically switches from active to idle-mode whenever possible and the module wakes up from idle to active-mode in the events listed above (see idle-mode to active-mode transition description above). When a RF Tx/Rx data or voice connection is initiated or when RF Tx/Rx is required due to a connection previously initiated, the module switches from active to connected-mode. Connected RF Tx/Rx data connection is in progress. The module is prepared to accept data signals from an external device unless power saving configuration is enabled by AT+UPSV (see sections 1.9.1.4, 1.9.2.4 and u-blox AT Commands Manual [2]). When a data or voice connection is initiated, the module enters connected-mode from active-mode. Connected-mode is suspended if Tx/Rx data is not in progress, due to connected discontinuous reception and fast dormancy capabilities of the module and according to network environment settings and scenario. In such case, the module automatically switches from connected to active mode and then, if power saving configuration is enabled by the AT+UPSV command, the module automatically switches to idle-mode whenever possible. Vice-versa, the module wakes up from idle to active mode and then connected mode if RF Tx/Rx is necessary. When a data connection is terminated, the module returns to the active-mode. Table 5: TOBY-R2 series modules operating modes description Figure 2 describes the transition between the different operating modes. Not powered Remove VCC Switch ON: • Apply VCC Power off Switch ON: • PWR_ON • RTC alarm • RESET_N Switch OFF: • AT+CPWROFF Incoming/outgoing call or other dedicated device network communication Connected If power saving is enabled and there is no activity for a defined time interval Active No RF Tx/Rx in progress, Call terminated, Communication dropped Idle Any wake up event described in the module operating modes summary table above Figure 2: TOBY-R2 series modules operating modes transitions UBX-16010572 - R01 Objective Specification System description Page 17 of 146 TOBY-R2 series - System Integration Manual 1.5 1.5.1 Supply interfaces Module supply input (VCC) The modules must be supplied via the three VCC pins that represent the module power supply input. The VCC pins are internally connected to the RF power amplifier and to the integrated Power Management Unit: all supply voltages needed by the module are generated from the VCC supply by integrated voltage regulators, including V_BCKP Real Time Clock supply, V_INT digital interfaces supply and VSIM SIM card supply. During operation, the current drawn by the TOBY-R2 series modules through the VCC pins can vary by several orders of magnitude. This ranges from the pulse of current consumption during GSM transmitting bursts at maximum power level in connected-mode (as described in section 1.5.1.2) to the low current consumption during low power idle-mode with power saving enabled (as described in section 1.5.1.5). TOBY-R200 modules provide separate supply inputs over the three VCC pins: VCC pins #71 and #72 represent the supply input for the internal RF power amplifier, demanding most of the total current drawn of the module when RF transmission is enabled during a voice/data call VCC pin #70 represents the supply input for the internal baseband Power Management Unit and the internal transceiver, demanding minor part of the total current drawn of the module when RF transmission is enabled during a voice/data call Figure 3 provides a simplified block diagram of TOBY-R2 series modules internal VCC supply routing. TOBY-R201 / TOBY-R202 TOBY-R200 LTE/3G PAs VCC 72 RF PMU VCC 70 VCC 72 Transceiver VCC 71 Power Management Unit LTE/3G/2G PAs Baseband Processor RF PMU Transceiver VCC 71 VCC 70 Memory Power Management Unit Baseband Processor Memory Figure 3: TOBY-R2 series modules internal VCC supply routing simplified block diagram UBX-16010572 - R01 Objective Specification System description Page 18 of 146 TOBY-R2 series - System Integration Manual 1.5.1.1 VCC supply requirements Table 6 summarizes the requirements for the VCC modules supply. See section 2.2.1 for suggestions to properly design a VCC supply circuit compliant with the requirements listed in Table 6. The supply circuit affects the RF compliance of the device integrating TOBY-R2 series modules with applicable required certification schemes as well as antenna circuit design. Compliance is guaranteed if the requirements summarized in the Table 6 are fulfilled. Item Requirement Remark VCC nominal voltage Within VCC normal operating range: 3.30 V min. / 4.40 V max RF performance is guaranteed when VCC PA voltage is inside the normal operating range limits. RF performance may be affected when VCC PA voltage is outside the normal operating range limits, though the module is still fully functional until the VCC voltage is inside the extended operating range limits. VCC voltage during normal operation Within VCC extended operating range: 3.00 V min. / 4.50 V max VCC voltage must be above the extended operating range minimum limit to switch-on the module. The module may switch-off when the VCC voltage drops below the extended operating range minimum limit. Operation above VCC extended operating range is not recommended and may affect device reliability. VCC average current Support with adequate margin the highest averaged VCC current consumption value in connected-mode conditions specified in TOBY-R2 Data Sheet [1]. The maximum average current consumption can be greater than the specified value according to the actual antenna mismatching, temperature and supply voltage. Sections 1.5.1.2, 1.5.1.3 and 1.5.1.4 describe current consumption profiles in 2G, 3G and LTE connected-mode. VCC peak current Support with margin the highest peak VCC current consumption value in connected-mode conditions specified in TOBY-R2 Data Sheet [1] The specified maximum peak of current consumption occurs during GSM single transmit slot in 850/900 MHz connected-mode, in case of mismatched antenna. Section 1.5.1.2 describes 2G Tx peak/pulse current. VCC voltage drop during 2G Tx slots Lower than 400 mV Supply voltage drop values greater than recommended during 2G TDMA transmission slots directly affect the RF compliance with applicable certification schemes. Figure 5 describes supply voltage drop during 2G Tx slots. VCC voltage ripple during 2G/3G/LTE Tx Noise in the supply has to be minimized High supply voltage ripple values during LTE/3G/2G RF transmissions in connected-mode directly affect the RF compliance with applicable certification schemes. Figure 5 describes supply voltage ripple during RF Tx. VCC under/over-shoot Absent or at least minimized at start/end of Tx slots Supply voltage under-shoot or over-shoot at the start or the end of 2G TDMA transmission slots directly affect the RF compliance with applicable certification schemes. Figure 5 describes supply voltage under/over-shoot Table 6: Summary of VCC modules supply requirements UBX-16010572 - R01 Objective Specification System description Page 19 of 146 TOBY-R2 series - System Integration Manual 1.5.1.2 VCC current consumption in 2G connected-mode When a GSM call is established, the VCC module current consumption is determined by the current consumption profile typical of the GSM transmitting and receiving bursts. The peak of current consumption during a transmission slot is strictly dependent on the RF transmitted power, which is regulated by the network (the current base station). The transmitted power in the transmit slot is also the more relevant factor for determining the average current consumption. If the module is transmitting in 2G single-slot mode in the 850 or 900 MHz bands, at the maximum RF power level (approximately 2 W or 33 dBm in the allocated transmit slot/burst) the current consumption can reach an high peak (see the “Current consumption” section in the TOBY-R2 series Data Sheet [1]) for 576.9 µs (width of the transmit slot/burst) with a periodicity of 4.615 ms (width of 1 frame = 8 slots/burst), so with a 1/8 duty cycle according to GSM TDMA (Time Division Multiple Access). If the module is transmitting in 2G single-slot mode in the 1800 or 1900 MHz bands, the current consumption figures are quite less high than the one in the low bands, due to 3GPP transmitter output power specifications. During a GSM call, current consumption is not so significantly high in receiving or in monitor bursts and is low in the inactive unused bursts. Figure 4 shows an example of the module current consumption profile versus time in 2G single-slot mode. Current [A] 2.5 1900 mA 2.0 1.5 Peak current depends on TX power and actual antenna load 1.0 0.5 200 mA 60-120 mA 0.0 RX slot 60-120 mA 10-40 mA unused unused slot slot TX slot unused unused slot slot MON slot unused slot RX slot unused unused slot slot GSM frame 4.615 ms (1 frame = 8 slots) TX slot unused unused slot slot MON slot unused slot Time [ms] GSM frame 4.615 ms (1 frame = 8 slots) Figure 4: VCC current consumption profile versus time during a 2G single-slot call (1 TX slot, 1 RX slot) Figure 5 illustrates VCC voltage profile versus time during a 2G single-slot call, according to the relative VCC current consumption profile described in Figure 4. Voltage [mV] overshoot 3.8 V (typ) drop ripple RX slot unused unused slot slot TX slot undershoot unused unused slot slot GSM frame 4.615 ms (1 frame = 8 slots) MON slot unused slot RX slot unused unused slot slot TX slot unused unused slot slot MON slot GSM frame 4.615 ms (1 frame = 8 slots) unused slot Time [ms] Figure 5: VCC voltage profile versus time during a 2G single-slot call (1 TX slot, 1 RX slot) UBX-16010572 - R01 Objective Specification System description Page 20 of 146 TOBY-R2 series - System Integration Manual When a GPRS connection is established, more than one slot can be used to transmit and/or more than one slot can be used to receive. The transmitted power depends on network conditions, which set the peak current consumption, but following the 3GPP specifications the maximum Tx RF power is reduced if more than one slot is used to transmit, so the maximum peak of current is not as high as can be in case of a 2G single-slot call. The multi-slot transmission power can be further reduced by configuring the actual Multi-Slot Power Reduction profile with the dedicated AT command, AT+UDCONF=40 (see the u-blox AT Commands Manual [2]). If the module transmits in GPRS class 12 in the 850 or 900 MHz bands, at the maximum RF power control level, the current consumption can reach a quite high peak but lower than the one achievable in 2G single-slot mode. This happens for 2.307 ms (width of the 4 transmit slots/bursts) with a periodicity of 4.615 ms (width of 1 frame = 8 slots/bursts), so with a 1/2 duty cycle, according to 2G TDMA. If the module is in GPRS connected mode in the 1800 or 1900 MHz bands, the current consumption figures are quite less high than the one in the low bands, due to 3GPP transmitter output power specifications. Figure 6 reports the current consumption profiles in GPRS class 12 connected mode, in the 850 or 900 MHz bands, with 4 slots used to transmit and 1 slot used to receive. Current [A] 2.5 1600 mA 2.0 1.5 Peak current depends on TX power and actual antenna load 1.0 0.5 200mA 60-130mA 0.0 RX slot unused slot TX slot TX slot TX slot TX slot GSM frame 4.615 ms (1 frame = 8 slots) MON slot unused slot RX slot unused slot TX slot TX slot TX slot TX slot MON slot unused slot Time [ms] GSM frame 4.615 ms (1 frame = 8 slots) Figure 6: VCC current consumption profile during a 2G GPRS/EDGE multi-slot connection (4 TX slots, 1 RX slot) In case of EDGE connections the VCC current consumption profile is very similar to the GPRS current profile, so the image shown in Figure 6, representing the current consumption profile in GPRS class 12 connected mode, is valid for the EDGE class 12 connected mode as well. UBX-16010572 - R01 Objective Specification System description Page 21 of 146 TOBY-R2 series - System Integration Manual 1.5.1.3 VCC current consumption in 3G connected mode During a 3G connection, the module can transmit and receive continuously due to the Frequency Division Duplex (FDD) mode of operation with the Wideband Code Division Multiple Access (WCDMA). The current consumption depends on output RF power, which is always regulated by the network (the current base station) sending power control commands to the module. These power control commands are logically divided into a slot of 666 µs, thus the rate of power change can reach a maximum rate of 1.5 kHz. There are no high current peaks as in the 2G connection, since transmission and reception are continuously enabled due to FDD WCDMA implemented in the 3G that differs from the TDMA implemented in the 2G case. In the worst scenario, corresponding to a continuous transmission and reception at maximum output power (approximately 250 mW or 24 dBm), the average current drawn by the module at the VCC pins is considerable (see the “Current consumption” section in TOBY-R2 series Data Sheet [1]). At the lowest output RF power (approximately 0.01 µW or –50 dBm), the current drawn by the internal power amplifier is strongly reduced. The total current drawn by the module at the VCC pins is due to baseband processing and transceiver activity. Figure 7 shows an example of current consumption profile of the module in 3G WCDMA/DC-HSPA+ continuous transmission mode. Current [mA] 700 600 850 mA 500 400 Current consumption value depends on TX power and actual antenna load 300 200 170 mA 100 1 slot 666 µs Time [ms] 3G frame 10 ms (1 frame = 15 slots) Figure 7: VCC current consumption profile versus time during a 3G connection (TX and RX continuously enabled) UBX-16010572 - R01 Objective Specification System description Page 22 of 146 TOBY-R2 series - System Integration Manual 1.5.1.4 VCC current consumption in LTE connected-mode During an LTE connection, the module can transmit and receive continuously due to the Frequency Division Duplex (FDD) mode of operation used in LTE radio access technology. The current consumption depends on output RF power, which is always regulated by the network (the current base station) sending power control commands to the module. These power control commands are logically divided into a slot of 0.5 ms (time length of one Resource Block), thus the rate of power change can reach a maximum rate of 2 kHz. The current consumption profile is similar to that in 3G radio access technology. Unlike the 2G connection mode, which uses the TDMA mode of operation, there are no high current peaks since transmission and reception are continuously enabled in FDD. In the worst scenario, corresponding to a continuous transmission and reception at maximum output power (approximately 250 mW or 24 dBm), the average current drawn by the module at the VCC pins is considerable (see the “Current consumption” section in TOBY-R2 series Data Sheet [1]). At the lowest output RF power (approximately 0.1 µW or –40 dBm), the current drawn by the internal power amplifier is strongly reduced and the total current drawn by the module at the VCC pins is due to baseband processing and transceiver activity. Figure 8 shows an example of the module current consumption profile versus time in LTE connected-mode. Detailed current consumption values can be found in TOBY-R2 series Data Sheet [1]. Current [mA] 700 600 500 Current consumption value depends on TX power and actual antenna load 400 300 200 100 1 Slot 1 Resource Block (0.5 ms) 1 LTE Radio Frame (10 ms) Time [ms] Figure 8: VCC current consumption profile versus time during LTE connection (TX and RX continuously enabled) UBX-16010572 - R01 Objective Specification System description Page 23 of 146 TOBY-R2 series - System Integration Manual 1.5.1.5 VCC current consumption in cyclic idle/active mode (power saving enabled) The power saving configuration is by default disabled, but it can be enabled using the AT+UPSV command (see the u-blox AT Commands Manual [2]). When power saving is enabled, the module automatically enters the low power idle-mode whenever possible, reducing current consumption. During low power idle-mode, the module processor runs with 32 kHz reference clock frequency. When the power saving configuration is enabled and the module is registered or attached to a network, the module automatically enters the low power idle-mode whenever possible, but it must periodically monitor the paging channel of the current base station (paging block reception), in accordance to the 2G/3G/LTE system requirements, even if connected-mode is not enabled by the application. When the module monitors the paging channel, it wakes up to the active-mode, to enable the reception of paging block. In between, the module switches to low power idle-mode. This is known as discontinuous reception (DRX). The module processor core is activated during the paging block reception, and automatically switches its reference clock frequency from 32 kHz to the 26 MHz used in active-mode. The time period between two paging block receptions is defined by the network. This is the paging period parameter, fixed by the base station through broadcast channel sent to all users on the same serving cell: In case of 2G radio access technology, the paging period can vary from 470.8 ms (DRX = 2, length of 2 x 51 2G frames = 2 x 51 x 4.615 ms) up to 2118.4 ms (DRX = 9, length of 9 x 51 2G frames = 9 x 51 x 4.615 ms) In case of 3G radio access technology, the paging period can vary from 640 ms (DRX = 6, i.e. length of 2 3G frames = 64 x 10 ms) up to 5120 ms (DRX = 9, length of 2 3G frames = 512 x 10 ms). In case of LTE radio access technology, the paging period can vary from 320 ms (DRX = 5, i.e. length of 2 LTE frames = 32 x 10 ms) up to 2560 ms (DRX = 8, length of 2 LTE frames = 256 x 10 ms). Figure 9 illustrates a typical example of the module current consumption profile when power saving is enabled. The module is registered with network, automatically enters the low power idle-mode and periodically wakes up to active-mode to monitor the paging channel for the paging block reception. Detailed current consumption values can be found in TOBY-R2 series Data Sheet [1]. Current [mA] 100 Time [s] Current [mA] IDLE MODE ACTIVE MODE 2G case: 0.44-2.09 s 3G case: 0.61-5.09 s LTE case: 0.27-2.51 s ~50 ms 100 Active Mode Enabled IDLE MODE RX Enabled Idle Mode Enabled ~50 ms ACTIVE MODE Time [ms] IDLE MODE Figure 9: VCC current consumption profile with power saving enabled and module registered with the network: the module is in low-power idle-mode and periodically wakes up to active-mode to monitor the paging channel for paging block reception UBX-16010572 - R01 Objective Specification System description Page 24 of 146 TOBY-R2 series - System Integration Manual 1.5.1.6 VCC current consumption in fixed active-mode (power saving disabled) When power saving is disabled, the module does not automatically enter the low power idle-mode whenever possible: the module remains in active-mode. Power saving configuration is by default disabled. It can also be disabled using the AT+UPSV command (see u-blox AT Commands Manual [2] for detail usage). The module processor core is activated during idle-mode, and the 26 MHz reference clock frequency is used. It would draw more current during the paging period than that in the power saving mode. Figure 10 illustrates a typical example of the module current consumption profile when power saving is disabled. In such case, the module is registered with the network and while active-mode is maintained, the receiver is periodically activated to monitor the paging channel for paging block reception. Detailed current consumption values can be found in TOBY-R2 series Data Sheet [1]. Current [mA] 100 Time [s] Current [mA] Paging period 2G case: 0.44-2.09 s 3G case: 0.61-5.09 s LTE case: 0.32-2.56 s 100 Time [ms] RX Enabled ACTIVE MODE Figure 10: VCC current consumption profile with power saving disabled and module registered with the network: active-mode is always held and the receiver is periodically activated to monitor the paging channel for paging block reception UBX-16010572 - R01 Objective Specification System description Page 25 of 146 TOBY-R2 series - System Integration Manual 1.5.2 RTC supply input/output (V_BCKP) The V_BCKP pin of TOBY-R2 series modules connects the supply for the Real Time Clock (RTC). A linear LDO regulator integrated in the Power Management Unit internally generates this supply, as shown in Figure 11, with low current capability (see the TOBY-R2 series Data Sheet [1]). The output of this regulator is always enabled when the main module voltage supply applied to the VCC pins is within the valid operating range. TOBY-R2 series VCC 70 VCC 71 Power Management Baseband Processor Linear LDO RTC VCC 72 V_BCKP 32 kHz Figure 11: TOBY-R2 series RTC supply (V_BCKP) simplified block diagram The RTC provides the module time reference (date and time) that is used to set the wake-up interval during the low power idle-mode periods, and is able to make available the programmable alarm functions. The RTC functions are available also in power-down mode when the V_BCKP voltage is within its valid range (specified in the “Input characteristics of Supply/Power pins” table in TOBY-R2 series Data Sheet [1]). The RTC can be supplied from an external back-up battery through the V_BCKP, when the main module voltage supply is not applied to the VCC pins. This lets the time reference (date and time) run until the V_BCKP voltage is within its valid range, even when the main supply is not provided to the module. Consider that the module cannot switch on if a valid voltage is not present on VCC even when the RTC is supplied through V_BCKP (meaning that VCC is mandatory to switch on the module). The RTC has very low current consumption, but is highly temperature dependent. For example, V_BCKP current consumption at the maximum operating temperature can be higher than the typical value at 25 °C specified in the “Input characteristics of Supply/Power pins” table in the TOBY-R2 series Data Sheet [1]. If V_BCKP is left unconnected and the module main supply is not applied to the VCC pins, the RTC is supplied from the bypass capacitor mounted inside the module. However, this capacitor is not able to provide a long buffering time: within few milliseconds the voltage on V_BCKP will go below the valid range. This has no impact on cellular connectivity, as all the module functionalities do not rely on date and time setting. UBX-16010572 - R01 Objective Specification System description Page 26 of 146 TOBY-R2 series - System Integration Manual 1.5.3 Generic digital interfaces supply output (V_INT) The V_INT output pin of the TOBY-R2 series modules is connected to an internal 1.8 V supply with current capability specified in the TOBY-R2 series Data Sheet [1]. This supply is internally generated by a switching stepdown regulator integrated in the Power Management Unit and it is internally used to source the generic digital I/O interfaces of the cellular module, as described in Figure 12. The output of this regulator is enabled when the module is switched on and it is disabled when the module is switched off. TOBY-R2 series VCC 70 VCC 71 Power Management Baseband Processor Switching Step-Down Digital I/O VCC 72 V_INT 5 Figure 12: TOBY-R2 series generic digital interfaces supply output (V_INT) simplified block diagram The switching regulator operates in Pulse Width Modulation (PWM) mode for greater efficiency at high output loads and it automatically switches to Pulse Frequency Modulation (PFM) power save mode for greater efficiency at low output loads. The V_INT output voltage ripple is specified in the TOBY-R2 series Data Sheet [1]. UBX-16010572 - R01 Objective Specification System description Page 27 of 146 TOBY-R2 series - System Integration Manual 1.6 System function interfaces 1.6.1 Module power-on When the TOBY-R2 series modules are in the not-powered mode (switched off, i.e. the VCC module supply is not applied), they can be switched on as following: Rising edge on the VCC supply input to a valid voltage for module supply, starting from a voltage value lower than 2.25 V, so that the module switches on applying a proper VCC supply within the normal operating range. Alternately, the RESET_N pin can be held to the low level during the VCC rising edge, so that the module switches on releasing the RESET_N pin when the VCC module supply voltage stabilizes at its proper nominal value within the normal operating range. The status of the PWR_ON input pin of TOBY-R2 series modules while applying the VCC module supply is not relevant: during this phase the PWR_ON pin can be set high or low by the external circuit. When the TOBY-R2 series modules are in the power-off mode (i.e. switched off with valid VCC module supply applied), they can be switched on as following: Low pulse on the PWR_ON pin, which is normally set high by an internal pull-up, for a valid time period. Rising edge on the RESET_N pin, i.e. releasing the pin from the low level, as that the pin is normally set high by an internal pull-up. RTC alarm, i.e. pre-programmed alarm by AT+CALA command (see u-blox AT Commands Manual [2]). As described in Figure 13, the TOBY-R2 series PWR_ON input is equipped with an internal active pull-up resistor to the V_BCKP supply: the PWR_ON input voltage thresholds are different from the other generic digital interfaces. Detailed electrical characteristics are described in TOBY-R2 series Data Sheet [1]. TOBY-R2 series V_BCKP Power Management Baseband Processor Power-on Power-on 10k PWR_ON 20 Figure 13: TOBY-R2 series PWR_ON input description UBX-16010572 - R01 Objective Specification System description Page 28 of 146 TOBY-R2 series - System Integration Manual Figure 14 shows the module power-on sequence from the not-powered mode, describing the following phases: The external supply is applied to the VCC module supply inputs, representing the start-up event. The V_BCKP RTC supply output is suddenly enabled by the module as VCC reaches a valid voltage value. The PWR_ON and the RESET_N pins suddenly rise to high logic level due to internal pull-ups. All the generic digital pins of the module are tri-stated until the switch-on of their supply source (V_INT). The internal reset signal is held low: the baseband core and all the digital pins are held in the reset state. The reset state of all the digital pins is reported in the pin description table of TOBY-R2 series Data Sheet [1]. When the internal reset signal is released, any digital pin is set in a proper sequence from the reset state to the default operational configured state. The duration of this pins’ configuration phase differs within generic digital interfaces and the USB interface due to host / device enumeration timings (see section 1.9.2). The module is fully ready to operate after all interfaces are configured. Start of interface configuration Start-up event Module interfaces are configured VCC V_BCKP PWR_ON RESET_N V_INT Internal Reset OFF System State BB Pads State Tristate / Floating ON Internal Reset Internal Reset → Operational Operational Figure 14: TOBY-R2 series power-on sequence description The greeting text can be activated by means of +CSGT AT command (see u-blox AT Commands Manual [2]) to notify the external application that the module is ready to operate (i.e. ready to reply to AT commands) and the first AT command can be sent to the module, given that autobauding has to be disabled on the UART to let the module sending the greeting text: the UART has to be configured at fixed baud rate (the baud rate of the application processor) instead of the default autobauding, otherwise the module does not know the baud rate to be used for sending the greeting text (or any other URC) at the end of the internal boot sequence. The Internal Reset signal is not available on a module pin, but the host application can monitor the V_INT pin to sense the start of the TOBY-R2 series module power-on sequence. Before the switch-on of the generic digital interface supply source (V_INT) of the module, no voltage driven by an external application should be applied to any generic digital interface of the module. Before the TOBY-R2 series module is fully ready to operate, the host application processor should not send any AT command over the AT communication interfaces (USB, UART) of the module. UBX-16010572 - R01 Objective Specification System description Page 29 of 146 TOBY-R2 series - System Integration Manual 1.6.2 Module power-off TOBY-R2 series can be properly switched off by: AT+CPWROFF command (see u-blox AT Commands Manual [2]). The current parameter settings are saved in the module’s non-volatile memory and a proper network detach is performed. An abrupt under-voltage shutdown occurs on TOBY-R2 series modules when the VCC module supply is removed. If this occurs, it is not possible to perform the storing of the current parameter settings in the module’s non-volatile memory or to perform the proper network detach. It is highly recommended to avoid an abrupt removal of the VCC supply during TOBY-R2 series modules normal operations: the power off procedure must be started by the AT+CPWROFF command, waiting the command response for a proper time period (see u-blox AT Commands Manual [2]), and then a proper VCC supply has to be held at least until the end of the modules’ internal power off sequence, which occurs when the generic digital interfaces supply output (V_INT) is switched off by the module. An abrupt hardware shutdown occurs on TOBY-R2 series modules when a low level is applied on RESET_N pin. In this case, the current parameter settings are not saved in the module’s non-volatile memory and a proper network detach is not performed. It is highly recommended to avoid an abrupt hardware shutdown of the module by forcing a low level on the RESET_N input pin during module normal operation: the RESET_N line should be set low only if reset or shutdown via AT commands fails or if the module does not reply to a specific AT command after a time period longer than the one defined in the u-blox AT Commands Manual [2]. An over-temperature or an under-temperature shutdown occurs on TOBY-R2 series modules when the temperature measured within the cellular module reaches the dangerous area, if the optional Smart Temperature Supervisor feature is enabled and configured by the dedicated AT command. For more details see section 1.13.15 and u-blox AT Commands Manual [2], +USTS AT command. UBX-16010572 - R01 Objective Specification System description Page 30 of 146 TOBY-R2 series - System Integration Manual Figure 15 describes the TOBY-R2 power-off sequence by means of AT+CPWROFF with the following phases: When the +CPWROFF AT command is sent, the module starts the switch-off routine. The module replies OK on the AT interface: the switch-off routine is in progress. At the end of the switch-off routine, all the digital pins are tri-stated and all the internal voltage regulators are turned off, including the generic digital interfaces supply (V_INT), except the RTC supply (V_BCKP). Then, the module remains in power-off mode as long as a switch on event does not occur (e.g. applying a proper low level to the PWR_ON input, or applying a proper low level to the RESET_N input), and enters not-powered mode if the supply is removed from the VCC pins. AT+CPWROFF sent to the module OK replied by the module VCC can be removed VCC V_BCKP PWR_ON RESET_N V_INT Internal Reset ON System State BB Pads State Operational OFF Tristate / Floating Operational → Tristate 0s ~2.5 s Figure 15: TOBY-R2 series power-off sequence description ~5 s The Internal Reset signal is not available on a module pin, but the application can monitor the V_INT pin to sense the end of the power-off sequence. The duration of each phase in the TOBY-R2 series modules’ switch-off routines can largely vary depending on the application / network settings and the concurrent module activities. UBX-16010572 - R01 Objective Specification System description Page 31 of 146 TOBY-R2 series - System Integration Manual 1.6.3 Module reset TOBY-R2 series modules can be properly reset (rebooted) by: AT+CFUN command (see u-blox AT Commands Manual [2]). In the case listed above an “internal” or “software” reset of the module is executed: the current parameter settings are saved in the module’s non-volatile memory and a proper network detach is performed. An abrupt hardware reset occurs on TOBY-R2 series modules when a low level is applied on RESET_N input pin. In this case, the current parameter settings are not saved in the module’s non-volatile memory and a proper network detach is not performed. It is highly recommended to avoid an abrupt hardware reset of the module by forcing a low level on the RESET_N input during modules normal operation: the RESET_N line should be set low only if reset or shutdown via AT commands fails or if the module does not provide a reply to a specific AT command after a time period longer than the one defined in the u-blox AT Commands Manual [2]. As described in Figure 16, the RESET_N input pins are equipped with an internal pull-up to the V_BCKP supply. TOBY-R2 series V_BCKP Power Management Baseband Processor Reset Reset 10k RESET_N 23 Figure 16: TOBY-R2 series RESET_N input equivalent circuit description For more electrical characteristics details see TOBY-R2 series Data Sheet [1]. 1.6.4 Module / host configuration selection Selection of module / host configuration over HOST_SELECT0 and HOST_SELECT1 pins is not supported. TOBY-R2 series modules include two pins (HOST_SELECT0, HOST_SELECT1) for the selection of the module / host application processor configuration. UBX-16010572 - R01 Objective Specification System description Page 32 of 146 TOBY-R2 series - System Integration Manual 1.7 Antenna interface 1.7.1 Antenna RF interfaces (ANT1 / ANT2) TOBY-R2 series modules provide two RF interfaces for connecting the external antennas: The ANT1 represents the primary RF input/output for transmission and reception of LTE/3G/2G RF signals. The ANT1 pin has a nominal characteristic impedance of 50 and must be connected to the primary Tx / Rx antenna through a 50 transmission line to allow proper RF transmission and reception. The ANT2 represents the secondary RF input for the reception of the LTE RF signals for the Down-Link Rx diversity radio technology supported by TOBY-R2 series modules as required feature for LTE category 1 UEs. The ANT2 pin has a nominal characteristic impedance of 50 and must be connected to the secondary Rx antenna through a 50 transmission line to allow proper RF reception. 1.7.1.1 Antenna RF interfaces requirements Table 7, Table 8 and Table 9 summarize the requirements for the antennas RF interfaces (ANT1 / ANT2). See section 2.4.1 for suggestions to properly design antennas circuits compliant with these requirements. The antenna circuits affect the RF compliance of the device integrating TOBY-R2 series modules with applicable required certification schemes (for more details see section 4). Compliance is guaranteed if the antenna RF interfaces (ANT1 / ANT2) requirements summarized in Table 7, Table 8 and Table 9 are fulfilled. Item Requirements Remarks Impedance 50 nominal characteristic impedance Frequency Range See the TOBY-R2 series Data Sheet [1] The impedance of the antenna RF connection must match the 50 impedance of the ANT1 port. The required frequency range of the antenna connected to ANT1 port depends on the operating bands of the used cellular module and the used mobile network. Return Loss S11 < -10 dB (VSWR < 2:1) recommended S11 < -6 dB (VSWR < 3:1) acceptable Efficiency > -1.5 dB ( > 70% ) recommended > -3.0 dB ( > 50% ) acceptable Maximum Gain According to radiation exposure limits Input Power > 33 dBm ( > 2 W ) The Return loss or the S11, as the VSWR, refers to the amount of reflected power, measuring how well the antenna RF connection matches the 50 characteristic impedance of the ANT1 port. The impedance of the antenna termination must match as much as possible the 50 nominal impedance of the ANT1 port over the operating frequency range, reducing as much as possible the amount of reflected power. The radiation efficiency is the ratio of the radiated power to the power delivered to antenna input: the efficiency is a measure of how well an antenna receives or transmits. The radiation efficiency of the antenna connected to the ANT1 port needs to be enough high over the operating frequency range to comply with the Over-The-Air (OTA) radiated performance requirements, as Total Radiated Power (TRP) and the Total Isotropic Sensitivity (TIS), specified by applicable related certification schemes. The power gain of an antenna is the radiation efficiency multiplied by the directivity: the gain describes how much power is transmitted in the direction of peak radiation to that of an isotropic source. The maximum gain of the antenna connected to ANT1 port must not exceed the herein stated value to comply with regulatory agencies radiation exposure limits. For additional info see sections 4.2.2 and/or 4.3.1 The antenna connected to the ANT1 port must support with adequate margin the maximum power transmitted by the modules Table 7: Summary of primary Tx/Rx antenna RF interface (ANT1) requirements UBX-16010572 - R01 Objective Specification System description Page 33 of 146 TOBY-R2 series - System Integration Manual Item Requirements Remarks Impedance 50 nominal characteristic impedance Frequency Range See the TOBY-R2 series Data Sheet [1] Return Loss S11 < -10 dB (VSWR < 2:1) recommended S11 < -6 dB (VSWR < 3:1) acceptable Efficiency > -1.5 dB ( > 70% ) recommended > -3.0 dB ( > 50% ) acceptable The impedance of the antenna RF connection must match the 50 impedance of the ANT2 port. The required frequency range of the antennas connected to ANT2 port depends on the operating bands of the used cellular module and the used Mobile Network. The Return loss or the S11, as the VSWR, refers to the amount of reflected power, measuring how well the antenna RF connection matches the 50 characteristic impedance of the ANT2 port. The impedance of the antenna termination must match as much as possible the 50 nominal impedance of the ANT2 port over the operating frequency range, reducing as much as possible the amount of reflected power. The radiation efficiency is the ratio of the radiated power to the power delivered to antenna input: the efficiency is a measure of how well an antenna receives or transmits. The radiation efficiency of the antenna connected to the ANT2 port needs to be enough high over the operating frequency range to comply with the Over-The-Air (OTA) radiated performance requirements, as the TIS, specified by applicable related certification schemes. Table 8: Summary of secondary Rx antenna RF interface (ANT2) requirements Item Requirements Remarks Efficiency imbalance < 0.5 dB recommended < 1.0 dB acceptable Envelope Correlation Coefficient < 0.4 recommended < 0.5 acceptable Isolation > 15 dB recommended > 10 dB acceptable The radiation efficiency imbalance is the ratio of the primary (ANT1) antenna efficiency to the secondary (ANT2) antenna efficiency: the efficiency imbalance is a measure of how much better an antenna receives or transmits compared to the other antenna. The radiation efficiency of the secondary antenna needs to be roughly the same of the radiation efficiency of the primary antenna for good RF performance. The Envelope Correlation Coefficient (ECC) between the primary (ANT1) and the secondary (ANT2) antenna is an indicator of 3D radiation pattern similarity between the two antennas: low ECC results from antenna patterns with radiation lobes in different directions. The ECC between primary and secondary antenna needs to be enough low to comply with radiated performance requirements specified by related certification schemes. The antenna to antenna isolation is the loss between the primary (ANT1) and the secondary (ANT2) antenna: high isolation results from low coupled antennas. The isolation between primary and secondary antenna needs to be high for good RF performance. Table 9: Summary of primary (ANT1) and secondary (ANT2) antennas relationship requirements UBX-16010572 - R01 Objective Specification System description Page 34 of 146 TOBY-R2 series - System Integration Manual 1.7.2 Antenna detection interface (ANT_DET) The antenna detection is based on ADC measurement. The ANT_DET pin is an Analog to Digital Converter (ADC) provided to sense the antenna presence. The antenna detection function provided by ANT_DET pin is an optional feature that can be implemented if the application requires it. The antenna detection is forced by the +UANTR AT command. See the u-blox AT Commands Manual [2] for more details on this feature. The ANT_DET pin generates a DC current (for detailed characteristics see the TOBY-R2 series Data Sheet [1]) and measures the resulting DC voltage, thus determining the resistance from the antenna connector provided on the application board to GND. So, the requirements to achieve antenna detection functionality are the following: an RF antenna assembly with a built-in resistor (diagnostic circuit) must be used an antenna detection circuit must be implemented on the application board See section 2.4.2 for antenna detection circuit on application board and diagnostic circuit on antenna assembly design-in guidelines. 