MSP430x5xx And MSP430x6xx Family (Rev. O) 5529 User's Guide Slau208o
User Manual:
Open the PDF directly: View PDF .
Page Count: 1191
Download | |
Open PDF In Browser | View PDF |
MSP430x5xx and MSP430x6xx Family User's Guide Literature Number: SLAU208O June 2008 – Revised May 2015 Contents Preface....................................................................................................................................... 52 1 System Resets, Interrupts, and Operating Modes, System Control Module (SYS)....................... 54 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 1.15 2 System Control Module (SYS) Introduction ............................................................................ System Reset and Initialization ........................................................................................... 1.2.1 Device Initial Conditions After System Reset .................................................................. Interrupts .................................................................................................................... 1.3.1 (Non)Maskable Interrupts (NMIs) ............................................................................... 1.3.2 SNMI Timing ....................................................................................................... 1.3.3 Maskable Interrupts ............................................................................................... 1.3.4 Interrupt Processing............................................................................................... 1.3.5 Interrupt Nesting ................................................................................................... 1.3.6 Interrupt Vectors ................................................................................................... 1.3.7 SYS Interrupt Vector Generators ................................................................................ Operating Modes ........................................................................................................... 1.4.1 Entering and Exiting Low-Power Modes LPM0 Through LPM4 ............................................. 1.4.2 Entering and Exiting Low-Power Modes LPMx.5 ............................................................. 1.4.3 Extended Time in Low-Power Modes .......................................................................... Principles for Low-Power Applications .................................................................................. Connection of Unused Pins ............................................................................................... Reset Pin (RST/NMI) Configuration ..................................................................................... Configuring JTAG Pins .................................................................................................... Boot Code ................................................................................................................... Bootstrap Loader (BSL) ................................................................................................... Memory Map – Uses and Abilities ....................................................................................... 1.11.1 Vacant Memory Space .......................................................................................... 1.11.2 JTAG Lock Mechanism Using the Electronic Fuse .......................................................... JTAG Mailbox (JMB) System ............................................................................................ 1.12.1 JMB Configuration ............................................................................................... 1.12.2 JMBOUT0 and JMBOUT1 Outgoing Mailbox................................................................. 1.12.3 JMBIN0 and JMBIN1 Incoming Mailbox....................................................................... 1.12.4 JMB NMI Usage .................................................................................................. Device Descriptor Table ................................................................................................... 1.13.1 Identifying Device Type.......................................................................................... 1.13.2 TLV Descriptors .................................................................................................. 1.13.3 Peripheral Discovery Descriptor ............................................................................... 1.13.4 CRC Computation ................................................................................................ 1.13.5 Calibration Values ................................................................................................ 1.13.6 Temperature Sensor Calibration for Devices With CTSD16 ............................................... SFR Registers .............................................................................................................. 1.14.1 SFRIE1 Register ................................................................................................. 1.14.2 SFRIFG1 Register ............................................................................................... 1.14.3 SFRRPCR Register .............................................................................................. SYS Registers .............................................................................................................. 1.15.1 SYSCTL Register ................................................................................................ 1.15.2 SYSBSLC Register .............................................................................................. Contents 55 55 57 57 58 59 59 59 61 61 62 63 66 66 67 68 69 69 70 70 70 71 72 72 72 72 72 73 73 73 74 75 76 80 81 82 83 84 85 87 88 89 90 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 1.15.3 1.15.4 1.15.5 1.15.6 1.15.7 1.15.8 1.15.9 1.15.10 1.15.11 2 2.3 Power Management Module (PMM) Introduction ...................................................................... 99 PMM Operation ........................................................................................................... 101 2.2.1 VCORE and the Regulator ......................................................................................... 101 2.2.2 Supply Voltage Supervisor and Monitor ...................................................................... 101 2.2.3 Supply Voltage Supervisor and Monitor - Power-Up ........................................................ 107 2.2.4 Increasing VCORE to Support Higher MCLK Frequencies ................................................... 108 2.2.5 Decreasing VCORE for Power Optimization .................................................................... 109 2.2.6 Transition From LPM3 and LPM4 Modes to AM ............................................................ 109 2.2.7 LPM3.5 and LPM4.5 ............................................................................................ 109 2.2.8 Brownout Reset (BOR), Software BOR, Software POR .................................................... 110 2.2.9 SVS and SVM Performance Modes and Wakeup Times .................................................. 110 2.2.10 PMM Interrupts .................................................................................................. 113 2.2.11 Port I/O Control ................................................................................................. 113 2.2.12 Supply Voltage Monitor Output (SVMOUT, Optional)...................................................... 113 PMM Registers ............................................................................................................ 114 2.3.1 PMMCTL0 Register.............................................................................................. 115 2.3.2 PMMCTL1 Register.............................................................................................. 116 2.3.3 SVSMHCTL Register ............................................................................................ 117 2.3.4 SVSMLCTL Register ............................................................................................ 118 2.3.5 SVSMIO Register ................................................................................................ 119 2.3.6 PMMIFG Register ................................................................................................ 120 2.3.7 PMMRIE Register ................................................................................................ 122 2.3.8 PM5CTL0 Register .............................................................................................. 123 Battery Backup System ..................................................................................................... 124 3.1 3.2 3.3 4 91 92 92 93 93 94 95 96 97 Power Management Module and Supply Voltage Supervisor ................................................... 98 2.1 2.2 3 SYSJMBC Register .............................................................................................. SYSJMBI0 Register .............................................................................................. SYSJMBI1 Register .............................................................................................. SYSJMBO0 Register ............................................................................................ SYSJMBO1 Register ............................................................................................ SYSUNIV Register ............................................................................................... SYSSNIV Register ............................................................................................... SYSRSTIV Register ............................................................................................ SYSBERRIV Register .......................................................................................... Battery Backup Introduction ............................................................................................. Battery Backup Operation ............................................................................................... 3.2.1 Activate Access to Backup-Supplied Subsystem ............................................................ 3.2.2 Manual Switching ................................................................................................ 3.2.3 Disable Switching ................................................................................................ 3.2.4 Measuring the Supplies ......................................................................................... 3.2.5 LPMx.5 and Backup Operation ................................................................................ 3.2.6 Resistive Charger ................................................................................................ Battery Backup Registers ................................................................................................ 3.3.1 BAKCTL Register ................................................................................................ 3.3.2 BAKCHCTL Register ............................................................................................ 125 125 126 127 127 127 127 128 129 130 131 Auxiliary Supply System (AUX) .......................................................................................... 132 4.1 4.2 Auxiliary Supply System Introduction .................................................................................. Auxiliary Supply Operation .............................................................................................. 4.2.1 Startup............................................................................................................. 4.2.2 Switching Control ................................................................................................ 4.2.3 Software-Controlled Switching ................................................................................. 4.2.4 Hardware-Controlled Switching ................................................................................ 4.2.5 Interactions Among fSYS, VCORE, VDSYS, SVMH, and AUXxLVL ............................................... SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Contents Copyright © 2008–2015, Texas Instruments Incorporated 133 134 135 135 135 136 137 3 www.ti.com 4.3 5 5.3 5.4 4 139 141 141 142 143 143 145 146 148 149 150 151 152 153 154 155 156 157 Unified Clock System (UCS) ............................................................................................... 158 5.1 5.2 6 4.2.6 Auxiliary Supply Monitor ........................................................................................ 4.2.7 LPMx.5 and Auxiliary Supply Operation ...................................................................... 4.2.8 Digital I/Os and Auxiliary Supplies............................................................................. 4.2.9 Measuring the Supplies ......................................................................................... 4.2.10 Resistive Charger ............................................................................................... 4.2.11 Auxiliary Supply Interrupts ..................................................................................... 4.2.12 Software Flow ................................................................................................... 4.2.13 Examples of AUX Operation .................................................................................. AUX Registers............................................................................................................. 4.3.1 AUXCTL0 Register .............................................................................................. 4.3.2 AUXCTL1 Register .............................................................................................. 4.3.3 AUXCTL2 Register .............................................................................................. 4.3.4 AUX2CHCTL Register .......................................................................................... 4.3.5 AUX3CHCTL Register .......................................................................................... 4.3.6 AUXADCCTL Register .......................................................................................... 4.3.7 AUXIFG Register ................................................................................................ 4.3.8 AUXIE Register .................................................................................................. 4.3.9 AUXIV Register .................................................................................................. Unified Clock System (UCS) Introduction ............................................................................. UCS Operation ............................................................................................................ 5.2.1 UCS Module Features for Low-Power Applications ......................................................... 5.2.2 Internal Very-Low-Power Low-Frequency Oscillator (VLO) ................................................ 5.2.3 Internal Trimmed Low-Frequency Reference Oscillator (REFO) .......................................... 5.2.4 XT1 Oscillator .................................................................................................... 5.2.5 XT2 Oscillator ................................................................................................... 5.2.6 Digitally Controlled Oscillator (DCO) .......................................................................... 5.2.7 Frequency Locked Loop (FLL) ................................................................................. 5.2.8 DCO Modulator .................................................................................................. 5.2.9 Disabling FLL Hardware and Modulator ...................................................................... 5.2.10 FLL Operation From Low-Power Modes..................................................................... 5.2.11 Operation From Low-Power Modes, Requested by Peripheral Modules ................................ 5.2.12 UCS Module Fail-Safe Operation............................................................................. 5.2.13 Synchronization of Clock Signals ............................................................................. Module Oscillator (MODOSC) ........................................................................................... 5.3.1 MODOSC Operation ............................................................................................ UCS Registers ............................................................................................................ 5.4.1 UCSCTL0 Register .............................................................................................. 5.4.2 UCSCTL1 Register .............................................................................................. 5.4.3 UCSCTL2 Register .............................................................................................. 5.4.4 UCSCTL3 Register .............................................................................................. 5.4.5 UCSCTL4 Register .............................................................................................. 5.4.6 UCSCTL5 Register .............................................................................................. 5.4.7 UCSCTL6 Register .............................................................................................. 5.4.8 UCSCTL7 Register .............................................................................................. 5.4.9 UCSCTL8 Register .............................................................................................. 5.4.10 UCSCTL9 Register ............................................................................................. 159 161 161 161 162 162 163 164 165 166 166 167 167 168 171 172 172 173 174 175 176 177 178 179 181 183 184 185 CPUX .............................................................................................................................. 186 6.1 6.2 6.3 MSP430X CPU (CPUX) Introduction ................................................................................... Interrupts ................................................................................................................... CPU Registers ............................................................................................................ 6.3.1 Program Counter (PC) .......................................................................................... 6.3.2 Stack Pointer (SP) ............................................................................................... Contents 187 189 190 190 190 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 6.4 6.5 6.6 7 192 193 194 196 197 198 203 207 209 210 211 213 213 218 229 230 232 284 327 Flash Memory Controller ................................................................................................... 342 7.1 7.2 7.3 7.4 8 6.3.3 Status Register (SR) ............................................................................................ 6.3.4 Constant Generator Registers (CG1 and CG2) ............................................................. 6.3.5 General-Purpose Registers (R4 to R15) ...................................................................... Addressing Modes ........................................................................................................ 6.4.1 Register Mode .................................................................................................... 6.4.2 Indexed Mode .................................................................................................... 6.4.3 Symbolic Mode ................................................................................................... 6.4.4 Absolute Mode ................................................................................................... 6.4.5 Indirect Register Mode .......................................................................................... 6.4.6 Indirect Autoincrement Mode ................................................................................... 6.4.7 Immediate Mode ................................................................................................. MSP430 and MSP430X Instructions ................................................................................... 6.5.1 MSP430 Instructions ............................................................................................ 6.5.2 MSP430X Extended Instructions .............................................................................. Instruction Set Description ............................................................................................... 6.6.1 Extended Instruction Binary Descriptions..................................................................... 6.6.2 MSP430 Instructions ............................................................................................ 6.6.3 Extended Instructions ........................................................................................... 6.6.4 Address Instructions ............................................................................................. Flash Memory Introduction .............................................................................................. Flash Memory Segmentation ............................................................................................ 7.2.1 Segment A ........................................................................................................ Flash Memory Operation ................................................................................................ 7.3.1 Erasing Flash Memory .......................................................................................... 7.3.2 Writing Flash Memory ........................................................................................... 7.3.3 Flash Memory Access During Write or Erase ................................................................ 7.3.4 Stopping Write or Erase Cycle ................................................................................. 7.3.5 Checking Flash Memory ........................................................................................ 7.3.6 Configuring and Accessing the Flash Memory Controller .................................................. 7.3.7 Flash Memory Controller Interrupts ........................................................................... 7.3.8 Programming Flash Memory Devices ......................................................................... FCTL Registers ........................................................................................................... 7.4.1 FCTL1 Register .................................................................................................. 7.4.2 FCTL3 Register .................................................................................................. 7.4.3 FCTL4 Register .................................................................................................. 7.4.4 SFRIE1 Register ................................................................................................. 343 344 345 346 346 350 357 358 358 359 359 360 361 362 363 364 365 Memory Integrity Detection (MID)........................................................................................ 366 8.1 8.2 8.3 8.4 8.5 8.6 8.7 MID Overview ............................................................................................................. Flash Memory With MID Support ....................................................................................... MID Parity Check Logic .................................................................................................. Detecting Unprogrammed Memory Accesses ........................................................................ MID ROM .................................................................................................................. MID Support Software Function ........................................................................................ 8.6.1 MidEnable() Function............................................................................................ 8.6.2 MidDisable() Function ........................................................................................... 8.6.3 MidGetErrAdr() Function ........................................................................................ 8.6.4 MidCheckMem() Function ...................................................................................... 8.6.5 MidSetRaw() Function........................................................................................... 8.6.6 MidGetParity() Function ......................................................................................... 8.6.7 MidCalcVParity() Function ...................................................................................... User's UNMI Interrupt Handler .......................................................................................... SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Contents Copyright © 2008–2015, Texas Instruments Incorporated 367 368 368 369 369 369 370 371 371 372 372 373 373 373 5 www.ti.com 9 RAM Controller (RAMCTL) ................................................................................................. 374 9.1 9.2 9.3 10 11.3 Direct Memory Access (DMA) Introduction ............................................................................ DMA Operation ............................................................................................................ 11.2.1 DMA Addressing Modes ....................................................................................... 11.2.2 DMA Transfer Modes .......................................................................................... 11.2.3 Initiating DMA Transfers ....................................................................................... 11.2.4 Halting Executing Instructions for DMA Transfers.......................................................... 11.2.5 Stopping DMA Transfers....................................................................................... 11.2.6 DMA Channel Priorities ........................................................................................ 11.2.7 DMA Transfer Cycle Time ..................................................................................... 11.2.8 Using DMA With System Interrupts .......................................................................... 11.2.9 DMA Controller Interrupts ..................................................................................... 11.2.10 Using the USCI_B I2C Module With the DMA Controller ................................................. 11.2.11 Using ADC10 With the DMA Controller .................................................................... 11.2.12 Using ADC12 With the DMA Controller .................................................................... 11.2.13 Using DAC12 With the DMA Controller .................................................................... DMA Registers ............................................................................................................ 11.3.1 DMACTL0 Register ............................................................................................. 11.3.2 DMACTL1 Register ............................................................................................. 11.3.3 DMACTL2 Register ............................................................................................. 11.3.4 DMACTL3 Register ............................................................................................. 11.3.5 DMACTL4 Register ............................................................................................. 11.3.6 DMAxCTL Register ............................................................................................. 11.3.7 DMAxSA Register .............................................................................................. 11.3.8 DMAxDA Register .............................................................................................. 11.3.9 DMAxSZ Register............................................................................................... 11.3.10 DMAIV Register ............................................................................................... 381 383 383 384 390 390 391 391 392 392 392 394 394 394 394 395 397 398 399 400 401 402 404 405 406 407 Digital I/O Module ............................................................................................................. 408 12.1 12.2 12.3 12.4 6 Backup RAM Introduction and Operation .............................................................................. 379 Battery Backup Registers ................................................................................................ 379 Direct Memory Access (DMA) Controller Module .................................................................. 380 11.1 11.2 12 375 375 376 377 Backup RAM .................................................................................................................... 378 10.1 10.2 11 RAM Controller (RAMCTL) Introduction ............................................................................... RAMCTL Operation....................................................................................................... RAMCTL Registers ....................................................................................................... 9.3.1 RCCTL0 Register ................................................................................................ Digital I/O Introduction ................................................................................................... Digital I/O Operation ...................................................................................................... 12.2.1 Input Registers (PxIN).......................................................................................... 12.2.2 Output Registers (PxOUT) .................................................................................... 12.2.3 Direction Registers (PxDIR) ................................................................................... 12.2.4 Pullup or Pulldown Resistor Enable Registers (PxREN) .................................................. 12.2.5 Output Drive Strength Registers (PxDS) .................................................................... 12.2.6 Function Select Registers (PxSEL) .......................................................................... 12.2.7 Port Interrupts ................................................................................................... 12.2.8 Configuring Unused Port Pins ................................................................................ I/O Configuration and LPMx.5 Low-Power Modes ................................................................... Digital I/O Registers ...................................................................................................... 12.4.1 P1IV Register ................................................................................................... 12.4.2 P2IV Register ................................................................................................... 12.4.3 P1IES Register .................................................................................................. 12.4.4 P1IE Register ................................................................................................... 12.4.5 P1IFG Register.................................................................................................. Contents 409 410 410 410 410 410 411 411 411 413 413 416 422 423 424 424 424 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 12.4.6 12.4.7 12.4.8 12.4.9 12.4.10 12.4.11 12.4.12 12.4.13 12.4.14 13 13.3 14.4 429 429 429 429 431 432 432 432 Cyclic Redundancy Check (CRC) Module Introduction .............................................................. CRC Standard and Bit Order ............................................................................................ CRC Checksum Generation ............................................................................................. 14.3.1 CRC Implementation ........................................................................................... 14.3.2 Assembler Examples ........................................................................................... CRC Registers ............................................................................................................ 14.4.1 CRCDI Register ................................................................................................. 14.4.2 CRCDIRB Register ............................................................................................. 14.4.3 CRCINIRES Register........................................................................................... 14.4.4 CRCRESR Register ............................................................................................ 434 434 435 435 436 438 439 439 440 440 AES Accelerator ............................................................................................................... 441 15.1 15.2 15.3 16 Port Mapping Controller Introduction ................................................................................... Port Mapping Controller Operation ..................................................................................... 13.2.1 Access ........................................................................................................... 13.2.2 Mapping .......................................................................................................... Port Mapping Controller Registers ..................................................................................... 13.3.1 PMAPKEYID Register .......................................................................................... 13.3.2 PMAPCTL Register ............................................................................................. 13.3.3 PxMAPy Register ............................................................................................... Cyclic Redundancy Check (CRC) Module ............................................................................ 433 14.1 14.2 14.3 15 425 425 425 426 426 426 427 427 427 Port Mapping Controller .................................................................................................... 428 13.1 13.2 14 P2IES Register .................................................................................................. P2IE Register ................................................................................................... P2IFG Register.................................................................................................. PxIN Register ................................................................................................... PxOUT Register ............................................................................................... PxDIR Register ................................................................................................ PxREN Register ............................................................................................... PxDS Register ................................................................................................. PxSEL Register ................................................................................................ AES Accelerator Introduction............................................................................................ AES Accelerator Operation .............................................................................................. 15.2.1 Encryption ....................................................................................................... 15.2.2 Decryption ....................................................................................................... 15.2.3 Decryption Key Generation .................................................................................... 15.2.4 Using the AES Accelerator With Low-Power Modes ....................................................... 15.2.5 AES Accelerator Interrupts .................................................................................... 15.2.6 Implementing Block Cipher Modes ........................................................................... AES_ACCEL Registers .................................................................................................. 15.3.1 AESACTL0 Register............................................................................................ 15.3.2 AESACTL1 Register............................................................................................ 15.3.3 AESASTAT Register ........................................................................................... 15.3.4 AESAKEY Register ............................................................................................. 15.3.5 AESADIN Register ............................................................................................. 15.3.6 AESADOUT Register .......................................................................................... 15.3.7 AESAXDIN Register ............................................................................................ 15.3.8 AESAXIN Register .............................................................................................. 442 443 444 445 446 447 447 447 448 449 450 451 452 453 453 454 454 Watchdog Timer (WDT_A) .................................................................................................. 455 16.1 16.2 WDT_A Introduction ...................................................................................................... WDT_A Operation ........................................................................................................ 16.2.1 Watchdog Timer Counter (WDTCNT) ........................................................................ 16.2.2 Watchdog Mode ................................................................................................ SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Contents Copyright © 2008–2015, Texas Instruments Incorporated 456 458 458 458 7 www.ti.com 16.3 17 17.3 18.2 18.3 463 465 465 465 466 469 471 475 477 478 479 480 482 482 483 Timer_B Introduction ..................................................................................................... 18.1.1 Similarities and Differences From Timer_A ................................................................. Timer_B Operation ....................................................................................................... 18.2.1 16-Bit Timer Counter ........................................................................................... 18.2.2 Starting the Timer ............................................................................................... 18.2.3 Timer Mode Control ............................................................................................ 18.2.4 Capture/Compare Blocks ...................................................................................... 18.2.5 Output Unit ...................................................................................................... 18.2.6 Timer_B Interrupts .............................................................................................. Timer_B Registers ........................................................................................................ 18.3.1 TBxCTL Register ............................................................................................... 18.3.2 TBxR Register ................................................................................................... 18.3.3 TBxCCTLn Register ............................................................................................ 18.3.4 TBxCCRn Register ............................................................................................. 18.3.5 TBxIV Register .................................................................................................. 18.3.6 TBxEX0 Register ............................................................................................... 485 485 487 487 487 488 491 494 498 500 501 503 504 506 507 508 Timer_D ........................................................................................................................... 509 19.1 19.2 8 Timer_A Introduction ..................................................................................................... Timer_A Operation ....................................................................................................... 17.2.1 16-Bit Timer Counter ........................................................................................... 17.2.2 Starting the Timer ............................................................................................... 17.2.3 Timer Mode Control ............................................................................................ 17.2.4 Capture/Compare Blocks ...................................................................................... 17.2.5 Output Unit ...................................................................................................... 17.2.6 Timer_A Interrupts .............................................................................................. Timer_A Registers ........................................................................................................ 17.3.1 TAxCTL Register ............................................................................................... 17.3.2 TAxR Register ................................................................................................... 17.3.3 TAxCCTLn Register ............................................................................................ 17.3.4 TAxCCRn Register ............................................................................................ 17.3.5 TAxIV Register .................................................................................................. 17.3.6 TAxEX0 Register ............................................................................................... Timer_B ........................................................................................................................... 484 18.1 19 458 458 459 459 459 460 461 Timer_A ........................................................................................................................... 462 17.1 17.2 18 16.2.3 Interval Timer Mode ............................................................................................ 16.2.4 Watchdog Timer Interrupts .................................................................................... 16.2.5 Clock Fail-Safe Feature ........................................................................................ 16.2.6 Operation in Low-Power Modes .............................................................................. 16.2.7 Software Examples ............................................................................................. WDT_A Registers ......................................................................................................... 16.3.1 WDTCTL Register .............................................................................................. Timer_D Introduction ..................................................................................................... 19.1.1 Differences From Timer_B .................................................................................... Timer_D Operation ....................................................................................................... 19.2.1 16-Bit Timer Counter ........................................................................................... 19.2.2 High-Resolution Generator .................................................................................... 19.2.3 Starting the Timer ............................................................................................... 19.2.4 Timer Mode Control ............................................................................................ 19.2.5 PWM Generation ............................................................................................... 19.2.6 Capture/Compare Blocks ...................................................................................... 19.2.7 Compare Mode.................................................................................................. 19.2.8 Switching From Capture to Compare Mode ................................................................. 19.2.9 Output Unit ...................................................................................................... Contents 510 510 512 512 513 515 515 520 523 526 527 527 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 19.3 20 20.3 Timer Event Control Introduction ....................................................................................... TEC Operation ............................................................................................................ 20.2.1 AUXCLK Selection Sub-Block ................................................................................ 20.2.2 External Clear Sub-Block ..................................................................................... 20.2.3 Channel Event Sub-Block..................................................................................... 20.2.4 Module Level Connection Between TEC and Timer_D .................................................... 20.2.5 Synchronization Mechanism Between Timer_D Instances................................................ 20.2.6 Timer Event Control Interrupts ................................................................................ TEC Registers ............................................................................................................. 20.3.1 TECxCTL0 Register ............................................................................................ 20.3.2 TECxCTL1 Register ............................................................................................ 20.3.3 TECxCTL2 Register ............................................................................................ 20.3.4 TECxSTA Register ............................................................................................. 20.3.5 TECxINT Register .............................................................................................. 20.3.6 TECxIV Register ................................................................................................ 550 551 551 551 551 552 554 556 557 558 560 562 563 564 565 Real-Time Clock (RTC) Overview ........................................................................................ 566 21.1 22 534 534 536 537 539 540 541 542 544 544 545 546 547 548 Timer Event Control (TEC) ................................................................................................. 549 20.1 20.2 21 19.2.10 Synchronization Between Timer_D Instances ............................................................ 19.2.11 Timer_D Interrupts ............................................................................................ Timer_D Registers ........................................................................................................ 19.3.1 TDxCTL0 Register .............................................................................................. 19.3.2 TDxCTL1 Register .............................................................................................. 19.3.3 TDxCTL2 Register .............................................................................................. 19.3.4 TDxR Register .................................................................................................. 19.3.5 TDxCCTLn Register ............................................................................................ 19.3.6 TDxCCRn Register ............................................................................................. 19.3.7 TDxCLn Register ............................................................................................... 19.3.8 TDxHCTL0 Register ............................................................................................ 19.3.9 TDxHCTL1 Register ............................................................................................ 19.3.10 TDxHINT Register ............................................................................................. 19.3.11 TDxIV Register ................................................................................................ RTC Overview ............................................................................................................. 566 Real-Time Clock (RTC_A) 22.1 22.2 22.3 .................................................................................................. 567 RTC_A Introduction....................................................................................................... RTC_A Operation ......................................................................................................... 22.2.1 Counter Mode ................................................................................................... 22.2.2 Calendar Mode .................................................................................................. 22.2.3 Real-Time Clock Interrupts .................................................................................... 22.2.4 Real-Time Clock Calibration .................................................................................. RTC_A Registers ......................................................................................................... 22.3.1 RTCCTL0 Register ............................................................................................. 22.3.2 RTCCTL1 Register ............................................................................................. 22.3.3 RTCCTL2 Register ............................................................................................. 22.3.4 RTCCTL3 Register ............................................................................................. 22.3.5 RTCNT1 Register ............................................................................................... 22.3.6 RTCNT2 Register ............................................................................................... 22.3.7 RTCNT3 Register ............................................................................................... 22.3.8 RTCNT4 Register ............................................................................................... 22.3.9 RTCSEC Register – Calendar Mode With Hexadecimal Format ......................................... 22.3.10 RTCSEC Register – Calendar Mode With BCD Format ................................................. 22.3.11 RTCMIN Register – Calendar Mode With Hexadecimal Format ........................................ 22.3.12 RTCMIN Register – Calendar Mode With BCD Format .................................................. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Contents Copyright © 2008–2015, Texas Instruments Incorporated 568 570 570 570 572 574 576 578 579 580 580 581 581 581 581 582 582 583 583 9 www.ti.com 22.3.13 22.3.14 22.3.15 22.3.16 22.3.17 22.3.18 22.3.19 22.3.20 22.3.21 22.3.22 22.3.23 22.3.24 22.3.25 22.3.26 22.3.27 22.3.28 22.3.29 22.3.30 22.3.31 22.3.32 22.3.33 22.3.34 22.3.35 23 584 584 585 585 585 586 586 587 587 588 588 589 589 590 590 591 591 591 593 594 595 595 595 Real-Time Clock B (RTC_B) ............................................................................................... 596 23.1 23.2 23.3 10 RTCHOUR Register – Calendar Mode With Hexadecimal Format ..................................... RTCHOUR Register – Calendar Mode With BCD Format ............................................... RTCDOW Register – Calendar Mode ...................................................................... RTCDAY Register – Calendar Mode With Hexadecimal Format ....................................... RTCDAY Register – Calendar Mode With BCD Format ................................................. RTCMON Register – Calendar Mode With Hexadecimal Format ...................................... RTCMON Register – Calendar Mode With BCD Format ................................................ RTCYEARL Register – Calendar Mode With Hexadecimal Format .................................... RTCYEARL Register – Calendar Mode With BCD Format .............................................. RTCYEARH Register – Calendar Mode With Hexadecimal Format ................................... RTCYEARH Register – Calendar Mode With BCD Format ............................................. RTCAMIN Register – Calendar Mode With Hexadecimal Format ...................................... RTCAMIN Register – Calendar Mode With BCD Format ................................................ RTCAHOUR Register – Calendar Mode With Hexadecimal Format ................................... RTCAHOUR Register – Calendar Mode With BCD Format ............................................. RTCADOW Register .......................................................................................... RTCADAY Register – Calendar Mode With Hexadecimal Format ..................................... RTCADAY Register – Calendar Mode With BCD Format ............................................... RTCPS0CTL Register ........................................................................................ RTCPS1CTL Register ........................................................................................ RT0PS Register ............................................................................................... RT1PS Register ............................................................................................... RTCIV Register ................................................................................................ Real-Time Clock RTC_B Introduction .................................................................................. RTC_B Operation ......................................................................................................... 23.2.1 Real-Time Clock and Prescale Dividers ..................................................................... 23.2.2 Real-Time Clock Alarm Function ............................................................................. 23.2.3 Reading or Writing Real-Time Clock Registers ............................................................. 23.2.4 Real-Time Clock Interrupts .................................................................................... 23.2.5 Real-Time Clock Calibration .................................................................................. 23.2.6 Real-Time Clock Operation in LPM3.5 Low-Power Mode ................................................. RTC_B Registers ......................................................................................................... 23.3.1 RTCCTL0 Register ............................................................................................. 23.3.2 RTCCTL1 Register ............................................................................................. 23.3.3 RTCCTL2 Register ............................................................................................. 23.3.4 RTCCTL3 Register ............................................................................................. 23.3.5 RTCSEC Register – Hexadecimal Format .................................................................. 23.3.6 RTCSEC Register – BCD Format ............................................................................ 23.3.7 RTCMIN Register – Hexadecimal Format ................................................................... 23.3.8 RTCMIN Register – BCD Format ............................................................................. 23.3.9 RTCHOUR Register – Hexadecimal Format ................................................................ 23.3.10 RTCHOUR Register – BCD Format ........................................................................ 23.3.11 RTCDOW Register ............................................................................................ 23.3.12 RTCDAY Register – Hexadecimal Format ................................................................. 23.3.13 RTCDAY Register – BCD Format........................................................................... 23.3.14 RTCMON Register – Hexadecimal Format ................................................................ 23.3.15 RTCMON Register – BCD Format .......................................................................... 23.3.16 RTCYEAR Register – Hexadecimal Format ............................................................... 23.3.17 RTCYEAR Register – BCD Format ......................................................................... 23.3.18 RTCAMIN Register – Hexadecimal Format ............................................................... 23.3.19 RTCAMIN Register – BCD Format ......................................................................... 23.3.20 RTCAHOUR Register – Hexadecimal Format ............................................................ Contents 597 599 599 599 600 600 602 603 604 606 607 608 608 609 609 610 610 611 611 612 612 612 613 613 614 614 615 615 616 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 23.3.21 23.3.22 23.3.23 23.3.24 23.3.25 23.3.26 23.3.27 23.3.28 23.3.29 23.3.30 23.3.31 24 RTCAHOUR Register – BCD Format ...................................................................... RTCADOW Register .......................................................................................... RTCADAY Register – Hexadecimal Format ............................................................... RTCADAY Register – BCD Format ......................................................................... RTCPS0CTL Register ........................................................................................ RTCPS1CTL Register ........................................................................................ RTCPS0 Register ............................................................................................. RTCPS1 Register ............................................................................................. RTCIV Register ................................................................................................ BIN2BCD Register ............................................................................................ BCD2BIN Register ............................................................................................ 616 617 618 618 619 620 621 621 622 623 623 Real-Time Clock C (RTC_C) ............................................................................................... 624 24.1 24.2 24.3 24.4 Real-Time Clock (RTC_C) Introduction ................................................................................ RTC_C Operation ......................................................................................................... 24.2.1 Calendar Mode .................................................................................................. 24.2.2 Real-Time Clock and Prescale Dividers .................................................................... 24.2.3 Real-Time Clock Alarm Function ............................................................................ 24.2.4 Real-Time Clock Protection ................................................................................... 24.2.5 Reading or Writing Real-Time Clock Registers ............................................................ 24.2.6 Real-Time Clock Interrupts .................................................................................... 24.2.7 Real-Time Clock Calibration for Crystal Offset Error....................................................... 24.2.8 Real-Time Clock Compensation for Crystal Temperature Drift ........................................... 24.2.9 Real-Time Clock Operation in LPM3.5 Low-Power Mode ................................................. RTC_C Operation - Device-Dependent Features .................................................................... 24.3.1 Counter Mode ................................................................................................... 24.3.2 Real-Time Clock Event/Tamper Detection With Time Stamp ............................................. RTC_C Registers ......................................................................................................... 24.4.1 RTCCTL0_L Register .......................................................................................... 24.4.2 RTCCTL0_H Register .......................................................................................... 24.4.3 RTCCTL1 Register ............................................................................................. 24.4.4 RTCCTL3 Register ............................................................................................. 24.4.5 RTCOCAL Register ............................................................................................ 24.4.6 RTCTCMP Register ............................................................................................ 24.4.7 RTCNT1 Register ............................................................................................... 24.4.8 RTCNT2 Register ............................................................................................... 24.4.9 RTCNT3 Register ............................................................................................... 24.4.10 RTCNT4 Register ............................................................................................. 24.4.11 RTCSEC Register – Calendar Mode With Hexadecimal Format ....................................... 24.4.12 RTCSEC Register – Calendar Mode With BCD Format ................................................. 24.4.13 RTCMIN Register – Calendar Mode With Hexadecimal Format ........................................ 24.4.14 RTCMIN Register – Calendar Mode With BCD Format .................................................. 24.4.15 RTCHOUR Register – Calendar Mode With Hexadecimal Format ..................................... 24.4.16 RTCHOUR Register – Calendar Mode With BCD Format ............................................... 24.4.17 RTCDOW Register – Calendar Mode ...................................................................... 24.4.18 RTCDAY Register – Calendar Mode With Hexadecimal Format ....................................... 24.4.19 RTCDAY Register – Calendar Mode With BCD Format ................................................. 24.4.20 RTCMON Register – Calendar Mode With Hexadecimal Format ...................................... 24.4.21 RTCMON Register – Calendar Mode With BCD Format ................................................ 24.4.22 RTCYEAR Register – Calendar Mode With Hexadecimal Format ..................................... 24.4.23 RTCYEAR Register – Calendar Mode With BCD Format ............................................... 24.4.24 RTCAMIN Register – Calendar Mode With Hexadecimal Format ...................................... 24.4.25 RTCAMIN Register – Calendar Mode With BCD Format ................................................ 24.4.26 RTCAHOUR Register......................................................................................... SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Contents Copyright © 2008–2015, Texas Instruments Incorporated 625 627 627 627 627 628 629 629 631 632 634 636 636 639 641 644 645 646 647 647 648 649 649 649 649 650 650 651 651 652 652 653 653 653 654 654 655 655 656 656 657 11 www.ti.com 24.4.27 24.4.28 24.4.29 24.4.30 24.4.31 24.4.32 24.4.33 24.4.34 24.4.35 24.4.36 24.4.37 24.4.38 24.4.39 24.4.40 24.4.41 24.4.42 24.4.43 24.4.44 24.4.45 24.4.46 24.4.47 24.4.48 24.4.49 24.4.50 24.4.51 24.4.52 25 25.3 26.3 675 677 678 679 680 681 684 687 687 688 689 691 REF Introduction .......................................................................................................... Principle of Operation .................................................................................................... 26.2.1 Low-Power Operation .......................................................................................... 26.2.2 REFCTL .......................................................................................................... 26.2.3 Reference System Requests .................................................................................. REF Registers ............................................................................................................. 26.3.1 REFCTL0 Register (offset = 00h) [reset = 0080h] ......................................................... 693 696 697 697 699 702 703 ADC10_A ......................................................................................................................... 705 27.1 27.2 12 32-Bit Hardware Multiplier (MPY32) Introduction ..................................................................... MPY32 Operation ......................................................................................................... 25.2.1 Operand Registers ............................................................................................. 25.2.2 Result Registers ................................................................................................ 25.2.3 Software Examples ............................................................................................. 25.2.4 Fractional Numbers ............................................................................................. 25.2.5 Putting It All Together .......................................................................................... 25.2.6 Indirect Addressing of Result Registers ..................................................................... 25.2.7 Using Interrupts ................................................................................................. 25.2.8 Using DMA ...................................................................................................... MPY32 Registers ......................................................................................................... 25.3.1 MPY32CTL0 Register .......................................................................................... REF ................................................................................................................................. 692 26.1 26.2 27 657 658 659 659 660 661 663 663 664 665 665 666 666 667 667 668 668 669 669 670 670 671 671 672 672 673 32-Bit Hardware Multiplier (MPY32) ..................................................................................... 674 25.1 25.2 26 RTCAHOUR Register – Calendar Mode With BCD Format ............................................. RTCADOW Register – Calendar Mode .................................................................... RTCADAY Register – Calendar Mode With Hexadecimal Format ..................................... RTCADAY Register – Calendar Mode With BCD Format ............................................... RTCPS0CTL Register ........................................................................................ RTCPS1CTL Register ........................................................................................ RTCPS0 Register ............................................................................................. RTCPS1 Register ............................................................................................. RTCIV Register ................................................................................................ BIN2BCD Register ............................................................................................ BCD2BIN Register ............................................................................................ RTCSECBAKx Register – Hexadecimal Format .......................................................... RTCSECBAKx Register – BCD Format .................................................................... RTCMINBAKx Register – Hexadecimal Format........................................................... RTCMINBAKx Register – BCD Format .................................................................... RTCHOURBAKx Register – Hexadecimal Format........................................................ RTCHOURBAKx Register – BCD Format ................................................................. RTCDAYBAKx Register – Hexadecimal Format .......................................................... RTCDAYBAKx Register – BCD Format .................................................................... RTCMONBAKx Register – Hexadecimal Format ......................................................... RTCMONBAKx Register – BCD Format ................................................................... RTCYEARBAKx Register – Hexadecimal Format ........................................................ RTCYEARBAKx Register – BCD Format .................................................................. RTCTCCTL0 Register ........................................................................................ RTCTCCTL1 Register ........................................................................................ RTCCAPxCTL Register ...................................................................................... ADC10_A Introduction ................................................................................................... ADC10_A Operation ...................................................................................................... 27.2.1 10-Bit ADC Core ................................................................................................ 27.2.2 ADC10_A Inputs and Multiplexer ............................................................................. 27.2.3 Voltage Reference Generator ................................................................................. Contents 706 708 708 708 709 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 27.3 28 709 709 711 711 716 717 718 718 720 721 722 724 725 725 726 727 727 728 728 729 730 731 ADC12_A ......................................................................................................................... 732 28.1 28.2 28.3 29 27.2.4 Auto Power Down .............................................................................................. 27.2.5 Sample and Conversion Timing .............................................................................. 27.2.6 Conversion Result .............................................................................................. 27.2.7 ADC10_A Conversion Modes ................................................................................. 27.2.8 Window Comparator ........................................................................................... 27.2.9 Using the Integrated Temperature Sensor .................................................................. 27.2.10 ADC10_A Grounding and Noise Considerations ......................................................... 27.2.11 ADC10_A Interrupts .......................................................................................... ADC10_A Registers ...................................................................................................... 27.3.1 ADC10CTL0 Register .......................................................................................... 27.3.2 ADC10CTL1 Register .......................................................................................... 27.3.3 ADC10CTL2 Register .......................................................................................... 27.3.4 ADC10MEM0 Register ......................................................................................... 27.3.5 ADC10MEM0 Register, Twos-Complement Format ....................................................... 27.3.6 ADC10MCTL0 Register ........................................................................................ 27.3.7 ADC10HI Register .............................................................................................. 27.3.8 ADC10HI Register, Twos-Complement Format ............................................................ 27.3.9 ADC10LO Register ............................................................................................. 27.3.10 ADC10LO Register, Twos-Complement Format .......................................................... 27.3.11 ADC10IE Register ............................................................................................. 27.3.12 ADC10IFG Register ........................................................................................... 27.3.13 ADC10IV Register ............................................................................................. ADC12_A Introduction ................................................................................................... ADC12_A Operation ...................................................................................................... 28.2.1 12-Bit ADC Core ................................................................................................ 28.2.2 ADC12_A Inputs and Multiplexer ............................................................................. 28.2.3 Voltage Reference Generator ................................................................................. 28.2.4 Auto Power Down .............................................................................................. 28.2.5 Sample and Conversion Timing .............................................................................. 28.2.6 Conversion Memory ............................................................................................ 28.2.7 ADC12_A Conversion Modes ................................................................................. 28.2.8 Using the Integrated Temperature Sensor .................................................................. 28.2.9 ADC12_A Grounding and Noise Considerations ........................................................... 28.2.10 ADC12_A Interrupts .......................................................................................... ADC12_A Registers ...................................................................................................... 28.3.1 ADC12CTL0 Register .......................................................................................... 28.3.2 ADC12CTL1 Register .......................................................................................... 28.3.3 ADC12CTL2 Register .......................................................................................... 28.3.4 ADC12MEMx Register ......................................................................................... 28.3.5 ADC12MCTLx Register ........................................................................................ 28.3.6 ADC12IE Register .............................................................................................. 28.3.7 ADC12IFG Register ............................................................................................ 28.3.8 ADC12IV Register .............................................................................................. SD24_B 29.1 29.2 733 736 736 736 737 738 738 740 740 746 747 748 750 752 754 755 756 757 758 760 762 ........................................................................................................................... 763 SD24_B Introduction ..................................................................................................... SD24_B Operation........................................................................................................ 29.2.1 Principle of Operation .......................................................................................... 29.2.2 ADC Core ........................................................................................................ 29.2.3 Voltage Reference .............................................................................................. 29.2.4 Modulator Clock ................................................................................................. 29.2.5 Auto Power-Down .............................................................................................. 29.2.6 Analog Inputs .................................................................................................... SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Contents Copyright © 2008–2015, Texas Instruments Incorporated 764 768 768 769 769 769 769 769 13 www.ti.com 29.3 30 30.3 CTSD16 Introduction ..................................................................................................... CTSD16 Operation ....................................................................................................... 30.2.1 Principle of Operation .......................................................................................... 30.2.2 ADC Core ........................................................................................................ 30.2.3 Voltage Reference .............................................................................................. 30.2.4 CTSD16 Clock .................................................................................................. 30.2.5 Auto Power-Down .............................................................................................. 30.2.6 Analog Inputs .................................................................................................... 30.2.7 Digital Filter ...................................................................................................... 30.2.8 Conversion Memory Registers: CTSD16MEMx ............................................................ 30.2.9 Conversion Modes .............................................................................................. 30.2.10 Conversion Operation Using Preload....................................................................... 30.2.11 Using the Integrated Temperature Sensor ................................................................. 30.2.12 Using the Integrated AVCC Sense.......................................................................... 30.2.13 Grounding and Noise Considerations ...................................................................... 30.2.14 Interrupt Handling ............................................................................................. CTSD16 Registers ........................................................................................................ 30.3.1 CTSD16CTL Register .......................................................................................... 30.3.2 CTSD16CCTL0 to CTSD16CCTL6 Register ................................................................ 30.3.3 CTSD16MEM0 to CTSD16MEM6 Register ................................................................. 30.3.4 CTSD16INCTL0 to CTSD16INCTL6 Register .............................................................. 30.3.5 CTSD16PRE0 to CTSD16PRE6 Register ................................................................... 30.3.6 CTSD16IFG Register .......................................................................................... 30.3.7 CTSD16IE Register ............................................................................................ 30.3.8 CTSD16IV Register ............................................................................................ 798 800 800 801 801 801 802 802 803 806 807 809 810 811 811 811 813 814 815 816 817 818 819 821 823 DAC12_A ......................................................................................................................... 824 31.1 31.2 14 770 774 774 776 777 778 779 779 780 782 783 784 785 788 790 791 793 794 794 795 795 796 796 CTSD16 ........................................................................................................................... 797 30.1 30.2 31 29.2.7 Digital Filter ..................................................................................................... 29.2.8 Bitstream Input and Output .................................................................................... 29.2.9 Conversion Modes .............................................................................................. 29.2.10 Conversion Operation Using Preload....................................................................... 29.2.11 Grounding and Noise Considerations ...................................................................... 29.2.12 Trigger Generator ............................................................................................. 29.2.13 SD24_B Interrupts ............................................................................................ 29.2.14 Using SD24_B With DMA .................................................................................... SD24_B Registers ........................................................................................................ 29.3.1 SD24BCTL0 Register .......................................................................................... 29.3.2 SD24BCTL1 Register .......................................................................................... 29.3.3 SD24BTRGCTL Register ...................................................................................... 29.3.4 SD24BIFG Register ............................................................................................ 29.3.5 SD24BIE Register .............................................................................................. 29.3.6 SD24BIV Register .............................................................................................. 29.3.7 SD24BCCTLx Register ........................................................................................ 29.3.8 SD24BINCTLx Register ........................................................................................ 29.3.9 SD24BOSRx Register .......................................................................................... 29.3.10 SD24BTRGOSR Register .................................................................................... 29.3.11 SD24BPREx Register ........................................................................................ 29.3.12 SD24BTRGPRE Register .................................................................................... 29.3.13 SD24BMEMLx Register ...................................................................................... 29.3.14 SD24BMEMHx Register ...................................................................................... DAC12_A Introduction ................................................................................................... 825 DAC12_A Operation ...................................................................................................... 828 31.2.1 DAC12_A Core.................................................................................................. 828 Contents SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 31.3 31.4 32 Comp_B 32.1 32.2 32.3 33 31.2.2 DAC12_A Port Selection....................................................................................... 31.2.3 DAC12_A Reference ........................................................................................... 31.2.4 Updating the DAC12_A Voltage Output ..................................................................... 31.2.5 DAC12_xDAT Data Formats .................................................................................. 31.2.6 DAC12_A Output Amplifier Offset Calibration .............................................................. 31.2.7 Grouping Multiple DAC12_A Modules ....................................................................... 31.2.8 DAC12_A Interrupts ............................................................................................ DAC Outputs .............................................................................................................. DAC12_A Registers ...................................................................................................... 31.4.1 DAC12_xCTL0 Register ....................................................................................... 31.4.2 DAC12_xCTL1 Register ....................................................................................... 31.4.3 DAC12_xDAT Register, Unsigned 12-Bit Binary Format, Right Justified ............................... 31.4.4 DAC12_xDAT Register, Unsigned 12-Bit Binary Format, Left Justified ................................. 31.4.5 DAC12_xDAT Register, Twos-Complement 12-Bit Binary Format, Right Justified .................... 31.4.6 DAC12_xDAT Register, Twos-Complement 12-Bit Binary Format, Left Justified ...................... 31.4.7 DAC12_xDAT Register, Unsigned 8-Bit Binary Format, Right Justified ................................. 31.4.8 DAC12_xDAT Register, Unsigned 8-Bit Binary Format, Left Justified................................... 31.4.9 DAC12_xDAT Register, Twos-Complement 8-Bit Binary Format, Right Justified ..................... 31.4.10 DAC12_xDAT Register, Twos-Complement 8-Bit Binary Format, Left Justified ...................... 31.4.11 DAC12_xCALCTL Register .................................................................................. 31.4.12 DAC12_xCALDAT Register .................................................................................. 31.4.13 DAC12IV Register ............................................................................................. 828 828 829 829 830 831 832 833 834 835 837 838 838 839 839 840 840 841 841 842 842 843 .......................................................................................................................... 844 Comp_B Introduction ..................................................................................................... Comp_B Operation ....................................................................................................... 32.2.1 Comparator ...................................................................................................... 32.2.2 Analog Input Switches ......................................................................................... 32.2.3 Port Logic ........................................................................................................ 32.2.4 Input Short Switch .............................................................................................. 32.2.5 Output Filter ..................................................................................................... 32.2.6 Reference Voltage Generator ................................................................................. 32.2.7 Comp_B, Port Disable Register CBCTL3 ................................................................... 32.2.8 Comp_B Interrupts ............................................................................................. 32.2.9 Comp_B Used to Measure Resistive Elements ............................................................ Comp_B Registers........................................................................................................ 32.3.1 CBCTL0 Register ............................................................................................... 32.3.2 CBCTL1 Register ............................................................................................... 32.3.3 CBCTL2 Register ............................................................................................... 32.3.4 CBCTL3 Register ............................................................................................... 32.3.5 CBINT Register ................................................................................................. 32.3.6 CBIV Register ................................................................................................... 845 846 846 846 846 846 847 848 849 849 849 852 853 854 855 856 858 859 Operational Amplifier (OA) ................................................................................................. 860 33.1 33.2 33.3 33.4 33.5 OA Introduction ........................................................................................................... OA Operation .............................................................................................................. 33.2.1 OA Modes ....................................................................................................... 33.2.2 Rail-to-Rail Input Modes ....................................................................................... 33.2.3 OA Inputs ........................................................................................................ Ground Switches .......................................................................................................... OA and Power Modes .................................................................................................... OA Registers .............................................................................................................. 33.5.1 OAnCTL0 Register ............................................................................................. 33.5.2 OAnPSW Register .............................................................................................. 33.5.3 OAnNSW Register .............................................................................................. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Contents Copyright © 2008–2015, Texas Instruments Incorporated 861 863 863 863 863 864 864 865 866 867 868 15 www.ti.com ............................................................................................. 869 LCD_B Controller.............................................................................................................. 870 34.1 LCD_B Controller Introduction .......................................................................................... 871 34.2 LCD_B Controller Operation ............................................................................................ 873 34.2.1 LCD Memory .................................................................................................... 873 34.2.2 LCD Timing Generation ........................................................................................ 873 34.2.3 Blanking the LCD ............................................................................................... 874 34.2.4 LCD Blinking..................................................................................................... 874 34.2.5 LCD_B Voltage And Bias Generation ........................................................................ 875 34.2.6 LCD Outputs..................................................................................................... 877 34.2.7 LCD_B Interrupts ............................................................................................... 877 34.2.8 Static Mode ...................................................................................................... 879 34.2.9 2-Mux Mode ..................................................................................................... 882 34.2.10 3-Mux Mode .................................................................................................... 885 34.2.11 4-Mux Mode .................................................................................................... 888 34.3 LCD_B Registers ......................................................................................................... 891 34.3.1 LCDBCTL0 Register............................................................................................ 894 34.3.2 LCDBCTL1 Register............................................................................................ 895 34.3.3 LCDBBLKCTL Register ........................................................................................ 896 34.3.4 LCDBMEMCTL Register ....................................................................................... 897 34.3.5 LCDBVCTL Register ........................................................................................... 898 34.3.6 LCDBPCTL0 Register .......................................................................................... 900 34.3.7 LCDBPCTL1 Register .......................................................................................... 900 34.3.8 LCDBPCTL2 Register .......................................................................................... 901 34.3.9 LCDBPCTL3 Register .......................................................................................... 901 34.3.10 LCDBCPCTL Register ........................................................................................ 902 34.3.11 LCDBIV Register .............................................................................................. 903 LCD_C Controller.............................................................................................................. 904 35.1 LCD_C Introduction....................................................................................................... 905 35.2 LCD_C Operation ......................................................................................................... 907 35.2.1 LCD Memory .................................................................................................... 907 35.2.2 LCD Timing Generation ........................................................................................ 908 35.2.3 Blanking the LCD ............................................................................................... 909 35.2.4 LCD Blinking..................................................................................................... 909 35.2.5 LCD Voltage And Bias Generation ........................................................................... 910 35.2.6 LCD Outputs..................................................................................................... 913 35.2.7 LCD Interrupts ................................................................................................... 914 35.2.8 Static Mode ...................................................................................................... 916 35.2.9 2-Mux Mode ..................................................................................................... 917 35.2.10 3-Mux Mode .................................................................................................... 918 35.2.11 4-Mux Mode .................................................................................................... 919 35.2.12 6-Mux Mode .................................................................................................... 920 35.2.13 8-Mux Mode .................................................................................................... 921 35.3 LCD_C Registers ......................................................................................................... 923 35.3.1 LCDCCTL0 Register ........................................................................................... 928 35.3.2 LCDCCTL1 Register ........................................................................................... 930 35.3.3 LCDCBLKCTL Register ........................................................................................ 931 35.3.4 LCDCMEMCTL Register ....................................................................................... 932 35.3.5 LCDCVCTL Register ........................................................................................... 933 35.3.6 LCDCPCTL0 Register .......................................................................................... 935 35.3.7 LCDCPCTL1 Register .......................................................................................... 935 35.3.8 LCDCPCTL2 Register .......................................................................................... 936 35.3.9 LCDCPCTL3 Register .......................................................................................... 936 33.5.4 OAnGSW Register 34 35 16 Contents SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 35.3.10 LCDCCPCTL Register ........................................................................................ 937 35.3.11 LCDCIV Register .............................................................................................. 937 36 Universal Serial Communication Interface – UART Mode ....................................................... 938 36.1 36.2 36.3 36.4 37 Universal Serial Communication Interface (USCI) Overview ....................................................... USCI Introduction – UART Mode ....................................................................................... USCI Operation – UART Mode ......................................................................................... 36.3.1 USCI Initialization and Reset .................................................................................. 36.3.2 Character Format ............................................................................................... 36.3.3 Asynchronous Communication Format ...................................................................... 36.3.4 Automatic Baud-Rate Detection .............................................................................. 36.3.5 IrDA Encoding and Decoding ................................................................................. 36.3.6 Automatic Error Detection ..................................................................................... 36.3.7 USCI Receive Enable .......................................................................................... 36.3.8 USCI Transmit Enable ......................................................................................... 36.3.9 UART Baud-Rate Generation ................................................................................. 36.3.10 Setting a Baud Rate .......................................................................................... 36.3.11 Transmit Bit Timing ........................................................................................... 36.3.12 Receive Bit Timing ............................................................................................ 36.3.13 Typical Baud Rates and Errors .............................................................................. 36.3.14 Using the USCI Module in UART Mode With Low-Power Modes ...................................... 36.3.15 USCI Interrupts in UART Mode ............................................................................. 36.3.16 DMA Operation ................................................................................................ USCI_A UART Mode Registers ......................................................................................... 36.4.1 UCAxCTL0 Register ............................................................................................ 36.4.2 UCAxCTL1 Register ............................................................................................ 36.4.3 UCAxBR0 Register ............................................................................................. 36.4.4 UCAxBR1 Register ............................................................................................. 36.4.5 UCAxMCTL Register ........................................................................................... 36.4.6 UCAxSTAT Register ........................................................................................... 36.4.7 UCAxRXBUF Register ......................................................................................... 36.4.8 UCAxTXBUF Register ......................................................................................... 36.4.9 UCAxIRTCTL Register ......................................................................................... 36.4.10 UCAxIRRCTL Register ....................................................................................... 36.4.11 UCAxABCTL Register ........................................................................................ 36.4.12 UCAxIE Register .............................................................................................. 36.4.13 UCAxIFG Register ............................................................................................ 36.4.14 UCAxIV Register .............................................................................................. 939 940 942 942 942 942 945 946 947 948 948 949 951 951 952 953 956 956 957 958 959 960 961 961 961 962 963 963 964 964 965 966 966 967 Universal Serial Communication Interface – SPI Mode .......................................................... 968 37.1 37.2 37.3 37.4 Universal Serial Communication Interface (USCI) Overview ....................................................... USCI Introduction – SPI Mode .......................................................................................... USCI Operation – SPI Mode ............................................................................................ 37.3.1 USCI Initialization and Reset .................................................................................. 37.3.2 Character Format ............................................................................................... 37.3.3 Master Mode .................................................................................................... 37.3.4 Slave Mode ...................................................................................................... 37.3.5 SPI Enable ....................................................................................................... 37.3.6 Serial Clock Control ............................................................................................ 37.3.7 Using the SPI Mode With Low-Power Modes ............................................................... 37.3.8 USCI Interrupts in SPI Mode .................................................................................. USCI_A SPI Mode Registers ............................................................................................ 37.4.1 UCAxCTL0 Register ............................................................................................ 37.4.2 UCAxCTL1 Register ............................................................................................ 37.4.3 UCAxBR0 Register ............................................................................................. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Contents Copyright © 2008–2015, Texas Instruments Incorporated 969 970 972 972 972 973 974 975 975 976 977 978 979 980 981 17 www.ti.com 37.5 38 38.4 Universal Serial Communication Interface (USCI) Overview ....................................................... 995 USCI Introduction – I2C Mode ........................................................................................... 996 USCI Operation – I2C Mode ............................................................................................. 997 38.3.1 USCI Initialization and Reset .................................................................................. 998 38.3.2 I2C Serial Data .................................................................................................. 998 38.3.3 I2C Addressing Modes ........................................................................................ 1000 38.3.4 I2C Module Operating Modes ................................................................................ 1001 38.3.5 I2C Clock Generation and Synchronization ................................................................ 1012 38.3.6 Using the USCI Module in I2C Mode With Low-Power Modes .......................................... 1013 38.3.7 USCI Interrupts in I2C Mode ................................................................................. 1013 USCI_B I2C Mode Registers .......................................................................................... 1016 38.4.1 UCBxCTL0 Register .......................................................................................... 1017 38.4.2 UCBxCTL1 Register .......................................................................................... 1018 38.4.3 UCBxBR0 Register............................................................................................ 1019 38.4.4 UCBxBR1 Register............................................................................................ 1019 38.4.5 UCBxSTAT Register .......................................................................................... 1020 38.4.6 UCBxRXBUF Register ........................................................................................ 1021 38.4.7 UCBxTXBUF Register ........................................................................................ 1021 38.4.8 UCBxI2COA Register ......................................................................................... 1022 38.4.9 UCBxI2CSA Register ......................................................................................... 1022 38.4.10 UCBxIE Register ............................................................................................. 1023 38.4.11 UCBxIFG Register ........................................................................................... 1024 38.4.12 UCBxIV Register ............................................................................................. 1025 Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode .......................... 1026 39.1 39.2 39.3 18 981 981 982 983 983 984 984 985 986 987 988 989 989 989 990 991 991 992 992 993 Universal Serial Communication Interface – I2C Mode ........................................................... 994 38.1 38.2 38.3 39 37.4.4 UCAxBR1 Register ............................................................................................. 37.4.5 UCAxMCTL Register ........................................................................................... 37.4.6 UCAxSTAT Register ........................................................................................... 37.4.7 UCAxRXBUF Register ......................................................................................... 37.4.8 UCAxTXBUF Register ......................................................................................... 37.4.9 UCAxIE Register ................................................................................................ 37.4.10 UCAxIFG Register ............................................................................................ 37.4.11 UCAxIV Register .............................................................................................. USCI_B SPI Mode Registers ............................................................................................ 37.5.1 UCBxCTL0 Register ............................................................................................ 37.5.2 UCBxCTL1 Register ............................................................................................ 37.5.3 UCBxBR0 Register ............................................................................................. 37.5.4 UCBxBR1 Register ............................................................................................. 37.5.5 UCBxMCTL Register ........................................................................................... 37.5.6 UCBxSTAT Register ........................................................................................... 37.5.7 UCBxRXBUF Register ......................................................................................... 37.5.8 UCBxTXBUF Register ......................................................................................... 37.5.9 UCBxIE Register ................................................................................................ 37.5.10 UCBxIFG Register ............................................................................................ 37.5.11 UCBxIV Register .............................................................................................. Enhanced Universal Serial Communication Interface A (eUSCI_A) Overview ................................. eUSCI_A Introduction – UART Mode ................................................................................. eUSCI_A Operation – UART Mode ................................................................................... 39.3.1 eUSCI_A Initialization and Reset ........................................................................... 39.3.2 Character Format ............................................................................................. 39.3.3 Asynchronous Communication Format ..................................................................... 39.3.4 Automatic Baud-Rate Detection ............................................................................. 39.3.5 IrDA Encoding and Decoding ................................................................................ Contents 1027 1027 1029 1029 1029 1029 1032 1033 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 39.4 40 39.3.6 Automatic Error Detection .................................................................................... 39.3.7 eUSCI_A Receive Enable .................................................................................... 39.3.8 eUSCI_A Transmit Enable ................................................................................... 39.3.9 UART Baud-Rate Generation ............................................................................... 39.3.10 Setting a Baud Rate ......................................................................................... 39.3.11 Transmit Bit Timing - Error calculation .................................................................... 39.3.12 Receive Bit Timing – Error Calculation ................................................................... 39.3.13 Typical Baud Rates and Errors ............................................................................ 39.3.14 Using the eUSCI_A Module in UART Mode With Low-Power Modes ................................ 39.3.15 eUSCI_A Interrupts in UART Mode ....................................................................... 39.3.16 DMA Operation............................................................................................... eUSCI_A UART Registers ............................................................................................. 39.4.1 UCAxCTLW0 Register ........................................................................................ 39.4.2 UCAxCTLW1 Register ........................................................................................ 39.4.3 UCAxBRW Register........................................................................................... 39.4.4 UCAxMCTLW Register ....................................................................................... 39.4.5 UCAxSTATW Register ....................................................................................... 39.4.6 UCAxRXBUF Register ........................................................................................ 39.4.7 UCAxTXBUF Register ........................................................................................ 39.4.8 UCAxABCTL Register ........................................................................................ 39.4.9 UCAxIRCTL Register ......................................................................................... 39.4.10 UCAxIE Register ............................................................................................. 39.4.11 UCAxIFG Register ........................................................................................... 39.4.12 UCAxIV Register ............................................................................................. 1034 1035 1035 1036 1038 1039 1039 1040 1042 1042 1044 1045 1046 1047 1048 1048 1049 1050 1050 1051 1052 1053 1054 1055 Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode.............................. 1056 40.1 40.2 40.3 40.4 40.5 Enhanced Universal Serial Communication Interfaces (eUSCI_A, eUSCI_B) Overview ...................... eUSCI Introduction – SPI Mode ....................................................................................... eUSCI Operation – SPI Mode ......................................................................................... 40.3.1 eUSCI Initialization and Reset ............................................................................... 40.3.2 Character Format ............................................................................................. 40.3.3 Master Mode ................................................................................................... 40.3.4 Slave Mode .................................................................................................... 40.3.5 SPI Enable ..................................................................................................... 40.3.6 Serial Clock Control ........................................................................................... 40.3.7 Using the SPI Mode With Low-Power Modes ............................................................. 40.3.8 eUSCI Interrupts in SPI Mode ............................................................................... eUSCI_A SPI Registers ................................................................................................ 40.4.1 UCAxCTLW0 Register ........................................................................................ 40.4.2 UCAxBRW Register........................................................................................... 40.4.3 UCAxSTATW Register ....................................................................................... 40.4.4 UCAxRXBUF Register ........................................................................................ 40.4.5 UCAxTXBUF Register ........................................................................................ 40.4.6 UCAxIE Register .............................................................................................. 40.4.7 UCAxIFG Register ............................................................................................ 40.4.8 UCAxIV Register .............................................................................................. eUSCI_B SPI Registers ................................................................................................ 40.5.1 UCBxCTLW0 Register ........................................................................................ 40.5.2 UCBxBRW Register........................................................................................... 40.5.3 UCBxSTATW Register ....................................................................................... 40.5.4 UCBxRXBUF Register ........................................................................................ 40.5.5 UCBxTXBUF Register ........................................................................................ 40.5.6 UCBxIE Register ............................................................................................. 40.5.7 UCBxIFG Register ............................................................................................ SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Contents Copyright © 2008–2015, Texas Instruments Incorporated 1057 1057 1059 1059 1060 1060 1061 1062 1062 1063 1063 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1076 1077 1077 1078 1078 19 www.ti.com 40.5.8 UCBxIV Register .............................................................................................. 1079 41 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode 41.1 42 42.3 42.4 USB Introduction ........................................................................................................ USB Operation........................................................................................................... 42.2.1 USB Transceiver (PHY) ...................................................................................... 42.2.2 USB Power System ........................................................................................... 42.2.3 USB Phase-Locked Loop (PLL) ............................................................................. 42.2.4 USB Controller Engine ....................................................................................... 42.2.5 USB Vector Interrupts ........................................................................................ 42.2.6 Power Consumption .......................................................................................... 42.2.7 Suspend and Resume ....................................................................................... USB Transfers ........................................................................................................... 42.3.1 Control Transfers .............................................................................................. 42.3.2 Interrupt Transfers ............................................................................................ 42.3.3 Bulk Transfers ................................................................................................. USB Registers ........................................................................................................... 42.4.1 USB Configuration Registers ................................................................................ 42.4.2 USB Control Registers ....................................................................................... 42.4.3 USB Buffer Registers and Memory ......................................................................... 1120 1122 1122 1123 1126 1128 1132 1132 1133 1133 1133 1137 1138 1140 1140 1148 1165 LDO-PWR Module ........................................................................................................... 1176 43.1 43.2 43.3 20 1085 1096 1097 1098 1102 1103 1105 1107 1107 1108 1109 1109 1110 1111 1111 1112 1112 1113 1113 1114 1116 1118 USB Module ................................................................................................................... 1119 42.1 42.2 43 .............................. 1080 41.0.9 I2C Quick Setup ................................................................................................ 41.0.10 Glitch Filtering ................................................................................................ 41.0.11 Byte Counter ................................................................................................. 41.0.12 Multiple Slave Addresses ................................................................................... eUSCI_B I2C Registers ................................................................................................ 41.1.1 UCBxCTLW0 Register ........................................................................................ 41.1.2 UCBxCTLW1 Register ........................................................................................ 41.1.3 UCBxBRW Register........................................................................................... 41.1.4 UCBxSTATW .................................................................................................. 41.1.5 UCBxTBCNT Register ........................................................................................ 41.1.6 UCBxRXBUF Register ........................................................................................ 41.1.7 UCBxTXBUF ................................................................................................... 41.1.8 UCBxI2COA0 Register ....................................................................................... 41.1.9 UCBxI2COA1 Register ....................................................................................... 41.1.10 UCBxI2COA2 Register ...................................................................................... 41.1.11 UCBxI2COA3 Register ...................................................................................... 41.1.12 UCBxADDRX Register ...................................................................................... 41.1.13 UCBxADDMASK Register .................................................................................. 41.1.14 UCBxI2CSA Register ....................................................................................... 41.1.15 UCBxIE Register ............................................................................................. 41.1.16 UCBxIFG Register ........................................................................................... 41.1.17 UCBxIV Register ............................................................................................. LDO-PWR Introduction ................................................................................................. LDO-PWR Operation ................................................................................................... 43.2.1 Enabling/Disabling ............................................................................................ 43.2.2 Powering the Rest of the MSP430 from the LDO-PWR ................................................. 43.2.3 Powering Other Components in the System from LDO-PWR ........................................... 43.2.4 Applications That Do Not Require LDO-PWR ............................................................. 43.2.5 Current Limitation and Overload Protection ............................................................... 43.2.6 LDO-PWR Interrupts .......................................................................................... 43.2.7 Port U Control ................................................................................................. LDO-PWR Registers .................................................................................................... Contents 1177 1178 1178 1178 1179 1179 1179 1180 1180 1181 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 43.3.1 LDOKEYPID Register ........................................................................................ 1182 43.3.2 PUCTL Register ............................................................................................... 1182 43.3.3 LDOPWRCTL Register ....................................................................................... 1183 44 Embedded Emulation Module (EEM).................................................................................. 1184 44.1 44.2 44.3 Embedded Emulation Module (EEM) Introduction .................................................................. EEM Building Blocks .................................................................................................... 44.2.1 Triggers ......................................................................................................... 44.2.2 Trigger Sequencer ............................................................................................ 44.2.3 State Storage (Internal Trace Buffer) ....................................................................... 44.2.4 Cycle Counter.................................................................................................. 44.2.5 Clock Control .................................................................................................. EEM Configurations ..................................................................................................... 1185 1187 1187 1187 1187 1187 1187 1188 Revision History ...................................................................................................................... 1189 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Contents Copyright © 2008–2015, Texas Instruments Incorporated 21 www.ti.com List of Figures 1-1. BOR/POR/PUC Reset Circuit............................................................................................. 56 1-2. Interrupt Priority............................................................................................................. 58 1-3. NMIs With Reentrance Protection........................................................................................ 59 1-4. Interrupt Processing........................................................................................................ 60 1-5. Return From Interrupt ...................................................................................................... 61 1-6. Operation Modes ........................................................................................................... 64 1-7. Devices Descriptor Table.................................................................................................. 74 1-8. SFRIE1 Register 1-9. SFRIFG1 Register.......................................................................................................... 85 1-10. SFRRPCR Register ........................................................................................................ 87 1-11. SYSCTL Register 1-12. SYSBSLC Register 1-13. 1-14. 1-15. 1-16. 1-17. 1-18. 1-19. 1-20. 1-21. 2-1. 2-2. 2-3. 2-4. 2-5. 2-6. 2-7. 2-8. 2-9. 2-10. 2-11. 2-12. 2-13. 2-14. 2-15. 2-16. 3-1. 3-2. 3-3. 3-4. 4-1. 4-2. 4-3. 4-4. 4-5. 4-6. 22 ........................................................................................................... 84 .......................................................................................................... 89 ........................................................................................................ 90 SYSJMBC Register ........................................................................................................ 91 SYSJMBI0 Register ........................................................................................................ 92 SYSJMBI1 Register ........................................................................................................ 92 SYSJMBO0 Register....................................................................................................... 93 SYSJMBO1 Register....................................................................................................... 93 SYSUNIV Register ......................................................................................................... 94 SYSSNIV Register ......................................................................................................... 95 SYSRSTIV Register........................................................................................................ 96 SYSBERRIV Register ..................................................................................................... 97 System Frequency, Supply Voltage, and Core Voltage – See Device-Specific Data Sheet ..................... 99 PMM Block Diagram...................................................................................................... 100 Available SVMH Settings Versus VCORE Settings ................................................................... 103 High-Side and Low-Side Voltage Failure and Resulting PMM Actions ............................................ 104 High-Side SVS and SVM ................................................................................................ 105 Low-Side SVS and SVM ................................................................................................. 106 PMM Action at Device Power-Up ....................................................................................... 107 Changing VCORE and SVML and SVSL Levels .......................................................................... 108 PMMCTL0 Register....................................................................................................... 115 PMMCTL1 Register....................................................................................................... 116 SVSMHCTL Register ..................................................................................................... 117 SVSMLCTL Register ..................................................................................................... 118 SVSMIO Register ......................................................................................................... 119 PMMIFG Register ......................................................................................................... 120 PMMRIE Register ......................................................................................................... 122 PM5CTL0 Register ....................................................................................................... 123 Battery Backup Switch Overview ....................................................................................... 126 Charger Block Diagram .................................................................................................. 128 BAKCTL Register ......................................................................................................... 130 BAKCHCTL Register ..................................................................................................... 131 Auxiliary Supply Switch Overview ...................................................................................... 134 System Frequency vs Supply Voltage ................................................................................. 138 Available SVMH Settings vs VCORE Settings ............................................................................ 138 Available AUXxLVL Settings vs SVMH Settings ...................................................................... 139 Auxiliary Supply Monitor Block Diagram ............................................................................... 140 I/Os Powered by Auxiliary Supplies .................................................................................... 142 List of Figures SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 4-7. AUX Connection to ADC ................................................................................................. 142 4-8. Charger Block Diagram .................................................................................................. 143 4-9. Software Flow Chart ...................................................................................................... 145 4-10. AUXCTL0 Register ....................................................................................................... 149 4-11. AUXCTL1 Register ....................................................................................................... 150 4-12. AUXCTL2 Register ....................................................................................................... 151 4-13. AUX2CHCTL Register 152 4-14. AUX3CHCTL Register 153 4-15. 4-16. 4-17. 4-18. 5-1. 5-2. 5-3. 5-4. 5-5. 5-6. 5-7. 5-8. 5-9. 5-10. 5-11. 5-12. 5-13. 5-14. 5-15. 6-1. 6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8. 6-9. 6-10. 6-11. 6-12. 6-13. 6-14. 6-15. 6-16. 6-17. 6-18. 6-19. 6-20. 6-21. 6-22. ................................................................................................... ................................................................................................... AUXADCCTL Register ................................................................................................... AUXIFG Register ......................................................................................................... AUXIE Register ........................................................................................................... AUXIV Register ........................................................................................................... UCS Block Diagram ..................................................................................................... Modulator Patterns ....................................................................................................... Module Request Clock System ......................................................................................... Oscillator Fault Logic ..................................................................................................... Switch MCLK from DCOCLK to XT1CLK .............................................................................. UCSCTL0 Register ....................................................................................................... UCSCTL1 Register ....................................................................................................... UCSCTL2 Register ....................................................................................................... UCSCTL3 Register ....................................................................................................... UCSCTL4 Register ....................................................................................................... UCSCTL5 Register ....................................................................................................... UCSCTL6 Register ....................................................................................................... UCSCTL7 Register ....................................................................................................... UCSCTL8 Register ....................................................................................................... UCSCTL9 Register ....................................................................................................... MSP430X CPU Block Diagram ......................................................................................... PC Storage on the Stack for Interrupts ................................................................................ Program Counter.......................................................................................................... PC Storage on the Stack for CALLA ................................................................................... Stack Pointer .............................................................................................................. Stack Usage ............................................................................................................... PUSHX.A Format on the Stack ......................................................................................... PUSH SP, POP SP Sequence .......................................................................................... SR Bits ..................................................................................................................... Register-Byte and Byte-Register Operation ........................................................................... Register-Word Operation ................................................................................................ Word-Register Operation ................................................................................................ Register – Address-Word Operation ................................................................................... Address-Word – Register Operation ................................................................................... Indexed Mode in Lower 64KB ........................................................................................... Indexed Mode in Upper Memory ....................................................................................... Overflow and Underflow for Indexed Mode ........................................................................... Example for Indexed Mode .............................................................................................. Symbolic Mode Running in Lower 64KB .............................................................................. Symbolic Mode Running in Upper Memory ........................................................................... Overflow and Underflow for Symbolic Mode .......................................................................... MSP430 Double-Operand Instruction Format......................................................................... SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback List of Figures Copyright © 2008–2015, Texas Instruments Incorporated 154 155 156 157 160 166 167 170 172 174 175 176 177 178 179 181 183 184 185 188 189 190 190 191 191 191 191 192 194 194 195 195 196 198 199 200 201 203 204 205 213 23 www.ti.com 6-23. MSP430 Single-Operand Instructions .................................................................................. 214 6-24. Format of Conditional Jump Instructions 215 6-25. Extension Word for Register Modes 218 6-26. 6-27. 6-28. 6-29. 6-30. 6-31. 6-32. 6-33. 6-34. 6-35. 6-36. 6-37. 6-38. 6-39. 6-40. 6-41. 6-42. 6-43. 6-44. 6-45. 6-46. 6-47. 6-48. 6-49. 6-50. 6-51. 6-52. 6-53. 6-54. 6-55. 6-56. 6-57. 6-58. 6-59. 6-60. 7-1. 7-2. 7-3. 7-4. 7-5. 7-6. 7-7. 7-8. 7-9. 7-10. 7-11. 24 .............................................................................. ................................................................................... Extension Word for Non-Register Modes .............................................................................. Example for Extended Register or Register Instruction ............................................................. Example for Extended Immediate or Indexed Instruction ........................................................... Extended Format I Instruction Formats ................................................................................ 20-Bit Addresses in Memory ............................................................................................ Extended Format II Instruction Format ................................................................................. PUSHM and POPM Instruction Format ................................................................................ RRCM, RRAM, RRUM, and RLAM Instruction Format .............................................................. BRA Instruction Format .................................................................................................. CALLA Instruction Format ............................................................................................... Decrement Overlap ....................................................................................................... Stack After a RET Instruction ........................................................................................... Destination Operand—Arithmetic Shift Left ........................................................................... Destination Operand—Carry Left Shift ................................................................................. Rotate Right Arithmetically RRA.B and RRA.W ...................................................................... Rotate Right Through Carry RRC.B and RRC.W .................................................................... Swap Bytes in Memory................................................................................................... Swap Bytes in a Register ................................................................................................ Rotate Left Arithmetically—RLAM[.W] and RLAM.A ................................................................. Destination Operand-Arithmetic Shift Left ............................................................................. Destination Operand-Carry Left Shift .................................................................................. Rotate Right Arithmetically RRAM[.W] and RRAM.A ................................................................ Rotate Right Arithmetically RRAX(.B,.A) – Register Mode .......................................................... Rotate Right Arithmetically RRAX(.B,.A) – Non-Register Mode .................................................... Rotate Right Through Carry RRCM[.W] and RRCM.A .............................................................. Rotate Right Through Carry RRCX(.B,.A) – Register Mode ........................................................ Rotate Right Through Carry RRCX(.B,.A) – Non-Register Mode .................................................. Rotate Right Unsigned RRUM[.W] and RRUM.A..................................................................... Rotate Right Unsigned RRUX(.B,.A) – Register Mode .............................................................. Swap Bytes SWPBX.A Register Mode ................................................................................ Swap Bytes SWPBX.A In Memory ..................................................................................... Swap Bytes SWPBX[.W] Register Mode .............................................................................. Swap Bytes SWPBX[.W] In Memory ................................................................................... Sign Extend SXTX.A ..................................................................................................... Sign Extend SXTX[.W] ................................................................................................... Flash Memory Module Block Diagram ................................................................................. 256KB of Flash Memory Segments Example ......................................................................... Erase Cycle Timing ....................................................................................................... Erase Cycle From Flash ................................................................................................. Erase Cycle From RAM .................................................................................................. Byte, Word, and Long-Word Write Timing ............................................................................. Initiating a Byte or Word Write From Flash ............................................................................ Initiating a Byte or Word Write From RAM ............................................................................ Initiating Long-Word Write From Flash ................................................................................ Initiating Long-Word Write from RAM .................................................................................. Block-Write Cycle Timing ................................................................................................ List of Figures 218 219 220 221 221 222 223 223 223 223 249 268 270 271 272 273 280 280 307 308 309 310 312 312 314 316 316 317 318 322 322 323 323 324 324 343 344 347 348 349 350 351 352 353 354 355 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 7-12. Block Write Flow .......................................................................................................... 356 7-13. User-Developed Programming Solution ............................................................................... 360 7-14. FCTL1 Register ........................................................................................................... 362 7-15. FCTL3 Register ........................................................................................................... 363 7-16. FCTL4 Register ........................................................................................................... 364 7-17. SFRIE1 Register .......................................................................................................... 365 8-1. Block Diagram of MID Implementation ................................................................................. 367 8-2. Overview of MSP430 Flash Memory Segmentation 8-3. cw0 Parameter ............................................................................................................ 370 8-4. cw1 Parameter ............................................................................................................ 370 9-1. RCCTL0 Register ......................................................................................................... 377 11-1. DMA Controller Block Diagram 11-2. DMA Addressing Modes ................................................................................................. 383 11-3. DMA Single Transfer State Diagram ................................................................................... 385 11-4. DMA Block Transfer State Diagram .................................................................................... 387 11-5. DMA Burst-Block Transfer State Diagram ............................................................................. 389 11-6. DMACTL0 Register ....................................................................................................... 397 11-7. DMACTL1 Register ....................................................................................................... 398 11-8. DMACTL2 Register ....................................................................................................... 399 11-9. DMACTL3 Register ....................................................................................................... 400 ................................................................. ......................................................................................... 368 382 11-10. DMACTL4 Register ....................................................................................................... 401 11-11. DMAxCTL Register ....................................................................................................... 402 ........................................................................................................ ........................................................................................................ DMAxSZ Register ......................................................................................................... DMAIV Register ........................................................................................................... P1IV Register.............................................................................................................. P2IV Register.............................................................................................................. P1IES Register ............................................................................................................ P1IE Register.............................................................................................................. P1IFG Register ............................................................................................................ P2IES Register ............................................................................................................ P2IE Register.............................................................................................................. P2IFG Register ............................................................................................................ PxIN Register.............................................................................................................. PxOUT Register........................................................................................................... PxDIR Register ............................................................................................................ PxREN Register........................................................................................................... PxDS Register............................................................................................................. PxSEL Register ........................................................................................................... PMAPKEYID Register .................................................................................................... PMAPCTL Register ....................................................................................................... PxMAPy Register ......................................................................................................... LFSR Implementation of CRC-CCITT Standard, Bit 0 is the MSB of the Result ................................. Implementation of CRC-CCITT Using the CRCDI and CRCINIRES Registers .................................. CRCDI Register ........................................................................................................... CRCDIRB Register ....................................................................................................... CRCINIRES Register..................................................................................................... CRCRESR Register ...................................................................................................... 11-12. DMAxSA Register 404 11-13. DMAxDA Register 405 11-14. 406 11-15. 12-1. 12-2. 12-3. 12-4. 12-5. 12-6. 12-7. 12-8. 12-9. 12-10. 12-11. 12-12. 12-13. 12-14. 13-1. 13-2. 13-3. 14-1. 14-2. 14-3. 14-4. 14-5. 14-6. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback List of Figures Copyright © 2008–2015, Texas Instruments Incorporated 407 422 423 424 424 424 425 425 425 426 426 426 427 427 427 432 432 432 434 436 439 439 440 440 25 www.ti.com 15-1. AES Accelerator Block Diagram ........................................................................................ 442 15-2. AES State Array Input and Output 443 15-3. AES-128 Encryption Process 444 15-4. 15-5. 15-6. 15-7. 15-8. 15-9. 15-10. 15-11. 15-12. 15-13. 16-1. 16-2. 17-1. 17-2. 17-3. 17-4. 17-5. 17-6. 17-7. 17-8. 17-9. 17-10. 17-11. 17-12. 17-13. 17-14. 17-15. 17-16. 17-17. 17-18. 17-19. 17-20. 17-21. 18-1. 18-2. 18-3. 18-4. 18-5. 18-6. 18-7. 18-8. 18-9. 18-10. 18-11. 18-12. 18-13. 26 ..................................................................................... ........................................................................................... AES-128 Decryption Process using AESOPx = 01 .................................................................. AES-128 Decryption Process using AESOPx = 10 and 11 ......................................................... AESACTL0 Register ...................................................................................................... AESACTL1 Register ...................................................................................................... AESASTAT Register ..................................................................................................... AESAKEY Register ....................................................................................................... AESADIN Register........................................................................................................ AESADOUT Register..................................................................................................... AESAXDIN Register ...................................................................................................... AESAXIN Register ........................................................................................................ Watchdog Timer Block Diagram ........................................................................................ WDTCTL Register ........................................................................................................ Timer_A Block Diagram .................................................................................................. Up Mode ................................................................................................................... Up Mode Flag Setting .................................................................................................... Continuous Mode ......................................................................................................... Continuous Mode Flag Setting .......................................................................................... Continuous Mode Time Intervals ....................................................................................... Up/Down Mode ............................................................................................................ Up/Down Mode Flag Setting ............................................................................................ Output Unit in Up/Down Mode .......................................................................................... Capture Signal (SCS = 1)................................................................................................ Capture Cycle ............................................................................................................. Output Example – Timer in Up Mode .................................................................................. Output Example – Timer in Continuous Mode ........................................................................ Output Example – Timer in Up/Down Mode .......................................................................... Capture/Compare Interrupt Flag ........................................................................................ TAxCTL Register.......................................................................................................... TAxR Register ............................................................................................................. TAxCCTLn Register ...................................................................................................... TAxCCRn Register ....................................................................................................... TAxIV Register ............................................................................................................ TAxEX0 Register.......................................................................................................... Timer_B Block Diagram .................................................................................................. Up Mode ................................................................................................................... Up Mode Flag Setting .................................................................................................... Continuous Mode ......................................................................................................... Continuous Mode Flag Setting .......................................................................................... Continuous Mode Time Intervals ....................................................................................... Up/Down Mode ............................................................................................................ Up/Down Mode Flag Setting ............................................................................................ Output Unit in Up/Down Mode .......................................................................................... Capture Signal (SCS = 1)................................................................................................ Capture Cycle ............................................................................................................. Output Example – Timer in Up Mode .................................................................................. Output Example – Timer in Continuous Mode ........................................................................ List of Figures 445 446 449 450 451 452 453 453 454 454 457 461 464 466 466 467 467 467 468 468 469 470 470 472 473 474 475 478 479 480 482 482 483 486 488 488 489 489 489 490 490 491 492 492 495 496 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com .......................................................................... Capture/Compare TBxCCR0 Interrupt Flag ........................................................................... TBxCTL Register.......................................................................................................... TBxR Register ............................................................................................................. TBxCCTLn Register ...................................................................................................... TBxCCRn Register ....................................................................................................... TBxIV Register ............................................................................................................ TBxEX0 Register.......................................................................................................... Timer_D Block Diagram.................................................................................................. High Resolution Clock Generator ....................................................................................... Up Mode ................................................................................................................... Up Mode Flag Setting .................................................................................................... Continuous Mode ......................................................................................................... Continuous Mode Flag Setting .......................................................................................... Continuous Mode Time Intervals ....................................................................................... TDxCCR0 PWM Generation Under Continuous Mode .............................................................. Up/Down Mode ............................................................................................................ Up/Down Mode Flag Setting ............................................................................................ Output Unit in Up/Down Mode .......................................................................................... Controlling Rising and Falling Edge of PWM Output in Up Mode .................................................. Deadband Generation (TDxCMB = 1) ................................................................................. Capture Signal (SCS = 1)................................................................................................ Single Capture Cycle ..................................................................................................... Sequential Capture Events in Dual Capture Mode ................................................................... COV in Dual Capture Mode ............................................................................................. Output Example, Channel 1 – Timer in Up Mode .................................................................... Output Example, Channel 1 - Timer in Up Mode With External Fault Signal ..................................... Output Example - Timer in Up Mode with External Timer Clear Signal ........................................... Output Example – Timer in Continuous Mode ........................................................................ Output Example – Timer in Up/Down Mode .......................................................................... Capture/Compare TDxCCR0 Interrupt Flag ........................................................................... TDxCTL0 Register ........................................................................................................ TDxCTL1 Register ........................................................................................................ TDxCTL2 Register ........................................................................................................ TDxR Register............................................................................................................. TDxCCTLn Register ...................................................................................................... TDxCCRn Register ....................................................................................................... TDxCLn Register.......................................................................................................... TDxHCTL0 Register ...................................................................................................... TDxHCTL1 Register ...................................................................................................... TDxHINT Register ........................................................................................................ TDxIV Register ............................................................................................................ Timer Event Control Block Diagram .................................................................................... External Input Events Affect Timer_D Output ........................................................................ Timer_D Output With Channel Combination .......................................................................... Module Level Connection Between TEC and Timer_D ............................................................. Synchronization Between Timer Instances ............................................................................ TECxCTL0 Register ...................................................................................................... TECxCTL1 Register ...................................................................................................... 18-14. Output Example – Timer in Up/Down Mode 497 18-15. 498 18-16. 18-17. 18-18. 18-19. 18-20. 18-21. 19-1. 19-2. 19-3. 19-4. 19-5. 19-6. 19-7. 19-8. 19-9. 19-10. 19-11. 19-12. 19-13. 19-14. 19-15. 19-16. 19-17. 19-18. 19-19. 19-20. 19-21. 19-22. 19-23. 19-24. 19-25. 19-26. 19-27. 19-28. 19-29. 19-30. 19-31. 19-32. 19-33. 19-34. 20-1. 20-2. 20-3. 20-4. 20-5. 20-6. 20-7. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback List of Figures Copyright © 2008–2015, Texas Instruments Incorporated 501 503 504 506 507 508 511 513 516 516 516 517 517 518 518 519 520 522 523 524 524 525 525 529 530 531 532 533 534 537 539 540 541 542 544 544 545 546 547 548 550 552 552 553 555 558 560 27 www.ti.com 20-8. TECxCTL2 Register ...................................................................................................... 562 20-9. TECxSTA Register 563 564 20-11. 565 22-1. 22-2. 22-3. 22-4. 22-5. 22-6. 22-7. 22-8. 22-9. 22-10. 22-11. 22-12. 22-13. 22-14. 22-15. 22-16. 22-17. 22-18. 22-19. 22-20. 22-21. 22-22. 22-23. 22-24. 22-25. 22-26. 22-27. 22-28. 22-29. 22-30. 22-31. 22-32. 22-33. 22-34. 22-35. 22-36. 23-1. 23-2. 23-3. 23-4. 23-5. 23-6. 23-7. 23-8. 23-9. 28 ....................................................................................................... ........................................................................................................ TECxIV Register .......................................................................................................... RTC_A ..................................................................................................................... RTCCTL0 Register ....................................................................................................... RTCCTL1 Register ....................................................................................................... RTCCTL2 Register ....................................................................................................... RTCCTL3 Register ....................................................................................................... RTCNT1 Register ......................................................................................................... RTCNT2 Register ......................................................................................................... RTCNT3 Register ......................................................................................................... RTCNT4 Register ......................................................................................................... RTCSEC Register ........................................................................................................ RTCSEC Register ........................................................................................................ RTCMIN Register ......................................................................................................... RTCMIN Register ......................................................................................................... RTCHOUR Register ...................................................................................................... RTCHOUR Register ...................................................................................................... RTCDOW Register ....................................................................................................... RTCDAY Register ........................................................................................................ RTCDAY Register ........................................................................................................ RTCMON Register........................................................................................................ RTCMON Register........................................................................................................ RTCYEARL Register ..................................................................................................... RTCYEARL Register ..................................................................................................... RTCYEARH Register..................................................................................................... RTCYEARH Register..................................................................................................... RTCAMIN Register ....................................................................................................... RTCAMIN Register ....................................................................................................... RTCAHOUR Register .................................................................................................... RTCAHOUR Register .................................................................................................... RTCADOW Register ..................................................................................................... RTCADAY Register....................................................................................................... RTCADAY Register....................................................................................................... RTCPS0CTL Register .................................................................................................... RTCPS1CTL Register .................................................................................................... RT0PS Register ........................................................................................................... RTPS1 Register ........................................................................................................... RTCIV Register ........................................................................................................... RTC_B Block Diagram ................................................................................................... RTCCTL0 Register ....................................................................................................... RTCCTL1 Register ....................................................................................................... RTCCTL2 Register ....................................................................................................... RTCCTL3 Register ....................................................................................................... RTCSEC Register ........................................................................................................ RTCSEC Register ........................................................................................................ RTCMIN Register ......................................................................................................... RTCMIN Register ......................................................................................................... 20-10. TECxINT Register List of Figures 569 578 579 580 580 581 581 581 581 582 582 583 583 584 584 585 585 585 586 586 587 587 588 588 589 589 590 590 591 591 591 593 594 595 595 595 598 606 607 608 608 609 609 610 610 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 23-10. RTCHOUR Register ...................................................................................................... 611 23-11. RTCHOUR Register ...................................................................................................... 611 23-12. RTCDOW Register ....................................................................................................... 612 ........................................................................................................ RTCDAY Register ........................................................................................................ RTCMON Register........................................................................................................ RTCMON Register........................................................................................................ RTCYEAR Register....................................................................................................... RTCYEAR Register....................................................................................................... RTCAMIN Register ....................................................................................................... RTCAMIN Register ....................................................................................................... RTCAHOUR Register .................................................................................................... RTCAHOUR Register .................................................................................................... RTCADOW Register ..................................................................................................... RTCADAY Register....................................................................................................... RTCADAY Register....................................................................................................... RTCPS0CTL Register .................................................................................................... RTCPS1CTL Register .................................................................................................... RTCPS0 Register ......................................................................................................... RTCPS1 Register ......................................................................................................... RTCIV Register ........................................................................................................... BIN2BCD Register ........................................................................................................ BCD2BIN Register ........................................................................................................ RTC_C Block Diagram (RTCMODE=1)................................................................................ RTC_C Offset Error Calibration and Temperature Compensation Scheme ...................................... RTC_C Functional Block Diagram in Counter Mode (RTCMODE = 0) ............................................ RTCCTL0_L Register .................................................................................................... RTCCTL0_H Register .................................................................................................... RTCCTL1 Register ....................................................................................................... RTCCTL3 Register ....................................................................................................... RTCOCAL Register....................................................................................................... RTCTCMP Register ...................................................................................................... RTCNT1 Register ......................................................................................................... RTCNT2 Register ......................................................................................................... RTCNT3 Register ......................................................................................................... RTCNT4 Register ......................................................................................................... RTCSEC Register ........................................................................................................ RTCSEC Register ........................................................................................................ RTCMIN Register ......................................................................................................... RTCMIN Register ......................................................................................................... RTCHOUR Register ...................................................................................................... RTCHOUR Register ...................................................................................................... RTCDOW Register ....................................................................................................... RTCDAY Register ........................................................................................................ RTCDAY Register ........................................................................................................ RTCMON Register........................................................................................................ RTCMON Register........................................................................................................ RTCYEAR Register....................................................................................................... RTCYEAR Register....................................................................................................... 23-13. RTCDAY Register 23-14. 23-15. 23-16. 23-17. 23-18. 23-19. 23-20. 23-21. 23-22. 23-23. 23-24. 23-25. 23-26. 23-27. 23-28. 23-29. 23-30. 23-31. 23-32. 24-1. 24-2. 24-3. 24-4. 24-5. 24-6. 24-7. 24-8. 24-9. 24-10. 24-11. 24-12. 24-13. 24-14. 24-15. 24-16. 24-17. 24-18. 24-19. 24-20. 24-21. 24-22. 24-23. 24-24. 24-25. 24-26. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback List of Figures Copyright © 2008–2015, Texas Instruments Incorporated 612 612 613 613 614 614 615 615 616 616 617 618 618 619 620 621 621 622 623 623 626 633 636 644 645 646 647 647 648 649 649 649 649 650 650 651 651 652 652 653 653 653 654 654 655 655 29 www.ti.com 24-27. RTCAMIN Register ....................................................................................................... 656 24-28. RTCAMIN Register ....................................................................................................... 656 24-29. RTCAHOUR Register .................................................................................................... 657 24-30. RTCAHOUR Register .................................................................................................... 657 24-31. RTCADOW Register ..................................................................................................... 658 24-32. RTCADAY Register....................................................................................................... 659 24-33. RTCADAY Register....................................................................................................... 659 24-34. RTCPS0CTL Register .................................................................................................... 660 24-35. RTCPS1CTL Register .................................................................................................... 661 24-36. RTCPS0 Register ......................................................................................................... 663 24-37. RTCPS1 Register ......................................................................................................... 663 24-38. RTCIV Register ........................................................................................................... 664 24-39. BIN2BCD Register ........................................................................................................ 665 24-40. BCD2BIN Register ........................................................................................................ 665 24-41. RTCSECBAKx Register.................................................................................................. 666 24-42. RTCSECBAKx Register.................................................................................................. 666 24-43. RTCMINBAKx Register .................................................................................................. 667 24-44. RTCMINBAKx Register .................................................................................................. 667 24-45. RTCHOURBAKx Register ............................................................................................... 668 24-46. RTCHOURBAKx Register ............................................................................................... 668 24-47. RTCDAYBAKx Register.................................................................................................. 669 24-48. RTCDAYBAKx Register.................................................................................................. 669 24-49. RTCMONBAKx Register ................................................................................................. 670 24-50. RTCMONBAKx Register ................................................................................................. 670 24-51. RTCYEARBAKx Register ................................................................................................ 671 24-52. RTCYEARBAKx Register ................................................................................................ 671 24-53. RTCTCCTL0 Register .................................................................................................... 672 24-54. RTCTCCTL1 Register .................................................................................................... 672 24-55. RTCCAPxCTL Register .................................................................................................. 673 25-1. MPY32 Block Diagram ................................................................................................... 676 25-2. Q15 Format Representation ............................................................................................. 681 25-3. Q14 Format Representation ............................................................................................. 681 25-4. Saturation Flow Chart .................................................................................................... 683 25-5. Multiplication Flow Chart ................................................................................................. 685 25-6. MPY32CTL0 Register .................................................................................................... 691 26-1. REF Block Diagram 26-2. 26-3. 27-1. 27-2. 27-3. 27-4. 27-5. 27-6. 27-7. 27-8. 27-9. 27-10. 27-11. 30 ...................................................................................................... REF Block Diagram for Devices With a CTSD16 Module ........................................................... REFCTL0 Register ....................................................................................................... ADC10_A Block Diagram ................................................................................................ Analog Multiplexer ........................................................................................................ Extended Sample Mode ................................................................................................. Pulse Sample Mode ...................................................................................................... Analog Input Equivalent Circuit ......................................................................................... Single-Channel Single-Conversion Mode ............................................................................. Sequence-of-Channels Mode ........................................................................................... Repeat-Single-Channel Mode ........................................................................................... Repeat-Sequence-of-Channels Mode.................................................................................. Typical Temperature Sensor Transfer Function ...................................................................... ADC10_A Grounding and Noise Considerations ..................................................................... List of Figures 694 695 703 707 708 710 710 711 712 713 714 715 717 718 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 27-12. ADC10CTL0 Register .................................................................................................... 721 27-13. ADC10CTL1 Register .................................................................................................... 722 27-14. ADC10CTL2 Register .................................................................................................... 724 27-15. ADC10MEM0 Register ................................................................................................... 725 27-16. ADC10MEM0 Register ................................................................................................... 725 27-17. ADC10MCTL0 Register .................................................................................................. 726 27-18. ADC10HI Register ........................................................................................................ 727 27-19. ADC10HI Register ........................................................................................................ 727 27-20. ADC10LO Register ....................................................................................................... 728 27-21. ADC10LO Register ....................................................................................................... 728 27-22. ADC10IE Register ........................................................................................................ 729 27-23. ADC10IFG Register ...................................................................................................... 730 27-24. ADC10IV Register ........................................................................................................ 731 28-1. ADC12_A Block Diagram (Devices With REF Module) .............................................................. 734 28-2. ADC12_A MSP430F54xx (non-A) Block Diagram.................................................................... 735 28-3. Analog Multiplexer ........................................................................................................ 736 28-4. Extended Sample Mode 28-5. Pulse Sample Mode ...................................................................................................... 739 28-6. Analog Input Equivalent Circuit ......................................................................................... 739 28-7. Single-Channel Single-Conversion Mode 28-8. Sequence-of-Channels Mode ........................................................................................... 742 28-9. Repeat-Single-Channel Mode ........................................................................................... 743 ................................................................................................. ............................................................................. 738 741 28-10. Repeat-Sequence-of-Channels Mode.................................................................................. 744 28-11. Typical Temperature Sensor Transfer Function ...................................................................... 746 28-12. ADC12_A Grounding and Noise Considerations ..................................................................... 747 28-13. ADC12CTL0 Register .................................................................................................... 752 28-14. ADC12CTL1 Register .................................................................................................... 754 28-15. ADC12CTL2 Register .................................................................................................... 755 28-16. ADC12MEMx Register ................................................................................................... 756 28-17. ADC12MCTLx Register .................................................................................................. 757 28-18. ADC12IE Register ........................................................................................................ 758 28-19. ADC12IFG Register ...................................................................................................... 760 28-20. ADC12IV Register ........................................................................................................ 762 29-1. SD24_B Overview Block Diagram ...................................................................................... 765 29-2. SD24_B Reference and Clock Generation Block Diagram.......................................................... 766 29-3. SD24_B Converter Block Diagram ..................................................................................... 767 29-4. Sigma-Delta Principle .................................................................................................... 768 29-5. Analog Input Equivalent Circuit ......................................................................................... 770 29-6. SINC3 Filter Structure 29-7. 29-8. 29-9. 29-10. 29-11. 29-12. 29-13. 29-14. 29-15. 29-16. .................................................................................................... Comb Filter's Frequency Response With OSR = 32 ................................................................. Digital Filter Step Response and Conversion Points Digital Filter Output......................................... SD24_B Output Encoder and Input Decoder Block Diagram ....................................................... Single Conversion Examples ............................................................................................ Grouped Operation - Internal Start-of-Conversion Trigger .......................................................... Grouped Operation - External Start-of-Conversion Trigger ......................................................... Conversion Delay Using Preload - Example .......................................................................... Start of Conversion Using Preload - Example ........................................................................ SD24_B Trigger Generator Block Diagram............................................................................ SD24BCTL0 Register .................................................................................................... SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback List of Figures Copyright © 2008–2015, Texas Instruments Incorporated 771 771 772 774 775 776 776 776 777 778 782 31 www.ti.com 29-17. SD24BCTL1 Register .................................................................................................... 783 29-18. SD24BTRGCTL Register ................................................................................................ 784 785 29-20. SD24BIE Register 788 29-21. 29-22. 29-23. 29-24. 29-25. 29-26. 29-27. 29-28. 29-29. 30-1. 30-2. 30-3. 30-4. 30-5. 30-6. 30-7. 30-8. 30-9. 30-10. 30-11. 30-12. 30-13. 30-14. 30-15. 30-16. 30-17. 30-18. 30-19. 30-20. 30-21. 31-1. 31-2. 31-3. 31-4. 31-5. 31-6. 31-7. 31-8. 31-9. 31-10. 31-11. 31-12. 31-13. 31-14. 31-15. 32 ...................................................................................................... ........................................................................................................ SD24BIV Register ........................................................................................................ SD24BCCTLx Register .................................................................................................. SD24BINCTLx Register .................................................................................................. SD24BOSRx Register .................................................................................................... SD24BTRGOSR Register ............................................................................................... SD24BPREx Register .................................................................................................... SD24BTRGPRE Register ................................................................................................ SD24BMEMLx Register .................................................................................................. SD24BMEMHx Register ................................................................................................. CTSD16 Block Diagram.................................................................................................. Sigma-Delta Principle .................................................................................................... SINC3 Filter Structure .................................................................................................... Comb Filter Frequency Response With OSR = 32 ................................................................... Digital Filter Step Response and Conversion Points Digital Filter Output......................................... Used Bits of Digital Filter Output........................................................................................ Input Voltage vs Digital Output.......................................................................................... Single Channel Operation Example .................................................................................... Grouped Channel Operation Example ................................................................................. Conversion Delay Using Preload Example ............................................................................ Start of Conversion Using Preload Example .......................................................................... Preload and Channel Synchronization ................................................................................. Typical Temperature Sensor Transfer Function ...................................................................... CTSD16CTL Register .................................................................................................... CTSD16CCTL0 to CTSD16CCTL6 Register .......................................................................... CTSD16MEM0 to CTSD16MEM6 Register ........................................................................... CTSD16INCTL0 to CTSD16INCTL6 Register ........................................................................ CTSD16PRE0 to CTSD16PRE6 Register ............................................................................. CTSD16IFG Register..................................................................................................... CTSD16IE Register....................................................................................................... CTSD16IV Register....................................................................................................... DAC12_A Block Diagram for Two-Module Devices .................................................................. DAC12_A Block Diagram For Single-Module Devices............................................................... Output Voltage vs DAC Data, 12-Bit Straight-Binary Mode ......................................................... Output Voltage vs DAC Data, 12-Bit Twos-Complement Mode .................................................... Negative Offset ............................................................................................................ Positive Offset ............................................................................................................. DAC12_A Group Update Example, Timer_A3 Trigger............................................................... DAC12_xCTL0 Register ................................................................................................. DAC12_xCTL1 Register ................................................................................................. DAC12_xDAT Register .................................................................................................. DAC12_xDAT Register .................................................................................................. DAC12_xDAT Register .................................................................................................. DAC12_xDAT Register .................................................................................................. DAC12_xDAT Register .................................................................................................. DAC12_xDAT Register .................................................................................................. 29-19. SD24BIFG Register List of Figures 790 791 793 794 794 795 795 796 796 799 800 803 804 804 805 806 807 808 809 809 810 810 814 815 816 817 818 819 821 823 826 827 829 830 830 830 831 835 837 838 838 839 839 840 840 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com .................................................................................................. DAC12_xDAT Register .................................................................................................. DAC12_xCALCTL Register.............................................................................................. DAC12_xCALDAT Register ............................................................................................. DAC12IV Register ........................................................................................................ Comp_B Block Diagram ................................................................................................. Comp_B Sample-And-Hold .............................................................................................. RC-Filter Response at the Output of the Comparator ............................................................... Reference Generator Block Diagram .................................................................................. Transfer Characteristic and Power Dissipation in a CMOS Inverter/Buffer ....................................... Temperature Measurement System .................................................................................... Timing for Temperature Measurement Systems...................................................................... CBCTL0 Register ......................................................................................................... CBCTL1 Register ......................................................................................................... CBCTL2 Register ......................................................................................................... CBCTL3 Register ......................................................................................................... CBINT Register ........................................................................................................... CBIV Register ............................................................................................................. OA Block Diagram ........................................................................................................ OAnCTL0 Register ....................................................................................................... OAnPSW Register ........................................................................................................ OAnNSW Register ........................................................................................................ OAnGSW Register........................................................................................................ LCD_B Controller Block Diagram ....................................................................................... LCD Memory - Example for 160 Segments Maximum............................................................... Bias Generation ........................................................................................................... Example Static Waveforms .............................................................................................. Static LCD Example (MAB addresses need to be replaced with LCDMx) ........................................ Example 2-Mux Waveforms ............................................................................................. 2-Mux LCD Example (MAB addresses need to be replaced with LCDMx) ....................................... Example 3-Mux Waveforms ............................................................................................. 3-Mux LCD Example (MAB addresses need to be replaced with LCDMx) ....................................... Example 4-Mux Waveforms ............................................................................................. 4-Mux LCD Example (MAB addresses need to be replaced with LCDMx) ....................................... LCDBCTL0 Register ...................................................................................................... LCDBCTL1 Register ...................................................................................................... LCDBBLKCTL Register .................................................................................................. LCDBMEMCTL Register ................................................................................................. LCDBVCTL Register ..................................................................................................... LCDBPCTL0 Register .................................................................................................... LCDBPCTL1 Register .................................................................................................... LCDBPCTL2 Register .................................................................................................... LCDBPCTL3 Register .................................................................................................... LCDBCPCTL Register ................................................................................................... LCDBIV Register .......................................................................................................... LCD Controller Block Diagram .......................................................................................... LCD Memory for Static and 2-Mux to 4-Mux Mode - Example for 160 Segments ............................... LCD Memory for 5-Mux to 8-Mux Mode - Example for 160 Segments ............................................ Bias Generation ........................................................................................................... 31-16. DAC12_xDAT Register 31-17. 31-18. 31-19. 31-20. 32-1. 32-2. 32-3. 32-4. 32-5. 32-6. 32-7. 32-8. 32-9. 32-10. 32-11. 32-12. 32-13. 33-1. 33-2. 33-3. 33-4. 33-5. 34-1. 34-2. 34-3. 34-4. 34-5. 34-6. 34-7. 34-8. 34-9. 34-10. 34-11. 34-12. 34-13. 34-14. 34-15. 34-16. 34-17. 34-18. 34-19. 34-20. 34-21. 34-22. 35-1. 35-2. 35-3. 35-4. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback List of Figures Copyright © 2008–2015, Texas Instruments Incorporated 841 841 842 842 843 845 847 848 848 849 850 850 853 854 855 856 858 859 862 866 867 868 869 872 873 876 879 880 882 883 885 886 888 889 894 895 896 897 898 900 900 901 901 902 903 906 907 908 911 33 www.ti.com 35-5. Example Static Waveforms .............................................................................................. 916 35-6. Example 2-Mux Waveforms ............................................................................................. 917 35-7. Example 3-Mux Waveforms ............................................................................................. 918 35-8. Example 4-Mux Waveforms ............................................................................................. 919 35-9. Example 6-Mux Waveforms ............................................................................................. 920 35-10. Example 8-Mux, 1/3 Bias Waveforms (LCDLP = 0) .................................................................. 921 922 35-12. LCDCCTL0 Register 928 35-13. 930 35-14. 35-15. 35-16. 35-17. 35-18. 35-19. 35-20. 35-21. 35-22. 36-1. 36-2. 36-3. 36-4. 36-5. 36-6. 36-7. 36-8. 36-9. 36-10. 36-11. 36-12. 36-13. 36-14. 36-15. 36-16. 36-17. 36-18. 36-19. 36-20. 36-21. 36-22. 36-23. 36-24. 36-25. 37-1. 37-2. 37-3. 37-4. 37-5. 37-6. 34 ................................................... ..................................................................................................... LCDCCTL1 Register ..................................................................................................... LCDCBLKCTL Register .................................................................................................. LCDCMEMCTL Register ................................................................................................. LCDCVCTL Register ..................................................................................................... LCDCPCTL0 Register .................................................................................................... LCDCPCTL1 Register .................................................................................................... LCDCPCTL2 Register .................................................................................................... LCDCPCTL3 Register .................................................................................................... LCDCCPCTL Register ................................................................................................... LCDCIV Register.......................................................................................................... USCI_Ax Block Diagram – UART Mode (UCSYNC = 0) ............................................................ Character Format ......................................................................................................... Idle-Line Format........................................................................................................... Address-Bit Multiprocessor Format ..................................................................................... Auto Baud-Rate Detection – Break/Synch Sequence ............................................................... Auto Baud-Rate Detection – Synch Field.............................................................................. UART vs IrDA Data Format ............................................................................................. Glitch Suppression, USCI Receive Not Started ...................................................................... Glitch Suppression, USCI Activated .................................................................................... BITCLK Baud-Rate Timing With UCOS16 = 0 ........................................................................ Receive Error .............................................................................................................. UCAxCTL0 Register ...................................................................................................... UCAxCTL1 Register ...................................................................................................... UCAxBR0 Register ....................................................................................................... UCAxBR1 Register ....................................................................................................... UCAxMCTL Register ..................................................................................................... UCAxSTAT Register ..................................................................................................... UCAxRXBUF Register ................................................................................................... UCAxTXBUF Register.................................................................................................... UCAxIRTCTL Register ................................................................................................... UCAxIRRCTL Register ................................................................................................... UCAxABCTL Register .................................................................................................... UCAxIE Register .......................................................................................................... UCAxIFG Register ........................................................................................................ UCAxIV Register .......................................................................................................... USCI Block Diagram – SPI Mode ...................................................................................... USCI Master and External Slave ....................................................................................... USCI Slave and External Master ....................................................................................... USCI SPI Timing With UCMSB = 1 .................................................................................... UCAxCTL0 Register ...................................................................................................... UCAxCTL1 Register ...................................................................................................... 35-11. Example 8-Mux, 1/3 Bias Low-Power Waveforms (LCDLP = 1) List of Figures 931 932 933 935 935 936 936 937 937 941 942 943 944 945 945 946 948 948 949 952 959 960 961 961 961 962 963 963 964 964 965 966 966 967 971 973 974 976 979 980 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 37-7. UCAxBR0 Register ....................................................................................................... 981 37-8. UCAxBR1 Register ....................................................................................................... 981 37-9. UCAxMCTL Register ..................................................................................................... 981 ..................................................................................................... 982 UCAxRXBUF Register ................................................................................................... 983 UCAxTXBUF Register.................................................................................................... 983 UCAxIE Register .......................................................................................................... 984 UCAxIFG Register ........................................................................................................ 984 UCAxIV Register .......................................................................................................... 985 UCBxCTL0 Register ...................................................................................................... 987 UCBxCTL1 Register ...................................................................................................... 988 UCBxBR0 Register ....................................................................................................... 989 UCBxBR1 Register ....................................................................................................... 989 UCBxMCTL Register ..................................................................................................... 989 UCBxSTAT Register ..................................................................................................... 990 UCBxRXBUF Register ................................................................................................... 991 UCBxTXBUF Register.................................................................................................... 991 UCBxIE Register .......................................................................................................... 992 UCBxIFG Register ........................................................................................................ 992 UCBxIV Register .......................................................................................................... 993 USCI Block Diagram – I2C Mode ....................................................................................... 997 I2C Bus Connection Diagram ............................................................................................ 998 I2C Module Data Transfer ................................................................................................ 999 Bit Transfer on I2C Bus ................................................................................................... 999 I2C Module 7-Bit Addressing Format.................................................................................. 1000 I2C Module 10-Bit Addressing Format ................................................................................ 1000 I2C Module Addressing Format With Repeated START Condition ............................................... 1000 I2C Time-Line Legend ................................................................................................... 1001 I2C Slave Transmitter Mode ............................................................................................ 1002 I2C Slave Receiver Mode ............................................................................................... 1004 I2C Slave 10-Bit Addressing Mode .................................................................................... 1005 I2C Master Transmitter Mode .......................................................................................... 1007 I2C Master Receiver Mode ............................................................................................. 1009 I2C Master 10-Bit Addressing Mode .................................................................................. 1010 Arbitration Procedure Between Two Master Transmitters ......................................................... 1011 Synchronization of Two I2C Clock Generators During Arbitration................................................. 1012 UCBxCTL0 Register .................................................................................................... 1017 UCBxCTL1 Register .................................................................................................... 1018 UCBxBR0 Register ...................................................................................................... 1019 UCBxBR1 Register ...................................................................................................... 1019 UCBxSTAT Register .................................................................................................... 1020 UCBxRXBUF Register .................................................................................................. 1021 UCBxTXBUF Register .................................................................................................. 1021 UCBxI2COA Register ................................................................................................... 1022 UCBxI2CSA Register ................................................................................................... 1022 UCBxIE Register ........................................................................................................ 1023 UCBxIFG Register ...................................................................................................... 1024 UCBxIV Register ........................................................................................................ 1025 eUSCI_Ax Block Diagram – UART Mode (UCSYNC = 0) ......................................................... 1028 37-10. UCAxSTAT Register 37-11. 37-12. 37-13. 37-14. 37-15. 37-16. 37-17. 37-18. 37-19. 37-20. 37-21. 37-22. 37-23. 37-24. 37-25. 37-26. 38-1. 38-2. 38-3. 38-4. 38-5. 38-6. 38-7. 38-8. 38-9. 38-10. 38-11. 38-12. 38-13. 38-14. 38-15. 38-16. 38-17. 38-18. 38-19. 38-20. 38-21. 38-22. 38-23. 38-24. 38-25. 38-26. 38-27. 38-28. 39-1. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback List of Figures Copyright © 2008–2015, Texas Instruments Incorporated 35 www.ti.com 39-2. Character Format........................................................................................................ 1029 39-3. Idle-Line Format ......................................................................................................... 1030 39-4. Address-Bit Multiprocessor Format ................................................................................... 1031 39-5. Auto Baud-Rate Detection – Break/Synch Sequence .............................................................. 1032 39-6. Auto Baud-Rate Detection – Synch Field ............................................................................ 1032 39-7. UART vs IrDA Data Format ............................................................................................ 1033 39-8. Glitch Suppression, eUSCI_A Receive Not Started ................................................................ 1035 39-9. Glitch Suppression, eUSCI_A Activated ............................................................................. 1035 39-10. BITCLK Baud-Rate Timing With UCOS16 = 0 ...................................................................... 1036 39-11. Receive Error ............................................................................................................ 1040 39-12. UCAxCTLW0 Register .................................................................................................. 1046 39-13. UCAxCTLW1 Register .................................................................................................. 1047 39-14. UCAxBRW Register..................................................................................................... 1048 39-15. UCAxMCTLW Register ................................................................................................. 1048 39-16. UCAxSTATW Register ................................................................................................. 1049 39-17. UCAxRXBUF Register .................................................................................................. 1050 39-18. UCAxTXBUF Register .................................................................................................. 1050 39-19. UCAxABCTL Register .................................................................................................. 1051 39-20. UCAxIRCTL Register ................................................................................................... 1052 1053 39-22. UCAxIFG Register 1054 39-23. 40-1. 40-2. 40-3. 40-4. 40-5. 40-6. 40-7. 40-8. 40-9. 40-10. 40-11. 40-12. 40-13. 40-14. 40-15. 40-16. 40-17. 40-18. 40-19. 40-20. 41-1. 41-2. 41-3. 41-4. 41-5. 41-6. 41-7. 36 ........................................................................................................ ...................................................................................................... UCAxIV Register ........................................................................................................ eUSCI Block Diagram – SPI Mode ................................................................................... eUSCI Master and External Slave (UCSTEM = 0).................................................................. eUSCI Slave and External Master .................................................................................... eUSCI SPI Timing With UCMSB = 1 ................................................................................. UCAxCTLW0 Register .................................................................................................. UCAxBRW Register..................................................................................................... UCAxSTATW Register ................................................................................................. UCAxRXBUF Register .................................................................................................. UCAxTXBUF Register .................................................................................................. UCAxIE Register ........................................................................................................ UCAxIFG Register ...................................................................................................... UCAxIV Register ........................................................................................................ UCBxCTLW0 Register .................................................................................................. UCBxBRW Register..................................................................................................... UCBxSTATW Register ................................................................................................. UCBxRXBUF Register .................................................................................................. UCBxTXBUF Register .................................................................................................. UCBxIE Register ........................................................................................................ UCBxIFG Register ...................................................................................................... UCBxIV Register ........................................................................................................ eUSCI_B Block Diagram – I2C Mode ................................................................................. I2C Bus Connection Diagram .......................................................................................... I2C Module Data Transfer .............................................................................................. Bit Transfer on I2C Bus ................................................................................................. I2C Module 7-Bit Addressing Format.................................................................................. I2C Module 10-Bit Addressing Format ................................................................................ I2C Module Addressing Format With Repeated START Condition ............................................... 39-21. UCAxIE Register List of Figures 1055 1058 1060 1061 1063 1066 1067 1068 1069 1070 1071 1072 1073 1075 1076 1076 1077 1077 1078 1078 1079 1082 1083 1084 1084 1084 1084 1085 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 41-8. I2C Time-Line Legend ................................................................................................... 1086 41-9. I2C Slave Transmitter Mode ............................................................................................ 1088 41-10. I2C Slave Receiver Mode ............................................................................................... 1089 41-11. I2C Slave 10-Bit Addressing Mode .................................................................................... 1090 41-12. I2C Master Transmitter Mode .......................................................................................... 1092 41-13. I2C Master Receiver Mode ............................................................................................. 1094 41-14. I2C Master 10-Bit Addressing Mode .................................................................................. 1095 41-15. Arbitration Procedure Between Two Master Transmitters ......................................................... 1095 41-16. Synchronization of Two I2C Clock Generators During Arbitration................................................. 1096 41-17. UCBxCTLW0 Register .................................................................................................. 1103 41-18. UCBxCTLW1 Register .................................................................................................. 1105 41-19. UCBxBRW Register..................................................................................................... 1107 41-20. UCBxSTATW Register ................................................................................................. 1107 41-21. UCBxTBCNT Register .................................................................................................. 1108 41-22. UCBxRXBUF Register .................................................................................................. 1109 41-23. UCBxTXBUF Register .................................................................................................. 1109 41-24. UCBxI2COA0 Register ................................................................................................. 1110 41-25. UCBxI2COA1 Register ................................................................................................. 1111 41-26. UCBxI2COA2 Register ................................................................................................. 1111 41-27. UCBxI2COA3 Register ................................................................................................. 1112 ................................................................................................. UCBxADDMASK Register.............................................................................................. UCBxI2CSA Register ................................................................................................... UCBxIE Register ........................................................................................................ UCBxIFG Register ...................................................................................................... UCBxIV Register ........................................................................................................ USB Block Diagram ..................................................................................................... USB Power System ..................................................................................................... USB Power Up and Down Profile ..................................................................................... Powering Entire MSP430 From VBUS ............................................................................... USB-PLL Analog Block Diagram ...................................................................................... Data Buffers and Descriptors .......................................................................................... USB Timer and Time Stamp Generation ............................................................................. USBKEYPID Register .................................................................................................. USBCNF Register ....................................................................................................... USBPHYCTL Register .................................................................................................. USBPWRCTL Register ................................................................................................. USBPLLCTL Register .................................................................................................. USBPLLDIVB Register ................................................................................................. USBPLLIR Register ..................................................................................................... USBIEPCNF_0 Register ............................................................................................... USBIEPBCNT_0 Register .............................................................................................. USBOEPCNFG_0 Register ............................................................................................ USBOEPBCNT_0 Register ............................................................................................ USBIEPIE Register ..................................................................................................... USBOEPIE Register .................................................................................................... USBIEPIFG Register.................................................................................................... USBOEPIFG Register .................................................................................................. USBVECINT Register .................................................................................................. 41-28. UCBxADDRX Register 1112 41-29. 1113 41-30. 41-31. 41-32. 41-33. 42-1. 42-2. 42-3. 42-4. 42-5. 42-6. 42-7. 42-8. 42-9. 42-10. 42-11. 42-12. 42-13. 42-14. 42-15. 42-16. 42-17. 42-18. 42-19. 42-20. 42-21. 42-22. 42-23. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback List of Figures Copyright © 2008–2015, Texas Instruments Incorporated 1113 1114 1116 1118 1121 1123 1124 1125 1126 1129 1131 1141 1141 1142 1143 1145 1146 1147 1149 1150 1151 1152 1153 1155 1157 1158 1159 37 www.ti.com 42-24. USBMAINT Register .................................................................................................... 1160 42-25. USBTSREG Register ................................................................................................... 1161 42-26. USBFN Register ......................................................................................................... 1161 42-27. USBCTL Register ....................................................................................................... 1162 42-28. USBIE Register .......................................................................................................... 1163 42-29. USBIFG Register ........................................................................................................ 1164 42-30. USBFUNADR Register ................................................................................................. 1164 42-31. USBOEPCNF_n Register .............................................................................................. 1168 1169 42-33. 1170 42-34. 42-35. 42-36. 42-37. 42-38. 42-39. 42-40. 42-41. 42-42. 43-1. 43-2. 43-3. 43-4. 43-5. 43-6. 44-1. 38 ............................................................................................ USBOEPBCTX_n Register ............................................................................................ USBOEPBBAY_n Register ............................................................................................ USBOEPBCTY_n Register ............................................................................................ USBOEPSIZXY_n Register ............................................................................................ USBIEPCNF_n Register ............................................................................................... USBIEPBBAX_n Register .............................................................................................. USBIEPBCTX_n Register .............................................................................................. USBIEPBBAY_n Register .............................................................................................. USBIEPBCTY_n Register .............................................................................................. USBIEPSIZXY_n Register ............................................................................................. LDO Block Diagram ..................................................................................................... 3.3-V LDO Power Up/Down Profile ................................................................................... Powering Entire MSP430 From LDOI ................................................................................ LDOKEYPID Register .................................................................................................. PUCTL Register ......................................................................................................... LDOPWRCTL Register ................................................................................................. Large Implementation of EEM ......................................................................................... 42-32. USBOEPBBAX_n Register List of Figures 1170 1171 1171 1172 1173 1174 1174 1175 1175 1177 1178 1179 1182 1182 1183 1186 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com List of Tables 1-1. Interrupt Sources, Flags, and Vectors ................................................................................... 61 1-2. Operation Modes ........................................................................................................... 65 1-3. Connection of Unused Pins ............................................................................................... 69 1-4. Tag Values .................................................................................................................. 75 1-5. Peripheral Discovery Descriptor .......................................................................................... 76 1-6. Values for Memory Entry .................................................................................................. 77 1-7. Values for Peripheral Entry 1-8. 1-9. 1-10. 1-11. 1-12. 1-13. 1-14. 1-15. 1-16. 1-17. 1-18. 1-19. 1-20. 1-21. 1-22. 1-23. 1-24. 1-25. 1-26. 1-27. 2-1. 2-2. 2-3. 2-4. 2-5. 2-6. 2-7. 2-8. 2-9. 2-10. 2-11. 2-12. 2-13. 2-14. 2-15. 2-16. 2-17. 2-18. 2-19. 2-20. ............................................................................................... 77 Peripheral IDs .............................................................................................................. 78 Sample Peripheral Discovery Descriptor ................................................................................ 79 SFR Base Address ......................................................................................................... 83 SFR Registers .............................................................................................................. 83 SFRIE1 Register Description ............................................................................................. 84 SFRIFG1 Register Description ........................................................................................... 85 SFRRPCR Register Description.......................................................................................... 87 SYS Base Address ......................................................................................................... 88 SYS Registers .............................................................................................................. 88 SYSCTL Register Description ............................................................................................ 89 SYSBSLC Register Description .......................................................................................... 90 SYSJMBC Register Description .......................................................................................... 91 SYSJMBI0 Register Description.......................................................................................... 92 SYSJMBI1 Register Description.......................................................................................... 92 SYSJMBO0 Register Description ........................................................................................ 93 SYSJMBO1 Register Description ........................................................................................ 93 SYSUNIV Register Description ........................................................................................... 94 SYSSNIV Register Description ........................................................................................... 95 SYSRSTIV Register Description ......................................................................................... 96 SYSBERRIV Register Description ....................................................................................... 97 SVS and SVM Thresholds ............................................................................................... 102 Recommended SVSL Settings .......................................................................................... 102 Recommended SVSH Settings .......................................................................................... 102 Available SVSH and SVMH Settings Versus VCORE Settings .......................................................... 103 SVSL and SVML Control Mode Selection .............................................................................. 111 SVSL Automatic Performance Control ................................................................................. 111 SVSL Manual Performance Modes ..................................................................................... 111 SVML Automatic Performance Control ................................................................................. 111 SVML Manual Performance Modes ..................................................................................... 111 SVSH and SVMH Control Mode Selection .............................................................................. 112 SVSH Automatic Performance Control ................................................................................. 112 SVSH Manual Performance Modes ..................................................................................... 112 SVMH Automatic Performance Control ................................................................................. 112 SVMH Manual Performance Modes..................................................................................... 112 PMM Registers ............................................................................................................ 114 PMMCTL0 Register Description ........................................................................................ 115 PMMCTL1 Register Description ........................................................................................ 116 SVSMHCTL Register Description ...................................................................................... 117 SVSMLCTL Register Description ....................................................................................... 118 SVSMIO Register Description ........................................................................................... 119 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback List of Tables Copyright © 2008–2015, Texas Instruments Incorporated 39 www.ti.com 2-21. 2-22. 2-23. 3-1. 3-2. 3-3. 4-1. 4-2. 4-3. 4-4. 4-5. 4-6. 4-7. 4-8. 4-9. 4-10. 4-11. 4-12. 4-13. 5-1. 5-2. 5-3. 5-4. 5-5. 5-6. 5-7. 5-8. 5-9. 5-10. 5-11. 5-12. 6-1. 6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8. 6-9. 6-10. 6-11. 6-12. 6-13. 6-14. 6-15. 6-16. 6-17. 6-18. 40 .......................................................................................... PMMRIE Register Description .......................................................................................... PM5CTL0 Register Description ......................................................................................... Battery Backup Registers ................................................................................................ BAKCTL Register Description ........................................................................................... BAKCHCTL Register Description ....................................................................................... Next Supply Voltage Selection .......................................................................................... Minimum Voltage Thresholds for Selected fSYS ....................................................................... Supply Selection During LPMx.5 ....................................................................................... Auxiliary Supply Registers ............................................................................................... AUXCTL0 Register Description ......................................................................................... AUXCTL1 Register Description ......................................................................................... AUXCTL2 Register Description ......................................................................................... AUX2CHCTL Register Description ..................................................................................... AUX3CHCTL Register Description ..................................................................................... AUXADCCTL Register Description ..................................................................................... AUXIFG Register Description ........................................................................................... AUXIE Register Description ............................................................................................. AUXIV Register Description ............................................................................................. Clock Request System and Power Modes ............................................................................ UCS Registers ............................................................................................................ UCSCTL0 Register Description ......................................................................................... UCSCTL1 Register Description ......................................................................................... UCSCTL2 Register Description ......................................................................................... UCSCTL3 Register Description ......................................................................................... UCSCTL4 Register Description ......................................................................................... UCSCTL5 Register Description ......................................................................................... UCSCTL6 Register Description ......................................................................................... UCSCTL7 Register Description ......................................................................................... UCSCTL8 Register Description ......................................................................................... UCSCTL9 Register Description ......................................................................................... SR Bit Description ........................................................................................................ Values of Constant Generators CG1, CG2............................................................................ Source and Destination Addressing .................................................................................... MSP430 Double-Operand Instructions................................................................................. MSP430 Single-Operand Instructions .................................................................................. Conditional Jump Instructions ........................................................................................... Emulated Instructions .................................................................................................... Interrupt, Return, and Reset Cycles and Length ..................................................................... MSP430 Format II Instruction Cycles and Length .................................................................... MSP430 Format I Instructions Cycles and Length ................................................................... Description of the Extension Word Bits for Register Mode.......................................................... Description of Extension Word Bits for Non-Register Modes ....................................................... Extended Double-Operand Instructions................................................................................ Extended Single-Operand Instructions................................................................................. Extended Emulated Instructions ........................................................................................ Address Instructions, Operate on 20-Bit Register Data ............................................................. MSP430X Format II Instruction Cycles and Length .................................................................. MSP430X Format I Instruction Cycles and Length ................................................................... PMMIFG Register Description List of Tables 120 122 123 129 130 131 137 139 141 148 149 150 151 152 153 154 155 156 157 168 173 174 175 176 177 178 179 181 183 184 185 192 193 196 214 214 215 215 216 216 217 218 219 220 222 224 225 226 227 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 6-19. Address Instruction Cycles and Length ................................................................................ 228 6-20. Instruction Map of MSP430X ............................................................................................ 229 7-1. Supported Simultaneous Code Execution and Flash Operations .................................................. 346 7-2. Erase Modes 7-3. 7-4. 7-5. 7-6. 7-7. 7-8. 7-9. 8-1. 9-1. 9-2. 10-1. 11-1. 11-2. 11-3. 11-4. 11-5. 11-6. 11-7. 11-8. 11-9. 11-10. 11-11. 11-12. 11-13. 11-14. 12-1. 12-2. 12-3. 12-4. 12-5. 12-6. 12-7. 12-8. 12-9. 12-10. 12-11. 12-12. 12-13. 12-14. 12-15. 12-16. 13-1. 13-2. 13-3. 13-4. .............................................................................................................. Write Modes ............................................................................................................... Flash Access While Flash is Busy (BUSY = 1) ....................................................................... FCTL Registers ........................................................................................................... FCTL1 Register Description ............................................................................................. FCTL3 Register Description ............................................................................................. FCTL4 Register Description ............................................................................................. SFRIE1 Register Description ............................................................................................ Overview of MID Support Software Functions ........................................................................ RAMCTL Registers ....................................................................................................... RCCTL0 Register Description ........................................................................................... Backup RAM Registers .................................................................................................. DMA Transfer Modes..................................................................................................... DMA Trigger Operation .................................................................................................. Maximum Single-Transfer DMA Cycle Time .......................................................................... DMA Registers ............................................................................................................ DMACTL0 Register Description......................................................................................... DMACTL1 Register Description......................................................................................... DMACTL2 Register Description......................................................................................... DMACTL3 Register Description......................................................................................... DMACTL4 Register Description......................................................................................... DMAxCTL Register Description ......................................................................................... DMAxSA Register Description .......................................................................................... DMAxDA Register Description .......................................................................................... DMAxSZ Register Description .......................................................................................... DMAIV Register Description............................................................................................. I/O Configuration .......................................................................................................... Digital I/O Registers ...................................................................................................... P1IV Register Description ............................................................................................... P2IV Register Description ............................................................................................... P1IES Register Description ............................................................................................. P1IE Register Description ............................................................................................... P1IFG Register Description ............................................................................................. P2IES Register Description ............................................................................................. P2IE Register Description ............................................................................................... P2IFG Register Description ............................................................................................. PxIN Register Description ............................................................................................... PxOUT Register Description ............................................................................................ PxDIR Register Description ............................................................................................. PxREN Register Description ............................................................................................ PxDS Register Description .............................................................................................. PxSEL Register Description ............................................................................................. Examples for Port Mapping Mnemonics and Functions ............................................................. Port Mapping Control Registers ........................................................................................ Port Mapping Registers for Port Px – Byte Access .................................................................. Port Mapping Registers for Port Px – Word Access ................................................................. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback List of Tables Copyright © 2008–2015, Texas Instruments Incorporated 346 350 357 361 362 363 364 365 369 376 377 379 384 391 392 395 397 398 399 400 401 402 404 405 406 407 410 416 422 423 424 424 424 425 425 425 426 426 426 427 427 427 430 431 431 431 41 www.ti.com 13-5. 13-6. 13-7. 14-1. 14-2. 14-3. 14-4. 14-5. 15-1. 15-2. 15-3. 15-4. 15-5. 15-6. 15-7. 15-8. 15-9. 16-1. 16-2. 17-1. 17-2. 17-3. 17-4. 17-5. 17-6. 17-7. 17-8. 17-9. 18-1. 18-2. 18-3. 18-4. 18-5. 18-6. 18-7. 18-8. 18-9. 18-10. 18-11. 19-1. 19-2. 19-3. 19-4. 19-5. 19-6. 19-7. 19-8. 19-9. 19-10. 42 ..................................................................................... PMAPCTL Register Description ........................................................................................ PxMAPy Register Description ........................................................................................... CRC Registers ............................................................................................................ CRCDI Register Description............................................................................................. CRCDIRB Register Description ......................................................................................... CRCINIRES Register Description ...................................................................................... CRCRESR Register Description ........................................................................................ AES_ACCEL Registers .................................................................................................. AESACTL0 Register Description ....................................................................................... AESACTL1 Register Description ....................................................................................... AESASTAT Register Description ....................................................................................... AESAKEY Register Description......................................................................................... AESADIN Register Description ......................................................................................... AESADOUT Register Description ...................................................................................... AESAXDIN Register Description ....................................................................................... AESAXIN Register Description ......................................................................................... WDT_A Registers ......................................................................................................... WDTCTL Register Description .......................................................................................... Timer Modes .............................................................................................................. Output Modes ............................................................................................................. Timer_A Registers ........................................................................................................ TAxCTL Register Description ........................................................................................... TAxR Register Description .............................................................................................. TAxCCTLn Register Description ........................................................................................ TAxCCRn Register Description ......................................................................................... TAxIV Register Description .............................................................................................. TAxEX0 Register Description ........................................................................................... Timer Modes .............................................................................................................. TBxCLn Load Events ..................................................................................................... Compare Latch Operating Modes ...................................................................................... Output Modes ............................................................................................................. Timer_B Registers ........................................................................................................ TBxCTL Register Description ........................................................................................... TBxR Register Description .............................................................................................. TBxCCTLn Register Description ........................................................................................ TBxCCRn Register Description ......................................................................................... TBxIV Register Description .............................................................................................. TBxEX0 Register Description ........................................................................................... Factory Preprogrammed Frequency and TDHMx, TDHCLKCR Bit Settings ..................................... Timer Modes .............................................................................................................. High-Resolution Mode Limitation (TDHEN = 1) - Minimum Duty Cycle ........................................... High-Resolution Mode Limitation (TDHEN = 1) - Maximum Duty Cycle .......................................... TDCLx Load Events ...................................................................................................... Compare Latch Operating Modes ...................................................................................... Output Modes ............................................................................................................. Timer_D Registers ........................................................................................................ TDxCTL0 Register Description.......................................................................................... TDxCTL1 Register Description.......................................................................................... PMAPKEYID Register Description List of Tables 432 432 432 438 439 439 440 440 448 449 450 451 452 453 453 454 454 460 461 466 471 477 478 479 480 482 482 483 488 493 494 494 500 501 503 504 506 507 508 514 515 521 521 526 526 527 536 537 539 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 19-11. TDxCTL2 Register Description.......................................................................................... 540 19-12. TDxR Register Description .............................................................................................. 541 19-13. TDxCCTLn Register Description ........................................................................................ 542 19-14. TDxCCRn Register Description ......................................................................................... 544 19-15. TDxCLn Register Description ........................................................................................... 544 19-16. TDxHCTL0 Register Description ........................................................................................ 545 19-17. TDxHCTL1 Register Description ........................................................................................ 546 19-18. TDxHINT Register Description .......................................................................................... 547 19-19. TDxIV Register Description .............................................................................................. 548 20-1. TEC Registers ............................................................................................................. 557 20-2. TECxCTL0 Register Description ........................................................................................ 558 20-3. TECxCTL1 Register Description ........................................................................................ 560 20-4. TECxCTL2 Register Description ........................................................................................ 562 20-5. TECxSTA Register Description ......................................................................................... 563 20-6. TECxINT Register Description .......................................................................................... 564 20-7. TECxIV Register Description ............................................................................................ 565 21-1. RTC Overview ............................................................................................................. 566 22-1. RTC_A Registers ......................................................................................................... 576 22-2. RTCCTL0 Register Description ......................................................................................... 578 22-3. RTCCTL1 Register Description ......................................................................................... 579 22-4. RTCCTL2 Register Description ......................................................................................... 580 22-5. RTCCTL3 Register Description ......................................................................................... 580 22-6. RTCNT1 Register Description 581 22-7. RTCNT2 Register Description 581 22-8. 22-9. 22-10. 22-11. 22-12. 22-13. 22-14. 22-15. 22-16. 22-17. 22-18. 22-19. 22-20. 22-21. 22-22. 22-23. 22-24. 22-25. 22-26. 22-27. 22-28. 22-29. 22-30. 22-31. 22-32. .......................................................................................... .......................................................................................... RTCNT3 Register Description .......................................................................................... RTCNT4 Register Description .......................................................................................... RTCSEC Register Description .......................................................................................... RTCSEC Register Description .......................................................................................... RTCMIN Register Description ........................................................................................... RTCMIN Register Description ........................................................................................... RTCHOUR Register Description ........................................................................................ RTCHOUR Register Description ........................................................................................ RTCDOW Register Description ......................................................................................... RTCDAY Register Description .......................................................................................... RTCDAY Register Description .......................................................................................... RTCMON Register Description ......................................................................................... RTCMON Register Description ......................................................................................... RTCYEARL Register Description ....................................................................................... RTCYEARL Register Description ....................................................................................... RTCYEARH Register Description ...................................................................................... RTCYEARH Register Description ...................................................................................... RTCAMIN Register Description ......................................................................................... RTCAMIN Register Description ......................................................................................... RTCAHOUR Register Description ...................................................................................... RTCAHOUR Register Description ...................................................................................... RTCADOW Register Description ....................................................................................... RTCADAY Register Description ........................................................................................ RTCADAY Register Description ........................................................................................ RTCPS0CTL Register Description ..................................................................................... SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback List of Tables Copyright © 2008–2015, Texas Instruments Incorporated 581 581 582 582 583 583 584 584 585 585 585 586 586 587 587 588 588 589 589 590 590 591 591 591 593 43 www.ti.com 594 22-34. 595 22-35. 22-36. 23-1. 23-2. 23-3. 23-4. 23-5. 23-6. 23-7. 23-8. 23-9. 23-10. 23-11. 23-12. 23-13. 23-14. 23-15. 23-16. 23-17. 23-18. 23-19. 23-20. 23-21. 23-22. 23-23. 23-24. 23-25. 23-26. 23-27. 23-28. 23-29. 23-30. 23-31. 23-32. 24-1. 24-2. 24-3. 24-4. 24-5. 24-6. 24-7. 24-8. 24-9. 24-10. 24-11. 24-12. 24-13. 44 ..................................................................................... RT0PS Register Description ............................................................................................ RT1PS Register Description ............................................................................................ RTCIV Register Description ............................................................................................. RTC_B Registers ......................................................................................................... RTCCTL0 Register Description ......................................................................................... RTCCTL1 Register Description ......................................................................................... RTCCTL2 Register Description ......................................................................................... RTCCTL3 Register Description ......................................................................................... RTCSEC Register Description .......................................................................................... RTCSEC Register Description .......................................................................................... RTCMIN Register Description ........................................................................................... RTCMIN Register Description ........................................................................................... RTCHOUR Register Description ........................................................................................ RTCHOUR Register Description ........................................................................................ RTCDOW Register Description ......................................................................................... RTCDAY Register Description .......................................................................................... RTCDAY Register Description .......................................................................................... RTCMON Register Description ......................................................................................... RTCMON Register Description ......................................................................................... RTCYEAR Register Description ........................................................................................ RTCYEAR Register Description ........................................................................................ RTCAMIN Register Description ......................................................................................... RTCAMIN Register Description ......................................................................................... RTCAHOUR Register Description ...................................................................................... RTCAHOUR Register Description ...................................................................................... RTCADOW Register Description ....................................................................................... RTCADAY Register Description ........................................................................................ RTCADAY Register Description ........................................................................................ RTCPS0CTL Register Description ..................................................................................... RTCPS1CTL Register Description ..................................................................................... RTCPS0 Register Description .......................................................................................... RTCPS1 Register Description .......................................................................................... RTCIV Register Description ............................................................................................. BIN2BCD Register Description ......................................................................................... BCD2BIN Register Description ......................................................................................... RTCCAPx Pin Configuration ............................................................................................ RTC_C Registers ......................................................................................................... RTC_C Event and Tamper Detection Registers ...................................................................... RTC_C Real-Time Clock Counter Mode Aliases ..................................................................... RTCCTL0_L Register Description ...................................................................................... RTCCTL0_H Register Description...................................................................................... RTCCTL1 Register Description ......................................................................................... RTCCTL3 Register Description ......................................................................................... RTCOCAL Register Description ........................................................................................ RTCTCMP Register Description ........................................................................................ RTCNT1 Register Description .......................................................................................... RTCNT2 Register Description .......................................................................................... RTCNT3 Register Description .......................................................................................... 22-33. RTCPS1CTL Register Description List of Tables 595 595 604 606 607 608 608 609 609 610 610 611 611 612 612 612 613 613 614 614 615 615 616 616 617 618 618 619 620 621 621 622 623 623 640 641 643 643 644 645 646 647 647 648 649 649 649 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com .......................................................................................... RTCSEC Register Description .......................................................................................... RTCSEC Register Description .......................................................................................... RTCMIN Register Description ........................................................................................... RTCMIN Register Description ........................................................................................... RTCHOUR Register Description ........................................................................................ RTCHOUR Register Description ........................................................................................ RTCDOW Register Description ......................................................................................... RTCDAY Register Description .......................................................................................... RTCDAY Register Description .......................................................................................... RTCMON Register Description ......................................................................................... RTCMON Register Description ......................................................................................... RTCYEAR Register Description ........................................................................................ RTCYEAR Register Description ........................................................................................ RTCAMIN Register Description ......................................................................................... RTCAMIN Register Description ......................................................................................... RTCAHOUR Register Description ...................................................................................... RTCAHOUR Register Description ...................................................................................... RTCADOW Register Description ....................................................................................... RTCADAY Register Description ........................................................................................ RTCADAY Register Description ........................................................................................ RTCPS0CTL Register Description ..................................................................................... RTCPS1CTL Register Description ..................................................................................... RTCPS0 Register Description .......................................................................................... RTCPS1 Register Description .......................................................................................... RTCIV Register Description ............................................................................................. BIN2BCD Register Description ......................................................................................... BCD2BIN Register Description ......................................................................................... RTCSECBAKx Register Description ................................................................................... RTCSECBAKx Register Description ................................................................................... RTCMINBAKx Register Description .................................................................................... RTCMINBAKx Register Description .................................................................................... RTCHOURBAKx Register Description ................................................................................. RTCHOURBAKx Register Description ................................................................................. RTCDAYBAKx Register Description ................................................................................... RTCDAYBAKx Register Description ................................................................................... RTCMONBAKx Register Description................................................................................... RTCMONBAKx Register Description................................................................................... RTCYEARBAKx Register Description ................................................................................. RTCYEARBAKx Register Description ................................................................................. RTCTCCTL0 Register Description ..................................................................................... RTCTCCTL1 Register Description ..................................................................................... RTCCAPxCTL Register Description.................................................................................... Result Availability (MPYFRAC = 0, MPYSAT = 0) ................................................................... OP1 Registers ............................................................................................................. OP2 Registers ............................................................................................................. SUMEXT and MPYC Contents.......................................................................................... Result Availability in Fractional Mode (MPYFRAC = 1, MPYSAT = 0) ............................................ Result Availability in Saturation Mode (MPYSAT = 1) ............................................................... 24-14. RTCNT4 Register Description 649 24-15. 650 24-16. 24-17. 24-18. 24-19. 24-20. 24-21. 24-22. 24-23. 24-24. 24-25. 24-26. 24-27. 24-28. 24-29. 24-30. 24-31. 24-32. 24-33. 24-34. 24-35. 24-36. 24-37. 24-38. 24-39. 24-40. 24-41. 24-42. 24-43. 24-44. 24-45. 24-46. 24-47. 24-48. 24-49. 24-50. 24-51. 24-52. 24-53. 24-54. 24-55. 24-56. 25-1. 25-2. 25-3. 25-4. 25-5. 25-6. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback List of Tables Copyright © 2008–2015, Texas Instruments Incorporated 650 651 651 652 652 653 653 653 654 654 655 655 656 656 657 657 658 659 659 660 661 663 663 664 665 665 666 666 667 667 668 668 669 669 670 670 671 671 672 672 673 677 678 678 679 682 683 45 www.ti.com 25-7. MPY32 Registers ......................................................................................................... 689 25-8. Alternative Registers 25-9. MPY32CTL0 Register Description ...................................................................................... 691 26-1. Reference Voltage Generation for Different Devices 26-2. 26-3. 26-4. 26-5. 26-6. 27-1. 27-2. 27-3. 27-4. 27-5. 27-6. 27-7. 27-8. 27-9. 27-10. 27-11. 27-12. 27-13. 27-14. 27-15. 28-1. 28-2. 28-3. 28-4. 28-5. 28-6. 28-7. 28-8. 28-9. 28-10. 28-11. 29-1. 29-2. 29-3. 29-4. 29-5. 29-6. 29-7. 29-8. 29-9. 29-10. 29-11. 29-12. 29-13. 29-14. 46 ..................................................................................................... ................................................................ REF Control of Reference System (REFMSTR = 1) (Default) for Devices Without CTSD16 .................. REF Control of Reference System (REFMSTR = 1) (Default) for Devices With CTSD16 ...................... Control of Reference System (REFMSTR = 0, ADC12_A Only) ................................................... REF Registers ............................................................................................................. REFCTL0 Register Description ......................................................................................... Conversion Mode Summary ............................................................................................. ADC10_A Registers ...................................................................................................... ADC10CTL0 Register Description ...................................................................................... ADC10CTL1 Register Description ...................................................................................... ADC10CTL2 Register Description ...................................................................................... ADC10MEM0 Register Description ..................................................................................... ADC10MEM0 Register Description ..................................................................................... ADC10MCTL0 Register Description.................................................................................... ADC10HI Register Description .......................................................................................... ADC10HI Register Description .......................................................................................... ADC10LO Register Description ......................................................................................... ADC10LO Register Description ......................................................................................... ADC10IE Register Description .......................................................................................... ADC10IFG Register Description ........................................................................................ ADC10IV Register Description .......................................................................................... ADC12_A Conversion Result Formats ................................................................................. Conversion Mode Summary ............................................................................................. ADC12_A Registers ...................................................................................................... ADC12CTL0 Register Description ...................................................................................... ADC12CTL1 Register Description ...................................................................................... ADC12CTL2 Register Description ...................................................................................... ADC12MEMx Register Description ..................................................................................... ADC12MCTLx Register Description .................................................................................... ADC12IE Register Description .......................................................................................... ADC12IFG Register Description ........................................................................................ ADC12IV Register Description .......................................................................................... Offset Binary Left Aligned Mapping .................................................................................... Twos-Complement Left Aligned Mapping ............................................................................. Data Format Example for OSR = 256 .................................................................................. Conversion Mode Summary ............................................................................................. SD24_B Registers ........................................................................................................ SD24BCTL0 Register Description ...................................................................................... SD24BCTL1 Register Description ...................................................................................... SD24BTRGCTL Register Description .................................................................................. SD24BIFG Register Description ........................................................................................ SD24BIE Register Description .......................................................................................... SD24BIV Register Description .......................................................................................... SD24BCCTLx Register Description .................................................................................... SD24BINCTLx Register Description ................................................................................... SD24BOSRx Register Description ..................................................................................... List of Tables 690 696 697 698 698 702 703 711 720 721 722 724 725 725 726 727 727 728 728 729 730 731 740 740 750 752 754 755 756 757 758 760 762 773 773 773 774 780 782 783 784 785 788 790 791 793 794 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 29-15. SD24BTRGOSR Register Description ................................................................................. 794 29-16. SD24BPREx Register Description ...................................................................................... 795 ................................................................................. ................................................................................... SD24BMEMHx Register Description ................................................................................... Voltage Reference Signal Selection Requirements .................................................................. Data Format ............................................................................................................... Conversion Mode Summary ............................................................................................. CTSD16 Registers ........................................................................................................ CTSD16CTL Register Description ...................................................................................... CTSD16CCTL0 to CTSD16CCTL6 Register Description ........................................................... CTSD16MEM0 to CTSD16MEM6 Register Description ............................................................. CTSD16INCTL0 to CTSD16INCTL6 Register Description .......................................................... CTSD16PRE0 to CTSD16PRE6 Register Description .............................................................. CTSD16IFG Register Description ...................................................................................... CTSD16IE Register Description ........................................................................................ CTSD16IV Register Description ........................................................................................ DAC Full-Scale Range (Vref = VeREF+ or VREF+ or VREFBG ) .............................................................. DAC12SREFx = {2,3} Signal Selection Requirements for Devices With a CTSD16 Module ................... DAC Output Selection .................................................................................................... DAC12_A Registers ...................................................................................................... DAC12_xCTL0 Register Description ................................................................................... DAC12_xCTL1 Register Description ................................................................................... DAC12_xDAT Register Description .................................................................................... DAC12_xDAT Register Description .................................................................................... DAC12_xDAT Register Description .................................................................................... DAC12_xDAT Register Description .................................................................................... DAC12_xDAT Register Description .................................................................................... DAC12_xDAT Register Description .................................................................................... DAC12_xDAT Register Description .................................................................................... DAC12_xDAT Register Description .................................................................................... DAC12_xCALCTL Register Description ............................................................................... DAC12_xCALDAT Register Description ............................................................................... DAC12IV Register Description .......................................................................................... Comp_B Registers........................................................................................................ CBCTL0 Register Description ........................................................................................... CBCTL1 Register Description ........................................................................................... CBCTL2 Register Description ........................................................................................... CBCTL3 Register Description ........................................................................................... CBINT Register Description ............................................................................................. CBIV Register Description ............................................................................................... OA Mode Select........................................................................................................... OA Registers .............................................................................................................. OAnCTL0 Register Description ......................................................................................... OAnPSW Register Description.......................................................................................... OAnNSW Register Description ......................................................................................... OAnGSW Register Description ......................................................................................... LCD Voltage and Biasing Characteristics ............................................................................. LCD_B Registers ......................................................................................................... 29-17. SD24BTRGPRE Register Description 795 29-18. SD24BMEMLx Register Description 796 29-19. 30-1. 30-2. 30-3. 30-4. 30-5. 30-6. 30-7. 30-8. 30-9. 30-10. 30-11. 30-12. 31-1. 31-2. 31-3. 31-4. 31-5. 31-6. 31-7. 31-8. 31-9. 31-10. 31-11. 31-12. 31-13. 31-14. 31-15. 31-16. 31-17. 32-1. 32-2. 32-3. 32-4. 32-5. 32-6. 32-7. 33-1. 33-2. 33-3. 33-4. 33-5. 33-6. 34-1. 34-2. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback List of Tables Copyright © 2008–2015, Texas Instruments Incorporated 796 801 806 807 813 814 815 816 817 818 819 821 823 828 828 833 834 835 837 838 838 839 839 840 840 841 841 842 842 843 852 853 854 855 856 858 859 863 865 866 867 868 869 877 891 47 www.ti.com 34-3. 34-4. 34-5. 34-6. 34-7. 34-8. 34-9. 34-10. 34-11. 34-12. 34-13. 34-14. 34-15. 35-1. 35-2. 35-3. 35-4. 35-5. 35-6. 35-7. 35-8. 35-9. 35-10. 35-11. 35-12. 35-13. 35-14. 35-15. 35-16. 35-17. 35-18. 36-1. 36-2. 36-3. 36-4. 36-5. 36-6. 36-7. 36-8. 36-9. 36-10. 36-11. 36-12. 36-13. 36-14. 36-15. 36-16. 36-17. 36-18. 48 .............................................................................................. LCD_B Blinking Memory Registers .................................................................................... LCDBCTL0 Register Description ....................................................................................... LCDBCTL1 Register Description ....................................................................................... LCDBBLKCTL Register Description .................................................................................... LCDBMEMCTL Register Description................................................................................... LCDBVCTL Register Description ....................................................................................... LCDBPCTL0 Register Description...................................................................................... LCDBPCTL1 Register Description...................................................................................... LCDBPCTL2 Register Description...................................................................................... LCDBPCTL3 Register Description...................................................................................... LCDBCPCTL Register Description ..................................................................................... LCDBIV Register Description ........................................................................................... Differences Between LCD_B and LCD_C ............................................................................. Bias Voltages and external Pins ........................................................................................ LCD Voltage and Biasing Characteristics ............................................................................. LCD_C Control Registers ................................................................................................ LCD_C Memory Registers for Static and 2-Mux to 4-Mux Modes ................................................. LCD Blinking Memory Registers for Static and 2-Mux to 4-Mux Modes .......................................... LCD Memory Registers for 5-Mux to 8-Mux .......................................................................... LCDCCTL0 Register Description ....................................................................................... LCDCCTL1 Register Description ....................................................................................... LCDCBLKCTL Register Description.................................................................................... LCDCMEMCTL Register Description .................................................................................. LCDCVCTL Register Description ....................................................................................... LCDCPCTL0 Register Description ..................................................................................... LCDCPCTL1 Register Description ..................................................................................... LCDCPCTL2 Register Description ..................................................................................... LCDCPCTL3 Register Description ..................................................................................... LCDCCPCTL Register Description ..................................................................................... LCDCIV Register Description ........................................................................................... Receive Error Conditions ................................................................................................ BITCLK Modulation Pattern ............................................................................................. BITCLK16 Modulation Pattern .......................................................................................... Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0 ................................................. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 1 ................................................. USCI_A UART Mode Registers ......................................................................................... UCAxCTL0 Register Description ....................................................................................... UCAxCTL1 Register Description ....................................................................................... UCAxBR0 Register Description ......................................................................................... UCAxBR1 Register Description ......................................................................................... UCAxMCTL Register Description ....................................................................................... UCAxSTAT Register Description ....................................................................................... UCAxRXBUF Register Description ..................................................................................... UCAxTXBUF Register Description ..................................................................................... UCAxIRTCTL Register Description ..................................................................................... UCAxIRRCTL Register Description .................................................................................... UCAxABCTL Register Description ..................................................................................... UCAxIE Register Description............................................................................................ LCD_B Memory Registers List of Tables 892 893 894 895 896 897 898 900 900 901 901 902 903 905 912 913 923 924 925 926 928 930 931 932 933 935 935 936 936 937 937 947 949 950 953 955 958 959 960 961 961 961 962 963 963 964 964 965 966 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 36-19. UCAxIFG Register Description.......................................................................................... 966 36-20. UCAxIV Register Description............................................................................................ 967 37-1. UCxSTE Operation ....................................................................................................... 972 37-2. USCI_A SPI Mode Registers ............................................................................................ 978 37-3. UCAxCTL0 Register Description 37-4. UCAxCTL1 Register Description 37-5. 37-6. 37-7. 37-8. 37-9. 37-10. 37-11. 37-12. 37-13. 37-14. 37-15. 37-16. 37-17. 37-18. 37-19. 37-20. 37-21. 37-22. 37-23. 37-24. 37-25. 38-1. 38-2. 38-3. 38-4. 38-5. 38-6. 38-7. 38-8. 38-9. 38-10. 38-11. 38-12. 38-13. 38-14. 39-1. 39-2. 39-3. 39-4. 39-5. 39-6. 39-7. 39-8. ....................................................................................... 979 ....................................................................................... 980 UCAxBR0 Register Description ......................................................................................... 981 UCAxBR1 Register Description ......................................................................................... 981 UCAxMCTL Register Description ....................................................................................... 981 UCAxSTAT Register Description ....................................................................................... 982 UCAxRXBUF Register Description ..................................................................................... 983 UCAxTXBUF Register Description ..................................................................................... 983 UCAxIE Register Description............................................................................................ 984 UCAxIFG Register Description.......................................................................................... 984 UCAxIV Register Description............................................................................................ 985 USCI_B SPI Mode Registers ............................................................................................ 986 UCBxCTL0 Register Description ....................................................................................... 987 UCBxCTL1 Register Description ....................................................................................... 988 UCBxBR0 Register Description ......................................................................................... 989 UCBxBR1 Register Description ......................................................................................... 989 UCBxMCTL Register Description ....................................................................................... 989 UCBxSTAT Register Description ....................................................................................... 990 UCBxRXBUF Register Description ..................................................................................... 991 UCBxTXBUF Register Description ..................................................................................... 991 UCBxIE Register Description............................................................................................ 992 UCBxIFG Register Description.......................................................................................... 992 UCBxIV Register Description............................................................................................ 993 I2C State Change Interrupt Flags ...................................................................................... 1014 USCI_B Registers ....................................................................................................... 1016 UCBxCTL0 Register Description ...................................................................................... 1017 UCBxCTL1 Register Description ...................................................................................... 1018 UCBxBR0 Register Description ....................................................................................... 1019 UCBxBR1 Register Description ....................................................................................... 1019 UCBxSTAT Register Description ...................................................................................... 1020 UCBxRXBUF Register Description ................................................................................... 1021 UCBxTXBUF Register Description .................................................................................... 1021 UCBxI2COA Register Description .................................................................................... 1022 UCBxI2CSA Register Description ..................................................................................... 1022 UCBxIE Register Description .......................................................................................... 1023 UCBxIFG Register Description ........................................................................................ 1024 UCBxIV Register Description .......................................................................................... 1025 Receive Error Conditions ............................................................................................... 1034 Modulation Pattern Examples ......................................................................................... 1036 BITCLK16 Modulation Pattern ......................................................................................... 1037 UCBRSx Settings for Fractional Portion of N = fBRCLK/Baudrate ................................................... 1038 Recommended Settings for Typical Crystals and Baudrates ...................................................... 1041 UART State Change Interrupt Flags .................................................................................. 1043 eUSCI_A UART Registers ............................................................................................. 1045 UCAxCTLW0 Register Description ................................................................................... 1046 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback List of Tables Copyright © 2008–2015, Texas Instruments Incorporated 49 www.ti.com 39-9. 39-10. 39-11. 39-12. 39-13. 39-14. 39-15. 39-16. 39-17. 39-18. 39-19. 40-1. 40-2. 40-3. 40-4. 40-5. 40-6. 40-7. 40-8. 40-9. 40-10. 40-11. 40-12. 40-13. 40-14. 40-15. 40-16. 40-17. 40-18. 40-19. 41-1. 41-2. 41-3. 41-4. 41-5. 41-6. 41-7. 41-8. 41-9. 41-10. 41-11. 41-12. 41-13. 41-14. 41-15. 41-16. 41-17. 41-18. 41-19. 50 ................................................................................... UCAxBRW Register Description ...................................................................................... UCAxMCTLW Register Description ................................................................................... UCAxSTATW Register Description ................................................................................... UCAxRXBUF Register Description ................................................................................... UCAxTXBUF Register Description .................................................................................... UCAxABCTL Register Description .................................................................................... UCAxIRCTL Register Description ..................................................................................... UCAxIE Register Description .......................................................................................... UCAxIFG Register Description ........................................................................................ UCAxIV Register Description .......................................................................................... UCxSTE Operation ...................................................................................................... eUSCI_A SPI Registers ................................................................................................ UCAxCTLW0 Register Description ................................................................................... UCAxBRW Register Description ...................................................................................... UCAxSTATW Register Description ................................................................................... UCAxRXBUF Register Description ................................................................................... UCAxTXBUF Register Description .................................................................................... UCAxIE Register Description .......................................................................................... UCAxIFG Register Description ........................................................................................ UCAxIV Register Description .......................................................................................... eUSCI_B SPI Registers ................................................................................................ UCBxCTLW0 Register Description ................................................................................... UCBxBRW Register Description ...................................................................................... UCBxSTATW Register Description ................................................................................... UCBxRXBUF Register Description ................................................................................... UCBxTXBUF Register Description .................................................................................... UCBxIE Register Description .......................................................................................... UCBxIFG Register Description ........................................................................................ UCBxIV Register Description .......................................................................................... Glitch Filter Length Selection Bits ..................................................................................... I2C State Change Interrupt Flags ...................................................................................... eUSCI_B Registers ..................................................................................................... UCBxCTLW0 Register Description ................................................................................... UCBxCTLW1 Register Description ................................................................................... UCBxBRW Register Description ...................................................................................... UCBxSTATW Register Description ................................................................................... UCBxTBCNT Register Description.................................................................................... UCBxRXBUF Register Description ................................................................................... UCBxTXBUF Register Description .................................................................................... UCBxI2COA0 Register Description ................................................................................... UCBxI2COA1 Register Description ................................................................................... UCBxI2COA2 Register Description ................................................................................... UCBxI2COA3 Register Description ................................................................................... UCBxADDRX Register Description ................................................................................... UCBxADDMASK Register Description ............................................................................... UCBxI2CSA Register Description ..................................................................................... UCBxIE Register Description .......................................................................................... UCBxIFG Register Description ........................................................................................ UCAxCTLW1 Register Description List of Tables 1047 1048 1048 1049 1050 1050 1051 1052 1053 1054 1055 1059 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1076 1077 1077 1078 1078 1079 1096 1099 1102 1103 1105 1107 1107 1108 1109 1109 1110 1111 1111 1112 1112 1113 1113 1114 1116 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com 41-20. UCBxIV Register Description .......................................................................................... 1118 42-1. USB-PLL Pre-Scale Divider ............................................................................................ 1127 42-2. Register Settings to Generate 48 MHz Using Common Clock Input Frequencies 42-3. USB Buffer Memory Map ............................................................................................... 1130 42-4. USB Interrupt Vector Generation ...................................................................................... 1132 42-5. USB Configuration Registers .......................................................................................... 1140 42-6. USBKEYPID Register Description .................................................................................... 1141 42-7. USBCNF Register Description......................................................................................... 1141 42-8. USBPHYCTL Register Description 42-9. 42-10. 42-11. 42-12. 42-13. 42-14. 42-15. 42-16. 42-17. 42-18. 42-19. 42-20. 42-21. 42-22. 42-23. 42-24. 42-25. 42-26. 42-27. 42-28. 42-29. 42-30. 42-31. 42-32. 42-33. 42-34. 42-35. 42-36. 42-37. 42-38. 42-39. 42-40. 42-41. 42-42. 42-43. 43-1. 43-2. 43-3. 43-4. 44-1. ............................. ................................................................................... USBPWRCTL Register Description ................................................................................... USBPLLCTL Register Description .................................................................................... USBPLLDIVB Register Description ................................................................................... USBPLLIR Register Description....................................................................................... USB Control Registers.................................................................................................. USBIEPCNF_0 Register Description ................................................................................. USBIEPBCNT_0 Register Description ............................................................................... USBOEPCNFG_0 Register Description .............................................................................. USBOEPBCNT_0 Register Description .............................................................................. USBIEPIE Register Description ....................................................................................... USBOEPIE Register Description ...................................................................................... USBIEPIFG Register Description ..................................................................................... USBOEPIFG Register Description .................................................................................... USBVECINT Register Description .................................................................................... USBMAINT Register Description ...................................................................................... USBTSREG Register Description ..................................................................................... USBFN Register Description .......................................................................................... USBCTL Register Description ......................................................................................... USBIE Register Description............................................................................................ USBIFG Register Description.......................................................................................... USBFUNADR Register Description ................................................................................... USB Buffer Memory ..................................................................................................... USB Buffer Descriptor Registers ...................................................................................... USBOEPCNF_n Register Description ................................................................................ USBOEPBBAX_n Register Description .............................................................................. USBOEPBCTX_n Register Description .............................................................................. USBOEPBBAY_n Register Description .............................................................................. USBOEPBCTY_n Register Description .............................................................................. USBOEPSIZXY_n Register Description.............................................................................. USBIEPCNF_n Register Description ................................................................................. USBIEPBBAX_n Register Description................................................................................ USBIEPBCTX_n Register Description................................................................................ USBIEPBBAY_n Register Description................................................................................ USBIEPBCTY_n Register Description................................................................................ USBIEPSIZXY_n Register Description ............................................................................... LDO-PWR Registers .................................................................................................... LDOKEYPID Register Description .................................................................................... PUCTL Register Description ........................................................................................... LDOPWRCTL Register Description ................................................................................... EEM Configurations ..................................................................................................... SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback List of Tables Copyright © 2008–2015, Texas Instruments Incorporated 1127 1142 1143 1145 1146 1147 1148 1149 1150 1151 1152 1153 1155 1157 1158 1159 1160 1161 1161 1162 1163 1164 1164 1165 1165 1168 1169 1170 1170 1171 1171 1172 1173 1174 1174 1175 1175 1181 1182 1182 1183 1188 51 Preface SLAU208O – June 2008 – Revised May 2015 Read This First About This Manual This manual describes the modules and peripherals of the MSP430x5xx and MSP430x6xx family of devices. Each description presents the module or peripheral in a general sense. Not all features and functions of all modules or peripherals may be present on all devices. In addition, modules or peripherals may differ in their exact implementation between device families, or may not be fully implemented on an individual device or device family. Pin functions, internal signal connections, and operational parameters differ from device to device. The user should consult the device-specific data sheet for these details. Related Documentation From Texas Instruments For related documentation see the web site http://www.ti.com/msp430. FCC Warning This equipment is intended for use in a laboratory test environment only. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference. Notational Conventions Program examples, are shown in a special typeface. Glossary 52 ACLK Auxiliary Clock; see Section 5.1 ADC Analog-to-Digital Converter BOR Brown-Out Reset; see Section 1.2 BSL Bootstrap Loader; see www.ti.com/msp430 for application reports CPU Central Processing Unit; see Section 6.1 DAC Digital-to-Analog Converter DCO Digitally Controlled Oscillator; see Section 5.2.6 dst Destination; see Section 6.5 FLL Frequency Locked Loop; see Section 5.2.7 GIE Modes General Interrupt Enable; see Section 1.3.3 INT(N/2) Integer portion of N/2 I/O Input/Output; see Chapter 12 ISR Interrupt Service Routine LSB Least-Significant Bit LSD Least-Significant Digit LPM Low-Power Mode; see Section 1.4; also named PM for Power Mode MAB Memory Address Bus Read This First SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com MCLK Master Clock; see Section 5.1 MDB Memory Data Bus MSB Most-Significant Bit MSD Most-Significant Digit NMI (Non)-Maskable Interrupt; see Section 1.3.1; also split to UNMI and SNMI PC Program Counter; see Section 6.3.1 PM Power Mode; see Section 1.4 POR Power-On Reset; see Section 1.2 PUC Power-Up Clear; see Section 1.2 RAM Random Access Memory SCG System Clock Generator; see Section 6.3.3 SFR Special Function Register; Section 1.14 SMCLK Sub-System Master Clock; see Section 5.1 SNMI System NMI; see Section 1.3.1 SP Stack Pointer; see Section 6.3.2 SR Status Register; see Section 6.3.3 src Source; see Section 6.5 TOS Top of stack; see Section 6.3.2 UNMI User NMI; see Section 1.3.1 WDT Watchdog Timer; see Chapter 16 z16 16-bit address space Register Bit Conventions Each register is shown with a key indicating the accessibility of the each individual bit, and the initial condition: Register Bit Accessibility and Initial Condition Key Bit Accessibility rw Read/write r Read only r0 Read as 0 r1 Read as 1 w Write only w0 Write as 0 w1 Write as 1 (w) No register bit implemented; writing a 1 results in a pulse. The register bit is always read as 0. h0 Cleared by hardware h1 Set by hardware -0,-1 Condition after PUC -(0),-(1) Condition after POR -[0],-[1] Condition after BOR -{0},-{1} Condition after Brownout SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Read This First Copyright © 2008–2015, Texas Instruments Incorporated 53 Chapter 1 SLAU208O – June 2008 – Revised May 2015 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) The system control module (SYS) is available on all devices. The following list shows the basic feature set of SYS. • Brownout reset (BOR) and power on reset (POR) handling • Power up clear (PUC) handling • (Non)maskable interrupt (SNMI and UNMI) event source selection and management • Address decoding • A user data-exchange mechanism using the JTAG mailbox (JMB) • Bootstrap loader (BSL) entry mechanism • Configuration management (device descriptors) • Provides interrupt vector generators for reset and NMIs Topic 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 1.15 54 ........................................................................................................................... System Control Module (SYS) Introduction .......................................................... System Reset and Initialization ............................................................................ Interrupts .......................................................................................................... Operating Modes ................................................................................................ Principles for Low-Power Applications ................................................................. Connection of Unused Pins ................................................................................. Reset Pin (RST/NMI) Configuration ....................................................................... Configuring JTAG Pins ....................................................................................... Boot Code ......................................................................................................... Bootstrap Loader (BSL) ...................................................................................... Memory Map – Uses and Abilities ........................................................................ JTAG Mailbox (JMB) System .............................................................................. Device Descriptor Table ...................................................................................... SFR Registers .................................................................................................... SYS Registers .................................................................................................... System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated Page 55 55 57 63 68 69 69 70 70 70 71 72 73 83 88 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Control Module (SYS) Introduction www.ti.com 1.1 System Control Module (SYS) Introduction SYS is responsible for the interaction between various modules throughout the system. The functions that SYS provides for are not inherent to the modules themselves. Address decoding, bus arbitration, interrupt event consolidation, and reset generation are some examples of the many functions that SYS provides. 1.2 System Reset and Initialization The system reset circuitry is shown in Figure 1-1 and sources a brownout reset (BOR), a power on reset (POR), and a power up clear (PUC). Different events trigger these reset signals and different initial conditions exist depending on which signal was generated. A • • • • BOR is a device reset. A BOR is only generated by the following events: Powering up the device A low signal on RST/NMI pin when configured in the reset mode A wake-up event from LPMx.5 (LPM3.5 or LPM4.5) modes A software BOR event A POR is always generated when a BOR is generated, but a BOR is not generated by a POR. The following events trigger a POR: • A BOR signal • A SVSH and/or SVSM low condition when enabled (see the PMM chapter for details) • A SVSL and/or SVSL low condition when enabled (see the PMM chapter for details) • A software POR event A PUC is always generated when a POR is generated, but a POR is not generated by a PUC. The following events trigger a PUC: • A POR signal • Watchdog timer expiration when watchdog mode only (see the WDT_A chapter for details) • Watchdog timer password violation (see the WDT_A chapter for details) • A Flash memory password violation (see the Flash Controller chapter for details) • Power Management Module password violation (see the PMM chapter for details) • Fetch from peripheral area NOTE: The number and type of resets available may vary from device to device. See the devicespecific data sheet for all reset sources available. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 55 System Reset and Initialization www.ti.com BOR shadow s brownout circuit Delay s clr from port wakeup logic EN PMMRSTIFG s clr RST/NMI SYSNMI notRST Delay BOR Delay POR PMMBORIFG s clr PMMSWBOR event SVSHIFG s from SVSH SVSHPE SVMHVLRIFG s from SVMH SVMHVLRPE SVSLIFG s from SVSL SVSLPE SVMHLVLRIFG s from SVML SVMLVLRPE PMMPORIFG s PMMSWPOR event WDTIFG s MCLK Module PUCs … . Watchdog Timer PUC Logic Figure 1-1. BOR/POR/PUC Reset Circuit 56 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Reset and Initialization www.ti.com 1.2.1 Device Initial Conditions After System Reset After a BOR, the initial device conditions are: • The RST/NMI pin is configured in the reset mode. See Section 1.7 on configuring the RST/NMI pin. • I/O pins are switched to input mode as described in the Digital I/O chapter. • Other peripheral modules and registers are initialized as described in their respective chapters in this manual. • Status register (SR) is reset. • The watchdog timer powers up active in watchdog mode. • Program counter (PC) is loaded with the boot code address and boot code execution begins at that address. See Section 1.9 for more information regarding the boot code. Upon completion of the boot code, the PC is loaded with the address contained at the SYSRSTIV reset location (0FFFEh). After a system reset, user software must initialize the device for the application requirements. The following must occur: • Initialize the stack pointer (SP), typically to the top of RAM. • Initialize the watchdog to the requirements of the application. • Configure peripheral modules to the requirements of the application. NOTE: A device that is unprogrammed or blank is defined as having its reset vector value, residing at memory address FFFEh, equal to FFFFh. Upon system reset of a blank device, the device enters operating mode LPM4 automatically. See Section 1.4 for information on operating modes and Section 1.3.6 for details on interrupt vectors. NOTE: Some SRAM locations can be modified by the boot code (refer to Section 1.9) after a BOR event. These SRAM locations, when available, are at SRAM locations 01CFAh through 01CFFh and 023FAh through 023FFh. 1.3 Interrupts The interrupt priorities are fixed and defined by the arrangement of the modules in the connection chain as shown in Figure 1-2. Interrupt priorities determine what interrupt is taken when more than one interrupt is pending simultaneously. There are three types of interrupts: • System reset • (Non)maskable • Maskable NOTE: The types of interrupt sources available and their respective priorities can change from device to device. See the device-specific data sheet for all interrupt sources and their priorities. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 57 Interrupts www.ti.com BOR ... RST/NMI BOR/POR/PUC circuit CPU POR PUC Password violations high priority .. . .. System NMI User NMI Module_A_int Module_B_int low priority INT NMI GIE Interrupt daisy chain and vectors Module_C_int Module_D_int MAB - 6LSBs Figure 1-2. Interrupt Priority 1.3.1 (Non)Maskable Interrupts (NMIs) In general, NMIs are not masked by the general interrupt enable (GIE) bit. The family supports two levels of NMIs — system NMI (SNMI) and user NMI (UNMI). The NMI sources are enabled by individual interrupt enable bits. When an NMI interrupt is accepted, other NMIs of that level are automatically disabled to prevent nesting of consecutive NMIs of the same level. Program execution begins at the address stored in the NMI vector as shown in Table 1-1. To allow software backward compatibility to users of earlier MSP430 families, the software may, but does not need to, reenable NMI sources. The block diagram for NMI sources is shown in Figure 1-3. A • • • UNMI interrupt can be generated by following sources: An edge on the RST/NMI pin when configured in NMI mode An oscillator fault occurs An access violation to the flash memory A • • • • SNMI interrupt can be generated by following sources: Power Management Module (PMM) SVML/SVMH supply voltage fault PMM high/low side delay expiration Vacant memory access JTAG mailbox (JMB) event NOTE: The number and types of NMI sources may vary from device to device. See the devicespecific data sheet for all NMI sources available. 58 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Interrupts www.ti.com 1.3.2 SNMI Timing Consecutive SNMIs that occur at a higher rate than they can be handled (interrupt storm) allow the main program to execute one instruction after the SNMI handler is finished with a RETI instruction, before the SNMI handler is executed again. Consecutive SNMIs are not interrupted by UNMIs in this case. This avoids a blocking behavior on high SNMI rates. ACCV ACCVIFG ACCVIE NMI User NMI _IRQA PUC RETI NMIIFG R NMIIE S … .. User NMI ...IFG ...IE OSC Fault OFIFG OFIE SVML SVMLIFG SVMLIE System NMI _IRQA PUC RETI Del. FF SVMH SVMHIFG R SVMHIE S … .. System NMI ...IFG ...IE JMB event SYSJMBIFG SYSJMBIE Figure 1-3. NMIs With Reentrance Protection 1.3.3 Maskable Interrupts Maskable interrupts are caused by peripherals with interrupt capability. Each maskable interrupt source can be disabled individually by an interrupt enable bit, or all maskable interrupts can be disabled by the general interrupt enable (GIE) bit in the status register (SR). Each individual peripheral interrupt is discussed in its respective module chapter in this manual. 1.3.4 Interrupt Processing When an interrupt is requested from a peripheral and the peripheral interrupt enable bit and GIE bit are set, the interrupt service routine is requested. Only the individual enable bit must be set for (non)maskable interrupts (NMI) to be requested. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 59 Interrupts 1.3.4.1 www.ti.com Interrupt Acceptance The interrupt latency is six cycles, starting with the acceptance of an interrupt request, and lasting until the start of execution of the first instruction of the interrupt service routine, as shown in Figure 1-4. The interrupt logic executes the following: 1. Any currently executing instruction is completed. 2. The PC, which points to the next instruction, is pushed onto the stack. 3. The SR is pushed onto the stack. 4. The interrupt with the highest priority is selected if multiple interrupts occurred during the last instruction and are pending for service. 5. The interrupt request flag resets automatically on single-source flags. Multiple source flags remain set for servicing by software. 6. All bits of SR are cleared except SCG0, thereby terminating any low-power mode. Because the GIE bit is cleared, further interrupts are disabled. 7. The content of the interrupt vector is loaded into the PC; the program continues with the interrupt service routine at that address. SP Before Interrupt After Interrupt Item1 Item1 Item2 TOS Item2 PC SP SR TOS Figure 1-4. Interrupt Processing NOTE: Enable and Disable Interrupt Due to the pipelined CPU architecture, setting the general interrupt enable (GIE) requires special care. • • • • The instruction immediately after the enable interrupts instruction (EINT) is always executed, even if an interrupt service request is pending. Include at least one instruction between the clear of an interrupt enable or interrupt flag and the EINT instruction. For example: Insert a NOP instruction in front of the EINT instruction. Include at least one instruction between DINT and the start of an code sequence that requires protection from interrupts. For example: Insert a NOP instruction after the DINT. Never clear the general interrupt enable (GIE) immediately after setting it. Insert at least one instruction in between such sequence. The rules above apply to all instructions that set or clear the general interrupt enable bit. Not following these rules might result in unexpected CPU execution. 60 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Interrupts www.ti.com 1.3.4.2 Return From Interrupt The interrupt handling routine terminates with the instruction: RETI //return from an interrupt service routine The return from the interrupt takes five cycles to execute the following actions and is shown in Figure 1-5. 1. The SR with all previous settings pops from the stack. All previous settings of GIE, CPUOFF, and others are now in effect, regardless of the settings used during the interrupt service routine. 2. The PC pops from the stack and begins execution at the point where it was interrupted. Before After Return From Interrupt Item1 Item1 SP Item2 Item2 PC SP TOS PC TOS SR SR Figure 1-5. Return From Interrupt 1.3.5 Interrupt Nesting Interrupt nesting is enabled if the GIE bit is set inside an interrupt service routine. When interrupt nesting is enabled, any interrupt occurring during an interrupt service routine interrupts the routine, regardless of the interrupt priorities. 1.3.6 Interrupt Vectors The interrupt vectors are located in the address range 0FFFFh to 0FF80h, for a maximum of 64 interrupt sources. A vector is programmed by the user and points to the start location of the corresponding interrupt service routine. Table 1-1 is an example of the interrupt vectors available. See the device-specific data sheet for the complete interrupt vector list. Table 1-1. Interrupt Sources, Flags, and Vectors Interrupt Source Interrupt Flag System Interrupt Word Address Priority Reset: power up, external reset watchdog, flash password ... WDTIFG KEYV ... Reset ... 0FFFEh ... Highest (Non)maskable 0FFFCh … ... (Non)maskable (Non)maskable (Non)maskable ... 0FFFAh ... … 0FFF8h … ... ... ... ... ... ... System NMI: PMM User NMI: NMI, oscillator fault, flash memory access violation ... NMIIFG OFIFG ACCVIFG Device specific ... Watchdog timer WDTIFG Maskable ... Device specific Reserved SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Maskable … … … Lowest System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 61 Interrupts www.ti.com Some interrupt enable bits, interrupt flags, and control bits for the RST/NMI pin are located in the special function registers (SFRs). The SFRs are located in the peripheral address range and are byte and word accessible. See the device-specific data sheet for the SFR configuration. 1.3.6.1 Alternate Interrupt Vectors It is possible to use the RAM as an alternate location for the interrupt vector locations. Setting the SYSRIVECT bit in SYSCTL causes the interrupt vectors to be remapped to the top of RAM. Once set, any interrupt vectors to the alternate locations now residing in RAM. Because SYSRIVECT is automatically cleared on a BOR, it is critical that the reset vector at location 0FFFEh still be available and handled properly in firmware. 1.3.7 SYS Interrupt Vector Generators SYS collects all system NMI (SNMI) sources, user NMI (UNMI) sources, and BOR/POR/PUC (reset) sources of all the other modules. They are combined into three interrupt vectors. The interrupt vector registers SYSRSTIV, SYSSNIV, SYSUNIV are used to determine which flags requested an interrupt or a reset. The interrupt with the highest priority of a group, when enabled, generates a number in the corresponding SYSRSTIV, SYSSNIV, SYSUNIV register. This number can be directly added to the program counter, causing a branch to the appropriate portion of the interrupt service routine. Disabled interrupts do not affect the SYSRSTIV, SYSSNIV, SYSUNIV values. Reading SYSRSTIV, SYSSNIV, SYSUNIV register automatically resets the highest pending interrupt flag of that register. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. Writing to the SYSRSTIV, SYSSNIV, SYSUNIV register automatically resets all pending interrupt flags of the group. 1.3.7.1 SYSSNIV Software Example The following software example shows the recommended use of SYSSNIV. The SYSSNIV value is added to the PC to automatically jump to the appropriate routine. For SYSRSTIV and SYSUNIV, a similar software approach can be used. The following is an example for a generic device. Vectors can change in priority for a given device. The device specific data sheet should be referenced for the vector locations. All vectors should be coded symbolically to allow for easy portability of code. SNI_ISR: ADD RETI JMP JMP JMP JMP JMP JMP JMBO_ISR: ... RETI SVML_ISR: ... RETI SVMH_ISR: ... RETI DLYL_ISR: ... RETI DLYH_ISR: ... RETI VMA_ISR: ... RETI JMBI_ISR: ... RETI 62 &SYSSNIV,PC ; Add offset to jump table ; Vector 0: No interrupt SVML_ISR ; Vector 2: SVMLIFG SVMH_ISR ; Vector 4: SVMHIFG DLYL_ISR ; Vector 6: SVSMLDLYIFG DLYH_ISR ; Vector 8: SVSMHDLYIFG VMA_ISR ; Vector 10: VMAIFG JMBI_ISR ; Vector 12: JMBINIFG ; Vector 14: JMBOUTIFG ; Task_E starts here ; Return ; Vector 2 ; Task_2 starts here ; Return ; Vector 4 ; Task_4 starts here ; Return ; Vector 6 ; Task_6 starts here ; Return ; Vector 8 ; Task_8 starts here ; Return ; Vector A ; Task_A starts here ; Return ; Vector C ; Task_C starts here ; Return System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Operating Modes www.ti.com 1.3.7.2 SYSBERRIV Bus Error Interrupt Vector Generator Some devices, for example those that contain the USB module, include an additional system interrupt vector generator, SYSBERRIV. In general, any type of system related bus error or timeout error is associated with a user NMI event. Upon this event, the SYSUNIV contains an offset value corresponding to a bus error event (BUSIFG). This offset can be added to the PC to automatically jump to the appropriate NMI routine. Similarly, SYSBERRIV also contains an offset value corresponding to which specific event caused the bus error event. The offset value in SYSBERRIV can be added inside the NMI routine to automatically jump to the appropriate routine. In this way, the SYSBERRIV can be thought of as an extension to the user NMI vectors. 1.4 Operating Modes The MSP430 family is designed for ultra-low-power applications and uses different operating modes shown in Figure 1-6. The operating modes take into account three different needs: • Ultra-low power • Speed and data throughput • Minimization of individual peripheral current consumption The low-power modes LPM0 through LPM4 are configured with the CPUOFF, OSCOFF, SCG0, and SCG1 bits in the SR. The advantage of including the CPUOFF, OSCOFF, SCG0, and SCG1 mode-control bits in the SR is that the present operating mode is saved onto the stack during an interrupt service routine. Program flow returns to the previous operating mode if the saved SR value is not altered during the interrupt service routine. Program flow can be returned to a different operating mode by manipulating the saved SR value on the stack inside of the interrupt service routine. When setting any of the modecontrol bits, the selected operating mode takes effect immediately. Peripherals operating with any disabled clock are disabled until the clock becomes active. Peripherals may also be disabled with their individual control register settings. All I/O port pins and RAM/registers are unchanged. Wakeup from LPM0 through LPM4 is possible through all enabled interrupts. When LPMx.5 (LPM3.5 or LPM4.5) is entered, the voltage regulator of the Power Management Module (PMM) is disabled. All RAM and register contents are lost. Although the I/O register contents are lost, the I/O pin states are locked upon LPMx.5 entry. See the Digital I/O chapter for further details. Wakeup from LPM4.5 is possible from a power sequence, a RST event, or from specific I/O. Wakeup from LPM3.5 is possible from a power sequence, a RST event, RTC event, or from specific I/O. NOTE: LPM3.5 and LPM4.5 low power modes are not available on all devices. See the device specific data sheet to see which LPMx.5 power modes are available. NOTE: The TEST/SBWTCK pin is used for interfacing to the development tools through Spy-Bi-Wire and JTAG. When the TEST/SBWTCK pin is high, wakeup times from LPM2, LPM3, and LPM4 may be different compared to when TEST/SBWTCK is low. Pay careful attention to the real-time behavior when exiting from LPM2, LPM3, and LPM4 with the device connected to a development tool (for example, MSP-FET430UIF). See the PMM chapter for details. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 63 Operating Modes www.ti.com From active mode LPMx.5: VCORE = off (all modules off optional RTC) Brownout fault RTC wakeup Port wakeup Security violation RST/NMI (Reset wakeup) ‡ RST/NMI (Reset event) PMMSWBOR event BOR SVMH OVP-fault Load calibration data SVSH fault PMMSWPOR event SVML OVP-fault SVSL fault POR WDT Active Time expired, Overflow PMM Password violation WDT Active Password violation PUC Flash Password violation Peripheral area fetch CPUOFF=1 OSCOFF=0 SCG0=0 SCG1=0 LPM0: CPU/MCLK = off FLL = on ACLK = on VCORE = on PMMREGOFF = 1 Active Mode: CPU is Active Various Modules are active to LPMx.5 † † † † † CPUOFF=1 OSCOFF=0 SCG0=1 SCG1=0 CPUOFF=1 OSCOFF=0 SCG0=0 SCG1=1 LPM1: CPU/MCLK = off FLL = off ACLK = on VCORE = on CPUOFF=1 OSCOFF=0 SCG0=1 SCG1=1 LPM2: CPU/MCLK = off FLL = off ACLK = on VCORE = on CPUOFF=1 OSCOFF=1 SCG0=1 SCG1=1 LPM4: CPU/MCLK = off FLL = off ACLK = off VCORE = on LPM3: CPU/MCLK = off FLL = off ACLK = on VCORE = on Events Operating modes/Reset phases Arbitrary transitions † Any enabled interrupt and NMI performs this transition ‡ An enabled reset always restarts the device Figure 1-6. Operation Modes 64 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Operating Modes www.ti.com Table 1-2. Operation Modes SCG1 (1) SCG0 OSCOFF (1) CPUOFF (1) Mode CPU and Clocks Status (2) CPU, MCLK are active. ACLK is active. SMCLK optionally active (SMCLKOFF = 0). 0 0 0 0 Active DCO is enabled if sources ACLK, MCLK, or SMCLK (SMCLKOFF = 0). DCO bias is enabled if DCO is enabled or DCO sources MCLK or SMCLK (SMCLKOFF = 0). FLL is enabled if DCO is enabled. CPU, MCLK are disabled. ACLK is active. SMCLK optionally active (SMCLKOFF = 0). 0 0 0 1 LPM0 DCO is enabled if sources ACLK or SMCLK (SMCLKOFF = 0). DCO bias is enabled if DCO is enabled or DCO sources MCLK or SMCLK (SMCLKOFF = 0). FLL is enabled if DCO is enabled. CPU, MCLK are disabled. ACLK is active. SMCLK optionally active (SMCLKOFF = 0). 0 1 0 1 LPM1 DCO is enabled if sources ACLK or SMCLK (SMCLKOFF = 0). DCO bias is enabled if DCO is enabled or DCO sources MCLK or SMCLK (SMCLKOFF = 0). FLL is disabled. CPU, MCLK are disabled. 1 0 0 1 LPM2 ACLK is active. SMCLK is disabled. DCO is enabled if sources ACLK. FLL is disabled. CPU, MCLK are disabled. ACLK is active. SMCLK is disabled. 1 1 0 1 LPM3 1 1 1 1 LPM4 1 1 1 1 LPM3.5 (3) When PMMREGOFF = 1, regulator is disabled. No memory retention. In this mode, RTC operation is possible when configured properly. See the RTC module for further details. 1 1 1 1 LPM4.5 (3) When PMMREGOFF = 1, regulator is disabled. No memory retention. In this mode, all clock sources are disabled; that is, no RTC operation is possible. DCO is enabled if sources ACLK. FLL is disabled. (1) (2) (3) CPU and all clocks are disabled. This bit is automatically reset when exiting low power modes. Refer to Section 1.4.1 for details. The low-power modes and, hence, the system clocks can be affected by the clock request system. See the UCS chapter for details. LPM3.5 and LPM4.5 modes are not available on all devices. See the device-specific data sheet for availability. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 65 Operating Modes www.ti.com 1.4.1 Entering and Exiting Low-Power Modes LPM0 Through LPM4 An enabled interrupt event wakes the device from low-power operating modes LPM0 through LPM4. The program flow for exiting LPM0 through LPM4 is: • Enter interrupt service routine – The PC and SR are stored on the stack. – The CPUOFF, SCG1, and OSCOFF bits are automatically reset. • Options for returning from the interrupt service routine – The original SR is popped from the stack, restoring the previous operating mode. – The SR bits stored on the stack can be modified within the interrupt service routine returning to a different operating mode when the RETI instruction is executed. ; Enter LPM0 Example BIS #GIE+CPUOFF,SR ; ... ; ; Exit LPM0 Interrupt Service Routine BIC #CPUOFF,0(SP) RETI ; Enter LPM3 Example BIS #GIE+CPUOFF+SCG1+SCG0,SR ; ... ; ; Exit LPM3 Interrupt Service Routine BIC #CPUOFF+SCG1+SCG0,0(SP) RETI ; Enter LPM4 Example BIS #GIE+CPUOFF+OSCOFF+SCG1+SCG0,SR ; ... ; ; Exit LPM4 Interrupt Service Routine BIC #CPUOFF+OSCOFF+SCG1+SCG0,0(SP) RETI ; Enter LPM0 ; Program stops here ; Exit LPM0 on RETI ; Enter LPM3 ; Program stops here ; Exit LPM3 on RETI ; Enter LPM4 ; Program stops here ; Exit LPM4 on RETI 1.4.2 Entering and Exiting Low-Power Modes LPMx.5 LPMx.5 entry and exit is handled differently than the other low power modes. LPMx.5, when used properly, gives the lowest power consumption available on a device. To achieve this, entry to LPMx.5 disables the LDO of the PMM module, removing the supply voltage from the core of the device. Since the supply voltage is removed from the core, all register contents, as well as, SRAM contents are lost. Exit from LPMx.5 causes a BOR event, which forces a complete reset of the system. Therefore, it is the application's responsibility to properly reconfigure the device upon exit from LPMx.5. The wakeup time from LPMx.5 is significantly longer than the wakeup time from the other power modes (see the device specific data sheet). This is primarily due to the facts that after exit from LPMx.5, time is required for the core voltage supply to be regenerated, as well as, boot code execution to complete before the application code can begin. Therefore, the use of LPMx.5 is restricted to very low duty cycle events. There are two LPMx.5 power modes, LPM3.5 and LPM4.5. Not all of these are available on all devices. See the device specific data sheet to see which LPMx.5 power modes are available. LPM4.5 allows for the lowest power consumption available. No clock sources are active during LPM4.5. LPM3.5 is similar to LPM4.5, but has the additional capability of having a RTC mode available. In addition to the wake-up events possible in LPM4.5, RTC wake-up events are also possible in LPM3.5. 66 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Operating Modes www.ti.com The program flow for entering LPMx.5 is: 1. Configure I/O appropriately. See the Digital I/O chapter for complete details on configuring I/O for LPMx.5. • Set all ports to general purpose I/O. Configure each port to ensure no floating inputs based on the application requirements. • If wakeup from I/O is desired, configure input ports with interrupt capability appropriately. 2. If LPM3.5 is available, and desired, enable RTC operation. In addition, configure any RTC interrupts, if desired for LPM3.5 wake-up event. See the RTC Overview chapter for complete details. 3. Ensure clock system settings allow LPMx.5 entry according to Table 5-1 in UCS chapter. 4. Enter LPMx.5 by setting PMMREGOFF = 1 and LPM4 status register bits. The following code example shows how to enter LPMx.5 mode. See the PMM chapter for further details. ; Enter LPMx.5 Example MOV.B #PMMPW_H, &PMMCTL0_H BIS.B #PMMREGOFF, &PMMCTL0_L BIS #GIE+CPUOFF+OSCOFF+SCG1+SCG0,SR ; Open PMM registers for write ; ; Enter LPMx.5 when PMMREGOFF is set. NOTE: It is not possible to wake up from LPMx.5 if its respective interrupt flag is already asserted. TI recommends clearing the respective flag before entering LPMx.5. TI also recommends setting GIE = 1 before entry into LPMx.5. Any pending flags in this case could then be serviced before LPMx.5 entry. Although TI recommends setting GIE = 1 before entering LPMx.5, it is not required. Device wakeup from LPMx.5 with an enabled wake-up function will still cause the device to wake up from LPMx.5 even with GIE = 0. If GIE = 0 before LPMx.5, additional care may be required. Should the respective interrupt event should occur during LPMx.5 entry, the device may not recognize this or any future interrupt wake-up event on this function. Exit from LPMx.5 is possible with a RST event, a power on cycle, or through specific I/O. Any exit from LPMx.5 causes a BOR. Program execution continues at the location stored in the system reset vector location 0FFFEh after execution of the boot code. The PMMLPM5IFG bit inside the PMM module is set indicating that the device was in LPMx.5 before the wake-up event. Additionally, SYSRSTIV = 08h which can be used to generate an efficient reset handler routine. During LPMx.5, all I/O pin conditions are automatically locked to the current state. Upon exit from LPMx.5, the I/O pin conditions remain locked until the application unlocks them. See the Digital I/O chapter for complete details. If LPM3.5 was in effect, RTC operation continues uninterrupted upon wakeup. The program flow for exiting LPMx.5 is: • Enter system reset service routine – Reconfigure system as required for the application. – Reconfigure I/O as required for the application. 1.4.3 Extended Time in Low-Power Modes The temperature coefficient of the DCO should be considered when the DCO is disabled for extended lowpower mode periods. If the temperature changes significantly, the DCO frequency at wakeup may be significantly different from when the low-power mode was entered and may be out of the specified operating range. To avoid this, the DCO can be set to it lowest value before entering the low-power mode for extended periods of time where temperature can change. ; Enter LPM4 Example with lowest DCO Setting BIC #SCG0, SR MOV #0100h, &UCSCTL0 modulation. BIC #DCORSEL2+DCORSEL1+DCORSEL0,&UCSCTL1 BIS #GIE+CPUOFF+OSCOFF+SCG1+SCG0,SR ; ... ; ; Interrupt Service Routine BIC #CPUOFF+OSCOFF+SCG1+SCG0,0(SR) RETI SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ; Disable FLL ; Set DCO tap to first tap, clear ; Lowest DCORSEL ; Enter LPM4 ; Program stops ; Exit LPM4 on RETI System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 67 Principles for Low-Power Applications 1.5 www.ti.com Principles for Low-Power Applications Often, the most important factor for reducing power consumption is using the device clock system to maximize the time in LPM3 or LPM4 modes whenever possible. • Use interrupts to wake the processor and control program flow. • Peripherals should be switched on only when needed. • Use low-power integrated peripheral modules in place of software driven functions. For example, Timer_A and Timer_B can automatically generate PWM and capture external timing with no CPU resources. • Calculated branching and fast table look-ups should be used in place of flag polling and long software calculations. • Avoid frequent subroutine and function calls due to overhead. • For longer software routines, single-cycle CPU registers should be used. • Overwrite RAM control register RCCTL0 with all not available and unused segments set to powered down (= 1). For information about used RAM segments see the device-specific data sheet. If the application has low duty cycle, slow response time events, maximizing time in LPMx.5 can further reduce power consumption significantly. 68 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Connection of Unused Pins www.ti.com 1.6 Connection of Unused Pins Table 1-3 lists the correct termination of all unused pins. Table 1-3. Connection of Unused Pins (1) Pin Potential AVCC DVCC AVSS DVSS CPCAP Open LCDCAP DVSS LDOI DVSS For devices with LDO-PWR module when not being used in the application. LDOO Open For devices with LDO-PWR module when not being used in the application. PJ.0/TDO PJ.1/TDI PJ.2/TMS PJ.3/TCK Open The JTAG pins are shared with general purpose I/O function (PJ.x). If not being used, these should be switched to port function, output direction (PJDIR.n = 1). When used as JTAG pins, these pins should remain open. PU.0/DP PU.1/DM Open For USB devices only when USB module is not being used in the application DVSS For USB devices only when USB module is not being used in the application Px.y Open Switched to port function, output direction (PxDIR.n = 1). Px.y represents port x and bit y of port x (for example, P1.0, P1.1, P2.2, PJ.0, PJ.1) RST/NMI DVCC or VCC 47-kΩ pullup or internal pullup selected with 10-nF (2.2 nF) pulldown (3) TEST Open This pin always has an internal pulldown enabled. V18 Open For USB devices only when USB module is not being used in the application VBAK Open For devices where no separate battery backup supply in the system. Set bit BAKDIS = 1. VBAT DVCC For devices where no separate battery backup supply in the system. Set bit BAKDIS = 1. VBUS, VSSU DVSS For USB devices only when USB module is not being used in the application VUSB Open For USB devices only when USB module is not being used in the application XIN DVSS For dedicated XIN pins only. XIN pins with shared GPIO functions should be programmed to GPIO and follow Px.y recommendations. XOUT Open For dedicated XOUT pins only. XOUT pins with shared GPIO functions should be programmed to GPIO and follow Px.y recommendations. XT2IN DVSS For dedicated XT2IN pins only. XT2IN pins with shared GPIO functions should be programmed to GPIO and follow Px.y recommendations. XT2OUT Open For dedicated XT2OUT pins only. XT2OUT pins with shared GPIO functions should be programmed to GPIO and follow Px.y recommendations. PUR (1) (2) (3) 1.7 (2) Comment For devices where charge pump in not used (no rail-to-rail OA and no rail-to-rail CTSD16). Any unused pin with a secondary function that is shared with general purpose I/O should follow the Px.y unused pin connection guidelines. The default USB BSL evaluates the state of the PUR pin after a BOR reset. If it is pulled high externally, then the BSL is invoked. Therefore, unless invoking the BSL, it is important to keep PUR pulled low after a BOR reset, even if BSL or USB is never used. A 1-MΩ resistor to ground is recommended. The pulldown capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4wire JTAG mode with TI tools such as FET interfaces or GANG programmers. Reset Pin (RST/NMI) Configuration The reset pin can be configured as a reset function (default) or as an NMI function in the Special Function Register (SFR), SFRRPCR. The minimum reset pulse duration is specified in the device-specific data sheet. Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is edge sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the external NMI. Upon an external NMI event, the NMIIFG is set. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 69 Configuring JTAG Pins www.ti.com The RST/NMI pin can have either a pullup or pulldown present or not. SYSRSTUP selects either pullup or pulldown and SYSRSTRE causes the pullup or pulldown to be enabled or not. If the RST/NMI pin is unused, it is required to have either the internal pullup selected and enabled or an external resistor connected to the RST/NMI pin as shown in Table 1-3. NOTE: All devices except the MSP430F543x (non-A devices) have the internal pullup enabled. In this case, no external pullup resistor is required. 1.8 Configuring JTAG Pins The JTAG pins are shared with general-purpose I/O pins. After a BOR, the SYSJTAGPIN bit in the SYSCTL register is cleared. With SYSJTAGPIN cleared, the pins with JTAG functionality are configured as general-purpose I/O. In this case, only a special sequences on the TEST and RST/NMI pins enables the JTAG functionality. As long as the TEST pin is pulled to DVCC, the pins remain in their JTAG functionality. If the TEST pin is released to DVSS, the shared JTAG pins revert to general-purpose I/Os. If SYSJTAGPIN = 1, the JTAG pins are permanently configured to 4-wire JTAG mode and remain in this mode until another BOR condition occurs. Use this feature early in the software if the MSP430 device is part of a JTAG chain. Note that this also disables the Spy-Bi-Wire mode. The SYSJTAGPIN is a write only once function. Clearing it by software is not possible. 1.9 Boot Code The boot code is always executed after a BOR. The boot code loads factory stored calibration values of the oscillator and reference voltages. In addition, it checks for the presence of a user-defined boot strap loader (BSL). 1.10 Bootstrap Loader (BSL) The BSL is software that is executed after start-up when a certain BSL entry condition is applied. The BSL enables the user to communicate with the embedded memory in the microcontroller during the prototyping phase, final production, and in service. All memory mapped resources, the programmable memory (flash memory), the data memory (RAM), and the peripherals, can be modified by the BSL as required. The user can define custom BSL code for flash-based devices and protect it against erasure and unintentional or unauthorized access. On devices without USB, a basic BSL program is provided by TI. This supports the commonly used UART protocol with RS232 interfacing, allowing flexible use of both hardware and software. To use the BSL, a specific BSL entry sequence must be applied to specific device pins. The correct entry sequence causes SYSBSLIND to be set. An added sequence of commands initiates the desired function. A boot-loading session can be exited by continuing operation at a defined user program address or by applying the standard reset sequence. Access to the device memory by the BSL is protected against misuse by a userdefined password. Devices with USB have a USB based BSL program provided by TI. For more details, see the MSP430 Programming Via the Bootstrap Loader User's Guide (SLAU319). The amount of BSL memory that is available is device specific. The BSL memory size is organized into segments and can be set using the SYSBSLSIZE bits. See the device specific data sheet for the number and size of the segments available. It is possible to assign a small amount of RAM to the allocated BSL memory. Setting SYSBSLR allocates the lowest 16 bytes of RAM for the BSL. When the BSL memory is protected, access to these RAM locations is only possible from within the protected BSL memory segments. It may be desirable in some BSL applications to only allow changing of the Power Management Module settings from the protected BSL segments. This is possible with the SYSPMMPE bit. Normally, this bit is cleared and allows access of the PMM control registers from any memory location. Setting SYSPMMPE, allows access to the PMM control registers only from the protected BSL memory. Once set, SYSPMMPE can only be cleared by a BOR event. 70 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Memory Map – Uses and Abilities www.ti.com 1.11 Memory Map – Uses and Abilities This memory map represents the MSP430F5438 device. Though the address ranges differs from device to device, overall behavior remains the same. Can generate NMI on read/write/fetch Generates PUC on fetch access Protectable for read/write accesses Always able to access PMM registers from (1); Mass erase by user possible Mass erase by user possible Bank erase by user possible Segment erase by user possible Address Range 00000h-00FFFh 00000h-000FFh 00100h-00FEFh 00FF0h-00FF3h 00FF4h-00FF7h 01000h-011FFh 01200h-013FFh 01400h-015FFh 01600h-017FFh 017FCh-017FFh 01800h-0187Fh 01880h-018FFh 01900h-0197Fh 01980h-019FFh 01A00h-01A7Fh 01C00h-05BFFh 05B80-05BFFh 05C00h-0FFFFh 0FF80h-0FFFFh 10000h-45BFFh 45C00h-FFFFFh (1) (2) (3) Name and Usage Peripherals with gaps Reserved for system extension Peripherals Descriptor type (2) Start address of descriptor structure BSL 0 BSL 1 BSL 2 BSL 3 BSL Signature Location Info D Info C Info B Info A Device Descriptor Table RAM 16KB Alternate Interrupt Vectors Program Interrupt Vectors Program Vacant Properties x x x x x x x x x x x x x x x x x x x (1) x x x x x (3) Access rights are separately programmable for SYS and PMM. Fixed ID for all MSP430 devices. See Section 1.13.1 for further details. On vacant memory space, the value 03FFFh is driven on the data bus. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 71 Memory Map – Uses and Abilities www.ti.com 1.11.1 Vacant Memory Space Vacant memory is non-existent memory space. Accesses to vacant memory space generate a system (non)maskable interrupt (SNMI) when enabled (VMAIE = 1). Reads from vacant memory results in the value 3FFFh. In the case of a fetch, this is taken as JMP $. Fetch accesses from vacant peripheral space result in a PUC. After the boot code is executed, it behaves like vacant memory space and also causes an NMI on access. 1.11.2 JTAG Lock Mechanism Using the Electronic Fuse A device can be protected from unauthorized access by disabling the JTAG and SBW interface. This is achieved by programming the electronic fuse. Programming the electronic fuse, completely disables the debug and access capabilities associated with the JTAG and Spy-Bi-Wire interface. The JTAG is locked by programming a certain signature into the device flash memory at dedicated addresses. The JTAG security lock key resides at the end of the bootstrap loader (BSL) memory at addresses 17FCh through 17FFh. Anything other than 0h or FFFFFFFFh programmed to these addresses locks the JTAG interface. All of the 5xx MSP430 devices come with a preprogrammed BSL (TI-BSL) code that, by default, protects itself from unintended erase and write access. This is done by setting SYSBSLPE in the SYSBSLC register. Since the JTAG security lock key resides in the BSL memory address range, appropriate action must be taken to unprotect the BSL memory area before programming the protection key. For more details on the electronic fuse, see the MSP430 Programming Via the JTAG Interface User's Guide (SLAU320). Some JTAG commands are still possible after the device is secured, including the BYPASS command (see IEEE1149-2001 Standard) and the JMB_EXCHANGE command which allows access to the JTAG Mailbox System (see Section 1.12 for details). NOTE: If a device has been protected, TI cannot access the device for a customer return. Access is only possible if a BSL is provided with its corresponding key or an unlock mechanism is provided by the customer. 1.12 JTAG Mailbox (JMB) System The SYS module provides the capability to exchange user data through the regular JTAG test/debug interface. The idea behind the JMB is to have a direct interface to the CPU during debugging, programming, and test that is identical for all '430 devices of this family and uses only few or no user application resources. The JTAG interface was chosen because it is available on all '430 devices and is a dedicated resource for debugging, programming, and test. Applications of the JMB are: • Providing entry password for device lock and unlock protection • Run-time data exchange (RTDX) 1.12.1 JMB Configuration The JMB supports two transfer modes, 16-bit and 32-bit. Setting JMBMODE enables 32-bit transfer mode. Clearing JMBMODE enables 16-bit transfer mode. 1.12.2 JMBOUT0 and JMBOUT1 Outgoing Mailbox Two 16-bit registers are available for outgoing messages to the JTAG port. JMBOUT0 is only used when using 16-bit transfer mode (JMBMODE = 0). JMBOUT1 is used in addition to JMBOUT0 when using 32-bit transfer mode (JMBMODE = 1). When the application wishes to send a message to the JTAG port, it writes data to JMBOUT0 for 16-bit mode, or JMBOUT0 and JMBOUT1 for 32-bit mode. JMBOUT0FG and JMBOUT1FG are read only flags that indicate the status of JMBOUT0 and JMBOUT1, respectively. When JMBOUT0FG is set, JMBOUT0 has been read by the JTAG port and is ready to receive new data. When JMBOUT0FG is reset, the JMBOUT0 is not ready to receive new data. JMBOUT1FG behaves similarly. 72 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback JTAG Mailbox (JMB) System www.ti.com 1.12.3 JMBIN0 and JMBIN1 Incoming Mailbox Two 16-bit registers are available for incoming messages from the JTAG port. Only JMBIN0 is used when in 16-bit transfer mode (JMBMODE = 0). JMBIN1 is used in addition to JMBIN0 when using 32-bit transfer mode (JMBMODE = 1). When the JTAG port wishes to send a message to the application, it writes data to JMBIN0 for 16-bit mode, or JMBIN0 and JMBIN1 for 32-bit mode. JMBIN0FG and JMBIN1FG are flags that indicate the status of JMBIN0 and JMBIN1, respectively. When JMBIN0FG is set, JMBIN0 has data that is available for reading. When JMBIN0FG is reset, no new data is available in JMBIN0. JMBIN1FG behaves similarly. JMBIN0FG and JMBIN1FG can be configured to clear automatically by clearing JMBCLR0OFF and JMBCLR1OFF, respectively. Otherwise, these flags must be cleared by software. 1.12.4 JMB NMI Usage The JMB handshake mechanism can be configured to use interrupts to avoid unnecessary polling if desired. In 16-bit mode, JMBOUTIFG is set when JMBOUT0 has been read by the JTAG port and is ready to receive data. In 32-bit mode, JMBOUTIFG is set when both JMBOUT0 and JMBOUT1 has been read by the JTAG port and are ready to receive data. If JMBOUTIE is set, these events cause a system NMI. In 16-bit mode, JMBOUTIFG is cleared automatically when data is written to JMBOUT0. In 32-bit mode, JMBOUTIFG Is cleared automatically when data is written to both JMBOUT0 and JMBOUT1. In addition, the JMBOUTIFG can be cleared when reading SYSSNIV. Clearing JMBOUTIE disables the NMI interrupt. In 16-bit mode, JMBINIFG is set when JMBIN0 is available for reading. In 32-bit mode, JMBINIFG is set when both JMBIN0 and JMBIN1 are available for reading. If JMBOUTIE is set, these events cause a system NMI. In 16-bit mode, JMBINIFG is cleared automatically when JMBIN0 is read. In 32-bit mode, JMBINIFG Is cleared automatically when both JMBIN0 and JMBIN1 are read. In addition, the JMBINIFG can be cleared when reading SYSSNIV. Clearing JMBINIE disables the NMI interrupt. 1.13 Device Descriptor Table Each device provides a data structure in memory that allows an unambiguous identification of the device, as well as, a more detailed description of the available modules on a given device. SYS provides this information and can be used by device-adaptive SW tools and libraries to clearly identify a particular device and all modules and capabilities contained within it. The validity of the device descriptor can be verified by cyclic redundancy check (CRC). Figure 1-7 shows the logical order and structure of the device descriptor table. The complete device descriptor table and its contents can be found in the device specific data sheet. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 73 Device Descriptor Table www.ti.com Descriptor start address Info_length CRC_length Information block CRC_value DeviceID Firmware revision Device ID and Revision Information Hardware revision Tag 1 Len 1 Value field 1 First TLV entry (optional) Additional TLV entries (optional) Tag N Len N Value field N Final TLV entry (optional) Figure 1-7. Devices Descriptor Table 1.13.1 Identifying Device Type The value read at address location 00FF0h identifies the family branch of the device. All values starting with 80h indicate a hierarchical structure consisting of the information block and a TLV tag-length-value (TLV) structure containing the various descriptors. Any other value than 80h read at address location 00FF0h indicates the device is of an older family and contains a flat descriptor beginning at location 0FF0h. The information block, shown in Figure 1-7 contains the device ID, die revisions, firmware revisions, and other manufacturer and tool related information. The descriptors contains information about the available peripherals, their subtypes and addresses and provides the information required to build adaptive hardware drivers for operating systems. The length of the descriptors represented by Info_length is computed as follows: Length = 2Info_length in 32-bit words (1) For example, if Info_length = 5, then the length of the descriptors equals 128 bytes. 74 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Device Descriptor Table www.ti.com 1.13.2 TLV Descriptors The TLV descriptors follow the information block. Because the information block is always a fixed length, the start location of the TLV descriptors is fixed for a given device family. For the MSP430x5xx family, this location is 01A08h. See the device-specific data sheet for the complete TLV structure and what descriptors are available. The TLV descriptors are unique to their respective TLV block and are always followed by the descriptor block length. Each TLV descriptor contains a tag field which identifies the descriptor type. Table 1-4 shows the currently supported tags. Table 1-4. Tag Values Short Name Value Description LDTAG 01h Legacy descriptor (1xx, 2xx, 4xx families) PDTAG 02h Peripheral discovery descriptor Reserved 03h Future use Reserved 04h Future use BLANK 05h Blank descriptor Reserved 06h Future use ADC12CAL 11h ADC12 calibration REFCAL 12h REF calibration ADC10CAL 13h ADC10 calibration Reserved 14h-1Ch Future use CTSD16CAL 1Dh CTSD16 calibration Reserved 1Eh-FDh Future use TAGEXT FEh Tag extender Each tag field is unique to its respective descriptor and is always followed by a length field. The length field is one byte if the tag value is 01h through 0FDh and represents the length of the descriptor in bytes. If the tag value equals 0FEh (TAGEXT), the next byte extends the tag values, and the following two bytes represent the length of the descriptor in bytes. In this way, a user can search through the TLV descriptor table for a particular tag value, using a routine similar to below written in pseudo code: // Identify the descriptor ID (d_ID_value) for the TLV descriptor of interest: descriptor_address = TLV_START address; while ( value at descriptor_address != d_ID_value && descriptor_address != TLV_TAGEND && descriptor_address < TLV_END) { // Point to next descriptor descriptor_address = descriptor_address + (length of the current TLV block) + 2; } if (value at descriptor_address == d_ID_value) { // Appropriate TLV descriptor has been found! Return length of descriptor & descriptor_address as the location of the TLV descriptor } else { // No TLV descriptor found with a matching d_ID_value Return a failing condition } SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 75 Device Descriptor Table www.ti.com 1.13.3 Peripheral Discovery Descriptor This descriptor type can describe concatenated or distributed memory or peripheral mappings, as well as, the number of interrupt vectors and their order. The peripheral discovery descriptor has tag value 02h (PDTAG). Table 1-5 shows the structure of the peripheral discovery descriptor. NOTE: Peripheral Discovery Descriptor is not available in every device. See the Device Descriptors section in the device-specific data sheet for the availability and details on Peripheral Discovery Descriptor. Table 1-5. Peripheral Discovery Descriptor Element Size (bytes) Comments Memory entry 1 2 Optional Memory entry 2 2 Optional ... 2 Optional Delimiter (00h) 1 Mandatory Peripheral count 1 Mandatory Peripheral entry 1 2 Optional Peripheral entry 2 2 Optional ... 2 Optional Interrupt priority N-3 1 Optional Interrupt priority N-4 1 Optional ... 1 Optional Delimiter (00h) 1 Mandatory The structures for a memory entry and peripheral entry are shown below. A memory entry consists of two bytes (one word). Table 1-6 shows the individual bit fields of a memory entry word and their respective meanings. Similarly, a peripheral entry consists of two bytes (one word). Table 1-7 shows the individual bit fields of a peripheral entry word and their respective meanings. 76 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Device Descriptor Table www.ti.com Table 1-6. Values for Memory Entry Bit Fields [15:13] [12:9] [8] [7] [6:0] Memory Type Size More Unit Size Address Value 0: End Entry 0: 0200h 0000000 1: More Entries 1: 010000h 0000001 000: None 0000: 0 B 001: RAM 0001: 128 B 010: EEPROM 0010: 256 B 0000010 011: Reserved 0011: 512 B 0000011 100: FLASH 0100: 1KB 0000100 101: ROM 0101: 2KB 0000101 110: MemType appended 0110: 4KB 0000110 111: Undefined 0111: 8KB 0000111 1000: 16KB 0001000 1001: 32KB 0001001 1010: 64KB 0001010 1011: 128KB 0001011 1100: 256KB 0001100 1101: 512KB ... 1110: Size appended ... 1111: Undefined 1111111 Table 1-7. Values for Peripheral Entry Bit Fields (1) [15:8] [7] [6:0] Peripheral ID (PID) (1) UnitSize AdrVal Any PID 0: 010h 0000000 Any PID 1: 0800h 0000001 Any PID 0000010 Any PID 0000011 Any PID 0000100 Any PID 0000101 Any PID ... Any PID ... Any PID 1111111 The Peripheral IDs are listed in Table 1-8. This is not a complete list, but shown as an example. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 77 Device Descriptor Table www.ti.com Table 1-8. Peripheral IDs (1) 78 (1) Peripheral or Module PID No Module 00h WDT 01h SFR 02h UCS 03h SYS 04h PMM 05h Flash Controller 08h CRC16 09h Port 1, 2 51h Port 3, 4 52h Port 5, 6 53h Port 7, 8 54h Port 9, 10 55h Port J 5Fh Timer A0 81h Timer A1 82h Special info appended FEh Undefined module FFh This table is not a complete list of all peripheral IDs that might be available on a device, and is shown here for illustrative purposes only. System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Device Descriptor Table www.ti.com Table 1-9 shows a simple example for a peripheral discovery descriptor of a hypothetical device: Table 1-9. Sample Peripheral Discovery Descriptor Hex Binary Entry Type Description 030h, 0Eh 001_1000_ 0_0_0001110 memory RAM 16KB, Start address = 01C00h (0Eh × 0200h) (1) 09Bh, 02Eh 100_1011_0_0_0101110 memory Flash 128KB, Start address = 05C00h (2Eh × 0200h) 00h 0000_0000_0000_0000 delimiter No more memory entries 0Fh 0000_1111 peripheral count Peripheral count = 15 02h, 10h 00000010_0_0010000 peripheral SFR at address = 0100h (10h × 10h) 01h, 01h 00000001_0_0000001 peripheral WDT at address = 0110h (0100h + 10h) 05h, 01h 00000101_0_0000001 peripheral PMM at address = 0120h (0110h + 10h) 03h, 01h 00000011_0_0000001 peripheral UCS at address = 0130h (0120h + 10h) 08h, 01h 00001000_0_0000001 peripheral FLCTL at address = 0140h (0130h + 10h) 09h, 01h 00001001_0_0000001 peripheral CRC16 at address = 0150h (0140h + 10h) 04h, 01h 00000100_0_0000001 peripheral SYS at address = 0160h (0150h + 10h) 51h, 0Ah 01010001_0_0001010 peripheral Port 1, 2 at address = 0200h (0160h + 10h × 10h) 52h, 02h 01010010_0_0000010 peripheral Port 3, 4 at address = 0220h (0200h + 02h × 10h) 53h, 02h 01010011_0_0000010 peripheral Port 5, 6 at address = 0240h (0220h + 02h × 10h) 54h, 02h 01010100_0_0000010 peripheral Port 7, 8 at address = 0260h (0240h + 02h × 10h) 55h, 02h 01010101_0_0000010 peripheral Port 9, 10 at address = 0280h (0260h + 02h × 10h) 5Fh, 0Ah 01011111_0_0001010 peripheral Port J at address = 0320h (0280h + 0Ah × 10h) 81h, 02h 10000001_0_0000010 peripheral Timer A0 at address = 0340h (0320h + 02h × 10h) 82h, 04h 10000010_0_0000100 peripheral Timer A1 at address = 0380h (0340h + 04h × 10h) – No appended entries SYSRSTIV at 0FFFEh (implied) SYSSNIV at 0FFFCh (implied) SYSUNIV at 0FFFAh (implied) (1) 81h 1000_0001 interrupt TA0 CCR0 at 0FFF8h 81h 1000_0001 interrupt TA0 CCR1, CCR1, TA0IFG at 0FFF6h 51h 0101_0001 interrupt Port 1 at 0FFF4h 82h 1000_0010 interrupt TA1CCR0 at 0FFF2h 51h 0101_0001 interrupt Port 2 at 0FFF0h 81h 1000_0010 interrupt TA1 CCR1, CCR1, TA1IFG at 0FFEEh 00h 0000_0000 delimiter No more interrupt entries In this example, the memory type is RAM (bits[15:13] = 001b), the size is 16KB (bits[12:9] = 1000b), and the starting address is 01C00h. The starting address is computed by taking the size field indicated by bit[7] (in this case, 0200h) and multiplying it by the address value (bits[6:0] = 0001110b. In this case, 0200h × 00Eh = 01C00h. NOTE: The interrupt ordering has some implied rules: • • • For timers, CCR0 interrupt has higher priority over all other CCRn interrupts. For communication ports, RX has higher priority over TX For port pairs, Port 1 has higher priority than Port 2, Port 3 has higher priority than Port 4, and so on. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 79 Device Descriptor Table www.ti.com 1.13.4 CRC Computation The CRC checksum for the TLV structure is stored at memory locations 0x1A02 and 0x1A03. The least significant byte (LSB) and most significant byte (MSB) reside at memory locations 0x1A02 and 0x1A03, respectively. The checksum is computed using data stored at memory locations 0x1A04 through 0x1AFF. The CRC checksum can be easily computed using the CRC16 module. The following simplified C code utilizes the CRC16 module to compute the checksum. See the CRC16 chapter for further details on the CRC algorithm implementation. NOTE: The CRC module on the MSP430F543x and MSP430F541x non-A versions does not support the bit-wise reverse feature used in this code example. Registers CRCDIRB and CRCRESR, along with their respective functionality, are not available. unsigned int i; unsigned char CRCRESULT_LSB, CRCRESULT_MSB; WDTCTL = WDTPW + WDTHOLD; CRCINIRES = 0xFFFF; for (i = 0x01A04; i <= 0x01AFF; i++){ CRCDIRB_L = *(unsigned char*)(i); } CRCRESULT_LSB = CRCINIRES_L; CRCRESULT_MSB = CRCINIRES_H; 80 // value stored at 0x1A02 // value stored at 0x1A03 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Device Descriptor Table www.ti.com 1.13.5 Calibration Values The TLV structure contains calibration values that can be used to improve the measurement capability of various functions. The calibration values available on a given device are shown in the TLV structure of the device-specific data sheet. 1.13.5.1 REF Calibration The calibration data for the REF module consists of three words, one word for each reference voltage available (1.5, 2.0, and 2.5 V). The reference voltages are measured at room temperature. The measured values are normalized by 1.5 V, 2.0 V, or 2.5 V before being stored into the TLV structure: CAL _ ADC _ 15VREF _ FACTOR = VREF + ´ 215 1 .5V CAL _ ADC _ 20VREF _ FACTOR = VREF + ´ 215 2.0V CAL _ ADC _ 25VREF _ FACTOR = V REF + ´ 215 2 . 5V (2) In this way, a conversion result is corrected by multiplying it with the CAL_15VREF_FACTOR (or CAL_20VREF_FACTOR, CAL_25VREF_FACTOR) and dividing the result by 215 as shown for each of the respective reference voltages: 1 2 15 1 ADC(corrected ) = ADC(raw) ´ CAL _ ADC 20VREF _ FACTOR ´ 15 2 1 ADC(corrected ) = ADC(raw) ´ CAL _ ADC25VREF _ FACTOR ´ 15 2 ADC(corrected ) = ADC(raw) ´ CAL _ ADC15VREF _ FACTOR ´ (3) In the following example, the integrated 1.5-V reference voltage is used during a conversion. • Conversion result: 0x0100 = 256 decimal • Reference voltage calibration factor (CAL_15VREF_FACTOR) : 0x7BBB The following steps show how the ADC conversion result can be corrected: • Multiply the conversion result by 2 (this step simplifies the final division): 0x0100 x 0x0002 = 0x0200 • Multiply the result by CAL_15VREF_FACTOR: 0x200 x 0x7FEE = 0x00F7_7600 • Divide the result by 216: 0x00F7_7600 / 0x0001_0000 = 0x0000_00F7 = 247 decimal 1.13.5.2 ADC and CTSD16 Offset and Gain Calibration The offset of the ADC (ADC10, ADC12, or CTSD16) is determined and stored as a twos-complement number in the TLV structure. The offset error correction is done by adding the CAL_ADC_OFFSET to the conversion result. ADC (offset _ corrected ) = ADC (raw) + CAL _ ADC _ OFFSET (4) The gain of the ADC is calculated by Equation 5: CAL _ ADC _ GAIN _ FACTOR = 1 ´ 215 GAIN (5) The conversion result is gain corrected by multiplying it with the CAL_ADC_GAIN_FACTOR and dividing the result by 215: SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 81 Device Descriptor Table www.ti.com ADC ( gain _ corrected ) = ADC (raw) ´ CAL _ ADC _ GAIN _ FACTOR ´ 1 215 (6) If both gain and offset are corrected, the gain correction is done first: ADC ( gain _ corrected ) = ADC (raw) ´ CAL _ ADC _ GAIN _ FACTOR ´ 1 215 ADC ( final ) = ADC ( gain _ corrected ) + CAL _ ADC _ OFFSET (7) 1.13.5.3 Temperature Sensor Calibration for Devices With ADCx The temperature sensor is calibrated using the internal voltage references. Each reference voltage (1.5/2.0/2.5 V) contains a measured value for two temperatures, 30°C ±3°C and 85°C ±3°C and are stored in the TLV structure. The characteristic equation of the temperature sensor voltage, in mV is: VSENSE = TC SENSOR ´ Temp + VSENSOR (8) The temperature coefficient, TCSENSORin mV/°C, represents the slope of the equation. VSENSOR, in mV, represents the y-intercept of the equation. Temp, in °C, is the temperature of interest. The temperature (Temp, °C) can be computed as follows for each of the reference voltages used in the ADC measurement: ö æ 85 - 30 ÷÷ + 3 0 Tem p = ( A D C ( ra w ) - C A L _ A D C _ T 3 0 )´ çç è C AL _ AD C _ T 85 - C AL _ AD C _ T 30 ø (9) 1.13.6 Temperature Sensor Calibration for Devices With CTSD16 The temperature sensor is calibrated using the internal VREFBG voltage reference. A value for two temperatures, 30°C ±3°C and 85°C ±3°C, is stored in the TLV structure. The characteristic equation of the temperature sensor voltage, in mV is: VSENSE = TC SENSOR ´ Temp + VSENSOR (10) The temperature coefficient, TCSENSORin mV/°C, represents the slope of the equation. VSENSOR, in mV, represents the y-intercept of the equation. Temp, in °C, is the temperature of interest. The temperature (Temp, °C) can be computed as follows: ö æ 85 - 30 ÷÷ + 3 0 Tem p = ( A D C ( ra w ) - C A L _ A D C _ T 3 0 )´ çç è C AL _ AD C _ T 85 - C AL _ AD C _ T 30 ø (11) 82 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SFR Registers www.ti.com 1.14 SFR Registers The SFRs are listed in Table 1-11. The base address for the SFRs is listed in Table 1-10. Many of the bits inside the SFRs are described in other chapters throughout this user's guide. These bits are marked with a note and a reference. See the specific chapter of the respective module for details. NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix "_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H" (ANYREG_H) refers to the upper byte of the register (bits 8 through 15). Table 1-10. SFR Base Address Module Base Address SFR 00100h Table 1-11. SFR Registers Offset Acronym Register Name Type Access Reset Section 00h SFRIE1 Interrupt Enable Section 7.4.4 Read/write Word 0000h 00h SFRIE1_L (IE1) Read/write Byte 00h 01h SFRIE1_H (IE2) Read/write Byte 00h 02h Read/write Word 0082h 02h SFRIFG1_L (IFG1) Read/write Byte 82h 03h SFRIFG1_H (IFG2) Read/write Byte 00h 04h SFRIFG1 SFRRPCR Interrupt Flag Read/write Word 0000h 04h SFRRPCR_L Read/write Byte 00h 05h SFRRPCR_H Read/write Byte 00h SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Reset Pin Control Section 1.14.2 Section 1.14.3 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 83 SFR Registers www.ti.com 1.14.1 SFRIE1 Register Interrupt Enable Register Figure 1-8. SFRIE1 Register 15 14 13 12 r0 r0 r0 r0 11 10 9 8 r0 r0 r0 r0 Reserved 7 6 5 4 3 2 1 0 JMBOUTIE JMBINIE ACCVIE (1) NMIIE VMAIE Reserved OFIE (2) WDTIE (3) rw-0 rw-0 rw-0 rw-0 rw-0 r0 rw-0 rw-0 (1) (2) (3) See the Flash Controller chapter for details. See the UCS chapter for details. See the WDT_A chapter for details. Table 1-12. SFRIE1 Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved. Always reads as 0. 7 JMBOUTIE RW 0h JTAG mailbox output interrupt enable flag 0b = Interrupts disabled 1b = Interrupts enabled 6 JMBINIE RW 0h JTAG mailbox input interrupt enable flag 0b = Interrupts disabled 1b = Interrupts enabled 5 ACCVIE RW 0h Flash controller access violation interrupt enable flag 0b = Interrupts disabled 1b = Interrupts enabled 4 NMIIE RW 0h NMI pin interrupt enable flag 0b = Interrupts disabled 1b = Interrupts enabled 3 VMAIE RW 0h Vacant memory access interrupt enable flag 0b = Interrupts disabled 1b = Interrupts enabled 2 Reserved R 0h Reserved. Always reads as 0. 1 OFIE RW 0h Oscillator fault interrupt enable flag 0b = Interrupts disabled 1b = Interrupts enabled 0 WDTIE RW 0h Watchdog timer interrupt enable. This bit enables the WDTIFG interrupt for interval timer mode. It is not necessary to set this bit for watchdog mode. Because other bits in ~IE1 may be used for other modules, it is recommended to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instruction 0b = Interrupts disabled 1b = Interrupts enabled 84 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SFR Registers www.ti.com 1.14.2 SFRIFG1 Register Interrupt Flag Register Figure 1-9. SFRIFG1 Register 15 14 13 12 r0 r0 r0 r0 11 10 9 8 r0 r0 r0 r0 Reserved 7 6 5 4 3 2 1 0 JMBOUTIFG JMBINIFG Reserved NMIIFG VMAIFG Reserved OFIFG (1) WDTIFG (2) rw-(1) rw-(0) r0 rw-0 rw-0 r0 rw-(1) rw-0 (1) (2) See the UCS chapter for details. See the WDT_A chapter for details. Table 1-13. SFRIFG1 Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved. Always reads as 0. 7 JMBOUTIFG RW 1h JTAG mailbox output interrupt flag 0b = No interrupt pending. When in 16-bit mode (JMBMODE = 0), this bit is cleared automatically when JMBO0 has been written with a new message to the JTAG module by the CPU. When in 32-bit mode (JMBMODE = 1), this bit is cleared automatically when both JMBO0 and JMBO1 have been written with new messages to the JTAG module by the CPU. This bit is also cleared when the associated vector in SYSUNIV has been read. 1b = Interrupt pending, JMBO registers are ready for new messages. In 16-bit mode (JMBMODE = 0), JMBO0 has been received by the JTAG module and is ready for a new message from the CPU. In 32-bit mode (JMBMODE = 1) , JMBO0 and JMBO1 have been received by the JTAG module and are ready for new messages from the CPU. 6 JMBINIFG RW 0h JTAG mailbox input interrupt flag 0b = No interrupt pending. When in 16-bit mode (JMBMODE = 0), this bit is cleared automatically when JMBI0 is read by the CPU. When in 32-bit mode (JMBMODE = 1), this bit is cleared automatically when both JMBI0 and JMBI1 have been read by the CPU. This bit is also cleared when the associated vector in SYSUNIV has been read 1b = Interrupt pending, a message is waiting in the JMBIN registers. In 16-bit mode (JMBMODE = 0) when JMBI0 has been written by the JTAG module. In 32-bit mode (JMBMODE = 1) when JMBI0 and JMBI1 have been written by the JTAG module. 5 Reserved R 0h Reserved. Always reads as 0. 4 NMIIFG RW 0h NMI pin interrupt flag 0b = No interrupt pending 1b = Interrupt pending 3 VMAIFG RW 0h Vacant memory access interrupt flag 0b = No interrupt pending 1b = Interrupt pending 2 Reserved R 0h Reserved. Always reads as 0. 1 OFIFG RW 1h Oscillator fault interrupt flag 0b = No interrupt pending 1b = Interrupt pending SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 85 SFR Registers www.ti.com Table 1-13. SFRIFG1 Register Description (continued) Bit Field Type Reset Description 0 WDTIFG RW 0h Watchdog timer interrupt flag. In watchdog mode, WDTIFG will self clear upon a watchdog timeout event. The SYSRSTIV can be read to determine if the reset was caused by a watchdog timeout event. In interval mode, WDTIFG is reset automatically by servicing the interrupt, or can be reset by software. Because other bits in ~IFG1 may be used for other modules, it is recommended to set or clear WDTIFG by using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions. 0b = No interrupt pending 1b = Interrupt pending 86 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SFR Registers www.ti.com 1.14.3 SFRRPCR Register Reset Pin Control Register Figure 1-10. SFRRPCR Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 Reserved Reserved r0 (1) r0 r0 r0 3 2 1 0 SYSRSTRE (1) SYSRSTUP (1) SYSNMIIES SYSNMI rw-1 rw-1 rw-0 rw-0 All devices except the MSP430F5438 (non-A) default to pullup enabled on the reset pin. Table 1-14. SFRRPCR Register Description Bit Field Type Reset Description 15-4 Reserved R 0h Reserved. Always reads as 0. 3 SYSRSTRE RW 1h Reset pin resistor enable 0b = Pullup/pulldown resistor at the RST/NMI pin is disabled 1b = Pullup/pulldown resistor at the RST/NMI pin is enabled 2 SYSRSTUP RW 1h Reset resistor pin pullup/pulldown 0b = Pulldown is selected 1b = Pullup is selected 1 SYSNMIIES RW 0h NMI edge select. This bit selects the interrupt edge for the NMI when SYSNMI = 1. Modifying this bit can trigger an NMI. Modify this bit when SYSNMI = 0 to avoid triggering an accidental NMI. 0b = NMI on rising edge 1b = NMI on falling edge 0 SYSNMI RW 0h NMI select. This bit selects the function for the RST/NMI pin. 0b = Reset function 1b = NMI function SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 87 SYS Registers www.ti.com 1.15 SYS Registers The SYS configuration registers are listed in Table 1-16 and the base address is listed in Table 1-15. A detailed description of each register and its bits is also provided. Each register starts at a word boundary. Either word or byte data can be written to the SYS configuration registers. NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix "_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H" (ANYREG_H) refers to the upper byte of the register (bits 8 through 15). Table 1-15. SYS Base Address Module Base Address SYS 00180h Table 1-16. SYS Registers Offset Acronym Register Name Type Access Reset Section 00h SYSCTL System Control Section 1.15.1 Read/write Word 0000h 00h SYSCTL_L Read/write Byte 00h 01h SYSCTL_H Read/write Byte 00h 02h Read/write Word 0003h 02h SYSBSLC_L Read/write Byte 03h 03h SYSBSLC_H Read/write Byte 00h Read/write Word 0000h Read/write Byte 00h Read/write Byte 00h Read/write Word 0000h 06h SYSJMBC 06h SYSJMBC_L 07h SYSJMBC_H 08h SYSJMBI0 Bootstrap Loader Configuration JTAG Mailbox Control JTAG Mailbox Input 0 08h SYSJMBI0_L Read/write Byte 00h 09h SYSJMBI0_H Read/write Byte 00h Read/write Word 0000h 0Ah SYSJMBI1 JTAG Mailbox Input 1 0Ah SYSJMBI1_L Read/write Byte 00h 0Bh SYSJMBI1_H Read/write Byte 00h Read/write Word 0000h 0Ch SYSJMBO0 JTAG Mailbox Output 0 0Ch SYSJMBO0_L Read/write Byte 00h 0Dh SYSJMBO0_H Read/write Byte 00h Read/write Word 0000h Read/write Byte 00h 0Eh 88 SYSBSLC SYSJMBO1 0Eh SYSJMBO1_L 0Fh SYSJMBO1_H JTAG Mailbox Output 1 Section 1.15.2 Section 1.15.3 Section 1.15.4 Section 1.15.5 Section 1.15.6 Section 1.15.7 Read/write Byte 00h 18h SYSBERRIV Bus Error Vector Generator Read Word 0000h Section 1.15.11 1Ah SYSUNIV User NMI Vector Generator Read Word 0000h Section 1.15.8 1Ch SYSSNIV System NMI Vector Generator Read Word 0000h Section 1.15.9 1Eh SYSRSTIV Reset Vector Generator Read Word 0002h Section 1.15.10 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SYS Registers www.ti.com 1.15.1 SYSCTL Register SYS Control Register Figure 1-11. SYSCTL Register 15 14 13 12 r0 r0 r0 r0 11 10 9 8 r0 r0 r0 r0 Reserved 7 6 Reserved r0 5 4 3 2 1 0 SYSJTAGPIN SYSBSLIND Reserved SYSPMMPE Reserved SYSRIVECT rw-[0] r-0 r0 rw-[0] r0 rw-[0] r0 Table 1-17. SYSCTL Register Description Bit Field Type Reset Description 15-6 Reserved R 0h Reserved. Always reads as 0. 5 SYSJTAGPIN RW 0h Dedicated JTAG pins enable. Setting this bit disables the shared functionality of the JTAG pins and permanently enables the JTAG function. This bit can be set only once. After it is set, it remains set until a BOR occurs. 0b = Shared JTAG pins (JTAG mode selectable by SBW sequence) 1b = Dedicated JTAG pins (explicit 4-wire JTAG mode selection) 4 SYSBSLIND RW 0h BSL entry indication. This bit indicates a BSL entry sequence detected on the Spy-Bi-Wire pins. 0b = No BSL entry sequence detected 1b = BSL entry sequence detected 3 Reserved R 0h Reserved. Always reads as 0. 2 SYSPMMPE RW 0h PMM access protect. This controls the accessibility of the PMM control registers. Once set to 1, it only can be cleared by a BOR. 0b = Access from anywhere in memory 1b = Access only from the protected BSL segments 1 Reserved R 0h Reserved. Always reads as 0. 0 SYSRIVECT RW 0h RAM-based interrupt vectors 0b = Interrupt vectors generated with end address TOP of lower 64KB of flash, FFFFh 1b = Interrupt vectors generated with end address TOP of RAM SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 89 SYS Registers www.ti.com 1.15.2 SYSBSLC Register Bootstrap Loader Configuration Register Figure 1-12. SYSBSLC Register 15 14 SYSBSLPE SYSBSLOFF rw-[0] rw-[0] 7 6 13 12 11 r0 r0 r0 5 4 3 9 8 r0 r0 r0 2 1 Reserved Reserved r0 10 r0 r0 SYSBSLR r0 r0 rw-[0] 0 SYSBSLSIZE rw-[1] rw-[1] Table 1-18. SYSBSLC Register Description Bit Field Type Reset Description 15 SYSBSLPE RW 0h Bootstrap loader memory protection enable for the size covered in SYSBSLSIZE. By default, this bit is cleared by hardware with a BOR event (as indicated above), however the boot code that checks for an available BSL may set this bit by software to protect the BSL. Because devices normally come with a TI BSL preprogrammed and protected, the boot code sets this bit. 0b = Area not protected. Read, program, and erase of BSL memory is possible. 1b = Area protected 14 SYSBSLOFF RW 0h Bootstrap loader memory disable for the size covered in SYSBSLSIZE 0b = BSL memory is addressed when this area is read. 1b = BSL memory behaves like vacant memory. Reads cause 3FFFh to be read. Fetches cause JMP $ to be executed. 13-3 Reserved R 0h Reserved. Always reads as 0. 2 SYSBSLR RW 0h RAM assigned to BSL 0b = No RAM assigned to BSL area 1b = Lowest 16 bytes of RAM assigned to BSL 1-0 SYSBSLSIZE RW 03h Bootstrap loader size. Defines the space and size of flash memory that is reserved for the BSL. 00b = Size: BSL segment 3 01b = Size: BSL segments 2 and 3 10b = Size: BSL segments 1, 2, and 3 11b = Size: BSL segments 0, 1, 2, and 3 90 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SYS Registers www.ti.com 1.15.3 SYSJMBC Register JTAG Mailbox Control Register Figure 1-13. SYSJMBC Register 15 14 13 12 r0 r0 r0 r0 11 10 9 8 r0 r0 r0 r0 Reserved 7 6 5 4 3 2 1 0 JMBCLR1OFF JMBCLR0OFF Reserved JMBM0DE JMBOUT1FG JMBOUT0FG JMBIN1FG JMBIN0FG rw-(0) rw-(0) r0 rw-0 r-(1) r-(1) rw-(0) rw-(0) Table 1-19. SYSJMBC Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved. Always reads as 0. 7 JMBCLR1OFF RW 0h Incoming JTAG Mailbox 1 flag auto-clear disable 0b = JMBIN1FG cleared on read of JMB1IN register 1b = JMBIN1FG cleared by software 6 JMBCLR0OFF RW 0h Incoming JTAG Mailbox 0 flag auto-clear disable 0b = JMBIN0FG cleared on read of JMB0IN register 1b = JMBIN0FG cleared by software 5 Reserved R 0h Reserved. Always reads as 0. 4 JMBMODE RW 0h This bit defines the operation mode of JMB for JMBI0/1 and JMBO0/1. Before switching this bit, pad and flush out any partial content to avoid data drops. 0b = 16-bit transfers using JMBO0 and JMBI0 only 1b = 32-bit transfers using JMBO0/1 and JMBI0/1 3 JMBOUT1FG RW 1h Outgoing JTAG Mailbox 1 flag. This bit is cleared automatically when a message is written to the upper byte of JMBO1 or as word access (by the CPU, DMA,…) and is set after the message was read by JTAG. 0b = JMBO1 is not ready to receive new data. 1b = JMBO1 is ready to receive new data. 2 JMBOUT0FG RW 1h Outgoing JTAG Mailbox 0 flag. This bit is cleared automatically when a message is written to the upper byte of JMBO0 or as word access (by the CPU, DMA,…) and is set after the message was read by JTAG. 0b = JMBO0 is not ready to receive new data. 1b = JMBO0 is ready to receive new data. 1 JMBIN1FG RW 0h Incoming JTAG Mailbox 1 flag. This bit is set when a new message (provided by JTAG) is available in JMBI1. This flag is cleared automatically on read of JMBI1 when JMBCLR1OFF = 0 (auto clear mode). On JMBCLR1OFF = 1, JMBIN1FG needs to be cleared by SW. 0b = JMBI1 has no new data. 1b = JMBI1 has new data available. 0 JMBIN0FG RW 0h Incoming JTAG Mailbox 0 flag. This bit is set when a new message (provided by JTAG) is available in JMBI0. This flag is cleared automatically on read of JMBI0 when JMBCLR0OFF = 0 (auto clear mode). On JMBCLR0OFF = 1, JMBIN0FG needs to be cleared by SW. 0b = JMBI1 has no new data. 1b = JMBI1 has new data available. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 91 SYS Registers www.ti.com 1.15.4 SYSJMBI0 Register JTAG Mailbox Input 0 Register Figure 1-14. SYSJMBI0 Register 15 14 13 12 r-0 r-0 r-0 r-0 7 6 5 4 11 10 9 8 r-0 r-0 r-0 r-0 3 2 1 0 r-0 r-0 r-0 r-0 MSGHI MSGLO r-0 r-0 r-0 r-0 Table 1-20. SYSJMBI0 Register Description Bit Field Type Reset Description 15-8 MSGHI R 0h JTAG mailbox incoming message high byte 7-0 MSGLO R 0h JTAG mailbox incoming message low byte 1.15.5 SYSJMBI1 Register JTAG Mailbox Input 0 Register Figure 1-15. SYSJMBI1 Register 15 14 13 12 r-0 r-0 r-0 r-0 7 6 5 4 11 10 9 8 r-0 r-0 r-0 r-0 3 2 1 0 r-0 r-0 r-0 r-0 MSGHI MSGLO r-0 r-0 r-0 r-0 Table 1-21. SYSJMBI1 Register Description Bit Field Type Reset Description 15-8 MSGHI R 0h JTAG mailbox incoming message high byte 7-0 MSGLO R 0h JTAG mailbox incoming message low byte 92 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SYS Registers www.ti.com 1.15.6 SYSJMBO0 Register JTAG Mailbox Output 0 Register Figure 1-16. SYSJMBO0 Register 15 14 13 12 rw-0 rw-0 rw-0 rw-0 7 6 5 4 11 10 9 8 rw-0 rw-0 rw-0 rw-0 3 2 1 0 rw-0 rw-0 rw-0 rw-0 MSGHI MSGL0 rw-0 rw-0 rw-0 rw-0 Table 1-22. SYSJMBO0 Register Description Bit Field Type Reset Description 15-8 MSGHI RW 0h JTAG mailbox outgoing message high byte 7-0 MSGLO RW 0h JTAG mailbox outgoing message low byte 1.15.7 SYSJMBO1 Register JTAG Mailbox Output 1 Register Figure 1-17. SYSJMBO1 Register 15 14 13 12 rw-0 rw-0 rw-0 rw-0 7 6 5 4 11 10 9 8 rw-0 rw-0 rw-0 rw-0 3 2 1 0 rw-0 rw-0 rw-0 rw-0 MSGHI MSGL0 rw-0 rw-0 rw-0 rw-0 Table 1-23. SYSJMBO1 Register Description Bit Field Type Reset Description 15-8 MSGHI RW 0h JTAG mailbox outgoing message high byte 7-0 MSGLO RW 0h JTAG mailbox outgoing message low byte SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 93 SYS Registers www.ti.com 1.15.8 SYSUNIV Register User NMI Vector Register NOTE: Additional events for more complex devices are appended to this table; sources that are removed reduce the length of this table. The vectors are expected to be accessed symbolic only with the corresponding include file of the device in use. Figure 1-18. SYSUNIV Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-0 r-0 r-0 r0 SYSUNVEC r0 r0 r0 r0 7 6 5 4 SYSUNVEC r0 r0 r0 r-0 Table 1-24. SYSUNIV Register Description Bit Field Type Reset Description 15-0 SYSUNIV R 0h User NMI vector. Generates a value that can be used as address offset for fast interrupt service routine handling. Writing to this register clears all pending user NMI flags. 00h = No interrupt pending 02h = NMIIFG interrupt pending (highest priority) 04h = OFIFG interrupt pending 06h = ACCVIFG interrupt pending 08h = BUSIFG interrupt pending (Not present on all devices. See device-specific datasheet) 94 System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SYS Registers www.ti.com 1.15.9 SYSSNIV Register System NMI Vector Register NOTE: Additional events for more complex devices are appended to this table; sources that are removed reduce the length of this table. The vectors are expected to be accessed symbolic only with the corresponding include file of the used device. Figure 1-19. SYSSNIV Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-0 r-0 r-0 r0 SYSSNVEC r0 r0 r0 r0 7 6 5 4 SYSSNVEC r0 r0 r0 r-0 Table 1-25. SYSSNIV Register Description Bit Field Type Reset Description 15-0 SYSSNIV R 0h System NMI vector. Generates a value that can be used as address offset for fast interrupt service routine handling. Writing to this register clears all pending system NMI flags. 00h = No interrupt pending 02h = SVMLIFG interrupt pending (highest priority) 04h = SVMHIFG interrupt pending 06h = SVSMLDLYIFG interrupt pending 08h = SVSMHDLYIFG interrupt pending 0Ah = VMAIFG interrupt pending 0Ch = JMBINIFG interrupt pending 0Eh = JMBOUTIFG interrupt pending 10h = SVMLVLRIFG interrupt pending 12h = SVMHVLRIFG interrupt pending 14h = Reserved SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 95 SYS Registers www.ti.com 1.15.10 SYSRSTIV Register Reset Interrupt Vector Register NOTE: Additional events for more complex devices are appended to this table; sources that are removed reduce the length of this table. The vectors are expected to be accessed symbolic only with the corresponding include file of the used device. Figure 1-20. SYSRSTIV Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r (1) r (1) r (1) r0 SYSRSTVEC r0 r0 r0 r0 7 6 5 4 SYSRSTVEC r0 (1) r (1) r0 r (1) Reset value depends on reset source. Table 1-26. SYSRSTIV Register Description Bit Field Type Reset Description 15-0 SYSRSTIV R 02h3Eh (1) Reset interrupt vector. Generates a value that can be used as address offset for fast interrupt service routine handling to identify the last cause of a reset (BOR, POR, PUC) . Writing to this register clears all pending reset source flags. 00h = No interrupt pending 02h = Brownout (BOR) (highest priority) 04h = RST/NMI (BOR) 06h = PMMSWBOR (BOR) 08h = Wakeup from LPMx.5 (BOR) 0Ah = Security violation (BOR) 0Ch = SVSL (POR) 0Eh = SVSH (POR) 10h = SVML_OVP (POR) 12h = SVMH_OVP (POR) 14h = PMMSWPOR (POR) 16h = WDT time out (PUC) 18h = WDT password violation (PUC) 1Ah = Flash password violation (PUC) 1Ch = Reserved 1Eh = PERF peripheral/configuration area fetch (PUC) 20h = PMM password violation (PUC) 22h to 3Eh = Reserved (1) 96 Reset value depends on reset source. System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SYS Registers www.ti.com 1.15.11 SYSBERRIV Register System Bus Error Interrupt Vector Register NOTE: Additional events for more complex devices are appended to this table; sources that are removed reduce the length of this table. The vectors are expected to be accessed symbolic only with the corresponding include file of the used device. Figure 1-21. SYSBERRIV Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-0 r-0 r-0 r0 SYSBERRIV r0 r0 r0 r0 7 6 5 4 SYSBERRIV r0 r0 r0 r-0 Table 1-27. SYSBERRIV Register Description Bit Field Type Reset Description 15-0 SYSBERRIV R 0h System bus error interrupt vector. Generates a value that can be used as an address offset for fast interrupt service routine handling. Writing to this register clears all pending flags. 00h = No interrupt pending 02h = USB module timed out. Wait state time out of 8 clock cycles. 16 clock cycles only on the F552x and F551x devices. 04h = Reserved for future extensions 06h = Reserved for future extensions 08h = Reserved for future extensions SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback System Resets, Interrupts, and Operating Modes, System Control Module (SYS) Copyright © 2008–2015, Texas Instruments Incorporated 97 Chapter 2 SLAU208O – June 2008 – Revised May 2015 Power Management Module and Supply Voltage Supervisor This chapter describes the operation Supply Voltage Supervisor (SVS). Topic 2.1 2.2 2.3 98 of the Power Management Module (PMM) ........................................................................................................................... and Page Power Management Module (PMM) Introduction .................................................... 99 PMM Operation................................................................................................. 101 PMM Registers ................................................................................................. 114 Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Power Management Module (PMM) Introduction www.ti.com 2.1 Power Management Module (PMM) Introduction PMM features include: • Wide supply voltage (DVCC) range: 1.8 V to 3.6 V • Generation of voltage for the device core (VCORE) with up to four programmable levels • Supply voltage supervisor (SVS) for DVCC and VCORE with programmable threshold levels • Supply voltage monitor (SVM) for DVCC and VCORE with programmable threshold levels • Brownout reset (BOR) • Software accessible power-fail indicators • I/O protection during power-fail condition • Software selectable supervisor or monitor state output (optional) The PMM manages all functions related to the power supply and its supervision for the device. Its primary functions are first to generate a supply voltage for the core logic, and second, provide several mechanisms for the supervision and monitoring of both the voltage applied to the device (DVCC) and the voltage generated for the core (VCORE). The PMM uses an integrated low-dropout voltage regulator (LDO) to produce a secondary core voltage (VCORE) from the primary one applied to the device (DVCC). In general, VCORE supplies the CPU, memories (flash and RAM), and the digital modules, while DVCC supplies the I/Os and all analog modules (including the oscillators). The VCORE output is maintained using a dedicated voltage reference. VCORE is programmable up to four steps, to provide only as much power as is needed for the speed that has been selected for the CPU. This enhances power efficiency of the system. The input or primary side of the regulator is referred to in this chapter as its high side. The output or secondary side is referred to in this chapter as its low side. The required minimum voltage for the core depends on the selected MCLK rate. Figure 2-1 shows the relationship between the system frequency for a given core voltage setting, as well as the minimum required voltage applied to the device. Figure 2-1 is only an example—see the device-specific data sheet to determine which core voltage levels are supported and what level of system frequency performance is possible for a given device. f3 System Frequency - MHz 3 f2 2 2, 3 1 1, 2 1, 2, 3 0, 1 0, 1, 2 0, 1, 2, 3 f1 f0 0 0 1.8 2.0 2.2 2.4 3.6 Supply Voltage - V The numbers within the fields denote the supported PMMCOREVx settings. Figure 2-1. System Frequency, Supply Voltage, and Core Voltage – See Device-Specific Data Sheet SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated 99 Power Management Module (PMM) Introduction www.ti.com The PMM module provides means for DVCC and VCORE to be supervised and monitored. Both of these functions detect when a voltage falls under a specific threshold. In general, the difference is that supervision results in a power-on reset (POR) event, while monitoring results in the generation of an interrupt flag that software may then handle. As such, DVCC is supervised and monitored by the high-side supervisor (SVSH) and high-side monitor (SVMH), respectively. VCORE is supervised and monitored by the low-side supervisor (SVSL) and low-side monitor (SVML), respectively. Thus, there are four separate supervision and monitoring modules that can be active at any given time. The thresholds enforced by these modules are derived from the same voltage reference used by the regulator to generate VCORE. In addition to the SVSH, SVMH, SVSL, and SVML modules, VCORE is further monitored by the brownout reset (BOR) circuit. As DVCC ramps up from 0 V at power up, the BOR keeps the device in reset until VCORE is at a sufficient level for operation at the default MCLK rate and for the SVSH and SVSL mechanisms to be activated. During operation, the BOR also generates a reset if VCORE falls below a preset threshold. BOR can be used to provide an even lower-power means of monitoring the supply rail if the flexibility of the SVSL is not required. The block diagram of the PMM is shown in Figure 2-2. Control bits Regulator DVCC SVSH SVMH Ports ON PMMCOREV Reference VCORE SVSL SVML NOR BOR OR To reset logic To reset logic Figure 2-2. PMM Block Diagram 100 Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback PMM Operation www.ti.com 2.2 PMM Operation 2.2.1 VCORE and the Regulator DVCC can be powered from a wide input voltage range, but the core logic of the device must be kept at a voltage lower than what this range allows. For this reason, a regulator has been integrated into the PMM. The regulator derives the necessary core voltage (VCORE) from DVCC. Higher MCLK speeds require higher levels of VCORE. Higher levels of VCORE consume more power, and so the core voltage has been made programmable in up to four steps to allow it to provide only as much power as is required for a given MCLK setting. The level is controlled by the PMMCOREV bits. Note that the default setting, the lowest value of PMMCOREV, enables operation of MCLK over a very wide frequency range. As such, no PMM changes are required for many applications. See the device-specific data sheet for performance characteristics and core step levels supported. Before increasing MCLK to a higher speed, it is necessary for software to ensure that the VCORE level is sufficiently high for the chosen frequency. Failure to do so may force the CPU to attempt operation without sufficient power, which can cause unpredictable results. See Section 2.2.4 for more information on the appropriate procedure to raise VCORE for higher MCLK frequencies. The regulator supports two different load settings to optimize power. The high-current mode is required when: • The CPU is in active, LPM0, or LPM1 modes • A clock source greater than 32 kHz is used to drive any module • An interrupt is executed Otherwise, the low-current mode is used. The hardware controls the load settings automatically, according to the criteria above. 2.2.2 Supply Voltage Supervisor and Monitor The high-side supervisor and monitor (SVSH and SVMH) oversee DVCC, and the low-side supervisor and monitor (SVSL and SVML) oversee VCORE. By default, all of these modules are active, but each can be disabled using the corresponding enable bit (SVSHE, SVMHE, SVSLE, SVMLE), resulting in some power savings. Typical application scenarios for supply voltage supervisors and monitors are: • High-Side Supervisor, SVSH – Supervision of external power supply (DVCC) – Device reset because of low battery or supply voltage • High-Side Monitor, SVMH – Monitoring of external power supply (DVCC) – Detection of low battery voltage (Pre-warning) • Low-Side Supervisor, SVSL – Supervision of internal core voltage used to supply digital core – Device reset because of disruptive conditions at external VCORE pin (for example a short). The internal core voltage never drops below a critical level if parasitic events at the external VCORE pin are avoided. • Low-Side Monitor, SVML – Monitoring of internal core voltage used to supply digital core – Detection of correct internal voltage levels when changing (especially increasing) the core voltage level before changing, for example, to higher system frequencies (also see Section 2.2.4). SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated 101 PMM Operation 2.2.2.1 www.ti.com SVS and SVM Thresholds The voltage thresholds enforced by the SVS and SVM modules are selectable. Table 2-1 shows the SVS and SVM threshold registers, the voltage threshold they control, and the number of threshold options. Table 2-1. SVS and SVM Thresholds Register SVSHRVL SVSMHRRL SVSLRVL SVSMLRRL (1) Description Threshold Available Steps SVSH_IT- 4 SVSH_IT+, SVMH 8 SVSL_IT- 4 SVSL_IT+, SVML 4 (1) SVSH reset voltage level SVSH, SVMH reset release voltage level SVSL reset voltage level SVSL, SVML reset release voltage level The register settings support up to eight levels (0 through 7); however, levels 3 through 7 are identical. 2.2.2.1.1 Recommended SVSL Settings For each of the core voltages, there are two supply voltage supervisor levels available. The SVSLRVL bits define the voltage level of VCORE below which the reset is activated. The SVSMLRRL bits define the voltage level of VCORE at which the reset is released. Although various settings can be chosen, there is one set of SVSLRVL and SVSMLRRL settings that is well suited for each core voltage selected by PMMCOREV. By default, an SVSL event always generates a POR (SVSLPE = 1), and it is recommended to always configure SVSLPE = 1 for reliable device startup. The most commonly used and recommended settings are shown in Table 2-2. Table 2-2. Recommended SVSL Settings PMMCOREV[1:0] DVCC (V) SVSLRVL[1:0] Sets SVSL_IT- Level SVSMLRRL[2:0] Sets SVSL_IT+ and SVML levels 00 ≥ 1.8 00 000 01 ≥ 2.0 01 001 10 ≥ 2.2 10 010 11 ≥ 2.4 11 011 2.2.2.1.1.1 Recommended SVSH Settings For the high-side supply, there are two supply voltage supervisor levels available. The SVSMHRRL bits define the voltage level of DVCC at which the reset is released. The SVSHRVL register defines the voltage level of DVCC below which the reset is turned on. These settings should be selected according to the minimum voltages required for device operation in a given application, as well as system power supply characteristics. See the device-specific data sheet for threshold values corresponding to the settings shown here. Although various settings are available, the most common are based on the maximum frequency required which, in turn, determines the minimum DVCC level supervised. By default, an SVSH event always generates a POR (SVSHPE = 1), and it is recommended to always configure SVSHPE = 1 for reliable device startup. The most commonly used and recommended settings are shown in Table 4-2 . Table 2-3. Recommended SVSH Settings 102 fSYS Max (MHz) DVCC (V) SVSHRVL[1:0] Sets SVSH_IT- Level SVSMHRRL[2:0] Sets SVSH_IT+ and SVMH Levels PMMCOREV[1:0] 8 >1.8 00 000 00 12 >2.0 01 001 01 20 >2.2 10 010 10 25 >2.4 11 011 11 Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback PMM Operation www.ti.com The available voltage threshold settings of SVSH and SVMH are dependent on the voltage level setting of VCORE. Table 2-4 summarizes all of the possible settings available. All other settings not listed are invalid and should not be used. Also SVSMHRRL must always be equal or larger than SVSHRVL. Figure 2-3 shows the available settings for the SVMH. Table 2-4. Available SVSH and SVMH Settings Versus VCORE Settings PMMCOREV[1:0] SVSHRVL[1:0] Sets SVSH_IT- Level SVSMHRRL[2:0] Sets SVSH_IT+ and SVMH Levels 00 00 through 11 000 through 011 01 00 through 11 001 through 100 10 00 through 11 010 through 101 11 00 through 11 011 through 111 111 (7) Invalid 110 (6) SVSMHRRLx 101 (5) 100 (4) 011 (3) Valid 010 (2) 001 (1) Invalid 000 (0) 00 01 10 11 PMMCOREVx Figure 2-3. Available SVMH Settings Versus VCORE Settings The behavior of the SVS and SVM according to these thresholds is best portrayed graphically. Figure 2-4 shows how the supervisors and monitors respond to various supply failure conditions. As Figure 2-4 shows, there is hysteresis built into the supervision thresholds, such that the thresholds in force depend on whether the voltage rail is going up or down. There is no hysteresis in the monitoring thresholds. NOTE: SVS Hysteresis There is only a reliable hysteresis if the bit setting for SVSMHRRL is equal or larger than the bit setting for SVSHRVL. Thus you must select a SVSMHRRL setting that is equal or larger than the SVSHRVL setting. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated 103 PMM Operation www.ti.com Voltage DVCC SVMH,SVSH_IT+ SVSH_ITVCORE SVML,SVSL_IT+ SVSL_IT- Set SVMHIFG Set SVMHVLRIFG Set SVSHIFG Set SVMLIFG Set SVMLVLRIFG Set SVSLIFG POR Time Figure 2-4. High-Side and Low-Side Voltage Failure and Resulting PMM Actions 104 Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback PMM Operation www.ti.com 2.2.2.2 High-Side Supervisor (SVSH) and High-Side Monitor (SVMH) The SVSH and SVMH modules are enabled by default. They can be disabled by clearing the SVSHE and SVMHE bits, respectively. Their block diagrams are shown in Figure 2-5. SVMHVLRPE SVMHOVPE 0 Set POR 1 SVMHIE Set SVMH Interrupt SVMHIFG IFG SVMHFP SVMHE SVMH Set ON SVMHVLRIFG IFG SVSMHRRL SVMHVLRIE SVSHFP SVSH Set SVSHIFG ON SVSHRVL SVSHE Set POR SVSMHDLYIFG IFG High power mode LPM or SVSMHCTL change SVSHPE Set SVSHMD SVMH Reached Interrupt SVSMHDLYIE High Side Delay Interrupt EN SVSMHEVM Figure 2-5. High-Side SVS and SVM If DVCC falls below the SVSH level, SVSHIFG (SVSH interrupt flag) is set. If DVCC remains below the SVSH level and software attempts to clear SVSHIFG, it is immediately set again by hardware. If the SVSHPE (SVSH POR enable) bit is set when SVSHIFG gets set, a POR is generated. If DVCC falls below the SVMH level, SVMHIFG (SVMH interrupt flag) is set. If DVCC remains below the SVMH level and software attempts to clear SVMHIFG, it is immediately set again by hardware. If the SVMHIE (SVMH interrupt enable) bit is set when SVMHIFG gets set, an interrupt is generated. If a POR is desired when SVMHIFG is set, the SVMH can be configured to do so by setting the SVMHVLRPE (SVMH voltage level reached POR enable) bit while SVMHOVPE bit is cleared. If DVCC rises above the SVMH level, the SVMHVLRIFG (SVMH voltage level reached) interrupt flag is set. If SVMHVLRIE (SVMH voltage level reached interrupt enable) is set when this occurs, an interrupt is also generated. Alternatively the SVMH module can be used for overvoltage detection, but only with the highest core voltage setting (PMMCOREV = 11b), . This is accomplished by setting the SVMHOVPE (SVMH overvoltage POR enable) bit in addition to setting SVMHVLRPE. Under these conditions, if a rising DVCC exceeds safe device operation, a POR is generated. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated 105 PMM Operation www.ti.com The SVSH and SVMH modules have configurable performance modes for power-saving operation. (See Section 2.2.9 for more information.) If these SVSH and SVMH power modes are modified, or if a voltage level is modified, a delay element masks the interrupts and POR sources until the SVSH and SVMH circuits have settled. When SVSMHDLYST (delay status) reads zero, the delay has expired. In addition, the SVSMHDLYIFG (SVSH and SVMH delay expired) interrupt flag is set. If the SVSMHDLYIE (SVSH and SVMH delay expired interrupt enable) is set when this occurs, an interrupt is also generated. In case of power-fail conditions, setting SVSHMD causes the SVSH interrupt flag to be set in LPM2, LPM3, and LPM4. If SVSHMD is not set, the SVSH interrupt flag is not set in LPM2, LPM3, and LPM4. In addition, all SVSH and SVMH events can be masked by setting SVSMHEVM. For most applications, SVSMHEVM should be cleared. All the interrupt flags of SVSH and SVMH remain set until cleared by a BOR or by software. 2.2.2.3 Low-Side Supervisor (SVSL) and Low-Side Monitor (SVML) The SVSL and SVML modules are enabled by default. They can be disabled by clearing SVSLE and SVMLE bits, respectively. Their block diagrams are shown in Figure 2-6. SVMLVLRPE SVMLOVPE 0 Set POR 1 SVMLIE Set SVML Interrupt SVMLIFG IFG SVMLFP SVMLE SVML Set ON SVMLVLRIFG IFG SVSMLRRL SVMLVLRIE SVSLFP SVSL Set SVSLIFG ON SVSLRVL SVSLE SVSLPE Set SVSLMD Set POR SVSMLDLYIFG IFG High power mode LPM or SVSMLCTL change SVML Reached Interrupt SVSMLDLYIE Low Side Delay Interrupt EN SVSMLEVM Figure 2-6. Low-Side SVS and SVM If VCORE falls below the SVSL level, SVSLIFG (SVSL interrupt flag) is set. If VCORE remains below the SVSL level and software attempts to clear SVSLIFG, it is immediately set again by hardware. If the SVSLPE (SVSL POR enable) bit is set when SVSLIFG gets set, a POR is generated. 106 Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback PMM Operation www.ti.com If VCORE falls below the SVML level, SVMLIFG (SVML interrupt flag) is set. If VCORE remains below the SVML level and software attempts to clear SVMLIFG, it is immediately set again by hardware. If the SVMLIE (SVML interrupt enable) bit is set when SVMLIFG gets set, an interrupt is generated. If a POR is desired when SVMLIFG is set, the SVML can be configured to do so by setting the SVMLVLRPE (SVML voltage level reached POR enable) bit while SVMLOVPE bit is cleared. If VCORE rises above the SVML level, the SVMLVLRIFG (SVML voltage level reached) interrupt flag is set. If SVMLVLRIE (SVML voltage level reached interrupt enable) is set when this occurs, an interrupt is also generated. The SVML module can also be used for overvoltage detection. This is accomplished by setting the SVMLOVPE (SVML overvoltage POR enable) bit, in addition to setting SVMLVLRPE. Under these conditions, if VCORE exceeds safe device operation, a POR is generated. The SVSL and SVML modules have configurable performance modes for power-saving operation. (See Section 2.2.9 for more information.) If these SVSL and SVML power modes are modified, or if a voltage level is modified, a delay element masks the interrupts and POR sources until the SVSL and SVML circuits have settled. When SVSMLDLYST (delay status) reads zero, the delay has expired. In addition, the SVSMLDLYIFG (SVSL/SVML delay expired) interrupt flag is set. If the SVSMLDLYIE (SVSL and SVML delay expired interrupt enable) is set when this occurs, an interrupt is also generated. In case of power-fail conditions, setting SVSLMD causes the SVSL interrupt flag to be set in LPM2, LPM3, and LPM4. If SVSLMD is not set, the SVSL interrupt flag is not set in LPM2, LPM3, and LPM4. In addition, all SVSL and SVML events can be masked by setting SVSMLEVM. For most applications, SVSMLEVM should be cleared. All the interrupt flags of SVSL and SVML remain set until cleared by a BOR or by software. 2.2.3 Supply Voltage Supervisor and Monitor - Power-Up When the device is powering up, the SVSH and SVSL functions are enabled by default. Initially, DVCC is low, and therefore the PMM holds the device in POR reset. When both the SVSH and SVSL levels are met, the reset is released. Figure 2-7 shows this process. Voltage DVCC SVSH_IT+ VCORE SVSL_IT+ Reset from SVSH Reset from SVSL POR Time Figure 2-7. PMM Action at Device Power-Up After this point, both voltage domains are supervised and monitored while the respective modules are enabled. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated 107 PMM Operation www.ti.com 2.2.4 Increasing VCORE to Support Higher MCLK Frequencies With a reset, VCORE and all the PMM thresholds, default to their lowest possible levels. These default settings allow a wide range of MCLK operation, and in many applications no change to these levels is required. However, if the application requires the performance provided by higher MCLK frequencies, software should ensure that VCORE has been raised to a sufficient voltage level before changing MCLK, since failing to supply sufficient voltage to the CPU could produce unpredictable results. For a given device, minimum VCORE levels required for maximum MCLK frequencies have been established (See the device data sheet for specific values). After setting PMMCOREV to increase VCORE, there is a time delay until the new voltage has been established. Software must not raise MCLK until the necessary core voltage has settled. SVML can be used to verify that VCORE has met the required minimum value, prior to increasing MCLK. Figure 2-8 shows this procedure. Voltage VCORE SVML 6 1 3 4 5 2 SVSL Time Figure 2-8. Changing VCORE and SVML and SVSL Levels It is critical that the VCORE level be increased by only one level at a time. The following steps 1 through 4 show the procedure to increase VCORE by one level. This sequence is repeated to change the VCORE level until the targeted level is obtained: • Step 1: Make sure that DVCC has settled before you continue with the next steps. • Step 2: Program the SVMH and SVSH to the next level. This makes sure that DVCC is high enough for the next VCORE level. • Step 3: Program the SVML to the next level and wait until SVSMLDLYIFG is one. • Step 4: Program PMMCOREV to the next VCORE level. • Step 5: Wait until SVMLVLRIFG flag is one. It indicates that the core voltage reached the level you programmed in Step 4. • Step 6: Program the SVSL to the next level. As a reference, the following is a C code example for increasing VCORE. The sample libraries provide routines for increasing and decreasing the VCORE and should be used whenever possible. ; C Code example for increasing core voltage. ; Note: Change core voltage one level at a time. void SetVCoreUp (unsigned int level) { // Open PMM registers for write access PMMCTL0_H = 0xA5; // Make sure no flags are set for iterative sequences while ((PMMIFG & SVSMHDLYIFG) == 0); while ((PMMIFG & SVSMLDLYIFG) == 0); // Set SVS/SVM high side new level SVSMHCTL = SVSHE + SVSHRVL0 * level + SVMHE + SVSMHRRL0 * level; // Set SVM low side to new level SVSMLCTL = SVSLE + SVMLE + SVSMLRRL0 * level; // Wait till SVM is settled while ((PMMIFG & SVSMLDLYIFG) == 0); 108 Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback PMM Operation www.ti.com // Clear already set flags PMMIFG &= ~(SVMLVLRIFG + SVMLIFG); // Set VCore to new level PMMCTL0_L = PMMCOREV0 * level; // Wait till new level reached if ((PMMIFG & SVMLIFG)) while ((PMMIFG & SVMLVLRIFG) == 0); // Set SVS/SVM low side to new level SVSMLCTL = SVSLE + SVSLRVL0 * level + SVMLE + SVSMLRRL0 * level; // Lock PMM registers for write access PMMCTL0_H = 0x00; } NOTE: See the MSP430x5xx and MSP430x6xx Core Libraries (SLAA448). These libraries contain useful and ready-to-use functions for easily configuring and using the PMM module. 2.2.5 Decreasing VCORE for Power Optimization The risk posed by increasing MCLK frequency does not exist when decreasing MCLK from the current VCORE or higher settings, because higher VCORE levels can still support MCLK frequencies below the ones for which they were intended. However, significant power efficiency gains can be made by operating VCORE at the lowest value required for a given MCLK frequency. It is critical that the VCORE level be decreased by only one level at a time. The following steps show the procedure to decrease VCORE by one level. This sequence is repeated to change the VCORE level until the targeted level is obtained: The following steps show the procedure to decrease VCORE: • Step 1: Program the SVML and SVSL to the new level and wait for (SVSMLDLYIFG) to be set. • Step 2: Program PMMCOREV to the new VCORE level. It is critical when lowering the VCORE setting that the maximum MCLK frequency for the new VCORE setting is not violated (see the device-specific data sheet). 2.2.6 Transition From LPM3 and LPM4 Modes to AM The LDO requires time to settle when the application transitions from low-power modes to active modes. If a transition from LPM3 or LPM4 occurs and the devices does not stay in active mode long enough, the LDO does not have time to settle sufficiently. Circuitry inside the LDO ensures that the LDO has its minimum required time to settle to its proper operating voltage. The circuitry ensures that every eighth transition from LPM3 or LPM4 causes the LDO to remain on long enough to properly settle. This is handled automatically and requires no setting by the application. 2.2.7 LPM3.5 and LPM4.5 LPM3.5 and LPM4.5 are additional low-power modes in which the regulator of the PMM is completely disabled, providing additional power savings. Not all devices support all LPMx.5 modes, so see the device-specific data sheet. Because there is no power supplied to VCORE during LPMx.5, the CPU and all digital modules including RAM are unpowered. This disables the entire device and, as a result, the contents of the registers and RAM are lost. Any essential values should be stored to flash prior to entering LPMx.5. PMMREGOFF bit is used to disable the regulator. See the SYS module for complete descriptions and proper uses of LPMx.5. Because the regulator of the PMM is disabled upon entering LPMx.5, all I/O register configurations are lost. Therefore, the configuration of I/O pins must be handled differently to ensure that all pins in the application behave in a controlled manner upon entering and exiting LPMx.5. Properly setting the I/O pins is critical to achieving the lowest possible power consumption in LPMx.5, as well as preventing any possible uncontrolled input or output I/O state in the application. The application has complete control of SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated 109 PMM Operation www.ti.com the I/O pin conditions preventing the possibility of unwanted spurious activity upon entry and exit from LPMx.5. The I/O pin state is held and locked based on the settings prior to LPMx.5 entry. Upon entry into LPMx.5, the LOCKLPM5 bit in PM5CTL0 of the PMM module is set automatically. Note that only the pin condition is retained. All other port configuration register settings are lost. See the Digital I/O chapter for further details. 2.2.8 Brownout Reset (BOR), Software BOR, Software POR The primary function of the brownout reset (BOR) circuit occurs when the device is powering up. It is functional very early in the power-up ramp, generating a POR that initializes the system. It also functions when no SVS is enabled and a brownout condition occurs. It sustains this reset until the input power is sufficient for the logic, for proper reset of the system. In an application, it may be desired to cause a BOR by software. Setting PMMSWBOR causes a softwaredriven BOR. PMMBORIFG is set accordingly. Note that a BOR also initiates a POR and PUC. PMMBORIFG can be cleared by software or by reading SYSRSTIV. Similarly, it is possible to cause a POR by software by setting PMMSWPOR. PMMPORIFG is set accordingly. A POR also initiates a PUC. PMMPORIFG can be cleared by software or by reading SYSRSTIV. Both PMMSWBOR and PMMSWPOR are self clearing. See the SYS module for complete descriptions of BOR, POR, and PUC resets. 2.2.9 SVS and SVM Performance Modes and Wakeup Times The supervisors/monitors can function in one of two modes: normal and full performance. The difference is a tradeoff in response time versus the power consumed; full-performance mode has a faster response time but consumes considerably more power than normal mode. Full-performance mode might be considered in applications in which the decoupling of the external power supply cannot adequately prevent fast spikes on DVCC from occurring, or when the application has a particular intolerance to failure. In such cases, full-performance mode provides an additional layer of protection. There are two ways to control the performance mode: manual and automatic. In manual mode, the normal/full-performance selection is the same for every operational mode except LPMx.5 (the SVS and SVM are always disabled in LPMx.5). In this case, the normal or full-performance selection is made with the SVSHFP, SVMHFP, SVSLFP, or SVMLFP bit, for their respective modules. In automatic mode, hardware changes the normal or full-performance selection depending on the operational mode in effect. The wake-up time of the device from low-power modes is affected by the settings of the SVSL and SVML performance modes as listed in Table 2-6, Table 2-7, Table 2-8, and Table 2-9. The wake-up time from low-power modes is not affected by the settings of the SVSH and SVMH. All wake-ups from LPMx.5 (LPM3.5 or LPM4.5), are defined by the data sheet parametric, tWAKE-UP-LPM5, regardless of the performance modes for SVSL or SVML, because these are disabled in LPMx.5. The tables in Section 2.2.9.1 and Section 2.2.9.2 show the required settings to select the control and performance modes for SVSL, SVML, SVSH, and SVMH. NOTE: Low-Power Modes Even if the CPU requests a specific low-power mode, the device might not go into that state because of modules requesting clocks that should be switched off or have higher frequencies or because of modules requesting a higher drive capability of the LDO. The lowpower modes mentioned in the tables assume that the device is actually in the requested state; that is, no module is requesting a deviating clock setting or drive capability. 110 Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback PMM Operation www.ti.com 2.2.9.1 Low-Side SVS and SVM Control and Performance Mode Selection Table 2-5. SVSL and SVML Control Mode Selection SVSMLACE SVSLMD SVSL Control Mode SVML Control Mode 0 0 Automatic (see Table 2-6) Manual (see Table 2-8) 0 1 Manual (see Table 2-7) Manual (see Table 2-8) 1 0 Automatic (see Table 2-6) Automatic (see Table 2-9) 1 1 Automatic (see Table 2-6) Automatic (see Table 2-9) Table 2-6. SVSL Automatic Performance Control SVSLE SVSLMD SVSLFP AM, LPM0, LPM1 SVSL State LPM2, LPM3, LPM4 SVSL State Wakeup Time LPM2, LPM3, LPM4 0 x x Off Off tWAKE-UP-FAST 1 0 0 Normal Off tWAKE-UP-SLOW 1 0 1 Full performance Off tWAKE-UP-FAST 1 1 0 Normal Off tWAKE-UP-SLOW 1 1 1 Full performance Normal tWAKE-UP-FAST Table 2-7. SVSL Manual Performance Modes SVSLE AM, LPM0, LPM1 SVSL State SVSLFP LPM2, LPM3, LPM4 SVSL State Wakeup Time LPM2, LPM3, LPM4 0 x Off Off tWAKE-UP-FAST 1 0 Normal Normal tWAKE-UP-SLOW 1 1 Full performance Full performance tWAKE-UP-FAST Table 2-8. SVML Automatic Performance Control SVMLE SVMLFP AM, LPM0, LPM1 SVML State LPM2, LPM3, LPM4 SVML State Wakeup Time LPM2, LPM3, LPM4 0 x Off Off tWAKE-UP-FAST 1 0 Normal Off tWAKE-UP-SLOW 1 1 Full performance Normal tWAKE-UP-FAST Table 2-9. SVML Manual Performance Modes SVMLE SVMLFP AM, LPM0, LPM1 SVML State LPM2, LPM3, LPM4 SVML State Wakeup Time LPM2, LPM3, LPM4 0 x Off Off tWAKE-UP-FAST 1 0 Normal Normal tWAKE-UP-SLOW 1 1 Full performance Full performance tWAKE-UP-FAST SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated 111 PMM Operation 2.2.9.2 www.ti.com High-Side SVS and SVM Control and Performance Mode Selection Table 2-10. SVSH and SVMH Control Mode Selection SVSMHACE SVSHMD SVSH Control Mode SVMH Control Mode 0 0 Automatic (see Table 2-11) Manual (see Table 2-13) 0 1 Manual (see Table 2-12) Manual (see Table 2-13) 1 0 Automatic (see Table 2-11) Automatic (see Table 2-14) 1 1 Automatic (see Table 2-11) Automatic (see Table 2-14) Table 2-11. SVSH Automatic Performance Control SVSHE SVSHMD SVSHFP AM, LPM0, LPM1 SVSH State LPM2, LPM3, LPM4 SVSH State 0 x x Off Off 1 0 0 Normal Off 1 0 1 Full performance Off 1 1 0 Normal Off 1 1 1 Full performance Normal Table 2-12. SVSH Manual Performance Modes SVSHE SVSHFP AM, LPM0, LPM1 SVSH State LPM2, LPM3, LPM4 SVSH State 0 x Off Off 1 0 Normal Normal 1 1 Full performance Full performance Table 2-13. SVMH Automatic Performance Control SVMHE SVMHFP AM, LPM0, LPM1 SVMH State LPM2, LPM3, LPM4 SVMH State 0 x Off Off 1 0 Normal Off 1 1 Full performance Normal Table 2-14. SVMH Manual Performance Modes SVMHE 2.2.9.3 SVMHFP AM, LPM0, LPM1 SVMH State LPM2, LPM3, LPM4 SVMH State 0 x Off Off 1 0 Normal Normal 1 1 Full performance Full performance Wake-up Times in Debug Mode The TEST/SBWTCK pin is used for interfacing to the development tools by Spy-Bi-Wire and JTAG. When the TEST/SBWTCK pin is high, wake-up times from LPM2, LPM3, and LPM4 may be different compared to when TEST/SBWTCK is low. When the TEST/SBWTCK pin is high, all delays associated with the SVSL and SVML settings have no effect and the device wakes within tWAKE-UP-FAST . Pay careful attention to the real-time behavior when exiting from LPM2, LPM3, and LPM4 with the device connected to a development tool (for example, MSP-FET430UIF). 112 Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback PMM Operation www.ti.com 2.2.10 PMM Interrupts Interrupt flags generated by the PMM are routed to the system NMI interrupt vector generator register, SYSSNIV. When the PMM causes a reset, a value is generated in the system reset interrupt vector generator register, SYSRSTIV, corresponding to the source of the reset. These registers are defined within the SYS module. More information on the relationship between the PMM and SYS modules is available in the SYS chapter. 2.2.11 Port I/O Control The PMM provides a means of ensuring that I/O pins cannot behave in uncontrolled fashion during an undervoltage event. During these times, outputs are disabled, both normal drive and the weak pullup/pulldown function. If the CPU is functioning normally, and then an undervoltage event occurs, any pin configured as an input has its PxIN register value locked in at the point the event occurs, until voltage is restored. During the undervoltage event, external voltage changes on the pin are not registered internally. This helps prevent erratic behavior from occurring. 2.2.12 Supply Voltage Monitor Output (SVMOUT, Optional) The state of SVMLIFG, SVMLVLRIFG, SVMHIFG, and SVMLVLRIFG can be monitored on the external SVMOUT pin. Each of these interrupt flags can be enabled (SVMLOE, SVMLVLROE, SVMHOE, SVMLVLROE) to generate an output signal. The polarity of the output is selected by the SVMOUTPOL bit. If SVMOUTPOL is set, the output is set to 1 if an enabled interrupt flag is set. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated 113 PMM Registers 2.3 www.ti.com PMM Registers The PMM registers are listed in Table 2-15. The base address of the PMM module can be found in the device-specific data sheet. The address offset of each PMM register is given in Table 2-15. The password, PMMPW, defined in the PMMCTL0 register controls access to all PMM, SVS, and SVM registers. Once the correct password is written, the write access is enabled. The write access is disabled by writing a wrong password in byte mode to the PMMCTL0 upper byte. Word accesses to PMMCTL0 with a wrong password triggers a PUC. A write access to a register other than PMMCTL0 while write access is not enabled causes a PUC. NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix "_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H" (ANYREG_H) refers to the upper byte of the register (bits 8 through 15). Table 2-15. PMM Registers Offset Acronym Register Name Type Access Reset Section 00h PMMCTL0 PMM control register 0 Read/write Word 9600h Section 2.3.1 Read/write Byte 00h Read/write Byte 96h Read/write Word 0000h Read/write Byte 00h Read/write Byte 00h Read/write Word 4400h Read/write Byte 00h Read/write Byte 44h Read/write Word 4400h 00h PMMCTL0_L 01h PMMCTL0_H 02h 02h PMMCTL1_L 03h PMMCTL1_H 04h SVSMHCTL 04h SVSMHCTL_L 05h SVSMHCTL_H 06h SVSMLCTL PMM control register 1 SVS and SVM high side control register SVS and SVM low side control register 06h SVSMLCTL_L Read/write Byte 00h 07h SVSMLCTL_H Read/write Byte 44h Read/write Word 0020h Read/write Byte 20h Read/write Byte 00h Read/write Word 0000h 08h SVSMIO 08h SVSMIO_L 09h SVSMIO_H 0Ch PMMIFG SVSIN and SVMOUT control register (optional) PMM interrupt flag register 0Ch PMMIFG_L Read/write Byte 00h 0Dh PMMIFG_H Read/write Byte 00h 0Eh Read/write Word 1100h 0Eh PMMRIE_L Read/write Byte 00h 0Fh PMMRIE_H Read/write Byte 11h 10h 114 PMMCTL1 PMMRIE PM5CTL0 PMM interrupt enable register Read/write Word 0000h 10h PM5CTL0_L Power mode 5 control register 0 Read/write Byte 00h 11h PM5CTL0_H Read/write Byte 00h Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated Section 2.3.2 Section 2.3.3 Section 2.3.4 Section 2.3.5 Section 2.3.6 Section 2.3.7 Section 2.3.8 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback PMM Registers www.ti.com 2.3.1 PMMCTL0 Register Power Management Module Control Register 0 Figure 2-9. PMMCTL0 Register 15 14 13 12 rw-1 rw-0 rw-0 rw-1 7 6 11 10 9 8 rw-0 rw-1 rw-1 rw-0 1 PMMPW Reserved rw-0 5 Reserved r-0 r-0 4 3 2 PMMREGOFF PMMSWPOR PMMSWBOR rw-0 rw-0 rw-0 0 PMMCOREV rw-[0] rw-[0] Table 2-16. PMMCTL0 Register Description Bit Field Type Reset Description 15-8 PMMPW RW 96h PMM password. Always read as 096h. When using word operations, must be written with 0A5h or a PUC is generated. When using byte operation, writing 0A5h unlocks all PMM registers. When using byte operation, writing anything different than 0A5h locks all PMM registers. 7 Reserved RW 0h Reserved. Must always be written as 0. 6-5 Reserved R 0h Reserved. Always reads as 0. 4 PMMREGOFF RW 0h Regulator off (see the SYS chapter for details) 3 PMMSWPOR RW 0h Software power-on reset. Setting this bit to 1 triggers a POR. This bit is self clearing. 2 PMMSWBOR RW 0h Software brownout reset. Setting this bit to 1 triggers a BOR. This bit is self clearing. 1-0 PMMCOREV RW 0h Core voltage (see the device-specific data sheet for supported levels and corresponding voltages) 00b = V(CORE) level 0 01b = V(CORE) level 1 10b = V(CORE) level 2 11b = V(CORE) level 3 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated 115 PMM Registers www.ti.com 2.3.2 PMMCTL1 Register Power Management Module Control Register 1 Figure 2-10. PMMCTL1 Register 15 14 13 12 11 10 9 8 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 6 5 4 3 2 1 Reserved 7 Reserved r-0 Reserved r-0 rw-[0] Reserved rw-[0] r-0 0 Reserved r-0 rw-0 rw-0 Table 2-17. PMMCTL1 Register Description Bit Field Type Reset Description 15-6 Reserved R 0h Reserved. Always reads as 0. 5-4 Reserved RW 0h Reserved. Must always be written with 0. 3-2 Reserved R 0h Reserved. Always reads as 0. 1-0 Reserved RW 0h Reserved. Must always be written with 0. 116 Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback PMM Registers www.ti.com 2.3.3 SVSMHCTL Register Supply Voltage Supervisor and Monitor High-Side Control Register Figure 2-11. SVSMHCTL Register 15 14 13 12 11 10 SVMHFP SVMHE Reserved SVMHOVPE SVSHFP SVSHE rw-[0] rw-1 r-0 rw-[0] rw-[0] rw-1 2 7 6 5 4 3 SVSMHACE SVSMHEVM Reserved SVSHMD SVSMHDLYST rw-[0] rw-0 r-0 rw-0 r-0 9 8 SVSHRVL rw-[0] rw-[0] 1 0 SVSMHRRL rw-[0] rw-[0] rw-[0] Table 2-18. SVSMHCTL Register Description Bit Field Type Reset Description 15 SVMHFP RW 0h SVM high-side full-performance mode. If this bit is set, the SVMH operates in full-performance mode. 0b = Normal mode. See the device-specific data sheet for response times. 1b = Full-performance mode. See the device-specific data sheet for response times. 14 SVMHE RW 1h SVM high-side enable. If this bit is set, the SVMH is enabled. 13 Reserved R 0h Reserved. Always reads as 0. 12 SVMHOVPE RW 0h SVM high-side overvoltage enable. If this bit is set, the SVMH overvoltage detection is enabled. If SVMHVLRPE is also set, a POR occurs on an overvoltage condition. 11 SVSHFP RW 0h SVS high-side full-performance mode. If this bit is set, the SVSH operates in fullperformance mode. 0b = Normal mode. See the device-specific data sheet for response times. 1b = Full-performance mode. See the device-specific data sheet for response times. 10 SVSHE RW 1h SVS high-side enable. If this bit is set, the SVSH is enabled. 9-8 SVSHRVL RW 0h SVS high-side reset voltage level. If DVCC falls short of the SVSH voltage level selected by SVSHRVL, a reset is triggered (if SVSHPE = 1). The voltage levels are defined in the device-specific data sheet. Note: SVSMHRRL must always be equal or larger than SVSHRVL. 7 SVSMHACE RW 0h SVS and SVM high-side automatic control enable. If this bit is set, the low-power mode of the SVSH and SVMH circuits is under hardware control. 6 SVSMHEVM RW 0h SVS and SVM high-side event mask. If this bit is set, the SVSH and SVMH events are masked. 0b = No events are masked. 1b = All events are masked. 5 Reserved R 0h Reserved. Always reads as 0. 4 SVSHMD RW 0h SVS high-side mode. If this bit is set, the SVSH interrupt flag is set in LPM2, LPM3, and LPM4 in case of power-fail conditions. If this bit is not set, the SVSH interrupt is not set in LPM2, LPM3, and LPM4. 3 SVSMHDLYST R 0h SVS and SVM high-side delay status. If this bit is set, the SVSH and SVMH events are masked for some delay time. The delay time depends on the power mode of the SVSH and SVMH. If SVMHFP = 1 and SVSHFP = 1 (that is, fullperformance mode), the delay is shorter. See the device-specific data sheet for details. The bit is cleared by hardware if the delay has expired. 2-0 SVSMHRRL RW 0h SVS and SVM high-side reset release voltage level. These bits define the reset release voltage level of the SVSH. It is also used for the SVMH to define the voltage reached level. The voltage levels are defined in the device-specific data sheet. Note: SVSMHRRL must always be equal or larger than SVSHRVL. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated 117 PMM Registers www.ti.com 2.3.4 SVSMLCTL Register Supply Voltage Supervisor and Monitor Low-Side Control Register Figure 2-12. SVSMLCTL Register 15 14 13 12 11 10 SVMLFP SVMLE Reserved SVMLOVPE SVSLFP SVSLE rw-[0] rw-1 r-0 rw-[0] rw-[0] rw-1 2 7 6 5 4 3 SVSMLACE SVSMLEVM Reserved SVSLMD SVSMLDLYST rw-[0] rw-0 r-0 rw-0 r-0 9 8 SVSLRVL rw-[0] rw-[0] 1 0 SVSMLRRL rw-[0] rw-[0] rw-[0] Table 2-19. SVSMLCTL Register Description Bit Field Type Reset Description 15 SVMLFP RW 0h SVM low-side full-performance mode. If this bit is set, the SVML operates in fullperformance mode. 0b = Normal mode. See the device-specific data sheet for response times. 1b = Full-performance mode. See the device-specific data sheet for response times. 14 SVMLE RW 1h SVM low-side enable. If this bit is set, the SVML is enabled. 13 Reserved R 0h Reserved. Always reads as 0. 12 SVMLOVPE RW 0h SVM low-side overvoltage enable. If this bit is set, the SVML overvoltage detection is enabled. 11 SVSLFP RW 0h SVS low-side full-performance mode. If this bit is set, the SVSL operates in fullperformance mode. 0b = Normal mode. See the device-specific data sheet for response times. 1b = Full-performance mode. See the device-specific data sheet for response times. 10 SVSLE RW 1h SVS low-side enable. If this bit is set, the SVSL is enabled. 9-8 SVSLRVL RW 0h SVS low-side reset voltage level. If V(CORE) falls short of the SVSL voltage level selected by SVSLRVL, a reset is triggered (if SVSLPE = 1). Note: SVSMLRRL must always be equal or larger than SVSLRVL. 7 SVSMLACE RW 0h SVS and SVM low-side automatic control enable. If this bit is set, the low-power mode of the SVSL and SVML circuits is under hardware control. 6 SVSMLEVM RW 0h SVS and SVM low-side event mask. If this bit is set, the SVSL and SVML events are masked. 0b = No events are masked. 1b = All events are masked. 5 Reserved R 0h Reserved. Always reads as 0. 4 SVSLMD RW 0h SVS low-side mode. If this bit is set, the SVSL interrupt flag is set in LPM2, LPM3 and LPM4 in case of power-fail conditions. If this bit is not set, the SVSL interrupt is not set in LPM2, LPM3, and LPM4. 3 SVSMLDLYST RW 0h SVS and SVM low-side delay status. If this bit is set, the SVSL and SVML events are masked for a delay time. The delay time depends on the power mode of the SVSL and SVML. If SVMLFP = 1 and SVSLFP = 1 (that is, full-performance mode), the delay is shorter. The bit is cleared by hardware if the delay has expired. 2-0 SVSMLRRL RW 0h SVS and SVM low-side reset release voltage level. These bits define the reset release voltage level of the SVSL. It is also used for the SVML to define the voltage reached level. Note: SVSMLRRL must always be equal or larger than SVSLRVL. 118 Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback PMM Registers www.ti.com 2.3.5 SVSMIO Register SVSIN and SVMOUT Control Register Figure 2-13. SVSMIO Register 15 14 13 Reserved r-0 r-0 7 r-0 6 Reserved r-0 12 11 SVMHVLROE SVMHOE rw-[0] rw-[0] r-0 2 5 4 3 SVMOUTPOL SVMLVLROE SVMLOE rw-[1] rw-[0] rw-[0] r-0 10 9 8 Reserved r-0 r-0 1 0 Reserved r-0 r-0 r-0 Table 2-20. SVSMIO Register Description Bit Field Type Reset Description 15-13 Reserved R 0h Reserved. Always reads as 0. 12 SVMHVLROE RW 0h SVM high-side voltage level reached output enable. If this bit is set, the SVMHVLRIFG bit is output to the device SVMOUT pin. The device-specific port logic has to be configured accordingly. 11 SVMHOE RW 0h SVM high-side output enable. If this bit is set, the SVMHIFG bit is output to the device SVMOUT pin. The device-specific port logic has to be configured accordingly. 10-6 Reserved R 0h Reserved. Always reads as 0. 5 SVMOUTPOL RW 1h SVMOUT pin polarity. If this bit is set, SVMOUT is active high. An error condition is signaled by a 1 at SVMOUT. If SVMOUTPOL is cleared, the error condition is signaled by a 0 at the SVMOUT pin. 4 SVMLVLROE RW 0h SVM low-side voltage level reached output enable. If this bit is set, the SVMLVLRIFG bit is output to the device SVMOUT pin. The device-specific port logic has to be configured accordingly. 3 SVMLOE RW 0h SVM low-side output enable. If this bit is set, the SVMLIFG bit is output to the device SVMOUT pin. The device-specific port logic has to be configured accordingly. 2-0 Reserved R 0h Reserved. Always reads as 0. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated 119 PMM Registers www.ti.com 2.3.6 PMMIFG Register Power Management Module Interrupt Flag Register Figure 2-14. PMMIFG Register 15 14 PMMLPM5IFG Reserved rw-[0] r-0 13 12 SVSLIFG (1) rw-[0] rw-[0] 10 9 8 Reserved PMMPORIFG PMMRSTIFG PMMBORIFG r-0 rw-[0] rw-[0] rw-[0] 7 6 5 4 3 2 1 0 SVMHVLRIFG ( SVMHIFG SVSMHDLYIF G Reserved SVMLVLRIFG (1 SVMLIFG SVSMLDLYIFG rw-0 r-0 rw-[0] rw-0 r-0 (1) 11 Reserved 1) (1) SVSHIFG (1) rw-[0] rw-[0] ) rw-[0] After power up, the reset value depends on the power sequence. After power up, the reset value depends on the power sequence. Table 2-21. PMMIFG Register Description Bit Field Type Reset Description 15 PMMLPM5IFG RW 0h LPMx.5 flag. This bit is set if the system was in LPMx.5 before. The bit is cleared by software or by reading the reset vector word. A power failure on the DVCC domain clears the bit. 0b = No interrupt pending 1b = Interrupt pending 14 Reserved R 0h Reserved. Always reads as 0. 13 SVSLIFG RW 0h SVS low-side interrupt flag. The bit is cleared by software or by reading the reset vector word. 0b = No interrupt pending 1b = Interrupt pending 12 SVSHIFG RW 0h SVS high-side interrupt flag. The bit is cleared by software or by reading the reset vector word. 0b = No interrupt pending 1b = Interrupt pending 11 Reserved R 0h Reserved. Always reads as 0. 10 PMMPORIFG RW 0h PMM software power-on reset interrupt flag. This interrupt flag is set if a software POR is triggered. The bit is cleared by software or by reading the reset vector word, SYSRSTIV. 0b = No interrupt pending 1b = Interrupt pending 9 PMMRSTIFG RW 0h PMM reset pin interrupt flag. This interrupt flag is set if the RST/NMI pin is the reset source. The bit is cleared by software or by reading the reset vector word. 0b = No interrupt pending 1b = Interrupt pending 8 PMMBORIFG RW 0h PMM software brownout reset interrupt flag. This interrupt flag is set if a software BOR (PMMSWBOR) is triggered. The bit is cleared by software or by reading the reset vector word, SYSRSTIV. 0b = No interrupt pending 1b = Interrupt pending 7 Reserved R 0h Reserved. Always reads as 0. 6 SVMHVLRIFG RW 0h SVM high-side voltage level reached interrupt flag. The bit is cleared by software or by reading the reset vector (SVSHPE = 1) word or by reading the interrupt vector (SVSHPE = 0) word. 0b = No interrupt pending 1b = Interrupt pending 5 SVMHIFG RW 0h SVM high-side interrupt flag. The bit is cleared by software. 0b = No interrupt pending 1b = Interrupt pending 120 Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback PMM Registers www.ti.com Table 2-21. PMMIFG Register Description (continued) Bit Field Type Reset Description 4 SVSMHDLYIFG RW 0h SVS and SVM high-side delay expired interrupt flag. This interrupt flag is set if the delay element expired. The bit is cleared by software or by reading the interrupt vector word. 0b = No interrupt pending 1b = Interrupt pending 3 Reserved R 0h Reserved. Always reads as 0. 2 SVMLVLRIFG RW 0h SVM low-side voltage level reached interrupt flag. The bit is cleared by software or by reading the reset vector (SVSLPE = 1) word or by reading the interrupt vector (SVSLPE = 0) word. 0b = No interrupt pending 1b = Interrupt pending 1 SVMLIFG RW 0h SVM low-side interrupt flag. The bit is cleared by software. 0b = No interrupt pending 1b = Interrupt pending 0 SVSMLDLYIFG RW 0h SVS and SVM low-side delay expired interrupt flag. This interrupt flag is set if the delay element expired. The bit is cleared by software or by reading the interrupt vector word. 0b = No interrupt pending 1b = Interrupt pending SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated 121 PMM Registers www.ti.com 2.3.7 PMMRIE Register Power Management Module Reset and Interrupt Enable Register Figure 2-15. PMMRIE Register 15 14 Reserved r-0 13 12 SVMHVLRPE SVSHPE rw-[0] rw-[1] r-0 11 10 Reserved r-0 9 8 SVMLVLRPE SVSLPE rw-[0] rw-[1] r-0 7 6 5 4 3 2 1 0 Reserved SVMHVLRIE SVMHIE SVSMHDLYIE Reserved SVMLVLRIE SVMLIE SVSMLDLYIE r-0 rw-0 rw-0 rw-0 r-0 rw-0 rw-0 rw-0 Table 2-22. PMMRIE Register Description Bit Field Type Reset Description 15-14 Reserved R 0h Reserved. Always reads as 0. 13 SVMHVLRPE RW 0h SVM high-side voltage level reached power-on reset enable. If this bit is set, exceeding the SVMH voltage level triggers a POR. 12 SVSHPE RW 1h SVS high-side power-on reset enable. If this bit is set, falling below the SVSH voltage level triggers a POR. 11-10 Reserved R 0h Reserved. Always reads as 0. 9 SVMLVLRPE RW 0h SVM low-side voltage level reached power-on reset enable. If this bit is set, exceeding the SVML voltage level triggers a POR. 8 SVSLPE RW 1h SVS low-side power-on reset enable. If this bit is set, falling below the SVSL voltage level triggers a POR. 7 Reserved R 0h Reserved. Always reads as 0. 6 SVMHVLRIE RW 0h SVM high-side reset voltage level interrupt enable 5 SVMHIE RW 0h SVM high-side interrupt enable. This bit is cleared by software or if the interrupt vector word is read. 4 SVSMHDLYIE RW 0h SVS and SVM high-side delay expired interrupt enable 3 Reserved R 0h Reserved. Always reads as 0. 2 SVMLVLRIE RW 0h SVM low-side reset voltage level interrupt enable 1 SVMLIE RW 0h SVM low-side interrupt enable. This bit is cleared by software or if the interrupt vector word is read. 0 SVSMLDLYIE RW 0h SVS and SVM low-side delay expired interrupt enable 122 Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback PMM Registers www.ti.com 2.3.8 PM5CTL0 Register Power Mode 5 Control Register 0 Figure 2-16. PM5CTL0 Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 r0 r0 r0 7 6 5 4 3 2 1 Reserved Reserved r0 r0 r0 r0 0 LOCKLPM5 r0 r0 r0 rw-[0] Table 2-23. PM5CTL0 Register Description Bit Field Type Reset Description 15-1 Reserved R 0h Reserved. Always reads as 0. 0 LOCKLPM5 RW 0h Lock I/O pin configuration upon entry to or exit from LPMx.5. When power is applied to the device, this bit, once set, can only be cleared by the user or via another power cycle. Note: This bit was formerly named LOCKIO, and some application reports and code examples may continue to use this terminology. 0b = I/O pin configuration is not locked and defaults to its reset condition. 1b = I/O pin configuration remains locked. Pin state is held during LPMx.5 entry and exit. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Power Management Module and Supply Voltage Supervisor Copyright © 2008–2015, Texas Instruments Incorporated 123 Chapter 3 SLAU208O – June 2008 – Revised May 2015 Battery Backup System The battery backup system can operate a real-time clock (RTC_B module) and retain some bytes in a backup RAM from a backup source when the primary supply fails. The battery backup system also includes a simple charging circuitry to charge capacitors connected to the backup supply. This chapter describes the battery backup system. Topic 3.1 3.2 3.3 124 ........................................................................................................................... Page Battery Backup Introduction .............................................................................. 125 Battery Backup Operation ................................................................................. 125 Battery Backup Registers .................................................................................. 129 Battery Backup System SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Battery Backup Introduction www.ti.com 3.1 Battery Backup Introduction The battery backup system features include: • Automatic and manual switching to the backup supply • Backup-supplied backup subsystem that can contain: – Backup-supplied real-time clock with 32-kHz crystal oscillator (see the RTC_B chapter and Clock System chapter) – Backup-supplied backup RAM (see the Backup RAM chapter) • Resistive charger for backup capacitors NOTE: Operation without separate battery backup supply If there is no separate battery backup supply in the system, connect the VBAT pin to DVCC and set bit BAKDIS=1. 3.2 Battery Backup Operation The battery backup system supplies a subsystem from a secondary supply (VBAT) if the primary supply (DVCC) fails. The backup-supplied subsystem usually contains a real-time clock module (together with the required LF-crystal oscillator) and a backup RAM. These modules are described in their respective User's Guide chapters. The high-side SVS (SVSH) that is located in the PMM module and supervises the primary supply (DVCC) controls the switching between primary and secondary supply. NOTE: Restrictions When the lowest high-side SVS level (00b) is used to monitor the primary supply, the temperature range is restricted to 0°C to 85°C. Figure 3-1 shows an overview of the battery backup switch. The secondary supply VBAT powers the backup-supplied subsystem • at power on • if bit BAKDIS = 0 in the BAKCTL register and – if the primary supply drops below the configured high-side SVS level – if the high-side SVS (SVSH) is disabled – during LPMx.5 – if bit BAKSW=1 in the BAKCTL register The primary supply DVCC powers the backup-supplied subsystem • if the primary supply rises above the power-on level of the high-side SVS level • if the primary supply remains above the configured high-side SVS level • if bit BAKDIS = 1 in the BAKCTL register If the backup-supplied subsystem is powered by the secondary supply VBAT, the access and control to modules located in the subsystem is restricted: • The data stored in the backup RAM is retained but cannot be accessed. • The RTC, if enabled, together with the 32-kHz crystal oscillator continue to operate but the time and date information cannot be accessed. • Changes to the LF crystal oscillator setting in the clock system do not take effect. If the backup-supplied subsystem is powered by the primary supply DVCC and LOCKBAK = 0, the modules located in the subsystem can be access and controlled normally. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Battery Backup System Copyright © 2008–2015, Texas Instruments Incorporated 125 Battery Backup Operation www.ti.com DVCC BAKCHEN BAKCHCx BAKCHVx VCC Charger VBAT VBAK Switch Control BAKSW BAKDIS VBAT VBAK VBAK Supply voltage of backup subsystem BAKADC CBAK 1 Enable signal from ADC VBAT3 1 To ADC input (usually channel 12; see the respective ADC chapter and the device-specific data sheet for details) Figure 3-1. Battery Backup Switch Overview NOTE: CBAK shown in Figure 3-1 is used to ensure proper decoupling during a switchover event. See the device-specific data sheet for recommended values. This capacitance should not be confused with an external capacitor that may be placed on VBAT to maintain charge during backup operation in the application. 3.2.1 Activate Access to Backup-Supplied Subsystem If the backup-supplied subsystem is powered by the secondary supply VBAT the LOCKBAK bit is automatically set. While LOCKBAK=1 it is impossible to access to the information stored in the backupsupplied subsystem. After its supply switched back to the primary supply do the following steps to get access to it : 1. Initialize the configuration registers of the real-time clock module exactly the same way as they were configured before the switch to the secondary supply. 2. Clear the LOCKBAK bit in the BAKCTL register. 3. Check the LOCKBAK bit. If LOCKBAK = 0, continue with the next step. If LOCKBAK = 1, the supply for the backup-supplied subsystem has not settled yet. Continue with step 2. 4. Enable RTC interrupts. 5. The enabled RTC interrupts will now be serviced as normal interrupts. 126 Battery Backup System SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Battery Backup Operation www.ti.com 3.2.2 Manual Switching The backup-supplied subsystem is always powered from the secondary supply VBAT if the bit BAKSW in the Battery Backup Control register BAKCTL is set to 1. A POR resets the BAKSW bit, and the system returns to automatic switch control. 3.2.3 Disable Switching If the bit BAKDIS in the Battery Backup Control register BAKCTL is set to 1, the battery backup system is disabled and the backup-supplied subsystem is always powered from the primary supply DVCC. A POR resets the BAKDIS bit, and the system returns to automatic switch control. 3.2.4 Measuring the Supplies With an integrated ADC, the primary and secondary supplies can be measured. Select the channel of the ADC that is reserved to measure the supply voltage of the device. This is usually ADC channel 12; see the respective ADC chapter and the device-specific data sheet for details. If BAKADC = 0, VBAT measurement is disabled. If BAKADC = 1, the secondary supply VBAT is measured. The resistive dividers are connected to the supplies only during the sampling phase of the ADC. 3.2.5 LPMx.5 and Backup Operation During LPMx.5 (LPM3.5 or LPM4.5), the backup subsystem is always supplied from the backup battery, except when switching is completely disabled by setting the BAKDIS bit. If using a capacitor to source the backup supply, the device can wake up regularly from LPMx.5, recharge the capacitor, and return to LPMx.5. The time interval must be designed such that the remaining charge on the capacitor is always sufficient to bridge the worst-case backup time (that is, the time without any primary supply). SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Battery Backup System Copyright © 2008–2015, Texas Instruments Incorporated 127 Battery Backup Operation www.ti.com 3.2.6 Resistive Charger Together with the battery backup switch, a resistive charging circuit is implemented to charge capacitors connected to the backup supply. A simplified block diagram of the charger is shown in Figure 3-2. The charger is enabled by writing the correct password (069h) into the upper byte of BAKCHCTL, together with BAKCHEN = 1, selecting a charging resistor with BAKCHCx ≠ 00b, and a charge end voltage with BAKCHVx ≠ 00b. Writing to the charger control register with an incorrect password disables the charger, and all control register bits are reset to 0. If VCC is selected as charge end voltage with BACKCHVx = 01b (or if VCC < 2.7 V with BACKCHVx = 10b), an attached capacitor is charged to VCC with VBAT(t) ≈ VCC × (1 – exp(-t/RC), with R being the selected charging resistor and C being the capacitor attached to pin VBAT (this is not CBAK). If a charge end voltage of 2.7 V is selected (BACKCHVx = 10b) and VCC > 2.7 V, then an attached capacitor is charged with VBAT(t) ≈ VCC × (1 – exp(-t/RC) (same as above) but as soon as VBAT reaches approximately 2.7 V, the charging process is halted. If VBAT drops by approximately 70 mV (the comparator hysteresis), the charging process continues again until the capacitor connected to pin VBAT is again charged to approximately 2.7 V. Note: For low power reasons, the VBAT voltage is compared against the 2.7-V limit only once during each VLO clock cycle, and only then is charging disabled or re-enabled. DVCC Charger Charger enable BAKCHV1 BAKCHCx ~2.7V VBAT Figure 3-2. Charger Block Diagram 128 Battery Backup System SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Battery Backup Registers www.ti.com 3.3 Battery Backup Registers The battery backup registers are listed in Table 3-1. The base address for the backup RAM registers can be found in the device-specific data sheet. The address offsets are given in Table 3-1. Table 3-1. Battery Backup Registers Offset Acronym Register Name Type LPMx.5, Backup Retention 00h BAKCTL Battery Backup Control Read/write not retained Section 3.3.1 02h BAKCHCTL Battery Charger Control Read/write not retained Section 3.3.2 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Section Battery Backup System Copyright © 2008–2015, Texas Instruments Incorporated 129 Battery Backup Registers www.ti.com 3.3.1 BAKCTL Register Battery Backup Control Register Figure 3-3. BAKCTL Register 15 14 13 12 r r r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 Reserved Reserved r0 r0 r0 r0 3 2 1 0 BAKDIS BAKADC BAKSW LOCKBAK rw rw-(0) rw-(0) r/w0-[1] Table 3-2. BAKCTL Register Description Bit Field Type Reset Description 15-4 Reserved R 0h Reserved. Always reads as 0. 3 BAKDIS RW 0h Disable backup supply switching. Reset to 0 after a complete power cycle. 0b = Backup supply switching enabled 1b = Backup supply switching disabled. Backup subsystem always powered from VCC (also during LPMx.5). 2 BAKADC RW 0h Battery backup supply to ADC 0b = Vbat measurement disabled 1b = Vbat measurement enabled 1 BAKSW RW 0h Manual switch to battery backup supply 0b = Switching is automatic 1b = Switch to battery backup supply 0 LOCKBAK RW 0h Lock backup subsystem. Can only be written as 0. The LOCKBAK bit should only be written as 0 after configuring the RTC control registers. This ensures that RTC will not be stopped after leaving backup or LPMx.5 mode. SVSH has to be active when LOCKBAK bit is cleared. LOCKBAK is always set to 1 by hardware after the core was powered down either due to a complete power cycle of the main supply DVCC or due to LPMx.5 operation. 0b = Backup subsystem not locked 1b = Backup subsystem locked 130 Battery Backup System SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Battery Backup Registers www.ti.com 3.3.2 BAKCHCTL Register Battery Charger Control Register Figure 3-4. BAKCHCTL Register 15 14 13 12 rw rw rw rw 6 5 11 10 9 8 rw rw rw rw 3 2 BAKCHKEYx 7 4 Reserved r0 BAKCHVx r0 rw-0 Reserved rw-0 r0 1 BAKCHCx rw-0 0 BAKCHEN rw-0 rw-0 Table 3-3. BAKCHCTL Register Description Bit Field Type Reset Description 15-8 BAKCHKEYx RW 5Ah Charger access key. Always read as 05Ah. Must be written as 069h together with low byte; any other write disables the charger and all control register bits are reset to 0. 7-6 Reserved R 0h Reserved. Always reads as 0. 5-4 BAKCHVx RW 0h Charger end voltage 00b = Charger disabled 01b = VCC 10b = Approximately 2.7 V, or VCC if VCC is lower than 2.7 V 11b = Reserved 3 Reserved R 0h Reserved. Always reads as 0. 2-1 BAKCHCx RW 0h Charger charge current 00b = Charger disabled 01b = Charge current defined by a maximum 5-kΩ resistor 10b = Charge current defined by a maximum 10-kΩ resistor 11b = Charge current defined by a maximum 20-kΩ resistor 0 BAKCHEN RW 0h Charger enable 0b = Charger disabled 1b = Charger enabled SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Battery Backup System Copyright © 2008–2015, Texas Instruments Incorporated 131 Chapter 4 SLAU208O – June 2008 – Revised May 2015 Auxiliary Supply System (AUX) The auxiliary supply system (AUX) allows the device to operate from alternate supplies (also called auxiliary supplies) if the primary supply (DVCC and AVCC) fails. The AUX includes simple charging circuitry to charge capacitors connected to the auxiliary supplies. This chapter describes the AUX. Topic 4.1 4.2 4.3 132 ........................................................................................................................... Page Auxiliary Supply System Introduction ................................................................. 133 Auxiliary Supply Operation ................................................................................ 134 AUX Registers .................................................................................................. 148 Auxiliary Supply System (AUX) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Auxiliary Supply System Introduction www.ti.com 4.1 Auxiliary Supply System Introduction The auxiliary supply system features include: • Automatic or manual switching from the primary supply to an auxiliary supply while maintaining full functionality. • One or two auxiliary supplies (AUXVCC1 and AUXVCC2), depending on the specific device. • Automatic threshold-based monitoring of primary and auxiliary supplies. • At startup, automatically chooses between the primary supply (DVCC/AVCC) and AUXVCC1, based on which one is higher voltage. • A separate auxiliary supply (AUXVCC3) can power a backup subsystem (1). • Simple charger for capacitors on AUXVCC2 and AUXVCC3. NOTE: Unused auxiliary supplies Any unused auxiliary supply inputs (AUXVCC1, or AUXVCC2) must be connected to DVSS. If AUXVCC1 or AUXVCC2 are unused, they should be disabled by setting AUXxMD = 1 and AUXxOK = 0 in software, too. If AUXVCC3 is not powered by a dedicated supply, it can either be connected to DVCC externally or powered by enabling the AUXVCC3 charger. If powered by the charger, the recommended capacitor should be connected externally. If AUXVCC3 is not powered or connected to DVSS, the backup subsystem (including, for example, the 32-kHz crystal oscillator) is not functional. (1) The backup subsystem usually contains a real-time clock (RTC) module with a 32-kHz crystal oscillator, backup RAM, and optionally (device-specific) up to two digital I/O pins. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Auxiliary Supply System (AUX) Copyright © 2008–2015, Texas Instruments Incorporated 133 Auxiliary Supply Operation 4.2 www.ti.com Auxiliary Supply Operation The AUX module allows the device to switch between the primary supply (DVCC and AVCC) and up to two auxiliary supplies (AUXVCC1 and AUXVCC2) while maintaining full device functionality. When using an auxiliary supply, both AVCC and DVCC are switched to the same auxiliary supply. Switching can be controlled automatically through hardware or manually through software. In the hardware-controlled mode, switching is triggered by the high-side supply voltage monitor (SVM), which must be enabled and configured as described in Section 4.2.4. In the software-controlled mode, switching is triggered by changing values in AUX module registers, as described in Section 4.2.3. Figure 4-1 shows an overview of the auxiliary supply switches. The digital core of the device is supplied through the Power Management Module (PMM) by the internal digital system voltage VDSYS. In the PMM chapter of this user's guide, that supply is assumed to be DVCC; however, on devices with the AUX module, AUX switches VDSYS among the DVCC, AUXVCC1, and AUXVCC2 inputs. VDSYS is also output on the VDSYS pin, which must be connected to an external capacitor as specified in the device-specific data sheet. The analog modules of the device are supplied by the internal analog system voltage VASYS. The AUX module switches VASYS among the AVCC, AUXVCC1, and AUXVCC2 inputs. VASYS is also output on the VASYS pin, which must be connected to an external capacitor as specified in the device-specific data sheet. The switches for the digital and the analog system voltages are controlled by the same signals and always connect to the same voltage (primary voltage DVCC/AVCC, first auxiliary voltage AUXVCC1, or second auxiliary voltage AUXVCC2). Auxiliary voltage AUXVCC3 supplies VBAK to the backup subsystem, which usually contains a real-time clock (RTC) module with a 32-kHz crystal oscillator, some backup RAM, and optionally (device-specific) up to two digital I/O pins. AVCC VASYS Analog Modules VASYS DVCC VDSYS AUXVCC1 PMM->Core Logic Charger AUXVCC2 VDSYS Charger VBAK AUXVCC3 Backup Subsystem Figure 4-1. Auxiliary Supply Switch Overview 134 Auxiliary Supply System (AUX) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Auxiliary Supply Operation www.ti.com 4.2.1 Startup The device starts whenever a supply is connected to DVCC or AUXVCC1. If both supplies are connected, AUX uses whichever voltage is higher to supply the digital and analog system voltages, VDSYS and VASYS. If the supplies (DVCC/AVCC and AUXVCC1) differ by less than 100 mV the selected supply can be either DVCC/AVCC or AUXVCC1 - only if the difference is greater than 100 mV always the supply with the higher voltage is selected. After startup from any condition that causes a BOR event (including connection of power or wake from LPMx.5), the AUX module is automatically locked (that is, the LOCKAUX bit is set). The behavior of the auxiliary supply system can then be configured in software (see Section 4.2.2). After configuration is completed, unlock the AUX module by clearing the LOCKAUX bit. The AUX module is then operational and switches between the input supplies as defined during configuration. If the LOCKAUX bit remains set, the programmed configuration is ignored, and the device continues to be supplied by DVCC or AUXVCC1 (whichever was selected at startup). Section 4.2.7 describes additional considerations for setting the power supply before entering LPMx.5. NOTE: Highest Supply Voltage To ensure reliable operation, the selected supply voltage (by default, the highest voltage in the system) must always supply at least 0.5 µA to critical circuitry. NOTE: DVCC vs AUXVCC1 at Startup Under normal operating conditions it is recommended to have DVCC supplied by a voltage at least 100 mV higher than AUXVCC1. This ensures a reliable startup from DVCC and avoids an unwanted startup from AUXVCC1. 4.2.2 Switching Control During normal operation (that is, when the LOCKAUX bit is cleared) switching to another supply is triggered either by software or by hardware (specifically, by the high-side SVM). Section 4.2.3 describes the configuration and control of the AUX for software-controlled switching. Section 4.2.4 describes configuration and control of the AUX for hardware-controlled switching. Section 4.2.13 includes examples of how to configure hardware-controlled mode based on different usage scenarios. 4.2.3 Software-Controlled Switching To enable or disable a supply using software-controlled switching: 1. To enable software control of a supply, set AUXxMD = 1 (AUX0MD for DVCC, AUX1MD for AUXVCC1, and AUX2MD for AUXVCC2). 2. To select the supply to use, set AUXxOK = 1 (AUX0OK for DVCC, AUX1OK for AUXVCC1, and AUX2OK for AUXVCC2). When AUXxOK is set, the AUX module immediately switches to the specified supply. If AUXxOK = 1 for more than one supply, AUX uses the one with the highest priority. The default priority is DVCC, then AUXVCC1, then AUXVCC2. To make AUXVCC2 priority higher than AUXVCC1, set AUX2PRIO = 1. 3. To disable a supply, clear AUXxOK = 0. If the current supply is software-controlled (AUXxMD = 1) and AUXxOK is changed from 1 to 0, the next available supply (considering the priority defined by AUX2PRIO) is used to source the system voltages. When a switch from one supply to another occurs, interrupts are generated as described in Section 4.2.11. The software control can be used to permanently disable a supply or, for example, to qualify the quality of the supplies by measuring the actual supply voltage with an ADC (see Section 4.2.9) instead of using the auxiliary supply monitor (see Section 4.2.6). SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Auxiliary Supply System (AUX) Copyright © 2008–2015, Texas Instruments Incorporated 135 Auxiliary Supply Operation www.ti.com When using software-controlled mode for all supplies, the SVS and SVM in the PMM are not required. They may be enabled, and they will operate as described in the PMM chapter, but they do not interact with the AUX during software-controlled mode. 4.2.4 Hardware-Controlled Switching To enable hardware-controlled switching, clear AUXxMD = 0 (AUX0MD for DVCC, AUX1MD for AUXVCC1, and AUX2MD for AUXVCC2). A supply can be disabled and, therefore, excluded from the automatic switching system by setting the corresponding AUXxMD = 1 and AUXxOK = 0. For example, to disable AUXVCC2, set AUX2MD = 1 and AUX2OK = 0. During hardware-controlled switching, the SVM in the PMM must be enabled and configured. The SVS can also be enabled and operates as described in the PMM chapter, but it does not interact with the AUX module. The high-side SVM of the PMM monitors VDSYS, which is output from the AUX module. If VDSYS falls below the voltage set by the SVSMHRRVL bits, the SVM notifies AUX to switch to the next valid supply. AUX switches to the next valid supply immediately after receiving the trigger from the SVM. When a switch occurs, interrupts are generated as described in Section 4.2.11. NOTE: Voltage Dip on VDSYS Because the SVM does not signal AUX to change the supply until the voltage on VDSYS falls to the SVM monitoring level (set in the SVSMHRRL bits), there is a dip in VDSYS from the nominal operating level. This change in voltage must be considered when selecting system frequency and core voltage (see Section 4.2.5). AUX determines which supplies are valid based on the threshold voltage set in the AUXxLVL bits. The validity of a supply is reported by the corresponding AUXxOK bit. When AUXxMD = 0, the AUXxOK bit is controlled by hardware and cannot be written by software. AUXxOK = 1 indicates a valid/"good" supply voltage, and AUXxOK = 0 indicates an invalid/"bad" supply voltage. See Section 4.2.6 for details on the monitoring of the auxiliary supplies. NOTE: Interactions Among SVMH, VCORE, and AUX Because of the relationship between supply voltage, core voltage, and maximum system frequency, see Section 4.2.5 for considerations when setting the AUXxLVL and SVMH levels. In particular, note that AUX0LVL must be higher than the SVMH level. The selection of the next valid supply depends on the state of the AUXxOK and AUX2PRIO bits when the trigger occurs as shown in Table 4-1. If there is no valid supply available to switch to (that is, all other AUXxOK bits are 0) no switching takes place, and the device eventually goes into reset if the current supply continues to fall. To avoid rapid switching back and forth between supplies, any further switching is prevented during a "recovery time" of several 100 µs as specified in the device-specific data sheet after each switch-over. 136 Auxiliary Supply System (AUX) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Auxiliary Supply Operation www.ti.com Table 4-1. Next Supply Voltage Selection Current Supply Next Supply (1) AUXVCC1 DVCC/AVCC AUXVCC2 AUXVCC1 AUXVCC2 (1) DVCC OK? (AUX0OK) AUXVCC1 OK? (AUX1OK) AUXVCC2 OK? (AUX2OK) AUXVCC1/ AUXVCC2 Priority (AUX2PRIO) don't care 1 don't care 0 don't care 1 0 1 don't care 0 1 don't care don't care 1 1 1 DVCC 1 don't care don't care don't care AUXVCC2 0 don't care 1 don't care DVCC 1 don't care don't care don't care AUXVCC1 0 1 don't care don't care If there is no valid supply available to switch to, no switching takes place. NOTE: Special Case for Switching to DVCC/AVCC If the device is supplied by AUXVCC1 or AUXVCC2, and the AUX0OK bit transitions from 0 to 1 (either by hardware or by software), AUX switches to the DVCC/AVCC supply without any signal from the SVM. AUX does not automatically switch from AUX2VCC to AUX1VCC when AUX1OK transitions from 0 to 1, unless the SVM signals that a switch is necessary. 4.2.5 Interactions Among fSYS, VCORE, VDSYS, SVMH, and AUXxLVL The interactions that must be considered when setting the threshold levels in the SVM and AUX are: • Minimum VCORE required to support the selected system frequency (fSYS) • Valid SVMH to support the selected VCORE • Minimum VDSYS and minimum AUXxLVL required to support the selected VCORE The interactions among fSYS, DVCC (VDSYS for devices with AUX), VCORE, and SVMH are described in detail in the PMM chapter. This section adds considerations for the valid AUXxLVL values. NOTE: Maximum System Frequency The following discussion describes all system frequencies supported in this family. However, the maximum system frequency varies by device; therefore, see the device-specific data sheet to determine this value. Figure 4-2 shows typical requirements for supply voltage and VCORE compared to the system frequency (see the device-specific data sheet for the values required for each device). As shown here, there is a minimum VCORE (set by PMMCOREV[1:0]) and a minimum supply voltage (VDSYS) for each system frequency. For details on the recommended settings for PMMCOREV[1:0] and supply voltage, see Section 2.2.2.1. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Auxiliary Supply System (AUX) Copyright © 2008–2015, Texas Instruments Incorporated 137 Auxiliary Supply Operation www.ti.com 25 System Frequency - MHz 3 20 2 2, 3 1 1, 2 1, 2, 3 0, 1 0, 1, 2 0, 1, 2, 3 12 8 0 0 1.8 2.0 2.2 2.4 3.6 Supply Voltage - V The numbers within the fields denote the supported PMMCOREVx settings. Figure 4-2. System Frequency vs Supply Voltage After selecting the system frequency and PMMCOREV[1:0] values, the SVM threshold must be selected. Figure 4-3 shows the valid values for SVMH (SVSMHRRL[2:0]) based on the selected VCORE (PMMCOREV[1:0]). This information is also included in Section 2.2.2.1. 111 (7) 3.00 Invalid 110 (6) 3.00 SVSMHRRLx 101 (5) 2.65 100 (4) 2.35 011 (3) 2.2 010 (2) 2.1 001 (1) 1.9 Invalid 000 (0) 1.7 00 01 10 11 PMMCOREVx Figure 4-3. Available SVMH Settings vs VCORE Settings 138 Auxiliary Supply System (AUX) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Auxiliary Supply Operation www.ti.com AUX0LVLx AUX1LVLx/AUX2LVLx Based on the preceding selections, the auxiliary supply threshold levels must be set. These thresholds are the minimum supply voltage that are available from each auxiliary supply. Figure 4-4 shows the valid AUXxLVL settings compared to the selected SVM setting. The level setting for DVCC/AVCC AUX0LVL must be chosen at least one step above the SVSMHRRLx level to avoid any unwanted switching between DVCC/AVCC and AUXVCC1 or AUXVCC2. 111 (7) 3.0 110 (6) 3.0 101 (5) 2.65 100 (4) 2.35 011 (3) 2.2 010 (2) 2.1 001 (1) 1.9 000 (0) 1.7 000 (0) Invalid 001 (1) 010 (2) 011 100 (3) (4) SVSMHRRLx 101 (5) 110 (6) 111 (7) Figure 4-4. Available AUXxLVL Settings vs SVMH Settings Table 4-2 combines the information from the preceding figures and discussions. Table 4-2. Minimum Voltage Thresholds for Selected fSYS fSYS (max) (MHz) Minimum PMMCOREV[1:0] Minimum SVSMHRRL[2:0] (Sets SVMH Level) Minimum VDSYS Minimum AUX0LVL Minimum AUX1LVL, AUX2LVL 8 00 000 1.8 V 001 000 12 01 001 2.0 V 010 001 20 10 010 2.2 V 011 010 25 11 011 2.4 V 100 011 4.2.6 Auxiliary Supply Monitor Supplies that are not currently in use and that are not software controlled (AUXxMD = 0) are monitored using a low-power comparator. For example, if DVCC supplies the device and the AUXxMD bits are 0 for both AUXVCC1 and AUXVCC2, then AUXVCC1 and AUXVCC2 are monitored. As another example, if AUXVCC1 supplies the device and AUX2MD = 1, only DVCC is monitored. If all unselected supplies are controlled by software (AUXxMD = 1), then the automatic monitoring is disabled. The level the supply voltages are compared against is programmable with the AUXxLVL bits. If a supply drops below the selected threshold level the corresponding AUXxDRPIFG is set. Figure 4-5 shows a principle block diagram of the monitoring circuitry. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Auxiliary Supply System (AUX) Copyright © 2008–2015, Texas Instruments Incorporated 139 Auxiliary Supply Operation www.ti.com If two supplies are monitored this happens in a time-division multiplexing scheme clocked by the VLO. During one VLO clock period, one supply is compared against its AUXxLVL threshold; during the next VLO clock period, the other supply is compared against its threshold. This means the AUXxOK bits of these supplies are updated approximately every 300 µs (worst case) with VLO clock frequency of approximately 6 kHz. If only one supply is monitored, the output of the comparator is sampled using the VLO clock, so that an update of the corresponding AUXxOK bit occurs approximately every 150 µs (worst case). Each monitoring cycle uses some charge from the monitored supply. The discharge of the monitored supplies can be reduced by decreasing the monitoing rate by changing the AUXMRx bits. By default (with AUXMRx = 00b) the supplies are monitored continously as described above. By setting AUXMRx = 01b, the supplies are monitored every 32 VLO clock cycles; by setting AUXMRx = 10b, the supplies are monitored every 1024 VLO clock cycles. The AUXMONIFG signals the completion of each monitoring cycle. If an unused supply is changed from software to hardware control (AUXxMD is changed from 1 to 0) a new monitoring cycle is started with the next VLO clock cycle. Switching of the supplies does not affect the timing of the monitoring cycles, it only changes which supplies are monitored. The auxiliary supply monitor is enabled after clearing the LOCKAUX bit unless all unused supplies are controlled by software. The monitored supplies are considered "not okay" until the first montoring cycle completes. NOTE: Switching and Monitoring Switching is independent from the update interval of the AUXxOK bits. Switching is triggered either by the high-side SVM or by software and takes place immediate after the trigger occurs, taking the current AUXxOK states into account to select the next supply. Only a change of AUX0OK from 0 to 1 indicating the DVCC changed from a "not okay" to an "okay" state triggers a switch back to DVCC. AUX0LVLx AUX1LVLx AUX2LVLx DVCC Comparator DEMUX AUX0OK Threshold DAC AUX1OK AUXVCC1 AUX2OK AUXVCC2 VLOCLK Control Logic Figure 4-5. Auxiliary Supply Monitor Block Diagram 140 Auxiliary Supply System (AUX) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Auxiliary Supply Operation www.ti.com 4.2.7 LPMx.5 and Auxiliary Supply Operation During LPMx.5, the device is powered by whichever input supply was active when entering the low-power mode. To force the device to use a specific supply during LPMx.5, activate that supply before entering LPMx.5. Table 4-3 lists the supply selection during LPMx.5 based on the disabled supplies. The automatic threshold-based supply monitoring scheme is always disabled during LPMx.5. Table 4-3. Supply Selection During LPMx.5 (1) (2) (3) Supply During LPMx.5 DVCC/AVCC Status (1) AUXVCC1 Status (2) DVCC/AVCC or AUXVCC1 (whichever is higher (3)) Not disabled Not disabled DVCC/AVCC Not disabled Disabled AUXVCC1 Disabled Not disabled AUXVCC2 Disabled Disabled DVCC/AVCC is disabled if AUX0MD = 1 and AUX0OK = 0; otherwise it is enabled. AUXVCC1 is disabled if AUX1MD = 1 and AUX1OK = 0; otherwise it is enabled. If the supplies (DVCC/AVCC and AUXVCC1) differ by less than 100 mV, the selected supply can be either DVCC/AVCC or AUXVCC1. The supply with the higher voltage is selected only if the difference is greater than 100 mV. After wakeup from LPMx.5, the LOCKAUX bit is set. The LPMx.5 supply selection remains active until the LOCKAUX bit is cleared. When the LOCKAUX bit is cleared, the auxiliary supply system is controlled as defined by the control register settings that were configured before clearing the LOCKAUX bit. None of the AUX registers are retained during LPMx.5; thus, all registers must be reconfigured after wakeup from LPMx.5 and before releasing LOCKAUX. The supplies monitored by hardware (AUXxMD = 0) are considered "not okay" until the status is updated for the first time by the auxiliary supply monitor. Only the supply that was used during LPMx.5 is considered "okay" unless it drops below the programmed SVM level. If this behavior is unwanted, the state can be set to "okay" by temporarily switching to software mode (AUXxMD = 1), setting the AUXxOK bit to 1, and then return to hardware mode (AUXxMD = 0). The last state defined in software mode is retained when switching back to hardware mode until the first update occurs by the auxililary supply monitor. The supplies controlled by software (AUXxMD = 1) are considered "not okay" or "okay" according to their AUXxOK setting. If the supply that was used during LPMx.5 is set to "not okay" (AUXxMD = 1 and AUXxOK = 0) the auxiliary supply system tries to switch to another ("okay") supply according to Table 4-1 as soon as LOCKAUX is cleared. NOTE: DVCC vs AUXVCC1 during LPMx.5 Under normal operating conditions, TI recommends supplying DVCC by a voltage at least 100 mV higher than AUXVCC1 if automatic switching between DVCC and AUXVCC1 is active (that is, if both supplies are not disabled when entering LPMx.5) (see Table 4-3). This ensures a reliable operation from DVCC and avoids a potentially unwanted operation from AUXVCC1. 4.2.8 Digital I/Os and Auxiliary Supplies In most devices that implement the auxiliary supply system, the digital I/Os can be powered by the switched supplies. In this case, care must be taken that large currents sink to DVSS and are not sourced from the switched supplies, because of the voltage drop across the supply switches as shown in Figure 46. CAUTION Check connection of external loads at digital I/Os to avoid high voltage drops across switches. This might cause unwanted resets. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Auxiliary Supply System (AUX) Copyright © 2008–2015, Texas Instruments Incorporated 141 Auxiliary Supply Operation www.ti.com DVSYS DVSYS DVCC source sink Correct Incorrect Figure 4-6. I/Os Powered by Auxiliary Supplies 4.2.9 Measuring the Supplies The primary and all auxiliary supply voltages can be measured if the device provides an ADC. The supply to be measured is selected with the AUXADCSELx bit in the AUXADCCTL register. In addition, the resistive load applied to the selected supply during the sampling phase of the ADC can be selected with the AUXADCRx bits. This allows to perform a "health" check of the supplies even when not loaded by the application. The ADC supply voltage channel (usually channel 12 (0Ch)) must be selected and the auxiliary supply voltage measurement must be enabled with AUXADC = 1. The resistive divider is connected to the supplies only during the sampling phase of the ADC. AUXADCSELx 2 DVCC 00 AUXVCC1 01 AUXVCC2 10 AUXVCC3 11 AUXADC ADC Sampling and INCHx = 0Ch AUXADCRx 2 To ADC (A12) Figure 4-7. AUX Connection to ADC 142 Auxiliary Supply System (AUX) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Auxiliary Supply Operation www.ti.com 4.2.10 Resistive Charger Two simple resistive charging circuits are implemented to charge capacitors connected to AUXVCC2 and AUXVCC3. A simplified block diagram of the charger is shown in Figure 4-8. The charger for AUXVCC2 or AUXVCC3 is enabled by writing the correct key (069h) into the upper byte of AUX2CHCTL or AUX3CHCTL, respectively, together with AUXCHVx = 01b, AUXCHEN = 1 and selecting a charging resistor with AUXCHCx ≠ 00b. Writing to the charger control register with an incorrect key disables the charger, and all control register bits are reset to 0. Both chargers are disabled when DVCC is not selected as the supply source and AUXCHEN is reset by hardware. DVCC Charger Charger enable AUXCHCx AUXVCC2 or AUXVCC3 Figure 4-8. Charger Block Diagram 4.2.11 Auxiliary Supply Interrupts The auxiliary supply system provides seven interrupt sources: • AUXSWNMIFG: (non-)maskable supplies switched interrupt • AUX0SWIFG: switched to DVCC interrupt • AUX1SWIFG: switched to AUXVCC1 interrupt • AUX2SWIFG: switched to AUXVCC2 interrupt • AUX1DRPIFG: AUXVCC1 dropped below threshold interrupt • AUX2DRPIFG: AUXVCC2 dropped below threshold interrupt • AUXMONIFG: supply monitor interrupt The AUXSWNMIFG is set after the system switched from one supply to another supply. A nonmaskable interrupt request is generated if the AUXSWNMIE bit is set; otherwise, if (only) the AUXSWGIE bit and additionally the GIE bit are set, a maskable interrupt request is generated. The AUXxSWIFG bits are set if the auxiliary supply system switched to the corresponding supply (DVCC, AUXVCC1 or AUXVCC2). This information can be used in the interrupt service routine together with the interrupt vector generator AUXIV to reconfigure the device to the new supply situation. A (maskable) interrupt request is generated if the corresponding AUXxSWIE bit and the GIE bit are set. The AUXxDRPIFG bits are set if the corresponding supplies AUXxOK state changes from 1 to 0 due to the supply voltage dropping below the selected threshold value AUXxLVL with the hardware monitor being enabled (AUXxMD = 0). A (maskable) interrupt request is generated if the corresponding AUXxDRPIE bit and the GIE bit are set. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Auxiliary Supply System (AUX) Copyright © 2008–2015, Texas Instruments Incorporated 143 Auxiliary Supply Operation www.ti.com The AUXMONIFG bit is set if a hardware monitoring cycle is completed and the supply AUXxOK states are updated accordingly. A (maskable) interrupt request is generated if the corresonding AUXMONIE bit and the GIE bit are set. 4.2.11.1 AUXIV, Interrupt Vector Generator All (maskable) auxiliary supply system interrupt sources are prioritized and combined to source a single interrupt vector. AUXIV is used to determine which enabled interrupt source requested an interrupt. The highest priority interrupt request that is enabled generates a number in the AUXIV register (see register description). This number can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled interrupts do not affect the AUXIV value. Any read access of the AUXIV register automatically resets the highest pending interrupt flag. A write access to the AUXIV register automatically resets all pending interrupt flags. All interrupt flags can also be cleared by software. 4.2.11.2 Auxiliary Supply Nonmaskable Interrupt If AUXSWNMIFG is configured as a nonmaskable interrupt source (with AUXSWNMIE=1), it will source (together with interrupt flags from other modules) the user-NMI interrupt vector. In the user-NMI interrupt service routine, the SYSUNIV interrupt vector word register can be evaluated or added to the program counter to automatically enter the appropriate part of the user-NMI interrupt service routine. Refer to device-specific data sheet concerning the user-NMI interrupt vector sources and priorities. If both AUXSWNMIE and AUXSWGIE are set, the nonmaskable interrupt service routine is called when AUXSWNMIFG is set because the user-NMI has a higher priority. In this case, both interrupt vector generators, the SYSUNIV and the AUXIV, indicate a pending AUXSWNMIFG. 144 Auxiliary Supply System (AUX) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Auxiliary Supply Operation www.ti.com 4.2.12 Software Flow Figure 4-9 shows a sample software flow chart for the use and control of the auxiliary supply system. Reset “only” PUC no LOCKAUX=1? yes Configure Aux. Supply System LOCKAUX=0 Interrupt Request by AUXxSWIFG “Main Program” AUXSW-ISR “New” Supply? DVCC AUX1 AUX2 Updated high-side SVM level (if needed) Updated high-side SVM level (if needed) Updated high-side SVM level (if needed) Restore “Full” System Performance Reduce System Performance Reduce to RTC only Example RETI (End of ISR) NOTE: Configuration of the auxiliary supply system is required after wakeup from LPMx.5. None of the AUX registers are retained during LPMx.5. Figure 4-9. Software Flow Chart SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Auxiliary Supply System (AUX) Copyright © 2008–2015, Texas Instruments Incorporated 145 Auxiliary Supply Operation www.ti.com 4.2.13 Examples of AUX Operation The following sections show sample configurations of the AUX module. Some settings in these examples do not apply to all devices; see the device-specific data sheet. 4.2.13.1 Example 1 This example shows configuration for running at 25-MHz system frequency at a supply voltage of 3 V ± 0.3 V, maintaining that frequency when switching to AUX1 or AUX2. The maximum SVMH level must be less than or equal to 2.7 V, so that switching occurs only when VDSYS goes outside 3 V ± 0.3 V. To switch back to DVCC/AVCC as soon as possible when it is within 3 V ± 0.3 V, the maximum AUX0LVL must also be less than or equal to 2.7 V. Because AUX0LVL must be 1 higher than SVSMHRRL, set AUX0LVL = 4 and SVSMHRRL = 3. To support 25-MHz operation, PMMCOREV must equal 3. With SVSMHRRL = 3, all core voltage settings are supported, so this is valid. Based on this core voltage setting, configure SVS levels (see Section 2.2.2.1.1.1 for details). To continue operation at 25-MHz without glitches even when using AUX1 and AUX2, the thresholds for these must be equal to or higher than SVSMHRRL. To minimize use of the auxiliary supplies, they should be set equal to SVSMHRRL. Therefore, set AUX1LVL and AUX2LVL = 3. 4.2.13.2 Example 2 This example shows configuration for running at a supply voltage of 3.3 V ± 0.3 V and allowing for switching supplies without functional glitches. The maximum SVMH level must be less than or equal to 3 V, so that switching occurs only when VDSYS goes outside 3.3 V ± 0.3 V. To switch back to DVCC/AVCC as soon as possible when it is within 3.3 V ± 0.3 V, the maximum AUX0LVL must also be less than or equal to 3 V. Because AUX0LVL must be 1 higher than SVSMHRRL, set = 6 and SVSMHRRL = 5. With SVSMHRRL = 5, the core voltage setting (PMMCOREV) must be 2 or 3. Assuming the application requires a system frequency up to 20 MHz, set PMMCOREV = 2. Based on this core voltage setting, configure SVS levels (see Section 2.2.2.1.1.1 for details). To continue operation without glitches when switching to AUX1 and AUX2, the thresholds for these must be equal to or higher than SVSMHRRL. To minimize use of the auxiliary supplies, they should be set equal to SVSMHRRL. Therefore, set AUX1LVL and AUX2LVL = 5. 4.2.13.3 Example 3 This example shows configuration for running at a system frequency of 8 MHz an a nominal supply voltage of 3.3 V with settings designed to minimize power consumption. To minimize power consumption at 8 MHz, set PMMCOREV = 0. With this core voltage, the recommended SVMH setting is SVSMHRRL = 0. Because AUX0LVL must be at least 1 higher than SVSMHRRL, set AUX0LVL = 1. To continue operation without glitches when switching to AUX1 and AUX2, the thresholds for these must be equal to or higher than SVSMHRRL. To minimize use of the auxiliary supplies, they should be set equal to SVSMHRRL. Therefore, set AUX1LVL and AUX2LVL = 0. 4.2.13.4 Example 4 This example shows configuration for running at a system frequency of 25 MHz when operating on a supply voltage of 3 V ± 0.3 V from DVCC, and then changing the system frequency to 12 MHz when supplied from AUX1 and to 8 MHz when supplied from AUX2. The maximum SVMH level must be less than or equal to 2.7 V, so that switching occurs only when VDSYS goes outside 3 V ± 0.3 V. To switch back to DVCC/AVCC as soon as possible when it is within 3 V ± 0.3 V, the maximum AUX0LVL must also be less than or equal to 2.7 V. Because AUX0LVL must be 1 higher than SVSMHRRL, set = 4 and SVSMHRRL = 3. 146 Auxiliary Supply System (AUX) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Auxiliary Supply Operation www.ti.com To support 25-MHz operation, PMMCOREV must equal 3. With SVSMHRRL = 3, all core voltage settings are supported, so this is valid. Based on this core voltage setting, configure SVS levels (see Section 2.2.2.1.1.1 for details). When switching back to AUX0 (DVCC/AVCC) after having failed over to AUX1 or AUX2, these same settings must be restored. Given that the system frequency should be changed to 12 MHz when running from AUX1, settings must be changed when switching to AUX1. When switching from AUX0 (DVCC/AVCC) to AUX1: 1. Decrease system frequency to 12 MHz 2. Decrease core voltage level by setting PMMCOREV = 1 (also change SVS settings) 3. Decrease the SVM level by setting SVSMHRRL = 1 4. Set AUX1LVL and AUX2LVL to 1 When switching from AUX2 to AUX1: 1. Increase AUX1LVL and AUX2LVL to 1 2. Increase the SVM level by setting SVSMHRRL = 1 3. Increase core voltage level by setting PMMCOREV = 1 (also change SVS settings) 4. Increase system frequency to 12 MHz Given that the system frequency should be changed to 8 MHz when running from AUX2, settings must be changed when switching to AUX2. 1. Decrease system frequency to 8 MHz 2. Decrease core voltage level by setting PMMCOREV = 0 (also change SVS settings) 3. Decrease the SVM level by setting SVSMHRRL = 0 4. Set AUX1LVL and AUX2LVL to 0 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Auxiliary Supply System (AUX) Copyright © 2008–2015, Texas Instruments Incorporated 147 AUX Registers 4.3 www.ti.com AUX Registers The registers to control the auxiliary supplies are listed in Table 4-4. The base address for the registers can be found in the device-specific data sheet. The address offsets are given in Table 4-4. The access key, AUXKEY, defined in the AUXCTL0 register controls access to the AUXCTLx registers. Once the correct key is written, the write access is enabled. The write access is disabled by writing a wrong key in byte mode to the AUXCTL0 upper byte. Word accesses to AUXCTL0 with a wrong key also disables the write access. A write access to a AUXCTLx register other than AUXCTL0 while write access is not enabled is ignored. NOTE: Bit Naming Convention The bits and bit fields in the AUXCTL0 to AUXCTL2 registers are named according to what supplies they refer to: AUX0... refers to DVCC, AUX1... refers to AUXVCC1, and AUX2... refers to AUXVCC2. In any description, the occurence of a bit name like AUXx... refers to all the bit names AUX0..., AUX1..., and AUX2.... Table 4-4. Auxiliary Supply Registers Offset Acronym Register Name Type Reset Section 00h AUXCTL0 Auxiliary Supply Control 0 register (1) Read/write 9601h Section 4.3.1 02h AUXCTL1 Auxiliary Supply Control 1 register (1) Read/write 0000h Section 4.3.2 04h AUXCTL2 Auxiliary Supply Control 2 register (1) Read/write 0000h Section 4.3.3 06h Reserved 08h Reserved 0Ah Reserved 0Ch Reserved 0Eh Reserved 10h Reserved 12h AUX2CHCTL AUX2 Charger Control Read/write 5A00h Section 4.3.4 14h AUX3CHCTL AUX3 Charger Control Read/write 5A00h Section 4.3.5 16h AUXADCCTL AUX ADC Control Read/write 0000h Section 4.3.6 18h 1Ah AUXIFG AUX Interrupt Flag Read/write 0000h Section 4.3.7 1Ch AUXIE AUX Interrupt Enable Read/write 0000h Section 4.3.8 1Eh AUXIV AUX Interrupt Vector Word Read/write 0000h Section 4.3.9 (1) 148 Reserved Access protected by key AUXKEY in AUXCTL0. Auxiliary Supply System (AUX) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated AUX Registers www.ti.com 4.3.1 AUXCTL0 Register Auxiliary Supply Control 0 Register Figure 4-10. AUXCTL0 Register 15 14 13 12 rw-1 rw-0 rw-0 rw-1 7 6 5 4 11 10 9 8 rw-0 rw-1 rw-1 rw-0 AUXKEY Reserved r0 r0 r0 r0 3 2 1 0 AUX2SW AUX1SW AUX0SW LOCKAUX r-(0) r-(0) r-(0) r/w0-[1] Table 4-5. AUXCTL0 Register Description Bit Field Type Reset Description 15-8 AUXKEY RW 96h AUX access key. Always read as 096h. Must be written with 0A5h or all writes to AUXCTLx registers are ignored. 7-4 Reserved R 0h Reserved. Always reads as 0. 3 AUX2SW R 0h AUXVCC2 switch state 0b = AUXVCC2 switch open 1b = AUXVCC2 switch closed 2 AUX1SW R 0h AUXVCC1 switch state 0b = AUXVCC1 switch open 1b = AUXVCC1 switch closed 1 AUX0SW R 0h DVCC switch state 0b = DVCC switch open 1b = DVCC switch closed 0 LOCKAUX RW 0h Lock auxiliary supply system. Can only be written as 0. LOCKAUX is always set to 1 by hardware after the core was powered down either due to a complete power cycle of the main suppies (DVCC, AUXVCC1, or AUXVCC2) or due to LPMx.5 operation. 0b = Auxiliary supply system not locked 1b = Auxiliary supply system locked - operating from either DVCC or AUXVCC1 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Auxiliary Supply System (AUX) Copyright © 2008–2015, Texas Instruments Incorporated 149 AUX Registers www.ti.com 4.3.2 AUXCTL1 Register Auxiliary Supply Control 1 Register Figure 4-11. AUXCTL1 Register 15 14 r0 r0 7 6 13 12 11 r0 r0 r0 5 4 Reserved Reserved r0 r0 r0 r0 10 9 8 AUX2MD AUX1MD AUX0MD rw-(0) rw-(0) rw-(0) 3 2 1 0 AUX2PRIO AUX2OK AUX1OK AUX0OK rw-(0) rw-(0) rw-(0) rw-(0) Table 4-6. AUXCTL1 Register Description Bit Field Type Reset Description 15-11 Reserved R 0h Reserved. Always reads as 0. 10 AUX2MD RW 0h AUXVCC2 auxiliary supply mode 0b = Hardware controlled 1b = Software controlled 9 AUX1MD RW 0h AUXVCC1 auxiliary supply mode 0b = Hardware controlled 1b = Software controlled 8 AUX0MD RW 0h DVCC auxiliary supply mode 0b = Hardware controlled 1b = Software controlled 7-4 Reserved R 0h Reserved. Always reads as 0. 3 AUX2PRIO RW 0h Auxiliary supply AUXVCC2 priority. Defines order of switching between AUXVCC1 and AUXVCC2. 0b = AUXVCC2 has lower priority than AUXVCC1 1b = AUXVCC2 has higher priority than AUXVCC1 2 AUX2OK RW 0h AUXVCC2 okay flag. Read-only if AUX2MD = 0 and indicates the status monitored by the hardware based on the selected level AUX2LVLx. If AUX2MD = 1 the bit must be controlled by software to indicate the status of the supply. It is not modified by hardware in this case. 0b = Supply not okay - below AUX2LVLx if AUX2MD = 0 1b = Supply okay - above AUX2LVLx if AUX2MD = 0 1 AUX1OK RW 0h AUXVCC1 okay flag. Read-only if AUX1MD = 0 and indicates the status monitored by the hardware based on the selected level AUX1LVLx. If AUX1MD = 1 the bit must be controlled by software to indicate the status of the supply. It is not modified by hardware in this case. 0b = Supply not okay - below AUX1LVLx if AUX1MD = 0 1b = Supply okay - above AUX1LVLx if AUX1MD = 0 0 AUX0OK RW 0h DVCC okay flag. Read-only if AUX0MD = 0 and indicates the status monitored by the hardware based on the selected level AUX0LVLx. If AUX0MD = 1 the bit must be controlled by software to indicate the status of the supply. It is not modified by hardware in this case. 0b = Supply not okay - below AUX0LVLx if AUX0MD = 0 1b = Supply okay - above AUX0LVLx if AUX0MD = 0 150 Auxiliary Supply System (AUX) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated AUX Registers www.ti.com 4.3.3 AUXCTL2 Register Auxiliary Supply Control 2 Register Figure 4-12. AUXCTL2 Register 15 14 13 12 r0 r0 rw-(0) rw-(0) 7 6 5 4 Reserved AUXMRx Reserved r0 rw-(0) 10 9 Reserved AUX1LVLx rw-(0) 11 AUX2LVLx r0 rw-(0) 3 2 Reserved rw-(0) r0 8 rw-(0) rw-(0) 1 0 AUX0LVLx rw-(0) rw-(0) rw-(0) Table 4-7. AUXCTL2 Register Description Bit Field Type Reset Description 15-14 Reserved R 0h Reserved. Always reads as 0. 13-12 AUXMRx RW 0h Auxiliary supply monitoring rate 00b = Continous monitoring 01b = Monitoring every 32 VLO clock cycles (≈5ms) 10b = Monitoring every 1024 VLO clock cycles (≈150ms) 11b = Reserved 11 Reserved R 0h Reserved. Always reads as 0. 10-8 AUX2LVLx RW 0h AUXVCC2 auxiliary supply threshold level. The levels are specified in the devicespecific data sheet. 000b = Approximately 1.74 V 001b = Approximately 1.94 V 010b = Approximately 2.14 V 011b = Approximately 2.26 V 100b = Approximately 2.40 V 101b = Approximately 2.70 V 110b = Approximately 3.00 V 111b = Approximately 3.00 V 7 Reserved R 0h Reserved. Always reads as 0. 6-4 AUX1LVLx RW 0h AUXVCC1 auxiliary supply threshold level. The levels are specified in the devicespecific data sheet. 000b = Approximately 1.74 V 001b = Approximately 1.94 V 010b = Approximately 2.14 V 011b = Approximately 2.26 V 100b = Approximately 2.40 V 101b = Approximately 2.70 V 110b = Approximately 3.00 V 111b = Approximately 3.00 V 3 Reserved R 0h Reserved. Always reads as 0. 2-0 AUX0LVLx RW 0h DVCC auxiliary supply threshold level. The levels are specified in the devicespecific data sheet. 000b = Approximately 1.74 V 001b = Approximately 1.94 V 010b = Approximately 2.14 V 011b = Approximately 2.26 V 100b = Approximately 2.40 V 101b = Approximately 2.70 V 110b = Approximately 3.00 V 111b = Approximately 3.00 V SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Auxiliary Supply System (AUX) Copyright © 2008–2015, Texas Instruments Incorporated 151 AUX Registers www.ti.com 4.3.4 AUX2CHCTL Register AUX Charger Control Register for AUX2 Figure 4-13. AUX2CHCTL Register 15 14 13 12 rw-0 rw-1 rw-0 rw-1 6 5 11 10 9 8 rw-1 rw-0 rw-1 rw-0 3 2 AUXCHKEYx 7 4 Reserved r0 AUXCHVx r0 rw-0 Reserved rw-0 r0 1 AUXCHCx rw-0 0 AUXCHEN rw-0 rw-0 Table 4-8. AUX2CHCTL Register Description Bit Field Type Reset Description 15-8 AUXCHKEYx RW 5Ah Charger access key. Always read as 05Ah. Must be written as 069h together with low byte; writing any other value disables the charger and all control register bits are reset to 0. 7-6 Reserved R 0h Reserved. Always reads as 0. 5-4 AUXCHVx RW 0h Charger end voltage 00b = Charger disabled 01b = VCC 10b = Reserved 11b = Reserved 3 Reserved R 0h Reserved. Always reads as 0. 2-1 AUXCHCx RW 0h Charger charge current 00b = Charger disabled 01b = Charge current defined by a maximum 5-kΩ resistor 10b = Charge current defined by a maximum 10-kΩ resistor 11b = Charge current defined by a maximum 20-kΩ resistor 0 AUXCHEN RW 0h Charger enable 0b = Charger disabled 1b = Charger enabled 152 Auxiliary Supply System (AUX) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated AUX Registers www.ti.com 4.3.5 AUX3CHCTL Register AUX Charger Control Register for AUX3 Figure 4-14. AUX3CHCTL Register 15 14 13 12 rw-0 rw-1 rw-0 rw-1 6 5 11 10 9 8 rw-1 rw-0 rw-1 rw-0 3 2 AUXCHKEYx 7 4 Reserved r0 AUXCHVx r0 rw-0 Reserved rw-0 r0 1 AUXCHCx rw-0 0 AUXCHEN rw-0 rw-0 Table 4-9. AUX3CHCTL Register Description Bit Field Type Reset Description 15-8 AUXCHKEYx RW 5Ah Charger access key. Always read as 05Ah. Must be written as 069h together with low byte; writing any other value disables the charger and all control register bits are reset to 0. 7-6 Reserved R 0h Reserved. Always reads as 0. 5-4 AUXCHVx RW 0h Charger end voltage 00b = Charger disabled 01b = VCC 10b = Reserved 11b = Reserved 3 Reserved R 0h Reserved. Always reads as 0. 2-1 AUXCHCx RW 0h Charger charge current 00b = Charger disabled 01b = Charge current defined by a maximum 5-kΩ resistor 10b = Charge current defined by a maximum 10-kΩ resistor 11b = Charge current defined by a maximum 20-kΩ resistor 0 AUXCHEN RW 0h Charger enable 0b = Charger disabled 1b = Charger enabled SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Auxiliary Supply System (AUX) Copyright © 2008–2015, Texas Instruments Incorporated 153 AUX Registers www.ti.com 4.3.6 AUXADCCTL Register Auxiliary Supply ADC Control Register Figure 4-15. AUXADCCTL Register 15 14 13 12 r0 r0 r0 r0 6 5 11 10 9 8 r0 r0 r0 r0 3 2 Reserved 7 4 Reserved r0 AUXADCRx r0 rw-0 Reserved rw-0 r0 1 AUXADCSELx rw-0 rw-0 0 AUXADC rw-0 Table 4-10. AUXADCCTL Register Description Bit Field Type Reset Description 15-6 Reserved R 0h Reserved. Always reads as 0. 5-4 AUXADCRx RW 0h Load resistance (R(tot) = 3R) during sampling of selected supply. Refer to the device-specific data sheet, too. 00b = R(tot) ≈ 15 kΩ - I = U/R = 3.6 V / 15 kΩ = 240 µA; I = 1.8 V / 16 kΩ = 120 µA 01b = R(tot) ≈ 1.5 kΩ - I = 2.4 mA at 3.6 V; I = 1.2 mA at 1.8V 10b = R(tot) ≈ 0.5 kΩ - I = 7.2 mA at 3.6 V; I = 3.6 mA at 1.8 V 11b = Reserved 3 Reserved R 0h Reserved. Always reads as 0. 2-1 AUXADCSELx RW 0h Select supply to be measured with ADC. 00b = DVCC 01b = AUXVCC1 10b = AUXVCC2 11b = AUXVCC3 0 AUXADC RW 0h Auxiliary supplies to ADC 0b = Auxiliary supply measurement disabled 1b = Auxiliary supply measurement enabled 154 Auxiliary Supply System (AUX) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated AUX Registers www.ti.com 4.3.7 AUXIFG Register Auxiliary Supply Interrupt Flag Register Figure 4-16. AUXIFG Register 15 14 13 r0 r0 r0 12 11 10 9 r0 r0 r0 Reserved r0 8 AUXSWNMIFG rw-(0) 7 6 5 4 3 2 1 0 AUXMONIFG AUX2DRPIFG AUX1DRPIFG Reserved Reserved AUX2SWIFG AUX1SWIFG AUX0SWIFG rw-(0) rw-(0) rw-(0) rw-(0) r0 rw-(0) rw-(0) rw-(0) Table 4-11. AUXIFG Register Description Bit Field Type Reset Description 15-9 Reserved R 0h Reserved. Always reads as 0. 8 AUXSWNMIFG RW 0h Supplies switched (non-)maskable interrupt flag. Set if a switch from any supply to any other supply happened. Sources an NMI if AUXSWNMIE is set, otherwise sources a maskable interrupt if AUXSWGIE and GIE is set. 0b = No interrupt pending 1b = Interrupt pending 7 AUXMONIFG RW 0h Supply monitor interrupt flag. Set after completion of a hardware monitoring cycle. 0b = No interrupt pending 1b = Interrupt pending 6 AUX2DRPIFG RW 0h AUXVCC2 dropped below its threshold interrupt flag. 0b = No interrupt pending 1b = Interrupt pending 5 AUX1DRPIFG RW 0h AUXVCC1 dropped below its threshold interrupt flag. 0b = No interrupt pending 1b = Interrupt pending 4 Reserved RW 0h Reserved. Always write as 0. 3 Reserved R 0h Reserved. Always reads as 0. 2 AUX2SWIFG RW 0h Switched to AUXVCC2 interrupt flag. 0b = No interrupt pending 1b = Interrupt pending 1 AUX1SWIFG RW 0h Switched to AUXVCC1 interrupt flag. 0b = No interrupt pending 1b = Interrupt pending 0 AUX0SWIFG RW 0h Switched to DVCC interrupt flag. 0b = No interrupt pending 1b = Interrupt pending SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Auxiliary Supply System (AUX) Copyright © 2008–2015, Texas Instruments Incorporated 155 AUX Registers www.ti.com 4.3.8 AUXIE Register Auxiliary Supply Interrupt Enable Register Figure 4-17. AUXIE Register 15 14 13 r0 r0 r0 12 11 10 9 r0 r0 r0 Reserved r0 8 AUXSWNMIE r0 7 6 5 4 3 2 1 0 AUXMONIE AUX2DRPIE AUX1DRPIE Reserved AUXSWGIE AUX2SWIE AUX1SWIE AUX0SWIE rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Table 4-12. AUXIE Register Description Bit Field Type Reset Description 15-9 Reserved R 0h Reserved. Always reads as 0. 8 AUXSWNMIE R 0h Supplies switched non-maskable interrupt enable. 0b = Non-maskable interrupt disabled 1b = Non-maskable interrupt enabled 7 AUXMONIE RW 0h Supply monitor interrupt enable. 0b = Interrupt disabled 1b = Interrupt enabled 6 AUX2DRPIE RW 0h AUXVCC2 dropped below its threshold interrupt enable. 0b = Interrupt disabled 1b = Interrupt enabled 5 AUX1DRPIE RW 0h AUXVCC1 dropped below its threshold interrupt enable. 0b = Interrupt disabled 1b = Interrupt enabled 4 Reserved RW 0h Reserved. Always write as 0. 3 AUXSWGIE RW 0h Global supply switched interrupt enable. 0b = Interrupt disabled 1b = Interrupt enabled 2 AUX2SWIE RW 0h Switched to AUXVCC2 interrupt enable. 0b = Interrupt disabled 1b = Interrupt enabled 1 AUX1SWIE RW 0h Switched to AUXVCC1 interrupt enable. 0b = Interrupt disabled 1b = Interrupt enabled 0 AUX0SWIE RW 0h Switched to DVCC interrupt enable. 0b = Interrupt disabled 1b = Interrupt enabled 156 Auxiliary Supply System (AUX) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated AUX Registers www.ti.com 4.3.9 AUXIV Register Auxiliary Supply Interrupt Vector Register Figure 4-18. AUXIV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-(0) r-(0) r-(0) r0 AUXIVx AUXIVx r0 r0 r-(0) r-(0) Table 4-13. AUXIV Register Description Bit Field Type Reset Description 15-0 AUXIVx R 0h Auxiliary Supply Interrupt vector value. It generates a value that can be used as address offset for fast interrupt service routine handling. Writing to this register clears all pending interrupt flags. 00h = No interrupt pending 02h = Interrupt Source: Global (non-)maskable supply switched interrupt flag; Interrupt Flag: AUXSWNMIFG; Interrupt Priority: Highest 04h = Interrupt Source: Switched to DVCC interrupt flag; Interrupt Flag: AUX0SWIFG 06h = Interrupt Source: Switched to AUXVCC1 interrupt flag; Interrupt Flag: AUX1SWIFG 08h = Interrupt Source: Switched to AUXVCC2 interrupt flag; Interrupt Flag: AUX2SWIFG 0Ah = Interrupt Source: Reserved; Interrupt Flag: 0Ch = Interrupt Source: AUXVCC1 below threshold interrupt flag; Interrupt Flag: AUX1DRPIFG 0Eh = Interrupt Source: AUXVCC2 below threshold interrupt flag; Interrupt Flag: AUX2DRPIFG 10h = Interrupt Source: Supply monitor interrupt flag; Interrupt Flag: AUXMONIFG; Interrupt Priority: Lowest SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Auxiliary Supply System (AUX) Copyright © 2008–2015, Texas Instruments Incorporated 157 Chapter 5 SLAU208O – June 2008 – Revised May 2015 Unified Clock System (UCS) The Unified Clock System (UCS) module provides the various clocks for a device. This chapter describes the operation of the UCS module, which is implemented in all devices. 158 Topic ........................................................................................................................... 5.1 5.2 5.3 5.4 Unified Clock System (UCS) Introduction ............................................................ UCS Operation ................................................................................................. Module Oscillator (MODOSC) ............................................................................. UCS Registers .................................................................................................. Unified Clock System (UCS) Page 159 161 172 173 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Unified Clock System (UCS) Introduction www.ti.com 5.1 Unified Clock System (UCS) Introduction The UCS module supports low system cost and ultra-low power consumption. Using three internal clock signals, the user can select the best balance of performance and low power consumption. The UCS module can be configured to operate without any external components, with one or two external crystals, or with resonators, under full software control. The UCS module includes up to five clock sources: • XT1CLK: Low-frequency or high-frequency oscillator that can be used either with low-frequency 32768Hz watch crystals, standard crystals, resonators, or external clock sources in the 4 MHz to 32 MHz range. XT1CLK can be used as a clock reference into the FLL. Some devices only support the lowfrequency oscillator for XT1CLK. See the device-specific data sheet for supported functions. • VLOCLK: Internal very low power, low-frequency oscillator with 10-kHz typical frequency • REFOCLK: Internal, trimmed, low-frequency oscillator with 32768-Hz typical frequency, with the ability to be used as a clock reference into the FLL • DCOCLK: Internal digitally controlled oscillator (DCO) that can be stabilized by the FLL • XT2CLK: Optional high-frequency oscillator that can be used with standard crystals, resonators, or external clock sources in the 4 MHz to 32 MHz range. XT2CLK can be used as a clock reference into the FLL. Three clock signals are available from the UCS module: • ACLK: Auxiliary clock. The ACLK is software selectable as XT1CLK, REFOCLK, VLOCLK, DCOCLK, DCOCLKDIV, and when available, XT2CLK. DCOCLKDIV is the DCOCLK frequency divided by 1, 2, 4, 8, 16, or 32 within the FLL block. ACLK can be divided by 1, 2, 4, 8, 16, or 32. ACLK/n is ACLK divided by 1, 2, 4, 8, 16, or 32 and is available externally at a pin. ACLK is software selectable by individual peripheral modules. • MCLK: Master clock. MCLK is software selectable as XT1CLK, REFOCLK, VLOCLK, DCOCLK, DCOCLKDIV, and when available, XT2CLK. DCOCLKDIV is the DCOCLK frequency divided by 1, 2, 4, 8, 16, or 32 within the FLL block. MCLK can be divided by 1, 2, 4, 8, 16, or 32. MCLK is used by the CPU and system. • SMCLK: Subsystem master clock. SMCLK is software selectable as XT1CLK, REFOCLK, VLOCLK, DCOCLK, DCOCLKDIV, and when available, XT2CLK. DCOCLKDIV is the DCOCLK frequency divided by 1, 2, 4, 8, 16, or 32 within the FLL block. SMCLK can be divided by 1, 2, 4, 8, 16, or 32. SMCLK is software selectable by individual peripheral modules. The block diagram of the UCS module is shown in Figure 5-1. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Unified Clock System (UCS) Copyright © 2008–2015, Texas Instruments Incorporated 159 Unified Clock System (UCS) Introduction www.ti.com ACLK_REQEN ACLK_REQ SELA OSCOFF 3 OSC XT1 Fault Detection XT1BYPASS ACLK Enable Logic DIVPA EN 1 XT1CLK 000 001 010 011 100 101 110 111 0 VLOCLK VLO REFOCLK REFO XTS XIN 3 3 XT1 0V LF HF Divider /1/2/4/8/16/32 DIVA 3 Divider /1/2/4/8/16/32 0 ACLK/n ACLK 1 MCLK_REQEN MCLK_REQ SELREF 3 0V XOUT 2 XCAP FLL 2 XT1DRIVE FLLREFCLK FLLREFDIV 3 SCG0 PUC Divider /1/2/4/8/12/16 FLLN 10 Divider /(N+1) off Reset + 10-bit Frequency Integrator − 000 001 010 011 100 101 110 111 SCG1 DCORSELDISMOD DCO, MOD 10 3 off DCO DC + Generator Modulator SELM CPUOFF 3 MCLK Enable Logic EN 3 000 001 010 011 100 101 110 111 DIVM 3 Divider /1/2/4/8/16/32 0 MCLK 1 SMCLK_REQEN SMCLK_REQ FLLD SELS 3 SMCLKOFF 3 DCOCLK Prescaler /1/2/4/8/16/32 SMCLK Enable Logic DCOCLKDIV EN 3 XT2 (Optional) 000 001 010 011 100 101 110 111 XT2BYPASS XT2CLK 1 0 XT2 Fault Detection XT20FF 2 XT2IN DIVS 3 Divider /1/2/4/8/16/32 0 SMCLK 1 MODOSC_REQEN XT2DRIVE MODOSC_REQ XT2OUT Unconditonal MODOSC requests . XT2 Oscillator EN MODOSC MODCLK Figure 5-1. UCS Block Diagram 160 Unified Clock System (UCS) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated UCS Operation www.ti.com 5.2 UCS Operation After a PUC, the UCS module default configuration is: • XT1 in LF mode is selected as the oscillator source for XT1CLK. XT1CLK is selected for ACLK. • DCOCLKDIV is selected for MCLK. • DCOCLKDIV is selected for SMCLK. • FLL operation is enabled and XT1CLK is selected as the FLL reference clock, FLLREFCLK. • On devices that have XIN and XOUT shared with general-purpose I/O, XIN and XOUT pins are set to general-purpose I/Os and XT1 remains disabled until the I/O ports are configured for XT1 operation. If XIN and XOUT are not shared with general-purpose I/Os, XT1 is enabled. • When available, XT2IN and XT2OUT pins are set to general-purpose I/Os and XT2 is disabled. As previously stated, FLL operation with XT1 is selected by default. If the crystal pins (XIN, XOUT) are shared with general-purpose I/Os, XT1 will remain disabled until the PSEL bits associated with the crystal pins are set. If XIN and XOUT are not shared with general-purpose I/O, XT1 is enabled. When a 32768Hz crystal is used for XT1CLK, the fault control logic immediately causes ACLK to be sourced by the REFOCLK, because XT1 is not stable immediately (see Section 5.2.12). When crystal startup is obtained and settled, the FLL stabilizes MCLK and SMCLK to 1.048576 MHz and fDCO = 2.097152 MHz. Status register control bits (SCG0, SCG1, OSCOFF, and CPUOFF) configure the operating modes and enable or disable portions of the UCS module (see the SYS chapter). Registers UCSCTL0 through UCSCTL8 configure the UCS module. The UCS module can be configured or reconfigured by software at any time during program execution. NOTE: For devices using RTC_B, RTC_C, or RTC_D (RTC modules that support LPM3.5), setting bit RTCHOLD = 0 in register RTCCTL1 also enables XT1, independent from UCS configuration. 5.2.1 UCS Module Features for Low-Power Applications Conflicting requirements typically exist in battery-powered applications: • Low clock frequency for energy conservation and time keeping • High clock frequency for fast response times and fast burst processing capabilities • Clock stability over operating temperature and supply voltage • Low-cost applications with less-constrained clock accuracy requirements The UCS module addresses these conflicting requirements by allowing the user to select from the three available clock signals: ACLK, MCLK, and SMCLK. All three available clock signals can be sourced from any of the available clock sources (XT1CLK, VLOCLK, REFOCLK, DCOCLK, DCOCLKDIV, or XT2CLK), giving complete flexibility in the system clock configuration. A flexible clock distribution and divider system is provided to fine tune the individual clock requirements. 5.2.2 Internal Very-Low-Power Low-Frequency Oscillator (VLO) The internal VLO provides a typical frequency of 10 kHz (see device-specific data sheet for parameters) without requiring a crystal. The VLO provides for a low-cost ultra-low-power clock source for applications that do not require an accurate time base. The VLO is enabled when it is used to source ACLK, MCLK, or SMCLK (SELA = {1} or SELM = {1} or SELS = {1}). SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Unified Clock System (UCS) Copyright © 2008–2015, Texas Instruments Incorporated 161 UCS Operation www.ti.com 5.2.3 Internal Trimmed Low-Frequency Reference Oscillator (REFO) The internal trimmed low-frequency REFO can be used for cost-sensitive applications where a crystal is not required or desired. REFO is internally trimmed to 32.768 kHz typical and provides for a stable reference frequency that can be used as FLLREFCLK. REFO, combined with the FLL, provides for a flexible range of system clock settings without the need for a crystal. REFO consumes no power when not being used. REFO is enabled under any of the following conditions: • REFO is a source for ACLK (SELA = {2}) and in active mode (AM) through LPM3 (OSCOFF = 0) • REFO is a source for MCLK (SELM = {2}) and in active mode (AM) (CPUOFF = 0) • REFO is a source for SMCLK (SELS = {2}) and in active mode (AM) through LPM1 (SMCLKOFF = 0) • REFO is a source for FLLREFCLK (SELREF = {2}) and the DCO is a source for ACLK (SELA = {3,4}) and in active mode (AM) through LPM3 (OSCOFF = 0) • REFO is a source for FLLREFCLK (SELREF = {2}) and the DCO is a source for MCLK (SELM = {3,4}) and in active mode (AM) (CPUOFF = 0) • REFO is a source for FLLREFCLK (SELREF = {2}) and the DCO is a source for SMCLK (SELS = {3,4}) and in active mode (AM) through LPM1 (SMCLKOFF = 0) NOTE: REFO Enable for MSP430F543x, MSP430F541x devices REFO is enabled under any of the following conditions: • • REFO is a source for ACLK (SELA = {2}), MCLK (SELM = {2}), or SMCLK (SELS = {2}) and in active mode (AM) through LPM3 (OSCOFF = 0) REFO is a source for FLLREFCLK (SELREF = {2}) and the DCO is a source for ACLK, MCLK, or SMCLK (SELA = {3,4}), MCLK (SELM = {3,4}), or SMCLK (SELS = {3,4}) and in active mode (AM) through LPM3 (OSCOFF = 0) 5.2.4 XT1 Oscillator The XT1 oscillator supports ultra-low-current consumption using a 32768-Hz watch crystal in lowfrequency (LF) mode (XTS = 0) . A watch crystal connects to XIN and XOUT without any other external components. The software-selectable XCAP bits configure the internally provided load capacitance for the XT1 crystal in LF mode. This capacitance can be selected as 2 pF, 6 pF, 9 pF, or 12 pF (typical). Additional external capacitors can be added if necessary. On some devices, the XT1 oscillator also supports high-speed crystals or resonators when in highfrequency (HF) mode (XTS = 1). The high-speed crystal or resonator connects to XIN and XOUT and requires external capacitors on both terminals. These capacitors should be sized according to the crystal or resonator specifications. The drive settings of XT1 in LF mode can be increased with the XT1DRIVE bits. At power up, the XT1 starts with the highest drive settings for fast, reliable startup. If needed, user software can reduce the drive strength to further reduce power. In HF mode, different crystal or resonator ranges are supported by choosing the proper XT1DRIVE settings . XT1 may be used with an external clock signal on the XIN pin in either LF or HF mode by setting XT1BYPASS. When used with an external signal, the external frequency must meet the data sheet parameters for the chosen mode. XT1 is powered down when used in bypass mode. Some devices support XT1 bypass operation with external clock inputs that reside on a different external supply domain, called DVIO. Refer to the device-specific data sheet. On these devices, DVIO has a voltage range of 1.8 V ± 10 %. When using the XT1 bypass operation with external clock inputs that reside on DVIO, it is required that XT1BYPASSLV = 1. For example, when XT1BYPASSLV = 1, it is assumed the external clock signal swings from 0 V to DVIO. With XT1BYPASS = 0, it is assumed the external clock signal swings from 0 V to DVCC. The usage of XT1BYPASSLV allows for interfacing to external clock sources that reside on either the DVCC or DVIO supply domains. When used with an external signal, the external frequency must meet the data sheet parameters for the chosen mode. XT1 is powered down when used in bypass mode. 162 Unified Clock System (UCS) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated UCS Operation www.ti.com On many devices, the XT1 pins are shared with general-purpose I/O ports (refer to the device-specific data sheet for availability). At power up, the default operation is XT1, LF mode of operation. However, for devices that have XT1 shared with general-purpose I/O ports, XT1 will remain disabled until the ports shared with XT1 are configured for XT1 operation. The configuration of the shared I/O is determined by the PSEL bit associated with XIN and the XT1BYPASS bit. Setting the PSEL bit causes the XIN and XOUT ports to be configured for XT1 operation. If XT1BYPASS is also set, XT1 is configured for bypass mode of operation, and the oscillator associated with XT1 is powered down. In bypass mode of operation, XIN can accept an external clock input signal and XOUT is configured as a general-purpose I/O. The PSEL bit associated with XOUT is a don't care. If the PSEL bit associated with XIN is cleared, both XIN and XOUT ports are configured as general-purpose I/Os, and XT1 is disabled. On devices where XT1 is not shared with general-purpose I/O ports, XT1 is enabled at power up. In bypass mode of operation (XT1BYPASS = 1), XIN can accept an external clock input signal, and XT1 is powered down. XT1 is enabled under any of the following conditions: • XT1 is a source for ACLK (SELA = {0}) and in active mode (AM) through LPM3 (OSCOFF = 0) • XT1 is a source for MCLK (SELM = {0}) and in active mode (AM) (CPUOFF = 0) • XT1 is a source for SMCLK (SELS = {0}) and in active mode (AM) through LPM1 (SMCLKOFF = 0) • XT1 is a source for FLLREFCLK (SELREF = {0}) and the DCO is a source for ACLK (SELA = {3,4}) and in active mode (AM) through LPM3 (OSCOFF = 0) • XT1 is a source for FLLREFCLK (SELREF = {0}) and the DCO is a source for MCLK (SELM = {3,4}) and in active mode (AM) (CPUOFF = 0) • XT1 is a source for FLLREFCLK (SELREF = {0}) and the DCO is a source for SMCLK (SELS = {3,4}) and in active mode (AM) through LPM1 (SMCLKOFF = 0) • XT1OFF = 0. XT1 enabled in active mode (AM) through LPM4. For devices that support LPMx.5, XT1 also remains enabled. NOTE: XT1 Enable for MSP430F543x, MSP430F541x devices XT1 is enabled under any of the following conditions: • • • XT1 is a source for ACLK, MCLK, or SMCLK (SELA = {0}), MCLK (SELM = {0}), or SMCLK (SELS = {0}) and in active mode (AM) through LPM3 (OSCOFF = 0) XT1 is a source for FLLREFCLK (SELREF = {0}) and the DCO is a source for ACLK, MCLK, or SMCLK (SELA = {3,4}), MCLK (SELM = {3,4}), or SMCLK (SELS = {3,4}) and in active mode (AM) through LPM3 (OSCOFF = 0) XT1OFF = 0. XT1 enabled in active mode (AM) through LPM4. 5.2.5 XT2 Oscillator Some devices have a second crystal oscillator, XT2. XT2 sources XT2CLK, and its characteristics are identical to XT1 in HF mode. The XT2DRIVE bits select the frequency range of operation of XT2. XT2 may be used with external clock signals on the XT2IN pin by setting XT2BYPASS. When used with an external signal, the external frequency must meet the data-sheet parameters for XT2. XT2 is powered down when used in bypass mode. Some devices support XT2 bypass operation with external clock inputs that reside on a different external supply domain, called DVIO. Refer to the device-specific data sheet. On these devices, DVIO has a voltage range of 1.8 V ±10%. When using the XT2 bypass operation with external clock inputs that reside on DVIO, it is required that XT2BYPASSLV = 1. For example, when XT2BYPASSLV = 1, it is assumed the external clock signal swings from 0 V to DVIO. With XT2BYPASS = 0, it is assumed the external clock signal swings from 0 V to DVCC. The use of XT2BYPASSLV allows for interfacing to external clock sources that reside on either the DVCC or DVIO supply domains. When used with an external signal, the external frequency must meet the data sheet parameters for the chosen mode. XT2 is powered down when used in bypass mode. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Unified Clock System (UCS) Copyright © 2008–2015, Texas Instruments Incorporated 163 UCS Operation www.ti.com The XT2 pins are shared with general-purpose I/O ports. At power up, the default operation is XT2. However, XT2 remains disabled until the ports shared with XT2 are configured for XT2 operation. The configuration of the shared I/O is determined by the PSEL bit associated with XT2IN and the XT2BYPASS bit. Setting the PSEL bit causes the XT2IN and XT2OUT ports to be configured for XT2 operation. If XT2BYPASS is also set, XT2 is configured for bypass mode of operation, and the oscillator associated with XT2 is powered down. In bypass mode of operation, XT2IN can accept an external clock input signal and XT2OUT is configured as a general-purpose I/O. The PSEL bit associated with XT2OUT is a don't care. If the PSEL bit associated with XT2IN is cleared, both XT2IN and XT2OUT ports are configured as general-purpose I/Os, and XT2 is disabled. XT2 is enabled under any of the following conditions: • XT2 is a source for ACLK (SELA = {5,6,7}) and in active mode (AM) through LPM3 (OSCOFF = 0) • XT2 is a source for MCLK (SELM = {5,6,7}) and in active mode (AM) (CPUOFF = 0) • XT2 is a source for SMCLK (SELS = {5,6,7}) and in active mode (AM) through LPM1 (SMCLKOFF = 0) • XT2 is a source for FLLREFCLK (SELREF = {5,6}) and the DCO is a source for ACLK (SELA = {3,4}) and in active mode (AM) through LPM3 (OSCOFF = 0) • XT2 is a source for FLLREFCLK (SELREF = {5,6}) and the DCO is a source for MCLK (SELM = {3,4}) and in active mode (AM) (CPUOFF = 0) • XT2 is a source for FLLREFCLK (SELREF = {5,6}) and the DCO is a source for SMCLK (SELS = {3,4}) and in active mode (AM) through LPM1 (SMCLKOFF = 0) • XT2OFF = 0. XT2 enabled in active mode (AM) through LPM4. For devices that support LPMx.5, XT2 also remains enabled. NOTE: XT2 Enable for MSP430F543x and MSP430F541x devices XT2 is enabled under any of the following conditions: • • • XT2 is a source for ACLK, MCLK, or SMCLK (SELA = {5,6,7}), MCLK (SELM = {5,6,7}), or SMCLK (SELS = {5,6,7}) and in active mode (AM) through LPM3 (OSCOFF = 0) XT2 is a source for FLLREFCLK (SELREF = {5,6,7}) and the DCO is a source for ACLK, MCLK, or SMCLK (SELA = {3,4}), MCLK (SELM = {3,4}), or SMCLK (SELS = {3,4}) and in active mode (AM) through LPM3 (OSCOFF = 0) XT2OFF = 0. XT2 enabled in active mode (AM) through LPM4. 5.2.6 Digitally Controlled Oscillator (DCO) The DCO is an integrated digitally controlled oscillator. The DCO frequency can be adjusted by software using the DCORSEL, DCO, and MOD bits. The DCO frequency can be optionally stabilized by the FLL to a multiple frequency of FLLREFCLK/n. The FLL can accept different reference sources selectable by the SELREF bits. Reference sources include XT1CLK, REFOCLK, or XT2CLK (if available) . The value of n is defined by the FLLREFDIV bits (n = 1, 2, 4, 8, 12, or 16). The default is n = 1. There may be scenarios in which FLL operation is not required or desired; in these cases, no FLLREFCLK is necessary. This can be accomplished by setting SELREF = {7}. NOTE: For the F543x and F541x non-A versions only. Setting SELREF = {7} sets XT2CLK as the FLL reference clock. The FLLD bits configure the FLL prescaler divider value D to 1, 2, 4, 8, 16, or 32. By default, D = 2, and MCLK and SMCLK are sourced from DCOCLKDIV, providing a clock frequency DCOCLK/2. 164 Unified Clock System (UCS) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated UCS Operation www.ti.com The divider (N + 1) and the divider value D define the DCOCLK and DCOCLKDIV frequencies. The divider (N + 1) can be set using the FLLN bits, where N > 0. The smallest divider (N + 1) that can be used is a divider of two. The logic will cause FLLN = 1h, if FLLN = 0h is unintentionally written. Therefore setting FLLN = 0h is also equivalent to setting FLLN = 1h and will result in a divider of 2. All other FLLN settings behave as described; for example, FLLN = 2h results in a divider of 3, or FLLN = 3h results in a divider of 4. fDCOCLK = D × (N + 1) × (fFLLREFCLK ÷ n) fDCOCLKDIV = (N + 1) × (fFLLREFCLK ÷ n) 5.2.6.1 Adjusting DCO Frequency By default, FLL operation is enabled. FLL operation can be disabled by setting SCG0 or SCG1. When the FLL is disabled, the DCO continues to operate at the current settings defined in UCSCTL0 and UCSCTL1. The DCO frequency can be adjusted manually if desired. Otherwise, the DCO frequency is stabilized by the FLL operation. After a PUC, DCORSEL = {2} and DCO = {0}. MCLK and SMCLK are sourced from DCOCLKDIV. Because the CPU executes code from MCLK, which is sourced from the fast-starting DCO, code execution begins from PUC in less than 5 µs. The frequency of DCOCLK is set by the following functions: • The three DCORSEL bits select one of eight nominal frequency ranges for the DCO. These ranges are defined for an individual device in the device-specific data sheet. • The five DCO bits divide the DCO range selected by the DCORSEL bits into 32 frequency steps, separated by approximately 8%. • The five MOD bits switch between the frequency selected by the DCO bits and the next-higher frequency set by {DCO + 1}. When DCO = {31}, the MOD bits have no effect, because the DCO is already at the highest setting for the selected DCORSEL range. 5.2.7 Frequency Locked Loop (FLL) The FLL continuously counts up or down a frequency integrator. The output of the frequency integrator that drives the DCO can be read in UCSCTL0, UCSCTL1 (bits MOD and DCO). The count is adjusted +1 with the frequency fFLLREFCLK/n (n = 1, 2, 4, 8, 12, or 16) or –1 with the frequency fDCOCLK/[D × (N+1)]. NOTE: Reading MOD and DCO bits The integrator is updated by the DCOCLK, which may differ in frequency of operation of MCLK. It is possible that immediate reads of a previously written value are not visible to the user because the update to the integrator has not occurred. This is normal. When the integrator is updated at the next successive DCOCLK, the correct value can be read. In addition, because the MCLK can be asynchronous to the integrator updates, reading the values may be cause a corrupted value to be read under this condition. In this case, a majority vote method should be performed. Five of the integrator bits (UCSCTL0 bits 12 to 8) set the DCO frequency tap. Thirty-two taps are implemented for the DCO, and each is approximately 8% higher than the previous. The modulator mixes two adjacent DCO frequencies to produce fractional taps. For a given DCO bias range setting, time must be allowed for the DCO to settle on the proper tap for normal operation. (n × 32) fFLLREFCLK cycles are required between taps requiring a worst case of (n × 32 × 32) fFLLREFCLK cycles for the DCO to settle. The value n is defined by the FLLREFDIV bits (n = 1, 2, 4, 8, 12, or 16). SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Unified Clock System (UCS) Copyright © 2008–2015, Texas Instruments Incorporated 165 UCS Operation www.ti.com 5.2.8 DCO Modulator The modulator mixes two DCO frequencies, fDCO and fDCO+1 to produce an intermediate effective frequency between fDCO and fDCO+1 and spread the clock energy, reducing electromagnetic interference (EMI). The modulator mixes fDCO and fDCO+1 for 32 DCOCLK clock cycles and is configured with the MOD bits. When MOD = {0}, the modulator is off. The modulator mixing formula is: t = (32 – MOD) × tDCO + MOD × tDCO+1 Figure 5-2 shows the modulator operation. When FLL operation is enabled, the modulator settings and DCO are controlled by the FLL hardware. If FLL operation is not desired, the modulator settings and DCO control can be configured with software. MODx 31 24 16 15 5 4 3 2 Lower DCO Tap Frequency fDCO Upper DCO Tap Frequency fDCO+1 1 0 Figure 5-2. Modulator Patterns 5.2.9 Disabling FLL Hardware and Modulator The FLL is disabled when the status register bits SCG0 or SCG1 are set. When the FLL is disabled, the DCO runs at the previously selected tap and DCOCLK is not automatically stabilized. The DCO modulator is disabled when DISMOD is set. When the DCO modulator is disabled, the DCOCLK is adjusted to the DCO tap selected by the DCO bits. NOTE: DCO operation without FLL When the FLL operation is disabled, the DCO continues to operate at the current settings. Because it is not stabilized by the FLL, temperature and voltage variations influence the frequency of operation. See the device-specific data sheet for voltage and temperature coefficients to ensure reliable operation. 166 Unified Clock System (UCS) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated UCS Operation www.ti.com 5.2.10 FLL Operation From Low-Power Modes An interrupt service request clears SCG1, CPUOFF, and OSCOFF if set, but does not clear SCG0. This means that for FLL operation from within an interrupt service routine entered from LPM1, 3, or 4, the FLL remains disabled and the DCO operates at the previous setting as defined in UCSCTL0 and UCSCTL1. SCG0 can be cleared by user software if FLL operation is required. 5.2.11 Operation From Low-Power Modes, Requested by Peripheral Modules A peripheral module requests its clock sources automatically from the UCS module if required for its proper operation, regardless of the current mode of operation, as shown in Figure 5-3. A peripheral module asserts one of three possible clock request signals based on its control bits: ACLK_REQ, MCLK_REQ, or SMCLK_REQ. These request signals are based on the configuration and clock selection of the respective module. For example, if a timer selects ACLK as its clock source and the timer is enabled, the timer generates an ACLK_REQ signal to the UCS system. The UCS, in turn, enables ACLK regardless of the LPM settings. Any clock request from a peripheral module causes its respective clock off signal to be overridden, but does not change the setting of clock off control bit. For example, a peripheral module may require ACLK that is currently disabled by the OSCOFF bit (OSCOFF = 1). The module can request ACLK by generating an ACLK_REQ. This causes the OSCOFF bit to have no effect, thereby allowing ACLK to be available to the requesting peripheral module. The OSCOFF bit remains at its current setting (OSCOFF = 1). If the requested source is not active, the software NMI handler must take care of the required actions. For the previous example, if ACLK was sourced by XT1 and XT1 was not enabled, an oscillator fault condition occurs and the software must handle the event. The watchdog, due to its security requirement, actively selects the VLOCLK source if the originally selected clock source is not available. Due to the clock request feature, care must be taken in the application when entering low-power modes to save power. Although the device enters the selected low-power mode, a clock request may exhibit more current consumption than the specified values in the data sheet. 0 SMCLK_REQ 0 MCLK_REQ 0 0 ACLK_REQ ACLK_REQ MCLK_REQ SMCLK_REQ UCS Module n−2 ACLK_REQ MCLK_REQ SMCLK_REQ Module n−1 ACLK_REQ MCLK_REQ SMCLK_REQ Module n SMCLK MCLK ACLK Direct clock request in Watchdog mode WDTACLKON WDTSMCLKON Watch Dog Timer Module Figure 5-3. Module Request Clock System SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Unified Clock System (UCS) Copyright © 2008–2015, Texas Instruments Incorporated 167 UCS Operation www.ti.com By default, the clock request logic is enabled. The clock request logic can be disabled by clearing ACLKREQEN, MCLKREQEN, or SMCLKREQEN, for each respective system clock. When ACLKREQEN or MCLKREQEN bits are set, or active, the clock is available to the system and prevents entry into a lowpower mode until all modules requesting the clock are disabled. When ACLKREQEN or MCLKREQEN bits are cleared, or disabled, the clock is always halted as defined by the low-power modes. The SMCLKREQEN logic behaves similarly, but is also influenced by the SMCLKOFF bit in the UCSCTL6 register. Table 5-1 shows the relationship between the system clocks and the low-power modes in conjunction with the clock request logic. Table 5-1. Clock Request System and Power Modes ACLK Mode ACLKREQEN =0 ACLKREQEN =1 SMCLK MCLKREQEN =0 MCLKREQEN =1 SMCLKOFF = 0 SMCLKOFF = 1 SMCLKREQEN SMCLKREQEN SMCLKREQEN SMCLKREQEN =0 =1 =0 =1 AM Active Active Active Active Active Active Disabled Active LPM0 Active Active Disabled Active Active Active Disabled Active LPM1 Active Active Disabled Active Active Active Disabled Active LPM2 Active Active Disabled Active Disabled Active Disabled Active LPM3 Active Active Disabled Active Disabled Active Disabled Active LPM4 Disabled Active Disabled Active Disabled Active Disabled Active Disabled Disabled Disabled Disabled Disabled Disabled Disabled Disabled Disabled Disabled Disabled Disabled Disabled Disabled Disabled Disabled LPM3.5 (1) LPM4.5 (1) (1) MCLK Any clock request prior to entry into LPM3.5 or LPM4.5 is ignored and LPM3.5 or LPM4.5 entry occurs. For the special case when XT1OFF = 0 or XT2OFF = 0, the LPMx.5 request is ignored and the device does not enter LPMx.5. 5.2.12 UCS Module Fail-Safe Operation The UCS module incorporates an oscillator-fault fail-safe feature. This feature detects an oscillator fault for XT1, DCO, and XT2 as shown in Figure 5-4. The available fault conditions are: • Low-frequency oscillator fault (XT1LFOFFG) for XT1 in LF mode • High-frequency oscillator fault (XT1HFOFFG) for XT1 in HF mode • High-frequency oscillator fault (XT2OFFG) for XT2 • DCO fault flag (DCOFFG) for the DCO The crystal oscillator fault bits XT1LFOFFG, XT1HFOFFG, and XT2OFFG are set if the corresponding crystal oscillator is turned on and not operating properly. After the fault bits are set, they remain set until reset in software, even if the fault condition no longer exists. If the user clears the fault bits and the fault condition still exists, the fault bits are automatically set, otherwise they remain cleared. When using XT1 operation in LF mode as the reference source into the FLL (SELREF = {0}), a crystal fault automatically causes the FLL reference source, FLLREFCLK, to be sourced by the REFO. XT1LFOFFG is set. When using XT1 operation in HF mode as the reference source into the FLL, a crystal fault causes no FLLREFCLK signal to be generated and the FLL continues to count down to zero in an attempt to lock FLLREFCLK and DCOCLK/[D × (N + 1)]. The DCO tap moves to the lowest position (DCO are cleared) and the DCOFFG is set. DCOFFG is also set if the N-multiplier value is set too high for the selected DCO frequency range, resulting in the DCO tap moving to the highest position (UCSCTL0.12 to UCSCTL0.8 are set). The DCOFFG remains set until cleared by the user. If the user clears the DCOFFG and the fault condition remains, it is automatically set, otherwise it remains cleared. XT1HFOFFG is set. When using XT2 as the reference source into the FLL, a crystal fault causes no FLLREFCLK signal to be generated, and the FLL continues to count down to zero in an attempt to lock FLLREFCLK and DCOCLK/[D × (N + 1)]. The DCO tap moves to the lowest position (DCO are cleared) and the DCOFFG is set. DCOFFG is also set if the N-multiplier value is set too high for the selected DCO frequency range, resulting in the DCO tap moving to the highest position (UCSCTL0.12 to UCSCTL0.8 are set). The DCOFFG remains set until cleared by the user. If the user clears the DCOFFG and the fault condition remains, it is automatically set, otherwise it remains cleared. XT2OFFG is set. 168 Unified Clock System (UCS) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated UCS Operation www.ti.com The OFIFG oscillator-fault interrupt flag is set and latched at POR or when any oscillator fault (XT1LFOFFG, XT1HFOFFG, XT2OFFG, DCOFFG , or CTSD16OFFG (if available)) is detected. When OFIFG is set and OFIE is set, the OFIFG requests an NMI. When the interrupt is granted, the OFIE is not reset automatically as it is in previous MSP430 families. It is no longer required to reset the OFIE. NMI entry and exit circuitry removes this requirement. The OFIFG flag must be cleared by software. The source of the fault can be identified by checking the individual fault bits. If a fault is detected for the oscillator sourcing MCLK, MCLK is automatically switched to the DCO for its clock source (DCOCLKDIV) for all clock sources except XT1 LF mode. If MCLK is sourced from XT1 in LF mode, an oscillator fault causes MCLK to be automatically switched to the REFO for its clock source (REFOCLK). This does not change the SELM bit settings. This condition must be handled by user software. If a fault is detected for the oscillator sourcing SMCLK, SMCLK is automatically switched to the DCO for its clock source (DCOCLKDIV) for all clock sources except XT1 LF mode. If SMCLK is sourced from XT1 in LF mode, an oscillator fault causes SMCLK to be automatically switched to the REFO for its clock source (REFOCLK). This does not change the SELS bit settings. This condition must be handled by user software. If a fault is detected for the oscillator sourcing ACLK, ACLK is automatically switched to the DCO for its clock source (DCOCLKDIV) for all clock sources except XT1 LF mode. If ACLK is sourced from XT1 in LF mode, an oscillator fault causes ACLK to be automatically switched to the REFO for its clock source (REFOCLK). This does not change the SELA bit settings. This condition must be handled by user software. NOTE: DCO active during oscillator fault DCOCLKDIV is active even at the lowest DCO tap. The clock signal is available for the CPU to execute code and service an NMI during an oscillator fault. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Unified Clock System (UCS) Copyright © 2008–2015, Texas Instruments Incorporated 169 UCS Operation www.ti.com DCO _ Fault S S Q DCO _ OF Q DCOFFG R R R POR XT 1 _ LF _ OscFault S S Q Q XT 1 _ LFOF XT 1 LFOFFG R R R XT 1 _ HF _ OscFault S S Q Q XT 1 _ HFOF XT 1 HFOFFG R R R XT 2 _ OscFault S S Q Q XT 2 OFFG XT 2 _ OF CTSD16OFFG (from CTSD16 module) OscFault_Set R R S R OFIFG Q NMIRS Q OscFault_Clr S PUC R OFIE Q R NMI _ IRQA Figure 5-4. Oscillator Fault Logic 170 Unified Clock System (UCS) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated UCS Operation www.ti.com NOTE: Fault conditions DCO_Fault: DCOFFG is set if DCO bits in UCSCTL0 register value equals {0} or {31}. CTSD16CLK_Fault: This signal is set after a fault has been detected in the CTSD16CLK. When set, the fault bits remain set until reset in software, even if the fault condition no longer exists. The fault condition causes CTSD16OFFG in the CTSD16CTL register to be set and remain set. If software clears CTSD16OFFG and the fault condition still exists, CTSD16OFFG remains set. XT1_LF_OscFault: This signal is set after the XT1 (LF mode) oscillator has stopped operation and cleared after operation resumes. The fault condition causes XT1LFOFFG to be set and remain set. If software clears XT1LFOFFG and the fault condition still exists, XT1LFOFFG remains set. XT1_HF_OscFault: This signal is set after the XT1 (HF mode) oscillator has stopped operation and cleared after operation resumes. The fault condition causes XT1HFOFFG to be set and remain set. If software clears XT1HFOFFG and the fault condition still exists, XT1HFOFFG remains set. XT2_OscFault: This signal is set after the XT2 oscillator has stopped operation and cleared after operation resumes. The fault condition causes XT2OFFG to be set and remain set. If software clears XT2OFFG and the fault condition still exists, XT2OFFG remains set. NOTE: Fault logic As long as a fault condition still exists, the OFIFG remains set. The application must take special care when clearing the OFIFG signal. If no fault condition remains when the OFIFG signal is cleared, the clock logic switches back to the original user settings prior to the fault condition. NOTE: Fault logic counters Each crystal oscillator circuit has hardware counters. These counters are reset each time a fault condition occurs on its respective oscillator, causing the fault flag to be set. The counters begin to count after the fault condition is removed. When the maximum count is reached, the fault flag is removed. In XT1 LF mode, the maximum count is 8192. In XT1 HF mode (and XT2 when available), the maximum count is 1024. In bypass modes, regardless of LF or HF settings, the maximum count is 8192. 5.2.13 Synchronization of Clock Signals When switching MCLK or SMCLK from one clock source to the another, the switch is synchronized to avoid critical race conditions as shown in Figure 5-5: • The current clock cycle continues until the next rising edge. • The clock remains high until the next rising edge of the new clock. • The new clock source is selected and continues with a full high period. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Unified Clock System (UCS) Copyright © 2008–2015, Texas Instruments Incorporated 171 Module Oscillator (MODOSC) www.ti.com Select ACLK DCOCLK ACLK MCLK DCOCLK Wait for ACLK ACLK Figure 5-5. Switch MCLK from DCOCLK to XT1CLK 5.3 Module Oscillator (MODOSC) The UCS module also supports an internal oscillator, MODOSC, that is used by the flash memory controller module and optionally by other modules in the system. The MODOSC sources MODCLK. 5.3.1 MODOSC Operation To conserve power, MODOSC is powered down when not needed and is enabled only when required. When the MODOSC source is required, the respective module requests it. MODOSC is enabled based on unconditional and conditional requests. Setting MODOSCREQEN enables conditional requests. Unconditional requests are always enabled. It is not necessary to set MODOSCREQEN for modules that use unconditional requests; for example, the flash controller or ADC12_A. The flash memory controller only requires MODCLK when performing write or erase operations. When performing such operations, the flash memory controller issues an unconditional request for the MODOSC source. Upon doing so, the MODOSC source is enabled, if it is not already enabled by previous requests from other modules. The ADC12_A may optionally use MODOSC as a clock source for its conversion clock. The user chooses the ADC12OSC as the conversion clock source. During a conversion, the ADC12_A module issues an unconditional request for the ADC12OSC clock source. Upon doing so, the MODOSC source is enabled, if it is not already enabled by previous requests from other modules. 172 Unified Clock System (UCS) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated UCS Registers www.ti.com 5.4 UCS Registers The UCS module registers are listed in Table 5-2. The base address can be found in the device-specific data sheet. The address offset is listed in Table 5-2. NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix "_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H" (ANYREG_H) refers to the upper byte of the register (bits 8 through 15). Table 5-2. UCS Registers Offset Acronym Register Name Type Access Reset Section 00h UCSCTL0 Unified Clock System Control 0 Read/write Word 0000h Section 5.4.1 00h UCSCTL0_L Read/write Byte 00h 01h UCSCTL0_H Read/write Byte 00h Read/write Word 0020h 02h Unified Clock System Control 1 02h UCSCTL1_L Read/write Byte 20h 03h UCSCTL1_H Read/write Byte 00h Read/write Word 101Fh Read/write Byte 1Fh Read/write Byte 10h Read/write Word 0000h Read/write Byte 00h Read/write Byte 00h Read/write Word 0044h Read/write Byte 44h Read/write Byte 00h Read/write Word 0000h 04h UCSCTL2 04h UCSCTL2_L 05h UCSCTL2_H 06h UCSCTL3 06h UCSCTL3_L 07h UCSCTL3_H 08h UCSCTL4 08h UCSCTL4_L 09h UCSCTL4_H 0Ah UCSCTL5 Unified Clock System Control 2 Unified Clock System Control 3 Unified Clock System Control 4 Unified Clock System Control 5 0Ah UCSCTL5_L Read/write Byte 00h 0Bh UCSCTL5_H Read/write Byte 00h 0Ch Read/write Word C1CDh 0Ch UCSCTL6_L Read/write Byte CDh 0Dh UCSCTL6_H Read/write Byte C1h 0Eh UCSCTL6 UCSCTL7 Unified Clock System Control 6 Read/write Word 0703h 0Eh UCSCTL7_L Read/write Byte 03h 0Fh UCSCTL7_H Read/write Byte 07h Read/write Word 0707h Read/write Byte 07h Read/write Byte 07h Read/write Word 0000h 10h UCSCTL8 10h UCSCTL8_L 11h UCSCTL8_H 12h (1) UCSCTL1 UCSCTL9 Unified Clock System Control 7 Unified Clock System Control 8 Unified Clock System Control 9 (1) 12h UCSCTL9_L Read/write Byte 00h 13h UCSCTL9_H Read/write Byte 00h Section 5.4.2 Section 5.4.3 Section 5.4.4 Section 5.4.5 Section 5.4.6 Section 5.4.7 Section 5.4.8 Section 5.4.9 Section 5.4.10 This register is not available on all devices. See the device-specific data sheet. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Unified Clock System (UCS) Copyright © 2008–2015, Texas Instruments Incorporated 173 UCS Registers www.ti.com 5.4.1 UCSCTL0 Register Unified Clock System Control 0 Register Figure 5-6. UCSCTL0 Register 15 14 13 12 11 r0 rw-0 rw-0 rw-0 5 4 3 2 Reserved r0 r0 7 6 10 8 rw-0 rw-0 1 0 DCO MOD rw-0 9 rw-0 Reserved rw-0 rw-0 rw-0 r0 r0 r0 Table 5-3. UCSCTL0 Register Description Bit Field Type Reset Description 15-13 Reserved R 0h Reserved. Always reads as 0. 12-8 DCO RW 0h DCO tap selection. These bits select the DCO tap and are modified automatically during FLL operation. 7-3 MOD RW 0h Modulation bit counter. These bits select the modulation pattern. All MOD bits are modified automatically during FLL operation. The DCO register value is incremented when the modulation bit counter rolls over from 31 to 0. If the modulation bit counter decrements from 0 to the maximum count, the DCO register value is also decremented. 2-0 Reserved R 0h Reserved. Always reads as 0. 174 Unified Clock System (UCS) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated UCS Registers www.ti.com 5.4.2 UCSCTL1 Register Unified Clock System Control 1 Register Figure 5-7. UCSCTL1 Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 r0 r0 r0 7 6 5 4 3 Reserved Reserved r0 DCORSEL rw-0 rw-1 2 Reserved rw-0 r0 r0 1 0 Reserved DISMOD rw-0 rw-0 Table 5-4. UCSCTL1 Register Description Bit Field Type Reset Description 15-7 Reserved R 0h Reserved. Always reads as 0. 