AG TRB U1.indb U1 Walch L9Pt2 Examples

User Manual: U1

Open the PDF directly: View PDF PDF.
Page Count: 13

DownloadAG TRB U1.indb U1 Walch L9Pt2 Examples
Open PDF In BrowserView PDF
UNIT 1 • SIMILARITY, CONGRUENCE, AND PROOFS
Lesson 9: Proving Theorems About Triangles
Instruction
Prerequisite Skills
This lesson requires the use of the following skills:
•

classifying triangles

•

i dentifying and using vertical angles, supplementary angles, and complementary angles to
find unknown angle measures

•

a pplying the Triangle Sum Theorem and the Exterior Angle Theorem to find unknown
measures of triangles

•

justifying congruence of triangles

•

writing various forms of proofs

Introduction
Isosceles triangles can be seen throughout our daily lives in structures, supports, architectural details,
and even bicycle frames. Isosceles triangles are a distinct classification of triangles with unique
characteristics and parts that have specific names. In this lesson, we will explore the qualities of
isosceles triangles.
Key Concepts
•

Isosceles triangles have at least two congruent sides, called legs.

•

The angle created by the intersection of the legs is called the vertex angle.

•

Opposite the vertex angle is the base of the isosceles triangle.

•

E ach of the remaining angles is referred to as a base angle. The intersection of one leg and the
base of the isosceles triangle creates a base angle.

U1-565
© Walch Education

CCGPS Analytic Geometry Teacher Resource

UNIT 1 • SIMILARITY, CONGRUENCE, AND PROOFS
Lesson 9: Proving Theorems About Triangles
Instruction
Vertex angle

Leg

Leg

Base angle

•

Base

Base angle

The following theorem is true of every isosceles triangle.
Theorem
Isosceles Triangle Theorem
If two sides of a triangle are congruent, then the angles opposite the
congruent sides are congruent.
A

B

m∠B ≅ m∠C

C

U1-566
CCGPS Analytic Geometry Teacher Resource

© Walch Education

UNIT 1 • SIMILARITY, CONGRUENCE, AND PROOFS
Lesson 9: Proving Theorems About Triangles
Instruction
•

If the Isosceles Triangle Theorem is reversed, then that statement is also true.

•

This is known as the converse of the Isosceles Triangle Theorem.
Theorem
Converse of the Isosceles Triangle Theorem
If two angles of a triangle are congruent, then the sides opposite those
angles are congruent.
A

B

C

AB ≅ AC
•

I f the vertex angle of an isosceles triangle is bisected, the bisector is perpendicular to the base,
creating two right triangles.

U1-567
© Walch Education

CCGPS Analytic Geometry Teacher Resource

UNIT 1 • SIMILARITY, CONGRUENCE, AND PROOFS
Lesson 9: Proving Theorems About Triangles
Instruction
•

In the diagram that follows, D is the midpoint of BC .
A

B

D

C

•

E quilateral triangles are a special type of isosceles triangle, for which each side of the triangle
is congruent.

•

If all sides of a triangle are congruent, then all angles have the same measure.
Theorem
If a triangle is equilateral then it is equiangular, or has equal angles.
B

A

C

∠A ≅ ∠B ≅ ∠C
U1-568
CCGPS Analytic Geometry Teacher Resource

© Walch Education

UNIT 1 • SIMILARITY, CONGRUENCE, AND PROOFS
Lesson 9: Proving Theorems About Triangles
Instruction
•

Each angle of an equilateral triangle measures 60˚ (180 ÷ 3 = 60 ).

•

Conversely, if a triangle has equal angles, it is equilateral.
Theorem
If a triangle is equiangular, then it is equilateral.

AB ≅ BC ≅ AC
•

These theorems and properties can be used to solve many triangle problems.

