Closure: The Definitive Guide [JAVASCRIPT][Closure. Guide]
%5BJAVASCRIPT%5D%5BClosure.%20The%20Definitive%20Guide%5D
%5BJAVASCRIPT%5D%5BClosure.%20The%20Definitive%20Guide%5D
%5BJAVASCRIPT%5D%5BClosure.%20The%20Definitive%20Guide%5D
Closure_The_Definitive_Guide
%5BClosure%20The%20Definitive%20Guide%20by%20Michael%20Bolin%20-%202010%5D
User Manual:
Open the PDF directly: View PDF .
Page Count: 594
Download | |
Open PDF In Browser | View PDF |
www.it-ebooks.info www.it-ebooks.info Closure: The Definitive Guide Michael Bolin Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo www.it-ebooks.info Closure: The Definitive Guide by Michael Bolin Copyright © 2010 Michael Bolin. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com. Editors: Simon St.Laurent and Julie Steele Production Editor: Kristen Borg Copyeditor: Nancy Kotary Proofreader: Kristen Borg Indexer: Ellen Troutman Zaig Cover Designer: Karen Montgomery Interior Designer: David Futato Illustrator: Robert Romano Printing History: September 2010: First Edition. Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Closure: The Definitive Guide, the image of a golden plover, and related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps. While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. ISBN: 978-1-449-38187-5 [M] 1283888246 www.it-ebooks.info Table of Contents Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii My Experiences with Closure Audience ECMAScript Versus JavaScript Using This Book Acknowledgments xviii xx xx xxi xxiv 1. Introduction to Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Tools Overview Closure Library Closure Templates Closure Compiler Closure Testing Framework Closure Inspector Closure Design Goals and Principles Reducing Compiled Code Size Is Paramount All Source Code Is Compiled Together Managing Memory Matters Make It Possible to Catch Errors at Compile Time Code Must Work Without Compilation Code Must Be Browser-Agnostic Built-in Types Should Not Be Modified Code Must Work Across Frames Tools Should Be Independent Downloading and Installing the Tools Closure Library and Closure Testing Framework Closure Templates Closure Compiler Closure Inspector 2 2 3 3 4 4 5 5 6 6 7 7 7 8 8 8 9 10 11 12 12 iii www.it-ebooks.info Example: Hello World Closure Library Closure Templates Closure Compiler Closure Testing Framework Closure Inspector 12 13 14 17 19 21 2. Annotations for Closure JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 JSDoc Tags Type Expressions Simple Types and Union Types Function Types Record Types Special @param Types Subtypes and Type Conversion The ALL Type JSDoc Tags That Do Not Deal with Types Constants Deprecated Members License and Copyright Information Is All of This Really Necessary? 25 29 29 31 32 33 38 41 41 42 43 43 43 3. Closure Library Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Dependency Management calcdeps.py goog.global COMPILED goog.provide(namespace) goog.require(namespace) goog.addDependency(relativePath, provides, requires) Function Currying goog.partial(functionToCall, ...) goog.bind(functionToCall, selfObject, ...) Exports goog.getObjectByName(name, opt_object) goog.exportProperty(object, propertyName, value) goog.exportSymbol(publicPath, object, opt_objectToExportTo) Type Assertions goog.typeOf(value) goog.isDef(value) goog.isNull(value) goog.isDefAndNotNull(value) goog.isArray(obj) iv | Table of Contents www.it-ebooks.info 45 45 47 48 48 50 51 54 54 57 58 58 58 60 61 62 62 63 63 63 goog.isArrayLike(obj) goog.isDateLike(obj) goog.isString(obj), goog.isBoolean(obj), goog.isNumber(obj) goog.isFunction(obj) goog.isObject(obj) Unique Identifiers goog.getUid(obj) goog.removeUid(obj) Internationalization (i18n) goog.LOCALE goog.getMsg(str, opt_values) Object Orientation goog.inherits(childConstructorFunction, parentConstructorFunction) goog.base(self, opt_methodName, var_args) goog.nullFunction goog.abstractMethod goog.addSingletonGetter(constructorFunction) Additional Utilities goog.DEBUG goog.now() goog.globalEval(script) goog.getCssName(className, opt_modifier), goog.setCssNameMapping(mapping) 64 64 64 65 65 65 65 66 67 67 68 68 68 69 69 70 70 70 70 71 71 71 4. Common Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 goog.string goog.string.htmlEscape(str, opt_isLikelyToContainHtmlChars) goog.string.regExpEscape(str) goog.string.whitespaceEscape(str, opt_xml) goog.string.compareVersions(version1, version2) goog.string.hashCode(str) goog.array goog.array.forEach(arr, func, opt_obj) Using Iterative goog.array Functions in a Method goog.object goog.object.get(obj, key, opt_value) goog.setIfUndefined(obj, key, value) goog.object.transpose(obj) goog.json goog.json.parse(str) goog.json.unsafeParse(str) goog.json.serialize(obj) goog.dom 75 75 77 78 78 79 79 80 81 82 82 83 83 84 85 85 86 86 Table of Contents | v www.it-ebooks.info goog.dom.getElement(idOrElement) goog.dom.getElementsByTagNameAndClass(nodeName, className, elementToLookIn) goog.dom.getAncestorByTagNameAndClass(element, tag, className) goog.dom.createDom(nodeName, attributes, var_args) goog.dom.htmlToDocumentFragment(htmlString) goog.dom.ASSUME_QUIRKS_MODE and goog.dom.ASSUME_STANDARDS_MODE goog.dom.classes goog.dom.classes.get(element) goog.dom.classes.has(element, className) goog.dom.classes.add(element, var_args) and goog.dom.classes.remove(element, var_args) goog.dom.classes.toggle(element, className) goog.dom.classes.swap(element, fromClass, toClass) goog.dom.classes.enable(element, className, enabled) goog.userAgent Rendering Engine Constants Platform Constants goog.userAgent.isVersion(version) goog.userAgent.product goog.net.cookies goog.net.cookies.isEnabled() goog.net.cookies.set(name, value, opt_maxAge, opt_path, opt_domain) goog.net.cookies.get(name, opt_default) goog.net.cookies.remove(name, opt_path, opt_domain) goog.style goog.style.getPageOffset(element) goog.style.getSize(element) goog.style.getBounds(element) goog.style.setOpacity(element, opacity) goog.style.setPreWrap(element) goog.style.setInlineBlock(element) goog.style.setUnselectable(element, unselectable, opt_noRecurse) goog.style.installStyles(stylesString, opt_node) goog.style.scrollIntoContainerView(element, container, opt_center) goog.functions goog.functions.TRUE goog.functions.constant(value) goog.functions.error(message) vi | Table of Contents www.it-ebooks.info 86 87 89 91 92 93 95 95 95 96 96 97 98 98 99 101 102 102 104 104 104 105 105 105 105 106 106 106 106 106 107 107 108 108 108 108 109 5. Classes and Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Example of a Class in Closure Closure JavaScript Example Equivalent Example in Java Static Members Singleton Pattern Example of a Subclass in Closure Closure JavaScript Example Equivalent Example in Java Declaring Fields in Subclasses @override and @inheritDoc Using goog.base() to Simplify Calls to the Superclass Abstract Methods Example of an Interface in Closure Multiple Inheritance Enums goog.Disposable Overriding disposeInternal() 112 112 115 116 118 119 119 123 124 125 126 127 128 130 132 132 133 6. Event Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 A Brief History of Browser Event Models Closure Provides a Consistent DOM Level 2 Events API Across Browsers goog.events.listen() goog.events.EventTarget goog.events.Event goog.events.EventHandler Handling Keyboard Events 137 138 138 141 146 148 152 7. Client-Server Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Server Requests goog.net.XmlHttp goog.net.XhrIo goog.net.XhrManager goog.Uri and goog.uri.utils Resource Loading and Monitoring goog.net.BulkLoader goog.net.ImageLoader goog.net.IframeLoadMonitor goog.net.MultiIframeLoadMonitor goog.net.NetworkTester Cross-Domain Communication goog.net.jsonp goog.net.xpc 155 155 156 161 163 165 165 167 168 169 169 170 171 173 Table of Contents | vii www.it-ebooks.info Uploading Files Comet 176 178 8. User Interface Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Design Behind the goog.ui Package goog.ui.Component Basic Life Cycle Components with Children Events States Errors goog.ui.Control Handling User Input Managing State Delegating to the Renderer Example: Responding to a Mouseover Event goog.ui.Container Using Common Components Pulling in CSS goog-inline-block Example of Rendering a Component: goog.ui.ComboBox Example of Decorating a Control: goog.ui.Button and goog.ui.CustomButton Creating Custom Components example.Checklist and example.ChecklistItem example.ui.ChecklistItem and example.ui.ChecklistItemRenderer example.ui.Label example.ui.Checklist and example.ui.ChecklistRenderer Rendering Example Decorating Example Conclusions 182 184 184 190 194 195 196 197 198 199 201 206 206 210 212 215 218 220 227 228 229 232 233 236 237 239 9. Rich Text Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 Design Behind the goog.editor Package Trade-offs: Control, Code Size, and Performance goog.editor.BrowserFeature Creating an Editable Region goog.editor.Field goog.editor.SeamlessField Extending the Editor: The Plugin System Registering Plugins Interacting with Plugins goog.editor.Plugin viii | Table of Contents www.it-ebooks.info 241 242 243 243 244 251 253 253 254 256 Built-in Plugins Custom Plugins UI Components Dialogs Toolbar Selections goog.dom.Range goog.dom.AbstractRange goog.editor.range 260 265 270 270 274 278 279 281 285 10. Debugging and Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Creating Logging Information goog.debug.LogRecord goog.debug.Logger.Level goog.debug.Logger Displaying Logging Information goog.debug.Console goog.debug.DivConsole goog.debug.DebugWindow goog.debug.FancyWindow Profiling JavaScript Code Reporting JavaScript Errors 290 290 291 292 297 298 298 298 299 300 302 11. Closure Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 Limitations of Existing Template Systems Server-Side Templates Client-Side Templates Introducing Closure Templates Creating a Template Declaring Templates with {namespace} and {template} Commenting Templates Overriding Line Joining with {sp} and {nil} Writing Raw Text with {literal} Building Soy Expressions Displaying Data with {print} Managing Control Flow with {if}, {elseif}, and {else} Advanced Conditional Handling with {switch}, {case}, and {default} Looping over Lists with {foreach} Leveraging Other Templates with {call} and {param} Identifying CSS Classes with {css} Internationalization (i18n) Compiling Templates Compiling a Template for JavaScript 303 303 304 305 306 309 310 310 312 312 315 316 317 318 319 321 321 322 323 Table of Contents | ix www.it-ebooks.info Compiling a Template for Java Defining a Custom Function 326 328 12. Using the Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 Benefits of Using the Compiler Reducing Code Size Catching Errors at Compile Time Protecting Code Through Obfuscation How the Compiler Works Compiler Options Compilation Levels Formatting Options Warning Levels Running the Compiler Closure Compiler Service UI Closure Compiler Service API Closure Compiler Application Programmatic Java API Integrating the Compiler into a Build Process Partitioning Compiled Code into Modules Introducing the Application Code Introducing the Module Loading Code Partitioning the Input Loading the Modules Refining the Partitioning 334 334 335 336 337 338 338 343 344 346 346 349 351 354 357 363 365 368 370 373 376 13. Advanced Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 What Happens During Compilation Externs and Exports Property Flattening Property Renaming Preparing Code for the Compiler Input Language Programmatic Evaluation of Strings of JavaScript Code Never Use the with Keyword Checks Provided by the Compiler Type Checking Access Controls Optimizations Performed by the Compiler Processing Closure Primitives Devirtualizing Prototype Methods Inlining x | Table of Contents www.it-ebooks.info 380 383 400 404 406 406 407 408 408 408 414 417 417 418 421 14. Inside the Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 Tour of the Codebase Getting and Building the Compiler Compiler.java CompilerPass.java JSSourceFile.java CompilerOptions.java CompilationLevel.java WarningLevel.java PassFactory.java DefaultPassConfig.java CommandLineRunner.java com.google.common.collect Hidden Options Checks Renaming Optimizations Output Example: Extending CommandLineRunner Example: Visualizing the AST Using DOT What Is DOT? Converting the AST to DOT Hooking into MyCommandLineRunner Example: Creating a Compiler Check Example: Creating a Compiler Optimization 427 427 431 432 433 433 433 434 434 434 435 435 436 436 440 442 448 450 452 453 453 455 456 460 15. Testing Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 Creating Your First Test Example: Testing an Email Validator Assertions Life Cycle of a Test Case Differences from JsUnit Mock Objects goog.testing.PropertyReplacer goog.testing.PseudoRandom goog.testing.MockClock Testing to Ensure That an Error Is Thrown Testing Input Events Testing Asynchronous Behavior goog.testing.ContinuationTestCase goog.testing.AsyncTestCase Running a Single Test Running Multiple Tests 466 466 471 474 475 476 476 478 479 482 483 483 483 487 489 490 Table of Contents | xi www.it-ebooks.info Automating Tests System Testing 492 494 16. Debugging Compiled JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Verify That the Error Occurs in Uncompiled Mode Format Compiled Code for Debugging Compile with --debug=true Use the Closure Inspector 497 498 500 501 A. Inheritance Patterns in JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505 Example of the Functional Pattern Example of the Pseudoclassical Pattern Drawbacks to the Functional Pattern Potential Objections to the Pseudoclassical Pattern Won’t Horrible Things Happen if I Forget the New Operator? Didn’t Crockford Also Say I Wouldn’t Have Access to Super Methods? Won’t All of the Object’s Properties Be Public? Won’t Declaring SomeClass.prototype for Each Method and Field of SomeClass Waste Bytes? I Don’t Need Static Checks—My Tests Will Catch All of My Errors! 505 506 508 511 511 512 512 512 513 B. Frequently Misunderstood JavaScript Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515 JavaScript Objects Are Associative Arrays Whose Keys Are Always Strings There Are Several Ways to Look Up a Value in an Object Single-Quoted Strings and Double-Quoted Strings Are Equivalent There Are Several Ways to Define an Object Literal The prototype Property Is Not the Prototype You Are Looking For The Syntax for Defining a Function Is Significant What this Refers to When a Function Is Called The var Keyword Is Significant Block Scope Is Meaningless 515 516 516 517 520 523 524 526 527 C. plovr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 Getting Started with plovr Config Files Build Command Serve Command Displaying Compiler Errors Auditing Compiled Code Size Generating Externs from Exports Generating a Source Map 532 532 534 535 537 538 539 540 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 xii | Table of Contents www.it-ebooks.info Foreword I was sitting on a balcony on the west side of Manhattan, sipping on a warm glass of scotch with a few others. Michael Bolin joined us. Michael wrote this book. At the time, Michael was working on Google Tasks. I was the tech lead on our JavaScript optimizer, later named Closure Compiler. Michael didn’t join us to talk about JavaScript optimization though. He didn’t want to talk scotch either, to his detriment. He wanted to talk JavaScript-driven text editing, and thus he wanted to talk to Julie. You will receive a proper introduction to Julie in Chapter 9, but for now, just know that Julie is our expert on how text editors are implemented in each web browser. Michael found that, when managing a task list in a web browser, you want a few features built into your plain text editor. You want to make words bold for emphasis. You want a keyboard shortcut to move your cursor to the next task item. He didn’t want to have to write a whole editor. He just wanted a few tweaks on top of what the browser provides, to make the experience smoother for the user. How would you implement this? Julie explained that there are many, many choices for such a thing. “Should you use a textarea?” “Should you use a contentEditable region?” “Should you rely on the browser’s built-in rich text functions?” “Should you implement the ‘bold’ function in JavaScript?” “How do you make sure the cursor ends up on the right line, given that browsers each implement cursor selection differently?” “Should you put all the text editing in an iframe to isolate it from the rest of the page?”