6-4 DCORSEL RW 2h DCO frequency range select. These bits select the DCO frequency range of operation defined in the device-specific datasheet. 3-2 Reserved R 0h Reserved. Always reads as 0. 1 Reserved RW 0h Reserved. Always reads as 0. 0 DISMOD RW 0h Modulation. This bit enables or disables the modulation. 0b = Modulation enabled 1b = Modulation disabled SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Unified Clock System (UCS) Copyright © 2008–2015, Texas Instruments Incorporated 175 UCS Registers www.ti.com 5.4.3 UCSCTL2 Register Unified Clock System Control 2 Register Figure 5-8. UCSCTL2 Register 15 14 13 Reserved 12 11 10 9 r0 r0 rw-0 rw-0 3 2 1 0 rw-1 rw-1 rw-1 rw-1 FLLD Reserved r0 rw-0 rw-0 rw-1 7 6 5 4 8 FLLN FLLN rw-0 rw-0 rw-0 rw-1 Table 5-5. UCSCTL2 Register Description Bit Field Type Reset Description 15 Reserved R 0h Reserved. Always reads as 0. 14-12 FLLD RW 1h FLL loop divider. These bits divide fDCOCLK in the FLL feedback loop. This results in an additional multiplier for the multiplier bits. See also multiplier bits. 000b = fDCOCLK/1 001b = fDCOCLK/2 010b = fDCOCLK/4 011b = fDCOCLK/8 100b = fDCOCLK/16 101b = fDCOCLK/32 110b = Reserved for future use. Defaults to fDCOCLK/32. 111b = Reserved for future use. Defaults to fDCOCLK/32. 11-10 Reserved R 0h Reserved. Always reads as 0. 9-0 FLLN RW 1Fh Multiplier bits. These bits set the multiplier value N of the DCO. N must be greater than 0. Writing zero to FLLN causes N to be set to 1. 176 Unified Clock System (UCS) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated UCS Registers www.ti.com 5.4.4 UCSCTL3 Register Unified Clock System Control 3 Register Figure 5-9. UCSCTL3 Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 Reserved Reserved r0 SELREF rw-0 rw-0 Reserved rw-0 r0 FLLREFDIV rw-0 rw-0 rw-0 Table 5-6. UCSCTL3 Register Description Bit Field Type Reset Description 15-7 Reserved R 0h Reserved. Always reads as 0. 6-4 SELREF RW 0h FLL reference select. These bits select the FLL reference clock source. 000b = XT1CLK 001b = Reserved for future use. Defaults to XT1CLK. 010b = REFOCLK 011b = Reserved for future use. Defaults to REFOCLK. 100b = Reserved for future use. Defaults to REFOCLK. 101b = XT2CLK when available, otherwise REFOCLK. 110b = Reserved for future use. XT2CLK when available, otherwise REFOCLK. 111b = Reserved for future use. XT2CLK when available, otherwise REFOCLK. 3 Reserved R 0h Reserved. Always reads as 0. 2-0 FLLREFDIV RW 0h FLL reference divider. These bits define the divide factor for fFLLREFCLK. The divided frequency is used as the FLL reference frequency. 000b = fFLLREFCLK/1 001b = fFLLREFCLK/2 010b = fFLLREFCLK/4 011b = fFLLREFCLK/8 100b = fFLLREFCLK/12 101b = fFLLREFCLK/16 110b = Reserved for future use. Defaults to fFLLREFCLK/16. 111b = Reserved for future use. Defaults to fFLLREFCLK/16. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Unified Clock System (UCS) Copyright © 2008–2015, Texas Instruments Incorporated 177 UCS Registers www.ti.com 5.4.5 UCSCTL4 Register Unified Clock System Control 4 Register Figure 5-10. UCSCTL4 Register 15 14 r0 r0 7 6 13 12 11 10 r0 r0 r0 rw-0 5 4 3 2 Reserved Reserved r0 Reserved rw-0 8 SELA SELS rw-1 9 rw-0 r0 rw-0 rw-0 1 0 SELM rw-1 rw-0 rw-0 Table 5-7. UCSCTL4 Register Description Bit Field Type Reset Description 15-11 Reserved R 0h Reserved. Always reads as 0. 10-8 SELA RW 0h Selects the ACLK source 000b = XT1CLK 001b = VLOCLK 010b = REFOCLK 011b = DCOCLK 100b = DCOCLKDIV 101b = XT2CLK when available, otherwise DCOCLKDIV 110b = Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV. 111b = Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV. 7 Reserved R 0h Reserved. Always reads as 0. 6-4 SELS RW 4h Selects the SMCLK source 000b = XT1CLK 001b = VLOCLK 010b = REFOCLK 011b = DCOCLK 100b = DCOCLKDIV 101b = XT2CLK when available, otherwise DCOCLKDIV 110b = Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV. 111b = Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV. 3 Reserved R 0h Reserved. Always reads as 0. 2-0 SELM RW 4h Selects the MCLK source 000b = XT1CLK 001b = VLOCLK 010b = REFOCLK 011b = DCOCLK 100b = DCOCLKDIV 101b = XT2CLK when available, otherwise DCOCLKDIV 110b = Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV. 111b = Reserved for future use. Defaults to XT2CLK when available, otherwise DCOCLKDIV. 178 Unified Clock System (UCS) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated UCS Registers www.ti.com 5.4.6 UCSCTL5 Register Unified Clock System Control 5 Register Figure 5-11. UCSCTL5 Register 15 14 13 Reserved DIVPA r0 rw-0 7 6 Reserved r0 12 10 Reserved rw-0 rw-0 5 4 DIVS rw-0 11 rw-0 rw-0 3 2 r0 8 DIVA r0 Reserved rw-0 9 rw-0 rw-0 1 0 DIVM rw-0 rw-0 rw-0 Table 5-8. UCSCTL5 Register Description Bit Field Type Reset Description 15 Reserved R 0h Reserved. Always reads as 0. 14-12 DIVPA RW 0h ACLK source divider available at external pin. Divides the frequency of ACLK and presents it to an external pin. 000b = fACLK/1 001b = fACLK/2 010b = fACLK/4 011b = fACLK/8 100b = fACLK/16 101b = fACLK/32 110b = Reserved for future use. Defaults to fACLK/32. 111b = Reserved for future use. Defaults to fACLK/32. 11 Reserved R 0h Reserved. Always reads as 0. 10-8 DIVA RW 0h ACLK source divider. Divides the frequency of the ACLK clock source. 000b = fACLK/1 001b = fACLK/2 010b = fACLK/4 011b = fACLK/8 100b = fACLK/16 101b = fACLK/32 110b = Reserved for future use. Defaults to fACLK/32. 111b = Reserved for future use. Defaults to fACLK/32. 7 Reserved R 0h Reserved. Always reads as 0. 6-4 DIVS RW 0h SMCLK source divider 000b = fSMCLK/1 001b = fSMCLK/2 010b = fSMCLK/4 011b = fSMCLK/8 100b = fSMCLK/16 101b = fSMCLK/32 110b = Reserved for future use. Defaults to fSMCLK/32. 111b = Reserved for future use. Defaults to fSMCLK/32. 3 Reserved R 0h Reserved. Always reads as 0. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Unified Clock System (UCS) Copyright © 2008–2015, Texas Instruments Incorporated 179 UCS Registers www.ti.com Table 5-8. UCSCTL5 Register Description (continued) Bit Field Type Reset Description 2-0 DIVM RW 0h MCLK source divider 000b = fMCLK/1 001b = fMCLK/2 010b = fMCLK/4 011b = fMCLK/8 100b = fMCLK/16 101b = fMCLK/32 110b = Reserved for future use. Defaults to fMCLK/32. 111b = Reserved for future use. Defaults to fMCLK/32. 180 Unified Clock System (UCS) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated UCS Registers www.ti.com 5.4.7 UCSCTL6 Register Unified Clock System Control 6 Register Figure 5-12. UCSCTL6 Register 15 14 XT2DRIVE rw-1 13 12 Reserved XT2BYPASS r0 rw-0 r0 3 rw-1 7 6 XT1DRIVE rw-1 rw-1 5 4 XTS XT1BYPASS rw-0 rw-0 11 10 9 Reserved r0 2 XCAP rw-1 rw-1 8 XT2OFF r0 rw-1 1 0 SMCLKOFF XT1OFF rw-0 rw-1 Table 5-9. UCSCTL6 Register Description Bit Field Type Reset Description 15-14 XT2DRIVE RW 3h The XT2 oscillator current can be adjusted to its drive needs. Initially, it starts with the highest supply current for reliable and quick startup. If needed, user software can reduce the drive strength. 00b = Lowest current consumption. XT2 oscillator operating range is 4 MHz to 8 MHz. 01b = Increased drive strength XT2 oscillator. XT2 oscillator operating range is 8 MHz to 16 MHz. 10b = Increased drive capability XT2 oscillator. XT2 oscillator operating range is 16 MHz to 24 MHz. 11b = Maximum drive capability and maximum current consumption for both XT2 oscillator. XT2 oscillator operating range is 24 MHz to 32 MHz. 13 Reserved R 0h Reserved. Always reads as 0. 12 XT2BYPASS RW 0h XT2 bypass select 0b = XT2 sourced from external crystal 1b = XT2 sourced from external clock signal 11-9 Reserved R 0h Reserved. Always reads as 0. 8 XT2OFF RW 1h Turns off the XT2 oscillator 0b = XT2 is on if XT2 is selected by the port selection and XT2 is not in bypass mode of operation 1b = XT2 is off if it is not used as a source for ACLK, MCLK, or SMCLK or is not used as a reference source required for FLL operation 7-6 XT1DRIVE RW 3h The XT1 oscillator current can be adjusted to its drive needs. Initially, it starts with the highest supply current for reliable and quick startup. If needed, user software can reduce the drive strength. 00b = Lowest current consumption for XT1 LF mode. XT1 oscillator operating range in HF mode is 4 MHz to 8 MHz. 01b = Increased drive strength for XT1 LF mode. XT1 oscillator operating range in HF mode is 8 MHz to 16 MHz. 10b = Increased drive capability for XT1 LF mode. XT1 oscillator operating range in HF mode is 16 MHz to 24 MHz. 11b = Maximum drive capability and maximum current consumption for XT1 LF mode. XT1 oscillator operating range in HF mode is 24 MHz to 32 MHz. 5 XTS RW 0h XT1 mode select 0b = Low-frequency mode. XCAP bits define the capacitance at the XIN and XOUT pins. 1b = High-frequency mode. XCAP bits are not used. 4 XT1BYPASS RW 0h XT1 bypass select 0b = XT1 sourced from external crystal 1b = XT1 sourced from external clock signal SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Unified Clock System (UCS) Copyright © 2008–2015, Texas Instruments Incorporated 181 UCS Registers www.ti.com Table 5-9. UCSCTL6 Register Description (continued) Bit Field Type Reset Description 3-2 XCAP RW 3h Oscillator capacitor selection. These bits select the capacitors applied to the LF crystal or resonator in the LF mode (XTS = 0). The effective capacitance (seen by the crystal) is C(eff) ≈ (C(XIN) + 2 pF) / 2. It is assumed that C(XIN) = C(XOUT) and that a parasitic capacitance of 2 pF is added by the package and the printed circuit board. For details about the typical internal and the effective capacitors, see the device-specific data sheet. 1 SMCLKOFF RW 0h SMCLK off. This bit turns off the SMCLK. 0b = SMCLK on 1b = SMCLK off 0 XT1OFF RW 1h XT1 off. This bit turns off the XT1. 0b = XT1 is on if XT1 is selected by the port selection and XT1 is not in bypass mode of operation. 1b = XT1 is off if it is not used as a source for ACLK, MCLK, or SMCLK or is not used as a reference source required for FLL operation. 182 Unified Clock System (UCS) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated UCS Registers www.ti.com 5.4.8 UCSCTL7 Register Unified Clock System Control 7 Register Figure 5-13. UCSCTL7 Register 15 14 13 r0 rw-0 6 5 Reserved r0 7 r0 11 rw-(0) rw-(1) Reserved Reserved (1) 12 r0 r0 10 9 rw-(1) r-1 Reserved 8 Reserved r-1 4 3 2 1 0 Reserved XT2OFFG (1) XT1HFOFFG (1) XT1LFOFFG DCOFFG rw-(0) rw-(0) rw-(0) rw-(1) rw-(1) Not available on all devices. When not available, this bit is reserved. Table 5-10. UCSCTL7 Register Description Bit Field Type Reset Description 15-14 Reserved R 0h Reserved. Always reads as 0. 13-12 Reserved RW 0h Reserved. Must always be written with 0. 11-10 Reserved RW 3h Reserved. The states of these bits should be ignored. 9-8 Reserved R 3h Reserved. The states of these bits should be ignored. 7-5 Reserved R 0h Reserved. Always reads as 0. 4 Reserved RW 0h Reserved. The state of this bit should be ignored. 3 XT2OFFG (1) RW 0h XT2 oscillator fault flag. If this bit is set, the OFIFG flag is also set. XT2OFFG is set if a XT2 fault condition exists. XT2OFFG can be cleared by software. If the XT2 fault condition still remains, XT2OFFG is set. 0b = No fault condition occurred after the last reset. 1b = XT2 fault. An XT2 fault occurred after the last reset. 2 XT1HFOFFG (1) RW 0h XT1 oscillator fault flag (HF mode). If this bit is set, the OFIFG flag is also set. XT1HFOFFG is set if a XT1 fault condition exists. XT1HFOFFG can be cleared by software. If the XT1 fault condition still remains, XT1HFOFFG is set. 0b = No fault condition occurred after the last reset. 1b = XT1 fault. An XT1 fault occurred after the last reset. 1 XT1LFOFFG RW 1h XT1 oscillator fault flag (LF mode). If this bit is set, the OFIFG flag is also set. XT1LFOFFG is set if a XT1 fault condition exists. XT1LFOFFG can be cleared by software. If the XT1 fault condition still remains, XT1LFOFFG is set. 0b = No fault condition occurred after the last reset. 1b = XT1 fault (LF mode). A XT1 fault occurred after the last reset. 0 DCOFFG RW 1h DCO fault flag. If this bit is set, the OFIFG flag is also set. The DCOFFG bit is set if DCO = {0} or DCO = {31}. DCOFFG can be cleared by software. If the DCO fault condition still remains, DCOFFG is set. 0b = No fault condition occurred after the last reset. 1b = DCO fault. A DCO fault occurred after the last reset. (1) Not available on all devices. When not available, this bit is reserved. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Unified Clock System (UCS) Copyright © 2008–2015, Texas Instruments Incorporated 183 UCS Registers www.ti.com 5.4.9 UCSCTL8 Register Unified Clock System Control 8 Register Figure 5-14. UCSCTL8 Register 15 14 13 r0 r0 r0 6 5 12 11 10 r0 r0 rw-(1) Reserved 7 Reserved r0 r0 r0 9 8 Reserved rw-(1) rw-(1) 4 3 2 1 0 Reserved MODOSCREQ EN SMCLKREQEN MCLKREQEN ACLKREQEN rw-(0) rw-(0) rw-(1) rw-(1) rw-(1) Table 5-11. UCSCTL8 Register Description Bit Field Type Reset Description 15-11 Reserved R 0h Reserved. Always reads as 0. 10-8 Reserved R 0h Reserved. Must always be written as 1. 7-5 Reserved R 0h Reserved. Always reads as 0. 4 Reserved R 0h Reserved. Must always be written as 0. 3 MODOSCREQEN RW 0h MODOSC clock request enable. Setting this enables conditional module requests for MODOSC. 0b = MODOSC conditional requests are disabled. 1b = MODOSC conditional requests are enabled. 2 SMCLKREQEN RW 1h SMCLK clock request enable. Setting this enables conditional module requests for SMCLK 0b = SMCLK conditional requests are disabled. 1b = SMCLK conditional requests are enabled. 1 MCLKREQEN RW 1h MCLK clock request enable. Setting this enables conditional module requests for MCLK 0b = MCLK conditional requests are disabled. 1b = MCLK conditional requests are enabled. 0 ACLKREQEN RW 1h ACLK clock request enable. Setting this enables conditional module requests for ACLK 0b = ACLK conditional requests are disabled. 1b = ACLK conditional requests are enabled. 184 Unified Clock System (UCS) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated UCS Registers www.ti.com 5.4.10 UCSCTL9 Register Unified Clock System Control 9 Register This register is not available on all devices. See the device-specific data sheet. Figure 5-15. UCSCTL9 Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 4 3 2 1 0 Reserved r0 r0 r0 7 6 5 Reserved r0 r0 r0 XT2BYPASSLV XT1BYPASSLV r0 r0 r0 rw-0 rw-0 Table 5-12. UCSCTL9 Register Description Bit Field Type Reset Description 15-2 Reserved R 0h Reserved. Always reads as 0. 1 XT2BYPASSLV RW 0h Selects XT2 bypass input swing level. Must be set for reduced swing operation. 0b = Input range from 0 to DVCC 1b = Input range from 0 to DVIO 0 XT1BYPASSLV RW 0h Selects XT1 bypass input swing level. Must be set for reduced swing operation. 0b = Input range from 0 to DVCC 1b = Input range from 0 to DVIO SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Unified Clock System (UCS) Copyright © 2008–2015, Texas Instruments Incorporated 185 Chapter 6 SLAU208O – June 2008 – Revised May 2015 CPUX This chapter describes the extended MSP430X 16-bit RISC CPU (CPUX) with 1MB memory access, its addressing modes, and instruction set. NOTE: The MSP430X CPUX implemented on this device family, formally called CPUXV2, has in some cases, slightly different cycle counts from the MSP430X CPUX implemented on the 2xx and 4xx families. 186 Topic ........................................................................................................................... 6.1 6.2 6.3 6.4 6.5 6.6 MSP430X CPU (CPUX) Introduction .................................................................... Interrupts......................................................................................................... CPU Registers .................................................................................................. Addressing Modes ............................................................................................ MSP430 and MSP430X Instructions .................................................................... Instruction Set Description ................................................................................ CPUX Page 187 189 190 196 213 229 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MSP430X CPU (CPUX) Introduction www.ti.com 6.1 MSP430X CPU (CPUX) Introduction The MSP430X CPU incorporates features specifically designed for modern programming techniques, such as calculated branching, table processing, and the use of high-level languages such as C. The MSP430X CPU can address a 1MB address range without paging. The MSP430X CPU is completely backward compatible with the MSP430 CPU. The MSP430X CPU features include: • RISC architecture • Orthogonal architecture • Full register access including program counter (PC), status register (SR), and stack pointer (SP) • Single-cycle register operations • Large register file reduces fetches to memory. • 20-bit address bus allows direct access and branching throughout the entire memory range without paging. • 16-bit data bus allows direct manipulation of word-wide arguments. • Constant generator provides the six most often used immediate values and reduces code size. • Direct memory-to-memory transfers without intermediate register holding • Byte, word, and 20-bit address-word addressing The block diagram of the MSP430X CPU is shown in Figure 6-1. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 187 MSP430X CPU (CPUX) Introduction www.ti.com MDB − Memory Data Bus 19 Memory Address Bus − MAB 0 16 15 R0/PC Program Counter 0 R1/SP Pointer Stack 0 R2/SR Status Register R3/CG2 Constant Generator R4 General Purpose R5 General Purpose R6 General Purpose R7 General Purpose R8 General Purpose R9 General Purpose R10 General Purpose R11 General Purpose R12 General Purpose R13 General Purpose R14 General Purpose R15 General Purpose 20 16 Zero, Z Carry, C Overflow,V Negative,N dst src 16/20-bit ALU MCLK Figure 6-1. MSP430X CPU Block Diagram 188 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Interrupts www.ti.com 6.2 Interrupts The MSP430X has the following interrupt structure: • Vectored interrupts with no polling necessary • Interrupt vectors are located downward from address 0FFFEh. The interrupt vectors contain 16-bit addresses that point into the lower 64KB memory. This means all interrupt handlers must start in the lower 64KB memory. During an interrupt, the program counter (PC) and the status register (SR) are pushed onto the stack as shown in Figure 6-2. The MSP430X architecture stores the complete 20-bit PC value efficiently by appending the PC bits 19:16 to the stored SR value automatically on the stack. When the RETI instruction is executed, the full 20-bit PC is restored making return from interrupt to any address in the memory range possible. Item n-1 SPold PC.15:0 SP PC.19:16 SR.11:0 Figure 6-2. PC Storage on the Stack for Interrupts SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 189 CPU Registers 6.3 www.ti.com CPU Registers The CPU incorporates 16 registers (R0 through R15). Registers R0, R1, R2, and R3 have dedicated functions. Registers R4 through R15 are working registers for general use. 6.3.1 Program Counter (PC) The 20-bit Program Counter (PC, also called R0) points to the next instruction to be executed. Each instruction uses an even number of bytes (2, 4, 6, or 8 bytes), and the PC is incremented accordingly. Instruction accesses are performed on word boundaries, and the PC is aligned to even addresses. Figure 6-3 shows the PC. 19 16 15 1 Program Counter Bits 19 to 1 0 0 Figure 6-3. Program Counter The PC can be addressed with all instructions and addressing modes. A few examples: MOV.W #LABEL,PC ; Branch to address LABEL (lower 64KB) MOVA #LABEL,PC ; Branch to address LABEL (1MB memory) MOV.W LABEL,PC ; Branch to address in word LABEL ; (lower 64KB) MOV.W @R14,PC ; Branch indirect to address in ; R14 (lower 64KB) ADDA #4,PC ; Skip two words (1MB memory) The BR and CALL instructions reset the upper four PC bits to 0. Only addresses in the lower 64KB address range can be reached with the BR or CALL instruction. When branching or calling, addresses beyond the lower 64KB range can only be reached using the BRA or CALLA instructions. Also, any instruction to directly modify the PC does so according to the used addressing mode. For example, MOV.W #value,PC clears the upper four bits of the PC, because it is a .W instruction. The PC is automatically stored on the stack with CALL (or CALLA) instructions and during an interrupt service routine. Figure 6-4 shows the storage of the PC with the return address after a CALLA instruction. A CALL instruction stores only bits 15:0 of the PC. SPold Item n PC.19:16 SP PC.15:0 Figure 6-4. PC Storage on the Stack for CALLA The RETA instruction restores bits 19:0 of the PC and adds 4 to the stack pointer (SP). The RET instruction restores bits 15:0 to the PC and adds 2 to the SP. 6.3.2 Stack Pointer (SP) The 20-bit Stack Pointer (SP, also called R1) is used by the CPU to store the return addresses of subroutine calls and interrupts. It uses a predecrement, postincrement scheme. In addition, the SP can be used by software with all instructions and addressing modes. Figure 6-5 shows the SP. The SP is initialized into RAM by the user, and is always aligned to even addresses. 190 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated CPU Registers www.ti.com Figure 6-6 shows the stack usage. Figure 6-7 shows the stack usage when 20-bit address words are pushed. 19 1 Stack Pointer Bits 19 to 1 MOV.W MOV.W PUSH POP 2(SP),R6 R7,0(SP) #0123h R8 ; ; ; ; 0 0 Copy Item I2 to R6 Overwrite TOS with R7 Put 0123h on stack R8 = 0123h Figure 6-5. Stack Pointer Address I1 0xxxh 0xxxh - 2 I2 0xxxh - 4 I3 SP PUSH #0123h POP R8 I1 I1 I2 I2 I3 I3 SP 0123h 0xxxh - 6 SP 0xxxh - 8 Figure 6-6. Stack Usage SPold Item n-1 Item.19:16 SP Item.15:0 Figure 6-7. PUSHX.A Format on the Stack The special cases of using the SP as an argument to the PUSH and POP instructions are described and shown in Figure 6-8. PUSH SP POP SP SPold SP1 SPold SP2 The stack pointer is changed after a PUSH SP instruction. SP1 The stack pointer is not changed after a POP SP instruction. The POP SP instruction places SP1 into the stack pointer SP (SP2 = SP1) Figure 6-8. PUSH SP, POP SP Sequence SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 191 CPU Registers www.ti.com 6.3.3 Status Register (SR) The 16-bit Status Register (SR, also called R2), used as a source or destination register, can only be used in register mode addressed with word instructions. The remaining combinations of addressing modes are used to support the constant generator. Figure 6-9 shows the SR bits. Do not write 20-bit values to the SR. Unpredictable operation can result. 15 9 Reserved 8 V 7 SCG1 0 OSC CPU SCG0 GIE OFF OFF N Z C rw-0 Figure 6-9. SR Bits Table 6-1 describes the SR bits. Table 6-1. SR Bit Description Bit Description Reserved Reserved V Overflow. This bit is set when the result of an arithmetic operation overflows the signed-variable range. ADD(.B), ADDX(.B,.A), ADDC(.B), ADDCX(.B.A), ADDA Set when: positive + positive = negative negative + negative = positive otherwise reset SUB(.B), SUBX(.B,.A), SUBC(.B),SUBCX(.B,.A), SUBA, CMP(.B), CMPX(.B,.A), CMPA Set when: positive – negative = negative negative – positive = positive otherwise reset SCG1 System clock generator 1. This bit may be used to enable or disable functions in the clock system depending on the device family; for example, DCO bias enable or disable. SCG0 System clock generator 0. This bit may be used to enable or disable functions in the clock system depending on the device family; for example, FLL enable or disable. OSCOFF Oscillator off. When this bit is set, it turns off the LFXT1 crystal oscillator when LFXT1CLK is not used for MCLK or SMCLK. CPUOFF CPU off. When this bit is set, it turns off the CPU. GIE General interrupt enable. When this bit is set, it enables maskable interrupts. When it is reset, all maskable interrupts are disabled. N Negative. This bit is set when the result of an operation is negative and cleared when the result is positive. Z Zero. This bit is set when the result of an operation is 0 and cleared when the result is not 0. C Carry. This bit is set when the result of an operation produced a carry and cleared when no carry occurred. NOTE: Bit manipulations of the SR should be done by the following instructions: MOV, BIS, and BIC. 192 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated CPU Registers www.ti.com 6.3.4 Constant Generator Registers (CG1 and CG2) Six commonly-used constants are generated with the constant generator registers R2 (CG1) and R3 (CG2), without requiring an additional 16-bit word of program code. The constants are selected with the source register addressing modes (As), as described in Table 6-2. Table 6-2. Values of Constant Generators CG1, CG2 Register As Constant Remarks R2 00 – Register mode R2 01 (0) Absolute address mode R2 10 00004h +4, bit processing R2 11 00008h +8, bit processing R3 00 00000h 0, word processing R3 01 00001h +1 R3 10 00002h +2, bit processing R3 11 FFh, FFFFh, FFFFFh –1, word processing The constant generator advantages are: • No special instructions required • No additional code word for the six constants • No code memory access required to retrieve the constant The assembler uses the constant generator automatically if one of the six constants is used as an immediate source operand. Registers R2 and R3, used in the constant mode, cannot be addressed explicitly; they act as source-only registers. 6.3.4.1 Constant Generator – Expanded Instruction Set The RISC instruction set of the MSP430 has only 27 instructions. However, the constant generator allows the MSP430 assembler to support 24 additional emulated instructions. For example, the single-operand instruction: CLR dst is emulated by the double-operand instruction with the same length: MOV R3,dst where the #0 is replaced by the assembler, and R3 is used with As = 00. INC dst is replaced by: ADD #1,dst SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 193 CPU Registers www.ti.com 6.3.5 General-Purpose Registers (R4 to R15) The 12 CPU registers (R4 to R15) contain 8-bit, 16-bit, or 20-bit values. Any byte-write to a CPU register clears bits 19:8. Any word-write to a register clears bits 19:16. The only exception is the SXT instruction. The SXT instruction extends the sign through the complete 20-bit register. Figure 6-10 through Figure 6-14 show the handling of byte, word, and address-word data. Note the reset of the leading most significant bits (MSBs) if a register is the destination of a byte or word instruction. Figure 6-10 shows byte handling (8-bit data, .B suffix). The handling is shown for a source register and a destination memory byte and for a source memory byte and a destination register. Register-Byte Operation Byte-Register Operation High Byte Low Byte 19 16 15 0 87 Un- Unused Register used High Byte Memory 19 16 15 Memory Low Byte Unused 87 0 Unused Operation Register Operation Memory 0 0 Register Figure 6-10. Register-Byte and Byte-Register Operation Figure 6-11 and Figure 6-12 show 16-bit word handling (.W suffix). The handling is shown for a source register and a destination memory word and for a source memory word and a destination register. Register-Word Operation High Byte Low Byte 19 16 15 0 87 UnRegister used Memory Operation Memory Figure 6-11. Register-Word Operation 194 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated CPU Registers www.ti.com Word-Register Operation High Byte Low Byte Memory 19 16 15 Unused 87 0 Register Operation Register 0 Figure 6-12. Word-Register Operation Figure 6-13 and Figure 6-14 show 20-bit address-word handling (.A suffix). The handling is shown for a source register and a destination memory address-word and for a source memory address-word and a destination register. Register - Ad dress-Word Operation High Byte Low Byte 19 16 15 0 87 Register Memory +2 Unused Memory Operation Memory +2 0 Memory Figure 6-13. Register – Address-Word Operation SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 195 Addressing Modes www.ti.com Address-Word - Register Operation High Byte Low Byte 19 16 15 0 87 Memory +2 Unused Memory Register Operation Register Figure 6-14. Address-Word – Register Operation 6.4 Addressing Modes Seven addressing modes for the source operand and four addressing modes for the destination operand use 16-bit or 20-bit addresses (see Table 6-3). The MSP430 and MSP430X instructions are usable throughout the entire 1MB memory range. Table 6-3. Source and Destination Addressing As, Ad Addressing Mode Syntax Description 00, 0 Register Rn 01, 1 Indexed X(Rn) (Rn + X) points to the operand. X is stored in the next word, or stored in combination of the preceding extension word and the next word. 01, 1 Symbolic ADDR (PC + X) points to the operand. X is stored in the next word, or stored in combination of the preceding extension word and the next word. Indexed mode X(PC) is used. 01, 1 Absolute &ADDR The word following the instruction contains the absolute address. X is stored in the next word, or stored in combination of the preceding extension word and the next word. Indexed mode X(SR) is used. 10, – Indirect Register @Rn Rn is used as a pointer to the operand. 11, – Indirect Autoincrement @Rn+ Rn is used as a pointer to the operand. Rn is incremented afterwards by 1 for .B instructions, by 2 for .W instructions, and by 4 for .A instructions. 11, – Immediate #N Register contents are operand. N is stored in the next word, or stored in combination of the preceding extension word and the next word. Indirect autoincrement mode @PC+ is used. The seven addressing modes are explained in detail in the following sections. Most of the examples show the same addressing mode for the source and destination, but any valid combination of source and destination addressing modes is possible in an instruction. NOTE: Use of Labels EDE, TONI, TOM, and LEO Throughout MSP430 documentation, EDE, TONI, TOM, and LEO are used as generic labels. They are only labels and have no special meaning. 196 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Addressing Modes www.ti.com 6.4.1 Register Mode Operation: Length: Comment: Byte operation: Word operation: Address-word operation: SXT exception: Example: The operand is the 8-, 16-, or 20-bit content of the used CPU register. One, two, or three words Valid for source and destination Byte operation reads only the eight least significant bits (LSBs) of the source register Rsrc and writes the result to the eight LSBs of the destination register Rdst. The bits Rdst.19:8 are cleared. The register Rsrc is not modified. Word operation reads the 16 LSBs of the source register Rsrc and writes the result to the 16 LSBs of the destination register Rdst. The bits Rdst.19:16 are cleared. The register Rsrc is not modified. Address-word operation reads the 20 bits of the source register Rsrc and writes the result to the 20 bits of the destination register Rdst. The register Rsrc is not modified The SXT instruction is the only exception for register operation. The sign of the low byte in bit 7 is extended to the bits Rdst.19:8. BIS.W R5,R6 ; This instruction logically ORs the 16-bit data contained in R5 with the 16-bit contents of R6. R6.19:16 is cleared. Before: After: Address Space 21036h 21034h Register Address Space xxxxh R5 AA550h 21036h xxxxh D506h R6 11111h 21034h D506h PC Register PC R5 AA550h R6 0B551h A550h.or.1111h = B551h Example: BISX.A R5,R6 ; This instruction logically ORs the 20-bit data contained in R5 with the 20-bit contents of R6. The extension word contains the A/L bit for 20-bit data. The instruction word uses byte mode with bits A/L:B/W = 01. The result of the instruction is: Before: After: Address Space Register Address Space 21036h xxxxh R5 AA550h 21036h xxxxh 21034h D546h R6 11111h 21034h D546h 21032h 1800h 21032h 1800h PC Register PC R5 AA550h R6 BB551h AA550h.or.11111h = BB551h SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 197 Addressing Modes www.ti.com 6.4.2 Indexed Mode The Indexed mode calculates the address of the operand by adding the signed index to a CPU register. The Indexed mode has four addressing possibilities: • Indexed mode in lower 64KB memory • MSP430 instruction with Indexed mode addressing memory above the lower 64KB memory • MSP430X instruction with Indexed mode • MSP430X address instructions with Indexed mode 6.4.2.1 Indexed Mode in Lower 64KB Memory If the CPU register Rn points to an address in the lower 64KB of the memory range, the calculated memory address bits 19:16 are cleared after the addition of the CPU register Rn and the signed 16-bit index. This means the calculated memory address is always located in the lower 64KB and does not overflow or underflow out of the lower 64KB memory space. The RAM and the peripheral registers can be accessed this way and existing MSP430 software is usable without modifications as shown in Figure 6-15. Lower 64 KB Rn.19:16 = 0 19 16 15 FFFFF 0 CPU Register Rn 0 S 16-bit byte index 16-bit signed index Rn.19:0 00000 Lower 64KB 10000 0FFFF 16-bit signed add 0 Memory address Figure 6-15. Indexed Mode in Lower 64KB Length: Operation: Comment: Example: Source: Destination: 198 Two or three words The signed 16-bit index is located in the next word after the instruction and is added to the CPU register Rn. The resulting bits 19:16 are cleared giving a truncated 16-bit memory address, which points to an operand address in the range 00000h to 0FFFFh. The operand is the content of the addressed memory location. Valid for source and destination. The assembler calculates the register index and inserts it. ADD.B 1000h(R5),0F000h(R6); This instruction adds the 8-bit data contained in source byte 1000h(R5) and the destination byte 0F000h(R6) and places the result into the destination byte. Source and destination bytes are both located in the lower 64KB due to the cleared bits 19:16 of registers R5 and R6. The byte pointed to by R5 + 1000h results in address 0479Ch + 1000h = 0579Ch after truncation to a 16-bit address. The byte pointed to by R6 + F000h results in address 01778h + F000h = 00778h after truncation to a 16-bit address. CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Addressing Modes www.ti.com Before: After: Address Space 6.4.2.2 Register Address Space Register 1103Ah xxxxh R5 0479Ch 1103Ah xxxxh PC R5 0479Ch 11038h F000h R6 01778h 11038h F000h R6 01778h 11036h 1000h 11036h 1000h 11034h 55D6h 11034h 55D6h 0077Ah xxxxh 0077Ah xxxxh 00778h xx45h 01778h +F000h 00778h 00778h xx77h 0579Eh xxxxh 0579Eh xxxxh 0579Ch xx32h 0479Ch +1000h 0579Ch 0579Ch xx32h PC 32h +45h 77h src dst Sum MSP430 Instruction With Indexed Mode in Upper Memory If the CPU register Rn points to an address above the lower 64KB memory, the Rn bits 19:16 are used for the address calculation of the operand. The operand may be located in memory in the range Rn ±32KB, because the index, X, is a signed 16-bit value. In this case, the address of the operand can overflow or underflow into the lower 64KB memory space (see Figure 6-16 and Figure 6-17). Upper Memory Rn.19:16 > 0 19 FFFFF 16 15 0 1 ... 15 Rn.19:0 CPU Register Rn Rn ± 32 KB S Lower 64 KB 10000 0FFFF 00000 S 16-bit byte index 16-bit signed index (sign extended to 20 bits) 20-bit signed add Memory address Figure 6-16. Indexed Mode in Upper Memory SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 199 Addressing Modes www.ti.com Rn.19:0 10000 0,FFFF Rn.19:0 Rn.19:0 Lower 64 KB Rn.19:0 ±32 KB ±32 KB FFFFF 0000C Figure 6-17. Overflow and Underflow for Indexed Mode Length: Operation: Comment: Example: Source: Destination: 200 Two or three words The sign-extended 16-bit index in the next word after the instruction is added to the 20 bits of the CPU register Rn. This delivers a 20-bit address, which points to an address in the range 0 to FFFFFh. The operand is the content of the addressed memory location. Valid for source and destination. The assembler calculates the register index and inserts it. ADD.W 8346h(R5),2100h(R6) ; This instruction adds the 16-bit data contained in the source and the destination addresses and places the 16-bit result into the destination. Source and destination operand can be located in the entire address range. The word pointed to by R5 + 8346h. The negative index 8346h is sign extended, which results in address 23456h + F8346h = 1B79Ch. The word pointed to by R6 + 2100h results in address 15678h + 2100h = 17778h. CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Addressing Modes www.ti.com Before: After: Address Space Register Address Space Register 1103Ah xxxxh R5 23456h 1103Ah xxxxh PC R5 23456h 11038h 2100h R6 15678h 11038h 2100h R6 15678h 11036h 8346h 11036h 8346h 11034h 5596h 11034h 5596h 1777Ah xxxxh 1777Ah xxxxh 17778h 2345h 15678h +02100h 17778h 17778h 7777h 1B79Eh xxxxh 1B79Eh xxxxh 1B79Ch 5432h 23456h +F8346h 1B79Ch 1B79Ch 5432h PC 05432h +02345h 07777h src dst Sum Figure 6-18. Example for Indexed Mode 6.4.2.3 MSP430X Instruction With Indexed Mode When using an MSP430X instruction with Indexed mode, the operand can be located anywhere in the range of Rn + 19 bits. Length: Operation: Comment: Example: Source: Destination: Three or four words The operand address is the sum of the 20-bit CPU register content and the 20-bit index. The 4 MSBs of the index are contained in the extension word; the 16 LSBs are contained in the word following the instruction. The CPU register is not modified Valid for source and destination. The assembler calculates the register index and inserts it. ADDX.A 12346h(R5),32100h(R6) ; This instruction adds the 20-bit data contained in the source and the destination addresses and places the result into the destination. Two words pointed to by R5 + 12346h which results in address 23456h + 12346h = 3579Ch. Two words pointed to by R6 + 32100h which results in address 45678h + 32100h = 77778h. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 201 Addressing Modes www.ti.com The extension word contains the MSBs of the source index and of the destination index and the A/L bit for 20-bit data. The instruction word uses byte mode due to the 20-bit data length with bits A/L:B/W = 01. Before: After: Address Space 6.4.2.4 2103Ah xxxxh 21038h 2100h 21036h Register Address Space Register 23456h 2103Ah xxxxh PC R5 23456h 45678h 21038h 2100h R6 45678h 2346h 21036h 2346h 21034h 55D6h 21034h 55D6h 21032h 1883h 21032h 1883h 7777Ah 0001h 7777Ah 0007h 77778h 2345h 45678h +32100h 77778h 77778h 7777h 3579Eh 0006h 3579Eh 0006h 3579Ch 5432h 23456h +12346h 3579Ch 3579Ch 5432h R5 R6 PC 65432h +12345h 77777h src dst Sum MSP430X Address Instructions With Indexed Mode When using an MSP430X Address Instruction with Indexed mode, the operand is located in memory in the range Rn ±32KB, because the index, X, is a signed 16-bit value. Length: Operation: Comment: Example: MOVA 8002h(R5),R6 ; // R5 = 0x100 Source: This instruction loads the 20-bit data contained in the source address into destination register. Two words pointed to by R5 + 8002h and R5 + 8002h + 2h which results in address 00100h + F8002h (+2h) = F8102h and F8104h. Register R6 Destination: 202 Two words The sign-extended 16-bit index in the next word after the instruction is added to the 20 bits of the CPU register Rn. This delivers a 20-bit address, which points to an address in the range 0 to FFFFFh. The operand is the content of the addressed memory location. Valid for source and destination. The assembler calculates the register index and inserts it. CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Addressing Modes www.ti.com 6.4.3 Symbolic Mode The Symbolic mode calculates the address of the operand by adding the signed index to the PC. The Symbolic mode has three addressing possibilities: • Symbolic mode in lower 64KB of memory • MSP430 instruction with Symbolic mode addressing memory above the lower 64KB of memory. • MSP430X instruction with Symbolic mode 6.4.3.1 Symbolic Mode in Lower 64KB If the PC points to an address in the lower 64KB of the memory range, the calculated memory address bits 19:16 are cleared after the addition of the PC and the signed 16-bit index. This means the calculated memory address is always located in the lower 64KB and does not overflow or underflow out of the lower 64KB memory space. The RAM and the peripheral registers can be accessed this way and existing MSP430 software is usable without modifications as shown in Figure 6-19. Lower 64 KB PC.19:16 = 0 19 16 15 FFFFF 0 Program counter PC 0 S Lower 64 KB 10000 0FFFF PC.19:0 00000 16-bit byte index 16-bit signed PC index 16-bit signed add 0 Memory address Figure 6-19. Symbolic Mode Running in Lower 64KB Operation: Length: Comment: Example: Source: Destination: The signed 16-bit index in the next word after the instruction is added temporarily to the PC. The resulting bits 19:16 are cleared giving a truncated 16-bit memory address, which points to an operand address in the range 00000h to 0FFFFh. The operand is the content of the addressed memory location. Two or three words Valid for source and destination. The assembler calculates the PC index and inserts it. ADD.B EDE,TONI ; This instruction adds the 8-bit data contained in source byte EDE and destination byte TONI and places the result into the destination byte TONI. Bytes EDE and TONI and the program are located in the lower 64KB. Byte EDE located at address 0579Ch, pointed to by PC + 4766h, where the PC index 4766h is the result of 0579Ch – 01036h = 04766h. Address 01036h is the location of the index for this example. Byte TONI located at address 00778h, pointed to by PC + F740h, is the truncated 16-bit result of 00778h – 1038h = FF740h. Address 01038h is the location of the index for this example. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 203 Addressing Modes www.ti.com Before: After: Address Space 6.4.3.2 Address Space 0103Ah xxxxh 0103Ah xxxxh 01038h F740h 01038h F740h 01036h 4766h 01036h 4766h 01034h 05D0h 01034h 50D0h 0077Ah xxxxh 0077Ah xxxxh 00778h xx45h 01038h +0F740h 00778h 00778h xx77h 0579Eh xxxxh 0579Eh xxxxh 0579Ch xx32h 01036h +04766h 0579Ch 0579Ch xx32h PC PC 32h +45h 77h src dst Sum MSP430 Instruction With Symbolic Mode in Upper Memory If the PC points to an address above the lower 64KB memory, the PC bits 19:16 are used for the address calculation of the operand. The operand may be located in memory in the range PC ± 32KB, because the index, X, is a signed 16-bit value. In this case, the address of the operand can overflow or underflow into the lower 64KB memory space as shown in Figure 6-20 and Figure 6-21. Upper Memory PC.19:16 > 0 19 FFFFF 16 15 0 Program counter PC 1 ... 15 PC.19:0 PC ±32 KB 10000 0FFFF 00000 Lower 64 KB S S 16-bit byte index 16-bit signed PC index (sign extended to 20 bits) 20-bit signed add Memory address Figure 6-20. Symbolic Mode Running in Upper Memory 204 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Addressing Modes www.ti.com PC.19:0 PC.19:0 PC.19:0 Lower 64 KB 10000 0FFFF PC.19:0 ±32 KB ±32 KB FFFFF 0000C Figure 6-21. Overflow and Underflow for Symbolic Mode Length: Operation: Comment: Two or three words The sign-extended 16-bit index in the next word after the instruction is added to the 20 bits of the PC. This delivers a 20-bit address, which points to an address in the range 0 to FFFFFh. The operand is the content of the addressed memory location. Valid for source and destination. The assembler calculates the PC index and inserts it Example: ADD.W EDE,&TONI ; Source: This instruction adds the 16-bit data contained in source word EDE and destination word TONI and places the 16-bit result into the destination word TONI. For this example, the instruction is located at address 2F034h. Word EDE at address 3379Ch, pointed to by PC + 4766h, which is the 16-bit result of 3379Ch – 2F036h = 04766h. Address 2F036h is the location of the index for this example. Word TONI located at address 00778h pointed to by the absolute address 00778h Destination: SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 205 Addressing Modes www.ti.com Before: After: Address Space 6.4.3.3 Address Space 2F03Ah xxxxh 2F03Ah xxxxh 2F038h 0778h 2F038h 0778h 2F036h 4766h 2F036h 4766h 2F034h 5092h 2F034h 5092h 3379Eh xxxxh 3379Eh xxxxh 3379Ch 5432h 3379Ch 5432h 0077Ah xxxxh 0077Ah xxxxh 00778h 2345h 00778h 7777h PC 2F036h +04766h 3379Ch PC 5432h +2345h 7777h src dst Sum MSP430X Instruction With Symbolic Mode When using an MSP430X instruction with Symbolic mode, the operand can be located anywhere in the range of PC + 19 bits. Length: Operation: Comment: Example: Source: Destination: 206 Three or four words The operand address is the sum of the 20-bit PC and the 20-bit index. The 4 MSBs of the index are contained in the extension word; the 16 LSBs are contained in the word following the instruction. Valid for source and destination. The assembler calculates the register index and inserts it. ADDX.B EDE,TONI ; This instruction adds the 8-bit data contained in source byte EDE and destination byte TONI and places the result into the destination byte TONI. Byte EDE located at address 3579Ch, pointed to by PC + 14766h, is the 20-bit result of 3579Ch – 21036h = 14766h. Address 21036h is the address of the index in this example. Byte TONI located at address 77778h, pointed to by PC + 56740h, is the 20-bit result of 77778h – 21038h = 56740h. Address 21038h is the address of the index in this example. CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Addressing Modes www.ti.com Before: Address Space After: Address Space 2103Ah xxxxh 2103Ah xxxxh 21038h 6740h 21038h 6740h 21036h 4766h 21036h 4766h 21034h 50D0h 21034h 50D0h 21032h 18C5h 21032h 18C5h 7777Ah xxxxh 7777Ah xxxxh 77778h xx45h 21038h +56740h 77778h 77778h xx77h 3579Eh xxxxh 3579Eh xxxxh 3579Ch xx32h 21036h +14766h 3579Ch 3579Ch xx32h PC PC 32h +45h 77h src dst Sum 6.4.4 Absolute Mode The Absolute mode uses the contents of the word following the instruction as the address of the operand. The Absolute mode has two addressing possibilities: • Absolute mode in lower 64KB memory • MSP430X instruction with Absolute mode 6.4.4.1 Absolute Mode in Lower 64KB If an MSP430 instruction is used with Absolute addressing mode, the absolute address is a 16-bit value and, therefore, points to an address in the lower 64KB of the memory range. The address is calculated as an index from 0 and is stored in the word following the instruction The RAM and the peripheral registers can be accessed this way and existing MSP430 software is usable without modifications. Length: Operation: Comment: Two or three words The operand is the content of the addressed memory location. Valid for source and destination. The assembler calculates the index from 0 and inserts it. Example: ADD.W &EDE,&TONI ; Source: Destination: This instruction adds the 16-bit data contained in the absolute source and destination addresses and places the result into the destination. Word at address EDE Word at address TONI SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 207 Addressing Modes www.ti.com Before: Address Space Address Space xxxxh xxxxh 2103Ah 21038h 7778h 21038h 7778h 2103Ah 6.4.4.2 After: 21036h 579Ch 21034h 5292h xxxxh 0777Ah xxxxh 07778h 2345h 07778h 7777h 0579Eh xxxxh 0579Eh xxxxh 0579Ch 5432h 0579Ch 5432h 21036h 579Ch 21034h 5292h 0777Ah PC PC 5432h +2345h 7777h src dst Sum MSP430X Instruction With Absolute Mode If an MSP430X instruction is used with Absolute addressing mode, the absolute address is a 20-bit value and, therefore, points to any address in the memory range. The address value is calculated as an index from 0. The 4 MSBs of the index are contained in the extension word, and the 16 LSBs are contained in the word following the instruction. 208 Length: Operation: Comment: Three or four words The operand is the content of the addressed memory location. Valid for source and destination. The assembler calculates the index from 0 and inserts it. Example: ADDX.A &EDE,&TONI ; Source: Destination: This instruction adds the 20-bit data contained in the absolute source and destination addresses and places the result into the destination. Two words beginning with address EDE Two words beginning with address TONI CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Addressing Modes www.ti.com Before: After: Address Space Address Space 2103Ah xxxxh 2103Ah xxxxh 21038h 7778h 21038h 7778h 21036h 579Ch 21036h 579Ch 21034h 52D2h 21034h 52D2h 21032h 1987h 21032h 1987h 7777Ah 0001h 7777Ah 0007h 77778h 2345h 77778h 7777h 3579Eh 0006h 3579Eh 0006h 3579Ch 5432h 3579Ch 5432h PC PC 65432h +12345h 77777h src dst Sum 6.4.5 Indirect Register Mode The Indirect Register mode uses the contents of the CPU register Rsrc as the source operand. The Indirect Register mode always uses a 20-bit address. Length: Operation: Comment: One, two, or three words The operand is the content the addressed memory location. The source register Rsrc is not modified. Valid only for the source operand. The substitute for the destination operand is 0(Rdst). Example: ADDX.W @R5,2100h(R6) Source: Destination: This instruction adds the two 16-bit operands contained in the source and the destination addresses and places the result into the destination. Word pointed to by R5. R5 contains address 3579Ch for this example. Word pointed to by R6 + 2100h, which results in address 45678h + 2100h = 7778h SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 209 Addressing Modes www.ti.com Before: After: Address Space Register Address Space Register 21038h xxxxh R5 3579Ch 21038h xxxxh PC R5 3579Ch 21036h 2100h R6 45678h 21036h 2100h R6 45678h 21034h 55A6h 21034h 55A6h 4777Ah xxxxh 4777Ah xxxxh 47778h 2345h 47778h 7777h 3579Eh xxxxh 3579Eh xxxxh 3579Ch 5432h 3579Ch 5432h PC 45678h +02100h 47778h R5 5432h +2345h 7777h src dst Sum R5 6.4.6 Indirect Autoincrement Mode The Indirect Autoincrement mode uses the contents of the CPU register Rsrc as the source operand. Rsrc is then automatically incremented by 1 for byte instructions, by 2 for word instructions, and by 4 for address-word instructions immediately after accessing the source operand. If the same register is used for source and destination, it contains the incremented address for the destination access. Indirect Autoincrement mode always uses 20-bit addresses. Length: Operation: Comment: Example: Source: Destination: 210 One, two, or three words The operand is the content of the addressed memory location. Valid only for the source operand ADD.B @R5+,0(R6) This instruction adds the 8-bit data contained in the source and the destination addresses and places the result into the destination. Byte pointed to by R5. R5 contains address 3579Ch for this example. Byte pointed to by R6 + 0h, which results in address 0778h for this example CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Addressing Modes www.ti.com Before: After: Address Space Register Address Space Register 21038h xxxxh R5 3579Ch 21038h xxxxh PC R5 3579Dh 21036h 0000h R6 00778h 21036h 0000h R6 00778h 21034h 55F6h 21034h 55F6h 0077Ah xxxxh 0077Ah xxxxh 00778h xx45h 00778h xx77h 3579Dh xxh 3579Dh xxh 3579Ch 32h 3579Ch xx32h PC 00778h +0000h 00778h R5 32h +45h 77h src dst Sum R5 6.4.7 Immediate Mode The Immediate mode allows accessing constants as operands by including the constant in the memory location following the instruction. The PC is used with the Indirect Autoincrement mode. The PC points to the immediate value contained in the next word. After the fetching of the immediate operand, the PC is incremented by 2 for byte, word, or address-word instructions. The Immediate mode has two addressing possibilities: • 8-bit or 16-bit constants with MSP430 instructions • 20-bit constants with MSP430X instruction 6.4.7.1 MSP430 Instructions With Immediate Mode If an MSP430 instruction is used with Immediate addressing mode, the constant is an 8- or 16-bit value and is stored in the word following the instruction. Length: Operation: Comment: Example: Source: Destination: Two or three words. One word less if a constant of the constant generator can be used for the immediate operand. The 16-bit immediate source operand is used together with the 16-bit destination operand. Valid only for the source operand ADD #3456h,&TONI This instruction adds the 16-bit immediate operand 3456h to the data in the destination address TONI. 16-bit immediate value 3456h Word at address TONI SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 211 Addressing Modes www.ti.com Before: After: Address Space 6.4.7.2 Address Space 2103Ah xxxxh 2103Ah xxxxh 21038h 0778h 21038h 0778h 21036h 3456h 21036h 3456h 21034h 50B2h 21034h 50B2h 0077Ah xxxxh 0077Ah xxxxh 00778h 2345h 00778h 579Bh PC PC 3456h +2345h 579Bh src dst Sum MSP430X Instructions With Immediate Mode If an MSP430X instruction is used with Immediate addressing mode, the constant is a 20-bit value. The 4 MSBs of the constant are stored in the extension word, and the 16 LSBs of the constant are stored in the word following the instruction. Length: Three or four words. One word less if a constant of the constant generator can be used for the immediate operand. The 20-bit immediate source operand is used together with the 20-bit destination operand. Valid only for the source operand Operation: Comment: Example: ADDX.A #23456h,&TONI ; This instruction adds the 20-bit immediate operand 23456h to the data in the destination address TONI. 20-bit immediate value 23456h Two words beginning with address TONI Source: Destination: Before: After: Address Space Address Space 212 2103Ah xxxxh 2103Ah xxxxh 21038h 7778h 21038h 7778h 21036h 3456h 21036h 3456h 21034h 50F2h 21032h 1907h 21034h 50F2h 21032h 1907h 7777Ah 0001h 7777Ah 0003h 77778h 2345h 77778h 579Bh PC CPUX PC 23456h +12345h 3579Bh src dst Sum SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MSP430 and MSP430X Instructions www.ti.com 6.5 MSP430 and MSP430X Instructions MSP430 instructions are the 27 implemented instructions of the MSP430 CPU. These instructions are used throughout the 1MB memory range unless their 16-bit capability is exceeded. The MSP430X instructions are used when the addressing of the operands or the data length exceeds the 16-bit capability of the MSP430 instructions. There are three possibilities when choosing between an MSP430 and MSP430X instruction: • To use only the MSP430 instructions – The only exceptions are the CALLA and the RETA instruction. This can be done if a few, simple rules are met: – Place all constants, variables, arrays, tables, and data in the lower 64KB. This allows the use of MSP430 instructions with 16-bit addressing for all data accesses. No pointers with 20-bit addresses are needed. – Place subroutine constants immediately after the subroutine code. This allows the use of the symbolic addressing mode with its 16-bit index to reach addresses within the range of PC + 32KB. • To use only MSP430X instructions – The disadvantages of this method are the reduced speed due to the additional CPU cycles and the increased program space due to the necessary extension word for any double-operand instruction. • Use the best fitting instruction where needed. Section 6.5.1 lists and describes the MSP430 instructions, and Section 6.5.2 lists and describes the MSP430X instructions. 6.5.1 MSP430 Instructions The MSP430 instructions can be used, regardless if the program resides in the lower 64KB or beyond it. The only exceptions are the instructions CALL and RET, which are limited to the lower 64KB address range. CALLA and RETA instructions have been added to the MSP430X CPU to handle subroutines in the entire address range with no code size overhead. 6.5.1.1 MSP430 Double-Operand (Format I) Instructions Figure 6-22 shows the format of the MSP430 double-operand instructions. Source and destination words are appended for the Indexed, Symbolic, Absolute, and Immediate modes. Table 6-4 lists the 12 MSP430 double-operand instructions. 15 12 Op-code 11 8 Rsrc 7 6 5 Ad B/W 4 As 0 Rdst Source or Destination 15:0 Destination 15:0 Figure 6-22. MSP430 Double-Operand Instruction Format SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 213 MSP430 and MSP430X Instructions www.ti.com Table 6-4. MSP430 Double-Operand Instructions Mnemonic S-Reg, D-Reg Operation MOV(.B) src,dst ADD(.B) src,dst ADDC(.B) SUB(.B) Status Bits (1) V N Z C src → dst – – – – src + dst → dst * * * * src,dst src + dst + C → dst * * * * src,dst dst + .not.src + 1 → dst * * * * SUBC(.B) src,dst dst + .not.src + C → dst * * * * CMP(.B) src,dst dst - src * * * * DADD(.B) src,dst src + dst + C → dst (decimally) * * * * BIT(.B) src,dst src .and. dst 0 * * Z BIC(.B) src,dst .not.src .and. dst → dst – – – – BIS(.B) src,dst src .or. dst → dst – – – – XOR(.B) src,dst src .xor. dst → dst * * * Z AND(.B) src,dst src .and. dst → dst 0 * * Z (1) * = Status bit is affected. – = Status bit is not affected. 0 = Status bit is cleared. 1 = Status bit is set. 6.5.1.2 MSP430 Single-Operand (Format II) Instructions Figure 6-23 shows the format for MSP430 single-operand instructions, except RETI. The destination word is appended for the Indexed, Symbolic, Absolute, and Immediate modes. Table 6-5 lists the seven singleoperand instructions. 15 7 Op-code 6 5 B/W 4 0 Ad Rdst Destination 15:0 Figure 6-23. MSP430 Single-Operand Instructions Table 6-5. MSP430 Single-Operand Instructions Status Bits (1) Mnemonic S-Reg, D-Reg Operation V N Z C RRC(.B) dst C → MSB →.......LSB → C 0 * * * RRA(.B) dst MSB → MSB →....LSB → C 0 * * * PUSH(.B) src SP - 2 → SP, src → SP – – – – SWPB dst bit 15...bit 8 ↔ bit 7...bit 0 – – – – CALL dst Call subroutine in lower 64KB – – – – TOS → SR, SP + 2 → SP * * * * 0 * * Z RETI TOS → PC,SP + 2 → SP SXT (1) 214 dst Register mode: bit 7 → bit 8...bit 19 Other modes: bit 7 → bit 8...bit 15 * = Status bit is affected. – = Status bit is not affected. 0 = Status bit is cleared. 1 = Status bit is set. CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MSP430 and MSP430X Instructions www.ti.com 6.5.1.3 Jump Instructions Figure 6-24 shows the format for MSP430 and MSP430X jump instructions. The signed 10-bit word offset of the jump instruction is multiplied by two, sign-extended to a 20-bit address, and added to the 20-bit PC. This allows jumps in a range of –511 to +512 words relative to the PC in the full 20-bit address space. Jumps do not affect the status bits. Table 6-6 lists and describes the eight jump instructions. 15 13 12 Op-Code 10 Condition 9 8 S 0 10-Bit Signed PC Offset Figure 6-24. Format of Conditional Jump Instructions Table 6-6. Conditional Jump Instructions 6.5.1.4 Mnemonic S-Reg, D-Reg Operation JEQ, JZ Label Jump to label if zero bit is set JNE, JNZ Label Jump to label if zero bit is reset JC Label Jump to label if carry bit is set JNC Label Jump to label if carry bit is reset JN Label Jump to label if negative bit is set JGE Label Jump to label if (N .XOR. V) = 0 JL Label Jump to label if (N .XOR. V) = 1 JMP Label Jump to label unconditionally Emulated Instructions In addition to the MSP430 and MSP430X instructions, emulated instructions are instructions that make code easier to write and read, but do not have op-codes themselves. Instead, they are replaced automatically by the assembler with a core instruction. There is no code or performance penalty for using emulated instructions. The emulated instructions are listed in Table 6-7. Table 6-7. Emulated Instructions Status Bits (1) Instruction Explanation Emulation ADC(.B) dst Add Carry to dst ADDC(.B) #0,dst * * * * BR dst Branch indirectly dst MOV dst,PC – – – – CLR(.B) dst Clear dst MOV(.B) #0,dst – – – – CLRC Clear Carry bit BIC #1,SR – – – 0 CLRN V N Z C Clear Negative bit BIC #4,SR – 0 – – CLRZ Clear Zero bit BIC #2,SR – – 0 – DADC(.B) dst Add Carry to dst decimally DADD(.B) #0,dst * * * * DEC(.B) dst Decrement dst by 1 SUB(.B) #1,dst * * * * DECD(.B) dst Decrement dst by 2 SUB(.B) #2,dst * * * * DINT Disable interrupt BIC #8,SR – – – – EINT Enable interrupt BIS #8,SR – – – – INC(.B) dst Increment dst by 1 ADD(.B) #1,dst * * * * INCD(.B) dst Increment dst by 2 ADD(.B) #2,dst * * * * (1) * = Status bit is affected. – = Status bit is not affected. 0 = Status bit is cleared. 1 = Status bit is set. CPUX 215 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MSP430 and MSP430X Instructions www.ti.com Table 6-7. Emulated Instructions (continued) 6.5.1.5 Status Bits (1) Instruction Explanation Emulation INV(.B) dst Invert dst XOR(.B) #–1,dst * * * * NOP No operation MOV R3,R3 – – – – POP dst Pop operand from stack MOV @SP+,dst – – – – RET Return from subroutine MOV @SP+,PC – – – – RLA(.B) dst Shift left dst arithmetically ADD(.B) dst,dst * * * * RLC(.B) dst Shift left dst logically through Carry ADDC(.B) dst,dst * * * * SBC(.B) dst V N Z C Subtract Carry from dst SUBC(.B) #0,dst * * * * SETC Set Carry bit BIS #1,SR – – – 1 SETN Set Negative bit BIS #4,SR – 1 – – SETZ Set Zero bit BIS #2,SR – – 1 – TST(.B) dst Test dst (compare with 0) CMP(.B) #0,dst 0 * * 1 MSP430 Instruction Execution The number of CPU clock cycles required for an instruction depends on the instruction format and the addressing modes used – not the instruction itself. The number of clock cycles refers to MCLK. 6.5.1.5.1 Instruction Cycles and Length for Interrupt, Reset, and Subroutines Table 6-8 lists the length and the CPU cycles for reset, interrupts, and subroutines. Table 6-8. Interrupt, Return, and Reset Cycles and Length Execution Time (MCLK Cycles) Length of Instruction (Words) Return from interrupt RETI 5 1 Return from subroutine RET 4 1 Interrupt request service (cycles needed before first instruction) 6 – WDT reset 4 – Reset (RST/NMI) 4 – Action 6.5.1.5.2 Format II (Single-Operand) Instruction Cycles and Lengths Table 6-9 lists the length and the CPU cycles for all addressing modes of the MSP430 single-operand instructions. Table 6-9. MSP430 Format II Instruction Cycles and Length No. of Cycles RRA, RRC SWPB, SXT PUSH CALL Length of Instruction Rn 1 3 4 1 SWPB R5 @Rn 3 3 4 1 RRC @R9 Addressing Mode 3 3 4 1 SWPB @R10+ N/A 3 4 2 CALL #LABEL X(Rn) 4 4 5 2 CALL 2(R7) EDE 4 4 5 2 PUSH EDE &EDE 4 4 6 2 SXT &EDE @Rn+ #N 216 Example CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MSP430 and MSP430X Instructions www.ti.com 6.5.1.5.3 Jump Instructions Cycles and Lengths All jump instructions require one code word and take two CPU cycles to execute, regardless of whether the jump is taken or not. 6.5.1.5.4 Format I (Double-Operand) Instruction Cycles and Lengths Table 6-10 lists the length and CPU cycles for all addressing modes of the MSP430 Format I instructions. Table 6-10. MSP430 Format I Instructions Cycles and Length Addressing Mode No. of Cycles Length of Instruction Rm 1 1 MOV R5,R8 PC 3 1 BR R9 4 (1) 2 ADD R5,4(R6) EDE 4 (1) 2 XOR R8,EDE &EDE 4 (1) 2 MOV R5,&EDE Rm 2 1 AND @R4,R5 PC 4 1 BR @R8 x(Rm) 5 (1) 2 XOR @R5,8(R6) EDE 5 (1) 2 MOV @R5,EDE (1) Source Rn Destination x(Rm) @Rn &EDE @Rn+ Rm PC 1 BR @R9+ 2 XOR @R5,8(R6) EDE 5 (1) 2 MOV @R9+,EDE (1) 2 MOV @R9+,&EDE 2 2 MOV #20,R9 3 2 BR #2AEh 3 MOV #0300h,0(SP) EDE 5 (1) 3 ADD #33,EDE &EDE 5 (1) 3 ADD #33,&EDE Rm 3 2 MOV 2(R5),R7 PC 5 2 BR 2(R6) 6 (1) 3 MOV 4(R7),TONI x(Rm) 6 (1) 3 ADD 4(R4),6(R9) &TONI 6 (1) 3 MOV 2(R4),&TONI Rm 3 2 AND EDE,R6 PC 5 2 BR EDE TONI 6 (1) 3 CMP EDE,TONI x(Rm) 6 (1) 3 MOV EDE,0(SP) (1) TONI &TONI Rm PC 6 3 MOV EDE,&TONI 3 2 MOV &EDE,R8 5 2 BR &EDE TONI 6 (1) 3 MOV &EDE,TONI x(Rm) 6 (1) 3 MOV &EDE,0(SP) (1) 3 MOV &EDE,&TONI &TONI (1) 5 5 (1) x(Rm) &EDE ADD @R5+,R6 4 PC EDE XOR @R5,&EDE 1 5 (1) Rm x(Rn) 2 2 x(Rm) &EDE #N 5 Example 6 MOV, BIT, and CMP instructions execute in one fewer cycle. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 217 MSP430 and MSP430X Instructions www.ti.com 6.5.2 MSP430X Extended Instructions The extended MSP430X instructions give the MSP430X CPU full access to its 20-bit address space. Most MSP430X instructions require an additional word of op-code called the extension word. Some extended instructions do not require an additional word and are noted in the instruction description. All addresses, indexes, and immediate numbers have 20-bit values when preceded by the extension word. There are two types of extension words: • Register or register mode for Format I instructions and register mode for Format II instructions • Extension word for all other address mode combinations 6.5.2.1 Register Mode Extension Word The register mode extension word is shown in Figure 6-25 and described in Table 6-11. An example is shown in Figure 6-27. 15 12 11 10 1 0001 9 00 8 7 6 5 4 ZC # A/L 0 0 3 0 (n-1)/Rn Figure 6-25. Extension Word for Register Modes Table 6-11. Description of the Extension Word Bits for Register Mode Bit Description 15:11 Extension word op-code. Op-codes 1800h to 1FFFh are extension words. 10:9 Reserved ZC Zero carry # The executed instruction uses the status of the carry bit C. 1 The executed instruction uses the carry bit as 0. The carry bit is defined by the result of the final operation after instruction execution. Repetition A/L 6.5.2.2 0 0 The number of instruction repetitions is set by extension word bits 3:0. 1 The number of instruction repetitions is defined by the value of the four LSBs of Rn. See description for bits 3:0. Data length extension. Together with the B/W bits of the following MSP430 instruction, the AL bit defines the used data length of the instruction. A/L B/W Comment 0 0 Reserved 0 1 20-bit address word 1 0 16-bit word 1 1 8-bit byte 5:4 Reserved 3:0 Repetition count #=0 These four bits set the repetition count n. These bits contain n – 1. #=1 These four bits define the CPU register whose bits 3:0 set the number of repetitions. Rn.3:0 contain n – 1. Non-Register Mode Extension Word The extension word for non-register modes is shown in Figure 6-26 and described in Table 6-12. An example is shown in Figure 6-28. 15 0 0 0 12 11 1 1 10 7 Source bits 19:16 6 5 4 A/L 0 0 3 0 Destination bits 19:16 Figure 6-26. Extension Word for Non-Register Modes 218 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MSP430 and MSP430X Instructions www.ti.com Table 6-12. Description of Extension Word Bits for Non-Register Modes Bit Description 15:11 Extension word op-code. Op-codes 1800h to 1FFFh are extension words. Source Bits The four MSBs of the 20-bit source. Depending on the source addressing mode, these four MSBs may belong to an 19:16 immediate operand, an index, or to an absolute address. A/L Data length extension. Together with the B/W bits of the following MSP430 instruction, the AL bit defines the used data length of the instruction. A/L 5:4 B/W Comment 0 0 Reserved 0 1 20-bit address word 1 0 16-bit word 1 1 8-bit byte Reserved Destination The four MSBs of the 20-bit destination. Depending on the destination addressing mode, these four MSBs may Bits 19:16 belong to an index or to an absolute address. NOTE: B/W and A/L bit settings for SWPBX and SXTX A/L 0 0 1 1 15 14 13 12 11 0 0 0 1 1 Op-code XORX.A B/W 0 1 0 1 10 SWPBX.A, SXTX.A N/A SWPB.W, SXTX.W N/A 9 00 8 7 6 5 ZC # A/L Ad B/W Rsrc 4 3 2 1 Rsvd (n-1)/Rn As Rdst 0 R9,R8 1: Repetition count in bits 3:0 0: Use Carry 0 0 0 1 14(XOR) XORX instruction 1 0 9 0 01:Address word 0 0 0 0 0 1 0 8(R8) Destination R8 Source R9 Destination register mode Source register mode Figure 6-27. Example for Extended Register or Register Instruction SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 219 MSP430 and MSP430X Instructions www.ti.com 15 14 13 12 11 0 0 0 1 1 10 9 8 7 Source 19:16 Op-code 6 A/L Ad B/W Rsrc 5 4 3 2 1 0 Rsvd Destination 19:16 As Rdst Source 15:0 Destination 15:0 XORX.A #12345h, 45678h(R15) X(Rn) 18xx extension word 0 0 0 1 01: Address word @PC+ 12345h 1 1 14 (XOR) 0 (PC) 1 0 0 4 1 3 15 (R15) Immediate operand LSBs: 2345h Index destination LSBs: 5678h Figure 6-28. Example for Extended Immediate or Indexed Instruction 6.5.2.3 Extended Double-Operand (Format I) Instructions All 12 double-operand instructions have extended versions as listed in Table 6-13. Table 6-13. Extended Double-Operand Instructions Mnemonic Operands Operation MOVX(.B,.A) src,dst ADDX(.B,.A) src,dst ADDCX(.B,.A) SUBX(.B,.A) V N Z C src → dst – – – – src + dst → dst * * * * src,dst src + dst + C → dst * * * * src,dst dst + .not.src + 1 → dst * * * * SUBCX(.B,.A) src,dst dst + .not.src + C → dst * * * * CMPX(.B,.A) src,dst dst – src * * * * DADDX(.B,.A) src,dst src + dst + C → dst (decimal) * * * * BITX(.B,.A) src,dst src .and. dst 0 * * Z BICX(.B,.A) src,dst .not.src .and. dst → dst – – – – BISX(.B,.A) src,dst src .or. dst → dst – – – – XORX(.B,.A) src,dst src .xor. dst → dst * * * Z ANDX(.B,.A) src,dst src .and. dst → dst 0 * * Z (1) 220 Status Bits (1) * = Status bit is affected. – = Status bit is not affected. 0 = Status bit is cleared. 1 = Status bit is set. CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MSP430 and MSP430X Instructions www.ti.com The four possible addressing combinations for the extension word for Format I instructions are shown in Figure 6-29. 15 14 13 12 11 10 9 8 7 6 5 4 0 0 0 1 1 0 0 ZC # A/L 0 0 n-1/Rn 0 B/W 0 0 dst A/L 0 0 src Op-code 0 0 0 1 1 src.19:16 Op-code Ad B/W src 3 0 0 0 0 0 dst As src.15:0 0 0 0 1 1 0 0 0 src Op-code 0 A/L 0 Ad B/W dst.19:16 0 As dst dst.15:0 0 0 0 1 1 src.19:16 src Op-code A/L 0 Ad B/W 0 dst.19:16 As dst src.15:0 dst.15:0 Figure 6-29. Extended Format I Instruction Formats If the 20-bit address of a source or destination operand is located in memory, not in a CPU register, then two words are used for this operand as shown in Figure 6-30. 15 Address+2 14 13 12 11 10 9 8 7 6 5 4 0 .......................................................................................0 3 2 1 0 19:16 Operand LSBs 15:0 Address Figure 6-30. 20-Bit Addresses in Memory SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 221 MSP430 and MSP430X Instructions 6.5.2.4 www.ti.com Extended Single-Operand (Format II) Instructions Extended MSP430X Format II instructions are listed in Table 6-14. Table 6-14. Extended Single-Operand Instructions Status Bits (1) Mnemonic Operands Operation CALLA dst Call indirect to subroutine (20-bit address) POPM.A #n,Rdst Pop n 20-bit registers from stack 1 to 16 POPM.W #n,Rdst Pop n 16-bit registers from stack PUSHM.A #n,Rsrc Push n 20-bit registers to stack PUSHM.W #n,Rsrc Push n 16-bit registers to stack PUSHX(.B,.A) src Push 8-, 16-, or 20-bit source to stack RRCM(.A) #n,Rdst Rotate right Rdst n bits through carry (16-, 20-bit register) RRUM(.A) #n,Rdst Rotate right Rdst n bits unsigned (16-, 20-bit register) RRAM(.A) #n,Rdst RLAM(.A) #n,Rdst RRCX(.B,.A) dst RRUX(.B,.A) RRAX(.B,.A) V N Z C – – – – – – – – 1 to 16 – – – – 1 to 16 – – – – 1 to 16 – – – – – – – – 1 to 4 0 * * * 1 to 4 0 * * * Rotate right Rdst n bits arithmetically (16-, 20-bit register) 1 to 4 0 * * * Rotate left Rdst n bits arithmetically (16-, 20-bit register) 1 to 4 * * * * Rotate right dst through carry (8-, 16-, 20-bit data) 1 0 * * * Rdst Rotate right dst unsigned (8-, 16-, 20-bit) 1 0 * * * dst Rotate right dst arithmetically 1 0 * * * SWPBX(.A) dst Exchange low byte with high byte 1 – – – – SXTX(.A) Rdst Bit7 → bit8 ... bit19 1 0 * * Z SXTX(.A) dst Bit7 → bit8 ... MSB 1 0 * * Z (1) n * = Status bit is affected. – = Status bit is not affected. 0 = Status bit is cleared. 1 = Status bit is set. The three possible addressing mode combinations for Format II instructions are shown in Figure 6-31. 15 14 13 12 11 10 9 8 7 6 5 4 0 0 0 1 1 0 0 ZC # A/L 0 0 n-1/Rn B/W 0 0 dst A/L 0 0 B/W 1 x dst A/L 0 0 dst.19:16 B/W x 1 dst Op-code 0 0 0 1 1 0 0 0 0 Op-code 0 0 0 1 1 0 0 0 0 Op-code 3 0 0 0 0 0 dst.15:0 Figure 6-31. Extended Format II Instruction Format 222 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MSP430 and MSP430X Instructions www.ti.com 6.5.2.4.1 Extended Format II Instruction Format Exceptions Exceptions for the Format II instruction formats are shown in Figure 6-32 through Figure 6-35. 15 8 7 Op-code 4 3 n-1 0 Rdst - n+1 Figure 6-32. PUSHM and POPM Instruction Format 15 12 C 11 10 9 4 n-1 3 Op-code 0 Rdst Figure 6-33. RRCM, RRAM, RRUM, and RLAM Instruction Format 15 12 11 8 7 4 3 0 C Rsrc Op-code 0(PC) C #imm/abs19:16 Op-code 0(PC) #imm15:0 / &abs15:0 C Rsrc Op-code 0(PC) index15:0 Figure 6-34. BRA Instruction Format 15 4 3 0 Op-code Rdst Op-code Rdst index15:0 Op-code #imm/ix/abs19:16 #imm15:0 / index15:0 / &abs15:0 Figure 6-35. CALLA Instruction Format SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 223 MSP430 and MSP430X Instructions 6.5.2.5 www.ti.com Extended Emulated Instructions The extended instructions together with the constant generator form the extended emulated instructions. Table 6-15 lists the emulated instructions. Table 6-15. Extended Emulated Instructions 224 Instruction Explanation Emulation ADCX(.B,.A) dst Add carry to dst ADDCX(.B,.A) #0,dst BRA dst Branch indirect dst MOVA dst,PC RETA Return from subroutine MOVA @SP+,PC CLRA Rdst Clear Rdst MOV #0,Rdst CLRX(.B,.A) dst Clear dst MOVX(.B,.A) #0,dst DADCX(.B,.A) dst Add carry to dst decimally DADDX(.B,.A) #0,dst DECX(.B,.A) dst Decrement dst by 1 SUBX(.B,.A) #1,dst DECDA Rdst Decrement Rdst by 2 SUBA #2,Rdst DECDX(.B,.A) dst Decrement dst by 2 SUBX(.B,.A) #2,dst INCX(.B,.A) dst Increment dst by 1 ADDX(.B,.A) #1,dst INCDA Rdst Increment Rdst by 2 ADDA #2,Rdst INCDX(.B,.A) dst Increment dst by 2 ADDX(.B,.A) #2,dst INVX(.B,.A) dst Invert dst XORX(.B,.A) #-1,dst RLAX(.B,.A) dst Shift left dst arithmetically ADDX(.B,.A) dst,dst RLCX(.B,.A) dst Shift left dst logically through carry ADDCX(.B,.A) dst,dst SBCX(.B,.A) dst Subtract carry from dst SUBCX(.B,.A) #0,dst TSTA Rdst Test Rdst (compare with 0) CMPA #0,Rdst TSTX(.B,.A) dst Test dst (compare with 0) CMPX(.B,.A) #0,dst POPX dst Pop to dst MOVX(.B, .A) @SP+,dst CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MSP430 and MSP430X Instructions www.ti.com 6.5.2.6 MSP430X Address Instructions MSP430X address instructions are instructions that support 20-bit operands but have restricted addressing modes. The addressing modes are restricted to the Register mode and the Immediate mode, except for the MOVA instruction as listed in Table 6-16. Restricting the addressing modes removes the need for the additional extension-word op-code improving code density and execution time. Address instructions should be used any time an MSP430X instruction is needed with the corresponding restricted addressing mode. Table 6-16. Address Instructions, Operate on 20-Bit Register Data Status Bits (1) Mnemonic Operands Operation V N Z C ADDA Rsrc,Rdst Add source to destination register * * * * Move source to destination – – – – Compare source to destination register * * * * Subtract source from destination register * * * * #imm20,Rdst MOVA Rsrc,Rdst #imm20,Rdst z16(Rsrc),Rdst EDE,Rdst &abs20,Rdst @Rsrc,Rdst @Rsrc+,Rdst Rsrc,z16(Rdst) Rsrc,&abs20 CMPA Rsrc,Rdst #imm20,Rdst SUBA Rsrc,Rdst #imm20,Rdst (1) * = Status bit is affected. – = Status bit is not affected. 0 = Status bit is cleared. 1 = Status bit is set. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 225 MSP430 and MSP430X Instructions 6.5.2.7 www.ti.com MSP430X Instruction Execution The number of CPU clock cycles required for an MSP430X instruction depends on the instruction format and the addressing modes used, not the instruction itself. The number of clock cycles refers to MCLK. 6.5.2.7.1 MSP430X Format II (Single-Operand) Instruction Cycles and Lengths Table 6-17 lists the length and the CPU cycles for all addressing modes of the MSP430X extended singleoperand instructions. Table 6-17. MSP430X Format II Instruction Cycles and Length Instruction @Rn @Rn+ #N X(Rn) EDE &EDE RRAM n, 1 – – – – – – RRCM n, 1 – – – – – – RRUM n, 1 – – – – – – RLAM n, 1 – – – – – – PUSHM 2+n, 1 – – – – – – PUSHM.A 2+2n, 1 – – – – – – POPM 2+n, 1 – – – – – – POPM.A 2+2n, 1 – – – – – – 5, 1 6, 1 6, 1 5, 2 5 (1), 2 7, 2 7, 2 RRAX(.B) 1+n, 2 4, 2 4, 2 – 5, 3 5, 3 5, 3 RRAX.A 1+n, 2 6, 2 6, 2 – 7, 3 7, 3 7, 3 RRCX(.B) 1+n, 2 4, 2 4, 2 – 5, 3 5, 3 5, 3 RRCX.A 1+n, 2 6, 2 6, 2 – 7, 3 7, 3 7, 3 CALLA (1) PUSHX(.B) 4, 2 4, 2 4, 2 4, 3 5 ,3 5, 3 5, 3 PUSHX.A 5, 2 6, 2 6, 2 5, 3 7 (1), 3 7, 3 7, 3 POPX(.B) 3, 2 – – – 5, 3 5, 3 5, 3 POPX.A 4, 2 – – – 7, 3 7, 3 7, 3 (1) 226 Execution Cycles, Length of Instruction (Words) Rn Add one cycle when Rn = SP CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MSP430 and MSP430X Instructions www.ti.com 6.5.2.7.2 MSP430X Format I (Double-Operand) Instruction Cycles and Lengths Table 6-18 lists the length and CPU cycles for all addressing modes of the MSP430X extended Format I instructions. Table 6-18. MSP430X Format I Instruction Cycles and Length Addressing Mode Source Destination Rn .A .B/.W/.A Rm (1) 2 2 2 BITX.B R5,R8 PC 4 4 3 ANDX.A R5,4(R6) 5 (2) 7 (3) 3 XORX R8,EDE (2) (3) Rm 5 6 2 ADDX @R9,PC 6 (2) 9 (3) 3 ANDX.A @R5,4(R6) (2) (3) 3 XORX @R8,EDE 3 BITX.B @R5,&EDE 3 4 2 BITX @R5+,R8 Rm 9 5 6 2 ADDX.A @R9+,PC 6 (2) 9 (3) 3 ANDX @R5+,4(R6) (2) (3) EDE 6 3 XORX.B @R8+,EDE &EDE 6 (2) 9 (3) 3 BITX @R5+,&EDE Rm 3 3 3 BITX #20,R8 PC (4) 4 4 3 ADDX.A #FE000h,PC (3) (2) 9 x(Rm) 6 4 ANDX #1234,4(R6) EDE 6 (2) 8 (3) 4 XORX #A5A5h,EDE (2) (3) 4 BITX.B #12,&EDE Rm (4) 6 8 8 4 5 3 BITX 2(R5),R8 6 7 (2) 3 SUBX.A 2(R6),PC (3) TONI 7 4 ANDX 4(R7),4(R6) x(Rm) 7 (2) 10 (3) 4 XORX.B 2(R6),EDE (2) (3) Rm (4) TONI (4) BITX @R5,R8 9 (3) PC (3) BITX.W R5,&EDE 2 6 (2) &TONI (2) 3 4 7 6 PC (1) 3 &EDE &EDE &EDE 5 7 EDE x(Rm) EDE ADDX R9,PC 5 PC x(Rn) 2 (3) EDE x(Rm) #N (2) x(Rm) PC @Rn+ Examples .B/.W &EDE @Rn Length of Instruction No. of Cycles 7 4 10 4 BITX 8(SP),&EDE 5 3 BITX.B EDE,R8 10 6 7 3 ADDX.A EDE,PC 7 (2) 10 (3) 4 ANDX EDE,4(R6) (2) (3) x(Rm) 7 4 ANDX EDE,TONI &TONI 7 (2) 10 (3) 4 BITX EDE,&TONI 4 5 3 BITX &EDE,R8 Rm 10 PC (4) 6 7 3 ADDX.A &EDE,PC TONI 7 (2) 10 (3) 4 ANDX.B &EDE,4(R6) (2) (3) 4 XORX &EDE,TONI 10 (3) 4 BITX &EDE,&TONI x(Rm) 7 &TONI 7 (2) 10 Repeat instructions require n + 1 cycles, where n is the number of times the instruction is executed. Reduce the cycle count by one for MOV, BIT, and CMP instructions. Reduce the cycle count by two for MOV, BIT, and CMP instructions. Reduce the cycle count by one for MOV, ADD, and SUB instructions. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 227 MSP430 and MSP430X Instructions www.ti.com 6.5.2.7.3 MSP430X Address Instruction Cycles and Lengths Table 6-19 lists the length and the CPU cycles for all addressing modes of the MSP430X address instructions. Table 6-19. Address Instruction Cycles and Length Addressing Mode x(Rn) EDE &EDE 228 MOVA CMPA ADDA SUBA Rn 1 1 1 1 CMPA R5,R8 PC 3 3 1 1 SUBA R9,PC x(Rm) 4 – 2 – MOVA R5,4(R6) EDE 4 – 2 – MOVA R8,EDE &EDE 4 – 2 – MOVA R5,&EDE Rm 3 – 1 – MOVA @R5,R8 PC 5 – 1 – MOVA @R9,PC Rm 3 – 1 – MOVA @R5+,R8 PC 5 – 1 – MOVA @R9+,PC Rm 2 3 2 2 CMPA #20,R8 PC 3 3 2 2 SUBA #FE000h,PC Rm 4 – 2 – MOVA 2(R5),R8 PC 6 – 2 – MOVA 2(R6),PC Rm 4 – 2 – MOVA EDE,R8 PC 6 – 2 – MOVA EDE,PC Rm 4 – 2 – MOVA &EDE,R8 PC 6 – 2 – MOVA &EDE,PC Rn #N Example CMPA ADDA SUBA Destination @Rn+ Length of Instruction (Words) MOVA BRA Source @Rn Execution Time (MCLK Cycles) CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6 Instruction Set Description Table 6-20 shows all available instructions: Table 6-20. Instruction Map of MSP430X 000 040 080 RRC RRC. B SWP B 0xxx 10xx 14xx 18xx 1Cxx 20xx 24xx 28xx 2Cxx 30xx 0C0 100 140 180 1C0 200 240 280 2C0 MOVA, CMPA, ADDA, SUBA, RRCM, RRAM, RLAM, RRUM RRA. PUS PUS RRA SXT CALL B H H.B PUSHM.A, POPM.A, PUSHM.W, POPM.W 34xx 38xx 3Cxx 4xxx 5xxx 6xxx 7xxx 8xxx 9xxx Axxx Bxxx Cxxx Dxxx Exxx Fxxx 300 340 RETI CALL A 380 3C0 Extension word for Format I and Format II instructions JNE, JNZ JEQ, JZ JNC JC JN JGE JL JMP MOV, MOV.B ADD, ADD.B ADDC, ADDC.B SUBC, SUBC.B SUB, SUB.B CMP, CMP.B DADD, DADD.B BIT, BIT.B BIC, BIC.B BIS, BIS.B XOR, XOR.B AND, AND.B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 229 Instruction Set Description www.ti.com 6.6.1 Extended Instruction Binary Descriptions Detailed MSP430X instruction binary descriptions are shown in the following tables. Instruction Group Instruction 15 MOVA Instruction Identifier src or data.19:16 12 11 8 7 dst 4 3 0 src 0 0 0 0 dst MOVA @Rsrc,Rdst 0 src 0 0 0 1 dst MOVA @Rsrc+,Rdst 0 &abs.19:16 0 0 1 0 dst MOVA &abs20,Rdst 0 0 src 0 1 1 dst MOVA z16(Rsrc),Rdst 0 0 src 1 1 0 &abs.19:16 1 1 1 dst MOVA Rsrc,z16(Rdst) 0 0 0 dst MOVA #imm20,Rdst 0 0 1 dst CMPA #imm20,Rdst 0 1 0 dst ADDA #imm20,Rdst 0 1 1 dst SUBA #imm20,Rdst 0 0 0 0 0 0 0 0 0 0 0 0 0 0 &abs.15:0 0 x.15:0 0 MOVA Rsrc,&abs20 &abs.15:0 0 0 0 0 src 0 x.15:0 0 0 0 0 imm.19:16 1 imm.15:0 CMPA 0 0 0 0 imm.19:16 ADDA 0 0 0 0 imm.19:16 SUBA 0 0 0 0 imm.19:16 MOVA 0 0 0 0 src 1 1 0 0 dst MOVA Rsrc,Rdst CMPA 0 0 0 0 src 1 1 0 1 dst CMPA Rsrc,Rdst ADDA 0 0 0 0 src 1 1 1 0 dst ADDA Rsrc,Rdst SUBA 0 0 0 0 src 1 1 1 1 dst SUBA Rsrc,Rdst 1 imm.15:0 1 imm.15:0 1 imm.15:0 Instruction Group Instruction 15 Instruction Identifier Bit Loc. Inst. ID 12 11 10 9 8 7 dst 4 3 0 RRCM.A 0 0 0 0 n–1 0 0 0 1 0 0 dst RRCM.A #n,Rdst RRAM.A 0 0 0 0 n–1 0 1 0 1 0 0 dst RRAM.A #n,Rdst RLAM.A 0 0 0 0 n–1 1 0 0 1 0 0 dst RLAM.A #n,Rdst RRUM.A 0 0 0 0 n–1 1 1 0 1 0 0 dst RRUM.A #n,Rdst RRCM.W 0 0 0 0 n–1 0 0 0 1 0 1 dst RRCM.W #n,Rdst RRAM.W 0 0 0 0 n–1 0 1 0 1 0 1 dst RRAM.W #n,Rdst RLAM.W 0 0 0 0 n–1 1 0 0 1 0 1 dst RLAM.W #n,Rdst RRUM.W 0 0 0 0 n–1 1 1 0 1 0 1 dst RRUM.W #n,Rdst 230 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com Instruction Instruction Identifier 15 dst 12 11 8 7 6 5 4 3 RETI 0 0 0 1 0 0 1 1 0 0 0 0 0 0 CALLA 0 0 0 1 0 0 1 1 0 1 0 0 dst CALLA Rdst 0 0 0 1 0 0 1 1 0 1 0 1 dst CALLA x(Rdst) 0 0 0 x.15:0 0 0 0 1 0 0 1 1 0 1 1 0 dst CALLA @Rdst 0 0 0 1 0 0 1 1 0 1 1 1 dst CALLA @Rdst+ 0 0 0 1 0 0 1 1 1 0 0 0 &abs.19:16 CALLA &abs20 0 0 1 x.19:16 &abs.15:0 0 0 0 1 0 0 1 1 1 CALLA EDE CALLA x(PC) x.15:0 0 0 0 1 0 0 1 1 1 0 1 1 CALLA #imm20 imm.19:16 imm.15:0 Reserved 0 0 0 1 0 0 1 1 1 0 1 0 x x Reserved 0 0 0 1 0 0 1 1 1 1 x x x x PUSHM.A 0 0 0 1 0 1 0 0 n–1 PUSHM.W 0 0 0 1 0 1 0 1 POPM.A 0 0 0 1 0 1 1 0 POPM.W 0 0 0 1 0 1 1 1 x x x x dst PUSHM.A #n,Rdst n–1 dst PUSHM.W #n,Rdst n–1 dst – n + 1 POPM.A #n,Rdst n–1 dst – n + 1 POPM.W #n,Rdst SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 231 Instruction Set Description www.ti.com 6.6.2 MSP430 Instructions The MSP430 instructions are listed and described on the following pages. 232 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.1 ADC * ADC[.W] * ADC.B Syntax Add carry to destination Add carry to destination ADC dst or ADC.W dst ADC.B dst Operation Emulation dst + C → dst ADDC #0,dst ADDC.B #0,dst Description Status Bits Mode Bits Example ADD ADC Example ADD.B ADC.B The carry bit (C) is added to the destination operand. The previous contents of the destination are lost. N: Set if result is negative, reset if positive Z: Set if result is zero, reset otherwise C: Set if dst was incremented from 0FFFFh to 0000, reset otherwise Set if dst was incremented from 0FFh to 00, reset otherwise V: Set if an arithmetic overflow occurs, otherwise reset OSCOFF, CPUOFF, and GIE are not affected. The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to by R12. @R13,0(R12) 2(R12) ; Add LSDs ; Add carry to MSD The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by R12. @R13,0(R12) 1(R12) ; Add LSDs ; Add carry to MSD SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 233 Instruction Set Description 6.6.2.2 www.ti.com ADD ADD[.W] ADD.B Syntax Add source word to destination word Add source byte to destination byte ADD src,dst or ADD.W src,dst ADD.B src,dst Operation Description Status Bits Mode Bits Example ADD.W Example ADD.W JC ... Example ADD.B JNC ... 234 src + dst → dst The source operand is added to the destination operand. The previous content of the destination is lost. N: Set if result is negative (MSB = 1), reset if positive (MSB = 0) Z: Set if result is zero, reset otherwise C: Set if there is a carry from the MSB of the result, reset otherwise V: Set if the result of two positive operands is negative, or if the result of two negative numbers is positive, reset otherwise OSCOFF, CPUOFF, and GIE are not affected. Ten is added to the 16-bit counter CNTR located in lower 64 K. #10,&CNTR ; Add 10 to 16-bit counter A table word pointed to by R5 (20-bit address in R5) is added to R6. The jump to label TONI is performed on a carry. @R5,R6 TONI ; Add table word to R6. R6.19:16 = 0 ; Jump if carry ; No carry A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label TONI is performed if no carry occurs. The table pointer is auto-incremented by 1. R6.19:8 = 0 @R5+,R6 TONI ; Add byte to R6. R5 + 1. R6: 000xxh ; Jump if no carry ; Carry occurred CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.3 ADDC ADDC[.W] ADDC.B Syntax Add source word and carry to destination word Add source byte and carry to destination byte ADDC src,dst or ADDC.W src,dst ADDC.B src,dst Operation Description Status Bits Mode Bits Example ADDC.W Example ADDC.W JC ... Example ADDC.B JNC ... src + dst + C → dst The source operand and the carry bit C are added to the destination operand. The previous content of the destination is lost. N: Set if result is negative (MSB = 1), reset if positive (MSB = 0) Z: Set if result is zero, reset otherwise C: Set if there is a carry from the MSB of the result, reset otherwise V: Set if the result of two positive operands is negative, or if the result of two negative numbers is positive, reset otherwise OSCOFF, CPUOFF, and GIE are not affected. Constant value 15 and the carry of the previous instruction are added to the 16-bit counter CNTR located in lower 64 K. #15,&CNTR ; Add 15 + C to 16-bit CNTR A table word pointed to by R5 (20-bit address) and the carry C are added to R6. The jump to label TONI is performed on a carry. R6.19:16 = 0 @R5,R6 TONI ; Add table word + C to R6 ; Jump if carry ; No carry A table byte pointed to by R5 (20-bit address) and the carry bit C are added to R6. The jump to label TONI is performed if no carry occurs. The table pointer is auto-incremented by 1. R6.19:8 = 0 @R5+,R6 TONI ; Add table byte + C to R6. R5 + 1 ; Jump if no carry ; Carry occurred SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 235 Instruction Set Description 6.6.2.4 www.ti.com AND AND[.W] AND.B Syntax Logical AND of source word with destination word Logical AND of source byte with destination byte AND src,dst or AND.W src,dst AND.B src,dst Operation Description Status Bits Mode Bits Example MOV AND JZ ... src .and. dst → dst The source operand and the destination operand are logically ANDed. The result is placed into the destination. The source operand is not affected. N: Set if result is negative (MSB = 1), reset if positive (MSB = 0) Z: Set if result is zero, reset otherwise C: Set if the result is not zero, reset otherwise. C = (.not. Z) V: Reset OSCOFF, CPUOFF, and GIE are not affected. The bits set in R5 (16-bit data) are used as a mask (AA55h) for the word TOM located in the lower 64 K. If the result is zero, a branch is taken to label TONI. R5.19:16 = 0 #AA55h,R5 R5,&TOM TONI ; ; ; ; Load 16-bit mask to R5 TOM .and. R5 -> TOM Jump if result 0 Result > 0 or shorter: AND JZ Example AND.B 236 #AA55h,&TOM TONI ; TOM .and. AA55h -> TOM ; Jump if result 0 A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R5 is incremented by 1 after the fetching of the byte. R6.19:8 = 0 @R5+,R6 ; AND table byte with R6. R5 + 1 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.5 BIC BIC[.W] BIC.B Syntax Clear bits set in source word in destination word Clear bits set in source byte in destination byte BIC src,dst or BIC.W src,dst BIC.B src,dst Operation Description Status Bits Mode Bits Example BIC Example BIC.W Example BIC.B (.not. src) .and. dst → dst The inverted source operand and the destination operand are logically ANDed. The result is placed into the destination. The source operand is not affected. N: Not affected Z: Not affected C: Not affected V: Not affected OSCOFF, CPUOFF, and GIE are not affected. The bits 15:14 of R5 (16-bit data) are cleared. R5.19:16 = 0 #0C000h,R5 ; Clear R5.19:14 bits A table word pointed to by R5 (20-bit address) is used to clear bits in R7. R7.19:16 = 0 @R5,R7 ; Clear bits in R7 set in @R5 A table byte pointed to by R5 (20-bit address) is used to clear bits in Port1. @R5,&P1OUT ; Clear I/O port P1 bits set in @R5 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 237 Instruction Set Description 6.6.2.6 www.ti.com BIS BIS[.W] BIS.B Syntax Set bits set in source word in destination word Set bits set in source byte in destination byte BIS src,dst or BIS.W src,dst BIS.B src,dst Operation Description Status Bits Mode Bits Example BIS Example BIS.W Example BIS.B 238 src .or. dst → dst The source operand and the destination operand are logically ORed. The result is placed into the destination. The source operand is not affected. N: Not affected Z: Not affected C: Not affected V: Not affected OSCOFF, CPUOFF, and GIE are not affected. Bits 15 and 13 of R5 (16-bit data) are set to one. R5.19:16 = 0 #A000h,R5 ; Set R5 bits A table word pointed to by R5 (20-bit address) is used to set bits in R7. R7.19:16 = 0 @R5,R7 ; Set bits in R7 A table byte pointed to by R5 (20-bit address) is used to set bits in Port1. R5 is incremented by 1 afterwards. @R5+,&P1OUT ; Set I/O port P1 bits. R5 + 1 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.7 BIT BIT[.W] BIT.B Syntax Test bits set in source word in destination word Test bits set in source byte in destination byte BIT src,dst or BIT.W src,dst BIT.B src,dst Operation Description Status Bits Mode Bits Example BIT JNZ ... Example BIT.W JC ... Example BIT.B JNC ... src .and. dst The source operand and the destination operand are logically ANDed. The result affects only the status bits in SR. Register mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not cleared! N: Set if result is negative (MSB = 1), reset if positive (MSB = 0) Z: Set if result is zero, reset otherwise C: Set if the result is not zero, reset otherwise. C = (.not. Z) V: Reset OSCOFF, CPUOFF, and GIE are not affected. Test if one (or both) of bits 15 and 14 of R5 (16-bit data) is set. Jump to label TONI if this is the case. R5.19:16 are not affected. #C000h,R5 TONI ; Test R5.15:14 bits ; At least one bit is set in R5 ; Both bits are reset A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to label TONI if at least one bit is set. R7.19:16 are not affected. @R5,R7 TONI ; Test bits in R7 ; At least one bit is set ; Both are reset A table byte pointed to by R5 (20-bit address) is used to test bits in output Port1. Jump to label TONI if no bit is set. The next table byte is addressed. @R5+,&P1OUT TONI ; Test I/O port P1 bits. R5 + 1 ; No corresponding bit is set ; At least one bit is set SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 239 Instruction Set Description 6.6.2.8 BR, BRANCH * BR, BRANCH Syntax Operation Emulation Description Status Bits Example 240 www.ti.com Branch to destination in lower 64K address space BR dst dst → PC MOV dst,PC An unconditional branch is taken to an address anywhere in the lower 64K address space. All source addressing modes can be used. The branch instruction is a word instruction. Status bits are not affected. Examples for all addressing modes are given. BR #EXEC ; Branch to label EXEC or direct branch (for example #0A4h) ; Core instruction MOV @PC+,PC BR EXEC ; Branch to the address contained in EXEC ; Core instruction MOV X(PC),PC ; Indirect address BR &EXEC ; ; ; ; BR R5 ; Branch to the address contained in R5 ; Core instruction MOV R5,PC ; Indirect R5 BR @R5 ; ; ; ; Branch to the address contained in the word pointed to by R5. Core instruction MOV @R5,PC Indirect, indirect R5 BR @R5+ ; ; ; ; ; ; ; Branch to the address contained in the word pointed to by R5 and increment pointer in R5 afterwards. The next time-S/W flow uses R5 pointer-it can alter program execution due to access to next address in a table pointed to by R5 Core instruction MOV @R5,PC Indirect, indirect R5 with autoincrement BR X(R5) ; ; ; ; ; Branch to the address contained in the address pointed to by R5 + X (for example table with address starting at X). X can be an address or a label Core instruction MOV X(R5),PC Indirect, indirect R5 + X Branch to the address contained in absolute address EXEC Core instruction MOV X(0),PC Indirect address CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.9 CALL CALL Syntax Operation Description Status Bits Mode Bits Examples CALL CALL Call a subroutine in lower 64 K CALL dst dst → tmp 16-bit dst is evaluated and stored SP – 2 → SP PC → @SP updated PC with return address to TOS tmp → PC saved 16-bit dst to PC A subroutine call is made from an address in the lower 64 K to a subroutine address in the lower 64 K. All seven source addressing modes can be used. The call instruction is a word instruction. The return is made with the RET instruction. Status bits are not affected. PC.19:16 cleared (address in lower 64 K) OSCOFF, CPUOFF, and GIE are not affected. Examples for all addressing modes are given. Immediate Mode: Call a subroutine at label EXEC (lower 64 K) or call directly to address. #EXEC #0AA04h ; Start address EXEC ; Start address 0AA04h Symbolic Mode: Call a subroutine at the 16-bit address contained in address EXEC. EXEC is located at the address (PC + X) where X is within PC ± 32 K. CALL EXEC ; Start address at @EXEC. z16(PC) Absolute Mode: Call a subroutine at the 16-bit address contained in absolute address EXEC in the lower 64 K. CALL &EXEC ; Start address at @EXEC Register mode: Call a subroutine at the 16-bit address contained in register R5.15:0. CALL R5 ; Start address at R5 Indirect Mode: Call a subroutine at the 16-bit address contained in the word pointed to by register R5 (20-bit address). CALL @R5 ; Start address at @R5 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 241 Instruction Set Description www.ti.com 6.6.2.10 CLR * CLR[.W] * CLR.B Syntax Clear destination Clear destination CLR dst or CLR.W dst CLR.B dst Operation 0 → dst Emulation MOV #0,dst MOV.B #0,dst Description Status Bits Example CLR Example CLR Example CLR.B 242 The destination operand is cleared. Status bits are not affected. RAM word TONI is cleared. TONI ; 0 -> TONI Register R5 is cleared. R5 RAM byte TONI is cleared. TONI ; 0 -> TONI CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.11 CLRC * CLRC Syntax Operation Clear carry bit Emulation Description Status Bits BIC #1,SR Mode Bits Example CLRC DADD DADC CLRC 0→C The carry bit (C) is cleared. The clear carry instruction is a word instruction. N: Not affected Z: Not affected C: Cleared V: Not affected OSCOFF, CPUOFF, and GIE are not affected. The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter pointed to by R12. @R13,0(R12) 2(R12) ; C=0: defines start ; add 16-bit counter to low word of 32-bit counter ; add carry to high word of 32-bit counter SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 243 Instruction Set Description www.ti.com 6.6.2.12 CLRN * CLRN Syntax Operation Clear negative bit Emulation Description BIC #4,SR Status Bits Mode Bits Example SUBR SUBRET 244 CLRN 0→N or (.NOT.src .AND. dst → dst) The constant 04h is inverted (0FFFBh) and is logically ANDed with the destination operand. The result is placed into the destination. The clear negative bit instruction is a word instruction. N: Reset to 0 Z: Not affected C: Not affected V: Not affected OSCOFF, CPUOFF, and GIE are not affected. The negative bit in the SR is cleared. This avoids special treatment with negative numbers of the subroutine called. CLRN CALL SUBR ...... ...... JN SUBRET ...... ...... ...... RET ; If input is negative: do nothing and return CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.13 CLRZ * CLRZ Syntax Operation Clear zero bit Emulation Description BIC #2,SR Status Bits Mode Bits Example CLRZ 0→Z or (.NOT.src .AND. dst → dst) The constant 02h is inverted (0FFFDh) and logically ANDed with the destination operand. The result is placed into the destination. The clear zero bit instruction is a word instruction. N: Not affected Z: Reset to 0 C: Not affected V: Not affected OSCOFF, CPUOFF, and GIE are not affected. The zero bit in the SR is cleared. CLRZ Indirect, Auto-Increment mode: Call a subroutine at the 16-bit address contained in the word pointed to by register R5 (20-bit address) and increment the 16-bit address in R5 afterwards by 2. The next time the software uses R5 as a pointer, it can alter the program execution due to access to the next word address in the table pointed to by R5. CALL @R5+ ; Start address at @R5. R5 + 2 Indexed mode: Call a subroutine at the 16-bit address contained in the 20-bit address pointed to by register (R5 + X); for example, a table with addresses starting at X. The address is within the lower 64KB. X is within ±32KB. CALL X(R5) ; Start address at @(R5+X). z16(R5) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 245 Instruction Set Description www.ti.com 6.6.2.14 CMP CMP[.W] CMP.B Syntax Compare source word and destination word Compare source byte and destination byte CMP src,dst or CMP.W src,dst CMP.B src,dst Operation (.not.src) + 1 + dst or dst – src Emulation Description BIC #2,SR Status Bits Mode Bits Example CMP JEQ ... Example CMP.W JL ... Example CMP.B JEQ ... 246 The source operand is subtracted from the destination operand. This is made by adding the 1s complement of the source + 1 to the destination. The result affects only the status bits in SR. Register mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not cleared. N: Set if result is negative (src > dst), reset if positive (src = dst) Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst) C: Set if there is a carry from the MSB, reset otherwise V: Set if the subtraction of a negative source operand from a positive destination operand delivers a negative result, or if the subtraction of a positive source operand from a negative destination operand delivers a positive result, reset otherwise (no overflow). OSCOFF, CPUOFF, and GIE are not affected. Compare word EDE with a 16-bit constant 1800h. Jump to label TONI if EDE equals the constant. The address of EDE is within PC + 32 K. #01800h,EDE TONI ; Compare word EDE with 1800h ; EDE contains 1800h ; Not equal A table word pointed to by (R5 + 10) is compared with R7. Jump to label TONI if R7 contains a lower, signed 16-bit number. R7.19:16 is not cleared. The address of the source operand is a 20-bit address in full memory range. 10(R5),R7 TONI ; Compare two signed numbers ; R7 < 10(R5) ; R7 >= 10(R5) A table byte pointed to by R5 (20-bit address) is compared to the value in output Port1. Jump to label TONI if values are equal. The next table byte is addressed. @R5+,&P1OUT TONI ; Compare P1 bits with table. R5 + 1 ; Equal contents ; Not equal CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.15 DADC * DADC[.W] * DADC.B Syntax Add carry decimally to destination Add carry decimally to destination DADC dst or DADC.W dst DADC.B dst Operation Emulation dst + C → dst (decimally) DADD #0,dst DADD.B #0,dst Description Status Bits Mode Bits Example The N: Z: C: carry bit (C) is added decimally to the destination. Set if MSB is 1 Set if dst is 0, reset otherwise Set if destination increments from 9999 to 0000, reset otherwise Set if destination increments from 99 to 00, reset otherwise V: Undefined OSCOFF, CPUOFF, and GIE are not affected. The four-digit decimal number contained in R5 is added to an eight-digit decimal number pointed to by R8. CLRC DADD DADC Example R5,0(R8) 2(R8) Reset carry next instruction's start condition is defined Add LSDs + C Add carry to MSD The two-digit decimal number contained in R5 is added to a four-digit decimal number pointed to by R8. CLRC DADD.B DADC ; ; ; ; R5,0(R8) 1(R8) ; ; ; ; Reset carry next instruction's start condition is defined Add LSDs + C Add carry to MSDs SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 247 Instruction Set Description www.ti.com 6.6.2.16 DADD * DADD[.W] * DADD.B Syntax Add source word and carry decimally to destination word Add source byte and carry decimally to destination byte DADD src,dst or DADD.W src,dst DADD.B src,dst Operation Description Status Bits Mode Bits Example DADD Example CLRC DADD.W DADD.W JC ... Example CLRC DADD.B 248 src + dst + C → dst (decimally) The source operand and the destination operand are treated as two (.B) or four (.W) binary coded decimals (BCD) with positive signs. The source operand and the carry bit C are added decimally to the destination operand. The source operand is not affected. The previous content of the destination is lost. The result is not defined for non-BCD numbers. N: Set if MSB of result is 1 (word > 7999h, byte > 79h), reset if MSB is 0 Z: Set if result is zero, reset otherwise C: Set if the BCD result is too large (word > 9999h, byte > 99h), reset otherwise V: Undefined OSCOFF, CPUOFF, and GIE are not affected. Decimal 10 is added to the 16-bit BCD counter DECCNTR. #10h,&DECCNTR ; Add 10 to 4-digit BCD counter The eight-digit BCD number contained in 16-bit RAM addresses BCD and BCD+2 is added decimally to an eight-digit BCD number contained in R4 and R5 (BCD+2 and R5 contain the MSDs). The carry C is added, and cleared. &BCD,R4 &BCD+2,R5 OVERFLOW ; ; ; ; ; Clear carry Add LSDs. R4.19:16 = 0 Add MSDs with carry. R5.19:16 = 0 Result >9999,9999: go to error routine Result ok The two-digit BCD number contained in word BCD (16-bit address) is added decimally to a two-digit BCD number contained in R4. The carry C is added, also. R4.19:8 = 0 &BCD,R4 ; Clear carry ; Add BCD to R4 decimally. R4: 0,00ddh CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.17 DEC * DEC[.W] * DEC.B Syntax Decrement destination Decrement destination DEC dst or DEC.W dst DEC.B dst Operation Emulation dst – 1 → dst SUB #1,dst SUB.B #1,dst Description Status Bits Mode Bits Example The N: Z: C: V: destination operand is decremented by one. The original contents are lost. Set if result is negative, reset if positive Set if dst contained 1, reset otherwise Reset if dst contained 0, set otherwise Set if an arithmetic overflow occurs, otherwise reset. Set if initial value of destination was 08000h, otherwise reset. Set if initial value of destination was 080h, otherwise reset. OSCOFF, CPUOFF, and GIE are not affected. R10 is decremented by 1. DEC R10 ; Decrement R10 ; Move a block of 255 bytes from memory location starting with EDE to ; memory location starting with TONI. Tables should not overlap: start of ; destination address TONI must not be within the range EDE to EDE+0FEh L$1 MOV MOV MOV.B DEC JNZ #EDE,R6 #255,R10 @R6+,TONI-EDE-1(R6) R10 L$1 Do not transfer tables using the routine above with the overlap shown in Figure 6-36. EDE TONI EDE+254 TONI+254 Figure 6-36. Decrement Overlap SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 249 Instruction Set Description www.ti.com 6.6.2.18 DECD * DECD[.W] * DECD.B Syntax Double-decrement destination Double-decrement destination DECD dst or DECD.W dst DECD.B dst Operation Emulation dst – 2 → dst SUB #2,dst SUB.B #2,dst Description Status Bits Mode Bits Example The N: Z: C: V: destination operand is decremented by two. The original contents are lost. Set if result is negative, reset if positive Set if dst contained 2, reset otherwise Reset if dst contained 0 or 1, set otherwise Set if an arithmetic overflow occurs, otherwise reset Set if initial value of destination was 08001 or 08000h, otherwise reset Set if initial value of destination was 081 or 080h, otherwise reset OSCOFF, CPUOFF, and GIE are not affected. R10 is decremented by 2. DECD ; ; ; ; R10 ; Decrement R10 by two Move a block of 255 bytes from memory location starting with EDE to memory location starting with TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE to EDE+0FEh L$1 Example MOV MOV MOV.B DECD JNZ #EDE,R6 #255,R10 @R6+,TONI-EDE-2(R6) R10 L$1 Memory at location LEO is decremented by two. DECD.B LEO ; Decrement MEM(LEO) Decrement status byte STATUS by two DECD.B 250 STATUS CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.19 DINT * DINT Syntax Operation Disable (general) interrupts Emulation Description BIC #8,SR DINT 0 → GIE or (0FFF7h .AND. SR → SR / .NOT.src .AND. dst → dst) Status Bits Mode Bits Example DINT NOP MOV MOV EINT All interrupts are disabled. The constant 08h is inverted and logically ANDed with the SR. The result is placed into the SR. Status bits are not affected. GIE is reset. OSCOFF and CPUOFF are not affected. The general interrupt enable (GIE) bit in the SR is cleared to allow a nondisrupted move of a 32-bit counter. This ensures that the counter is not modified during the move by any interrupt. COUNTHI,R5 COUNTLO,R6 ; All interrupt events using the GIE bit are disabled ; Required due to pipelined CPU architecture ; Copy counter ; All interrupt events using the GIE bit are enabled NOTE: Disable interrupt Due to the pipelined CPU architecture, clearing the general interrupt enable (GIE) requires special care. • • Include at least one instruction between DINT and the start of an code sequence that requires protection from interrupts. For example: Insert a NOP instruction after the DINT. Never clear the general interrupt enable (GIE) immediately after setting it. Insert at least one instruction in between such sequence. The rules above apply to all instructions that clear the general interrupt enable bit. Not following these rules might result in unexpected CPU execution. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 251 Instruction Set Description www.ti.com 6.6.2.20 EINT * EINT Syntax Operation Enable (general) interrupts Emulation Description BIS #8,SR EINT 1 → GIE or (0008h .OR. SR → SR / .src .OR. dst → dst) Status Bits Mode Bits Example All interrupts are enabled. The constant #08h and the SR are logically ORed. The result is placed into the SR. Status bits are not affected. GIE is set. OSCOFF and CPUOFF are not affected. The general interrupt enable (GIE) bit in the SR is set. PUSH.B BIC.B NOP EINT MaskOK &P1IN @SP,&P1IFG BIT #Mask,@SP JEQ MaskOK ...... BIC #Mask,@SP ...... INCD SP ; ; ; ; Reset only accepted flags Required due to pipelined CPU architecture Preset port 1 interrupt flags stored on stack other interrupts are allowed ; Flags are present identically to mask: jump ; Housekeeping: inverse to PUSH instruction ; at the start of interrupt subroutine. Corrects ; the stack pointer. RETI NOTE: Enable interrupt Due to the pipelined CPU architecture, setting the general interrupt enable (GIE) requires special care. • • • The instruction immediately after the enable interrupts instruction (EINT) is always executed, even if an interrupt service request is pending. Include at least one instruction between the clear of an interrupt enable or interrupt flag and the EINT instruction. For example: Insert a NOP instruction in front of the EINT instruction. Never clear the general interrupt enable (GIE) immediately after setting it. Insert at least one instruction in between such sequence. The rules above apply to all instructions that set the general interrupt enable bit. Not following these rules might result in unexpected CPU execution. 252 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.21 INC * INC[.W] * INC.B Syntax Increment destination Increment destination INC dst or INC.W dst INC.B dst Operation Emulation Description Status Bits Mode Bits Example INC.B CMP.B JEQ dst + 1 → dst ADD #1,dst The destination operand is incremented by one. The original contents are lost. N: Set if result is negative, reset if positive Z: Set if dst contained 0FFFFh, reset otherwise Set if dst contained 0FFh, reset otherwise C: Set if dst contained 0FFFFh, reset otherwise Set if dst contained 0FFh, reset otherwise V: Set if dst contained 07FFFh, reset otherwise Set if dst contained 07Fh, reset otherwise OSCOFF, CPUOFF, and GIE are not affected. The status byte, STATUS, of a process is incremented. When it is equal to 11, a branch to OVFL is taken. STATUS #11,STATUS OVFL SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 253 Instruction Set Description www.ti.com 6.6.2.22 INCD * INCD[.W] * INCD.B Syntax Double-increment destination Double-increment destination INCD dst or INCD.W dst INCD.B dst Operation Emulation Description Status Bits Mode Bits Example dst + 2 → dst ADD #2,dst The destination operand is incremented by two. The original contents are lost. N: Set if result is negative, reset if positive Z: Set if dst contained 0FFFEh, reset otherwise Set if dst contained 0FEh, reset otherwise C: Set if dst contained 0FFFEh or 0FFFFh, reset otherwise Set if dst contained 0FEh or 0FFh, reset otherwise V: Set if dst contained 07FFEh or 07FFFh, reset otherwise Set if dst contained 07Eh or 07Fh, reset otherwise OSCOFF, CPUOFF, and GIE are not affected. The item on the top of the stack (TOS) is removed without using a register. ....... PUSH R5 INCD SP ; ; ; ; R5 is the result of a calculation, which is stored in the system stack Remove TOS by double-increment from stack Do not use INCD.B, SP is a word-aligned register RET Example INCD.B 254 The byte on the top of the stack is incremented by two. 0(SP) ; Byte on TOS is increment by two CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.23 INV * INV[.W] * INV.B Syntax Invert destination Invert destination INV dst or INV.W dst INV.B dst Operation Emulation .not.dst → dst XOR #0FFFFh,dst XOR.B #0FFh,dst Description Status Bits Mode Bits Example MOV INV INC Example MOV.B INV.B INC.B The destination operand is inverted. The original contents are lost. N: Set if result is negative, reset if positive Z: Set if dst contained 0FFFFh, reset otherwise Set if dst contained 0FFh, reset otherwise C: Set if result is not zero, reset otherwise ( = .NOT. Zero) V: Set if initial destination operand was negative, otherwise reset OSCOFF, CPUOFF, and GIE are not affected. Content of R5 is negated (twos complement). #00AEh,R5 R5 R5 ; ; Invert R5, ; R5 is now negated, R5 = 000AEh R5 = 0FF51h R5 = 0FF52h Content of memory byte LEO is negated. #0AEh,LEO LEO LEO ; MEM(LEO) = 0AEh ; Invert LEO, MEM(LEO) = 051h ; MEM(LEO) is negated, MEM(LEO) = 052h SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 255 Instruction Set Description www.ti.com 6.6.2.24 JC, JHS JC JHS Syntax Jump if carry Jump if higher or same (unsigned) JC label JHS label Operation If C = 1: PC + (2 × Offset) → PC If C = 0: execute the following instruction Description The carry bit C in the SR is tested. If it is set, the signed 10-bit word offset contained in the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This means a jump in the range –511 to +512 words relative to the PC in the full memory range. If C is reset, the instruction after the jump is executed. JC is used for the test of the carry bit C. JHS is used for the comparison of unsigned numbers. Status bits are not affected OSCOFF, CPUOFF, and GIE are not affected. The state of the port 1 pin P1IN.1 bit defines the program flow. Status Bits Mode Bits Example BIT.B JC ... Example CMP JHS ... Example CMPA JHS ... 256 #2,&P1IN Label1 ; Port 1, bit 1 set? Bit -> C ; Yes, proceed at Label1 ; No, continue If R5 ≥ R6 (unsigned), the program continues at Label2. R6,R 5 Label2 ; Is R5 >= R6? Info to C ; Yes, C = 1 ; No, R5 < R6. Continue If R5 ≥ 12345h (unsigned operands), the program continues at Label2. #12345h,R5 Label2 ; Is R5 >= 12345h? Info to C ; Yes, 12344h < R5 <= F,FFFFh. C = 1 ; No, R5 < 12345h. Continue CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.25 JEQ, JZ JEQ JZ Syntax Jump if equal Jump if zero JEQ label JZ label Operation If Z = 1: PC + (2 × Offset) → PC If Z = 0: execute following instruction Description The zero bit Z in the SR is tested. If it is set, the signed 10-bit word offset contained in the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This means a jump in the range –511 to +512 words relative to the PC in the full memory range. If Z is reset, the instruction after the jump is executed. JZ is used for the test of the zero bit Z. JEQ is used for the comparison of operands. Status bits are not affected OSCOFF, CPUOFF, and GIE are not affected. The state of the P2IN.0 bit defines the program flow. Status Bits Mode Bits Example BIT.B JZ ... Example CMPA JEQ ... Example ADDA JZ ... #1,&P2IN Label1 ; Port 2, bit 0 reset? ; Yes, proceed at Label1 ; No, set, continue If R5 = 15000h (20-bit data), the program continues at Label2. #15000h,R5 Label2 ; Is R5 = 15000h? Info to SR ; Yes, R5 = 15000h. Z = 1 ; No, R5 not equal 15000h. Continue R7 (20-bit counter) is incremented. If its content is zero, the program continues at Label4. #1,R7 Label4 ; Increment R7 ; Zero reached: Go to Label4 ; R7 not equal 0. Continue here. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 257 Instruction Set Description www.ti.com 6.6.2.26 JGE JGE Syntax Operation Jump if greater or equal (signed) Description The negative bit N and the overflow bit V in the SR are tested. If both bits are set or both are reset, the signed 10-bit word offset contained in the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This means a jump in the range -511 to +512 words relative to the PC in full Memory range. If only one bit is set, the instruction after the jump is executed. JGE is used for the comparison of signed operands: also for incorrect results due to overflow, the decision made by the JGE instruction is correct. Note that JGE emulates the nonimplemented JP (jump if positive) instruction if used after the instructions AND, BIT, RRA, SXTX, and TST. These instructions clear the V bit. Status bits are not affected. OSCOFF, CPUOFF, and GIE are not affected. If byte EDE (lower 64 K) contains positive data, go to Label1. Software can run in the full memory range. Status Bits Mode Bits Example TST.B JGE ... Example CMP JGE ... Example CMPA JGE ... 258 JGE label If (N .xor. V) = 0: PC + (2 × Offset) → PC If (N .xor. V) = 1: execute following instruction &EDE Label1 ; Is EDE positive? V <- 0 ; Yes, JGE emulates JP ; No, 80h <= EDE <= FFh If the content of R6 is greater than or equal to the memory pointed to by R7, the program continues a Label5. Signed data. Data and program in full memory range. @R7,R6 Label5 ; Is R6 >= @R7? ; Yes, go to Label5 ; No, continue here If R5 ≥ 12345h (signed operands), the program continues at Label2. Program in full memory range. #12345h,R5 Label2 ; Is R5 >= 12345h? ; Yes, 12344h < R5 <= 7FFFFh ; No, 80000h <= R5 < 12345h CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.27 JL JL Syntax Operation Jump if less (signed) Description The negative bit N and the overflow bit V in the SR are tested. If only one is set, the signed 10-bit word offset contained in the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This means a jump in the range –511 to +512 words relative to the PC in full memory range. If both bits N and V are set or both are reset, the instruction after the jump is executed. JL is used for the comparison of signed operands: also for incorrect results due to overflow, the decision made by the JL instruction is correct. Status bits are not affected. OSCOFF, CPUOFF, and GIE are not affected. If byte EDE contains a smaller, signed operand than byte TONI, continue at Label1. The address EDE is within PC ± 32 K. Status Bits Mode Bits Example CMP.B JL ... Example CMP JL ... Example CMPA JL ... JL label If (N .xor. V) = 1: PC + (2 × Offset) → PC If (N .xor. V) = 0: execute following instruction &TONI,EDE Label1 ; Is EDE < TONI ; Yes ; No, TONI <= EDE If the signed content of R6 is less than the memory pointed to by R7 (20-bit address), the program continues at Label5. Data and program in full memory range. @R7,R6 Label5 ; Is R6 < @R7? ; Yes, go to Label5 ; No, continue here If R5 < 12345h (signed operands), the program continues at Label2. Data and program in full memory range. #12345h,R5 Label2 ; Is R5 < 12345h? ; Yes, 80000h =< R5 < 12345h ; No, 12344h < R5 <= 7FFFFh SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 259 Instruction Set Description www.ti.com 6.6.2.28 JMP JMP Syntax Operation Description Status Bits Mode Bits Example MOV.B JMP Example ADD RETI JMP JMP RETI 260 Jump unconditionally JMP label PC + (2 × Offset) → PC The signed 10-bit word offset contained in the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This means an unconditional jump in the range –511 to +512 words relative to the PC in the full memory. The JMP instruction may be used as a BR or BRA instruction within its limited range relative to the PC. Status bits are not affected OSCOFF, CPUOFF, and GIE are not affected. The byte STATUS is set to 10. Then a jump to label MAINLOOP is made. Data in lower 64 K, program in full memory range. #10,&STATUS MAINLOOP ; Set STATUS to 10 ; Go to main loop The interrupt vector TAIV of Timer_A3 is read and used for the program flow. Program in full memory range, but interrupt handlers always starts in lower 64 K. &TAIV,PC IHCCR1 IHCCR2 ; ; ; ; ; Add Timer_A interrupt vector to PC No Timer_A interrupt pending Timer block 1 caused interrupt Timer block 2 caused interrupt No legal interrupt, return CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.29 JN JN Syntax Operation Description Status Bits Mode Bits Example TST.B JN ... Example SUB JN ... Example SUBA JN ... Jump if negative JN label If N = 1: PC + (2 × Offset) → PC If N = 0: execute following instruction The negative bit N in the SR is tested. If it is set, the signed 10-bit word offset contained in the instruction is multiplied by two, sign extended, and added to the 20-bit program PC. This means a jump in the range -511 to +512 words relative to the PC in the full memory range. If N is reset, the instruction after the jump is executed. Status bits are not affected. OSCOFF, CPUOFF, and GIE are not affected. The byte COUNT is tested. If it is negative, program execution continues at Label0. Data in lower 64 K, program in full memory range. &COUNT Label0 ; Is byte COUNT negative? ; Yes, proceed at Label0 ; COUNT >= 0 R6 is subtracted from R5. If the result is negative, program continues at Label2. Program in full memory range. R6,R5 Label2 ; R5 - R6 -> R5 ; R5 is negative: R6 > R5 (N = 1) ; R5 >= 0. Continue here. R7 (20-bit counter) is decremented. If its content is below zero, the program continues at Label4. Program in full memory range. #1,R7 Label4 ; Decrement R7 ; R7 < 0: Go to Label4 ; R7 >= 0. Continue here. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 261 Instruction Set Description www.ti.com 6.6.2.30 JNC, JLO JNC JLO Syntax Jump if no carry Jump if lower (unsigned) JNC label JLO label Operation If C = 0: PC + (2 × Offset) → PC If C = 1: execute following instruction Description The carry bit C in the SR is tested. If it is reset, the signed 10-bit word offset contained in the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This means a jump in the range –511 to +512 words relative to the PC in the full memory range. If C is set, the instruction after the jump is executed. JNC is used for the test of the carry bit C. JLO is used for the comparison of unsigned numbers. Status bits are not affected. OSCOFF, CPUOFF, and GIE are not affected. If byte EDE < 15, the program continues at Label2. Unsigned data. Data in lower 64 K, program in full memory range. Status Bits Mode Bits Example CMP.B JLO ... Example ADD JNC ... 262 #15,&EDE Label2 ; Is EDE < 15? Info to C ; Yes, EDE < 15. C = 0 ; No, EDE >= 15. Continue The word TONI is added to R5. If no carry occurs, continue at Label0. The address of TONI is within PC ± 32 K. TONI,R5 Label0 ; TONI + R5 -> R5. Carry -> C ; No carry ; Carry = 1: continue here CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.31 JNZ, JNE JNZ JNE Syntax Jump if not zero Jump if not equal JNZ label JNE label Operation If Z = 0: PC + (2 × Offset) → PC If Z = 1: execute following instruction Description The zero bit Z in the SR is tested. If it is reset, the signed 10-bit word offset contained in the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This means a jump in the range –511 to +512 words relative to the PC in the full memory range. If Z is set, the instruction after the jump is executed. JNZ is used for the test of the zero bit Z. JNE is used for the comparison of operands. Status bits are not affected. OSCOFF, CPUOFF, and GIE are not affected. The byte STATUS is tested. If it is not zero, the program continues at Label3. The address of STATUS is within PC ± 32 K. Status Bits Mode Bits Example TST.B JNZ ... Example CMP JNE ... Example SUBA JNZ ... STATUS Label3 ; Is STATUS = 0? ; No, proceed at Label3 ; Yes, continue here If word EDE ≠ 1500, the program continues at Label2. Data in lower 64 K, program in full memory range. #1500,&EDE Label2 ; Is EDE = 1500? Info to SR ; No, EDE not equal 1500. ; Yes, R5 = 1500. Continue R7 (20-bit counter) is decremented. If its content is not zero, the program continues at Label4. Program in full memory range. #1,R7 Label4 ; Decrement R7 ; Zero not reached: Go to Label4 ; Yes, R7 = 0. Continue here. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 263 Instruction Set Description www.ti.com 6.6.2.32 MOV MOV[.W] MOV.B Syntax Move source word to destination word Move source byte to destination byte MOV src,dst or MOV.W src,dst MOV.B src,dst Operation Description Status Bits Mode Bits Example MOV Example Loop Example Loop 264 src → dst The source operand is copied to the destination. The source operand is not affected. N: Not affected Z: Not affected C: Not affected V: Not affected OSCOFF, CPUOFF, and GIE are not affected. Move a 16-bit constant 1800h to absolute address-word EDE (lower 64 K) #01800h,&EDE ; Move 1800h to EDE The contents of table EDE (word data, 16-bit addresses) are copied to table TOM. The length of the tables is 030h words. Both tables reside in the lower 64 K. MOV MOV #EDE,R10 @R10+,TOM-EDE-2(R10) CMP JLO ... #EDE+60h,R10 Loop ; ; ; ; ; ; Prepare pointer (16-bit address) R10 points to both tables. R10+2 End of table reached? Not yet Copy completed The contents of table EDE (byte data, 16-bit addresses) are copied to table TOM. The length of the tables is 020h bytes. Both tables may reside in full memory range, but must be within R10 ± 32 K. MOVA MOV MOV.B #EDE,R10 #20h,R9 @R10+,TOM-EDE-1(R10) DEC JNZ ... R9 Loop ; ; ; ; ; ; ; Prepare pointer (20-bit) Prepare counter R10 points to both tables. R10+1 Decrement counter Not yet done Copy completed CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.33 NOP * NOP Syntax Operation Emulation Description Status Bits No operation NOP None MOV #0, R3 No operation is performed. The instruction may be used for the elimination of instructions during the software check or for defined waiting times. Status bits are not affected. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 265 Instruction Set Description www.ti.com 6.6.2.34 POP * POP[.W] * POP.B Syntax Pop word from stack to destination Pop byte from stack to destination POP dst POP.B dst Operation @SP → temp SP + 2 → SP temp → dst Emulation MOV @SP+,dst or MOV.W @SP+,dst MOV.B @SP+,dst Description The stack location pointed to by the SP (TOS) is moved to the destination. The SP is incremented by two afterwards. Status bits are not affected. The contents of R7 and the SR are restored from the stack. Status Bits Example POP POP R7 SR Example The contents of RAM byte LEO is restored from the stack. POP.B Example LEO ; The low byte of the stack is moved to LEO. The contents of R7 is restored from the stack. POP.B Example R7 ; The low byte of the stack is moved to R7, ; the high byte of R7 is 00h The contents of the memory pointed to by R7 and the SR are restored from the stack. POP.B 0(R7) POP SR NOTE: ; Restore R7 ; Restore status register ; ; : ; : ; ; The low byte of the stack is moved to the the byte which is pointed to by R7 Example: R7 = 203h Mem(R7) = low byte of system stack Example: R7 = 20Ah Mem(R7) = low byte of system stack Last word on stack moved to the SR System stack pointer The system SP is always incremented by two, independent of the byte suffix. 266 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.35 PUSH PUSH[.W] PUSH.B Syntax Save a word on the stack Save a byte on the stack PUSH dst or PUSH.W dst PUSH.B dst Operation Description Status Bits Mode Bits Example PUSH PUSH Example PUSH.B PUSH.B SP – 2 → SP dst → @SP The 20-bit SP SP is decremented by two. The operand is then copied to the RAM word addressed by the SP. A pushed byte is stored in the low byte; the high byte is not affected. Status bits are not affected. OSCOFF, CPUOFF, and GIE are not affected. Save the two 16-bit registers R9 and R10 on the stack R9 R10 ; Save R9 and R10 XXXXh ; YYYYh Save the two bytes EDE and TONI on the stack. The addresses EDE and TONI are within PC ± 32 K. EDE TONI ; Save EDE ; Save TONI xxXXh xxYYh SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 267 Instruction Set Description www.ti.com 6.6.2.36 RET * RET Syntax Operation Description Status Bits Mode Bits Example SUBR Return from subroutine RET @SP →PC.15:0 Saved PC to PC.15:0. PC.19:16 ← 0 SP + 2 → SP The 16-bit return address (lower 64 K), pushed onto the stack by a CALL instruction is restored to the PC. The program continues at the address following the subroutine call. The four MSBs of the PC.19:16 are cleared. Status bits are not affected. PC.19:16: Cleared OSCOFF, CPUOFF, and GIE are not affected. Call a subroutine SUBR in the lower 64 K and return to the address in the lower 64 K after the CALL. CALL ... PUSH ... POP RET #SUBR R14 R14 ; ; ; ; ; ; Call subroutine starting at SUBR Return by RET to here Save R14 (16 bit data) Subroutine code Restore R14 Return to lower 64 K Item n SP SP Item n PCReturn Stack before RET instruction Stack after RET instruction Figure 6-37. Stack After a RET Instruction 268 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.37 RETI RETI Syntax Operation Description Status Bits Mode Bits Example INTRPT Return from interrupt RETI @SP → SR.15:0 SP + 2 → SP @SP → PC.15:0 SP + 2 → SP Restore saved SR with PC.19:16 Restore saved PC.15:0 Housekeeping The SR is restored to the value at the beginning of the interrupt service routine. This includes the four MSBs of the PC.19:16. The SP is incremented by two afterward. The 20-bit PC is restored from PC.19:16 (from same stack location as the status bits) and PC.15:0. The 20-bit PC is restored to the value at the beginning of the interrupt service routine. The program continues at the address following the last executed instruction when the interrupt was granted. The SP is incremented by two afterward. No interrupt flags are modified by this command. N: Restored from stack C: Restored from stack Z: Restored from stack V: Restored from stack OSCOFF, CPUOFF, and GIE are restored from stack. Interrupt handler in the lower 64 K. A 20-bit return address is stored on the stack. PUSHM.A ... POPM.A RETI #2,R14 #2,R14 ; ; ; ; Save R14 and R13 (20-bit data) Interrupt handler code Restore R13 and R14 (20-bit data) Return to 20-bit address in full memory range SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 269 Instruction Set Description www.ti.com 6.6.2.38 RLA * RLA[.W] * RLA.B Syntax Rotate left arithmetically Rotate left arithmetically RLA dst or RLA.W dst RLA.B dst Operation Emulation C ← MSB ← MSB-1 .... LSB+1 ← LSB ← 0 ADD dst,dst ADD.B dst,dst Description The destination operand is shifted left one position as shown in Figure 6-38. The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLA instruction acts as a signed multiplication by 2. An overflow occurs if dst ≥ 04000h and dst < 0C000h before operation is performed; the result has changed sign. Word 15 0 0 C Byte 7 0 Figure 6-38. Destination Operand—Arithmetic Shift Left Status Bits Mode Bits Example RLA An overflow occurs if dst ≥ 040h and dst < 0C0h before the operation is performed; the result has changed sign. N: Set if result is negative, reset if positive Z: Set if result is zero, reset otherwise C: Loaded from the MSB V: Set if an arithmetic overflow occurs; the initial value is 04000h ≤ dst < 0C000h, reset otherwise Set if an arithmetic overflow occurs; the initial value is 040h ≤ dst < 0C0h, reset otherwise OSCOFF, CPUOFF, and GIE are not affected. R7 is multiplied by 2. R7 Example ; Shift left R7 (x 2) The low byte of R7 is multiplied by 4. RLA.B RLA.B R7 R7 ; Shift left low byte of R7 ; Shift left low byte of R7 (x 2) (x 4) NOTE: RLA substitution The assembler does not recognize the instructions: RLA @R5+ RLA.B @R5+ RLA(.B) @R5 @R5+,-1(R5) ADD(.B) @R5 They must be substituted by: ADD 270 @R5+,-2(R5) ADD.B CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.39 RLC * RLC[.W] * RLC.B Syntax Rotate left through carry Rotate left through carry RLC dst or RLC.W dst RLC.B dst C ← MSB ← MSB-1 .... LSB+1 ← LSB ← C Operation Emulation Description ADDC dst,dst The destination operand is shifted left one position as shown in Figure 6-39. The carry bit (C) is shifted into the LSB, and the MSB is shifted into the carry bit (C). Word 15 0 7 0 C Byte Figure 6-39. Destination Operand—Carry Left Shift Status Bits N: Z: C: V: Set if result is negative, reset if positive Set if result is zero, reset otherwise Loaded from the MSB Set if an arithmetic overflow occurs; the initial value is 04000h ≤ dst < 0C000h, reset otherwise Set if an arithmetic overflow occurs; the initial value is 040h ≤ dst < 0C0h, reset otherwise OSCOFF, CPUOFF, and GIE are not affected. R5 is shifted left one position. Mode Bits Example RLC R5 Example ; (R5 x 2) + C -> R5 The input P1IN.1 information is shifted into the LSB of R5. BIT.B RLC #2,&P1IN R5 Example ; Information -> Carry ; Carry=P0in.1 -> LSB of R5 The MEM(LEO) content is shifted left one position. RLC.B LEO ; Mem(LEO) x 2 + C -> Mem(LEO) NOTE: RLA substitution The assembler does not recognize the instructions: RLC @R5+ RLC.B @R5+ RLC(.B) @R5 They must be substituted by: ADDC @R5+,-2(R5) ADDC.B @R5+,-1(R5) ADDC(.B) @R5 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 271 Instruction Set Description www.ti.com 6.6.2.40 RRA RRA[.W] RRA.B Syntax Operation Description Rotate right arithmetically destination word Rotate right arithmetically destination byte RRA.B dst or RRA.W dst MSB → MSB → MSB–1 → ... LSB+1 → LSB → C The destination operand is shifted right arithmetically by one bit position as shown in Figure 6-40. The MSB retains its value (sign). RRA operates equal to a signed division by 2. The MSB is retained and shifted into the MSB–1. The LSB+1 is shifted into the LSB. The previous LSB is shifted into the carry bit C. N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0) Z: Set if result is zero, reset otherwise C: Loaded from the LSB V: Reset OSCOFF, CPUOFF, and GIE are not affected. The signed 16-bit number in R5 is shifted arithmetically right one position. Status Bits Mode Bits Example RRA R5 Example RRA.B ; R5/2 -> R5 The signed RAM byte EDE is shifted arithmetically right one position. EDE ; EDE/2 -> EDE 19 C 0 15 0 0 0 19 C 0 0 0 0 0 0 0 0 0 0 0 0 7 0 MSB LSB 15 0 MSB LSB Figure 6-40. Rotate Right Arithmetically RRA.B and RRA.W 272 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.41 RRC RRC[.W] RRC.B Syntax Rotate right through carry destination word Rotate right through carry destination byte RRC dst or RRC.W dst RRC.B dst C → MSB → MSB–1 → ... LSB+1 → LSB → C The destination operand is shifted right by one bit position as shown in Figure 6-41. The carry bit C is shifted into the MSB and the LSB is shifted into the carry bit C. N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0) Z: Set if result is zero, reset otherwise C: Loaded from the LSB V: Reset OSCOFF, CPUOFF, and GIE are not affected. RAM word EDE is shifted right one bit position. The MSB is loaded with 1. Operation Description Status Bits Mode Bits Example SETC RRC ; Prepare carry for MSB ; EDE = EDE >> 1 + 8000h EDE 19 C 0 15 0 0 0 19 C 0 0 0 0 0 0 0 0 0 0 0 0 7 0 MSB LSB 15 0 MSB LSB Figure 6-41. Rotate Right Through Carry RRC.B and RRC.W SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 273 Instruction Set Description www.ti.com 6.6.2.42 SBC * SBC[.W] * SBC.B Syntax Subtract borrow (.NOT. carry) from destination Subtract borrow (.NOT. carry) from destination SBC dst or SBC.W dst SBC.B dst Operation dst + 0FFFFh + C → dst dst + 0FFh + C → dst Emulation SUBC #0,dst SUBC.B #0,dst Description Status Bits Mode Bits Example SUB SBC @R13,0(R12) 2(R12) Example ; Subtract LSDs ; Subtract carry from MSD The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed to by R12. SUB.B SBC.B NOTE: The carry bit (C) is added to the destination operand minus one. The previous contents of the destination are lost. N: Set if result is negative, reset if positive Z: Set if result is zero, reset otherwise C: Set if there is a carry from the MSB of the result, reset otherwise Set to 1 if no borrow, reset if borrow V: Set if an arithmetic overflow occurs, reset otherwise OSCOFF, CPUOFF, and GIE are not affected. The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter pointed to by R12. @R13,0(R12) 1(R12) ; Subtract LSDs ; Subtract carry from MSD Borrow implementation The borrow is treated as a .NOT. carry: Borrow Yes No 274 Carry Bit 0 1 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.43 SETC * SETC Syntax Operation Emulation Description Status Bits Mode Bits Example DSUB Set carry bit SETC 1→C BIS #1,SR The carry bit (C) is set. N: Not affected Z: Not affected C: Set V: Not affected OSCOFF, CPUOFF, and GIE are not affected. Emulation of the decimal subtraction: Subtract R5 from R6 decimally. Assume that R5 = 03987h and R6 = 04137h. ADD #06666h,R5 INV R5 SETC DADD R5,R6 ; ; ; ; ; ; ; ; ; Move content R5 from 0-9 to 6-0Fh R5 = 03987h + 06666h = 09FEDh Invert this (result back to 0-9) R5 = .NOT. R5 = 06012h Prepare carry = 1 Emulate subtraction by addition of: (010000h - R5 - 1) R6 = R6 + R5 + 1 R6 = 0150h SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 275 Instruction Set Description www.ti.com 6.6.2.44 SETN * SETN Syntax Operation Emulation Description Status Bits Mode Bits 276 Set negative bit SETN 1→N BIS #4,SR The negative bit (N) is set. N: Set Z: Not affected C: Not affected V: Not affected OSCOFF, CPUOFF, and GIE are not affected. CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.45 SETZ * SETZ Syntax Operation Emulation Description Status Bits Mode Bits Set zero bit SETZ 1→N BIS #2,SR The zero bit (Z) is set. N: Not affected Z: Set C: Not affected V: Not affected OSCOFF, CPUOFF, and GIE are not affected. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 277 Instruction Set Description www.ti.com 6.6.2.46 SUB SUB[.W] SUB.B Syntax Subtract source word from destination word Subtract source byte from destination byte SUB src,dst or SUB.W src,dst SUB.B src,dst Operation Description Status Bits Mode Bits Example SUB Example SUB JZ ... Example SUB.B 278 (.not.src) + 1 + dst → dst or dst – src → dst The source operand is subtracted from the destination operand. This is made by adding the 1s complement of the source + 1 to the destination. The source operand is not affected, the result is written to the destination operand. N: Set if result is negative (src > dst), reset if positive (src ≤ dst) Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst) C: Set if there is a carry from the MSB, reset otherwise V: Set if the subtraction of a negative source operand from a positive destination operand delivers a negative result, or if the subtraction of a positive source operand from a negative destination operand delivers a positive result, reset otherwise (no overflow) OSCOFF, CPUOFF, and GIE are not affected. A 16-bit constant 7654h is subtracted from RAM word EDE. #7654h,&EDE ; Subtract 7654h from EDE A table word pointed to by R5 (20-bit address) is subtracted from R7. Afterwards, if R7 contains zero, jump to label TONI. R5 is then auto-incremented by 2. R7.19:16 = 0. @R5+,R7 TONI ; Subtract table number from R7. R5 + 2 ; R7 = @R5 (before subtraction) ; R7 <> @R5 (before subtraction) Byte CNT is subtracted from byte R12 points to. The address of CNT is within PC ± 32K. The address R12 points to is in full memory range. CNT,0(R12) ; Subtract CNT from @R12 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.47 SUBC SUBC[.W] SUBC.B Syntax Subtract source word with carry from destination word Subtract source byte with carry from destination byte SUBC src,dst or SUBC.W src,dst SUBC.B src,dst Operation Description Status Bits Mode Bits Example SUBC.W Example SUB SUBC SUBC Example SUBC.B (.not.src) + C + dst → dst or dst – (src – 1) + C → dst The source operand is subtracted from the destination operand. This is done by adding the 1s complement of the source + carry to the destination. The source operand is not affected, the result is written to the destination operand. Used for 32, 48, and 64-bit operands. N: Set if result is negative (MSB = 1), reset if positive (MSB = 0) Z: Set if result is zero, reset otherwise C: Set if there is a carry from the MSB, reset otherwise V: Set if the subtraction of a negative source operand from a positive destination operand delivers a negative result, or if the subtraction of a positive source operand from a negative destination operand delivers a positive result, reset otherwise (no overflow) OSCOFF, CPUOFF, and GIE are not affected. A 16-bit constant 7654h is subtracted from R5 with the carry from the previous instruction. R5.19:16 = 0 #7654h,R5 ; Subtract 7654h + C from R5 A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from a 48-bit counter in RAM, pointed to by R7. R5 points to the next 48-bit number afterwards. The address R7 points to is in full memory range. @R5+,0(R7) @R5+,2(R7) @R5+,4(R7) ; Subtract LSBs. R5 + 2 ; Subtract MIDs with C. R5 + 2 ; Subtract MSBs with C. R5 + 2 Byte CNT is subtracted from the byte, R12 points to. The carry of the previous instruction is used. The address of CNT is in lower 64 K. &CNT,0(R12) ; Subtract byte CNT from @R12 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 279 Instruction Set Description www.ti.com 6.6.2.48 SWPB SWPB Syntax Operation Description Swap bytes SWPB dst dst.15:8 ↔ dst.7:0 The high and the low byte of the operand are exchanged. PC.19:16 bits are cleared in register mode. Status bits are not affected OSCOFF, CPUOFF, and GIE are not affected. Exchange the bytes of RAM word EDE (lower 64 K) Status Bits Mode Bits Example MOV SWPB #1234h,&EDE &EDE ; 1234h -> EDE ; 3412h -> EDE Before SWPB 15 8 7 0 High Byte Low Byte After SWPB 15 8 7 0 Low Byte High Byte Figure 6-42. Swap Bytes in Memory Before SWPB 19 16 15 x 8 7 High Byte 0 Low Byte After SWPB 19 16 0 ... 0 15 8 Low Byte 7 0 High Byte Figure 6-43. Swap Bytes in a Register 280 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.49 SXT SXT Syntax Operation Description Status Bits Mode Bits Example MOV.B SXT ADD Example MOV.B SXT ADDA Extend sign SXT dst dst.7 → dst.15:8, dst.7 → dst.19:8 (register mode) Register mode: the sign of the low byte of the operand is extended into the bits Rdst.19:8. Rdst.7 = 0: Rdst.19:8 = 000h afterwards Rdst.7 = 1: Rdst.19:8 = FFFh afterwards Other modes: the sign of the low byte of the operand is extended into the high byte. dst.7 = 0: high byte = 00h afterwards dst.7 = 1: high byte = FFh afterwards N: Set if result is negative, reset otherwise Z: Set if result is zero, reset otherwise C: Set if result is not zero, reset otherwise (C = .not.Z) V: Reset OSCOFF, CPUOFF, and GIE are not affected. The signed 8-bit data in EDE (lower 64 K) is sign extended and added to the 16-bit signed data in R7. &EDE,R5 R5 R5,R7 ; EDE -> R5. 00XXh ; Sign extend low byte to R5.19:8 ; Add signed 16-bit values The signed 8-bit data in EDE (PC +32 K) is sign extended and added to the 20-bit data in R7. EDE,R5 R5 R5,R7 ; EDE -> R5. 00XXh ; Sign extend low byte to R5.19:8 ; Add signed 20-bit values SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 281 Instruction Set Description www.ti.com 6.6.2.50 TST * TST[.W] * TST.B Syntax Test destination Test destination TST dst or TST.W dst TST.B dst Operation dst + 0FFFFh + 1 dst + 0FFh + 1 Emulation CMP #0,dst CMP.B #0,dst Description Status Bits Mode Bits Example R7POS R7NEG R7ZERO Example R7POS R7NEG R7ZERO 282 The destination operand is compared with zero. The status bits are set according to the result. The destination is not affected. N: Set if destination is negative, reset if positive Z: Set if destination contains zero, reset otherwise C: Set V: Reset OSCOFF, CPUOFF, and GIE are not affected. R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero, continue at R7POS. TST JN JZ ...... ...... ...... R7 R7NEG R7ZERO ; ; ; ; ; ; Test R7 R7 is negative R7 is zero R7 is positive but not zero R7 is negative R7 is zero The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero, continue at R7POS. TST.B JN JZ ...... ..... ...... R7 R7NEG R7ZERO ; ; ; ; ; ; Test low Low byte Low byte Low byte Low byte Low byte byte of R7 of R7 is negative of R7 is zero of R7 is positive but not zero of R7 is negative of R7 is zero CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.2.51 XOR XOR[.W] XOR.B Syntax Exclusive OR source word with destination word Exclusive OR source byte with destination byte XOR src,dst or XOR.W src,dst XOR.B src,dst Operation Description Status Bits Mode Bits Example XOR Example XOR Example XOR.B INV.B src .xor. dst → dst The source and destination operands are exclusively ORed. The result is placed into the destination. The source operand is not affected. The previous content of the destination is lost. N: Set if result is negative (MSB = 1), reset if positive (MSB = 0) Z: Set if result is zero, reset otherwise C: Set if result is not zero, reset otherwise (C = .not. Z) V: Set if both operands are negative before execution, reset otherwise OSCOFF, CPUOFF, and GIE are not affected. Toggle bits in word CNTR (16-bit data) with information (bit = 1) in address-word TONI. Both operands are located in lower 64 K. &TONI,&CNTR ; Toggle bits in CNTR A table word pointed to by R5 (20-bit address) is used to toggle bits in R6. R6.19:16 = 0. @R5,R6 ; Toggle bits in R6 Reset to zero those bits in the low byte of R7 that are different from the bits in byte EDE. R7.19:8 = 0. The address of EDE is within PC ± 32 K. EDE,R7 R7 ; Set different bits to 1 in R7. ; Invert low byte of R7, high byte is 0h SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 283 Instruction Set Description www.ti.com 6.6.3 Extended Instructions The extended MSP430X instructions give the MSP430X CPU full access to its 20-bit address space. MSP430X instructions require an additional word of op-code called the extension word. All addresses, indexes, and immediate numbers have 20-bit values when preceded by the extension word. The MSP430X extended instructions are listed and described in the following pages. 284 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.1 ADCX * ADCX.A * ADCX.[W] * ADCX.B Syntax Add carry to destination address-word Add carry to destination word Add carry to destination byte ADCX.A dst ADCX dst or ADCX.B dst Operation Emulation ADCX.W dst dst + C → dst ADDCX.A #0,dst ADDCX #0,dst ADDCX.B #0,dst Description Status Bits Mode Bits Example INCX.A ADCX.A The carry bit (C) is added to the destination operand. The previous contents of the destination are lost. N: Set if result is negative (MSB = 1), reset if positive (MSB = 0) Z: Set if result is zero, reset otherwise C: Set if there is a carry from the MSB of the result, reset otherwise V: Set if the result of two positive operands is negative, or if the result of two negative numbers is positive, reset otherwise OSCOFF, CPUOFF, and GIE are not affected. The 40-bit counter, pointed to by R12 and R13, is incremented. @R12 @R13 ; Increment lower 20 bits ; Add carry to upper 20 bits SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 285 Instruction Set Description 6.6.3.2 www.ti.com ADDX ADDX.A ADDX.[W] ADDX.B Syntax Add source address-word to destination address-word Add source word to destination word Add source byte to destination byte ADDX.A src,dst ADDX src,dst or ADDX.W src,dst ADDX.B src,dst Operation Description Status Bits Mode Bits Example ADDX.A Example ADDX.W JC ... Example ADDX.B JNC ... src + dst → dst The source operand is added to the destination operand. The previous contents of the destination are lost. Both operands can be located in the full address space. N: Set if result is negative (MSB = 1), reset if positive (MSB = 0) Z: Set if result is zero, reset otherwise C: Set if there is a carry from the MSB of the result, reset otherwise V: Set if the result of two positive operands is negative, or if the result of two negative numbers is positive, reset otherwise OSCOFF, CPUOFF, and GIE are not affected. Ten is added to the 20-bit pointer CNTR located in two words CNTR (LSBs) and CNTR+2 (MSBs). #10,CNTR ; Add 10 to 20-bit pointer A table word (16-bit) pointed to by R5 (20-bit address) is added to R6. The jump to label TONI is performed on a carry. @R5,R6 TONI ; Add table word to R6 ; Jump if carry ; No carry A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label TONI is performed if no carry occurs. The table pointer is auto-incremented by 1. @R5+,R6 TONI ; Add table byte to R6. R5 + 1. R6: 000xxh ; Jump if no carry ; Carry occurred Note: Use ADDA for the following two cases for better code density and execution. ADDX.A ADDX.A 286 Rsrc,Rdst #imm20,Rdst CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.3 ADDCX ADDCX.A ADDCX.[W] ADDCX.B Syntax Add source address-word and carry to destination address-word Add source word and carry to destination word Add source byte and carry to destination byte ADDCX.A src,dst ADDCX src,dst or ADDCX.W src,dst ADDCX.B src,dst Operation Description Status Bits Mode Bits Example src + dst + C → dst The source operand and the carry bit C are added to the destination operand. The previous contents of the destination are lost. Both operands may be located in the full address space. N: Set if result is negative (MSB = 1), reset if positive (MSB = 0) Z: Set if result is zero, reset otherwise C: Set if there is a carry from the MSB of the result, reset otherwise V: Set if the result of two positive operands is negative, or if the result of two negative numbers is positive, reset otherwise OSCOFF, CPUOFF, and GIE are not affected. Constant 15 and the carry of the previous instruction are added to the 20-bit counter CNTR located in two words. ADDCX.A Example ; Add 15 + C to 20-bit CNTR A table word pointed to by R5 (20-bit address) and the carry C are added to R6. The jump to label TONI is performed on a carry. ADDCX.W JC ... Example #15,&CNTR @R5,R6 TONI ; Add table word + C to R6 ; Jump if carry ; No carry A table byte pointed to by R5 (20-bit address) and the carry bit C are added to R6. The jump to label TONI is performed if no carry occurs. The table pointer is auto-incremented by 1. ADDCX.B JNC ... @R5+,R6 TONI ; Add table byte + C to R6. R5 + 1 ; Jump if no carry ; Carry occurred SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 287 Instruction Set Description 6.6.3.4 www.ti.com ANDX ANDX.A ANDX.[W] ANDX.B Syntax Logical AND of source address-word with destination address-word Logical AND of source word with destination word Logical AND of source byte with destination byte ANDX.A src,dst ANDX src,dst or ANDX.W src,dst ANDX.B src,dst Operation Description Status Bits Mode Bits Example MOVA ANDX.A JZ ... src .and. dst → dst The source operand and the destination operand are logically ANDed. The result is placed into the destination. The source operand is not affected. Both operands may be located in the full address space. N: Set if result is negative (MSB = 1), reset if positive (MSB = 0) Z: Set if result is zero, reset otherwise C: Set if the result is not zero, reset otherwise. C = (.not. Z) V: Reset OSCOFF, CPUOFF, and GIE are not affected. The bits set in R5 (20-bit data) are used as a mask (AAA55h) for the address-word TOM located in two words. If the result is zero, a branch is taken to label TONI. #AAA55h,R5 R5,TOM TONI ; ; ; ; Load 20-bit mask to R5 TOM .and. R5 -> TOM Jump if result 0 Result > 0 or shorter: ANDX.A JZ Example ANDX.B 288 #AAA55h,TOM TONI ; TOM .and. AAA55h -> TOM ; Jump if result 0 A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R6.19:8 = 0. The table pointer is auto-incremented by 1. @R5+,R6 ; AND table byte with R6. R5 + 1 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.5 BICX BICX.A BICX.[W] BICX.B Syntax Clear bits set in source address-word in destination address-word Clear bits set in source word in destination word Clear bits set in source byte in destination byte BICX.A src,dst BICX src,dst or BICX.W src,dst BICX.B src,dst Operation Description Status Bits Mode Bits Example BICX.A Example BICX.W Example BICX.B (.not. src) .and. dst → dst The inverted source operand and the destination operand are logically ANDed. The result is placed into the destination. The source operand is not affected. Both operands may be located in the full address space. N: Not affected Z: Not affected C: Not affected V: Not affected OSCOFF, CPUOFF, and GIE are not affected. The bits 19:15 of R5 (20-bit data) are cleared. #0F8000h,R5 ; Clear R5.19:15 bits A table word pointed to by R5 (20-bit address) is used to clear bits in R7. R7.19:16 = 0. @R5,R7 ; Clear bits in R7 A table byte pointed to by R5 (20-bit address) is used to clear bits in output Port1. @R5,&P1OUT ; Clear I/O port P1 bits SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 289 Instruction Set Description 6.6.3.6 www.ti.com BISX BISX.A BISX.[W] BISX.B Syntax Set bits set in source address-word in destination address-word Set bits set in source word in destination word Set bits set in source byte in destination byte BISX.A src,dst BISX src,dst or BISX.W src,dst BISX.B src,dst Operation Description Status Bits Mode Bits Example BISX.A Example BISX.W Example BISX.B 290 src .or. dst → dst The source operand and the destination operand are logically ORed. The result is placed into the destination. The source operand is not affected. Both operands may be located in the full address space. N: Not affected Z: Not affected C: Not affected V: Not affected OSCOFF, CPUOFF, and GIE are not affected. Bits 16 and 15 of R5 (20-bit data) are set to one. #018000h,R5 ; Set R5.16:15 bits A table word pointed to by R5 (20-bit address) is used to set bits in R7. @R5,R7 ; Set bits in R7 A table byte pointed to by R5 (20-bit address) is used to set bits in output Port1. @R5,&P1OUT ; Set I/O port P1 bits CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.7 BITX BITX.A BITX.[W] BITX.B Syntax Test bits set in source address-word in destination address-word Test bits set in source word in destination word Test bits set in source byte in destination byte BITX.A src,dst BITX src,dst or BITX.W src,dst BITX.B src,dst Operation Description Status Bits Mode Bits Example BITX.A JNZ ... Example BITX.W JC ... Example BITX.B JNC ... src .and. dst → dst The source operand and the destination operand are logically ANDed. The result affects only the status bits. Both operands may be located in the full address space. N: Set if result is negative (MSB = 1), reset if positive (MSB = 0) Z: Set if result is zero, reset otherwise C: Set if the result is not zero, reset otherwise. C = (.not. Z) V: Reset OSCOFF, CPUOFF, and GIE are not affected. Test if bit 16 or 15 of R5 (20-bit data) is set. Jump to label TONI if so. #018000h,R5 TONI ; Test R5.16:15 bits ; At least one bit is set ; Both are reset A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to label TONI if at least one bit is set. @R5,R7 TONI ; Test bits in R7: C = .not.Z ; At least one is set ; Both are reset A table byte pointed to by R5 (20-bit address) is used to test bits in input Port1. Jump to label TONI if no bit is set. The next table byte is addressed. @R5+,&P1IN TONI ; Test input P1 bits. R5 + 1 ; No corresponding input bit is set ; At least one bit is set SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 291 Instruction Set Description 6.6.3.8 www.ti.com CLRX * CLRX.A * CLRX.[W] * CLRX.B Syntax Clear destination address-word Clear destination word Clear destination byte CLRX.A dst CLRX dst or CLRX.B dst Operation Emulation CLRX.W dst 0 → dst MOVX.A #0,dst MOVX #0,dst MOVX.B #0,dst Description Status Bits Mode Bits Example CLRX.A 292 The destination operand is cleared. Status bits are not affected. OSCOFF, CPUOFF, and GIE are not affected. RAM address-word TONI is cleared. TONI ; 0 -> TONI CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.9 CMPX CMPX.A CMPX.[W] CMPX.B Syntax Compare source address-word and destination address-word Compare source word and destination word Compare source byte and destination byte CMPX.A src,dst CMPX src,dst or CMPX.W src,dst CMPX.B src,dst Operation Description Status Bits Mode Bits Example CMPX.A JEQ ... Example CMPX.W JL ... Example CMPX.B JEQ ... (.not. src) + 1 + dst or dst – src The source operand is subtracted from the destination operand by adding the 1s complement of the source + 1 to the destination. The result affects only the status bits. Both operands may be located in the full address space. N: Set if result is negative (src > dst), reset if positive (src ≤ dst) Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst) C: Set if there is a carry from the MSB, reset otherwise V: Set if the subtraction of a negative source operand from a positive destination operand delivers a negative result, or if the subtraction of a positive source operand from a negative destination operand delivers a positive result, reset otherwise (no overflow) OSCOFF, CPUOFF, and GIE are not affected. Compare EDE with a 20-bit constant 18000h. Jump to label TONI if EDE equals the constant. #018000h,EDE TONI ; Compare EDE with 18000h ; EDE contains 18000h ; Not equal A table word pointed to by R5 (20-bit address) is compared with R7. Jump to label TONI if R7 contains a lower, signed, 16-bit number. @R5,R7 TONI ; Compare two signed numbers ; R7 < @R5 ; R7 >= @R5 A table byte pointed to by R5 (20-bit address) is compared to the input in I/O Port1. Jump to label TONI if the values are equal. The next table byte is addressed. @R5+,&P1IN TONI ; Compare P1 bits with table. R5 + 1 ; Equal contents ; Not equal Note: Use CMPA for the following two cases for better density and execution. CMPA CMPA Rsrc,Rdst #imm20,Rdst SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 293 Instruction Set Description www.ti.com 6.6.3.10 DADCX * DADCX.A * DADCX.[W] * DADCX.B Syntax Add carry decimally to destination address-word Add carry decimally to destination word Add carry decimally to destination byte DADCX.A dst DADCX dst or DADCX.B dst Operation Emulation DADCX.W dst dst + C → dst (decimally) DADDX.A #0,dst DADDX #0,dst DADDX.B #0,dst Description Status Bits Mode Bits Example The carry bit (C) is added decimally to the destination. N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h, byte > 79h), reset if MSB is 0 Z: Set if result is zero, reset otherwise C: Set if the BCD result is too large (address-word > 99999h, word > 9999h, byte > 99h), reset otherwise V: Undefined OSCOFF, CPUOFF, and GIE are not affected. The 40-bit counter, pointed to by R12 and R13, is incremented decimally. DADDX.A DADCX.A 294 #1,0(R12) 0(R13) ; Increment lower 20 bits ; Add carry to upper 20 bits CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.11 DADDX DADDX.A DADDX.[W] DADDX.B Syntax Add source address-word and carry decimally to destination address-word Add source word and carry decimally to destination word Add source byte and carry decimally to destination byte DADDX.A src,dst DADDX src,dst or DADDX.W src,dst DADDX.B src,dst Operation Description Status Bits Mode Bits Example src + dst + C → dst (decimally) The source operand and the destination operand are treated as two (.B), four (.W), or five (.A) binary coded decimals (BCD) with positive signs. The source operand and the carry bit C are added decimally to the destination operand. The source operand is not affected. The previous contents of the destination are lost. The result is not defined for non-BCD numbers. Both operands may be located in the full address space. N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h, byte > 79h), reset if MSB is 0. Z: Set if result is zero, reset otherwise C: Set if the BCD result is too large (address-word > 99999h, word > 9999h, byte > 99h), reset otherwise V: Undefined OSCOFF, CPUOFF, and GIE are not affected. Decimal 10 is added to the 20-bit BCD counter DECCNTR located in two words. DADDX.A Example ; Add 10 to 20-bit BCD counter The eight-digit BCD number contained in 20-bit addresses BCD and BCD+2 is added decimally to an eight-digit BCD number contained in R4 and R5 (BCD+2 and R5 contain the MSDs). CLRC DADDX.W DADDX.W JC ... Example #10h,&DECCNTR BCD,R4 BCD+2,R5 OVERFLOW ; ; ; ; ; Clear carry Add LSDs Add MSDs with carry Result >99999999: go to error routine Result ok The two-digit BCD number contained in 20-bit address BCD is added decimally to a twodigit BCD number contained in R4. CLRC DADDX.B BCD,R4 ; Clear carry ; Add BCD to R4 decimally. ; R4: 000ddh SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 295 Instruction Set Description www.ti.com 6.6.3.12 DECX * DECX.A * DECX.[W] * DECX.B Syntax Decrement destination address-word Decrement destination word Decrement destination byte DECX.A dst DECX dst or DECX.B dst Operation Emulation DECX.W dst dst – 1 → dst SUBX.A #1,dst SUBX #1,dst SUBX.B #1,dst Description Status Bits Mode Bits Example DECX.A 296 The destination operand is decremented by one. The original contents are lost. N: Set if result is negative, reset if positive Z: Set if dst contained 1, reset otherwise C: Reset if dst contained 0, set otherwise V: Set if an arithmetic overflow occurs, otherwise reset OSCOFF, CPUOFF, and GIE are not affected. RAM address-word TONI is decremented by one. TONI ; Decrement TONI CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.13 DECDX * DECDX.A * DECDX.[W] * DECDX.B Syntax Double-decrement destination address-word Double-decrement destination word Double-decrement destination byte DECDX.A dst DECDX dst or DECDX.B dst Operation Emulation DECDX.W dst dst – 2 → dst SUBX.A #2,dst SUBX #2,dst SUBX.B #2,dst Description Status Bits Mode Bits Example The destination operand is decremented by two. The original contents are lost. N: Set if result is negative, reset if positive Z: Set if dst contained 2, reset otherwise C: Reset if dst contained 0 or 1, set otherwise V: Set if an arithmetic overflow occurs, otherwise reset OSCOFF, CPUOFF, and GIE are not affected. RAM address-word TONI is decremented by two. DECDX.A TONI ; Decrement TONI SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 297 Instruction Set Description www.ti.com 6.6.3.14 INCX * INCX.A * INCX.[W] * INCX.B Syntax Increment destination address-word Increment destination word Increment destination byte INCX.A dst INCX dst or INCX.B dst Operation Emulation INCX.W dst dst + 1 → dst ADDX.A #1,dst ADDX #1,dst ADDX.B #1,dst Description Status Bits Mode Bits Example INCX.A 298 The destination operand is incremented by one. The original contents are lost. N: Set if result is negative, reset if positive Z: Set if dst contained 0FFFFFh, reset otherwise Set if dst contained 0FFFFh, reset otherwise Set if dst contained 0FFh, reset otherwise C: Set if dst contained 0FFFFFh, reset otherwise Set if dst contained 0FFFFh, reset otherwise Set if dst contained 0FFh, reset otherwise V: Set if dst contained 07FFFh, reset otherwise Set if dst contained 07FFFh, reset otherwise Set if dst contained 07Fh, reset otherwise OSCOFF, CPUOFF, and GIE are not affected. RAM address-wordTONI is incremented by one. TONI ; Increment TONI (20-bits) CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.15 INCDX * INCDX.A * INCDX.[W] * INCDX.B Syntax Double-increment destination address-word Double-increment destination word Double-increment destination byte INCDX.A dst INCDX dst or INCDX.B dst Operation Emulation INCDX.W dst dst + 2 → dst ADDX.A #2,dst ADDX #2,dst ADDX.B #2,dst Description Status Bits Mode Bits Example The destination operand is incremented by two. The original contents are lost. N: Set if result is negative, reset if positive Z: Set if dst contained 0FFFFEh, reset otherwise Set if dst contained 0FFFEh, reset otherwise Set if dst contained 0FEh, reset otherwise C: Set if dst contained 0FFFFEh or 0FFFFFh, reset otherwise Set if dst contained 0FFFEh or 0FFFFh, reset otherwise Set if dst contained 0FEh or 0FFh, reset otherwise V: Set if dst contained 07FFFEh or 07FFFFh, reset otherwise Set if dst contained 07FFEh or 07FFFh, reset otherwise Set if dst contained 07Eh or 07Fh, reset otherwise OSCOFF, CPUOFF, and GIE are not affected. RAM byte LEO is incremented by two; PC points to upper memory. INCDX.B LEO ; Increment LEO by two SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 299 Instruction Set Description www.ti.com 6.6.3.16 INVX * INVX.A * INVX.[W] * INVX.B Syntax Invert destination Invert destination Invert destination INVX.A dst INVX dst or INVX.B dst Operation Emulation INVX.W dst .NOT.dst → dst XORX.A #0FFFFFh,dst XORX #0FFFFh,dst XORX.B #0FFh,dst Description Status Bits Mode Bits Example INVX.A INCX.A Example INVX.B INCX.B 300 The destination operand is inverted. The original contents are lost. N: Set if result is negative, reset if positive Z: Set if dst contained 0FFFFFh, reset otherwise Set if dst contained 0FFFFh, reset otherwise Set if dst contained 0FFh, reset otherwise C: Set if result is not zero, reset otherwise ( = .NOT. Zero) V: Set if initial destination operand was negative, otherwise reset OSCOFF, CPUOFF, and GIE are not affected. 20-bit content of R5 is negated (twos complement). R5 R5 ; Invert R5 ; R5 is now negated Content of memory byte LEO is negated. PC is pointing to upper memory. LEO LEO ; Invert LEO ; MEM(LEO) is negated CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.17 MOVX MOVX.A MOVX.[W] MOVX.B Syntax Move source address-word to destination address-word Move source word to destination word Move source byte to destination byte MOVX.A src,dst MOVX src,dst or MOVX.W src,dst MOVX.B src,dst src → dst The source operand is copied to the destination. The source operand is not affected. Both operands may be located in the full address space. N: Not affected Z: Not affected C: Not affected V: Not affected OSCOFF, CPUOFF, and GIE are not affected. Move a 20-bit constant 18000h to absolute address-word EDE Operation Description Status Bits Mode Bits Example MOVX.A Example Loop ; Move 18000h to EDE The contents of table EDE (word data, 20-bit addresses) are copied to table TOM. The length of the table is 030h words. MOVA MOVX.W #EDE,R10 @R10+,TOM-EDE-2(R10) CMPA JLO ... #EDE+60h,R10 Loop Example Loop #018000h,&EDE ; ; ; ; ; ; Prepare pointer (20-bit address) R10 points to both tables. R10+2 End of table reached? Not yet Copy completed The contents of table EDE (byte data, 20-bit addresses) are copied to table TOM. The length of the table is 020h bytes. MOVA MOV MOVX.W #EDE,R10 #20h,R9 @R10+,TOM-EDE-2(R10) DEC JNZ ... R9 Loop ; ; ; ; ; ; ; Prepare pointer (20-bit) Prepare counter R10 points to both tables. R10+1 Decrement counter Not yet done Copy completed Ten of the 28 possible addressing combinations of the MOVX.A instruction can use the MOVA instruction. This saves two bytes and code cycles. Examples for the addressing combinations are: MOVX.A MOVX.A MOVX.A MOVX.A MOVX.A MOVX.A Rsrc,Rdst #imm20,Rdst &abs20,Rdst @Rsrc,Rdst @Rsrc+,Rdst Rsrc,&abs20 MOVA MOVA MOVA MOVA MOVA MOVA Rsrc,Rdst #imm20,Rdst &abs20,Rdst @Rsrc,Rdst @Rsrc+,Rdst Rsrc,&abs20 ; ; ; ; ; ; Reg/Reg Immediate/Reg Absolute/Reg Indirect/Reg Indirect,Auto/Reg Reg/Absolute The next four replacements are possible only if 16-bit indexes are sufficient for the addressing: SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 301 Instruction Set Description MOVX.A MOVX.A MOVX.A MOVX.A 302 www.ti.com z20(Rsrc),Rdst Rsrc,z20(Rdst) symb20,Rdst Rsrc,symb20 MOVA MOVA MOVA MOVA z16(Rsrc),Rdst Rsrc,z16(Rdst) symb16,Rdst Rsrc,symb16 CPUX ; ; ; ; Indexed/Reg Reg/Indexed Symbolic/Reg Reg/Symbolic SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.18 POPM POPM.A POPM.[W] Syntax Operation Description Status Bits Mode Bits Example POPM.A Example POPM.W Restore n CPU registers (20-bit data) from the stack Restore n CPU registers (16-bit data) from the stack 1 ≤ n ≤ 16 POPM.W #n,Rdst or POPM #n,Rdst 1 ≤ n ≤ 16 POPM.A: Restore the register values from stack to the specified CPU registers. The SP is incremented by four for each register restored from stack. The 20-bit values from stack (two words per register) are restored to the registers. POPM.W: Restore the 16-bit register values from stack to the specified CPU registers. The SP is incremented by two for each register restored from stack. The 16-bit values from stack (one word per register) are restored to the CPU registers. Note : This instruction does not use the extension word. POPM.A: The CPU registers pushed on the stack are moved to the extended CPU registers, starting with the CPU register (Rdst – n + 1). The SP is incremented by (n × 4) after the operation. POPM.W: The 16-bit registers pushed on the stack are moved back to the CPU registers, starting with CPU register (Rdst – n + 1). The SP is incremented by (n × 2) after the instruction. The MSBs (Rdst.19:16) of the restored CPU registers are cleared. Status bits are not affected, except SR is included in the operation. OSCOFF, CPUOFF, and GIE are not affected. Restore the 20-bit registers R9, R10, R11, R12, R13 from the stack POPM.A #n,Rdst #5,R13 ; Restore R9, R10, R11, R12, R13 Restore the 16-bit registers R9, R10, R11, R12, R13 from the stack. #5,R13 ; Restore R9, R10, R11, R12, R13 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 303 Instruction Set Description www.ti.com 6.6.3.19 PUSHM PUSHM.A PUSHM.[W] Syntax Operation Description Status Bits Mode Bits Example PUSHM.A Example PUSHM.W 304 Save n CPU registers (20-bit data) on the stack Save n CPU registers (16-bit words) on the stack 1 ≤ n ≤ 16 PUSHM.W #n,Rdst or PUSHM #n,Rdst 1 ≤ n ≤ 16 PUSHM.A: Save the 20-bit CPU register values on the stack. The SP is decremented by four for each register stored on the stack. The MSBs are stored first (higher address). PUSHM.W: Save the 16-bit CPU register values on the stack. The SP is decremented by two for each register stored on the stack. PUSHM.A: The n CPU registers, starting with Rdst backwards, are stored on the stack. The SP is decremented by (n × 4) after the operation. The data (Rn.19:0) of the pushed CPU registers is not affected. PUSHM.W: The n registers, starting with Rdst backwards, are stored on the stack. The SP is decremented by (n × 2) after the operation. The data (Rn.19:0) of the pushed CPU registers is not affected. Note : This instruction does not use the extension word. Status bits are not affected. OSCOFF, CPUOFF, and GIE are not affected. Save the five 20-bit registers R9, R10, R11, R12, R13 on the stack PUSHM.A #n,Rdst #5,R13 ; Save R13, R12, R11, R10, R9 Save the five 16-bit registers R9, R10, R11, R12, R13 on the stack #5,R13 ; Save R13, R12, R11, R10, R9 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.20 POPX * POPX.A * POPX.[W] * POPX.B Syntax Restore single address-word from the stack Restore single word from the stack Restore single byte from the stack POPX.A dst POPX dst or POPX.B dst POPX.W dst Operation Restore the 8-, 16-, 20-bit value from the stack to the destination. 20-bit addresses are possible. The SP is incremented by two (byte and word operands) and by four (address-word operand). Emulation Description MOVX(.B,.A) @SP+,dst Status Bits Mode Bits Example POPX.W Example POPX.A The item on TOS is written to the destination operand. Register mode, Indexed mode, Symbolic mode, and Absolute mode are possible. The SP is incremented by two or four. Note: the SP is incremented by two also for byte operations. Status bits are not affected. OSCOFF, CPUOFF, and GIE are not affected. Write the 16-bit value on TOS to the 20-bit address &EDE &EDE ; Write word to address EDE Write the 20-bit value on TOS to R9 R9 ; Write address-word to R9 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 305 Instruction Set Description www.ti.com 6.6.3.21 PUSHX PUSHX.A PUSHX.[W] PUSHX.B Syntax Save single address-word to the stack Save single word to the stack Save single byte to the stack PUSHX.A src PUSHX src or PUSHX.B src Operation Description Status Bits Mode Bits Example PUSHX.B Example PUSHX.A 306 PUSHX.W src Save the 8-, 16-, 20-bit value of the source operand on the TOS. 20-bit addresses are possible. The SP is decremented by two (byte and word operands) or by four (addressword operand) before the write operation. The SP is decremented by two (byte and word operands) or by four (address-word operand). Then the source operand is written to the TOS. All seven addressing modes are possible for the source operand. Status bits are not affected. OSCOFF, CPUOFF, and GIE are not affected. Save the byte at the 20-bit address &EDE on the stack &EDE ; Save byte at address EDE Save the 20-bit value in R9 on the stack. R9 ; Save address-word in R9 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.22 RLAM RLAM.A RLAM.[W] Syntax Rotate left arithmetically the 20-bit CPU register content Rotate left arithmetically the 16-bit CPU register content RLAM.A #n,Rdst RLAM.W #n,Rdst or RLAM #n,Rdst 1≤n≤4 1≤n≤4 C ← MSB ← MSB-1 .... LSB+1 ← LSB ← 0 The destination operand is shifted arithmetically left one, two, three, or four positions as shown in Figure 6-44. RLAM works as a multiplication (signed and unsigned) with 2, 4, 8, or 16. The word instruction RLAM.W clears the bits Rdst.19:16. Note : This instruction does not use the extension word. N: Set if result is negative .A: Rdst.19 = 1, reset if Rdst.19 = 0 .W: Rdst.15 = 1, reset if Rdst.15 = 0 Z: Set if result is zero, reset otherwise C: Loaded from the MSB (n = 1), MSB-1 (n = 2), MSB-2 (n = 3), MSB-3 (n = 4) V: Undefined OSCOFF, CPUOFF, and GIE are not affected. The 20-bit operand in R5 is shifted left by three positions. It operates equal to an arithmetic multiplication by 8. Operation Description Status Bits Mode Bits Example RLAM.A #3,R5 19 16 0000 C C ; R5 = R5 x 8 15 0 MSB LSB 19 0 MSB LSB 0 0 Figure 6-44. Rotate Left Arithmetically—RLAM[.W] and RLAM.A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 307 Instruction Set Description www.ti.com 6.6.3.23 RLAX * RLAX.A * RLAX.[W] * RLAX.B Syntax Rotate left arithmetically address-word Rotate left arithmetically word Rotate left arithmetically byte RLAX.A dst RLAX dst or RLAX.B dst RLAX.W dst C ← MSB ← MSB-1 .... LSB+1 ← LSB ← 0 Operation Emulation ADDX.A dst,dst ADDX dst,dst ADDX.B dst,dst Description The destination operand is shifted left one position as shown in Figure 6-45. The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLAX instruction acts as a signed multiplication by 2. N: Set if result is negative, reset if positive Z: Set if result is zero, reset otherwise C: Loaded from the MSB V: Set if an arithmetic overflow occurs: the initial value is 040000h ≤ dst < 0C0000h; reset otherwise Set if an arithmetic overflow occurs: the initial value is 04000h ≤ dst < 0C000h; reset otherwise Set if an arithmetic overflow occurs: the initial value is 040h ≤ dst < 0C0h; reset otherwise OSCOFF, CPUOFF, and GIE are not affected. The 20-bit value in R7 is multiplied by 2 Status Bits Mode Bits Example RLAX.A R7 ; Shift left R7 (20-bit) 0 C MSB LSB 0 Figure 6-45. Destination Operand-Arithmetic Shift Left 308 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.24 RLCX * RLCX.A * RLCX.[W] * RLCX.B Syntax Rotate left through carry address-word Rotate left through carry word Rotate left through carry byte RLCX.A dst RLCX dst or RLCX.B dst Operation Emulation RLCX.W dst C ← MSB ← MSB-1 .... LSB+1 ← LSB ← C ADDCX.A dst,dst ADDCX dst,dst ADDCX.B dst,dst Description Status Bits Mode Bits Example RLCX.A Example RLCX.B The destination operand is shifted left one position as shown in Figure 6-46. The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry bit (C). N: Set if result is negative, reset if positive Z: Set if result is zero, reset otherwise C: Loaded from the MSB V: Set if an arithmetic overflow occurs: the initial value is 040000h ≤ dst < 0C0000h; reset otherwise Set if an arithmetic overflow occurs: the initial value is 04000h ≤ dst < 0C000h; reset otherwise Set if an arithmetic overflow occurs: the initial value is 040h ≤ dst < 0C0h; reset otherwise OSCOFF, CPUOFF, and GIE are not affected. The 20-bit value in R5 is shifted left one position. R5 ; (R5 x 2) + C -> R5 The RAM byte LEO is shifted left one position. PC is pointing to upper memory. LEO ; RAM(LEO) x 2 + C -> RAM(LEO) 0 MSB C LSB Figure 6-46. Destination Operand-Carry Left Shift SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 309 Instruction Set Description www.ti.com 6.6.3.25 RRAM RRAM.A RRAM.[W] Syntax Rotate right arithmetically the 20-bit CPU register content Rotate right arithmetically the 16-bit CPU register content RRAM.A #n,Rdst RRAM.W #n,Rdst or RRAM #n,Rdst 1≤n≤4 1≤n≤4 MSB → MSB → MSB–1 ... LSB+1 → LSB → C The destination operand is shifted right arithmetically by one, two, three, or four bit positions as shown in Figure 6-47. The MSB retains its value (sign). RRAM operates equal to a signed division by 2, 4, 8, or 16. The MSB is retained and shifted into MSB-1. The LSB+1 is shifted into the LSB, and the LSB is shifted into the carry bit C. The word instruction RRAM.W clears the bits Rdst.19:16. Note : This instruction does not use the extension word. N: Set if result is negative .A: Rdst.19 = 1, reset if Rdst.19 = 0 .W: Rdst.15 = 1, reset if Rdst.15 = 0 Z: Set if result is zero, reset otherwise C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4) V: Reset OSCOFF, CPUOFF, and GIE are not affected. The signed 20-bit number in R5 is shifted arithmetically right two positions. Operation Description Status Bits Mode Bits Example RRAM.A Example #2,R5 ; R5/4 -> R5 The signed 20-bit value in R15 is multiplied by 0.75. (0.5 + 0.25) × R15. PUSHM.A RRAM.A ADDX.A RRAM.A #1,R15 #1,R15 @SP+,R15 #1,R15 16 19 C C 0000 ; ; ; ; Save extended R15 on stack R15 y 0.5 -> R15 R15 y 0.5 + R15 = 1.5 y R15 -> R15 (1.5 y R15) y 0.5 = 0.75 y R15 -> R15 15 0 MSB LSB 19 0 MSB LSB Figure 6-47. Rotate Right Arithmetically RRAM[.W] and RRAM.A 310 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.26 RRAX RRAX.A RRAX.[W] RRAX.B Syntax Rotate right arithmetically the 20-bit operand Rotate right arithmetically the 16-bit operand Rotate right arithmetically the 8-bit operand RRAX.A Rdst RRAX.W Rdst RRAX Rdst RRAX.B Rdst RRAX.A dst RRAX dst or RRAX.B dst Operation Description Status Bits Mode Bits Example RPT RRAX.A Example RRAX.W dst MSB → MSB → MSB–1 ... LSB+1 → LSB → C Register mode for the destination: the destination operand is shifted right by one bit position as shown in Figure 6-48. The MSB retains its value (sign). The word instruction RRAX.W clears the bits Rdst.19:16, the byte instruction RRAX.B clears the bits Rdst.19:8. The MSB retains its value (sign), the LSB is shifted into the carry bit. RRAX here operates equal to a signed division by 2. All other modes for the destination: the destination operand is shifted right arithmetically by one bit position as shown in Figure 6-49. The MSB retains its value (sign), the LSB is shifted into the carry bit. RRAX here operates equal to a signed division by 2. All addressing modes, with the exception of the Immediate mode, are possible in the full memory. N: Set if result is negative, reset if positive .A: dst.19 = 1, reset if dst.19 = 0 .W: dst.15 = 1, reset if dst.15 = 0 .B: dst.7 = 1, reset if dst.7 = 0 Z: Set if result is zero, reset otherwise C: Loaded from the LSB V: Reset OSCOFF, CPUOFF, and GIE are not affected. The signed 20-bit number in R5 is shifted arithmetically right four positions. #4 R5 ; R5/16 -> R5 The signed 8-bit value in EDE is multiplied by 0.5. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 311 Instruction Set Description RRAX.B C www.ti.com &EDE 19 8 7 0 0 0 MSB LSB 19 C C ; EDE/2 -> EDE 16 0000 15 0 MSB LSB 19 0 MSB LSB Figure 6-48. Rotate Right Arithmetically RRAX(.B,.A) – Register Mode C C C 7 0 MSB LSB 15 0 MSB LSB 31 20 0 0 19 0 MSB LSB Figure 6-49. Rotate Right Arithmetically RRAX(.B,.A) – Non-Register Mode 312 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.27 RRCM RRCM.A RRCM.[W] Syntax Rotate right through carry the 20-bit CPU register content Rotate right through carry the 16-bit CPU register content RRCM.A #n,Rdst RRCM.W #n,Rdst or RRCM #n,Rdst Operation Description Status Bits Mode Bits 1≤n≤4 1≤n≤4 C → MSB → MSB–1 ... LSB+1 → LSB → C The destination operand is shifted right by one, two, three, or four bit positions as shown in Figure 6-50. The carry bit C is shifted into the MSB, the LSB is shifted into the carry bit. The word instruction RRCM.W clears the bits Rdst.19:16. Note : This instruction does not use the extension word. N: Set if result is negative .A: Rdst.19 = 1, reset if Rdst.19 = 0 .W: Rdst.15 = 1, reset if Rdst.15 = 0 Z: Set if result is zero, reset otherwise C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4) V: Reset OSCOFF, CPUOFF, and GIE are not affected. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 313 Instruction Set Description Example www.ti.com The address-word in R5 is shifted right by three positions. The MSB–2 is loaded with 1. SETC RRCM.A Example ; Prepare carry for MSB-2 ; R5 = R5 » 3 + 20000h #3,R5 The word in R6 is shifted right by two positions. The MSB is loaded with the LSB. The MSB–1 is loaded with the contents of the carry flag. RRCM.W #2,R6 ; R6 = R6 » 2. R6.19:16 = 0 19 0 C C 16 15 0 MSB LSB 19 0 MSB LSB Figure 6-50. Rotate Right Through Carry RRCM[.W] and RRCM.A 314 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.28 RRCX RRCX.A RRCX.[W] RRCX.B Syntax Rotate right through carry the 20-bit operand Rotate right through carry the 16-bit operand Rotate right through carry the 8-bit operand RRCX.A Rdst RRCX.W Rdst RRCX Rdst RRCX.B Rdst RRCX.A dst RRCX dst or RRCX.B dst Operation Description Status Bits Mode Bits Example SETC RRCX.A Example RRCX.W dst C → MSB → MSB–1 ... LSB+1 → LSB → C Register mode for the destination: the destination operand is shifted right by one bit position as shown in Figure 6-51. The word instruction RRCX.W clears the bits Rdst.19:16, the byte instruction RRCX.B clears the bits Rdst.19:8. The carry bit C is shifted into the MSB, the LSB is shifted into the carry bit. All other modes for the destination: the destination operand is shifted right by one bit position as shown in Figure 6-52. The carry bit C is shifted into the MSB, the LSB is shifted into the carry bit. All addressing modes, with the exception of the Immediate mode, are possible in the full memory. N: Set if result is negative .A: dst.19 = 1, reset if dst.19 = 0 .W: dst.15 = 1, reset if dst.15 = 0 .B: dst.7 = 1, reset if dst.7 = 0 Z: Set if result is zero, reset otherwise C: Loaded from the LSB V: Reset OSCOFF, CPUOFF, and GIE are not affected. The 20-bit operand at address EDE is shifted right by one position. The MSB is loaded with 1. EDE ; Prepare carry for MSB ; EDE = EDE » 1 + 80000h The word in R6 is shifted right by 12 positions. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 315 Instruction Set Description RPT RRCX.W www.ti.com #12 R6 ; R6 = R6 » 12. R6.19:16 = 0 8 19 C 0--------------------0 19 C C 16 0 0 0 0 7 0 MSB LSB 15 0 MSB LSB 19 0 MSB LSB Figure 6-51. Rotate Right Through Carry RRCX(.B,.A) – Register Mode C C C 7 0 MSB LSB 15 0 MSB LSB 31 20 0 0 19 0 MSB LSB Figure 6-52. Rotate Right Through Carry RRCX(.B,.A) – Non-Register Mode 316 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.29 RRUM RRUM.A RRUM.[W] Syntax Rotate right through carry the 20-bit CPU register content Rotate right through carry the 16-bit CPU register content RRUM.A #n,Rdst RRUM.W #n,Rdst or RRUM #n,Rdst 1≤n≤4 1≤n≤4 0 → MSB → MSB–1 ... LSB+1 → LSB → C The destination operand is shifted right by one, two, three, or four bit positions as shown in Figure 6-53. Zero is shifted into the MSB, the LSB is shifted into the carry bit. RRUM works like an unsigned division by 2, 4, 8, or 16. The word instruction RRUM.W clears the bits Rdst.19:16. Note : This instruction does not use the extension word. N: Set if result is negative .A: Rdst.19 = 1, reset if Rdst.19 = 0 .W: Rdst.15 = 1, reset if Rdst.15 = 0 Z: Set if result is zero, reset otherwise C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4) V: Reset OSCOFF, CPUOFF, and GIE are not affected. The unsigned address-word in R5 is divided by 16. Operation Description Status Bits Mode Bits Example RRUM.A Example #4,R5 ; R5 = R5 » 4. R5/16 The word in R6 is shifted right by one bit. The MSB R6.15 is loaded with 0. RRUM.W #1,R6 16 19 0000 C ; R6 = R6/2. R6.19:15 = 0 15 0 MSB LSB 0 C 0 19 0 MSB LSB Figure 6-53. Rotate Right Unsigned RRUM[.W] and RRUM.A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 317 Instruction Set Description www.ti.com 6.6.3.30 RRUX RRUX.A RRUX.[W] RRUX.B Syntax Shift right unsigned the 20-bit CPU register content Shift right unsigned the 16-bit CPU register content Shift right unsigned the 8-bit CPU register content RRUX.A Rdst RRUX.W Rdst RRUX Rdst RRUX.B Rdst C=0 → MSB → MSB–1 ... LSB+1 → LSB → C RRUX is valid for register mode only: the destination operand is shifted right by one bit position as shown in Figure 6-54. The word instruction RRUX.W clears the bits Rdst.19:16. The byte instruction RRUX.B clears the bits Rdst.19:8. Zero is shifted into the MSB, the LSB is shifted into the carry bit. N: Set if result is negative .A: dst.19 = 1, reset if dst.19 = 0 .W: dst.15 = 1, reset if dst.15 = 0 .B: dst.7 = 1, reset if dst.7 = 0 Z: Set if result is zero, reset otherwise C: Loaded from the LSB V: Reset OSCOFF, CPUOFF, and GIE are not affected. The word in R6 is shifted right by 12 positions. Operation Description Status Bits Mode Bits Example RPT RRUX.W #12 R6 ; R6 = R6 » 12. R6.19:16 = 0 19 C 8 0--------------------0 7 0 MSB LSB 0 19 C 0 16 0 0 0 15 0 MSB LSB 0 C 0 19 0 MSB LSB Figure 6-54. Rotate Right Unsigned RRUX(.B,.A) – Register Mode 318 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.31 SBCX * SBCX.A * SBCX.[W] * SBCX.B Syntax Subtract borrow (.NOT. carry) from destination address-word Subtract borrow (.NOT. carry) from destination word Subtract borrow (.NOT. carry) from destination byte SBCX.A dst SBCX dst or SBCX.B dst SBCX.W dst Operation dst + 0FFFFFh + C → dst dst + 0FFFFh + C → dst dst + 0FFh + C → dst Emulation SBCX.A #0,dst SBCX #0,dst SBCX.B #0,dst Description Status Bits Mode Bits Example SUBX.B SBCX.B NOTE: The carry bit (C) is added to the destination operand minus one. The previous contents of the destination are lost. N: Set if result is negative, reset if positive Z: Set if result is zero, reset otherwise C: Set if there is a carry from the MSB of the result, reset otherwise Set to 1 if no borrow, reset if borrow V: Set if an arithmetic overflow occurs, reset otherwise OSCOFF, CPUOFF, and GIE are not affected. The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed to by R12. @R13,0(R12) 1(R12) ; Subtract LSDs ; Subtract carry from MSD Borrow implementation The borrow is treated as a .NOT. carry: Borrow Yes No Carry Bit 0 1 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 319 Instruction Set Description www.ti.com 6.6.3.32 SUBX SUBX.A SUBX.[W] SUBX.B Syntax Subtract source address-word from destination address-word Subtract source word from destination word Subtract source byte from destination byte SUBX.A src,dst SUBX src,dst or SUBX.W src,dst SUBX.B src,dst Operation Description Status Bits Mode Bits Example SUBX.A Example SUBX.W JZ ... Example SUBX.B (.not. src) + 1 + dst → dst or dst – src → dst The source operand is subtracted from the destination operand. This is done by adding the 1s complement of the source + 1 to the destination. The source operand is not affected. The result is written to the destination operand. Both operands may be located in the full address space. N: Set if result is negative (src > dst), reset if positive (src ≤ dst) Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst) C: Set if there is a carry from the MSB, reset otherwise V: Set if the subtraction of a negative source operand from a positive destination operand delivers a negative result, or if the subtraction of a positive source operand from a negative destination operand delivers a positive result, reset otherwise (no overflow) OSCOFF, CPUOFF, and GIE are not affected. A 20-bit constant 87654h is subtracted from EDE (LSBs) and EDE+2 (MSBs). #87654h,EDE ; Subtract 87654h from EDE+2|EDE A table word pointed to by R5 (20-bit address) is subtracted from R7. Jump to label TONI if R7 contains zero after the instruction. R5 is auto-incremented by two. R7.19:16 = 0. @R5+,R7 TONI ; Subtract table number from R7. R5 + 2 ; R7 = @R5 (before subtraction) ; R7 <> @R5 (before subtraction) Byte CNT is subtracted from the byte R12 points to in the full address space. Address of CNT is within PC ± 512 K. CNT,0(R12) ; Subtract CNT from @R12 Note: Use SUBA for the following two cases for better density and execution. SUBX.A SUBX.A 320 Rsrc,Rdst #imm20,Rdst CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.33 SUBCX SUBCX.A SUBCX.[W] SUBCX.B Syntax Subtract source address-word with carry from destination address-word Subtract source word with carry from destination word Subtract source byte with carry from destination byte SUBCX.A src,dst SUBCX src,dst or SUBCX.W src,dst SUBCX.B src,dst Operation Description Status Bits Mode Bits Example (.not. src) + C + dst → dst or dst – (src – 1) + C → dst The source operand is subtracted from the destination operand. This is made by adding the 1s complement of the source + carry to the destination. The source operand is not affected, the result is written to the destination operand. Both operands may be located in the full address space. N: Set if result is negative (MSB = 1), reset if positive (MSB = 0) Z: Set if result is zero, reset otherwise C: Set if there is a carry from the MSB, reset otherwise V: Set if the subtraction of a negative source operand from a positive destination operand delivers a negative result, or if the subtraction of a positive source operand from a negative destination operand delivers a positive result, reset otherwise (no overflow). OSCOFF, CPUOFF, and GIE are not affected. A 20-bit constant 87654h is subtracted from R5 with the carry from the previous instruction. SUBCX.A Example ; Subtract 87654h + C from R5 A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from a 48-bit counter in RAM, pointed to by R7. R5 auto-increments to point to the next 48-bit number. SUBX.W SUBCX.W SUBCX.W Example #87654h,R5 @R5+,0(R7) @R5+,2(R7) @R5+,4(R7) ; Subtract LSBs. R5 + 2 ; Subtract MIDs with C. R5 + 2 ; Subtract MSBs with C. R5 + 2 Byte CNT is subtracted from the byte R12 points to. The carry of the previous instruction is used. 20-bit addresses. SUBCX.B &CNT,0(R12) ; Subtract byte CNT from @R12 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 321 Instruction Set Description www.ti.com 6.6.3.34 SWPBX SWPBX.A SWPBX.[W] Syntax Swap bytes of lower word Swap bytes of word SWPBX.A dst SWPBX dst or Operation Description Status Bits Mode Bits Example MOVX.A SWPBX.A Example SWPBX.W dst dst.15:8 ↔ dst.7:0 Register mode: Rn.15:8 are swapped with Rn.7:0. When the .A extension is used, Rn.19:16 are unchanged. When the .W extension is used, Rn.19:16 are cleared. Other modes: When the .A extension is used, bits 31:20 of the destination address are cleared, bits 19:16 are left unchanged, and bits 15:8 are swapped with bits 7:0. When the .W extension is used, bits 15:8 are swapped with bits 7:0 of the addressed word. Status bits are not affected. OSCOFF, CPUOFF, and GIE are not affected. Exchange the bytes of RAM address-word EDE #23456h,&EDE EDE ; 23456h -> EDE ; 25634h -> EDE Exchange the bytes of R5 MOVA SWPBX.W #23456h,R5 R5 ; 23456h -> R5 ; 05634h -> R5 Before SWPBX.A 19 16 15 8 X 7 0 High Byte Low Byte After SWPBX.A 19 16 15 8 X 7 0 Low Byte High Byte Figure 6-55. Swap Bytes SWPBX.A Register Mode Before SWPBX.A 31 20 19 16 X X After SWPBX.A 31 20 19 0 X 8 15 7 High Byte 16 Low Byte 8 15 Low Byte 0 7 0 High Byte Figure 6-56. Swap Bytes SWPBX.A In Memory 322 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com Before SWPBX 19 16 15 X 8 7 High Byte 0 Low Byte After SWPBX 19 16 15 0 8 7 Low Byte 0 High Byte Figure 6-57. Swap Bytes SWPBX[.W] Register Mode Before SWPBX 15 8 7 High Byte 0 Low Byte After SWPBX 15 8 Low Byte 7 0 High Byte Figure 6-58. Swap Bytes SWPBX[.W] In Memory SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 323 Instruction Set Description www.ti.com 6.6.3.35 SXTX SXTX.A SXTX.[W] Syntax Extend sign of lower byte to address-word Extend sign of lower byte to word SXTX.A dst SXTX dst or SXTX.W dst dst.7 → dst.15:8, Rdst.7 → Rdst.19:8 (Register mode) Register mode: The sign of the low byte of the operand (Rdst.7) is extended into the bits Rdst.19:8. Other modes: SXTX.A: the sign of the low byte of the operand (dst.7) is extended into dst.19:8. The bits dst.31:20 are cleared. SXTX[.W]: the sign of the low byte of the operand (dst.7) is extended into dst.15:8. N: Set if result is negative, reset otherwise Z: Set if result is zero, reset otherwise C: Set if result is not zero, reset otherwise (C = .not.Z) V: Reset OSCOFF, CPUOFF, and GIE are not affected. The signed 8-bit data in EDE.7:0 is sign extended to 20 bits: EDE.19:8. Bits 31:20 located in EDE+2 are cleared. Operation Description Status Bits Mode Bits Example SXTX.A &EDE ; Sign extended EDE -> EDE+2/EDE SXTX.A Rdst 19 16 15 8 7 6 0 S SXTX.A dst 31 0 20 19 ...... 16 15 8 7 6 0 0 S Figure 6-59. Sign Extend SXTX.A SXTX[.W] Rdst 19 16 15 8 7 6 0 6 0 S SXTX[.W] dst 15 8 7 S Figure 6-60. Sign Extend SXTX[.W] 324 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.3.36 TSTX * TSTX.A * TSTX.[W] * TSTX.B Syntax Test destination address-word Test destination word Test destination byte TSTX.A dst TSTX dst or TSTX.B dst TSTX.W dst Operation dst + 0FFFFFh + 1 dst + 0FFFFh + 1 dst + 0FFh + 1 Emulation CMPX.A #0,dst CMPX #0,dst CMPX.B #0,dst Description Status Bits Mode Bits Example LEOPOS LEONEG LEOZERO The destination operand is compared with zero. The status bits are set according to the result. The destination is not affected. N: Set if destination is negative, reset if positive Z: Set if destination contains zero, reset otherwise C: Set V: Reset OSCOFF, CPUOFF, and GIE are not affected. RAM byte LEO is tested; PC is pointing to upper memory. If it is negative, continue at LEONEG; if it is positive but not zero, continue at LEOPOS. TSTX.B JN JZ ...... ...... ...... LEO LEONEG LEOZERO ; ; ; ; ; ; Test LEO LEO is negative LEO is zero LEO is positive but not zero LEO is negative LEO is zero SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 325 Instruction Set Description www.ti.com 6.6.3.37 XORX XORX.A XORX.[W] XORX.B Syntax Exclusive OR source address-word with destination address-word Exclusive OR source word with destination word Exclusive OR source byte with destination byte XORX.A src,dst XORX src,dst or XORX.W src,dst XORX.B src,dst Operation Description Status Bits Mode Bits Example XORX.A Example XORX.W Example XORX.B INV.B 326 src .xor. dst → dst The source and destination operands are exclusively ORed. The result is placed into the destination. The source operand is not affected. The previous contents of the destination are lost. Both operands may be located in the full address space. N: Set if result is negative (MSB = 1), reset if positive (MSB = 0) Z: Set if result is zero, reset otherwise C: Set if result is not zero, reset otherwise (carry = .not. Zero) V: Set if both operands are negative (before execution), reset otherwise OSCOFF, CPUOFF, and GIE are not affected. Toggle bits in address-word CNTR (20-bit data) with information in address-word TONI (20-bit address) TONI,&CNTR ; Toggle bits in CNTR A table word pointed to by R5 (20-bit address) is used to toggle bits in R6. @R5,R6 ; Toggle bits in R6. R6.19:16 = 0 Reset to zero those bits in the low byte of R7 that are different from the bits in byte EDE (20-bit address) EDE,R7 R7 ; Set different bits to 1 in R7 ; Invert low byte of R7. R7.19:8 = 0. CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.4 Address Instructions MSP430X address instructions are instructions that support 20-bit operands but have restricted addressing modes. The addressing modes are restricted to the Register mode and the Immediate mode, except for the MOVA instruction. Restricting the addressing modes removes the need for the additional extension-word op-code improving code density and execution time. The MSP430X address instructions are listed and described in the following pages. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 327 Instruction Set Description 6.6.4.1 www.ti.com ADDA ADDA Syntax Add 20-bit source to a 20-bit destination register ADDA Rsrc,Rdst ADDA #imm20,Rdst Operation Description Status Bits Mode Bits Example ADDA JC ... 328 src + Rdst → Rdst The 20-bit source operand is added to the 20-bit destination CPU register. The previous contents of the destination are lost. The source operand is not affected. N: Set if result is negative (Rdst.19 = 1), reset if positive (Rdst.19 = 0) Z: Set if result is zero, reset otherwise C: Set if there is a carry from the 20-bit result, reset otherwise V: Set if the result of two positive operands is negative, or if the result of two negative numbers is positive, reset otherwise OSCOFF, CPUOFF, and GIE are not affected. R5 is increased by 0A4320h. The jump to TONI is performed if a carry occurs. #0A4320h,R5 TONI ; Add A4320h to 20-bit R5 ; Jump on carry ; No carry occurred CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.4.2 BRA * BRA Syntax Operation Emulation Description Status Bits Mode Bits Examples BRA BRA Branch to destination BRA dst dst → PC MOVA dst,PC An unconditional branch is taken to a 20-bit address anywhere in the full address space. All seven source addressing modes can be used. The branch instruction is an address-word instruction. If the destination address is contained in a memory location X, it is contained in two ascending words: X (LSBs) and (X + 2) (MSBs). N: Not affected Z: Not affected C: Not affected V: Not affected OSCOFF, CPUOFF, and GIE are not affected. Examples for all addressing modes are given. Immediate mode: Branch to label EDE located anywhere in the 20-bit address space or branch directly to address. #EDE #01AA04h ; MOVA #imm20,PC Symbolic mode: Branch to the 20-bit address contained in addresses EXEC (LSBs) and EXEC+2 (MSBs). EXEC is located at the address (PC + X) where X is within ±32 K. Indirect addressing. BRA EXEC ; MOVA z16(PC),PC Note: If the 16-bit index is not sufficient, a 20-bit index may be used with the following instruction. MOVX.A EXEC,PC ; 1M byte range with 20-bit index Absolute mode: Branch to the 20-bit address contained in absolute addresses EXEC (LSBs) and EXEC+2 (MSBs). Indirect addressing. BRA &EXEC ; MOVA &abs20,PC Register mode: Branch to the 20-bit address contained in register R5. Indirect R5. BRA R5 ; MOVA R5,PC Indirect mode: Branch to the 20-bit address contained in the word pointed to by register R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect R5. BRA @R5 ; MOVA @R5,PC SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 329 Instruction Set Description www.ti.com Indirect, Auto-Increment mode: Branch to the 20-bit address contained in the words pointed to by register R5 and increment the address in R5 afterwards by 4. The next time the software flow uses R5 as a pointer, it can alter the program execution due to access to the next address in the table pointed to by R5. Indirect, indirect R5. BRA @R5+ ; MOVA @R5+,PC. R5 + 4 Indexed mode: Branch to the 20-bit address contained in the address pointed to by register (R5 + X) (for example, a table with addresses starting at X). (R5 + X) points to the LSBs, (R5 + X + 2) points to the MSBs of the address. X is within R5 ± 32 K. Indirect, indirect (R5 + X). BRA X(R5) ; MOVA z16(R5),PC Note: If the 16-bit index is not sufficient, a 20-bit index X may be used with the following instruction: MOVX.A 330 X(R5),PC ; 1M byte range with 20-bit index CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.4.3 CALLA CALLA Syntax Operation Description Status Bits Mode Bits Examples CALLA CALLA Call a subroutine CALLA dst dst → tmp 20-bit dst is evaluated and stored SP – 2 → SP PC.19:16 → @SP updated PC with return address to TOS (MSBs) SP – 2 → SP PC.15:0 → @SP updated PC to TOS (LSBs) tmp → PC saved 20-bit dst to PC A subroutine call is made to a 20-bit address anywhere in the full address space. All seven source addressing modes can be used. The call instruction is an address-word instruction. If the destination address is contained in a memory location X, it is contained in two ascending words, X (LSBs) and (X + 2) (MSBs). Two words on the stack are needed for the return address. The return is made with the instruction RETA. N: Not affected Z: Not affected C: Not affected V: Not affected OSCOFF, CPUOFF, and GIE are not affected. Examples for all addressing modes are given. Immediate mode: Call a subroutine at label EXEC or call directly an address. #EXEC #01AA04h ; Start address EXEC ; Start address 01AA04h Symbolic mode: Call a subroutine at the 20-bit address contained in addresses EXEC (LSBs) and EXEC+2 (MSBs). EXEC is located at the address (PC + X) where X is within ±32 K. Indirect addressing. CALLA EXEC ; Start address at @EXEC. z16(PC) Absolute mode: Call a subroutine at the 20-bit address contained in absolute addresses EXEC (LSBs) and EXEC+2 (MSBs). Indirect addressing. CALLA &EXEC ; Start address at @EXEC Register mode: Call a subroutine at the 20-bit address contained in register R5. Indirect R5. CALLA R5 ; Start address at @R5 Indirect mode: Call a subroutine at the 20-bit address contained in the word pointed to by register R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect R5. CALLA @R5 ; Start address at @R5 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 331 Instruction Set Description www.ti.com Indirect, Auto-Increment mode: Call a subroutine at the 20-bit address contained in the words pointed to by register R5 and increment the 20-bit address in R5 afterwards by 4. The next time the software flow uses R5 as a pointer, it can alter the program execution due to access to the next word address in the table pointed to by R5. Indirect, indirect R5. CALLA @R5+ ; Start address at @R5. R5 + 4 Indexed mode: Call a subroutine at the 20-bit address contained in the address pointed to by register (R5 + X); for example, a table with addresses starting at X. (R5 + X) points to the LSBs, (R5 + X + 2) points to the MSBs of the word address. X is within R5 ± 32 K. Indirect, indirect (R5 + X). CALLA 332 X(R5) ; Start address at @(R5+X). z16(R5) CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.4.4 CLRA * CLRA Syntax Operation Emulation Description Status Bits Example CLRA Clear 20-bit destination register CLRA Rdst 0 → Rdst MOVA #0,Rdst The destination register is cleared. Status bits are not affected. The 20-bit value in R10 is cleared. R10 ; 0 -> R10 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 333 Instruction Set Description 6.6.4.5 www.ti.com CMPA CMPA Syntax Compare the 20-bit source with a 20-bit destination register CMPA Rsrc,Rdst CMPA #imm20,Rdst Operation Description Status Bits Mode Bits Example CMPA JEQ ... Example CMPA JGE ... 334 (.not. src) + 1 + Rdst or Rdst – src The 20-bit source operand is subtracted from the 20-bit destination CPU register. This is made by adding the 1s complement of the source + 1 to the destination register. The result affects only the status bits. N: Set if result is negative (src > dst), reset if positive (src ≤ dst) Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst) C: Set if there is a carry from the MSB, reset otherwise V: Set if the subtraction of a negative source operand from a positive destination operand delivers a negative result, or if the subtraction of a positive source operand from a negative destination operand delivers a positive result, reset otherwise (no overflow) OSCOFF, CPUOFF, and GIE are not affected. A 20-bit immediate operand and R6 are compared. If they are equal, the program continues at label EQUAL. #12345h,R6 EQUAL ; Compare R6 with 12345h ; R6 = 12345h ; Not equal The 20-bit values in R5 and R6 are compared. If R5 is greater than (signed) or equal to R6, the program continues at label GRE. R6,R5 GRE ; Compare R6 with R5 (R5 - R6) ; R5 >= R6 ; R5 < R6 CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.4.6 DECDA * DECDA Syntax Operation Emulation Description Status Bits Mode Bits Example DECDA Double-decrement 20-bit destination register DECDA Rdst Rdst – 2 → Rdst SUBA #2,Rdst The destination register is decremented by two. The original contents are lost. N: Set if result is negative, reset if positive Z: Set if Rdst contained 2, reset otherwise C: Reset if Rdst contained 0 or 1, set otherwise V: Set if an arithmetic overflow occurs, otherwise reset OSCOFF, CPUOFF, and GIE are not affected. The 20-bit value in R5 is decremented by 2. R5 ; Decrement R5 by two SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 335 Instruction Set Description 6.6.4.7 INCDA * INCDA Syntax Operation Emulation Description Status Bits Mode Bits Example INCDA 336 www.ti.com Double-increment 20-bit destination register INCDA Rdst Rdst + 2 → Rdst ADDA #2,Rdst The destination register is incremented by two. The original contents are lost. N: Set if result is negative, reset if positive Z: Set if Rdst contained 0FFFFEh, reset otherwise Set if Rdst contained 0FFFEh, reset otherwise Set if Rdst contained 0FEh, reset otherwise C: Set if Rdst contained 0FFFFEh or 0FFFFFh, reset otherwise Set if Rdst contained 0FFFEh or 0FFFFh, reset otherwise Set if Rdst contained 0FEh or 0FFh, reset otherwise V: Set if Rdst contained 07FFFEh or 07FFFFh, reset otherwise Set if Rdst contained 07FFEh or 07FFFh, reset otherwise Set if Rdst contained 07Eh or 07Fh, reset otherwise OSCOFF, CPUOFF, and GIE are not affected. The 20-bit value in R5 is incremented by two. R5 ; Increment R5 by two CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.4.8 MOVA MOVA Syntax Move the 20-bit source to the 20-bit destination MOVA Rsrc,Rdst MOVA MOVA MOVA MOVA MOVA MOVA MOVA MOVA Operation Description Status Bits Mode Bits Examples MOVA #imm20,Rdst z16(Rsrc),Rdst EDE,Rdst &abs20,Rdst @Rsrc,Rdst @Rsrc+,Rdst Rsrc,z16(Rdst) Rsrc,&abs20 src → Rdst Rsrc → dst The 20-bit source operand is moved to the 20-bit destination. The source operand is not affected. The previous content of the destination is lost. N: Not affected Z: Not affected C: Not affected V: Not affected OSCOFF, CPUOFF, and GIE are not affected. Copy 20-bit value in R9 to R8 R9,R8 ; R9 -> R8 Write 20-bit immediate value 12345h to R12 MOVA #12345h,R12 ; 12345h -> R12 Copy 20-bit value addressed by (R9 + 100h) to R8. Source operand in addresses (R9 + 100h) LSBs and (R9 + 102h) MSBs. MOVA 100h(R9),R8 ; Index: + 32 K. 2 words transferred Move 20-bit value in 20-bit absolute addresses EDE (LSBs) and EDE+2 (MSBs) to R12 MOVA &EDE,R12 ; &EDE -> R12. 2 words transferred Move 20-bit value in 20-bit addresses EDE (LSBs) and EDE+2 (MSBs) to R12. PC index ± 32 K. MOVA EDE,R12 ; EDE -> R12. 2 words transferred Copy 20-bit value R9 points to (20 bit address) to R8. Source operand in addresses @R9 LSBs and @(R9 + 2) MSBs. MOVA @R9,R8 ; @R9 -> R8. 2 words transferred SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 337 Instruction Set Description www.ti.com Copy 20-bit value R9 points to (20 bit address) to R8. R9 is incremented by four afterwards. Source operand in addresses @R9 LSBs and @(R9 + 2) MSBs. MOVA @R9+,R8 ; @R9 -> R8. R9 + 4. 2 words transferred. Copy 20-bit value in R8 to destination addressed by (R9 + 100h). Destination operand in addresses @(R9 + 100h) LSBs and @(R9 + 102h) MSBs. MOVA R8,100h(R9) ; Index: +- 32 K. 2 words transferred Move 20-bit value in R13 to 20-bit absolute addresses EDE (LSBs) and EDE+2 (MSBs) MOVA R13,&EDE ; R13 -> EDE. 2 words transferred Move 20-bit value in R13 to 20-bit addresses EDE (LSBs) and EDE+2 (MSBs). PC index ± 32 K. MOVA 338 R13,EDE ; R13 -> EDE. 2 words transferred CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.4.9 RETA * RETA Syntax Operation Return from subroutine Emulation Description MOVA @SP+,PC Status Bits Mode Bits Example SUBR RETA @SP → PC.15:0 LSBs (15:0) of saved PC to PC.15:0 SP + 2 → SP @SP → PC.19:16 MSBs (19:16) of saved PC to PC.19:16 SP + 2 → SP The 20-bit return address information, pushed onto the stack by a CALLA instruction, is restored to the PC. The program continues at the address following the subroutine call. The SR bits SR.11:0 are not affected. This allows the transfer of information with these bits. N: Not affected Z: Not affected C: Not affected V: Not affected OSCOFF, CPUOFF, and GIE are not affected. Call a subroutine SUBR from anywhere in the 20-bit address space and return to the address after the CALLA CALLA ... PUSHM.A ... POPM.A RETA #SUBR #2,R14 #2,R14 ; ; ; ; ; ; Call subroutine starting at SUBR Return by RETA to here Save R14 and R13 (20 bit data) Subroutine code Restore R13 and R14 (20 bit data) Return (to full address space) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 339 Instruction Set Description www.ti.com 6.6.4.10 SUBA SUBA Syntax Subtract 20-bit source from 20-bit destination register SUBA Rsrc,Rdst SUBA #imm20,Rdst Operation Description Status Bits Mode Bits Example SUBA JC ... 340 (.not.src) + 1 + Rdst → Rdst or Rdst – src → Rdst The 20-bit source operand is subtracted from the 20-bit destination register. This is made by adding the 1s complement of the source + 1 to the destination. The result is written to the destination register, the source is not affected. N: Set if result is negative (src > dst), reset if positive (src ≤ dst) Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst) C: Set if there is a carry from the MSB (Rdst.19), reset otherwise V: Set if the subtraction of a negative source operand from a positive destination operand delivers a negative result, or if the subtraction of a positive source operand from a negative destination operand delivers a positive result, reset otherwise (no overflow) OSCOFF, CPUOFF, and GIE are not affected. The 20-bit value in R5 is subtracted from R6. If a carry occurs, the program continues at label TONI. R5,R6 TONI ; R6 - R5 -> R6 ; Carry occurred ; No carry CPUX SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Instruction Set Description www.ti.com 6.6.4.11 TSTA * TSTA Syntax Operation Test 20-bit destination register Emulation Description CMPA #0,Rdst Status Bits Mode Bits Example R7POS R7NEG R7ZERO TSTA Rdst dst + 0FFFFFh + 1 dst + 0FFFFh + 1 dst + 0FFh + 1 The destination register is compared with zero. The status bits are set according to the result. The destination register is not affected. N: Set if destination register is negative, reset if positive Z: Set if destination register contains zero, reset otherwise C: Set V: Reset OSCOFF, CPUOFF, and GIE are not affected. The 20-bit value in R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero, continue at R7POS. TSTA R7 JN R7NEG JZ R7ZERO ...... ...... ...... ; ; ; ; ; ; Test R7 R7 is negative R7 is zero R7 is positive but not zero R7 is negative R7 is zero SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CPUX Copyright © 2008–2015, Texas Instruments Incorporated 341 Chapter 7 SLAU208O – June 2008 – Revised May 2015 Flash Memory Controller This chapter describes the operation of the flash memory controller. 342 Topic ........................................................................................................................... 7.1 7.2 7.3 7.4 Flash Memory Introduction ................................................................................ Flash Memory Segmentation .............................................................................. Flash Memory Operation ................................................................................... FCTL Registers ................................................................................................ Flash Memory Controller Page 343 344 346 361 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Flash Memory Introduction www.ti.com 7.1 Flash Memory Introduction The flash memory is byte, word, and long-word addressable and programmable. The flash memory module has an integrated controller that controls programming and erase operations. The module contains three registers, a timing generator, and a voltage generator to supply program and erase voltages. The cumulative high-voltage time must not be exceeded, and each 32-bit word can be written not more than four times (in byte, word, or long word write modes) before another erase cycle (see device-specific data sheet for details). The flash memory features include: • Internal programming voltage generation • Byte, word (2 bytes), and long (4 bytes) programmable • Ultra-low-power operation • Segment erase, bank erase (device specific), and mass erase • Marginal 0 and marginal 1 read modes • Each bank (device specific) can be erased individually while program execution can proceed in a different flash bank. NOTE: Bank operations are not supported on all devices. See the device-specific data sheet for banks supported and their respective sizes. Figure 7-1 shows the block diagram of the flash memory and controller. MAB MDB Control Registers Address/Data Latch Timing Generator Flash Memory Array Programming Voltage Generator Figure 7-1. Flash Memory Module Block Diagram SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Flash Memory Controller Copyright © 2008–2015, Texas Instruments Incorporated 343 Flash Memory Segmentation 7.2 www.ti.com Flash Memory Segmentation The flash main memory is partitioned into 512-byte segments. Single bits, bytes, or words can be written to flash memory, but a segment is the smallest size of the flash memory that can be erased. The flash memory is partitioned into main and information memory sections. There is no difference in the operation of the main and information memory sections. Code and data can be located in either section. The difference between the sections is the segment size. There are four information memory segments, A through D. Each information memory segment contains 128 bytes and can be erased individually. The bootstrap loader (BSL) memory consists of four segments, A through D. Each BSL memory segment contains 512 bytes and can be erased individually. The main memory segment size is 512 byte. See the device-specific data sheet for the start and end addresses of each bank, when available, and for the complete memory map of a device. Figure 7-2 shows the flash segmentation using an example of 256KB of flash that has four banks of 64KB (segments A through D) and information memory. 128-byte Information Memory Segment A 128-byte Information Memory Segment C 128-byte Information Memory Segment B 128-byte Information Memory Segment D 512-byte BSL Memory A 512-byte BSL Memory B 512-byte BSL Memory C 512-byte BSL Memory D Segment 0 Segment 0 Segment 0 64-kbyte Flash Memory Bank A 64-kbyte Flash Memory Bank B Segment 1 Segment 2 Segment X 64-kbyte Flash Memory Bank C 64-kbyte Flash Memory Bank D Segment 125 Segment 126 Segment 127 Figure 7-2. 256KB of Flash Memory Segments Example 344 Flash Memory Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Flash Memory Segmentation www.ti.com 7.2.1 Segment A Segment A of the information memory is locked separately from all other segments with the LOCKA bit. If LOCKA = 1, segment A cannot be written or erased, and all information memory is protected from being segment erased. If LOCKA = 0, segment A can be erased and written like any other flash memory segment. The state of the LOCKA bit is toggled when a 1 is written to it. Writing a 0 to LOCKA has no effect. This allows existing flash programming routines to be used unchanged. ; Unlock Info Memory MOV #FWPW,&FCTL4 ; Unlock SegmentA BIT #LOCKA,&FCTL3 JZ SEGA_UNLOCKED MOV #FWPW+LOCKA,&FCTL3 SEGA_UNLOCKED ; SegmentA is unlocked ; Lock SegmentA BIT #LOCKA,&FCTL3 JNZ SEGA_LOCKED MOV #FWPW+LOCKA,&FCTL3 SEGA_LOCKED ; SegmentA is locked ; Lock Info Memory MOV #FWPW+LOCKINFO,&FCTL4 ; Clear LOCKINFO, if set ; ; ; ; Test LOCKA Already unlocked? No, unlock SegmentA Yes, continue ; ; ; ; Test LOCKA Already locked? No, lock SegmentA Yes, continue ; Set LOCKINFO SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Flash Memory Controller Copyright © 2008–2015, Texas Instruments Incorporated 345 Flash Memory Operation 7.3 www.ti.com Flash Memory Operation The default mode of the flash memory is read mode. In read mode, the flash memory is not being erased or written, the flash timing generator and voltage generator are off, and the memory operates identically to ROM. Read and fetch while erase – The flash memory allows execution of a program from flash while a different flash bank is erased. Data reads are also possible from any flash bank not being erased. NOTE: Read and fetch while erase The read and fetch while erase feature is available in flash memory configurations where more than one flash bank is available. If there is one flash bank available, holding the complete flash program memory, the read from the program memory and information memory and BSL memory during the erase is not provided. Table 7-1 summarizes which flash operations are supported for devices that support read and fetch while erasing. Table 7-1. Supported Simultaneous Code Execution and Flash Operations Simultaneous Code Execution Flash Operation Within Flash Within RAM Bank Erase Supported Executed code must not reside in the bank to be erased Supported Segment Erase Not Supported Supported Byte, word, long-word write Not supported Supported Flash memory is in-system programmable (ISP) without the need for additional external voltage. The CPU can program the flash memory. The flash memory write and erase modes are selected by the BLKWRT, WRT, MERAS, and ERASE bits and are: • Byte, word, or long-word (32-bit) write • Block write • Segment erase • Bank erase (only main memory) • Mass erase (all main memory banks) • Read during bank erase (except for the one currently read from) Reading or writing to flash memory while it is busy programming or erasing (page, mass, or bank) from the same bank is prohibited. Any flash erase or programming can be initiated from within flash memory or RAM. 7.3.1 Erasing Flash Memory The logical value of an erased flash memory bit is 1. Each bit can be programmed from 1 to 0 individually, but to reprogram from 0 to 1 requires an erase cycle. The smallest amount of flash that can be erased is one segment. There are three erase modes selected by the ERASE and MERAS bits listed in Table 7-2. Table 7-2. Erase Modes (1) 346 MERAS ERASE 0 1 Segment erase Erase Mode 1 0 Bank erase (of one bank) selected by the dummy write address (1) 1 1 Mass erase (all memory banks are erased. Information memory A to D and BSL segments A to D are not erased) Bank operations are not supported on all devices. See the device-specific data sheet for support of bank operations. Flash Memory Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Flash Memory Operation www.ti.com 7.3.1.1 Erase Cycle An erase cycle is initiated by a dummy write to the address range of the segment to be erased. The dummy write starts the erase operation and is required for all erase operations including mass erase. Figure 7-3 shows the erase cycle timing. The BUSY bit is set immediately after the dummy write and remains set throughout the erase cycle. BUSY, MERAS, and ERASE are automatically cleared when the cycle completes. No additional dummy write access should be made while the control bits are cleared, otherwise, ACCVIFG is set. The mass erase cycle timing is not dependent on the amount of flash memory present on a device. Erase cycle times are equivalent for all devices. Generate Programming Voltage Erase Operation Active Remove Programming Voltage Erase Time, Current Consumption is Increased BUSY tErase = tMass_erase, Segment_erase, Bank_erase Figure 7-3. Erase Cycle Timing 7.3.1.2 Erasing Main Memory The main memory consists of one or more banks. Each bank can be erased individually (bank erase). All main memory banks can be erased in the mass erase mode. 7.3.1.3 Erasing Information Memory or BSL Flash Segments The information memory A to D and the BSL segments A to D can only be erased in segment erase mode. They are not erased during a bank erase or a mass erase. Erasing is only possible by first clearing the LOCKINFO bit. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Flash Memory Controller Copyright © 2008–2015, Texas Instruments Incorporated 347 Flash Memory Operation 7.3.1.4 www.ti.com Initiating Erase From Flash An erase cycle can be initiated from within flash memory. During a bank erase, code can be executed from flash or RAM. The executed code cannot be located in a bank to be erased. For any segment erase, the CPU is held until the erase cycle completes regardless of the bank the code resides in. After the segment erase cycle ends, the CPU resumes code execution with the instruction following the dummy write. When initiating an erase cycle from within flash memory, it is possible to erase the code needed for execution after the erase operation. If this occurs, CPU execution is unpredictable after the erase cycle. The flow to initiate an erase from flash is shown in Figure 7-4. Disable watchdog Yes BUSY = 1 Setup flash controller and erase mode Dummy write Set LOCK = 1, (Set LOCKINFO = 1) reenable watchdog Figure 7-4. Erase Cycle From Flash ; ; ; ; Segment Erase from flash. Assumes Program Memory. Information memory or BSL requires LOCKINFO to be cleared as well. Assumes ACCVIE = NMIIE = OFIE = 0. MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT L1 BIT #BUSY,&FCTL3 ; Test BUSY JNZ L1 ; Loop while busy MOV #FWPW,&FCTL3 ; Clear LOCK MOV #FWPW+ERASE,&FCTL1 ; Enable segment erase CLR &0FC10h ; Dummy write L2 BIT #BUSY,&FCTL3 ; Test BUSY JNZ L2 ; Loop while busy MOV #FWPW+LOCK,&FCTL3 ; Done, set LOCK ... ; Re-enable WDT? 348 Flash Memory Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Flash Memory Operation www.ti.com 7.3.1.5 Initiating Erase From RAM An erase cycle can be initiated from RAM. In this case, the CPU is not held and continues to execute code from RAM. The mass erase (all main memory banks) operation is initiated while executing from RAM. The BUSY bit is used to determine the end of the erase cycle. If the flash is busy completing a bank erase, flash addresses of a different bank can be used to read data or to fetch instructions. While the flash is BUSY, starting an erase cycle or a programming cycle causes an access violation, ACCIFG is set to 1, and the result of the erase operation is unpredictable. The flow to initiate an erase from flash from RAM is shown in Figure 7-5. Disable watchdog Yes BUSY = 1 Setup flash controller and erase mode Dummy write Yes BUSY = 1 Set LOCK = 1, (Set LOCKINFO = 1) Reenable watchdog Figure 7-5. Erase Cycle From RAM ; ; ; ; segment Erase from RAM. Assumes Program Memory. Information memory or BSL requires LOCKINFO to be cleared as well. Assumes ACCVIE = NMIIE = OFIE = 0. MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT L1 BIT #BUSY,&FCTL3 ; Test BUSY JNZ L1 ; Loop while busy MOV #FWPW,&FCTL3 ; Clear LOCK MOV #FWPW+ERASE,&FCTL1 ; Enable page erase CLR &0FC10h ; Dummy write L2 BIT #BUSY,&FCTL3 ; Test BUSY JNZ L2 ; Loop while busy MOV #FWPW+LOCK,&FCTL3 ; Done, set LOCK ... ; Re-enable WDT? SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Flash Memory Controller Copyright © 2008–2015, Texas Instruments Incorporated 349 Flash Memory Operation www.ti.com 7.3.2 Writing Flash Memory The write modes, selected by the WRT and BLKWRT bits, are listed in Table 7-3. Table 7-3. Write Modes BLKWRT WRT 0 1 Byte or word write Write Mode 1 0 Long-word write 1 1 Long-word block write The write modes use a sequence of individual write instructions. Using the long-word write mode is approximately twice as fast as the byte or word mode. Using the long-word block write mode is approximately four times faster than byte or word mode, because the voltage generator remains on for the complete block write, and long-words are written in parallel. Any instruction that modifies a destination can be used to modify a flash location in either byte or word write mode, long-word write mode, or block longword write mode. The BUSY bit is set while the write operation is active and cleared when the operation completes. If the write operation is initiated from RAM, the CPU must not access flash while BUSY is set to 1. Otherwise, an access violation occurs, ACCVIFG is set, and the flash write is unpredictable. 7.3.2.1 Byte or Word Write A byte or word write operation can be initiated from within flash memory or from RAM. When initiating from within flash memory, the CPU is held while the write completes. After the write completes, the CPU resumes code execution with the instruction following the write access. The byte, word, and long-word write timing is shown in Figure 7-6. Byte, word, and long-word write times are identical. Generate Programming Voltage Programming Operation Active Remove Programming Voltage Programming Time, VCC Current Consumption is Increased BUSY tWrite Figure 7-6. Byte, Word, and Long-Word Write Timing When a byte or word write is executed from RAM, the CPU continues to execute code from RAM. The BUSY bit must be zero before the CPU accesses flash again, otherwise an access violation occurs, ACCVIFG is set, and the write result is unpredictable. In any write mode, the internally-generated programming voltage is applied to the complete 128-byte block. The cumulative programming time, tCPT, must not be exceeded for any block. Each byte, word, or long-word write adds to the cumulative program time of a segment. If the maximum cumulative program time is reached or exceeded, the segment must be erased. Further programming or using the data returns unpredictable results (see the device-specific data sheet for specifications). 350 Flash Memory Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Flash Memory Operation www.ti.com 7.3.2.2 Initiating Byte or Word Write From Flash The flow to initiate a byte or word write from flash is shown in Figure 7-7. Disable watchdog Setup flash controller and set WRT = 1 Write byte or word Set WRT = 0, LOCK = 1, reenable watchdog Figure 7-7. Initiating a Byte or Word Write From Flash ; Byte or word write from flash. ; Assumes 0x0FF1E is already erased ; Assumes ACCVIE = NMIIE = OFIE = 0. MOV #WDTPW+WDTHOLD,&WDTCTL ; MOV #FWPW,&FCTL3 ; MOV #FWPW+WRT,&FCTL1 ; MOV #0123h,&0FF1Eh ; MOV #FWPW,&FCTL1 ; MOV #FWPW+LOCK,&FCTL3 ; ... ; Disable WDT Clear LOCK Enable write 0123h -> 0x0FF1E Done. Clear WRT Set LOCK Re-enable WDT? SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Flash Memory Controller Copyright © 2008–2015, Texas Instruments Incorporated 351 Flash Memory Operation 7.3.2.3 www.ti.com Initiating Byte or Word Write From RAM The flow to initiate a byte or word write from RAM is shown in Figure 7-8. Disable watchdog Yes BUSY = 1 Setup flash controller and set WRT = 1 Write byte or word Yes BUSY = 1 Set WRT = 0, LOCK = 1, Reenable watchdog Figure 7-8. Initiating a Byte or Word Write From RAM ; Byte or ; Assumes ; Assumes MOV L1 BIT JNZ MOV MOV MOV L2 BIT JNZ MOV MOV ... 352 word write from RAM. 0x0FF1E is already erased ACCVIE = NMIIE = OFIE = 0. #WDTPW+WDTHOLD,&WDTCTL #BUSY,&FCTL3 L1 #FWPW,&FCTL3 #FWPW+WRT,&FCTL1 #0123h,&0FF1Eh #BUSY,&FCTL3 L2 #FWPW,&FCTL1 #FWPW+LOCK,&FCTL3 ; ; ; ; ; ; ; ; ; ; ; Disable WDT Test BUSY Loop while busy Clear LOCK Enable write 0123h -> 0x0FF1E Test BUSY Loop while busy Clear WRT Set LOCK Re-enable WDT? Flash Memory Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Flash Memory Operation www.ti.com 7.3.2.4 Long-Word Write A long-word write operation can be initiated from within flash memory or from RAM. The BUSY bit is set to 1 after 32 bits are written to the flash controller and the programming cycle starts. When initiating from within flash memory, the CPU is held while the write completes. After the write completes, the CPU resumes code execution with the instruction following the write access. The long-word write timing is shown in Figure 7-6. A long-word consists of four consecutive bytes aligned to at 32-bit address (only the lower two address bits are different). The bytes can be written in any order or any combination of bytes and words. If a byte or word is written more than once, the last data written to the four bytes are stored into the flash memory. If a write to a flash address outside of the 32-bit address happens before all four bytes are available, the data written so far is discarded, and the latest byte or word written defines the new 32-bit aligned address. When 32 bits are available, the write cycle is executed. When executing from RAM, the CPU continues to execute code. The BUSY bit must be zero before the CPU accesses flash again, otherwise an access violation occurs, ACCVIFG is set, and the write result is unpredictable. In long-word write mode, the internally-generated programming voltage is applied to a complete 128-byte block. The cumulative programming time, tCPT, must not be exceeded for any block. Each write adds to the cumulative program time of a segment. If the maximum cumulative program time is reached or exceeded, the segment must be erased. Further programming or using the data returns unpredictable results. With each write, the amount of time the block is subjected to the programming voltage accumulates. If the cumulative programming time is reached or exceeded, the block must be erased before further programming or use (see the device-specific data sheet for specifications). 7.3.2.5 Initiating Long-Word Write From Flash The flow to initiate a long-word write from flash is shown in Figure 7-9. Disable watchdog Setup flash controller and set BLKWRT = 1 Write 4 bytes or 2 words Set BLKWRT = 0, LOCK = 1, Reenable watchdog Figure 7-9. Initiating Long-Word Write From Flash ; Long-word write from flash. ; Assumes 0x0FF1C and 0x0FF1E is already erased ; Assumes ACCVIE = NMIIE = OFIE = 0. MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT MOV #FWPW,&FCTL3 ; Clear LOCK MOV #FWPW+BLKWRT,&FCTL1 ; Enable 2-word write MOV #0123h,&0FF1Ch ; 0123h -> 0x0FF1C MOV #45676h,&0FF1Eh ; 04567h -> 0x0FF1E MOV #FWPW,&FCTL1 ; Done. Clear BLKWRT MOV #FWPW+LOCK,&FCTL3 ; Set LOCK ... ; Re-enable WDT? SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Flash Memory Controller Copyright © 2008–2015, Texas Instruments Incorporated 353 Flash Memory Operation 7.3.2.6 www.ti.com Initiating Long-Word Write From RAM The flow to initiate a long-word write from RAM is shown in Figure 7-10. Disable watchdog Yes BUSY = 1 Setup flash controller and set BLKWRT = 1 Write 4 bytes or 2 words Yes BUSY = 1 Set BLKWRT=0, LOCK = 1, Reenable watchdog Figure 7-10. Initiating Long-Word Write from RAM ; Two 16-bit word writes from RAM. ; Assumes 0x0FF1C and 0x0FF1E is already erased ; Assumes ACCVIE = NMIIE = OFIE = 0. MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT L1 BIT #BUSY,&FCTL3 ; Test BUSY JNZ L1 ; Loop while busy MOV #FWPW,&FCTL3 ; Clear LOCK MOV #FWPW+BLKWRT,&FCTL1 ; Enable write MOV #0123h,&0FF1Ch ; 0123h -> 0x0FF1C MOV #4567h,&0FF1Eh ; 4567h -> 0x0FF1E L2 BIT #BUSY,&FCTL3 ; Test BUSY JNZ L2 ; Loop while busy MOV #FWPW,&FCTL1 ; Clear WRT MOV #FWPW+LOCK,&FCTL3 ; Set LOCK ... ; Re-enable WDT? 354 Flash Memory Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Flash Memory Operation www.ti.com 7.3.2.7 Block Write The block write can be used to accelerate the flash write process when many sequential bytes or words need to be programmed. The flash programming voltage remains on for the duration of writing the 128byte row. The cumulative programming time, tCPT, must not be exceeded for any row during a block write. Only long-word writes are possible using block write mode. A block write cannot be initiated from within flash memory. The block write must be initiated from RAM. The BUSY bit remains set throughout the duration of the block write. The WAIT bit must be checked between writing four bytes, or two words, to the block. When WAIT is set, then four bytes, or two 16-bit words, of the block can be written. When writing successive blocks, the BLKWRT bit must be cleared after the current block is completed. BLKWRT can be set initiating the next block write after the required flash recovery time given by tEND. BUSY is cleared following each block write completion, indicating the next block can be written. Figure 7-11 shows the block write timing. The first long-word write requires tBlock,0 and the last long-write requires tBlock,N. All other blocks require tBlock,1-(N-1). BLKWRT bit Write to Flash; e.g., MOV #0123h, &Flash MOV #4567h, &Flash1 Generate Programming Voltage Remove Programming Voltage Programming Operation Active Cumulative Programming Time < tCPT, VCC Current Consumption is Increased BUSY tBlock,0 tBlock,1–(N-1) tBlock,N WAIT Figure 7-11. Block-Write Cycle Timing SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Flash Memory Controller Copyright © 2008–2015, Texas Instruments Incorporated 355 Flash Memory Operation 7.3.2.8 www.ti.com Block Write Flow and Example A block write flow is shown in Figure 7-12 and the following code example. Disable watchdog Yes BUSY = 1 Setup flash controller Set BLKWRT = WRT = 1 Write 4 bytes or 2 words Yes WAIT = 0? No Block Border? Set BLKWRT=0 Yes BUSY = 1 Yes Another Block? Set WRT = 0, LOCK = 1, Reenable WDT Figure 7-12. Block Write Flow 356 Flash Memory Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Flash Memory Operation www.ti.com ; Write one block starting at 0F000h. ; Must be executed from RAM, Assumes Flash is already erased. ; Assumes ACCVIE = NMIIE = OFIE = 0. MOV #32,R5 ; Use as write counter MOV #0F000h,R6 ; Write pointer MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT L1 BIT #BUSY,&FCTL3 ; Test BUSY JNZ L1 ; Loop while busy MOV #FWPW,&FCTL3 ; Clear LOCK MOV #FWPW+BLKWRT+WRT,&FCTL1 ; Enable block write L2 MOV Write_Value1,0(R6) ; Write 1st location MOV Write_Value2,2(R6) ; Write 2nd word L3 BIT #WAIT,&FCTL3 ; Test WAIT JZ L3 ; Loop while WAIT=0 INCD R6 ; Point to next words INCD R6 ; Point to next words DEC R5 ; Decrement write counter JNZ L2 ; End of block? MOV #FWPW,&FCTL1 ; Clear WRT, BLKWRT L4 BIT #BUSY,&FCTL3 ; Test BUSY JNZ L4 ; Loop while busy MOV #FWPW+LOCK,&FCTL3 ; Set LOCK ... ; Re-enable WDT if needed 7.3.3 Flash Memory Access During Write or Erase When a write or an erase operation is initiated from RAM while BUSY = 1, the CPU may not write to any flash location. Otherwise, an access violation occurs, ACCVIFG is set, and the result is unpredictable. ACCVIFG is also set if a Flash write or erase access is attempted without any Flash write or erase mode selected first. When a write operation is initiated from within flash memory, the CPU continues code execution with the next instruction fetch after the write cycle completed (BUSY = 0). The op-code 3FFFh is the JMP PC instruction. This causes the CPU to loop until the flash operation is finished. When the operation is finished and BUSY = 0, the flash controller allows the CPU to fetch the opcode and program execution resumes. The flash access conditions while BUSY = 1 are listed in Table 7-4. Table 7-4. Flash Access While Flash is Busy (BUSY = 1) Flash Operation Bank erase Segment erase Word or byte write or long-word write Block write Flash Access WAIT Result Read 0 From the erased bank: ACCVIFG = 0. 03FFFh is the value read. From any other flash location: ACCVIFG = 0. Valid read. Write 0 ACCVIFG = 1. Write is ignored. Instruction fetch 0 From the erased bank: ACCVIFG = 0. CPU fetches 03FFFh. This is the JMP PC instruction. From any other flash location: ACCVIFG = 0. Valid instruction fetch. Read 0 ACCVIFG = 0: 03FFFh is the value read. Write 0 ACCVIFG = 1: Write is ignored. Instruction fetch 0 ACCVIFG = 0: CPU fetches 03FFFh. This is the JMP PC instruction. Read 0 ACCVIFG = 0: 03FFFh is the value read. Write 0 ACCVIFG = 1: Write is ignored. Instruction fetch 0 ACCVIFG = 0: CPU fetches 03FFFh. This is the JMP PC instruction. Any 0 ACCVIFG = 1: LOCK = 1, block write is exited. Read 1 ACCVIFG = 0: 03FFFh is the value read. Write 1 ACCVIFG = 0: Valid write Instruction fetch 1 ACCVIFG = 1: LOCK = 1, block write is exited SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Flash Memory Controller Copyright © 2008–2015, Texas Instruments Incorporated 357 Flash Memory Operation www.ti.com Interrupts are automatically disabled during any flash operation. The watchdog timer (in watchdog mode) should be disabled before a flash erase cycle. A reset aborts the erase and the result is unpredictable. After the erase cycle has completed, the watchdog may be reenabled. 7.3.4 Stopping Write or Erase Cycle Any write or erase operation can be stopped before its normal completion by setting the emergency exit bit EMEX. Setting the EMEX bit stops the active operation and resets the flash controller. All flash operations cease, the flash returns to read mode, and all bits in the FCTL1 register are reset. The LOCK bit of FCTL3 is set. The result of the intended operation is unpredictable. 7.3.4.1 EMEX With Single Bank Flash Memory For devices with single bank flash memories, write and erase operations initiated from flash, the CPU is held until the flash operation completes. Therefore it is not possible to perform an emergency exit by the EMEX bit. The emergency exit of write or erase operations initiated from RAM can be performed using the EMEX bit. The BUSY bit is used to determine the end of the emergency exit cycle. The user must ensure that code execution does not continue until the BUSY bit is cleared by the flash controller. 7.3.4.2 EMEX With Multiple Bank Flash Memory For devices with multiple bank flash memories, write and segment erase operations initiated from flash, regardless of which bank the code resides in, the CPU is held until the flash operation completes. Therefore it is not possible to perform an emergency exit by the EMEX bit. For bank erase, there is a possibility to perform an EMEX if the bank being erased is not where the code resides. The BUSY bit is used to determine the end of the emergency exit cycle. The user must ensure that code execution does not continue until the BUSY bit is cleared by the flash controller. The emergency exit of write or any erase operations initiated from RAM can be performed using the EMEX bit. The BUSY bit is used to determine the end of the emergency exit cycle. The user must ensure that code execution does not continue until the BUSY bit is cleared by the flash controller. 7.3.5 Checking Flash Memory The result of a programming cycle of the flash memory can be checked by calculating and storing a checksum (CRC) of parts or the complete flash memory content. The CRC module can be used for this purpose (see the device-specific data sheet). During the runtime of the system, the known checksums can be recalculated and compared with the expected values stored in the flash memory. The program checking the flash memory content is executed in RAM. To get an early indication of weak memory cells, reading the flash can be done in combination with the device-specific marginal read modes. The marginal read modes are controlled by the FCTL4.MRG0 and FCTL4.MRG1 register bits if available (device specific). During marginal read mode, marginally programmed flash memory bit locations can be detected. One method for identifying such memory locations would be to periodically perform a checksum calculation over a section of flash memory (for example, a flash segment) and repeating this procedure with the marginal read mode enabled. If they do not match, it could indicate an insufficiently programmed flash memory location. It is possible to refresh the affected Flash memory segment by disabling marginal read mode, copying to RAM, erasing the flash segment, and writing back to it from RAM. The program checking the flash memory contents must be executed from RAM. Executing code from flash automatically disables the marginal read mode. The marginal read modes are controlled by the MRG0 and MRG1 register bits. Setting MRG1 is used to detect insufficiently programmed flash cells containing a "1" (erased bits). Setting MRG0 is used to detect insufficiently programmed flash cells containing a "0" (programmed bits). Only one of these bits should be set at a time. Therefore, a full marginal read check requires two passes of checking the flash memory content’s integrity. During marginal read mode, the flash access speed (MCLK) must be limited to 1 MHz (see the device-specific data sheet). 358 Flash Memory Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Flash Memory Operation www.ti.com 7.3.6 Configuring and Accessing the Flash Memory Controller The FCTLx registers are 16-bit password-protected read and write registers. Any read or write access must use word instructions, and write accesses must include the write password 0A5h in the upper byte. Any write to any FCTLx register with a value other than 0A5h in the upper byte is a password violation, sets the KEYV flag, and triggers a PUC system reset. Any read of any FCTLx registers reads 096h in the upper byte. Any write to FCTL1 during an erase or byte, word, double-word write operation is an access violation and sets ACCVIFG. Writing to FCTL1 is allowed in block write mode when WAIT = 1, but writing to FCTL1 in block write mode when WAIT = 0 is an access violation and sets ACCVIFG. Any write to FCTL2 (this register is currently not implemented) when BUSY = 1 is an access violation. Any FCTLx register may be read when BUSY = 1. A read does not cause an access violation. 7.3.7 Flash Memory Controller Interrupts The flash controller has two interrupt sources, KEYV and ACCVIFG. ACCVIFG is set when an access violation occurs. When the ACCVIE bit is reenabled after a flash write or erase, a set ACCVIFG flag generates an interrupt request. The ACCVIE bit resides in the Special Function Register, SFRIE1 (see the SYS chapter for details). ACCVIFG sources the NMI interrupt vector, so it is not necessary for GIE to be set for ACCVIFG to request an interrupt. ACCVIFG may also be checked by software to determine if an access violation occurred. ACCVIFG must be reset by software. The password violation flag, KEYV, is set when any of the flash control registers are written with an incorrect password. When this occurs, a PUC is generated immediately, resetting the device. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Flash Memory Controller Copyright © 2008–2015, Texas Instruments Incorporated 359 Flash Memory Operation www.ti.com 7.3.8 Programming Flash Memory Devices There are three options for programming a flash device. All options support in-system programming. • Program through JTAG (Section 7.3.8.1) • Program through the BSL (Section 7.3.8.2) • Program through a custom solution (Section 7.3.8.3) 7.3.8.1 Programming Flash Memory Through JTAG Devices can be programmed through the JTAG port. The JTAG interface requires four signals (five signals on 20- and 28-pin devices), ground, and optionally VCC and RST/NMI. The JTAG port is protected with a fuse. Blowing the fuse completely disables the JTAG port and is not reversible. Further access to the device through JTAG is not possible. For more details, see the MSP430 Programming Via the JTAG Interface User's Guide (SLAU320). 7.3.8.2 Programming Flash Memory Via Bootstrap Loader (BSL) Every flash device contains a BSL. The BSL enables users to read or program the flash memory or RAM using a UART serial interface. Access to the flash memory through the BSL is protected by a 256-bit userdefined password. For more details, see the MSP430 Programming Via the Bootstrap Loader User's Guide (SLAU319). 7.3.8.3 Programming Flash Memory Through Custom Solution The ability of the MSP430 CPU to write to its own flash memory allows for in-system and external custom programming solutions as shown in Figure 7-13. The user can choose to provide data through any means available (for example, UART or SPI). User-developed software can receive the data and program the flash memory. Because this type of solution is developed by the user, it can be completely customized to fit the application needs for programming, erasing, or updating the flash memory. Commands, data, etc. Host MSP430 UART, Px.x, SPI, etc. Flash memory CPU executes user software Read/write flash memory Figure 7-13. User-Developed Programming Solution 360 Flash Memory Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated FCTL Registers www.ti.com 7.4 FCTL Registers The flash memory controller (FCTL) registers are listed in Table 7-5. The base address can be found in the device-specific data sheet. The address offset is given in Table 7-5. NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix "_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H" (ANYREG_H) refers to the upper byte of the register (bits 8 through 15). Table 7-5. FCTL Registers Offset Acronym Register Name Type Access Reset Section 00h FCTL1 Flash Memory Control 1 Read/write Word 9600h Section 7.4.1 00h FCTL1_L Read/Write Byte 00h 01h FCTL1_H Read/Write Byte 96h Read/write Word 9658h 04h FCTL3 Flash Memory Control 3 04h FCTL3_L Read/Write Byte 58h 05h FCTL3_H Read/Write Byte 96h Read/write Word 9600h 06h FCTL4 Flash Memory Control 4 06h FCTL4_L Read/Write Byte 00h 07h FCTL4_H Read/Write Byte 96h SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Section 7.4.2 Section 7.4.3 Flash Memory Controller Copyright © 2008–2015, Texas Instruments Incorporated 361 FCTL Registers www.ti.com 7.4.1 FCTL1 Register Flash Memory Control 1 Register Figure 7-14. FCTL1 Register 15 14 13 12 11 10 9 8 FRPW/FWPW 7 6 5 BLKWRT WRT SWRT 4 rw-0 rw-0 rw-0 3 Reserved r-0 r-0 2 1 0 MERAS ERASE Reserved rw-0 rw-0 r-0 Table 7-6. FCTL1 Register Description Bit Field Type Reset Description 15-8 FRPW/FWPW RW 96h FCTL password. Always read as 096h. Must be written as 0A5h or a PUC is generated. 7 BLKWRT RW 0h Block write. BLKWRT and WRT are used together to select the write mode. The values shown below are for BLKWRT-WRT. 0-0 = Reserved 0-1 = Byte or word write 1-0 = Long-word write 1-1 = Long-word block write 6 WRT RW 0h Write. BLKWRT and WRT are used together to select the write mode. The values shown below are for BLKWRT-WRT. 0-0 = Reserved 0-1 = Byte or word write 1-0 = Long-word write 1-1 = Long-word block write 5 SWRT RW 0h Smart write. If this bit is set, the program time is shortened. The programming quality has to be checked by marginal read modes. 4-3 Reserved R 0h Reserved. Always reads as 0. 2 MERAS Mass erase. MERAS and ERASE are used together to select the erase mode. MERAS and ERASE are automatically reset when EMEX is set or a flash erase operation has completed. The values shown below are for MERAS-ERASE. 0-0 = No erase 0-1 = Segment erase 1-0 = Bank erase (erase of one bank) 1-1 = Mass erase (erase all flash memory banks) 1 ERASE Erase. MERAS and ERASE are used together to select the erase mode. MERAS and ERASE are automatically reset when EMEX is set or a flash erase operation has completed. The values shown below are for MERAS-ERASE. 0-0 = No erase 0-1 = Segment erase 1-0 = Bank erase (erase of one bank) 1-1 = Mass erase (erase all flash memory banks) 0 Reserved 362 R 0h Reserved. Always reads as 0. Flash Memory Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated FCTL Registers www.ti.com 7.4.2 FCTL3 Register Flash Memory Control 3 Register Figure 7-15. FCTL3 Register 15 14 13 12 11 10 9 8 FRPW/FWPW 7 6 5 4 3 2 1 0 Reserved LOCKA EMEX LOCK WAIT ACCVIFG KEYV BUSY r-0 rw-1 rw-0 rw-1 r-1 rw-0 rw-(0) r-0 Table 7-7. FCTL3 Register Description Bit Field Type Reset Description 15-8 FRPW/FWPW RW 96h FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC is generated. 7 Reserved R 0h Reserved. Always reads as 0. 6 LOCKA RW 1h Segment A lock. Write a 1 to this bit to change its state. Writing 0 has no effect. 0b = Segment A of the information memory is unlocked and can be written or erased in segment erase mode. 1b = Segment A of the information memory is locked and can not be written or erased in segment erase mode. 5 EMEX RW 0h Emergency exit. Setting this bit stops any erase or write operation. The LOCK bit is set. 0b = No emergency exit 1b = Emergency exit 4 LOCK RW 1h Lock. This bit unlocks the flash memory for writing or erasing. The LOCK bit can be set any time during a byte or word write or erase operation, and the operation completes normally. In the block write mode, if the LOCK bit is set while BLKWRT = WAIT = 1, BLKWRT and WAIT are reset and the mode ends normally. 0b = Unlocked 1b = Locked 3 WAIT R 1h Wait. Indicates the flash memory is being written to. 0b = Flash memory is not ready for the next byte or word write. 1b = Flash memory is ready for the next byte or word write. 2 ACCVIFG RW 0h Access violation interrupt flag 0b = No interrupt pending 1b = Interrupt pending 1 KEYV RW 0h Flash password violation. This bit indicates an incorrect FCTLx password was written to any flash control register and generates a PUC when set. KEYV must be reset with software. 0b = FCTLx password was written correctly. 1b = FCTLx password was written incorrectly. 0 BUSY R 0h Busy. This bit indicates if the flash is currently busy erasing or programming. 0b = Not busy 1b = Busy SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Flash Memory Controller Copyright © 2008–2015, Texas Instruments Incorporated 363 FCTL Registers www.ti.com 7.4.3 FCTL4 Register Flash Memory Control 4 Register Figure 7-16. FCTL4 Register 15 14 13 12 11 10 9 2 1 8 FRPW/FWPW 7 6 5 4 LOCKINFO Reserved MRG1 MRG0 rw-0 r-0 rw-0 rw-0 3 Reserved r-0 r-0 0 VPE r-0 rw-0 Table 7-8. FCTL4 Register Description Bit Field Type Reset Description 15-8 FRPW/FWPW RW 96h FCTLx password. Always reads as 096h. Must be written as 0A5h or a PUC is generated. 7 LOCKINFO RW 0h Lock information memory. If set, the information memory cannot be erased in segment erase mode and cannot be written to. 6 Reserved R 0h Reserved. Always reads as 0. 5 MRG1 RW 0h Marginal read 1 mode. This bit enables the marginal 1 read mode. The marginal read 1 bit is valid for reads from the flash memory only. During a fetch cycle, the marginal mode is turned off automatically. If both MRG1 and MRG0 are set, MRG1 is active and MRG0 is ignored. 0b = Marginal 1 read mode is disabled. 1b = Marginal 1 read mode is enabled. 4 MRG0 RW 0h Marginal read 0 mode. This bit enables the marginal 0 read mode. The marginal read 1 bit is valid for reads from the flash memory only. During a fetch cycle, the marginal mode is turned off automatically. If both MRG1 and MRG0 are set, MRG1 is active and MRG0 is ignored. 0b = Marginal 0 read mode is disabled. 1b = Marginal 0 read mode is enabled. 3-1 Reserved R 0h Reserved. Always reads as 0. 0 VPE RW 0h Voltage changed during program error. This bit is set by hardware and can only be cleared by software. If DVCC changed significantly during programming, this bit is set to indicate an invalid result. The ACCVIFG bit is set if VPE is set. 364 Flash Memory Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated FCTL Registers www.ti.com 7.4.4 SFRIE1 Register Interrupt Enable 1 Register Figure 7-17. SFRIE1 Register 15 14 13 12 11 10 9 8 5 4 3 2 1 0 OTHER 7 6 ACCVIE rw-0 Table 7-9. SFRIE1 Register Description Bit Field Type Reset 15-6 5 Description These bits may be used by other modules (see the device-specific data sheet and the SYS chapter for details). ACCVIE RW 4-0 0h Flash memory access violation interrupt enable. This bit enables the ACCVIFG interrupt. Because other bits in SFRIE1 may be used for other modules, it is recommended to set or clear this bit using BIS or BIC instructions, rather than MOV or CLR instructions. See the SYS chapter for more details. 0b = Interrupt not enabled 1b = Interrupt enabled These bits may be used by other modules (see the device-specific data sheet and the SYS chapter for details). SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Flash Memory Controller Copyright © 2008–2015, Texas Instruments Incorporated 365 Chapter 8 SLAU208O – June 2008 – Revised May 2015 Memory Integrity Detection (MID) Memory Integrity Detection (MID) is a program and data protection mechanism that is available on several device families (for example, MSP430F6659). It provides a high level of operation safety for fault-critical application areas. This chapter explains how to use the firmware for the level of operational safety and overall fault response that suits different applications. 366 Topic ........................................................................................................................... 8.1 8.2 8.3 8.4 8.5 8.6 8.7 MID Overview ................................................................................................... Flash Memory With MID Support ........................................................................ MID Parity Check Logic ..................................................................................... Detecting Unprogrammed Memory Accesses....................................................... MID ROM ......................................................................................................... MID Support Software Function.......................................................................... User's UNMI Interrupt Handler ............................................................................ Memory Integrity Detection (MID) Page 367 368 368 369 369 369 373 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MID Overview www.ti.com 8.1 MID Overview The MID is an add-on to the MSP430 flash memory controller. MID provides additional functionality over the regular flash operation methods as described in the Flash Memory Controller chapter. The main purpose of the MID function is to help gain higher reliability of flash content and overall system integrity in harsh environments and in applications requiring such features. The additional level of security is reached by calculating parity information. The complete MID solution consists of the blocks Parity Generator and Parity Check and MID ROM. The Parity Generator and Parity Check provides all of the necessary logic elements needed to identify bit errors in the whole memory array. The on-chip MID ROM contains the MID Support Software, and this software performs all the necessary tasks to operate MID. The built-in MID functions provide all functionality to use the MID features. MAB MDB MID ROM Control Registers Address/Data Latch (Preprogrammed MID support software allows control of MID hardware) Flash Memory Array Programming Voltage Generator MSP430 Flash Memory Controller (plain data) (horizontal Parity Bits) Timing Generator MID Parity Information Parity Generator and Parity Check MID Add-on Figure 8-1. Block Diagram of MID Implementation SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Memory Integrity Detection (MID) Copyright © 2008–2015, Texas Instruments Incorporated 367 Flash Memory With MID Support 8.2 www.ti.com Flash Memory With MID Support The MSP430 flash memory is partitioned into different memory areas—main and information memory, banks, segments, and memory blocks—where MID protection can be enabled. Figure 8-2 shows an example for a typical MSP430 flash segmentation including the MID feature. MSP430 Flash Memory Banks Bank 3 Main Memory Bank 2 Bank 1 Bank 0 (1) Segments MID Flash Memory Blocks Enable bits (see Note 1) ¬ CW0.15 ¬ CW0.14 ¬ CW0.13 ¬ CW0.12 ¬ CW0.11 ¬ CW0.10 ¬ CW0.9 ¬ CW0.8 ¬ CW0.7 ¬ CW0.6 ¬ CW0.5 ¬ CW0.4 ¬ CW0.3 ¬ CW0.2 ¬ CW0.1 ¬ CW0.0 ... ... ... ... Information Memory Info A Info B Info C Info D Info A Info B Info C Info D ¬ CW1.4 ¬ CW1.5 ¬ CW1.6 ¬ CW1.7 Bootstrap Loader (BSL) BSL 3 BSL 2 BSL 1 BSL 0 BSL 3 BSL 2 BSL 1 BSL 0 ¬ CW1.3 ¬ CW1.2 ¬ CW1.1 ¬ CW1.0 The cw0.x and cw1.x bits are used to enable MID functionality for the individual memory ranges. Further information can be found in Section 8.6.1. Figure 8-2. Overview of MSP430 Flash Memory Segmentation The whole flash memory array consist of MID supported flash memory blocks. For a device with 512KB of flash main memory, each MID flash memory block has a size of 32KB (main memory divided by 16). Each row consists of one word of plain data (16 bits) and a horizontal parity bit (H-parity bit). Erased segments show all ones in the data array field and horizontal parity. Writing to flash memory (with MID after reset) automatically writes the horizontal parity bits along with the data bits. Writing to the plain data field can, of course, be interrupted and continued in any order. Adding content after the horizontal parity has been written is impractical, as the horizontal parity information changes as well. The whole segment (not just a single MID memory block) would need to be erased before it can be written again. The shown method is excellent for data content of static nature like code, tables, and so on. For data acquisition into flash, other methods (for example, majority vote) are more suitable; but complete blocks of acquisition data can be protected with this method again. 8.3 MID Parity Check Logic Any access to MID enabled flash memory causes a verification of its horizontal parity in the background. It does not matter if code or data is read from the flash memory. If a parity error is detected, the bus error event "parity error" is triggered and calls the user NMI exception handler. The application software can then react on the failure by, for example, showing an error message on the application's display. 368 Memory Integrity Detection (MID) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Detecting Unprogrammed Memory Accesses www.ti.com 8.4 Detecting Unprogrammed Memory Accesses All bits are set after erasing the flash memory; this also includes the horizontal parity bit. If an erased memory range is accessed, the MID causes a NMI interrupt, because of a detected parity failure. Only programmed addresses are accessible without a MID failure interrupt; that is especially the case for the content 0xFFFF. If memory content should be 0xFFFF, it must be programmed. This ensures that the horizontal parity bit is cleared (0). Enabling the MID functionality for nonprogrammed memory ranges allows detecting memory accesses to these nonprogrammed addresses. 8.5 MID ROM The MID ROM is 1KB of read-only memory. The on-chip MID ROM is factory programmed with MID support software. These software functions are used to enable or disable the MID module. The start address of the MID ROM depends on the MSP430 device; see the device-specific data sheet for specifications. 8.6 MID Support Software Function The MID is disabled by default after power-up of the device. To use the MID feature, it must be enabled within the application software. Enabling is done by calling the MidInit() function with parameters that define which MID memory blocks should be enabled or disabled. Table 8-1 list all existing MID functions. These functions are stored in the MID ROM; its start address is defined in the device-specific data sheet. Table 8-1. Overview of MID Support Software Functions Function Revision Address Offset Description 0x00 Content of address: 2843h 0x02 Content of address: 80xyh, xy is the revision word MidEnable 0x04 Initialization and enabling of MID MidDisable 0x08 MID is disabled MidGetErrAdr 0x0C Returns the error location MidCheckMem 0x10 Memory check is performed MidSetRaw 0x14 Writing a data word and parity bit into a defined address MidGetParity 0x18 Read out horizontal parity bit MidCalcVParity 0x1C Calculating vertical parity Reserved 0x20 Reserved 0x24 Reserved 0x28 Reserved 0x2C SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Memory Integrity Detection (MID) Copyright © 2008–2015, Texas Instruments Incorporated 369 MID Support Software Function www.ti.com 8.6.1 MidEnable() Function Function void MidEnable(unsigned short cw0,unsigned short cw1); Function Description This function initializes and enables MID. The argument cw0 and cw1 allow an explicit control what MID flash memory blocks are to be protected. MID feature is disabled after a power-up or BOR. MidEnable() function is expected to be called early after application start. Calling it again later reconfigures the settings. Parameters Name Type Description cw0 unsigned short R12.W Configuration word 0. It is used to activate the MID feature for certain memory ranges. The main memory is divided into 16 blocks. The LSB bit of cw0 activates the lowest address range (see Figure 8-3). cw1 unsigned short R13.W Configuration word 1. This bit is used the same as cw0, the only difference is that BAL and Info memory are used instead of main memory (see Figure 8-4). Figure 8-3. cw0 Parameter 15 14 13 12 11 10 9 8 cw0.15 cw0.14 cw0.13 cw0.12 cw0.11 cw0.10 cw0.9 cw0.8 7 6 5 4 3 2 1 0 cw0.7 cw0.6 cw0.5 cw0.4 cw0.3 cw0.2 cw0.1 cw0.0 Bit Field Description 15-0 cw0.x Main memory is split into MID flash memory blocks. Each MID flash memory block has a size of main memory divided by 16 (for example, for a 512KB main memory, the MID memory block size is 32KB). The cw0.x bits allow to enable MID support for the different flash memory blocks. For example, cw0.0 activates the lowest flash memory block, and cw0.15 activates the highest flash memory block. 0 = MID support is deactivated 1 = MID support is active Figure 8-4. cw1 Parameter 15 14 13 12 11 10 9 8 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 7 6 5 4 3 2 1 0 cw1.7 cw1.6 cw1.5 cw1.4 cw1.3 cw1.2 cw1.1 cw1.0 Bit Field Description 15-8 Reserved These bits are reserved. It is strongly recommended to reset (0) these bits. 7 cw1.7 Enables or disables MID for the flash information memory segment D. 0 = MID support is deactivated 1 = MID support is active 6 cw1.6 Enables or disables MID for the flash information memory segment C. 0 = MID support is deactivated 1 = MID support is active 5 cw1.5 Enables or disables MID for the flash information memory segment B. 0 = MID support is deactivated 1 = MID support is active 4 cw1.4 Enables or disables MID for the flash information memory segment A. 0 = MID support is deactivated 1 = MID support is active 370 Memory Integrity Detection (MID) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MID Support Software Function www.ti.com Bit Field Description 3 cw1.3 Enables or disables MID for the bootstrap loader memory 3. 0 = MID support is deactivated 1 = MID support is active 2 cw1.2 Enables or disables MID for the bootstrap loader memory 2. 0 = MID support is deactivated 1 = MID support is active 1 cw1.1 Enables or disables MID for the bootstrap loader memory 1. 0 = MID support is deactivated 1 = MID support is active 0 cw1.0 Enables or disables MID for the bootstrap loader memory 0. 0 = MID support is deactivated 1 = MID support is active 8.6.2 MidDisable() Function Function void MidDisable(void); Function Description This function clears the cw0 and cw1 parameters that were set during MidEnable() function call and it disables the MID hardware. 8.6.3 MidGetErrAdr() Function Function unsigned short * MidGetErrAdr(void); Function Description This function returns the error location is there was a memory integrity failure. If there is no valid failure address or error location, the function returns the value F'FFFFh. Note that the MidGetErrAdr() function returns only the correct error address when this function is called prior to a read access of SYSBERRIV register. The code example in Section 8.7 shows where the MidGetErrAdr() function call should be placed. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Memory Integrity Detection (MID) Copyright © 2008–2015, Texas Instruments Incorporated 371 MID Support Software Function www.ti.com 8.6.4 MidCheckMem() Function Function void MidCheckMem(unsigned short * startAdr, unsigned short * endAdr); Function Description This function allows doing a memory integrity check. First, the MidEnable function should be called. This function enables MID and it defines the memory blocks that should be protected. After that the MidCheckMem function can be called. Its parameter list defines an address range that is accessed with wordwise reads. An UNMI interrupt (MID interrupt) is generated in case a parity error occurs and the read address is enabled for MID protection. Parameters Name Type Description startAdr unsigned short *R12.W Start address for the memory integrity check. The startAdr must be an even number. endAdr unsigned short R13.W End address for the memory integrity check. The endAdr must be an even number. The address defined with endAdr is included in the memory integrity check. 8.6.5 MidSetRaw() Function Function void MidSetRaw(unsigned short data, unsigned short parity, unsigned short * adr, unsigned short flashKey); Function Description This function writes one word (data) and a separately definable parity bit (parity) to an MID memory address (adr). The Flash memory key is needed to allow access to flash control registers; this parameter is passed through the argument flashKey (see the follwoing example). Parameters Name Type Description data unsigned short R12.W Data to be written parity unsigned short R13.W If parity = 0, the parity bit 0 is written. If parity <> 0, the parity bit 1 is written. adr unsigned short *R14.A Destination address where raw information is written flashKey unsigned short R15.W Flash memory key. This is needed to allow the MidSetRaw function access to the flash control registers. The passing parameter is usually defined in the standard MSP430 header files; therefore, "FWKEY" can be used here. Example #includeconst unsigned short FlashAdr=0xFF00; // Flash memory address will be reprogrammed void main(void) { static unsigned short Data; // variable for data the will be read static unsigned short Parity; // H-parity bit that will be read WDTCTL=WTDPW+WDTHOLD; // disable Watchdog Data=0x5A5A; // data that will be written into flash memory Parity=0; // parity bit that will be written MIDSetRaw(Data,Parity,&FlashAdr,FWKEY); // write data and parity bit while(1); } 372 Memory Integrity Detection (MID) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MID Support Software Function www.ti.com 8.6.6 MidGetParity() Function Function unsigned short MidGetParity(unsigned short * adr); Function Description This function returns the parity bit of the appropriate address. Reading the parity bit works only when MID was enabled before calling MidGetParity() function and the appropriate MID memory block is enabled. Parameters Name Type adr unsigned short *R12.A Description Defines the address where the parity bit should be read. 8.6.7 MidCalcVParity() Function Function unsigned short MidCalcVParity(unsigned short * startAdr, unsigned short * endAdr); Function Description This function allows to calculate a vertical parity for a defined memory range. Parameters 8.7 Name Type Description startAdr unsigned short *R12.A Defines the start address for calculating vertical parity. The startAdr must be an even number. endAdr unsigned short *R13.A End address for calculating vertical parity. The endAdr must be an even number. The address defined with endAdr is included in the vertical parity calculation. User's UNMI Interrupt Handler If an error is detected, the on-chip MID generates an UNMI interrupt. The application software must manage error handling. UNMI handler framework for MID error handling: __interrupt void unmi_isr(void) { switch(__even_in_range(SYSUNIV, 0x08)) { case 0x00: break; case 0x02: break; // NMIIFG case 0x04: break; // OFIFG case 0x06: break; // ACCVIFG case 0x08: // BUSIFG // If needed, obtain the flash error location here. ErrorLocation = MidGetErrAdr(); default: } switch(__even_in_range(SYSBERRIV, 0x08)) { case 0x00: break; // no bus error case 0x02: break; // USB bus error case 0x04: break; // reserved case 0x06: // MID error break; case 0x08: break; default: break; } break; break; SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Memory Integrity Detection (MID) Copyright © 2008–2015, Texas Instruments Incorporated 373 Chapter 9 SLAU208O – June 2008 – Revised May 2015 RAM Controller (RAMCTL) The RAM controller (RAMCTL) allows control of the operation of the RAM. Topic 9.1 9.2 9.3 374 ........................................................................................................................... Page RAM Controller (RAMCTL) Introduction............................................................... 375 RAMCTL Operation ........................................................................................... 375 RAMCTL Registers ........................................................................................... 376 RAM Controller (RAMCTL) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RAM Controller (RAMCTL) Introduction www.ti.com 9.1 RAM Controller (RAMCTL) Introduction The RAMCTL provides access to the different power modes of the RAM. The RAMCTL enters retention mode to reduce the leakage current while the CPU is off. The RAM can also be switched off by software. In retention mode, the RAM content is saved. In off mode, the RAM content is lost. The RAM is partitioned in sectors, typically of 4KB (sector) size. See the device-specific data sheet for actual block allocation and size. Each sector is controlled by the RAM controller RAM Sector Off control bit (RCRSyOFF) of the RAMCTL Control 0 register (RCCTL0). The RCCTL0 register is protected with a key. The RCCTL0 register content can be modified only if the correct key is written during a word write. Byte write accesses or write accesses with a wrong key are ignored. 9.2 RAMCTL Operation Active mode In active mode, the RAM can be read and written at any time. If any RAM address in a sector must hold data, the whole sector cannot be switched off. Low-power modes In all low-power modes, the CPU is switched off. As soon as the CPU is switched off, the RAM enters retention mode to reduce the leakage current. RAM off mode Each sector can be turned off independent of the other sectors by setting the respective RCRSyOFF bit to 1. Reading from a switched off RAM sector returns 0 as data. All data previously stored in a switched off RAM sector is lost and cannot be read, even if the sector is turned on again. Stack pointer The program stack is located in RAM. Sectors holding the stack must not be turned off if an interrupt must be executed or if a low-power mode is entered. USB buffer memory On devices with USB, the USB buffer memory is located in RAM. Sector 7 is used for this purpose. RCRS7OFF can be set to switch off this memory if it is not required for USB operation or is not being used in normal operation. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback RAM Controller (RAMCTL) Copyright © 2008–2015, Texas Instruments Incorporated 375 RAMCTL Registers 9.3 www.ti.com RAMCTL Registers The RAMCTL module register is listed in Table 9-1. The base address can be found in the device-specific data sheet. The address offset is given in Table 9-1. NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix "_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H" (ANYREG_H) refers to the upper byte of the register (bits 8 through 15). Table 9-1. RAMCTL Registers 376 Offset Acronym Register Name Type Access Reset Section 00h RCCTL0 RAM Controller Control 0 Read/write Word 6900h Section 9.3.1 00h RCCTL0_L Read/write Byte 00h 01h RCCTL0_H Read/write Byte 69h RAM Controller (RAMCTL) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RAMCTL Registers www.ti.com 9.3.1 RCCTL0 Register RAM Controller Control 0 Register Figure 9-1. RCCTL0 Register 15 14 13 12 rw-0 rw-1 rw-1 rw-0 11 10 9 8 rw-1 rw-0 rw-0 rw-1 RCKEY 7 6 5 4 3 2 1 0 RCRS7OFF RCRS6OFF RCRS5OFF RCRS4OFF RCRS3OFF RCRS2OFF RCRS1OFF RCRS0OFF rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Table 9-2. RCCTL0 Register Description Bit Field Type Reset Description 15-8 RCKEY RW 69h RAM controller key. Always read as 69h. Must be written as 5Ah, otherwise the RAMCTL write is ignored. 7 RCRS7OFF RW 0h RAM controller RAM sector 7 off. Setting the bit to 1 turns off the RAM sector 7. All data of the RAM sector 7 is lost. See the device-specific data sheet to find the the number of RAM sectors available along with their respective address ranges and sizes. 6 RCRS6OFF RW 0h RAM controller RAM sector 6 off. Setting the bit to 1 turns off the RAM sector 6. All data of the RAM sector 6 is lost. See the device-specific data sheet to find the the number of RAM sectors available along with their respective address ranges and sizes. 5 RCRS5OFF RW 0h RAM controller RAM sector 5 off. Setting the bit to 1 turns off the RAM sector 5. All data of the RAM sector 5 is lost. See the device-specific data sheet to find the the number of RAM sectors available along with their respective address ranges and sizes. 4 RCRS4OFF RW 0h RAM controller RAM sector 4 off. Setting the bit to 1 turns off the RAM sector 4. All data of the RAM sector 4 is lost. See the device-specific data sheet to find the the number of RAM sectors available along with their respective address ranges and sizes. 3 RCRS3OFF RW 0h RAM controller RAM sector 3 off. Setting the bit to 1 turns off the RAM sector 3. All data of the RAM sector 3 is lost. See the device-specific data sheet to find the the number of RAM sectors available along with their respective address ranges and sizes. 2 RCRS2OFF RW 0h RAM controller RAM sector 2 off. Setting the bit to 1 turns off the RAM sector 2. All data of the RAM sector 2 is lost. See the device-specific data sheet to find the the number of RAM sectors available along with their respective address ranges and sizes. 1 RCRS1OFF RW 0h RAM controller RAM sector 1 off. Setting the bit to 1 turns off the RAM sector 1. All data of the RAM sector 1 is lost. See the device-specific data sheet to find the the number of RAM sectors available along with their respective address ranges and sizes. 0 RCRS0OFF RW 0h RAM controller RAM sector 0 off. Setting the bit to 1 turns off the RAM sector 0. All data of the RAM sector 0 is lost. See the device-specific data sheet to find the the number of RAM sectors available along with their respective address ranges and sizes. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback RAM Controller (RAMCTL) Copyright © 2008–2015, Texas Instruments Incorporated 377 Chapter 10 SLAU208O – June 2008 – Revised May 2015 Backup RAM The backup RAM is a (volatile) memory that is retained during LPMx.5 and operation from a backup supply (if supported by the device). This chapter describes the backup RAM. Topic 10.1 10.2 378 ........................................................................................................................... Page Backup RAM Introduction and Operation ............................................................ 379 Battery Backup Registers .................................................................................. 379 Backup RAM SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Backup RAM Introduction and Operation www.ti.com 10.1 Backup RAM Introduction and Operation The backup RAM provides a limited number of bytes of RAM that are retained during LPMx.5 and during operation from a backup supply (if the device integrates the complete battery backup system). At least one byte or one word (one word is preferred) should be used to generate a checksum of the stored data or to store a signature to ensure that the data is still reliable when returning from LPMx.5 or from backup operation. 10.2 Battery Backup Registers The backup RAM registers are listed in Table 10-1. The base address for the backup RAM registers can be found in the device-specific data sheet. The address offsets are given in Table 10-1. NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix "_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H" (ANYREG_H) refers to the upper byte of the register (bits 8 through 15). Table 10-1. Backup RAM Registers Offset Acronym Register Name Type Access Reset LPMx.5 Backup Operation 00h BAKMEM0 Battery Backup Memory 0 Read/write Word Undefined retained 00h BAKMEM0_L Read/write Byte Undefined retained 01h BAKMEM0_H Read/write Byte Undefined retained 02h Read/write Word Undefined retained 02h BAKMEM1_L Read/write Byte Undefined retained 03h BAKMEM1_H Read/write Byte Undefined retained 04h BAKMEM1 Read/write Word Undefined retained 04h BAKMEM2_L Read/write Byte Undefined retained 05h BAKMEM2_H Read/write Byte Undefined retained 06h BAKMEM2 Battery Backup Memory 1 BAKMEM3 Battery Backup Memory 2 Read/write Word Undefined retained 06h BAKMEM3_L Battery Backup Memory 3 Read/write Byte Undefined retained 07h BAKMEM3_H Read/write Byte Undefined retained SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Backup RAM Copyright © 2008–2015, Texas Instruments Incorporated 379 Chapter 11 SLAU208O – June 2008 – Revised May 2015 Direct Memory Access (DMA) Controller Module The direct memory access (DMA) controller module transfers data from one address to another without CPU intervention. This chapter describes the operation of the DMA controller. Topic 11.1 11.2 11.3 380 ........................................................................................................................... Page Direct Memory Access (DMA) Introduction .......................................................... 381 DMA Operation ................................................................................................. 383 DMA Registers ................................................................................................. 395 Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Direct Memory Access (DMA) Introduction www.ti.com 11.1 Direct Memory Access (DMA) Introduction The DMA controller transfers data from one address to another, without CPU intervention, across the entire address range. For example, the DMA controller can move data from the ADC conversion memory to RAM. Devices that contain a DMA controller may have up to eight DMA channels available. Therefore, depending on the number of DMA channels available, some features described in this chapter are not applicable to all devices. See the device-specific data sheet for number of channels supported. Using the DMA controller can increase the throughput of peripheral modules. It can also reduce system power consumption by allowing the CPU to remain in a low-power mode, without having to awaken to move data to or from a peripheral. DMA controller features include: • Up to eight independent transfer channels • Configurable DMA channel priorities • Requires only two MCLK clock cycles per transfer • Byte or word and mixed byte and word transfer capability • Block sizes up to 65535 bytes or words • Configurable transfer trigger selections • Selectable-edge or level-triggered transfer • Four addressing modes • Single, block, or burst-block transfer modes Figure 11-1 shows the DMA controller block diagram. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated 381 Direct Memory Access (DMA) Introduction www.ti.com JTAG Active DMA0TSEL ROUNDROBIN DMADT 5 DMA0TRIG0 DMA0TRIG1 NMI Interrupt Request ENNMI Halt 00000 00001 2 DMADSTINCR DMADSTBYTE 3 DMA Channel 0 DMA0SA DMA0DA DMA0SZ DMA0TRIG31 11111 2 DMA1TSEL 5 DMA1TRIG0 DMA1TRIG1 00000 00001 DMA Priority and Control to USB if available DMADT 2 Address Space DMA1DA DMA1SZ to USB if available 2 5 DMAnTRIG0 DMAnTRIG1 3 DMA1SA 11111 DMAnTSEL DMADSTINCR DMADSTBYTE DMA Channel1 2 DMA1TRIG31 DMASRSBYTE DMASRCINCR DMAEN DMASRSBYTE DMASRCINCR DMAEN DMADSTINCR DMADSTBYTE DMADT 3 DMA Channel n DMAnSA 00000 00001 DMAnDA DMAnSZ 2 DMAnTRIG31 DMASRSBYTE DMASRCINCR DMAEN DMARMWDIS 11111 Halt CPU to USB if available Figure 11-1. DMA Controller Block Diagram 382 Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DMA Operation www.ti.com 11.2 DMA Operation The DMA controller is configured with user software. The setup and operation of the DMA is discussed in the following sections. 