Common Errors/Misconceptions
•

incorrectly identifying parts of isosceles triangles

•

not identifying equilateral triangles as having the same properties of isosceles triangles

•

incorrectly setting up and solving equations to find unknown measures of triangles

•

misidentifying or leaving out theorems, postulates, or definitions when writing proofs

U1-569
© Walch Education

CCGPS Analytic Geometry Teacher Resource

UNIT 1 • SIMILARITY, CONGRUENCE, AND PROOFS
Lesson 9: Proving Theorems About Triangles
Instruction
Guided Practice 1.9.2
Example 1
Find the measure of each angle of ABC .
A

(4x)˚

(6x – 36)˚

B

C

1. Identify the congruent angles.
The legs of an isosceles triangle are congruent; therefore, AB ≅ AC .
The base of ABC is BC .
∠B and ∠C are base angles and are congruent.
2. Calculate the value of x.
Congruent angles have the same measure.
Create an equation.
m∠B = m∠C

The measures of base angles of
isosceles triangles are equal.

4x = 6x – 36

Substitute values for m∠B and
m∠C.

–2x = –36

Solve for x.

x = 18

U1-570
CCGPS Analytic Geometry Teacher Resource

© Walch Education

UNIT 1 • SIMILARITY, CONGRUENCE, AND PROOFS
Lesson 9: Proving Theorems About Triangles
Instruction
3. Calculate each angle measure.
m∠B = 4x = 4(18) = 72
m∠C = 6(18) – 36 = 72

Substitute the value of x into the
expression for m∠B.
Substitute the value of x into the
expression for m∠C.

m∠A + m∠B + m∠C = 180 The sum of the angles of a triangle
is 180˚.
m∠A + 72 + 72 = 180

Substitute the known values.

m∠A = 36

Solve for m∠A.

4. Summarize your findings.
m∠A = 36
m∠B = 72
m∠C = 72							

U1-571
© Walch Education

CCGPS Analytic Geometry Teacher Resource

UNIT 1 • SIMILARITY, CONGRUENCE, AND PROOFS
Lesson 9: Proving Theorems About Triangles
Instruction
Example 2
Determine whether ABC with vertices A (–4, 5), B (–1, –4), and C (5, 2) is an isosceles triangle. If it
is isosceles, name a pair of congruent angles.
1. Use the distance formula to calculate the length of each side.
Calculate the length of AB .
d = ( x2 − x1 ) 2 + ( y2 − y1 ) 2
AB =

[( −1) − ( −4) ]2 + [( −4) − (5) ]2

AB = (3) 2 + ( −9) 2

Substitute (–4, 5) and (–1, –4)
for (x1, y1) and (x2, y2).
Simplify.

AB = 9 + 81
AB = 90 = 3 10
Calculate the length of BC .
d = ( x2 − x1 ) 2 + ( y2 − y1 ) 2
BC =

[(5) − ( −1) ]2 + [(2) − ( −4) ]2

BC = (6) 2 + (6) 2

Substitute (–1, –4) and (5, 2)
for (x1, y1) and (x2, y2).
Simplify.

BC = 36 + 36
BC = 72 = 6 2
Calculate the length of AC .
d = ( x2 − x1 ) 2 + ( y2 − y1 ) 2
AC =

[(5) − ( −4) ]2 + [(2) − (5) ]2

AC = (9) 2 + ( −3) 2

Substitute (–4, 5) and (5, 2)
for (x1, y1) and (x2, y2).
Simplify.

AC = 81 + 9
AC = 90 = 3 10
U1-572
CCGPS Analytic Geometry Teacher Resource

© Walch Education

UNIT 1 • SIMILARITY, CONGRUENCE, AND PROOFS
Lesson 9: Proving Theorems About Triangles
Instruction
2. Determine if the triangle is isosceles.
A triangle with at least two congruent sides is an isosceles triangle.
AB ≅ AC , so ABC is isosceles.
3. Identify congruent angles.
If two sides of a triangle are congruent, then the angles opposite
the sides are congruent.
∠B ≅ ∠C 							
Example 3
Given AB ≅ AC , prove that ∠B ≅ ∠C .
A

B

C

1. State the given information.
AB ≅ AC

U1-573
© Walch Education

CCGPS Analytic Geometry Teacher Resource

UNIT 1 • SIMILARITY, CONGRUENCE, AND PROOFS
Lesson 9: Proving Theorems About Triangles
Instruction
2. D
 raw the angle bisector of ∠A and extend it to BC , creating the
perpendicular bisector of BC . Label the point of intersection D.
Indicate congruent sides.
A