1.8 1.8.1 SIM interface SIM interface TOBY-R2 series modules provide high-speed SIM/ME interface including automatic detection and configuration of the voltage required by the connected SIM card or chip. Both 1.8 V and 3 V SIM types are supported. Activation and deactivation with automatic voltage switch from 1.8 V to 3 V are implemented, according to ISO-IEC 7816-3 specifications. The VSIM supply output provides internal short circuit protection to limit start-up current and protect the SIM to short circuits. The SIM driver supports the PPS (Protocol and Parameter Selection) procedure for baud-rate selection, according to the values determined by the SIM card or chip. 1.8.2 SIM detection interface The GPIO5 pin is by default configured to detect the external SIM card mechanical / physical presence. The pin is configured as input, and it can sense SIM card presence as intended to be properly connected to the mechanical switch of a SIM card holder as described in section 2.5: Low logic level at GPIO5 input pin is recognized as SIM card not present High logic level at GPIO5 input pin is recognized as SIM card present The SIM card detection function provided by GPIO5 pin is an optional feature that can be implemented / used or not according to the application requirements: an Unsolicited Result Code (URC) is generated each time that there is a change of status (for more details see u-blox AT Commands Manual [2], +UGPIOC, +CIND, +CMER). The optional function “SIM card hot insertion/removal” can be additionally configured on the GPIO5 pin by specific AT command (see the u-blox AT Commands Manual [2], +UDCONF=50), in order to enable / disable the SIM interface upon detection of external SIM card physical insertion / removal. UBX-16010572 - R01 Objective Specification System description Page 35 of 146 TOBY-R2 series - System Integration Manual 1.9 Data communication interfaces TOBY-R2 series modules provide the following serial communication interface: UART interface: Universal Asynchronous Receiver/Transmitter serial interface available for the communication with a host application processor (AT commands, data communication, FW update by means of FOAT), for FW update by means of the u-blox EasyFlash tool and for diagnostic. (see section 1.9.1) USB interface: Universal Serial Bus 2.0 compliant interface available for the communication with a host application processor (AT commands, data communication, FW update by means of the FOAT feature), for FW update by means of the u-blox EasyFlash tool and for diagnostic. (see section 1.9.2) DDC interface: I C bus compatible interface available for the communication with u-blox GNSS positioning chips or modules and with external I C devices as an audio codec. (see section 1.9.3) SDIO interface: Secure Digital Input Output interface available for the communication with compatible u-blox short range radio communication Wi-Fi modules. (see section 1.9.4) 1.9.1 UART interface 1.9.1.1 UART features The UART interface is a 9-wire 1.8 V unbalanced asynchronous serial interface available on all the TOBY-R2 series modules, supporting: AT command mode Data mode and Online command mode Multiplexer protocol functionality (see 1.9.1.5) FW upgrades by means of the FOAT feature (see 1.13.13 and Firmware Update Application Note [5]) FW upgrades by means of the u-blox EasyFlash tool (see Firmware Update Application Note [5]) Trace log capture (diagnostic purpose) UART interface provides RS-232 functionality conforming to the ITU-T V.24 Recommendation [7], with CMOS compatible signal levels: 0 V for low data bit or ON state, and 1.8 V for high data bit or OFF state (for detailed electrical characteristics see TOBY-R2 series Data Sheet [1]), providing: data lines (RXD as output, TXD as input), hardware flow control lines (CTS as output, RTS as input), modem status and control lines (DTR as input, DSR as output, DCD as output, RI as output). TOBY-R2 series modules are designed to operate as cellular modems, i.e. as the data circuit-terminating equipment (DCE) according to the ITU-T V.24 Recommendation [7]. A host application processor connected to the module through the UART interface represents the data terminal equipment (DTE). UART signal names of the cellular modules conform to the ITU-T V.24 Recommendation [7]: e.g. TXD line represents data transmitted by the DTE (host processor output) and received by the DCE (module input). TOBY-R2 series modules’ UART interface is by default configured in AT command mode: the module waits for AT command instructions and interprets all the characters received as commands to execute. All the functionalities supported by TOBY-R2 series modules can be in general set and configured by AT commands: AT commands according to 3GPP TS 27.007 [8], 3GPP TS 27.005 [9], 3GPP TS 27.010 [10] u-blox AT commands (for the complete list and syntax see the u-blox AT Commands Manual [2]) For the definition of the interface data mode, command mode and online command mode see the u-blox AT Commands Manual [2] UBX-16010572 - R01 Objective Specification System description Page 36 of 146 TOBY-R2 series - System Integration Manual Flow control handshakes are supported by the UART interface and can be set by appropriate AT commands (see u-blox AT Commands Manual [2], &K, +IFC, \Q AT commands): hardware flow control (over the RTS / CTS lines), software flow control (XON/XOFF), or none flow control. Hardware flow control is enabled by default. The one-shot autobauding is supported: the automatic baud rate detection is performed only once, at module start up. After the detection, the module works at the detected baud rate and the baud rate can only be changed by AT command (see u-blox AT Commands Manual [3], +IPR). One-shot automatic baud rate recognition (autobauding) is enabled by default. The following baud rates can be configured by AT command (see u-blox AT Commands Manual [2], +IPR): 9600 b/s 19200 b/s 38400 b/s 57600 b/s 115200 b/s, default value when one-shot autobauding is disabled 230400 b/s 460800 b/s 921600 b/s 3000000 b/s 3250000 b/s 6000000 b/s Baud rates higher than 460800 b/s cannot be automatically detected by TOBY-R2 series modules. The modules support the one-shot automatic frame recognition in conjunction with the one-shot autobauding. The following frame formats can be configured by AT command (see u-blox AT Commands Manual [2], +ICF): 8N1 (8 data bits, No parity, 1 stop bit), default frame configuration with fixed baud rate, see Figure 17 8E1 (8 data bits, even parity, 1 stop bit) 8O1 (8 data bits, odd parity, 1 stop bit) 8N2 (8 data bits, No parity, 2 stop bits) 7E1 (7 data bits, even parity, 1 stop bit) 7O1 (7 data bits, odd parity, 1 stop bit) Normal Transfer, 8N1 Start of 1-Byte transfer D0 D1 Possible Start of next transfer D2 D3 D4 D5 Start Bit (Always 0) D6 D7 Stop Bit (Always 1) tbit = 1/(Baudrate) Figure 17: Description of UART 8N1 frame format (8 data bits, no parity, 1 stop bit) UBX-16010572 - R01 Objective Specification System description Page 37 of 146 TOBY-R2 series - System Integration Manual 1.9.1.2 UART interface configuration The UART interface of TOBY-R2 series modules is available as AT command interface with the default configuration described in Table 10 (for more details and information about further settings, see the u-blox AT Commands Manual [2]). Interface AT Settings Comments UART interface AT interface: enabled AT command interface is enabled by default on the UART physical interface AT+IPR=0 One-shot autobauding enabled by default on the modules AT+ICF=3,1 8N1 frame format enabled by default AT&K3 HW flow control enabled by default AT&S1 DSR line (Circuit 107 in ITU-T V.24) set ON in data mode6 and set OFF in command mode6 AT&D1 Upon an ON-to-OFF transition of DTR line (Circuit 108/2 in ITU-T V.24), the module (DCE) enters online command mode6 and issues an OK result code AT&C1 DCD line (Circuit 109 in ITU-T V.24) changes in accordance with the Carrier detect status; ON if the Carrier is detected, OFF otherwise MUX protocol: disabled Multiplexing mode is disabled by default and it can be enabled by AT+CMUX command. For more details, see the Mux Implementation Application Note [11]. The following virtual channels are defined: Channel 0: control channel Channel 1 – 5: AT commands / data connection Channel 6: GNSS tunneling7 Table 10: Default UART interface configuration 1.9.1.3 UART signals behavior At the module switch-on, before the UART interface initialization (as described in the power-on sequence reported in Figure 14), each pin is first tri-stated and then is set to its relative internal reset state . At the end of the boot sequence, the UART interface is initialized, the module is by default in active-mode, and the UART interface is enabled as AT commands interface. The configuration and the behavior of the UART signals after the boot sequence are described below. See section 1.4 for definition and description of module operating modes referred to in this section. RXD signal behavior The module data output line (RXD) is set by default to the OFF state (high level) at UART initialization. The module holds RXD in the OFF state until the module does not transmit some data. TXD signal behavior The module data input line (TXD) is set by default to the OFF state (high level) at UART initialization. The TXD line is then held by the module in the OFF state if the line is not activated by the DTE: an active pull-up is enabled inside the module on the TXD input. For the definition of the interface data mode, command mode and online command mode see the u-blox AT Commands Manual [2] Not supported by “02” product versions See the pin description table in the TOBY-R2 series Data Sheet [1] UBX-16010572 - R01 Objective Specification System description Page 38 of 146 TOBY-R2 series - System Integration Manual CTS signal behavior The module hardware flow control output (CTS line) is set to the ON state (low level) at UART initialization. If the hardware flow control is enabled, as it is by default, the CTS line indicates when the UART interface is enabled (data can be received): the module drives the CTS line to the ON state or to the OFF state when it is either able or not able to accept data from the DTE over the UART (for example see section 1.9.1.4, Figure 20). If hardware flow control is enabled, then when the CTS line is OFF it does not necessarily mean that the module is in low power idle-mode, but only that the UART is not enabled, as the module could be forced to stay in active-mode for other activities, e.g. related to the network or related to other interfaces. If hardware flow control is enabled and the multiplexer protocol is active, then the CTS line state is mapped to FCon / FCoff MUX command for flow control matters outside the power saving configuration while the physical CTS line is still used as a UART power state indicator (see Mux Application Note [11]). The CTS hardware flow control setting can be changed by AT commands (for more details, see the u-blox AT Commands Manual [2], AT&K, AT\Q, AT+IFC AT commands). When the power saving configuration is enabled by AT+UPSV command and the hardware flow-control is not implemented in the DTE/DCE connection, data sent by the DTE can be lost: the first character sent when the module is in low power idle-mode will not be a valid communication character (see section 1.9.1.4 and in particular the sub-section “Wake up via data reception” for further details). RTS signal behavior The hardware flow control input (RTS line) is set by default to the OFF state (high level) at UART initialization. The module then holds the RTS line in the OFF state if the line is not activated by the DTE: an active pull-up is enabled inside the module on the RTS input. If the HW flow control is enabled, as it is by default, the module monitors the RTS line to detect permission from the DTE to send data to the DTE itself. If the RTS line is set to the OFF state, any on-going data transmission from the module is interrupted until the RTS line changes to the ON state. The DTE must still be able to accept a certain number of characters after the RTS line is set to the OFF state: the module guarantees the transmission interruption within two characters from RTS state change. The module behavior according to the RTS hardware flow control status can be configured by AT commands (for more details, see the u-blox AT Commands Manual [2], AT&K, AT\Q, AT+IFC AT commands). If AT+UPSV=2 is set and HW flow control is disabled, the module monitors the RTS line to manage the power saving configuration (for more details, see section 1.9.1.4 and u-blox AT Commands Manual [2], AT+UPSV): When an OFF-to-ON transition occurs on the RTS input, the UART is enabled and the module is forced to active-mode. After ~20 ms, the switch is completed and data can be received without loss. The module cannot enter low power idle-mode and the UART is enabled as long as the RTS is in the ON state If the RTS input line is set to the OFF state by the DTE, the UART is disabled (held in low power mode) and the module automatically enters low power idle-mode whenever possible DSR signal behavior If AT&S1 is set, as it is by default, the DSR module output line is set by default to the OFF state (high level) at UART initialization. The DSR line is then set to the OFF state when the module is in command mode or in online command mode and is set to the ON state when the module is in data mode . If AT&S0 is set, the DSR module output line is set by default to the ON state (low level) at UART initialization and is then always held in the ON state. For the definition of the interface data mode, command mode and online command mode see the u-blox AT Commands Manual [2] UBX-16010572 - R01 Objective Specification System description Page 39 of 146 TOBY-R2 series - System Integration Manual DTR signal behavior The DTR module input line is set by default to the OFF state (high level) at UART initialization. The module then holds the DTR line in the OFF state if the line is not activated by the DTE: an active pull-up is enabled inside the module on the DTR input. Module behavior according to DTR status can be changed by AT command configuration (for more details see the u-blox AT Commands Manual [2], &D AT command description). If AT+UPSV=3 is set, the DTR line is monitored by the module to manage the power saving configuration (for more details, see section 1.9.1.4 and u-blox AT Commands Manual [2], AT+UPSV): When an OFF-to-ON transition occurs on the DTR input, the UART is enabled and the module is forced to active-mode. After ~20 ms, the switch is completed and data can be received without loss. The module cannot enter low power idle-mode and the UART is enabled as long as the DTR is in the ON state If the DTR input line is set to the OFF state by the DTE, the UART is disabled (held in low power mode) and the module automatically enters low power idle-mode whenever possible DCD signal behavior If AT&C1 is set, as it is by default, the DCD module output line is set by default to the OFF state (high level) at UART initialization. The module then sets the DCD line according to the carrier detect status: ON if the carrier is detected, OFF otherwise. In case of voice calls, DCD is set to the ON state when the call is established. In case of data calls, there are the following scenarios regarding the DCD signal behavior: Packet Switched Data call: Before activating the PPP protocol (data mode) a dial-up application must provide the ATD*99***# to the module: with this command the module switches from command mode to data mode and can accept PPP packets. The module sets the DCD line to the ON state, then answers with a CONNECT to confirm the ATD*99 command. The DCD ON is not related to the context activation but with the data mode Circuit Switched Data call: To establish a data call, the DTE can send the ATD command to the module which sets an outgoing data call to a remote modem (or another data module). Data can be transparent (non reliable) or non transparent (with the reliable RLP protocol). When the remote DCE accepts the data call, the module DCD line is set to ON and the CONNECT string is returned by the module. At this stage the DTE can send characters through the serial line to the data module which sends them through the network to the remote DCE attached to a remote DTE The DCD is set to ON during the execution of the +CMGS, +CMGW, +USOWR, +USODL AT commands requiring input data from the DTE: the DCD line is set to the ON state as soon as the switch to binary/text input mode is completed and the prompt is issued; DCD line is set to OFF as soon as the input mode is interrupted or completed (for more details see the u-blox AT Commands Manual [2]). 10 The DCD line is kept in the ON state, even during the online command mode , to indicate that the data 10 call is still established even if suspended, while if the module enters command mode , the DSR line is set to the OFF state. For more details see DSR signal behavior description. For scenarios when the DCD line setting is requested for different reasons (e.g. SMS texting during online 10 command mode ), the DCD line changes to guarantee the correct behavior for all the scenarios. For 10 example, in case of SMS texting in online command mode , if the data call is released, DCD is kept ON till the SMS command execution is completed (even if the data call release would request DCD set OFF). If AT&C0 is set, the DCD module output line is set by default to the ON state (low level) at UART initialization and is then always held in the ON state. 10 For the definition of the interface data mode, command mode and online command mode see the u-blox AT Commands Manual [2] UBX-16010572 - R01 Objective Specification System description Page 40 of 146 TOBY-R2 series - System Integration Manual RI signal behavior The RI module output line is set by default to the OFF state (high level) at UART initialization. The RI line can notify an incoming call: the RI line is switched from the OFF state to the ON state with a 4:1 duty cycle and a 5 s period (ON for 1 s, OFF for 4 s, see Figure 18), until the DTE attached to the module sends the ATA string and the module accepts the incoming data call. The RING string sent by the module (DCE) to the serial port at constant time intervals is not correlated with the switch of the RI line to the ON state. 1s RI OFF RI ON 10 15 time [s] Call incomes Figure 18: RI behavior during an incoming call The RI output line can notify an SMS arrival. When the SMS arrives, the RI line switches from OFF to ON for 1 s (see Figure 19), if the feature is enabled by AT+CNMI command (see the u-blox AT Commands Manual [2]). 1s RI OFF RI ON time [s] SMS arrives Figure 19: RI behavior at SMS arrival This behavior allows the DTE to stay in power saving mode until the DCE related event requests service. For SMS arrival, if several events coincidently occur or in quick succession each event independently triggers the RI line, although the line will not be deactivated between each event. As a result, the RI line may stay to ON for more than 1 s, if an incoming call is answered within less than 1 s (with ATA or if auto-answering is set to ATS0=1) than the RI line is set to OFF earlier, so that: RI line monitoring cannot be used by the DTE to determine the number of received SMSes. For multiple events (incoming call plus SMS received), the RI line cannot be used to discriminate the two events, but the DTE must rely on subsequent URCs and interrogate the DCE with the proper commands. The RI line can additionally notify all the URCs and/or all the incoming data in PPP and Direct Link connections, if the feature is enabled by the AT+URING command (for more details see the u-blox AT Commands Manual [2]): the RI line is asserted when one of the configured events occur and it remains asserted for 1 s unless another configured event will happen, with the same behavior described in Figure 19. UBX-16010572 - R01 Objective Specification System description Page 41 of 146 TOBY-R2 series - System Integration Manual 1.9.1.4 UART and power-saving The power saving configuration is controlled by the AT+UPSV command (for the complete description, see the u-blox AT Commands Manual [2]). When power saving is enabled, the module automatically enters low power idle-mode whenever possible, and otherwise the active-mode is maintained by the module (see section 1.4 for definition and description of module operating modes referred to in this section). The AT+UPSV command configures both the module power saving and also the UART behavior in relation to the power saving. The conditions for the module entering low power idle-mode also depend on the UART power saving configuration, as the module does not enter the low power idle-mode according to any required activity related to the network (within or outside an active call) or any other required concurrent activity related to the functions and interfaces of the module, including the UART interface. The AT+UPSV command can set these different power saving configurations: AT+UPSV=0, power saving disabled (default configuration) AT+UPSV=1, power saving enabled cyclically AT+UPSV=2, power saving enabled and controlled by the UART RTS input line AT+UPSV=3, power saving enabled and controlled by the UART DTR input line The different power saving configurations that can be set by the +UPSV AT command are described in details in the following subsections. Table 11 summarizes the UART interface communication process in the different power saving configurations, in relation with the hardware flow control settings and the RTS input line status. For more details on the +UPSV AT command description, see u-blox AT commands Manual [2]. AT+UPSV HW flow control RTS line DTR line Communication during idle-mode and wake up Enabled (AT&K3) ON ON or OFF Data sent by the DTE is correctly received by the module. Data sent by the module is correctly received by the DTE. Enabled (AT&K3) OFF ON or OFF Disabled (AT&K0) ON or OFF ON or OFF Enabled (AT&K3) ON ON or OFF Data sent by the DTE is correctly received by the module. Data sent by the module is buffered by the module and will be correctly received by the DTE when it is ready to receive data (i.e. RTS line will be ON). Data sent by the DTE is correctly received by the module. Data sent by the module is correctly received by the DTE if it is ready to receive data, otherwise the data is lost. Data sent by the DTE is buffered by the DTE and will be correctly received by the module when it is ready to receive data (when the UART is enabled). Data sent by the module is correctly received by the DTE. Enabled (AT&K3) OFF ON or OFF Data sent by the DTE is buffered by the DTE and will be correctly received by the module when it is ready to receive data (when the UART is enabled). Data sent by the module is buffered by the module and will be correctly received by the DTE when it is ready to receive data (i.e. RTS line will be ON). Disabled (AT&K0) ON or OFF ON or OFF The first character sent by the DTE is lost by the module, but after ~20 ms the UART and the module are woken up: recognition of subsequent characters is guaranteed only after the UART / module complete wake-up (after ~20 ms). Data sent by the module is correctly received by the DTE if it is ready to receive data, otherwise the data is lost. Enabled (AT&K3) Disabled (AT&K0) ON or OFF ON ON or OFF ON or OFF Disabled (AT&K0) OFF ON or OFF Not Applicable: HW flow control cannot be enabled with AT+UPSV=2. Data sent by the DTE is correctly received by the module. Data sent by the module is correctly received by the DTE if it is ready to receive data, otherwise data is lost. Data sent by the DTE is lost by the module. Data sent by the module is correctly received by the DTE if it is ready to receive data, otherwise data is lost. UBX-16010572 - R01 Objective Specification System description Page 42 of 146 TOBY-R2 series - System Integration Manual AT+UPSV HW flow control RTS line DTR line Communication during idle-mode and wake up Enabled (AT&K3) ON ON Enabled (AT&K3) ON OFF Data sent by the DTE is correctly received by the module. Data sent by the module is correctly received by the DTE. Data sent by the DTE is lost by the module. Data sent by the module is correctly received by the DTE. Enabled (AT&K3) OFF ON Enabled (AT&K3) OFF OFF Disabled (AT&K0) ON or OFF ON Disabled (AT&K0) ON or OFF OFF Data sent by the DTE is correctly received by the module. Data sent by the module is buffered by the module and will be correctly received by the DTE when it is ready to receive data (i.e. RTS line will be ON). Data sent by the DTE is lost by the module. Data sent by the module is buffered by the module and will be correctly received by the DTE when it is ready to receive data (i.e. RTS line will be ON). Data sent by the DTE is correctly received by the module. Data sent by the module is correctly received by the DTE if it is ready to receive data, otherwise data is lost. Data sent by the DTE is lost by the module. Data sent by the module is correctly received by the DTE if it is ready to receive data, otherwise data is lost. Table 11: UART and power-saving summary AT+UPSV=0: power saving disabled, fixed active-mode The module does not enter low power idle-mode and the UART interface is enabled (data can be sent and received): the CTS line is always held in the ON state after UART initialization. This is the default configuration. AT+UPSV=1: power saving enabled, cyclic idle/active-mode When the AT+UPSV=1 command is issued by the DTE, the UART will be normally disabled, and then periodically or upon necessity enabled as following: During the periodic UART wake up to receive or send data, also according to the module wake up for the paging reception (see section 1.5.1.5) or other activities If the module needs to transmit some data (e.g. URC), the UART is temporarily enabled to send data If the DTE send data with HW flow control disabled, the first character sent causes the UART and module wake-up after ~20 ms: recognition of subsequent characters is guaranteed only after the complete wake-up (see the following subsection “wake up via data reception”) The module automatically enters the low power idle-mode whenever possible but it wakes up to active-mode according to the UART periodic wake up so that the module cyclically enters the low power idle-mode and the active-mode. Additionally, the module wakes up to active-mode according to any required activity related to the network (e.g. for the periodic paging reception described in section 1.5.1.5, or for any other required RF Tx / Rx) or any other required activity related to module functions / interfaces (including the UART itself). When the UART interface is enabled, data can be received. When a character is received, it forces the UART interface to stay enabled for a longer time and it forces the module to stay in the active-mode for a longer time, according to the timeout configured by the second parameter of the +UPSV AT command. The timeout can be set from 40 2G-frames (i.e. 40 x 4.615 ms = 184 ms) up to 65000 2G-frames (i.e. 65000 x 4.615 ms = 300 s). Default value is 2000 2G-frames (i.e. 2000 x 4.615 ms = 9.2 s). Every subsequent character received during the active-mode, resets and restarts the timer; hence the active-mode duration can be extended indefinitely. UBX-16010572 - R01 Objective Specification System description Page 43 of 146 TOBY-R2 series - System Integration Manual The CTS output line is driven to the ON or OFF state when the module is either able or not able to accept data from the DTE over the UART: Figure 20 illustrates the CTS output line toggling due to paging reception and data received over the UART, with AT+UPSV=1 configuration. Data input CTS OFF CTS ON time [s] ~9.2 s (default) Figure 20: CTS output pin indicates when module’s UART is enabled (CTS = ON = low level) or disabled (CTS = OFF = high level) AT+UPSV=2: power saving enabled and controlled by the RTS line This configuration can only be enabled with the module hardware flow control disabled (i.e. AT&K0 setting). The UART interface is disabled after the DTE sets the RTS line to OFF. Afterwards, the UART is enabled again, and the module does not enter low power idle-mode, as following: If an OFF-to-ON transition occurs on the RTS input, this causes the UART / module wake-up after ~20 ms: recognition of subsequent characters is guaranteed only after the complete wake-up, and the UART is kept enabled as long as the RTS input line is set to ON. If the module needs to transmit some data (e.g. URC), the UART is temporarily enabled to send data The module automatically enters the low power idle-mode whenever possible but it wakes up to active-mode according to any required activity related to the network (e.g. for the periodic paging reception described in section 1.5.1.5, or for any other required RF transmission / reception) or any other required activity related to the module functions / interfaces (including the UART itself). AT+UPSV=3: power saving enabled and controlled by the DTR line The UART interface is disabled after the DTE sets the DTR line to OFF. Afterwards, the UART is enabled again, and the module does not enter low power idle-mode, as following: If an OFF-to-ON transition occurs on the DTR input, this causes the UART / module wake-up after ~20 ms: recognition of subsequent characters is guaranteed only after the complete wake-up, and the UART is kept enabled as long as the DTR input line is set to ON If the module needs to transmit some data (e.g. URC), the UART is temporarily enabled to send data The module automatically enters the low power idle-mode whenever possible but it wakes up to active-mode according to any required activity related to the network (e.g. for the periodic paging reception described in section 1.5.1.5, or for any other required RF signal transmission or reception) or any other required activity related to the functions / interfaces of the module. The AT+UPSV=3 configuration can be enabled regardless the flow control setting on UART. In particular, the HW flow control can be enabled (AT&K3) or disabled (AT&K0) on UART during this configuration. In both cases, with the AT+UPSV=3 configuration, the CTS line indicates when the module is either able or not able to accept data from the DTE over the UART. When the AT+UPSV=3 configuration is enabled, the DTR input line can still be used by the DTE to control the module behavior according to AT&D command configuration (see u-blox AT commands Manual [2]). UBX-16010572 - R01 Objective Specification System description Page 44 of 146 TOBY-R2 series - System Integration Manual Wake up via data reception The UART wake up via data reception consists of a special configuration of the module TXD input line that causes the system wake-up when a low-to-high transition occurs on the TXD input line. In particular, the UART is enabled and the module switches from the low power idle-mode to active-mode within ~20 ms from the first character received: this is the system “wake up time”. As a consequence, the first character sent by the DTE when the UART is disabled (i.e. the wake up character) is not a valid communication character even if the wake up via data reception configuration is active, because it cannot be recognized, and the recognition of the subsequent characters is guaranteed only after the complete system wake-up (i.e. after ~20 ms). The TXD input line is configured to wake up the system via data reception in the following case: AT+UPSV=1 is set with HW flow control disabled Figure 21 and Figure 22 show examples of common scenarios and timing constraints: AT+UPSV=1 power saving configuration is active and the timeout from last data received to idle-mode start is set to 2000 frames (AT+UPSV=1,2000) Hardware flow control is disabled Figure 21 shows the case where the module UART is disabled and only a wake-up is forced. In this scenario the only character sent by the DTE is the wake-up character; as a consequence, the DCE module UART is disabled when the timeout from last data received expires (2000 frames without data reception, as the default case). UART DCE UART is enabled for 2000 GSM frames (~9.2 s) OFF ON time TXD input Wake up time: ~20 ms OFF ON Wake up character Not recognized by DCE time Figure 21: Wake-up via data reception without further communication Figure 22 shows the case where in addition to the wake-up character further (valid) characters are sent. The wake up character wakes-up the module UART. The other characters must be sent after the “wake up time” of ~20 ms. If this condition is satisfied, the module (DCE) recognizes characters. The module will disable the UART after 2000 GSM frames from the latest data reception. UART DCE UART is enabled for 2000 GSM frames (~9.2s) after the last data received OFF ON TXD input Wake up time: ~20 ms time OFF ON Wake up character Not recognized by DCE Valid characters Recognized by DCE time Figure 22: Wake-up via data reception with further communication UBX-16010572 - R01 Objective Specification System description Page 45 of 146 TOBY-R2 series - System Integration Manual The “wake-up via data reception” feature cannot be disabled. 11 In command mode , with “wake-up via data reception” enabled and autobauding enabled, the DTE should always send a dummy character to the module before the “AT” prefix set at the beginning of each command line: the first dummy character is ignored if the module is in active-mode, or it represents the wake-up character if the module is in low power idle-mode. 11 In command mode , with “wake-up via data reception” enabled and autobauding disabled, the DTE should always send a dummy “AT” to the module before each command line: the first dummy “AT” is not ignored if the module is in active-mode (i.e. the module replies “OK”), or it represents the wake up character if the module is in low power idle-mode (i.e. the module does not reply). Additional considerations If the USB is connected and not suspended, the module is kept ready to communicate over USB regardless the AT+UPSV settings, which have instead effect on the UART behavior, as they configure the UART power saving, so that UART is enabled / disabled according to the AT+UPSV settings. To set the AT+UPSV=1, AT+UPSV=2 or AT+UPSV=3 configuration over the USB interface, the autobauding must be previously disabled on the UART by the +IPR AT command over the used USB AT interface, and this +IPR AT command configuration must be saved in the module’ non-volatile memory (see the u-blox AT Commands Manual [2]). Then, after the subsequent module re-boot, AT+UPSV=1, AT+UPSV=2 or AT+UPSV=3 can be issued over the used USB AT interface: all the AT profiles are updated accordingly. 1.9.1.5 UART multiplexer protocol TOBY-R2 series modules include multiplexer functionality as per 3GPP TS 27.010 [10], on the UART physical link. This is a data link protocol which uses HDLC-like framing and operates between the module (DCE) and the application processor (DTE) and allows a number of simultaneous sessions over the used physical link (UART): the user can concurrently use AT interface on one MUX channel and data communication on another MUX channel. The following virtual channels are defined (for more details, see Mux implementation Application Note [11]): Channel 0: Multiplexer control Channel 1 – 5: AT commands / data connection Channel 6: GNSS data tunneling The GNSS data tunneling channel is not supported by “02” product versions. 11 See the u-blox AT Commands Manual [2] for the definition of the interface data mode, command mode and online command mode. UBX-16010572 - R01 Objective Specification System description Page 46 of 146 TOBY-R2 series - System Integration Manual 1.9.2 USB interface 1.9.2.1 USB features TOBY-R2 series modules include a High-Speed USB 2.0 compliant interface with 480 Mb/s maximum data rate, representing the main interface for transferring high speed data with a host application processor, supporting: AT command mode Data mode and Online command mode FW upgrades by means of the FOAT feature (see 1.13.13 and Firmware Update Application Note [5]) FW upgrades by means of the u-blox EasyFlash tool (see Firmware Update Application Note [5]) Trace log capture (diagnostic purpose) 12 12 The module itself acts as a USB device and can be connected to a USB host such as a Personal Computer or an embedded application microprocessor equipped with compatible drivers. The USB_D+/USB_D- lines carry USB serial bus data and signaling according to the Universal Serial Bus Revision 2.0 specification [6], while the VUSB_DET input pin senses the VBUS USB supply presence (nominally 5 V at the source) to detect the host connection and enable the interface. The USB interface of the module is enabled only if a valid voltage is detected by the VUSB_DET input (see the TOBY-R2 series Data Sheet [1]). Neither the USB interface, nor the whole module is supplied by the VUSB_DET input: the VUSB_DET senses the USB supply voltage and absorbs few microamperes. The USB interface is controlled and operated with: AT commands according to 3GPP TS 27.007 [8], 3GPP TS 27.005 [9], 3GPP TS 27.010 [10] u-blox AT commands (for the complete list and syntax see u-blox AT Commands Manual [2]) The USB interface of TOBY-R2 series modules, according to the configured USB profile, can provide different USB functions with various capabilities and purposes, such as: CDC-ACM for AT commands and data communication CDC-ACM for GNSS tunneling CDC-ACM for SAP (SIM Access Profile) CDC-ACM for Diagnostic log CDC-NCM for Ethernet-over-USB CDC-ACM for GNSS tunneling, CDC-ACM for SAP, and CDC-NCM for Ethernet-over-USB are not supported by “02” product versions. The USB profile of TOBY-R2 series modules identifies itself by its VID (Vendor ID) and PID (Product ID) combination, included in the USB device descriptor according to the USB 2.0 specifications [6]. If the USB is connected to the host before the module is switched on, or if the module is reset (rebooted) with the USB connected to the host, the VID and PID are automatically updated during the boot of the module. First, VID and PID are the following: VID = 0x8087 PID = 0x0716 This VID and PID combination identifies a USB profile where no USB function described above is available: AT commands must not be sent to the module over the USB profile identified by this VID and PID combination. 12 For the definition of the interface data mode, command mode and online command mode see the u-blox AT Commands Manual [2] UBX-16010572 - R01 Objective Specification System description Page 47 of 146 TOBY-R2 series - System Integration Manual Then, after a time period (which depends on the host / device enumeration timings), the VID and PID are updated to the ones related to the default USB profile providing the following set of USB functions: 6 CDC-ACM modem COM ports enumerated as follows: USB1: AT and data USB2: AT and data USB3: AT and data USB4: GNSS tunneling USB5: SAP (SIM Access Profile) USB6: Primary Log (diagnostic purpose) VID and PID of this USB profile with the set of functions described above (6 CDC-ACM) are the following: VID = 0x1546 PID = 0x1107 Figure 23 summarizes the USB end-points available with the default USB profile. Default profile configuration Function AT and Data Interface 0 Abstract Control Model EndPoint Transfer: Interrupt EndPoint Transfer: Bulk EndPoint Transfer: Bulk Interface 1 Function AT and Data Data Interface 2 Abstract Control Model EndPoint Transfer: Interrupt EndPoint Transfer: Bulk EndPoint Transfer: Bulk Interface 3 Function AT and Data Data Interface 4 Abstract Control Model EndPoint Transfer: Interrupt EndPoint Transfer: Bulk EndPoint Transfer: Bulk Interface 5 Function GNSS tunneling Data Interface 6 Abstract Control Model EndPoint Transfer: Interrupt EndPoint Transfer: Bulk EndPoint Transfer: Bulk Interface 7 Function SAP Data Interface 8 Abstract Control Model EndPoint Transfer: Interrupt EndPoint Transfer: Bulk EndPoint Transfer: Bulk Interface 9 Function Primary Log Data Interface 10 Abstract Control Model EndPoint Transfer: Interrupt EndPoint Transfer: Bulk EndPoint Transfer: Bulk Interface 11 Data Figure 23: TOBY-R2 series USB End-Points summary for the default USB profile configuration UBX-16010572 - R01 Objective Specification System description Page 48 of 146 TOBY-R2 series - System Integration Manual 1.9.2.2 USB in Windows USB drivers are provided for Windows operating system platforms and should be properly installed / enabled by following the step-by-step instructions available in the EVK-R2xx User Guide [3] or in the Windows Embedded OS USB Driver Installation Application Note [4]. USB drivers are available for the following operating system platforms: Windows 7 Windows 8 Windows 8.1 Windows 10 Windows Embedded CE 6.0 Windows Embedded Compact 7 Windows Embedded Compact 2013 The module firmware can be upgraded over the USB interface by means of the FOAT feature, or using the u-blox EasyFlash tool (for more details see Firmware Update Application Note [5]). 