11.2.1 DMA Addressing Modes The DMA controller has four addressing modes. The addressing mode for each DMA channel is independently configurable. For example, channel 0 may transfer between two fixed addresses, while channel 1 transfers between two blocks of addresses. The addressing modes are shown in Figure 11-2. The addressing modes are: • Fixed address to fixed address • Fixed address to block of addresses • Block of addresses to fixed address • Block of addresses to block of addresses The addressing modes are configured with the DMASRCINCR and DMADSTINCR control bits. The DMASRCINCR bits select if the source address is incremented, decremented, or unchanged after each transfer. The DMADSTINCR bits select if the destination address is incremented, decremented, or unchanged after each transfer. Transfers may be byte to byte, word to word, byte to word, or word to byte. When transferring word to byte, only the lower byte of the source-word transfers. When transferring byte to word, the upper byte of the destination-word is cleared when the transfer occurs. DMA Controller Address Space Fixed Address To Fixed Address DMA Controller Address Space Block Of Addresses To Fixed Address DMA Controller Address Space Fixed Address To Block Of Addresses DMA Controller Address Space Block Of Addresses To Block Of Addresses Figure 11-2. DMA Addressing Modes SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated 383 DMA Operation www.ti.com 11.2.2 DMA Transfer Modes The DMA controller has six transfer modes selected by the DMADT bits as listed in Table 11-1. Each channel is individually configurable for its transfer mode. For example, channel 0 may be configured in single transfer mode, while channel 1 is configured for burst-block transfer mode, and channel 2 operates in repeated block mode. The transfer mode is configured independently from the addressing mode. Any addressing mode can be used with any transfer mode. Two types of data can be transferred selectable by the DMAxCTL DSTBYTE and SRCBYTE fields. The source and/or destination location can be either byte or word data. It is also possible to transfer byte to byte, word to word, or any combination. Table 11-1. DMA Transfer Modes DMADT 384 Transfer Mode Description 000 Single transfer Each transfer requires a trigger. DMAEN is automatically cleared when DMAxSZ transfers have been made. 001 Block transfer A complete block is transferred with one trigger. DMAEN is automatically cleared at the end of the block transfer. 010, 011 Burst-block transfer CPU activity is interleaved with a block transfer. DMAEN is automatically cleared at the end of the burst-block transfer. 100 Repeated single transfer Each transfer requires a trigger. DMAEN remains enabled. 101 Repeated block transfer A complete block is transferred with one trigger. DMAEN remains enabled. 110, 111 Repeated burst-block transfer CPU activity is interleaved with a block transfer. DMAEN remains enabled. Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DMA Operation www.ti.com 11.2.2.1 Single Transfer In single transfer mode, each byte/word transfer requires a separate trigger. The single transfer state diagram is shown in Figure 11-3. The DMAxSZ register is used to define the number of transfers to be made. The DMADSTINCR and DMASRCINCR bits select if the destination address and the source address are incremented or decremented after each transfer. If DMAxSZ = 0, no transfers occur. The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The temporary values of DMAxSA and DMAxDA are incremented or decremented after each transfer. The DMAxSZ register is decremented after each transfer. When the DMAxSZ register decrements to zero, it is reloaded from its temporary register and the corresponding DMAIFG flag is set. When DMADT = {0}, the DMAEN bit is cleared automatically when DMAxSZ decrements to zero and must be set again for another transfer to occur. In repeated single transfer mode, the DMA controller remains enabled with DMAEN = 1, and a transfer occurs every time a trigger occurs. DMAEN = 0 Reset DMAEN = 0 DMAREQ = 0 T_Size → DMAxSZ DMAEN = 0 DMAEN = 1 DMAxSZ → T_Size DMAxSA → T_SourceAdd DMAxDA → T_DestAdd [ DMADT = {0} AND DMAxSZ = 0] OR DMAEN = 0 DMAABORT = 1 Idle DMAREQ = 0 DMAABORT=0 DMAxSZ > 0 AND DMAEN = 1 Wait forTrigger 2 x MCLK [+Trigger AND DMALEVEL = 0 ] OR [Trigger = 1 AND DMALEVEL = 1] Hold CPU, Transfer one word/byte T_Size → DMAxSZ DMAxSA → T_SourceAdd DMAxDA → T_DestAdd [ENNMI = 1 AND NMI event] OR [DMALEVEL = 1 AND Trigger = 0] DMADT = {4} AND DMAxSZ = 0 AND DMAEN = 1 Decrement DMAxSZ Modify T_SourceAdd Modify T_DestAdd Figure 11-3. DMA Single Transfer State Diagram SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated 385 DMA Operation www.ti.com 11.2.2.2 Block Transfer In block transfer mode, a transfer of a complete block of data occurs after one trigger. When DMADT = {1} ,the DMAEN bit is cleared after the completion of the block transfer and must be set again before another block transfer can be triggered. After a block transfer has been triggered, further trigger signals occurring during the block transfer are ignored. The block transfer state diagram is shown in Figure 11-4. The DMAxSZ register is used to define the size of the block, and the DMADSTINCR and DMASRCINCR bits select if the destination address and the source address are incremented or decremented after each transfer of the block. If DMAxSZ = 0, no transfers occur. The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The temporary values of DMAxSA and DMAxDA are incremented or decremented after each transfer in the block. The DMAxSZ register is decremented after each transfer of the block and shows the number of transfers remaining in the block. When the DMAxSZ register decrements to zero, it is reloaded from its temporary register and the corresponding DMAIFG flag is set. During a block transfer, the CPU is halted until the complete block has been transferred. The block transfer takes 2 × MCLK × DMAxSZ clock cycles to complete. CPU execution resumes with its previous state after the block transfer is complete. In repeated block transfer mode, the DMAEN bit remains set after completion of the block transfer. The next trigger after the completion of a repeated block transfer triggers another block transfer. 386 Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DMA Operation www.ti.com DMAEN = 0 Reset DMAEN = 0 DMAREQ = 0 T_Size → DMAxSZ DMAEN = 0 DMAEN = 1 DMAxSZ → T_Size DMAxSA → T_SourceAdd DMAxDA → T_DestAdd [DMADT = {1} AND DMAxSZ = 0] OR DMAEN = 0 DMAABORT = 1 Idle DMAREQ = 0 T_Size → DMAxSZ DMAxSA → T_SourceAdd DMAxDA → T_DestAdd DMAABORT = 0 Wait forTrigger 2 × MCLK [+TriggerAND DMALEVEL= 0 ] OR [Trigger=1AND DMALEVEL=1] DMADT = {5} AND DMAxSZ = 0 AND DMAEN = 1 Hold CPU, Transfer one word/byte [ENNMI = 1 AND NMI event] OR [DMALEVEL = 1 AND Trigger = 0] DMAxSZ > 0 Decrement DMAxSZ Modify T_SourceAdd Modify T_DestAdd Figure 11-4. DMA Block Transfer State Diagram SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated 387 DMA Operation www.ti.com 11.2.2.3 Burst-Block Transfer In burst-block mode, transfers are block transfers with CPU activity interleaved. The CPU executes two MCLK cycles after every four byte/word transfers of the block, resulting in 20% CPU execution capacity. After the burst-block, CPU execution resumes at 100% capacity and the DMAEN bit is cleared. DMAEN must be set again before another burst-block transfer can be triggered. After a burst-block transfer has been triggered, further trigger signals occurring during the burst-block transfer are ignored. The burst-block transfer state diagram is shown in Figure 11-5. The DMAxSZ register is used to define the size of the block, and the DMADSTINCR and DMASRCINCR bits select if the destination address and the source address are incremented or decremented after each transfer of the block. If DMAxSZ = 0, no transfers occur. The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The temporary values of DMAxSA and DMAxDA are incremented or decremented after each transfer in the block. The DMAxSZ register is decremented after each transfer of the block and shows the number of transfers remaining in the block. When the DMAxSZ register decrements to zero, it is reloaded from its temporary register and the corresponding DMAIFG flag is set. In repeated burst-block mode, the DMAEN bit remains set after completion of the burst-block transfer and no further trigger signals are required to initiate another burst-block transfer. Another burst-block transfer begins immediately after completion of a burst-block transfer. In this case, the transfers must be stopped by clearing the DMAEN bit, or by an (non)maskable interrupt (NMI) when ENNMI is set. In repeated burstblock mode the CPU executes at 20% capacity continuously until the repeated burst-block transfer is stopped. 388 Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DMA Operation www.ti.com DMAEN = 0 Reset DMAEN = 0 DMAREQ = 0 T_Size → DMAxSZ DMAEN = 0 DMAEN = 1 DMAxSZ → T_Size [DMADT = {2, 3} DMAxSA → T_SourceAdd AND DMAxSZ = 0] DMAxDA → T_DestAdd OR DMAEN = 0 DMAABORT = 1 Idle DMAABORT=0 Wait for Trigger 2 × MCLK [+Trigger AND DMALEVEL = 0 ] OR [Trigger=1 AND DMALEVEL=1] Hold CPU, Transfer one word/byte [ENNMI = 1 AND NMI event] OR [DMALEVEL = 1 AND Trigger = 0] T_Size → DMAxSZ DMAxSA → T_SourceAdd DMAxDA → T_DestAdd Decrement DMAxSZ Modify T_SourceAdd Modify T_DestAdd DMAxSZ > 0 AND a multiple of 4 words/bytes were transferred DMAxSZ > 0 DMAxSZ > 0 [DMADT = {6, 7} AND DMAxSZ = 0] 2 × MCLK Burst State (release CPU for 2 × MCLK) Figure 11-5. DMA Burst-Block Transfer State Diagram SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated 389 DMA Operation www.ti.com 11.2.3 Initiating DMA Transfers Each DMA channel is independently configured for its trigger source with the DMAxTSEL. The DMAxTSEL bits should be modified only when the DMACTLx DMAEN bit is 0. Otherwise, unpredictable DMA triggers may occur.Table 11-2 describes the trigger operation for each type of module. See the device-specific data sheet for the list of triggers available, along with their respective DMAxTSEL values. When selecting the trigger, the trigger must not have already occurred, or the transfer does not take place. NOTE: DMA trigger selection and USB On devices that contain a USB module, the triggers selection from DMA channels 0, 1, or 2 can be used for the USB time stamp event selection (see the USB module description for further details). 11.2.3.1 Edge-Sensitive Triggers When DMALEVEL = 0, edge-sensitive triggers are used, and the rising edge of the trigger signal initiates the transfer. In single-transfer mode, each transfer requires its own trigger. When using block or burstblock modes, only one trigger is required to initiate the block or burst-block transfer. 11.2.3.2 Level-Sensitive Triggers When DMALEVEL = 1, level-sensitive triggers are used. For proper operation, level-sensitive triggers can only be used when external trigger DMAE0 is selected as the trigger. DMA transfers are triggered as long as the trigger signal is high and the DMAEN bit remains set. The trigger signal must remain high for a block or burst-block transfer to complete. If the trigger signal goes low during a block or burst-block transfer, the DMA controller is held in its current state until the trigger goes back high or until the DMA registers are modified by software. If the DMA registers are not modified by software, when the trigger signal goes high again, the transfer resumes from where it was when the trigger signal went low. When DMALEVEL = 1, transfer modes selected when DMADT = {0, 1, 2, 3} are recommended because the DMAEN bit is automatically reset after the configured transfer. 11.2.4 Halting Executing Instructions for DMA Transfers The DMARMWDIS bit controls when the CPU is halted for DMA transfers. When DMARMWDIS = 0, the CPU is halted immediately and the transfer begins when a trigger is received. In this case, it is possible that CPU read-modify-write operations can be interrupted by a DMA transfer. When DMARMWDIS = 1, the CPU finishes the currently executing read-modify-write operation before the DMA controller halts the CPU and the transfer begins (see Table 11-2). 390 Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DMA Operation www.ti.com Table 11-2. DMA Trigger Operation Module DMA Operation A transfer is triggered when the DMAREQ bit is set. The DMAREQ bit is automatically reset when the transfer starts. A transfer is triggered when the DMAxIFG flag is set. DMA0IFG triggers channel 1, DMA1IFG triggers channel 2, and DMA2IFG triggers channel 0. None of the DMAxIFG flags are automatically reset when the transfer starts. A transfer is triggered by the external trigger DMAE0. Timer_A A transfer is triggered when the TAxCCR0 CCIFG flag is set. The TAxCCR0 CCIFG flag is automatically reset when the transfer starts. If the TAxCCR0 CCIE bit is set, the TAxCCR0 CCIFG flag dies not trigger a transfer. A transfer is triggered when the TAxCCR2 CCIFG flag is set. The TAxCCR2 CCIFG flag is automatically reset when the transfer starts. If the TAxCCR2 CCIE bit is set, the TAxCCR2 CCIFG flag does not trigger a transfer. Timer_B A transfer is triggered when the TBxCCR0 CCIFG flag is set. The TBxCCR0 CCIFG flag is automatically reset when the transfer starts. If the TBxCCR0 CCIE bit is set, the TBxCCR0 CCIFG flag does not trigger a transfer. A transfer is triggered when the TBxCCR2 CCIFG flag is set. The TBxCCR2 CCIFG flag is automatically reset when the transfer starts. If the TBxCCR2 CCIE bit is set, the TBxCCR2 CCIFG flag does not trigger a transfer. USCI_Ax A transfer is triggered when USCI_Ax receives new data. UCAxRXIFG is automatically reset when the transfer starts. If UCAxRXIE is set, the UCAxRXIFG does not trigger a transfer. A transfer is triggered when USCI_Ax is ready to transmit new data. UCAxTXIFG is automatically reset when the transfer starts. If UCAxTXIE is set, the UCAxTXIFG does not trigger a transfer. USCI_Bx A transfer is triggered when USCI_Bx receives new data. UCBxRXIFG is automatically reset when the transfer starts. If UCBxRXIE is set, the UCBxRXIFG does not trigger a transfer. A transfer is triggered when USCI_Bx is ready to transmit new data. UCBxTXIFG is automatically reset when the transfer starts. If UCBxTXIE is set, the UCBxTXIFG does not trigger a transfer. DAC12_A A transfer is triggered when the DAC12_xCTL0 DAC12IFG flag is set. The DAC12_xCTL0 DAC12IFG flag is automatically cleared when the transfer starts. If the DAC12_xCTL0 DAC12IE bit is set, the DAC12_xCTL0 DAC12IFG flag does not trigger a transfer. ADC10_A A transfer is triggered by an ADC10IFG0 flag. A transfer is triggered when the conversion is completed and the ADC10IFG0 is set. Setting the ADC10IFG0 with software does not trigger a transfer. The ADC10IFG0 flag is automatically reset when the ADC10MEM0 register is accessed by the DMA controller. ADC12_A A transfer is triggered by an ADC12IFG flag. When single-channel conversions are performed, the corresponding ADC12IFG is the trigger. When sequences are used, the ADC12IFG for the last conversion in the sequence is the trigger. A transfer is triggered when the conversion is completed and the ADC12IFG is set. Setting the ADC12IFG with software does not trigger a transfer. All ADC12IFG flags are automatically reset when the associated ADC12MEMx register is accessed by the DMA controller. MPY Reserved A transfer is triggered when the hardware multiplier is ready for a new operand. No transfer is triggered. 11.2.5 Stopping DMA Transfers There are two ways to stop DMA transfers in progress: • A single, block, or burst-block transfer may be stopped with an NMI, if the ENNMI bit is set in register DMACTL1. • A burst-block transfer may be stopped by clearing the DMAEN bit. 11.2.6 DMA Channel Priorities The default DMA channel priorities are DMA0 through DMA7. If two or three triggers happen simultaneously or are pending, the channel with the highest priority completes its transfer (single, block, or burst-block transfer) first, then the second priority channel, then the third priority channel. Transfers in progress are not halted if a higher-priority channel is triggered. The higher-priority channel waits until the transfer in progress completes before starting. The DMA channel priorities are configurable with the ROUNDROBIN bit. When the ROUNDROBIN bit is set, the channel that completes a transfer becomes the lowest priority. The order of the priority of the channels always stays the same, DMA0-DMA1-DMA2, for example, for three channels. When the ROUNDROBIN bit is cleared, the channel priority returns to the default priority. DMA Priority Transfer Occurs New DMA Priority DMA0-DMA1-DMA2 DMA1 DMA2-DMA0-DMA1 DMA2-DMA0-DMA1 DMA2 DMA0-DMA1-DMA2 DMA0-DMA1-DMA2 DMA0 DMA1-DMA2-DMA0 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated 391 DMA Operation www.ti.com 11.2.7 DMA Transfer Cycle Time The DMA controller requires one or two MCLK clock cycles to synchronize before each single transfer or complete block or burst-block transfer. Each byte/word transfer requires two MCLK cycles after synchronization, and one cycle of wait time after the transfer. Because the DMA controller uses MCLK, the DMA cycle time is dependent on the MSP430 operating mode and clock system setup. If the MCLK source is active but the CPU is off, the DMA controller uses the MCLK source for each transfer, without reenabling the CPU. If the MCLK source is off, the DMA controller temporarily restarts MCLK, sourced with DCOCLK, for the single transfer or complete block or burst-block transfer. The CPU remains off and after the transfer completes, MCLK is turned off. The maximum DMA cycle time for all operating modes is shown in Table 11-3. Table 11-3. Maximum Single-Transfer DMA Cycle Time CPU Operating Mode Clock Source Maximum DMA Cycle Time Active mode MCLK = DCOCLK 4 MCLK cycles Active mode MCLK = LFXT1CLK 4 MCLK cycles Low-power mode LPM0/1 MCLK = DCOCLK 5 MCLK cycles Low-power mode LPM3/4 MCLK = DCOCLK 5 MCLK cycles + 5 µs (1) Low-power mode LPM0/1 MCLK = LFXT1CLK 5 MCLK cycles Low-power mode LPM3 MCLK = LFXT1CLK 5 MCLK cycles Low-power mode LPM4 MCLK = LFXT1CLK 5 MCLK cycles + 5 µs (1) (1) The additional 5 µs are needed to start the DCOCLK. It is the t(LPMx) parameter in the data sheet. 11.2.8 Using DMA With System Interrupts DMA transfers are not interruptible by system interrupts. System interrupts remain pending until the completion of the transfer. NMIs can interrupt the DMA controller if the ENNMI bit is set. System interrupt service routines are interrupted by DMA transfers. If an interrupt service routine or other routine must execute with no interruptions, the DMA controller should be disabled prior to executing the routine. 11.2.9 DMA Controller Interrupts Each DMA channel has its own DMAIFG flag. Each DMAIFG flag is set in any mode when the corresponding DMAxSZ register counts to zero. If the corresponding DMAIE and GIE bits are set, an interrupt request is generated. All DMAIFG flags are prioritized, with DMA0IFG being the highest, and combined to source a single interrupt vector. The highest-priority enabled interrupt generates a number in the DMAIV register. This number can be evaluated or added to the program counter (PC) to automatically enter the appropriate software routine. Disabled DMA interrupts do not affect the DMAIV value. Any access, read or write, of the DMAIV register automatically resets the highest pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. For example, assume that DMA0 has the highest priority. If the DMA0IFG and DMA2IFG flags are set when the interrupt service routine accesses the DMAIV register, DMA0IFG is reset automatically. After the RETI instruction of the interrupt service routine is executed, the DMA2IFG generates another interrupt. 392 Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DMA Operation www.ti.com 11.2.9.1 DMAIV Software Example The following software example shows the recommended use of DMAIV and the handling overhead for an eight channel DMA controller. The DMAIV value is added to the PC to automatically jump to the appropriate routine. The numbers at the right margin show the necessary CPU cycles for each instruction. The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not the task handling itself. ;Interrupt handler for DMAxIFG DMA_HND ... ADD RETI JMP JMP JMP JMP JMP JMP JMP JMP Interrupt latency Add offset to Jump table Vector 0: No interrupt Vector 2: DMA channel 0 Vector 4: DMA channel 1 Vector 6: DMA channel 2 Vector 8: DMA channel 3 Vector 10: DMA channel 4 Vector 12: DMA channel 5 Vector 14: DMA channel 6 Vector 16: DMA channel 7 6 3 5 2 2 2 2 2 2 2 2 ... RETI ; Vector 16: DMA channel 7 ; Task starts here ; Back to main program 5 ... RETI ; Vector 14: DMA channel 6 ; Task starts here ; Back to main program 5 ... RETI ; Vector 12: DMA channel 5 ; Task starts here ; Back to main program 5 ... RETI ; Vector 10: DMA channel 4 ; Task starts here ; Back to main program 5 ... RETI ; Vector 8: DMA channel 3 ; Task starts here ; Back to main program 5 ... RETI ; Vector 6: DMA channel 2 ; Task starts here ; Back to main program 5 ... RETI ; Vector 4: DMA channel 1 ; Task starts here ; Back to main program 5 ... RETI ; Vector 2: DMA channel 0 ; Task starts here ; Back to main program 5 &DMAIV,PC DMA0_HND DMA1_HND DMA2_HND DMA3_HND DMA4_HND DMA5_HND DMA6_HND DMA7_HND DMA7_HND DMA6_HND DMA5_HND DMA4_HND DMA3_HND DMA2_HND DMA1_HND DMA0_HND SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ; ; ; ; ; ; ; ; ; ; ; Cycles Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated 393 DMA Operation www.ti.com 2 11.2.10 Using the USCI_B I C Module With the DMA Controller The USCI_B I2C module provides two trigger sources for the DMA controller. The USCI_B I2C module can trigger a transfer when new I2C data is received and the when the transmit data is needed. 11.2.11 Using ADC10 With the DMA Controller MSP430 devices with an integrated DMA controller can automatically move data from the ADC10MEM0 register to another location. DMA transfers are done without CPU intervention and independently of any low-power modes. The DMA controller increases throughput of the ADC10 module and enhances lowpower applications allowing the CPU to remain off while data transfers occur. A transfer is triggered when the conversion is completed and the ADC10IFG0 is set. Setting the ADC10IFG0 with software does not trigger a transfer. The ADC10IFG0 flag is automatically reset when the ADC10MEM0 register is accessed by the DMA controller. 11.2.12 Using ADC12 With the DMA Controller MSP430 devices with an integrated DMA controller can automatically move data from any ADC12MEMx register to another location. DMA transfers are done without CPU intervention and independently of any low-power modes. The DMA controller increases throughput of the ADC12 module, and enhances lowpower applications allowing the CPU to remain off while data transfers occur. DMA transfers can be triggered from any ADC12IFG flag. When CONSEQx = {0,2}, the ADC12IFG flag for the ADC12MEMx used for the conversion can trigger a DMA transfer. When CONSEQx = {1,3}, the ADC12IFG flag for the last ADC12MEMx in the sequence can trigger a DMA transfer. Any ADC12IFG flag is automatically cleared when the DMA controller accesses the corresponding ADC12MEMx. 11.2.13 Using DAC12 With the DMA Controller MSP430 devices with an integrated DMA controller can automatically move data to the DAC12_xDAT register. DMA transfers are done without CPU intervention and independently of any low-power modes. The DMA controller increases throughput to the DAC12 module, and enhances low-power applications allowing the CPU to remain off while data transfers occur. Applications requiring periodic waveform generation can benefit from using the DMA controller with the DAC12. For example, an application that produces a sinusoidal waveform may store the sinusoid values in a table. The DMA controller can continuously and automatically transfer the values to the DAC12 at specific intervals creating the sinusoid with zero CPU execution. The DAC12_xCTL DAC12IFG flag is automatically cleared when the DMA controller accesses the DAC12_xDAT register. 394 Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DMA Registers www.ti.com 11.3 DMA Registers The DMA module registers are listed in Table 11-4. The base addresses can be found in the devicespecific data sheet. Each channel starts at its respective base address. The address offsets are listed in Table 11-4. Table 11-4. DMA Registers Offset Acronym Register Name Type Access Reset Section 00h DMACTL0 DMA Control 0 Read/write Word 0000h Section 11.3.1 02h DMACTL1 DMA Control 1 Read/write Word 0000h Section 11.3.2 04h DMACTL2 DMA Control 2 Read/write Word 0000h Section 11.3.3 06h DMACTL3 DMA Control 3 Read/write Word 0000h Section 11.3.4 08h DMACTL4 DMA Control 4 Read/write Word 0000h Section 11.3.5 0Eh DMAIV DMA Interrupt Vector Read only Word 0000h Section 11.3.10 00h DMA0CTL DMA Channel 0 Control Read/write Word 0000h Section 11.3.6 02h DMA0SA DMA Channel 0 Source Address Read/write Word, double word undefined Section 11.3.7 06h DMA0DA DMA Channel 0 Destination Address Read/write Word, double word undefined Section 11.3.8 0Ah DMA0SZ DMA Channel 0 Transfer Size Read/write Word undefined Section 11.3.9 00h DMA1CTL DMA Channel 1 Control Read/write Word 0000h Section 11.3.6 02h DMA1SA DMA Channel 1 Source Address Read/write Word, double word undefined Section 11.3.7 06h DMA1DA DMA Channel 1 Destination Address Read/write Word, double word undefined Section 11.3.8 0Ah DMA1SZ DMA Channel 1 Transfer Size Read/write Word undefined Section 11.3.9 00h DMA2CTL DMA Channel 2 Control Read/write Word 0000h Section 11.3.6 02h DMA2SA DMA Channel 2 Source Address Read/write Word, double word undefined Section 11.3.7 06h DMA2DA DMA Channel 2 Destination Address Read/write Word, double word undefined Section 11.3.8 0Ah DMA2SZ DMA Channel 2 Transfer Size Read/write Word undefined Section 11.3.9 00h DMA3CTL DMA Channel 3 Control Read/write Word 0000h Section 11.3.6 02h DMA3SA DMA Channel 3 Source Address Read/write Word, double word undefined Section 11.3.7 06h DMA3DA DMA Channel 3 Destination Address Read/write Word, double word undefined Section 11.3.8 0Ah DMA3SZ DMA Channel 3 Transfer Size Read/write Word undefined Section 11.3.9 00h DMA4CTL DMA Channel 4 Control Read/write Word 0000h Section 11.3.6 02h DMA4SA DMA Channel 4 Source Address Read/write Word, double word undefined Section 11.3.7 06h DMA4DA DMA Channel 4 Destination Address Read/write Word, double word undefined Section 11.3.8 0Ah DMA4SZ DMA Channel 4 Transfer Size Read/write Word undefined Section 11.3.9 00h DMA5CTL DMA Channel 5 Control Read/write Word 0000h Section 11.3.6 02h DMA5SA DMA Channel 5 Source Address Read/write Word, double word undefined Section 11.3.7 06h DMA5DA DMA Channel 5 Destination Address Read/write Word, double word undefined Section 11.3.8 0Ah DMA5SZ DMA Channel 5 Transfer Size Read/write Word undefined Section 11.3.9 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Direct Memory Access (DMA) Controller Module 395 Copyright © 2008–2015, Texas Instruments Incorporated DMA Registers www.ti.com Table 11-4. DMA Registers (continued) 396 Offset Acronym Register Name Type Access Reset Section 00h DMA6CTL DMA Channel 6 Control Read/write Word 0000h Section 11.3.6 02h DMA6SA DMA Channel 6 Source Address Read/write Word, double word undefined Section 11.3.7 06h DMA6DA DMA Channel 6 Destination Address Read/write Word, double word undefined Section 11.3.8 0Ah DMA6SZ DMA Channel 6 Transfer Size Read/write Word undefined Section 11.3.9 00h DMA7CTL DMA Channel 7 Control Read/write Word 0000h Section 11.3.6 02h DMA7SA DMA Channel 7 Source Address Read/write Word, double word undefined Section 11.3.7 06h DMA7DA DMA Channel 7 Destination Address Read/write Word, double word undefined Section 11.3.8 0Ah DMA7SZ DMA Channel 7 Transfer Size Read/write Word undefined Section 11.3.9 Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DMA Registers www.ti.com 11.3.1 DMACTL0 Register DMA Control 0 Register Figure 11-6. DMACTL0 Register 15 14 13 12 11 r0 r0 rw-(0) rw-(0) 6 5 4 3 10 Reserved r0 7 8 rw-(0) rw-(0) rw-(0) 2 1 0 rw-(0) rw-(0) DMA1TSEL Reserved r0 9 DMA0TSEL r0 r0 rw-(0) rw-(0) rw-(0) Table 11-5. DMACTL0 Register Description Bit Field Type Reset Description 15-13 Reserved R 0h Reserved. Always reads as 0. 12-8 DMA1TSEL RW 0h DMA 1 trigger select. These bits select the DMA transfer trigger. See the devicespecific data sheet for number of channels and trigger assignment. 00000b = DMA1TRIG0 00001b = DMA1TRIG1 00010b = DMA1TRIG2 ⋮ 11110b = DMA1TRIG30 11111b = DMA1TRIG31 7-5 Reserved R 0h Reserved. Always reads as 0. 4-0 DMA0TSEL RW 0h DMA 0 trigger select. These bits select the DMA transfer trigger. See the devicespecific data sheet for number of channels and trigger assignment. 00000b = DMA0TRIG0 00001b = DMA0TRIG1 00010b = DMA0TRIG2 ⋮ 11110b = DMA0TRIG30 11111b = DMA0TRIG31 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated 397 DMA Registers www.ti.com 11.3.2 DMACTL1 Register DMA Control 1 Register Figure 11-7. DMACTL1 Register 15 14 13 12 11 r0 r0 rw-(0) rw-(0) 6 5 4 3 Reserved r0 7 9 8 rw-(0) rw-(0) rw-(0) 2 1 0 rw-(0) rw-(0) DMA3TSEL Reserved r0 10 DMA2TSEL r0 r0 rw-(0) rw-(0) rw-(0) Table 11-6. DMACTL1 Register Description Bit Field Type Reset Description 15-13 Reserved R 0h Reserved. Always reads as 0. 12-8 DMA3TSEL RW 0h DMA 3 trigger select. These bits select the DMA transfer trigger. See the devicespecific data sheet for number of channels and trigger assignment. 00000b = DMA3TRIG0 00001b = DMA3TRIG1 00010b = DMA3TRIG2 ⋮ 11110b = DMA3TRIG30 11111b = DMA3TRIG31 7-5 Reserved R 0h Reserved. Always reads as 0. 4-0 DMA2TSEL RW 0h DMA 2 trigger select. These bits select the DMA transfer trigger. See the devicespecific data sheet for number of channels and trigger assignment. 00000b = DMA2TRIG0 00001b = DMA2TRIG1 00010b = DMA2TRIG2 ⋮ 11110b = DMA2TRIG30 11111b = DMA2TRIG31 398 Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DMA Registers www.ti.com 11.3.3 DMACTL2 Register DMA Control 2 Register Figure 11-8. DMACTL2 Register 15 14 13 12 11 r0 r0 rw-(0) rw-(0) 6 5 4 3 10 Reserved r0 7 8 rw-(0) rw-(0) rw-(0) 2 1 0 rw-(0) rw-(0) DMA5TSEL Reserved r0 9 DMA4TSEL r0 r0 rw-(0) rw-(0) rw-(0) Table 11-7. DMACTL2 Register Description Bit Field Type Reset Description 15-13 Reserved R 0h Reserved. Always reads as 0. 12-8 DMA5TSEL RW 0h DMA 5 trigger select. These bits select the DMA transfer trigger. See the devicespecific data sheet for number of channels and trigger assignment. 00000b = DMA5TRIG0 00001b = DMA5TRIG1 00010b = DMA5TRIG2 ⋮ 11110b = DMA5TRIG30 11111b = DMA5TRIG31 7-5 Reserved R 0h Reserved. Always reads as 0. 4-0 DMA4TSEL RW 0h DMA 4 trigger select. These bits select the DMA transfer trigger. See the devicespecific data sheet for number of channels and trigger assignment. 00000b = DMA4TRIG0 00001b = DMA4TRIG1 00010b = DMA4TRIG2 ⋮ 11110b = DMA4TRIG30 11111b = DMA4TRIG31 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated 399 DMA Registers www.ti.com 11.3.4 DMACTL3 Register DMA Control 3 Register Figure 11-9. DMACTL3 Register 15 14 13 12 11 r0 r0 rw-(0) rw-(0) 6 5 4 3 Reserved r0 7 9 8 rw-(0) rw-(0) rw-(0) 2 1 0 rw-(0) rw-(0) DMA7TSEL Reserved r0 10 DMA6TSEL r0 r0 rw-(0) rw-(0) rw-(0) Table 11-8. DMACTL3 Register Description Bit Field Type Reset Description 15-13 Reserved R 0h Reserved. Always reads as 0. 12-8 DMA7TSEL RW 0h DMA 7 trigger select. These bits select the DMA transfer trigger. See the devicespecific data sheet for number of channels and trigger assignment. 00000b = DMA7TRIG0 00001b = DMA7TRIG1 00010b = DMA7TRIG2 ⋮ 11110b = DMA7TRIG30 11111b = DMA7TRIG31 7-5 Reserved R 0h Reserved. Always reads as 0. 4-0 DMA6TSEL RW 0h DMA 6 trigger select. These bits select the DMA transfer trigger. See the devicespecific data sheet for number of channels and trigger assignment. 00000b = DMA6TRIG0 00001b = DMA6TRIG1 00010b = DMA6TRIG2 ⋮ 11110b = DMA6TRIG30 11111b = DMA6TRIG31 400 Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DMA Registers www.ti.com 11.3.5 DMACTL4 Register DMA Control 4 Register Figure 11-10. DMACTL4 Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 r0 r0 r0 7 6 5 4 3 Reserved Reserved r0 r0 r0 r0 r0 2 1 0 DMARMWDIS ROUNDROBIN ENNMI rw-(0) rw-(0) rw-(0) Table 11-9. DMACTL4 Register Description Bit Field Type Reset Description 15-3 Reserved R 0h Reserved. Always reads as 0. 2 DMARMWDIS RW 0h Read-modify-write disable. When set, this bit inhibits any DMA transfers from occurring during CPU read-modify-write operations. 0b = DMA transfers can occur during read-modify-write CPU operations. 1b = DMA transfers inhibited during read-modify-write CPU operations 1 ROUNDROBIN RW 0h Round robin. This bit enables the round-robin DMA channel priorities. 0b = DMA channel priority is DMA0-DMA1-DMA2 - ...... -DMA7. 1b = DMA channel priority changes with each transfer. 0 ENNMI RW 0h Enable NMI. This bit enables the interruption of a DMA transfer by an NMI. When an NMI interrupts a DMA transfer, the current transfer is completed normally, further transfers are stopped and DMAABORT is set. 0b = NMI does not interrupt DMA transfer. 1b = NMI interrupts a DMA transfer. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated 401 DMA Registers www.ti.com 11.3.6 DMAxCTL Register DMA Channel x Control Register Figure 11-11. DMAxCTL Register 15 14 13 Reserved 11 rw-(0) rw-(0) DMADT r0 rw-(0) 7 6 rw-(0) DMADSTBYTE DMASRCBYTE rw-(0) 12 10 9 rw-(0) rw-(0) DMADSTINCR 8 DMASRCINCR rw-(0) 5 4 3 2 1 0 DMALEVEL DMAEN DMAIFG DMAIE DMAABORT DMAREQ rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) Table 11-10. DMAxCTL Register Description Bit Field Type Reset Description 15 Reserved R 0h Reserved. Always reads as 0. 14-12 DMADT RW 0h DMA transfer mode 000b = Single transfer 001b = Block transfer 010b = Burst-block transfer 011b = Burst-block transfer 100b = Repeated single transfer 101b = Repeated block transfer 110b = Repeated burst-block transfer 111b = Repeated burst-block transfer 11-10 DMADSTINCR RW 0h DMA destination increment. This bit selects automatic incrementing or decrementing of the destination address after each byte or word transfer. When DMADSTBYTE = 1, the destination address increments/decrements by one. When DMADSTBYTE = 0, the destination address increments/decrements by two. The DMAxDA is copied into a temporary register and the temporary register is incremented or decremented. DMAxDA is not incremented or decremented. 00b = Destination address is unchanged. 01b = Destination address is unchanged. 10b = Destination address is decremented. 11b = Destination address is incremented. 9-8 DMASRCINCR RW 0h DMA source increment. This bit selects automatic incrementing or decrementing of the source address for each byte or word transfer. When DMASRCBYTE = 1, the source address increments/decrements by one. When DMASRCBYTE = 0, the source address increments/decrements by two. The DMAxSA is copied into a temporary register and the temporary register is incremented or decremented. DMAxSA is not incremented or decremented. 00b = Source address is unchanged. 01b = Source address is unchanged. 10b = Source address is decremented. 11b = Source address is incremented. 7 DMADSTBYTE RW 0h DMA destination byte. This bit selects the destination as a byte or word. 0b = Word 1b = Byte 6 DMASRCBYTE RW 0h DMA source byte. This bit selects the source as a byte or word. 0b = Word 1b = Byte 5 DMALEVEL RW 0h DMA level. This bit selects between edge-sensitive and level-sensitive triggers. 0b = Edge sensitive (rising edge) 1b = Level sensitive (high level) 4 DMAEN RW 0h DMA enable 0b = Disabled 1b = Enabled 402 Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DMA Registers www.ti.com Table 11-10. DMAxCTL Register Description (continued) Bit Field Type Reset Description 3 DMAIFG RW 0h DMA interrupt flag 0b = No interrupt pending 1b = Interrupt pending 2 DMAIE RW 0h DMA interrupt enable 0b = Disabled 1b = Enabled 1 DMAABORT RW 0h DMA abort. This bit indicates if a DMA transfer was interrupt by an NMI. 0b = DMA transfer not interrupted 1b = DMA transfer interrupted by NMI 0 DMAREQ RW 0h DMA request. Software-controlled DMA start. DMAREQ is reset automatically. 0b = No DMA start 1b = Start DMA SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated 403 DMA Registers www.ti.com 11.3.7 DMAxSA Register DMA Channel x Source Address Register Figure 11-12. DMAxSA Register 31 30 29 28 27 26 25 24 r0 r0 r0 r0 r0 r0 r0 r0 23 22 21 20 19 18 17 16 Reserved Reserved DMAxSA r0 r0 r0 r0 15 14 13 12 rw rw rw rw 11 10 9 8 rw rw rw rw 3 2 1 0 rw rw rw rw DMAxSA rw rw rw rw 7 6 5 4 DMAxSA rw rw rw rw Table 11-11. DMAxSA Register Description Bit Field Type Reset Description 31-20 Reserved R 0h Reserved. Always reads as 0. 19-0 DMAxSA RW undefined DMA source address. The source address register points to the DMA source address for single transfers or the first source address for block transfers. The source address register remains unchanged during block and burst-block transfers. There are two words for the DMAxSA register. Bits 31-20 are reserved and always read as zero. Reading or writing bits 19-16 requires the use of extended instructions. When writing to DMAxSA with word instructions, bits 19-16 are cleared. 404 Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DMA Registers www.ti.com 11.3.8 DMAxDA Register DMA Channel x Destination Address Register Figure 11-13. DMAxDA Register 31 30 29 28 27 26 25 24 r0 r0 r0 r0 r0 r0 r0 r0 23 22 21 20 19 18 17 16 Reserved Reserved DMAxDA r0 r0 r0 r0 15 14 13 12 rw rw rw rw 11 10 9 8 rw rw rw rw 3 2 1 0 rw rw rw rw DMAxDA rw rw rw rw 7 6 5 4 DMAxDA rw rw rw rw Table 11-12. DMAxDA Register Description Bit Field Type Reset Description 31-20 Reserved R 0h Reserved. Always reads as 0. 19-0 DMAxDA RW undefined DMA destination address. The destination address register points to the DMA destination address for single transfers or the first destination address for block transfers. The destination address register remains unchanged during block and burst-block transfers. There are two words for the DMAxDA register. Bits 31-20 are reserved and always read as zero. Reading or writing bits 19-16 requires the use of extended instructions. When writing to DMAxDA with word instructions, bits 19-16 are cleared. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated 405 DMA Registers www.ti.com 11.3.9 DMAxSZ Register DMA Channel x Size Address Register Figure 11-14. DMAxSZ Register 15 14 13 12 rw rw rw rw 7 6 5 4 11 10 9 8 rw rw rw rw 3 2 1 0 rw rw rw rw DMAxSZ DMAxSZ rw rw rw rw Table 11-13. DMAxSZ Register Description Bit Field Type Reset Description 15-0 DMAxSZ RW undefined DMA size. The DMA size register defines the number of byte/word data per block transfer. DMAxSZ register decrements with each word or byte transfer. When DMAxSZ decrements to 0, it is immediately and automatically reloaded with its previously initialized value. 00000h = Transfer is disabled. 00001h = One byte or word is transferred. 00002h = Two bytes or words are transferred. ⋮ 0FFFFh = 65535 bytes or words are transferred. 406 Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DMA Registers www.ti.com 11.3.10 DMAIV Register DMA Interrupt Vector Register Figure 11-15. DMAIV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-(0) r-(0) r-(0) r0 DMAIV DMAIV r0 r0 r-(0) r-(0) Table 11-14. DMAIV Register Description Bit Field Type Reset Description 15-0 DMAIV R 0h DMA interrupt vector value 00h = No interrupt pending 02h = Interrupt Source: DMA channel 0; Interrupt Flag: DMA0IFG; Interrupt Priority: Highest 04h = Interrupt Source: DMA channel 1; Interrupt Flag: DMA1IFG 06h = Interrupt Source: DMA channel 2; Interrupt Flag: DMA2IFG 08h = Interrupt Source: DMA channel 3; Interrupt Flag: DMA3IFG 0Ah = Interrupt Source: DMA channel 4; Interrupt Flag: DMA4IFG 0Ch = Interrupt Source: DMA channel 5; Interrupt Flag: DMA5IFG 0Eh = Interrupt Source: DMA channel 6; Interrupt Flag: DMA6IFG 10h = Interrupt Source: DMA channel 7; Interrupt Flag: DMA7IFG; Interrupt Priority: Lowest SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Direct Memory Access (DMA) Controller Module Copyright © 2008–2015, Texas Instruments Incorporated 407 Chapter 12 SLAU208O – June 2008 – Revised May 2015 Digital I/O Module This chapter describes the operation of the digital I/O ports in all devices. Topic 12.1 12.2 12.3 12.4 408 ........................................................................................................................... Digital I/O Introduction ...................................................................................... Digital I/O Operation ......................................................................................... I/O Configuration and LPMx.5 Low-Power Modes ................................................. Digital I/O Registers .......................................................................................... Digital I/O Module Page 409 410 413 416 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Digital I/O Introduction www.ti.com 12.1 Digital I/O Introduction The digital I/O features include: • Independently programmable individual I/Os • Any combination of input or output • Individually configurable P1 and P2 interrupts. Some devices may include additional port interrupts. • Independent input and output data registers • Individually configurable pullup or pulldown resistors Devices within the family may have up to twelve digital I/O ports implemented (P1 to P11 and PJ). Most ports contain eight I/O lines; however, some ports may contain less (see the device-specific data sheet for ports available). Each I/O line is individually configurable for input or output direction, and each can be individually read or written. Each I/O line is individually configurable for pullup or pulldown resistors, as well as, configurable drive strength, full or reduced. PJ contains only four I/O lines. Ports P1 and P2 always have interrupt capability. Each interrupt for the P1 and P2 I/O lines can be individually enabled and configured to provide an interrupt on a rising or falling edge of an input signal. All P1 I/O lines source a single interrupt vector P1IV, and all P2 I/O lines source a different, single interrupt vector P2IV. On some devices, additional ports with interrupt capability may be available (see the devicespecific data sheet for details) and contain their own respective interrupt vectors. Individual ports can be accessed as byte-wide ports or can be combined into word-wide ports and accessed in word formats. Port pairs P1 and P2, P3 and P4, P5 and P6, and so on, are associated with the names PA, PB, PC, and so on, respectively. All port registers are handled in this manner with this naming convention except for the interrupt vector registers; for example, PAIV does not exist for P1IV and P2IV. When writing to port PA with word operations, all 16 bits are written to the port. When writing to the lower byte of the PA port using byte operations, the upper byte remains unchanged. Similarly, writing to the upper byte of the PA port using byte instructions leaves the lower byte unchanged. When writing to a port that contains less than the maximum number of bits possible, the unused bits are a "don't care". Ports PB, PC, PD, PE, and PF behave similarly. Reading of the PA port using word operations causes all 16 bits to be transferred to the destination. Reading the lower or upper byte of the PA port (P1 or P2) and storing to memory using byte operations causes only the lower or upper byte to be transferred to the destination, respectively. Reading of the PA port and storing to a general-purpose register using byte operations causes the byte transferred to be written to the least significant byte of the register. The upper significant byte of the destination register is cleared automatically. Ports PB, PC, PD, PE, and PF behave similarly. When reading from ports that contain less than the maximum bits possible, unused bits are read as zeros (similarly for port PJ). SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Digital I/O Module Copyright © 2008–2015, Texas Instruments Incorporated 409 Digital I/O Operation www.ti.com 12.2 Digital I/O Operation The digital I/O are configured with user software. The setup and operation of the digital I/O are discussed in the following sections. 12.2.1 Input Registers (PxIN) Each bit in each PxIN register reflects the value of the input signal at the corresponding I/O pin when the pin is configured as I/O function. These registers are read only. • Bit = 0: Input is low • Bit = 1: Input is high NOTE: Writing to read-only registers PxIN Writing to these read-only registers results in increased current consumption while the write attempt is active. 12.2.2 Output Registers (PxOUT) Each bit in each PxOUT register is the value to be output on the corresponding I/O pin when the pin is configured as I/O function, output direction. • Bit = 0: Output is low • Bit = 1: Output is high If the pin is configured as I/O function, input direction and the pullup or pulldown resistor are enabled; the corresponding bit in the PxOUT register selects pullup or pulldown. • Bit = 0: Pin is pulled down • Bit = 1: Pin is pulled up 12.2.3 Direction Registers (PxDIR) Each bit in each PxDIR register selects the direction of the corresponding I/O pin, regardless of the selected function for the pin. PxDIR bits for I/O pins that are selected for other functions must be set as required by the other function. • Bit = 0: Port pin is switched to input direction • Bit = 1: Port pin is switched to output direction 12.2.4 Pullup or Pulldown Resistor Enable Registers (PxREN) Each bit in each PxREN register enables or disables the pullup or pulldown resistor of the corresponding I/O pin. The corresponding bit in the PxOUT register selects if the pin contains a pullup or pulldown. • Bit = 0: Pullup or pulldown resistor disabled • Bit = 1: Pullup or pulldown resistor enabled Table 12-1 summarizes the usage of PxDIR, PxREN, and PxOUT for proper I/O configuration. Table 12-1. I/O Configuration 410 PxDIR PxREN PxOUT 0 0 x Input I/O Configuration 0 1 0 Input with pulldown resistor 0 1 1 Input with pullup resistor 1 x x Output Digital I/O Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Digital I/O Operation www.ti.com 12.2.5 Output Drive Strength Registers (PxDS) Each bit in each PxDS register selects either full drive or reduced drive strength. Default is reduced drive strength. • Bit = 0: Reduced drive strength • Bit = 1: Full drive strength NOTE: Drive strength and EMI All outputs default to reduced drive strength to reduce EMI. Using full drive strength can result in increased EMI. 12.2.6 Function Select Registers (PxSEL) Port pins are often multiplexed with other peripheral module functions. See the device-specific data sheet to determine pin functions. Each PxSEL bit is used to select the pin function – I/O port or peripheral module function. • Bit = 0: I/O Function is selected for the pin • Bit = 1: Peripheral module function is selected for the pin Setting PxSEL = 1 does not automatically set the pin direction. Other peripheral module functions may require the PxDIR bits to be configured according to the direction needed for the module function. See the pin schematics in the device-specific data sheet. NOTE: P1 and P2 interrupts are disabled when PxSEL = 1 When any PxSEL bit is set, the corresponding pin’s interrupt function is disabled. Therefore, signals on these pins does not generate P1 or P2 interrupts, regardless of the state of the corresponding P1IE or P2IE bit. When a port pin is selected as an input to a peripheral, the input signal to the peripheral is a latched representation of the signal at the device pin. While its corresponding PxSEL = 1, the internal input signal follows the signal at the pin. However, if its PxSEL = 0, the input to the peripheral maintains the value of the input signal at the device pin before its corresponding PxSEL bit was reset. 12.2.7 Port Interrupts Each pin in ports P1 and P2 has interrupt capability, configured with the PxIFG, PxIE, and PxIES registers. On some devices, additional ports have interrupt capability (see the device-specific data sheet). All P1 interrupt flags are prioritized, with P1IFG.0 being the highest, and combined to source a single interrupt vector. The highest priority enabled interrupt generates a number in the P1IV register. This number can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled P1 interrupts do not affect the P1IV value. The same functionality exists for P2. Some devices may contain additional port interrupts besides P1 and P2. See the device specific data sheet to determine which port interrupts are available. Each PxIFG bit is the interrupt flag for its corresponding I/O pin and is set when the selected input signal edge occurs at the pin. All PxIFG interrupt flags request an interrupt when their corresponding PxIE bit and the GIE bit are set. Software can also set each PxIFG flag, providing a way to generate a softwareinitiated interrupt. • Bit = 0: No interrupt is pending • Bit = 1: An interrupt is pending Only transitions, not static levels, cause interrupts. If any PxIFG flag becomes set during a Px interrupt service routine, or is set after the RETI instruction of a Px interrupt service routine is executed, the set PxIFG flag generates another interrupt. This ensures that each transition is acknowledged. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Digital I/O Module Copyright © 2008–2015, Texas Instruments Incorporated 411 Digital I/O Operation NOTE: www.ti.com PxIFG flags when changing PxOUT, PxDIR, or PxREN Writing to P1OUT, P1DIR, P1REN, P2OUT, P2DIR, or P2REN can result in setting the corresponding P1IFG or P2IFG flags. Any access (read or write) of the lower byte of the P1IV register, either word or byte access, automatically resets the highest pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. For example, assume that P1IFG.0 has the highest priority. If the P1IFG.0 and P1IFG.2 flags are set when the interrupt service routine accesses the P1IV register, P1IFG.0 is reset automatically. After the RETI instruction of the interrupt service routine is executed, the P1IFG.2 generates another interrupt. Port P2 interrupts behave similarly, and source a separate single interrupt vector and utilize the P2IV register. 12.2.7.1 Port Interrupt Software Example The following software example shows the recommended use of P1IV and the handling overhead. The P1IV value is added to the PC to automatically jump to the appropriate routine. The P2IV is similar. The numbers at the right margin show the necessary CPU cycles for each instruction. The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not the task handling itself. ;Interrupt handler for P1 P1_HND ... ADD &P1IV,PC RETI JMP P1_0_HND JMP P1_1_HND JMP P1_2_HND JMP P1_3_HND JMP P1_4_HND JMP P1_5_HND JMP P1_6_HND JMP P1_7_HND P1_7_HND Interrupt latency Add offset to Jump table Vector 0: No interrupt Vector 2: Port 1 bit 0 Vector 4: Port 1 bit 1 Vector 6: Port 1 bit 2 Vector 8: Port 1 bit 3 Vector 10: Port 1 bit 4 Vector 12: Port 1 bit 5 Vector 14: Port 1 bit 6 Vector 16: Port 1 bit 7 Cycles 6 3 5 2 2 2 2 2 2 2 2 ... RETI ; Vector 16: Port 1 bit 7 ; Task starts here ; Back to main program 5 ... RETI ; Vector 14: Port 1 bit 6 ; Task starts here ; Back to main program 5 ... RETI ; Vector 12: Port 1 bit 5 ; Task starts here ; Back to main program 5 ... RETI ; Vector 10: Port 1 bit 4 ; Task starts here ; Back to main program 5 ... RETI ; Vector 8: Port 1 bit 3 ; Task starts here ; Back to main program 5 ... RETI ; Vector 6: Port 1 bit 2 ; Task starts here ; Back to main program 5 P1_6_HND P1_5_HND P1_4_HND P1_3_HND P1_2_HND P1_1_HND ... RETI P1_0_HND 412 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Vector 4: Port 1 bit 1 Task starts here Back to main program Vector 2: Port 1 bit 0 5 Digital I/O Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Digital I/O Operation www.ti.com ... RETI ; Task starts here ; Back to main program 5 12.2.7.2 Interrupt Edge Select Registers (PxIES) Each PxIES bit selects the interrupt edge for the corresponding I/O pin. • Bit = 0: Respective PxIFG flag is set with a low-to-high transition • Bit = 1: Respective PxIFG flag is set with a high-to-low transition NOTE: Writing to PxIES Writing to P1IES or P2IES for each corresponding I/O can result in setting the corresponding interrupt flags. PxIES 0→1 0→1 1→0 1→0 PxIN 0 1 0 1 PxIFG Will be set Unchanged Unchanged Will be set 12.2.7.3 Interrupt Enable Registers (PxIE) Each PxIE bit enables the associated PxIFG interrupt flag. • Bit = 0: The interrupt is disabled • Bit = 1: The interrupt is enabled 12.2.8 Configuring Unused Port Pins Unused I/O pins should be configured as I/O function, output direction, and left unconnected on the PC board, to prevent a floating input and reduce power consumption. The value of the PxOUT bit is don't care, because the pin is unconnected. Alternatively, the integrated pullup or pulldown resistor can be enabled by setting the PxREN bit of the unused pin to prevent the floating input. See the SYS chapter for termination of unused pins. NOTE: Configuring port J and shared JTAG pins: Application should ensure that port PJ is configured properly to prevent a floating input. Because port PJ is shared with the JTAG function, floating inputs may not be noticed when in an emulation environment. Port J is initialized to high-impedance inputs by default. 12.3 I/O Configuration and LPMx.5 Low-Power Modes NOTE: The LPMx.5 low-power modes may not be available on all devices. The LPM4.5 power mode allows for lowest power consumption and no clocks are available. The LPM3.5 power mode allows for RTC mode operation at the lowest power consumption available. See the SYS chapter for details; also see the device-specific datasheet for LPMx.5 low-power modes that are available. With respect to the digital I/O, this section is applicable for both LPM3.5 and LPM4.5. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Digital I/O Module Copyright © 2008–2015, Texas Instruments Incorporated 413 I/O Configuration and LPMx.5 Low-Power Modes www.ti.com The regulator of the Power Management Module (PMM) is disabled upon entering LPMx.5 (LPM3.5 or LPM4.5), which causes all I/O register configurations to be lost. Because the I/O register configurations are lost, the configuration of I/O pins must be handled differently to ensure that all pins in the application behave in a controlled manner upon entering and exiting LPMx.5. Properly setting the I/O pins is critical to achieving the lowest possible power consumption in LPMx.5, as well as preventing any possible uncontrolled input or output I/O state in the application. The application has complete control of the I/O pin conditions preventing the possibility of unwanted spurious activity upon entry and exit from LPMx.5. The detailed flow for entering and exiting LPMx.5 with respect to the I/O operation is as follows: 1. Set all I/Os to general-purpose I/Os and configure as needed. Each I/O can be set to input high impedance, input with pulldown, input with pullup, output high (low or high drive strength), or output low (low or high drive strength). It is critical that no inputs are left floating in the application, otherwise excess current may be drawn in LPMx.5. Configuring the I/O in this manner ensures that each pin is in a safe condition before entering LPMx.5. Optionally, configure input interrupt pins for wakeup from LPMx.5. To wake the device from LPMx.5, a general-purpose I/O port must contain an input port with interrupt capability. Not all devices include wakeup from LPMx.5 by I/O, and not all inputs with interrupt capability offer wakeup from LPMx.5. See the device-specific data sheet for availability. To configure a port to wake the device, the I/O should be configured properly before entering LPMx.5. Each port should be configured as general-purpose input. Pulldowns or pullups can be applied if required. Setting the PxIES bit of the corresponding register determines the edge transition that wakes the device. Last, the PxIE for the port must be enabled, as well as the general interrupt enable. NOTE: It is not possible to wake from LPMx.5 if the respective I/O interrupt flag is already asserted. It is recommended that the respective flag be cleared before entering LPMx.5. It is also recommended that GIE = 1 be set before entry into LPMx.5. Any pending flags in this case could then be serviced before LPMx.5 entry. Although it is recommended to set GIE = 1 before entering LPMx.5, it is not required. Device wakeup from LPMx.5 with an enabled wake-up function still causes the device to wake from LPMx.5 even with GIE = 0. If GIE = 0 before LPMx.5, additional care may be required. If the respective interrupt event occurs during LPMx.5 entry, the device may not recognize this or any future interrupt wakeup event on this function. 2. Enter LPMx.5 with LPMx.5 entry sequence, enable general interrupts for wakeup: MOV.B #PMMPW_H, &PMMCTL0_H BIS.B #PMMREGOFF, &PMMCTL0_L BIS #GIE+CPUOFF+OSCOFF+SCG1+SCG0,SR ; Open PMM registers for write ; ; Enter LPMx.5 when PMMREGOFF is set 3. Upon entry into LPMx.5, the LOCKLPM5 bit in the PM5CTL0 register of the PMM module is set automatically. The I/O pin states are held and locked based on the settings before LPMx.5 entry. Note that only the pin conditions are retained. All other port configuration register settings such as PxDIR, PxREN, PxOUT, PxDS, PxIES, and PxIE contents are lost. 4. An LPMx.5 wake-up event (for example, an edge on a configured wake-up input pin) starts the BOR entry sequence together with the regulator. All peripheral registers are set to their default conditions. Upon exit from LPMx.5, the I/O pins remain locked while LOCKLPM5 remains set. Keeping the I/O pins locked ensures that all pin conditions remain stable upon entering the active mode regardless of the default I/O register settings. 5. When in active mode, the I/O configuration and I/O interrupt configuration that was not retained during LPMx.5 should be restored to the values before entering LPMx.5. It is recommended to reconfigure the PxIES and PxIE to their previous settings to prevent a false port interrupt from occurring. The LOCKLPM5 bit can then be cleared, which releases the I/O pin conditions and I/O interrupt configuration. Any changes to the port configuration registers while LOCKLPM5 is set have no effect on the I/O pins. 6. After enabling the I/O interrupts, the I/O interrupt that caused the wakeup can be serviced indicated by the PxIFG flags. These flags can be used directly, or the corresponding PxIV register may be used. Note that the PxIFG flag cannot be cleared until the LOCKLPM5 bit has been cleared. 414 Digital I/O Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com I/O Configuration and LPMx.5 Low-Power Modes NOTE: It is possible that multiple events occurred on various ports. In these cases, multiple PxIFG flags will be set, and it cannot be determined which port has caused the I/O wakeup. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Digital I/O Module Copyright © 2008–2015, Texas Instruments Incorporated 415 Digital I/O Registers www.ti.com 12.4 Digital I/O Registers The digital I/O registers are listed in Table 12-2. The base addresses can be found in the device-specific data sheet. Each port grouping begins at its base address. The address offsets are given in Table 12-2. NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix "_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H" (ANYREG_H) refers to the upper byte of the register (bits 8 through 15). Table 12-2. Digital I/O Registers Offset Acronym Register Name Type Access Reset Section 0Eh P1IV Port 1 Interrupt Vector Read only Word 0000h Section 12.4.1 0Eh P1IV_L Read only Byte 00h 0Fh P1IV_H Read only Byte 00h 1Eh P2IV Read only Word 0000h 1Eh P2IV_L Read only Byte 00h 1Fh P2IV_H Read only Byte 00h 00h P1IN or PAIN_L Port 1 Input Read only Byte 02h P1OUT or PAOUT_L Port 1 Output Read/write Byte undefined Section 12.4.10 04h P1DIR or PADIR_L Port 1 Direction Read/write Byte 00h Section 12.4.11 06h P1REN or PAREN_L Port 1 Resistor Enable Read/write Byte 00h Section 12.4.12 08h P1DS or PADS_L Port 1 Drive Strength Read/write Byte 00h Section 12.4.13 0Ah P1SEL or PASEL_L Port 1 Port Select Read/write Byte 00h Section 12.4.14 18h P1IES or PAIES_L Port 1 Interrupt Edge Select Read/write Byte undefined Section 12.4.3 1Ah P1IE or PAIE_L Port 1 Interrupt Enable Read/write Byte 00h Section 12.4.4 1Ch P1IFG or PAIFG_L Port 1 Interrupt Flag Read/write Byte 00h Section 12.4.5 01h P2IN or PAIN_H Port 2 Input Read only Byte 03h P2OUT or PAOUT_H Port 2 Output Read/write Byte undefined Section 12.4.10 05h P2DIR or PADIR_H Port 2 Direction Read/write Byte 00h Section 12.4.11 07h P2REN or PAREN_H Port 2 Resistor Enable Read/write Byte 00h Section 12.4.12 09h P2DS or PADS_H Port 2 Drive Strength Read/write Byte 00h Section 12.4.13 0Bh P2SEL or PASEL_H Port 2 Port Select Read/write Byte 00h Section 12.4.14 19h P2IES or PAIES_H Port 2 Interrupt Edge Select Read/write Byte undefined Section 12.4.6 1Bh P2IE or PAIE_H Port 2 Interrupt Enable Read/write Byte 00h Section 12.4.7 1Dh P2IFG or PAIFG_H Port 2 Interrupt Flag Read/write Byte 00h Section 12.4.8 00h P3IN or PBIN_L Port 3 Input Read only Byte 02h P3OUT or PBOUT_L Port 3 Output Read/write Byte Port 2 Interrupt Vector 416 Digital I/O Module Section 12.4.2 Section 12.4.9 Section 12.4.9 Section 12.4.9 undefined Section 12.4.10 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Digital I/O Registers www.ti.com Table 12-2. Digital I/O Registers (continued) Offset Acronym Register Name Type Access Reset Section 04h P3DIR or PBDIR_L Port 3 Direction Read/write Byte 00h Section 12.4.11 06h P3REN or PBREN_L Port 3 Resistor Enable Read/write Byte 00h Section 12.4.12 08h P3DS or PBDS_L Port 3 Drive Strength Read/write Byte 00h Section 12.4.13 0Ah P3SEL or PBSEL_L Port 3 Port Select Read/write Byte 00h Section 12.4.14 01h P4IN or PBIN_H Port 4 Input Read only Byte 03h P4OUT or PBOUT_H Port 4 Output Read/write Byte undefined Section 12.4.10 05h P4DIR or PBDIR_H Port 4 Direction Read/write Byte 00h Section 12.4.11 07h P4REN or PBREN_H Port 4 Resistor Enable Read/write Byte 00h Section 12.4.12 09h P4DS or PBDS_H Port 4 Drive Strength Read/write Byte 00h Section 12.4.13 0Bh P4SEL or PBSEL_H Port 4 Port Select Read/write Byte 00h Section 12.4.14 00h P5IN or PCIN_L Port 5 Input Read only Byte 02h P5OUT or PCOUT_L Port 5 Output Read/write Byte undefined Section 12.4.10 04h P5DIR or PCDIR_L Port 5 Direction Read/write Byte 00h Section 12.4.11 06h P5REN or PCREN_L Port 5 Resistor Enable Read/write Byte 00h Section 12.4.12 08h P5DS or PCDS_L Port 5 Drive Strength Read/write Byte 00h Section 12.4.13 0Ah P5SEL or PCSEL_L Port 5 Port Select Read/write Byte 00h Section 12.4.14 01h P6IN or PCIN_H Port 6 Input Read only Byte 03h P6OUT or PCOUT_H Port 6 Output Read/write Byte undefined Section 12.4.10 05h P6DIR or PCDIR_H Port 6 Direction Read/write Byte 00h Section 12.4.11 07h P6REN or PCREN_H Port 6 Resistor Enable Read/write Byte 00h Section 12.4.12 09h P6DS or PCDS_H Port 6 Drive Strength Read/write Byte 00h Section 12.4.13 0Bh P6SEL or PCSEL_H Port 6 Port Select Read/write Byte 00h Section 12.4.14 00h P7IN or PDIN_L Port 7 Input Read only Byte 02h P7OUT or PDOUT_L Port 7 Output Read/write Byte undefined Section 12.4.10 04h P7DIR or PDDIR_L Port 7 Direction Read/write Byte 00h Section 12.4.11 06h P7REN or PDREN_L Port 7 Resistor Enable Read/write Byte 00h Section 12.4.12 08h P7DS or PDDS_L Port 7 Drive Strength Read/write Byte 00h Section 12.4.13 0Ah P7SEL or PDSEL_L Port 7 Port Select Read/write Byte 00h Section 12.4.14 Section 12.4.9 Section 12.4.9 Section 12.4.9 Section 12.4.9 Digital I/O Module 417 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Digital I/O Registers www.ti.com Table 12-2. Digital I/O Registers (continued) Offset Acronym Register Name Type Access 01h P8IN or PDIN_H Port 8 Input Read only Byte 03h P8OUT or PDOUT_H Port 8 Output Read/write Byte undefined Section 12.4.10 05h P8DIR or PDDIR_H Port 8 Direction Read/write Byte 00h Section 12.4.11 07h P8REN or PDREN_H Port 8 Resistor Enable Read/write Byte 00h Section 12.4.12 09h P8DS or PDDS_H Port 8 Drive Strength Read/write Byte 00h Section 12.4.13 0Bh P8SEL or PDSEL_H Port 8 Port Select Read/write Byte 00h Section 12.4.14 00h P9IN or PEIN_L Port 9 Input Read only Byte 02h P9OUT or PEOUT_L Port 9 Output Read/write Byte undefined Section 12.4.10 04h P9DIR or PEDIR_L Port 9 Direction Read/write Byte 00h Section 12.4.11 06h P9REN or PEREN_L Port 9 Resistor Enable Read/write Byte 00h Section 12.4.12 08h P9DS or PEDS_L Port 9 Drive Strength Read/write Byte 00h Section 12.4.13 0Ah P9SEL or PESEL_L Port 9 Port Select Read/write Byte 00h Section 12.4.14 01h P10IN or PEIN_H Port 10 Input Read only Byte 03h P10OUT or PEOUT_H Port 10 Output Read/write Byte undefined Section 12.4.10 05h P10DIR or PEDIR_H Port 10 Direction Read/write Byte 00h Section 12.4.11 07h P10REN or PEREN_H Port 10 Resistor Enable Read/write Byte 00h Section 12.4.12 09h P10DS or PEDS_H Port 10 Drive Strength Read/write Byte 00h Section 12.4.13 0Bh P10SEL or PESEL_H Port 10 Port Select Read/write Byte 00h Section 12.4.14 00h P11IN or PFIN_L Port 11 Input Read only Byte 02h P11OUT or PFOUT_L Port 11 Output Read/write Byte undefined Section 12.4.10 04h P11DIR or PFDIR_L Port 11 Direction Read/write Byte 00h Section 12.4.11 06h P11REN or PFREN_L Port 11 Resistor Enable Read/write Byte 00h Section 12.4.12 08h P11DS or PFDS_L Port 11 Drive Strength Read/write Byte 00h Section 12.4.13 0Ah P11SEL or PFSEL_L Port 11 Port Select Read/write Byte 00h Section 12.4.14 00h PAIN Port A Input Read only Word 00h PAIN_L Read only Byte 01h PAIN_H Read only Byte 02h PAOUT Read/write Word undefined 02h PAOUT_L Read/write Byte undefined 03h PAOUT_H Read/write Byte undefined 04h PADIR Read/write Word 0000h Port A Output Port A Direction 418 Digital I/O Module Reset Section Section 12.4.9 Section 12.4.9 Section 12.4.9 Section 12.4.9 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Digital I/O Registers www.ti.com Table 12-2. Digital I/O Registers (continued) Offset Acronym 04h PADIR_L 05h PADIR_H 06h PAREN 06h Register Name Type Access Reset Read/write Byte 00h Read/write Byte 00h Read/write Word 0000h PAREN_L Read/write Byte 00h 07h PAREN_H Read/write Byte 00h 08h PADS Read/write Word 0000h 08h PADS_L Read/write Byte 00h 09h PADS_H Read/write Byte 00h 0Ah PASEL Read/write Word 0000h 0Ah PASEL_L Read/write Byte 00h 0Bh PASEL_H Read/write Byte 00h 18h PAIES Read/write Word undefined 18h PAIES_L Read/write Byte undefined 19h PAIES_H Read/write Byte undefined 1Ah PAIE Read/write Word 0000h 1Ah PAIE_L Read/write Byte 00h 1Bh PAIE_H Read/write Byte 00h 1Ch PAIFG Read/write Word 0000h 1Ch PAIFG_L Read/write Byte 00h 1Dh PAIFG_H Read/write Byte 00h 00h PBIN Read only Word 00h PBIN_L Read only Byte 01h PBIN_H Read only Byte 02h PBOUT Read/write Word undefined 02h PBOUT_L Read/write Byte undefined 03h PBOUT_H Read/write Byte undefined 04h PBDIR Read/write Word 0000h 04h PBDIR_L Read/write Byte 00h 05h PBDIR_H Read/write Byte 00h 06h PBREN Read/write Word 0000h 06h PBREN_L Read/write Byte 00h 07h PBREN_H Read/write Byte 00h 08h PBDS Read/write Word 0000h 08h PBDS_L Read/write Byte 00h 09h PBDS_H Read/write Byte 00h 0Ah PBSEL Read/write Word 0000h 0Ah PBSEL_L Read/write Byte 00h 0Bh PBSEL_H Read/write Byte 00h 00h PCIN Read only Word 00h PCIN_L Read only Byte 01h PCIN_H Read only Byte 02h PCOUT Read/write Word undefined 02h PCOUT_L Read/write Byte undefined 03h PCOUT_H Read/write Byte undefined 04h PCDIR Read/write Word 0000h 04h PCDIR_L Read/write Byte 00h 05h PCDIR_H Read/write Byte 00h Port A Resistor Enable Port A Drive Strength Port A Port Select Port A Interrupt Edge Select Port A Interrupt Enable Port A Interrupt Flag Port B Input Port B Output Port B Direction Port B Resistor Enable Port B Drive Strength Port B Port Select Port C Input Port C Output Port C Direction Section Digital I/O Module 419 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Digital I/O Registers www.ti.com Table 12-2. Digital I/O Registers (continued) Offset Acronym Register Name Type Access Reset 06h PCREN Port C Resistor Enable Read/write Word 0000h 06h PCREN_L Read/write Byte 00h 07h PCREN_H Read/write Byte 00h 08h PCDS Read/write Word 0000h 08h PCDS_L Read/write Byte 00h 09h PCDS_H Read/write Byte 00h 0Ah PCSEL Read/write Word 0000h 0Ah PCSEL_L Read/write Byte 00h 0Bh PCSEL_H Read/write Byte 00h 00h PDIN Read only Word 00h PDIN_L Read only Byte 01h PDIN_H Read only Byte 02h PDOUT Read/write Word undefined 02h PDOUT_L Read/write Byte undefined 03h PDOUT_H Read/write Byte undefined 04h PDDIR Read/write Word 0000h 04h PDDIR_L Read/write Byte 00h 05h PDDIR_H Read/write Byte 00h 06h PDREN Read/write Word 0000h 06h PDREN_L Read/write Byte 00h 07h PDREN_H Read/write Byte 00h 08h PDDS Read/write Word 0000h 08h PDDS_L Read/write Byte 00h 09h PDDS_H Read/write Byte 00h 0Ah PDSEL Read/write Word 0000h 0Ah PDSEL_L Read/write Byte 00h 0Bh PDSEL_H Read/write Byte 00h 00h PEIN Read only Word 00h PEIN_L Read only Byte 01h PEIN_H Read only Byte 02h PEOUT Read/write Word undefined 02h PEOUT_L Read/write Byte undefined 03h PEOUT_H Read/write Byte undefined 04h PEDIR Read/write Word 0000h 04h PEDIR_L Read/write Byte 00h 05h PEDIR_H Read/write Byte 00h 06h PEREN Read/write Word 0000h 06h PEREN_L Read/write Byte 00h 07h PEREN_H Read/write Byte 00h 08h PEDS Read/write Word 0000h 08h PEDS_L Read/write Byte 00h 09h PEDS_H Read/write Byte 00h 0Ah PESEL Read/write Word 0000h 0Ah PESEL_L Read/write Byte 00h 0Bh PESEL_H Read/write Byte 00h 00h PFIN Read only Word 00h PFIN_L Read only Byte Port C Drive Strength Port C Port Select Port D Input Port D Output Port D Direction Port D Resistor Enable Port D Drive Strength Port D Port Select Port E Input Port E Output Port E Direction Port E Resistor Enable Port E Drive Strength Port E Port Select Port F Input 420 Digital I/O Module Section SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Digital I/O Registers www.ti.com Table 12-2. Digital I/O Registers (continued) Offset Acronym 01h PFIN_H 02h PFOUT 02h PFOUT_L 03h PFOUT_H 04h PFDIR 04h 05h 06h PFREN 06h 07h 08h PFDS 08h 09h 0Ah PFSEL 0Ah PFSEL_L 0Bh PFSEL_H 00h PJIN 00h PJIN_L 01h PJIN_H 02h PJOUT 02h PJOUT_L 03h PJOUT_H 04h PJDIR 04h Register Name Type Access Read only Byte Read/write Word undefined Read/write Byte undefined Read/write Byte undefined Read/write Word 0000h PFDIR_L Read/write Byte 00h PFDIR_H Read/write Byte 00h Read/write Word 0000h PFREN_L Read/write Byte 00h PFREN_H Read/write Byte 00h Read/write Word 0000h PFDS_L Read/write Byte 00h PFDS_H Read/write Byte 00h Read/write Word 0000h Read/write Byte 00h Read/write Byte 00h Read only Word Read only Byte Read only Byte Read/write Word undefined Read/write Byte undefined Read/write Byte undefined Read/write Word 0000h PJDIR_L Read/write Byte 00h 05h PJDIR_H Read/write Byte 00h 06h PJREN Read/write Word 0000h 06h PJREN_L Read/write Byte 00h 07h PJREN_H Read/write Byte 00h 08h PJDS Read/write Word 0000h 08h PJDS_L Read/write Byte 00h 09h PJDS_H Read/write Byte 00h Port F Output Port F Direction Port F Resistor Enable Port F Drive Strength Port F Port Select Port J Input Port J Output Port J Direction Port J Resistor Enable Port J Drive Strength SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Reset Section Digital I/O Module Copyright © 2008–2015, Texas Instruments Incorporated 421 Digital I/O Registers www.ti.com 12.4.1 P1IV Register Port 1 Interrupt Vector Register Figure 12-1. P1IV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-0 r-0 r-0 r0 P1IV P1IV r0 r0 r0 r-0 Table 12-3. P1IV Register Description Bit Field Type Reset Description 15-0 P1IV R 0h Port 1 interrupt vector value 00h = No interrupt pending 02h = Interrupt Source: Port 1.0 interrupt; Interrupt Flag: P1IFG.0; Interrupt Priority: Highest 04h = Interrupt Source: Port 1.1 interrupt; Interrupt Flag: P1IFG.1 06h = Interrupt Source: Port 1.2 interrupt; Interrupt Flag: P1IFG.2 08h = Interrupt Source: Port 1.3 interrupt; Interrupt Flag: P1IFG.3 0Ah = Interrupt Source: Port 1.4 interrupt; Interrupt Flag: P1IFG.4 0Ch = Interrupt Source: Port 1.5 interrupt; Interrupt Flag: P1IFG.5 0Eh = Interrupt Source: Port 1.6 interrupt; Interrupt Flag: P1IFG.6 10h = Interrupt Source: Port 1.7 interrupt; Interrupt Flag: P1IFG.7; Interrupt Priority: Lowest 422 Digital I/O Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Digital I/O Registers www.ti.com 12.4.2 P2IV Register Port 2 Interrupt Vector Register Figure 12-2. P2IV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-0 r-0 r-0 r0 P2IV P2IV r0 r0 r0 r-0 Table 12-4. P2IV Register Description Bit Field Type Reset Description 15-0 P2IV R 0h Port 2 interrupt vector value 00h = No interrupt pending 02h = Interrupt Source: Port 2.0 interrupt; Interrupt Flag: P2IFG.0; Interrupt Priority: Highest 04h = Interrupt Source: Port 2.1 interrupt; Interrupt Flag: P2IFG.1 06h = Interrupt Source: Port 2.2 interrupt; Interrupt Flag: P2IFG.2 08h = Interrupt Source: Port 2.3 interrupt; Interrupt Flag: P2IFG.3 0Ah = Interrupt Source: Port 2.4 interrupt; Interrupt Flag: P2IFG.4 0Ch = Interrupt Source: Port 2.5 interrupt; Interrupt Flag: P2IFG.5 0Eh = Interrupt Source: Port 2.6 interrupt; Interrupt Flag: P2IFG.6 10h = Interrupt Source: Port 2.7 interrupt; Interrupt Flag: P2IFG.7; Interrupt Priority: Lowest SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Digital I/O Module Copyright © 2008–2015, Texas Instruments Incorporated 423 Digital I/O Registers www.ti.com 12.4.3 P1IES Register Port 1 Interrupt Edge Select Register Figure 12-3. P1IES Register 7 6 5 4 rw rw rw rw 3 2 1 0 rw rw rw rw P1IES Table 12-5. P1IES Register Description Bit Field Type Reset Description 7-0 P1IES RW undefined Port 1 interrupt edge select 0b = P1IFG flag is set with a low-to-high transition. 1b = P1IFG flag is set with a high-to-low transition. 12.4.4 P1IE Register Port 1 Interrupt Enable Register Figure 12-4. P1IE Register 7 6 5 4 3 2 1 0 rw-0 rw-0 rw-0 rw-0 P1IE rw-0 rw-0 rw-0 rw-0 Table 12-6. P1IE Register Description Bit Field Type Reset Description 7-0 P1IE RW 0h Port 1 interrupt enable 0b = Corresponding port interrupt disabled 1b = Corresponding port interrupt enabled 12.4.5 P1IFG Register Port 1 Interrupt Flag Register Figure 12-5. P1IFG Register 7 6 5 4 3 2 1 0 rw-0 rw-0 rw-0 rw-0 P1IFG rw-0 rw-0 rw-0 rw-0 Table 12-7. P1IFG Register Description Bit Field Type Reset Description 7-0 P1IFG RW 0h Port 1 interrupt flag 0b = No interrupt is pending 1b = Interrupt is pending 424 Digital I/O Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Digital I/O Registers www.ti.com 12.4.6 P2IES Register Port 2 Interrupt Edge Select Register Figure 12-6. P2IES Register 7 6 5 4 rw rw rw rw 3 2 1 0 rw rw rw rw P2IES Table 12-8. P2IES Register Description Bit Field Type Reset Description 7-0 P2IES RW undefined Port 2 interrupt edge select 0b = P2IFG flag is set with a low-to-high transition. 1b = P2IFG flag is set with a high-to-low transition. 12.4.7 P2IE Register Port 2 Interrupt Enable Register Figure 12-7. P2IE Register 7 6 5 4 3 2 1 0 rw-0 rw-0 rw-0 rw-0 P2IE rw-0 rw-0 rw-0 rw-0 Table 12-9. P2IE Register Description Bit Field Type Reset Description 7-0 P2IE RW 0h Port 2 interrupt enable 0b = Corresponding port interrupt disabled 1b = Corresponding port interrupt enabled 12.4.8 P2IFG Register Port 2 Interrupt Flag Register Figure 12-8. P2IFG Register 7 6 5 4 3 2 1 0 rw-0 rw-0 rw-0 rw-0 P2IFG rw-0 rw-0 rw-0 rw-0 Table 12-10. P2IFG Register Description Bit Field Type Reset Description 7-0 P2IFG RW 0h Port 2 interrupt flag 0b = No interrupt is pending 1b = Interrupt is pending SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Digital I/O Module Copyright © 2008–2015, Texas Instruments Incorporated 425 Digital I/O Registers www.ti.com 12.4.9 PxIN Register Port x Input Register Figure 12-9. PxIN Register 7 6 5 4 r r r r 3 2 1 0 r r r r PxIN Table 12-11. PxIN Register Description Bit Field Type Reset Description 7-0 PxIN R undefined Port x input. Read only. 12.4.10 PxOUT Register Port x Output Register Figure 12-10. PxOUT Register 7 6 5 4 3 2 1 0 rw rw rw rw PxOUT rw rw rw rw Table 12-12. PxOUT Register Description Bit Field Type Reset Description 7-0 PxOUT RW undefined Port x output When I/O configured to output mode: 0b = Output is low 1b = Output is high When I/O configured to input mode and pullups/pulldowns enabled: 0b = Pulldown selected 1b = Pullup selected 12.4.11 PxDIR Register Port x Direction Register Figure 12-11. PxDIR Register 7 6 5 4 3 2 1 0 rw-0 rw-0 rw-0 rw-0 PxDIR rw-0 rw-0 rw-0 rw-0 Table 12-13. PxDIR Register Description Bit Field Type Reset Description 7-0 PxDIR RW 0h Port x direction 0b = Port configured as input 1b = Port configured as output 426 Digital I/O Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Digital I/O Registers www.ti.com 12.4.12 PxREN Register Port x Pullup/Pulldown Resistor Enable Register Figure 12-12. PxREN Register 7 6 5 4 rw-0 rw-0 rw-0 rw-0 3 2 1 0 rw-0 rw-0 rw-0 rw-0 PxREN Table 12-14. PxREN Register Description Bit Field Type Reset Description 7-0 PxREN RW 0h Port x pullup or pulldown resistor enable. When respective port is configured as input, setting this bit will enable the pullup or pulldown. See Table 12-1 0b = Pullup or pulldown disabled 1b = Pullup or pulldown enabled 12.4.13 PxDS Register Port x Drive Strength Register Figure 12-13. PxDS Register 7 6 5 4 3 2 1 0 rw-0 rw-0 rw-0 rw-0 PxDS rw-0 rw-0 rw-0 rw-0 Table 12-15. PxDS Register Description Bit Field Type Reset Description 7-0 PxDS RW 0h Port x drive strength 0b = Reduced output drive strength 1b = Full output drive strength 12.4.14 PxSEL Register Port x Port Select Register Figure 12-14. PxSEL Register 7 6 5 4 3 2 1 0 rw-0 rw-0 rw-0 rw-0 PxSEL rw-0 rw-0 rw-0 rw-0 Table 12-16. PxSEL Register Description Bit Field Type Reset Description 7-0 PxSEL RW 0h Port x function selection 0b = I/O function is selected 1b = Peripheral module function is selected SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Digital I/O Module Copyright © 2008–2015, Texas Instruments Incorporated 427 Chapter 13 SLAU208O – June 2008 – Revised May 2015 Port Mapping Controller The port mapping controller allows a flexible mapping of digital functions to port pins. This chapter describes the port mapping controller. Topic 13.1 13.2 13.3 428 ........................................................................................................................... Page Port Mapping Controller Introduction .................................................................. 429 Port Mapping Controller Operation ..................................................................... 429 Port Mapping Controller Registers...................................................................... 431 Port Mapping Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Port Mapping Controller Introduction www.ti.com 13.1 Port Mapping Controller Introduction The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port pins. The port mapping controller features are: • Configuration protected by write access key. • Default mapping provided for each port pin (device-dependent, the device pinout in the device-specific data sheet). • Mapping can be reconfigured during runtime. • Each output signal can be mapped to several output pins. 13.2 Port Mapping Controller Operation The port mapping is configured with user software. The setup is discussed in the following sections. 13.2.1 Access To enable write access to any of the port mapping controller registers, the correct key must be written into the PMAPKEYID register. The PMAPKEYID register always reads 096A5h. Writing the key 02D52h grants write access to all port mapping controller registers. Read access is always possible. If an invalid key is written while write access is granted, any further write accesses are prevented. It is recommended that the application completes mapping configuration by writing an invalid key. There is a timeout counter implemented that is incremented with each (assembler) instruction, and when it counts to 32, the write access is locked again. Any access to the port mapping controller registers resets the counter. Interrupts should be disabled during the configuration process or the application should take precautions that the execution of an interrupt service routine does not accidentally cause a permanent lock of the port mapping registers; for example, by using the reconfiguration capability (see Section 13.2.2). The access status is reflected in the PMAPLOCK bit. By default, the port mapping controller allows only one configuration after PUC. A second attempt to enable write access by writing the correct key is ignored, and the registers remain locked. A PUC is required to disable the permanent lock again. If it is necessary to reconfigure the mapping during runtime, the PMAPRECFG bit must be set during the first write access timeslot. If PMAPRECFG is cleared during later configuration sessions, no more configuration sessions are possible. 13.2.2 Mapping For each port pin, Px.y, on ports providing the mapping functionality, a mapping register, PxMAPy, is available. Setting this register to a certain value maps a module's input and output signals to the respective port pin Px.y. The port pin itself is switched from a general purpose I/O to the selected peripheral/secondary function by setting the corresponding PxSEL.y bit to 1. If the input or the output function of the module is used, it is typically defined by the setting the PxDIR.y bit. If PxDIR.y = 0, the pin is an input, if PxDIR.y = 1, the pin is an output. There are also peripherals (for example, the USCI module) that control the direction or even other functions of the pin (for example, open drain), and these options are documented in the mapping table. With the port mapping functionality the output of a module can be mapped to multiple pins. Also the input of a module can receive inputs from multiple pins. When mapping multiple inputs onto one function, care needs to be taken because the input signals are logically ORed together without applying any priority; therefore, a logic one on any of the inputs results in a logic one at the module. If the PxSEL.y bit is 0, the corresponding input signal is a logic zero. The mapping is device-dependent; see the device-specific data sheet for available functions and specific values. The use of mapping mnemonics to abstract the underlying PxMAPy values is recommended to allow simple portability between different devices. Table 13-1 shows some examples for mapping mnemonics of some common peripherals. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Port Mapping Controller Copyright © 2008–2015, Texas Instruments Incorporated 429 Port Mapping Controller Operation www.ti.com All mappable port pins provide the function PM_ANALOG (0FFh). Setting the port mapping register PxMAPy to PM_ANALOG together with PxSEL.y = 1 disables the output driver and the input Schmitttrigger, to prevent parasitic cross currents when applying analog signals. Table 13-1. Examples for Port Mapping Mnemonics and Functions Input Pin Function With PxSEL.y = 1 and PxDIR.y = 0 PxMAPy Mnemonic 430 Output Pin Function With PxSEL.y = 1 and PxDIR.y = 1 PM_NONE None DVSS PM_ACLK None ACLK PM_MCLK None MCLK PM_SMCLK None SMCLK PM_TA0CLK Timer_A0 clock input DVSS PM_TA0CCR0A Timer_A0 CCR0 capture input CCI0A TA0 CCR0 compare output Out0 PM_TA0CCR1A Timer_A0 CCR1 capture input CCI1A TA0 CCR1 compare output Out1 PM_TA0CCR2A Timer_A0 CCR2 capture input CCI2A TA0 CCR2 compare output Out2 PM_TA0CCR3A Timer_A0 CCR3 capture input CCI3A TA0 CCR3 compare output Out3 PM_TA0CCR4A Timer_A0 CCR4 capture input CCI4A TA0 CCR4 compare output Out4 PM_TA1CLK Timer_A1 clock input DVSS PM_TA1CCR0A Timer_A1 CCR0 capture input CCI0A TA1 CCR0 compare output Out0 PM_TA1CCR1A Timer_A1 CCR1 capture input CCI1A TA1 CCR1 compare output Out1 PM_TA1CCR2A Timer_A1 CCR2 capture input CCI2A TA1 CCR2 compare output Out2 PM_TBCLK Timer_B clock input DVSS PM_TBOUTH Timer_B outputs high impedance DVSS PM_TBCCR0A Timer_B CCR0 capture input CCI0A TB CCR0 compare output Out0 [direction controlled by Timer_B (TBOUTH)] PM_TBCCR1A Timer_B CCR1 capture input CCI1A TB CCR1 compare output Out1 [direction controlled by Timer_B (TBOUTH)] PM_TBCCR2A Timer_B CCR2 capture input CCI2A TB CCR2 compare output Out2 [direction controlled by Timer_B (TBOUTH)] PM_TBCCR3A Timer_B CCR3 capture input CCI3A TB CCR3 compare output Out3 [direction controlled by Timer_B (TBOUTH)] PM_TBCCR4A Timer_B CCR4 capture input CCI4A TB CCR4 compare output Out4 [direction controlled by Timer_B (TBOUTH)] PM_TBCCR5A Timer_B CCR5 capture input CCI3A TB CCR5 compare output Out5 [direction controlled by Timer_B (TBOUTH)] PM_TBCCR6A Timer_B CCR6 capture input CCI4A TB CCR6 compare output Out6 [direction controlled by Timer_B (TBOUTH)] PM_UCA0RXD USCI_A0 UART RXD (direction controlled by USCI - input) PM_UCA0SOMI USCI_A0 SPI slave out master in (direction controlled by USCI) PM_UCA0TXD USCI_A0 UART TXD (direction controlled by USCI - output) PM_UCA0SIMO USCI_A0 SPI slave in master out (direction controlled by USCI) PM_UCA0CLK USCI_A0 clock input/output (direction controlled by USCI) PM_UCA0STE USCI_A0 SPI slave transmit enable (direction controlled by USCI) PM_UCB0SOMI USCI_B0 SPI slave out master in (direction controlled by USCI) PM_UCB0SCL USCI_B0 I2C clock (open drain and direction controlled by USCI PM_UCB0SIMO USCI_B0 SPI slave in master out (direction controlled by USCI) PM_UCB0SDA USCI_B0 I2C data (open drain and direction controlled by USCI) PM_UCB0CLK USCI_B0 clock input/output (direction controlled by USCI) PM_UCB0STE USCI_B0 SPI slave transmit enable (direction controlled by USCI) PM_ANALOG Disables the output driver and the input Schmitt-trigger to prevent parasitic cross currents when applying analog signals Port Mapping Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Port Mapping Controller Registers www.ti.com 13.3 Port Mapping Controller Registers The control register for the port mapping controller are listed in Table 13-2. The mapping registers are listed in Table 13-3. The mapping registers can also be accessed as words, as shown in Table 13-4. Table 13-2. Port Mapping Control Registers Offset Acronym Register Name Type Reset 00h PMAPKEYID Port mapping key register Read/write Reset with PUC 02h PMAPCTL Port mapping control register Read/write Reset with PUC Table 13-3. Port Mapping Registers for Port Px – Byte Access Offset Acronym Register Name Type Reset 00h PxMAP0 Port Px.0 mapping register Read/write Device dependent 01h PxMAP1 Port Px.1 mapping register Read/write Device dependent 02h PxMAP2 Port Px.2 mapping register Read/write Device dependent 03h PxMAP3 Port Px.3 mapping register Read/write Device dependent 04h PxMAP4 Port Px.4 mapping register Read/write Device dependent 05h PxMAP5 Port Px.5 mapping register Read/write Device dependent 06h PxMAP6 Port Px.6 mapping register Read/write Device dependent 07h PxMAP7 Port Px.7 mapping register Read/write Device dependent Table 13-4. Port Mapping Registers for Port Px – Word Access Offset Acronym Register Name Type Reset 00h PxMAP01 Port Px.0/Port Px.1 mapping register Read/write Device dependent 02h PxMAP23 Port Px.2/Port Px.3 mapping register Read/write Device dependent 04h PxMAP45 Port Px.4/Port Px.5 mapping register Read/write Device dependent 06h PxMAP67 Port Px.6/Port Px.7 mapping register Read/write Device dependent SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Port Mapping Controller Copyright © 2008–2015, Texas Instruments Incorporated 431 Port Mapping Controller Registers www.ti.com 13.3.1 PMAPKEYID Register Port Mapping Key Register Figure 13-1. PMAPKEYID Register 15 14 13 12 11 10 9 8 3 2 1 0 PMAPKEYx 7 6 5 4 PMAPKEYx Table 13-5. PMAPKEYID Register Description Bit Field Type Reset Description 15-0 PMAPKEYx RW 96A5h Port write access key. Always reads 096A5h. Must be written 02D52h for write access to the port mapping registers. 13.3.2 PMAPCTL Register Port Mapping Control Register Figure 13-2. PMAPCTL Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 r0 r0 r0 7 6 5 4 3 2 Reserved Reserved r0 r0 r0 r0 r0 r0 1 0 PMAPRECFG PMAPLOCKED rw-0 r-1 Table 13-6. PMAPCTL Register Description Bit Field Type Reset Description 15-2 Reserved R 0h Reserved. Always reads as 0. 1 PMAPRECFG RW 0h Port mapping reconfiguration control bit 0b = Configuration allowed only once 1b = Allow reconfiguration of port mapping 0 PMAPLOCKED R 1h Port mapping lock bit. Read only 0b = Access to mapping registers is granted 1b = Access to mapping registers is locked 13.3.3 PxMAPy Register Port Px.y Mapping Register Figure 13-3. PxMAPy Register 7 6 5 4 3 2 1 0 rw-0 (1) rw-0 (1) rw-0 (1) rw-0 (1) PMAPx rw-0 (1) (1) rw-0 (1) rw-0 (1) rw-0 (1) If not all bits are required to decode all provided functions, the unused bits are r0. Table 13-7. PxMAPy Register Description Bit Field Type Reset Description 7-0 PMAPx RW 0h Selects secondary port function. Settings are device-dependent; see the devicespecific data sheet. 432 Port Mapping Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Chapter 14 SLAU208O – June 2008 – Revised May 2015 Cyclic Redundancy Check (CRC) Module The cyclic redundancy check (CRC) module provides a signature for a given data sequence. This chapter describes the operation and use of the CRC module. NOTE: The CRC module on the MSP430F543x and MSP430F541x non-A versions does not support the bit-wise reverse feature described in this module description. Registers CRCDIRB and CRCRESR, along with their respective functionality, are not available. Topic 14.1 14.2 14.3 14.4 ........................................................................................................................... Cyclic Redundancy Check (CRC) Module Introduction .......................................... CRC Standard and Bit Order .............................................................................. CRC Checksum Generation ............................................................................... CRC Registers.................................................................................................. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Module Copyright © 2008–2015, Texas Instruments Incorporated Page 434 434 435 438 433 Cyclic Redundancy Check (CRC) Module Introduction www.ti.com 14.1 Cyclic Redundancy Check (CRC) Module Introduction The CRC module produces a signature for a given sequence of data values. The signature is generated through a feedback path from data bits 0, 4, 11, and 15 (see Figure 14-1). The CRC signature is based on the polynomial given in the CRC-CCITT-BR polynomial (see Equation 12) . f(x) = x16 + x12 + x5 +1 (12) Data In Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D Bit 15 Bit 12 Bit 11 Bit 10 Bit 6 Bit 5 Bit 4 Bit 3 Bit 1 Bit 0 Shift Clock Figure 14-1. LFSR Implementation of CRC-CCITT Standard, Bit 0 is the MSB of the Result Identical input data sequences result in identical signatures when the CRC is initialized with a fixed seed value, whereas different sequences of input data, in general, result in different signatures. 14.2 CRC Standard and Bit Order The definitions of the various CRC standards were done in the era of main frame computers, and by convention bit 0 was treated as the MSB. Today, as in most microcontrollers such as the MSP430, bit 0 normally denotes the LSB. In Figure 14-1, the bit convention shown is as given in the original standards i.e. bit 0 is the MSB. The fact that bit 0 is treated for some as LSB, and for others as MSB, continues to cause confusion. The CRC16 module therefore provides a bit reversed register pair for CRC16 operations to support both conventions. 434 Cyclic Redundancy Check (CRC) Module Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CRC Checksum Generation www.ti.com 14.3 CRC Checksum Generation The CRC generator is first initialized by writing a 16-bit word (seed) to the CRC Initialization and Result (CRCINIRES) register. Any data that should be included into the CRC calculation must be written to the CRC Data Input (CRCDI or CRCDIRB) register in the same order that the original CRC signature was calculated. The actual signature can be read from the CRCINIRES register to compare the computed checksum with the expected checksum. Signature generation describes a method on how the result of a signature operation can be calculated. The calculated signature, which is computed by an external tool, is called checksum in the following text. The checksum is stored in the product's memory and is used to check the correctness of the CRC operation result. 14.3.1 CRC Implementation To allow parallel processing of the CRC, the linear feedback shift register (LFSR) functionality is implemented with an XOR tree. This implementation shows the identical behavior as the LFSR approach after 8 bits of data are shifted in when the LSB is 'shifted' in first. The generation of a signature calculation has to be started by writing a seed to the CRCINIRES register to initialize the register. Software or hardware (for example, DMA) can transfer data to the CRCDI or CRCDIRB register (for example, from memory). The value in CRCDI or CRCDIRB is then included into the signature, and the result is available in the signature result registers at the next read access (CRCINIRES and CRCRESR). The signature can be generated using word or byte data. If a word data is processed, the lower byte at the even address is used at the first clock (MCLK) cycle. During the second clock cycle, the higher byte is processed. Thus, it takes two clock cycles to process word data, while it takes only one clock (MCLK) cycle to process byte data. Data bytes written to CRCDIRB in word mode or the data byte in byte mode are bit-wise reversed before the CRC engine adds them to the signature. The bits among each byte are reversed. Data bytes written to CRCDI in word mode or the data byte in byte mode are not bit reversed before use by the CRC engine. If the Check Sum itself (with reversed bit order) is included into the CRC operation (as data written to CRCDI or CRCDIRB), the result in the CRCINIRES and CRCRESR registers must be zero. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Module Copyright © 2008–2015, Texas Instruments Incorporated 435 CRC Checksum Generation www.ti.com Data In 8-bit or 16-bit CRC Data In Register CRCDI 8 8 Byte MUX 8 Write to CRCINIRES 16 16 CRC Initialization and Result Register CRCINIRES Figure 14-2. Implementation of CRC-CCITT Using the CRCDI and CRCINIRES Registers 14.3.2 Assembler Examples 14.3.2.1 General Assembler Example This example demonstrates the operation of the on-chip CRC: ... PUSH PUSH MOV MOV MOV L1 MOV CMP JLO MOV TST JNZ ... POP POP 436 R4 R5 #StartAddress,R4 #EndAddress,R5 &INIT, &CRCINIRES @R4+,&CRCDI R5,R4 L1 &Check_Sum,&CRCDI &CRCINIRES CRC_ERROR R5 R4 ; Save registers ; StartAddress < EndAddress ; ; ; ; ; ; ; ; ; ; INIT to CRCINIRES Item to Data In register End address reached? No Yes, Include checksum Result = 0? No, CRCRES <> 0: error Yes, CRCRES=0: information ok. Restore registers Cyclic Redundancy Check (CRC) Module Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CRC Checksum Generation www.ti.com 14.3.2.2 Reference Data Sequence The details of the implemented CRC algorithm is shown by the following data sequences using word or byte accesses and the CRC data-in as well as the CRC data-in reverse byte registers: ... mov mov.b mov.b mov.b mov.b mov.b mov.b mov.b mov.b mov.b #0FFFFh,&CRCINIRES #00031h,&CRCDI_L #00032h,&CRCDI_L #00033h,&CRCDI_L #00034h,&CRCDI_L #00035h,&CRCDI_L #00036h,&CRCDI_L #00037h,&CRCDI_L #00038h,&CRCDI_L #00039h,&CRCDI_L ; ; ; ; ; ; ; ; ; ; initialize CRC "1" "2" "3" "4" "5" "6" "7" "8" "9" cmp #089F6h,&CRCINIRES jeq br &Success &Error ; ; ; ; compare result CRCRESR contains 06F91h no error to error handler mov mov.w mov.w mov.w mov.w mov.b #0FFFFh,&CRCINIRES #03231h,&CRCDI #03433h,&CRCDI #03635h,&CRCDI #03837h,&CRCDI #039h, &CRCDI_L ; ; ; ; ; ; initialize CRC "1" & "2" "3" & "4" "5" & "6" "7" & "8" "9" cmp #089F6h,&CRCINIRES jeq br &Success &Error ; compare result ; CRCRESR contains 06F91h ; no error ; to error handler ... mov mov.b mov.b mov.b mov.b mov.b mov.b mov.b mov.b mov.b #0FFFFh,&CRCINIRES #00031h,&CRCDIRB_L #00032h,&CRCDIRB_L #00033h,&CRCDIRB_L #00034h,&CRCDIRB_L #00035h,&CRCDIRB_L #00036h,&CRCDIRB_L #00037h,&CRCDIRB_L #00038h,&CRCDIRB_L #00039h,&CRCDIRB_L ; ; ; ; ; ; ; ; ; ; initialize CRC "1" "2" "3" "4" "5" "6" "7" "8" "9" cmp #029B1h,&CRCINIRES jeq br &Success &Error ; ; ; ; compare result CRCRESR contains 08D94h no error to error handler ... mov mov.w mov.w mov.w mov.w mov.b #0FFFFh,&CRCINIRES #03231h,&CRCDIRB #03433h,&CRCDIRB #03635h,&CRCDIRB #03837h,&CRCDIRB #039h, &CRCDIRB_L ; ; ; ; ; ; initialize CRC "1" & "2" "3" & "4" "5" & "6" "7" & "8" "9" cmp #029B1h,&CRCINIRES jeq br &Success &Error ; ; ; ; compare result CRCRESR contains 08D94h no error to error handler SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Module Copyright © 2008–2015, Texas Instruments Incorporated 437 CRC Registers www.ti.com 14.4 CRC Registers The CRC module registers are listed in Table 14-1. The base address can be found in the device-specific data sheet. The address offset is given in Table 14-1. NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix "_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H" (ANYREG_H) refers to the upper byte of the register (bits 8 through 15). Table 14-1. CRC Registers Offset Acronym Register Name Type Access Reset Section 0000h CRCDI CRC Data In Read/write Word 0000h Section 14.4.1 0000h CRCDI_L Read/write Byte 00h 0001h CRCDI_H Read/write Byte 00h Read/write Word 0000h 0002h CRCDIRB_L Read/write Byte 00h 0003h CRCDIRB_H Read/write Byte 00h Read/write Word FFFFh Read/write Byte FFh Read/write Byte FFh Read only Word FFFFh 0006h CRCRESR_L Read/write Byte FFh 0007h CRCRESR_H Read/write Byte FFh 0002h 0004h CRCDIRB CRCINIRES CRC Data In Reverse Byte (1) CRC Initialization and Result 0004h CRCINIRES_L 0005h CRCINIRES_H 0006h (1) 438 CRCRESR CRC Result Reverse (1) Section 14.4.2 Section 14.4.3 Section 14.4.4 Not available on MSP430F543x and MSP430F541x non-A versions. Cyclic Redundancy Check (CRC) Module Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CRC Registers www.ti.com 14.4.1 CRCDI Register CRC Data In Register Figure 14-3. CRCDI Register 15 14 13 12 rw-0 rw-0 rw-0 rw-0 7 6 5 4 11 10 9 8 rw-0 rw-0 rw-0 rw-0 3 2 1 0 rw-0 rw-0 rw-0 rw-0 CRCDI CRCDI rw-0 rw-0 rw-0 rw-0 Table 14-2. CRCDI Register Description Bit Field Type Reset Description 15-0 CRCDI RW 0h CRC data in. Data written to the CRCDI register is included to the present signature in the CRCINIRES register according to the CRC-CCITT standard. 14.4.2 CRCDIRB Register CRC Data In Reverse Register Figure 14-4. CRCDIRB Register 15 14 13 12 11 10 9 8 rw-0 rw-0 rw-0 rw-0 3 2 1 0 rw-0 rw-0 rw-0 rw-0 CRCDIRB rw-0 rw-0 rw-0 rw-0 7 6 5 4 CRCDIRB rw-0 rw-0 rw-0 rw-0 Table 14-3. CRCDIRB Register Description Bit Field Type Reset Description 15-0 CRCDIRB RW 0h CRC data in reverse byte. Data written to the CRCDIRB register is included to the present signature in the CRCINIRES and CRCRESR registers according to the CRC-CCITT standard. Reading the register returns the register CRCDI content. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Module Copyright © 2008–2015, Texas Instruments Incorporated 439 CRC Registers www.ti.com 14.4.3 CRCINIRES Register CRC Initialization and Result Register Figure 14-5. CRCINIRES Register 15 14 13 12 rw-1 rw-1 rw-1 rw-1 7 6 5 4 11 10 9 8 rw-1 rw-1 rw-1 rw-1 3 2 1 0 rw-1 rw-1 rw-1 rw-1 CRCINIRES CRCINIRES rw-1 rw-1 rw-1 rw-1 Table 14-4. CRCINIRES Register Description Bit Field Type Reset Description 15-0 CRCINIRES RW FFFFh CRC initialization and result. This register holds the current CRC result (according to the CRC-CCITT standard). Writing to this register initializes the CRC calculation with the value written to it. The value just written can be read from CRCINIRES register. 14.4.4 CRCRESR Register CRC Reverse Result Register Figure 14-6. CRCRESR Register 15 14 13 12 r-1 r-1 r-1 r-1 7 6 5 4 11 10 9 8 r-1 r-1 r-1 r-1 3 2 1 0 r-1 r-1 r-1 r-1 CRCRESR CRCRESR r-1 r-1 r-1 r-1 Table 14-5. CRCRESR Register Description Bit Field Type Reset Description 15-0 CRCRESR R FFFFh CRC reverse result. This register holds the current CRC result (according to the CRC-CCITT standard). The order of bits is reversed (for example, CRCINIRES[15] = CRCRESR[0]) compared to the order of bits in the CRCINIRES register (see example code). 440 Cyclic Redundancy Check (CRC) Module Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Chapter 15 SLAU208O – June 2008 – Revised May 2015 AES Accelerator The AES accelerator module performs AES128 encryption or decryption in hardware. This chapter describes the AES accelerator. Topic 15.1 15.2 15.3 ........................................................................................................................... Page AES Accelerator Introduction ............................................................................. 442 AES Accelerator Operation ................................................................................ 443 AES_ACCEL Registers ...................................................................................... 448 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback AES Accelerator Copyright © 2008–2015, Texas Instruments Incorporated 441 AES Accelerator Introduction www.ti.com 15.1 AES Accelerator Introduction The AES accelerator module performs encryption and decryption of 128-bit data with 128-bit keys according to the advanced encryption standard (AES) (FIPS PUB 197) in hardware. The AES accelerator features are: • Encryption and decryption according to AES FIPS PUB 197 with 128-bit key • On-the-fly key expansion for encryption and decryption • Off-line key generation for decryption • Byte and word access to key, input, and output data • AES ready interrupt flag The AES accelerator block diagram is shown in Figure 15-1. AESADIN AESAKEY Key Buffer AES128 Encryption/ Decryption Core AESADOUT Figure 15-1. AES Accelerator Block Diagram 442 AES Accelerator SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated AES Accelerator Operation www.ti.com 15.2 AES Accelerator Operation The AES accelerator is configured with user software. The setup and operation is discussed in the following sections. Internally, the AES algorithm’s operations are performed on a two-dimensional array of bytes called the State. For AES-128, the State consists of four rows of bytes, each containing four bytes. The input is assigned to the State array as illustrated in Figure 15-2, with in[0] being the first data byte written into the AES accelerator data input register, AESADIN. The encrypt or decrypt operations are then conducted on the State array, after which its final values can be read from the output with out[0] being the first data byte read from the AES accelerator data output register, AESADOUT. Input bytes State array Output bytes in[0] in[4] in[8] in[12] s[0,0] s[0,1] s[0,2] s[0,3] out[0] out[4] out[8] out[12] in[1] in[5] in[9] in[13] s[1,0] s[1,1] s[1,2] s[1,3] out[1] out[5] out[9] out[13] in[2] in[6] in[10] in[14] s[2,0] s[2,1] s[2,2] s[2,3] out[2] out[6] out[10] out[14] in[3] in[7] in[11] in[15] s[3,0] s[3,1] s[3,2] s[3,3] out[3] out[7] out[11] out[15] Figure 15-2. AES State Array Input and Output The module allows word and byte access to all data registers, AESAKEY, AESADIN, and AESADOUT. Word and byte access should not be mixed while reading from or writing into one of the registers. However, it is possible to write one of the registers using byte access and another using word access. NOTE: Access Restrictions While the AES accelerator is busy (AESBUSY = 1), AESADOUT always reads as zero, the AESDOUTCNTx counter, the AESDOUTRD flag, and the AESDINWR flag are reset, any attempt to change AESOPx, AESDINWR, or AESKEYWR is ignored, and writing to AESAKEY or AESADIN aborts the current operation, the complete module is reset (except for AESRDYIE and AESOPx), and the AES error flag AESERRFG is set. AESADIN and AESAKEY are write-only registers and always read as zero. Writing data into AESADIN influences the content of the corresponding output data; for example, writing in[0] alters out[0], writing in[1] alters out[1], etc., but interleafed operation is possible; for example, first reading out[0], then writing in[0], and continuing with reading out[1], writing in[1], etc. NOTE: When using a code debugger, the AES module does not stop its operation when program code is halted or single stepped. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback AES Accelerator Copyright © 2008–2015, Texas Instruments Incorporated 443 AES Accelerator Operation www.ti.com 15.2.1 Encryption Figure 15-3 shows the encryption process with the cipher being a series of transformations that converts the plaintext written into the AESADIN register to a ciphertext that can be read from the AESADOUT register using the cipher key provided via the AESAKEY register. Cipher Key (AESAKEY) Plaintext (AESADIN) Initial Key Initial Round Round Key 1 Round 1 Round Key 2 Round 2 Round Key 9 Round 9 Round Key 10 Final Round Cipher Encryption Process Ciphertext (AESADOUT) Figure 15-3. AES-128 Encryption Process The steps to perform encryption are: 1. Set AESOPx = 00 to select encryption. Changing the AESOPx bits clears the AESKEYWR flag, and a new key must be loaded in the next step. 2. Load the 128-bit key into AESAKEY or set the AESKEYWR flag by software, if the key from a previous operation should be used. When all 16 bytes are written, the AESKEYWR flag indicates completion. If a key was loaded previously without changing AESOPx, the AESKEYWR flag is cleared with the first write access to AESAKEY. Loading the key mist be completed before the next step is performed. 3. Load 128-bit data into AESADIN, or set the AESDINWR flag by software if the output data from a previous operation should be encrypted. When all 16 bytes are written, the AESDINWR flag indicates completion. The module starts encrypting the presented data when AESDINWR = 1. 4. While the AES module is performing encryption, the AESBUSY bit is 1. The encryption takes 167 MCLK clock cycles. After its completion, the AESRDYIFG is set, and the result can be read from AESADOUT. When all 16 bytes are read, the AESDOUTRD flag indicates completion. The AESRDYIFG flag is cleared when reading AESADOUT or writing to AESAKEY or AESADIN. 5. If additional data should be encrypted with the same key loaded in step 2, new data can be written into AESADIN after the results of the operation on the previous data were read from AESADOUT. When an additional 16 data bytes are written, the module automatically starts the encryption using the key loaded in step 2. When using the output feedback (OFB) cipher block chaining mode, setting the AESDINWR flag is sufficient to trigger the next encryption, and the module starts the encryption automatically using the output data from the previous encryption as input data. 444 AES Accelerator SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated AES Accelerator Operation www.ti.com 15.2.2 Decryption Figure 15-4 shows the decryption process with the inverse cipher being a series of transformations that convert the ciphertext written into the AESADIN register to a plaintext that can be read from the AESADOUT register using the cipher key provided via the AESAKEY register. Decrypt Key Generation Decryption Process – Inverse Cipher Initial Key Initial Key Inverse Initial Round Round Key 1 Round Key 1 Inverse Round 1 Round Key 2 Round Key 2 Inverse Round 2 Round Key 9 Round Key 9 Inverse Round 9 Round Key 10 Round Key 10 Inverse Final Round Inverse Cipher Plaintext (AESADOUT) Cipher Key (AESAKEY) Ciphertext (AESADIN) Figure 15-4. AES-128 Decryption Process using AESOPx = 01 The steps to perform decryption are: 1. Set AESOPx = 01 to select decryption using the same key used for encryption. Set AESOPx = 11 if the first-round key required for decryption (round key 10) is already generated and is loaded in step 2. Changing the AESOPx bits clears the AESKEYWR flag, and a new key must be loaded in step 2. 2. Load the 128-bit key into AESAKEY, or set the AESKEYWR flag by software, if the key from a previous operation should be used. When all 16 bytes are written, the AESKEYWR flag indicates completion. If a key was loaded previously without changing AESOPx, the AESKEYWR flag is cleared with the first write access to AESAKEY. Loading the key must be completed before the next step is performed. 3. Load 128-bit data into AESADIN or set the AESDINWR flag by software if the output data from a previous operation should be decrypted. When all 16 bytes are written, the AESDINWR flag indicates completion. The module starts decrypting the presented data as soon as AESDINWR = 1. 4. While the AES module is performing decryption, the AESBUSY bit is 1. The decryption takes 214 MCLK clock cycles with AESOPx = 01 and 167 MCLK clock cycles with AESOPx = 11. After its completion, the AESRDYIFG is set, and the result can be read from AESADOUT. When all 16 bytes are read the AESDOUTRD flag indicates completion. The AESRDYIFG flag is cleared when reading AESADOUT or writing to AESAKEY or AESADIN. 5. If additional data should be decrypted with the same key loaded in step 2, new data can be written into AESADIN after the results of the operation on the previous data were read from AESADOUT. When additional 16 data bytes are written, the module automatically starts the decryption using the key loaded in step 2. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback AES Accelerator Copyright © 2008–2015, Texas Instruments Incorporated 445 AES Accelerator Operation www.ti.com 15.2.3 Decryption Key Generation Figure 15-5 shows the decryption process with a pregenerated decryption key. In this case, the decryption key is calculated first with AESOPx = 10, then the precalculated key can be used together with the decryption operation AESOPx = 11. Decrypt Key Generation (AESOPx = 10) Decryption Process – Inverse Cipher (AESOPx = 11) Initial Key Initial Key Inverse Initial Round Round Key 1 Round Key 1 Inverse Round 1 Round Key 2 Round Key 2 Inverse Round 2 Round Key 9 Round Key 9 Inverse Round 9 Round Key 10 Round Key 10 Inverse Final Round Pregenerated Key (AESADOUT) Pregenerated Key (AESAKEY) Ciphertext (AESADIN) Inverse Cipher Plaintext (AESADOUT) Cipher Key (AESAKEY) Figure 15-5. AES-128 Decryption Process using AESOPx = 10 and 11 To generate the decryption key independent from the actual decryption, the following steps are required: 1. Set AESOPx = 10 to select decryption key generation. Changing the AESOPx bits clears the AESKEYWR flag, and a new key must be loaded in step 2. 2. Load the 128-bit key into AESAKEY, or set the AESKEYWR flag by software if the key from a previous operation should be used. When all 16 bytes are written, the AESKEYWR flag indicates completion. The generation of the first round key required for decryption is started immediately. 3. While the AES module is performing the key generation, the AESBUSY bit is 1. It takes 52 CPU clock cycles to complete the key generation. After its completion, the AESRDYIFG is set, and the result can be read from AESADOUT. When all 16 bytes are read, the AESDOUTRD flag indicates completion. The AESRDYIFG flag is cleared when reading AESADOUT or writing to AESAKEY or AESADIN. 4. If data should be decrypted with the generated key, AESOPx must be set to 11. Then the generated key must be loaded or, if it was just generated with AESOPx = 10, it is sufficient to set the AESKEYWR flag by software to indicate that the key is already valid. Afterward, the steps described in Section 15.2.2 to load the data, etc., must be followed. 446 AES Accelerator SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated AES Accelerator Operation www.ti.com 15.2.4 Using the AES Accelerator With Low-Power Modes The AES accelerator module provides automatic clock activation for MCLK for use with low-power modes. When the AES accelerator is busy, it automatically activates MCLK, regardless of the control-bit settings for the clock source. The clock remains active until the AES accelerator completes its operation. 15.2.5 AES Accelerator Interrupts The AESRDYIFG interrupt flag is set when the AES module completes the selected operation on the provided data. An interrupt request is generated if AESRDYIE and GIE are also set. AESRDYIFG is automatically reset if the AES interrupt is serviced, if AESADOUT is read, or if AESADIN or AESAKEY are written. AESRDYIFG is reset after a PUC or with AESSWRST = 1. AESRDYIE is reset after a PUC but is not reset by AESSWRST = 1. 15.2.6 Implementing Block Cipher Modes All block cipher modes can be implemented using the AES accelerator together with software. A separate application report describes the block cipher modes together with their implementation in software. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback AES Accelerator Copyright © 2008–2015, Texas Instruments Incorporated 447 AES_ACCEL Registers www.ti.com 15.3 AES_ACCEL Registers The AES Accelerator registers are listed in Table 15-1. Table 15-1. AES_ACCEL Registers 448 Offset Acronym Register Name Type Access Reset Section 000h AESACTL0 AES accelerator control register 0 Read/write Word 00h Section 15.3.1 002h AESACTL1 AES accelerator control register 1 Read/write Word 00h Section 15.3.2 004h AESASTAT AES accelerator status register Read only Word 00h Section 15.3.3 006h AESAKEY AES accelerator key register Read/write Word 00h Section 15.3.4 008h AESADIN AES accelerator data in register Read/write Word 00h Section 15.3.5 00Ah AESADOUT AES accelerator data out register Read/write Word 00h Section 15.3.6 00Ch AESAXDIN AES accelerator XORed data in register Read/write Word 00h Section 15.3.7 00Eh AESAXIN AES accelerator XORed data in register (no trigger) Read/write Word 00h Section 15.3.8 AES Accelerator SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated AES_ACCEL Registers www.ti.com 15.3.1 AESACTL0 Register AES Accelerator Control Register 0 AESACTL0 is shown in Figure 15-6 and described in Table 15-2. Figure 15-6. AESACTL0 Register 15 14 AESCMEN 13 Reserved rw-0 r0 7 6 AESSWRST r0 5 AESCMx rw-0 r0 12 11 AESRDYIE AESERRFG rw-0 rw-0 4 3 Reserved r0 r0 10 9 8 Reserved AESRDYIFG r0 r0 2 1 rw-0 0 AESKLx rw-0 AESOPx rw-0 rw-0 rw-0 Writes are ignored when AESCMEN = 1 and AESBLKCNTx > 0. Table 15-2. AESACTL0 Register Description Bit Field Type Reset Description 15 AESCMEN RW 0h AESCMEN enables the support of the ciphermodes ECB, CBC, OFB, and CFB together with the DMA. Writes are ignored when AESCMEN = 1 and AESBLKCNTx > 0. 0 = No DMA triggers are generated 1 = DMA ciphermode support operation is enabled and the corresponding DMA triggers are generated. 14-13 Reserved R 0h Reserved 12 AESRDYIE RW 0h AES ready interrupt enable. AESRDYIE is not reset by AESSWRST = 1. 0 = Interrupt disabled 1 = Interrupt enabled 11 AESERRFG RW 0h AES error flag. AESAKEY or AESADIN were written while an AES operation was in progress. The bit must be cleared by software. 0 = No error 1 = Error occurred 10-9 Reserved R 0h Reserved 8 AESRDYIFG RW 0h AES ready interrupt flag. Set when the selected AES operation was completed and the result can be read from AESADOUT. Automatically cleared when AESADOUT is read or AESAKEY or AESADIN is written. 0 = No interrupt pending 1 = Interrupt pending 7 AESSWRST RW 0h AES software reset. Immediately resets the complete AES accelerator module even when busy except for the AESRDYIE, AESKLx, and AESOPx bits. It also clears the (internal) state memory. The AESSWRST bit is automatically reset and always reads as zero. 0 = No reset 1 = Reset AES accelerator module 6-5 AESCMx R 0h AES cipher mode select. These bits are ignored for AESCMEN = 0. Writes are ignored when AESCMEN = 1 and AESBLKCNTx > 0. 00 = ECB 01 = CBC 10 = OFB 11 = CFB 4 Reserved R 0h Reserved SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback AES Accelerator Copyright © 2008–2015, Texas Instruments Incorporated 449 AES_ACCEL Registers www.ti.com Table 15-2. AESACTL0 Register Description (continued) Bit Field Type Reset Description 3-2 AESKLx RW 0h AES key length. These bits define which of the three AES standards is performed. The AESKLx bits are not reset by AESSWRST = 1. Writes are ignored when AESCMEN = 1 and AESBLKCNTx > 0. 00 = AES128. The key size is 128 bit. 01 = AES192. The key size is 192 bit. 10 = AES256. The key size is 256 bit. 11 = Reserved 1-0 AESOPx RW 0h AES operation. The AESOPx bits are not reset by AESSWRST = 1. Writes are ignored when AESCMEN = 1 and AESBLKCNTx > 0. 00 = Encryption 01 = Decryption. The provided key is the same key used for encryption. 10 = Generate first round key required for decryption. 11 = Decryption. The provided key is the first round key required for decryption. 15.3.2 AESACTL1 Register AES Accelerator Control Register 1 AESACTL1 is shown in Figure 15-7 and described in Table 15-3. Figure 15-7. AESACTL1 Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 rw-0 rw-0 rw-0 rw-0 Reserved AESBLKCNTx rw-0 rw-0 rw-0 rw-0 Writes are ignored when AESCMEN = 1 and AESBLKCNTx > 0. Table 15-3. AESACTL1 Register Description Bit Field Type Reset Description 15-8 Reserved R 0 Reserved. Always reads 0. 7-0 AESBLKCNTx RW 0 Cipher Block Counter. Number of blocks to be encrypted or decrypted with block cipher modes enabled (AESCMEN = 1). Ignored if AESCMEN = 0. The block counter decrements with each performed encryption or decryption. Writes are ignored when AESCMEN = 1 and AESBLKCNTx > 0. 450 AES Accelerator SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated AES_ACCEL Registers www.ti.com 15.3.3 AESASTAT Register AES Accelerator Status Register AESASTAT is shown in Figure 15-8 and described in Table 15-4. Figure 15-8. AESASTAT Register 15 14 13 12 11 10 AESDOUTCNTx r-0 r-0 7 6 r-0 r-0 5 4 AESKEYCNTx r-0 r-0 9 8 r-0 r-0 AESDINCNTx r-0 r-0 r-0 r-0 3 2 1 0 AESDOUTRD AESDINWR AEKEYWR AESBUSY r-0 rw-0 rw-0 r-0 Table 15-4. AESASTAT Register Description Bit Field Type Reset Description 15-12 AESDOUTCNTx R 0h Bytes read from AESADOUT. Reset when AESDOUTRD is reset. If AESDOUTCNTx = 0 and AESDOUTRD = 0, no bytes were read. If AESDOUTCNTx = 0 and AESDOUTRD = 1, all bytes were read. 11-8 AESDINCNTx R 0h Bytes written by AESADIN, AESAXDIN, or AESAXIN. Reset when AESDINWR is reset. If AESDINCNTx = 0 and AESDINWR = 0, no bytes were written. If AESDINCNTx = 0 and AESDINWR = 1, all bytes were written. 7-4 AESKEYCNTx R 0h Bytes written by AESAKEY for AESKLx = 00, words written by AESAKEY if AESKLx = 01, 10, or 11. Reset when AESKEYWR is reset. If AESKEYCNTx = 0 and AESKEYWR = 0, no bytes were written. If AESKEYCNTx = 0 and AESKEYWR = 1, all bytes were written. 3 AESDOUTRD R 0h All 16 bytes read from AESADOUT. AESDOUTRD is reset by PUC, AESSWRST, an error condition, changing AESOPx, changing AESKLx, when the AES accelerator is busy, or when the output data is read again. 0 = Not all bytes read 1 = All bytes read 2 AESDINWR RW 0h All 16 bytes written to AESADIN, AESAXDIN, or AESAXIN. This bit can be modified by software only if AESCMEN = 0. Changing its state by software also resets the AESDINCNTx bits. AESDINWR is reset by PUC, AESSWRST, an error condition, changing AESOPx, changing AESKLx, the start to (over)write the data, or when the AES accelerator is busy. Because it is reset when AESOPx or AESKLx is changed, it can be set by software again to indicate that the current data is still valid. 0 = Not all bytes written 1 = All bytes written 1 AESKEYWR RW 0h All 16 bytes written to AESAKEY. This bit can be modified by software but it must not be reset by software (1→0) if AESCMEN = 1. Changing its state by software also resets the AESKEYCNTx bits. AESKEYWR is reset by PUC, AESSWRST, an error condition, changing AESOPx, changing AESKLx, or the start to (over)write a new key. Because it is reset when AESOPx is changed, it can be set by software again to indicate that the loaded key is still valid. 0 = Not all bytes written 1 = All bytes written 0 AESBUSY R 0h AES accelerator module busy; encryption, decryption, or key generation in progress. 0 = Not busy 1 = Busy SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback AES Accelerator Copyright © 2008–2015, Texas Instruments Incorporated 451 AES_ACCEL Registers www.ti.com 15.3.4 AESAKEY Register AES Accelerator Key Register AESAKEY is shown in Figure 15-9 and described in Table 15-5. Figure 15-9. AESAKEY Register 15 14 13 12 11 10 9 8 AESKEY1x (Key Byte n+1) w-0 w-0 w-0 7 6 5 w-0 w-0 w-0 w-0 w-0 4 3 2 1 0 w-0 w-0 w-0 AESKEY0x (Key Byte n) w-0 w-0 w-0 w-0 w-0 Table 15-5. AESAKEY Register Description Bit Field Type Reset Description 15-8 AESKEY1x W 0 AES key byte n+1 when AESAKEY is written as word. Do not use these bits for byte access. Do not mix word and byte access. Always reads as zero. The key is reset by PUC or by AESSWRST = 1. 7-0 AESKEY0x W 0 AES key byte n when AESAKEY is written as word. AES next key byte when AESAKEY_L is written as byte. Do not mix word and byte access. Always reads as zero. The key is reset by PUC or by AESSWRST = 1. 452 AES Accelerator SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated AES_ACCEL Registers www.ti.com 15.3.5 AESADIN Register AES Accelerator Data In Register AESADIN is shown in Figure 15-10 and described in Table 15-6. Figure 15-10. AESADIN Register 15 14 13 12 11 10 9 8 AESDIN1x (DIN Byte n+1) w-0 w-0 w-0 7 6 5 w-0 w-0 w-0 w-0 w-0 4 3 2 1 0 w-0 w-0 w-0 AESDIN0x (DIN Byte n) w-0 w-0 w-0 w-0 w-0 Table 15-6. AESADIN Register Description Bit Field Type Reset Description 15-8 AESDIN1x W 0 AES data in byte n+1 when AESADIN is written as word. Do not use these bits for byte access. Do not mix word and byte access. Always reads as zero. 7-0 AESDIN0x W 0 AES data in byte n when AESADIN is written as word. AES next data in byte when AESADIN_L is written as byte. Do not mix word and byte access. Always reads as zero. 15.3.6 AESADOUT Register AES Accelerator Data Out Register AESADOUT is shown in Figure 15-11 and described in Table 15-7. Figure 15-11. AESADOUT Register 15 14 13 12 11 10 9 8 2 1 0 AESDOUT1x (DOUT Byte n+1) 7 6 5 4 3 AESDOUT0x (DOUT Byte n) Table 15-7. AESADOUT Register Description Bit Field Type Reset Description 15-8 AESDOUT1x R 0 AES data out byte n+1 when AESADOUT is read as word. Do not use these bits for byte access. Do not mix word and byte access. 7-0 AESDOUT0x R 0 AES data out byte n when AESADOUT is read as word. AES next data out byte when AESADOUT_L is read as byte. Do not mix word and byte access. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback AES Accelerator Copyright © 2008–2015, Texas Instruments Incorporated 453 AES_ACCEL Registers www.ti.com 15.3.7 AESAXDIN Register AES Accelerator XORed Data In Register AESAXDIN is shown in Figure 15-12 and described in Table 15-8. Figure 15-12. AESAXDIN Register 15 14 13 12 11 10 9 8 AESXDIN1x (XDIN Byte n+1) w-0 w-0 w-0 7 6 5 w-0 w-0 w-0 w-0 w-0 4 3 2 1 0 w-0 w-0 w-0 AESXDIN0x (XDIN Byte n) w-0 w-0 w-0 w-0 w-0 Table 15-8. AESAXDIN Register Description Bit Field Type Reset Description 15-8 AESXDIN1x W 0 AES data in byte n+1 when AESAXDIN is written as word. Do not use these bits for byte access. Do not mix word and byte access. Always reads as zero. 7-0 AESXDIN0x W 0 AES data in byte n when AESAXDIN is written as word. AES next data in byte when AESAXDIN_L is written as byte. Do not mix word and byte access. Always reads as zero. 15.3.8 AESAXIN Register AES Accelerator XORed Data In Register (No Trigger) AESAXIN is shown in Figure 15-13 and described in Table 15-9. Figure 15-13. AESAXIN Register 15 14 13 12 11 10 9 8 AESXIN1x (DIN Byte n+1) w-0 w-0 w-0 7 6 5 w-0 w-0 w-0 w-0 w-0 4 3 2 1 0 w-0 w-0 w-0 AESXIN0x (DIN Byte n) w-0 w-0 w-0 w-0 w-0 Table 15-9. AESAXIN Register Description Bit Field Type Reset Description 15-8 AESXIN1x W 0 AES data in byte n+1 when AESAXIN is written as word. Do not use these bits for byte access. Do not mix word and byte access. Always reads as zero. 7-0 AESXIN0x W 0 AES data in byte n when AESAXIN is written as word. AES next data in byte when AESAXIN_L is written as byte. Do not mix word and byte access. Always reads as zero. 454 AES Accelerator SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Chapter 16 SLAU208O – June 2008 – Revised May 2015 Watchdog Timer (WDT_A) The watchdog timer is a 32-bit timer that can be used as a watchdog or as an interval timer. This chapter describes the watchdog timer. The enhanced watchdog timer, WDT_A, is implemented in all devices. Topic 16.1 16.2 16.3 ........................................................................................................................... Page WDT_A Introduction.......................................................................................... 456 WDT_A Operation ............................................................................................. 458 WDT_A Registers ............................................................................................. 460 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Watchdog Timer (WDT_A) Copyright © 2008–2015, Texas Instruments Incorporated 455 WDT_A Introduction www.ti.com 16.1 WDT_A Introduction The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. Features of the watchdog timer module include: • Eight software-selectable time intervals • Watchdog mode • Interval mode • Password-protected access to Watchdog Timer Control ( WDTCTL) register • Selectable clock source • Can be stopped to conserve power • Clock fail-safe feature The watchdog timer block diagram is shown in Figure 16-1. NOTE: Watchdog timer powers up active. After a PUC, the WDT_A module is automatically configured in the watchdog mode with an initial ~32-ms reset interval using the SMCLK. The user must setup or halt the WDT_A prior to the expiration of the initial reset interval. 456 Watchdog Timer (WDT_A) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated WDT_A Introduction www.ti.com 32Bit WDT extension 00 01 Int. Flag WDTQn 10 11 Q23 Q19 00 01 10 11 PUC 0 16-bit Counter 1 CLK 1 MDB MSB Q27 0 Pulse Generator WDTCTL Q31 0 1 Q15 Q13 1 Password Compare Q9 Q6 Clear 16-bit Counter (Asyn) CLK 0 1 0 EQU Write Enable Low Byte EQU SMCLK 00 ACLK 01 VLOCLK 10 X_CLK 11 R/W WDTHOLD WDTSSEL1 WDTSSEL0 WDTTMSEL WDTCNTCL WDTIS2 WDTIS1 WDTIS0 LSB X_CLK request Clock Request Logic SMCLK request ACLK request VLOCLK request Figure 16-1. Watchdog Timer Block Diagram SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Watchdog Timer (WDT_A) Copyright © 2008–2015, Texas Instruments Incorporated 457 WDT_A Operation www.ti.com 16.2 WDT_A Operation The watchdog timer module can be configured as either a watchdog or interval timer with the WDTCTL register. WDTCTL is a 16-bit password-protected read/write register. Any read or write access must use word instructions and write accesses must include the write password 05Ah in the upper byte. Any write to WDTCTL with any value other than 05Ah in the upper byte is a password violation and triggers a PUC system reset, regardless of timer mode. Any read of WDTCTL reads 069h in the upper byte. Byte reads on WDTCTL high or low part result in the value of the low byte. Writing byte wide to upper or lower parts of WDTCTL results in a PUC. 16.2.1 Watchdog Timer Counter (WDTCNT) The WDTCNT is a 32-bit up counter that is not directly accessible by software. The WDTCNT is controlled and its time intervals are selected through the Watchdog Timer Control (WDTCTL) register. The WDTCNT can be sourced from SMCLK, ACLK, VLOCLK, or X_CLK on some devices. The clock source is selected with the WDTSSEL bits. The timer interval is selected with the WDTIS bits. 16.2.2 Watchdog Mode After a PUC condition, the WDT module is configured in the watchdog mode with an initial ~32-ms reset interval using the SMCLK. The user must setup, halt, or clear the watchdog timer prior to the expiration of the initial reset interval or another PUC is generated. When the watchdog timer is configured to operate in watchdog mode, either writing to WDTCTL with an incorrect password, or expiration of the selected time interval triggers a PUC. A PUC resets the watchdog timer to its default condition. 16.2.3 Interval Timer Mode Setting the WDTTMSEL bit to 1 selects the interval timer mode. This mode can be used to provide periodic interrupts. In interval timer mode, the WDTIFG flag is set at the expiration of the selected time interval. A PUC is not generated in interval timer mode at expiration of the selected timer interval, and the WDTIFG enable bit WDTIE remains unchanged. When the WDTIE bit and the GIE bit are set, the WDTIFG flag requests an interrupt. The WDTIFG interrupt flag is automatically reset when its interrupt request is serviced, or it may be reset by software. The interrupt vector address in interval timer mode is different from that in watchdog mode. NOTE: Modifying the watchdog timer The watchdog timer interval should be changed together with WDTCNTCL = 1 in a single instruction to avoid an unexpected immediate PUC or interrupt. The watchdog timer should be halted before changing the clock source to avoid a possible incorrect interval. 16.2.4 Watchdog Timer Interrupts The watchdog timer uses two bits in the SFRs for interrupt control: • WDT interrupt flag, WDTIFG, located in SFRIFG1.0 • WDT interrupt enable, WDTIE, located in SFRIE1.0 When using the watchdog timer in the watchdog mode, the WDTIFG flag sources a reset vector interrupt.The WDTIFG will self clear upon a watchdog timeout event. The SYSRSTIV can be read to determine if the reset was caused by a watchdog timeout event. When using the watchdog timer in interval timer mode, the WDTIFG flag is set after the selected time interval and requests a watchdog timer interval timer interrupt if the WDTIE and the GIE bits are set. The interval timer interrupt vector is different from the reset vector used in watchdog mode. In interval timer mode, the WDTIFG flag is reset automatically when the interrupt is serviced, or can be reset with software. 458 Watchdog Timer (WDT_A) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated WDT_A Operation www.ti.com 16.2.5 Clock Fail-Safe Feature The WDT_A provides a fail-safe clocking feature, ensuring the clock to the WDT_A cannot be disabled while in watchdog mode. This means that the low-power modes may be affected by the choice for the WDT_A clock. If SMCLK or ACLK fails as the WDT_A clock source, VLOCLK is automatically selected as the WDT_A clock source. When the WDT_A module is used in interval timer mode, there is no fail-safe feature within WDT_A for the clock source. 16.2.6 Operation in Low-Power Modes The devices have several low-power modes. Different clock signals are available in different low-power modes. The requirements of the application and the type of clocking that is used determine how the WDT_A should be configured. For example, the WDT_A should not be configured in watchdog mode with a clock source that is originally sourced from DCO, XT1 in high-frequency mode, or XT2 via SMCLK or ACLK, if the user wants to use low-power mode 3. In this case, SMCLK or ACLK would remain enabled, increasing the current consumption of LPM3. When the watchdog timer is not required, the WDTHOLD bit can be used to hold the WDTCNT, reducing power consumption. 16.2.7 Software Examples Any write operation to WDTCTL must be a word operation with 05Ah (WDTPW) in the upper byte: ; Periodically clear an active watchdog MOV #WDTPW+WDTIS2+WDTIS1+WDTCNTCL,&WDTCTL ; ; Change watchdog timer interval MOV #WDTPW+WDTCNTCL+SSEL,&WDTCTL ; ; Stop the watchdog MOV #WDTPW+WDTHOLD,&WDTCTL ; ; Change WDT to interval timer mode, clock/8192 interval MOV #WDTPW+WDTCNTCL+WDTTMSEL+WDTIS2+WDTIS0,&WDTCTL SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Watchdog Timer (WDT_A) Copyright © 2008–2015, Texas Instruments Incorporated 459 WDT_A Registers www.ti.com 16.3 WDT_A Registers The watchdog timer module registers are listed in Table 16-1. The base address for the watchdog timer module registers and special function registers (SFRs) can be found in device-specific data sheets. The address offset is given in Table 16-1. NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix "_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H" (ANYREG_H) refers to the upper byte of the register (bits 8 through 15). Table 16-1. WDT_A Registers 460 Offset Acronym Register Name Type Access Reset Section 00h WDTCTL Watchdog Timer Control Read/write Word 6904h Section 16.3.1 00h WDTCTL_L Read/write Byte 04h 01h WDTCTL_H Read/write Byte 69h Watchdog Timer (WDT_A) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated WDT_A Registers www.ti.com 16.3.1 WDTCTL Register Watchdog Timer Control Register Figure 16-2. WDTCTL Register 15 14 13 12 11 10 2 9 8 1 0 WDTPW 7 6 WDTHOLD rw-0 5 WDTSSEL rw-0 rw-0 4 3 WDTTMSEL WDTCNTCL rw-0 r0(w) WDTIS rw-1 rw-0 rw-0 Table 16-2. WDTCTL Register Description Bit Field Type Reset Description 15-8 WDTPW RW 69h Watchdog timer password. Always read as 069h. Must be written as 5Ah; if any other value is written, a PUC is generated. 7 WDTHOLD RW 0h Watchdog timer hold. This bit stops the watchdog timer. Setting WDTHOLD = 1 when the WDT is not in use conserves power. 0b = Watchdog timer is not stopped. 1b = Watchdog timer is stopped. 6-5 WDTSSEL RW 0h Watchdog timer clock source select 00b = SMCLK 01b = ACLK 10b = VLOCLK 11b = X_CLK; VLOCLK in devices that do not support X_CLK 4 WDTTMSEL RW 0h Watchdog timer mode select 0b = Watchdog mode 1b = Interval timer mode 3 WDTCNTCL RW 0h Watchdog timer counter clear. Setting WDTCNTCL = 1 clears the count value to 0000h. WDTCNTCL is automatically reset. 0b = No action 1b = WDTCNT = 0000h 2-0 WDTIS RW 4h Watchdog timer interval select. These bits select the watchdog timer interval to set the WDTIFG flag and/or generate a PUC. 000b = Watchdog clock source /(2^31) (18h:12m:16s at 32.768 kHz) 001b = Watchdog clock source /(2^27) (01h:08m:16s at 32.768 kHz) 010b = Watchdog clock source /(2^23) (00h:04m:16s at 32.768 kHz) 011b = Watchdog clock source /(2^19) (00h:00m:16s at 32.768 kHz) 100b = Watchdog clock source /(2^15) (1 s at 32.768 kHz) 101b = Watchdog clock source /(2^13) (250 ms at 32.768 kHz) 110b = Watchdog clock source /(2^9) (15.625 ms at 32.768 kHz) 111b = Watchdog clock source /(2^6) (1.95 ms at 32.768 kHz) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Watchdog Timer (WDT_A) Copyright © 2008–2015, Texas Instruments Incorporated 461 Chapter 17 SLAU208O – June 2008 – Revised May 2015 Timer_A Timer_A is a 16-bit timer and counter with multiple capture/compare registers. There can be multiple Timer_A modules on a given device (see the device-specific data sheet). This chapter describes the operation and use of the Timer_A module. Topic 17.1 17.2 17.3 462 ........................................................................................................................... Page Timer_A Introduction ........................................................................................ 463 Timer_A Operation............................................................................................ 465 Timer_A Registers ............................................................................................ 477 Timer_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_A Introduction www.ti.com 17.1 Timer_A Introduction Timer_A is a 16-bit timer/counter with up to seven capture/compare registers. Timer_A can support multiple capture/compares, PWM outputs, and interval timing. Timer_A also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer_A features include: • Asynchronous 16-bit timer/counter with four operating modes • Selectable and configurable clock source • Up to seven configurable capture/compare registers • Configurable outputs with pulse width modulation (PWM) capability • Asynchronous input and output latching • Interrupt vector register for fast decoding of all Timer_A interrupts The block diagram of Timer_A is shown in Figure 17-1. NOTE: Use of the word count Count is used throughout this chapter. It means the counter must be in the process of counting for the action to take place. If a particular value is directly written to the counter, an associated action does not take place. NOTE: Nomenclature There may be multiple instantiations of Timer_A on a given device. The prefix TAx is used, where x is a greater than equal to zero indicating the Timer_A instantiation. For devices with one instantiation, x = 0. The suffix n, where n = 0 to 6, represents the specific capture/compare registers associated with the Timer_A instantiation. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_A Copyright © 2008–2015, Texas Instruments Incorporated 463 Timer_A Introduction www.ti.com Timer Block TASSEL ID 2 TAxCLK 00 ACLK 01 SMCLK 10 INCLK 11 IDEX 2 Timer Clock 3 Divider /1.../8 Divider /1/2/4/8 MC 15 0 2 16-bit Timer TAxR Clear Count Mode RC EQU0 Set TAxCTL TAIFG TACLR CCR0 CCR1 CCR2 CCR3 CCR4 CCR5 CCR6 CCIS CM 2 2 CCI6A 00 CCI6B 01 GND 10 VCC 11 logic COV SCS Capture Mode Timer Clock 15 0 0 Sync TAxCCR6 1 Comparator 6 CCI EQU6 SCCI Y A EN CAP 0 1 Set TAxCCR6 CCIFG OUT EQU0 Output Unit4 D Set Q Timer Clock 3 OUT6 Signal Reset POR OUTMOD Figure 17-1. Timer_A Block Diagram 464 Timer_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_A Operation www.ti.com 17.2 Timer_A Operation The Timer_A module is configured with user software. The setup and operation of Timer_A are discussed in the following sections. 17.2.1 16-Bit Timer Counter The 16-bit timer/counter register, TAxR, increments or decrements (depending on mode of operation) with each rising edge of the clock signal. TAxR can be read or written with software. Additionally, the timer can generate an interrupt when it overflows. TAR may be cleared by setting the TACLR bit. Setting TACLR also clears the clock divider counter logic (the divider setting remains unchanged) and count direction for up/down mode. NOTE: Modifying Timer_A registers It is recommended to stop the timer before modifying its operation (with exception of the interrupt enable, interrupt flag, and TACLR) to avoid errant operating conditions. When the timer clock is asynchronous to the CPU clock, any read from TAxR should occur while the timer is not operating or the results may be unpredictable. Alternatively, the timer may be read multiple times while operating, and a majority vote taken in software to determine the correct reading. Any write to TAxR takes effect immediately. 17.2.1.1 Clock Source Select and Divider The timer clock can be sourced from ACLK, SMCLK, or externally via TAxCLK or INCLK. The clock source is selected with the TASSEL bits. The selected clock source may be passed directly to the timer or divided by 2, 4, or 8, using the ID bits. The selected clock source can be further divided by 2, 3, 4, 5, 6, 7, or 8 using the TAIDEX bits. The timer clock divider logic is reset when TACLR is set. NOTE: Timer_A dividers After programming ID or TAIDEX bits, set the TACLR bit. This clears the contents of TAxR and resets the clock divider logic to a defined state. The clock dividers are implemented as down counters. Therefore, when the TACLR bit is cleared, the timer clock immediately begins clocking at the first rising edge of the Timer_A clock source selected with the TASSEL bits and continues clocking at the divider settings set by the ID and TAIDEX bits. 17.2.2 Starting the Timer The timer may be started or restarted in the following ways: • The timer counts when MC > { 0 } and the clock source is active. • When the timer mode is either up or up/down, the timer may be stopped by writing 0 to TAxCCR0. The timer may then be restarted by writing a nonzero value to TAxCCR0. In this scenario, the timer starts incrementing in the up direction from zero. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_A Copyright © 2008–2015, Texas Instruments Incorporated 465 Timer_A Operation www.ti.com 17.2.3 Timer Mode Control The timer has four modes of operation: stop, up, continuous, and up/down (see Table 17-1). The operating mode is selected with the MC bits. Table 17-1. Timer Modes MC Mode 00 Stop 01 Up 10 Continuous 11 Up/down Description The timer is halted. The timer repeatedly counts from zero to the value of TAxCCR0 The timer repeatedly counts from zero to 0FFFFh. The timer repeatedly counts from zero up to the value of TAxCCR0 and back down to zero. 17.2.3.1 Up Mode The up mode is used if the timer period must be different from 0FFFFh counts. The timer repeatedly counts up to the value of compare register TAxCCR0, which defines the period (see Figure 17-2). The number of timer counts in the period is TAxCCR0 + 1. When the timer value equals TAxCCR0, the timer restarts counting from zero. If up mode is selected when the timer value is greater than TAxCCR0, the timer immediately restarts counting from zero. TAxCCR0 Figure 17-2. Up Mode The TAxCCR0 CCIFG interrupt flag is set when the timer counts to the TAxCCR0 value. The TAIFG interrupt flag is set when the timer counts from TAxCCR0 to zero. Figure 17-3 shows the flag set cycle. Timer Clock Timer CCR0-1 CCR0 0h 1h CCR0-1 CCR0 0h Set TAxCTL TAIFG Set TAxCCR0 CCIFG Figure 17-3. Up Mode Flag Setting 17.2.3.1.1 Changing Period Register TAxCCR0 When changing TAxCCR0 while the timer is running, if the new period is greater than or equal to the old period or greater than the current count value, the timer counts up to the new period. If the new period is less than the current count value, the timer rolls to zero. However, one additional count may occur before the counter rolls to zero. 466 Timer_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_A Operation www.ti.com 17.2.3.2 Continuous Mode In the continuous mode, the timer repeatedly counts up to 0FFFFh and restarts from zero as shown in Figure 17-4. The capture/compare register TAxCCR0 works the same way as the other capture/compare registers. 0FFFFh 0h Figure 17-4. Continuous Mode The TAIFG interrupt flag is set when the timer counts from 0FFFFh to zero. Figure 17-5 shows the flag set cycle. Timer Clock Timer FFFEh 0h FFFFh 1h FFFEh FFFFh 0h Set TAxCTL TAIFG Figure 17-5. Continuous Mode Flag Setting 17.2.3.3 Use of Continuous Mode The continuous mode can be used to generate independent time intervals and output frequencies. Each time an interval is completed, an interrupt is generated. The next time interval is added to the TAxCCRn register in the interrupt service routine. Figure 17-6 shows two separate time intervals, t0 and t1, being added to the capture/compare registers. In this usage, the time interval is controlled by hardware, not software, without impact from interrupt latency. Up to n (where n = 0 to 6), independent time intervals or output frequencies can be generated using capture/compare registers. TAxCCR1b TAxCCR0b TAxCCR1c TAxCCR0c TAxCCR0d 0FFFFh TAxCCR1a TAxCCR1d TAxCCR0a t0 t0 t1 t0 t1 t1 Figure 17-6. Continuous Mode Time Intervals SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_A Copyright © 2008–2015, Texas Instruments Incorporated 467 Timer_A Operation www.ti.com Time intervals can be produced with other modes as well, where TAxCCR0 is used as the period register. Their handling is more complex since the sum of the old TAxCCRn data and the new period can be higher than the TAxCCR0 value. When the previous TAxCCRn value plus tx is greater than the TAxCCR0 data, the TAxCCR0 value must be subtracted to obtain the correct time interval. 17.2.3.4 Up/Down Mode The up/down mode is used if the timer period must be different from 0FFFFh counts, and if symmetrical pulse generation is needed. The timer repeatedly counts up to the value of compare register TAxCCR0 and back down to zero (see Figure 17-7). The period is twice the value in TAxCCR0. 0FFFFh TAxCCR0 0h Figure 17-7. Up/Down Mode The count direction is latched. This allows the timer to be stopped and then restarted in the same direction it was counting before it was stopped. If this is not desired, the TACLR bit must be set to clear the direction. Setting TACLR also clears the TAR value and the clock divider counter logic (the divider setting remains unchanged). In up/down mode, the TAxCCR0 CCIFG interrupt flag and the TAIFG interrupt flag are set only once during a period, separated by one-half the timer period. The TAxCCR0 CCIFG interrupt flag is set when the timer counts from TAxCCR0-1 to TAxCCR0, and TAIFG is set when the timer completes counting down from 0001h to 0000h. Figure 17-8 shows the flag set cycle. Timer Clock Timer CCR0-1 CCR0 CCR0-1 CCR0-2 1h 0h Up/Down Set TAxCTL TAIFG Set TAxCCR0 CCIFG Figure 17-8. Up/Down Mode Flag Setting 17.2.3.4.1 Changing Period Register TAxCCR0 When changing TAxCCR0 while the timer is running and counting in the down direction, the timer continues its descent until it reaches zero. The new period takes effect after the counter counts down to zero. When the timer is counting in the up direction, and the new period is greater than or equal to the old period or greater than the current count value, the timer counts up to the new period before counting down. When the timer is counting in the up direction and the new period is less than the current count value, the timer begins counting down. However, one additional count may occur before the counter begins counting down. 468 Timer_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_A Operation www.ti.com 17.2.3.5 Use of Up/Down Mode The up/down mode supports applications that require dead times between output signals (see section Timer_A Output Unit). For example, to avoid overload conditions, two outputs driving an H-bridge must never be in a high state simultaneously. In the example shown in Figure 17-9, the tdead is: tdead = ttimer × ( TAxCCR1 – TAxCCR2) Where: tdead = Time during which both outputs need to be inactive ttimer = Cycle time of the timer clock TAxCCRn = Content of capture/compare register n The TAxCCRn registers are not buffered. They update immediately when written to. Therefore, any required dead time is not maintained automatically. 0FFFFh TAxCCR0 TAxCCR1 TAxCCR2 0h Dead Time Output Mode 6: Toggle/Set Output Mode 2: Toggle/Reset EQU1 EQU1 EQU1 EQU1 TAIFG EQU0 EQU0 EQU2 EQU2 EQU2 EQU2 TAIFG Interrupt Events Figure 17-9. Output Unit in Up/Down Mode 17.2.4 Capture/Compare Blocks Up to seven identical capture/compare blocks, TAxCCRn (where n = 0 to 7), are present in Timer_A. Any of the blocks may be used to capture the timer data or to generate time intervals. 17.2.4.1 Capture Mode The capture mode is selected when CAP = 1. Capture mode is used to record time events. It can be used for speed computations or time measurements. The capture inputs CCIxA and CCIxB are connected to external pins or internal signals and are selected with the CCIS bits. The CM bits select the capture edge of the input signal as rising, falling, or both. A capture occurs on the selected edge of the input signal. If a capture occurs: • The timer value is copied into the TAxCCRn register. • The interrupt flag CCIFG is set. The input signal level can be read at any time via the CCI bit. Devices may have different signals connected to CCIxA and CCIxB. See the device-specific data sheet for the connections of these signals. The capture signal can be asynchronous to the timer clock and cause a race condition. Setting the SCS bit synchronizes the capture with the next timer clock. Setting the SCS bit to synchronize the capture signal with the timer clock is recommended (see Figure 17-10). SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_A Copyright © 2008–2015, Texas Instruments Incorporated 469 Timer_A Operation www.ti.com Timer Clock Timer n–2 n–1 n n+1 n+3 n+2 n+4 CCI Capture Set TAxCCRn CCIFG Figure 17-10. Capture Signal (SCS = 1) NOTE: Changing Capture Inputs Changing capture inputs while in capture mode may cause unintended capture events. To avoid this scenario, capture inputs should only be changed when capture mode is disabled (CM = {0} or CAP = 0). Overflow logic is provided in each capture/compare register to indicate if a second capture was performed before the value from the first capture was read. Bit COV is set when this occurs as shown in Figure 1711. COV must be reset with software. Idle Capture No Capture Taken Capture Read Read Taken Capture Capture Taken Capture Capture Read and No Capture Capture Clear Bit COV in Register TAxCCTLn Second Capture Taken COV = 1 Idle Figure 17-11. Capture Cycle 470 Timer_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_A Operation www.ti.com 17.2.4.1.1 Capture Initiated by Software Captures can be initiated by software. The CMx bits can be set for capture on both edges. Software then sets CCIS1 = 1 and toggles bit CCIS0 to switch the capture signal between VCC and GND, initiating a capture each time CCIS0 changes state: MOV #CAP+SCS+CCIS1+CM_3,&TA0CCTL1 XOR #CCIS0,&TA0CCTL1 NOTE: ; Setup TA0CCTL1, synch. capture mode ; Event trigger on both edges of capture input. ; TA0CCR1 = TA0R Capture Initiated by Software In general, changing capture inputs while in capture mode may cause unintended capture events. For this scenario, switching the capture input between VCC and GND, disabling the capture mode is not required. 17.2.4.2 Compare Mode The compare mode is selected when CAP = 0. The compare mode is used to generate PWM output signals or interrupts at specific time intervals. When TAxR counts to the value in a TAxCCRn, where n represents the specific capture/compare register. • Interrupt flag CCIFG is set. • Internal signal EQUn = 1. • EQUn affects the output according to the output mode. • The input signal CCI is latched into SCCI. 17.2.5 Output Unit Each capture/compare block contains an output unit. The output unit is used to generate output signals, such as PWM signals. Each output unit has eight operating modes that generate signals based on the EQU0 and EQUn signals. 17.2.5.1 Output Modes The output modes are defined by the OUTMOD bits and are described in Table 17-2. The OUTn signal is changed with the rising edge of the timer clock for all modes except mode 0. Output modes 2, 3, 6, and 7 are not useful for output unit 0 because EQUn = EQU0. Table 17-2. Output Modes OUTMODx Mode Description 000 Output The output signal OUTn is defined by the OUT bit. The OUTn signal updates immediately when OUT is updated. 001 Set The output is set when the timer counts to the TAxCCRn value. It remains set until a reset of the timer, or until another output mode is selected and affects the output. 010 Toggle/Reset The output is toggled when the timer counts to the TAxCCRn value. It is reset when the timer counts to the TAxCCR0 value. 011 Set/Reset The output is set when the timer counts to the TAxCCRn value. It is reset when the timer counts to the TAxCCR0 value. 100 Toggle The output is toggled when the timer counts to the TAxCCRn value. The output period is double the timer period. 101 Reset The output is reset when the timer counts to the TAxCCRn value. It remains reset until another output mode is selected and affects the output. 110 Toggle/Set The output is toggled when the timer counts to the TAxCCRn value. It is set when the timer counts to the TAxCCR0 value. 111 Reset/Set The output is reset when the timer counts to the TAxCCRn value. It is set when the timer counts to the TAxCCR0 value. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_A Copyright © 2008–2015, Texas Instruments Incorporated 471 Timer_A Operation www.ti.com 17.2.5.1.1 Output Example—Timer in Up Mode The OUTn signal is changed when the timer counts up to the TAxCCRn value and rolls from TAxCCR0 to zero, depending on the output mode. An example is shown in Figure 17-12 using TAxCCR0 and TAxCCR1. 0FFFFh TAxCCR0 TAxCCR1 0h Output Mode 1: Set Output Mode 2: Toggle/Reset Output Mode 3: Set/Reset Output Mode 4: Toggle Output Mode 5: Reset Output Mode 6: Toggle/Set Output Mode 7: Reset/Set EQU0 TAIFG EQU1 EQU0 TAIFG EQU1 EQU0 TAIFG Interrupt Events Figure 17-12. Output Example – Timer in Up Mode 472 Timer_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_A Operation www.ti.com 17.2.5.1.2 Output Example – Timer in Continuous Mode The OUTn signal is changed when the timer reaches the TAxCCRn and TAxCCR0 values, depending on the output mode. An example is shown in Figure 17-13 using TAxCCR0 and TAxCCR1. 0FFFFh TAxCCR0 TAxCCR1 0h Output Mode 1: Set Output Mode 2: Toggle/Reset Output Mode 3: Set/Reset Output Mode 4: Toggle Output Mode 5: Reset Output Mode 6: Toggle/Set Output Mode 7: Reset/Set TAIFG EQU1 EQU0 TAIFG EQU1 EQU0 Interrupt Events Figure 17-13. Output Example – Timer in Continuous Mode SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_A Copyright © 2008–2015, Texas Instruments Incorporated 473 Timer_A Operation www.ti.com 17.2.5.1.3 Output Example – Timer in Up/Down Mode The OUTn signal changes when the timer equals TAxCCRn in either count direction and when the timer equals TAxCCR0, depending on the output mode. An example is shown in Figure 17-14 using TAxCCR0 and TAxCCR2. 0FFFFh TAxCCR0 TAxCCR2 0h Output Mode 1: Set Output Mode 2: Toggle/Reset Output Mode 3: Set/Reset Output Mode 4: Toggle Output Mode 5: Reset Output Mode 6: Toggle/Set Output Mode 7: Reset/Set TAIFG EQU2 EQU2 EQU2 EQU2 EQU0 EQU0 TAIFG Interrupt Events Figure 17-14. Output Example – Timer in Up/Down Mode NOTE: Switching between output modes When switching between output modes, one of the OUTMOD bits should remain set during the transition, unless switching to mode 0. Otherwise, output glitching can occur, because a NOR gate decodes output mode 0. A safe method for switching between output modes is to use output mode 7 as a transition state: BIS BIC 474 #OUTMOD_7,&TA0CCTL1 #OUTMOD,&TA0CCTL1 ; Set output mode=7 ; Clear unwanted bits Timer_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_A Operation www.ti.com 17.2.6 Timer_A Interrupts Two interrupt vectors are associated with the 16-bit Timer_A module: • TAxCCR0 interrupt vector for TAxCCR0 CCIFG • TAxIV interrupt vector for all other CCIFG flags and TAIFG In capture mode, any CCIFG flag is set when a timer value is captured in the associated TAxCCRn register. In compare mode, any CCIFG flag is set if TAxR counts to the associated TAxCCRn value. Software may also set or clear any CCIFG flag. All CCIFG flags request an interrupt when their corresponding CCIE bit and the GIE bit are set. 17.2.6.1 TAxCCR0 Interrupt The TAxCCR0 CCIFG flag has the highest Timer_A interrupt priority and has a dedicated interrupt vector as shown in Figure 17-15. The TAxCCR0 CCIFG flag is automatically reset when the TAxCCR0 interrupt request is serviced. Capture EQU0 CAP D Timer Clock Set CCIE Q IRQ, Interrupt Service Requested Reset IRACC, Interrupt Request Accepted POR Figure 17-15. Capture/Compare TAxCCR0 Interrupt Flag 17.2.6.2 TAxIV, Interrupt Vector Generator The TAxCCRy CCIFG flags and TAIFG flags are prioritized and combined to source a single interrupt vector. The interrupt vector register TAxIV is used to determine which flag requested an interrupt. The highest-priority enabled interrupt generates a number in the TAxIV register (see register description). This number can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled Timer_A interrupts do not affect the TAxIV value. Any access, read or write, of the TAxIV register automatically resets the highest-pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. For example, if the TAxCCR1 and TAxCCR2 CCIFG flags are set when the interrupt service routine accesses the TAxIV register, TAxCCR1 CCIFG is reset automatically. After the RETI instruction of the interrupt service routine is executed, the TAxCCR2 CCIFG flag generates another interrupt. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_A Copyright © 2008–2015, Texas Instruments Incorporated 475 Timer_A Operation www.ti.com 17.2.6.2.1 TAxIV Software Example The following software example shows the recommended use of TAxIV and the handling overhead. The TAxIV value is added to the PC to automatically jump to the appropriate routine. The example assumes a single instantiation of the largest timer configuration available. The numbers at the right margin show the necessary CPU cycles for each instruction. The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not the task handling itself. The latencies are: • Capture/compare block TA0CCR0: 11 cycles • Capture/compare blocks TA0CCR1, TA0CCR2, TA0CCR3, TA0CCR4, TA0CCR5, TA0CCR6: 16 cycles • Timer overflow TA0IFG: 14 cycles ; Interrupt handler for TA0CCR0 CCIFG. CCIFG_0_HND ; ... ; Start of handler Interrupt latency RETI Cycles 6 5 ; Interrupt handler for TA0IFG, TA0CCR1 through TA0CCR6 CCIFG. TA0_HND 476 ... ADD RETI JMP JMP JMP JMP JMP JMP &TA0IV,PC CCIFG_1_HND CCIFG_2_HND CCIFG_3_HND CCIFG_4_HND CCIFG_5_HND CCIFG_6_HND ; ; ; ; ; ; ; ; ; Interrupt latency Add offset to Jump table Vector 0: No interrupt Vector 2: TA0CCR1 Vector 4: TA0CCR2 Vector 6: TA0CCR3 Vector 8: TA0CCR4 Vector 10: TA0CCR5 Vector 12: TA0CCR6 6 3 5 2 2 2 2 2 2 TA0IFG_HND ... RETI ; Vector 14: TA0IFG Flag ; Task starts here CCIFG_6_HND ... RETI ; Vector 12: TA0CCR6 ; Task starts here ; Back to main program 5 CCIFG_5_HND ... RETI ; Vector 10: TA0CCR5 ; Task starts here ; Back to main program 5 CCIFG_4_HND ... RETI ; Vector 8: TA0CCR4 ; Task starts here ; Back to main program 5 CCIFG_3_HND ... RETI ; Vector 6: TA0CCR3 ; Task starts here ; Back to main program 5 CCIFG_2_HND ... RETI ; Vector 4: TA0CCR2 ; Task starts here ; Back to main program 5 CCIFG_1_HND ... RETI ; Vector 2: TA0CCR1 ; Task starts here ; Back to main program 5 5 Timer_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_A Registers www.ti.com 17.3 Timer_A Registers Timer_A registers are listed in Table 17-3 for the largest configuration available. The base address can be found in the device-specific data sheet. Table 17-3. Timer_A Registers Offset Acronym Register Name Type Access Reset Section 00h TAxCTL Timer_Ax Control Read/write Word 0000h Section 17.3.1 02h TAxCCTL0 Timer_Ax Capture/Compare Control 0 Read/write Word 0000h Section 17.3.3 04h TAxCCTL1 Timer_Ax Capture/Compare Control 1 Read/write Word 0000h Section 17.3.3 06h TAxCCTL2 Timer_Ax Capture/Compare Control 2 Read/write Word 0000h Section 17.3.3 08h TAxCCTL3 Timer_Ax Capture/Compare Control 3 Read/write Word 0000h Section 17.3.3 0Ah TAxCCTL4 Timer_Ax Capture/Compare Control 4 Read/write Word 0000h Section 17.3.3 0Ch TAxCCTL5 Timer_Ax Capture/Compare Control 5 Read/write Word 0000h Section 17.3.3 0Eh TAxCCTL6 Timer_Ax Capture/Compare Control 6 Read/write Word 0000h Section 17.3.3 10h TAxR Timer_Ax Counter Read/write Word 0000h Section 17.3.2 12h TAxCCR0 Timer_Ax Capture/Compare 0 Read/write Word 0000h Section 17.3.4 14h TAxCCR1 Timer_Ax Capture/Compare 1 Read/write Word 0000h Section 17.3.4 16h TAxCCR2 Timer_Ax Capture/Compare 2 Read/write Word 0000h Section 17.3.4 18h TAxCCR3 Timer_Ax Capture/Compare 3 Read/write Word 0000h Section 17.3.4 1Ah TAxCCR4 Timer_Ax Capture/Compare 4 Read/write Word 0000h Section 17.3.4 1Ch TAxCCR5 Timer_Ax Capture/Compare 5 Read/write Word 0000h Section 17.3.4 1Eh TAxCCR6 Timer_Ax Capture/Compare 6 Read/write Word 0000h Section 17.3.4 2Eh TAxIV Timer_Ax Interrupt Vector Read only Word 0000h Section 17.3.5 20h TAxEX0 Timer_Ax Expansion 0 Read/write Word 0000h Section 17.3.6 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_A Copyright © 2008–2015, Texas Instruments Incorporated 477 Timer_A Registers www.ti.com 17.3.1 TAxCTL Register Timer_Ax Control Register Figure 17-16. TAxCTL Register 15 14 13 rw-(0) rw-(0) rw-(0) 6 5 12 11 10 9 rw-(0) rw-(0) rw-(0) rw-(0) Reserved 7 rw-(0) TASSEL 4 ID MC rw-(0) rw-(0) 8 rw-(0) rw-(0) 3 2 1 0 Reserved TACLR TAIE TAIFG rw-(0) w-(0) rw-(0) rw-(0) Table 17-4. TAxCTL Register Description Bit Field Type Reset Description 15-10 Reserved RW 0h Reserved 9-8 TASSEL RW 0h Timer_A clock source select 00b = TAxCLK 01b = ACLK 10b = SMCLK 11b = INCLK 7-6 ID RW 0h Input divider. These bits along with the TAIDEX bits select the divider for the input clock. 00b = /1 01b = /2 10b = /4 11b = /8 5-4 MC RW 0h Mode control. Setting MCx = 00h when Timer_A is not in use conserves power. 00b = Stop mode: Timer is halted 01b = Up mode: Timer counts up to TAxCCR0 10b = Continuous mode: Timer counts up to 0FFFFh 11b = Up/down mode: Timer counts up to TAxCCR0 then down to 0000h 3 Reserved RW 0h Reserved 2 TACLR RW 0h Timer_A clear. Setting this bit clears TAR, the clock divider logic (the divider setting remains unchanged), and the count direction. The TACLR bit is automatically reset and is always read as zero. 1 TAIE RW 0h Timer_A interrupt enable. This bit enables the TAIFG interrupt request. 0b = Interrupt disabled 1b = Interrupt enabled 0 TAIFG RW 0h Timer_A interrupt flag 0b = No interrupt pending 1b = Interrupt pending 478 Timer_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_A Registers www.ti.com 17.3.2 TAxR Register Timer_Ax Counter Register Figure 17-17. TAxR Register 15 14 13 12 rw-(0) rw-(0) rw-(0) rw-(0) 7 6 5 4 11 10 9 8 rw-(0) rw-(0) rw-(0) rw-(0) 3 2 1 0 rw-(0) rw-(0) rw-(0) rw-(0) TAxR TAxR rw-(0) rw-(0) rw-(0) rw-(0) Table 17-5. TAxR Register Description Bit Field Type Reset Description 15-0 TAxR RW 0h Timer_A register. The TAxR register is the count of Timer_A. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_A Copyright © 2008–2015, Texas Instruments Incorporated 479 Timer_A Registers www.ti.com 17.3.3 TAxCCTLn Register Timer_Ax Capture/Compare Control n Register Figure 17-18. TAxCCTLn Register 15 14 13 rw-(0) rw-(0) 6 5 CM 12 11 10 9 SCS SCCI Reserved CAP rw-(0) rw-(0) r-(0) r-(0) rw-(0) CCIS rw-(0) 7 OUTMOD rw-(0) rw-(0) rw-(0) 8 4 3 2 1 0 CCIE CCI OUT COV CCIFG rw-(0) r rw-(0) rw-(0) rw-(0) Table 17-6. TAxCCTLn Register Description Bit Field Type Reset Description 15-14 CM RW 0h Capture mode 00b = No capture 01b = Capture on rising edge 10b = Capture on falling edge 11b = Capture on both rising and falling edges 13-12 CCIS RW 0h Capture/compare input select. These bits select the TAxCCR0 input signal. See the device-specific data sheet for specific signal connections. 00b = CCIxA 01b = CCIxB 10b = GND 11b = VCC 11 SCS RW 0h Synchronize capture source. This bit is used to synchronize the capture input signal with the timer clock. 0b = Asynchronous capture 1b = Synchronous capture 10 SCCI RW 0h Synchronized capture/compare input. The selected CCI input signal is latched with the EQUx signal and can be read via this bit. 9 Reserved R 0h Reserved. Reads as 0. 8 CAP RW 0h Capture mode 0b = Compare mode 1b = Capture mode 7-5 OUTMOD RW 0h Output mode. Modes 2, 3, 6, and 7 are not useful for TAxCCR0 because EQUx = EQU0. 000b = OUT bit value 001b = Set 010b = Toggle/reset 011b = Set/reset 100b = Toggle 101b = Reset 110b = Toggle/set 111b = Reset/set 4 CCIE RW 0h Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG flag. 0b = Interrupt disabled 1b = Interrupt enabled 3 CCI R 0h Capture/compare input. The selected input signal can be read by this bit. 2 OUT RW 0h Output. For output mode 0, this bit directly controls the state of the output. 0b = Output low 1b = Output high 480 Timer_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_A Registers www.ti.com Table 17-6. TAxCCTLn Register Description (continued) Bit Field Type Reset Description 1 COV RW 0h Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software. 0b = No capture overflow occurred 1b = Capture overflow occurred 0 CCIFG RW 0h Capture/compare interrupt flag 0b = No interrupt pending 1b = Interrupt pending SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_A Copyright © 2008–2015, Texas Instruments Incorporated 481 Timer_A Registers www.ti.com 17.3.4 TAxCCRn Register Timer_A Capture/Compare n Register Figure 17-19. TAxCCRn Register 15 14 13 12 rw-(0) rw-(0) rw-(0) rw-(0) 7 6 5 4 11 10 9 8 rw-(0) rw-(0) rw-(0) rw-(0) 3 2 1 0 rw-(0) rw-(0) rw-(0) rw-(0) TAxCCRn TAxCCRn rw-(0) rw-(0) rw-(0) rw-(0) Table 17-7. TAxCCRn Register Description Bit Field Type Reset Description 15-0 TAxCCR0 RW 0h Compare mode: TAxCCRn holds the data for the comparison to the timer value in the Timer_A Register, TAR. Capture mode: The Timer_A Register, TAR, is copied into the TAxCCRn register when a capture is performed. 17.3.5 TAxIV Register Timer_Ax Interrupt Vector Register Figure 17-20. TAxIV Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-(0) r-(0) r-(0) r0 TAIV r0 r0 r0 r0 7 6 5 4 TAIV r0 r0 r0 r0 Table 17-8. TAxIV Register Description Bit Field Type Reset Description 15-0 TAIV R 0h Timer_A interrupt vector value 00h = No interrupt pending 02h = Interrupt Source: Capture/compare 1; Interrupt Flag: TAxCCR1 CCIFG; Interrupt Priority: Highest 04h = Interrupt Source: Capture/compare 2; Interrupt Flag: TAxCCR2 CCIFG 06h = Interrupt Source: Capture/compare 3; Interrupt Flag: TAxCCR3 CCIFG 08h = Interrupt Source: Capture/compare 4; Interrupt Flag: TAxCCR4 CCIFG 0Ah = Interrupt Source: Capture/compare 5; Interrupt Flag: TAxCCR5 CCIFG 0Ch = Interrupt Source: Capture/compare 6; Interrupt Flag: TAxCCR6 CCIFG 0Eh = Interrupt Source: Timer overflow; Interrupt Flag: TAxCTL TAIFG; Interrupt Priority: Lowest 482 Timer_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_A Registers www.ti.com 17.3.6 TAxEX0 Register Timer_Ax Expansion 0 Register Figure 17-21. TAxEX0 Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 r0 r0 r0 7 6 5 4 3 2 1 0 Reserved TAIDEX (1) Reserved r0 (1) r0 r0 r0 r0 rw-(0) rw-(0) rw-(0) After programming TAIDEX bits and configuration of the timer, set TACLR bit to ensure proper reset of the timer divider logic. Table 17-9. TAxEX0 Register Description Bit Field Type Reset Description 15-3 Reserved R 0h Reserved. Reads as 0. 2-0 TAIDEX RW 0h Input divider expansion. These bits along with the ID bits select the divider for the input clock. 000b = Divide by 1 001b = Divide by 2 010b = Divide by 3 011b = Divide by 4 100b = Divide by 5 101b = Divide by 6 110b = Divide by 7 111b = Divide by 8 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_A Copyright © 2008–2015, Texas Instruments Incorporated 483 Chapter 18 SLAU208O – June 2008 – Revised May 2015 Timer_B Timer_B is a 16-bit timer/counter with multiple capture/compare registers. There can be multiple Timer_B modules on a given device (see the device-specific data sheet). This chapter describes the operaand use of the Timer_B module. Topic 18.1 18.2 18.3 484 ........................................................................................................................... Page Timer_B Introduction ........................................................................................ 485 Timer_B Operation............................................................................................ 487 Timer_B Registers ............................................................................................ 500 Timer_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_B Introduction www.ti.com 18.1 Timer_B Introduction Timer_B is a 16-bit timer/counter with up to seven capture/compare registers. Timer_B can support multiple capture/compares, PWM outputs, and interval timing. Timer_B also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer_B features include: • Asynchronous 16-bit timer/counter with four operating modes and four selectable lengths • Selectable and configurable clock source • Up to seven configurable capture/compare registers • Configurable outputs with PWM capability • Double-buffered compare latches with synchronized loading • Interrupt vector register for fast decoding of all Timer_B interrupts The block diagram of Timer_B is shown in Figure 18-1. NOTE: Use of the word count Count is used throughout this chapter. It means the counter must be in the process of counting for the action to take place. If a particular value is directly written to the counter, an associated action does not take place. NOTE: Nomenclature There may be multiple instantiations of Timer_B on a given device. The prefix TBx is used, where x is a greater than equal to zero indicating the Timer_B instantiation. For devices with one instantiation, x = 0. The suffix n, where n = 0 to 6, represents the specific capture/compare registers associated with the Timer_B instantiation. 18.1.1 Similarities and Differences From Timer_A Timer_B is identical to Timer_A with the following exceptions: • The length of Timer_B is programmable to be 8, 10, 12, or 16 bits. • Timer_B TBxCCRn registers are double-buffered and can be grouped. • All Timer_B outputs can be put into a high-impedance state. • The SCCI bit function is not implemented in Timer_B. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_B Copyright © 2008–2015, Texas Instruments Incorporated 485 Timer_B Introduction www.ti.com Timer Block TBSSEL 2 TBxCLK 00 ACLK 01 SMCLK 10 INCLK 11 ID IDEX 2 Timer Clock 15 3 Divider /1.../8 Divider /1/2/4/8 MC 0 2 16-bit Timer RC TBxR 8 10 12 16 Clear Count Mode EQU0 CNTL 2 TBCLR 00 TBCLGRP 01 2 10 Group Load Logic Set TBxCTL TBIFG 11 CCR0 CCR1 CCR2 CCR3 CCR4 CCR5 CCIS 2 CCI6A 00 CCI6B 01 GND 10 VCC 11 CCR6 CM logic 2 COV SCS Capture Mode 15 Sync Timer Clock VCC 2 EQU0 UP/DOWN Load Group Load Logic Compare Latch TBxCL6 00 01 TBxR=0 TBxCCR6 1 CLLD CCI 0 0 10 11 Comparator 6 CCR5 EQU6 CCR4 CAP CCR1 0 1 Set TBxCCR6 CCIFG OUT EQU0 Output Unit6 D Set Q Timer Clock 3 OUT6 Signal Reset POR OUTMOD Figure 18-1. Timer_B Block Diagram 486 Timer_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_B Operation www.ti.com 18.2 Timer_B Operation The Timer_B module is configured with user software. The setup and operation of Timer_B is discussed in the following sections. 18.2.1 16-Bit Timer Counter The 16-bit timer/counter register, TBxR, increments or decrements (depending on mode of operation) with each rising edge of the clock signal. TBxR can be read or written with software. Additionally, the timer can generate an interrupt when it overflows. TBxR may be cleared by setting the TBCLR bit. Setting TBCLR also clears the clock divider counter logic (the divider setting remains unchanged) and count direction for up/down mode. NOTE: Modifying Timer_B registers It is recommended to stop the timer before modifying its operation (with exception of the interrupt enable, interrupt flag, and TBCLR) to avoid errant operating conditions. When the timer clock is asynchronous to the CPU clock, any read from TBxR should occur while the timer is not operating or the results may be unpredictable. Alternatively, the timer may be read multiple times while operating, and a majority vote taken in software to determine the correct reading. Any write to TBxR takes effect immediately. 18.2.1.1 TBxR Length Timer_B is configurable to operate as an 8-, 10-, 12-, or 16-bit timer with the CNTL bits. The maximum count value, TBxR(max), for the selectable lengths is 0FFh, 03FFh, 0FFFh, and 0FFFFh, respectively. Data written to the TBxR register in 8-, 10-, and 12-bit mode is right justified with leading zeros. 18.2.1.2 Clock Source Select and Divider The timer clock can be sourced from ACLK, SMCLK, or externally via TBxCLK or INCLK. The clock source is selected with the TBSSEL bits. The selected clock source may be passed directly to the timer or divided by 2,4, or 8, using the ID bits. The selected clock source can be further divided by 2, 3, 4, 5, 6, 7, or 8 using the TBIDEX bits. The timer clock divider logic is reset when TBCLR is set. NOTE: Timer_B dividers After programming ID or TBIDEX bits, set the TBCLR bit. This clears the contents of TBxR and resets the clock divider logic to a defined state. The clock dividers are implemented as down counters. Therefore, when the TBCLR bit is cleared, the timer clock immediately begins clocking at the first rising edge of the Timer_B clock source selected with the TBSSEL bits and continues clocking at the divider settings set by the ID and TBIDEX bits. 18.2.2 Starting the Timer The timer may be started or restarted in the following ways: • The timer counts when MC > { 0 } and the clock source is active. • When the timer mode is either up or up/down, the timer may be stopped by loading 0 to TBxCL0. The timer may then be restarted by loading a nonzero value to TBxCL0. In this scenario, the timer starts incrementing in the up direction from zero. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_B Copyright © 2008–2015, Texas Instruments Incorporated 487 Timer_B Operation www.ti.com 18.2.3 Timer Mode Control The timer has four modes of operation: stop, up, continuous, and up/down (see Table 18-1). The operating mode is selected with the MC bits. Table 18-1. Timer Modes MC Mode 00 Stop 01 Up 10 Continuous 11 Up/down Description The timer is halted. The timer repeatedly counts from zero to the value of compare register TBxCL0. The timer repeatedly counts from zero to the value selected by the CNTL bits. The timer repeatedly counts from zero up to the value of TBxCL0 and then back down to zero. 18.2.3.1 Up Mode The up mode is used if the timer period must be different from TBxR(max) counts. The timer repeatedly counts up to the value of compare latch TBxCL0, which defines the period (see Figure 18-2). The number of timer counts in the period is TBxCL0 + 1. When the timer value equals TBxCL0, the timer restarts counting from zero. If up mode is selected when the timer value is greater than TBxCL0, the timer immediately restarts counting from zero. TBxR(max) TBxCL0 0h Figure 18-2. Up Mode The TBxCCR0 CCIFG interrupt flag is set when the timer counts to the TBxCL0 value. The TBIFG interrupt flag is set when the timer counts from TBxCL0 to zero. Figure 18-3 shows the flag set cycle. Timer Clock Timer TBCL0-1 TBCL0 0h 1h TBCL0-1 TBCL0 0h Set TBxCTL TBIFG Set TBxCCR0 CCIFG Figure 18-3. Up Mode Flag Setting 18.2.3.1.1 Changing Period Register TBxCL0 When changing TBxCL0 while the timer is running and when the TBxCL0 load mode is immediate, if the new period is greater than or equal to the old period or greater than the current count value, the timer counts up to the new period. If the new period is less than the current count value, the timer rolls to zero. However, one additional count may occur before the counter rolls to zero. 488 Timer_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_B Operation www.ti.com 18.2.3.2 Continuous Mode In continuous mode, the timer repeatedly counts up to TBxR(max) and restarts from zero (see Figure 18-4). The compare latch TBxCL0 works the same way as the other capture/compare registers. TBxR(max) 0h Figure 18-4. Continuous Mode The TBIFG interrupt flag is set when the timer counts from TBxR(max) to zero. Figure 18-5 shows the flag set cycle. Timer Clock Timer TBR(max) – 1 TBR(max) 0h TBR(max) – 1 1h TBR(max) 0h Set TBxCTL TBIFG Figure 18-5. Continuous Mode Flag Setting 18.2.3.3 Use of Continuous Mode The continuous mode can be used to generate independent time intervals and output frequencies. Each time an interval is completed, an interrupt is generated. The next time interval is added to the TBxCLn latch in the interrupt service routine. Figure 18-6 shows two separate time intervals, t0 and t1, being added to the capture/compare registers. The time interval is controlled by hardware, not software, without impact from interrupt latency. Up to n (where n = 0 to 7), independent time intervals or output frequencies can be generated using capture/compare registers. TBxCL1b TBxCL0b TBxCL1c TBxCL0c TBxCL0d TBxR(max) TBxCL1a TBxCL1d TBxCL0a 0h EQU0 Interrupt t0 t0 EQU1 Interrupt t1 t0 t1 t1 Figure 18-6. Continuous Mode Time Intervals SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_B Copyright © 2008–2015, Texas Instruments Incorporated 489 Timer_B Operation www.ti.com Time intervals can be produced with other modes as well, where TBxCL0 is used as the period register. Their handling is more complex, because the sum of the old TBxCLn data and the new period can be higher than the TBxCL0 value. When the sum of the previous TBxCLn value plus tx is greater than the TBxCL0 data, the old TBxCL0 value must be subtracted to obtain the correct time interval. 18.2.3.4 Up/Down Mode The up/down mode is used if the timer period must be different from TBxR(max) counts and if symmetrical pulse generation is needed. The timer repeatedly counts up to the value of compare latch TBxCL0, and back down to zero (see Figure 18-7). The period is twice the value in TBxCL0. NOTE: TBxCL0 > TBxR(max) If TBxCL0 > TBxR(max), the counter operates as if it were configured for continuous mode. It does not count down from TBxR(max) to zero. TBxCL0 0h Figure 18-7. Up/Down Mode The count direction is latched. This allows the timer to be stopped and then restarted in the same direction it was counting before it was stopped. If this is not desired, the TBCLR bit must be used to clear the direction. Setting TBCLR also clears the TBxR value and the clock divider counter logic (the divider setting remains unchanged). In up/down mode, the TBxCCR0 CCIFG interrupt flag and the TBIFG interrupt flag are set only once during the period, separated by one-half the timer period. The TBxCCR0 CCIFG interrupt flag is set when the timer counts from TBxCL0-1 to TBxCL0, and TBIFG is set when the timer completes counting down from 0001h to 0000h. Figure 18-8 shows the flag set cycle. Timer Clock Timer TBCL0-1 TBCL0 TBCL0-1 TBCL0-2 1h 0h 1h Up/Down Set TBxCTL TBIFG Set TBxCCR0 CCIFG Figure 18-8. Up/Down Mode Flag Setting 18.2.3.4.1 Changing the Value of Period Register TBxCL0 When changing TBxCL0 while the timer is running and counting in the down direction, and when the TBxCL0 load mode is immediate, the timer continues its descent until it reaches zero. The new period takes effect after the counter counts down to zero. 490 Timer_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_B Operation www.ti.com If the timer is counting in the up direction when the new period is latched into TBxCL0, and the new period is greater than or equal to the old period or greater than the current count value, the timer counts up to the new period before counting down. When the timer is counting in the up direction, and the new period is less than the current count value when TBxCL0 is loaded, the timer begins counting down. However, one additional count may occur before the counter begins counting down. 18.2.3.5 Use of Up/Down Mode The up/down mode supports applications that require dead times between output signals (see Section 18.2.5). For example, to avoid overload conditions, two outputs driving an H-bridge must never be in a high state simultaneously. In the example shown in Figure 18-9, the tdead is: tdead = ttimer × (TBxCL1 – TBxCL3) Where: tdead = Time during which both outputs need to be inactive ttimer = Cycle time of the timer clock TBxCLn = Content of compare latch n The ability to simultaneously load grouped compare latches ensures the dead times. TBR(max) TBxCL0 TBxCL1 TBxCL3 0h Dead Time Output Mode 6: Toggle/Set Output Mode 2: Toggle/Reset EQU1 EQU1 EQU1 EQU1 TBIFG EQU0 EQU0 EQU3 EQU3 EQU3 EQU3 TBIFG Interrupt Events Figure 18-9. Output Unit in Up/Down Mode 18.2.4 Capture/Compare Blocks Up to seven identical capture/compare blocks, TBxCCRn (where n = 0 to 6), are present in Timer_B. Any of the blocks may be used to capture the timer data or to generate time intervals. 18.2.4.1 Capture Mode The capture mode is selected when CAP = 1. Capture mode is used to record time events. It can be used for speed computations or time measurements. The capture inputs CCIxA and CCIxB are connected to external pins or internal signals and are selected with the CCIS bits. The CM bits select the capture edge of the input signal as rising, falling, or both. A capture occurs on the selected edge of the input signal. If a capture is performed: • The timer value is copied into the TBxCCRn register. • The interrupt flag CCIFG is set. The input signal level can be read at any time via the CCI bit. Devices may have different signals connected to CCIxA and CCIxB. See the device-specific data sheet for the connections of these signals. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_B Copyright © 2008–2015, Texas Instruments Incorporated 491 Timer_B Operation www.ti.com The capture signal can be asynchronous to the timer clock and cause a race condition. Setting the SCS bit synchronizes the capture with the next timer clock. Setting the SCS bit to synchronize the capture signal with the timer clock is recommended (see Figure 18-10). Timer Clock Timer n–2 n–1 n n+1 n+2 n+3 n+4 CCI Capture Figure 18-10. Capture Signal (SCS = 1) NOTE: Changing Capture Inputs Changing capture inputs while in capture mode may cause unintended capture events. To avoid this scenario, capture inputs should only be changed when capture mode is disabled (CM = {0} or CAP = 0). Overflow logic is provided in each capture/compare register to indicate if a second capture was performed before the value from the first capture was read. Bit COV is set when this occurs (see Figure 18-11). COV must be reset with software. Idle Capture No Capture Taken Capture Read Read Taken Capture Capture Taken Capture Capture Read and No Capture Capture Clear Bit COV in Register TBxCCTLn Second Capture Taken COV = 1 Idle Figure 18-11. Capture Cycle 492 Timer_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_B Operation www.ti.com 18.2.4.1.1 Capture Initiated by Software Captures can be initiated by software. The CM bits can be set for capture on both edges. Software then sets bit CCIS1 = 1 and toggles bit CCIS0 to switch the capture signal between VCC and GND, initiating a capture each time CCIS0 changes state: MOV XOR NOTE: #CAP+SCS+CCIS1+CM_3,&TB0CCTL1 #CCIS0,&TB0CCTL1 ; Setup TB0CCTL1 ; TB0CCR1 = TB0R Capture Initiated by Software In general, changing capture inputs while in capture mode may cause unintended capture events. For this scenario, switching the capture input between VCC and GND, disabling the capture mode is not required. 18.2.4.2 Compare Mode The compare mode is selected when CAP = 0. Compare mode is used to generate PWM output signals or interrupts at specific time intervals. When TBxR counts to the value in a TBxCLn, where n represents the specific capture/compare latch: • Interrupt flag CCIFG is set. • Internal signal EQUn = 1. • EQUn affects the output according to the output mode. 18.2.4.2.1 Compare Latch TBxCLn The TBxCCRn compare latch, TBxCLn, holds the data for the comparison to the timer value in compare mode. TBxCLn is buffered by TBxCCRn. The buffered compare latch gives the user control over when a compare period updates. The user cannot directly access TBxCLn. Compare data is written to each TBxCCRn and automatically transferred to TxBCLn. The timing of the transfer from TBxCCRn to TBxCLn is user selectable, with the CLLD bits as described in Table 18-2. Table 18-2. TBxCLn Load Events CLLD Description 00 New data is transferred from TBxCCRn to TBxCLn immediately when TBxCCRn is written to. 01 New data is transferred from TBxCCRn to TBxCLn when TBxR counts to 0. 10 New data is transferred from TBxCCRn to TBxCLn when TBxR counts to 0 for up and continuous modes. New data is transferred to from TBxCCRn to TBxCLn when TBxR counts to the old TBxCL0 value or to 0 for up/down mode. 11 New data is transferred from TBxCCRn to TBxCLn when TBxR counts to the old TBxCLn value. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_B Copyright © 2008–2015, Texas Instruments Incorporated 493 Timer_B Operation www.ti.com 18.2.4.2.2 Grouping Compare Latches Multiple compare latches may be grouped together for simultaneous updates with the TBCLGRPx bits. When using groups, the CLLD bits of the lowest numbered TBxCCRn in the group determine the load event for each compare latch of the group, except when TBCLGRP = 3 (see Table 18-3). The CLLD bits of the controlling TBxCCRn must not be set to zero. When the CLLD bits of the controlling TBxCCRn are set to zero, all compare latches update immediately when their corresponding TBxCCRn is written; no compare latches are grouped. Two conditions must exist for the compare latches to be loaded when grouped. First, all TBxCCRn registers of the group must be updated, even when new TBxCCRn data = old TBxCCRn data. Second, the load event must occur. Table 18-3. Compare Latch Operating Modes TBCLGRPx Grouping Update Control 00 None Individual 01 TBxCL1+TBxCL2 TBxCL3+TBxCL4 TBxCL5+TBxCL6 TBxCCR1 TBxCCR3 TBxCCR5 10 TBxCL1+TBxCL2+TBxCL3 TBxCL4+TBxCL5+TBxCL6 TBxCCR1 TBxCCR4 11 TBxCL0+TBxCL1+TBxCL2+TBxCL3+TBxCL4+TBxCL5+TBxCL6 TBxCCR1 18.2.5 Output Unit Each capture/compare block contains an output unit. The output unit is used to generate output signals, such as PWM signals. Each output unit has eight operating modes that generate signals based on the EQU0 and EQUn signals. The TBOUTH pin function can be used to put all Timer_B outputs into a highimpedance state. When the TBOUTH pin function is selected for the pin (corresponding PSEL bit is set, and port configured as input) and when the pin is pulled high, all Timer_B outputs are in a high-impedance state. 18.2.5.1 Output Modes The output modes are defined by the OUTMOD bits and are described in Table 18-4. The OUTn signal is changed with the rising edge of the timer clock for all modes except mode 0. Output modes 2, 3, 6, and 7 are not useful for output unit 0 because EQUn = EQU0. Table 18-4. Output Modes 494 OUTMOD Mode Description 000 Output The output signal OUTn is defined by the OUT bit. The OUTn signal updates immediately when OUT is updated. 001 Set The output is set when the timer counts to the TBxCLn value. It remains set until a reset of the timer, or until another output mode is selected and affects the output. 010 Toggle/Reset The output is toggled when the timer counts to the TBxCLn value. It is reset when the timer counts to the TBxCL0 value. 011 Set/Reset The output is set when the timer counts to the TBxCLn value. It is reset when the timer counts to the TBxCL0 value. 100 Toggle The output is toggled when the timer counts to the TBxCLn value. The output period is double the timer period. 101 Reset The output is reset when the timer counts to the TBxCLn value. It remains reset until another output mode is selected and affects the output. 110 Toggle/Set The output is toggled when the timer counts to the TBxCLn value. It is set when the timer counts to the TBxCL0 value. 111 Reset/Set The output is reset when the timer counts to the TBxCLn value. It is set when the timer counts to the TBxCL0 value. Timer_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_B Operation www.ti.com 18.2.5.1.1 Output Example – Timer in Up Mode The OUTn signal is changed when the timer counts up to the TBxCLn value, and rolls from TBxCL0 to zero, depending on the output mode. An example is shown in Figure 18-12 using TBxCL0 and TBxCL1. TBxR(max) TBxCL0 TBxCL1 0h Output Mode 1: Set Output Mode 2: Toggle/Reset Output Mode 3: Set/Reset Output Mode 4: Toggle Output Mode 5: Reset Output Mode 6: Toggle/Set Output Mode 7: Reset/Set EQU0 TBIFG EQU1 EQU0 TBIFG EQU1 EQU0 TBIFG Interrupt Events Figure 18-12. Output Example – Timer in Up Mode SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_B Copyright © 2008–2015, Texas Instruments Incorporated 495 Timer_B Operation www.ti.com 18.2.5.1.2 Output Example – Timer in Continuous Mode The OUTn signal is changed when the timer reaches the TBxCLn and TBxCL0 values, depending on the output mode. An example is shown in Figure 18-13 using TBxCL0 and TBxCL1. TBxR(max) TBxCL0 TBxCL1 0h Output Mode 1: Set Output Mode 2: Toggle/Reset Output Mode 3: Set/Reset Output Mode 4: Toggle Output Mode 5: Reset Output Mode 6: Toggle/Set Output Mode 7: Reset/Set TBIFG EQU1 EQU0 TBIFG EQU1 EQU0 Interrupt Events Figure 18-13. Output Example – Timer in Continuous Mode 496 Timer_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_B Operation www.ti.com 18.2.5.1.3 Output Example – Timer in Up/Down Mode The OUTn signal changes when the timer equals TBxCLn in either count direction and when the timer equals TBxCL0, depending on the output mode. An example is shown in Figure 18-14 using TBxCL0 and TBxCL3. TBxR(max) TBxCL0 TBxCL3 0h Output Mode 1: Set Output Mode 2: Toggle/Reset Output Mode 3: Set/Reset Output Mode 4: Toggle Output Mode 5: Reset Output Mode 6: Toggle/Set Output Mode 7: Reset/Set TBIFG EQU3 EQU3 EQU3 EQU3 TBIFG EQU0 EQU0 Interrupt Events Figure 18-14. Output Example – Timer in Up/Down Mode NOTE: Switching between output modes When switching between output modes, one of the OUTMOD bits should remain set during the transition, unless switching to mode 0. Otherwise, output glitching can occur because a NOR gate decodes output mode 0. A safe method for switching between output modes is to use output mode 7 as a transition state: BIS BIC #OUTMOD_7,&TBCCTLx ; Set output mode=7 #OUTMOD,&TBCCTLx ; Clear unwanted bits SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_B Copyright © 2008–2015, Texas Instruments Incorporated 497 Timer_B Operation www.ti.com 18.2.6 Timer_B Interrupts Two interrupt vectors are associated with the 16-bit Timer_B module: • TBxCCR0 interrupt vector for TBxCCR0 CCIFG • TBIV interrupt vector for all other CCIFG flags and TBIFG In capture mode, any CCIFG flag is set when a timer value is captured in the associated TBxCCRn register. In compare mode, any CCIFG flag is set when TBxR counts to the associated TBxCLn value. Software may also set or clear any CCIFG flag. All CCIFG flags request an interrupt when their corresponding CCIE bit and the GIE bit are set. 18.2.6.1 TBxCCR0 Interrupt Vector The TBxCCR0 CCIFG flag has the highest Timer_B interrupt priority and has a dedicated interrupt vector (see Figure 18-15). The TBxCCR0 CCIFG flag is automatically reset when the TBxCCR0 interrupt request is serviced. Capture EQU0 CAP D Timer Clock Set CCIE Q IRQ, Interrupt Service Requested Reset IRACC, Interrupt Request Accepted POR Figure 18-15. Capture/Compare TBxCCR0 Interrupt Flag 18.2.6.2 TBxIV, Interrupt Vector Generator The TBIFG flag and TBxCCRn CCIFG flags (excluding TBxCCR0 CCIFG) are prioritized and combined to source a single interrupt vector. The interrupt vector register TBxIV is used to determine which flag requested an interrupt. The highest-priority enabled interrupt (excluding TBxCCR0 CCIFG) generates a number in the TBxIV register (see register description). This number can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled Timer_B interrupts do not affect the TBxIV value. Any access, read or write, of the TBxIV register automatically resets the highest-pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. For example, if the TBxCCR1 and TBxCCR2 CCIFG flags are set when the interrupt service routine accesses the TBxIV register, TBxCCR1 CCIFG is reset automatically. After the RETI instruction of the interrupt service routine is executed, the TBxCCR2 CCIFG flag generates another interrupt. 18.2.6.3 TBxIV, Interrupt Handler Examples The following software example shows the recommended use of TBxIV and the handling overhead. The TBxIV value is added to the PC to automatically jump to the appropriate routine. The example assumes a single instantiation of the largest timer configuration available. The numbers at the right margin show the necessary CPU clock cycles for each instruction. The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not the task handling itself. The latencies are: • Capture/compare block CCR0: 11 cycles • Capture/compare blocks CCR1 to CCR6: 16 cycles • Timer overflow TBIFG: 14 cycles 498 Timer_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_B Operation www.ti.com The following software example shows the recommended use of TBxIV for Timer_B3. ; Interrupt handler for TB0CCR0 CCIFG. CCIFG_0_HND ; ... ; Start of handler Interrupt latency RETI Cycles 6 5 ; Interrupt handler for TB0IFG, TB0CCR1 through TB0CCR6 CCIFG. TB0_HND ... ADD RETI JMP JMP JMP JMP JMP JMP &TB0IV,PC CCIFG_1_HND CCIFG_2_HND CCIFG_3_HND CCIFG_4_HND CCIFG_5_HND CCIFG_6_HND ; ; ; ; ; ; ; ; ; Interrupt latency Add offset to Jump table Vector 0: No interrupt Vector 2: TB0CCR1 Vector 4: TB0CCR2 Vector 6: TB0CCR3 Vector 8: TB0CCR4 Vector 10: TB0CCR5 Vector 12: TB0CCR6 6 3 5 2 2 2 2 2 2 TB0IFG_HND ... RETI ; Vector 14: TB0IFG Flag ; Task starts here CCIFG_6_HND ... RETI ; Vector 12: TB0CCR6 ; Task starts here ; Back to main program 5 CCIFG_5_HND ... RETI ; Vector 10: TB0CCR5 ; Task starts here ; Back to main program 5 CCIFG_4_HND ... RETI ; Vector 8: TB0CCR4 ; Task starts here ; Back to main program 5 CCIFG_3_HND ... RETI ; Vector 6: TB0CCR3 ; Task starts here ; Back to main program 5 CCIFG_2_HND ... RETI ; Vector 4: TB0CCR2 ; Task starts here ; Back to main program 5 CCIFG_1_HND ... RETI ; Vector 2: TB0CCR1 ; Task starts here ; Back to main program 5 5 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_B Copyright © 2008–2015, Texas Instruments Incorporated 499 Timer_B Registers www.ti.com 18.3 Timer_B Registers The Timer_B registers are listed in Table 18-5. The base address can be found in the device-specific data sheet. The address offset is listed in Table 18-5. Table 18-5. Timer_B Registers 500 Offset Acronym Register Name Type Access Reset Section 00h TBxCTL Timer_B Control Read/write Word 0000h Section 18.3.1 02h TBxCCTL0 Timer_B Capture/Compare Control 0 Read/write Word 0000h Section 18.3.3 04h TBxCCTL1 Timer_B Capture/Compare Control 1 Read/write Word 0000h Section 18.3.3 06h TBxCCTL2 Timer_B Capture/Compare Control 2 Read/write Word 0000h Section 18.3.3 08h TBxCCTL3 Timer_B Capture/Compare Control 3 Read/write Word 0000h Section 18.3.3 0Ah TBxCCTL4 Timer_B Capture/Compare Control 4 Read/write Word 0000h Section 18.3.3 0Ch TBxCCTL5 Timer_B Capture/Compare Control 5 Read/write Word 0000h Section 18.3.3 0Eh TBxCCTL6 Timer_B Capture/Compare Control 6 Read/write Word 0000h Section 18.3.3 10h TBxR Timer_B Counter Read/write Word 0000h Section 18.3.2 12h TBxCCR0 Timer_B Capture/Compare 0 Read/write Word 0000h Section 18.3.4 14h TBxCCR1 Timer_B Capture/Compare 1 Read/write Word 0000h Section 18.3.4 16h TBxCCR2 Timer_B Capture/Compare 2 Read/write Word 0000h Section 18.3.4 18h TBxCCR3 Timer_B Capture/Compare 3 Read/write Word 0000h Section 18.3.4 1Ah TBxCCR4 Timer_B Capture/Compare 4 Read/write Word 0000h Section 18.3.4 1Ch TBxCCR5 Timer_B Capture/Compare 5 Read/write Word 0000h Section 18.3.4 1Eh TBxCCR6 Timer_B Capture/Compare 6 Read/write Word 0000h Section 18.3.4 2Eh TBxIV Timer_B Interrupt Vector Read only Word 0000h Section 18.3.5 20h TBxEX0 Timer_B Expansion 0 Read/write Word 0000h Section 18.3.6 Timer_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_B Registers www.ti.com 18.3.1 TBxCTL Register Timer_B x Control Register Figure 18-16. TBxCTL Register 15 14 13 12 rw-(0) rw-(0) rw-(0) 6 5 Reserved TBCLGRPx rw-(0) 7 CNTL 4 ID rw-(0) 11 MC rw-(0) rw-(0) rw-(0) 10 9 Reserved rw-(0) rw-(0) 8 TBSSEL rw-(0) rw-(0) 3 2 1 0 Reserved TBCLR TBIE TBIFG rw-(0) w-(0) rw-(0) rw-(0) Table 18-6. TBxCTL Register Description Bit Field Type Reset Description 15 Reserved R 0h Reserved. Always reads as 0. 14-13 TBCLGRP RW 0h TBxCLn group 00b = Each TBxCLn latch loads independently. 01b = TBxCL1+TBxCL2 (TBxCCR1 CLLD bits control the update); TBxCL3+TBxCL4 (TBxCCR3 CLLD bits control the update); TBxCL5+TBxCL6 (TBxCCR5 CLLD bits control the update); TBxCL0 independent 10b = TBxCL1+TBxCL2+TBxCL3 (TBxCCR1 CLLD bits control the update); TBxCL4+TBxCL5+TBxCL6 (TBxCCR4 CLLD bits control the update); TBxCL0 independent 11b = TBxCL0+TBxCL1+TBxCL2+TBxCL3+TBxCL4+TBxCL5+TBxCL6 (TBxCCR1 CLLD bits control the update) 12-11 CNTL RW 0h Counter length 00b = 16-bit, TBxR(max) = 0FFFFh 01b = 12-bit, TBxR(max) = 0FFFh 10b = 10-bit, TBxR(max) = 03FFh 11b = 8-bit, TBxR(max) = 0FFh 10 Reserved R 0h Reserved. Always reads as 0. 9-8 TBSSEL RW 0h Timer_B clock source select 00b = TBxCLK 01b = ACLK 10b = SMCLK 11b = INCLK 7-6 ID RW 0h Input divider. These bits, along with the TBIDEX bits, select the divider for the input clock. 00b = /1 01b = /2 10b = /4 11b = /8 5-4 MC RW 0h Mode control. Setting MC = 00h when Timer_B is not in use conserves power. 00b = Stop mode: Timer is halted 01b = Up mode: Timer counts up to TBxCL0 10b = Continuous mode: Timer counts up to the value set by CNTL 11b = Up/down mode: Timer counts up to TBxCL0 and down to 0000h 3 Reserved R 0h Reserved. Always reads as 0. 2 TBCLR RW 0h Timer_B clear. Setting this bit clears TBR, the clock divider logic (the divider setting remains unchanged), and the count direction. The TBCLR bit is automatically reset and is always read as zero. 1 TBIE RW 0h Timer_B interrupt enable. This bit enables the TBIFG interrupt request. 0b = Interrupt disabled 1b = Interrupt enabled SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_B Copyright © 2008–2015, Texas Instruments Incorporated 501 Timer_B Registers www.ti.com Table 18-6. TBxCTL Register Description (continued) Bit Field Type Reset Description 0 TBIFG RW 0h Timer_B interrupt flag 0b = No interrupt pending 1b = Interrupt pending 502 Timer_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_B Registers www.ti.com 18.3.2 TBxR Register Timer_B x Counter Register Figure 18-17. TBxR Register 15 14 13 12 rw-(0) rw-(0) rw-(0) rw-(0) 7 6 5 4 11 10 9 8 rw-(0) rw-(0) rw-(0) rw-(0) 3 2 1 0 rw-(0) rw-(0) rw-(0) rw-(0) TBxR TBxR rw-(0) rw-(0) rw-(0) rw-(0) Table 18-7. TBxR Register Description Bit Field Type Reset Description 15-0 TBxR RW 0h Timer_B register. The TBxR register is the count of Timer_B. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_B Copyright © 2008–2015, Texas Instruments Incorporated 503 Timer_B Registers www.ti.com 18.3.3 TBxCCTLn Register Timer_B x Capture/Compare Control Register n Figure 18-18. TBxCCTLn Register 15 14 13 rw-(0) rw-(0) 6 5 CM 12 11 rw-(0) rw-(0) CCIS rw-(0) 7 OUTMOD rw-(0) rw-(0) rw-(0) 10 SCS 9 8 rw-(0) rw-(0) CLLD rw-(0) CAP 4 3 2 1 0 CCIE CCI OUT COV CCIFG rw-(0) r rw-(0) rw-(0) rw-(0) Table 18-8. TBxCCTLn Register Description Bit Field Type Reset Description 15-14 CM RW 0h Capture mode 00b = No capture 01b = Capture on rising edge 10b = Capture on falling edge 11b = Capture on both rising and falling edges 13-12 CCIS RW 0h Capture/compare input select. These bits select the TBxCCRn input signal. See the device-specific data sheet for specific signal connections. 00b = CCIxA 01b = CCIxB 10b = GND 11b = VCC 11 SCS RW 0h Synchronize capture source. This bit is used to synchronize the capture input signal with the timer clock. 0b = Asynchronous capture 1b = Synchronous capture 10-9 CLLD RW 0h Compare latch load. These bits select the compare latch load event. 00b = TBxCLn loads on write to TBxCCRn 01b = TBxCLn loads when TBxR counts to 0 10b = TBxCLn loads when TBxR counts to 0 (up or continuous mode). TBxCLn loads when TBxR counts to TBxCL0 or to 0 (up/down mode). 11b = TBxCLn loads when TBxR counts to TBxCLn 8 CAP RW 0h Capture mode 0b = Compare mode 1b = Capture mode 7-5 OUTMOD RW 0h Output mode. Modes 2, 3, 6, and 7 are not useful for TBxCL0 because EQUn = EQU0. 000b = OUT bit value 001b = Set 010b = Toggle/reset 011b = Set/reset 100b = Toggle 101b = Reset 110b = Toggle/set 111b = Reset/set 4 CCIE RW 0h Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG flag. 0b = Interrupt disabled 1b = Interrupt enabled 3 CCI R Undef Capture/compare input. The selected input signal can be read by this bit. 504 Timer_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_B Registers www.ti.com Table 18-8. TBxCCTLn Register Description (continued) Bit Field Type Reset Description 2 OUT RW 0h Output. For output mode 0, this bit directly controls the state of the output. 0b = Output low 1b = Output high 1 COV RW 0h Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software. 0b = No capture overflow occurred 1b = Capture overflow occurred 0 CCIFG RW 0h Capture/compare interrupt flag 0b = No interrupt pending 1b = Interrupt pending SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_B Copyright © 2008–2015, Texas Instruments Incorporated 505 Timer_B Registers www.ti.com 18.3.4 TBxCCRn Register Timer_B x Capture/Compare Register n Figure 18-19. TBxCCRn Register 15 14 13 12 rw-(0) rw-(0) rw-(0) rw-(0) 7 6 5 4 11 10 9 8 rw-(0) rw-(0) rw-(0) rw-(0) 3 2 1 0 rw-(0) rw-(0) rw-(0) rw-(0) TBxCCRn TBxCCRn rw-(0) rw-(0) rw-(0) rw-(0) Table 18-9. TBxCCRn Register Description Bit Field Type Reset Description 15-0 TBxCCRn RW 0h Timer_B capture/compare register. Compare mode: TBxCCRn holds the data for the comparison to the timer value in the Timer_B Register, TBR. Capture mode: The Timer_B Register, TBR, is copied into the TBxCCRn register when a capture is performed. 506 Timer_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_B Registers www.ti.com 18.3.5 TBxIV Register Timer_B x Interrupt Vector Register Figure 18-20. TBxIV Register 15 14 13 12 r-(0) r-(0) r-(0) r-(0) 7 6 5 4 11 10 9 8 r-(0) r-(0) r-(0) r-(0) 3 2 1 0 r-(0) r-(0) r-(0) r-(0) TBIV TBIV r-(0) r-(0) r-(0) r-(0) Table 18-10. TBxIV Register Description Bit Field Type Reset Description 15-0 TBIV R 0h Timer_B interrupt vector value 00h = No interrupt pending 02h = Interrupt Source: Capture/compare 1; Interrupt Flag: TBxCCR1 CCIFG; Interrupt Priority: Highest 04h = Interrupt Source: Capture/compare 2; Interrupt Flag: TBxCCR2 CCIFG 06h = Interrupt Source: Capture/compare 3; Interrupt Flag: TBxCCR3 CCIFG 08h = Interrupt Source: Capture/compare 4; Interrupt Flag: TBxCCR4 CCIFG 0Ah = Interrupt Source: Capture/compare 5; Interrupt Flag: TBxCCR5 CCIFG 0Ch = Interrupt Source: Capture/compare 6; Interrupt Flag: TBxCCR6 CCIFG 0Eh = Interrupt Source: Timer overflow; Interrupt Flag: TBxCTL TBIFG; Interrupt Priority: Lowest SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_B Copyright © 2008–2015, Texas Instruments Incorporated 507 Timer_B Registers www.ti.com 18.3.6 TBxEX0 Register Timer_B x Expansion Register 0 Figure 18-21. TBxEX0 Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 r0 r0 r0 7 6 5 4 3 2 1 0 Reserved TBIDEX (1) Reserved r0 (1) r0 r0 r0 r0 rw-(0) rw-(0) rw-(0) After programming TBIDEX bits and configuration of the timer, set TBCLR bit to ensure proper reset of the timer divider logic. Table 18-11. TBxEX0 Register Description Bit Field Type Reset Description 15-3 Reserved R 0h Reserved. Always reads as 0. 2-0 TBIDEX RW 0h Input divider expansion. These bits along with the ID bits select the divider for the input clock. 000b = Divide by 1 001b = Divide by 2 010b = Divide by 3 011b = Divide by 4 100b = Divide by 5 101b = Divide by 6 110b = Divide by 7 111b = Divide by 8 508 Timer_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Chapter 19 SLAU208O – June 2008 – Revised May 2015 Timer_D Timer_D is a 16-bit timer/counter with multiple capture/compare registers. This chapter describes Timer_D. Topic 19.1 19.2 19.3 ........................................................................................................................... Page Timer_D Introduction ........................................................................................ 510 Timer_D Operation............................................................................................ 512 Timer_D Registers ............................................................................................ 536 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_D Copyright © 2008–2015, Texas Instruments Incorporated 509 Timer_D Introduction www.ti.com 19.1 Timer_D Introduction Timer_D is a 16-bit timer/counter with multiple capture/compare registers. Timer_D can support multiple capture/compares, interval timing, and PWM outputs both in general and high resolution modes. Timer_D also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions, from each of the capture/compare registers. Timer_D features include: • Asynchronous 16-bit timer/counter with four operating modes and four selectable lengths • Selectable and configurable clock source • Configurable capture/compare registers • Controlling rising and falling PWM edges by combining two neighbor TDCCR registers in one compare channel output • Configurable outputs with PWM capability • High-resolution mode with a fine clock frequency up to 16 times the timer input clock frequency • Double-buffered compare registers with synchronized loading • Interrupt vector register for fast decoding of all Timer_D interrupts The block diagram of Timer_D is shown in Figure 19-1. NOTE: Use of the word count Count is used throughout this chapter. It means the counter must be in the process of counting for the action to take place. If a particular value is directly written to the counter, any associated action does not take place. 19.1.1 Differences From Timer_B Timer_D is identical to Timer_B with the following exceptions: • Timer_D supports high-resolution mode. • Timer_D supports the combination of two adjacent TDCCRx registers in one capture/compare channel. • Timer_D supports the dual capture event mode. • Timer_D supports external fault input, external clear input, and signal. See the TEC chapter for detailed information. • Timer_D can synchronize with a second timer instance when available. See the TEC chapter for detailed information. 510 Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Introduction www.ti.com TDAUXCLROUT IDx TDSSELx IDEXx Timer Clock Timer Block TDCLKMx MCx TDCLK 15 00 ACLK Divider /1/2/4/8 01 SMCLK Divider /1.../8 00 16-bit Timer RC TDR 8 10 12 16 Clear 01 10 TDHMx 11 10 TDHDx 0 Count Mode EQU0 CNTLx Divider /1/2/4/8 TDHREGEN High Resolution Generator TDCLGRPx 00 01 2 7 5 TDAUXCLK TDHCLKSRx TDHCLKRx TDHCLKTRIMx TDCLR TDCLR1 Group Load Logic 10 Set TDIFG 11 CCR0* CCR1 CCR5 CCR6 CCISx CMx logic CCRx Block COV SCS CCI6A 00 CCI6B 01 GND 10 VCC 11 Capture Mode 15 Sync Timer Clock TDCCR6 1 Load CLLDx Group Load Logic CCI VCC TDR=0 EQU0 UP/DOWN 0 0 Compare Latch TDCL6 00 01 10 11 Comparator 6 CCR5 CCR4 EQU6 CAP CCR1 0 Set TDCCR6 1 CCIFG TD6CMB CH0EVNT CH5EVNT OUT 0 Output Unit6 1 Set D Q OUT6 Signal Timer Clock EXTCLR Reset POR CH6EVNT OUTMODx EQU6 Figure 19-1. Timer_D Block Diagram SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_D Copyright © 2008–2015, Texas Instruments Incorporated 511 Timer_D Operation www.ti.com NOTE: TDxCCR0 is slightly different from the other capture/compare blocks. The input signals to the output unit are: • OUT0 signal • EXTCLR signal • Timer Counter overflow This enables channel 0 to generate a PWM output signal in Continuous mode. The events to set and reset the PWM output 0 are the CCR0 match and the Timer Counter overflow (TDIFG). NOTE: TDCCRx channels with odd channel numbers do not have the TDxCMB bit capabilities. Therefore, there is no MUX, and the CH0EVNT is ORed with EXTCLR. 19.2 Timer_D Operation The Timer_D module is configured with user software. The setup and operation of Timer_D is discussed in the following sections. 19.2.1 16-Bit Timer Counter The 16-bit timer/counter register, TDxR, increments or decrements (depending on mode of operation) with each rising edge of the clock signal. TDxR can be read or written with software. Additionally, the timer can generate an interrupt when it overflows. TDxR may be cleared by any of the following events: • Writing 1 to TDCLR bit • A logical high TDCLR1 signal. See the TEC chapter for details. When the TDxR is cleared, the timer divider is restarted. NOTE: Modifying Timer_D registers It is recommended to stop the timer before modifying its operation to avoid errant operating conditions. Stopping the timer is not required for the following cases: • To enable interrupt • Setting interrupt flags • Setting TDCLR bit • Enabling or disabling calibration in high-resolution mode When the TDCLK is asynchronous to the CPU clock, any read from TDxR should occur while the timer is not operating, or the results may be unpredictable. Alternatively, the timer may be read multiple times while operating, and a majority vote taken in software to determine the correct reading. Any write to TDxR takes effect immediately. 19.2.1.1 TDxR Length Timer_D is configurable to operate as an 8-, 10-, 12-, or 16-bit timer with the CNTLx bits. The maximum count value, TDR(max), for the selectable lengths is 0FFh, 03FFh, 0FFFh, and 0FFFFh, respectively. Data written to the TDxR register in 8-, 10-, and 12-bit mode is right justified with leading zeros. 512 Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Operation www.ti.com 19.2.1.2 Clock Source Select and Divider The TDCLKMx bits of the control register 1 (TDxCTL1) select the timer clock between the timer input clock source, the high-resolution local clock, or the auxiliary clock of another timer instance. The timer input clock can be sourced from ACLK, SMCLK, or externally via TDCLK or INCLK. The clock source is selected with the TDSSELx bits. The selected clock source may be passed directly to the timer or to a 2-stage division process by using the ID and IDEX bits. Whenever a timer clear event occurs, the clock divider is restarted. The clock divider is also restarted when passing the selected clock to the highresolution generator. 19.2.2 High-Resolution Generator In high-resolution mode, the high-resolution generator is used. Figure 19-2 shows the high resolution clock generator block diagram. It can be operated in free-running mode or in regulated mode. In free-running mode (TDHREGEN = 0), the high-resolution clock is selected by the high-resolution clock range selection bits TDHCLKRx in the register TDxHCTL1. Each clock range is divided into 2TDHCLKSRx subranges. And in each sub-range, a total number of 2TDHCLKTRIMx slots can be chosen by configuring the TDHCLKTRIMx bits in the TDxHCTL1 register. In regulated mode (TDHREGEN = 1), the selected high-resolution generator frequency is adjusted to the timer input clock frequency. The high-resolution clock frequency is 8x (TDHMx = 00) or 16x (TDHMx = 01) higher than the selected timer input clock. The timer input clock frequency can be within the range of 8 MHz to 16 MHz if 16x is selected (TDHMx = 00) or 8 MHz to 25 MHz if 8x (TDHMx = 01) is selected. When the timer input clock frequency is greater than 15 MHz, the TDHCLKCR bit in the TDxHCTL1 register should be set. The TDHCLKRx bits are used to preset the frequency range of the high-resolution generator. IDEXx TDCLKMx Divider /1.../8 Timer Clock 00 01 Timer Block 16-bit Timer TDR 10 TDHMx 2 TDHREGEN Regulation Enable Clock Generation Multiplier 8x / 16x TDHDx 2 Divider /1 /2 /4 /8 5 2 7 TDHCLKSRx TDHCLKRx TDHCLKTRIMx Figure 19-2. High Resolution Clock Generator 19.2.2.1 Free-Running Mode of the High-Resolution Generator When the high-resolution generator is used in free-running mode, the register TDxHCTL1 is configured by the user software. Before the high-resolution generator is enabled, the bits TDHCLKCR, TDHCLKRx, TDHSRx, and TDHCLKTRIMx must be configured. See the device-specific data sheet for details about the frequency selection. After the high-resolution generator is turned on, only the TDHCLKTRIMx bits should be changed by +1 or -1 at a time. All other settings must not be altered manually. Using TDHCLKTRIMx allows changing the frequency by at least ±20% from TDHCLKTRIM = 64. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_D Copyright © 2008–2015, Texas Instruments Incorporated 513 Timer_D Operation www.ti.com There are factory preprogrammed values stored in the TLV structure of the flash memory for the TDHCLKRx, TDHSRx, and TDHCLKTRIMx registers for specific frequencies. To use the calibrated settings, the register setting is copied into the TDHCLKRx, TDHSRx, and TDHCLKTRIMx registers. In addition to these settings, a clock multiplication factor and coarse clock range selection must be applied to the TDHMx and TDHCLKCR bits of the TDHCTL0 register (see Table 19-1). Table 19-1. Factory Preprogrammed Frequency and TDHMx, TDHCLKCR Bit Settings Frequency 64 128 200 256 TLV Label TDHMx TDHCLKCR TDHxCTL1_64 00 0 Local clock generator of Timer_Dx generates a frequency of 64 MHz = 8 × 8 MHz. Description TDHxCTL1_128 00 1 Local clock generator of Timer_Dx generates a frequency of 128 MHz = 8 × 16 MHz. TDHxCTL1_200 00 1 Local clock generator of Timer_Dx generates a frequency of 200 MHz = 8 × 25 MHz. TDHxCTL1_256 01 1 Local clock generator of Timer_Dx generates a frequency of 256 MHz = 16 × 16 MHz. 19.2.2.2 Change Frequency of High-Resolution Generator (Free-Running Mode) To change the frequency of the high-resolution generator in free-running mode: 1. Increment or decrement TDHCLKTRIM by 1 until TDHCLKTRIM = 64 is reached. If the clock range must be changed, proceed to Step 1a for a higher clock range or to Step 1b for a lower clock range. (a) If the clock range, TDHCLKRx, must be changed to a higher clock range, then the TDHCLKSR must be brought to TDHCLKSR = 31 by incrementing by 1. (b) If the clock range, TDHCLKRx, must be changed to a lower clock range, then the TDHCLKSR must be brought to TDHCLKSR = 0 by decrementing by 1. 2. Change the clock range, TDHCLKR, after step 1a or 1b. Increment or decrement by 1 at a time. 3. Increment or decrement TDHCLKSR by 1 until the desired clock frequency is reached to an accuracy of approximately ±3%. 4. Increment or decrement TDHCLKTRIM by 1 until the desired clock frequency is reached to an accuracy of approximately ±1.5%. Further changes to track the frequency because of changes in the environment can be done by changing only the TDHCLTRIM values. 19.2.2.3 Regulated Mode of the High-Resolution Generator In regulated mode, the high-resolution generator produces 8 or 16 equidistant events per timer input clock cycle. Regulation is enabled by setting the high-resolution calibration enable bit TDHREGEN. The highresolution generator tracks changes of the timer input clock after locking to the timer input clock frequency. Locking is indicated by setting the lock interrupt flag TDHLKIFG. As long as the high-resolution generator is not locked, the interrupt flag TDHUNLKIFG is set. If the timer input clock is out of the frequency range of the high-resolution generator, then the fail-high interrupt flag (TDHFHIFG) or the fail-low interrupt flag (TDHFLIFG) is set. If the TDHREGEN bit is cleared, the continuous regulation is stopped and the high-resolution frequency enters free-running mode. The latest settings are kept. Example 20-1 shows how to set the timer to high-resolution mode. 514 Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Operation www.ti.com Example 19-1. Set the Timer to High-Resolution Mode ; Example: TDCLK=12MHz ; Generate the high-resolution frequency 12x16MHz ; MOV #TDHCLKCR_0+TDHCLKR_x+TDHSR_x+TDHCLKTRIM_x, &TDxHCTL1 ; pre-selected Clock Range MOV #TDSSEL_0, &TDxCTL0 ; TDCLK, High-Res input ; clock MOV #TDCLKM_1, &TDxCTL1 ; Select High-Res Clock MOV #TDHM_1+TDHREGEN+TDHEN+TDHRON,&TDxHCTL0 ; 16x, Regulation ; Waiting for TDHLKIFG TD_HANDLER ... ; Int handler Timer_D ADD &TDxIV, PC ; Add offset to Jump table RETI ; Vector 0: No Interrupt ... ; Other vectors JMP TDHLK_HANDLER ; Vector 24: Locked handler ... TDHLK_HANDLER ; Begin of Clock Locked handler MOV #MC_1, &TDxCTL0 ; Up Mode. Start Timer_D ... RETI 19.2.3 Starting the Timer The timer may be started or restarted by any of the following methods: • The timer counts when MCx > 0 and the clock source is active. • TDHEN = 0: When the timer mode is either up or up/down, the timer may be stopped by loading 0 to TDxCL0. The timer may then be restarted by loading a nonzero value to TDxCL0. In this case, the timer starts incrementing in the up direction from zero. • TDHEN = 1: When the timer mode is in either up mode or up/down mode, the timer may be stopped by loading 0 to TDxCL0. The timer may then be restarted by loading a nonzero value to TDxCL0. In this case, the timer starts incrementing in the up direction from zero. 19.2.4 Timer Mode Control The timer has four modes of operation: stop, up, continuous, and up/down. The operating mode is selected with the MSCx bits (see Table 19-2). Table 19-2. Timer Modes MCx Mode Description 00 Stop The timer is halted. 01 Up The timer repeatedly counts from zero to the value of compare register TDxCL0. 10 Continuous The timer repeatedly counts from zero to the value selected by the TDCNTLx bits. 11 Up/down The timer repeatedly counts from zero up to the value of TDxCL0 and then back down to zero. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_D Copyright © 2008–2015, Texas Instruments Incorporated 515 Timer_D Operation www.ti.com 19.2.4.1 Up Mode The up mode is used if the timer period must be different from TDR(max) counts. The timer repeatedly counts up to the value of compare latch TDxCL0, which defines the period (see Figure 19-3). The number of timer counts in the period is TDCL0 + 1. When the timer value equals TDCL0, the timer restarts counting from zero. If up mode is selected when the timer value is greater than TDCL0, the timer immediately restarts counting from zero. TDR(max) TDCL0 0h Figure 19-3. Up Mode The TDxCCR0 CCIFG interrupt flag is set when the timer counts to the TDCL0 value. The TDIFG interrupt flag is set when the timer counts from TDCL0 to zero. Figure 19-4 shows the flag set cycle. Timer Clock Timer TDCL0-1 TDCL0 0h 1h TDCL0-1 TDCL0 0h Set TDIFG Set TDCCR0 CCIFG Figure 19-4. Up Mode Flag Setting 19.2.4.1.1 Changing Period Register TDxCL0 When changing TDxCL0 while the timer is running and when the TDxCL0 load mode is immediate, if the new period is greater than or equal to the old period or greater than the current count value, the timer counts up to the new period. If the new period is less than the current count value, the timer rolls to zero. However, one additional count may occur before the counter rolls to zero. NOTE: When TDxCL0 is used as period register under high-resolution mode, the four LSB of the TDxCL0 in the 16x case or the three LSB in the 8x case are ignored. 19.2.4.2 Continuous Mode In continuous mode, the timer repeatedly counts up to TDR(max) and restarts from zero (see Figure 19-5). The compare latch TDxCL0 works the same way as the other capture/compare registers. TDR(max) 0h Figure 19-5. Continuous Mode 516 Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Operation www.ti.com The TDIFG interrupt flag is set when the timer counts from TDR(max) to zero. Figure 19-6 shows the flag set cycle. Timer Clock TDR(max) – 1 Timer TDR(max) 0h TDR(max) – 1 1h TDR(max) 0h Set TDIFG Figure 19-6. Continuous Mode Flag Setting 19.2.4.3 Use of Continuous Mode The continuous mode can be used to generate independent time intervals and output frequencies. Each time an interval is completed, an interrupt is generated. The next time interval is added to the TDCLx latch in the interrupt service routine. Figure 19-7 shows two separate time intervals, t0 and t1, being added to the capture/compare registers. The time interval is controlled by hardware, not software, without impact from interrupt latency. Up to three (for Timer_D3) or 7 (for Timer_D7) independent time intervals or output frequencies can be generated using capture/compare registers. TDCL1b TDCL0b TDCL1c TDCL0c TDCL0d TDR(max) TDCL1a TDCL1d TDCL0a 0h EQU0 Interrupt t0 t0 EQU1 Interrupt t1 t0 t1 t1 Figure 19-7. Continuous Mode Time Intervals Time intervals can be produced with other modes as well, using TDxCL0 as the period register. Their handling is more complex, because the sum of the old TDCLx data and the new period can be higher than the TDxCL0 value. When the sum of the previous TDCLx value plus tx is greater than the TDCL0 data, the old TDCL0 value must be subtracted to obtain the correct time interval. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_D Copyright © 2008–2015, Texas Instruments Incorporated 517 Timer_D Operation www.ti.com PWM output can be generated in capture/compare channel 0 by using the timer overflow signal together with TDCL0. Figure 19-8 shows an example. TDR(max) TDCL0 0h Output Mode 3: Set/Reset OUT0 EQU0 TDIFG EQU0 TDIFG EQU0 TDIFG TDIFG Interrupt Events Figure 19-8. TDxCCR0 PWM Generation Under Continuous Mode 19.2.4.4 Up/Down Mode The up/down mode is used if the timer period must be different from TDR(max) counts and if symmetrical pulse generation is needed. The timer repeatedly counts up to the value of compare latch TDxCL0, and back down to zero (see Figure 19-9). The period is twice the value in TDCL0. NOTE: TDCL0 > TDR(max) If TDCL0 > TDR(max), the counter operates as if it were configured for continuous mode. It does not count down from TDR(max) to zero. TDCL0 0h Figure 19-9. Up/Down Mode The count direction is latched. This allows the timer to be stopped and then restarted in the same direction it was counting before it was stopped. If this is not desired, the TDCLR bit must be used to clear the direction. The TDCLR bit also clears the TDR value and the TDCLK divider. 518 Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Operation www.ti.com In up/down mode, the TDxCCR0 CCIFG interrupt flag and the TDIFG interrupt flag are set only once during the period, separated by one-half the timer period. The TDxCCR0 CCIFG interrupt flag is set when the timer counts from TDCL0 – 1 to TDCL0, and TDIFG is set when the timer completes counting down from 0001h to 0000h. Figure 19-10 shows the flag set cycle. Timer Clock Timer TDCL0-1 TDCL0 TDCL0-1 TDCL0-2 1h 0h 1h Up/Down Set TDIFG Set TDCCR0 CCIFG Figure 19-10. Up/Down Mode Flag Setting 19.2.4.4.1 Changing the Value of Period Register TDxCL0 When changing TDxCL0 while the timer is running and counting in the down direction, and when the TDxCL0 load mode is immediate, the timer continues its descent until it reaches zero. The new period takes effect after the counter counts down to zero. If the timer is counting in the up direction when the new period is latched into TDxCL0, and the new period is greater than or equal to the old period or greater than the current count value, the timer counts up to the new period before counting down. When the timer is counting in the up direction and the new period is less than the current count value when TDxCL0 is loaded, the timer begins counting down. However, one additional count may occur before the counter begins counting down. 19.2.4.5 Use of Up/Down Mode The up/down mode supports applications that require dead times between output signals (see Section 19.2.9). For example, to avoid overload conditions, two outputs driving an H-bridge must never be in a high state simultaneously. In the example shown in Figure 19-11, the tdead is: tdead = ttimer × (TDCL1 – TDCL3) Where: tdead = Time during which both outputs need to be inactive ttimer = Cycle time of the timer clock TDCLx = Content of compare latch x The ability to simultaneously load grouped compare latches ensures the dead times. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_D Copyright © 2008–2015, Texas Instruments Incorporated 519 Timer_D Operation www.ti.com TDR(max) TDCL0 TDCL1 TDCL3 0h Dead Time Output Mode 6: Toggle/Set Output Mode 2: Toggle/Reset EQU1 EQU1 EQU1 EQU1 TDIFG EQU0 EQU0 EQU3 EQU3 EQU3 EQU3 TDIFG Interrupt Events Figure 19-11. Output Unit in Up/Down Mode 19.2.5 PWM Generation The previous examples have shown that PWM output can be produced by using a single TDCCRx. In TDxCCR0, for example, either the falling or the rising edge of the PWM signal is controlled by the TDxCCR0 or the period overflow (see Figure 19-8). In the other TDCCRx (x ≠ 0), PWM can be generated by setting the output to up/down mode and using the TDCCRx register to control both the rising and the falling edges of the signal (see Figure 19-11). However, this cannot always meet the application requirements; for example, in motor control applications. The control bits, TDxCMB of the TDxCTL1 register, are implemented so that two neighbor TDCCR registers can be used for one channel to control both edges of one PWM output signal. If TDxCMB is set, TDCCRx-1 and TDCCRx are combined to channel TDx; for example, TDxCCR1 and TDxCCR2 for TD2 output, TDxCCR3 and TDxCCR4 for TD4 output, and TDxCCR5 and TDxCCR6 for TD6. By configuring TDxCMB bit, a Timer_D5 can then generate either two fully controlled PWM signals or four independent channels. The PWM duty cycle can be zero. The smallest pulse width depends on the TDHEN and TDHMx settings. • • • In normal timer mode, TDHEN = 0, TDHMx = don't care: CCRx = 1 In high-resolution timer mode, 8x reference frequency, TDHEN = 1, TDHMx = 00: CCRx = 0x0010, 8 high-resolution cycles In high-resolution timer mode, 16x reference frequency, TDHEN = 1, TDHMx = 01: CCRx = 0x0020, 16 high-resolution cycles Figure 19-12 shows an example. Table 19-3 and Table 19-4 summarize the duty cycle limitations of the Timer_D. Duty cycles close to 0% and 100% should be avoided. Table 19-3 and Table 19-4 show how the output signal behaves in case the TDCCRx register is programmed to values beyond the recommended range of values dependent on the OUTMODx setting. 520 Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Operation www.ti.com Table 19-3. High-Resolution Mode Limitation (TDHEN = 1) - Minimum Duty Cycle OUTMODx Mode Condition 000 Output n/a Set TDHMx = 0: TDCCRx < 0x0007 TDHMx = 1: TDCCRx < 0x000F 001 010 011 100 101 110 111 Description n/a Toggle/Reset - Set/Reset TDHMx = 0: TDCCRx < 0x0007 TDHMx = 1: TDCCRx < 0x000F Output is not set. Not recommended. Result is 100% duty cycle. Toggle - Not recommended. Reset TDHMx = 0: TDCCRx < 0x0007 TDHMx = 1: TDCCRx < 0x000F Output is not reset. Toggle/Set - Not recommended. Reset/Set TDHMx = 0: TDCCRx < 0x0007 TDHMx = 1: TDCCRx < 0x000F Result is 0% duty cycle. Table 19-4. High-Resolution Mode Limitation (TDHEN = 1) - Maximum Duty Cycle OUTMODx Mode Condition 000 Output n/a Description 001 Set TDCCRx > TDCCR0 - 0x0008 010 Toggle/Reset - 011 Set/Reset TDCCRx > TDCCR0 - 0x0008 100 Toggle - Not recommended. 101 Reset TDCCRx > TDCCR0 - 0x0008 Output is not reset. 110 Toggle/Set - Not recommended. 111 Reset/Set TDCCRx > TDCCR0 - 0x0008 n/a Output is not set. Not recommended. Result is 100% duty cycle. Result is 0% duty cycle. In high-resolution compare mode there are limitations of the minimum and maximum duty cycles. Minimum duty cycle: TDHMx = 0: TDCCRx < 8 are set to TDCCRx = 0; that is, return 0 duty cycle. TDHMX = 1: TDCCRx < 16 are set to TDCCRx = 0; that is, return 0 duty cycle. Maximum duty cycle: TDHMx = 0 or 1: The maximum duty cycle is limited to TDCCRx < TDCCR0 - 0x000F. Values of TDCCRx greater than TDCCR0 - 0x000F lead to 0 duty cycle. NOTE: In high-resolution mode, when the two CCRx channels are combined by setting TDxCMB = 1, the minimum difference between the output compare registers (CCRx and CCRx + 1 must be: if TDHMx = 00: | TDCCRx - TDCCRx-1 | > 7 if TDHMx = 01: | TDCCRx - TDCCRx-1 | > 15 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_D Copyright © 2008–2015, Texas Instruments Incorporated 521 Timer_D Operation www.ti.com TDR(max) TDCL0 TDCL2 TDCL1 0h Output Mode 7: Reset/Set (TD2CMB = 1) OUT2 EQU0 TDIFG EQU1 EQU2 EQU0 EQU1 TDIFG EQU2 EQU0 TDIFG Interrupt Events Figure 19-12. Controlling Rising and Falling Edge of PWM Output in Up Mode Example 19-2 shows how to set up the timer for the case shown in Figure 19-12. Example 19-2. MOV #TD2CMB+TDCLKM_0, &TDxCTL1 MOV MOV MOV MOV MOV BIS #OUTMOD_7, &TDxCCTL2 0x80, &TDxCCR0 0x28, &TDxCCR1 0x50, &TDxCCR2 #TDSSEL_1+MC_1, &TDxCTL0 #CPUOFF,SR ; ; ; ; ; ; ; ; Combine TDxCCR1&TDxCCR2, External Clock TDxCCR2 Reset/Set PWM Period TDxCCR0 128 TDxCCR1 is 40, Set TDxCCR2 is 80, Reset ACLK, Up Mode Enter LPM0 NOTE: Channels TD1, TD3, and TD5 are still controlled by TDxCCR1, TDxCCR3, and TDxCCR5, respectively, even when the TDxCCRx registers are paired. Combining two pairs of CCRx channels to two PWM outputs can be used to generate non-overlapping PWM channels. 522 Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Operation www.ti.com TDR(max) TDCL0 TDCL4 TDCL3 TDCL2 TDCL1 0h Output Mode 7: Reset/Set (TD4CMB = 1) OUT4 OUT2 Output Mode 7: Reset/Set (TD2CMB = 1) EQU1 EQU2 EQU1 EQU2 EQU3 EQU4 EQU3 EQU4 EQU0 EQU0 EQU0 Figure 19-13. Deadband Generation (TDxCMB = 1) 19.2.6 Capture/Compare Blocks Several identical capture/compare blocks, TDCCRx, are present in Timer_D. Any of the blocks may be used to capture the timer data or to generate time intervals. See the device-specific data sheet for the number of capture/compare blocks available. 19.2.6.1 Capture Mode The capture mode is used to record time events. It can be used for speed computations or time measurements. The capture inputs CCIxA and CCIxB are connected to external pins or internal signals and are selected with the CCISx bits. The CMx bits select the capture edge of the input signal as rising, falling, or both. A capture occurs on the selected edge of the input signal. If a capture is performed: • The timer value is copied into the TDCCRx register. • The TDCCRx register is copied into the TDCLx register. • The interrupt flag CCIFG is set. • The Capture Overflow bit is set at a capture overflow condition. The input signal level can be read at any time via the CCI bit. Devices may have different signals connected to CCIxA and CCIxB. See the device-specific data sheet for the connections of these signals. The capture signal can be asynchronous to the timer clock and cause a race condition. Setting the SCS bit synchronizes the capture with the next timer clock. Setting the SCS bit to synchronize the capture signal with the timer clock is recommended (see Figure 19-14). In high-resolution mode, the SCS bit is ignored. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_D Copyright © 2008–2015, Texas Instruments Incorporated 523 Timer_D Operation www.ti.com Timer Clock Timer n–2 n n–1 n+1 n+3 n+2 n+4 CCI Capture Set TDCCRx CCIFG Figure 19-14. Capture Signal (SCS = 1) Overflow logic is provided in each capture/compare register to indicate a capture overflow condition. 19.2.6.1.1 Single Capture Mode (TDCAPMx = 0) Each input capture channel can be operated in single capture (compatibility) mode or in dual capture mode. The single capture mode is selected by TDCAPMx = 0. In single capture mode, the content of register TDCCRx is shifted to TDCLx register at each capture event. In single capture mode, the capture overflow bit (COV) is set if a capture events occurs before the TDCCRx register has been read (see Figure 19-15). COV must be reset by software. Idle First Capture No Capture Taken Read Captures from TDCCRx check COV = 0, clear TDIFG Capture Taken TDCCRx = TDR Clear COV and TDIFG New Capture Second Capture Overflow TDCCRx = 2nd TDCLx = 1st COV = 1 Idle Figure 19-15. Single Capture Cycle 19.2.6.1.2 Dual Capture Mode (TDCAPMx = 1) Each input capture channel can be operated in single capture (compatibility) mode or in dual capture mode. The dual capture mode is selected by TDCAPMx = 1. In dual capture mode, the register TDCCRx content is shifted to the TDCLx register per each capture event; that is, the second capture event shifts the first capture value from TDCCRx into the TDCLx register. Then TDCCRx holds the second capture value while TDCLx holds the first, and the CCIFG interrupt flag is set. To make sure there is no earlier captured value in the TDCCRx and TDCLx registers these registers should be read prior to using the dual capture mode. The COV bit is set at the third capture event if both TDCCRx and TDCLx have not been read prior to the third capture event (see Figure 19-16). The third capture event again shifts the TDCCRx register content to the TDCLx register. The first capture value is no longer available. 524 Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Operation www.ti.com Timer Clock Timer N–1 N+1 N N+2 N+3 N+4 N+5 CCI Capture TDCCR undefined TDCL undefined N N+2 N+4 N N+2 Set CCIFG Set COV Figure 19-16. Sequential Capture Events in Dual Capture Mode The COV bit is set at the third capture if TDCCRx and TDCLx are not read prior to the third capture event (see Figure 19-17). Checking for COV = 0 after reading the capture registers TDCCRx and TDCLx validates the register content. Idle First Capture Capture Taken TDCCRx = 1st TDCLx = x No Capture Taken Clear COV and TDIFG Read Captures from TDCCRx and TDCLx, check COV = 0, clear TDIFG Second Capture Third Capture Overflow TDCCRx = 3rd TDCLx = 2nd COV = 1 Idle Second Capture TDCCRx = 2nd TDCLx = 1st Idle Figure 19-17. COV in Dual Capture Mode SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_D Copyright © 2008–2015, Texas Instruments Incorporated 525 Timer_D Operation www.ti.com 19.2.6.1.3 Capture Initiated by Software Captures can be initiated by software. The CMx bits can be set for capture on both edges. Software then sets bit CCIS1 = 1 and toggles bit CCIS0 to switch the capture signal between VCC and GND, initiating a capture each time CCIS0 changes state: MOV #CAP+SCS+CCIS1+CM_3,&TDxCCTLx XOR #CCIS0,&TDCCTLx ; Set up TDCCTLx ; TDCCRx = TDR 19.2.7 Compare Mode The compare mode is selected when CAP = 0. Compare mode is used to generate PWM output signals or interrupts at specific time intervals. When TDxR counts to the value in a TDCLx: • Interrupt flag CCIFG is set. • Internal signal EQUx = 1. • EQUx affects the output according to the output mode. 19.2.7.1 Compare Latch TDCLx The TDCCRx compare latch, TDCLx, holds the data for the comparison to the timer value in compare mode. TDCLx is buffered by TDCCRx. The buffered compare latch gives the user control over when a compare period updates. Compare data is written to each TDCCRx and automatically transferred to TDCLx. The timing of the transfer from TDCCRx to TDCLx is user selectable by setting the CLLDx bits as described in Table 19-5. Table 19-5. TDCLx Load Events CLLDx Description 00 New data is transferred from TDCCRx to TDCLx immediately when TDCCRx is written to. 01 New data is transferred from TDCCRx to TDCLx when TDxR counts to 0. 10 New data is transferred from TDCCRx to TDCLx when TDxR counts to 0 for up and continuous modes. New data is transferred to from TDCCRx to TDCLx when TDxR counts to the old TDCL0 value or to 0 for up/down mode. 11 New data is transferred from TDCCRx to TDCLx when TDxR counts to the old TDCLx value. 19.2.7.2 Grouping Compare Latches Multiple compare latches may be grouped together for simultaneous updates with the TDCLGRPx bits. When using groups, the CLLDx bits of the lowest numbered TDCCRx in the group determine the load event for each compare latch of the group, except when TDCLGRP = 3 (see Table 19-6). The CLLDx bits of the controlling TDCCRx must not be set to zero. When the CLLDx bits of the controlling TDCCRx are set to zero, all compare latches update immediately when their corresponding TDCCRx is written; no compare latches are grouped. Two conditions must exist for the compare latches to be loaded when grouped. First, all TDCCRx registers of the group must be updated, even when new TDCCRx data equals the old TDCCRx data. Second, the load event must occur. Table 19-6. Compare Latch Operating Modes 526 TDCLGRPx Grouping Update Control 00 None Individual 01 TDxCL1+TDxCL2 TDxCL3+TDxCL4 TDxCL5+TDxCL6 TDxCCR1 TDxCCR3 TDxCCR5 10 TDxCL1+TDxCL2+TDxCL3 TDxCL4+TDxCL5+TDxCL6 TDxCCR1 TDxCCR4 11 TDxCL0+TDxCL1+TDxCL2+TDxCL3+TDxCL4+TDxCL5+TDxCL6 TDxCCR1 Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Operation www.ti.com 19.2.8 Switching From Capture to Compare Mode As discussed in Section 19.2.7, the TDCLx register holds the first captured value when a second capture is taking place. Therefore, when the capture/compare block switches from capture mode to compare mode, TDCLx may have a non-zero initial value. It is important to clear the TDCLx before use or to update the TDCLx immediately when TDCCRx is written; that is, set CLLDx = 0x0. 19.2.9 Output Unit Each capture/compare block contains an output unit. The output unit is used to generate output signals, such as PWM signals. Each output unit has eight operating modes that generate signals based on the EQU0 and EQUx signals. The TDOUTH pin function can be used to put all Timer_D outputs into a highimpedance state. When the TDOUTH pin function is selected for the pin (corresponding PSEL bit is set, and port configured as input) and when the pin is pulled high, all Timer_D outputs are in a high-impedance state. 19.2.9.1 Output Modes The output modes are defined by the OUTMODx bits and are described in Table 19-7. The OUTx signal is changed with the rising edge of the timer clock for all modes except mode 0. In the the term TDyR period match is used. The period match in continuous mode is defined by the counter length (TDyCNTLx), and in Up mode and Up/Down mode by TDyCL0 register. Table 19-7. Output Modes OUTMODx Mode Description 000 Output The output signal OUTx is defined by the OUTx bit. The OUTx signal updates immediately when OUTx is updated. 001 Set Set events: Timer counts to TDyCLx, external fault (TECyFLTx). It remains set until a reset of the timer, or until another output mode is selected and affects the output. 010 Toggle/Reset TDxCMB = 0: Toggle events: Timer counts to TDyCLx, external fault (TECyFLTx). Reset events: Timer counts to TDyCLx, TDyR period match, external fault (TECyFLT0), external clear (TECyCLR). TD2CMB = 1: Toggle events: Timer counts to TDyCL2, external fault (TECyFLT2). Reset events: Timer counts to TDyCL1, external fault (TECyFLT1), external clear (TECyCLR). TD4CMB = 1: Toggle events: Timer counts to TDyCL4, external fault (TECyFLT4). Reset events: Timer counts to TDyCL3, external fault (TECyFLT3), external clear (TECyCLR). TD6CMB = 1: Toggle events: Timer counts to TDyCL6, external fault (TECyFLT6). Reset events: Timer counts to TDyCL5, external fault (TECyFLT5), external clear (TECyCLR). 011 Set/Reset TDxCMB = 0: Set events: Timer counts to TDyCLx, external fault (TECyFLTx). Reset events: Timer counts to TDyCLx, TDyR period match, external fault (TECyFLT0), external clear (TECyCLR). TD2CMB = 1: Set events: Timer counts to TDyCL2, external fault (TECyFLT2). Reset events: Timer counts to TDyCL1, external fault (TECyFLT1),, external clear (TECyCLR). TD4CMB = 1: Set events: Timer counts to TDyCL4, external fault (TECyFLT4). Reset events: Timer counts to TDyCL3, external fault (TECyFLT3), external clear (TECyCLR). TD6CMB = 1: Set events: Timer counts to TDyCL6, external fault (TECyFLT6). Reset events: Timer counts to TDyCL5, external fault (TECyFLT5), external clear (TECyCLR). 100 Toggle Toggle events: Timer counts to TDyCLx, external fault (TECyFLTx). The output period is twice the timer period. 101 Reset Reset events: Timer counts to TDyCLx, external fault (TECyFLTx). It remains reset until another output mode is selected and affects the output. Timer_D 527 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Operation www.ti.com Table 19-7. Output Modes (continued) OUTMODx 528 Mode Description 110 Toggle/Set TDxCMB = 0: Toggle events: Timer counts to TDyCLx, external fault (TECyFLTx). Set events: Timer counts to TDyCLx, TDyR period match, external fault (TECyFLT0), external clear (TECyCLR). TD2CMB = 1: Toggle events: Timer counts to TDyCL2, external fault (TECyFLT2). Set events: Timer counts to TDyCL1, external fault (TECyFLT1), external clear (TECyCLR). TD4CMB = 1: Toggle events: Timer counts to TDyCL4, external fault (TECyFLT4). Set events: Timer counts to TDyCL3, external fault (TECyFLT3), external clear (TECyCLR). TD6CMB = 1: Toggle events: Timer counts to TDyCL6, external fault (TECyFLT6). Set events: Timer counts to TDyCL5, external fault (TECyFLT5), external clear (TECyCLR).TDxCMB=0: 111 Reset/Set TDxCMB = 0: Reset events: Timer counts to TDyCLx, external fault (TECyFLTx). Set events: Timer counts to TDyCLx, TDyR period match, external fault (TECyFLT0), external clear (TECyCLR). TD2CMB = 1: Reset events: Timer counts to TDyCL2, external fault (TECyFLT2). Set events: Timer counts to TDyCL1, external fault (TECyFLT1), external clear (TECyCLR). TD4CMB = 1: Reset events: Timer counts to TDyCL4, external fault (TECyFLT4). Set events: Timer counts to TDyCL3, external fault (TECyFLT3), external clear (TECyCLR). TD6CMB = 1: Reset events: Timer counts to TDyCL6, external fault (TECyFLT6). Set events: Timer counts to TDyCL5, external fault (TECyFLT5), external clear (TECyCLR).TDxCMB=0: Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Operation www.ti.com 19.2.9.1.1 Output Example – Timer in Up Mode The OUTx signal is changed when the timer counts up to the TDCLx value, and rolls from TDCL0 to zero, depending on the output mode. An example is shown in Figure 19-18 using TDxCL0 and TDxCL1. TDR(max) TDCL0 TDCL1 0h Output Mode 1: Set Output Mode 2: Toggle/Reset Output Mode 3: Set/Reset Output Mode 4: Toggle Output Mode 5: Reset Output Mode 6: Toggle/Set Output Mode 7: Reset/Set EQU0 TDIFG EQU1 EQU0 TDIFG EQU1 EQU0 TDIFG Interrupt Events Figure 19-18. Output Example, Channel 1 – Timer in Up Mode SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_D Copyright © 2008–2015, Texas Instruments Incorporated 529 Timer_D Operation www.ti.com The OUTx signal is changed when the timer counts up to the TDCLx value, and rolls from TDCL0 to zero, depending on the output mode. The activity selected for the TDCCRx match event (TDR = TDCCLx) occurs at the point in time where the external fault event happens. An example is shown in Figure 19-19 using TDxCL0 and TDxCL1. TDR(max) TDCL0 TDCL1 0h Output Mode 1: Set Output Mode 2: Toggle/Reset Output Mode 3: Set/Reset Output Mode 4: Toggle Output Mode 5: Reset Output Mode 6: Toggle/Set Output Mode 7: Reset/Set EQU0 EQU1 EQU0 EQU1 EQU0 Interrupt Events TECxFLT1 Figure 19-19. Output Example, Channel 1 - Timer in Up Mode With External Fault Signal 530 Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Operation www.ti.com The OUTx signal is changed when the timer counts up to the TDCLx value, and rolls from TDCL0 to zero, depending on the output mode. The activity selected for the period match event (TDR = TDCCL0) occurs at the point in time when the external clear event happens. The external clear event restarts the timer counter. As a consequence, the next period starts earlier, and all following events happen earlier as well. An example is shown in Figure 19-20 using TDxCL0 and TDxCL1. TDR(max) TDCL0 TDCL1 0h Output Mode 1: Set Output Mode 2: Toggle/Reset Output Mode 3: Set/Reset Output Mode 4: Toggle Output Mode 5: Reset Output Mode 6: Toggle/Set Output Mode 7: Reset/Set EQU0 EQU1 EQU0 EQU1 EQU0 TECEXCLR Figure 19-20. Output Example - Timer in Up Mode with External Timer Clear Signal SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_D Copyright © 2008–2015, Texas Instruments Incorporated 531 Timer_D Operation www.ti.com 19.2.9.1.2 Output Example – Timer in Continuous Mode The OUTx signal is changed when the timer reaches the TDCLx and TDCL0 values, depending on the output mode. An example is shown in Figure 19-21 using TDxCL0 and TDxCL1. The external fault and external clear signals have the same impact to the output signals as in Up mode as shown in and . TDR(max) TDCL0 TDCL1 0h Output Mode 1: Set Output Mode 2: Toggle/Reset Output Mode 3: Set/Reset Output Mode 4: Toggle Output Mode 5: Reset Output Mode 6: Toggle/Set Output Mode 7: Reset/Set TDIFG EQU1 EQU0 TDIFG EQU1 EQU0 Interrupt Events Figure 19-21. Output Example – Timer in Continuous Mode 532 Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Operation www.ti.com 19.2.9.1.3 Output Example – Timer in Up/Down Mode The OUTx signal changes when the timer equals TDCLx in either count direction and when the timer equals TDCL0, depending on the output mode. An example is shown in Figure 19-22 using TDxCL0 and TDxCL3. TDR(max) TDCL0 TDCL3 0h Output Mode 1: Set Output Mode 2: Toggle/Reset Output Mode 3: Set/Reset Output Mode 4: Toggle Output Mode 5: Reset Output Mode 6: Toggle/Set Output Mode 7: Reset/Set TDIFG EQU3 EQU3 EQU3 EQU3 TDIFG EQU0 EQU0 Interrupt Events Figure 19-22. Output Example – Timer in Up/Down Mode NOTE: Switching between output modes When switching between output modes, one of the OUTMODx bits should remain set during the transition, unless switching to mode 0. Otherwise, output glitching can occur because a NOR gate decodes output mode 0. A safe method for switching between output modes is to use output mode 7 as a transition state: BIS #OUTMOD_7,&TDCCTLx BIC #OUTMODx,&TDCCTLx ; Set output mode=7 ; Clear unwanted bits SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_D Copyright © 2008–2015, Texas Instruments Incorporated 533 Timer_D Operation www.ti.com 19.2.10 Synchronization Between Timer_D Instances For some devices that contain more than one Timer_D instance, internal signals assist the synchronization between different timers. Those signals include Timer Clock, TDAUXCLK, TDAUXCLROUT, and some other signals that connect the Timer_D module and the Timer Event Control module. See the TEC chapter for details. 19.2.11 Timer_D Interrupts Two interrupt vectors are associated with the 16-bit Timer_D module: • TDxCCR0 interrupt vector for TDxCCR0 CCIFG • TDIV interrupt vector for all other interrupt flags In capture mode, any CCIFG flag is set when a timer value is captured in the associated TDCCRx register. In compare mode, any CCIFG flag is set when TDxR counts to the associated TDCLx value. Software may also set or clear any CCIFG flag. All CCIFG flags request an interrupt when their corresponding CCIE bit and the GIE bit are set. 19.2.11.1 TDxCCR0 Interrupt Vector The TDxCCR0 CCIFG flag has the highest Timer_D interrupt priority and has a dedicated interrupt vector (see Figure 19-23). The TDxCCR0 CCIFG flag is automatically reset when the TDxCCR0 interrupt request is serviced. Capture EQU0 CAP D Timer Clock Set CCIE Q IRQ, Interrupt Service Requested Reset IRACC, Interrupt Request Accepted POR Figure 19-23. Capture/Compare TDxCCR0 Interrupt Flag 19.2.11.2 TDIV, Interrupt Vector Generator The TDIFG flag, TDCCRx CCIFG flags (excluding TDxCCR0 CCIFG), and all of the high-resolution related interrupts are prioritized and combined to source a single interrupt vector. The interrupt vector register TDIV is used to determine which flag requested an interrupt. The highest-priority enabled interrupt (excluding TDxCCR0 CCIFG) generates a number in the TDxIV register (see Section 19.3.11). This number can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled Timer_D interrupts do not affect the TDIV value. Read access of the TDIV register automatically resets the highest-pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. For example, if the TDxCCR1 and TDxCCR2 CCIFG flags are set when the interrupt service routine accesses the TDIV register, TDxCCR1 CCIFG is reset automatically. After the RETI instruction of the interrupt service routine is executed, the TDxCCR2 CCIFG flag generates another interrupt. Write access of the TDIV register clears all pending interrupt conditions and flags. 534 Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Operation www.ti.com 19.2.11.3 TDIV, Interrupt Handler Examples The following software example shows the recommended use of TDIV. The TDIV value is added to the PC to automatically jump to the appropriate routine. Example 19-3 shows the recommended use of TDIV for Timer_D3. Example 19-3. ; Interrupt handler for TDxCCR0 CCIFG. CCIFG_0_HANDLER ... RETI ; Interrupt handler for TDxIFG, TDxCCR1 TD_HANDLER ... ADD &TDxIV,PC RETI JMP CCIFG_1_HANDLER JMP CCIFG_2_HANDLER RETI RETI RETI RETI JMP TDxIFG_HANDLER RETI RETI RETI JMP TDHxUNLKIFG_HANDLER ... ; Start of handler Interrupt latency and TDxCCR2 CCIFG. ; Interrupt latency ; Add offset to Jump table ; Vector 0: No interrupt ; Vector 2: Module 1 ; Vector 4: Module 2 ; Vector 6 ; Vector 8 ; Vector 10 ; Vector 12 ; Vector 14 ; Vector 16 ; Vector 18 ; Vector 20 ; Vector 22 TDHxUNLKIFG_HANDLER ... RETI ; Vector 22: TDHUNLKIFG Flag ; Task starts here TDxIFG_HANDLER ... RETI ... ; Vector 14: TIMOV Flag ; Task starts here CCIFG_2_HANDLER ... RETI ; Vector 4: Module 2 ; Task starts here ; Back to main program ; The Module 1 handler shows a way to look if any other ; interrupt is pending: 5 cycles have to be spent, but ; 9 cycles may be saved if another interrupt is pending CCIFG_1_HANDLER ; Vector 2: Module 1 ... ; Task starts here JMP TD_HANDLER ; Look for pending ints SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_D Copyright © 2008–2015, Texas Instruments Incorporated 535 Timer_D Registers www.ti.com 19.3 Timer_D Registers The Timer_D registers and address offsets are listed in Table 19-8. The base address for each instance of Timer_D can be found in the device-specific data sheet. Table 19-8. Timer_D Registers 536 Offset Acronym Register Name Type Reset Section 0000h TDxCTL0 Timer_D Control 0 Read/write On POR Section 19.3.1 0002h TDxCTL1 Timer_D Control 1 Read/write On POR Section 19.3.2 0004h TDxCTL2 Timer_D Control 2 Read/write On POR Section 19.3.3 0006h TDxR Timer_D Counter Read/write On POR Section 19.3.4 0008h TDxCCTL0 Timer_D Capture/Compare Control 0 Read/write On POR Section 19.3.5 000Ah TDxCCR0 Timer_D Capture/Compare 0 Read/write On POR Section 19.3.6 000Ch TDxCL0 Timer_D Capture/Compare Latch 0 Read only On POR Section 19.3.7 000Eh TDxCCTL1 Timer_D Capture/Compare Control 1 Read/write On POR Section 19.3.5 0010h TDxCCR1 Timer_D Capture/Compare 1 Read/write On POR Section 19.3.6 0012h TDxCL1 Timer_D Capture/Compare Latch 1 Read only On POR Section 19.3.7 0014h TDxCCTL2 Timer_D Capture/Compare Control 2 Read/write On POR Section 19.3.5 0016h TDxCCR2 Timer_D Capture/Compare 2 Read/write On POR Section 19.3.6 0018h TDxCL2 Timer_D Capture/Compare Latch 2 Read only On POR Section 19.3.7 001Ah TDxCCTL3 Timer_D Capture/Compare Control 3 Read/write On POR Section 19.3.5 001Ch TDxCCR3 Timer_D Capture/Compare 3 Read/write On POR Section 19.3.6 001Eh TDxCL3 Timer_D Capture/Compare Latch 3 Read only On POR Section 19.3.7 0020h TDxCCTL4 Timer_D Capture/Compare Control 4 Read/write On POR Section 19.3.5 0022h TDxCCR4 Timer_D Capture/Compare 4 Read/write On POR Section 19.3.6 0024h TDxCL4 Timer_D Capture/Compare Latch 4 Read only On POR Section 19.3.7 0026h TDxCCTL5 Timer_D Capture/Compare Control 5 Read/write On POR Section 19.3.5 0028h TDxCCR5 Timer_D Capture/Compare 5 Read/write On POR Section 19.3.6 002Ah TDxCL5 Timer_D Capture/Compare Latch 5 Read only On POR Section 19.3.7 002Ch TDxCCTL6 Timer_D Capture/Compare Control 6 Read/write On POR Section 19.3.5 002Eh TDxCCR6 Timer_D Capture/Compare 6 Read/write On POR Section 19.3.6 0030h TDxCL6 Timer_D Capture/Compare Latch 6 Read only On POR Section 19.3.7 0032h Reserved 0034h Reserved 0036h Reserved 0038h TDxHCTL0 Timer_D High-resolution Control 0 Read/write On POR Section 19.3.8 003Ah TDxHCTL1 Timer_D High-resolution Control 1 Read/write On POR Section 19.3.9 003Ch TDxHINT Timer_D High-resolution Interrupt Read/write On POR Section 19.3.10 003Eh TDxIV Timer_D Interrupt Vector Read only On POR Section 19.3.11 Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Registers www.ti.com 19.3.1 TDxCTL0 Register Timer_D x Control Register 0 Figure 19-24. TDxCTL0 Register 15 14 13 12 rw-(0) rw-(0) rw-(0) 6 5 Reserved TDCLGRPx r0 7 CNTLx 4 ID rw-(0) 11 MCx rw-(0) rw-(0) rw-(0) 10 9 Reserved rw-(0) r0 8 TDSSELx rw-(0) rw-(0) 3 2 1 0 Reserved TDCLR TDIE TDIFG r0 w-(0) rw-(0) rw-(0) Table 19-9. TDxCTL0 Register Description Bit Field Type Reset Description 15 Reserved R 0h Reserved. Always reads as 0. 14-13 TDCLGRPx RW 0h TDCLx group 00b = Each TDCLx latch loads independently. 01b = TDxCL1+TDxCL2 (TDxCCR1 CLLDx bits control the update) TDxCL3+TDxCL4 (TDxCCR3 CLLDx bits control the update) TDxCL5+TDxCL6 (TDxCCR5 CLLDx bits control the update) TDxCL0 independent 10b = TDxCL1+TDxCL2+TDxCL3 (TDxCCR1 CLLDx bits control the update) TDxCL4+TDxCL5+TDxCL6 (TDxCCR4 CLLDx bits control the update) TDxCL0 independent 11b = TDxCL0+TDxCL1+TDxCL2+TDxCL3+TDxCL4+TDxCL5+TDxCL6 (TDxCCR1 CLLDx bits control the update) 12-11 CNTLx RW 0h Counter length 00b = 16-bit, TDR(max) = 0FFFFh 01b = 12-bit, TDR(max) = 0FFFh 10b = 10-bit, TDR(max) = 03FFh 11b = 8-bit, TDR(max) = 0FFh 10 Reserved R 0h Reserved. Always reads as 0. 9-8 TDSSELx RW 0h Timer_D clock source select 00b = TDCLK 01b = ACLK 10b = SMCLK 11b = Inverted TDCLK 7-6 ID RW 0h Input divider. These bits, along with the IDEX bits in TDxCTL1, select the divider for the input clock. 00b = Divide by 1 01b = Divide by 2 10b = Divide by 4 11b = Divide by 8 5-4 MCx RW 0h Mode control. Setting MCx = 00h when Timer_D is not in use saves power. 00b = Stop mode: Timer is halted 01b = Up mode: Timer counts up to TDCL0 10b = Continuous mode: Timer counts up to the value set by CNTLx (counter length) 11b = Up/down mode: Timer counts up to TDCL0 and down to 0000h 3 Reserved R 0h Reserved. Always reads as 0. 2 TDCLR W 0h Timer_D clear. Setting this bit resets TDR, the TDCLK divider, and the count direction. The TDCLR bit always read as zero. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_D Copyright © 2008–2015, Texas Instruments Incorporated 537 Timer_D Registers www.ti.com Table 19-9. TDxCTL0 Register Description (continued) Bit Field Type Reset Description 1 TDIE RW 0h Timer_D interrupt enable. This bit enables the TDIFG interrupt request. 0b = Interrupt disabled 1b = Interrupt enabled 0 TDIFG RW 0h Timer_D interrupt flag 0b = No interrupt pending 1b = Interrupt pending 538 Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Registers www.ti.com 19.3.2 TDxCTL1 Register Timer_D x Control Register 1 Figure 19-25. TDxCTL1 Register 15 14 r0 r0 13 12 11 10 9 r0 r0 rw-(0) rw-(0) 3 2 1 Reserved r0 8 IDEX 7 6 5 4 Reserved TD6CMB TD4CMB TD2CMB r0 rw-(0) rw-(0) rw-(0) Reserved r0 rw-(0) 0 TDCLKMx r0 rw-(0) rw-(0) Table 19-10. TDxCTL1 Register Description Bit Field Type Reset Description 15-11 Reserved R 0h Reserved. Always reads as 0. 10-8 IDEX RW 0h Input divider extension. These bits, along with the ID bits in TDxCTL0, select the divider for the input clock. 000b = Divide by 1 001b = Divide by 2 010b = Divide by 3 011b = Divide by 4 100b = Divide by 5 101b = Divide by 6 110b = Divide by 7 111b = Divide by 8 7 Reserved R 0h Reserved. Always reads as 0. 6 TD6CMB RW 0h Control bit for TDCCR registers combination in TD6 (only available on Timer_D7) 0b = TDxCCR5 and TDxCCR6 are not combined 1b = TDxCCR5 and TDxCCR6 are combined 5 TD4CMB RW 0h Control bit for TDCCR registers combination in TD4 (available on Timer_D5, Timer_D7) 0b = TDxCCR3 and TDxCCR4 are not combined 1b = TDxCCR3 and TDxCCR4 are combined 4 TD2CMB RW 0h Control bit for TDCCR registers combination in TD2 0b = TDxCCR1 and TDxCCR2 are not combined 1b = TDxCCR1 and TDxCCR2 are combined 3-2 Reserved R 0h Reserved. Always reads as 0. 1-0 TDCLKMx RW 0h Timer_D clocking mode register 00b = External clock source is used 01b = High-resolution local clock is used 10b = Auxiliary clock source from another timer instance is used 11b = Reserved SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_D Copyright © 2008–2015, Texas Instruments Incorporated 539 Timer_D Registers www.ti.com 19.3.3 TDxCTL2 Register Timer_D x Control Register 2 Figure 19-26. TDxCTL2 Register 15 14 13 12 r0 r0 r0 r0 11 10 9 8 r0 r0 r0 r0 Reserved 7 6 5 4 3 2 1 0 Reserved TDCAPM6 TDCAPM5 TDCAPM4 TDCAPM3 TDCAPM2 TDCAPM1 TDCAPM0 r0 Table 19-11. TDxCTL2 Register Description Bit Field Type Reset Description 15-7 Reserved R 0h Reserved. Always reads as 0. 6 TDCAPM6 RW 0h Capture mode of channel 6 0b = Single capture mode 1b = Dual capture mode 5 TDCAPM5 RW 0h Capture mode of channel 5 0b = Single capture mode 1b = Dual capture mode 4 TDCAPM4 RW 0h Capture mode of channel 4 0b = Single capture mode 1b = Dual capture mode 3 TDCAPM3 RW 0h Capture mode of channel 3 0b = Single capture mode 1b = Dual capture mode 2 TDCAPM2 RW 0h Capture mode of channel 2 0b = Single capture mode 1b = Dual capture mode 1 TDCAPM1 RW 0h Capture mode of channel 1 0b = Single capture mode 1b = Dual capture mode 0 TDCAPM0 RW 0h Capture mode of channel 0 0b = Single capture mode 1b = Dual capture mode 540 Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Registers www.ti.com 19.3.4 TDxR Register Timer_D x Counter Register Figure 19-27. TDxR Register 15 14 13 12 rw-(0) rw-(0) rw-(0) rw-(0) 7 6 5 4 11 10 9 8 rw-(0) rw-(0) rw-(0) rw-(0) 3 2 1 0 rw-(0) rw-(0) rw-(0) rw-(0) TDRx TDRx rw-(0) rw-(0) rw-(0) rw-(0) Table 19-12. TDxR Register Description Bit Field Type Reset Description 15-0 TDRx RW 0h Timer_D register. The TDxR register is the count of Timer_D. In high-resolution mode, the bits 0 to 3 return zero when the TDxR register is read. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_D Copyright © 2008–2015, Texas Instruments Incorporated 541 Timer_D Registers www.ti.com 19.3.5 TDxCCTLn Register Timer_D x Capture/Compare Control Register Figure 19-28. TDxCCTLn Register 15 14 13 rw-(0) rw-(0) 6 5 CMx 12 11 rw-(0) rw-(0) CCISx rw-(0) 7 OUTMODx rw-(0) rw-(0) rw-(0) 10 SCS 9 8 rw-(0) rw-(0) CLLDx rw-(0) CAP 4 3 2 1 0 CCIE CCI OUT COV CCIFG rw-(0) r rw-(0) rw-(0) rw-(0) Table 19-13. TDxCCTLn Register Description Bit Field Type Reset Description 15-14 CMx RW 0h Capture mode 00b = No capture 01b = Capture on rising edge 10b = Capture on falling edge 11b = Capture on both rising and falling edges 13-12 CCISx RW 0h Capture/compare input select. These bits select the TDCCRx input signal. See the device-specific data sheet for specific signal connections. 00b = CCIxA 01b = CCIxB 10b = GND 11b = VCC 11 SCS RW 0h Synchronize capture source. This bit is used to synchronize the capture input signal with the timer clock. In high-resolution mode, the capture is always synchronous to the high-resolution clock, and this setting is ignored. 0b = Asynchronous capture 1b = Synchronous capture 10-9 CLLDx RW 0h Compare latch load. These bits select the compare latch load event. 00b = TDCLx loads on write to TDCCRx 01b = TDCLx loads when TDR counts to 0 10b = TDCLx loads when TDR counts to 0 (up or continuous mode). TDCLx loads when TDR counts to TDxCL0 or to 0 (up/down mode). 11b = TDCLx loads when TDR counts to TDCLx 8 CAP RW 0h Capture mode 0b = Compare mode 1b = Capture mode 7-5 OUTMODx RW 0h Output mode 000b = OUT bit value 001b = Set 010b = Toggle/reset 011b = Set/reset 100b = Toggle 101b = Reset 110b = Toggle/set 111b = Reset/set 4 CCIE RW 0h Capture/compare interrupt enable. Enables the interrupt request of the corresponding CCIFG flag. 0b = Interrupt disabled 1b = Interrupt enabled 3 CCI R 0h Capture/compare input. The selected input signal can be read by this bit. 542 Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Registers www.ti.com Table 19-13. TDxCCTLn Register Description (continued) Bit Field Type Reset Description 2 OUT RW 0h Output. For output mode 0, this bit directly controls the state of the output. 0b = Output low 1b = Output high 1 COV RW 0h Capture overflow. Indicates a capture overflow occurred. COV must be reset with software. 0b = No capture overflow occurred 1b = Capture overflow occurred 0 CCIFG RW 0h Capture/compare interrupt flag 0b = No interrupt pending 1b = Interrupt pending SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_D Copyright © 2008–2015, Texas Instruments Incorporated 543 Timer_D Registers www.ti.com 19.3.6 TDxCCRn Register Timer_D x Capture/Compare Register Figure 19-29. TDxCCRn Register 15 14 13 12 rw-(0) rw-(0) rw-(0) rw-(0) 7 6 5 4 11 10 9 8 rw-(0) rw-(0) rw-(0) rw-(0) 3 2 1 0 rw-(0) rw-(0) rw-(0) rw-(0) TDCCRx TDCCRx rw-(0) rw-(0) rw-(0) rw-(0) Table 19-14. TDxCCRn Register Description Bit Field Type Reset Description 15-0 TDCCRx RW 0h Timer_D capture/compare register. The TDCCRx register is the count of capture/compare block x. Note: In high-resolution compare mode there are limitations of the minimum and maximum duty cycles. See Table 19-3 and Table 19-4 for details. 19.3.7 TDxCLn Register Timer_D x Capture/Compare Latch Register Figure 19-30. TDxCLn Register 15 14 13 12 11 10 9 8 rw-(0) rw-(0) rw-(0) rw-(0) 3 2 1 0 rw-(0) rw-(0) rw-(0) rw-(0) TDCLx rw-(0) rw-(0) rw-(0) rw-(0) 7 6 5 4 TDCLx rw-(0) rw-(0) rw-(0) rw-(0) Table 19-15. TDxCLn Register Description Bit Field Type Reset Description 15-0 TDCLx RW 0h Timer_D capture/compare latch register. TDCLx register holds the comparison value in compare mode. In capture mode the register content of TDxCCRx is copied into TDxCLx at each capture event. 544 Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Registers www.ti.com 19.3.8 TDxHCTL0 Register Timer_D x High-Resolution Control Register 0 Figure 19-31. TDxHCTL0 Register 15 14 13 r0 r0 r0 6 5 12 11 10 9 r0 r0 r0 Reserved 7 r0 4 TDHDx rw-(0) TDHMx rw-(0) rw-(0) rw-(0) 8 TDHFW rw-(0) 3 2 1 0 TDHRON TDHEAEN TDHREGEN TDHEN rw-(0) rw-(0) rw-(0) rw-(0) Table 19-16. TDxHCTL0 Register Description Bit Field Type Reset Description 15-9 Reserved R 0h Reserved. Always reads as 0. 8 TDHFW RW 0h High-resolution generator fast wakeup enable 0b = High-resolution generator fast wakeup disabled 1b = High-resolution generator fast wakeup enable 7-6 TDHDx RW 0h High-resolution clock divider. These bits select the divider for the high resolution clock. 00b = Divide by 1 01b = Divide by 2 10b = Divide by 4 11b = Divide by 8 5-4 TDHMx RW 0h Timer_D high-resolution clock multiplication factor 00b = High-resolution clock 8x Timer_D clock 01b = High-resolution clock 16x Timer_D clock 10b = Reserved 11b = Reserved 3 TDHRON RW 0h Timer_D high-resolution generator forced on. 0b = High-resolution generator is on if the Timer_D counter MCx bits are 01, 10 or 11. 1b = High-resolution generator is on in all Timer_D MCx modes. The PMM remains in high-current mode. 2 TDHEAEN RW 0h Timer_D high-resolution clock enhanced accuracy enable bit. Setting this bit reduces the accumulated frequency offset of the high-resolution clock generator and the reference clock. 0b = Normal accuracy 1b = Enhanced accuracy enable 1 TDHREGEN RW 0h Timer_D regulation enable. Set this bit to synchronize the high-resolution clock to the Timer_D input clock defined by TDSSELx. 0b = Regulation disabled 1b = Regulation enabled 0 TDHEN RW 0h Timer_D high-resolution enable bit. This bit must be set to enable high-resolution operation mode. Whenever a high-resolution TDAUXCLK from another Timer_D instance is used, this bit must also be set. 0b = High-resolution mode disable 1b = High-resolution mode enable SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_D Copyright © 2008–2015, Texas Instruments Incorporated 545 Timer_D Registers www.ti.com 19.3.9 TDxHCTL1 Register Timer_D x High-Resolution Control Register 1 Figure 19-32. TDxHCTL1 Register 15 14 TDHCLKCR 13 12 11 rw-(0) rw-(0) 4 3 TDHCLKRx 10 9 8 rw-(0) rw-(0) rw-(0) 2 1 TDHCLKSRx rw-(0) rw-(0) rw-(0) 7 6 5 TDHCLKTRIMx rw-(1) rw-(0) rw-(0) rw-(0) 0 Reserved rw-(0) rw-(0) rw-(0) r0 Table 19-17. TDxHCTL1 Register Description Bit Field Type Reset Description 15 TDHCLKCR RW 0h Timer_D high-resolution coarse clock range selection bits. For detailed frequency numbers, see the device-specific data sheet. 0b = Timer_D input clock to the high-resolution generator is <15 MHz. 1b = Timer_D input clock to the high-resolution generator is >15 MHz. 14-13 TDHCLKRx RW 0h Timer_D high-resolution clock range selection bits. These bits are used to define the coarse clock range of the high-resolution clock generator. If TDHREGEN = 1 these register bits are modified by hardware. 00b = Clock range 0. See data sheet for frequency details. 01b = Clock range 1. See data sheet for frequency details. 10b = Clock range 2. See data sheet for frequency details. 11b = Reserved 12-8 TDHCLKSRx RW 0h Timer_D high-resolution clock sub-range selection bits. These bits are used to define the sub-clock range of the high-resolution clock generator. The frequency change due to a change of the TDHCLKTRIMx bits is approximately half of the TDHCLKSRx bits in each clock range. If TDHREGEN = 1, these register bits are modified by hardware. 7-1 TDHCLKTRIMx RW 40h Timer_D high-resolution clock trim selection bits. These bits are used to change the clock frequency slightly. The frequency change due to a change of the TDHCLKTRIMx bits is approximately half of the TDHCLKSRx bits in each clock range. If TDHREGEN = 1, these register bits are modified by hardware. 0 Reserved R 0h Reserved. Always reads as 0. 546 Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Timer_D Registers www.ti.com 19.3.10 TDxHINT Register Timer_D x High-Resolution Interrupt Register Figure 19-33. TDxHINT Register 15 14 r0 r0 7 6 13 12 r0 r0 5 4 Reserved Reserved r0 r0 r0 r0 11 10 9 8 TDHUNLKIE TDHLKIE TDHFHIE TDHFLIE rw-(0) rw-(0) rw-(0) rw-(0) 3 2 1 0 TDHUNLKIFG TDHLKIFG TDHFHIFG TDHFLIFG rw-(0) rw-(0) rw-(0) rw-(0) Table 19-18. TDxHINT Register Description Bit Field Type Reset Description 15-12 Reserved R 0h Reserved. Always reads as 0. 11 TDHUNLKIE RW 0h Timer_D interrupt enable. This bit enables the TDHUNLKIFG interrupt request. 0b = Interrupt disabled 1b = Interrupt enabled 10 TDHLKIE RW 0h Timer_D interrupt enable. This bit enables the TDHLKIFG interrupt request. 0b = Interrupt disabled 1b = Interrupt enabled 9 TDHFHIE RW 0h Timer_D interrupt enable. This bit enables the TDHFHIFG interrupt request. 0b = Interrupt disabled 1b = Interrupt enabled 8 TDHFLIE RW 0h Timer_D interrupt enable. This bit enables the TDHFLIFG interrupt request. 0b = Interrupt disabled 1b = Interrupt enabled 7-4 Reserved R 0h Reserved. Always reads as 0. 3 TDHUNLKIFG RW 0h Timer_D high-resolution frequency unlock interrupt flag if TDHREGEN is set to 1. This bit is set if the frequency is still unlocked and the calibration is not yet completed. If the bit is set until cleared by writing to it. 0b = No interrupt pending 1b = Interrupt pending 2 TDHLKIFG RW 0h Timer_D high-resolution frequency lock interrupt flag if TDHREGEN is set to 1. This bit is set if the frequency is locked and the calibration is completed. If the bit is set it remains set until cleared by writing to it. 0b = No interrupt pending 1b = Interrupt pending 1 TDHFHIFG RW 0h Timer_D high-resolution fail high interrupt flag. This bit is set if the highresolution generator cannot generate the high-resolution frequency because the input frequency is too high. If the bit is set until cleared by writing to it. 0b = No interrupt pending 1b = Interrupt pending 0 TDHFLIFG RW 0h Timer_D high-resolution fail low interrupt flag. This bit is set if the high-resolution generator cannot generate the high-resolution frequency because the input frequency is too low. If the bit is set until cleared by writing o it. 0b = No interrupt pending 1b = Interrupt pending SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer_D Copyright © 2008–2015, Texas Instruments Incorporated 547 Timer_D Registers www.ti.com 19.3.11 TDxIV Register Timer_D x Interrupt Vector Register Figure 19-34. TDxIV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-(0) r-(0) r-(0) r0 TDIVx TDIVx r0 r0 r0 r-(0) Table 19-19. TDxIV Register Description Bit Field Type Reset Description 15-0 TDIVx R 0h Timer_D external interrupt vector value 00h = No interrupt pending 02h = Interrupt Source: Capture/compare 1; Interrupt Flag: TDxCCR1 CCIFG; Interrupt Priority: Highest 04h = Interrupt Source: Capture/compare 2; Interrupt Flag: TDxCCR2 CCIFG 06h = Interrupt Source: Capture/compare 3; Interrupt Flag: TDxCCR3 CCIFG 08h = Interrupt Source: Capture/compare 4; Interrupt Flag: TDxCCR4 CCIFG 0Ah = Interrupt Source: Capture/compare 5; Interrupt Flag: TDxCCR5 CCIFG 0Ch = Interrupt Source: Capture/compare 6; Interrupt Flag: TDxCCR6 CCIFG 0Eh = Reserved 10h = Interrupt Source: Timer overflow; Interrupt Flag: TDxIFG 12h = Interrupt Source: Clock fail low; Interrupt Flag: TDxHINT TDHFLIFG 14h = Interrupt Source: Clock fail high; Interrupt Flag: TDxHINT TDHFHIFG 16h = Interrupt Source: High-resolution frequency locked; Interrupt Flag: TDxHINT TDHLKIFG 18h = Interrupt Source: High-resolution frequency unlocked; Interrupt Flag: TDxHINT TDHUNLKIFG 1Ah = Reserved 1Ch = Reserved 1Eh = Reserved ; Interrupt Priority: Lowest 548 Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Chapter 20 SLAU208O – June 2008 – Revised May 2015 Timer Event Control (TEC) Timer Event Control (TEC) module is the interface between Timer modules and the external events. This chapter describes the TEC Module. Topic 20.1 20.2 20.3 ........................................................................................................................... Page Timer Event Control Introduction ....................................................................... 550 TEC Operation.................................................................................................. 551 TEC Registers .................................................................................................. 557 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer Event Control (TEC) Copyright © 2008–2015, Texas Instruments Incorporated 549 Timer Event Control Introduction www.ti.com 20.1 Timer Event Control Introduction TEC is a module that connects different Timer modules to each other and routes the external signals to the Timer modules. TEC contains the control registers to configure the routing between the Timer modules, and it also has the enable register bits and the interrupt enable and interrupt flags for external event inputs. TEC features include: • Enabling of internal and external clear signals • Routing of internal signals (between Timer_D instances) and external clear signals • Support of external fault input signals • Interrupt vector generation of external fault and clear signals. • Generating feedback signals to the Timer capture/compare channels to affect the timer outputs The block diagram of TEC is shown in Figure 20-1. TDAUXCLK TEC Timer Block TECAXCLREN TDCLR1 TECxCLREN TECxCLR EXTCLR D S Q TECxCLRHLD Timer Clock CLK3 CLK1 TECAXCLRIN CLK2 00 01 10 11 CLK0 CLKSELx CE0 CE1 CE2 CE3 CE4 CE5 EQU6 CH6EVNT CE6 TEC CCR6 Block TECxFLTEN6 TECxFLT6 TECxFLTHLD6 D S Q Timer Clock Figure 20-1. Timer Event Control Block Diagram 550 Timer Event Control (TEC) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated TEC Operation www.ti.com 20.2 TEC Operation The TEC module contains three sub-blocks: • AUXCLK Selection sub-block The AUXCLK Selection sub-block chooses the auxiliary clock source for the timer. • External Clear sub-block The External Clear sub-block controls the operation of the timer counter. • Channel Event sub-block The Channel Event sub-block controls the operation of a capture/compare channel. This structure means that one Timer_D3 module, for example, needs a TEC that contains one AUXCLK Selection sub-block, one External Clear sub-block, and three Channel Event sub-blocks. 20.2.1 AUXCLK Selection Sub-Block The AUXCLK Selection sub-block provides the auxiliary clock to Timer_D. By configuring the CLKSELx bits, one of the four clock sources can be chosen. 20.2.2 External Clear Sub-Block The External Clear sub-block accepts external signals that can clear the Timer_D and affect the timer output. The TDR register in Timer_D module can be cleared by the following external events: • External input TECEXCLR is enabled and is high. • The auxiliary clear signal TECAXCLRIN is enabled and is high. 20.2.3 Channel Event Sub-Block The Channel Event sub-block is responsible for timer event control and signaling. One Channel Event sub-block corresponds to one capture/compare channel in Timer_D module. The output unit of a capture/compare channel accepts the external fault input as well as the EQUx signal coming from the CCRx unit of the Timer_D. Both events will affect the PWM output. When a TECXFLTx event is enabled and occurs, the corresponding status bit TECXFLTxSTA in the TECSTA register is set. This event also sets the TECXFLTIFG interrupt flag. When TECXFLTIFG is set to logical 1, the TECXFLTxSTA status bits show which external fault signal or signals are active. The TECXFLTHLDx control bit holds the external fault signal. Clearing the TECXFLTxSTA status bits also resets the held signal back to zero. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer Event Control (TEC) Copyright © 2008–2015, Texas Instruments Incorporated 551 TEC Operation www.ti.com 20.2.3.1 External Input Events Affect Timer Output Figure 20-2 shows how the external signals affect the Timer_D output in a Power Factor Corrector (PFC) application. Timer_D: TDR(max) Timer_D: TDCL0 Timer_D: TDCL2 0h Timer_D: OUT2 Ton Toff Ton Toff Ton Ton Toff Ton Output Mode 8: Reset/Set (Timer_D: TD2CMB = 0, TECXFLTEN2=1, TECEXCLREN=1) TECEXCLR TECXFLT2 Figure 20-2. External Input Events Affect Timer_D Output Figure 20-3 shows an example in which channels are combined. Timer_D: TDR(max) Timer_D: TDCL0 Timer_D: TDCL1 Timer_D: TDCL2 0h TECEXCLR (Timer_D: TD2CMB = 1, TECXFLTEN1=1, TECXFLTEN2=0, TECEXCLREN=1) TECXFLT1 Output Mode 3: Set/Reset Timer_D: OUT2 EQU2 EQU1 EQU0 EQU2 EQU1 EQU2 EQU2 EQU1 Figure 20-3. Timer_D Output With Channel Combination 20.2.4 Module Level Connection Between TEC and Timer_D The TEC and Timer_D modules are connected through internal signals. Figure 20-4 shows the interconnection between TEC and Timer_D module. See the Timer_D chapter for more Timer_D module information. 552 Timer Event Control (TEC) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated TEC Operation www.ti.com TDAUXCLROUT IDEXx TDCLKMx IDx TDSSELx Timer Clock Timer Block MCx TDCLK 15 ACLK SMCLK 00 Divider Divider 01 /1/2/4/8 /1.../8 00 16-bit Timer TDR 01 10 Count Mode RC 8 Clear 10 TDHMx TDHDx 11 0 10 12 16 CNTLx Divider /1/2/4/8 High Resolution Generator TDCLGRPx 2 Group Load Logic 7 00 5 01 TDHCLKSRx TDHCLKRx EQU0 10 TDHCLKTRIMx TDAUXCLK TDCLR1 Set TDIFG 11 TDCLR TEC - TImer Block TECAXCLREN TECEXCLREN TECEXCLR TECEXCLRHLD D S EXTCLR Q Timer Clock CLKSELx = 0 00 01 10 11 TECAXCLRIN TDAUXCLK CCR6 Comparator 6 EQU6 TD6CMB CH0EVNT CH5EVNT 0 Set TDCCR6 1 CCIFG OUT 0 1 CAP Output Unit6 Set D OUT6 Signal Q Timer Clock EXTCLR Reset POR OUTMODx EQU6 CH6EVNT TEC - CCR6 Block TECXFLTEN6 TECXFLT6 TECXFLTHLD6 D S Q Timer Clock Figure 20-4. Module Level Connection Between TEC and Timer_D SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer Event Control (TEC) Copyright © 2008–2015, Texas Instruments Incorporated 553 TEC Operation www.ti.com 20.2.5 Synchronization Mechanism Between Timer_D Instances Two or more Timer_D modules can be synchronized to each other. One instance can be the master of the other Timer_D instance (slave). The master is the instance that supplies the clock to the other instance. If two timer instances are synchronized to each other, then there is a device specific order; for example, Timer0_D is the master of Timer1_D. The slave uses the settings of the TDHEN bit, the CNTLx bits, and the MCx bits of the master. The CCR0 registers of the master and the slave must be programmed to equal values. Figure 20-5 shows the combination of a Timer_D master and a Timer_D slave and the control signals routed through the TEC module of the slave. The clock generator of the Timer_D slave is powered down by selecting the TDCLKMx to accept the clock input from the Timer_D master. The TECEXCLR signals of the slave timers do not propagate to the master but the clear events of the master timers are signaled to the slave timers. See Figure Figure 20-5 for the detailed signal routing between master and slave. The divider and clock selector settings of the slave timers are ignored. The high resolution generator of the slave timer is disabled. The Example 20-1 shows how to program the master timer and the slave timer to synchronize them. Example 20-1. // Example: TD0 is master timer, TD1 is slave timer // Period is 200. TD0 channel 1: 20% duty cycle. TD0 channel 2: 40% duty cycle // TD1 channel 1: 60% duty cycle. TD1 channel 2: 80% duty cycle // Configure Master TD0 TD0CTL0 = TDSSEL_2; // TDCLK = SMCLK = Hi-Res input clk TD0CTL1 |= TDCLKM_1; // TD0 clock = Hi-res local clock TD0HCTL0 = TDHM_0 + TDHREGEN + TDHEN; // Hi-res clock 8x TDCLK, // Regulation and Hi-res mode enable // TD0HINT |= TDHLKIE; not used in the example // Configure Slave TD1 TD1CTL1 = TDCLKM_2; master // Set TDH Lock IFG - // TD1 clock = Auxiliary clock source from // timer instance // Configure Slave TEC1 TEC1XCTL2 |= TECAXCLREN; // Enable synchronized clear // Configure TD0 and its PWM outputs TD0CTL0 |= TDCLR; TD0CCR0 = 200; TD0CCR1 = 40; TD0CCTL1 |= OUTMOD_7; TD0CCR2 = 80; TD0CCTL2 |= OUTMOD_7; // Clear timer counter master+slave // // // // // TD0CCR0 20% dutycycle TD0CCR1, Reset/Set 40% dutycycle TD0CCR2, Reset/Set // Configure TD1 PWM outputs TD1CCR0 = 200; TD1CCR1 = 120; TD1CCTL1 |= OUTMOD_7; TD1CCR2 = 160; TD1CCTL2 |= OUTMOD_7; // TD1CCR0 // 60% dutycycle // TD1CCR1, Reset/Set // 80% dutycycle // TD1CCR2, Reset/Set // Start timers and select Up-mode TD0CTL0 |= MC_1 + TDCLR; // up-mode, start timer 554 Timer Event Control (TEC) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated TEC Operation www.ti.com TDAUXCLROUT IDEXx TDCLKMx IDx TDSSELx Timer Clock Timer_D - Slave MCx TDCLK 15 ACLK SMCLK 00 Divider Divider 01 /1/2/4/8 /1.../8 00 16-bit Timer TDR 01 10 Count Mode RC 8 Clear 10 TDHMx TDHDx 11 0 10 12 16 CNTLx Divider /1/2/4/8 High Resolution Generator TDCLGRPx 7 2 Group Load Logic 00 5 01 TDHCLKSRx TDHCLKRx EQU0 TDHCLKTRIMx TDAUXCLK 10 TDCLR1 Set TDIFG 11 TDCLR TEC Timer_D - Slave TECAXCLREN=1 TECEXCLREN TECEXCLR TECEXCLRHLD D S EXTCLR Q Timer Clock CLKSELx = 0 TECAXCLRIN 00 01 10 11 TDAUXCLK TDAUXCLROUT IDEXx TDCLKMx IDx TDSSELx Timer Clock Timer_D - Master MCx TDCLK 15 ACLK SMCLK 00 Divider Divider 01 /1/2/4/8 /1.../8 00 16-bit Timer TDR 01 10 11 TDCLGRPx Count Mode RC 8 10 12 16 7 00 5 01 TDHCLKSRx TDHCLKRx EQU0 CNTLx Divider /1/2/4/8 High Resolution Generator 2 Group Load Logic Clear 10 TDHMx TDHDx 0 10 TDHCLKTRIMx TDCLR1 Set TDIFG 11 TDCLR TDAUXCLK TEC Timer_D - Master TECAXCLREN=1 TECEXCLREN TECEXCLR TECEXCLRHLD D S EXTCLR Q Timer Clock CLKSELx = 0 TECAXCLRIN 00 01 10 11 TDAUXCLK Figure 20-5. Synchronization Between Timer Instances SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer Event Control (TEC) Copyright © 2008–2015, Texas Instruments Incorporated 555 TEC Operation www.ti.com 20.2.6 Timer Event Control Interrupts The TEC module has only one interrupt vector, TECxIV. 