B

C

D

∠B and ∠C are congruent corresponding parts.
3. Write the information in a two-column proof.
Statements
1. AB ≅ AC

Reasons
1. Given

 here is exactly one line
2. D
 raw the angle bisector of ∠A 2. T
through two points.
and extend it to BC , creating
a perpendicular bisector of
BC and the midpoint of BC .
3. Definition of midpoint
3. BD ≅ BC
4. Reflexive Property
4. AD ≅ AD
5. SSS Congruence Statement
5.  ABD ≅ ACD
6. C
 orresponding Parts of
6. ∠B ≅ ∠C
Congruent Triangles are
Congruent
									
U1-574
CCGPS Analytic Geometry Teacher Resource

© Walch Education

UNIT 1 • SIMILARITY, CONGRUENCE, AND PROOFS
Lesson 9: Proving Theorems About Triangles
Instruction
Example 4
Find the values of x and y.

(4x + 24)˚

(11y – 23)˚

1. Make observations about the figure.
The triangle in the diagram has three congruent sides.
A triangle with three congruent sides is equilateral.
Equilateral triangles are also equiangular.
The measure of each angle of an equilateral triangle is 60˚.
An exterior angle is also included in the diagram.
The measure of an exterior angle is the supplement of the adjacent
interior angle.

U1-575
© Walch Education

CCGPS Analytic Geometry Teacher Resource

UNIT 1 • SIMILARITY, CONGRUENCE, AND PROOFS
Lesson 9: Proving Theorems About Triangles
Instruction
2. Determine the value of x.
The measure of each angle of an equilateral triangle is 60˚.
Create and solve an equation for x using this information.
4x + 24 = 60

Equation

4x = 36

Solve for x.

x=9
The value of x is 9.
3. Determine the value of y.
The exterior angle is the supplement to the interior angle.
The interior angle is 60˚ by the properties of equilateral triangles.
The sum of the measures of an exterior angle and interior angle pair
equals 180.
Create and solve an equation for y using this information.
11y – 23 + 60 = 180

Equation

11y + 37 = 180

Simplify.

11y = 143

Solve for y.

y = 13
The value of y is 13.						

U1-576
CCGPS Analytic Geometry Teacher Resource

© Walch Education

UNIT 1 • SIMILARITY, CONGRUENCE, AND PROOFS
Lesson 9: Proving Theorems About Triangles
Instruction
Example 5
ABC is equilateral. Prove that it is equiangular.
1. State the given information.
ABC is an equilateral triangle.
2. Plan the proof.
Equilateral triangles are also isosceles triangles.
Isosceles triangles have at least two congruent sides.
AB ≅ BC
∠A and ∠C are base angles in relation to AB and BC .
∠A ≅ ∠C because of the Isosceles Triangle Theorem.
BC ≅ AC
∠A and ∠B are base angles in relation to BC and AC .
∠A ≅ ∠B because of the Isosceles Triangle Theorem.
By the Transitive Property, ∠A ≅ ∠B ≅ ∠C ; therefore, ABC is
equiangular.
3. Write the information in a paragraph proof.
Since ABC is equilateral, AB ≅ BC and BC ≅ AC . By the Isosceles
Triangle Theorem, ∠A ≅ ∠C and ∠A ≅ ∠B . By the Transitive
Property, ∠A ≅ ∠B ≅ ∠C ; therefore, ABC is equiangular.