1.9.2.3 USB in Linux/Android It is not required to install a specific driver for each Linux-based or Android-based operating system (OS) to use the module USB interface, which is compatible with standard Linux/Android USB kernel drivers. The full capability and configuration of the module USB interface can be reported by running “lsusb –v” or an equivalent command available in the host operating system when the module is connected. 1.9.2.4 USB and power saving The modules automatically enter the USB suspended state when the device has observed no bus traffic for a specific time period according to the USB 2.0 specification [6]. In suspended state, the module maintains any USB internal status as device. In addition, the module enters the suspended state when the hub port it is attached to is disabled. This is referred to as USB selective suspend. If the USB is suspended and a power saving configuration is enabled by the AT+UPSV command, the module automatically enters the low power idle-mode whenever possible but it wakes up to active-mode according to any required activity related to the network (e.g. the periodic paging reception described in section 1.5.1.5) or any other required activity related to the functions / interfaces of the module. The USB exits suspend mode when there is bus activity. If the USB is connected and not suspended, the module is kept ready to communicate over USB regardless the AT+UPSV settings, therefore the AT+UPSV settings are overruled but they have effect on the power saving configuration of the other interfaces (see 1.9.1.4). The modules are capable of USB remote wake-up signaling: i.e. it may request the host to exit suspend mode or selective suspend by using electrical signaling to indicate remote wake-up, for example due to incoming call, URCs, data reception on a socket. The remote wake-up signaling notifies the host that it should resume from its suspended mode, if necessary, and service the external event. Remote wake-up is accomplished using electrical signaling described in the USB 2.0 specifications [6]. For the module current consumption description with power saving enabled and USB suspended, or with power saving disabled and USB not suspended, see the sections 1.5.1.5, 1.5.1.6 and the TOBY-R2 series Data Sheet [1]. The additional VUSB_DET input pin available on TOBY-R2 series modules provides the complete bus detach functionality: the modules disable the USB interface when a low logic level is sensed after a high-to-low logic level transition on the VUSB_DET input pin. This allows a further reduction of the module current consumption, in particular as compared to the USB suspended status during low-power idle mode with power saving enabled. UBX-16010572 - R01 Objective Specification System description Page 49 of 146 TOBY-R2 series - System Integration Manual DDC (I2C) interface 1.9.3 Communication with u-blox GNSS receivers over I C bus compatible Display Data Channel interface, ® AssistNow embedded GNSS positioning aiding, CellLocate positioning through cellular info, and custom functions over GPIOs for the integration with u-blox positioning chips / modules are not supported by TOBY-R2 series modules “02” product versions. The SDA and SCL pins represent an I C bus compatible Display Data Channel (DDC) interface available for communication with u-blox GNSS chips / modules, communication with other external I C devices as audio codecs. The AT commands interface is not available on the DDC (I C) interface. DDC (I C) slave-mode operation is not supported: the TOBY-R2 series module can act as I C master that can communicate with more I C slaves in accordance to the I C bus specifications [12]. The DDC (I C) interface pins of the module, serial data (SDA) and serial clock (SCL), are open drain outputs conforming to the I C bus specifications [12]. u-blox has implemented special features to ease the design effort required for the integration of a u-blox cellular module with a u blox GNSS receiver. Combining a u-blox cellular module with a u-blox GNSS receiver allows designers to have full access to the positioning receiver directly via the cellular module: it relays control messages to the GNSS receiver via a nd dedicated DDC (I C) interface. A 2 interface connected to the positioning receiver is not necessary: AT commands via the UART or USB serial interface of the cellular module allows a fully control of the GNSS receiver from any host processor. The modules feature embedded GNSS aiding that is a set of specific features developed by u-blox to enhance GNSS performance, decreasing the Time To First Fix (TTFF), thus allowing to calculate the position in a shorter time with higher accuracy. These GNSS aiding types are available: Local aiding AssistNow Online AssistNow Offline AssistNow Autonomous The embedded GNSS aiding features can be used only if the DDC (I C) interface of the cellular module is connected to the u-blox GNSS receivers. The cellular modules provide additional custom functions over GPIO pins to improve the integration with u-blox positioning chips and modules. GPIO pins can handle: GNSS receiver power-on/off: “GNSS supply enable” function provided by GPIO2 improves the positioning receiver power consumption. When the GNSS functionality is not required, the positioning receiver can be completely switched off by the cellular module that is controlled by AT commands The wake up from idle-mode when the GNSS receiver is ready to send data: “GNSS Tx data ready” function provided by GPIO3 improves the cellular module power consumption. When power saving is enabled in the cellular module by the AT+UPSV command and the GNSS receiver does not send data by the DDC (I C) interface, the module automatically enters idle-mode whenever possible. With the “GNSS Tx data ready” function the GNSS receiver can indicate to the cellular module that it is ready to send data by the DDC (I C) interface: the positioning receiver can wake up the cellular module if it is in idle-mode, so the cellular module does not lose the data sent by the GNSS receiver even if power saving is enabled UBX-16010572 - R01 Objective Specification System description Page 50 of 146 TOBY-R2 series - System Integration Manual The RTC synchronization signal to the GNSS receiver: “GNSS RTC sharing” function provided by GPIO4 improves GNSS receiver performance, decreasing the Time To First Fix (TTFF), and thus allowing to calculate the position in a shorter time with higher accuracy. When GPS local aiding is enabled, the cellular module automatically uploads data such as position, time, ephemeris, almanac, health and ionospheric parameter from the positioning receiver into its local memory, and restores this to the GNSS receiver at the next power up of the positioning receiver For more details regarding the handling of the DDC (I C) interface, the GNSS aiding features and the GNSS related functions over GPIOs, see section 1.11, to the u-blox AT Commands Manual [2] (AT+UGPS, AT+UGPRF, AT+UGPIOC AT commands) and the GNSS Implementation Application Note [13]. “GNSS Tx data ready” and “GNSS RTC sharing” functions are not supported by all u-blox GNSS receivers HW or ROM/FW versions. Please see the GNSS Implementation Application Note [13] or to the Hardware Integration Manual of the u-blox GNSS receivers for the supported features. As additional improvement for the GNSS receiver performance, the V_BCKP supply output of the cellular modules can be connected to the V_BCKP supply input pin of u-blox positioning chips and modules to provide the supply for the GNSS real time clock and backup RAM when the VCC supply of the cellular module is within its operating range and the VCC supply of the GNSS receiver is disabled. This enables the u-blox positioning receiver to recover from a power breakdown with either a hot start or a warm start (depending on the duration of the GNSS receiver VCC outage) and to maintain the configuration settings saved in the backup RAM. 1.9.4 SDIO interface Secure Digital Input Output interface is not supported by TOBY-R2 series modules “02” product versions. TOBY-R2 series modules include a 4-bit Secure Digital Input Output interface (SDIO_D0, SDIO_D1, SDIO_D2, SDIO_D3, SDIO_CLK, SDIO_CMD) designed to communicate with an external u-blox short range Wi-Fi module: the cellular module acts as an SDIO host controller which can communicate over the SDIO bus with a compatible u-blox short range radio communication Wi-Fi module acting as SDIO device. The SDIO interface is the only one interface of TOBY-R2 series modules dedicated for communication between the u-blox cellular module and the u-blox short range Wi-Fi module. The AT commands interface is not available on the SDIO interface of TOBY-R2 series modules. Combining a u-blox cellular module with a u-blox short range communication module gives designers full access to the Wi-Fi module directly via the cellular module, so that a second interface connected to the Wi-Fi module is not necessary. AT commands via the AT interfaces of the cellular module allows a full control of the Wi-Fi module from any host processor, because Wi-Fi control messages are relayed to the Wi-Fi module via the dedicated SDIO interface. u-blox has implemented special features in the cellular modules to ease the design effort for the integration of a u-blox cellular module with a u-blox short range Wi-Fi module to provide Router functionality. Additional custom function over GPIO pins is designed to improve the integration with u-blox Wi-Fi modules: Wi-Fi enable Switch-on / switch-off the Wi-Fi Wi-Fi enable function over GPIO is not supported by TOBY-R2 series modules “02” product versions. UBX-16010572 - R01 Objective Specification System description Page 51 of 146 TOBY-R2 series - System Integration Manual 1.10 Audio 1.10.1 Digital audio over I2S interface TOBY-R2 series modules include a 4-wire I S digital audio interface (I2S_TXD data output, I2S_RXD data input, I2S_CLK clock input/output, I2S_WA world alignment / synchronization signal input/output), which can be configured by AT command for digital audio communication with external digital audio devices as an audio codec (for more details see the u-blox AT Commands Manual [2], +UI2S AT command). The I S interface can be alternatively set in different modes, by parameter of AT+UI2S command: PCM mode (short synchronization signal): I S word alignment signal is set high for 1 or 2 clock cycles for the synchronization, and then is set low for 16 clock cycles according to the 17 or 18 clock cycles frame length. Normal I S mode (long synchronization signal): I S word alignment is set high / low with a 50% duty cycle (high for 16 clock cycles / low for 16 clock cycles, according to the 32 clock cycles frame length). The I S interface can be alternatively set in different roles, by parameter of AT+UI2S: Master mode Slave mode The sample rate of transmitted/received words, which corresponds to the I S word alignment / synchronization signal frequency, can be alternatively set by the parameter of AT+UI2S to: 8 kHz 11.025 kHz 12 kHz 16 kHz 22.05 kHz 24 kHz 32 kHz 44.1 kHz 48 kHz The modules support I S transmit and I S receive data 16-bit words long, linear, mono (or also dual mono in Normal I2S mode). Data is transmitted and read in 2’s complement notation. MSB is transmitted and read first. I S clock signal frequency depends on the frame length, the sample rate and the selected mode of operation: 17 x or 18 x in PCM mode (short synchronization signal) 16 x 2 x in Normal I2S mode (long synchronization signal) For the complete description of the possible configurations and settings of the I S digital audio interface for PCM and Normal I S modes refer to the u-blox AT Commands Manual [2], +UI2S AT command. UBX-16010572 - R01 Objective Specification System description Page 52 of 146 TOBY-R2 series - System Integration Manual 1.11 General Purpose Input/Output TOBY-R2 series modules include 10 pins (GPIO1-GPIO6, I2S_TXD, I2S_RXD, I2S_CLK, I2S_WA) which can be configured as General Purpose Input/Output or to provide custom functions via u-blox AT commands (for more details see the u-blox AT Commands Manual [2], +UGPIOC, +UGPIOR, +UGPIOW AT commands), as summarized in Table 12. Function Description Default GPIO Configurable GPIOs Network status indication Network status: registered home network, registered roaming, data transmission, no service -- GPIO1-GPIO4 GNSS supply enable13 Enable/disable the supply of u-blox GNSS receiver connected to the cellular module -- GPIO1-GPIO4 GNSS data ready13 Sense when u-blox GNSS receiver connected to the module is ready for sending data by the DDC (I2C) -- GPIO3 GNSS RTC sharing13 RTC synchronization signal to the u-blox GNSS receiver connected to the cellular module -- GPIO4 SIM card detection External SIM card physical presence detection GPIO5 GPIO5 SIM card hot insertion/removal Enable / disable SIM interface upon detection of external SIM card physical insertion / removal -- GPIO5 I2S digital audio interface I2S digital audio interface I2S_RXD, I2S_TXD, I2S_CLK, I2S_WA I2S_RXD, I2S_TXD, I2S_CLK, I2S_WA Master clock output 13 MHz / 26 MHz clock output for an external device as an audio codec or an external Wi-Fi chip/module GPIO6 GPIO6 Wi-Fi control13 Control of an external Wi-Fi chip or module -- -- General purpose input Input to sense high or low digital level -- All General purpose output Output to set the high or the low digital level GPIO4 All Pin disabled Tri-state with an internal active pull-down enabled GPIO1-GPIO3 All Table 12: TOBY-R2 series GPIO custom functions configuration 1.12 Reserved pins (RSVD) TOBY-R2 series modules have pins reserved for future use, marked as RSVD: they can all be left unconnected on the application board, except the RSVD pin number 6 that must be externally connected to ground the RSVD pin number 18 that is recommended to be connected to a Test-Point for diagnostic access the RSVD pin number 19 that is recommended to be connected to a Test-Point for diagnostic access 13 Not supported by “02” product versions. UBX-16010572 - R01 Objective Specification System description Page 53 of 146 TOBY-R2 series - System Integration Manual 1.13 System features 1.13.1 Network indication GPIOs can be configured by the AT command to indicate network status (for further details see section 1.11 and the u-blox AT Commands Manual [2], GPIO commands): No service (no network coverage or not registered) Registered 2G / 3G / LTE home network Registered 2G / 3G / LTE visitor network (roaming) Call enabled (RF data transmission / reception) 1.13.2 Antenna supervisor The antenna detection function provided by the ANT_DET pin is based on an ADC measurement as optional feature that can be implemented if the application requires it. The antenna supervisor is forced by the +UANTR AT command (see the u-blox AT Commands Manual [2] for more details). The requirements to achieve antenna detection functionality are the following: an RF antenna assembly with a built-in resistor (diagnostic circuit) must be used an antenna detection circuit must be implemented on the application board See section 1.7.2 for detailed antenna detection interface functional description and see section 2.4.2 for detection circuit on application board and diagnostic circuit on antenna assembly design-in guidelines. 1.13.3 Jamming detection Congestion detection (i.e. jamming detection) is not supported by “02” product versions. In real network situations modules can experience various kind of out-of-coverage conditions: limited service conditions when roaming to networks not supporting the specific SIM, limited service in cells which are not suitable or barred due to operators’ choices, no cell condition when moving to poorly served or highly interfered areas. In the latter case, interference can be artificially injected in the environment by a noise generator covering a given spectrum, thus obscuring the operator’s carriers entitled to give access to the LTE/3G/2G service. The congestion (i.e. jamming) detection feature can be enabled and configured by the +UCD AT command: the feature consists of detecting an anomalous source of interference and signaling the start and stop of such conditions to the host application processor with an unsolicited indication, which can react appropriately by e.g. switching off the radio transceiver of the module (i.e. configuring the module in “airplane mode” by means of the +CFUN AT command) in order to reduce power consumption and monitoring the environment at constant periods (for more details see the u-blox AT Commands Manual [2], +UCD AT command). UBX-16010572 - R01 Objective Specification System description Page 54 of 146 TOBY-R2 series - System Integration Manual 1.13.4 Dual stack IPv4/IPv6 TOBY-R2 series support both Internet Protocol version 4 and Internet Protocol version 6 in parallel. For more details about dual stack IPv4/IPv6 see the u-blox AT Commands Manual [2]. 1.13.5 TCP/IP and UDP/IP TOBY-R2 series modules provide embedded TCP/IP and UDP/IP protocol stack: a PDP context can be configured, established and handled via the data connection management packet switched data commands. TOBY-R2 series modules provide Direct Link mode to establish a transparent end-to-end communication with an already connected TCP or UDP socket via serial interfaces (USB, UART). In Direct Link mode, data sent to the serial interface from an external application processor is forwarded to the network and vice-versa. For more details about embedded TCP/IP and UDP/IP functionalities see the u-blox AT Commands Manual [2]. 1.13.6 FTP TOBY-R2 series provide embedded File Transfer Protocol (FTP) services. Files are read and stored in the local file system of the module. FTP files can also be transferred using FTP Direct Link: FTP download: data coming from the FTP server is forwarded to the host processor via USB / UART serial interfaces (for FTP without Direct Link mode the data is always stored in the module’s Flash File System) FTP upload: data coming from the host processor via USB / UART serial interface is forwarded to the FTP server (for FTP without Direct Link mode the data is read from the module’s Flash File System) When Direct Link is used for a FTP file transfer, only the file content pass through USB / UART serial interface, whereas all the FTP commands handling is managed internally by the FTP application. For more details about embedded FTP functionalities see u-blox AT Commands Manual [2]. 1.13.7 HTTP TOBY-R2 series modules provide the embedded Hyper-Text Transfer Protocol (HTTP) services via AT commands for sending requests to a remote HTTP server, receiving the server response and transparently storing it in the module’s Flash File System (FFS). For more details about embedded HTTP functionalities see the u-blox AT Commands Manual [2]. UBX-16010572 - R01 Objective Specification System description Page 55 of 146 TOBY-R2 series - System Integration Manual 1.13.8 SSL / TLS TOBY-R2 series modules support the Secure Sockets Layer (SSL) / Transport Layer Security (TLS) with certificate key sizes up to 4096 bits to provide security over the FTP and HTTP protocols. The SSL/TLS support provides different connection security aspects: Server authentication: use of the server certificate verification against a specific trusted certificate or a trusted certificates list Client authentication: use of the client certificate and the corresponding private key Data security and integrity: data encryption and Hash Message Authentication Code (HMAC) generation The security aspects used during a connection depend on the SSL/TLS configuration and features supported. Table 13 contains the settings of the default SSL/TLS profile and Table 14 to Table 18 report the main SSL/TLS supported capabilities of the products. For a complete list of supported configurations and settings see the u-blox AT Commands Manual [2]. Settings Value Meaning Certificates validation level Level 0 The server certificate will not be checked or verified Minimum SSL/TLS version Any Cipher suite Automatic The server can use any of the TLS1.0/TLS1.1/TLS1.2 versions for the connection The cipher suite will be negotiated in the handshake process Trusted root certificate internal name Expected server host-name None None No certificate will be used for the server authentication No server host-name is expected Client certificate internal name Client private key internal name None None No client certificate will be used No client private key will be used Client private key password Pre-shared key None None No client private key password will be used No pre-shared key password will be used Table 13: Default SSL/TLS profile SSL/TLS Version SSL 2.0 SSL 3.0 NO YES TLS 1.0 TLS 1.1 YES YES TLS 1.2 YES Table 14: SSL/TLS version support Algorithm RSA YES PSK YES Table 15: Authentication Algorithm RC4 NO DES 3DES YES YES AES128 AES256 YES YES Table 16: Encryption UBX-16010572 - R01 Objective Specification System description Page 56 of 146 TOBY-R2 series - System Integration Manual Algorithm MD5 SHA/SHA1 NO YES SHA256 YES YES SHA384 Table 17: Message digest Description Registry value TLS_RSA_WITH_AES_128_CBC_SHA TLS_RSA_WITH_AES_128_CBC_SHA256 0x00,0x2F 0x00,0x3C YES YES TLS_RSA_WITH_AES_256_CBC_SHA TLS_RSA_WITH_AES_256_CBC_SHA256 0x00,0x35 0x00,0x3D YES YES TLS_RSA_WITH_3DES_EDE_CBC_SHA TLS_RSA_WITH_RC4_128_MD5 0x00,0x0A 0x00,0x04 YES NO TLS_RSA_WITH_RC4_128_SHA 0x00,0x05 NO TLS_PSK_WITH_AES_128_CBC_SHA TLS_PSK_WITH_AES_256_CBC_SHA 0x00,0x8C 0x00,0x8D YES YES TLS_PSK_WITH_3DES_EDE_CBC_SHA TLS_RSA_PSK_WITH_AES_128_CBC_SHA 0x00,0x8B 0x00,0x94 YES YES TLS_RSA_PSK_WITH_AES_256_CBC_SHA TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA 0x00,0x95 0x00,0x93 YES YES TLS_PSK_WITH_AES_128_CBC_SHA256 0x00,0xAE YES TLS_PSK_WITH_AES_256_CBC_SHA384 TLS_RSA_PSK_WITH_AES_128_CBC_SHA256 0x00,0xAF 0x00,0xB6 YES YES TLS_RSA_PSK_WITH_AES_256_CBC_SHA384 0x00,0xB7 YES Table 18: TLS cipher suite registry 1.13.9 Bearer Independent Protocol The Bearer Independent Protocol (BIP) is a mechanism by which a cellular module provides a SIM with access to the data bearers supported by the network. With the BIP for Over-the-Air SIM provisioning, the data transfer from and to the SIM uses either an already active PDP context or a new PDP context established with the APN provided by the SIM card. For more details, see the u-blox AT Commands Manual [2]. 1.13.10 AssistNow clients and GNSS integration AssistNow clients and u-blox GNSS receiver integration are not supported by “02” product versions. For customers using u-blox GNSS receivers, the TOBY-R2 series cellular modules feature embedded AssistNow clients. AssistNow A-GPS provides better GNSS performance and faster Time-To-First-Fix. The clients can be enabled and disabled with an AT command (see the u-blox AT Commands Manual [2]). TOBY-R2 series cellular modules act as a stand-alone AssistNow client, making AssistNow available with no additional requirements for resources or software integration on an external host micro controller. Full access to u-blox GNSS receivers is available via the TOBY-R2 series cellular module, through the DDC (I C) interface, while the available GPIOs can handle the positioning chipset / module power-on/off. This means that cellular module and GNSS receiver can be controlled through a single serial port from any host processor. UBX-16010572 - R01 Objective Specification System description Page 57 of 146 TOBY-R2 series - System Integration Manual 1.13.11 Hybrid positioning and CellLocate® ® Hybrid positioning and CellLocate are not supported by “02” product versions. Although GNSS is a widespread technology, its reliance on the visibility of extremely weak GNSS satellite signals means that positioning is not always possible. Especially difficult environments for GNSS are indoors, in enclosed or underground parking garages, as well as in urban canyons where GNSS signals are blocked or jammed by multipath interference. The situation can be improved by augmenting GNSS receiver data with cellular network information to provide positioning information even when GNSS reception is degraded or absent. This additional information can benefit numerous applications. Positioning through cellular information: CellLocate ® ® u-blox CellLocate enables the estimation of device position based on the parameters of the mobile network cells ® visible to the specific device. To estimate its position the u-blox cellular module sends the CellLocate server the parameters of network cells visible to it using a UDP connection. In return the server provides the estimated ® position based on the CellLocate database. The module can either send the parameters of the visible home network cells only (normal scan) or the parameters of all surrounding cells of all mobile operators (deep scan). ® The CellLocate database is compiled from the position of devices which observed, in the past, a specific cell or set of cells (historical observations) as follows: ® 1. Several devices reported their position to the CellLocate server when observing a specific cell (the As in the picture represent the position of the devices which observed the same cell A) ® 2. CellLocate server defines the area of Cell A visibility UBX-16010572 - R01 Objective Specification System description Page 58 of 146 TOBY-R2 series - System Integration Manual ® 3. If a new device reports the observation of Cell A CellLocate is able to provide the estimated position from the area of visibility 4. The visibility of multiple cells provides increased accuracy based on the intersection of areas of visibility. ® ® CellLocate is implemented using a set of two AT commands that allow configuration of the CellLocate service (AT+ULOCCELL) and requesting position according to the user configuration (AT+ULOC). The answer is provided in the form of an unsolicited AT command including latitude, longitude and estimated accuracy. ® The accuracy of the position estimated by CellLocate depends on the availability of historical observations in the specific area. Hybrid positioning With u-blox Hybrid positioning technology, u-blox cellular devices can be triggered to provide their current ® position using either a u-blox GNSS receiver or the position estimated from CellLocate . The choice depends on which positioning method provides the best and fastest solution according to the user configuration, exploiting the benefit of having multiple and complementary positioning methods. Hybrid positioning is implemented through a set of three AT commands that allow configuration of the GNSS ® receiver (AT+ULOCGNSS), configuration of the CellLocate service (AT+ULOCCELL), and requesting the position according to the user configuration (AT+ULOC). The answer is provided in the form of an unsolicited AT command including latitude, longitude and estimated accuracy (if the position has been estimated by ® CellLocate ), and additional parameters if the position has been computed by the GNSS receiver. UBX-16010572 - R01 Objective Specification System description Page 59 of 146 TOBY-R2 series - System Integration Manual The configuration of mobile network cells does not remain static (e.g. new cells are continuously added or existing cells are reconfigured by the network operators). For this reason, when a Hybrid positioning method has been triggered and the GNSS receiver calculates the position, a database self-learning mechanism has been implemented so that these positions are sent to the server to update the database and maintain its accuracy. The use of hybrid positioning requires a connection via the DDC (I C) bus between the TOBY-R2 series cellular module and the u-blox GNSS receiver (see sections 1.9.3 and 2.6.3). See GNSS Implementation Application Note [13] for the complete description of the feature. ® u-blox is extremely mindful of user privacy. When a position is sent to the CellLocate server u-blox is unable to track the SIM used or the specific device. 1.13.12 Wi-Fi integration u-blox short range communication Wi-Fi modules integration is not supported by “02” product versions. Full access to u-blox short range communication Wi-Fi modules is available through a dedicated SDIO interface (see sections 1.9.4 and 2.6.4). This means that combining a TOBY-R2 series cellular module with a u-blox short range communication module gives designers full access to the Wi-Fi module directly via the cellular module, so that a second interface connected to the Wi-Fi module is not necessary. AT commands via the AT interfaces of the cellular module (UART, USB) allows a full control of the Wi-Fi module from any host processor, because Wi-Fi control messages are relayed to the Wi-Fi module via the dedicated SDIO interface. All the management software for Wi-Fi module operations runs inside the cellular module in addition to those required for cellular-only operation. 1.13.13 Firmware update Over AT (FOAT) This feature allows upgrading the module firmware over USB / UART serial interfaces, using AT commands. The +UFWUPD AT command triggers a reboot followed by the upgrade procedure at specified a baud rate A special boot loader on the module performs firmware installation, security verifications and module reboot Firmware authenticity verification is performed via a security signature during the download. The firmware is then installed, overwriting the current version. In case of power loss during this phase, the boot loader detects a fault at the next wake-up, and restarts the firmware download. After completing the upgrade, the module is reset again and wakes-up in normal boot For more details about Firmware update Over AT procedure see the Firmware Update Application Note [5] and the u-blox AT Commands Manual [2], +UFWUPD AT command. 1.13.14 Firmware update Over The Air (FOTA) This feature allows upgrading the module firmware over the LTE/3G/2G air interface. In order to reduce the amount of data to be transmitted over the air, the implemented FOTA feature requires downloading only a “delta file” instead of the full firmware. The delta file contains only the differences between the two firmware versions (old and new), and is compressed. The firmware update procedure can be triggered using dedicated AT command with the delta file stored in the module file system via over the air FTP. For more details about Firmware update Over The Air procedure see the Firmware Update Application Note [5] and the u-blox AT Commands Manual [2]. UBX-16010572 - R01 Objective Specification System description Page 60 of 146 TOBY-R2 series - System Integration Manual 1.13.15 Smart temperature management Cellular modules – independent of the specific model – always have a well defined operating temperature range. This range should be respected to guarantee full device functionality and long life span. Nevertheless there are environmental conditions that can affect operating temperature, e.g. if the device is located near a heating/cooling source, if there is/isn’t air circulating, etc. The module itself can also influence the environmental conditions; such as when it is transmitting at full power. In this case its temperature increases very quickly and can raise the temperature nearby. The best solution is always to properly design the system where the module is integrated. Nevertheless an extra check/security mechanism embedded into the module is a good solution to prevent operation of the device outside of the specified range. Smart Temperature Supervisor (STS) The Smart Temperature Supervisor is activated and configured by a dedicated AT+USTS command. See the u-blox AT Commands Manual [2] for more details. The cellular module measures the internal temperature (Ti) and its value is compared with predefined thresholds to identify the actual working temperature range. Temperature measurement is done inside the cellular module: the measured value could be different from the environmental temperature (Ta). Valid temperature range Dangerous area Warning area t-2 Safe area t-1 Warning area t+1 Dangerous area t+2 Figure 24: Temperature range and limits The entire temperature range is divided into sub-regions by limits (see Figure 24) named t-2, t-1, t+1 and t+2. Within the first limit, (t-1 < Ti < t+1), the cellular module is in the normal working range, the Safe Area In the Warning Area, (t-2 < Ti < t.1) or (t+1 < Ti < t+2), the cellular module is still inside the valid temperature range, but the measured temperature approaches the limit (upper or lower). The module sends a warning to the user (through the active AT communication interface), which can take, if possible, the necessary actions to return to a safer temperature range or simply ignore the indication. The module is still in a valid and good working condition Outside the valid temperature range, (Ti < t -2) or (Ti > t+2), the device is working outside the specified range and represents a dangerous working condition. This condition is indicated and the device shuts down to avoid damage For security reasons the shutdown is suspended in case an emergency call in progress. In this case the device will switch off at call termination. The user can decide at anytime to enable/disable the Smart Temperature Supervisor feature. If the feature is disabled there is no embedded protection against disallowed temperature conditions. UBX-16010572 - R01 Objective Specification System description Page 61 of 146 TOBY-R2 series - System Integration Manual Figure 25 shows the flow diagram implemented for the Smart Temperature Supervisor. No IF STS enabled Feature disabled: no action Yes Feature enabled (full logic or indication only) Read temperature Yes Temperature is within normal operating range No No further actions IF (t-1 5V? No, less than 5 V Yes, greater than 5 V Linear LDO Regulator Switching Step-Down Regulator Figure 26: VCC supply concept selection The switching step-down regulator is the typical choice when the available primary supply source has a nominal voltage much higher (e.g. greater than 5 V) than the operating supply voltage of TOBY-R2 series. The use of switching step-down provides the best power efficiency for the overall application and minimizes current drawn from the main supply source. See sections 2.2.1.2, 2.2.1.6, 2.2.1.11, 2.2.1.12 for specific design-in. The use of an LDO linear regulator becomes convenient for a primary supply with a relatively low voltage (e.g. less or equal than 5 V). In this case the typical 90% efficiency of the switching regulator diminishes the benefit of voltage step-down and no true advantage is gained in input current savings. On the opposite side, linear regulators are not recommended for high voltage step-down as they dissipate a considerable amount of energy in thermal power. See sections 2.2.1.3, 2.2.1.6, 2.2.1.11, 2.2.1.12 for specific design-in. If TOBY-R2 series modules are deployed in a mobile unit where no permanent primary supply source is available, then a battery will be required to provide VCC. A standard 3-cell Li-Ion or Li-Pol battery pack directly connected to VCC is the usual choice for battery-powered devices. During charging, batteries with Ni-MH chemistry typically reach a maximum voltage that is above the maximum rating for VCC, and should therefore be avoided. See sections 2.2.1.4, 2.2.1.6, 2.2.1.7, 2.2.1.11, 2.2.1.12 for specific design-in. Keep in mind that the use of rechargeable batteries requires the implementation of a suitable charger circuit which is not included in the modules. The charger circuit has to be designed to prevent over-voltage on VCC pins, and it should be selected according to the application requirements: a DC/DC switching charger is the typical choice when the charging source has an high nominal voltage (e.g. ~12 V), whereas a linear charger is UBX-16010572 - R01 Objective Specification Design-in Page 65 of 146 TOBY-R2 series - System Integration Manual the typical choice when the charging source has a relatively low nominal voltage (~5 V). If both a permanent primary supply / charging source (e.g. ~12 V) and a rechargeable back-up battery (e.g. 3.7 V Li-Pol) are available at the same time as possible supply source, then a proper charger / regulator with integrated power path management function can be selected to supply the module while simultaneously and independently charging the battery. See sections 2.2.1.8, 2.2.1.9, and 2.2.1.4, 2.2.1.6, 2.2.1.7, 2.2.1.11, 2.2.1.12 for specific design-in. An appropriate primary (not rechargeable) battery can be selected taking into account the maximum current specified in TOBY-R2 series Data Sheet [1] during connected-mode, considering that primary cells might have weak power capability. See sections 2.2.1.5, and 2.2.1.6, 2.2.1.7, 2.2.1.11, 2.2.1.12 for specific design-in. The usage of more than one DC supply at the same time should be carefully evaluated: depending on the supply source characteristics, different DC supply systems can result as mutually exclusive. The usage of a regulator or a battery not able to support the highest peak of VCC current consumption specified in the TOBY-R2 series Data Sheet [1] is generally not recommended. However, if the selected regulator or battery is not able to support the highest peak current of the module, it must be able to support with adequate margin at least the highest averaged current consumption value specified in the TOBY-R2 series Data Sheet [1]. The additional energy required by the module during a 2G Tx slot can be provided by an appropriate bypass tank capacitor or a super-capacitor with very large capacitance and very low ESR placed close to the module VCC pins. Depending on the actual capability of the selected regulator or battery, the required capacitance can be considerably larger than 1 mF and the required ESR can be in the range of few tens of m. Carefully evaluate the super-capacitor characteristics since aging and temperature may affect the actual characteristics. The following sections highlight some design aspects for each of the supplies listed above providing application circuit design-in compliant with the module VCC requirements summarized in Table 6. 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator The use of a switching regulator is suggested when the difference from the available supply rail source to the VCC value is high, since switching regulators provide good efficiency transforming a 12 V or greater voltage supply to the typical 3.8 V value of the VCC supply. The characteristics of the switching regulator connected to VCC pins should meet the following prerequisites to comply with the module VCC requirements summarized in Table 6: Power capability: the switching regulator with its output circuit must be capable of providing a voltage value to the VCC pins within the specified operating range and must be capable of delivering to VCC pins the maximum peak / pulse current consumption during Tx burst at maximum Tx power specified in the TOBY-R2 series Data Sheet [1]. Low output ripple: the switching regulator together with its output circuit must be capable of providing a clean (low noise) VCC voltage profile. High switching frequency: for best performance and for smaller applications it is recommended to select a switching frequency ≥ 600 kHz (since L-C output filter is typically smaller for high switching frequency). The use of a switching regulator with a variable switching frequency or with a switching frequency lower than 600 kHz must be carefully evaluated since this can produce noise in the VCC voltage profile and therefore negatively impact LTE/3G/2G modulation spectrum performance. An additional L-C low-pass filter between the switching regulator output to VCC supply pins can mitigate the ripple at the input of the module, but adds extra voltage drop due to resistive losses on series inductors. PWM mode operation: it is preferable to select regulators with Pulse Width Modulation (PWM) mode. While in connected-mode, the Pulse Frequency Modulation (PFM) mode and PFM/PWM modes transitions must be avoided to reduce noise on VCC voltage profile. Switching regulators can be used that are able to switch between low ripple PWM mode and high ripple PFM mode, provided that the mode transition occurs when the module changes status from the idle/active-modes to connected-mode. It is permissible to use a regulator that switches from the PWM mode to the burst or PFM mode at an appropriate current threshold. UBX-16010572 - R01 Objective Specification Design-in Page 66 of 146 TOBY-R2 series - System Integration Manual Figure 27 and Table 19 show an example of a high reliability power supply circuit, where the module VCC input is supplied by a step-down switching regulator capable of delivering maximum current with low output ripple and with fixed switching frequency in PWM mode operation greater than 1 MHz. 12V TOBY-R2 series VIN 5 RUN R1 BD 10 RT R2 C1 C2 7 PG R3 C3 C4 C5 71 BOOST 2 9 VC SW VCC VCC 72 VCC 70 C6 L1 D1 U1 R4 C7 C8 FB 8 SYNC GND 11 R5 GND Figure 27: Example of high reliability VCC supply application circuit using a step-down regulator Reference Description Part Number - Manufacturer C1 C2 10 µF Capacitor Ceramic X7R 5750 15% 50 V 10 nF Capacitor Ceramic X7R 0402 10% 16 V C5750X7R1H106MB - TDK GRM155R71C103KA01 - Murata C3 C4 680 pF Capacitor Ceramic X7R 0402 10% 16 V 22 pF Capacitor Ceramic C0G 0402 5% 25 V GRM155R71H681KA01 - Murata GRM1555C1H220JZ01 - Murata C5 C6 10 nF Capacitor Ceramic X7R 0402 10% 16 V 470 nF Capacitor Ceramic X7R 0603 10% 25 V GRM155R71C103KA01 - Murata GRM188R71E474KA12 - Murata C7 22 µF Capacitor Ceramic X5R 1210 10% 25 V GRM32ER61E226KE15 - Murata C8 T520D337M006ATE045 - KEMET D1 330 µF Capacitor Tantalum D_SIZE 6.3 V 45 m Schottky Diode 40 V 3 A L1 10 µH Inductor 744066100 30% 3.6 A 744066100 - Wurth Electronics R1 470 k Resistor 0402 5% 0.1 W 2322-705-87474-L - Yageo R2 15 k Resistor 0402 5% 0.1 W 2322-705-87153-L - Yageo R3 22 k Resistor 0402 5% 0.1 W 2322-705-87223-L - Yageo R4 390 k Resistor 0402 1% 0.063 W RC0402FR-07390KL - Yageo R5 100 k Resistor 0402 5% 0.1 W 2322-705-70104-L - Yageo U1 Step-Down Regulator MSOP10 3.5 A 2.4 MHz LT3972IMSE#PBF - Linear Technology MBRA340T3G - ON Semiconductor Table 19: Components for high reliability VCC supply application circuit using a step-down regulator UBX-16010572 - R01 Objective Specification Design-in Page 67 of 146 TOBY-R2 series - System Integration Manual Figure 28 and the components listed in Table 20 show an example of a low cost power supply circuit, where the VCC module supply is provided by a step-down switching regulator capable of delivering to VCC pins the specified maximum peak / pulse current, transforming a 12 V supply input. 