20.2.6.1 TECxIV, Interrupt Vector Generator The external fault interrupt TECXFLTIFG, the external clear interrupt TECEXCLRIFG, and the auxiliary clear interrupt TECAXCLRIFG are prioritized and combined to source a single interrupt vector. The interrupt vector register TECxIV is used to determine which flag requested an interrupt. The highest-priority enabled interrupt generates a number in the TECxIV register (see Section 20.3.6). This number can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled TEC interrupts do not affect the TECxIV value. Read access of the TECxIV register automatically resets the highest-pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. Write access of the TECxIV register clears all pending interrupt conditions and flags. 556 Timer Event Control (TEC) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated TEC Registers www.ti.com 20.3 TEC Registers The Timer Event Control registers are listed in Table 20-1. The base address can be found in the devicespecific data sheet. The address offset is listed in Table 20-1. Table 20-1. TEC Registers Offset Acronym Register Name Type Reset Section 0000h TECxCTL0 Timer Event Control External Control 0 Read/write 0000h Section 20.3.1 0002h TECxCTL1 Timer Event Control External Control 1 Read/write 0000h Section 20.3.2 0004h TECxCTL2 Timer Event Control External Control 2 Read/write 0000h Section 20.3.3 0006h TECxSTA Timer Event Control Status Read/write 0000h Section 20.3.4 0008h TECxINT Timer Event Control External Interrupt Read/write 0000h Section 20.3.5 000Ah TECxIV Timer Event Control Interrupt Vector Read only 0000h Section 20.3.6 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer Event Control (TEC) Copyright © 2008–2015, Texas Instruments Incorporated 557 TEC Registers www.ti.com 20.3.1 TECxCTL0 Register Timer Event Control External Control Register 0 Figure 20-6. TECxCTL0 Register 15 14 13 12 11 10 9 8 Reserved TECXFLTEN6 TECXFLTEN5 TECXFLTEN4 TECXFLTEN3 TECXFLTEN2 TECXFLTEN1 TECXFLTEN0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) 6 5 4 3 2 1 0 7 Reserved TECXFLTHLD6 TECXFLTHLD5 TECXFLTHLD4 TECXFLTHLD3 TECXFLTHLD2 TECXFLTHLD1 TECXFLTHLD0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) Table 20-2. TECxCTL0 Register Description Bit Field Type Reset Description 15 Reserved R 0h Reserved. Always reads as 0. 14 TECXFLTEN6 RW 0h External fault signal enable for channel event block 6 (only available on TEC7) 0b = External fault signal is disabled for CE6 1b = External fault signal is enabled for CE6 13 TECXFLTEN5 RW 0h External fault signal enable for channel event block 5 (only available on TEC7) 0b = External fault signal is disabled for CE5 1b = External fault signal is enabled for CE5 12 TECXFLTEN4 RW 0h External fault signal enable for channel event block 4 (only available on TEC5 or TEC7) 0b = External fault signal is disabled for CE4 1b = External fault signal is enabled for CE4 11 TECXFLTEN3 RW 0h External fault signal enable for channel event block 3 (only available on TEC5 or TEC7) 0b = External fault signal is disabled for CE3 1b = External fault signal is enabled for CE3 10 TECXFLTEN2 RW 0h External fault signal enable for channel event block 2 0b = External fault signal is disabled for CE2 1b = External fault signal is enabled for CE2 9 TECXFLTEN1 RW 0h External fault signal enable for channel event block 1 0b = External fault signal is disabled for CE1 1b = External fault signal is enabled for CE1 8 TECXFLTEN0 RW 0h External fault signal enable for channel event block 0 0b = External fault signal is disabled for CE0 1b = External fault signal is enabled for CE0 7 Reserved R 0h Reserved. Always reads as 0. 6 TECXFLTHLD6 RW 0h External fault signal hold bit for CE6 0b = External fault signal is not held 1b = External fault signal is held 5 TECXFLTHLD5 RW 0h External fault signal hold bit for CE5 0b = External fault signal is not held 1b = External fault signal is held 4 TECXFLTHLD4 RW 0h External fault signal hold bit for CE4 0b = External fault signal is not held 1b = External fault signal is held 3 TECXFLTHLD3 RW 0h External fault signal hold bit for CE3 0b = External fault signal is not held 1b = External fault signal is held 558 Timer Event Control (TEC) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated TEC Registers www.ti.com Table 20-2. TECxCTL0 Register Description (continued) Bit Field Type Reset Description 2 TECXFLTHLD2 RW 0h External fault signal hold bit for CE2 0b = External fault signal is not held 1b = External fault signal is held 1 TECXFLTHLD1 RW 0h External fault signal hold bit for CE1 0b = External fault signal is not held 1b = External fault signal is held 0 TECXFLTHLD0 RW 0h External fault signal hold bit for CE0 0b = External fault signal is not held 1b = External fault signal is held SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer Event Control (TEC) Copyright © 2008–2015, Texas Instruments Incorporated 559 TEC Registers www.ti.com 20.3.2 TECxCTL1 Register Timer Event Control External Control Register 1 Figure 20-7. TECxCTL1 Register 15 14 Reserved 12 11 10 9 8 TECXFLTLVS6 TECXFLTLVS5 TECXFLTLVS4 TECXFLTLVS3 TECXFLTLVS2 TECXFLTLVS1 TECXFLTLVS0 r0 7 Reserved 13 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) 6 5 4 3 2 1 0 TECXFLTPOL6 TECXFLTPOL5 TECXFLTPOL4 TECXFLTPOL3 TECXFLTPOL2 TECXFLTPOL1 TECXFLTPOL0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) Table 20-3. TECxCTL1 Register Description Bit Field Type Reset Description 15 Reserved R 0h Reserved. Always reads as 0. 14 TECXFLTLVS6 RW 0h Signal type of external fault 6 0b = Edge sensitive 1b = Level sensitive 13 TECXFLTLVS5 RW 0h Signal type of external fault 5 0b = Edge sensitive 1b = Level sensitive 12 TECXFLTLVS4 RW 0h Signal type of external fault 4 0b = Edge sensitive 1b = Level sensitive 11 TECXFLTLVS3 RW 0h Signal type of external fault 3 0b = Edge sensitive 1b = Level sensitive 10 TECXFLTLVS2 RW 0h Signal type of external fault 2 0b = Edge sensitive 1b = Level sensitive 9 TECXFLTLVS1 RW 0h Signal type of external fault 1 0b = Edge sensitive 1b = Level sensitive 8 TECXFLTLVS0 RW 0h Signal type of external fault 0 0b = Edge sensitive 1b = Level sensitive 7 Reserved R 0h Reserved. Always reads as 0. 6 TECXFLTPOL6 RW 0h Polarity bit of external fault 6 0b = Selects falling edge in edge sensitive or low level in level sensitive 1b = Selects rising edge in edge sensitive or high level in level sensitive 5 TECXFLTPOL5 RW 0h Polarity bit of external fault 5 0b = Selects falling edge in edge sensitive or low level in level sensitive 1b = Selects rising edge in edge sensitive or high level in level sensitive 4 TECXFLTPOL4 RW 0h Polarity bit of external fault 4 0b = Selects falling edge in edge sensitive or low level in level sensitive 1b = Selects rising edge in edge sensitive or high level in level sensitive 3 TECXFLTPOL3 RW 0h Polarity bit of external fault 3 0b = Selects falling edge in edge sensitive or low level in level sensitive 1b = Selects rising edge in edge sensitive or high level in level sensitive 2 TECXFLTPOL2 RW 0h Polarity bit of external fault 2 0b = Selects falling edge in edge sensitive or low level in level sensitive 1b = Selects rising edge in edge sensitive or high level in level sensitive 560 Timer Event Control (TEC) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated TEC Registers www.ti.com Table 20-3. TECxCTL1 Register Description (continued) Bit Field Type Reset Description 1 TECXFLTPOL1 RW 0h Polarity bit of external fault 1 0b = Selects falling edge in edge sensitive or low level in level sensitive 1b = Selects rising edge in edge sensitive or high level in level sensitive 0 TECXFLTPOL0 RW 0h Polarity bit of external fault 0 0b = Selects falling edge in edge sensitive or low level in level sensitive 1b = Selects rising edge in edge sensitive or high level in level sensitive SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer Event Control (TEC) Copyright © 2008–2015, Texas Instruments Incorporated 561 TEC Registers www.ti.com 20.3.3 TECxCTL2 Register Timer Event Control External Control Register 2 Figure 20-8. TECxCTL2 Register 15 14 13 12 r0 r0 r0 r0 11 10 9 8 r0 r0 r0 r0 1 Reserved 7 6 5 4 3 2 Reserved TECEXCLRLV S TECEXCLRPO L TECEXCLRHL D TECEXCLREN TECAXCLREN r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) 0 CLKSELx rw-(0) rw-(0) Table 20-4. TECxCTL2 Register Description Bit Field Type Reset Description 15-7 Reserved R 0h Reserved. Always reads as 0. 6 TECEXCLRLVS RW 0h Signal type of external clear 0b = Edge sensitive 1b = Level sensitive 5 TECEXCLRPOL RW 0h Polarity bit of external clear 0b = Selects falling edge in edge sensitive or low level in level sensitive 1b = Selects rising edge in edge sensitive or high level in level sensitive 4 TECEXCLRHLD RW 0h External clear signal hold bit 0b = External clear signal is not held 1b = External clear signal is held 3 TECEXCLREN RW 0h External clear signal control bit 0b = External clear signal disabled 1b = External clear signal enabled 2 TECAXCLREN RW 0h Auxiliary clear signal control bit 0b = Auxiliary clear signal disabled 1b = Auxiliary clear signal enabled 1-0 CLKSELx RW 0h Auxiliary clock source selection bits 00b = Clock input from a Timer_D master instance 01b = Reserved 10b = Reserved 11b = Reserved 562 Timer Event Control (TEC) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated TEC Registers www.ti.com 20.3.4 TECxSTA Register Timer Event Control Status Register Figure 20-9. TECxSTA Register 15 14 13 r0 r0 r0 6 5 12 11 10 9 r0 r0 r0 r0 rw-(0) 4 3 2 1 0 Reserved 7 Reserved 8 TECXCLRSTA TECXFLT6STA TECXFLT5STA TECXFLT4STA TECXFLT3STA TECXFLT2STA TECXFLT1STA TECXFLT0STA r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) Table 20-5. TECxSTA Register Description Bit Field Type Reset Description 15-9 Reserved R 0h Reserved. Always reads as 0. 8 TECXCLRSTA RW 0h External clear status flag. This bit is set if the external clear input is detected. If the bit is set it remains set until cleared by writing 0 to it. 0b = No external clear detected 1b = External clear detected 7 Reserved R 0h Reserved. Always reads as 0. 6 TECXFLT6STA RW 0h External fault status flag. This bit is set if the external fault signal in CE6 is detected. If the bit is set it remains set until cleared by writing 0 to it. 0b = No external fault detected 1b = External fault detected 5 TECXFLT5STA RW 0h External fault status flag. This bit is set if the external fault signal in CE5 is detected. If the bit is set it remains set until cleared by writing 0 to it. 0b = No external fault detected 1b = External fault detected 4 TECXFLT4STA RW 0h External fault status flag. This bit is set if the external fault signal in CE4 is detected. If the bit is set it remains set until cleared by writing 0 to it. 0b = No external fault detected 1b = External fault detected 3 TECXFLT3STA RW 0h External fault status flag. This bit is set if the external fault signal in CE3 is detected. If the bit is set it remains set until cleared by writing 0 to it. 0b = No external fault detected 1b = External fault detected 2 TECXFLT2STA RW 0h External fault status flag. This bit is set if the external fault signal in CE2 is detected. If the bit is set it remains set until cleared by writing 0 to it. 0b = No external fault detected 1b = External fault detected 1 TECXFLT1STA RW 0h External fault status flag. This bit is set if the external fault signal in CE1 is detected. If the bit is set it remains set until cleared by writing 0 to it. 0b = No external fault detected 1b = External fault detected 0 TECXFLT0STA RW 0h External fault status flag. This bit is set if the external fault signal in CE0 is detected. If the bit is set it remains set until cleared by writing 0 to it. 0b = No external fault detected 1b = External fault detected SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer Event Control (TEC) Copyright © 2008–2015, Texas Instruments Incorporated 563 TEC Registers www.ti.com 20.3.5 TECxINT Register Timer Event Control External Interrupt Register Figure 20-10. TECxINT Register 15 14 r0 r0 7 6 13 12 11 r0 r0 r0 5 4 3 Reserved Reserved r0 r0 r0 10 9 8 TECXFLTIE TECEXCLRIE TECAXCLRIE rw-(0) rw-(0) rw-(0) 1 0 2 TECXFLTIFG r0 r0 rw-(0) TECEXCLRIFG TECAXCLRIFG rw-(0) rw-(0) Table 20-6. TECxINT Register Description Bit Field Type Reset Description 15-11 Reserved R 0h Reserved. Always reads as 0. 10 TECXFLTIE RW 0h External fault interrupt enable. This bit enables the TECXFLTIFG interrupt request. 0b = Interrupt disabled 1b = Interrupt enabled 9 TECEXCLRIE RW 0h External clear interrupt enable. This bit enables the TECEXCLRIFG interrupt request. 0b = Interrupt disabled 1b = Interrupt enabled 8 TECAXCLRIE RW 0h Auxiliary interrupt enable. This bit enables the TECAXCLRIFG interrupt request. 0b = Interrupt disabled 1b = Interrupt enabled 7-3 Reserved R 0h Reserved. Always reads as 0. 2 TECXFLTIFG RW 0h External fault interrupt flag. This bit is set if one of the external fault signal TECXFLTx is detected. Software has to look into the control register TECSTA to find out which one it is. If the bit is set it remains set until cleared by reading it or writing a 0 to it. 0b = No interrupt pending 1b = Interrupt pending 1 TECEXCLRIFG RW 0h External clear interrupt flag. This bit is set if the external clear signal is detected. If the bit is set it remains set until cleared by reading it or writing a 0 to it. 0b = No interrupt pending 1b = Interrupt pending 0 TECAXCLRIFG RW 0h Auxiliary clear interrupt flag. This bit is set if the auxiliary clear signal is detected. If the bit is set it remains set until cleared by reading it or writing a 0 to it. 0b = No interrupt pending 1b = Interrupt pending 564 Timer Event Control (TEC) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated TEC Registers www.ti.com 20.3.6 TECxIV Register Timer Event Control Interrupt Vector Register Figure 20-11. TECxIV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r0 r-(0) r-(0) r0 TECxIVx TECxIVx r0 r0 r0 r0 Table 20-7. TECxIV Register Description Bit Field Type Reset Description 15-0 TECxIVx R 0h TEC external interrupt vector value 00h = No interrupt pending 02h = Interrupt Source: External fault; Interrupt Flag: TECXFLTIFG; Interrupt Priority: Highest 04h = Interrupt Source: External clear; Interrupt Flag: TECEXCLRIFG 06h = Interrupt Source: Auxiliary clear; Interrupt Flag: TECAXCLRIFG; Interrupt Priority: Lowest SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Timer Event Control (TEC) Copyright © 2008–2015, Texas Instruments Incorporated 565 Chapter 21 SLAU208O – June 2008 – Revised May 2015 Real-Time Clock (RTC) Overview 21.1 RTC Overview Table 21-1. RTC Overview RTC_A Feature RTC_C Protection Plus Improved Calibration and Compensation Calendar Mode Yes Yes Yes Counter Mode Yes No Optional (device-dependent) (1) Programmable Alarms Yes Yes Yes Password Protected Calendar Registers No No Yes Input Clocks ALCK, SMCLK 32-kHz crystal oscillator 32-kHz crystal oscillator LPM3.5 Support No Yes Yes Offset Calibration Register Yes Yes Yes Temperature Compensation Register No No Yes Frequency Adjustment Range -2.035 ppm × 63 ≈ -128 ppm +4.069 ppm × 63 ≈ +256 ppm -2.17 ppm × 59 ≈ -128 ppm +4.34 ppm × 59 ≈ +256 ppm -240 ppm, +240 ppm (2) Frequency Adjustment Steps -2.035 ppm, +4.069 ppm -2.17 ppm, +4.34 ppm -1 ppm, +1 ppm With software, manipulating offset calibration value With software, manipulating offset calibration value With software using separate temperature compensation register 64 min 60 min 1 min BCD to Binary Conversion Integrated for Calendar Mode Integrated for Calendar Mode plus separate conversion registers Integrated for Calendar Mode plus separate conversion registers Event/Tamper Detect With Time Stamp No No Optional (device-dependent) (1) Temperature Compensation Calibration and Compensation Period (1) (2) 566 RTC_B LPM3.5, Calendar Mode Only See the device-specific data sheet. Total adjustment range of offset calibration plus temperature compensation. See the RTC_C chapter for details. Real-Time Clock (RTC) Overview SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Chapter 22 SLAU208O – June 2008 – Revised May 2015 Real-Time Clock (RTC_A) The Real-Time Clock (RTC_A) module provides clock counters with a calendar, a flexible programmable alarm, and calibration. This chapter describes the RTC_A module. Topic 22.1 22.2 22.3 ........................................................................................................................... Page RTC_A Introduction .......................................................................................... 568 RTC_A Operation.............................................................................................. 570 RTC_A Registers .............................................................................................. 576 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock (RTC_A) Copyright © 2008–2015, Texas Instruments Incorporated 567 RTC_A Introduction www.ti.com 22.1 RTC_A Introduction The RTC_A module provides a real-time clock and calendar function that can also be configured as a general-purpose counter. RTC_A features include: • Configurable for real-time clock with calendar function or general-purpose counter • Provides seconds, minutes, hours, day of week, day of month, month, and year in real-time clock with calendar function • Interrupt capability • Selectable BCD or binary format in real-time clock mode • Programmable alarms in real-time clock mode • Calibration logic for time offset correction in real-time clock mode The RTC_A block diagram is shown in Figure 22-1. NOTE: Real-time clock initialization Most RTC_A module registers have no initial condition. These registers must be configured by user software before use. 568 Real-Time Clock (RTC_A) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_A Introduction www.ti.com RT0PSHOLD RT0SSEL RT0IP EN ACLK SMCLK RT0PS Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 0 1 3 111 110 100 101 011 010 3 000 RT0PSDIV 001 111 110 101 100 011 010 001 000 Set_RT0PSIFG RTCCALS RTCCAL RTCMODE 5 Calibration Logic EN RT1PSHOLD RT1SSEL 2 3 RT1PS Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Keepout Logic RTCSSEL 2 00 01 10 11 Set_RT1PSIFG 111 110 101 100 011 001 3 010 111 110 101 100 011 010 001 000 000 RT1PSDIV RT1IP EN 00 01 10 11 Set_RTCRDYIFG RTCHOLD RTCBCD EN 31 ... 24 23 ... 16 RTCNT4/ RTCDOW RTCNT3/ RTCHOUR 15 ... 8 RTCNT2/ RTCMIN 7 ... 0 RTCNT1/ RTCSEC 8-bit overflow/minute changed 16-bit overflow/hour changed 24-bit overflow/midnight 32-bit overflow/noon RTCTEV 2 00 Set_RTCTEVIFG 01 10 11 EN Calendar RTCYEARH RTCYEARL RTCMON RTCDAY EN Alarm RTCADOW RTCADAY RTCAHOUR Set_RTCAIFG RTCAMIN Figure 22-1. RTC_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock (RTC_A) Copyright © 2008–2015, Texas Instruments Incorporated 569 RTC_A Operation www.ti.com 22.2 RTC_A Operation The RTC_A module can be configured as a real-time clock with calendar function (calendar mode) or as a 32-bit general purpose counter (counter mode) with the RTCMODE bit. 22.2.1 Counter Mode Counter mode is selected when RTCMODE is reset. In this mode, a 32-bit counter is provided that is directly accessible by software. Switching from calendar mode to counter mode resets the count value (RTCNT1, RTCNT2, RTCNT3, RTCNT4), as well as the prescale counters (RT0PS, RT1PS). The clock to increment the counter can be sourced from ACLK, SMCLK, or prescaled versions of ACLK or SMCLK. Prescaled versions of ACLK or SMCLK are sourced from the prescale dividers (RT0PS and RT1PS). RT0PS and RT1PS output /2, /4, /8, 16, /32, /64, /128, and /256 versions of ACLK and SMCLK, respectively. The output of RT0PS can be cascaded with RT1PS. The cascaded output can be used as a clock source input to the 32-bit counter. Four individual 8-bit counters are cascaded to provide the 32-bit counter. This provides 8-bit, 16-bit, 24-bit, or 32-bit overflow intervals of the counter clock. The RTCTEV bits select the respective trigger event. An RTCTEV event can trigger an interrupt by setting the RTCTEVIE bit. Each counter, RTCNT1 through RTCNT4, is individually accessible and may be written to. RT0PS and RT1PS can be configured as two 8-bit counters or cascaded into a single 16-bit counter. RT0PS and RT1PS can be halted on an individual basis by setting their respective RT0PSHOLD and RT1PSHOLD bits. When RT0PS is cascaded with RT1PS, setting RT0PSHOLD causes both RT0PS and RT1PS to be halted. The 32-bit counter can be halted several ways depending on the configuration. If the 32-bit counter is sourced directly from ACLK or SMCLK, it can be halted by setting RTCHOLD. If it is sourced from the output of RT1PS, it can be halted by setting RT1PSHOLD or RTCHOLD. Finally, if it is sourced from the cascaded outputs of RT0PS and RT1PS, it can be halted by setting RT0PSHOLD, RT1PSHOLD, or RTCHOLD. NOTE: Accessing the RTCNT1, RTCNT2, RTCNT3, RTCNT4, RT0PS, RT1PS registers When the counter clock is asynchronous to the CPU clock, any read from any RTCNT1, RTCNT2, RTCNT3, RTCNT4, RT0PS, or RT1PS register should occur while the counter is not operating. Otherwise, the results may be unpredictable. Alternatively, the counter may be read multiple times while operating, and a majority vote taken in software to determine the correct reading. Any write to these registers takes effect immediately. 22.2.2 Calendar Mode Calendar mode is selected when RTCMODE is set. In calendar mode, the RTC_A module provides seconds, minutes, hours, day of week, day of month, month, and year in selectable BCD or hexadecimal format. The calendar includes a leap-year algorithm that considers all years evenly divisible by four as leap years. This algorithm is accurate from the year 1901 through 2099. 22.2.2.1 Real-Time Clock and Prescale Dividers The prescale dividers, RT0PS and RT1PS, are automatically configured to provide a 1-s clock interval for the RTC_A. RT0PS is sourced from ACLK. ACLK must be set to 32768 Hz (nominal) for proper RTC_A calendar operation. RT1PS is cascaded with the output ACLK/256 of RT0PS. The RTC_A is sourced with the /128 output of RT1PS, thereby providing the required 1-s interval. Switching from counter to calendar mode clears the seconds, minutes, hours, day-of-week, and year counts and sets day-of-month and month counts to 1. In addition, RT0PS and RT1PS are cleared. When RTCBCD = 1, BCD format is selected for the calendar registers. The format must be selected before the time is set. Changing the state of RTCBCD clears the seconds, minutes, hours, day-of-week, and year counts and sets day-of-month and month counts to 1. In addition, RT0PS and RT1PS are cleared. 570 Real-Time Clock (RTC_A) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_A Operation www.ti.com In calendar mode, the RT0SSEL, RT1SSEL, RT0PSDIV, RT1PSDIV, RT0PSHOLD, RT1PSHOLD, and RTCSSEL bits are don't care. Setting RTCHOLD halts the real-time counters and prescale counters, RT0PS and RT1PS. 22.2.2.2 Real-Time Clock Alarm Function The RTC_A module provides for a flexible alarm system. There is a single user-programmable alarm that can be programmed based on the settings contained in the alarm registers for minutes, hours, day of week, and day of month. The user-programmable alarm function is only available in the calendar mode of operation. Each alarm register contains an alarm enable (AE) bit that can be used to enable the respective alarm register. By setting AE bits of the various alarm registers, a variety of alarm events can be generated. • Example 1: A user wishes to set an alarm every hour at 15 minutes past the hour; that is, at 00:15:00, 01:15:00, 02:15:00, and so on. This is possible by setting RTCAMIN to 15. By setting the AE bit of the RTCAMIN and clearing all other AE bits of the alarm registers, the alarm is enabled. When enabled, the AF is set when the count transitions from 00:14:59 to 00:15:00, 01:14:59 to 01:15:00, 02:14:59 to 02:15:00, etc. • Example 2: A user wishes to set an alarm every day at 04:00:00. This is possible by setting RTCAHOUR to 4. By setting the AE bit of the RTCHOUR and clearing all other AE bits of the alarm registers, the alarm is enabled. When enabled, the AF is set when the count transitions from 03:59:59 to 04:00:00. • Example 3: A user wishes to set an alarm for 06:30:00. RTCAHOUR would be set to 6 and RTCAMIN would be set to 30. By setting the AE bits of RTCAHOUR and RTCAMIN, the alarm is enabled. Once enabled, the AF is set when the the time count transitions from 06:29:59 to 06:30:00. In this case, the alarm event occurs every day at 06:30:00. • Example 4: A user wishes to set an alarm every Tuesday at 06:30:00. RTCADOW would be set to 2, RTCAHOUR would be set to 6 and RTCAMIN would be set to 30. By setting the AE bits of RTCADOW, RTCAHOUR and RTCAMIN, the alarm is enabled. Once enabled, the AF is set when the the time count transitions from 06:29:59 to 06:30:00 and the RTCDOW transitions from 1 to 2. • Example 5: A user wishes to set an alarm the fifth day of each month at 06:30:00. RTCADAY would be set to 5, RTCAHOUR would be set to 6 and RTCAMIN would be set to 30. By setting the AE bits of RTCADAY, RTCAHOUR and RTCAMIN, the alarm is enabled. Once enabled, the AF is set when the the time count transitions from 06:29:59 to 06:30:00 and the RTCDAY equals 5. NOTE: Invalid alarm settings Invalid alarm settings are not checked via hardware. It is the user's responsibility to ensure that valid alarm settings are entered. NOTE: Invalid time and date values Writing of invalid date and/or time information or data values outside the legal ranges specified in the RTCSEC, RTCMIN, RTCHOUR, RTCDAY, RTCDOW, RTCYEARH, RTCYEARL, RTCAMIN, RTCAHOUR, RTCADAY, and RTCADOW registers can result in unpredictable behavior. NOTE: Setting the alarm To prevent potential erroneous alarm conditions from occurring, the alarms should be disabled by clearing the RTCAIE, RTCAIFG, and AE bits prior to writing new time values to the RTC time registers. 22.2.2.3 Reading or Writing Real-Time Clock Registers in Calendar Mode Because the system clock may be asynchronous to the RTC_A clock source, special care must be taken when accessing the real-time clock registers. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock (RTC_A) Copyright © 2008–2015, Texas Instruments Incorporated 571 RTC_A Operation www.ti.com In calendar mode, the real-time clock registers are updated once per second. To prevent reading any realtime clock register at the time of an update, which could result in an invalid time being read, a keepout window is provided. The keepout window is centered approximately -128/32768 s around the update transition. The read-only RTCRDY bit is reset during the keepout window period and set outside the keepout the window period. Any read of the clock registers while RTCRDY is reset is considered to be potentially invalid, and the time read should be ignored. An easy way to safely read the real-time clock registers is to use the RTCRDYIFG interrupt flag. Setting RTCRDYIE enables the RTCRDYIFG interrupt. Once enabled, an interrupt is generated based on the rising edge of the RTCRDY bit, causing the RTCRDYIFG to be set. At this point, the application has nearly a complete second to safely read any or all of the real-time clock registers. This synchronization process prevents reading the time value during transition. The RTCRDYIFG flag is reset automatically when the interrupt is serviced, or can be reset with software. In counter mode, the RTCRDY bit remains reset. RTCRDYIE is a don't care and RTCRDYIFG remains reset. NOTE: Reading or writing real-time clock registers When the counter clock is asynchronous to the CPU clock, any read from any RTCSEC, RTCMIN, RTCHOUR, RTCDOW, RTCDAY, RTCMON, RTCYEARL, or RTCYEARH register while the RTCRDY is reset may result in invalid data being read. To safely read the counting registers, either polling of the RTCRDY bit or the synchronization procedure previously described can be used. Alternatively, the counter register can be read multiple times while operating, and a majority vote taken in software to determine the correct reading. Reading the RT0PS and RT1PS can only be handled by reading the registers multiple times and a majority vote taken in software to determine the correct reading or by halting the counters. Any write to any counting register takes effect immediately. However, the clock is stopped during the write. In addition, RT0PS and RT1PS registers are reset. This could result in losing up to 1 s during a write. Writing of data outside the legal ranges or invalid time stamp combinations results in unpredictable behavior. 22.2.3 Real-Time Clock Interrupts The RTC_A module has five interrupt sources available, each with independent enables and flags. 22.2.3.1 Real-Time Clock Interrupts in Calendar Mode In calendar mode, five sources for interrupts are available, namely RT0PSIFG, RT1PSIFG, RTCRDYIFG, RTCTEVIFG, and RTCAIFG. These flags are prioritized and combined to source a single interrupt vector. The interrupt vector register (RTCIV) is used to determine which flag requested an interrupt. The highest-priority enabled interrupt generates a number in the RTCIV register (see register description). This number can be evaluated or added to the program counter (PC) to automatically enter the appropriate software routine. Disabled RTC interrupts do not affect the RTCIV value. Any access, read or write, of the RTCIV register automatically resets the highest-pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. In addition, all flags can be cleared via software. The user-programmable alarm event sources the real-time clock interrupt, RTCAIFG. Setting RTCAIE enables the interrupt. In addition to the user-programmable alarm, the RTC_A module provides for an interval alarm that sources real-time clock interrupt, RTCTEVIFG. The interval alarm can be selected to cause an alarm event when RTCMIN changed or RTCHOUR changed, every day at midnight (00:00:00) or every day at noon (12:00:00). The event is selectable with the RTCTEV bits. Setting the RTCTEVIE bit enables the interrupt. The RTCRDY bit sources the real-time clock interrupt, RTCRDYIFG, and is useful in synchronizing the read of time registers with the system clock. Setting the RTCRDYIE bit enables the interrupt. 572 Real-Time Clock (RTC_A) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_A Operation www.ti.com RT0PSIFG can be used to generate interrupt intervals selectable by the RT0IP bits. In calendar mode, RT0PS is sourced with ACLK at 32768 Hz, so intervals of 16384 Hz, 8192 Hz, 4096 Hz, 2048 Hz, 1024 Hz, 512 Hz, 256 Hz, or 128 Hz are possible. Setting the RT0PSIE bit enables the interrupt. RT1PSIFG can generate interrupt intervals selectable by the RT1IP bits. In calendar mode, RT1PS is sourced with the output of RT0PS, which is 128 Hz (32768/256 Hz). Therefore, intervals of 64 Hz, 32 Hz, 16 Hz, 8 Hz, 4 Hz, 2 Hz, 1 Hz, or 0.5 Hz are possible. Setting the RT1PSIE bit enables the interrupt. 22.2.3.2 Real-Time Clock Interrupts in Counter Mode In counter mode, three interrupt sources are available: RT0PSIFG, RT1PSIFG, and RTCTEVIFG. RTCAIFG and RTCRDYIFG are cleared. RTCRDYIE and RTCAIE are don't care. RT0PSIFG can be used to generate interrupt intervals selectable by the RT0IP bits. In counter mode, RT0PS is sourced with ACLK or SMCLK, so divide ratios of /2, /4, /8, /16, /32, /64, /128, and /256 of the respective clock source are possible. Setting the RT0PSIE bit enables the interrupt. RT1PSIFG can be used to generate interrupt intervals selectable by the RT1IP bits. In counter mode, RT1PS is sourced with ACLK, SMCLK, or the output of RT0PS, so divide ratios of /2, /4, /8, /16, /32, /64, /128, and /256 of the respective clock source are possible. Setting the RT1PSIE bit enables the interrupt. The RTC_A module provides for an interval timer that sources real-time clock interrupt, RTCTEVIFG. The interval timer can be selected to cause an interrupt event when an 8-bit, 16-bit, 24-bit, or 32-bit overflow occurs within the 32-bit counter. The event is selectable with the RTCTEV bits. Setting the RTCTEVIE bit enables the interrupt. 22.2.3.2.1 RTCIV Software Example The following software example shows the recommended use of RTCIV and the handling overhead. The RTCIV value is added to the PC to automatically jump to the appropriate routine. The numbers at the right margin show the necessary CPU cycles for each instruction. The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not the task handling itself. ; Interrupt handler for RTC interrupt flags. Cycles RTC_HND ; Interrupt latency 6 ADD &RTCIV,PC ; Add offset to Jump table 3 RETI ; Vector 0: No interrupt 5 JMP RTCRDYIFG_HND ; Vector 2: RTCRDYIFG 2 JMP RTCTEVIFG_HND ; Vector 4: RTCTEVIFG 2 JMP RTCAIFG ; Vector 6: RTCAIFG 5 JMP RT0PSIFG ; Vector 8: RT0PSIFG 5 JMP RT1PSIFG ; Vector A: RT1PSIFG 5 RETI ; Vector C: Reserved 5 RTCRDYIFG_HND ; Vector 2: RTCRDYIFG Flag to ; Task starts here RETI 5 RTCTEVIFG_HND ; Vector 4: RTCTEVIFG to ; Task starts here RETI ; Back to main program 5 RTCAIFG_HND ; Vector 6: RTCAIFG to ; Task starts here RT0PSIFG_HND ; Vector 8: RT0PSIFG to ; Task starts here RT1PSIFG_HND ; Vector A: RT1PSIFG to ; Task starts here SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock (RTC_A) Copyright © 2008–2015, Texas Instruments Incorporated 573 RTC_A Operation www.ti.com 22.2.4 Real-Time Clock Calibration The RTC_A module has calibration logic that allows for adjusting the crystal frequency in approximately +4-ppm or –2-ppm steps, allowing for higher time keeping accuracy from standard crystals.The RTCCAL bits are used to adjust the frequency. When RTCCALS is set, each RTCCAL LSB causes a ≈ +4-ppm adjustment. When RTCCALS is cleared, each RTCCAL LSB causes a ≈ –2-ppm adjustment. Calibration is available only in calendar mode. In counter mode (RTCMODE = 0), the calibration logic is disabled. Calibration is accomplished by periodically adjusting the RT1PS counter based on the RTCCALS and RTCCALx settings. In calendar mode, the RT0PS divides the nominial 37268-Hz low-frequency (LF) crystal clock input by 256. A 64-minute period has 32768 cycles/sec × 60 sec/min × 64 min = 125829120 cycles. Therefore a –2-ppm reduction in frequency (down calibration) approximately equates to adding an additional 256 cycles every 125829120 cycles (256/125829120 = 2.035 ppm). This is accomplished by holding the RT1PS counter for one additional clock of the RT0PS output within a 64-minute period. Similary, a +4-ppm increase in frequency (up calibration) approximately equates to removing 512 cycles every 125829120 cycle (512/125829120 = 4.069 ppm). This is accomplished by incrementing the RT1PS counter for two additional clocks of the RT0PS output within a 64-minute period. Each RTCCALx calibration bit causes either 256 LF crystal clock cycles to be added every 64 minutes or 512 LF crystal clock cycles to be subtracted every 64 minutes, giving a frequency adjustment of approximately –2 ppm or +4 ppm, respectively. To calibrate the frequency, the RTCCLK output signal is available at a pin. The RTCCALF bits can be used to select the frequency rate of the RTCCLK output signal, either no signal, 512 Hz, 256 Hz, or 1 Hz. The basic flow to calibrate the frequency is as follows: 1. Configure the RTCCLK pin. 2. Measure the RTCCLK output signal with an appropriate resolution frequency counter; that is, within the resolution required. 3. Compute the absolute error in ppm: Absolute Error (ppm) = |106 × ( fMEASURED – fRTCCLK) / fRTCCLK|, where fRTCCLK is the expected frequency of 512 Hz, 256 Hz, or 1 Hz. 4. Adjust the frequency, by performing the following: (a) If the frequency is too low, set RTCALS = 1 and apply the appropriate RTCCALx bits, where RTCCALx = (Absolute Error) / 4.069, rounded to the nearest integer. (b) If the frequency is too high, clear RTCALS = 0 and apply the appropriate RTCCALx bits, where RTCCALx = (Absolute Error) / 2.035, rounded to the nearest integer. For example, assume that RTCCLK is output at a frequency of 512 Hz. The measured RTCCLK is 511.9658 Hz. The frequency error is approximately 66.8 ppm low. To increase the frequency by 66.8 ppm, RTCCALS would be set, and RTCCAL would be set to 16 (66.8/4.069). Similarly, assume that the measured RTCCLK is 512.0125 Hz. The frequency error is approximately 24.4 ppm high. To decrease the frequency by 24.4 ppm, RTCCALS would be cleared, and RTCCAL would be set to 12 (24.4 / 2.035). The calibration corrects only initial offsets and does not adjust for temperature and aging effects. This can be handled by periodically measuring temperature and using the crystal's charateristic curve to adjust the ppm based on temperature as required. In counter mode (RTCMODE = 0), the calibration logic is disabled. NOTE: Minimum Possible Calibration The minimial calibration possible is -4 ppm or +8 ppm. For example, setting RTCCALS = 0 and RTCCAL = 0h would result in a -4 ppm decrease in frequency. Similarly, setting RTCCALS = 1 and RTCCAL = 0h would result in a +8 ppm increase in frequency. 574 Real-Time Clock (RTC_A) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_A Operation www.ti.com NOTE: Calibration output frequency The 512-Hz and 256-Hz output frequencies observed at the RTCCLK pin are not affected by changes in the calibration settings since these output frequencies are generated prior to the calibration logic. The 1-Hz output frequency is affected by changes in the calibration settings. Because the frequency change is small and infrequent over a very long time interval, it can be difficult to observe. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock (RTC_A) Copyright © 2008–2015, Texas Instruments Incorporated 575 RTC_A Registers www.ti.com 22.3 RTC_A Registers The RTC_A module registers are listed in and Table 22-1. The base register for the RTC_A module registers can be found in the device-specific data sheet. The address offsets are given in Table 22-1. NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix "_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H" (ANYREG_H) refers to the upper byte of the register (bits 8 through 15). Table 22-1. RTC_A Registers Offset Acronym Register Name Type Access Reset 00h RTCCTL01 Real-Time Clock Control 0, 1 Read/write Word 4000h 00h RTCCTL0 Real-Time Clock Control 0 Read/write Byte 00h Real-Time Clock Control 1 Read/write Byte 40h or RTCCTL01_L 01h RTCCTL1 or RTCCTL01_H 02h RTCCTL23 Real-Time Clock Control 2, 3 Read/write Word 0000h 02h RTCCTL2 Real-Time Clock Control 2 Read/write Byte 00h Real-Time Clock Control 3 Read/write Byte 00h Real-Time Prescale Timer 0 Control Read/write Word 0100h Read/write Byte 00h Read/write Byte 01h Read/write Word 0100h Read/write Byte 00h Read/write Byte 01h or RTCCTL23_L 03h RTCCTL3 or RTCCTL23_H 08h RTCPS0CTL 08h RTCPS0CTLL or RTCPS0CTL_L 09h RTCPS0CTLH or RTCPS0CTL_H 0Ah RTCPS1CTL 0Ah RTCPS1CTLL Real-Time Prescale Timer 1 Control or RTCPS1CTL_L 0Bh RTCPS0CTLH or RTCPS0CTL_H 0Ch RTCPS Real-Time Prescale Timer 0, 1 Counter Read/write Word undefined 0Ch RT0PS Real-Time Prescale Timer 0 Counter Read/write Byte undefined Real-Time Prescale Timer 1 Counter Read/write Byte undefined Real Time Clock Interrupt Vector or RTCPS_L 0Dh RT1PS or RTCPS_H 0Eh RTCIV Read Word 0000h 0Eh RTCIV_L Read Byte 00h 0Fh RTCIV_H Read Byte 00h 10h RTCTIM0 Real-Time Clock Seconds, Minutes Read/write Word undefined or RTCNT12 Real-Time Counter 1, 2 RTCSEC Real-Time Clock Seconds Read/write Byte undefined RTCNT1 Real-Time Counter 1 Read/write Byte undefined Read/write Word undefined Read/write Byte undefined 10h or RTCTIM0_L 11h RTCMIN Real-Time Clock Minutes RTCNT2 Real-Time Counter 2 or RTCTIM0_H 12h 12h RTCTIM1 Real-Time Clock Hour, Day of Week or RTCNT34 Real-Time Counter 3, 4 RTCHOUR Real-Time Clock Hour 576 Real-Time Clock (RTC_A) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_A Registers www.ti.com Table 22-1. RTC_A Registers (continued) Offset Acronym Register Name RTCNT3 Real-Time Counter 3 Type Access Reset Read/write Byte undefined or RTCTIM1_L 13h RTCDOW Real-Time Clock Day of Week RTCNT4 Real-Time Counter 4 or RTCTIM1_H 14h RTCDATE Real-Time Clock Date Read/write Word undefined 14h RTCDAY Real-Time Clock Day of Month Read/write Byte undefined Real-Time Clock Month Read/write Byte undefined Real-Time Clock Year Read/write Word undefined Read/write Byte undefined Read/write Byte undefined or RTCDATE_L 15h RTCMON or RTCDATE_H 16h RTCYEAR 16h RTCYEARL or RTCYEAR_L 17h RTCYEARH or RTCYEAR_H 18h RTCAMINHR Real-Time Clock Minutes, Hour Alarm Read/write Word undefined 18h RTCAMIN Real-Time Clock Minutes Alarm Read/write Byte undefined Real-Time Clock Hours Alarm Read/write Byte undefined or RTCAMINHR_L 19h RTCAHOUR or RTCAMINHR_H 1Ah RTCADOWDAY Real-Time Clock Day of Week, Day of Month Alarm Read/write Word undefined 1Ah RTCADOW Real-Time Clock Day of Week Alarm Read/write Byte undefined Real-Time Clock Day of Month Alarm Read/write Byte undefined or RTCADOWDAY_L 1Bh RTCADAY or RTCADOWDAY_H SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock (RTC_A) Copyright © 2008–2015, Texas Instruments Incorporated 577 RTC_A Registers www.ti.com 22.3.1 RTCCTL0 Register Real-Time Clock Control 0 Register Figure 22-2. RTCCTL0 Register 7 6 5 4 3 2 1 0 Reserved RTCTEVIE RTCAIE RTCRDYIE Reserved RTCTEVIFG RTCAIFG RTCRDYIFG r0 rw-0 rw-0 rw-0 r0 rw-(0) rw-(0) rw-(0) Table 22-2. RTCCTL0 Register Description Bit Field Type Reset Description 7 Reserved R 0h Reserved. Always reads as 0. 6 RTCTEVIE RW 0h Real-time clock time event interrupt enable 0b = Interrupt not enabled 1b = Interrupt enabled 5 RTCAIE RW 0h Real-time clock alarm interrupt enable. This bit remains cleared when in counter mode (RTCMODE = 0). 0b = Interrupt not enabled 1b = Interrupt enabled 4 RTCRDYIE RW 0h Real-time clock read ready interrupt enable 0b = Interrupt not enabled 1b = Interrupt enabled 3 Reserved R 0h Reserved. Always reads as 0. 2 RTCTEVIFG RW 0h Real-time clock time event flag 0b = No time event occurred. 1b = Time event occurred. 1 RTCAIFG RW 0h Real-time clock alarm flag. This bit remains cleared when in counter mode (RTCMODE = 0). 0b = No time event occurred. 1b = Time event occurred. 0 RTCRDYIFG RW 0h Real-time clock read ready flag 0b = RTC cannot be read safely. 1b = RTC can be read safely. 578 Real-Time Clock (RTC_A) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_A Registers www.ti.com 22.3.2 RTCCTL1 Register Real-Time Clock Control Register 1 Figure 22-3. RTCCTL1 Register 7 6 5 4 RTCBCD RTCHOLD RTCMODE RTCRDY rw-(0) rw-(1) rw-(0) r-(0) 3 2 1 rw-(0) rw-(0) RTCSSEL rw-(0) 0 RTCTEV rw-(0) Table 22-3. RTCCTL1 Register Description Bit Field Type Reset Description 7 RTCBCD RW 0h Real-time clock BCD select. Selects BCD counting for real-time clock. Applies to calendar mode (RTCMODE = 1) only; setting is ignored in counter mode. Changing this bit clears seconds, minutes, hours, day of week, and year to 0 and sets day of month and month to 1. The real-time clock registers must be set by software afterwards. 0b = Binary (hexadecimal) code selected 1b = Binary coded decimal (BCD) code selected 6 RTCHOLD RW 1h Real-time clock hold 0b = Real-time clock (32-bit counter or calendar mode) is operational. 1b = In counter mode (RTCMODE = 0), only the 32-bit counter is stopped. In calendar mode (RTCMODE = 1), the calendar is stopped as well as the prescale counters, RT0PS and RT1PS. RT0PSHOLD and RT1PSHOLD are don't care. 5 RTCMODE RW 0h Real-time clock mode 0b = 32-bit counter mode 1b = Calendar mode. Switching between counter and calendar mode resets the real-time clock counter registers. Switching to calendar mode clears seconds, minutes, hours, day of week, and year to 0 and sets day of month and month to 1. The real-time clock registers must be set by software afterwards. RT0PS and RT1PS are also cleared. 4 RTCRDY RW 0h Real-time clock ready 0b = RTC time values in transition (calendar mode only) 1b = RTC time values safe for reading (calendar mode only). This bit indicates when the real-time clock time values are safe for reading (calendar mode only). In counter mode, RTCRDY signal remains cleared. 3-2 RTCSSEL RW 0h Real-time clock source select. Selects clock input source to the RTC/32-bit counter. In calendar mode, these bits are don't care. The clock input is automatically set to the output of RT1PS. 00b = ACLK 01b = SMCLK 10b = Output from RT1PS 11b = Output from RT1PS 1-0 RTCTEV RW 0h Real-time clock time event Counter mode (RTCMODE = 0) 00b = 8-bit overflow 01b = 16-bit overflow 10b = 24-bit overflow 11b = 32-bit overflow Calendar mode (RTCMODE = 1) 00b = Minute changed 01b = Hour changed 10b = Every day at midnight (00:00) 11b = Every day at noon (12:00) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock (RTC_A) Copyright © 2008–2015, Texas Instruments Incorporated 579 RTC_A Registers www.ti.com 22.3.3 RTCCTL2 Register Real-Time Clock Control 2 Register Figure 22-4. RTCCTL2 Register 7 6 RTCCALS Reserved rw-(0) r0 5 4 3 rw-(0) rw-(0) rw-(0) 2 1 0 rw-(0) rw-(0) rw-(0) RTCCAL Table 22-4. RTCCTL2 Register Description Bit Field Type Reset Description 7 RTCCALS RW 0h Real-time clock calibration sign 0b = Frequency adjusted down 1b = Frequency adjusted up 6 Reserved R 0h Reserved. Always reads as 0. 5-0 RTCCAL RW 0h Real-time clock calibration. Each LSB represents approximately +4ppm (RTCCALS = 1) or a –2ppm (RTCCALS = 0) adjustment in frequency. 22.3.4 RTCCTL3 Register Real-Time Clock Control 3 Register Figure 22-5. RTCCTL3 Register 7 6 5 4 3 2 1 Reserved r0 r0 r0 0 RTCCALF r0 r0 r0 rw-(0) rw-(0) Table 22-5. RTCCTL3 Register Description Bit Field Type Reset Description 7-2 Reserved R 0h Reserved. Always reads as 0. 1-0 RTCCALF RW 0h Real-time clock calibration frequency. Selects frequency output to RTCCLK pin for calibration measurement. The corresponding port must be configured for the peripheral module function. The RTCCLK is not available in counter mode and remains low, and the RTCCALF bits are don't care. 00b = No frequency output to RTCCLK pin 01b = 512 Hz 10b = 256 Hz 11b = 1 Hz 580 Real-Time Clock (RTC_A) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_A Registers www.ti.com 22.3.5 RTCNT1 Register Real-Time Clock Counter 1 Register – Counter Mode Figure 22-6. RTCNT1 Register 7 6 5 4 rw rw rw rw 3 2 1 0 rw rw rw rw RTCNT1 Table 22-6. RTCNT1 Register Description Bit Field Type Reset Description 7-0 RTCNT1 RW undefined The RTCNT1 register is the count of RTCNT1 22.3.6 RTCNT2 Register Real-Time Clock Counter 2 Register – Counter Mode Figure 22-7. RTCNT2 Register 7 6 5 4 3 2 1 0 rw rw rw rw RTCNT2 rw rw rw rw Table 22-7. RTCNT2 Register Description Bit Field Type Reset Description 7-0 RTCNT2 RW undefined The RTCNT2 register is the count of RTCNT2 22.3.7 RTCNT3 Register Real-Time Clock Counter 3 Register – Counter Mode Figure 22-8. RTCNT3 Register 7 6 5 4 3 2 1 0 rw rw rw rw RTCNT3 rw rw rw rw Table 22-8. RTCNT3 Register Description Bit Field Type Reset Description 7-0 RTCNT3 RW undefined The RTCNT3 register is the count of RTCNT3 22.3.8 RTCNT4 Register Real-Time Clock Counter 4 Register – Counter Mode Figure 22-9. RTCNT4 Register 7 6 5 4 3 2 1 0 rw rw rw rw RTCNT4 rw rw rw rw Table 22-9. RTCNT4 Register Description Bit Field Type Reset Description 7-0 RTCNT4 RW undefined The RTCNT4 register is the count of RTCNT4. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock (RTC_A) Copyright © 2008–2015, Texas Instruments Incorporated 581 RTC_A Registers www.ti.com 22.3.9 RTCSEC Register – Calendar Mode With Hexadecimal Format Real-Time Clock Seconds Register – Calendar Mode With Hexadecimal Format Figure 22-10. RTCSEC Register 7 6 5 4 3 r-0 rw rw rw 0 r-0 2 1 0 rw rw rw 1 0 Seconds Table 22-10. RTCSEC Register Description Bit Field Type Reset Description 7-6 0 R 0h Always 0 5-0 Seconds RW undefined Seconds (0 to 59) 22.3.10 RTCSEC Register – Calendar Mode With BCD Format Real-Time Clock Seconds Register – Calendar Mode With BCD Format Figure 22-11. RTCSEC Register 7 6 0 5 4 3 Seconds – high digit r-0 rw rw 2 Seconds – low digit rw rw rw rw rw Table 22-11. RTCSEC Register Description Bit Field Type Reset Description 7 0 R 0h Always 0 6-4 Seconds – high digit RW undefined Seconds – high digit (0 to 5) 3-0 Seconds – low digit RW undefined Seconds – low digit (0 to 9) 582 Real-Time Clock (RTC_A) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_A Registers www.ti.com 22.3.11 RTCMIN Register – Calendar Mode With Hexadecimal Format Real-Time Clock Minutes Register – Calendar Mode With Hexadecimal Format Figure 22-12. RTCMIN Register 7 6 5 4 3 r-0 rw rw rw 0 r-0 2 1 0 rw rw rw 1 0 Minutes Table 22-12. RTCMIN Register Description Bit Field Type Reset Description 7-6 0 R 0h Always 0 5-0 Minutes RW undefined Minutes (0 to 59) 22.3.12 RTCMIN Register – Calendar Mode With BCD Format Real-Time Clock Minutes Register – Calendar Mode With BCD Format Figure 22-13. RTCMIN Register 7 6 0 5 4 3 Minutes – high digit r-0 rw rw 2 Minutes – low digit rw rw rw rw rw Table 22-13. RTCMIN Register Description Bit Field Type Reset Description 7 0 R 0h Always 0 6-4 Minutes – high digit RW undefined Minutes – high digit (0 to 5) 3-0 Minutes – low digit RW undefined Minutes – low digit (0 to 9) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock (RTC_A) Copyright © 2008–2015, Texas Instruments Incorporated 583 RTC_A Registers www.ti.com 22.3.13 RTCHOUR Register – Calendar Mode With Hexadecimal Format Real-Time Clock Hours Register – Calendar Mode With Hexadecimal Format Figure 22-14. RTCHOUR Register 7 6 r-0 r-0 5 4 3 r-0 rw rw 0 2 1 0 rw rw 1 0 Hours rw Table 22-14. RTCHOUR Register Description Bit Field Type Reset Description 7-5 0 R 0h Always 0 4-0 Hours RW undefined Hours (0 to 23) 22.3.14 RTCHOUR Register – Calendar Mode With BCD Format Real-Time Clock Hours Register – Calendar Mode With BCD Format Figure 22-15. RTCHOUR Register 7 6 5 0 r-0 4 3 Hours – high digit r-0 rw rw 2 Hours – low digit rw rw rw rw Table 22-15. RTCHOUR Register Description Bit Field Type Reset Description 7-6 0 R 0h Always 0 5-4 Hours – high digit RW undefined Hours – high digit (0 to 2) 3-0 Hours – low digit RW undefined Hours – low digit (0 to 9) 584 Real-Time Clock (RTC_A) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_A Registers www.ti.com 22.3.15 RTCDOW Register – Calendar Mode Real-Time Clock Day of Week Register – Calendar Mode Figure 22-16. RTCDOW Register 7 6 5 r-0 r-0 r-0 4 3 2 r-0 r-0 rw 0 1 0 Day of week rw rw Table 22-16. RTCDOW Register Description Bit Field Type Reset Description 7-3 0 R 0h Always 0 2-0 Day of week RW undefined Day of week (0 to 6) 22.3.16 RTCDAY Register – Calendar Mode With Hexadecimal Format Real-Time Clock Day of Month Register – Calendar Mode With Hexadecimal Format Figure 22-17. RTCDAY Register 7 6 5 4 3 0 r-0 2 1 0 rw rw 1 0 Day of month r-0 r-0 rw rw rw Table 22-17. RTCDAY Register Description Bit Field Type Reset Description 7-5 0 R 0h Always 0 4-0 Day of month RW undefined Day of month (1 to 28, 29, 30, 31) 22.3.17 RTCDAY Register – Calendar Mode With BCD Format Real-Time Clock Day of Month Register – Calendar Mode With BCD Format Figure 22-18. RTCDAY Register 7 6 5 0 r-0 4 3 Day of month – high digit r-0 rw rw 2 Day of month – low digit rw rw rw rw Table 22-18. RTCDAY Register Description Bit Field Type Reset 7-6 0 R 0h Description 5-4 Day of month – high digit RW undefined Day of month – high digit (0 to 3) 3-0 Day of month – low digit RW undefined Day of month – low digit (0 to 9) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock (RTC_A) Copyright © 2008–2015, Texas Instruments Incorporated 585 RTC_A Registers www.ti.com 22.3.18 RTCMON Register – Calendar Mode With Hexadecimal Format Real-Time Clock Month Register – Calendar Mode With Hexadecimal Format Figure 22-19. RTCMON Register 7 6 r-0 r-0 5 4 3 2 r-0 r-0 rw rw 0 1 0 rw rw 1 0 Month Table 22-19. RTCMON Register Description Bit Field Type Reset Description 7-4 0 R 0h Always 0 3-0 Month RW undefined Month (1 to 12) 22.3.19 RTCMON Register – Calendar Mode With BCD Format Real-Time Clock Month Register – Calendar Mode With BCD Format Figure 22-20. RTCMON Register 7 6 5 4 0 r-0 3 Month – high digit r-0 r-0 rw 2 Month – low digit rw rw rw rw Table 22-20. RTCMON Register Description Bit Field Type Reset Description 7-5 0 R 0h Always 0 4 Month – high digit RW undefined Month – high digit (0 or 1) 3-0 Month – low digit RW undefined Month – low digit (0 to 9) 586 Real-Time Clock (RTC_A) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_A Registers www.ti.com 22.3.20 RTCYEARL Register – Calendar Mode With Hexadecimal Format Real-Time Clock Year Low-Byte Register – Calendar Mode With Hexadecimal Format Figure 22-21. RTCYEARL Register 7 6 5 rw rw rw 4 3 2 1 0 rw rw rw 1 0 Year – low byte of 0 to 4095 rw rw Table 22-21. RTCYEARL Register Description Bit Field Type Reset Description 7-0 Year RW undefined Year – low byte of 0 to 4095 22.3.21 RTCYEARL Register – Calendar Mode With BCD Format Real-Time Clock Year Low-Byte Register – Calendar Mode With BCD Format Figure 22-22. RTCYEARL Register 7 6 5 4 3 Decade rw rw 2 Year – lowest digit rw rw rw rw rw rw Table 22-22. RTCYEARL Register Description Bit Field Type Reset Description 7-4 Decade RW undefined Decade (0 to 9) 3-0 Year – lowest digit RW undefined Year – lowest digit (0 to 9) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock (RTC_A) Copyright © 2008–2015, Texas Instruments Incorporated 587 RTC_A Registers www.ti.com 22.3.22 RTCYEARH Register – Calendar Mode With Hexadecimal Format Real-Time Clock Year High-Byte Register – Calendar Mode With Hexadecimal Format Figure 22-23. RTCYEARH Register 7 6 r-0 r-0 5 4 3 r-0 r-0 rw 0 2 1 0 Year – high byte of 0 to 4095 rw rw rw 1 0 Table 22-23. RTCYEARH Register Description Bit Field Type Reset Description 7-4 0 R 0h Always 0 3-0 Year RW undefined Year – high byte of 0 to 4095 22.3.23 RTCYEARH Register – Calendar Mode With BCD Format Real-Time Clock Year High-Byte Register – Calendar Mode With BCD Format Figure 22-24. RTCYEARH Register 7 6 0 5 4 3 Century – high digit r-0 rw rw 2 Century – low digit rw rw rw rw rw Table 22-24. RTCYEARH Register Description Bit Field Type Reset Description 7 0 R 0h Always 0 6-4 Century – high digit RW undefined Century – high digit (0 to 4) 3-0 Century – low digit RW undefined Century – low digit (0 to 9) 588 Real-Time Clock (RTC_A) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_A Registers www.ti.com 22.3.24 RTCAMIN Register – Calendar Mode With Hexadecimal Format Real-Time Clock Minutes Alarm Register – Calendar Mode With Hexadecimal Format Figure 22-25. RTCAMIN Register 7 6 AE 0 rw r-0 5 4 3 rw rw rw 2 1 0 rw rw rw 1 0 Minutes Table 22-25. RTCAMIN Register Description Bit Field Type Reset Description 7 AE RW undefined Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6 0 R 0h Always 0 5-0 Minutes RW undefined Minutes (0 to 59) 22.3.25 RTCAMIN Register – Calendar Mode With BCD Format Real-Time Clock Minutes Alarm Register – Calendar Mode With BCD Format Figure 22-26. RTCAMIN Register 7 6 AE 5 4 3 Minutes – high digit rw rw rw 2 Minutes – low digit rw rw rw rw rw Table 22-26. RTCAMIN Register Description Bit Field Type Reset Description 7 AE RW 0h Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6-4 Minutes – high digit RW undefined Minutes – high digit (0 to 5) 3-0 Minutes – low digit RW undefined Minutes – low digit (0 to 9) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock (RTC_A) Copyright © 2008–2015, Texas Instruments Incorporated 589 RTC_A Registers www.ti.com 22.3.26 RTCAHOUR Register – Calendar Mode With Hexadecimal Format Real-Time Clock Hours Alarm Register – Calendar Mode With Hexadecimal Format Figure 22-27. RTCAHOUR Register 7 6 AE 5 4 3 r-0 rw rw 0 rw r-0 2 1 0 rw rw 1 0 Hours rw Table 22-27. RTCAHOUR Register Description Bit Field Type Reset Description 7 AE RW undefined Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6-5 0 R 0h Always 0 4-0 Hours RW undefined Hours (0 to 23) 22.3.27 RTCAHOUR Register – Calendar Mode With BCD Format Real-Time Clock Hours Alarm Register – Calendar Mode With BCD Format Figure 22-28. RTCAHOUR Register 7 6 AE 0 rw r-0 5 4 3 Hours – high digit rw rw 2 Hours – low digit rw rw rw rw Table 22-28. RTCAHOUR Register Description Bit Field Type Reset Description 7 AE RW undefined Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6 0 R 0h Always 0 5-4 Hours – high digit RW undefined Hours – high digit (0 to 2) 3-0 Hours – low digit RW undefined Hours – low digit (0 to 9) 590 Real-Time Clock (RTC_A) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_A Registers www.ti.com 22.3.28 RTCADOW Register Real-Time Clock Day of Week Alarm Register – Calendar Mode Figure 22-29. RTCADOW Register 7 6 5 r-0 r-0 AE 4 3 2 r-0 r-0 rw 0 rw 1 0 Day of week rw rw Table 22-29. RTCADOW Register Description Bit Field Type Reset Description 7 AE RW undefined Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6-3 0 R 0h Always 0 2-0 Day of week RW undefined Day of week (0 to 6) 22.3.29 RTCADAY Register – Calendar Mode With Hexadecimal Format Real-Time Clock Day of Month Alarm Register – Calendar Mode With Hexadecimal Format Figure 22-30. RTCADAY Register 7 6 AE 5 4 3 0 rw r-0 2 1 0 rw rw 1 0 Day of month r-0 rw rw rw Table 22-30. RTCADAY Register Description Bit Field Type Reset Description 7 AE RW undefined Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6-5 0 R 0h Always 0 4-0 Day of month RW undefined Day of month (1 to 28, 29, 30, 31) 22.3.30 RTCADAY Register – Calendar Mode With BCD Format Real-Time Clock Day of Month Alarm Register – Calendar Mode With BCD Format Figure 22-31. RTCADAY Register 7 6 AE 0 rw r-0 5 4 3 Day of month – high digit rw rw 2 Day of month – low digit rw rw rw rw Table 22-31. RTCADAY Register Description Bit Field Type Reset Description 7 AE RW undefined Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6 0 R 0h Always 0 5-4 Day of month – high digit RW undefined Day of month – high digit (0 to 3) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock (RTC_A) Copyright © 2008–2015, Texas Instruments Incorporated 591 RTC_A Registers www.ti.com Table 22-31. RTCADAY Register Description (continued) Bit Field Type Reset Description 3-0 Day of month – low digit RW undefined Day of month – low digit (0 to 9) 592 Real-Time Clock (RTC_A) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_A Registers www.ti.com 22.3.31 RTCPS0CTL Register Real-Time Clock Prescale Timer 0 Control Register Figure 22-32. RTCPS0CTL Register 15 14 Reserved RT0SSEL rw-0 rw-0 rw-0 rw-0 6 5 4 7 13 12 10 rw-0 r0 3 2 RT0PSDIV Reserved r0 11 9 Reserved RT0IP r0 r0 rw-0 rw-0 rw-0 8 RT0PSHOLD r0 rw-1 1 0 RT0PSIE RT0PSIFG rw-0 rw-(0) Table 22-32. RTCPS0CTL Register Description Bit Field Type Reset Description 15 Reserved R 0h Reserved. Always reads as 0. 14 RT0SSEL RW 0h Prescale timer 0 clock source select. Selects clock input source to the RT0PS counter. In real-time clock calendar mode, these bits are do not care. RT0PS clock input is automatically set to the output of RT0PS. 0b = ACLK 1b = SMCLK 13-11 RT0PSDIV RW 0h Prescale timer 0 clock divide. These bits control the divide ratio of the RT0PS counter. In real-time clock calendar mode, these bits are don't care for RT0PS and RT1PS. RT0PS clock output is automatically set to /256. RT1PS clock output is automatically set to /128. 00b = Divide by 2 01b = Divide by 4 10b = Divide by 8 11b = Divide by 16 00b = Divide by 32 01b = Divide by 64 10b = Divide by 128 11b = Divide by 256 10-9 Reserved R 0h Reserved. Always reads as 0. 8 RT0PSHOLD RW 1h Prescale timer 0 hold. In real-time clock calendar mode, this bit is don't care. RT0PS is stopped via the RTCHOLD bit. 0b = RT0PS operational 1b = RT0PS held 7-5 Reserved R 0h Reserved. Always reads as 0. 4-2 RT0IP RW 0h Prescale timer 0 interrupt interval 00b = Divide by 2 01b = Divide by 4 10b = Divide by 8 11b = Divide by 16 00b = Divide by 32 01b = Divide by 64 10b = Divide by 128 11b = Divide by 256 1 RT0PSIE RW 0h Prescale timer 0 interrupt enable 0b = Interrupt not enabled 1b = Interrupt enabled 0 RT0PSIFG RW 0h Prescale timer 0 interrupt flag 0b = No time event occurred 1b = Time event occurred SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock (RTC_A) Copyright © 2008–2015, Texas Instruments Incorporated 593 RTC_A Registers www.ti.com 22.3.32 RTCPS1CTL Register Real-Time Clock Prescale Timer 1 Control Register Figure 22-33. RTCPS1CTL Register 15 14 13 12 rw-0 rw-0 rw-0 6 5 4 RT1SSEL rw-0 10 rw-0 r0 3 2 RT1PSDIV 7 Reserved r0 11 9 Reserved RT1IP r0 r0 rw-0 rw-0 rw-0 8 RT1PSHOLD r0 rw-1 1 0 RT1PSIE RT1PSIFG rw-0 rw-(0) Table 22-33. RTCPS1CTL Register Description Bit Field Type Reset Description 15-14 RT1SSEL RW 0h Prescale timer 1 clock source select. Selects clock input source to the RT1PS counter. In real-time clock calendar mode, these bits are do not care. RT1PS clock input is automatically set to the output of RT0PS. 00b = ACLK 01b = SMCLK 10b = Output from RT0PS 11b = Output from RT0PS 13-11 RT1PSDIV RW 0h Prescale timer 1 clock divide. These bits control the divide ratio of the RT0PS counter. In real-time clock calendar mode, these bits are don't care for RT0PS and RT1PS. RT0PS clock output is automatically set to /256. RT1PS clock output is automatically set to /128. 00b = Divide by 2 01b = Divide by 4 10b = Divide by 8 11b = Divide by 16 00b = Divide by 32 01b = Divide by 64 10b = Divide by 128 11b = Divide by 256 10-9 Reserved R 0h Reserved. Always reads as 0. 8 RT1PSHOLD RW 1h Prescale timer 1 hold. In real-time clock calendar mode, this bit is don't care. RT1PS is stopped via the RTCHOLD bit. 0b = RT1PS operational 1b = RT1PS held 7-5 Reserved R 0h Reserved. Always reads as 0. 4-2 RT1IP RW 0h Prescale timer 1 interrupt interval 00b = Divide by 2 01b = Divide by 4 10b = Divide by 8 11b = Divide by 16 00b = Divide by 32 01b = Divide by 64 10b = Divide by 128 11b = Divide by 256 1 RT1PSIE RW 0h Prescale timer 1 interrupt enable 0b = Interrupt not enabled 1b = Interrupt enabled 0 RT1PSIFG RW 0h Prescale timer 1 interrupt flag 0b = No time event occurred 1b = Time event occurred 594 Real-Time Clock (RTC_A) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_A Registers www.ti.com 22.3.33 RT0PS Register Real-Time Clock Prescale Timer 0 Counter Register Figure 22-34. RT0PS Register 7 6 5 4 rw rw rw rw 3 2 1 0 rw rw rw rw RT0PS Table 22-34. RT0PS Register Description Bit Field Type Reset Description 7-0 RT0PS RW Undefined Prescale timer 0 counter value 22.3.34 RT1PS Register Real-Time Clock Prescale Timer 1 Counter Register Figure 22-35. RTPS1 Register 7 6 5 4 3 2 1 0 rw rw rw rw RT1PS rw rw rw rw Table 22-35. RT1PS Register Description Bit Field Type Reset Description 7-0 RT1PS RW Undefined Prescale timer 1 counter value 22.3.35 RTCIV Register Real-Time Clock Interrupt Vector Register Figure 22-36. RTCIV Register 15 14 13 12 11 10 9 8 RTCIV r0 r0 r0 r0 r0 r0 r0 r0 7 6 5 4 3 2 1 0 r0 r0 r0 r-(0) r-(0) r-(0) r-(0) r0 RTCIV Table 22-36. RTCIV Register Description Bit Field Type Reset Description 15-0 RTCIV R 0h Real-time clock interrupt vector value 00h = No interrupt pending 02h = Interrupt Source: RTC ready; Interrupt Flag: RTCRDYIFG 04h = Interrupt Source: RTC interval timer; Interrupt Flag: RTCTEVIFG 06h = Interrupt Source: RTC user alarm; Interrupt Flag: RTCAIFG 08h = Interrupt Source: RTC prescaler 0; Interrupt Flag: RT0PSIFG 0Ah = Interrupt Source: RTC prescaler 1; Interrupt Flag: RT1PSIFG 0Ch = Reserved 0Eh = Reserved 10h = Reserved ; Interrupt Priority: Lowest SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock (RTC_A) Copyright © 2008–2015, Texas Instruments Incorporated 595 Chapter 23 SLAU208O – June 2008 – Revised May 2015 Real-Time Clock B (RTC_B) The real-time clock RTC_B module provides clock counters with calendar mode, a flexible programmable alarm, and calibration. Note that the RTC_B supports only calendar mode and not counter mode. The RTC_B also support operation in LPM3.5 and device-dependent operation from a backup supply. See the device-specific data sheet for the supported features. This chapter describes the RTC_B module. Topic 23.1 23.2 23.3 596 ........................................................................................................................... Page Real-Time Clock RTC_B Introduction .................................................................. 597 RTC_B Operation.............................................................................................. 599 RTC_B Registers .............................................................................................. 604 Real-Time Clock B (RTC_B) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Real-Time Clock RTC_B Introduction www.ti.com 23.1 Real-Time Clock RTC_B Introduction The RTC_B module provides configurable clock counters. RTC_B features include: • Real-time clock and calendar mode providing seconds, minutes, hours, day of week, day of month, month, and year (including leap year correction) Note that only the calendar mode is supported by RTC_B; the counter mode that is available in some other RTC modules is not supported. • Interrupt capability • Selectable BCD or binary format • Programmable alarms • Calibration logic for time offset correction • Operation in LPM3.5 • Operation from backup supply with programmable charger for backup supply (device-dependent) (see the Battery Backup chapter. The RTC_B block diagram for devices supporting LPM3.5 is shown in Figure 23-1. NOTE: Real-time clock initialization Most RTC_B module registers have no initial condition. These registers must be configured by user software before use. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock B (RTC_B) Copyright © 2008–2015, Texas Instruments Incorporated 597 Real-Time Clock RTC_B Introduction www.ti.com RTCHOLD RT0IP EN RT0PS Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 from 32kHz Crystal Osc. 3 111 110 101 100 011 010 001 000 Set_RT0PSIFG RTCCALS RTCCAL 5 Calibration Logic EN RT1IP EN 3 RT1PS Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 111 110 101 100 011 010 001 000 Set_RT1PSIFG Keepout Logic Set_RTCRDYIFG RTCBCD EN RTCDOW RTCHOUR RTCMIN RTCSEC minute changed hour changed midnight noon Calendar RTCYEARH RTCYEARL RTCMON Alarm RTCADOW RTCADAY RTCAHOUR RTCTEV 2 00 Set_RTCTEVIFG 01 10 11 EN RTCDAY EN Set_RTCAIFG RTCAMIN Figure 23-1. RTC_B Block Diagram 598 Real-Time Clock B (RTC_B) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_B Operation www.ti.com 23.2 RTC_B Operation The RTC_B module provides seconds, minutes, hours, day of week, day of month, month, and year in selectable BCD or hexadecimal format. The calendar includes a leap-year algorithm that considers all years evenly divisible by four as leap years. This algorithm is accurate from the year 1901 through 2099. 23.2.1 Real-Time Clock and Prescale Dividers The prescale dividers, RT0PS and RT1PS, are automatically configured to provide a 1-s clock interval for the RTC_B. The low-frequency oscillator must be operated at 32768 Hz (nominal) for proper RTC_B operation. RT0PS is sourced from the low-frequency oscillator XT1. The output of RT0PS / 256 (Q7) is used to source RT1PS. RT1PS is further divider and the /128 output sources the real-time clock counter registers providing the required 1-second time interval. When RTCBCD = 1, BCD format is selected for the calendar registers. It is possible to switch between BCD and hexadecimal format while the RTC is counting. Setting RTCHOLD halts the real-time counters and prescale counters, RT0PS, and RT1PS. 23.2.2 Real-Time Clock Alarm Function The RTC_B module provides for a flexible alarm system. There is a single user-programmable alarm that can be programmed based on the settings contained in the alarm registers for minutes, hours, day of week, and day of month. Each alarm register contains an alarm enable (AE) bit that can be used to enable the respective alarm register. By setting AE bits of the various alarm registers, a variety of alarm events can be generated. • Example 1: A user wishes to set an alarm every hour at 15 minutes past the hour (that is, at 00:15:00, 01:15:00, 02:15:00, etc). This is possible by setting RTCAMIN to 15. By setting the AE bit of the RTCAMIN and clearing all other AE bits of the alarm registers, the alarm is enabled. When enabled, the RTCAIFG is set when the count transitions from 00:14:59 to 00:15:00, 01:14:59 to 01:15:00, 02:14:59 to 02:15:00, and so on. • Example 2: A user wishes to set an alarm every day at 04:00:00. This is possible by setting RTCAHOUR to 4. By setting the AE bit of the RTCHOUR and clearing all other AE bits of the alarm registers, the alarm is enabled. When enabled, the RTCAIFG is set when the count transitions from 03:59:59 to 04:00:00. • Example 3: A user wishes to set an alarm for 06:30:00. RTCAHOUR would be set to 6 and RTCAMIN would be set to 30. By setting the AE bits of RTCAHOUR and RTCAMIN, the alarm is enabled. Once enabled, the RTCAIFG is set when the time count transitions from 06:29:59 to 06:30:00. In this case, the alarm event occurs every day at 06:30:00. • Example 4: A user wishes to set an alarm every Tuesday at 06:30:00. RTCADOW would be set to 2, RTCAHOUR would be set to 6, and RTCAMIN would be set to 30. By setting the AE bits of RTCADOW, RTCAHOUR, and RTCAMIN, the alarm is enabled. Once enabled, the RTCAIFG is set when the time count transitions from 06:29:59 to 06:30:00 and the RTCDOW transitions from 1 to 2. • Example 5: A user wishes to set an alarm the fifth day of each month at 06:30:00. RTCADAY would be set to 5, RTCAHOUR would be set to 6, and RTCAMIN would be set to 30. By setting the AE bits of RTCADAY, RTCAHOUR, and RTCAMIN, the alarm is enabled. Once enabled, the RTCAIFG is set when the time count transitions from 06:29:59 to 06:30:00 and the RTCDAY equals 5. NOTE: Setting the alarm Prior to setting an initial alarm, all alarm registers including the AE bits should be cleared. To prevent potential erroneous alarm conditions from occurring, the alarms should be disabled by clearing the RTCAIE, RTCAIFG, and AE bits prior to writing initial or new time values to the RTC time registers. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock B (RTC_B) Copyright © 2008–2015, Texas Instruments Incorporated 599 RTC_B Operation NOTE: www.ti.com Invalid alarm settings Invalid alarm settings are not checked via hardware. It is the user's responsibility that valid alarm settings are entered. NOTE: Invalid time and date values Writing of invalid date or time information or data values outside the legal ranges specified in the RTCSEC, RTCMIN, RTCHOUR, RTCDAY, RTCDOW, RTCYEAR, RTCAMIN, RTCAHOUR, RTCADAY, and RTCADOW registers can result in unpredictable behavior. 23.2.3 Reading or Writing Real-Time Clock Registers Because the system clock may in fact be asynchronous to the RTC_B clock source, special care must be used when accessing the real-time clock registers. The real-time clock registers are updated once per second. To prevent reading any real-time clock register at the time of an update, which could result in an invalid time being read, a keep-out window is provided. The keep-out window is centered approximately 128/32768 seconds around the update transition. The read-only RTCRDY bit is reset during the keep-out window period and set outside the keep-out the window period. Any read of the clock registers while RTCRDY is reset is considered to be potentially invalid, and the time read should be ignored. An easy way to safely read the real-time clock registers is to utilize the RTCRDYIFG interrupt flag. Setting RTCRDYIE enables the RTCRDYIFG interrupt. Once enabled, an interrupt is generated based on the rising edge of the RTCRDY bit, causing the RTCRDYIFG to be set. At this point, the application has nearly a complete second to safely read any or all of the real-time clock registers. This synchronization process prevents reading the time value during transition. The RTCRDYIFG flag is reset automatically when the interrupt is serviced, or it can be reset with software. NOTE: Reading or writing real-time clock registers When the counter clock is asynchronous to the CPU clock, any read from any RTCSEC, RTCMIN, RTCHOUR, RTCDOW, RTCDAY, RTCMON, or RTCYEAR register while the RTCRDY is reset may result in invalid data being read. To safely read the counting registers, either polling of the RTCRDY bit or the synchronization procedure previously described can be used. Alternatively, the counter register can be read multiple times while operating, and a majority vote taken in software to determine the correct reading. Reading the RT0PS and RT1PS can only be handled by reading the registers multiple times and a majority vote taken in software to determine the correct reading or by halting the counters. Any write to any counting register takes effect immediately. However, the clock is stopped during the write. In addition, RT0PS and RT1PS registers are reset. This could result in losing up to 1 second during a write. Writing of data outside the legal ranges or invalid time stamp combinations results in unpredictable behavior. 23.2.4 Real-Time Clock Interrupts Six sources for interrupts are available, namely RT0PSIFG, RT1PSIFG, RTCRDYIFG, RTCTEVIFG, RTCAIFG, and RTCOFIFG. These flags are prioritized and combined to source a single interrupt vector. The interrupt vector register (RTCIV) is used to determine which flag requested an interrupt. The highest-priority enabled interrupt generates a number in the RTCIV register (see register description). This number can be evaluated or added to the program counter (PC) to automatically enter the appropriate software routine. Disabled RTC interrupts do not affect the RTCIV value. Any access, read or write, of the RTCIV register automatically resets the highest-pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. In addition, all flags can be cleared via software. 600 Real-Time Clock B (RTC_B) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_B Operation www.ti.com The user-programmable alarm event sources the real-time clock interrupt, RTCAIFG. Setting RTCAIE enables the interrupt. In addition to the user-programmable alarm, the RTC_B module provides for an interval alarm that sources real-time clock interrupt, RTCTEVIFG. The interval alarm can be selected to cause an alarm event when RTCMIN changed or RTCHOUR changed, every day at midnight (00:00:00) or every day at noon (12:00:00). The event is selectable with the RTCTEV bits. Setting the RTCTEVIE bit enables the interrupt. The RTCRDY bit sources the real-time clock interrupt, RTCRDYIFG, and is useful in synchronizing the read of time registers with the system clock. Setting the RTCRDYIE bit enables the interrupt. RT0PSIFG can be used to generate interrupt intervals selectable by the RT0IP bits. RT0PS is sourced with low-frequency oscillator clock at 32768 Hz, so intervals of 16384 Hz, 8192 Hz, 4096 Hz, 2048 Hz, 1024 Hz, 512 Hz, 256 Hz, or 128 Hz are possible. Setting the RT0PSIE bit enables the interrupt. RT1PSIFG can be used to generate interrupt intervals selectable by the RT1IP bits. RT1PS is sourced with the output of RT0PS, which is 128 Hz (32768/256 Hz). Therefore, intervals of 64 Hz, 32 Hz, 16 Hz, 8 Hz, 4 Hz, 2 Hz, 1 Hz, or 0.5 Hz are possible. Setting the RT1PSIE bit enables the interrupt. NOTE: Changing RT0IP or RT1IP Changing the settings of the interrupt interval bits RT0IP or RT1IP while the corresponding pre-scaler is running or is stopped in a non-zero state can result in setting the corresponding interrupt flags. The RTCOFIFG bit flags a failure of the 32-kHz crystal oscillator. Its main purpose is to wake up the CPU from LPM3.5 if an oscillator failure occurs. On devices with a backup-supply subsystem, it also stores a failure event that occurred while the RTC was operating on the backup supply. 23.2.4.1 RTCIV Software Example The following software example shows the recommended use of RTCIV and the handling overhead. The RTCIV value is added to the PC to automatically jump to the appropriate routine. The numbers at the right margin show the necessary CPU cycles for each instruction. The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not the task handling itself. ; Interrupt handler for RTC interrupt flags. RTC_HND ADD &RTCIV,PC RETI JMP RTCRDYIFG_HND JMP RTCTEVIFG_HND JMP RTCAIFG_HND JMP RT0PSIFG_HND JMP RT1PSIFG_HND JMP RTCOFIFG_HND RETI ; ; ; ; ; ; ; ; ; ; Interrupt latency Add offset to Jump table Vector 0: No interrupt Vector 2: RTCRDYIFG Vector 4: RTCTEVIFG Vector 6: RTCAIFG Vector 8: RT0PSIFG Vector A: RT1PSIFG Vector C: RTCOFIFG Vector E: Reserved 6 3 5 2 2 5 5 5 5 5 RTCRDYIFG_HND ... RETI ; Vector 2: RTCRDYIFG Flag ; Task starts here ; Back to main program 5 RTCTEVIFG_HND ... RETI ; Vector 4: RTCTEVIFG Flag ; Task starts here ; Back to main program 5 RTCAIFG_HND ... RETI ; Vector 6: RTCAIFG Flag ; Task starts here ; Back to main program 5 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock B (RTC_B) Copyright © 2008–2015, Texas Instruments Incorporated 601 RTC_B Operation www.ti.com RT0PSIFG_HND ... RETI ; Vector 8: RT0PSIFG Flag ; Task starts here ; Back to main program 5 RT1PSIFG_HND ... RETI ; Vector A: RT1PSIFG Flag ; Task starts here ; Back to main program 5 RTCOFIFG_HND ... RETI ; Vector C: RTCOFIFG Flag ; Task starts here ; Back to main program 5 23.2.5 Real-Time Clock Calibration The RTC_B module has calibration logic that allows for adjusting the crystal frequency in approximately +4-ppm or –2-ppm steps, allowing for higher time keeping accuracy from standard crystals. The RTCCALx bits are used to adjust the frequency. When RTCCALS is set, each RTCCALx LSB causes a ≈ +4-ppm adjustment. When RTCCALS is cleared, each RTCCALx LSB causes a ≈ –2-ppm adjustment. Calibration is accomplished by periodically adjusting the RT1PS counter based on the RTCCALS and RTCCALx settings. The RT0PS divides the nominal 37268-Hz low-frequency (LF) crystal clock input by 256. A 60-minute period has 32768 cycles/sec × 60 sec/min × 60 min = 117964800 cycles. Therefore, a –2-ppm reduction in frequency (down calibration) approximately equates to adding an additional 256 cycles every 117964800 cycles (256/117964800 = 2.17 ppm). This is accomplished by holding the RT1PS counter for one additional clock of the RT0PS output within a 60-minute period. Similarly, a +4-ppm increase in frequency (up calibration) approximately equates to removing 512 cycles every 117964800 cycle (512/117964800 = 4.34 ppm). This is accomplished by incrementing the RT1PS counter for two additional clocks of the RT0PS output within a 60-minute period. Each RTCCALx calibration bit causes either 256 LF crystal clock cycles to be added every 60 minutes or 512 LF crystal clock cycles to be subtracted every 60 minutes, giving a frequency adjustment of approximately -2 ppm or +4 ppm, respectively. To calibrate the frequency, the RTCCLK output signal is available at a pin. RTCCALF bits can be used to select the frequency rate of the output signal, either no signal, 512 Hz, 256 Hz, or 1 Hz. The basic flow to calibrate the frequency is as follows: 1. Configure the RTCCLK pin. 2. Measure the RTCCLK output signal with an appropriate resolution frequency counter ; that is, within the resolution required. 3. Compute the absolute error in ppm: Absolute error (ppm) = |106 (fMEASURED – fRTCCLK)/fRTCCLK|, where fRTCCLK is the expected frequency of 512 Hz, 256 Hz, or 1 Hz. 4. Adjust the frequency by performing the following: (a) If the frequency is too low, set RTCCALS = 1 and apply the appropriate RTCCALx bits, where RTCCALx = (Absolute Error) / 4.34 rounded to the nearest integer (b) If the frequency is too high, clear RTCCALS = 0 and apply the appropriate RTCCALx bits, where RTCCALx = (Absolute Error) / 2.17 rounded to the nearest integer For example, assume that RTCCLK is configured to output at a frequency of 512 Hz. The measured RTCCLK is 511.9658 Hz. This frequency error is approximately 66.8 ppm too low. To increase the frequency by 66.8 ppm, RTCCALS would be set, and RTCCALx would be set to 15 (66.8 / 4.34). Similarly, assume that the measured RTCCLK is 512.0125 Hz. The frequency error is approximately 24.4 ppm too high. To decrease the frequency by 24.4 ppm, RTCCALS would be cleared, and RTCCAL would be set to 11 (24.4 / 2.17). The calibration corrects only initial offsets and does not adjust for temperature and aging effects. These effects can be handled by periodically measuring temperature and using the crystal's characteristic curve to adjust the ppm based on temperature, as required. 602 Real-Time Clock B (RTC_B) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_B Operation www.ti.com NOTE: Minimum Possible Calibration The minimal calibration possible is -4 ppm or +8 ppm. For example, setting RTCCALS = 0 and RTCCAL = 0h would result in a -4 ppm decrease in frequency. Similarly, setting RTCCALS = 1 and RTCCAL = 0h would result in a +8 ppm increase in frequency. NOTE: Calibration output frequency The 512-Hz and 256-Hz output frequencies observed at the RTCCLK pin are not affected by changes in the calibration settings, because these output frequencies are generated prior to the calibration logic. The 1-Hz output frequency is affected by changes in the calibration settings. Because the frequency change is small and infrequent over a very long time interval, it can be difficult to observe. 23.2.6 Real-Time Clock Operation in LPM3.5 Low-Power Mode The regulator of the Power Management Module (PMM) is disabled upon entering LPM3.5, which causes most of the RTC_B configuration registers to be lost; only the counters and the backup RAM are retained. Table 23-1 lists the retained registers in LPM3.5. Also the configuration of the interrupts is stored so that the configured interrupts can cause a wakeup upon exit from LPM3.5. Interrupt flags that are set prior to entering LPM3.5 are cleared upon entering LPM3.5 (Note: this can only happen if the corresponding interrupt is not enabled). The interrupt flags RTCTEVIFG, RTCAIFG, RT1PSIFG, and RTCOFIFG can be used as RTC_B wake-up interrupt sources. After restoring the configuration registers (and clearing LOCKLPM5) the interrupts can be serviced as usual. The detailed flow is as follows: 1. Set all I/Os to general purpose I/Os and configure as needed. Optionally configure input interrupt pins for wake-up. Configure RTC_B interrupts for wake-up (set RTCTEVIE, RTCAIE, RT1PSIE, or RTCOFIE. If the alarm interrupt is also used as wake-up event, the alarm registers must be configured as needed). 2. Enter LPMx.5 with LPMx.5 entry sequence. MOV #PMMKEY + PMMREGOFF, &PMMCTL0 ; Open PMM registers for write and set PMMREGOFF ; BIS #LPM4,SR ; Enter LPMx.5 when PMMREGOFF is set 3. LOCKLPM5 is automatically set by hardware upon entering LPMx.5, the core voltage regulator is disabled, and all clocks are disabled except for the 32-kHz crystal oscillator clock if the RTC is enabled with RTCHOLD = 0. 4. An LPMx.5 wake-up event, such as an edge on a wake-up input pin, or an RTC_B interrupt event will start the BOR entry sequence together with the core voltage regulator. All peripheral registers are set to their default conditions. The I/O pin state remains locked as well as the interrupt configuration for the RTC_B. 5. The device can be configured. The I/O configuration and the RTC_B interrupt configuration that was not retained during LPM3.5 should be restored to the values prior to entering LPM3.5. Then the LOCKLPM5 bit can be cleared, this releases the I/O pin conditions as well as the RTC_B interrupt configuration. 6. After enabling I/O and RTC_B interrupts, the interrupt that caused the wake-up can be serviced. 7. To re-enter LPMx.5, the LOCKLPM5 bit must be cleared prior to re-entry, otherwise LPMx.5 is not entered. If the RTC is enabled (RTCHOLD = 0), the 32-kHz oscillator remains active during LPM3.5. The fault detection also remains functional. If a fault occurs during LPM3.5 and the RTCOFIE was set before entering LPM3.5, a wake-up event is issued. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock B (RTC_B) Copyright © 2008–2015, Texas Instruments Incorporated 603 RTC_B Registers www.ti.com 23.3 RTC_B Registers The RTC_B module registers are listed in Table 23-1. This table also lists the retention during LPMx.5. Registers that are not retained during LPMx.5 must be restored after exit from LPMx.5. The base address for the RTC_B module registers can be found in the device-specific data sheet. The address offsets are given in Table 23-1. NOTE: Most registers have word or byte register access. For a generic register ANYREG, the suffix "_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H" (ANYREG_H) refers to the upper byte of the register (bits 8 through 15). Table 23-1. RTC_B Registers Offset Acronym Register Name Type Access Reset LPMx.5 Operation 00h RTCCTL01 Real-Time Clock Control 0, 1 Read/write Word 7000h not retained 00h RTCCTL0 Real-Time Clock Control 0 Read/write Byte 00h not retained Real-Time Clock Control 1 Read/write Byte 70h not retained or RTCCTL01_L 01h RTCCTL1 or RTCCTL01_H 02h RTCCTL23 Real-Time Clock Control 2, 3 Read/write Word 0000h retained 02h RTCCTL2 Real-Time Clock Control 2 Read/write Byte 00h retained Real-Time Clock Control 3 Read/write Byte 00h retained Real-Time Prescale Timer 0 Control Read/write Word 0000h not retained Read/write Byte 00h not retained Read/write Byte 00h not retained Read/write Word 0000h not retained Read/write Byte 00h not retained Read/write Byte 00h not retained or RTCCTL23_L 03h RTCCTL3 or RTCCTL23_H 08h RTCPS0CTL 08h RTCPS0CTLL or RTCPS0CTL_L 09h RTCPS0CTLH or RTCPS0CTL_H 0Ah RTCPS1CTL 0Ah RTCPS1CTLL Real-Time Prescale Timer 1 Control or RTCPS1CTL_L 0Bh RTCPS0CTLH or RTCPS0CTL_H 0Ch RTCPS Real-Time Prescale Timer 0, 1 Counter Read/write Word none retained 0Ch RT0PS Real-Time Prescale Timer 0 Counter Read/write Byte none retained Real-Time Prescale Timer 1 Counter Read/write Byte none retained not retained or RTCPS_L 0Dh RT1PS or RTCPS_H 0Eh RTCIV Real Time Clock Interrupt Vector Read Word 0000h 10h RTCTIM0 Real-Time Clock Seconds, Minutes Read/write Word undefined retained 10h RTCSEC Real-Time Clock Seconds Read/write Byte undefined retained Real-Time Clock Minutes Read/write Byte undefined retained or RTCTIM0_L 11h RTCMIN or RTCTIM0_H 12h RTCTIM1 Real-Time Clock Hour, Day of Week Read/write Word undefined retained 12h RTCHOUR Real-Time Clock Hour Read/write Byte undefined retained Real-Time Clock Day of Week Read/write Byte undefined retained or RTCTIM1_L 13h RTCDOW or RTCTIM1_H 604 Real-Time Clock B (RTC_B) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_B Registers www.ti.com Table 23-1. RTC_B Registers (continued) LPMx.5 Operation Offset Acronym Register Name Type Access Reset 14h RTCDATE Real-Time Clock Date Read/write Word undefined retained 14h RTCDAY Real-Time Clock Day of Month Read/write Byte undefined retained Real-Time Clock Month Read/write Byte undefined retained or RTCDATE_L 15h RTCMON or RTCDATE_H 16h RTCYEAR Real-Time Clock Year (1) Read/write Word undefined retained 18h RTCAMINHR Real-Time Clock Minutes, Hour Alarm Read/write Word undefined retained 18h RTCAMIN Real-Time Clock Minutes Alarm Read/write Byte undefined retained Real-Time Clock Hours Alarm Read/write Byte undefined retained or RTCAMINHR_L 19h RTCAHOUR or RTCAMINHR_H 1Ah RTCADOWDAY Real-Time Clock Day of Week, Day of Month Alarm Read/write Word undefined retained 1Ah RTCADOW Real-Time Clock Day of Week Alarm Read/write Byte undefined retained Real-Time Clock Day of Month Alarm Read/write Byte undefined retained or RTCADOWDAY_L 1Bh RTCADAY or RTCADOWDAY_H 1Ch BIN2BCD Binary-to-BCD Conversion Register Read/write Word 00h not retained 1Eh BCD2BIN BCD-to-Binary Conversion Register Read/write Word 00h not retained (1) Do not access the RTCYEAR register in byte mode. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock B (RTC_B) Copyright © 2008–2015, Texas Instruments Incorporated 605 RTC_B Registers www.ti.com 23.3.1 RTCCTL0 Register Real-Time Clock Control 0 Register Figure 23-2. RTCCTL0 Register 7 6 RTCOFIE (1) RTCTEVIE rw-0 (1) 5 (1) RTCAIE rw-0 (1) rw-0 4 3 2 1 0 RTCRDYIE RTCOFIFG RTCTEVIFG RTCAIFG RTCRDYIFG rw-0 rw-(0) rw-(0) rw-(0) rw-(0) The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the register bits itself; therefore, reconfiguration after wake-up from LPMx.5 before clearing LOCKLPM5 is required. Table 23-2. RTCCTL0 Register Description Bit Field Type Reset Description 7 RTCOFIE RW 0h 32-kHz crystal oscillator fault interrupt enable. This interrupt can be used as LPMx.5 wake-up event. 0b = Interrupt not enabled 1b = Interrupt enabled (LPMx.5 wake-up enabled) 6 RTCTEVIE RW 0h Real-time clock time event interrupt enable. In modules supporting LPMx.5 this interrupt can be used as LPMx.5 wake-up event. 0b = Interrupt not enabled 1b = Interrupt enabled (LPMx.5 wake-up enabled) 5 RTCAIE RW 0h Real-time clock alarm interrupt enable. In modules supporting LPMx.5 this interrupt can be used as LPMx.5 wake-up event. 0b = Interrupt not enabled 1b = Interrupt enabled (LPMx.5 wake-up enabled) 4 RTCRDYIE RW 0h Real-time clock ready interrupt enable. 0b = Interrupt not enabled 1b = Interrupt enabled 3 RTCOFIFG RW 0h 32-kHz crystal oscillator fault interrupt flag. This interrupt can be used as LPMx.5 wake-up event. 0b = No interrupt pending 1b = Interrupt pending. A 32-kHz crystal oscillator fault occurred after last reset. 2 RTCTEVIFG RW 0h Real-time clock time event interrupt flag. In modules supporting LPMx.5 this interrupt can be used as LPMx.5 wake-up event. 0b = No time event occurred 1b = Time event occurred 1 RTCAIFG RW 0h Real-time clock alarm interrupt flag. In modules supporting LPMx.5 this interrupt can be used as LPMx.5 wake-up event. 0b = No time event occurred 1b = Time event occurred 0 RTCRDYIFG RW 0h Real-time clock ready interrupt flag 0b = RTC cannot be read safely 1b = RTC can be read safely 606 Real-Time Clock B (RTC_B) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_B Registers www.ti.com 23.3.2 RTCCTL1 Register Real-Time Clock Control Register 1 Figure 23-3. RTCCTL1 Register 7 6 RTCBCD RTCHOLD rw-(0) (1) 5 (1) 4 Reserved RTCRDY r1 r-(1) rw-(1) 3 2 Reserved r0 1 0 RTCTEVx r0 (1) rw-(0) rw-(0) The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the register bits itself; therefore, reconfiguration after wake-up from LPMx.5 before clearing LOCKLPM5 is required. Table 23-3. RTCCTL1 Register Description Bit Field Type Reset Description 7 RTCBCD RW 0h Real-time clock BCD select. Selects BCD counting for real-time clock. 0b = Binary-hexadecimal code selected 1b = BCD Binary coded decimal (BCD) code selected 6 RTCHOLD RW 1h Real-time clock hold 0b = Real-time clock is operational. 1b = The calendar is stopped as well as the prescale counters, RT0PS, and RT1PS. 5 Reserved R 1h Reserved. Always read as 1. 4 RTCRDY RW 1h Real-time clock ready 0b = RTC time values in transition 1b = RTC time values safe for reading. This bit indicates when the real-time clock time values are safe for reading. 3-2 Reserved R 0h Reserved. Always read as 0. 1-0 RTCTEVx RW 0h Real-time clock time interrupt event 00b = Minute changed 01b = Hour changed 10b = Every day at midnight (00:00) 11b = Every day at noon (12:00) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock B (RTC_B) Copyright © 2008–2015, Texas Instruments Incorporated 607 RTC_B Registers www.ti.com 23.3.3 RTCCTL2 Register Real-Time Clock Control 2 Register Figure 23-4. RTCCTL2 Register 7 6 RTCCALS Reserved rw-(0) r0 5 4 3 rw-(0) rw-(0) rw-(0) 2 1 0 rw-(0) rw-(0) rw-(0) RTCCALx Table 23-4. RTCCTL2 Register Description Bit Field Type Reset Description 7 RTCCALS RW 0h Real-time clock calibration sign 0b = Frequency adjusted down 1b = Frequency adjusted up 6 Reserved R 0h Reserved. Always read as 0. 5-0 RTCCALx RW 0h Real-time clock calibration. Each LSB represents approximately +4-ppm (RTCCALS = 1) or a –2-ppm (RTCCALS = 0) adjustment in frequency. 23.3.4 RTCCTL3 Register Real-Time Clock Control 3 Register Figure 23-5. RTCCTL3 Register 7 6 5 4 3 2 1 Reserved r0 r0 r0 0 RTCCALFx r0 r0 r0 rw-(0) rw-(0) Table 23-5. RTCCTL3 Register Description Bit Field Type Reset Description 7-2 Reserved R 0h Reserved. Always read as 0. 1-0 RTCCALFx RW 0h Real-time clock calibration frequency. Selects frequency output to RTCCLK pin for calibration measurement. The corresponding port must be configured for the peripheral module function. 00b = No frequency output to RTCCLK pin 01b = 512 Hz 10b = 256 Hz 11b = 1 Hz 608 Real-Time Clock B (RTC_B) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_B Registers www.ti.com 23.3.5 RTCSEC Register – Hexadecimal Format Real-Time Clock Seconds Register – Hexadecimal Format Figure 23-6. RTCSEC Register 7 6 0 0 r-0 r-0 5 4 3 rw rw rw 2 1 0 rw rw rw 1 0 Seconds Table 23-6. RTCSEC Register Description Bit Field Type Reset Description 7-6 0 R 0h Always reads as 0. 5-0 Seconds RW undefined Seconds. Valid values are 0 to 59. 23.3.6 RTCSEC Register – BCD Format Real-Time Clock Seconds Register – BCD Format Figure 23-7. RTCSEC Register 7 6 0 5 4 3 Seconds – high digit r-0 rw rw 2 Seconds – low digit rw rw rw rw rw Table 23-7. RTCSEC Register Description Bit Field Type Reset Description 7 0 R 0h Always reads as 0. 6-4 Seconds – high digit RW undefined Seconds – high digit. Valid values are 0 to 5. 3-0 Seconds – low digit RW undefined Seconds – low digit. Valid values are 0 to 9. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock B (RTC_B) Copyright © 2008–2015, Texas Instruments Incorporated 609 RTC_B Registers www.ti.com 23.3.7 RTCMIN Register – Hexadecimal Format Real-Time Clock Minutes Register – Hexadecimal Format Figure 23-8. RTCMIN Register 7 6 0 0 r-0 r-0 5 4 3 rw rw rw 2 1 0 rw rw rw 1 0 Minutes Table 23-8. RTCMIN Register Description Bit Field Type Reset Description 7-6 0 R 0h Always reads as 0. 5-0 Minutes RW undefined Minutes. Valid values are 0 to 59. 23.3.8 RTCMIN Register – BCD Format Real-Time Clock Minutes Register – BCD Format Figure 23-9. RTCMIN Register 7 6 0 5 4 3 Minutes – high digit r-0 rw rw 2 Minutes – low digit rw rw rw rw rw Table 23-9. RTCMIN Register Description Bit Field Type Reset Description 7 0 R 0h Always reads as 0. 6-4 Minutes – high digit RW undefined Minutes – high digit. Valid values are 0 to 5. 3-0 Minutes – low digit RW undefined Minutes – low digit. Valid values are 0 to 9. 610 Real-Time Clock B (RTC_B) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_B Registers www.ti.com 23.3.9 RTCHOUR Register – Hexadecimal Format Real-Time Clock Hours Register – Hexadecimal Format Figure 23-10. RTCHOUR Register 7 6 5 0 0 0 r-0 r-0 r-0 4 3 rw rw 2 1 0 rw rw 1 0 Hours rw Table 23-10. RTCHOUR Register Description Bit Field Type Reset Description 7-5 0 R 0h Always reads as 0. 4-0 Hours RW undefined Hours. Valid values are 0 to 23. 23.3.10 RTCHOUR Register – BCD Format Real-Time Clock Hours Register – BCD Format Figure 23-11. RTCHOUR Register 7 6 0 0 r-0 r-0 5 4 3 Hours – high digit rw rw 2 Hours – low digit rw rw rw rw Table 23-11. RTCHOUR Register Description Bit Field Type Reset Description 7-6 0 R 0h Always reads as 0. 5-4 Hours – high digit RW undefined Hours – high digit. Valid values are 0 to 2. 3-0 Hours – low digit RW undefined Hours – low digit. Valid values are 0 to 9. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock B (RTC_B) Copyright © 2008–2015, Texas Instruments Incorporated 611 RTC_B Registers www.ti.com 23.3.11 RTCDOW Register Real-Time Clock Day of Week Register Figure 23-12. RTCDOW Register 7 6 5 4 3 0 0 0 0 0 r-0 r-0 r-0 r-0 r-0 2 1 0 Day of week rw rw rw 1 0 rw rw 1 0 Table 23-12. RTCDOW Register Description Bit Field Type Reset Description 7-3 0 R 0h Always reads as 0. 2-0 Day of week RW undefined Day of week. Valid values are 0 to 6. 23.3.12 RTCDAY Register – Hexadecimal Format Real-Time Clock Day of Month Register – Hexadecimal Format Figure 23-13. RTCDAY Register 7 6 5 0 0 0 r-0 r-0 r-0 4 3 2 Day of month rw rw rw Table 23-13. RTCDAY Register Description Bit Field Type Reset Description 7-5 0 R 0h Always reads as 0. 4-0 Day of month RW undefined Day of month. Valid values are 1 to 31. 23.3.13 RTCDAY Register – BCD Format Real-Time Clock Day of Month Register – BCD Format Figure 23-14. RTCDAY Register 7 6 0 0 r-0 r-0 5 4 3 Day of month – high digit rw rw 2 Day of month – low digit rw rw rw rw Table 23-14. RTCDAY Register Description Bit Field Type Reset Description 7-6 0 R 0h Always reads as 0. 5-4 Day of month – high digit RW undefined Day of month – high digit. Valid values are 0 to 3. 3-0 Day of month – low digit RW undefined Day of month – low digit. Valid values are 0 to 9. 612 Real-Time Clock B (RTC_B) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_B Registers www.ti.com 23.3.14 RTCMON Register – Hexadecimal Format Real-Time Clock Month Register – Hexadecimal Format Figure 23-15. RTCMON Register 7 6 5 4 0 0 0 0 r-0 r-0 r-0 r-0 3 2 rw rw 1 0 rw rw 1 0 Month Table 23-15. RTCMON Register Description Bit Field Type Reset Description 7-4 0 R 0h Always reads as 0. 3-0 Month RW undefined Month. Valid values are 1 to 12. 23.3.15 RTCMON Register – BCD Format Real-Time Clock Month Register Figure 23-16. RTCMON Register 7 6 5 4 0 0 0 Month – high digit r-0 r-0 r-0 rw 3 2 Month – low digit rw rw rw rw Table 23-16. RTCMON Register Description Bit Field Type Reset Description 7-5 0 R 0h Always reads as 0. 4 Month – high digit RW undefined Month – high digit. Valid values are 0 or 1. 3-0 Month – low digit RW undefined Month – low digit. Valid values are 0 to 9. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock B (RTC_B) Copyright © 2008–2015, Texas Instruments Incorporated 613 RTC_B Registers www.ti.com 23.3.16 RTCYEAR Register – Hexadecimal Format Real-Time Clock Year Register – Hexadecimal Format Figure 23-17. RTCYEAR Register 15 14 13 12 11 10 9 8 0 0 0 0 r-0 r-0 r-0 r-0 rw rw Year – high byte rw rw 7 6 5 4 3 2 1 0 rw rw rw rw 9 8 Year – low byte rw rw rw rw Table 23-17. RTCYEAR Register Description Bit Field Type Reset Description 15-12 0 R 0h Always reads as 0. 11-8 Year – high byte RW undefined Year – high byte. Valid values of Year are 0 to 4095. 7-0 Year – low byte RW undefined Year – low byte. Valid values of Year are 0 to 4095. 23.3.17 RTCYEAR Register – BCD Format Real-Time Clock Year Register – BCD Format Figure 23-18. RTCYEAR Register 15 14 13 0 12 11 Century – high digit r-0 rw 7 6 Century – low digit rw rw rw rw rw rw 5 4 3 2 1 0 Decade rw rw 10 Year – lowest digit rw rw rw rw rw rw Table 23-18. RTCYEAR Register Description Bit Field Type Reset Description 15 0 R 0h Always reads as 0. 14-12 Century – high digit RW undefined Century – high digit . Valid values are 0 to 4. 11-8 Century – low digit RW undefined Century – low digit. Valid values are 0 to 9. 7-4 Decade RW undefined Decade. Valid values are 0 to 9. 3-0 Year – lowest digit RW undefined Year – lowest digit. Valid values are 0 to 9. 614 Real-Time Clock B (RTC_B) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_B Registers www.ti.com 23.3.18 RTCAMIN Register – Hexadecimal Format Real-Time Clock Minutes Alarm Register – Hexadecimal Format Figure 23-19. RTCAMIN Register 7 6 AE 0 rw r-0 5 4 3 rw rw rw 2 1 0 rw rw rw 1 0 Minutes Table 23-19. RTCAMIN Register Description Bit Field Type Reset Description 7 AE RW undefined Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6 0 R 0h Always reads as 0. 5-0 Minutes RW undefined Minutes. Valid values are 0 to 59. 23.3.19 RTCAMIN Register – BCD Format Real-Time Clock Minutes Alarm Register – BCD Format Figure 23-20. RTCAMIN Register 7 6 AE 5 4 3 Minutes – high digit rw rw rw 2 Minutes – low digit rw rw rw rw rw Table 23-20. RTCAMIN Register Description Bit Field Type Reset Description 7 AE RW undefined Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6-4 Minutes – high digit RW undefined Minutes – high digit. Valid values are 0 to 5. 3-0 Minutes – low digit RW undefined Minutes – low digit. Valid values are 0 to 9. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock B (RTC_B) Copyright © 2008–2015, Texas Instruments Incorporated 615 RTC_B Registers www.ti.com 23.3.20 RTCAHOUR Register – Hexadecimal Format Real-Time Clock Hours Alarm Register – Hexadecimal Format Figure 23-21. RTCAHOUR Register 7 6 5 AE 0 0 rw r-0 r-0 4 3 rw rw 2 1 0 rw rw 1 0 Hours rw Table 23-21. RTCAHOUR Register Description Bit Field Type Reset Description 7 AE RW undefined Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6-5 0 R 0h Always reads as 0. 4-0 Hours RW undefined Hours. Valid values are 0 to 23. 23.3.21 RTCAHOUR Register – BCD Format Real-Time Clock Hours Alarm Register – BCD Format Figure 23-22. RTCAHOUR Register 7 6 AE 0 rw r-0 5 4 3 Hours – high digit rw rw 2 Hours – low digit rw rw rw rw Table 23-22. RTCAHOUR Register Description Bit Field Type Reset Description 7 AE RW undefined Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6 0 R 0h Always reads as 0. 5-4 Hours – high digit RW undefined Hours – high digit. Valid values are 0 to 2. 3-0 Hours – low digit RW undefined Hours – low digit. Valid values are 0 to 9. 616 Real-Time Clock B (RTC_B) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_B Registers www.ti.com 23.3.22 RTCADOW Register Real-Time Clock Day of Week Alarm Register Figure 23-23. RTCADOW Register 7 6 5 4 3 AE 0 0 0 0 rw r-0 r-0 r-0 r-0 2 1 0 Day of week rw rw rw Table 23-23. RTCADOW Register Description Bit Field Type Reset Description 7 AE RW undefined Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6-3 0 R 0h Always reads as 0. 2-0 Day of week RW undefined Day of week. Valid values are 0 to 6. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock B (RTC_B) Copyright © 2008–2015, Texas Instruments Incorporated 617 RTC_B Registers www.ti.com 23.3.23 RTCADAY Register – Hexadecimal Format Real-Time Clock Day of Month Alarm Register – Hexadecimal Format Figure 23-24. RTCADAY Register 7 6 5 AE 0 0 rw r-0 r-0 4 3 rw rw 2 1 0 rw rw 1 0 Day of month rw Table 23-24. RTCADAY Register Description Bit Field Type Reset Description 7 AE RW undefined Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6-5 0 R 0h Always reads as 0. 4-0 Day of month RW undefined Day of month. Valid values are 1 to 31. 23.3.24 RTCADAY Register – BCD Format Real-Time Clock Day of Month Alarm Register – BCD Format Figure 23-25. RTCADAY Register 7 6 AE 0 rw r-0 5 4 3 Day of month – high digit rw rw 2 Day of month – low digit rw rw rw rw Table 23-25. RTCADAY Register Description Bit Field Type Reset Description 7 AE RW undefined Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6 0 R 0h Always reads as 0. 5-4 Day of month – high digit RW undefined Day of month – high digit. Valid values are 0 to 3. 3-0 Day of month – low digit RW undefined Day of month – low digit. Valid values are 0 to 9. 618 Real-Time Clock B (RTC_B) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_B Registers www.ti.com 23.3.25 RTCPS0CTL Register Real-Time Clock Prescale Timer 0 Control Register Figure 23-26. RTCPS0CTL Register 15 14 13 12 r0 r0 r0 r0 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 Reserved 7 RT0IPx (1) Reserved r0 (1) r0 r0 rw-(0) rw-(0) rw-(0) 1 0 RT0PSIE RT0PSIFG rw-0 rw-(0) The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the register bits itself; therefore, reconfiguration after wake-up from LPMx.5 before clearing LOCKLPM5 is required. Table 23-26. RTCPS0CTL Register Description Bit Field Type Reset Description 15-5 Reserved R 0h Reserved. Always reads as 0. 4-2 RT0IPx RW 0h Prescale timer 0 interrupt interval 000b = Divide by 2 001b = Divide by 4 010b = Divide by 8 011b = Divide by 16 100b = Divide by 32 101b = Divide by 64 110b = Divide by 128 111b = Divide by 256 1 RT0PSIE RW 0h Prescale timer 0 interrupt enable 0b = Interrupt not enabled 1b = Interrupt enabled 0 RT0PSIFG RW 0h Prescale timer 0 interrupt flag 0b = No time event occurred 1b = Time event occurred SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock B (RTC_B) Copyright © 2008–2015, Texas Instruments Incorporated 619 RTC_B Registers www.ti.com 23.3.26 RTCPS1CTL Register Real-Time Clock Prescale Timer 1 Control Register Figure 23-27. RTCPS1CTL Register 15 14 13 12 r0 r0 r0 r0 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 Reserved 7 RT1IPx (1) Reserved r0 (1) r0 r0 rw-(0) rw-(0) rw-(0) 1 0 RT1PSIE (1) RT1PSIFG rw-0 rw-(0) The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the register bits themselves; therefore, reconfiguration after wake-up from LPMx.5 before clearing LOCKLPM5 is required. Table 23-27. RTCPS1CTL Register Description Bit Field Type Reset Description 15-5 Reserved R 0h Reserved. Always reads as 0. 4-2 RT1IPx RW 0h Prescale timer 1 interrupt interval 000b = Divide by 2 001b = Divide by 4 010b = Divide by 8 011b = Divide by 16 100b = Divide by 32 101b = Divide by 64 110b = Divide by 128 111b = Divide by 256 1 RT1PSIE RW 0h Prescale timer 1 interrupt enable 0b = Interrupt not enabled 1b = Interrupt enabled (LPMx.5 wake-up enabled) 0 RT1PSIFG RW 0h Prescale timer 1 interrupt flag. In modules supporting LPMx.5 this interrupt can be used as LPMx.5 wake-up event. 0b = No time event occurred 1b = Time event occurred 620 Real-Time Clock B (RTC_B) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_B Registers www.ti.com 23.3.27 RTCPS0 Register Real-Time Clock Prescale Timer 0 Counter Register Figure 23-28. RTCPS0 Register 7 6 5 4 rw rw rw rw 3 2 1 0 rw rw rw rw RT0PS Table 23-28. RTCPS0 Register Description Bit Field Type Reset Description 7-0 RT0PS RW undefined Prescale timer 0 counter value 23.3.28 RTCPS1 Register Real-Time Clock Prescale Timer 1 Counter Register Figure 23-29. RTCPS1 Register 7 6 5 4 3 2 1 0 rw rw rw rw RT1PS rw rw rw rw Table 23-29. RTCPS1 Register Description Bit Field Type Reset Description 7-0 RT1PS RW undefined Prescale timer 1 counter value SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock B (RTC_B) Copyright © 2008–2015, Texas Instruments Incorporated 621 RTC_B Registers www.ti.com 23.3.29 RTCIV Register Real-Time Clock Interrupt Vector Register Figure 23-30. RTCIV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-(0) r-(0) r-(0) r0 RTCIVx RTCIVx r0 r0 r0 r0 Table 23-30. RTCIV Register Description Bit Field Type Reset Description 15-0 RTCIVx R 0h Real-time clock interrupt vector value 00h = No interrupt pending 02h = Interrupt Source: RTC ready; Interrupt Flag: RTCRDYIFG; Interrupt Priority: Highest 04h = Interrupt Source: RTC interval timer; Interrupt Flag: RTCTEVIFG 06h = Interrupt Source: RTC user alarm; Interrupt Flag: RTCAIFG 08h = Interrupt Source: RTC prescaler 0; Interrupt Flag: RT0PSIFG 0Ah = Interrupt Source: RTC prescaler 1; Interrupt Flag: RT1PSIFG 0Ch = Interrupt Source: RTC oscillator failure; Interrupt Flag: RTCOFIFG 0Eh = Reserved; Interrupt Priority: Lowest 622 Real-Time Clock B (RTC_B) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_B Registers www.ti.com 23.3.30 BIN2BCD Register Binary-to-BCD Conversion Register Figure 23-31. BIN2BCD Register 15 14 13 12 rw-0 rw-0 rw-0 rw-0 7 6 5 4 11 10 9 8 rw-0 rw-0 rw-0 rw-0 3 2 1 0 rw-0 rw-0 rw-0 rw-0 BIN2BCDx BIN2BCDx rw-0 rw-0 rw-0 rw-0 Table 23-31. BIN2BCD Register Description Bit Field Type Reset Description 15-0 BIN2BCDx RW 0h Read: 16-bit BCD conversion of previously written 12-bit binary number Write: 12-bit binary number to be converted 23.3.31 BCD2BIN Register BCD-to-Binary Conversion Register Figure 23-32. BCD2BIN Register 15 14 13 12 rw-0 rw-0 rw-0 rw-0 7 6 5 4 11 10 9 8 rw-0 rw-0 rw-0 rw-0 3 2 1 0 rw-0 rw-0 rw-0 rw-0 BCD2BINx BCD2BINx rw-0 rw-0 rw-0 rw-0 Table 23-32. BCD2BIN Register Description Bit Field Type Reset Description 15-0 BCD2BINx RW 0h Read: 12-bit binary conversion of previously written 16-bit BCD number Write: 16-bit BCD number to be converted SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock B (RTC_B) Copyright © 2008–2015, Texas Instruments Incorporated 623 Chapter 24 SLAU208O – June 2008 – Revised May 2015 Real-Time Clock C (RTC_C) The Real-Time Clock C (RTC_C) module provides clock counters with calendar mode, a flexible programmable alarm, offset calibration, and a provision for temperature compensation. The RTC_C also supports operation in LPM3.5. This chapter describes the RTC_C module. Topic 24.1 24.2 24.3 24.4 624 ........................................................................................................................... Real-Time Clock (RTC_C) Introduction ................................................................ RTC_C Operation.............................................................................................. RTC_C Operation - Device-Dependent Features ................................................... RTC_C Registers .............................................................................................. Real-Time Clock C (RTC_C) Page 625 627 636 641 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Real-Time Clock (RTC_C) Introduction www.ti.com 24.1 Real-Time Clock (RTC_C) Introduction The RTC_C module provides configurable clock counters. RTC_C features include: • Real-time clock and calendar mode that provides seconds, minutes, hours, day of week, day of month, month, and year (including leap year correction) • Protection for real-time clock registers • Interrupt capability • Selectable BCD or binary format • Programmable alarms • Real-time clock calibration for crystal offset error • Real-time clock compensation for crystal temperature drift • Operation in LPM3.5 The RTC_C module can provide the following device-dependent features. Refer to the device-specific data sheet to determine if these features are available in a particular device. • General-purpose counter mode (see Section 24.3.1) • Event and tamper detection with time stamp (see Section 24.3.2) • Operation from a separate voltage supply NOTE: Real-time clock initialization Most RTC_C module registers have no initial condition. These registers must be configured by user software before use. Figure 24-1 shows the RTC_C block diagram. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 625 Real-Time Clock (RTC_C) Introduction www.ti.com RTCHOLD RT0IP EN from 32kHz Crystal Osc. RT0PS Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 3 111 110 101 100 011 010 001 000 RTCOCALS RTCOCAL 8 RTCHOLD EN Calibration Logic 8 Set_RT0PSIFG RTCTCMPS RTCTCMP RT1IP EN 3 RT1PS Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 111 110 101 100 011 010 001 000 Set_RT1PSIFG Keepout Logic Set_RTCRDYIFG RTCBCD EN RTCDOW RTCHOUR RTCMIN RTCSEC minute changed hour changed midnight noon Calendar RTCYEARH RTCYEARL RTCMON Alarm RTCADOW RTCADAY RTCAHOUR RTCTEV 2 00 Set_RTCTEVIFG 01 10 11 EN RTCDAY EN Set_RTCAIFG RTCAMIN Figure 24-1. RTC_C Block Diagram (RTCMODE=1) 626 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Operation www.ti.com 24.2 RTC_C Operation 24.2.1 Calendar Mode Calendar mode is selected when RTCMODE is set. In calendar mode, the RTC_C module provides seconds, minutes, hours, day of week, day of month, month, and year in selectable BCD or hexadecimal format. The calendar includes a leap-year algorithm that considers all years evenly divisible by four as leap years. This algorithm is accurate from the year 1901 through 2099. Switching from counter mode (if available) to calendar mode does not reset the calendar registers (RTCSEC, RTCMIN, RTCHOUR, RTCDAY, RTCDOW, and RTCYEAR) and the prescale counters (RT0PS, RT1PS). These registers must be configured by user software before use. 24.2.2 Real-Time Clock and Prescale Dividers The prescale dividers, RT0PS and RT1PS, are automatically configured to provide a 1-second clock interval for the RTC_C. The low-frequency oscillator must be operated at 32768 Hz (nominal) for proper RTC_C operation. RT0PS is sourced from the low-frequency oscillator XT1. The output of RT0PS divided by 256 (Q7) sources RT1PS. RT1PS is further divided by 128 to source the real-time clock counter registers that provide the required 1-second time interval. When RTCBCD = 1, BCD format is selected for the calendar registers. It is possible to switch between BCD and hexadecimal format while the RTC is counting. Setting RTCHOLD halts the real-time counters and prescale counters, RT0PS and RT1PS. NOTE: For reliable update to all Calendar Mode registers Set RTCHOLD = 1 before writing into any of the calendar or prescalar registers (RTCPS0, RTCPS1, RTCSEC, RTCMIN, RTCHOUR, RTCDAY, RTCDOW, RTCMON, and RTCYEAR). 24.2.3 Real-Time Clock Alarm Function The RTC_C module provides for a flexible alarm system. There is a single user-programmable alarm that can be programmed based on the settings contained in the alarm registers for minutes, hours, day of week, and day of month. Each alarm register contains an alarm enable (AE) bit that can be used to enable the respective alarm register. By setting AE bits of the various alarm registers, a variety of alarm events can be generated. • Example 1: A user wishes to set an alarm every hour at 15 minutes past the hour (that is, 00:15:00, 01:15:00, 02:15:00, and so on). This is possible by setting RTCAMIN to 15. By setting the AE bit of the RTCAMIN and clearing all other AE bits of the alarm registers, the alarm is enabled. When enabled, the RTCAIFG is set when the count transitions from 00:14:59 to 00:15:00, 01:14:59 to 01:15:00, 02:14:59 to 02:15:00, and so on. • Example 2: A user wishes to set an alarm every day at 04:00:00. This is possible by setting RTCAHOUR to 4. By setting the AE bit of the RTCHOUR and clearing all other AE bits of the alarm registers, the alarm is enabled. When enabled, the RTCAIFG is set when the count transitions from 03:59:59 to 04:00:00. • Example 3: A user wishes to set an alarm for 06:30:00. RTCAHOUR would be set to 6, and RTCAMIN would be set to 30. By setting the AE bits of RTCAHOUR and RTCAMIN, the alarm is enabled. When enabled, the RTCAIFG is set when the time count transitions from 06:29:59 to 06:30:00. In this case, the alarm event occurs every day at 06:30:00. • Example 4: A user wishes to set an alarm every Tuesday at 06:30:00. RTCADOW would be set to 2, RTCAHOUR would be set to 6, and RTCAMIN would be set to 30. By setting the AE bits of RTCADOW, RTCAHOUR, and RTCAMIN, the alarm is enabled. When enabled, the RTCAIFG is set when the time count transitions from 06:29:59 to 06:30:00 and the RTCDOW transitions from 1 to 2. • Example 5: A user wishes to set an alarm the fifth day of each month at 06:30:00. RTCADAY would be set to 5, RTCAHOUR would be set to 6, and RTCAMIN would be set to 30. By setting the AE bits of RTCADAY, RTCAHOUR, and RTCAMIN, the alarm is enabled. When enabled, the RTCAIFG is set when the time count transitions from 06:29:59 to 06:30:00 and the RTCDAY equals 5. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 627 RTC_C Operation NOTE: www.ti.com Invalid alarm settings Invalid alarm settings are not checked by hardware. It is the user's responsibility that valid alarm settings are entered. NOTE: Invalid time and date values Writing of invalid date or time information or data values outside the legal ranges specified in the RTCSEC, RTCMIN, RTCHOUR, RTCDAY, RTCDOW, RTCYEARH, RTCYEARL, RTCAMIN, RTCAHOUR, RTCADAY, and RTCADOW registers can result in unpredictable behavior. NOTE: Setting the alarm Prior to setting an initial alarm, all alarm registers including the AE bits should be cleared. To prevent potential erroneous alarm conditions from occurring, the alarms should be disabled by clearing the RTCAIE, RTCAIFG, and AE bits prior to writing initial or new time values to the RTC time registers. 24.2.4 Real-Time Clock Protection RTC_C registers are key protected to ensure clock integrity and module configuration against software crash or from runaway code. Key protection does not apply for reads from the RTC_C registers. That is, any RTC_C register can be read at any time without having to unlock the module. Some predefined registers of RTC_C are key protected for write access. The control registers, clock registers, calendar register, prescale timer registers, and offset error calibration registers are protected. RTC_C alarm function registers, prescale timer control registers, interrupt vector register, and temperature compensation registers are not protected. RTC_C registers that are not protected can be written at any time without unlocking the module. Table 24-2 shows which registers are affected by the protection scheme. The RTCCTL0_H register implements key protection and controls the lock or unlock state of the module. When this register is written with correct key, 0A5h, the module is unlocked and unlimited write access possible to RTC_C registers. After the module is unlocked, it remains unlocked until the user writes any incorrect key or until the module is reset. A read from RTCCTL0_H register returns value 96h. Write access to any protected registers of RTC_C is ignored when the module is locked. RTC_C Key Protection Software Example ; Unlock/lock sequence for RTC_C MOV.B #RTCKEY, &RTCCTL0_H MOV.B #8bit_value, &RTCSEC MOV.B #8bit_value, &RTCMIN MOV.W #16bit_value, &RTCTIM1 MOV.W #RTCKEY+8bit_value, &RTCCTL0 ... MOV.B 628 #00h, &RTCCTL0_H ; ; ; ; ; Write Write Write Write Write correct key to unlock RTC_C 8 bit value into RTCSEC 8 bit value into RTCMIN 16bit value into RTCTIM1 into RTCCTL0 with correct key in word mode ; Write incorrect key to lock RTC_C Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Operation www.ti.com 24.2.5 Reading or Writing Real-Time Clock Registers Because the system clock may be asynchronous to the RTC_C clock source, special care must be used when accessing the real-time clock registers. The real-time clock registers are updated once per second. To prevent reading any real-time clock register at the time of an update that could result in an invalid time being read, a keep-out window is provided. The keep-out window is centered approximately 128/32768 seconds around the update transition. The readonly RTCRDY bit is reset during the keep-out window period and set outside the keep-out the window period. Any read of the clock registers while RTCRDY is reset is considered to be potentially invalid, and the time read should be ignored. An easy way to safely read the real-time clock registers is to use the RTCRDYIFG interrupt flag. Setting RTCRDYIE enables the RTCRDYIFG interrupt. When enabled, an interrupt is generated based on the rising edge of the RTCRDY bit, causing the RTCRDYIFG to be set. At this point, the application has nearly a complete second to safely read any or all of the real-time clock registers. This synchronization process prevents reading the time value during transition. The RTCRDYIFG flag is reset automatically when the interrupt is serviced or can be reset with software. NOTE: Reading or writing real-time clock registers When the counter clock is asynchronous to the CPU clock, any read from any RTCSEC, RTCMIN, RTCHOUR, RTCDOW, RTCDAY, RTCMON, RTCYEARL, or RTCYEARH register while the RTCRDY is reset may result in invalid data being read. To safely read the counting registers, either polling of the RTCRDY bit or the synchronization procedure previously described can be used. Alternatively, the counter register can be read multiple times while operating, and a majority vote taken in software to determine the correct reading. Reading the RT0PS and RT1PS can only be handled by reading the registers multiple times and a majority vote taken in software to determine the correct reading or by halting the counters. Any write to any counting register takes effect immediately. However, the clock is stopped during the write. In addition, RT0PS and RT1PS registers are reset. This could result in losing up to 1 second during a write. Writing of data outside the legal ranges or invalid time stamp combinations results in unpredictable behavior. 24.2.6 Real-Time Clock Interrupts At least six sources for interrupts are available, namely RT0PSIFG, RT1PSIFG, RTCRDYIFG, RTCTEVIFG, RTCAIFG, and RTCOFIFG. These flags are prioritized and combined to source a single interrupt vector. The interrupt vector register (RTCIV) is used to determine which flag requested an interrupt. The highest-priority enabled interrupt generates a number in the RTCIV register (see register description). This number can be evaluated or added to the program counter (PC) to automatically enter the appropriate software routine. Disabled RTC interrupts do not affect the RTCIV value. Writes into RTCIV register clear all pending interrupt conditions. Reads from RTCIV register clear the highest priority pending interrupt condition. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. In addition, all flags can be cleared by software. The user-programmable alarm event sources the real-time clock interrupt, RTCAIFG. Setting RTCAIE enables the interrupt. In addition to the user-programmable alarm, the RTC_C module provides for an interval alarm that sources real-time clock interrupt, RTCTEVIFG. The interval alarm can be selected to cause an alarm event when RTCMIN changed or RTCHOUR changed, every day at midnight (00:00:00) or every day at noon (12:00:00). The event is selectable with the RTCTEV bits. Setting the RTCTEVIE bit enables the interrupt. The RTCRDY bit sources the real-time clock interrupt, RTCRDYIFG, and is useful in synchronizing the read of time registers with the system clock. Setting the RTCRDYIE bit enables the interrupt. RT0PSIFG can be used to generate interrupt intervals selectable by the RT0IP bits. RT0PS is sourced with low-frequency oscillator clock at 32768 Hz, so intervals of 16384 Hz, 8192 Hz, 4096 Hz, 2048 Hz, 1024 Hz, 512 Hz, 256 Hz, or 128 Hz are possible. Setting the RT0PSIE bit enables the interrupt. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 629 RTC_C Operation www.ti.com RT1PSIFG can be used to generate interrupt intervals selectable by the RT1IP bits. RT1PS is sourced with the output of RT0PS, which is 128 Hz (32768/256 Hz). Therefore, intervals of 64 Hz, 32 Hz, 16 Hz, 8 Hz, 4 Hz, 2 Hz, 1 Hz, or 0.5 Hz are possible. Setting the RT1PSIE bit enables the interrupt. NOTE: Changing RT0IP or RT1IP Changing the settings of the interrupt interval bits RT0IP or RT1IP while the corresponding pre-scaler is running or is stopped in a non-zero state can result in setting the corresponding interrupt flags. The RTCOFIFG bit flags the failure of the 32-kHz crystal oscillator. Its main purpose is to wake up the CPU from LPM3.5 if an oscillator failure occurs. On devices with separate supply for RTC, this flag also stores a failure event that occurs when the core supply is not available. 24.2.6.1 RTCIV Software Example The following software example shows the recommended use of RTCIV and the handling overhead. The RTCIV value is added to the PC to automatically jump to the appropriate routine. The numbers at the right margin show the necessary CPU cycles for each instruction. The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not the task handling itself. ; Interrupt handler for RTC interrupt flags. RTC_HND ADD RETI JMP JMP JMP JMP JMP JMP RETI 630 &RTCIV,PC RTCOFIFG_HND RTCRDYIFG_HND RTCTEVIFG_HND RTCAIFG RT0PSIFG RT1PSIFG ; ; ; ; ; ; ; ; ; ; Interrupt latency Add offset to Jump table Vector 0: No interrupt Vector 2: RTCOFIFG Vector 4: RTCRDYIFG Vector 6: RTCTEVIFG Vector 8: RTCAIFG Vector A: RT0PSIFG Vector C: RT1PSIFG Vector E: Reserved 6 3 5 2 2 2 5 5 5 5 RTCOFIFG_HND ... RETI ; Vector 2: RTCOFIFG Flag ; Task starts here ; Back to main program 5 RTCRDYIFG_HND ... RETI ; Vector 4: RTCRDYIFG Flag ; Task starts here ; Back to main program 5 RTCTEVIFG_HND ... RETI ; Vector 6: RTCTEVIFG ; Task starts here ; Back to main program 5 RTCAIFG_HND ... RETI ; Vector 8: RTCAIFG ; Task starts here ; Back to main program 5 RT0PSIFG_HND ... RETI ; Vector A: RT0PSIFG ; Task starts here ; Back to main program 5 RT1PSIFG_HND ... RETI ; Vector C: RT1PSIFG ; Task starts here ; Back to main program 5 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Operation www.ti.com 24.2.7 Real-Time Clock Calibration for Crystal Offset Error The RTC_C module can be calibrated for crystal manufacturing tolerance or offset error to enable better accuracy of time keeping accuracy. The crystal frequency error of up to ±240 ppm can be calibrated smoothly over a period of 60 seconds. RTCOCAL_L register is used to adjust the frequency. The calibration value is written into RTCOCAL_L register, and each LSB in this register represent approximately ±1-ppm correction based on RTCOCALS bit in RTCOCAL_H register. When RTCOCALS bit is set (up calibration), each LSB in RTCOCAL_L represent +1-ppm adjustment. When RTCOCALS is cleared (down calibration), each LSB in RTCOCAL_L represent –1-ppm adjustment to frequency. Both RTCOCAL_L and RTCOCAL_H registers are protected and require RTC_C to be unlocked prior to writing into these registers. 24.2.7.1 Calibration Frequency To calibrate the frequency, the RTCCLK output signal is available at a pin. RTCCALFx bits in RTCCTL3 register can be used to select the frequency rate of the output signal. When RTCCALFx = 00, no signal is output on RTCCLK pin. The other settings of RTCCALFx select one the three frequencies: 512 Hz, 256 Hz, or 1 Hz. RTCCLK can be measured, and the result of this measurement can be applied to the RTCOCALS and RTCOCALx bits to effectively reduce the initial offset of the clock. 24.2.7.1.1 Calibration Mechanism RTCOCAL_L is an 8-bit register. Software can write a value of up to 256 ppm into this register, but the maximum frequency error that can be corrected is only 240 ppm. Software must make sure to write legal values into this register. A read from RTCOCAL always returns the value that was written by software. Real-time clock offset error calibration is inactive when RTC_C is not enabled (RTCHOLD = 0) or when RTCOCALx bits are zero. RTCOCAL should only be written when RTCHOLD = 1. Writing RTCOCAL resets temperature compensation to zero. In RTC_C, the offset error calibration takes place over a period of 60 seconds. To achieve approximately ±1-ppm correction, the 16-kHz clock (Q0 output of RT0PS) is adjusted to add or subtract one clock pulse. For +1-ppm correction, one clock pulse is added to the 16-kHz clock, and for –1-ppm correction, one clock pulse is subtracted from the 16-kHz clock. This correction happens once every quarter second until the programmed ppm error is compensated. fACLK,meas < 32768 Hz → RTCOCALS = 1, RTCOCALx = Round (60 × 16384 × (1 – fACLK,meas/32768)) fACLK,meas ≥ 32768 Hz → RTCOCALS = 0, RTCOCALx = Round (60 × 16384 × (1 – fACLK,meas/32768)) As an example for up calibration, when the measured frequency is 511.9658 Hz against the reference frequency of 512 Hz, the frequency error is approximately 67 ppm low. To increase the frequency by 67 ppm, RTCOCALS should be set, and RTCOCALx should be set to Round (60 × 16384 × (1 – 511.9658 × 64 / 32768)) = 66. As an example for down calibration, when the measured frequency is 512.0241 Hz against the reference frequency of 512 Hz, the frequency error is approximately 47 ppm high. To decrease the frequency by 47 ppm, RTCOCALS should be cleared, and RTCOCALx should be set to Round (60 × 16384 × (1 – 512.0241 × 64 / 32768)) = 46. All three possible output frequencies (512 Hz, 256 Hz, and 1 Hz) at RTCCLK pin are affected by calibration settings. RT0PS interrupt triggered by RT0PS – Q0 (RT0IPx = 000) is based on the uncalibrated clock, while RT0PS interrupt triggered by RT0PS – Q1 to Q7 (RT0IPx ≠ 000) is based on the calibrated clock. RT1PS interrupt (RT1PSIFG) and RTC counter interrupt (RTCTEVIFG) are also based on the calibrated clock. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 631 RTC_C Operation www.ti.com 24.2.8 Real-Time Clock Compensation for Crystal Temperature Drift The frequency output of the crystal varies considerably due to drift in temperature. It would be necessary to compensate the real-time clock for this temperature drift for higher time keeping accuracy from standard crystals. A hybrid software and hardware approach can be followed to achieve temperature compensation for RTC_C. The software can make use of an (on-chip) temperature sensor to measure the temperature at desired intervals (for example, once every few seconds or minutes). The temperature sensor parameters are calibrated at production and stored in the nonvolatile memory. Using the temperature sensor parameters and the measured temperature, software can do parabolic calculations to find out the corresponding frequency error in ppm. This frequency error can be written into RTCTCMP_L register for temperature compensation. RTCTCMP_L is an 8-bit register that allows correction for a frequency error up to ±240 ppm. Each LSB in this register represent ±1 ppm based on the RTCTCMPS bit in the RTCTCMP_H register. When RTCTCMPS bit is set, each LSB in RTCTCMP represents +1-ppm adjustment (up calibration). When RTCTCMPS is cleared, each LSB in RTCTCMP represents –1-ppm adjustment (down calibration). RTCTCMP register is not protected and can be written any time without unlocking RTC_C. 24.2.8.1 Temperature Compensation Scheme RTCTCMP_L is an 8-bit register. Software can write up to value of 256 ppm into this register, but the maximum frequency error that can be corrected including the crystal offset error is 240 ppm. Real-time clock temperature compensation is inactive when RTC_C is not enabled (RTCHOLD = 0) or when RTCTCMPx bits are zero. When the temperature compensation value is written into RTCTCMP_L, it is added to the offset error calibration value, and the resulting value is taken into account from next calibration cycle onwards. The ongoing calibration cycle is not affected by writes into the RTCTCMP register. The maximum frequency error that can be corrected to account for both offset error and temperature variation is ±240 ppm. This means the sign addition of offset error value and temperature compensation value should not exceed maximum of ±240 ppm; otherwise, the excess value above ±240 ppm is ignored by hardware. Reading from the RTCTCMP register at any time returns the cumulative value which is the signed addition of RTCOCALx and RTCTCMPx values. (Note that writing RTCOCAL resets the temperature compensation value to zero.) For example, when RTCOCAL value is +150 ppm, and the value written into RTCTCMP is +200 ppm, the effective value taken in for next calibration cycle is +240 ppm. Software is expected to do temperature measurement at certain regularity, calculate the frequency error, and write into RTCTCMP register to not exceed the maximum limit of ±240 ppm. Changing the sign bit by writing to RTCTCMP_H becomes effective only after also writing RTCTCMP_L. Thus it is recommended to write the sign bit together with compensation value as a 16-bit value into RTCTCMP. 24.2.8.2 Writing to RTCTCMP Register Because the system clock can be asynchronous to the RTC_C clock source, the RTCTCRDY bit in the RTCTCMP_H register should be considered for reliable writing into RTCTCMP register. RTCTCRDY is a read-only bit that is set when the hardware is ready to take in the new temperature compensation value. A write to RTCTCMP should be avoided when RTCTCRDY bit is reset. Writes into RTCTCMP register when RTCTCRDY is reset are ignored. RTCTCOK is a status bit that indicates if the write to RTCTCMP register is successful or not. RTCTCOK is set if the write to RTCTCMP is successful and reset if the write is unsuccessful. The status remains the same until the next write to the RTCTCMP register. If the write to RTCTCMP is unsuccessful, then the user needs to attempt writing into RTCTCMP again when RTCTCRDY is set. Figure 24-2 shows the scheme for real-time clock offset error calibration and temperature compensation. 632 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Operation www.ti.com SW Temperature Sensor Parameters SW Crystal Offset Error Calculation HW Write to RTCOCAL HW SW Temperature Sensor Readings SW Temperature Estimation SW Parabolic Calculations HW Write to RTCTCMP Calibration Logic Uncalibrated 32kHz Clock HW RT0PS - Q0 Uncalibrated 16kHz Clock Calibrated 16kHz Clock HW RT0PS - Q1 to Q7 HW RT1PS - Q0 to Q6 Calibrated 128Hz Clock Calibrated 1Hz Clock HW RTC Counters Figure 24-2. RTC_C Offset Error Calibration and Temperature Compensation Scheme SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 633 RTC_C Operation www.ti.com 24.2.8.3 Temperature Measurement and Updates to RTC_C The user may wish to perform temperature measurement once every few seconds or once every minute or once in several minutes. Writing to RTCTCMP register for temperature compensation is effective always once in one minute. This means that if the user performs temperature measurement every minute and updates RTCTCMP register with the frequency error, compensation would immediately work fine. But if software performs temperature measurement more frequently than once per minute (for example once every 5 seconds) then it needs to average the error over one minute and update RTCTCMP register once per minute. If the software performs temperature measurement less frequently than once per minute (for example, once every 5 minutes) then it needs to calculate the frequency error for the measured temperature and write into RTCTCMP register. The value written into RTCTCMP in this case would be effective until it is updated again by software. 24.2.9 Real-Time Clock Operation in LPM3.5 Low-Power Mode The regulator of the Power Management Module (PMM) is disabled when the device enters LPM3.5, which causes most of the RTC_C configuration registers to be lost; only the counters and calibration registers are retained. Table 24-2 shows which registers are retained in LPM3.5. Also the configuration of the interrupt enables is stored so that the configured interrupts can cause a wakeup upon exit from LPM3.5. Interrupt flags that are set prior to entering LPM3.5 are cleared upon entering LPM3.5 (Note: this can only happen if the corresponding interrupt is not enabled). The interrupt flags RTCTEVIFG, RTCAIFG, RT1PSIFG, and RTCOFIFG can be used as RTC_C wakeup interrupt sources. Any interrupt event that occurs during LPM3.5 is stored in the corresponding flags, but only enabled interrupts can wake up the device. After restoring the configuration registers (and clearing LOCKLPM5), the interrupts can be serviced as usual. The detailed flow is as follows: 1. Set all I/Os to general-purpose I/Os and configure as needed. Optionally, configure input interrupt pins for wakeup. Configure RTC_C interrupts for wake-up (set RTCTEVIE, RTCAIE, RT1PSIE, or RTCOFIE. If the alarm interrupt is also used as wake-up event, the alarm registers must be configured as needed). 2. Enter LPM3.5 with LPM3.5 entry sequence: bic #RTCHOLD, &RTCCTL13 bis #PMMKEY + REGOFF, &PMMCTL0 bis #LPM4, SR 3. LOCKLPM5 is automatically set by hardware upon entering LPM3.5, the core voltage regulator is disabled, and all clocks are disabled except for the 32-kHz crystal oscillator clock as the RTC_C is enabled with RTCHOLD = 0. 4. An LPM3.5 wake-up event like an edge on a wake-up input pin or an RTC_C interrupt event starts the BOR entry sequence and the core voltage regulator. All peripheral registers are set to their default conditions. The I/O pin state and the interrupt configuration for the RTC_C remain locked. 5. The device can be configured. The I/O configuration and the RTC_C interrupt configuration that was not retained during LPM3.5 should be restored to the values that they had prior to entering LPM3.5. Then the LOCKLPM5 bit can be cleared, which releases the I/O pin conditions and the RTC_C interrupt configuration. Registers that are retained during LPM3.5 should not be altered before LOCKLPM5 is cleared. 6. After enabling I/O and RTC_C interrupts, the interrupt that caused the wake-up can be serviced. If the RTC_C is enabled (RTCHOLD = 0), the 32-kHz oscillator remains active during LPM3.5. The fault detection also remains functional. If a fault occurs during LPM3.5 and the RTCOFIE was set before entering LPM3.5, a wake-up event is issued. 634 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Operation www.ti.com In F677xA, F673xA, and F672xA devices, the RTCLOCK bit in RTCCTL3 allows to keep all LPM3.5 retention logic from write and reset operations. In addition, the following interrupt bits are also protected: • • RTCTCCTL1: RTCCAPIFG RTCCAPxCTL: CAPEV When set, this bit also affects XT1 LF control bits which can be retained in LPM3.5. These XT1 control bits include: • UCSCTL6: XT1DRIVE, XTS, XT1BYPASS, XCAP When this bit is set, LPM3.5 retention logic is not writable, and any reset cannot change its operation unless a power cycle occurs. Meanwhile, an unlock operation is required to open the write access of interrupt flags before they are cleared in ISR. If this bit is clear, these logics are writable and can be reset by PUC, POR, and BOR. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 635 RTC_C Operation - Device-Dependent Features www.ti.com 24.3 RTC_C Operation - Device-Dependent Features 24.3.1 Counter Mode NOTE: This feature is available only on selected devices. See the device-specific data sheet to determine if this feature is available. The RTC_C module can be configured as a real-time clock with calendar function (calendar mode) or as a 32-bit general-purpose counter (counter mode) with the RTCMODE bit. Counter mode is selected when RTCMODE is reset. In this mode, a 32-bit counter is provided that is directly accessible by software. Figure 24-3 shows the functional block diagram of a RTC_C module in counter mode (RTCMODE = 0). RT0PSHOLD RT0IP EN from 32kHz Crystal Osc. RT0PS Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 3 RT1PSHOLD RT1SSEL 2 3 RT1PS Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Set_RT1PSIFG 111 110 101 100 011 010 3 001 111 110 101 100 011 010 001 000 000 RT1PSDIV RT1IP EN 00 01 10 11 Set_RT0PSIFG 111 110 101 100 011 001 3 010 RT0PSDIV 000 111 110 101 100 011 010 001 000 RTCSSEL 2 00 01 10 11 RTCHOLD EN 31 ... 24 23 ... 16 RTCNT4 RTCNT3 15 ... 8 RTCNT2 7 ... 0 RTCNT1 8-bit overflow 16-bit overflow 24-bit overflow 32-bit overflow RTCTEV 2 00 Set_RTCTEVIFG 01 10 11 Figure 24-3. RTC_C Functional Block Diagram in Counter Mode (RTCMODE = 0) 636 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Operation - Device-Dependent Features www.ti.com 24.3.1.1 Switching between Calendar and Counter Mode To 1. 2. 3. switch from calendar mode to counter mode do the following steps: Stop the RTC with RTCHOLD=1. Clear the RTCMODE bit to enable the counter mode. Initialize the count registers (RTCNT1, RTCNT2, RTCNT3, RTCNT4) and the prescale counters (RT0PS, RT1PS) as needed. (The switch from calendar mode to counter mode does not reset the count value (RTCNT1, RTCNT2, RTCNT3, RTCNT4) or the prescale counters (RT0PS, RT1PS). These registers must be configured by user software before use.) 4. Clear the RTCHOLD bit to start the counters. To 1. 2. 3. switch back from counter mode to calender mode do the following steps: Stop the counters with RTCHOLD=1. Set RTCMODE=1 to enable the calendar mode. Initialize the clock and calendar registers and the prescale counters (RT0PS, RT1PS) as needed. (The switch from counter mode to calendar mode does not reset the clock and calendar registers nor the prescale counters (RT0PS, RT1PS). These registers must be configured by user software before use.) 4. Clear the RTCHOLD bit to start the RTC. 24.3.1.2 Counter Mode Operation The clock that increments the counter can be sourced from the 32-kHz crystal oscillator or from prescaled versions of the 32-kHz crystal oscillator clock. Prescaled versions are sourced from the prescale dividers (RT0PS and RT1PS). RT0PS and RT1PS can output /2, /4, /8, 16, /32, /64, /128, and /256 versions of the 32-kHz clock. The output of RT0PS can be cascaded with RT1PS. The cascaded output can also be used as a clock source input to the 32-bit counter. Four individual 8-bit counters are cascaded to provide the 32-bit counter. This provides 8-bit, 16-bit, 24-bit, or 32-bit overflow intervals of the counter clock. The RTCTEV bits select the respective trigger event. An RTCTEV event can trigger an interrupt by setting the RTCTEVIE bit. Each counter, RTCNT1 through RTCNT4, is individually accessible and may be written. RT0PS and RT1PS can be configured as two 8-bit counters or cascaded into a single 16-bit counter. RT0PS and RT1PS can be halted on an individual basis by setting their respective RT0PSHOLD and RT1PSHOLD bits. When RT0PS is cascaded with RT1PS, setting RT0PSHOLD causes both RT0PS and RT1PS to be halted. The 32-bit counter can be halted several ways, depending on the configuration. If the 32-bit counter is sourced directly by the 32-kHz crystal clock, it can be halted by setting RTCHOLD. If it is sourced from the output of RT1PS, it can be halted by setting RT1PSHOLD or RTCHOLD. Finally, if it is sourced from the cascaded outputs of RT0PS and RT1PS, it can be halted by setting RT0PSHOLD, RT1PSHOLD, or RTCHOLD. NOTE: Accessing the RTCNT1, RTCNT2, RTCNT3, RTCNT4, RT0PS, RT1PS registers When the counter clock is asynchronous to the CPU clock, any read from any RTCNT1, RTCNT2, RTCNT3, RTCNT4, RT0PS, or RT1PS register should occur while the counter is not operating. Otherwise, the results may be unpredictable. Alternatively, the counter may be read multiple times while operating, and a majority vote taken in software to determine the correct reading. Any write to these registers takes effect immediately. NOTE: For reliable update to all Counter Mode registers Depending on the cascading of counters, when a write occurs, hold all subsequent counters. For example, if RTPS0 is being updated, set RTCPS1HOLD = 1, and if RTPS1 is being updated, set RTCHOLD = 1. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 637 RTC_C Operation - Device-Dependent Features 24.3.1.3 www.ti.com Real-Time Clock Interrupts in Counter Mode In counter mode, four interrupt sources are available: RT0PSIFG, RT1PSIFG, RTCTEVIFG, and RTCOFIFG. RTCAIFG and RTCRDYIFG are cleared. RTCRDYIE and RTCAIE are don't care. RT0PSIFG can be used to generate interrupt intervals selectable by the RT0IP bits. In counter mode, divide ratios of /2, /4, /8, /16, /32, /64, /128, and /256 of the clock source are possible. Setting the RT0PSIE bit enables the interrupt. RT1PSIFG can be used to generate interrupt intervals selectable by the RT1IP bits. In counter mode, RT1PS is sourced with low-frequency oscillator clock, or the output of RT0PS, so divide ratios of /2, /4, /8, /16, /32, /64, /128, and /256 of the respective clock source are possible. Setting the RT1PSIE bit enables the interrupt. In Counter Mode, the RTC_C module provides for an interval timer that sources real-time clock interrupt, RTCTEVIFG. The interval timer can be selected to cause an interrupt event when an 8-bit, 16-bit, 24-bit, or 32-bit overflow occurs within the 32-bit counter. The event is selectable with the RTCTEV bits. Setting the RTCTEVIE bit enables the interrupt. The RTCOFIFG bit flags a failure of the 32-kHz crystal oscillator. It's main purpose is to wake-up the CPU from LPM3.5 in case an oscillator failure occurred. 638 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Operation - Device-Dependent Features www.ti.com 24.3.2 Real-Time Clock Event/Tamper Detection With Time Stamp NOTE: This feature is available only on selected devices. See the device-specific data sheet to determine if this feature is available. The RTC_C module provides an external event or tamper detection and time stamp for up to two external events. The pins RTCCAP0 and RTCCAP1 (1) can be used as an event or tamper detection input of an external switch (mechanical or electronic). After device power-up, this feature can be enabled by setting the TCEN bit in the RTCTCCTL0 register. Event/Tamper Detection with time stamp is supported in all MSP430 operating modes, as long as there is a valid RTC power supply. • When there is an event on RTCCAPx pin and the time capture feature is enabled (TCEN = 1), the corresponding CAPEV bit in RTCCAPxCTL register is set and the corresponding time stamp information (seconds, minutes, hours, day of month, month and year) is stored in the respective backup registers (RTCSECBAKx, RTCMINBAKx, RTCHOURBAKx, RTCDAYBAKx, RTCMONBAKx and RTCYEARBAKx). • In case of multiple events, ONLY the time stamp of the event that occurred first is stored in the respective backup registers. After CAPEV is set by the first event on RTCCAPx, all subsequent events on RTCCAPx are ignored until the CAPEV bit is cleared by the user. • The CAPES bit in the RTCCAPxCTL register sets the event edge for the corresponding RTCCAPx pin. – Bit = 0: CAPEV flag is set with a low-to-high transition. – Bit = 1: CAPEV flag is set with a high-to-low transition. NOTE: Writing to CAPESx Writing to CAPES can result in setting the corresponding interrupt flags. CAPESx 0→1 0→1 1→0 1→0 (1) RTCCAPx 0 1 0 1 RTCCAPIFG May be set Unchanged Unchanged May be set These pins are present only on devices that support this feature of RTC_C. Refer to the device-specific data sheet to determine the availability of this feature. • • • • • • The interrupt flag RTCCAPIFG is set when any of the individual CAPEV bits are set. If the RTCIV is read, RTCCAPIFG is cleared but not the status flags (CAPEV bits). They are then read by the CPU and must be cleared by software only. By setting the RTCCAPIE bit, an event on RTCCAPx generates an interrupt. This interrupt can be used as LPM3.5 or LPM4.5 wake-up event in modules that support LPM3.5 or LPM4.5. When the time capture feature is enabled (TCEN = 1), all of the backup registers (RTCSECBAKx, RTCMINBAKx, RTCHOURBAKx, RTCDAYBAKx, RTCMONBAKx, and RTCYEARBAKx) are read-only to user and can be written only by the RTC hardware. When RTCBCD = 1 and TCEN = 1, BCD format is selected for the backup registers. If the backup registers were written to by the hardware before TCEN was set, then the previous values are retained until there is a time capture event that overrides the values with the time stamp. When the time capture feature is disabled (TCEN = 0), all of the backup registers (RTCSECBAKx, RTCMINBAKx, RTCHOURBAKx, RTCDAYBAKx, RTCMONBAKx, and RTCYEARBAKx) can be written only by the CPU. When TCEN = 0, the RTCBCD bit setting is ignored for the backup registers. The data in the backup registers when TCEN = 1 is retained until the user writes new values after TCEN is cleared. When TCEN is cleared, all CAPEV bits and RTCCAPIFG are cleared. Table 24-1 shows how to use the DIR, REN, and OUT bits in RTCCAPxCTL for proper configuration of RTCCAPx pins. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 639 RTC_C Operation - Device-Dependent Features www.ti.com Table 24-1. RTCCAPx Pin Configuration DIR REN OUT 0 0 x RTCCAPx Configuration Input 0 1 0 Input with pulldown resistor 0 1 1 Input with pullup resistor 1 x x Output 24.3.2.1 Real-Time Clock Event/Tamper Detection Interrupts With the event or tamper detection feature, one additional interrupt sources is available, RTCCAPIFG. This flag is prioritized and combined with the other interrupt flags to source a single interrupt vector. The interrupt vector register (RTCIV) is used to determine which flag requested an interrupt. The RTCCAPIFG bit flags the occurrence of a tamper event. The exact source of the interrupt among multiple tamper events can be found out by reading the CAPEV bit in the respective RTCCAPxCTL registers (one per tamper source). When RTCIV is read, the RTCCAPIFG is cleared but not the status flags (CAPEV bits). 640 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Registers www.ti.com 24.4 RTC_C Registers The RTC_C module registers are shown in Table 24-2. This table also shows which registers are key protected and which are retained during LPM3.5. The registers that are retained during LPM3.5 and given with a reset value are not reset on POR; they are reset based on a signal derived from the RTC supply. Registers that are not retained during LPM3.5 must be restored after exit from LPM3.5. The high-side SVS must not be disabled by software if the real-time clock feature is needed. When the high-side SVS is disabled, the RTC_C registers with LPM3.5 retention are not accessible by the CPU. The base address for the RTC_C module registers can be found in the device-specific data sheet. The address offsets are shown in Table 24-2. The additional registers that are available if Event/Tamper Detection is implemented are shown in Table 24-3 together with the corresponding address offsets. If the counter mode is supported, the register aliases shown in Table 24-4 can be used to access the counter registers. NOTE: Most registers have word or byte register access. For a generic register ANYREG, the suffix "_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H" (ANYREG_H) refers to the upper byte of the register (bits 8 through 15). Table 24-2. RTC_C Registers Offset Acronym Register Name Type Access Reset Key Protected LPM3.5 Retention 00h RTCCTL0 Real-Time Clock Control 0 Read/write Word 9600h yes not retained 00h RTCCTL0_L Real-Time Clock Control 0 Low Read/write Byte 00h yes not retained 01h RTCCTL0_H Real-Time Clock Control 0 High Read/write Byte 96h n/a not retained 02h RTCCTL13 Real-Time Clock Control 1, 3 Read/write Word 0070h yes high byte retained 02h RTCCTL1 Real-Time Clock Control 1 Read/write Byte 70h yes not retained Real-Time Clock Control 3 Read/write Byte 00h yes retained Real-Time Clock Offset Calibration Read/write Word 0000h yes retained Read/write Byte 00h yes retained Read/write Byte 00h yes retained Read/write Word 4000h no retained Read/write Byte 00h no retained Read/write Byte 40h no retained Read/write Word 0100h no not retained or RTCCTL13_L 03h RTCCTL3 or RTCCTL13_H 04h RTCOCAL 04h RTCOCAL_L 05h RTCOCAL_H 06h RTCTCMP 06h RTCTCMP_L 07h RTCTCMP_H 08h RTCPS0CTL 08h RTCPS0CTL_L Read/write Byte 00h no not retained 09h RTCPS0CTL_H Read/write Byte 01h no not retained 0Ah RTCPS1CTL Read/write Word 0100h no not retained 0Ah RTCPS1CTL_L Read/write Byte 00h no not retained 0Bh RTCPS1CTL_H Read/write Byte 01h no not retained 0Ch RTCPS Real-Time Prescale Timer 0, 1 Counter Read/write Word none yes retained 0Ch RT0PS Real-Time Prescale Timer 0 Counter Read/write Byte none yes retained Real-Time Clock Temperature Compensation Real-Time Prescale Timer 0 Control Real-Time Prescale Timer 1 Control or RTCPS_L Real-Time Clock C (RTC_C) 641 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Registers www.ti.com Table 24-2. RTC_C Registers (continued) Offset Acronym Register Name Type Access Reset Key Protected LPM3.5 Retention 0Dh RT1PS Real-Time Prescale Timer 1 Counter Read/write Byte none yes retained or RTCPS_H 0Eh RTCIV Real Time Clock Interrupt Vector Read Word 0000h no not retained 10h RTCTIM0 Real-Time Clock Seconds, Minutes Read/write Word undefined yes retained 10h RTCSEC Real-Time Clock Seconds Read/write Byte undefined yes retained Real-Time Clock Minutes Read/write Byte undefined yes retained or RTCTIM0_L 11h RTCMIN or RTCTIM0_H 12h RTCTIM1 Real-Time Clock Hour, Day of Week Read/write Word undefined yes retained 12h RTCHOUR Real-Time Clock Hour Read/write Byte undefined yes retained Real-Time Clock Day of Week Read/write Byte undefined yes retained or RTCTIM1_L 13h RTCDOW or RTCTIM1_H 14h RTCDATE Real-Time Clock Date Read/write Word undefined yes retained 14h RTCDAY Real-Time Clock Day of Month Read/write Byte undefined yes retained Real-Time Clock Month Read/write Byte undefined yes retained or RTCDATE_L 15h RTCMON or RTCDATE_H 16h RTCYEAR Real-Time Clock Year (1) Read/write Word undefined yes retained 18h RTCAMINHR Real-Time Clock Minutes, Hour Alarm Read/write Word undefined no retained 18h RTCAMIN Real-Time Clock Minutes Alarm Read/write Byte undefined no retained Real-Time Clock Hours Alarm Read/write Byte undefined no retained or RTCAMINHR_L 19h RTCAHOUR or RTCAMINHR_H 1Ah RTCADOWDAY Real-Time Clock Day of Week, Day of Month Alarm Read/write Word undefined no retained 1Ah RTCADOW Real-Time Clock Day of Week Alarm Read/write Byte undefined no retained Real-Time Clock Day of Month Alarm Read/write Byte undefined no retained or RTCADOWDAY_L 1Bh RTCADAY or RTCADOWDAY_H 1Ch BIN2BCD Binary-to-BCD conversion register Read/write Word 0000h no not retained 1Eh BCD2BIN BCD-to-binary conversion register Read/write Word 0000h no not retained (1) Do not access the year register RTCYEAR in byte mode. 642 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Registers www.ti.com Table 24-3. RTC_C Event and Tamper Detection Registers Offset Acronym Register Name Type Access Reset Key Protected LPM3.5 Retention 20h RTCTCCTL0 Real-Time Clock Time Capture Control Register 0 Read/write Byte 02h yes retained 21h RTCTCCTL1 Real-Time Clock Time Capture Control Register 1 Read/write Byte 00h yes not retained 22h RTCCAP0CTL Tamper Detect Pin 0 Control Register Read/write Byte 00h yes not retained 23h RTCCAP1CTL Tamper Detect Pin 1 Control Register Read/write Byte 00h yes not retained 30h RTCSECBAK0 Real-Time Clock Seconds Backup Read/write Register 0 Byte 00h yes retained 31h RTCMINBAK0 Real-Time Clock Minutes Backup Register 0 Read/write Byte 00h yes retained 32h RTCHOURBAK0 Real-Time Clock Hours Backup Register 0 Read/write Byte 00h yes retained 33h RTCDAYBAK0 Real-Time Clock Days Backup Register 0 Read/write Byte 00h yes retained 34h RTCMONBAK0 Real-Time Clock Months Backup Register 0 Read/write Byte 00h yes retained 36h RTCYEARBAK0 Real-Time Clock year Backup Register 0 Read/write Word 00h yes retained 38h RTCSECBAK1 Real-Time Clock Seconds Backup Read/write Register 1 Byte 00h yes retained 39h RTCMINBAK1 Real-Time Clock Minutes Backup Register 1 Read/write Byte 00h yes retained 3Ah RTCHOURBAK1 Real-Time Clock Hours Backup Register 1 Read/write Byte 00h yes retained 3Bh RTCDAYBAK1 Real-Time Clock Days Backup Register 1 Read/write Byte 00h yes retained 3Ch RTCMONBAK1 Real-Time Clock Months Backup Register 1 Read/write Byte 00h yes retained 3Eh RTCYEARBAK1 Real-Time Clock Year Backup Register 1 Read/write Word 00h yes retained Table 24-4. RTC_C Real-Time Clock Counter Mode Aliases Offset Acronym Register Name Type Access Reset Key Protected LPM3.5 Retention 10h RTCCNT12 Real-Time Counter 1, 2 Read/write Word undefined yes retained 10h RTCCNT1 Real-Time Counter 1 Read/write Byte undefined yes retained 11h RTCCNT2 Real-Time Counter 2 Read/write Byte undefined yes retained 12h RTCCNT34 Real-Time Counter 3, 4 Read/write Word undefined yes retained 12h RTCCNT3 Real-Time Counter 3 Read/write Byte undefined yes retained 13h RTCCNT4 Real-Time Counter 4 Read/write Byte undefined yes retained SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 643 RTC_C Registers www.ti.com 24.4.1 RTCCTL0_L Register Real-Time Clock Control 0 Low Register Figure 24-4. RTCCTL0_L Register 7 6 RTCOFIE (1) RTCTEVIE rw-0 (1) 5 (1) RTCAIE rw-0 (1) rw-0 4 3 2 1 0 RTCRDYIE RTCOFIFG RTCTEVIFG RTCAIFG RTCRDYIFG rw-0 rw-(0) rw-(0) rw-(0) rw-(0) The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the register bits themselves; therefore, reconfiguration is required after wakeup from LPMx.5 before clearing LOCKLPM5. Table 24-5. RTCCTL0_L Register Description Bit Field Type Reset Description 7 RTCOFIE RW 0h 32-kHz crystal oscillator fault interrupt enable. This interrupt can be used as LPM3.5 wake-up event. 0b = Interrupt not enabled 1b = Interrupt enabled (LPM3.5 wake-up enabled) 6 RTCTEVIE RW 0h Real-time clock time event interrupt enable. In modules supporting LPM3.5 this interrupt can be used as LPM3.5 wake-up event. 0b = Interrupt not enabled 1b = Interrupt enabled (LPM3.5 wake-up enabled) 5 RTCAIE RW 0h Real-time clock alarm interrupt enable. In modules supporting LPM3.5 this interrupt can be used as LPM3.5 wake-up event. 0b = Interrupt not enabled 1b = Interrupt enabled (LPM3.5 wake-up enabled) 4 RTCRDYIE RW 0h Real-time clock ready interrupt enable 0b = Interrupt not enabled 1b = Interrupt enabled 3 RTCOFIFG RW 0h 32-kHz crystal oscillator fault interrupt flag. This interrupt can be used as LPM3.5 wake-up event. It also indicates a clock failure during backup operation. 0b = No interrupt pending 1b = Interrupt pending. A 32-kHz crystal oscillator fault occurred after last reset. 2 RTCTEVIFG RW 0h Real-time clock time event interrupt flag. In modules supporting LPM3.5 this interrupt can be used as LPM3.5 wake-up event. 0b = No time event occurred 1b = Time event occurred 1 RTCAIFG RW 0h Real-time clock alarm interrupt flag. In modules supporting LPM3.5 this interrupt can be used as LPM3.5 wake-up event. 0b = No time event occurred 1b = Time event occurred 0 RTCRDYIFG RW 0h Real-time clock ready interrupt flag 0b = RTC cannot be read safely 1b = RTC can be read safely 644 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Registers www.ti.com 24.4.2 RTCCTL0_H Register Real-Time Clock Control 0 High Register Figure 24-5. RTCCTL0_H Register 7 6 5 4 rw-1 rw-0 rw-0 rw-1 3 2 1 0 rw-0 rw-1 rw-1 rw-0 RTCKEY Table 24-6. RTCCTL0_H Register Description Bit Field Type Reset Description 7-0 RTCKEY RW 96h Real-time clock key. This register should be written with A5h to unlock RTC_C. Any write with value other than A5h will lock the module. Read from this register always returns 96h. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 645 RTC_C Registers www.ti.com 24.4.3 RTCCTL1 Register Real-Time Clock Control Register 1 Figure 24-6. RTCCTL1 Register 7 6 RTCBCD RTCHOLD rw-(0) (1) 5 (1) 4 RTCMODE rw-(1) (1) rw-(1) RTCRDY r-(1) 3 2 RTCSSELx rw-(0) (1) 1 0 RTCTEVx rw-(0) rw-(0) (1) rw-(0) The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the register bits themselves; therefore, reconfiguration is required after wakeup from LPMx.5 before clearing LOCKLPM5. Table 24-7. RTCCTL1 Register Description Bit Field Type Reset Description 7 RTCBCD RW 0h Real-time clock BCD select. Selects BCD counting for real-time clock. Applies to calendar mode (RTCMODE = 1) only; setting is ignored in counter mode. 0b = Binary (hexadecimal) code selected 1b = Binary coded decimal (BCD) code selected 6 RTCHOLD RW 1h Real-time clock hold 0b = Real-time clock (32-bit counter or calendar mode) is operational. 1b = In counter mode (RTCMODE = 0), only the 32-bit counter is stopped. In calendar mode (RTCMODE = 1), the calendar is stopped as well as the prescale counters, RT0PS and RT1PS. RT0PSHOLD and RT1PSHOLD are don't care. 5 RTCMODE RW 1h Real-time clock mode. In RTC_C modules without counter mode support this bit is read-only and always reads 1. 0b = 32-bit counter mode 1b = Calendar mode. Switching between counter and calendar mode does not reset the real-time clock counter registers. These registers must be configured by user software before use. 4 RTCRDY R 1h Real-time clock ready 0b = RTC time values in transition (calendar mode only) 1b = RTC time values safe for reading (calendar mode only). This bit indicates when the real-time clock time values are safe for reading (calendar mode only). In counter mode, RTCRDY remains cleared. 3-2 RTCSSELx RW 0h Real-time clock source select. In counter mode, selects clock input source to the 32-bit counter. In calendar mode, these bits are don't care. The clock input is automatically set to the output of RT1PS. 00b = 32-kHz crystal oscillator clock 01b = 32-kHz crystal oscillator clock 10b = Output from RT1PS 11b = Output from RT1PS 1-0 RTCTEVx RW 0h Real-time clock time event Calendar Mode (RTCMODE = 1) 00b = Minute changed 01b = Hour changed 10b = Every day at midnight (00:00) 11b = Every day at noon (12:00) Counter Mode (RTCMODE = 0) 00b = 8-bit overflow 01b = 16-bit overflow 10b = 24-bit overflow 11b = 32-bit overflow 646 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Registers www.ti.com 24.4.4 RTCCTL3 Register Real-Time Clock Control 3 Register Figure 24-7. RTCCTL3 Register 7 6 5 4 3 Reserved r0 (1) r0 2 RTCLOCK r0 r0 r0 1 (1) rw-[0] 0 RTCCALFx rw-(0) (2) rw-(0) This bit is implemented in only the F677xA, F673xA, and F672xA devices. For other devices, this bit is reserved and always reads as 0. These bits are not reset on POR; they are reset based on a signal derived from the AUXVCC3 supply voltage level. (2) Table 24-8. RTCCTL3 Register Description Bit Field Type Reset Description 7-3 Reserved R 0h Reserved. Always reads as 0. 2 RTCLOCK (1) RW 0h Real-time clock lock. When this bit is set, all control in LPM3.5 retention is held and not accessible even when the device is under BOR. 0b = LPM3.5 retention logic unlocked 1b = LPM3.5 retention logic locked 1-0 RTCCALFx RW 0h Real-time clock calibration frequency. Selects frequency output to RTCCLK pin for calibration measurement. The corresponding port must be configured for the peripheral module function. The RTCCLK is not available in counter mode and remains low, and the RTCCALF bits are don't care. 00b = No frequency output to RTCCLK pin 01b = 512 Hz 10b = 256 Hz 11b = 1 Hz (1) This bit is implemented in only the F677xA, F673xA, and F672xA devices. For other devices, this bit is reserved and always reads as 0. 24.4.5 RTCOCAL Register Real-Time Clock Offset Calibration Register Figure 24-8. RTCOCAL Register 15 14 13 12 rw-(0) r0 r0 r0 7 6 5 4 RTCOCALS 11 (1) 10 9 8 r0 r0 r0 r0 3 2 1 0 rw-(0) rw-(0) rw-(0) rw-(0) Reserved RTCOCALx (1) rw-(0) (1) (1) rw-(0) rw-(0) rw-(0) These bits are not reset on POR; they are reset based on a signal derived from the AUXVCC3 supply voltage level. These bits are not reset on POR; they are reset based on a signal derived from the AUXVCC3 supply voltage level. Table 24-9. RTCOCAL Register Description Bit Field Type Reset Description 15 RTCOCALS RW 0h Real-time clock offset error calibration sign. This bit decides the sign of offset error calibration. 0b = Down calibration. Frequency adjusted down. 1b = Up calibration. Frequency adjusted up. 14-8 Reserved R 0h Reserved. Always reads as 0. 7-0 RTCOCALx RW 0h Real-time clock offset error calibration. Each LSB represents approximately +1 ppm (RTCOCALS = 1) or –1 ppm (RTCOCALS = 0) adjustment in frequency. Maximum effective calibration value is ±240 ppm. Excess values written above ±240 ppm are ignored by hardware. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 647 RTC_C Registers www.ti.com 24.4.6 RTCTCMP Register Real-Time Clock Temperature Compensation Register Figure 24-9. RTCTCMP Register 15 14 RTCTCMPS (1) RTCTCRDY 13 (1) RTCTCOK 12 11 9 8 r0 r0 r0 r0 3 2 1 0 rw-(0) rw-(0) rw-(0) rw-(0) (1) 10 Reserved rw-(0) r-(1) r-(0) r0 7 6 5 4 RTCTCMPx(1) rw-(0) (1) rw-(0) rw-(0) rw-(0) These bits are not reset on POR; they are reset based on a signal derived from the AUXVCC3 supply voltage level. Table 24-10. RTCTCMP Register Description Bit Field Type Reset Description 15 RTCTCMPS RW 0h Real-time clock temperature compensation sign. This bit decides the sign of temperature compensation. (1) 0b = Down calibration. Frequency adjusted down. 1b = Up calibration. Frequency adjusted up. 14 RTCTCRDY R 1h Real-time clock temperature compensation ready. This is a read only bit that indicates when the RTCTCMPx can be written. Write to RTCTCMPx should be avoided when RTCTCRDY is reset. 13 RTCTCOK R 0h Real-time clock temperature compensation write OK. This is a read-only bit that indicates if the write to RTCTCMP is successful or not. 0b = Write to RTCTCMPx is unsuccessful 1b = Write to RTCTCMPx is successful 12-8 Reserved R 0h Reserved. Always reads as 0. 7-0 RTCTCMPx RW 0h Real-time clock temperature compensation. Value written into this register is used for temperature compensation of RTC_C. Each LSB represents approximately +1 ppm (RTCTCMPS = 1) or –1 ppm (RTCTCMPS = 0) adjustment in frequency. Maximum effective calibration value is ±240 ppm. Excess values written above ±240 ppm are ignored by hardware. (1) 648 Changing the sign-bit by writing to RTCTCMP_H becomes effective only after also writing RTCTCMP_L. Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Registers www.ti.com 24.4.7 RTCNT1 Register Real-Time Clock Counter 1 Register – Counter Mode Figure 24-10. RTCNT1 Register 7 6 5 4 rw rw rw rw 3 2 1 0 rw rw rw rw RTCNT1 Table 24-11. RTCNT1 Register Description Bit Field Type Reset Description 7-0 RTCNT1 RW undefined The RTCNT1 register is the count of RTCNT1 24.4.8 RTCNT2 Register Real-Time Clock Counter 2 Register – Counter Mode Figure 24-11. RTCNT2 Register 7 6 5 4 3 2 1 0 rw rw rw rw RTCNT2 rw rw rw rw Table 24-12. RTCNT2 Register Description Bit Field Type Reset Description 7-0 RTCNT2 RW undefined The RTCNT2 register is the count of RTCNT2 24.4.9 RTCNT3 Register Real-Time Clock Counter 3 Register – Counter Mode Figure 24-12. RTCNT3 Register 7 6 5 4 3 2 1 0 rw rw rw rw RTCNT3 rw rw rw rw Table 24-13. RTCNT3 Register Description Bit Field Type Reset Description 7-0 RTCNT3 RW undefined The RTCNT3 register is the count of RTCNT3 24.4.10 RTCNT4 Register Real-Time Clock Counter 4 Register – Counter Mode Figure 24-13. RTCNT4 Register 7 6 5 4 3 2 1 0 rw rw rw rw RTCNT4 rw rw rw rw Table 24-14. RTCNT4 Register Description Bit Field Type Reset Description 7-0 RTCNT4 RW undefined The RTCNT4 register is the count of RTCNT4. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 649 RTC_C Registers www.ti.com 24.4.11 RTCSEC Register – Calendar Mode With Hexadecimal Format Real-Time Clock Seconds Register – Calendar Mode With Hexadecimal Format Figure 24-14. RTCSEC Register 7 6 5 4 3 r-0 rw rw rw 0 r-0 2 1 0 rw rw rw 1 0 Seconds Table 24-15. RTCSEC Register Description Bit Field Type Reset Description 7-6 0 R 0h Always 0 5-0 Seconds RW undefined Seconds (0 to 59) 24.4.12 RTCSEC Register – Calendar Mode With BCD Format Real-Time Clock Seconds Register – Calendar Mode With BCD Format Figure 24-15. RTCSEC Register 7 6 0 5 4 3 Seconds – high digit r-0 rw rw 2 Seconds – low digit rw rw rw rw rw Table 24-16. RTCSEC Register Description Bit Field Type Reset Description 7 0 R 0h Always 0 6-4 Seconds – high digit RW undefined Seconds – high digit (0 to 5) 3-0 Seconds – low digit RW undefined Seconds – low digit (0 to 9) 650 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Registers www.ti.com 24.4.13 RTCMIN Register – Calendar Mode With Hexadecimal Format Real-Time Clock Minutes Register – Calendar Mode With Hexadecimal Format Figure 24-16. RTCMIN Register 7 6 5 4 3 r-0 rw rw rw 0 r-0 2 1 0 rw rw rw 1 0 Minutes Table 24-17. RTCMIN Register Description Bit Field Type Reset Description 7-6 0 R 0h Always 0 5-0 Minutes RW undefined Minutes (0 to 59) 24.4.14 RTCMIN Register – Calendar Mode With BCD Format Real-Time Clock Minutes Register – Calendar Mode With BCD Format Figure 24-17. RTCMIN Register 7 6 0 5 4 3 Minutes – high digit r-0 rw rw 2 Minutes – low digit rw rw rw rw rw Table 24-18. RTCMIN Register Description Bit Field Type Reset Description 7 0 R 0h Always 0 6-4 Minutes – high digit RW undefined Minutes – high digit (0 to 5) 3-0 Minutes – low digit RW undefined Minutes – low digit (0 to 9) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 651 RTC_C Registers www.ti.com 24.4.15 RTCHOUR Register – Calendar Mode With Hexadecimal Format Real-Time Clock Hours Register – Calendar Mode With Hexadecimal Format Figure 24-18. RTCHOUR Register 7 6 r-0 r-0 5 4 3 r-0 rw rw 0 2 1 0 rw rw 1 0 Hours rw Table 24-19. RTCHOUR Register Description Bit Field Type Reset Description 7-5 0 R 0h Always 0 4-0 Hours RW undefined Hours (0 to 23) 24.4.16 RTCHOUR Register – Calendar Mode With BCD Format Real-Time Clock Hours Register – Calendar Mode With BCD Format Figure 24-19. RTCHOUR Register 7 6 5 0 r-0 4 3 Hours – high digit r-0 rw rw 2 Hours – low digit rw rw rw rw Table 24-20. RTCHOUR Register Description Bit Field Type Reset Description 7-6 0 R 0h Always 0 5-4 Hours – high digit RW undefined Hours – high digit (0 to 2) 3-0 Hours – low digit RW undefined Hours – low digit (0 to 9) 652 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Registers www.ti.com 24.4.17 RTCDOW Register – Calendar Mode Real-Time Clock Day of Week Register – Calendar Mode Figure 24-20. RTCDOW Register 7 6 5 r-0 r-0 r-0 4 3 2 r-0 r-0 rw 0 1 0 Day of week rw rw Table 24-21. RTCDOW Register Description Bit Field Type Reset Description 7-3 0 R 0h Always 0 2-0 Day of week RW undefined Day of week (0 to 6) 24.4.18 RTCDAY Register – Calendar Mode With Hexadecimal Format Real-Time Clock Day of Month Register – Calendar Mode With Hexadecimal Format Figure 24-21. RTCDAY Register 7 6 5 4 3 0 r-0 2 1 0 rw rw 1 0 Day of month r-0 r-0 rw rw rw Table 24-22. RTCDAY Register Description Bit Field Type Reset Description 7-5 0 R 0h Always 0 4-0 Day of month RW undefined Day of month (1 to 28, 29, 30, 31) 24.4.19 RTCDAY Register – Calendar Mode With BCD Format Real-Time Clock Day of Month Register – Calendar Mode With BCD Format Figure 24-22. RTCDAY Register 7 6 5 0 r-0 4 3 Day of month – high digit r-0 rw rw 2 Day of month – low digit rw rw rw rw Table 24-23. RTCDAY Register Description Bit Field Type Reset 7-6 0 R 0h Description 5-4 Day of month – high digit RW undefined Day of month – high digit (0 to 3) 3-0 Day of month – low digit RW undefined Day of month – low digit (0 to 9) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 653 RTC_C Registers www.ti.com 24.4.20 RTCMON Register – Calendar Mode With Hexadecimal Format Real-Time Clock Month Register – Calendar Mode With Hexadecimal Format Figure 24-23. RTCMON Register 7 6 r-0 r-0 5 4 3 2 r-0 r-0 rw rw 0 1 0 rw rw 1 0 Month Table 24-24. RTCMON Register Description Bit Field Type Reset Description 7-4 0 R 0h Always 0 3-0 Month RW undefined Month (1 to 12) 24.4.21 RTCMON Register – Calendar Mode With BCD Format Real-Time Clock Month Register – Calendar Mode With BCD Format Figure 24-24. RTCMON Register 7 6 5 4 0 r-0 3 Month – high digit r-0 r-0 rw 2 Month – low digit rw rw rw rw Table 24-25. RTCMON Register Description Bit Field Type Reset Description 7-5 0 R 0h Always 0 4 Month – high digit RW undefined Month – high digit (0 or 1) 3-0 Month – low digit RW undefined Month – low digit (0 to 9) 654 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Registers www.ti.com 24.4.22 RTCYEAR Register – Calendar Mode With Hexadecimal Format Real-Time Clock Year Low-Byte Register – Calendar Mode With Hexadecimal Format Figure 24-25. RTCYEAR Register 15 14 13 12 11 10 r-0 r-0 r-0 r-0 rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw 9 8 0 9 8 Year – high byte Year – low byte rw rw rw rw Table 24-26. RTCYEAR Register Description Bit Field Type Reset Description 15-12 0 R 0h Always 0 11-8 Year – high byte RW undefined Year – high byte. Valid values for Year are 0 to 4095. 7-0 Year – low byte RW undefined Year – low byte. Valid values for Year are 0 to 4095. 24.4.23 RTCYEAR Register – Calendar Mode With BCD Format Real-Time Clock Year Low-Byte Register – Calendar Mode With BCD Format Figure 24-26. RTCYEAR Register 15 14 13 0 12 11 Century – high digit r-0 rw 7 6 Century – low digit rw rw rw rw rw rw 5 4 3 2 1 0 Decade rw rw 10 Year – lowest digit rw rw rw rw rw rw Table 24-27. RTCYEAR Register Description Bit Field Type Reset Description 15 0 R 0h Always 0 14-10 Century – high digit RW undefined Century – high digit (0 to 4) 11-8 Century – low digit RW undefined Century – low digit (0 to 9) 7-4 Decade RW undefined Decade (0 to 9) 3-0 Year – lowest digit RW undefined Year – lowest digit (0 to 9) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 655 RTC_C Registers www.ti.com 24.4.24 RTCAMIN Register – Calendar Mode With Hexadecimal Format Real-Time Clock Minutes Alarm Register – Calendar Mode With Hexadecimal Format Figure 24-27. RTCAMIN Register 7 6 AE 0 rw r-0 5 4 3 rw rw rw 2 1 0 rw rw rw 1 0 Minutes Table 24-28. RTCAMIN Register Description Bit Field Type Reset Description 7 AE RW undefined Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6 0 R 0h Always 0. 5-0 Minutes RW undefined Minutes (0 to 59) 24.4.25 RTCAMIN Register – Calendar Mode With BCD Format Real-Time Clock Minutes Alarm Register – Calendar Mode With BCD Format Figure 24-28. RTCAMIN Register 7 6 AE 5 4 3 Minutes – high digit rw rw rw 2 Minutes – low digit rw rw rw rw rw Table 24-29. RTCAMIN Register Description Bit Field Type Reset Description 7 AE RW 0h Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6-4 Minutes – high digit RW undefined Minutes – high digit (0 to 5) 3-0 Minutes – low digit RW undefined Minutes – low digit (0 to 9) 656 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Registers www.ti.com 24.4.26 RTCAHOUR Register Real-Time Clock Hours Alarm Register – Calendar Mode With Hexadecimal Format Figure 24-29. RTCAHOUR Register 7 6 AE 5 4 3 r-0 rw rw 0 rw r-0 2 1 0 rw rw 1 0 Hours rw Table 24-30. RTCAHOUR Register Description Bit Field Type Reset Description 7 AE RW undefined Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6-5 0 R 0h Always 0 4-0 Hours RW undefined Hours (0 to 23) 24.4.27 RTCAHOUR Register – Calendar Mode With BCD Format Real-Time Clock Hours Alarm Register – Calendar Mode With BCD Format Figure 24-30. RTCAHOUR Register 7 6 AE 0 rw r-0 5 4 3 Hours – high digit rw rw 2 Hours – low digit rw rw rw rw Table 24-31. RTCAHOUR Register Description Bit Field Type Reset Description 7 AE RW undefined Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6 0 R 0h Always 0 5-4 Hours – high digit RW undefined Hours – high digit (0 to 2) 3-0 Hours – low digit RW undefined Hours – low digit (0 to 9) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 657 RTC_C Registers www.ti.com 24.4.28 RTCADOW Register – Calendar Mode Real-Time Clock Day of Week Alarm Register – Calendar Mode Figure 24-31. RTCADOW Register 7 6 5 r-0 r-0 AE 4 3 2 r-0 r-0 rw 0 rw 1 0 Day of week rw rw Table 24-32. RTCADOW Register Description Bit Field Type Reset Description 7 AE RW undefined Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6-3 0 R 0h Always 0 2-0 Day of week RW undefined Day of week (0 to 6) 658 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Registers www.ti.com 24.4.29 RTCADAY Register – Calendar Mode With Hexadecimal Format Real-Time Clock Day of Month Alarm Register – Calendar Mode With Hexadecimal Format Figure 24-32. RTCADAY Register 7 6 AE 5 4 3 r-0 rw rw 0 rw 2 1 0 rw rw 1 0 Day of month r-0 rw Table 24-33. RTCADAY Register Description Bit Field Type Reset Description 7 AE RW undefined Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6-5 0 R 0h Always 0 4-0 Day of month RW undefined Day of month (1 to 28, 29, 30, 31) 24.4.30 RTCADAY Register – Calendar Mode With BCD Format Real-Time Clock Day of Month Alarm Register – Calendar Mode With BCD Format Figure 24-33. RTCADAY Register 7 6 AE 0 rw r-0 5 4 3 Day of month – high digit rw rw 2 Day of month – low digit rw rw rw rw Table 24-34. RTCADAY Register Description Bit Field Type Reset Description 7 AE RW undefined Alarm enable 0b = This alarm register is disabled 1b = This alarm register is enabled 6 0 R 0h Always 0 5-4 Day of month – high digit RW undefined Day of month – high digit (0 to 3) 3-0 Day of month – low digit RW undefined Day of month – low digit (0 to 9) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 659 RTC_C Registers www.ti.com 24.4.31 RTCPS0CTL Register Real-Time Clock Prescale Timer 0 Control Register Figure 24-34. RTCPS0CTL Register 15 14 13 12 Reserved r0 RT0PSDIV r0 rw-(0) rw-(0) 6 5 4 7 11 r0 (1) 9 rw-(0) r0 3 2 r0 r0 rw-(0) rw-(0) rw-(0) 8 RT0PSHOLD (1) Reserved RT0IP (1) Reserved (1) 10 (1) r0 rw-(1) 1 0 RT0PSIE RT0PSIFG rw-0 rw-(0) The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the register bits themselves; therefore, reconfiguration is required after wake-up from LPMx.5 before clearing LOCKLPM5. The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the register bits themselves; therefore, reconfiguration is required after wake-up from LPMx.5 before clearing LOCKLPM5. Table 24-35. RTCPS0CTL Register Description Bit Field Type Reset Description 15-14 Reserved R 0h Reserved. Always reads as 0. 13-11 RT0PSDIV RW 0h Prescale timer 0 clock divide. These bits control the divide ratio of the RT0PS counter. In real-time clock calendar mode, these bits are don't care for RT0PS and RT1PS. RT0PS clock output is automatically set to /256. RT1PS clock output is automatically set to /128. 000b = Divide by 2 001b = Divide by 4 010b = Divide by 8 011b = Divide by 16 100b = Divide by 32 101b = Divide by 64 110b = Divide by 128 111b = Divide by 256 10-9 Reserved R 0h Reserved. Always reads as 0. 8 RT0PSHOLD RW 1h Prescale timer 0 hold. In real-time clock calendar mode, this bit is don't care. RT0PS is stopped via the RTCHOLD bit. 0b = RT0PS is operational 1b = RT0PS is held 7-5 Reserved R 0h Reserved. Always reads as 0. 4-2 RT0IP RW 0h Prescale timer 0 interrupt interval 000b = Divide by 2 001b = Divide by 4 010b = Divide by 8 011b = Divide by 16 100b = Divide by 32 101b = Divide by 64 110b = Divide by 128 111b = Divide by 256 1 RT0PSIE RW 0h Prescale timer 0 interrupt enable 0b = Interrupt not enabled 1b = Interrupt enabled 0 RT0PSIFG RW 0h Prescale timer 0 interrupt flag 0b = No time event occurred 1b = Time event occurred 660 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Registers www.ti.com 24.4.32 RTCPS1CTL Register Real-Time Clock Prescale Timer 1 Control Register Figure 24-35. RTCPS1CTL Register 15 14 RT1SSELx 13 12 (1) rw-(0) RT1PSDIVx rw-(0) rw-(0) rw-(0) 6 5 4 7 11 r0 (1) 9 rw-(0) r0 3 2 r0 r0 rw-(0) rw-(0) r0 rw-(0) 8 RT1PSHOLD (1) Reserved RT1IPx (1) Reserved (1) 10 (1) rw-(1) 1 0 RT1PSIE RT1PSIFG rw-0 rw-(0) The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the register bits themselves; therefore, reconfiguration is required after wake-up from LPMx.5 before clearing LOCKLPM5. The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the register bits themselves; therefore, reconfiguration is required after wake-up from LPMx.5 before clearing LOCKLPM5. Table 24-36. RTCPS1CTL Register Description Bit Field Type Reset Description 15-14 RT1SSELx RW 0h Prescale timer 1 clock source select. Selects clock input source to the RT1PS counter. In real-time clock calendar mode, these bits are do not care. RT1PS clock input is automatically set to the output of RT0PS. 00b = 32-kHz crystal oscillator clock 01b = 32-kHz crystal oscillator clock 10b = Output from RT0PS 11b = Output from RT0PS 13-11 RT1PSDIVx RW 0h Prescale timer 1 clock divide. These bits control the divide ratio of the RT0PS counter. In real-time clock calendar mode, these bits are don't care for RT0PS and RT1PS. RT0PS clock output is automatically set to /256. RT1PS clock output is automatically set to /128. 000b = Divide by 2 001b = Divide by 4 010b = Divide by 8 011b = Divide by 16 100b = Divide by 32 101b = Divide by 64 110b = Divide by 128 111b = Divide by 256 10-9 Reserved R 0h Reserved. Always reads as 0. 8 RT1PSHOLD RW 1h Prescale timer 1 hold. In real-time clock calendar mode, this bit is don't care. RT1PS is stopped via the RTCHOLD bit. 0b = RT1PS is operational 1b = RT1PS is held 7-5 Reserved R 0h Reserved. Always reads as 0. 4-2 RT1IPx RW 0h Prescale timer 1 interrupt interval 000b = Divide by 2 001b = Divide by 4 010b = Divide by 8 011b = Divide by 16 100b = Divide by 32 101b = Divide by 64 110b = Divide by 128 111b = Divide by 256 1 RT1PSIE RW 0h Prescale timer 1 interrupt enable 0b = Interrupt not enabled 1b = Interrupt enabled (LPMx.5 wake-up enabled) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 661 RTC_C Registers www.ti.com Table 24-36. RTCPS1CTL Register Description (continued) Bit Field Type Reset Description 0 RT1PSIFG RW 0h Prescale timer 1 interrupt flag. This interrupt can be used as LPMx.5 wake-up event. 0b = No time event occurred 1b = Time event occurred 662 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Registers www.ti.com 24.4.33 RTCPS0 Register Real-Time Clock Prescale Timer 0 Counter Register Figure 24-36. RTCPS0 Register 7 6 5 4 rw rw rw rw 3 2 1 0 rw rw rw rw RT0PS Table 24-37. RTCPS0 Register Description Bit Field Type Reset Description 7-0 RT0PS RW undefined Prescale timer 0 counter value 24.4.34 RTCPS1 Register Real-Time Clock Prescale Timer 1 Counter Register Figure 24-37. RTCPS1 Register 7 6 5 4 3 2 1 0 rw rw rw rw RT1PS rw rw rw rw Table 24-38. RTCPS1 Register Description Bit Field Type Reset Description 7-0 RT1PS RW undefined Prescale timer 1 counter value SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 663 RTC_C Registers www.ti.com 24.4.35 RTCIV Register Real-Time Clock Interrupt Vector Register Figure 24-38. RTCIV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-(0) r-(0) r-(0) r0 RTCIVx RTCIVx r0 r0 r0 r-(0) Table 24-39. RTCIV Register Description Bit Field Type Reset Description 15-0 RTCIVx R 0h Real-time clock interrupt vector value Without Event/Tamper Detection implemented: 00h = No interrupt pending 02h = Interrupt Source: RTC oscillator failure; Interrupt Flag: RTCOFIFG; Interrupt Priority: Highest 04h = Interrupt Source: RTC ready; Interrupt Flag: RTCRDYIFG 06h = Interrupt Source: RTC interval timer; Interrupt Flag: RTCTEVIFG 08h = Interrupt Source: RTC user alarm; Interrupt Flag: RTCAIFG 0Ah = Interrupt Source: RTC prescaler 0; Interrupt Flag: RT0PSIFG 0Ch = Interrupt Source: RTC prescaler 1; Interrupt Flag: RT1PSIFG 0Eh = Reserved 10h = Reserved ; Interrupt Priority: Lowest With Event/Tamper Detection implemented: 00h = No interrupt pending 02h = Interrupt Source: RTC oscillator failure; Interrupt Flag: RTCOFIFG; Interrupt Priority: Highest 04h = Interrupt Source: RTC Tamper Event; Interrupt Flag: RTCCAPIFG 06h = Interrupt Source: RTC ready; Interrupt Flag: RTCRDYIFG 08h = Interrupt Source: RTC interval timer; Interrupt Flag: RTCTEVIFG 0Ah = Interrupt Source: RTC user alarm; Interrupt Flag: RTCAIFG 0Ch = Interrupt Source: RTC prescaler 0; Interrupt Flag: RT0PSIFG 0Eh = Interrupt Source: RTC prescaler 1; Interrupt Flag: RT1PSIFG 10h = Reserved ; Interrupt Priority: Lowest 664 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Registers www.ti.com 24.4.36 BIN2BCD Register Binary-to-BCD Conversion Register Figure 24-39. BIN2BCD Register 15 14 13 12 rw-0 rw-0 rw-0 rw-0 7 6 5 4 11 10 9 8 rw-0 rw-0 rw-0 rw-0 3 2 1 0 rw-0 rw-0 rw-0 rw-0 BIN2BCDx BIN2BCDx rw-0 rw-0 rw-0 rw-0 Table 24-40. BIN2BCD Register Description Bit Field Type Reset Description 15-0 BIN2BCDx RW 0h Read: 16-bit BCD conversion of previously written 12-bit binary number. Write: 12-bit binary number to be converted. 24.4.37 BCD2BIN Register BCD-to-Binary Conversion Register Figure 24-40. BCD2BIN Register 15 14 13 12 rw-0 rw-0 rw-0 rw-0 7 6 5 4 11 10 9 8 rw-0 rw-0 rw-0 rw-0 3 2 1 0 rw-0 rw-0 rw-0 rw-0 BCD2BINx BCD2BINx rw-0 rw-0 rw-0 rw-0 Table 24-41. BCD2BIN Register Description Bit Field Type Reset Description 15-0 BCD2BINx RW 0h Read: 12-bit binary conversion of previously written 16-bit BCD number. Write: 16-bit BCD number to be converted. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 665 RTC_C Registers www.ti.com 24.4.38 RTCSECBAKx Register – Hexadecimal Format Real-Time Clock Seconds Backup Register – Hexadecimal Format Figure 24-41. RTCSECBAKx Register 7 (1) 6 0 0 rw-(0) rw-(0) 5 4 3 Seconds rw-(0) rw-(0) 2 1 0 rw-(0) rw-(0) rw-(0) 1 0 (1) rw-(0) These bits are not reset on POR; they are reset based on a signal derived from the RTC supply. Table 24-42. RTCSECBAKx Register Description Bit Field Type Reset Description 7-6 0 RW 0h Always 0. 5-0 Seconds RW 0h Seconds. Valid values are 0 to 59. 24.4.39 RTCSECBAKx Register – BCD Format Real-Time Clock Seconds Backup Register – BCD Format Figure 24-42. RTCSECBAKx Register 7 6 4 3 Seconds – high digit (1) 0 rw-(0) (1) 5 rw-(0) rw-(0) 2 Seconds – low digit (1) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) These bits are not reset on POR; they are reset based on a signal derived from the RTC supply. Table 24-43. RTCSECBAKx Register Description Bit Field Type Reset Description 7 0 RW 0h Always 0. 6-4 Seconds – high digit RW 0h Seconds – high digit. Valid values are 0 to 5. 3-0 Seconds – low digit RW 0h Seconds – low digit. Valid values are 0 to 9. 666 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Registers www.ti.com 24.4.40 RTCMINBAKx Register – Hexadecimal Format Real-Time Clock Minutes Backup Register – Hexadecimal Format Figure 24-43. RTCMINBAKx Register 7 (1) 6 0 0 rw-(0) rw-(0) 5 4 3 Minutes rw-(0) rw-(0) 2 1 0 rw-(0) rw-(0) rw-(0) 1 0 (1) rw-(0) These bits are not reset on POR; they are reset based on a signal derived from the RTC supply. Table 24-44. RTCMINBAKx Register Description Bit Field Type Reset Description 7-6 0 RW 0h Always 0. 5-0 Minutes RW 0h Minutes. Valid values are 0 to 59. 24.4.41 RTCMINBAKx Register – BCD Format Real-Time Clock Minutes Backup Register – BCD Format Figure 24-44. RTCMINBAKx Register 7 6 4 3 2 Minutes – high digit (1) 0 rw-(0) (1) 5 rw-(0) rw-(0) Minutes – low digit (1) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) These bits are not reset on POR; they are reset based on a signal derived from the RTC supply. Table 24-45. RTCMINBAKx Register Description Bit Field Type Reset Description 7 0 RW 0h Always 0. 6-4 Minutes – high digit RW 0h Minutes – high digit. Valid values are 0 to 5. 3-0 Minutes – low digit RW 0h Minutes – low digit. Valid values are 0 to 9. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 667 RTC_C Registers www.ti.com 24.4.42 RTCHOURBAKx Register – Hexadecimal Format Real-Time Clock Hours Backup Register – Hexadecimal Format Figure 24-45. RTCHOURBAKx Register 7 (1) 6 5 4 0 0 0 rw-(0) rw-(0) rw-(0) 3 2 Hours rw-(0) rw-(0) 1 0 rw-(0) rw-(0) 1 0 (1) rw-(0) These bits are not reset on POR; they are reset based on a signal derived from the RTC supply. Table 24-46. RTCHOURBAKx Register Description Bit Field Type Reset Description 7-5 0 RW 0h Always 0. 4-0 Hours RW 0h Hours. Valid values are 0 to 23. 24.4.43 RTCHOURBAKx Register – BCD Format Real-Time Clock Hours Backup Register – BCD Format Figure 24-46. RTCHOURBAKx Register (1) 7 6 5 0 0 Hours – high digit (1) 4 rw-(0) rw-(0) rw-(0) rw-(0) 3 2 Hours – low digit (1) rw-(0) rw-(0) rw-(0) rw-(0) These bits are not reset on POR; they are reset based on a signal derived from the RTC supply. Table 24-47. RTCHOURBAKx Register Description Bit Field Type Reset Description 7-6 0 RW 0h Always 0. 5-4 Hours – high digit RW 0h Hours – high digit. Valid values are 0 to 2. 3-0 Hours – low digit RW 0h Hours – low digit. Valid values are 0 to 9. 668 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Registers www.ti.com 24.4.44 RTCDAYBAKx Register – Hexadecimal Format Real-Time Clock Day of Month Backup Register – Hexadecimal Format Figure 24-47. RTCDAYBAKx Register 7 (1) 6 5 4 0 0 0 rw-(0) rw-(0) rw-(0) 3 2 Day of month rw-(0) rw-(0) 1 0 rw-(0) rw-(0) 1 0 (1) rw-(0) These bits are not reset on POR; they are reset based on a signal derived from the RTC supply. Table 24-48. RTCDAYBAKx Register Description Bit Field Type Reset Description 7-5 0 RW 0h Always 0. 4-0 Day of month RW 0h Day of month. Valid values are 1 to 31. 24.4.45 RTCDAYBAKx Register – BCD Format Real-Time Clock Day of Month Backup Register – BCD Format Figure 24-48. RTCDAYBAKx Register (1) 7 6 0 0 rw-(0) rw-(0) 5 4 3 Day of month – high digit (1) rw-(0) rw-(0) 2 Day of month – low digit (1) rw-(0) rw-(0) rw-(0) rw-(0) These bits are not reset on POR; they are reset based on a signal derived from the RTC supply. Table 24-49. RTCDAYBAKx Register Description Bit Field Type Reset Description 7-6 0 RW 0h Always 0. 5-4 Day of month – high digit RW 0h Day of month – high digit. Valid values are 0 to 3. 3-0 Day of month – low digit RW 0h Day of month – low digit. Valid values are 0 to 9. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 669 RTC_C Registers www.ti.com 24.4.46 RTCMONBAKx Register – Hexadecimal Format Real-Time Clock Month Backup Register – Hexadecimal Format Figure 24-49. RTCMONBAKx Register 7 (1) 6 5 4 0 0 0 0 rw-(0) rw-(0) rw-(0) rw-(0) 3 2 Month rw-(0) rw-(0) 1 0 rw-(0) rw-(0) 1 0 (1) These bits are not reset on POR; they are reset based on a signal derived from the RTC supply. Table 24-50. RTCMONBAKx Register Description Bit Field Type Reset Description 7-4 0 RW 0h Always 0. 3-0 Month RW 0h Month. Valid values are 1 to 12. 24.4.47 RTCMONBAKx Register – BCD Format Real-Time Clock Month Backup Register – BCD Format Figure 24-50. RTCMONBAKx Register (1) 7 6 5 0 0 Month – high digit (1) 4 rw-(0) rw-(0) rw-(0) rw-(0) 3 2 Month – low digit (1) rw-(0) rw-(0) rw-(0) rw-(0) These bits are not reset on POR; they are reset based on a signal derived from the RTC supply. Table 24-51. RTCMONBAKx Register Description Bit Field Type Reset Description 7-6 0 RW 0h Always 0. 5-4 Month – high digit RW 0h Month – high digit. Valid values are 0 to 3. 3-0 Month – low digit RW 0h Month – low digit. Valid values are 0 to 9. 670 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Registers www.ti.com 24.4.48 RTCYEARBAKx Register – Hexadecimal Format Real-Time Clock Year Low-Byte Backup Register – Hexadecimal Format Figure 24-51. RTCYEARBAKx Register 15 14 13 12 11 10 9 Year – high byte 8 (1) 0 0 0 0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) 7 6 5 4 3 2 1 0 rw-(0) rw-(0) rw-(0) rw-(0) 9 8 Year – low byte (1) rw-(0) (1) (1) rw-(0) rw-(0) rw-(0) These bits are not reset on POR; they are reset based on a signal derived from the RTC supply. These bits are not reset on POR; they are reset based on a signal derived from the RTC supply. Table 24-52. RTCYEARBAKx Register Description Bit Field Type Reset Description 15-12 0 RW 0h Always 0. 11-8 Year – high byte RW 0h Year – high byte. Valid values of Year are 0 to 4095. 7-0 Year – low byte RW 0h Year – low byte. Valid values of Year are 0 to 4095. 24.4.49 RTCYEARBAKx Register – BCD Format Real-Time Clock Year Low-Byte Backup Register – BCD Format Figure 24-52. RTCYEARBAKx Register 15 14 13 12 11 10 Century – high digit (1) 0 rw-(0) rw-(0) 7 6 Century – low digit (1) rw-(0) rw-(0) rw-(0) 5 4 3 rw-(0) rw-(0) rw-(0) 2 1 0 Decade (1) rw-(0) (1) (1) rw-(0) Year – lowest digit (1) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) These bits are not reset on POR; they are reset based on a signal derived from the RTC supply. These bits are not reset on POR; they are reset based on a signal derived from the RTC supply. Table 24-53. RTCYEARBAKx Register Description Bit Field Type Reset Description 15 0 RW 0h Always 0. 14-12 Century – high digit RW 0h Century – high digit. Valid values are 0 to 4. 11-8 Century – low digit RW 0h Century – low digit. Valid values are 0 to 9. 7-4 Decade RW 0h Decade. Valid values are 0 to 9. 3-0 Year – lowest digit RW 0h Year – lowest digit. Valid values are 0 to 9. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 671 RTC_C Registers www.ti.com 24.4.50 RTCTCCTL0 Register Real-Time Clock Time Capture Control Register 0 Figure 24-53. RTCTCCTL0 Register 7 6 5 4 3 2 Reserved r-0 (1) r-0 r-0 1 AUX3RST r-0 r-0 r-0 0 (1) rw-(1) TCEN (1) rw-(0) These bits are not reset on POR; they are reset based on a signal derived from the RTC supply. Table 24-54. RTCTCCTL0 Register Description Bit Field Type Reset Description 7-2 Reserved R 0h Reserved. Always reads as 0. 1 AUX3RST RW 1h Indication of power cycle on AUXVCC3 0b = No power cycle on AUXVCC3 since the last clear by the User 1b = Indication of AUXVCC3 power cycle. Needs to be cleared by User to observe the next power cycle on AUXVCC3 0 TCEN RW 0h Enable for RTC tamper detection with time stamp 0b = Tamper detection with time stamp disabled 1b = Tamper detection with time stamp enabled 24.4.51 RTCTCCTL1 Register Real-Time Clock Time Capture Control Register 1 Figure 24-54. RTCTCCTL1 Register 7 6 5 4 3 2 Reserved r-0 r-0 r-0 r-0 r-0 r-0 1 0 RTCCAPIE RTCCAPIFG rw-(0) rw-(0) Table 24-55. RTCTCCTL1 Register Description Bit Field Type Reset Description 7-2 Reserved R 0h Reserved. Always reads as 0. 1 RTCCAPIE RW 0h Tamper event interrupt enable. In modules that support LPM3.5 or LPM4.5, this interrupt can be used as LPM3.5 or LPM4.5 wake-up event. 0b = Interrupt not enabled 1b = Interrupt enabled (LPM3.5 and LPM4.5 wake-up enabled) 0 RTCCAPIFG RW 0h Common interrupt flag for all tamper events. In modules that support LPM3.5 or LPM4.5, this interrupt can be used as LPM3.5 or LPM4.5 wake-up event. 0b = Tamper event did not occur 1b = At least one tamper event occurred. Status of individual tamper events can be found from the CAPEV bit in RTCCAPxCTL. 672 Real-Time Clock C (RTC_C) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated RTC_C Registers www.ti.com 24.4.52 RTCCAPxCTL Register Tamper Detect Pin Control Register Figure 24-55. RTCCAPxCTL Register 7 6 Reserved r-0 (1) OUT 5 (1) IN rw-(0) r DIR rw-(0) 4 (1) (1) 3 2 (1) CAPES rw-(0) rw-(0) REN (1) 1 0 Reserved CAPEV (1) r-0 r/w0 The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the bits themselves; therefore, reconfiguration is required after wakeup from LPMx.5 before clearing LOCKLPM5. Table 24-56. RTCCAPxCTL Register Description Bit Field Type Reset Description 7 Reserved R 0h Reserved. Always reads as 0. 6 OUT RW 0h RTCCAPx output 0b = Output low 1b = Output high 5 DIR RW 0h RTCCAPx pin direction 0b = RTCCAPx pin configured as input 1b = RTCCAPx pin configured as output 4 IN R 0h RTCCAPx input. The external input on RTCCAPx pin can be read by this bit. 0b = Input is low 1b = Input is high 3 REN RW 0h RTCCAPx pin pullup or pulldown resistor enable. When respective pin is configured as input, setting this bit enables the pullup or pulldown (see Table 241). 0b = Pullup or pulldown disabled 1b = Pullup or pulldown enabled 2 CAPES RW 0h Event edge selection 0b = Event on a low-to-high transition 1b = Event on a high-to-low transition 1 Reserved R 0h Reserved. Always reads as 0. 0 CAPEV RW 0h Tamper event status flag. All subsequent events on RTCCAPx after CAPEV is set are ignored until CAPEV is cleared by the user. Can only be written as 0. 0b = Tamper event did not occur 1b = Tamper event occurred SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Real-Time Clock C (RTC_C) Copyright © 2008–2015, Texas Instruments Incorporated 673 Chapter 25 SLAU208O – June 2008 – Revised May 2015 32-Bit Hardware Multiplier (MPY32) This chapter describes the 32-bit hardware multiplier (MPY32). The MPY32 module is implemented in all devices. Topic 25.1 25.2 25.3 674 ........................................................................................................................... Page 32-Bit Hardware Multiplier (MPY32) Introduction .................................................. 675 MPY32 Operation .............................................................................................. 677 MPY32 Registers .............................................................................................. 689 32-Bit Hardware Multiplier (MPY32) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated 32-Bit Hardware Multiplier (MPY32) Introduction www.ti.com 25.1 32-Bit Hardware Multiplier (MPY32) Introduction The MPY32 is a peripheral and is not part of the CPU. This means its activities do not interfere with the CPU activities. The multiplier registers are peripheral registers that are loaded and read with CPU instructions. The MPY32 supports: • Unsigned multiply • Signed multiply • Unsigned multiply accumulate • Signed multiply accumulate • 8-bit, 16-bit, 24-bit, and 32-bit operands • Saturation • Fractional numbers • 8-bit and 16-bit operation compatible with 16-bit hardware multiplier • 8-bit and 24-bit multiplications without requiring a "sign extend" instruction The MPY32 block diagram is shown in Figure 25-1. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback 32-Bit Hardware Multiplier (MPY32) Copyright © 2008–2015, Texas Instruments Incorporated 675 32-Bit Hardware Multiplier (MPY32) Introduction www.ti.com Accessible Register MPY MPYS MAC MACS 31 MPY32H MPY32L MPYS32H MPYS32L MAC32H MAC32L MACS32H MACS32L 16 OP1 (high word) 15 OP2 OP2H 0 OP1 (low word) 31 OP2L 16 OP2 (high word) 16-bit Multiplexer 15 0 OP2 (low word) 16-bit Multiplexer 16×16 Multiplier OP1_32 OP2_32 MPYMx MPYSAT MPYFRAC MPYC 2 Control Logic 32-bit Adder 32-bit Demultiplexer SUMEXT RES3 RES2 RES1/RESHI RES0/RESLO 32-bit Multiplexer Figure 25-1. MPY32 Block Diagram 676 32-Bit Hardware Multiplier (MPY32) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MPY32 Operation www.ti.com 25.2 MPY32 Operation The MPY32 supports 8-bit, 16-bit, 24-bit, and 32-bit operands with unsigned multiply, signed multiply, unsigned multiply-accumulate, and signed multiply-accumulate operations. The size of the operands are defined by the address the operand is written to and if it is written as word or byte. The type of operation is selected by the address the first operand is written to. The hardware multiplier has two 32-bit operand registers – operand one (OP1) and operand two (OP2), and a 64-bit result register accessible via registers RES0 to RES3. For compatibility with the 16×16 hardware multiplier, the result of a 8-bit or 16-bit operation is accessible via RESLO, RESHI, and SUMEXT, as well. RESLO stores the low word of the 16×16-bit result, RESHI stores the high word of the result, and SUMEXT stores information about the result. The result of a 8-bit or 16-bit operation is ready in three MCLK cycles and can be read with the next instruction after writing to OP2, except when using an indirect addressing mode to access the result. When using indirect addressing for the result, a NOP is required before the result is ready. The result of a 24-bit or 32-bit operation can be read with successive instructions after writing OP2 or OP2H starting with RES0, except when using an indirect addressing mode to access the result. When using indirect addressing for the result, a NOP is required before the result is ready. Table 25-1 summarizes when each word of the 64-bit result is available for the various combinations of operand sizes. With a 32-bit-wide second operand, OP2L and OP2H must be written. Depending on when the two 16-bit parts are written, the result availability may vary; thus, the table shows two entries, one for OP2L written and one for OP2H written. The worst case defines the actual result availability. Table 25-1. Result Availability (MPYFRAC = 0, MPYSAT = 0) Result Ready in MCLK Cycles Operation (OP1 × OP2) RES0 RES1 RES2 RES3 MPYC Bit 8/16 × 8/16 3 3 4 4 3 OP2 written 24/32 × 8/16 3 5 6 7 7 OP2 written 8/16 × 24/32 24/32 × 24/32 After 3 5 6 7 7 OP2L written N/A 3 4 4 4 OP2H written 3 8 10 11 11 OP2L written N/A 3 5 6 6 OP2H written SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback 32-Bit Hardware Multiplier (MPY32) Copyright © 2008–2015, Texas Instruments Incorporated 677 MPY32 Operation www.ti.com 25.2.1 Operand Registers Operand one (OP1) has 12 registers (see Table 25-2) used to load data into the multiplier and also select the multiply mode. Writing the low word of the first operand to a given address selects the type of multiply operation to be performed, but does not start any operation. When writing a second word to a high-word register with suffix 32H, the multiplier assumes a 32-bit-wide OP1, otherwise, 16 bits are assumed. The last address written prior to writing OP2 defines the width of the first operand. For example, if MPY32L is written first followed by MPY32H, all 32 bits are used and the data width of OP1 is set to 32 bits. If MPY32H is written first followed by MPY32L, the multiplication ignores MPY32H and assumes a 16-bitwide OP1 using the data written into MPY32L. Repeated multiply operations may be performed without reloading OP1 if the OP1 value is used for successive operations. It is not necessary to rewrite the OP1 value to perform the operations. Table 25-2. OP1 Registers OP1 Register MPY MPYS MAC MACS Operation Unsigned multiply – operand bits 0 up to 15 Signed multiply – operand bits 0 up to 15 Unsigned multiply accumulate –operand bits 0 up to 15 Signed multiply accumulate – operand bits 0 up to 15 MPY32L Unsigned multiply – operand bits 0 up to 15 MPY32H Unsigned multiply – operand bits 16 up to 31 MPYS32L Signed multiply – operand bits 0 up to 15 MPYS32H Signed multiply – operand bits 16 up to 31 MAC32L Unsigned multiply accumulate – operand bits 0 up to 15 MAC32H Unsigned multiply accumulate – operand bits 16 up to 31 MACS32L Signed multiply accumulate – operand bits 0 up to 15 MACS32H Signed multiply accumulate – operand bits 16 up to 31 Writing the second operand to the OP2 initiates the multiply operation. Writing OP2 starts the selected operation with a 16-bit-wide second operand together with the values stored in OP1. Writing OP2L starts the selected operation with a 32-bit-wide second operand and the multiplier expects a the high word to be written to OP2H. Writing to OP2H without a preceding write to OP2L is ignored. Table 25-3. OP2 Registers OP2 Register Operation OP2 Start multiplication with 16-bit-wide OP2 – operand bits 0 up to 15 OP2L Start multiplication with 32-bit-wide OP2 – operand bits 0 up to 15 OP2H Continue multiplication with 32-bit-wide OP2 – operand bits 16 up to 31 For 8-bit or 24-bit operands, the operand registers can be accessed with byte instructions. Accessing the multiplier with a byte instruction during a signed operation automatically causes a sign extension of the byte within the multiplier module. For 24-bit operands, only the high word should be written as byte. If the 24-bit operands are sign-extended as defined by the register, that is used to write the low word to, because this register defines if the operation is unsigned or signed. The high-word of a 32-bit operand remains unchanged when changing the size of the operand to 16 bit, either by modifying the operand size bits or by writing to the respective operand register. During the execution of the 16-bit operation, the content of the high-word is ignored. 678 32-Bit Hardware Multiplier (MPY32) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MPY32 Operation www.ti.com NOTE: Changing of first or second operand during multiplication By default, changing OP1 or OP2 while the selected multiply operation is being calculated renders any results invalid that are not ready at the time the new operands are changed. Writing OP2 or OP2L aborts any ongoing calculation and starts a new operation. Results that are not ready at that time are also invalid for following MAC or MACS operations. To avoid this behavior, the MPYDLYWRTEN bit can be set to 1. Then, all writes to any MPY32 registers are delayed with MPYDLY32 = 0 until the 64-bit result is ready or with MPYDLY32 = 1 until the 32-bit result is ready. For MAC and MACS operations, the complete 64-bit result should always be ready. See Table 25-1 for how many CPU cycles are needed until a certain result register is ready and valid for each of the different modes. 25.2.2 Result Registers The multiplication result is always 64 bits wide. It is accessible via registers RES0 to RES3. Used with a signed operation, MPYS or MACS, the results are appropriately sign extended. If the result registers are loaded with initial values before a MACS operation, the user software must take care that the written value is properly sign extended to 64 bits. NOTE: Changing of result registers during multiplication The result registers must not be modified by the user software after writing the second operand into OP2 or OP2L until the initiated operation is completed. In addition to RES0 to RES3, for compatibility with the 16×16 hardware multiplier, the 32-bit result of a 8bit or 16-bit operation is accessible via RESLO, RESHI, and SUMEXT. In this case, the result low register RESLO holds the lower 16 bits of the calculation result and the result high register RESHI holds the upper 16 bits. RES0 and RES1 are identical to RESLO and RESHI, respectively, in usage and access of calculated results. The sum extension register SUMEXT contents depend on the multiply operation and are listed in Table 25-4. If all operands are 16 bits wide or less, the 32-bit result is used to determine sign and carry. If one of the operands is larger than 16 bits, the 64-bit result is used. The MPYC bit reflects the multiplier's carry as listed in Table 25-4 and, thus, can be used as 33rd or 65th bit of the result, if fractional or saturation mode is not selected. With MAC or MACS operations, the MPYC bit reflects the carry of the 32-bit or 64-bit accumulation and is not taken into account for successive MAC and MACS operations as the 33rd or 65th bit. Table 25-4. SUMEXT and MPYC Contents Mode SUMEXT MPYC MPY SUMEXT is always 0000h. MPYC is always 0. MPYS SUMEXT contains the extended sign of the result. 00000h = Result was positive or zero 0FFFFh = Result was negative MPYC contains the sign of the result. 0 = Result was positive or zero 1 = Result was negative MAC SUMEXT contains the carry of the result. 0000h = No carry for result 0001h = MPYC contains the carry of the result. 0 = No carry for result 1 = Result has a carry MACS SUMEXT contains the extended sign of the result. 00000h = Result was positive or zero 0FFFFh = Result was negative MPYC contains the carry of the result. 0 = No carry for result 1 = Result has a carry SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback 32-Bit Hardware Multiplier (MPY32) Copyright © 2008–2015, Texas Instruments Incorporated 679 MPY32 Operation www.ti.com 25.2.2.1 MACS Underflow and Overflow The multiplier does not automatically detect underflow or overflow in MACS mode. For example, working with 16-bit input data and 32-bit results (that is, using only RESLO and RESHI), the available range for positive numbers is 0 to 07FFF FFFFh and for negative numbers is 0FFFF FFFFh to 08000 0000h. An underflow occurs when the sum of two negative numbers yields a result that is in the range for a positive number. An overflow occurs when the sum of two positive numbers yields a result that is in the range for a negative number. The SUMEXT register contains the sign of the result in both cases described above, 0FFFFh for a 32-bit overflow and 0000h for a 32-bit underflow. The MPYC bit in MPY32CTL0 can be used to detect the overflow condition. If the carry is different from the sign reflected by the SUMEXT register, an overflow or underflow occurred. User software must handle these conditions appropriately. 25.2.3 Software Examples Examples for all multiplier modes follow. All 8×8 modes use the absolute address for the registers, because the assembler does not allow .B access to word registers when using the labels from the standard definitions file. There is no sign extension necessary in software. Accessing the multiplier with a byte instruction during a signed operation automatically causes a sign extension of the byte within the multiplier module. ; 32x32 Unsigned Multiply MOV #01234h,&MPY32L MOV #01234h,&MPY32H MOV #05678h,&OP2L MOV #05678h,&OP2H ; ... ; ; ; ; ; ; 16x16 Unsigned Multiply MOV #01234h,&MPY MOV #05678h,&OP2 ; ... ; Load 1st operand ; Load 2nd operand ; Process results Load low word of Load high word of Load low word of Load high word of Process results 1st 1st 2nd 2nd operand operand operand operand 1st 1st 2nd 2nd operand operand operand operand ; 8x8 Unsigned Multiply. Absolute addressing. MOV.B #012h,&MPY_B ; Load 1st operand MOV.B #034h,&OP2_B ; Load 2nd operand ; ... ; Process results ; 32x32 Signed Multiply MOV #01234h,&MPYS32L MOV #01234h,&MPYS32H MOV #05678h,&OP2L MOV #05678h,&OP2H ; ... ; ; ; ; ; ; 16x16 Signed Multiply MOV #01234h,&MPYS MOV #05678h,&OP2 ; ... ; Load 1st operand ; Load 2nd operand ; Process results ; 8x8 Signed Multiply. Absolute MOV.B #012h,&MPYS_B ; MOV.B #034h,&OP2_B ; ; ... ; 680 Load low word of Load high word of Load low word of Load high word of Process results addressing. Load 1st operand Load 2nd operand Process results 32-Bit Hardware Multiplier (MPY32) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MPY32 Operation www.ti.com 25.2.4 Fractional Numbers The MPY32 provides support for fixed-point signal processing. In fixed-point signal processing, fractional number are numbers that have a fixed number of digits after (and sometimes also before) the radix point. To classify different ranges of binary fixed-point numbers, a Q-format is used. Different Q-formats represent different locations of the radix point. Figure 25-2 shows the format of a signed Q15 number using 16 bits. Every bit after the radix point has a resolution of 1/2, and the most significant bit (MSB) is used as the sign bit. The most negative number is 08000h and the maximum positive number is 07FFFh. This gives a range from –1.0 to 0.999969482 ≈ 1.0 for the signed Q15 format with 16 bits. 15 bits S 1 2 1 4 1 8 1 16 ... Fractional part Radix point Sign bit Figure 25-2. Q15 Format Representation The range can be increased by shifting the radix point to the right as shown in Figure 25-3. The signed Q14 format with 16 bits gives a range from –2.0 to 1.999938965 ≈ 2.0. 14 bits S 1 1 2 1 4 1 8 1 16 ... Figure 25-3. Q14 Format Representation The benefit of using 16-bit signed Q15 or 32-bit signed Q31 numbers with multiplication is that the product of two number in the range from –1.0 to 1.0 is always in that same range. 25.2.4.1 Fractional Number Mode Multiplying two fractional numbers using the default multiplication mode with MPYFRAC = 0 and MPYSAT = 0 gives a result with two sign bits. For example, if two 16-bit Q15 numbers are multiplied, a 32-bit result in Q30 format is obtained. To convert the result into Q15 format manually, the first 15 trailing bits and the extended sign bit must be removed. However, when the fractional mode of the multiplier is used, the redundant sign bit is automatically removed, yielding a result in Q31 format for the multiplication of two 16-bit Q15 numbers. Reading the result register RES1 gives the result as 16-bit Q15 number. The 32-bit Q31 result of a multiplication of two 32-bit Q31 numbers is accessed by reading registers RES2 and RES3. The fractional mode is enabled with MPYFRAC = 1 in register MPY32CTL0. The actual content of the result registers is not modified when MPYFRAC = 1. When the result is accessed using software, the value is left shifted one bit, resulting in the final Q formatted result. This allows user software to switch between reading both the shifted (fractional) and the unshifted result. The fractional mode should only be enabled when required and disabled after use. In fractional mode, the SUMEXT register contains the sign extended bits 32 and 33 of the shifted result for 16×16-bit operations and bits 64 and 65 for 32×32-bit operations – not only bits 32 or 64, respectively. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback 32-Bit Hardware Multiplier (MPY32) Copyright © 2008–2015, Texas Instruments Incorporated 681 MPY32 Operation www.ti.com The MPYC bit is not affected by the fractional mode. It always reads the carry of the nonfractional result. ; Example using ; Fractional 16x16 multiplication BIS #MPYFRAC,&MPY32CTL0 MOV &FRACT1,&MPYS MOV &FRACT2,&OP2 MOV &RES1,&PROD BIC #MPYFRAC,&MPY32CTL0 ; ; ; ; ; Turn Load Load Save Back on fractional mode 1st operand as Q15 2nd operand as Q15 result as Q15 to normal mode Table 25-5. Result Availability in Fractional Mode (MPYFRAC = 1, MPYSAT = 0) Result Ready in MCLK Cycles Operation (OP1 × OP2) RES0 RES1 RES2 RES3 MPYC Bit 8/16 × 8/16 3 3 4 4 3 24/32 × 8/16 3 5 6 7 7 OP2 written 3 5 6 7 7 OP2L written N/A 3 4 4 4 OP2H written 3 8 10 11 11 OP2L written N/A 3 5 6 6 OP2H written 8/16 × 24/32 24/32 × 24/32 After OP2 written 25.2.4.2 Saturation Mode The multiplier prevents overflow and underflow of signed operations in saturation mode. The saturation mode is enabled with MPYSAT = 1 in register MPY32CTL0. If an overflow occurs, the result is set to the most-positive value available. If an underflow occurs, the result is set to the most-negative value available. This is useful to reduce mathematical artifacts in control systems on overflow and underflow conditions. The saturation mode should only be enabled when required and disabled after use. The actual content of the result registers is not modified when MPYSAT = 1. When the result is accessed using software, the value is automatically adjusted to provide the most-positive or most-negative result when an overflow or underflow has occurred. The adjusted result is also used for successive multiply-andaccumulate operations. This allows user software to switch between reading the saturated and the nonsaturated result. With 16×16 operations, the saturation mode only applies to the least significant 32 bits; that is, the result registers RES0 and RES1. Using the saturation mode in MAC or MACS operations that mix 16×16 operations with 32×32, 16×32, or 32×16 operations leads to unpredictable results. With 32×32, 16×32, and 32×16 operations, the saturated result can only be calculated when RES3 is ready. Enabling the saturation mode does not affect the content of the SUMEXT register nor the content of the MPYC bit. ; Example using ; Fractional 16x16 multiply accumulate with Saturation ; Turn on fractional and saturation mode: BIS #MPYSAT+MPYFRAC,&MPY32CTL0 MOV &A1,&MPYS ; Load A1 for 1st term MOV &K1,&OP2 ; Load K1 to get A1*K1 MOV &A2,&MACS ; Load A2 for 2nd term MOV &K2,&OP2 ; Load K2 to get A2*K2 MOV &RES1,&PROD ; Save A1*K1+A2*K2 as result BIC #MPYSAT+MPYFRAC,&MPY32CTL0 ; turn back to normal 682 32-Bit Hardware Multiplier (MPY32) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MPY32 Operation www.ti.com Table 25-6. Result Availability in Saturation Mode (MPYSAT = 1) Result Ready in MCLK Cycles Operation (OP1 × OP2) RES0 RES1 RES2 RES3 MPYC Bit 8/16 × 8/16 3 3 N/A N/A 3 24/32 × 8/16 7 7 7 7 7 OP2 written 7 7 7 7 7 OP2L written 4 4 4 4 4 OP2H written 11 11 11 11 11 OP2L written 6 6 6 6 6 OP2H written 8/16 × 24/32 24/32 × 24/32 After OP2 written Figure 25-4 shows the flow for 32-bit saturation used for 16×16 bit multiplications and the flow for 64-bit saturation used in all other cases. Primarily, the saturated results depends on the carry bit MPYC and the MSB of the result. Secondly, if the fractional mode is enabled, it depends also on the two MSBs of the unshift result, that is, the result that is read with fractional mode disabled. 32-bit Saturation MPYC=0 and unshifted RES1, bit15=1 64-bit Saturation Yes Overflow: RES3 unchanged RES2 unchanged RES1 = 07FFFh RES0 = 0FFFFh Yes Underflow: RES3 unchanged RES2 unchanged RES1 = 08000h RES0 = 00000h MPYC=1 and unshifted RES3, bit15=0 Yes Underflow: RES3 = 08000h RES2 = 00000h RES1 = 00000h RES0 = 00000h No No MPYFRAC=1 MPYFRAC=1 Yes Yes Yes Overflow: RES3 unchanged RES2 unchanged RES1 = 07FFFh RES0 = 0FFFFh Unshifted RES3, bit 15=0 and bit 14=1 Yes Overflow: RES3 = 07FFFh RES2 = 0FFFFh RES1 = 0FFFFh RES0 = 0FFFFh No No Unshifted RES1, bit 15=1 and bit 14=0 Overflow: RES3 = 07FFFh RES2 = 0FFFFh RES1 = 0FFFFh RES0 = 0FFFFh No No Unshifted RES1, bit 15=0 and bit 14=1 Yes No No MPYC=1 and unshifted RES1, bit15=0 MPYC=0 and unshifted RES3, bit15=1 Yes Underflow: RES3 unchanged RES2 unchanged RES1 = 08000h RES0 = 00000h No 32-bit Saturation completed Unshifted RES3, bit 15=1 and bit 14=0 Yes Underflow: RES3 = 08000h RES2 = 00000h RES1 = 00000h RES0 = 00000h No 64-bit Saturation completed Figure 25-4. Saturation Flow Chart SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback 32-Bit Hardware Multiplier (MPY32) Copyright © 2008–2015, Texas Instruments Incorporated 683 MPY32 Operation NOTE: www.ti.com Saturation in fractional mode In case of multiplying –1.0 × –1.0 in fractional mode, the result of +1.0 is out of range, thus, the saturated result gives the most positive result. When using multiply-and-accumulate operations, the accumulated values are saturated as if MPYFRAC = 0; only during read accesses to the result registers the values are saturated taking the fractional mode into account. This provides additional dynamic range during the calculation and only the end result is then saturated if needed. The following example illustrates a special case showing the saturation function in fractional mode. It also uses the 8-bit functionality of the MPY32 module. ; Turn on fractional and saturation mode, ; clear all other bits in MPY32CTL0: MOV #MPYSAT+MPYFRAC,&MPY32CTL0 ;Pre-load result registers to demonstrate overflow MOV #0,&RES3 ; MOV #0,&RES2 ; MOV #07FFFh,&RES1 ; MOV #0FA60h,&RES0 ; MOV.B #050h,&MACS_B ; 8-bit signed MAC operation MOV.B #012h,&OP2_B ; Start 16x16 bit operation MOV &RES0,R6 ; R6 = 0FFFFh MOV &RES1,R7 ; R7 = 07FFFh The result is saturated because already the result not converted into a fractional number shows an overflow. The multiplication of the two positive numbers 00050h and 00012h gives 005A0h. 005A0h added to 07FFF FA60h results in 8000 059Fh, without MPYC being set. Because the MSB of the unmodified result RES1 is 1 and MPYC = 0, the result is saturated according Figure 25-4. NOTE: Validity of saturated result The saturated result is valid only if the registers RES0 to RES3, the size of OP1 and OP2, and MPYC are not modified. If the saturation mode is used with a preloaded result, user software must ensure that MPYC in the MPY32CTL0 register is loaded with the sign bit of the written result; otherwise, the saturation mode erroneously saturates the result. 25.2.5 Putting It All Together Figure 25-5 shows the complete multiplication flow, depending on the various selectable modes for the MPY32 module. 684 32-Bit Hardware Multiplier (MPY32) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MPY32 Operation www.ti.com New Multiplication Started Yes No No 16×16 ? Yes Yes No MAC or MACS ? MAC or MACS ? Yes Yes Clear Result: RES1 = 00000h RES0 = 00000h MPYSAT=1 ? non-fractional 32-bit Saturation Perform 16×16 MPY or MPYS Operation MPYSAT=1 ? No No Perform 16×16 MAC or MACS Operation non-fractional 64-bit Saturation Perform MAC or MACS Operation Perform MPY or MPYS Operation Yes Yes MPYFRAC=1 ? MPYFRAC=1 ? No Shift 64bit result. Calculate SUMEXTbased on MPYC and bit15 of unshifted RES1. Shift 64bit result. Calculate SUMEXTbased on MPYC and bit15 of unshifted RES3. Yes No Yes MPYSAT=1 ? No Clear Result: RES3 = 00000h RES2 = 00000h RES1 = 00000h RES0 = 00000h MPYSAT=1 ? 32-bit Saturation 64-bit Saturation No Multiplication completed Figure 25-5. Multiplication Flow Chart SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback 32-Bit Hardware Multiplier (MPY32) Copyright © 2008–2015, Texas Instruments Incorporated 685 MPY32 Operation www.ti.com Given the separation in processing of 16-bit operations (32-bit results) and 32-bit operations (64-bit results) by the module, it is important to understand the implications when using MAC/MACS operations and mixing 16-bit operands or results with 32-bit operands or results. User software must address these points during use when mixing these operations. The following code illustrates the issue. ; Mixing 32x24 multiplication with 16x16 MACS operation MOV #MPYSAT,&MPY32CTL0 ; Saturation mode MOV #052C5h,&MPY32L ; Load low word of 1st operand MOV #06153h,&MPY32H ; Load high word of 1st operand MOV #001ABh,&OP2L ; Load low word of 2nd operand MOV.B #023h,&OP2H_B ; Load high word of 2nd operand ;... 5 NOPs required MOV &RES0,R6 ; R6 = 00E97h MOV &RES1,R7 ; R7 = 0A6EAh MOV &RES2,R8 ; R8 = 04F06h MOV &RES3,R9 ; R9 = 0000Dh ; Note that MPYC = 0! MOV #0CCC3h,&MACS ; Signed MAC operation MOV #0FFB6h,&OP2 ; 16x16 bit operation MOV &RESLO,R6 ; R6 = 0FFFFh MOV &RESHI,R7 ; R7 = 07FFFh The second operation gives a saturated result because the 32-bit value used for the 16×16-bit MACS operation was already saturated when the operation was started; the carry bit MPYC was 0 from the previous operation, but the MSB in result register RES1 is set. As one can see in the flow chart, the content of the result registers are saturated for multiply-and-accumulate operations after starting a new operation based on the previous results, but depending on the size of the result (32 bit or 64 bit) of the newly initiated operation. The saturation before the multiplication can cause issues if the MPYC bit is not properly set as the following code shows. ;Pre-load result registers to demonstrate overflow MOV #0,&RES3 ; MOV #0,&RES2 ; MOV #0,&RES1 ; MOV #0,&RES0 ; ; Saturation mode and set MPYC: MOV #MPYSAT+MPYC,&MPY32CTL0 MOV.B #082h,&MACS_B ; 8-bit signed MAC operation MOV.B #04Fh,&OP2_B ; Start 16x16 bit operation MOV &RES0,R6 ; R6 = 00000h MOV &RES1,R7 ; R7 = 08000h Even though the result registers were loaded with all zeros, the final result is saturated. This is because the MPYC bit was set, causing the result used for the multiply-and-accumulate to be saturated to 08000 0000h. Adding a negative number to it would again cause an underflow, thus, the final result is also saturated to 08000 0000h. 686 32-Bit Hardware Multiplier (MPY32) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MPY32 Operation www.ti.com 25.2.6 Indirect Addressing of Result Registers When using indirect or indirect autoincrement addressing mode to access the result registers and the multiplier requires three cycles until result availability according to Table 25-1, at least one instruction is needed between loading the second operand and accessing the result registers: ; Access multiplier 16x16 results with indirect addressing MOV #RES0,R5 ; RES0 address in R5 for indirect MOV &OPER1,&MPY ; Load 1st operand MOV &OPER2,&OP2 ; Load 2nd operand NOP ; Need one cycle MOV @R5+,&xxx ; Move RES0 MOV @R5,&xxx ; Move RES1 In case of a 32×16 multiplication, there is also one instruction required between reading the first result register RES0 and the second result register RES1: ; Access MOV MOV MOV MOV NOP MOV NOP MOV MOV multiplier 32x16 results with indirect addressing #RES0,R5 ; RES0 address in R5 for indirect &OPER1L,&MPY32L ; Load low word of 1st operand &OPER1H,&MPY32H ; Load high word of 1st operand &OPER2,&OP2 ; Load 2nd operand (16 bits) ; Need one cycle @R5+,&xxx ; Move RES0 ; Need one additional cycle @R5,&xxx ; Move RES1 ; No additional cycles required! @R5,&xxx ; Move RES2 25.2.7 Using Interrupts If an interrupt occurs after writing OP, but before writing OP2, and the multiplier is used in servicing that interrupt, the original multiplier mode selection is lost and the results are unpredictable. To avoid this, disable interrupts before using the MPY32, do not use the MPY32 in interrupt service routines, or use the save and restore functionality of the MPY32. ; Disable interrupts before using the hardware multiplier DINT ; Disable interrupts NOP ; Required for DINT MOV #xxh,&MPY ; Load 1st operand MOV #xxh,&OP2 ; Load 2nd operand EINT ; Interrupts may be enabled before ; processing results if result ; registers are stored and restored in ; interrupt service routines SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback 32-Bit Hardware Multiplier (MPY32) Copyright © 2008–2015, Texas Instruments Incorporated 687 MPY32 Operation www.ti.com 25.2.7.1 Save and Restore If the multiplier is used in interrupt service routines, its state can be saved and restored using the MPY32CTL0 register. The following code example shows how the complete multiplier status can be saved and restored to allow interruptible multiplications together with the usage of the multiplier in interrupt service routines. Because the state of the MPYSAT and MPYFRAC bits are unknown, they should be cleared before the registers are saved as shown in the code example. ; Interrupt service routine using multiplier MPY_USING_ISR PUSH &MPY32CTL0 ; Save multiplier mode, etc. BIC #MPYSAT+MPYFRAC,&MPY32CTL0 ; Clear MPYSAT+MPYFRAC PUSH &RES3 ; Save result 3 PUSH &RES2 ; Save result 2 PUSH &RES1 ; Save result 1 PUSH &RES0 ; Save result 0 PUSH &MPY32H ; Save operand 1, high word PUSH &MPY32L ; Save operand 1, low word PUSH &OP2H ; Save operand 2, high word PUSH &OP2L ; Save operand 2, low word ; ... ; Main part of ISR ; Using standard MPY routines ; POP &OP2L ; Restore operand 2, low word POP &OP2H ; Restore operand 2, high word ; Starts dummy multiplication but ; result is overwritten by ; following restore operations: POP &MPY32L ; Restore operand 1, low word POP &MPY32H ; Restore operand 1, high word POP &RES0 ; Restore result 0 POP &RES1 ; Restore result 1 POP &RES2 ; Restore result 2 POP &RES3 ; Restore result 3 POP &MPY32CTL0 ; Restore multiplier mode, etc. reti ; End of interrupt service routine 25.2.8 Using DMA In devices with a DMA controller, the multiplier can trigger a transfer when the complete result is available. The DMA controller needs to start reading the result with MPY32RES0 successively up to MPY32RES3. Not all registers need to be read. The trigger timing is such that the DMA controller starts reading MPY32RES0 when its ready, and that the MPY32RES3 can be read exactly in the clock cycle when it is available to allow fastest access via DMA. The signal into the DMA controller is 'Multiplier ready' (see the DMA Controller chapter for details). 688 32-Bit Hardware Multiplier (MPY32) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MPY32 Registers www.ti.com 25.3 MPY32 Registers MPY32 registers are listed in Table 25-7. The base address can be found in the device-specific data sheet. The address offsets are listed in Table 25-7. NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix "_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H" (ANYREG_H) refers to the upper byte of the register (bits 8 through 15). Table 25-7. MPY32 Registers Offset Acronym Register Name Type Access Reset 00h MPY 16-bit operand one – multiply Read/write Word Undefined 00h MPY_L Read/write Byte Undefined 01h MPY_H Read/write Byte Undefined 00h MPY_B 8-bit operand one – multiply Read/write Byte Undefined 02h MPYS 16-bit operand one – signed multiply Read/write Word Undefined 02h MPYS_L Read/write Byte Undefined 03h MPYS_H Read/write Byte Undefined 02h MPYS_B 8-bit operand one – signed multiply Read/write Byte Undefined 04h MAC 16-bit operand one – multiply accumulate Read/write Word Undefined 04h MAC_L Read/write Byte Undefined 05h MAC_H Read/write Byte Undefined 04h MAC_B 8-bit operand one – multiply accumulate Read/write Byte Undefined 06h MACS 16-bit operand one – signed multiply accumulate Read/write Word Undefined 06h MACS_L Read/write Byte Undefined 07h MACS_H Read/write Byte Undefined 06h MACS_B 8-bit operand one – signed multiply accumulate Read/write Byte Undefined 08h OP2 16-bit operand two Read/write Word Undefined 08h OP2_L Read/write Byte Undefined 09h OP2_H Read/write Byte Undefined 08h OP2_B 8-bit operand two Read/write Byte Undefined 0Ah RESLO 16x16-bit result low word Read/write Word Undefined 0Ah RESLO_L Read/write Byte Undefined 0Ch RESHI 16x16-bit result high word Read/write Word Undefined 0Eh SUMEXT 16x16-bit sum extension register Read Word Undefined 10h MPY32L 32-bit operand 1 – multiply – low word Read/write Word Undefined 10h MPY32L_L Read/write Byte Undefined 11h MPY32L_H Read/write Byte Undefined 12h MPY32H Read/write Word Undefined 12h MPY32H_L Read/write Byte Undefined 13h MPY32H_H Read/write Byte Undefined 12h MPY32H_B 24-bit operand 1 – multiply – high byte Read/write Byte Undefined 14h MPYS32L 32-bit operand 1 – signed multiply – low word Read/write Word Undefined 14h MPYS32L_L Read/write Byte Undefined 15h MPYS32L_H Read/write Byte Undefined 16h MPYS32H Read/write Word Undefined 16h MPYS32H_L Read/write Byte Undefined 17h MPYS32H_H Read/write Byte Undefined 16h MPYS32H_B 24-bit operand 1 – signed multiply – high byte Read/write Byte Undefined 18h MAC32L 32-bit operand 1 – multiply accumulate – low word Read/write Word Undefined 32-bit operand 1 – multiply – high word 32-bit operand 1 – signed multiply – high word 32-Bit Hardware Multiplier (MPY32) 689 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MPY32 Registers www.ti.com Table 25-7. MPY32 Registers (continued) Offset Acronym 18h MAC32L_L 19h MAC32L_H 1Ah MAC32H 1Ah Register Name Type Access Reset Read/write Byte Undefined Read/write Byte Undefined Read/write Word Undefined MAC32H_L Read/write Byte Undefined 1Bh MAC32H_H Read/write Byte Undefined 1Ah MAC32H_B 24-bit operand 1 – multiply accumulate – high byte Read/write Byte Undefined 1Ch MACS32L 32-bit operand 1 – signed multiply accumulate – low word Read/write Word Undefined 1Ch MACS32L_L Read/write Byte Undefined 1Dh MACS32L_H Read/write Byte Undefined 1Eh MACS32H Read/write Word Undefined 1Eh MACS32H_L Read/write Byte Undefined 1Fh MACS32H_H Read/write Byte Undefined 1Eh MACS32H_B 24-bit operand 1 – signed multiply accumulate – high byte Read/write Byte Undefined 20h OP2L 32-bit operand 2 – low word Read/write Word Undefined 20h OP2L_L Read/write Byte Undefined 21h OP2L_H Read/write Byte Undefined 22h OP2H Read/write Word Undefined 22h OP2H_L Read/write Byte Undefined 23h OP2H_H Read/write Byte Undefined 22h OP2H_B 24-bit operand 2 – high byte Read/write Byte Undefined 24h RES0 32x32-bit result 0 – least significant word Read/write Word Undefined 24h RES0_L Read/write Byte Undefined 26h RES1 32x32-bit result 1 Read/write Word Undefined 28h RES2 32x32-bit result 2 Read/write Word Undefined 2Ah RES3 32x32-bit result 3 – most significant word Read/write Word Undefined 2Ch MPY32CTL0 MPY32 control register 0 Read/write Word Undefined 2Ch MPY32CTL0_L Read/write Byte Undefined 2Dh MPY32CTL0_H Read/write Byte 00h 32-bit operand 1 – multiply accumulate – high word 32-bit operand 1 – signed multiply accumulate – high word 32-bit operand 2 – high word The registers listed in Table 25-8 are treated equally. Table 25-8. Alternative Registers 690 Register Alternative 1 Alternative 2 16-bit operand one – multiply MPY MPY32L 8-bit operand one – multiply MPY_B or MPY_L MPY32L_B or MPY32L_L 16-bit operand one – signed multiply MPYS MPYS32L 8-bit operand one – signed multiply MPYS_B or MPYS_L MPYS32L_B or MPYS32L_L 16-bit operand one – multiply accumulate MAC MAC32L 8-bit operand one – multiply accumulate MAC_B or MAC_L MAC32L_B or MAC32L_L 16-bit operand one – signed multiply accumulate MACS MACS32L 8-bit operand one – signed multiply accumulate MACS_B or MACS_L MACS32L_B or MACS32L_L 16x16-bit result low word RESLO RES0 16x16-bit result high word RESHI RES1 32-Bit Hardware Multiplier (MPY32) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated MPY32 Registers www.ti.com 25.3.1 MPY32CTL0 Register 32-Bit Hardware Multiplier Control 0 Register Figure 25-6. MPY32CTL0 Register 15 14 13 12 11 10 Reserved r-0 r-0 r-0 5 7 6 MPYOP2_32 MPYOP1_32 rw rw r-0 4 MPYMx rw rw r-0 r-0 9 8 MPYDLY32 MPYDLYWRTE N rw-0 rw-0 3 2 1 0 MPYSAT MPYFRAC Reserved MPYC rw-0 rw-0 rw-0 rw Table 25-9. MPY32CTL0 Register Description Bit Field Type Reset Description 15-10 Reserved R 0h Reserved. Always reads as 0. 9 MPYDLY32 RW 0h Delayed write mode 0b = Writes are delayed until 64-bit result (RES0 to RES3) is available. 1b = Writes are delayed until 32-bit result (RES0 to RES1) is available. 8 MPYDLYWRTEN RW 0h Delayed write enable All writes to any MPY32 register are delayed until the 64-bit (MPYDLY32 = 0) or 32-bit (MPYDLY32 = 1) result is ready. 0b = Writes are not delayed. 1b = Writes are delayed. 7 MPYOP2_32 RW 0h Multiplier bit width of operand 2 0b = 16 bits 1b = 32 bits 6 MPYOP1_32 RW 0h Multiplier bit width of operand 1 0b = 16 bits 1b = 32 bits 5-4 MPYMx RW 0h Multiplier mode 00b = MPY – Multiply 01b = MPYS – Signed multiply 10b = MAC – Multiply accumulate 11b = MACS – Signed multiply accumulate 3 MPYSAT RW 0h Saturation mode 0b = Saturation mode disabled 1b = Saturation mode enabled 2 MPYFRAC RW 0h Fractional mode 0b = Fractional mode disabled 1b = Fractional mode enabled 1 Reserved RW 0h Reserved. Always reads as 0. 0 MPYC RW 0h Carry of the multiplier. It can be considered as 33rd or 65th bit of the result if fractional or saturation mode is not selected, because the MPYC bit does not change when switching to saturation or fractional mode. It is used to restore the SUMEXT content in MAC mode. 0b = No carry for result 1b = Result has a carry SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback 32-Bit Hardware Multiplier (MPY32) Copyright © 2008–2015, Texas Instruments Incorporated 691 Chapter 26 SLAU208O – June 2008 – Revised May 2015 REF The REF module is a general purpose reference system that is used to generate voltage references required for other subsystems available on a given device such as digital-to-analog converters, analog-todigital converters, or comparators. This chapter describes the REF module. Topic 26.1 26.2 26.3 692 ........................................................................................................................... Page REF Introduction .............................................................................................. 693 Principle of Operation ....................................................................................... 696 REF Registers .................................................................................................. 702 REF SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated REF Introduction www.ti.com 26.1 REF Introduction The reference module (REF) generates all critical reference voltages that can be used by various analog peripherals in a given device. These include, but are not necessarily limited to, the ADC10_A, ADC12_A, CTSD16, DAC12_A, LCD_B, and COMP_B modules (availability of a given module depends on the particular device). The heart of the reference system is the bandgap from which all other references are derived by unity or noninverting gain stages. The REFGEN subsystem consists of the bandgap, the bandgap bias, and the noninverting buffer stage, which generates the three primary voltage reference available in the system, namely 1.5 V, 2.0 V, and 2.5 V. In addition, when enabled, a buffered bandgap voltage is also available. Features of the REF include: • Centralized factory-trimmed bandgap with excellent PSRR, temperature coefficient, and accuracy • 1.5-V, 2.0-V, or 2.5-V user-selectable internal references • Buffered bandgap voltage available to rest of system • Power saving features • Backward compatibility to existing reference system Figure 26-1 shows the block diagram of the REF module in an example device with ADC12_A. Figure 262 shows the block diagram of the REF module in an example device with a CTSD16 module. NOTE: For devices with the CTSD16 module, external reference VeREF+ cannot be applied while internal reference VREFBG is being used by another module, because they share the same pin,and contention on the signal line will occur. Therefore, if the external reference is used, make sure that no modules request the internal reference VREFBG. Devices with ADC10_A might not include the reference voltage output to the external pad. Refer to the device-specific data sheet. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback REF Copyright © 2008–2015, Texas Instruments Incorporated 693 REF Introduction www.ti.com Bandgap Reference Variable Reference REFGEN + ADC12_A + − To external pad − BANDGAP + Vref − + BIAS Vref/2 To DAC12 Vref/3 To DAC12 To ADC12_A capacitor array − Switch Mux 1.5/2.0/2.5V REFGENREQ From REFGEN DAC12_A Channel 0 + REFBGREQ − DAC12OG REFMODEREQ From REFGEN DAC12_A Channel 1 + − DAC12OG Local Buffer Local Buffer COMP_B0 COMP_B1 Figure 26-1. REF Block Diagram 694 REF SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated REF Introduction www.ti.com VREFBG/VeREF + REFGEN + Local Buffer Low Power Bandgap Reference COMP_B0 − REFOUT + Local Buffer Bandgap Reference + Request low power bandgap reference OA AFE biases BANDGAP LCD VREFBG − Variable Reference Request low power bandgap reference request AFE bias Vref CTSD16 − BIAS Vref/2 To DAC12 Vref/3 To DAC12 request VREFBG reference and AFE bias Switch Mux VREFBG/VeREF+ REFGENREQ 1.5/2.0/2.5V from REFGEN DAC12_A Channel 0 Request from REFGEN VREFBG Reference or variable reference REFAFEBIASREQ REFBGGENREQ REFMODEREQ REFBGREQ Channel 1 Figure 26-2. REF Block Diagram for Devices With a CTSD16 Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback REF Copyright © 2008–2015, Texas Instruments Incorporated 695 Principle of Operation www.ti.com 26.2 Principle of Operation The REF module provides all the necessary voltage references to be used by various peripheral modules throughout the system. These may include, but are not limited to, devices that contain an ADC10_A, ADC12_A, CTSD16, DAC12_A, LCD_B, or COMP_B. The REFGEN subsystem contains a high-performance bandgap. This bandgap has very good accuracy (factory trimmed), low temperature coefficient, and high PSRR even while operating at low power. The bandgap voltage is used to generate three voltages through a noninverting amplifier stage, namely 1.5 V, 2.0 V, and 2.5 V. One voltage can be selected at a time. One output of the REFGEN subsystem is the variable reference line. The variable reference line provides either 1.5 V, 2.0 V, or 2.5 V to the rest of the system. A second output of the REFGEN subsystem provides a buffered bandgap reference line that can also be used by modules throughout the system. Devices with a CTSD16 module have a second buffered bandgap reference line, VREFBG, which is available internally as well as external to the device (refer to the device-specific data sheet for PxSEL.y bit requirements). Additionally, the REFGEN supports the voltage references required for the DAC12_A module, when available. Lastly, the REFGEN subsystem also includes the temperature sensor circuitry, because it is derived from the bandgap. The temperature sensor is used by an ADC to measure a voltage proportional to temperature. Table 26-1 describes the difference reference voltages that are available and how to enable them. Table 26-1. Reference Voltage Generation for Different Devices (1) REF Voltage Low-power bandgap Voltage Available Internal on request from module Internal continuously Internally on request from module VREF 1.5 V, 2.0 V, 2.5 V Internally continuously Internally and externally continuously Internally and externally, on request from module How to Enable on Devices Without CTSD16 How to Enable On Devices With CTSD16 External Reference Input to Device (VeREF+) is Available Module requests it Module requests it Y REFON = 1 REFON = 1 Y Module requests it, set REFVSEL as desired DAC requests it, set REFVSEL as desired Y REFON = 1, set REFVSEL as desired REFON = 1, set REFVSEL as desired Y REFOUT = 1, set REFVSEL as desired NA Not when VREF and VeREF+ (external reference input to device) share a single pin NA REFOUT = 1, Set PxSEL.y, and request from module VREFBG is always available inside the device and on the pin. If PxSEL.y is not set, VREFBG is not available inside the chip. N (2) NA REFON = 1, REFOUT = 1, and set PxSEL.y. VREFBG is always available inside the device and on the pin. If PxSEL.y is not set, VREFBG is not available inside the chip. N (2) VREFBG Internally and externally continuously (1) (2) 696 Refer to the block diagrams in this user's guide for each module to determine which reference voltages are available for each module. External reference VeREF+ cannot be applied while internal reference VREFBG is being used by another module, because they share the same pin, and contention on the signal line will occur. Therefore, if the external reference is selected, make sure that no other modules are requesting internal reference VREFBG. VeREF+ is available when VREFBG is not enabled. REF SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Principle of Operation www.ti.com 26.2.1 Low-Power Operation The REF module supports low-power applications such as LCD generation. Many of these applications do not require a very accurate reference, compared to data conversion, yet power is of prime concern. To support these kinds of applications, the bandgap can be used in a sampled mode. In sampled mode, the bandgap circuitry is clocked by the VLO at an appropriate duty cycle. This reduces the average power of the bandgap circuitry significantly, at the cost of accuracy. When not in sampled mode, the bandgap is in static mode. Its power is at its highest, but so is its accuracy. Modules automatically can request static mode or sampled mode using their own individual request lines. In this way, the particular module determines which mode is appropriate for its proper operation and performance. If any one active module requests static mode, all other modules use static mode, even if another module requests sampled mode. In other words, static mode always has higher priority than sampled mode. 26.2.2 REFCTL The REFCTL registers provide a way to control the reference system from one centralized set of registers. By default, REFCTL is used as the primary control of the reference system. 26.2.2.1 REFMSTR = 1 This mode is implemented in all devices with ADC10_A and CTSD16. Also all ADC12_A devices except for MSP430F5438 and MSP430F5438A support this mode. Setting the reference master bit (REFMSTR = 1), allows the reference system to be controlled through the REFCTL register. This is the default setting. Devices with ADC12_A: In this mode (REFMSTR = 1), the legacy control bits inside the ADC register set (ADC12REFON, ADC12REF2_5V, ADC12TCOFF, and ADC12REFOUT) are do not care. The ADC12SR and ADC12REFBURST are still controlled through the ADC12_A, because these are very specific to the ADC12_A module. If REFMSTR is cleared, all settings in the REFCTL are do not care and the reference system is controlled completely by the legacy control bits inside the ADC12_A module. Devices with ADC10_A: This is the only mode supported. REFMSTR must be set at all times. ADC10SR is controlled by the ADC10_A, because these are very specific to the ADC10_A module. Devices with CTSD16: This is the only mode supported. REFMSTR must be set at all times. Table 26-2 summarizes the REFCTL bits and their effect on the REF module for all devices except those with CTSD16 which is summarized Table 26-3 Table 26-2. REF Control of Reference System (REFMSTR = 1) (Default) for Devices Without CTSD16 REF Register Setting Function REFON Setting this bit enables the REFGEN subsystem, which includes the bandgap, the bandgap bias circuitry, and the 1.5-V, 2.0-V, or 2.5-V buffer. Setting this bit causes the REFGEN subsystem to remain enabled regardless of whether or not any module has requested it. Clearing this bit disables the REFGEN subsystem only when there are no pending requests for REFGEN from any module. REFON must also be set to enable the temperature sensor when required. REFVSEL Selects 1.5 V, 2.0 V, or 2.5 V to be present on the variable reference line when REFON = 1 or REFGEN is requested by any module. REFOUT Setting this bits enables the variable reference line voltage to be present external to the device through a buffer (external reference buffer). REFTCOFF Setting this bit disables the temperature sensor (when available) to conserve power. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback REF Copyright © 2008–2015, Texas Instruments Incorporated 697 Principle of Operation www.ti.com Table 26-3. REF Control of Reference System (REFMSTR = 1) (Default) for Devices With CTSD16 REF Register Setting Function REFON Setting this bit enables the REFGEN subsystem, which includes the bandgap, the bandgap bias circuitry, AFE biases, and the 1.5-V, 2.0-V, 2.5-V buffer. Setting this bit causes the REFGEN subsystem to remain enabled regardless of whether or not any module has requested it. Clearing this bit disables the REFGEN subsystem only when there are no pending requests for REFGEN from any module. REFON must also be set to enable the temperature sensor when required. REFVSEL Selects 1.5 V, 2.0 V, or 2.5 V to be present on the variable reference line when REFON = 1. REFOUT Setting this bits enables the VREFBG voltage to be present internally and external to the device through a buffer when REFON = 1 or a module requests VREFBG. REFTCOFF Setting this bit disables the temperature sensor (when available) to conserve power. 26.2.2.2 REFMSTR = 0 Devices with ADC10_A: Do not support this mode. REFMSTR bit must not be cleared. Devices with CTSD16: Do not support this mode. REFMSTR bit must not be cleared. Devices with ADC12_A: This setting is applicable. On legacy devices, the ADC12_A provided the control bits necessary to configure the reference system, namely ADC12REFON, ADC12REF2_5V, ADC12TCOFF, ADC12REFOUT, ADC12SR, and ADC12REFBURST. The ADC12SR and ADC12REFBURST bits are very specific to the ADC12 operation and, therefore, are not included in REFCTL. All legacy control bits can still be used to configure the reference system, wich allows for backward compatibility by clearing REFMSTR. In this case, the REFCTL register bits are don't care. Table 26-4 summarizes the ADC12_A control bits and their effect on the REF module. See the ADC12_A module description for further details. NOTE: Although the REF module supports using the ADC12_A bits as control for the reference system, it is recommended that the use of the new REFCTL register be used and older code migrated to this methodology. This allows the logical partitioning of the reference system to be separate from the ADC12_A system and forms a more natural partitioning for future products. Table 26-4. Control of Reference System (REFMSTR = 0, ADC12_A Only) ADC12_A Register Setting Function ADC12REFON Setting this bit enables the REFGEN subsystem which includes the bandgap, the bandgap bias circuitry, and the 1.5-V, 2.0-V, 2.5-V buffer. Setting this bit causes the REFGEN subsystem to remain enabled regardless if any module has requested it. Clearing this bit disables the REFGEN subsystem only when there are no pending requests for REFGEN from all modules. ADC12REF2_5 V Setting this bits causes 2.5 V to be present on the variable reference line when ADC12REFON = 1. Clearing this bit causes 1.5 V to be present on the variable reference line when ADC12REFON = 1. ADC12REFOUT Setting this bits enables the variable reference line voltage to be present external to the device through a buffer (external reference buffer). ADC12TCOFF Setting this bit disables the temperature sensor to conserve power. As stated previously, the ADC12REFBURST has an effect on the reference system and can be controlled through the ADC12_A. This bit is in effect regardless of whether REFCTL or the ADC12_A is controlling the reference system. Setting ADC12REFBURST = 1 enables burst mode when REFON = 1 and REFMSTR = 1 or when ADC12REFON = 1 and REFMSTR = 0. In burst mode, the internal buffer (ADC12REFOUT = 0) or the external buffer (ADC12REFOUT = 1) is enabled only during a conversion and is disabled automatically to conserve power. 698 REF SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Principle of Operation www.ti.com NOTE: The legacy ADC12_A bit ADC12REF2_5V only allows for selecting either 1.5 V or 2.5 V. To select 2.0 V, the REFVSEL control bits must be used (REFMSTR = 1). 26.2.3 Reference System Requests There are three basic reference system requests that are used by the reference system. Each module can use these requests to obtain the proper response from the reference system. The three basic requests are REFGENREQ, REFBGREQ, and REFMODEREQ. No interaction is required by the user code. The modules select the proper requests automatically. A reference request signal, REFGENREQ, is available as an input into the REFGEN subsystem. This signal represents a logical OR of individual requests coming from the various modules in the system that require a voltage reference to be available on the variable reference line. When a module requires a voltage reference, it asserts its corresponding REFGENREQ signal. When the REFGENREQ is asserted, the REFGEN subsystem is enabled. After the specified settling time, the variable reference line voltage is stable and ready for use. The REFVSEL settings determine which voltage is generated on the variable reference line. In addition to the REFGENREQ, a second reference request signal, REFBGREQ is available. The REFBGREQ signal represents a logical OR of requests coming from the various modules that require the bandgap reference line. When the REFBGREQ is asserted, the bandgap, along with its bias circuitry and local buffer, is enabled if it is not already enabled by a prior request. The REFMODEREQ request signal is available that configures the bandgap and its bias circuitry to operate in a sampled or static mode of operation. The REFMODEREQ signal basically represents a logical AND of individual requests coming from the various analog modules. In reality, a REFMODEREQ occurs only if a module's REFGENREQ or REFBGQ is also asserted, otherwise it is a do not care. When REFMODEREQ = 1, the bandgap operates in sampled mode. When a module asserts its corresponding REFMODEREQ signal, it is requesting that the bandgap operate in sampled mode. Because REMODEREQ is a logical AND of all individual requests, any modules requesting static mode cause the bandgap to operate in static mode. The BGMODE bit can be used as an indicator of static or sampled mode of operation. 26.2.3.1 Specifics for Devices With CTSD16 Devices with a CTSD16 module have two additional request signals. The REFBGGENREQ signal represents a logical OR of individual requests coming from the various modules in the system that require the bandgap voltage reference VREFBG to be available on the VREFBG/VeREF+ signal line. When a module requires a bandgap voltage reference VREFBG, it asserts its corresponding REFBGGENREQ signal. When the REFBGGENREQ is asserted, the REFGEN subsystem required to generate the bandgap voltage is enabled. This is different from the bandgap reference line, labeled as low power bandgap reference in the block diagram, which is requested with the REFGENREQ. The second request signal specific to devices with a CTSD16 module is the REFAFEBIASREQ. This signal represents a logical OR of individual requests coming from the various modules in the system that require the AFE biases. When a module requires the AFE biases, it asserts its corresponding REFAFEBIASREQ signal. When the REFAFEBIASREQ is asserted, the REFGEN subsystem required to generate the AFE biases is enabled. 26.2.3.2 REFBGACT, REFGENACT, REFGENBUSY Any module that is using the variable reference line causes REFGENACT to be set inside the REFCTL register. This bit is read only and indicates to the user that the REFGEN is active or off. Similarly, the REFBGACT is active any time one or more modules is actively utilizing the bandgap reference line and indicates to the user that the REFBG is active or off. The REFGENBUSY signal, when asserted, indicates that a module is using the reference and cannot have any of it settings changed. For example, during an active ADC12_A conversion, the reference voltage level should not be changed. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback REF Copyright © 2008–2015, Texas Instruments Incorporated 699 Principle of Operation www.ti.com REFGENBUSY is asserted when any of the following are true: • there is an active ADC12_A conversion (ENC = 1) • the DAC12_A is actively converting (DAC12AMPx > 1 and DAC12SREFx = 0 or on devices with CTSD16 if DAC12SREFx = {2,3} and REFOUT = 1 and REFON = 1 (or bandgap is requested) ) • when CTSD16 is actively converting CTSD16SC = 1 and CTSD16REFS = 1 REFGENBUSY when asserted, write protects the REFCTL register. This prevents the reference from being disabled or its level changed during any active conversion. Note that there is no such protection for the DAC12_A if the ADC12_A legacy control bits are used for the reference control. If the user changes the ADC12_A settings and the DAC12_A is using the reference, the DAC12_A conversion is affected. 26.2.3.3 ADC10_A For devices that contain an ADC10_A module, the ADC10_A module contains only one local buffer. This buffer is required when using the internal reference voltage and must be enabled and stable prior to a conversion. In devices without a reference output buffer REFOUT must be written 0. Refer to the device-specific data sheet. In devices with ADC10_A the REFMSTR bit must be set at all times. In devices with ADC10_A the REFON bit must be set if the internal reference voltage is used. 26.2.3.4 ADC12_A For devices that contain an ADC12_A module, the ADC12_A module contains two local buffers. The larger buffer can be used to drive the reference voltage, present on the variable reference line, external to the device. This buffer has larger power consumption due to a selectable burst mode, as well as, its need to drive larger DC loads that may be present outside the device. The large buffer is enabled continuously when REFON = 1, REFOUT = 1, and ADC12REFBURST = 0. When ADC12REFBURST = 1, the buffer is enabled only during an ADC conversion, shutting down automatically upon completion of a conversion to save power. In addition, when REFON = 1 and REFOUT = 1, the second smaller buffer is automatically disabled. In this case, the output of the large buffer is connected to the capacitor array through an internal analog switch. This ensures the same reference is used throughout the system. If REFON = 1 and REFOUT = 0, the internal buffer is used for ADC conversion and the large buffer remains disabled. The small internal buffer can operate in burst mode as well by setting ADC12REFBURST = 1 26.2.3.5 CTSD16 For devices that contain a CTSD16 module, the VREFBG signal is driven external to the device even if it is only used internally and requires that PxSEL.y bit = 1. If PxSEL.y is not set, VREFBG is not driven even internal to the chip. The VREFBG signal is enabled continuously when REFON = 1 and REFOUT = 1. The CTSD16 module only requests VREFBG during active conversions, when CTSD16SC = 1, and bursts the VREFBG signal unless REFON = 1 and REFOUT = 1. The DAC12_A similarly bursts the request for the voltage. 26.2.3.6 DAC12_A Some devices contain a DAC12_A module. The DAC12_A can use the 1.5 V, 2.0 V, or 2.5 V from the variable reference line, and on devices with a CTSD16 module, the DAC12_A can use the 1.16 V from the VREFBG reference line for its reference. The DAC12_A can request its reference directly by the settings within the DAC12_A module itself except the 1.16 V, which also requires REFOUT = 1. Therefore, if the DAC is enabled and the internal reference is selected, the DAC requests the reference voltage from the REF module. In addition, as before, setting REFON = 1 (REFMSTR = 1) or ADC12REFON = 1 (REFMSTR = 0) can enable the variable reference line independent of the DAC12_A control bits. The REFGEN subsystem provides divided versions of the variable reference line for use in the DAC12_A module. The DAC12_A module requires either /2 or /3 of the variable reference. The selection of these depends on the control bits inside the DAC12_A module (DAC12IR, DAC12OG) and is handled automatically by the REF module. 700 REF SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Principle of Operation www.ti.com When the DAC12_A selects AVcc or VeREF+ or VREFBG (if available) as its reference, the DAC12_A has its own /2 and /3 resistor string available that scales the input reference appropriately based on the DAC12IR and DAC12OG settings. 26.2.3.7 LCD_B, LCD_C In devices that contain an LCD module, the LCD module requires a reference to generate the proper LCD voltages. The bandgap reference line from the REFGEN subsystem is used for this purpose. The LCD is enabled when LCDON = 1 of the LCD_B or LCD_C module. This causes a REFBGREQ from the LCD module to be asserted. The buffered bandgap is made available on the bandgap reference line for use inside the LCD module. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback REF Copyright © 2008–2015, Texas Instruments Incorporated 701 REF Registers www.ti.com 26.3 REF Registers The REF registers are listed in Table 26-5. The base address can be found in the device specific datasheet. The address offset is listed in Table 26-5. NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix "_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H" (ANYREG_H) refers to the upper byte of the register (bits 8 through 15). Table 26-5. REF Registers 702 Offset Acronym Register Name Type Access Reset Section 00h REFCTL0 REF Control Register 0 Read/write Word 0080h Section 26.3.1 00h REFCTL0_L Read/write Byte 80h 01h REFCTL0_H Read/write Byte 00h REF SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated REF Registers www.ti.com 26.3.1 REFCTL0 Register (offset = 00h) [reset = 0080h] REF Control Register 0 Figure 26-3. REFCTL0 Register 15 14 13 12 r0 r0 r0 r0 5 Reserved 7 6 REFMSTR Reserved rw-(1) r0 4 REFVSEL rw-(0) rw-(0) 11 10 9 8 BGMODE REFGENBUSY REFBGACT REFGENACT r-(0) r-(0) r-(0) r-(0) 3 2 1 0 REFTCOFF Reserved REFOUT REFON rw-(0) r0 rw-(0) rw-(0) Can be modified only when REFGENBUSY = 0. Table 26-6. REFCTL0 Register Description Bit Field Type Reset Description 15-12 Reserved R 0h Reserved. Always reads as 0. 11 BGMODE R 0h Bandgap mode. Read only. 0b = Static mode 1b = Sampled mode 10 REFGENBUSY R 0h Reference generator busy. Read only. 0b = Reference generator not busy 1b = Reference generator busy 9 REFBGACT R 0h Reference bandgap active. Read only. 0b = Reference bandgap buffer not active 1b = Reference bandgap buffer active 8 REFGENACT R 0h Reference generator active. Read only. 0b = Reference generator not active 1b = Reference generator active 7 REFMSTR RW 1h REF master control. ADC10_A and CTSD16 devices: Must be written 1. 0b = Reference system controlled by legacy control bits inside the ADC12_A module when available. 1b = Reference system controlled by REFCTL register. Common settings inside the ADC12_A module (if exists) are don't care. 6 Reserved R 0h Reserved. Always reads as 0. 5-4 REFVSEL RW 0h Reference voltage level select for devices 00b = 1.5 V available when reference requested 01b = 2.0 V available when reference requested 10b = 2.5 V available when reference requested 11b = 2.5 V available when reference requested or REFON or REFON or REFON or REFON =1 =1 =1 =1 3 REFTCOFF RW 0h Temperature sensor disabled 0b = Temperature sensor enabled 1b = Temperature sensor disabled to save power 2 Reserved R 0h Reserved. Always reads as 0. 1 REFOUT RW 0h Reference output buffer. ADC10_A devices without reference output buffer: Must be written 0. 0b = Reference output not available externally 1b = Reference output available externally. If ADC12REFBURST = 0, or DAC12_A is enabled, output is available continuously. If ADC12REFBURST = 1, output is available only during an ADC12_A conversion. For devices with CTSD16, REFON must also be set to 1 for VREFBG to be available continuously. Otherwise, VREFBG is only available externally when a module requests it. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback REF Copyright © 2008–2015, Texas Instruments Incorporated 703 REF Registers www.ti.com Table 26-6. REFCTL0 Register Description (continued) Bit Field Type Reset Description 0 REFON RW 0h Reference enable. ADC10_A: The ADC10_A does not support the reference request. REFON must be set if the internal reference voltage is used. 0b = Disables reference if no other reference requests are pending. 1b = Enables reference. 704 REF SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Chapter 27 SLAU208O – June 2008 – Revised May 2015 ADC10_A The ADC10_A module is a high-performance 10-bit analog-to-digital converter (ADC). This chapter describes the operation of the ADC10_A module. Topic 27.1 27.2 27.3 ........................................................................................................................... Page ADC10_A Introduction....................................................................................... 706 ADC10_A Operation .......................................................................................... 708 ADC10_A Registers .......................................................................................... 720 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC10_A Copyright © 2008–2015, Texas Instruments Incorporated 705 ADC10_A Introduction www.ti.com 27.1 ADC10_A Introduction The ADC10_A module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core with sample select control and a window comparator. ADC10_A features include: • Greater than 200-ksps maximum conversion rate • Monotonic 10-bit converter with no missing codes • Sample-and-hold with programmable sampling periods controlled by software or timers. • Conversion initiation by software or different Timers • Software-selectable on-chip reference using the REF module or external reference • 12 individually configurable external input channels • Conversion channel for temperature sensor of the REF module • Selectable conversion clock source • Single-channel, repeat-single-channel, sequence (autoscan), and repeat-sequence (repeated autoscan) conversion modes • Window comparator for low-power monitoring of input signals • Interrupt vector register for fast decoding of six ADC Interrupts (ADC10IFG0, ADC10TOVIFG, ADC10OVIFG, ADC10LOIFG, ADC10INIFG, ADC10HIIFG) Figure 27-1 shows the block diagram of ADC10_A. The on-chip reference voltage generation is located in the reference module (see the device-specific data sheet). 706 ADC10_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC10_A Introduction www.ti.com VEREF+ ADC10SR VEREF- ADC10INCHx 10 Reference Buffer 01 VREF 1.5 / 2.0 / 2.5 V from shared reference Auto ADC10CONSEQx A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 TempSense Batt.Monitor A12 A13 A14 A15 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Vcc VSS 1 ADC10SREF2 11 10 01 00 0 ADC10ON VR- Sample and Hold ADC10SREFx 00 :1 :4 :64 ADC10CLK Convert SHI 1 0 0 ADC10 MSC ACLK 10 MCLK 11 SMCLK 00 Sample Timer /4 .. /1024 1 MODCLK from UCS 01 ADC10ISSH ADC10BUSY ADC10SHP SAMPCON Divider /1 .. /8 00 01 10 ADC10 SSELx VR+ 10-bit ADC Core S/H ADC10DIVx ADC10 PDIVx ADC10 SHTx Sync ADC10SC 01 10 3 inputs from Timers 11 ADC10 SHSx ADC10DF Data Format ADC10HIx 10-bit Window Comparator To Interrupt Logic ADC10MEM ADC10LOx A MODCLK is generated by the MODOSC, which is part of the UCS. See the UCS chapter for more information. B When using ADC10SHP = 0 no synchronisation of the trigger input is done. Figure 27-1. ADC10_A Block Diagram SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC10_A Copyright © 2008–2015, Texas Instruments Incorporated 707 ADC10_A Operation www.ti.com 27.2 ADC10_A Operation The ADC10_A module is configured with user software. The setup and operation of the ADC10_A is discussed in the following sections. 27.2.1 10-Bit ADC Core The ADC core converts an analog input to its 10-bit digital representation and stores the result in the conversion register ADC10MEM0. The core uses two programmable/selectable voltage levels (VR+ and VR–) to define the upper and lower limits of the conversion. The digital output (NADC) is full scale (03FFh) when the input signal is equal to or higher than VR+, and zero when the input signal is equal to or lower than VR–. The input channel and the reference voltage levels (VR+ and VR–) are defined in the conversioncontrol memory. The conversion formula for the ADC result NADC is shown in Equation 13: Vin – VR– NADC = 1023 × VR+ – VR– (13) The ADC10_A core is configured by the control registers ADC10CTL0, ADC10CTL1 and ADC10CTL2. The core is enabled with the ADC10ON bit. The ADC10_A can be turned off when not in use to save power. With few exceptions, the ADC10_A control bits can only be modified when ADC10ENC = 0. ADC10ENC must be set to 1 before any conversion can take place. 27.2.1.1 Conversion Clock Selection The ADC10CLK is used both as the conversion clock and to generate the sampling period when the pulse sampling mode is selected. The ADC10_A source clock is selected using the ADC10SSELx bits. Possible ADC10CLK sources are SMCLK, MCLK, ACLK, and the MODCLK. The input clock can be divided from 1–512 using both the ADC10DIVx bits and the ADC10PDIVx bits. MODCLK, generated internally in the UCS, is in the 5-MHz range but varies with individual devices, supply voltage, and temperature. See the device-specific data sheet for the MODOSC specification. The user must ensure that the clock chosen for ADC10CLK remains active until the end of a conversion. If the clock is removed during a conversion, the operation does not complete and any result is invalid. 27.2.2 ADC10_A Inputs and Multiplexer The 14 external and 2 internal analog signals are selected as the channel for conversion by the analog input multiplexer. The input multiplexer is a break-before-make type to reduce input-to-input noise injection resulting from channel switching (see Figure 27-2). The input multiplexer is also a T-switch to minimize the coupling between channels. Channels that are not selected are isolated from the ADC and the intermediate node is connected to analog ground (AVSS) so that the stray capacitance is grounded to eliminate crosstalk. The ADC10_A uses the charge redistribution method. When the inputs are internally switched, the switching action may cause transients on the input signal. These transients decay and settle before causing errant conversion. R~ 50 kOhm ADC10MCTL0.0–3 Input Ax ESD Protection Figure 27-2. Analog Multiplexer 708 ADC10_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC10_A Operation www.ti.com 27.2.2.1 Analog Port Selection The ADC10_A inputs are multiplexed with digital port pins. When analog signals are applied to digital gates, parasitic current can flow from VCC to GND. This parasitic current occurs if the input voltage is near the transition level of the gate. Disabling the digital part of the port pin eliminates the parasitic current flow and, therefore, reduces overall current consumption. The PxSEL.y bits provide the ability to disable the port pin input and output buffers. BIS.B #3h,&PxSEL ; Px.0 and Px.1 configured for analog input ; Px.1 and Px.0 ADC10_A function 27.2.3 Voltage Reference Generator The ADC10_A module is designed to be used either with the on-chip reference supplied by the REF module or an externally reference voltage supplied on external pins. The on-chip reference is capable of supplying 1.5 V, 2.0 V, and 2.5 V. The reference voltages are controlled by the control registers of the REF module (see the REF chapter for details). The internal VCC can also be used as the voltage reference. External reference voltages may be supplied for VR+ and VR– through pins VEREF+ and VEREF-, respectively. 27.2.3.1 Internal Reference Low-Power Features The on-chip reference is designed for low-power applications. This reference includes a band-gap voltage source and a separate reference buffer both located in the REF module. The current consumption of each is specified separately in the device-specific data sheet. The ADC10_A also contains an internal buffer for reference voltages. This buffer is automatically enabled when the internal reference is selected for VREF+, but it is also optionally available for VEREF+. The on-chip reference from the REF module must be enabled by software. Its settling time is typical 25 µs. See the device-specific data sheet and the REF chapter for further information on the on-chip reference. The reference buffer of the ADC10_A also has selectable speed versus power settings. When the maximum conversion rate is below 50 ksps, setting ADC10SR = 1 reduces the current consumption of the buffer approximately 50%. 27.2.4 Auto Power Down The ADC10_A is designed for low-power applications. When the ADC10_A is not actively converting, the core is automatically disabled and automatically reenabled when needed. The MODOSC is also automatically enabled when needed and disabled when not needed. 27.2.5 Sample and Conversion Timing An analog-to-digital conversion is initiated with a rising edge of the sample input signal SHI. The source for SHI is selected with the ADC10SHSx bits and includes the following: • ADC10SC bit and • Three timer outputs The polarity of the SHI signal source can be inverted with the ADC10ISSH bit. The SAMPCON signal controls the sample period and start of conversion. When SAMPCON is high, sampling is active. The highto-low SAMPCON transition starts the analog-to-digital conversion, which requires 12 ADC10CLK cycles in 10-bit resolution mode. One additional ADC10CLK is used for the window comparator. Two different sample-timing methods are defined by control bit ADC10SHP, extended sample mode, and pulse mode. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC10_A Copyright © 2008–2015, Texas Instruments Incorporated 709 ADC10_A Operation www.ti.com 27.2.5.1 Extended Sample Mode The extended sample mode is selected when ADC10SHP = 0. The SHI signal directly controls SAMPCON and defines the length of the sample period tsample. When SAMPCON is high, sampling is active. The highto-low SAMPCON transition starts the conversion after synchronization with ADC10CLK (see Figure 27-3). Start Sampling Start Conversion Stop Sampling Conversion Complete SHI 12 × ADC10CLK SAMPCON tsample tconvert tsync ADC10CLK Figure 27-3. Extended Sample Mode 27.2.5.2 Pulse Sample Mode The pulse sample mode is selected when ADC10SHP = 1. The SHI signal is used to trigger the sampling timer. The ADC10SHTx bits in ADC10CTL0 control the interval of the sampling timer that defines the SAMPCON sample period tsample. The sampling timer keeps SAMPCON high after synchronization with AD10CLK for a programmed interval tsample. The total sampling time is tsample plus tsync (see Figure 27-4). The ADC10SHTx bits select the sampling time in 4× multiples of ADC10CLK. Start Sampling Stop Sampling Conversion Complete Start Conversion SHI 12 × ADC10CLK SAMPCON tsample tconvert tsync ADC10CLK Figure 27-4. Pulse Sample Mode 710 ADC10_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC10_A Operation www.ti.com 27.2.5.3 Sample Timing Considerations When SAMPCON = 0, all Ax inputs are high impedance. When SAMPCON = 1, the selected Ax input can be modeled as an RC low-pass filter during the sampling time tsample (see Figure 27-5). An internal MUX-on input resistance RI (see device specific datasheet) in series with capacitor CI (see device specific datasheet) is seen by the source. The capacitor CI voltage VC must be charged to within one-half LSB of the source voltage VS for an accurate 10-bit conversion. MSP430 RS VS VI Cpext RI VC Cpint CI VI = Input voltage at pin Ax VS = External source voltage RS = External source resistance RI = Internal MUX-on input resistance CI = Input capacitance Cpint = Parasitic capacitance, internal ~1pF CPext = Parasitic capacitance, external VC = Capacitance-charging voltage Figure 27-5. Analog Input Equivalent Circuit The resistance of the source RS and RI affect tsample. The minimum sample time must not be violated. Violation of the minimum sample time may cause a conversion not to take place. See the device specific datasheet for the tsample limits. 27.2.6 Conversion Result The conversion result is accessible using the ADC10MEM0 register independently of the conversion mode selected by the user. When a conversion result is written to ADC10MEM0, the ADC10IFG0 is set. 27.2.7 ADC10_A Conversion Modes The ADC10_A has four operating modes selected by the CONSEQx bits as listed in Table 27-1. Table 27-1. Conversion Mode Summary ADC10CONSEQx Mode Operation 00 Single-channel single-conversion A single channel is converted once. 01 Sequence-of-channels (autoscan) A sequence of channels is converted once. 10 Repeat-single-channel A single channel is converted repeatedly. 11 Repeat-sequence-of-channels (repeated autoscan) A sequence of channels is converted repeatedly. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC10_A Copyright © 2008–2015, Texas Instruments Incorporated 711 ADC10_A Operation www.ti.com 27.2.7.1 Single-Channel Single-Conversion Mode A single channel selected by ADC10INCHx is sampled and converted once. The ADC result is written to ADC10MEM0. Figure 27-6 shows the flow of the single-channel single-conversion mode. When ADC10SC triggers a conversion, successive conversions can be triggered by the ADC10SC bit. When any other trigger source is used, ADC10ENC must be toggled between each conversion. Resetting ADC10ON bit within a conversion causes the ADC10_A to go back into "ADC10 off" state. In this case, the value of the conversion register and the value of the interrupt flags are unpredictable. ADC10 off ADC10CONSEQx = 00 ADC10ON = 1 ADC10ENC x = ADC10INCHx Wait for Enable ADC10SHSx = 0 and ADC10ENC = 1 or and ADC10SC = ADC10ENC = ADC10ENC = Wait for Trigger SAMPCON = ADC10ENC = 0 SAMPCON = 1 Sample Input Channel x ADC10ENC = 0 * SAMPCON = 10 × ADC10CLK Convert ADC10ENC = 0 * ** 1 × ADC10CLK Conversion Completed, Result Stored Into ADC10MEM0, ADC10IFG0 is Set * Conversion result is unpredictable ** Two ADC10CLK cycles needed x - pointer to the selected ADC10_A channel defined by ADC10INCHx All bit- or registernames are marked with bold font, signals are noted in normal font Figure 27-6. Single-Channel Single-Conversion Mode 712 ADC10_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC10_A Operation www.ti.com 27.2.7.2 Sequence-of-Channels Mode (Autoscan Mode) In sequence-of-channels mode, also referred to as autoscan mode, a sequence of channels is sampled and converted once. The sequence begins with the channel selected by the ADC10INCHx bits and decrements to channel A0. Each ADC result is written to ADC10MEM0. The sequence stops after conversion of channel A0. Figure 27-7 shows the sequence-of-channels mode. When ADC10SC triggers a sequence, successive sequences can be triggered by the ADC10SC bit. When any other trigger source is used, ADC10ENC must be toggled between each sequence. As in all conversion modes resetting ADC10ON bit within a conversion causes the ADC10_A to go back into "ADC10 off" state. ADC10 off ADC10CONSEQx = 01 ADC10ON = 1 ADC10ENC x = ADC10INCHx Wait for Enable ADC10ENC = ADC10ENC = ADC10SHSx = 0 and ADC10ENC = 1 or and ADC10SC = Wait for Trigger x=0 SAMPCON = SAMPCON = 1 Sample Input Channel x If x > 0 then x = x - 1 x=x-1 x=x-1 SAMPCON = 10 × ADC10CLK Convert ADC10MSC = 1 and ADC10SHP = 1 and x 0 ** 1 × ADC10CLK (ADC10MSC = 0 or ADC10SHP = 0) and x 0 Conversion Completed, Result Stored Into ADC10MEM0, ADC10IFG0 is set x - input channel Ax ** Two ADC10CLK cycles needed All bit- or registernames are marked with bold font, signals are noted in normal font Figure 27-7. Sequence-of-Channels Mode SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC10_A Copyright © 2008–2015, Texas Instruments Incorporated 713 ADC10_A Operation www.ti.com 27.2.7.3 Repeat-Single-Channel Mode A single channel selected by ADC10INCHx is sampled and converted continuously. Each ADC result is written to ADC10MEM0. Figure 27-8 shows the repeat-single-channel mode. ADC10CONSEQx = 10 ADC10 off ADC10ON = 1 ADC10ENC x = ADC10INCHx Wait for Enable ADC10ENC = ADC10SHSx = 0 and ADC10ENC = 1 or and ADC10SC = ADC10ENC = Wait for Trigger SAMPCON = ADC10ENC = 0 SAMPCON = 1 Sample Input Channel x 10 × ADC10CLK SAMPCON = ADC10MSC = 1 and ADC10SHP = 1 and ADC10ENC = 1 Convert ** 1 × ADC10CLK (ADC10MSC = 0 or ADC10SHP = 0) and ADC10ENC = 1 Conversion Completed, Result Stored Into ADC10MEM0, ADC10IFG0 is Set x - pointer to the selected ADC10_A channel defined by ADC10INCHx ** Two ADC10CLK cycles needed All bit- or registernames are marked with bold font, signals are noted in normal font Figure 27-8. Repeat-Single-Channel Mode 714 ADC10_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC10_A Operation www.ti.com 27.2.7.4 Repeat-Sequence-of-Channels Mode (Repeated Autoscan Mode) In this mode, a sequence of channels is sampled and converted repeatedly. This mode is also referred to as repeated autoscan mode. The sequence begins with the channel selected by ADC10INCHx and decrements to channel A0. Each ADC result is written to ADC10MEM0. The sequence ends after conversion of channel A0, and the next trigger signal re-starts the sequence. Figure 27-9 shows the repeat-sequence-of-channels mode. ADC10CONSEQx = 11 ADC10 off ADC10ON = 1 ADC10ENC ADC10INCHx Wait for Enable ADC10ENC = ADC10ENC = ADC10SHSx = 0 and ADC10ENC = 1 or and ADC10SC = Wait for Trigger ADC10ENC = 0 and x=0 SAMPCON = SAMPCON = 1 Sample Input Channel x If x > 0 then x = x - 1 else x = ADC10INCHx If x > 0 then x = x - 1 else x = ADC10INCHx SAMPCON = 10 × ADC10CLK Convert ADC10MSC = 1 and ADC10SHP = 1 and (ADC10ENC = 1 or x 0) ** 1 × ADC10CLK Conversion Completed, Result Stored Into ADC10MEM0, ADC10IFG0 is Set (ADC10MSC = 0 or ADC10SHP = 0) and (ADC10ENC = 1 or x 0 Figure 27-9. Repeat-Sequence-of-Channels Mode SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC10_A Copyright © 2008–2015, Texas Instruments Incorporated 715 ADC10_A Operation www.ti.com 27.2.7.5 Using the Multiple Sample and Convert (ADC10MSC) Bit To configure the converter to perform successive conversions automatically and as quickly as possible, a multiple sample and convert function is available. When ADC10MSC = 1, CONSEQx > 0, and the sample timer is used, the first rising edge of the SHI signal triggers the first conversion. Successive conversions are triggered automatically as soon as the prior conversion is completed. Additional rising edges on SHI are ignored until the sequence is completed in the single-sequence mode, or until the ADC10ENC bit is toggled in repeat-single-channel or repeated-sequence modes. The function of the ADC10ENC bit is unchanged when using the ADC10MSC bit. 27.2.7.6 Stopping Conversions Stopping ADC10_A activity depends on the mode of operation. The recommended ways to stop an active conversion or conversion sequence are: • Resetting ADC10ENC in single-channel single-conversion mode stops a conversion immediately and the results are unpredictable. For correct results, poll the busy bit until reset before clearing ADC10ENC. • Resetting ADC10ENC during repeat-single-channel operation stops the converter at the end of the current conversion. • Resetting ADC10ENC during a sequence or repeat-sequence mode stops the converter at the end of the sequence. • Any conversion mode may be stopped immediately by setting the CONSEQx = 0 and resetting the ADC10ENC bit. Conversion data are unreliable. 