† “Is there code you can reuse for this?” You don’t really want to implement all these things from scratch. A lot of them will need to call into esoteric browser APIs in complex ways. Many of those APIs are buggy, poorly documented, or simply do not perform very well. For some of those APIs, it’s easier to read the browser source code than to find reasonable documentation. † Fun fact: as the number of JavaScript developers in a room increases, the probability that someone will suggest “iframes” as the solution to your problem asymptotically approaches 1. xiii www.it-ebooks.info You’ll find answers to many of those specific questions throughout this book. But I think the question that the book is most interested in (and rightly so) is about how to make it easy to reuse code for Ajax apps. It spins off into a few other equally substantial questions. How do you share JavaScript code? How do you organize large amounts of common JavaScript, often built for highly specialized tasks? How do you weigh one team’s need for boatloads of new features and customizations against another team’s need to keep the size of the JavaScript they’re sending to the user small? The Closure Tools were designed to solve many of these problems. Maybe that’s understating the point. These problems are at the very core of their design. Many of the tools were started by our friends on Gmail. Gmail began as a relatively modest JavaScript app. Then they added more and more features, and watched it grow beyond any hope of control or maintainability. Frederick P. Brooks, Jr., famously described largesystem programming as “a tar pit, and many great and powerful beasts have thrashed violently in it.” In a language like JavaScript, a highly dynamic environment where almost everything can be mutated and there’s no standard way to specify contracts (type checking or otherwise), the tar is fast and can suck down even a small group of developers. The Closure Tools developers tried to bring “closure” to this mess. (I agree the pun is terrible. It is not mine.) They followed strict idioms for namespacing code and defining classes. They adopted ECMAScript 4’s type language for specifying contracts. The compiler forced the developer to declare their variables, and emitted warnings for other frowned-upon idioms. The Closure Tools, in short, tried to add some structure to the language. Many engineering teams at Google found this structure useful, and built their products on top of it. A long time passed. The Closure Tools remained proprietary for years. This wasn’t meant to be. Both the compiler and the libraries were always designed to be open source projects. But more importantly, they were designed for building Google apps first, and to be open source projects second. So releasing them publicly took a back seat to other things. Have you ever tried to publicly open up the code of a proprietary project? Several engineers had tried to release Closure Compiler. They had all given up. It is surprisingly difficult. There are two major parts. First, you have to release the code: port it to a public build system like Apache Ant, remove all of its nonopen dependencies, and rewrite any dependencies that you can’t remove. Second, you have to write documentation: loads of documentation. You can imagine how skeptical I was when Michael first came by my desk to talk about making Closure Compiler an open source project. This was early 2009. By this point, “publicly releasing Closure Compiler” was the sort of daunting chore that you’ve procrastinated forever and a half. We’d work on it for a month, realize that we seemed no xiv | Foreword www.it-ebooks.info closer to completion, and then procrastinate some more. It was sort of like reading Infinite Jest. Or cleaning my apartment. Obviously, Michael succeeded in his effort to release the compiler. I think it was some combination of being persistent, asking a lot of good questions, and commissioning a lot of good help from smart people. Of course, Michael is a web app developer first, and a open source engineer second, so he also helped design and write the Closure Compiler web frontend. By pure serendipity, Closure Library, Closure Templates, and Closure Debugger were all released along with it. But making the code available was just the first part of opening up the project. This book marks a major milestone in the second: documenting it all. There’s surprisingly comprehensive knowledge in this book, more than any one engineer on the project knows. I’ve already started telling our interns to stop bothering me, and instead just read this Closure book’s sections on appending DocumentFragments, or on using XHRs, or on the binding of the “this” keyword. You can read this book like an API reference manual for the Closure Tools. You can even read it more generally as an API reference for web application development. If you want to get the most out of it, pay attention to Michael’s explanations of how and why these tools came to be. Michael explains how they can help you to manage complexity. There were many missteps and false starts. Along the way, Michael will drop hints about pitfalls to watch out for, mistakes that we made and how you can avoid them too. You’ll even learn how to build your own tools and compiler plugins to help tame your own large codebase. Just remember that this is first and foremost a practical guide to how to build your own rich web apps. So quit reading this foreword and go to it! —Nick Santos Former Closure Compiler Tech Lead Foreword | xv www.it-ebooks.info www.it-ebooks.info Preface JavaScript borrows many great ideas from other programming languages, but its most unique, and perhaps most powerful, feature is that any code written in JavaScript can run as-is in any modern web browser. This is a big deal, and it is unlikely to change anytime soon. As web browsers improve and become available on more devices, more applications are being ported from desktop applications to web applications. With the introduction of HTML5, many of these applications will be able to work offline for the first time. In order to create a superior user experience, much of the logic that was previously done on the server will also have to be available on the client. Developers who have written their server logic in Java, Python, or Ruby will have to figure out how to port that server logic to JavaScript. Tools like Google Web Toolkit, which translate Java to JavaScript can help with this, though such tools are often clumsy because the idioms from one programming language do not always translate smoothly into that of another. However, if your server code is written in JavaScript, this is not an issue. I believe that the use of server-side JavaScript (SSJS) is just beginning. Previously, most implementations of JavaScript were too slow to be considered a viable option for server code. Fortunately, the recent competition among browser vendors to have the fastest JavaScript engine makes that difference far less significant (http://shootout.alioth.debian .org). Because of the emerging support for offline web applications, it is compelling to write both the client and the server in the same programming language to avoid the perils associated with maintaining parallel implementations of the same logic. Because it is extremely unlikely that all of the major browser vendors will adopt widespread support for a new programming language, that will continue to force the client side of a web application to be written in JavaScript, which in turn will pressure developers to write their servers in JavaScript as well. This means that the size of the average JavaScript codebase is likely to increase dramatically in the coming years, so JavaScript developers will need better tools in order to manage this increased complexity. I see Closure as the solution to this problem. xvii www.it-ebooks.info Closure is a set of tools for building rich web applications with JavaScript, and brings with it a new approach to writing JavaScript and maintaining large JavaScript applications. Each tool in the suite is designed to be used independently (so jQuery developers can make use of the Closure Compiler and Closure Templates, even if they are not interested in the