12V TOBY-R2 series VCC OUT 1 3 INH L1 D1 C1 6 FSW C6 R5 U1 2 SYNC 70 VCC 71 VCC R1 72 VCC R3 C3 FB 5 C4 R4 COMP 4 C2 R2 GND GND C5 Figure 28: Example of low cost VCC supply application circuit using a step-down regulator Reference Description Part Number - Manufacturer C1 22 µF Capacitor Ceramic X5R 1210 10% 25 V GRM32ER61E226KE15 – Murata C2 100 µF Capacitor Tantalum B_SIZE 20% 6.3V 15m T520B107M006ATE015 – Kemet C3 C4 5.6 nF Capacitor Ceramic X7R 0402 10% 50 V 6.8 nF Capacitor Ceramic X7R 0402 10% 50 V GRM155R71H562KA88 – Murata GRM155R71H682KA88 – Murata C5 C6 56 pF Capacitor Ceramic C0G 0402 5% 50 V 220 nF Capacitor Ceramic X7R 0603 10% 25 V GRM1555C1H560JA01 – Murata GRM188R71E224KA88 – Murata D1 Schottky Diode 25V 2 A STPS2L25 – STMicroelectronics L1 5.2 µH Inductor 30% 5.28A 22 m MSS1038-522NL – Coilcraft R1 4.7 k Resistor 0402 1% 0.063 W RC0402FR-074K7L – Yageo R2 910 Resistor 0402 1% 0.063 W RC0402FR-07910RL – Yageo R3 82 Resistor 0402 5% 0.063 W RC0402JR-0782RL – Yageo R4 8.2 k Resistor 0402 5% 0.063 W RC0402JR-078K2L – Yageo R5 39 k Resistor 0402 5% 0.063 W RC0402JR-0739KL – Yageo U1 Step-Down Regulator 8-VFQFPN 3 A 1 MHz L5987TR – ST Microelectronics Table 20: Components for low cost VCC supply application circuit using a step-down regulator UBX-16010572 - R01 Objective Specification Design-in Page 68 of 146 TOBY-R2 series - System Integration Manual 2.2.1.3 Guidelines for VCC supply circuit design using a Low Drop-Out linear regulator The use of a linear regulator is suggested when the difference from the available supply rail source and the VCC value is low. The linear regulators provide high efficiency when transforming a 5 VDC supply to a voltage value within the module VCC normal operating range. The characteristics of the Low Drop-Out (LDO) linear regulator connected to VCC pins should meet the following prerequisites to comply with the module VCC requirements summarized in Table 6: Power capabilities: the LDO linear regulator with its output circuit must be capable of providing a voltage value to the VCC pins within the specified operating range and must be capable of delivering to VCC pins the maximum peak / pulse current consumption during Tx burst at maximum Tx power specified in TOBY-R2 series Data Sheet [1]. Power dissipation: the power handling capability of the LDO linear regulator must be checked to limit its junction temperature to the maximum rated operating range (i.e. check the voltage drop from the max input voltage to the minimum output voltage to evaluate the power dissipation of the regulator). Figure 29 and the components listed in Table 21 show an example of a power supply circuit, where the VCC module supply is provided by an LDO linear regulator capable of delivering the required current, with proper power handling capability. It is recommended to configure the LDO linear regulator to generate a voltage supply value slightly below the maximum limit of the module VCC normal operating range (e.g. ~4.1 V for the VCC, as in the circuits described in Figure 29 and Table 21). This reduces the power on the linear regulator and improves the thermal design of the circuit. TOBY-R2 series 5V IN OUT VCC VCC 72 VCC 70 71 U1 C1 R1 ADJ SHDN R2 C2 C3 GND GND R3 Figure 29: Example of high reliability VCC supply application circuit using an LDO linear regulator Reference Description Part Number - Manufacturer C1, C2 10 µF Capacitor Ceramic X5R 0603 20% 6.3 V GRM188R60J106ME47 - Murata C3 330 µF Capacitor Tantalum D_SIZE 6.3 V 45 m T520D337M006ATE045 - KEMET R1 47 k Resistor 0402 5% 0.1 W RC0402JR-0747KL - Yageo Phycomp R2 9.1 k Resistor 0402 5% 0.1 W RC0402JR-079K1L - Yageo Phycomp R3 3.9 k Resistor 0402 5% 0.1 W RC0402JR-073K9L - Yageo Phycomp U1 LDO Linear Regulator ADJ 3.0 A LT1764AEQ#PBF - Linear Technology Table 21: Components for high reliability VCC supply application circuit using an LDO linear regulator UBX-16010572 - R01 Objective Specification Design-in Page 69 of 146 TOBY-R2 series - System Integration Manual Figure 30 and the components listed in Table 22 show an example of a low cost power supply circuit, where the VCC module supply is provided by an LDO linear regulator capable of delivering the specified highest peak / pulse current, with proper power handling capability. The regulator described in this example supports a limited input voltage range and it includes internal circuitry for current and thermal protection. It is recommended to configure the LDO linear regulator to generate a voltage supply value slightly below the maximum limit of the module VCC normal operating range (e.g. ~4.1 V as in the circuit described in Figure 30 and Table 22). This reduces the power on the linear regulator and improves the whole thermal design of the supply circuit. TOBY-R2 series 5V IN OUT VCC VCC 72 VCC 70 71 U1 C1 ADJ EN R1 C2 C3 GND GND R2 Figure 30: Example of low cost VCC supply application circuit using an LDO linear regulator Reference Description Part Number - Manufacturer C1, C2 10 µF Capacitor Ceramic X5R 0603 20% 6.3 V GRM188R60J106ME47 - Murata C3 330 µF Capacitor Tantalum D_SIZE 6.3 V 45 m T520D337M006ATE045 - KEMET R1 27 k Resistor 0402 5% 0.1 W RC0402JR-0727KL - Yageo Phycomp R2 4.7 k Resistor 0402 5% 0.1 W LDO Linear Regulator ADJ 3.0 A RC0402JR-074K7L - Yageo Phycomp U1 LP38501ATJ-ADJ/NOPB - Texas Instrument Table 22: Components for low cost VCC supply application circuit using an LDO linear regulator UBX-16010572 - R01 Objective Specification Design-in Page 70 of 146 TOBY-R2 series - System Integration Manual 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery Rechargeable Li-Ion or Li-Pol batteries connected to the VCC pins should meet the following prerequisites to comply with the module VCC requirements summarized in Table 6: Maximum pulse and DC discharge current: the rechargeable Li-Ion battery with its related output circuit connected to the VCC pins must be capable of delivering a pulse current as the maximum peak / pulse current consumption during Tx burst at maximum Tx power specified in TOBY-R2 series Data Sheet [1] and must be capable of extensively delivering a DC current as the maximum average current consumption specified in TOBY-R2 series Data Sheet [1]. The maximum discharge current is not always reported in the data sheets of batteries, but the maximum DC discharge current is typically almost equal to the battery capacity in Amp-hours divided by 1 hour. DC series resistance: the rechargeable Li-Ion battery with its output circuit must be capable of avoiding a VCC voltage drop below the operating range summarized in Table 6 during transmit bursts. 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery The characteristics of a primary (non-rechargeable) battery connected to VCC pins should meet the following prerequisites to comply with the module VCC requirements summarized in Table 6: Maximum pulse and DC discharge current: the non-rechargeable battery with its related output circuit connected to the VCC pins must be capable of delivering a pulse current as the maximum peak current consumption during Tx burst at maximum Tx power specified in TOBY-R2 series Data Sheet [1] and must be capable of extensively delivering a DC current as the maximum average current consumption specified in TOBY-R2 series Data Sheet [1]. The maximum discharge current is not always reported in the data sheets of batteries, but the max DC discharge current is typically almost equal to the battery capacity in Amp-hours divided by 1 hour. DC series resistance: the non-rechargeable battery with its output circuit must be capable of avoiding a VCC voltage drop below the operating range summarized in Table 6 during transmit bursts. UBX-16010572 - R01 Objective Specification Design-in Page 71 of 146 TOBY-R2 series - System Integration Manual 2.2.1.6 Additional guidelines for VCC supply circuit design To reduce voltage drops, use a low impedance power source. The series resistance of the power supply lines (connected to the modules’ VCC and GND pins) on the application board and battery pack should also be considered and minimized: cabling and routing must be as short as possible to minimize power losses. Three pins are allocated to VCC supply. Several pins are designated for GND connection. It is recommended to properly connect all of them to supply the module to minimize series resistance losses. In case of modules supporting 2G radio access technology, to avoid voltage drop undershoot and overshoot at the start and end of a transmit burst during a GSM call (when current consumption on the VCC supply can rise up as specified in the TOBY-R2 series Data Sheet [1]), place a bypass capacitor with large capacitance (at least 100 µF) and low ESR near the VCC pins, for example: 330 µF capacitance, 45 m ESR (e.g. KEMET T520D337M006ATE045, Tantalum Capacitor) To reduce voltage ripple and noise, improving RF performance especially if the application device integrates an internal antenna, place the following bypass capacitors near the VCC pins: 68 pF capacitor with Self-Resonant Frequency in the 800/900 MHz range (e.g. Murata GRM1555C1H680J) 15 pF capacitor with Self-Resonant Frequency in 1800/1900 MHz range (e.g. Murata GRM1555C1E150J) 10 nF capacitor (e.g. Murata GRM155R71C103K) to filter digital logic noise from clocks and data sources 100 nF capacitor (e.g. Murata GRM155R61C104K) to filter digital logic noise from clocks and data sources A suitable series ferrite bead can be properly placed on the VCC line for additional noise filtering if required by the specific application according to the whole application board design. TOBY-R2 series 3V8 VCC VCC VCC 70 71 72 C1 GND C2 C3 C4 C5 Recommended for cellular modules supporting 2G Figure 31: Suggested schematic for the VCC bypass capacitors to reduce ripple / noise on supply voltage profile Reference Description Part Number - Manufacturer C1 C2 15 pF Capacitor Ceramic C0G 0402 5% 50 V 68 pF Capacitor Ceramic C0G 0402 5% 50 V GRM1555C1H150JA01 - Murata GRM1555C1H680JA01 - Murata C3 10 nF Capacitor Ceramic X7R 0402 10% 16 V GRM155R71C103KA01 - Murata C4 C5 100 nF Capacitor Ceramic X7R 0402 10% 16 V GRM155R71C104KA01 - Murata T520D337M006ATE045 - KEMET 330 µF Capacitor Tantalum D_SIZE 6.3 V 45 m Table 23: Suggested components to reduce ripple / noise on VCC The necessity of each part depends on the specific design, but it is recommended to provide all the bypass capacitors described in Figure 31 / Table 23 if the application device integrates an internal antenna. ESD sensitivity rating of the VCC supply pins is 1 kV (HBM according to JESD22-A114). Higher protection level can be required if the line is externally accessible on the application board, e.g. if accessible battery connector is directly connected to the supply pins. Higher protection level can be achieved by mounting an ESD protection (e.g. EPCOS CA05P4S14THSG varistor) close to accessible point. UBX-16010572 - R01 Objective Specification Design-in Page 72 of 146 TOBY-R2 series - System Integration Manual 2.2.1.7 Additional guidelines for VCC supply circuit design of TOBY-R200 modules TOBY-R200 modules provide separate supply inputs over the VCC pins (see Figure 3): VCC pins #71 and #72 represent the supply input for the internal RF power amplifier, demanding most of the total current drawn of the module when RF transmission is enabled during a voice/data call VCC pin #70 represents the supply input for the internal baseband Power Management Unit and the internal transceiver, demanding minor part of the total current drawn of the module when RF transmission is enabled during a voice/data call All the VCC pins are in general intended to be connected to the same external power supply circuit, but separate supply sources can be implemented for specific (e.g. battery-powered) applications considering that the voltage at the VCC pins #71 and #72 can drop to a value lower than the one at the VCC pin #70, keeping the module still switched-on and functional. Figure 32 describes a possible application circuit. L1 D1 TOBY-R200 Step-up Regulator VIN SHDNn C6 70 VCC SW R1 FB C8 R2 GND C7 U1 Li-Ion/Li-Pol Battery 71 VCC 72 VCC C1 C2 C3 C4 C5 GND Figure 32: VCC circuit example with separate supply for TOBY-R200 modules Reference Description Part Number - Manufacturer C1 330 µF Capacitor Tantalum D_SIZE 6.3 V 45 m T520D337M006ATE045 - KEMET C2 C3 10 nF Capacitor Ceramic X7R 0402 10% 16 V 100 nF Capacitor Ceramic X7R 0402 10% 16 V GRM155R71C103KA01 - Murata GRM155R61A104KA01 - Murata C4 68 pF Capacitor Ceramic C0G 0402 5% 50 V GRM1555C1H680JA01 - Murata C5 C6 15 pF Capacitor Ceramic C0G 0402 5% 25 V 10 µF Capacitor Ceramic X5R 0603 20% 6.3 V GRM1555C1E150JA01 - Murata GRM188R60J106ME47 - Murata C7 C8 22 µF Capacitor Ceramic X5R 1210 10% 25 V 10 pF Capacitor Ceramic C0G 0402 5% 25 V GRM32ER61E226KE15 - Murata GRM1555C1E100JA01 - Murata D1 L1 Schottky Diode 40 V 1 A 10 µH Inductor 20% 1 A 276 m SS14 - Vishay General Semiconductor SRN3015-100M - Bourns Inc. R1 1 M Resistor 0402 5% 0.063 W RC0402FR-071ML - Yageo Phycomp R2 412 k Resistor 0402 5% 0.063 W RC0402FR-07412KL - Yageo Phycomp U1 Step-up Regulator 350 mA AP3015 - Diodes Incorporated Table 24: Example of components for VCC circuit with separate supply for TOBY-R200 modules UBX-16010572 - R01 Objective Specification Design-in Page 73 of 146 TOBY-R2 series - System Integration Manual 2.2.1.8 Guidelines for external battery charging circuit TOBY-R2 series modules do not have an on-board charging circuit. Figure 33 provides an example of a battery charger design, suitable for applications that are battery powered with a Li-Ion (or Li-Polymer) cell. In the application circuit, a rechargeable Li-Ion (or Li-Polymer) battery cell, that features proper pulse and DC discharge current capabilities and proper DC series resistance, is directly connected to the VCC supply input of the module. Battery charging is completely managed by the STMicroelectronics L6924U Battery Charger IC that, from a USB power source (5.0 V typ.), charges as a linear charger the battery, in three phases: Pre-charge constant current (active when the battery is deeply discharged): the battery is charged with a low current, set to 10% of the fast-charge current Fast-charge constant current: the battery is charged with the maximum current, configured by the value of an external resistor to a value suitable for USB power source (~500 mA) Constant voltage: when the battery voltage reaches the regulated output voltage (4.2 V), the L6924U starts to reduce the current until the charge termination is done. The charging process ends when the charging current reaches the value configured by an external resistor to ~15 mA or when the charging timer reaches the value configured by an external capacitor to ~9800 s Using a battery pack with an internal NTC resistor, the L6924U can monitor the battery temperature to protect the battery from operating under unsafe thermal conditions. The L6924U, as linear charger, is more suitable for applications where the charging source has a relatively low nominal voltage (~5 V), so that a switching charger is suggested for applications where the charging source has a relatively high nominal voltage (e.g. ~12 V, see the following section 2.2.1.9 for specific design-in). Li-Ion/Li-Polymer Battery Charger IC TOBY-R2 series 5V0 USB Supply VIN R1 R2 R3 VOUT VINSNS VOSNS MODE VREF ISEL IAC Li-Ion/Li-Pol Battery Pack C3 IUSB 70 VCC 71 VCC 72 VCC R4 C4 TH θ IEND C5 C6 C7 C8 C9 TPRG SD C1 B1 GND C2 U1 GND D1 D2 Figure 33: Li-Ion (or Li-Polymer) battery charging application circuit Reference Description Part Number - Manufacturer B1 Li-Ion (or Li-Polymer) battery pack with 470 NTC Various manufacturer C1, C4 C2, C6 1 µF Capacitor Ceramic X7R 0603 10% 16 V 10 nF Capacitor Ceramic X7R 0402 10% 16 V GRM188R71C105KA12 - Murata GRM155R71C103KA01 - Murata C3 C5 1 nF Capacitor Ceramic X7R 0402 10% 50 V 330 µF Capacitor Tantalum D_SIZE 6.3 V 45 m GRM155R71H102KA01 - Murata T520D337M006ATE045 - KEMET C7 100 nF Capacitor Ceramic X7R 0402 10% 16 V GRM155R61A104KA01 - Murata C8 C9 68 pF Capacitor Ceramic C0G 0402 5% 50 V 15 pF Capacitor Ceramic C0G 0402 5% 50 V GRM1555C1H680JA01 - Murata GRM1555C1H150JA01 - Murata D1, D2 R1, R2 Low Capacitance ESD Protection 24 k Resistor 0402 5% 0.1 W CG0402MLE-18G - Bourns RC0402JR-0724KL - Yageo Phycomp R3 3.3 k Resistor 0402 5% 0.1 W RC0402JR-073K3L - Yageo Phycomp R4 1.0 k Resistor 0402 5% 0.1 W RC0402JR-071K0L - Yageo Phycomp U1 Single Cell Li-Ion (or Li-Polymer) Battery Charger IC L6924U - STMicroelectronics Table 25: Suggested components for Li-Ion (or Li-Polymer) battery charging application circuit UBX-16010572 - R01 Objective Specification Design-in Page 74 of 146 TOBY-R2 series - System Integration Manual 2.2.1.9 Guidelines for external battery charging and power path management circuit Application devices where both a permanent primary supply / charging source (e.g. ~12 V) and a rechargeable back-up battery (e.g. 3.7 V Li-Pol) are available at the same time as possible supply source should implement a suitable charger / regulator with integrated power path management function to supply the module and the whole device while simultaneously and independently charging the battery. Figure 34 reports a simplified block diagram circuit showing the working principle of a charger / regulator with integrated power path management function. This component allows the system to be powered by a permanent primary supply source (e.g. ~12 V) using the integrated regulator which simultaneously and independently recharges the battery (e.g. 3.7 V Li-Pol) that represents the back-up supply source of the system: the power path management feature permits the battery to supplement the system current requirements when the primary supply source is not available or cannot deliver the peak system currents. A power management IC should meet the following prerequisites to comply with the module VCC requirements summarized in Table 6: High efficiency internal step down converter, compliant with the performances specified in section 2.2.1.2 Low internal resistance in the active path Vout – Vbat, typically lower than 50 m High efficiency switch mode charger with separate power path control Power path management IC 12 V Primary Source Vin System Vout DC/DC converter and battery FET control logic Vbat Li-Ion/Li-Pol Battery Pack Charge controller GND GND θ Figure 34: Charger / regulator with integrated power path management circuit block diagram Figure 35 and the components listed in Table 26 provide an application circuit example where the MPS MP2617 switching charger / regulator with integrated power path management function provides the supply to the cellular module while concurrently and autonomously charging a suitable Li-Ion (or Li-Polymer) battery with proper pulse and DC discharge current capabilities and proper DC series resistance according to the rechargeable battery recommendations described in section 2.2.1.4. The MP2617 IC constantly monitors the battery voltage and selects whether to use the external main primary supply / charging source or the battery as supply source for the module, and starts a charging phase accordingly. The MP2617 IC normally provides a supply voltage to the module regulated from the external main primary source allowing immediate system operation even under missing or deeply discharged battery: the integrated switching step-down regulator is capable to provide up to 3 A output current with low output ripple and fixed 1.6 MHz switching frequency in PWM mode operation. The module load is satisfied in priority, then the integrated switching charger will take the remaining current to charge the battery. Additionally, the power path control allows an internal connection from battery to the module with a low series internal ON resistance (40 m typical), in order to supplement additional power to the module when the current demand increases over the external main primary source or when this external source is removed. UBX-16010572 - R01 Objective Specification Design-in Page 75 of 146 TOBY-R2 series - System Integration Manual Battery charging is managed in three phases: Pre-charge constant current (active when the battery is deeply discharged): the battery is charged with a low current, set to 10% of the fast-charge current Fast-charge constant current: the battery is charged with the maximum current, configured by the value of an external resistor to a value suitable for the application Constant voltage: when the battery voltage reaches the regulated output voltage (4.2 V), the current is progressively reduced until the charge termination is done. The charging process ends when the charging current reaches the 10% of the fast-charge current or when the charging timer reaches the value configured by an external capacitor Using a battery pack with an internal NTC resistor, the MP2617 can monitor the battery temperature to protect the battery from operating under unsafe thermal conditions. Several parameters as the charging current, the charging timings, the input current limit, the input voltage limit, the system output voltage can be easily set according to the specific application requirements, as the actual electrical characteristics of the battery and the external supply / charging source: proper resistors or capacitors have to be accordingly connected to the related pins of the IC. Li-Ion/Li-Polymer Battery Charger / Regulator with Power Path Managment BST 12V L1 SW Primary Source VIN TOBY-R2 series C4 72 VCC R4 C5 VLIM R5 Li-Ion/Li-Pol Battery Pack BAT R1 R2 EN ILIM NTC ISET VCC TMR C1 70 VCC 71 VCC SYS C2 AGND PGND C10 C11 C12 C13 C14 θ R3 C3 C6 C7 C8 GND D1 D2 B1 U1 Figure 35: Li-Ion (or Li-Polymer) battery charging and power path management application circuit Reference Description Part Number - Manufacturer B1 Li-Ion (or Li-Polymer) battery pack with 10 k NTC Various manufacturer C1, C5, C6 C2, C4, C11 22 µF Capacitor Ceramic X5R 1210 10% 25 V 100 nF Capacitor Ceramic X7R 0402 10% 16 V GRM32ER61E226KE15 - Murata GRM155R61A104KA01 - Murata C3 C7, C13 1 µF Capacitor Ceramic X7R 0603 10% 25 V 68 pF Capacitor Ceramic C0G 0402 5% 50 V GRM188R71E105KA12 - Murata GRM1555C1H680JA01 - Murata C8, C14 15 pF Capacitor Ceramic C0G 0402 5% 25 V GRM1555C1E150JA01 - Murata C10 330 µF Capacitor Tantalum D_SIZE 6.3 V 45 m 10 nF Capacitor Ceramic X7R 0402 10% 16 V T520D337M006ATE045 - KEMET D1, D2 R1, R3, R5 Low Capacitance ESD Protection 10 k Resistor 0402 5% 1/16 W CG0402MLE-18G - Bourns RC0402JR-0710KL - Yageo Phycomp R2 1.0 k Resistor 0402 5% 0.1 W RC0402JR-071K0L - Yageo Phycomp R4 22 k Resistor 0402 5% 1/16 W RC0402JR-0722KL - Yageo Phycomp L1 1.2 µH Inductor 6 A 21 m 20% Li-Ion/Li-Polymer Battery DC/DC Charger / Regulator with integrated Power Path Management function 7447745012 - Wurth C12 U1 GRM155R71C103KA01 - Murata MP2617 - Monolithic Power Systems (MPS) Table 26: Suggested components for Li-Ion (or Li-Polymer) battery charging and power path management application circuit UBX-16010572 - R01 Objective Specification Design-in Page 76 of 146 TOBY-R2 series - System Integration Manual 2.2.1.10 Guidelines for removing VCC supply As described in section 1.6.2 and Figure 15, the VCC supply can be removed after the end of TOBY-R2 series modules internal power-off sequence, which has to be properly started sending the AT+CPWROFF command (see u-blox AT Commands Manual [2]). Removing the VCC power can be useful in order to minimize the current consumption when the TOBY-R2 series modules are switched off. Then, the modules can be switched on again by re-applying the VCC supply. If the VCC supply is generated by a switching or an LDO regulator, the application processor may control the input pin of the regulator which is provided to enable / disable the output of the regulator (as for example the RUN input pin for the regulator described in Figure 27, the INH input pin for the regulator described in Figure 28, the SHDNn input pin for the regulator described in Figure 29, the EN input pin for the regulator described in Figure 30), in order to apply / remove the VCC supply. If the regulator that generates the VCC supply does not provide an on / off pin, or for other applications such as the battery-powered ones, the VCC supply can be switched off using an appropriate external p-channel MOSFET controlled by the application processor by means of a proper inverting transistor as shown in Figure 36, given that the external p-channel MOSFET has provide: Very low RDS(ON) (for example, less than 50 m), to minimize voltage drops Adequate maximum Drain current (see TOBY-R2 series Data Sheet [1] for module consumption figures) Low leakage current, to minimize the current consumption TOBY-R2 series 70 VCC 71 VCC T1 VCC Supply Source 72 VCC R3 Application Processor GPIO GND R2 C1 C2 C3 C4 C5 T2 R1 GND Figure 36: Example of application circuit for VCC supply removal Reference Description Part Number - Manufacturer R1 47 k Resistor 0402 5% 0.1 W RC0402JR-0747KL - Yageo Phycomp R2 10 k Resistor 0402 5% 0.1 W RC0402JR-0710KL - Yageo Phycomp R3 100 k Resistor 0402 5% 0.1 W RC0402JR-07100KL - Yageo Phycomp T1 T2 P-Channel MOSFET Low On-Resistance NPN BJT Transistor AO3415 - Alpha & Omega Semiconductor Inc. BC847 - Infineon C1 330 µF Capacitor Tantalum D_SIZE 6.3 V 45 m 10 nF Capacitor Ceramic X7R 0402 10% 16 V T520D337M006ATE045 - KEMET C2 C3 100 nF Capacitor Ceramic X7R 0402 10% 16 V GRM155R61A104KA01 - Murata C4 C5 56 pF Capacitor Ceramic C0G 0402 5% 25 V 15 pF Capacitor Ceramic C0G 0402 5% 25 V GRM1555C1E560JA01 - Murata GRM1555C1E150JA01 - Murata GRM155R71C103KA01 - Murata Table 27: Components for VCC supply removal application circuit It is highly recommended to avoid an abrupt removal of the VCC supply during TOBY-R2 series modules normal operations: the power off procedure must be started by the AT+CPWROFF command, waiting the command response for a proper time period (see u-blox AT Commands Manual [2]), and then a proper VCC supply has to be held at least until the end of the modules’ internal power off sequence, which occurs when the generic digital interfaces supply output (V_INT) is switched off by the module. UBX-16010572 - R01 Objective Specification Design-in Page 77 of 146 TOBY-R2 series - System Integration Manual 2.2.1.11 Guidelines for VCC supply layout design Good connection of the module VCC pins with DC supply source is required for correct RF performance. Guidelines are summarized in the following list: All the available VCC pins must be connected to the DC source VCC connection must be as wide as possible and as short as possible Any series component with Equivalent Series Resistance (ESR) greater than few milliohms must be avoided VCC connection must be routed through a PCB area separated from RF lines / parts, sensitive analog signals and sensitive functional units: it is good practice to interpose at least one layer of PCB ground between the VCC track and other signal routing Coupling between VCC and digital lines, especially USB, must be avoided. The tank bypass capacitor with low ESR for current spikes smoothing described in section 2.2.1.6 should be placed close to the VCC pins. If the main DC source is a switching DC-DC converter, place the large capacitor close to the DC-DC output and minimize VCC track length. Otherwise consider using separate capacitors for DC-DC converter and module tank capacitor The bypass capacitors in the pF range described in Figure 31 and Table 23 should be placed as close as possible to the VCC pins, where the VCC line narrows close to the module input pins, improving the RF noise rejection in the band centered on the Self-Resonant Frequency of the pF capacitors. This is highly recommended if the application device integrates an internal antenna Since VCC input provide the supply to RF Power Amplifiers, voltage ripple at high frequency may result in unwanted spurious modulation of transmitter RF signal. This is more likely to happen with switching DC-DC converters, in which case it is better to select the highest operating frequency for the switcher and add a large L-C filter before connecting to the TOBY-R2 series modules in the worst case Shielding of switching DC-DC converter circuit, or at least the use of shielded inductors for the switching DC-DC converter, may be considered since all switching power supplies may potentially generate interfering signals as a result of high-frequency high-power switching. If VCC is protected by transient voltage suppressor to ensure that the voltage maximum ratings are not exceeded, place the protecting device along the path from the DC source toward the module, preferably closer to the DC source (otherwise protection functionality may be compromised) 2.2.1.12 Guidelines for grounding layout design Good connection of the module GND pins with application board solid ground layer is required for correct RF performance. It significantly reduces EMC issues and provides a thermal heat sink for the module. Connect each GND pin with application board solid GND layer. It is strongly recommended that each GND pad surrounding VCC pins have one or more dedicated via down to the application board solid ground layer The VCC supply current flows back to main DC source through GND as ground current: provide adequate return path with suitable uninterrupted ground plane to main DC source It is recommended to implement one layer of the application board as ground plane as wide as possible If the application board is a multilayer PCB, then all the board layers should be filled with GND plane as much as possible and each GND area should be connected together with complete via stack down to the main ground layer of the board. Use as many vias as possible to connect the ground planes Provide a dense line of vias at the edges of each ground area, in particular along RF and high speed lines If the whole application device is composed by more than one PCB, then it is required to provide a good and solid ground connection between the GND areas of all the different PCBs Good grounding of GND pads also ensures thermal heat sink. This is critical during connection, when the real network commands the module to transmit at maximum power: proper grounding helps prevent module overheating. UBX-16010572 - R01 Objective Specification Design-in Page 78 of 146 TOBY-R2 series - System Integration Manual 2.2.2 RTC supply output (V_BCKP) 2.2.2.1 Guidelines for V_BCKP circuit design TOBY-R2 series modules provide the V_BCKP RTC supply input/output, which can be mainly used to: Provide RTC back-up when VCC supply is removed If RTC timing is required to run for a time interval of T [s] when VCC supply is removed, place a capacitor with a nominal capacitance of C [µF] at the V_BCKP pin. Choose the capacitor using the following formula: C [µF] = (Current_Consumption [µA] x T [s]) / Voltage_Drop [V] = 2.5 x T [s] For example, a 100 µF capacitor can be placed at V_BCKP to provide RTC backup holding the V_BCKP voltage within its valid range for around 40 s at 25 °C, after the VCC supply is removed. If a longer buffering time is required, a 70 mF super-capacitor can be placed at V_BCKP, with a 4.7 k series resistor to hold the V_BCKP voltage within its valid range for approximately 8 hours at 25 °C, after the VCC supply is removed. The purpose of the series resistor is to limit the capacitor charging current due to the large capacitor specifications, and also to let a fast rise time of the voltage value at the V_BCKP pin after VCC supply has been provided. These capacitors allow the time reference to run during battery disconnection. (a) TOBY-R2 series (b) V_BCKP C1 TOBY-R2 series R2 (c) TOBY-R2 series V_BCKP V_BCKP D3 B3 C2 (superCap) Figure 37: Real time clock supply (V_BCKP) application circuits: (a) using a 100 µF capacitor to let the RTC run for ~80 s after VCC removal; (b) using a 70 mF capacitor to let RTC run for ~15 hours after VCC removal; (c) using a non-rechargeable battery Reference Description Part Number - Manufacturer C1 R2 100 µF Tantalum Capacitor 4.7 k Resistor 0402 5% 0.1 W GRM43SR60J107M - Murata RC0402JR-074K7L - Yageo Phycomp C2 70 mF Capacitor XH414H-IV01E - Seiko Instruments Table 28: Example of components for V_BCKP buffering If very long buffering time is required to allow the RTC time reference to run during a disconnection of the VCC supply, then an external battery can be connected to V_BCKP pin. The battery should be able to provide a proper nominal voltage and must never exceed the maximum operating voltage for V_BCKP (specified in the Input characteristics of Supply/Power pins table in TOBY-R2 series Data Sheet [1]). The connection of the battery to V_BCKP should be done with a suitable series resistor for a rechargeable battery, or with an appropriate series diode for a non-rechargeable battery. The purpose of the series resistor is to limit the battery charging current due to the battery specifications, and also to allow a fast rise time of the voltage value at the V_BCKP pin after the VCC supply has been provided. The purpose of the series diode is to avoid a current flow from the module V_BCKP pin to the non-rechargeable battery. If the RTC timing is not required when the VCC supply is removed, it is not needed to connect the V_BCKP pin to an external capacitor or battery. In this case the date and time are not updated when VCC is disconnected. If VCC is always supplied, then the internal regulator is supplied from the main supply and there is no need for an external component on V_BCKP. UBX-16010572 - R01 Objective Specification Design-in Page 79 of 146 TOBY-R2 series - System Integration Manual Combining a TOBY-R2 series cellular module with a u-blox GNSS positioning receiver, the positioning receiver VCC supply is controlled by the cellular module by means of the “GNSS supply enable” function provided by the GPIO2 of the cellular module. In this case the V_BCKP supply output of the cellular module can be connected to the V_BCKP backup supply input pin of the GNSS receiver to provide the supply for the positioning real time clock and backup RAM when the VCC supply of the cellular module is within its operating range and the VCC supply of the GNSS receiver is disabled. This enables the u-blox GNSS receiver to recover from a power breakdown with either a hot start or a warm start (depending on the duration of the positioning VCC outage) and to maintain the configuration settings saved in the backup RAM. Refer to section 2.6.3 for more details regarding the application circuit with a u-blox GNSS receiver. The internal regulator for V_BCKP is optimized for low leakage current and very light loads. Do not apply loads which might exceed the limit for maximum available current from V_BCKP supply, as this can cause malfunctions in the module. TOBY-R2 series Data Sheet [1] describes the detailed electrical characteristics. V_BCKP supply output pin provides internal short circuit protection to limit start-up current and protect the device in short circuit situations. No additional external short circuit protection is required. ESD sensitivity rating of the V_BCKP supply pin is 1 kV (Human Body Model according to JESD22-A114). Higher protection level can be required if the line is externally accessible on the application board, e.g. if an accessible back-up battery connector is directly connected to V_BCKP pin, and it can be achieved by mounting an ESD protection (e.g. EPCOS CA05P4S14THSG varistor array) close to the accessible point. 2.2.2.2 Guidelines for V_BCKP layout design V_BCKP supply requires careful layout: avoid injecting noise on this voltage domain as it may affect the stability of the internal circuitry. UBX-16010572 - R01 Objective Specification Design-in Page 80 of 146 TOBY-R2 series - System Integration Manual 2.2.3 Generic digital interfaces supply output (V_INT) 2.2.3.1 Guidelines for V_INT circuit design TOBY-R2 series provide the V_INT generic digital interfaces 1.8 V supply output, which can be mainly used to: Indicate when the module is switched on (as described in sections 1.6.1, 1.6.2) Pull-up SIM detection signal (see section 2.5 for more details) Supply voltage translators to connect 1.8 V module generic digital interfaces to 3.0 V devices (e.g. see 2.6.1) Pull-up DDC (I C) interface signals (see section 2.6.3 for more details) Supply a 1.8 V u-blox 6 or subsequent u-blox GNSS receiver generation (see section 2.6.3 for more details) Supply an external device, as an external 1.8 V audio codec (see section 2.7.1 for more details) V_INT supply output pin provides internal short circuit protection to limit start-up current and protect the device in short circuit situations. No additional external short circuit protection is required. Do not apply loads which might exceed the limit for maximum available current from V_INT supply (see the TOBY-R2 series Data Sheet [1]) as this can cause malfunctions in internal circuitry. Since the V_INT supply is generated by an internal switching step-down regulator, the V_INT voltage ripple can range as specified in the TOBY-R2 series Data Sheet [1]: it is not recommended to supply sensitive analog circuitry without adequate filtering for digital noise. V_INT can only be used as an output: do not connect any external supply source on V_INT. ESD sensitivity rating of the V_INT supply pin is 1 kV (Human Body Model according to JESD22-A114). Higher protection level could be required if the line is externally accessible and it can be achieved by mounting an ESD protection (e.g. EPCOS CA05P4S14THSG varistor array) close to the accessible point. It is recommended to provide direct access to the V_INT pin on the application board by means of an accessible test point directly connected to the V_INT pin. 2.2.3.2 Guidelines for V_INT layout design V_INT supply output is generated by an integrated switching step-down converter. Because of this, it can be a source of noise: avoid coupling with sensitive signals. UBX-16010572 - R01 Objective Specification Design-in Page 81 of 146 TOBY-R2 series - System Integration Manual 2.3 System functions interfaces 2.3.1 Module power-on (PWR_ON) 2.3.1.1 Guidelines for PWR_ON circuit design TOBY-R2 series PWR_ON input is equipped with an internal active pull-up resistor to the V_BCKP supply as described in Figure 38: an external pull-up resistor is not required and should not be provided. If connecting the PWR_ON input to a push button, the pin will be externally accessible on the application device. According to EMC/ESD requirements of the application, an additional ESD protection should be provided close to the accessible point, as described in Figure 38 and Table 29. ESD sensitivity rating of the PWR_ON pin is 1 kV (Human Body Model according to JESD22-A114). Higher protection level can be required if the line is externally accessible on the application board, e.g. if an accessible push button is directly connected to PWR_ON pin, and it can be achieved by mounting an ESD protection (e.g. EPCOS CA05P4S14THSG varistor) close to the accessible point. An open drain or open collector output is suitable to drive the PWR_ON input from an application processor, as the pin is equipped with an internal active pull-up resistor to the V_BCKP supply, as described in Figure 38. A compatible push-pull output of an application processor can also be used. In any case, take care to set the proper level in all the possible scenarios to avoid an inappropriate module switch-on. TOBY-R2 series Power-on push button TOBY-R2 series V_BCKP 10 k TP Application Processor Open Drain Output 20 PWR_ON V_BCKP 10 k TP 20 PWR_ON ESD Figure 38: PWR_ON application circuits using a push button and an open drain output of an application processor Reference Description Remarks ESD CT0402S14AHSG - EPCOS Varistor array for ESD protection Table 29: Example ESD protection component for the PWR_ON application circuit It is recommended to provide direct access to the PWR_ON pin on the application board by means of an accessible test point directly connected to the PWR_ON pin. 2.3.1.2 Guidelines for PWR_ON layout design The power-on circuit (PWR_ON) requires careful layout since it is the sensitive input available to switch on the TOBY-R2 series modules. It is required to ensure that the voltage level is well defined during operation and no transient noise is coupled on this line, otherwise the module might detect a spurious power-on request. UBX-16010572 - R01 Objective Specification Design-in Page 82 of 146 TOBY-R2 series - System Integration Manual 2.3.2 Module reset (RESET_N) 2.3.2.1 Guidelines for RESET_N circuit design TOBY-R2 series RESET_N is equipped with an internal pull-up to the V_BCKP supply as described in Figure 39. An external pull-up resistor is not required. If connecting the RESET_N input to a push button, the pin will be externally accessible on the application device. According to EMC/ESD requirements of the application, an additional ESD protection device (e.g. the EPCOS CA05P4S14THSG varistor) should be provided close to accessible point on the line connected to this pin, as described in Figure 39 and Table 30. ESD sensitivity rating of the RESET_N pin is 1 kV (HBM according to JESD22-A114). Higher protection level can be required if the line is externally accessible on the application board, e.g. if an accessible push button is directly connected to the RESET_N pin, and it can be achieved by mounting an ESD protection (e.g. EPCOS CA05P4S14THSG varistor) close to accessible point. An open drain output is suitable to drive the RESET_N input from an application processor as it is equipped with an internal pull-up to V_BCKP supply, as described in Figure 39. A compatible push-pull output of an application processor can also be used. In any case, take care to set the proper level in all the possible scenarios to avoid an inappropriate module reset, switch-on or switch-off. TOBY-R2 series Open Drain Output 10 k TP TOBY-R2 series V_BCKP Power-on push button Application Processor 23 RESET_N V_BCKP 10 k TP 23 RESET_N ESD Figure 39: RESET_N application circuits using a push button and an open drain output of an application processor Reference Description Remarks ESD Varistor for ESD protection CT0402S14AHSG - EPCOS Table 30: Example of ESD protection component for the RESET_N application circuits If the external reset function is not required by the customer application, the RESET_N input pin can be left unconnected to external components, but it is recommended providing direct access on the application board by means of an accessible test point directly connected to the RESET_N pin. 2.3.2.2 Guidelines for RESET_N layout design The RESET_N circuit require careful layout due to the pin function: ensure that the voltage level is well defined during operation and no transient noise is coupled on this line, otherwise the module might detect a spurious reset request. It is recommended to keep the connection line to RESET_N pin as short as possible. UBX-16010572 - R01 Objective Specification Design-in Page 83 of 146 TOBY-R2 series - System Integration Manual 2.3.3 Module / host configuration selection 2.3.3.1 Guidelines for HOST_SELECTx circuit design Selection of module / host configuration over HOST_SELECT0 and HOST_SELECT1 pins is not supported: the two pins should not be driven by the host application processor or any other external device. TOBY-R2 series modules include two pins (HOST_SELECT0 and HOST_SELECT1) for the selection of the module / host application processor configuration. Do not apply voltage to HOST_SELECT0 and HOST_SELECT1 pins before the switch-on of their supply source (V_INT), to avoid latch-up of circuits and allow a proper boot of the module. If the external signals connected to the cellular module cannot be tri-stated or set low, insert a multi channel digital switch (e.g. TI SN74CB3Q16244, TS5A3159, or TS5A63157) between the two-circuit connections and set to high impedance before V_INT switch-on. ESD sensitivity rating of the HOST_SELECT0 and HOST_SELECT1 pins is 1 kV (HBM as per JESD22-A114). Higher protection level could be required if the lines are externally accessible and it can be achieved by mounting an ESD protection (e.g. EPCOS CA05P4S14THSG varistor array) close to accessible points If the HOST_SELECT0 and HOST_SELECT1 pins are not used, they can be left unconnected on the application board. 