U1-577
© Walch Education

CCGPS Analytic Geometry Teacher Resource



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : Yes
Has XFA                         : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37
Instance ID                     : uuid:be443321-44a6-e144-8fb4-c7bb154eff13
Document ID                     : xmp.did:237FAB2B7D2568118083AF7913F2FD78
Original Document ID            : adobe:docid:indd:31d873ef-5bee-11de-94e7-a41eab4df7eb
Rendition Class                 : proof:pdf
Version ID                      : 1
Derived From Instance ID        : xmp.iid:7D572723EC2068118083AF7913F2FD78
Derived From Document ID        : xmp.did:AFB9CDF2052168118C14A7410E312A1F
Derived From Original Document ID: adobe:docid:indd:31d873ef-5bee-11de-94e7-a41eab4df7eb
Derived From Rendition Class    : default
History Action                  : saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved
History Instance ID             : xmp.iid:39E1AAD8233D116899BDAC2F28C6014C, xmp.iid:39E1AAD9233D116899BDAC2F28C6014C, xmp.iid:F907019E224A11689457B9121E3189A2, xmp.iid:F907019F224A11689457B9121E3189A2, xmp.iid:315EDFEE22601168A7BAD22318F3EEAD, xmp.iid:315EDFEF22601168A7BAD22318F3EEAD, xmp.iid:04F1DDE72B2368118C14AAD823316792, xmp.iid:05F1DDE72B2368118C14AAD823316792, xmp.iid:F77821402D2368118C14AAD823316792, xmp.iid:26006570482368118083831CE4D5F2DD, xmp.iid:B7F5AD231F2068118C14FEB5CEED7E9B, xmp.iid:2F27B00B0F2068118083C59141F02294, xmp.iid:AEC9BDCBC32068118083B64B243DCE17, xmp.iid:87316638122068118083CE6561BC1566, xmp.iid:88316638122068118083CE6561BC1566, xmp.iid:D967B9B2DB2268118083CE6561BC1566, xmp.iid:E1F0ABCD212868118C149D4E500D3D7F, xmp.iid:E2F2C710A62168118083FBA0B1D0D258, xmp.iid:E3F2C710A62168118083FBA0B1D0D258, xmp.iid:1229AF6BDD2168118083FBA0B1D0D258, xmp.iid:E345A5ABDD2168118083FBA0B1D0D258, xmp.iid:25F12EB4DD2168118083FBA0B1D0D258, xmp.iid:017ABF5BDE2168118083FBA0B1D0D258, xmp.iid:B43F4578E72168118083FBA0B1D0D258, xmp.iid:B9B86531222268118083FBA0B1D0D258, xmp.iid:1193EA1B252268118083FBA0B1D0D258, xmp.iid:17B99855292268118083FBA0B1D0D258, xmp.iid:9DA29A6A292268118083FBA0B1D0D258, xmp.iid:5286CF7F2B2268118083FBA0B1D0D258, xmp.iid:20FA1DDA2B2268118083FBA0B1D0D258, xmp.iid:C0C78BED2C2268118083FBA0B1D0D258, xmp.iid:D463E2242F2268118083FBA0B1D0D258, xmp.iid:A9BFFE29302268118083FBA0B1D0D258, xmp.iid:BE747F1A372268118083FBA0B1D0D258, xmp.iid:FF8A259F3B2268118083FBA0B1D0D258, xmp.iid:C44E32B33E2268118083FBA0B1D0D258, xmp.iid:5FA46D6F4B2268118083FBA0B1D0D258, xmp.iid:864D8690532268118083FBA0B1D0D258, xmp.iid:049A2E11542268118083FBA0B1D0D258, xmp.iid:D8DEB0C0E02268118083FBA0B1D0D258, xmp.iid:00B2EE54E12268118083FBA0B1D0D258, xmp.iid:13F11E7DE12268118083FBA0B1D0D258