Closure Library), but they are most effective when used together. Many JavaScript toolkits today focus on DOM utilities and UI widgets. Such functionality is incredibly useful when building the interface for a web application, but the emergence of SSJS will require an equivalent effort in building server-side JavaScript libraries. There, the focus is likely to be on data structures and efficient memory usage, both of which are already woven into the Closure framework. I believe that Closure will play an important part in making web applications faster and more reliable. As an active user of the Web, I have a vested interest in making sure this happens. That’s why I had to write this book. Rather than document every API in Closure, I have tried to provide detailed explanations for the most commonly used APIs, particularly those that are unique to the Closure approach. Indeed, learning Closure will change the way you develop JavaScript applications. My Experiences with Closure When I worked at Google from 2005 to 2009, I used Closure to help build Google Calendar and Google Tasks. When the initial work on Calendar was done in 2005, only the Compiler was available, and it was (and is) known internally as the JavaScript Compiler. At the time, there were a number of common JavaScript utilities that teams would copy from one another. This led to many forked versions, so improvements to one copy did not propagate to the others. Meanwhile, the JavaScript codebase for Gmail had grown so large and complex that developers complained that it was too hard for them to add new features. This triggered a rewrite of the Gmail client, which precipitated the development of the two other major tools in the Closure suite: the Library and Templates. The Library was simply named “Closure,” as it was a play on the programming construct used so frequently in JavaScript, as well as the idea that it would bring “closure” to the nightmare that was JavaScript development at Google. Like many other JavaScript toolkits, the goal of Closure was to provide a comprehensive cross-browser library. Instead of adopting an existing solution, such as Dojo, Google decided to roll its own. By having complete control of its library, it could ensure that the API would be stable and that the code would work with its (then) secret weapon: the Closure Compiler. This made it possible to buck the trend established by libraries like Prototype that encouraged the use of absurdly short function names. In Closure, nondescript function names such as $ were eschewed in favor of more descriptive ones because the Compiler would be responsible for replacing longer names with shorter ones. xviii | Preface www.it-ebooks.info The build system at Google was amended to express dependencies between JavaScript files (these relationships are reflected by goog.provide() and goog.require() statements in the Closure Library). For the first time, dependencies were organized into wellnamed packages, which introduced a consistent naming scheme and made utilities easier to find. In turn, this made code reuse more straightforward, and the Library quickly achieved greater consistency and stability than the previous dumping ground of JavaScript utilities. This new collection of common code was far more trustworthy, so teams started to link to it directly rather than fork their own versions, as they were no longer afraid that it would change dramatically out from under them. Finally, Closure Templates (known internally as Soy) were created to address the problem that most existing templating systems were designed to generate server code, but not JavaScript code. The first version of Soy generated only JavaScript, but it was later extended to generate Java as well, to provide better support for the “HTML Decorator” pattern described in Chapter 8, User Interface Components. By the time I started work on Google Tasks, these tools had matured considerably. They were invaluable in creating Tasks. While the Calendar team was busy replacing their original utility functions with Closure Library code and swapping out their homebrewed (or Bolin-brewed) template solution with Soy, I was able to make tons of progress on Tasks because I was starting with a clean slate. Because Gmail has been stung by hard-to-track-down performance regressions in the past, the barrier for getting code checked in to Gmail is high. In integrating Tasks with Gmail, I was forced to gain a deeper understanding of the Closure Tools so I could use them to optimize Tasks to the satisfaction of the Gmail engineers. Later, when I integrated Tasks in Calendar, I learned how to organize a sizable JavaScript codebase so it could be incorporated by even larger JavaScript projects. One of my major takeaways from using Closure is that trying to address limitations of the JavaScript programming language with a JavaScript library is often a mistake. For example, JavaScript does not have support for multiline strings (like triple-quote in Python), which makes it difficult to create templates for HTML. A bad solution (which is the one I created for Google Calendar back in 2005 that they were still trying to phase out so they could replace it with Soy in 2009) is to create a JavaScript library like jQuery Templates (http://plugins.jquery.com/project/jquerytemplate). Such a library takes a string of JavaScript as the template and parses it at runtime with a regular expression to extract the template variables. The appeal, of course, is that implementing something like jQuery Templates is fairly easy, whereas implementing a template solution that is backed by an actual parser is fairly hard (Closure Templates does the latter). In my experience, it is much better to create a tool to do exactly what you want (like Closure Templates) than it is to create a construct within JavaScript that does almost what you want (like jQuery Templates). The former will almost certainly take longer, but it will pay for itself in the long run. Preface | xix www.it-ebooks.info Audience As this is a book about Closure, a suite of JavaScript tools, it assumes that you are already familiar with JavaScript. Nevertheless, because so many JavaScript programmers learn the language by copying and pasting code from existing websites, Appendix B is included to try to identify incorrect assumptions you may have made about JavaScript when coming from your favorite programming language. Even those who are quite comfortable with the language are likely to learn something. Other than the Closure Tools themselves, this book does not assume that you are already familiar with other JavaScript tools (such as JSLint and YUI Compressor) or libraries (such as Dojo and jQuery), though sometimes parallels will be drawn for the benefit of those who are trying to transfer their knowledge of those technologies in learning Closure. The one exception is Firebug, which is a Firefox extension that helps with web development. In addition to being considered an indispensable tool for the majority of web developers, it must be installed in order to use the Closure Inspector. Unlike the other tools in the suite, the use of the Closure Inspector is tied to a single browser: Firefox. Because Firebug is updated frequently and has comprehensive documentation on its website, this book does not contain a tutorial on Firebug because it would likely be outdated and incomplete. http://getfirebug.com should have everything you need to get started with Firebug. Finally, this book makes a number of references to Java when discussing Closure. Although it is not necessary to know Java in order to learn Closure, it is helpful to be familiar with it, as there are elements of Java that motivate the design of the Closure Library. Furthermore, both Closure Templates and the Closure Compiler are written in Java, so developers who want to modify those tools will need to know Java in order to do so. This book will not teach you Java, though a quick search on Amazon will reveal that there of hundreds of others that are willing to do so. ECMAScript Versus JavaScript This book includes several references to ECMAScript, as opposed to JavaScript, so it is important to be clear on the differences between the two. ECMAScript is a scripting language