2.3.3.2 Guidelines for HOST_SELECTx layout design The pins for the selection of the module / host application processor configuration (HOST_SELECT0 and HOST_SELECT1) are generally not critical for layout. UBX-16010572 - R01 Objective Specification Design-in Page 84 of 146 TOBY-R2 series - System Integration Manual 2.4 Antenna interface TOBY-R2 series modules provide two RF interfaces for connecting the external antennas: The ANT1 pin represents the primary RF input/output for LTE/3G/2G RF signals transmission and reception. The ANT2 pin represents the secondary RF input for LTE Rx diversity RF signals reception. Both the ANT1 and the ANT2 pins have a nominal characteristic impedance of 50 and must be connected to the related antenna through a 50 transmission line to allow proper transmission / reception of RF signals. Two antennas (one connected to ANT1 pin and one connected to ANT2 pin) must be used to support the LTE Rx diversity radio technology. This is a required feature for LTE category 1 User Equipments (up to 10.2 Mb/s Down-Link data rate) according to 3GPP specifications. 2.4.1 Antenna RF interfaces (ANT1 / ANT2) 2.4.1.1 General guidelines for antenna selection and design The antenna is the most critical component to be evaluated. Designers must take care of the antennas from all perspective at the very start of the design phase when the physical dimensions of the application board are under analysis/decision, since the RF compliance of the device integrating TOBY-R2 series modules with all the applicable required certification schemes depends on antennas radiating performance. LTE/3G/2G antennas are typically available in the types of linear monopole or PCB antennas such as patches or ceramic SMT elements. External antennas (e.g. linear monopole) External antennas basically do not imply physical restriction to the design of the PCB where the TOBY-R2 series module is mounted. The radiation performance mainly depends on the antennas. It is required to select antennas with optimal radiating performance in the operating bands. RF cables should be carefully selected to have minimum insertion losses. Additional insertion loss will be introduced by low quality or long cable. Large insertion loss reduces both transmit and receive radiation performance. A high quality 50 RF connector provides proper PCB-to-RF-cable transition. It is recommended to strictly follow the layout and cable termination guidelines provided by the connector manufacturer. Integrated antennas (e.g. patch-like antennas): o Internal integrated antennas imply physical restriction to the design of the PCB: Integrated antenna excites RF currents on its counterpoise, typically the PCB ground plane of the device that becomes part of the antenna: its dimension defines the minimum frequency that can be radiated. Therefore, the ground plane can be reduced down to a minimum size that should be similar to the quarter of the wavelength of the minimum frequency that has to be radiated, given that the orientation of the ground plane relative to the antenna element must be considered. The isolation between the primary and the secondary antennas has to be as high as possible and the correlation between the 3D radiation patterns of the two antennas has to be as low as possible. In general, a separation of at least a quarter wavelength between the two antennas is required to achieve a good isolation and low pattern correlation. As numerical example, the physical restriction to the PCB design can be considered as following: Frequency = 750 MHz Wavelength = 40 cm Minimum GND plane size = 10 cm UBX-16010572 - R01 Objective Specification Design-in Page 85 of 146 TOBY-R2 series - System Integration Manual Radiation performance depends on the whole PCB and antenna system design, including product mechanical design and usage. Antennas should be selected with optimal radiating performance in the operating bands according to the mechanical specifications of the PCB and the whole product. It is recommended to select a pair of custom antennas designed by an antennas’ manufacturer if the required ground plane dimensions are very small (e.g. less than 6.5 cm long and 4 cm wide). The antenna design process should begin at the start of the whole product design process It is highly recommended to strictly follow the detailed and specific guidelines provided by the antenna manufacturer regarding correct installation and deployment of the antenna system, including PCB layout and matching circuitry Further to the custom PCB and product restrictions, antennas may require tuning to obtain the required performance for compliance with all the applicable required certification schemes. It is recommended to consult the antenna manufacturer for the design-in guidelines for antenna matching relative to the custom application In both of cases, selecting external or internal antennas, these recommendations should be observed: Select antennas providing optimal return loss (or V.S.W.R.) figure over all the operating frequencies. Select antennas providing optimal efficiency figure over all the operating frequencies. Select antennas providing similar efficiency for both the primary (ANT1) and the secondary (ANT2) antenna. Select antennas providing appropriate gain figure (i.e. combined antenna directivity and efficiency figure) so that the electromagnetic field radiation intensity do not exceed the regulatory limits specified in some countries (e.g. by FCC in the United States, as reported in the section 4.2.2). Select antennas capable to provide low Envelope Correlation Coefficient between the primary (ANT1) and the secondary (ANT2) antenna: the 3D antenna radiation patterns should have lobes in different directions. 2.4.1.2 Guidelines for antenna RF interface design Guidelines for ANT1 / ANT2 pins RF connection design Proper transition between ANT1 / ANT2 pads and the application board PCB must be provided, implementing the following design-in guidelines for the layout of the application PCB close to the ANT1 / ANT2 pads: On a multilayer board, the whole layer stack below the RF connection should be free of digital lines Increase GND keep-out (i.e. clearance, a void area) around the ANT1 / ANT2 pads, on the top layer of the application PCB, to at least 250 µm up to adjacent pads metal definition and up to 400 µm on the area below the module, to reduce parasitic capacitance to ground, as described in the left picture in Figure 40 Add GND keep-out (i.e. clearance, a void area) on the buried metal layer below the ANT1 / ANT2 pads if the top-layer to buried layer dielectric thickness is below 200 µm, to reduce parasitic capacitance to ground, as described in the right picture in Figure 40 GND clearance on top layer around ANT1 pad GND clearance on very close buried layer below ANT1 pad GND clearance on top layer around ANT2 pad GND clearance on very close buried layer below ANT2 pad Min. 250 µm Min. 250 µm GND ANT1 Min. 400 µm GND ANT2 Min. 400 µm Figure 40: GND keep-out area on top layer around ANT1 / ANT2 pads and on very close buried layer below ANT1 / ANT2 pads UBX-16010572 - R01 Objective Specification Design-in Page 86 of 146 TOBY-R2 series - System Integration Manual Guidelines for RF transmission line design Any RF transmission line, such as the ones from the ANT1 and ANT2 pads up to the related antenna connector or up to the related internal antenna pad, must be designed so that the characteristic impedance is as close as possible to 50 . RF transmission lines can be designed as a micro strip (consists of a conducting strip separated from a ground plane by a dielectric material) or a strip line (consists of a flat strip of metal which is sandwiched between two parallel ground planes within a dielectric material). The micro strip, implemented as a coplanar waveguide, is the most common configuration for printed circuit board. Figure 41 and Figure 42 provide two examples of proper 50 coplanar waveguide designs. The first example of RF transmission line can be implemented in case of 4-layer PCB stack-up herein described, and the second example of RF transmission line can be implemented in case of 2-layer PCB stack-up herein described. 500 µm 380 µm 500 µm L1 Copper 35 µm FR-4 dielectric 270 µm L2 Copper 35 µm FR-4 dielectric 760 µm L3 Copper 35 µm FR-4 dielectric 270 µm L4 Copper 35 µm Figure 41: Example of 50 coplanar waveguide transmission line design for the described 4-layer board layup 400 µm 1200 µm 400 µm L1 Copper 35 µm FR-4 dielectric 1510 µm L2 Copper 35 µm Figure 42: Example of 50 coplanar waveguide transmission line design for the described 2-layer board layup If the two examples do not match the application PCB stack-up the 50 characteristic impedance calculation can be made using the HFSS commercial finite element method solver for electromagnetic structures from Ansys Corporation, or using freeware tools like AppCAD from Agilent (www.agilent.com) or TXLine from Applied Wave Research (www.mwoffice.com), taking care of the approximation formulas used by the tools for the impedance computation. To achieve a 50 characteristic impedance, the width of the transmission line must be chosen depending on: the thickness of the transmission line itself (e.g. 35 µm in the example of Figure 41 and Figure 42) the thickness of the dielectric material between the top layer (where the transmission line is routed) and the inner closer layer implementing the ground plane (e.g. 270 µm in Figure 41, 1510 µm in Figure 42) UBX-16010572 - R01 Objective Specification Design-in Page 87 of 146 TOBY-R2 series - System Integration Manual the dielectric constant of the dielectric material (e.g. dielectric constant of the FR-4 dielectric material in Figure 41 and Figure 42) the gap from the transmission line to the adjacent ground plane on the same layer of the transmission line (e.g. 500 µm in Figure 41, 400 µm in Figure 42) If the distance between the transmission line and the adjacent GND area (on the same layer) does not exceed 5 times the track width of the micro strip, use the “Coplanar Waveguide” model for the 50 calculation. Additionally to the 50 impedance, the following guidelines are recommended for transmission lines design: Minimize the transmission line length: the insertion loss should be minimized as much as possible, in the order of a few tenths of a dB, Add GND keep-out (i.e. clearance, a void area) on buried metal layers below any pad of component present on the RF transmission lines, if top-layer to buried layer dielectric thickness is below 200 µm, to reduce parasitic capacitance to ground, The transmission lines width and spacing to GND must be uniform and routed as smoothly as possible: avoid abrupt changes of width and spacing to GND, Add GND stitching vias around transmission lines, as described in Figure 43, Ensure solid metal connection of the adjacent metal layer on the PCB stack-up to main ground layer, providing enough vias on the adjacent metal layer, as described in Figure 43, Route RF transmission lines far from any noise source (as switching supplies and digital lines) and from any sensitive circuit (as USB), Avoid stubs on the transmission lines, Avoid signal routing in parallel to transmission lines or crossing the transmission lines on buried metal layer, Do not route microstrip lines below discrete component or other mechanics placed on top layer An example of proper RF circuit design is reported in Figure 43. In this case, the ANT1 and ANT2 pins are directly connected to SMA connectors by means of proper 50 transmission lines, designed with proper layout. TOBY SMA Connector Secondary Antenna SMA Connector Primary Antenna Figure 43: Example of circuit and layout for antenna RF circuits on application board UBX-16010572 - R01 Objective Specification Design-in Page 88 of 146 TOBY-R2 series - System Integration Manual Guidelines for RF termination design RF terminations must provide a characteristic impedance of 50 as well as the RF transmission lines up to the RF terminations themselves, to match the characteristic impedance of the ANT1 / ANT2 ports of the modules. However, real antennas do not have perfect 50 load on all the supported frequency bands. Therefore, to reduce as much as possible performance degradation due to antennas mismatch, RF terminations must provide optimal return loss (or V.S.W.R.) figure over all the operating frequencies, as summarized in Table 7 and Table 8. If external antennas are used, the antenna connectors represent the RF termination on the PCB: Use suitable 50 connectors providing proper PCB-to-RF-cable transition. Strictly follow the connector manufacturer’s recommended layout, for example: SMA Pin-Through-Hole connectors require GND keep-out (i.e. clearance, a void area) on all the layers around the central pin up to annular pads of the four GND posts, as shown in Figure 43 U.FL surface mounted connectors require no conductive traces (i.e. clearance, a void area) in the area below the connector between the GND land pads. Cut out the GND layer under RF connectors and close to buried vias, to remove stray capacitance and thus keep the RF line 50 , e.g. the active pad of UFL connectors needs to have a GND keep-out (i.e. clearance, a void area) at least on first inner layer to reduce parasitic capacitance to ground. If integrated antennas are used, the RF terminations are represented by the integrated antennas themselves. The following guidelines should be followed: Use antennas designed by an antenna manufacturer, providing the best possible return loss (or V.S.W.R.). Provide a ground plane large enough according to the relative integrated antenna requirements. The ground plane of the application PCB can be reduced down to a minimum size that must be similar to one quarter of wavelength of the minimum frequency that has to be radiated. As numerical example, Frequency = 750 MHz Wavelength = 40 cm Minimum GND plane size = 10 cm It is highly recommended to strictly follow the detailed and specific guidelines provided by the antenna manufacturer regarding correct installation and deployment of the antenna system, including PCB layout and matching circuitry. Further to the custom PCB and product restrictions, antennas may require a tuning to comply with all the applicable required certification schemes. It is recommended to consult the antenna manufacturer for the design-in guidelines for the antenna matching relative to the custom application. Additionally, these recommendations regarding the antenna system placement must be followed: Do not place antennas within closed metal case. Do not place the antennas in close vicinity to end user since the emitted radiation in human tissue is limited by regulatory requirements. Place the antennas far from sensitive analog systems or employ countermeasures to reduce EMC issues. Take care of interaction between co-located RF systems since the LTE/3G/2G transmitted power may interact or disturb the performance of companion systems. Place the two LTE antennas providing low Envelope Correlation Coefficient (ECC) between primary (ANT1) and secondary (ANT2) antenna: the antenna 3D radiation patterns should have lobes in different directions. The ECC between primary and secondary antenna needs to be enough low to comply with the radiated performance requirements specified by related certification schemes, as indicated in Table 9. Place the two LTE antennas providing enough high isolation (see Table 9) between primary (ANT1) and secondary (ANT2) antenna. The isolation depends on the distance between antennas (separation of at least a quarter wavelength required for good isolation), antenna type (using antennas with different polarization improves isolation), antenna 3D radiation patterns (uncorrelated patterns improve isolation). UBX-16010572 - R01 Objective Specification Design-in Page 89 of 146 TOBY-R2 series - System Integration Manual Examples of antennas Table 31 lists some examples of possible internal on-board surface-mount antennas. Manufacturer Part Number Product Name Description Taoglas PA.710.A Warrior Taoglas PA.711.A Warrior II Taoglas PCS.06.A Havok Antenova SR4L002 Lucida GSM / WCDMA / LTE SMD Antenna 698..960 MHz, 1710..2170 MHz, 2300..2400 MHz, 2490..2690 MHz 40.0 x 6.0 x 5.0 mm GSM / WCDMA / LTE SMD Antenna Pairs with the Taoglas PA.710.A Warrior for LTE MIMO applications 698..960 MHz, 1710..2170 MHz, 2300..2400 MHz, 2490..2690 MHz 40.0 x 6.0 x 5.0 mm GSM / WCDMA / LTE SMD Antenna 698..960 MHz, 1710..2170 MHz, 2500..2690 MHz 42.0 x 10.0 x 3.0 mm GSM / WCDMA / LTE SMD Antenna 698..960 MHz, 1710..2170 MHz, 2300..2400 MHz, 2490..2690 MHz 35.0 x 8.5 x 3.2 mm Table 31: Examples of internal surface-mount antennas Table 32 lists some examples of possible internal off-board PCB-type antennas with cable and connector. Manufacturer Part Number Taoglas FXUB63.07.0150C Product Name Taoglas FXUB66.07.0150C Taoglas FXUB70.A.07.C.001 Ethertronics 5001537 Prestta EAD FSQS35241-UF-10 SQ7 Maximus Description GSM / WCDMA / LTE PCB Antenna with cable and U.FL 698..960 MHz, 1575.42 MHz, 1710..2170 MHz, 2400..2690 MHz 96.0 x 21.0 mm GSM / WCDMA / LTE PCB Antenna with cable and U.FL 698..960 MHz, 1390..1435 MHz, 1575.42 MHz, 1710..2170 MHz, 2400..2700 MHz, 3400..3600 MHz, 4800..6000 MHz 120.2 x 50.4 mm GSM / WCDMA / LTE PCB MIMO Antenna with cables and U.FL 698..960 MHz, 1575.42 MHz, 1710..2170 MHz, 2400..2690 MHz 182.2 x 21.2 mm GSM / WCDMA / LTE PCB Antenna with cable 704..960 MHz, 1710..2170 MHz, 2300..2400 MHz, 2500..2690 MHz 80.0 x 18.0 mm GSM / WCDMA / LTE PCB Antenna with cable and U.FL 690..960 MHz, 1710..2170 MHz, 2500..2700 MHz 110.0 x 21.0 mm Table 32: Examples of internal antennas with cable and connector UBX-16010572 - R01 Objective Specification Design-in Page 90 of 146 TOBY-R2 series - System Integration Manual Table 33 lists some examples of possible external antennas. Manufacturer Part Number Product Name Description Taoglas GSA.8827.A.101111 Phoenix Taoglas TG.30.8112 Taoglas MA241.BI.001 GSM / WCDMA / LTE adhesive-mount antenna with cable and SMA(M) 698..960 MHz, 1575.42 MHz, 1710..2170 MHz, 2490..2690 MHz 105 x 30 x 7.7 mm GSM / WCDMA / LTE swivel dipole antenna with SMA(M) 698..960 MHz, 1575.42 MHz, 1710..2170 MHz, 2400..2700 MHz 148.6 x 49 x 10 mm GSM / WCDMA / LTE MIMO 2in1 adhesive-mount combination antenna waterproof IP67 rated with cable and SMA(M) 698..960 MHz, 1710..2170 MHz, 2400..2700 MHz 205.8 x 58 x 12.4 mm Laird Tech. TRA6927M3PW-001 Laird Tech. CMS69273 Laird Tech. OC69271-FNM Laird Tech. CMD69273-30NM Pulse Electronics WA700/2700SMA Genesis GSM / WCDMA / LTE screw-mount antenna with N-type(F) 698..960 MHz, 1710..2170 MHz, 2300..2700 MHz 83.8 x Ø 36.5 mm GSM / WCDMA / LTE ceiling-mount antenna with cable and N-type(F) 698..960 MHz, 1575.42 MHz, 1710..2700 MHz 86 x Ø 199 mm GSM / WCDMA / LTE pole-mount antenna with N-type(M) 698..960 MHz, 1710..2690 MHz 248 x Ø 24.5 mm GSM / WCDMA / LTE ceiling-mount MIMO antenna with cables & N-type(M) 698..960 MHz, 1710..2700 MHz 43.5 x Ø 218.7 mm GSM / WCDMA / LTE clip-mount MIMO antenna with cables and SMA(M) 698..960 MHz,1710..2700 MHz 149 x 127 x 5.1 mm Table 33: Examples of external antennas UBX-16010572 - R01 Objective Specification Design-in Page 91 of 146 TOBY-R2 series - System Integration Manual 2.4.2 Antenna detection interface (ANT_DET) 2.4.2.1 Guidelines for ANT_DET circuit design Figure 44 and Table 34 describe the recommended schematic / components for the antennas detection circuit that must be provided on the application board and for the diagnostic circuit that must be provided on the antennas’ assembly to achieve primary and secondary antenna detection functionality. TOBY-R2 series ANT2 87 Z0 = 50 ohm C3 J2 L2 ANT1 81 Z0 = 50 ohm J1 L4 Radiating Element Diagnostic Circuit R3 C4 Antenna Cable L3 L1 ANT_DET 75 C5 Antenna Cable Z0 = 50 ohm Z0 = 50 ohm C2 Radiating Element Z0 = 50 ohm Z0 = 50 ohm Diagnostic Circuit Secondary Antenna Assembly R2 R1 C1 D1 Application Board Primary Antenna Assembly Figure 44: Suggested schematic for antenna detection circuit on application board and diagnostic circuit on antennas assembly Reference Description Part Number - Manufacturer C1 C2, C3 27 pF Capacitor Ceramic C0G 0402 5% 50 V 33 pF Capacitor Ceramic C0G 0402 5% 50 V GRM1555C1H270J - Murata GRM1555C1H330J - Murata D1 Very Low Capacitance ESD Protection PESD0402-140 - Tyco Electronics L1, L2 R1 68 nH Multilayer Inductor 0402 (SRF ~1 GHz) LQG15HS68NJ02 - Murata RK73H1ETTP1002F - KOA Speer J1, J2 SMA Connector 50 Through Hole Jack 22 pF Capacitor Ceramic C0G 0402 5% 25 V SMA6251A1-3GT50G-50 - Amphenol 68 nH Multilayer Inductor 0402 (SRF ~1 GHz) LQG15HS68NJ02 - Murata Various Manufacturers C4, C5 L3, L4 R2, R3 10 k Resistor 0402 1% 0.063 W 15 k Resistor for Diagnostic GRM1555C1H220J - Murata Table 34: Suggested components for antenna detection circuit on application board and diagnostic circuit on antennas assembly The antenna detection circuit and diagnostic circuit suggested in Figure 44 and Table 34 are explained here: When antenna detection is forced by AT+UANTR command, ANT_DET generates a DC current measuring the resistance (R2 // R3) from antenna connectors (J1, J2) provided on the application board to GND. DC blocking capacitors are needed at the ANT1 / ANT2 pins (C2, C3) and at the antenna radiating element (C4, C5) to decouple the DC current generated by the ANT_DET pin. Choke inductors with a Self Resonance Frequency (SRF) in the range of 1 GHz are needed in series at the ANT_DET pin (L1, L2) and in series at the diagnostic resistor (L3, L4), to avoid a reduction of the RF performance of the system, improving the RF isolation of the load resistor. Additional components (R1, C1 and D1 in Figure 44) are needed at the ANT_DET pin as ESD protection The ANT1 / ANT2 pins must be connected to the antenna connector by means of a transmission line with nominal characteristics impedance as close as possible to 50 . UBX-16010572 - R01 Objective Specification Design-in Page 92 of 146 TOBY-R2 series - System Integration Manual The DC impedance at RF port for some antennas may be a DC open (e.g. linear monopole) or a DC short to reference GND (e.g. PIFA antenna). For those antennas, without the diagnostic circuit of Figure 44, the measured DC resistance is always at the limits of the measurement range (respectively open or short), and there is no means to distinguish between a defect on antenna path with similar characteristics (respectively: removal of linear antenna or RF cable shorted to GND for PIFA antenna). Furthermore, any other DC signal injected to the RF connection from ANT connector to radiating element will alter the measurement and produce invalid results for antenna detection. It is recommended to use an antenna with a built-in diagnostic resistor in the range from 5 k to 30 k to assure good antenna detection functionality and avoid a reduction of module RF performance. The choke inductor should exhibit a parallel Self Resonance Frequency (SRF) in the range of 1 GHz to improve the RF isolation of load resistor. For example: Consider an antenna with built-in DC load resistor of 15 k. Using the +UANTR AT command, the module reports the resistance value evaluated from the antenna connector provided on the application board to GND: Reported values close to the used diagnostic resistor nominal value (i.e. values from 13 k to 17 k if a 15 k diagnostic resistor is used) indicate that the antenna is properly connected. Values close to the measurement range maximum limit (approximately 50 k) or an open-circuit “over range” report (see u-blox AT Commands Manual [2]) means that that the antenna is not connected or the RF cable is broken. Reported values below the measurement range minimum limit (1 k) highlights a short to GND at antenna or along the RF cable. Measurement inside the valid measurement range and outside the expected range may indicate an improper connection, damaged antenna or wrong value of antenna load resistor for diagnostic. Reported value could differ from the real resistance value of the diagnostic resistor mounted inside the antenna assembly due to antenna cable length, antenna cable capacity and the used measurement method. If the primary / secondary antenna detection function is not required by the customer application, the ANT_DET pin can be left not connected and the ANT1 / ANT2 pins can be directly connected to the related antenna connector by means of a 50 transmission line as described in Figure 43. 2.4.2.2 Guidelines for ANT_DET layout design The recommended layout for the primary antenna detection circuit to be provided on the application board to achieve the primary antenna detection functionality, implementing the recommended schematic described in Figure 44 and Table 34, is explained here: The ANT1 / ANT2 pins have to be connected to the antenna connector by means of a 50 transmission line, implementing the design guidelines described in section 2.4.1 and the recommendations of the SMA connector manufacturer. DC blocking capacitor at ANT1 / ANT2 pins (C2, C3) has to be placed in series to the 50 RF line. The ANT_DET pin has to be connected to the 50 transmission line by means of a sense line. Choke inductors in series at the ANT_DET pin (L1, L2) have to be placed so that one pad is on the 50 transmission line and the other pad represents the start of the sense line to the ANT_DET pin. The additional components (R1, C1 and D1) on the ANT_DET line have to be placed as ESD protection. UBX-16010572 - R01 Objective Specification Design-in Page 93 of 146 TOBY-R2 series - System Integration Manual 2.5 2.5.1 SIM interface Guidelines for SIM circuit design Guidelines for SIM cards, SIM connectors and SIM chips selection The ISO/IEC 7816, the ETSI TS 102 221 and the ETSI TS 102 671 specifications define the physical, electrical and functional characteristics of Universal Integrated Circuit Cards (UICC), which contains the Subscriber Identification Module (SIM) integrated circuit that securely stores all the information needed to identify and authenticate subscribers over the LTE/3G/2G network. Removable UICC / SIM card contacts mapping is defined by ISO/IEC 7816 and ETSI TS 102 221 as follows: Contact C1 = VCC (Supply) It must be connected to VSIM Contact C2 = RST (Reset) It must be connected to SIM_RST Contact C3 = CLK (Clock) It must be connected to SIM_CLK Contact C4 = AUX1 (Auxiliary contact) It must be left not connected Contact C5 = GND (Ground) It must be connected to GND Contact C6 = VPP (Programming supply) It can be left not connected Contact C7 = I/O (Data input/output) It must be connected to SIM_IO Contact C8 = AUX2 (Auxiliary contact) It must be left not connected A removable SIM card can have 6 contacts (C1, C2, C3, C5, C6, C7) or 8 contacts, also including the auxiliary contacts C4 and C8. Only 6 contacts are required and must be connected to the module SIM interface. Removable SIM cards are suitable for applications requiring a change of SIM card during the product lifetime. A SIM card holder can have 6 or 8 positions if a mechanical card presence detector is not provided, or it can have 6+2 or 8+2 positions if two additional pins relative to the normally-open mechanical switch integrated in the SIM connector for the mechanical card presence detection are provided. Select a SIM connector providing 6+2 or 8+2 positions if the optional SIM detection feature is required by the custom application, otherwise a connector without integrated mechanical presence switch can be selected. Solderable UICC / SIM chip contact mapping (M2M UICC Form Factor) is defined by ETSI TS 102 671 as: Case Pin 8 = UICC Contact C1 = VCC (Supply) It must be connected to VSIM Case Pin 7 = UICC Contact C2 = RST (Reset) It must be connected to SIM_RST Case Pin 6 = UICC Contact C3 = CLK (Clock) It must be connected to SIM_CLK Case Pin 5 = UICC Contact C4 = AUX1 (Aux.contact) It must be left not connected Case Pin 1 = UICC Contact C5 = GND (Ground) It must be connected to GND Case Pin 2 = UICC Contact C6 = VPP (Progr. supply) It can be left not connected Case Pin 3 = UICC Contact C7 = I/O (Data I/O) It must be connected to SIM_IO Case Pin 4 = UICC Contact C8 = AUX2 (Aux. contact) It must be left not connected A solderable SIM chip has 8 contacts and can also include the auxiliary contacts C4 and C8 for other uses, but only 6 contacts are required and must be connected to the module SIM card interface as described above. Solderable SIM chips are suitable for M2M applications where it is not required to change the SIM once installed. UBX-16010572 - R01 Objective Specification Design-in Page 94 of 146 TOBY-R2 series - System Integration Manual Guidelines for single SIM card connection without detection A removable SIM card placed in a SIM card holder has to be connected to the SIM card interface of TOBY-R2 series modules as described in Figure 45, where the optional SIM detection feature is not implemented. Follow these guidelines to connect the module to a SIM connector without SIM presence detection: Connect the UICC / SIM contacts C1 (VCC) to the VSIM pin of the module. Connect the UICC / SIM contact C7 (I/O) to the SIM_IO pin of the module. Connect the UICC / SIM contact C3 (CLK) to the SIM_CLK pin of the module. Connect the UICC / SIM contact C2 (RST) to the SIM_RST pin of the module. Connect the UICC / SIM contact C5 (GND) to ground. Provide a 100 nF bypass capacitor (e.g. Murata GRM155R71C104K) on SIM supply line, close to the relative pad of the SIM connector, to prevent digital noise. Provide a bypass capacitor of about 22 pF to 47 pF (e.g. Murata GRM1555C1H470J) on each SIM line, very close to each related pad of the SIM connector, to prevent RF coupling especially in case the RF antenna is placed closer than 10 - 30 cm from the SIM card holder. Provide a very low capacitance (i.e. less than 10 pF) ESD protection (e.g. Tyco PESD0402-140) on each externally accessible SIM line, close to each relative pad of the SIM connector. ESD sensitivity rating of the SIM interface pins is 1 kV (HBM). So that, according to EMC/ESD requirements of the custom application, higher protection level can be required if the lines are externally accessible on the application device. Limit capacitance and series resistance on each SIM signal to match the SIM requirements (27.7 ns is the maximum allowed rise time on clock line, 1.0 µs is the maximum allowed rise time on data and reset lines). SIM CARD HOLDER TOBY-R2 series VPP (C6) VSIM 59 SIM_IO VCC (C1) 57 C C C C 5 6 7 8 IO (C7) SIM_CLK 56 CLK (C3) SIM_RST 58 RST (C2) C1 C2 C3 C4 C5 GND (C5) D1 D2 D3 D4 C C C C 1 2 3 4 SIM Card Bottom View (contacts side) J1 Figure 45: Application circuits for the connection to a single removable SIM card, with SIM detection not implemented Reference Description Part Number - Manufacturer C1, C2, C3, C4 47 pF Capacitor Ceramic C0G 0402 5% 50 V GRM1555C1H470JA01 - Murata C5 D1, D2, D3, D4 100 nF Capacitor Ceramic X7R 0402 10% 16 V Very Low Capacitance ESD Protection GRM155R71C104KA01 - Murata PESD0402-140 - Tyco Electronics J1 SIM Card Holder, 6 p, without card presence switch Various manufacturers, as C707 10M006 136 2 - Amphenol Table 35: Example of components for the connection to a single removable SIM card, with SIM detection not implemented UBX-16010572 - R01 Objective Specification Design-in Page 95 of 146 TOBY-R2 series - System Integration Manual Guidelines for single SIM chip connection A solderable SIM chip (M2M UICC Form Factor) has to be connected the SIM card interface of TOBY-R2 series modules as described in Figure 46. Follow these guidelines to connect the module to a solderable SIM chip without SIM presence detection: Connect the UICC / SIM contacts C1 (VCC) to the VSIM pin of the module. Connect the UICC / SIM contact C7 (I/O) to the SIM_IO pin of the module. Connect the UICC / SIM contact C3 (CLK) to the SIM_CLK pin of the module. Connect the UICC / SIM contact C2 (RST) to the SIM_RST pin of the module. Connect the UICC / SIM contact C5 (GND) to ground. Provide a 100 nF bypass capacitor (e.g. Murata GRM155R71C104K) at the SIM supply line close to the relative pad of the SIM chip, to prevent digital noise. Provide a bypass capacitor of about 22 pF to 47 pF (e.g. Murata GRM1555C1H470J) on each SIM line, to prevent RF coupling especially in case the RF antenna is placed closer than 10 - 30 cm from the SIM lines. Limit capacitance and series resistance on each SIM signal to match the SIM requirements (27.7 ns is the maximum allowed rise time on clock line, 1.0 µs is the maximum allowed rise time on data and reset lines). TOBY-R2 series SIM CHIP VSIM 59 SIM_IO 57 SIM_CLK 56 SIM_RST 58 C1 C2 C3 C4 C5 VPP (C6) VCC (C1) IO (C7) CLK (C3) RST (C2) GND (C5) 8 C1 C5 1 7 C2 C6 2 6 C3 C7 3 5 C4 C8 4 SIM Chip Bottom View (contacts side) U1 Figure 46: Application circuits for the connection to a single solderable SIM chip, with SIM detection not implemented Reference Description Part Number - Manufacturer C1, C2, C3, C4 C5 47 pF Capacitor Ceramic C0G 0402 5% 50 V 100 nF Capacitor Ceramic X7R 0402 10% 16 V GRM1555C1H470JA01 - Murata GRM155R71C104KA01 - Murata U1 SIM chip (M2M UICC Form Factor) Various Manufacturers Table 36: Example of components for the connection to a single solderable SIM chip, with SIM detection not implemented UBX-16010572 - R01 Objective Specification Design-in Page 96 of 146 TOBY-R2 series - System Integration Manual Guidelines for single SIM card connection with detection A removable SIM card placed in a SIM card holder must be connected to the SIM card interface of TOBY-R2 series modules as described in Figure 47, where the optional SIM card detection feature is implemented. Follow these guidelines to connect the module to a SIM connector implementing SIM presence detection: Connect the UICC / SIM contacts C1 (VCC) to the VSIM pin of the module. Connect the UICC / SIM contact C7 (I/O) to the SIM_IO pin of the module. Connect the UICC / SIM contact C3 (CLK) to the SIM_CLK pin of the module. Connect the UICC / SIM contact C2 (RST) to the SIM_RST pin of the module. Connect the UICC / SIM contact C5 (GND) to ground. Connect one pin of the normally-open mechanical switch integrated in the SIM connector (e.g. the SW2 pin as described in Figure 47) to the GPIO5 input pin of the module. Connect the other pin of the normally-open mechanical switch integrated in the SIM connector (e.g. the SW1 pin as described in Figure 47) to the V_INT 1.8 V supply output of the module by means of a strong (e.g. 1 k) pull-up resistor, as the R1 resistor in Figure 47. Provide a weak (e.g. 470 k) pull-down resistor at the SIM detection line, as the R2 resistor in Figure 47 Provide a 100 nF bypass capacitor (e.g. Murata GRM155R71C104K) at the SIM supply line, close to the related pad of the SIM connector, to prevent digital noise. Provide a bypass capacitor of about 22 pF to 47 pF (e.g. Murata GRM1555C1H470J) on each SIM line, very close to each related pad of the SIM connector, to prevent RF coupling especially in case the RF antenna is placed closer than 10 - 30 cm from the SIM card holder. Provide a very low capacitance (i.e. less than 10 pF) ESD protection (e.g. Tyco PESD0402-140) on each externally accessible SIM line, close to each related pad of the SIM connector: ESD sensitivity rating of the SIM interface pins is 1 kV (HBM), so that, according to the EMC/ESD requirements of the custom application, higher protection level can be required if the lines are externally accessible on the application device. Limit capacitance and series resistance on each SIM signal to match the SIM requirements (27.7 ns is the maximum allowed rise time on clock line, 1.0 µs is the maximum allowed rise time on data and reset lines). SIM CARD HOLDER TOBY-R2 series V_INT TP R1 GPIO5 60 R2 VSIM 59 SW1 SW2 VPP (C6) VCC (C1) SIM_IO 57 C C C C 5 6 7 8 IO (C7) SIM_CLK 56 CLK (C3) SIM_RST 58 RST (C2) C1 C2 C3 C4 C5 GND (C5) D1 D2 D3 D4 D5 D6 C C C C 1 2 3 4 SIM Card Bottom View (contacts side) J1 Figure 47: Application circuit for the connection to a single removable SIM card, with SIM detection implemented Reference Description Part Number - Manufacturer C1, C2, C3, C4 C5 47 pF Capacitor Ceramic C0G 0402 5% 50 V 100 nF Capacitor Ceramic X7R 0402 10% 16 V GRM1555C1H470JA01 - Murata GRM155R71C104KA01 - Murata D1, … , D6 R1 Very Low Capacitance ESD Protection PESD0402-140 - Tyco Electronics RC0402JR-071KL - Yageo Phycomp R2 470 k Resistor 0402 5% 0.1 W SIM Card Holder, 6 + 2 p, with card presence switch J1 1 k Resistor 0402 5% 0.1 W RC0402JR-07470KL- Yageo Phycomp Various manufacturers, as CCM03-3013LFT R102 - C&K Table 37: Example of components for the connection to a single removable SIM card, with SIM detection implemented UBX-16010572 - R01 Objective Specification Design-in Page 97 of 146 TOBY-R2 series - System Integration Manual Guidelines for dual SIM card / chip connection Two SIM card / chip can be connected to the SIM interface of TOBY-R2 series modules as described in Figure 48. TOBY-R2 series modules do not support the usage of two SIM at the same time, but