, xmp.iid:D85D8829972468118083F660AAAA71EC, xmp.iid:42B4A824E02668118083F660AAAA71EC, xmp.iid:27200BB0E12668118083F660AAAA71EC, xmp.iid:C9A797E1E12668118083F660AAAA71EC, xmp.iid:464922310C2068118C14A51436B09922, xmp.iid:3213123D0D2068118C14A51436B09922, xmp.iid:85313C72102068118C14A51436B09922, xmp.iid:92FC38C9A720681180838AC4CBBE801C, xmp.iid:C2B203D6AA20681180838AC4CBBE801C, xmp.iid:3AE8CD6CB820681180838AC4CBBE801C, xmp.iid:AB8FA0D5B820681180838AC4CBBE801C, xmp.iid:05ED6BBE0423681180838AC4CBBE801C, xmp.iid:12060348A22668118083E7922E3EDC3A, xmp.iid:CD93B4B3082068118083CC912A7051F3, xmp.iid:508EA3ED622268118083F40F5C6315FD, xmp.iid:F40B4210912568118083CF9908FB0662, xmp.iid:D0D056AEE72868118083CF9908FB0662, xmp.iid:439CF264EB2868118083CF9908FB0662, xmp.iid:346C8573EB2868118083CF9908FB0662, xmp.iid:8E125766942068118C14D7E681392F5F, xmp.iid:00DF2FEEF72068118C14A7410E312A1F, xmp.iid:AFB9CDF2052168118C14A7410E312A1F, xmp.iid:B0B9CDF2052168118C14A7410E312A1F, xmp.iid:B78D970C152168118C14A7410E312A1F, xmp.iid:B817FB24D32268118C14A7410E312A1F, xmp.iid:890844BCD92268118C14A7410E312A1F, xmp.iid:FAD9C151DC2268118C14A7410E312A1F, xmp.iid:3A2067C6DE2268118C14A7410E312A1F, xmp.iid:65571067E02268118C14A7410E312A1F, xmp.iid:E0FEC413F02268118C14A7410E312A1F, xmp.iid:050980A1F02268118C14A7410E312A1F, xmp.iid:060980A1F02268118C14A7410E312A1F, xmp.iid:2FCDED03A72368118C14A7410E312A1F, xmp.iid:D476D694B12368118C14A7410E312A1F, xmp.iid:10B176E3B62368118C14A7410E312A1F, xmp.iid:9C2C4786BC2368118C14A7410E312A1F, xmp.iid:59AB47CBBF2368118C14A7410E312A1F, xmp.iid:AEA73753C12368118C14A7410E312A1F, xmp.iid:A684FC07CB2368118C14A7410E312A1F, xmp.iid:FF45ED52D12368118C14A7410E312A1F, xmp.iid:8E144F2FD32368118C14A7410E312A1F, xmp.iid:8D1B6A8AD62368118C14A7410E312A1F, xmp.iid:2972CEAEDB2368118C14A7410E312A1F, xmp.iid:420C583EDF2368118C14A7410E312A1F, xmp.iid:B9DC10FB0E2468118C14A7410E312A1F, xmp.iid:F64BDD871C2468118C14A7410E312A1F, xmp.iid:AB753A13202468118C14A7410E312A1F, xmp.iid:EA2B290D2F2468118C14A7410E312A1F, xmp.iid:554957C6382468118C14A7410E312A1F, xmp.iid:02A1D7893C2468118C14A7410E312A1F, xmp.iid:D1F0A6D4402468118C14A7410E312A1F, xmp.iid:7A63EEC7452468118C14A7410E312A1F, xmp.iid:533879E5452468118C14A7410E312A1F, xmp.iid:C9E077E1D82468118C14A7410E312A1F, xmp.iid:312593F4E82468118C14A7410E312A1F, xmp.iid:DE331289EC2468118C14A7410E312A1F, xmp.iid:0A2B4549FD2468118C14A7410E312A1F, xmp.iid:593024EE062568118C14A7410E312A1F, xmp.iid:53F3CB1D082568118C14A7410E312A1F, xmp.iid:526F57D5082568118C14A7410E312A1F, xmp.iid:60E139FD092568118C14A7410E312A1F, xmp.iid:68DECD690C2568118C14A7410E312A1F, xmp.iid:D1388B18112568118C14A7410E312A1F, xmp.iid:8D45760DA32568118C14A7410E312A1F, xmp.iid:6241A8F