standardized by Ecma International, and JavaScript is an implementation of that standard. Originally, JavaScript was developed by Netscape, so Microsoft developed its own implementation of ECMAScript named JScript. This means that technically, “ECMAScript” should be used to refer to the scripting language that is universally available on all modern web browsers, though in practice, the term “JavaScript” is used instead. To quote Brendan Eich, the creator of JavaScript: “ECMAScript was always an unwanted trade name that sounds like a skin disease.” To be consistent with colloquial usage (and honestly, just because it sounds better), JavaScript is often used to refer to ECMAScript in this book. xx | Preface www.it-ebooks.info However, ECMAScript is mentioned explicitly when referring to the standard. The third edition of the ECMAScript specification (which is also referred to as ES3) was published in December 1999. As it has been around for a long time, it is implemented by all modern web browsers. More recently, the fifth edition of the ECMAScript specification (which is also referred to as ES5) was published in December 2009. (During that 10-year period, there was an attempt at an ES4, but it was a political failure, so it was abandoned.) As ES5 is a relatively new standard, no browser implements it fully at the time of this writing. Because Closure Tools are designed to create web applications that will run on any modern browser, they are currently designed around ES3. However, the Closure developers are well aware of the upcoming changes in ES5, so many of the newer features of Closure are designed with ES5 in mind, with the expectation that most users will eventually be using browsers that implement ES5. Using This Book This book explains all of the Closure Tools in the order they are most likely to be used. • Chapter 1, Introduction to Closure, introduces the tools and provides a general overview of how they fit together with a complete code example that exercises all of the tools. When working on a JavaScript project, you will spend the bulk of your time designing and implementing your application. Because of this, the majority of the book is focused on how to leverage the Closure Library and Closure Templates to implement the functionality you desire. Of all the topics covered in this part of the book, the rich text editor is the one that appears most frequently in the Closure Library discussion group. To that end, I recruited goog.editor expert Julie Parent as a contributing author, so fortunately for you and for me, Julie wrote Chapter 9. • Chapter 2, Annotations for Closure JavaScript, explains how to annotate JavaScript code for use with the Closure Compiler. • Chapter 3, Closure Library Primitives, provides documentation and commentary on every public member of base.js in the Closure Library. • Chapter 4, Common Utilities, surveys functionality for performing common operations with the Closure Library, such as DOM manipulation and user agent detection. • Chapter 5, Classes and Inheritance, demonstrates how classes and inheritance are emulated in Closure. • Chapter 6, Event Management, explains the design of the Closure Library event system and the best practices when using it. • Chapter 7, Client-Server Communication, covers the various ways the goog.net package in the Closure Library can be used to communicate with the server. Preface | xxi www.it-ebooks.info • Chapter 8, User Interface Components, discusses a number of the UI widgets provided by the Closure Library and documents the life cycle of a Closure widget. • Chapter 9, Rich Text Editor, examines the rich text editor widget in the Closure Library in detail. This chapter is written by Julie Parent, who wrote the overwhelming majority of the code for this component. • Chapter 10, Debugging and Logging, demonstrates how to add logging statements that can be used during development, but can also be removed in production code. • Chapter 11, Closure Templates, covers how Templates can be used to generate parameterized JavaScript and Java functions that generate HTML efficiently. The next three chapters will explain how to get the most out of your source code using the Closure Compiler: • Chapter 12, Using the Compiler, demonstrates how to minify code using the Compiler. • Chapter 13, Advanced Compilation, goes beyond the Compiler as a minifier and explains how to use it as a proper compiler, showing how to identify errors at compile time and achieve size reductions that go far beyond what ordinary minification can do. • Chapter 14, Inside the Compiler, explores the source code of the Closure Compiler itself and reveals how to use it as the basis of your own JavaScript tools. The remaining chapters will focus on evaluating your code to ensure that it does what you designed it to do: • Chapter 15, Testing Framework, explains how to write and run unit tests using the Framework. • Chapter 16, Debugging Compiled JavaScript, demonstrates how to find errors in compiled code using the Closure Inspector. The first two appendixes provide additional information about JavaScript: they are designed to enrich your knowledge of the language. The third appendix discusses a build tool that unites the Closure Tools in a way that makes them easier to use. • Appendix A, Inheritance Patterns in JavaScript, discusses two approaches for simulating inheritance in JavaScript and focuses on the advantages of the approach used by Closure. • Appendix B, Frequently Misunderstood JavaScript Concepts, explains features of the language that often trip up developers, both old and new. • Appendix C, plovr, introduces a build tool of the same name that can dramatically simplify and speed up development with the Closure Tools. xxii | Preface www.it-ebooks.info Conventions Used in This Book The following typographical conventions are used in this book: Italic Indicates new terms, URLs, and email addresses. Constant width Used for program listings, as well as within paragraphs to refer to program elements such as filenames, file extensions, variable or function names, databases, data types, environment variables, statements, and keywords. Constant width bold Shows commands or other text that should be typed literally by the user. Constant width italic Shows text that should be replaced with user-supplied values or by values determined by context. This icon signifies a tip, suggestion, or general note. This icon indicates a warning or caution. Using Code Examples This book is here to help you get your job done. In general, you may use the code in this book in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission. We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, copyright holder, and ISBN. For example: “Closure: The Definitive Guide by Michael Bolin (O’Reilly). Copyright 2010 Michael Bolin, 978-1-449-38187-5.” If you feel your use of code examples falls outside fair use or the permission given here, feel free to contact us at permissions@oreilly.com. Preface | xxiii www.it-ebooks.info Safari® Books Online Safari Books Online is an on-demand digital library that lets you easily search over 7,500 technology and creative reference books and videos to find the answers you need quickly. With a subscription, you can read any page and watch any video from our library online. Read books on your cell phone and mobile devices. Access new titles before they are available for print, and get exclusive access to manuscripts in development and post feedback for the authors. Copy and paste code samples, organize your favorites, download chapters, bookmark key sections, create notes, print out pages, and benefit from tons of other time-saving features. O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital access to this book and others on similar topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com. How to Contact Us Please address comments and questions concerning this book to the publisher: O’Reilly Media, Inc. 1005 Gravenstein Highway North Sebastopol, CA 95472 800-998-9938 (in the United States or Canada) 707-829-0515 (international or local) 707 829-0104 (fax) We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at: http://oreilly.com/catalog/9781449381875/ To comment or ask technical questions about