two SIM can be populated on the application board, providing a proper switch to connect only the first or only the second SIM at a time to the SIM interface of the modules, as described in Figure 48. TOBY-R2 series modules support SIM hot insertion / removal on the GPIO5 pin, to enable / disable SIM interface upon detection of external SIM card physical insertion / removal: if the feature is enabled using the specific AT commands (see sections 1.8.2 and 1.11, and u-blox AT Commands Manual [2], +UGPIOC, +UDCONF=50 commands), the switch from first SIM to the second SIM can be properly done when a Low logic level is present on the GPIO5 pin (“SIM not inserted” = SIM interface not enabled), without the necessity of a module re-boot, so that the SIM interface will be re-enabled by the module to use the second SIM when a high logic level is reapplied on the GPIO5 pin. In the application circuit example represented in Figure 48, the application processor will drive the SIM switch using its own GPIO to properly select the SIM that is used by the module. Another GPIO may be used to handle the SIM hot insertion / removal function of TOBY-R2 series modules, which can also be handled by other external circuits or by the cellular module GPIO according to the application requirements. The dual SIM connection circuit described in Figure 48 can be implemented for SIM chips as well, providing proper connection between SIM switch and SIM chip as described in Figure 46. If it is required to switch between more than 2 SIM, a circuit similar to the one described in Figure 48 can be implemented: in case of 4 SIM circuit, using proper 4-throw switch instead of the suggested 2-throw switches. Follow these guidelines to connect the module to two external SIM connectors: Use a proper low on resistance (i.e. few ohms) and low on capacitance (i.e. few pF) 2-throw analog switch (e.g. Fairchild FSA2567) as SIM switch to ensure high-speed data transfer according to SIM requirements. Connect the contacts C1 (VCC) of the two UICC / SIM to the VSIM pin of the module by means of a proper 2-throw analog switch (e.g. Fairchild FSA2567). Connect the contact C7 (I/O) of the two UICC / SIM to the SIM_IO pin of the module by means of a proper 2-throw analog switch (e.g. Fairchild FSA2567). Connect the contact C3 (CLK) of the two UICC / SIM to the SIM_CLK pin of the module by means of a proper 2-throw analog switch (e.g. Fairchild FSA2567). Connect the contact C2 (RST) of the two UICC / SIM to the SIM_RST pin of the module by means of a proper 2-throw analog switch (e.g. Fairchild FSA2567). Connect the contact C5 (GND) of the two UICC / SIM to ground. Provide a 100 nF bypass capacitor (e.g. Murata GRM155R71C104K) at the SIM supply (VSIM), close to the related pad of the two SIM connectors, to prevent digital noise. Provide a bypass capacitor of about 22 pF to 47 pF (e.g. Murata GRM1555C1H470J) on each SIM line, very close to each related pad of the two SIM connectors, to prevent RF coupling especially in case the RF antenna is placed closer than 10 - 30 cm from the SIM card holders. Provide a very low capacitance (i.e. less than 10 pF) ESD protection (e.g. Tyco Electronics PESD0402-140) on each externally accessible SIM line, close to each pad of the two SIM connectors, according to the EMC/ESD requirements of the custom application. Limit capacitance and series resistance on each SIM signal to match the SIM requirements (27.7 ns is the maximum allowed rise time on clock line, 1.0 µs is the maximum allowed rise time on data and reset lines). UBX-16010572 - R01 Objective Specification Design-in Page 98 of 146 TOBY-R2 series - System Integration Manual FIRST SIM CARD TOBY-R2 series VSIM 59 3V8 VPP (C6) 4PDT C11 Analog Switch VCC 1VSIM VSIM 2VSIM VCC (C1) SIM_IO 57 DAT 1DAT 2DAT SIM_CLK 56 CLK 1CLK 2CLK RST 1RST 2RST SIM_RST 58 IO (C7) CLK (C3) RST (C2) C1 C2 C3 C4 GND (C5) C5 D1 D2 D3 D4 J1 SECOND SIM CARD VPP (C6) SEL GND VCC (C1) U1 IO (C7) CLK (C3) Application Processor RST (C2) GPIO R1 C6 C7 C8 C9 C10 GND (C5) D5 D6 D7 D8 J2 Figure 48: Application circuit for the connection to two removable SIM cards, with SIM detection not implemented Reference Description Part Number – Manufacturer C1 – C4, C6 – C9 33 pF Capacitor Ceramic C0G 0402 5% 25 V GRM1555C1H330JZ01 – Murata C5, C10, C11 D1 – D8 100 nF Capacitor Ceramic X7R 0402 10% 16 V Very Low Capacitance ESD Protection GRM155R71C104KA01 – Murata PESD0402-140 - Tyco Electronics R1 47 k Resistor 0402 5% 0.1 W SIM Card Holder, 6 + 2 p., with card presence switch RC0402JR-0747KL- Yageo Phycomp 4PDT Analog Switch, with Low On-Capacitance and Low On-Resistance FSA2567 - Fairchild Semiconductor J1, J2 U1 CCM03-3013LFT R102 - C&K Components Table 38: Example of components for the connection to two removable SIM cards, with SIM detection not implemented 2.5.2 Guidelines for SIM layout design The layout of the SIM card interface lines (VSIM, SIM_CLK, SIM_IO, SIM_RST may be critical if the SIM card is placed far away from the TOBY-R2 series modules or in close proximity to the RF antenna: these two cases should be avoided or at least mitigated as described below. In the first case, the long connection can cause the radiation of some harmonics of the digital data frequency as any other digital interface. It is recommended to keep the traces short and avoid coupling with RF line or sensitive analog inputs. In the second case, the same harmonics can be picked up and create self-interference that can reduce the sensitivity of LTE/3G/2G receiver channels whose carrier frequency is coincidental with harmonic frequencies. It is strongly recommended to place the RF bypass capacitors suggested in Figure 45 near the SIM connector. In addition, since the SIM card is typically accessed by the end user, it can be subjected to ESD discharges. Add adequate ESD protection as suggested to protect module SIM pins near the SIM connector. Limit capacitance and series resistance on each SIM signal to match the SIM specifications. The connections should always be kept as short as possible. Avoid coupling with any sensitive analog circuit, since the SIM signals can cause the radiation of some harmonics of the digital data frequency. UBX-16010572 - R01 Objective Specification Design-in Page 99 of 146 TOBY-R2 series - System Integration Manual 2.6 Data communication interfaces 2.6.1 UART interface 2.6.1.1 Guidelines for UART circuit design Providing the full RS-232 functionality (using the complete V.24 link) If RS-232 compatible signal levels are needed, two different external voltage translators can be used to provide full RS-232 (9 lines) functionality: e.g. using the Texas Instruments SN74AVC8T245PW for the translation from 1.8 V to 3.3 V, and the Maxim MAX3237E for the translation from 3.3 V to RS-232 compatible signal level. If a 1.8 V Application Processor (DTE) is used and complete RS-232 functionality is required, then the complete 1.8 V UART interface of the module (DCE) should be connected to a 1.8 V DTE, as described in Figure 49. Application Processor (1.8V DTE) TOBY-R2 series (1.8V DCE) TxD RxD 0Ω TP 0Ω TP RTS CTS 0Ω DTR TP DSR RI 0Ω DCD TP 16 TXD 17 RXD 14 RTS 15 CTS 13 DTR 10 DSR 11 RI 12 DCD GND GND Figure 49: UART interface application circuit with complete V.24 link in DTE/DCE serial communication (1.8V DTE) If a 3.0 V Application Processor (DTE) is used, then it is recommended to connect the 1.8 V UART interface of the module (DCE) by means of appropriate unidirectional voltage translators using the module V_INT output as 1.8 V supply for the voltage translators on the module side, as described in Figure 50. Application Processor (3.0V DTE) Unidirectional Voltage Translator 3V0 VCC C1 VCCA DIR1 DIR3 VCCB TOBY-R2 series (1.8V DCE) 1V8 TP C2 0Ω TP 0Ω TP V_INT 16 TXD 17 RXD TxD A1 B1 RxD A2 B2 RTS A3 B3 14 RTS CTS A4 B4 15 CTS 13 DTR 10 DSR 11 RI 12 DCD DIR2 DIR4 OE GND U1 Unidirectional Voltage Translator 3V0 C3 VCCA VCCB DIR1 DTR A1 B1 DSR A2 B2 RI A3 B3 DCD A4 GND DIR2 DIR3 DIR4 B4 OE GND 1V8 C4 0Ω 0Ω TP TP GND U2 Figure 50: UART interface application circuit with complete V.24 link in DTE/DCE serial communication (3.0 V DTE) Reference Description Part Number - Manufacturer C1, C2, C3, C4 U1, U2 100 nF Capacitor Ceramic X7R 0402 10% 16 V Unidirectional Voltage Translator GRM155R61A104KA01 - Murata SN74AVC4T77414 - Texas Instruments Table 39: Component for UART application circuit with complete V.24 link in DTE/DCE serial communication (3.0 V DTE) 14 Voltage translator providing partial power down feature so that the DTE 3.0 V supply can be also ramped up before V_INT 1.8 V supply UBX-16010572 - R01 Objective Specification Design-in Page 100 of 146 TOBY-R2 series - System Integration Manual Providing the TXD, RXD, RTS, CTS and DTR lines only (not using the complete V.24 link) If the functionality of the DSR, DCD and RI lines is not required, or the lines are not available: Leave DSR, DCD and RI lines of the module floating, with a test-point on DCD If RS-232 compatible signal levels are needed, two different external voltage translators (e.g. Maxim MAX3237E and Texas Instruments SN74AVC4T774) can be used. The Texas Instruments chips provide the translation from 1.8 V to 3.3 V, while the Maxim chip provides the translation from 3.3 V to RS-232 compatible signal level. Figure 51 describes the circuit that should be implemented as if a 1.8 V Application Processor (DTE) is used, given that the DTE will behave properly regardless DSR input setting. Application Processor (1.8V DTE) TOBY-R2 series (1.8V DCE) TxD RxD 0Ω TP 0Ω TP RTS CTS 0Ω DTR TP DSR RI TP DCD 16 TXD 17 RXD 14 RTS 15 CTS 13 DTR 10 DSR 11 RI 12 DCD GND GND Figure 51: UART interface application circuit with partial V.24 link (6-wire) in the DTE/DCE serial communication (1.8 V DTE) If a 3.0 V Application Processor (DTE) is used, then it is recommended to connect the 1.8 V UART interface of the module (DCE) by means of appropriate unidirectional voltage translators using the module V_INT output as 1.8 V supply for the voltage translators on the module side, as described in Figure 52, given that the DTE will behave properly regardless DSR input setting. Application Processor (3.0V DTE) VCC Unidirectional Voltage Translator 3V0 VCCA DIR1 DIR3 C1 TOBY-R2 series (1.8V DCE) 1V8 VCCB C2 0Ω TP 0Ω TP V_INT 16 TXD 17 RXD TxD A1 B1 RxD A2 B2 RTS A3 B3 14 RTS CTS A4 B4 15 CTS 13 DTR 10 DSR 11 RI 12 DCD DIR2 DIR4 OE GND U1 Unidirectional Voltage Translator 3V0 C3 DTR VCCA DIR1 A1 A2 DSR VCCB DIR2 B1 B2 1V8 C4 0Ω OE GND RI DCD U2 GND TP TP GND Figure 52: UART interface application circuit with partial V.24 link (6-wire) in DTE/DCE serial communication (3.0 V DTE) Reference Description Part Number - Manufacturer C1, C2, C3, C4 100 nF Capacitor Ceramic X7R 0402 10% 16 V GRM155R61A104KA01 - Murata U1 U2 Unidirectional Voltage Translator Unidirectional Voltage Translator SN74AVC4T77415 - Texas Instruments SN74AVC2T24515 - Texas Instruments Table 40: Component for UART application circuit with partial V.24 link (6-wire) in DTE/DCE serial communication (3.0 V DTE) 15 Voltage translator providing partial power down feature so that the DTE 3.0 V supply can be also ramped up before V_INT 1.8 V supply UBX-16010572 - R01 Objective Specification Design-in Page 101 of 146 TOBY-R2 series - System Integration Manual Providing the TXD, RXD, RTS and CTS lines only (not using the complete V.24 link) If the functionality of the DSR, DCD, RI and DTR lines is not required in, or the lines are not available: Connect the module DTR input to GND using a 0 series resistor, since it may be useful to set DTR active if not specifically handled (see u-blox AT Commands Manual [2], &D, S0, +CSGT, +CNMI AT commands) Leave DSR, DCD and RI lines of the module floating, with a test-point on DCD If RS-232 compatible signal levels are needed, the Maxim MAX13234E voltage level translator can be used. This chip translates voltage levels from 1.8 V (module side) to the RS-232 standard. If a 1.8 V Application Processor is used, the circuit should be implemented as described in Figure 53. Application Processor (1.8V DTE) TOBY-R2 series (1.8V DCE) TxD RxD 0Ω TP 0Ω TP 0Ω TP 16 TXD 17 RXD RTS 14 RTS CTS DTR 15 CTS 13 DTR DSR 10 DSR RI 11 RI TP DCD 12 DCD GND GND Figure 53: UART interface application circuit with partial V.24 link (5-wire) in the DTE/DCE serial communication (1.8V DTE) If a 3.0 V Application Processor (DTE) is used, then it is recommended to connect the 1.8 V UART interface of the module (DCE) by means of appropriate unidirectional voltage translators using the module V_INT output as 1.8 V supply for the voltage translators on the module side, as described in Figure 54. Application Processor (3.0V DTE) VCC Unidirectional Voltage Translator 3V0 C1 VCCA DIR1 DIR3 VCCB TOBY-R2 series (1.8V DCE) 1V8 TP C2 0Ω TP 0Ω TP V_INT TxD A1 B1 RxD A2 B2 RTS A3 B3 14 RTS CTS A4 B4 15 CTS DIR2 DIR4 U1 DTR 16 TXD 17 RXD OE GND 0Ω TP DSR 13 DTR 10 DSR RI 11 RI TP DCD GND 12 DCD GND Figure 54: UART interface application circuit with partial V.24 link (5-wire) in DTE/DCE serial communication (3.0 V DTE) Reference Description Part Number - Manufacturer C1, C2 100 nF Capacitor Ceramic X7R 0402 10% 16 V GRM155R61A104KA01 - Murata U1 Unidirectional Voltage Translator SN74AVC4T77416 - Texas Instruments Table 41: Component for UART application circuit with partial V.24 link (5-wire) in DTE/DCE serial communication (3.0 V DTE) 16 Voltage translator providing partial power down feature so that the DTE 3.0 V supply can be also ramped up before V_INT 1.8 V supply UBX-16010572 - R01 Objective Specification Design-in Page 102 of 146 TOBY-R2 series - System Integration Manual Providing the TXD and RXD lines only (not using the complete V24 link) If the functionality of the CTS, RTS, DSR, DCD, RI and DTR lines is not required in the application, or the lines are not available, then: Connect the module RTS input line to GND or to the CTS output line of the module: since the module requires RTS active (low electrical level) if HW flow-control is enabled (AT&K3, which is the default setting) Connect the module DTR input line to GND using a 0 series resistor, because it is useful to set DTR active if not specifically handled (see u-blox AT Commands Manual [2], &D, S0, +CSGT, +CNMI AT commands) Leave DSR, DCD and RI lines of the module floating, with a test-point on DCD If RS-232 compatible signal levels are needed, the Maxim MAX13234E voltage level translator can be used. This chip translates voltage levels from 1.8 V (module side) to the RS-232 standard. If a 1.8 V Application Processor (DTE) is used, the circuit that should be implemented as described in Figure 55. Application Processor (1.8V DTE) TOBY-R2 series (1.8V DCE) TxD RxD 0Ω TP 0Ω TP 0Ω TP 16 TXD 17 RXD RTS 14 RTS CTS DTR 15 CTS 13 DTR DSR 10 DSR RI 11 RI TP DCD 12 DCD GND GND Figure 55: UART interface application circuit with partial V.24 link (3-wire) in the DTE/DCE serial communication (1.8V DTE) If a 3.0 V Application Processor (DTE) is used, then it is recommended to connect the 1.8 V UART interface of the module (DCE) by means of appropriate unidirectional voltage translators using the module V_INT output as 1.8 V supply for the voltage translators on the module side, as described in Figure 56. Application Processor (3.0V DTE) VCC Unidirectional Voltage Translator 3V0 TOBY-R2 series (1.8V DCE) 1V8 TP V_INT 16 TXD 17 RXD 14 RTS 15 CTS 13 DTR DSR 10 DSR RI 11 RI 12 DCD C1 VCCA VCCB DIR1 TxD A1 B1 RxD A2 B2 DIR2 C2 0Ω TP 0Ω TP 0Ω TP OE GND U1 RTS CTS DTR TP DCD GND GND Figure 56: UART interface application circuit with partial V.24 link (3-wire) in DTE/DCE serial communication (3.0 V DTE) Reference Description Part Number - Manufacturer C1, C2 U1 100 nF Capacitor Ceramic X7R 0402 10% 16 V Unidirectional Voltage Translator GRM155R61A104KA01 - Murata SN74AVC2T24517 - Texas Instruments Table 42: Component for UART application circuit with partial V.24 link (3-wire) in DTE/DCE serial communication (3.0 V DTE) 17 Voltage translator providing partial power down feature so that the DTE 3.0 V supply can be also ramped up before V_INT 1.8 V supply UBX-16010572 - R01 Objective Specification Design-in Page 103 of 146 TOBY-R2 series - System Integration Manual Additional considerations If a 3.0 V Application Processor (DTE) is used, the voltage scaling from any 3.0 V output of the DTE to the corresponding 1.8 V input of the module (DCE) can be implemented as an alternative low-cost solution, by means of an appropriate voltage divider. Consider the value of the pull-up integrated at the input of the module (DCE) for the correct selection of the voltage divider resistance values and mind that any DTE signal connected to the module must be tri-stated or set low when the module is in power-down mode and during the module power-on sequence (at least until the activation of the V_INT supply output of the module), to avoid latch-up of circuits and allow a proper boot of the module (see the remark below). Moreover, the voltage scaling from any 1.8 V output of the cellular module (DCE) to the corresponding 3.0 V input of the Application Processor (DTE) can be implemented by means of an appropriate low-cost non-inverting buffer with open drain output. The non-inverting buffer should be supplied by the V_INT supply output of the cellular module. Consider the value of the pull-up integrated at each input of the DTE (if any) and the baud rate required by the application for the appropriate selection of the resistance value for the external pull-up biased by the application processor supply rail. If power saving is enabled the application circuit with the TXD and RXD lines only is not recommended. During command mode the DTE must send to the module a wake-up character or a dummy “AT” before each command line (see section 1.9.1.4 for the complete description), but during data mode the wake-up character or the dummy “AT” would affect the data communication. Do not apply voltage to any UART interface pin before the switch-on of the UART supply source (V_INT), to avoid latch-up of circuits and allow a proper boot of the module. If the external signals connected to the cellular module cannot be tri-stated or set low, insert a multi channel digital switch (e.g. TI SN74CB3Q16244, TS5A3159, or TS5A63157) between the two-circuit connections and set to high impedance before V_INT switch-on. ESD sensitivity rating of UART interface pins is 1 kV (Human Body Model according to JESD22-A114). Higher protection level could be required if the lines are externally accessible and it can be achieved by mounting an ESD protection (e.g. EPCOS CA05P4S14THSG varistor array) close to accessible points. If the UART interface pins are not used, they can be left unconnected on the application board, but it is recommended providing accessible test points directly connected to the TXD, RXD, DTR and DCD pins for diagnostic purpose, in particular providing a 0 series jumper on each line to detach each UART pin of the module from the DTE application processor. 2.6.1.2 Guidelines for UART layout design The UART serial interface requires the same consideration regarding electro-magnetic interference as any other digital interface. Keep the traces short and avoid coupling with RF line or sensitive analog inputs, since the signals can cause the radiation of some harmonics of the digital data frequency. UBX-16010572 - R01 Objective Specification Design-in Page 104 of 146 TOBY-R2 series - System Integration Manual 2.6.2 USB interface 2.6.2.1 Guidelines for USB circuit design The USB_D+ and USB_D- lines carry the USB serial data and signaling. The lines are used in single ended mode for full speed signaling handshake, as well as in differential mode for high speed signaling and data transfer. USB pull-up or pull-down resistors and external series resistors on USB_D+ and USB_D- lines as required by the USB 2.0 specification [6] are part of the module USB pins driver and do not need to be externally provided. The USB interface of the module is enabled only if a valid voltage is detected by the VUSB_DET input (see the TOBY-R2 series Data Sheet [1]). Neither the USB interface, nor the whole module is supplied by the VUSB_DET input: the VUSB_DET senses the USB supply voltage and absorbs few microamperes. Routing the USB pins to a connector, they will be externally accessible on the application device. According to EMC/ESD requirements of the application, an additional ESD protection device with very low capacitance should be provided close to accessible point on the line connected to this pin, as described in Figure 57 and Table 43. The USB interface pins ESD sensitivity rating is 1 kV (Human Body Model according to JESD22-A114F). Higher protection level could be required if the lines are externally accessible and it can be achieved by mounting a very low capacitance (i.e. less or equal to 1 pF) ESD protection (e.g. Tyco Electronics PESD0402-140 ESD protection device) on the lines connected to these pins, close to accessible points. The USB pins of the modules can be directly connected to the USB host application processor without additional ESD protections if they are not externally accessible or according to EMC/ESD requirements. USB DEVICE CONNECTOR TOBY-R2 series VBUS VUSB_DET D+ 28 D- 27 GND D1 D2 D3 C1 USB HOST PROCESSOR TOBY-R2 series VBUS VUSB_DET USB_D+ D+ 28 USB_D+ USB_D- D- 27 USB_D- GND GND C1 GND Figure 57: USB Interface application circuits Reference Description Part Number - Manufacturer C1 D1, D2, D3 100 nF Capacitor Ceramic X7R 0402 10% 16 V Very Low Capacitance ESD Protection GRM155R61A104KA01 - Murata PESD0402-140 - Tyco Electronics Table 43: Component for USB application circuits If the USB interface pins are not used, they can be left unconnected on the application board, but it is recommended providing accessible test points directly connected to VUSB_DET, USB_D+, USB_D- pins. UBX-16010572 - R01 Objective Specification Design-in Page 105 of 146 TOBY-R2 series - System Integration Manual 2.6.2.2 Guidelines for USB layout design The USB_D+ / USB_D- lines require accurate layout design to achieve reliable signaling at the high speed data rate (up to 480 Mb/s) supported by the USB serial interface. The characteristic impedance of the USB_D+ / USB_D- lines is specified by the Universal Serial Bus Revision 2.0 specification [6]. The most important parameter is the differential characteristic impedance applicable for the odd-mode electromagnetic field, which should be as close as possible to 90 differential. Signal integrity may be degraded if PCB layout is not optimal, especially when the USB signaling lines are very long. Use the following general routing guidelines to minimize signal quality problems: Route USB_D+ / USB_D- lines as a differential pair Route USB_D+ / USB_D- lines as short as possible Ensure the differential characteristic impedance (Z 0) is as close as possible to 90 Ensure the common mode characteristic impedance (ZCM) is as close as possible to 30 Consider design rules for USB_D+ / USB_D- similar to RF transmission lines, being them coupled differential micro-strip or buried stripline: avoid any stubs, abrupt change of layout, and route on clear PCB area Figure 58 and Figure 59 provide two examples of coplanar waveguide designs with differential characteristic impedance close to 90 and common mode characteristic impedance close to 30 . The first transmission line can be implemented in case of 4-layer PCB stack-up herein described, the second transmission line can be implemented in case of 2-layer PCB stack-up herein described. 400 µm 350 µm 400 µm 350 µm 400 µm L1 Copper 35 µm FR-4 dielectric 270 µm L2 Copper 35 µm FR-4 dielectric 760 µm L3 Copper 35 µm FR-4 dielectric 270 µm L4 Copper 35 µm Figure 58: Example of USB line design, with Z0 close to 90 and ZCM close to 30 , for the described 4-layer board layup 410 µm 740 µm 410 µm 740 µm 410 µm L1 Copper 35 µm FR-4 dielectric 1510 µm L2 Copper 35 µm Figure 59: Example of USB line design, with Z0 close to 90 and ZCM close to 30 , for the described 2-layer board layup UBX-16010572 - R01 Objective Specification Design-in Page 106 of 146 TOBY-R2 series - System Integration Manual 2.6.3 DDC (I2C) interface 2.6.3.1 Guidelines for DDC (I C) circuit design Communication with u-blox GNSS receivers over DDC (I C) is not supported by “02” product versions. The DDC I C-bus master interface can be used to communicate with u-blox GNSS receivers and other external I C-bus slaves as an audio codec. Beside the general considerations reported below, see: the following parts of this section for specific guidelines for the connection to u-blox GNSS receivers the section 2.7.1 for an application circuit example with an external audio codec I C-bus slave. To be compliant with the I C bus specifications, the module bus interface pads are open drain output and pull up resistors must be mounted externally. Resistor values must conform to I C bus specifications [12]: for example, 4.7 k resistors can be commonly used. Pull-ups must be connected to a supply voltage of 1.8 V (typical), since this is the voltage domain of the DDC pins which are not tolerant to higher voltage values (e.g. 3.0 V). Connect the DDC (I C) pull-ups to the V_INT 1.8 V supply source, or another 1.8 V supply source enabled after V_INT (e.g., as the GNSS 1.8 V supply present in Figure 60 application circuit), as any external signal connected to the DDC (I C) interface must not be set high before the switch-on of the V_INT supply of DDC (I C) pins, to avoid latch-up of circuits and let a proper boot of the module. The signal shape is defined by the values of the pull-up resistors and the bus capacitance. Long wires on the bus will increase the capacitance. If the bus capacitance is increased, use pull-up resistors with nominal resistance value lower than 4.7 k, to match the I C bus specifications [12] regarding rise and fall times of the signals. Capacitance and series resistance must be limited on the bus to match the I C specifications (1.0 µs is the maximum allowed rise time on the SCL and SDA lines): route connections as short as possible. If the pins are not used as DDC bus interface, they can be left unconnected. ESD sensitivity rating of the DDC (I C) pins is 1 kV (Human Body Model according to JESD22-A114). Higher protection level could be required if the lines are externally accessible and it can be achieved by mounting an ESD protection (e.g. EPCOS CA05P4S14THSG varistor array) close to accessible points. UBX-16010572 - R01 Objective Specification Design-in Page 107 of 146 TOBY-R2 series - System Integration Manual Connection with u-blox 1.8 V GNSS receivers Figure 60 shows an application circuit for connecting the cellular modules to a u-blox 1.8 V GNSS receiver. SDA / SCL pins of the cellular module are directly connected to the relative I C pins of the u-blox 1.8 V GNSS receiver, with appropriate pull-up resistors connected to the 1.8 V GNSS supply enabled after the V_INT supply of the I C pins of the cellular module. GPIO2 pin is connected to the shutdown input pin (SHDNn) of the LDO regulators providing the 1.8 V supply rail for the u-blox 1.8 V GNSS receiver implementing the “GNSS enable” function, with appropriate pull-down resistor mounted on GPIO2 line to avoid an improper switch on of the u-blox GNSS receiver. GPIO3 and GPIO4 pins are directly connected respectively to TXD1 and EXTINT0 pins of the u-blox 1.8 V GNSS receiver providing “GNSS Tx data ready” and “GNSS RTC sharing” functions. The V_BCKP supply output of the cellular module is connected to the V_BCKP backup supply input pin of the GNSS receiver to provide the supply for the GNSS real time clock and backup RAM when the VCC supply of the cellular module is within its operating range and the VCC supply of the GNSS receiver is disabled. This enables the u-blox GNSS receiver to recover from a power breakdown with either a hot start or a warm start (depending on the actual duration of the GNSS VCC outage) and to maintain the configuration settings saved in the backup RAM. u-blox GNSS 1.8 V receiver TOBY-R2 series (except ‘02’ product versions) V_BCKP GNSS LDO Regulator 1V8 VCC IN OUT 1V8 1V8 SHDNn C1 V_BCKP VMAIN GNSS supply enabled GND 22 GPIO2 R3 U1 R1 R2 SDA2 55 SDA SCL2 TxD1 EXTINT0 54 SCL GNSS Tx data ready 24 GPIO3 GNSS RTC sharing 25 GPIO4 Figure 60: Application circuit for connecting TOBY-R2 series modules to u-blox 1.8 V GNSS receivers Reference Description Part Number - Manufacturer R1, R2 4.7 k Resistor 0402 5% 0.1 W RC0402JR-074K7L - Yageo Phycomp R3 47 k Resistor 0402 5% 0.1 W Voltage Regulator for GNSS receiver and capacitor RC0402JR-0747KL - Yageo Phycomp U1, C1 See GNSS receiver Hardware Integration Manual Table 44: Components for connecting TOBY-R2 series modules to u-blox 1.8 V GNSS receivers UBX-16010572 - R01 Objective Specification Design-in Page 108 of 146 TOBY-R2 series - System Integration Manual Figure 61 illustrates an alternative application circuit solution in which the cellular module supplies a u-blox 1.8 V GNSS receiver. The V_INT 1.8 V regulated supply output of the cellular module can be used as supply source for a u-blox 1.8 V GNSS receiver (u-blox 6 generation receiver or newer) instead of using an external voltage regulator, as shown in Figure 60. The V_INT supply is able to support the maximum current consumption of these positioning receivers. The internal switching step-down regulator that generates the V_INT supply is set to 1.8 V (typical) when the cellular module is switched on and it is disabled when the module is switched off. The supply of the u-blox 1.8 V GNSS receiver can be switched off using an external p-channel MOS controlled by the GPIO2 pin of the cellular modules by means of a proper inverting transistor as shown in Figure 61, implementing the “GNSS supply enable” function. If this feature is not required, the V_INT supply output can be directly connected to the u-blox 1.8 V GNSS receiver, so that it will switch on when V_INT output is enabled. According to the V_INT supply output voltage ripple characteristic specified in TOBY-R2 series Data Sheet [1]: Additional filtering may be needed to properly supply an external LNA, depending on the characteristics of the used LNA, adding a series ferrite bead and a bypass capacitor (e.g. the Murata BLM15HD182SN1 ferrite bead and the Murata GRM1555C1H220J 22 pF capacitor) at the input of the external LNA supply line u-blox GNSS 1.8 V receiver TOBY-R2 series (except ‘02’ product versions) V_BCKP V_BCKP V_INT 22 GPIO2 SDA2 55 SDA SCL2 54 SCL 1V8 T1 VCC TP R5 C1 1V8 R4 1V8 T2 R1 GNSS supply enabled R3 R2 GNSS data ready TxD1 GNSS RTC sharing EXTINT0 24 GPIO3 25 GPIO4 Figure 61: Application circuit for connecting TOBY-R2 series modules to u-blox 1.8 V GNSS receivers using V_INT as supply Reference Description Part Number - Manufacturer R1, R2 4.7 k Resistor 0402 5% 0.1 W RC0402JR-074K7L - Yageo Phycomp R3 47 k Resistor 0402 5% 0.1 W RC0402JR-0747KL - Yageo Phycomp R4 10 k Resistor 0402 5% 0.1 W RC0402JR-0710KL - Yageo Phycomp R5 100 k Resistor 0402 5% 0.1 W P-Channel MOSFET Low On-Resistance RC0402JR-07100KL - Yageo Phycomp T1 T2 NPN BJT Transistor BC847 - Infineon C1 100 nF Capacitor Ceramic X7R 0402 10% 16 V GRM155R71C104KA01 - Murata IRLML6401 - International Rectifier or NTZS3151P - ON Semi Table 45: Components for connecting TOBY-R2 series modules to u-blox 1.8 V GNSS receivers using V_INT as supply For additional guidelines regarding the design of applications with u-blox 1.8 V GNSS receivers see the GNSS Implementation Application Note [13] and the Hardware Integration Manual of the u-blox GNSS receivers. UBX-16010572 - R01 Objective Specification Design-in Page 109 of 146 TOBY-R2 series - System Integration Manual Connection with u-blox 3.0 V GNSS receivers Figure 62 shows an application circuit for connecting the cellular modules to a u-blox 3.0 V GNSS receiver: As the SDA and SCL pins of the cellular module are not tolerant up to 3.0 V, the connection to the related I C pins of the u-blox 3.0 V GNSS receiver must be provided using a proper I C-bus Bidirectional Voltage Translator with proper pull-up resistors (e.g. the TI TCA9406 additionally provides the partial power down feature so that the GNSS 3.0 V supply can be ramped up before the V_INT 1.8 V cellular supply). GPIO2 pin is connected to the shutdown input pin (SHDNn) of the LDO regulators providing the 3.0 V supply rail for the u-blox 3.0 V GNSS receiver implementing the “GNSS enable” function, with appropriate pull-down resistor mounted on GPIO2 line to avoid an improper switch on of the u-blox GNSS receiver. As the GPIO3 and GPIO4 pins of the cellular module are not tolerant up to 3.0 V, the connection to the related pins of the u-blox 3.0 V GNSS receiver must be provided using a proper Unidirectional General Purpose Voltage Translator (e.g. TI SN74AVC2T245, which additionally provides the partial power down feature so that the 3.0 V GNSS supply can be also ramped up before the V_INT 1.8 V cellular supply). The V_BCKP supply output of the cellular module can be directly connected to the V_BCKP backup supply input pin of the GNSS receiver as in the application circuit for a u-blox 1.8 V GNSS receiver. u-blox GNSS 3.0 V receiver TOBY-R2 series (except ‘02’ product versions) V_BCKP 3V0 GNSS LDO Regulator VCC C1 OUT IN GND SHDNn GNSS supply enabled I2C-bus Bidirectional Voltage Translator C2 SDA2 VCCB 1V8 VCCA C3 OE R2 SCL2 22 GPIO2 R3 U1 R1 V_BCKP VMAIN R4 R5 V_INT SDA_B SDA_A 55 SDA SCL_B SCL_A 54 SCL GND U2 Unidirectional Voltage Translator 3V0 C4 VCCA DIR1 1V8 VCCB TxD1 A1 B1 EXTINT0 A2 B2 DIR2 GND C5 GNSS data ready GNSS RTC sharing 24 GPIO3 25 GPIO4 OEn U3 Figure 62: Application circuit for connecting TOBY-R2 series modules to u-blox 3.0 V GNSS receivers Reference Description Part Number - Manufacturer R1, R2, R4, R5 4.7 k Resistor 0402 5% 0.1 W RC0402JR-074K7L - Yageo Phycomp R3 RC0402JR-0747KL - Yageo Phycomp C2, C3, C4, C5 47 k Resistor 0402 5% 0.1 W 100 nF Capacitor Ceramic X5R 0402 10% 10V U1, C1 Voltage Regulator for GNSS receiver and capacitor See GNSS receiver Hardware Integration Manual U2 U3 I2C-bus Bidirectional Voltage Translator Generic Unidirectional Voltage Translator TCA9406DCUR - Texas Instruments SN74AVC2T245 - Texas Instruments GRM155R71C104KA01 - Murata Table 46: Components for connecting TOBY-R2 series modules to u-blox 3.0 V GNSS receivers For additional guidelines regarding the design of applications with u-blox 3.0 V GNSS receivers see the GNSS Implementation Application Note [13] and the Hardware Integration Manual of the u-blox GNSS receivers. 2.6.3.2 Guidelines for DDC (I C) layout design The DDC (I C) serial interface requires the same consideration regarding electro-magnetic interference as any other digital interface. Keep the traces short and avoid coupling with RF line or sensitive analog inputs, since the signals can cause the radiation of some harmonics of the digital data frequency. UBX-16010572 - R01 Objective Specification Design-in Page 110 of 146 TOBY-R2 series - System Integration Manual 2.6.4 SDIO interface 2.6.4.1 Guidelines for SDIO circuit design The functionality of the SDIO Secure Digital Input Output interface pins is not supported by TOBY-R2 series modules “02” product versions: the pins should not be driven by any external device. TOBY-R2 series modules include a 4-bit Secure Digital Input Output interface (SDIO_D0, SDIO_D1, SDIO_D2, SDIO_D3, SDIO_CLK, SDIO_CMD) designed to communicate with an external u-blox short range Wi-Fi module. Combining a u-blox cellular module with a u-blox short range communication module gives designers full access to the Wi-Fi module directly via the cellular module, so that a second interface connected to the Wi-Fi module is not necessary. AT commands via the AT interfaces of the cellular module (UART, USB) allows full control of the Wi-Fi module from any host processor, because Wi-Fi control messages are relayed to the Wi-Fi module via the dedicated SDIO interface. Further guidelines for SDIO interface circuit design will be described in detail in a successive release of the System Integration Manual. Do not apply voltage to any SDIO interface pin before the switch-on of SDIO interface supply source (V_INT), to avoid latch-up of circuits and allow a proper boot of the module. ESD sensitivity rating of SDIO interface pins is 1 kV (HMB according to JESD22-A114). Higher protection level could be required if the lines are externally accessible and it can be achieved by mounting a very low capacitance ESD protection (e.g. Tyco Electronics PESD0402-140 ESD), close to accessible points. If the SDIO interface pins are not used, they can be left unconnected on the application board. 2.6.4.2 Guidelines for SDIO layout design The SDIO serial interface requires the same consideration regarding electro-magnetic interference as any other high speed digital interface. Keep the traces short, avoid stubs and avoid coupling with RF lines / parts or sensitive analog inputs, since the signals can cause the radiation of some harmonics of the digital data frequency. Consider the usage of low value series damping resistors to avoid reflections and other losses in signal integrity, which may create ringing and loss of a square wave shape. UBX-16010572 - R01 Objective Specification Design-in Page 111 of 146 TOBY-R2 series - System Integration Manual 2.7 Audio interface 2.7.1 Digital audio interface 2.7.1.1 Guidelines for digital audio circuit design I S digital audio interface can be connected to an external digital audio device for voice applications. Any external digital audio device compliant with the configuration of the digital audio interface of the TOBY-R2 series cellular module can be used, given that the external digital audio device must provide: The opposite role: slave or master role, as TOBY-R2 series modules may act as master or slave The same mode and frame format: PCM / short synch mode or Normal I S / long synch mode with data in 2’s complement notation MSB transmitted first data word length = 16-bit (16 clock cycles) frame length = synch signal period: 17-bit or 18-bit in PCM / short alignment mode (16 + 1 or 16 + 2 clock cycles, with the Word Alignment / Synchronization signal set high for 1 clock cycle or 2 clock cycles) The same sample rate, i.e. synch signal frequency, configurable by AT+UI2S parameter 8 kHz 11.025 kHz 12 kHz 16 kHz 22.05 kHz 24 kHz 32 kHz 44.1 kHz 48 kHz The same serial clock frequency: 32-bit in Normal I S mode / long alignment mode (16 x 2 clock cycles) 17 x or 18 x in PCM / short alignment mode, or 16 x 2 x in Normal I S mode / long alignment mode Compatible voltage levels (1.80 V typ.), otherwise it is recommended to connect the 1.8 V digital audio interface of the module to the external 3.0 V (or similar) digital audio device by means of appropriate unidirectional voltage translators (e.g. TI SN74AVC4T774 or SN74AVC2T245, providing partial power down feature so that the digital audio device 3.0 V supply can be also ramped up before V_INT 1.8 V supply), using the module V_INT output as 1.8 V supply for the voltage translators on the module side For the appropriate selection of a compliant external digital audio device, see section 1.10.1 and see the +UI2S AT command description in the u-blox AT Commands Manual [2] for further details regarding the capabilities and the possible settings of I S digital audio interface of TOBY-R2 series modules. An appropriate specific application circuit has to be implemented and configured according to the particular external digital audio device or audio codec used and according to the application requirements. UBX-16010572 - R01 Objective Specification Design-in Page 112 of 146 TOBY-R2 series - System Integration Manual Examples of manufacturers offering compatible audio codec parts are the following: Maxim Integrated (as the MAX9860, MAX9867, MAX9880A audio codecs) Texas Instruments / National Semiconductor Cirrus Logic / Wolfson Microelectronics Nuvoton Technology Asahi Kasei Microdevices Realtek Semiconductor Figure 63 and Table 47 describe an application circuit for the I S digital audio interface providing basic voice capability using an external audio voice codec, in particular the Maxim MAX9860 audio codec. DAC and ADC integrated in the external audio codec respectively converts an incoming digital data stream to analog audio output through a mono amplifier and converts the microphone input signal to the digital bit stream over the digital audio interface, A digital side-tone mixer integrated in the external audio codec provides loopback of the microphones/ADC signal to the DAC/headphone output. The module’s I S interface (I S master) is connected to the related pins of the external audio codec (I S slave). The GPIO6 of the TOBY-R2 series module (that provides a suitable digital output clock) is connected to the clock input of the external audio codec to provide clock reference. The external audio codec is controlled by the TOBY-R2 series module using the DDC (I C) interface, which can concurrently communicate with other I C devices and control an external audio codec. The V_INT output supplies the external audio codec, defining proper digital interfaces voltage level. Additional components are provided for EMC and ESD immunity conformity: a 10 nF bypass capacitor and a series chip ferrite bead noise/EMI suppression filter provided on each microphone line input and speaker line output of the external codec as described in Figure 63 and Table 47. The necessity of these or other additional parts for EMC improvement may depend on the specific application board design. Specific AT commands are available to configure the Maxim MAX9860 audio codec: for more details see the u-blox AT Commands Manual [2], +UEXTDCONF AT command. As various external audio codecs other than the one described in Figure 63 / Table 47 can be used to provide voice capability, the appropriate specific application circuit has to be implemented and configured according to the particular external digital audio device or audio codec used and according to the application requirements. TOBY-R2 series 1V8 V_INT R1 R2 R3 Audio Codec C1 IRQn SDA 55 SCL 54 C2 C3 VDD MICBIAS C4 SDA SCL I2S_TXD 51 SDIN I2S_RXD 53 SDOUT I2S_CLK 52 BCLK I2S_WA 50 LRCLK GPIO6 61 MCLK MICLP MICLN EMI1 C5 OUTP EMI2 C6 J1 R5 MICGND OUTN Microphone Connector MIC R4 C12 C11 C8 C7 D1 EMI3 Speaker SPK Connector EMI4 J2 GND GND C14 C13 C10 C9 D2 U1 Figure 63: I2S interface application circuit with an external audio codec to provide voice capability UBX-16010572 - R01 Objective Specification Design-in Page 113 of 146 TOBY-R2 series - System Integration Manual Reference Description Part Number – Manufacturer C1 C2, C4, C5, C6 100 nF Capacitor Ceramic X5R 0402 10% 10V 1 µF Capacitor Ceramic X5R 0402 10% 6.3 V GRM155R71C104KA01 – Murata GRM155R60J105KE19 – Murata C3 C7, C8, C9, C10 10 µF Capacitor Ceramic X5R 0603 20% 6.3 V 27 pF Capacitor Ceramic COG 0402 5% 25 V GRM188R60J106ME47 – Murata GRM1555C1H270JZ01 – Murata C11, C12, C13, C14 D1, D2 10 nF Capacitor Ceramic X5R 0402 10% 50V Low Capacitance ESD Protection GRM155R71C103KA88 – Murata USB0002RP or USB0002DP – AVX EMI1, EMI2, EMI3, EMI4 J1 Chip Ferrite Bead Noise/EMI Suppression Filter 1800 Ohm at 100 MHz, 2700 Ohm at 1 GHz Microphone Connector BLM15HD182SN1 – Murata J2 MIC Speaker Connector 2.2 k Electret Microphone Various manufacturers Various manufacturers R1, R2 4.7 k Resistor 0402 5% 0.1 W RC0402JR-074K7L - Yageo Phycomp R3 10 k Resistor 0402 5% 0.1 W RC0402JR-0710KL - Yageo Phycomp R4, R5 2.2 k Resistor 0402 5% 0.1 W RC0402JR-072K2L – Yageo Phycomp SPK 32 Speaker 16-Bit Mono Audio Voice Codec Various manufacturers U1 Various manufacturers MAX9860ETG+ - Maxim Table 47: Example of components for audio voice codec application circuit Do not apply voltage to any I S pin before the switch-on of I S supply source (V_INT), to avoid latch-up of circuits and allow a proper boot of the module. If the external signals connected to the cellular module cannot be tri-stated or set low, insert a multi channel digital switch (e.g. TI SN74CB3Q16244, TS5A3159, or TS5A63157) between the two-circuit connections and set to high impedance before V_INT switch-on. ESD sensitivity rating of I S interface pins is 1 kV (Human Body Model according to JESD22-A114). Higher protection level could be required if the lines are externally accessible and it can be achieved by mounting a general purpose ESD protection (e.g. EPCOS CA05P4S14THSG varistor array) close to accessible points. If the I S digital audio pins are not used, they can be left unconnected on the application board. 