9A42568118C14A7410E312A1F, xmp.iid:677CE4C0B32568118C14A7410E312A1F, xmp.iid:D8A6D823B42568118C14A7410E312A1F, xmp.iid:A5E3272AB52568118C14A7410E312A1F, xmp.iid:8272DE880720681180839B03FFA4ACB7, xmp.iid:5BE031420820681180839B03FFA4ACB7, xmp.iid:AB9D9422DC2B68118083C0B019B71FAE, xmp.iid:18E48E22DD2B68118083C0B019B71FAE, xmp.iid:C316C890DE2B68118083C0B019B71FAE, xmp.iid:20DF0A32E32B68118083C0B019B71FAE, xmp.iid:E5CA797C4F2668118083E8600491E5D7, xmp.iid:BCEA6AD24F2668118083E8600491E5D7, xmp.iid:5AE877B0502668118083E8600491E5D7, xmp.iid:E6BF71B5152B68118083E357673C7FAB, xmp.iid:E1F3E91C182868118C14D2AAD405B79C, xmp.iid:12B90EB41E2868118C14D2AAD405B79C, xmp.iid:2B22D38B222868118C14D2AAD405B79C, xmp.iid:6A2319EB222868118C14D2AAD405B79C, xmp.iid:FBDA6610232868118C14D2AAD405B79C, xmp.iid:D09D1194282868118C14D2AAD405B79C, xmp.iid:882655BA282868118C14D2AAD405B79C, xmp.iid:85F50774C42868118C14D2AAD405B79C, xmp.iid:0C4650D7C82868118C14D2AAD405B79C, xmp.iid:AAF9B054C92868118C14D2AAD405B79C, xmp.iid:57E3C9D54B2B68118C14D2AAD405B79C, xmp.iid:546D9C944D2B68118C14D2AAD405B79C, xmp.iid:DF480C39072C68118C14D2AAD405B79C, xmp.iid:6874377C072C68118C14D2AAD405B79C, xmp.iid:0C629438102C68118C14D2AAD405B79C, xmp.iid:FB378277CE2C68118C14D2AAD405B79C, xmp.iid:DF4B3327DC21681188C6FB81CB0E1972, xmp.iid:DFE1F2A6EF21681188C6FB81CB0E1972, xmp.iid:582686C6F021681188C6FB81CB0E1972, xmp.iid:ACAC2392A42368118083D66268609CCC, xmp.iid:AD448654A52368118083D66268609CCC, xmp.iid:7D572723EC2068118083AF7913F2FD78, xmp.iid:237FAB2B7D2568118083AF7913F2FD78, xmp.iid:FA1EC836952568118083AF7913F2FD78, xmp.iid:3955D69A972568118083AF7913F2FD78, xmp.iid:3FCE79D6972568118083AF7913F2FD78, xmp.iid:A532E703982568118083AF7913F2FD78, xmp.iid:10747A2C9B20681188C6B8A6070C6CBE, xmp.iid:FAFD45E9D020681188C6B8A6070C6CBE, xmp.iid:02EA0FC62826681188C6B8A6070C6CBE, xmp.iid:D0F6CBCD2826681188C6B8A6070C6CBE, xmp.iid:EAE69D588526681188C6B8A6070C6CBE, xmp.iid:D84BE735ED26681188C6B8A6070C6CBE, xmp.iid:D7F8D161182068118083B8A25F6E9799, xmp.iid:D02F2A7E182068118083B8A25F6E9799, xmp.iid:39BE811B1E2068118083B8A25F6E9799, xmp.iid:7C545AF4812568118C149551FBB9E303, xmp.iid:454B83721C2068118083E3244992F05A, xmp.iid:46C0DA74412A68118C14CF2E48BD1928, xmp.iid:920A7715302B68118C14CF2E48BD1928, xmp.iid:E72AB6A1252068118083C6CECBC8CACF, xmp.iid:744139BA272068118083C6CECBC8CACF