this book, send email to: bookquestions@oreilly.com For more information about our books, conferences, Resource Centers, and the O’Reilly Network, see our website at: http://www.oreilly.com Acknowledgments I would like to start out by thanking my contributing author, Julie Parent, for her outstanding work on the rich text editing chapter, and perhaps more importantly, for her many years of work on the rich text editor widget itself while working at Google. What started out as a component for the (now forgotten) Google Page Creator product xxiv | Preface www.it-ebooks.info way back in 2005 has become a critical widget for many Google Apps today (most notably, Gmail). If they gave out doctorates for the field of “little-known browser bugs that make rich text editing in the browser nearly impossible,” then Julie would be a leader in the field and Chapter 9 could have been used as her dissertation. Julie, thank you so much for putting the same amount of diligence into writing your chapter as you did in developing the rich text editor in the first place. Next, I owe a tremendous amount of thanks (and a nice bottle of scotch) to Nick Santos, who has been a phenomenal technical reviewer. He responded to the call for reviewers with alacrity and his enthusiasm in the project never waned. In doing a review of this book, Nick effectively engaged in a 35,000-line code review, and provided so many corrections and helpful suggestions that this book probably would not even be worth reading if Nick had not read it first. In addition to all of his work as a reviewer, Nick played (and continues to play) an active role in open-sourcing the Closure Compiler as well as its development. You can see the breadth and depth of Nick’s knowledge in the Closure Compiler discussion group, as he is an extremely active member there, as well. In addition to Nick, I was fortunate enough to have two other Google engineers who helped build pieces of the Closure Tools suite to participate in the review process. Erik Arvidsson (who co-created the Closure Library with Dan Pupius—thanks, Dan!) provided lots of valuable feedback on the chapters on the Library. Likewise, the creator of Closure Templates, Kai Huang, provided detailed criticisms of the chapter on Soy. Many thanks to both Erik and Kai for lending their time and expertise to ensure that the story of their work was told correctly. As Nick explained in the foreword, taking a closed source project and turning it into an open source one is a lot of work, so I would also like to recognize those who played an important role in that process. Nathan Naze, Daniel Nadasi, and Shawn Brenneman all pitched in to open source the Closure Library. Robby Walker and Ojan Vafai also helped out by moving the rich text editor code into the Library so that it could be opensourced, as well. Extra thanks to Nathan for continuing to manage the open-sourcing effort and for giving talks to help get the word out about the Library. It is certainly an example of well-spent 20% time at Google. In that same vein, I would also like to thank Dan Bentley for helping ensure that all of this Closure code made it out into the open. Google is lucky to have him working in their Open Source Programs Office, as his genuine belief and interest in open source benefits the entire open source community. I would also like to thank my former teammates on the Closure Compiler team who all contributed to the open source effort as well as Compiler development: Robert Bowdidge, Alan Leung, John Lenz, Nada Amin, and Antonio Vincente. Also, thanks to our manager, Ram Ramani, who supported this effort the whole way through and helped coordinate the open source launch. I also want to give credit to our intern, Simon Mathieu, who worked with me to create the Closure Compiler Service. Preface | xxv www.it-ebooks.info Thank you to Joey Schorr for navigating the world of not just Firefox extensions, but also Firebug extensions, in order to create and maintain the Closure Inspector. Without Joey, all of our compiled JavaScript would be filled with alert() statements (though for some of us, that’s how our uncompiled JavaScript looks, too!). Five hundred pages later, I now have a much better appreciation for the work of David Westbrook and Ruth Wang, who as tech writers at Google produced much of the public documentation for Closure Tools that is freely available on http://code.google.com. Thanks to both David and Ruth for their attention to detail in explaining what these Closure shenanigans are all about. Although I have already dropped the names of a lot of Googlers, I know that there are many more who have contributed to Closure over the years, so I am sure that I am leaving some out, and I apologize for any omissions. I hope that all of you continue to make Closure the best choice when choosing a set of tools for building amazing web applications. As frontend engineers working on products at Google, your work already has the opportunity to reach many users around the world. But now that all of Closure is open source, you have the opportunity to have a similar impact on web developers. I hope that opportunity does not go to waste! Believe it or not, there were also people who never worked at Google who also helped make this book possible. Thank you to my editors, Julie Steele and Simon St.Laurent, who helped green-light this project back in November 2009, less than a month after the Closure Tools were even open-sourced. I would also like to thank my “unofficial editors,” which includes everyone who posted a comment on the Rough Cut, especially Donald Craig and Derek Slager. Not only did all of you help make this book better, but you also gave me the confidence that someone was actually going to read this thing someday and that it was worth writing. Finally, I would like to thank Sarah, without whose unrelenting patience and support I would not have been able to finish this book. In many ways, writing a book is a lonely endeavor, but you never let it get that way because you were there to encourage me throughout the entire process. I would also like to thank my mom, whose love of books undoubtedly helped inspire me to write this one. Thanks to my sister Katie for letting me know when she noticed a jump in my page count graph, as it means a lot to know that someone out there cares and is paying attention. And last but not least, I would like to thank my father for betting me $500 that I would not be a published author by 30, which provided the extra motivation I needed to see this book all the way through. I’ll take my winnings in cash, old man! xxvi | Preface www.it-ebooks.info CHAPTER 1 Introduction to Closure Closure is a collection of tools for building rich web applications in JavaScript. Each tool in the suite is open-sourced under the Apache 2.0 license, and is created, maintained, and made available for free by Google. Closure is used in the development of many web applications at Google, including Gmail, Google Maps, and Google Docs. The performance and scale of these web applications is a testament to the strength and sophistication of the Closure Tools suite. Some developers might balk at the thought of expanding the role of JavaScript in their web applications. Why should the codebase of a language that relies on global variables and has no support for namespaces get bigger and more complex? Others may point out that Google simultaneously offers the Google Web Toolkit (GWT) so that web developers do not even have to concern themselves with JavaScript. Why do we need new tools for JavaScript when the tools for avoiding it already exist? Whether you like it or not, JavaScript is the lingua franca of the Web. Although tools such as GWT do a reasonable job of abstracting away JavaScript, they also create barriers between you and the metal of the browser. Instead of creating tools to circumvent JavaScript, why not build tools to address its problems head-on? This is where Closure comes in: the tools make it significantly easier to maintain a large JavaScript codebase. Using Closure essentially extends JavaScript to include features available in other programming languages, such as namespaces, type checking, and data hiding. Furthermore, it does so without incurring the runtime overhead of previous approaches (see Appendix B). More importantly, it does not sacrifice the good parts of JavaScript (prototypal inheritance, regular expression literals, first-class functions) that are not available in other programming languages, such as Java. This transforms JavaScript from a language one must “deal with” into one that is fun and productive. 