2.7.1.2 Guidelines for digital audio layout design I S interface and clock output lines require the same consideration regarding electro-magnetic interference as any other high speed digital interface. Keep the traces short and avoid coupling with RF lines / parts or sensitive analog inputs, since the signals can cause the radiation of some harmonics of the digital data frequency. 2.7.1.3 Guidelines for analog audio layout design Accurate design of the analog audio circuit is very important to obtain clear and high quality audio. The GSM signal burst has a repetition rate of 217 Hz that lies in the audible range. A careful layout is required to reduce the risk of noise from audio lines due to both VCC burst noise coupling and RF detection. General guidelines for the uplink path (microphone), which is commonly the most sensitive, are the following: Avoid coupling of any noisy signal to microphone lines: it is strongly recommended to route microphone lines away from module VCC supply line, any switching regulator line, RF antenna lines, digital lines and any other possible noise source. Avoid coupling between microphone and speaker / receiver lines. Optimize the mechanical design of the application device, the position, orientation and mechanical fixing (for example, using rubber gaskets) of microphone and speaker parts in order to avoid echo interference between uplink path and downlink path. UBX-16010572 - R01 Objective Specification Design-in Page 114 of 146 TOBY-R2 series - System Integration Manual Keep ground separation from microphone lines to other noisy signals. Use an intermediate ground layer or vias wall for coplanar signals. In case of external audio device providing differential microphone input, route microphone signal lines as a differential pair embedded in ground to reduce differential noise pick-up. The balanced configuration will help reject the common mode noise. Cross other signals lines on adjacent layers with 90° crossing. Place bypass capacitor for RF very close to active microphone. The preferred microphone should be designed for GSM applications which typically have internal built-in bypass capacitor for RF very close to active device. If the integrated FET detects the RF burst, the resulting DC level will be in the pass-band of the audio circuitry and cannot be filtered by any other device. General guidelines for the downlink path (speaker / receiver) are the following: The physical width of the audio output lines on the application board must be wide enough to minimize series resistance since the lines are connected to low impedance speaker transducer. Avoid coupling of any noisy signal to speaker lines: it is recommended to route speaker lines away from module VCC supply line, any switching regulator line, RF antenna lines, digital lines and any other possible noise source. Avoid coupling between speaker / receiver and microphone lines. Optimize the mechanical design of the application device, the position, orientation and mechanical fixing (for example, using rubber gaskets) of speaker and microphone parts in order to avoid echo interference between downlink path and uplink path. In case of external audio device providing differential speaker / receiver output, route speaker signal lines as a differential pair embedded in ground up to reduce differential noise pick-up. The balanced configuration will help reject the common mode noise. Cross other signals lines on adjacent layers with 90° crossing. Place bypass capacitor for RF close to the speaker. UBX-16010572 - R01 Objective Specification Design-in Page 115 of 146 TOBY-R2 series - System Integration Manual 2.8 General Purpose Input/Output 2.8.1.1 Guidelines for GPIO circuit design A typical usage of TOBY-R2 series modules’ GPIOs can be the following: Network indication provided over GPIO1 or GPIO4 pin (see Figure 64 / Table 48 below) SIM card detection provided over GPIO5 (see Figure 47 / Table 37 in section 2.5) Clock output provided over GPIO6 (see Figure 63 / Table 47 in section 2.7.1) 3V8 TOBY-R2 series R3 GPIO1 21 Network Indicator DL1 R1 T1 R2 Figure 64: Application circuit for network indication provided over GPIO1 Reference Description Part Number - Manufacturer R1 10 k Resistor 0402 5% 0.1 W Various manufacturers R2 47 k Resistor 0402 5% 0.1 W Various manufacturers R3 Various manufacturers DL1 820 Resistor 0402 5% 0.1 W LED Red SMT 0603 T1 NPN BJT Transistor BC847 - Infineon LTST-C190KRKT - Lite-on Technology Corporation Table 48: Components for network indication application circuit Use transistors with at least an integrated resistor in the base pin or otherwise put a 10 k resistor on the board in series to the GPIO of TOBY-R2 series modules. Do not apply voltage to any GPIO of the module before the switch-on of the GPIOs supply (V_INT), to avoid latch-up of circuits and allow a proper module boot. If the external signals connected to the module cannot be tri-stated or set low, insert a multi channel digital switch (e.g. TI SN74CB3Q16244, TS5A3159, TS5A63157) between the two-circuit connections and set to high impedance before V_INT switch-on. ESD sensitivity rating of the GPIO pins is 1 kV (Human Body Model according to JESD22-A114). Higher protection level could be required if the lines are externally accessible and it can be achieved by mounting an ESD protection (e.g. EPCOS CA05P4S14THSG varistor array) close to accessible points. If the GPIO pins are not used, they can be left unconnected on the application board. 2.8.1.2 Guidelines for general purpose input/output layout design The general purpose inputs / outputs pins are generally not critical for layout. UBX-16010572 - R01 Objective Specification Design-in Page 116 of 146 TOBY-R2 series - System Integration Manual 2.9 Reserved pins (RSVD) TOBY-R2 series modules have pins reserved for future use, marked as RSVD. All the RSVD pins are to be left unconnected on the application board except the following RSVD pins as described in Figure 65: the RSVD pin number 6 that must be externally connected to ground the RSVD pin number 18 that is recommended to be connected to a Test-Point for diagnostic access the RSVD pin number 19 that is recommended to be connected to a Test-Point for diagnostic access TOBY-R2 series RSVD RSVD 18 Test-Point RSVD 19 Test-Point RSVD Figure 65: Application circuit for the reserved pins (RSVD) 2.10 Module placement An optimized placement allows a minimum RF line’s length and closer path from DC source for VCC. Make sure that the module, analog parts and RF circuits are clearly separated from any possible source of radiated energy. In particular, digital circuits can radiate digital frequency harmonics, which can produce ElectroMagnetic Interference that affects the module, analog parts and RF circuits’ performance. Implement proper countermeasures to avoid any possible Electro-Magnetic Compatibility issue. Make sure that the module, RF and analog parts / circuits, and high speed digital circuits are clearly separated from any sensitive part / circuit which may be affected by Electro-Magnetic Interference, or employ countermeasures to avoid any possible Electro-Magnetic Compatibility issue. Provide enough clearance between the module and any external part. The heat dissipation during continuous transmission at maximum power can significantly raise the temperature of the application base-board below the TOBY-R2 series modules: avoid placing temperature sensitive devices close to the module. UBX-16010572 - R01 Objective Specification Design-in Page 117 of 146 TOBY-R2 series - System Integration Manual 2.11 Module footprint and paste mask Figure 66 and Table 49 describe the suggested footprint (i.e. copper mask) layout for TOBY-R2 series modules. The proposed land pattern layout slightly reflects the modules’ pads layout, with most of the lateral pads designed wider on the application board (1.8 x 0.8 mm) than on the module (1.5 x 0.8 mm). M1 M1 M2 M1 M1 M3 Module placement outline P3 P2 P1 F1 F2 I2 I1 I1 I1 I2 I1 J1 F2 Figure 66: TOBY-R2 series module suggest footprint (application board top view) Parameter Value Parameter Value Parameter Value F1 F2 35.6 mm 24.8 mm 2.40 mm 2.25 mm 1.45 mm 1.30 mm 1.10 mm I1 I2 M1 0.80 mm 1.50 mm 1.80 mm 0.30 mm 3.15 mm 7.15 mm 1.80 mm M2 M3 P1 P2 P3 5.20 mm 4.50 mm 2.10 mm 1.10 mm 1.10 mm 1.25 mm 2.85 mm Table 49: TOBY-R2 series module suggest footprint dimensions The Non Solder Mask Defined (NSMD) pad type is recommended over the Solder Mask Defined (SMD) pad type, implementing the solder mask opening 50 µm larger per side than the corresponding copper pad. The suggested paste mask layout for TOBY-R2 series modules slightly reflects the copper mask layout described in Figure 66 and Table 49, as different stencil apertures layout for any specific pad is recommended: Blue marked pads: Paste layout reduced circumferentially about 0.025 mm to Copper layout Green marked pads: Paste layout enlarged circumferentially about 0.025 mm to Copper layout Purple marked pads: Paste layout one to one to Copper layout The recommended solder paste thickness is 150 µm, according to application production process requirements. These are recommendations only and not specifications. The exact mask geometries, distances and stencil thicknesses must be adapted to the specific production processes (e.g. soldering etc.) of the customer. UBX-16010572 - R01 Objective Specification Design-in Page 118 of 146 TOBY-R2 series - System Integration Manual 2.12 Thermal guidelines Modules’ operating temperature range is specified in TOBY-R2 series Data Sheet [1]. The most critical condition concerning module thermal performance is the uplink transmission at maximum power (data upload in connected-mode), when the baseband processor runs at full speed, radio circuits are all active and the RF power amplifier is driven to higher output RF power. This scenario is not often encountered in real networks (for example, see the Terminal Tx Power distribution for WCDMA, taken from operation on a live network, described in the GSMA TS.09 Battery Life Measurement and Current Consumption Technique [14]); however the application should be correctly designed to cope with it. During transmission at maximum RF power the TOBY-R2 series modules generate thermal power that may exceed 2 W: this is an indicative value since the exact generated power strictly depends on operating condition such as the actual antenna return loss, the number of allocated TX resource blocks, the transmitting frequency band, etc. The generated thermal power must be adequately dissipated through the thermal and mechanical design of the application. The spreading of the Module-to-Ambient thermal resistance (Rth,M-A) depends on the module operating condition. The overall temperature distribution is influenced by the configuration of the active components during the specific mode of operation and their different thermal resistance toward the case interface. The Module-to-Ambient thermal resistance value and the relative increase of module temperature will differ according to the specific mechanical deployments of the module, e.g. application PCB with different dimensions and characteristics, mechanical shells enclosure, or forced air flow. The increase of the thermal dissipation, i.e. the reduction of the Module-to-Ambient thermal resistance, will decrease the temperature of the modules’ internal circuitry for a given operating ambient temperature. This improves the device long-term reliability in particular for applications operating at high ambient temperature. Recommended hardware techniques to be used to improve heat dissipation in the application: Connect each GND pin with solid ground layer of the application board and connect each ground area of the multilayer application board with complete thermal via stacked down to main ground layer. Provide a ground plane as wide as possible on the application board. Optimize antenna return loss, to optimize overall electrical performance of the module including a decrease of module thermal power. Optimize the thermal design of any high-power components included in the application, such as linear regulators and amplifiers, to optimize overall temperature distribution in the application device. Select the material, the thickness and the surface of the box (i.e. the mechanical enclosure) of the application device that integrates the module so that it provides good thermal dissipation. Further hardware techniques that may be considered to improve the heat dissipation in the application: Force ventilation air-flow within mechanical enclosure. Provide a heat sink component attached to the module top side, with electrically insulated / high thermal conductivity adhesive, or on the backside of the application board, below the cellular module, as a large part of the heat is transported through the GND pads of the TOBY-R2 series LGA modules and dissipated over the backside of the application board. For example, the Module-to-Ambient thermal resistance (Rth,M-A) is strongly reduced with forced air ventilation and a heat-sink installed on the back of the application board, decreasing the module temperature variation. Beside the reduction of the Module-to-Ambient thermal resistance implemented by proper application hardware design, the increase of module temperature can be moderated by proper application software implementation: Enable power saving configuration using the AT+UPSV command (see section 1.13.16). Enable module connected-mode for a given time period and then disable it for a time period enough long to properly mitigate temperature increase. UBX-16010572 - R01 Objective Specification Design-in Page 119 of 146 TOBY-R2 series - System Integration Manual 2.13 ESD guidelines The sections 2.13.1 and 2.13.2 are related to EMC / ESD immunity. The modules are ESD sensitive devices, and the ESD sensitivity for each pin (as Human Body Model according to JESD22-A114F) is specified in TOBY-R2 series Data Sheet [1]. Special precautions are required when handling: see section 3.2 for handling guidelines. 2.13.1 ESD immunity test overview The immunity of devices integrating TOBY-R2 series modules to Electro-Static Discharge (ESD) is part of the Electro-Magnetic Compatibility (EMC) conformity which is required for products bearing the CE marking, compliant with the R&TTE Directive (99/5/EC), the EMC Directive (89/336/EEC) and the Low Voltage Directive (73/23/EEC) issued by the Commission of the European Community. Compliance with these directives implies conformity to the following European Norms for device ESD immunity: ESD testing standard CENELEC EN 61000-4-2 [15] and the radio equipment standards ETSI EN 301 489-1 [16], ETSI EN 301 489-7 [17], ETSI EN 301 489-24 [18], which requirements are summarized in Table 50. The ESD immunity test is performed at the enclosure port, defined by ETSI EN 301 489-1 [16] as the physical boundary through which the electromagnetic field radiates. If the device implements an integral antenna, the enclosure port is seen as all insulating and conductive surfaces housing the device. If the device implements a removable antenna, the antenna port can be separated from the enclosure port. The antenna port includes the antenna element and its interconnecting cable surfaces. The applicability of ESD immunity test to the whole device depends on the device classification as defined by ETSI EN 301 489-1 [16]. Applicability of ESD immunity test to the relative device ports or the relative interconnecting cables to auxiliary equipment, depends on device accessible interfaces and manufacturer requirements, as defined by ETSI EN 301 489-1 [16]. Contact discharges are performed at conductive surfaces, while air discharges are performed at insulating surfaces. Indirect contact discharges are performed on the measurement setup horizontal and vertical coupling planes as defined in CENELEC EN 61000-4-2 [15]. For the definition of integral antenna, removable antenna, antenna port and device classification see ETSI EN 301 489-1 [16]. For the contact / air discharges definitions see CENELEC EN 61000-4-2 [15]. Application Category Immunity Level All exposed surfaces of the radio equipment and ancillary equipment in a representative configuration Contact Discharge 4 kV Air Discharge 8 kV Table 50: EMC / ESD immunity requirements as defined by CENELEC EN 61000-4-2 and ETSI EN 301 489-1, 301 489-7, 301 489-24 UBX-16010572 - R01 Objective Specification Design-in Page 120 of 146 TOBY-R2 series - System Integration Manual 2.14 Schematic for TOBY-R2 series module integration 2.14.1 Schematic for TOBY-R2 series module “02” product version Figure 67 is an example of a schematic diagram where a TOBY-R2 series cellular module “02” product version is integrated into an application board, using all the available interfaces and functions of the module. TOBY-R2 series (’02’ product version) 330µF 100nF 10nF 68pF 70 VCC 71 VCC 72 VCC 15pF GND ANT1 81 82nH ANT2 87 ANT_DET 75 Secondary Cellular Antenna Connector 33pF 82nH Mount for modules supporting 2G RTC back-up Primary Cellular Antenna Connector 33pF 3V8 V_BCKP 10k 27pF Application Processor ESD V_INT GND 100µF SIM Card Holder 1k TP V_INT GPIO5 60 SW2 VSIM 59 CCVCC (C1) SIM_IO 57 CCIO (C7) SIM_CLK 56 CCCLK (C3) SIM_RST 58 CCRST (C2) SW1 CCVPP (C6) TP Open drain output TP Open drain output 20 23 PWR_ON RESET_N 470k 47pF 47pF 47pF 47pF 100nF V_INT VBUS DD+ Audio Codec MAX9860 10k USB 2.0 host 0Ω TP 0Ω TP 0Ω TP VDD 27 USB_D- 28 USB_D+ MICBIAS 4.7k VUSB_DET GND SDA 55 SCL 54 SCL I2S_TXD 51 SDIN SDA TXD RXD 0Ω TP RTS TP CTS DTR 0Ω TP TP DSR TP RI DCD TP 0Ω TP 16 TXD 17 RXD 14 RTS 15 CTS 13 DTR 10 DSR 11 RI 12 DCD 100nF 1µF 1µF 10µF 2.2k 4.7k I2S_RXD 53 SDOUT I2S_CLK 52 BCLK MICLP MICLN MICGND 1.8 V DTE TP V_INT IRQn GND 0Ω GND (C5) ESD ESD ESD ESD ESD ESD I2S_WA 50 LRCLK GPIO6 61 MCLK OUTP OUTN MIC EMI 1µF EMI 1µF 2.2k 10nF 10nF 27pF 27pF ESD ESD 27pF 27pF ESD ESD SPK EMI EMI 10nF 10nF GND GND 3V8 Network Indicator TP TP 26 HOST_SELECT0 SDIO_D0 66 62 HOST_SELECT1 SDIO_D1 68 SDIO_D2 63 22 GPIO2 SDIO_D3 67 24 GPIO3 SDIO_CLK 64 25 GPIO4 SDIO_CMD 65 18 RSVD GPIO1 21 19 RSVD RSVD RSVD GND Figure 67: Example of schematic diagram to integrate a TOBY-R2 module “02” product version using all available interfaces UBX-16010572 - R01 Objective Specification Design-in Page 121 of 146 TOBY-R2 series - System Integration Manual 2.15 Design-in checklist This section provides a design-in checklist. 2.15.1 Schematic checklist The following are the most important points for a simple schematic check: DC supply must provide a nominal voltage at VCC pin within the operating range limits. VCC voltage supply should be clean, with very low ripple/noise: provide the suggested bypass capacitors, in particular if the application device integrates an internal antenna. Do not apply loads which might exceed the limit for maximum available current from V_INT supply. Capacitance and series resistance must be limited on each SIM signal to match the SIM specifications. Capacitance and series resistance must be limited on each high speed line of the USB interface. Consider providing appropriate low value series damping resistors on SDIO lines to avoid reflections. Check the digital audio interface specifications to connect a proper external audio device. Provide accessible test points directly connected to the RSVD pins number 18 and 19. All unused pins can be left unconnected except the RSVD pin number 6 of TOBY-R2 series modules, which must be connected to GND. DC supply must be capable of supporting both the highest peak and the highest averaged current consumption values in connected-mode, as specified in the TOBY-R2 series Data Sheet [1]. Check that voltage level of any connected pin does not exceed the relative operating range. Provide accessible test points directly connected to the following pins of the TOBY-R2 series modules: V_INT, PWR_ON and RESET_N for diagnostic purpose. Insert the suggested pF capacitors on each SIM signal and low capacitance ESD protections if accessible. Check UART signals direction, as the modules’ signal names follow the ITU-T V.24 Recommendation [7]. Provide accessible test points directly connected to all the UART pins of the TOBY-R2 series modules (TXD, RXD, DTR, DCD) for diagnostic purpose, in particular providing a 0 series jumper on each line to detach each UART pin of the module from the DTE application processor. If the USB is not used, provide accessible test points directly connected to the USB interface (VUSB_DET, USB_D+ and USB_D- pins). Add a proper pull-up resistor (e.g. 4.7 k) to V_INT or another proper 1.8 V supply on each DDC (I C) interface line, if the interface is used. Capacitance and series resistance must be limited on master clock output line and each I S interface line Consider passive filtering parts on each used analog audio line. Use transistors with at least an integrated resistor in the base pin or otherwise put a 10 k resistor on the board in series to the GPIO when those are used to drive LEDs. Provide proper precautions for EMC / ESD immunity as required on the application board. Do not apply voltage to any generic digital interface pin of TOBY-R2 series modules before the switchon of the generic digital interface supply source (V_INT). UBX-16010572 - R01 Objective Specification Design-in Page 122 of 146 TOBY-R2 series - System Integration Manual 2.15.2 Layout checklist The following are the most important points for a simple layout check: Check 50 nominal characteristic impedance of the RF transmission line connected to the ANT1 and the ANT2 ports (antenna RF interfaces). Ensure no coupling occurs between the RF interface and noisy or sensitive signals (primarily analog audio input/output signals, SIM signals, high-speed digital lines such as SDIO, USB and other data lines). Optimize placement for minimum length of RF line. Ensure an optimal grounding connecting each GND pin with application board solid ground layer. Keep routing short and minimize parasitic capacitance on the SIM lines to preserve signal integrity. Keep the SDIO traces short, avoid stubs, avoid coupling with any RF line / part and consider low value series damping resistors to avoid reflections and other losses in signal integrity. Ensure appropriate RF precautions for the Wi-Fi and Cellular technologies coexistence Route analog audio signals away from noisy sources (primarily RF interface, VCC, switching supplies). Check the footprint and paste mask designed for TOBY-R2 series module as illustrated in section 2.11. VCC line should be wide and as short as possible. Route VCC supply line away from RF lines / parts and other sensitive analog lines / parts. The VCC bypass capacitors in the picoFarad range should be placed as close as possible to the VCC pins, in particular if the application device integrates an internal antenna. Use as many vias as possible to connect the ground planes on multilayer application board, providing a dense line of vias at the edges of each ground area, in particular along RF and high speed lines. USB_D+ / USB_D- traces should meet the characteristic impedance requirement (90 differential and 30 common mode) and should not be routed close to any RF line / part. Ensure appropriate RF precautions for the GNSS and Cellular technologies coexistence as described in the GNSS Implementation Application Note [13]. The audio outputs lines on the application board must be wide enough to minimize series resistance. 2.15.3 Antenna checklist Antenna termination should provide 50 characteristic impedance with V.S.W.R at least less than 3:1 (recommended 2:1) on operating bands in deployment geographical area. Follow the recommendations of the antenna producer for correct antenna installation and deployment (PCB layout and matching circuitry). Ensure compliance with any regulatory agency RF radiation requirement, as reported in sections 4.2.2 and/or 4.3.1 for products marked with the FCC and/or IC. Ensure high and similar efficiency for both the primary (ANT1) and the secondary (ANT2) antenna. Ensure high isolation between the cellular antennas and any other antenna or transmitter. Ensure high isolation between the primary (ANT1) and the secondary (ANT2) antenna. Ensure low Envelope Correlation Coefficient between the primary (ANT1) and the secondary (ANT2) antenna: the 3D antenna radiation patterns should have radiation lobes in different directions. UBX-16010572 - R01 Objective Specification Design-in Page 123 of 146 TOBY-R2 series - System Integration Manual 3 Handling and soldering No natural rubbers, no hygroscopic materials or materials containing asbestos are employed. 3.1 Packaging, shipping, storage and moisture preconditioning For information pertaining to TOBY-R2 series reels / tapes, Moisture Sensitivity levels (MSD), shipment and storage information, as well as drying for preconditioning, see the TOBY-R2 series Data Sheet [1] and the u-blox Package Information Guide [25]. 3.2 Handling The TOBY-R2 series modules are Electro-Static Discharge (ESD) sensitive devices. Ensure ESD precautions are implemented during handling of the module. Electrostatic discharge (ESD) is the sudden and momentary electric current that flows between two objects at different electrical potentials caused by direct contact or induced by an electrostatic field. The term is usually used in the electronics and other industries to describe momentary unwanted currents that may cause damage to electronic equipment. The ESD sensitivity for each pin of TOBY-R2 series modules (as Human Body Model according to JESD22-A114F) is specified in the TOBY-R2 series Data Sheet [1]. ESD prevention is based on establishing an Electrostatic Protective Area (EPA). The EPA can be a small working station or a large manufacturing area. The main principle of an EPA is that there are no highly charging materials near ESD sensitive electronics, all conductive materials are grounded, workers are grounded, and charge build-up on ESD sensitive electronics is prevented. International standards are used to define typical EPA and can be obtained for example from International Electrotechnical Commission (IEC) or American National Standards Institute (ANSI). In addition to standard ESD safety practices, the following measures should be taken into account whenever handling the TOBY-R2 series modules: Unless there is a galvanic coupling between the local GND (i.e. the work table) and the PCB GND, then the first point of contact when handling the PCB must always be between the local GND and PCB GND. Before mounting an antenna patch, connect ground of the device. When handling the module, do not come into contact with any charged capacitors and be careful when contacting materials that can develop charges (e.g. patch antenna, coax cable, soldering iron,…). To prevent electrostatic discharge through the RF pin, do not touch any exposed antenna area. If there is any risk that such exposed antenna area is touched in non ESD protected work area, implement proper ESD protection measures in the design. When soldering the module and patch antennas to the RF pin, make sure to use an ESD safe soldering iron. For more robust designs, employ additional ESD protection measures on the application device integrating the TOBY-R2 series modules, as described in section 2.13.3. UBX-16010572 - R01 Objective Specification Handling and soldering Page 124 of 146 TOBY-R2 series - System Integration Manual 3.3 3.3.1 Soldering Soldering paste "No Clean" soldering paste is strongly recommended for TOBY-R2 series modules, as it does not require cleaning after the soldering process has taken place. The paste listed in the example below meets these criteria. Soldering Paste: OM338 SAC405 / Nr.143714 (Cookson Electronics) Alloy specification: 95.5% Sn / 3.9% Ag / 0.6% Cu (95.5% Tin / 3.9% Silver / 0.6% Copper) 95.5% Sn / 4.0% Ag / 0.5% Cu (95.5% Tin / 4.0% Silver / 0.5% Copper) Melting Temperature: 217 °C Stencil Thickness: 150 µm for base boards The final choice of the soldering paste depends on the approved manufacturing procedures. The paste-mask geometry for applying soldering paste should meet the recommendations in section 2.11. The quality of the solder joints on the connectors (“half vias”) should meet the appropriate IPC specification. 3.3.2 Reflow soldering A convection type-soldering oven is strongly recommended for TOBY-R2 series modules over the infrared type radiation oven. Convection heated ovens allow precise control of the temperature and all parts will be heated up evenly, regardless of material properties, thickness of components and surface color. Consider the ”IPC-7530 Guidelines for temperature profiling for mass soldering (reflow and wave) processes”, published 2001. Reflow profiles are to be selected according to the following recommendations. Failure to observe these recommendations can result in severe damage to the device! Preheat phase Initial heating of component leads and balls. Residual humidity will be dried out. Note that this preheat phase will not replace prior baking procedures. Temperature rise rate: max 3 °C/s If the temperature rise is too rapid in the preheat phase it may cause excessive slumping. Time: 60 – 120 s If the preheat is insufficient, rather large solder balls tend to be generated. Conversely, if performed excessively, fine balls and large balls will be generated in clusters. End Temperature: 150 - 200 °C If the temperature is too low, non-melting tends to be caused in areas containing large heat capacity. Heating/ reflow phase The temperature rises above the liquidus temperature of 217 °C. Avoid a sudden rise in temperature as the slump of the paste could become worse. Limit time above 217 °C liquidus temperature: 40 - 60 s Peak reflow temperature: 245 °C Cooling phase A controlled cooling avoids negative metallurgical effects (solder becomes more brittle) of the solder and possible mechanical tensions in the products. Controlled cooling helps to achieve bright solder fillets with a good shape and low contact angle. Temperature fall rate: max 4 °C/s UBX-16010572 - R01 Objective Specification Handling and soldering Page 125 of 146 TOBY-R2 series - System Integration Manual To avoid falling off, modules should be placed on the topside of the motherboard during soldering. The soldering temperature profile chosen at the factory depends on additional external factors like choice of soldering paste, size, thickness and properties of the base board, etc. Exceeding the maximum soldering temperature and the maximum liquidus time limit in the recommended soldering profile may permanently damage the module. Preheat [°C] 250 Heating Peak Temp. 245°C Cooling [°C] 250 Liquidus Temperature 217 200 217 200 40 - 60 s End Temp. 150 - 200°C max 4°C/s 150 150 max 3°C/s 60 - 120 s Typical Leadfree Soldering Profile 100 50 100 50 Elapsed time [s] Figure 68: Recommended soldering profile The modules must not be soldered with a damp heat process. 3.3.3 Optical inspection After soldering the TOBY-R2 series modules, inspect the modules optically to verify that the module is properly aligned and centered. 3.3.4 Cleaning Cleaning the modules is not recommended. Residues underneath the modules cannot be easily removed with a washing process. Cleaning with water will lead to capillary effects where water is absorbed in the gap between the baseboard and the module. The combination of residues of soldering flux and encapsulated water leads to short circuits or resistor-like interconnections between neighboring pads. Water will also damage the sticker and the inkjet printed text. Cleaning with alcohol or other organic solvents can result in soldering flux residues flooding into the two housings, areas that are not accessible for post-wash inspections. The solvent will also damage the sticker and the ink-jet printed text. Ultrasonic cleaning will permanently damage the module, in particular the quartz oscillators. For best results use a "no clean" soldering paste and eliminate the cleaning step after the soldering. UBX-16010572 - R01 Objective Specification Handling and soldering Page 126 of 146 TOBY-R2 series - System Integration Manual 3.3.5 Repeated reflow soldering Only a single reflow soldering process is encouraged for boards with a module populated on it. 3.3.6 Wave soldering Boards with combined through-hole technology (THT) components and surface-mount technology (SMT) devices require wave soldering to solder the THT components. Only a single wave soldering process is encouraged for boards populated with the modules. 3.3.7 Hand soldering Hand soldering is not recommended. 3.3.8 Rework Rework is not recommended. Never attempt a rework on the module itself, e.g. replacing individual components. Such actions immediately terminate the warranty. 3.3.9 Conformal coating ® Certain applications employ a conformal coating of the PCB using HumiSeal or other related coating products. These materials affect the HF properties of the cellular modules and it is important to prevent them from flowing into the module. The RF shields do not provide 100% protection for the module from coating liquids with low viscosity, therefore care is required in applying the coating. Conformal Coating of the module will void the warranty. 3.3.10 Casting If casting is required, use viscose or another type of silicon pottant. The OEM is strongly advised to qualify such processes in combination with the cellular modules before implementing this in the production. Casting will void the warranty. 3.3.11 Grounding metal covers Attempts to improve grounding by soldering ground cables, wick or other forms of metal strips directly onto the EMI covers is done at the customer's own risk. The numerous ground pins should be sufficient to provide optimum immunity to interferences and noise. u-blox gives no warranty for damages to the cellular modules caused by soldering metal cables or any other forms of metal strips directly onto the EMI covers. 3.3.12 Use of ultrasonic processes The cellular modules contain components which are sensitive to Ultrasonic Waves. Use of any Ultrasonic Processes (cleaning, welding etc.) may cause damage to the module. u-blox gives no warranty against damages to the cellular modules caused by any Ultrasonic Processes. UBX-16010572 - R01 Objective Specification Handling and soldering Page 127 of 146 TOBY-R2 series - System Integration Manual 4 Approvals For the complete list and specific details regarding the certification schemes approvals, see TOBY-R2 series Data Sheet [1], or please contact the u-blox office or sales representative nearest you. 4.1 Product certification approval overview Product certification approval is the process of certifying that a product has passed all tests and criteria required by specifications, typically called “certification schemes” that can be divided into three distinct categories: Regulatory certification o Country specific approval required by local government in most regions and countries, such as: CE (Conformité Européenne) marking for European Union FCC (Federal Communications Commission) approval for United States Industry certification Telecom industry specific approval verifying the interoperability between devices and networks: GCF (Global Certification Forum), partnership between European device manufacturers and network operators to ensure and verify global interoperability between devices and networks PTCRB (PCS Type Certification Review Board), created by United States network operators to ensure and verify interoperability between devices and North America networks Operator certification Operator specific approval required by some mobile network operator, such as: AT&T network operator in United States Verizon Wireless network operator in United States Even if TOBY-R2 series modules are approved under all major certification schemes, the application device that integrates TOBY-R2 series modules must be approved under all the certification schemes required by the specific application device to be deployed in the market. The required certification scheme approvals and relative testing specifications differ depending on the country or the region where the device that integrates TOBY-R2 series modules must be deployed, on the relative vertical market of the device, on type, features and functionalities of the whole application device, and on the network operators where the device must operate. Check the appropriate applicability of the TOBY-R2 series module’s approvals while starting the certification process of the device integrating the module: the re-use of the u-blox cellular module’s approval can significantly reduce the cost and time to market of the application device certification. The certification of the application device that integrates a TOBY-R2 series module and the compliance of the application device with all the applicable certification schemes, directives and standards are the sole responsibility of the application device manufacturer. TOBY-R2 series modules are certified according to all capabilities and options stated in the Protocol Implementation Conformance Statement document (PICS) of the module. The PICS, according to the 3GPP TS 51.010-2 [19], 3GPP TS 34.121-2 [20], 3GPP TS 36.521-2 [22] and 3GPP TS 36.523-2 [23], is a statement of the implemented and supported capabilities and options of a device. The PICS document of the application device integrating TOBY-R2 series modules must be updated from the module PICS statement if any feature stated as supported by the module in its PICS document is not implemented or disabled in the application device. For more details regarding the AT commands settings that affect the PICS, see the u-blox AT Commands Manual [2]. Check the specific settings required for mobile network operators approvals as they may differ from the AT commands settings defined in the module as integrated in the application device. UBX-16010572 - R01 Objective Specification Approvals Page 128 of 146 TOBY-R2 series - System Integration Manual 4.2 US Federal Communications Commission notice United States Federal Communications Commission (FCC) IDs: u-blox TOBY-R200 cellular modules: XPY1EHM44NN u-blox TOBY-R201 cellular modules: XPY1EHQ25NN u-blox TOBY-R202 cellular modules: XPY1EHQ24NN 4.2.1 Safety warnings review the structure Equipment for building-in. The requirements for fire enclosure must be evaluated in the end product The clearance and creepage current distances required by the end product must be withheld when the module is installed The cooling of the end product shall not negatively be influenced by the installation of the module Excessive sound pressure from earphones and headphones can cause hearing loss No natural rubbers, hygroscopic materials, or materials containing asbestos are employed 4.2.2 Declaration of Conformity This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: this device may not cause harmful interference this device must accept any interference received, including interference that may cause undesired operation Radiofrequency radiation exposure Information: this equipment complies with radiation exposure limits prescribed for an uncontrolled environment for fixed and mobile use conditions. This equipment should be installed and operated with a minimum distance of 20 cm between the radiator and the body of the user or nearby persons. This transmitter must not be colocated or operating in conjunction with any other antenna or transmitter except as authorized in the certification of the product. The gain of the system antenna(s) used for the TOBY-R2 series modules (i.e. the combined transmission line, connector, cable losses and radiating element gain) must not exceed 8.5 dBi (1900 MHz, i.e. UMTS FDD-2 or LTE FDD-2 band), 10.0 dBi (850 MHz, i.e. UMTS FDD-5 or LTE FDD5), 7.9 dBi (1700 MHz, i.e. LTE FDD-4) and 9.7 dBi (700 MHz, i.e. LTE FDD-12) for mobile and fixed or mobile operating configurations. 