27.2.8 Window Comparator The window comparator allows to monitor analog signals without any CPU interaction. The following list describes the available interrupt flags and the conditions when they are asserted: • The ADC10LO interrupt flag (ADC10LOIFG) is set if the current result of the ADC10_A conversion is below the low threshold defined in register ADC10LO. • The ADC10HI interrupt flag (ADC10HIIFG) is set if the current result of the ADC10_A conversion is greater than the high threshold defined in register ADC10HI. • The ADC10IN interrupt flag (ADC10INIFG) is set if the current result of the ADC10_A conversion is greater than the low threshold defined in register ADC10LO and less than the high threshold defined in ADC10HI. These interrupts are generated independently of the conversion mode selected by the user. The update of the window comparator interrupt flags happens in parallel to the ADC10IFG0. Make sure that the values in the ADC10HI and ADC10LO registers are in the correct data format. For example, if the binary data format is selected (ADC10DF = 0), then the thresholds in the threshold registers ADC10HI and ADC10LO also must be entered binary coded. Changing ADC10DF or the ADC10RES resets the threshold registers. The interrupt flags must be reset by the user software. The ADC10_A only updates the flags each time a new value is available in the ADC10MEM0. This update is only a set of the corresponding interrupt flag. When the user uses the window comparator flags, it must be ensured that they are reset by software according to the application needs. 716 ADC10_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC10_A Operation www.ti.com 27.2.9 Using the Integrated Temperature Sensor To use the on-chip temperature sensor, select the analog input channel ADC10INCHx = 1010. Any other configuration is done as if an external channel was selected, including reference selection, conversionmode selection, and other settings. The temperature sensor is located in the REF module of the device is configured by using the REF module's control registers. The typical temperature sensor transfer function is shown in Figure 27-10. When using the temperature sensor, the sample period must be greater than 30 µs. The temperature sensor offset error can be large and may need to be calibrated for most applications (see the device-specific data sheet for parameters). 1.000 0.900 Voltage 0.800 0.700 0.600 VTEMP = 0.00252 x (TEMPC) + 0.688 0.500 –50 0 50 100 Temperature – °C Figure 27-10. Typical Temperature Sensor Transfer Function SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC10_A Copyright © 2008–2015, Texas Instruments Incorporated 717 ADC10_A Operation www.ti.com 27.2.10 ADC10_A Grounding and Noise Considerations As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should be followed to eliminate ground loops, unwanted parasitic effects, and noise. Ground loops are formed when return current from the ADC flows through paths that are common with other analog or digital circuitry. If care is not taken, this current can generate small, unwanted offset voltages that can add to or subtract from the reference or input voltages of the ADC. The connections shown in Figure 27-11 prevent this. In addition to grounding, ripple and noise spikes on the power-supply lines due to digital switching or switching power supplies can corrupt the conversion result. A noise-free design using separate analog and digital ground planes with a single-point connection is recommended to achieve high accuracy. DVCC Digital Power Supply Decoupling + 10 µF 100 nF DVSS AVCC Analog Power Supply Decoupling + 10 µF 100 nF AVSS Figure 27-11. ADC10_A Grounding and Noise Considerations 27.2.11 ADC10_A Interrupts The ADC10_A has 6 Interrupt sources: • ADC10IFG0 : conversion ready Interrupt • ADC10OVIFG : ADC10MEM0 overflow • ADC10TOVIFG : ADC10_A conversion time overflow • ADC10LOIFG, ADC10INIFG, ADC10HIIFG : window comparator Interrupt flags The ADC10IFG0 bit is set when the ADC10MEM0 memory register is loaded with the conversion result. An Interrupt request is generated if ADC10IE0 bit and the GIE bit are set. The ADC10OV condition occurs when a conversion result is written to the ADC10MEM0 before its previous conversion result was read. The ADC10TOV condition is generated when another sample-and-conversion is requested before the current conversion is completed. The DMA is triggered after each conversion. The window comparator Interrupt flags are set corresponding to the description in the Window Comparator section (see Section 27.2.8). 27.2.11.1 ADC10IV, Interrupt Vector Generator All ADC10_A Interrupt sources are prioritized and combined to source a single Interrupt vector. The Interrupt vector register ADC10IV is used to determine which enabled ADC10_A Interrupt source requested an Interrupt. The highest-priority enabled ADC10_A Interrupt generates a number in the ADC10IV register (see register description). This number can be evaluated or added to the program counter (PC) to automatically enter the appropriate software routine. Disabled ADC10_A Interrupts do not affect the ADC10IV value. Read access of the ADC10IV register automatically resets the highest-pending Interrupt condition and flag. Only the ADC10IFG0 is not reset by this ADC10IV read access. ADC10IFG0 is automatically reset by reading the ADC10MEM0 register or may be reset with software. Write access of the ADC10IV register clears all pending Interrupt conditions and flags. 718 ADC10_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC10_A Operation www.ti.com If another Interrupt is pending after servicing of an Interrupt, another Interrupt is generated. For example, if the ADC10OV, ADC10HIIFG and ADC10IFG0 Interrupts are pending when the Interrupt service routine accesses the ADC10IV register, the highest priority interrupt (ADC10OV Interrupt condition) is reset automatically. After the RETI instruction of the Interrupt service routine is executed, the ADC10HIIFG generates another Interrupt. 27.2.11.2 ADC10_A Interrupt Handling Software Example The following software example shows the recommended use of the ADC10IV. The ADC10IV value is added to the PC to automatically jump to the appropriate routine. • ADC10IFG0, ADC10TOV, and ADC10OV: 16 cycles ; Interrupt handler for ADC10_A. INT_ADC10_A ; Enter Interrupt Service Routine ADD &ADC10IV,PC ; Add offset to PC RETI ; Vector 0: No Interrupt JMP ADOV ; Vector 2: ADC10_A overflow JMP ADTOV ; Vector 4: ADC10_A timing overflow JMP ADHI ; Vector 6: ADC10_A window comparator high Interrupt JMP ADLO ; Vector 8: ADC10_A window comparator low Interrupt JMP ADIN ; Vector 10: ADC10_A window comparator in Interrupt ; ; Handler for ADC10IFG0 starts here. No JMP required. ; ADMEM MOV &ADC10MEM0,xxx ; Move result, flag is reset ... ; Other instruction needed? RETI ; Return ; ADOV ... ; Handle ADCMEM0 overflow RETI ; Return ; ADTOV ... ; Handle Conv. time overflow RETI ; Return ; ADHI ... ; Handle window comparator high Interrupt RETI ; Return ; ADLO ... ; Handle window comparator low Interrupt RETI ; Return ; ADIN ... ; Handle window comparator in window Interrupt RETI ; Return SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC10_A Copyright © 2008–2015, Texas Instruments Incorporated 719 ADC10_A Registers www.ti.com 27.3 ADC10_A Registers The ADC10_A registers are listed in Table 27-2. The base address of the ADC10_A can be found in the device-specific data sheet. The address offset of each ADC10_A register is given in Table 27-2. Table 27-2. ADC10_A Registers 720 Offset Acronym Register Name Type Reset Section 00h ADC10CTL0 ADC10_A Control 0 register Read/write 0000h Section 27.3.1 02h ADC10CTL1 ADC10_A Control 1 register Read/write 0000h Section 27.3.2 04h ADC10CTL2 ADC10_A Control 2 register Read/write 1000h Section 27.3.3 06h ADC10LO ADC10_A Window Comparator Low Threshold register Read/write 0000h Section 27.3.9 08h ADC10HI ADC10_A Window Comparator High Threshold register Read/write FF03h Section 27.3.7 0Ah ADC10MCTL0 ADC10_A Memory Control register Read/write 00h Section 27.3.6 12h ADC10MEM0 ADC10_A Conversion Memory register Read/write undefined Section 27.3.4 1Ah ADC10IE ADC10_A Interrupt Enable register Read/write 0000h Section 27.3.11 1Ch ADC10IFG ADC10_A Interrupt Flag register Read/write 0000h Section 27.3.12 1Eh ADC10IV ADC10_A Interrupt Vector register Read/write 0000h Section 27.3.13 ADC10_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC10_A Registers www.ti.com 27.3.1 ADC10CTL0 Register ADC10_A Control Register 0 Figure 27-12. ADC10CTL0 Register 15 14 r0 r0 7 6 13 12 11 10 r0 r0 rw-(0) rw-(0) 4 3 Reserved ADC10MSC 5 r0 8 rw-(0) rw-(0) ADC10SHTx Reserved rw-(0) 9 ADC10ON r0 rw-(0) 2 Reserved r0 r0 1 0 ADC10ENC ADC10SC rw-(0) rw-(0) Can be modified only when ADC10ENC = 0. Resetting ADC10ENC = 0 by software and changing these fields immediately shows effect when a conversion is active. Table 27-3. ADC10CTL0 Register Description Bit Field Type Reset Description 15-12 Reserved R 0h Reserved. Always reads as 0. 11-8 ADC10SHTx RW 0h ADC10_A sample-and-hold time. These bits define the number of ADC10CLK cycles in the sampling period for the ADC10. 0000b = 4 ADC10CLK cycles 0001b = 8 ADC10CLK cycles 0010b = 16 ADC10CLK cycles 0011b = 32 ADC10CLK cycles 0100b = 64 ADC10CLK cycles 0101b = 96 ADC10CLK cycles 0110b = 128 ADC10CLK cycles 0111b = 192 ADC10CLK cycles 1000b = 256 ADC10CLK cycles 1001b = 384 ADC10CLK cycles 1010b = 512 ADC10CLK cycles 1011b = 768 ADC10CLK cycles 1100b = 1024 ADC10CLK cycles 1101b = 1024 ADC10CLK cycles 1110b = 1024 ADC10CLK cycles 1111b = 1024 ADC10CLK cycles 7 ADC10MSC RW 0h ADC10_A multiple sample and conversion. Valid only for sequence or repeated modes. 0b = The sampling timer requires a rising edge of the SHI signal to trigger each sample-and-convert. 1b = The first rising edge of the SHI signal triggers the sampling timer, but further sample-and-conversions are performed automatically as soon as the prior conversion is completed. 6-5 Reserved R 0h Reserved. Always reads as 0. 4 ADC10ON RW 0h ADC10_A on 0b = ADC10_A off 1b = ADC10_A on 3-2 Reserved R 0h Reserved. Always reads as 0. 1 ADC10ENC RW 0h ADC10_A enable conversion 0b = ADC10_A disabled 1b = ADC10_A enabled 0 ADC10SC RW 0h ADC10_A start conversion. Software-controlled sample-and-conversion start. ADC10SC and ADC10ENC may be set together with one instruction. ADC10SC is reset automatically. 0b = No sample-and-conversion-start 1b = Start sample-and-conversion SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC10_A Copyright © 2008–2015, Texas Instruments Incorporated 721 ADC10_A Registers www.ti.com 27.3.2 ADC10CTL1 Register ADC10_A Control Register 1 Figure 27-13. ADC10CTL1 Register 15 14 13 12 11 r0 r0 r0 r0 rw-(0) rw-(0) 6 5 4 3 2 1 Reserved 7 ADC10SHSx ADC10DIVx rw-(0) 10 ADC10SSELx rw-(0) rw-(0) rw-(0) rw-(0) 9 8 ADC10SHP ADC10ISSH rw-(0) rw-(0) ADC10CONSEQx rw-(0) 0 ADC10BUSY rw-(0) r-(0) Can be modified only when ADC10ENC = 0. Resetting ADC10ENC = 0 by software and changing these fields immediately shows effect also when a conversion is active. Table 27-4. ADC10CTL1 Register Description Bit Field Type Reset Description 15-12 Reserved R 0h Reserved. Always reads as 0. 11-10 ADC10SHSx RW 0h ADC10_A sample-and-hold source select Can be modified only when ADC10ENC = 0. Resetting ADC10ENC = 0 by software and changing these fields immediately shows effect also when a conversion is active. 00b = ADC10SC bit 01b = Timer trigger 0 - see the device-specific data sheet 10b = Timer trigger 1 - see the device-specific data sheet 11b = Timer trigger 2 - see the device-specific data sheet 9 ADC10SHP RW 0h ADC10_A sample-and-hold pulse-mode select. This bit selects the source of the sampling signal (SAMPCON) to be either the output of the sampling timer or the sample-input signal directly. Can be modified only when ADC10ENC = 0. Resetting ADC10ENC = 0 by software and changing these fields immediately shows effect also when a conversion is active. 0b = SAMPCON signal is sourced from the sample-input signal 1b = SAMPCON signal is sourced from the sampling timer 8 ADC10ISSH RW 0h ADC10_A invert signal sample-and-hold Can be modified only when ADC10ENC = 0. Resetting ADC10ENC = 0 by software and changing these fields immediately shows effect also when a conversion is active. 0b = The sample-input signal is not inverted 1b = The sample-input signal is inverted 7-5 ADC10DIVx RW 0h ADC10_A clock divider Can be modified only when ADC10ENC = 0. Resetting ADC10ENC = 0 by software and changing these fields immediately shows effect also when a conversion is active. 000b = Divide by 1 001b = Divide by 2 010b = Divide by 3 011b = Divide by 4 100b = Divide by 5 101b = Divide by 6 110b = Divide by 7 111b = Divide by 8 722 ADC10_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC10_A Registers www.ti.com Table 27-4. ADC10CTL1 Register Description (continued) Bit Field Type Reset Description 4-3 ADC10SSELx RW 0h ADC10_A clock source select Can be modified only when ADC10ENC = 0. Resetting ADC10ENC = 0 by software and changing these fields immediately shows effect also when a conversion is active. 00b = MODCLK 01b = ACLK 10b = MCLK 11b = SMCLK 2-1 ADC10CONSEQx RW 0h ADC10_A conversion sequence mode select Can be modified only when ADC10ENC = 0. Resetting ADC10ENC = 0 by software and changing these fields immediately shows effect also when a conversion is active. 00b = Single-channel, single-conversion 01b = Sequence-of-channels 10b = Repeat-single-channel 11b = Repeat-sequence-of-channels 0 ADC10BUSY R 0h ADC10_A busy. This bit indicates an active sample or conversion operation. 0b = No operation is active 1b = A sequence, sample, or conversion is active SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC10_A Copyright © 2008–2015, Texas Instruments Incorporated 723 ADC10_A Registers www.ti.com 27.3.3 ADC10CTL2 Register ADC10_A Control Register 2 Figure 27-14. ADC10CTL2 Register 15 14 13 r0 r0 r0 6 5 12 11 10 9 r0 r0 r0 rw-(0) 1 Reserved 7 Reserved r0 r0 r0 8 ADC10PDIVx 4 3 2 ADC10RES ADC10DF ADC10SR rw-(1) rw-(0) rw-(0) rw-(0) 0 Reserved r0 r0 Can be modified only when ADC10ENC = 0. Resetting ADC10ENC = 0 by software and changing these fields immediately shows effect also when a conversion is active. Table 27-5. ADC10CTL2 Register Description Bit Field Type Reset Description 15-10 Reserved R 0h Reserved. Always reads as 0. 9-8 ADC10PDIVx RW 0h ADC10_A predivider. This bit predivides the selected ADC10_A clock source before it gets divided again using ADC10DIVx. 00b = Predivide by 1 01b = Predivide by 4 10b = Predivide by 64 11b = Reserved 7-5 Reserved R 0h Reserved. Always reads as 0. 4 ADC10RES RW 1h ADC10_A resolution. This bit defines the conversion result resolution. 0b = 8 bit (10 clock cycle conversion time) 1b = 10 bit (12 clock cycle conversion time) 3 ADC10DF RW 0h ADC10_A data read-back format. Data is always stored in the binary unsigned format. 0b = Binary unsigned. Theoretically, the analog input voltage -V(REF) results in 0000h, and the analog input voltage +V(REF) results in 03FFh. 1b = Signed binary (twos complement), left aligned. Theoretically, the analog input voltage -V(REF) results in 8000h, and the analog input voltage +V(REF) results in 7FC0h. 2 ADC10SR RW 0h ADC10_A sampling rate. This bit selects drive capability of the ADC10_A reference buffer for the maximum sampling rate. Setting ADC10SR reduces the current consumption of this buffer. 0b = ADC10_A buffer supports up to approximately 200 ksps. 1b = ADC10_A buffer supports up to approximately 50 ksps. 1-0 Reserved R 0h Reserved. Always reads as 0. 724 ADC10_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC10_A Registers www.ti.com 27.3.4 ADC10MEM0 Register ADC10_A Conversion Memory Register Figure 27-15. ADC10MEM0 Register 15 14 13 r0 r0 r0 7 6 5 12 11 10 r0 r0 r0 rw rw 4 3 2 1 0 rw rw rw Reserved 9 8 Conversion_Results Conversion_Results rw rw rw rw rw Table 27-6. ADC10MEM0 Register Description Bit Field Type Reset Description 15-10 Reserved R 0h Reserved. Always reads as 0. 9-0 Conversion_Results RW undefined The 10-bit conversion results are right justified. Bit 9 is the MSB. Bits 15-10 are 0 in 10-bit mode, and bits 15-8 are 0 in 8-bit mode. Writing to the conversion memory register corrupts the results. This data format is used if ADC10DF = 0. 27.3.5 ADC10MEM0 Register, Twos-Complement Format ADC10_A Conversion Memory Register, Twos-Complement Format Figure 27-16. ADC10MEM0 Register 15 14 13 12 11 10 9 8 rw rw rw 2 1 0 r0 r0 r0 Conversion_Results rw rw rw rw rw 7 6 5 4 3 Conversion_Results rw Reserved rw r0 r0 r0 Table 27-7. ADC10MEM0 Register Description Bit Field Type Reset Description 15-6 Conversion_Results RW undefined The 10-bit conversion results are left justified, twos-complement format. Bit 15 is the MSB. Bits 5-0 are 0 in 10-bit mode, and bits 7-0 are 0 in 8-bit mode. This data format is used if ADC10DF = 1. The data is stored in the right-justified format and is converted to the left-justified twos-complement format during read back. Writing to the conversion memory register corrupts the results. 5-0 Reserved R 0h Reserved. Always reads as 0. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC10_A Copyright © 2008–2015, Texas Instruments Incorporated 725 ADC10_A Registers www.ti.com 27.3.6 ADC10MCTL0 Register ADC10_A Conversion Memory Control Register Figure 27-17. ADC10MCTL0 Register 7 6 Reserved 5 4 3 2 rw-(0) rw-(0) rw-(0) ADC10SREFx r0 rw-(0) rw-(0) 1 0 rw-(0) rw-(0) ADC10INCHx Can be modified only when ADC10ENC = 0. Resetting ADC10ENC = 0 by software and changing these fields immediately shows effect also when a conversion is active. Table 27-8. ADC10MCTL0 Register Description Bit Field Type Reset Description 7 Reserved R 0h Reserved. Always reads as 0. 6-4 ADC10SREFx RW 0h Select reference. It is not recommended to change this setting while a conversion is ongoing. Can be modified only when ADC10ENC = 0. Resetting ADC10ENC = 0 by software and changing these fields immediately shows effect also when a conversion is active. 000b = V(R+) = AVCC and V(R-) = AVSS 001b = V(R+) = VREF and V(R-) = AVSS 010b = V(R+) = VEREF+ buffered and V(R-) = AVSS 011b = V(R+) = VEREF+ and V(R-) = AVSS 100b = V(R+) = AVCC and V(R-) = VEREF101b = V(R+) = VREF and V(R-) = VEREF110b = V(R+) = VEREF+ buffered and V(R-) = VEREF111b = V(R+) = VEREF+ and V(R-) = VEREF- 3-0 ADC10INCHx RW 0h Input channel select. Writing these bits select the channel for a single-conversion or the highest channel for a sequence of conversions. Reading these bits in ADC10CONSEQ = 01 or 11 returns the channel currently converted. ADC10INCHx is not synchronized, so a read while the state machine is not in "wait for enable" or "wait for trigger" could lead to a wrong result. Can be modified only when ADC10ENC = 0. Resetting ADC10ENC = 0 by software and changing these fields immediately shows effect also when a conversion is active. 0000b = A0 0001b = A1 0010b = A2 0011b = A3 0100b = A4 0101b = A5 0110b = A6 0111b = A7 1000b = A8 1001b = A9 1010b = A10 1011b = A11 1100b = A12 1101b = A13 1110b = A14 1111b = A15 726 ADC10_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC10_A Registers www.ti.com 27.3.7 ADC10HI Register ADC10_A Window Comparator High Threshold Register Figure 27-18. ADC10HI Register 15 14 13 12 11 10 9 r0 r0 r0 r0 r0 r0 rw-(1) rw-(1) 7 6 5 4 3 2 1 0 rw-(1) rw-(1) rw-(1) rw-(1) Reserved 8 High_Threshold High_Threshold rw-(1) rw-(1) rw-(1) rw-(1) Table 27-9. ADC10HI Register Description Bit Field Type Reset Description 15-10 Reserved R 0h Reserved. Always reads as 0. 9-0 High_Threshold RW 3FFh The 10-bit threshold value needs to be right justified. Bit 9 is the MSB. Bits 15-10 are 0 in 10-bit mode, and bits 15-8 are 0 in 8-bit mode. This data format is used if ADC10DF = 0. 27.3.8 ADC10HI Register, Twos-Complement Format ADC10_A Window Comparator High Threshold Register, Twos-Complement Format Figure 27-19. ADC10HI Register 15 14 13 12 11 10 9 8 rw-(1) rw-(1) rw-(1) 2 1 0 r0 r0 r0 High_Threshold rw-(0) rw-(1) rw-(1) rw-(1) rw-(1) 7 6 5 4 3 High_Threshold rw-(1) Reserved rw-(1) r0 r0 r0 Table 27-10. ADC10HI Register Description Bit Field Type Reset Description 15-6 High_Threshold RW 1FFh The 10-bit threshold value needs to be left justified if twos-complement format is chosen. Bit 15 is the MSB. Bits 5-0 are 0 in 10-bit mode, and bits 7-0 are 0 in 8bit mode. This data format is used if ADC10DF = 1. 5-0 Reserved R 0h Reserved. Always reads as 0. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC10_A Copyright © 2008–2015, Texas Instruments Incorporated 727 ADC10_A Registers www.ti.com 27.3.9 ADC10LO Register ADC10_A Window Comparator Low Threshold Register Figure 27-20. ADC10LO Register 15 14 13 12 11 10 9 r0 r0 r0 r0 r0 r0 rw-(0) rw-(0) 7 6 5 4 3 2 1 0 rw-(0) rw-(0) rw-(0) rw-(0) Reserved 8 Low_Threshold Low_Threshold rw-(0) rw-(0) rw-(0) rw-(0) Table 27-11. ADC10LO Register Description Bit Field Type Reset Description 15-10 Reserved R 0h Reserved. Always reads as 0. 9-0 Low_Threshold RW 0h The 10-bit threshold value needs to be right justified. Bit 9 is the MSB. Bits 15-10 are 0 in 10-bit mode, and bits 15-8 are 0 in 8-bit mode. This data format is used if ADC10DF = 0. 27.3.10 ADC10LO Register, Twos-Complement Format ADC10_A Window Comparator Low Threshold Register, Twos-Complement Format Figure 27-21. ADC10LO Register 15 14 13 12 11 10 9 8 rw-(0) rw-(0) rw-(0) 2 1 0 r0 r0 r0 Low_Threshold rw-(1) rw-(0) rw-(0) rw-(0) rw-(0) 7 6 5 4 3 Low_Threshold rw-(0) Reserved rw-(0) r0 r0 r0 Table 27-12. ADC10LO Register Description Bit Field Type Reset Description 15-6 Low_Threshold RW 200h The 10-bit threshold value needs to be left justified if twos-complement format is chosen. Bit 15 is the MSB. Bits 5-0 are 0 in 10-bit mode, and bits 7-0 are 0 in 8bit mode. This data format is used if ADC10DF = 1. 5-0 Reserved R 0h Reserved. Always reads as 0. 728 ADC10_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC10_A Registers www.ti.com 27.3.11 ADC10IE Register ADC10_A Interrupt Enable Register Figure 27-22. ADC10IE Register 15 14 13 12 r0 r0 r0 r0 11 10 9 8 r0 r0 r0 r0 Reserved 7 6 Reserved r0 5 4 3 2 1 0 ADC10TOVIE ADC10OVIE ADC10HIIE ADC10LOIE ADC10INIE ADC10IE0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r0 Table 27-13. ADC10IE Register Description Bit Field Type Reset Description 15-6 Reserved R 0h Reserved. Always reads as 0. 5 ADC10TOVIE RW 0h ADC10_A conversion-time-overflow interrupt enable. 0b = Conversion time overflow interrupt disabled 1b = Conversion time overflow interrupt enabled 4 ADC10OVIE RW 0h ADC10MEM0 overflow interrupt enable. 0b = Overflow interrupt disabled 1b = Overflow interrupt enabled 3 ADC10HIIE RW 0h Interrupt enable for the above upper threshold interrupt of the window comparator. 0b = Above upper threshold interrupt disabled 1b = Above upper threshold interrupt enabled 2 ADC10LOIE RW 0h Interrupt enable for the below lower threshold interrupt of the window comparator. 0b = Below lower threshold interrupt disabled 1b = Below lower threshold interrupt enabled 1 ADC10INIE RW 0h Interrupt enable for the inside of window interrupt of the window comparator. 0b = Inside of window interrupt disabled 1b = Inside of window interrupt enabled 0 ADC10IE0 RW 0h Interrupt enable. This bits enable or disable the interrupt request for a completed ADC10_A conversion. 0b = Interrupt disabled 1b = Interrupt enabled SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC10_A Copyright © 2008–2015, Texas Instruments Incorporated 729 ADC10_A Registers www.ti.com 27.3.12 ADC10IFG Register ADC10_A Interrupt Flag Register Figure 27-23. ADC10IFG Register 15 14 13 12 r0 r0 r0 r0 11 10 9 8 r0 r0 r0 r0 Reserved 7 6 Reserved r0 5 4 3 2 1 0 ADC10TOVIFG ADC10OVIFG ADC10HIIFG ADC10LOIFG ADC10INIFG ADC10IFG0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r0 Table 27-14. ADC10IFG Register Description Bit Field Type Reset Description 15-6 Reserved R 0h Reserved. Always reads as 0. 5 ADC10TOVIFG RW 0h The ADC10TOVIFG is set when an ADC10_A conversion is triggered before the actual conversion has completed. 0b = No interrupt pending 1b = Interrupt pending 4 ADC10OVIFG RW 0h The ADC10OVIFG is set when the ADC10MEM0 register is written before the last conversion result has been read. 0b = No interrupt pending 1b = Interrupt pending 3 ADC10HIIFG RW 0h The ADC10HIIFG is set when the result of the current ADC10_A conversion is greater than the upper threshold defined by the window comparator's upper threshold register. 0b = No interrupt pending 1b = Interrupt pending 2 ADC10LOIFG RW 0h The ADC10LOIFG is set when the result of the current ADC10_A conversion is below the lower threshold defined by the window comparator's lower threshold register. 0b = No interrupt pending 1b = Interrupt pending 1 ADC10INIFG RW 0h The ADC10INIFG is set when the result of the current ADC10_A conversion is within the thresholds defined by the window comparator's threshold registers. 0b = No interrupt pending 1b = Interrupt pending 0 ADC10IFG0 RW 0h The ADC10IFG0 is set when an ADC10_A conversion is completed. This bit gets reset, when the ADC10MEM0 get read, or may be reset by software. 0b = No interrupt pending 1b = Interrupt pending 730 ADC10_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC10_A Registers www.ti.com 27.3.13 ADC10IV Register ADC10_A Interrupt Vector Register Figure 27-24. ADC10IV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-(0) r-(0) r-(0) r0 ADC10IVx ADC10IVx r0 r0 r0 r0 Table 27-15. ADC10IV Register Description Bit Field Type Reset Description 15-0 ADC10IVx R 0h ADC10_A interrupt vector value. It generates an value that can be used as address offset for fast interrupt service routine handling. Writing to this register clears all pending interrupt flags. 00h = No interrupt pending 02h = Interrupt Source: ADC10MEM0 overflow; Interrupt Flag: ADC10OVIFG; Interrupt Priority: Highest 04h = Interrupt Source: Conversion time overflow; Interrupt Flag: ADC10TOVIFG 06h = Interrupt Source: ADC10HI Interrupt flag; Interrupt Flag: ADC10HIIFG 08h = Interrupt Source: ADC10LO Interrupt flag; Interrupt Flag: ADC10LOIFG 0Ah = Interrupt Source: ADC10IN Interrupt flag; Interrupt Flag: ADC10INIFG 0Ch = Interrupt Source: ADC10_A memory Interrupt flag; Interrupt Flag: ADC10IFG0; Interrupt Priority: Lowest SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC10_A Copyright © 2008–2015, Texas Instruments Incorporated 731 Chapter 28 SLAU208O – June 2008 – Revised May 2015 ADC12_A The ADC12_A module is a high-performance 12-bit analog-to-digital converter (ADC). This chapter describes the operation of the ADC12_A module. Topic ........................................................................................................................... 28.1 28.2 28.3 732 Page ADC12_A Introduction....................................................................................... 733 ADC12_A Operation .......................................................................................... 736 ADC12_A Registers .......................................................................................... 750 ADC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC12_A Introduction www.ti.com 28.1 ADC12_A Introduction The ADC12_A module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator (MSP430F54xx (non-A only) – in other devices, separate REF module), and a 16-word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent analog-to-digital converter (ADC) samples to be converted and stored without any CPU intervention. ADC12_A features include: • Greater than 200-ksps maximum conversion rate • Monotonic 12-bit converter with no missing codes • Sample-and-hold with programmable sampling periods controlled by software or timers • Conversion initiation by software or timers • Software-selectable on-chip reference voltage generation (MSP430F54xx (non-A only): 1.5 V or 2.5 V, all other devices: 1.5 V, 2.0 V, or 2.5 V) • Software-selectable internal or external reference • Up to 12 individually configurable external input channels • Conversion channels for internal temperature sensor, AVCC, and external references • Independent channel-selectable reference sources for both positive and negative references • Selectable conversion clock source • Single-channel, repeat-single-channel, sequence (autoscan), and repeat-sequence (repeated autoscan) conversion modes • ADC core and reference voltage can be powered down separately • Interrupt vector register for fast decoding of 18 ADC interrupts • 16 conversion-result storage registers The block diagram of ADC12_A is shown in Figure 28-1. In MSP430F54xx (non-A only), the reference generator is located in the ADC12_A module itself. In other devices, the reference generator is located in the reference module, REF. See the REF module chapter and the device-specific data sheet for further details. Figure 28-1 shows the block diagram for devices that have the REF module available. Figure 28-2 shows the block diagram for the MSP430F54xx (non-A only) which does not incorporate the REF module. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC12_A Copyright © 2008–2015, Texas Instruments Incorporated 733 ADC12_A Introduction REFOUT* REFMSTR* www.ti.com ADC12REFOUT 1 REFVSELx* 0 REFMSTR* ADC12REF2_5V 1 0 REFON* REFMSTR* 1 ADC12REFON 0 ADC12REFBURST VeREF+ ADC12SR 0 VREF-/VeREF- on 1.5/2.0/2.5 V Reference* VREF+ 1 Ref_x AVCC INCHx 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 A12 A13 A14 A15 1 ADC12ON 0 VR- Sample and Hold VR+ Convert ADC12SHP ADC12BUSY ADC12SHT0x 4 SAMPCON 0 AVCC CSTARTADDx R REFTCOFF* Temp. Sensor* 00 01 10 11 0 1 Sync 4 CONSEQx AVSS ADC12ENC ADC12SC Timer sources (see Note B) ADC12SHT1x ADC12MSC INCHx = 0Bh R ADC12SHSx ADC12ISSH Sample Timer SHI /4 ../1024 1 Ref_x ADC12SSELx ADC12DIVx ADC12PDIV 00 0 01 ACLK Divider :1 /1 .. /8 :4 10 MCLK 1 SMCLK 11 ADC12CLK 12-bit ADC Core S/H ADC12OSC (see Note A) AVSS ADC12SREF2 A0 A1 A2 A3 A4 A5 A6 A7 ADC12SREF1 ADC12SREF0 11 10 01 00 4 AVCC REFMSTR* ADC12MEM0 ADC12MCTL0 16 x 12 Memory Buffer - 16 x 8 Memory Control - ADC12MEM15 ADC12MCTL15 ADC12TCOFF 1 0 EN * Resides in REF module. A ADC12OSC refers to the MODCLK from the UCS. See the UCS chapter for more information. B See the device-specific data sheet for timer sources available. Figure 28-1. ADC12_A Block Diagram (Devices With REF Module) 734 ADC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC12_A Introduction www.ti.com ADC12REFOUT ADC12REFBURST VeREF+ ADC12SR ADC12REFON INCHx = 0Ah ADC12REF2_5V 0 on 1.5 V or 2.5 V Reference VREF+ 1 VREF-/VeREF- Ref_x AVCC INCHx AVSS 4 A0 A1 A2 A3 A4 A5 A6 A7 A12 A13 A14 A15 11 10 01 00 AVCC ADC12SREF1 ADC12SREF0 ADC12OSC (see Note A) 1 0 0000 ADC12ON ADC12SSELx 0001 ADC12SREF2 ADC12DIVx 0010 ADC12PDIV 0011 VRVR+ Sample 00 0100 and 0 01 ACLK Divider :1 0101 Hold 12-bit ADC Core 0110 /1 .. /8 :4 10 MCLK 1 0111 SMCLK 11 S/H 1000 Convert ADC12CLK 1001 ADC12SHSx 1010 ADC12BUSY ADC12ISSH 1011 ADC12SHT0x ADC12ENC 1100 ADC12SHP 4 1101 00 ADC12SC 1110 0 Sample Timer SHI 01 1111 1 /4 ../1024 Timer sources 1 Sync 10 (see Note B) SAMPCON 0 4 11 AVCC ADC12SHT1x ADC12MSC INCHx = 0Bh Ref_x CSTARTADDx R CONSEQx R EN ADC12MEM0 ADC12MCTL0 16 x 12 Memory Buffer - 16 x 8 Memory Control - ADC12MEM15 ADC12MCTL15 ADC12TCOFF AVSS Temp. Sensor A ADC12OSC refers to the MODCLK from the UCS. See the UCS chapter for more information. B See the device-specific data sheet for timer sources available. Figure 28-2. ADC12_A MSP430F54xx (non-A) Block Diagram SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC12_A Copyright © 2008–2015, Texas Instruments Incorporated 735 ADC12_A Operation www.ti.com 28.2 ADC12_A Operation The ADC12_A module is configured with user software. The setup and operation of the ADC12_A is discussed in the following sections. 28.2.1 12-Bit ADC Core The ADC core converts an analog input to its 12-bit digital representation and stores the result in conversion memory. The core uses two programmable and selectable voltage levels (VR+ and VR–) to define the upper and lower limits of the conversion. The digital output (NADC) is full scale (0FFFh) when the input signal is equal to or higher than VR+. The digital output (NADC) is zero when the input signal is equal to or lower than VR–. The input channel and the reference voltage levels (VR+ and VR–) are defined in the Vin – VR– NADC = 4095 × VR+ – VR– conversion-control memory. The conversion formula for the ADC result NADC is: The ADC12_A core is configured by two control registers, ADC12CTL0 and ADC12CTL1. The core is enabled with the ADC12ON bit. The ADC12_A can be turned off when it is not in use to save power. With few exceptions, the ADC12_A control bits can be modified only when ADC12ENC = 0. ADC12ENC must be set to 1 before any conversion can take place. 28.2.1.1 Conversion Clock Selection The ADC12CLK is used both as the conversion clock and to generate the sampling period when the pulse sampling mode is selected. The ADC12_A source clock is selected using the predivider controlled by the ADC12PDIV bit and the divider using the ADC12SSELx bits. The input clock can be divided from 1 to 32 using both the ADC12DIVx bits and the ADC12PDIV bit. Possible ADC12CLK sources are SMCLK, MCLK, ACLK, and the ADC12OSC. The ADC12OSC in the block diagram (see Figure 28-1) refers to the MODCLK 5-MHz oscillator from the UCS (see the UCS module for more information) which can vary with individual devices, supply voltage, and temperature. See the device-specific data sheet for the ADC12OSC specification. The user must ensure that the clock chosen for ADC12CLK remains active until the end of a conversion. If the clock is removed during a conversion, the operation does not complete and the results are invalid. 28.2.2 ADC12_A Inputs and Multiplexer The 12 external and 4 internal analog signals are selected as the channel for conversion by the analog input multiplexer. The input multiplexer is a break-before-make type to reduce input-to-input noise injection resulting from channel switching (see Figure 28-3). The input multiplexer is also a T-switch to minimize the coupling between channels. Channels that are not selected are isolated from the ADC, and the intermediate node is connected to analog ground (AVSS) so that the stray capacitance is grounded to eliminate crosstalk. The ADC12_A uses the charge redistribution method. When the inputs are internally switched, the switching action may cause transients on the input signal. These transients decay and settle before causing errant conversion. R ~ 100 W ADC12MCTLx.0–3 Input Ax ESD Protection Figure 28-3. Analog Multiplexer 736 ADC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC12_A Operation www.ti.com 28.2.2.1 Analog Port Selection The ADC12_A inputs are multiplexed with digital port pins. When analog signals are applied to digital gates, parasitic current can flow from VCC to GND. This parasitic current occurs if the input voltage is near the transition level of the gate. Disabling the digital part of the port pin eliminates the parasitic current flow and, therefore, reduces overall current consumption. The PxSEL.y bits provide the ability to disable the port pin input and output buffers. ; Px.0 and Px.1 configured for analog input BIS.B #3h,&PxSEL ; Px.1 and Px.0 ADC12_A function 28.2.3 Voltage Reference Generator The ADC12_A modules have a separate reference module (REF) that supplies three selectable voltage levels, 1.5 V, 2.0 V, and 2.5 V to the ADC12_A. Any of these voltages may be used internally and externally on pin VREF+. The internal AVCC can also be used as the reference. The ADC12_A module of the MSP430F54xx devices (non-A only) does not use the REF module and only has two selectable voltage levels, 1.5 V and 2.5 V. The internal AVCC can also be used as the reference. On devices with the REF module, the voltage reference settings can be controlled either by the REF module or by the ADC12_A module. This is to allow for backward compatability with older families. This is handled by the REFMSTR bit in the REF module. If REFMSTR = 1 (default), the REF module registers control the reference settings. If REFMSTR = 0, the ADC12_A reference setting define the reference voltage of the ADC12_A module. Four control settings that reside in the ADC12_A can be controlled also by four corresponding settings in the REF module: ADC12REF2_5V (REFVSEL), ADC12REFON (REFON), ADC12REFOUT (REFOUT), and ADC12TCOFF (REFTCOFF), respectively. When REFMSTR = 1, ADC12REF2_5V, ADC12REFON, ADC12REFOUT, and ADC12TCOFF are do not care. Similarly, when REFMSTR = 0, REFVSEL, REFON, REFOUT, and REFTCOFF are do not care. See the REF module chapter for further details. On devices with the REF module, to use the ADC12_A reference control bits, set REFMSTR = 0. In this case, setting ADC12REFON = 1 enables the reference voltage of the ADC12_A module. When ADC12REF2_5V = 1, the internal reference is 2.5 V; when ADC12REF2_5V = 0, the reference is 1.5 V. Similarly, on devices with the REF module, to use the REF module reference control bits, set REFMSTR = 1. In this case, setting REFON = 1 of the REF module enables the reference voltage. The REFVSEL bits of the REF module can be used to select either 1.5 V, 2.0 V, or 2.5 V. The reference can be turned off to save power when not in use. On the MSP430F54xx devices (non-A only), as stated previously, the REF module is not present, and these devices behave the same as devices with the REF module with REFMSTR = 0. External references may be supplied for VR+ and VR– through pins VREF+/VeREF+ and VREF-/VeREF-, respectively. External storage capacitors are required only if ADC12REFOUT = 1 (REFOUT = 1 when using REF module) and the reference voltage is made available at the pins. 28.2.3.1 Internal Reference Low-Power Features The ADC12_A internal reference generator is designed for low-power applications. The reference generator includes a bandgap voltage source and a separate buffer. The current consumption and settling time of each is specified separately in the device-specific data sheet. When ADC12REFON = 1 (REFON = 1 when using REF module), both are enabled; when ADC12REFON = 0 (REFON = 0 when using REF module), both are disabled. When ADC12REFON = 1 (REFON = 1 when using REF module) and ADC12REFBURST = 1 but no conversion is active, the buffer is automatically disabled and automatically reenabled when needed. When the buffer is disabled, it consumes no current. In this case, the bandgap voltage source remains enabled. The ADC12REFBURST bit controls the operation of the reference buffer. When ADC12REFBURST = 1, the buffer is automatically disabled when the ADC12_A is not actively converting, and is automatically reenabled when needed. When ADC12REFBURST = 0, the buffer is on continuously. This allows the reference voltage to be present outside the device continuously if ADC12REFOUT = 1 (REFOUT = 1 when using REF module). SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC12_A Copyright © 2008–2015, Texas Instruments Incorporated 737 ADC12_A Operation www.ti.com The internal reference buffer also has selectable speed versus power settings. When the maximum conversion rate is below 50 ksps, setting ADC12SR = 1 reduces the current consumption of the buffer by approximately 50%. 28.2.4 Auto Power Down The ADC12_A is designed for low-power applications. When the ADC12_A is not actively converting, the core is automatically disabled, and it is automatically reenabled when needed. The MODOSC is also automatically enabled when needed and disabled when not needed. 28.2.5 Sample and Conversion Timing An analog-to-digital conversion is initiated with a rising edge of the sample input signal SHI. The source for SHI is selected with the SHSx bits and includes the following: • ADC12SC bit • Up to three timer outputs (see the device-specific data sheet for available timer sources) The ADC12_A supports 8-bit, 10-bit, and 12-bit resolution modes selectable by the ADC12RES bits. The analog-to-digital conversion requires 9, 11, and 13 ADC12CLK cycles, respectively. The polarity of the SHI signal source can be inverted with the ADC12ISSH bit. The SAMPCON signal controls the sample period and start of conversion. When SAMPCON is high, sampling is active. The high-to-low SAMPCON transition starts the analog-to-digital conversion. Two different sample-timing methods are defined by control bit ADC12SHP, extended sample mode and pulse mode. See the device-specific data sheet for available timers for SHI sources. 28.2.5.1 Extended Sample Mode The extended sample mode is selected when ADC12SHP = 0. The SHI signal directly controls SAMPCON and defines the length of the sample period tsample. When SAMPCON is high, sampling is active. The highto-low SAMPCON transition starts the conversion after synchronization with ADC12CLK (see Figure 28-4). Start Sampling Stop Sampling Conversion Complete Start Conversion SHI 13 × ADC12CLK SAMPCON tsample tconvert tsync ADC12CLK Figure 28-4. Extended Sample Mode 28.2.5.2 Pulse Sample Mode Set ADC12SHP = 1 to select the pulse sample mode. The SHI signal is used to trigger the sampling timer. The ADC12SHT0x and ADC12SHT1x bits in ADC12CTL0 control the interval of the sampling timer that defines the SAMPCON sample period tsample. The sampling timer keeps SAMPCON high after synchronization with AD12CLK for a programmed interval tsample. The total sampling time is tsample plus tsync (see Figure 28-5). The ADC12SHTx bits select the sampling time in 4× multiples of ADC12CLK. ADC12SHT0x selects the sampling time for ADC12MCTL0 to ADC12MCTL7. ADC12SHT1x selects the sampling time for ADC12MCTL8 to ADC12MCTL15. 738 ADC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC12_A Operation www.ti.com Start Sampling Stop Sampling Start Conversion Conversion Complete SHI 13 × ADC12CLK SAMPCON tsample tconvert tsync ADC12CLK Figure 28-5. Pulse Sample Mode 28.2.5.3 Sample Timing Considerations When SAMPCON = 0, all Ax inputs are high impedance. When SAMPCON = 1, the selected Ax input can be modeled as an RC low-pass filter during the sampling time tsample (see Figure 28-6). An internal MUX-on input resistance RI (maximum 1.8 kΩ) in series with capacitor CI (25 pF maximum) is seen by the source. The capacitor CI voltage VC must be charged to within one-half LSB of the source voltage VS for an accurate n-bit conversion, where n is the bits of resolution required. MSP430 RS VI VS RI VC CI VI = Input voltage at pin Ax VS = External source voltage RS = External source resistance RI = Internal MUX-on input resistance CI = Input capacitance VC = Capacitance-charging voltage Figure 28-6. Analog Input Equivalent Circuit The resistance of the source RS and RI affect tsample. The following equation can be used to calculate the minimum sampling time tsample for a n-bit conversion, where n equals the bits of resolution: tsample > (RS + RI) × ln(2n+1) × CI + 800 ns Substituting the values for RI and CI given above, the equation becomes: tsample > (RS + 1.8 kΩ) × ln(2n+1) × 25 pF + 800 ns For example, for 12-bit resolution, if RS is 10 kΩ, tsample must be greater than 3.46 μs. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC12_A Copyright © 2008–2015, Texas Instruments Incorporated 739 ADC12_A Operation www.ti.com 28.2.6 Conversion Memory There are 16 ADC12MEMx conversion memory registers to store conversion results. Each ADC12MEMx is configured with an associated ADC12MCTLx control register. The SREFx bits define the voltage reference and the INCHx bits select the input channel. The ADC12EOS bit defines the end of sequence when a sequential conversion mode is used. A sequence rolls over from ADC12MEM15 to ADC12MEM0 when the ADC12EOS bit in ADC12MCTL15 is not set. The CSTARTADDx bits define the first ADC12MCTLx used for any conversion. If the conversion mode is single-channel or repeat-single-channel, the CSTARTADDx points to the single ADC12MCTLx to be used. If the conversion mode selected is either sequence-of-channels or repeat-sequence-of-channels, CSTARTADDx points to the first ADC12MCTLx location to be used in a sequence. A pointer, not visible to software, is incremented automatically to the next ADC12MCTLx in a sequence when each conversion completes. The sequence continues until an ADC12EOS bit in ADC12MCTLx is processed; this is the last control byte processed. When conversion results are written to a selected ADC12MEMx, the corresponding flag in the ADC12IFGx register is set. There are two formats available to store the conversion result, ADC12MEMx. When ADC12DF = 0, the conversion is right justified, unsigned. For 8-bit, 10-bit, and 12-bit resolutions, the upper 8, 6, and 4 bits of ADC12MEMx are always zeros, respectively. When ADC12DF = 1, the conversion result is left justified, twos complement. For 8-bit, 10-bit, and 12-bit resolutions, the lower 8, 6, and 4 bits of ADC12MEMx are always zeros, respectively. This is summarized in Table 28-1. Table 28-1. ADC12_A Conversion Result Formats Analog Input Voltage –VREF to +VREF ADC12DF ADC12RES Ideal Conversion Results ADC12MEMx 0 0 00 0 to 255 0000h - 00FFh 01 0 to 1023 0000h - 03FFh 0 10 0 to 4095 0000h - 0FFFh 1 00 -128 to 127 8000h - 7F00h 1 01 -512 to 511 8000h - 7FC0h 1 10 -2048 to 2047 8000h - 7FF0h 28.2.7 ADC12_A Conversion Modes The ADC12_A has four operating modes selected by the CONSEQx bits as listed in Table 28-2. All state diagrams assume a 12-bit resolution setting. Table 28-2. Conversion Mode Summary ADC12CONSEQx 740 Mode Operation 00 Single-channel single-conversion A single channel is converted once. 01 Sequence-of-channels (autoscan) A sequence of channels is converted once. 10 Repeat-single-channel A single channel is converted repeatedly. 11 Repeat-sequence-of-channels (repeated autoscan) A sequence of channels is converted repeatedly. ADC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC12_A Operation www.ti.com 28.2.7.1 Single-Channel Single-Conversion Mode A single channel is sampled and converted once. The ADC result is written to the ADC12MEMx defined by the CSTARTADDx bits. Figure 28-7 shows the flow of the single-channel single-conversion mode. When ADC12SC triggers a conversion, successive conversions can be triggered by the ADC12SC bit. When any other trigger source is used, ADC12ENC must be toggled between each conversion. CONSEQx = 00 ADC12 off ADC12ON = 1 ADC12ENC ¹ x = CSTARTADDx Wait for Enable SHSx = 0 and ADC12ENC = 1 or and ADC12SC = ADC12ENC = ADC12ENC = Wait for Trigger SAMPCON = ADC12ENC = 0 ADC12ENC = 0 (see Note A) SAMPCON = 1 Sample, Input Channel Defined in ADC12MCTLx SAMPCON = 12 × ADC12CLK Convert ADC12ENC = 0 (see Note A) 1 × ADC12CLK Conversion Completed, Result Stored Into ADC12MEMx, ADC12IFG.x is Set x = pointer to ADC12MCTLx A Conversion result is unpredictable. Figure 28-7. Single-Channel Single-Conversion Mode SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC12_A Copyright © 2008–2015, Texas Instruments Incorporated 741 ADC12_A Operation www.ti.com 28.2.7.2 Sequence-of-Channels Mode (Autoscan Mode) In sequence-of-channels mode, also referred to as autoscan mode, a sequence of channels is sampled and converted one time. The ADC results are written to the conversion memories starting with the ADCMEMx defined by the CSTARTADDx bits. The sequence stops after the measurement of the channel with a set ADC12EOS bit. Figure 28-8 shows the sequence-of-channels mode. When ADC12SC triggers a sequence, successive sequences can be triggered by the ADC12SC bit. The ADC12SC must be cleared by software after each sequence to trigger another sequence. When any other trigger source is used, ADC12ENC must be toggled between each sequence. CONSEQx = 01 ADC12 off ADC12ON = 1 ADC12ENC ¹ x = CSTARTADDx Wait for Enable ADC12ENC = ADC12ENC = SHSx = 0 and ADC12ENC = 1 or and ADC12SC = Wait for Trigger SAMPCON = ADC12EOS.x = 1 SAMPCON = 1 Sample, Input Channel Defined in ADC12MCTLx If x < 15 then x = x + 1 else x = 0 SAMPCON = If x < 15 then x = x + 1 else x = 0 12 × ADC12CLK Convert ADC12MSC = 1 and ADC12SHP = 1 and ADC12EOS.x = 0 1 × ADC12CLK (ADC12MSC = 0 or ADC12SHP = 0) and ADC12EOS.x = 0 Conversion Completed, Result Stored Into ADC12MEMx, ADC12IFG.x is Set x = pointer to ADC12MCTLx Figure 28-8. Sequence-of-Channels Mode 742 ADC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC12_A Operation www.ti.com 28.2.7.3 Repeat-Single-Channel Mode A single channel is sampled and converted continuously. The ADC results are written to the ADC12MEMx defined by the CSTARTADDx bits. It is necessary to read the result after each completed conversion, because only one ADC12MEMx memory is used and is overwritten by the next conversion. Figure 28-9 shows the repeat-single-channel mode. CONSEQx = 10 ADC12 off ADC12ON = 1 ADC12ENC ¹ x = CSTARTADDx Wait for Enable ADC12 ENC = SHSx = 0 and ADC12ENC = 1 or and ADC12SC = ADC12 ENC = Wait for Trigger SAMPCON = ADC12ENC = 0 SAMPCON = 1 Sample, Input Channel Defined in ADC12MCTLx 12 × ADC12CLK SAMPCON = ADC12MSC = 1 and ADC12SHP = 1 and ADC12ENC = 1 Convert 1 × ADC12CLK (ADC12MSC = 0 or ADC12SHP = 0) and ADC12ENC = 1 Conversion Completed, Result Stored Into ADC12MEMx, ADC12IFG.x is Set x = pointer to ADC12MCTLx Figure 28-9. Repeat-Single-Channel Mode SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC12_A Copyright © 2008–2015, Texas Instruments Incorporated 743 ADC12_A Operation www.ti.com 28.2.7.4 Repeat-Sequence-of-Channels Mode (Repeated Autoscan Mode) In this mode, a sequence of channels is sampled and converted repeatedly. This mode is also referred to as repeated autoscan mode. The ADC results are written to the conversion memories starting with the ADC12MEMx defined by the CSTARTADDx bits. The sequence ends after the measurement of the channel with a set ADC12EOS bit and the next trigger signal restarts the sequence. Figure 28-10 shows the repeat-sequence-of-channels mode. CONSEQx = 11 ADC12 off ADC12ON = 1 ADC12ENC ¹ x = CSTARTADDx Wait for Enable ADC12ENC = SHSx = 0 and ADC12ENC = 1 or and ADC12SC = ADC12ENC = Wait for Trigger ADC12ENC = 0 and ADC12EOS.x = 1 SAMPCON = SAMPCON = 1 Sample, Input Channel Defined in ADC12MCTLx SAMPCON = If ADC12EOS.x = 1 then x =CSTARTADDx else {if x < 15 then x = x + 1 else x = 0} Convert ADC12MSC = 1 and ADC12SHP = 1 and (ADC12ENC = 1 or ADC12EOS.x = 0) If ADC12EOS.x = 1 then x =CSTARTADDx else {if x < 15 then x = x + 1 else x = 0} 12 × ADC12CLK 1 × ADC12CLK (ADC12MSC = 0 or ADC12SHP = 0) and (ADC12ENC = 1 or ADC12EOS.x = 0) Conversion Completed, Result Stored Into ADC12MEMx, ADC12IFG.x is Set x = pointer to ADC12MCTLx Figure 28-10. Repeat-Sequence-of-Channels Mode 744 ADC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC12_A Operation www.ti.com 28.2.7.5 Using the Multiple Sample and Convert (ADC12MSC) Bit To configure the converter to perform successive conversions automatically and as quickly as possible, a multiple sample-and-convert function is available. When ADC12MSC = 1, CONSEQx > 0, and the sample timer is used, the first rising edge of the SHI signal triggers the first conversion. Successive conversions are triggered automatically as soon as the prior conversion is completed. Additional rising edges on SHI are ignored until the sequence is completed in the single-sequence mode, or until the ADC12ENC bit is toggled in repeat-single-channel or repeated-sequence modes. The function of the ADC12ENC bit is unchanged when using the ADC12MSC bit. 28.2.7.6 Stopping Conversions Stopping ADC12_A activity depends on the mode of operation. The recommended ways to stop an active conversion or conversion sequence are: • Resetting ADC12ENC in single-channel single-conversion mode stops a conversion immediately and the results are unpredictable. For correct results, poll the busy bit until reset before clearing ADC12ENC. • Resetting ADC12ENC during repeat-single-channel operation stops the converter at the end of the current conversion. • Resetting ADC12ENC during a sequence or repeat-sequence mode stops the converter at the end of the sequence. • Any conversion mode may be stopped immediately by setting the CONSEQx = 0 and resetting the ADC12ENC bit. Conversion data are unreliable. NOTE: No ADC12EOS bit set for sequence If no ADC12EOS bit is set and a sequence mode is selected, resetting the ADC12ENC bit does not stop the sequence. To stop the sequence, first select a single-channel mode and then reset ADC12ENC. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC12_A Copyright © 2008–2015, Texas Instruments Incorporated 745 ADC12_A Operation www.ti.com 28.2.8 Using the Integrated Temperature Sensor To use the on-chip temperature sensor, select the analog input channel INCHx = 1010. Any other configuration is done as if an external channel were selected, including reference selection and conversion-memory selection. The temperature sensor is part of the reference. Therefore, for devices with the REF module, in addition to the input channels selection INCHx = 1010, configuring ADC12REFON = 1 (for REFMSTR = 0) or REFON = 1 (for REFMSTR = 1) is required to enable the temperature sensor. For the MSP430F54xx (non-A) devices, which do not include the REF module, selecting the temperature sensor by configuring INCHx = 1010 automatically enables the reference generator required for the temperature sensor. Any other configuration is done as if an external channel were selected, including reference selection and conversion-memory selection. A typical temperature sensor transfer function is shown in Figure 28-11. The transfer function that is shown in Figure 28-11 is only an example; the device-specific data sheet contains the actual parameters for a given device. When using the temperature sensor, the sample period must be greater than 30 μs. The temperature sensor offset error can be large and may need to be calibrated for most applications. Temperature calibration values are available for use in the TLV descriptors (see the device-specific data sheet for locations). Typical Temperature Sensor Voltage – V 0.950 0.900 0.850 0.800 0.750 0.700 0.650 0.600 0.550 −40 −20 0 20 40 60 80 100 Ambient Temperature – °C Figure 28-11. Typical Temperature Sensor Transfer Function 746 ADC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC12_A Operation www.ti.com 28.2.9 ADC12_A Grounding and Noise Considerations As with any high-resolution ADC, appropriate printed circuit board layout and grounding techniques should be followed to eliminate ground loops, unwanted parasitic effects, and noise. Ground loops are formed when return current from the ADC flows through paths that are common with other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset voltages that can add to or subtract from the reference or input voltages of the ADC. The connections shown in Figure 28-12 prevent this. In addition to grounding, ripple and noise spikes on the power-supply lines due to digital switching or switching power supplies can corrupt the conversion result. To achieve high accuracy, TI recommends a noise-free design using separate analog and digital ground planes with a single-point connection. DVCC Digital Power Supply Decoupling + 10 µF 100 nF DVSS AVCC Analog Power Supply Decoupling + 10 µF Using an External Positive Reference Using an External Negative Reference 100 nF AVSS VREF+/VeREF+ + 10 µF 100 nF VREF–/VeREF– + 10 µF 100 nF Figure 28-12. ADC12_A Grounding and Noise Considerations SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC12_A Copyright © 2008–2015, Texas Instruments Incorporated 747 ADC12_A Operation www.ti.com 28.2.10 ADC12_A Interrupts The ADC12_A has 18 interrupt sources: • ADC12IFG0 to ADC12IFG15 • ADC12OV, ADC12MEMx overflow • ADC12TOV, ADC12_A conversion time overflow The ADC12IFGx bits are set when their corresponding ADC12MEMx memory register is loaded with a conversion result. An interrupt request is generated if the corresponding ADC12IEx bit and the GIE bit are set. The ADC12OV condition occurs when a conversion result is written to any ADC12MEMx before its previous conversion result was read. The ADC12TOV condition is generated when another sample-andconversion is requested before the current conversion is completed. The DMA is triggered after the conversion in single-channel conversion mode or after the completion of a sequence of channel conversions in sequence-of-channels conversion mode. 28.2.10.1 ADC12IV, Interrupt Vector Generator All ADC12_A interrupt sources are prioritized and combined to source a single interrupt vector. The interrupt vector register ADC12IV is used to determine which enabled ADC12_A interrupt source requested an interrupt. The highest-priority enabled ADC12_A interrupt generates a number in the ADC12IV register (see register description). This number can be evaluated or added to the program counter (PC) to automatically enter the appropriate software routine. Disabled ADC12_A interrupts do not affect the ADC12IV value. Any access, read or write, of the ADC12IV register automatically resets the ADC12OV condition or the ADC12TOV condition if either was the highest-pending interrupt. Neither interrupt condition has an accessible interrupt flag. The ADC12IFGx flags are not reset by an ADC12IV access. ADC12IFGx bits are reset automatically by accessing their associated ADC12MEMx register or may be reset with software. If another interrupt is pending after servicing of an interrupt, another interrupt is generated. For example, if the ADC12OV and ADC12IFG3 interrupts are pending when the interrupt service routine accesses the ADC12IV register, the ADC12OV interrupt condition is reset automatically. After the RETI instruction of the interrupt service routine is executed, the ADC12IFG3 generates another interrupt. 748 ADC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC12_A Operation www.ti.com 28.2.10.2 ADC12_A Interrupt Handling Software Example The following software example shows the recommended use of the ADC12IV and handling overhead. The ADC12IV value is added to the PC to automatically jump to the appropriate routine. The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not the task handling itself. The latencies are: • ADC12IFG0 to ADC12IFG14, ADC12TOV, and ADC12OV: 16 cycles • ADC12IFG15: 14 cycles The interrupt handler for ADC12IFG15 shows a way to check immediately if a higher-prioritized interrupt occurred during the processing of ADC12IFG15. This saves nine cycles if another ADC12_A interrupt is pending. ; Interrupt handler for ADC12. INT_ADC12 ; Enter Interrupt Service Routine ADD &ADC12IV,PC ; Add offset to PC RETI ; Vector 0: No interrupt JMP ADOV ; Vector 2: ADC overflow JMP ADTOV ; Vector 4: ADC timing overflow JMP ADM0 ; Vector 6: ADC12IFG0 ... ; Vectors 8-32 JMP ADM14 ; Vector 34: ADC12IFG14 ; ; Handler for ADC12IFG15 starts here. No JMP required. ; ADM15 MOV &ADC12MEM15,xxx ; Move result, flag is reset ... ; Other instruction needed? JMP INT_ADC12 ; Check other int pending ; ; ADC12IFG14-ADC12IFG1 handlers go here ; ADM0 MOV &ADC12MEM0,xxx ; Move result, flag is reset ... ; Other instruction needed? RETI ; Return ; ADTOV ... ; Handle Conv. time overflow RETI ; Return ; ADOV ... ; Handle ADCMEMx overflow RETI ; Return SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC12_A Copyright © 2008–2015, Texas Instruments Incorporated 749 ADC12_A Registers www.ti.com 28.3 ADC12_A Registers The ADC12_A registers are listed in Table 28-3. The base address of the ADC12_A can be found in the device-specific data sheet. The address offset of each ADC12_A register is given in Table 28-3. NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix "_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H" (ANYREG_H) refers to the upper byte of the register (bits 8 through 15). Table 28-3. ADC12_A Registers Offset Acronym Register Name Type Access Reset Section 00h ADC12CTL0 ADC12_A Control 0 Read/write Word 0000h Section 28.3.1 00h ADC12CTL0_L Read/write Byte 00h 01h ADC12CTL0_H Read/write Byte 00h Read/write Word 0000h 02h ADC12CTL1 ADC12_A Control 1 02h ADC12CTL1_L Read/write Byte 00h 03h ADC12CTL1_H Read/write Byte 00h Read/write Word 0020h Read/write Byte 20h Read/write Byte 00h Read/write Word 0000h Read/write Byte 00h Read/write Byte 00h Read/write Word 0000h Read/write Byte 00h Read/write Byte 00h Read Word 0000h 04h ADC12CTL2 04h ADC12CTL2_L 05h ADC12CTL2_H 0Ah ADC12IFG 0Ah ADC12IFG_L 0Bh ADC12IFG_H 0Ch ADC12IE 0Ch ADC12IE_L 0Dh ADC12IE_H 0Eh ADC12IV ADC12_A Control 2 ADC12_A Interrupt Flag ADC12_A Interrupt Enable ADC12_A Interrupt Vector 0Eh ADC12IV_L Read Byte 00h 0Fh ADC12IV_H Read Byte 00h 20h Read/write Word undefined 20h ADC12MEM0_L Read/write Byte undefined 21h ADC12MEM0_H Read/write Byte undefined 22h ADC12MEM0 Read/write Word undefined 22h ADC12MEM1_L Read/write Byte undefined 23h ADC12MEM1_H Read/write Byte undefined Read/write Word undefined Read/write Byte undefined Read/write Byte undefined Read/write Word undefined 24h ADC12MEM1 ADC12_A Memory 0 ADC12MEM2 24h ADC12MEM2_L 25h ADC12MEM2_H 26h ADC12MEM3 ADC12_A Memory 1 ADC12_A Memory 2 ADC12_A Memory 3 26h ADC12MEM3_L Read/write Byte undefined 27h ADC12MEM3_H Read/write Byte undefined Read/write Word undefined 28h ADC12MEM4 ADC12_A Memory 4 28h ADC12MEM4_L Read/write Byte undefined 29h ADC12MEM4_H Read/write Byte undefined Read/write Word undefined 2Ah ADC12MEM5 ADC12_A Memory 5 2Ah ADC12MEM5_L Read/write Byte undefined 2Bh ADC12MEM5_H Read/write Byte undefined Read/write Word undefined 2Ch ADC12MEM6 ADC12_A Memory 6 2Ch ADC12MEM6_L Read/write Byte undefined 2Dh ADC12MEM6_H Read/write Byte undefined 750 ADC12_A Section 28.3.2 Section 28.3.3 Section 28.3.7 Section 28.3.6 Section 28.3.8 Section 28.3.4 Section 28.3.4 Section 28.3.4 Section 28.3.4 Section 28.3.4 Section 28.3.4 Section 28.3.4 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC12_A Registers www.ti.com Table 28-3. ADC12_A Registers (continued) Offset Acronym Register Name Type Access Reset Section 2Eh ADC12MEM7 ADC12_A Memory 7 Read/write Word undefined Section 28.3.4 2Eh ADC12MEM7_L Read/write Byte undefined 2Fh ADC12MEM7_H Read/write Byte undefined Read/write Word undefined Read/write Byte undefined Read/write Byte undefined Read/write Word undefined Read/write Byte undefined Read/write Byte undefined Read/write Word undefined Read/write Byte undefined Read/write Byte undefined Read/write Word undefined 30h ADC12MEM8 30h ADC12MEM8_L 31h ADC12MEM8_H 32h ADC12MEM9 32h ADC12MEM9_L 33h ADC12MEM9_H 34h ADC12MEM10 34h ADC12MEM10_L 35h ADC12MEM10_H 36h ADC12MEM11 ADC12_A Memory 8 ADC12_A Memory 9 ADC12_A Memory 10 ADC12_A Memory 11 36h ADC12MEM11_L Read/write Byte undefined 37h ADC12MEM11_H Read/write Byte undefined 38h Read/write Word undefined 38h ADC12MEM12_L Read/write Byte undefined 39h ADC12MEM12_H Read/write Byte undefined 3Ah ADC12MEM12 Read/write Word undefined 3Ah ADC12MEM13_L Read/write Byte undefined 3Bh ADC12MEM13_H Read/write Byte undefined Read/write Word undefined Read/write Byte undefined Read/write Byte undefined Read/write Word undefined 3Ch ADC12MEM13 ADC12_A Memory 12 ADC12MEM14 3Ch ADC12MEM14_L 3Dh ADC12MEM14_H 3Dh ADC12MEM15 ADC12_A Memory 13 ADC12_A Memory 14 ADC12_A Memory 15 3Dh ADC12MEM15_L Read/write Byte undefined 3Eh ADC12MEM15_H Read/write Byte undefined Section 28.3.4 Section 28.3.4 Section 28.3.4 Section 28.3.4 Section 28.3.4 Section 28.3.4 Section 28.3.4 Section 28.3.4 10h ADC12MCTL0 ADC12_A Memory Control 0 Read/write Byte undefined Section 28.3.5 11h ADC12MCTL1 ADC12_A Memory Control 1 Read/write Byte undefined Section 28.3.5 12h ADC12MCTL2 ADC12_A Memory Control 2 Read/write Byte undefined Section 28.3.5 13h ADC12MCTL3 ADC12_A Memory Control 3 Read/write Byte undefined Section 28.3.5 14h ADC12MCTL4 ADC12_A Memory Control 4 Read/write Byte undefined Section 28.3.5 15h ADC12MCTL5 ADC12_A Memory Control 5 Read/write Byte undefined Section 28.3.5 16h ADC12MCTL6 ADC12_A Memory Control 6 Read/write Byte undefined Section 28.3.5 17h ADC12MCTL7 ADC12_A Memory Control 7 Read/write Byte undefined Section 28.3.5 18h ADC12MCTL8 ADC12_A Memory Control 8 Read/write Byte undefined Section 28.3.5 19h ADC12MCTL9 ADC12_A Memory Control 9 Read/write Byte undefined Section 28.3.5 1Ah ADC12MCTL10 ADC12_A Memory Control 10 Read/write Byte undefined Section 28.3.5 1Bh ADC12MCTL11 ADC12_A Memory Control 11 Read/write Byte undefined Section 28.3.5 1Ch ADC12MCTL12 ADC12_A Memory Control 12 Read/write Byte undefined Section 28.3.5 1Dh ADC12MCTL13 ADC12_A Memory Control 13 Read/write Byte undefined Section 28.3.5 1Eh ADC12MCTL14 ADC12_A Memory Control 14 Read/write Byte undefined Section 28.3.5 1Fh ADC12MCTL15 ADC12_A Memory Control 15 Read/write Byte undefined Section 28.3.5 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC12_A Copyright © 2008–2015, Texas Instruments Incorporated 751 ADC12_A Registers www.ti.com 28.3.1 ADC12CTL0 Register ADC12_A Control Register 0 Figure 28-13. ADC12CTL0 Register 15 14 rw-(0) rw-(0) 13 12 11 10 rw-(0) rw-(0) rw-(0) rw-(0) ADC12SHT1x 9 8 rw-(0) rw-(0) ADC12SHT0x 7 6 5 4 3 2 1 0 ADC12MSC ADC12REF2_5 V ADC12REFON ADC12ON ADC12OVIE ADC12TOVIE ADC12ENC ADC12SC rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) Can be modified only when ADC12ENC = 0 Table 28-4. ADC12CTL0 Register Description Bit Field Type Reset Description 15-12 ADC12SHT1x RW 0h ADC12_A sample-and-hold time. These bits define the number of ADC12CLK cycles in the sampling period for registers ADC12MEM8 to ADC12MEM15. 11-8 ADC12SHT0x RW 0h ADC12_A sample-and-hold time. These bits define the number of ADC12CLK cycles in the sampling period for registers ADC12MEM0 to ADC12MEM7. 0000b = 4 ADC12CLK cycles 0001b = 8 ADC12CLK cycles 0010b = 16 ADC12CLK cycles 0011b = 32 ADC12CLK cycles 0100b = 64 ADC12CLK cycles 0101b = 96 ADC12CLK cycles 0110b = 128 ADC12CLK cycles 0111b = 192 ADC12CLK cycles 1000b = 256 ADC12CLK cycles 1001b = 384 ADC12CLK cycles 1010b = 512 ADC12CLK cycles 1011b = 768 ADC12CLK cycles 1100b = 1024 ADC12CLK cycles 1101b = 1024 ADC12CLK cycles 1110b = 1024 ADC12CLK cycles 1111b = 1024 ADC12CLK cycles 7 ADC12MSC RW 0h ADC12_A multiple sample and conversion. Valid only for sequence or repeated modes. 0b = The sampling timer requires a rising edge of the SHI signal to trigger each sample-and-convert. 1b = The first rising edge of the SHI signal triggers the sampling timer, but further sample-and-conversions are performed automatically as soon as the prior conversion is completed. 6 ADC12REF2_5V RW 0h ADC12_A reference generator voltage. ADC12REFON must also be set. In devices with the REF module, this bit is only valid if the REFMSTR bit of the REF module is set to 0. In the F54xx devices (non-A), the REF module is not available. 0b = 1.5 V 1b = 2.5 V 5 ADC12REFON RW 0h ADC12_A reference generator on. In devices with the REF module, this bit is only valid if the REFMSTR bit of the REF module is set to 0. In the F54xx devices (non-A), the REF module is not available. 0b = Reference off 1b = Reference on 4 ADC12ON RW 0h ADC12_A on 0b = ADC12_A off 1b = ADC12_A on 752 ADC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC12_A Registers www.ti.com Table 28-4. ADC12CTL0 Register Description (continued) Bit Field Type Reset Description 3 ADC12OVIE RW 0h ADC12MEMx overflow-interrupt enable. The GIE bit must also be set to enable the interrupt. 0b = Overflow interrupt disabled 1b = Overflow interrupt enabled 2 ADC12TOVIE RW 0h ADC12_A conversion-time-overflow interrupt enable. The GIE bit must also be set to enable the interrupt. 0b = Conversion time overflow interrupt disabled 1b = Conversion time overflow interrupt enabled 1 ADC12ENC RW 0h ADC12_A enable conversion 0b = ADC12_A disabled 1b = ADC12_A enabled 0 ADC12SC RW 0h ADC12_A start conversion. Software-controlled sample-and-conversion start. ADC12SC and ADC12ENC may be set together with one instruction. ADC12SC is reset automatically. 0b = No sample-and-conversion-start 1b = Start sample-and-conversion SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC12_A Copyright © 2008–2015, Texas Instruments Incorporated 753 ADC12_A Registers www.ti.com 28.3.2 ADC12CTL1 Register ADC12_A Control Register 1 Figure 28-14. ADC12CTL1 Register 15 14 rw-(0) rw-(0) 6 13 12 11 rw-(0) rw-(0) rw-(0) rw-(0) 5 4 3 2 1 ADC12CSTARTADDx 7 ADC12SHSx ADC12DIVx rw-(0) 10 ADC12SSELx rw-(0) rw-(0) rw-(0) rw-(0) 9 8 ADC12SHP ADC12ISSH rw-(0) rw-(0) ADC12CONSEQx rw-(0) rw-(0) 0 ADC12BUSY r-(0) Can be modified only when ADC12ENC = 0 Table 28-5. ADC12CTL1 Register Description Bit Field Reset Description 15-12 ADC12CSTARTADDx RW 0h ADC12_A conversion start address. These bits select which ADC12_A conversion-memory register is used for a single conversion or for the first conversion in a sequence. The value of CSTARTADDx is 0 to 0Fh, corresponding to ADC12MEM0 to ADC12MEM15. 11-10 ADC12SHSx RW 0h ADC12_A sample-and-hold source select 00b = ADC12SC bit 01b = Timer source (see device-specific data sheet for exact timer and locations) 10b = Timer source (see device-specific data sheet for exact timer and locations) 11b = Timer source (see device-specific data sheet for exact timer and locations) 9 ADC12SHP RW 0h ADC12_A sample-and-hold pulse-mode select. This bit selects the source of the sampling signal (SAMPCON) to be either the output of the sampling timer or the sample-input signal directly. 0b = SAMPCON signal is sourced from the sample-input signal. 1b = SAMPCON signal is sourced from the sampling timer. 8 ADC12ISSH RW 0h ADC12_A invert signal sample-and-hold 0b = The sample-input signal is not inverted. 1b = The sample-input signal is inverted. 7-5 ADC12DIVx RW 0h ADC12_A clock divider 000b = Divide by 1 001b = Divide by 2 010b = Divide by 3 011b = Divide by 4 100b = Divide by 5 101b = Divide by 6 110b = Divide by 7 111b = Divide by 8 4-3 ADC12SSELx RW 0h ADC12_A clock source select 00b = ADC12OSC (MODCLK) 01b = ACLK 10b = MCLK 11b = SMCLK 2-1 ADC12CONSEQx RW 0h ADC12_A conversion sequence mode select 00b = Single-channel, single-conversion 01b = Sequence-of-channels 10b = Repeat-single-channel 11b = Repeat-sequence-of-channels 0 ADC12BUSY R 0h ADC12_A busy. This bit indicates an active sample or conversion operation. 0b = No operation is active. 1b = A sequence, sample, or conversion is active. 754 Type ADC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC12_A Registers www.ti.com 28.3.3 ADC12CTL2 Register ADC12_A Control Register 2 Figure 28-15. ADC12CTL2 Register 15 14 13 r-0 r-0 r-0 5 12 11 10 9 r-0 r-0 r-0 Reserved 7 6 ADC12TCOFF Reserved rw-(0) r-0 r-0 4 ADC12RES rw-(1) rw-(0) 8 ADC12PDIV rw-0 3 2 1 0 ADC12DF ADC12SR ADC12REFOU T ADC12REFBU RST rw-(0) rw-(0) rw-(0) rw-(0) Can be modified only when ADC12ENC = 0 Table 28-6. ADC12CTL2 Register Description Bit Field Type Reset Description 15-9 Reserved R 0h Reserved. Always reads as 0. 8 ADC12PDIV RW 0h ADC12_A predivider. This bit predivides the selected ADC12_A clock source. 0b = Predivide by 1 1b = Predivide by 4 7 ADC12TCOFF RW 0h ADC12_A temperature sensor off. If the bit is set, the temperature sensor turned off. This is used to save power. In devices with the REF module, this bit is only valid if the REFMSTR bit of the REF module is set to 0. In the F54xx devices (non-A), the REF module is not available. 0b = Temperature sensor on 1b = Temperature sensor off 6 Reserved R 0h Reserved. Always reads as 0. 5-4 ADC12RES RW 2h ADC12_A resolution. This bit defines the conversion result resolution. 00b = 8 bit (9 clock cycle conversion time) 01b = 10 bit (11 clock cycle conversion time) 10b = 12 bit (13 clock cycle conversion time) 11b = Reserved 3 ADC12DF RW 0h ADC12_A data read-back format. Data is always stored in the binary unsigned format. 0b = Binary unsigned. Theoretically, the analog input voltage -VREF results in 0000h, the analog input voltage +VREF results in 0FFFh. 1b = Signed binary (twos complement), left aligned. Theoretically, the analog input voltage -VREF results in 8000h, the analog input voltage +VREF results in 7FF0h. 2 ADC12SR RW 0h ADC12_A sampling rate. This bit selects the reference buffer drive capability for the maximum sampling rate. Setting ADC12SR reduces the current consumption of the reference buffer. 0b = Reference buffer supports up to approximately 200 ksps. 1b = Reference buffer supports up to approximately 50 ksps. 1 ADC12REFOUT RW 0h Reference output. In devices with the REF module, this bit is only valid if the REFMSTR bit of the REF module is set to 0. In the F54xx devices (non-A), the REF module is not available. 0b = Reference output off 1b = Reference output on 0 ADC12REFBURST RW 0h Reference burst 0b = Reference buffer on continuously 1b = Reference buffer on only during sample-and-conversion SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC12_A Copyright © 2008–2015, Texas Instruments Incorporated 755 ADC12_A Registers www.ti.com 28.3.4 ADC12MEMx Register ADC12_A Conversion Memory Register Figure 28-16. ADC12MEMx Register 15 14 13 12 rw rw rw rw 7 6 5 4 11 10 9 8 rw rw rw rw 3 2 1 0 rw rw rw Conversion Results Conversion Results rw rw rw rw rw Table 28-7. ADC12MEMx Register Description Bit Field Type Reset Description 15-0 Conversion Results RW undefined Binary unsigned format: This data format is used if ADC12DF = 0. The 12-bit conversion results are right justified. Bit 11 is the MSB. Bits 15–12 are 0 in 12bit mode, bits 15–10 are 0 in 10-bit mode, and bits 15–8 are 0 in 8-bit mode. Writing to the conversion memory registers corrupts the results. Twos-complement format: This data format is used if ADC12DF = 1. The 12-bit conversion results are left justified, twos-complement format. Bit 15 is the MSB. Bits 3–0 are 0 in 12-bit mode, bits 5–0 are 0 in 10-bit mode, and bits 7–0 are 0 in 8-bit mode. The data is stored in the right-justified format and is converted to the left-justified twos-complement format during read back. 756 ADC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC12_A Registers www.ti.com 28.3.5 ADC12MCTLx Register ADC12_A Conversion Memory Control Register Figure 28-17. ADC12MCTLx Register 7 6 ADC12EOS 5 4 3 2 rw rw rw ADC12SREFx rw rw rw 1 0 rw rw ADC12INCHx Can be modified only when ADC12ENC = 0 Table 28-8. ADC12MCTLx Register Description Bit Field Type Reset Description 7 ADC12EOS RW 0h End of sequence. Indicates the last conversion in a sequence. 0b = Not end of sequence 1b = End of sequence 6-4 ADC12SREFx RW 0h Select reference 000b = V(R+) = AVCC and V(R-) = AVSS 001b = V(R+) = VREF+ and V(R-) = AVSS 010b = V(R+) = VeREF+ and V(R-) = AVSS 011b = V(R+) = VeREF+ and V(R-) = AVSS 100b = V(R+) = AVCC and V(R-) = VREF-/VeREF101b = V(R+) = VREF+ and V(R-) = VREF-/VeREF110b = V(R+) = VeREF+ and V(R-) = VREF-/VeREF111b = V(R+) = VeREF+ and V(R-) = VREF-/VeREF- 3-0 ADC12INCHx RW 0h Input channel select 0000b = A0 0001b = A1 0010b = A2 0011b = A3 0100b = A4 0101b = A5 0110b = A6 0111b = A7 1000b = VeREF+ 1001b = VREF-/VeREF1010b = Temperature diode 1011b = (AVCC – AVSS) / 2 1100b = A12. On devices with the Battery Backup System, VBAT can be measured internally by the ADC. 1101b = A13 1110b = A14 1111b = A15 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC12_A Copyright © 2008–2015, Texas Instruments Incorporated 757 ADC12_A Registers www.ti.com 28.3.6 ADC12IE Register ADC12_A Interrupt Enable Register Figure 28-18. ADC12IE Register 15 14 13 12 11 10 9 8 ADC12IE15 ADC12IE14 ADC12IE13 ADC12IE12 ADC12IE11 ADC12IE10 ADC12IE9 ADC12IE8 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) 7 6 5 4 3 2 1 0 ADC12IE7 ADC12IE6 ADC12IE5 ADC12IE4 ADC12IE3 ADC12IE2 ADC12IE1 ADC12IE0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) Table 28-9. ADC12IE Register Description Bit Field Type Reset Description 15 ADC12IE15 RW 0h Interrupt enable. This bit enables or disables the interrupt request for the ADC12IFG15 bit. 0b = Interrupt disabled 1b = Interrupt enabled 14 ADC12IE14 RW 0h Interrupt enable. This bit enables or disables the interrupt request for the ADC12IFG14 bit. 0b = Interrupt disabled 1b = Interrupt enabled 13 ADC12IE13 RW 0h Interrupt enable. This bit enables or disables the interrupt request for the ADC12IFG13 bit. 0b = Interrupt disabled 1b = Interrupt enabled 12 ADC12IE12 RW 0h Interrupt enable. This bit enables or disables the interrupt request for the ADC12IFG12 bit. 0b = Interrupt disabled 1b = Interrupt enabled 11 ADC12IE11 RW 0h Interrupt enable. This bit enables or disables the interrupt request for the ADC12IFG11 bit. 0b = Interrupt disabled 1b = Interrupt enabled 10 ADC12IE10 RW 0h Interrupt enable. This bit enables or disables the interrupt request for the ADC12IFG10 bit. 0b = Interrupt disabled 1b = Interrupt enabled 9 ADC12IE9 RW 0h Interrupt enable. This bit enables or disables the interrupt request for the ADC12IFG9 bit. 0b = Interrupt disabled 1b = Interrupt enabled 8 ADC12IE8 RW 0h Interrupt enable. This bit enables or disables the interrupt request for the ADC12IFG8 bit. 0b = Interrupt disabled 1b = Interrupt enabled 7 ADC12IE7 RW 0h Interrupt enable. This bit enables or disables the interrupt request for the ADC12IFG7 bit. 0b = Interrupt disabled 1b = Interrupt enabled 6 ADC12IE6 RW 0h Interrupt enable. This bit enables or disables the interrupt request for the ADC12IFG6 bit. 0b = Interrupt disabled 1b = Interrupt enabled 758 ADC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC12_A Registers www.ti.com Table 28-9. ADC12IE Register Description (continued) Bit Field Type Reset Description 5 ADC12IE5 RW 0h Interrupt enable. This bit enables or disables the interrupt request for the ADC12IFG5 bit. 0b = Interrupt disabled 1b = Interrupt enabled 4 ADC12IE4 RW 0h Interrupt enable. This bit enables or disables the interrupt request for the ADC12IFG4 bit. 0b = Interrupt disabled 1b = Interrupt enabled 3 ADC12IE3 RW 0h Interrupt enable. This bit enables or disables the interrupt request for the ADC12IFG3 bit. 0b = Interrupt disabled 1b = Interrupt enabled 2 ADC12IE2 RW 0h Interrupt enable. This bit enables or disables the interrupt request for the ADC12IFG2 bit. 0b = Interrupt disabled 1b = Interrupt enabled 1 ADC12IE1 RW 0h Interrupt enable. This bit enables or disables the interrupt request for the ADC12IFG1 bit. 0b = Interrupt disabled 1b = Interrupt enabled 0 ADC12IE0 RW 0h Interrupt enable. This bit enables or disables the interrupt request for the ADC12IFG0 bit. 0b = Interrupt disabled 1b = Interrupt enabled SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC12_A Copyright © 2008–2015, Texas Instruments Incorporated 759 ADC12_A Registers www.ti.com 28.3.7 ADC12IFG Register ADC12_A Interrupt Flag Register Figure 28-19. ADC12IFG Register 15 14 13 12 11 10 9 8 ADC12IFG15 ADC12IFG14 ADC12IFG13 ADC12IFG12 ADC12IFG11 ADC12IFG10 ADC12IFG9 ADC12IFG8 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) 7 6 5 4 3 2 1 0 ADC12IFG7 ADC12IFG6 ADC12IFG5 ADC12IFG4 ADC12IFG3 ADC12IFG2 ADC12IFG1 ADC12IFG0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) Table 28-10. ADC12IFG Register Description Bit Field Type Reset Description 15 ADC12IFG15 RW 0h ADC12MEM15 interrupt flag. This bit is set when ADC12MEM15 is loaded with a conversion result. This bit is reset if the ADC12MEM15 is accessed, or it may be reset with software. 0b = No interrupt pending 1b = Interrupt pending 14 ADC12IFG14 RW 0h ADC12MEM14 interrupt flag. This bit is set when ADC12MEM14 is loaded with a conversion result. This bit is reset if the ADC12MEM14 is accessed, or it may be reset with software. 0b = No interrupt pending 1b = Interrupt pending 13 ADC12IFG13 RW 0h ADC12MEM13 interrupt flag. This bit is set when ADC12MEM13 is loaded with a conversion result. This bit is reset if the ADC12MEM13 is accessed, or it may be reset with software. 0b = No interrupt pending 1b = Interrupt pending 12 ADC12IFG12 RW 0h ADC12MEM12 interrupt flag. This bit is set when ADC12MEM12 is loaded with a conversion result. This bit is reset if the ADC12MEM12 is accessed, or it may be reset with software. 0b = No interrupt pending 1b = Interrupt pending 11 ADC12IFG11 RW 0h ADC12MEM11 interrupt flag. This bit is set when ADC12MEM11 is loaded with a conversion result. This bit is reset if the ADC12MEM11 is accessed, or it may be reset with software. 0b = No interrupt pending 1b = Interrupt pending 10 ADC12IFG10 RW 0h ADC12MEM10 interrupt flag. This bit is set when ADC12MEM10 is loaded with a conversion result. This bit is reset if the ADC12MEM10 is accessed, or it may be reset with software. 0b = No interrupt pending 1b = Interrupt pending 9 ADC12IFG9 RW 0h ADC12MEM9 interrupt flag. This bit is set when ADC12MEM9 is loaded with a conversion result. This bit is reset if the ADC12MEM9 is accessed, or it may be reset with software. 0b = No interrupt pending 1b = Interrupt pending 8 ADC12IFG8 RW 0h ADC12MEM8 interrupt flag. This bit is set when ADC12MEM8 is loaded with a conversion result. This bit is reset if the ADC12MEM8 is accessed, or it may be reset with software. 0b = No interrupt pending 1b = Interrupt pending 760 ADC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated ADC12_A Registers www.ti.com Table 28-10. ADC12IFG Register Description (continued) Bit Field Type Reset Description 7 ADC12IFG7 RW 0h ADC12MEM7 interrupt flag. This bit is set when ADC12MEM7 is loaded with a conversion result. This bit is reset if the ADC12MEM7 is accessed, or it may be reset with software. 0b = No interrupt pending 1b = Interrupt pending 6 ADC12IFG6 RW 0h ADC12MEM6 interrupt flag. This bit is set when ADC12MEM6 is loaded with a conversion result. This bit is reset if the ADC12MEM6 is accessed, or it may be reset with software. 0b = No interrupt pending 1b = Interrupt pending 5 ADC12IFG5 RW 0h ADC12MEM5 interrupt flag. This bit is set when ADC12MEM5 is loaded with a conversion result. This bit is reset if the ADC12MEM5 is accessed, or it may be reset with software. 0b = No interrupt pending 1b = Interrupt pending 4 ADC12IFG4 RW 0h ADC12MEM4 interrupt flag. This bit is set when ADC12MEM4 is loaded with a conversion result. This bit is reset if the ADC12MEM4 is accessed, or it may be reset with software. 0b = No interrupt pending 1b = Interrupt pending 3 ADC12IFG3 RW 0h ADC12MEM3 interrupt flag. This bit is set when ADC12MEM3 is loaded with a conversion result. This bit is reset if the ADC12MEM3 is accessed, or it may be reset with software. 0b = No interrupt pending 1b = Interrupt pending 2 ADC12IFG2 RW 0h ADC12MEM2 interrupt flag. This bit is set when ADC12MEM2 is loaded with a conversion result. This bit is reset if the ADC12MEM2 is accessed, or it may be reset with software. 0b = No interrupt pending 1b = Interrupt pending 1 ADC12IFG1 RW 0h ADC12MEM1 interrupt flag. This bit is set when ADC12MEM1 is loaded with a conversion result. This bit is reset if the ADC12MEM1 is accessed, or it may be reset with software. 0b = No interrupt pending 1b = Interrupt pending 0 ADC12IFG0 RW 0h ADC12MEM0 interrupt flag. This bit is set when ADC12MEM0 is loaded with a conversion result. This bit is reset if the ADC12MEM0 is accessed, or it may be reset with software. 0b = No interrupt pending 1b = Interrupt pending SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ADC12_A Copyright © 2008–2015, Texas Instruments Incorporated 761 ADC12_A Registers www.ti.com 28.3.8 ADC12IV Register ADC12_A Interrupt Vector Register Figure 28-20. ADC12IV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-(0) r-(0) r-(0) r0 ADC12IVx ADC12IVx r0 r0 r-(0) r-(0) Table 28-11. ADC12IV Register Description Bit Field Type Reset Description 15-0 ADC12IVx R 0h ADC12_A interrupt vector value 00h = No interrupt pending 02h = Interrupt Source: ADC12MEMx overflow; Interrupt Flag: –; Interrupt Priority: Highest 04h = Interrupt Source: Conversion time overflow; Interrupt Flag: – 06h = Interrupt Source: ADC12MEM0 interrupt flag; Interrupt Flag: ADC12IFG0 08h = Interrupt Source: ADC12MEM1 interrupt flag; Interrupt Flag: ADC12IFG1 0Ah = Interrupt Source: ADC12MEM2 interrupt flag; Interrupt Flag: ADC12IFG2 0Ch = Interrupt Source: ADC12MEM3 interrupt flag; Interrupt Flag: ADC12IFG3 0Eh = Interrupt Source: ADC12MEM4 interrupt flag; Interrupt Flag: ADC12IFG4 10h = Interrupt Source: ADC12MEM5 interrupt flag; Interrupt Flag: ADC12IFG5 12h = Interrupt Source: ADC12MEM6 interrupt flag; Interrupt Flag: ADC12IFG6 14h = Interrupt Source: ADC12MEM7 interrupt flag; Interrupt Flag: ADC12IFG7 16h = Interrupt Source: ADC12MEM8 interrupt flag; Interrupt Flag: ADC12IFG8 18h = Interrupt Source: ADC12MEM9 interrupt flag; Interrupt Flag: ADC12IFG9 1Ah = Interrupt Source: ADC12MEM10 interrupt flag; Interrupt Flag: ADC12IFG10 1Ch = Interrupt Source: ADC12MEM11 interrupt flag; Interrupt Flag: ADC12IFG11 1Eh = Interrupt Source: ADC12MEM12 interrupt flag; Interrupt Flag: ADC12IFG12 20h = Interrupt Source: ADC12MEM13 interrupt flag; Interrupt Flag: ADC12IFG13 22h = Interrupt Source: ADC12MEM14 interrupt flag; Interrupt Flag: ADC12IFG14 24h = Interrupt Source: ADC12MEM15 interrupt flag; Interrupt Flag: ADC12IFG15; Interrupt Priority: Lowest 762 ADC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Chapter 29 SLAU208O – June 2008 – Revised May 2015 SD24_B The SD24_B is a multi-input multiple-converter sigma-delta analog-to-digital conversion module. This chapter describes the operation of the SD24_B module. Topic 29.1 29.2 29.3 ........................................................................................................................... Page SD24_B Introduction ......................................................................................... 764 SD24_B Operation ............................................................................................ 768 SD24_B Registers ............................................................................................. 780 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SD24_B Copyright © 2008–2015, Texas Instruments Incorporated 763 SD24_B Introduction www.ti.com 29.1 SD24_B Introduction The SD24_B module consists of up to eight independent sigma-delta analog-to-digital converters. The converters are based on second-order oversampling sigma-delta modulators and digital decimation filters. The decimation filters are comb type filters with selectable oversampling ratios of up to 1024. Additional filtering can be done in software. Features of the SD24_B include: • Second-order sigma-delta architecture • Up to eight independent simultaneously-sampling ADCs. (The number of converters is device dependent, see the device-specific data sheet.) Figure 29-1 shows an overview block diagram of the SD24_B module. Figure 29-2 shows the block diagram of the voltage reference and clock generation circuitry. The reference voltage generation is located in the shared reference module (see the device-specific data sheet). Figure 29-3 shows the converter-specific block diagram. 764 SD24_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated SD24_B Introduction www.ti.com Reference and Clock Generation VREF fM MCLK SMCLK ACLK ext. Clock fMC Converter 0 ext. Trigger 0 ext. Trigger 1 ext. Trigger 2 SD24GRP0SC SD24GRP0SC SD24GRP0SC SD24GRP0SC SD0P0 SD0N0 VREF fM fMC VREF fM fMC Converter 1 SD1P0 SD1N0 Converter 7 SD7P0 SD7N0 fM Trigger Generator Figure 29-1. SD24_B Overview Block Diagram SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SD24_B Copyright © 2008–2015, Texas Instruments Incorporated 765 SD24_B Introduction www.ti.com Reference and Clock Generation SD24REFS Request to shared REF VREF ~1.2 V from shared REF Pad VREF SD24SSELx MCLK SMCLK ACLK ext. Clock 2 00 01 fSD24SCLK 10 11 SD24PDIVx SD24DIVx 3 /1 /2 /4 /8 ... /128 SD24M4 5 /1 /2 /3 /4 ... /32 fSD24 0 /4 1 fM (to modulators) fMC SD24CLKOS (to Manchester decoder) 0 to Pad 1 Figure 29-2. SD24_B Reference and Clock Generation Block Diagram 766 SD24_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated SD24_B Introduction www.ti.com Converter 0 Converter 1 SD24SCSx 3 SD24SNGL 000 001 010 011 100 101 110 111 SD24SC ext. Trigger 1 ext. Trigger 2 ext. Trigger 3 SD24GRP0SC SD24GRP1SC SD24GRP2SC SD24GRP3SC Conversion Logic VREF fM SD24GAINx SD24BOSR1 SD24CAL 3 SD24DI SD24DFSx 2 SD1P0 SD1N0 2nd Order ΣΔ Modulator + PGA - 0 SD24ALGN SD24DFx 1 2 SD24BMEMH1 SD24BMEML1 0 1 SD24BPRE1 SD24MCx 2 to Pad Output Encoder from Pad Input Decoder Data Clock Converter 2 (up to Converter 7) Figure 29-3. SD24_B Converter Block Diagram SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SD24_B Copyright © 2008–2015, Texas Instruments Incorporated 767 SD24_B Operation www.ti.com 29.2 SD24_B Operation The SD24_B module is configured with user software. The setup and operation of the SD24_B is described in the following sections. 29.2.1 Principle of Operation A sigma-delta analog-to-digital converter basically consists of two parts: the analog part (called the modulator) and the digital part (called the decimation filter). The modulator of the SD24_B provides a bitstream of zeros and ones to the digital decimation filter. The digital filter averages the bitstream from the modulator over a given number of bits (specified by the oversampling rate) and provides samples at a reduced rate for further processing to the CPU. Averaging can be used to increase the signal-to-noise performance of a conversion (see Figure 30-2 a and b). With a conventional ADC, each factor-of-4 oversampling can improve the SNR by approximately 6 dB or 1 bit. To achieve a 16-bit resolution out of a simple 1-bit ADC would require an impractical oversampling rate of 415 = 1 073 741 824. To overcome this limitation, the sigma-delta modulator implements a technique called noise-shaping—due to an implemented feedback loop and integrators, the quantization noise is pushed to higher frequencies and, thus, much lower oversampling rates are sufficient to achieve high resolutions (see Figure 30-2 c). a) Signal Quantization Noise fSignal fs/2 fs b) Signal Digital Filter Quantization Noise Noise filtered out by digital filter fSignal fs/2 OSR × fs 2 OSR × fs c) Signal Digital Filter “Shaped” Quantization Noise Noise filtered out by digital filter fSignal fs/2 OSR × fs 2 OSR × fs Figure 29-4. Sigma-Delta Principle 768 SD24_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated SD24_B Operation www.ti.com 29.2.2 ADC Core The analog-to-digital conversion is performed by a 1-bit second-order sigma-delta modulator. A single-bit comparator within the modulator quantizes the input signal with the modulator frequency fM. The resulting 1-bit data stream is averaged by the digital filter for the conversion result. 29.2.3 Voltage Reference The SD24_B module can use an external reference voltage (SD24REFS = 0) or an internal reference (SD24REFS = 1). The internal SD24_B reference provides one fixed voltage of approximately 1.2 V. It requests and uses the bandgap voltage provided by the shared reference (REF) module as its reference voltage. The internal reference voltage is used by all SD24_B converters when requested with SD24REFS = 1. When using the internal reference, connect an external 100-nF capacitor connected from VREF to AVSS to reduce noise. See the device-specific data sheet for the parameters of the internal reference. An external voltage reference must be applied to the VREF input when SD24REFS = 0. See the devicespecific data sheet for the supported voltage range. 29.2.4 Modulator Clock The modulator clock is generated globally for all modulators so that all modulators convert synchronously. NOTE: Using an FLL-Based Clock When an FLL-based clock with enabled clock modulation (DISMOD = 0 in UCSCTL1) is selected to clock the sigma-delta modulator, the clock that is provided to the modulator must be DCOCLK divided at least by 2. The division can be done in the FLL itself by selecting DCOCLKDIV instead of DCOCLK as the clock source and setting the FLLD bits to a nonzero value, by using the clock system clock dividers DIVM, DIVS, or DIVA corresponding to the sigma-delta input clock MCLK, SMCLK, or ACLK, respectively, or by using the clock divider build into the sigma-delta module. 29.2.5 Auto Power-Down The SD24_B is designed for low-power applications. When a SD24_B converter is not actively converting, it is automatically disabled; it is automatically re-enabled when a conversion is started. When a converter is disabled, it consumes no current. 29.2.6 Analog Inputs 29.2.6.1 Analog Input Range and PGA The full-scale input voltage range for each analog input pair is dependent on the gain setting of each converter. See the device-specific data sheet for full-scale input specifications. 29.2.6.2 Analog Input Setup The analog input of each converter is configured using the SD24BINCTLx register. These settings can be independently configured for each SD24_B converter. The gain for each PGA is selected by the SD24GAINx bits. A total of eight gain settings are available. During conversion, any modification of the SD24BINCTLx register becomes effective with the next decimation step of the digital filter. After these bits are modified, the next three conversions may be invalid due to the settling time of the digital filter. This can be handled automatically with the SD24INTDLYx bits. When SD24INTDLYx = 00b, conversion interrupt requests do not begin until the fourth conversion after a start condition. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SD24_B Copyright © 2008–2015, Texas Instruments Incorporated 769 SD24_B Operation www.ti.com An external RC anti-aliasing filter is recommended for the SD24_B to prevent aliasing of the input signal. The cutoff frequency should be less than 10 kHz for a 1-MHz modulator clock and OSR = 256. The cutoff frequency may be set to a lower frequency for applications that have lower bandwidth requirements. With SD24CAL = 1, the offset of the converter can be measured and calibrated in software afterwards. 29.2.6.3 Analog Input Characteristics The SD24_B uses a switched-capacitor input stage that appears as an impedance to external circuitry (see Figure 29-5). Figure 29-5. Analog Input Equivalent Circuit The maximum modulator frequency fM may be calculated from the minimum settling time tSettling of the sampling circuit. æ GAIN ´ 217 ´ V Ax t Settling ³ (RS + 1kW) ´ CS ´ lnç ç VREF è ö ÷ ÷ ø (14) Where ö æ 1 ÷ and V = max æç AVCC - V , AVCC - V ö÷ fM = ç Ax S+ S- ÷ ç 2 ç 2 ´ t settling ÷ 2 ø è ø è (15) The sampling capacitor CS varies with the gain setting. See the device-specific data sheet for parameters. 29.2.7 Digital Filter The digital filter processes the 1-bit data stream from the modulator. 29.2.7.1 SINC3 Filter Figure 29-6 shows the structure of a SINC3 filter. 770 SD24_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated SD24_B Operation www.ti.com Integrator Integrator Bitstream from Modulator + + -1 -1 z z fM fM z + Differentiator + z -1 fM Differentiator Differentiator Integrator + + - -1 z fS -1 fS z -1 fS Figure 29-6. SINC3 Filter Structure The transfer function is described in the z-domain by: æ 1 1 - z -OSR ´ H(z) = ç ç OSR 1 - z -1 è ö ÷ ÷ ø 3 (16) The transfer function is described in the frequency domain by: 3 æ æ öö æ æ f öö ç sinc ç OSRp f ÷ ÷ ç sinçç OSR ´ p ´ ÷÷ ÷ ÷ ç f f ç 1 ç M ø÷ M ø÷ è è H(f) = ç ÷ ÷ = ç OSR ´ æ f ö ÷ ç sinc æç p f ö÷ ÷ ç ÷ ç sin ´ p ç ç f ÷ ÷ ç ÷ ç fM ÷ø è è Mø ø è ø è 3 (17) where the oversampling rate, OSR, is the ratio of the modulator frequency fM to the sample frequency fS. Figure 29-7 shows the filter's frequency response for an OSR of 32. The first filter notch is always at fS = fM/OSR. The notch's frequency can be adjusted by changing the modulator's frequency, fM, using SD24SSELx, SD24PDIVx, and SD24DIVx or by adjusting the oversampling rate using the SD24BOSRx registers. The digital filter for each enabled ADC converter completes the decimation of the digital bitstream and outputs new conversion results to the corresponding SD24BMEMx register at the sample frequency fS. 0 -20 Gain (dB) -40 -60 -80 -100 -120 -140 Figure 29-7. Comb Filter's Frequency Response With OSR = 32 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SD24_B Copyright © 2008–2015, Texas Instruments Incorporated 771 SD24_B Operation www.ti.com Figure 29-8 shows the digital filter step response and conversion points. For step changes at the input after start of conversion, a settling time must be allowed before a valid conversion result is available. The SD24INTDLYx bits can provide sufficient filter settling time for a full-scale change at the ADC input. If the step occurs synchronously to the decimation of the digital filter, the valid data is available on the third conversion. An asynchronous step requires one additional conversion before valid data is available. Asynchronous Step Synchronous Step 80 80 60 60 % VFSR 100 % VFSR 100 40 40 20 20 0 0 0 1 2 3 4 5 6 Conversions 7 8 0 1 2 3 4 5 6 Conversions 7 8 Figure 29-8. Digital Filter Step Response and Conversion Points Digital Filter Output 29.2.7.2 Cascade of Integrators With each start of conversion or after change of the SD24INCTLx register for a given converter, the digital filter of this converter is reset. This allows the integrators implemented into the SINC filter to be used as a "Cascade of Integrators" by setting the interrupt delay to SD24INTDLYx = 11b and starting a new conversion (for example by writing SD24INCTLx) after each decimation step. The full-scale value output by the "Cascade of Integrators" is given by FS = 1/6 × (OSR3 + 3×OSR2 + 2×OSR). In offset binary mode, the full-scale range is from 0 to FS. In twos-complement mode, the fullscale range is from -FS to +FS. 29.2.7.3 Digital Filter Output The full-scale value output by the SINC3 digital filter is dependent on the oversampling ratio OSR and is given by FS = 2^(3×log2(OSR)). In offset binary mode, the full-scale range is from 0 to FS. In twoscomplement mode, the full-scale range is from -FS to +FS. For example, the maximum OSR of 1024 results in a full-scale value of 1073741824 or 4000 000h; that is, a value that can be represented by 31 bits. All 31 bits can be accessed using the SD24BMEMHx and SD24BMEMLx registers. Depending on the selected data format and alignment, the representation within the SD24BMEMx registers differs. In offset binary mode (SD24DFx = 00b), the bitstream coming from the modulator is interpreted as a stream of ones (1) and zeros (0). In twos-complement mode (SD24DFx = 01b), the bitstream is interpreted as ones (1) and minus ones (-1). In offset binary mode (SD24DFx = 00b) the output values range from 0 to FS. In twos-complement mode (SD24DFx = 01b), the output values range from -FS to +FS. If right alignment is selected with SD24ALGN = 0, the digital filter's output value is directly mapped to the SD24_B conversion result registers SD24BMEMHx and SD24BMEMLx with the LSB of the filter's output being mapped to the LSB of SD24BMEMLx. 772 SD24_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated SD24_B Operation www.ti.com If left alignment is selected with SD24ALGN = 1, the mapping of the filter's output value to the conversion registers is dependent on the selected oversampling rate. In left aligned offset binary mode, the 32-bit value is left-shifted according to Table 29-1. In left aligned twos-complement mode, the 32-bit twos complement of the digital filter's output is left-shifted according to Table 29-2. Table 29-3 gives an example for an oversampling rate of 256. Table 29-1. Offset Binary Left Aligned Mapping OSR Range SD24BOSRx Register Filter Output Left Shifted by Filter's LSB Mapped to 1 to 32 0000h to 001Fh 17 bits Bit 1of SD24BMEMHx 33 to 64 0020h to 003Fh 14 bits Bit 14 of SD24BMEMLx 65 to 128 0040h to 007Fh 11 bits Bit 11 of SD24BMEMLx 129 to 256 0080h to 00FFh 8 bits Bit 8 of SD24BMEMLx 257 to 512 0100h to 01FFh 5 bits Bit 5 of SD24BMEMLx 513 to 1024 0200h to 03FFh 2 bits Bit 2 of SD24BMEMLx Table 29-2. Twos-Complement Left Aligned Mapping OSR Range SD24BOSRx Register Filter Output Left Shifted by Filter's LSB Mapped to 1 to 32 0000h to 001Fh 16 bits Bit 16 of SD24BMEMLx 33 to 64 0020h to 003Fh 13 bits Bit 13 of SD24BMEMLx 65 to 128 0040h to 007Fh 10 bits Bit 10 of SD24BMEMLx 129 to 256 0080h to 00FFh 7 bits Bit 7 of SD24BMEMLx 257 to 512 0100h to 01FFh 4 bits Bit 4 of SD24BMEMLx 513 to 1024 0200h to 03FFh 1 bit Bit 1 of SD24BMEMLx Table 29-3. Data Format Example for OSR = 256 SD24DFx SD24ALGN Format 00b 0 Bipolar offset binary, right aligned 00b 01b 01b 1 0 1 Bipolar offset binary, left aligned Bipolar twos complement, right aligned Bipolar twos complement, left aligned Analog Input Filter Output (hex) SD24BMEMHx SD24BMEMLx (hex) +VFSR 0FF FFFF 00FF FFFF 0V 080 0000 0080 0000 -VFSR 000 0000 0000 0000 +VFSR 0FF FFFF FFFF FF00 8000 0000 0V 080 0000 -VFSR 000 0000 0000 0000 +VFSR 00FF FFFF 00FF FFFF 0V 0000 0000 0000 0000 -VFSR FF00 0000 FF00 0000 +VFSR 00FF FFFF 7FFF FF80 0V 0000 0000 0000 0000 -VFSR FF00 0000 8000 0000 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SD24_B Copyright © 2008–2015, Texas Instruments Incorporated 773 SD24_B Operation www.ti.com 29.2.8 Bitstream Input and Output The bitstream of each modulator can be fed to pins. The SD24MCx selects the encoding of the output bitstream. The SD24_B module also allows to feed in a modulator bitstream into the digital filter with SD24DI = 1. Setting SD24DI = 1 for a converter disables the associated modulator. The incoming bitstream can be either synchronous to the modulator frequency fM or it can be a Manchester decoded bitstream. The format is selected with the SD24MCx bits. The Manchester decoder requires a zero-to-one or a one-tozero transition in the incoming bitstream to be able to synchronize correctly to it. Up to the first transition, the decoded data can be incorrect. Figure 29-9 shows the block diagram of the output encoder and the input decoder. SD24MCx 2 Output Encoder 0x to Pad Bitstream from Modulator Manchester Encoder 1x fM SD24MCx 2 Input Decoder 0x from Pad Bitstream to Digital Filter Data Manchester Decoder fMC 1x Clock 1x Clock to Digital Filter 0x fM Figure 29-9. SD24_B Output Encoder and Input Decoder Block Diagram 29.2.9 Conversion Modes Each SD24_B converter can be configured for two modes of operation, single conversion and continuous conversion, as listed in Table 29-4. The SD24SNGL bit selects the converter's conversion mode. Table 29-4. Conversion Mode Summary SD24SNGL Mode 1 Single conversion 0 Continuous conversion Operation The converter converts once, until the corresponding IFG is set. The converter converts continuously. In addition, the converters can be grouped together by selecting a common start-of-conversion trigger using the SD24SCSx bits. There are up to four software start-of-conversion triggers and three external (for example a timer output) start-of-conversion triggers available. 774 SD24_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated SD24_B Operation www.ti.com 29.2.9.1 Single Converter, Single Conversion Setting the SD24SC bit of a converter initiates one conversion on that converter when SD24SNGL = 1 and SD24SCSx = 00b; that is, the converter is not grouped with any other converters. The SD24SC bit is automatically cleared after conversion completion; that is, when the converter's interrupt flag is set. Clearing SD24SC before the conversion is completed immediately stops conversion of the selected converter, the converter is powered down, and the corresponding digital filter is turned off. Figure 29-10 shows examples of single conversions with different SD24INTDLYx and SD24PREx settings. Channel 0 SD24SNGL=1 SD24INTDLYx=00b SD24PREx=00h Conversion SD24SC Conversion Conversion Conversion Set by SW Auto-clear SD24IFG0 Channel 1 SD24SNGL=1 SD24INTDLYx=11b SD24PREx=00h Conversion SD24SC Conversion Set by SW Auto-clear Conversion Conversion Set by SW Auto-clear SD24IFG1 Channel 2 SD24SNGL=1 SD24INTDLYx=10b SD24PREx=PRE2 PRE2 SD24SC Set by SW Auto-clear SD24IFG2 = Result written into SD24BMEMH/Lx Figure 29-10. Single Conversion Examples 29.2.9.2 Single Converter, Continuous Conversion When SD24SNGL = 0, continuous conversion mode is selected. A converter configured with SD24SCSx = 00b begins converting when SD24SC is set and continues until the SD24SC bit is cleared by software. Clearing SD24SC immediately stops conversion of the selected converter, the converter is powered down, and the corresponding digital filter is turned off. 29.2.9.3 Group of Converters SD24_B converters can be grouped together with a common start-of-conversion trigger by setting SD24SCSx to a non-zero value. All converters with the same SD24SCS settings form a group, and the conversion is started by the selected group for all attached converters synchronously. The conversion can be started either by software by setting the respective SD24GRPxSC bit (see Figure 29-11) or by a rising edge on an external trigger signal like a timer output (see Figure 29-12). The connected trigger sources are device dependent–see the device-specific data sheet for details. When SD24SNGL = 1 for a converter in a group, single conversion mode is selected. A single conversion of this converter occurs synchronously when the group trigger starts conversion. The start of conversion is also reflected in each converter's SD24SC bit. By clearing the SD24SC bit of one converter in a group, the conversion of this converter is immediately stopped. Setting the SD24SC bit of an individual converter in a group immediately starts conversion for this converter independent of the group's start of conversion trigger. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SD24_B Copyright © 2008–2015, Texas Instruments Incorporated 775 SD24_B Operation www.ti.com SD24GRP0SC Channel 0 SD24SCSx=100b SD24SNGL=0 SD24PREx=00h Set by SW Reset by SW Conversion SD24SC Channel 1 SD24SCSx=100b SD24SNGL=1 SD24INTDLYx=11b SD24PREx=PRE1 Set by SW Conversion Co Set by GRP0SC SD24SC Conv Set by GRP0SC Reset by GRP0SC Conversion PRE1 Conversion Set by SW Reset by SW Conversion PRE1 Set by GRP0SC Conversion Convers Set by GRP0SC Set by SW Auto-clear Auto-clear = Result written into SD24BMEMH/Lx Figure 29-11. Grouped Operation - Internal Start-of-Conversion Trigger ext. Trigger 0 Channel 0 SD24SCSx=001b SD24SNGL=0 SD24PREx=00h Conversion SD24SC Channel 1 SD24SCSx=001b SD24SNGL=1 SD24INTDLYx=11b SD24PREx=PRE1 Conversion Set by ext. Trigger 0 PRE1 SD24SC Co Conversion Conv Set by ext. Trigger 0 Reset by SW Conversion PRE1 Set by ext. Trigger 0 PRE2 SD24SC Conversion Set by ext. Trigger 0 Conversion Convers PRE2 Set by SW Reset by SW Conversion Auto-clear Channel 2 SD24SCSx=001b SD24SNGL=0 SD24PREx=PRE2 Conversion Conversion PRE1 Conv Set by SW Auto-clear Conversion Convers Set by ext. Trigger 0 = Result written into SD24BMEMH/Lx Figure 29-12. Grouped Operation - External Start-of-Conversion Trigger 29.2.10 Conversion Operation Using Preload When multiple converters are grouped, the SD24BPREx registers can be used to delay the conversion time frame for each converter. Using SD24BPREx, the decimation time of the digital filter is increased one time by the specified number of fM clock cycles, which can range from 0 to 1023. Figure 29-13 shows an example using SD24BPREx. SD24OSRx = 32 Load SD24BPREx with SD24PREx = 8 Figure 29-13. Conversion Delay Using Preload - Example 776 SD24_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated SD24_B Operation www.ti.com The SD24BPREx delay is applied at the beginning of the next conversion cycle after it is written; that is, the specified number of delay cycles is applied to the conversion cycle following the write to SD24BPREx. Further conversions are not delayed. After modifying SD24BPREx, the next write to SD24BPREx should not occur until the current conversion cycle is completed and the written value is applied. For example, the preload value can be modified after the corresponding SD24IFGx is set. At start of conversion, the first conversion is delayed by the latest value written into SD24BPREx. If no delay at start of conversion is desired, a previously written non-zero value must be changed to zero before starting the conversion. The accuracy of the result for the delayed conversion cycle using SD24BPREx is dependent on the length of the delay and the frequency of the analog signal being sampled. For example, when measuring a dc signal, SD24BPREx delay has no effect on the conversion result regardless of the duration. The user must determine when the delayed conversion result is useful in an application. Figure 29-14 shows the operation of grouped converters 0 and 1. The preload register of converter 1 is loaded with zero, which results in immediate conversion, while the conversion cycle of converter 0 is delayed by setting SD24BPRE0 = 8. The first converter 0 conversion uses SD24BPREx = 8, shifting all subsequent conversions by 8 fM clock cycles. SD24OSRx = 32 SD24PRE0 = 8 SD24PRE1 = 0 Figure 29-14. Start of Conversion Using Preload - Example 29.2.11 Grounding and Noise Considerations As with any high-resolution ADC, appropriate printed circuit board layout and grounding techniques should be followed to eliminate ground loops, unwanted parasitic effects, and noise. Ground loops are formed when return current from the ADC flows through paths that are common with other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset voltages that can add to or subtract from the reference or input voltages of the ADC. Therefore, solid decoupling on both the digital and analog supply is required (best with two capacitors, one 10 µF and one 100 nF, per supply). In addition to grounding, ripple and noise spikes on the power-supply lines due to digital switching or switching power supplies can corrupt the conversion result. A noise-free design using separate analog and digital ground planes with a single-point connection is recommended to achieve high accuracy. If the internal reference is used, the reference voltage should be buffered externally by connecting a small (approximately 100 nF) capacitor to VREF to reduce the noise on the reference. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SD24_B Copyright © 2008–2015, Texas Instruments Incorporated 777 SD24_B Operation www.ti.com 29.2.12 Trigger Generator The SD24_B module provides a trigger generator that allows synchronization of external modules (for example other ADCs) with the SD24_B. Configuration of the trigger generator (see the block diagram in Figure 29-15) is similar to a converter (although it does not provide the analog part and thus all associated digital logic). It can be started the same as a converter, and the trigger pulse and the setting of the interrupt flag is generated as it would be generated by a converter with the same OSR and preload settings. This means that the trigger generator mimics the timing of a converter. If the trigger generator is configured the same as the converters and is started together with the converters, it can trigger external modules synchronous with the conversion (that is, decimation) of the SD24_B converters. NOTE: Only the MSP430F676x1(A) devices support the trigger generator. Trigger Generator SD24SCSx 3 SD24SC ext. Trigger 1 ext. Trigger 2 ext. Trigger 3 SD24GRP0SC SD24GRP1SC SD24GRP2SC SD24GRP3SC 000 001 010 011 100 101 110 111 SD24SNGL Conversion Logic SD24BTRGOSR fM (Decimation) Counter Trigger Pulse Set TRGIFG SD24BTRGPRE Figure 29-15. SD24_B Trigger Generator Block Diagram 778 SD24_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated SD24_B Operation www.ti.com 29.2.13 SD24_B Interrupts The SD24_B has these interrupt sources for each ADC converter: • SD24IFGx : conversion ready interrupt • SD24OVIFGx : conversion memory overflow • SD24TRGIFG: trigger generator interrupt The SD24IFGx bits are set when their corresponding SD24BMEMHx and SD24BMEMLx memory registers are written with a conversion result. An interrupt request is generated if the corresponding SD24IEx bit and the GIE bit are set. Whether or not an SD24_B overflow condition sets a SD24OVIFG depends on the SD24OV32 setting: If SD24OV32 = 0, the overflow occurs when a conversion result is written to a SD24BMEMHx and SD24BMEMLx register pair before one of the registers was read. If SD24OV32 = 1, the overflow occurs when a new conversion result is written before the complete 32-bit of the previous conversion result was read. 29.2.13.1 SD24BIV, Interrupt Vector Generator All SD24_B interrupt sources are prioritized and combined to source a single interrupt vector. SD24BIV is used to determine which enabled SD24_B interrupt source requested an interrupt. The highest priority SD24_B interrupt request that is enabled generates a number in the SD24BIV register (see register description). This number can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled SD24_B interrupts do not affect the SD24BIV value. Any read access of the SD24BIV register has no effect on the SD24OVIFG or SD24IFG flags. The SD24IFG flags are reset by reading the associated SD24BMEMx register or by clearing the flags in software. SD24OVIFG bits can only be reset with software. The SD24TRGIFG is reset by reading SD24BIV or by clearing the flag in software. A write access to SD24BIV clears all interrupt flags. If another interrupt is pending after servicing of an interrupt, another interrupt is generated. For example, if a SD24OVIFGx and one or more SD24IFGx interrupts are pending when the interrupt service routine accesses the SD24BIV register, the SD24OVIFGx interrupt condition is serviced first and the corresponding flags must be cleared in software. After the RETI instruction of the interrupt service routine is executed, the highest priority SD24IFGx pending generates another interrupt request. 29.2.13.2 Interrupt Delay Operation The SD24INTDLYx bits control the timing for the first interrupt service request for the corresponding converter. This feature delays the interrupt request for a completed conversion by up to four conversion cycles allowing the digital filter to settle prior to generating an interrupt request. The delay is applied each time the conversion is started or when the SD24BINCTLx register is modified. SD24INTDLYx disables overflow interrupt generation for the converter for the selected number of delay cycles. Interrupt requests for the delayed conversions are not generated during the delay. 29.2.14 Using SD24_B With DMA Devices with an integrated DMA controller can automatically move data from any SD24BMEMHx and SD24BMEMLx register to another location. DMA transfers are done without CPU intervention and independent of any low-power modes. The SD24DMAx bits in SD24BCTL1 register select the converter that triggers a DMA transfer. The transfer is triggered by the respective SD24IFGx flag. If the respective interrupt enable bit SD24IEx is set, the selected SD24IFGx flag does not trigger a transfer. Any SD24IFGx is automatically cleared when the DMA controller accesses the corresponding SD24BMEMHx and SD24BMEMLx registers. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SD24_B Copyright © 2008–2015, Texas Instruments Incorporated 779 SD24_B Registers www.ti.com 29.3 SD24_B Registers The SD24_B registers are listed in Table 29-5. The available converter registers are device-specific depending on the number of implemented converters. The base address of the SD24_B module can be found in the device-specific data sheet. The address offset of each SD24_B register is given in Table 29-5. Table 29-5. SD24_B Registers Offset Acronym Register Name Type Reset Section 00h SD24BCTL0 SD24_B Control 0 Register Read/write 0000h Section 29.3.1 02h SD24BCTL1 SD24_B Control 1 Register Read/write 0800h Section 29.3.2 04h SD24BTRGCTL SD24_B Trigger Control Register Read/write 0000h Section 29.3.3 06h SD24BTRGOSR SD24_B Trigger OSR Control Register Read/write 00FFh Section 29.3.10 08h SD24BTRGPRE SD24_B Trigger Preload Register Read/write 0000h Section 29.3.12 0Ah SD24BIFG SD24_B Interrupt Flag Register Read/write 0000h Section 29.3.4 0Ch SD24BIE SD24_B Interrupt Enable Register Read/write 0000h Section 29.3.5 0Eh SD24BIV SD24_B Interrupt Vector Register Read/write 0000h Section 29.3.6 10h SD24BCCTL0 SD24_B Converter 0 Control Register Read/write 0000h Section 29.3.7 12h SD24BINCTL0 SD24_B Converter 0 Input Control Register Read/write 0000h Section 29.3.8 14h SD24BOSR0 SD24_B Converter 0 OSR Control Register Read/write 00FFh Section 29.3.9 16h SD24BPRE0 SD24_B Converter 0 Preload Register Read/write 0000h Section 29.3.11 18h SD24BCCTL1 SD24_B Converter 1 Control Register Read/write 0000h Section 29.3.7 1Ah SD24BINCTL1 SD24_B Converter 1 Input Control Register Read/write 0000h Section 29.3.8 1Ch SD24BOSR1 SD24_B Converter 1 OSR Control Register Read/write 00FFh Section 29.3.9 1Eh SD24BPRE1 SD24_B Converter 1 Preload Register Read/write 0000h Section 29.3.11 20h SD24BCCTL2 SD24_B Converter 2 Control regi5ster Read/write 0000h Section 29.3.7 22h SD24BINCTL2 SD24_B Converter 2 Input Control Register Read/write 0000h Section 29.3.8 24h SD24BOSR2 SD24_B Converter 2 OSR Control Register Read/write 00FFh Section 29.3.9 26h SD24BPRE2 SD24_B Converter 2 Preload Register Read/write 0000h Section 29.3.11 28h SD24BCCTL3 SD24_B Converter 3 Control Register Read/write 0000h Section 29.3.7 2Ah SD24BINCTL3 SD24_B Converter 3 Input Control Register Read/write 0000h Section 29.3.8 2Ch SD24BOSR3 SD24_B Converter 3 OSR Control Register Read/write 00FFh Section 29.3.9 2Eh SD24BPRE3 SD24_B Converter 3 Preload Register Read/write 0000h Section 29.3.11 30h SD24BCCTL4 SD24_B Converter 4 Control Register Read/write 0000h Section 29.3.7 32h SD24BINCTL4 SD24_B Converter 4 Input Control Register Read/write 0000h Section 29.3.8 34h SD24BOSR4 SD24_B Converter 4 OSR Control Register Read/write 00FFh Section 29.3.9 36h SD24BPRE4 SD24_B Converter 4 Preload Register Read/write 0000h Section 29.3.11 38h SD24BCCTL5 SD24_B Converter 5 Control Register Read/write 0000h Section 29.3.7 3Ah SD24BINCTL5 SD24_B Converter 5 Input Control Register Read/write 0000h Section 29.3.8 3Ch SD24BOSR5 SD24_B Converter 5 OSR Control Register Read/write 00FFh Section 29.3.9 3Eh SD24BPRE5 SD24_B Converter 5 Preload Register Read/write 0000h Section 29.3.11 40h SD24BCCTL6 SD24_B Converter 6 Control Register Read/write 0000h Section 29.3.7 42h SD24BINCTL6 SD24_B Converter 6 Input Control Register Read/write 0000h Section 29.3.8 44h SD24BOSR6 SD24_B Converter 6 OSR Control Register Read/write 00FFh Section 29.3.9 46h SD24BPRE6 SD24_B Converter 6 Preload Register Read/write 0000h Section 29.3.11 48h SD24BCCTL7 SD24_B Converter 7 Control Register Read/write 0000h Section 29.3.7 4Ah SD24BINCTL7 SD24_B Converter 7 Input Control Register Read/write 0000h Section 29.3.8 4Ch SD24BOSR7 SD24_B Converter 7 OSR Control Register Read/write 00FFh Section 29.3.9 4Eh SD24BPRE7 SD24_B Converter 7 Preload Register Read/write 0000h Section 29.3.11 50h SD24BMEML0 SD24_B Converter 0 Conversion Memory Low Word Register Read/write 0000h Section 29.3.13 780 SD24_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated SD24_B Registers www.ti.com Table 29-5. SD24_B Registers (continued) Offset Acronym Register Name Type Reset Section 52h SD24BMEMH0 SD24_B Converter 0 Conversion Memory High Word Register Read/write 0000h Section 29.3.14 54h SD24BMEML1 SD24_B Converter 1 Conversion Memory Low Word Register Read/write 0000h Section 29.3.13 56h SD24BMEMH1 SD24_B Converter 1 Conversion Memory High Word Register Read/write 0000h Section 29.3.14 58h SD24BMEML2 SD24_B Converter 2 Conversion Memory Low Word Register Read/write 0000h Section 29.3.13 5Ah SD24BMEMH2 SD24_B Converter 2 Conversion Memory High Word Register Read/write 0000h Section 29.3.14 5Ch SD24BMEML3 SD24_B Converter 3 Conversion Memory Low Word Register Read/write 0000h Section 29.3.13 5Eh SD24BMEMH3 SD24_B Converter 3 Conversion Memory High Word Register Read/write 0000h Section 29.3.14 60h SD24BMEML4 SD24_B Converter 4 Conversion Memory Low Word Register Read/write 0000h Section 29.3.13 62h SD24BMEMH4 SD24_B Converter 4 Conversion Memory High Word Register Read/write 0000h Section 29.3.14 64h SD24BMEML5 SD24_B Converter 5 Conversion Memory Low Word Register Read/write 0000h Section 29.3.13 66h SD24BMEMH5 SD24_B Converter 5 Conversion Memory High Word Register Read/write 0000h Section 29.3.14 68h SD24BMEML6 SD24_B Converter 6 Conversion Memory Low Word Register Read/write 0000h Section 29.3.13 6Ah SD24BMEMH6 SD24_B Converter 6 Conversion Memory High Word Register Read/write 0000h Section 29.3.14 6Ch SD24BMEML7 SD24_B Converter 7 Conversion Memory Low Word Register Read/write 0000h Section 29.3.13 6Eh SD24BMEMH7 SD24_B Converter 7 Conversion Memory High Word Register Read/write 0000h Section 29.3.14 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SD24_B Copyright © 2008–2015, Texas Instruments Incorporated 781 SD24_B Registers www.ti.com 29.3.1 SD24BCTL0 Register SD24_B Control Register 0 Figure 29-16. SD24BCTL0 Register 15 14 13 rw-0 rw-0 rw-0 5 12 11 10 rw-0 rw-0 rw-0 SD24DIVx 7 6 SD24CLKOS SD24M4 rw-0 rw-0 8 SD24PDIVx 4 SD24SSELx rw-0 9 rw-0 rw-0 rw-0 3 2 1 0 Reserved SD24REFS SD24OV32 Reserved r0 rw-0 rw-0 r0 Table 29-6. SD24BCTL0 Register Description Bit Field Type Reset Description 15-11 SD24DIVx RW 0h SD24_B frequency divider. Together with SD24PDIVx, the SD24_B frequency fSD24 is calculated as fSD24 = fSD24SCLK / [(SD24DIVx + 1) × 2SD24PDIVx]. 0000b = Divide by 1 0001b = Divide by 2 ⋮ 11110b = Divide by 31 11111b = Divide by 32 10-8 SD24PDIVx RW 0h SD24_B frequency pre-scaler. Together with SD24DIVx, the SD24_B frequency fSD24 is calculated as fSD24 = fSD24SCLK / [(SD24DIVx + 1) × 2SD24PDIVx]. 000b = Divide by 1 001b = Divide by 2 010b = Divide by 4 011b = Divide by 8 100b = Divide by 16 101b = Divide by 32 110b = Divide by 64 111b = Divide by 128 7 SD24CLKOS RW 0h Clock output select 0b = Modulator clock, fM 1b = Manchester decoder clock, fMC. Depending on SD24M4, the Manchester decoder clock is equal to the modulator clock or four times the modulator clock. 6 SD24M4 RW 0h Modulator clock to Manchester decoder clock ratio 0b = Modulator clock equals Manchester decoder clock, fM = fMC = fSD24 1b = Modulator clock is 1/4 of the Manchester decoder clock, fM = fMC/4 = fSD24/4, fMC = fSD24 5-4 SD24SSEL RW 0h SD24_B clock source select 00b = MCLK 01b = SMCLK 10b = ACLK 11b = External SD24_B clock (SD24CLK) 3 Reserved R 0h Reserved. Always reads as 0. 2 SD24REFS RW 0h Reference select 0b = External reference selected. Internal reference voltage buffer disabled. 1b = Internal reference from shared REF selected. This requests the reference voltage from the shared REF and buffers it internally to the SD24_B. 1 SD24OV32 RW 0h SD24_B overflow control 0b = Overflow on 16-bit (1 word) only; that is, only one of the SD24BMEMLx and SD24BMEMHx registers must be read to prevent the overflow interrupt flag being set. 1b = Overflow on 32-bit (2 words); that is, both SD24BMEMx and SD24BMEMHx registers must be read to prevent the overflow interrupt flag being set. 0 Reserved R 0h Reserved. Always reads as 0. 782 SD24_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated SD24_B Registers www.ti.com 29.3.2 SD24BCTL1 Register SD24_B Control Register 1 Figure 29-17. SD24BCTL1 Register 15 14 r0 r0 7 6 13 12 11 10 r0 r0 rw-1 rw-0 5 4 Reserved r0 8 rw-0 rw-0 SD24DMAx Reserved r0 9 r0 r0 3 2 1 0 SD24GRP3SC SD24GRP2SC SD24GRP1SC SD24GRP0SC rw-0 rw-0 rw-0 rw-0 Table 29-7. SD24BCTL1 Register Description Bit Field Type Reset Description 15-12 Reserved R 0h Reserved. Always reads as 0. 11-8 SD24DMAx RW 8h DMA trigger select. Selects the converter that should trigger a DMA transfer. 0000b = SD24IFG0 triggers DMA (if SD24IE0 = 0) 0001b = SD24IFG1 triggers DMA (if SD24IE1 = 0) 0010b = SD24IFG2 triggers DMA (if SD24IE2 = 0) 0011b = SD24IFG3 triggers DMA (if SD24IE3 = 0) 0100b = SD24IFG4 triggers DMA (if SD24IE4 = 0) 0101b = SD24IFG5 triggers DMA (if SD24IE5 = 0) 0110b = SD24IFG6 triggers DMA (if SD24IE6 = 0) 0111b = SD24IFG7 triggers DMA (if SD24IE7 = 0) 1000b = SD24TRGIFG triggers DMA (if SD24TRGIE = 0) 1001b = SD24TRGIFG triggers DMA (if SD24TRGIE = 0) 1010b = SD24TRGIFG triggers DMA (if SD24TRGIE = 0) 1011b = SD24TRGIFG triggers DMA (if SD24TRGIE = 0) 1100b = SD24TRGIFG triggers DMA (if SD24TRGIE = 0) 1101b = SD24TRGIFG triggers DMA (if SD24TRGIE = 0) 1110b = SD24TRGIFG triggers DMA (if SD24TRGIE = 0) 1111b = SD24TRGIFG triggers DMA (if SD24TRGIE = 0) 7-4 Reserved R 0h Reserved. Always reads as 0. 3 SD24GRP3SC RW 0h SD24_B Group 3 start of conversion. Software controlled start of conversion for all converters belonging to group 3. 0b = No conversion start 1b = Start conversion for group 3 2 SD24GRP2SC RW 0h SD24_B Group 2 start of conversion. Software controlled start of conversion for all converters belonging to group 2. 0b = No conversion start 1b = Start conversion for group 2 1 SD24GRP1SC RW 0h SD24_B Group 1 start of conversion. Software controlled start of conversion for all converters belonging to group 1. 0b = No conversion start 1b = Start conversion for group 1 0 SD24GRP0SC RW 0h SD24_B Group 0 start of conversion. Software controlled start of conversion for all converters belonging to group 0. 0b = No conversion start 1b = Start conversion for group 0 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SD24_B Copyright © 2008–2015, Texas Instruments Incorporated 783 SD24_B Registers www.ti.com 29.3.3 SD24BTRGCTL Register SD24_B Trigger Control Register Note: Only the MSP430F676x1(A) devices support the trigger generator. Figure 29-18. SD24BTRGCTL Register 15 14 13 12 Reserved r0 r0 7 6 11 10 9 8 SD24TRGIE SD24TRGIFG Reserved SD24SNGL rw-0 r0 rw-0 2 1 r0 r0 rw-0 5 4 3 Reserved r0 r0 SD24SCSx r0 r0 rw-0 rw-0 0 SD24SC rw-0 rw-0 Table 29-8. SD24BTRGCTL Register Description Bit Field Type Reset Description 15-12 Reserved R 0h Reserved. Always reads as 0. 11 SD24TRGIE RW 0h SD24_B trigger interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 10 SD24TRGIFG RW 0h SD24_B trigger interrupt flag 0b = No interrupt pending 1b = Interrupt pending 9 Reserved R 0h Reserved. Always reads as 0. 8 SD24SNGL RW 0h Single trigger mode select 0b = Continuous triggers generated (like a converter in continuous conversion mode). 1b = Single trigger generated (like a converter in single conversion mode). 7-4 Reserved R 0h Reserved. Always reads as 0. 3-1 SD24SCSx RW 0h Start of conversion or trigger generation select 000b = SD24SC bit 001b = External trigger 1 (see the device-specific data sheet) 010b = External trigger 2 (see the device-specific data sheet) 011b = External trigger 3 (see the device-specific data sheet) 100b = Group 0 - Start of conversion defined by SD24GRP0SC bits SD24BCTL1 101b = Group 1 - Start of conversion defined by SD24GRP1SC bits SD24BCTL1 110b = Group 2 - Start of conversion defined by SD24GRP2SC bits SD24BCT1L 111b = Group 3 - Start of conversion defined by SD24GRP3SC bits SD24BCTL1 0 784 SD24SC RW 0h in register in register in register in register Start of conversion or trigger generation. Software controlled start of conversion if SD24SCS = 00b. Manual stop of conversion (independent of SD24SCS setting). If a conversion is ongoing (triggered by any source selected through SD24SCS) this is indicated by SD24SC = 1. 0b = No conversion start or stop conversion 1b = Start conversion or trigger generation SD24_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated SD24_B Registers www.ti.com 29.3.4 SD24BIFG Register SD24_B Interrupt Flag Register Figure 29-19. SD24BIFG Register 15 14 13 12 11 10 9 8 SD24OVIFG7 SD24OVIFG6 SD24OVIFG5 SD24OVIFG4 SD24OVIFG3 SD24OVIFG2 SD24OVIFG1 SD24OVIFG0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 7 6 5 4 3 2 1 0 SD24IFG7 SD24IFG6 SD24IFG5 SD24IFG4 SD24IFG3 SD24IFG2 SD24IFG1 SD24IFG0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Table 29-9. SD24BIFG Register Description Bit Field Type Reset Description 15 SD24OVIFG7 RW 0h SD24_B converter 7 overflow interrupt flag. These bits are set depending on the SD24OV32 bit settings: When none of the corresponding conversion registers SD24BMEML7 or SD24BMEMH7 are read before new values are loaded (SD24OV32 = 0). When only one of the corresponding conversion registers SD24BMEML7 or SD24BMEMH7 is read before new values are loaded (SD24OV32 = 1). 0b = No interrupt pending 1b = Interrupt pending 14 SD24OVIFG6 RW 0h SD24_B converter 6 overflow interrupt flag. These bits are set depending on the SD24OV32 bit settings: When none of the corresponding conversion registers SD24BMEML6 or SD24BMEMH6 are read before new values are loaded (SD24OV32 = 0). When only one of the corresponding conversion registers SD24BMEML6 or SD24BMEMH6 is read before new values are loaded (SD24OV32 = 1). 0b = No interrupt pending 1b = Interrupt pending 13 SD24OVIFG5 RW 0h SD24_B converter 5 overflow interrupt flag. These bits are set depending on the SD24OV32 bit settings: When none of the corresponding conversion registers SD24BMEML5 or SD24BMEMH5 are read before new values are loaded (SD24OV32 = 0). When only one of the corresponding conversion registers SD24BMEML5 or SD24BMEMH5 is read before new values are loaded (SD24OV32 = 1). 0b = No interrupt pending 1b = Interrupt pending 12 SD24OVIFG4 RW 0h SD24_B converter 4 overflow interrupt flag. These bits are set depending on the SD24OV32 bit settings: When none of the corresponding conversion registers SD24BMEML4 or SD24BMEMH4 are read before new values are loaded (SD24OV32 = 0). When only one of the corresponding conversion registers SD24BMEML4 or SD24BMEMH4 is read before new values are loaded (SD24OV32 = 1). 0b = No interrupt pending 1b = Interrupt pending 11 SD24OVIFG3 RW 0h SD24_B converter 3 overflow interrupt flag. These bits are set depending on the SD24OV32 bit settings: When none of the corresponding conversion registers SD24BMEML3 or SD24BMEMH3 are read before new values are loaded (SD24OV32 = 0). When only one of the corresponding conversion registers SD24BMEML3 or SD24BMEMH3 is read before new values are loaded (SD24OV32 = 1). 0b = No interrupt pending 1b = Interrupt pending SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SD24_B Copyright © 2008–2015, Texas Instruments Incorporated 785 SD24_B Registers www.ti.com Table 29-9. SD24BIFG Register Description (continued) Bit Field Type Reset Description 10 SD24OVIFG2 RW 0h SD24_B converter 2 overflow interrupt flag. These bits are set depending on the SD24OV32 bit settings: When none of the corresponding conversion registers SD24BMEML2 or SD24BMEMH2 are read before new values are loaded (SD24OV32 = 0). When only one of the corresponding conversion registers SD24BMEML2 or SD24BMEMH2 is read before new values are loaded (SD24OV32 = 1). 0b = No interrupt pending 1b = Interrupt pending 9 SD24OVIFG1 RW 0h SD24_B converter 1 overflow interrupt flag. These bits are set depending on the SD24OV32 bit settings: When none of the corresponding conversion registers SD24BMEML1 or SD24BMEMH1 are read before new values are loaded (SD24OV32 = 0). When only one of the corresponding conversion registers SD24BMEML1 or SD24BMEMH1 is read before new values are loaded (SD24OV32 = 1). 0b = No interrupt pending 1b = Interrupt pending 8 SD24OVIFG0 RW 0h SD24_B converter 0 overflow interrupt flag. These bits are set depending on the SD24OV32 bit settings: When none of the corresponding conversion registers SD24BMEML0 or SD24BMEMH0 are read before new values are loaded (SD24OV32 = 0). When only one of the corresponding conversion registers SD24BMEML0 or SD24BMEMH0 is read before new values are loaded (SD24OV32 = 1). 0b = No interrupt pending 1b = Interrupt pending 7 SD24IFG7 RW 0h SD24_B converter 7 interrupt flag. These bits are set when the corresponding conversion registers SD24BMEML7 and SD24BMEMH7 are loaded with a new conversion result. The bits are reset by reading one of the SD24BMEML7 or SD24BMEMH7 registers, or may be reset by software. 0b = No interrupt pending 1b = Interrupt pending 6 SD24IFG6 RW 0h SD24_B converter 6 interrupt flag. These bits are set when the corresponding conversion registers SD24BMEML6 and SD24BMEMH6 are loaded with a new conversion result. The bits are reset by reading one of the SD24BMEML6 or SD24BMEMH6 registers, or may be reset by software. 0b = No interrupt pending 1b = Interrupt pending 5 SD24IFG5 RW 0h SD24_B converter 5 interrupt flag. These bits are set when the corresponding conversion registers SD24BMEML5 and SD24BMEMH5 are loaded with a new conversion result. The bits are reset by reading one of the SD24BMEML5 or SD24BMEMH5 registers, or may be reset by software. 0b = No interrupt pending 1b = Interrupt pending 4 SD24IFG4 RW 0h SD24_B converter 4 interrupt flag. These bits are set when the corresponding conversion registers SD24BMEML4 and SD24BMEMH4 are loaded with a new conversion result. The bits are reset by reading one of the SD24BMEML4 or SD24BMEMH4 registers, or may be reset by software. 0b = No interrupt pending 1b = Interrupt pending 3 SD24IFG3 RW 0h SD24_B converter 3 interrupt flag. These bits are set when the corresponding conversion registers SD24BMEML3 and SD24BMEMH3 are loaded with a new conversion result. The bits are reset by reading one of the SD24BMEML3 or SD24BMEMH3 registers, or may be reset by software. 0b = No interrupt pending 1b = Interrupt pending 786 SD24_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated SD24_B Registers www.ti.com Table 29-9. SD24BIFG Register Description (continued) Bit Field Type Reset Description 2 SD24IFG2 RW 0h SD24_B converter 2 interrupt flag. These bits are set when the corresponding conversion registers SD24BMEML2 and SD24BMEMH2 are loaded with a new conversion result. The bits are reset by reading one of the SD24BMEML2 or SD24BMEMH2 registers, or may be reset by software. 0b = No interrupt pending 1b = Interrupt pending 1 SD24IFG1 RW 0h SD24_B converter 1 interrupt flag. These bits are set when the corresponding conversion registers SD24BMEML1 and SD24BMEMH1 are loaded with a new conversion result. The bits are reset by reading one of the SD24BMEML1 or SD24BMEMH1 registers, or may be reset by software. 0b = No interrupt pending 1b = Interrupt pending 0 SD24IFG0 RW 0h SD24_B converter 0 interrupt flag. These bits are set when the corresponding conversion registers SD24BMEML0 and SD24BMEMH0 are loaded with a new conversion result. The bits are reset by reading one of the SD24BMEML0 or SD24BMEMH0 registers, or may be reset by software. 0b = No interrupt pending 1b = Interrupt pending SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SD24_B Copyright © 2008–2015, Texas Instruments Incorporated 787 SD24_B Registers www.ti.com 29.3.5 SD24BIE Register SD24_B Interrupt Enable Register Figure 29-20. SD24BIE Register 15 14 13 12 11 10 9 8 SD24OVIE7 SD24OVIE6 SD24OVIE5 SD24OVIE4 SD24OVIE3 SD24OVIE2 SD24OVIE1 SD24OVIE0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 7 6 5 4 3 2 1 0 SD24IE7 SD24IE6 SD24IE5 SD24IE4 SD24IE3 SD24IE2 SD24IE1 SD24IE0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Table 29-10. SD24BIE Register Description Bit Field Type Reset Description 15 SD24OVIE7 RW 0h SD24_B converter 7 overflow interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 14 SD24OVIE6 RW 0h SD24_B converter 6 overflow interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 13 SD24OVIE5 RW 0h SD24_B converter 5 overflow interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 12 SD24OVIE4 RW 0h SD24_B converter 4 overflow interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 11 SD24OVIE3 RW 0h SD24_B converter 3 overflow interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 10 SD24OVIE2 RW 0h SD24_B converter 2 overflow interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 9 SD24OVIE1 RW 0h SD24_B converter 1 overflow interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 8 SD24OVIE0 RW 0h SD24_B converter 0 overflow interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 7 SD24IE7 RW 0h SD24_B converter 7 interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 6 SD24IE6 RW 0h SD24_B converter 6 interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 5 SD24IE5 RW 0h SD24_B converter 5 interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 4 SD24IE4 RW 0h SD24_B converter 4 interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 788 SD24_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated SD24_B Registers www.ti.com Table 29-10. SD24BIE Register Description (continued) Bit Field Type Reset Description 3 SD24IE3 RW 0h SD24_B converter 3 interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 2 SD24IE2 RW 0h SD24_B converter 2 interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 1 SD24IE1 RW 0h SD24_B converter 1 interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 0 SD24IE0 RW 0h SD24_B converter 0 interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SD24_B Copyright © 2008–2015, Texas Instruments Incorporated 789 SD24_B Registers www.ti.com 29.3.6 SD24BIV Register SD24_B Interrupt Vector Register Figure 29-21. SD24BIV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-0 r-0 r-0 r0 SD24BIVx SD24BIVx r0 r0 r0 r-0 Table 29-11. SD24BIV Register Description Bit Field Type Reset Description 15-0 SD24BIVx R 0h SD24_B Interrupt vector value. It generates an value that can be used as address offset for fast interrupt service routine handling. Writing to this register clears all pending interrupt flags. When an overflow occurs (02h), the software must check all SD24OVIFGx flags to determine which converter caused the overflow. 00h = No Interrupt pending 02h = Interrupt Source: SD24_B memory overflow; Interrupt Flag: SD24OVIFGx; Interrupt Priority: Highest 04h = Interrupt Source: SD24_B trigger interrupt flag; Interrupt Flag: SD24TRGIFG 06h = Interrupt Source: SD24_B converter 0 memory interrupt flag; Interrupt Flag: SD24IFG0 08h = Interrupt Source: SD24_B converter 1 memory interrupt flag; Interrupt Flag: SD24IFG1 0Ah = Interrupt Source: SD24_B converter 2 memory interrupt flag; Interrupt Flag: SD24IFG2 0Ch = Interrupt Source: SD24_B converter 3 memory interrupt flag; Interrupt Flag: SD24IFG3 0Eh = Interrupt Source: SD24_B converter 4 memory interrupt flag; Interrupt Flag: SD24IFG4 10h = Interrupt Source: SD24_B converter 5 memory interrupt flag; Interrupt Flag: SD24IFG5 12h = Interrupt Source: SD24_B converter 6 memory interrupt flag; Interrupt Flag: SD24IFG6 14h = Interrupt Source: SD24_B converter 7 memory interrupt flag; Interrupt Flag: SD24IFG7; Interrupt Priority: Lowest 790 SD24_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated SD24_B Registers www.ti.com 29.3.7 SD24BCCTLx Register SD24_B Converter x Control Register Figure 29-22. SD24BCCTLx Register 15 14 Reserved 13 12 SD24MCx r0 SD24DI rw-0 rw-0 5 7 6 Reserved SD24ALGN r0 rw-0 11 10 SD24DFSx rw-0 rw-0 4 3 SD24DFx rw-0 9 8 SD24CAL SD24SNGL rw-0 rw-0 rw-0 2 1 0 SD24SCSx rw-0 rw-0 rw-0 SD24SC rw-0 rw-0 Table 29-12. SD24BCCTLx Register Description Bit Field Type Reset Description 15 Reserved R 0h Reserved. Always reads as 0. 14-16 SD24MCx RW 0h Manchester Coding of bitstream. 00b = Bitstream synchronous to fM. Output data changes with falling clock edge, input data is captured with rising clock edge. 01b = Bitstream synchronous to fM. Output data changes with rising clock edge, input data is captured with falling clock edge. 10b = Output bitstream Manchester encoded. Input bitstream Manchester decoded with oversampling of the input signal. A logic 1 is represented by a high-low transition, a logic 0 is represented by a low-high transition. 11b = Output bitstream Manchester encoded. Input bitstream Manchester decoded with oversampling of the input signal. A logic 1 is represented by a lowhigh transition, a logic 0 is represented by a high-low transition. 12 SD24DI RW 0h Digital bitstream input 0b = Bitstream from modulator fed into digital filter 1b = External bitstream fed into digital filter. Modulator is off. 11-10 SD24DFSx RW 0h Digital filter select 00b = SINC3 filter 01b = Reserved (defaults to 00, SINC). 10b = Reserved (defaults to 00, SINC). 11b = Reserved (defaults to 00, SINC). 9 SD24CAL RW 0h Calibration 0b = Calibration disabled. 1b = Calibration enabled. With a single conversion the offset of the modulator and PGA can be measured. 8 SD24SNGL RW 0h Single conversion mode select 0b = Continuous conversion mode 1b = Single conversion mode 7 Reserved R 0h Reserved. Always reads as 0. 6 SD24ALGN RW 0h Data alignment 0b = Right-aligned. LSB of filter output is Bit 0. 1b = Left-aligned. MSB of filter output (depending on OSR) is Bit 31. 5-4 SD24DFx RW 0h Data format 00b = Offset binary 01b = Twos complement 10b = Reserved (defaults to 00, Offset binary) 11b = Reserved (defaults to 01, twos complement) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SD24_B Copyright © 2008–2015, Texas Instruments Incorporated 791 SD24_B Registers www.ti.com Table 29-12. SD24BCCTLx Register Description (continued) Bit Field Type Reset Description 3-1 SD24SCSx RW 0h Start of conversion select 000b = SD24SC bit 001b = External trigger 1. See the device-specific data sheet. 010b = External trigger 2. See the device-specific data sheet. 011b = External trigger 3. See the device-specific data sheet. 100b = Group 0 - Start of conversion defined by SD24GRP0SC bits SD24BCTL1. 101b = Group 1 - Start of conversion defined by SD24GRP1SC bits SD24BCTL1. 110b = Group 2 - Start of conversion defined by SD24GRP2SC bits SD24BCT1L. 111b = Group 3 - Start of conversion defined by SD24GRP3SC bits SD24BCTL1. 0 792 SD24SC RW 0h in register in register in register in register Start of conversion. Software controlled start of conversion if SD24SCS = 00b. Manual stop of conversion (independent of SD24SCS setting). If a conversion is ongoing (triggered by any source selected through SD24SCS) this is indicated by SD24SC = 1. When starting the conversion (also by setting SD24SC) this bit will only read 1 when the start of conversion was synchronization to the modulator clock and the actual conversion started. 0b = No conversion start (that is, conversion stopped) 1b = Conversion ongoing SD24_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated SD24_B Registers www.ti.com 29.3.8 SD24BINCTLx Register SD24_B Converter x Input Control Register Figure 29-23. SD24BINCTLx Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 r0 r0 r0 6 5 4 3 2 1 0 Reserved 7 SD24INTDLYx rw-0 SD24GAINx rw-0 rw-0 rw-0 Reserved rw-0 rw-0 rw-0 rw-0 Table 29-13. SD24BINCTLx Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved. Always reads as 0. 7-6 SD24INTDLYx RW 0h Interrupt delay generation after conversion start. These bits select the delay for the first interrupt after conversion start. 00b = Fourth sample causes interrupt 01b = Third sample causes interrupt 10b = Second sample causes interrupt 11b = First sample causes interrupt 5-3 SD24GAINx RW 0h Gain 000b = 1 001b = 2 010b = 4 011b = 8 100b = 16 101b = 32 110b = 64 111b = 128 2-0 Reserved RW 0h Reserved SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SD24_B Copyright © 2008–2015, Texas Instruments Incorporated 793 SD24_B Registers www.ti.com 29.3.9 SD24BOSRx Register SD24_B Converter x Oversampling Control Register Figure 29-24. SD24BOSRx Register 15 14 13 12 11 10 9 r0 r0 r0 r0 r0 r0 rw-0 rw-0 7 6 5 4 3 2 1 0 rw-1 rw-1 rw-1 rw-1 Reserved 8 SD24OSRx SD24OSRx rw-1 rw-1 rw-1 rw-1 Table 29-14. SD24BOSRx Register Description Bit Field Type Reset Description 15-10 Reserved R 0h Reserved. Always reads as 0. 9-0 SD24OSRx RW 0h Oversampling rate. The oversampling rate is defined as OSRx + 1. Valid oversampling rates are 1 to 1024. Default is 256. 29.3.10 SD24BTRGOSR Register SD24_B Trigger Oversampling Control Register Note: Only the MSP430F676x1(A) devices support the trigger generator. Figure 29-25. SD24BTRGOSR Register 15 14 13 12 11 10 9 r0 r0 r0 r0 r0 r0 rw-0 rw-0 7 6 5 4 3 2 1 0 rw-1 rw-1 rw-1 rw-1 Reserved 8 SD24OSRx SD24OSRx rw-1 rw-1 rw-1 rw-1 Table 29-15. SD24BTRGOSR Register Description Bit Field Type Reset Description 15-10 Reserved R 0h Reserved. Always reads as 0. 9-0 SD24OSRx RW 0h Oversampling rate. The oversampling rate is defined as OSRx + 1. Valid oversampling rates are 1 to 1024. Default is 256. 794 SD24_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated SD24_B Registers www.ti.com 29.3.11 SD24BPREx Register SD24_B Converter x Preload Register Figure 29-26. SD24BPREx Register 15 14 13 r0 r0 r0 7 6 5 12 11 10 9 r0 r0 r0 rw-0 rw-0 4 3 2 1 0 rw-0 rw-0 rw-0 rw-0 Reserved 8 SD24PREx SD24PREx rw-0 rw-0 rw-0 rw-0 Table 29-16. SD24BPREx Register Description Bit Field Type Reset Description 15-10 Reserved R 0h Reserved. Always reads as 0. 9-0 SD24BPREx RW 0h Digital filter preload value 29.3.12 SD24BTRGPRE Register SD24_B Trigger Preload Register Note: Only the MSP430F676x1(A) devices support the trigger generator. Figure 29-27. SD24BTRGPRE Register 15 14 13 12 11 10 9 Reserved r0 r0 r0 7 6 5 8 SD24PREx r0 r0 r0 rw-0 rw-0 4 3 2 1 0 rw-0 rw-0 rw-0 rw-0 SD24PREx rw-0 rw-0 rw-0 rw-0 Table 29-17. SD24BTRGPRE Register Description Bit Field Type Reset Description 15-10 Reserved R 0h Reserved. Always reads as 0. 9-0 SD24BPREx RW 0h Digital filter preload value SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback SD24_B Copyright © 2008–2015, Texas Instruments Incorporated 795 SD24_B Registers www.ti.com 29.3.13 SD24BMEMLx Register SD24_B Converter x Conversion Memory Low Word Register Figure 29-28. SD24BMEMLx Register 15 14 13 r-0 r-0 r-0 7 6 5 12 11 10 9 8 Conversion Results - Low Word r-0 r-0 r-0 r-0 r-0 4 3 2 1 0 r-0 r-0 r-0 Conversion Results - Low Word r-0 r-0 r-0 r-0 r-0 Table 29-18. SD24BMEMLx Register Description Bit Field Type Reset Description 15-0 Conversion Results Low Word R 0h Conversion results. Actual format depends on selected data format, and oversampling rate. 29.3.14 SD24BMEMHx Register SD24_B Converter x Conversion Memory High Word Register Figure 29-29. SD24BMEMHx Register 15 14 13 12 11 10 9 8 Conversion Results - High Word r-0 r-0 r-0 7 6 5 r-0 r-0 r-0 r-0 r-0 4 3 2 1 0 r-0 r-0 r-0 Conversion Results - High Word r-0 r-0 r-0 r-0 r-0 Table 29-19. SD24BMEMHx Register Description Bit Field Type Reset Description 15-0 Conversion Results High Word R 0h Conversion results. Actual format depends on selected data format, and oversampling rate. 796 SD24_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Chapter 30 SLAU208O – June 2008 – Revised May 2015 CTSD16 The CTSD16 is a multi-input multi-converter sigma-delta analog-to-digital conversion module. This chapter describes the operation of the CTSD16 module. Topic 30.1 30.2 30.3 ........................................................................................................................... Page CTSD16 Introduction ......................................................................................... 798 CTSD16 Operation ............................................................................................ 800 CTSD16 Registers............................................................................................. 813 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CTSD16 Copyright © 2008–2015, Texas Instruments Incorporated 797 CTSD16 Introduction www.ti.com 30.1 CTSD16 Introduction The CTSD16 module consists of up to seven independent sigma-delta analog-to-digital converters, referred to as channels. The converters are based on second-order oversampling sigma-delta modulators and digital decimation filters. The decimation filters are comb-type filters with selectable oversampling ratios of up to 256. Additional filtering can be done in software. Features of the CTSD16 include: • Second-order sigma-delta architecture • Up to seven independent simultaneously-sampling ADCs (the number of channels is device dependent, see the device-specific data sheet) • Up to six single-ended external analog inputs, up to four differential or single-ended external analog inputs (which can also be configured as single-ended), internal temperature sense input, internal AVCC sense input, internal VBAT sense, and internal shorted differential inputs to VREFBG/VeREF+ signal or DAC0 output per channel (the number of inputs is device dependent, see the device-specific data sheet) • Fixed 1.024-MHz modulator input frequency • Software-selectable internal or external voltage reference • Software-selectable AVCC sense, VBAT sense, and temperature sensor accessible by all channels Figure 30-1 shows the block diagram of the CTSD16 module. 798 CTSD16 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated CTSD16 Introduction www.ti.com Reference Generation CTSD16REFS VREFBG/VeREF+ Pad V / REFBG VeREF+ REF ~1.16V from REF VR Channel 0 CTSD16INCHx A0 A1 VREF CTSD16CLK fM = 1.024 MHz A2 A3 Group/Start Conversion Logic A4 CTSD16GRP CTSD16SC CTSD16SNGL A5 Temp Sense A6 AVCC Sense A7 VBAT Sense A8 – CTSD16GAINx BUF CTSD16OSRx + CTSD16RRI AD0+ – AD0- BUF AD1+ AD1- + PGA 1..16 15 2nd Order Σ∆ Modulator 0 CTSD16MEM 9 0 CTSD16DF CTSD16PRE0 CTSD16RRI AD2+ AD2AD3+ AD3AD4+ VREFBG/VeREF+ AD4AD4+ DAC0 AD4VREFBG/VeREF+ up to Channel 1-6 Figure 30-1. CTSD16 Block Diagram SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CTSD16 Copyright © 2008–2015, Texas Instruments Incorporated 799 CTSD16 Operation www.ti.com 30.2 CTSD16 Operation The CTSD16 module is configured with user software. The setup and operation of the CTSD16 is described in the following sections. 30.2.1 Principle of Operation A sigma-delta analog-to-digital converter consists of two parts: the analog part (called the modulator) and the digital part (called the decimation filter). The modulator of the CTSD16 provides a bitstream of zeros and ones to the digital decimation filter. The digital filter averages the bitstream from the modulator over a given number of bits (specified by the oversampling rate) and provides samples at a reduced rate for further processing to the CPU. Averaging can be used to increase the signal-to-noise performance of a conversion [see Figure 30-2 a) and b)]. With a conventional ADC, each factor-of-4 oversampling improves the SNR by approximately 6 dB or 1 bit. To achieve a 16-bit resolution out of a simple 1-bit ADC would require an impractical oversampling rate of 415 = 1 073 741 824. To overcome this limitation, the sigma-delta modulator implements a technique called noise shaping. Due to a feedback loop and integrators, the quantization noise is pushed to higher frequencies, and thus much lower oversampling rates are sufficient to achieve high resolutions [see Figure 30-2 c)]. a) Signal Quantization Noise fSignal fs/2 fs b) Signal Digital Filter Quantization Noise Noise filtered out by digital filter fSignal fs/2 OSR × fs 2 OSR × fs c) Signal Digital Filter “Shaped” Quantization Noise Noise filtered out by digital filter fSignal fs/2 OSR × fs 2 OSR × fs Figure 30-2. Sigma-Delta Principle 800 CTSD16 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated CTSD16 Operation www.ti.com 30.2.2 ADC Core The analog-to-digital conversion is performed by a 1-bit second-order sigma-delta modulator. A single-bit comparator within the modulator quantizes the input signal with the modulator frequency fM. The resulting 1-bit data stream is averaged by the digital filter for the conversion result. 30.2.3 Voltage Reference The CTSD16 module can use an external reference voltage with CTSD16REFS = 0 or an internal reference with CTSD16REFS = 1. CTSD16 uses the shared reference (REF) module as its internal voltage reference source and will request it when needed. REF is used for each CTSD16 channel when requested with CTSD16REFS = 1. When using the internal reference, refer to the device-specific data sheet for PxSEL.y bit requirements for the internal reference pin. Also, TI recommends using an external capacitor connected from the VREFBG pin to AVSS to reduce noise with the internal reference. See the device-specific data sheet for the capacitor value and other reference parametrics. An external voltage reference must be applied to the VeREF+ input when CTSD16REFS = 0. NOTE: The external reference VeREF+ cannot be applied while the internal reference VREFBG is being used by another module, because VeREF+ and VREFBG share the same pin, and contention on the signal line will occur. Therefore, if the user selects the external reference, care must be taken to ensure no other modules are requesting the internal reference VREFBG. Table 30-1. Voltage Reference Signal Selection Requirements Signal Selected REFOUT REFON PxSEL.y VeREF+ 0 x 1 VREFBG (1) (2) 1 1 1 (2) CTSD16REFS (1) If CTSD16 module is used, must be set to 0. If CTSD16 module is used, CTSD16REFS must be set to 1. If CTSD16 is used, CTSD16REFS bit must be set according to this table as external voltage reference VeREF+ and internal voltage reference VREFBG cannot both be used at the same time as they use the same pin. When VREFBG is selected, PxSEL.y must always be set even if VREFBG is only used inside the device. 30.2.4 CTSD16 Clock The CTSD16 clock (CTSD16CLK) generates a 1.024-MHz fixed frequency clock (fM). This clock is supplied to all modulators so that all modulators convert synchronously. It also supplies the device charge pump used for rail-to-rail CTSD16 inputs and rail-to-rail Operational Amplifier (OA) operation on devices with an OA module. This is not a free running clock, and it runs only when a CTSD16 channel conversion is active or if the charge pump is on (CTSD16RRIBURST = 0 or OARRI = 1). The CTSD16CLK has fault detection. If the CTSD16CLK detects any abnormality, then the CTSD16OFFG bit is set to 1 to indicate a CTSD16CLK fault. After it is set, the fault bit remains set until reset in software, even if the fault condition no longer exists. If the user clears the fault bit and the fault condition still exists, the fault bit is automatically set again; otherwise, it remains cleared. The fault condition is removed when CTSD16CLK is powered off. Note that if only the CTSD16 is requesting the CTSD16CLK, the clock is powered down when not actively converting to save power, so if the fault condition still exists when the CTSD16CK is powered down and the user clears the fault bit, the fault will not reappear until the CTSD16CLK is powered up again. The CTSD16OFFG bit also sets the OFIFG bit in SFRIFG1 register which is shared with the system oscillators fault conditions. OFIFG can source a nonmaskable interrupt to the CPU when the OFIE bit is enabled in the SFRIE1 register. CTSD16OFFG is a status bit and is set or cleared based on CTSD16CLK fault indication. OFIFG is a sticky bit that is set when CTSD16OFFG is set, and it cannot be cleared as long as CTSD16OFFG is set. When CTSD16OFFG is cleared by software, OFIFG is not cleared automatically and must be cleared by software. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CTSD16 Copyright © 2008–2015, Texas Instruments Incorporated 801 CTSD16 Operation www.ti.com 30.2.5 Auto Power-Down The CTSD16 module is designed for low-power applications. When a CTSD16 channel is not actively converting, it is automatically disabled and the CTSD16CLK request removed and automatically reenabled when a conversion is started. When a channel is disabled, it consumes no current. If CTSD16REFS = 1, the CTSD16 module bursts the request for the V signal to the REF module so it is only requested when CTSD16 is actively converting. REFBG 30.2.6 Analog Inputs 30.2.6.1 Analog Input Range and PGA The full-scale input voltage range for each analog input pair is dependent on the gain setting of each channel. See the device-specific data sheet for full-scale input specifications. 30.2.6.2 Analog Input Pair Selection The CTSD16 can convert up to 15 inputs multiplexed into the buffer and PGA. Up to four differential analog input pairs (AD0 to AD3) and up to six single-ended analog inputs (A0 to A5) are available externally on the device. The four differential analog input pairs (AD0 to AD3) can also be configured as single-ended with CTSD16INCHx to save an input pin if differential input is not needed. For lowest noise, differential input should be used even for single-ended signals. When any singled-ended input is selected, the positive input is the Ax input and the negative input is internally connected to the VREFBG/VeREF+ signal. Thus, it is pseudo single-ended as only one external pin is needed but internally the full differential path is used. An internal temperature sensor is available using the A6 multiplexer input. A resistive divider to measure the supply voltage is available using the A7 multiplexer input. VBAT can be measured on the internal input A8. Inputs AD4+ and AD4- are tied together, and when CTSD16INCHx = 0x11, they are connected to the VREFBG/VeREF+ signal. When CTSD16INCHx = 0x12, they are connected to the DAC0 output to calibrate the offset of each CTSD16 input stage. Note that the measured offset depends on the impedance of the external circuitry; thus, the actual offset seen at any of the analog inputs may be different. 30.2.6.3 Analog Input Setup The analog input of each channel is configured using the CTSD16INCTLx register. These settings can be independently configured for each CTSD16 channel. The gain for each PGA is selected by the CTSD16GAINx bits. A total of five gain settings are available. During conversion, any modification of the CTSD16INCTLx register bits INTDLYx, GAINx, and INCHx becomes effective with the next decimation step of the digital filter. After these bits are modified, the next three conversions may be invalid due to the settling time of the digital filter. This can be handled automatically with the CTSD16INTDLY bit. When CTSD16INTDLY = 0b, conversion interrupt requests do not begin until the fourth conversion after a start condition. The preferred method is to modify the CTSD16INCTLx register when CTSD16 is not converting (CTSD16SC = 0). An external RC anti-aliasing filter is recommended for the CTSD16 to prevent aliasing of the input signal. The cutoff frequency should be <10 kHz for a 1-MHz modulator clock and OSR = 256. The cutoff frequency may be set to a lower frequency for applications that have lower bandwidth requirements. 30.2.6.3.1 Rail-to-Rail Input The input buffers allow rail-to-rail operation when CTSD16RRI = 1. Rail-to-rail operation can be useful for signals whose common mode voltage is close to the rail (see device-specific data sheet OA section VCM parameter for the input range supported when CTSD16RRI (OARRI) = 0 or 1) as it allows linear operation over a wider range with the charge pump enabled at the cost of additional current. Refer to the devicespecific data sheet OA section ICP for the charge pump current consumption as well as other parametrics such as turnon time. For more details on rail-to-rail operation, refer to Chapter 33. Rail-to-rail requires a single external capacitor from the CPCAP terminal to ground for proper operation. See the data sheet for proper value and tolerances. Rail-to-rail input mode ready is indicated by CTSD16RRIRDY bit being set or refer to device-specific data sheet OA section for charge pump settle time. 802 CTSD16 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated CTSD16 Operation www.ti.com Rail-to-rail input mode takes time to enable if the charge pump is not already on. CTSD16RRIRDY bit is set once rail-to-rail input is ready or refer to device-specific data sheet OA section for charge pump settle time. If power is a concern and the OA module is not in rail-to-rail input mode (OARRI = 1), the CTSD16RRIBURST bit can be set to allow the CTSD16 to only request the charge pump for rail-to-rail input mode when CTSD16 is converting. 30.2.6.4 Analog Port Selection The CTSD16 inputs are multiplexed with digital port pins. When analog signals are applied to digital gates, parasitic current can flow from VCC to GND. This parasitic current occurs if the input voltage is near the transition level of the gate. Disabling the digital part of the port pin eliminates the parasitic current flow and, therefore, reduces overall current consumption. The PxSEL.y bits provide the ability to disable the port pin input and output buffers. 30.2.7 Digital Filter The digital filter processes the 1-bit data stream from the modulator using a SINC3 comb filter. 30.2.7.1 SINC3 Filter The structure of a SINC3 filter is shown in Figure 30-3. Integrator Integrator Bitstream from Modulator + + -1 -1 z z fM fM z + Differentiator + z + - -1 z fS -1 fM Differentiator Differentiator Integrator + -1 fS z -1 fS Figure 30-3. SINC3 Filter Structure The transfer function is described in the z-domain by: æ 1 1 - z -OSR ´ H(z) = ç ç OSR 1 - z -1 è ö ÷ ÷ ø 3 (18) The transfer function is described in the frequency domain by: 3 æ æ öö æ æ f öö ç sinc ç OSRp f ÷ ÷ ç sinçç OSR ´ p ´ ÷÷ ÷ ÷ ç f f ç 1 ç M ø÷ M ø÷ è è H(f) = ç ÷ ÷ = ç OSR ´ æ f ö ÷ ç sinc æç p f ö÷ ÷ ç ÷ ç sin ´ p ç ç f ÷ ÷ ç ÷ ç fM ÷ø è è Mø ø è ø è 3 (19) Where the oversampling rate, OSR, is the ratio of the modulator frequency fM to the sample frequency fS. Figure 30-4 shows the filter's frequency response for an OSR of 32. The first filter notch is always at fS = fM/OSR. The notch's frequency can be adjusted by changing the oversampling rate using the CTSD16OSRx bits. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CTSD16 Copyright © 2008–2015, Texas Instruments Incorporated 803 CTSD16 Operation www.ti.com The digital filter for each enabled ADC channel completes the decimation of the digital bitstream and outputs new conversion results to the corresponding CTSD16MEMx register at the sample frequency fS. 0 -20 Gain (dB) -40 -60 -80 -100 -120 -140 Figure 30-4. Comb Filter Frequency Response With OSR = 32 Figure 30-5 shows the digital filter step response and conversion points. For step changes at the input after start of conversion a settling time must be allowed before a valid conversion result is available. The CTSD16INTDLY bit can provide sufficient filter settling time for a full-scale change at the ADC input. If the step occurs synchronously to the decimation of the digital filter the valid data will be available on the third conversion. An asynchronous step will require one additional conversion before valid data is available. Asynchronous Step Synchronous Step 80 80 60 60 % VFSR 100 % VFSR 100 40 40 20 20 0 0 0 1 2 3 4 5 6 Conversions 7 8 0 1 2 3 4 5 6 Conversions 7 8 Figure 30-5. Digital Filter Step Response and Conversion Points Digital Filter Output 804 CTSD16 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated CTSD16 Operation www.ti.com 30.2.7.2 Digital Filter Output The number of bits output by each digital filter is dependent on the oversampling ratio and ranges from 16 to 24 bits. Figure 30-6 shows the digital filter output bits and their relation to CTSD16MEMx for each OSR. For example, for OSR = 256 and LSBACC = 0, the CTSD16MEMx register contains bits 23 - 8 of the digital filter output. When OSR = 32, the CTSD16MEMx LSB is always zero. The CTSD16LSBACC and CTSD16LSBTOG bits give access to the least significant bits of the digital filter output. When CTSD16LSBACC = 1 the 16 least significant bits of the digital filter's output are read from CTSD16MEMx using word instructions. The CTSD16MEMx register can also be accessed with byte instructions returning only the 8 least significant bits of the digital filter output. When CTSD16LSBTOG = 1 the CTSD16LSBACC bit is automatically toggled each time the corresponding channel's CTSD16MEMx register is read. This allows the complete digital filter output result to be read with two read accesses of CTSD16MEMx. Setting or clearing CTSD16LSBTOG does not change CTSD16LSBACC until the next CTSD16MEMx access. OSR=256, LSBACC=0 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OSR=256, LSBACC=1 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 OSR=128, LSBACC=0 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 OSR=128, LSBACC=1 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 6 5 4 3 2 1 0 4 3 2 1 0 3 2 1 0 OSR=64, LSBACC=0 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 OSR=64, LSBACC=1 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 OSR=32, LSBACC=x 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 Figure 30-6. Used Bits of Digital Filter Output SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CTSD16 Copyright © 2008–2015, Texas Instruments Incorporated 805 CTSD16 Operation www.ti.com 30.2.8 Conversion Memory Registers: CTSD16MEMx One CTSD16MEMx register is associated with each CTSD16 channel. Conversion results for each channel are moved to the corresponding CTSD16MEMx register with each decimation step of the digital filter. The CTSD16IFG bit for a given channel is set when new data is written to CTSD16MEMx. CTSD16IFG is automatically cleared when CTSD16MEMx is read by the CPU or may be cleared with software. 30.2.8.1 Output Data Format The output data format is configurable in twos complement or offset binary as shown in Table 30-2. The data format is selected by the CTSD16DF bit. Table 30-2. Data Format CTSD16DF Format Analog Input CTSD16MEMx (1) Digital Filter Output (OSR = 256) +FSR FFFF FFFFFF 0 Offset binary ZERO 8000 800000 -FSR 0000 000000 1 (1) Twos complement +FSR 7FFF 7FFFFF ZERO 0000 000000 -FSR 8000 800000 Independent of SD24OSRx setting; SD24LSBACC = 0 Figure 30-7 shows the relationship between the full-scale input voltage range from –VFSR to +VFSR and the conversion result. The digital values for both data formats are illustrated. Twos complement Offset Binary CTSD16MEMx CTSD16MEMx FFFFh 7FFFh Input Voltage −VFSR 0000h 8000h +VFSR Input Voltage 0000h −VFSR 8000h +VFSR Figure 30-7. Input Voltage vs Digital Output 806 CTSD16 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated CTSD16 Operation www.ti.com 30.2.9 Conversion Modes The CTSD16 module can be configured for four modes of operation, listed in Table 30-3. The CTSD16SNGL and CTSD16GRP bits for each channel selects the conversion mode. Table 30-3. Conversion Mode Summary (1) CTSD16SNGL CTSD16GRP (1) 1 0 Single channel, Single conversion A single channel is converted once. 0 0 Single channel, Continuous conversion A single channel is converted continuously. 1 1 Group of channels, Single conversion A group of channels is converted once. 0 1 Group of channels, Continuous conversion A group of channels is converted continuously. Mode Operation A channel is grouped and is the master channel of the group when CTSD16GRP = 0 if CTSD16GRP for the prior channel is set. 30.2.9.1 Single Channel, Single Conversion Setting the CTSD16SC bit of a channel initiates one conversion on that channel when CTSD16SNGL = 1 and it is not grouped with any other channels. The CTSD16SC bit is automatically cleared after conversion is complete. Clearing CTSD16SC before the conversion is completed immediately stops conversion of the selected channel, the channel is powered down, and the corresponding digital filter is turned off. The value in CTSD16MEMx can change when CTSD16SC is cleared. TI recommends reading the conversion data in CTSD16MEMx before clearing CTSD16SC to avoid reading an invalid result. 30.2.9.2 Single Channel, Continuous Conversion When CTSD16SNGL = 0, continuous conversion mode is selected. Conversion of the selected channel begins when CTSD16SC is set and continues until the CTSD16SC bit is cleared by software when the channel is not grouped with any other channel. Clearing CTSD16SC immediately stops conversion of the selected channel, the channel is powered down and the corresponding digital filter is turned off. The value in CTSD16MEMx can change when CTSD16SC is cleared. TI recommends reading the conversion data in CTSD16MEMx before clearing CTSD16SC to avoid reading an invalid result. Figure 30-8 shows single channel operation for single conversion mode and continuous conversion mode. Channel 0 CTSD16SNGL = 1 CTSD16GRP = 0 Channel 1 CTSD16SNGL = 1 CTSD16GRP = 0 Channel 2 CTSD16SNGL = 0 CTSD16GRP = 0 Conversion CTSD16SC Set by Software Auto−clear Conversion Set by Software CTSD16SC Conversion CTSD16SC Conversion Auto−clear Set by Software Conversion Conversion Set by Software = Result written to CTSD16MEMx Auto−clear Conv Cleared by Software Time Figure 30-8. Single Channel Operation Example SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CTSD16 Copyright © 2008–2015, Texas Instruments Incorporated 807 CTSD16 Operation www.ti.com 30.2.9.3 Group of Channels, Single Conversion Consecutive CTSD16 channels can be grouped together with the CTSD16GRP bit to synchronize conversions. Setting CTSD16GRP for a channel groups that channel with the next channel in the module. For example, setting CTSD16GRP for channel 0 groups that channel with channel 1. In this case, channel 1 is the master channel, enabling and disabling conversion of all channels in the group with its CTSD16SC bit. The CTSD16GRP bit of the master channel is always 0. The CTSD16GRP bit of last channel in CTSD16 has no function and is always 0. When CTSD16SNGL = 1 for a channel in a group, single conversion mode is selected. A single conversion of that channel will occur synchronously when the master channel CTSD16SC bit is set. The CTSD16SC bit of all channels in the group will automatically be set and cleared by CTSD16SC of the master channel. CTSD16SC for each channel can also be cleared in software independently. Clearing CTSD16SC of the master channel before the conversions are completed immediately stops conversions of all channels in the group, the channels are powered down and the corresponding digital filters are turned off. Values in CTSD16MEMx can change when CTSD16SC is cleared. TI recommends reading the conversion data in CTSD16MEMx before clearing CTSD16SC to avoid reading an invalid result. 30.2.9.4 Group of Channels, Continuous Conversion When CTSD16SNGL = 0 for a channel in a group, continuous conversion mode is selected. Continuous conversion of that channel occurs synchronously when the master channel CTSD16SC bit is set. CTSD16SC bits for all grouped channels are automatically set and cleared with the master channel's CTSD16SC bit. CTSD16SC for each channel in the group can also be cleared in software independently. When CTSD16SC of a grouped channel is set by software independently of the master, conversion of that channel automatically synchronizes to conversions of the master channel. This ensures that conversions for grouped channels are always synchronous to the master. Clearing CTSD16SC of the master channel immediately stops conversions of all channels in the group, the channels are powered down, and the corresponding digital filters are turned off. Values in CTSD16MEMx can change when CTSD16SC is cleared. TI recommends reading the conversion data in CTSD16MEMx before clearing CTSD16SC to avoid reading an invalid result. Figure 30-9 shows grouped channel operation for three CTSD16 channels. Channel 0 is configured for single conversion mode, CTSD16SNGL = 1, and channels 1 and 2 are in continuous conversion mode, CTSD16SNGL = 0. Channel two, the last channel in the group, is the master channel. Conversions of all channels in the group occur synchronously to the master channel regardless of when each CTSD16SC bit is set using software. (syncronized to master) Channel 0 CTSD16SNGL = 1 CTSD16GRP = 1 CTSD16SC Channel 1 CTSD16SNGL = 0 CTSD16GRP =1 CTSD16SC Channel 2 CTSD16SNGL = 0 CTSD16GRP = 0 CTSD16SC Conversion Set by Ch2 Conversion Set by Ch2 Conversion Conversion Auto−clear Set by Software Auto−clear (syncronized to master) Conv Cleared by Software Conversion Conversion Set by Software Conv Cleared by Ch2 Conv Conversion Set by Software Cleared by Software Time = Result written to CTSD16MEMx Figure 30-9. Grouped Channel Operation Example 808 CTSD16 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated CTSD16 Operation www.ti.com 30.2.10 Conversion Operation Using Preload The CTSD16PREx register is used to determine a delay based on startup time requirements and when multiple channels are grouped the CTSD16PREx registers can be used to delay the conversion time frame for each channel. Using CTSD16PREx, the decimation time of the digital filter is increased by the specified number of fM clock cycles and can range from 0 to 1023. Figure 30-10 shows an example using CTSD16PREx. CTSD16OSRx = 32 f M cycles: 32 40 32 Conversion Delayed Conversion Conversion Load CTSD16PREx: CTSD16PREx = 8 Delayed Conversion Result Preload applied Time Figure 30-10. Conversion Delay Using Preload Example The CTSD16PREx delay is applied to the beginning of the next conversion cycle after being written. The delay is used on the first conversion after CTSD16SC is set and on the conversion cycle following each write to CTSD16PREx. Following conversions are not delayed. After modifying CTSD16PREx, the next write to CTSD16PREx should not occur until the next conversion cycle is completed, otherwise the conversion results may be incorrect. The accuracy of the result for the delayed conversion cycle using CTSD16PREx is dependent on the length of the delay and the frequency of the analog signal being sampled. For example, when measuring a DC signal, if there is no startup time required (see the CTSD16PREx register PreloadValue bit description for details) CTSD16PREx delay has no effect on the conversion result regardless of the duration. The user must determine when the delayed conversion result is useful in their application. Figure 30-11 shows the operation of grouped channels 0 and 1. The preload register of channel 1 is loaded with zero resulting in immediate conversion whereas the conversion cycle of channel 0 is delayed by setting CTSD16PRE0 = 8. The first channel 0 conversion uses CTSD16PREx = 8, shifting all subsequent conversions by 8 fM clock cycles. CTSD16OSRx = 32 f M cycles: 40 CTSD16PRE0 = 8 Delayed Conversion 32 32 Conversion Conversion First Sample Ch0 32 32 Conversion CTSD16PRE1 = 0 Start of Conversion Conversion 32 Conversion Conversion First Sample Ch1 Time Figure 30-11. Start of Conversion Using Preload Example When channels are grouped, care must be taken when a channel or channels operate in single conversion mode or are disabled in software while the master channel remains active. Each time channels in the group are re-enabled and resynchronized with the master channel, the preload delay for that channel is reintroduced. Figure 30-12 shows the resynchronization and preload delays for channels in a group. It is recommended that CTSD16PREx = 0 for the master channel to maintain a consistent delay between the master and remaining channels in the group when they are re-enabled. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CTSD16 Copyright © 2008–2015, Texas Instruments Incorporated 809 CTSD16 Operation www.ti.com (syncronized to master) Channel 0 CTSD16SNGL = 0 CTSD16GRP = 1 Channel 1 CTSD16SNGL = 1 CTSD16GRP =1 Channel 2 CTSD16SNGL = 0 CTSD16GRP = 0 PRE0 CTSD16SC Conversion CTSD16SC Conversion Set by Ch2 PRE1 Auto−clear Conversion CTSD16SC PRE0 Conv Cleared by Software Set by Software (syncronized to master) Set by Ch2 PRE1 Conv Conversion Set by Software Conversion Auto−clear Conversion Conv Conversion Set by Software Time = Result written to CTSD16MEMx Figure 30-12. Preload and Channel Synchronization 30.2.11 Using the Integrated Temperature Sensor To use the on-chip temperature sensor, select the analog input pair CTSD16INCHx = 0x6 and set REFTCOFF = 0 in REFCTL0 (REF module). This connects the temperature sensor to the positive CTSD16 input and connects the negative input to VREFBG/VeREF+, as for any single-ended input selection. Any other configuration is done as if an external analog input pair was selected, including CTSD16INTDLYx and CTSD16GAINx settings. The temperature sensor is part of the reference. It is possible to use the temperature sensor together with any of the available CTSD16 channels. However, it is not possible to use the temperature sensor with more than one CTSD16 channel at a time. The temperature measurement results will not be correct if more than one CTSD16 channel selects temperature sensor for conversion. CTSD16 can operate with either internal or external reference while using the temperature sensor. The typical temperature sensor transfer function is shown in Figure 30-13. When switching inputs of an CTSD16 channel to the temperature sensor, adequate delay must be provided using CTSD16INTDLYx to allow the digital filter to settle and assure that conversion results are valid. The temperature sensor offset error can be large. TLV temperature sensor calibration values can be used as described in Section 1.13, Device Descriptor Table. Typical Temperature Sensor Voltage – V 0.950 0.900 0.850 0.800 0.750 0.700 0.650 0.600 0.550 −40 −20 0 20 40 60 80 100 Ambient Temperature – °C Figure 30-13. Typical Temperature Sensor Transfer Function 810 CTSD16 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated CTSD16 Operation www.ti.com 30.2.12 Using the Integrated AVCC Sense To use the on-chip AVCC measurement, select the analog input pair CTSD16INCHx = 0x7. This connects AVCC sense to the positive CTSD16 input and connects the negative input to VREFBG/VeREF+, as for any single-ended input selection. Any other configuration is done as if an external analog input pair was selected, including CTSD16INTDLYx and CTSD16GAINx settings. It is possible to use the AVCC sense together with any of the available CTSD16 channels. However, it is not possible to use the AVCC sense with more than one CTSD16 channel at a time. The AVCC measurement results will not be correct if more than one CTSD16 channel selects AVCC sense for conversion. CTSD16 can operate with either internal or external reference while using the AVCC sense. AVCC sense measures the AVCC voltage divided by 2. 30.2.13 Grounding and Noise Considerations As with any high-resolution ADC, appropriate printed circuit board layout and grounding techniques should be followed to eliminate ground loops, unwanted parasitic effects, and noise. Ground loops are formed when return current from the ADC flows through paths that are common with other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset voltages that can add to or subtract from the reference or input voltages of the ADC. Therefore, solid decoupling on both the digital and analog supply is required (best with two capacitors, one 10 µF and one 100 nF, per supply). In addition to grounding, ripple and noise spikes on the power-supply lines due to digital switching or switching power supplies can corrupt the conversion result. To achieve high accuracy, TI recommends a noise-free design using separate analog and digital ground planes with a single-point connection. If the internal reference is used, the reference voltage should be buffered externally by connecting a small capacitor as defined in the device-specific data sheet (CVREFBG) to the VREFBG pin to reduce the noise on the reference. 30.2.14 Interrupt Handling The CTSD16 has two interrupt sources for each channel: • CTSD16IFGx: conversion ready interrupt • CTSD16OVIFGx: conversion memory overflow The CTSD16IFGx bits are set when their corresponding CTSD16MEMx memory register is written with a conversion result. An interrupt request is generated if the corresponding CTSD16IEx bit and the GIE bit are set. The CTSD16 overflow condition occurs when a conversion result is written to any CTSD16MEMx location before the previous conversion result was read. The CTSD16 also has the CTSD16OFFG bit (the CTSD16 clock fault bit) which sets the OFIFG bit in SFRIFG1 register. OFIFG is shared with the system oscillators fault conditions. 30.2.14.1 CTSD16IV, Interrupt Vector Generator All CTSD16 interrupt sources are prioritized and combined to source a single interrupt vector. CTSD16IV is used to determine which enabled CTSD16 interrupt source requested an interrupt. The highest priority CTSD16 interrupt request that is enabled generates a number in the CTSD16IV register (see Section 30.3.8). This number can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled CTSD16 interrupts do not affect the CTSD16IV value. Any read access of the CTSD16IV register has no effect on the CTSD16OVIFGx or CTSD16IFGx. The CTSD16IFGx flags are reset by reading the associated CTSD16MEMx register or by clearing the flags in software. CTSD16OVIFGx bits can only be reset with software. A write access to CTSD16IV clears all interrupt flags. If another interrupt is pending after servicing of an interrupt, another interrupt is generated. For example, if the CTSD16OVIFG0 and one or more CTSD16IFGx interrupts are pending when the interrupt service routine accesses the CTSD16IV register, the CTSD16OVIFG0 interrupt condition is serviced first and the corresponding flags must be cleared in software. After the RETI instruction of the interrupt service routine is executed, the highest priority CTSD16IFG pending generates another interrupt request. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CTSD16 Copyright © 2008–2015, Texas Instruments Incorporated 811 CTSD16 Operation www.ti.com 30.2.14.2 Interrupt Delay Operation The CTSD16INTDLY bit controls the timing for the first interrupt service request for the corresponding channel. This feature delays the interrupt request for a completed conversion by up to four conversion cycles to allow the digital filter to settle before generating an interrupt request. The delay is applied each time the CTSD16SC bit is set or when the CTSD16GAINx or CTSD16INCHx bits for the channel are modified. CTSD16INTDLY disables overflow interrupt generation for the channel for the selected number of delay cycles. Interrupt requests for the delayed conversions are not generated during the delay. Example 30-1 shows the recommended use of CTSD16IV and the handling overhead. The CTSD16IV value is added to the PC to automatically jump to the appropriate routine. Example 30-1. CTSD16 Interrupt Handling Software Example The numbers at the right margin show the necessary CPU cycles for each instruction. The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not the task handling itself. The latencies are: • CTSD16OVIFG, CH0 CTSD16IFG, CH1 CTSD16IFG: 16 cycles • CH2 CTSD16IFG: 14 cycles The interrupt handler for channel 2 CTSD16IFG2 shows a way to check immediately if a higher prioritized interrupt occurred during the processing of the ISR. This saves nine cycles if another CTSD16 interrupt is pending. ; Interrupt handler for CTSD16. INT_CTSD16 ; Enter Interrupt Service Routine ADD &CTSD16IV,PC ; Add offset to PC RETI ; Vector 0: No interrupt JMP ADOV ; Vector 2: ADC overflow JMP ADM0 ; Vector 4: CH_0 CTSD16IFG0 JMP ADM1 ; Vector 6: CH_1 CTSD16IFG1 ; ; Handler for CH_2 CTSD16IFG2 starts here. No JMP required. ; ADM2 MOV &CTSD16MEM2,xxx ; Move result, flag is reset ... ; Other instruction needed? JMP INT_CTSD16 ; Check other int pending ; ; Remaining Handlers ; ADM1 MOV &CTSD16MEM1,xxx ; Move result, flag is reset ... ; Other instruction needed? RETI ; Return ; ADM0 MOV &CTSD16MEM0,xxx ; Move result, flag is reset RETI ; Return ; ADOV ... ; Handle CTSD16MEMx overflow RETI ; Return 6 3 5 2 2 2 2 5 5 5 30.2.14.3 Using CTSD16 With DMA Devices with an integrated DMA controller can automatically move data from any CTSD16MEMx to another location. DMA transfers are done without CPU intervention and independent of any low-power modes. If the respective interrupt enable bit CTSD16IEx is set, the selected CTSD16IFGx flag does not trigger a transfer. Any CTSD16IFGx is automatically cleared when the DMA controller accesses the corresponding CTSD16MEMx registers. 812 CTSD16 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated CTSD16 Registers www.ti.com 30.3 CTSD16 Registers The CTSD16 registers are listed in Table 30-4. The base address can be found in the device-specific data sheet. The address offset is listed inTable 30-4. Table 30-4. CTSD16 Registers Offset Acronym Register Name Type Access Reset Section 00h CTSD16CTL CTSD16 Control Read/write Word 0000h Section 30.3.1 02h CTSD16CCTL0 CTSD16 Control Channel 0 Read/write Word 0000h Section 30.3.2 32h CTSD16MEM0 CTSD16 Channel 0 Conversion Memory Read Word 0000h Section 30.3.3 04h CTSD16INCTL0 CTSD16 Channel 0 Input Control Read/write Word 0000h Section 30.3.4 06h CTSD16PRE0 CTSD16 Channel 0 Preload Read/write Word 0030h Section 30.3.5 08h CTSD16CCTL1 CTSD16 Channel 1 Control Read/write Word 0000h Section 30.3.2 34h CTSD16MEM1 CTSD16 Channel 1 Conversion Memory Read Word 0000h Section 30.3.3 0Ah CTSD16INCTL1 CTSD16 Channel 1 Input Control Read/write Word 0000h Section 30.3.4 0Ch CTSD16PRE1 CTSD16 Channel 1 Preload Read/write Word 00h Section 30.3.5 0Eh CTSD16CCTL2 CTSD16 Channel 2 Control Read/write Word 0000h Section 30.3.2 36h CTSD16MEM2 CTSD16 Channel 2 Conversion Memory Read Word 0000h Section 30.3.3 10h CTSD16INCTL2 CTSD16 Channel 2 Input Control Read/write Word 0000h Section 30.3.4 12h CTSD16PRE2 CTSD16 Channel 2 Preload Read/write Word 00h Section 30.3.5 14h CTSD16CCTL3 CTSD16 Channel 3 Control Read/write Word 0000h Section 30.3.2 38h CTSD16MEM3 CTSD16 Channel 3 Conversion Memory Read Word 0000h Section 30.3.3 16h CTSD16INCTL3 CTSD16 Channel 3 Input Control Read/write Word 0000h Section 30.3.4 18h CTSD16PRE3 CTSD16 Channel 3 Preload Read/write Word 00h Section 30.3.5 1Ah CTSD16CCTL4 CTSD16 Channel 4 Control Read/write Word 0000h Section 30.3.2 3Ah CTSD16MEM4 CTSD16 Channel 4 Conversion Memory Read Word 0000h Section 30.3.3 1Ch CTSD16INCTL4 CTSD16 Channel 4 Input Control Read/write Word 0000h Section 30.3.4 1Eh CTSD16PRE4 CTSD16 Channel 4 Preload Read/write Word 00h Section 30.3.5 20h CTSD16CCTL5 CTSD16 Channel 5 Control Read/write Word 0000h Section 30.3.2 3Ch CTSD16MEM5 CTSD16 Channel 5 Conversion Memory Read Word 0000h Section 30.3.3 22h CTSD16INCTL5 CTSD16 Channel 5 Input Control Read/write Word 0000h Section 30.3.4 24h CTSD16PRE5 CTSD16 Channel 5 Preload Read/write Word 00h Section 30.3.5 26h CTSD16CCTL6 CTSD16 Channel 6 Control Read/write Word 0000h Section 30.3.2 3Eh CTSD16MEM6 CTSD16 Channel 6 Conversion Memory Read Word 0000h Section 30.3.3 28h CTSD16INCTL6 CTSD16 Channel 6 Input Control Read/write Word 0000h Section 30.3.4 2Ah CTSD16PRE6 CTSD16 Channel 6 Preload Read/write Word 00h Section 30.3.5 2C CTSD16IFG CTSD16 Interrupt Flag Register Read/write Word 0000h Section 30.3.6 2E CTSD16IE CTSD16 Interrupt Enable Register Read/write Word 0000h Section 30.3.7 30 CTSD16IV CTSD16 Interrupt Vector Read/write Word 0000h Section 30.3.8 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CTSD16 Copyright © 2008–2015, Texas Instruments Incorporated 813 CTSD16 Registers www.ti.com 30.3.1 CTSD16CTL Register CTSD16 Control Register Figure 30-14. CTSD16CTL Register 15 14 13 12 11 Reserved r0 7 r0 r0 6 5 r0 Reserved r0 r0 r0 10 9 8 CTSD16RRIERR CTSD16RRIRDY CTSD16RRIBURST r0 r0 rw-0 r0 4 3 2 1 0 CTSD16OFFG Reserved CTSD16REFS Reserved Reserved rw-0 rw-0 rw-0 r0 r0 Table 30-5. CTSD16CTL Register Description Bit Field Type Reset Description 15-11 Reserved R 0h Reserved. Always reads as 0. 10 CTSD16RRIERR R 0h Rail-to-rail input error 0b = Rail-to-rail input no error (ready) 1b = Rail-to-rail input error (was ready but then not ready) 9 CTSD16RRIRDY R 0 Rail-to-rail input ready 0b = Rail-to-rail input not ready 1b = Rail-to-rail input ready 8 CTSD16RRIBURST RW 0h Rail-to-rail input charge pump burst mode request from CTSD16 0b = Disables the rail-to-rail input charge pump burst mode request from CTSD16 1b = Enables the rail-to-rail input charge pump burst mode request from CTSD16, where charge pump is only enable when CTSD16 is converting to save power however the enable time of the charge pump must be considered. See the device specific OA data sheet section for the charge pump enable time. 7-5 Reserved R 0h Reserved. Always reads as 0. 4 CTSD16OFFG RW 0h CTSD16 clock fault flag. If this bit is set, the OFIFG flag is also set. CTSD16OFFG bit is set when a fault is detected with the CTSD16 clock (used by OA in rail-to-rail mode or CTSD16 module) 0b = No CTSD16 clock fault 1b = CTSD16 clock fault detected 3 Reserved RW 0h Reserved. Always write as 0. 2 CTSD16REFS RW 0h CTSD16 reference select. 0b = External reference selected. Internal reference voltage buffer disabled. 1b = Internal reference from shared REF selected and buffered internally to CTSD16 1 Reserved R 0h Reserved. Always reads as 0. 0 Reserved R 0h Reserved. Always reads as 0. 814 CTSD16 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated CTSD16 Registers www.ti.com 30.3.2 CTSD16CCTL0 to CTSD16CCTL6 Register CTSD16 Channel x Control Register (x = 0 to 6) Figure 30-15. CTSD16CCTL0 to CTSD16CCTL6 Register 15 14 13 12 11 10 Reserved r0 r0 r0 9 CTSD16SNGL r0 r0 3 7 6 5 4 CTSD16LSBTOG CTSD16LSBACC Reserved CTSD16DF rw-0 rw-0 r0 rw-0 rw-0 2 Reserved r0 r0 8 CTSD16OSRx rw-0 rw-0 1 0 CTSD16SC CTSD16GRP rw-0 rw-0 Table 30-6. CTSD16CCTL0 to CTSD16CCTL6 Register Description Bit Field Type Reset Description 15-11 Reserved R 0h Reserved. Always reads as 0. 10 CTSD16SNGL RW 0h Single conversion mode select 0b = Continuous conversion mode 1b = Single conversion mode 9-8 CTSD16OSRx RW 0h Oversampling ratio 00b = 256 01b = 128 10b = 64 11b = 32 7 CTSD16LSBTOG RW 0h LSB toggle. This bit, when set, causes CTSD16LSBACC to toggle each time the CTSD16MEMx register is read. 0b = CTSD16LSBACC does not toggle with each CTSD16MEMx read 1b = CTSD16LSBACC toggles with each CTSD16MEMx read 6 CTSD16LSBACC RW 0h LSB access. This bit allows access to the upper or lower 16-bits of the CTSD16 conversion result. 0b = CTSD16MEMx contains the most significant 16-bits of the conversion. 1b = CTSD16MEMx contains the least significant 16-bits of the conversion. 5 Reserved R 0h Reserved. Always reads as 0. 4 CTSD16DF RW 0h CTSD16 data format 0b = Offset binary 1b = Twos complement 3-2 Reserved R 0h Reserved. Always reads as 0. 1 CTSD16SC RW 0h CTSD16 start conversion 0b = No conversion start 1b = Start conversion 0 CTSD16GRP RW 0h CTSD16 group. Groups CTSD16 channel with next higher channel. Not used for the last channel. 0b = Not grouped 1b = Grouped SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CTSD16 Copyright © 2008–2015, Texas Instruments Incorporated 815 CTSD16 Registers www.ti.com 30.3.3 CTSD16MEM0 to CTSD16MEM6 Register CTSD16 Channel x Conversion Memory Register (x = 0 to 6) Figure 30-16. CTSD16MEM0 to CTSD16MEM6 Register 15 14 13 12 r-0 r-0 r-0 r-0 7 6 5 4 11 10 9 8 r-0 r-0 r-0 r-0 3 2 1 0 r-0 r-0 r-0 Conversion Results Conversion Results r-0 r-0 r-0 r-0 r-0 Table 30-7. CTSD16MEM0 to CTSD16MEM6 Register Description Bit Field Type Reset Description 15-0 Conversion Results R 0h Conversion results. This register holds the upper or lower 16-bits of the digital filter output, depending on the CTSD16LSBACC bit. 816 CTSD16 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated CTSD16 Registers www.ti.com 30.3.4 CTSD16INCTL0 to CTSD16INCTL6 Register CTSD16 Channel x Input Control Register (x = 0 to 6) Figure 30-17. CTSD16INCTL0 to CTSD16INCTL6 Register 15 14 13 12 Reserved 11 10 9 8 CTSD16RRI Reserved Reserved CTSD16INTDLY r0 r0 r0 r0 rw-0 rw-0 r0 rw-0 7 6 5 4 3 2 1 0 rw-0 rw-0 CTSD16GAINx rw-0 CTSD16INCHx rw-0 rw-0 rw-0 rw-0 rw-0 Table 30-8. CTSD16INCTL0 to CTSD16INCTL6 Register Description Bit Field Type Reset Description 15-12 Reserved R 0h Reserved. Always reads as 0. 11 CTSD16RRI RW 0h Rail-to-rail input enable. 0b = Rail-to-rail input disabled 1b = Rail-to-rail input enabled 10 Reserved RW 0h Reserved. Always write as 0. 9 Reserved R 0h Reserved. Always reads as 0. 8 CTSD16INTDLY RW 0h Interrupt delay generation after conversion start. This bit selects the delay for the first interrupt after conversion start. 0b = Fourth sample causes interrupt 1b = First sample causes interrupt 7-5 CTSD16GAINx RW 0h CTSD16 preamplifier gain 000b = x1 001b = x2 010b = x4 011b = x8 100b = x16 101b = Reserved 110b = Reserved 111b = Reserved 4-0 CTSD16INCHx RW 0h CTSD16 channel input 00000b = in+ = A0, in- = VREFBG/VeREF+ 00001b = in+ = A1, in- = VREFBG/VeREF+ 00010b = in+ = A2, in- = VREFBG/VeREF+ 00011b = in+ = A3, in- = VREFBG/VeREF+ 00100b = in+ = A4, in- = VREFBG/VeREF+ 00101b = in+ = A5, in- = VREFBG/VeREF+ 00110b = int+ = internal temperature sensor in- = VREFBG/VeREF+ 00111b = in+ = internal VCC sense in- = VREFBG/VeREF+ 01000b = in+ = internal VBAT sense in- = VREFBG/VeREF+ 01001b = in+ = AD0+, in- = AD001010b = in+ = AD0+, in- = VREFBG/VeREF+ 01011b = in+ = AD1+, in- = AD101100b = in+ = AD1+, in- = VREFBG/VeREF+ 01101b = in+ = AD2+, in- = AD201110b = in+ = AD2+, in- = VREFBG/VeREF+ 01111b = in+ = AD3+, in- = AD310000b = in+ = AD3+, in- = VREFBG/VeREF+ 10001b = AD4x, shorted differential inputs to VREFBG/VeREF+ 10010b = AD4x, shorted differential inputs to DAC0 output SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CTSD16 Copyright © 2008–2015, Texas Instruments Incorporated 817 CTSD16 Registers www.ti.com 30.3.5 CTSD16PRE0 to CTSD16PRE6 Register CTSD16 Channel x Preload Register (x = 0 to 6) Figure 30-18. CTSD16PRE0 to CTSD16PRE6 Register 15 14 13 12 11 10 9 r0 r0 r0 r0 r0 r0 rw-0 7 6 rw-0 5 4 3 2 1 0 rw-0 rw-0 rw-0 rw-0 Reserved 8 PreloadValue PreloadValue rw-0 rw-0 rw-1 rw-1 Table 30-9. CTSD16PRE0 to CTSD16PRE6 Register Description Bit Field Type Reset Description 15-10 Reserved R 0h Reserved. Always reads as 0. 9-0 PreloadValue RW 30h CTSD16 digital filter preload value. Value represents number of CTSD16 clock cycles. • If internal reference is used and but not already on and settle when CTSD16 starts a conversion, refer to device-specific data sheet for VREFBG settle time to determine preload minimum value. Note VREFBG can be turned on with REFON = 1 and REFOUT = 1. Else, if CTSD16RRI = 1 need to use the charge pump startup time if not already on (OARRI = 1 or CTSD16RRIBURST = 0). Refer to the device data sheet OA section for charge pump enable time tCP_EN. If charge pump is already on there is no minimum preload value • If internal reference is already settled or not used and CTSD16RRI = 0 and OARRI = 1 there is no preload minimum value required. • If internal reference is already settled or not used and CTSD16RRI = 0 and OARRI = 0 then the minimum preload value is the default one. 818 CTSD16 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated CTSD16 Registers www.ti.com 30.3.6 CTSD16IFG Register CTSD16 Interrupt Flag Register Figure 30-19. CTSD16IFG Register 15 14 13 12 11 10 9 8 Reserved CTSD16OVIFG6 CTSD16OVIFG5 CTSD16OVIFG4 CTSD16OVIFG3 CTSD16OVIFG2 CTSD16OVIFG1 CTSD16OVIFG0 r0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 7 6 5 4 3 2 1 0 Reserved CTSD16IFG6 CTSD16IFG5 CTSD16IFG4 CTSD16IFG3 CTSD16IFG2 CTSD16IFG1 CTSD16IFG0 r0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Table 30-10. CTSD16IFG Register Description Bit Field Type Reset Description 15 Reserved R 0h Reserved. Always reads as 0. 14 CTSD16OVIFG6 RW 0h CTSD16 converter 6 overflow interrupt flag 0b = No interrupt pending 1b = Interrupt pending 13 CTSD16OVIFG5 RW 0h CTSD16 converter 5 overflow interrupt flag 0b = No interrupt pending 1b = Interrupt pending 12 CTSD16OVIFG4 RW 0h CTSD16 converter 4 overflow interrupt flag 0b = No interrupt pending 1b = Interrupt pending 11 CTSD16OVIFG3 RW 0h CTSD16 converter 3 overflow interrupt flag 0b = No interrupt pending 1b = Interrupt pending 10 CTSD16OVIFG2 RW 0h CTSD16 converter 2 overflow interrupt flag 0b = No interrupt pending 1b = Interrupt pending 9 CTSD16OVIFG1 RW 0h CTSD16 converter 1 overflow interrupt flag 0b = No interrupt pending 1b = Interrupt pending 8 CTSD16OVIFG0 RW 0h CTSD16 converter 0 overflow interrupt flag 0b = No interrupt pending 1b = Interrupt pending 7 Reserved R 0h Reserved. Always reads as 0. 6 CTSD16IFG6 RW 0h CTSD16 converter 6 interrupt flag. CTSD16IFG6 is set when new conversion results are available. CTSD16IFG6 is automatically reset when the CTSD16MEM6 register is read, or may be cleared with software. 0b = No interrupt pending 1b = Interrupt pending 5 CTSD16IFG5 RW 0h CTSD16 converter 5 interrupt flag. CTSD16IFG5 is set when new conversion results are available. CTSD16IFG5 is automatically reset when the CTSD16MEM5 register is read, or may be cleared with software. 0b = No interrupt pending 1b = Interrupt pending 4 CTSD16IFG4 RW 0h CTSD16 converter 4 interrupt flag. CTSD16IFG4 is set when new conversion results are available. CTSD16IFG4 is automatically reset when the CTSD16MEM4 register is read, or may be cleared with software. 0b = No interrupt pending 1b = Interrupt pending SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CTSD16 Copyright © 2008–2015, Texas Instruments Incorporated 819 CTSD16 Registers www.ti.com Table 30-10. CTSD16IFG Register Description (continued) Bit Field Type Reset Description 3 CTSD16IFG3 RW 0h CTSD16 converter 3 interrupt flag. CTSD16IFG3 is set when new conversion results are available. CTSD16IFG3 is automatically reset when the CTSD16MEM3 register is read, or may be cleared with software. 0b = No interrupt pending 1b = Interrupt pending 2 CTSD16IFG2 RW 0h CTSD16 converter 2 interrupt flag. CTSD16IFG2 is set when new conversion results are available. CTSD16IFG2 is automatically reset when the CTSD16MEM2 register is read, or may be cleared with software. 0b = No interrupt pending 1b = Interrupt pending 1 CTSD16IFG1 RW 0h CTSD16 converter 1 interrupt flag. CTSD16IFG1 is set when new conversion results are available. CTSD16IFG1 is automatically reset when the CTSD16MEM1 register is read, or may be cleared with software 0b = No interrupt pending 1b = Interrupt pending 0 CTSD16IFG0 RW 0h CTSD16 converter 0 interrupt flag. CTSD16IFG0 is set when new conversion results are available. CTSD16IFG0 is automatically reset when the CTSD16MEM0 register is read, or may be cleared with software 0b = No interrupt pending 1b = Interrupt pending 820 CTSD16 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated CTSD16 Registers www.ti.com 30.3.7 CTSD16IE Register CTSD16 Interrupt Enable Register Figure 30-20. CTSD16IE Register 15 14 13 12 11 10 9 8 Reserved CTSD16OVIE6 CTSD16OVIE5 CTSD16OVIE4 CTSD16OVIE3 CTSD16OVIE2 CTSD16OVIE1 CTSD16OVIE0 r0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 7 6 5 4 3 2 1 0 Reserved CTSD16IE6 CTSD16IE5 CTSD16IE4 CTSD16IE3 CTSD16IE2 CTSD16IE1 CTSD16IE0 r0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Table 30-11. CTSD16IE Register Description Bit Field Type Reset Description 15 Reserved R 0h Reserved. Always reads as 0. 14 CTSD16OVIE6 RW 0h CTSD16 converter 6 overflow interrupt enable 0b = Interrupt disabled. 1b = Interrupt enabled. 13 CTSD16OVIE5 RW 0h CTSD16 converter 5 overflow interrupt enable 0b = Interrupt disabled. 1b = Interrupt enabled. 12 CTSD16OVIE4 RW 0h CTSD16 converter 4 overflow interrupt enable 0b = Interrupt disabled. 1b = Interrupt enabled. 11 CTSD16OVIE3 RW 0h CTSD16 converter 3 overflow interrupt enable 0b = Interrupt disabled. 1b = Interrupt enabled. 10 CTSD16OVIE2 RW 0h CTSD16 converter 2 overflow interrupt enable 0b = Interrupt disabled. 1b = Interrupt enabled. 9 CTSD16OVIE1 RW 0h CTSD16 converter 1 overflow interrupt enable 0b = Interrupt disabled. 1b = Interrupt enabled. 8 CTSD16OVIE0 RW 0h CTSD16 converter 0 overflow interrupt enable 0b = Interrupt disabled. 1b = Interrupt enabled. 7 Reserved R 0h Reserved. Always reads as 0. 6 CTSD16IE6 RW 0h CTSD16 converter 6 interrupt enable 0b = Interrupt disabled. 1b = Interrupt enabled. 5 CTSD16IE5 RW 0h CTSD16 converter 5 interrupt enable 0b = Interrupt disabled. 1b = Interrupt enabled. 4 CTSD16IE4 RW 0h CTSD16 converter 4 interrupt enable 0b = Interrupt disabled. 1b = Interrupt enabled. 3 CTSD16IE3 RW 0h CTSD16 converter 3 interrupt enable 0b = Interrupt disabled. 1b = Interrupt enabled. 2 CTSD16IE2 RW 0h CTSD16 converter 2 interrupt enable 0b = Interrupt disabled. 1b = Interrupt enabled. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CTSD16 Copyright © 2008–2015, Texas Instruments Incorporated 821 CTSD16 Registers www.ti.com Table 30-11. CTSD16IE Register Description (continued) Bit Field Type Reset Description 1 CTSD16IE1 RW 0h CTSD16 converter 1 interrupt enable 0b = Interrupt disabled. 1b = Interrupt enabled. 0 CTSD16IE0 RW 0h CTSD16 converter 0 interrupt enable 0b = Interrupt disabled. 1b = Interrupt enabled. 822 CTSD16 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated CTSD16 Registers www.ti.com 30.3.8 CTSD16IV Register CTSD16 Interrupt Vector Register Figure 30-21. CTSD16IV Register 15 14 13 12 11 10 9 8 0 0 0 0 0 0 0 0 r0 r0 r0 r0 r0 r0 r0 r0 7 6 5 4 3 2 1 0 0 0 0 r0 r0 r0 rw-0 rw-0 CTSD16IVx rw-0 rw-0 rw-0 Table 30-12. CTSD16IV Register Description Bit Field Type Reset Description 15-5 Reserved R 0h Reserved. Always reads as 0. 4-0 CTSD16IVx RW 0h CTSD16 interrupt vector value. Writing to this register clears all pending interrupt flags. 00h = No interrupt pending 02h = Interrupt Source: CTSD16MEMx overflow; Interrupt Flag: CTSD16OVIFG (1); Interrupt Priority = Highest. 04h = Interrupt Source: CTSD16_0 Interrupt; Interrupt Flag: CTSD16IFG0 06h = Interrupt Source: CTSD16_1 Interrupt; Interrupt Flag: CTSD16IFG1 08h = Interrupt Source: CTSD16_2 Interrupt; Interrupt Flag: CTSD16IFG2 0Ah = Interrupt Source: CTSD16_3 Interrupt; Interrupt Flag: CTSD16IFG3 0Ch = Interrupt Source: CTSD16_4 Interrupt; Interrupt Flag: CTSD16IFG4 0Eh = Interrupt Source: CTSD16_5 Interrupt; Interrupt Flag: CTSD16IFG5 10h = Interrupt Source: CTSD16_6 Interrupt; Interrupt Flag: CTSD16IFG6; Interrupt Priority = Lowest (1) When an CTSD16 overflow occurs, the user must check all CTSD16CCTLx CTSD16OVIFG flags to determine which channel overflowed. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback CTSD16 Copyright © 2008–2015, Texas Instruments Incorporated 823 Chapter 31 SLAU208O – June 2008 – Revised May 2015 DAC12_A The DAC12_A module is a 12-bit, voltage output digital-to-analog converter. This chapter describes the operation and use of the DAC12_A module. Topic ........................................................................................................................... 31.1 31.2 31.3 31.4 824 DAC12_A Introduction....................................................................................... DAC12_A Operation .......................................................................................... DAC Outputs .................................................................................................... DAC12_A Registers .......................................................................................... DAC12_A Page 825 828 833 834 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated DAC12_A Introduction www.ti.com 31.1 DAC12_A Introduction The DAC12_A module is a 12-bit voltage-output DAC. The DAC12_A can be configured in 8-bit or 12-bit mode and may be used in conjunction with the DMA controller. When multiple DAC12_A modules are present, they may be grouped together for synchronous operation. Features of the DAC12_A include: • 12-bit monotonic output • 8-bit or 12-bit voltage-output resolution • Programmable settling time vs power consumption • Internal or external reference selection • Straight binary or twos-complement data format, right or left justified • Self-calibration option for offset correction • Synchronized update capability for multiple DAC12_A modules NOTE: Multiple DAC12_A Modules Some devices may integrate more than one DAC12_A module. In the case where more than one DAC12_A is present on a device, the multiple DAC12_A modules operate identically. Throughout this chapter, nomenclature appears such as DAC12_xDAT or DAC12_xCTL to describe register names. When this occurs, the x is used to indicate which DAC12 module is being discussed. In cases where operation is identical, the register is simply referred to as DAC12_xCTL. Figure 31-1 shows the block diagram for devices with two DAC12_A modules. Figure 31-2 shows the block diagram for devices with one DAC12_A module. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DAC12_A Copyright © 2008–2015, Texas Instruments Incorporated 825 DAC12_A Introduction www.ti.com VeREF+ (devices with CTSD16 this signal is VREFBG/VeREF+) To other modules VREF+ 2.5 V, 2.0 V, or 1.5 V reference from REF module DAC12SREFx DAC12AMPx DAC12IR 3 00 01 AVCC /2, /3 10 11 DAC12_0CALDAT AVSS DAC12OG VR− VR+ DAC12LSELx DAC12_0OUT DAC12_0 00 Latch Bypass DAC12OG 01 TA1 10 TB2 11 x2, x3 0 1 1 0 DAC12GRP DAC12RES DAC12DF DAC12DFJ DAC12_0Latch ENC DAC12_0DAT DAC12_0DAT Updated Group Load Logic DAC12SREFx DAC12AMPx DAC12IR 3 00 AVCC 01 /2, /3 10 DAC12_1CALDAT AVSS 11 DAC12OG VR− DAC12LSELx VR+ DAC12_1OUT DAC12_1 00 01 TA1 TB2 10 11 x2, x3 Latch Bypass DAC12OG 0 1 1 0 DAC12GRP ENC DAC12RES DAC12DF DAC12DFJ DAC12_1Latch DAC12_1DAT DAC12_1DAT Updated Figure 31-1. DAC12_A Block Diagram for Two-Module Devices 826 DAC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated DAC12_A Introduction www.ti.com VeREF+ To other modules VREF+ 2.5 V, 2.0 V, or 1.5 V reference from REF module DAC12SREFx DAC12AMPx DAC12IR 3 00 AVCC 01 /2, /3 10 11 DAC12OG DAC12_0CALDAT AVSS VR− VR+ DAC12LSELx DAC12_0OUT DAC12_0 00 Latch Bypass DAC12OG 01 TA1 TB2 10 11 x2, x3 0 1 1 DAC12_0Latch 0 DAC12GRP ENC DAC12RES DAC12DF DAC12DFJ DAC12_0DAT DAC12_0DAT Updated Figure 31-2. DAC12_A Block Diagram For Single-Module Devices SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DAC12_A Copyright © 2008–2015, Texas Instruments Incorporated 827 DAC12_A Operation www.ti.com 31.2 DAC12_A Operation The DAC12_A module is configured with user software. The setup and operation of the DAC12_A is discussed in the following sections. 31.2.1 DAC12_A Core The DAC12_A can be configured to operate in 8-bit or 12-bit mode using the DAC12RES bit. The fullscale output is programmable to be 1x, 2x, or 3x the selected reference voltage using the DAC12IR and DAC12OG bits. This feature allows the user to control the dynamic range of the DAC. The DAC12DF bit allows the user to select between straight-binary data and twos-complement data for the DAC. When using straight-binary data format, the formula for the output voltage is given in Table 31-1. Table 31-1. DAC Full-Scale Range (Vref = VeREF+ or VREF+ or VREFBG Resolution DAC12RES DAC12OG 0 12 bit 0 1 x 0 8 bit 1 1 x (1) DAC12IR 0 1 0 1 (1) ) Output Voltage Formula Vout = Vref × 3 × (DAC12_xDAT/4096) Vout = Vref × 2 x (DAC12_xDAT/4096) Vout = Vref × (DAC12_xDAT/4096) Vout = Vref × 3 × (DAC12_xDAT/256) Vout = Vref × 2 × (DAC12_xDAT/256) Vout = Vref × (DAC12_xDAT/256) VREFBG is not available on all devices; see the device-specific data sheet for availability. In 8-bit mode the maximum useable value for DAC12_xDAT is 0FFh and in 12-bit mode the maximum useable value for DAC12_xDAT is 0FFFh. Values greater than these may be written to the register, but all leading bits are ignored. 31.2.2 DAC12_A Port Selection On most devices, the DAC outputs are multiplexed with the port Px pins and potentially other secondary functions. When DAC12AMPx > 0, the DAC function is automatically selected for the pin, regardless of the state of the associated PxSEL.y and PxDIR.y bits. See the port pin schematic in the device-specific data sheet for more details. 31.2.3 DAC12_A Reference The reference for the DAC12_A is configured to use AVCC, an external reference voltage, or internal 1.16V, VREFBG, voltage reference (only available on devices with a CTSD16 module, refer to the device-specific data sheet), or the internal 1.5-V, 2.0-V, or 2.5-V reference from the REF module with the DAC12SREFx bits. When DAC12SREFx = {0} and DAC12AMPx > {1}, VREF+ is used as the reference, which is supplied from the REF module. See the REF chapter for further information. When DAC12SREFx = {1}, AVCC is used as the reference, and when DAC12SREFx = {2,3} the external reference, VeREF+ signal, is used as the reference unless the device has a CTSD16 module. On devices that have a CTSD16 module (refer to device specific data sheet), when DAC12SREFx = {2,3} either the external reference, VeREF+ signal or the internally generated reference, VREFBG signal, is selected. See Table 31-2 for details on which bits to set to select between the VeREF+ and VREFBG signals. Table 31-2. DAC12SREFx = {2,3} Signal Selection Requirements for Devices With a CTSD16 Module (1) (2) 828 Signal Selected REFOUT REFON VeREF+ 0 x 1 VREFBG 1 1 1 (2) CTSD16REFS (1) PxSEL.y If CTSD16 module is used, must be set to 0. If CTSD16 module is used, CTSD16REFS must be set to 1. If CTSD16 is used, CTSD16REFS bit must be set according to this table as external voltage reference VeREF+ and internal voltage reference VREFBG cannot both be used at the same time as they use the same pin. When VREFBG is selected, PxSEL.y must always be set even if VREFBG is only used inside the device. DAC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated DAC12_A Operation www.ti.com 31.2.3.1 DAC12_A Reference Input and Voltage Output Buffers The reference input and voltage output buffers of the DAC can be configured for optimized settling time vs power consumption. Eight combinations are selected using the DAC12AMPx bits. In the low/low setting, the settling time is the slowest, and the current consumption of both buffers is the lowest. The medium and high settings have faster settling times, but the current consumption increases. See the devicespecific data sheet for parameters. 31.2.4 Updating the DAC12_A Voltage Output The DAC12_xDAT register can be connected directly to the DAC core or double buffered. The trigger for updating the DAC voltage output is selected with the DAC12LSELx bits. When DAC12LSELx = 0 the data latch is transparent and the DAC12_xDAT register is applied directly to the DAC core, the DAC output updates immediately when new DAC data is written to the DAC12_xDAT register, regardless of the state of the DAC12ENC bit. When DAC12LSELx = 1, DAC data is latched and applied to the DAC core after new data is written to DAC12_xDAT. When DAC12LSELx = 2 or 3, data is latched on the rising edge from the Timer_A CCR1 output or Timer_B CCR2 output, respectively. DAC12ENC must be set to latch the new data when DAC12LSELx > 0. 31.2.5 DAC12_xDAT Data Formats The DAC12_A supports both straight-binary and twos-complement data formats. When using straightbinary data format, the full-scale output value is 0FFFh in 12-bit mode (0FFh in 8-bit mode), as shown in Figure 31-3. Output Voltage Full-Scale Output 0 DAC Data 0 0FFFh Figure 31-3. Output Voltage vs DAC Data, 12-Bit Straight-Binary Mode When using twos-complement data format, the range is shifted such that a DAC12_xDAT value of 0800h (0080h in 8-bit mode) results in a zero output voltage, 0000h is the mid-scale output voltage, and 07FFh (007Fh for 8-bit mode) is the full-scale voltage output, as shown in Figure 31-4. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DAC12_A Copyright © 2008–2015, Texas Instruments Incorporated 829 DAC12_A Operation www.ti.com Output Voltage Full-Scale Output Mid-Scale Output 0 0800h (-2048) DAC Data 07FFh (+2047) 0 Figure 31-4. Output Voltage vs DAC Data, 12-Bit Twos-Complement Mode 31.2.6 DAC12_A Output Amplifier Offset Calibration The offset voltage of the DAC output amplifier can be positive or negative. When the offset is negative, the output amplifier attempts to drive the voltage negative, but cannot do so. The output voltage remains at zero until the DAC digital input produces a sufficient positive output voltage to overcome the negative offset voltage, resulting in the transfer function shown in Figure 31-5. Output Voltage 0 DAC Data Negative Offset Figure 31-5. Negative Offset When the output amplifier has a positive offset, a digital input of zero does not result in a zero output voltage. The DAC12_A output voltage reaches the maximum output level before the DAC12_A data reaches the maximum code. This is shown in Figure 31-6. VCC Output Voltage 0 DAC Data Full-Scale Code Figure 31-6. Positive Offset 830 DAC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated DAC12_A Operation www.ti.com The DAC12_A can calibrate the offset voltage of the output amplifier. Setting the DAC12CALON bit initiates the offset calibration. Allow the calibration to complete before using the DAC. This can be checked by monitoring the DAC12CALON bit. When the calibration is complete, the DAC12CALON bit is automatically reset. The DAC12AMPx bits should be configured before calibration. For best calibration results, port and CPU activity should be minimized during calibration. The contents of DAC12x_CALDAT can be protected from inadvertent write access by a lock mechanism controlled by the DAC12x_CALCTL register. At power up, the LOCK bit is set, and calibration is not possible and writing to the DAC12x_CALDAT is ignored. To perform calibration, the LOCK bit must be cleared by writing the correct password to DAC12x_CALCTL and clearing the LOCK bit. After LOCK is cleared, calibration or writing to the DAC12x_CALDAT can be performed. After calibration is performed, lock the calibration registers by writing the correct password to DAC12x_CALCTL and setting the LOCK bit. Reading DAC12_xCALDAT should only be performed while the DAC12CALON bit is cleared, otherwise incorrect values may be read. The DAC12xCAL data format is twos complement. Only the lower byte is used and the upper byte has no effect on the calibration. 31.2.7 Grouping Multiple DAC12_A Modules Multiple DAC12_A modules can be grouped together with the DAC12GRP bit to synchronize the update of each DAC output. Hardware ensures that all DAC12_A modules in a group update simultaneously independent of any interrupt or NMI event. On devices that contain more than one DAC, DAC12_0 and DAC12_1 are grouped by setting the DAC12GRP bit of DAC12_0. The DAC12GRP bit of DAC12_1 is don't care. When DAC12_0 and DAC12_1 are grouped: • The DAC12_0 and DAC12_1 DAC12LSELx bits select the update trigger for both DACs. • The DAC12LSELx bits for both DACs must be the same. • The DAC12LSELx bits for both DACs must be > 0 • The DAC12ENC bits of both DACs must be set to 1 When DAC12_0 and DAC12_1 are grouped, both DAC12_xDAT registers must be written before the outputs update, even if data for one or both of the DACs is not changed. Figure 31-7 shows a latch-update timing example for grouped DAC12_0 and DAC12_1. When DAC12_0 DAC12GRP = 1 and both DAC12_x DAC12LSELx > 0 and either DAC12ENC = 0, neither DAC updates. DAC12_0 DAC12GRP DAC12_0 and DAC12_1 Updated Simultaneously DAC12_0 DAC12ENC TimerA_OUT1 DAC12_0DAT New Data DAC12_0 Updated DAC12_1DAT New Data DAC12_0 Latch Trigger DAC12_0 DAC12LSELx = 2 DAC12_0 DAC12LSELx > 0 AND DAC12_1 DAC12LSELx = 2 Figure 31-7. DAC12_A Group Update Example, Timer_A3 Trigger SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DAC12_A Copyright © 2008–2015, Texas Instruments Incorporated 831 DAC12_A Operation NOTE: www.ti.com DAC12_A Settling Time The DMA controller can transfer data to the DAC12_A faster than the DAC12_A output can settle. The user must make sure that the DAC12_A settling time is not violated when using the DMA controller. See the device-specific data sheet for parameters. 31.2.8 DAC12_A Interrupts The DAC12IFG bit is set when DAC12LSELx > 0 and DAC data is latched from the DAC12_xDAT register into the data latch. When DAC12LSELx = 0, the DAC12IFG flag is not set. A set DAC12IFG bit indicates that the DAC is ready for new data. If both the DAC12IE and GIE bits are set, the DAC12IFG generates an interrupt request. The DAC12IFG flag must be reset by software or can be reset automatically by accessing the DAC12IV register. See the DAC12IV description for further information. For devices that contain a DMA, each DAC channel has a DMA trigger associated with it. When DAC12IFG is set, it can trigger a DMA transfer to the DAC12_xDAT register. DAC12IFG is automatically reset when the transfer begins. If the DAC12IE is also set, no DMA transfer occurs when the DAC12IFG is set. 31.2.8.1 DAC12IV, Interrupt Vector Generator The DAC12_A flags are prioritized and combined to source a single interrupt vector. The interrupt vector register DAC12IV is used to determine which flag requested an interrupt. The highest priority enabled interrupt generates a number in the DAC12IV register (see register description). This number can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled DAC interrupts do not affect the DAC12IV value. Any access, read or write, of the DAC12IV register automatically resets the highest pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. For example, if the DAC12IFG_0 and DAC12IFG_1 flags are set when the interrupt service routine accesses the DAC12IV register, the DAC12IFG_0 flag is reset automatically. After the RETI instruction of the interrupt service routine is executed, the DAC12IFG_1 flag generates another interrupt. 31.2.8.1.1 DAC12IV Software Example The following software example shows the recommended use of DAC12IV and the handling overhead. The DAC12IV value is added to the PC to automatically jump to the appropriate routine. The numbers at the right margin show the necessary CPU cycles for each instruction. The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not the task handling itself. The latencies are: ; Interrupt handler for DAC12_A. DAC12_HND ; Interrupt latency ADD &DAC12IV,PC ; Add offset to Jump table RETI ; Vector 0: No interrupt JMP DAC12IFG_0_HND ; Vector 2: DAC12_0 JMP DAC12IFG_1_HND ; Vector 4: DAC12_1 RETI ; Vector 6: Reserved RETI ; Vector 8: Reserved RETI ; Vector 8: Reserved RETI ; Vector 10: Reserved DAC12IFG_1_HND ; Vector 4: DAC12_1 ... ; Task starts here RETI ; Back to main program DAC12IFG_0_HND ; Vector 2: DAC12_0 ... ; Task starts here RETI ; Back to main program 832 Cycles 6 3 5 2 2 5 5 5 5 5 DAC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated DAC Outputs www.ti.com 31.3 DAC Outputs On most devices, each DAC channel can be output to two different port pins selected by the DAC12OPS bit. When DAC12OPS = 0, one of the two ports is selected as the DAC output. Similarly, when DAC12OPS =1, the other port is selected as the DAC output. Table 31-3 summarizes this for a single DAC channel that can be output to either ports Pm.y or Pn.z. Table 31-3. DAC Output Selection DAC12OPS DAC12AMP Pm.y Function 0 {0} I/O I/O 0 {1} I/O DAC output, 0 V 0 {>1} I/O DAC output 1 {0} I/O I/O 1 {1} DAC output, 0 V I/O 1 {>1} DAC output I/O SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Pn.z Function DAC12_A Copyright © 2008–2015, Texas Instruments Incorporated 833 DAC12_A Registers www.ti.com 31.4 DAC12_A Registers The DAC12_A registers are listed in Table 31-4. The base address can be found in the device-specific data sheet. The address offset is listed in Table 31-4. Table 31-4. DAC12_A Registers 834 Offset Acronym Register Name Type Access Reset Section 00h DAC12_0CTL0 DAC12_0 Control 0 Read/write Word 0000h Section 31.4.1 02h DAC12_0CTL1 DAC12_0 Control 1 Read/write Word 0000h Section 31.4.2 04h DAC12_0DAT DAC12_0 Data Read/write Word 0000h Section 31.4.3 through Section 31.4.10 06h DAC12_0CALCTL DAC12_0 Calibration Control Read/write Word 9601h Section 31.4.11 08h DAC12_0CALDAT DAC12_0 Calibration Data Read/write Word 0000h Section 31.4.12 10h DAC12_1CTL0 DAC12_1 Control 0 Read/write Word 0000h Section 31.4.1 12h DAC12_1CTL1 DAC12_1 Control 1 Read/write Word 0000h Section 31.4.2 14h DAC12_1DAT DAC12_1 Data Read/write Word 0000h Section 31.4.3 through Section 31.4.10 16h DAC12_1CALCTL DAC12_1 Calibration Control Read/write Word 0000h Section 31.4.11 18h DAC12_1CALDAT DAC12_1 Calibration Data Read/write Word 0000h Section 31.4.12 1Eh DAC12IV DAC12IV Read Word 0000h Section 31.4.13 DAC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated DAC12_A Registers www.ti.com 31.4.1 DAC12_xCTL0 Register DAC12 Control Register 0 Figure 31-8. DAC12_xCTL0 Register 15 14 DAC12OPS 13 12 DAC12SREFx rw-(0) DAC12RES rw-(0) rw-(0) 6 5 7 rw-(0) DAC12AMPx rw-(0) rw-(0) 11 rw-(0) 10 DAC12LSELx rw-(0) rw-(0) 9 8 DAC12CALON DAC12IR rw-(0) rw-(0) 4 3 2 1 0 DAC12DF DAC12IE DAC12IFG DAC12ENC DAC12GRP rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) Can be modified only when DAC12ENC = 0 Table 31-5. DAC12_xCTL0 Register Description Bit Field Type Reset Description 15 DAC12OPS RW 0h DAC output select 0b = DAC12_x channel output on Pm.y 1b = DAC12_x channel output on Pn.z 14-13 DAC12SREFx RW 0h DAC select reference voltage 00b = VREF+ 01b = AVCC 10b = VeREF+; for devices with CTSD16 = VeREF+/VREFBG, see Table 31-2 for details on the selection between external reference VeREF+ and the internally generated VREFBG signal 11b = VeREF+; for devices with CTSD16 = VeREF+/VREFBG, see Table 31-2 for details on the selection between external reference VeREF+ and the internally generated VREFBG signal 12 DAC12RES RW 0h DAC resolution select 0b = 12-bit resolution 1b = 8-bit resolution 11-10 DAC12LSELx RW 0h DAC load select. Selects the load trigger for the DAC latch. DAC12ENC must be set for the DAC to update, except when DAC12LSELx = 0. 00b = DAC latch loads when DAC12_xDAT written (DAC12ENC is ignored) 01b = DAC latch loads when DAC12_xDAT written, or, when grouped, when all DAC12_xDAT registers in the group have been written. 10b = Rising edge of Timer_A.OUT1 (TA1) 11b = Rising edge of Timer_B.OUT2 (TB2) 9 DAC12CALON RW 0h DAC calibration on. This bit initiates the DAC offset calibration sequence and is automatically reset when the calibration completes. 0b = Calibration is not active 1b = Initiate calibration or calibration in progress 8 DAC12IR RW 0h DAC input range. The DAC12IR bit along with the DAC12OG bit set the reference input and voltage output range. 0b = If DAC12OG = 0, then DAC12 full-scale output = 3x reference voltage; if DAC12OG = 1, then DAC12 full-scale output = 2x reference voltage 1b = DAC12 full-scale output = 1x reference voltage SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DAC12_A Copyright © 2008–2015, Texas Instruments Incorporated 835 DAC12_A Registers www.ti.com Table 31-5. DAC12_xCTL0 Register Description (continued) Bit Field Type Reset Description 7-5 DAC12AMPx RW 0h DAC amplifier setting. These bits select settling time vs current consumption for the DAC input and output amplifiers. 000b = Input Buffer: Off; Output Buffer: DAC Off, output high impedance 001b = Input Buffer: Off; Output Buffer: DAC Off, output 0 V 010b = Input Buffer: Low speed and current; Output Buffer: Low speed and current 011b = Input Buffer: Low speed and current; Output Buffer: Medium speed and current 100b = Input Buffer: Low speed and current; Output Buffer: High speed and current 101b = Input Buffer: Medium speed and current; Output Buffer: Medium speed and current 110b = Input Buffer: Medium speed and current; Output Buffer: High speed and current 111b = Input Buffer: High speed and current; Output Buffer: High speed and current 4 DAC12DF RW 0h DAC data format 0b = Straight binary 1b = Twos complement 3 DAC12IE RW 0h DAC interrupt enable 0b = Disabled 1b = Enabled 2 DAC12IFG RW 0h DAC interrupt flag 0b = No interrupt pending 1b = Interrupt pending 1 DAC12ENC RW 0h DAC enable conversion. This bit enables the DAC12_A module when DAC12LSELx > 0. when DAC12LSELx = 0, DAC12ENC is ignored. 0b = DAC disabled 1b = DAC enabled 0 DAC12GRP RW 0h DAC group. Groups DAC12_x with the next higher DAC12_x. Not used for DAC12_1 on dual DAC devices. 0b = Not grouped 1b = Grouped 836 DAC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated DAC12_A Registers www.ti.com 31.4.2 DAC12_xCTL1 Register DAC12 Control Register 1 Figure 31-9. DAC12_xCTL1 Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 r0 r0 r0 7 6 5 4 3 2 Reserved Reserved r0 r0 r0 r0 r0 r0 1 0 DAC12OG DAC12DFJ rw-(0) rw-(0) Can be modified only when DAC12ENC = 0 Table 31-6. DAC12_xCTL1 Register Description Bit Field Type Reset Description 15-2 Reserved R 0h Reserved. Always reads as 0. 1 DAC12OG RW 0h DAC output buffer gain. Can be modified only when DAC12ENC = 0. 0b = 3x gain 1b = 2x gain 0 DAC12DFJ RW 0h DAC data format justification. Can be modified only when DAC12ENC = 0. 0b = Data format right justified 1b = Data format left justified SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DAC12_A Copyright © 2008–2015, Texas Instruments Incorporated 837 DAC12_A Registers www.ti.com 31.4.3 DAC12_xDAT Register, Unsigned 12-Bit Binary Format, Right Justified DAC12 Data Register unsigned 12-bit binary format, right justified (DAC12RES = 0, DAC12DF = 0, DAC12DFJ = 0) Figure 31-10. DAC12_xDAT Register 15 14 13 12 11 10 Reserved 9 8 DAC12 Data r(0) r(0) r(0) r(0) 7 6 5 4 rw-(0) rw-(0) rw-(0) rw-(0) 3 2 1 0 rw-(0) rw-(0) rw-(0) rw-(0) DAC12 Data rw-(0) rw-(0) rw-(0) rw-(0) Table 31-7. DAC12_xDAT Register Description Bit Field Type Reset Description 15-12 Reserved R 0h Reserved. Always reads as 0. 11-0 DAC12 Data RW 0h DAC data in unsigned format. Bit 11 represents the MSB. 31.4.4 DAC12_xDAT Register, Unsigned 12-Bit Binary Format, Left Justified DAC12 Data Register unsigned 12-bit binary format, left justified (DAC12RES = 0, DAC12DF = 0, DAC12DFJ = 1) Figure 31-11. DAC12_xDAT Register 15 14 13 12 11 10 9 8 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) 7 6 5 4 3 2 1 0 r(0) r(0) DAC12 Data DAC12 Data rw-(0) rw-(0) Reserved rw-(0) rw-(0) r(0) r(0) Table 31-8. DAC12_xDAT Register Description Bit Field Type Reset Description 15-4 DAC12 Data RW 0h DAC data in unsigned format. Bit 15 represents the MSB. 3-0 Reserved R 0h Reserved. Always reads as 0. 838 DAC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated DAC12_A Registers www.ti.com 31.4.5 DAC12_xDAT Register, Twos-Complement 12-Bit Binary Format, Right Justified DAC12 Data Register twos complement 12-bit binary format, right justified (DAC12RES = 0, DAC12DF = 1, DAC12DFJ = 0) Figure 31-12. DAC12_xDAT Register 15 14 13 12 Bit 11 Bit 11 Bit 11 Bit 11 11 r(0) r(0) r(0) r(0) 7 6 5 4 10 9 8 DAC12 Data rw-(0) rw-(0) rw-(0) rw-(0) 3 2 1 0 rw-(0) rw-(0) rw-(0) rw-(0) DAC12 Data rw-(0) rw-(0) rw-(0) rw-(0) Table 31-9. DAC12_xDAT Register Description Bit Field Type Reset Description 15-12 Bit 11 R 0h These bits are sign extension bits and are equal to the contents of bit 11. These bits are automatically updated with the contents of bit 11. 11-0 DAC12 Data RW 0h DAC data in twos complement format. Bit 11 represents the sign bit of the twos complement value. 31.4.6 DAC12_xDAT Register, Twos-Complement 12-Bit Binary Format, Left Justified DAC12 Data Register twos complement 12-bit binary format, left justified (DAC12RES = 0, DAC12DF = 1, DAC12DFJ = 1) Figure 31-13. DAC12_xDAT Register 15 14 13 12 11 10 9 8 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) 7 6 5 4 3 2 1 0 r(0) r(0) DAC12 Data DAC12 Data rw-(0) rw-(0) Reserved rw-(0) rw-(0) r(0) r(0) Table 31-10. DAC12_xDAT Register Description Bit Field Type Reset Description 15-4 DAC12 Data RW 0h DAC data in twos complement format. Bit 15 represents the sign bit of the twos complement value. 3-0 Reserved R 0h Reserved. Always reads as 0. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DAC12_A Copyright © 2008–2015, Texas Instruments Incorporated 839 DAC12_A Registers www.ti.com 31.4.7 DAC12_xDAT Register, Unsigned 8-Bit Binary Format, Right Justified DAC12 Data Register unsigned 8-bit binary format, right justified (DAC12RES = 1, DAC12DF = 0, DAC12DFJ = 0) Figure 31-14. DAC12_xDAT Register 15 14 13 12 11 10 9 8 r(0) r(0) r(0) r(0) 3 2 1 0 rw-(0) rw-(0) rw-(0) rw-(0) Reserved r(0) r(0) r(0) r(0) 7 6 5 4 DAC12 Data rw-(0) rw-(0) rw-(0) rw-(0) Table 31-11. DAC12_xDAT Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved. Always reads as 0. 7-0 DAC12 Data RW 0h DAC data in unsigned format. Bit 7 represents the MSB. 31.4.8 DAC12_xDAT Register, Unsigned 8-Bit Binary Format, Left Justified DAC12 Data Register unsigned 8-bit binary format, left justified (DAC12RES = 1, DAC12DF = 0, DAC12DFJ = 1) Figure 31-15. DAC12_xDAT Register 15 14 13 12 rw-(0) rw-(0) rw-(0) rw-(0) 7 6 5 4 11 10 9 8 rw-(0) rw-(0) rw-(0) rw-(0) 3 2 1 0 r(0) r(0) r(0) r(0) DAC12 Data Reserved r(0) r(0) r(0) r(0) Table 31-12. DAC12_xDAT Register Description Bit Field Type Reset Description 15-8 DAC12 Data RW 0h DAC data in unsigned format. Bit 15 represents the MSB. 7-0 Reserved R 0h Reserved. Always reads as 0. 840 DAC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated DAC12_A Registers www.ti.com 31.4.9 DAC12_xDAT Register, Twos-Complement 8-Bit Binary Format, Right Justified DAC12 Data Register twos complement 8-bit binary format, right justified (DAC12RES = 1, DAC12DF = 1, DAC12DFJ = 0) Figure 31-16. DAC12_xDAT Register 15 14 13 12 11 10 9 8 Bit 7 Bit 7 Bit 7 Bit 7 Bit 7 Bit 7 Bit 7 Bit 7 r(0) r(0) r(0) r(0) r(0) r(0) r(0) r(0) 7 6 5 4 3 2 1 0 rw-(0) rw-(0) rw-(0) rw-(0) DAC12 Data rw-(0) rw-(0) rw-(0) rw-(0) Table 31-13. DAC12_xDAT Register Description Bit Field Type Reset Description 15-8 Bit 7 R 0h These bits are sign extension bits and are equal to the contents of bit 7. These bits are automatically updated with the contents of bit 7. 7-0 DAC12 Data RW 0h DAC data in twos complement format. Bit 7 represents the sign bit of the twos complement value. 31.4.10 DAC12_xDAT Register, Twos-Complement 8-Bit Binary Format, Left Justified DAC12 Data Register twos complement 8-bit binary format, left justified (DAC12RES = 1, DAC12DF = 1, DAC12DFJ = 1) Figure 31-17. DAC12_xDAT Register 15 14 13 12 rw-(0) rw-(0) rw-(0) rw-(0) 7 6 5 4 11 10 9 8 rw-(0) rw-(0) rw-(0) rw-(0) 3 2 1 0 r(0) r(0) r(0) r(0) DAC12 Data Reserved r(0) r(0) r(0) r(0) Table 31-14. DAC12_xDAT Register Description Bit Field Type Reset Description 15-8 DAC12 Data RW 0h DAC data in twos complement format. Bit 15 represents the sign bit of the twos complement value. 7-0 Reserved R 0h Reserved. Always reads as 0. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DAC12_A Copyright © 2008–2015, Texas Instruments Incorporated 841 DAC12_A Registers www.ti.com 31.4.11 DAC12_xCALCTL Register DAC12 Calibration Control Register Figure 31-18. DAC12_xCALCTL Register 15 14 13 12 11 10 9 8 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 DAC12KEY Reserved r0 r0 r0 r0 0 LOCK r0 r0 r0 rw-(1) Table 31-15. DAC12_xCALCTL Register Description Bit Field Type Reset Description 15-8 DAC12KEY RW 96h DAC calibration lock password. Always reads as 0x96. Must be written with 0xA5 for LOCK bit to be set or cleared. An incorrect key results in the LOCK bit being set, thereby disabling write access to DAC12_xCALDAT. 7-1 Reserved R 0h Reserved. Always reads as 0. 0 LOCK RW 1h DAC calibration lock. To enable write access to the DAC12 calibration data register, this bit must be cleared by writing 0xA5 to DAC12KEY along with LOCK = 0. Writing an incorrect key or writing to DAC12x_CALCTL using byte mode causes the LOCK bit to be automatically set. If the LOCK bit is set, write access to the calibration data registers and hardware calibration is not possible. All previous values in the DAC12_xCALDAT are retained. 0b = Calibration data register write access enabled, calibration can be performed. 1b = Calibration data register write access disabled, calibration disabled. 31.4.12 DAC12_xCALDAT Register DAC12 Calibration DATA Register Figure 31-19. DAC12_xCALDAT Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 r0 r0 r0 7 6 5 4 3 2 1 0 rw-(0) rw-(0) rw-(0) Reserved DAC12 Calibration Data rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) Table 31-16. DAC12_xCALDAT Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved. Always reads as 0. 7-0 DAC12 Calibration Data RW 0h DAC calibration data. The DAC calibration data is represented in twos complement format providing a range of –128 to +127. 842 DAC12_A SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated DAC12_A Registers www.ti.com 31.4.13 DAC12IV Register DAC12 Interrupt Vector Register Figure 31-20. DAC12IV Register 15 14 13 12 r(0) r(0) r(0) r(0) 7 6 5 4 11 10 9 8 r(0) r(0) r(0) r(0) 3 2 1 0 r-(0) r-(0) r-(0) r(0) DAC12IVx DAC12IVx r(0) r(0) r(0) r(0) Table 31-17. DAC12IV Register Description Bit Field Type Reset Description 15-0 DAC12IVx R 0h DAC interrupt vector value 00h = No interrupt pending 02h = Interrupt Source: DAC12 channel 0; Interrupt Flag: DAC12IFG_0; Interrupt Priority: Highest 04h = Interrupt Source: DAC12 channel 1; Interrupt Flag: DAC12IFG_1; Interrupt Priority: Lowest 06h = Reserved 08h = Reserved 0Ah = Reserved 0Ch = Reserved 0Eh = Reserved SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback DAC12_A Copyright © 2008–2015, Texas Instruments Incorporated 843 Chapter 32 SLAU208O – June 2008 – Revised May 2015 Comp_B Comp_B is an analog voltage comparator. This chapter describes the Comp_B. Comp_B covers general comparator functionality for up to 16 channels. Topic 32.1 32.2 32.3 844 ........................................................................................................................... Page Comp_B Introduction ........................................................................................ 845 Comp_B Operation ........................................................................................... 846 Comp_B Registers ............................................................................................ 852 Comp_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Comp_B Introduction www.ti.com 32.1 Comp_B Introduction The Comp_B module supports precision slope analog-to-digital conversions, supply voltage supervision, and monitoring of external analog signals. Features of Comp_B include: • Inverting and noninverting terminal input multiplexer • Software-selectable RC filter for the comparator output • Output provided to Timer_A capture input • Software control of the port input buffer • Interrupt capability • Selectable reference voltage generator, voltage hysteresis generator • Reference voltage input from shared reference • Ultra-low-power comparator mode • Interrupt driven measurement system – low-power operation support The Comp_B block diagram is shown in Figure 32-1. CBIPSEL CB0 CB1 CB2 CB3 0000 0001 VCC CBON CBEX CB12 CB13 CB14 CB15 1110 1111 CBF + 0 1 CBSHORT - 0 1 Set CBIFG CCI1B CBIMSEL CB0 CB1 CB2 CB3 CB12 CB13 CB14 CB15 0000 0001 CBOUT CBRSEL CBOUTPOL CBREF1 CBREF0 CBRS 5 2 5 Reference Voltage Generator from shared reference 1110 1111 Figure 32-1. Comp_B Block Diagram SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Comp_B Copyright © 2008–2015, Texas Instruments Incorporated 845 Comp_B Operation www.ti.com 32.2 Comp_B Operation The Comp_B module is configured by user software. The setup and operation of Comp_B is discussed in the following sections. 32.2.1 Comparator The comparator compares the analog voltages at the + and – input terminals. If the + terminal is more positive than the – terminal, the comparator output CBOUT is high. The comparator can be switched on or off using control bit CBON. The comparator should be switched off when not in use to reduce current consumption. When the comparator is switched off, CBOUT is always low. The bias current of the comparator is programmable. 32.2.2 Analog Input Switches The analog input switches connect or disconnect the two comparator input terminals to associated port pins using the CBIPSELx and CBIMSELx bits. The comparator terminal inputs can be controlled individually. The CBIPSELx/CBIMSELx bits allow: • Application of an external signal to the + and – terminals of the comparator • Application of an external current source (for example, a resistor) to the + or – terminal of the comparator • The mapping of both terminals of the internal multiplexer to the outside Internally, the input switch is constructed as a T-switch to suppress distortion in the signal path. NOTE: Comparator Input Connection When the comparator is on, the input terminals should be connected to a signal, power, or ground. Otherwise, floating levels may cause unexpected interrupts and increased current consumption. The CBEX bit controls the input multiplexer, permuting the input signals of the comparator's + and – terminals. Additionally, when the comparator terminals are permuted, the output signal from the comparator is inverted too. This allows the user to determine or compensate for the comparator input offset voltage. 32.2.3 Port Logic The Px.y pins associated with a comparator channel are enabled by the CBIPSELx or CBIMSELx bits to disable its digital components while used as comparator input. Only one of the comparator input pins is selected as input to the comparator by the input multiplexer at a time. 32.2.4 Input Short Switch The CBSHORT bit shorts the Comp_B inputs. This can be used to build a simple sample-and-hold for the comparator as shown in Figure 32-2. 846 Comp_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Comp_B Operation www.ti.com 0000 Sampling capacitor, CS 1100 1101 1110 1111 CxSHORT 0000 0001 0010 0011 Analog Inputs 1100 1101 1110 1111 Figure 32-2. Comp_B Sample-And-Hold The required sampling time is proportional to the size of the sampling capacitor (CS), the resistance of the input switches in series with the short switch (Ri), and the resistance of the external source (RS). The total internal resistance (RI) is typically in the range of 1 kΩ. The sampling capacitor CS should be greater than 100 pF. The time constant, Tau, to charge the sampling capacitor CS can be calculated with the following equation: Tau = (RI + RS) × CS Depending on the required accuracy, 3 to 10 Tau should be used as a sampling time. With 3 Tau the sampling capacitor is charged to approximately 95% of the input signals voltage level, with 5 Tau it is charged to more than 99%, and with 10 Tau the sampled voltage is sufficient for 12-bit accuracy. 32.2.5 Output Filter The output of the comparator can be used with or without internal filtering. When control bit CBF is set, the output is filtered with an on-chip RC filter. The delay of the filter can be adjusted in four different steps. All comparator outputs are oscillating if the voltage difference across the input terminals is small. Internal and external parasitic effects and cross coupling on and between signal lines, power supply lines, and other parts of the system are responsible for this behavior as shown in Figure 32-3. The comparator output oscillation reduces the accuracy and resolution of the comparison result. Selecting the output filter can reduce errors associated with comparator oscillation. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Comp_B Copyright © 2008–2015, Texas Instruments Incorporated 847 Comp_B Operation www.ti.com + Terminal Comparator Inputs - Terminal Comparator Output Unfiltered at CBOUT Comparator Output Filtered at CBOUT Figure 32-3. RC-Filter Response at the Output of the Comparator 32.2.6 Reference Voltage Generator The Comp_B reference block diagram is shown in Figure 32-4. VCC CBREFLx 2 CBON 1.2 V from the shared reference 00, 11 10 01 CBRSx 2 CBREF1 CBREF0 5 CBMRVS 1 0 CBRS = 11 CBMRVL 5 1 VREF 1 0 0 1 0 VREF1 VREF0 Figure 32-4. Reference Generator Block Diagram The voltage reference generator is used to generate VREF, which can be applied to either comparator input terminal. The CBREF1x (VREF1) and CBREF0x (VREF0) bits control the output of the voltage generator. The CBRSEL bit selects the comparator terminal to which VREF is applied. If external signals are applied to both comparator input terminals, the internal reference generator should be turned off to reduce current consumption. The voltage reference generator can generate a fraction of the device's VCC or of the voltage reference of the integrated precision voltage reference source. Vref1 is used while CBOUT is 1 and Vref0 is used while CBOUT is 0. This allows the generation of a hysteresis without using external components. 848 Comp_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Comp_B Operation www.ti.com 32.2.7 Comp_B, Port Disable Register CBCTL3 The comparator input and output functions are multiplexed with the associated I/O port pins, which are digital CMOS gates. When analog signals are applied to digital CMOS gates, parasitic current can flow from VCC to GND. This parasitic current occurs if the input voltage is near the transition level of the gate. Disabling the port pin buffer eliminates the parasitic current flow and therefore reduces overall current consumption. The CBPDx bits in the CBCTL3 register, when set, disable the corresponding Px.y input buffer as shown in Figure 32-5. When current consumption is critical, any Px.y pin connected to analog signals should be disabled with their associated CBPDx bits. Selecting an input pin to the comparator multiplexer with the CBIPSEL or CBIMSEL bits automatically disables the input buffer for that pin, regardless of the state of the associated CBPDx bit. VCC VI VO ICC ICC VI VCC CBPDx = 1 0 VCC VSS Figure 32-5. Transfer Characteristic and Power Dissipation in a CMOS Inverter/Buffer 32.2.8 Comp_B Interrupts One interrupt flag and one interrupt vector is associated with the Comp_B. The interrupt flag CBIFG is set on either the rising or falling edge of the comparator output, selected by the CBIES bit. If both the CBIE and the GIE bits are set, then the CBIFG interrupt flag generates an interrupt request. NOTE: Changing the value of the CBIES bit might set the comparator interrupt flag CBIFG. This can happen even when the comparator is disabled (CBON = 0). It is recommended to clear CBIFG after configuring the comparator for proper interrupt behavior during operation. 32.2.9 Comp_B Used to Measure Resistive Elements The Comp_B can be optimized to precisely measure resistive elements using single slope analog-todigital conversion. For example, temperature can be converted into digital data using a thermistor, by comparing the thermistor's capacitor discharge time to that of a reference resistor as shown in Figure 326. A reference resister Rref is compared to Rmeas. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Comp_B Copyright © 2008–2015, Texas Instruments Incorporated 849 Comp_B Operation www.ti.com Rref Px.x Rmeas Px.y CB0 + CCI1B Capture Input Of Timer_A 0.25 × VCC Figure 32-6. Temperature Measurement System The resources used to calculate the temperature sensed by Rmeas are: • Two digital I/O pins charge and discharge the capacitor. • I/O is set to output high (VCC) to charge capacitor, reset to discharge. • I/O is switched to high-impedance input with CBPDx set when not in use. • One output charges and discharges the capacitor through Rref. • One output discharges capacitor through Rmeas. • The + terminal is connected to the positive terminal of the capacitor. • The – terminal is connected to a reference level, for example 0.25 × VCC. • The output filter should be used to minimize switching noise. • CBOUT is used to gate Timer_A CCI1B, capturing capacitor discharge time. More than one resistive element can be measured. Additional elements are connected to CB0 with available I/O pins and switched to high impedance when not being measured. The thermistor measurement is based on a ratiometric conversion principle. The ratio of two capacitor discharge times is calculated as shown in Figure 32-7. VC VCC or VREF0 Rmeas Rref VREF1 Phase I: Charge Phase II: Discharge Phase III: Charge tref Phase IV Discharge t tmeas Figure 32-7. Timing for Temperature Measurement Systems The VCC voltage and the capacitor value should remain constant during the conversion, but are not critical since they cancel in the ratio: 850 Comp_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Comp_B Operation www.ti.com Nmeas = Nref –Rmeas × C × ln Vref1 VCC –Rref × C × ln Vref1 VCC Nmeas Rmeas = Nref Rref Rmeas = Rref × Nmeas Nref SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Comp_B Copyright © 2008–2015, Texas Instruments Incorporated 851 Comp_B Registers www.ti.com 32.3 Comp_B Registers The Comp_B registers are listed in Table 32-1. The base address of the Comp_B module can be found in the device-specific data sheet. Table 32-1. Comp_B Registers 852 Offset Acronym Register Name Type Access Reset Section 00h CBCTL0 Comp_B control register 0 Read/write Word 0000h Section 32.3.1 02h CBCTL1 Comp_B control register 1 Read/write Word 0000h Section 32.3.2 04h CBCTL2 Comp_B control register 2 Read/write Word 0000h Section 32.3.3 06h CBCTL3 Comp_B control register 3 Read/write Word 0000h Section 32.3.4 0Ch CBINT Comp_B interrupt register Read/write Word 0000h Section 32.3.5 0Eh CBIV Comp_B interrupt vector word Read Word 0000h Section 32.3.6 Comp_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Comp_B Registers www.ti.com 32.3.1 CBCTL0 Register Comp_B Control Register 0 Figure 32-8. CBCTL0 Register 15 14 13 CBIMEN 11 10 r-0 r-0 rw-0 rw-0 5 4 3 2 Reserved rw-0 r-0 7 6 CBIPEN rw-0 12 r-0 8 rw-0 rw-0 1 0 rw-0 rw-0 CBIMSEL Reserved r-0 9 CBIPSEL r-0 rw-0 rw-0 Table 32-2. CBCTL0 Register Description Bit Field Type Reset Description 15 CBIMEN RW 0h Channel input enable for the V– terminal of the comparator. 0b = Selected analog input channel for V– terminal is disabled. 1b = Selected analog input channel for V– terminal is enabled. 14-12 Reserved R 0h Reserved. Always reads as 0. 11-8 CBIMSEL RW 0h Channel input selected for the V– terminal of the comparator if CBIMEN is set to 1. 7 CBIPEN RW 0h Channel input enable for the V+ terminal of the comparator. 0b = Selected analog input channel for V+ terminal is disabled. 1b = Selected analog input channel for V+ terminal is enabled. 6-4 Reserved R 0h Reserved. Always reads as 0. 3-0 CBIPSEL RW 0h Channel input selected for the V+ terminal of the comparator if CBIPEN is set to 1. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Comp_B Copyright © 2008–2015, Texas Instruments Incorporated 853 Comp_B Registers www.ti.com 32.3.2 CBCTL1 Register Comp_B Control Register 1 Figure 32-9. CBCTL1 Register 15 14 13 Reserved r-0 r-0 7 r-0 6 CBFDLY rw-0 12 11 10 CBMRVS CBMRVL CBON rw-0 rw-0 rw-0 9 8 CBPWRMD rw-0 rw-0 5 4 3 2 1 0 CBEX CBSHORT CBIES CBF CBOUTPOL CBOUT rw-0 rw-0 rw-0 rw-0 rw-0 r-0 rw-0 Table 32-3. CBCTL1 Register Description Bit Field Type Reset Description 15-13 Reserved R 0h Reserved. Always reads as 0. 12 CBMRVS RW 0h This bit defines if the comparator output selects between VREF0 or VREF1 if CBRS = 00, 01, or 10. 0b = Comparator output state selects between VREF0 or VREF1. 1b = CBMRVL selects between VREF0 or VREF1. 11 CBMRVL RW 0h This bit is valid of CBMRVS is set to 1. 0b = VREF0 is selected if CBRS = 00, 01, or 10. 1b = VREF1 is selected if CBRS = 00, 01, or 10. 10 CBON RW 0h On. This bit turns the comparator on. When the comparator is turned off the Comp_B consumes no power. 0b = Off 1b = On 9-8 CBPWRMD RW 0h Power mode. Not all modes are supported in all products. See devices specific data sheet for details. 00b = High-speed mode (optional) 01b = Normal mode (optional) 10b = Ultra-low-power mode (optional) 11b = Reserved 7-6 CBFDLY RW 0h Filter delay. The filter delay can be selected in 4 steps. See the device-specific data sheet for details. 00b = Typical filter delay of 450 ns 01b = Typical filter delay of 900 ns 10b = Typical filter delay of 1800 ns 11b = Typical filter delay of 3600 ns 5 CBEX RW 0h Exchange. This bit permutes the comparator 0 inputs and inverts the comparator 0 output. 4 CBSHORT RW 0h Input short. This bit shorts the + and – input terminals. 0b = Inputs not shorted 1b = Inputs shorted 3 CBIES RW 0h Interrupt edge select for CBIIFG and CBIFG 0b = Rising edge for CBIFG, falling edge for CBIIFG 1b = Falling edge for CBIFG, rising edge for CBIIFG 2 CBF RW 0h Output filter 0b = Comp_B output is not filtered 1b = Comp_B output is filtered 1 CBOUTPOL RW 0h Output polarity. This bit defines the CBOUT polarity. 0b = Noninverted 1b = Inverted 0 CBOUT R 0h Output value. This bit reflects the value of the Comp_B output. Writing this bit has no effect on the comparator output. 854 Comp_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Comp_B Registers www.ti.com 32.3.3 CBCTL2 Register Comp_B Control Register 2 Figure 32-10. CBCTL2 Register 15 14 CBREFACC rw-0 12 11 rw-0 rw-0 rw-0 5 4 3 CBREFL rw-0 7 6 CBRS rw-0 13 9 8 rw-0 rw-0 rw-0 2 1 0 rw-0 rw-0 CBREF1 CBRSEL rw-0 10 rw-0 CBREF0 rw-0 rw-0 rw-0 Table 32-4. CBCTL2 Register Description Bit Field Type Reset Description 15 CBREFACC RW 0h Reference accuracy. A reference voltage is requested only if CBREFL > 0. 0b = Static mode 1b = Clocked (low-power, low-accuracy) mode 14-13 CBREFL RW 0h Reference voltage level 00b = Reference voltage is disabled. No reference voltage is requested. 01b = 1.5 V 10b = 2.0 V 11b = 2.5 V 12-8 CBREF1 RW 0h Reference resistor tap 1. This register defines the tap of the resistor string while CBOUT = 1. 7-6 CBRS RW 0h Reference source. This bit define if the reference voltage is derived from VCC or from the precise shared reference. 00b = No current is drawn by the reference curcuitry. 01b = VCC applied to the resistor ladder 10b = Shared reference voltage applied to the resistor ladder. 11b = Shared reference voltage supplied to V(CREF). Resistor ladder is off. 5 CBRSEL RW 0h Reference select. This bit selects which terminal the V(CCREF) is applied to. 0b = When CBEX = 0: V(REF) is applied to the + terminal; When CBEX = 1: V(REF) is applied to the – terminal 1b = When CBEX = 0: V(REF) is applied to the – terminal; When CBEX = 1: V(REF) is applied to the + terminal 4-0 CBREF0 RW 0h Reference resistor tap 0. This register defines the tap of the resistor string while CBOUT = 0. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Comp_B Copyright © 2008–2015, Texas Instruments Incorporated 855 Comp_B Registers www.ti.com 32.3.4 CBCTL3 Register Comp_B Control Register 3 Figure 32-11. CBCTL3 Register 15 14 13 12 11 10 9 8 CBPD15 CBPD14 CBPD13 CBPD14 CBPD11 CBPD10 CBPD9 CBPD8 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) 7 6 5 4 3 2 1 0 CBPD7 CBPD6 CBPD5 CBPD4 CBPD3 CBPD2 CBPD1 CBPD0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) Table 32-5. CBCTL3 Register Description Bit Field Type Reset Description 15 CBPD15 RW 0h Port disable. This bit individually disables the input buffer for the pins of the port associated with Comp_B. The bit CBPD15 disables the port of the comparator channel 15. 0b = Input buffer enabled 1b = Input buffer disabled 14 CBPD14 RW 0h Port disable. This bit individually disables the input buffer for the pins of the port associated with Comp_B. The bit CBPD14 disables the port of the comparator channel 14. 0b = Input buffer enabled 1b = Input buffer disabled 13 CBPD13 RW 0h Port disable. This bit individually disables the input buffer for the pins of the port associated with Comp_B. The bit CBPD13 disables the port of the comparator channel 13. 0b = Input buffer enabled 1b = Input buffer disabled 12 CBPD12 RW 0h Port disable. This bit individually disables the input buffer for the pins of the port associated with Comp_B. The bit CBPD12 disables the port of the comparator channel 12. 0b = Input buffer enabled 1b = Input buffer disabled 11 CBPD11 RW 0h Port disable. This bit individually disables the input buffer for the pins of the port associated with Comp_B. The bit CBPD11 disables the port of the comparator channel 11. 0b = Input buffer enabled 1b = Input buffer disabled 10 CBPD10 RW 0h Port disable. This bit individually disables the input buffer for the pins of the port associated with Comp_B. The bit CBPD10 disables the port of the comparator channel 10. 0b = Input buffer enabled 1b = Input buffer disabled 9 CBPD9 RW 0h Port disable. This bit individually disables the input buffer for the pins of the port associated with Comp_B. The bit CBPD9 disables the port of the comparator channel 9. 0b = Input buffer enabled 1b = Input buffer disabled 8 CBPD8 RW 0h Port disable. This bit individually disables the input buffer for the pins of the port associated with Comp_B. The bit CBPD8 disables the port of the comparator channel 8. 0b = Input buffer enabled 1b = Input buffer disabled 856 Comp_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Comp_B Registers www.ti.com Table 32-5. CBCTL3 Register Description (continued) Bit Field Type Reset Description 7 CBPD7 RW 0h Port disable. This bit individually disables the input buffer for the pins of the port associated with Comp_B. The bit CBPD7 disables the port of the comparator channel 7. 0b = Input buffer enabled 1b = Input buffer disabled 6 CBPD6 RW 0h Port disable. This bit individually disables the input buffer for the pins of the port associated with Comp_B. The bit CBPD6 disables the port of the comparator channel 6. 0b = Input buffer enabled 1b = Input buffer disabled 5 CBPD5 RW 0h Port disable. This bit individually disables the input buffer for the pins of the port associated with Comp_B. The bit CBPD5 disables the port of the comparator channel 5. 0b = Input buffer enabled 1b = Input buffer disabled 4 CBPD4 RW 0h Port disable. This bit individually disables the input buffer for the pins of the port associated with Comp_B. The bit CBPD4 disables the port of the comparator channel 4. 0b = Input buffer enabled 1b = Input buffer disabled 3 CBPD3 RW 0h Port disable. This bit individually disables the input buffer for the pins of the port associated with Comp_B. The bit CBPD3 disables the port of the comparator channel 3. 0b = Input buffer enabled 1b = Input buffer disabled 2 CBPD2 RW 0h Port disable. This bit individually disables the input buffer for the pins of the port associated with Comp_B. The bit CBPD2 disables the port of the comparator channel 2. 0b = Input buffer enabled 1b = Input buffer disabled 1 CBPD1 RW 0h Port disable. This bit individually disables the input buffer for the pins of the port associated with Comp_B. The bit CBPD1 disables the port of the comparator channel 1. 0b = Input buffer enabled 1b = Input buffer disabled 0 CBPD0 RW 0h Port disable. This bit individually disables the input buffer for the pins of the port associated with Comp_B. The bit CBPD0 disables the port of the comparator channel 0. 0b = Input buffer enabled 1b = Input buffer disabled SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Comp_B Copyright © 2008–2015, Texas Instruments Incorporated 857 Comp_B Registers www.ti.com 32.3.5 CBINT Register Comp_B Interrupt Control Register Figure 32-12. CBINT Register 15 14 13 r-0 r-0 r-0 7 6 5 12 11 10 r-0 r-0 r-0 4 3 2 Reserved Reserved r-0 r-0 r-0 r-0 r-0 r-0 9 8 CBIIE CBIE rw-0 rw-0 1 0 CBIIFG CBIFG rw-0 rw-0 Table 32-6. CBINT Register Description Bit Field Type Reset Description 15-10 Reserved R 0h Reserved. Always reads as 0. 9 CBIIE RW 0h Comp_B output interrupt enable inverted polarity 0b = Interrupt is disabled 1b = Interrupt is enabled 8 CBIE RW 0h Comp_B output interrupt enable 0b = Interrupt is disabled 1b = Interrupt is enabled 7-2 Reserved R 0h Reserved. Always reads as 0. 1 CBIIFG RW 0h Comp_B output inverted interrupt flag. The bit CBIES defines the transition of the output setting this bit. 0b = No interrupt pending 1b = Output interrupt pending 0 CBIFG RW 0h Comp_B output interrupt flag. The bit CBIES defines the transition of the output setting this bit. 0b = No interrupt pending 1b = Output interrupt pending 858 Comp_B SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Comp_B Registers www.ti.com 32.3.6 CBIV Register Comp_B Interrupt Vector Word Register Figure 32-13. CBIV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r0 r-0 r-0 r0 CBIV CBIV r0 r0 r0 r0 Table 32-7. CBIV Register Description Bit Field Type Reset Description 15-0 CBIV R 0h Comp_B interrupt vector word register. The interrupt vector register reflects only interrupt flags whose interrupt enable bit are set. Reading the CBIV register clears the pending interrupt flag with the highest priority. 00h = No interrupt pending 02h = Interrupt Source: CBOUT interrupt; Interrupt Flag: CBIFG; Interrupt Priority: Highest 04h = Interrupt Source: CBOUT interrupt inverted polarity; Interrupt Flag: CBIIFG; Interrupt Priority: Lowest SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Comp_B Copyright © 2008–2015, Texas Instruments Incorporated 859 Chapter 33 SLAU208O – June 2008 – Revised May 2015 Operational Amplifier (OA) The operational amplifier (OA) module is a general-purpose operational amplifier. This chapter describes the OA. Topic 33.1 33.2 33.3 33.4 33.5 860 ........................................................................................................................... OA Introduction ................................................................................................ OA Operation ................................................................................................... Ground Switches .............................................................................................. OA and Power Modes........................................................................................ OA Registers.................................................................................................... Operational Amplifier (OA) Page 861 863 864 864 865 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated OA Introduction www.ti.com 33.1 OA Introduction The OA operational amplifiers can be used to support front-end analog signal conditioning before analogto-digital conversion as well as other general-purpose applications. Features of the OA include: • Single-supply low-current operation • Software selectable rail-to-rail input • Rail-to-rail output • Input switches on positive and negative inputs individually software selectable • Internal voltage follower setting • Low-impedance ground switches individually software selectable (not available on all devices) NOTE: Multiple OA Modules Some devices may integrate more than one OA module. If more than one OA is present on a device, the multiple OA modules operate identically. Throughout this chapter, nomenclature appears such as OAnCTL0 to describe register names. When this occurs, the n indicates which OA module is being discussed. In cases where operation is identical, the register is simply referred to as OAnCTL0. NOTE: Switches and Configurations The connections of the amplifier to device pins or internal connections are device specific. Refer to the device-specific data sheet for specific interconnections and device pin connections. The information in this chapter applies to all operational amplifiers in the family. Figure 33-1 shows the block diagram of the OA module. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Operational Amplifier (OA) Copyright © 2008–2015, Texas Instruments Incorporated 861 OA Introduction www.ti.com PSW 4 PSW0 OAnIP0 PSW1 OAnIP1 PSW2 OAnIP2 PSW3 OAnIP3 OAM OARRI + OAnO – NSW 5 OARRIRDY NSW0 OAnIN0 NSW1 OAnIN1 NSW2 OAnIN2 NSW3 OAnIN3 NSW4 GSW 2 GSW0 GnSW0 AVSS GSW1 GnSW1 Figure 33-1. OA Block Diagram 862 Operational Amplifier (OA) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated OA Operation www.ti.com 33.2 OA Operation The OA module is configured with user software. The setup and operation of the OA is discussed in the following sections. 33.2.1 OA Modes The OA can be enabled and disabled using OAM as listed in Table 33-1. To speed up the enable time of the OA, The REF module REFON bit in the REFCTL register can be set before enabling OA to allow the AFE bias, required by the OA, to turn on. Table 33-1. OA Mode Select OAM OA Function 0 Disabled. Output high impedance. All input switches opened, regardless of PSW or NSW settings. 1 Enabled. If OA output is shared with a digital I/O port, the digital I/O port is automatically disabled regardless of the PxSEL settings of the respective port. 33.2.2 Rail-to-Rail Input Modes Each operational amplifier supports rail-to-rail input swings. Setting OARRI = 1 enables the rail-to-rail input mode but requires additional current. Thus, to save current, rail-to-rail input mode (OARRI) should be selected only if the dynamic range required for the application requires it. Refer to the common-mode voltage range VCM specified in the device-specific data sheet for OARRI = 0 and 1. Rail-to-rail operation is made possible by an integrated charge pump that increases the internal supply of the respective amplifier's input stage to allow linear operation over the complete common mode range. The charge pump is shared with all operational amplifier instantiations. Setting any OARRI = 1 of any respective OA will enable the charge pump independently of the OAM setting. The charge pump can also be enabled from the CTSD16 module if in rail-to-rail input mode, CTSD16RRI = 1. When OARRI = 1 is set, the charge pump, if not already enabled, is enabled. OARRIRDY = 1 indicates the charge pump is ready and stable, and the rail-to-rail input mode is ready for usage. Setting OARRI = 0 causes OARRIDY = 0 for the corresponding OA. The charge pump does incur additional power to operate. The charge pump requires a single external capacitor from the CPCAP terminal to ground for proper operation. See the device-specific data sheet for proper value and tolerances. Setting OARRI = 0 provides for a reduced input swing range on the respective amplifier. Setting OARRI = 0 of all OA instances and setting CTSD16RRI=0 is required to disable the charge pump. See the device-specific data sheet for input ranges supported for all OARRI settings. NOTE: On devices that contain the CTSD16, the charge pump is also used for PGA buffers when rail-to-rail input mode is selected, CTSD16RRI = 1. Therefore, the charge pump may remain enabled although OARRI = 0 for all OA instances. NOTE: On devices that contain the CTSD16, the charge pump uses a clock that is provided by the CTSD16CLK. If any OA is enabled and set to rail-to-rail input mode, the CTSD16CLK will automatically be enabled regardless if the CTSD16 is enabled or not. In addition, the CTSD16CLK has fault detection logic that may cause an NMI to occur. Any existing fault should be corrected for proper OA operation. 33.2.3 OA Inputs The OA has a configurable input selection. The signals for the + and – inputs are individually selected with the OAxPSW and OAxNSW bits, respectively. Each switch is independently selectable. The connection of inputs can either be internal or external connections and are device specific. Refer to the device-specific data sheet for all operational amplifier connections. When OAM = 0, the OA is disabled and all input switches are opened regardless of the OAxPSW and OAxNSW settings. Negative input terminal switch 4 control, NSW4, allows for an internally connected voltage follower configuration. Refer to device-specific data sheet for other internal connection options. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Operational Amplifier (OA) Copyright © 2008–2015, Texas Instruments Incorporated 863 Ground Switches www.ti.com 33.3 Ground Switches Ground switches are an optional feature of the operational amplifier module. Refer to device-specific data sheet for availability and connections. Each ground switch can be enabled individually by software using the GSW bits. Setting GSW = 1 closes the switch and provides a low-ohmic connection to the analog ground to the GxSWx external pin and internal connections (see device-specific data sheet for internal connections available). If a ground switch output is shared with a digital I/O port, the digital I/O port is automatically disabled when GSW = 1, regardless of the PxSEL settings of the respective port. 33.4 OA and Power Modes The OA can be used in all power modes except LPMx.5 modes. Note that although the respective LPM mode can be entered, there is additional power dissipation due to the OA being active. Therefore, entering some of the lower-power modes, such as LPM2 through LPM4, while the module is enabled has reduced low-power benefits. 864 Operational Amplifier (OA) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated OA Registers www.ti.com 33.5 OA Registers Table 33-2 lists the OA module registers. The base address can be found in the device-specific data sheet. The address offset is listed in Table 33-2. NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix "_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H" (ANYREG_H) refers to the upper byte of the register (bits 8 through 15). Table 33-2. OA Registers Offset Acronym Register Name Type Access Reset Section 00h OAnCTL0 OAn Control 0 Read/write Word 0000h Section 33.5.1 00h OAnCTL0_L Read/write Byte 00h 01h OAnCTL0_H Read/write Byte 00h Read/write Word 0000h 02h OAnPSW OAn Positive Input Terminal Switches 02h OAnPSW_L Read/write Byte 00h 03h OAnPSW_H Read/write Byte 00h Read/write Word 0000h Read/write Byte 00h Read/write Byte 00h Read/write Word 0000h 04h OAnNSW 04h OAnNSW_L 05h OAnNSW_H 0Eh OAnGSW OAn Negative Input Terminal Switches OAn Ground Switches 0Eh OAnGSW_L Read/write Byte 00h 0Fh OAnGSW_H Read/write Byte 00h SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Section 33.5.2 Section 33.5.3 Section 33.5.4 Operational Amplifier (OA) Copyright © 2008–2015, Texas Instruments Incorporated 865 OA Registers www.ti.com 33.5.1 OAnCTL0 Register Operational Amplifier n Control 0 Figure 33-2. OAnCTL0 Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 r0 r0 r0 3 2 1 Reserved 7 6 5 4 Reserved OARRIRDY OARRI Reserved r0 r-0 rw-0 r0 Reserved r0 r0 0 OAM r0 rw-0 Table 33-3. OAnCTL0 Register Description Bit Field Type Reset Description 15-7 Reserved R 0h Reserved. Always reads as 0. 6 OARRIRDY R 0h Rail-to-rail input ready status. 0b = Rail-to-rail input not ready 1b = Rail-to-rail input ready 5 OARRI RW 0h Rail-to-rail input enable. 0b = Rail-to-rail input disabled 1b = Rail-to-rail input enabled 4 Reserved R 0h Reserved. Always read as 0. 3-1 Reserved R 0h Reserved. Always read as 0. These bits are reserved for future amplifier mode (OAM) settings. 0 OAM RW 0h Amplifier mode selection. 0b = Disabled. Output high impedance. All input switches opened, regardless of PSW and NSW settings. 1b = Enabled. If OA output is shared with a digital I/O port, the digital I/O port is automatically disabled regardless of the PxSEL settings of the respective port. 866 Operational Amplifier (OA) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated OA Registers www.ti.com 33.5.2 OAnPSW Register Operational Amplifier n Positive Terminal Switches Figure 33-3. OAnPSW Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 Reserved Reserved r0 r0 r0 r0 3 2 1 0 PSW3 PSW2 PSW1 PSW0 rw-0 rw-0 rw-0 rw-0 Table 33-4. OAnPSW Register Description Bit Field Type Reset Description 15-4 Reserved R 0h Reserved. Always reads as 0. 3 PSW3 RW 0h Positive input terminal switch 3 control. 0b = Switch open 1b = Switch closed 2 PSW2 RW 0h Positive input terminal switch 2 control. 0b = Switch open 1b = Switch closed 1 PSW1 RW 0h Positive input terminal switch 1 control. 0b = Switch open 1b = Switch closed 0 PSW0 RW 0h Positive input terminal switch 0 control. 0b = Switch open 1b = Switch closed SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Operational Amplifier (OA) Copyright © 2008–2015, Texas Instruments Incorporated 867 OA Registers www.ti.com 33.5.3 OAnNSW Register Operational Amplifier n Negative Terminal Switches Figure 33-4. OAnNSW Register 15 14 13 12 r0 r0 r0 r0 6 5 11 10 9 8 r0 r0 r0 r0 Reserved 7 Reserved r0 r0 r0 4 3 2 1 0 NSW4 NSW3 NSW2 NSW1 NSW0 rw-0 rw-0 rw-0 rw-0 rw-0 Table 33-5. OAnNSW Register Description Bit Field Type Reset Description 15-5 Reserved R 0h Reserved. Always reads as 0. 4 NSW4 RW 0h Negative input terminal switch 4 control. Voltage follower configuration. 0b = Switch open 1b = Switch closed. Amplifier output internally connected to negative input terminal. 3 NSW3 RW 0h Negative input terminal switch 3 control. 0b = Switch open 1b = Switch closed 2 NSW2 RW 0h Negative input terminal switch 2 control. 0b = Switch open 1b = Switch closed 1 NSW1 RW 0h Negative input terminal switch 1 control. 0b = Switch open 1b = Switch closed 0 NSW0 RW 0h Negative input terminal switch 0 control. 0b = Switch open 1b = Switch closed 868 Operational Amplifier (OA) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated OA Registers www.ti.com 33.5.4 OAnGSW Register Operational Amplifier n Ground Switches Figure 33-5. OAnGSW Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 r0 r0 r0 7 6 5 4 3 2 Reserved Reserved r0 r0 r0 r0 r0 r0 1 0 GSW1 GSW0 rw-0 rw-0 Table 33-6. OAnGSW Register Description Bit Field Type Reset Description 15-2 Reserved R 0h Reserved. Always reads as 0. 1 GSW1 RW 0h Ground switch. 0b = Switch open 1b = Switch closed and external GxSW1 pin and internal connections (see device-specific data sheet for internal connections available) are connected to analog ground. If ground switch output is shared with a digital I/O port, the digital I/O port is automatically disabled regardless of the PxSEL settings of the respective port. 0 GSW0 RW 0h Ground switch. 0b = Switch open 1b = Switch closed and external GxSW0 pin and internal connections (see device-specific data sheet for internal connections available) are connected to analog ground. If ground switch output is shared with a digital I/O port, the digital I/O port is automatically disabled regardless of the PxSEL settings of the respective port. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Operational Amplifier (OA) Copyright © 2008–2015, Texas Instruments Incorporated 869 Chapter 34 SLAU208O – June 2008 – Revised May 2015 LCD_B Controller The LCD_B controller drives static, 2-mux, 3-mux, or 4-mux LCDs. This chapter describes the LCD_B controller. Topic 34.1 34.2 34.3 870 ........................................................................................................................... Page LCD_B Controller Introduction ........................................................................... 871 LCD_B Controller Operation .............................................................................. 873 LCD_B Registers .............................................................................................. 891 LCD_B Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_B Controller Introduction www.ti.com 34.1 LCD_B Controller Introduction The LCD_B controller directly drives LCD displays by creating the ac segment and common voltage signals automatically. The LCD_B controller can support static, 2-mux, 3-mux, and 4-mux LCD glasses. The LCD_B controller features are: • Display memory • Automatic signal generation • Configurable frame frequency • Blinking of individual segments with separate blinking memory • Regulated charge pump • Contrast control by software • Support for four types of LCDs – Static – 2-mux, 1/2 bias or 1/3 bias – 3-mux, 1/2 bias or 1/3 bias – 4-mux, 1/2 bias or 1/3 bias The LCD_B controller block diagram for a configuration with a maximum of 160 segments is shown in Figure 34-1. NOTE: Maximum LCD Segment Control The maximum number of segment lines and memory registers available differs with device. See the device-specific data sheet for available segment pins and the maximum number of segments supported. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_B Controller Copyright © 2008–2015, Texas Instruments Incorporated 871 LCD_B Controller Introduction www.ti.com LCDCLRM LCDCLRBM Blinking Memory Registers LCDBMx LCDSx LCDSON LCD Memory Registers LCDMx Segment Output Control SEG1 Mux S1 SEG0 Mux S0 COM3 LCDBLKMODx LCDDISP Common Output Control Blinking and Display Control COM2 COM1 COM0 Blinking Frequency Divider BLKCLK LCDBLKPREx LCDBLKDIVx LCDSSEL ACLK 0 VLOCLK 1 LCD Frequency Divider VA VB VC VD LCDON LCDPREx LCDDIVx fLCD V1 Analog Voltage Multiplexer Timing Generator VLCD V2 V3 V4 V5 LCDMXx OSCOFF (from SR) LCDMXx VLCDREFx LCD REXT R03EXT VLCDx V1 4 V2 VLCD Regulated Charge Pump/ Contrast Control V3 LCD Bias Generator V4 V5 LCDCPEN LCDCAP/R33 R23 LCDREF/R13 R03 LCD LCD2B EXTBIAS Figure 34-1. LCD_B Controller Block Diagram 872 LCD_B Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_B Controller Operation www.ti.com 34.2 LCD_B Controller Operation The LCD_B controller is configured with user software. The setup and operation of the LCD_B controller is discussed in the following sections. 34.2.1 LCD Memory The LCD memory map for a device with a 160-segment maximum is shown in Figure 34-2. Each memory bit corresponds to one LCD segment or is not used, depending on the mode. To turn on an LCD segment, its corresponding memory bit is set. The memory can also be accessed word-wise using the even addresses starting at LCDM1, LCDM3, etc. Setting the bit LCDCLRM clears all LCD memory registers at the next frame boundary. It is reset automatically after the registers are cleared. Associated Common Pins 3 2 1 0 3 2 1 0 Associated Segment Pins Register n LCDM20 7 -- -- -- -- -- -- -- 0 -- 38 39, 38 LCDM19 -- -- -- -- -- -- -- -- 36 37, 36 LCDM18 -- -- -- -- -- -- -- -- 34 35, 34 LCDM17 -- -- -- -- -- -- -- -- 32 33, 32 LCDM16 -- -- -- -- -- -- -- -- 30 31, 30 LCDM15 -- -- -- -- -- -- -- -- 28 29, 28 LCDM14 -- -- -- -- -- -- -- -- 26 27, 26 LCDM13 -- -- -- -- -- -- -- -- 24 25, 24 LCDM12 -- -- -- -- -- -- -- -- 22 23, 22 LCDM11 -- -- -- -- -- -- -- -- 20 21, 20 LCDM10 -- -- -- -- -- -- -- -- 18 19, 18 LCDM9 -- -- -- -- -- -- -- -- 16 17, 16 LCDM8 -- -- -- -- -- -- -- -- 14 15, 14 LCDM7 -- -- -- -- -- -- -- -- 12 13, 12 LCDM6 -- -- -- -- -- -- -- -- 10 1, 10 LCDM5 -- -- -- -- -- -- -- -- 8 9, 8 LCDM4 -- -- -- -- -- -- -- -- 6 7, 6 LCDM3 -- -- -- -- -- -- -- -- 4 5, 4 LCDM2 -- -- -- -- -- -- -- -- 2 3, 2 LCDM1 -- -- -- -- -- -- -- -- 0 1, 0 Sn+1 Sn Figure 34-2. LCD Memory - Example for 160 Segments Maximum 34.2.2 LCD Timing Generation The LCD_B controller uses the fLCD signal from the integrated clock divider to generate the timing for common and segment lines. With the LCDSSEL bit ACLK with a frequency between 30 kHz and 40 kHz or VLOCLK can be selected as clock source into the divider. The fLCD frequency is selected with the LCDPREx and LCDDIVx bits. The resulting fLCD frequency is calculated by: fACLK/VLOCLK fLCD = LCDPRE (LCDDIVx + 1) × 2 The proper fLCD frequency depends on the LCD's requirement for framing frequency and the LCD multiplex rate and is calculated by: fLCD = 2 × mux × fFrame SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_B Controller Copyright © 2008–2015, Texas Instruments Incorporated 873 LCD_B Controller Operation www.ti.com For example, to calculate fLCD for a 3-mux LCD, with a frame frequency of 30 Hz to 100 Hz: fFrame (from LCD data sheet) = 30 Hz to 100 Hz fLCD = 2 × 3 × fFrame fLCD(min) = 180 Hz fLCD(max) = 600 Hz With fACLK/VLOCLK = 32768 Hz, LCDPREx = 011, and LCDDIVx = 10101: fLCD = 32768 Hz / ((21+1) × 23) = 32768 Hz / 176 = 186 Hz With LCDPREx = 001 and LCDDIVx = 11011: fLCD = 32768 Hz / ((27+1) × 21) = 32768 Hz / 56 = 585 Hz The lowest frequency has the lowest current consumption. The highest frequency has the least flicker. 34.2.3 Blanking the LCD The LCD controller allows to blank the complete LCD. The LCDSON bit is ANDed with each segment's memory bit. When LCDSON = 1, each segment is on or off according to its bit value. When LCDSON = 0, each LCD segment is off. 34.2.4 LCD Blinking The LCD_B controller also supports blinking. The blinking mode LCDBLKMODx = 01 allows to blink individual segments, with LCDBLKMODx = 10 all segments are blinking, and with LCDBLKMODx = 00 blinking is disabled. 34.2.4.1 Blinking Memory To enable individual segments for blinking the corresponding bit in the blinking memory LCDBMx registers needs to be set. The memory uses the same structure as the LCD memory shown in Figure 34-2. Each memory bit corresponds to one LCD segment, or is not used, depending on the multiplexing mode LCDMXx. To enable blinking for a LCD segment, its corresponding memory bit is set. The blinking memory can also be accessed word-wise using the even addresses starting at LCDBM1, LCDBM3, etc. Setting the bit LCDCLRBM clears all blinking memory registers at the next frame boundary. It is automatically reset after the registers are cleared. 