1 www.it-ebooks.info In addition to making your development team happier, using Closure will also make your users happier. The crown jewel of the suite, the Closure Compiler, can significantly reduce the amount of JavaScript that users will have to download when visiting your site. It does this by replacing long variable names with shorter ones, removing unused code, and by applying a variety of other optimizations. In addition to making your web application faster, shrinking code will also save you money because it reduces bandwidth costs. Further, it helps protect your IP because renaming variables serves to obfuscate your code, making it more difficult for other websites to copy your functionality. Tools Overview In addition to the Closure Compiler, there are currently four other tools available in the Closure suite. Figure 1-1 shows the common workflow when using all of the tools together. This section provides a brief description of each tool in the order in which it is encountered in this book. Figure 1-1. Workflow when using Closure Tools. Closure Library The Closure Library is a comprehensive JavaScript library analogous to other contemporary offerings, such as jQuery, Dojo, and MooTools. The coding style and use of annotations in the Closure Library are tailored for use with the Closure Compiler, which is its main distinguishing feature when compared to other JavaScript libraries. 2 | Chapter 1: Introduction to Closure www.it-ebooks.info This can have dramatic effects on the Compiler’s ability to minify code, as a simple minification experiment finds that Closure Library code can be 85 percent smaller when using the Closure Compiler in place of the YUI Compressor (http://blog.bolinfest.com/ 2009/11/example-of-using-closure-compiler-to.html). The Closure Library is also implemented with a strong emphasis on performance and readability. It is frugal in creating objects, but generous in naming and documenting them. It also has an elegant event system, support for classes and inheritance, and a broad collection of UI components, including a rich text editor. Closure Library code is regularly tested across browsers, and to the extent that it can, will also work in nonbrowser JavaScript environments, such as Rhino (http://www.mozilla.org/rhino/) and the Microsoft Windows Script Host. Because the Library is a resource for Google engineers first and an open source project second, it is a safe bet that every line of code in the Library was developed to support at least one Google product. The style of the Library will first be introduced in Chapter 2, and the functionality of the Library will be covered in the following eight chapters. Closure Templates Closure Templates provide an intuitive syntax for creating efficient JavaScript functions (or Java objects) that generate HTML. This makes it easier to create a large string of HTML that can in turn be used to build up the DOM. Unfortunately, most programming languages do not have native support for templates, so creating a separate templating solution is a common practice for web frameworks (J2EE has JSP, Python developers frequently use Django’s template system, etc.). A unique aspect of Closure Templates is that the same template can be compiled into both Java and JavaScript, so those running servers written in Java (or JavaScript!) can use the same template on both the server and the client. The benefits of this, along with Closure Templates, will be covered in Chapter 11. Closure Compiler The Closure Compiler is a JavaScript optimizing compiler: it takes JavaScript source code as input and produces behaviorally equivalent source code as output. That is, when the output code is used in place of the input code, the observable effect will be the same (though the output code is likely to execute faster than the original). As a simple example, if the input code were: /** * @param {string} name */ var hello = function(name) { alert('Hello, ' + name); }; hello('New user'); Tools Overview | 3 www.it-ebooks.info then the Compiler would produce the following behaviorally-equivalent output: alert("Hello, New user"); Executing either code snippet will have the same effect: an alert box will display with the text "Hello, New user". However, the output code is more concise, so it can be downloaded, parsed, and executed faster than the input code. Furthermore, the Compiler can detect a large class of errors by performing static checks at compile time, much like JSLint. This helps find bugs earlier, dramatically speeding up JavaScript development. Using the Compiler to identify problems is not a substitute for unit testing, but it certainly helps. For existing JavaScript applications, the Closure Compiler is likely to be the Closure Tool that is most immediately useful. Although it will be most effective when used to compile code written in the style of the Closure Library, replacing an existing dependency on jQuery or Dojo with that of the Library could be time-consuming. By comparison, the Closure Compiler can be used in place of existing JavaScript minifiers (such as JSMin or YUI Compressor) with much less effort. The Compiler will be introduced in Chapter 12. Closure Testing Framework The Closure Testing Framework is a unit-testing framework that runs in the browser, much like JsUnit. Most Closure Library code has a corresponding test that runs in the Framework. It is good programming practice to create tests for your own code and to run them regularly to identify regressions. Because the Closure Testing Framework runs inside the browser, additional software is needed to automate the process of starting up a browser, running the tests, and recording the results. Selenium is likely the best solution for that purpose. The Closure Testing Framework will be explained in Chapter 15. Closure Inspector The Closure Inspector is an extension to Firebug to aid in debugging compiled JavaScript. Firebug is an extension for Firefox (which is not developed by Google) that brings together a number of web development tools, including a JavaScript debugger, available through the browser. When using the Firebug debugger with obfuscated code produced by the Closure Compiler, it is hard to trace a runtime error back to its position in the original source code. The Closure Inspector facilitates debugging by exposing the mapping between the original and compiled code in the Firebug UI. It will be discussed in more detail in Chapter 16. 4 | Chapter 1: Introduction to Closure www.it-ebooks.info Closure Design Goals and Principles Before diving into the code, it is important to understand the design goals and principles that motivate the implementation of the Closure Tools. Much of the design of the toolkit is motivated by the capabilities of the Compiler and the style of the Library. Reducing Compiled Code Size Is Paramount The primary objective of the Closure Compiler is to reduce the size of JavaScript code. Because Google serves so many pages with JavaScript and prides itself on speed (Google engineers have T-shirts that say “Fast is my favorite feature”), it is imperative that the JavaScript required to display a page is as small as possible. Even when JavaScript is cached by the browser, it must still be parsed and executed again when the page that uses it is reloaded. The smaller the JavaScript, the less time this takes. Specifically, the Compiler favors reducing the size of gzipped JavaScript over uncompressed JavaScript. For example, it might be tempting to have the Compiler rewrite the following function: Line.prototype.translate = function(distance) { this.x1 += distance; this.y1 += distance; this.x2 += distance; this.y2 += distance; }; so that it creates a temporary variable for this before compiling the code: Line.prototype.translate = function(distance) { var me = this; me.x1 += distance; me.y1 += distance; me.x2 += distance; me.y2 += distance; }; The