History When                    : 2010:03:09 14:31:32-05:00, 2010:03:09 14:31:32-05:00, 2010:03:22 13:20:36-04:00, 2010:03:22 13:20:36-04:00, 2010:03:29 16:23:44-04:00, 2010:03:29 16:23:44-04:00, 2011:02:11 17:03:22-05:00, 2011:02:11 17:03:22-05:00, 2011:02:11 17:13-05:00, 2012:02:14 10:06:06-05:00, 2012:02:14 16:17:50-05:00, 2012:02:15 17:12:34-05:00, 2012:02:17 10:20:38-05:00, 2012:02:22 14:12:08-05:00, 2012:02:22 14:14:14-05:00, 2012:02:27 09:32:16-05:00, 2012:04:02 09:41:45-04:00, 2012:04:24 16:03:36-04:00, 2012:04:24 16:03:36-04:00, 2012:04:24 16:17:54-04:00, 2012:04:24 16:19:41-04:00, 2012:04:24 16:19:56-04:00, 2012:04:24 16:24:37-04:00, 2012:04:24 17:29:50-04:00, 2012:04:25 10:27:30-04:00, 2012:04:25 10:48:22-04:00, 2012:04:25 11:18:37-04:00, 2012:04:25 11:19:12-04:00, 2012:04:25 11:34:07-04:00, 2012:04:25 11:36:38-04:00, 2012:04:25 11:44:20-04:00, 2012:04:25 12:00:12-04:00, 2012:04:25 12:07:31-04:00, 2012:04:25 12:57:11-04:00, 2012:04:25 13:29:32-04:00, 2012:04:25 13:51:34-04:00, 2012:04:25 15:22:44-04:00, 2012:04:25 16:20:55-04:00, 2012:04:25 16:24:31-04:00, 2012:04:26 09:11:37-04:00, 2012:04:26 09:15:46-04:00, 2012:04:26 09:16:53-04:00, 2012:05:07 12:07:21-04:00, 2012:05:10 09:54:51-04:00, 2012:05:10 10:05:54-04:00, 2012:05:10 10:07:17-04:00, 2012:05:10 11:24:18-04:00, 2012:05:10 11:31:48-04:00, 2012:05:10 11:54:45-04:00, 2012:05:11 10:50:33-04:00, 2012:05:11 11:12:23-04:00, 2012:05:11 12:49:40-04:00, 2012:05:11 12:52:35-04:00, 2012:05:14 11:01:03-04:00, 2012:05:18 17:05:09-04:00, 2012:05:31 14:13:08-04:00, 2012:06:07 09:45-04:00, 2012:06:07 12:32:06-04:00, 2012:06:14 14:02:16-04:00, 2012:06:14 14:28:51-04:00, 2012:06:14 14:29:16-04:00, 2012:06:19 09:36:48-04:00, 2012:07:13 15:35:32-04:00, 2012:07:13 15:35:32-04:00, 2012:07:13 15:59:09-04:00, 2012:07:13 17:23:38-04:00, 2012:07:16 09:21:04-04:00, 2012:07:16 10:08:15-04:00, 2012:07:16 10:26:45-04:00, 2012:07:16 10:44:16-04:00, 2012:07:16 10:55:55-04:00, 2012:07:16 12:48:07-04:00, 2012:07:16 12:52:05-04:00, 2012:07:16 12:59:59-04:00, 2012:07:17 10:37:42-04:00, 2012:07:17 11:53:20-04:00, 2012:07:17 12:31:19-04:00, 2012:07:17 13:11:40-04:00, 2012:07:17 13:35:04-04:00, 2012:07:17 13:46:02-04:00, 2012:07:17 14:55:31-04:00, 2012:07:17 15:40:34-04:00, 2012:07:17 15:53:53-04:00, 2012:07:17 16:17:54-04:00, 2012:07:17 16:54:43-04:00, 2012:07:17 17:20:12-04:00, 2012:07:18 10:54:19-04:00, 2012:07:18 12:31:18-04:00, 2012:07:18 12:56:40-04:00, 2012:07:18 14:43:53-04:00, 2012:07:18 15:53:29-04:00, 2012:07:18 16:20:26-04:00, 2012:07:18 16:51:09-04:00, 2012:07:18 17:26:35-04:00, 2012:07:18 17:27:25-04:00, 2012:07:19 10:59:36-04:00, 2012:07:19 12:54:41-04:00, 2012:07:19 13:20:18-04:00, 2012:07:19 15:20:13-04:00, 2012:07:19 16:29:15-04:00, 2012:07:19 16:37:45-04:00, 2012:07:19 16:42:53-04:00, 2012:07:19 16:51:09-04:00, 2012:07:19 17:08:30-04:00, 2012:07:19 17:42:02-04:00, 2012:07:20 11:06:52-04:00, 2012:07:20 11:20:37-04:00, 2012:07:20 13:06:25-04:00, 2012:07:20 13:09:11-04:00, 2012:07:20 13:16:59-04:00, 2012:08:14 17:07:45-04:00, 2012:08:14 17:12:56-04:00, 2012:08:15 10:35:41-04:00, 