34.2.4.2 Blinking Frequency The blinking frequency fBLINK is selected with the LCDBLKPREx and LCDBLKDIVx bits. The same clock is used as selected for the LCD frequency fLCD. The resulting fBLINK frequency is calculated by: fACLK/VLO fBlink = 9+LCDBLKPREx (LCDBLKDIVx + 1) × 2 The divider generating the blinking frequency fBLINK is reset while LCDBLKMODx = 00. After a blinking mode LCDBLKMODx = 01 or 10 is selected, the enabled segments or all segments go blank at the next frame boundary and stay off for half a BLKCLK period. Then they go active at the next frame boundary and stay on for another half BLKCLK period before they go blank again at a frame boundary. NOTE: Blinking Frequency Restrictions The blinking frequency must be smaller than the frame frequency, fFrame. The blinking frequency should be changed only when LCDBLKMODx = 00. 34.2.4.3 Dual Display Memory The blinking memory can also be used as a secondary display memory when no blinking mode LCDBLKMODx = 01 or 10 is selected. The memory to be displayed can be selected either manually using the LCDDISP bit or automatically with LCDBLKMODx = 11. 874 LCD_B Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_B Controller Operation www.ti.com With LCDDISP = 0 the LCD memory is selected, with LCDDISP = 1 the blinking memory is selected as display memory. Switching between the memories is synchronized to the frame boundaries. With LCDBLKMODx = 11 the LCD controller switches automatically between the memories using the divider to generate the blinking frequency. After LCDBLKMODx = 11 is selected the memory to be displayed for the first half a BLKCLK period is the LCD memory. In the second half the blinking memory is used as display memory. Switching between the memories is synchronized to the frame boundaries. 34.2.5 LCD_B Voltage And Bias Generation The LCD_B module allows selectable sources for the peak output waveform voltage, V1, as well as the fractional LCD biasing voltages V2 to V5. VLCD may be sourced from VCC, an internal charge pump, or externally. All internal voltage generation is disabled if the selected clock source (ACLK or VLOCLK) is turned off (OSCOFF = 1) or the LCD_B module is disabled (LCDON = 0). 34.2.5.1 LCD Voltage Selection VLCD is sourced from VCC when VLCDEXT = 0, VLCDx = 0, and VREFx = 0. VLCD is sourced from the internal charge pump when VLCDEXT = 0, VLCDCPEN = 1, and VLCDx > 0. The charge pump is always sourced from DVCC. The VLCDx bits provide a software selectable LCD voltage from 2.6 V to 3.44 V (typical) independent of DVCC. See the device-specific data sheet for specifications. When the internal charge pump is used, a 4.7-µF or larger capacitor must be connected between pin LCDCAP and ground. If no capacitor is connected and the charge pump is enabled, the LCDNOCAPIFG interrupt flag is set, and the charge pump is disabled to prevent damage to the device. The charge pump may be temporarily disabled by setting LCDCPEN = 0 with VLCDx > 0 to reduce system noise, or it can be automatically disabled during certain periods by setting the corresponding bits in the LCDBCPCTL register. In this case, the voltage present at the external capacitor is used for the LCD voltages until the charge pump is re-enabled. NOTE: Capacitor Required For Internal Charge Pump A 4.7-µF or larger capacitor must be connected from pin LCDCAP to ground when the internal charge pump is enabled. If no capacitor is connected, the LCDNOCAPIFG interrupt flag is set and the charge pump is disabled. The internal charge pump may use an external reference voltage when VLCDREFx = 01 (and LCDREXT = 0 and LCDEXTBIAS = 0). In this case, the charge pump voltage is set to a multiply of the external reference voltage according to the VLCDx bits setting. When VLCDEXT = 1, VLCD is sourced externally from the LCDCAP, pin and the internal charge pump is disabled. 34.2.5.2 LCD Bias Generation The fractional LCD biasing voltages, V2 to V5 can be generated internally or externally, independent of the source for VLCD. The LCD bias generation block diagram is shown in Figure 34-3. The internally generated bias voltages V2 to V4 are switched to external pins with LCDREXT = 1. To source the bias voltages V2 to V4 externally, LCDEXTBIAS is set. This also disables the internal bias generation. Typically, an equally weighted resistor divider is used with resistors ranging from a few kΩ to 1 MΩ, depending on the size of the display. When using an external resistor divider, the VLCD voltage may be sourced from the internal charge pump when VLCDEXT = 0 taking the maximum charge pump load current into account. V5 can also be sourced externally when R03EXT is set to control the contrast of the connected display by changing the voltage at the low end of the external resistor divider as shown in the left part of Figure 34-3. When using an external resistor divider R33 may serve as a switched VLCD output when VLCDEXT = 0. This allows the power to the resistor ladder to be turned off, eliminating current consumption when the LCD is not used. When VLCDEXT = 1, R33 serves as a VLCD input. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_B Controller Copyright © 2008–2015, Texas Instruments Incorporated 875 LCD_B Controller Operation www.ti.com VLCDx > 0 VLCDREFx > 0 AVCC DVCC Charge Pump 0 VLCD Internal VLCD 1 LCDREXT LCDON VLCDEXT 0 LCDCAP/R33 V1 (VLCD) 1 LCD LCD2B EXTBIAS LCDREXT 0 R V4 int V2 (2/3 VLCD) R23 1 R R V3 int V3 (1/2 VLCD) LCDREF/R13 1 V2 int R V4 (1/3 VLCD) R 1 0 R03 V5 1 Rx Rx Rx Optional external resistors Rx = Optional contrast control R03EXT Static 1/2 Bias 1/3 Bias Figure 34-3. Bias Generation The internal bias generator supports 1/2 bias LCDs when LCD2B = 1, and 1/3 bias LCDs when LCD2B = 0 in 2-mux, 3-mux, and 4-mux modes. In static mode, the internal divider is disabled. Some devices share the LCDCAP, R33, and R23 functions. In this case, the charge pump cannot be used together with an external resistor divider with 1/3 biasing. When R03 is not available externally, V5 is always VSS. 34.2.5.3 LCD Contrast Control The peak voltage of the output waveforms together with the selected mode and biasing determine the contrast and the contrast ratio of the LCD. The LCD contrast can be controlled in software by adjusting the LCD voltage generated by the integrated charge pump using the VLCDx settings. 876 LCD_B Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_B Controller Operation www.ti.com The contrast ratio depends on the used LCD display and the selected biasing scheme. Table 34-1 shows the biasing configurations that apply to the different modes together with the RMS voltages for the segments turned on (VRMS,ON) and turned off (VRMS,OFF) as functions of VLCD. It also shows the resulting contrast ratios between the on and off states. Table 34-1. LCD Voltage and Biasing Characteristics Mode Bias Config LCDMx LCD2B COM Lines Voltage Levels VRMS,OFF/ VLCD VRMS,ON/ VLCD Contrast Ratio VRMS,ON/ VRMS,OFF Static Static 0 X 1 V1, V5 0 1 1/0 2-mux 1/2 1 1 2 V1, V3, V5 0.354 0.791 2.236 2-mux 1/3 1 0 2 V1, V2, V4, V5 0.333 0.745 2.236 3-mux 1/2 10 1 3 V1, V3, V5 0.408 0.707 1.732 3-mux 1/3 10 0 3 V1, V2, V4, V5 0.333 0.638 1.915 4-mux 1/2 11 1 4 V1, V3, V5 0.433 0.661 1.528 4-mux 1/3 11 0 4 V1, V2, V4, V5 0.333 0.577 1.732 A typical approach to determine the required VLCD is by equating VRMS,OFF with a defined LCD threshold voltage, typically when the LCD exhibits approximately 10% contrast (Vth,10%): VRMS,OFF = Vth,10%. Using the values for VRMS,OFF/VLCD provided in the table results in VLCD = Vth,10%/(VRMS,OFF/VLCD). In the static mode, a suitable choice is VLCD greater or equal than 3 times Vth,10%. In 3-mux and 4-mux mode typically a 1/3 biasing is used but a 1/2 biasing scheme is also possible. The 1/2 bias reduces the contrast ratio but the advantage is a reduction of the required full-scale LCD voltage VLCD. 34.2.6 LCD Outputs Some LCD segment, common, and Rxx functions are multiplexed with digital I/O functions. These pins can function either as digital I/O or as LCD functions. The LCD segment functions, when multiplexed with digital I/O, are selected using the LCDSx bits in the LCDBPCTLx registers. The LCDSx bits select the LCD function for each segment line. When LCDSx = 0, a multiplexed pin is set to digital I/O function. When LCDSx = 1, a multiplexed pin is selected as LCD function. The pin functions for COMx and Rxx, when multiplexed with digital I/O, are selected as described in the port schematic section of the device-specific datasheet. The COM1 to COM3 pins are shared with segment lines. If these pins are required as COM pins due to the selected LCD multiplexing mode the COM functionality takes precedence over the segment function that can be selected for those pins with the LCDSx bits as for all other segment pins. See the port schematic section of the device-specific data sheet for details on controlling the pin functionality. NOTE: LCDSx Bits Do Not Affect Dedicated LCD Segment Pins The LCDSx bits only affect pins with multiplexed LCD segment functions and digital I/O functions. Dedicated LCD segment pins are not affected by the LCDSx bits. 34.2.7 LCD_B Interrupts The LCD_B module has four interrupt sources available, each with independent enables and flags. The four interrupt flags, namely LCDFRMIFG, LCDBLKOFFIFG, LCDBLKONIFG, and LCDNOCAPIFG, are prioritized and combined to source a single interrupt vector. The interrupt vector register LCDBIV is used to determine which flag requested an interrupt. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_B Controller Copyright © 2008–2015, Texas Instruments Incorporated 877 LCD_B Controller Operation www.ti.com The highest priority enabled interrupt generates a number in the LCDBIV register (see register description). This number can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled LCD_B interrupts do not affect the LCDBIV value. Any read access of the LCDBIV register automatically resets the highest pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. A write access to the LCDBIV register automatically resets all pending interrupt flags. In addition, all flags can be cleared via software. The LCDNOCAPIFG indicates that no capacitor is present at the LCDCAP pin when the charge pump is enabled. Setting the LCDNOCAPIE bit enables the interrupt. The LCDBLKONIFG is set at the BLKCLK edge synchronized to the frame boundaries that turns on the segments when blinking is enabled with LCDBLKMODx = 01 or 10. It is also set at the BLKCLK edge synchronized to the frame boundaries that selects the blinking memory as display memory when LCDBLKMODx = 11. It is automatically cleared when a LCD or blinking memory register is written. Setting the LCDBLKONIE bit enables the interrupt. The LCDBLKOFFIFG is set at the BLKCLK edge synchronized to the frame boundaries that blanks the segments when blinking is enabled with LCDBLKMODx = 01 or 10. It is also set at the BLKCLK edge synchronized to the frame boundaries that selects the LCD memory as display memory when LCDBLKMODx = 11.It is automatically cleared when a LCD or blinking memory register is written. Setting the LCDBLKOFFIE bit enables the interrupt. The LCDFRMIFG is set at a frame boundary. It is automatically cleared when a LCD or blinking memory register is written. Setting the LCDFRMIFGIE bit enables the interrupt. 34.2.7.1 LCDBIV Software Example The following software example shows the recommended use of LCDBIV and the handling overhead. The LCDBIV value is added to the PC to automatically jump to the appropriate routine. The numbers at the right margin show the necessary CPU cycles for each instruction. The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles but not the task handling itself. ; Interrupt handler for LCD_B interrupt flags. LCDB_HND ; Interrupt latency ADD &LCDBIV,PC ; Add offset to Jump table RETI ; Vector 0: No interrupt JMP LCDNOCAP_HND ; Vector 2: LCDNOCAPIFG JMP LCDBLKON_HND ; Vector 4: LCDBLKONIFG JMP LCDBLKOFF_HND ; Vector 6: LCDBLKOFFIFG LCDFRM_HND ; Vector 8: LCDFRMIFG ... ; Task starts here RETI LCDNOCAP_HND ; Vector 2: LCDNOCAPIFG ... ; Task starts here RETI LCDBLKON_HND ; Vector 4: LCDBLKONIFG ... ; Task starts here RETI ; Back to main program LCDBLKOFF_HND ; Vector 6: LCDBLKOFFIFG ... ; Task starts here RETI ; Back to main program 878 6 3 5 2 2 2 5 5 5 5 LCD_B Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_B Controller Operation www.ti.com 34.2.8 Static Mode In static mode, each MSP430 segment pin drives one LCD segment and one common line, COM0, is used. Figure 34-4 shows some example static waveforms. V1 COM0 V5 fframe V1 SP1 V5 COM0 V1 SP2 SP6 V5 SP1 a V1 SP2 b SP7 SP3 Resulting voltage for Segment a (COM0-SP1) Segment is on. 0V -V1 SP5 SP8 SP4 Resulting voltage for Segment b (COM0-SP2) Segment is off. 0V SP = Segment Pin Figure 34-4. Example Static Waveforms SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_B Controller Copyright © 2008–2015, Texas Instruments Incorporated 879 LCD_B Controller Operation www.ti.com Figure 34-5 shows an example static LCD, pinout, LCD-to-MSP430 connections, and the resulting segment mapping. This is only an example. Segment mapping in a user's application depends on the LCD pinout and on the MSP430-to-LCD connections. LCD a f a f b g c e d f b g c e d h a a c e d h f b g c e d h DIGIT4 S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 COM0 COM1 COM2 COM3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 1a 1b 1c 1d 1e 1f 1g 1h 2a 2b 2c 2d 2e 2f 2g 2h 3a 3b 3c 3d 3e 3f 3g 3h 4a 4b 4c 4d 4e 4f 4g 4h COM0 h DIGIT1 Display Memory Pinout and Connections Connections MSP430 LCD Pinout Pins PIN COM0 b g COM 3 2 1 0 3 2 1 0 MAB 0A0h -- -- -- h -- -- -- g n = 30 09Fh -- -- -- f -- -- -- e 28 09Eh -- -- -- d -- -- -- c 26 09Dh --- --- b h --- --- --- a g 24 09Ch --- 09Bh -- -- -- f -- -- -- e 20 09Ah -- -- -- d -- -- -- c 18 099h 098h -- -- -- b -- -- -- a 16 -- -- -- h -- -- -- g 14 097h -- -- -- f -- -- -- e 12 096h -- -- -- d -- -- -- c 10 095h -- -- -- b -- -- -- a 8 094h -- -- -- h -- -- -- g 6 093h -- -- -- f -- -- -- e 4 092h 091h -- -- -- d -- -- -- c 2 -- -- -- b -- -- -- a 0 3 2 1 0 3 2 1 0 A 0 G 3 B A B G 0 3 Sn+1 Digit 4 22 Digit 3 Digit 2 Digit 1 Parallel-Serial Conversion Sn NC NC NC Figure 34-5. Static LCD Example (MAB addresses need to be replaced with LCDMx) 880 LCD_B Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_B Controller Operation www.ti.com 34.2.8.1 Static Mode Software Example ; ; ; a b c d e f g h ; ; All eight segments of a digit are often located in four display memory bytes with the static display method. EQU 001h EQU 010h EQU 002h EQU 020h EQU 004h EQU 040h EQU 008h EQU 080h The register content of Rx should be displayed. The Table represents the 'on'-segments according to the ; content of Rx. MOV.B Table (Rx),RY ; Load segment information ; into temporary memory. ; (Ry) = 0000 0000 hfdb geca MOV.B Ry,&LCDn ; Note: ; All bits of an LCD memory ; byte are written RRA Ry ; (Ry) = 0000 0000 0hfd bgec MOV.B Ry,&LCDn+1 ; Note: ; All bits of an LCD memory ; byte are written RRA Ry ; (Ry) = 0000 0000 00hf dbge MOV.B Ry,&LCDn+2 ; Note: ; All bits of an LCD memory ; byte are written RRA Ry ; (Ry) = 0000 0000 000h fdbg MOV.B Ry,&LCDn+3 ; Note: ; All bits of an LCD memory ; byte are written ........... ........... ; Table DB a+b+c+d+e+f ; displays "0" DB b+c; ; displays "1" ........... ........... DB ........... SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_B Controller Copyright © 2008–2015, Texas Instruments Incorporated 881 LCD_B Controller Operation www.ti.com 34.2.9 2-Mux Mode In 2-mux mode, each MSP430 segment pin drives two LCD segments and two common lines, COM0 and COM1, are used. Figure 34-6 shows some example 2-mux, 1/2 bias waveforms. COM1 V1 V3 COM0 V5 fframe V1 V3 COM1 V5 COM0 V1 SP1 V5 V1 SP2 V5 b SP1 V1 h SP4 SP2 V3 Resulting voltage for Segment h (COM0-SP2) Segment is on. 0V -V3 SP3 -V1 SP = Segment Pin V1 V3 Resulting voltage for Segment b (COM1-SP2) Segment is Off. 0V -V3 -V5 Figure 34-6. Example 2-Mux Waveforms 882 LCD_B Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_B Controller Operation www.ti.com Figure 34-7 shows an example 2-mux LCD, pinout, LCD-to-MSP430 connections, and the resulting segment mapping. This is only an example. Segment mapping in a user's application completely depends on the LCD pinout and on the MSP430-to-LCD connections. LCD a a f f b g c e d c e d h DIGIT8 Display Memory Connections MSP430 LCD Pinout Pins PIN COM0 COM1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 1f 1h 1d 1e 2f 2h 2d 2e 3f 3h 3d 3e 4f 4h 4d 4e 5f 5h 5d 5e 6f 6h 6d 6e 7f 7h 7d 7e 8f 8h 8d 8e COM0 h DIGIT1 Pinout and Connections S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 COM0 COM1 COM2 COM3 b g 1a 1b 1c 1g 2a 2b 2c 2g 3a 3b 3c 3g 4a 4b 4c 4g 5a 5b 5c 5g 6a 6b 6c 6g 7a 7b 7c 7g 8a 8b 8c 8g COM 3 2 1 0 3 2 MAB 0A0h -- -- g e -- 09Fh -- -- b h -- 09Eh -- -- g e 09Dh 09Ch --- --- b g 09Bh -- -- b 0 -- c d n = 30 -- a f 28 -- -- c d 26 h e --- --- a c f d 24 h -- -- a f 20 22 09Ah -- -- g e -- -- c d 18 099h 098h -- -- b h -- -- a f 16 -- -- g e -- -- c d 14 097h -- -- b h -- -- a f 12 096h 095h -- -- g e -- -- c d 10 -- -- b h -- -- a f 8 094h -- -- g e -- -- c d 6 093h -- -- b h -- -- a f 4 092h 091h -- -- g e -- -- c d 2 -- -- b h -- -- a f 0 3 2 1 0 3 2 1 0 A 0 G 3 B A B 1 G 0 3 Sn+1 1/2 Digit 8 Digit 7 Digit 6 Digit 5 Digit 4 Digit 3 Digit 2 Digit 1 Parallel-Serial Conversion Sn COM1 NC NC Figure 34-7. 2-Mux LCD Example (MAB addresses need to be replaced with LCDMx) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_B Controller Copyright © 2008–2015, Texas Instruments Incorporated 883 LCD_B Controller Operation www.ti.com 34.2.9.1 2-Mux Mode Software Example ; All eight segments of a digit are often located in two ; display memory bytes with the 2-mux display rate ; a EQU 002h b EQU 020h c EQU 008h d EQU 004h e EQU 040h f EQU 001h g EQU 080h h EQU 010h ; The register content of Rx should be displayed. ; The Table represents the 'on'-segments according to the ; content of Rx. ; ........... ........... MOV.B Table(Rx),Ry ; Load segment information into ; temporary memory. MOV.B Ry,&LCDn ; (Ry) = 0000 0000 gebh cdaf ; Note: ; All bits of an LCD memory byte ; are written RRA Ry ; (Ry) = 0000 0000 0geb hcda RRA Ry ; (Ry) = 0000 0000 00ge bhcd MOV.B Ry,&LCDn+1 ; Note: ; All bits of an LCD memory byte ; are written ........... ........... ........... Table DB a+b+c+d+e+f ; displays "0" ........... DB a+b+c+d+e+f+g ; displays "8" ........... ........... DB ........... ; 884 LCD_B Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_B Controller Operation www.ti.com 34.2.10 3-Mux Mode In 3-mux mode, each MSP430 segment pin drives three LCD segments and three common lines (COM0, COM1, and COM2) are used.Figure 34-8 shows some example 3-mux, 1/3 bias waveforms. COM2 COM0 fframe COM1 COM1 COM0 V1 V2 V4 V5 COM2 V1 V2 V4 V5 SP1 V1 V2 V4 V5 e V1 SP2 d SP1 V1 V2 V4 V5 V5 SP3 SP2 V1 SP = Segment Pin SP3 V5 V1 Resulting voltage for Segment e (COM0-SP1) Segment is off. 0V -V1 V1 Resulting voltage for Segment d (COM0-SP2) Segment is on. 0V -V1 Figure 34-8. Example 3-Mux Waveforms SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_B Controller Copyright © 2008–2015, Texas Instruments Incorporated 885 LCD_B Controller Operation www.ti.com Figure 34-9 shows an example 3-mux LCD, pinout, LCD-to-MSP430 connections, and the resulting segment mapping. This is only an example. Segment mapping in a user's application depends on the LCD pinout and on the MSP430-to-LCD connections. LCD y a f y f b g c e d a c e d h DIGIT10 Display Memory Connections MSP430 LCD Pinout Pins PIN COM0 COM1 COM2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 h DIGIT1 Pinout and Connections S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 COM0 COM1 COM2 COM3 b g 1y 1f 1e 1a 1g 1d 1b 1c 1h 2y 2f 2e 2a 2g 2d 2b 2c 2h 3y 3f 3e 3a 3g 3d 3b 3c 3h 4y 4f 4e 4a 4g 4d 4b 4c 4h 5y 5f 5e 5a 5g 5d 5b 5c 5h 6y 6f 6e 6a 6g 6d 6b 6c 6h 7y 7f 7e 7a 7g 7d 7b 7c 7h 8y 8f 8e 8a 8g 8d 8b 8c 8h 9y 9f 9e 9a 9g 9d 9b 9c 9h 10y 10f 10e 10g 10a 10d 10c 10b 10h COM0 COM1 COM2 COM 3 2 1 0 3 2 1 0 MAB 09Fh -- a g d -- y f e 09Eh --- b y c f h e --- a b g c d h --- a b g c d h --- y a f g e d --- y a f g e d --- b y c f h e --- b y c f h e --- a b g c d h 095h ---- a b y g c f d h e ---- y a b f g c e d h 094h -- a g d -- y f e 093h --- b y c f h e --- a b g c d h -- a g d -- y f e 3 2 1 0 3 2 1 0 09Dh 09Ch 09Bh 09Ah 099h 098h 097h 096h 092h 091h A B G 0 3 Sn+1 n = 30 28 Digit 10 26 Digit 9 24 22 Digit 8 20 Digit 7 18 16 Digit 6 14 Digit 5 12 10 Digit 4 8 Digit 3 6 4 Digit 2 2 Digit 1 0 A Parallel-Serial 0 G 3 B Conversion Sn NC Figure 34-9. 3-Mux LCD Example (MAB addresses need to be replaced with LCDMx) 886 LCD_B Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_B Controller Operation www.ti.com 34.2.10.1 3-Mux Mode Software Example ; The 3-mux rate can support nine segments for each ; digit. The nine segments of a digit are located in ; 1 1/2 display memory bytes. ; a EQU 0040h b EQU 0400h c EQU 0200h d EQU 0010h e EQU 0001h f EQU 0002h g EQU 0020h h EQU 0100h Y EQU 0004h ; The LSDigit of register Rx should be displayed. ; The Table represents the 'on'-segments according to the ; LSDigit of register of Rx. ; The register Ry is used for temporary memory ; ODDDIG RLA Rx ; LCD in 3-mux has 9 segments per ; digit ; word table required for ; displayed characters. MOV Table(Rx),Ry ; Load segment information to ; temporary mem. ; (Ry) = 0000 0bch 0agd 0yfe MOV.B Ry,&LCDn ; write 'a, g, d, y, f, e' of ; Digit n (LowByte) SWPB Ry ; (Ry) = 0agd 0yfe 0000 0bch BIC.B #07h,&LCDn+1 ; write 'b, c, h' of Digit n ; (HighByte) BIS.B Ry,&LCDn+1 ..... EVNDIG RLA Rx ; LCD in 3-mux has 9 segments per ; digit ; word table required for ; displayed characters. MOV Table(Rx),Ry ; Load segment information to ; temporary mem. ; (Ry) = 0000 0bch 0agd 0yfe RLA Ry ; (Ry) = 0000 bch0 agd0 yfe0 RLA Ry ; (Ry) = 000b ch0a gd0y fe00 RLA Ry ; (Ry) = 00bc h0ag d0yf e000 RLA Ry ; (Ry) = 0bch 0agd 0yfe 0000 BIC.B #070h,&LCDn+1 BIS.B Ry,&LCDn+1 ; write 'y, f, e' of Digit n+1 ; (LowByte) SWPB Ry ; (Ry) = 0yfe 0000 0bch 0agd MOV.B Ry,&LCDn+2 ; write 'b, c, h, a, g, d' of ; Digit n+1 (HighByte) ........... Table DW a+b+c+d+e+f ; displays "0" DW b+c ; displays "1" ........... ........... DW a+e+f+g ; displays "F" SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_B Controller Copyright © 2008–2015, Texas Instruments Incorporated 887 LCD_B Controller Operation www.ti.com 34.2.11 4-Mux Mode In 4-mux mode, each MSP430 segment pin drives four LCD segments and all four common lines (COM0, COM1, COM2, and COM3) are used. Figure 34-10 shows some example 4-mux, 1/3 bias waveforms. COM3 V1 V2 V4 V5 COM0 COM2 fframe COM1 COM1 V1 V2 V4 V5 COM2 V1 V2 V4 V5 COM3 V1 V2 V4 V5 SP1 V1 V2 V4 V5 SP2 V1 V2 V4 V5 COM0 e c SP2 SP1 SP = Segment Pin V1 Resulting voltage for Segment e (COM1-SP1) Segment is off. 0V -V1 V1 Resulting voltage for Segment c (COM1-SP2) Segment is on. 0V -V1 Figure 34-10. Example 4-Mux Waveforms 888 LCD_B Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_B Controller Operation www.ti.com Figure 34-11 shows an example 4-mux LCD, pinout, LCD-to-MSP430 connections, and the resulting segment mapping. This is only an example. Segment mapping in a user's application depends on the LCD pinout and on the MSP430-to-LCD connections. LCD a a f f b g c e d c e d h DIGIT15 Display Memory Connections MSP430 LCD Pinout Pins PIN COM0 COM1 COM2 COM3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 1d 1h 2d 2h 3d 3h 4d 4h 5d 5h 6d 6h 7d 7h 8d 8h 9d 9h 10d 10h 11d 11h 12d 12h 13d 13h 14d 14h 15d 15h COM0 1e 1c 2e 2c 3e 3c 4e 4c 5e 5c 6e 6c 7e 7c 8e 8c 9e 9c 10e 10c 11e 11c 12e 12c 13e 13c 14e 14c 15e 15c h DIGIT1 Pinout and Connections S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 COM0 COM1 COM2 COM3 b g 1g 1b 2g 2b 3g 3b 4g 4b 5g 5b 6g 6b 7g 7b 8g 8b 9g 9b 10g 10b 11g 11b 12g 12b 13g 13b 14g 14b 15g 15b 1f 1a 2f 2a 3f 3a 4f 4a 5f 5a 6f 6a 7f 7a 8f 8a 9f 9a 10f 10a 11f 11a 12f 12a 13f 13a 14f 14a 15f 15a COM MAB 2 1 0 3 2 1 0 09Fh a b c h f g e d n = 30 Digit 16 09Eh a b c h f g e d 28 Digit 15 a b c h f g e d 26 Digit 14 a b c h f g e d 24 Digit 13 a b c h f g e d 22 Digit 12 a b c h f g e d 20 Digit 11 a b c h f g e d 18 Digit 10 a b c h f g e d 16 Digit 9 a b c h f g e d 14 Digit 8 a b c h f g e d 12 Digit 7 a b c h f g e d 10 Digit 6 a b c h f g e d 8 Digit 5 094h a b c h f g e d 6 Digit 4 093h a b c h f g e d 4 Digit 3 092h a b c h f g e d 2 Digit 2 091h a b c h f g e d 0 Digit 1 3 2 1 0 3 2 1 0 09Dh 09Ch 09Bh 09Ah 099h 098h 097h 096h 095h A B 3 G 0 3 Sn+1 0 G 3 A B Parallel-Serial Conversion Sn COM1 COM2 COM3 Figure 34-11. 4-Mux LCD Example (MAB addresses need to be replaced with LCDMx) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_B Controller Copyright © 2008–2015, Texas Instruments Incorporated 889 LCD_B Controller Operation www.ti.com 34.2.11.1 4-Mux Mode Software Example ; ; ; a b c d e f g h ; ; ; ; ; The All one EQU EQU EQU EQU EQU EQU EQU EQU 4-mux rate supports eight segments for each digit. eight segments of a digit can often be located in display memory byte 080h 040h 020h 001h 002h 008h 004h 010h The LSDigit of register Rx should be displayed. The Table represents the 'on'-segments according to the content of Rx. MOV.B Table(Rx),&LCDn ; n = 1 ..... 15 ; all eight segments are ; written to the display ; memory ........... ........... Table DB a+b+c+d+e+f ; displays "0" DB b+c ; displays "1" ........... ........... DB b+c+d+e+g ; displays "d" DB a+d+e+f+g ; displays "E" DB a+e+f+g ; displays "F" 890 LCD_B Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_B Registers www.ti.com 34.3 LCD_B Registers The LCD_B registers are listed in Table 34-2 to Table 34-4. The LCD memory and blinking memory registers can also be accessed as word. Table 34-2. LCD_B Registers Offset Acronym Register Name Type Reset Section 000h LCDBCTL0 LCD_B control register 0 Read/write 0000h Section 34.3.1 002h LCDBCTL1 LCD_B control register 1 Read/write 0000h Section 34.3.2 004h LCDBBLKCTL LCD_B blinking control register Read/write 0000h Section 34.3.3 006h LCDBMEMCTL LCD_B memory control register Read/write 0000h Section 34.3.4 008h LCDBVCTL LCD_B voltage control register Read/write 0000h Section 34.3.5 00Ah LCDBPCTL0 LCD_B port control 0 Read/write 0000h Section 34.3.6 00Ch LCDBPCTL1 LCD_B port control 1 Read/write 0000h Section 34.3.7 00Eh LCDBPCTL2 LCD_B port control 2 (≥128 segments) Read/write 0000h Section 34.3.8 010h LCDBPCTL3 LCD_B port control 3 (192 segments) Read/write 0000h Section 34.3.9 012h LCDBCPCTL LCD_B charge pump control Read/write 0000h Section 34.3.10 Read/write 0000h Section 34.3.11 014h Reserved 016h Reserved 018h Reserved 01Ah Reserved 01Ch Reserved 01Eh LCDBIV LCD_B interrupt vector LCD_B Controller 891 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_B Registers www.ti.com Table 34-3. LCD_B Memory Registers (1) Offset Acronym Register Name Type Reset 020h LCDM1 LCD memory 1 (S1/S0) Read/write Unchanged 021h LCDM2 LCD memory 2 (S3/S2) Read/write Unchanged 022h LCDM3 LCD memory 3 (S5/S4) Read/write Unchanged 023h LCDM4 LCD memory 4 (S7/S6) Read/write Unchanged 024h LCDM5 LCD memory 5 (S9/S8) Read/write Unchanged 025h LCDM6 LCD memory 6 (S11/S10) Read/write Unchanged 026h LCDM7 LCD memory 7 (S13/S12) Read/write Unchanged 027h LCDM8 LCD memory 8 (S15/S14) Read/write Unchanged 028h LCDM9 LCD memory 9 (S17/S16) Read/write Unchanged 029h LCDM10 LCD memory 10 (S19/S18) Read/write Unchanged 02Ah LCDM11 LCD memory 11 (S21/S20) Read/write Unchanged 02Bh LCDM12 LCD memory 12 (S23/S22) Read/write Unchanged 02Ch LCDM13 LCD memory 13 (S25/S24) Read/write Unchanged 02Dh LCDM14 LCD memory 14 (S27/S26) Read/write Unchanged 02Eh LCDM15 LCD memory 15 (S29/S28, ≥128 segments) Read/write Unchanged 02Fh LCDM16 LCD memory 16 (S31/S30, ≥128 segments) Read/write Unchanged 030h LCDM17 LCD memory 17 (S33/S32, ≥128 segments) Read/write Unchanged 031h LCDM18 LCD memory 18 (S35/S34, ≥128 segments) Read/write Unchanged 032h LCDM19 LCD memory 19 (S37/S36, ≥160 segments) Read/write Unchanged 033h LCDM20 LCD memory 20 (S39/S38, ≥160 segments) Read/write Unchanged 034h LCDM21 LCD memory 21 (S41/S40, ≥160 segments) Read/write Unchanged 035h LCDM22 LCD memory 22 (S43/S42, ≥160 segments) Read/write Unchanged 036h LCDM23 LCD memory 23 (S45/S44, 192 segments) Read/write Unchanged 037h LCDM24 LCD memory 24 (S47/S46, 192 segments) Read/write Unchanged 038h LCDM25 LCD memory 25 (S49/S48, 192 segments) Read/write Unchanged 039h LCDM26 LCD memory 26 (S50, 192 segments) Read/write Unchanged 03Ah Reserved Read/write Unchanged 03Bh Reserved Read/write Unchanged 03Ch Reserved Read/write Unchanged 03Dh Reserved Read/write Unchanged 03Eh Reserved Read/write Unchanged 03Fh Reserved Read/write Unchanged (1) The LCD memory registers can also be accessed as word. 892 LCD_B Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_B Registers www.ti.com Table 34-4. LCD_B Blinking Memory Registers (1) Offset Acronym Register Name Type Reset 040h LCDBM1 LCD blinking memory 1 Read/write Unchanged 041h LCDBM2 LCD blinking memory 2 Read/write Unchanged 042h LCDBM3 LCD blinking memory 3 Read/write Unchanged 043h LCDBM4 LCD blinking memory 4 Read/write Unchanged 044h LCDBM5 LCD blinking memory 5 Read/write Unchanged 045h LCDBM6 LCD blinking memory 6 Read/write Unchanged 046h LCDBM7 LCD blinking memory 7 Read/write Unchanged 047h LCDBM8 LCD blinking memory 8 Read/write Unchanged 048h LCDBM9 LCD blinking memory 9 Read/write Unchanged 049h LCDBM10 LCD blinking memory 10 Read/write Unchanged 04Ah LCDBM11 LCD blinking memory 11 Read/write Unchanged 04Bh LCDBM12 LCD blinking memory 12 Read/write Unchanged 04Ch LCDBM13 LCD blinking memory 13 Read/write Unchanged 04Dh LCDBM14 LCD blinking memory 14 Read/write Unchanged 04Eh LCDBM15 LCD blinking memory 15 (≥128 segments) Read/write Unchanged 04Fh LCDBM16 LCD blinking memory 16 (≥128 segments) Read/write Unchanged 050h LCDBM17 LCD blinking memory 17 (≥128 segments) Read/write Unchanged 051h LCDBM18 LCD blinking memory 18 (≥128 segments) Read/write Unchanged 052h LCDBM19 LCD blinking memory 19 (≥160 segments) Read/write Unchanged 053h LCDBM20 LCD blinking memory 20 (≥160 segments) Read/write Unchanged 054h LCDBM21 LCD blinking memory 21 (≥160 segments) Read/write Unchanged 055h LCDBM22 LCD blinking memory 22 (≥160 segments) Read/write Unchanged 056h LCDBM23 LCD blinking memory 23 (190 segments) Read/write Unchanged 057h LCDBM24 LCD blinking memory 24 (190 segments) Read/write Unchanged 058h LCDBM25 LCD blinking memory 25 (190 segments) Read/write Unchanged 059h LCDBM26 LCD blinking memory 26 (190 segments) Read/write Unchanged 05Ah Reserved Read/write Unchanged 05Bh Reserved Read/write Unchanged 05Ch Reserved Read/write Unchanged 05Dh Reserved Read/write Unchanged 05Eh Reserved Read/write Unchanged 05Fh Reserved Read/write Unchanged (1) The LCD blinking memory registers can also be accessed as word. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_B Controller Copyright © 2008–2015, Texas Instruments Incorporated 893 LCD_B Registers www.ti.com 34.3.1 LCDBCTL0 Register LCD_B Control Register 0 Figure 34-12. LCDBCTL0 Register 15 14 rw-0 rw-0 7 6 13 12 11 10 rw-0 rw-0 rw-0 rw-0 5 4 LCDDIVx LCDSSEL rw-0 3 LCDMXx r0 8 LCDPREx Reserved r0 9 rw-0 rw-0 rw-0 rw-0 2 1 0 LCDSON Reserved LCDON rw-0 r0 rw-0 Table 34-5. LCDBCTL0 Register Description Bit Field Type Reset Description 15-11 LCDDIVx RW 0h LCD frequency divider. Together with LCDPREx the LCD frequency f(LCD) is calculated as f(LCD) = f(ACLK/VLO) / [(LCDDIVx + 1) × 2^(LCDPREx)]. Settings for this bit should be changed only while LCDON = 0. 00000b = Divide by 1 00001b = Divide by 2 ⋮ 11110b = Divide by 31 11111b = Divide by 32 10-8 LCDPREx RW 0h LCD frequency pre-scaler. Together with LCDDIVx the LCD frequency f(LCD) is calculated as f(LCD) = f(ACLK/VLO) / [(LCDDIVx + 1) × 2^(LCDPREx)]. Settings for this bit should be changed only while LCDON = 0. 000b = Divide by 1 001b = Divide by 2 010b = Divide by 4 011b = Divide by 8 100b = Divide by 16 101b = Divide by 32 110b = Reserved - Defaults to divide by 32 111b = Reserved - Defaults to divide by 32 7 LCDSSEL RW 0h Clock source select for LCD and blinking frequency Settings for this bit should be changed only while LCDON = 0. 0b = ACLK (30 kHz to 40 kHz) 1b = VLOCLK 6-5 Reserved R 0h Reserved. Always reads as 0. 4-3 LCDMXx RW 0h LCD mux rate. These bits select the LCD mode. Settings for this bit should be changed only while LCDON = 0. 00b = Static 01b = 2-mux 10b = 3-mux 11b = 4-mux 2 LCDSON RW 0h LCD segments on. This bit supports flashing LCD applications by turning off all segment lines, while leaving the LCD timing generator and R33 enabled. 0b = All LCD segments are off. 1b = All LCD segments are enabled and on or off according to their corresponding memory location. 1 Reserved R 0h Reserved. Always reads as 0. 0 LCDON RW 0h LCD on. This bit turns the LCD_B module on or off. 0b = LCD_B module off 1b = LCD_B module on 894 LCD_B Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_B Registers www.ti.com 34.3.2 LCDBCTL1 Register LCD_B Control Register 1 Figure 34-13. LCDBCTL1 Register 15 14 r0 r0 7 6 13 12 r0 r0 5 4 Reserved Reserved r0 r0 11 10 9 8 LCDNOCAPIE LCDBLKONIE LCDBLKOFFIE LCDFRMIE rw-0 rw-0 rw-0 rw-0 2 1 3 LCDNOCAPIF G r0 r0 LCDBLKONIFG LCDBLKOFFIF G rw-0 rw-0 rw-0 0 LCDFRMIFG rw-0 Table 34-6. LCDBCTL1 Register Description Bit Field Type Reset Description 15-12 Reserved R 0h Reserved. Always reads as 0. 11 LCDNOCAPIE RW 0h No capacitance connected interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 10 LCDBLKONIE RW 0h LCD blinking interrupt enable, segments switched on 0b = Interrupt disabled 1b = Interrupt enabled 9 LCDBLKOFFIE RW 0h LCD blinking interrupt enable, segments switched off 0b = Interrupt disabled 1b = Interrupt enabled 8 LCDFRMIE RW 0h LCD frame interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 7-4 Reserved R 0h Reserved. Always reads as 0. 3 LCDNOCAPIFG RW 0h No capacitance connected interrupt flag. Set when charge pump is enabled but no capacitance is connected to LCDCAP pin. 0b = No interrupt pending 1b = Interrupt pending 2 LCDBLKONIFG RW 0h LCD blinking interrupt flag, segments switched on. Automatically cleared when data is written into a memory register. 0b = No interrupt pending 1b = Interrupt pending 1 LCDBLKOFFIFG RW 0h LCD blinking interrupt flag, segments switched off. Automatically cleared when data is written into a memory register. 0b = No interrupt pending 1b = Interrupt pending 0 LCDFRMIFG RW 0h LCD frame interrupt flag. Automatically cleared when data is written into a memory register. 0b = No interrupt pending 1b = Interrupt pending SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_B Controller Copyright © 2008–2015, Texas Instruments Incorporated 895 LCD_B Registers www.ti.com 34.3.3 LCDBBLKCTL Register LCD_B Blink Control Register Figure 34-14. LCDBBLKCTL Register 15 14 13 12 r0 r0 r0 r0 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 Reserved 7 LCDBLKDIVx rw-0 LCDBLKPREx rw-0 rw-0 rw-0 rw-0 0 LCDBLKMODx rw-0 rw-0 rw-0 Table 34-7. LCDBBLKCTL Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved. Always reads as 0. 7-5 LCDBLKDIVx RW 0h Clock divider for blinking frequency. Together with LCDBLKPREx, the blinking frequency f(BLINK) is calculated as f(BLINK) = f(ACLK/VLO) / [(LCDBLKDIVx + 1) × 2^(9+LCDBLKPREx)]. Settings for this bit should be changed only while LCDBLKMODx = 00. 000b = Divide by 1 001b = Divide by 2 010b = Divide by 3 011b = Divide by 4 100b = Divide by 5 101b = Divide by 6 110b = Divide by 7 111b = Divide by 8 4-2 LCDBLKPREx RW 0h Clock pre-scaler for blinking frequency. Together with LCDBLKDIVx, the blinking frequency f(BLINK) is calculated as f(BLINK) = f(ACLK/VLO) / ((LCDBLKDIVx + 1) × 2^(9+LCDBLKPREx)). Settings for this bit should be changed only while LCDBLKMODx = 00. 000b = Divide by 512 001b = Divide by 1024 010b = Divide by 2048 011b = Divide by 4096 100b = Divide by 8162 101b = Divide by 16384 110b = Divide by 32768 111b = Divide by 65536 1-0 LCDBLKMODx RW 0h Blinking mode 00b = Blinking disabled 01b = Blinking of individual segments as enabled in blinking memory register LCDBMx 10b = Blinking of all segments 11b = Switching between display contents as stored in LCDMx and LCDBMx memory registers. 896 LCD_B Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_B Registers www.ti.com 34.3.4 LCDBMEMCTL Register LCD_B Memory Control Register Figure 34-15. LCDBMEMCTL Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 r0 r0 r0 7 6 5 4 3 Reserved Reserved r0 r0 r0 r0 r0 2 1 0 LCDCLRBM LCDCLRM LCDDISP rw-0 rw-0 rw-0 Table 34-8. LCDBMEMCTL Register Description Bit Field Type Reset Description 15-3 Reserved R 0h Reserved. Always reads as 0. 2 LCDCLRBM RW 0h Clear LCD blinking memory Clears all blinking memory registers LCDBMx. The bit is automatically reset when the blinking memory is cleared. 0b = Contents of blinking memory registers LCDBMx remain unchanged 1b = Clear content of all blinking memory registers LCDBMx 1 LCDCLRM RW 0h Clear LCD memory Clears all LCD memory registers LCDMx. The bit is automatically reset when the LCD memory is cleared. 0b = Contents of LCD memory registers LCDMx remain unchanged 1b = Clear content of all LCD memory registers LCDMx 0 LCDDISP RW 0h Select LCD memory registers for display The bit is cleared in LCDBLKMODx = 01 and LCDBLKMODx = 10 and cannot be changed by software. When LCDBLKMODx = 11, this bit reflects the currently displayed memory but cannot be changed by software. When returning to LCDBLKMODx = 00 the bit is cleared. 0b = Display content of LCD memory registers LCDMx 1b = Display content of LCD blinking memory registers LCDBMx SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_B Controller Copyright © 2008–2015, Texas Instruments Incorporated 897 LCD_B Registers www.ti.com 34.3.5 LCDBVCTL Register LCD_B Voltage Control Register Figure 34-16. LCDBVCTL Register 15 14 13 12 11 10 9 r0 rw-0 rw-0 rw-0 rw-0 2 Reserved r0 VLCDx r0 7 6 5 4 3 LCDREXT R03EXT LCDEXTBIAS VLCDEXT LCDCPEN rw-0 rw-0 rw-0 rw-0 rw-0 8 Reserved 1 VLCDREFx rw-0 r0 0 LCD2B rw-0 rw-0 Table 34-9. LCDBVCTL Register Description Bit Field Type Reset Description 15-13 Reserved R 0h Reserved. Always reads as 0. 12-9 VLCDx RW 0h Charge pump voltage select. LCDCPEN must be 1 for the charge pump to be enabled. V(CC) is used for V(LCD) when VLCDx = 0000 and VLCDREFx = 00 and VLCDEXT = 0. If VLCDREFx = 00 or 10: 0000b = Charge pump disabled 0001b = V(LCD) = 2.60 V 0010b = V(LCD) = 2.66 V 0011b = V(LCD) = 2.72 V 0100b = V(LCD) = 2.78 V 0101b = V(LCD) = 2.84 V 0110b = V(LCD) = 2.90 V 0111b = V(LCD) = 2.96 V 1000b = V(LCD) = 3.02 V 1001b = V(LCD) = 3.08 V 1010b = V(LCD) = 3.14 V 1011b = V(LCD) = 3.20 V 1100b = V(LCD) = 3.26 V 1101b = V(LCD) = 3.32 V 1110b = V(LCD) = 3.38 V 1111b = V(LCD) = 3.44 V If VLCDREFx = 01 or 11: 0000b = Charge pump disabled 0001b = V(LCD) = 2.17 × V(REF) 0010b = V(LCD) = 2.22 × V(REF) 0011b = V(LCD) = 2.27 × V(REF) 0100b = V(LCD) = 2.32 × V(REF) 0101b = V(LCD) = 2.37 × V(REF) 0110b = V(LCD) = 2.42 × V(REF) 0111b = V(LCD) = 2.47 × V(REF) 1000b = V(LCD) = 2.52 × V(REF) 1001b = V(LCD) = 2.57 × V(REF) 1010b = V(LCD) = 2.62 × V(REF) 1011b = V(LCD) = 2.67 × V(REF) 1100b = V(LCD) = 2.72 × V(REF) 1101b = V(LCD) = 2.77 × V(REF) 1110b = V(LCD) = 2.82 × V(REF) 1111b = V(LCD) = 2.87 × V(REF) 8 Reserved R 0h Reserved. Always reads as 0. 898 LCD_B Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_B Registers www.ti.com Table 34-9. LCDBVCTL Register Description (continued) Bit Field Type Reset Description 7 LCDREXT RW 0h V2 to V4 voltage on external Rx3 pins. This bit selects the external connections for voltages V2 to V4 with internal bias generation (LCDEXTBIAS = 0). The bit is don't care if external biasing is selected (LCDEXTBIAS = 1). Settings for this bit should be changed only while LCDON = 0. 0b = Internally generated V2 to V4 are not switched to pins (LCDEXTBIAS = 0). 1b = Internally generated V2 to V4 are switched to pins (LCDEXTBIAS = 0). 6 R03EXT RW 0h V5 voltage select. This bit selects the external connection for the lowest LCD voltage. R03EXT is ignored if there is no R03 pin available. Settings for this bit should be changed only while LCDON = 0. 0b = V5 is V(SS) 1b = V5 is sourced from the R03 pin 5 LCDEXTBIAS RW 0h V2 to V4 voltage select. This bit selects the generation for voltages V2 to V4. Settings for this bit should be changed only while LCDON = 0. 0b = V2 to V4 are generated internally. 1b = V2 to V4 are sourced externally and the internal bias generator is switched off. 4 VLCDEXT RW 0h V(LCD) source select Settings for this bit should be changed only while LCDON = 0. 0b = V(LCD) is generated internally. 1b = V(LCD) is sourced externally. 3 LCDCPEN RW 0h Charge pump enable 0b = Charge pump disabled 1b = Charge pump enabled when V(LCD) is generated internally (VLCDEXT = 0) and VLCDx > 0 or VLCDREFx > 0. 2-1 VLCDREFx RW 0h Charge pump reference select If LCDEXTBIAS = 1 or LCDREXT = 1 settings 01, 10 and 11 are not supported. Internal reference voltage used instead. Settings for this bit should be changed only while LCDON = 0. 00b = Internal reference voltage 01b = External reference voltage 10b = Internal reference voltage switched to external pin LCDREF/R13. 11b = Reserved. Defaults to external reference voltage. 0 LCD2B RW 0h Bias select. LCD2B is ignored when LCDMx = 00. 0b = 1/3 bias 1b = 1/2 bias SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_B Controller Copyright © 2008–2015, Texas Instruments Incorporated 899 LCD_B Registers www.ti.com 34.3.6 LCDBPCTL0 Register LCD_B Port Control Register 0 Figure 34-17. LCDBPCTL0 Register 15 14 13 12 11 10 9 8 LCDS15 LCDS14 LCDS13 LCDS12 LCDS11 LCDS10 LCDS9 LCDS8 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 7 6 5 4 3 2 1 0 LCDS7 LCDS6 LCDS5 LCDS4 LCDS3 LCDS2 LCDS1 LCDS0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Table 34-10. LCDBPCTL0 Register Description Bit Field Type Reset Description 15-0 LCDSx RW 0h LCD segment line x enable This bit affects only pins with multiplexed functions. Dedicated LCD pins are always LCD function. 0b = Multiplexed pins are port functions. 1b = Pins are LCD functions. 34.3.7 LCDBPCTL1 Register LCD_B Port Control Register 1 Figure 34-18. LCDBPCTL1 Register 15 14 13 12 11 10 9 8 LCDS31 LCDS30 LCDS29 LCDS28 LCDS27 LCDS26 LCDS25 LCDS24 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 7 6 5 4 3 2 1 0 LCDS23 LCDS22 LCDS21 LCDS20 LCDS19 LCDS18 LCDS17 LCDS16 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Table 34-11. LCDBPCTL1 Register Description Bit Field Type Reset Description 15-0 LCDSx RW 0h LCD segment line x enable LCDS27 to LCDS31 are reserved on devices supporting a maximum of 96 segments. This bit affects only pins with multiplexed functions. Dedicated LCD pins are always LCD function. 0b = Multiplexed pins are port functions. 1b = Pins are LCD functions. 900 LCD_B Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_B Registers www.ti.com 34.3.8 LCDBPCTL2 Register LCD_B Port Control Register 2 (≥ 128 Segments) Figure 34-19. LCDBPCTL2 Register 15 14 13 12 11 10 9 8 LCDS47 LCDS46 LCDS45 LCDS44 LCDS43 LCDS42 LCDS41 LCDS40 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 7 6 5 4 3 2 1 0 LCDS39 LCDS38 LCDS37 LCDS36 LCDS35 LCDS34 LCDS33 LCDS32 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Table 34-12. LCDBPCTL2 Register Description Bit Field Type Reset Description 15-0 LCDSx RW 0h LCD segment line x enable LCDS35 to LCDS47 are reserved on devices supporting a maximum of 128 segments. LCDS43 to LCDS47 are reserved on devices supporting a maximum of 160 segments. This bit affects only pins with multiplexed functions. Dedicated LCD pins are always LCD function. 0b = Multiplexed pins are port functions. 1b = Pins are LCD functions. 34.3.9 LCDBPCTL3 Register LCD_B Port Control Register 2 (192 Segments) Figure 34-20. LCDBPCTL3 Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 r0 r0 r0 7 6 5 4 3 Reserved Reserved r0 r0 r0 r0 r0 2 1 0 LCDS50 LCDS49 LCDS48 rw-0 rw-0 rw-0 Table 34-13. LCDBPCTL3 Register Description Bit Field Type Reset Description 15-3 Reserved R 0h Reserved. Always reads as 0. 2-0 LCDSx RW 0h LCD segment line x enable This bit affects only pins with multiplexed functions. Dedicated LCD pins are always LCD function. NOTE: Settings for LCDSx should be changed only while LCDON = 0. 0b = Multiplexed pins are port functions. 1b = Pins are LCD functions. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_B Controller Copyright © 2008–2015, Texas Instruments Incorporated 901 LCD_B Registers www.ti.com 34.3.10 LCDBCPCTL Register LCD_B Charge Pump Control Register Figure 34-21. LCDBCPCTL Register 15 14 13 12 r0 r0 r0 r0 11 10 9 8 r0 r0 r0 r0 Reserved 7 6 5 4 3 2 1 0 LCDCPDIS7 LCDCPDIS6 LCDCPDIS5 LCDCPDIS4 LCDCPDIS3 LCDCPDIS2 LCDCPDIS1 LCDCPDIS0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Table 34-14. LCDBCPCTL Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved. Always reads as 0. 7 LCDCPDIS7 RW 0h Reserved 6 LCDCPDIS6 RW 0h Reserved 5 LCDCPDIS5 RW 0h Reserved 4 LCDCPDIS4 RW 0h Reserved 3 LCDCPDIS3 RW 0h Reserved 2 LCDCPDIS2 RW 0h LCD charge pump disable during ADC12 conversion 0b = LCD charge pump not automatically disabled during conversion. 1b = LCD charge pump automatically disabled during conversion. 1 LCDCPDIS1 RW 0h Reserved 0 LCDCPDIS0 RW 0h Reserved 902 LCD_B Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_B Registers www.ti.com 34.3.11 LCDBIV Register LCD_B Interrupt Vector Register Figure 34-22. LCDBIV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r0 r0 r0 r0 LCDBIVx LCDBIVx r0 r0 r0 r0 Table 34-15. LCDBIV Register Description Bit Field Type Reset Description 15-0 LCDBIVx R 0h LCD_B interrupt vector value 00h = No interrupt pending 02h = Interrupt Source: No capacitor connected; Interrupt Flag: LCDNOCAPIFG; Interrupt Priority: Highest 04h = Interrupt Source: Blink, segments off; Interrupt Flag: LCDBLKOFFIFG 06h = Interrupt Source: Blink, segments on; Interrupt Flag: LCDBLKONIFG 08h = Interrupt Source: Frame interrupt; Interrupt Flag: LCDFRMIFG; Interrupt Priority: Lowest SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_B Controller Copyright © 2008–2015, Texas Instruments Incorporated 903 Chapter 35 SLAU208O – June 2008 – Revised May 2015 LCD_C Controller The LCD_C controller drives static and 2-mux to 8-mux LCDs. This chapter describes the LCD_C controller. The differences between LCD_B and LCD_C are listed in Table 35-1. Topic 35.1 35.2 35.3 904 ........................................................................................................................... Page LCD_C Introduction .......................................................................................... 905 LCD_C Operation.............................................................................................. 907 LCD_C Registers .............................................................................................. 923 LCD_C Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_C Introduction www.ti.com 35.1 LCD_C Introduction The LCD_C controller directly drives LCD displays by automatically creating the ac segment and common voltage signals. The LCD_C controller can support static and 2-mux to 8-mux LCD glasses. The LCD_C controller features are: • Display memory • Automatic signal generation • Configurable frame frequency • Blinking of individual segments with separate blinking memory for static, and 2- to 4-mux LCDs • Blinking of complete display for 5- to 8-mux LCDs • Regulated charge pump up to 3.44 V (typical) • Contrast control by software • Support for the following types of LCDs – Static – 2-mux, 1/2 bias or 1/3 bias – 3-mux, 1/2 bias or 1/3 bias – 4-mux, 1/2 bias or 1/3 bias – 5-mux, 1/3 bias – 6-mux, 1/3 bias – 7-mux, 1/3 bias – 8-mux, 1/3 bias The differences between LCD_B and LCD_C are listed in Table 35-1. Table 35-1. Differences Between LCD_B and LCD_C LCD_B LCD_C Supported types of LCDs Feature Static, 2-, 3-, 4-mux Static, 2-, 3-, 4-, 5-, 6-, 7, 8-mux Maximum VLCDx settings 001111b 001111b Maximum LCD voltage (VLCD,typ) Supported biasing schemes for 5-mux to 8-mux 3.44 V 3.44 V 5- to 8-mux not supported 1/3 biasing The LCD controller block diagram is shown in Figure 35-1. NOTE: Maximum LCD Segment Control The maximum number of segment lines and memory registers available differs with device. See the device-specific data sheet for available segment pins and the maximum number of segments supported. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_C Controller Copyright © 2008–2015, Texas Instruments Incorporated 905 LCD_C Introduction www.ti.com LCDCLRM LCDCLRBM Blinking Memory Registers LCDBMx (only static, 2- to 4-mux) LCDSx LCDSON LCDLP LCD Memory Registers LCDMx Segment Output Control SEG1 Mux S1 SEG0 Mux S0 COM7 COM6 LCDBLKMODx LCDDISP COM5 Blinking and Display Control Blinking Frequency Divider Common Output Control COM4 COM3 BLKCLK COM2 COM1 COM0 LCDBLKPREx LCDBLKDIVx LCDSSEL ACLK 0 VLOCLK 1 LCD Frequency Divider VA VB VC VD LCDON LCDPREx LCDDIVx fLCD V1 Analog Voltage Multiplexer Timing Generator VLCD V2 V3 V4 V5 LCDMXx OSCOFF (from SR) LCD LCDMXx REXT VLCDREFx R03EXT VLCDx V1 4 V2 VLCD Regulated Charge Pump/ Contrast Control V3 LCD Bias Generator V4 V5 LCDCPEN LCDCAP/R33 R23 LCDREF/R13 R03 LCD LCD2B EXTBIAS Figure 35-1. LCD Controller Block Diagram 906 LCD_C Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_C Operation www.ti.com 35.2 LCD_C Operation The LCD controller is configured with user software. The setup and operation of the LCD controller is discussed in the following sections. 35.2.1 LCD Memory The LCD memory organization differs slightly depending on the mode. Each memory bit corresponds to one LCD segment or is not used, depending on the mode. To turn on an LCD segment, its corresponding memory bit is set. The memory can also be accessed word-wise using the even addresses starting at LCDM1, LCDM3, ... Setting the bit LCDCLRM clears all LCD memory registers at the next frame boundary. It is reset automatically after the registers are cleared. 35.2.1.1 Static and 2-Mux to 4-Mux Mode For static and 2-mux to 4-mux modes, one byte of the LCD memory contains the information for two segment lines. An example LCD memory map for these modes with 160 segments is shown in Figure 352. Associated Common Pins Register 3 2 1 0 3 2 1 0 Associated Segment Pins n LCDM20 7 -- -- -- -- -- -- -- 0 -- 38 39, 38 LCDM19 -- -- -- -- -- -- -- -- 36 37, 36 LCDM18 -- -- -- -- -- -- -- -- 34 35, 34 LCDM17 -- -- -- -- -- -- -- -- 32 33, 32 LCDM16 -- -- -- -- -- -- -- -- 30 31, 30 LCDM15 -- -- -- -- -- -- -- -- 28 29, 28 LCDM14 -- -- -- -- -- -- -- -- 26 27, 26 LCDM13 -- -- -- -- -- -- -- -- 24 25, 24 LCDM12 -- -- -- -- -- -- -- -- 22 23, 22 LCDM11 -- -- -- -- -- -- -- -- 20 21, 20 LCDM10 -- -- -- -- -- -- -- -- 18 19, 18 LCDM9 -- -- -- -- -- -- -- -- 16 17, 16 LCDM8 -- -- -- -- -- -- -- -- 14 15, 14 LCDM7 -- -- -- -- -- -- -- -- 12 13, 12 LCDM6 -- -- -- -- -- -- -- -- 10 1, 10 LCDM5 -- -- -- -- -- -- -- -- 8 9, 8 LCDM4 -- -- -- -- -- -- -- -- 6 7, 6 LCDM3 -- -- -- -- -- -- -- -- 4 5, 4 LCDM2 -- -- -- -- -- -- -- -- 2 3, 2 LCDM1 -- -- -- -- -- -- -- -- 0 1, 0 Sn+1 Sn Figure 35-2. LCD Memory for Static and 2-Mux to 4-Mux Mode - Example for 160 Segments SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_C Controller Copyright © 2008–2015, Texas Instruments Incorporated 907 LCD_C Operation www.ti.com 35.2.1.2 5-Mux to 8-Mux Mode For 5-mux to 8-mux modes, one byte of the LCD memory contains the information for one segment line. An example LCD memory map for these modes with 160 segments is shown in Figure 35-3 Associated Common Pins 7 6 5 4 3 2 1 0 Associated Segment Pins Register LCDM20 7 -- -- -- -- -- -- -- 0 -- LCDM19 -- -- -- -- -- -- -- LCDM18 -- -- -- -- -- -- LCDM17 -- -- -- -- -- -- n 19 19 -- 18 18 -- -- 17 17 -- -- 16 16 LCDM16 -- -- -- -- -- -- -- -- 15 15 LCDM15 -- -- -- -- -- -- -- -- 14 14 LCDM14 -- -- -- -- -- -- -- -- 13 13 LCDM13 -- -- -- -- -- -- -- -- 12 12 LCDM12 -- -- -- -- -- -- -- -- 11 11 LCDM11 -- -- -- -- -- -- -- -- 10 10 LCDM10 -- -- -- -- -- -- -- -- 9 9 LCDM9 -- -- -- -- -- -- -- -- 8 8 LCDM8 -- -- -- -- -- -- -- -- 7 7 LCDM7 -- -- -- -- -- -- -- -- 6 6 LCDM6 -- -- -- -- -- -- -- -- 5 5 LCDM5 -- -- -- -- -- -- -- -- 4 4 3 3 LCDM4 -- -- -- -- -- -- -- -- LCDM3 -- -- -- -- -- -- -- -- 2 2 LCDM2 -- -- -- -- -- -- -- -- 1 1 LCDM1 -- -- -- -- -- -- -- -- 0 0 Sn Figure 35-3. LCD Memory for 5-Mux to 8-Mux Mode - Example for 160 Segments 35.2.2 LCD Timing Generation The LCD_C controller uses the fLCD signal from the integrated clock divider to generate the timing for common and segment lines. With the LCDSSEL bit, ACLK with a frequency between 30 kHz and 40 kHz or VLOCLK can be selected as clock source into the divider. The fLCD frequency is selected with the LCDPREx and LCDDIVx bits. The resulting fLCD frequency is calculated by: fACLK/VLOCLK fLCD = LCDPRE (LCDDIVx + 1) × 2 The proper fLCD frequency depends on the LCD's requirement for framing frequency and the LCD multiplex rate. It is calculated by: fLCD = 2 × mux × fFrame For example, to calculate fLCD for a 3-mux LCD with a frame frequency of 30 Hz to 100 Hz: fFrame (from LCD data sheet) = 30 Hz to 100 Hz fLCD = 2 × 3 × fFrame fLCD(min) = 180 Hz fLCD(max) = 600 Hz With fACLK/VLOCLK = 32768 Hz, LCDPREx = 011, and LCDDIVx = 10101: fLCD = 32768 Hz / ((21+1) × 23) = 32768 Hz / 176 = 186 Hz 908 LCD_C Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_C Operation www.ti.com With LCDPREx = 001 and LCDDIVx = 11011: fLCD = 32768 Hz / ((27+1) × 21) = 32768 Hz / 56 = 585 Hz The lowest frequency has the lowest current consumption. The highest frequency has the least flicker. 35.2.3 Blanking the LCD The LCD controller allows blanking the complete LCD. The LCDSON bit is combined with a logical AND with each segment's memory bit. When LCDSON = 1, each segment is on or off according to its bit value. When LCDSON = 0, each LCD segment is off. 35.2.4 LCD Blinking The LCD controller also supports blinking. In static and 2-mux to 4-mux mode, the blinking mode LCDBLKMODx = 01 allows blinking of individual segments; with LCDBLKMODx = 10 all segments are blinking; and with LCDBLKMODx = 00 blinking is disabled. In 5-mux mode and above, only blinking mode LCDBLKMODx = 10 that allows blinking of all segments is available; if another mode is selected, blinking is disabled. 35.2.4.1 Blinking Memory In static and 2-mux to 4-mux mode, a separate blinking memory is implemented to select the blinking segments. To enable individual segments for blinking, the corresponding bit in the blinking memory LCDBMx registers must be set. The memory uses the same structure as the LCD memory shown in Figure 35-2. Each memory bit corresponds to one LCD segment or is not used, depending on the multiplexing mode LCDMXx. To enable blinking for a LCD segment, its corresponding memory bit is set. The blinking memory can also be accessed word-wise using the even addresses starting at LCDBM1, LCDBM3, ... Setting the bit LCDCLRBM clears all blinking memory registers at the next frame boundary. It is automatically reset after the registers are cleared. 35.2.4.2 Blinking Frequency The blinking frequency fBLINK is selected with the LCDBLKPREx and LCDBLKDIVx bits. The same clock is used as selected for the LCD frequency fLCD. The resulting fBLINK frequency is calculated by: fACLK/VLO fBlink = 9+LCDBLKPREx (LCDBLKDIVx + 1) × 2 The divider generating the blinking frequency fBLINK is reset when LCDBLKMODx = 00. After a blinking mode LCDBLKMODx = 01 or 10 is selected, the enabled segments or all segments go blank at the next frame boundary and stay off for half of a BLKCLK period. Then they go active at the next frame boundary and stay on for another half BLKCLK period before they go blank again at a frame boundary. NOTE: Blinking Frequency Restrictions The blinking frequency must be smaller than the frame frequency fFrame. The blinking frequency should only be changed when LCDBLKMODx = 00. 35.2.4.3 Dual Display Memory In static and 2-mux to 4-mux mode, the blinking memory can also be used as a secondary display memory when no blinking mode LCDBLKMODx = 01 or 10 is selected. The memory to be displayed can be selected either manually using the LCDDISP bit or automatically with LCDBLKMODx = 11. With LCDDISP = 0, the LCD memory is selected, and with LCDDISP = 1 the blinking memory is selected as display memory. Switching between the memories is synchronized to the frame boundaries. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_C Controller Copyright © 2008–2015, Texas Instruments Incorporated 909 LCD_C Operation www.ti.com With LCDBLKMODx = 11 the LCD controller switches automatically between the memories using the divider to generate the blinking frequency. After LCDBLKMODx = 11 is selected, the memory to be displayed for the first half a BLKCLK period is the LCD memory. In the second half, the blinking memory is used as display memory. Switching between the memories is synchronized to the frame boundaries. 35.2.5 LCD Voltage And Bias Generation The LCD_C module allows selectable sources for the peak output waveform voltage, V1, as well as the fractional LCD biasing voltages V2 to V5. VLCD may be sourced from VCC, an internal charge pump, or externally. All internal voltage generation is disabled if the selected clock source (ACLK or VLOCLK) is turned off (OSCOFF = 1) or the LCD_C module is disabled (LCDON = 0). 35.2.5.1 LCD Voltage Selection VLCD is sourced from VCC when VLCDEXT = 0, VLCDx = 0, and VREFx = 0. VLCD is sourced from the internal charge pump when VLCDEXT = 0, VLCDCPEN = 1, and VLCDx > 0. The charge pump is always sourced from DVCC. The VLCDx bits provide a software selectable LCD voltage from 2.6 V to 3.44 V (typical) independent of DVCC. See the device-specific data sheet for specifications. When the internal charge pump is used, a 4.7-µF or larger capacitor must be connected between the LCDCAP pin and ground. If no capacitor is connected and the charge pump is enabled, the LCDNOCAPIFG interrupt flag is set, and the charge pump is disabled to prevent damage to the device. The charge pump may be temporarily disabled by setting LCDCPEN = 0 with VLCDx > 0 to reduce system noise. It can be automatically disabled during certain periods by setting the corresponding bits in the LCDCCPCTL register. In this case, the voltage present at the external capacitor is used for the LCD voltages until the charge pump is re-enabled. NOTE: Capacitor Required For Internal Charge Pump A 4.7-µF or larger capacitor must be connected from the LCDCAP pin to ground when the internal charge pump is enabled. If no capacitor is connected, the LCDNOCAPIFG interrupt flag is set and the charge pump is disabled. The internal charge pump may use an external reference voltage when VLCDREFx = 01 (and LCDREXT = 0 and LCDEXTBIAS = 0). In this case, the charge pump voltage is set to a multiply of the external reference voltage according to the VLCDx bits setting. When VLCDEXT = 1, VLCD is sourced externally from the LCDCAP, pin and the internal charge pump is disabled. 910 LCD_C Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_C Operation www.ti.com 35.2.5.2 LCD Bias Generation The fractional LCD biasing voltages, V2 to V5 can be generated internally or externally, independent of the source for VLCD. The bias generation block diagram for LCD_C static and 2-mux to 8-mux modes is shown in Figure 35-4. DVCC Charge Pump VLCDx > 0 VLCDREFx > 0 AVCC 0 VLCD Internal VLCD 1 LCDREXT LCDON VLCDEXT 0 LCDCAP/R33 V1 (VLCD) 1 LCDREXT 0 LCD LCD2B EXTBIAS R V4 int V2 (2/3 VLCD) R23 1 R R V3 int V3 (1/2 VLCD) LCDREF/R13 1 V2 int R V4 (1/3 VLCD) R 1 0 R03 V5 1 Rx Rx Rx R03EXT Static 1/2 Bias 1/3 Bias Optional external resistors Rx = Optional contrast control Figure 35-4. Bias Generation The internally generated bias voltages V2 to V4 are switched to external pins with LCDREXT = 1. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_C Controller Copyright © 2008–2015, Texas Instruments Incorporated 911 LCD_C Operation www.ti.com To source the bias voltages V2 to V4 externally, LCDEXTBIAS is set. This also disables the internal bias generation. Typically, an equally weighted resistor divider is used with resistors ranging from a few kΩ to 1 MΩ, depending on the size of the display. When using an external resistor divider, the VLCD voltage may be sourced from the internal charge pump when VLCDEXT = 0 taking the maximum charge pump load current into account. V5 can also be sourced externally when R03EXT = 1. In static mode and all mux modes using 1/2 biasing or 1/3 biasing, when R03EXT = 1 V5 can control the contrast of the connected display by changing the voltage at the low end of the external resistor divider Rx as shown in the left part of Figure 35-4. When using an external resistor divider, R33 may serve as a switched VLCD output when VLCDEXT = 0. This allows the power to the resistor ladder to be turned off, which eliminates current consumption when the LCD is not used. When VLCDEXT = 1, R33 serves as a VLCD input. The bias generator supports 1/2 biasing when LCD2B = 1 and 1/3 biasing when LCD2B = 0. In static mode, the internal divider is disabled. Table 35-2. Bias Voltages and external Pins Mode Static 2-mux, 3-mux, 4-mux 2-mux, 3-mux, 4-mux 5-mux to 8-mux 912 Bias Config Static 1/2 1/3 1/3 LCD2B X 1 0 0 Voltage Level Pin Condition V1 ("1") R33 if LCDREXT = 1 or LCDEXTBIAS = 1 V5 ("0") R03 if R03EXT = 1 V1 ("1") R33 if LCDREXT = 1 or LCDEXTBIAS = 1 V3 ("1/2") R13 if LCDREXT = 1 or LCDEXTBIAS = 1 V5 ("0") R03 if R03EXT = 1 V1 ("1") R33 if LCDREXT = 1 or LCDEXTBIAS = 1 V2 ("2/3") R23 if LCDREXT = 1 or LCDEXTBIAS = 1 V4 ("1/3") R13 if LCDREXT = 1 or LCDEXTBIAS = 1 V5 ("0") R03 if R03EXT = 1 V1 ("1") R33 if LCDREXT = 1 or LCDEXTBIAS = 1 V2 ("2/3") R23 if LCDREXT = 1 or LCDEXTBIAS = 1 V4 ("1/3") R13 if LCDREXT = 1 or LCDEXTBIAS = 1 V5 ("0") R03 if R03EXT = 1 LCD_C Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_C Operation www.ti.com 35.2.5.3 LCD Contrast Control The peak voltage of the output waveforms together with the selected mode and biasing determine the contrast and the contrast ratio of the LCD. The LCD contrast can be controlled in software by adjusting the LCD voltage generated by the integrated charge pump using the VLCDx settings. The contrast ratio depends on the used LCD display and the selected biasing scheme. Table 35-3 shows the biasing configurations that apply to the different modes together with the RMS voltages for the segments turned on (VRMS,ON) and turned off (VRMS,OFF) as functions of VLCD. It also shows the resulting contrast ratios between the on and off states. Table 35-3. LCD Voltage and Biasing Characteristics LCDMx LCD2B COM Lines Static Static 0000 X 1 V1, V5 0 1 1/0 2-mux 1/2 (1) 0001 1 2 V1, V3, V5 0.354 0.791 2.236 1/3 0001 0 2 V1, V2, V4, V5 0.333 0.745 2.236 1/2 0010 1 3 V1, V3, V5 0.408 0.707 1.732 0010 0 3 V1, V2, V4, V5 0.333 0.638 1.915 0011 1 4 V1, V3, V5 0.433 0.661 1.528 3-mux 1/3 4-mux (1) Contrast Ratio VRMS,ON/ VRMS,OFF Bias Config Mode (1) 1/2 Voltage Levels VRMS,OFF/ VLCD VRMS,ON/ VLCD 1/3 (1) 0011 0 4 V1, V2, V4, V5 0.333 0.577 1.732 5-mux 1/3 (1) 0100 0 5 V1, V2, V4, V5 0.333 0.537 1.612 6-mux 1/3 (1) 0101 0 6 V1, V2, V4, V5 0.333 0.509 1.528 7-mux 1/3 (1) 0110 0 7 V1, V2, V4, V5 0.333 0.488 1.464 8-mux (1) 0111 0 8 V1, V2, V4, V5 0.333 0.471 1.414 1/3 Recommended setting to achieve best contrast A typical approach to determine the required VLCD is by equating VRMS,OFF with a LCD threshold voltage provided by the LCD manufacturer, for example when the LCD exhibits approximately 10% contrast (Vth,10%): VRMS,OFF = Vth,10%. Using the values for VRMS,OFF/VLCD provided in the table results in VLCD = Vth,10%/(VRMS,OFF/VLCD). In the static mode, a suitable choice is VLCD greater than or equal to three times Vth,10%. In 3-mux and 4-mux mode, a 1/3 biasing is typically used, but a 1/2 biasing scheme is also possible. The 1/2 bias reduces the contrast ratio, but the advantage is a reduction of the required full-scale LCD voltage VLCD. 35.2.6 LCD Outputs Some LCD segment, common, and Rxx functions are multiplexed with digital I/O functions. These pins can function either as digital I/O or as LCD functions. The LCD segment functions, when multiplexed with digital I/O, are selected using the LCDSx bits in the LCDCPCTLx registers. The LCDSx bits select the LCD function for each segment line. When LCDSx = 0, a multiplexed pin is set to digital I/O function. When LCDSx = 1, a multiplexed pin is selected as LCD function. The pin functions for COMx and Rxx, when multiplexed with digital I/O, are selected as described in the port schematic section of the device-specific data sheet. An some devices the COM1 to COM7 pins are shared with segment lines, refer to the device-specific data sheet. If these pins are required as COM pins due to the selected LCD multiplexing mode, the COM functionality takes precedence over the segment function that can be selected for those pins with the LCDSx bits as for all other segment pins. See the port schematic section of the device-specific data sheet for details on controlling the pin functionality. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_C Controller Copyright © 2008–2015, Texas Instruments Incorporated 913 LCD_C Operation NOTE: www.ti.com LCDSx Bits Do Not Affect Dedicated LCD Segment Pins The LCDSx bits only affect pins with multiplexed LCD segment functions and digital I/O functions. Dedicated LCD segment pins are not affected by the LCDSx bits. 35.2.7 LCD Interrupts The LCD_C module has four interrupt sources available, each with independent enables and flags. The four interrupt flags, namely LCDFRMIFG, LCDBLKOFFIFG, LCDBLKONIFG, and LCDNOCAPIFG, are prioritized and combined to source a single interrupt vector. The interrupt vector register LCDCIV is used to determine which flag requested an interrupt. The highest priority enabled interrupt generates a number in the LCDCIV register (see register description). This number can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled LCD interrupts do not affect the LCDCIV value. Any read access of the LCDCIV register automatically resets the highest pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. A write access to the LCDCIV register automatically resets all pending interrupt flags. In addition, all flags can be cleared via software. The LCDNOCAPIFG indicates that no capacitor is present at the LCDCAP pin when the charge pump is enabled. Setting the LCDNOCAPIE bit enables the interrupt. The LCDBLKONIFG is set at the BLKCLK edge synchronized to the frame boundaries that turns on the segments when blinking is enabled with LCDBLKMODx = 01 or 10. It is also set at the BLKCLK edge synchronized to the frame boundaries that selects the blinking memory as display memory when LCDBLKMODx = 11. It is automatically cleared when a LCD or blinking memory register is written. Setting the LCDBLKONIE bit enables the interrupt. The LCDBLKOFFIFG is set at the BLKCLK edge synchronized to the frame boundaries that blanks the segments when blinking is enabled with LCDBLKMODx = 01 or 10. It is also set at the BLKCLK edge synchronized to the frame boundaries that selects the LCD memory as display memory when LCDBLKMODx = 11. It is automatically cleared when a LCD or blinking memory register is written. Setting the LCDBLKOFFIE bit enables the interrupt. The LCDFRMIFG is set at a frame boundary. It is automatically cleared when a LCD or blinking memory register is written. Setting the LCDFRMIFGIE bit enables the interrupt. 914 LCD_C Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_C Operation www.ti.com 35.2.7.1 LCDCIV Software Example The following software example shows the recommended use of LCDCIV and the handling overhead. The LCDCIV value is added to the PC to automatically jump to the appropriate routine. The numbers at the right margin show the necessary CPU cycles for each instruction. The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not the task handling itself. ; Interrupt handler for LCD_B interrupt flags. LCDB_HND ; Interrupt latency ADD &LCDBIV,PC ; Add offset to Jump table RETI ; Vector 0: No interrupt JMP LCDNOCAP_HND ; Vector 2: LCDNOCAPIFG JMP LCDBLKON_HND ; Vector 4: LCDBLKONIFG JMP LCDBLKOFF_HND ; Vector 6: LCDBLKOFFIFG LCDFRM_HND ; Vector 8: LCDFRMIFG ... ; Task starts here RETI LCDNOCAP_HND ; Vector 2: LCDNOCAPIFG ... ; Task starts here RETI LCDBLKON_HND ; Vector 4: LCDBLKONIFG ... ; Task starts here RETI ; Back to main program LCDBLKOFF_HND ; Vector 6: LCDBLKOFFIFG ... ; Task starts here RETI ; Back to main program 6 3 5 2 2 2 5 5 5 5 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_C Controller Copyright © 2008–2015, Texas Instruments Incorporated 915 LCD_C Operation www.ti.com 35.2.8 Static Mode In static mode, each MSP430 segment pin drives one LCD segment, and one common line (COM0) is used. Figure 35-5 shows some example static waveforms. S0 on V1 S1 off COM0 COM0 V5 fframe V1 S0 V5 V1 S1 V5 V1 COM0-S0 Segment is on. 0V −V1 V1 COM0-S1 Segment is off. 0V −V1 Figure 35-5. Example Static Waveforms 916 LCD_C Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_C Operation www.ti.com 35.2.9 2-Mux Mode In 2-mux mode, each MSP430 segment pin drives two LCD segments, and two common lines (COM0 and COM1) are used. Figure 35-6 shows some example 2-mux 1/2-bias waveforms. S0 V1 S1 on COM0 COM0 V3 V5 off fframe COM1 V1 COM1 V3 V5 S0 V1 V3 V5 V1 S1 V3 V5 V1 COM0-S0 Segment is on. 0V −V1 V1 COM1-S1 Segment is off. 0V −V1 Figure 35-6. Example 2-Mux Waveforms SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_C Controller Copyright © 2008–2015, Texas Instruments Incorporated 917 LCD_C Operation www.ti.com 35.2.10 3-Mux Mode In 3-mux mode, each MSP430 segment pin drives three LCD segments, and three common lines (COM0, COM1, and COM2) are used. Figure 35-7 shows some example 3-mux 1/3-bias waveforms. S0 S1 on COM0 off fframe COM1 COM2 V1 V2 V4 V5 COM0 COM1 V1 V2 V4 V5 S0 V1 V2 V4 V5 S1 V1 V2 V4 V5 V1 COM0-S0 Segment is on. 0V −V1 V1 COM1-S1 Segment is off. 0V −V1 Figure 35-7. Example 3-Mux Waveforms 918 LCD_C Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_C Operation www.ti.com 35.2.11 4-Mux Mode In 4-mux mode, each MSP430 segment pin drives four LCD segments and four common lines (COM0, COM1, COM2, and COM3) are used. Figure 35-8 shows some example 4-mux 1/3-bias waveforms. S0 S1 on COM0 off fframe COM1 COM2 V1 V2 V4 V5 COM0 COM1 V1 V2 V4 V5 S0 V1 V2 V4 V5 S1 V1 V2 V4 V5 COM3 V1 COM0-S0 Segment is on. 0V −V1 V1 COM1-S1 Segment is off. 0V −V1 Figure 35-8. Example 4-Mux Waveforms SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_C Controller Copyright © 2008–2015, Texas Instruments Incorporated 919 LCD_C Operation www.ti.com 35.2.12 6-Mux Mode In 6-mux mode, each MSP430 segment pin drives six LCD segments, and six common lines (COM0, COM1, COM2, COM3, COM4, and COM5) are used. Figure 35-9 shows some example 6-mux 1/3-bias waveforms. S0 S1 on COM0 off fframe COM1 COM2 V1 V2 V4 V5 COM0 COM1 V1 V2 V4 V5 S0 V1 V2 V4 V5 S1 V1 V2 V4 V5 COM3 COM4 COM5 V1 COM0-S0 Segment is on. 0V −V1 V1 COM1-S1 Segment is off. 0V −V1 Figure 35-9. Example 6-Mux Waveforms 920 LCD_C Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_C Operation www.ti.com 35.2.13 8-Mux Mode In 8-mux mode, each MSP430 segment pin drives eight LCD segments, and eight common lines (COM0 through COM7) are used. Figure 35-10 shows some example 8-mux 1/3-bias waveforms. S0 S1 * on COM0 off * * * * * * V1 V2 V4 V5 fframe COM1 COM2 * COM0 COM1 V1 V2 V4 V5 S0 V1 V2 V4 V5 S1 V1 V2 V4 V5 COM3 COM4 COM5 COM6 COM7 V1 COM0-S0 Segment is on. 0V −V1 V1 COM1-S1 Segment is off. 0V −V1 Figure 35-10. Example 8-Mux, 1/3 Bias Waveforms (LCDLP = 0) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_C Controller Copyright © 2008–2015, Texas Instruments Incorporated 921 LCD_C Operation www.ti.com Figure 35-11 shows some example 8-mux 1/3-bias waveforms with LCDLP = 1. With LCDLP = 1, the voltage sequence compared to the non-low power waveform is reshuffled; that is, all of the timeslots marked with "*" in Figure 35-10 are grouped together. The same principle applies to all mux modes. S0 S1 * * * * * * * * on COM0 COM0 off fframe COM1 COM2 V1 V2 V4 V5 COM1 V1 V2 V4 V5 S0 V1 V2 V4 V5 S1 V1 V2 V4 V5 COM3 COM4 COM5 COM6 COM7 V1 COM0-S0 Segment is on. 0V −V1 V1 COM1-S1 Segment is off. 0V −V1 Figure 35-11. Example 8-Mux, 1/3 Bias Low-Power Waveforms (LCDLP = 1) 922 LCD_C Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_C Registers www.ti.com 35.3 LCD_C Registers The LCD_C registers are listed in Table 35-4 to Table 35-7. The LCD memory and blinking memory registers can also be accessed as word. The number of available memory registers on a given device depends on the number of available segment pins; see the device-specific data sheet. Table 35-4. LCD_C Control Registers Offset Acronym Register Name Type Reset Section 000h LCDCCTL0 LCD_C control 0 Read/write 0000h Section 35.3.1 002h LCDCCTL1 LCD_C control 1 Read/write 0000h Section 35.3.2 004h LCDCBLKCTL LCD_C blinking control Read/write 0000h Section 35.3.3 006h LCDCMEMCTL LCD_C memory control Read/write 0000h Section 35.3.4 008h LCDCVCTL LCD_C voltage control Read/write 0000h Section 35.3.5 00Ah LCDCPCTL0 LCD_C port control 0 Read/write 0000h Section 35.3.6 00Ch LCDCPCTL1 LCD_C port control 1 Read/write 0000h Section 35.3.7 00Eh LCDCPCTL2 LCD_C port control 2 (≥256 segments) Read/write 0000h Section 35.3.8 010h LCDCPCTL3 LCD_C port control 3 (384 segments) Read/write 0000h Section 35.3.9 012h LCDCCPCTL LCD_C charge pump control Read/write 0000h Section 35.3.10 Read/write 0000h Section 35.3.11 014h Reserved 016h Reserved 018h Reserved 01Ah Reserved 01Ch Reserved 01Eh LCDCIV LCD_C interrupt vector LCD_C Controller 923 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_C Registers www.ti.com Table 35-5. LCD_C Memory Registers for Static and 2-Mux to 4-Mux Modes (1) (2) Offset Acronym Register Name Type Reset 020h LCDM1 LCD memory 1 (S1/S0) Read/write Unchanged 021h LCDM2 LCD memory 2 (S3/S2) Read/write Unchanged 022h LCDM3 LCD memory 3 (S5/S4) Read/write Unchanged 023h LCDM4 LCD memory 4 (S7/S6) Read/write Unchanged 024h LCDM5 LCD memory 5 (S9/S8) Read/write Unchanged 025h LCDM6 LCD memory 6 (S11/S10) Read/write Unchanged 026h LCDM7 LCD memory 7 (S13/S12) Read/write Unchanged 027h LCDM8 LCD memory 8 (S15/S14) Read/write Unchanged 028h LCDM9 LCD memory 9 (S17/S16) Read/write Unchanged 029h LCDM10 LCD memory 10 (S19/S18) Read/write Unchanged 02Ah LCDM11 LCD memory 11 (S21/S20) Read/write Unchanged 02Bh LCDM12 LCD memory 12 (S23/S22) Read/write Unchanged 02Ch LCDM13 LCD memory 13 (S25/S24) Read/write Unchanged 02Dh LCDM14 LCD memory 14 (S27/S26) Read/write Unchanged 02Eh LCDM15 LCD memory 15 (S29/S28) Read/write Unchanged 02Fh LCDM16 LCD memory 16 (S31/S30) Read/write Unchanged 030h LCDM17 LCD memory 17 (S33/S32) Read/write Unchanged 031h LCDM18 LCD memory 18 (S35/S34) Read/write Unchanged 032h LCDM19 LCD memory 19 (S37/S36) Read/write Unchanged 033h LCDM20 LCD memory 20 (S39/S38) Read/write Unchanged 034h LCDM21 LCD memory 21 (S41/S40) Read/write Unchanged 035h LCDM22 LCD memory 22 (S43/S42) Read/write Unchanged 036h LCDM23 LCD memory 23 (S45/S44) Read/write Unchanged 037h LCDM24 LCD memory 24 (S47/S46) Read/write Unchanged 038h LCDM25 LCD memory 25 (S49/S48) Read/write Unchanged 039h LCDM26 LCD memory 26 (S51/S50) Read/write Unchanged 03Ah LCDM27 LCD memory 27 (S53/S52) Read/write Unchanged 03Bh LCDM28 LCD memory 28 (S54) Read/write Unchanged 03Ch Reserved 03Dh Reserved 03Eh Reserved 03Fh Reserved (1) (2) The LCD memory registers can also be accessed as word. The number of available memory registers on a given device depends on the number of available segment pins; see the device-specific data sheet. 924 LCD_C Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_C Registers www.ti.com Table 35-6. LCD Blinking Memory Registers for Static and 2-Mux to 4-Mux Modes (1) (2) Offset Acronym Register Name Type Reset 040h LCDBM1 LCD blinking memory 1 Read/write Unchanged 041h LCDBM2 LCD blinking memory 2 Read/write Unchanged 042h LCDBM3 LCD blinking memory 3 Read/write Unchanged 043h LCDBM4 LCD blinking memory 4 Read/write Unchanged 044h LCDBM5 LCD blinking memory 5 Read/write Unchanged 045h LCDBM6 LCD blinking memory 6 Read/write Unchanged 046h LCDBM7 LCD blinking memory 7 Read/write Unchanged 047h LCDBM8 LCD blinking memory 8 Read/write Unchanged 048h LCDBM9 LCD blinking memory 9 Read/write Unchanged 049h LCDBM10 LCD blinking memory 10 Read/write Unchanged 04Ah LCDBM11 LCD blinking memory 11 Read/write Unchanged 04Bh LCDBM12 LCD blinking memory 12 Read/write Unchanged 04Ch LCDBM13 LCD blinking memory 13 Read/write Unchanged 04Dh LCDBM14 LCD blinking memory 14 Read/write Unchanged 04Eh LCDBM15 LCD blinking memory 15 Read/write Unchanged 04Fh LCDBM16 LCD blinking memory 16 Read/write Unchanged 050h LCDBM17 LCD blinking memory 17 Read/write Unchanged 051h LCDBM18 LCD blinking memory 18 Read/write Unchanged 052h LCDBM19 LCD blinking memory 19 Read/write Unchanged 053h LCDBM20 LCD blinking memory 20 Read/write Unchanged 054h LCDBM21 LCD blinking memory 21 Read/write Unchanged 055h LCDBM22 LCD blinking memory 22 Read/write Unchanged 056h LCDBM23 LCD blinking memory 23 Read/write Unchanged 057h LCDBM24 LCD blinking memory 24 Read/write Unchanged 058h LCDBM25 LCD blinking memory 25 Read/write Unchanged 059h LCDBM26 LCD blinking memory 26 Read/write Unchanged 05Ah LCDBM27 LCD blinking memory 27 Read/write Unchanged 05Bh LCDBM28 LCD blinking memory 28 Read/write Unchanged 05Ch Reserved 05Dh Reserved 05Eh Reserved 05Fh Reserved (1) (2) The LCD blinking memory registers can also be accessed as word. The number of available memory registers on a given device depends on the number of available segment pins; see the device-specific data sheet. LCD_C Controller 925 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_C Registers www.ti.com Table 35-7. LCD Memory Registers for 5-Mux to 8-Mux (1) (2) Offset Acronym Register Name Type Reset 020h LCDM1 LCD memory 1 (S0) Read/write Unchanged 021h LCDM2 LCD memory 2 (S1) Read/write Unchanged 022h LCDM3 LCD memory 3 (S2) Read/write Unchanged 023h LCDM4 LCD memory 4 (S3) Read/write Unchanged 024h LCDM5 LCD memory 5 (S4) Read/write Unchanged 025h LCDM6 LCD memory 6 (S5) Read/write Unchanged 026h LCDM7 LCD memory 7 (S6) Read/write Unchanged 027h LCDM8 LCD memory 8 (S7) Read/write Unchanged 028h LCDM9 LCD memory 9 (S8) Read/write Unchanged 029h LCDM10 LCD memory 10 (S9) Read/write Unchanged 02Ah LCDM11 LCD memory 11 (S10) Read/write Unchanged 02Bh LCDM12 LCD memory 12 (S11) Read/write Unchanged 02Ch LCDM13 LCD memory 13 (S12) Read/write Unchanged 02Dh LCDM14 LCD memory 14 (S13) Read/write Unchanged 02Eh LCDM15 LCD memory 15 (S14) Read/write Unchanged 02Fh LCDM16 LCD memory 16 (S15) Read/write Unchanged 030h LCDM17 LCD memory 17 (S16) Read/write Unchanged 031h LCDM18 LCD memory 18 (S17) Read/write Unchanged 032h LCDM19 LCD memory 19 (S18) Read/write Unchanged 033h LCDM20 LCD memory 20 (S19) Read/write Unchanged 034h LCDM21 LCD memory 21 (S20) Read/write Unchanged 035h LCDM22 LCD memory 22 (S21) Read/write Unchanged 036h LCDM23 LCD memory 23 (S22) Read/write Unchanged 037h LCDM24 LCD memory 24 (S23) Read/write Unchanged 038h LCDM25 LCD memory 25 (S24) Read/write Unchanged 039h LCDM26 LCD memory 26 (S25) Read/write Unchanged 03Ah LCDM27 LCD memory 27 (S26) Read/write Unchanged 03Bh LCDM28 LCD memory 28 (S27) Read/write Unchanged 03Ch LCDM29 LCD memory 29 (S28) Read/write Unchanged 03Dh LCDM30 LCD memory 30 (S29) Read/write Unchanged 03Eh LCDM31 LCD memory 31 (S30) Read/write Unchanged 03Fh LCDM32 LCD memory 32 (S31) Read/write Unchanged 040h LCDM33 LCD memory 33 (S32) Read/write Unchanged 041h LCDM34 LCD memory 34 (S33) Read/write Unchanged 042h LCDM35 LCD memory 35 (S34) Read/write Unchanged 043h LCDM36 LCD memory 36 (S35) Read/write Unchanged 044h LCDM37 LCD memory 37 (S36) Read/write Unchanged 045h LCDM38 LCD memory 38 (S37) Read/write Unchanged 046h LCDM39 LCD memory 39 (S38) Read/write Unchanged 047h LCDM40 LCD memory 40 (S39) Read/write Unchanged 048h LCDM41 LCD memory 41 (S40) Read/write Unchanged 049h LCDM42 LCD memory 42 (S41) Read/write Unchanged 04Ah LCDM43 LCD memory 43 (S42) Read/write Unchanged 04Bh LCDM44 LCD memory 44 (S43) Read/write Unchanged 04Ch LCDM45 LCD memory 45 (S44) Read/write Unchanged (1) (2) 926 The LCD memory registers can also be accessed as word. The number of available memory registers on a given device depends on the number of available segment pins; see the device-specific data sheet. LCD_C Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_C Registers www.ti.com Table 35-7. LCD Memory Registers for 5-Mux to 8-Mux (1) (2) (continued) Offset Acronym Register Name Type Reset 04Dh LCDM46 LCD memory 46 (S45) Read/write Unchanged 04Eh LCDM47 LCD memory 47 (S46) Read/write Unchanged 04Fh LCDM48 LCD memory 48 (S47) Read/write Unchanged 050h LCDM49 LCD memory 49 (S48) Read/write Unchanged 051h LCDM50 LCD memory 50 (S49) Read/write Unchanged 052h LCDM51 LCD memory 51 (S50) Read/write Unchanged 053h LCDM52 LCD memory 52 (S51) Read/write Unchanged 054h Reserved 055h Reserved 056h Reserved 057h Reserved 058h Reserved 059h Reserved 05Ah Reserved 05Bh Reserved 05Ch Reserved 05Dh Reserved 05Eh Reserved 05Fh Reserved SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_C Controller Copyright © 2008–2015, Texas Instruments Incorporated 927 LCD_C Registers www.ti.com 35.3.1 LCDCCTL0 Register LCD_C Control Register 0 NOTE: Settings for LCDDIVx, LCDPREx, LCDSSEL, LCDLP and LCDMXx should be changed only while LCDON = 0. Figure 35-12. LCDCCTL0 Register 15 14 13 rw-0 rw-0 rw-0 5 12 11 10 rw-0 rw-0 rw-0 4 3 LCDDIVx 7 6 LCDSSEL Reserved rw-0 r0 8 LCDPREx LCDMXx rw-0 9 rw-0 rw-0 rw-0 rw-0 2 1 0 LCDSON LCDLP LCDON rw-0 rw-0 rw-0 Table 35-8. LCDCCTL0 Register Description Bit Field Type Reset Description 15-11 LCDDIVx RW 0h LCD frequency divider. Together with LCDPREx the LCD frequency f(LCD) is calculated as f(LCD) = f(ACLK/VLO) / ((LCDDIVx + 1) × 2^(LCDPREx)). 00000b = Divide by 1 00001b = Divide by 2 ⋮ 11110b = Divide by 31 11111b = Divide by 32 10-8 LCDPREx RW 0h LCD frequency pre-scaler. Together with LCDDIVx the LCD frequency f(LCD) is calculated as f(LCD) = f(ACLK/VLO) / ((LCDDIVx + 1) × 2^(LCDPREx)). 000b = Divide by 1 001b = Divide by 2 010b = Divide by 4 011b = Divide by 8 100b = Divide by 16 101b = Divide by 32 110b = Reserved (defaults to divide by 32) 111b = Reserved (defaults to divide by 32) 7 LCDSSEL RW 0h Clock source select for LCD and blinking frequency 0b = ACLK (30 kHz to 40 kHz) 1b = VLOCLK 6 Reserved R 0h Reserved 5-3 LCDMXx RW 0h LCD mux rate. These bits select the LCD mode. 000b = Static 001b = 2-mux 010b = 3-mux 011b = 4-mux 100b = 5-mux 101b = 6-mux 110b = 7-mux 111b = 8-mux 2 LCDSON RW 0h LCD segments on. This bit supports flashing LCD applications by turning off all segment lines, while leaving the LCD timing generator and R33 enabled. 0b = All LCD segments are off 1b = All LCD segments are enabled and on or off according to their corresponding memory location 1 LCDLP RW 0h LCD low-power waveform 0b = Standard LCD waveforms on segment and common lines selected 1b = Low-power LCD waveforms on segment and common lines selected 928 LCD_C Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_C Registers www.ti.com Table 35-8. LCDCCTL0 Register Description (continued) Bit Field Type Reset Description 0 LCDON RW 0h LCD on. This bit turns the LCD_C module on or off. 0b = LCD_C module off 1b = LCD_C module on SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_C Controller Copyright © 2008–2015, Texas Instruments Incorporated 929 LCD_C Registers www.ti.com 35.3.2 LCDCCTL1 Register LCD_C Control Register 1 Figure 35-13. LCDCCTL1 Register 15 14 r0 r0 7 6 13 12 r0 r0 5 4 Reserved Reserved r0 r0 11 10 9 8 LCDNOCAPIE LCDBLKONIE LCDBLKOFFIE LCDFRMIE rw-0 rw-0 rw-0 rw-0 2 1 3 LCDNOCAPIF G r0 r0 rw-0 LCDBLKONIFG LCDBLKOFFIF G rw-0 rw-0 0 LCDFRMIFG rw-0 Table 35-9. LCDCCTL1 Register Description Bit Field Type Reset Description 15-12 Reserved R 0h Reserved 11 LCDNOCAPIE RW 0h No capacitance connected interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 10 LCDBLKONIE RW 0h LCD blinking interrupt enable, segments switched on 0b = Interrupt disabled 1b = Interrupt enabled 9 LCDBLKOFFIE RW 0h LCD blinking interrupt enable, segments switched off 0b = Interrupt disabled 1b = Interrupt enabled 8 LCDFRMIE RW 0h LCD frame interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 7-4 Reserved R 0h Reserved 3 LCDNOCAPIFG RW 0h No capacitance connected interrupt flag. Set when charge pump is enabled but no capacitance is connected to LCDCAP pin. 0b = No interrupt pending 1b = Interrupt pending 2 LCDBLKONIFG RW 0h LCD blinking interrupt flag, segments switched on. Automatically cleared when data is written into a memory register. 0b = No interrupt pending 1b = Interrupt pending 1 LCDBLKOFFIFG RW 0h LCD blinking interrupt flag, segments switched off. Automatically cleared when data is written into a memory register. 0b = No interrupt pending 1b = Interrupt pending 0 LCDFRMIFG RW 0h LCD frame interrupt flag. Automatically cleared when data is written into a memory register. 0b = No interrupt pending 1b = Interrupt pending 930 LCD_C Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_C Registers www.ti.com 35.3.3 LCDCBLKCTL Register LCD_C Blink Control Register NOTE: Settings for LCDBLKDIVx and LCDBLKPREx should only be changed while LCDBLKMODx = 00. Figure 35-14. LCDCBLKCTL Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 3 2 1 Reserved r0 r0 r0 r0 6 5 4 7 LCDBLKDIVx rw-0 LCDBLKPREx rw-0 rw-0 rw-0 rw-0 0 LCDBLKMODx rw-0 rw-0 rw-0 Table 35-10. LCDCBLKCTL Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved 7-5 LCDBLKDIVx RW 0h Clock divider for blinking frequency. Together with LCDBLKPREx, the blinking frequency f(BLINK) is calculated as f(BLINK) = f(ACLK/VLO) / ((LCDBLKDIVx + 1) × 2^(9+LCDBLKPREx)). NOTE: Should only be changed while LCDBLKMODx = 00. 000b = Divide by 1 001b = Divide by 2 010b = Divide by 3 011b = Divide by 4 100b = Divide by 5 101b = Divide by 6 110b = Divide by 7 111b = Divide by 8 4-2 LCDBLKPREx RW 0h Clock pre-scaler for blinking frequency. Together with LCDBLKDIVx, the blinking frequency f(BLINK) is calculated as f(BLINK) = f(ACLK/VLO) / ((LCDBLKDIVx + 1) × 2^(9+LCDBLKPREx)). NOTE: Should only be changed while LCDBLKMODx = 00. 000b = Divide by 512 001b = Divide by 1024 010b = Divide by 2048 011b = Divide by 4096 100b = Divide by 8162 101b = Divide by 16384 110b = Divide by 32768 111b = Divide by 65536 1-0 LCDBLKMODx RW 0h Blinking mode 00b = Blinking disabled 01b = Blinking of individual segments as enabled in blinking memory register LCDBMx. In mux mode >5 blinking is disabled. 10b = Blinking of all segments 11b = Switching between display contents as stored in LCDMx and LCDBMx memory registers. In mux mode >5 blinking is disabled. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_C Controller Copyright © 2008–2015, Texas Instruments Incorporated 931 LCD_C Registers www.ti.com 35.3.4 LCDCMEMCTL Register LCD_C Memory Control Register Figure 35-15. LCDCMEMCTL Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 r0 r0 r0 7 6 5 4 3 Reserved Reserved r0 r0 r0 r0 r0 2 1 0 LCDCLRBM LCDCLRM LCDDISP rw-0 rw-0 rw-0 Table 35-11. LCDCMEMCTL Register Description Bit Field Type Reset Description 15-3 Reserved R 0h Reserved 2 LCDCLRBM RW 0h Clear LCD blinking memory Clears all blinking memory registers LCDBMx. The bit is automatically reset when the blinking memory is cleared. Setting this bit has in 5-mux mode and above has no effect. It's immediately reset again. 0b = Contents of blinking memory registers LCDBMx remain unchanged 1b = Clear content of all blinking memory registers LCDBMx 1 LCDCLRM RW 0h Clear LCD memory Clears all LCD memory registers LCDMx. The bit is automatically reset when the LCD memory is cleared. 0b = Contents of LCD memory registers LCDMx remain unchanged 1b = Clear content of all LCD memory registers LCDMx 0 LCDDISP RW 0h Select LCD memory registers for display The bit is cleared in LCDBLKMODx = 01 and LCDBLKMODx = 10 or if a mux mode ≥5 is selected and cannot be changed by software. When LCDBLKMODx = 11, this bit reflects the currently displayed memory but cannot be changed by software. When returning to LCDBLKMODx = 00 the bit is cleared. 0b = Display content of LCD memory registers LCDMx 1b = Display content of LCD blinking memory registers LCDBMx 932 LCD_C Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_C Registers www.ti.com 35.3.5 LCDCVCTL Register LCD_C Voltage Control Register NOTE: Settings for LCDREXT, R03EXT, LCDEXTBIAS, VLCDEXT, VLCDREFx, and LCD2B should be changed only while LCDON = 0. Figure 35-16. LCDCVCTL Register 15 14 13 12 11 10 9 rw-0 rw-0 rw-0 rw-0 rw-0 2 Reserved r0 VLCDx rw-0 7 6 5 4 3 LCDREXT R03EXT LCDEXTBIAS VLCDEXT LCDCPEN rw-0 rw-0 rw-0 rw-0 rw-0 8 Reserved 1 VLCDREFx rw-0 r0 0 LCD2B rw-0 rw-0 Table 35-12. LCDCVCTL Register Description Bit Field Type Reset Description 15-13 Reserved R 0h Reserved 12-9 VLCDx RW 0h Charge pump voltage select. LCDCPEN must be 1 for the charge pump to be enabled. VCC is used for V(LCD) when VLCDx = 0000 and VLCDREFx = 00 and VLCDEXT = 0. 0000b = Charge pump disabled 0001b = If VLCDREFx = 00 or 10: V(LCD) = 2.60 V; If VLCDREFx = 01 or 11: V(LCD) = 2.17 × V(REF) 0010b to 1110b = If VLCDREFx = 00 or 10: V(LCD) = 2.60 V + (VLCDx - 1) × 0.06 V; If VLCDREFx = 01 or 11: V(LCD) = 2.17 × V(REF) + (VLCDx - 1) × 0.05 × V(REF) 1111b = If VLCDREFx = 00 or 10: V(LCD) = 2.60 V + (15 - 1) × 0.06 V = 3.44 V; If VLCDREFx = 01 or 11: V(LCD) = 2.17 × V(REF) + (15 - 1) × 0.05 × V(REF) = 2.87 × V(REF) 8 Reserved R 0h Reserved 7 LCDREXT RW 0h V2 to V4 voltage on external Rx3 pins. This bit selects the external connections for voltages V2 to V4 with internal bias generation (LCDEXTBIAS = 0). The bit is don't care if external biasing is selected (LCDEXTBIAS = 1). NOTE: Should be changed only while LCDON = 0. 0b = Internally generated V2 to V4 are not switched to pins (LCDEXTBIAS = 0) 1b = Internally generated V2 to V4 are switched to pins (LCDEXTBIAS = 0) 6 R03EXT RW 0h V5 voltage select. This bit selects the external connection for the lowest LCD voltage. R03EXT is ignored if there is no R03 pin available. NOTE: Should be changed only while LCDON = 0. 0b = V5 is VSS 1b = V5 is sourced from the R03 pin 5 LCDEXTBIAS RW 0h V2 to V4 voltage select. This bit selects the generation for voltages V2 to V4. NOTE: Should be changed only while LCDON = 0. 0b = V2 to V4 are generated internally 1b = V2 to V4 are sourced externally and the internal bias generator is switched off 4 VLCDEXT RW 0h V(LCD) source select NOTE: Should be changed only while LCDON = 0. 0b = V(LCD) is generated internally 1b = V(LCD) is sourced externally 3 LCDCPEN RW 0h Charge pump enable 0b = Charge pump disabled 1b = Charge pump enabled when V(LCD) is generated internally (VLCDEXT = 0) and VLCDx > 0 or VLCDREFx > 0 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_C Controller Copyright © 2008–2015, Texas Instruments Incorporated 933 LCD_C Registers www.ti.com Table 35-12. LCDCVCTL Register Description (continued) Bit Field Type Reset Description 2-1 VLCDREFx RW 0h Charge pump reference select. If LCDEXTBIAS = 1 or LCDREXT = 1, settings 01, 10, and 11 are not supported; the internal reference voltage is used instead. NOTE: Should be changed only while LCDON = 0. 00b = Internal reference voltage 01b = External reference voltage 10b = Internal reference voltage switched to external pin LCDREF/R13 11b = Reserved (defaults to external reference voltage) 0 LCD2B RW 0h Bias select. LCD2B is ignored in static mode or mux modes ≥5. NOTE: Should be changed only while LCDON = 0. 0b = 1/3 bias 1b = 1/2 bias 934 LCD_C Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_C Registers www.ti.com 35.3.6 LCDCPCTL0 Register LCD_C Port Control Register 0 NOTE: Settings for LCDSx should be changed only while LCDON = 0. Figure 35-17. LCDCPCTL0 Register 15 14 13 12 11 10 9 8 LCDS15 LCDS14 LCDS13 LCDS12 LCDS11 LCDS10 LCDS9 LCDS8 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 7 6 5 4 3 2 1 0 LCDS7 LCDS6 LCDS5 LCDS4 LCDS3 LCDS2 LCDS1 LCDS0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Table 35-13. LCDCPCTL0 Register Description Bit Field Type Reset Description 15-0 LCDSx RW 0h LCD segment line x enable. This bit affects only pins with multiplexed functions. Dedicated LCD pins are always LCD function. NOTE: Settings for LCDSx should be changed only while LCDON = 0. 0b = Multiplexed pins are port functions 1b = Pins are LCD functions 35.3.7 LCDCPCTL1 Register LCD_C Port Control Register 1 NOTE: Settings for LCDSx should be changed only while LCDON = 0. Figure 35-18. LCDCPCTL1 Register 15 14 13 12 11 10 9 8 LCDS31 LCDS30 LCDS29 LCDS28 LCDS27 LCDS26 LCDS25 LCDS24 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 7 6 5 4 3 2 1 0 LCDS23 LCDS22 LCDS21 LCDS20 LCDS19 LCDS18 LCDS17 LCDS16 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Table 35-14. LCDCPCTL1 Register Description Bit Field Type Reset Description 15-0 LCDSx RW 0h LCD segment line x enable. On devices supporting a maximum of 192 segments LCDS31 is reserved, if COM7 to COM1 are shared with segments. If COM7 to COM1 are not shared with segments LCDS24 to LCDS31 are reserved. This bit affects only pins with multiplexed functions. Dedicated LCD pins are always LCD function. NOTE: Settings for LCDSx should be changed only while LCDON = 0. 0b = Multiplexed pins are port functions 1b = Pins are LCD functions SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_C Controller Copyright © 2008–2015, Texas Instruments Incorporated 935 LCD_C Registers www.ti.com 35.3.8 LCDCPCTL2 Register LCD_C Port Control Register 2 (≥ 256 Segments) NOTE: Settings for LCDSx should be changed only while LCDON = 0. Figure 35-19. LCDCPCTL2 Register 15 14 13 12 11 10 9 8 LCDS47 LCDS46 LCDS45 LCDS44 LCDS43 LCDS42 LCDS41 LCDS40 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 7 6 5 4 3 2 1 0 LCDS39 LCDS38 LCDS37 LCDS36 LCDS35 LCDS34 LCDS33 LCDS32 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Table 35-15. LCDCPCTL2 Register Description Bit Field Type Reset Description 15-0 LCDSx RW 0h LCD segment line x enable. On devices supporting a maximum of 256 segments LCDS39 to LCDS47 are reserved, if COM7 to COM1 are shared with segments. If COM7 to COM1 are not shared with segments the complete register LCDCPCTL2 is not available. On devices supporting a maximum of 320 segments, LCDS47 is reserved if COM7 to COM1 are shared with segments. If COM7 to COM1 are not shared with segments, LCDS40 to LCDS47 are reserved. This bit affects only pins with multiplexed functions. Dedicated LCD pins are always LCD function. NOTE: Settings for LCDSx should be changed only while LCDON = 0. 0b = Multiplexed pins are port functions 1b = Pins are LCD functions 35.3.9 LCDCPCTL3 Register LCD_C Port Control Register 2 (384 Segments, COMs Shared With Segments) NOTE: Settings for LCDSx should be changed only while LCDON = 0. Figure 35-20. LCDCPCTL3 Register 15 14 13 12 11 10 9 8 Reserved r0 r0 r0 r0 r0 r0 r0 r0 7 6 5 4 3 2 1 0 LCDS53 LCDS52 LCDS51 LCDS50 LCDS49 LCDS48 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Reserved r0 r0 Table 35-16. LCDCPCTL3 Register Description Bit Field Type Reset Description 15-6 Reserved R 0h Reserved 5-0 LCDSx RW 0h LCD segment line x enable. This bit affects only pins with multiplexed functions. Dedicated LCD pins are always LCD function. NOTE: Settings for LCDSx should be changed only while LCDON = 0. 0b = Multiplexed pins are port functions 1b = Pins are LCD functions 936 LCD_C Controller SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LCD_C Registers www.ti.com 35.3.10 LCDCCPCTL Register LCD_C Charge Pump Control Register Figure 35-21. LCDCCPCTL Register 15 14 13 12 11 LCDCPCLKSY NC 10 9 8 r0 r0 r0 r0 3 2 1 0 rw-0 rw-0 rw-0 rw-0 Reserved rw-0 r0 r0 r0 7 6 5 4 LCDCPDISx rw-0 rw-0 rw-0 rw-0 Table 35-17. LCDCCPCTL Register Description Bit Field Type Reset Description 15 LCDCPCLKSYNC RW 0h LCD charge pump clock synchronization (device specific). The charge pump clock is synchronized to a device specific clock (devicespecific) when the respective clock source is enabled and does not indicate a fault via its fault signal - if available. 0b = Synchronization disabled 1b = Synchronization enabled 14-8 Reserved R 0h Reserved 7-0 LCDCPDISx RW 0h LCD charge pump disable (number of implemented bits and connected function is device-specific) 0b = Connected function cannot disable charge pump 1b = Connected function can disable charge pump 35.3.11 LCDCIV Register LCD_C Interrupt Vector Register Figure 35-22. LCDCIV Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r0 r0 r0 r0 LCDCIVx r0 r0 r0 r0 7 6 5 4 LCDCIVx r0 r0 r0 r0 Table 35-18. LCDCIV Register Description Bit Field Type Reset Description 15-0 LCDCIVx R 0h LCD_C interrupt vector value 00h = No interrupt pending 02h = Interrupt Source: No capacitor connected; Interrupt Flag: LCDNOCAPIFG; Interrupt Priority: Highest 04h = Interrupt Source: Blink, segments off; Interrupt Flag: LCDBLKOFFIFG 06h = Interrupt Source: Blink, segments on; Interrupt Flag: LCDBLKONIFG 08h = Interrupt Source: Frame interrupt; Interrupt Flag: LCDFRMIFG; Interrupt Priority: Lowest SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LCD_C Controller Copyright © 2008–2015, Texas Instruments Incorporated 937 Chapter 36 SLAU208O – June 2008 – Revised May 2015 Universal Serial Communication Interface – UART Mode The universal serial communication interface (USCI) supports multiple serial communication modes with one hardware module. This chapter discusses the operation of the asynchronous UART mode. Topic 36.1 36.2 36.3 36.4 938 ........................................................................................................................... Universal Serial Communication Interface (USCI) Overview .................................. USCI Introduction – UART Mode......................................................................... USCI Operation – UART Mode ............................................................................ USCI_A UART Mode Registers ........................................................................... Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated Page 939 940 942 958 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback www.ti.com Universal Serial Communication Interface (USCI) Overview 36.1 Universal Serial Communication Interface (USCI) Overview The USCI modules support multiple serial communication modes. Different USCI modules support different modes. Each different USCI module is named with a different letter. For example, USCI_A is different from USCI_B, etc. If more than one identical USCI module is implemented on one device, those modules are named with incrementing numbers. For example, if one device has two USCI_A modules, they are named USCI_A0 and USCI_A1. See the device-specific data sheet to determine which USCI modules, if any, are implemented on which devices. USCI_Ax modules support: • UART mode • Pulse shaping for IrDA communications • Automatic baud-rate detection for LIN communications • SPI mode USCI_Bx modules support: • I2C mode • SPI mode SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 939 USCI Introduction – UART Mode www.ti.com 36.2 USCI Introduction – UART Mode In asynchronous mode, the USCI_Ax modules connect the device to an external system via two external pins, UCAxRXD and UCAxTXD. UART mode is selected when the UCSYNC bit is cleared. UART mode features include: • 7- or 8-bit data with odd, even, or non-parity • Independent transmit and receive shift registers • Separate transmit and receive buffer registers • LSB-first or MSB-first data transmit and receive • Built-in idle-line and address-bit communication protocols for multiprocessor systems • Receiver start-edge detection for auto wake up from LPMx modes (wake up from LPMx.5 is not supported) • Programmable baud rate with modulation for fractional baud-rate support • Status flags for error detection and suppression • Status flags for address detection • Independent interrupt capability for receive and transmit 940 Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Introduction – UART Mode www.ti.com Figure 36-1 shows the USCI_Ax when configured for UART mode. UCMODEx UCSPB UCDORM UCRXEIE Set Flags UCRXERR UCPE UCFE UCOE Set RXIFG Set UCRXIFG Error Flags UCRXBRKIE 2 Receive State Machine Set UCBRK Set UCADDR /UCIDLE Receive Buffer UCAxRXBUF Receive Shift Register UCPEN UCPAR UCIRRXPL UCIRRXFLx UCIRRXFE UCIREN 6 UCLISTEN 1 IrDA Decoder 0 UCAxRXD 1 0 0 1 UCMSB UC7BIT UCABEN UCSSELx Receive Baudrate Generator UC0BRx UCAxCLK 00 ACLK 01 SMCLK 10 SMCLK 11 16 BRCLK Prescaler/Divider Receive Clock Modulator Transmit Clock 4 UCBRFx UCPEN 3 UCBRSx UCPAR UCOS16 UCIREN UCMSB UC7BIT Transmit Shift Register 0 1 IrDA Encoder Transmit Buffer UCAxTXBUF UCAxTXD 6 UCIRTXPLx Transmit State Machine Set UCTXIFG UCTXBRK UCTXADDR 2 UCMODEx UCSPB Figure 36-1. USCI_Ax Block Diagram – UART Mode (UCSYNC = 0) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 941 USCI Operation – UART Mode www.ti.com 36.3 USCI Operation – UART Mode In UART mode, the USCI transmits and receives characters at a bit rate asynchronous to another device. Timing for each character is based on the selected baud rate of the USCI. The transmit and receive functions use the same baud-rate frequency. 36.3.1 USCI Initialization and Reset The USCI is reset by a PUC or by setting the UCSWRST bit. After a PUC, the UCSWRST bit is automatically set, keeping the USCI in a reset condition. When set, the UCSWRST bit resets the UCRXIE, UCTXIE, UCRXIFG, UCRXERR, UCBRK, UCPE, UCOE, UCFE, UCSTOE, and UCBTOE bits, and sets the UCTXIFG bit. Clearing UCSWRST releases the USCI for operation. To avoid unpredictable behavior, configure or reconfigure the USCI_A module only when UCSWRST is set. NOTE: Initializing or reconfiguring the USCI module The recommended USCI initialization/reconfiguration process is: 1. Set UCSWRST (BIS.B #UCSWRST,&UCAxCTL1). 2. Initialize all USCI registers with UCSWRST = 1 (including UCAxCTL1). 3. Configure ports. 4. Clear UCSWRST via software (BIC.B #UCSWRST,&UCAxCTL1). 5. Enable interrupts (optional) via UCRXIE and/or UCTXIE. 36.3.2 Character Format The UART character format (see Figure 36-2) consists of a start bit, seven or eight data bits, an even/odd/no parity bit, an address bit (address-bit mode), and one or two stop bits. The UCMSB bit controls the direction of the transfer and selects LSB or MSB first. LSB first is typically required for UART communication. ST D0 D6 D7 AD PA Mark SP SP Space [2nd Stop Bit, UCSPB = 1] [Parity Bit, UCPEN = 1] [Address Bit, UCMODEx = 10] [Optional Bit, Condition] [8th Data Bit, UC7BIT = 0] Figure 36-2. Character Format 36.3.3 Asynchronous Communication Format When two devices communicate asynchronously, no multiprocessor format is required for the protocol. When three or more devices communicate, the USCI supports the idle-line and address-bit multiprocessor communication formats. 36.3.3.1 Idle-Line Multiprocessor Format When UCMODEx = 01, the idle-line multiprocessor format is selected. Blocks of data are separated by an idle time on the transmit or receive lines (see Figure 36-3). An idle receive line is detected when ten or more continuous ones (marks) are received after the one or two stop bits of a character. The baud-rate generator is switched off after reception of an idle line until the next start edge is detected. When an idle line is detected, the UCIDLE bit is set. 942 Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – UART Mode www.ti.com The first character received after an idle period is an address character. The UCIDLE bit is used as an address tag for each block of characters. In idle-line multiprocessor format, this bit is set when a received character is an address. Figure 36-3. Idle-Line Format The UCDORM bit is used to control data reception in the idle-line multiprocessor format. When UCDORM = 1, all non-address characters are assembled but not transferred into the UCAxRXBUF, and interrupts are not generated. When an address character is received, the character is transferred into UCAxRXBUF, UCRXIFG is set, and any applicable error flag is set when UCRXEIE = 1. When UCRXEIE = 0 and an address character is received but has a framing error or parity error, the character is not transferred into UCAxRXBUF and UCRXIFG is not set. If an address is received, user software can validate the address and must reset UCDORM to continue receiving data. If UCDORM remains set, only address characters are received. When UCDORM is cleared during the reception of a character, the receive interrupt flag is set after the reception completed. The UCDORM bit is not modified by the USCI hardware automatically. For address transmission in idle-line multiprocessor format, a precise idle period can be generated by the USCI to generate address character identifiers on UCAxTXD. The double-buffered UCTXADDR flag indicates if the next character loaded into UCAxTXBUF is preceded by an idle line of 11 bits. UCTXADDR is automatically cleared when the start bit is generated. 36.3.3.1.1 Transmitting an Idle Frame The following procedure sends out an idle frame to indicate an address character followed by associated data: 1. Set UCTXADDR, then write the address character to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG = 1). This generates an idle period of exactly 11 bits followed by the address character. UCTXADDR is reset automatically when the address character is transferred from UCAxTXBUF into the shift register. 2. Write desired data characters to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG = 1). The data written to UCAxTXBUF is transferred to the shift register and transmitted as soon as the shift register is ready for new data. The idle-line time must not be exceeded between address and data transmission or between data transmissions. Otherwise, the transmitted data is misinterpreted as an address. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 943 USCI Operation – UART Mode www.ti.com 36.3.3.2 Address-Bit Multiprocessor Format When UCMODEx = 10, the address-bit multiprocessor format is selected. Each processed character contains an extra bit used as an address indicator (see Figure 36-4). The first character in a block of characters carries a set address bit that indicates that the character is an address. The USCI UCADDR bit is set when a received character has its address bit set and is transferred to UCAxRXBUF. The UCDORM bit is used to control data reception in the address-bit multiprocessor format. When UCDORM is set, data characters with address bit = 0 are assembled by the receiver but are not transferred to UCAxRXBUF and no interrupts are generated. When a character containing a set address bit is received, the character is transferred into UCAxRXBUF, UCRXIFG is set, and any applicable error flag is set when UCRXEIE = 1. When UCRXEIE = 0 and a character containing a set address bit is received but has a framing error or parity error, the character is not transferred into UCAxRXBUF and UCRXIFG is not set. If an address is received, user software can validate the address and must reset UCDORM to continue receiving data. If UCDORM remains set, only address characters with address bit = 1 are received. The UCDORM bit is not modified by the USCI hardware automatically. When UCDORM = 0, all received characters set the receive interrupt flag UCRXIFG. If UCDORM is cleared during the reception of a character, the receive interrupt flag is set after the reception is completed. For address transmission in address-bit multiprocessor mode, the address bit of a character is controlled by the UCTXADDR bit. The value of the UCTXADDR bit is loaded into the address bit of the character transferred from UCAxTXBUF to the transmit shift register. UCTXADDR is automatically cleared when the start bit is generated. Blocks of Characters UCAxTXD/UCAxRXD Idle Periods of No Significance UCAxTXD/UCAxRXD Expanded UCAxTXD/UCAxRXD ST Address 1 SP ST First Character Within Block Is an Address. AD Bit Is 1 Data 0 SP AD Bit Is 0 for Data Within Block. ST Data 0 SP Idle Time Is of No Significance Figure 36-4. Address-Bit Multiprocessor Format 36.3.3.2.1 Break Reception and Generation When UCMODEx = 00, 01, or 10, the receiver detects a break when all data, parity, and stop bits are low, regardless of the parity, address mode, or other character settings. When a break is detected, the UCBRK bit is set. If the break interrupt enable bit (UCBRKIE) is set, the receive interrupt flag UCRXIFG is also set. In this case, the value in UCAxRXBUF is 0h, because all data bits were zero. To transmit a break, set the UCTXBRK bit, then write 0h to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG = 1). This generates a break with all bits low. UCTXBRK is automatically cleared when the start bit is generated. 944 Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – UART Mode www.ti.com 36.3.4 Automatic Baud-Rate Detection When UCMODEx = 11, UART mode with automatic baud-rate detection is selected. For automatic baudrate detection, a data frame is preceded by a synchronization sequence that consists of a break and a synch field. A break is detected when 11 or more continuous zeros (spaces) are received. If the length of the break exceeds 21 bit times the break timeout error flag UCBTOE is set. The USCI can not transmit data while receiving the break/sync field. The synch field follows the break as shown in Figure 36-5. Delimiter Break Synch Figure 36-5. Auto Baud-Rate Detection – Break/Synch Sequence For LIN conformance, the character format should be set to eight data bits, LSB first, no parity, and one stop bit. No address bit is available. The synch field consists of the data 055h inside a byte field (see Figure 36-6). The synchronization is based on the time measurement between the first falling edge and the last falling edge of the pattern. The transmit baud-rate generator is used for the measurement if automatic baud-rate detection is enabled by setting UCABDEN. Otherwise, the pattern is received but not measured. The result of the measurement is transferred into the baud-rate control registers (UCAxBR0, UCAxBR1, and UCAxMCTL). If the length of the synch field exceeds the measurable time, the synch timeout error flag UCSTOE is set. Synch 8 Bit Times Start 0 Bit 1 2 3 4 5 6 7 Stop Bit Figure 36-6. Auto Baud-Rate Detection – Synch Field The UCDORM bit is used to control data reception in this mode. When UCDORM is set, all characters are received but not transferred into the UCAxRXBUF, and interrupts are not generated. When a break/synch field is detected, the UCBRK flag is set. The character following the break/synch field is transferred into UCAxRXBUF and the UCRXIFG interrupt flag is set. Any applicable error flag is also set. If the UCBRKIE bit is set, reception of the break/synch sets the UCRXIFG. The UCBRK bit is reset by user software or by reading the receive buffer UCAxRXBUF. When a break/synch field is received, user software must reset UCDORM to continue receiving data. If UCDORM remains set, only the character after the next reception of a break/synch field is received. The UCDORM bit is not modified by the USCI hardware automatically. When UCDORM = 0, all received characters set the receive interrupt flag UCRXIFG. If UCDORM is cleared during the reception of a character, the receive interrupt flag is set after the reception is complete. The counter used to detect the baud rate is limited to 07FFFh (32767) counts. This means the minimum baud rate detectable is 488 baud in oversampling mode and 30 baud in low-frequency mode. The automatic baud-rate detection mode can be used in a full-duplex communication system with some restrictions. The USCI can not transmit data while receiving the break/sync field and, if a 0h byte with framing error is received, any data transmitted during this time gets corrupted. The latter case can be discovered by checking the received data and the UCFE bit. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 945 USCI Operation – UART Mode www.ti.com 36.3.4.1 Transmitting a Break/Synch Field The following procedure transmits a break/synch field: 1. Set UCTXBRK with UMODEx = 11. 2. Write 055h to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG = 1). This generates a break field of 13 bits followed by a break delimiter and the synch character. The length of the break delimiter is controlled with the UCDELIMx bits. UCTXBRK is reset automatically when the synch character is transferred from UCAxTXBUF into the shift register. 3. Write desired data characters to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG = 1). The data written to UCAxTXBUF is transferred to the shift register and transmitted as soon as the shift register is ready for new data. 36.3.5 IrDA Encoding and Decoding When UCIREN is set, the IrDA encoder and decoder are enabled and provide hardware bit shaping for IrDA communication. 36.3.5.1 IrDA Encoding The encoder sends a pulse for every zero bit in the transmit bitstream coming from the UART (see Figure 36-7). The pulse duration is defined by UCIRTXPLx bits specifying the number of one-half clock periods of the clock selected by UCIRTXCLK. Start Bit Data Bits Stop Bit UART IrDA Figure 36-7. UART vs IrDA Data Format To set the pulse time of 3/16 bit period required by the IrDA standard, the BITCLK16 clock is selected with UCIRTXCLK = 1 ,and the pulse length is set to six one-half clock cycles with UCIRTXPLx = 6 – 1 = 5. When UCIRTXCLK = 0, the pulse length tPULSE is based on BRCLK and is calculated as: UCIRTXPLx = tPULSE × 2 × fBRCLK – 1 When UCIRTXCLK = 0 ,the prescaler UCBRx must to be set to a value greater or equal to 5. 36.3.5.2 IrDA Decoding The decoder detects high pulses when UCIRRXPL = 0. Otherwise, it detects low pulses. In addition to the analog deglitch filter, an additional programmable digital filter stage can be enabled by setting UCIRRXFE. When UCIRRXFE is set, only pulses longer than the programmed filter length are passed. Shorter pulses are discarded. The equation to program the filter length UCIRRXFLx is: UCIRRXFLx = (tPULSE − tWAKE) × 2 × fBRCLK – 4 Where: tPULSE = Minimum receive pulse width tWAKE = Wake time from any low-power mode. Zero when the device is in active mode. 946 Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – UART Mode www.ti.com 36.3.6 Automatic Error Detection Glitch suppression prevents the USCI from being accidentally started. Any pulse on UCAxRXD shorter than the deglitch time tt (approximately 150 ns) is ignored (see the device-specific data sheet for parameters). When a low period on UCAxRXD exceeds tt, a majority vote is taken for the start bit. If the majority vote fails to detect a valid start bit, the USCI halts character reception and waits for the next low period on UCAxRXD. The majority vote is also used for each bit in a character to prevent bit errors. The USCI module automatically detects framing errors, parity errors, overrun errors, and break conditions when receiving characters. The bits UCFE, UCPE, UCOE, and UCBRK are set when their respective condition is detected. When the error flags UCFE, UCPE, or UCOE are set, UCRXERR is also set. The error conditions are described in Table 36-1. Table 36-1. Receive Error Conditions Error Condition Error Flag Description Framing error UCFE A framing error occurs when a low stop bit is detected. When two stop bits are used, both stop bits are checked for framing error. When a framing error is detected, the UCFE bit is set. Parity error UCPE A parity error is a mismatch between the number of 1s in a character and the value of the parity bit. When an address bit is included in the character, it is included in the parity calculation. When a parity error is detected, the UCPE bit is set. Receive overrun UCOE An overrun error occurs when a character is loaded into UCAxRXBUF before the prior character has been read. When an overrun occurs, the UCOE bit is set. Break condition UCBRK When not using automatic baud-rate detection, a break is detected when all data, parity, and stop bits are low. When a break condition is detected, the UCBRK bit is set. A break condition can also set the interrupt flag UCRXIFG if the break interrupt enable UCBRKIE bit is set. When UCRXEIE = 0 and a framing error or parity error is detected, no character is received into UCAxRXBUF. When UCRXEIE = 1, characters are received into UCAxRXBUF and any applicable error bit is set. When any of the UCFE, UCPE, UCOE, UCBRK, or UCRXERR bit is set, the bit remains set until user software resets it or UCAxRXBUF is read. UCOE must be reset by reading UCAxRXBUF. Otherwise, it does not function properly. To detect overflows reliably the following flow is recommended. After a character was received and UCAxRXIFG is set, first read UCAxSTAT to check the error flags including the overflow flag UCOE. Read UCAxRXBUF next. This clears all error flags except UCOE, if UCAxRXBUF was overwritten between the read access to UCAxSTAT and to UCAxRXBUF. Therefore, the UCOE flag should be checked after reading UCAxRXBUF to detect this condition. Note that, in this case, the UCRXERR flag is not set. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 947 USCI Operation – UART Mode www.ti.com 36.3.7 USCI Receive Enable The USCI module is enabled by clearing the UCSWRST bit and the receiver is ready and in an idle state. The receive baud rate generator is in a ready state but is not clocked nor producing any clocks. The falling edge of the start bit enables the baud rate generator and the UART state machine checks for a valid start bit. If no valid start bit is detected the UART state machine returns to its idle state and the baud rate generator is turned off again. If a valid start bit is detected, a character is received. When the idle-line multiprocessor mode is selected with UCMODEx = 01 the UART state machine checks for an idle line after receiving a character. If a start bit is detected another character is received. Otherwise the UCIDLE flag is set after 10 ones are received and the UART state machine returns to its idle state and the baud rate generator is turned off. 36.3.7.1 Receive Data Glitch Suppression Glitch suppression prevents the USCI from being accidentally started. Any glitch on UCAxRXD shorter than the deglitch time tt (approximately 150 ns) is ignored by the USCI, and further action is initiated as shown in Figure 36-8 (see the device-specific data sheet for parameters). UCAxRXD URXS tt Figure 36-8. Glitch Suppression, USCI Receive Not Started When a glitch is longer than tt, or a valid start bit occurs on UCAxRXD, the USCI receive operation is started and a majority vote is taken (see Figure 36-9). If the majority vote fails to detect a start bit, the USCI halts character reception. Majority Vote Taken URXS tt Figure 36-9. Glitch Suppression, USCI Activated 36.3.8 USCI Transmit Enable The USCI module is enabled by clearing the UCSWRST bit and the transmitter is ready and in an idle state. The transmit baud-rate generator is ready but is not clocked nor producing any clocks. A transmission is initiated by writing data to UCAxTXBUF. When this occurs, the baud-rate generator is enabled, and the data in UCAxTXBUF is moved to the transmit shift register on the next BITCLK after the transmit shift register is empty. UCTXIFG is set when new data can be written into UCAxTXBUF. Transmission continues as long as new data is available in UCAxTXBUF at the end of the previous byte transmission. If new data is not in UCAxTXBUF when the previous byte has transmitted, the transmitter returns to its idle state and the baud-rate generator is turned off. 948 Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – UART Mode www.ti.com 36.3.9 UART Baud-Rate Generation The USCI baud-rate generator is capable of producing standard baud rates from nonstandard source frequencies. It provides two modes of operation selected by the UCOS16 bit. The baud-rate is generate using the BRCLK that can be sourced by the external clock UCAxCLK, or the internal clocks ACLK or SMCLK depending on the UCSSELx settings. 36.3.9.1 Low-Frequency Baud-Rate Generation The low-frequency mode is selected when UCOS16 = 0. This mode allows generation of baud rates from low frequency clock sources (for example, 9600 baud from a 32768-Hz crystal). By using a lower input frequency, the power consumption of the module is reduced. Using this mode with higher frequencies and higher prescaler settings causes the majority votes to be taken in an increasingly smaller window and, thus, decrease the benefit of the majority vote. In low-frequency mode, the baud-rate generator uses one prescaler and one modulator to generate bit clock timing. This combination supports fractional divisors for baud-rate generation. In this mode, the maximum USCI baud rate is one-third the UART source clock frequency BRCLK. Timing for each bit is shown in Figure 36-10. For each bit received, a majority vote is taken to determine the bit value. These samples occur at the N/2 – 1/2, N/2, and N/2 + 1/2 BRCLK periods, where N is the number of BRCLKs per BITCLK. Majority Vote: (m= 0) (m= 1) Bit Start BRCLK Counter N/2 N/2-1 N/2-2 1 N/2 1 0 N/2-1 N/2-2 N/2 N/2-1 1 N/2 N/2-1 1 0 N/2 BITCLK NEVEN: INT(N/2) INT(N/2) + m(= 0) NODD: INT(N/2) + R(= 1) INT(N/2) + m(= 1) Bit Period m: corresponding modulation bit R: Remainder from N/2 division Figure 36-10. BITCLK Baud-Rate Timing With UCOS16 = 0 Modulation is based on the UCBRSx setting (see Table 36-2). A 1 in the table indicates that m = 1 and the corresponding BITCLK period is one BRCLK period longer than a BITCLK period with m = 0. The modulation wraps around after eight bits but restarts with each new start bit. Table 36-2. BITCLK Modulation Pattern UCBRSx Bit 0 (Start Bit) Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 2 0 1 0 0 0 1 0 0 3 0 1 0 1 0 1 0 0 4 0 1 0 1 0 1 0 1 5 0 1 1 1 0 1 0 1 6 0 1 1 1 0 1 1 1 7 0 1 1 1 1 1 1 1 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 949 USCI Operation – UART Mode www.ti.com 36.3.9.2 Oversampling Baud-Rate Generation The oversampling mode is selected when UCOS16 = 1. This mode supports sampling a UART bitstream with higher input clock frequencies. This results in majority votes that are always 1/16 of a bit clock period apart. This mode also easily supports IrDA pulses with a 3/16 bit time when the IrDA encoder and decoder are enabled. This mode uses one prescaler and one modulator to generate the BITCLK16 clock that is 16 times faster than the BITCLK. An additional divider and modulator stage generates BITCLK from BITCLK16. This combination supports fractional divisions of both BITCLK16 and BITCLK for baud-rate generation. In this mode, the maximum USCI baud rate is 1/16 the UART source clock frequency BRCLK. When UCBRx is set to 0 or 1, the first prescaler and modulator stage is bypassed and BRCLK is equal to BITCLK16 – in this case, no modulation for the BITCLK16 is possible and, thus, the UCBRFx bits are ignored. Modulation for BITCLK16 is based on the UCBRFx setting (see Table 36-3). A 1 in the table indicates that the corresponding BITCLK16 period is one BRCLK period longer than the periods m = 0. The modulation restarts with each new bit timing. Modulation for BITCLK is based on the UCBRSx setting (see Table 36-2) as previously described. Table 36-3. BITCLK16 Modulation Pattern UCBRFx 950 Number of BITCLK16 Clocks After Last Falling BITCLK Edge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 00h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 02h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 03h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 04h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 05h 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 06h 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 07h 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 08h 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 09h 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0Ah 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0Bh 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0Ch 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0Dh 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0Eh 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0Fh 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – UART Mode www.ti.com 36.3.10 Setting a Baud Rate For a given BRCLK clock source, the baud rate used determines the required division factor N: N = fBRCLK/Baudrate The division factor N is often a noninteger value, thus, at least one divider and one modulator stage is used to meet the factor as closely as possible. If N is equal or greater than 16, the oversampling baud-rate generation mode can be chosen by setting UCOS16. 36.3.10.1 Low-Frequency Baud-Rate Mode Setting In low-frequency mode, the integer portion of the divisor is realized by the prescaler: UCBRx = INT(N) and the fractional portion is realized by the modulator with the following nominal formula: UCBRSx = round[( N – INT(N)) × 8] Incrementing or decrementing the UCBRSx setting by one count may give a lower maximum bit error for any given bit. To determine if this is the case, a detailed error calculation must be performed for each bit for each UCBRSx setting. 36.3.10.2 Oversampling Baud-Rate Mode Setting In the oversampling mode, the prescaler is set to: UCBRx = INT(N/16) and the first stage modulator is set to: UCBRFx = round([(N/16) – INT(N/16)] × 16) When greater accuracy is required, the UCBRSx modulator can also be implemented with values from 0 to 7. To find the setting that gives the lowest maximum bit error rate for any given bit, a detailed error calculation must be performed for all settings of UCBRSx from 0 to 7 with the initial UCBRFx setting, and with the UCBRFx setting incremented and decremented by one. 36.3.11 Transmit Bit Timing The timing for each character is the sum of the individual bit timings. Using the modulation features of the baud-rate generator reduces the cumulative bit error. The individual bit error can be calculated using the following steps. 36.3.11.1 Low-Frequency Baud-Rate Mode Bit Timing In low-frequency mode, calculate the length of bit i Tbit,TX[i] based on the UCBRx and UCBRSx settings: Tbit,TX[i] = (1/fBRCLK)(UCBRx + mUCBRSx[i]) Where: mUCBRSx[i] = Modulation of bit i from Table 36-2 36.3.11.2 Oversampling Baud-Rate Mode Bit Timing In oversampling baud-rate mode, calculate the length of bit i Tbit,TX[i] based on the baud-rate generator UCBRx, UCBRFx and UCBRSx settings: Tbit,TX[i] = 1 ( 15 S fBRCLK (16 + mUCBRSx[i]) × UCBRx + j = 0 mUCBRFx[j] ( Where: 15 Sm UCBRFx [j] = Sum of ones from the corresponding row in Table 36-3 mUCBRSx[i] = Modulation of bit i from Table 36-2 j=0 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 951 USCI Operation – UART Mode www.ti.com This results in an end-of-bit time tbit,TX[i] equal to the sum of all previous and the current bit times: i Tbit,TX[i] = ST [j] bit,TX j=0 To calculate bit error, this time is compared to the ideal bit time tbit,ideal,TX[i]: tbit,ideal,TX[i] = (1/Baudrate)(i + 1) This results in an error normalized to one ideal bit time (1/baudrate): ErrorTX[i] = (tbit,TX[i] – tbit,ideal,TX[i]) × Baudrate × 100% 36.3.12 Receive Bit Timing Receive timing error consists of two error sources. The first is the bit-to-bit timing error similar to the transmit bit timing error. The second is the error between a start edge occurring and the start edge being accepted by the USCI module. Figure 36-11 shows the asynchronous timing errors between data on the UCAxRXD pin and the internal baud-rate clock. This results in an additional synchronization error. The synchronization error tSYNC is between –0.5 BRCLKs and +0.5 RCLKs, independent of the selected baudrate generation mode. i 1 0 tideal 2 t1 t0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 BRCLK UCAxRXD ST D0 D1 RXD synch. ST D0 D1 tactual t0 Synchronization Error ± 0.5x BRCLK t1 t2 Sample RXD synch. Majority Vote Taken Majority Vote Taken Majority Vote Taken Figure 36-11. Receive Error The ideal sampling time tbit,ideal,RX[i] is in the middle of a bit period: tbit,ideal,RX[i] = (1/Baudrate)(i + 0.5) The real sampling time, tbit,RX[i], is equal to the sum of all previous bits according to the formulas shown in the transmit timing section, plus one-half BITCLK for the current bit i, plus the synchronization error tSYNC. This results in the following tbit,RX[i] for the low-frequency baud-rate mode: i–1 tbit,RX[i] = tSYNC + ST [j] + 1 fBRCLK INT(½UCBRx) + mUCBRSx[i] bit,RX j=0 ( ( Where: Tbit,RX[i] = (1/fBRCLK)(UCBRx + mUCBRSx[i]) mUCBRSx[i] = Modulation of bit i from Table 36-2 952 Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – UART Mode www.ti.com For the oversampling baud-rate mode, the sampling time tbit,RX[i] of bit i is calculated by: i–1 tbit,RX[i] = tSYNC + ST bit,RX [j] + j=0 1 fBRCLK ((8 + m 7 + mUCBRSx[i] [i]) × UCBRx + UCBRSx S mUCBRFx[j] j=0 ( Where: Tbit,RX[i] = 1 fBRCLK ((16 + m 15 UCBRSx [i]) × UCBRx + Sm [j] UCBRFx j=0 ( 7 + mUCBRSx[i] S mUCBRFx[j] = Sum of ones from columns 0 to (7 + mUCBRSx[i]) from the corresponding row in Table 36-3. mUCBRSx[i] = Modulation of bit i from Table 36-2 j=0 This results in an error normalized to one ideal bit time (1/baudrate) according to the following formula: ErrorRX[i] = (tbit,RX[i] – tbit,ideal,RX[i]) × Baudrate × 100% 36.3.13 Typical Baud Rates and Errors Standard baud-rate data for UCBRx, UCBRSx, and UCBRFx are listed in Table 36-4 and Table 36-5 for a 32,768-Hz crystal sourcing ACLK and typical SMCLK frequencies. Make sure that the selected BRCLK frequency does not exceed the device-specific maximum USCI input frequency (see the device-specific data sheet). The receive error is the accumulated time versus the ideal scanning time in the middle of each bit. The worst-case error is given for the reception of an 8-bit character with parity and one stop bit including synchronization error. The transmit error is the accumulated timing error versus the ideal time of the bit period. The worst-case error is given for the transmission of an 8-bit character with parity and stop bit. Table 36-4. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0 BRCLK Frequency (Hz) Baud Rate (baud) UCBRx UCBRSx UCBRFx 32 768 1200 27 2 0 -2.8 1.4 -5.9 32 768 2400 13 6 0 -4.8 6.0 -9.7 8.3 32 768 4800 6 7 0 -12.1 5.7 -13.4 19.0 32 768 9600 3 3 0 -21.1 15.2 -44.3 21.3 1 000 000 9600 104 1 0 -0.5 0.6 -0.9 1.2 1 000 000 19200 52 0 0 -1.8 0 -2.6 0.9 1 000 000 38400 26 0 0 -1.8 0 -3.6 1.8 1 000 000 57600 17 3 0 -2.1 4.8 -6.8 5.8 1 000 000 115200 8 6 0 -7.8 6.4 -9.7 16.1 1 048 576 9600 109 2 0 -0.2 0.7 -1.0 0.8 1 048 576 19200 54 5 0 -1.1 1.0 -1.5 2.5 1 048 576 38400 27 2 0 -2.8 1.4 -5.9 2.0 1 048 576 57600 18 1 0 -4.6 3.3 -6.8 6.6 1 048 576 115200 9 1 0 -1.1 10.7 -11.5 11.3 4 000 000 9600 416 6 0 -0.2 0.2 -0.2 0.4 4 000 000 19200 208 3 0 -0.2 0.5 -0.3 0.8 4 000 000 38400 104 1 0 -0.5 0.6 -0.9 1.2 4 000 000 57600 69 4 0 -0.6 0.8 -1.8 1.1 4 000 000 115200 34 6 0 -2.1 0.6 -2.5 3.1 4 000 000 230400 17 3 0 -2.1 4.8 -6.8 5.8 4 194 304 9600 436 7 0 -0.3 0 -0.3 0.2 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Maximum TX Error (%) Maximum RX Error (%) 2.0 Universal Serial Communication Interface – UART Mode 953 Copyright © 2008–2015, Texas Instruments Incorporated USCI Operation – UART Mode www.ti.com Table 36-4. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0 (continued) BRCLK Frequency (Hz) Baud Rate (baud) UCBRx UCBRSx UCBRFx 4 194 304 19200 218 4 0 -0.2 0.2 -0.3 0.6 4 194 304 57600 72 7 0 -1.1 0.6 -1.3 1.9 4 194 304 115200 36 3 0 -1.9 1.5 -2.7 3.4 8 000 000 9600 833 2 0 -0.1 0 -0.2 0.1 8 000 000 19200 416 6 0 -0.2 0.2 -0.2 0.4 8 000 000 38400 208 3 0 -0.2 0.5 -0.3 0.8 8 000 000 57600 138 7 0 -0.7 0 -0.8 0.6 8 000 000 115200 69 4 0 -0.6 0.8 -1.8 1.1 8 000 000 230400 34 6 0 -2.1 0.6 -2.5 3.1 8 000 000 460800 17 3 0 -2.1 4.8 -6.8 5.8 8 388 608 9600 873 7 0 -0.1 0.06 -0.2 0.1 8 388 608 19200 436 7 0 -0.3 0 -0.3 0.2 8 388 608 57600 145 5 0 -0.5 0.3 -1.0 0.5 Maximum TX Error (%) Maximum RX Error (%) 8 388 608 115200 72 7 0 -1.1 0.6 -1.3 1.9 12 000 000 9600 1250 0 0 0 0 -0.05 0.05 12 000 000 19200 625 0 0 0 0 -0.2 0 12 000 000 38400 312 4 0 -0.2 0 -0.2 0.2 12 000 000 57600 208 2 0 -0.5 0.2 -0.6 0.5 12 000 000 115200 104 1 0 -0.5 0.6 -0.9 1.2 12 000 000 230400 52 0 0 -1.8 0 -2.6 0.9 12 000 000 460800 26 0 0 -1.8 0 -3.6 1.8 16 000 000 9600 1666 6 0 -0.05 0.05 -0.05 0.1 16 000 000 19200 833 2 0 -0.1 0.05 -0.2 0.1 16 000 000 38400 416 6 0 -0.2 0.2 -0.2 0.4 16 000 000 57600 277 7 0 -0.3 0.3 -0.5 0.4 16 000 000 115200 138 7 0 -0.7 0 -0.8 0.6 16 000 000 230400 69 4 0 -0.6 0.8 -1.8 1.1 16 000 000 460800 34 6 0 -2.1 0.6 -2.5 3.1 16 777 216 9600 1747 5 0 -0.04 0.03 -0.08 0.05 16 777 216 19200 873 7 0 -0.09 0.06 -0.2 0.1 16 777 216 57600 291 2 0 -0.2 0.2 -0.5 0.2 16 777 216 115200 145 5 0 -0.5 0.3 -1.0 0.5 20 000 000 9600 2083 2 0 -0.05 0.02 -0.09 0.02 20 000 000 19200 1041 6 0 -0.06 0.06 -0.1 0.1 20 000 000 38400 520 7 0 -0.2 0.06 -0.2 0.2 20 000 000 57600 347 2 0 -0.06 0.2 -0.3 0.3 20 000 000 115200 173 5 0 -0.4 0.3 -0.8 0.5 20 000 000 230400 86 7 0 -1.0 0.6 -1.0 1.7 20 000 000 460800 43 3 0 -1.4 1.3 -3.3 1.8 954 Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – UART Mode www.ti.com Table 36-5. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 1 BRCLK Frequency (Hz) Baud Rate (baud) UCBRx UCBRSx UCBRFx 1 000 000 9600 6 0 8 -1.8 0 -2.2 0.4 1 000 000 19200 3 0 4 -1.8 0 -2.6 0.9 1 048 576 9600 6 0 13 -2.3 0 -2.2 0.8 1 048 576 19200 3 1 6 -4.6 3.2 -5.0 4.7 4 000 000 9600 26 0 1 0 0.9 0 1.1 4 000 000 19200 13 0 0 -1.8 0 -1.9 0.2 4 000 000 38400 6 0 8 -1.8 0 -2.2 0.4 4 000 000 57600 4 5 3 -3.5 3.2 -1.8 6.4 4 000 000 115200 2 3 2 -2.1 4.8 -2.5 7.3 4 194 304 9600 27 0 5 0 0.2 0 0.5 4 194 304 19200 13 0 10 -2.3 0 -2.4 0.1 4 194 304 57600 4 4 7 -2.5 2.5 -1.3 5.1 4 194 304 115200 2 6 3 -3.9 2.0 -1.9 6.7 8 000 000 9600 52 0 1 -0.4 0 -0.4 0.1 8 000 000 19200 26 0 1 0 0.9 0 1.1 8 000 000 38400 13 0 0 -1.8 0 -1.9 0.2 8 000 000 57600 8 0 11 0 0.88 0 1.6 8 000 000 115200 4 5 3 -3.5 3.2 -1.8 6.4 8 000 000 230400 2 3 2 -2.1 4.8 -2.5 7.3 8 388 608 9600 54 0 10 0 0.2 -0.05 0.3 8 388 608 19200 27 0 5 0 0.2 0 0.5 8 388 608 57600 9 0 2 0 2.8 -0.2 3.0 8 388 608 115200 4 4 7 -2.5 2.5 -1.3 5.1 12 000 000 9600 78 0 2 0 0 -0.05 0.05 12 000 000 19200 39 0 1 0 0 0 0.2 12 000 000 38400 19 0 8 -1.8 0 -1.8 0.1 12 000 000 57600 13 0 0 -1.8 0 -1.9 0.2 12 000 000 115200 6 0 8 -1.8 0 -2.2 0.4 12 000 000 230400 3 0 4 -1.8 0 -2.6 0.9 16 000 000 9600 104 0 3 0 0.2 0 0.3 16 000 000 19200 52 0 1 -0.4 0 -0.4 0.1 16 000 000 38400 26 0 1 0 0.9 0 1.1 16 000 000 57600 17 0 6 0 0.9 -0.1 1.0 16 000 000 115200 8 0 11 0 0.9 0 1.6 16 000 000 230400 4 5 3 -3.5 3.2 -1.8 6.4 16 000 000 460800 2 3 2 -2.1 4.8 -2.5 7.3 16 777 216 9600 109 0 4 0 0.2 -0.02 0.3 16 777 216 19200 54 0 10 0 0.2 -0.05 0.3 16 777 216 57600 18 0 3 -1.0 0 -1.0 0.3 16 777 216 115200 9 0 2 0 2.8 -0.2 3.0 20 000 000 9600 130 0 3 -0.2 0 -0.2 0.04 20 000 000 19200 65 0 2 0 0.4 -0.03 0.4 20 000 000 38400 32 0 9 0 0.4 0 0.5 20 000 000 57600 21 0 11 -0.7 0 -0.7 0.3 20 000 000 115200 10 0 14 0 2.5 -0.2 2.6 20 000 000 230400 5 0 7 0 2.5 0 3.5 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Maximum TX Error (%) Maximum RX Error (%) Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 955 USCI Operation – UART Mode www.ti.com Table 36-5. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 1 (continued) BRCLK Frequency (Hz) Baud Rate (baud) UCBRx UCBRSx UCBRFx 20 000 000 460800 2 6 10 Maximum TX Error (%) -3.2 1.8 Maximum RX Error (%) -2.8 4.6 36.3.14 Using the USCI Module in UART Mode With Low-Power Modes The USCI module provides automatic clock activation for use with low-power modes. When the USCI clock source is inactive because the device is in a low-power mode, the USCI module automatically activates it when needed, regardless of the control-bit settings for the clock source. The clock remains active until the USCI module returns to its idle condition. After the USCI module returns to the idle condition, control of the clock source reverts to the settings of its control bits. 36.3.15 USCI Interrupts in UART Mode The USCI has only one interrupt vector that is shared for transmission and for reception. USCI_Ax and USC_Bx do not share the same interrupt vector. 36.3.15.1 UART Transmit Interrupt Operation The UCTXIFG interrupt flag is set by the transmitter to indicate that UCAxTXBUF is ready to accept another character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is automatically reset if a character is written to UCAxTXBUF. UCTXIFG is set after a PUC or when UCSWRST = 1. UCTXIE is reset after a PUC or when UCSWRST = 1. 36.3.15.2 UART Receive Interrupt Operation The UCRXIFG interrupt flag is set each time a character is received and loaded into UCAxRXBUF. An interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset by a system reset PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCAxRXBUF is read. Additional interrupt control features include: • When UCAxRXEIE = 0, erroneous characters do not set UCRXIFG. • When UCDORM = 1, nonaddress characters do not set UCRXIFG in multiprocessor modes. In plain UART mode, no characters are set UCRXIFG. • When UCBRKIE = 1, a break condition sets the UCBRK bit and the UCRXIFG flag. 36.3.15.3 UCAxIV, Interrupt Vector Generator The USCI interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt vector register UCAxIV is used to determine which flag requested an interrupt. The highest-priority enabled interrupt generates a number in the UCAxIV register that can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled interrupts do not affect the UCAxIV value. Any access, read or write, of the UCAxIV register automatically resets the highest-pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. 956 Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – UART Mode www.ti.com 36.3.15.3.1 UCAxIV Software Example The following software example shows the recommended use of UCAxIV. The UCAxIV value is added to the PC to automatically jump to the appropriate routine. The following example is given for USCI_A0. USCI_UART_ISR ADD RETI JMP TXIFG_ISR ... RETI RXIFG_ISR ... RETI &UCA0IV, PC RXIFG_ISR ; ; ; ; ; ; ; ; ; Add offset to jump table Vector 0: No interrupt Vector 2: RXIFG Vector 4: TXIFG Task starts here Return Vector 2 Task starts here Return 36.3.16 DMA Operation In devices with a DMA controller, the eUSCI module can trigger DMA transfers when the transmit buffer UCAxTXBUF is empty or when data was received in the UCAxRXBUF buffer. The DMA trigger signals correspond to the UCTXIFG transmit interrupt flag and the UCRXIFG receive interrupt flag, respectively. The interrupt functionality must be disabled for the selected DMA triggers with UCTXIE = 0 and UCRXIE = 0. A DMA read access to UCAxRXBUF has the same effects as a CPU (software) read: all error flags (UCRXERR, UCFE, UCPE, UCOE, and UCBRK) are cleared after the read. Thus these errors might go unnoticed. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 957 USCI_A UART Mode Registers www.ti.com 36.4 USCI_A UART Mode Registers The USCI registers applicable in UART mode listed in Table 36-6. The base address can be found in the device-specific data sheet. The address offsets are listed in Table 36-6. Table 36-6. USCI_A UART Mode Registers Offset Acronym Register Name Type Access Reset 00h UCAxCTLW0 USCI_Ax Control Word 0 Read/write Word 0001h 00h UCAxCTL1 USCI_Ax Control 1 Read/write Byte 01h Section 36.4.2 01h UCAxCTL0 USCI_Ax Control 0 Read/write Byte 00h Section 36.4.1 06h UCAxBRW USCI_Ax Baud Rate Control Word Read/write Word 0000h 06h UCAxBR0 USCI_Ax Baud Rate Control 0 Read/write Byte 00h Section 36.4.3 07h UCAxBR1 USCI_Ax Baud Rate Control 1 Read/write Byte 00h Section 36.4.4 08h UCAxMCTL USCI_Ax Modulation Control Read/write Byte 00h Section 36.4.5 Reserved - reads zero Read Byte 00h USCI_Ax Status Read/write Byte 00h Reserved - reads zero Read Byte 00h USCI_Ax Receive Buffer Read/write Byte 00h Reserved - reads zero Read Byte 00h USCI_Ax Transmit Buffer Read/write Byte 00h Reserved - reads zero Read Byte 00h USCI_Ax Auto Baud Rate Control Read/write Byte 00h 09h 0Ah UCAxSTAT 0Bh 0Ch UCAxRXBUF 0Dh 0Eh UCAxTXBUF 0Fh 10h UCAxABCTL 11h 958 Section Section 36.4.6 Section 36.4.7 Section 36.4.8 Section 36.4.11 Reserved - reads zero Read Byte 00h 12h UCAxIRCTL USCI_Ax IrDA Control Read/write Word 0000h 12h UCAxIRTCTL USCI_Ax IrDA Transmit Control Read/write Byte 00h Section 36.4.9 13h UCAxIRRCTL USCI_Ax IrDA Receive Control Read/write Byte 00h Section 36.4.10 1Ch UCAxICTL USCI_Ax Interrupt Control Read/write Word 0000h 1Ch UCAxIE USCI_Ax Interrupt Enable Read/write Byte 00h Section 36.4.12 1Dh UCAxIFG USCI_Ax Interrupt Flag Read/write Byte 00h Section 36.4.13 1Eh UCAxIV USCI_Ax Interrupt Vector Read Word 0000h Section 36.4.14 Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI_A UART Mode Registers www.ti.com 36.4.1 UCAxCTL0 Register USCI_Ax Control Register 0 Figure 36-12. UCAxCTL0 Register 7 6 5 4 3 UCPEN UCPAR UCMSB UC7BIT UCSPB rw-0 rw-0 rw-0 rw-0 rw-0 2 1 UCMODEx rw-0 0 UCSYNC rw-0 rw-0 Modify only when UCSWRST = 1. Table 36-7. UCAxCTL0 Register Description Bit Field Type Reset Description 7 UCPEN RW 0h Parity enable 0b = Parity disabled 1b = Parity enabled. Parity bit is generated (UCAxTXD) and expected (UCAxRXD). In address-bit multiprocessor mode, the address bit is included in the parity calculation. 6 UCPAR RW 0h Parity select. UCPAR is not used when parity is disabled. 0b = Odd parity 1b = Even parity 5 UCMSB RW 0h MSB first select. Controls the direction of the receive and transmit shift register. 0b = LSB first 1b = MSB first 4 UC7BIT RW 0h Character length. Selects 7-bit or 8-bit character length. 0b = 8-bit data 1b = 7-bit data 3 UCSPB RW 0h Stop bit select. Number of stop bits. 0b = One stop bit 1b = Two stop bits 2-1 UCMODEx RW 0h USCI mode. The UCMODEx bits select the asynchronous mode when UCSYNC = 0. 00b = UART mode 01b = Idle-line multiprocessor mode 10b = Address-bit multiprocessor mode 11b = UART mode with automatic baud-rate detection 0 UCSYNC RW 0h Synchronous mode enable 0b = Asynchronous mode 1b = Synchronous mode SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 959 USCI_A UART Mode Registers www.ti.com 36.4.2 UCAxCTL1 Register USCI_Ax Control Register 1 Figure 36-13. UCAxCTL1 Register 7 6 UCSSELx rw-0 5 4 3 2 1 0 UCRXEIE UCBRKIE UCDORM UCTXADDR UCTXBRK UCSWRST rw-0 rw-0 rw-0 rw-0 rw-0 rw-1 rw-0 Modify only when UCSWRST = 1. Table 36-8. UCAxCTL1 Register Description Bit Field Type Reset Description 7-6 UCSSELx RW 0h USCI clock source select. These bits select the BRCLK source clock. 00b = UCAxCLK (external USCI clock) 01b = ACLK 10b = SMCLK 11b = SMCLK 5 UCRXEIE RW 0h Receive erroneous-character interrupt enable 0b = Erroneous characters rejected and UCRXIFG is not set. 1b = Erroneous characters received set UCRXIFG. 4 UCBRKIE RW 0h Receive break character interrupt enable 0b = Received break characters do not set UCRXIFG. 1b = Received break characters set UCRXIFG. 3 UCDORM RW 0h Dormant. Puts USCI into sleep mode. 0b = Not dormant. All received characters set UCRXIFG. 1b = Dormant. Only characters that are preceded by an idle-line or with address bit set UCRXIFG. In UART mode with automatic baud-rate detection, only the combination of a break and synch field sets UCRXIFG. 2 UCTXADDR RW 0h Transmit address. Next frame to be transmitted is marked as address, depending on the selected multiprocessor mode. 0b = Next frame transmitted is data. 1b = Next frame transmitted is an address. 1 UCTXBRK RW 0h Transmit break. Transmits a break with the next write to the transmit buffer. In UART mode with automatic baud-rate detection, 055h must be written into UCAxTXBUF to generate the required break/synch fields. Otherwise, 0h must be written into the transmit buffer. 0b = Next frame transmitted is not a break. 1b = Next frame transmitted is a break or a break/synch. 0 UCSWRST RW 1h Software reset enable 0b = Disabled. USCI reset released for operation. 1b = Enabled. USCI logic held in reset state. 960 Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI_A UART Mode Registers www.ti.com 36.4.3 UCAxBR0 Register USCI_Ax Baud Rate Control Register 0 Figure 36-14. UCAxBR0 Register 7 6 5 4 rw rw rw rw 3 2 1 0 rw rw rw rw UCBRx Modify only when UCSWRST = 1. Table 36-9. UCAxBR0 Register Description Bit Field Type Reset Description 7-0 UCBRx RW undefine d Low byte of clock prescaler setting of the baud-rate generator. The 16-bit value of (UCAxBR0 + UCAxBR1 × 256) forms the prescaler value UCBRx. 36.4.4 UCAxBR1 Register USCI_Ax Baud Rate Control Register 1 Figure 36-15. UCAxBR1 Register 7 6 5 4 3 2 1 0 rw rw rw rw UCBRx rw rw rw rw Modify only when UCSWRST = 1. Table 36-10. UCAxBR1 Register Description Bit Field Type Reset Description 7-0 UCBRx RW undefined High byte of clock prescaler setting of the baud-rate generator. The 16-bit value of (UCAxBR0 + UCAxBR1 × 256) forms the prescaler value UCBRx. 36.4.5 UCAxMCTL Register USCI_Ax Modulation Control Register Figure 36-16. UCAxMCTL Register 7 6 5 4 3 UCBRFx rw-0 rw-0 2 1 UCBRSx rw-0 rw-0 rw-0 rw-0 0 UCOS16 rw-0 rw-0 Modify only when UCSWRST = 1. Table 36-11. UCAxMCTL Register Description Bit Field Type Reset Description 7-4 UCBRFx RW 0h First modulation stage select. These bits determine the modulation pattern for BITCLK16 when UCOS16 = 1. Ignored with UCOS16 = 0. Table 36-2 shows the modulation pattern. 3-1 UCBRSx RW 0h Second modulation stage select. These bits determine the modulation pattern for BITCLK. Table 36-2 shows the modulation pattern. 0 UCOS16 RW 0h Oversampling mode enabled 0b = Disabled 1b = Enabled SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 961 USCI_A UART Mode Registers www.ti.com 36.4.6 UCAxSTAT Register USCI_Ax Status Register Figure 36-17. UCAxSTAT Register 7 6 5 4 3 2 1 0 UCLISTEN UCFE UCOE UCPE UCBRK UCRXERR UCADDR/ UCIDLE UCBUSY rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r-0 Modify only when UCSWRST = 1. Table 36-12. UCAxSTAT Register Description Bit Field Type Reset Description 7 UCLISTEN RW 0h Listen enable. The UCLISTEN bit selects loopback mode. 0b = Disabled 1b = Enabled. UCAxTXD is internally fed back to the receiver. 6 UCFE RW 0h Framing error flag. UCFE is cleared when UCAxRXBUF is read. 0b = No error 1b = Character received with low stop bit 5 UCOE RW 0h Overrun error flag. This bit is set when a character is transferred into UCAxRXBUF before the previous character was read. UCOE is cleared automatically when UCxRXBUF is read, and must not be cleared by software. Otherwise, it does not function correctly. 0b = No error 1b = Overrun error occurred 4 UCPE RW 0h Parity error flag. When UCPEN = 0, UCPE is read as 0. UCPE is cleared when UCAxRXBUF is read. 0b = No error 1b = Character received with parity error 3 UCBRK RW 0h Break detect flag. UCBRK is cleared when UCAxRXBUF is read. 0b = No break condition 1b = Break condition occurred 2 UCRXERR RW 0h Receive error flag. This bit indicates a character was received with error(s). When UCRXERR = 1, on or more error flags, UCFE, UCPE, or UCOE is also set. UCRXERR is cleared when UCAxRXBUF is read. 0b = No receive errors detected 1b = Receive error detected 1 UCADDR/UCIDLE RW 0h UCADDR: Address received in address-bit multiprocessor mode. UCADDR is cleared when UCAxRXBUF is read. 0b = Received character is data. 1b = Received character is an address. UCIDLE: Idle line detected in idle-line multiprocessor mode. UCIDLE is cleared when UCAxRXBUF is read. 0b = No idle line detected 1b = Idle line detected 0 UCBUSY R 0h USCI busy. This bit indicates if a transmit or receive operation is in progress. 0b = USCI inactive 1b = USCI transmitting or receiving 962 Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI_A UART Mode Registers www.ti.com 36.4.7 UCAxRXBUF Register USCI_Ax Receive Buffer Register Figure 36-18. UCAxRXBUF Register 7 6 5 4 r r r r 3 2 1 0 r r r r UCRXBUFx Table 36-13. UCAxRXBUF Register Description Bit Field Type Reset Description 7-0 UCRXBUFx R undefined The receive-data buffer is user accessible and contains the last received character from the receive shift register. Reading UCAxRXBUF resets the receive-error bits, the UCADDR or UCIDLE bit, and UCRXIFG. In 7-bit data mode, UCAxRXBUF is LSB justified and the MSB is always reset. 36.4.8 UCAxTXBUF Register USCI_Ax Transmit Buffer Register Figure 36-19. UCAxTXBUF Register 7 6 5 4 3 2 1 0 rw rw rw rw UCTXBUFx rw rw rw rw Table 36-14. UCAxTXBUF Register Description Bit Field Type Reset Description 7-0 UCTXBUFx RW undefined The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift register and transmitted on UCAxTXD. Writing to the transmit data buffer clears UCTXIFG. The MSB of UCAxTXBUF is not used for 7-bit data and is reset. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 963 USCI_A UART Mode Registers www.ti.com 36.4.9 UCAxIRTCTL Register USCI_Ax IrDA Transmit Control Register Figure 36-20. UCAxIRTCTL Register 7 6 5 rw-0 rw-0 rw-0 4 3 2 rw-0 rw-0 rw-0 UCIRTXPLx 1 0 UCIRTXCLK UCIREN rw-0 rw-0 Modify only when UCSWRST = 1. Table 36-15. UCAxIRTCTL Register Description Bit Field Type Reset Description 7-2 UCIRTXPLx RW 0h Transmit pulse length. Pulse length t(PULSE) = (UCIRTXPLx + 1) / [2 × f(IRTXCLK)] 1 UCIRTXCLK RW 0h IrDA transmit pulse clock select 0b = BRCLK 1b = BITCLK16 when UCOS16 = 1. Otherwise, BRCLK. 0 UCIREN RW 0h IrDA encoder and decoder enable 0b = IrDA encoder and decoder disabled 1b = IrDA encoder and decoder enabled 36.4.10 UCAxIRRCTL Register USCI_Ax IrDA Receive Control Register Figure 36-21. UCAxIRRCTL Register 7 6 5 4 3 2 UCIRRXFLx rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 1 0 UCIRRXPL UCIRRXFE rw-0 rw-0 Modify only when UCSWRST = 1. Table 36-16. UCAxIRRCTL Register Description Bit Field Type Reset Description 7-2 UCIRRXFLx RW 0h Receive filter length. The minimum pulse length for receive is given by: t(MIN) = (UCIRRXFLx + 4) / (2 × f(BRCLK)) 1 UCIRRXPL RW 0h IrDA receive input UCAxRXD polarity 0b = IrDA transceiver delivers a high pulse when a light pulse is seen. 1b = IrDA transceiver delivers a low pulse when a light pulse is seen. 0 UCIRRXFE RW 0h IrDA receive filter enabled 0b = Receive filter disabled 1b = Receive filter enabled 964 Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI_A UART Mode Registers www.ti.com 36.4.11 UCAxABCTL Register USCI_Ax Auto Baud Rate Control Register Figure 36-22. UCAxABCTL Register 7 6 5 4 r-0 rw-0 Reserved r-0 UCDELIMx rw-0 3 2 1 0 UCSTOE UCBTOE Reserved UCABDEN rw-0 rw-0 r-0 rw-0 Modify only when UCSWRST = 1. Table 36-17. UCAxABCTL Register Description Bit Field Type Reset Description 7-6 Reserved R 0h Reserved. Always reads as 0. 5-4 UCDELIMx RW 0h Break and synch delimiter length 00b = 1 bit time 01b = 2 bit times 10b = 3 bit times 11b = 4 bit times 3 UCSTOE RW 0h Synch field time out error 0b = No error 1b = Length of synch field exceeded measurable time. 2 UCBTOE RW 0h Break time out error 0b = No error 1b = Length of break field exceeded 22 bit times. 1 Reserved R 0h Reserved. Always reads as 0. 0 UCABDEN RW 0h Automatic baud-rate detect enable 0b = Baud-rate detection disabled. Length of break and synch field is not measured. 1b = Baud-rate detection enabled. Length of break and synch field is measured and baud-rate settings are changed accordingly. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 965 USCI_A UART Mode Registers www.ti.com 36.4.12 UCAxIE Register USCI_Ax Interrupt Enable Register Figure 36-23. UCAxIE Register 7 6 5 r-0 r-0 r-0 4 3 2 r-0 r-0 r-0 Reserved 1 0 UCTXIE UCRXIE rw-0 rw-0 Table 36-18. UCAxIE Register Description Bit Field Type Reset Description 7-2 Reserved R 0h Reserved. Always reads as 0. 1 UCTXIE RW 0h Transmit interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 0 UCRXIE RW 0h Receive interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 36.4.13 UCAxIFG Register USCI_Ax Interrupt Flag Register Figure 36-24. UCAxIFG Register 7 6 5 4 3 2 Reserved r-0 r-0 r-0 r-0 r-0 r-0 1 0 UCTXIFG UCRXIFG rw-1 rw-0 Table 36-19. UCAxIFG Register Description Bit Field Type Reset Description 7-2 Reserved R 0h Reserved. Always reads as 0. 1 UCTXIFG RW 1h Transmit interrupt flag. UCTXIFG is set when UCAxTXBUF empty. 0b = No interrupt pending 1b = Interrupt pending 0 UCRXIFG RW 0h Receive interrupt flag. UCRXIFG is set when UCAxRXBUF has received a complete character. 0b = No interrupt pending 1b = Interrupt pending 966 Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI_A UART Mode Registers www.ti.com 36.4.14 UCAxIV Register USCI_Ax Interrupt Vector Register Figure 36-25. UCAxIV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-0 r-0 r-0 r0 UCIVx UCIVx r0 r0 r0 r-0 Table 36-20. UCAxIV Register Description Bit Field Type Reset Description 15-0 UCIVx R 0h USCI interrupt vector value 00h = No interrupt pending 02h = Interrupt Source: Data received; Interrupt Flag: UCRXIFG; Interrupt Priority: Highest 04h = Interrupt Source: Transmit buffer empty; Interrupt Flag: UCTXIFG; Interrupt Priority: Lowest SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 967 Chapter 37 SLAU208O – June 2008 – Revised May 2015 Universal Serial Communication Interface – SPI Mode The universal serial communication interface (USCI) supports multiple serial communication modes with one hardware module. This chapter discusses the operation of the synchronous peripheral interface (SPI) mode. Topic 37.1 37.2 37.3 37.4 37.5 968 ........................................................................................................................... Universal Serial Communication Interface (USCI) Overview ................................... USCI Introduction – SPI Mode ............................................................................ USCI Operation – SPI Mode ............................................................................... USCI_A SPI Mode Registers............................................................................... USCI_B SPI Mode Registers............................................................................... Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated Page 969 970 972 978 986 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback www.ti.com Universal Serial Communication Interface (USCI) Overview 37.1 Universal Serial Communication Interface (USCI) Overview The universal serial communication interface (USCI) modules support multiple serial communication modes. Different USCI modules support different modes. Each different USCI module is named with a different letter. For example, USCI_A is different from USCI_B. If more than one identical USCI module is implemented on one device, those modules are named with incrementing numbers. For example, if one device has two USCI_A modules, they are named USCI_A0 and USCI_A1. See the device-specific data sheet to determine which USCI modules, if any, are implemented on which devices. USCI_Ax modules support: • UART mode • Pulse shaping for IrDA communications • Automatic baud-rate detection for LIN communications • SPI mode USCI_Bx modules support: • I2C mode • SPI mode SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 969 USCI Introduction – SPI Mode www.ti.com 37.2 USCI Introduction – SPI Mode In synchronous mode, the USCI connects the device to an external system via three or four pins: UCxSIMO, UCxSOMI, UCxCLK, and UCxSTE. SPI mode is selected when the UCSYNC bit is set, and SPI mode (3-pin or 4-pin) is selected with the UCMODEx bits. SPI mode features include: • 7-bit or 8-bit data length • LSB-first or MSB-first data transmit and receive • 3-pin and 4-pin SPI operation • Master or slave modes • Independent transmit and receive shift registers • Separate transmit and receive buffer registers • Continuous transmit and receive operation • Selectable clock polarity and phase control • Programmable clock frequency in master mode • Independent interrupt capability for receive and transmit • Slave operation in LPM4 Figure 37-1 shows the USCI when configured for SPI mode. 970 Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Introduction – SPI Mode www.ti.com Receive State Machine Set UCOE Set UCxRXIFG UCLISTEN UCMST Receive Buffer UC xRXBUF UCxSOMI 0 Receive Shift Register 1 1 0 UCMSB UC7BIT UCSSELx Bit Clock Generator UCCKPH UCCKPL UCxBRx N/A 00 ACLK 01 SMCLK 10 SMCLK 11 16 Prescaler/Divider BRCLK Clock Direction, Phase and Polarity UCxCLK UCMSB UC7BIT UCxSIMO Transmit Shift Register UCMODEx 2 Transmit Buffer UC xTXBUF Transmit Enable Control UCxSTE Set UCFE Transmit State Machine Set UCxTXIFG Figure 37-1. USCI Block Diagram – SPI Mode SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 971 USCI Operation – SPI Mode www.ti.com 37.3 USCI Operation – SPI Mode In SPI mode, serial data is transmitted and received by multiple devices using a shared clock provided by the master. An additional pin, UCxSTE, is provided to enable a device to receive and transmit data and is controlled by the master. Three or four signals are used for SPI data exchange: • UCxSIMO – slave in, master out Master mode: UCxSIMO is the data output line. Slave mode: UCxSIMO is the data input line. • UCxSOMI – slave out, master in Master mode: UCxSOMI is the data input line. Slave mode: UCxSOMI is the data output line. • UCxCLK – USCI SPI clock Master mode: UCxCLK is an output. Slave mode: UCxCLK is an input. • UCxSTE – slave transmit enable Used in 4-pin mode to allow multiple masters on a single bus. Not used in 3-pin mode. Table 37-1 describes the UCxSTE operation. Table 37-1. UCxSTE Operation UCMODEx UCxSTE Active State 01 High 10 Low UCxSTE Slave 0 Inactive Master Active 1 Active Inactive 0 Active Inactive 1 Inactive Active 37.3.1 USCI Initialization and Reset The USCI is reset by a PUC or by the UCSWRST bit. After a PUC, the UCSWRST bit is automatically set, keeping the USCI in a reset condition. When set, the UCSWRST bit resets the UCRXIE, UCTXIE, UCRXIFG, UCOE, and UCFE bits, and sets the UCTXIFG flag. Clearing UCSWRST releases the USCI for operation. To avoid unpredictable behavior, configure or reconfigure the USCI module only when UCSWRST is set. NOTE: Initializing or reconfiguring the USCI module The recommended USCI initialization/reconfiguration process is: 1. Set UCSWRST (BIS.B #UCSWRST,&UCxCTL1). 2. Initialize all USCI registers with UCSWRST = 1 (including UCxCTL1). 3. Configure ports. 4. Clear UCSWRST via software (BIC.B #UCSWRST,&UCxCTL1). 5. Enable interrupts (optional) via UCRXIE and/or UCTXIE. 37.3.2 Character Format The USCI module in SPI mode supports 7-bit and 8-bit character lengths selected by the UC7BIT bit. In 7bit data mode, UCxRXBUF is LSB justified and the MSB is always reset. The UCMSB bit controls the direction of the transfer and selects LSB or MSB first. 972 Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – SPI Mode www.ti.com NOTE: Default character format The default SPI character transmission is LSB first. For communication with other SPI interfaces, MSB-first mode may be required. NOTE: Character format for Figures Figures throughout this chapter use MSB-first format. 37.3.3 Master Mode MASTER Receive Buffer UCxRXBUF UCxSIMO SLAVE SIMO Transmit Buffer UCxTXBUF SPI Receive Buffer Px.x UCxSTE Receive Shift Register Transmit Shift Register UCx SOMI UCxCLK STE SS Port.x SOMI Data Shift Register (DSR) SCLK MSP430 USCI COMMON SPI Figure 37-2. USCI Master and External Slave Figure 37-2 shows the USCI as a master in both 3-pin and 4-pin configurations. The USCI initiates data transfer when data is moved to the transmit data buffer UCxTXBUF. The UCxTXBUF data is moved to the transmit (TX) shift register when the TX shift register is empty, initiating data transfer on UCxSIMO starting with either the MSB or LSB, depending on the UCMSB setting. Data on UCxSOMI is shifted into the receive shift register on the opposite clock edge. When the character is received, the receive data is moved from the receive (RX) shift register to the received data buffer UCxRXBUF and the receive interrupt flag UCRXIFG is set, indicating the RX/TX operation is complete. A set transmit interrupt flag, UCTXIFG, indicates that data has moved from UCxTXBUF to the TX shift register and UCxTXBUF is ready for new data. It does not indicate RX/TX completion. To receive data into the USCI in master mode, data must be written to UCxTXBUF, because receive and transmit operations operate concurrently. 37.3.3.1 4-Pin SPI Master Mode In 4-pin master mode, UCxSTE is used to prevent conflicts with another master and controls the master as described in Table 37-1. When UCxSTE is in the master-inactive state: • UCxSIMO and UCxCLK are set to inputs and no longer drive the bus. • The error bit UCFE is set, indicating a communication integrity violation to be handled by the user. • The internal state machines are reset and the shift operation is aborted. If data is written into UCxTXBUF while the master is held inactive by UCxSTE, it is transmit as soon as UCxSTE transitions to the master-active state. If an active transfer is aborted by UCxSTE transitioning to the master-inactive state, the data must be rewritten into UCxTXBUF to be transferred when UCxSTE transitions back to the master-active state. The UCxSTE input signal is not used in 3-pin master mode. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 973 USCI Operation – SPI Mode www.ti.com NOTE: Shared UCxSTE and UCxCLK pins On some devices the UCAxSTE functionality of an USCI_Ax module shares the same pin with the UCBxCLK functionality of the corresponding USCI_Bx module and vice versa (UCBxSTE shared with UCAxCLK). If the UCxCLK functionality is required by the corresponding module the UCxSTE functionality cannot be used by the other module. If the latter is configured in 4-pin SPI master mode, the clock signal will be interpreted as the STE signal and will corrupt its communication. To avoid this error, make sure that the latter module is configured in 3-pin SPI master mode. 37.3.4 Slave Mode MASTER SIMO SLAVE UCxSIMO SPI Receive Buffer Receive Buffer UCxRXBUF Transmit Buffer UCxTXBUF Data Shift Register DSR Px.x UCxSTE STE SS Port.x SOMI SCLK UCx SOMI Transmit Shift Register Receive Shift Register UCxCLK COMMON SPI MSP430 USCI Figure 37-3. USCI Slave and External Master Figure 37-3 shows the USCI as a slave in both 3-pin and 4-pin configurations. UCxCLK is used as the input for the SPI clock and must be supplied by the external master. The data-transfer rate is determined by this clock and not by the internal bit clock generator. Data written to UCxTXBUF and moved to the TX shift register before the start of UCxCLK is transmitted on UCxSOMI. Data on UCxSIMO is shifted into the receive shift register on the opposite edge of UCxCLK and moved to UCxRXBUF when the set number of bits are received. When data is moved from the RX shift register to UCxRXBUF, the UCRXIFG interrupt flag is set, indicating that data has been received. The overrun error bit UCOE is set when the previously received data is not read from UCxRXBUF before new data is moved to UCxRXBUF. 37.3.4.1 4-Pin SPI Slave Mode In 4-pin slave mode, UCxSTE is used by the slave to enable the transmit and receive operations and is provided by the SPI master. When UCxSTE is in the slave-active state, the slave operates normally. When UCxSTE is in the slave- inactive state: • Any receive operation in progress on UCxSIMO is halted. • UCxSOMI is set to the input direction. • The shift operation is halted until the UCxSTE line transitions into the slave transmit active state. The UCxSTE input signal is not used in 3-pin slave mode. 974 Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – SPI Mode www.ti.com NOTE: Shared UCxSTE and UCxCLK pins On some devices the UCAxSTE functionality of an USCI_Ax module shares the same pin with the UCBxCLK functionality of the corresponding USCI_Bx module and vice versa (UCBxSTE shared with UCAxCLK). If the UCxCLK functionality is required by the corresponding module the UCxSTE functionality cannot be used by the other module. If the latter is configured in 4-pin SPI master mode, the clock signal will be interpreted as the STE signal and will corrupt its communication. To avoid this error, make sure that the latter module is configured in 3-pin SPI master mode. 37.3.5 SPI Enable When the USCI module is enabled by clearing the UCSWRST bit, it is ready to receive and transmit. In master mode, the bit clock generator is ready, but is not clocked nor producing any clocks. In slave mode, the bit clock generator is disabled and the clock is provided by the master. A transmit or receive operation is indicated by UCBUSY = 1. A PUC or set UCSWRST bit disables the USCI immediately and any active transfer is terminated. 37.3.5.1 Transmit Enable In master mode, writing to UCxTXBUF activates the bit clock generator, and the data begins to transmit. In slave mode, transmission begins when a master provides a clock and, in 4-pin mode, when the UCxSTE is in the slave-active state. 37.3.5.2 Receive Enable The SPI receives data when a transmission is active. Receive and transmit operations operate concurrently. 37.3.6 Serial Clock Control UCxCLK is provided by the master on the SPI bus. When UCMST = 1, the bit clock is provided by the USCI bit clock generator on the UCxCLK pin. The clock used to generate the bit clock is selected with the UCSSELx bits. When UCMST = 0, the USCI clock is provided on the UCxCLK pin by the master, the bit clock generator is not used, and the UCSSELx bits are don't care. The SPI receiver and transmitter operate in parallel and use the same clock source for data transfer. The 16-bit value of UCBRx in the bit rate control registers (UCxxBR1 and UCxxBR0) is the division factor of the USCI clock source, BRCLK. The maximum bit clock that can be generated in master mode is BRCLK. Modulation is not used in SPI mode, and UCAxMCTL should be cleared when using SPI mode for USCI_A. The UCAxCLK/UCBxCLK frequency is given by: fBitClock = fBRCLK / UCBRx If UCBRx = 0, fBitClock = fBRCLK Even UCBRx settings result in even divisions and, thus, generate a bit clock with a 50/50 duty cycle. Odd UCBRx settings result in odd divisions. In this case, the high phase of the bit clock is one BRCLK cycle longer than the low phase. When UCBRx = 0, no division is applied to BRCLK, and the bit clock equals BRCLK. 37.3.6.1 Serial Clock Polarity and Phase The polarity and phase of UCxCLK are independently configured via the UCCKPL and UCCKPH control bits of the USCI. Timing for each case is shown in Figure 37-4. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 975 USCI Operation – SPI Mode UC UC CKPH CKPL Cycle# 0 0 UCxCLK 0 1 UCxCLK 1 0 UCxCLK 1 1 UCxCLK www.ti.com 1 2 3 4 5 6 7 8 UCxSTE 0 X UCxSIMO/ UCxSOMI MSB LSB 1 X UCxSIMO UCxSOMI MSB LSB Move to UCxTXBUF TX Data Shifted Out RX Sample Points Figure 37-4. USCI SPI Timing With UCMSB = 1 37.3.7 Using the SPI Mode With Low-Power Modes The USCI module provides automatic clock activation for use with low-power modes. When the USCI clock source is inactive because the device is in a low-power mode, the USCI module automatically activates it when needed, regardless of the control-bit settings for the clock source. The clock remains active until the USCI module returns to its idle condition. After the USCI module returns to the idle condition, control of the clock source reverts to the settings of its control bits. In SPI slave mode, no internal clock source is required because the clock is provided by the external master. It is possible to operate the USCI in SPI slave mode while the device is in LPM4 and all clock sources are disabled. The receive or transmit interrupt can wake up the CPU from any low-power mode. 976 Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – SPI Mode www.ti.com 37.3.8 USCI Interrupts in SPI Mode The USCI has only one interrupt vector that is shared for transmission and for reception. USCI_Ax and USC_Bx do not share the same interrupt vector. 37.3.8.1 SPI Transmit Interrupt Operation The UCTXIFG interrupt flag is set by the transmitter to indicate that UCxTXBUF is ready to accept another character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is automatically reset if a character is written to UCxTXBUF. UCTXIFG is set after a PUC or when UCSWRST = 1. UCTXIE is reset after a PUC or when UCSWRST = 1. NOTE: Writing to UCxTXBUF in SPI mode Data written to UCxTXBUF when UCTXIFG = 0 may result in erroneous data transmission. 37.3.8.2 SPI Receive Interrupt Operation The UCRXIFG interrupt flag is set each time a character is received and loaded into UCxRXBUF. An interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset by a system reset PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCxRXBUF is read. 37.3.8.3 UCxIV, Interrupt Vector Generator The USCI interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt vector register UCxIV is used to determine which flag requested an interrupt. The highest-priority enabled interrupt generates a number in the UCxIV register that can be evaluated or added to the program counter (PC) to automatically enter the appropriate software routine. Disabled interrupts do not affect the UCxIV value. Any access, read or write, of the UCxIV register automatically resets the highest-pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. 37.3.8.3.1 UCxIV Software Example The following software example shows the recommended use of UCxIV. The UCxIV value is added to the PC to automatically jump to the appropriate routine. The following example is given for USCI_B0. USCI_SPI_ISR ADD RETI JMP TXIFG_ISR ... RETI RXIFG_ISR ... RETI &UCB0IV, PC RXIFG_ISR SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ; ; ; ; ; ; ; ; ; Add offset to jump table Vector 0: No interrupt Vector 2: RXIFG Vector 4: TXIFG Task starts here Return Vector 2 Task starts here Return Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 977 USCI_A SPI Mode Registers www.ti.com 37.4 USCI_A SPI Mode Registers The USCI_A registers that are applicable in SPI mode are listed in Table 37-2. The base addresses can be found in the device-specific data sheet. The address offsets are listed in Table 37-2. Table 37-2. USCI_A SPI Mode Registers Offset Acronym Register Name Type Access Reset 00h UCAxCTLW0 USCI_Ax Control Word 0 Read/write Word 0001h 00h UCAxCTL1 USCI_Ax Control 1 Read/write Byte 01h Section 37.4.2 01h UCAxCTL0 USCI_Ax Control 0 Read/write Byte 00h Section 37.4.1 06h UCAxBRW USCI_Ax Bit Rate Control Word Read/write Word 0000h 06h UCAxBR0 USCI_Ax Bit Rate Control 0 Read/write Byte 00h Section 37.4.3 07h UCAxBR1 USCI_Ax Bit Rate Control 1 Read/write Byte 00h Section 37.4.4 08h UCAxMCTL USCI_Ax Modulation Control Read/write Byte 00h Section 37.4.5 0Ah UCAxSTAT USCI_Ax Status Read/write Byte 00h Section 37.4.6 Reserved - reads zero Read Byte 00h USCI_Ax Receive Buffer Read/write Byte 00h Reserved - reads zero Read Byte 00h USCI_Ax Transmit Buffer Read/write Byte 00h 0Bh 0Ch UCAxRXBUF 0Dh 0Eh UCAxTXBUF 0Fh 978 Section Section 37.4.7 Section 37.4.8 Reserved - reads zero Read Byte 00h 1Ch UCAxICTL USCI_Ax Interrupt Control Read/write Word 0200h 1Ch UCAxIE USCI_Ax Interrupt Enable Read/write Byte 00h Section 37.4.9 1Dh UCAxIFG USCI_Ax Interrupt Flag Read/write Byte 02h Section 37.4.10 1Eh UCAxIV USCI_Ax Interrupt Vector Read Word 0000h Section 37.4.11 Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI_A SPI Mode Registers www.ti.com 37.4.1 UCAxCTL0 Register USCI_Ax Control Register 0 Figure 37-5. UCAxCTL0 Register 7 6 5 4 3 UCCKPH UCCKPL UCMSB UC7BIT UCMST rw-0 rw-0 rw-0 rw-0 rw-0 2 1 UCMODEx rw-0 0 UCSYNC rw-0 rw-0 Modify only when UCSWRST = 1. Table 37-3. UCAxCTL0 Register Description Bit Field Type Reset Description 7 UCCKPH RW 0h Clock phase select 0b = Data is changed on the first UCLK edge and captured on the following edge. 1b = Data is captured on the first UCLK edge and changed on the following edge. 6 UCCKPL RW 0h Clock polarity select 0b = The inactive state is low. 1b = The inactive state is high. 5 UCMSB RW 0h MSB first select. Controls the direction of the receive and transmit shift register. 0b = LSB first 1b = MSB first 4 UC7BIT RW 0h Character length. Selects 7-bit or 8-bit character length. 0b = 8-bit data 1b = 7-bit data 3 UCMST RW 0h Master mode select 0b = Slave mode 1b = Master mode 2-1 UCMODEx RW 0h USCI mode. The UCMODEx bits select the synchronous mode when UCSYNC = 1. 00b = 3-pin SPI 01b = 4-pin SPI with UCxSTE active high: Slave enabled when UCxSTE = 1 10b = 4-pin SPI with UCxSTE active low: Slave enabled when UCxSTE = 0 11b = I2C mode 0 UCSYNC RW 0h Synchronous mode enable 0b = Asynchronous mode 1b = Synchronous mode SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 979 USCI_A SPI Mode Registers www.ti.com 37.4.2 UCAxCTL1 Register USCI_Ax Control Register 1 Figure 37-6. UCAxCTL1 Register 7 6 5 4 rw-0 rw-0 rw-0 UCSSELx rw-0 3 2 1 rw-0 rw-0 Reserved rw-0 0 UCSWRST rw-1 Modify only when UCSWRST = 1. Table 37-4. UCAxCTL1 Register Description Bit Field Type Reset Description 7-6 UCSSELx RW 0h USCI clock source select. These bits select the BRCLK source clock in master mode. UCxCLK is always used in slave mode. 00b = Reserved 01b = ACLK 10b = SMCLK 11b = SMCLK 5-1 Reserved RW 0h Reserved. Always write as 0. 0 UCSWRST RW 1h Software reset enable 0b = Disabled. USCI reset released for operation. 1b = Enabled. USCI logic held in reset state. 980 Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI_A SPI Mode Registers www.ti.com 37.4.3 UCAxBR0 Register USCI_Ax Bit Rate Control Register 0 Figure 37-7. UCAxBR0 Register 7 6 5 4 rw rw rw rw 3 2 1 0 rw rw rw rw UCBRx Modify only when UCSWRST = 1. Table 37-5. UCAxBR0 Register Description Bit Field Type Reset Description 7-0 UCBRx RW undefine d Bit clock prescaler low byte. The 16-bit value of (UCAxBR0 + UCAxBR1 × 256) forms the prescaler value UCBRx. fBitClock = fBRCLK / UCBRx If UCBRx = 0, fBitClock = fBRCLK 37.4.4 UCAxBR1 Register USCI_Ax Bit Rate Control Register 1 Figure 37-8. UCAxBR1 Register 7 6 5 4 3 2 1 0 rw rw rw rw UCBRx rw rw rw rw Modify only when UCSWRST = 1. Table 37-6. UCAxBR1 Register Description Bit Field Type Reset Description 7-0 UCBRx RW undefined Bit clock prescaler high byte. The 16-bit value of (UCAxBR0 + UCAxBR1 × 256) forms the prescaler value UCBRx. fBitClock = fBRCLK / UCBRx If UCBRx = 0, fBitClock = fBRCLK 37.4.5 UCAxMCTL Register USCI_Ax Modulation Control Register Figure 37-9. UCAxMCTL Register 7 6 5 4 3 2 1 0 rw-0 rw-0 rw-0 rw-0 Reserved rw-0 rw-0 rw-0 rw-0 Table 37-7. UCAxMCTL Register Description Bit Field Type Reset Description 7-0 Reserved R 0h Reserved. Always write as 0. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 981 USCI_A SPI Mode Registers www.ti.com 37.4.6 UCAxSTAT Register USCI_Ax Status Register Figure 37-10. UCAxSTAT Register 7 6 5 UCLISTEN UCFE UCOE rw-0 rw-0 rw-0 4 3 rw-0 rw-0 2 1 rw-0 rw-0 Reserved 0 UCBUSY r-0 Modify only when UCSWRST = 1. Table 37-8. UCAxSTAT Register Description Bit Field Type Reset Description 7 UCLISTEN RW 0h Listen enable. The UCLISTEN bit selects loopback mode. 0b = Disabled 1b = Enabled. The transmitter output is internally fed back to the receiver. 6 UCFE RW 0h Framing error flag. This bit indicates a bus conflict in 4-wire master mode. UCFE is not used in 3-wire master or any slave mode. 0b = No error 1b = Bus conflict occurred. 5 UCOE RW 0h Overrun error flag. This bit is set when a character is transferred into UCxRXBUF before the previous character was read. UCOE is cleared automatically when UCxRXBUF is read, and must not be cleared by software. Otherwise, it does not function correctly. 0b = No error 1b = Overrun error occurred 4-1 Reserved R 0h Reserved. Always reads as 0. 0 UCBUSY R 0h USCI busy. This bit indicates if a transmit or receive operation is in progress. 0b = USCI inactive 1b = USCI transmitting or receiving 982 Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI_A SPI Mode Registers www.ti.com 37.4.7 UCAxRXBUF Register USCI_Ax Receive Buffer Register Figure 37-11. UCAxRXBUF Register 7 6 5 4 r r r r 3 2 1 0 r r r r UCRXBUFx Table 37-9. UCAxRXBUF Register Description Bit Field Type Reset Description 7-0 UCRXBUFx R undefined The receive-data buffer is user accessible and contains the last received character from the receive shift register. Reading UCRXBUF resets the receiveerror bits and UCRXIFG. In 7-bit data mode, UCRXBUF is LSB justified and the MSB is always reset. 37.4.8 UCAxTXBUF Register USCI_Ax Transmit Buffer Register Figure 37-12. UCAxTXBUF Register 7 6 5 4 3 2 1 0 rw rw rw rw UCTXBUFx rw rw rw rw Table 37-10. UCAxTXBUF Register Description Bit Field Type Reset Description 7-0 UCTXBUFx RW undefined The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift register and transmitted. Writing to the transmit data buffer clears UCTXIFG. The MSB of UCAxTXBUF is not used for 7-bit data and is reset. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 983 USCI_A SPI Mode Registers www.ti.com 37.4.9 UCAxIE Register USCI_Ax Interrupt Enable Register Figure 37-13. UCAxIE Register 7 6 5 r-0 r-0 r-0 4 3 2 r-0 r-0 r-0 Reserved 1 0 UCTXIE UCRXIE rw-0 rw-0 Table 37-11. UCAxIE Register Description Bit Field Type Reset Description 7-2 Reserved R 0h Reserved. Always reads as 0. 1 UCTXIE RW 0h Transmit interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 0 UCRXIE RW 0h Receive interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 37.4.10 UCAxIFG Register USCI_Ax Interrupt Flag Register Figure 37-14. UCAxIFG Register 7 6 5 4 3 2 Reserved r-0 r-0 r-0 r-0 r-0 r-0 1 0 UCTXIFG UCRXIFG rw-1 rw-0 Table 37-12. UCAxIFG Register Description Bit Field Type Reset Description 7-2 Reserved R 0h Reserved. Always reads as 0. 1 UCTXIFG RW 1h Transmit interrupt flag. UCTXIFG is set when UCAxTXBUF empty. 0b = No interrupt pending 1b = Interrupt pending 0 UCRXIFG RW 0h Receive interrupt flag. UCRXIFG is set when UCAxRXBUF has received a complete character. 0b = No interrupt pending 1b = Interrupt pending 984 Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI_A SPI Mode Registers www.ti.com 37.4.11 UCAxIV Register USCI_Ax Interrupt Vector Register Figure 37-15. UCAxIV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-0 r-0 r-0 r0 UCIVx UCIVx r0 r0 r0 r-0 Table 37-13. UCAxIV Register Description Bit Field Type Reset Description 15-0 UCIVx R 0h USCI interrupt vector value 00h = No interrupt pending 02h = Interrupt Source: Data received; Interrupt Flag: UCRXIFG; Interrupt Priority: Highest 04h = Interrupt Source: Transmit buffer empty; Interrupt Flag: UCTXIFG; Interrupt Priority: Lowest SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 985 USCI_B SPI Mode Registers www.ti.com 37.5 USCI_B SPI Mode Registers The USCI_B registers applicable in SPI mode are listed in Table 37-14. The base addresses can be found in the device-specific data sheet. The address offsets are listed in Table 37-14. Table 37-14. USCI_B SPI Mode Registers Offset Acronym Register Name Type Access Reset 00h UCBxCTLW0 USCI_Bx Control Word 0 Read/write Word 0101h 00h UCBxCTL1 USCI_Bx Control 1 Read/write Byte 01h Section 37.5.2 01h UCBxCTL0 USCI_Bx Control 0 Read/write Byte 01h Section 37.5.1 06h UCBxBRW USCI_Bx Bit Rate Control Word Read/write Word 0000h 06h UCBxBR0 USCI_Bx Bit Rate Control 0 Read/write Byte 00h Section 37.5.3 07h UCBxBR1 USCI_Bx Bit Rate Control 1 Read/write Byte 00h Section 37.5.4 08h UCBxMCTL USCI_Bx Modulation Control Read/write Byte 00h Section 37.5.5 0Ah UCBxSTAT USCI_Bx Status Read/write Byte 00h Section 37.5.6 Reserved - reads zero Read Byte 00h USCI_Bx Receive Buffer Read/write Byte 00h Reserved - reads zero Read Byte 00h USCI_Bx Transmit Buffer Read/write Byte 00h 0Bh 0Ch UCBxRXBUF 0Dh 0Eh UCBxTXBUF 0Fh 986 Section Section 37.5.7 Section 37.5.8 Reserved - reads zero Read Byte 00h 1Ch UCBxICTL USCI_Bx Interrupt Control Read/write Word 0200h 1Ch UCBxIE USCI_Bx Interrupt Enable Read/write Byte 00h Section 37.5.9 1Dh UCBxIFG USCI_Bx Interrupt Flag Read/write Byte 02h Section 37.5.10 1Eh UCBxIV USCI_Bx Interrupt Vector Read Word 0000h Section 37.5.11 Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI_B SPI Mode Registers www.ti.com 37.5.1 UCBxCTL0 Register USCI_Bx Control Register 0 Figure 37-16. UCBxCTL0 Register 7 6 5 4 3 UCCKPH UCCKPL UCMSB UC7BIT UCMST rw-0 rw-0 rw-0 rw-0 rw-0 2 1 UCMODEx rw-0 0 UCSYNC rw-0 rw-1 Modify only when UCSWRST = 1. Table 37-15. UCBxCTL0 Register Description Bit Field Type Reset Description 7 UCCKPH RW 0h Clock phase select 0b = Data is changed on the first UCLK edge and captured on the following edge. 1b = Data is captured on the first UCLK edge and changed on the following edge. 6 UCCKPL RW 0h Clock polarity select 0b = The inactive state is low. 1b = The inactive state is high. 5 UCMSB RW 0h MSB first select. Controls the direction of the receive and transmit shift register. 0b = LSB first 1b = MSB first 4 UC7BIT RW 0h Character length. Selects 7-bit or 8-bit character length. 0b = 8-bit data 1b = 7-bit data 3 UCMST RW 0h Master mode select 0b = Slave mode 1b = Master mode 2-1 UCMODEx RW 0h USCI mode. The UCMODEx bits select the synchronous mode when UCSYNC = 1. 00b = 3-pin SPI 01b = 4-pin SPI with UCxSTE active high: Slave enabled when UCxSTE = 1 10b = 4-pin SPI with UCxSTE active low: Slave enabled when UCxSTE = 0 11b = I2C mode 0 UCSYNC RW 1h Synchronous mode enable 0b = Asynchronous mode 1b = Synchronous mode SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 987 USCI_B SPI Mode Registers www.ti.com 37.5.2 UCBxCTL1 Register USCI_Bx Control Register 1 Figure 37-17. UCBxCTL1 Register 7 6 5 4 rw-0 r0 rw-0 UCSSELx rw-0 3 2 1 rw-0 rw-0 Reserved rw-0 0 UCSWRST rw-1 Modify only when UCSWRST = 1. Table 37-16. UCBxCTL1 Register Description Bit Field Type Reset Description 7-6 UCSSELx RW 0h USCI clock source select. These bits select the BRCLK source clock in master mode. UCxCLK is always used in slave mode. 00b = Reserved 01b = ACLK 10b = SMCLK 11b = SMCLK 5-1 Reserved RW 0h Reserved. Always write as 0. 0 UCSWRST RW 1h Software reset enable 0b = Disabled. USCI reset released for operation. 1b = Enabled. USCI logic held in reset state. 988 Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI_B SPI Mode Registers www.ti.com 37.5.3 UCBxBR0 Register USCI_Bx Bit Rate Control Register 0 Figure 37-18. UCBxBR0 Register 7 6 5 4 rw rw rw rw 3 2 1 0 rw rw rw rw UCBRx Modify only when UCSWRST = 1. Table 37-17. UCBxBR0 Register Description Bit Field Type Reset Description 7-0 UCBRx RW undefine d Bit clock prescaler low byte. The 16-bit value of (UCBxBR0 + UCBxBR1 × 256) forms the prescaler value UCBRx. fBitClock = fBRCLK / UCBRx If UCBRx = 0, fBitClock = fBRCLK 37.5.4 UCBxBR1 Register USCI_Bx Bit Rate Control Register 1 Figure 37-19. UCBxBR1 Register 7 6 5 4 3 2 1 0 rw rw rw rw UCBRx rw rw rw rw Modify only when UCSWRST = 1. Table 37-18. UCBxBR1 Register Description Bit Field Type Reset Description 7-0 UCBRx RW undefined Bit clock prescaler high byte. The 16-bit value of (UCBxBR0 + UCBxBR1 × 256) forms the prescaler value UCBRx. fBitClock = fBRCLK / UCBRx If UCBRx = 0, fBitClock = fBRCLK 37.5.5 UCBxMCTL Register USCI_Bx Modulation Control Register Figure 37-20. UCBxMCTL Register 7 6 5 4 3 2 1 0 rw-0 rw-0 rw-0 rw-0 Reserved rw-0 rw-0 rw-0 rw-0 Table 37-19. UCBxMCTL Register Description Bit Field Type Reset Description 7-0 Reserved R 0h Reserved. Always write as 0. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 989 USCI_B SPI Mode Registers www.ti.com 37.5.6 UCBxSTAT Register USCI_Bx Status Register Figure 37-21. UCBxSTAT Register 7 6 5 UCLISTEN UCFE UCOE rw-0 rw-0 rw-0 4 3 r0 r0 2 1 r0 r0 Reserved 0 UCBUSY r-0 Modify only when UCSWRST = 1. Table 37-20. UCBxSTAT Register Description Bit Field Type Reset Description 7 UCLISTEN RW 0h Listen enable. The UCLISTEN bit selects loopback mode. 0b = Disabled 1b = Enabled. The transmitter output is internally fed back to the receiver. 6 UCFE RW 0h Framing error flag. This bit indicates a bus conflict in 4-wire master mode. UCFE is not used in 3-wire master or any slave mode. 0b = No error 1b = Bus conflict occurred. 5 UCOE RW 0h Overrun error flag. This bit is set when a character is transferred into UCxRXBUF before the previous character was read. UCOE is cleared automatically when UCxRXBUF is read, and must not be cleared by software. Otherwise, it does not function correctly. 0b = No error 1b = Overrun error occurred 4-1 Reserved R 0h Reserved. Always reads as 0. 0 UCBUSY R 0h USCI busy. This bit indicates if a transmit or receive operation is in progress. 0b = USCI inactive 1b = USCI transmitting or receiving 990 Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI_B SPI Mode Registers www.ti.com 37.5.7 UCBxRXBUF Register USCI_Bx Receive Buffer Register Figure 37-22. UCBxRXBUF Register 7 6 5 4 r r r r 3 2 1 0 r r r r UCRXBUFx Table 37-21. UCBxRXBUF Register Description Bit Field Type Reset Description 7-0 UCRXBUFx R undefined The receive-data buffer is user accessible and contains the last received character from the receive shift register. Reading UCRXBUF resets the receiveerror bits and UCRXIFG. In 7-bit data mode, UCRXBUF is LSB justified and the MSB is always reset. 37.5.8 UCBxTXBUF Register USCI_Bx Transmit Buffer Register Figure 37-23. UCBxTXBUF Register 7 6 5 4 3 2 1 0 rw rw rw rw UCTXBUFx rw rw rw rw Table 37-22. UCBxTXBUF Register Description Bit Field Type Reset Description 7-0 UCTXBUFx RW undefined The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift register and transmitted. Writing to the transmit data buffer clears UCTXIFG. The MSB of UCBxTXBUF is not used for 7-bit data and is reset. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 991 USCI_B SPI Mode Registers www.ti.com 37.5.9 UCBxIE Register USCI_Bx Interrupt Enable Register Figure 37-24. UCBxIE Register 7 6 5 r-0 r-0 r-0 4 3 2 r-0 r-0 r-0 Reserved 1 0 UCTXIE UCRXIE rw-0 rw-0 Table 37-23. UCBxIE Register Description Bit Field Type Reset Description 7-2 Reserved R 0h Reserved. Always reads as 0. 1 UCTXIE RW 0h Transmit interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 0 UCRXIE RW 0h Receive interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 37.5.10 UCBxIFG Register USCI_Bx Interrupt Flag Register Figure 37-25. UCBxIFG Register 7 6 5 4 3 2 Reserved r-0 r-0 r-0 r-0 r-0 r-0 1 0 UCTXIFG UCRXIFG rw-1 rw-0 Table 37-24. UCBxIFG Register Description Bit Field Type Reset Description 7-2 Reserved R 0h Reserved. Always reads as 0. 1 UCTXIFG RW 1h Transmit interrupt flag. UCTXIFG is set when UCBxTXBUF empty. 0b = No interrupt pending 1b = Interrupt pending 0 UCRXIFG RW 0h Receive interrupt flag. UCRXIFG is set when UCBxRXBUF has received a complete character. 0b = No interrupt pending 1b = Interrupt pending 992 Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI_B SPI Mode Registers www.ti.com 37.5.11 UCBxIV Register USCI_Bx Interrupt Vector Register Figure 37-26. UCBxIV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-0 r-0 r-0 r0 UCIVx UCIVx r0 r0 r0 r-0 Table 37-25. UCBxIV Register Description Bit Field Type Reset Description 15-0 UCIVx R 0h USCI interrupt vector value 00h = No interrupt pending 02h = Interrupt Source: Data received; Interrupt Flag: UCRXIFG; Interrupt Priority: Highest 04h = Interrupt Source: Transmit buffer empty; Interrupt Flag: UCTXIFG; Interrupt Priority: Lowest SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 993 Chapter 38 SLAU208O – June 2008 – Revised May 2015 Universal Serial Communication Interface – I2C Mode The universal serial communication interface (USCI) supports multiple serial communication modes with one hardware module. This chapter discusses the operation of the I2C mode. Topic 38.1 38.2 38.3 38.4 994 ........................................................................................................................... Page Universal Serial Communication Interface (USCI) Overview ................................... 995 USCI Introduction – I2C Mode ............................................................................. 996 USCI Operation – I2C Mode ................................................................................ 997 USCI_B I2C Mode Registers ............................................................................. 1016 Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback www.ti.com Universal Serial Communication Interface (USCI) Overview 38.1 Universal Serial Communication Interface (USCI) Overview The USCI modules support multiple serial communication modes. Different USCI modules support different modes. Each different USCI module is named with a different letter. For example, USCI_A is different from USCI_B, etc. If more than one identical USCI module is implemented on one device, those modules are named with incrementing numbers. For example, if one device has two USCI_A modules, they are named USCI_A0 and USCI_A1. See the device-specific data sheet to determine which USCI modules, if any, are implemented on each device. USCI_Ax modules support: • UART mode • Pulse shaping for IrDA communications • Automatic baud-rate detection for LIN communications • SPI mode USCI_Bx modules support: • I2C mode • SPI mode SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 995 USCI Introduction – I2C Mode www.ti.com 38.2 USCI Introduction – I2C Mode In I2C mode, the USCI module provides an interface between the device and I2C-compatible devices connected by the two-wire I2C serial bus. External components attached to the I2C bus serially transmit and/or receive serial data to/from the USCI module through the 2-wire I2C interface. The I2C mode features include: • Compliance to the Philips Semiconductor I2C specification v2.1 • 7-bit and 10-bit device addressing modes • General call • START/RESTART/STOP • Multi-master transmitter/receiver mode • Slave receiver/transmitter mode • Standard mode up to 100 kbps and fast mode up to 400 kbps support • Programmable UCxCLK frequency in master mode • Designed for low power • Slave receiver START detection for auto wake up from LPMx modes (wake up from LPMx.5 is not supported) • Slave operation in LPM4 Figure 38-1 shows the USCI when configured in I2C mode. 996 Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – I2C Mode www.ti.com UCA10 UCGCEN Own Address UC1OA UCxSDA Receive Shift Register Receive Buffer UC 1RXBUF I2C State Machine Transmit Buffer UC 1TXBUF Transmit Shift Register Slave Address UC 1SA UCSLA10 UCxSCL UCSSELx Bit Clock Generator UCxBRx UC1CLK 00 ACLK 01 SMCLK 10 SMCLK 11 16 UCMST Prescaler/Divider BRCLK Figure 38-1. USCI Block Diagram – I2C Mode 38.3 USCI Operation – I2C Mode The I2C mode supports any slave or master I2C-compatible device. Figure 38-2 shows an example of an I2C bus. Each I2C device is recognized by a unique address and can operate as either a transmitter or a receiver. A device connected to the I2C bus can be considered as the master or the slave when performing data transfers. A master initiates a data transfer and generates the clock signal SCL. Any device addressed by a master is considered a slave. I2C data is communicated using the serial data (SDA) pin and the serial clock (SCL) pin. Both SDA and SCL are bidirectional and must be connected to a positive supply voltage using a pullup resistor. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 997 USCI Operation – I2C Mode www.ti.com VCC Device A MSP430 Serial Data (SDA) Serial Clock (SCL) Device C Device B Figure 38-2. I2C Bus Connection Diagram NOTE: SDA and SCL levels The SDA and SCL pins must not be pulled up above the device VCC level. 38.3.1 USCI Initialization and Reset The USCI is reset by a PUC or by setting the UCSWRST bit. After a PUC, the UCSWRST bit is automatically set, keeping the USCI in a reset condition. To select I2C operation, the UCMODEx bits must be set to 11. After module initialization, it is ready for transmit or receive operation. Clearing UCSWRST releases the USCI for operation. To avoid unpredictable behavior, configure or reconfigure the USCI module only when UCSWRST is set. Setting UCSWRST in I2C mode has the following effects: • I2C communication stops. • SDA and SCL are high impedance. • UCBxI2CSTAT, bits 6–0 are cleared. • Registers UCBxIE and UCBxIFG are cleared. • All other bits and register remain unchanged. NOTE: Initializing or re-configuring the USCI module The recommended USCI initialization/reconfiguration process is: 1. Set UCSWRST (BIS.B #UCSWRST,&UCxCTL1). 2. Initialize all USCI registers with UCSWRST = 1. 3. Configure ports. 4. Clear UCSWRST via software (BIC.B #UCSWRST,&UCxCTL1). 5. Enable interrupts (optional). 38.3.2 I2C Serial Data One clock pulse is generated by the master device for each data bit transferred. The I2C mode operates with byte data. Data is transferred MSB first as shown in Figure 38-3. The first byte after a START condition consists of a 7-bit slave address and the R/W bit. When R/W = 0, the master transmits data to a slave. When R/W = 1, the master receives data from a slave. The ACK bit is sent from the receiver after each byte on the ninth SCL clock. 998 Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – I2C Mode www.ti.com SDA MSB Acknowledgement Signal From Receiver Acknowledgement Signal From Receiver SCL 1 START Condition (S) 2 7 8 R/W 9 ACK 1 2 8 9 ACK STOP Condition (P) Figure 38-3. I2C Module Data Transfer START and STOP conditions are generated by the master and are shown in Figure 38-3. A START condition is a high-to-low transition on the SDA line while SCL is high. A STOP condition is a low-to-high transition on the SDA line while SCL is high. The bus busy bit, UCBBUSY, is set after a START and cleared after a STOP. Data on SDA must be stable during the high period of SCL (see Figure 38-4). The high and low state of SDA can only change when SCL is low, otherwise START or STOP conditions are generated. Data Line Stable Data SDA SCL Change of Data Allowed Figure 38-4. Bit Transfer on I2C Bus SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 999 USCI Operation – I2C Mode www.ti.com 2 38.3.3 I C Addressing Modes The I2C mode supports 7-bit and 10-bit addressing modes. 38.3.3.1 7-Bit Addressing In the 7-bit addressing format (see Figure 38-5), the first byte is the 7-bit slave address and the R/W bit. The ACK bit is sent from the receiver after each byte. 1 1 1 R/W ACK 7 S Slave Address 1 8 Data 1 8 ACK Data 1 ACK P Figure 38-5. I2C Module 7-Bit Addressing Format 38.3.3.2 10-Bit Addressing In the 10-bit addressing format (see Figure 38-6), the first byte is made up of 11110b plus the two MSBs of the 10-bit slave address and the R/W bit. The ACK bit is sent from the receiver after each byte. The next byte is the remaining eight bits of the 10-bit slave address, followed by the ACK bit and the 8-bit data. See I2C Slave 10-bit Addressing Mode and I2C Master 10-bit Addressing Mode for details how to use the 10-bit addressing mode with the USCI module. 1 1 7 S Slave Address 1st byte 1 1 1 1 0 X 1 R/W 1 8 1 8 ACK Slave Address 2nd byte ACK Data 1 ACK P X Figure 38-6. I2C Module 10-Bit Addressing Format 38.3.3.3 Repeated Start Conditions The direction of data flow on SDA can be changed by the master, without first stopping a transfer, by issuing a repeated START condition. This is called a RESTART. After a RESTART is issued, the slave address is again sent out with the new data direction specified by the R/W bit. The RESTART condition is shown in Figure 38-7. 1 7 1 S Slave Address 1 1 R/W ACK 8 1 1 Data ACK S Any Number 1 7 Slave Address 1 R/W ACK 1 8 1 1 Data ACK P Any Number Figure 38-7. I2C Module Addressing Format With Repeated START Condition 1000 Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – I2C Mode www.ti.com 38.3.4 I2C Module Operating Modes In I2C mode, the USCI module can operate in master transmitter, master receiver, slave transmitter, or slave receiver mode. The modes are discussed in the following sections. Time lines are used to illustrate the modes. Figure 38-8 shows how to interpret the time-line figures. Data transmitted by the master is represented by grey rectangles; data transmitted by the slave is represented by white rectangles. Data transmitted by the USCI module, either as master or slave, is shown by rectangles that are taller than the others. Actions taken by the USCI module are shown in grey rectangles with an arrow indicating where in the data stream the action occurs. Actions that must be handled with software are indicated with white rectangles with an arrow pointing to where in the data stream the action must take place. Other Master Other Slave USCI Master USCI Slave ... Bits set or reset by software ... Bits set or reset by hardware Figure 38-8. I2C Time-Line Legend 38.3.4.1 Slave Mode The USCI module is configured as an I2C slave by selecting the I2C mode with UCMODEx = 11 and UCSYNC = 1 and clearing the UCMST bit. Initially, the USCI module must to be configured in receiver mode by clearing the UCTR bit to receive the I2C address. Afterwards, transmit and receive operations are controlled automatically, depending on the R/W bit received together with the slave address. The USCI slave address is programmed with the UCBxI2COA register. When UCA10 = 0, 7-bit addressing is selected. When UCA10 = 1, 10-bit addressing is selected. The UCGCEN bit selects if the slave responds to a general call. When a START condition is detected on the bus, the USCI module receives the transmitted address and compare it against its own address stored in UCBxI2COA. The UCSTTIFG flag is set when address received matches the USCI slave address. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1001 USCI Operation – I2C Mode www.ti.com 38.3.4.1.1 I2C Slave Transmitter Mode Slave transmitter mode is entered when the slave address transmitted by the master is identical to its own address with a set R/W bit. The slave transmitter shifts the serial data out on SDA with the clock pulses that are generated by the master device. The slave device does not generate the clock, but it does hold SCL low while intervention of the CPU is required after a byte has been transmitted. If the master requests data from the slave, the USCI module is automatically configured as a transmitter and UCTR and UCTXIFG become set. The SCL line is held low until the first data to be sent is written into the transmit buffer UCBxTXBUF. Then the address is acknowledged, the UCSTTIFG flag is cleared, and the data is transmitted. As soon as the data is transferred into the shift register, the UCTXIFG is set again. After the data is acknowledged by the master, the next data byte written into UCBxTXBUF is transmitted or, if the buffer is empty, the bus is stalled during the acknowledge cycle by holding SCL low until new data is written into UCBxTXBUF. If the master sends a NACK succeeded by a STOP condition, the UCSTPIFG flag is set. If the NACK is succeeded by a repeated START condition, the USCI I2C state machine returns to its address-reception state. Figure 38-9 shows the slave transmitter operation. Reception of own S SLA/R address and transmission of data bytes UCTR=1 (Transmitter) UCSTTIFG=1 UCTXIFG=1 UCSTPIFG=0 UCBxTXBUF discarded A DATA A DATA Write data to UCBxTXBUF UCTXIFG=1 A A DATA P UCTXIFG=0 UCSTPIFG=1 UCSTTIFG=0 Bus stalled (SCL held low) until data available Write data to UCBxTXBUF Repeated start continue as slave transmitter A DATA S SLA/R UCTXIFG=0 UCTR=1 (Transmitter) UCSTTIFG=1 UCTXIFG=1 UCBxTXBUF discarded Repeated start continue as slave receiver A DATA S SLA/W UCTXIFG=0 Arbitration lost as master and addressed as slave A UCTR=0 (Receiver) UCSTTIFG=1 UCALIFG=1 UCMST=0 UCTR=1 (Transmitter) UCSTTIFG=1 UCTXIFG=1 UCSTPIFG=0 Figure 38-9. I2C Slave Transmitter Mode 1002 Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – I2C Mode www.ti.com 38.3.4.1.2 I2C Slave Receiver Mode Slave receiver mode is entered when the slave address transmitted by the master is identical to its own address and a cleared R/W bit is received. In slave receiver mode, serial data bits received on SDA are shifted in with the clock pulses that are generated by the master device. The slave device does not generate the clock, but it can hold SCL low if intervention of the CPU is required after a byte has been received. If the slave should receive data from the master, the USCI module is automatically configured as a receiver and UCTR is cleared. After the first data byte is received, the receive interrupt flag UCRXIFG is set. The USCI module automatically acknowledges the received data and can receive the next data byte. If the previous data was not read from the receive buffer UCBxRXBUF at the end of a reception, the bus is stalled by holding SCL low. As soon as UCBxRXBUF is read, the new data is transferred into UCBxRXBUF, an acknowledge is sent to the master, and the next data can be received. Setting the UCTXNACK bit causes a NACK to be transmitted to the master during the next acknowledgment cycle. A NACK is sent even if UCBxRXBUF is not ready to receive the latest data. If the UCTXNACK bit is set while SCL is held low, the bus is released, a NACK is transmitted immediately, and UCBxRXBUF is loaded with the last received data. Because the previous data was not read, that data is lost. To avoid loss of data, the UCBxRXBUF must be read before UCTXNACK is set. When the master generates a STOP condition, the UCSTPIFG flag is set. If the master generates a repeated START condition, the USCI I2C state machine returns to its address reception state. Figure 38-10 shows the I2C slave receiver operation. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1003 USCI Operation – I2C Mode Reception of own address and data bytes. All are acknowledged. www.ti.com S SLA/W A DATA A DATA A DATA A P or S UCRXIFG=1 UCTR=0 (Receiver) UCSTTIFG=1 UCSTPIFG=0 Bus stalled (SCL held low) if UCBxRXBUF not read Refer to: ”Slave Transmitter” Timing Diagram Read data from UCBxRXBUF Last byte is not acknowledged. DATA UCTXNACK=1 A P or S UCTXNACK=0 Bus not stalled even if UCBxRXBUF not read Reception of the general call address. Gen Call A UCTR=0 (Receiver) UCSTTIFG=1 UCSTPIFG=0 UCGC=1 Arbitration lost as master and addressed as slave A UCALIFG=1 UCMST=0 UCTR=0 (Receiver) UCSTTIFG=1 (UCGC=1 if general call) UCTXIFG=0 UCSTPIFG=0 Figure 38-10. I2C Slave Receiver Mode 1004 Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – I2C Mode www.ti.com 38.3.4.1.3 I2C Slave 10-Bit Addressing Mode The 10-bit addressing mode is selected when UCA10 = 1 and is as shown in Figure 38-11. In 10-bit addressing mode, the slave is in receive mode after the full address is received. The USCI module indicates this by setting the UCSTTIFG flag while the UCTR bit is cleared. To switch the slave into transmitter mode, the master sends a repeated START condition together with the first byte of the address but with the R/W bit set. This sets the UCSTTIFG flag if it was previously cleared by software, and the USCI modules switches to transmitter mode with UCTR = 1. Slave Receiver Reception of own address and data bytes. All are acknowledged. S 11110 xx/W A SLA (2.) DATA A DATA A A P or S UCRXIFG=1 UCTR=0 (Receiver) UCSTTIFG=1 UCSTPIFG=0 Reception of the general call address. Gen Call A DATA UCTR=0 (Receiver) UCSTTIFG=1 UCSTPIFG=0 UCGC=1 DATA A A P or S UCRXIFG=1 Slave Transmitter Reception of own address and transmission of data bytes S 11110 xx/W A SLA (2.) A S 11110 xx/R A DATA A P or S UCSTTIFG=0 UCTR=0 (Receiver) UCSTTIFG=1 UCSTPIFG=0 UCTR=1 (Transmitter) UCSTTIFG=1 UCTXIFG=1 UCSTPIFG=0 Figure 38-11. I2C Slave 10-Bit Addressing Mode 38.3.4.2 Master Mode The USCI module is configured as an I2C master by selecting the I2C mode with UCMODEx = 11 and UCSYNC = 1 and setting the UCMST bit. When the master is part of a multi-master system, UCMM must be set and its own address must be programmed into the UCBxI2COA register. When UCA10 = 0, 7-bit addressing is selected. When UCA10 = 1, 10-bit addressing is selected. The UCGCEN bit selects if the USCI module responds to a general call. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1005 USCI Operation – I2C Mode www.ti.com 38.3.4.2.1 I2C Master Transmitter Mode After initialization, master transmitter mode is initiated by writing the desired slave address to the UCBxI2CSA register, selecting the size of the slave address with the UCSLA10 bit, setting UCTR for transmitter mode, and setting UCTXSTT to generate a START condition. The USCI module checks if the bus is available, generates the START condition, and transmits the slave address. The UCTXIFG bit is set when the START condition is generated and the first data to be transmitted can be written into UCBxTXBUF. As soon as the slave acknowledges the address, the UCTXSTT bit is cleared. NOTE: Handling of TXIFG in a multi-master system In a multi-master system (UCMM =1), if the bus is unavailable, the USCI module waits and checks for bus release. Bus unavailability can occur even after the UCTXSTT bit has been set. While waiting for the bus to become available, the USCI may update the TXIFG based on SCL clock line activity. Checking the UCTXSTT bit to verify if the START condition has been sent ensures that the TXIFG is being serviced correctly. The data written into UCBxTXBUF is transmitted if arbitration is not lost during transmission of the slave address. UCTXIFG is set again as soon as the data is transferred from the buffer into the shift register. If there is no data loaded to UCBxTXBUF before the acknowledge cycle, the bus is held during the acknowledge cycle with SCL low until data is written into UCBxTXBUF. Data is transmitted or the bus is held, as long as the UCTXSTP bit or UCTXSTT bit is not set. Setting UCTXSTP generates a STOP condition after the next acknowledge from the slave. If UCTXSTP is set during the transmission of the slave's address or while the USCI module waits for data to be written into UCBxTXBUF, a STOP condition is generated, even if no data was transmitted to the slave. When transmitting a single byte of data, the UCTXSTP bit must be set while the byte is being transmitted or anytime after transmission begins, without writing new data into UCBxTXBUF. Otherwise, only the address is transmitted. When the data is transferred from the buffer to the shift register, UCTXIFG is set, indicating data transmission has begun, and the UCTXSTP bit may be set. Setting UCTXSTT generates a repeated START condition. In this case, UCTR may be set or cleared to configure transmitter or receiver, and a different slave address may be written into UCBxI2CSA if desired. If the slave does not acknowledge the transmitted data, the not-acknowledge interrupt flag UCNACKIFG is set. The master must react with either a STOP condition or a repeated START condition. If data was already written into UCBxTXBUF, it is discarded. If this data should be transmitted after a repeated START, it must be written into UCBxTXBUF again. Any set UCTXSTT is also discarded. To trigger a repeated START, UCTXSTT must be set again. Figure 38-12 shows the I2C master transmitter operation. 1006 Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – I2C Mode www.ti.com Successful transmission to a slave receiver S A SLA/W 1) UCTR=1 (Transmitter) 2) UCTXSTT=1 DATA A DATA A DATA A P UCTXSTT=0 UCTXSTP=0 UCTXIFG=1 UCTXSTP=1 UCTXIFG=0 UCTXIFG=1 UCBxTXBUF discarded Bus stalled (SCL held low) until data available Next transfer started with a repeated start condition DATA Write data to UCBxTXBUF A S SLA/W 1) UCTR=1 (Transmitter) 2) UCTXSTT=1 UCTXSTT=0 UCNACKIFG=1 UCTXIFG=0 UCBxTXBUF discarded DATA A S SLA/R 1) UCTR=0 (Receiver) 2) UCTXSTT=1 3) UCTXIFG=0 UCTXSTP=1 Not acknowledge received after slave address A P UCTXSTP=0 1) UCTR=1 (Transmitter) 2) UCTXSTT=1 Not acknowledge received after a data byte A S SLA/W S SLA/R UCTXIFG=1 UCBxTXBUF discarded 1) UCTR=0 (Receiver) 2) UCTXSTT=1 UCNACKIFG=1 UCTXIFG=0 UCBxTXBUF discarded Arbitration lost in slave address or data byte Other master continues Other master continues UCALIFG=1 UCMST=0 (UCSTTIFG=0) UCALIFG=1 UCMST=0 (UCSTTIFG=0) Arbitration lost and addressed as slave A Other master continues UCALIFG=1 UCMST=0 UCTR=0 (Receiver) UCSTTIFG=1 (UCGC=1 if general call) UCTXIFG=0 UCSTPIFG=0 USCI continues as Slave Receiver Figure 38-12. I2C Master Transmitter Mode SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1007 USCI Operation – I2C Mode www.ti.com 38.3.4.2.2 I2C Master Receiver Mode After initialization, master receiver mode is initiated by writing the desired slave address to the UCBxI2CSA register, selecting the size of the slave address with the UCSLA10 bit, clearing UCTR for receiver mode, and setting UCTXSTT to generate a START condition. The USCI module checks if the bus is available, generates the START condition, and transmits the slave address. As soon as the slave acknowledges the address, the UCTXSTT bit is cleared. After the acknowledge of the address from the slave, the first data byte from the slave is received and acknowledged and the UCRXIFG flag is set. Data is received from the slave, as long as UCTXSTP or UCTXSTT is not set. If UCBxRXBUF is not read, the master holds the bus during reception of the last data bit and until the UCBxRXBUF is read. If the slave does not acknowledge the transmitted address, the not-acknowledge interrupt flag UCNACKIFG is set. The master must react with either a STOP condition or a repeated START condition. Setting the UCTXSTP bit generates a STOP condition. After setting UCTXSTP, a NACK followed by a STOP condition is generated after reception of the data from the slave, or immediately if the USCI module is currently waiting for UCBxRXBUF to be read. If a master wants to receive a single byte only, the UCTXSTP bit must be set while the byte is being received. For this case, the UCTXSTT may be polled to determine when it is cleared: POLL_STT BIS.B BIT.B JC BIS.B #UCTXSTT, &UCB0CTL1 #UCTXSTT, &UCB0CTL1 POLL_STT #UCTXSTP, &UCB0CTL1 ;Transmit START cond. ;Poll UCTXSTT bit ;When cleared, ;transmit STOP cond. Setting UCTXSTT generates a repeated START condition. In this case, UCTR may be set or cleared to configure transmitter or receiver, and a different slave address may be written into UCBxI2CSA if desired. NOTE: Repeated START The UCTXSTT bit must be set before the last data byte is received; that is, immediately after the UCRXIFG is set and the UCRXBUF with the second to last byte is read, the UCTXSTT bit should be set. NOTE: Consecutive master transactions without repeated START When performing multiple consecutive I2C master transactions without the repeated START feature, the current transaction must be completed before the next one is initiated. This can be done by ensuring that the transmit STOP condition flag UCTXSTP is cleared before the next I2C transaction is initiated with setting UCTXSTT = 1. Otherwise, the current transaction might be affected. Figure 38-13 shows the I2C master receiver operation. 1008 Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – I2C Mode www.ti.com Successful reception from a slave transmitter S SLA/R A DATA 1) UCTR=0 (Receiver) 2) UCTXSTT=1 DATA A UCTXSTT=0 A DATA A P UCTXSTP=1 UCRXIFG=1 Next transfer started with a repeated start condition DATA A UCTXSTP=0 S SLA/W 1) UCTR=1 (Transmitter) 2) UCTXSTT=1 DATA UCTXSTP=1 Not acknowledge received after slave address A P A S SLA/R 1) UCTR=0 (Receiver) 2) UCTXSTT=1 UCTXSTP=0 UCTXSTT=0 UCNACKIFG=1 S SLA/W 1) UCTR=1 (Transmitter) 2) UCTXSTT=1 UCTXIFG=1 S Arbitration lost in slave address or data byte SLA/R 1) UCTR=0 (Receiver) 2) UCTXSTT=1 Other master continues Other master continues UCALIFG=1 UCMST=0 (UCSTTIFG=0) UCALIFG=1 UCMST=0 (UCSTTIFG=0) Arbitration lost and addressed as slave A Other master continues UCALIFG=1 UCMST=0 UCTR=1 (Transmitter) UCSTTIFG=1 UCTXIFG=1 UCSTPIFG=0 USCI continues as Slave Transmitter Figure 38-13. I2C Master Receiver Mode 38.3.4.2.3 I2C Master 10-Bit Addressing Mode The 10-bit addressing mode is selected when UCSLA10 = 1 and is shown in Figure 38-14. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1009 USCI Operation – I2C Mode www.ti.com Master Transmitter Successful transmission to a slave receiver S 11110xx/W A SLA(2.) A 1) UCTR=1(Transmitter) 2) UCTXSTT=1 DATA A A DATA P UCTXSTT=0 UCTXSTP=0 UCTXIFG=1 UCTXSTP=1 UCTXIFG=1 Master Receiver Successful reception from a slave transmitter S 11110xx/W A SLA(2.) 1) UCTR=0(Receiver) 2) UCTXSTT=1 A S 11110xx/R A UCTXSTT=0 DATA A UCRXIFG=1 DATA A P UCTXSTP=0 UCTXSTP=1 Figure 38-14. I2C Master 10-Bit Addressing Mode 1010 Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – I2C Mode www.ti.com 38.3.4.3 Arbitration If two or more master transmitters simultaneously start a transmission on the bus, an arbitration procedure is invoked. Figure 38-15 shows the arbitration procedure between two devices. The arbitration procedure uses the data presented on SDA by the competing transmitters. The first master transmitter that generates a logic high is overruled by the opposing master generating a logic low. The arbitration procedure gives priority to the device that transmits the serial data stream with the lowest binary value. The master transmitter that lost arbitration switches to the slave receiver mode and sets the arbitration lost flag UCALIFG. If two or more devices send identical first bytes, arbitration continues on the subsequent bytes. Bus Line SCL Device #1 Lost Arbitration and Switches Off n Data From Device #1 1 Data From Device #2 0 0 0 0 1 Bus Line SDA 1 0 1 1 0 1 1 Figure 38-15. Arbitration Procedure Between Two Master Transmitters SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1011 USCI Operation – I2C Mode www.ti.com If the arbitration procedure is in progress when a repeated START condition or STOP condition is transmitted on SDA, the master transmitters involved in arbitration must send the repeated START condition or STOP condition at the same position in the format frame. Arbitration is not allowed between: • A repeated START condition and a data bit • A STOP condition and a data bit • A repeated START condition and a STOP condition 38.3.5 I2C Clock Generation and Synchronization The I2C clock SCL is provided by the master on the I2C bus. When the USCI is in master mode, BITCLK is provided by the USCI bit clock generator and the clock source is selected with the UCSSELx bits. In slave mode, the bit clock generator is not used and the UCSSELx bits are don't care. The 16-bit value of UCBRx in registers UCBxBR1 and UCBxBR0 is the division factor of the USCI clock source, BRCLK. The maximum bit clock that can be used in single master mode is fBRCLK/4. In multi-master mode, the maximum bit clock is fBRCLK/8. The BITCLK frequency is given by: fBitClock = fBRCLK/UCBRx The minimum high and low periods of the generated SCL are: tLOW,MIN = tHIGH,MIN = (UCBRx/2)/fBRCLK when UCBRx is even tLOW,MIN = tHIGH,MIN = ((UCBRx – 1)/2)/fBRCLK when UCBRx is odd The USCI clock source frequency and the prescaler setting UCBRx must to be chosen such that the minimum low and high period times of the I2C specification are met. During the arbitration procedure the clocks from the different masters must be synchronized. A device that first generates a low period on SCL overrules the other devices, forcing them to start their own low periods. SCL is then held low by the device with the longest low period. The other devices must wait for SCL to be released before starting their high periods. Figure 38-16 shows the clock synchronization. This allows a slow slave to slow down a fast master. Wait State Start HIGH Period SCL From Device #1 SCL From Device #2 Bus Line SCL Figure 38-16. Synchronization of Two I2C Clock Generators During Arbitration 1012 Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – I2C Mode www.ti.com 38.3.5.1 Clock Stretching The USCI module supports clock stretching and also makes use of this feature as described in the Operation Mode sections. The UCSCLLOW bit can be used to observe if another device pulls SCL low while the USCI module already released SCL due to the following conditions: • USCI is acting as master and a connected slave drives SCL low. • USCI is acting as master and another master drives SCL low during arbitration. The UCSCLLOW bit is also active if the USCI holds SCL low because it is waiting as transmitter for data being written into UCBxTXBUF or as receiver for the data being read from UCBxRXBUF. The UCSCLLOW bit might get set for a short time with each rising SCL edge because the logic observes the external SCL and compares it to the internally generated SCL. 38.3.6 Using the USCI Module in I2C Mode With Low-Power Modes The USCI module provides automatic clock activation for use with low-power modes. When the USCI clock source is inactive because the device is in a low-power mode, the USCI module automatically activates it when needed, regardless of the control-bit settings for the clock source. The clock remains active until the USCI module returns to its idle condition. After the USCI module returns to the idle condition, control of the clock source reverts to the settings of its control bits. In I2C slave mode, no internal clock source is required because the clock is provided by the external master. It is possible to operate the USCI in I2C slave mode while the device is in LPM4 and all internal clock sources are disabled. The receive or transmit interrupts can wake up the CPU from any low-power mode. 38.3.7 USCI Interrupts in I2C Mode The USCI has only one interrupt vector that is shared for transmission, reception, and the state change. USCI_Ax and USC_Bx do not share the same interrupt vector. Each interrupt flag has its own interrupt enable bit. When an interrupt is enabled and the GIE bit is set, the interrupt flag generates an interrupt request. DMA transfers are controlled by the UCTXIFG and UCRXIFG flags on devices with a DMA controller. 38.3.7.1 I2C Transmit Interrupt Operation The UCTXIFG interrupt flag is set by the transmitter to indicate that UCBxTXBUF is ready to accept another character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is automatically reset if a character is written to UCBxTXBUF or if a NACK is received. UCTXIFG is set when UCSWRST = 1 and the I2C mode is selected. UCTXIE is reset after a PUC or when UCSWRST = 1. 38.3.7.2 I2C Receive Interrupt Operation The UCRXIFG interrupt flag is set when a character is received and loaded into UCBxRXBUF. An interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset after a PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCxRXBUF is read. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1013 USCI Operation – I2C Mode www.ti.com 38.3.7.3 I2C State Change Interrupt Operation Table 38-1 describes the I2C state change interrupt flags. Table 38-1. I2C State Change Interrupt Flags 1014 Interrupt Flag Interrupt Condition UCALIFG Arbitration-lost. Arbitration can be lost when two or more transmitters start a transmission simultaneously, or when the USCI operates as master but is addressed as a slave by another master in the system. The UCALIFG flag is set when arbitration is lost. When UCALIFG is set, the UCMST bit is cleared and the I2C controller becomes a slave. UCNACKIFG Not-acknowledge interrupt. This flag is set when an acknowledge is expected but is not received. UCNACKIFG is automatically cleared when a START condition is received. UCSTTIFG START condition detected interrupt. This flag is set when the I2C module detects a START condition together with its own address while in slave mode. UCSTTIFG is used in slave mode only and is automatically cleared when a STOP condition is received. UCSTPIFG STOP condition detected interrupt. This flag is set when the I2C module detects a STOP condition while in slave mode. UCSTPIFG is used in slave mode only and is automatically cleared when a START condition is received. Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI Operation – I2C Mode www.ti.com 38.3.7.4 UCBxIV, Interrupt Vector Generator The USCI interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt vector register UCBxIV is used to determine which flag requested an interrupt. The highest-priority enabled interrupt generates a number in the UCBxIV register that can be evaluated or added to the PC to automatically enter the appropriate software routine. Disabled interrupts do not affect the UCBxIV value. Any access, read or write, of the UCBxIV register automatically resets the highest-pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. 38.3.7.4.1 UCBxIV Software Example The following software example shows the recommended use of UCBxIV. The UCBxIV value is added to the PC to automatically jump to the appropriate routine. The example is given for USCI_B0. USCI_I2C_ISR ADD RETI JMP JMP JMP JMP JMP TXIFG_ISR ... RETI ALIFG_ISR ... RETI NACKIFG_ISR ... RETI STTIFG_ISR ... RETI STPIFG_ISR ... RETI RXIFG_ISR ... RETI &UCB0IV, PC ALIFG_ISR NACKIFG_ISR STTIFG_ISR STPIFG_ISR RXIFG_ISR SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Add offset to jump table Vector 0: No interrupt Vector 2: ALIFG Vector 4: NACKIFG Vector 6: STTIFG Vector 8: STPIFG Vector 10: RXIFG Vector 12 Task starts here Return Vector 2 Task starts here Return Vector 4 Task starts here Return Vector 6 Task starts here Return Vector 8 Task starts here Return Vector 10 Task starts here Return Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1015 USCI_B I2C Mode Registers www.ti.com 38.4 USCI_B I2C Mode Registers The USCI registers applicable in I2C mode are listed in Table 38-2. The base address can be found in the device-specific data sheet. The address offsets are listed in Table 38-2. Table 38-2. USCI_B Registers Offset Acronym Register Name Type Access Reset 00h UCBxCTLW0 USCI_Bx Control Word 0 Read/write Word 0101h 00h UCBxCTL1 USCI_Bx Control 1 Read/write Byte 01h Section 38.4.2 01h UCBxCTL0 USCI_Bx Control 0 Read/write Byte 01h Section 38.4.1 06h UCBxBRW USCI_Bx Bit Rate Control Word Read/write Word 0000h 06h UCBxBR0 USCI_Bx Bit Rate Control 0 Read/write Byte 00h Section 38.4.3 07h UCBxBR1 USCI_Bx Bit Rate Control 1 Read/write Byte 00h Section 38.4.4 0Ah UCBxSTAT USCI_Bx Status Read/write Byte 00h Section 38.4.5 Reserved - reads zero Read Byte 00h USCI_Bx Receive Buffer Read/write Byte 00h Reserved - reads zero Read Byte 00h USCI_Bx Transmit Buffer Read/write Byte 00h Reserved - reads zero Read Byte 00h 0Bh 0Ch UCBxRXBUF 0Dh 0Eh UCBxTXBUF 0Fh 1016 Section Section 38.4.6 Section 38.4.7 10h UCBxI2COA USCI_Bx I2C Own Address Read/write Word 0000h Section 38.4.8 12h UCBxI2CSA USCI_Bx I2C Slave Address Read/write Word 0000h Section 38.4.9 1Ch UCBxICTL USCI_Bx Interrupt Control Read/write Word 0200h 1Ch UCBxIE USCI_Bx Interrupt Enable Read/write Byte 00h Section 38.4.10 1Dh UCBxIFG USCI_Bx Interrupt Flag Read/write Byte 02h Section 38.4.11 1Eh UCBxIV USCI_Bx Interrupt Vector Read Word 0000h Section 38.4.12 Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI_B I2C Mode Registers www.ti.com 38.4.1 UCBxCTL0 Register USCI_Bx Control Register 0 Figure 38-17. UCBxCTL0 Register 7 6 5 4 3 UCA10 UCSLA10 UCMM Reserved UCMST rw-0 rw-0 rw-0 rw-0 rw-0 2 1 UCMODEx rw-0 0 UCSYNC rw-0 r-1 Modify only when UCSWRST = 1. Table 38-3. UCBxCTL0 Register Description Bit Field Type Reset Description 7 UCA10 RW 0h Own addressing mode select 0b = Own address is a 7-bit address 1b = Own address is a 10-bit address 6 UCSLA10 RW 0h Slave addressing mode select 0b = Address slave with 7-bit address 1b = Address slave with 10-bit address 5 UCMM RW 0h Multi-master environment select 0b = Single master environment. There is no other master in the system. The address compare unit is disabled. 1b = Multi-master environment 4 Reserved R 0h Reserved. Always reads as 0. 3 UCMST RW 0h Master mode select. When a master loses arbitration in a multi-master environment (UCMM = 1), the UCMST bit is automatically cleared and the module acts as slave. 0b = Slave mode 1b = Master mode 2-1 UCMODEx RW 0h USCI mode. The UCMODEx bits select the synchronous mode when UCSYNC = 1. 00b = 3-pin SPI 01b = 4-pin SPI (master/slave enabled if STE = 1) 10b = 4-pin SPI (master/slave enabled if STE = 0) 11b = I2C mode 0 UCSYNC R 1h Synchronous mode enable 0b = Asynchronous mode 1b = Synchronous mode SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1017 USCI_B I2C Mode Registers www.ti.com 38.4.2 UCBxCTL1 Register USCI_Bx Control Register 1 Figure 38-18. UCBxCTL1 Register 7 6 UCSSELx rw-0 5 4 3 2 1 0 Reserved UCTR UCTXNACK UCTXSTP UCTXSTT UCSWRST r0 rw-0 rw-0 rw-0 rw-0 rw-1 rw-0 Modify only when UCSWRST = 1. Table 38-4. UCBxCTL1 Register Description Bit Field Type Reset Description 7-6 UCSSELx RW 0h USCI clock source select. These bits select the BRCLK source clock. 00b = UCLKI 01b = ACLK 10b = SMCLK 11b = SMCLK 5 Reserved RW 0h Reserved. Always reads as 0. 4 UCTR RW 0h Transmitter or receiver 0b = Receiver 1b = Transmitter 3 UCTXNACK RW 0h Transmit a NACK. UCTXNACK is automatically cleared after a NACK is transmitted. 0b = Acknowledge normally 1b = Generate NACK 2 UCTXSTP RW 0h Transmit STOP condition in master mode. Ignored in slave mode. In master receiver mode, the STOP condition is preceded by a NACK. UCTXSTP is automatically cleared after STOP is generated. 0b = No STOP generated 1b = Generate STOP 1 UCTXSTT RW 0h Transmit START condition in master mode. Ignored in slave mode. In master receiver mode, a repeated START condition is preceded by a NACK. UCTXSTT is automatically cleared after START condition and address information is transmitted. Ignored in slave mode. 0b = Do not generate START condition 1b = Generate START condition 0 UCSWRST RW 1h Software reset enable 0b = Disabled. USCI reset released for operation. 1b = Enabled. USCI logic held in reset state. 1018 Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI_B I2C Mode Registers www.ti.com 38.4.3 UCBxBR0 Register USCI_Bx Baud Rate Control Register 0 Figure 38-19. UCBxBR0 Register 7 6 5 4 rw rw rw rw 3 2 1 0 rw rw rw rw UCBRx Modify only when UCSWRST = 1. Table 38-5. UCBxBR0 Register Description Bit Field Type Reset Description 7-0 UCBRx RW undefined Bit clock prescaler low byte. The 16-bit value of (UCxxBR0 + UCxxBR1 × 256) forms the prescaler value UCBRx. 38.4.4 UCBxBR1 Register USCI_Bx Baud Rate Control Register 1 Figure 38-20. UCBxBR1 Register 7 6 5 4 rw rw rw rw 3 2 1 0 rw rw rw rw UCBRx Modify only when UCSWRST = 1. Table 38-6. UCBxBR1 Register Description Bit Field Type Reset Description 7-0 UCBRx RW undefined Bit clock prescaler high byte. The 16-bit value of (UCxxBR0 + UCxxBR1 × 256) forms the prescaler value UCBRx. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1019 USCI_B I2C Mode Registers www.ti.com 38.4.5 UCBxSTAT Register USCI_Bx Status Register Figure 38-21. UCBxSTAT Register 7 6 5 4 Reserved UCSCLLOW UCGC UCBBUSY rw-0 r-0 rw-0 r-0 3 2 r0 r0 1 0 r0 r0 Reserved Table 38-7. UCBxSTAT Register Description Bit Field Type Reset Description 7 Reserved RW 0h Reserved. Always reads as 0. 6 UCSCLLOW R 0h SCL low 0b = SCL is not held low. 1b = SCL is held low. 5 UCGC RW 0h General call address received. UCGC is automatically cleared when a START condition is received. 0b = No general call address received 1b = General call address received 4 UCBBUSY R 0h Bus busy 0b = Bus inactive 1b = Bus busy 3-0 Reserved R 0h Reserved. Always reads as 0. 1020 Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI_B I2C Mode Registers www.ti.com 38.4.6 UCBxRXBUF Register USCI_Bx Receive Buffer Register Figure 38-22. UCBxRXBUF Register 7 6 5 4 r r r r 3 2 1 0 r r r r UCRXBUFx Table 38-8. UCBxRXBUF Register Description Bit Field Type Reset Description 7-0 UCRXBUFx R undefined The receive-data buffer is user accessible and contains the last received character from the receive shift register. Reading UCBxRXBUF resets UCRXIFG. 38.4.7 UCBxTXBUF Register USCI_Bx Transmit Buffer Register Figure 38-23. UCBxTXBUF Register 7 6 5 4 3 2 1 0 rw rw rw rw UCTXBUFx rw rw rw rw Table 38-9. UCBxTXBUF Register Description Bit Field Type Reset Description 7-0 UCTXBUFx RW undefined The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift register and transmitted. Writing to the transmit data buffer clears UCTXIFG. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1021 USCI_B I2C Mode Registers www.ti.com 38.4.8 UCBxI2COA Register USCIBx I2C Own Address Register Figure 38-24. UCBxI2COA Register 15 14 13 12 rw-0 r0 r0 r0 7 6 5 4 UCGCEN 11 10 9 r0 r0 rw-0 rw-0 3 2 1 0 rw-0 rw-0 rw-0 rw-0 Reserved 8 I2COAx I2COAx rw-0 rw-0 rw-0 rw-0 Modify only when UCSWRST = 1. Table 38-10. UCBxI2COA Register Description Bit Field Type Reset Description 15 UCGCEN RW 0h General call response enable 0b = Do not respond to a general call 1b = Respond to a general call 14-10 Reserved R 0h Reserved. Always reads as 0. 9-0 I2COAx RW 0h I2C own address. The I2COAx bits contain the local address of the USCI_Bx I2C controller. The address is right justified. In 7-bit addressing mode, bit 6 is the MSB and bits 9-7 are ignored. In 10-bit addressing mode, bit 9 is the MSB. 38.4.9 UCBxI2CSA Register USCI_Bx I2C Slave Address Register Figure 38-25. UCBxI2CSA Register 15 14 13 12 11 10 9 Reserved 8 I2CSAx r0 r0 r0 r0 7 6 5 4 r0 r0 rw-0 rw-0 3 2 1 0 rw-0 rw-0 rw-0 rw-0 I2CSAx rw-0 rw-0 rw-0 rw-0 Table 38-11. UCBxI2CSA Register Description Bit Field Type Reset Description 15-10 Reserved R 0h Reserved. Always reads as 0. 9-0 I2CSAx RW 0h I2C slave address. The I2CSAx bits contain the slave address of the external device to be addressed by the USCI_Bx module. It is only used in master mode. The address is right justified. In 7-bit slave addressing mode, bit 6 is the MSB and bits 9-7 are ignored. In 10-bit slave addressing mode, bit 9 is the MSB. 1022 Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI_B I2C Mode Registers www.ti.com 38.4.10 UCBxIE Register USCI_Bx I2C Interrupt Enable Register Figure 38-26. UCBxIE Register 7 6 Reserved r-0 5 4 3 2 1 0 UCNACKIE UCALIE UCSTPIE UCSTTIE UCTXIE UCRXIE rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r-0 Table 38-12. UCBxIE Register Description Bit Field Type Reset Description 7-6 Reserved R 0h Reserved. Always reads as 0. 5 UCNACKIE RW 0h Not-acknowledge interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 4 UCALIE RW 0h Arbitration lost interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 3 UCSTPIE RW 0h STOP condition interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 2 UCSTTIE RW 0h START condition interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 1 UCTXIE RW 0h Transmit interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 0 UCRXIE RW 0h Receive interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1023 USCI_B I2C Mode Registers www.ti.com 38.4.11 UCBxIFG Register USCI_Bx I2C Interrupt Flag Register Figure 38-27. UCBxIFG Register 7 6 Reserved r-0 5 4 3 2 1 0 UCNACKIFG UCALIFG UCSTPIFG UCSTTIFG UCTXIFG UCRXIFG rw-0 rw-0 rw-0 rw-0 rw-1 rw-0 r-0 Table 38-13. UCBxIFG Register Description Bit Field Type Reset Description 7-6 Reserved R 0h Reserved. Always reads as 0. 5 UCNACKIFG RW 0h Not-acknowledge received interrupt flag. UCNACKIFG is automatically cleared when a START condition is received. 0b = No interrupt pending 1b = Interrupt pending 4 UCALIFG RW 0h Arbitration lost interrupt flag 0b = No interrupt pending 1b = Interrupt pending 3 UCSTPIFG RW 0h STOP condition interrupt flag. UCSTPIFG is automatically cleared when a START condition is received. 0b = No interrupt pending 1b = Interrupt pending 2 UCSTTIFG RW 0h START condition interrupt flag. UCSTTIFG is automatically cleared if a STOP condition is received. 0b = No interrupt pending 1b = Interrupt pending 1 UCTXIFG RW 0h USCI transmit interrupt flag. UCTXIFG is set when UCBxTXBUF is empty. 0b = No interrupt pending 1b = Interrupt pending 0 UCRXIFG RW 0h USCI receive interrupt flag. UCRXIFG is set when UCBxRXBUF has received a complete character. 0b = No interrupt pending 1b = Interrupt pending 1024 Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USCI_B I2C Mode Registers www.ti.com 38.4.12 UCBxIV Register USCI_Bx Interrupt Vector Register Figure 38-28. UCBxIV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-0 r-0 r-0 r0 UCIVx UCIVx r0 r0 r0 r0 Table 38-14. UCBxIV Register Description Bit Field Type Reset Description 15-0 UCIVx R 0h USCI interrupt vector value 00h = No interrupt pending 02h = Interrupt Source: Arbitration lost; Interrupt Flag: UCALIFG; Interrupt Priority: Highest 04h = Interrupt Source: Not acknowledgment; Interrupt Flag: UCNACKIFG 06h = Interrupt Source: Start condition received; Interrupt Flag: UCSTTIFG 08h = Interrupt Source: Stop condition received; Interrupt Flag: UCSTPIFG 0Ah = Interrupt Source: Data received; Interrupt Flag: UCRXIFG 0Ch = Interrupt Source: Transmit buffer empty; Interrupt Flag: UCTXIFG; Interrupt Priority: Lowest SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Universal Serial Communication Interface – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1025 Chapter 39 SLAU208O – June 2008 – Revised May 2015 Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode The enhanced universal serial communication interface A (eUSCI_A) supports multiple serial communication modes with one hardware module. This chapter discusses the operation of the asynchronous UART mode. Topic 39.1 39.2 39.3 39.4 1026 ........................................................................................................................... Enhanced Universal Serial Communication Interface A (eUSCI_A) Overview ........ eUSCI_A Introduction – UART Mode ................................................................. eUSCI_A Operation – UART Mode ..................................................................... eUSCI_A UART Registers ................................................................................ Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated Page 1027 1027 1029 1045 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback www.ti.com Enhanced Universal Serial Communication Interface A (eUSCI_A) Overview 39.1 Enhanced Universal Serial Communication Interface A (eUSCI_A) Overview The eUSCI_A module supports two serial communication modes: • UART mode • SPI mode 39.2 eUSCI_A Introduction – UART Mode In asynchronous mode, the eUSCI_Ax modules connect the device to an external system via two external pins, UCAxRXD and UCAxTXD. UART mode is selected when the UCSYNC bit is cleared. UART mode features include: • 7-bit or 8-bit data with odd, even, or non-parity • Independent transmit and receive shift registers • Separate transmit and receive buffer registers • LSB-first or MSB-first data transmit and receive • Built-in idle-line and address-bit communication protocols for multiprocessor systems • Receiver start-edge detection for auto wake up from LPMx modes (wake up from LPMx.5 is not supported) • Programmable baud rate with modulation for fractional baud-rate support • Status flags for error detection and suppression • Status flags for address detection • Independent interrupt capability for receive, transmit, start bit received, and transmit complete Figure 39-1 shows the eUSCI_Ax when configured for UART mode. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 1027 eUSCI_A Introduction – UART Mode www.ti.com UCMODEx UCSPB UCDORM Set Flags UCRXERR UCPE UCFE UCOE Set RXIFG Set UCRXIFG UCRXEIE Error Flags UCRXBRKIE 2 Receive State Machine Set UCBRK Set UCADDR /UCIDLE Receive Buffer UCAxRXBUF Receive Shift Register UCPEN UCPAR UCIRRXPL UCIRRXFLx UCIRRXFE UCIREN 6 UCLISTEN 1 IrDA Decoder 0 UCAxRXD 1 0 0 1 UCMSB UC7BIT UCABEN UCSSELx Receive Baudrate Generator UC0BRx UC0CLK 00 ACLK 01 SMCLK 10 SMCLK 11 16 BRCLK Prescaler/Divider Receive Clock Modulator Transmit Clock 4 8 UCBRFx UCPEN UCBRSx UCPAR UCOS16 UCIREN UCMSB UC7BIT Transmit Shift Register 0 1 IrDA Encoder Transmit Buffer UCAxTXBUF UCAxTXD 6 UCIRTXPLx Transmit State Machine Set UCTXIFG UCTXBRK UCTXADDR 2 UCMODEx UCSPB Figure 39-1. eUSCI_Ax Block Diagram – UART Mode (UCSYNC = 0) 1028 Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_A Operation – UART Mode www.ti.com 39.3 eUSCI_A Operation – UART Mode In UART mode, the eUSCI_A transmits and receives characters at a bit rate asynchronous to another device. Timing for each character is based on the selected baud rate of the eUSCI_A. The transmit and receive functions use the same baud-rate frequency. 39.3.1 eUSCI_A Initialization and Reset The eUSCI_A is reset by a PUC or by setting the UCSWRST bit. After a PUC, the UCSWRST bit is automatically set, keeping the eUSCI_A in a reset condition. When set, the UCSWRST bit sets the UCTXIFG bit and resets the UCRXIE, UCTXIE, UCRXIFG, UCRXERR, UCBRK, UCPE, UCOE, UCFE, UCSTOE, and UCBTOE bits. Clearing UCSWRST releases the eUSCI_A for operation. Configuring and reconfiguring the eUSCI_A module should be done when UCSWRST is set to avoid unpredictable behavior. NOTE: Initializing or reconfiguring the eUSCI_A module The recommended eUSCI_A initialization/reconfiguration process is: 1. Set UCSWRST (BIS.B #UCSWRST,&UCAxCTL1). 2. Initialize all eUSCI_A registers with UCSWRST = 1 (including UCAxCTL1). 3. Configure ports. 4. Clear UCSWRST via software (BIC.B #UCSWRST,&UCAxCTL1). 5. Enable interrupts (optional) via UCRXIE or UCTXIE. 39.3.2 Character Format The UART character format (see Figure 39-2) consists of a start bit, seven or eight data bits, an even/odd/no parity bit, an address bit (address-bit mode), and one or two stop bits. The UCMSB bit controls the direction of the transfer and selects LSB or MSB first. LSB first is typically required for UART communication. ST D0 D6 D7 AD PA Mark SP SP Space [2nd Stop Bit, UCSPB = 1] [Parity Bit, UCPEN = 1] [Address Bit, UCMODEx = 10] [Optional Bit, Condition] [8th Data Bit, UC7BIT = 0] Figure 39-2. Character Format 39.3.3 Asynchronous Communication Format When two devices communicate asynchronously, no multiprocessor format is required for the protocol. When three or more devices communicate, the eUSCI_A supports the idle-line and address-bit multiprocessor communication formats. 39.3.3.1 Idle-Line Multiprocessor Format When UCMODEx = 01, the idle-line multiprocessor format is selected. Blocks of data are separated by an idle time on the transmit or receive lines (see Figure 39-3). An idle receive line is detected when ten or more continuous ones (marks) are received after the one or two stop bits of a character. The baud-rate generator is switched off after reception of an idle line until the next start edge is detected. When an idle line is detected, the UCIDLE bit is set. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 1029 eUSCI_A Operation – UART Mode www.ti.com The first character received after an idle period is an address character. The UCIDLE bit is used as an address tag for each block of characters. In idle-line multiprocessor format, this bit is set when a received character is an address. Figure 39-3. Idle-Line Format The UCDORM bit is used to control data reception in the idle-line multiprocessor format. When UCDORM = 1, all non-address characters are assembled but not transferred into the UCAxRXBUF, and interrupts are not generated. When an address character is received, the character is transferred into UCAxRXBUF, UCRXIFG is set, and any applicable error flag is set when UCRXEIE = 1. When UCRXEIE = 0 and an address character is received but has a framing error or parity error, the character is not transferred into UCAxRXBUF and UCRXIFG is not set. If an address is received, user software can validate the address and must reset UCDORM to continue receiving data. If UCDORM remains set, only address characters are received. When UCDORM is cleared during the reception of a character, the receive interrupt flag is set after the reception completed. The UCDORM bit is not modified automatically by the eUSCI_A hardware. For address transmission in idle-line multiprocessor format, a precise idle period can be generated by the eUSCI_A to generate address character identifiers on UCAxTXD. The double-buffered UCTXADDR flag indicates if the next character loaded into UCAxTXBUF is preceded by an idle line of 11 bits. UCTXADDR is automatically cleared when the start bit is generated. 39.3.3.1.1 Transmitting an Idle Frame The following procedure sends out an idle frame to indicate an address character followed by associated data: 1. Set UCTXADDR, then write the address character to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG = 1). This generates an idle period of exactly 11 bits followed by the address character. UCTXADDR is reset automatically when the address character is transferred from UCAxTXBUF into the shift register. 2. Write desired data characters to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG = 1). The data written to UCAxTXBUF is transferred to the shift register and transmitted as soon as the shift register is ready for new data. The idle-line time must not be exceeded between address and data transmission or between data transmissions. Otherwise, the transmitted data is misinterpreted as an address. 1030 Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_A Operation – UART Mode www.ti.com 39.3.3.2 Address-Bit Multiprocessor Format When UCMODEx = 10, the address-bit multiprocessor format is selected. Each processed character contains an extra bit used as an address indicator (see Figure 39-4). The first character in a block of characters carries a set address bit that indicates that the character is an address. The eUSCI_A UCADDR bit is set when a received character has its address bit set and is transferred to UCAxRXBUF. The UCDORM bit is used to control data reception in the address-bit multiprocessor format. When UCDORM is set, data characters with address bit = 0 are assembled by the receiver but are not transferred to UCAxRXBUF and no interrupts are generated. When a character containing a set address bit is received, the character is transferred into UCAxRXBUF, UCRXIFG is set, and any applicable error flag is set when UCRXEIE = 1. When UCRXEIE = 0 and a character containing a set address bit is received but has a framing error or parity error, the character is not transferred into UCAxRXBUF and UCRXIFG is not set. If an address is received, user software can validate the address and must reset UCDORM to continue receiving data. If UCDORM remains set, only address characters with address bit = 1 are received. The UCDORM bit is not modified by the eUSCI_A hardware automatically. When UCDORM = 0, all received characters set the receive interrupt flag UCRXIFG. If UCDORM is cleared during the reception of a character, the receive interrupt flag is set after the reception is completed. For address transmission in address-bit multiprocessor mode, the address bit of a character is controlled by the UCTXADDR bit. The value of the UCTXADDR bit is loaded into the address bit of the character transferred from UCAxTXBUF to the transmit shift register. UCTXADDR is automatically cleared when the start bit is generated. Blocks of Characters UCAxTXD/UCAxRXD Idle Periods of No Significance UCAxTXD/UCAxRXD Expanded UCAxTXD/UCAxRXD ST Address 1 SP ST First Character Within Block Is an Address. AD Bit Is 1 Data 0 SP AD Bit Is 0 for Data Within Block. ST Data 0 SP Idle Time Is of No Significance Figure 39-4. Address-Bit Multiprocessor Format 39.3.3.2.1 Break Reception and Generation When UCMODEx = 00, 01, or 10, the receiver detects a break when all data, parity, and stop bits are low, regardless of the parity, address mode, or other character settings. When a break is detected, the UCBRK bit is set. If the break interrupt enable bit (UCBRKIE) is set, the receive interrupt flag UCRXIFG is also set. In this case, the value in UCAxRXBUF is 0h, because all data bits were zero. To transmit a break, set the UCTXBRK bit, then write 0h to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG = 1). This generates a break with all bits low. UCTXBRK is automatically cleared when the start bit is generated. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 1031 eUSCI_A Operation – UART Mode www.ti.com 39.3.4 Automatic Baud-Rate Detection When UCMODEx = 11, UART mode with automatic baud-rate detection is selected. For automatic baudrate detection, a data frame is preceded by a synchronization sequence that consists of a break and a synch field. A break is detected when 11 or more continuous zeros (spaces) are received. If the length of the break exceeds 21 bit times, the break timeout error flag UCBTOE is set. The eUSCI_A cannot transmit data while receiving the break/sync field. The synch field follows the break as shown in Figure 39-5. Delimiter Break Synch Figure 39-5. Auto Baud-Rate Detection – Break/Synch Sequence For LIN conformance, the character format should be set to eight data bits, LSB first, no parity, and one stop bit. No address bit is available. The synch field consists of the data 055h inside a byte field (see Figure 39-6). The synchronization is based on the time measurement between the first falling edge and the last falling edge of the pattern. The transmit baud-rate generator is used for the measurement if automatic baud-rate detection is enabled by setting UCABDEN. Otherwise, the pattern is received but not measured. The result of the measurement is transferred into the baud-rate control registers (UCAxBRW and UCAxMCTLW). If the length of the synch field exceeds the measurable time, the synch timeout error flag UCSTOE is set. The result can be read after the receive interrupt flag UCRXIFG is set. Synch 8 Bit Times Start 0 Bit 1 2 3 4 5 6 7 Stop Bit Figure 39-6. Auto Baud-Rate Detection – Synch Field The UCDORM bit is used to control data reception in this mode. When UCDORM is set, all characters are received but not transferred into the UCAxRXBUF, and interrupts are not generated. When a break/synch field is detected, the UCBRK flag is set. The character following the break/synch field is transferred into UCAxRXBUF and the UCRXIFG interrupt flag is set. Any applicable error flag is also set. If the UCBRKIE bit is set, reception of the break/synch sets the UCRXIFG. The UCBRK bit is reset by user software or by reading the receive buffer UCAxRXBUF. When a break/synch field is received, user software must reset UCDORM to continue receiving data. If UCDORM remains set, only the character after the next reception of a break/synch field is received. The UCDORM bit is not modified by the eUSCI_A hardware automatically. When UCDORM = 0, all received characters set the receive interrupt flag UCRXIFG. If UCDORM is cleared during the reception of a character, the receive interrupt flag is set after the reception is complete. The counter used to detect the baud rate is limited to 0FFFFh (216) counts. This means the minimum baud rate detectable is 244 baud in oversampling mode and 15 baud in low-frequency mode. The highest detectable baudrate is 1 Mbaud. The automatic baud-rate detection mode can be used in a full-duplex communication system with some restrictions. The eUSCI_A cannot transmit data while receiving the break/sync field and, if a 0h byte with framing error is received, any data transmitted during this time is corrupted. The latter case can be discovered by checking the received data and the UCFE bit. 1032 Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_A Operation – UART Mode www.ti.com 39.3.4.1 Transmitting a Break/Synch Field The following procedure transmits a break/synch field: 1. Set UCTXBRK with UMODEx = 11. 2. Write 055h to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG = 1). This generates a break field of 13 bits followed by a break delimiter and the synch character. The length of the break delimiter is controlled with the UCDELIMx bits. UCTXBRK is reset automatically when the synch character is transferred from UCAxTXBUF into the shift register. 3. Write desired data characters to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG = 1). The data written to UCAxTXBUF is transferred to the shift register and transmitted as soon as the shift register is ready for new data. 39.3.5 IrDA Encoding and Decoding When UCIREN is set, the IrDA encoder and decoder are enabled and provide hardware bit shaping for IrDA communication. 39.3.5.1 IrDA Encoding The encoder sends a pulse for every zero bit in the transmit bitstream coming from the UART (see Figure 39-7). The pulse duration is defined by UCIRTXPLx bits specifying the number of one-half clock periods of the clock selected by UCIRTXCLK. Start Bit Data Bits Stop Bit UART IrDA Figure 39-7. UART vs IrDA Data Format To set the pulse time of 3/16 bit period required by the IrDA standard, the BITCLK16 clock is selected with UCIRTXCLK = 1, and the pulse length is set to six one-half clock cycles with UCIRTXPLx = 6 – 1 = 5. When UCIRTXCLK = 0, the pulse length tPULSE is based on BRCLK and is calculated as: UCIRTXPLx = tPULSE × 2 × fBRCLK – 1 When UCIRTXCLK = 0, the prescaler UCBRx must be set to a value greater or equal to 5. 39.3.5.2 IrDA Decoding The decoder detects high pulses when UCIRRXPL = 0. Otherwise, it detects low pulses. In addition to the analog deglitch filter, an additional programmable digital filter stage can be enabled by setting UCIRRXFE. When UCIRRXFE is set, only pulses longer than the programmed filter length are passed. Shorter pulses are discarded. The equation to program the filter length UCIRRXFLx is: UCIRRXFLx = (tPULSE − tWAKE) × 2 × fBRCLK – 4 Where: tPULSE = Minimum receive pulse width tWAKE = Wake time from any low-power mode. Zero when the device is in active mode. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 1033 eUSCI_A Operation – UART Mode www.ti.com 39.3.6 Automatic Error Detection Glitch suppression prevents the eUSCI_A from being accidentally started. Any pulse on UCAxRXD shorter than the deglitch time tt (selected by UCGLITx) is ignored (see the device-specific data sheet for parameters). When a low period on UCAxRXD exceeds tt, a majority vote is taken for the start bit. If the majority vote fails to detect a valid start bit, the eUSCI_A halts character reception and waits for the next low period on UCAxRXD. The majority vote is also used for each bit in a character to prevent bit errors. The eUSCI_A module automatically detects framing errors, parity errors, overrun errors, and break conditions when receiving characters. The bits UCFE, UCPE, UCOE, and UCBRK are set when their respective condition is detected. When the error flags UCFE, UCPE, or UCOE are set, UCRXERR is also set. The error conditions are described in Table 39-1. Table 39-1. Receive Error Conditions Error Condition Error Flag Description Framing error UCFE A framing error occurs when a low stop bit is detected. When two stop bits are used, both stop bits are checked for framing error. When a framing error is detected, the UCFE bit is set. Parity error UCPE A parity error is a mismatch between the number of 1s in a character and the value of the parity bit. When an address bit is included in the character, it is included in the parity calculation. When a parity error is detected, the UCPE bit is set. Receive overrun UCOE An overrun error occurs when a character is loaded into UCAxRXBUF before the prior character has been read. When an overrun occurs, the UCOE bit is set. Break condition UCBRK When not using automatic baud-rate detection, a break is detected when all data, parity, and stop bits are low. When a break condition is detected, the UCBRK bit is set. A break condition can also set the interrupt flag UCRXIFG if the break interrupt enable UCBRKIE bit is set. When UCRXEIE = 0 and a framing error or parity error is detected, no character is received into UCAxRXBUF. When UCRXEIE = 1, characters are received into UCAxRXBUF and any applicable error bit is set. When any of the UCFE, UCPE, UCOE, UCBRK, or UCRXERR bit is set, the bit remains set until user software resets it or UCAxRXBUF is read. UCOE must be reset by reading UCAxRXBUF. Otherwise, it does not function properly. To detect overflows reliably, the following flow is recommended. After a character is received and UCAxRXIFG is set, first read UCAxSTATW to check the error flags including the overflow flag UCOE. Read UCAxRXBUF next. This clears all error flags except UCOE, if UCAxRXBUF was overwritten between the read access to UCAxSTATW and to UCAxRXBUF. Therefore, the UCOE flag should be checked after reading UCAxRXBUF to detect this condition. Note that, in this case, the UCRXERR flag is not set. 1034 Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_A Operation – UART Mode www.ti.com 39.3.7 eUSCI_A Receive Enable The eUSCI_A module is enabled by clearing the UCSWRST bit and the receiver is ready and in an idle state. The receive baud rate generator is in a ready state but is not clocked nor producing any clocks. The falling edge of the start bit enables the baud rate generator and the UART state machine checks for a valid start bit. If no valid start bit is detected the UART state machine returns to its idle state and the baud rate generator is turned off again. If a valid start bit is detected, a character is received. When the idle-line multiprocessor mode is selected with UCMODEx = 01, the UART state machine checks for an idle line after receiving a character. If a start bit is detected, another character is received. Otherwise, the UCIDLE flag is set after 10 ones are received, the UART state machine returns to its idle state, and the baud rate generator is turned off. 39.3.7.1 Receive Data Glitch Suppression Glitch suppression prevents the eUSCI_A from being accidentally started. Any glitch on UCAxRXD shorter than the deglitch time tt is ignored by the eUSCI_A, and further action is initiated as shown in Figure 39-8 (see the device-specific data sheet for parameters). The deglitch time tt can be set to four different values using the UCGLITx bits. UCAxRXD URXS tt Figure 39-8. Glitch Suppression, eUSCI_A Receive Not Started When a glitch is longer than tt, or a valid start bit occurs on UCAxRXD, the eUSCI_A receive operation is started and a majority vote is taken (see Figure 39-9). If the majority vote fails to detect a start bit, the eUSCI_A halts character reception. Majority Vote Taken URXS tt Figure 39-9. Glitch Suppression, eUSCI_A Activated 39.3.8 eUSCI_A Transmit Enable The eUSCI_A module is enabled by clearing the UCSWRST bit and the transmitter is ready and in an idle state. The transmit baud-rate generator is ready but is not clocked nor producing any clocks. A transmission is initiated by writing data to UCAxTXBUF. When this occurs, the baud-rate generator is enabled, and the data in UCAxTXBUF is moved to the transmit shift register on the next BITCLK after the transmit shift register is empty. UCTXIFG is set when new data can be written into UCAxTXBUF. Transmission continues as long as new data is available in UCAxTXBUF at the end of the previous byte transmission. If new data is not in UCAxTXBUF when the previous byte has transmitted, the transmitter returns to its idle state and the baud-rate generator is turned off. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 1035 eUSCI_A Operation – UART Mode www.ti.com 39.3.9 UART Baud-Rate Generation The eUSCI_A baud-rate generator is capable of producing standard baud rates from nonstandard source frequencies. It provides two modes of operation selected by the UCOS16 bit. A quick setup for finding the correct baudrate settings for the eUSCI_A can be found in Section 39.3.10. 39.3.9.1 Low-Frequency Baud-Rate Generation The low-frequency mode is selected when UCOS16 = 0. This mode allows generation of baud rates from low-frequency clock sources (for example, 9600 baud from a 32768-Hz crystal). By using a lower input frequency, the power consumption of the module is reduced. Using this mode with higher frequencies and higher prescaler settings causes the majority votes to be taken in an increasingly smaller window and, thus, decrease the benefit of the majority vote. In low-frequency mode, the baud-rate generator uses one prescaler and one modulator to generate bit clock timing. This combination supports fractional divisors for baud-rate generation. In this mode, the maximum eUSCI_A baud rate is one-third the UART source clock frequency BRCLK. Timing for each bit is shown in Figure 39-10. For each bit received, a majority vote is taken to determine the bit value. These samples occur at the N/2 – 1/2, N/2, and N/2 + 1/2 BRCLK periods, where N is the number of BRCLKs per BITCLK. Majority Vote: (m= 0) (m= 1) Bit Start BRCLK Counter N/2 N/2-1 N/2-2 1 N/2 1 0 N/2-1 N/2-2 N/2 N/2-1 1 N/2 N/2-1 1 0 N/2 BITCLK NEVEN: INT(N/2) INT(N/2) + m(= 0) NODD: INT(N/2) + R(= 1) INT(N/2) + m(= 1) Bit Period m: corresponding modulation bit R: Remainder from N/2 division Figure 39-10. BITCLK Baud-Rate Timing With UCOS16 = 0 Modulation is based on the UCBRSx setting as shown in Table 39-2. A 1 in the table indicates that m = 1 and the corresponding BITCLK period is one BRCLK period longer than a BITCLK period with m = 0. The modulation wraps around after 8 bits but restarts with each new start bit. Table 39-2. Modulation Pattern Examples UCBRSx Bit 0 (Start Bit) Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 0x00 0 0 0 0 0 0 0 0 0x01 0 0 0 0 0 0 0 1 ⋮ 0x35 0 0 1 1 0 1 0 1 0x36 0 0 1 1 0 1 1 0 0x37 0 0 1 1 0 1 1 1 1 1 1 1 ⋮ 0xff 1 1 1 1 The correct setting of UCBRSx can be found as described in Section 39.3.10. 1036 Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_A Operation – UART Mode www.ti.com 39.3.9.2 Oversampling Baud-Rate Generation The oversampling mode is selected when UCOS16 = 1. This mode supports sampling a UART bitstream with higher input clock frequencies. This results in majority votes that are always 1/16 of a bit clock period apart. This mode also easily supports IrDA pulses with a 3/16 bit time when the IrDA encoder and decoder are enabled. This mode uses one prescaler and one modulator to generate the BITCLK16 clock that is 16 times faster than the BITCLK. An additional divider by 16 and modulator stage generates BITCLK from BITCLK16. This combination supports fractional divisions of both BITCLK16 and BITCLK for baud-rate generation. In this mode, the maximum eUSCI_A baud rate is 1/16 the UART source clock frequency BRCLK. Modulation for BITCLK16 is based on the UCBRFx setting (see Table 39-3). A 1 in the table indicates that the corresponding BITCLK16 period is one BRCLK period longer than the periods m = 0. The modulation restarts with each new bit timing. Modulation for BITCLK is based on the UCBRSx setting as previously described. Table 39-3. BITCLK16 Modulation Pattern UCBRFx Number of BITCLK16 Clocks After Last Falling BITCLK Edge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 00h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 02h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 03h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 04h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 05h 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 06h 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 07h 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 08h 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 09h 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0Ah 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0Bh 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0Ch 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0Dh 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0Eh 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0Fh 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 1037 eUSCI_A Operation – UART Mode www.ti.com 39.3.10 Setting a Baud Rate For a given BRCLK clock source, the baud rate used determines the required division factor N: N = fBRCLK/Baudrate The division factor N is often a noninteger value, thus, at least one divider and one modulator stage is used to meet the factor as closely as possible. If N is equal or greater than 16, it is recommended to use the oversampling baud-rate generation mode by setting UCOS16. NOTE: Baudrate settings quick set up To calculate the correct the correct settings for the baudrate generation, perform these steps: 1. Calculate N = fBRCLK/Baudrate [if N > 16 continue with step 3, otherwise with step 2] 2. OS16 = 0, UCBRx = INT(N) [continue with step 4] 3. OS16 = 1, UCBRx = INT(N/16), UCBRFx = INT([(N/16) – INT(N/16)] × 16) 4. UCBRSx can be found by looking up the fractional part of N ( = N - INT(N) ) in table Table 39-4 5. If OS16 = 0 was chosen, a detailed error calculation is recommended to be performed Table 39-4 can be used as a lookup table for finding the correct UCBRSx modulation pattern for the corresponding fractional part of N. The values there are optimized for transmitting. Table 39-4. UCBRSx Settings for Fractional Portion of N = fBRCLK/Baudrate (1) Fractional Portion of N UCBRSx (1) Fractional Portion of N UCBRSx (1) 0.0000 0x00 0.5002 0xAA 0.0529 0x01 0.5715 0x6B 0.0715 0x02 0.6003 0xAD 0.0835 0x04 0.6254 0xB5 0.1001 0x08 0.6432 0xB6 0.1252 0x10 0.6667 0xD6 0.1430 0x20 0.7001 0xB7 0.1670 0x11 0.7147 0xBB 0.2147 0x21 0.7503 0xDD 0.2224 0x22 0.7861 0xED 0.2503 0x44 0.8004 0xEE 0.3000 0x25 0.8333 0xBF 0.3335 0x49 0.8464 0xDF 0.3575 0x4A 0.8572 0xEF 0.3753 0x52 0.8751 0xF7 0.4003 0x92 0.9004 0xFB 0.4286 0x53 0.9170 0xFD 0.4378 0x55 0.9288 0xFE The UCBRSx setting in one row is valid from the fractional portion given in that row until the one in the next row 39.3.10.1 Low-Frequency Baud-Rate Mode Setting In low-frequency mode, the integer portion of the divisor is realized by the prescaler: UCBRx = INT(N) The fractional portion is realized by the modulator with its UCBRSx setting. The recommended way of determining the correct UCBRSx is performing a detailed error calculation as explained in the following sections. However it is also possible to look up the correct settings in table with typical crystals (see Table 39-5). 1038 Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_A Operation – UART Mode www.ti.com 39.3.10.2 Oversampling Baud-Rate Mode Setting In the oversampling mode, the prescaler is set to: UCBRx = INT(N/16) and the first stage modulator is set to: UCBRFx = INT([(N/16) – INT(N/16)] × 16) The second modulation stage setting (UCBRSx) can be found by performing a detailed error calculation or by using Table 39-4 and the fractional part of N = fBRCLK/Baudrate. 39.3.11 Transmit Bit Timing - Error calculation The timing for each character is the sum of the individual bit timings. Using the modulation features of the baud-rate generator reduces the cumulative bit error. The individual bit error can be calculated using the following steps. 39.3.11.1 Low-Frequency Baud-Rate Mode Bit Timing In low-frequency mode, calculation of the length of bit i Tbit,TX[i] is based on the UCBRx and UCBRSx settings: Tbit,TX[i] = (1/fBRCLK)(UCBRx + mUCBRSx[i]) Where: mUCBRSx[i] = Modulation of bit i of UCBRSx 39.3.11.2 Oversampling Baud-Rate Mode Bit Timing In oversampling baud-rate mode, calculation of the length of bit i Tbit,TX[i] is based on the baud-rate generator UCBRx, UCBRFx and UCBRSx settings: Tbit,TX[i] = 1 fBRCLK ((16 * UCBRx) + 15 j=0 mUCBRFx[j] + mUCBRSx[i] ( Where: 15 mUCBRFx[j] ≤ j=0 = Sum of ones from the corresponding row in Table 39-3 mUCBRSx[i] = Modulation of bit i of UCBRSx This results in an end-of-bit time tbit,TX[i] equal to the sum of all previous and the current bit times: i Tbit,TX[i] = ST [j] bit,TX j=0 To calculate bit error, this time is compared to the ideal bit time tbit,ideal,TX[i]: tbit,ideal,TX[i] = (1/Baudrate)(i + 1) This results in an error normalized to one ideal bit time (1/baudrate): ErrorTX[i] = (tbit,TX[i] – tbit,ideal,TX[i]) × Baudrate × 100% 39.3.12 Receive Bit Timing – Error Calculation Receive timing error consists of two error sources. The first is the bit-to-bit timing error similar to the transmit bit timing error. The second is the error between a start edge occurring and the start edge being accepted by the eUSCI_A module. Figure 39-11 shows the asynchronous timing errors between data on the UCAxRXD pin and the internal baud-rate clock. This results in an additional synchronization error. The synchronization error tSYNC is between –0.5 BRCLKs and +0.5 RCLKs, independent of the selected baudrate generation mode. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 1039 eUSCI_A Operation – UART Mode i www.ti.com 1 0 tideal 2 t1 t0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 BRCLK UCAxRXD ST D0 D1 RXD synch. ST D0 D1 t0 Synchronization Error ± 0.5x BRCLK tactual t1 t2 Sample RXD synch. Majority Vote Taken Majority Vote Taken Majority Vote Taken Figure 39-11. Receive Error The ideal sampling time tbit,ideal,RX[i] is in the middle of a bit period: tbit,ideal,RX[i] = (1/Baudrate)(i + 0.5) The real sampling time, tbit,RX[i], is equal to the sum of all previous bits according to the formulas shown in the transmit timing section, plus one-half BITCLK for the current bit i, plus the synchronization error tSYNC. This results in the following tbit,RX[i] for the low-frequency baud-rate mode: i–1 tbit,RX[i] = tSYNC + j=0 Tbit,RX[j] + 1 fBRCLK INT(½UCBRx) + mUCBRSx[i] ( ( Where: Tbit,RX[i] = (1/fBRCLK)(UCBRx + mUCBRSx[i]) mUCBRSx[i] = Modulation of bit i of UCBRSx For the oversampling baud-rate mode, the sampling time tbit,RX[i] of bit i is calculated by: i–1 Tbit,RX[j] + tbit,RX[i] = tSYNC + j=0 1 fBRCLK ((8 * UCBRx) + 7 ( mUCBRFx[j] + mUCBRSx[i] j=0 Where: Tbit,RX[i] = 1 fBRCLK ((16 * UCBRx) + 15 j=0 mUCBRFx[j] + mUCBRSx[i] ( 7 + mUCBRSx[i] mUCBRFx[j] = Sum of ones from columns 0 to (7 + mUCBRSx[i]) from the corresponding row in Table 39-3. mUCBRSx[i] = Modulation of bit i of UCBRSx j=0 This results in an error normalized to one ideal bit time (1/baudrate) according to the following formula: ErrorRX[i] = (tbit,RX[i] – tbit,ideal,RX[i]) × Baudrate × 100% 39.3.13 Typical Baud Rates and Errors Standard baud-rate data for UCBRx, UCBRSx, and UCBRFx are listed in Table 39-5 for a 32768-Hz crystal sourcing ACLK and typical SMCLK frequencies. Make sure that the selected BRCLK frequency does not exceed the device specific maximum eUSCI_A input frequency (see the device-specific data sheet). 1040 Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_A Operation – UART Mode www.ti.com The receive error is the accumulated time versus the ideal scanning time in the middle of each bit. The worst-case error is given for the reception of an 8-bit character with parity and one stop bit including synchronization error. The transmit error is the accumulated timing error versus the ideal time of the bit period. The worst-case error is given for the transmission of an 8-bit character with parity and stop bit. Table 39-5. Recommended Settings for Typical Crystals and Baudrates BRCLK Baudrate UCOS16 UCBRx UCBRFx 32768 1200 32768 2400 1 1 11 0 13 - 32768 4800 0 6 - UCBRSx TX Error (%) RX Error (%) neg pos neg pos 0x25 -2.29 2.25 -2.56 5.35 0xB6 -3.12 3.91 -5.52 8.84 0xEE -7.62 8.98 -21 10.25 32768 9600 0 3 - 0x92 -17.19 16.02 -23.24 37.3 1000000 9600 1 6 8 0x20 -0.48 0.64 -1.04 1.04 1000000 19200 1 3 4 0x2 -0.8 0.96 -1.84 1.84 1000000 38400 1 1 10 0x0 0 1.76 0 3.44 1000000 57600 0 17 - 0x4A -2.72 2.56 -3.76 7.28 1000000 115200 0 8 - 0xD6 -7.36 5.6 -17.04 6.96 1048576 9600 1 6 13 0x22 -0.46 0.42 -0.48 1.23 1048576 19200 1 3 6 0xAD -0.88 0.83 -2.36 1.18 1048576 38400 1 1 11 0x25 -2.29 2.25 -2.56 5.35 1048576 57600 0 18 - 0x11 -2 3.37 -5.31 5.55 1048576 115200 0 9 - 0x08 -5.37 4.49 -5.93 14.92 4000000 9600 1 26 0 0xB6 -0.08 0.16 -0.28 0.2 4000000 19200 1 13 0 0x84 -0.32 0.32 -0.64 0.48 4000000 38400 1 6 8 0x20 -0.48 0.64 -1.04 1.04 4000000 57600 1 4 5 0x55 -0.8 0.64 -1.12 1.76 4000000 115200 1 2 2 0xBB -1.44 1.28 -3.92 1.68 4000000 230400 0 17 - 0x4A -2.72 2.56 -3.76 7.28 4194304 9600 1 27 4 0xFB -0.11 0.1 -0.33 0 4194304 19200 1 13 10 0x55 -0.21 0.21 -0.55 0.33 4194304 38400 1 6 13 0x22 -0.46 0.42 -0.48 1.23 4194304 57600 1 4 8 0xEE -0.75 0.74 -2 0.87 4194304 115200 1 2 4 0x92 -1.62 1.37 -3.56 2.06 4194304 230400 0 18 - 0x11 -2 3.37 -5.31 5.55 8000000 9600 1 52 1 0x49 -0.08 0.04 -0.1 0.14 8000000 19200 1 26 0 0xB6 -0.08 0.16 -0.28 0.2 8000000 38400 1 13 0 0x84 -0.32 0.32 -0.64 0.48 8000000 57600 1 8 10 0xF7 -0.32 0.32 -1 0.36 8000000 115200 1 4 5 0x55 -0.8 0.64 -1.12 1.76 8000000 230400 1 2 2 0xBB -1.44 1.28 -3.92 1.68 8000000 460800 0 17 - 0x4A -2.72 2.56 -3.76 7.28 8388608 9600 1 54 9 0xEE -0.06 0.06 -0.11 0.13 8388608 19200 1 27 4 0xFB -0.11 0.1 -0.33 0 8388608 38400 1 13 10 0x55 -0.21 0.21 -0.55 0.33 8388608 57600 1 9 1 0xB5 -0.31 0.31 -0.53 0.78 8388608 115200 1 4 8 0xEE -0.75 0.74 -2 0.87 8388608 230400 1 2 4 0x92 -1.62 1.37 -3.56 2.06 8388608 460800 0 18 - 0x11 -2 3.37 -5.31 5.55 12000000 9600 1 78 2 0x0 0 0 0 0.04 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode 1041 Copyright © 2008–2015, Texas Instruments Incorporated eUSCI_A Operation – UART Mode www.ti.com Table 39-5. Recommended Settings for Typical Crystals and Baudrates (continued) UCBRSx TX Error (%) BRCLK Baudrate UCOS16 UCBRx UCBRFx 12000000 19200 1 39 1 0x0 0 12000000 38400 1 19 8 0x65 -0.16 12000000 57600 1 13 0 0x25 -0.16 12000000 115200 1 6 8 0x20 12000000 230400 1 3 4 12000000 460800 1 1 10 16000000 9600 1 104 2 16000000 19200 1 52 16000000 38400 1 26 16000000 57600 1 16000000 115200 16000000 230400 16000000 neg pos RX Error (%) neg pos 0 0 0.16 0.16 -0.4 0.24 0.32 -0.48 0.48 -0.48 0.64 -1.04 1.04 0x2 -0.8 0.96 -1.84 1.84 0x0 0 1.76 0 3.44 0xD6 -0.04 0.02 -0.09 0.03 1 0x49 -0.08 0.04 -0.1 0.14 0 0xB6 -0.08 0.16 -0.28 0.2 17 5 0xDD -0.16 0.2 -0.3 0.38 1 8 10 0xF7 -0.32 0.32 -1 0.36 1 4 5 0x55 -0.8 0.64 -1.12 1.76 460800 1 2 2 0xBB -1.44 1.28 -3.92 1.68 16777216 9600 1 109 3 0xB5 -0.03 0.02 -0.05 0.06 16777216 19200 1 54 9 0xEE -0.06 0.06 -0.11 0.13 16777216 38400 1 27 4 0xFB -0.11 0.1 -0.33 0 16777216 57600 1 18 3 0x44 -0.16 0.15 -0.2 0.45 16777216 115200 1 9 1 0xB5 -0.31 0.31 -0.53 0.78 16777216 230400 1 4 8 0xEE -0.75 0.74 -2 0.87 16777216 460800 1 2 4 0x92 -1.62 1.37 -3.56 2.06 20000000 9600 1 130 3 0x25 -0.02 0.03 0 0.07 20000000 19200 1 65 1 0xD6 -0.06 0.03 -0.1 0.1 20000000 38400 1 32 8 0xEE -0.1 0.13 -0.27 0.14 20000000 57600 1 21 11 0x22 -0.16 0.13 -0.16 0.38 20000000 115200 1 10 13 0xAD -0.29 0.26 -0.46 0.66 20000000 230400 1 5 6 0xEE -0.67 0.51 -1.71 0.62 20000000 460800 1 2 11 0x92 -1.38 0.99 -1.84 2.8 39.3.14 Using the eUSCI_A Module in UART Mode With Low-Power Modes The eUSCI_A module provides automatic clock activation for use with low-power modes. When the eUSCI_A clock source is inactive because the device is in a low-power mode, the eUSCI_A module automatically activates it when needed, regardless of the control-bit settings for the clock source. The clock remains active until the eUSCI_A module returns to its idle condition. After the eUSCI_A module returns to the idle condition, control of the clock source reverts to the settings of its control bits. NOTE: Clock Activation Time If the clock source is not already active when the eUSCI_A module requests it then the clock must be activated. This takes time. This clock activation time depending on the selected clock source and the selected low power mode. If the DCO is used as clock source the activation time is approximately the wake-up time as specified in the device-specific data sheet. 39.3.15 eUSCI_A Interrupts in UART Mode The eUSCI_A has only one interrupt vector that is shared for transmission and for reception. 1042 Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_A Operation – UART Mode www.ti.com 39.3.15.1 UART Transmit Interrupt Operation The UCTXIFG interrupt flag is set by the transmitter to indicate that UCAxTXBUF is ready to accept another character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is automatically reset if a character is written to UCAxTXBUF. UCTXIFG is set after a PUC or when UCSWRST = 1. UCTXIE is reset after a PUC or when UCSWRST = 1. 39.3.15.2 UART Receive Interrupt Operation The UCRXIFG interrupt flag is set each time a character is received and loaded into UCAxRXBUF. An interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset by a system reset PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCAxRXBUF is read. Additional interrupt control features include: • When UCAxRXEIE = 0, erroneous characters do not set UCRXIFG. • When UCDORM = 1, nonaddress characters do not set UCRXIFG in multiprocessor modes. In plain UART mode, no characters are set UCRXIFG. • When UCBRKIE = 1, a break condition sets the UCBRK bit and the UCRXIFG flag. 39.3.15.3 UART State Change Interrupt Operation Table 39-6 describes the UART state change interrupt flags. Table 39-6. UART State Change Interrupt Flags Interrupt Flag UCSTTIFG UCTXCPTIFG Interrupt Condition START byte received interrupt. This flag is set when the UART module receives a START byte. Transmit complete interrupt. This flag is set, after the complete UART byte in the internal shift register including STOP bit got shifted out and UCAxTXBUF is empty. 39.3.15.4 UCAxIV, Interrupt Vector Generator The eUSCI_A interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt vector register UCAxIV is used to determine which flag requested an interrupt. The highest-priority enabled interrupt generates a number in the UCAxIV register that can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled interrupts do not affect the UCAxIV value. Read access of the UCAxIV register automatically resets the highest-pending Interrupt condition and flag. Write access of the UCAxIV register clears all pending Interrupt conditions and flags. If another interrupt flag is set, another interrupt is generated immediately after servicing the initial interrupt. Example 39-1 shows the recommended use of UCAxIV. The UCAxIV value is added to the PC to automatically jump to the appropriate routine. The following example is given for eUSCI_A0. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 1043 eUSCI_A Operation – UART Mode www.ti.com Example 39-1. UCAxIV Software Example #pragma vector = USCI_A0_VECTOR __interrupt void USCI_A0_ISR(void) { switch(__even_in_range(UCA0IV,18)) { case 0x00: // Vector 0: No interrupts break; case 0x02: ... // Vector 2: UCRXIFG break; case 0x04: ... // Vector 4: UCTXIFG break; case 0x06: ... // Vector 6: UCSTTIFG break; case 0x08: ... // Vector 8: UCTXCPTIFG break; default: break; } } 39.3.16 DMA Operation In devices with a DMA controller, the eUSCI module can trigger DMA transfers when the transmit buffer UCAxTXBUF is empty or when data was received in the UCAxRXBUF buffer. The DMA trigger signals correspond to the UCTXIFG transmit interrupt flag and the UCRXIFG receive interrupt flag, respectively. The interrupt functionality must be disabled for the selected DMA triggers with UCTXIE = 0 and UCRXIE = 0. A DMA read access to UCAxRXBUF has the same effects as a CPU (software) read: all error flags (UCRXERR, UCFE, UCPE, UCOE, and UCBRK) are cleared after the read. Thus these errors might go unnoticed. 1044 Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_A UART Registers www.ti.com 39.4 eUSCI_A UART Registers The eUSCI_A registers applicable in UART mode and their address offsets are listed in Table 39-7. The base address can be found in the device-specific data sheet. Table 39-7. eUSCI_A UART Registers Offset Acronym Register Name Type Access Reset Section 00h UCAxCTLW0 eUSCI_Ax Control Word 0 Read/write Word 0001h Section 39.4.1 eUSCI_Ax Control 0 Read/write Byte 00h 01h 00h UCAxCTL0 (1) eUSCI_Ax Control 1 Read/write Byte 01h 02h UCAxCTLW1 UCAxCTL1 eUSCI_Ax Control Word 1 Read/write Word 0003h Section 39.4.2 06h UCAxBRW eUSCI_Ax Baud Rate Control Word Read/write Word 0000h Section 39.4.3 (1) 06h UCAxBR0 eUSCI_Ax Baud Rate Control 0 Read/write Byte 00h 07h UCAxBR1 eUSCI_Ax Baud Rate Control 1 Read/write Byte 00h 08h UCAxMCTLW eUSCI_Ax Modulation Control Word Read/write Word 00h Section 39.4.4 0Ah UCAxSTATW eUSCI_Ax Status Read/write Word 00h Section 39.4.5 0Ch UCAxRXBUF eUSCI_Ax Receive Buffer Read/write Word 00h Section 39.4.6 0Eh UCAxTXBUF eUSCI_Ax Transmit Buffer Read/write Word 00h Section 39.4.7 10h UCAxABCTL eUSCI_Ax Auto Baud Rate Control Read/write Word 00h Section 39.4.8 12h UCAxIRCTL eUSCI_Ax IrDA Control Section 39.4.9 Read/write Word 0000h 12h UCAxIRTCTL eUSCI_Ax IrDA Transmit Control Read/write Byte 00h 13h UCAxIRRCTL eUSCI_Ax IrDA Receive Control Read/write Byte 00h 1Ah UCAxIE eUSCI_Ax Interrupt Enable Read/write Word 00h Section 39.4.10 1Ch UCAxIFG eUSCI_Ax Interrupt Flag Read/write Word 02h Section 39.4.11 1Eh UCAxIV eUSCI_Ax Interrupt Vector Read Word 0000h Section 39.4.12 (1) It is recommended to access these registers using 16-bit access. If 8-bit access is used, the corresponding bit names must be followed by "_H". SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 1045 eUSCI_A UART Registers www.ti.com 39.4.1 UCAxCTLW0 Register eUSCI_Ax Control Word Register 0 Figure 39-12. UCAxCTLW0 Register 15 14 13 12 11 UCPEN UCPAR UCMSB UC7BIT UCSPB rw-0 rw-0 rw-0 rw-0 rw-0 7 6 UCSSELx rw-0 10 9 UCMODEx rw-0 8 UCSYNC rw-0 rw-0 5 4 3 2 1 0 UCRXEIE UCBRKIE UCDORM UCTXADDR UCTXBRK UCSWRST rw-0 rw-0 rw-0 rw-0 rw-0 rw-1 rw-0 Modify only when UCSWRST = 1 Table 39-8. UCAxCTLW0 Register Description Bit Field Type Reset Description 15 UCPEN RW 0h Parity enable 0b = Parity disabled 1b = Parity enabled. Parity bit is generated (UCAxTXD) and expected (UCAxRXD). In address-bit multiprocessor mode, the address bit is included in the parity calculation. 