motivation here is that the Compiler can rename me but cannot rename this because this is a JavaScript keyword. Although using the temporary variable results in smaller uncompressed code when run through the Compiler, the gzipped size of the compiled code is larger when using the temporary variable. Because the overwhelming majority of browsers can accept gzipped JavaScript, the Compiler focuses on optimizations that will benefit the gzipped code size. Most optimizations are wins for both compressed and gzipped JavaScript, but there are occasionally exceptions, such as this one. JavaScript code should be written in a way that can be compiled efficiently by the Compiler. This is fundamental to understanding the design of the Closure Library: the verbosity of the code is not representative of its size after being processed by the Compiler. If more code (or annotations) need to be written to result in smaller compiled code, then that is preferable to writing less code that results in larger compiled code. Closure Design Goals and Principles | 5 www.it-ebooks.info For example, writing comprehensive utility libraries is acceptable as long as the unused parts can be removed by the Compiler. Complementary methods should be replaced with a single parameterized method (e.g., prefer setEnabled(enable) to enable() and disable()). This reduces the number of method declarations and is more amenable to function currying. Therefore, to fully understand the Closure Library, one must also understand how the Compiler rewrites JavaScript code. One may wonder if any emphasis is placed on using the Compiler to produce JavaScript with better runtime performance. The short answer is yes, but because runtime performance is so much harder to measure than code size, more engineering time has been spent on improving minification. Fortunately, many reductions in code size also improve performance, as many optimizations result from evaluating expressions at compile time rather than runtime. All Source Code Is Compiled Together The Compiler is designed to compile all code that could be run during the course of the application at once. As shown in Figure 1-1, there are many potential sources of input, but the Compiler receives all of them at the same time. This is in contrast to other languages, in which portions of source code are compiled into reusable modules. In Closure, it is the opposite: source code is initially compiled together and is then carved up into modules that may be progressively loaded by a web application. This is done to ensure that the variable names used in individual modules are globally unique. Managing Memory Matters As the Gmail team explained on their blog (http://gmailblog.blogspot.com/2008/09/new -gmail-code-base-now-for-ie6-too.html), they encountered a performance problem with Internet Explorer 6 (IE6) with respect to memory management that prevented IE6 users from getting a newer version of Gmail until Microsoft provided a patch to IE6 users. Although this caused the Gmail engineers a considerable amount of pain, it did force them to invest extra effort into managing memory on the client. Like most modern programming languages, JavaScript manages its own memory. Unfortunately, this does not preclude the possibility of a memory leak, as failing to release references to objects that are no longer needed can still cause an application to run out of memory. The Closure Library uses goog.Disposable to ensure that references are released as soon as possible so that objects may be garbage collected. goog.Disposa ble will be introduced in Chapter 5, and managing event listeners (another common source of memory leaks) will be explained in Chapter 6. The issues with IE6’s garbage collection are so severe that the Closure Library offers goog.structs.Map as an abstraction around JavaScript’s native Object to reduce the number of string allocations when iterating over the keys of an object. The justification is revealed in a comment in the goog.structs.Map source code: 6 | Chapter 1: Introduction to Closure www.it-ebooks.info /** * An array of keys. This is necessary for two reasons: * 1. Iterating the keys using for (var key in this.map_) allocates an * object for every key in IE which is really bad for IE6 GC perf. * 2. Without a side data structure, we would need to escape all the keys * as that would be the only way we could tell during iteration if the * key was an internal key or a property of the object. * * This array can contain deleted keys so it's necessary to check the map * as well to see if the key is still in the map (this doesn't require a * memory allocation in IE). * @type {!Array.} * @private */ this.keys_ = []; Now that Microsoft has provided a patch for the problem with IE6, such micromanagement of string allocation is less compelling. However, as more mobile devices are running web browsers with fewer resources than their desktop equivalents, attention to memory management in general is still merited. Make It Possible to Catch Errors at Compile Time The Closure Compiler is not the first tool to try to identify problems in JavaScript code by performing static checks; however, there is a limit to how much can be inferred by the source code alone. To supplement the information in the code itself, the Compiler makes use of developer-supplied annotations which appear in the form of JavaScript comments. These annotations are explained in detail in Chapter 2. By annotating the code to indicate the parameter and return types of functions, the Compiler can identify when an argument of the incorrect type is being passed to a function. Similarly, annotating the code to indicate which data are meant to be private makes it possible for the Compiler to identify when the data are illegally accessed. By using these annotations in your code, you can use the Compiler to increase your confidence in your code’s correctness. Code Must Work Without Compilation Although the Compiler provides many beneficial transformations to its input, the code for the Closure Library is also expected to be able to be run without being processed by the Compiler. This not only ensures that the input language is pure JavaScript, but also makes debugging easier, as it is always possible to use the deobfuscated code. Code Must Be Browser-Agnostic The Closure Library is designed to abstract away browser differences and should work in all modern browsers (including IE6 and later). It should also work in non-browser environments, such as Rhino and the Windows Script Host (though historically the Closure Design Goals and Principles | 7 www.it-ebooks.info motivation behind creating a browser-agnostic library was to support WorkerPools in Google Gears). This means that common browser objects such as window and naviga tor are not assumed to exist. This does not mean that the Closure Library lacks utilities for dealing with browserspecific APIs such as the DOM. On the contrary, the Library provides many methods for working within the browser. However, Library code that works with objects that are universally available in all JavaScript environments (strings, arrays, functions, etc.) does not rely on APIs that are available only to the browser. This makes the Closure Library a good candidate for use with server-side JavaScript, as well. Built-in Types Should Not Be Modified Built-in object prototypes, such as Object, Function, Array, and String should not be modified. This makes it possible to use Closure alongside other JavaScript libraries, such as jQuery. In practice, however, using Closure with other libraries is generally inefficient. Each library will have its own logic for event management, string manipulation, etc., which means that duplicate logic will likely be included, increasing the amount of JavaScript code that will be loaded. Code Must Work Across Frames The Closure Library is designed to be loaded once per frameset (though it is designed so that multiple instances of the Library should not “step on each other” if it is loaded more than once). The Library recognizes that built-in objects, such as Arrays, may be constructed in different frames and therefore will have distinct prototypes. For web applications that use multiple frames (such as using a separate