2012:08:15 10:42:51-04:00, 2012:08:15 10:53:05-04:00, 2012:08:15 11:26:14-04:00, 2012:08:30 14:19:12-04:00, 2012:08:30 14:21:37-04:00, 2012:08:30 14:27:49-04:00, 2012:09:10 16:47:42-04:00, 2012:09:13 14:49:53-04:00, 2012:09:13 15:37:03-04:00, 2012:09:13 16:04:34-04:00, 2012:09:13 16:07:14-04:00, 2012:09:13 16:08:16-04:00, 2012:09:13 16:47:45-04:00, 2012:09:13 16:48:49-04:00, 2012:09:14 11:23:35-04:00, 2012:09:14 11:54:59-04:00, 2012:09:14 11:58:30-04:00, 2012:09:17 16:37:53-04:00, 2012:09:17 16:50:23-04:00, 2012:09:18 14:59:18-04:00, 2012:09:18 15:01:11-04:00, 2012:09:18 16:03:43-04:00, 2012:09:19 14:45:36-04:00, 2012:10:10 17:50:17-04:00, 2012:10:10 20:09:51-04:00, 2012:10:10 20:17:54-04:00, 2012:10:18 12:35:41-04:00, 2012:10:18 12:41:07-04:00, 2012:11:26 12:47:41-05:00, 2012:11:26 12:47:42-05:00, 2012:11:26 15:39:49-05:00, 2012:11:26 15:56:55-05:00, 2012:11:26 15:58:35-05:00, 2012:11:26 15:59:52-05:00, 2012:11:28 10:44:02-05:00, 2012:11:28 17:08:42-05:00, 2012:12:05 12:20:20-05:00, 2012:12:05 12:20:33-05:00, 2012:12:05 23:23-05:00, 2012:12:06 11:46:30-05:00, 2012:12:07 12:16:32-05:00, 2012:12:07 12:17:20-05:00, 2012:12:07 12:57:31-05:00, 2013:02:27 16:17:52-05:00, 2013:06:24 12:58:27-04:00, 2013:07:08 10:18:12-04:00, 2013:07:09 14:46:22-04:00, 2013:07:10 13:36:38-04:00, 2013:07:10 13:51:38-04:00
History Software Agent          : Adobe InDesign 6.0, Adobe InDesign 6.0, Adobe InDesign 6.0, Adobe InDesign 6.0, Adobe InDesign 6.0, Adobe InDesign 6.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0
History Changed                 : /, /metadata, /, /metadata, /, /metadata, /;/metadata, /metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata
Create Date                     : 2013:07:12 13:42:39-04:00
Modify Date                     : 2013:09:07 16:13:22-04:00
Metadata Date                   : 2013:09:07 16:13:22-04:00
Creator Tool                    : Adobe InDesign CS5 (7.0.3)
Page Image Page Number          : 1, 2
Page Image Format               : JPEG, JPEG
Page Image Width                : 256, 256
Page Image Height               : 256, 256
Page Image                      : (Binary data 8540 bytes, use -b option to extract), (Binary data 7524 bytes, use -b option to extract)
Doc Change Count                : 11389
Format                          : application/pdf
Title                           : AG TRB U1.indb
Producer                        : Adobe PDF Library 9.9
Trapped                         : False
GTS PDFX Version                : PDF/X-1:2001
GTS PDFX Conformance            : PDF/X-1a:2001
Page Count                      : 13
Creator                         : Adobe InDesign CS5 (7.0.3)
EXIF Metadata provided by EXIF.tools

Navigation menu