4.2.3 Modifications The FCC requires the user to be notified that any changes or modifications made to this device that are not expressly approved by u-blox could void the user's authority to operate the equipment. Manufacturers of mobile or fixed devices incorporating the TOBY-R2 series modules are authorized to use the FCC Grants of the TOBY-R2 series modules for their own final products according to the conditions referenced in the certificates. The FCC Label shall in the above case be visible from the outside, or the host device shall bear a second label stating: "Contains FCC ID: XPY1EHM44NN " resp. "Contains FCC ID: XPY1EHQ25NN " resp. UBX-16010572 - R01 Objective Specification Approvals Page 129 of 146 TOBY-R2 series - System Integration Manual "Contains FCC ID: XPY1EHQ24NN " resp. IMPORTANT: Manufacturers of portable applications incorporating the TOBY-R2 series modules are required to have their final product certified and apply for their own FCC Grant related to the specific portable device. This is mandatory to meet the SAR requirements for portable devices. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. Additional Note: as per 47CFR15.105 this equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: o Reorient or relocate the receiving antenna 4.3 Increase the separation between the equipment and receiver Connect the equipment into an outlet on a circuit different from that to which the receiver is connected Consultant the dealer or an experienced radio/TV technician for help Industry Canada notice Industry Canada (IC) Certification Numbers: u-blox TOBY-R200 cellular modules: 8595A-1EHM44NN u-blox TOBY-R201 cellular modules: 8595A-1EHQ25NN u-blox TOBY-R202 cellular modules: 8595A-1EHQ24NN 4.3.1 Declaration of Conformity Radiofrequency radiation exposure Information: this equipment complies with radiation exposure limits prescribed for an uncontrolled environment for fixed and mobile use conditions. This equipment should be installed and operated with a minimum distance of 20 cm between the radiator and the body of the user or nearby persons. This transmitter must not be colocated or operating in conjunction with any other antenna or transmitter except as authorized in the certification of the product. The gain of the system antenna(s) used for the TOBY-R2 series modules (i.e. the combined transmission line, connector, cable losses and radiating element gain) must not exceed 9.1 dBi (1900 MHz, i.e. UMTS FDD-2 or LTE FDD-2 band), 6.7 dBi (850 MHz, i.e. UMTS FDD-5 or LTE FDD5), 9.3 dBi (1700 MHz, i.e. LTE FDD-4) and 6.7 dBi (700 MHz, i.e. LTE FDD-12) for mobile and fixed or mobile operating configurations. UBX-16010572 - R01 Objective Specification Approvals Page 130 of 146 TOBY-R2 series - System Integration Manual 4.3.2 Modifications The IC requires the user to be notified that any changes or modifications made to this device that are not expressly approved by u-blox could void the user's authority to operate the equipment. Manufacturers of mobile or fixed devices incorporating the TOBY-R2 series modules are authorized to use the Industry Canada Certificates of the TOBY-R2 series modules for their own final products according to the conditions referenced in the certificates. The IC Label shall in the above case be visible from the outside, or the host device shall bear a second label stating: "Contains IC: 8595A-1EHM44NN " resp. "Contains IC: 8595A-1EHQ25NN " resp. "Contains IC: 8595A-1EHQ24NN " resp. Canada, Industry Canada (IC) Notices This Class B digital apparatus complies with Canadian CAN ICES-3(B) / NMB-3(B) and RSS-210. Operation is subject to the following two conditions: this device may not cause interference this device must accept any interference, including interference that may cause undesired operation of the device Radio Frequency (RF) Exposure Information The radiated output power of the u-blox Cellular Module is below the Industry Canada (IC) radio frequency exposure limits. The u-blox Cellular Module should be used in such a manner such that the potential for human contact during normal operation is minimized. This device has been evaluated and shown compliant with the IC RF Exposure limits under mobile exposure conditions (antennas are greater than 20 cm from a person's body). This device has been certified for use in Canada. Status of the listing in the Industry Canada’s REL (Radio Equipment List) can be found at the following web address: http://www.ic.gc.ca/app/sitt/reltel/srch/nwRdSrch.do?lang=eng Additional Canadian information on RF exposure also can be found at the following web address: http://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/sf08792.html IMPORTANT: Manufacturers of portable applications incorporating the TOBY-R2 series modules are required to have their final product certified and apply for their own Industry Canada Certificate related to the specific portable device. This is mandatory to meet the SAR requirements for portable devices. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. Canada, avis d'Industrie Canada (IC) Cet appareil numérique de classe B est conforme aux normes canadiennes CAN ICES-3(B) / NMB-3(B) et CNR-210. Son fonctionnement est soumis aux deux conditions suivantes: cet appareil ne doit pas causer d'interférence cet appareil doit accepter toute interférence, notamment les interférences qui peuvent affecter son fonctionnement UBX-16010572 - R01 Objective Specification Approvals Page 131 of 146 TOBY-R2 series - System Integration Manual Informations concernant l'exposition aux fréquences radio (RF) La puissance de sortie émise par l’appareil de sans fil u-blox Cellular Module est inférieure à la limite d'exposition aux fréquences radio d'Industrie Canada (IC). Utilisez l’appareil de sans fil u-blox Cellular Module de façon à minimiser les contacts humains lors du fonctionnement normal. Ce périphérique a été évalué et démontré conforme aux limites d'exposition aux fréquences radio (RF) d'IC lorsqu'il est installé dans des produits hôtes particuliers qui fonctionnent dans des conditions d'exposition à des appareils mobiles (les antennes se situent à plus de 20 centimètres du corps d'une personne). Ce périphérique est homologué pour l'utilisation au Canada. Pour consulter l'entrée correspondant à l’appareil dans la liste d'équipement radio (REL - Radio Equipment List) d'Industrie Canada rendez-vous sur: http://www.ic.gc.ca/app/sitt/reltel/srch/nwRdSrch.do?lang=fra Pour des informations supplémentaires concernant l'exposition aux RF au Canada rendez-vous sur: http://www.ic.gc.ca/eic/site/smt-gst.nsf/fra/sf08792.html IMPORTANT: les fabricants d'applications portables contenant les modules TOBY-R2 series doivent faire certifier leur produit final et déposer directement leur candidature pour une certification FCC ainsi que pour un certificat Industrie Canada délivré par l'organisme chargé de ce type d'appareil portable. Ceci est obligatoire afin d'être en accord avec les exigences SAR pour les appareils portables. Tout changement ou modification non expressément approuvé par la partie responsable de la certification peut annuler le droit d'utiliser l'équipement. UBX-16010572 - R01 Objective Specification Approvals Page 132 of 146 TOBY-R2 series - System Integration Manual 4.4 R&TTED / RED and European Conformance CE mark The TOBY-R200 modules have been evaluated against the essential requirements of the 1999/5/EC Directive. In order to satisfy the essential requirements of the 1999/5/EC Directive, the modules are compliant with the following standards: Radio Frequency spectrum use (R&TTE art. 3.2): o EN 301 511 o EN 301 908-1 o EN 301 908-2 o EN 301 908-13 Electromagnetic Compatibility (R&TTE art. 3.1b): o EN 301 489-1 o EN 301 489-7 o EN 301 489-24 Health and Safety (R&TTE art. 3.1a) o EN 60950-1:2006 + A11:2009 + A1:2010 + A12:2011 + A2:2013 o EN 62311:2008 Radiofrequency radiation exposure Information: this equipment complies with radiation exposure limits prescribed for an uncontrolled environment for fixed and mobile use conditions. This equipment should be installed and operated with a minimum distance of 20 cm between the radiator and the body of the user or nearby persons. This transmitter must not be colocated or operating in conjunction with any other antenna or transmitter except as authorized in the certification of the product. The conformity assessment procedure for the modules, referred to in Article 10 and detailed in Annex IV of Directive 1999/5/EC, has been followed with the involvement of the following Notified Body number: 1588 Thus, the following marking is included in the product: 1588 UBX-16010572 - R01 Objective Specification Approvals Page 133 of 146 TOBY-R2 series - System Integration Manual 5 Product testing 5.1 u-blox in-series production test u-blox focuses on high quality for its products. All units produced are fully tested automatically in production line. Stringent quality control process has been implemented in the production line. Defective units are analyzed in detail to improve the production quality. This is achieved with automatic test equipment (ATE) in production line, which logs all production and measurement data. A detailed test report for each unit can be generated from the system. Figure 69 illustrates typical automatic test equipment (ATE) in a production line. The following typical tests are among the production tests. Digital self-test (firmware download, Flash firmware verification, IMEI programming) Measurement of voltages and currents Adjustment of ADC measurement interfaces Functional tests (serial interface communication, SIM card communication) Digital tests (GPIOs and other interfaces) Measurement and calibration of RF characteristics in all supported bands (such as receiver S/N verification, frequency tuning of reference clock, calibration of transmitter and receiver power levels, etc.) Verification of RF characteristics after calibration (i.e. modulation accuracy, power levels, spectrum, etc. are checked to ensure they are all within tolerances when calibration parameters are applied) Figure 69: Automatic test equipment for module tests UBX-16010572 - R01 Objective Specification Product testing Page 134 of 146 TOBY-R2 series - System Integration Manual 5.2 Test parameters for OEM manufacturer Because of the testing done by u-blox (with 100% coverage), an OEM manufacturer does not need to repeat firmware tests or measurements of the module RF performance or tests over analog and digital interfaces in their production test. However, an OEM manufacturer should focus on: Module assembly on the device; it should be verified that: o Soldering and handling process did not damage the module components All module pins are well soldered on device board There are no short circuits between pins Component assembly on the device; it should be verified that: Communication with host controller can be established The interfaces between module and device are working Overall RF performance test of the device including antenna Dedicated tests can be implemented to check the device. For example, the measurement of module current consumption when set in a specified status can detect a short circuit if compared with a “Golden Device” result. In addition, module AT commands can be used to perform functional tests on digital interfaces (communication with host controller, check SIM interface, GPIOs, etc.), on audio interfaces (audio loop for test purposes can be enabled by the AT+UPAR=2 command as described in the u-blox AT Commands Manual [2]), and to perform RF performance tests (see the following section 5.2.2 for details). 5.2.1 “Go/No go” tests for integrated devices A “Go/No go” test is typically to compare the signal quality with a “Golden Device” in a location with excellent network coverage and known signal quality. This test should be performed after data connection has been established. AT+CSQ is the typical AT command used to check signal quality in term of RSSI. See the u-blox AT Commands Manual [2] for detail usage of the AT command. These kinds of test may be useful as a “go/no go” test but not for RF performance measurements. This test is suitable to check the functionality of communication with host controller, SIM card as well as power supply. It is also a means to verify if components at antenna interface are well soldered. 5.2.2 RF functional tests The overall RF functional test of the device including the antenna can be performed with basic instruments such as a spectrum analyzer (or an RF power meter) and a signal generator with the assistance of AT+UTEST command over AT command user interface. The AT+UTEST command provides a simple interface to set the module to Rx or Tx test modes ignoring the LTE/3G/2G signaling protocol. The command can set the module into: transmitting mode in a specified channel and power level in all supported modulation schemes and bands receiving mode in a specified channel to returns the measured power level in all supported bands See the u-blox AT Commands Manual [2] and the End user test Application Note [24], for the AT+UTEST command syntax description and detail guide of usage. UBX-16010572 - R01 Objective Specification Product testing Page 135 of 146 TOBY-R2 series - System Integration Manual This feature allows the measurement of the transmitter and receiver power levels to check component assembly related to the module antenna interface and to check other device interfaces from which depends the RF performance. To avoid module damage during transmitter test, a proper antenna according to module specifications or a 50 termination must be connected to ANT1 port. To avoid module damage during receiver test the maximum power level received at ANT1 and ANT2 ports must meet module specifications. The AT+UTEST command sets the module to emit RF power ignoring LTE/3G/2G signaling protocol. This emission can generate interference that can be prohibited by law in some countries. The use of this feature is intended for testing purpose in controlled environments by qualified user and must not be used during the normal module operation. Follow instructions suggested in u-blox documentation. u-blox assumes no responsibilities for the inappropriate use of this feature. Figure 70 illustrates a typical test setup for such RF functional test. Application Processor TOBY-R2 series Cellular antenna Wideband antenna IN Spectrum Analyzer or Power Meter OUT Signal Generator AT commands ANT1 TX Application Board Cellular antennas Application Processor Wideband antenna TOBY-R2 series AT commands ANT1 RX ANT2 Application Board Figure 70: Setup with spectrum analyzer or power meter and signal generator for radiated measurements UBX-16010572 - R01 Objective Specification Product testing Page 136 of 146 TOBY-R2 series - System Integration Manual Appendix A Migration between TOBY-L2 and TOBY-R2 A.1 Overview 140 28 27 139 50 26 51 138 25 137 52 24 53 23 54 22 55 21 56 57 136 135 134 133 132 131 130 129 128 127 126 125 20 19 58 18 59 124 17 123 TOBY-L2 60 61 Top view 62 63 122 16 15 14 13 121 64 12 65 66 120 119 118 117 116 115 114 113 112 111 110 109 11 10 67 68 69 70 71 108 Pin 93-152: GND 107 72 77 78 GND RSVD GND 103 102 101 99 98 97 96 95 94 93 79 80 81 82 83 84 85 86 87 88 89 90 91 92 GND 76 104 GND 100 75 105 RSVD 74 106 GND GND ANT1 GND GND RSVD GND GND ANT2 GND GND 73 RSVD RSVD USB_D+ RSVD USB_DRSVD HOST_SELECT0 I2S_WA GPIO4 I2S_TXD GPIO3 I2S_CLK RESET_N I2S_RXD GPIO2 SCL GPIO1 SDA PWR_ON SIM_CLK RSVD SIM_IO RSVD SIM_RST RXD VSIM TXD GPIO5 CTS GPIO6 RTS HOST_SELECT1 DTR SDIO_D2 DCD SDIO_CLK RI SDIO_CMD DSR SDIO_D0 RSVD SDIO_D3 RSVD SDIO_D1 RSVD GND RSVD VCC V_INT VCC VUSB_DET VCC V_BCKP GND GND GND RSVD ANT_DET 47 151 48 49 144 150 143 149 142 148 141 147 140 32 GND 43 42 41 40 39 38 37 36 35 34 33 RSVD 44 GND 45 152 RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD GND 46 29 RSVD GND GND RSVD 30 31 30 29 145 146 28 27 139 50 26 51 138 25 137 52 24 53 23 54 22 55 21 56 57 136 135 134 133 132 131 130 129 128 127 126 125 20 19 58 18 59 124 17 123 TOBY-R2 60 61 Top view 62 63 122 16 15 14 13 121 64 12 65 66 120 119 118 117 116 115 114 113 112 111 110 109 11 10 67 68 69 70 71 108 Pin 93-152: GND 107 72 73 74 100 75 76 77 78 106 105 104 103 102 101 99 98 97 96 95 94 79 80 81 82 83 84 85 86 87 88 89 93 90 91 92 GND 141 31 145 146 GND 142 147 RSVD 143 148 GND GND ANT1 GND GND RSVD GND GND ANT2 GND GND 144 149 GND 49 150 GND 48 32 43 42 41 40 39 38 37 36 35 34 33 151 GND 44 RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD 45 152 RSVD 47 GND 46 RSVD RSVD RSVD I2S_WA I2S_TXD I2S_CLK I2S_RXD SCL SDA SIM_CLK SIM_IO SIM_RST VSIM GPIO5 GPIO6 HOST_SELECT1 SDIO_D2 SDIO_CLK SDIO_CMD SDIO_D0 SDIO_D3 SDIO_D1 GND VCC VCC VCC GND GND ANT_DET RSVD GND TOBY-L2 and TOBY-R2 series cellular modules have exactly the same TOBY form factor (35.6 x 24.8 mm LGA) with exactly the same 152-pin layout as described in Figure 71, so that the modules can be alternatively mounted on a single application board using exactly the same copper mask, solder mask and paste mask. RSVD USB_D+ USB_DHOST_SELECT0 GPIO4 GPIO3 RESET_N GPIO2 GPIO1 PWR_ON RSVD RSVD RXD TXD CTS RTS DTR DCD RI DSR RSVD RSVD RSVD RSVD V_INT VUSB_DET V_BCKP GND RSVD Figure 71: TOBY-L2 and TOBY-R2 series modules pad layout and pin assignment TOBY modules are also form-factor compatible with the u-blox LISA, SARA and LARA cellular module families: although TOBY modules, LISA modules (33.2 x 22.4 mm, 76-pin LCC), SARA modules (26.0 x 16.0 mm, 96-pin LGA) and LARA modules (26.0 x 24.0 mm, 100-pin LGA) each have different form factors, the footprints for the TOBY, LISA, SARA and LARA modules have been developed to ensure layout compatibility. With the u-blox “nested design” solution, any TOBY, LISA, SARA or LARA module can be alternatively mounted on the same space of a single “nested” application board as described in Figure 72. Guidelines in order to implement a nested application board, description of the u-blox reference nested design and comparison between TOBY, LISA, SARA and LARA modules are provided in the Nested Design Application Note [28]. TOBY cellular module LISA cellular module LARA cellular module SARA cellular module Nested application board Figure 72: TOBY, LISA, SARA, LARA modules’ layout compatibility: all modules are accommodated on the same nested footprint UBX-16010572 - R01 Objective Specification Appendix Page 137 of 146 TOBY-R2 series - System Integration Manual Table 51 summarizes the interfaces provided by TOBY-L2 and TOBY-R2 series modules. DDC (I2C) 1.8 V ● ● ○ ○ ● ○ ○ 2,5 ● ■ ● ● ● ● ● ● ■ ● ● ■ 1,2 5,8 12 Quad ● ■ ● ● ● ● ● ● ■ ○ ● ■ ■ 24 1,8 19 ● ● ● ● ● ● ● ● ● ● ● ● 1,3,5 7,8,28 24 1,2 5,8 12 Quad ● ● ● ● ● ● ● ● ● ● ● 2,4 5,12 1,2 5,8 12 Quad ● ● ● ● ● ● ● ● ● ● TOBY-R201 2,4,5 12,13 2,5 ● ● ● ● ● ● ● ● ● TOBY-R202 2,4 5,12 2,5 ● ● ● ● ● ● ● ● ● 24 TOBY-L210 1,3,5 7,8,20 24 TOBY-L220 1,3,5 8,19 TOBY-L280 TOBY-R200 12 Quad LTE bands ● = supported by all product versions ○ = supported by all product versions except version ‘00’ ○ ○ ● ○ ○ ■ ● ■ ■ ● ■ ■ ● ● ● ● ● ● ● ● ● ● ● ● ● ● □ ● ● ● ● ● □ ● ● □ ● ● ● ● ● □ ● ● □ ● ● ● ● ● □ Analog audio 2,4,5 13,17 2G bands HSUPA category 3G bands HSDPA category TOBY-L201 LTE category 1,2,4 5,8 Wi-Fi control SDIO 1.8 V ● Clock output USB 2.0 High-Speed ● 24 Network indication UART 1.8 V ● 2,4,5 7,17 GPIOs 1.8 V SIM detection ● GPIO Digital audio SIM 1.8 V / 3.0 V ○ TOBY-L200 Host select ● GPRS/EDGE class RESET_N Audio PWR_ON Serial V_INT 1.8 V supply out SIM V_BCKP System VCC module supply in Power Antenna Detection RF / Radio Access Technology MIMO 2x2 / Rx diversity Module ■ ■ = supported by all product versions except versions ‘00’,’01’,’60’ □ = supported by all product versions except versions ‘02’ Table 51: Summary of TOBY-L2 series and TOBY-R2 series modules interfaces Figure 73 summarizes the LTE, 3G and 2G operating frequency bands of TOBY-L2 and TOBY-R2 series modules. 17 17 850 TOBY-L200 700 750 800 VIII 850 900 850 900 VIII 950 960 TOBY-L201 17 13 700 13 750 800 20 850 TOBY-L210 700 750 800 900 TOBY-L220 700 750 VIII 850 900 850 950 900 28 850 TOBY-L280 700 750 800 950 VIII VIII 900 VIII 850 900 850 900 703 12 850 TOBY-R200 700 750 800 VIII 850 900 850 TOBY-R201 13 700 750 13 800 12 TOBY-R202 700 750 800 699 850 2000 2050 2100 II 2150 2200 1900 1950 2500 2550 2600 2650 2500 2700 2690 2000 2050 2100 2150 2200 2500 2550 2600 2650 2700 2155 1800 1800 1750 1800 II 1900 1850 1900 II 1900 1950 2000 2050 2100 2150 1710 2200 2170 1700 1750 1800 2500 2550 2600 2650 2500 2700 2690 900 900 1800 1700 1750 1800 1800 1700 1750 1800 2050 2100 2150 II 1900 1700 1950 1800 II 1900 1850 1900 2000 2050 2100 1700 1710 2500 2550 2600 2150 II 1900 2650 2700 2200 1950 2000 2050 2100 2500 2550 2600 2650 2500 2700 2690 2150 2200 2500 2550 2600 2650 2700 2200 2500 2550 2600 2650 2700 2200 2500 2550 2600 2650 2700 2170 1750 II 1800 1850 II 1900 1950 2000 2050 2100 2150 1710 950 2200 1710 2155 894 2000 2170 1800 900 1900 VIII 950 II 1900 1850 900 1950 1710 900 950 1900 2170 950 1850 1710 894 12 1700 850 699 1850 VIII 960 12 1800 699 12 1750 950 960 12 1950 II VIII 960 850 1700 900 824 28 1900 19 1850 1710 960 800 1800 1800 IV 2170 791 19 1750 II 1900 1710 894 20 1800 1700 850 704 II 1900 900 704 17 IV 1750 II 1800 1850 II 1900 1950 2000 2050 2100 2150 2155 LEGENDA = LTE bands = 3G bands = 2G bands Figure 73: Summary of TOBY-L2 and TOBY-R2 series modules LTE, 3G and 2G operating frequency bands UBX-16010572 - R01 Objective Specification Appendix Page 138 of 146 TOBY-R2 series - System Integration Manual A.2 Pin-out comparison between TOBY-L2 and TOBY-R2 TOBY-L2 TOBY-R2 Pin No Pin Name Description Pin Name Description RSVD Reserved RSVD Reserved GND Ground GND Ground V_BCKP RTC Supply Input/Output 3.0 V output 1.4 V – 4.2 V input (RTC backup) V_BCKP RTC Supply Input/Output 1.8 V output 1.0 V – 1.9 V input (RTC backup) Voltage values slightly different, but with no functional difference VUSB_DET Not supported VUSB_DET VBUS USB supply (5 V) detection 5 V must be applied at VUSB_DET input of TOBY-R2 to enable USB. The pin must be left unconnected on TOBY-L2, as it is not supported. V_INT Interfaces Supply Output 1.8 V output V_INT Interfaces Supply Output 1.8 V output RSVD Reserved This pin must be connected to GND RSVD Reserved This pin must be connected to GND 7-9 RSVD Reserved RSVD Reserved 10 DSR UART DSR Output18 / GPIO19 DSR UART DSR Output Further GPIO function on TOBY-L2 11 RI UART RI Output / GPIO RI UART RI Output Further GPIO function on TOBY-L2 12 DCD UART DCD Output18 / GPIO19 DCD UART DCD Output Further GPIO function on TOBY-L2 13 DTR UART DTR Input18 / GPIO19 DTR UART DTR Input Further GPIO function on TOBY-L2 14 RTS UART RTS Input18 RTS UART RTS Input 15 CTS UART CTS Output18 CTS UART CTS Output 16 TXD UART Data Input18 TXD UART Data Input 17 RXD UART Data Output18 RXD UART Data Output 18 RSVD Reserved RSVD Reserved Test-Point recommended for TOBY-R2 19 RSVD Reserved RSVD Reserved Test-Point recommended for TOBY-R2 20 PWR_ON Power-on Input Internal 50k pull-up to VCC PWR_ON Power-on Input Internal 10k pull-up to V_BCKP Internal pull-up slightly different, but with no functional difference 21 GPIO1 GPIO19 WWAN status indication on ”00”, “01” and “60” product versions GPIO1 GPIO 22 GPIO2 GPIO19 GPIO2 GPIO 23 RESET_N Reset signal Input Internal 50k pull-up to VCC Reset, Switch-on, Switch-off RESET_N Reset signal Input Internal 10k pull-up to V_BCKP Reset, Switch-on 24 GPIO3 GPIO19 GPIO3 GPIO 25 GPIO4 GPIO19 GPIO4 GPIO 26 HOST_SELECT0 Not supported HOST_SELECT0 Not supported 27 USB_D- USB Data I/O (D-) USB_D- USB Data I/O (D-) 28 USB_D+ USB Data I/O (D+) USB_D+ USB Data I/O (D+) 29 RSVD Reserved RSVD Reserved 30 GND Ground GND Ground 31 RSVD Reserved RSVD Reserved 32 GND Ground GND Ground 33-43 RSVD Reserved RSVD Reserved 44 GND Ground GND Ground 45 RSVD Reserved RSVD Reserved 46 GND Ground GND Ground 47-49 RSVD Reserved RSVD Reserved 50 I2S_WA I2S Word Alignment18 / GPIO19 I2S_WA I2S Word Alignment / GPIO 51 I2S_TXD I2S Data Output18 / GPIO19 I2S_TXD I2S Data Output / GPIO I2S_CLK I2S Clock / GPIO I2S_RXD I2S Data Input / GPIO 52 53 18 19 I2S_CLK I2S_RXD 18 18 I S Clock / GPIO 18 19 19 I S Data Input / GPIO 19 Remarks for migration Internal pull-up slightly different. Function slightly different. Not supported by “00” product versions Not supported by “00”, “01”, “60” product versions UBX-16010572 - R01 Objective Specification Appendix Page 139 of 146 TOBY-R2 series - System Integration Manual TOBY-L2 TOBY-R2 Pin No Pin Name Description 54 SCL I C Clock Output Pin Name Description SCL I C Clock Output 55 SDA I C Data I/O SDA I C Data I/O 56 SIM_CLK 57 SIM_IO SIM Clock Output SIM_CLK SIM Clock Output SIM Data I/O SIM_IO 58 SIM Data I/O SIM_RST SIM Reset Output SIM_RST SIM Reset Output 59 VSIM SIM Supply Output VSIM SIM Supply Output 60 GPIO5 GPIO SIM detection 20 GPIO5 GPIO SIM detection 61 GPIO6 GPIO20 GPIO6 GPIO 62 HOST_SELECT1 Not supported HOST_SELECT1 Not supported 63 SDIO_D2 SDIO serial data [2] SDIO_D2 SDIO serial data [2] 20 20 64 SDIO_CLK SDIO serial clock 65 SDIO_CMD SDIO command 66 SDIO_D0 67 20 20 Remarks for migration 21 21 SDIO_CLK SDIO serial clock SDIO_CMD SDIO command SDIO serial data [0]20 SDIO_D0 SDIO serial data [0]21 SDIO_D3 SDIO serial data [3]20 SDIO_D3 SDIO serial data [3]21 68 SDIO_D1 SDIO serial data [1] 20 SDIO_D1 SDIO serial data [1]21 69 GND Ground GND Ground 70-72 VCC Module Supply Input 3.40 V – 4.35 V normal range 3.20 V – 4.35 V extended range VCC Module Supply Input 3.30 V – 4.40 V normal range 3.00 V – 4.50 V extended range 73-74 GND Ground GND Ground 75 ANT_DET Antenna Detection Input20 ANT_DET Antenna Detection Input 76 GND Ground GND Ground 77 RSVD Reserved RSVD Reserved 78-80 GND Ground GND Ground 81 ANT1 RF Antenna Input/Output Up to six LTE bands Up to five 3G bands Up to four 2G bands ANT1 RF Antenna Input/Output Up to five LTE bands Up to four 3G bands Up to four 2G bands 82-83 GND Ground GND Ground 84 RSVD Reserved RSVD Reserved 85-86 GND Ground GND Ground 87 ANT2 RF Antenna Input ANT2 RF Antenna Input 88-90 GND Ground GND Ground 91 RSVD Reserved RSVD Reserved 92-152 GND Ground GND Ground 20 21 Larger operating ranges on TOBY-R2. VCC BB / PA split on TOBY-R200 No RF functional difference Different operating bands support No RF functional difference Different operating bands support Table 52: TOBY-L2 and TOBY-R2 series modules pin assignment with remarks for migration For further details regarding the characteristics, capabilities, usage or settings applicable for each interface of the cellular modules, see the TOBY-R2 series Data Sheet [1], the TOBY-L2 series Data Sheet [26], the TOBY-L2 / MPCI-L2 series System Integration Manual [27], the u-blox AT Commands Manual [2] and the Nested Design Application Note [28]. 20 21 Not supported by “00”, “01”, “60” product versions Not supported by “02” product versions UBX-16010572 - R01 Objective Specification Appendix Page 140 of 146 TOBY-R2 series - System Integration Manual A.3 Schematic for TOBY-L2 and TOBY-R2 integration Figure 74 shows an example schematic diagram where a TOBY-L2 series module or a TOBY-R2 series module (“00”, “01”, “02”, “60”, or “62” product versions) can be integrated into the same application board, using all the available interfaces and functions of the module. The different mounting options for the external parts are highlighted in different colors as described in the legend, according to the interfaces supported by the different module product versions. TOBY-L2 series (’00’, ‘01’, ’02’, ‘60’, ‘62’ versions) TOBY-R2 series (’02’ product versions) 0Ω for 33pF 3V8 330uF 100nF 10nF 68pF 15pF Mount for modules supporting 2G 70 VCC 71 VCC 72 VCC 8.2pF GND 81 ANT2 87 ANT_DET 75 82nH V_BCKP 10k 27pF Application Processor TP Open Drain Output 20 23 PWR_ON RESET_N ESD V_INT GND Open Drain Output SIM Card Holder 1k TP V_INT GPIO5 60 SW2 VSIM 59 CCVCC (C1) SIM_IO 57 CCIO (C7) SIM_CLK 56 CCCLK (C3) SIM_RST 58 CCRST (C2) SW1 CCVPP (C6) 470k 47pF 47pF 47pF 47pF 100nF 0Ω VBUS DD+ TP 0Ω TP 0Ω TP VUSB_DET 27 USB_D- 28 USB_D+ GND (C5) ESD ESD ESD ESD ESD ESD Audio Codec MAX9860 V_INT USB 2.0 Host Secondary Cellular Antenna Connector 33pF 100uF TP Primary Cellular Antenna Connector 82nH Mount for modules supporting LTE Band-7 RTC back-up ANT1 TOBY-L2xx-00 TOBY-L2xx-01 TOBY-L2xx-60 10k V_INT VDD IRQn MICBIAS 4.7k SDA 55 SCL 54 SCL SDA 100nF 1µF 1µF 10µF 2.2k 4.7k GND GND 1.8 V DTE TXD RXD RTS CTS DTR DSR RI DCD 0Ω TP 0Ω TP 0Ω TP 0Ω TP 0Ω TP 0Ω TP 0Ω TP 0Ω TP 16 TXD 17 RXD 14 RTS 15 CTS 13 DTR 10 DSR 11 RI 12 DCD MICLP I2S_TXD 51 SDIN I2S_RXD 53 SDOUT I2S_CLK 52 BCLK MICLN GPIO6 50 LRCLK 61 MCLK 2.2k 10nF 10nF OUTP OUTN IN 26 HOST_SELECT0 62 HOST_SELECT1 OUT LDO Regulator IN 3V8 66 68 SDIO_D2 22 Network Indicator 24 25 GPIO2 GPIO3 GPIO4 SDIO_D3 SDIO_CMD 65 GPIO1 22Ω 22Ω 22Ω 67 64 21 22Ω 22Ω TP 18 RSVD 19 RSVD RSVD RSVD VIO 1V8 WWAN Indicator 15 SD_D0 16 SD_D1 11 SD_D2 12 SD_D3 14 SD_CLK 13 SD_CMD PDn 10 RESETn 19 SLEEP_CLK 20 CFG 47k GND BPF ANT2 Wi-Fi enable 3V8 TP 3V3 ANT1 22Ω 63 SDIO_CLK 1V8 OUT SHDNn GND SDIO_D1 27pF 27pF ESD ESD SHDNn GND 470k 3V8 SDIO_D0 SPK ELLA-W131 Wi-Fi Module LDO Regulator 3V3 3V8 ESD ESD EMI 10nF 10nF V_INT 27pF 27pF EMI GND GND EMI 1µF MICGND I2S_WA MIC EMI 1µF GND Wi-Fi Antenna 29 LEGEND 26 TOBY-L2xx-xx TOBY-R2xx-xx Mount for TOBY-R2xx-xx TOBY-L2xx-00 Mount for TOBY-L2xx-01 TOBY-L2xx-60 Mount for TOBY-L2xx-x2 TOBY-L2xx-01 TOBY-L2xx-x2 Mount for TOBY-L2xx-60 TOBY-R2xx-xx TOBY-L2xx-x2 Mount for TOBY-R2xx-xx Mount for Figure 74: Example of complete schematic diagram to integrate TOBY-L2 modules and TOBY-R2 modules (“00”, “01”, “02”, “60”, or “62” product versions) on the same application board, using all the available interfaces / functions of the modules UBX-16010572 - R01 Objective Specification Appendix Page 141 of 146 TOBY-R2 series - System Integration Manual B Glossary 3GPP 3rd Generation Partnership Project 8-PSK 8 Phase-Shift Keying modulation 16QAM 16-state Quadrature Amplitude Modulation 64QAM 64-state Quadrature Amplitude Modulation ACM Abstract Control Model ADC Analog to Digital Converter AP Application Processor ASIC Application-Specific Integrated Circuit AT AT Command Interpreter Software Subsystem, or attention BAW Bulk Acoustic Wave CSFB Circuit Switched Fall-Back DC Direct Current DCE Data Communication Equipment DDC Display Data Channel interface DL Down-Link (Reception) DRX Discontinuous Reception DSP Digital Signal Processing DTE Data Terminal Equipment ECM Ethernet networking Control Model EDGE Enhanced Data rates for GSM Evolution EMC Electro-Magnetic Compatibility EMI Electro-Magnetic Interference ESD Electro-Static Discharge ESR Equivalent Series Resistance E-UTRA Evolved Universal Terrestrial Radio Access FDD Frequency Division Duplex FEM Front End Module FOAT Firmware Over AT commands FOTA Firmware Over The Air FTP File Transfer Protocol FW Firmware GND Ground GNSS Global Navigation Satellite System GPIO General Purpose Input Output GPRS General Packet Radio Service GPS Global Positioning System HBM Human Body Model HSIC High Speed Inter Chip HSDPA High Speed Downlink Packet Access HSUPA High Speed Uplink Packet Access HTTP HyperText Transfer Protocol HW Hardware I/Q In phase and Quadrature I2C Inter-Integrated Circuit interface I2S Inter IC Sound interface IP Internet Protocol LDO Low-Dropout LGA Land Grid Array UBX-16010572 - R01 Objective Specification Appendix Page 142 of 146 TOBY-R2 series - System Integration Manual LNA Low Noise Amplifier LPDDR Low Power Double Data Rate synchronous dynamic RAM memory LTE Long Term Evolution M2M Machine-to-Machine MBIM Mobile Broadband Interface Model MIMO Multi-Input Multi-Output N/A Not Applicable N.A. Not Available NCM Network Control Model OEM Original Equipment Manufacturer device: an application device integrating a u-blox cellular module OTA Over The Air PA Power Amplifier PCM Pulse Code Modulation PCN / IN Product Change Notification / Information Note PCS Personal Communications Service PFM Pulse Frequency Modulation PMU Power Management Unit PWM Pulse Width Modulation QPSK Quadrature Phase Shift Keying RF Radio Frequency RMII Reduced Media Independent Interface RNDIS Remote Network Driver Interface Specification RSE Radiated Spurious Emission RTC Real Time Clock SAW Surface Acoustic Wave SDIO Secure Digital Input Output SIM Subscriber Identification Module SMS Short Message Service SRF Self Resonant Frequency SSL Secure Socket Layer TBD To Be Defined TCP Transmission Control Protocol TDD Time Division Duplex TDMA Time Division Multiple Access TIS Total Isotropic Sensitivity TP Test-Point TRP Total Radiated Power UART Universal Asynchronous Receiver-Transmitter UDP User Datagram Protocol UICC Universal Integrated Circuit Card UL Up-Link (Transmission) UMTS Universal Mobile Telecommunications System USB Universal Serial Bus VCO Voltage Controlled Oscillator VoLTE Voice over LTE VSWR Voltage Standing Wave Ratio Wi-Fi Wireless Local Area Network (IEEE 802.11 short range radio technology) WLAN Wireless Local Area Network (IEEE 802.11 short range radio technology) WWAN Wireless Wide Area Network (GSM / UMTS / LTE cellular radio technology) UBX-16010572 - R01 Objective Specification Appendix Page 143 of 146 TOBY-R2 series - System Integration Manual Related documents [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] u-blox TOBY-R2 series Data Sheet, Docu No UBX-16005785 u-blox AT Commands Manual, Docu No UBX-13002752 u-blox EVK-R2xx User Guide, Docu No UBX-16016088 u-blox Windows Embedded OS USB Driver Installation Application Note, Docu No UBX-14003263 u-blox Firmware Update Application Note, Docu No UBX-13001845 Universal Serial Bus Revision 2.0 specification, http://www.usb.org/developers/docs/usb20_docs/ ITU-T Recommendation V.24 - 02-2000 - List of definitions for interchange circuits between Data Terminal Equipment (DTE) and Data Circuit-terminating Equipment (DCE), http://www.itu.int/rec/TREC-V.24-200002-I/en 3GPP TS 27.007 - AT command set for User Equipment (UE) 3GPP TS 27.005 - Use of Data Terminal Equipment - Data Circuit terminating; Equipment (DTE - DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS) 3GPP TS 27.010 - Terminal Equipment to User Equipment (TE-UE) multiplexer protocol u-blox Mux Implementation Application Note, Docu No UBX-13001887 I C-bus specification and user manual - Rev. 5 - 9 October 2012 - NXP Semiconductors, http://www.nxp.com/documents/user_manual/UM10204.pdf u-blox GNSS Implementation Application Note, Docu No UBX-13001849 GSM Association TS.09 - Battery Life Measurement and Current Consumption Technique http://www.gsma.com/newsroom/wp-content/uploads/2013/09/TS.09-v7.6.pdf CENELEC EN 61000-4-2 (2001): "Electromagnetic compatibility (EMC) – Part 4-2: Testing and measurement techniques – Electrostatic discharge immunity test". ETSI EN 301 489-1 V1.8.1: “Electromagnetic compatibility and Radio spectrum Matters (ERM); EMC standard for radio equipment and services; Part 1: Common technical requirements” ETSI EN 301 489-7 V1.3.1 “Electromagnetic compatibility and Radio spectrum Matters (ERM); EMC standard for radio equipment and services; Part 7: Specific conditions for mobile and portable radio and ancillary equipment of digital cellular radio telecommunications systems“ ETSI EN 301 489-24 V1.4.1 "Electromagnetic compatibility and Radio spectrum Matters (ERM); EMC standard for radio equipment and services; Part 24: Specific conditions for IMT-2000 CDMA Direct Spread (UTRA) for Mobile and portable (UE) radio and ancillary equipment" 3GPP TS 51.010-2 - Technical Specification Group GSM/EDGE Radio Access Network; Mobile Station (MS) conformance specification; Part 2: Protocol Implementation Conformance Statement (PICS) 3GPP TS 34.121-2 - Technical Specification Group Radio Access Network; User Equipment (UE) conformance specification; Radio transmission and reception (FDD); Part 2: Implementation Conformance Statement (ICS) 3GPP TS 36.521-1 - Evolved Universal Terrestrial Radio Access; User Equipment conformance specification; Radio transmission and reception; Part 1: Conformance Testing 3GPP TS 36.521-2 - Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment conformance specification; Radio transmission and reception; Part 2: Implementation Conformance Statement (ICS) 3GPP TS 36.523-2 - Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet Core (EPC); User Equipment conformance specification; Part 2: Implementation Conformance Statement (ICS) u-blox End user test Application Note, Docu No UBX-13001922 u-blox Package Information Guide, Docu No UBX-14001652 u-blox TOBY-L2 series Data Sheet, Docu No UBX-13004573 u-blox TOBY-L2 / MPCI-L2 series System Integration Manual, Docu No UBX- 13004618 u-blox Nested Design Application Note, Docu No UBX-16007243 Some of the above documents can be downloaded from u-blox web-site (http://www.u-blox.com/). UBX-16010572 - R01 Objective Specification Related documents Page 144 of 146 TOBY-R2 series - System Integration Manual Revision history Revision Date Name Status / Comments R01 08-Jul-2016 sses Initial release for TOBY-R2 series modules UBX-16010572 - R01 Objective Specification Revision history Page 145 of 146 TOBY-R2 series - System Integration Manual Contact For complete contact information visit us at http://www.u-blox.com/ u-blox Offices North, Central and South America u-blox America, Inc. Phone: +1 703 483 3180 E-mail: info_us@u-blox.com Regional Office West Coast: Phone: +1 408 573 3640 E-mail: info_us@u-blox.com Headquarters Europe, Middle East, Africa u-blox AG Phone: +41 44 722 74 44 E-mail: info@u-blox.com Support: support@u-blox.com Technical Support: Phone: +1 703 483 3185 E-mail: support_us@u-blox.com Asia, Australia, Pacific u-blox Singapore Pte. Ltd. Phone: +65 6734 3811 E-mail: info_ap@u-blox.com Support: support_ap@u-blox.com Regional Office Australia: Phone: +61 2 8448 2016 E-mail: info_anz@u-blox.com Support: support_ap@u-blox.com Regional Office China (Beijing): Phone: +86 10 68 133 545 E-mail: info_cn@u-blox.com Support: support_cn@u-blox.com Regional Office China (Chongqing): Phone: +86 23 6815 1588 E-mail: info_cn@u-blox.com Support: support_cn@u-blox.com Regional Office China (Shanghai): Phone: +86 21 6090 4832 E-mail: info_cn@u-blox.com Support: support_cn@u-blox.com Regional Office China (Shenzhen): Phone: +86 755 8627 1083 E-mail: info_cn@u-blox.com Support: support_cn@u-blox.com Regional Office India: Phone: +91 80 4050 9200 E-mail: info_in@u-blox.com Support: support_in@u-blox.com Regional Office Japan (Osaka): Phone: +81 6 6941 3660 E-mail: info_jp@u-blox.com Support: support_jp@u-blox.com Regional Office Japan (Tokyo): Phone: +81 3 5775 3850 E-mail: info_jp@u-blox.com Support: support_jp@u-blox.com Regional Office Korea: Phone: +82 2 542 0861 E-mail: info_kr@u-blox.com Support: support_kr@u-blox.com Regional Office Taiwan: Phone: +886 2 2657 1090 E-mail: info_tw@u-blox.com Support: support_tw@u-blox.com UBX-16010572 - R01 Objective Specification Contact Page 146 of 146
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.5 Linearized : No Page Count : 146 Language : it-IT Tagged PDF : Yes Title : TOBY-L2 series Author : u-blox AG Subject : System Integration Manual Creator : Microsoft® Office Word 2007 Create Date : 2016:09:06 08:30:54+02:00 Modify Date : 2016:09:06 08:30:54+02:00 Producer : Microsoft® Office Word 2007EXIF Metadata provided by EXIF.tools