14 UCPAR RW 0h Parity select. UCPAR is not used when parity is disabled. 0b = Odd parity 1b = Even parity 13 UCMSB RW 0h MSB first select. Controls the direction of the receive and transmit shift register. 0b = LSB first 1b = MSB first 12 UC7BIT RW 0h Character length. Selects 7-bit or 8-bit character length. 0b = 8-bit data 1b = 7-bit data 11 UCSPB RW 0h Stop bit select. Number of stop bits. 0b = One stop bit 1b = Two stop bits 10-9 UCMODEx RW 0h eUSCI_A mode. The UCMODEx bits select the asynchronous mode when UCSYNC = 0. 00b = UART mode 01b = Idle-line multiprocessor mode 10b = Address-bit multiprocessor mode 11b = UART mode with automatic baud-rate detection 8 UCSYNC RW 0h Synchronous mode enable 0b = Asynchronous mode 1b = Synchronous mode 7-6 UCSSELx RW 0h eUSCI_A clock source select. These bits select the BRCLK source clock. 00b = UCLK 01b = ACLK 10b = SMCLK 11b = SMCLK 5 UCRXEIE RW 0h Receive erroneous-character interrupt enable 0b = Erroneous characters rejected and UCRXIFG is not set. 1b = Erroneous characters received set UCRXIFG. 4 UCBRKIE RW 0h Receive break character interrupt enable 0b = Received break characters do not set UCRXIFG. 1b = Received break characters set UCRXIFG. 1046 Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_A UART Registers www.ti.com Table 39-8. UCAxCTLW0 Register Description (continued) Bit Field Type Reset Description 3 UCDORM RW 0h Dormant. Puts eUSCI_A into sleep mode. 0b = Not dormant. All received characters set UCRXIFG. 1b = Dormant. Only characters that are preceded by an idle-line or with address bit set UCRXIFG. In UART mode with automatic baud-rate detection, only the combination of a break and synch field sets UCRXIFG. 2 UCTXADDR RW 0h Transmit address. Next frame to be transmitted is marked as address, depending on the selected multiprocessor mode. 0b = Next frame transmitted is data. 1b = Next frame transmitted is an address. 1 UCTXBRK RW 0h Transmit break. Transmits a break with the next write to the transmit buffer. In UART mode with automatic baud-rate detection, 055h must be written into UCAxTXBUF to generate the required break/synch fields. Otherwise, 0h must be written into the transmit buffer. 0b = Next frame transmitted is not a break. 1b = Next frame transmitted is a break or a break/synch. 0 UCSWRST RW 1h Software reset enable 0b = Disabled. eUSCI_A reset released for operation. 1b = Enabled. eUSCI_A logic held in reset state. 39.4.2 UCAxCTLW1 Register eUSCI_Ax Control Word Register 1 Figure 39-13. UCAxCTLW1 Register 15 14 13 12 11 10 9 8 r-0 r-0 r-0 r-0 r-0 4 3 2 1 Reserved r-0 r-0 r-0 7 6 5 Reserved r-0 r-0 r-0 0 UCGLITx r-0 r-0 r-0 rw-1 rw-1 Table 39-9. UCAxCTLW1 Register Description Bit Field Type Reset Description 15-2 Reserved R 0h Reserved 1-0 UCGLITx RW 3h Deglitch time 00b = Approximately 2 ns 01b = Approximately 50 ns 10b = Approximately 100 ns 11b = Approximately 200 ns SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 1047 eUSCI_A UART Registers www.ti.com 39.4.3 UCAxBRW Register eUSCI_Ax Baud Rate Control Word Register Figure 39-14. UCAxBRW Register 15 14 13 12 rw rw rw rw 7 6 5 4 11 10 9 8 rw rw rw rw 3 2 1 0 rw rw rw rw UCBRx UCBRx rw rw rw rw Modify only when UCSWRST = 1 Table 39-10. UCAxBRW Register Description Bit Field Type Reset Description 15-0 UCBRx RW 0h Clock prescaler setting of the Baud rate generator 39.4.4 UCAxMCTLW Register eUSCI_Ax Modulation Control Word Register Figure 39-15. UCAxMCTLW Register 15 14 13 12 11 10 9 8 rw-0 rw-0 rw-0 2 1 UCBRSx rw-0 rw-0 7 6 rw-0 rw-0 rw-0 5 4 3 UCBRFx rw-0 rw-0 Reserved rw-0 rw-0 r0 r0 0 UCOS16 r0 rw-0 Modify only when UCSWRST = 1 Table 39-11. UCAxMCTLW Register Description Bit Field Type Reset Description 15-8 UCBRSx RW 0h Second modulation stage select. These bits hold a free modulation pattern for BITCLK. 7-4 UCBRFx RW 0h First modulation stage select. These bits determine the modulation pattern for BITCLK16 when UCOS16 = 1. Ignored with UCOS16 = 0. The "Oversampling Baud-Rate Generation" section shows the modulation pattern. 3-1 Reserved R 0h Reserved 0 UCOS16 RW 0h Oversampling mode enabled 0b = Disabled 1b = Enabled 1048 Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_A UART Registers www.ti.com 39.4.5 UCAxSTATW Register eUSCI_Ax Status Register Figure 39-16. UCAxSTATW Register 15 14 13 12 r0 r0 r0 r0 11 10 9 8 r0 r0 r0 r0 Reserved 7 6 5 4 3 2 1 0 UCLISTEN UCFE UCOE UCPE UCBRK UCRXERR UCADDR UCIDLE UCBUSY rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r-0 Modify only when UCSWRST = 1 Table 39-12. UCAxSTATW Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved 7 UCLISTEN RW 0h Listen enable. The UCLISTEN bit selects loopback mode. 0b = Disabled 1b = Enabled. UCAxTXD is internally fed back to the receiver. 6 UCFE RW 0h Framing error flag. UCFE is cleared when UCAxRXBUF is read. 0b = No error 1b = Character received with low stop bit 5 UCOE RW 0h Overrun error flag. This bit is set when a character is transferred into UCAxRXBUF before the previous character was read. UCOE is cleared automatically when UCxRXBUF is read, and must not be cleared by software. Otherwise, it does not function correctly. 0b = No error 1b = Overrun error occurred. 4 UCPE RW 0h Parity error flag. When UCPEN = 0, UCPE is read as 0. UCPE is cleared when UCAxRXBUF is read. 0b = No error 1b = Character received with parity error 3 UCBRK RW 0h Break detect flag. UCBRK is cleared when UCAxRXBUF is read. 0b = No break condition 1b = Break condition occurred. 2 UCRXERR RW 0h Receive error flag. This bit indicates a character was received with one or more errors. When UCRXERR = 1, on or more error flags, UCFE, UCPE, or UCOE is also set. UCRXERR is cleared when UCAxRXBUF is read. 0b = No receive errors detected 1b = Receive error detected 1 UCADDR UCIDLE RW 0h UCADDR: Address received in address-bit multiprocessor mode. UCADDR is cleared when UCAxRXBUF is read. UCIDLE: Idle line detected in idle-line multiprocessor mode. UCIDLE is cleared when UCAxRXBUF is read. 0b = UCADDR: Received character is data. UCIDLE: No idle line detected 1b = UCADDR: Received character is an address. UCIDLE: Idle line detected 0 UCBUSY R 0h eUSCI_A busy. This bit indicates if a transmit or receive operation is in progress. 0b = eUSCI_A inactive 1b = eUSCI_A transmitting or receiving SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 1049 eUSCI_A UART Registers www.ti.com 39.4.6 UCAxRXBUF Register eUSCI_Ax Receive Buffer Register Figure 39-17. UCAxRXBUF Register 15 14 13 12 r-0 r-0 r-0 r-0 7 6 5 4 11 10 9 8 r-0 r-0 r-0 r-0 3 2 1 0 r r r r Reserved UCRXBUFx r r r r Table 39-13. UCAxRXBUF Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved 7-0 UCRXBUFx R 0h The receive-data buffer is user accessible and contains the last received character from the receive shift register. Reading UCAxRXBUF resets the receive-error bits, the UCADDR or UCIDLE bit, and UCRXIFG. In 7-bit data mode, UCAxRXBUF is LSB justified and the MSB is always reset. 39.4.7 UCAxTXBUF Register eUSCI_Ax Transmit Buffer Register Figure 39-18. UCAxTXBUF Register 15 14 13 12 11 10 9 8 r-0 r-0 r-0 r-0 3 2 1 0 rw rw rw rw Reserved r-0 r-0 r-0 r-0 7 6 5 4 UCTXBUFx rw rw rw rw Table 39-14. UCAxTXBUF Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved 7-0 UCTXBUFx RW 0h The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift register and transmitted on UCAxTXD. Writing to the transmit data buffer clears UCTXIFG. The MSB of UCAxTXBUF is not used for 7-bit data and is reset. 1050 Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_A UART Registers www.ti.com 39.4.8 UCAxABCTL Register eUSCI_Ax Auto Baud Rate Control Register Figure 39-19. UCAxABCTL Register 15 14 13 12 r-0 r-0 r-0 r-0 6 5 11 10 9 8 r-0 r-0 r-0 r-0 Reserved 7 4 Reserved r-0 UCDELIMx r-0 rw-0 rw-0 3 2 1 0 UCSTOE UCBTOE Reserved UCABDEN rw-0 rw-0 r-0 rw-0 Modify only when UCSWRST = 1 Table 39-15. UCAxABCTL Register Description Bit Field Type Reset Description 15-6 Reserved R 0h Reserved 5-4 UCDELIMx RW 0h Break/synch delimiter length 00b = 1 bit time 01b = 2 bit times 10b = 3 bit times 11b = 4 bit times 3 UCSTOE RW 0h Synch field time out error 0b = No error 1b = Length of synch field exceeded measurable time. 2 UCBTOE RW 0h Break time out error 0b = No error 1b = Length of break field exceeded 22 bit times. 1 Reserved R 0h Reserved 0 UCABDEN RW 0h Automatic baud-rate detect enable 0b = Baud-rate detection disabled. Length of break and synch field is not measured. 1b = Baud-rate detection enabled. Length of break and synch field is measured and baud-rate settings are changed accordingly. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 1051 eUSCI_A UART Registers www.ti.com 39.4.9 UCAxIRCTL Register eUSCI_Ax IrDA Control Word Register Figure 39-20. UCAxIRCTL Register 15 14 13 rw-0 rw-0 rw-0 7 6 5 12 11 10 rw-0 rw-0 rw-0 4 3 2 UCIRRXFLx UCIRTXPLx rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 9 8 UCIRRXPL UCIRRXFE rw-0 rw-0 1 0 UCIRTXCLK UCIREN rw-0 rw-0 Modify only when UCSWRST = 1 Table 39-16. UCAxIRCTL Register Description Bit Field Type Reset Description 15-10 UCIRRXFLx RW 0h Receive filter length. The minimum pulse length for receive is given by: t(MIN) = (UCIRRXFLx + 4) / [2 × f(IRTXCLK)] 9 UCIRRXPL RW 0h IrDA receive input UCAxRXD polarity 0b = IrDA transceiver delivers a high pulse when a light pulse is seen. 1b = IrDA transceiver delivers a low pulse when a light pulse is seen. 8 UCIRRXFE RW 0h IrDA receive filter enabled 0b = Receive filter disabled 1b = Receive filter enabled 7-2 UCIRTXPLx RW 0h Transmit pulse length. Pulse length t(PULSE) = (UCIRTXPLx + 1) / [2 × f(IRTXCLK)] 1 UCIRTXCLK RW 0h IrDA transmit pulse clock select 0b = BRCLK 1b = BITCLK16 when UCOS16 = 1. Otherwise, BRCLK. 0 UCIREN RW 0h IrDA encoder/decoder enable 0b = IrDA encoder/decoder disabled 1b = IrDA encoder/decoder enabled 1052 Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_A UART Registers www.ti.com 39.4.10 UCAxIE Register eUSCI_Ax Interrupt Enable Register Figure 39-21. UCAxIE Register 15 14 13 12 r-0 r-0 r-0 r-0 7 6 5 4 11 10 9 8 r-0 r-0 r-0 r-0 Reserved Reserved r-0 r-0 r-0 r-0 3 2 1 0 UCTXCPTIE UCSTTIE UCTXIE UCRXIE rw-0 rw-0 rw-0 rw-0 Table 39-17. UCAxIE Register Description Bit Field Type Reset Description 15-4 Reserved R 0h Reserved 3 UCTXCPTIE RW 0h Transmit complete interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 2 UCSTTIE RW 0h Start bit interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 1 UCTXIE RW 0h Transmit interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 0 UCRXIE RW 0h Receive interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 1053 eUSCI_A UART Registers www.ti.com 39.4.11 UCAxIFG Register eUSCI_Ax Interrupt Flag Register Figure 39-22. UCAxIFG Register 15 14 13 12 r-0 r-0 r-0 r-0 7 6 5 4 11 10 9 8 r-0 r-0 r-0 r-0 Reserved Reserved r-0 r-0 r-0 r-0 3 2 1 0 UCTXCPTIFG UCSTTIFG UCTXIFG UCRXIFG rw-0 rw-0 rw-1 rw-0 Table 39-18. UCAxIFG Register Description Bit Field Type Reset Description 15-4 Reserved R 0h Reserved 3 UCTXCPTIFG RW 0h Transmit complete interrupt flag. UCTXCPTIFG is set when the entire byte in the internal shift register got shifted out and UCAxTXBUF is empty. 0b = No interrupt pending 1b = Interrupt pending 2 UCSTTIFG RW 0h Start bit interrupt flag. UCSTTIFG is set after a Start bit was received 0b = No interrupt pending 1b = Interrupt pending 1 UCTXIFG RW 1h Transmit interrupt flag. UCTXIFG is set when UCAxTXBUF empty. 0b = No interrupt pending 1b = Interrupt pending 0 UCRXIFG RW 0h Receive interrupt flag. UCRXIFG is set when UCAxRXBUF has received a complete character. 0b = No interrupt pending 1b = Interrupt pending 1054 Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_A UART Registers www.ti.com 39.4.12 UCAxIV Register eUSCI_Ax Interrupt Vector Register Figure 39-23. UCAxIV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-(0) r-(0) r-(0) r0 UCIVx UCIVx r0 r0 r0 r0 Table 39-19. UCAxIV Register Description Bit Field Type Reset Description 15-0 UCIVx R 0h eUSCI_A interrupt vector value 00h = No interrupt pending 02h = Interrupt Source: Receive buffer full; Interrupt Flag: UCRXIFG; Interrupt Priority: Highest 04h = Interrupt Source: Transmit buffer empty; Interrupt Flag: UCTXIFG 06h = Interrupt Source: Start bit received; Interrupt Flag: UCSTTIFG 08h = Interrupt Source: Transmit complete; Interrupt Flag: UCTXCPTIFG; Interrupt Priority: Lowest SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode Copyright © 2008–2015, Texas Instruments Incorporated 1055 Chapter 40 SLAU208O – June 2008 – Revised May 2015 Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode The enhanced universal serial communication interfaces, eUSCI_A and eUSCI_B, support multiple serial communication modes with one hardware module. This chapter discusses the operation of the synchronous peripheral interface (SPI) mode. Topic 40.1 40.2 40.3 40.4 40.5 1056 ........................................................................................................................... Enhanced Universal Serial Communication Interfaces (eUSCI_A, eUSCI_B) Overview........................................................................................................ eUSCI Introduction – SPI Mode ......................................................................... eUSCI Operation – SPI Mode ............................................................................ eUSCI_A SPI Registers .................................................................................... eUSCI_B SPI Registers .................................................................................... Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated Page 1057 1057 1059 1065 1074 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback www.ti.com Enhanced Universal Serial Communication Interfaces (eUSCI_A, eUSCI_B) Overview 40.1 Enhanced Universal Serial Communication Interfaces (eUSCI_A, eUSCI_B) Overview Both the eUSCI_A and the eUSCI_B support serial communication in SPI mode. 40.2 eUSCI Introduction – SPI Mode In synchronous mode, the eUSCI connects the device to an external system via three or four pins: UCxSIMO, UCxSOMI, UCxCLK, and UCxSTE. SPI mode is selected when the UCSYNC bit is set, and SPI mode (3-pin or 4-pin) is selected with the UCMODEx bits. SPI mode features include: • 7-bit or 8-bit data length • LSB-first or MSB-first data transmit and receive • 3-pin and 4-pin SPI operation • Master or slave modes • Independent transmit and receive shift registers • Separate transmit and receive buffer registers • Continuous transmit and receive operation • Selectable clock polarity and phase control • Programmable clock frequency in master mode • Independent interrupt capability for receive and transmit • Slave operation in LPM4 Figure 40-1 shows the eUSCI when configured for SPI mode. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 1057 eUSCI Introduction – SPI Mode www.ti.com Receive State Machine Set UCOE Set UCxRXIFG UCLISTEN UCMST Receive Buffer UC xRXBUF UCxSOMI 0 Receive Shift Register 1 1 0 UCMSB UC7BIT UCSSELx Bit Clock Generator UCCKPH UCCKPL UCxBRx N/A 00 ACLK 01 SMCLK 10 SMCLK 11 16 BRCLK Prescaler/Divider UCxCLK Clock Direction, Phase and Polarity UCMSB UC7BIT UCxSIMO Transmit Shift Register UCMODEx UCSTEM 2 UCxSTE Transmit Buffer UC xTXBUF Transmit Enable Control Set UCFE Transmit State Machine Set UCxTXIFG Figure 40-1. eUSCI Block Diagram – SPI Mode 1058 Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI Operation – SPI Mode www.ti.com 40.3 eUSCI Operation – SPI Mode In SPI mode, serial data is transmitted and received by multiple devices using a shared clock provided by the master. An additional pin controlled by the master, UCxSTE, is provided to enable a device to receive and transmit data. Three or four signals are used for SPI data exchange: • UCxSIMO – slave in, master out Master mode: UCxSIMO is the data output line. Slave mode: UCxSIMO is the data input line. • UCxSOMI – slave out, master in Master mode: UCxSOMI is the data input line. Slave mode: UCxSOMI is the data output line. • UCxCLK – eUSCI SPI clock Master mode: UCxCLK is an output. Slave mode: UCxCLK is an input. • UCxSTE – slave transmit enable. Used in 4-pin mode to allow multiple masters on a single bus. Not used in 3-pin mode. Table 40-1 describes the UCxSTE operation. Table 40-1. UCxSTE Operation UCMODEx UCxSTE Active State 01 High 10 Low UCxSTE Slave Master 0 Inactive Active 1 Active Inactive 0 Active Inactive 1 Inactive Active 40.3.1 eUSCI Initialization and Reset The eUSCI is reset by a PUC or by the UCSWRST bit. After a PUC, the UCSWRST bit is automatically set, keeping the eUSCI in a reset condition. When set, the UCSWRST bit resets the UCRXIE, UCTXIE, UCRXIFG, UCOE, and UCFE bits, and sets the UCTXIFG flag. Clearing UCSWRST releases the eUSCI for operation. Configuring and reconfiguring the eUSCI module should be done when UCSWRST is set to avoid unpredictable behavior. NOTE: Initializing or reconfiguring the eUSCI module The recommended eUSCI initialization or reconfiguration process is: 1. Set UCSWRST. BIS.B #UCSWRST,&UCxCTL1 2. 3. 4. 5. Initialize all eUSCI registers with UCSWRST = 1 (including UCxCTL1). Configure ports. Ensure that any input signals into the SPI module such as UCxSOMI (in master mode) or UCxSIMO and UCxCLK (in slave mode) have settled to their final voltage levels before clearing UCSWRST and avoid any unwanted transitions during operation. Clear UCSWRST. 6. Enable interrupts (optional) with UCRXIE or UCTXIE. BIC.B #UCSWRST,&UCxCTL1 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 1059 eUSCI Operation – SPI Mode www.ti.com 40.3.2 Character Format The eUSCI module in SPI mode supports 7-bit and 8-bit character lengths selected by the UC7BIT bit. In 7-bit data mode, UCxRXBUF is LSB justified and the MSB is always reset. The UCMSB bit controls the direction of the transfer and selects LSB or MSB first. NOTE: Default character format The default SPI character transmission is LSB first. For communication with other SPI interfaces, MSB-first mode may be required. NOTE: Character format for figures Figures throughout this chapter use MSB-first format. 40.3.3 Master Mode MASTER Receive Buffer UCxRXBUF UCxSIMO SLAVE SIMO Transmit Buffer UCxTXBUF SPI Receive Buffer Px.x UCxSTE Receive Shift Register Transmit Shift Register UCx SOMI UCxCLK STE SS Port.x SOMI Data Shift Register (DSR) SCLK MSP430 USCI COMMON SPI Figure 40-2. eUSCI Master and External Slave (UCSTEM = 0) Figure 40-2 shows the eUSCI as a master in both 3-pin and 4-pin configurations. The eUSCI initiates data transfer when data is moved to the transmit data buffer UCxTXBUF. The UCxTXBUF data is moved to the transmit (TX) shift register when the TX shift register is empty, initiating data transfer on UCxSIMO starting with either the MSB or LSB, depending on the UCMSB setting. Data on UCxSOMI is shifted into the receive shift register on the opposite clock edge. When the character is received, the receive data is moved from the receive (RX) shift register to the received data buffer UCxRXBUF and the receive interrupt flag UCRXIFG is set, indicating the RX/TX operation is complete. A set transmit interrupt flag, UCTXIFG, indicates that data has moved from UCxTXBUF to the TX shift register and UCxTXBUF is ready for new data. It does not indicate RX/TX completion. To receive data into the eUSCI in master mode, data must be written to UCxTXBUF, because receive and transmit operations operate concurrently. There two different options for configuring the eUSCI as a 4-pin master, which are described in the next sections: • The fourth pin is used as input to prevent conflicts with other masters (UCSTEM = 0). • The fourth pin is used as output to generate a slave enable signal (UCSTEM = 1). The bit UCSTEM is used to select the corresponding mode. 1060 Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI Operation – SPI Mode www.ti.com 40.3.3.1 4-Pin SPI Master Mode (UCSTEM = 0) In 4-pin master mode with UCSTEM = 0, UCxSTE is a digital input that can be used to prevent conflicts with another master and controls the master as described in Table 40-1. When UCxSTE is in the masterinactive state and UCSTEM = 0: • UCxSIMO and UCxCLK are set to inputs and no longer drive the bus. • The error bit UCFE is set, indicating a communication integrity violation to be handled by the user. • The internal state machines are reset and the shift operation is aborted. If data is written into UCxTXBUF while the master is held inactive by UCxSTE, it is transmit as soon as UCxSTE transitions to the master-active state. If an active transfer is aborted by UCxSTE transitioning to the master-inactive state, the data must be rewritten into UCxTXBUF to be transferred when UCxSTE transitions back to the master-active state. The UCxSTE input signal is not used in 3-pin master mode. 40.3.3.2 4-Pin SPI Master Mode (UCSTEM = 1) If UCSTEM = 1 in 4-pin master mode, UCxSTE is a digital output. In this mode the slave enable signal for a single slave is automatically generated on UCxSTE. The corresponding behavior can be seen in Figure 40-4. If multiple slaves are desired, this feature is not applicable and the software needs to use general purpose I/O pins instead to generate STE signals for each slave individually. 40.3.4 Slave Mode MASTER SIMO SLAVE UCxSIMO SPI Receive Buffer Transmit Buffer UCxTXBUF Px.x UCxSTE STE SS Port.x Data Shift Register DSR SOMI SCLK COMMON SPI UCx SOMI Transmit Shift Register Receive Buffer UCxRXBUF Receive Shift Register UCxCLK MSP430 USCI Figure 40-3. eUSCI Slave and External Master Figure 40-3 shows the eUSCI as a slave in both 3-pin and 4-pin configurations. UCxCLK is used as the input for the SPI clock and must be supplied by the external master. The data-transfer rate is determined by this clock and not by the internal bit clock generator. Data written to UCxTXBUF and moved to the TX shift register before the start of UCxCLK is transmitted on UCxSOMI. Data on UCxSIMO is shifted into the receive shift register on the opposite edge of UCxCLK and moved to UCxRXBUF when the set number of bits are received. When data is moved from the RX shift register to UCxRXBUF, the UCRXIFG interrupt flag is set, indicating that data has been received. The overrun error bit UCOE is set when the previously received data is not read from UCxRXBUF before new data is moved to UCxRXBUF. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 1061 eUSCI Operation – SPI Mode www.ti.com 40.3.4.1 4-Pin SPI Slave Mode In 4-pin slave mode, UCxSTE is a digital input used by the slave to enable the transmit and receive operations and is driven by the SPI master. When UCxSTE is in the slave-active state, the slave operates normally. When UCxSTE is in the slave-inactive state: • Any receive operation in progress on UCxSIMO is halted. • UCxSOMI is set to the input direction. • The shift operation is halted until the UCxSTE line transitions into the slave transmit active state. The UCxSTE input signal is not used in 3-pin slave mode. 40.3.5 SPI Enable When the eUSCI module is enabled by clearing the UCSWRST bit, it is ready to receive and transmit. In master mode, the bit clock generator is ready, but is not clocked nor producing any clocks. In slave mode, the bit clock generator is disabled and the clock is provided by the master. A transmit or receive operation is indicated by UCBUSY = 1. A PUC or set UCSWRST bit disables the eUSCI immediately and any active transfer is terminated. 40.3.5.1 Transmit Enable In master mode, writing to UCxTXBUF activates the bit clock generator, and the data begins to transmit. In slave mode, transmission begins when a master provides a clock and, in 4-pin mode, when the UCxSTE is in the slave-active state. 40.3.5.2 Receive Enable The SPI receives data when a transmission is active. Receive and transmit operations operate concurrently. 40.3.6 Serial Clock Control UCxCLK is provided by the master on the SPI bus. When UCMST = 1, the bit clock is provided by the eUSCI bit clock generator on the UCxCLK pin. The clock used to generate the bit clock is selected with the UCSSELx bits. When UCMST = 0, the eUSCI clock is provided on the UCxCLK pin by the master, the bit clock generator is not used, but the UCSSELx bits must be set to 0. The SPI receiver and transmitter operate in parallel and use the same clock source for data transfer. The 16-bit value of UCBRx in the bit rate control registers UCxxBRW is the division factor of the eUSCI clock source, BRCLK. With UCBRx = 0 the maximum bit clock that can be generated in master mode is BRCLK. Modulation is not used in SPI mode, and UCAxMCTL should be cleared when using SPI mode for eUSCI_A. The UCAxCLK or UCBxCLK frequency is given by: fBitClock = fBRCLK / UCBRx If UCBRx = 0, fBitClock = fBRCLK Even UCBRx settings result in even divisions and, thus, generate a bit clock with a 50/50 duty cycle. Odd UCBRx settings result in odd divisions. In this case, the high phase of the bit clock is one BRCLK cycle longer than the low phase. When UCBRx = 0, no division is applied to BRCLK, and the bit clock equals BRCLK. 40.3.6.1 Serial Clock Polarity and Phase The polarity and phase of UCxCLK are independently configured via the UCCKPL and UCCKPH control bits of the eUSCI. Timing for each case is shown in Figure 40-4. 1062 Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI Operation – SPI Mode www.ti.com UC UC CKPH CKPL Cycle# 0 0 UCxCLK 0 1 UCxCLK 1 0 UCxCLK 1 1 UCxCLK 1 2 3 4 5 6 7 8 UCxSTE 0 X UCxSIMO/ UCxSOMI MSB LSB 1 X UCxSIMO UCxSOMI MSB LSB Move to UCxTXBUF TX Data Shifted Out RX Sample Points Figure 40-4. eUSCI SPI Timing With UCMSB = 1 40.3.7 Using the SPI Mode With Low-Power Modes The eUSCI module provides automatic clock activation for use with low-power modes. When the eUSCI clock source is inactive because the device is in a low-power mode, the eUSCI module automatically activates it when needed, regardless of the control-bit settings for the clock source. The clock remains active until the eUSCI module returns to its idle condition. After the eUSCI module returns to the idle condition, control of the clock source reverts to the settings of its control bits. In SPI slave mode, no internal clock source is required because the clock is provided by the external master. It is possible to operate the eUSCI in SPI slave mode while the device is in LPM4 and all clock sources are disabled. The receive or transmit interrupt can wake up the CPU from any low-power mode. 40.3.8 eUSCI Interrupts in SPI Mode The eUSCI has only one interrupt vector that is shared for transmission and for reception. eUSCI_Ax and eUSCI_Bx do not share the same interrupt vector. 40.3.8.1 SPI Transmit Interrupt Operation The UCTXIFG interrupt flag is set by the transmitter to indicate that UCxTXBUF is ready to accept another character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is automatically reset if a character is written to UCxTXBUF. UCTXIFG is set after a PUC or when UCSWRST = 1. UCTXIE is reset after a PUC or when UCSWRST = 1. NOTE: Writing to UCxTXBUF in SPI mode Data written to UCxTXBUF when UCTXIFG = 0 may result in erroneous data transmission. 40.3.8.2 SPI Receive Interrupt Operation The UCRXIFG interrupt flag is set each time a character is received and loaded into UCxRXBUF. An interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset by a system reset PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCxRXBUF is read. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 1063 eUSCI Operation – SPI Mode www.ti.com 40.3.8.3 UCxIV, Interrupt Vector Generator The eUSCI interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt vector register UCxIV is used to determine which flag requested an interrupt. The highest-priority enabled interrupt generates a number in the UCxIV register that can be evaluated or added to the program counter (PC) to automatically enter the appropriate software routine. Disabled interrupts do not affect the UCxIV value. Any access, read or write, of the UCxIV register automatically resets the highest-pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. 40.3.8.3.1 UCxIV Software Example The following software example shows the recommended use of UCxIV. The UCxIV value is added to the PC to automatically jump to the appropriate routine. The following example is given for eUSCI_B0. USCI_SPI_ISR ADD RETI JMP TXIFG_ISR ... RETI RXIFG_ISR ... RETI 1064 &UCB0IV, PC RXIFG_ISR ; ; ; ; ; ; ; ; ; Add offset to jump table Vector 0: No interrupt Vector 2: RXIFG Vector 4: TXIFG Task starts here Return Vector 2 Task starts here Return Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_A SPI Registers www.ti.com 40.4 eUSCI_A SPI Registers The eUSCI_A registers applicable in SPI mode and their address offsets are listed in Table 40-2. The base addresses can be found in the device-specific data sheet. Table 40-2. eUSCI_A SPI Registers Offset Acronym Register Name Type Access Reset Section 00h UCAxCTLW0 eUSCI_Ax Control Word 0 Read/write Word 0001h Section 40.4.1 eUSCI_Ax Control 1 Read/write Byte 01h eUSCI_Ax Control 0 00h 01h 06h 06h 07h UCAxCTL1 UCAxCTL0 UCAxBRW UCAxBR0 UCAxBR1 Read/write Byte 00h eUSCI_Ax Bit Rate Control Word Read/write Word 0000h eUSCI_Ax Bit Rate Control 0 Read/write Byte 00h eUSCI_Ax Bit Rate Control 1 Section 40.4.2 Read/write Byte 00h 0Ah UCAxSTATW eUSCI_Ax Status Read/write Word 00h Section 40.4.3 0Ch UCAxRXBUF eUSCI_Ax Receive Buffer Read/write Word 00h Section 40.4.4 0Eh UCAxTXBUF eUSCI_Ax Transmit Buffer Read/write Word 00h Section 40.4.5 1Ah UCAxIE eUSCI_Ax Interrupt Enable Read/write Word 00h Section 40.4.6 1Ch UCAxIFG eUSCI_Ax Interrupt Flag Read/write Word 02h Section 40.4.7 1Eh UCAxIV eUSCI_Ax Interrupt Vector Read Word 0000h Section 40.4.8 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 1065 eUSCI_A SPI Registers www.ti.com 40.4.1 UCAxCTLW0 Register eUSCI_Ax Control Register 0 Figure 40-5. UCAxCTLW0 Register 15 14 13 12 11 UCCKPH UCCKPL UCMSB UC7BIT UCMST rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 6 5 4 3 2 7 UCSSELx rw-0 10 9 UCMODEx Reserved rw-0 rw-0 rw-0 rw-0 rw-0 8 UCSYNC rw-0 rw-0 1 0 UCSTEM UCSWRST rw-0 rw-1 Modify only when UCSWRST = 1. Table 40-3. UCAxCTLW0 Register Description Bit Field Type Reset Description 15 UCCKPH RW 0h Clock phase select 0b = Data is changed on the first UCLK edge and captured on the following edge. 1b = Data is captured on the first UCLK edge and changed on the following edge. 14 UCCKPL RW 0h Clock polarity select 0b = The inactive state is low. 1b = The inactive state is high. 13 UCMSB RW 0h MSB first select. Controls the direction of the receive and transmit shift register. 0b = LSB first 1b = MSB first 12 UC7BIT RW 0h Character length. Selects 7-bit or 8-bit character length. 0b = 8-bit data 1b = 7-bit data 11 UCMST RW 0h Master mode select 0b = Slave mode 1b = Master mode 10-9 UCMODEx RW 0h eUSCI mode. The UCMODEx bits select the synchronous mode when UCSYNC = 1. 00b = 3-pin SPI 01b = 4-pin SPI with UCxSTE active high: Slave enabled when UCxSTE = 1 10b = 4-pin SPI with UCxSTE active low: Slave enabled when UCxSTE = 0 11b = Reserved 8 UCSYNC RW 0h Synchronous mode enable 0b = Asynchronous mode 1b = Synchronous mode 7-6 UCSSELx RW 0h eUSCI clock source select. These bits select the BRCLK source clock. 00b = UCxCLK in slave mode. Do not use in master mode. 01b = ACLK in master mode. Do not use in slave mode. 10b = SMCLK in master mode. Do not use in slave mode. 11b = SMCLK in master mode. Do not use in slave mode. 5-2 Reserved R 0h Reserved 1 UCSTEM RW 0h STE mode select in master mode. This byte is ignored in slave or 3-wire mode. 0b = STE pin is used to prevent conflicts with other masters 1b = STE pin is used to generate the enable signal for a 4-wire slave 0 UCSWRST RW 1h Software reset enable 0b = Disabled. eUSCI reset released for operation. 1b = Enabled. eUSCI logic held in reset state. 1066 Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_A SPI Registers www.ti.com 40.4.2 UCAxBRW Register eUSCI_Ax Bit Rate Control Register 1 Figure 40-6. UCAxBRW Register 15 14 13 12 rw rw rw rw 7 6 5 4 11 10 9 8 rw rw rw rw 3 2 1 0 rw rw rw rw UCBRx UCBRx rw rw rw rw Modify only when UCSWRST = 1. Table 40-4. UCAxBRW Register Description Bit Field Type Reset Description 15-0 UCBRx RW 0h Bit clock prescaler setting. fBitClock = fBRCLK / UCBRx If UCBRx = 0, fBitClock = fBRCLK SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 1067 eUSCI_A SPI Registers www.ti.com 40.4.3 UCAxSTATW Register eUSCI_Ax Status Register Figure 40-7. UCAxSTATW Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 r0 r0 r0 4 3 2 1 Reserved 7 6 5 UCLISTEN UCFE UCOE rw-0 rw-0 rw-0 Reserved rw-0 rw-0 0 UCBUSY rw-0 rw-0 r-0 Modify only when UCSWRST = 1. Table 40-5. UCAxSTATW Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved 7 UCLISTEN RW 0h Listen enable. The UCLISTEN bit selects loopback mode. 0b = Disabled 1b = Enabled. The transmitter output is internally fed back to the receiver. 6 UCFE RW 0h Framing error flag. This bit indicates a bus conflict in 4-wire master mode. UCFE is not used in 3-wire master or any slave mode. 0b = No error 1b = Bus conflict occurred 5 UCOE RW 0h Overrun error flag. This bit is set when a character is transferred into UCxRXBUF before the previous character was read. UCOE is cleared automatically when UCxRXBUF is read, and must not be cleared by software. Otherwise, it does not function correctly. 0b = No error 1b = Overrun error occurred 4-1 Reserved RW 0h Reserved 0 UCBUSY R 0h eUSCI busy. This bit indicates if a transmit or receive operation is in progress. 0b = eUSCI inactive 1b = eUSCI transmitting or receiving 1068 Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_A SPI Registers www.ti.com 40.4.4 UCAxRXBUF Register eUSCI_Ax Receive Buffer Register Figure 40-8. UCAxRXBUF Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 rw rw rw rw Reserved UCRXBUFx rw rw rw rw Table 40-6. UCAxRXBUF Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved 7-0 UCRXBUFx R 0h The receive-data buffer is user accessible and contains the last received character from the receive shift register. Reading UCxRXBUF resets the receiveerror bits and UCRXIFG. In 7-bit data mode, UCxRXBUF is LSB justified and the MSB is always reset. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 1069 eUSCI_A SPI Registers www.ti.com 40.4.5 UCAxTXBUF Register eUSCI_Ax Transmit Buffer Register Figure 40-9. UCAxTXBUF Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 rw rw rw rw Reserved UCTXBUFx rw rw rw rw Table 40-7. UCAxTXBUF Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved 7-0 UCTXBUFx RW 0h The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift register and transmitted. Writing to the transmit data buffer clears UCTXIFG. The MSB of UCxTXBUF is not used for 7-bit data and is reset. 1070 Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_A SPI Registers www.ti.com 40.4.6 UCAxIE Register eUSCI_Ax Interrupt Enable Register Figure 40-10. UCAxIE Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 r0 r0 r0 7 6 5 4 3 2 Reserved Reserved r-0 r-0 r-0 r-0 r-0 r-0 1 0 UCTXIE UCRXIE rw-0 rw-0 Table 40-8. UCAxIE Register Description Bit Field Type Reset Description 15-2 Reserved R 0h Reserved 1 UCTXIE RW 0h Transmit interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 0 UCRXIE RW 0h Receive interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 1071 eUSCI_A SPI Registers www.ti.com 40.4.7 UCAxIFG Register eUSCI_Ax Interrupt Flag Register Figure 40-11. UCAxIFG Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 r0 r0 r0 7 6 5 4 3 2 Reserved Reserved r-0 r-0 r-0 r-0 r-0 r-0 1 0 UCTXIFG UCRXIFG rw-1 rw-0 Table 40-9. UCAxIFG Register Description Bit Field Type Reset Description 15-2 Reserved R 0h Reserved 1 UCTXIFG RW 1h Transmit interrupt flag. UCTXIFG is set when UCxxTXBUF empty. 0b = No interrupt pending 1b = Interrupt pending 0 UCRXIFG RW 0h Receive interrupt flag. UCRXIFG is set when UCxxRXBUF has received a complete character. 0b = No interrupt pending 1b = Interrupt pending 1072 Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_A SPI Registers www.ti.com 40.4.8 UCAxIV Register eUSCI_Ax Interrupt Vector Register Figure 40-12. UCAxIV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-0 r-0 r-0 r0 UCIVx UCIVx r0 r0 r0 r-0 Table 40-10. UCAxIV Register Description Bit Field Type Reset Description 15-0 UCIVx R 0h eUSCI interrupt vector value 000h = No interrupt pending 002h = Interrupt Source: Data received; Interrupt Flag: UCRXIFG; Interrupt Priority: Highest 004h = Interrupt Source: Transmit buffer empty; Interrupt Flag: UCTXIFG; Interrupt Priority: Lowest SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 1073 eUSCI_B SPI Registers www.ti.com 40.5 eUSCI_B SPI Registers The eUSCI_B registers applicable in SPI mode and their address offsets are listed in Table 40-11. The base addresses can be found in the device-specific data sheet. Table 40-11. eUSCI_B SPI Registers Offset Acronym Register Name Type Access Reset Section 00h UCBxCTLW0 eUSCI_Bx Control Word 0 Read/write Word 01C1h Section 40.5.1 eUSCI_Bx Control 1 Read/write Byte C1h eUSCI_Bx Control 0 00h 01h 06h 06h 07h 1074 UCBxCTL1 UCBxCTL0 UCBxBRW UCBxBR0 UCBxBR1 Read/write Byte 01h eUSCI_Bx Bit Rate Control Word Read/write Word 0000h eUSCI_Bx Bit Rate Control 0 Read/write Byte 00h eUSCI_Bx Bit Rate Control 1 Section 40.5.2 Read/write Byte 00h 08h UCBxSTATW eUSCI_Bx Status Read/write Word 00h Section 40.5.3 0Ch UCBxRXBUF eUSCI_Bx Receive Buffer Read/write Word 00h Section 40.5.4 0Eh UCBxTXBUF eUSCI_Bx Transmit Buffer Read/write Word 00h Section 40.5.5 2Ah UCBxIE eUSCI_Bx Interrupt Enable Read/write Word 00h Section 40.5.6 2Ch UCBxIFG eUSCI_Bx Interrupt Flag Read/write Word 02h Section 40.5.7 2Eh UCBxIV eUSCI_Bx Interrupt Vector Read Word 0000h Section 40.5.8 Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_B SPI Registers www.ti.com 40.5.1 UCBxCTLW0 Register eUSCI_Bx Control Register 0 Figure 40-13. UCBxCTLW0 Register 15 14 13 12 11 UCCKPH UCCKPL UCMSB UC7BIT UCMST rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 6 5 4 3 2 7 UCSSELx rw-1 10 9 UCMODEx Reserved rw-1 r0 rw-0 rw-0 rw-0 8 UCSYNC rw-0 rw-1 1 0 UCSTEM UCSWRST rw-0 rw-1 Modify only when UCSWRST = 1. Table 40-12. UCBxCTLW0 Register Description Bit Field Type Reset Description 15 UCCKPH RW 0h Clock phase select 0b = Data is changed on the first UCLK edge and captured on the following edge. 1b = Data is captured on the first UCLK edge and changed on the following edge. 14 UCCKPL RW 0h Clock polarity select 0b = The inactive state is low. 1b = The inactive state is high. 13 UCMSB RW 0h MSB first select. Controls the direction of the receive and transmit shift register. 0b = LSB first 1b = MSB first 12 UC7BIT RW 0h Character length. Selects 7-bit or 8-bit character length. 0b = 8-bit data 1b = 7-bit data 11 UCMST RW 0h Master mode select 0b = Slave mode 1b = Master mode 10-9 UCMODEx RW 0h eUSCI mode. The UCMODEx bits select the synchronous mode when UCSYNC = 1. 00b = 3-pin SPI 01b = 4-pin SPI with UCxSTE active high: Slave enabled when UCxSTE = 1 10b = 4-pin SPI with UCxSTE active low: Slave enabled when UCxSTE = 0 11b = I2C mode 8 UCSYNC RW 1h Synchronous mode enable 0b = Asynchronous mode 1b = Synchronous mode 7-6 UCSSELx RW 3h eUSCI clock source select. These bits select the BRCLK source clock. 00b = UCxCLK in slave mode. Don't use in master mode. 01b = ACLK in master mode. Don't use in slave mode. 10b = SMCLK in master mode. Don't use in slave mode. 11b = SMCLK in master mode. Don't use in slave mode. 5-2 Reserved R 0h Reserved 1 UCSTEM RW 0h STE mode select in master mode. This byte is ignored in slave or 3-wire mode. 0b = STE pin is used to prevent conflicts with other masters 1b = STE pin is used to generate the enable signal for a 4-wire slave 0 UCSWRST RW 1h Software reset enable 0b = Disabled. eUSCI reset released for operation. 1b = Enabled. eUSCI logic held in reset state. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 1075 eUSCI_B SPI Registers www.ti.com 40.5.2 UCBxBRW Register eUSCI_Bx Bit Rate Control Register 1 Figure 40-14. UCBxBRW Register 15 14 13 12 rw rw rw rw 7 6 5 4 11 10 9 8 rw rw rw rw 3 2 1 0 rw rw rw rw UCBRx UCBRx rw rw rw rw Modify only when UCSWRST = 1. Table 40-13. UCBxBRW Register Description Bit Field Type Reset Description 15-0 UCBRx RW 0h Bit clock prescaler setting. fBitClock = fBRCLK / UCBRx If UCBRx = 0, fBitClock = fBRCLK 40.5.3 UCBxSTATW Register eUSCI_Bx Status Register Figure 40-15. UCBxSTATW Register 15 14 13 12 11 10 9 8 r0 r0 r0 2 1 Reserved r0 r0 r0 r0 r0 4 3 7 6 5 UCLISTEN UCFE UCOE rw-0 rw-0 rw-0 Reserved r0 r0 0 UCBUSY r0 r0 r-0 Modify only when UCSWRST = 1. Table 40-14. UCBxSTATW Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved 7 UCLISTEN RW 0h Listen enable. The UCLISTEN bit selects loopback mode. 0b = Disabled 1b = Enabled. The transmitter output is internally fed back to the receiver. 6 UCFE RW 0h Framing error flag. This bit indicates a bus conflict in 4-wire master mode. UCFE is not used in 3-wire master or any slave mode. 0b = No error 1b = Bus conflict occurred 5 UCOE RW 0h Overrun error flag. This bit is set when a character is transferred into UCxRXBUF before the previous character was read. UCOE is cleared automatically when UCxRXBUF is read, and must not be cleared by software. Otherwise, it does not function correctly. 0b = No error 1b = Overrun error occurred 4-1 Reserved R 0h Reserved 0 UCBUSY R 0h eUSCI busy. This bit indicates if a transmit or receive operation is in progress. 0b = eUSCI inactive 1b = eUSCI transmitting or receiving 1076 Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_B SPI Registers www.ti.com 40.5.4 UCBxRXBUF Register eUSCI_Bx Receive Buffer Register Figure 40-16. UCBxRXBUF Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 rw rw rw rw Reserved UCRXBUFx rw rw rw rw Table 40-15. UCBxRXBUF Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved 7-0 UCRXBUFx R 0h The receive-data buffer is user accessible and contains the last received character from the receive shift register. Reading UCxRXBUF resets the receiveerror bits and UCRXIFG. In 7-bit data mode, UCxRXBUF is LSB justified and the MSB is always reset. 40.5.5 UCBxTXBUF Register eUSCI_Bx Transmit Buffer Register Figure 40-17. UCBxTXBUF Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 3 2 1 0 rw rw rw rw Reserved r0 r0 r0 r0 7 6 5 4 UCTXBUFx rw rw rw rw Table 40-16. UCBxTXBUF Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved 7-0 UCTXBUFx RW 0h The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift register and transmitted. Writing to the transmit data buffer clears UCTXIFG. The MSB of UCxTXBUF is not used for 7-bit data and is reset. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 1077 eUSCI_B SPI Registers www.ti.com 40.5.6 UCBxIE Register eUSCI_Bx Interrupt Enable Register Figure 40-18. UCBxIE Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 r0 r0 r0 7 6 5 4 3 2 Reserved Reserved r-0 r-0 r-0 r-0 r-0 r-0 1 0 UCTXIE UCRXIE rw-0 rw-0 Table 40-17. UCBxIE Register Description Bit Field Type Reset Description 15-2 Reserved R 0h Reserved 1 UCTXIE RW 0h Transmit interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 0 UCRXIE RW 0h Receive interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 40.5.7 UCBxIFG Register eUSCI_Bx Interrupt Flag Register Figure 40-19. UCBxIFG Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 r0 4 3 2 Reserved r0 r0 r0 7 6 5 Reserved r-0 r-0 r-0 r-0 r-0 r-0 1 0 UCTXIFG UCRXIFG rw-1 rw-0 Table 40-18. UCBxIFG Register Description Bit Field Type Reset Description 15-2 Reserved R 0h Reserved 1 UCTXIFG RW 1h Transmit interrupt flag. UCTXIFG is set when UCxxTXBUF empty. 0b = No interrupt pending 1b = Interrupt pending 0 UCRXIFG RW 0h Receive interrupt flag. UCRXIFG is set when UCxxRXBUF has received a complete character. 0b = No interrupt pending 1b = Interrupt pending 1078 Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_B SPI Registers www.ti.com 40.5.8 UCBxIV Register eUSCI_Bx Interrupt Vector Register Figure 40-20. UCBxIV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-0 r-0 r-0 r0 UCIVx UCIVx r0 r0 r0 r-0 Table 40-19. UCBxIV Register Description Bit Field Type Reset Description 15-0 UCIVx R 0h eUSCI interrupt vector value 0000h = No interrupt pending 0002h = Interrupt Source: Data received; Interrupt Flag: UCRXIFG; Interrupt Priority: Highest 0004h = Interrupt Source: Transmit buffer empty; Interrupt Flag: UCTXIFG; Interrupt Priority: Lowest SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode Copyright © 2008–2015, Texas Instruments Incorporated 1079 Chapter 41 SLAU208O – June 2008 – Revised May 2015 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode The enhanced universal serial communication interface B (eUSCI_B) supports multiple serial communication modes with one hardware module. This chapter discusses the operation of the I2C mode. Topic 41.1 1080 ........................................................................................................................... Page eUSCI_B I2C Registers .................................................................................... 1102 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback www.ti.com Enhanced Universal Serial Communication Interface B (eUSCI_B) Overview The eUSCI_B module supports two serial communication modes: • I2C mode • SPI mode If more than one eUSCI_B module is implemented on one device, those modules are named with incrementing numbers. For example, if one device has two eUSCI_B modules, they are named eUSCI0_B and eUSCI1_B. eUSCI_B Introduction – I2C Mode In I2C mode, the eUSCI_B module provides an interface between the device and I2C-compatible devices connected by the two-wire I2C serial bus. External components attached to the I2C bus serially transmit or receive serial data to or from the eUSCI_B module through the 2-wire I2C interface. The eUSCI_B I2C mode features include: • 7-bit and 10-bit device addressing modes • General call • START, RESTART, STOP • Multi-master transmitter or receiver mode • Slave receiver or transmitter mode • Standard mode up to 100 kbps and fast mode up to 400 kbps support • Programmable UCxCLK frequency in master mode • Designed for low power • 8-bit byte counter with interrupt capability and automatic STOP assertion • Up to four hardware slave addresses, each having its own interrupt and DMA trigger • Mask register for slave address and address received interrupt • Clock low timeout interrupt to avoid bus stalls • Slave operation in LPM4 • Slave receiver START detection for auto wake-up from LPMx modes (not LPM3.5 and LPM4.5) Figure 41-1 shows the eUSCI_B when configured in I2C mode. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1081 www.ti.com UCA10 UCGCEN Address Mask UCBxADDMASK Own Address UCBxI2COA0 Own Address UCBxI2COA1 Own Address UCBxI2COA2 Own Address UCBxI2COA3 UCxSDA Receive Shift Register Receive Buffer UCBxRXBUF I2C State Machine Byte Counter UCBxBCNT Transmit Buffer UCBxTXBUF (2) Transmit Shift Register Slave Address UCBxI2CSA UCSLA10 MODCLK Clock Low timeout generator UCxSCL UCSSELx Bit Clock Generator UCxBRx UCLKI (1) 00 ACLK 01 SMCLK 10 SMCLK 11 (1) (2) (2) 16 UCMST Prescaler/Divider BRCLK Externally provided clock on the eUSCI_B SPI clock input pin Not the actual implementation (transistor not located in eUSCI_B module) Figure 41-1. eUSCI_B Block Diagram – I2C Mode eUSCI_B Operation – I2C Mode The I2C mode supports any slave or master I2C-compatible device. Figure 41-2 shows an example of an I2C bus. Each I2C device is recognized by a unique address and can operate as either a transmitter or a receiver. A device connected to the I2C bus can be considered as the master or the slave when performing data transfers. A master initiates a data transfer and generates the clock signal SCL. Any device addressed by a master is considered a slave. I2C data is communicated using the serial data (SDA) pin and the serial clock (SCL) pin. Both SDA and SCL are bidirectional and must be connected to a positive supply voltage using a pullup resistor. 1082 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback www.ti.com VCC Device A MSP430 Serial Data (SDA) Serial Clock (SCL) Device B Device C Figure 41-2. I2C Bus Connection Diagram NOTE: SDA and SCL levels The SDA and SCL pins must not be pulled up above the device VCC level. eUSCI_B Initialization and Reset The eUSCI_B is reset by a PUC or by setting the UCSWRST bit. After a PUC, the UCSWRST bit is automatically set, keeping the eUSCI_B in a reset condition. To select I2C operation, the UCMODEx bits must be set to 11. After module initialization, it is ready for transmit or receive operation. Clearing UCSWRST releases the eUSCI_B for operation. Configuring and reconfiguring the eUSCI_B module should be done when UCSWRST is set to avoid unpredictable behavior. Setting UCSWRST in I2C mode has the following effects: • I2C communication stops. • SDA and SCL are high impedance. • UCBxSTAT, bits 15-9 and 6-4 are cleared. • Registers UCBxIE and UCBxIFG are cleared. • All other bits and registers remain unchanged. NOTE: Initializing or re-configuring the eUSCI_B module The recommended eUSCI_B initialization/reconfiguration process is: 1. Set UCSWRST (BIS.B #UCSWRST,&UCxCTL1). 2. Initialize all eUSCI_B registers with UCSWRST = 1 (including UCxCTL1). 3. Configure ports. 4. Clear UCSWRST via software (BIC.B #UCSWRST,&UCxCTL1). 5. Enable interrupts (optional). I2C Serial Data One clock pulse is generated by the master device for each data bit transferred. The I2C mode operates with byte data. Data is transferred MSB first as shown in Figure 41-3. The first byte after a START condition consists of a 7-bit slave address and the R/W bit. When R/W = 0, the master transmits data to a slave. When R/W = 1, the master receives data from a slave. The ACK bit is sent from the receiver after each byte on the ninth SCL clock. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1083 www.ti.com SDA MSB Acknowledgement Signal From Receiver Acknowledgement Signal From Receiver SCL 1 START Condition (S) 2 7 8 R/W 9 ACK 1 2 8 9 ACK STOP Condition (P) Figure 41-3. I2C Module Data Transfer START and STOP conditions are generated by the master and are shown in Figure 41-3. A START condition is a high-to-low transition on the SDA line while SCL is high. A STOP condition is a low-to-high transition on the SDA line while SCL is high. The bus busy bit, UCBBUSY, is set after a START and cleared after a STOP. Data on SDA must be stable during the high period of SCL (see Figure 41-4). The high and low state of SDA can change only when SCL is low, otherwise START or STOP conditions are generated. Data Line Stable Data SDA SCL Change of Data Allowed Figure 41-4. Bit Transfer on I2C Bus I2C Addressing Modes The I2C mode supports 7-bit and 10-bit addressing modes. 7-Bit Addressing In the 7-bit addressing format (see Figure 41-5), the first byte is the 7-bit slave address and the R/W bit. The ACK bit is sent from the receiver after each byte. 1 7 S Slave Address 1 1 R/W ACK 8 Data 1 8 ACK Data 1 1 ACK P Figure 41-5. I2C Module 7-Bit Addressing Format 10-Bit Addressing In the 10-bit addressing format (see Figure 41-6), the first byte is made up of 11110b plus the two MSBs of the 10-bit slave address and the R/W bit. The ACK bit is sent from the receiver after each byte. The next byte is the remaining eight bits of the 10-bit slave address, followed by the ACK bit and the 8-bit data. See I2C Slave 10-bit Addressing Mode and I2C Master 10-bit Addressing Mode for details how to use the 10-bit addressing mode with the eUSCI_B module. 1 1 7 S Slave Address 1st byte 1 1 1 1 0 X 1 R/W 8 1 8 ACK Slave Address 2nd byte ACK Data 1 1 ACK P X Figure 41-6. I2C Module 10-Bit Addressing Format 1084 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback www.ti.com Repeated Start Conditions The direction of data flow on SDA can be changed by the master, without first stopping a transfer, by issuing a repeated START condition. This is called a RESTART. After a RESTART is issued, the slave address is again sent out with the new data direction specified by the R/W bit. The RESTART condition is shown in Figure 41-7. 1 7 1 S Slave Address 1 R/W ACK 1 8 1 1 Data ACK S 1 7 Slave Address Any Number 1 R/W ACK 1 8 1 1 Data ACK P Any Number Figure 41-7. I2C Module Addressing Format With Repeated START Condition 41.0.9 I2C Quick Setup This section gives a quick introduction into the operation of the eUSCI_B in I2C mode. The basic steps to start communication are described and shown as a software example. More detailed information about the possible configurations and details can be found in I2C Module Operating Modes. The latest code examples can be found on the MSP430 web under "Code Examples". To set up the eUSCI_B as a master transmitter that transmits to a slave with the address 0x12h, only a few steps are needed (see Example 41-1). Example 41-1. Master TX With 7-Bit Address UCBxCTL1 |= UCSWRST; // put eUSCI_B in reset state UCBxCTLW0 |= UCMODE_3 + UCMST; // I2C master mode UCBxBRW = 0x0008; // baudrate = SMCLK / 8 UCBxCTLW1 = UCASTP_2; // autom. STOP assertion UCBxTBCNT = 0x07; // TX 7 bytes of data UCBxI2CSA = 0x0012; // address slave is 12hex P2SEL |= 0x03; // configure I2C pins (device specific) UCBxCTL1 &= ^UCSWRST; // eUSCI_B in operational state UCBxIE |= UCTXIE; // enable TX-interrupt GIE; // general interrupt enable ... // inside the eUSCI_B TX interrupt service routine UCBxTXBUF = 0x77; // fill TX buffer As shown in the code example, all configurations must be done while UCSWRST is set. To select the I2C operation of the eUSCI_B, UCMODE must be set accordingly. The baudrate of the transmission is set by writing the correct divider in the UCBxBRW register. The default clock selected is SMCLK. How many bytes are transmitted in one frame is controlled by the byte counter threshold register UCBxTBCNT together with the UCASTPx bits. The slave address to send to is specified in the UCBxI2CSA register. Finally, the ports must be configured. This step is device dependent; see the data sheet for the pins that must be used. Each byte that is to be transmitted must be written to the UCBxTXBUF inside the interrupt service routine. The recommended structure of the interrupt service routine can be found in Example 41-3. Example 41-2 shows the steps needed to set up the eUSCI_B as a slave with the address 0x12h that is able to receive and transmit data to the master. Example 41-2. Slave RX With 7-Bit Address UCBxCTL1 |= UCSWRST; UCBxCTLW0 |= UCMODE_3; UCBxI2COA0 = 0x0012; SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback // eUSCI_B in reset state // I2C slave mode // own address is 12hex Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1085 www.ti.com Example 41-2. Slave RX With 7-Bit Address (continued) P2SEL |= 0x03; // configure I2C pins (device specific) UCBxCTL1 &= ^UCSWRST; // eUSCI_B in operational state UCBxIE |= UCTXIE + UCRXIE; // enable TX&RX-interrupt GIE; // general interrupt enable ... // inside the eUSCI_B TX interrupt service routine UCBxTXBUF = 0x77; // send 077h ... // inside the eUSCI_B RX interrupt service routine data = UCBxRXBUF; // data is the internal variable As shown in Example 41-2, all configurations must be done while UCSWRST is set. For the slave, I2C operation is selected by setting UCMODE. The slave address is specified in the UCBxI2COA0 register. To enable the interrupts for receive and transmit requests, the according bits in UCBxIE and, at the end, GIE need to be set. Finally the ports must be configured. This step is device dependent; see the data sheet for the pins that are used. The RX interrupt service routine is called for every byte received by a master device. The TX interrupt service routine is executed each time the master requests a byte. The recommended structure of the interrupt service routine can be found in Example 41-3. I2C Module Operating Modes In I2C mode, the eUSCI_B module can operate in master transmitter, master receiver, slave transmitter, or slave receiver mode. The modes are discussed in the following sections. Time lines are used to illustrate the modes. Figure 41-8 shows how to interpret the time-line figures. Data transmitted by the master is represented by grey rectangles; data transmitted by the slave is represented by white rectangles. Data transmitted by the eUSCI_B module, either as master or slave, is shown by rectangles that are taller than the others. Actions taken by the eUSCI_B module are shown in grey rectangles with an arrow indicating where in the data stream the action occurs. Actions that must be handled with software are indicated with white rectangles with an arrow pointing to where in the data stream the action must take place. Other Master Other Slave USCI Master USCI Slave ... Bits set or reset by software ... Bits set or reset by hardware Figure 41-8. I2C Time-Line Legend 1086 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback www.ti.com Slave Mode The eUSCI_B module is configured as an I2C slave by selecting the I2C mode with UCMODEx = 11 and UCSYNC = 1 and clearing the UCMST bit. Initially, the eUSCI_B module must be configured in receiver mode by clearing the UCTR bit to receive the I2C address. Afterwards, transmit and receive operations are controlled automatically, depending on the R/W bit received together with the slave address. The eUSCI_B slave address is programmed with the UCBxI2COA0 register. Support for multiple slave addresses is explained in Section 41.0.12. When UCA10 = 0, 7-bit addressing is selected. When UCA10 = 1, 10-bit addressing is selected. The UCGCEN bit selects if the slave responds to a general call. When a START condition is detected on the bus, the eUSCI_B module receives the transmitted address and compares it against its own address stored in UCBxI2COA0. The UCSTTIFG flag is set when address received matches the eUSCI_B slave address. I2C Slave Transmitter Mode Slave transmitter mode is entered when the slave address transmitted by the master is identical to its own address with a set R/W bit. The slave transmitter shifts the serial data out on SDA with the clock pulses that are generated by the master device. The slave device does not generate the clock, but it does hold SCL low while intervention of the CPU is required after a byte has been transmitted. If the master requests data from the slave, the eUSCI_B module is automatically configured as a transmitter and UCTR and UCTXIFG0 become set. The SCL line is held low until the first data to be sent is written into the transmit buffer UCBxTXBUF. Then the address is acknowledged and the data is transmitted. As soon as the data is transferred into the shift register, the UCTXIFG0 is set again. After the data is acknowledged by the master, the next data byte written into UCBxTXBUF is transmitted or, if the buffer is empty, the bus is stalled during the acknowledge cycle by holding SCL low until new data is written into UCBxTXBUF. If the master sends a NACK followed by a STOP condition, the UCSTPIFG flag is set. If the NACK is followed by a repeated START condition, the eUSCI_B I2C state machine returns to its address-reception state. Figure 41-9 shows the slave transmitter operation. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1087 www.ti.com Reception of own S SLA/R address and transmission of data bytes UCTR=1 (Transmitter) UCSTTIFG=1 UCTXIFG=1 UCBxTXBUF discarded A DATA A DATA A DATA A P Write data to UCBxTXBUF UCTXIFG=1 UCSTPIFG=1 Bus stalled (SCL held low) until data available Write data to UCBxTXBUF Repeated start continue as slave transmitter DATA A S SLA/R UCTR=1 (Transmitter) UCSTTIFG=1 UCTXIFG=1 UCBxTXBUF discarded Repeated start continue as slave receiver Arbitration lost as master and addressed as slave DATA A S SLA/W UCTR=0 (Receiver) UCSTTIFG=1 A UCALIFG=1 UCMST=0 UCTR=1 (Transmitter) UCSTTIFG=1 UCTXIFG=1 Figure 41-9. I2C Slave Transmitter Mode I2C Slave Receiver Mode Slave receiver mode is entered when the slave address transmitted by the master is identical to its own address and a cleared R/W bit is received. In slave receiver mode, serial data bits received on SDA are shifted in with the clock pulses that are generated by the master device. The slave device does not generate the clock, but it can hold SCL low if intervention of the CPU is required after a byte has been received. If the slave receives data from the master, the eUSCI_B module is automatically configured as a receiver and UCTR is cleared. After the first data byte is received, the receive interrupt flag UCRXIFG0 is set. The eUSCI_B module automatically acknowledges the received data and can receive the next data byte. If the previous data was not read from the receive buffer UCBxRXBUF at the end of a reception, the bus is stalled by holding SCL low. As soon as UCBxRXBUF is read, the new data is transferred into UCBxRXBUF, an acknowledge is sent to the master, and the next data can be received. Setting the UCTXNACK bit causes a NACK to be transmitted to the master during the next acknowledgment cycle. A NACK is sent even if UCBxRXBUF is not ready to receive the latest data. If the UCTXNACK bit is set while SCL is held low, the bus is released, a NACK is transmitted immediately, and UCBxRXBUF is loaded with the last received data. Because the previous data was not read, that data is lost. To avoid loss of data, the UCBxRXBUF must be read before UCTXNACK is set. When the master generates a STOP condition, the UCSTPIFG flag is set. 1088 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback www.ti.com If the master generates a repeated START condition, the eUSCI_B I2C state machine returns to its address-reception state. Figure 41-10 shows the I2C slave receiver operation. Reception of own address and data bytes. All are acknowledged. S SLA/W A DATA A DATA A DATA A P or S UCRXIFG=1 UCTR=0 (Receiver) UCSTTIFG=1 UCSTPIFG = 0 Bus stalled (SCL held low) if UCBxRXBUF not read Refer to: ”Slave Transmitter” Timing Diagram Read data from UCBxRXBUF Last byte is not acknowledged. DATA UCTXNACK=1 A P or S UCTXNACK=0 Bus not stalled even if UCBxRXBUF not read Reception of the general call address. Gen Call A UCTR=0 (Receiver) UCSTTIFG=1 UCSTPIFG=0 UCGC=1 Arbitration lost as master and addressed as slave A UCALIFG=1 UCMST=0 UCTR=0 (Receiver) UCSTTIFG=1 (UCGC=1 if general call) UCTXIFG=0 UCSTPIFG=0 Figure 41-10. I2C Slave Receiver Mode I2C Slave 10-Bit Addressing Mode The 10-bit addressing mode is selected when UCA10 = 1 and is as shown in Figure 41-11. In 10-bit addressing mode, the slave is in receive mode after the full address is received. The eUSCI_B module indicates this by setting the UCSTTIFG flag while the UCTR bit is cleared. To switch the slave into transmitter mode, the master sends a repeated START condition together with the first byte of the address but with the R/W bit set. This sets the UCSTTIFG flag if it was previously cleared by software, and the eUSCI_B modules switches to transmitter mode with UCTR = 1. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1089 www.ti.com Slave Receiver Reception of own address and data bytes. All are acknowledged. S 11110 xx/W A SLA (2.) DATA A DATA A A P or S UCRXIFG=1 UCTR=0 (Receiver) UCSTTIFG=1 UCSTPIFG=0 Reception of the general call address. Gen Call A DATA UCTR=0 (Receiver) UCSTTIFG=1 UCSTPIFG=0 UCGC=1 DATA A A P or S UCRXIFG=1 Slave Transmitter Reception of own address and transmission of data bytes S 11110 xx/W A SLA (2.) A S 11110 xx/R A DATA A P or S UCTR=0 (Receiver) UCSTTIFG=1 UCSTPIFG=0 UCTR=1 (Transmitter) UCSTTIFG=1 UCTXIFG=1 UCSTPIFG=0 Figure 41-11. I2C Slave 10-Bit Addressing Mode Master Mode The eUSCI_B module is configured as an I2C master by selecting the I2C mode with UCMODEx = 11 and UCSYNC = 1 and setting the UCMST bit. When the master is part of a multi-master system, UCMM must be set and its own address must be programmed into the UCBxI2COA0 register. Support for multiple slave addresses is explained in Section 41.0.12. When UCA10 = 0, 7-bit addressing is selected. When UCA10 = 1, 10-bit addressing is selected. The UCGCEN bit selects if the eUSCI_B module responds to a general call. NOTE: Addresses and multi-master systems In master mode with own-address detection enabled (UCOAEN = 1)—especially in multimaster systems—it is not allowed to specify the same address in the own address and slave address register (UCBxI2CSA = UCBxI2COAx). This would mean that the eUSCI_B addresses itself. The user software must ensure that this situation does not occur. There is no hardware detection for this case, and the consequence is unpredictable behavior of the eUSCI_B. 1090 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback www.ti.com I2C Master Transmitter Mode After initialization, master transmitter mode is initiated by writing the desired slave address to the UCBxI2CSA register, selecting the size of the slave address with the UCSLA10 bit, setting UCTR for transmitter mode, and setting UCTXSTT to generate a START condition. The eUSCI_B module waits until the bus is available, then generates the START condition, and transmits the slave address. The UCTXIFG0 bit is set when the START condition is generated and the first data to be transmitted can be written into UCBxTXBUF. The UCTXSTT flag is cleared as soon as the complete address is sent. The data written into UCBxTXBUF is transmitted if arbitration is not lost during transmission of the slave address. UCTXIFG0 is set again as soon as the data is transferred from the buffer into the shift register. If there is no data loaded to UCBxTXBUF before the acknowledge cycle, the bus is held during the acknowledge cycle with SCL low until data is written into UCBxTXBUF. Data is transmitted or the bus is held, as long as: • No automatic STOP is generated • The UCTXSTP bit is not set • The UCTXSTT bit is not set Setting UCTXSTP generates a STOP condition after the next acknowledge from the slave. If UCTXSTP is set during the transmission of the slave address or while the eUSCI_B module waits for data to be written into UCBxTXBUF, a STOP condition is generated, even if no data was transmitted to the slave. In this case, the UCSTPIFG is set. When transmitting a single byte of data, the UCTXSTP bit must be set while the byte is being transmitted or any time after transmission begins, without writing new data into UCBxTXBUF. Otherwise, only the address is transmitted. When the data is transferred from the buffer to the shift register, UCTXIFG0 is set, indicating data transmission has begun, and the UCTXSTP bit may be set. When UCASTPx = 10 is set, the byte counter is used for STOP generation and the user does not need to set the UCTXSTP. This is recommended when transmitting only one byte. Setting UCTXSTT generates a repeated START condition. In this case, UCTR may be set or cleared to configure transmitter or receiver, and a different slave address may be written into UCBxI2CSA, if desired. If the slave does not acknowledge the transmitted data, the not-acknowledge interrupt flag UCNACKIFG is set. The master must react with either a STOP condition or a repeated START condition. If data was already written into UCBxTXBUF, it is discarded. If this data should be transmitted after a repeated START, it must be written into UCBxTXBUF again. Any set UCTXSTT or UCTXSTP is also discarded. Figure 41-12 shows the I2C master transmitter operation. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1091 www.ti.com Successful transmission to a slave receiver S A SLA/W 1) UCTR=1 (Transmitter) 2) UCTXSTT=1 DATA A DATA A DATA A P UCTXSTT=0 UCTXSTP=0 UCTXIFG=1 UCTXSTP=1 UCTXIFG=1 UCBxTXBUF discarded Bus stalled (SCL held low) until data available Next transfer started with a repeated start condition DATA Write data to UCBxTXBUF A S SLA/W 1) UCTR=1 (Transmitter) 2) UCTXSTT=1 UCTXSTT=0 UCNACKIFG=1 DATA A S SLA/R UCBxTXBUF discarded 1) UCTR=0 (Receiver) 2) UCTXSTT=1 UCTXSTP=1 Not acknowledge received after slave address A P UCTXSTP=0 1) UCTR=1 (Transmitter) 2) UCTXSTT=1 Not acknowledge received after a data byte A S SLA/W S SLA/R UCTXIFG=1 UCBxTXBUF discarded 1) UCTR=0 (Receiver) 2) UCTXSTT=1 UCNACKIFG=1 UCBxTXBUF discarded Arbitration lost in slave address or data byte Other master continues Other master continues UCALIFG=1 UCMST=0 UCALIFG=1 UCMST=0 Arbitration lost and addressed as slave A Other master continues UCALIFG=1 UCMST=0 UCTR=0 (Receiver) UCSTTIFG=1 (UCGC=1 if general call) USCI continues as Slave Receiver Figure 41-12. I2C Master Transmitter Mode 1092 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback www.ti.com I2C Master Receiver Mode After initialization, master receiver mode is initiated by writing the desired slave address to the UCBxI2CSA register, selecting the size of the slave address with the UCSLA10 bit, clearing UCTR for receiver mode, and setting UCTXSTT to generate a START condition. The eUSCI_B module checks if the bus is available, generates the START condition, and transmits the slave address. The UCTXSTT flag is cleared as soon as the complete address is sent. After the acknowledge of the address from the slave, the first data byte from the slave is received and acknowledged and the UCRXIFG flag is set. Data is received from the slave, as long as: • No automatic STOP is generated • The UCTXSTP bit is not set • The UCTXSTT bit is not set If a STOP condition was generated by the eUSCI_B module, the UCSTPIFG is set. If UCBxRXBUF is not read, the master holds the bus during reception of the last data bit and until the UCBxRXBUF is read. If the slave does not acknowledge the transmitted address, the not-acknowledge interrupt flag UCNACKIFG is set. The master must react with either a STOP condition or a repeated START condition. A STOP condition is either generated by the automatic STOP generation or by setting the UCTXSTP bit. The next byte received from the slave is followed by a NACK and a STOP condition. This NACK occurs immediately if the eUSCI_B module is currently waiting for UCBxRXBUF to be read. If a RESTART is sent, UCTR may be set or cleared to configure transmitter or receiver, and a different slave address may be written into UCBxI2CSA if desired. Figure 41-13 shows the I2C master receiver operation. NOTE: Consecutive master transactions without repeated START When performing multiple consecutive I2C master transactions without the repeated START feature, the current transaction must be completed before the next one is initiated. This can be done by ensuring that the transmit STOP condition flag UCTXSTP is cleared before the next I2C transaction is initiated with setting UCTXSTT = 1. Otherwise, the current transaction might be affected. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1093 www.ti.com Successful reception from a slave transmitter S SLA/R A DATA 1) UCTR=0 (Receiver) 2) UCTXSTT=1 DATA A UCTXSTT=0 A DATA A P UCTXSTP=1 UCRXIFG=1 Next transfer started with a repeated start condition DATA A UCTXSTP=0 S SLA/W 1) UCTR=1 (Transmitter) 2) UCTXSTT=1 DATA UCTXSTP=1 Not acknowledge received after slave address A P A S SLA/R 1) UCTR=0 (Receiver) 2) UCTXSTT=1 UCTXSTP=0 UCTXSTT=0 UCNACKIFG=1 S SLA/W 1) UCTR=1 (Transmitter) 2) UCTXSTT=1 UCTXIFG=1 S Arbitration lost in slave address or data byte SLA/R 1) UCTR=0 (Receiver) 2) UCTXSTT=1 Other master continues Other master continues UCALIFG=1 UCMST=0 UCALIFG=1 UCMST=0 Arbitration lost and addressed as slave A Other master continues UCALIFG=1 UCMST=0 UCTR=1 (Transmitter) UCSTTIFG=1 UCTXIFG=1 USCI continues as Slave Transmitter Figure 41-13. I2C Master Receiver Mode 1094 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback www.ti.com I2C Master 10-Bit Addressing Mode The 10-bit addressing mode is selected when UCSLA10 = 1 and is shown in Figure 41-14. Master Transmitter Successful transmission to a slave receiver S 11110xx/W A SLA(2.) A 1) UCTR=1(Transmitter) 2) UCTXSTT=1 A DATA A DATA P UCTXSTT=0 UCTXSTP=0 UCTXIFG=1 UCTXSTP=1 UCTXIFG=1 Master Receiver Successful reception from a slave transmitter S 11110xx/W A SLA(2.) A 1) UCTR=0(Receiver) 2) UCTXSTT=1 S 11110xx/R A UCTXSTT=0 DATA A DATA UCRXIFG=1 A P UCTXSTP=0 UCTXSTP=1 Figure 41-14. I2C Master 10-Bit Addressing Mode Arbitration If two or more master transmitters simultaneously start a transmission on the bus, an arbitration procedure is invoked. Figure 41-15 shows the arbitration procedure between two devices. The arbitration procedure uses the data presented on SDA by the competing transmitters. The first master transmitter that generates a logic high is overruled by the opposing master generating a logic low. The arbitration procedure gives priority to the device that transmits the serial data stream with the lowest binary value. The master transmitter that lost arbitration switches to the slave receiver mode and sets the arbitration lost flag UCALIFG. If two or more devices send identical first bytes, arbitration continues on the subsequent bytes. Bus Line SCL Device #1 Lost Arbitration and Switches Off n Data From Device #1 1 0 Data From Device #2 0 1 1 0 Bus Line SDA 1 0 0 1 0 1 1 Figure 41-15. Arbitration Procedure Between Two Master Transmitters There is an undefined condition if the arbitration procedure is still in progress when one master sends a repeated START or a STOP condition while the other master is still sending data. In other words, the following combinations result in an undefined condition: • Master 1 sends a repeated START condition and master 2 sends a data bit. • Master 1 sends a STOP condition and master 2 sends a data bit. • Master 1 sends a repeated START condition and master 2 sends a STOP condition. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1095 www.ti.com 41.0.10 Glitch Filtering According to the I2C standard, both the SDA and the SCL line need to be glitch filtered. The eUSCI_B module provides the UCGLITx bits to configure the length of this glitch filter: Table 41-1. Glitch Filter Length Selection Bits UCGLITx Corresponding Glitch Filter Length on SDA and SCL According to I2C Standard 00 Pulses of max 50-ns length are filtered yes 01 Pulses of max 25-ns length are filtered. no 10 Pulses of max 12.5-ns length are filtered. no 11 Pulses of max 6.25-ns length are filtered. no I2C Clock Generation and Synchronization The I2C clock SCL is provided by the master on the I2C bus. When the eUSCI_B is in master mode, BITCLK is provided by the eUSCI_B bit clock generator and the clock source is selected with the UCSSELx bits. In slave mode, the bit clock generator is not used and the UCSSELx bits are don't care. The 16-bit value of UCBRx in registers UCBxBR1 and UCBxBR0 is the division factor of the eUSCI_B clock source, BRCLK. The maximum bit clock that can be used in single master mode is fBRCLK/4. In multimaster mode, the maximum bit clock is fBRCLK/8. The BITCLK frequency is given by: fBitClock = fBRCLK/UCBRx The minimum high and low periods of the generated SCL are: tLOW,MIN = tHIGH,MIN = (UCBRx/2)/fBRCLK when UCBRx is even tLOW,MIN = tHIGH,MIN = ((UCBRx – 1)/2)/fBRCLK when UCBRx is odd The eUSCI_B clock source frequency and the prescaler setting UCBRx must to be chosen such that the minimum low and high period times of the I2C specification are met. During the arbitration procedure the clocks from the different masters must be synchronized. A device that first generates a low period on SCL overrules the other devices, forcing them to start their own low periods. SCL is then held low by the device with the longest low period. The other devices must wait for SCL to be released before starting their high periods. Figure 41-16 shows the clock synchronization. This allows a slow slave to slow down a fast master. Wait State Start HIGH Period SCL From Device #1 SCL From Device #2 Bus Line SCL Figure 41-16. Synchronization of Two I2C Clock Generators During Arbitration Clock Stretching The eUSCI_B module supports clock stretching and also makes use of this feature as described in the Operation Mode sections. The UCSCLLOW bit can be used to observe if another device pulls SCL low while the eUSCI_B module already released SCL due to the following conditions: • eUSCI_B is acting as master and a connected slave drives SCL low. 1096 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback www.ti.com • eUSCI_B is acting as master and another master drives SCL low during arbitration. The UCSCLLOW bit is also active if the eUSCI_B holds SCL low because it is waiting as transmitter for data being written into UCBxTXBUF or as receiver for the data being read from UCBxRXBUF. The UCSCLLOW bit might be set for a short time with each rising SCL edge because the logic observes the external SCL and compares it to the internally generated SCL. Avoiding Clock Stretching Even though clock stretching is part of the I2C specification, there are applications in which clock stretching should be avoided. The clock is stretched by the eUSCI_B under the following conditions: • The internal shift register is expecting data, but the TXIFG is still pending • The internal shift register is full, but the RXIFG is still pending • The arbitration lost interrupt is pending • UCSWACK is selected and UCBxI2COA0 did cause a match To avoid clock stretching, all of these situations for clock stretch either need to be avoided or the corresponding interrupt flags need to be processed before the actual clock stretch can occur. Using the DMA (on devices that contain a DMA) is the most secure way to avoid clock stretching. If no DMA is available, the software must ensure that the corresponding interrupts are serviced in time before the clock is stretched. In slave transmitter mode, the TXIFG is set only after the reception of the direction bit; therefore, there is only a short amount of time for the software to write the TXBUF before a clock stretch occurs. This situation can be remedied by using the early Transmit Interrupt (see Early I2C Transmit Interrupt). Clock Low Timeout The UCCLTOIFG interrupt allows the software to react if the clock is low longer than a defined time. It is possible to detect the situation, when a clock is stretched by a master or slave for a too long time. The user can then, for example, reset the eUSCI_B module by using the UCSWRST bit. The clock low timeout feature is enabled using the UCCLTO bits. It is possible to select one of three predefined times for the clock low timeout. If the clock has been low longer than the time defined with the UCCLTO bits and the eUSCI_B was actively receiving or transmitting, the UCCLTOIFG is set and an interrupt request is generated if UCCLTOIE and GIE are set as well. The UCCLTOIFG is set only once, even if the clock is stretched a multiple of the time defined in UCCLTO. 41.0.11 Byte Counter The eUSCI_B module supports hardware counting of the bytes received or transmitted. The counter is automatically active and counts up for each byte seen on the bus in both master and slave mode. The byte counter is incremented at the second bit position of each byte independently of the following ACK or NACK. A START or RESTART condition resets the counter value to zero. Address bytes do not increment the counter. The byte counter is also incremented at the second bit position, if an arbitration lost occurs during the first bit of data. 41.0.11.1 Byte Counter Interrupt If UCASTPx = 01 or 10 the UCBCNTIFG is set when the byte counter threshold value UCBxTBCNT is reached in both master- and slave-mode. Writing zero to UCBxTBCNT does not generate an interrupt. Because the UCBCNTIFG has a lower interrupt priority than the UCBTXIFG and UCBRXIFG, it is recommended to only use it for protocol control together with the DMA handling the received and transmitted bytes. Otherwise the application must have enough processor bandwidth to ensure that the UCBCNT interrupt routine is executed in time to generate for example a RESTART. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1097 www.ti.com Automatic STOP Generation When the eUSCI_B module is configured as a master, the byte counter can be used for automatic STOP generation by setting the UCASTPx = 10. Before starting the transmission using UCTXSTT, the byte counter threshold UCBxTBCNT must be set to the number of bytes that are to be transmitted or received. After the number of bytes that are configured in UCBxTBCNT have been transmitted, the eUSCI_B automatically generates a STOP condition. UCBxTBCNT cannot be used if the user wants to transmit the slave address only without any data. In this case, it is recommended to set UCTXSTT and UCTXSTP at the same time. 41.0.12 Multiple Slave Addresses The eUSCI_B module supports two different ways of implementing multiple slave addresses at the same time: • Hardware support for up to 4 different slave addresses, each with its own interrupt flag and DMA trigger • Software support for up to 210 different slave addresses all sharing one interrupt Multiple Slave Address Registers The registers UCBxI2COA0, UCBxI2COA1, UCBxI2COA2, and UCBxI2COA3 contain four slave addresses. Up to four address registers are compared against a received 7- or 10-bit address. Each slave address must be activated by setting the UCAOEN bit in the corresponding UCBxI2COAx register. Register UCBxI2COA3 has the highest priority if the address received on the bus matches more than one of the slave address registers. The priority decreases with the index number of the address register, so that UCBxI2COA0 in combination with the address mask has the lowest priority. When one of the slave registers matches the 7- or 10-bit address seen on the bus, the address is acknowledged. In the following the corresponding receive- or transmit-interrupt flag (UCTXIFGx or UCRXIFGx) to the received address is updated. The state change interrupt flags are independent of the address comparison result. They are updated according to the bus condition. Address Mask Register The address mask register can be used when the eUSCI_B is configured in slave or in multiple-master mode. To activate this feature, at least one bit of the address mask in register UCBxADDMASK must be cleared. If the received address matches the own address in UCBxI2COA0 on all bit positions that are not masked by UCBxADDMASK, the eUSCI_B module considers the received address as its own address. If UCSWACK = 0, the module sends an acknowledge automatically. If UCSWACK = 1, the user software must evaluate the received address in register UCBxADDRX after the UCSTTIFG is set. To acknowledge the received address, the software must set UCTXACK to 1. The eUSCI_B module also automatically acknowledges a slave address that is seen on the bus if the address matches any of the enabled slave addresses defined in UCBxI2COA1 to UCBxI2COA3. NOTE: UCSWACK and slave-transmitter If the user selects manual acknowledge of slave addresses, TXIFG is set if the slave is addressed as a transmitter. If the software decides not to acknowledge the address, TXIFG0 must be reset. Using the eUSCI_B Module in I2C Mode With Low-Power Modes The eUSCI_B module provides automatic clock activation for use with low-power modes. When the eUSCI_B clock source is inactive because the device is in a low-power mode, the eUSCI_B module automatically activates it when needed, regardless of the control-bit settings for the clock source. The clock remains active until the eUSCI_B module returns to its idle condition. After the eUSCI_B module returns to the idle condition, control of the clock source reverts to the settings of its control bits. 1098 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback www.ti.com In I2C slave mode, no internal clock source is required because the clock is provided by the external master. It is possible to operate the eUSCI_B in I2C slave mode while the device is in LPM4 and all internal clock sources are disabled. The receive or transmit interrupts can wake up the CPU from any lowpower mode. eUSCI_B Interrupts in I2C Mode The eUSCI_B has only one interrupt vector that is shared for transmission, reception, and the state change. Each interrupt flag has its own interrupt enable bit. When an interrupt is enabled and the GIE bit is set, the interrupt flag generates an interrupt request. DMA transfers are controlled by the UCTXIFGx and UCRXIFGx flags on devices with a DMA controller. It is possible to react on each slave address with an individual DMA channel. All interrupt flags are not cleared automatically, but they need to be cleared together by user interactions (for example, reading the UCRXBUF clears UCRXIFGx). If the user wants to use an interrupt flag he needs to ensure that the flag has the correct state before the corresponding interrupt is enabled. I2C Transmit Interrupt Operation The UCTXIFG0 interrupt flag is set whenever the transmitter is able to accept a new byte. When operating as a slave with multiple slave addresses, the UCTXIFGx flags are set corresponding to which address was received before. If, for example, the slave address specified in register UCBxI2COA3 did match the address seen on the bus, the UCTXIFG3 indicates that the UCBxTXBUF is ready to accept a new byte. When operating in master mode with automatic STOP generation (UCASTPx = 10), the UCTXIFG0 is set as many times as defined in UCBxTBCNT. An interrupt request is generated if UCTXIEx and GIE are also set. UCTXIFGx is automatically reset if a write to UCBxTXBUF occurs or if the UCALIFG is cleared. UCTXIFGx is set when: • Master mode: UCTXSTT was set by the user • Slave mode: own address was received(UCETXINT = 0) or START was received (UCETXINT = 1) UCTXIEx is reset after a PUC or when UCSWRST = 1. Early I2C Transmit Interrupt Setting the UCETXINT causes UCTXIFG0 to be sent out automatically when a START condition is sent and the eUSCI_B is configured as slave. In this case, it is not allowed to enable the other slave addresses UCBxI2COA1-UCBxI2COA3. This allows the software more time to handle the UCTXIFG0 compared to the normal situation, when UCTXIFG0 is sent out after the slave address match was detected. Situations where the UCTXIFG0 was set and afterward no slave address match occurred need to be handled in software. The use of the byte counter is recommended to handle this. I2C Receive Interrupt Operation The UCRXIFG0 interrupt flag is set when a character is received and loaded into UCBxRXBUF. When operating as a slave with multiple slave addresses, the UCRXIFGx flag is set corresponding to which address was received before. An interrupt request is generated if UCRXIEx and GIE are also set. UCRXIFGx and UCRXIEx are reset after a PUC signal or when UCSWRST = 1. UCRXIFGx is automatically reset when UCxRXBUF is read. I2C State Change Interrupt Operation Table 41-2 describes the I2C state change interrupt flags. Table 41-2. I2C State Change Interrupt Flags Interrupt Flag Interrupt Condition UCALIFG Arbitration lost interrupt. Arbitration can be lost when two or more transmitters start a transmission simultaneously, or when the eUSCI_B operates as master but is addressed as a slave by another master in the system. The UCALIFG flag is set when arbitration is lost. When UCALIFG is set, the UCMST bit is cleared and the I2C controller becomes a slave. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode 1099 Copyright © 2008–2015, Texas Instruments Incorporated www.ti.com Table 41-2. I2C State Change Interrupt Flags (continued) Interrupt Flag (1) Interrupt Condition UCNACKIFG Not acknowledge interrupt. This flag is set when an acknowledge is expected but is not received. UCNACKIFG is used in master mode only. UCCLTOIFG Clock low timeout. This interrupt flag is set, if the clock is held low longer than defined by the UCCLTO bits. UCBIT9IFG This interrupt flag is generated each time the eUSCI_B is transferring the nineth clock cycle of a byte of data. This gives the user the ability to follow the I2C communication in software if wanted. UCBIT9IFG is not set for address information. UCBCNTIFG Byte counter interrupt. This flag is set when the byte counter value reaches the value defined in UCBxTBCNT and UCASTPx = 01 or 10. This bit allows to organize following communications, especially if a RESTART will be issued. UCSTTIFG START condition detected interrupt. This flag is set when the I2C module detects a START condition together with its own address (1). UCSTTIFG is used in slave mode only. UCSTPIFG STOP condition detected interrupt. This flag is set when the I2C module detects a STOP condition on the bus. UCSTPIFG is used in slave and master mode. The address evaluation includes the address mask register if it is used. UCBxIV, Interrupt Vector Generator The eUSCI_B interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt vector register UCBxIV is used to determine which flag requested an interrupt. The highest-priority enabled interrupt generates a number in the UCBxIV register that can be evaluated or added to the PC to automatically enter the appropriate software routine. Disabled interrupts do not affect the UCBxIV value. Read access of the UCBxIV register automatically resets the highest-pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. Write access of the UCBxIV register clears all pending Interrupt conditions and flags. Example 41-3 shows the recommended use of UCBxIV. The UCBxIV value is added to the PC to automatically jump to the appropriate routine. The example is given for eUSCI0_B. 1100 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback www.ti.com Example 41-3. UCBxIV Software Example #pragma vector = USCI_B0_VECTOR __interrupt void USCI_B0_ISR(void) { switch(__even_in_range(UCB0IV,0x1e)) { case 0x00: // Vector 0: No interrupts break; case 0x02: ... // Vector 2: ALIFG break; case 0x04: ... // Vector 4: NACKIFG break; case 0x06: ... // Vector 6: STTIFG break; case 0x08: ... // Vector 8: STPIFG break; case 0x0a: ... // Vector 10: RXIFG3 break; case 0x0c: ... // Vector 12: TXIFG3 break; case 0x0e: ... // Vector 14: RXIFG2 break; case 0x10: ... // Vector 16: TXIFG2 break; case 0x12: ... // Vector 18: RXIFG1 break; case 0x14: ... // Vector 20: TXIFG1 break; case 0x16: ... // Vector 22: RXIFG0 break; case 0x18: ... // Vector 24: TXIFG0 break; case 0x1a: ... // Vector 26: BCNTIFG break; case 0x1c: ... // Vector 28: clock low timeout break; case 0x1e: ... // Vector 30: 9th bit break; default: break; } } SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1101 eUSCI_B I2C Registers www.ti.com 41.1 eUSCI_B I2C Registers The eUSCI_B registers applicable in I2C mode and their address offsets are listed in Table 41-3. The base address can be found in the device-specific data sheet. Table 41-3. eUSCI_B Registers Offset Acronym Register Name Type Access Reset Section 00h UCBxCTLW0 eUSCI_Bx Control Word 0 Read/write Word 01C1h Section 41.1.1 eUSCI_Bx Control 1 Read/write Byte C1h eUSCI_Bx Control 0 00h UCBxCTL1 01h UCBxCTL0 Read/write Byte 01h 02h UCBxCTLW1 eUSCI_Bx Control Word 1 Read/write Word 0000h Section 41.1.2 06h UCBxBRW eUSCI_Bx Bit Rate Control Word Read/write Word 0000h Section 41.1.3 06h UCBxBR0 eUSCI_Bx Bit Rate Control 0 Read/write Byte 00h 07h UCBxBR1 eUSCI_Bx Bit Rate Control 1 Read/write Byte 00h Read Word 0000h 08h 1102 UCBxSTATW eUSCI_Bx Status Word Section 41.1.4 08h UCBxSTAT eUSCI_Bx Status Read Byte 00h 09h UCBxBCNT eUSCI_Bx Byte Counter Register Read Byte 00h Read/Write Word 00h Section 41.1.5 0Ah UCBxTBCNT eUSCI_Bx Byte Counter Threshold Register 0Ch UCBxRXBUF eUSCI_Bx Receive Buffer Read/write Word 00h Section 41.1.6 0Eh UCBxTXBUF eUSCI_Bx Transmit Buffer Read/write Word 00h Section 41.1.7 14h UCBxI2COA0 eUSCI_Bx I2C Own Address 0 Read/write Word 0000h Section 41.1.8 16h UCBxI2COA1 eUSCI_Bx I2C Own Address 1 Read/write Word 0000h Section 41.1.9 18h UCBxI2COA2 eUSCI_Bx I2C Own Address 2 Read/write Word 0000h Section 41.1.10 1Ah UCBxI2COA3 eUSCI_Bx I2C Own Address 3 Read/write Word 0000h Section 41.1.11 1Ch UCBxADDRX eUSCI_Bx Received Address Register Read Word 1Eh UCBxADDMASK eUSCI_Bx Address Mask Register Read/write Word 03FFh Section 41.1.13 20h UCBxI2CSA eUSCI_Bx I2C Slave Address Read/write Word 0000h Section 41.1.14 2Ah UCBxIE eUSCI_Bx Interrupt Enable Read/write Word 0000h Section 41.1.15 2Ch UCBxIFG eUSCI_Bx Interrupt Flag Read/write Word 0002h Section 41.1.16 2Eh UCBxIV eUSCI_Bx Interrupt Vector Read Word 0000h Section 41.1.17 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated Section 41.1.12 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_B I2C Registers www.ti.com 41.1.1 UCBxCTLW0 Register eUSCI_Bx Control Word Register 0 Figure 41-17. UCBxCTLW0 Register 15 14 13 12 11 UCA10 UCSLA10 UCMM Reserved UCMST rw-0 rw-0 rw-0 r0 rw-0 7 6 UCSSELx rw-1 10 9 UCMODEx rw-0 8 UCSYNC rw-0 r1 5 4 3 2 1 0 UCTXACK UCTR UCTXNACK UCTXSTP UCTXSTT UCSWRST rw-0 rw-0 rw-0 rw-0 rw-0 rw-1 rw-1 Modify only when UCSWRST = 1. Table 41-4. UCBxCTLW0 Register Description Bit Field Type Reset Description 15 UCA10 RW 0h Own addressing mode select. Modify only when UCSWRST = 1. 0b = Own address is a 7-bit address. 1b = Own address is a 10-bit address. 14 UCSLA10 RW 0h Slave addressing mode select 0b = Address slave with 7-bit address 1b = Address slave with 10-bit address 13 UCMM RW 0h Multi-master environment select. Modify only when UCSWRST = 1. 0b = Single master environment. There is no other master in the system. The address compare unit is disabled. 1b = Multi-master environment 12 Reserved R 0h Reserved 11 UCMST RW 0h Master mode select. When a master loses arbitration in a multi-master environment (UCMM = 1), the UCMST bit is automatically cleared and the module acts as slave. 0b = Slave mode 1b = Master mode 10-9 UCMODEx RW 0h eUSCI_B mode. The UCMODEx bits select the synchronous mode when UCSYNC = 1. Modify only when UCSWRST = 1. 00b = 3-pin SPI 01b = 4-pin SPI (master or slave enabled if STE = 1) 10b = 4-pin SPI (master or slave enabled if STE = 0) 11b = I2C mode 8 UCSYNC RW 1h Synchronous mode enable. For eUSCI_B always read and write as 1. 7-6 UCSSELx RW 3h eUSCI_B clock source select. These bits select the BRCLK source clock. These bits are ignored in slave mode. Modify only when UCSWRST = 1. 00b = UCLKI 01b = ACLK 10b = SMCLK 11b = SMCLK 5 UCTXACK RW 0h Transmit ACK condition in slave mode with enabled address mask register. After the UCSTTIFG has been set, the user needs to set or reset the UCTXACK flag to continue with the I2C protocol. The clock is stretched until the UCBxCTL1 register has been written. This bit is cleared automatically after the ACK has been send. 0b = Do not acknowledge the slave address 1b = Acknowledge the slave address SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1103 eUSCI_B I2C Registers www.ti.com Table 41-4. UCBxCTLW0 Register Description (continued) Bit Field Type Reset Description 4 UCTR RW 0h Transmitter/receiver 0b = Receiver 1b = Transmitter 3 UCTXNACK RW 0h Transmit a NACK. UCTXNACK is automatically cleared after a NACK is transmitted. Only for slave receiver mode. 0b = Acknowledge normally 1b = Generate NACK 2 UCTXSTP RW 0h Transmit STOP condition in master mode. Ignored in slave mode. In master receiver mode, the STOP condition is preceded by a NACK. UCTXSTP is automatically cleared after STOP is generated. This bit is a don't care, if automatic UCASTPx is different from 01 or 10. 0b = No STOP generated 1b = Generate STOP 1 UCTXSTT RW 0h Transmit START condition in master mode. Ignored in slave mode. In master receiver mode, a repeated START condition is preceded by a NACK. UCTXSTT is automatically cleared after START condition and address information is transmitted. Ignored in slave mode. 0b = Do not generate START condition 1b = Generate START condition 0 UCSWRST RW 1h Software reset enable. Modify only when UCSWRST = 1. 0b = Disabled. eUSCI_B released for operation. 1b = Enabled. eUSCI_B logic held in reset state. 1104 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_B I2C Registers www.ti.com 41.1.2 UCBxCTLW1 Register eUSCI_Bx Control Word Register 1 Figure 41-18. UCBxCTLW1 Register 15 14 13 r0 r0 r0 12 11 10 9 r0 r0 r0 r0 3 2 1 Reserved 7 6 UCCLTO rw-0 5 4 UCSTPNACK UCSWACK rw-0 rw-0 rw-0 8 UCETXINT UCASTPx rw-0 rw-0 0 UCGLITx rw-0 rw-0 rw-0 Modify only when UCSWRST = 1. Table 41-5. UCBxCTLW1 Register Description Bit Field Type Reset Description 15-9 Reserved R 0h Reserved 8 UCETXINT RW 0h Early UCTXIFG0. Only in slave mode. When this bit is set, the slave addresses defined in UCxI2COA1 to UCxI2COA3 must be disabled. Modify only when UCSWRST = 1. 0b = UCTXIFGx is set after an address match with UCxI2COAx and the direction bit indicating slave transmit 1b = UCTXIFG0 is set for each START condition 7-6 UCCLTO RW 0h Clock low timeout select. Modify only when UCSWRST = 1. 00b = Disable clock low timeout counter 01b = 135 000 MODCLK cycles (approximately 28 ms) 10b = 150 000 MODCLK cycles (approximately 31 ms) 11b = 165 000 MODCLK cycles (approximately 34 ms) 5 UCSTPNACK RW 0h The UCSTPNACK bit allows to make the eUSCI_B master acknowledge the last byte in master receiver mode as well. This is not conform to the I2C specification and should only be used for slaves, which automatically release the SDA after a fixed packet length. Modify only when UCSWRST = 1. 0b = Send a non-acknowledge before the STOP condition as a master receiver (conform to I2C standard) 1b = All bytes are acknowledged by the eUSCI_B when configured as master receiver 4 UCSWACK RW 0h Using this bit it is possible to select, whether the eUSCI_B module triggers the sending of the ACK of the address or if it is controlled by software. 0b = The address acknowledge of the slave is controlled by the eUSCI_B module 1b = The user needs to trigger the sending of the address ACK by issuing UCTXACK 3-2 UCASTPx RW 0h Automatic STOP condition generation. In slave mode only UCBCNTIFG is available. Modify only when UCSWRST = 1. 00b = No automatic STOP generation. The STOP condition is generated after the user sets the UCTXSTP bit. The value in UCBxTBCNT is a don't care. 01b = UCBCNTIFG is set with the byte counter reaches the threshold defined in UCBxTBCNT 10b = A STOP condition is generated automatically after the byte counter value reached UCBxTBCNT. UCBCNTIFG is set with the byte counter reaching the threshold. 11b = Reserved SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1105 eUSCI_B I2C Registers www.ti.com Table 41-5. UCBxCTLW1 Register Description (continued) Bit Field Type Reset Description 1-0 UCGLITx RW 0h Deglitch time 00b = 50 ns 01b = 25 ns 10b = 12.5 ns 11b = 6.25 ns 1106 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_B I2C Registers www.ti.com 41.1.3 UCBxBRW Register eUSCI_Bx Bit Rate Control Word Register Figure 41-19. UCBxBRW Register 15 14 13 12 rw rw rw rw 7 6 5 4 11 10 9 8 rw rw rw rw 3 2 1 0 rw rw rw rw UCBRx UCBRx rw rw rw rw Modify only when UCSWRST = 1. Table 41-6. UCBxBRW Register Description Bit Field Type Reset Description 15-0 UCBRx RW 0h Bit clock prescaler. Modify only when UCSWRST = 1. 41.1.4 UCBxSTATW eUSCI_Bx Status Word Register Figure 41-20. UCBxSTATW Register 15 14 13 12 11 10 9 8 r-0 r-0 r-0 r-0 r-0 3 2 1 0 r0 r0 UCBCNTx r-0 r-0 r-0 7 6 5 4 Reserved UCSCLLOW UCGC UCBBUSY r0 r-0 r-0 r-0 Reserved r-0 r0 Table 41-7. UCBxSTATW Register Description Bit Field Type Reset Description 15-8 UCBCNTx R 0h Hardware byte counter value. Reading this register returns the number of bytes received or transmitted on the I2C-Bus since the last START or RESTART. There is no synchronization of this register done. When reading UCBxBCNT during the first bit position, a faulty readback can occur. 7 Reserved R 0h Reserved 6 UCSCLLOW R 0h SCL low 0b = SCL is not held low 1b = SCL is held low 5 UCGC R 0h General call address received. UCGC is automatically cleared when a START condition is received. 0b = No general call address received 1b = General call address received 4 UCBBUSY R 0h Bus busy 0b = Bus inactive 1b = Bus busy 3-0 Reserved R 0h Reserved SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1107 eUSCI_B I2C Registers www.ti.com 41.1.5 UCBxTBCNT Register eUSCI_Bx Byte Counter Threshold Register Figure 41-21. UCBxTBCNT Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 rw-0 rw-0 rw-0 rw-0 Reserved UCTBCNTx rw-0 rw-0 rw-0 rw-0 Modify only when UCSWRST = 1. Table 41-8. UCBxTBCNT Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved 7-0 UCTBCNTx RW 0h The byte counter threshold value is used to set the number of I2C data bytes after which the automatic STOP or the UCSTPIFG should occur. This value is evaluated only if UCASTPx is different from 00. Modify only when UCSWRST = 1. 1108 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_B I2C Registers www.ti.com 41.1.6 UCBxRXBUF Register eUSCI_Bx Receive Buffer Register Figure 41-22. UCBxRXBUF Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r r r r Reserved UCRXBUFx r r r r Table 41-9. UCBxRXBUF Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved 7-0 UCRXBUFx R 0h The receive-data buffer is user accessible and contains the last received character from the receive shift register. Reading UCBxRXBUF resets the UCRXIFGx flags. 41.1.7 UCBxTXBUF eUSCI_Bx Transmit Buffer Register Figure 41-23. UCBxTXBUF Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 3 2 1 0 rw rw rw rw Reserved r0 r0 r0 r0 7 6 5 4 UCTXBUFx rw rw rw rw Table 41-10. UCBxTXBUF Register Description Bit Field Type Reset Description 15-8 Reserved R 0h Reserved 7-0 UCTXBUFx RW 0h The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift register and transmitted. Writing to the transmit data buffer clears the UCTXIFGx flags. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1109 eUSCI_B I2C Registers www.ti.com 41.1.8 UCBxI2COA0 Register eUSCI_Bx I2C Own Address 0 Register Figure 41-24. UCBxI2COA0 Register 15 14 13 12 11 rw-0 r0 r0 r0 r0 rw-0 rw-0 rw-0 7 6 5 4 3 2 1 0 rw-0 rw-0 rw-0 rw-0 UCGCEN Reserved 10 9 UCOAEN 8 I2COA0 I2COA0 rw-0 rw-0 rw-0 rw-0 Modify only when UCSWRST = 1. Table 41-11. UCBxI2COA0 Register Description Bit Field Type Reset Description 15 UCGCEN RW 0h General call response enable. This bit is only available in UCBxI2COA0. Modify only when UCSWRST = 1. 0b = Do not respond to a general call 1b = Respond to a general call 14-11 Reserved R 0h Reserved 10 UCOAEN RW 0h Own Address enable register. With this register it can be selected if the I2C slave-address related to this register UCBxI2COA0 is evaluated or not. Modify only when UCSWRST = 1. 0b = The slave address defined in I2COA0 is disabled 1b = The slave address defined in I2COA0 is enabled 9-0 I2COAx RW 0h I2C own address. The I2COA0 bits contain the local address of the eUSCIx_B I2C controller. The address is right justified. In 7-bit addressing mode, bit 6 is the MSB and bits 9-7 are ignored. In 10-bit addressing mode, bit 9 is the MSB. Modify only when UCSWRST = 1. 1110 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_B I2C Registers www.ti.com 41.1.9 UCBxI2COA1 Register eUSCI_Bx I2C Own Address 1 Register Figure 41-25. UCBxI2COA1 Register 15 14 rw-0 r0 7 6 13 12 11 r0 r0 r0 rw-0 rw-0 rw-0 5 4 3 2 1 0 rw-0 rw-0 rw-0 rw-0 Reserved 10 9 UCOAEN 8 I2COA1 I2COA1 rw-0 rw-0 rw-0 rw-0 Modify only when UCSWRST = 1. Table 41-12. UCBxI2COA1 Register Description Bit Field Type Reset Description 15-11 Reserved R 0h Reserved 10 UCOAEN RW 0h Own Address enable register. With this register it can be selected if the I2C slave-address related to this register UCBxI2COA1 is evaluated or not. Modify only when UCSWRST = 1. 0b = The slave address defined in I2COA1 is disabled 1b = The slave address defined in I2COA1 is enabled 9-0 I2COA1 RW 0h I2C own address. The I2COAx bits contain the local address of the eUSCIx_B I2C controller. The address is right justified. In 7-bit addressing mode, bit 6 is the MSB and bits 9-7 are ignored. In 10-bit addressing mode, bit 9 is the MSB. Modify only when UCSWRST = 1. 41.1.10 UCBxI2COA2 Register eUSCI_Bx I2C Own Address 2 Register Figure 41-26. UCBxI2COA2 Register 15 14 13 12 11 Reserved 10 9 UCOAEN rw-0 r0 r0 r0 7 6 5 4 8 I2COA2 r0 rw-0 rw-0 rw-0 3 2 1 0 rw-0 rw-0 rw-0 rw-0 I2COA2 rw-0 rw-0 rw-0 rw-0 Modify only when UCSWRST = 1. Table 41-13. UCBxI2COA2 Register Description Bit Field Type Reset Description 15-11 Reserved R 0h Reserved 10 UCOAEN RW 0h Own Address enable register. With this register it can be selected if the I2C slave-address related to this register UCBxI2COA2 is evaluated or not. Modify only when UCSWRST = 1. 0b = The slave address defined in I2COA2 is disabled 1b = The slave address defined in I2COA2 is enabled 9-0 I2COA2 RW 0h I2C own address. The I2COAx bits contain the local address of the eUSCIx_B I2C controller. The address is right justified. In 7-bit addressing mode, bit 6 is the MSB and bits 9-7 are ignored. In 10-bit addressing mode, bit 9 is the MSB. Modify only when UCSWRST = 1. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1111 eUSCI_B I2C Registers www.ti.com 41.1.11 UCBxI2COA3 Register eUSCI_Bx I2C Own Address 3 Register Figure 41-27. UCBxI2COA3 Register 15 14 rw-0 r0 7 6 13 12 11 r0 r0 r0 rw-0 rw-0 rw-0 5 4 3 2 1 0 rw-0 rw-0 rw-0 rw-0 Reserved 10 9 UCOAEN 8 I2COA3 I2COA3 rw-0 rw-0 rw-0 rw-0 Modify only when UCSWRST = 1. Table 41-14. UCBxI2COA3 Register Description Bit Field Type Reset Description 15-11 Reserved R 0h Reserved 10 UCOAEN RW 0h Own Address enable register. With this register it can be selected if the I2C slave-address related to this register UCBxI2COA3 is evaluated or not. Modify only when UCSWRST = 1. 0b = The slave address defined in I2COA3 is disabled 1b = The slave address defined in I2COA3 is enabled 9-0 I2COA3 RW 0h I2C own address. The I2COA3 bits contain the local address of the eUSCIx_B I2C controller. The address is right justified. In 7-bit addressing mode, bit 6 is the MSB and bits 9-7 are ignored. In 10-bit addressing mode, bit 9 is the MSB. Modify only when UCSWRST = 1. 41.1.12 UCBxADDRX Register eUSCI_Bx I2C Received Address Register Figure 41-28. UCBxADDRX Register 15 14 13 12 11 10 9 Reserved 8 ADDRXx r-0 r0 r0 r0 7 6 5 4 r0 r0 r-0 r-0 3 2 1 0 r-0 r-0 r-0 r-0 ADDRXx r-0 r-0 r-0 r-0 Table 41-15. UCBxADDRX Register Description Bit Field Type Reset Description 15-10 Reserved R 0h Reserved 9-0 ADDRXx R 0h Received Address Register. This register contains the last received slave address on the bus. Using this register and the address mask register it is possible to react on more than one slave address using one eUSCI_B module. 1112 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_B I2C Registers www.ti.com 41.1.13 UCBxADDMASK Register eUSCI_Bx I2C Address Mask Register Figure 41-29. UCBxADDMASK Register 15 14 13 12 11 10 9 r-0 r0 r0 r0 r0 r0 rw-1 rw-1 7 6 5 4 3 2 1 0 rw-1 rw-1 rw-1 rw-1 Reserved 8 ADDMASKx ADDMASKx rw-1 rw-1 rw-1 rw-1 Modify only when UCSWRST = 1. Table 41-16. UCBxADDMASK Register Description Bit Field Type Reset Description 15-10 Reserved R 0h Reserved 9-0 ADDMASKx RW 3FFh Address Mask Register. By clearing the corresponding bit of the own address, this bit is a don't care when comparing the address on the bus to the own address. Using this method, it is possible to react on more than one slave address. When all bits of ADDMASKx are set, the address mask feature is deactivated. Modify only when UCSWRST = 1. 41.1.14 UCBxI2CSA Register eUSCI_Bx I2C Slave Address Register Figure 41-30. UCBxI2CSA Register 15 14 13 12 11 10 9 Reserved 8 I2CSAx r-0 r0 r0 r0 7 6 5 4 r0 r0 rw-0 rw-0 3 2 1 0 rw-0 rw-0 rw-0 rw-0 I2CSAx rw-0 rw-0 rw-0 rw-0 Table 41-17. UCBxI2CSA Register Description Bit Field Type Reset Description 15-10 Reserved R 0h Reserved 9-0 I2CSAx RW 0h I2C slave address. The I2CSAx bits contain the slave address of the external device to be addressed by the eUSCIx_B module. It is only used in master mode. The address is right justified. In 7-bit slave addressing mode, bit 6 is the MSB and bits 9-7 are ignored. In 10-bit slave addressing mode, bit 9 is the MSB. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1113 eUSCI_B I2C Registers www.ti.com 41.1.15 UCBxIE Register eUSCI_Bx I2C Interrupt Enable Register Figure 41-31. UCBxIE Register 15 14 13 12 11 10 9 8 Reserved UCBIT9IE UCTXIE3 UCRXIE3 UCTXIE2 UCRXIE2 UCTXIE1 UCRXIE1 r0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 7 6 5 4 3 2 1 0 UCCLTOIE UCBCNTIE UCNACKIE UCALIE UCSTPIE UCSTTIE UCTXIE0 UCRXIE0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Table 41-18. UCBxIE Register Description Bit Field Type Reset Description 15 Reserved R 0h Reserved 14 UCBIT9IE RW 0h Bit position 9 interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 13 UCTXIE3 RW 0h Transmit interrupt enable 3 0b = Interrupt disabled 1b = Interrupt enabled 12 UCRXIE3 RW 0h Receive interrupt enable 3 0b = Interrupt disabled 1b = Interrupt enabled 11 UCTXIE2 RW 0h Transmit interrupt enable 2 0b = Interrupt disabled 1b = Interrupt enabled 10 UCRXIE2 RW 0h Receive interrupt enable 2 0b = Interrupt disabled 1b = Interrupt enabled 9 UCTXIE1 RW 0h Transmit interrupt enable 1 0b = Interrupt disabled 1b = Interrupt enabled 8 UCRXIE1 RW 0h Receive interrupt enable 1 0b = Interrupt disabled 1b = Interrupt enabled 7 UCCLTOIE RW 0h Clock low timeout interrupt enable. 0b = Interrupt disabled 1b = Interrupt enabled 6 UCBCNTIE RW 0h Byte counter interrupt enable. 0b = Interrupt disabled 1b = Interrupt enabled 5 UCNACKIE RW 0h Not-acknowledge interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 4 UCALIE RW 0h Arbitration lost interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 3 UCSTPIE RW 0h STOP condition interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 1114 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_B I2C Registers www.ti.com Table 41-18. UCBxIE Register Description (continued) Bit Field Type Reset Description 2 UCSTTIE RW 0h START condition interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 1 UCTXIE0 RW 0h Transmit interrupt enable 0 0b = Interrupt disabled 1b = Interrupt enabled 0 UCRXIE0 RW 0h Receive interrupt enable 0 0b = Interrupt disabled 1b = Interrupt enabled SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1115 eUSCI_B I2C Registers www.ti.com 41.1.16 UCBxIFG Register eUSCI_Bx I2C Interrupt Flag Register Figure 41-32. UCBxIFG Register 15 14 13 12 11 10 9 8 Reserved UCBIT9IFG UCTXIFG3 UCRXIFG3 UCTXIFG2 UCRXIFG2 UCTXIFG1 UCRXIFG1 r0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 7 6 5 4 3 2 1 0 UCCLTOIFG UCBCNTIFG UCNACKIFG UCALIFG UCSTPIFG UCSTTIFG UCTXIFG0 UCRXIFG0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1 rw-0 Table 41-19. UCBxIFG Register Description Bit Field Type Reset Description 15 Reserved R 0h Reserved 14 UCBIT9IFG RW 0h Bit position 9 interrupt flag 0b = No interrupt pending 1b = Interrupt pending 13 UCTXIFG3 RW 0h eUSCI_B transmit interrupt flag 3. UCTXIFG3 is set when UCBxTXBUF is empty in slave mode, if the slave address defined in UCBxI2COA3 was on the bus in the same frame. 0b = No interrupt pending 1b = Interrupt pending 12 UCRXIFG3 RW 0h Receive interrupt flag 2. UCRXIFG2 is set when UCBxRXBUF has received a complete byte in slave mode and if the slave address defined in UCBxI2COA2 was on the bus in the same frame. 0b = No interrupt pending 1b = Interrupt pending 11 UCTXIFG2 RW 0h eUSCI_B transmit interrupt flag 2. UCTXIFG2 is set when UCBxTXBUF is empty in slave mode, if the slave address defined in UCBxI2COA2 was on the bus in the same frame. 0b = No interrupt pending 1b = Interrupt pending 10 UCRXIFG2 RW 0h Receive interrupt flag 2. UCRXIFG2 is set when UCBxRXBUF has received a complete byte in slave mode and if the slave address defined in UCBxI2COA2 was on the bus in the same frame. 0b = No interrupt pending 1b = Interrupt pending 9 UCTXIFG1 RW 0h eUSCI_B transmit interrupt flag 1. UCTXIFG1 is set when UCBxTXBUF is empty in slave mode, if the slave address defined in UCBxI2COA1 was on the bus in the same frame. 0b = No interrupt pending 1b = Interrupt pending 8 UCRXIFG1 RW 0h Receive interrupt flag 1. UCRXIFG1 is set when UCBxRXBUF has received a complete byte in slave mode and if the slave address defined in UCBxI2COA1 was on the bus in the same frame. 0b = No interrupt pending 1b = Interrupt pending 7 UCCLTOIFG RW 0h Clock low timeout interrupt flag 0b = No interrupt pending 1b = Interrupt pending 6 UCBCNTIFG RW 0h Byte counter interrupt flag. When using this interrupt the user needs to ensure enough processing bandwidth (see the Byte Counter Interrupt section). 0b = No interrupt pending 1b = Interrupt pending 1116 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback eUSCI_B I2C Registers www.ti.com Table 41-19. UCBxIFG Register Description (continued) Bit Field Type Reset Description 5 UCNACKIFG RW 0h Not-acknowledge received interrupt flag. This flag only is updated when operating in master mode. 0b = No interrupt pending 1b = Interrupt pending 4 UCALIFG RW 0h Arbitration lost interrupt flag 0b = No interrupt pending 1b = Interrupt pending 3 UCSTPIFG RW 0h STOP condition interrupt flag 0b = No interrupt pending 1b = Interrupt pending 2 UCSTTIFG RW 0h START condition interrupt flag 0b = No interrupt pending 1b = Interrupt pending 1 UCTXIFG0 RW 0h eUSCI_B transmit interrupt flag 0. UCTXIFG0 is set when UCBxTXBUF is empty in master mode or in slave mode, if the slave address defined in UCBxI2COA0 was on the bus in the same frame. 0b = No interrupt pending 1b = Interrupt pending 0 UCRXIFG0 RW 0h eUSCI_B receive interrupt flag 0. UCRXIFG0 is set when UCBxRXBUF has received a complete character in master mode or in slave mode, if the slave address defined in UCBxI2COA0 was on the bus in the same frame. 0b = No interrupt pending 1b = Interrupt pending SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated 1117 eUSCI_B I2C Registers www.ti.com 41.1.17 UCBxIV Register eUSCI_Bx Interrupt Vector Register Figure 41-33. UCBxIV Register 15 14 13 12 r0 r0 r0 r0 7 6 5 4 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-0 r-0 r-0 r0 UCIVx UCIVx r0 r0 r0 r0 Table 41-20. UCBxIV Register Description Bit Field Type Reset Description 15-0 UCIVx R 0h eUSCI_B interrupt vector value. It generates an value that can be used as address offset for fast interrupt service routine handling. Writing to this register clears all pending interrupt flags. 00h = No interrupt pending 02h = Interrupt Source: Arbitration lost; Interrupt Flag: UCALIFG; Interrupt Priority: Highest 04h = Interrupt Source: Not acknowledgment; Interrupt Flag: UCNACKIFG 06h = Interrupt Source: Start condition received; Interrupt Flag: UCSTTIFG 08h = Interrupt Source: Stop condition received; Interrupt Flag: UCSTPIFG 0Ah = Interrupt Source: Slave 3 Data received; Interrupt Flag: UCRXIFG3 0Ch = Interrupt Source: Slave 3 Transmit buffer empty; Interrupt Flag: UCTXIFG3 0Eh = Interrupt Source: Slave 2 Data received; Interrupt Flag: UCRXIFG2 10h = Interrupt Source: Slave 2 Transmit buffer empty; Interrupt Flag: UCTXIFG2 12h = Interrupt Source: Slave 1 Data received; Interrupt Flag: UCRXIFG1 14h = Interrupt Source: Slave 1 Transmit buffer empty; Interrupt Flag: UCTXIFG1 16h = Interrupt Source: Data received; Interrupt Flag: UCRXIFG0 18h = Interrupt Source: Transmit buffer empty; Interrupt Flag: UCTXIFG0 1Ah = Interrupt Source: Byte counter zero; Interrupt Flag: UCBCNTIFG 1Ch = Interrupt Source: Clock low timeout; Interrupt Flag: UCCLTOIFG 1Eh = Interrupt Source: Nineth bit position; Interrupt Flag: UCBIT9IFG; Priority: Lowest 1118 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode Copyright © 2008–2015, Texas Instruments Incorporated SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Chapter 42 SLAU208O – June 2008 – Revised May 2015 USB Module This chapter describes the USB module that is available in some devices. Topic 42.1 42.2 42.3 42.4 ........................................................................................................................... USB USB USB USB Introduction ............................................................................................ Operation................................................................................................ Transfers ................................................................................................ Registers ................................................................................................ SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback 1120 1122 1133 1140 USB Module Copyright © 2008–2015, Texas Instruments Incorporated Page 1119 USB Introduction www.ti.com 42.1 USB Introduction The features of the USB module include: • Fully compliant with the USB 2.0 full-speed specification – Full-speed device (12 Mbps) with integrated USB transceiver (PHY) – Up to eight input and eight output endpoints – Supports control, interrupt, and bulk transfers – Supports USB suspend, resume, and remote wakeup • A power supply system independent from the PMM system – Integrated 3.3-V LDO regulator with sufficient output to power entire MSP430 and system circuitry from 5-V VBUS – Integrated 1.8-V LDO regulator for PHY and PLL – Easily used in either bus-powered or self-powered operation – Current-limiting capability on 3.3-V LDO output – Autonomous power-up of device on arrival of USB power possible (low or no battery condition) • Internal 48-MHz USB clock – Integrated programmable PLL – Highly-flexible input clock frequencies for use with lowest-cost crystals • 1904 bytes of dedicated USB buffer space for endpoints, with fully configurable size to a granularity of eight bytes • Timestamp generator with 62.5-ns resolution • When USB is disabled – Buffer space is mapped into general RAM, providing additional 2KB to the system – USB interface pins become high-current general purpose I/O pins NOTE: Use of the word device The word device is used throughout the chapter. This word can mean one of two things, depending on the context. In a USB context, it means what the USB specification refers to as a device, function, or peripheral; that is, a piece of equipment that can be attached to a USB host or hub. In a semiconductor context, it refers to an integrated circuit such as the MSP430. To avoid confusion, the term USB device in this document refers to the USB-context meaning of the word. The word device by itself refers to silicon devices such as the MSP430. Figure 42-1 shows a block diagram of the USB module. 1120 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Introduction www.ti.com System VCORE All USB digital logic power System RAM VUSB USB Power System 3.3 V LDO VBUS 1.8 V LDO PLL power PHY power PUR USB Engine Transceiver (PHY) D+ Serial Interface Engine (SIE) D– USB Buffer RAM USB Buffer Manager (UBM) XT1 clock source 48 MHz PLL XT2 clock source TSEn USB Control Registers Timerstamp Generator USB Timer Figure 42-1. USB Block Diagram SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1121 USB Operation www.ti.com 42.2 USB Operation The USB module is a comprehensive full-speed USB device compliant with the USB 2.0 specification. The USB engine coordinates all USB-related traffic. It consists of the USB SIE (serial interface engine) and USB Buffer Manager (UBM). All traffic received on the USB receive path is de-serialized and placed into receive buffers in the USB buffer RAM. Data in the buffer RAM marked 'ready to be sent' are serialized into packets and sent to the USB host. The USB engine requires an accurate 48-MHz clock to sample the incoming data stream. This is generated by a PLL that is fed from one of the system oscillators (XT1 or XT2). A crystal of 4 MHz or greater is required. In addition to crystal operation, the crystal bypass mode can also be used to supply the clock required by the PLL. The PLL is very flexible and can adapt to a wide range of crystal and input frequencies, allowing for cost-effective clock designs. NOTE: The reference clock to the PLL depends on the device configuration. On devices that contain the optional XT2, the reference clock to the PLL is XT2CLK, regardless of whether or not XT1 is available. If the device has only XT1, then the reference is XT1CLK. See the devicespecific data sheet for clock sources available. NOTE: The USB module only supports active operation during power modes AM through LPM1. The USB buffer memory is where data is exchanged between the USB interface and the application software. It is also where the usage of endpoints 1 to 7 are defined. This buffer memory is implemented such that it can be easily accessed like RAM by the CPU or DMA while USB module is not in suspend condition. 42.2.1 USB Transceiver (PHY) The physical layer interface (USB transceiver) is a differential line driver directly powered from VUSB (3.3 V). The line driver is connected to the DP and DM pins, which form the signaling mechanism of the USB interface. When the PUSEL bit is set, DP and DM are configured to function as USB drivers controlled by the USB core logic. When the bit is cleared, these two pins become "Port U", which is a pair of high-current general purpose I/O pins. In this case, the pins are controlled by the Port U control registers. Port U is powered from the VUSB rail, separate from the main device DVCC. If these pins are to be used, whether for USB or general purpose use, it is necessary that VUSB be properly powered from either the internal regulators or an external source. 42.2.1.1 D+ Pullup Via PUR Pin When a full-speed USB device is attached to a USB host, it must pull up the D+ line (DP pin) for the host to recognize its presence. The MSP430 USB module implements this with a software-controlled pin that activates a pullup resistor. The bit that controls this function is PUR_EN. If software control is not desired, the pullup can be connected directly to VUSB. 42.2.1.2 Shorts on Damaged Cables and Clamping USB devices must tolerate connection to a cable that is damaged, such that it has developed shorts on either ground or VBUS. The device should not become damaged by this event, either electrically or physically. To this end, the MSP430 USB power system features a current limitation mechanism that limits the available transceiver current in the event of a short to ground. The transceiver interface itself therefore does not need a current limiting function. Note that if VUSB is to be powered from a source other than the integrated regulator, the absence of current-limiting in the transceiver means that the external power source must itself be tolerant of this same shorting event, through its own means of current limiting. 1122 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Operation www.ti.com 42.2.1.3 Port U Control When PUSEL is cleared, the Port U pins (PU.0 and PU.1) function as general-purpose, high-current I/O pins. These pins can only be configured together as either both inputs or both outputs. Port U is supplied by the VUSB rail. If the 3.3-V LDO is not being used in the system (disabled), the VUSB pin can be supplied externally. PUOPE controls the enable of both outputs residing on the Port U pins. Setting PUIPE =1 causes both input buffers to be enabled. When Port U outputs are enabled (PUOPE = 1), the PUIN0 and PUIN1 pins mirror what is present on the outputs assuming PUIPE = 1. To use the Port U pins as inputs, the outputs should be disabled by setting PUOPE = 0, and enabling the input buffers by setting PUIPE = 1. Once configured as inputs (PUIPE = 1), the PUIN0 and PUIN1 bits can be read to determine the respective input values. When PUOPE is set, both Port U pins function as outputs, controlled by PUOUT0 and PUOUT1. When driven high, they use the VUSB rail, and they are capable of a drive current higher than other I/O pins on the device. See the device-specific datasheet for parameters. By default, PUOPE and PUIPE are cleared. PU.0 and PU.1 are high-impedance (input buffers are disabled and outputs are disabled). 42.2.2 USB Power System The USB power system incorporates dual LDO regulators (3.3 V and 1.8 V) that allow the entire MSP430 device to be powered from 5-V VBUS when it is made available from the USB host. Alternatively, the power system can supply power only to the USB module, or it can be unused altogether, as in a fully selfpowered device. The block diagram is shown in Figure 42-2. V18 VUSB 3.3 V LDO VBUS Overload Detection 1.8 V LDO Low Detection USB BOR VBONIFG “VBUS present" interrupt SLDOEN VUSBEN VBONIE USBBGVBV VBOFFIFG "VBUS removed” interrupt LDOOVLIFG "VBUS overload" interrupt VBOFFIE LDOOVLIE PHY Power PHY, PLL Power Figure 42-2. USB Power System The 3.3-V LDO receives 5 V from VBUS and provides power to the transceiver, as well as the VUSB pin. Using this setup prevents the relatively high load of the transceiver and PLL from loading a local system power supply, if used. Thus it is very useful in battery-powered devices. The 1.8-V LDO receives power from the VUSB pin – which is to be sourced either from the internal 3.3-V LDO or externally – and provides power to the USB PLL and transceiver. The 1.8-V LDO in the USB module is not related to the LDO that resides in the MSP430 Power Management Module (PMM). The inputs and outputs of the LDOs are shown in Figure 42-2. VBUS, VUSB, and V18 need to be connected to external capacitors. The V18 pin is not intended to source other components in the system, rather it exists solely for the attachment of a load capacitor. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1123 USB Operation www.ti.com 42.2.2.1 Enabling and Disabling The 3.3-V LDO is enabled or disabled by setting or clearing VUSBEN, respectively. Even if enabled, if the voltage on VBUS is detected to be low or nonexistent, the LDO is suspended. No additional current is consumed while the LDO is suspended. When VBUS rises above the USB power brownout level, the LDO reference and low voltage detection become enabled. When VBUS rises further above the launch voltage VLAUNCH, the LDO module becomes enabled (see Figure 42-3). See device-specific data sheet for value of VLAUNCH. VBUS VBUS VLAUNCH VUSB Time tENABLE Figure 42-3. USB Power Up and Down Profile The 1.8-V LDO can be enabled or disabled by setting SLDOEN accordingly. By default, the 1.8-V LDO is controlled automatically according to whether power is available on VBUS. This auto-enable feature is controlled by SLDOAON. In this case, that the SLDOEN bit does not reflect the state of the 1.8-V LDO. If the user wishes to know the state while using the auto-enable feature, the USBBGVBV bit in USBPWRCTL can be read. In addition, to disable the 1.8-V LDO, SLDOAON must be cleared along with SLDOEN. If providing VUSB from an external source, rather than through the integrated 3.3-V LDO, keep in mind that if 5 V is not present on VBUS, the 1.8-V LDO is not automatically enabled. In this situation, either VBUS much be attached to USB bus power, or the SLDOAON bit must be cleared and SLDOEN set. It is required that power from the USB cable's VBUS be directed through a Schottky diode prior to entering the VBUS terminal. This prevents current from draining into the cable's VBUS from the LDO input, allowing the MSP430 to tolerate a suspended or unpowered USB cable that remains electrically connected. The VBONIFG flag can be used to indicate that the voltage on VBUS has risen above the launch voltage. In addition to the VBONIFG being set, an interrupt is also generated when VBONIE = 1. Similarly, the VBOFFIFG flag can be used to indicate that the voltage on VBUS has fallen below the launch voltage. In addition to the VBOFFIFG being set, an interrupt is also generated when VBOFFIE = 1. The USBBGVBV bit can also be polled to indicate the level of VBUS; that is, above or below the launch voltage. 42.2.2.2 Powering the Rest of the MSP430 From USB Bus Power Via VUSB The output of the 3.3-V LDO can be used to power the entire MSP430 device, sourcing the DVCC rail. If this is desired, the VUSB and DVCC should be connected externally. Power from the 3.3-V LDO is sourced into DVCC (see Figure 42-4). 1124 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Operation www.ti.com External Connection DVCC VUSB 3.3 V LDO VBUS 1.8 V LDO PMM VCORE I/Os USB Transceiver USB Digital Core USB PLL USB Power Domain MSP430 DVCC Power Domain Figure 42-4. Powering Entire MSP430 From VBUS With this connection made, the MSP430 allows for autonomous power up of the device when VBUS rises above VLAUNCH. If no voltage is present on VCORE – meaning the device is unpowered (or, in LPMx.5 mode) – then both the 3.3-V and 1.8-V LDOs automatically turn on when VBUS rises above VLAUNCH. Note that if DVCC is being driven from VUSB in this manner, and if power is available from VUSB, attempting to place the device into LPMx.5 results in the device immediately re-powering. This is because it re-creates the conditions of the autonomous feature described above (no VCORE but power available on VBUS). The resulting drop of VCORE would cause the system to immediately power up again. When DVCC is being powered from VUSB, it is up to the user to ensure that the total current being drawn from VBUS stays below IDET. 42.2.2.3 Powering Other Components in the System from VUSB There is sufficient current capacity available from the 3.3-V LDO to power not only the entire MSP430 but also other components in the system, via the VUSB pin. If the device is to always be connected to USB, then perhaps no other power system is needed. If it only occasionally connects to USB and is battery-powered otherwise, then sourcing system power via the 3.3-V LDO takes power burden away from the battery. Alternatively, if the battery is rechargeable, the recharging can be driven from VUSB. 42.2.2.4 Self-Powered Devices Some applications may be self-powered, in that the VUSB power is supplied externally. In these cases, the 3.3-V LDO would be disabled (VUSBEN = 0). For proper USB operation, the voltage on VBUS can still be detected, even while the 3.3-V LDO disabled, by setting USBDETEN = 1. When VBUS rises above the USB power brownout level, low voltage detection becomes enabled. When VBUS rises further above the launch voltage VLAUNCH, the voltage on VBUS is detected. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1125 USB Operation www.ti.com 42.2.2.5 Current Limitation and Overload Protection The 3.3-V LDO features current limitation to protect the transceiver during shorted-cable conditions. A short or overload condition – that is, when the output of the LDO becomes current-limited to IDET. This is reported to software via the VUOVLIFG flag. See device-specific data sheet for value of IDET. If this event occurs, it means USB operation may become unreliable, due to insufficient power supply. As a result, software may wish to cease USB operation. If the OVLAOFF bit is set, USB operation is automatically terminated by clearing VUSBEN. During overload conditions, VUSB and V18 drop below their nominal output voltage. In power scenarios where DVCC is exclusively supplied from VUSB, repetitive system restarts may be triggered as long the short or overload condition exists. For this reason, firmware should avoid re-enabling USB after detection of an overload on the previous power session, until the cause of failure can be identified. Ultimately, it is the user's responsibility to ensure that the current drawn from VBUS does not exceed IDET. The VUOVLIFG flag can be used to indicate an overcurrent condition on the 3.3-V LDO. When an overcurrent condition is detected, VUOVLIFG = 1. In addition to the VUOVLIFG being set, an interrupt is also generated when VUOVLIE = 1. The USB power system brownout circuit is supplied from VBUS or DVCC, whichever carries the higher voltage. 42.2.3 USB Phase-Locked Loop (PLL) The PLL provides the low-jitter high-accuracy clock needed for USB operation (see Figure 42-5). UPMB 6 UPQB /M UCLKSEL 3 PLL reference clock † /Q PFD Charge Pump Loop Filter 2 VCO reserved reserved † 00 01 10 11 USBCLK UPLLEN XT2CLK on devices with XT2, otherwise XT1CLK. Figure 42-5. USB-PLL Analog Block Diagram The reference clock to the PLL depends on the device configuration. On devices that contain the optional XT2, the reference clock to the PLL is XT2CLK, regardless if XT1 is available. If the device has only XT1, then the reference is XT1CLK. A four-bit prescale counter controlled by the UPQB bits allows division of the reference to generate the PLL update clock. The UPMB bits control the divider in the feedback path and define the multiplication rate of the PLL (see Equation 20). fOUT = CLKSEL × DIVM DIVQ with CLKSEL = fUPD ³ 1.5 MHz DIVQ (20) Where CLKSEL is the PLL reference clock frequency DIVQ is derived from Table 42-1 DIVM represents the value of UPMB field Table 42-2 lists some common clock input frequencies for CLKSEL, along with the appropriate register settings for generating the nominal 48-MHz clock required by the USB serial engine. For crystal operation, a 4 MHz or higher crystal is required. For crystal bypass mode of operation, 1.5 MHz is the lowest external clock input possible for CLKSEL. 1126 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Operation www.ti.com If USB operation is used in a bus-powered configuration, disabling the PLL is necessary to pass the USB requirement of not consuming more than 500 µA. The UPLLEN bit enables or disables the PLL. The PFDEN bit must be set to enable the phase and frequency discriminator. Out-of-lock, loss-of-signal, and out-of-range are indicated and flagged in the interrupt flags OOLIFG, LOSIFG, OORIFG, respectively. NOTE: UCLKSEL bits should always be cleared, which is the default operation. All other combinations are reserved for future usages. Table 42-1. USB-PLL Pre-Scale Divider UPQB DIVQ 000 1 001 2 010 3 011 4 100 6 101 8 110 13 111 16 Table 42-2. Register Settings to Generate 48 MHz Using Common Clock Input Frequencies CLKSEL (MHz) UPQB UPMB DIVQ DIVM CLKLOOP (MHz) UPLLCLK (MHz) ACCURACY (ppm) 1.5 000 011111 1 32 1.5 48 0 1.6 000 011101 1 30 1.6 48 0 1.7778 000 011010 1 27 1.7778 48 0 1.8432 000 011001 1 26 1.8432 47.92 -1570 1.8461 000 011001 1 26 1.8461 48 0 1.92 000 011000 1 25 1.92 48 0 2 000 010111 1 24 2 48 0 2.4 000 010011 1 20 2.4 48 0 2.6667 000 010001 1 18 2.6667 48 0 3 000 001111 1 16 3 48 0 3.2 001 011110 2 30 1.6 48 0 3.5556 001 011010 2 27 1.7778 48 0 3.84 001 011001 2 25 1.92 48 0 4 (1) (1) 001 010111 2 24 2 48 0 4.1739 001 010110 2 23 2.086 48 0 4.3636 001 010101 2 22 2.1818 48 0 4.5 010 011111 3 32 1.5 48 0 4.8 001 010011 2 20 2.4 48 0 5.33 ≉ (16/3) 001 010001 2 18 2.6667 48 0 5.76 010 011000 3 25 1.92 48 0 6 010 010111 3 24 2 48 0 6.4 011 011101 4 30 1.6 48 0 7.2 010 010011 3 20 2.4 48 0 7.68 011 011000 4 25 1.92 48 0 8 (1) 010 010001 3 18 2.6667 48 0 9 010 001111 3 16 3 48 0 This frequency can be automatically detected by the factory-supplied BSL, for use in production programming of the MSP430 via USB. See the MSP430 Programming Via the Bootstrap Loader User's Guide (SLAU319) for details. USB Module1127 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Operation www.ti.com Table 42-2. Register Settings to Generate 48 MHz Using Common Clock Input Frequencies (continued) CLKSEL (MHz) UPQB UPMB DIVQ DIVM CLKLOOP (MHz) UPLLCLK (MHz) ACCURACY (ppm) 9.6 011 010011 4 20 2.4 48 0 10.66 ≉ (32/3) 011 010001 4 18 2.6667 48 0 12 (1) 011 001111 4 16 3 48 0 12.8 101 011101 8 30 1.6 48 0 14.4 100 010011 6 20 2.4 48 0 16 100 010001 6 18 2.6667 48 0 16.9344 100 010000 6 17 2.8224 47.98 -400 16.94118 100 010000 6 17 2.8235 48 0 18 100 001111 6 16 3 48 0 19.2 101 010011 8 20 2.4 48 0 24 (1) 101 001111 8 16 3 48 0 25.6 111 011101 16 30 1.6 48 0 26.0 110 010111 13 24 2 48 0 32 111 010111 16 24 2.6667 48 0 42.2.3.1 Modifying the Divider Values Updating the values of UPQB (DIVQ) and UPMB (DIVM) to select the desired PLL frequency must occur simultaneously to avoid spurious frequency artifacts. The values of UPQB and UPMB can be calculated and written to their buffer registers; the final update of UPQB and UPMB occurs when the upper byte of UPLLDIVB (UPQB) is written. 42.2.3.2 PLL Error Indicators The PLL can detect three kinds of errors. Out-of-lock (OOL) is indicated if a frequency correction is performed in the same direction (that is, up or down) for four consecutive update periods. Loss-of-signal (LOS) is indicated if a frequency correction is performed in the same direction (that is, up or down) for 16 consecutive update periods. Out-of-range (OOR) is indicated if PLL was unable to lock for more than 32 update periods. OOL, LOS, and OOR trigger their respective interrupt flags (USBOOLIFG, USBLOSIFG, USBOORIFG) if errors occur, and interrupts are generated if enabled by their enable bits (USBOOLIE, USBLOSIE, USBOORIE). 42.2.3.3 PLL Startup Sequence To achieve the fastest startup of the PLL, the following sequence is recommended. 1. Enable VUSB and V18. 2. Wait 2 ms for external capacitors to charge, so that proper VUSB is in place. (During this time, the USB registers and buffers can be initialized.) 3. Activate the PLL, using the required divider values. 4. Wait 2 ms and check PLL. If it stays locked, it is ready to be used. 42.2.4 USB Controller Engine The USB controller engine transfers data packets arriving from the USB host into the USB buffers, and also transmits valid data from the buffers to the USB host. The controller engine has dedicated, fixed buffer space for input endpoint 0 and output endpoint 0, which are the default USB endpoints for control transfers. 1128 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Operation www.ti.com The 14 remaining endpoints (seven input and seven output) may have one or more USB buffers assigned to them. All the buffers are located in the USB buffer memory. This memory is implemented as "multiport" memory, in that it can be accessed both by the USB buffer manager and also by the CPU and DMA. Each endpoint has a dedicated set of descriptor registers that describe the use of that endpoint (see Figure 42-6). Configuration of each endpoint is performed by setting its descriptor registers. These data structures are located in the USB buffer memory and contain address pointers to the next memory buffer for receive or transmit. Assigning one or two data buffers to an endpoint, of up to 64 bytes, requires no further software involvement after configuration. If more than two buffers per endpoint are desired, however, software must change the address pointers on the fly during a receive or transmit process. Synchronization of empty and full buffers is done using validation flags. All events are indicated by flags and fire a vector interrupt when enabled. Transfer event indication can be enabled separately. EP0 to EP7 EP0 to EP7 Y Flag Y X Flag Pointer Counter Config EPn X Pointer Y-Buffer (64 bytes) X-Buffer (64 bytes) Y-Buffer Y'-Buffer Y''-Buffer (64 bytes) (64 bytes) (64 bytes) Counter Config EPn X-Buffer X'-Buffer X''-Buffer (64 bytes) (64 bytes) (64 bytes) Figure 42-6. Data Buffers and Descriptors 42.2.4.1 USB Serial Interface Engine (SIE) The SIE logic manages the USB packet protocol requirements for the packets being received and transmitted on the bus. For packets being received, the SIE decodes the packet identifier field (packet ID) to determine the type of packet being received and to ensure the packet ID is valid. For token and data packets being received, the SIE calculates the packet cycle redundancy check (CRC) and compares the value to the CRC contained in the packet to verify that the packet was not corrupted during transmission. For token and data packets being transmitted, the SIE generates the CRC that is transmitted with the packet. For packets being transmitted, the SIE also generates the synchronization field (SYNC), which is an eight-bit field at the beginning of each packet. In addition, the SIE generates the correct packet ID for all packets being transmitted. Another major function of the SIE is the overall serial-to-parallel conversion of the data packets being received or transmitted. 42.2.4.2 USB Buffer Manager (UBM) The USB buffer manager provides the control logic that interfaces the SIE to the USB endpoint buffers. One of the major functions of the UBM is to decode the USB device address to determine if the USB host is addressing this particular USB device. In addition, the endpoint address field and direction signal are decoded to determine which particular USB endpoint is being addressed. Based on the direction of the USB transaction and the endpoint number, the UBM either writes or reads the data packet to or from the appropriate USB endpoint data buffer. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1129 USB Operation www.ti.com The TOGGLE bit for each output endpoint configuration register is used by the UBM to track successful output data transactions. If a valid data packet is received and the data packet ID matches the expected packet ID, the TOGGLE bit is toggled. Similarly, the TOGGLE bit for each input endpoint configuration is used by the UBM to track successful input data transactions. If a valid data packet is transmitted, the TOGGLE bit is toggled. If the TOGGLE bit is cleared, a DATA0 packet ID is transmitted in the data packet to the host. If the TOGGLE bit is set, a DATA1 packet ID is transmitted in the data packet to the host. See Section 42.3 regarding details of USB transfers. 42.2.4.3 USB Buffer Memory The USB buffer memory contains the data buffers for all endpoints and for SETUP packets. In that the buffers for endpoints 1 to 7 are flexible, there are USB buffer configuration registers that define them, and these too are in the USB buffer memory. (Endpoint 0 is defined with a set of registers in the USB control register space.) Storing these in open memory allows for efficient, flexible use, which is advantageous because use of these endpoints is very application-specific. This memory is implemented as "multiport" memory, in that it can be accessed both by the USB buffer manager and also by the CPU and DMA. The SIE allows CPU or DMA access, but reserves priority. As a result, CPU or DMA access is delayed using wait states if a conflict arises with an SIE access. When the USB module is disabled (USBEN = 0), the buffer memory behaves like regular RAM. When changing the state of the USBEN bit (enabling or disabling the USB module), the USB buffer memory should not be accessed within four clocks before and eight clocks after changing this bit, as doing so reconfigures the access method to the USB memory. Accessing of the USB buffer memory by CPU or DMA is only possible if the USB PLL is active. When a host requests suspend condition the application software (for example, USB stack) of client has to switch off the PLL within 10 ms. Note that the MSP430 USB suspend interrupt occurs around 5 ms after the host request. Each endpoint is defined by a block of six configuration "registers" (based in RAM, they are not true registers in the strict sense of the word). These registers specify the endpoint type, buffer address, buffer size and data packet byte count. They define an endpoint buffer space that is 1904 bytes in size. An additional 24 bytes are allotted to three remaining blocks – the EP0_IN buffer, the EP0_OUT buffer, and the SETUP packet buffer (see Table 42-3). Table 42-3. USB Buffer Memory Map Memory Short Form Start of buffer space STABUFF End of buffer space TOPBUFF Output endpoint_0 buffer USBOEP0BUF Input endpoint_0 buffer Setup Packet Block Read/Write ⋮ 1904 bytes of configurable buffer space Access Type USBIEP0BUF USBSUBLK Address Offset 0000h Read/Write ⋮ Read/Write 076Fh Read/Write 0770h Read/Write ⋮ Read/Write 0777h Read/Write 0778h Read/Write ⋮ Read/Write 077Fh Read/Write 0780h Read/Write ⋮ Read/Write 0787h Software can configure each buffer according to the total number of endpoints needed. Single or double buffering of each endpoint is possible. Unlike the descriptor registers for endpoints 1 to 7, which are defined as memory entries in USB RAM, endpoint 0 is described by a set of four registers (two for output and two for input) in the USB control register set. Endpoint 0 has no base-address register, since these addresses are hardwired. The bit positions have been preserved to provide consistency with endpoint_n (n = 1 to 7). 1130 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Operation www.ti.com 42.2.4.4 USB Fine Timestamp The USB module is capable of saving a timestamp associated with particular USB events (see Figure 427). This can be useful in compensating for delays in software response. The timestamp values are based on the USB module's internal timer, driven by USBCLK. Up to four events can be selected to generate the timestamp, selected with the TSESEL bits. When they occur, the value of the USB timer is transferred to the timestamp register USBTSREG, and thus the exact moment of the event is recorded. The trigger options include one of three DMA channels, or a softwaredriven event. The USB timer cannot be directly accessed by reading. Furthermore, the value of the USB timer can be used to generate periodic interrupts. Since the USBCLK can have a frequency different from the other system clocks, this gives another option for periodic system interrupts. The UTSEL bits select the divider from the USB clock. UTIE must be set for an interrupt vector to get triggered. The timestamp register is set to zero on a frame-number-receive event and pseudo-start-of-frame. TSGEN enables or disables the time stamp generator. TSESEL 2 TSE0 TSE1 TSE2 TSE3 USBCLK (48 MHz) UTSEL 00 01 10 11 16-Bit Time Stamp Register (read only) 3 000 001 010 011 100 101 110 111 UTIE VECINT UTIFG 16-Bit USB Timer (not accessible) /3 TSGEN Frame Number Received Reset (of USB Configuration Registers) Reset to 0 Figure 42-7. USB Timer and Time Stamp Generation 42.2.4.5 Suspend and Resume Logic The USB suspend and resume logic detects suspend and resume conditions on the USB bus. These events are flagged in SUSRIFG and RESRIFG, respectively, and they fire dedicated interrupts, if the interrupts are enabled (SUSRIE and RESRIE). The remote wakeup mechanism, in which a USB device can cause the USB host to awaken and resume the device, is triggered by setting the RWUP bit of the USBCTL register. See Section 42.2.6 for more information. 42.2.4.6 Reset Logic A PUC resets the USB module logic. When FRSTE = 1, the logic is also reset when a USB reset event occurs on the bus, triggered from the USB host. (A USB reset also sets the RSTRIFG flag.) USB buffer memory is not reset by a USB reset. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1131 USB Operation www.ti.com 42.2.5 USB Vector Interrupts The USB module uses a single interrupt vector generator register to handle multiple USB interrupts. All USB-related interrupt sources trigger the USBVECINT (also called USBIV) vector, which then contains a 6-bit vector value that identifies the interrupt source. Each of the interrupt sources results in a different offset value read. The interrupt vector returns zero when no interrupt is pending. Reading the interrupt vector register clears the corresponding interrupt flag and updates its value. The interrupt with highest priority returns the value 0002h; the interrupt with lowest priority returns the value 003Eh when reading the interrupt vector register. Writing to this register clears all interrupt flags. For each input and output endpoints resides an USB transaction interrupt indication enable. Software may set this bit to define if interrupts are to be flagged in general. To generate an interrupt the corresponding interrupt enable and flag must be set. Table 42-4. USB Interrupt Vector Generation USBVECINT Value Interrupt Source Interrupt Flag Bit Interrupt Enable Bit Indication Enable Bit 0000h no interrupt – – – 0002h USB-PWR drop ind. USBPWRCTL.VUOVLIFG USBPWRCTL.VUOVLIE – 0004h USB-PLL lock error USBPLLIR.USBPLLOOLIFG USBPLLIR.USBPLLOOLIE – 0006h USB-PLL signal error USBPLLIR.USBPLLOSIFG USBPLLIR.USBPLLLOSIE – 0008h USB-PLL range error USBPLLIR.USBPLLOORIFG USBPLLIR.USBPLLOORIE – 000Ah USB-PWR VBUS-on USBPWRCTL.VBONIFG USBPWRCTL.VBONIE – 000Ch USB-PWR VBUS-off USBPWRCTL.VBOFFIFG USBPWRCTL.VBOFFIE – 000Eh reserved – – – 0010h USB timestamp event USBMAINTL.UTIFG USBMAINTL.UTIE – 0012h Input Endpoint-0 USBIEPIFG.EP0 USBIEPIE.EP0 USBIEPCNFG_0.USBIIE 0014h Output Endpoint-0 USBOEPIFG.EP0 USBOEPIE.EP0 USBOEPCNFG_0.USBIIE 0016h RSTR interrupt USBIFG.RSTRIFG USBIE.RSTRIE – 0018h SUSR interrupt USBIFG.SUSRIFG USBIE.SUSRIE – 001Ah RESR interrupt USBIFG.RESRIFG USBIE.RESRIE – 001Ch reserved – – – 001Eh reserved – – – 0020h Setup packet received USBIFG.SETUPIFG USBIE.SETUPIE – 0022h Setup packet overwrite USBIFG.STPOWIFG USBIE.STPOWIE – 0024h Input Endpoint-1 USBIEPIFG.EP1 USBIEPIE.EP1 USBIEPCNF_1.USBIIE 0026h Input Endpoint-2 USBIEPIFG.EP2 USBIEPIE.EP2 USBIEPCNF_2.USBIIE 0028h Input Endpoint-3 USBIEPIFG.EP3 USBIEPIE.EP3 USBIEPCNF_3.USBIIE 002Ah Input Endpoint-4 USBIEPIFG.EP4 USBIEPIE.EP4 USBIEPCNF_4.USBIIE 002Ch Input Endpoint-5 USBIEPIFG.EP5 USBIEPIE.EP5 USBIEPCNF_5.USBIIE 002Eh Input Endpoint-6 USBIEPIFG.EP6 USBIEPIE.EP6 USBIEPCNF_6.USBIIE 0030h Input Endpoint-7 USBIEPIFG.EP7 USBIEPIE.EP7 USBIEPCNF_7.USBIIE 0032h Output Endpoint-1 USBOEPIFG.EP1 USBOEPIE.EP1 USBOEPCNF_1.USBIIE 0034h Output Endpoint-2 USBOEPIFG.EP2 USBOEPIE.EP2 USBOEPCNF_2.USBIIE 0036h Output Endpoint-3 USBOEPIFG.EP3 USBOEPIE.EP3 USBOEPCNF_3.USBIIE 0038h Output Endpoint-4 USBOEPIFG.EP4 USBOEPIE.EP4 USBOEPCNF_4.USBIIE 003Ah Output Endpoint-5 USBOEPIFG.EP5 USBOEPIE.EP5 USBOEPCNF_5.USBIIE 003Ch Output Endpoint-6 USBOEPIFG.EP6 USBOEPIE.EP6 USBOEPCNF_6.USBIIE 003Eh Output Endpoint-7 USBOEPIFG.EP7 USBOEPIE.EP7 USBOEPCNF_7.USBIIE 42.2.6 Power Consumption USB functionality consumes more power than is typically drawn in the MSP430. Since most MSP430 applications are power sensitive, the MSP430 USB module has been designed to protect the battery by ensuring that significant power load only occurs when attached to the bus, allowing power to be drawn from VBUS. 1132 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Operation www.ti.com The two components of the USB module that draw the most current are the transceiver and the PLL. The transceiver can consume large amounts of power while transmitting, but in its quiescent state – that is, when not transmitting data – the transceiver actually consumes very little power. This is the amount specified as IIDLE. This amount is so little that the transceiver can be kept active during suspend mode without presenting a problem for bus-powered applications. Fortunately the transceiver always has access to VBUS power when drawing the level of current required for transmitting. The PLL consumes a larger amount of current. However, it need only be active while connected to the host, and the host can supply the power. When the PLL is disabled (for example, during USB suspend), USBCLK automatically is sourced from the VLO. 42.2.7 Suspend and Resume All USB devices must support the ability to be suspended into a no-activity state, and later resumed. When suspended, a device is not allowed to consume more than 500uA from the USB's VBUS power rail, if the device is drawing any power from that source. A suspended device must also monitor for a resume event on the bus. The host initiates a suspend condition by creating a constant idle state on the bus for more than 3.0 ms. It is the responsibility of the software to ensure the device enters its low power suspend state within 10 ms of the suspend condition. The USB specification requires that a suspended bus-powered USB device not draw in excess of 500 µA from the bus. 42.2.7.1 Entering Suspend When the host suspends the USB device, a suspend interrupt is generated (SUSRIFG). From this point, the software has 10 ms to ensure that no more than 500uA is being drawn from the host via VBUS. For most applications, the integrated 3.3-V LDO is being used. In this case, the following actions should be taken: • Disable the PLL by clearing UPLLEN (UPLLEN = 0) • Limit all current sourced from VBUS that causes the total current sourced from VBUS equal to 500 µA minus the suspend current, ISUSPEND (see the device-specific data sheet). Disabling the PLL eliminates the largest on-chip draw of power from VBUS. During suspend, the USBCLK is automatically sourced by the VLO (VLOCLK), allowing the USB module to detect resume when it occurs. It is a good idea to also then ensure that the RESRIE bit is also set, so that an interrupt is generated when the host resumes the device. If desired, the high frequency crystal can also be disabled to save additional system power, however it does not contribute to the power from VBUS since it draws power from the DVCC supply. 42.2.7.2 Entering Resume Mode When the USB device is in a suspended condition, any non-idle signaling, including reset signaling, on the host side is detected by the suspend and resume logic and device operation is resumed. RESRIFG is set, causing an USB interrupt. The interrupt service routine can be used to resume USB operation. 42.3 USB Transfers The USB module supports control, bulk, and interrupt data transfer types. In accordance with the USB specification, endpoint 0 is reserved for the control endpoint and is bidirectional. In addition to the control endpoint, the USB module is capable of supporting up to 7 input endpoints and 7 output endpoints. These additional endpoints can be configured either as bulk or interrupt endpoints. The software handles all control, bulk, and interrupt endpoint transactions. 42.3.1 Control Transfers Control transfers are used for configuration, command, and status communication between the host and the USB device. Control transfers to the USB device use input endpoint 0 and output endpoint 0. The three types of control transfers are control write, control write with no data stage, and control read. Note that the control endpoint must be initialized before connecting the USB device to the USB. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1133 USB Transfers www.ti.com 42.3.1.1 Control Write Transfer The host uses a control write transfer to write data to the USB device. A control write transfer consists of a setup stage transaction, at least one output data stage transaction, and an input status stage transaction. The stage transactions for a control write transfer are: • Setup stage transaction: 1. Input endpoint 0 and output endpoint 0 are initialized by programming the appropriate USB endpoint configuration blocks. This entails enabling the endpoint interrupt (USBIIE = 1) and enabling the endpoint (UBME = 1). The NAK bit for both input endpoint 0 and output endpoint 0 must be cleared. 2. The host sends a setup token packet followed by the setup data packet addressed to output endpoint 0. If the data is received without an error, then the UBM writes the data to the setup data packet buffer, sets the setup stage transaction bit (SETUPIFG = 1) in the USB Interrupt Flag register (USBIFG), returns an ACK handshake to the host, and asserts the setup stage transaction interrupt. Note that as long as SETUPIFG = 1, the UBM returns a NAK handshake for any data stage or status stage transactions regardless of the endpoint 0 NAK or STALL bit values. 3. The software services the interrupt, reads the setup data packet from the buffer, and then decodes the command. If the command is not supported or invalid, the software should set the STALL bit in the output endpoint 0 configuration register (USBOEPCNFG_0) and the input endpoint 0 configuration register (USBIEPCNFG_0) . This causes the device to return a STALL handshake for any data or status stage transaction. For control write transfers, the packet ID used by the host for the first data packet output is a DATA1 packet ID and the TOGGLE bit must match. NOTE: When using USBIV, SETUPIFG is cleared upon reading USBIV. In addition, the NAK on input endpoint 0 and output endpoint 0 are also cleared. In this case, the host may send or receive the next setup packet even if MSP430 did not perform the first setup packet. To prevent this, first read the SETUPIFG directly, perform the required setup, and then use the USBIV for further processing. NOTE: The priority of input endpoint 0 is higher than the setup flag inside USBIV (SETUPIFG). Therefore, if both the USBIEPIFG.EP0 and SETUPIFG are pending, reading USBIV gives the higher priority interrupt (EP0) as opposed to SETUPIFG. Therefore, read SETUPIFG directly, process the pending setup packet, then proceed to read the USBIV. • • 1134 Data stage transaction: 1. The host sends an OUT token packet followed by a data packet addressed to output endpoint 0. If the data is received without an error, the UBM writes the data to the output endpoint buffer (USBOEP0BUF), updates the data count value, toggles the TOGGLE bit, sets the NAK bit, returns an ACK handshake to the host , and asserts the output endpoint interrupt 0 (OEPIFG0). 2. The software services the interrupt and reads the data packet from the output endpoint buffer. To read the data packet, the software first needs to obtain the data count value inside the USBOEPBCNT_0 register. After reading the data packet, the software should clear the NAK bit to allow the reception of the next data packet from the host. 3. If the NAK bit is set when the data packet is received, the UBM simply returns a NAK handshake to the host. If the STALL bit is set when the data packet is received, the UBM simply returns a STALL handshake to the host. If a CRC or bit stuff error occurs when the data packet is received, then no handshake is returned to the host. Status stage transaction: 1. For input endpoint 0, the software updates the data count value to zero, sets the TOGGLE bit, then clears the NAK bit to enable the data packet to be sent to the host. Note that for a status stage transaction, a null data packet with a DATA1 packet ID is sent to the host. 2. The host sends an IN token packet addressed to input endpoint 0. After receiving the IN token, the UBM transmits a null data packet to the host. If the data packet is received without errors by the host, then an ACK handshake is returned. The UBM then toggles the TOGGLE bit and sets the NAK bit. USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Transfers www.ti.com 3. If the NAK bit is set when the IN token packet is received, the UBM simply returns a NAK handshake to the host. If the STALL bit is set when the IN token packet is received, the UBM simply returns a STALL handshake to the host. If no handshake packet is received from the host, then the UBM prepares to retransmit the same data packet again. 42.3.1.2 Control Write Transfer with No Data Stage Transfer The host uses a control write transfer to write data to the USB device. A control write with no data stage transfer consists of a setup stage transaction and an input status stage transaction. For this type of transfer, the data to be written to the USB device is contained in the two byte value field of the setup stage transaction data packet. The stage transactions for a control write transfer with no data stage transfer are: • Setup stage transaction: 1. Input endpoint 0 and output endpoint 0 are initialized by programming the appropriate USB endpoint configuration blocks. This entails programming the buffer size and buffer base address, selecting the buffer mode, enabling the endpoint interrupt (USBIIE = 1), initializing the TOGGLE bit, enabling the endpoint (UBME = 1). The NAK bit for both input endpoint 0 and output endpoint 0 must be cleared. 2. The host sends a setup token packet followed by the setup data packet addressed to output endpoint 0. If the data is received without an error then the UBM writes the data to the setup data packet buffer, sets the setup stage transaction (SETUP) bit in the USB status register, returns an ACK handshake to the host, and asserts the setup stage transaction interrupt. Note that as long as the setup transaction (SETUP) bit is set, the UBM returns a NAK handshake for any data stage or status stage transaction regardless of the endpoint 0 NAK or STALL bit values. 3. The software services the interrupt and reads the setup data packet from the buffer then decodes the command. If the command is not supported or invalid, the software should set the STALL bits in the output endpoint 0 and the input endpoint 0 configuration registers before clearing the setup stage transaction (SETUP) bit. This causes the device to return a STALL handshake for data or status stage transactions. After reading the data packet and decoding the command, the software should clear the interrupt, which automatically clears the setup stage transaction status bit. NOTE: When using USBIV, the SETUPIFG is cleared upon reading USBIV. In addition, the NAK on input endpoint 0 and output endpoint 0 is also cleared. In this case, the host may send or receive the next setup packet even if MSP430 did not perform the first setup packet. To prevent this, first read the SETUPIFG directly, perform the required setup, and then use the USBIV for further processing. NOTE: The priority of input endpoint 0 is higher than setup flag inside USBIV. Therefore, if both the USBIEPIFG.EP0 and SETUPIFG are pending, reading the USBIV gives the higher priority interrupt (EP0) as opposed to the SETUPIFG. Therefore, read SETUPIFG directly, process the pending setup packet, then proceed to read the USBIV. • Status stage transaction: 1. For input endpoint 0, the software updates the data count value to zero, sets the TOGGLE bit, then clears the NAK bit to enable the data packet to be sent to the host. Note that for a status stage transaction a null data packet with a DATA1 packet ID is sent to the host. 2. The host sends an IN token packet addressed to input endpoint 0. After receiving the IN token, the UBM transmits a null data packet to the host. If the data packet is received without errors by the host, then an ACK handshake is returned. The UBM then toggles the TOGGLE bit, sets the NAK bit, and asserts the endpoint interrupt. 3. If the NAK bit is set when the IN token packet is received, the UBM simply returns a NAK handshake to the host. If the STALL bit is set when the IN token packet is received, the UBM simply returns a STALL handshake to the host. If no handshake packet is received from the host, then the UBM prepares to retransmit the same data packet again. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1135 USB Transfers www.ti.com 42.3.1.3 Control Read Transfer The host uses a control read transfer to read data from the USB device. A control read transfer consists of a setup stage transaction, at least one input data stage transaction and an output status stage transaction. The stage transactions for a control read transfer are: • Setup stage transaction: 1. Input endpoint 0 and output endpoint 0 are initialized by programming the appropriate USB endpoint configuration blocks. This entails enabling the endpoint interrupt (USBIIE = 1) and enabling the endpoint (UBME = 1). The NAK bit for both input endpoint 0 and output endpoint 0 must be cleared. 2. The host sends a setup token packet followed by the setup data packet addressed to output endpoint 0. If the data is received without an error, then the UBM writes the data to the setup buffer, sets the setup stage transaction (SETUP) bit in the USB status register, returns an ACK handshake to the host, and asserts the setup stage transaction interrupt. Note that as long as the setup transaction (SETUP) bit is set, the UBM returns a NAK handshake for any data stage or status stage transactions regardless of the endpoint 0 NAK or STALL bit values. 3. The software services the interrupt and reads the setup data packet from the buffer then decodes the command. If the command is not supported or invalid, the software should set the STALL bits in the output endpoint 0 and the input endpoint 0 configuration registers before clearing the setup stage transaction (SETUP) bit. This causes the device to return a STALL handshake for a data stage or status stage transactions. After reading the data packet and decoding the command, the software should clear the interrupt, which automatically clears the setup stage transaction status bit. The software should also set the TOGGLE bit in the input endpoint 0 configuration register. For control read transfers, the packet ID used by the host for the first input data packet is a DATA1 packet ID. NOTE: When using USBIV, the SETUPIFG is cleared upon reading USBIV. In addition, it also the clears NAK on input endpoint 0 and output endpoint 0. In this case, the host may send or receive the next setup packet even if MSP430 did not perform the first setup packet. To prevent this, first read the SETUPIFG directly, perform the required setup, and then use the USBIV for further processing. NOTE: The priority of input endpoint 0 is higher than the setup flag inside USBIV. Therefore, if both the USBIEPIFG.EP0 and SETUPIFG are pending, reading the USBIV gives the higher priority interrupt (EP0) as opposed to the SETUPIFG. Therefore, read SETUPIFG directly, process the pending setup packet, then proceed to read the USBIV. • • 1136 Data stage transaction: 1. The data packet to be sent to the host is written to the input endpoint 0 buffer by the software. The software also updates the data count value then clears the input endpoint 0 NAK bit to enable the data packet to be sent to the host. 2. The host sends an IN token packet addressed to input endpoint 0. After receiving the IN token, the UBM transmits the data packet to the host. If the data packet is received without errors by the host, then an ACK handshake is returned. The UBM sets the NAK bit and asserts the endpoint interrupt. 3. The software services the interrupt and prepares to send the next data packet to the host. 4. If the NAK bit is set when the IN token packet is received, the UBM simply returns a NAK handshake to the host. If the STALL bit is set when the IN token packet is received, the UBM simply returns a STALL handshake to the host. If no handshake packet is received from the host, then the UBM prepares to retransmit the same data packet again. 5. The software continues to send data packets until all data has been sent to the host. Status stage transaction: 1. For output endpoint 0, the software sets the TOGGLE bit, then clears the NAK bit to enable the data packet to be sent to the host. Note that for a status stage transaction a null data packet with a DATA1 packet ID is sent to the host. 2. The host sends an OUT token packet addressed to output endpoint 0. If the data packet is received USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Transfers www.ti.com without an error then the UBM updates the data count value, toggles the TOGGLE bit, sets the NAK bit, returns an ACK handshake to the host, and asserts the endpoint interrupt. 3. The software services the interrupt. If the status stage transaction completed successfully, then the software should clear the interrupt and clear the NAK bit. 4. If the NAK bit is set when the input data packet is received, the UBM simply returns a NAK handshake to the host. If the STALL bit is set when the in data packet is received, the UBM simply returns a STALL handshake to the host. If a CRC or bit stuff error occurs when the data packet is received, then no handshake is returned to the host. 42.3.2 Interrupt Transfers The USB module supports interrupt data transfers both to and from the host. Devices that need to send or receive a small amount of data with a specified service period are best served by the interrupt transfer type. Input endpoints 1 through 7 and output endpoints 1 through 7 can be configured as interrupt endpoints. 42.3.2.1 Interrupt OUT Transfer The steps for an interrupt OUT transfer are: 1. The software initializes one of the output endpoints as an output interrupt endpoint by programming the appropriate endpoint configuration block. This entails programming the buffer size and buffer base address, selecting the buffer mode, enabling the endpoint interrupt, initializing the toggle bit, enabling the endpoint, and clearing the NAK bit. 2. The host sends an OUT token packet followed by a data packet addressed to the output endpoint. If the data is received without an error then the UBM writes the data to the endpoint buffer, updates the data count value, toggles the toggle bit, sets the NAK bit, returns an ACK handshake to the host, and asserts the endpoint interrupt. 3. The software services the interrupt and reads the data packet from the buffer. To read the data packet, the software first needs to obtain the data count value. After reading the data packet, the software should clear the interrupt and clear the NAK bit to allow the reception of the next data packet from the host. 4. If the NAK bit is set when the data packet is received, the UBM simply returns a NAK handshake to the host. If the STALL bit is set when the data packet is received, the UBM simply returns a STALL handshake to the host. If a CRC or bit stuff error occurs when the data packet is received, then no handshake is returned to the host device. In double buffer mode, the UBM selects between the X and Y buffer based on the value of the toggle bit. If the toggle bit is a 0, the UBM writes the data packet to the X buffer. If the toggle bit is a 1, the UBM writes the data packet to the Y buffer. When a data packet is received, the software could determine which buffer contains the data packet by reading the toggle bit. However, when using double buffer mode, the possibility exists for data packets to be received and written to both the X and Y buffer before the software responds to the endpoint interrupt. In this case, simply using the toggle bit to determine which buffer contains the data packet would not work. Hence, in double buffer mode, the software should read the X buffer NAK bit, the Y buffer NAK bit, and the toggle bits to determine the status of the buffers. 42.3.2.2 Interrupt IN Transfer The steps for an interrupt IN transfer are: 1. The software initializes one of the input endpoints as an input interrupt endpoint by programming the appropriate endpoint configuration block. This entails programming the buffer size and buffer base address, selecting the buffer mode, enabling the endpoint interrupt, initializing the toggle bit, enabling the endpoint, and setting the NAK bit. 2. The data packet to be sent to the host is written to the buffer by the software. The software also updates the data count value then clears the NAK bit to enable the data packet to be sent to the host. 3. The host sends an IN token packet addressed to the input endpoint. After receiving the IN token, the UBM transmits the data packet to the host. If the data packet is received without errors by the host, then an ACK handshake is returned. The UBM then toggles the toggle bit, sets the NAK bit, and asserts the endpoint interrupt. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1137 USB Transfers www.ti.com 4. The software services the interrupt and prepares to send the next data packet to the host. 5. If the NAK bit is set when the in token packet is received, the UBM simply returns a NAK handshake to the host. If the STALL bit is set when the IN token packet is received, the UBM simply returns a STALL handshake to the host. If no handshake packet is received from the host, then the UBM prepares to retransmit the same data packet again. In double buffer mode, the UBM selects between the X and Y buffer based on the value of the toggle bit. If the toggle bit is a 0, the UBM reads the data packet from the X buffer. If the toggle bit is a 1, the UBM reads the data packet from the Y buffer. 42.3.3 Bulk Transfers The USB module supports bulk data transfers both to and from the host. Devices that need to send or receive a large amount of data without a suitable bandwidth are best served by the bulk transfer type. In endpoints 1 through 7 and out endpoints 1 through 7 can all be configured as bulk endpoints. 42.3.3.1 Bulk OUT Transfer The steps for a bulk OUT transfer are: 1. The software initializes one of the output endpoints as an output bulk endpoint by programming the appropriate endpoint configuration block. This entails programming the buffer size and buffer base address, selecting the buffer mode, enabling the endpoint interrupt, initializing the toggle bit, enabling the endpoint, and clearing the NAK bit. 2. The host sends an out token packet followed by a data packet addressed to the output endpoint. If the data is received without an error then the UBM writes the data to the endpoint buffer, updates the data count value, toggles the toggle bit, sets the NAK bit, returns an ACK handshake to the host, and asserts the endpoint interrupt. 3. The software services the interrupt and reads the data packet from the buffer. To read the data packet, the software first needs to obtain the data count value. After reading the data packet, the software should clear the interrupt and clear the NAK bit to allow the reception of the next data packet from the host. 4. If the NAK bit is set when the data packet is received, the UBM simply returns a NAK handshake to the host. If the STALL bit is set when the data packet is received, the UBM simply returns a STALL handshake to the host. If a CRC or bit stuff error occurs when the data packet is received, then no handshake is returned to the host. In double buffer mode, the UBM selects between the X and Y buffer based on the value of the toggle bit. If the toggle bit is a 0, the UBM writes the data packet to the X buffer. If the toggle bit is a 1, the UBM writes the data packet to the Y buffer. When a data packet is received, the software could determine which buffer contains the data packet by reading the toggle bit. However, when using double buffer mode, the possibility exists for data packets to be received and written to both the X and Y buffer before the software responds to the endpoint interrupt. In this case, simply using the toggle bit to determine which buffer contains the data packet would not work. Hence, in double buffer mode, the software should read the X buffer NAK bit, the Y buffer NAK bit, and the toggle bits to determine the status of the buffers. 42.3.3.2 Bulk IN Transfer The steps for a bulk IN transfer are: 1. The software initializes one of the input endpoints as an input bulk endpoint by programming the appropriate endpoint configuration block. This entails programming the buffer size and buffer base address, selecting the buffer mode, enabling the endpoint interrupt, initializing the toggle bit, enabling the endpoint, and setting the NAK bit. 2. The data packet to be sent to the host is written to the buffer by the software. The software also updates the data count value then clears the NAK bit to enable the data packet to be sent to the host. 3. The host sends an IN token packet addressed to the input endpoint. After receiving the IN token, the UBM transmits the data packet to the host. If the data packet is received without errors by the host, then an ACK handshake is returned. The UBM then toggles the toggle bit, sets the NAK bit, and asserts the endpoint interrupt. 1138 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Transfers www.ti.com 4. The software services the interrupt and prepares to send the next data packet to the host. 5. If the NAK bit is set when the in token packet is received, the UBM simply returns a NAK handshake to the host. If the STALL bit is set when the In token packet is received, the UBM simply returns a STALL handshake to the host. If no handshake packet is received from the host, then the UBM prepares to retransmit the same data packet again. In double buffer mode , the UBM selects between the X and Y buffer based on the value of the toggle bit. If the toggle bit is a 0, the UBM reads the data packet from the X buffer. If the toggle bit is a 1, the UBM reads the data packet from the Y buffer. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1139 USB Registers www.ti.com 42.4 USB Registers The USB register space is subdivided into configuration registers, control registers, and USB buffer memory. The configuration and control registers are physical registers located in peripheral memory, while the buffer memory is implemented in RAM. See the device-specific data sheet for base addresses of these register groupings. The USB control registers can be written only while the USB module is enabled. When the USB module is disabled, it no longer uses the RAM buffer memory. This memory then behaves as a 2KB RAM block and can be used by the CPU or DMA without any limitation. 42.4.1 USB Configuration Registers The configuration registers control the hardware functions needed to make a USB connection, including the PHY, PLL, and LDOs. Access to the configuration registers is allowed or disallowed using the USBKEYPID register. Writing the proper value (9628h) unlocks the configuration registers and enables access. Writing any other value disables access while leaving the values of the registers intact. Locking should be done intentionally after the configuration is finished. Read access is available without the need to write to the USBKEYPID register. The configuration registers are listed in Table 42-5. All addresses are expressed as offsets; the base address can be found in the device-specific data sheet. All registers are byte and word accessible. Table 42-5. USB Configuration Registers 1140 Offset Acronym Register Name Type Reset Section 00h USBKEYPID USB controller key and ID register Read/Write 0000h Section 42.4.1.1 02h USBCNF USB controller configuration register Read/Write 0000h Section 42.4.1.2 04h USBPHYCTL USB-PHY control register Read/Write 0000h Section 42.4.1.3 08h USBPWRCTL USB-PWR control register Read/Write 1850h Section 42.4.1.4 10h USBPLLCTL USB-PLL control register Read/Write 0000h Section 42.4.1.5 12h USBPLLDIVB USB-PLL divider buffer register Read/Write 0000h Section 42.4.1.6 14h USBPLLIR USB-PLL interrupt register Read/Write 0000h Section 42.4.1.7 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Registers www.ti.com 42.4.1.1 USBKEYPID Register USB Key Register Figure 42-8. USBKEYPID Register 15 14 13 12 rw-0 rw-0 rw-0 rw-0 7 6 5 4 11 10 9 8 rw-0 rw-0 rw-0 rw-0 3 2 1 0 rw-0 rw-0 rw-0 rw-0 USBKEY USBKEY rw-0 rw-0 rw-0 rw-0 Table 42-6. USBKEYPID Register Description Bit Field Type Reset Description 15-0 USBKEY RW 00h Key register. Must be written with a value of 9628h to be recognized as a valid key. This "unlocks" the configuration registers. If written with any other value, the registers become "locked". Reads back as A528h if the registers are unlocked. 42.4.1.2 USBCNF Register USB Module Configuration Register This register can be modified only when USBKEYPID is unlocked. Figure 42-9. USBCNF Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 Reserved r0 7 r0 r0 6 5 r0 Reserved r0 r0 r0 4 3 2 1 0 FNTEN BLKRDY PUR_IN PUR_EN USB_EN rw-0 rw-0 r rw-0 rw-0 Can be modified only when USBKEYPID is unlocked Table 42-7. USBCNF Register Description Bit Field Type Reset Description 15-5 Reserved R 0h Reserved. Always reads as 0. 4 FNTEN RW 0h Frame number receive trigger enable for DMA transfers 0b = Frame number receive trigger is blocked. 1b = Frame number receive trigger is gated through to DMA. 3 BLKRDY RW 0h Block transfer ready signaling for DMA transfers 0b = DMA triggering is disabled. 1b = DMA is triggered whenever the USB bus interface can accept new write transfers. 2 PUR_IN R 0h PUR input value. This bit reflects the input value present on PUR. This bit may be used as an indication to start a USB based boot loading program (USB-BSL). The PUR input logic is powered by VUSB. PUR_IN returns zero when VUSB is zero. 1 PUR_EN RW 0h PUR pin enable 0b = PUR pin is in high-impedance state 1b = PUR pin is driven high 0 USB_EN RW 0h USB module enable 0b = USB module is disabled 1b = USB module is enabled SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1141 USB Registers www.ti.com 42.4.1.3 USBPHYCTL Register USB-PHY Control Register This register can be modified only when USBKEYPID is unlocked. Figure 42-10. USBPHYCTL Register 15 14 13 12 11 10 Reserved r0 r0 r0 r0 r0 r0 9 8 Reserved PUIPE rw-0 rw-0 7 6 5 4 3 2 1 0 PUSEL Reserved PUOPE Reserved PUIN1 PUIN0 PUOUT1 PUOUT0 rw-0 r rw-0 rw-0 r r rw-0 rw-0 Can be modified only when USBKEYPID is unlocked. Table 42-8. USBPHYCTL Register Description Bit Field Type Reset Description 15-10 Reserved R 0h Reserved. Always reads as 0. 9 Reserved RW 0h Reserved. Always write as 0. 8 PUIPE RW 0h PU input enable. This bit is valid only when PUSEL = 0. 0b = PU.0 and PU.1 inputs are disabled 1b = PU.0 and PU.1 inputs are enabled 7 PUSEL RW 0h USB port function select. This bit selects the function of the PU.0/DP and PU.1/DM pins. 0b = PU.0 and PU.1 function selected (general purpose I/O) 1b = DP and DM function selected (USB terminals) 6 Reserved R 0h Reserved. Always reads as 0. 5 PUOPE RW 0h PU output enable. This bit is valid only when PUSEL = 0. 0b = PU.0 and PU.1 outputs are disabled 1b = PU.0 and PU.1 outputs are enabled. 4 Reserved RW 0h Reserved. Always write as 0. 3 PUIN1 R 0h PU.1 input data. This bit reflects the logic value on the PU.1 terminal when PUIPE = 1. 2 PUIN0 R 0h PU.0 input data. This bit reflects the logic value on the PU.0 terminal when PUIPE = 1. 1 PUOUT1 RW 0h PU.1 output data. This bits defines the value of the PU.1 pin when PUOPE = 1. 0 PUOUT0 RW 0h PU.0 output data. This bits defines the value of the PU.0 pin when PUOPE = 1. 1142 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Registers www.ti.com 42.4.1.4 USBPWRCTL Register USB-Power Control Register This register can be modified only when USBKEYPID is unlocked. Figure 42-11. USBPWRCTL Register 15 14 13 Reserved r0 r0 r0 12 11 10 9 8 SLDOEN VUSBEN VBOFFIE VBONIE VUOVLIE rw-1 rw-1 rw-0 rw-0 rw-0 7 6 5 4 3 2 1 0 Reserved SLDOAON OVLAOFF USBDETEN USBBGVBV VBOFFIFG VBONIFG VUOVLIFG r0 rw-1 rw-0 rw-1 r rw-0 rw-0 rw-0 Can be modified only when USBKEYPID is unlocked Table 42-9. USBPWRCTL Register Description Bit Field Type Reset Description 15-13 Reserved R 0h Reserved. Always reads as 0. 12 SLDOEN RW 1h 1.8-V (secondary) LDO enable. When set, the LDO is enabled. Can be cleared only if SLDOAON = 0. 0b = 1.8-V LDO is disabled 1b = 1.8-V LDO is enabled 11 VUSBEN RW 1h 3.3-V LDO enable. When set, the LDO is enabled. 0b = 3.3-V LDO is disabled 1b = 3.3-V LDO is enabled 10 VBOFFIE RW 0h VBUS "going OFF" interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 9 VBONIE RW 0h VBUS "coming ON" interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 8 VUOVLIE RW 0h VUSB overload indication interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 7 Reserved R 0h Reserved. Always reads as 0. 6 SLDOAON RW 1h 1.8-V LDO auto-on enable 0b = LDO must be turned on manually using SLDOEN 1b = A "VBUS coming on" enables the secondary LDO, but SLDOEN is not set automatically. 5 OVLAOFF RW 0h LDO overload auto-off enable 0b = During an overload on the 3.3-V LDO, the LDO automatically enters current-limiting mode and stays there until the condition stops. 1b = An overload indication clears the VUSBEN bit. 4 USBDETEN RW 1h Enable bit for VBUS on and off events. 0b = USB module does not detect USB-PWR VBUS on and off events 1b = USB module does detect USB-PWR VBUS on and off events 3 USBBGVBV R 0h VBUS valid 0b = VBUS is not valid yet 1b = VBUS is valid and within bounds SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1143 USB Registers www.ti.com Table 42-9. USBPWRCTL Register Description (continued) Bit Field Type Reset Description 2 VBOFFIFG RW 0h VBUS "going OFF" interrupt flag. This bit indicates that VBUS fell below the launch voltage. It is automatically cleared when the corresponding vector of the USB interrupt vector register is read, or if a value is written to the interrupt vector register. 0b = VBUS did not fall below the launch voltage. 1b = VBUS fell below the launch voltage. 1 VBONIFG RW 0h VBUS "coming ON" interrupt flag. This bit indicates that VBUS rose above the launch voltage. This bit is automatically cleared when the corresponding vector of the USB interrupt vector register is read, or if a value is written to the interrupt vector register. 0b = VUSB did not rise above the launch voltage. 1b = VUSB rose above the launch voltage. 0 VUOVLIFG RW 0h VUSB overload interrupt flag. This bit indicates that the 3.3-V LDO entered an overload condition. 0b = No overload condition detected. 1b = Overload condition detected. 1144 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Registers www.ti.com 42.4.1.5 USBPLLCTL Register USB-PLL Control Register This register can be modified only when USBKEYPID is unlocked. Figure 42-12. USBPLLCTL Register 15 14 13 12 Reserved r0 7 11 Reserved r0 r0 rw-0 r0 6 5 4 3 UCLKSEL rw-0 10 9 8 UPFDEN UPLLEN r0 rw-0 rw-0 2 1 0 r0 r0 r0 Reserved Reserved rw-0 r0 r0 r0 Can be modified only when USBKEYPID is unlocked Table 42-10. USBPLLCTL Register Description Bit Field Type Reset Description 15-13 Reserved R 0h Reserved. Always reads as 0. 12 Reserved RW 0h Reserved. Always write as 0. 11-10 Reserved R 0h Reserved. Always reads as 0. 9 UPFDEN RW 0h Phase frequency discriminator (PFD) enable 0b = PFD is disabled 1b = PFD is enabled 8 UPLLEN RW 0h PLL enable 0b = PLL is disabled 1b = PLL is enabled 7-6 UCLKSEL RW 0h USB module clock select. Must always be written with 00. 00b = PLLCLK (default) 01b = Reserved 10b = Reserved 11b = Reserved 5-0 Reserved R 0h Reserved. Always reads as 0. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1145 USB Registers www.ti.com 42.4.1.6 USBPLLDIVB Register USB-PLL Clock Divider Buffer Register This register can be modified only when USBKEYPID is unlocked. Figure 42-13. USBPLLDIVB Register 15 14 13 12 11 10 Reserved r0 7 r0 r0 r0 r0 6 5 4 3 Reserved r0 9 8 UPQB rw-0 rw-0 rw-0 2 1 0 rw-0 rw-0 rw-0 UPMB r0 rw-0 rw-0 rw-0 Can be modified only when USBKEYPID is unlocked Table 42-11. USBPLLDIVB Register Description Bit Field Type Reset Description 15-11 Reserved R 0h Reserved. Always reads as 0. 10-8 UPQB RW 0h PLL pre-scale divider buffer register. These bits select the pre-scale division value. The value of this register is transferred to UPQB as soon it is written. 000b = fUPD = fREF 001b = fUPD = fREF / 2 010b = fUPD = fREF / 3 011b = fUPD = fREF / 4 100b = fUPD = fREF / 6 101b = fUPD = fREF / 8 110b = fUPD = fREF / 13 111b = fUPD = fREF / 16 7-6 Reserved R 0h Reserved. Always reads as 0. 5-0 UPMB RW 0h USB PLL feedback divider buffer register. These bits select the value of the feedback divider. The value of this register is transferred to UPMB automatically when UPQB is written. 000000b = Feedback division rate: 1 000001b = Feedback division rate: 2 ⋮ 111111b = Feedback division rate: 64 1146 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Registers www.ti.com 42.4.1.7 USBPLLIR Register USB-PLL Interrupt Register This register can be modified only when USBKEYPID is unlocked. Figure 42-14. USBPLLIR Register 15 14 13 12 11 Reserved r0 r0 7 6 r0 r0 r0 5 4 3 Reserved r0 r0 r0 r0 10 9 8 USBOORIE USBLOSIE USBOOLIE rw-0 rw-0 rw-0 2 1 0 USBOORIFG USBLOSIFG USBOOLIFG rw-0 rw-0 rw-0 r0 Can be modified only when USBKEYPID is unlocked. Table 42-12. USBPLLIR Register Description Bit Field Type Reset Description 15-11 Reserved R 0h Reserved. Always reads as 0. 10 USBOORIE RW 0h PLL out-of-range interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 9 USBLOSIE RW 0h PLL loss-of-signal interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 8 USBOOLIE RW 0h PLL out-of-lock interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 7-3 Reserved R 0h Reserved. Always reads as 0. 2 USBOORIFG RW 0h PLL out-of-range interrupt flag 0b = No interrupt pending 1b = Interrupt pending 1 USBLOSIFG RW 0h PLL loss-of-signal interrupt flag 0b = No interrupt pending 1b = Interrupt pending 0 USBOOLIFG RW 0h PLL out-of-lock interrupt flag 0b = No interrupt pending 1b = Interrupt pending SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1147 USB Registers www.ti.com 42.4.2 USB Control Registers The control registers affect core USB operations that are fundamental for any USB connection. This includes control endpoint 0, interrupts, bus address and frame, and timestamps. Control of endpoints other than zero are found in the operation registers. Unlike the operation registers, the control registers are actual physical registers, whereas the operation registers exist in RAM, which can be re-allocated to general-purpose use. The control registers are listed in Table 42-13. All addresses are expressed as offsets; the base address can be found in the device-specific data sheet. All registers are byte and word accessible. Table 42-13. USB Control Registers Offset Acronym Register Name Type Reset Section 00h USBIEPCNF_0 Input endpoint_0: Configuration Read/Write 00h Section 42.4.2.1 01h USBIEPBCNT_0 Input endpoint_0: Byte Count Read/Write 80h Section 42.4.2.2 02h USBOEPCNFG_0 Output endpoint_0: Configuration Read/Write 00h Section 42.4.2.3 03h USBOEPBCNT_0 Output endpoint_0: Byte count Read/Write 00h Section 42.4.2.4 0Eh USBIEPIE Input endpoint interrupt enables Read/Write 00h Section 42.4.2.5 0Fh USBOEPIE Output endpoint interrupt enables Read/Write 00h Section 42.4.2.6 10h USBIEPIFG Input endpoint interrupt flags Read/Write 00h Section 42.4.2.7 11h USBOEPIFG Output endpoint interrupt flags Read/Write 00h Section 42.4.2.8 12h USBVECINT Vector interrupt register Read/Write 0000h Section 42.4.2.9 or USBIV 1148 16h USBMAINT Timestamp maintenance register Read/Write 0000h Section 42.4.2.10 18h USBTSREG Timestamp register Read/Write 0000h Section 42.4.2.11 1Ah USBFN USB frame number Read only 0000h Section 42.4.2.12 1Ch USBCTL USB control register Read/Write 00h Section 42.4.2.13 1Dh USBIE USB interrupt enable register Read/Write 00h Section 42.4.2.14 1Eh USBIFG USB interrupt flag register Read/Write 00h Section 42.4.2.15 1Fh USBFUNADR Function address register Read/Write 00h Section 42.4.2.16 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Registers www.ti.com 42.4.2.1 USBIEPCNF_0 Register USB Input Endpoint-0 Configuration Register Figure 42-15. USBIEPCNF_0 Register 7 6 5 4 3 2 UBME Reserved TOGGLE Reserved STALL USBIIE rw-0 r0 r-0 r0 rw-0 rw-0 1 0 Reserved r0 r0 Can be modified only when USBEN = 1 Table 42-14. USBIEPCNF_0 Register Description Bit Field Type Reset Description 7 UBME RW 0h UBM in endpoint-0 enable 0b = UBM cannot use this endpoint 1b = UBM can use this endpoint 6 Reserved R 0h Reserved. Always reads as 0. 5 TOGGLE R 0h Toggle bit. Reads as 0, because the configuration endpoint does not need to toggle. 4 Reserved R 0h Reserved. Always reads as 0. 3 STALL RW 0h USB stall condition. When set, hardware automatically returns a stall handshake to the USB host for any transaction transmitted from endpoint-0. The stall bit is cleared automatically by the next setup transaction. 0b = Indicates no stall 1b = Indicates stall 2 USBIIE RW 0h USB transaction interrupt indication enable. Software may set this bit to define if interrupts are to be flagged in general. To generate an interrupt the corresponding interrupt flag must be set (IEPIE). 0b = Corresponding interrupt flag is not set 1b = Corresponding interrupt flag is set 1-0 Reserved R 0h Reserved. Always reads as 0. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1149 USB Registers www.ti.com 42.4.2.2 USBIEPBCNT_0 Register USB Input Endpoint-0 Byte Count Register Figure 42-16. USBIEPBCNT_0 Register 7 6 5 NAK 4 3 2 r0 rw-0 rw-0 Reserved rw-0 r0 r0 1 0 rw-0 rw-0 CNT Can be modified only when USBEN = 1 Table 42-15. USBIEPBCNT_0 Register Description Bit Field Type Reset Description 7 NAK RW 0h No acknowledge status bit. This bit is set by the UBM at the end of a successful USB IN transaction from endpoint-0, to indicate that the EP-0 IN buffer is empty. When this bit is set, all subsequent transactions from endpoint-0 result in a NAK handshake response to the USB host. To re-enable this endpoint to transmit another data packet to the host, this bit must be cleared by software. 0b = Buffer contains a valid data packet for host device 1b = Buffer is empty (Host-In request receives a NAK) 6-4 Reserved R 0h Reserved. Always reads as 0. 3-0 CNT RW 0h Byte count. The In_EP-0 buffer data count value should be set by software when a new data packet is written to the buffer. This four-bit value contains the number of bytes in the data packet. 0000b to 1000b are valid numbers for 0 to 8 bytes to be sent. 1001b to 1111b are reserved values (if used, defaults to 8). 1150 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Registers www.ti.com 42.4.2.3 USBOEPCNFG_0 Register USB Output Endpoint-0 Configuration Register Figure 42-17. USBOEPCNFG_0 Register 7 6 5 4 3 2 UBME Reserved TOGGLE Reserved STALL USBIIE rw-0 r0 r-0 r0 rw-0 rw-0 1 0 Reserved r0 r0 Can be modified only when USBEN = 1 Table 42-16. USBOEPCNFG_0 Register Description Bit Field Type Reset Description 7 UBME RW 0h UBM out Endpoint-0 enable 0b = UBM cannot use this endpoint 1b = UBM can use this endpoint 6 Reserved R 0h Reserved. Always reads as 0. 5 TOGGLE RW 0h Toggle bit. Reads as 0, because the configuration endpoint does not need to toggle. 4 Reserved R 0h Reserved. Always reads as 0. 3 STALL RW 0h USB stall condition. When set, hardware automatically returns a stall handshake to the USB host for any transaction transmitted into endpoint-0. The stall bit is cleared automatically by the next setup transaction. 0b = Indicates no stall 1b = Indicates stall 2 USBIIE RW 0h USB transaction interrupt indication enable. Software may set this bit to define if interrupts are to be flagged in general. To generate an interrupt the corresponding interrupt flag must be set (OEPIE). 0b = Corresponding interrupt flag will not be set 1b = Corresponding interrupt flag will be set 1-0 Reserved R 0h Reserved. Always reads as 0. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1151 USB Registers www.ti.com 42.4.2.4 USBOEPBCNT_0 Register USB Output Endpoint-0 Byte Count Register Figure 42-18. USBOEPBCNT_0 Register 7 6 5 NAK 4 3 2 r0 rw-0 rw-0 Reserved rw-0 r0 r0 1 0 rw-0 rw-0 CNT Can be modified only when USBEN = 1 Table 42-17. USBOEPBCNT_0 Register Description Bit Field Type Reset Description 7 NAK RW 0h No acknowledge status bit. This bit is set by the UBM at the end of a successful USB out transaction into endpoint-0, to indicate that the EP-0 buffer contains a valid data packet and that the buffer data count value is valid. When this bit is set, all subsequent transactions to endpoint-0 result in a NAK handshake response to the USB host. To re-enable this endpoint to receive another data packet from the host, this bit must be cleared by software. 0b = No valid data in the buffer. The buffer is ready to receive a host OUT transaction 1b = The buffer contains a valid packet from the host that has not been picked up. (Any subsequent Host-Out requests receive a NAK.) 6-4 Reserved R 0h Reserved. Always reads as 0. 3-0 CNT RW 0h Byte count. This data count value is set by the UBM when a new data packet is received by the buffer for the out endpoint-0. The four-bit value contains the number of bytes received in the data buffer. 0000b to 1000b are valid numbers for 0 to 8 received bytes 1001b to 1111b are reserved values 1152 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Registers www.ti.com 42.4.2.5 USBIEPIE Register USB Input Endpoint Interrupt Enable Register Figure 42-19. USBIEPIE Register 7 6 5 4 3 2 1 0 IEPIE7 IEPIE6 IEPIE5 IEPIE4 IEPIE3 IEPIE2 IEPIE1 IEPIE0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Can be modified only when USBEN = 1 Table 42-18. USBIEPIE Register Description Bit Field Type Reset Description 7 IEPIE7 RW 0h Input endpoint interrupt enable 7. This bit enables or disables whether an event can trigger an interrupt. It does not influence whether the event is flagged; the flag is enabled or disabled with the interrupt indication enable bit in the Endpoint descriptors. 0b = Event does not generate an interrupt 1b = Event does generate an interrupt 6 IEPIE6 RW 0h Input endpoint interrupt enable 6. This bit enables or disables whether an event can trigger an interrupt. It does not influence whether the event is flagged; the flag is enabled or disabled with the interrupt indication enable bit in the Endpoint descriptors. 0b = Event does not generate an interrupt 1b = Event does generate an interrupt 5 IEPIE5 RW 0h Input endpoint interrupt enable 5. This bit enables or disables whether an event can trigger an interrupt. It does not influence whether the event is flagged; the flag is enabled or disabled with the interrupt indication enable bit in the Endpoint descriptors. 0b = Event does not generate an interrupt 1b = Event does generate an interrupt 4 IEPIE4 RW 0h Input endpoint interrupt enable 4. This bit enables or disables whether an event can trigger an interrupt. It does not influence whether the event is flagged; the flag is enabled or disabled with the interrupt indication enable bit in the Endpoint descriptors. 0b = Event does not generate an interrupt 1b = Event does generate an interrupt 3 IEPIE3 RW 0h Input endpoint interrupt enable 3. This bit enables or disables whether an event can trigger an interrupt. It does not influence whether the event is flagged; the flag is enabled or disabled with the interrupt indication enable bit in the Endpoint descriptors. 0b = Event does not generate an interrupt 1b = Event does generate an interrupt 2 IEPIE2 RW 0h Input endpoint interrupt enable 2. This bit enables or disables whether an event can trigger an interrupt. It does not influence whether the event is flagged; the flag is enabled or disabled with the interrupt indication enable bit in the Endpoint descriptors. 0b = Event does not generate an interrupt 1b = Event does generate an interrupt 1 IEPIE1 RW 0h Input endpoint interrupt enable 1. This bit enables or disables whether an event can trigger an interrupt. It does not influence whether the event is flagged; the flag is enabled or disabled with the interrupt indication enable bit in the Endpoint descriptors. 0b = Event does not generate an interrupt 1b = Event does generate an interrupt SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1153 USB Registers www.ti.com Table 42-18. USBIEPIE Register Description (continued) Bit Field Type Reset Description 0 IEPIE0 RW 0h Input endpoint interrupt enable 0. This bit enables or disables whether an event can trigger an interrupt. It does not influence whether the event is flagged; the flag is enabled or disabled with the interrupt indication enable bit in the Endpoint descriptors. 0b = Event does not generate an interrupt 1b = Event does generate an interrupt 1154 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Registers www.ti.com 42.4.2.6 USBOEPIE Register USB Output Endpoint Interrupt Enable Register Figure 42-20. USBOEPIE Register 7 6 5 4 3 2 1 0 OEPIE7 OEPIE6 OEPIE5 OEPIE4 OEPIE3 OEPIE2 OEPIE1 OEPIE0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Can be modified only when USBEN = 1 Table 42-19. USBOEPIE Register Description Bit Field Type Reset Description 7 OEPIE7 RW 0h Output endpoint interrupt enable 7. This bit enables or disables whether an event can trigger an interrupt. It does not influence whether the event is flagged; the flag is enabled or disabled with the interrupt indication enable bit in the Endpoint descriptors. 0b = Event does not generate an interrupt 1b = Event does generate an interrupt 6 OEPIE6 RW 0h Output endpoint interrupt enable 6. This bit enables or disables whether an event can trigger an interrupt. It does not influence whether the event is flagged; the flag is enabled or disabled with the interrupt indication enable bit in the Endpoint descriptors. 0b = Event does not generate an interrupt 1b = Event does generate an interrupt 5 OEPIE5 RW 0h Output endpoint interrupt enable 5. This bit enables or disables whether an event can trigger an interrupt. It does not influence whether the event is flagged; the flag is enabled or disabled with the interrupt indication enable bit in the Endpoint descriptors. 0b = Event does not generate an interrupt 1b = Event does generate an interrupt 4 OEPIE4 RW 0h Output endpoint interrupt enable 4. This bit enables or disables whether an event can trigger an interrupt. It does not influence whether the event is flagged; the flag is enabled or disabled with the interrupt indication enable bit in the Endpoint descriptors. 0b = Event does not generate an interrupt 1b = Event does generate an interrupt 3 OEPIE3 RW 0h Output endpoint interrupt enable 3. This bit enables or disables whether an event can trigger an interrupt. It does not influence whether the event is flagged; the flag is enabled or disabled with the interrupt indication enable bit in the Endpoint descriptors. 0b = Event does not generate an interrupt 1b = Event does generate an interrupt 2 OEPIE2 RW 0h Output endpoint interrupt enable 2. This bit enables or disables whether an event can trigger an interrupt. It does not influence whether the event is flagged; the flag is enabled or disabled with the interrupt indication enable bit in the Endpoint descriptors. 0b = Event does not generate an interrupt 1b = Event does generate an interrupt 1 OEPIE1 RW 0h Output endpoint interrupt enable 1. This bit enables or disables whether an event can trigger an interrupt. It does not influence whether the event is flagged; the flag is enabled or disabled with the interrupt indication enable bit in the Endpoint descriptors. 0b = Event does not generate an interrupt 1b = Event does generate an interrupt SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1155 USB Registers www.ti.com Table 42-19. USBOEPIE Register Description (continued) Bit Field Type Reset Description 0 OEPIE0 RW 0h Output endpoint interrupt enable 0. This bit enables or disables whether an event can trigger an interrupt. It does not influence whether the event is flagged; the flag is enabled or disabled with the interrupt indication enable bit in the Endpoint descriptors. 0b = Event does not generate an interrupt 1b = Event does generate an interrupt 1156 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Registers www.ti.com 42.4.2.7 USBIEPIFG Register USB Input Endpoint Interrupt Flag Register Figure 42-21. USBIEPIFG Register 7 6 5 4 3 2 1 0 IEPIFG7 IEPIFG6 IEPIFG5 IEPIFG4 IEPIFG3 IEPIFG2 IEPIFG1 IEPIFG0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Can be modified only when USBEN = 1 Table 42-20. USBIEPIFG Register Description Bit Field Type Reset Description 7 IEPIFG7 RW 0h Input endpoint interrupt flag 7. This bit is set by the UBM when a successful completion of a transaction occurs for this endpoint. When set, a USB interrupt is generated. The interrupt flag is cleared when the MCU reads the value from the USBVECINT (USBIV) register corresponding with this interrupt, or when it writes any value to the interrupt vector register. An interrupt flag can also be cleared by writing zero to that bit location. 6 IEPIFG6 RW 0h Input endpoint interrupt flag 6. This bit is set by the UBM when a successful completion of a transaction occurs for this endpoint. When set, a USB interrupt is generated. The interrupt flag is cleared when the MCU reads the value from the USBVECINT (USBIV) register corresponding with this interrupt, or when it writes any value to the interrupt vector register. An interrupt flag can also be cleared by writing zero to that bit location. 5 IEPIFG5 RW 0h Input endpoint interrupt flag 5. This bit is set by the UBM when a successful completion of a transaction occurs for this endpoint. When set, a USB interrupt is generated. The interrupt flag is cleared when the MCU reads the value from the USBVECINT (USBIV) register corresponding with this interrupt, or when it writes any value to the interrupt vector register. An interrupt flag can also be cleared by writing zero to that bit location. 4 IEPIFG4 RW 0h Input endpoint interrupt flag 4. This bit is set by the UBM when a successful completion of a transaction occurs for this endpoint. When set, a USB interrupt is generated. The interrupt flag is cleared when the MCU reads the value from the USBVECINT (USBIV) register corresponding with this interrupt, or when it writes any value to the interrupt vector register. An interrupt flag can also be cleared by writing zero to that bit location. 3 IEPIFG3 RW 0h Input endpoint interrupt flag 3. This bit is set by the UBM when a successful completion of a transaction occurs for this endpoint. When set, a USB interrupt is generated. The interrupt flag is cleared when the MCU reads the value from the USBVECINT (USBIV) register corresponding with this interrupt, or when it writes any value to the interrupt vector register. An interrupt flag can also be cleared by writing zero to that bit location. 2 IEPIFG2 RW 0h Input endpoint interrupt flag 2. This bit is set by the UBM when a successful completion of a transaction occurs for this endpoint. When set, a USB interrupt is generated. The interrupt flag is cleared when the MCU reads the value from the USBVECINT (USBIV) register corresponding with this interrupt, or when it writes any value to the interrupt vector register. An interrupt flag can also be cleared by writing zero to that bit location. 1 IEPIFG1 RW 0h Input endpoint interrupt flag 1. This bit is set by the UBM when a successful completion of a transaction occurs for this endpoint. When set, a USB interrupt is generated. The interrupt flag is cleared when the MCU reads the value from the USBVECINT (USBIV) register corresponding with this interrupt, or when it writes any value to the interrupt vector register. An interrupt flag can also be cleared by writing zero to that bit location. 0 IEPIFG0 RW 0h Input endpoint interrupt flag 0. This bit is set by the UBM when a successful completion of a transaction occurs for this endpoint. When set, a USB interrupt is generated. The interrupt flag is cleared when the MCU reads the value from the USBVECINT (USBIV) register corresponding with this interrupt, or when it writes any value to the interrupt vector register. An interrupt flag can also be cleared by writing zero to that bit location. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1157 USB Registers www.ti.com 42.4.2.8 USBOEPIFG Register USB Output Endpoint Interrupt Flag Register Figure 42-22. USBOEPIFG Register 7 6 5 4 3 2 1 0 OEPIFG7 OEPIFG6 OEPIFG5 OEPIFG4 OEPIFG3 OEPIFG2 OEPIFG1 OEPIFG0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Can be modified only when USBEN = 1 Table 42-21. USBOEPIFG Register Description Bit Field Type Reset Description 7 OEPIFG7 RW 0h Output endpoint interrupt flag 7. The output endpoint interrupt flag is set to 1 by the UBM when a successful completion of a transaction occurs to that out endpoint. When the bit is set, a USB interrupt is generated. The interrupt flag is cleared when the MCU reads the value from the USBVECINT (USBIV) register corresponding with this interrupt, or when it writes any value to the interrupt vector register. An interrupt flag can also be cleared by writing a zero to this bit location. 6 OEPIFG6 RW 0h Output endpoint interrupt flag 6. The output endpoint interrupt flag is set to 1 by the UBM when a successful completion of a transaction occurs to that out endpoint. When the bit is set, a USB interrupt is generated. The interrupt flag is cleared when the MCU reads the value from the USBVECINT (USBIV) register corresponding with this interrupt, or when it writes any value to the interrupt vector register. An interrupt flag can also be cleared by writing a zero to this bit location. 5 OEPIFG5 RW 0h Output endpoint interrupt flag 5. The output endpoint interrupt flag is set to 1 by the UBM when a successful completion of a transaction occurs to that out endpoint. When the bit is set, a USB interrupt is generated. The interrupt flag is cleared when the MCU reads the value from the USBVECINT (USBIV) register corresponding with this interrupt, or when it writes any value to the interrupt vector register. An interrupt flag can also be cleared by writing a zero to this bit location. 4 OEPIFG4 RW 0h Output endpoint interrupt flag 4. The output endpoint interrupt flag is set to 1 by the UBM when a successful completion of a transaction occurs to that out endpoint. When the bit is set, a USB interrupt is generated. The interrupt flag is cleared when the MCU reads the value from the USBVECINT (USBIV) register corresponding with this interrupt, or when it writes any value to the interrupt vector register. An interrupt flag can also be cleared by writing a zero to this bit location. 3 OEPIFG3 RW 0h Output endpoint interrupt flag 3. The output endpoint interrupt flag set to 1 by the UBM when a successful completion of a transaction occurs to that out endpoint. When the bit is set, a USB interrupt is generated. The interrupt flag is cleared when the MCU reads the value from the USBVECINT (USBIV) register corresponding with this interrupt, or when it writes any value to the interrupt vector register. An interrupt flag can also be cleared by writing a zero to this bit location. 2 OEPIFG2 RW 0h Output endpoint interrupt flag 2. The output endpoint interrupt flag set to 1 by the UBM when a successful completion of a transaction occurs to that out endpoint. When the bit is set, a USB interrupt is generated. The interrupt flag is cleared when the MCU reads the value from the USBVECINT (USBIV) register corresponding with this interrupt, or when it writes any value to the interrupt vector register. An interrupt flag can also be cleared by writing a zero to this bit location. 1 OEPIFG1 RW 0h Output endpoint interrupt flag 1. The output endpoint interrupt flag set to 1 by the UBM when a successful completion of a transaction occurs to that out endpoint. When the bit is set, a USB interrupt is generated. The interrupt flag is cleared when the MCU reads the value from the USBVECINT (USBIV) register corresponding with this interrupt, or when it writes any value to the interrupt vector register. An interrupt flag can also be cleared by writing a zero to this bit location. 1158 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Registers www.ti.com Table 42-21. USBOEPIFG Register Description (continued) Bit Field Type Reset Description 0 OEPIFG0 RW 0h Output endpoint interrupt flag 0. The output endpoint interrupt flag set to 1 by the UBM when a successful completion of a transaction occurs to that out endpoint. When the bit is set, a USB interrupt is generated. The interrupt flag is cleared when the MCU reads the value from the USBVECINT (USBIV) register corresponding with this interrupt, or when it writes any value to the interrupt vector register. An interrupt flag can also be cleared by writing a zero to this bit location. 42.4.2.9 USBVECINT Register USB Interrupt Vector Register This register is also referred to as USBIV. Figure 42-23. USBVECINT Register 15 14 13 12 11 10 9 8 r0 r0 r0 r0 3 2 1 0 r-0 r-0 r-0 r0 USBIV r0 r0 r0 r0 7 6 5 4 USBIV r0 r0 r-0 r-0 Table 42-22. USBVECINT Register Description Bit Field Type Reset Description 15-0 USBIV R 0h USB interrupt vector value. This register is to be accessed as a whole word only. When an interrupt is pending, reading this register results in a value that can be added to the program counter to handle the corresponding event. Writing to this register clears all pending USB interrupt flags independent of the status of USBEN. 00h = No interrupt pending 02h = See Section 42.2.5.; Interrupt Priority: Highest 3Eh = Interrupt Priority: Lowest SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1159 USB Registers www.ti.com 42.4.2.10 USBMAINT Register Timestamp Maintenance Register Figure 42-24. USBMAINT Register 15 14 13 UTSEL rw-0 rw-0 rw-0 7 6 5 12 11 10 Reserved TSE3 r0 rw-0 rw-0 4 3 2 9 TSESEL Reserved r0 r0 r0 r0 r0 r0 8 TSGEN rw-0 rw-0 1 0 UTIE UTIFG rw-0 rw-0 Can be modified only when USBEN = 1 Table 42-23. USBMAINT Register Description Bit Field Type Reset Description 15-13 UTSEL RW 0h USB timer selection 000b = USB Timer Period: 001b = USB Timer Period: 010b = USB Timer Period: 011b = USB Timer Period: 100b = USB Timer Period: 101b = USB Timer Period: 110b = USB Timer Period: 111b = USB Timer Period: 4096 µs; Approximate Frequency: 250 Hz (244 Hz) 2048 µs; Approximate Frequency: 500 Hz (488 Hz) 1024 µs; Approximate Frequency: 1 kHz (977 Hz) 512 µs; Approximate Frequency: 2 kHz (1953 Hz) 256 µs; Approximate Frequency: 4 kHz (3906 Hz) 128 µs; Approximate Frequency: 8 kHz (7812 Hz) 64 µs; Approximate Frequency: 16 kHz (15625 Hz) 32 µs; Approximate Frequency: 31 kHz (31250 Hz) 12 Reserved R 0h Reserved. Always reads as 0. 11 TSE3 RW 0h Timestamp Event 3 bit. This bit allows the triggering of a software-driven timestamp event (when TSESEL = 11b). 0b = No TSE3 event signaled 1b = TSE3 event signaled 10-9 TSESEL RW 0h Timestamp Event Selection. TSE[2:0] are connected to the event multiplexer of the three DMA channels of the DMA controller if not otherwise noted in data sheet 00b = TSE0 (DMA0) signal is qualified timestamp event 01b = TSE1 (DMA1) signal is qualified timestamp event 10b = TSE2 (DMA2) signal is qualified timestamp event 11b = Software-driven timestamp event 8 TSGEN RW 0h Timestamp generator enable 0b = Timestamp mechanism disabled 1b = Timestamp mechanism enabled 7-2 Reserved R 0h Reserved. Always reads as 0. 1 UTIE RW 0h USB timer interrupt enable bit 0b = USB timer interrupt disabled 1b = USB timer interrupt enabled 0 UTIFG RW 0h USB timer interrupt flag 0b = No interrupt pending 1b = Interrupt pending 1160 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Registers www.ti.com 42.4.2.11 USBTSREG Register USB Timestamp Register Figure 42-25. USBTSREG Register 15 14 13 12 r-0 r-0 r-0 r-0 7 6 5 4 11 10 9 8 r-0 r-0 r-0 r-0 3 2 1 0 r-0 r-0 r-0 r-0 TVAL TVAL r-0 r-0 r-0 r-0 Can be modified only when USBEN = 1 Table 42-24. USBTSREG Register Description Bit Field Type Reset Description 15-0 TVAL R 0h Timestamp high register. The timestamp value is updated by hardware from the USB timer. A qualified timestamp trigger signal causes the current timer value to be latched into this register. 42.4.2.12 USBFN Register USB Frame Number Register Figure 42-26. USBFN Register 15 14 13 12 11 10 Reserved 9 8 USBFN r0 r0 r0 r0 7 6 5 4 r0 r-0 r-0 r-0 3 2 1 0 r-0 r-0 r-0 r-0 USBFN r-0 r-0 r-0 r-0 Table 42-25. USBFN Register Description Bit Field Type Reset Description 15-11 Reserved R 0h Reserved. Always reads as 0. 10-0 USBFN R 0h USB Frame Number register. The frame number bit values are updated by hardware; each USB frame with the frame number field value received in the USB start-of-frame packet. The frame number can be used as a timestamp. If the local (MSP430's) frame timer is not locked to the USB host's frame timer, then the frame number is automatically incremented from the previous value when a pseudo start-of-frame occurs. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1161 USB Registers www.ti.com 42.4.2.13 USBCTL Register USB Control Register Figure 42-27. USBCTL Register 7 6 5 4 Reserved FEN RWUP FRSTE r0 rw-0 rw-0 rw-0 3 2 1 0 r0 rw-0 Reserved r0 r0 DIR Can be modified only when USBEN = 1 Table 42-26. USBCTL Register Description Bit Field Type Reset Description 7 Reserved R 0h Reserved. Always reads as 0. 6 FEN RW 0h Function Enable Bit. This bit needs to be set to enable the USB device to respond to USB transactions. If this bit is not set, the UBM ignores all USB transactions. It is cleared by a USB reset. (This bit is primarily intended for debugging.) 0b = Function is disabled 1b = Function is enabled 5 RWUP RW 0h Device Remote Wakeup request. The remote wake-up bit is set by software to request the suspend/resume logic to generate resume signaling upstream on the USB. This bit is used to exit a USB low-power suspend state when a remote wake-up event occurs. The bit is self-clearing. 0b = Writing 0 has no effect 1b = A Remote-Wakeup pulse is generated 4 FRSTE RW 0h Function Reset Connection Enable. This bit selects whether a bus reset on the USB causes an internal reset of the USB module. 0b = Bus reset does not cause a reset of the module 1b = Bus reset does cause a reset of the module 3-1 Reserved R 0h Reserved. Always reads as 0. 0 DIR RW 0h Data response to setup packet interrupt status bit. Software must decode the request and set/clear this bit to reflect the data transfer direction. 0b = USB data-OUT transaction (from host to device) 1b = USB data-IN transaction (from device to host) 1162 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Registers www.ti.com 42.4.2.14 USBIE Register USB Interrupt Enable Register Figure 42-28. USBIE Register 7 6 5 4 RSTRIE SUSRIE RESRIE rw-0 rw-0 rw-0 3 Reserved r0 r0 2 1 0 SETUPIE Reserved STPOWIE rw-0 r0 rw-0 Can be modified only when USBEN = 1 Table 42-27. USBIE Register Description Bit Field Type Reset Description 7 RSTRIE RW 0h USB reset interrupt enable. Causes an interrupt to be generated if the RSTRIFG bit is set. 0b = Function Reset interrupt disabled 1b = Function Reset interrupt enabled 6 SUSRIE RW 0h Suspend interrupt enable. Causes an interrupt to be generated if the SUSRIFG bit is set. 0b = Suspend interrupt disabled 1b = Suspend interrupt enabled 5 RESRIE RW 0h Resume interrupt enable. Causes an interrupt to be generated if the RESRIFG bit is set. 0b = Resume interrupt disabled 1b = Resume interrupt enabled 4-3 Reserved R 0h Reserved. Always reads as 0. 2 SETUPIE RW 0h Setup interrupt enable. Causes an interrupt to be generated if the SETUPIFG bit is set. 0b = Setup interrupt disabled 1b = Setup interrupt enabled 1 Reserved R 0h Reserved. Always reads as 0. 0 STPOWIE RW 0h Setup Overwrite interrupt enable. Causes an interrupt to be generated if the STPOWIFG bit is set. 0b = Setup Overwrite interrupt disabled 1b = Setup Overwrite interrupt enabled SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1163 USB Registers www.ti.com 42.4.2.15 USBIFG Register USB Interrupt Flag Register Figure 42-29. USBIFG Register 7 6 5 4 RSTRIFG SUSRIFG RESRIFG rw-0 rw-0 rw-0 3 Reserved r0 r0 2 1 0 SETUPIFG Reserved STPOWIFG rw-0 r0 rw-0 Can be modified only when USBEN = 1 Table 42-28. USBIFG Register Description Bit Field Type Reset Description 7 RSTRIFG RW 0h USB reset request bit. This bit is set to one by hardware in response to the host initiating a USB port reset. A USB reset causes a reset of the USB module logic, but this bit is not affected. 6 SUSRIFG RW 0h Suspend request bit. This bit is set by hardware in response to the host/hub causing a global or selective suspend condition. 5 RESRIFG RW 0h Resume request bit. This bit is set by hardware in response to the host/hub causing a resume event. 4-3 Reserved R 0h Reserved. Always reads as 0. 2 SETUPIFG RW 0h Setup transaction received bit. This bit is set by hardware when a SETUP transaction is received. As long as this bit is set, transactions on IN and OUT on endpoint-0 receive a NAK, regardless of their corresponding NAK bit value. 1 Reserved R 0h Reserved. Always reads as 0. 0 STPOWIFG RW 0h Setup overwrite bit. This bit is set by hardware when a setup packet is received while there is already a packet in the setup buffer. 42.4.2.16 USBFUNADR Register USB Function Address Register Figure 42-30. USBFUNADR Register 7 6 5 4 3 2 1 0 Reserved FA6 FA5 FA4 FA3 FA2 FA1 FA0 r0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 Can be modified only when USBEN = 1 Table 42-29. USBFUNADR Register Description Bit Field Type Reset Description 7 Reserved R 0h Reserved. Always reads as 0. 6-0 FA[6:0] RW 0h Function address (USB address 0 to 127). These bits define the current device address assigned to this USB device. Software must write a value from 0 to 127 when a Set-Address command is received from the host. 1164 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Registers www.ti.com 42.4.3 USB Buffer Registers and Memory The data buffers for all endpoints, as well as the registers that define endpoints 1 to 7, are stored in the USB RAM buffer memory. Doing so allows for efficient and flexible use of this memory. The memory area is known as the USB buffer memory, and the registers that define its use are the buffer descriptor registers. The buffer memory blocks are listed in Table 42-30. The registers are listed in Table 42-31. All addresses are expressed as offsets; the base address can be found in the device-specific data sheet. All memory is byte and word accessible. Table 42-30. USB Buffer Memory Offset 0000h Acronym USBSTABUFF ⋮ 076Fh ⋮ USBTOPBUFF Memory Type Start of buffer space Read/Write ⋮ 1904 bytes of configurable buffer space End of buffer space Read/Write 0770h ⋮ Read/Write USBOEP0BUF ⋮ Output endpoint_0 buffer 0777h Read/Write 0778h Read/Write ⋮ USBIEP0BUF ⋮ Input endpoint_0 buffer 077Fh Read/Write 0780h Read/Write ⋮ USBSUBLK ⋮ Setup Packet Block 0787h Read/Write Table 42-31. USB Buffer Descriptor Registers Offset Acronym Register Name Type Section 0788h USBOEPCNF_1 Output Endpoint_1 Configuration Register Read/Write Section 42.4.3.1 0789h USBOEPBBAX_1 Output Endpoint_1 X Buffer Base Address Register Read/Write Section 42.4.3.2 078Ah USBOEPBCTX_1 Output Endpoint_1 X Byte Count Register Read/Write Section 42.4.3.3 078Dh USBOEPBBAY_1 Output Endpoint_1 Y Buffer Base Address Register Read/Write Section 42.4.3.4 078Eh USBOEPBCTY_1 Output Endpoint_1 Y Byte Count Register Read/Write Section 42.4.3.5 078Fh USBOEPSIZXY_1 Output Endpoint_1 X and Y Buffer Size Register Read/Write Section 42.4.3.6 0790h USBOEPCNF_2 Output Endpoint_2 Configuration Register Read/Write Section 42.4.3.1 0791h USBOEPBBAX_2 Output Endpoint_2 X Buffer Base Address Register Read/Write Section 42.4.3.2 0792h USBOEPBCTX_2 Output Endpoint_2 X Byte Count Register Read/Write Section 42.4.3.3 0795h USBOEPBBAY_2 Output Endpoint_2 Y Buffer Base Address Register Read/Write Section 42.4.3.4 0796h USBOEPBCTY_2 Output Endpoint_2 Y Byte Count Register Read/Write Section 42.4.3.5 0797h USBOEPSIZXY_2 Output Endpoint_2 X and Y Buffer Size Register Read/Write Section 42.4.3.6 0798h USBOEPCNF_3 Output Endpoint_3 Configuration Register Read/Write Section 42.4.3.1 0799h USBOEPBBAX_3 Output Endpoint_3 X Buffer Base Address Register Read/Write Section 42.4.3.2 079Ah USBOEPBCTX_3 Output Endpoint_3 X Byte Count Register Read/Write Section 42.4.3.3 079Dh USBOEPBBAY_3 Output Endpoint_3 Y Buffer Base Address Register Read/Write Section 42.4.3.4 079Eh USBOEPBCTY_3 Output Endpoint_3 Y Byte Count Register Read/Write Section 42.4.3.5 079Fh USBOEPSIZXY_3 Output Endpoint_3 X and Y Buffer Size Register Read/Write Section 42.4.3.6 USB Module1165 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Registers www.ti.com Table 42-31. USB Buffer Descriptor Registers (continued) Offset Acronym Register Name Type Section 07A0h USBOEPCNF_4 Output Endpoint_4 Configuration Register Read/Write Section 42.4.3.1 07A1h USBOEPBBAX_4 Output Endpoint_4 X Buffer Base Address Register Read/Write Section 42.4.3.2 07A2h USBOEPBCTX_4 Output Endpoint_4 X Byte Count Register Read/Write Section 42.4.3.3 07A5h USBOEPBBAY_4 Output Endpoint_4 Y Buffer Base Address Register Read/Write Section 42.4.3.4 07A6h USBOEPBCTY_4 Output Endpoint_4 Y Byte Count Register Read/Write Section 42.4.3.5 07A7h USBOEPSIZXY_4 Output Endpoint_4 X and Y Buffer Size Register Read/Write Section 42.4.3.6 07A8h USBOEPCNF_5 Output Endpoint_5 Configuration Register Read/Write Section 42.4.3.1 07A9h USBOEPBBAX_5 Output Endpoint_5 X Buffer Base Address Register Read/Write Section 42.4.3.2 07AAh USBOEPBCTX_5 Output Endpoint_5 X Byte Count Register Read/Write Section 42.4.3.3 07ADh USBOEPBBAY_5 Output Endpoint_5 Y Buffer Base Address Register Read/Write Section 42.4.3.4 07AEh USBOEPBCTY_5 Output Endpoint_5 Y Byte Count Register Read/Write Section 42.4.3.5 07AFh USBOEPSIZXY_5 Output Endpoint_5 X and Y Buffer Size Register Read/Write Section 42.4.3.6 07B0h USBOEPCNF_6 Output Endpoint_6 Configuration Register Read/Write Section 42.4.3.1 07B1h USBOEPBBAX_6 Output Endpoint_6 X Buffer Base Address Register Read/Write Section 42.4.3.2 07B2h USBOEPBCTX_6 Output Endpoint_6 X Byte Count Register Read/Write Section 42.4.3.3 07B5h USBOEPBBAY_6 Output Endpoint_6 Y Buffer Base Address Register Read/Write Section 42.4.3.4 07B6h USBOEPBCTY_6 Output Endpoint_6 Y Byte Count Register Read/Write Section 42.4.3.5 07B7h USBOEPSIZXY_6 Output Endpoint_6 X and Y Buffer Size Register Read/Write Section 42.4.3.6 07B8h USBOEPCNF_7 Output Endpoint_7 Configuration Register Read/Write Section 42.4.3.1 07B9h USBOEPBBAX_7 Output Endpoint_7 X Buffer Base Address Register Read/Write Section 42.4.3.2 07BAh USBOEPBCTX_7 Output Endpoint_7 X Byte Count Register Read/Write Section 42.4.3.3 07BDh USBOEPBBAY_7 Output Endpoint_7 Y Buffer Base Address Register Read/Write Section 42.4.3.4 07BEh USBOEPBCTY_7 Output Endpoint_7 Y Byte Count Register Read/Write Section 42.4.3.5 07BFh USBOEPSIZXY_7 Output Endpoint_7 X and Y Buffer Size Register Read/Write Section 42.4.3.6 07C8h USBIEPCNF_1 Input Endpoint_1 Configuration Register Read/Write Section 42.4.3.7 07C9h USBIEPBBAX_1 Input Endpoint_1 X Buffer Base Address Register Read/Write Section 42.4.3.8 07CAh USBIEPBCTX_1 Input Endpoint_1 X Byte Count Register Read/Write Section 42.4.3.9 07CDh USBIEPBBAY_1 Input Endpoint_1 Y Buffer Base Address Register Read/Write Section 42.4.3.10 07CEh USBIEPBCTY_1 Input Endpoint_1 Y Byte Count Register Read/Write Section 42.4.3.11 07CFh USBIEPSIZXY_1 Input Endpoint_1 X and Y Buffer Size Register Read/Write Section 42.4.3.12 07D0h USBIEPCNF_2 Input Endpoint_2 Configuration Register Read/Write Section 42.4.3.7 07D1h USBIEPBBAX_2 Input Endpoint_2 X Buffer Base Address Register Read/Write Section 42.4.3.8 07D2h USBIEPBCTX_2 Input Endpoint_2 X Byte Count Register Read/Write Section 42.4.3.9 07D5h USBIEPBBAY_2 Input Endpoint_2 Y Buffer Base Address Register Read/Write Section 42.4.3.10 07D6h USBIEPBCTY_2 Input Endpoint_2 Y Byte Count Register Read/Write Section 42.4.3.11 07D7h USBIEPSIZXY_2 Input Endpoint_2 X and Y Buffer Size Register Read/Write Section 42.4.3.12 07D8h USBIEPCNF_3 Input Endpoint_3 Configuration Register Read/Write Section 42.4.3.7 07D9h USBIEPBBAX_3 Input Endpoint_3 X Buffer Base Address Register Read/Write Section 42.4.3.8 07DAh USBIEPBCTX_3 Input Endpoint_3 X Byte Count Register Read/Write Section 42.4.3.9 07DDh USBIEPBBAY_3 Input Endpoint_3 Y Buffer Base Address Register Read/Write Section 42.4.3.10 07DEh USBIEPBCTY_3 Input Endpoint_3 Y Byte Count Register Read/Write Section 42.4.3.11 07DFh USBIEPSIZXY_3 Input Endpoint_3 X and Y Buffer Size Register Read/Write Section 42.4.3.12 1166USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Registers www.ti.com Table 42-31. USB Buffer Descriptor Registers (continued) Offset Acronym Register Name Type Section 07E0h USBIEPCNF_4 Input Endpoint_4 Configuration Register Read/Write Section 42.4.3.7 07E1h USBIEPBBAX_4 Input Endpoint_4 X Buffer Base Address Register Read/Write Section 42.4.3.8 07E2h USBIEPBCTX_4 Input Endpoint_4 X Byte Count Register Read/Write Section 42.4.3.9 07E5h USBIEPBBAY_4 Input Endpoint_4 Y Buffer Base Address Register Read/Write Section 42.4.3.10 07E6h USBIEPBCTY_4 Input Endpoint_4 Y Byte Count Register Read/Write Section 42.4.3.11 07E7h USBIEPSIZXY_4 Input Endpoint_4 X and Y Buffer Size Register Read/Write Section 42.4.3.12 07E8h USBIEPCNF_5 Input Endpoint_5 Configuration Register Read/Write Section 42.4.3.7 07E9h USBIEPBBAX_5 Input Endpoint_5 X Buffer Base Address Register Read/Write Section 42.4.3.8 07EAh USBIEPBCTX_5 Input Endpoint_5 X Byte Count Register Read/Write Section 42.4.3.9 07EDh USBIEPBBAY_5 Input Endpoint_5 Y Buffer Base Address Register Read/Write Section 42.4.3.10 07EEh USBIEPBCTY_5 Input Endpoint_5 Y Byte Count Register Read/Write Section 42.4.3.11 07EFh USBIEPSIZXY_5 Input Endpoint_5 X and Y Buffer Size Register Read/Write Section 42.4.3.12 07F0h USBIEPCNF_6 Input Endpoint_6 Configuration Register Read/Write Section 42.4.3.7 07F1h USBIEPBBAX_6 Input Endpoint_6 X Buffer Base Address Register Read/Write Section 42.4.3.8 07F2h USBIEPBCTX_6 Input Endpoint_6 X Byte Count Register Read/Write Section 42.4.3.9 07F5h USBIEPBBAY_6 Input Endpoint_6 Y Buffer Base Address Register Read/Write Section 42.4.3.10 07F6h USBIEPBCTY_6 Input Endpoint_6 Y Byte Count Register Read/Write Section 42.4.3.11 07F7h USBIEPSIZXY_6 Input Endpoint_6 X and Y Buffer Size Register Read/Write Section 42.4.3.12 07F8h USBIEPCNF_7 Input Endpoint_7 Configuration Register Read/Write Section 42.4.3.7 07F9h USBIEPBBAX_7 Input Endpoint_7 X Buffer Base Address Register Read/Write Section 42.4.3.8 07FAh USBIEPBCTX_7 Input Endpoint_7 X Byte Count Register Read/Write Section 42.4.3.9 07FDh USBIEPBBAY_7 Input Endpoint_7 Y Buffer Base Address Register Read/Write Section 42.4.3.10 07FEh USBIEPBCTY_7 Input Endpoint_7 Y Byte Count Register Read/Write Section 42.4.3.11 07FFh USBIEPSIZXY_7 Input Endpoint_7 X and Y Buffer Size Register Read/Write Section 42.4.3.12 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1167 USB Registers www.ti.com 42.4.3.1 USBOEPCNF_n Register Output Endpoint-n Configuration Register This register can be modified only when USBEN = 1. Figure 42-31. USBOEPCNF_n Register 7 6 5 4 3 2 UBME Reserved TOGGLE DBUF STALL USBIIE rw r0 rw rw rw rw 1 0 Reserved r0 r0 Can be modified only when USBEN = 1 Table 42-32. USBOEPCNF_n Register Description Bit Field Type Reset Description 7 UBME RW 0h UBM out endpoint-n enable. This bit is to be set or cleared by software. 0b = UBM cannot use this endpoint 1b = UBM can use this endpoint 6 Reserved R 0h Reserved. Always reads as 0. 5 TOGGLE RW 0h Toggle bit. The toggle bit is controlled by the UBM and is toggled at the end of a successful out data stage transaction, if a valid data packet is received and the data packet's packet ID matches the expected packet ID. 4 DBUF RW 0h Double buffer enable. This bit can be set to enable the use of both the X and Y data packet buffers for USB transactions, for a particular out endpoint. Clearing it results in the use of single buffer mode. In this mode, only the X buffer is used. 0b = Primary buffer only (X-buffer only) 1b = Toggle bit selects buffer 3 STALL RW 0h USB stall condition. This bit can be set to cause endpoint transactions to be stalled. When set, the hardware automatically returns a stall handshake to the host for any transaction received on endpoint-0. The stall bit is cleared automatically by the next setup transaction. 0b = Indicates no stall 1b = Indicates stall 2 USBIIE RW 0h USB transaction interrupt indication enable. Can be set or cleared to define if interrupts are to be flagged in general. To generate an interrupt, the corresponding interrupt flag must be set (OEPIE). 0b = Corresponding interrupt flag will not be set 1b = Corresponding interrupt flag will be set 1-0 Reserved R 0h Reserved. Always reads as 0. 1168 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Registers www.ti.com 42.4.3.2 USBOEPBBAX_n Register Output Endpoint-n X Buffer Base Address Register This register can be modified only when USBEN = 1. Figure 42-32. USBOEPBBAX_n Register 7 6 5 4 3 2 1 0 rw rw rw rw ADR rw rw rw rw Can be modified only when USBEN = 1 Table 42-33. USBOEPBBAX_n Register Description Bit Field Type Reset Description 7-0 ADR RW 0h X-buffer base address. These are the upper eight bits of the X-buffer's base address. The three LSBs are assumed to be zero, for a total of 11 bits. This value needs to be set by software. The UBM uses this value as the start address of a given transaction. It does not change this value at the end of a transaction. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1169 USB Registers www.ti.com 42.4.3.3 USBOEPBCTX_n Register Output Endpoint-n X Byte Count Register This register can be modified only when USBEN = 1. Figure 42-33. USBOEPBCTX_n Register 7 6 5 4 3 NAK 2 1 0 rw rw rw CNT rw rw rw rw rw Can be modified only when USBEN = 1 Table 42-34. USBOEPBCTX_n Register Description Bit Field Type Reset Description 7 NAK RW 0h No-acknowledge status bit. The NAK status bit is set by the UBM at the end of a successful USB out transaction to that endpoint, to indicate that the USB endpoint-"n" buffer contains a valid data packet, and that the buffer data count value is valid. When this bit is set, all subsequent transactions to that endpoint result in a NAK handshake response to the USB host. To re-enable this endpoint to receive another data packet from the host, this bit must be cleared. 0b = No valid data in buffer. The buffer is ready to receive OUT packets from the host. 1b = The buffer contains a valid packet from the host, and it has not been picked up (subsequent host-out requests receive a NAK) 6-0 CNT RW 0h X-buffer data count. The Out_EP-n data count value is set by the UBM when a new data packet is written to the X-buffer for that out endpoint. It is set to the number of bytes received in the data buffer. 42.4.3.4 USBOEPBBAY_n Register Output Endpoint-n Y Buffer Base Address Register This register can be modified only when USBEN = 1. Figure 42-34. USBOEPBBAY_n Register 7 6 5 4 3 2 1 0 rw rw rw rw ADR rw rw rw rw Can be modified only when USBEN = 1 Table 42-35. USBOEPBBAY_n Register Description Bit Field Type Reset Description 7-0 ADR RW 0h Y-buffer base address. These are the upper eight bits of the Y-buffer's base address. The three LSBs are assumed to be zero, for a total of 11 bits. This value needs to be set by software. The UBM uses this value as the start address of a given transaction. It does not change this value at the end of a transaction. 1170 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Registers www.ti.com 42.4.3.5 USBOEPBCTY_n Register Output Endpoint-n X Byte Count Register This register can be modified only when USBEN = 1. Figure 42-35. USBOEPBCTY_n Register 7 6 5 4 NAK 3 2 1 0 rw rw rw CNT rw rw rw rw rw Can be modified only when USBEN = 1 Table 42-36. USBOEPBCTY_n Register Description Bit Field Type Reset Description 7 NAK RW 0h No-acknowledge status bit. The NAK status bit is set by the UBM at the end of a successful USB out transaction to that endpoint, to indicate that the USB endpoint-"n" buffer contains a valid data packet, and that the buffer data count value is valid. When this bit is set, all subsequent transactions to that endpoint result in a NAK handshake response to the USB host. To re-enable this endpoint to receive another data packet from the host, this bit must be cleared. 0b = No valid data in buffer. The buffer is ready to receive OUT packets from the host. 1b = The buffer contains a valid packet from the host, and it has not been picked up (subsequent host-out requests receive a NAK) 6-0 CNT RW 0h Y-buffer data count. The Out_EP-n data count value is set by the UBM when a new data packet is written to the X-buffer for that out endpoint. It is set to the number of bytes received in the data buffer. 42.4.3.6 USBOEPSIZXY_n Register Output Endpoint-n X and Y Buffer Size Register This register can be modified only when USBEN = 1. Figure 42-36. USBOEPSIZXY_n Register 7 6 5 4 Reserved 3 2 1 0 rw rw rw SIZx r0 rw rw rw rw Can be modified only when USBEN = 1 Table 42-37. USBOEPSIZXY_n Register Description Bit Field Type Reset Description 7 Reserved R 0h Reserved. Always reads as 0. 6-0 SIZx RW 0h Buffer size count. This value needs to be set by software to configure the size of the X and Y data packet buffers. Both buffers are set to the same size, based on this value. 000:0000b to 100:0000b are valid numbers for 0 to 64 bytes. Any value greater than or equal to 100:0001b results in unpredictable results. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1171 USB Registers www.ti.com 42.4.3.7 USBIEPCNF_n Register Input Endpoint-n Configuration Register This register can be modified only when USBEN = 1. Figure 42-37. USBIEPCNF_n Register 7 6 5 4 3 2 UBME Reserved TOGGLE DBUF STALL USBIIE rw r0 rw rw rw rw 1 0 Reserved r0 r0 Can be modified only when USBEN = 1 Table 42-38. USBIEPCNF_n Register Description Bit Field Type Reset Description 7 UBME RW 0h UBM in endpoint-n enable. This value needs to be set or cleared by software. 0b = UBM cannot use this endpoint 1b = UBM can use this endpoint 6 Reserved R 0h Reserved. Always reads as 0. 5 TOGGLE RW 0h Toggle bit. The toggle bit is controlled by the UBM and is toggled at the end of a successful in data stage transaction, if a valid data packet is transmitted. If this bit is cleared, a DATA0 packet ID is transmitted in the data packet to the host. If this bit is set, a DATA1 packet ID is transmitted in the data packet. 4 DBUF RW 0h Double buffer enable. This bit can be set to enable the use of both the X and Y data packet buffers for USB transactions, for a particular out endpoint. Clearing it results in the use of single buffer mode. In this mode, only the X buffer is used. 0b = Primary buffer only (X-buffer only) 1b = Toggle bit selects buffer 3 STALL RW 0h USB stall condition. This bit can be set to cause endpoint transactions to be stalled. When set, the hardware automatically returns a stall handshake to the host for any transaction received on endpoint-0. The stall bit is cleared automatically by the next setup transaction. 0b = Indicates no stall 1b = Indicates stall 2 USBIIE RW 0h USB transaction interrupt indication enable. Can be set or cleared to define if interrupts are to be flagged in general. To generate an interrupt the corresponding interrupt flag must be set (OEPIE). 0b = Corresponding interrupt flag will not be set 1b = Corresponding interrupt flag will be set 1-0 Reserved R 0h Reserved. Always reads as 0. 1172 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Registers www.ti.com 42.4.3.8 USBIEPBBAX_n Register Input Endpoint-n X Buffer Base Address Register This register can be modified only when USBEN = 1. Figure 42-38. USBIEPBBAX_n Register 7 6 5 4 3 2 1 0 rw rw rw rw ADR rw rw rw rw Can be modified only when USBEN = 1 Table 42-39. USBIEPBBAX_n Register Description Bit Field Type Reset Description 7-0 ADR RW 0h X-buffer base address. These are the upper eight bits of the X-buffer's base address. The three LSBs are assumed to be zero, for a total of 11 bits. This value needs to be set by software. The UBM uses this value as the start address of a given transaction. It does not change this value at the end of a transaction. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1173 USB Registers www.ti.com 42.4.3.9 USBIEPBCTX_n Register Input Endpoint-n X Byte Count Register This register can be modified only when USBEN = 1. Figure 42-39. USBIEPBCTX_n Register 7 6 5 4 3 NAK 2 1 0 rw rw rw CNT rw rw rw rw rw Can be modified only when USBEN = 1 Table 42-40. USBIEPBCTX_n Register Description Bit Field Type Reset Description 7 NAK RW 0h No-acknowledge status bit. The NAK status bit is set by the UBM at the end of a successful USB in transaction from that endpoint, to indicate that the EP-n in buffer is empty. For interrupt or bulk endpoints, when this bit is set, all subsequent transactions from that endpoint result in a NAK handshake response to the USB host. To re-enable this endpoint to transmit another data packet to the host, this bit must be cleared. 0b = Buffer contains a valid data packet for the host 1b = Buffer is empty (any host-In requests receive a NAK) 6-0 CNT RW 0h X-buffer data count. The In_EP-n X-buffer data count value must be set by software when a new data packet is written to the buffer. It should be the number of bytes in the data packet for interrupt, or bulk endpoint transfers. 000:0000b to 100:0000b are valid numbers for 0 to 64 bytes. Any value greater than or equal to 100:0001b results in unpredictable results. 42.4.3.10 USBIEPBBAY_n Register Input Endpoint-n Y Buffer Base Address Register This register can be modified only when USBEN = 1. Figure 42-40. USBIEPBBAY_n Register 7 6 5 4 3 2 1 0 rw rw rw rw ADR rw rw rw rw Can be modified only when USBEN = 1 Table 42-41. USBIEPBBAY_n Register Description Bit Field Type Reset Description 7-0 ADR RW 0h Y-buffer base address. These are the upper eight bits of the Y-buffer's base address. The three LSBs are assumed to be zero, for a total of 11 bits. This value needs to be set by software. The UBM uses this value as the start address of a given transaction. It does not change this value at the end of a transaction. 1174 USB Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated USB Registers www.ti.com 42.4.3.11 USBIEPBCTY_n Register Input Endpoint-n Y Byte Count Register This register can be modified only when USBEN = 1. Figure 42-41. USBIEPBCTY_n Register 7 6 5 4 NAK 3 2 1 0 rw rw rw CNT rw rw rw rw rw Can be modified only when USBEN = 1 Table 42-42. USBIEPBCTY_n Register Description Bit Field Type Reset Description 7 NAK RW 0h No-acknowledge status bit. The NAK status bit is set by the UBM at the end of a successful USB in transaction from that endpoint, to indicate that the EP-n in buffer is empty. For interrupt or bulk endpoints, when this bit is set, all subsequent transactions from that endpoint result in a NAK handshake response to the host. To re-enable this endpoint to transmit another data packet to the host, this bit must be cleared. This bit is set by USB SW-init. 0b = Buffer contains a valid data packet for host device 1b = Buffer is empty (any host-in requests receive a NAK) 6-0 CNT RW 0h Y-Buffer data count. The In EP-n Y-buffer data count value needs to be set by software when a new data packet is written to the buffer. It should be the number of bytes in the data packet for interrupt, or bulk endpoint transfers. 000:0000b to 100:0000b are valid numbers for 0 to 64 bytes. Any value greater than or equal to 100:0001b results in unpredictable results. 42.4.3.12 USBIEPSIZXY_n Register Input Endpoint-n X and Y Buffer Size Register This register can be modified only when USBEN = 1. Figure 42-42. USBIEPSIZXY_n Register 7 6 5 4 Reserved 3 2 1 0 rw rw rw SIZ r0 rw rw rw rw Can be modified only when USBEN = 1 Table 42-43. USBIEPSIZXY_n Register Description Bit Field Type Reset Description 7 Reserved R 0h Reserved. Always reads as 0. RW 0h Buffer size count. This value needs to be set by software to configure the size of the X and Y data packet buffers. Both buffers are set to the same size, based on this value. 000:0000b to 100:0000b are valid numbers for 0 to 64 bytes. Any value greater than or equal to 100:0001b results in unpredictable results. 6-0 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback USB Module Copyright © 2008–2015, Texas Instruments Incorporated 1175 Chapter 43 SLAU208O – June 2008 – Revised May 2015 LDO-PWR Module This chapter describes the LDO-PWR module that is available in some devices. Topic 43.1 43.2 43.3 1176 ........................................................................................................................... Page LDO-PWR Introduction .................................................................................... 1177 LDO-PWR Operation........................................................................................ 1178 LDO-PWR Registers ........................................................................................ 1181 LDO-PWR Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LDO-PWR Introduction www.ti.com 43.1 LDO-PWR Introduction The features of the LDO-PWR module include: • Integrated 3.3-V LDO regulator with sufficient output to power the entire MSP430™ microcontroller and system circuitry from 5-V external supply • Current-limiting capability on 3.3-V LDO output with detection flag and interrupt generation • LDO input voltage detection flag and interrupt generation Figure 43-1 shows a block diagram of the LDO-PWR module. LDOO 3.3 V LDO LDOI Port U LDOEN LDOOVLIFG LDOONIFG "LDOI present" interrupt PU.1 Overload Detection LDOI Detection BOR PU.0 LDOBGVBV LDOOVLIE "LDO overload" interrupt LDOONIE LDOOFFIFG "LDOI removed” interrupt LDOOFFIE Figure 43-1. LDO Block Diagram SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LDO-PWR Module Copyright © 2008–2015, Texas Instruments Incorporated 1177 LDO-PWR Operation www.ti.com 43.2 LDO-PWR Operation The LDO-PWR power system incorporates an integrated 3.3-V LDO regulator that allows the entire MSP430 microcontroller to be powered from nominal 5-V LDOI when it is made available from the system. Alternatively, the power system can supply power only to other components within the system, or it can be unused altogether. The LDO-PWR, when enabled, also supplies power to Port U. 43.2.1 Enabling/Disabling The 3.3-V LDO is enabled/disabled by setting/clearing LDOEN (LDOEN = 1 by default). If the voltage on LDOI is detected to be low or nonexistent, the LDO is suspended even if enabled by LDOEN = 1. No additional current is consumed while the LDO is suspended. When the voltage on LDOI rises above the LDO power brownout level, the LDO reference and low voltage detection become enabled. When the voltage on LDOI rises further above the launch voltage VLAUNCH, the 3.3-V LDO becomes enabled (see Figure 43-2). See device-specific data sheet for value of VLAUNCH. VLDOI VLDOI VLAUNCH VLDOO Time tENABLE Figure 43-2. 3.3-V LDO Power Up/Down Profile 43.2.2 Powering the Rest of the MSP430 from the LDO-PWR The output of the 3.3-V LDO (LDOO) can be used to power the entire MSP430 device, sourcing the DVCC rail. If this is desired, LDOO and DVCC should be connected externally. Power from the 3.3-V LDO is sourced into DVCC (see Figure 43-3). 1178 LDO-PWR Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LDO-PWR Operation www.ti.com External Connection LDOO DVCC 3.3 V LDO LDOI PMM VCORE I/Os Digital Core LDO Power Domain MSP430 DVCC Power Domain Figure 43-3. Powering Entire MSP430 From LDOI With this connection made, the MSP430 allows for autonomous power up of the device when the voltage on LDOI rises above VLAUNCH. If no voltage is present on VCORE – meaning the device is unpowered (or, in LPMx.5 mode) – then the 3.3-V LDO automatically turns on when the voltage on LDOI rises above VLAUNCH. Note that if DVCC is being driven from the 3.3-V LDO in this manner, and if power is available from LDOI, attempting to place the device into LPMx.5 results in the device immediately re-powering. This is because it recreates the conditions of the autonomous feature described above (no VCORE but power available on LDOI). The resulting drop of VCORE would cause the system to immediately power up again. When DVCC is being powered from LDOI, it is up to the user to ensure that the total current being drawn from LDOI stays below the current overload detection, IDET. 43.2.3 Powering Other Components in the System from LDO-PWR There is sufficient current capacity available from the 3.3-V LDO to power not only the entire MSP430 but also other components in the system, via the LDOO pin. It is also possible to use the 3.3-V LDO only to power other components in the system. 43.2.4 Applications That Do Not Require LDO-PWR There may be applications where the 3.3-V LDO is not required. In these cases, keep LDOI tied low to prevent the 3.3-V LDO from turning on and drawing any current even if LDOEN = 1. If Port U operation is desired, since the 3.3-V LDO is not enabled, an external voltage to the LDOO pin is required. 43.2.5 Current Limitation and Overload Protection The 3.3-V LDO features current limitation to protect itself from an overload condition; that is, when the output of the LDO becomes current-limited to IDET. This is reported to software via the VUOVLIFG flag. See device-specific data sheet for value of IDET. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LDO-PWR Module Copyright © 2008–2015, Texas Instruments Incorporated 1179 LDO-PWR Operation www.ti.com During overload conditions, LDOO drops below its nominal output voltage. In power scenarios where DVCC is exclusively supplied from LDOO, repetitive system restarts may be triggered as long the overload condition exists. For this reason, firmware should avoid re-enabling high current draw modules after detection of an overload on the previous power session, until the cause of failure can be identified and corrected. Ultimately, it is the user's responsibility to ensure that the current drawn from LDOI does not exceed IDET. The LDO-PWR power system brownout circuit is supplied from LDOI or DVCC, whichever carries the higher voltage. 43.2.6 LDO-PWR Interrupts The LDO-PWR module shares a single interrupt vector to handle multiple LDO-PWR interrupts. The LDOONIFG flag can be used to indicate that the voltage on LDOI has risen above the launch voltage. In addition to the LDOONIFG being set, an interrupt is also generated when LDOONIE = 1. Similarly, the LDOOFFIFG flag can be used to indicate that the voltage on LDOI has fallen below the launch voltage. In addition to the LDOOFFIFG being set, an interrupt is also generated when LDOOFFIE = 1.The LDOBGVBV bit can also be polled to indicate the level of LDOI; that is, above or below the launch voltage. The LDOOVLIFG flag can be used to indicate an overcurrent condition on the 3.3-V LDO. When an overcurrent condition is detected, LDOOVLIFG = 1. In addition to the LDOOVLIFG being set, an interrupt is also generated when LDOOVLIE = 1. 43.2.7 Port U Control The Port U pins (PU.0/PU.1) function as general-purpose high-current I/O pins. These pins can only be configured together as either both inputs or both outputs. Port U is supplied by the LDOO rail. If the 3.3-V LDO is not being used in the system (disabled), the LDOO pin can be supplied externally. PUOPE controls the enable of both outputs residing on the Port U pins. Setting PUIPE = 1 causes both input buffers to be enabled. When Port U outputs are enabled (PUOPE = 1), the PUIN0 and PUIN1 pins mirror what is present on the outputs assuming PUIPE = 1. To use the Port U pins as inputs, the outputs should be disabled by setting PUOPE = 0, and enabling the input buffers by setting PUIPE = 1. Once configured as inputs (PUIPE = 1), the PUIN0 and PUIN1 bits can be read to determine the respective input values. When PUOPE is set, both Port U pins function as outputs, controlled by PUOUT0/PUOUT1. When driven high, they use the LDOO rail, and they are capable of a drive current higher than other I/O pins on the device. See the device-specific datasheet for parameters. By default, PUOPE and PUIPE are cleared. PU.0/PU.1 are high-impedance (input buffers are disabled and outputs are disabled). 1180 LDO-PWR Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LDO-PWR Registers www.ti.com 43.3 LDO-PWR Registers Write access to the configuration registers is allowed or disallowed using the LDOKEYPID register. Writing the proper value (9628h) unlocks the configuration registers and enables write access. Writing any other value disables access while leaving the values of the registers intact. Locking should be done intentionally after the configuration is finished. Read access is available without the need to write to the LDOKEYPID register. The configuration registers are listed in Table 43-1. All addresses are expressed as offsets; the base address can be found in the device-specific data sheet. All registers are byte and word accessible. Table 43-1. LDO-PWR Registers Offset Acronym Register Name Type Reset Section 00h LDOKEYPID LDO key and ID register Read/Write 0000h Section 43.3.1 04h PUCTL Port U control register Read/Write 0000h Section 43.3.2 08h LDOPWRCTL LDO-PWR control register Read/Write 0810h Section 43.3.3 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LDO-PWR Module Copyright © 2008–2015, Texas Instruments Incorporated 1181 LDO-PWR Registers www.ti.com 43.3.1 LDOKEYPID Register LDO Key Register Figure 43-4. LDOKEYPID Register 15 14 13 12 rw-0 rw-0 rw-0 rw-0 7 6 5 4 11 10 9 8 rw-0 rw-0 rw-0 rw-0 3 2 1 0 rw-0 rw-0 rw-0 rw-0 LDOKEY LDOKEY rw-0 rw-0 rw-0 rw-0 Table 43-2. LDOKEYPID Register Description Bit Field Type Reset Description 15-0 LDOKEY RW 0h Key register. Must be written with a value of 9628h in order to be recognized as a valid key. This "unlocks" the configuration registers. If written with any other value, the registers become "locked". Reads back as A528h if the registers are unlocked. 43.3.2 PUCTL Register Port U Control Register Figure 43-5. PUCTL Register 15 14 13 r0 r0 r0 12 11 10 r0 r0 r0 Reserved 7 6 Reserved r0 9 8 Reserved PUIPE rw-0 rw-0 5 4 3 2 1 0 PUOPE Reserved PUIN1 PUIN0 PUOUT1 PUOUT0 rw-0 rw-0 r r rw-0 rw-0 r0 Can be modified only when LDOKEYPID is unlocked Table 43-3. PUCTL Register Description Bit Field Type Reset Description 15-10 Reserved R 0h Reserved. Always reads as 0. 9 Reserved RW 0h Reserved. Always write as 0. 8 PUIPE RW 0h PU input enable 0b = PU.0 and PU.1 inputs are disabled 1b = PU.0 and PU.1 inputs are enabled 7-6 Reserved R 0h Reserved. Always reads as 0. 5 PUOPE RW 0h PU output enable 0b = PU.0 and PU.1 outputs are disabled 1b = PU.0 and PU.1 outputs are enabled 4 Reserved R 0h Reserved. Always write as 0. 3 PUIN1 R 0h PU.1 input data, This bit reflects the logic value on the PU.1 terminal when PUIPE = 1. 2 PUIN0 R 0h PU.0 input data, This bit reflects the logic value on the PU.0 terminal when PUIPE = 1. 1 PUOUT1 RW 0h PU.1 output data. This bits defines the value of the PU.1 pin when PUOPE = 1. 0 PUOUT0 RW 0h PU.0 output data. This bits defines the value of the PU.0 pin when PUOPE = 1. 1182 LDO-PWR Module SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated LDO-PWR Registers www.ti.com 43.3.3 LDOPWRCTL Register LDO-Power Control Register Figure 43-6. LDOPWRCTL Register 15 14 13 Reserved r0 r0 7 r0 6 Reserved r0 12 11 10 9 8 Reserved LDOEN LDOOFFIE LDOONIE LDOOVLIE rw-0 rw-1 rw-0 rw-0 rw-0 5 4 3 2 1 0 OVLAOFF Reserved LDOBGVBV LDOOFFIFG LDOONIFG LDOOVLIFG rw-0 rw-1 r rw-0 rw-0 rw-0 r0 Can be modified only when LDOKEYPID is unlocked Table 43-4. LDOPWRCTL Register Description Bit Field Type Reset Description 15-13 Reserved R 0h Reserved. Always reads as 0. 12 Reserved RW 0h Reserved. Always reads as 0. 11 LDOEN RW 1h 3.3V LDO enable. When set, the LDO is enabled. 0b = LDO disabled 1b = LDO enabled 10 LDOOFFIE RW 0h LDOI voltage "going OFF" interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 9 LDOONIE RW 0h LDOI voltage "coming ON" interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 8 LDOOVLIE RW 0h LDO overload indication interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled 7-6 Reserved R 0h Reserved. Always reads as 0. 5 OVLAOFF RW 0h LDO overload auto-off enable 0b = During an overload on the 3.3-V LDO, the LDO automatically enters current-limiting mode and stays there until the condition stops. 1b = An overload indication clears the LDOEN bit. 4 Reserved RW 1h Reserved 3 LDOBGVBV RW 0h LDOI valid 0b = LDOI is not valid yet 1b = LDOI is valid and within bounds 2 LDOOFFIFG RW 0h LDOI "going OFF" interrupt flag. This bit indicates that LDOI fell below the launch voltage. 0b = LDOI did not fall below the launch voltage. 1b = LDOI fell below the launch voltage. 1 LDOONIFG RW 0h LDOI "coming ON" interrupt flag. This bit indicates that LDOI rose above the launch voltage. 0b = LDOI did not rise above the launch voltage. 1b = LDOI rose above the launch voltage. 0 LDOOVLIFG RW 0h LDO overload interrupt flag. This bit indicates that the 3.3-V LDO entered an overload condition. 0b = No overload condition detected. 1b = Overload condition detected. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback LDO-PWR Module Copyright © 2008–2015, Texas Instruments Incorporated 1183 Chapter 44 SLAU208O – June 2008 – Revised May 2015 Embedded Emulation Module (EEM) This chapter describes the embedded emulation module (EEM) that is implemented in all devices. Topic 44.1 44.2 44.3 1184 ........................................................................................................................... Page Embedded Emulation Module (EEM) Introduction ............................................... 1185 EEM Building Blocks ....................................................................................... 1187 EEM Configurations ........................................................................................ 1188 Embedded Emulation Module (EEM) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Embedded Emulation Module (EEM) Introduction www.ti.com 44.1 Embedded Emulation Module (EEM) Introduction Every MSP430 microcontroller implements an EEM. It is accessed and controlled through either 4-wire JTAG mode or Spy-Bi-Wire mode. Each implementation is device-dependent and is described in Section 44.3, the EEM Configurations section, and the device-specific data sheet. In • • • • • • • • • • • general, the following features are available: Nonintrusive code execution with real-time breakpoint control Single-step, step-into, and step-over functionality Full support of all low-power modes Support for all system frequencies, for all clock sources Up to eight (device-dependent) hardware triggers or breakpoints on memory address bus (MAB) or memory data bus (MDB) Up to two (device-dependent) hardware triggers or breakpoints on CPU register write accesses MAB, MDB, and CPU register access triggers can be combined to form up to ten (device-dependent) complex triggers or breakpoints Up to two (device-dependent) cycle counters Trigger sequencing (device-dependent) Storage of internal bus and control signals using an integrated trace buffer (device-dependent) Clock control for timers, communication peripherals, and other modules on a global device level or on a per-module basis during an emulation stop Figure 44-1 shows a simplified block diagram of the largest currently-available EEM implementation. For more details on how the features of the EEM can be used together with the IAR Embedded Workbench™ debugger or with Code Composer Studio (CCS), see Advanced Debugging Using the Enhanced Emulation Module (SLAA393) at www.msp430.com. Most other debuggers supporting the MSP430 devices have the same or a similar feature set. For details, see the user's guide of the applicable debugger. SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Embedded Emulation Module (EEM) Copyright © 2008–2015, Texas Instruments Incorporated 1185 Embedded Emulation Module (EEM) Introduction Trigger Blocks www.ti.com "AND" Matrix- Combination Triggers 0 1 2 3 4 5 6 7 8 9 & & & & & & & & & & MB0 MB1 MB2 MB3 MB4 MB5 MB6 MB7 CPU0 CPU1 Trigger Sequencer OR CPU Stop OR Start/Stop State Storage OR Start/Stop Cycle Counter Figure 44-1. Large Implementation of EEM 1186 Embedded Emulation Module (EEM) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated EEM Building Blocks www.ti.com 44.2 EEM Building Blocks 44.2.1 Triggers The event control in the EEM of the MSP430 system consists of triggers, which are internal signals indicating that a certain event has happened. These triggers may be used as simple breakpoints, but it is also possible to combine two or more triggers to allow detection of complex events and cause various reactions other than stopping the CPU. In • • • • general, the triggers can be used to control the following functional blocks of the EEM: Breakpoints (CPU stop) State storage Sequencer Cycle counter There are two different types of triggers – the memory trigger and the CPU register write trigger. Each memory trigger block can be independently selected to compare either the MAB or the MDB with a given value. Depending on the implemented EEM, the comparison can be =, ≠, ≥, or ≤. The comparison can also be limited to certain bits with the use of a mask. The mask is either bit-wise or byte-wise, depending upon the device. In addition to selecting the bus and the comparison, the condition under which the trigger is active can be selected. The conditions include read access, write access, DMA access, and instruction fetch. Each CPU register write trigger block can be independently selected to compare what is written into a selected register with a given value. The observed register can be selected for each trigger independently. The comparison can be =, ≠, ≥, or ≤. The comparison can also be limited to certain bits with the use of a bit mask. Both types of triggers can be combined to form more complex triggers. For example, a complex trigger can signal when a particular value is written into a user-specified address. 44.2.2 Trigger Sequencer The trigger sequencer allows the definition of a certain sequence of trigger signals before an event is accepted for a break or state storage event. Within the trigger sequencer, it is possible to use the following features: • Four states (State 0 to State 3) • Two transitions per state to any other state • Reset trigger that resets the sequencer to State 0. The trigger sequencer always starts at State 0 and must execute to State 3 to generate an action. If State 1 or State 2 are not required, they can be bypassed. 44.2.3 State Storage (Internal Trace Buffer) The state storage function uses a built-in buffer to store MAB, MDB, and CPU control signal information (that is, read, write, or instruction fetch) in a nonintrusive manner. The built-in buffer can hold up to eight entries. The flexible configuration allows the user to record the information of interest very efficiently. 44.2.4 Cycle Counter The cycle counter provides one or two 40-bit counters to measure the cycles used by the CPU to execute certain tasks. On some devices, the cycle counter operation can be controlled using triggers. This allows, for example, conditional profiling, such as profiling a specific section of code. 44.2.5 Clock Control The EEM provides device-dependent flexible clock control. This is useful in applications where a running clock is needed for peripherals after the CPU is stopped (for example, to allow a UART module to complete its transfer of a character or to allow a timer to continue generating a PWM signal). SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Embedded Emulation Module (EEM) Copyright © 2008–2015, Texas Instruments Incorporated 1187 EEM Configurations www.ti.com The clock control is flexible and supports both modules that need a running clock and modules that must be stopped when the CPU is stopped due to a breakpoint. 44.3 EEM Configurations Table 44-1 gives an overview of the EEM configurations. The implemented configuration is devicedependent, and details can be found in the device-specific data sheet and these documents: Advanced Debugging Using the Enhanced Emulation Module (EEM) With CCS (SLAA393) IAR Embedded Workbench Version 3+ for MSP430 User's Guide (SLAU138) Code Composer Studio for MSP430 User’s Guide (SLAU157) Table 44-1. EEM Configurations Feature Memory bus triggers Memory bus trigger mask for XS S M L 2 (=, ≠ only) 3 5 8 1) Low byte 1) Low byte 1) Low byte 2) High byte 2) High byte 2) High byte 3) Four upper addr bits 3) Four upper addr bits 3) Four upper addr bits All 16 or 20 bits CPU register write triggers 0 1 1 2 Combination triggers 2 4 6 10 Sequencer No No Yes Yes State storage No No No Yes Cycle counter 1 1 1 2 (including triggered start or stop) In general, the following features can be found on any device: • At least two MAB or MDB triggers supporting: – Distinction between CPU, DMA, read, and write accesses – =, ≠, ≥, or ≤ comparison (in XS, only =, ≠) • At least two trigger combination registers • Hardware breakpoints using the CPU stop reaction • At least one 40-bit cycle counter • Enhanced clock control with individual control of module clocks 1188 Embedded Emulation Module (EEM) SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Revision History www.ti.com Revision History Changes from May 29, 2014 to May 25, 2015 .................................................................................................................. Page • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Changed "Enable and Disable Interrupt" note to clarify operation ................................................................ 60 Added CPCAP pin to Table 1-3, Connection of Unused Pins ..................................................................... 69 Added "The minimum reset pulse duration is specified in the device-specific data sheet" in Section 1.7 ................... 69 Changed Section 1.8 to clarify operation ............................................................................................. 70 Added CTSD16 to Section 1.13.5.2, ADC and CTSD16 Offset and Gain Calibration .......................................... 81 Added Section 1.13.6, Temperature Sensor Calibration for Devices With CTSD16............................................ 82 Added "SVSMHRRL must always be equal or larger than SVSHRVL" in paragraph that starts "The available voltage threshold..." ............................................................................................................................. 103 Updated the steps for how to change the VCORE level ............................................................................. 108 Added "Note: SVSMLRRL must always be equal or larger than SVSLRVL" to SVSLRVL bit description ................. 118 Added "Note: SVSMLRRL must always be equal or larger than SVSLRVL" to SVSMLRRL bit description ............... 118 Changed the function of BAKADC = 0 to match device implementation ....................................................... 127 Changed note "Unused auxiliary supplies" ......................................................................................... 133 Updated Section 5.2.12, UCS Module Fail-Safe Operation, with information for CTSD16 ................................... 168 Added Section 6.4.2.4. MSP430X Address Instructions With Indexed Mode .................................................. 202 Changed "Disable interrupt" note to clarify operation of pipelined architecture ................................................ 251 Changed "Enable interrupt" note to clarify operation of pipelined architecture ................................................ 252 Added "No interrupt flags are modified by this command" to the description of RETI ........................................ 269 Corrected the access type (read only) of the BUSY bit ........................................................................... 363 Changed note "Writing to PxIES" from ambiguous "may be set" to more clear "will be set" ................................ 413 Changed the sentence that starts "Setting TACLR also clears the clock divider counter..." ................................. 465 Changed the sentence that starts "Setting TACLR also clears..." ............................................................... 468 Changed the description of the TACLR bit ......................................................................................... 478 Changed the sentence that starts "Setting TBCLR also clears the clock divider counter logic..."........................... 487 Changed the sentence that starts "Setting TBCLR also clears the TBxR value..." ............................................ 490 Changed the description of the TBCLR bit ......................................................................................... 501 Added valid values to the description of the RTCAMIN (hex) AE bit ............................................................ 589 Added valid values to the description of the RTCAMIN (BCD) AE bit .......................................................... 589 Added valid values to the description of the RTCAHOUR (hex) AE bit ......................................................... 590 Added valid values to the description of the RTCAHOUR (BCD) AE bit ....................................................... 590 Added valid values to the description of the RTCADOW AE bit ................................................................. 591 Added valid values to the description of the RTCADAY (hex) AE bit ........................................................... 591 Added valid values to the description of the RTCADAY (BCD) AE bit .......................................................... 591 Corrected the description of the RTCAMIN (hex) AE bit .......................................................................... 615 Corrected the description of the RTCAMIN (BCD) AE bit ........................................................................ 615 Corrected the description of the RTCAHOUR (hex) AE bit ....................................................................... 616 Corrected the description of the RTCAHOUR (BCD) AE bit ..................................................................... 616 Corrected the description of the RTCADOW AE bit ............................................................................... 617 Corrected the description of the RTCADAY (hex) AE bit ......................................................................... 618 Corrected the description of the RTCADAY (BCD) AE bit ........................................................................ 618 Changed "flash memory" to "nonvolatile memory" ................................................................................. 632 Added "F673xA, and F672xA" to the sentence that starts "In F677xA, F673xA, and F672xA devices, the RTCLOCK bit..." ...................................................................................................................................... 635 Added "F673xA, and F672xA" to the note that starts "This bit is implemented in only the F677xA, F673xA, and F672xA..." ............................................................................................................................... 647 Added "F673xA, and F672xA" to the note that starts "This bit is implemented in only the F677xA, F673xA, and F672xA..." ............................................................................................................................... 647 Added valid values to the description of the RTCAMIN (hex) AE bit ............................................................ 656 Added valid values to the description of the RTCAMIN (BCD) AE bit .......................................................... 656 Added valid values to the description of the RTCAHOUR (hex) AE bit ......................................................... 657 SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Embedded Emulation Module (EEM) Copyright © 2008–2015, Texas Instruments Incorporated 1189 Revision History • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • www.ti.com Added valid values to the description of the RTCAHOUR (BCD) AE bit ....................................................... 657 Added valid values to the description of the RTCADOW AE bit ................................................................. 658 Added valid values to the description of the RTCADAY (hex) AE bit ........................................................... 659 Added valid values to the description of the RTCADAY (BCD) AE bit .......................................................... 659 Added CTSD16 information throughout Chapter 26, REF including but not limited to adding Figure 26-2, Table 26-1, Table 26-3, Section 26.2.3.1, and Section 26.2.3.5 ............................................................................... 692 Changed Figure 26-1, REF Block Diagram: changed logic gate on REFMODEREQ from OR to AND .................... 694 Corrected name of ADC12REF2_5V bit (changed from ADC12REF2_5) ...................................................... 697 Added LCD_C to Section 26.2.3.7 ................................................................................................... 701 Added CTSD16 to REFMSTR bit description ...................................................................................... 703 Added CTSD16 to REFOUT bit description ........................................................................................ 703 Updated description in Section 29.2.3, Voltage Reference ....................................................................... 769 Added note "Only the MSP430F676x1(A) devices support the trigger generator" ............................................ 778 Added Chapter 30, CTSD16 .......................................................................................................... 797 Changed Figure 31-1, DAC12_A Block Diagram for Two-Module Devices .................................................... 826 Added VREFBG to Table 31-1 ............................................................................................................ 828 In Section 31.2.3, DAC12_A Reference, Added information for VREFBG and CTSD16 including adding Table 31-2 ....... 828 Added information for CTSD16 and VREFBG to DAC12SREFx bit description ............................................... 835 Changed title and text of Section 32.2.7 to show correct register name (CBCTL3) ........................................... 849 Added note that starts "Changing the value of the CBIES bit..." ................................................................. 849 Added Chapter 33, Operational Amplifier (OA) .................................................................................... 860 Changed Figure 35-4 (removed mux information that does not apply) ......................................................... 911 Clarified that R03EXT = 1 is required for using V5 as contrast control ......................................................... 912 Added Section 36.3.16 ................................................................................................................ 957 Added note "Shared UCxSTE and UCxCLK pins" ................................................................................. 974 Added note "Shared UCxSTE and UCxCLK pins" ................................................................................. 975 Changed the formula for fBitClock and its description ................................................................................. 975 Corrected fBitClock equation in Section 37.4.3 and Section 37.4.4 ................................................................. 981 Corrected fBitClock equation in Section 37.5.3 and Section 37.5.4 ................................................................. 989 Corrected software reset (UCSWRST=1) conditions. ............................................................................. 998 Added note "Handling of TXIFG in a multi-master system". .................................................................... 1006 Added Section 39.3.16 ............................................................................................................... 1044 Corrected description of UCTXCPTIFG bit ........................................................................................ 1054 Added step (4) to note "Initializing or reconfiguring the eUSCI module" ...................................................... 1059 Changed from "UCSSELx bits are don't care" to "UCSSELx bits must be set to 0" in Section 40.3.6 .................... 1062 Changed the formula for fBitClock and its description ............................................................................... 1062 Updated UCSSELx bit description .................................................................................................. 1066 Corrected fBitClock equation in Section 40.4.2 ....................................................................................... 1067 Corrected fBitClock equation in Section 40.5.2 ....................................................................................... 1076 Corrected software reset (UCSWRST = 1) conditions. .......................................................................... 1083 NOTE: Page numbers for previous revisions may differ from page numbers in the current version. 1190 Revision History SLAU208O – June 2008 – Revised May 2015 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf Linearized : No PDF Version : 1.4 Page Mode : UseOutlines Page Count : 1191 Creator : TopLeaf 8.0.006 Producer : iText 2.1.7 by 1T3XT Title : MSP430x5xx and MSP430x6xx Family (Rev. O) Keywords : SLAU208, SLAU208O Subject : User's Guide Modify Date : 2015:05:22 08:21:44-05:00 Top Leaf-Profile : final Top Leaf-Version : Version=tlapi 8.0 6 2015/04/02 support@turnkey.com.au Licence=X0514600 Author : Texas Instruments, Incorporated Create Date : 2015:05:22 08:21:44-05:00EXIF Metadata provided by EXIF.tools